
SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

Document Title
SWS_NVRAMManager:
Complete Change
Documentation 4.3.0 - 4.3.1

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 695

Document Status Final

Part of AUTOSAR Standard Classic Platform

Part of Standard Release 4.3.1

1 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

Table of Contents

1 SWS_NVRAMManager 3

1.1 Specification Item ECUC_NvM_00072 . 3
1.2 Specification Item ECUC_NvM_00481 . 6
1.3 Specification Item ECUC_NvM_00497 . 8
1.4 Specification Item SWS_NvM_00314 . 11
1.5 Specification Item SWS_NvM_00316 . 14
1.6 Specification Item SWS_NvM_00628 . 17
1.7 Specification Item SWS_NvM_00784 . 19
1.8 Specification Item SWS_NvM_00833 . 22
1.9 Specification Item SWS_NvM_00856 . 24
1.10 Specification Item SWS_NvM_00951 . 25
1.11 Specification Item SWS_NvM_00952 . 27
1.12 Specification Item SWS_NvM_00953 . 30
1.13 Specification Item SWS_NvM_00954 . 33
1.14 Specification Item SWS_NvM_00955 . 37
1.15 Specification Item SWS_NvM_00956 . 40
1.16 Specification Item SWS_NvM_00957 . 43
1.17 Specification Item SWS_NvM_00958 . 46
1.18 Specification Item SWS_NvM_00959 . 50
1.19 Specification Item SWS_NvM_00960 . 53

2 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

1 SWS_NVRAMManager

1.1 Specification Item ECUC_NvM_00072

Trace References:

none

Content:

Name NvMWriteBlockOnceNvMBlockDescriptor.NvMWriteBlockOnce

Description Defines write protection after first write. The NVRAM manager sets the write protection bit either
after the NV block was written the first time . This means that some of the NV blocks in the
NVRAM should never be erased nor be replaced with the default ROM data after first
initializationor if the block was already written and it is detected as valid and consistent during a
read for it. [NVM276].

true: Defines write protection after first write is enabled.

false: Defines write protection after first write is disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value –

Post-Build Variant Value false

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Value Configuration Class

Post-build time –

Scope / Dependency scope: local

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:

• RfC #74058: [NvM] Write protection and erase requests for NvMWriteBlockOnce
blocks

Problem description:

————————————–
Name: Delia Batica
Phone: +40 356 78 4202
Role: Developer
————————————–
Description/Motivation:

Currently, the behavior of NvM API’s for written blocks with NvMWriteBlock-
Once configured TRUE that have write protection unset is unclear.

I will refer as wbo the blocks with NvMWriteBlockOnce configured TRUE.

3 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

https://www.autosar.org/bugzilla/show_bug.cgi?id=74058

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

How should the wbo be handled during read requests if the block is reported
as inconsistent?
In SWS_NvM_00316 for eg., NvM_ReadBlock sets wbo to write protected if block is
valid. (same for SWS_NvM_00314, SWS_NvM_00784).

How should NvM_EraseNvBlock and NvM_InvalidateNvBlock handle a wbo if
the write protection is still unset? Should the 2 APIs set the write protection for a
block configured with NvMWriteBlockOnce set to TRUE?

NVM072_Conf : says that NVRAM manager".. sets the
write protection bit after the NV block was written the first time. This means that
some of the NV blocks in the NVRAM should never be erased ..after first initialization.

Also, it should be made clear that "write protection", "write protection bit",
"write protection attribute" all refer to the current known state of write protection of a
block.
————————————–

————————————–

Agreed solution:

(1) Change the Description for requirement ECUC_NvM_00072 to:
"Defines write protection after first write. The NVRAM manager sets the write
protection bit either after the NV block was written the first time or if the block
was already written and it is detected as valid and consistent during a read for it.
[NVM276].
true: Defines write protection after first write is enabled.
false: Defines write protection after first write is disabled."

(2) Change the requirement SWS_NvM_00316 to:
"The job of the function NvM_ReadBlock shall mark every NVRAM block that has
been configured with NVM_WRITE_BLOCK_ONCE (TRUE) as write protected if
that block is valid and with consistent data. This write protection cannot be cleared
by NvM_SetBlockProtection."

(3) Change the requirement SWS_NvM_00314 to:
"The job of the function NvM_ReadAll shall mark every NVRAM block that has been
configured with NVM_WRITE_BLOCK_ONCE (TRUE) as write protected if that
block is valid and with consistent data. This write protection cannot be cleared by
NvM_SetBlockProtection."

(4) Change the requirement SWS_NvM_00784 to:

4 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

"The job of the function NvM_ReadPRAMBlock shall mark every NVRAM block that
has been configured with NVM_WRITE_BLOCK_ONCE (TRUE) as write protected
if that block is valid and with consistent data. This write protection cannot be cleared
by NvM_SetBlockProtection."

(5) Add a requirement, in chapter "7.2.2.13 NVRAM block write protection",
stating the following:
"For a block configured with MVM_WRITE_BLOCK_ONCE (TRUE), NvM shall
reject any Write/Erase/Invalidate request made prior to the first read request."

(6) For the above requirement, add the following Rationale:
"In case of a reset, the write protection flag of a block configured with
NVM_WRITE_BLOCK_ONCE (TRUE), from the NvM Administrative block, is
cleared. In order to reactivate the protection, the block must be read prior to a first
Write/Erase/Invalidate request being processed, in order to set the write proctection
only for a block that is valid and consistent. The first read request can be done
either as a single block request or as part of NvM_ReadAll."

(7) Add a requirement, in chapter "7.3.1 Development errors", stating the fol-
lowing:
"The development error NVM_E_WRITE_ONCE_STATUS_UNKNOWN (0x1A) shall
be detectable by the NvM module when a Write/Erase/Invalidate is made for a block
with MVM_WRITE_BLOCK_ONCE (TRUE), prior to the first read request made for
that block, depending on whether the build version mode is development mode."

(8) Add the following requirements in chapter "7.4 Error Detection":
- If development error detection is enabled for NvM mod-
ule, the function NvM_WriteBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made
for a block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this.
- If development error detection is enabled for NvM module,
the function NvM_WritePRAMBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made
for a block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this.
- If development error detection is enabled for NvM module,
the job of the function NvM_WriteAll shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when the processing of a block
configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read request
was made prior to this.
- If development error detection is enabled for NvM module, the
job of the function NvM_EraseNvBlock shall report the DET error

5 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made
for a block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this.
- If development error detection is enabled for NvM module, the
job of the function NvM_InvalidateNvBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made
for a block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this.

(9) Add a requirement, in chapter "8.1.3.2.4 NvM_EraseNvBlock", after the
00423 requirement, which states the following:
"The job of the function NvM_EraseNvBlock shall leave the write protection un-
changed for the blocks configured with MVM_WRITE_BLOCK_ONCE (TRUE)."

(10) Add a requirement, in chapter "8.1.3.2.6 NvM_InvalidateNvBlock", after
the 00417 requirement, which states the following:
"The job of the function NvM_InvalidateNvBlock shall leave the write protection
unchanged for the blocks configured with MVM_WRITE_BLOCK_ONCE (TRUE)."
–Last change on issue 74058 comment 15–

BW-C-Level:

Application Specification Bus
1 4 1

1.2 Specification Item ECUC_NvM_00481

Trace References:

none

Content:

Name NvMNvramBlockIdentifierNvMBlockDescriptor.NvMNvramBlockIdentifier

Description Identification of a NVRAM block via a unique block identifier.

Implementation Type: NvM_BlockIdType.

min = 1 2 max = 2(̂16- NVM_DATASET_SELECTION_BITS)-1

Reserved NVRAM block IDs:
0 -> to derive multi block request results via NvM_GetErrorStatus
1 -> redundant NVRAM block which holds the configuration ID (generation tool should check that
this block is correctly configured from type,CRC and size point of view)

Multiplicity 1

Type EcucIntegerParamDef (Symbolic Name generated for this parameter)

Range 1 2 .. 65535

Default value –

6 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

Post-Build Variant Value false

Pre-compile time X All Variants

Link time –
Value Configuration Class

Post-build time –

Scope / Dependency scope: local dependency: NVM_DATASET_SELECTION_BITS

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:

• RfC #73816: Correction of the range of the configuration parameters in NvM

Problem description:

Autosar version 4.2.1.

Collection of the relevant informations from NvM SWS:

1.
[SWS_NvM_00471] NvM_BlockIdType
Range: 0..2^(16-NvMDatasetSelectionBits)-1

Identification of a NVRAM block via a unique block identifier.

Reserved NVRAM block IDs:
0 -> to derive multi block request results via NvM_GetErrorStatus
1 -> redundant NVRAM block which holds the configuration ID

2.
ECUC_NvM_00494: NvMDatasetSelectionBits
Range 0 .. 8

0: No dataset or redundant NVRAM blocks are configured at all, no
selection bits required.
1: In case of redundant NVRAM blocks are configured, but no dataset
NVRAM blocks.

3. NvMBlockDescriptor 1 .. 65536
4. NvMNvBlockBaseNumber 1 .. 65534
5. NvMNvramBlockIdentifier 1 .. 65535

Please see the following statements:
1. NvMDatasetSelectionBits cannot be 0, as Block 1 is redundant (which holds the
configuration ID)
2. Seeing the NvM_BlockIdType, the range of the NvMBlockDescriptor can be 1 ..

7 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

https://www.autosar.org/bugzilla/show_bug.cgi?id=73816

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

65535
3. The amount of NvMNvBlockBaseNumber is less than the amount of NvMBlock-
Descriptor.

Is this understanding correct?

Proposed solution (A):
1. Set NvMDatasetSelectionBits to "Range 1 .. 8", and
2. Set NvMBlockDescriptor and NvMNvramBlockIdentifier range to "1..65534"

Proposed solution (B):
1. Set NvMDatasetSelectionBits to "Range 1 .. 8", and
2. More limitation of NvMBlockDescriptor/NvMNvBlockBaseNumber/NvMNvram-
BlockIdentifier, as the range of NvMDatasetSelectionBits starts with 1.

Maybe other configuration parameters have to be corrected.
–Last change on issue 73816 comment 22–

Agreed solution:

(1) Extend the Description for requirement ECUC_NvM_00497: (related to
NvMDynamicConfiguration) by adding: "This parameter affects all NvM process-
ing related to Block with ID 1 and all processing related to Resistant to Changed
Software. If the Dynamic Configuration is disabled, Block 1 cannot be used by NvM."

(2) For the NvMBlockDescriptor container (chapter 10.2.3), for the NvMNvramBlock-
Identifier configuration parameter (requirement ECUC_NvM_00481), change range
"min = 1" to "min = 2" .
(3) change in description ECUC_NvM_00481: min = 2 max = 2^(16-
NVM_DATASET_SELECTION_BITS)-1
–Last change on issue 73816 comment 19–

BW-C-Level:

Application Specification Bus
4 4 1

1.3 Specification Item ECUC_NvM_00497

Trace References:

none

Content:

8 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

Name NvMDynamicConfigurationNvMCommon.NvMDynamicConfiguration

Description Preprocessor switch to enable the dynamic configuration management handling by the Nv
M_ReadAll request.

true: Dynamic configuration management handling enabled.
false: Dynamic configuration management handling disabled.

This parameter affects all NvM processing related to Block with ID 1 and all processing related
to Resistant to Changed Software. If the Dynamic Configuration is disabled, Block 1 cannot be
used by NvM.

Multiplicity 1

Type EcucBooleanParamDef

Default value –

Post-Build Variant Value false

Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Value Configuration Class

Post-build time –

Scope / Dependency scope: local

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:

• RfC #73816: Correction of the range of the configuration parameters in NvM

Problem description:

Autosar version 4.2.1.

Collection of the relevant informations from NvM SWS:

1.
[SWS_NvM_00471] NvM_BlockIdType
Range: 0..2^(16-NvMDatasetSelectionBits)-1

Identification of a NVRAM block via a unique block identifier.

Reserved NVRAM block IDs:
0 -> to derive multi block request results via NvM_GetErrorStatus
1 -> redundant NVRAM block which holds the configuration ID

2.
ECUC_NvM_00494: NvMDatasetSelectionBits
Range 0 .. 8

0: No dataset or redundant NVRAM blocks are configured at all, no
selection bits required.
1: In case of redundant NVRAM blocks are configured, but no dataset

9 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

https://www.autosar.org/bugzilla/show_bug.cgi?id=73816

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

NVRAM blocks.

3. NvMBlockDescriptor 1 .. 65536
4. NvMNvBlockBaseNumber 1 .. 65534
5. NvMNvramBlockIdentifier 1 .. 65535

Please see the following statements:
1. NvMDatasetSelectionBits cannot be 0, as Block 1 is redundant (which holds the
configuration ID)
2. Seeing the NvM_BlockIdType, the range of the NvMBlockDescriptor can be 1 ..
65535
3. The amount of NvMNvBlockBaseNumber is less than the amount of NvMBlock-
Descriptor.

Is this understanding correct?

Proposed solution (A):
1. Set NvMDatasetSelectionBits to "Range 1 .. 8", and
2. Set NvMBlockDescriptor and NvMNvramBlockIdentifier range to "1..65534"

Proposed solution (B):
1. Set NvMDatasetSelectionBits to "Range 1 .. 8", and
2. More limitation of NvMBlockDescriptor/NvMNvBlockBaseNumber/NvMNvram-
BlockIdentifier, as the range of NvMDatasetSelectionBits starts with 1.

Maybe other configuration parameters have to be corrected.
–Last change on issue 73816 comment 22–

Agreed solution:

(1) Extend the Description for requirement ECUC_NvM_00497: (related to
NvMDynamicConfiguration) by adding: "This parameter affects all NvM process-
ing related to Block with ID 1 and all processing related to Resistant to Changed
Software. If the Dynamic Configuration is disabled, Block 1 cannot be used by NvM."

(2) For the NvMBlockDescriptor container (chapter 10.2.3), for the NvMNvramBlock-
Identifier configuration parameter (requirement ECUC_NvM_00481), change range
"min = 1" to "min = 2" .
(3) change in description ECUC_NvM_00481: min = 2 max = 2^(16-
NVM_DATASET_SELECTION_BITS)-1
–Last change on issue 73816 comment 19–

BW-C-Level:

10 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

Application Specification Bus
4 4 1

1.4 Specification Item SWS_NvM_00314

Trace References:

none

Content:

The job of the function NvM_ReadAll shall mark every NVRAM block that has been con-
figured with NVM_WRITE_BLOCK_ONCE (TRUE) and that is not detected by underlying
SW as being invalidated, shall be marked as write protected as write protected if that block
is valid and with consistent data. This write protection cannot be cleared by NvM_SetBlock
Protection.

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:

• RfC #74058: [NvM] Write protection and erase requests for NvMWriteBlockOnce
blocks

Problem description:

————————————–
Name: Delia Batica
Phone: +40 356 78 4202
Role: Developer
————————————–
Description/Motivation:

Currently, the behavior of NvM API’s for written blocks with NvMWriteBlock-
Once configured TRUE that have write protection unset is unclear.

I will refer as wbo the blocks with NvMWriteBlockOnce configured TRUE.

How should the wbo be handled during read requests if the block is reported
as inconsistent?
In SWS_NvM_00316 for eg., NvM_ReadBlock sets wbo to write protected if block is
valid. (same for SWS_NvM_00314, SWS_NvM_00784).

How should NvM_EraseNvBlock and NvM_InvalidateNvBlock handle a wbo if
the write protection is still unset? Should the 2 APIs set the write protection for a
block configured with NvMWriteBlockOnce set to TRUE?

11 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

https://www.autosar.org/bugzilla/show_bug.cgi?id=74058

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

NVM072_Conf : says that NVRAM manager".. sets the
write protection bit after the NV block was written the first time. This means that
some of the NV blocks in the NVRAM should never be erased ..after first initialization.

Also, it should be made clear that "write protection", "write protection bit",
"write protection attribute" all refer to the current known state of write protection of a
block.
————————————–

————————————–

Agreed solution:

(1) Change the Description for requirement ECUC_NvM_00072 to:
"Defines write protection after first write. The NVRAM manager sets the write
protection bit either after the NV block was written the first time or if the block
was already written and it is detected as valid and consistent during a read for it.
[NVM276].
true: Defines write protection after first write is enabled.
false: Defines write protection after first write is disabled."

(2) Change the requirement SWS_NvM_00316 to:
"The job of the function NvM_ReadBlock shall mark every NVRAM block that has
been configured with NVM_WRITE_BLOCK_ONCE (TRUE) as write protected if
that block is valid and with consistent data. This write protection cannot be cleared
by NvM_SetBlockProtection."

(3) Change the requirement SWS_NvM_00314 to:
"The job of the function NvM_ReadAll shall mark every NVRAM block that has been
configured with NVM_WRITE_BLOCK_ONCE (TRUE) as write protected if that
block is valid and with consistent data. This write protection cannot be cleared by
NvM_SetBlockProtection."

(4) Change the requirement SWS_NvM_00784 to:
"The job of the function NvM_ReadPRAMBlock shall mark every NVRAM block that
has been configured with NVM_WRITE_BLOCK_ONCE (TRUE) as write protected
if that block is valid and with consistent data. This write protection cannot be cleared
by NvM_SetBlockProtection."

(5) Add a requirement, in chapter "7.2.2.13 NVRAM block write protection",
stating the following:
"For a block configured with MVM_WRITE_BLOCK_ONCE (TRUE), NvM shall

12 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

reject any Write/Erase/Invalidate request made prior to the first read request."

(6) For the above requirement, add the following Rationale:
"In case of a reset, the write protection flag of a block configured with
NVM_WRITE_BLOCK_ONCE (TRUE), from the NvM Administrative block, is
cleared. In order to reactivate the protection, the block must be read prior to a first
Write/Erase/Invalidate request being processed, in order to set the write proctection
only for a block that is valid and consistent. The first read request can be done
either as a single block request or as part of NvM_ReadAll."

(7) Add a requirement, in chapter "7.3.1 Development errors", stating the fol-
lowing:
"The development error NVM_E_WRITE_ONCE_STATUS_UNKNOWN (0x1A) shall
be detectable by the NvM module when a Write/Erase/Invalidate is made for a block
with MVM_WRITE_BLOCK_ONCE (TRUE), prior to the first read request made for
that block, depending on whether the build version mode is development mode."

(8) Add the following requirements in chapter "7.4 Error Detection":
- If development error detection is enabled for NvM mod-
ule, the function NvM_WriteBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made
for a block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this.
- If development error detection is enabled for NvM module,
the function NvM_WritePRAMBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made
for a block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this.
- If development error detection is enabled for NvM module,
the job of the function NvM_WriteAll shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when the processing of a block
configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read request
was made prior to this.
- If development error detection is enabled for NvM module, the
job of the function NvM_EraseNvBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made
for a block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this.
- If development error detection is enabled for NvM module, the
job of the function NvM_InvalidateNvBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made
for a block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this.

13 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

(9) Add a requirement, in chapter "8.1.3.2.4 NvM_EraseNvBlock", after the
00423 requirement, which states the following:
"The job of the function NvM_EraseNvBlock shall leave the write protection un-
changed for the blocks configured with MVM_WRITE_BLOCK_ONCE (TRUE)."

(10) Add a requirement, in chapter "8.1.3.2.6 NvM_InvalidateNvBlock", after
the 00417 requirement, which states the following:
"The job of the function NvM_InvalidateNvBlock shall leave the write protection
unchanged for the blocks configured with MVM_WRITE_BLOCK_ONCE (TRUE)."
–Last change on issue 74058 comment 15–

BW-C-Level:

Application Specification Bus
1 4 1

1.5 Specification Item SWS_NvM_00316

Trace References:

none

Content:

The job of the function NvM_ReadBlock shall mark every NVRAM block that has been
configured with NVM_WRITE_BLOCK_ONCE (TRUE) that is not detected by underlying
SW as being invalidated, shall be marked as write protected as write protected if that block
is valid and with consistent data. This write protection cannot be cleared by NvM_SetBlock
Protection.

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:

• RfC #74058: [NvM] Write protection and erase requests for NvMWriteBlockOnce
blocks

Problem description:

————————————–
Name: Delia Batica
Phone: +40 356 78 4202
Role: Developer
————————————–
Description/Motivation:

14 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

https://www.autosar.org/bugzilla/show_bug.cgi?id=74058

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

Currently, the behavior of NvM API’s for written blocks with NvMWriteBlock-
Once configured TRUE that have write protection unset is unclear.

I will refer as wbo the blocks with NvMWriteBlockOnce configured TRUE.

How should the wbo be handled during read requests if the block is reported
as inconsistent?
In SWS_NvM_00316 for eg., NvM_ReadBlock sets wbo to write protected if block is
valid. (same for SWS_NvM_00314, SWS_NvM_00784).

How should NvM_EraseNvBlock and NvM_InvalidateNvBlock handle a wbo if
the write protection is still unset? Should the 2 APIs set the write protection for a
block configured with NvMWriteBlockOnce set to TRUE?

NVM072_Conf : says that NVRAM manager".. sets the
write protection bit after the NV block was written the first time. This means that
some of the NV blocks in the NVRAM should never be erased ..after first initialization.

Also, it should be made clear that "write protection", "write protection bit",
"write protection attribute" all refer to the current known state of write protection of a
block.
————————————–

————————————–

Agreed solution:

(1) Change the Description for requirement ECUC_NvM_00072 to:
"Defines write protection after first write. The NVRAM manager sets the write
protection bit either after the NV block was written the first time or if the block
was already written and it is detected as valid and consistent during a read for it.
[NVM276].
true: Defines write protection after first write is enabled.
false: Defines write protection after first write is disabled."

(2) Change the requirement SWS_NvM_00316 to:
"The job of the function NvM_ReadBlock shall mark every NVRAM block that has
been configured with NVM_WRITE_BLOCK_ONCE (TRUE) as write protected if
that block is valid and with consistent data. This write protection cannot be cleared
by NvM_SetBlockProtection."

(3) Change the requirement SWS_NvM_00314 to:
"The job of the function NvM_ReadAll shall mark every NVRAM block that has been

15 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

configured with NVM_WRITE_BLOCK_ONCE (TRUE) as write protected if that
block is valid and with consistent data. This write protection cannot be cleared by
NvM_SetBlockProtection."

(4) Change the requirement SWS_NvM_00784 to:
"The job of the function NvM_ReadPRAMBlock shall mark every NVRAM block that
has been configured with NVM_WRITE_BLOCK_ONCE (TRUE) as write protected
if that block is valid and with consistent data. This write protection cannot be cleared
by NvM_SetBlockProtection."

(5) Add a requirement, in chapter "7.2.2.13 NVRAM block write protection",
stating the following:
"For a block configured with MVM_WRITE_BLOCK_ONCE (TRUE), NvM shall
reject any Write/Erase/Invalidate request made prior to the first read request."

(6) For the above requirement, add the following Rationale:
"In case of a reset, the write protection flag of a block configured with
NVM_WRITE_BLOCK_ONCE (TRUE), from the NvM Administrative block, is
cleared. In order to reactivate the protection, the block must be read prior to a first
Write/Erase/Invalidate request being processed, in order to set the write proctection
only for a block that is valid and consistent. The first read request can be done
either as a single block request or as part of NvM_ReadAll."

(7) Add a requirement, in chapter "7.3.1 Development errors", stating the fol-
lowing:
"The development error NVM_E_WRITE_ONCE_STATUS_UNKNOWN (0x1A) shall
be detectable by the NvM module when a Write/Erase/Invalidate is made for a block
with MVM_WRITE_BLOCK_ONCE (TRUE), prior to the first read request made for
that block, depending on whether the build version mode is development mode."

(8) Add the following requirements in chapter "7.4 Error Detection":
- If development error detection is enabled for NvM mod-
ule, the function NvM_WriteBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made
for a block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this.
- If development error detection is enabled for NvM module,
the function NvM_WritePRAMBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made
for a block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this.
- If development error detection is enabled for NvM module,
the job of the function NvM_WriteAll shall report the DET error

16 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

NVM_E_WRITE_ONCE_STATUS_UNKNOWN when the processing of a block
configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read request
was made prior to this.
- If development error detection is enabled for NvM module, the
job of the function NvM_EraseNvBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made
for a block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this.
- If development error detection is enabled for NvM module, the
job of the function NvM_InvalidateNvBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made
for a block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this.

(9) Add a requirement, in chapter "8.1.3.2.4 NvM_EraseNvBlock", after the
00423 requirement, which states the following:
"The job of the function NvM_EraseNvBlock shall leave the write protection un-
changed for the blocks configured with MVM_WRITE_BLOCK_ONCE (TRUE)."

(10) Add a requirement, in chapter "8.1.3.2.6 NvM_InvalidateNvBlock", after
the 00417 requirement, which states the following:
"The job of the function NvM_InvalidateNvBlock shall leave the write protection
unchanged for the blocks configured with MVM_WRITE_BLOCK_ONCE (TRUE)."
–Last change on issue 74058 comment 15–

BW-C-Level:

Application Specification Bus
1 4 1

1.6 Specification Item SWS_NvM_00628

Trace References:

none

Content:

If development error detection is enabled for NvM module, the function NvM_Restore
BlockDefaults shall report the DET error NVM_E_BLOCK_CONFIG when Default data is
not available/configured for the referenced NVRAM block.

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:

17 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

• RfC #76453: [Nvm] incorrect DET error for no default data and no NvMInitBlockCall-
back + redundant requirements

Problem description:

1) It seems that DET errors in [SWS_NvM_00628] and [SWS_NvM_00833]
should be changed to NVM_E_BLOCK_WITHOUT_DEFAULTS (from current
NVM_E_BLOCK_CONFIG), according to newly added requirements (@ R4.2.2)
[SWS_NvM_00887] and [SWS_NvM_00885].

2) [SWS_NvM_00628] is already covered by newly added requirement (@
R4.2.2) [SWS_NvM_00887]. Removal required.

3) [SWS_NvM_00833] is already covered by newly added requirement (@
R4.2.2) [SWS_NvM_00887]. Removal required.

4) [SWS_NvM_00885] is also redundant requirement of [SWS_NvM_00887].
Removal required.

FYI – Just for helping quick understanding for the document history:

[SWS_NvM_00887] The NVM_E_BLOCK_WITHOUT_DEFAULTS (0x11) de-
velopment error shall be detectable by the NvM module when either the
NvM_RestoreBlockDeafults or NvM_RestorePRAMBlockDefaults is called for
a valid block ID that has no default data and no NvMInitBlockCallback configured for
it. ()
(in sec. 7.3.1 Development Errors)
@R413: not available
@R421: not available
@R422: available (added here)
@R430: available

[SWS_NvM_00885] If the block has no default data, it has no InitBlock-
CallbackFunction configured and the development error detection is en-
abled then the NvM_RestoreBlockDefaults API shall report the error
NVM_E_BLOCK_WITHOUT_DEFAULTS error to the Det module. ()
(in sec. 8.1.3.2.3 NvM_RestoreBlockDefaults)
@R413: not available
@R421: not available
@R422: available (added here)
@R430: available

[SWS_NvM_00628] If development error detection is enabled for NvM mod-

18 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

https://www.autosar.org/bugzilla/show_bug.cgi?id=76453

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

ule, the function NvM_RestoreBlockDefaults shall report the DET error
NVM_E_BLOCK_CONFIG when Default data is not available/configured for
the referenced NVRAM block. ()
(in sec. 7.4 Error detection)
@R413: available
@R430: available

[SWS_NvM_00833] If development error detection is enabled for NvM mod-
ule, the function NvM_RestorePRAMBlockDefaults shall report the DET error
NVM_E_BLOCK_CONFIG when Default data is not available/configured for the
referenced NVRAM block. ()
(in sec. 7.4 Error detection)
@R413: available
@R430: available
–Last change on issue 76453 comment 11–

Agreed solution:

Remove the requirements SWS_NvM_00628 and SWS_NvM_00833 (they are re-
dundant with the requirements SWS_NvM_00885 and SWS_NvM_00886).
–Last change on issue 76453 comment 5–

BW-C-Level:

Application Specification Bus
1 1 1

1.7 Specification Item SWS_NvM_00784

Trace References:

none

Content:

The job of the function NvM_ReadPRAMBlock shall mark every NVRAM block that has
been configured with NVM_WRITE_BLOCK_ONCE (TRUE) that is not detected by un-
derlying SW as being invalidated, shall be marked as write protected as write protected if
that block is valid and with consistent data. This write protection cannot be cleared by Nv
M_SetBlockProtection.

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:

• RfC #74058: [NvM] Write protection and erase requests for NvMWriteBlockOnce
blocks

19 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

https://www.autosar.org/bugzilla/show_bug.cgi?id=74058

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

Problem description:

————————————–
Name: Delia Batica
Phone: +40 356 78 4202
Role: Developer
————————————–
Description/Motivation:

Currently, the behavior of NvM API’s for written blocks with NvMWriteBlock-
Once configured TRUE that have write protection unset is unclear.

I will refer as wbo the blocks with NvMWriteBlockOnce configured TRUE.

How should the wbo be handled during read requests if the block is reported
as inconsistent?
In SWS_NvM_00316 for eg., NvM_ReadBlock sets wbo to write protected if block is
valid. (same for SWS_NvM_00314, SWS_NvM_00784).

How should NvM_EraseNvBlock and NvM_InvalidateNvBlock handle a wbo if
the write protection is still unset? Should the 2 APIs set the write protection for a
block configured with NvMWriteBlockOnce set to TRUE?

NVM072_Conf : says that NVRAM manager".. sets the
write protection bit after the NV block was written the first time. This means that
some of the NV blocks in the NVRAM should never be erased ..after first initialization.

Also, it should be made clear that "write protection", "write protection bit",
"write protection attribute" all refer to the current known state of write protection of a
block.
————————————–

————————————–

Agreed solution:

(1) Change the Description for requirement ECUC_NvM_00072 to:
"Defines write protection after first write. The NVRAM manager sets the write
protection bit either after the NV block was written the first time or if the block
was already written and it is detected as valid and consistent during a read for it.
[NVM276].
true: Defines write protection after first write is enabled.
false: Defines write protection after first write is disabled."

20 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

(2) Change the requirement SWS_NvM_00316 to:
"The job of the function NvM_ReadBlock shall mark every NVRAM block that has
been configured with NVM_WRITE_BLOCK_ONCE (TRUE) as write protected if
that block is valid and with consistent data. This write protection cannot be cleared
by NvM_SetBlockProtection."

(3) Change the requirement SWS_NvM_00314 to:
"The job of the function NvM_ReadAll shall mark every NVRAM block that has been
configured with NVM_WRITE_BLOCK_ONCE (TRUE) as write protected if that
block is valid and with consistent data. This write protection cannot be cleared by
NvM_SetBlockProtection."

(4) Change the requirement SWS_NvM_00784 to:
"The job of the function NvM_ReadPRAMBlock shall mark every NVRAM block that
has been configured with NVM_WRITE_BLOCK_ONCE (TRUE) as write protected
if that block is valid and with consistent data. This write protection cannot be cleared
by NvM_SetBlockProtection."

(5) Add a requirement, in chapter "7.2.2.13 NVRAM block write protection",
stating the following:
"For a block configured with MVM_WRITE_BLOCK_ONCE (TRUE), NvM shall
reject any Write/Erase/Invalidate request made prior to the first read request."

(6) For the above requirement, add the following Rationale:
"In case of a reset, the write protection flag of a block configured with
NVM_WRITE_BLOCK_ONCE (TRUE), from the NvM Administrative block, is
cleared. In order to reactivate the protection, the block must be read prior to a first
Write/Erase/Invalidate request being processed, in order to set the write proctection
only for a block that is valid and consistent. The first read request can be done
either as a single block request or as part of NvM_ReadAll."

(7) Add a requirement, in chapter "7.3.1 Development errors", stating the fol-
lowing:
"The development error NVM_E_WRITE_ONCE_STATUS_UNKNOWN (0x1A) shall
be detectable by the NvM module when a Write/Erase/Invalidate is made for a block
with MVM_WRITE_BLOCK_ONCE (TRUE), prior to the first read request made for
that block, depending on whether the build version mode is development mode."

(8) Add the following requirements in chapter "7.4 Error Detection":
- If development error detection is enabled for NvM mod-
ule, the function NvM_WriteBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made

21 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

for a block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this.
- If development error detection is enabled for NvM module,
the function NvM_WritePRAMBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made
for a block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this.
- If development error detection is enabled for NvM module,
the job of the function NvM_WriteAll shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when the processing of a block
configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read request
was made prior to this.
- If development error detection is enabled for NvM module, the
job of the function NvM_EraseNvBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made
for a block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this.
- If development error detection is enabled for NvM module, the
job of the function NvM_InvalidateNvBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made
for a block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this.

(9) Add a requirement, in chapter "8.1.3.2.4 NvM_EraseNvBlock", after the
00423 requirement, which states the following:
"The job of the function NvM_EraseNvBlock shall leave the write protection un-
changed for the blocks configured with MVM_WRITE_BLOCK_ONCE (TRUE)."

(10) Add a requirement, in chapter "8.1.3.2.6 NvM_InvalidateNvBlock", after
the 00417 requirement, which states the following:
"The job of the function NvM_InvalidateNvBlock shall leave the write protection
unchanged for the blocks configured with MVM_WRITE_BLOCK_ONCE (TRUE)."
–Last change on issue 74058 comment 15–

BW-C-Level:

Application Specification Bus
1 4 1

1.8 Specification Item SWS_NvM_00833

Trace References:

22 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

none

Content:

If development error detection is enabled for NvM module, the function NvM_Restore
PRAMBlockDefaults shall report the DET error NVM_E_BLOCK_CONFIG when Default
data is not available/configured for the referenced NVRAM block.

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:

• RfC #76453: [Nvm] incorrect DET error for no default data and no NvMInitBlockCall-
back + redundant requirements

Problem description:

1) It seems that DET errors in [SWS_NvM_00628] and [SWS_NvM_00833]
should be changed to NVM_E_BLOCK_WITHOUT_DEFAULTS (from current
NVM_E_BLOCK_CONFIG), according to newly added requirements (@ R4.2.2)
[SWS_NvM_00887] and [SWS_NvM_00885].

2) [SWS_NvM_00628] is already covered by newly added requirement (@
R4.2.2) [SWS_NvM_00887]. Removal required.

3) [SWS_NvM_00833] is already covered by newly added requirement (@
R4.2.2) [SWS_NvM_00887]. Removal required.

4) [SWS_NvM_00885] is also redundant requirement of [SWS_NvM_00887].
Removal required.

FYI – Just for helping quick understanding for the document history:

[SWS_NvM_00887] The NVM_E_BLOCK_WITHOUT_DEFAULTS (0x11) de-
velopment error shall be detectable by the NvM module when either the
NvM_RestoreBlockDeafults or NvM_RestorePRAMBlockDefaults is called for
a valid block ID that has no default data and no NvMInitBlockCallback configured for
it. ()
(in sec. 7.3.1 Development Errors)
@R413: not available
@R421: not available
@R422: available (added here)
@R430: available

[SWS_NvM_00885] If the block has no default data, it has no InitBlock-
CallbackFunction configured and the development error detection is en-

23 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

https://www.autosar.org/bugzilla/show_bug.cgi?id=76453

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

abled then the NvM_RestoreBlockDefaults API shall report the error
NVM_E_BLOCK_WITHOUT_DEFAULTS error to the Det module. ()
(in sec. 8.1.3.2.3 NvM_RestoreBlockDefaults)
@R413: not available
@R421: not available
@R422: available (added here)
@R430: available

[SWS_NvM_00628] If development error detection is enabled for NvM mod-
ule, the function NvM_RestoreBlockDefaults shall report the DET error
NVM_E_BLOCK_CONFIG when Default data is not available/configured for
the referenced NVRAM block. ()
(in sec. 7.4 Error detection)
@R413: available
@R430: available

[SWS_NvM_00833] If development error detection is enabled for NvM mod-
ule, the function NvM_RestorePRAMBlockDefaults shall report the DET error
NVM_E_BLOCK_CONFIG when Default data is not available/configured for the
referenced NVRAM block. ()
(in sec. 7.4 Error detection)
@R413: available
@R430: available
–Last change on issue 76453 comment 11–

Agreed solution:

Remove the requirements SWS_NvM_00628 and SWS_NvM_00833 (they are re-
dundant with the requirements SWS_NvM_00885 and SWS_NvM_00886).
–Last change on issue 76453 comment 5–

BW-C-Level:

Application Specification Bus
1 1 1

1.9 Specification Item SWS_NvM_00856

Trace References:

SRS_Mem_00137

Content:

24 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

If auto validation is configured for an NVRAM Block (NvMBlockUseAutoValidation ==
TRUE)and the RAM Block status is not INVALID , the function NvM_ValidateAll shall set
the RAM Block status to "VALID / CHANGED".

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:

• RfC #72401: NvM_ValidateAll only processes blocks with the RAM block status
VALID

Problem description:

According to SWS_NvM_00856 NvM_ValidateAll shall not process blocks that have
the RAM block status INVALID. This means that the service NvM_ValidateAll does
not validate blocks, it shall only mark the blocks as changed.

[SWS_NvM_00856] If auto validation is configured for an NVRAM Block (NvM-
BlockUseAutoValidation == TRUE) and the RAM Block status is not INVALID the
function NvM_ValidateAll shall set the RAM Block status to VALID / CHANGED.

In my opinion the NvM_ValidateAll shall first validate and then mark as CHANGED
all blocks configured with NvMBlockUseAutoValidation = TRUE. Is this correct?

Agreed solution:

Update [SWS_NvM_00856] If auto validation is configured for an NVRAM Block
(NvMBlockUseAutoValidation == TRUE), the function NvM_ValidateAll shall set the
RAM Block status to VALID / CHANGED.
–Last change on issue 72401 comment 10–

BW-C-Level:

Application Specification Bus
4 4 1

1.10 Specification Item SWS_NvM_00951

Trace References:

SRS_Mem_00018

Content:

Implicit recovery shall be provided during NvM_ReadBlock() or NvM_Read
PRAMBlock() requests for NVRAM blocks of type NVM_BLOCK_NATIVE and
NVM_BLOCK_REDUNDANT.

25 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

https://www.autosar.org/bugzilla/show_bug.cgi?id=72401

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:

• RfC #72921: Clarification regarding implicit recovery of dataset blocks

Problem description:

According to requirement SWS_NvM_00657, NvM shall restore default data for a
block (regardless of the block management type) if reading the NV memory fails:

[SWS_NvM_00657] The job of the function NvM_ReadBlock shall load the
default values according to processing of NvM_RestoreBlockDefaults (also set
the job result to NVM_REQ_RESTORED_FROM_ROM) if the read request
passed to the underlying layer fails (MemIf reports MEMIF_JOB_FAILED or
MEMIF_BLOCK_INCONSISTENT) and if the default values are available.

Additionally, requirement SWS_NvM_00353 states that
NvM_RestoreBlockDefaults() shall return with E_NOT_OK if the block man-
agement type is NVM_BLOCK_DATASET and the data index points to an NV block:

[SWS_NvM_00353] The function NvM_RestoreBlockDefaults shall return with
E_NOT_OK if the block management type of the given NVRAM block is
NVM_BLOCK_DATASET, at least one ROM block is configured and the data
index points at a NV block.

Other relevant requirements:
[SWS_NvM_00340] In case of NVRAM block management type
NVM_BLOCK_DATASET, the job of the function NvM_ReadBlock shall copy
only that NV block to the corresponding RAM block which is selected via the data
index in the administrative block.

[SWS_NvM_00354] The job of the function NvM_ReadBlock shall copy the
ROM block to RAM and set the job result to NVM_REQ_OK if the NVRAM block
management type is NVM_BLOCK_DATASET and the dataset index points at a
ROM block.

understanding: the requirements above are in contradiction and the scenario
is not covered by the NvM specifications.
–Last change on issue 72921 comment 24–

Agreed solution:

Add a new requirement in chapter "7.2.2.7 Implicit recovery of a RAM block with
ROM default data" stating:

26 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

https://www.autosar.org/bugzilla/show_bug.cgi?id=72921

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

[SWS_NvM_00xxx] Implicit recovery shall be provided during NvM_ReadBlock() or
NvM_ReadPRAMBlock() requests for NVRAM blocks of type NVM_BLOCK_NATIVE
and NVM_BLOCK_REDUNDANT.
–Last change on issue 72921 comment 17–

BW-C-Level:

Application Specification Bus
1 1 1

1.11 Specification Item SWS_NvM_00952

Trace References:

none

Content:

For a block configured with MVM_WRITE_BLOCK_ONCE (TRUE), NvM shall reject any
Write/Erase/Invalidate request made prior to the first read request.

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:

• RfC #74058: [NvM] Write protection and erase requests for NvMWriteBlockOnce
blocks

Problem description:

————————————–
Name: Delia Batica
Phone: +40 356 78 4202
Role: Developer
————————————–
Description/Motivation:

Currently, the behavior of NvM API’s for written blocks with NvMWriteBlock-
Once configured TRUE that have write protection unset is unclear.

I will refer as wbo the blocks with NvMWriteBlockOnce configured TRUE.

How should the wbo be handled during read requests if the block is reported
as inconsistent?
In SWS_NvM_00316 for eg., NvM_ReadBlock sets wbo to write protected if block is
valid. (same for SWS_NvM_00314, SWS_NvM_00784).

27 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

https://www.autosar.org/bugzilla/show_bug.cgi?id=74058

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

How should NvM_EraseNvBlock and NvM_InvalidateNvBlock handle a wbo if
the write protection is still unset? Should the 2 APIs set the write protection for a
block configured with NvMWriteBlockOnce set to TRUE?

NVM072_Conf : says that NVRAM manager".. sets the
write protection bit after the NV block was written the first time. This means that
some of the NV blocks in the NVRAM should never be erased ..after first initialization.

Also, it should be made clear that "write protection", "write protection bit",
"write protection attribute" all refer to the current known state of write protection of a
block.
————————————–

————————————–

Agreed solution:

(1) Change the Description for requirement ECUC_NvM_00072 to:
"Defines write protection after first write. The NVRAM manager sets the write
protection bit either after the NV block was written the first time or if the block
was already written and it is detected as valid and consistent during a read for it.
[NVM276].
true: Defines write protection after first write is enabled.
false: Defines write protection after first write is disabled."

(2) Change the requirement SWS_NvM_00316 to:
"The job of the function NvM_ReadBlock shall mark every NVRAM block that has
been configured with NVM_WRITE_BLOCK_ONCE (TRUE) as write protected if
that block is valid and with consistent data. This write protection cannot be cleared
by NvM_SetBlockProtection."

(3) Change the requirement SWS_NvM_00314 to:
"The job of the function NvM_ReadAll shall mark every NVRAM block that has been
configured with NVM_WRITE_BLOCK_ONCE (TRUE) as write protected if that
block is valid and with consistent data. This write protection cannot be cleared by
NvM_SetBlockProtection."

(4) Change the requirement SWS_NvM_00784 to:
"The job of the function NvM_ReadPRAMBlock shall mark every NVRAM block that
has been configured with NVM_WRITE_BLOCK_ONCE (TRUE) as write protected
if that block is valid and with consistent data. This write protection cannot be cleared
by NvM_SetBlockProtection."

28 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

(5) Add a requirement, in chapter "7.2.2.13 NVRAM block write protection",
stating the following:
"For a block configured with MVM_WRITE_BLOCK_ONCE (TRUE), NvM shall
reject any Write/Erase/Invalidate request made prior to the first read request."

(6) For the above requirement, add the following Rationale:
"In case of a reset, the write protection flag of a block configured with
NVM_WRITE_BLOCK_ONCE (TRUE), from the NvM Administrative block, is
cleared. In order to reactivate the protection, the block must be read prior to a first
Write/Erase/Invalidate request being processed, in order to set the write proctection
only for a block that is valid and consistent. The first read request can be done
either as a single block request or as part of NvM_ReadAll."

(7) Add a requirement, in chapter "7.3.1 Development errors", stating the fol-
lowing:
"The development error NVM_E_WRITE_ONCE_STATUS_UNKNOWN (0x1A) shall
be detectable by the NvM module when a Write/Erase/Invalidate is made for a block
with MVM_WRITE_BLOCK_ONCE (TRUE), prior to the first read request made for
that block, depending on whether the build version mode is development mode."

(8) Add the following requirements in chapter "7.4 Error Detection":
- If development error detection is enabled for NvM mod-
ule, the function NvM_WriteBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made
for a block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this.
- If development error detection is enabled for NvM module,
the function NvM_WritePRAMBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made
for a block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this.
- If development error detection is enabled for NvM module,
the job of the function NvM_WriteAll shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when the processing of a block
configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read request
was made prior to this.
- If development error detection is enabled for NvM module, the
job of the function NvM_EraseNvBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made
for a block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this.
- If development error detection is enabled for NvM module, the
job of the function NvM_InvalidateNvBlock shall report the DET error

29 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made
for a block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this.

(9) Add a requirement, in chapter "8.1.3.2.4 NvM_EraseNvBlock", after the
00423 requirement, which states the following:
"The job of the function NvM_EraseNvBlock shall leave the write protection un-
changed for the blocks configured with MVM_WRITE_BLOCK_ONCE (TRUE)."

(10) Add a requirement, in chapter "8.1.3.2.6 NvM_InvalidateNvBlock", after
the 00417 requirement, which states the following:
"The job of the function NvM_InvalidateNvBlock shall leave the write protection
unchanged for the blocks configured with MVM_WRITE_BLOCK_ONCE (TRUE)."
–Last change on issue 74058 comment 15–

BW-C-Level:

Application Specification Bus
1 4 1

1.12 Specification Item SWS_NvM_00953

Trace References:

none

Content:

The development error NVM_E_WRITE_ONCE_STATUS_UNKNOWN (0x1A) shall be
detectable by the NvM module when a Write/Erase/Invalidate is made for a block with
MVM_WRITE_BLOCK_ONCE (TRUE), prior to the first read request made for that block,
depending on whether the build version mode is development mode.

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:

• RfC #74058: [NvM] Write protection and erase requests for NvMWriteBlockOnce
blocks

Problem description:

————————————–
Name: Delia Batica
Phone: +40 356 78 4202
Role: Developer
————————————–

30 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

https://www.autosar.org/bugzilla/show_bug.cgi?id=74058

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

Description/Motivation:

Currently, the behavior of NvM API’s for written blocks with NvMWriteBlock-
Once configured TRUE that have write protection unset is unclear.

I will refer as wbo the blocks with NvMWriteBlockOnce configured TRUE.

How should the wbo be handled during read requests if the block is reported
as inconsistent?
In SWS_NvM_00316 for eg., NvM_ReadBlock sets wbo to write protected if block is
valid. (same for SWS_NvM_00314, SWS_NvM_00784).

How should NvM_EraseNvBlock and NvM_InvalidateNvBlock handle a wbo if
the write protection is still unset? Should the 2 APIs set the write protection for a
block configured with NvMWriteBlockOnce set to TRUE?

NVM072_Conf : says that NVRAM manager".. sets the
write protection bit after the NV block was written the first time. This means that
some of the NV blocks in the NVRAM should never be erased ..after first initialization.

Also, it should be made clear that "write protection", "write protection bit",
"write protection attribute" all refer to the current known state of write protection of a
block.
————————————–

————————————–

Agreed solution:

(1) Change the Description for requirement ECUC_NvM_00072 to:
"Defines write protection after first write. The NVRAM manager sets the write
protection bit either after the NV block was written the first time or if the block
was already written and it is detected as valid and consistent during a read for it.
[NVM276].
true: Defines write protection after first write is enabled.
false: Defines write protection after first write is disabled."

(2) Change the requirement SWS_NvM_00316 to:
"The job of the function NvM_ReadBlock shall mark every NVRAM block that has
been configured with NVM_WRITE_BLOCK_ONCE (TRUE) as write protected if
that block is valid and with consistent data. This write protection cannot be cleared
by NvM_SetBlockProtection."

31 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

(3) Change the requirement SWS_NvM_00314 to:
"The job of the function NvM_ReadAll shall mark every NVRAM block that has been
configured with NVM_WRITE_BLOCK_ONCE (TRUE) as write protected if that
block is valid and with consistent data. This write protection cannot be cleared by
NvM_SetBlockProtection."

(4) Change the requirement SWS_NvM_00784 to:
"The job of the function NvM_ReadPRAMBlock shall mark every NVRAM block that
has been configured with NVM_WRITE_BLOCK_ONCE (TRUE) as write protected
if that block is valid and with consistent data. This write protection cannot be cleared
by NvM_SetBlockProtection."

(5) Add a requirement, in chapter "7.2.2.13 NVRAM block write protection",
stating the following:
"For a block configured with MVM_WRITE_BLOCK_ONCE (TRUE), NvM shall
reject any Write/Erase/Invalidate request made prior to the first read request."

(6) For the above requirement, add the following Rationale:
"In case of a reset, the write protection flag of a block configured with
NVM_WRITE_BLOCK_ONCE (TRUE), from the NvM Administrative block, is
cleared. In order to reactivate the protection, the block must be read prior to a first
Write/Erase/Invalidate request being processed, in order to set the write proctection
only for a block that is valid and consistent. The first read request can be done
either as a single block request or as part of NvM_ReadAll."

(7) Add a requirement, in chapter "7.3.1 Development errors", stating the fol-
lowing:
"The development error NVM_E_WRITE_ONCE_STATUS_UNKNOWN (0x1A) shall
be detectable by the NvM module when a Write/Erase/Invalidate is made for a block
with MVM_WRITE_BLOCK_ONCE (TRUE), prior to the first read request made for
that block, depending on whether the build version mode is development mode."

(8) Add the following requirements in chapter "7.4 Error Detection":
- If development error detection is enabled for NvM mod-
ule, the function NvM_WriteBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made
for a block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this.
- If development error detection is enabled for NvM module,
the function NvM_WritePRAMBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made
for a block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this.

32 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

- If development error detection is enabled for NvM module,
the job of the function NvM_WriteAll shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when the processing of a block
configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read request
was made prior to this.
- If development error detection is enabled for NvM module, the
job of the function NvM_EraseNvBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made
for a block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this.
- If development error detection is enabled for NvM module, the
job of the function NvM_InvalidateNvBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made
for a block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this.

(9) Add a requirement, in chapter "8.1.3.2.4 NvM_EraseNvBlock", after the
00423 requirement, which states the following:
"The job of the function NvM_EraseNvBlock shall leave the write protection un-
changed for the blocks configured with MVM_WRITE_BLOCK_ONCE (TRUE)."

(10) Add a requirement, in chapter "8.1.3.2.6 NvM_InvalidateNvBlock", after
the 00417 requirement, which states the following:
"The job of the function NvM_InvalidateNvBlock shall leave the write protection
unchanged for the blocks configured with MVM_WRITE_BLOCK_ONCE (TRUE)."
–Last change on issue 74058 comment 15–

BW-C-Level:

Application Specification Bus
1 4 1

1.13 Specification Item SWS_NvM_00954

Trace References:

none

Content:

If development error detection is enabled for NvM module, the function NvM_WriteBlock
shall report the DET error NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write
request is made for a block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for
which no read request was made prior to this.

33 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:

• RfC #74058: [NvM] Write protection and erase requests for NvMWriteBlockOnce
blocks

Problem description:

————————————–
Name: Delia Batica
Phone: +40 356 78 4202
Role: Developer
————————————–
Description/Motivation:

Currently, the behavior of NvM API’s for written blocks with NvMWriteBlock-
Once configured TRUE that have write protection unset is unclear.

I will refer as wbo the blocks with NvMWriteBlockOnce configured TRUE.

How should the wbo be handled during read requests if the block is reported
as inconsistent?
In SWS_NvM_00316 for eg., NvM_ReadBlock sets wbo to write protected if block is
valid. (same for SWS_NvM_00314, SWS_NvM_00784).

How should NvM_EraseNvBlock and NvM_InvalidateNvBlock handle a wbo if
the write protection is still unset? Should the 2 APIs set the write protection for a
block configured with NvMWriteBlockOnce set to TRUE?

NVM072_Conf : says that NVRAM manager".. sets the
write protection bit after the NV block was written the first time. This means that
some of the NV blocks in the NVRAM should never be erased ..after first initialization.

Also, it should be made clear that "write protection", "write protection bit",
"write protection attribute" all refer to the current known state of write protection of a
block.
————————————–

————————————–

Agreed solution:

(1) Change the Description for requirement ECUC_NvM_00072 to:
"Defines write protection after first write. The NVRAM manager sets the write
protection bit either after the NV block was written the first time or if the block

34 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

https://www.autosar.org/bugzilla/show_bug.cgi?id=74058

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

was already written and it is detected as valid and consistent during a read for it.
[NVM276].
true: Defines write protection after first write is enabled.
false: Defines write protection after first write is disabled."

(2) Change the requirement SWS_NvM_00316 to:
"The job of the function NvM_ReadBlock shall mark every NVRAM block that has
been configured with NVM_WRITE_BLOCK_ONCE (TRUE) as write protected if
that block is valid and with consistent data. This write protection cannot be cleared
by NvM_SetBlockProtection."

(3) Change the requirement SWS_NvM_00314 to:
"The job of the function NvM_ReadAll shall mark every NVRAM block that has been
configured with NVM_WRITE_BLOCK_ONCE (TRUE) as write protected if that
block is valid and with consistent data. This write protection cannot be cleared by
NvM_SetBlockProtection."

(4) Change the requirement SWS_NvM_00784 to:
"The job of the function NvM_ReadPRAMBlock shall mark every NVRAM block that
has been configured with NVM_WRITE_BLOCK_ONCE (TRUE) as write protected
if that block is valid and with consistent data. This write protection cannot be cleared
by NvM_SetBlockProtection."

(5) Add a requirement, in chapter "7.2.2.13 NVRAM block write protection",
stating the following:
"For a block configured with MVM_WRITE_BLOCK_ONCE (TRUE), NvM shall
reject any Write/Erase/Invalidate request made prior to the first read request."

(6) For the above requirement, add the following Rationale:
"In case of a reset, the write protection flag of a block configured with
NVM_WRITE_BLOCK_ONCE (TRUE), from the NvM Administrative block, is
cleared. In order to reactivate the protection, the block must be read prior to a first
Write/Erase/Invalidate request being processed, in order to set the write proctection
only for a block that is valid and consistent. The first read request can be done
either as a single block request or as part of NvM_ReadAll."

(7) Add a requirement, in chapter "7.3.1 Development errors", stating the fol-
lowing:
"The development error NVM_E_WRITE_ONCE_STATUS_UNKNOWN (0x1A) shall
be detectable by the NvM module when a Write/Erase/Invalidate is made for a block
with MVM_WRITE_BLOCK_ONCE (TRUE), prior to the first read request made for
that block, depending on whether the build version mode is development mode."

35 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

(8) Add the following requirements in chapter "7.4 Error Detection":
- If development error detection is enabled for NvM mod-
ule, the function NvM_WriteBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made
for a block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this.
- If development error detection is enabled for NvM module,
the function NvM_WritePRAMBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made
for a block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this.
- If development error detection is enabled for NvM module,
the job of the function NvM_WriteAll shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when the processing of a block
configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read request
was made prior to this.
- If development error detection is enabled for NvM module, the
job of the function NvM_EraseNvBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made
for a block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this.
- If development error detection is enabled for NvM module, the
job of the function NvM_InvalidateNvBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made
for a block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this.

(9) Add a requirement, in chapter "8.1.3.2.4 NvM_EraseNvBlock", after the
00423 requirement, which states the following:
"The job of the function NvM_EraseNvBlock shall leave the write protection un-
changed for the blocks configured with MVM_WRITE_BLOCK_ONCE (TRUE)."

(10) Add a requirement, in chapter "8.1.3.2.6 NvM_InvalidateNvBlock", after
the 00417 requirement, which states the following:
"The job of the function NvM_InvalidateNvBlock shall leave the write protection
unchanged for the blocks configured with MVM_WRITE_BLOCK_ONCE (TRUE)."
–Last change on issue 74058 comment 15–

BW-C-Level:

Application Specification Bus
1 4 1

36 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

1.14 Specification Item SWS_NvM_00955

Trace References:

none

Content:

If development error detection is enabled for NvM module, the function NvM_WritePRAM-
Block shall report the DET error NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a
write request is made for a block configured with NVM_WRITE_BLOCK_ONCE (TRUE)
for which no read request was made prior to this.

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:

• RfC #74058: [NvM] Write protection and erase requests for NvMWriteBlockOnce
blocks

Problem description:

————————————–
Name: Delia Batica
Phone: +40 356 78 4202
Role: Developer
————————————–
Description/Motivation:

Currently, the behavior of NvM API’s for written blocks with NvMWriteBlock-
Once configured TRUE that have write protection unset is unclear.

I will refer as wbo the blocks with NvMWriteBlockOnce configured TRUE.

How should the wbo be handled during read requests if the block is reported
as inconsistent?
In SWS_NvM_00316 for eg., NvM_ReadBlock sets wbo to write protected if block is
valid. (same for SWS_NvM_00314, SWS_NvM_00784).

How should NvM_EraseNvBlock and NvM_InvalidateNvBlock handle a wbo if
the write protection is still unset? Should the 2 APIs set the write protection for a
block configured with NvMWriteBlockOnce set to TRUE?

NVM072_Conf : says that NVRAM manager".. sets the
write protection bit after the NV block was written the first time. This means that
some of the NV blocks in the NVRAM should never be erased ..after first initialization.

37 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

https://www.autosar.org/bugzilla/show_bug.cgi?id=74058

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

Also, it should be made clear that "write protection", "write protection bit",
"write protection attribute" all refer to the current known state of write protection of a
block.
————————————–

————————————–

Agreed solution:

(1) Change the Description for requirement ECUC_NvM_00072 to:
"Defines write protection after first write. The NVRAM manager sets the write
protection bit either after the NV block was written the first time or if the block
was already written and it is detected as valid and consistent during a read for it.
[NVM276].
true: Defines write protection after first write is enabled.
false: Defines write protection after first write is disabled."

(2) Change the requirement SWS_NvM_00316 to:
"The job of the function NvM_ReadBlock shall mark every NVRAM block that has
been configured with NVM_WRITE_BLOCK_ONCE (TRUE) as write protected if
that block is valid and with consistent data. This write protection cannot be cleared
by NvM_SetBlockProtection."

(3) Change the requirement SWS_NvM_00314 to:
"The job of the function NvM_ReadAll shall mark every NVRAM block that has been
configured with NVM_WRITE_BLOCK_ONCE (TRUE) as write protected if that
block is valid and with consistent data. This write protection cannot be cleared by
NvM_SetBlockProtection."

(4) Change the requirement SWS_NvM_00784 to:
"The job of the function NvM_ReadPRAMBlock shall mark every NVRAM block that
has been configured with NVM_WRITE_BLOCK_ONCE (TRUE) as write protected
if that block is valid and with consistent data. This write protection cannot be cleared
by NvM_SetBlockProtection."

(5) Add a requirement, in chapter "7.2.2.13 NVRAM block write protection",
stating the following:
"For a block configured with MVM_WRITE_BLOCK_ONCE (TRUE), NvM shall
reject any Write/Erase/Invalidate request made prior to the first read request."

(6) For the above requirement, add the following Rationale:
"In case of a reset, the write protection flag of a block configured with
NVM_WRITE_BLOCK_ONCE (TRUE), from the NvM Administrative block, is

38 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

cleared. In order to reactivate the protection, the block must be read prior to a first
Write/Erase/Invalidate request being processed, in order to set the write proctection
only for a block that is valid and consistent. The first read request can be done
either as a single block request or as part of NvM_ReadAll."

(7) Add a requirement, in chapter "7.3.1 Development errors", stating the fol-
lowing:
"The development error NVM_E_WRITE_ONCE_STATUS_UNKNOWN (0x1A) shall
be detectable by the NvM module when a Write/Erase/Invalidate is made for a block
with MVM_WRITE_BLOCK_ONCE (TRUE), prior to the first read request made for
that block, depending on whether the build version mode is development mode."

(8) Add the following requirements in chapter "7.4 Error Detection":
- If development error detection is enabled for NvM mod-
ule, the function NvM_WriteBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made
for a block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this.
- If development error detection is enabled for NvM module,
the function NvM_WritePRAMBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made
for a block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this.
- If development error detection is enabled for NvM module,
the job of the function NvM_WriteAll shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when the processing of a block
configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read request
was made prior to this.
- If development error detection is enabled for NvM module, the
job of the function NvM_EraseNvBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made
for a block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this.
- If development error detection is enabled for NvM module, the
job of the function NvM_InvalidateNvBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made
for a block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this.

(9) Add a requirement, in chapter "8.1.3.2.4 NvM_EraseNvBlock", after the
00423 requirement, which states the following:
"The job of the function NvM_EraseNvBlock shall leave the write protection un-
changed for the blocks configured with MVM_WRITE_BLOCK_ONCE (TRUE)."

39 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

(10) Add a requirement, in chapter "8.1.3.2.6 NvM_InvalidateNvBlock", after
the 00417 requirement, which states the following:
"The job of the function NvM_InvalidateNvBlock shall leave the write protection
unchanged for the blocks configured with MVM_WRITE_BLOCK_ONCE (TRUE)."
–Last change on issue 74058 comment 15–

BW-C-Level:

Application Specification Bus
1 4 1

1.15 Specification Item SWS_NvM_00956

Trace References:

none

Content:

If development error detection is enabled for NvM module, the job of the function
NvM_WriteAll shall report the DET error NVM_E_WRITE_ONCE_STATUS_UNKNOWN
when the processing of a block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for
which no read request was made prior to this.

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:

• RfC #74058: [NvM] Write protection and erase requests for NvMWriteBlockOnce
blocks

Problem description:

————————————–
Name: Delia Batica
Phone: +40 356 78 4202
Role: Developer
————————————–
Description/Motivation:

Currently, the behavior of NvM API’s for written blocks with NvMWriteBlock-
Once configured TRUE that have write protection unset is unclear.

I will refer as wbo the blocks with NvMWriteBlockOnce configured TRUE.

How should the wbo be handled during read requests if the block is reported

40 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

https://www.autosar.org/bugzilla/show_bug.cgi?id=74058

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

as inconsistent?
In SWS_NvM_00316 for eg., NvM_ReadBlock sets wbo to write protected if block is
valid. (same for SWS_NvM_00314, SWS_NvM_00784).

How should NvM_EraseNvBlock and NvM_InvalidateNvBlock handle a wbo if
the write protection is still unset? Should the 2 APIs set the write protection for a
block configured with NvMWriteBlockOnce set to TRUE?

NVM072_Conf : says that NVRAM manager".. sets the
write protection bit after the NV block was written the first time. This means that
some of the NV blocks in the NVRAM should never be erased ..after first initialization.

Also, it should be made clear that "write protection", "write protection bit",
"write protection attribute" all refer to the current known state of write protection of a
block.
————————————–

————————————–

Agreed solution:

(1) Change the Description for requirement ECUC_NvM_00072 to:
"Defines write protection after first write. The NVRAM manager sets the write
protection bit either after the NV block was written the first time or if the block
was already written and it is detected as valid and consistent during a read for it.
[NVM276].
true: Defines write protection after first write is enabled.
false: Defines write protection after first write is disabled."

(2) Change the requirement SWS_NvM_00316 to:
"The job of the function NvM_ReadBlock shall mark every NVRAM block that has
been configured with NVM_WRITE_BLOCK_ONCE (TRUE) as write protected if
that block is valid and with consistent data. This write protection cannot be cleared
by NvM_SetBlockProtection."

(3) Change the requirement SWS_NvM_00314 to:
"The job of the function NvM_ReadAll shall mark every NVRAM block that has been
configured with NVM_WRITE_BLOCK_ONCE (TRUE) as write protected if that
block is valid and with consistent data. This write protection cannot be cleared by
NvM_SetBlockProtection."

(4) Change the requirement SWS_NvM_00784 to:
"The job of the function NvM_ReadPRAMBlock shall mark every NVRAM block that

41 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

has been configured with NVM_WRITE_BLOCK_ONCE (TRUE) as write protected
if that block is valid and with consistent data. This write protection cannot be cleared
by NvM_SetBlockProtection."

(5) Add a requirement, in chapter "7.2.2.13 NVRAM block write protection",
stating the following:
"For a block configured with MVM_WRITE_BLOCK_ONCE (TRUE), NvM shall
reject any Write/Erase/Invalidate request made prior to the first read request."

(6) For the above requirement, add the following Rationale:
"In case of a reset, the write protection flag of a block configured with
NVM_WRITE_BLOCK_ONCE (TRUE), from the NvM Administrative block, is
cleared. In order to reactivate the protection, the block must be read prior to a first
Write/Erase/Invalidate request being processed, in order to set the write proctection
only for a block that is valid and consistent. The first read request can be done
either as a single block request or as part of NvM_ReadAll."

(7) Add a requirement, in chapter "7.3.1 Development errors", stating the fol-
lowing:
"The development error NVM_E_WRITE_ONCE_STATUS_UNKNOWN (0x1A) shall
be detectable by the NvM module when a Write/Erase/Invalidate is made for a block
with MVM_WRITE_BLOCK_ONCE (TRUE), prior to the first read request made for
that block, depending on whether the build version mode is development mode."

(8) Add the following requirements in chapter "7.4 Error Detection":
- If development error detection is enabled for NvM mod-
ule, the function NvM_WriteBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made
for a block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this.
- If development error detection is enabled for NvM module,
the function NvM_WritePRAMBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made
for a block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this.
- If development error detection is enabled for NvM module,
the job of the function NvM_WriteAll shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when the processing of a block
configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read request
was made prior to this.
- If development error detection is enabled for NvM module, the
job of the function NvM_EraseNvBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made

42 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

for a block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this.
- If development error detection is enabled for NvM module, the
job of the function NvM_InvalidateNvBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made
for a block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this.

(9) Add a requirement, in chapter "8.1.3.2.4 NvM_EraseNvBlock", after the
00423 requirement, which states the following:
"The job of the function NvM_EraseNvBlock shall leave the write protection un-
changed for the blocks configured with MVM_WRITE_BLOCK_ONCE (TRUE)."

(10) Add a requirement, in chapter "8.1.3.2.6 NvM_InvalidateNvBlock", after
the 00417 requirement, which states the following:
"The job of the function NvM_InvalidateNvBlock shall leave the write protection
unchanged for the blocks configured with MVM_WRITE_BLOCK_ONCE (TRUE)."
–Last change on issue 74058 comment 15–

BW-C-Level:

Application Specification Bus
1 4 1

1.16 Specification Item SWS_NvM_00957

Trace References:

none

Content:

If development error detection is enabled for NvM module, the
job of the function NvM_EraseNvBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made for a
block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read request
was made prior to this.

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:

• RfC #74058: [NvM] Write protection and erase requests for NvMWriteBlockOnce
blocks

Problem description:

43 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

https://www.autosar.org/bugzilla/show_bug.cgi?id=74058

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

————————————–
Name: Delia Batica
Phone: +40 356 78 4202
Role: Developer
————————————–
Description/Motivation:

Currently, the behavior of NvM API’s for written blocks with NvMWriteBlock-
Once configured TRUE that have write protection unset is unclear.

I will refer as wbo the blocks with NvMWriteBlockOnce configured TRUE.

How should the wbo be handled during read requests if the block is reported
as inconsistent?
In SWS_NvM_00316 for eg., NvM_ReadBlock sets wbo to write protected if block is
valid. (same for SWS_NvM_00314, SWS_NvM_00784).

How should NvM_EraseNvBlock and NvM_InvalidateNvBlock handle a wbo if
the write protection is still unset? Should the 2 APIs set the write protection for a
block configured with NvMWriteBlockOnce set to TRUE?

NVM072_Conf : says that NVRAM manager".. sets the
write protection bit after the NV block was written the first time. This means that
some of the NV blocks in the NVRAM should never be erased ..after first initialization.

Also, it should be made clear that "write protection", "write protection bit",
"write protection attribute" all refer to the current known state of write protection of a
block.
————————————–

————————————–

Agreed solution:

(1) Change the Description for requirement ECUC_NvM_00072 to:
"Defines write protection after first write. The NVRAM manager sets the write
protection bit either after the NV block was written the first time or if the block
was already written and it is detected as valid and consistent during a read for it.
[NVM276].
true: Defines write protection after first write is enabled.
false: Defines write protection after first write is disabled."

(2) Change the requirement SWS_NvM_00316 to:

44 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

"The job of the function NvM_ReadBlock shall mark every NVRAM block that has
been configured with NVM_WRITE_BLOCK_ONCE (TRUE) as write protected if
that block is valid and with consistent data. This write protection cannot be cleared
by NvM_SetBlockProtection."

(3) Change the requirement SWS_NvM_00314 to:
"The job of the function NvM_ReadAll shall mark every NVRAM block that has been
configured with NVM_WRITE_BLOCK_ONCE (TRUE) as write protected if that
block is valid and with consistent data. This write protection cannot be cleared by
NvM_SetBlockProtection."

(4) Change the requirement SWS_NvM_00784 to:
"The job of the function NvM_ReadPRAMBlock shall mark every NVRAM block that
has been configured with NVM_WRITE_BLOCK_ONCE (TRUE) as write protected
if that block is valid and with consistent data. This write protection cannot be cleared
by NvM_SetBlockProtection."

(5) Add a requirement, in chapter "7.2.2.13 NVRAM block write protection",
stating the following:
"For a block configured with MVM_WRITE_BLOCK_ONCE (TRUE), NvM shall
reject any Write/Erase/Invalidate request made prior to the first read request."

(6) For the above requirement, add the following Rationale:
"In case of a reset, the write protection flag of a block configured with
NVM_WRITE_BLOCK_ONCE (TRUE), from the NvM Administrative block, is
cleared. In order to reactivate the protection, the block must be read prior to a first
Write/Erase/Invalidate request being processed, in order to set the write proctection
only for a block that is valid and consistent. The first read request can be done
either as a single block request or as part of NvM_ReadAll."

(7) Add a requirement, in chapter "7.3.1 Development errors", stating the fol-
lowing:
"The development error NVM_E_WRITE_ONCE_STATUS_UNKNOWN (0x1A) shall
be detectable by the NvM module when a Write/Erase/Invalidate is made for a block
with MVM_WRITE_BLOCK_ONCE (TRUE), prior to the first read request made for
that block, depending on whether the build version mode is development mode."

(8) Add the following requirements in chapter "7.4 Error Detection":
- If development error detection is enabled for NvM mod-
ule, the function NvM_WriteBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made
for a block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this.

45 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

- If development error detection is enabled for NvM module,
the function NvM_WritePRAMBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made
for a block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this.
- If development error detection is enabled for NvM module,
the job of the function NvM_WriteAll shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when the processing of a block
configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read request
was made prior to this.
- If development error detection is enabled for NvM module, the
job of the function NvM_EraseNvBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made
for a block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this.
- If development error detection is enabled for NvM module, the
job of the function NvM_InvalidateNvBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made
for a block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this.

(9) Add a requirement, in chapter "8.1.3.2.4 NvM_EraseNvBlock", after the
00423 requirement, which states the following:
"The job of the function NvM_EraseNvBlock shall leave the write protection un-
changed for the blocks configured with MVM_WRITE_BLOCK_ONCE (TRUE)."

(10) Add a requirement, in chapter "8.1.3.2.6 NvM_InvalidateNvBlock", after
the 00417 requirement, which states the following:
"The job of the function NvM_InvalidateNvBlock shall leave the write protection
unchanged for the blocks configured with MVM_WRITE_BLOCK_ONCE (TRUE)."
–Last change on issue 74058 comment 15–

BW-C-Level:

Application Specification Bus
1 4 1

1.17 Specification Item SWS_NvM_00958

Trace References:

none

46 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

Content:

If development error detection is enabled for NvM module, the job
of the function NvM_InvalidateNvBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made for a
block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read request
was made prior to this.

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:

• RfC #74058: [NvM] Write protection and erase requests for NvMWriteBlockOnce
blocks

Problem description:

————————————–
Name: Delia Batica
Phone: +40 356 78 4202
Role: Developer
————————————–
Description/Motivation:

Currently, the behavior of NvM API’s for written blocks with NvMWriteBlock-
Once configured TRUE that have write protection unset is unclear.

I will refer as wbo the blocks with NvMWriteBlockOnce configured TRUE.

How should the wbo be handled during read requests if the block is reported
as inconsistent?
In SWS_NvM_00316 for eg., NvM_ReadBlock sets wbo to write protected if block is
valid. (same for SWS_NvM_00314, SWS_NvM_00784).

How should NvM_EraseNvBlock and NvM_InvalidateNvBlock handle a wbo if
the write protection is still unset? Should the 2 APIs set the write protection for a
block configured with NvMWriteBlockOnce set to TRUE?

NVM072_Conf : says that NVRAM manager".. sets the
write protection bit after the NV block was written the first time. This means that
some of the NV blocks in the NVRAM should never be erased ..after first initialization.

Also, it should be made clear that "write protection", "write protection bit",
"write protection attribute" all refer to the current known state of write protection of a
block.
————————————–

47 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

https://www.autosar.org/bugzilla/show_bug.cgi?id=74058

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

————————————–

Agreed solution:

(1) Change the Description for requirement ECUC_NvM_00072 to:
"Defines write protection after first write. The NVRAM manager sets the write
protection bit either after the NV block was written the first time or if the block
was already written and it is detected as valid and consistent during a read for it.
[NVM276].
true: Defines write protection after first write is enabled.
false: Defines write protection after first write is disabled."

(2) Change the requirement SWS_NvM_00316 to:
"The job of the function NvM_ReadBlock shall mark every NVRAM block that has
been configured with NVM_WRITE_BLOCK_ONCE (TRUE) as write protected if
that block is valid and with consistent data. This write protection cannot be cleared
by NvM_SetBlockProtection."

(3) Change the requirement SWS_NvM_00314 to:
"The job of the function NvM_ReadAll shall mark every NVRAM block that has been
configured with NVM_WRITE_BLOCK_ONCE (TRUE) as write protected if that
block is valid and with consistent data. This write protection cannot be cleared by
NvM_SetBlockProtection."

(4) Change the requirement SWS_NvM_00784 to:
"The job of the function NvM_ReadPRAMBlock shall mark every NVRAM block that
has been configured with NVM_WRITE_BLOCK_ONCE (TRUE) as write protected
if that block is valid and with consistent data. This write protection cannot be cleared
by NvM_SetBlockProtection."

(5) Add a requirement, in chapter "7.2.2.13 NVRAM block write protection",
stating the following:
"For a block configured with MVM_WRITE_BLOCK_ONCE (TRUE), NvM shall
reject any Write/Erase/Invalidate request made prior to the first read request."

(6) For the above requirement, add the following Rationale:
"In case of a reset, the write protection flag of a block configured with
NVM_WRITE_BLOCK_ONCE (TRUE), from the NvM Administrative block, is
cleared. In order to reactivate the protection, the block must be read prior to a first
Write/Erase/Invalidate request being processed, in order to set the write proctection
only for a block that is valid and consistent. The first read request can be done
either as a single block request or as part of NvM_ReadAll."

48 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

(7) Add a requirement, in chapter "7.3.1 Development errors", stating the fol-
lowing:
"The development error NVM_E_WRITE_ONCE_STATUS_UNKNOWN (0x1A) shall
be detectable by the NvM module when a Write/Erase/Invalidate is made for a block
with MVM_WRITE_BLOCK_ONCE (TRUE), prior to the first read request made for
that block, depending on whether the build version mode is development mode."

(8) Add the following requirements in chapter "7.4 Error Detection":
- If development error detection is enabled for NvM mod-
ule, the function NvM_WriteBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made
for a block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this.
- If development error detection is enabled for NvM module,
the function NvM_WritePRAMBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made
for a block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this.
- If development error detection is enabled for NvM module,
the job of the function NvM_WriteAll shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when the processing of a block
configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read request
was made prior to this.
- If development error detection is enabled for NvM module, the
job of the function NvM_EraseNvBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made
for a block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this.
- If development error detection is enabled for NvM module, the
job of the function NvM_InvalidateNvBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made
for a block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this.

(9) Add a requirement, in chapter "8.1.3.2.4 NvM_EraseNvBlock", after the
00423 requirement, which states the following:
"The job of the function NvM_EraseNvBlock shall leave the write protection un-
changed for the blocks configured with MVM_WRITE_BLOCK_ONCE (TRUE)."

(10) Add a requirement, in chapter "8.1.3.2.6 NvM_InvalidateNvBlock", after
the 00417 requirement, which states the following:
"The job of the function NvM_InvalidateNvBlock shall leave the write protection

49 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

unchanged for the blocks configured with MVM_WRITE_BLOCK_ONCE (TRUE)."
–Last change on issue 74058 comment 15–

BW-C-Level:

Application Specification Bus
1 4 1

1.18 Specification Item SWS_NvM_00959

Trace References:

none

Content:

The job of the function NvM_EraseNvBlock shall leave the write protection unchanged for
the blocks configured with MVM_WRITE_BLOCK_ONCE (TRUE).

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:

• RfC #74058: [NvM] Write protection and erase requests for NvMWriteBlockOnce
blocks

Problem description:

————————————–
Name: Delia Batica
Phone: +40 356 78 4202
Role: Developer
————————————–
Description/Motivation:

Currently, the behavior of NvM API’s for written blocks with NvMWriteBlock-
Once configured TRUE that have write protection unset is unclear.

I will refer as wbo the blocks with NvMWriteBlockOnce configured TRUE.

How should the wbo be handled during read requests if the block is reported
as inconsistent?
In SWS_NvM_00316 for eg., NvM_ReadBlock sets wbo to write protected if block is
valid. (same for SWS_NvM_00314, SWS_NvM_00784).

How should NvM_EraseNvBlock and NvM_InvalidateNvBlock handle a wbo if
the write protection is still unset? Should the 2 APIs set the write protection for a

50 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

https://www.autosar.org/bugzilla/show_bug.cgi?id=74058

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

block configured with NvMWriteBlockOnce set to TRUE?

NVM072_Conf : says that NVRAM manager".. sets the
write protection bit after the NV block was written the first time. This means that
some of the NV blocks in the NVRAM should never be erased ..after first initialization.

Also, it should be made clear that "write protection", "write protection bit",
"write protection attribute" all refer to the current known state of write protection of a
block.
————————————–

————————————–

Agreed solution:

(1) Change the Description for requirement ECUC_NvM_00072 to:
"Defines write protection after first write. The NVRAM manager sets the write
protection bit either after the NV block was written the first time or if the block
was already written and it is detected as valid and consistent during a read for it.
[NVM276].
true: Defines write protection after first write is enabled.
false: Defines write protection after first write is disabled."

(2) Change the requirement SWS_NvM_00316 to:
"The job of the function NvM_ReadBlock shall mark every NVRAM block that has
been configured with NVM_WRITE_BLOCK_ONCE (TRUE) as write protected if
that block is valid and with consistent data. This write protection cannot be cleared
by NvM_SetBlockProtection."

(3) Change the requirement SWS_NvM_00314 to:
"The job of the function NvM_ReadAll shall mark every NVRAM block that has been
configured with NVM_WRITE_BLOCK_ONCE (TRUE) as write protected if that
block is valid and with consistent data. This write protection cannot be cleared by
NvM_SetBlockProtection."

(4) Change the requirement SWS_NvM_00784 to:
"The job of the function NvM_ReadPRAMBlock shall mark every NVRAM block that
has been configured with NVM_WRITE_BLOCK_ONCE (TRUE) as write protected
if that block is valid and with consistent data. This write protection cannot be cleared
by NvM_SetBlockProtection."

(5) Add a requirement, in chapter "7.2.2.13 NVRAM block write protection",
stating the following:

51 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

"For a block configured with MVM_WRITE_BLOCK_ONCE (TRUE), NvM shall
reject any Write/Erase/Invalidate request made prior to the first read request."

(6) For the above requirement, add the following Rationale:
"In case of a reset, the write protection flag of a block configured with
NVM_WRITE_BLOCK_ONCE (TRUE), from the NvM Administrative block, is
cleared. In order to reactivate the protection, the block must be read prior to a first
Write/Erase/Invalidate request being processed, in order to set the write proctection
only for a block that is valid and consistent. The first read request can be done
either as a single block request or as part of NvM_ReadAll."

(7) Add a requirement, in chapter "7.3.1 Development errors", stating the fol-
lowing:
"The development error NVM_E_WRITE_ONCE_STATUS_UNKNOWN (0x1A) shall
be detectable by the NvM module when a Write/Erase/Invalidate is made for a block
with MVM_WRITE_BLOCK_ONCE (TRUE), prior to the first read request made for
that block, depending on whether the build version mode is development mode."

(8) Add the following requirements in chapter "7.4 Error Detection":
- If development error detection is enabled for NvM mod-
ule, the function NvM_WriteBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made
for a block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this.
- If development error detection is enabled for NvM module,
the function NvM_WritePRAMBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made
for a block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this.
- If development error detection is enabled for NvM module,
the job of the function NvM_WriteAll shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when the processing of a block
configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read request
was made prior to this.
- If development error detection is enabled for NvM module, the
job of the function NvM_EraseNvBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made
for a block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this.
- If development error detection is enabled for NvM module, the
job of the function NvM_InvalidateNvBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made
for a block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read

52 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

request was made prior to this.

(9) Add a requirement, in chapter "8.1.3.2.4 NvM_EraseNvBlock", after the
00423 requirement, which states the following:
"The job of the function NvM_EraseNvBlock shall leave the write protection un-
changed for the blocks configured with MVM_WRITE_BLOCK_ONCE (TRUE)."

(10) Add a requirement, in chapter "8.1.3.2.6 NvM_InvalidateNvBlock", after
the 00417 requirement, which states the following:
"The job of the function NvM_InvalidateNvBlock shall leave the write protection
unchanged for the blocks configured with MVM_WRITE_BLOCK_ONCE (TRUE)."
–Last change on issue 74058 comment 15–

BW-C-Level:

Application Specification Bus
1 4 1

1.19 Specification Item SWS_NvM_00960

Trace References:

none

Content:

The job of the function NvM_InvalidateNvBlock shall leave the write protection unchanged
for the blocks configured with MVM_WRITE_BLOCK_ONCE (TRUE).

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:

• RfC #74058: [NvM] Write protection and erase requests for NvMWriteBlockOnce
blocks

Problem description:

————————————–
Name: Delia Batica
Phone: +40 356 78 4202
Role: Developer
————————————–
Description/Motivation:

Currently, the behavior of NvM API’s for written blocks with NvMWriteBlock-
Once configured TRUE that have write protection unset is unclear.

53 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

https://www.autosar.org/bugzilla/show_bug.cgi?id=74058

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

I will refer as wbo the blocks with NvMWriteBlockOnce configured TRUE.

How should the wbo be handled during read requests if the block is reported
as inconsistent?
In SWS_NvM_00316 for eg., NvM_ReadBlock sets wbo to write protected if block is
valid. (same for SWS_NvM_00314, SWS_NvM_00784).

How should NvM_EraseNvBlock and NvM_InvalidateNvBlock handle a wbo if
the write protection is still unset? Should the 2 APIs set the write protection for a
block configured with NvMWriteBlockOnce set to TRUE?

NVM072_Conf : says that NVRAM manager".. sets the
write protection bit after the NV block was written the first time. This means that
some of the NV blocks in the NVRAM should never be erased ..after first initialization.

Also, it should be made clear that "write protection", "write protection bit",
"write protection attribute" all refer to the current known state of write protection of a
block.
————————————–

————————————–

Agreed solution:

(1) Change the Description for requirement ECUC_NvM_00072 to:
"Defines write protection after first write. The NVRAM manager sets the write
protection bit either after the NV block was written the first time or if the block
was already written and it is detected as valid and consistent during a read for it.
[NVM276].
true: Defines write protection after first write is enabled.
false: Defines write protection after first write is disabled."

(2) Change the requirement SWS_NvM_00316 to:
"The job of the function NvM_ReadBlock shall mark every NVRAM block that has
been configured with NVM_WRITE_BLOCK_ONCE (TRUE) as write protected if
that block is valid and with consistent data. This write protection cannot be cleared
by NvM_SetBlockProtection."

(3) Change the requirement SWS_NvM_00314 to:
"The job of the function NvM_ReadAll shall mark every NVRAM block that has been
configured with NVM_WRITE_BLOCK_ONCE (TRUE) as write protected if that
block is valid and with consistent data. This write protection cannot be cleared by

54 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

NvM_SetBlockProtection."

(4) Change the requirement SWS_NvM_00784 to:
"The job of the function NvM_ReadPRAMBlock shall mark every NVRAM block that
has been configured with NVM_WRITE_BLOCK_ONCE (TRUE) as write protected
if that block is valid and with consistent data. This write protection cannot be cleared
by NvM_SetBlockProtection."

(5) Add a requirement, in chapter "7.2.2.13 NVRAM block write protection",
stating the following:
"For a block configured with MVM_WRITE_BLOCK_ONCE (TRUE), NvM shall
reject any Write/Erase/Invalidate request made prior to the first read request."

(6) For the above requirement, add the following Rationale:
"In case of a reset, the write protection flag of a block configured with
NVM_WRITE_BLOCK_ONCE (TRUE), from the NvM Administrative block, is
cleared. In order to reactivate the protection, the block must be read prior to a first
Write/Erase/Invalidate request being processed, in order to set the write proctection
only for a block that is valid and consistent. The first read request can be done
either as a single block request or as part of NvM_ReadAll."

(7) Add a requirement, in chapter "7.3.1 Development errors", stating the fol-
lowing:
"The development error NVM_E_WRITE_ONCE_STATUS_UNKNOWN (0x1A) shall
be detectable by the NvM module when a Write/Erase/Invalidate is made for a block
with MVM_WRITE_BLOCK_ONCE (TRUE), prior to the first read request made for
that block, depending on whether the build version mode is development mode."

(8) Add the following requirements in chapter "7.4 Error Detection":
- If development error detection is enabled for NvM mod-
ule, the function NvM_WriteBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made
for a block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this.
- If development error detection is enabled for NvM module,
the function NvM_WritePRAMBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made
for a block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this.
- If development error detection is enabled for NvM module,
the job of the function NvM_WriteAll shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when the processing of a block
configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read request

55 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

SWS_NVRAMManager: Complete Change
Documentation 4.3.0 - 4.3.1

AUTOSAR CP Release 4.3.1

was made prior to this.
- If development error detection is enabled for NvM module, the
job of the function NvM_EraseNvBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made
for a block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this.
- If development error detection is enabled for NvM module, the
job of the function NvM_InvalidateNvBlock shall report the DET error
NVM_E_WRITE_ONCE_STATUS_UNKNOWN when a write request is made
for a block configured with NVM_WRITE_BLOCK_ONCE (TRUE) for which no read
request was made prior to this.

(9) Add a requirement, in chapter "8.1.3.2.4 NvM_EraseNvBlock", after the
00423 requirement, which states the following:
"The job of the function NvM_EraseNvBlock shall leave the write protection un-
changed for the blocks configured with MVM_WRITE_BLOCK_ONCE (TRUE)."

(10) Add a requirement, in chapter "8.1.3.2.6 NvM_InvalidateNvBlock", after
the 00417 requirement, which states the following:
"The job of the function NvM_InvalidateNvBlock shall leave the write protection
unchanged for the blocks configured with MVM_WRITE_BLOCK_ONCE (TRUE)."
–Last change on issue 74058 comment 15–

BW-C-Level:

Application Specification Bus
1 4 1

56 of 56
— AUTOSAR CONFIDENTIAL —

Document ID 695: ChangeDocumentation

	1 SWS_NVRAMManager
	1.1 Specification Item ECUC_NvM_00072
	1.2 Specification Item ECUC_NvM_00481
	1.3 Specification Item ECUC_NvM_00497
	1.4 Specification Item SWS_NvM_00314
	1.5 Specification Item SWS_NvM_00316
	1.6 Specification Item SWS_NvM_00628
	1.7 Specification Item SWS_NvM_00784
	1.8 Specification Item SWS_NvM_00833
	1.9 Specification Item SWS_NvM_00856
	1.10 Specification Item SWS_NvM_00951
	1.11 Specification Item SWS_NvM_00952
	1.12 Specification Item SWS_NvM_00953
	1.13 Specification Item SWS_NvM_00954
	1.14 Specification Item SWS_NvM_00955
	1.15 Specification Item SWS_NvM_00956
	1.16 Specification Item SWS_NvM_00957
	1.17 Specification Item SWS_NvM_00958
	1.18 Specification Item SWS_NvM_00959
	1.19 Specification Item SWS_NvM_00960

