

SPE and TSN Testing and Challenges

Bob Noseworthy, Principal Engineer

UNH-IOL: A Brief Overview

The University of New Hampshire's InterOperability Laboratory in a nutshell

UNH-IOL's Mission

To provide a neutral environment to foster interoperability, standards conformance, and development for the interconnected world, while attracting students to and preparing them for careers in cutting-edge technology.

Who We Are

- A neutral and independent lab that tests networking and data communications products for businesses across the globe.
- Started in 1988 on the University of New Hampshire Durham, NH campus.
- Non-profit organization and 100% funded by commercial industry with over 150+ member companies.
- State of the art facility with 28,000+ sq. ft. (1 hour outside Boston, USA).
- 4,200 sq. feet of pre-wired space dedicated to Plugfests.

Training Future Engineers

120+ Graduate & undergrad student employees work with our staff, gaining hands-on experience with developing technologies and products.

99% job placement rate for our student employees, often before they graduate.

We provide career advancement opportunities including tech talks, training for common industry tools, networking events & an online resume binder.

Technology is What We Do

- Enable multi-vendor interoperability, conformance testing and develop custom testing solutions.
- Through industry involvement we can provide guidance and insight into new technology areas with testing needs and certification for testing programs.
- Promote early adoption through collaborative group testing (Plugfests).
- Offer members access to our world-class, multi-million dollar shared testbed which continues to grow.

10

Laboratory

Conformance & Interoperability

Conformance test predicts future interoperability
Interoperability test proves current interoperability

Both are essential. Conformance testing is only as good as:

- The standard's coverage
- The test plan's coverage
- The test tools employed

Interoperability testing is only as good as the devices, topologies and traffic patterns scrutinized

Continuous Improvement Cycle Standards:

- Eg: IEEE 802.3 Defines:
 - Interoperability requirements
 - Conformance requirements
 - Testability requirements

Testing:

- Test execution yields issues
- Issue resolution improves products, tools, test plans, and standards.

Test Plan:

- **Details conformance &** interoperability test procedures
 - Tool agnostic

Tools:

- Industry standard tools
- Automation Test Harnesses
 - Instantiate Test Plans
 - Multiple solutions
 - Enables 1st & 3rd party common test

InterOperability Laboratory

Single Pair Ethernet (SPE) and Time Sensitive Networking (TSN) State of the Art

Literally Not Your Father's Oldsmobile

SPE State of the Art in one slide

- Spanning from 10Mbps to 10Gbps and soon 25Gbps
 - 2 10Mbps speeds:
 - 10BASE-T1S (15m reach Multidrop CAN/LIN gateway/replacement)
 - 10BASE-T1L (Industrial use-case, including Automotive Factory, 1km reach + SPoE)
 - 100BASE-T1 (Original "BroadR-Reach" to IEEE 802.3 standard, 15m reach)
 - 1000BASE-T1 (Type A: 15m reach, Type B: 40m reach)
 - MGBASE-T1 (2.5 / 5 / 10Gbps, 15m reach)
 - 25GBASE-T1 (11m reach)
- IEEE 802.3 Defines the SPE Standards, OPEN Alliance builds consensus for development of ISO Standards (eg: ISO 21111-6)

TSN State of the Art in one slide

- 3 orig. "AVB" Standards: Credit based shaper (CBS), gPTP, MSRP; + 1 Profile:.1BA
- Leads to >45 IEEE Standards (+ IETF DetNet work) All form a "TSN Toolbox"
 - Bounded Latency: CBS(.1Qav) Preempt(.1Qbu) Sched(.1Qbv) Cyclic(.1Qch) Async(.1Qcr) QoS (.1DC)
 - Reservation protocols: MSRP(.1Qat) SRPv2(.1Qcc) PCR(.1Qca) LRP(.1CS) RAP(.1Qdd)
 - Redundancy solutions: FRER (.1CB), PCR (.1Qca), LinkAg (.1AX), Hot Standby (.1ASdm)
 - Timing solutions: 802.1AS-2011 (gPTP) superseded by 802.1AS-2020
 - Management: Config. Enhancements for TSN (.1Qdj), numerous YANG definition standards.
- Several profiles in development now:
 - 802.1DG TSN Profile for Automotive In-Vehicle Ethernet Communications
 - IEC/IEEE 60802 TSN Profile for Industrial Automation
 - 802.1DF TSN Profile for Service Provider Networks
 - 802.1DP TSN Profile for Aerospace Onboard Ethernet communications

Supporting Organizations

- UNH-IOL: Third party test plan development, tool developer and supplier, test facility for Avnu and OPEN Alliance, plugfest host, etc
- IEEE: Principal Standard Defining Organization (SDO)
- Avnu Alliance:
 - Promoting AVB / Pro Audio Certification; and
 - Avnu Automotive Profile and Certification (offered by UNH-IOL)
- OPEN Alliance:
 - PHY Testing; Wake-Up and Sleep specification ("TC10"), Switch Requirements (TC11), and ECU Requirements (TC8)
- Agricultural Industry Electronics Foundation (AEF) 1000BASE-T1 Type B

A Tale of Two Automotive Profiles

IEEE 802.1DG (Automotive TSN Profile)

- D1.4 (since Dec 2021) A new draft is progressing, but this work is not done
- Routine Calls and meetings held
 - Next Concall is Oct 3 9am EDT (Currently held every two weeks)
 - <u>https://1.ieee802.org/tsn/calendar/</u>
 - One (of many) areas of active discussion, to require strict compliance to IEEE 802.1AS-2020 (which requires Announce messages), or not, driven by AUTOSAR feedback in March Plenary

Avnu Automotive Profile (D1.4 – D1.6)

- Older profile (5+ years old) pre-dating IEEE 802.1AS-2020 (oft referred to as ".1AS-Rev" at the time)
- Did not require BMCA (hence no Announce), statically set port role pre-AS definition

UNH-IOL Services Snapshot

A Brief Summary of SPE and TSN Related Services and Tools

UNH-IOL Current SPE Services: 100 Mbps to 1Gbps+

- 100BASE-T1 Testing Service:
 - OPEN TC1 Defined PMA, PCS, PHY Control and TC10 Wake/Sleep Test Service.
 - TC9 100BASE-T1 Cable testing
 - Contact us about In-house test capability (BitPhyer and QualiPhyer)
- 1000BASE-T1 Testing Service:
 - OPEN TC12 Defined PMA, PCS, PHY Control
 - TC9 1000BASE-T1 Cable testing (including Type B)
- MGBASE-T1 Pay-per-test Service:
 - OPEN TC15 Defined PMA

UNH-IOL Current SPE Services (10 Mbps)

- 10BASE-T1S
 - OPEN TC14 Defined PMA
 - UNH-IOL Defined PCS, PLCA and Half-Duplex MAC Conformance Testing
- IOBASE-T1L / APL
 - Advanced Physical Layer (APL) uses 10BASE-T1L with APL Group defined Power delivery over the SPE
 - Developed APL Group Certification Test Plans, Tools, Software and Service, Supported by APL Group (PNO, ODVA, Fieldcomm Group, and OPC Foundation)
 - UNH-IOL Semiconductor conformance validation for 10BASE-T1L: PCS, Phy Control, Auto-Negotiation in our 10BASE-T1L Service Group

UNH-IOL Current SPE Solutions

- BitPhyer[®] Tool enables 100BASE-T1 PCS/Phy Control/TC10
 - Specialized tool for IEEE compliance
 - <u>https://www.iol.unh.edu/solutions/test-tools/ethernet/bitphyer</u>
- APL Violett[®] enables 10BASE-T1L In-house testing for APL
 - <u>https://www.iol.unh.edu/solutions/test-tools/apl/software</u>
 - Companion Test Fixtures available at https://www.iol.unh.edu/solutions/test-tools/apl
- In development: QualiPhyer[®] for SPE
 - To enable in-house testing utilizing UNH-IOL methodologies
 - <u>https://www.iol.unh.edu/solutions/test-tools/ethernet/qualiphyer</u>
- All IOL Products at: <u>https://license.unh.edu/products/iol</u>

UNH-IOL Current TSN Services

- Automotive Networking Test Service:
 - Avnu Automotive Certification
 - Avnu AVB Bridge Certification
 - OPEN Alliance TC8 / TC11 Testing
 - Exploring OPEN Alliance TC17 (MACsec) leveraging earlier UNH-IOL MACsec Compliance testing
- IEEE 1588 / PTP Test Service:
 - gPTP Conformance Testing
 - Upcoming IEEE-SA Certification for Power Profile (IEC 61850-9-3, IEEE C37.238)
 - Other IEEE 1588 Profiles (Default, etc) and capabilities (One-Step TC Semiconductor Verification)
- In-house test software available Avnu Violett[®] and PTP Violett[®]
 - <u>https://www.iol.unh.edu/solutions/test-tools/avnu</u>
 - <u>https://www.iol.unh.edu/solutions/test-tools/ptp</u>

MGBase-T1 Testing Challenges

A quick overview – Contribution from UNH-IOL's Jason Sisk

MGBASE-T1 Testing Overview from UNH-IOL

- Physical layer testing challenges grow in difficultly as the automotive network continues to increase in data rates in order to support high density communication within a vehicle network. The newest group to complete their standard is 2.5G/5G/10GBase-T1 in 2020 although the 25GBase-T1 group is now completed as of the middle of calendar year 2023 (background info for why 10G+).
- 2.5G/5G/10GBase-T1 are PAM4 Full Duplex Technologies paving the way for high speed in vehicle networks in which the future 25GBase-T1 hopes to expand upon as the backbone for new topologies.
- UNH-IOL is developing PMA Compliance Test Software, and pursuing tooling for PCS/PHYC
 - Options exist for early PCS and PHYC testing
 - Solutions could exist for PCS and PHYC before years-end offering partial coverage of requirements (estimated to be 40-60% of requirements).

MGBASE-T1 Challenges: Linearity

 PAM4 signaling is new for the SPE technology. Understanding TX signal levels vs Noise (SNDR) is crucial.

MGBASE-T1 Challenges: Test and Data Bandwidth

Power Spectral Density Mask (to 5.5GHz)

Return Loss Limits (to 4GHz)

MGBASE-T1 Challenges and Solutions:

- As in-vehicle network continue to evolve with higher data rates the testing challenges associated with the technology also evolve.
- Keeping in mind the appropriate testing methodologies allows one to quantify the communication systems TX and RX are meeting the desired expectations for not only compliance but for future interoperability.
- UNH-IOL is developing a white paper in partnership with Keysight to explore these challenges in detail compared to previous flavors of the SPE technology.
 - Keysight has generously provided long-term access to a UXR0334A for these purposes
 - Discussions with other T&M vendors are ongoing and welcome, to enable a rich validation ecosystem!

10BASE-T1S Testing Challenges

Slower is not necessarily easier

10BASE-T1S Testing Overview from UNH-IOL

- 10BASE-T1S is a shared medium technology to provide a low-cost path traditionally supported by CAN/LIN technologies.
- "Shared medium" does mean "half-duplex", but this is not purely CSMA/CD of old.
 - PLCA (Physical-Layer Collision Avoidance) allows for maximized fair use of the 10Mbps BW with minimal impact on overhead.
 - Validation must span from Channel, to PMA, PCS, PLCA, MAC and (optionally) SPI to/from MAC
- The "Multi-drop" channel presents some challenges for validation and test.

10BASE-T1S Challenges: Multi-Drop Channel

- Channel is principally limited by capacitive loading. 8 Nodes should be possible, 16 may be with care. Each node may see different eyes as a function of topology and node transmit source.
 - Shown below, Transmitted Eye, when transmitting from Node <x> {Column} vs that received at Node <y> {Row}

10BASE-T1S Challenges and Solutions:

- For repeatable interoperability and compliance testing, representative 'worst-case' channels are necessary. OPEN Alliance TC9 and TC14 groups working to address this.
 - Efforts in IEEE P802.3da to define Multidrop Segments Enhancement improve the channel definition but do so for "10BASE-T1M" (objective: 16 nodes, 50m, interoperable with 10BASE-T1S.)
- PLCA is introduced with 10BASE-T1S, hence all tooling in new.
- UNH-IOL Currently offers services for 10BASE-T1S:
 - PMA
 - Half-Duplex MAC Conformance Validation
 - Draft/early PCS and PLCA testing.
 - Hosting Second 10BASE-T1S Plugfest June 26-30 at UNH-IOL in Durham NH.
 - Exploring additional Interoperability services (eg: cable fault testing, etc)

1000BASE-T1 Testing Challenges

The play's the thing (Hamlet Act 2, Scene 2)

1000BASE-T1 Type B

1000BASE-T1 Testing Overview from UNH-IOL

- Having a Test Plan; and, Having a Test Tool, are two different things.
 - While a Test Plan for PCS and PHY Control (PHYC) have existed in the OPEN ALLIANCE TC12 group for several years, only recently announced tooling enables all test cases defined therein.
- The Challenge: Enabling a tool that can generate 1000BASE-T1 valid signaling while "breaking the rules" when needed to validate compliance with a 'negative' test case.
 - 1000BASE-T1 PCS & PHYC Coverage now fully online as announced on Business Wire in Jan'23

UNH InterOperability Lab and Microchip Technology Partner to Expand 1000BASE-T1 PCS and PHY-C Automotive Compliance Testing

January 24, 2023 10:00 AM Eastern Standard Time

DURHAM, N.H.--(BUSINESS WIRE)--The University of New Hampshire InterOperability Laboratory (UNH-IOL), an independent provider of broad-based testing and standards conformance services for the networking industry, today announced they have expanded testing for the 1000BASE-T1 PCS and PHY Control market to help further compliance for the automotive industry. By partnering with Microchip Technology, who created a development test platform that is compatible with OPEN Alliance Test Plans for 1000BASE-T1 conformance testing, the automotive industry is even closer to having a complete compliance for chip manufacturers. The enhancements of the testing will allow manufacturers the ability to go to market with greater confidence in their products.

1000BASE-T1 Remaining Challenges:

- TC10
 - Test Specification for Sleep/Wake for 1000BASE-T1 still in process
- Type B
 - Coordinating with the Agricultural Industry Electronics Foundation (AEF) and OPEN to develop 1000BASE-T1 Type B (40m) PMA Test Plans for emerging silicon, in addition to on-going OPEN TC9 Cable testing for Type B channels.
- 1000BASE-T1 PMA receiver testing
 - UNH-IOL is currently updating automotive test channels with cabling provided by Leoni
- Non-test-mode testing.
 - Supporting the exploration of testing IEEE requirements (typically requiring a Test Mode to be enabled) with non-test mode signaling - as a device that knows it is being tested may differ from its real-world behavior.

Asymmetric Data Testing Challenges

There are several ways to skin this cat, focus here is on OPEN's TC16

Energy Efficient Ethernet (EEE) Testing Challenges:

- While defined for 100BASE-T1 and 1000BASE-T1, principal expected use-case is in MGBASE-T1 speeds (2.5/5/10Gbps) to support camera flows and similar.
 - Supporting OPEN ALLIANCE TC16 efforts for Test Plan and Plugfest planning
- UNH-IOL Currently offers EEE testing for several "BASE-T" speeds
 - Leveraging this knowledge combined with 1000BASE-T1 and MGBASE-T1 Testing know-how to accelerate MGBASE-T1 Validation
- Challenge: Asymmetric Data flow results in the SPE line always having energy in one direction, hence selectively monitoring the EEE "low power idle" (LPI) is a challenge that UNH-IOL can help solve.
 - Complete PCS Validation requires negative test case and hence stimulation.
 - Overall power savings is a system-level consideration
 - Not typically an IEEE nor OPEN specification, but an informative measure UNH-IOL can measure given sufficient definition of test environment

Questions?

Technical Contacts:

- Bob Noseworthy <u>ren@iol.unh.edu</u>
- Jason Sisk jsisk@iol.unh.edu
- **Operations and Sales:**
- Michelle Whisnant <u>mwhisnant@iol.unh.edu</u>
- Mike Goding <u>mgoding@iol.unh.edu</u>

Thank You!

