
DYNAMIC RECONFIGURATION
AND IMPLEMENTATION IN

ADAPTIVE AUTOSAR
YUCHEN ZHOU

GM R&D

DYNAMIC RECONFIGURATION

§ SAE level 3 and above automated driving can have varying redundancy needs for
backup when driver is not in the loop

§ In case of a failure of its main computing system a redundant computing system can
serve as a backup for executing control tasks.

§ Dynamic reconfiguration is a way to reduce costly execution of duplicates all the time,
while maintaining situation awareness for the cold standby applications.

§ The method:
– Passing state information between main execution of an application to the cold

standby duplicates without actually running the whole application
– At the time of fault, launch the redundant application and establish sensor and

actuation communication to the new application

FROM ASYMMETRIC ALLOCATION TO DYNAMIC
RECONFIGURATION

ECU1 ECU2

Feature 8

Ethernet

Feature 7

Feature 4

Feature 1

Feature 5

Feature 2

Feature 9 Other Features

Feature 6

Feature 3

Other Features Other Features

Feature 8Feature 7

Feature 4

Feature 1 Feature 2

Feature 5

Feature 9

Feature 6

Feature 3

Other Features Other Features

Cold standbyExecuting

S

SS

State transfer (S)
at runtime

Reduction of CPU

requirements No increase in CPU
requirement

ECU1 FAILURE AND RECONFIGURATION

ECU1 ECU2

Ethernet

Ethernet

Feature 8Feature 7

Feature 4

Feature 1 Feature 2

Feature 5

Feature 9

Feature 6

Feature 3

Feature 8Feature 7

Feature 4

Feature 1 Feature 2

Feature 5

Feature 9

Feature 6

Feature 3

Other Features Other Features

State transfer (S)
at runtime

Other Features Other Features

Feature 8

Feature 7

Feature 4

Feature 1

Feature 5

Feature 2

Feature 9 Other Features

Feature 6

Feature 3

S

SS

QUALITY GOALS
§ Performance

– Need to meet the fault handling time
§ Resource consumption

– To reduce cost

SOLUTION IDEA:
§ Backup the internal state of an application on a different machine.
§ In case of failure: Fallback application takes over

– Fallback application standby modes

IMPLEMENTATION OBJECTIVES

CPU usage
cold standby hot standby

initialized with shared libraries load and
runtime instances created.

Redundant execution

ADAPTIVE AUTOSAR IMPLEMENTATION
• Adaptive AUTOSAR provided essential runtime for managing execution state, i.e. standby, and

activation and running applications through functional groups.

CONCEPT – INVOLVED CLUSTERS

STATE MANAGER (SM)

Manages running applications by
using function groups
Manages system state
§ Standby or running

PLATFORM HEALTH MANAGER
(PHM)

Monitors application health
Monitors health of machine

SYSTEM HEALTH MONITOR (SHM)

Monitors health of multiple machines

CONCEPT – FAILURE DETECTION

REMOTE FAILURE DETECTION

adaptive AUTOSAR System Health
Monitor concept
Triggers fallback SM with TriggerIN
Interface.

LOCAL FAILURE DETECTION

adaptive AUTOSAR Platform Health
Manager concept
PHM calls recovery action of SM, that
notifies the SM on the fallback ECU

RECONFIGURATION ACTIVATION

SM triggers running fallback
Application

CONCEPT – STATE SYNCHRONIZATION

STATE SYNC TO DAEMON

State sync library writes internal state
into shared memory.
Sync Daemon manages shared
memory

SYNC BETWEEN DAEMON’S (ECU’S)

ara:com Events with state collection
as backup

RECONFIGURATION ACTIVATION

SM triggers Sync Daemon at failure
time to provide the state’s to the
fallback applications

CONCEPT – FALLBACK ACTIONS

Process of Application already running.
Application and “Sync Daemon” are
subscribed to events from TriggerOut
interface

Fallback function group state “running” could
trigger PHM

TriggerIn from Application is used to rebuild
execution dependencies

DEMO FUNCTIONALITY
DEMO SCENARIO

OriginCount is an IPC Service counting up
AugmentCount can bit-shift the value and provide it via
some/IP protocol

Dummy Data of “OriginCount” service can be configured
§ 50 / 100 / 1000 bytes used for testing

Frequency of “OriginCount” event’s can be configured
§ 100 / 50 / 25 milliseconds used for testing

Service AugmentCount is execution dependent on
OriginCount

IMPLEMENTATION SETUP

Power Button SW8

ECU2 ECU1

Ethernet connected to Tester
Bridged together (192.168.56.1/24)

• State Backup latency between
ECU’S took ~2.3 ms

• Recovery time
• for App1 was ~3ms
• for dependent

app2 ~4.9ms

• Memory
consumption was about
constant
• SM: 6.5MB, Daemon:

4.6MB, App1: 4.5MB,
App2: 6.4MB

• CPU usage below 1%

RESULTS

