AUTOSAR

) SWS_CANDriver: Complete
Document Title | Change Documentation 4.3.0 -

4.3.1
Document Owner AUTOSAR
Document Responsibility AUTOSAR

Document Identification No 695

Document Status Final

Part of AUTOSAR Standard Classic Platform

Part of Standard Release 431

AUTOSAR

Table of Contents

1 SWS_CANDriver 4
1.1 Specification tem ECUC_Can_00317 4
1.2 Specification tem ECUC_Can_00318 6
1.3 Specification ltem ECUC_Can_00324 7
1.4 Specification Item ECUC_Can_00490 10
1.5 Specification tem SWS _Can_00031 11
1.6 Specification tem SWS_Can_00039 13
1.7 Specification ltem SWS_Can_00048 17
1.8 Specification ltem SWS_Can_00089 20
1.9 Specification ltem SWS_Can_00091 26
1.10 Specification tem SWS _Can_00108 30
1.11 Specification tem SWS_Can_00174 31
1.12 Specification ltem SWS_Can_00177 35
1.13 Specification ltem SWS_Can_00198 38
1.14 Specification ltem SWS_Can_00199 44
1.15 Specification tem SWS _Can_00200 51
1.16 Specification ltem SWS_Can_00205 57
1.17 Specification ltem SWS_Can_00206 60
1.18 Specification ltem SWS_Can_00209 64
1.19 Specification ltem SWS_Can_00210 67
1.20 Specification Item SWS Can 00212 71
1.21 Specification tem SWS_Can_00216 74
1.22 Specification tem SWS_Can_00217 80
1.23 Specification ltem SWS_Can_00218 87
1.24 Specification ltem SWS_CAN_00219 93
1.25 Specification Item SWS Can_ 00222 100
1.26 Specification tem SWS Can_ 00230 104
1.27 Specification tem SWS_Can_00233 109
1.28 Specification ltem SWS_Can_00234 113
1.29 Specification ltem SWS_Can_00360 114
1.30 Specification ltem SWS_Can_00362 118
1.31 Specification tem SWS _Can_ 00363 121
1.32 Specification tem SWS_Can_00395 125
1.33 Specification ltem SWS_Can_00408 129
1.34 Specification ltem SWS_Can_00416 132
1.35 Specification ltem SWS_CAN_00475 134
1.36 Specification tem SWS_CAN_00492 137
1.37 Specification ltem SWS_CAN_00493 140
1.38 Specification ltem SWS_CAN_00494 144
1.39 Specification ltem SWS_CAN_00504 147

AUTOSAR

Specification Item SWS_CAN_00505 148
Specification Item SWS_CAN_00506 155
Specification Item SWS _Can_91005 158
Specification ltem SWS Can 91006 161
Specification Item SWS_Can_91007 165

Specification Item SWS_Can_91016 168

AUTOSAR

1 SWS CANDriver

1.1 Specification Item ECUC_Can_00317

Trace References:

none

Content:

Name

CanRxProcessingCanController.CanRxProcessing

Parent Container

CanController

Controller.CanRx
Processing.INTERRUPT

Description Enables / disables APl Can_MainFunction_Read() for handling PDU reception events in polling
mode.

Multiplicity 1

Type EcucEnumerationParamDef

Range INTERRUPTCan Interrupt Mode of operation.

MIXEDCanController.CanRx
Processing.MIXED

Mixed Mode of operation

POLLINGCanController.Can
RxProcessing.POLLING

Polling Mode of operation.

Post-Build Variant Value

false

Value Configuration Class Pre-compile time X All Variants
Link time -
Post-build time -

Scope / Dependency scope: local

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:

e RfC #66718: [CAN] Can Driver Specification Supports Tx/RxProcessing per Con-
troller not per Mailbox

Problem description:

In the Can driver module specification currently TxProcessing/RxProcessing pa-
rameters namely CanRxProcessing and CanTxProcessing is configurable per CAN
controller but not per MailBox.

In some of the CAN Hardware there will be interrupts per group of buffers

which can be utilized for various use case scenarios.

Above feature of having configuring those interrupts for a specific group will
enable to serve both kind of the messages handling inside a single controller.

https://www.autosar.org/bugzilla/show_bug.cgi?id=66718

AUTOSAR

A group of buffers interrupt can be disabled when a deterministic timing behavior for
a specific group of messages.

But as per the hierarchy of the current AUTOSAR CAN configuration the hardware
feature above can'’t be utilized to the fullest advantage.

Please provide a clarification regards to the same or any changes in the CAN
driver configuration will be considered for the above Use case.

Agreed solution:

EcuC
HEHHHBHHHBBHHHBHHH

In Chapter 10, add to CanHardwareQbject:

SWS Item : ECUC_Can_XXXXX :

Name : CanHardwareObjectUsesPolling

Description : Enables polling of this hardware object.

Dependencies : This parameter shall exist if CanRxProcessing/CanTxProcessing is
set to Mixed.

Multiplicity : 0..1

Type : Boolean

Default : False

[ECUC_Can_00317]: CanRxProcessing
add new option in Range : Mixed (Mixed Mode of operation)

[ECUC_Can_00318]: CanTxProcessing
add new option in Range : Mixed (Mixed Mode of operation)

Append "or MIXED. In case of MIXED processing only the hardware objects
for which CanHardwareObjectUsesPolling is set to TRUE shall be polled." to
SWS Can 00108 and SWS_Can_00031.

—Last change on issue 66718 comment 38—

BW-C-Level:

Application | Specification | Bus
1 1 1

AUTOSAR

1.2 Specification ltem ECUC_Can_00318

Trace References:

none
Content:

Name CanTxProcessingCanController.CanTxProcessing

Parent Container CanController

Description Enables / disables APl Can_MainFunction_Write() for handling PDU transmission events in
polling mode.

Multiplicity 1

Type EcucEnumerationParamDef

Range INTERRUPTCan Interrupt Mode of operation.
Controller.CanTx
Processing.INTERRUPT
MIXEDCanController.CanTx Mixed Mode of operation
Processing.MIXED
POLLINGCanController.Can Polling Mode of operation.
TxProcessing.POLLING

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants
Link time B
Post-build time -

Scope / Dependency scope: local

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:

e RfC #66718: [CAN] Can Driver Specification Supports Tx/RxProcessing per Con-
troller not per Mailbox

Problem description:

In the Can driver module specification currently TxProcessing/RxProcessing pa-
rameters namely CanRxProcessing and CanTxProcessing is configurable per CAN
controller but not per MailBox.

In some of the CAN Hardware there will be interrupts per group of buffers
which can be utilized for various use case scenarios.

Above feature of having configuring those interrupts for a specific group will
enable to serve both kind of the messages handling inside a single controller.

A group of buffers interrupt can be disabled when a deterministic timing behavior for
a specific group of messages.

https://www.autosar.org/bugzilla/show_bug.cgi?id=66718

AUTOSAR

1.3

But as per the hierarchy of the current AUTOSAR CAN configuration the hardware
feature above can'’t be utilized to the fullest advantage.

Please provide a clarification regards to the same or any changes in the CAN
driver configuration will be considered for the above Use case.

Agreed solution:

EcuC
HHE#HHABHHABHHHBRHH

In Chapter 10, add to CanHardwareQbject:

SWS ltem : ECUC_Can_XXXXX :

Name : CanHardwareObjectUsesPolling

Description : Enables polling of this hardware object.

Dependencies : This parameter shall exist if CanRxProcessing/CanTxProcessing is
set to Mixed.

Multiplicity : 0..1

Type : Boolean

Default : False

[ECUC_Can_00317]: CanRxProcessing
add new option in Range : Mixed (Mixed Mode of operation)

[ECUC_Can_00318]: CanTxProcessing
add new option in Range : Mixed (Mixed Mode of operation)

Append "or MIXED. In case of MIXED processing only the hardware objects
for which CanHardwareObjectUsesPolling is set to TRUE shall be polled." to
SWS Can 00108 and SWS_Can_00031.

—Last change on issue 66718 comment 38—

BW-C-Level:

Application | Specification | Bus
1 1 1

Specification ltem ECUC_Can_00324

Trace References:

none

AUTOSAR

Content:
Container Name CanHardwareObjectCanHardwareObject
Description This container contains the configuration (parameters) of CAN Hardware Objects.

Configuration Parameters

Included parameters:

Included Parameters

Parameter Name SWS Item ID

CanFdPaddingValue ECUC_Can_00485
CanHandleType ECUC_Can_00323
CanHardwareObjectUsesPolling ECUC_Can_00490
CanHwObjectCount ECUC_Can_00467
CanldType ECUC_Can_00065
CanObjectld ECUC_Can_00326
CanObjectType ECUC_Can_00327
CanTriggerTransmitEnable ECUC_Can_00486
CanControllerRef ECUC_Can_00322
CanMainFunctionRWPeriodRef ECUC_Can_00438

Included containers:

Included Containers
Container Name Multiplicity Scope / Dependency

CanHwFilter 0..” This container is only valid for HRHs and
contains the configuration (parameters)
of one hardware filter.

CanTTHardwareObjectTrigger 0.” CanTTHardwareObijectTrigger is
specified in the SWS TTCAN and
contains the configuration (parameters)
of TTCAN triggers for Hardware Objects,
which are additional to the configuration
(parameters) of CAN Hardware Objects.

This container is only included and valid
if TTCAN is supported by the controller
and, enabled (see CanSupport
TTCANRef, ECUC_Can_00430), and
used.

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:

e RfC #66718: [CAN] Can Driver Specification Supports Tx/RxProcessing per Con-
troller not per Mailbox

Problem description:

https://www.autosar.org/bugzilla/show_bug.cgi?id=66718

AUTOSAR

In the Can driver module specification currently TxProcessing/RxProcessing pa-
rameters namely CanRxProcessing and CanTxProcessing is configurable per CAN
controller but not per MailBox.

In some of the CAN Hardware there will be interrupts per group of buffers
which can be utilized for various use case scenarios.

Above feature of having configuring those interrupts for a specific group will
enable to serve both kind of the messages handling inside a single controller.

A group of buffers interrupt can be disabled when a deterministic timing behavior for
a specific group of messages.

But as per the hierarchy of the current AUTOSAR CAN configuration the hardware
feature above can'’t be utilized to the fullest advantage.

Please provide a clarification regards to the same or any changes in the CAN
driver configuration will be considered for the above Use case.

Agreed solution:

EcuC
HEHHHBBHHABHHHBRHH

In Chapter 10, add to CanHardwareObject:

SWS Item : ECUC_Can_XXXXX:

Name : CanHardwareObjectUsesPolling

Description : Enables polling of this hardware object.

Dependencies : This parameter shall exist if CanRxProcessing/CanTxProcessing is
set to Mixed.

Multiplicity : 0..1

Type : Boolean

Default : False

[ECUC_Can_00317]: CanRxProcessing
add new option in Range : Mixed (Mixed Mode of operation)

[ECUC_Can_00318]: CanTxProcessing
add new option in Range : Mixed (Mixed Mode of operation)

Append "or MIXED. In case of MIXED processing only the hardware objects
for which CanHardwareObjectUsesPolling is set to TRUE shall be polled." to

AUTOSAR

SWS Can 00108 and SWS_Can_00031.
—Last change on issue 66718 comment 38—

BW-C-Level:
Application | Specification | Bus
1 1 1

1.4 Specification ltem ECUC_Can_00490

Trace References:

none
Content:
Name CanHardwareObjectUsesPollingCanHardwareObject. CanHardwareObjectUsesPolling
Parent Container CanHardwareObject
Description Enables polling of this hardware object.
Multiplicity 0..1
Type EcucBooleanParamDef
Default value false
Scope / Dependency dependency: This parameter shall exist if CanRxProcessing/CanTxProcessing is set to Mixed.

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:

e RfC #66718: [CAN] Can Driver Specification Supports Tx/RxProcessing per Con-
troller not per Mailbox

Problem description:

In the Can driver module specification currently TxProcessing/RxProcessing pa-
rameters namely CanRxProcessing and CanTxProcessing is configurable per CAN
controller but not per MailBox.

In some of the CAN Hardware there will be interrupts per group of buffers
which can be utilized for various use case scenarios.

Above feature of having configuring those interrupts for a specific group will
enable to serve both kind of the messages handling inside a single controller.

A group of buffers interrupt can be disabled when a deterministic timing behavior for
a specific group of messages.

https://www.autosar.org/bugzilla/show_bug.cgi?id=66718

AUTOSAR

But as per the hierarchy of the current AUTOSAR CAN configuration the hardware
feature above can'’t be utilized to the fullest advantage.

Please provide a clarification regards to the same or any changes in the CAN
driver configuration will be considered for the above Use case.

Agreed solution:

EcuC
HHtHHHAEHHBHBEHHSHBHH

In Chapter 10, add to CanHardwareQObiject:

SWS Item : ECUC_Can_XXXXX:

Name : CanHardwareObjectUsesPolling

Description : Enables polling of this hardware object.

Dependencies : This parameter shall exist if CanRxProcessing/CanTxProcessing is
set to Mixed.

Multiplicity : 0..1

Type : Boolean

Default : False

[ECUC_Can_00317]: CanRxProcessing
add new option in Range : Mixed (Mixed Mode of operation)

[ECUC_Can_00318]: CanTxProcessing
add new option in Range : Mixed (Mixed Mode of operation)

Append "or MIXED. In case of MIXED processing only the hardware objects
for which CanHardwareObjectUsesPolling is set to TRUE shall be polled." to
SWS Can_ 00108 and SWS_Can_00031.

—Last change on issue 66718 comment 38—

BW-C-Level:

Application | Specification | Bus
1 1 1

1.5 Specification ltem SWS_Can_00031

Trace References:

AUTOSAR

SRS BSW 00432, SRS _BSW 00373, SRS_SPAL 00157
Content:

The function Can_MainFunction_Write shall perform the polling of TX confirmation when
CanTxProcessing

is set to POLLING or MIXED. In case of MIXED processing only the hardware objects for
which CanHardwareObjectUsesPolling is set to TRUE shall be polled.

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:

e RfC #66718: [CAN] Can Driver Specification Supports Tx/RxProcessing per Con-
troller not per Mailbox

Problem description:

In the Can driver module specification currently TxProcessing/RxProcessing pa-
rameters namely CanRxProcessing and CanTxProcessing is configurable per CAN
controller but not per MailBox.

In some of the CAN Hardware there will be interrupts per group of buffers
which can be utilized for various use case scenarios.

Above feature of having configuring those interrupts for a specific group will
enable to serve both kind of the messages handling inside a single controller.

A group of buffers interrupt can be disabled when a deterministic timing behavior for
a specific group of messages.

But as per the hierarchy of the current AUTOSAR CAN configuration the hardware
feature above can'’t be utilized to the fullest advantage.

Please provide a clarification regards to the same or any changes in the CAN
driver configuration will be considered for the above Use case.

Agreed solution:

EcuC

HHEHAHHBHAHHBHAHARH

In Chapter 10, add to CanHardwareObiject:

SWS Item : ECUC_Can_XXXXX :

Name : CanHardwareObjectUsesPolling

Description : Enables polling of this hardware object.

Dependencies : This parameter shall exist if CanRxProcessing/CanTxProcessing is

https://www.autosar.org/bugzilla/show_bug.cgi?id=66718

AUTOSAR

set to Mixed.
Multiplicity : 0..1
Type : Boolean
Default : False

[ECUC_Can_00317]: CanRxProcessing
add new option in Range : Mixed (Mixed Mode of operation)

[ECUC_Can_00318]: CanTxProcessing
add new option in Range : Mixed (Mixed Mode of operation)

Append "or MIXED. In case of MIXED processing only the hardware objects
for which CanHardwareObjectUsesPolling is set to TRUE shall be polled." to
SWS Can 00108 and SWS_Can_00031.

—Last change on issue 66718 comment 38—

BW-C-Level:
Application | Specification | Bus
1 1 1

1.6 Specification Iltem SWS_Can_00039

Trace References:
SRS BSW 00331

Content:
Name: Can_ReturnTypeCan_ReturnType
Type: Enumeration
Range: CAN_OKCan_Can_Return - success
Type.CAN_OK
CAN_NOT_OKCan_Return - error occurred or wakeup
Type.CAN_NOT_OK event occurred during sleep
transition
CAN BUSYCan_Return — 0x02 transmit request could not be
processed because no
Type.CAN_BUSY AR .
transmit object was available
Description: Return values of Overlayed return value of Std_ReturnType for CAN driver APl . Can_Write()

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:

AUTOSAR

e RfC #77952: [Can][Canlf] Incompatible return types of Can and CanTrcv
Problem description:

While CanTrcv only uses Std_ReturnType, Can uses Can_ReturnType in many
places, even when only CAN_OK and CAN_NOT_OK are available.

This leads to complicated code in Canlf, because it needs to implement sepa-
rate checks for return values from CanTrcv and Can and cannot just combine the
results.

Agreed solution:

=== CanDrv ===

Change of SWS_Can_00039 Can_ReturnType:

* type change from enumeration to extra_litaral

* Remove range element CAN_OK

* Remove range element CAN_NOT_OK

* Assign value "0x02" to range element "CAN_BUSY"

* Description: Overlayed return value of Std_ReturnType for CAN driver API
Can_Write().

~SWS Can_00230 Can_SetControllerMode

Syntax: Std_ReturnType Can_SetControllerMode(uint8 Controller,
Can_StateTransitionType Transition)

Return value:

Std_ReturnType

E_OK: request accepted

E NOT_OK: request not accepted, a development error occurred

~SWS_Can_00360 Can_CheckWakeup

Syntax: Std_ReturnType Can_CheckWakeup(uint8 Controller)
Return value:

Std_ReturnType

E_OK: API call has been accepted

E_NOT_OK: API call has not been accepted

~SWS Can_00233 Can_Write

Syntax: Std_ReturnType Can_Write(Can_HwHandleType Hth, const
Can_PduType* Pdulnfo)

Return value:

Std_ReturnType

E_OK: Write command has been accepted

E_NOT_OK: development error occurred

https://www.autosar.org/bugzilla/show_bug.cgi?id=77952

AUTOSAR

CAN_BUSY: No TX hardware buffer available or pre-emptive call of Can_Write that
can’t be implemented re-entrant (see Can_ReturnType)

Rename CAN_OK to E_ OK and CAN_NOT_OK to E_NOT_OK:
~SWS_ Can 00048
~SWS_Can_00089
7.11.5 Return Values
~SWS Can_00198
~SWS_Can_00199
~SWS_ Can 00200
~SWS Can_00216
~SWS Can_00217
~SWS Can_00218
~SWS_CAN_ 00219
~SWS_CAN_00505
~SWS_CAN_00506
~SWS Can_00212

=== Canlf ===

Adapt APl Can_Write() to new signature:

* Figure 7.10 "Transmission request with multiple CAN Drivers - simplified"
* Figure 9.1 "Transmission request with a single CAN Driver"

* Figure 9.2 "Transmission request with multiple CAN Drivers"

* Figure 9.5 "Transmit confirmation with buffering"

* Figure 9.6 "Transmit Cancelation”

* Figure 9.7 "Trigger Transmit Request"

Adapt API Can_SetControllerMode() to new signature:
* Figure 9.11: Start CAN network
* Figure 9.13: BusOff recovery

Figure 9.13: Change typo "Cnange" to "Change"

~SWS_CANIF_00678: If all calls of Can_CheckWakeup() or
CanTrcv_CheckWakeup() return E_NOT_OK to Canlf, then Canlf_CheckWakeup()
shall return E_NOT_OK.

~SWS_CANIF_00720: If at least one function call of Can_CheckWakeup() or
CanTrcv_CheckWakeup() returns E_OK to Canlf, then
Canlf_CheckWakeup() shall return E_OK.

Rename CAN_OK to E_ OK and CAN_NOT OKto E NOT_OK:
Note between SWS_CANIF_00162 and SWS_CANIF_00319

AUTOSAR

Table in chapter 9.7 Trigger Transmit Request
Table in chapter 9.11 Start CAN network

=== CanTrcv ===

Adapt API Can_SetControllerMode() to new signature:
* 9.3 De-Initialization (SPI Synchronous)

* 9.4 De-Initialization (SP1 Asynchronous)

=== ECUSM ===

Adapt API Can_CheckWakeup() to new signature:

* Figure 42 CAN controller wake up by interrupt

* Figure 43 CAN controller or transceiver wake up by polling

=== TTCanlf ===
Adapt APl Can_Write() to new signature:
* Figure 9.1: CAN Interface Time Triggered transmission with Job List

Correct APl Can_TTReceive() which has return void instead of Can_ReturnType
indeed:
* Figure 9.2: CAN Interface Time Triggered reception with Job List

Rename CAN_OK to E_OK and CAN_NOT_OK to E_NOT_OK:
~SWS_TitCanlf_00071

=== TTCanDrv ===

Rename CAN_OK to E_OK and CAN_NOT _OK to E_NOT_OK:
~SWS TtCan_00014

~SWS_TtCan_00018

~SWS_TtCan_00022

~SWS_TtCan_00026

~SWS_ TitCan 00059

~SWS_TtCan_00078

~SWS_ TtCan_ 00112

=== XCP ===

Adapt APl Can_Write() to new signature:

* Figure 5: Xcp on Can Transmit

—Last change on issue 77952 comment 22—

BW-C-Level:

Application | Specification | Bus
1 4 1

AUTOSAR

1.7 Specification ltem SWS_Can_00048

Trace References:
SRS _Can_01122
Content:

In case of a CAN bus wake-up during sleep transition, the function Can_SetController
Mode(CAN_CS_STOPPED) shall return CANE_NOT_OK.

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:
e RfC #77952: [Can][Canlf] Incompatible return types of Can and CanTrcv
Problem description:

While CanTrcv only uses Std ReturnType, Can uses Can_ReturnType in many
places, even when only CAN_OK and CAN_NOT_OK are available.

This leads to complicated code in Canlf, because it needs to implement sepa-
rate checks for return values from CanTrcv and Can and cannot just combine the
results.

Agreed solution:

=== CanDrv ===

Change of SWS_Can_00039 Can_ReturnType:

* type change from enumeration to extra_litaral

* Remove range element CAN_OK

* Remove range element CAN_NOT_OK

* Assign value "0x02" to range element "CAN_BUSY"

* Description: Overlayed return value of Std_ReturnType for CAN driver API
Can_Write().

~SWS Can_00230 Can_SetControllerMode

Syntax: Std_ReturnType Can_SetControllerMode(uint8 Controller,
Can_StateTransitionType Transition)

Return value:

Std_ReturnType

E_OK: request accepted

E_NOT_OK: request not accepted, a development error occurred

~SWS_Can_00360 Can_CheckWakeup
Syntax: Std_ReturnType Can_CheckWakeup(uint8 Controller)

https://www.autosar.org/bugzilla/show_bug.cgi?id=77952

AUTOSAR

Return value:

Std_ReturnType

E_OK: API call has been accepted
E_NOT_OK: API call has not been accepted

~SWS Can_00233 Can_Write

Syntax: Std_ReturnType Can_Write(Can_HwHandleType Hth, const
Can_PduType* Pdulnfo)

Return value:

Std_ReturnType

E_OK: Write command has been accepted

E_NOT_OK: development error occurred

CAN_BUSY: No TX hardware buffer available or pre-emptive call of Can_Write that
can’'t be implemented re-entrant (see Can_ReturnType)

Rename CAN_OK to E_OK and CAN_NOT_OK to E_NOT_OK:
~SWS Can_00048
~SWS_ Can_00089
7.11.5 Return Values
~SWS Can 00198
~SWS Can 00199
~SWS_Can_00200
~SWS Can_00216
~SWS_Can_00217
~SWS_ Can_00218
~SWS_CAN_00219
~SWS_CAN_00505
~SWS_CAN_00506
~SWS_Can_00212

=== Canlf ===

Adapt APl Can_Write() to new signature:

* Figure 7.10 "Transmission request with multiple CAN Drivers - simplified"
* Figure 9.1 "Transmission request with a single CAN Driver"

* Figure 9.2 "Transmission request with multiple CAN Drivers"

* Figure 9.5 "Transmit confirmation with buffering"

* Figure 9.6 "Transmit Cancelation”

* Figure 9.7 "Trigger Transmit Request"

Adapt API Can_SetControllerMode() to new signature:
* Figure 9.11: Start CAN network
* Figure 9.13: BusOff recovery

AUTOSAR

Figure 9.13: Change typo "Cnange" to "Change"

~SWS_CANIF_00678: If all calls of Can_CheckWakeup() or
CanTrcv_CheckWakeup() return E_NOT_OK to Canlf, then Canlf_CheckWakeup()
shall return E_NOT_OK.

~SWS_CANIF_00720: If at least one function call of Can_CheckWakeup() or
CanTrcv_CheckWakeup() returns E_OK to Canlf, then
Canlf_CheckWakeup() shall return E_OK.

Rename CAN_OK to E_OK and CAN_NOT_OK to E_NOT_OK:
Note between SWS_CANIF_00162 and SWS_CANIF_00319
Table in chapter 9.7 Trigger Transmit Request

Table in chapter 9.11 Start CAN network

=== CanTrcv ===

Adapt API Can_SetControllerMode() to new signature:
* 9.3 De-Initialization (SPI Synchronous)

* 9.4 De-Initialization (SP1 Asynchronous)

=== ECUSM ===

Adapt APl Can_CheckWakeup() to new signature:

* Figure 42 CAN controller wake up by interrupt

* Figure 43 CAN controller or transceiver wake up by polling

=== TTCanlf ===
Adapt APl Can_Write() to new signature:
* Figure 9.1: CAN Interface Time Triggered transmission with Job List

Correct APl Can_TTReceive() which has return void instead of Can_ReturnType
indeed:
* Figure 9.2: CAN Interface Time Triggered reception with Job List

Rename CAN_OK to E_ OK and CAN_NOT_OK to E_NOT_OK:
~SWS_TtCanlf 00071

=== [1CanDrv ===

Rename CAN_OK to E_ OK and CAN_NOT_OK to E_NOT_OK:
~SWS_ TtCan_00014

~SWS_ TtCan_00018

~SWS_ TtCan 00022

~SWS_ TtCan 00026

~SWS_TtCan_00059

AUTOSAR

~SWS_TtCan_00078
~SWS TtCan_ 00112

=== XCP ===

Adapt APl Can_Write() to new signature:

* Figure 5: Xcp on Can Transmit

—Last change on issue 77952 comment 22—

BW-C-Level:
Application | Specification | Bus
1 4 1

1.8 Specification ltem SWS_Can_00089

Trace References:
SRS _BSW 00369, SRS _BSW 00386, SRS _SPAL 12448
Content:

The Can module’s environment shall indicate Default development errors only in the return
values of a function of the Can module when DET is switched on and the function provides
a return value. The returned value is CANE_NOT_OK.

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:
e RfC #73570: No "default error" in AUTOSAR
Problem description:
The DET was renamed from development error tracer to default error tracer.

This change was most of the time done automatically and unfortunately re-
named "developement error" to "default error".

"default error" should always be followed by "tracer", otherwise, "development
error" is probably the right term.

This could increase the impact (compared to my selection of impacted docu-
ment, but formally, the configuration parameters *DevErrorDetect are not using the
correct description:

"Switches the Default Error Tracer (Det) detection and notification..."

The parameter switches on/off the developement error detection. The DET

https://www.autosar.org/bugzilla/show_bug.cgi?id=73570

AUTOSAR

does not need to be detected and can be present even when the parameter is set to
false.

Agreed solution:

Rename "default error" to "development error" in all impacted documents, but not
in an automated way (Do not change "default error tracer" to "developement error
tracer"!)

Blueprint/Example:

- sub chapter is now called "7.x Default errors"

- "[SWS_xxx_yyyyy]

In case default error detection is enabled for the xxxx module: The xxxx module
shall check API parameters for validity and report detected errors to the DET. ()"

- "[SWS_xxx_yyyyy]

If default error detection is enabled: the function shall check that the service xxx_Init
was previously called. If the check fails, the function shall raise the default error
XXX_E_NOT_INITIALIZED otherwise (if DET is disabled) return E_NOT_OK. ()"

- "In case default errors are enabled,..."

- "module raises the Default error XXX_E_TRANSITION"

- "The DET provides services to store default errors”

The correct text would be:

- sub chapter is called "7.x Development errors"

- "[SWS_xxx_yyyyy]

In case development error detection is enabled for the xxxx module: The xxxx
module shall check API| parameters for validity and report detected development
errors to the DET. ()"

- "[SWS_xxx_yyyyy]

If development error detection is enabled: the function shall check that the service
xxx_Init was previously called. If the check fails, the function shall raise the
development error XXX_E_NOT _INITIALIZED otherwise (if DET is disabled) return
E_NOT_OK. ()"

- "In case development errors are enabled,..."

- "module raises the development error XXX_E_TRANSITION"

- "The DET provides services to store development errors"

Solution for SWS_RTE:

- SWS_RTE —

- Change 4.8 Default errors to 4.8 Development errors

- Change "Errors which can occur at runtime in the RTE are classified as default er-
rors" to "Errors which can occur at runtime in the RTE are classified as development

AUTOSAR

errors"

- Remove [SWS_Rte_07676]

- Change [SWS_RTE_06611]"If a violation is detected the RTE shall report a default
error to the DET." to "If a violation is detected the RTE shall report a development
error to the DET."

- Change [SWS_Rte_06631]

[SWS_Rte_06631] d The RTE shall use the OS Application Identifier as the Instance
Id to enable the developer to identify in which runtime section of the RTE the error
occurs. This Instance ID is even unique across multi cores and so implicitly allows
the development error to be traced to a specific core. ¢(SRS_BSW_00337)

SRS _Libraries:
- In chapter "3 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

SRS _SPALGeneral:

- In chapter "6.1.1.3.1 [SRS_SPAL_00157] ...": Rename "Development Error Tracer"
to "Default Error Tracer"

- In chapter "6.1.1.4.2 [SRS_SPAL_12448] ...": Rename "Development Error Tracer"
to "Default Error Tracer"

SRS FlashTest:

- In chapter "6.1 Functional Requirements": Rename "Development Error Tracer" to
"Default Error Tracer"

- In chapter "7 References":

Rename "Development Error Tracer" to "Default Error Tracer"”

Rename "AUTOSAR_SWS_ DevelopmentErrorTracer" to "AU-
TOSAR_SWS DefaultErrorTracer"

SWS_MFXLibrary:
- In chapter "2 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

SWS_MemoryAbstractioninterface:

- In chapter "3.1 Input documents":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS DefaultErrorTracer"

AUTOSAR

SWS_FlexRayNetworkManagement:

- In chapter "3.3 Related AUTOSAR documents™:

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS_DefaultErrorTracer"

SWS_CANStateManager:
- In chapter "3.1 Input documents": Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_ DefaultErrorTracer”

SWS_ PDURouter:
- In chapter "3.1 Input documents": Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer” to "AUTOSAR_SWS_ DefaultErrorTracer”

SWS_EEPROMDiriver:
- In chapter "3.1 Input documents": Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_ DefaultErrorTracer”
—Last change on issue 73570 comment 47—
BW-C-Level:

Application | Specification | Bus

1 1 1

e RfC #77952: [Can][Canlf] Incompatible return types of Can and CanTrcv

Problem description:
While CanTrcv only uses Std ReturnType, Can uses Can_ReturnType in many
places, even when only CAN_OK and CAN_NOT_OK are available.

This leads to complicated code in Canlf, because it needs to implement sepa-
rate checks for return values from CanTrcv and Can and cannot just combine the
results.

Agreed solution:
=== CanDrv ===

Change of SWS_Can_00039 Can_ReturnType:
* type change from enumeration to extra_litaral

https://www.autosar.org/bugzilla/show_bug.cgi?id=77952

AUTOSAR

* Remove range element CAN_OK

* Remove range element CAN_NOT_OK

* Assign value "0x02" to range element "CAN_BUSY"

* Description: Overlayed return value of Std_ReturnType for CAN driver API
Can_Write().

~SWS Can_00230 Can_SetControllerMode

Syntax: Std_ReturnType Can_SetControllerMode(uint8 Controller,
Can_StateTransitionType Transition)

Return value:

Std_ReturnType

E_OK: request accepted

E_NOT_OK: request not accepted, a development error occurred

~SWS_Can_00360 Can_CheckWakeup

Syntax: Std_ReturnType Can_CheckWakeup(uint8 Controller)
Return value:

Std_ReturnType

E_OK: API call has been accepted

E_NOT_OK: API call has not been accepted

~SWS Can_00233 Can_Write

Syntax: Std_ReturnType Can_Write(Can_HwHandleType Hth, const
Can_PduType* Pdulnfo)

Return value:

Std_ReturnType

E_OK: Write command has been accepted

E_NOT_OK: development error occurred

CAN_BUSY: No TX hardware buffer available or pre-emptive call of Can_Write that
can’t be implemented re-entrant (see Can_ReturnType)

Rename CAN_OK to E_OK and CAN_NOT_OK to E_NOT_OK:
~SWS_ Can_00048
~SWS_ Can_00089
7.11.5 Return Values
~SWS Can 00198
~SWS Can_00199
~SWS_Can_00200
~SWS Can_00216
~SWS_Can_00217
~SWS Can 00218
~SWS_ CAN_00219
~SWS_CAN_00505

AUTOSAR

~SWS_ CAN_00506
~SWS Can_00212

=== Canlf ===

Adapt APl Can_Write() to new signature:

* Figure 7.10 "Transmission request with multiple CAN Drivers - simplified"
* Figure 9.1 "Transmission request with a single CAN Driver"

* Figure 9.2 "Transmission request with multiple CAN Drivers"

* Figure 9.5 "Transmit confirmation with buffering"

* Figure 9.6 "Transmit Cancelation"

* Figure 9.7 "Trigger Transmit Request"

Adapt APl Can_SetControllerMode() to new signature:
* Figure 9.11: Start CAN network
* Figure 9.13: BusOff recovery

Figure 9.13: Change typo "Cnange" to "Change"

~SWS_CANIF_00678: If all calls of Can_CheckWakeup() or
CanTrcv_CheckWakeup() return E_NOT_OK to Canlf, then Canlf_CheckWakeup()
shall return E_NOT_OK.

~SWS_CANIF_00720: If at least one function call of Can_CheckWakeup() or
CanTrcv_CheckWakeup() returns E_OK to Canlf, then
Canlf_CheckWakeup() shall return E_OK.

Rename CAN_OK to E_OK and CAN_NOT_OK to E_NOT_OK:
Note between SWS_CANIF_00162 and SWS_CANIF_00319
Table in chapter 9.7 Trigger Transmit Request

Table in chapter 9.11 Start CAN network

=== CanTrcv ===

Adapt API Can_SetControllerMode() to new signature:
* 9.3 De-Initialization (SPI Synchronous)

* 9.4 De-Initialization (SPI Asynchronous)

=== ECUSM ===

Adapt APl Can_CheckWakeup() to new signature:

* Figure 42 CAN controller wake up by interrupt

* Figure 43 CAN controller or transceiver wake up by polling

=== TTCanlf ===
Adapt APl Can_Write() to new signature:

AUTOSAR

* Figure 9.1: CAN Interface Time Triggered transmission with Job List

Correct APl Can_TTReceive() which has return void instead of Can_ReturnType
indeed:
* Figure 9.2: CAN Interface Time Triggered reception with Job List

Rename CAN_OK to E_OK and CAN_NOT_OK to E_NOT_OK:
~SWS_TtCanlf 00071

=== TTCanDrv ===

Rename CAN_OK to E_OK and CAN_NOT_OK to E_NOT_OK:
~SWS_ TtCan_00014

~SWS_TitCan_00018

~SWS_ TtCan_00022

~SWS_ TtCan 00026

~SWS_TtCan_00059

~SWS_TtCan_00078

~SWS TiCan_ 00112

=== XCP ===

Adapt APl Can_Write() to new signature:

* Figure 5: Xcp on Can Transmit

—Last change on issue 77952 comment 22—

BW-C-Level:
Application | Specification | Bus
1 4 1

1.9 Specification ltem SWS_Can_00091

Trace References:
SRS _SPAL_12448
Content:

After return of the DET the Can module’s function that raised the default development
error shall return immediately.

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:
e RfC #73570: No "default error" in AUTOSAR

https://www.autosar.org/bugzilla/show_bug.cgi?id=73570

AUTOSAR

Problem description:

The DET was renamed from development error tracer to default error tracer.

This change was most of the time done automatically and unfortunately re-
named "developement error" to "default error".

"default error" should always be followed by "tracer", otherwise, "development
error" is probably the right term.

This could increase the impact (compared to my selection of impacted docu-
ment, but formally, the configuration parameters *DevErrorDetect are not using the
correct description:

"Switches the Default Error Tracer (Det) detection and notification..."

The parameter switches on/off the developement error detection. The DET
does not need to be detected and can be present even when the parameter is set to
false.

Agreed solution:

Rename "default error" to "development error" in all impacted documents, but not
in an automated way (Do not change "default error tracer" to "developement error
tracer"!)

Blueprint/Example:

- sub chapter is now called "7.x Default errors"

- "[SWS_xxx_yyyyy]

In case default error detection is enabled for the xxxx module: The xxxx module
shall check API parameters for validity and report detected errors to the DET. ()"

- "[SWS_xxx_yyyyy]

If default error detection is enabled: the function shall check that the service xxx_Init
was previously called. If the check fails, the function shall raise the default error
XXX_E_NOT_INITIALIZED otherwise (if DET is disabled) return E_NOT_OK. ()"

- "In case default errors are enabled,..."

- "module raises the Default error XXX_E_TRANSITION"

- "The DET provides services to store default errors”

The correct text would be:

- sub chapter is called "7.x Development errors"

- "[SWS_xxx_yyyyy]

In case development error detection is enabled for the xxxx module: The xxxx

AUTOSAR

module shall check API| parameters for validity and report detected development
errors to the DET. ()"

- "[SWS_xxx_yyyyy]

If development error detection is enabled: the function shall check that the service
xxx_Init was previously called. If the check fails, the function shall raise the
development error XXX_E_NOT_INITIALIZED otherwise (if DET is disabled) return
E _NOT_OK. ()"

- "In case development errors are enabled,..."

- "module raises the development error XXX_E_TRANSITION"

- "The DET provides services to store development errors"

Solution for SWS_RTE:

- SWS_RTE —

- Change 4.8 Default errors to 4.8 Development errors

- Change "Errors which can occur at runtime in the RTE are classified as default er-
rors" to "Errors which can occur at runtime in the RTE are classified as development
errors"

- Remove [SWS_Rte _07676]

- Change [SWS_RTE_06611]"If a violation is detected the RTE shall report a default
error to the DET." to "If a violation is detected the RTE shall report a development
error to the DET."

- Change [SWS_Rte_06631]

[SWS_Rte_06631] d The RTE shall use the OS Application Identifier as the Instance
Id to enable the developer to identify in which runtime section of the RTE the error
occurs. This Instance ID is even unique across multi cores and so implicitly allows
the development error to be traced to a specific core. ¢(SRS_BSW_00337)

SRS _Libraries:
- In chapter "3 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

SRS_SPALGeneral:

- In chapter "6.1.1.3.1 [SRS_SPAL_00157] ...": Rename "Development Error Tracer"
to "Default Error Tracer"

- In chapter "6.1.1.4.2 [SRS_SPAL_12448] ...": Rename "Development Error Tracer"
to "Default Error Tracer"

SRS FlashTest:
- In chapter "6.1 Functional Requirements": Rename "Development Error Tracer" to
"Default Error Tracer"

AUTOSAR

- In chapter "7 References":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS_DefaultErrorTracer”

SWS_MFXLibrary:
- In chapter "2 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

SWS_MemoryAbstractioninterface:

- In chapter "3.1 Input documents":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS_DefaultErrorTracer"

SWS_FlexRayNetworkManagement:

- In chapter "3.3 Related AUTOSAR documents":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS DefaultErrorTracer"

SWS_CANStateManager:
- In chapter "3.1 Input documents": Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_ DefaultErrorTracer”

SWS PDURouter:
- In chapter "3.1 Input documents": Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_ DefaultErrorTracer”

SWS_EEPROMDiriver:

- In chapter "3.1 Input documents": Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_ DefaultErrorTracer”
—Last change on issue 73570 comment 47—

BW-C-Level:

Application | Specification | Bus
1 1 1

AUTOSAR

1.10 Specification ltem SWS_Can_00108

Trace References:
SRS BSW 00432, SRS _SPAL_ 00157
Content:

The function Can_MainFunction_Read shall perform the polling of RX indications when
CanRxProcessing is set to POLLING or MIXED. In case of MIXED processing only the
hardware objects for which CanHardwareObjectUsesPolling is set to TRUE shall be polled.

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:

e RfC #66718: [CAN] Can Driver Specification Supports Tx/RxProcessing per Con-
troller not per Mailbox

Problem description:

In the Can driver module specification currently TxProcessing/RxProcessing pa-
rameters namely CanRxProcessing and CanTxProcessing is configurable per CAN
controller but not per MailBox.

In some of the CAN Hardware there will be interrupts per group of buffers
which can be utilized for various use case scenarios.

Above feature of having configuring those interrupts for a specific group will
enable to serve both kind of the messages handling inside a single controller.

A group of buffers interrupt can be disabled when a deterministic timing behavior for
a specific group of messages.

But as per the hierarchy of the current AUTOSAR CAN configuration the hardware
feature above can'’t be utilized to the fullest advantage.

Please provide a clarification regards to the same or any changes in the CAN
driver configuration will be considered for the above Use case.

Agreed solution:

EcuC
HEHHHBBHHBBHHABHHH

In Chapter 10, add to CanHardwareQbiject:

SWS ltem : ECUC_Can_XXXXX:
Name : CanHardwareObjectUsesPolling

https://www.autosar.org/bugzilla/show_bug.cgi?id=66718

AUTOSAR

Description : Enables polling of this hardware object.

Dependencies : This parameter shall exist if CanRxProcessing/CanTxProcessing is
set to Mixed.

Multiplicity : 0..1

Type : Boolean

Default : False

[ECUC_Can_00317]: CanRxProcessing
add new option in Range : Mixed (Mixed Mode of operation)

[ECUC_Can_00318]: CanTxProcessing
add new option in Range : Mixed (Mixed Mode of operation)

Append "or MIXED. In case of MIXED processing only the hardware objects
for which CanHardwareObjectUsesPolling is set to TRUE shall be polled." to
SWS Can_ 00108 and SWS_Can_00031.

—Last change on issue 66718 comment 38—

BW-C-Level:

Application | Specification | Bus
1 1 1

1.11 Specification ltem SWS_Can_00174

Trace References:
none
Content:

If default development error detection for the Can module is enabled: The func-
tion Can_lInit shall raise the error CAN_E_TRANSITION if the driver is not in state

CAN_UNINIT.

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:
e RfC #73570: No "default error" in AUTOSAR
Problem description:

The DET was renamed from development error tracer to default error tracer.

This change was most of the time done automatically and unfortunately re-

https://www.autosar.org/bugzilla/show_bug.cgi?id=73570

AUTOSAR

named "developement error" to "default error".

"default error" should always be followed by "tracer", otherwise, "development
error" is probably the right term.

This could increase the impact (compared to my selection of impacted docu-
ment, but formally, the configuration parameters *DevErrorDetect are not using the
correct description:

"Switches the Default Error Tracer (Det) detection and notification..."

The parameter switches on/off the developement error detection. The DET
does not need to be detected and can be present even when the parameter is set to
false.

Agreed solution:

Rename "default error" to "development error" in all impacted documents, but not
in an automated way (Do not change "default error tracer" to "developement error
tracer"!)

Blueprint/Example:

- sub chapter is now called "7.x Default errors"

- "[SWS_xxx_yyyyy]

In case default error detection is enabled for the xxxx module: The xxxx module
shall check API parameters for validity and report detected errors to the DET. ()"

- "[SWS_xxx_yyyyy]

If default error detection is enabled: the function shall check that the service xxx_Init
was previously called. If the check fails, the function shall raise the default error
XXX_E_NOT_INITIALIZED otherwise (if DET is disabled) return E_NOT_OK. ()"

- "In case default errors are enabled,..."

- "module raises the Default error XXX_E_TRANSITION"

- "The DET provides services to store default errors”

The correct text would be:

- sub chapter is called "7.x Development errors"

- "[SWS_xxx_yyyyy]

In case development error detection is enabled for the xxxx module: The xxxx
module shall check APl parameters for validity and report detected development
errors to the DET. ()"

- "[SWS_xxx_yyyyy]

If development error detection is enabled: the function shall check that the service
xxx_Init was previously called. If the check fails, the function shall raise the

AUTOSAR

development error XXX_E_NOT_INITIALIZED otherwise (if DET is disabled) return
E _NOT_OK. ()"

- "In case development errors are enabled,..."

- "module raises the development error XXX_E_TRANSITION"

- "The DET provides services to store development errors”

Solution for SWS_RTE:

— SWS_RTE —

- Change 4.8 Default errors to 4.8 Development errors

- Change "Errors which can occur at runtime in the RTE are classified as default er-
rors" to "Errors which can occur at runtime in the RTE are classified as development
errors”

- Remove [SWS_Rte_07676]

- Change [SWS_RTE_06611]"If a violation is detected the RTE shall report a default
error to the DET." to "If a violation is detected the RTE shall report a development
error to the DET."

- Change [SWS_Rte_06631]

[SWS_Rte_06631] d The RTE shall use the OS Application Identifier as the Instance
Id to enable the developer to identify in which runtime section of the RTE the error
occurs. This Instance ID is even unique across multi cores and so implicitly allows
the development error to be traced to a specific core. ¢(SRS_BSW_00337)

SRS _Libraries:
- In chapter "3 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

SRS _SPALGeneral:

- In chapter "6.1.1.3.1 [SRS_SPAL_00157] ...": Rename "Development Error Tracer"
to "Default Error Tracer"

- In chapter "6.1.1.4.2 [SRS_SPAL_12448] ...": Rename "Development Error Tracer"
to "Default Error Tracer"

SRS FlashTest:

- In chapter "6.1 Functional Requirements": Rename "Development Error Tracer" to
"Default Error Tracer"

- In chapter "7 References":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS DefaultErrorTracer"

AUTOSAR

SWS_MFXLibrary:
- In chapter "2 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

SWS_MemoryAbstractioninterface:

- In chapter "3.1 Input documents":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS_DefaultErrorTracer"

SWS_FlexRayNetworkManagement:

- In chapter "3.3 Related AUTOSAR documents":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS DefaultErrorTracer"

SWS_CANStateManager:
- In chapter "3.1 Input documents": Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_ DefaultErrorTracer”

SWS_ PDURouter:
- In chapter "3.1 Input documents": Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_ DefaultErrorTracer”

SWS EEPROMDiriver:

- In chapter "3.1 Input documents": Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_ DefaultErrorTracer”
—Last change on issue 73570 comment 47—

BW-C-Level:

Application | Specification | Bus
1 1 1

AUTOSAR

1.12 Specification Item SWS_Can_00177

Trace References:

none

Content:

If default development error detection for the Can module is enabled: The function

Can_

GetVersionInfo shall raise the error CAN_E_PARAM_POINTER if the parameter ver-

sioninfo is a null pointer.

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:

RfC #73570: No "default error" in AUTOSAR
Problem description:

The DET was renamed from development error tracer to default error tracer.

This change was most of the time done automatically and unfortunately re-
named "developement error" to "default error".

"default error" should always be followed by "tracer", otherwise, "development
error" is probably the right term.

This could increase the impact (compared to my selection of impacted docu-
ment, but formally, the configuration parameters *DevErrorDetect are not using the
correct description:

"Switches the Default Error Tracer (Det) detection and notification..."

The parameter switches on/off the developement error detection. The DET
does not need to be detected and can be present even when the parameter is set to
false.

Agreed solution:

Rename "default error" to "development error" in all impacted documents, but not
in an automated way (Do not change "default error tracer" to "developement error
tracer"!)

Blueprint/Example:

- sub chapter is now called "7.x Default errors"

- "[SWS_xxx_yyyyy]

In case default error detection is enabled for the xxxx module: The xxxx module
shall check APl parameters for validity and report detected errors to the DET. ()"

https://www.autosar.org/bugzilla/show_bug.cgi?id=73570

AUTOSAR

- "[SWS_xxx_yyyyy]

If default error detection is enabled: the function shall check that the service xxx_Init
was previously called. If the check fails, the function shall raise the default error
XXX_E_NOT_INITIALIZED otherwise (if DET is disabled) return E_NOT_OK. ()"

- "In case default errors are enabled,..."

- "module raises the Default error XXX_E_TRANSITION"

- "The DET provides services to store default errors"

The correct text would be:

- sub chapter is called "7.x Development errors"

- "[SWS_xxx_yyyyy]

In case development error detection is enabled for the xxxx module: The xxxx
module shall check APl parameters for validity and report detected development
errors to the DET. ()"

- "[SWS_xxx_yyyyy]

If development error detection is enabled: the function shall check that the service
xxx_Init was previously called. If the check fails, the function shall raise the
development error XXX_E_NOT_INITIALIZED otherwise (if DET is disabled) return
E_NOT_OK. ()"

- "In case development errors are enabled,..."

- "module raises the development error XXX_E_TRANSITION"

- "The DET provides services to store development errors”

Solution for SWS_RTE:

- SWS_RTE —

- Change 4.8 Default errors to 4.8 Development errors

- Change "Errors which can occur at runtime in the RTE are classified as default er-
rors" to "Errors which can occur at runtime in the RTE are classified as development
errors”

- Remove [SWS_Rte 07676]

- Change [SWS_RTE_06611]"If a violation is detected the RTE shall report a default
error to the DET." to "If a violation is detected the RTE shall report a development
error to the DET."

- Change [SWS_Rte 06631]

[SWS_Rte_06631] d The RTE shall use the OS Application Identifier as the Instance
Id to enable the developer to identify in which runtime section of the RTE the error
occurs. This Instance ID is even unique across multi cores and so implicitly allows
the development error to be traced to a specific core. ¢(SRS_BSW_00337)

SRS _Libraries:

AUTOSAR

- In chapter "3 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

SRS _SPALGeneral:

- In chapter "6.1.1.3.1 [SRS_SPAL_00157] ...": Rename "Development Error Tracer"
to "Default Error Tracer"

- In chapter "6.1.1.4.2 [SRS_SPAL_12448] ...": Rename "Development Error Tracer"
to "Default Error Tracer"

SRS_FlashTest:

- In chapter "6.1 Functional Requirements": Rename "Development Error Tracer" to
"Default Error Tracer"

- In chapter "7 References":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS DefaultErrorTracer"

SWS_MFXLibrary:
- In chapter "2 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

SWS_MemoryAbstractioninterface:

- In chapter "3.1 Input documents":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_ DevelopmentErrorTracer" to "AU-
TOSAR_SWS_DefaultErrorTracer”

SWS_FlexRayNetworkManagement:

- In chapter "3.3 Related AUTOSAR documents™:

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS_DefaultErrorTracer"

SWS_CANStateManager:
- In chapter "3.1 Input documents": Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_ DefaultErrorTracer"”

AUTOSAR

SWS_PDURouter:
- In chapter "3.1 Input documents™: Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_DefaultErrorTracer”

SWS_EEPROMDriver:

- In chapter "3.1 Input documents": Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_DefaultErrorTracer”
—Last change on issue 73570 comment 47—

BW-C-Level:

Application | Specification | Bus

1 1 1

1.13 Specification Iltem SWS_Can_00198

Trace References:

none

Content:

If default development error detection for the Can module is enabled: if the module is not
yet initialized, the function Can_SetControllerMode shall raise default development error
CAN_E_UNINIT and return CANE_NOT_OK.

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:

RfC #73570: No "default error" in AUTOSAR

Problem description:
The DET was renamed from development error tracer to default error tracer.

This change was most of the time done automatically and unfortunately re-
named "developement error" to "default error".

"default error" should always be followed by "tracer", otherwise, "development
error" is probably the right term.

This could increase the impact (compared to my selection of impacted docu-
ment, but formally, the configuration parameters *DevErrorDetect are not using the
correct description:

https://www.autosar.org/bugzilla/show_bug.cgi?id=73570

AUTOSAR

"Switches the Default Error Tracer (Det) detection and notification..."

The parameter switches on/off the developement error detection. The DET
does not need to be detected and can be present even when the parameter is set to
false.

Agreed solution:

Rename "default error" to "development error" in all impacted documents, but not
in an automated way (Do not change "default error tracer" to "developement error
tracer"!)

Blueprint/Example:

- sub chapter is now called "7.x Default errors"

- "[SWS_xxx_yyyyy]

In case default error detection is enabled for the xxxx module: The xxxx module
shall check APl parameters for validity and report detected errors to the DET. ()"

- "[SWS_xxx_yyyyy]

If default error detection is enabled: the function shall check that the service xxx_Init
was previously called. If the check fails, the function shall raise the default error
XXX_E_NOT_INITIALIZED otherwise (if DET is disabled) return E_NOT_OK. ()"

- "In case default errors are enabled,..."

- "module raises the Default error XXX _E_TRANSITION"

- "The DET provides services to store default errors"

The correct text would be:

- sub chapter is called "7.x Development errors"

- "[SWS_xxx_yyyyy]

In case development error detection is enabled for the xxxx module: The xxxx
module shall check API| parameters for validity and report detected development
errors to the DET. ()"

- "[SWS_xxx_yyyyy]

If development error detection is enabled: the function shall check that the service
xxx_Init was previously called. If the check fails, the function shall raise the
development error XXX_E_NOT_INITIALIZED otherwise (if DET is disabled) return
E_NOT_OK. ()"

- "In case development errors are enabled,..."

- "module raises the development error XXX_E_TRANSITION"

- "The DET provides services to store development errors"

Solution for SWS_RTE:
- SWS_RTE —

AUTOSAR

- Change 4.8 Default errors to 4.8 Development errors

- Change "Errors which can occur at runtime in the RTE are classified as default er-
rors" to "Errors which can occur at runtime in the RTE are classified as development
errors"

- Remove [SWS_Rte 07676]

- Change [SWS_RTE_06611]"If a violation is detected the RTE shall report a default
error to the DET." to "If a violation is detected the RTE shall report a development
error to the DET."

- Change [SWS_Rte_06631]

[SWS_Rte 06631]d The RTE shall use the OS Application Identifier as the Instance
Id to enable the developer to identify in which runtime section of the RTE the error
occurs. This Instance ID is even unique across multi cores and so implicitly allows
the development error to be traced to a specific core. ¢(SRS_BSW_00337)

SRS _Libraries:
- In chapter "3 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

SRS _SPALGeneral:

- In chapter "6.1.1.3.1 [SRS_SPAL_00157] ...": Rename "Development Error Tracer"
to "Default Error Tracer"

- In chapter "6.1.1.4.2 [SRS_SPAL_12448] ...": Rename "Development Error Tracer"
to "Default Error Tracer"

SRS_FlashTest:

- In chapter "6.1 Functional Requirements": Rename "Development Error Tracer" to
"Default Error Tracer"

- In chapter "7 References":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS_DefaultErrorTracer"

SWS_MFXLibrary:
- In chapter "2 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

SWS_MemoryAbstractioninterface:
- In chapter "3.1 Input documents":

AUTOSAR

Rename "Development Error Tracer" to "Default Error Tracer"
Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS DefaultErrorTracer"

SWS_FlexRayNetworkManagement:

- In chapter "3.3 Related AUTOSAR documents":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_ DevelopmentErrorTracer" to "AU-
TOSAR_SWS DefaultErrorTracer"

SWS_CANStateManager:
- In chapter "3.1 Input documents™: Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_DefaultErrorTracer"

SWS_ PDURouter:
- In chapter "3.1 Input documents™: Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_DefaultErrorTracer"”

SWS_EEPROMDriver:
- In chapter "3.1 Input documents™: Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_DefaultErrorTracer”
—Last change on issue 73570 comment 47—
BW-C-Level:

Application | Specification | Bus

1 1 1

e RfC #77952: [Can][Canlf] Incompatible return types of Can and CanTrcv

Problem description:
While CanTrcv only uses Std_ReturnType, Can uses Can_ReturnType in many
places, even when only CAN_OK and CAN_NOT_OK are available.

This leads to complicated code in Canlf, because it needs to implement sepa-
rate checks for return values from CanTrcv and Can and cannot just combine the
results.

Agreed solution:

https://www.autosar.org/bugzilla/show_bug.cgi?id=77952

AUTOSAR

=== CanDrv ===

Change of SWS_Can_00039 Can_ReturnType:

* type change from enumeration to extra_litaral

* Remove range element CAN_OK

* Remove range element CAN_NOT_OK

* Assign value "0x02" to range element "CAN_BUSY"

* Description: Overlayed return value of Std_ReturnType for CAN driver API
Can_Write().

~SWS_ Can_00230 Can_SetControllerMode

Syntax: Std_ReturnType Can_SetControllerMode(uint8 Controller,
Can_StateTransitionType Transition)

Return value:

Std_ReturnType

E_OK: request accepted

E_NOT_OK: request not accepted, a development error occurred

~SWS_Can_00360 Can_CheckWakeup

Syntax: Std_ReturnType Can_CheckWakeup(uint8 Controller)
Return value:

Std_ReturnType

E_OK: API call has been accepted

E_NOT_OK: API call has not been accepted

~SWS_ Can 00233 Can_Write

Syntax: Std_ReturnType Can_Write(Can_HwHandleType Hth, const
Can_PduType* Pdulnfo)

Return value:

Std_ReturnType

E_OK: Write command has been accepted

E_NOT_OK: development error occurred

CAN_BUSY: No TX hardware buffer available or pre-emptive call of Can_Write that
can’t be implemented re-entrant (see Can_ReturnType)

Rename CAN_OK to E_OK and CAN_NOT_OK to E_NOT_OK:
~SWS_ Can_00048

~SWS Can_00089

7.11.5 Return Values

~SWS Can_00198

~SWS_ Can 00199

~SWS_ Can 00200

~SWS Can_00216

AUTOSAR

~SWS_Can_00217
~SWS Can_00218
~SWS_CAN_00219
~SWS_CAN_00505
~SWS_ CAN_00506
~SWS_ Can_00212

=== Canlf ===

Adapt API Can_Write() to new signature:

* Figure 7.10 "Transmission request with multiple CAN Drivers - simplified"
* Figure 9.1 "Transmission request with a single CAN Driver"

* Figure 9.2 "Transmission request with multiple CAN Drivers"

* Figure 9.5 "Transmit confirmation with buffering"

* Figure 9.6 "Transmit Cancelation”

* Figure 9.7 "Trigger Transmit Request"

Adapt API Can_SetControllerMode() to new signature:
* Figure 9.11: Start CAN network
* Figure 9.13: BusOff recovery

Figure 9.13: Change typo "Cnange" to "Change"

~SWS_CANIF_00678: If all calls of Can_CheckWakeup() or
CanTrcv_CheckWakeup() return E_NOT_OK to Canlf, then Canlf_CheckWakeup()
shall return E_NOT_OK.

~SWS_CANIF_00720: If at least one function call of Can_CheckWakeup() or
CanTrcv_CheckWakeup() returns E_OK to Canlf, then
Canlf_CheckWakeup() shall return E_OK.

Rename CAN_OK to E_OK and CAN_NOT_OK to E_NOT_OK:
Note between SWS_CANIF_00162 and SWS_CANIF_00319
Table in chapter 9.7 Trigger Transmit Request

Table in chapter 9.11 Start CAN network

=== CanTrcv ===

Adapt API Can_SetControllerMode() to new signature:
* 9.3 De-Initialization (SPI Synchronous)

* 9.4 De-Initialization (SPI1 Asynchronous)

Adapt APl Can_CheckWakeup() to new signature:
* Figure 42 CAN controller wake up by interrupt

AUTOSAR

* Figure 43 CAN controller or transceiver wake up by polling

=== TTCanlf ===
Adapt API Can_Write() to new signature:
* Figure 9.1: CAN Interface Time Triggered transmission with Job List

Correct APl Can_TTReceive() which has return void instead of Can_ReturnType
indeed:
* Figure 9.2: CAN Interface Time Triggered reception with Job List

Rename CAN_OK to E_OK and CAN_NOT_OK to E_NOT_OK:
~SWS_TtCanlf_00071

=== T 1CanDrv ===

Rename CAN_OK to E_ OK and CAN_NOT _OK to E_NOT_OK:
~SWS_TtCan_00014

~SWS_TtCan_00018

~SWS_TitCan_00022

~SWS_TtCan_00026

~SWS_ TtCan 00059

~SWS_ TitCan 00078

~SWS_TtCan_ 00112

=== XCP ===

Adapt API Can_Write() to new signature:

* Figure 5: Xcp on Can Transmit

—Last change on issue 77952 comment 22—

BW-C-Level:
Application | Specification | Bus
1 4 1

1.14 Specification Iltem SWS_Can_00199

Trace References:
none
Content:

If default development error detection for the Can module is enabled: if the parameter
Controller is out of range, the function Can_SetControllerMode shall raise default devel-
opment error CAN_E PARAM_CONTROLLER and return CANE_NOT_OK.

AUTOSAR

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:
e RfC #73570: No "default error" in AUTOSAR
Problem description:

The DET was renamed from development error tracer to default error tracer.

This change was most of the time done automatically and unfortunately re-
named "developement error" to "default error”.

"default error" should always be followed by "tracer", otherwise, "development
error" is probably the right term.

This could increase the impact (compared to my selection of impacted docu-
ment, but formally, the configuration parameters *DevErrorDetect are not using the
correct description:

"Switches the Default Error Tracer (Det) detection and notification..."

The parameter switches on/off the developement error detection. The DET
does not need to be detected and can be present even when the parameter is set to
false.

Agreed solution:

Rename "default error" to "development error" in all impacted documents, but not
in an automated way (Do not change "default error tracer" to "developement error
tracer"!)

Blueprint/Example:

- sub chapter is now called "7.x Default errors"

- "[SWS_xxx_yyyyy]

In case default error detection is enabled for the xxxx module: The xxxx module
shall check API parameters for validity and report detected errors to the DET. ()"

- "[SWS_xxx_yyyyy]

If default error detection is enabled: the function shall check that the service xxx_Init
was previously called. If the check fails, the function shall raise the default error
XXX_E_NOT_INITIALIZED otherwise (if DET is disabled) return E_NOT_OK. ()"

- "In case default errors are enabled,..."

- "module raises the Default error XXX_E_TRANSITION"

- "The DET provides services to store default errors"

The correct text would be:

https://www.autosar.org/bugzilla/show_bug.cgi?id=73570

AUTOSAR

- sub chapter is called "7.x Development errors"

- "[SWS_xxx_yyyyy]

In case development error detection is enabled for the xxxx module: The xxxx
module shall check APl parameters for validity and report detected development
errors to the DET. ()"

- "[SWS_xxx_yyyyy]

If development error detection is enabled: the function shall check that the service
xxxX_Init was previously called. If the check fails, the function shall raise the
development error XXX_E_NOT_INITIALIZED otherwise (if DET is disabled) return
E_NOT_OK. ()"

- "In case development errors are enabled,..."

- "module raises the development error XXX_E_TRANSITION"

- "The DET provides services to store development errors"

Solution for SWS_RTE:

- SWS_RTE —

- Change 4.8 Default errors to 4.8 Development errors

- Change "Errors which can occur at runtime in the RTE are classified as default er-
rors" to "Errors which can occur at runtime in the RTE are classified as development
errors”

- Remove [SWS_Rte 07676]

- Change [SWS_RTE_06611]"If a violation is detected the RTE shall report a default
error to the DET." to "If a violation is detected the RTE shall report a development
error to the DET."

- Change [SWS_Rte 06631]

[SWS_Rte_06631] d The RTE shall use the OS Application Identifier as the Instance
Id to enable the developer to identify in which runtime section of the RTE the error
occurs. This Instance ID is even unique across multi cores and so implicitly allows
the development error to be traced to a specific core. ¢(SRS_BSW_00337)

SRS _Libraries:
- In chapter "3 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

SRS_SPALGeneral:

- In chapter "6.1.1.3.1 [SRS_SPAL_00157] ...": Rename "Development Error Tracer"
to "Default Error Tracer"

- In chapter "6.1.1.4.2 [SRS_SPAL_12448] ...": Rename "Development Error Tracer"
to "Default Error Tracer"

AUTOSAR

SRS_FlashTest:

- In chapter "6.1 Functional Requirements": Rename "Development Error Tracer" to
"Default Error Tracer"

- In chapter "7 References":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS_DefaultErrorTracer"

SWS_MFXLibrary:
- In chapter "2 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

SWS_MemoryAbstractioninterface:

- In chapter "3.1 Input documents":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS_DefaultErrorTracer"

SWS_FlexRayNetworkManagement:

- In chapter "3.3 Related AUTOSAR documents™:

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS DevelopmentErrorTracer" to "AU-
TOSAR_SWS DefaultErrorTracer"

SWS_CANStateManager:
- In chapter "3.1 Input documents™: Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_DefaultErrorTracer"

SWS_PDURouter:
- In chapter "3.1 Input documents": Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_DefaultErrorTracer"

SWS_EEPROMDriver:

- In chapter "3.1 Input documents": Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_DefaultErrorTracer"”
—Last change on issue 73570 comment 47—

AUTOSAR

BW-C-Level:

Application | Specification | Bus
1 1 1

e RfC #77952: [Can][Canlf] Incompatible return types of Can and CanTrcv

Problem description:

While CanTrcv only uses Std_ReturnType, Can uses Can_ReturnType in many
places, even when only CAN_OK and CAN_NOT_OK are available.

This leads to complicated code in Canlf, because it needs to implement sepa-
rate checks for return values from CanTrcv and Can and cannot just combine the
results.

Agreed solution:

=== CanDrv ===

Change of SWS_Can_00039 Can_ReturnType:

* type change from enumeration to extra_litaral

* Remove range element CAN_OK

* Remove range element CAN_NOT_OK

* Assign value "0x02" to range element "CAN_BUSY"

* Description: Overlayed return value of Std_ReturnType for CAN driver API
Can_Write().

~SWS_ Can 00230 Can_SetControllerMode

Syntax: Std_ReturnType Can_SetControllerMode(uint8 Controller,
Can_StateTransitionType Transition)

Return value:

Std_ReturnType

E_OK: request accepted

E_NOT_OK: request not accepted, a development error occurred

~SWS_Can_00360 Can_CheckWakeup

Syntax: Std_ReturnType Can_CheckWakeup(uint8 Controller)
Return value:

Std_ReturnType

E_OK: API call has been accepted

E_NOT_OK: API call has not been accepted

~SWS_ Can_ 00233 Can_Write
Syntax: Std_ReturnType Can_Write(Can_HwHandleType Hth, const
Can_PduType* Pdulnfo)

https://www.autosar.org/bugzilla/show_bug.cgi?id=77952

AUTOSAR

Return value:

Std_ReturnType

E_OK: Write command has been accepted

E_NOT_OK: development error occurred

CAN_BUSY: No TX hardware buffer available or pre-emptive call of Can_Write that
can’t be implemented re-entrant (see Can_ReturnType)

Rename CAN_OK to E_ OK and CAN_NOT_OK to E_NOT_OK:
~SWS Can_00048
~SWS_ Can 00089
7.11.5 Return Values
~SWS Can_00198
~SWS Can_00199
~SWS Can_00200
~SWS_ Can 00216
~SWS_Can_00217
~SWS Can_00218
~SWS_CAN_00219
~SWS_CAN_00505
~SWS_CAN_00506
~SWS Can 00212

=== Canlf ===

Adapt API Can_Write() to new signature:

* Figure 7.10 "Transmission request with multiple CAN Drivers - simplified"
* Figure 9.1 "Transmission request with a single CAN Driver"

* Figure 9.2 "Transmission request with multiple CAN Drivers"

* Figure 9.5 "Transmit confirmation with buffering"

* Figure 9.6 "Transmit Cancelation”

* Figure 9.7 "Trigger Transmit Request"

Adapt API Can_SetControllerMode() to new signature:
* Figure 9.11: Start CAN network
* Figure 9.13: BusOff recovery

Figure 9.13: Change typo "Cnange" to "Change"

~SWS_CANIF_00678: If all calls of Can_CheckWakeup() or
CanTrcv_CheckWakeup() return E_NOT_OK to Canlf, then Canlf_CheckWakeup()
shall return E_NOT_OK.

~SWS_CANIF_00720: If at least one function call of Can_CheckWakeup() or
CanTrcv_CheckWakeup() returns E_OK to Canlf, then

AUTOSAR

Canlf_CheckWakeup() shall return E_OK.

Rename CAN_OK to E_OK and CAN_NOT_OK to E_NOT_OK:
Note between SWS_CANIF 00162 and SWS_CANIF 00319
Table in chapter 9.7 Trigger Transmit Request

Table in chapter 9.11 Start CAN network

=== CanTrcv ===

Adapt API Can_SetControllerMode() to new signature:
* 9.3 De-Initialization (SPI1 Synchronous)

* 9.4 De-Initialization (SP1 Asynchronous)

=== ECUSM ===

Adapt APl Can_CheckWakeup() to new signature:

* Figure 42 CAN controller wake up by interrupt

* Figure 43 CAN controller or transceiver wake up by polling

=== TTCanlf ===
Adapt APl Can_Write() to new signature:
* Figure 9.1: CAN Interface Time Triggered transmission with Job List

Correct APl Can_TTReceive() which has return void instead of Can_ReturnType
indeed:
* Figure 9.2: CAN Interface Time Triggered reception with Job List

Rename CAN_OK to E_OK and CAN_NOT_OKto E_NOT_OK:
~SWS_TtCanlf_00071

=== T1CanDrv ===

Rename CAN_OK to E_OK and CAN_NOT_OK to E_NOT_OK:
~SWS TiCan 00014

~SWS_TtCan_ 00018

~SWS_TtCan_00022

~SWS_TtCan_00026

~SWS_TtCan_00059

~SWS_ TtCan 00078

~SWS_TtCan 00112

=== XCP ===

Adapt APl Can_Write() to new signature:

* Figure 5: Xcp on Can Transmit

—Last change on issue 77952 comment 22—

AUTOSAR

BW-C-Level:
Application | Specification | Bus
1 4 1

1.15 Specification Iltem SWS_Can_00200

Trace References:

none

Content:

If default development error detection for the Can module is enabled: if an invalid tran-
sition has been requested, the function Can_SetControllerMode shall raise the error
CAN_E_TRANSITION and return CANE_NOT_OK.

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:

RfC #73570: No "default error" in AUTOSAR
Problem description:

The DET was renamed from development error tracer to default error tracer.

This change was most of the time done automatically and unfortunately re-
named "developement error" to "default error".

"default error" should always be followed by "tracer", otherwise, "development
error" is probably the right term.

This could increase the impact (compared to my selection of impacted docu-
ment, but formally, the configuration parameters *DevErrorDetect are not using the
correct description:

"Switches the Default Error Tracer (Det) detection and naotification..."

The parameter switches on/off the developement error detection. The DET
does not need to be detected and can be present even when the parameter is set to
false.

Agreed solution:

Rename "default error" to "development error" in all impacted documents, but not
in an automated way (Do not change "default error tracer" to "developement error
tracer"!)

https://www.autosar.org/bugzilla/show_bug.cgi?id=73570

AUTOSAR

Blueprint/Example:

- sub chapter is now called "7.x Default errors"

- "[SWS_xxx_yyyyy]

In case default error detection is enabled for the xxxx module: The xxxx module
shall check APl parameters for validity and report detected errors to the DET. ()"

- "[SWS_xxx_yyyyy]

If default error detection is enabled: the function shall check that the service xxx_Init
was previously called. If the check fails, the function shall raise the default error
XXX_E_NOT_INITIALIZED otherwise (if DET is disabled) return E_NOT_OK. ()"

- "In case default errors are enabled,..."

- "module raises the Default error XXX _E_TRANSITION"

- "The DET provides services to store default errors"

The correct text would be:

- sub chapter is called "7.x Development errors"

- "[SWS_xxx_yyyyy]

In case development error detection is enabled for the xxxx module: The xxxx
module shall check API| parameters for validity and report detected development
errors to the DET. ()"

- "[SWS_xxx_yyyyy]

If development error detection is enabled: the function shall check that the service
xxx_Init was previously called. If the check fails, the function shall raise the
development error XXX_E_NOT_INITIALIZED otherwise (if DET is disabled) return
E_NOT_OK. ()"

- "In case development errors are enabled,..."

- "module raises the development error XXX_E_TRANSITION"

- "The DET provides services to store development errors”

Solution for SWS_RTE:

— SWS_RTE —

- Change 4.8 Default errors to 4.8 Development errors

- Change "Errors which can occur at runtime in the RTE are classified as default er-
rors" to "Errors which can occur at runtime in the RTE are classified as development
errors"

- Remove [SWS_Rte_07676]

- Change [SWS_RTE_06611]"If a violation is detected the RTE shall report a default
error to the DET." to "If a violation is detected the RTE shall report a development
error to the DET."

- Change [SWS_Rte_06631]

[SWS_Rte_06631] d The RTE shall use the OS Application Identifier as the Instance

AUTOSAR

Id to enable the developer to identify in which runtime section of the RTE the error
occurs. This Instance ID is even unique across multi cores and so implicitly allows
the development error to be traced to a specific core. ¢(SRS_BSW_00337)

SRS _Libraries:
- In chapter "3 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

SRS_SPALGeneral:

- In chapter "6.1.1.3.1 [SRS_SPAL_00157] ...": Rename "Development Error Tracer"
to "Default Error Tracer"

- In chapter "6.1.1.4.2 [SRS_SPAL_12448] ...": Rename "Development Error Tracer"
to "Default Error Tracer"

SRS _FlashTest:

- In chapter "6.1 Functional Requirements": Rename "Development Error Tracer" to
"Default Error Tracer"

- In chapter "7 References":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS_DefaultErrorTracer"

SWS_MFXLibrary:
- In chapter "2 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

SWS_MemoryAbstractioninterface:

- In chapter "3.1 Input documents":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_ DevelopmentErrorTracer" to "AU-
TOSAR_SWS DefaultErrorTracer"

SWS_FlexRayNetworkManagement:

- In chapter "3.3 Related AUTOSAR documents™:

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS DefaultErrorTracer"

AUTOSAR

SWS_CANStateManager:
- In chapter "3.1 Input documents™: Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_ DefaultErrorTracer”

SWS_PDURouter:
- In chapter "3.1 Input documents™: Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_DefaultErrorTracer"

SWS_EEPROMDriver:
- In chapter "3.1 Input documents™: Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_DefaultErrorTracer"
—Last change on issue 73570 comment 47—
BW-C-Level:

Application | Specification | Bus

1 1 1

e RfC #77952: [Can][Canlf] Incompatible return types of Can and CanTrcv

Problem description:

While CanTrcv only uses Std_ReturnType, Can uses Can_ReturnType in many
places, even when only CAN_OK and CAN_NOT_OK are available.

This leads to complicated code in Canlf, because it needs to implement sepa-
rate checks for return values from CanTrcv and Can and cannot just combine the
results.

Agreed solution:

=== CanDrv ===

Change of SWS_Can_00039 Can_ReturnType:

* type change from enumeration to extra_litaral

* Remove range element CAN_OK

* Remove range element CAN_NOT_OK

* Assign value "0x02" to range element "CAN_BUSY"

* Description: Overlayed return value of Std_ReturnType for CAN driver API
Can_Write().

~SWS_Can_00230 Can_SetControllerMode

https://www.autosar.org/bugzilla/show_bug.cgi?id=77952

AUTOSAR

Syntax: Std_ReturnType Can_SetControllerMode(uint8 Controller,
Can_StateTransitionType Transition)

Return value:

Std_ReturnType

E_OK: request accepted

E_NOT_OK: request not accepted, a development error occurred

~SWS_Can_00360 Can_CheckWakeup

Syntax: Std_ReturnType Can_CheckWakeup(uint8 Controller)
Return value:

Std_ReturnType

E_OK: API call has been accepted

E_NOT_OK: API call has not been accepted

~SWS_ Can_ 00233 Can_Write

Syntax: Std_ReturnType Can_Write(Can_HwHandleType Hth, const
Can_PduType* Pdulnfo)

Return value:

Std_ReturnType

E_OK: Write command has been accepted

E_NOT_OK: development error occurred

CAN_BUSY: No TX hardware buffer available or pre-emptive call of Can_Write that
can’t be implemented re-entrant (see Can_ReturnType)

Rename CAN_OK to E_ OK and CAN_NOT_OK to E_NOT_OK:
~SWS_ Can 00048
~SWS_ Can_00089
7.11.5 Return Values
~SWS Can_00198
~SWS_Can_00199
~SWS_ Can 00200
~SWS Can_00216
~SWS_ Can_00217
~SWS Can_00218
~SWS_CAN_00219
~SWS_CAN_00505
~SWS_CAN_00506
~SWS Can_00212

=== Canlf ===

Adapt APl Can_Write() to new signature:

* Figure 7.10 "Transmission request with multiple CAN Drivers - simplified"
* Figure 9.1 "Transmission request with a single CAN Driver"

AUTOSAR

* Figure 9.2 "Transmission request with multiple CAN Drivers"
* Figure 9.5 "Transmit confirmation with buffering”

* Figure 9.6 "Transmit Cancelation”

* Figure 9.7 "Trigger Transmit Request"

Adapt API Can_SetControllerMode() to new signature:
* Figure 9.11: Start CAN network
* Figure 9.13: BusOff recovery

Figure 9.13: Change typo "Cnange" to "Change"

~SWS_CANIF_00678: If all calls of Can_CheckWakeup() or
CanTrcv_CheckWakeup() return E_NOT_OK to Canlf, then Canlf_CheckWakeup()
shall return E_NOT_OK.

~SWS_CANIF_00720: If at least one function call of Can_CheckWakeup() or
CanTrcv_CheckWakeup() returns E_OK to Canlf, then
Canlf_CheckWakeup() shall return E_OK.

Rename CAN_OK to E_OK and CAN_NOT_OK to E_NOT_OK:
Note between SWS_CANIF 00162 and SWS_CANIF 00319
Table in chapter 9.7 Trigger Transmit Request

Table in chapter 9.11 Start CAN network

=== CanTrcv ===

Adapt API Can_SetControllerMode() to new signature:
* 9.3 De-Initialization (SPI Synchronous)

* 9.4 De-Initialization (SP1 Asynchronous)

=== ECUSM ===

Adapt APl Can_CheckWakeup() to new signature:

* Figure 42 CAN controller wake up by interrupt

* Figure 43 CAN controller or transceiver wake up by polling

=== TTCanlf ===
Adapt APl Can_Write() to new signature:
* Figure 9.1: CAN Interface Time Triggered transmission with Job List

Correct APl Can_TTReceive() which has return void instead of Can_ReturnType
indeed:
* Figure 9.2: CAN Interface Time Triggered reception with Job List

Rename CAN_OK to E_OK and CAN_NOT_OK to E_NOT_OK:

AUTOSAR

~SWS_TtCanlf_00071

=== T1CanDrv ===

Rename CAN_OK to E_ OK and CAN_NOT_OK to E_NOT_OK:
~SWS_ TiCan 00014

~SWS_TtCan_ 00018

~SWS_TtCan_00022

~SWS_TtCan_00026

~SWS_TtCan_00059

~SWS_ TiCan 00078

~SWS_TtCan 00112

=== XCP ===

Adapt APl Can_Write() to new signature:

* Figure 5: Xcp on Can Transmit

—Last change on issue 77952 comment 22—

BW-C-Level:
Application | Specification | Bus
1 4 1

1.16 Specification Iltem SWS_Can_00205

Trace References:
none
Content:
If default development error detection for the Can module is enabled: The function
Can_DisableControllerinterrupts shall raise the error CAN_E_UNINIT if the driver not yet
initialized.
RfCs affecting this spec item between releases 4.3.0 and 4.3.1:
e RfC #73570: No "default error" in AUTOSAR
Problem description:
The DET was renamed from development error tracer to default error tracer.

This change was most of the time done automatically and unfortunately re-
named "developement error" to "default error”.

https://www.autosar.org/bugzilla/show_bug.cgi?id=73570

AUTOSAR

"default error" should always be followed by "tracer", otherwise, "development
error" is probably the right term.

This could increase the impact (compared to my selection of impacted docu-
ment, but formally, the configuration parameters *DevErrorDetect are not using the
correct description:

"Switches the Default Error Tracer (Det) detection and notification..."

The parameter switches on/off the developement error detection. The DET
does not need to be detected and can be present even when the parameter is set to
false.

Agreed solution:

Rename "default error" to "development error" in all impacted documents, but not
in an automated way (Do not change "default error tracer" to "developement error
tracer"!)

Blueprint/Example:

- sub chapter is now called "7.x Default errors"

- "[SWS_xxx_yyyyy]

In case default error detection is enabled for the xxxx module: The xxxx module
shall check API parameters for validity and report detected errors to the DET. ()"

- "[SWS_xxx_yyyyy]

If default error detection is enabled: the function shall check that the service xxx_Init
was previously called. If the check fails, the function shall raise the default error
XXX_E_NOT_INITIALIZED otherwise (if DET is disabled) return E_NOT_OK. ()"

- "In case default errors are enabled,..."

- "module raises the Default error XXX_E_TRANSITION"

- "The DET provides services to store default errors”

The correct text would be:

- sub chapter is called "7.x Development errors"

- "[SWS_xxx_yyyyy]

In case development error detection is enabled for the xxxx module: The xxxx
module shall check API| parameters for validity and report detected development
errors to the DET. ()"

- "[SWS_xxx_yyyyy]

If development error detection is enabled: the function shall check that the service
xxx_Init was previously called. If the check fails, the function shall raise the
development error XXX_E_NOT_INITIALIZED otherwise (if DET is disabled) return
E NOT_OK. ()"

AUTOSAR

- "In case development errors are enabled,..."
- "module raises the development error XXX_E_TRANSITION"
- "The DET provides services to store development errors”

Solution for SWS_RTE:

- SWS_RTE —

- Change 4.8 Default errors to 4.8 Development errors

- Change "Errors which can occur at runtime in the RTE are classified as default er-
rors" to "Errors which can occur at runtime in the RTE are classified as development
errors”

- Remove [SWS_Rte 07676]

- Change [SWS_RTE_06611]"If a violation is detected the RTE shall report a default
error to the DET." to "If a violation is detected the RTE shall report a development
error to the DET."

- Change [SWS_Rte 06631]

[SWS_Rte_06631] d The RTE shall use the OS Application Identifier as the Instance
Id to enable the developer to identify in which runtime section of the RTE the error
occurs. This Instance ID is even unique across multi cores and so implicitly allows
the development error to be traced to a specific core. ¢(SRS_BSW_00337)

SRS _Libraries:
- In chapter "3 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

SRS_SPALGeneral:

- In chapter "6.1.1.3.1 [SRS_SPAL_00157] ...": Rename "Development Error Tracer"
to "Default Error Tracer"

- In chapter "6.1.1.4.2 [SRS_SPAL_12448] ...": Rename "Development Error Tracer"
to "Default Error Tracer"

SRS_FlashTest:

- In chapter "6.1 Functional Requirements": Rename "Development Error Tracer" to
"Default Error Tracer"

- In chapter "7 References":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS_DefaultErrorTracer”

SWS_MFXLibrary:

AUTOSAR

- In chapter "2 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

SWS_MemoryAbstractioninterface:

- In chapter "3.1 Input documents":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS_DefaultErrorTracer”

SWS_FlexRayNetworkManagement:

- In chapter "3.3 Related AUTOSAR documents":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS_DefaultErrorTracer"

SWS_CANStateManager:
- In chapter "3.1 Input documents": Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_ DefaultErrorTracer"”

SWS_PDURouter:
- In chapter "3.1 Input documents™: Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_ DefaultErrorTracer"”

SWS_EEPROMDriver:

- In chapter "3.1 Input documents”: Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_DefaultErrorTracer"
—Last change on issue 73570 comment 47—

BW-C-Level:

Application | Specification | Bus
1 1 1

1.17 Specification Iltem SWS_Can_00206

Trace References:

none

AUTOSAR

Content:

If default development error detection for the Can module is enabled: The function
Can_DisableControllerinterrupts shall raise the error CAN_E_PARAM_CONTROLLER if
the parameter Controller is out of range.

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:
e RfC #73570: No "default error" in AUTOSAR
Problem description:

The DET was renamed from development error tracer to default error tracer.

This change was most of the time done automatically and unfortunately re-
named "developement error" to "default error”.

"default error" should always be followed by "tracer", otherwise, "development
error" is probably the right term.

This could increase the impact (compared to my selection of impacted docu-
ment, but formally, the configuration parameters *DevErrorDetect are not using the
correct description:

"Switches the Default Error Tracer (Det) detection and notification..."

The parameter switches on/off the developement error detection. The DET
does not need to be detected and can be present even when the parameter is set to
false.

Agreed solution:

Rename "default error" to "development error" in all impacted documents, but not
in an automated way (Do not change "default error tracer" to "developement error
tracer"!)

Blueprint/Example:

- sub chapter is now called "7.x Default errors"

- "[SWS_xxx_yyyyy]

In case default error detection is enabled for the xxxx module: The xxxx module
shall check API parameters for validity and report detected errors to the DET. ()"

- "[SWS_xxx_yyyyy]

If default error detection is enabled: the function shall check that the service xxx_Init
was previously called. If the check fails, the function shall raise the default error
XXX_E_NOT_INITIALIZED otherwise (if DET is disabled) return E_NOT_OK. ()"

- "In case default errors are enabled,..."

https://www.autosar.org/bugzilla/show_bug.cgi?id=73570

AUTOSAR

- "module raises the Default error XXX_E_TRANSITION"
- "The DET provides services to store default errors”

The correct text would be:

- sub chapter is called "7.x Development errors"

- "[SWS_xxx_yyyyy]

In case development error detection is enabled for the xxxx module: The xxxx
module shall check APl parameters for validity and report detected development
errors to the DET. ()"

- "[SWS_xxx_yyyyy]

If development error detection is enabled: the function shall check that the service
xxx_Init was previously called. If the check fails, the function shall raise the
development error XXX_E_NOT_INITIALIZED otherwise (if DET is disabled) return
E_NOT_OK. ()"

- "In case development errors are enabled,..."

- "module raises the development error XXX_E_TRANSITION"

- "The DET provides services to store development errors”

Solution for SWS_RTE:

— SWS_RTE —

- Change 4.8 Default errors to 4.8 Development errors

- Change "Errors which can occur at runtime in the RTE are classified as default er-
rors" to "Errors which can occur at runtime in the RTE are classified as development
errors”

- Remove [SWS_Rte 07676]

- Change [SWS_RTE_06611]"If a violation is detected the RTE shall report a default
error to the DET." to "If a violation is detected the RTE shall report a development
error to the DET."

- Change [SWS_Rte 06631]

[SWS_Rte_06631] d The RTE shall use the OS Application Identifier as the Instance
Id to enable the developer to identify in which runtime section of the RTE the error
occurs. This Instance ID is even unique across multi cores and so implicitly allows
the development error to be traced to a specific core. c(SRS_BSW_00337)

SRS _Libraries:
- In chapter "3 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

SRS_SPALGeneral:

AUTOSAR

- In chapter "6.1.1.3.1 [SRS_SPAL_00157] ...": Rename "Development Error Tracer"
to "Default Error Tracer"
- In chapter "6.1.1.4.2 [SRS_SPAL_12448] ...": Rename "Development Error Tracer"
to "Default Error Tracer"

SRS_FlashTest:

- In chapter "6.1 Functional Requirements": Rename "Development Error Tracer" to
"Default Error Tracer"

- In chapter "7 References":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS_DefaultErrorTracer"

SWS_MFXLibrary:
- In chapter "2 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

SWS_MemoryAbstractionInterface:

- In chapter "3.1 Input documents":

Rename "Development Error Tracer" to "Default Error Tracer"”

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS_DefaultErrorTracer”

SWS_FlexRayNetworkManagement:

- In chapter "3.3 Related AUTOSAR documents™:

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS_DefaultErrorTracer"

SWS_CANStateManager:
- In chapter "3.1 Input documents": Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_ DefaultErrorTracer"”

SWS_PDURouter:
- In chapter "3.1 Input documents": Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_ DefaultErrorTracer"”

AUTOSAR

SWS_EEPROMDiriver:

- In chapter "3.1 Input documents": Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_DefaultErrorTracer”
—Last change on issue 73570 comment 47—

BW-C-Level:

Application | Specification | Bus
1 1 1

1.18 Specification Iltem SWS_Can_00209

Trace References:
none
Content:

If default development error detection for the Can module is enabled: The function
Can_EnableControllerinterrupts shall raise the error CAN_E_UNINIT if the driver not yet
initialized.

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:
e RfC #73570: No "default error" in AUTOSAR
Problem description:
The DET was renamed from development error tracer to default error tracer.

This change was most of the time done automatically and unfortunately re-
named "developement error" to "default error".

"default error" should always be followed by "tracer", otherwise, "development
error" is probably the right term.

This could increase the impact (compared to my selection of impacted docu-
ment, but formally, the configuration parameters *DevErrorDetect are not using the
correct description:

"Switches the Default Error Tracer (Det) detection and notification..."

The parameter switches on/off the developement error detection. The DET
does not need to be detected and can be present even when the parameter is set to
false.

https://www.autosar.org/bugzilla/show_bug.cgi?id=73570

AUTOSAR

Agreed solution:

Rename "default error" to "development error" in all impacted documents, but not
in an automated way (Do not change "default error tracer" to "developement error
tracer"!)

Blueprint/Example:

- sub chapter is now called "7.x Default errors"

- "[SWS_xxx_yyyyy]

In case default error detection is enabled for the xxxx module: The xxxx module
shall check APl parameters for validity and report detected errors to the DET. ()"

- "[SWS_xxx_yyyyy]

If default error detection is enabled: the function shall check that the service xxx_Init
was previously called. If the check fails, the function shall raise the default error
XXX_E_NOT_INITIALIZED otherwise (if DET is disabled) return E_NOT_OK. ()"

- "In case default errors are enabled,..."

- "module raises the Default error XXX _E_TRANSITION"

- "The DET provides services to store default errors"

The correct text would be:

- sub chapter is called "7.x Development errors"

- "[SWS_xxx_yyyyy]

In case development error detection is enabled for the xxxx module: The xxxx
module shall check API| parameters for validity and report detected development
errors to the DET. ()"

- "[SWS_xxx_yyyyy]

If development error detection is enabled: the function shall check that the service
xxx_Init was previously called. If the check fails, the function shall raise the
development error XXX_E_NOT_INITIALIZED otherwise (if DET is disabled) return
E_NOT_OK. ()"

- "In case development errors are enabled,..."

- "module raises the development error XXX_E_TRANSITION"

- "The DET provides services to store development errors”

Solution for SWS_RTE:

- SWS_RTE —

- Change 4.8 Default errors to 4.8 Development errors

- Change "Errors which can occur at runtime in the RTE are classified as default er-
rors" to "Errors which can occur at runtime in the RTE are classified as development
errors”

- Remove [SWS_Rte 07676]

AUTOSAR

- Change [SWS_RTE_06611]"If a violation is detected the RTE shall report a default
error to the DET." to "If a violation is detected the RTE shall report a development
error to the DET."

- Change [SWS_Rte 06631]

[SWS_Rte_06631] d The RTE shall use the OS Application Identifier as the Instance
Id to enable the developer to identify in which runtime section of the RTE the error
occurs. This Instance ID is even unique across multi cores and so implicitly allows
the development error to be traced to a specific core. ¢(SRS_BSW_00337)

SRS _Libraries:
- In chapter "3 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

SRS_SPALGeneral:

- In chapter "6.1.1.3.1 [SRS_SPAL_00157] ...": Rename "Development Error Tracer"
to "Default Error Tracer"

- In chapter "6.1.1.4.2 [SRS_SPAL_12448] ...": Rename "Development Error Tracer"
to "Default Error Tracer"

SRS _FlashTest:

- In chapter "6.1 Functional Requirements": Rename "Development Error Tracer" to
"Default Error Tracer"

- In chapter "7 References":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS_DefaultErrorTracer"

SWS_MFXLibrary:
- In chapter "2 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

SWS_MemoryAbstractionInterface:

- In chapter "3.1 Input documents":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS DefaultErrorTracer"

AUTOSAR

SWS_FlexRayNetworkManagement:

- In chapter "3.3 Related AUTOSAR documents":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_ DevelopmentErrorTracer" to "AU-
TOSAR_SWS DefaultErrorTracer"

SWS_CANStateManager:
- In chapter "3.1 Input documents™: Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_DefaultErrorTracer"

SWS_PDURouter:
- In chapter "3.1 Input documents™: Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_DefaultErrorTracer"

SWS_EEPROMDriver:

- In chapter "3.1 Input documents": Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_DefaultErrorTracer"”
—Last change on issue 73570 comment 47—

BW-C-Level:

Application | Specification | Bus
1 1 1

1.19 Specification Item SWS_Can_00210

Trace References:
none
Content:

If default development error detection for the Can module is enabled: The function
Can_EnableControllerinterrupts shall raise the error CAN_E_PARAM_CONTROLLER if
the parameter Controller is out of range.

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:
e RfC #73570: No "default error" in AUTOSAR

Problem description:

https://www.autosar.org/bugzilla/show_bug.cgi?id=73570

AUTOSAR

The DET was renamed from development error tracer to default error tracer.

This change was most of the time done automatically and unfortunately re-
named "developement error" to "default error”.

"default error" should always be followed by "tracer", otherwise, "development
error" is probably the right term.

This could increase the impact (compared to my selection of impacted docu-
ment, but formally, the configuration parameters *DevErrorDetect are not using the
correct description:

"Switches the Default Error Tracer (Det) detection and notification..."

The parameter switches on/off the developement error detection. The DET
does not need to be detected and can be present even when the parameter is set to
false.

Agreed solution:

Rename "default error" to "development error" in all impacted documents, but not
in an automated way (Do not change "default error tracer" to "developement error
tracer"!)

Blueprint/Example:

- sub chapter is now called "7.x Default errors"

- "[SWS_xxx_yyyyy]

In case default error detection is enabled for the xxxx module: The xxxx module
shall check API parameters for validity and report detected errors to the DET. ()"

- "[SWS_xxx_yyyyy]

If default error detection is enabled: the function shall check that the service xxx_Init
was previously called. If the check fails, the function shall raise the default error
XXX_E_NOT_INITIALIZED otherwise (if DET is disabled) return E_NOT_OK. ()"

- "In case default errors are enabled,..."

- "module raises the Default error XXX_E_TRANSITION"

- "The DET provides services to store default errors”

The correct text would be:

- sub chapter is called "7.x Development errors"

- "[SWS_xxx_yyyyy]

In case development error detection is enabled for the xxxx module: The xxxx
module shall check API parameters for validity and report detected development
errors to the DET. ()"

AUTOSAR

- "[SWS_xxx_yyyyy]

If development error detection is enabled: the function shall check that the service
xxx_Init was previously called. If the check fails, the function shall raise the
development error XXX_E_NOT_INITIALIZED otherwise (if DET is disabled) return
E_NOT_OK. ()"

- "In case development errors are enabled,..."

- "module raises the development error XXX_E_TRANSITION"

- "The DET provides services to store development errors”

Solution for SWS_RTE:

- SWS_RTE —

- Change 4.8 Default errors to 4.8 Development errors

- Change "Errors which can occur at runtime in the RTE are classified as default er-
rors" to "Errors which can occur at runtime in the RTE are classified as development
errors”

- Remove [SWS_Rte 07676]

- Change [SWS_RTE_06611]"If a violation is detected the RTE shall report a default
error to the DET." to "If a violation is detected the RTE shall report a development
error to the DET."

- Change [SWS_Rte 06631]

[SWS_Rte_06631] d The RTE shall use the OS Application Identifier as the Instance
Id to enable the developer to identify in which runtime section of the RTE the error
occurs. This Instance ID is even unique across multi cores and so implicitly allows
the development error to be traced to a specific core. ¢(SRS_BSW_00337)

SRS _Libraries:
- In chapter "3 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

SRS_SPALGeneral:

- In chapter "6.1.1.3.1 [SRS_SPAL_00157] ...": Rename "Development Error Tracer"
to "Default Error Tracer"

- In chapter "6.1.1.4.2 [SRS_SPAL_12448] ...": Rename "Development Error Tracer"
to "Default Error Tracer"

SRS _FlashTest:

- In chapter "6.1 Functional Requirements": Rename "Development Error Tracer" to
"Default Error Tracer"

- In chapter "7 References":

Rename "Development Error Tracer" to "Default Error Tracer"

AUTOSAR

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS DefaultErrorTracer"

SWS_MFXLibrary:
- In chapter "2 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

SWS_MemoryAbstractioninterface:

- In chapter "3.1 Input documents":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS_DefaultErrorTracer”

SWS_FlexRayNetworkManagement:

- In chapter "3.3 Related AUTOSAR documents":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS DefaultErrorTracer"

SWS_CANStateManager:
- In chapter "3.1 Input documents™: Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_ DefaultErrorTracer”

SWS_ PDURouter:
- In chapter "3.1 Input documents™: Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_DefaultErrorTracer"

SWS_EEPROMDriver:

- In chapter "3.1 Input documents": Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_ DefaultErrorTracer"”
—Last change on issue 73570 comment 47—

BW-C-Level:

Application | Specification | Bus
1 1 1

AUTOSAR

1.20 Specification ltem SWS_Can_00212

Trace References:
SRS _Can_01049
Content:

The function Can_Write shall perform following actions if the hardware transmit object is
free:

e The mutex for that HTH is set to 'signaled’

e The ID, Data Length and SDU are put in a format appropriate for the hardware (if
necessary) and copied in the appropriate hardware registers/buffers.

e All necessary control operations to initiate the transmit are done
e The mutex for that HTH is released
e The function returns with CANE_OK

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:
e RfC #77952: [Can][Canlf] Incompatible return types of Can and CanTrcv
Problem description:

While CanTrcv only uses Std_ReturnType, Can uses Can_ReturnType in many
places, even when only CAN_OK and CAN_NOT_OK are available.

This leads to complicated code in Canlf, because it needs to implement sepa-
rate checks for return values from CanTrcv and Can and cannot just combine the
results.

Agreed solution:

=== CanDrv ===

Change of SWS_Can_00039 Can_ReturnType:

* type change from enumeration to extra_litaral

* Remove range element CAN_OK

* Remove range element CAN_NOT_OK

* Assign value "0x02" to range element "CAN_BUSY"

* Description: Overlayed return value of Std_ReturnType for CAN driver API
Can_Write().

~SWS_Can_00230 Can_SetControllerMode

https://www.autosar.org/bugzilla/show_bug.cgi?id=77952

AUTOSAR

Syntax: Std_ReturnType Can_SetControllerMode(uint8 Controller,
Can_StateTransitionType Transition)

Return value:

Std_ReturnType

E_OK: request accepted

E_NOT_OK: request not accepted, a development error occurred

~SWS_Can_00360 Can_CheckWakeup

Syntax: Std_ReturnType Can_CheckWakeup(uint8 Controller)
Return value:

Std_ReturnType

E_OK: API call has been accepted

E_NOT_OK: API call has not been accepted

~SWS_ Can_ 00233 Can_Write

Syntax: Std_ReturnType Can_Write(Can_HwHandleType Hth, const
Can_PduType* Pdulnfo)

Return value:

Std_ReturnType

E_OK: Write command has been accepted

E_NOT_OK: development error occurred

CAN_BUSY: No TX hardware buffer available or pre-emptive call of Can_Write that
can’t be implemented re-entrant (see Can_ReturnType)

Rename CAN_OK to E_ OK and CAN_NOT_OK to E_NOT_OK:
~SWS_ Can 00048
~SWS_ Can_00089
7.11.5 Return Values
~SWS Can_00198
~SWS_Can_00199
~SWS_ Can 00200
~SWS Can_00216
~SWS_ Can_00217
~SWS Can_00218
~SWS_CAN_00219
~SWS_CAN_00505
~SWS_CAN_00506
~SWS Can_00212

=== Canlf ===

Adapt APl Can_Write() to new signature:

* Figure 7.10 "Transmission request with multiple CAN Drivers - simplified"
* Figure 9.1 "Transmission request with a single CAN Driver"

AUTOSAR

* Figure 9.2 "Transmission request with multiple CAN Drivers"
* Figure 9.5 "Transmit confirmation with buffering”

* Figure 9.6 "Transmit Cancelation”

* Figure 9.7 "Trigger Transmit Request"

Adapt API Can_SetControllerMode() to new signature:
* Figure 9.11: Start CAN network
* Figure 9.13: BusOff recovery

Figure 9.13: Change typo "Cnange" to "Change"

~SWS_CANIF_00678: If all calls of Can_CheckWakeup() or
CanTrcv_CheckWakeup() return E_NOT_OK to Canlf, then Canlf_CheckWakeup()
shall return E_NOT_OK.

~SWS_CANIF_00720: If at least one function call of Can_CheckWakeup() or
CanTrcv_CheckWakeup() returns E_OK to Canlf, then
Canlf_CheckWakeup() shall return E_OK.

Rename CAN_OK to E_OK and CAN_NOT_OK to E_NOT_OK:
Note between SWS_CANIF 00162 and SWS_CANIF 00319
Table in chapter 9.7 Trigger Transmit Request

Table in chapter 9.11 Start CAN network

=== CanTrcv ===

Adapt API Can_SetControllerMode() to new signature:
* 9.3 De-Initialization (SPI Synchronous)

* 9.4 De-Initialization (SP1 Asynchronous)

=== ECUSM ===

Adapt APl Can_CheckWakeup() to new signature:

* Figure 42 CAN controller wake up by interrupt

* Figure 43 CAN controller or transceiver wake up by polling

=== TTCanlf ===
Adapt APl Can_Write() to new signature:
* Figure 9.1: CAN Interface Time Triggered transmission with Job List

Correct APl Can_TTReceive() which has return void instead of Can_ReturnType
indeed:
* Figure 9.2: CAN Interface Time Triggered reception with Job List

Rename CAN_OK to E_OK and CAN_NOT_OK to E_NOT_OK:

AUTOSAR

~SWS_TtCanlf_00071

=== T1CanDrv ===

Rename CAN_OK to E_ OK and CAN_NOT_OK to E_NOT_OK:
~SWS_ TiCan 00014

~SWS_TtCan_ 00018

~SWS_TtCan_00022

~SWS_TtCan_00026

~SWS_TtCan_00059

~SWS_ TiCan 00078

~SWS_TtCan 00112

=== XCP ===

Adapt APl Can_Write() to new signature:

* Figure 5: Xcp on Can Transmit

—Last change on issue 77952 comment 22—

BW-C-Level:
Application | Specification | Bus
1 4 1

1.21 Specification Iltem SWS_Can_00216

Trace References:
none
Content:

If default development error detection for the Can module is enabled: The function
Can_Write shall raise the error CAN_E_UNINIT and shall return CANE_NOT_OK if the
driver is not yet initialized.

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:
e RfC #73570: No "default error" in AUTOSAR
Problem description:

The DET was renamed from development error tracer to default error tracer.

This change was most of the time done automatically and unfortunately re-
named "developement error" to "default error”.

https://www.autosar.org/bugzilla/show_bug.cgi?id=73570

AUTOSAR

"default error" should always be followed by "tracer", otherwise, "development
error" is probably the right term.

This could increase the impact (compared to my selection of impacted docu-
ment, but formally, the configuration parameters *DevErrorDetect are not using the
correct description:

"Switches the Default Error Tracer (Det) detection and notification..."

The parameter switches on/off the developement error detection. The DET
does not need to be detected and can be present even when the parameter is set to
false.

Agreed solution:

Rename "default error" to "development error" in all impacted documents, but not
in an automated way (Do not change "default error tracer" to "developement error
tracer"!)

Blueprint/Example:

- sub chapter is now called "7.x Default errors"

- "[SWS_xxx_yyyyy]

In case default error detection is enabled for the xxxx module: The xxxx module
shall check API parameters for validity and report detected errors to the DET. ()"

- "[SWS_xxx_yyyyy]

If default error detection is enabled: the function shall check that the service xxx_Init
was previously called. If the check fails, the function shall raise the default error
XXX_E_NOT_INITIALIZED otherwise (if DET is disabled) return E_NOT_OK. ()"

- "In case default errors are enabled,..."

- "module raises the Default error XXX_E_TRANSITION"

- "The DET provides services to store default errors”

The correct text would be:

- sub chapter is called "7.x Development errors"

- "[SWS_xxx_yyyyy]

In case development error detection is enabled for the xxxx module: The xxxx
module shall check API| parameters for validity and report detected development
errors to the DET. ()"

- "[SWS_xxx_yyyyy]

If development error detection is enabled: the function shall check that the service
xxx_Init was previously called. If the check fails, the function shall raise the
development error XXX_E_NOT_INITIALIZED otherwise (if DET is disabled) return
E NOT_OK. ()"

AUTOSAR

- "In case development errors are enabled,..."
- "module raises the development error XXX_E_TRANSITION"
- "The DET provides services to store development errors”

Solution for SWS_RTE:

- SWS_RTE —

- Change 4.8 Default errors to 4.8 Development errors

- Change "Errors which can occur at runtime in the RTE are classified as default er-
rors" to "Errors which can occur at runtime in the RTE are classified as development
errors”

- Remove [SWS_Rte 07676]

- Change [SWS_RTE_06611]"If a violation is detected the RTE shall report a default
error to the DET." to "If a violation is detected the RTE shall report a development
error to the DET."

- Change [SWS_Rte 06631]

[SWS_Rte_06631] d The RTE shall use the OS Application Identifier as the Instance
Id to enable the developer to identify in which runtime section of the RTE the error
occurs. This Instance ID is even unique across multi cores and so implicitly allows
the development error to be traced to a specific core. ¢(SRS_BSW_00337)

SRS _Libraries:
- In chapter "3 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

SRS_SPALGeneral:

- In chapter "6.1.1.3.1 [SRS_SPAL_00157] ...": Rename "Development Error Tracer"
to "Default Error Tracer"

- In chapter "6.1.1.4.2 [SRS_SPAL_12448] ...": Rename "Development Error Tracer"
to "Default Error Tracer"

SRS_FlashTest:

- In chapter "6.1 Functional Requirements": Rename "Development Error Tracer" to
"Default Error Tracer"

- In chapter "7 References":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS_DefaultErrorTracer”

SWS_MFXLibrary:

AUTOSAR

- In chapter "2 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

SWS_MemoryAbstractioninterface:

- In chapter "3.1 Input documents":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS_DefaultErrorTracer”

SWS_FlexRayNetworkManagement:

- In chapter "3.3 Related AUTOSAR documents":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS_DefaultErrorTracer"

SWS_CANStateManager:
- In chapter "3.1 Input documents": Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_ DefaultErrorTracer"”

SWS_PDURouter:
- In chapter "3.1 Input documents™: Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_ DefaultErrorTracer"”

SWS_EEPROMDriver:
- In chapter "3.1 Input documents™: Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_DefaultErrorTracer"
—Last change on issue 73570 comment 47—
BW-C-Level:

Application | Specification | Bus

1 1 1

e RfC #77952: [Can][Canlf] Incompatible return types of Can and CanTrcv

Problem description:

While CanTrcv only uses Std_ReturnType, Can uses Can_ReturnType in many
places, even when only CAN_OK and CAN_NOT_OK are available.

https://www.autosar.org/bugzilla/show_bug.cgi?id=77952

AUTOSAR

This leads to complicated code in Canlf, because it needs to implement sepa-
rate checks for return values from CanTrcv and Can and cannot just combine the
results.

Agreed solution:

=== CanDrv ===

Change of SWS_Can_00039 Can_ReturnType:

* type change from enumeration to extra_litaral

* Remove range element CAN_OK

* Remove range element CAN_NOT_OK

* Assign value "0x02" to range element "CAN_BUSY"

* Description: Overlayed return value of Std_ReturnType for CAN driver API
Can_Write().

~SWS Can_00230 Can_SetControllerMode

Syntax: Std_ReturnType Can_SetControllerMode(uint8 Controller,
Can_StateTransitionType Transition)

Return value:

Std_ReturnType

E_OK: request accepted

E_NOT_OK: request not accepted, a development error occurred

~SWS_Can_00360 Can_CheckWakeup

Syntax: Std_ReturnType Can_CheckWakeup(uint8 Controller)
Return value:

Std_ReturnType

E_OK: API call has been accepted

E_NOT_OK: API call has not been accepted

~SWS Can_00233 Can_Write

Syntax: Std_ReturnType Can_Write(Can_HwHandleType Hth, const
Can_PduType* Pdulnfo)

Return value:

Std_ReturnType

E_OK: Write command has been accepted

E_NOT_OK: development error occurred

CAN_BUSY: No TX hardware buffer available or pre-emptive call of Can_Write that
can’t be implemented re-entrant (see Can_ReturnType)

Rename CAN_OK to E_OK and CAN_NOT_OK to E_NOT_OK:
~SWS Can_00048
~SWS_Can_00089

AUTOSAR

7.11.5 Return Values
~SWS Can_00198
~SWS Can_00199
~SWS_Can_00200
~SWS Can 00216
~SWS_Can_00217
~SWS Can_00218
~SWS_CAN_00219
~SWS_CAN_00505
~SWS_CAN_00506
~SWS_ Can_00212

=== Canlf ===

Adapt APl Can_Write() to new signature:

* Figure 7.10 "Transmission request with multiple CAN Drivers - simplified"
* Figure 9.1 "Transmission request with a single CAN Driver"

* Figure 9.2 "Transmission request with multiple CAN Drivers"

* Figure 9.5 "Transmit confirmation with buffering"

* Figure 9.6 "Transmit Cancelation”

* Figure 9.7 "Trigger Transmit Request"

Adapt API Can_SetControllerMode() to new signature:
* Figure 9.11: Start CAN network
* Figure 9.13: BusOff recovery

Figure 9.13: Change typo "Cnange" to "Change"

~SWS_CANIF_00678: If all calls of Can_CheckWakeup() or
CanTrcv_CheckWakeup() return E_NOT_OK to Canlf, then Canlf_CheckWakeup()
shall return E_NOT_OK.

~SWS_CANIF_00720: If at least one function call of Can_CheckWakeup() or
CanTrcv_CheckWakeup() returns E_OK to Canlf, then
Canlf_CheckWakeup() shall return E_OK.

Rename CAN_OK to E_OK and CAN_NOT_OK to E_NOT_OK:
Note between SWS_CANIF_00162 and SWS_CANIF_00319
Table in chapter 9.7 Trigger Transmit Request

Table in chapter 9.11 Start CAN network

=== CanTrcv ===
Adapt API Can_SetControllerMode() to new signature:
* 9.3 De-Initialization (SPI Synchronous)

AUTOSAR

* 9.4 De-Initialization (SP1 Asynchronous)

=== ECUSM ===

Adapt APl Can_CheckWakeup() to new signature:

* Figure 42 CAN controller wake up by interrupt

* Figure 43 CAN controller or transceiver wake up by polling

=== TTCanlf ===
Adapt API Can_Write() to new signature:
* Figure 9.1: CAN Interface Time Triggered transmission with Job List

Correct APl Can_TTReceive() which has return void instead of Can_ReturnType
indeed:
* Figure 9.2: CAN Interface Time Triggered reception with Job List

Rename CAN_OK to E_OK and CAN_NOT_OK to E_NOT_OK:
~SWS_TtCanlf_00071

=== T 1CanDrv ===

Rename CAN_OK to E_OK and CAN_NOT_OK to E_NOT_OK:
~SWS TiCan 00014

~SWS_TtCan_00018

~SWS_TtCan_00022

~SWS_TtCan_00026

~SWS_TtCan_00059

~SWS_ TiCan 00078

~SWS_TtCan_00112

=== XCP ===

Adapt API Can_Write() to new signature:

* Figure 5: Xcp on Can Transmit

—Last change on issue 77952 comment 22—

BW-C-Level:
Application | Specification | Bus
1 4 1

1.22 Specification Item SWS_Can_00217

Trace References:

none

AUTOSAR

Content:

If default development error detection for the Can module is enabled: The func-
tion Can_Write shall raise the error CAN_E_PARAM_HANDLE and shall return
CANE_NOT_OK if the parameter Hth is not a configured Hardware Transmit Handle.

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:
e RfC #73570: No "default error" in AUTOSAR
Problem description:

The DET was renamed from development error tracer to default error tracer.

This change was most of the time done automatically and unfortunately re-
named "developement error" to "default error”.

"default error" should always be followed by "tracer", otherwise, "development
error" is probably the right term.

This could increase the impact (compared to my selection of impacted docu-
ment, but formally, the configuration parameters *DevErrorDetect are not using the
correct description:

"Switches the Default Error Tracer (Det) detection and notification..."

The parameter switches on/off the developement error detection. The DET
does not need to be detected and can be present even when the parameter is set to
false.

Agreed solution:

Rename "default error" to "development error" in all impacted documents, but not
in an automated way (Do not change "default error tracer" to "developement error
tracer"!)

Blueprint/Example:

- sub chapter is now called "7.x Default errors"

- "[SWS_xxx_yyyyy]

In case default error detection is enabled for the xxxx module: The xxxx module
shall check API parameters for validity and report detected errors to the DET. ()"

- "[SWS_xxx_yyyyy]

If default error detection is enabled: the function shall check that the service xxx_Init
was previously called. If the check fails, the function shall raise the default error
XXX_E_NOT_INITIALIZED otherwise (if DET is disabled) return E_NOT_OK. ()"

- "In case default errors are enabled,..."

https://www.autosar.org/bugzilla/show_bug.cgi?id=73570

AUTOSAR

- "module raises the Default error XXX_E_TRANSITION"
- "The DET provides services to store default errors”

The correct text would be:

- sub chapter is called "7.x Development errors"

- "[SWS_xxx_yyyyy]

In case development error detection is enabled for the xxxx module: The xxxx
module shall check APl parameters for validity and report detected development
errors to the DET. ()"

- "[SWS_xxx_yyyyy]

If development error detection is enabled: the function shall check that the service
xxx_Init was previously called. If the check fails, the function shall raise the
development error XXX_E_NOT_INITIALIZED otherwise (if DET is disabled) return
E_NOT_OK. ()"

- "In case development errors are enabled,..."

- "module raises the development error XXX_E_TRANSITION"

- "The DET provides services to store development errors”

Solution for SWS_RTE:

— SWS_RTE —

- Change 4.8 Default errors to 4.8 Development errors

- Change "Errors which can occur at runtime in the RTE are classified as default er-
rors" to "Errors which can occur at runtime in the RTE are classified as development
errors”

- Remove [SWS_Rte 07676]

- Change [SWS_RTE_06611]"If a violation is detected the RTE shall report a default
error to the DET." to "If a violation is detected the RTE shall report a development
error to the DET."

- Change [SWS_Rte 06631]

[SWS_Rte_06631] d The RTE shall use the OS Application Identifier as the Instance
Id to enable the developer to identify in which runtime section of the RTE the error
occurs. This Instance ID is even unique across multi cores and so implicitly allows
the development error to be traced to a specific core. c(SRS_BSW_00337)

SRS _Libraries:
- In chapter "3 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

SRS_SPALGeneral:

AUTOSAR

- In chapter "6.1.1.3.1 [SRS_SPAL_00157] ...": Rename "Development Error Tracer"
to "Default Error Tracer"
- In chapter "6.1.1.4.2 [SRS_SPAL_12448] ...": Rename "Development Error Tracer"
to "Default Error Tracer"

SRS_FlashTest:

- In chapter "6.1 Functional Requirements": Rename "Development Error Tracer" to
"Default Error Tracer"

- In chapter "7 References":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS_DefaultErrorTracer"

SWS_MFXLibrary:
- In chapter "2 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

SWS_MemoryAbstractionInterface:

- In chapter "3.1 Input documents":

Rename "Development Error Tracer" to "Default Error Tracer"”

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS_DefaultErrorTracer”

SWS_FlexRayNetworkManagement:

- In chapter "3.3 Related AUTOSAR documents™:

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS_DefaultErrorTracer"

SWS_CANStateManager:
- In chapter "3.1 Input documents": Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_ DefaultErrorTracer"”

SWS_PDURouter:
- In chapter "3.1 Input documents": Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_ DefaultErrorTracer"”

AUTOSAR

SWS_EEPROMDiriver:
- In chapter "3.1 Input documents™: Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_DefaultErrorTracer”
—Last change on issue 73570 comment 47—
BW-C-Level:

Application | Specification | Bus

1 1 1

e RfC #77952: [Can][Canlf] Incompatible return types of Can and CanTrcv

Problem description:

While CanTrcv only uses Std_ReturnType, Can uses Can_ReturnType in many
places, even when only CAN_OK and CAN_NOT_OK are available.

This leads to complicated code in Canlf, because it needs to implement sepa-
rate checks for return values from CanTrcv and Can and cannot just combine the
results.

Agreed solution:

=== CanDrv ===

Change of SWS_Can_00039 Can_ReturnType:

* type change from enumeration to extra_litaral

* Remove range element CAN_OK

* Remove range element CAN_NOT_OK

* Assign value "0x02" to range element "CAN_BUSY"

* Description: Overlayed return value of Std_ReturnType for CAN driver API
Can_Write().

~SWS Can_00230 Can_SetControllerMode

Syntax: Std_ReturnType Can_SetControllerMode(uint8 Controller,
Can_StateTransitionType Transition)

Return value:

Std_ReturnType

E_OK: request accepted

E_NOT_OK: request not accepted, a development error occurred

~SWS_Can_00360 Can_CheckWakeup

Syntax: Std_ReturnType Can_CheckWakeup(uint8 Controller)
Return value:

Std_ReturnType

https://www.autosar.org/bugzilla/show_bug.cgi?id=77952

AUTOSAR

E_OK: API call has been accepted
E_NOT_OK: API call has not been accepted

~SWS_Can_00233 Can_Write

Syntax: Std_ReturnType Can_Write(Can_HwHandleType Hth, const
Can_PduType* Pdulnfo)

Return value:

Std_ReturnType

E_OK: Write command has been accepted

E_NOT_OK: development error occurred

CAN_BUSY: No TX hardware buffer available or pre-emptive call of Can_Write that
can’t be implemented re-entrant (see Can_ReturnType)

Rename CAN_OK to E_OK and CAN_NOT_OK to E_NOT_OK:
~SWS_ Can 00048
~SWS_Can_00089
7.11.5 Return Values
~SWS Can_00198
~SWS Can_00199
~SWS_Can_ 00200
~SWS Can 00216
~SWS_Can_00217
~SWS Can_00218
~SWS_CAN_00219
~SWS_CAN_ 00505
~SWS_ CAN_00506
~SWS_Can_00212

=== Canlf ===

Adapt API Can_Write() to new signature:

* Figure 7.10 "Transmission request with multiple CAN Drivers - simplified"
* Figure 9.1 "Transmission request with a single CAN Driver"

* Figure 9.2 "Transmission request with multiple CAN Drivers"

* Figure 9.5 "Transmit confirmation with buffering”

* Figure 9.6 "Transmit Cancelation”

* Figure 9.7 "Trigger Transmit Request"

Adapt API Can_SetControllerMode() to new signature:
* Figure 9.11: Start CAN network
* Figure 9.13: BusOff recovery

Figure 9.13: Change typo "Cnange" to "Change"

AUTOSAR

~SWS_CANIF_00678: If all calls of Can_CheckWakeup() or
CanTrcv_CheckWakeup() return E_NOT_OK to Canlf, then Canlf_CheckWakeup()
shall return E_NOT_OK.

~SWS_CANIF_00720: If at least one function call of Can_CheckWakeup() or
CanTrcv_CheckWakeup() returns E_OK to Canlf, then
Canlf_CheckWakeup() shall return E_OK.

Rename CAN_OK to E_OK and CAN_NOT_OK to E_NOT_OK:
Note between SWS_CANIF 00162 and SWS CANIF 00319
Table in chapter 9.7 Trigger Transmit Request

Table in chapter 9.11 Start CAN network

=== CanTrcv ===

Adapt API Can_SetControllerMode() to new signature:
* 9.3 De-Initialization (SPI Synchronous)

* 9.4 De-Initialization (SP1 Asynchronous)

=== ECUSM ===

Adapt APl Can_CheckWakeup() to new signature:

* Figure 42 CAN controller wake up by interrupt

* Figure 43 CAN controller or transceiver wake up by polling

=== TT1Canlf ===
Adapt API Can_Write() to new signature:
* Figure 9.1: CAN Interface Time Triggered transmission with Job List

Correct APl Can_TTReceive() which has return void instead of Can_ReturnType
indeed:
* Figure 9.2: CAN Interface Time Triggered reception with Job List

Rename CAN_OK to E_OK and CAN_NOT_OK to E_NOT_OK:
~SWS_TtCanlf_00071

=== T 1CanDrv ===

Rename CAN_OK to E_OK and CAN_NOT_OK to E_NOT_OK:
~SWS_TtCan_00014

~SWS_TtCan_00018

~SWS_TtCan_00022

~SWS_TtCan_00026

~SWS_ TtCan 00059

~SWS_ TitCan 00078

~SWS_TtCan_ 00112

AUTOSAR

=== XCP ===

Adapt API Can_Write() to new signature:

* Figure 5: Xcp on Can Transmit

—Last change on issue 77952 comment 22—

BW-C-Level:
Application | Specification | Bus
1 4 1

1.23 Specification Iltem SWS_Can_00218

Trace References:
SRS _Can_01005
Content:

The function Can_Write shall return CANE_NOT_OK and if default develop-
ment error detection for the CAN module is enabled shall raise the error
CAN_E_PARAM_DATA LENGTH:

e If the length is more than 64 byte.

e If the length is more than 8 byte and the CAN controller is not in CAN FD mode (no
CanControllerFdBaudrateConfig).

e If the length is more than 8 byte and the CAN controller is in CAN FD mode (valid
CanControllerFdBaudrateConfig), but the CAN FD flag in Can_PduType->id is not
set (refer Can_ldType).

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:
e RfC #73570: No "default error" in AUTOSAR
Problem description:

The DET was renamed from development error tracer to default error tracer.

This change was most of the time done automatically and unfortunately re-
named "developement error" to "default error”.

"default error" should always be followed by "tracer", otherwise, "development
error" is probably the right term.

https://www.autosar.org/bugzilla/show_bug.cgi?id=73570

AUTOSAR

This could increase the impact (compared to my selection of impacted docu-
ment, but formally, the configuration parameters *DevErrorDetect are not using the
correct description:

"Switches the Default Error Tracer (Det) detection and notification..."

The parameter switches on/off the developement error detection. The DET
does not need to be detected and can be present even when the parameter is set to
false.

Agreed solution:

Rename "default error" to "development error" in all impacted documents, but not
in an automated way (Do not change "default error tracer" to "developement error
tracer"!)

Blueprint/Example:

- sub chapter is now called "7.x Default errors"

- "[SWS_xxx_yyyyy]

In case default error detection is enabled for the xxxx module: The xxxx module
shall check API parameters for validity and report detected errors to the DET. ()"

- "[SWS_xxx_yyyyy]

If default error detection is enabled: the function shall check that the service xxx_Init
was previously called. If the check fails, the function shall raise the default error
XXX_E_NOT_INITIALIZED otherwise (if DET is disabled) return E_NOT_OK. ()"

- "In case default errors are enabled,..."

- "module raises the Default error XXX_E_TRANSITION"

- "The DET provides services to store default errors”

The correct text would be:

- sub chapter is called "7.x Development errors"

- "[SWS_xxx_yyyyy]

In case development error detection is enabled for the xxxx module: The xxxx
module shall check APl parameters for validity and report detected development
errors to the DET. ()"

- "[SWS_xxx_yyyyy]

If development error detection is enabled: the function shall check that the service
xxxX_Init was previously called. If the check fails, the function shall raise the
development error XXX_E_NOT_INITIALIZED otherwise (if DET is disabled) return
E_NOT_OK. ()"

- "In case development errors are enabled,..."

- "module raises the development error XXX_E_TRANSITION"

- "The DET provides services to store development errors”

AUTOSAR

Solution for SWS_RTE:

— SWS_RTE —

- Change 4.8 Default errors to 4.8 Development errors

- Change "Errors which can occur at runtime in the RTE are classified as default er-
rors" to "Errors which can occur at runtime in the RTE are classified as development
errors”

- Remove [SWS_Rte 07676]

- Change [SWS_RTE_06611]"If a violation is detected the RTE shall report a default
error to the DET." to "If a violation is detected the RTE shall report a development
error to the DET."

- Change [SWS_Rte_06631]

[SWS_Rte_06631] d The RTE shall use the OS Application Identifier as the Instance
Id to enable the developer to identify in which runtime section of the RTE the error
occurs. This Instance ID is even unique across multi cores and so implicitly allows
the development error to be traced to a specific core. ¢(SRS_BSW_00337)

SRS _Libraries:
- In chapter "3 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

SRS _SPALGeneral:

- In chapter "6.1.1.3.1 [SRS_SPAL_00157] ...": Rename "Development Error Tracer"
to "Default Error Tracer"

- In chapter "6.1.1.4.2 [SRS_SPAL_12448] ...": Rename "Development Error Tracer"
to "Default Error Tracer"

SRS FlashTest:

- In chapter "6.1 Functional Requirements": Rename "Development Error Tracer" to
"Default Error Tracer"

- In chapter "7 References":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS_DefaultErrorTracer"

SWS_MFXLibrary:
- In chapter "2 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

AUTOSAR

SWS_MemoryAbstractioninterface:

- In chapter "3.1 Input documents":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS_ DefaultErrorTracer"

SWS_FlexRayNetworkManagement:

- In chapter "3.3 Related AUTOSAR documents":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS_DefaultErrorTracer"

SWS_CANStateManager:
- In chapter "3.1 Input documents™: Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_ DefaultErrorTracer”

SWS_ PDURouter:
- In chapter "3.1 Input documents": Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_ DefaultErrorTracer”

SWS EEPROMDiriver:
- In chapter "3.1 Input documents": Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_ DefaultErrorTracer”
—Last change on issue 73570 comment 47—
BW-C-Level:

Application | Specification | Bus

1 1 1

e RfC #77952: [Can][Canlf] Incompatible return types of Can and CanTrcv

Problem description:

While CanTrcv only uses Std_ReturnType, Can uses Can_ReturnType in many
places, even when only CAN_OK and CAN_NOT_OK are available.

This leads to complicated code in Canlf, because it needs to implement sepa-
rate checks for return values from CanTrcv and Can and cannot just combine the
results.

https://www.autosar.org/bugzilla/show_bug.cgi?id=77952

AUTOSAR

Agreed solution:

=== CanDrv ===

Change of SWS_Can_00039 Can_ReturnType:

* type change from enumeration to extra_litaral

* Remove range element CAN_OK

* Remove range element CAN_NOT_OK

* Assign value "0x02" to range element "CAN_BUSY"

* Description: Overlayed return value of Std_ReturnType for CAN driver API
Can_Write().

~SWS Can_00230 Can_SetControllerMode

Syntax: Std_ReturnType Can_SetControllerMode(uint8 Controller,
Can_StateTransitionType Transition)

Return value:

Std_ReturnType

E_OK: request accepted

E_NOT_OK: request not accepted, a development error occurred

~SWS_Can_00360 Can_CheckWakeup

Syntax: Std_ReturnType Can_CheckWakeup(uint8 Controller)
Return value:

Std_ReturnType

E_OK: API call has been accepted

E_NOT_OK: API call has not been accepted

~SWS Can_00233 Can_Write

Syntax: Std_ReturnType Can_Write(Can_HwHandleType Hth, const
Can_PduType* Pdulnfo)

Return value:

Std_ReturnType

E_OK: Write command has been accepted

E_NOT_OK: development error occurred

CAN_BUSY: No TX hardware buffer available or pre-emptive call of Can_Write that
can’t be implemented re-entrant (see Can_ReturnType)

Rename CAN_OK to E_ OK and CAN_NOT _OKto E_NOT_OK:
~SWS Can_00048

~SWS Can_00089

7.11.5 Return Values

~SWS Can_00198

~SWS Can_00199

AUTOSAR

~SWS_Can_00200
~SWS Can_00216
~SWS_Can_00217
~SWS_Can_00218
~SWS_ CAN_00219
~SWS_ CAN_00505
~SWS_CAN_00506
~SWS_Can_00212

=== Canlf ===

Adapt APl Can_Write() to new signature:

* Figure 7.10 "Transmission request with multiple CAN Drivers - simplified"
* Figure 9.1 "Transmission request with a single CAN Driver"

* Figure 9.2 "Transmission request with multiple CAN Drivers"

* Figure 9.5 "Transmit confirmation with buffering"

* Figure 9.6 "Transmit Cancelation”

* Figure 9.7 "Trigger Transmit Request"

Adapt API Can_SetControllerMode() to new signature:
* Figure 9.11: Start CAN network
* Figure 9.13: BusOff recovery

Figure 9.13: Change typo "Cnange" to "Change"

~SWS_CANIF_00678: If all calls of Can_CheckWakeup() or
CanTrcv_CheckWakeup() return E_NOT_OK to Canlf, then Canlf_CheckWakeup()
shall return E_NOT_OK.

~SWS_CANIF_00720: If at least one function call of Can_CheckWakeup() or
CanTrcv_CheckWakeup() returns E_OK to Canlf, then
Canlf_CheckWakeup() shall return E_OK.

Rename CAN_OK to E_ OK and CAN_NOT_OK to E_NOT_OK:
Note between SWS_CANIF_00162 and SWS_CANIF_00319
Table in chapter 9.7 Trigger Transmit Request

Table in chapter 9.11 Start CAN network

=== CanTrcv ===

Adapt API Can_SetControllerMode() to new signature:
* 9.3 De-Initialization (SPI Synchronous)

* 9.4 De-Initialization (SPI1 Asynchronous)

AUTOSAR

Adapt APl Can_CheckWakeup() to new signature:
* Figure 42 CAN controller wake up by interrupt
* Figure 43 CAN controller or transceiver wake up by polling

=== TTCanlf ===
Adapt APl Can_Write() to new signature:
* Figure 9.1: CAN Interface Time Triggered transmission with Job List

Correct APl Can_TTReceive() which has return void instead of Can_ReturnType
indeed:
* Figure 9.2: CAN Interface Time Triggered reception with Job List

Rename CAN_OK to E_ OK and CAN_NOT_OK to E_NOT_OK:
~SWS_TtCanlf 00071

=== [1CanDrv ===

Rename CAN_OK to E_ OK and CAN_NOT_OKto E_NOT_OK:
~SWS TtCan_00014

~SWS_ TtCan_00018

~SWS_ TtCan 00022

~SWS_ TtCan 00026

~SWS_TtCan_00059

~SWS_TtCan_00078

~SWS TitCan_ 00112

=== XCP ===

Adapt APl Can_Write() to new signature:

* Figure 5: Xcp on Can Transmit

—Last change on issue 77952 comment 22—

BW-C-Level:
Application | Specification | Bus
1 4 1

1.24 Specification ltem SWS_CAN_00219

Trace References:
none

Content:

AUTOSAR

If default development error detection for CanDrv is enabled: Can_Write() shall raise
CAN_E_PARAM_POINTER and shall return CANE_NOT_OK if the parameter Pdulnfo
is a null pointer.

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:
e RfC #73570: No "default error" in AUTOSAR
Problem description:

The DET was renamed from development error tracer to default error tracer.

This change was most of the time done automatically and unfortunately re-
named "developement error" to "default error".

"default error" should always be followed by "tracer", otherwise, "development
error" is probably the right term.

This could increase the impact (compared to my selection of impacted docu-
ment, but formally, the configuration parameters *DevErrorDetect are not using the
correct description:

"Switches the Default Error Tracer (Det) detection and notification..."

The parameter switches on/off the developement error detection. The DET
does not need to be detected and can be present even when the parameter is set to
false.

Agreed solution:

Rename "default error" to "development error" in all impacted documents, but not
in an automated way (Do not change "default error tracer" to "developement error
tracer"!)

Blueprint/Example:

- sub chapter is now called "7.x Default errors"

- "[SWS_xxx_yyyyy]

In case default error detection is enabled for the xxxx module: The xxxx module
shall check APl parameters for validity and report detected errors to the DET. ()"

- "[SWS_xxx_yyyyy]

If default error detection is enabled: the function shall check that the service xxx_Init
was previously called. If the check fails, the function shall raise the default error
XXX_E_NOT_INITIALIZED otherwise (if DET is disabled) return E_NOT_OK. ()"

- "In case default errors are enabled,..."

- "module raises the Default error XXX _E_TRANSITION"

- "The DET provides services to store default errors"

https://www.autosar.org/bugzilla/show_bug.cgi?id=73570

AUTOSAR

The correct text would be:

- sub chapter is called "7.x Development errors"

- "[SWS_xxx_yyyyy]

In case development error detection is enabled for the xxxx module: The xxxx
module shall check APl parameters for validity and report detected development
errors to the DET. ()"

- "[SWS_xxx_yyyyy]

If development error detection is enabled: the function shall check that the service
xxx_Init was previously called. If the check fails, the function shall raise the
development error XXX_E_NOT_INITIALIZED otherwise (if DET is disabled) return
E NOT_OK. ()"

- "In case development errors are enabled,..."

- "module raises the development error XXX_E_TRANSITION"

- "The DET provides services to store development errors”

Solution for SWS_RTE:

- SWS_RTE —

- Change 4.8 Default errors to 4.8 Development errors

- Change "Errors which can occur at runtime in the RTE are classified as default er-
rors" to "Errors which can occur at runtime in the RTE are classified as development
errors"

- Remove [SWS_Rte 07676]

- Change [SWS_RTE_06611]"If a violation is detected the RTE shall report a default
error to the DET." to "If a violation is detected the RTE shall report a development
error to the DET."

- Change [SWS_Rte_06631]

[SWS_Rte 06631]d The RTE shall use the OS Application Identifier as the Instance
Id to enable the developer to identify in which runtime section of the RTE the error
occurs. This Instance ID is even unique across multi cores and so implicitly allows
the development error to be traced to a specific core. ¢(SRS_BSW_00337)

SRS Libraries:
- In chapter "3 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

SRS _SPALGeneral:
- In chapter "6.1.1.3.1 [SRS_SPAL_00157] ...": Rename "Development Error Tracer"
to "Default Error Tracer"

AUTOSAR

- In chapter "6.1.1.4.2 [SRS_SPAL_12448] ...": Rename "Development Error Tracer"
to "Default Error Tracer"

SRS FlashTest:

- In chapter "6.1 Functional Requirements": Rename "Development Error Tracer" to
"Default Error Tracer"

- In chapter "7 References":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS_ DefaultErrorTracer"

SWS_MFXLibrary:
- In chapter "2 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

SWS_MemoryAbstractioninterface:

- In chapter "3.1 Input documents":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS DefaultErrorTracer"

SWS_FlexRayNetworkManagement:

- In chapter "3.3 Related AUTOSAR documents™:

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_ DevelopmentErrorTracer" to "AU-
TOSAR_SWS_DefaultErrorTracer”

SWS_CANStateManager:
- In chapter "3.1 Input documents™: Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_DefaultErrorTracer”

SWS_ PDURouter:
- In chapter "3.1 Input documents™: Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_DefaultErrorTracer”

SWS_EEPROMDriver:

AUTOSAR

- In chapter "3.1 Input documents": Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_ DefaultErrorTracer”
—Last change on issue 73570 comment 47—

BW-C-Level:

Application | Specification | Bus
1 1 1

e RfC #77952: [Can][Canlf] Incompatible return types of Can and CanTrcv
Problem description:

While CanTrcv only uses Std_ReturnType, Can uses Can_ReturnType in many
places, even when only CAN_OK and CAN_NOT_OK are available.

This leads to complicated code in Canlf, because it needs to implement sepa-
rate checks for return values from CanTrcv and Can and cannot just combine the
results.

Agreed solution:

=== CanDrv ===

Change of SWS_Can_00039 Can_ReturnType:

* type change from enumeration to extra_litaral

* Remove range element CAN_OK

* Remove range element CAN_NOT_OK

* Assign value "0x02" to range element "CAN_BUSY"

* Description: Overlayed return value of Std_ReturnType for CAN driver API
Can_Write().

~SWS_Can_00230 Can_SetControllerMode

Syntax: Std_ReturnType Can_SetControllerMode(uint8 Controller,
Can_StateTransitionType Transition)

Return value:

Std_ReturnType

E_OK: request accepted

E_NOT_OK: request not accepted, a development error occurred

~SWS_Can_00360 Can_CheckWakeup

Syntax: Std_ReturnType Can_CheckWakeup(uint8 Controller)
Return value:

Std_ReturnType

E_OK: API call has been accepted

E_NOT_OK: API call has not been accepted

https://www.autosar.org/bugzilla/show_bug.cgi?id=77952

AUTOSAR

~SWS Can_00233 Can_Write

Syntax: Std_ReturnType Can_Write(Can_HwHandleType Hth, const
Can_PduType* Pdulnfo)

Return value:

Std_ReturnType

E_OK: Write command has been accepted

E_NOT_OK: development error occurred

CAN_BUSY: No TX hardware buffer available or pre-emptive call of Can_Write that
can’t be implemented re-entrant (see Can_ReturnType)

Rename CAN_OK to E_ OK and CAN_NOT_OK to E_NOT_OK:
~SWS_ Can_00048
~SWS Can_00089
7.11.5 Return Values
~SWS Can_00198
~SWS Can_00199
~SWS_ Can_00200
~SWS Can_00216
~SWS_ Can 00217
~SWS Can 00218
~SWS_CAN_00219
~SWS_CAN_00505
~SWS_CAN_00506
~SWS_ Can_00212

=== Canlf ===

Adapt API Can_Write() to new signature:

* Figure 7.10 "Transmission request with multiple CAN Drivers - simplified"
* Figure 9.1 "Transmission request with a single CAN Driver"

* Figure 9.2 "Transmission request with multiple CAN Drivers"

* Figure 9.5 "Transmit confirmation with buffering"

* Figure 9.6 "Transmit Cancelation”

* Figure 9.7 "Trigger Transmit Request"

Adapt API Can_SetControllerMode() to new signature:
* Figure 9.11: Start CAN network

* Figure 9.13: BusOff recovery

Figure 9.13: Change typo "Cnange" to "Change"

~SWS_CANIF_00678: If all calls of Can_CheckWakeup() or
CanTrcv_CheckWakeup() return E_NOT_OK to Canlf, then Canlf_CheckWakeup()

AUTOSAR

shall return E_NOT_OK.

~SWS_CANIF_00720: If at least one function call of Can_CheckWakeup() or
CanTrcv_CheckWakeup() returns E_OK to Canlf, then
Canlf_CheckWakeup() shall return E_OK.

Rename CAN_OK to E_OK and CAN_NOT_OK to E_NOT_OK:
Note between SWS_CANIF_00162 and SWS_CANIF_00319
Table in chapter 9.7 Trigger Transmit Request

Table in chapter 9.11 Start CAN network

=== CanTrcv ===

Adapt APl Can_SetControllerMode() to new signature:
* 9.3 De-Initialization (SPI Synchronous)

* 9.4 De-Initialization (SPI1 Asynchronous)

=== ECUSM ===

Adapt API Can_CheckWakeup() to new signature:

* Figure 42 CAN controller wake up by interrupt

* Figure 43 CAN controller or transceiver wake up by polling

=== TTCanlf ===
Adapt API Can_Write() to new signature:
* Figure 9.1: CAN Interface Time Triggered transmission with Job List

Correct APl Can_TTReceive() which has return void instead of Can_ReturnType
indeed:
* Figure 9.2: CAN Interface Time Triggered reception with Job List

Rename CAN_OK to E_OK and CAN_NOT_OK to E_NOT_OK:
~SWS_TtCanlf 00071

=== TTCanDrv ===

Rename CAN_OK to E_ OK and CAN_NOT_OK to E_NOT_OK:
~SWS_TtCan_00014

~SWS_ TtCan 00018

~SWS_TtCan_00022

~SWS_TtCan_00026

~SWS_TtCan_00059

~SWS_TtCan_00078

~SWS_ TitCan 00112

=== XCP ===

AUTOSAR

Adapt APl Can_Write() to new signature:

* Figure 5: Xcp on Can Transmit

—Last change on issue 77952 comment 22—

BW-C-Level:
Application | Specification | Bus
1 4 1

1.25 Specification Item SWS_Can_00222

Trace References:
none

Content:

Module

Imported Type

Can_GeneralTypes

Can_ControllerStateType

Can_ErrorStateType

Can_HwHandleType

Can_HwType

Can_IdType

Can_PduType

Can_ReturnType

Can_StateTransitionType

ComStack_Types

IcomConfigldType

lcomSwitch_ErrorType

PduldType

PdulnfoType

EcuM EcuM_WakeupSourceType
Icu Icu_ChannelType
Os CounterType
StatusType
TickRefType
Std_Types Std_ReturnType

Std_VersionInfoType

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:

e RfC #77329:

[Can] Removed type Can_StateTransitionType still

used

Can_SetControllerMode function definition

https://www.autosar.org/bugzilla/show_bug.cgi?id=77329

AUTOSAR

Problem description:

With CP_R4.3.0 the type definition for Can_StateTransitionType has been removed
from SWS_CANDiriver.

In the function definition of Can_SetControllerMode (SWS_Can_00230) this type is
still used in the signature syntax.

Within mentioned function calls (e.g. "Can_SetControllerMode(CAN_CS_STARTED)"
in SWS_Can_00261) the enumeration values of type Can_ControllerStateType are
used.

It shall be clarified if the type of the second function parameter in the syntax
entry of SWS_Can_00230 shall be changed from Can_StateTransitionType to
Can_ControllerStateType.

Agreed solution:

=== CanDrv ===
~SWS_Can_00230: Change Can_StateTransitionType to Can_ControllerStateType.
~SWS_Can_00222: Remove Can_StateTransitionType from Imported types

~SWS_CANIF_00142: Remove Can_StateTransitionType from Can_GeneralTypes

Replace Can_StateTransitionType with Can_ControllerStateType of function
call Can_SetControllerMode in chapters

- 9.11 (figure and table)

- 9.13 (figure)

—Last change on issue 77329 comment 12—

BW-C-Level:
Application | Specification | Bus
1 4 1

e RfC #77952: [Can][Canlf] Incompatible return types of Can and CanTrcv
Problem description:

While CanTrcv only uses Std_ReturnType, Can uses Can_ReturnType in many
places, even when only CAN_OK and CAN_NOT_OK are available.

This leads to complicated code in Canlf, because it needs to implement sepa-
rate checks for return values from CanTrcv and Can and cannot just combine the
results.

Agreed solution:

https://www.autosar.org/bugzilla/show_bug.cgi?id=77952

AUTOSAR

=== CanDrv ===

Change of SWS_Can_00039 Can_ReturnType:

* type change from enumeration to extra_litaral

* Remove range element CAN_OK

* Remove range element CAN_NOT_OK

* Assign value "0x02" to range element "CAN_BUSY"

* Description: Overlayed return value of Std_ReturnType for CAN driver API
Can_Write().

~SWS_ Can_00230 Can_SetControllerMode

Syntax: Std_ReturnType Can_SetControllerMode(uint8 Controller,
Can_StateTransitionType Transition)

Return value:

Std_ReturnType

E_OK: request accepted

E_NOT_OK: request not accepted, a development error occurred

~SWS_Can_00360 Can_CheckWakeup

Syntax: Std_ReturnType Can_CheckWakeup(uint8 Controller)
Return value:

Std_ReturnType

E_OK: API call has been accepted

E_NOT_OK: API call has not been accepted

~SWS_ Can 00233 Can_Write

Syntax: Std_ReturnType Can_Write(Can_HwHandleType Hth, const
Can_PduType* Pdulnfo)

Return value:

Std_ReturnType

E_OK: Write command has been accepted

E_NOT_OK: development error occurred

CAN_BUSY: No TX hardware buffer available or pre-emptive call of Can_Write that
can’t be implemented re-entrant (see Can_ReturnType)

Rename CAN_OK to E_OK and CAN_NOT_OK to E_NOT_OK:
~SWS_ Can_00048

~SWS Can_00089

7.11.5 Return Values

~SWS Can_00198

~SWS_ Can 00199

~SWS_ Can 00200

~SWS Can_00216

AUTOSAR

~SWS_Can_00217
~SWS Can_00218
~SWS_CAN_00219
~SWS_CAN_00505
~SWS_ CAN_00506
~SWS_ Can_00212

=== Canlf ===

Adapt API Can_Write() to new signature:

* Figure 7.10 "Transmission request with multiple CAN Drivers - simplified"
* Figure 9.1 "Transmission request with a single CAN Driver"

* Figure 9.2 "Transmission request with multiple CAN Drivers"

* Figure 9.5 "Transmit confirmation with buffering"

* Figure 9.6 "Transmit Cancelation”

* Figure 9.7 "Trigger Transmit Request"

Adapt API Can_SetControllerMode() to new signature:
* Figure 9.11: Start CAN network
* Figure 9.13: BusOff recovery

Figure 9.13: Change typo "Cnange" to "Change"

~SWS_CANIF_00678: If all calls of Can_CheckWakeup() or
CanTrcv_CheckWakeup() return E_NOT_OK to Canlf, then Canlf_CheckWakeup()
shall return E_NOT_OK.

~SWS_CANIF_00720: If at least one function call of Can_CheckWakeup() or
CanTrcv_CheckWakeup() returns E_OK to Canlf, then
Canlf_CheckWakeup() shall return E_OK.

Rename CAN_OK to E_OK and CAN_NOT_OK to E_NOT_OK:
Note between SWS_CANIF_00162 and SWS_CANIF_00319
Table in chapter 9.7 Trigger Transmit Request

Table in chapter 9.11 Start CAN network

=== CanTrcv ===

Adapt API Can_SetControllerMode() to new signature:
* 9.3 De-Initialization (SPI Synchronous)

* 9.4 De-Initialization (SPI1 Asynchronous)

Adapt APl Can_CheckWakeup() to new signature:
* Figure 42 CAN controller wake up by interrupt

AUTOSAR

* Figure 43 CAN controller or transceiver wake up by polling

=== TTCanlf ===
Adapt API Can_Write() to new signature:
* Figure 9.1: CAN Interface Time Triggered transmission with Job List

Correct APl Can_TTReceive() which has return void instead of Can_ReturnType
indeed:
* Figure 9.2: CAN Interface Time Triggered reception with Job List

Rename CAN_OK to E_OK and CAN_NOT_OK to E_NOT_OK:
~SWS_TtCanlf_00071

=== T 1CanDrv ===

Rename CAN_OK to E_ OK and CAN_NOT _OK to E_NOT_OK:
~SWS_TtCan_00014

~SWS_TtCan_00018

~SWS_TitCan_00022

~SWS_TtCan_00026

~SWS_ TtCan 00059

~SWS_ TitCan 00078

~SWS_TtCan_ 00112

=== XCP ===

Adapt API Can_Write() to new signature:

* Figure 5: Xcp on Can Transmit

—Last change on issue 77952 comment 22—

BW-C-Level:
Application | Specification | Bus
1 4 1

1.26 Specification Iltem SWS_Can_00230

Trace References:
none

Content:

| Service name: Can_SetControllerModeCan_SetControllerMode

AUTOSAR

Syntax: CanStd_ReturnType Can_SetControllerMode(
uint8 Controller,
Can_StateTransitionControllerStateType Transition
)
Service ID[hex]: 0x03
Sync/Async: Asynchronous
Reentrancy: Non Reentrant
Parameters (in): ControllerCan_SetController CAN controller for which the status shall
Mode.Controller be changed
TransitionCan_SetController Transition value to request new CAN
Mode. Transition controller state
Parameters (inout): None
Parameters (out): None
Return value: CanStd_ReturnType CANE_OK: request accepted
CANE_NOT_OK: request not accepted,
a development error occurred
Description: This function performs software triggered state transitions of the CAN controller State
machine.

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:

e RfC #77329: [Can] Removed type Can_StateTransitionType still used in
Can_SetControllerMode function definition

Problem description:

With CP_R4.3.0 the type definition for Can_StateTransitionType has been removed
from SWS_CANDriver.

In the function definition of Can_SetControllerMode (SWS_Can_00230) this type is
still used in the signature syntax.

Within mentioned function calls (e.g. "Can_SetControllerMode(CAN_CS STARTED)"
in SWS_Can_00261) the enumeration values of type Can_ControllerStateType are
used.

It shall be clarified if the type of the second function parameter in the syntax
entry of SWS_Can_00230 shall be changed from Can_StateTransitionType to
Can_ControllerStateType.

Agreed solution:

=== CanDrv ===
~SWS_Can_00230: Change Can_StateTransitionType to Can_ControllerState Type.
~SWS_Can_00222: Remove Can_StateTransitionType from Imported types

https://www.autosar.org/bugzilla/show_bug.cgi?id=77329

AUTOSAR

~SWS_CANIF_00142: Remove Can_StateTransitionType from Can_GeneralTypes

Replace Can_StateTransitionType with Can_ControllerStateType of function
call Can_SetControllerMode in chapters

- 9.11 (figure and table)

- 9.13 (figure)

—Last change on issue 77329 comment 12—

BW-C-Level:
Application | Specification | Bus
1 4 1

e RfC #77952: [Can][Canlf] Incompatible return types of Can and CanTrcv
Problem description:

While CanTrcv only uses Std_ReturnType, Can uses Can_ReturnType in many
places, even when only CAN_OK and CAN_NOT_OK are available.

This leads to complicated code in Canlf, because it needs to implement sepa-
rate checks for return values from CanTrcv and Can and cannot just combine the
results.

Agreed solution:

=== CanDrv ===

Change of SWS_Can_00039 Can_ReturnType:

* type change from enumeration to extra_litaral

* Remove range element CAN_OK

* Remove range element CAN_NOT_OK

* Assign value "0x02" to range element "CAN_BUSY"

* Description: Overlayed return value of Std_ReturnType for CAN driver API
Can_Write().

~SWS_Can_00230 Can_SetControllerMode

Syntax: Std_ReturnType Can_SetControllerMode(uint8 Controller,
Can_StateTransitionType Transition)

Return value:

Std_ReturnType

E_OK: request accepted

E_NOT_OK: request not accepted, a development error occurred

~SWS_Can_00360 Can_CheckWakeup

https://www.autosar.org/bugzilla/show_bug.cgi?id=77952

AUTOSAR

Syntax: Std_ReturnType Can_CheckWakeup(uint8 Controller)
Return value:

Std_ReturnType

E_OK: API call has been accepted

E_NOT_OK: API call has not been accepted

~SWS Can_00233 Can_Write

Syntax: Std_ReturnType Can_Write(Can_HwHandleType Hth, const
Can_PduType* Pdulnfo)

Return value:

Std_ReturnType

E_OK: Write command has been accepted

E_NOT_OK: development error occurred

CAN_BUSY: No TX hardware buffer available or pre-emptive call of Can_Write that
can’t be implemented re-entrant (see Can_ReturnType)

Rename CAN_OK to E_ OK and CAN_NOT_OKto E_NOT_OK:
~SWS_ Can_00048
~SWS_ Can_00089
7.11.5 Return Values
~SWS Can 00198
~SWS Can_00199
~SWS_Can_00200
~SWS Can_00216
~SWS_ Can_00217
~SWS Can 00218
~SWS_CAN_00219
~SWS_CAN_00505
~SWS_CAN_00506
~SWS_Can_00212

=== Canlf ===

Adapt APl Can_Write() to new signature:

* Figure 7.10 "Transmission request with multiple CAN Drivers - simplified"
* Figure 9.1 "Transmission request with a single CAN Driver"

* Figure 9.2 "Transmission request with multiple CAN Drivers"

* Figure 9.5 "Transmit confirmation with buffering"

* Figure 9.6 "Transmit Cancelation”

* Figure 9.7 "Trigger Transmit Request"

Adapt API Can_SetControllerMode() to new signature:
* Figure 9.11: Start CAN network
* Figure 9.13: BusOff recovery

AUTOSAR

Figure 9.13: Change typo "Cnange" to "Change"

~SWS_CANIF_00678: If all calls of Can_CheckWakeup() or
CanTrcv_CheckWakeup() return E_NOT_OK to Canlf, then Canlf_CheckWakeup()
shall return E_NOT_OK.

~SWS_CANIF_00720: If at least one function call of Can_CheckWakeup() or
CanTrcv_CheckWakeup() returns E_OK to Canlf, then
Canlf_CheckWakeup() shall return E_OK.

Rename CAN_OK to E_OK and CAN_NOT_OK to E_NOT_OK:
Note between SWS_CANIF_00162 and SWS_CANIF_00319
Table in chapter 9.7 Trigger Transmit Request

Table in chapter 9.11 Start CAN network

=== CanTrcv ===

Adapt APl Can_SetControllerMode() to new signature:
* 9.3 De-Initialization (SPI Synchronous)

* 9.4 De-Initialization (SPI1 Asynchronous)

=== ECUSM ===

Adapt APl Can_CheckWakeup() to new signature:

* Figure 42 CAN controller wake up by interrupt

* Figure 43 CAN controller or transceiver wake up by polling

=== TTCanlf ===
Adapt API Can_Write() to new signature:
* Figure 9.1: CAN Interface Time Triggered transmission with Job List

Correct APl Can_TTReceive() which has return void instead of Can_ReturnType
indeed:
* Figure 9.2: CAN Interface Time Triggered reception with Job List

Rename CAN_OK to E_OK and CAN_NOT_OK to E_NOT_OK:
~SWS_TtCanlf_00071

=== TTCanDrv ===

Rename CAN_OK to E_ OK and CAN_NOT_OK to E_NOT_OK:
~SWS TtCan_00014

~SWS_ TtCan 00018

~SWS_ TtCan 00022

~SWS_TtCan_00026

AUTOSAR

~SWS_TtCan_00059
~SWS_TtCan_00078
~SWS TitCan_ 00112

=== XCP ===

Adapt APl Can_Write() to new signature:
* Figure 5: Xcp on Can Transmit
—Last change on issue 77952 comment 22—

BW-C-Level:
Application | Specification | Bus
1 4 1

1.27 Specification ltem SWS_Can_00233

Trace References:
SRS BSW 00312

Content:

Service name:

Can_WriteCan_Write

Syntax:

CanStd_ReturnType Can_Write(
Can_HwHandleType Hth,

const Can_PduType* Pdulnfo

)

Service ID[hex]: 0x06
Sync/Async: Synchronous
Reentrancy: Reentrant (thread-safe)

Parameters (in):

HthCan_Write.Hth

information which HW-transmit handle
shall be used for transmit. Implicitly this
is also the information about the
controller to use because the Hth
numbers are unique inside one
hardware unit.

PdulnfoCan_Write.Pdulnfo

Pointer to SDU user memory, Data
Length and Identifier.

Parameters (inout):

None

Parameters (out):

None

Return value:

CanStd_ReturnType

CANE_OK: Write command has been
accepted CANE_NOT_OK: development
error occurred CAN_BUSY: No TX
hardware buffer available or pre-emptive
call of Can_Write that can’t be
implemented re-entrant (see
Can_ReturnType)

Description:

This function is called by Canlf to pass a CAN message to CanDrv for transmission.

AUTOSAR

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:
e RfC #77952: [Can][Canlf] Incompatible return types of Can and CanTrcv
Problem description:

While CanTrcv only uses Std_ReturnType, Can uses Can_ReturnType in many
places, even when only CAN_OK and CAN_NOT_OK are available.

This leads to complicated code in Canlf, because it needs to implement sepa-
rate checks for return values from CanTrcv and Can and cannot just combine the
results.

Agreed solution:

=== CanDrv ===

Change of SWS_Can_00039 Can_ReturnType:

* type change from enumeration to extra_litaral

* Remove range element CAN_OK

* Remove range element CAN_NOT_OK

* Assign value "0x02" to range element "CAN_BUSY"

* Description: Overlayed return value of Std_ReturnType for CAN driver API
Can_Write().

~SWS_ Can_00230 Can_SetControllerMode

Syntax: Std_ReturnType Can_SetControllerMode(uint8 Controller,
Can_StateTransitionType Transition)

Return value:

Std_ReturnType

E_OK: request accepted

E_NOT_OK: request not accepted, a development error occurred

~SWS_Can_00360 Can_CheckWakeup

Syntax: Std_ReturnType Can_CheckWakeup(uint8 Controller)
Return value:

Std_ReturnType

E_OK: API call has been accepted

E_NOT_OK: API call has not been accepted

~SWS_ Can 00233 Can_Write

Syntax: Std_ReturnType Can_Write(Can_HwHandleType Hth, const
Can_PduType* Pdulnfo)

Return value:

Std_ReturnType

https://www.autosar.org/bugzilla/show_bug.cgi?id=77952

AUTOSAR

E_OK: Write command has been accepted

E_NOT_OK: development error occurred

CAN_BUSY: No TX hardware buffer available or pre-emptive call of Can_Write that
can’t be implemented re-entrant (see Can_ReturnType)

Rename CAN_OK to E_OK and CAN_NOT_OK to E_NOT_OK:
~SWS_ Can_00048
~SWS Can_00089
7.11.5 Return Values
~SWS Can 00198
~SWS Can_00199
~SWS_Can_00200
~SWS Can_00216
~SWS_Can_00217
~SWS_ Can 00218
~SWS_CAN_00219
~SWS_CAN_00505
~SWS_CAN_00506
~SWS_Can_00212

=== Canlf ===

Adapt APl Can_Write() to new signature:

* Figure 7.10 "Transmission request with multiple CAN Drivers - simplified"
* Figure 9.1 "Transmission request with a single CAN Driver"

* Figure 9.2 "Transmission request with multiple CAN Drivers"

* Figure 9.5 "Transmit confirmation with buffering"

* Figure 9.6 "Transmit Cancelation”

* Figure 9.7 "Trigger Transmit Request"

Adapt API Can_SetControllerMode() to new signature:
* Figure 9.11: Start CAN network
* Figure 9.13: BusOff recovery

Figure 9.13: Change typo "Cnange" to "Change"

~SWS_CANIF_00678: If all calls of Can_CheckWakeup() or
CanTrcv_CheckWakeup() return E_NOT_OK to Canlf, then Canlf_CheckWakeup()
shall return E_NOT_OK.

~SWS_CANIF_00720: If at least one function call of Can_CheckWakeup() or
CanTrcv_CheckWakeup() returns E_OK to Canlf, then
Canlf_CheckWakeup() shall return E_OK.

AUTOSAR

Rename CAN_OK to E_OK and CAN_NOT_OK to E_NOT_OK:
Note between SWS_CANIF_00162 and SWS_CANIF_00319
Table in chapter 9.7 Trigger Transmit Request

Table in chapter 9.11 Start CAN network

=== CanTrcv ===

Adapt API Can_SetControllerMode() to new signature:
* 9.3 De-Initialization (SPI Synchronous)

* 9.4 De-Initialization (SPI1 Asynchronous)

=== ECUSM ===

Adapt APl Can_CheckWakeup() to new signature:

* Figure 42 CAN controller wake up by interrupt

* Figure 43 CAN controller or transceiver wake up by polling

=== TTCanlf ===
Adapt APl Can_Write() to new signature:
* Figure 9.1: CAN Interface Time Triggered transmission with Job List

Correct APl Can_TTReceive() which has return void instead of Can_ReturnType
indeed:
* Figure 9.2: CAN Interface Time Triggered reception with Job List

Rename CAN_OK to E_OK and CAN_NOT_OK to E_NOT_OK:
~SWS_TtCanlf_00071

=== TTCanDrv ===

Rename CAN_OK to E_ OK and CAN_NOT_OK to E_NOT_OK:
~SWS TtCan_00014

~SWS_TtCan_00018

~SWS TiCan 00022

~SWS_TtCan_00026

~SWS_TtCan_00059

~SWS_TtCan_00078

~SWS_TtCan_00112

=== XCP ===

Adapt APl Can_Write() to new signature:

* Figure 5: Xcp on Can Transmit

—Last change on issue 77952 comment 22—

BW-C-Level:

AUTOSAR

Application

Specification

Bus

1

4

1.28 Specification Iltem SWS_Can_00234

Trace References:
SRS _Can_01055

Content:

API function

Description

Canlf_ControllerBusOff

This service indicates a Controller BusOff event referring to the
corresponding CAN Controller with the abstract Canlf
Controllerld.

Canlf_ControllerModelndication

This service indicates a controller state transition referring to
the corresponding CAN controller with the abstract Canlf
Controllerld.

Canlf_RxIndication

This service indicates a successful reception of a received
CAN Rx L-PDU to the Canlf after passing all filters and
validation checks.

Canlf_TxConfirmation

This service confirms a previously successfully processed
transmission of a CAN TxPDU.

Det_ReportRuntimeError

Service to report runtime errors. If a callout has been
configured then this callout shall be called.

GetCounterValue

This service reads the current count value of a counter
(returning either the hardware timer ticks if counter is driven by
hardware or the software ticks when user drives counter).

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:

e RfC #59085: Rollout of 'Runtime errors’

Problem description:

Inconsistencies in SWS with semantics of Default errors
—Last change on issue 59085 comment 26—

Agreed solution:

solution in

Column

"G"

of the new attachment

https://www.autosar.org/bugzilla/attachment.cgi?id=4604

Notes:

- It is not enough just to migrate the error from one classification table to another.
Please also check the related requirements (and background information) which is
referring to that error and adapt them if needed.

https://www.autosar.org/bugzilla/show_bug.cgi?id=59085

AUTOSAR

- The review task of the ITs shall be done by the WP to which the specification
"belongs".

*** BSW UML Model ***

SWS CanNm:

Chapter 8.6.1 Optional Interfaces:

Add within SWS_CanNm_00325 the API function Det_ReportRunTimeError

SWS_Linlf:

SWS_Linlf_00359: add Det_ReportRuntimeError

SWS_UdpNm:

Replace UDPNM_E_NO_INIT with UDPNM_E_UNINIT in description of API
UdpNm_MainFunction_<Instance ld> (SWS_UdpNm_00234)

*** ECUC XML ***
Not affected. No configuration of runtime error reporting required (see SWS BSW

General).
—Last change on issue 59085 comment 88—
BW-C-Level:

Application | Specification | Bus

1 4 1

1.29 Specification ltem SWS_Can_00360

Trace References:

none
Content:
Service name: Can_CheckWakeupCan_CheckWakeup
Syntax: CanStd_ReturnType Can_CheckWakeup(
uint8 Controller
)
Service ID[hex]: 0x0b
Sync/Async: Synchronous

AUTOSAR

Reentrancy: Non Reentrant

Parameters (in): ControllerCan_CheckWakeup.Controller | Controller to be checked for a wakeup.

Parameters (inout): None

Parameters (out): None

Return value: CanStd_ReturnType CANE_OK: API call has been accepted
CANE_NOT_OK: API call has not been
accepted

Description: This function checks if a wakeup has occurred for the given controller.

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:
e RfC #77952: [Can][Canlf] Incompatible return types of Can and CanTrcv
Problem description:

While CanTrcv only uses Std_ReturnType, Can uses Can_ReturnType in many
places, even when only CAN_OK and CAN_NOT_OK are available.

This leads to complicated code in Canlf, because it needs to implement sepa-
rate checks for return values from CanTrcv and Can and cannot just combine the
results.

Agreed solution:

=== CanDrv ===

Change of SWS_Can_00039 Can_ReturnType:

* type change from enumeration to extra_litaral

* Remove range element CAN_OK

* Remove range element CAN_NOT_OK

* Assign value "0x02" to range element "CAN_BUSY"

* Description: Overlayed return value of Std_ReturnType for CAN driver API
Can_Write().

~SWS_ Can 00230 Can_SetControllerMode

Syntax: Std_ReturnType Can_SetControllerMode(uint8 Controller,
Can_StateTransitionType Transition)

Return value:

Std_ReturnType

E_OK: request accepted

E_NOT_OK: request not accepted, a development error occurred

~SWS_Can_00360 Can_CheckWakeup
Syntax: Std_ReturnType Can_CheckWakeup(uint8 Controller)

https://www.autosar.org/bugzilla/show_bug.cgi?id=77952

AUTOSAR

Return value:

Std_ReturnType

E_OK: API call has been accepted
E_NOT_OK: API call has not been accepted

~SWS Can_00233 Can_Write

Syntax: Std_ReturnType Can_Write(Can_HwHandleType Hth, const
Can_PduType* Pdulnfo)

Return value:

Std_ReturnType

E_OK: Write command has been accepted

E_NOT_OK: development error occurred

CAN_BUSY: No TX hardware buffer available or pre-emptive call of Can_Write that
can’'t be implemented re-entrant (see Can_ReturnType)

Rename CAN_OK to E_OK and CAN_NOT_OK to E_NOT_OK:
~SWS Can_00048
~SWS_ Can_00089
7.11.5 Return Values
~SWS Can 00198
~SWS Can 00199
~SWS_Can_00200
~SWS Can_00216
~SWS_Can_00217
~SWS_ Can_00218
~SWS_CAN_00219
~SWS_CAN_00505
~SWS_CAN_00506
~SWS_Can_00212

=== Canlf ===

Adapt APl Can_Write() to new signature:

* Figure 7.10 "Transmission request with multiple CAN Drivers - simplified"
* Figure 9.1 "Transmission request with a single CAN Driver"

* Figure 9.2 "Transmission request with multiple CAN Drivers"

* Figure 9.5 "Transmit confirmation with buffering"

* Figure 9.6 "Transmit Cancelation”

* Figure 9.7 "Trigger Transmit Request"

Adapt API Can_SetControllerMode() to new signature:
* Figure 9.11: Start CAN network
* Figure 9.13: BusOff recovery

AUTOSAR

Figure 9.13: Change typo "Cnange" to "Change"

~SWS_CANIF_00678: If all calls of Can_CheckWakeup() or
CanTrcv_CheckWakeup() return E_NOT_OK to Canlf, then Canlf_CheckWakeup()
shall return E_NOT_OK.

~SWS_CANIF_00720: If at least one function call of Can_CheckWakeup() or
CanTrcv_CheckWakeup() returns E_OK to Canlf, then
Canlf_CheckWakeup() shall return E_OK.

Rename CAN_OK to E_OK and CAN_NOT_OK to E_NOT_OK:
Note between SWS_CANIF_00162 and SWS_CANIF_00319
Table in chapter 9.7 Trigger Transmit Request

Table in chapter 9.11 Start CAN network

=== CanTrcv ===

Adapt API Can_SetControllerMode() to new signature:
* 9.3 De-Initialization (SPI Synchronous)

* 9.4 De-Initialization (SP1 Asynchronous)

=== ECUSM ===

Adapt APl Can_CheckWakeup() to new signature:

* Figure 42 CAN controller wake up by interrupt

* Figure 43 CAN controller or transceiver wake up by polling

=== TTCanlf ===
Adapt APl Can_Write() to new signature:
* Figure 9.1: CAN Interface Time Triggered transmission with Job List

Correct APl Can_TTReceive() which has return void instead of Can_ReturnType
indeed:
* Figure 9.2: CAN Interface Time Triggered reception with Job List

Rename CAN_OK to E_ OK and CAN_NOT_OK to E_NOT_OK:
~SWS_TtCanlf 00071

=== [1CanDrv ===

Rename CAN_OK to E_ OK and CAN_NOT_OK to E_NOT_OK:
~SWS_ TtCan_00014

~SWS_ TtCan_00018

~SWS_ TtCan 00022

~SWS_ TtCan 00026

~SWS_TtCan_00059

AUTOSAR

~SWS_TtCan_00078
~SWS TtCan_ 00112

=== XCP ===

Adapt APl Can_Write() to new signature:

* Figure 5: Xcp on Can Transmit

—Last change on issue 77952 comment 22—

BW-C-Level:
Application | Specification | Bus
1 4 1

1.30 Specification ltem SWS_Can_00362

Trace References:
none
Content:

If default development error detection for the Can module is enabled: The function
Can_CheckWakeup shall raise the error CAN_E_UNINIT if the driver is not yet initialized.

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:
e RfC #73570: No "default error" in AUTOSAR
Problem description:

The DET was renamed from development error tracer to default error tracer.

This change was most of the time done automatically and unfortunately re-
named "developement error" to "default error”.

"default error" should always be followed by "tracer", otherwise, "development
error" is probably the right term.

This could increase the impact (compared to my selection of impacted docu-
ment, but formally, the configuration parameters *DevErrorDetect are not using the
correct description:

"Switches the Default Error Tracer (Det) detection and notification..."

The parameter switches on/off the developement error detection. The DET

https://www.autosar.org/bugzilla/show_bug.cgi?id=73570

AUTOSAR

does not need to be detected and can be present even when the parameter is set to
false.

Agreed solution:

Rename "default error" to "development error" in all impacted documents, but not
in an automated way (Do not change "default error tracer" to "developement error
tracer"!)

Blueprint/Example:

- sub chapter is now called "7.x Default errors"

- "[SWS_xxx_yyyyy]

In case default error detection is enabled for the xxxx module: The xxxx module
shall check API parameters for validity and report detected errors to the DET. ()"

- "[SWS_xxx_yyyyy]

If default error detection is enabled: the function shall check that the service xxx_Init
was previously called. If the check fails, the function shall raise the default error
XXX_E_NOT_INITIALIZED otherwise (if DET is disabled) return E_NOT_OK. ()"

- "In case default errors are enabled,..."

- "module raises the Default error XXX_E_TRANSITION"

- "The DET provides services to store default errors”

The correct text would be:

- sub chapter is called "7.x Development errors"

- "[SWS_xxx_yyyyy]

In case development error detection is enabled for the xxxx module: The xxxx
module shall check API| parameters for validity and report detected development
errors to the DET. ()"

- "[SWS_xxx_yyyyy]

If development error detection is enabled: the function shall check that the service
xxx_Init was previously called. If the check fails, the function shall raise the
development error XXX_E_NOT _INITIALIZED otherwise (if DET is disabled) return
E_NOT_OK. ()"

- "In case development errors are enabled,..."

- "module raises the development error XXX_E_TRANSITION"

- "The DET provides services to store development errors"

Solution for SWS_RTE:

- SWS_RTE —

- Change 4.8 Default errors to 4.8 Development errors

- Change "Errors which can occur at runtime in the RTE are classified as default er-
rors" to "Errors which can occur at runtime in the RTE are classified as development

AUTOSAR

errors"

- Remove [SWS_Rte_07676]

- Change [SWS_RTE_06611]"If a violation is detected the RTE shall report a default
error to the DET." to "If a violation is detected the RTE shall report a development
error to the DET."

- Change [SWS_Rte_06631]

[SWS_Rte_06631] d The RTE shall use the OS Application Identifier as the Instance
Id to enable the developer to identify in which runtime section of the RTE the error
occurs. This Instance ID is even unique across multi cores and so implicitly allows
the development error to be traced to a specific core. ¢(SRS_BSW_00337)

SRS _Libraries:
- In chapter "3 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

SRS _SPALGeneral:

- In chapter "6.1.1.3.1 [SRS_SPAL_00157] ...": Rename "Development Error Tracer"
to "Default Error Tracer"

- In chapter "6.1.1.4.2 [SRS_SPAL_12448] ...": Rename "Development Error Tracer"
to "Default Error Tracer"

SRS FlashTest:

- In chapter "6.1 Functional Requirements": Rename "Development Error Tracer" to
"Default Error Tracer"

- In chapter "7 References":

Rename "Development Error Tracer" to "Default Error Tracer"”

Rename "AUTOSAR_SWS_ DevelopmentErrorTracer" to "AU-
TOSAR_SWS DefaultErrorTracer"

SWS_MFXLibrary:
- In chapter "2 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

SWS_MemoryAbstractioninterface:

- In chapter "3.1 Input documents":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS DefaultErrorTracer"

AUTOSAR

1.31

SWS_FlexRayNetworkManagement:

- In chapter "3.3 Related AUTOSAR documents™:

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS_DefaultErrorTracer"

SWS_CANStateManager:
- In chapter "3.1 Input documents": Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_ DefaultErrorTracer”

SWS_ PDURouter:
- In chapter "3.1 Input documents": Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer” to "AUTOSAR_SWS_ DefaultErrorTracer”

SWS_EEPROMDiriver:

- In chapter "3.1 Input documents": Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_ DefaultErrorTracer”
—Last change on issue 73570 comment 47—

BW-C-Level:

Application | Specification | Bus
1 1 1

Specification ltem SWS_Can_00363

Trace References:

none

Content:

If default development error detection for the Can module is enabled: The function
Can_CheckWakeup shall raise the error CAN_E_PARAM_CONTROLLER if the param-

eter Controller is out of range.

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:

RfC #73570: No "default error" in AUTOSAR

https://www.autosar.org/bugzilla/show_bug.cgi?id=73570

AUTOSAR

Problem description:

The DET was renamed from development error tracer to default error tracer.

This change was most of the time done automatically and unfortunately re-
named "developement error" to "default error".

"default error" should always be followed by "tracer", otherwise, "development
error" is probably the right term.

This could increase the impact (compared to my selection of impacted docu-
ment, but formally, the configuration parameters *DevErrorDetect are not using the
correct description:

"Switches the Default Error Tracer (Det) detection and notification..."

The parameter switches on/off the developement error detection. The DET
does not need to be detected and can be present even when the parameter is set to
false.

Agreed solution:

Rename "default error" to "development error" in all impacted documents, but not
in an automated way (Do not change "default error tracer" to "developement error
tracer"!)

Blueprint/Example:

- sub chapter is now called "7.x Default errors"

- "[SWS_xxx_yyyyy]

In case default error detection is enabled for the xxxx module: The xxxx module
shall check API parameters for validity and report detected errors to the DET. ()"

- "[SWS_xxx_yyyyy]

If default error detection is enabled: the function shall check that the service xxx_Init
was previously called. If the check fails, the function shall raise the default error
XXX_E_NOT_INITIALIZED otherwise (if DET is disabled) return E_NOT_OK. ()"

- "In case default errors are enabled,..."

- "module raises the Default error XXX_E_TRANSITION"

- "The DET provides services to store default errors”

The correct text would be:

- sub chapter is called "7.x Development errors"

- "[SWS_xxx_yyyyy]

In case development error detection is enabled for the xxxx module: The xxxx

AUTOSAR

module shall check API| parameters for validity and report detected development
errors to the DET. ()"

- "[SWS_xxx_yyyyy]

If development error detection is enabled: the function shall check that the service
xxx_Init was previously called. If the check fails, the function shall raise the
development error XXX_E_NOT_INITIALIZED otherwise (if DET is disabled) return
E _NOT_OK. ()"

- "In case development errors are enabled,..."

- "module raises the development error XXX_E_TRANSITION"

- "The DET provides services to store development errors"

Solution for SWS_RTE:

- SWS_RTE —

- Change 4.8 Default errors to 4.8 Development errors

- Change "Errors which can occur at runtime in the RTE are classified as default er-
rors" to "Errors which can occur at runtime in the RTE are classified as development
errors"

- Remove [SWS_Rte _07676]

- Change [SWS_RTE_06611]"If a violation is detected the RTE shall report a default
error to the DET." to "If a violation is detected the RTE shall report a development
error to the DET."

- Change [SWS_Rte_06631]

[SWS_Rte_06631] d The RTE shall use the OS Application Identifier as the Instance
Id to enable the developer to identify in which runtime section of the RTE the error
occurs. This Instance ID is even unique across multi cores and so implicitly allows
the development error to be traced to a specific core. ¢(SRS_BSW_00337)

SRS _Libraries:
- In chapter "3 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

SRS_SPALGeneral:

- In chapter "6.1.1.3.1 [SRS_SPAL_00157] ...": Rename "Development Error Tracer"
to "Default Error Tracer"

- In chapter "6.1.1.4.2 [SRS_SPAL_12448] ...": Rename "Development Error Tracer"
to "Default Error Tracer"

SRS FlashTest:
- In chapter "6.1 Functional Requirements": Rename "Development Error Tracer" to
"Default Error Tracer"

AUTOSAR

- In chapter "7 References":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS_DefaultErrorTracer”

SWS_MFXLibrary:
- In chapter "2 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

SWS_MemoryAbstractioninterface:

- In chapter "3.1 Input documents":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS_DefaultErrorTracer"

SWS_FlexRayNetworkManagement:

- In chapter "3.3 Related AUTOSAR documents":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS DefaultErrorTracer"

SWS_CANStateManager:
- In chapter "3.1 Input documents": Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_ DefaultErrorTracer”

SWS PDURouter:
- In chapter "3.1 Input documents": Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_ DefaultErrorTracer”

SWS_EEPROMDiriver:

- In chapter "3.1 Input documents": Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_ DefaultErrorTracer”
—Last change on issue 73570 comment 47—

BW-C-Level:

Application | Specification | Bus
1 1 1

AUTOSAR

1.32 Specification ltem SWS_Can_00395

Trace References:
none
Content:

If the default error detection for the Can module is enabled, the Can module Can module
shall raise the runtime error CAN_E_DATALOST in case of "overwrite" or "overrun" event
detection.

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:
e RfC #59085: Rollout of 'Runtime errors’
Problem description:

Inconsistencies in SWS with semantics of Default errors
—Last change on issue 59085 comment 26—

Agreed solution:

solution in Column "G" of the new attachment
https://www.autosar.org/bugzilla/attachment.cgi?id=4604

Notes:

- It is not enough just to migrate the error from one classification table to another.
Please also check the related requirements (and background information) which is
referring to that error and adapt them if needed.

- The review task of the ITs shall be done by the WP to which the specification
"belongs".

*** BSW UML Model ***
SWS CanNm:

Chapter 8.6.1 Optional Interfaces:
Add within SWS_CanNm_00325 the API function Det_ReportRunTimeError

SWS_Linlf:

SWS_Linlf_00359: add Det_ReportRuntimeError

SWS_UdpNm:

https://www.autosar.org/bugzilla/show_bug.cgi?id=59085

AUTOSAR

Replace UDPNM_E_NO_INIT with UDPNM_E_UNINIT in description of API
UdpNm_MainFunction_<Instance ld> (SWS_UdpNm_00234)

*** ECUC XML ***
Not affected. No configuration of runtime error reporting required (see SWS BSW

General).
—Last change on issue 59085 comment 88—
BW-C-Level:

Application | Specification | Bus

1 4 1

o RfC #73570: No "default error" in AUTOSAR
Problem description:

The DET was renamed from development error tracer to default error tracer.

This change was most of the time done automatically and unfortunately re-
named "developement error" to "default error”.

"default error" should always be followed by "tracer", otherwise, "development
error" is probably the right term.

This could increase the impact (compared to my selection of impacted docu-
ment, but formally, the configuration parameters *DevErrorDetect are not using the
correct description:

"Switches the Default Error Tracer (Det) detection and naotification..."

The parameter switches on/off the developement error detection. The DET
does not need to be detected and can be present even when the parameter is set to
false.

Agreed solution:

Rename "default error" to "development error" in all impacted documents, but not
in an automated way (Do not change "default error tracer" to "developement error
tracer"!)

Blueprint/Example:

- sub chapter is now called "7.x Default errors"

- "[SWS_xxx_yyyyy]

In case default error detection is enabled for the xxxx module: The xxxx module
shall check APl parameters for validity and report detected errors to the DET. ()"

https://www.autosar.org/bugzilla/show_bug.cgi?id=73570

AUTOSAR

- "[SWS_xxx_yyyyy]

If default error detection is enabled: the function shall check that the service xxx_Init
was previously called. If the check fails, the function shall raise the default error
XXX_E_NOT_INITIALIZED otherwise (if DET is disabled) return E_NOT_OK. ()"

- "In case default errors are enabled,..."

- "module raises the Default error XXX_E_TRANSITION"

- "The DET provides services to store default errors"

The correct text would be:

- sub chapter is called "7.x Development errors"

- "[SWS_xxx_yyyyy]

In case development error detection is enabled for the xxxx module: The xxxx
module shall check APl parameters for validity and report detected development
errors to the DET. ()"

- "[SWS_xxx_yyyyy]

If development error detection is enabled: the function shall check that the service
xxx_Init was previously called. If the check fails, the function shall raise the
development error XXX_E_NOT_INITIALIZED otherwise (if DET is disabled) return
E_NOT_OK. ()"

- "In case development errors are enabled,..."

- "module raises the development error XXX_E_TRANSITION"

- "The DET provides services to store development errors”

Solution for SWS_RTE:

- SWS_RTE —

- Change 4.8 Default errors to 4.8 Development errors

- Change "Errors which can occur at runtime in the RTE are classified as default er-
rors" to "Errors which can occur at runtime in the RTE are classified as development
errors”

- Remove [SWS_Rte 07676]

- Change [SWS_RTE_06611]"If a violation is detected the RTE shall report a default
error to the DET." to "If a violation is detected the RTE shall report a development
error to the DET."

- Change [SWS_Rte 06631]

[SWS_Rte_06631] d The RTE shall use the OS Application Identifier as the Instance
Id to enable the developer to identify in which runtime section of the RTE the error
occurs. This Instance ID is even unique across multi cores and so implicitly allows
the development error to be traced to a specific core. ¢(SRS_BSW_00337)

SRS _Libraries:

AUTOSAR

- In chapter "3 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

SRS _SPALGeneral:

- In chapter "6.1.1.3.1 [SRS_SPAL_00157] ...": Rename "Development Error Tracer"
to "Default Error Tracer"

- In chapter "6.1.1.4.2 [SRS_SPAL_12448] ...": Rename "Development Error Tracer"
to "Default Error Tracer"

SRS_FlashTest:

- In chapter "6.1 Functional Requirements": Rename "Development Error Tracer" to
"Default Error Tracer"

- In chapter "7 References":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS DefaultErrorTracer"

SWS_MFXLibrary:
- In chapter "2 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

SWS_MemoryAbstractioninterface:

- In chapter "3.1 Input documents":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_ DevelopmentErrorTracer" to "AU-
TOSAR_SWS_DefaultErrorTracer”

SWS_FlexRayNetworkManagement:

- In chapter "3.3 Related AUTOSAR documents™:

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS_DefaultErrorTracer"

SWS_CANStateManager:
- In chapter "3.1 Input documents": Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_ DefaultErrorTracer"”

AUTOSAR

SWS_PDURouter:
- In chapter "3.1 Input documents™: Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_DefaultErrorTracer”

SWS_EEPROMDriver:

- In chapter "3.1 Input documents": Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_DefaultErrorTracer”
—Last change on issue 73570 comment 47—

BW-C-Level:

Application | Specification | Bus
1 1 1

1.33 Specification Iltem SWS_Can_00408

Trace References:

none

Content:

If default development error detection for the Can module is enabled: The function
Can_Init shall raise the error CAN_E_TRANSITION if the CAN controllers are not in state
UNINIT.

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:

RfC #73570: No "default error" in AUTOSAR
Problem description:
The DET was renamed from development error tracer to default error tracer.

This change was most of the time done automatically and unfortunately re-
named "developement error" to "default error".

"default error" should always be followed by "tracer", otherwise, "development
error" is probably the right term.

This could increase the impact (compared to my selection of impacted docu-
ment, but formally, the configuration parameters *DevErrorDetect are not using the
correct description:

https://www.autosar.org/bugzilla/show_bug.cgi?id=73570

AUTOSAR

"Switches the Default Error Tracer (Det) detection and notification..."

The parameter switches on/off the developement error detection. The DET
does not need to be detected and can be present even when the parameter is set to
false.

Agreed solution:

Rename "default error" to "development error" in all impacted documents, but not
in an automated way (Do not change "default error tracer" to "developement error
tracer"!)

Blueprint/Example:

- sub chapter is now called "7.x Default errors"

- "[SWS_xxx_yyyyy]

In case default error detection is enabled for the xxxx module: The xxxx module
shall check APl parameters for validity and report detected errors to the DET. ()"

- "[SWS_xxx_yyyyy]

If default error detection is enabled: the function shall check that the service xxx_Init
was previously called. If the check fails, the function shall raise the default error
XXX_E_NOT_INITIALIZED otherwise (if DET is disabled) return E_NOT_OK. ()"

- "In case default errors are enabled,..."

- "module raises the Default error XXX _E_TRANSITION"

- "The DET provides services to store default errors"

The correct text would be:

- sub chapter is called "7.x Development errors"

- "[SWS_xxx_yyyyy]

In case development error detection is enabled for the xxxx module: The xxxx
module shall check API| parameters for validity and report detected development
errors to the DET. ()"

- "[SWS_xxx_yyyyy]

If development error detection is enabled: the function shall check that the service
xxx_Init was previously called. If the check fails, the function shall raise the
development error XXX_E_NOT_INITIALIZED otherwise (if DET is disabled) return
E_NOT_OK. ()"

- "In case development errors are enabled,..."

- "module raises the development error XXX_E_TRANSITION"

- "The DET provides services to store development errors"

Solution for SWS_RTE:
- SWS_RTE —

AUTOSAR

- Change 4.8 Default errors to 4.8 Development errors

- Change "Errors which can occur at runtime in the RTE are classified as default er-
rors" to "Errors which can occur at runtime in the RTE are classified as development
errors"

- Remove [SWS_Rte 07676]

- Change [SWS_RTE_06611]"If a violation is detected the RTE shall report a default
error to the DET." to "If a violation is detected the RTE shall report a development
error to the DET."

- Change [SWS_Rte_06631]

[SWS_Rte 06631]d The RTE shall use the OS Application Identifier as the Instance
Id to enable the developer to identify in which runtime section of the RTE the error
occurs. This Instance ID is even unique across multi cores and so implicitly allows
the development error to be traced to a specific core. ¢(SRS_BSW_00337)

SRS _Libraries:
- In chapter "3 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

SRS _SPALGeneral:

- In chapter "6.1.1.3.1 [SRS_SPAL_00157] ...": Rename "Development Error Tracer"
to "Default Error Tracer"

- In chapter "6.1.1.4.2 [SRS_SPAL_12448] ...": Rename "Development Error Tracer"
to "Default Error Tracer"

SRS_FlashTest:

- In chapter "6.1 Functional Requirements": Rename "Development Error Tracer" to
"Default Error Tracer"

- In chapter "7 References":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS_DefaultErrorTracer"

SWS_MFXLibrary:
- In chapter "2 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

SWS_MemoryAbstractioninterface:
- In chapter "3.1 Input documents":

AUTOSAR

Rename "Development Error Tracer" to "Default Error Tracer"
Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS DefaultErrorTracer"

SWS_FlexRayNetworkManagement:

- In chapter "3.3 Related AUTOSAR documents":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_ DevelopmentErrorTracer" to "AU-
TOSAR_SWS DefaultErrorTracer"

SWS_CANStateManager:
- In chapter "3.1 Input documents™: Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_DefaultErrorTracer"

SWS_ PDURouter:
- In chapter "3.1 Input documents™: Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_DefaultErrorTracer"”

SWS_EEPROMDriver:

- In chapter "3.1 Input documents": Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_DefaultErrorTracer”
—Last change on issue 73570 comment 47—

BW-C-Level:

Application | Specification | Bus
1 1 1

1.34 Specification Iltem SWS_Can_00416

Trace References:
none

Content:

Name: Can_IdTypeCan_IdType

Type: uint16, uint32

AUTOSAR

Range: Standard32BitCan_Id - 0..0x400007FF
Type.Standard32Bit
Standard16BitCan_Id - 0..0x47FF
Type.Standard16Bit

Extended32BitCan_lId - 0..0xDFFFFFFF

Type.Extended32Bit

Description: Represents the Identifier of an L-PDU. The two most significant bits specify the frame type: 00
CAN message with Standard CAN ID 01 CAN FD frame with Standard CAN ID 10 CAN
message with Extended CAN ID 11 CAN FD frame with Extended CAN ID

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:

e RfC #74108: [Can] [Canlf] Ambiguous handling of Can-FD flag on Can/Canlf inter-
face

Problem description:

Clarification of Can-FD flag handling
—Last change on issue 74108 comment 16—

Agreed solution:
~SWS_Can_00416 Can_IdType

- Remove uint16 from Type
- Remove Standard16Bit from Range

Editorial modify chapter "7.12 CAN FD Support", correct:

"However, there may be cases where conventional CAN 2.0 messages need
to betransmitted in networks supporting CAN-FD messages for example to facilitate
CAN selective wakeup."

to

"However, there may be cases where conventional CAN 2.0 messages need
to be transmitted in networks supporting CAN-FD messages for example to facilitate
CAN selective wakeup."

—Last change on issue 74108 comment 19—

BW-C-Level:

Application | Specification | Bus
1 4 1

https://www.autosar.org/bugzilla/show_bug.cgi?id=74108

AUTOSAR

1.35 Specification ltem SWS_CAN_00475

Trace References:

none

Content:

If default development error detection for CanDrv is enabled, then func-

tion

Can_SetlcomConfiguration() shall report the default development error

CAN_E ICOM_CONFIG_INVALID if it is called with an invalid Configurationid (i.e.
neither 0 nor any of the configured CanlcomConfigld).

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:

RfC #73570: No "default error" in AUTOSAR
Problem description:

The DET was renamed from development error tracer to default error tracer.

This change was most of the time done automatically and unfortunately re-
named "developement error" to "default error”.

"default error" should always be followed by "tracer", otherwise, "development
error" is probably the right term.

This could increase the impact (compared to my selection of impacted docu-
ment, but formally, the configuration parameters *DevErrorDetect are not using the
correct description:

"Switches the Default Error Tracer (Det) detection and notification..."

The parameter switches on/off the developement error detection. The DET
does not need to be detected and can be present even when the parameter is set to
false.

Agreed solution:

Rename "default error" to "development error" in all impacted documents, but not
in an automated way (Do not change "default error tracer" to "developement error
tracer"!)

Blueprint/Example:

- sub chapter is now called "7.x Default errors”

- "[SWS_xxx_yyyyy]

In case default error detection is enabled for the xxxx module: The xxxx module

https://www.autosar.org/bugzilla/show_bug.cgi?id=73570

AUTOSAR

shall check APl parameters for validity and report detected errors to the DET. ()"

- "[SWS_xxx_yyyyy]

If default error detection is enabled: the function shall check that the service xxx_Init
was previously called. If the check fails, the function shall raise the default error
XXX_E_NOT_INITIALIZED otherwise (if DET is disabled) return E_NOT_OK. ()"

- "In case default errors are enabled,..."

- "module raises the Default error XXX_E_TRANSITION"

- "The DET provides services to store default errors"

The correct text would be:

- sub chapter is called "7.x Development errors"

- "[SWS_xxx_yyyyy]

In case development error detection is enabled for the xxxx module: The xxxx
module shall check API| parameters for validity and report detected development
errors to the DET. ()"

- "[SWS_xxx_yyyyy]

If development error detection is enabled: the function shall check that the service
xxx_Init was previously called. If the check fails, the function shall raise the
development error XXX_E_NOT_INITIALIZED otherwise (if DET is disabled) return
E_NOT_OK. ()"

- "In case development errors are enabled,..."

- "module raises the development error XXX_E_TRANSITION"

- "The DET provides services to store development errors”

Solution for SWS_RTE:

- SWS_RTE —

- Change 4.8 Default errors to 4.8 Development errors

- Change "Errors which can occur at runtime in the RTE are classified as default er-
rors" to "Errors which can occur at runtime in the RTE are classified as development
errors”

- Remove [SWS_Rte_07676]

- Change [SWS_RTE_06611]"If a violation is detected the RTE shall report a default
error to the DET." to "If a violation is detected the RTE shall report a development
error to the DET."

- Change [SWS_Rte_06631]

[SWS_Rte_06631] d The RTE shall use the OS Application Identifier as the Instance
Id to enable the developer to identify in which runtime section of the RTE the error
occurs. This Instance ID is even unique across multi cores and so implicitly allows
the development error to be traced to a specific core. ¢(SRS_BSW_00337)

AUTOSAR

SRS _Libraries:
- In chapter "3 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

SRS_SPALGeneral:

- In chapter "6.1.1.3.1 [SRS_SPAL_00157] ...": Rename "Development Error Tracer"
to "Default Error Tracer"

- In chapter "6.1.1.4.2 [SRS_SPAL_12448] ...": Rename "Development Error Tracer"
to "Default Error Tracer"

SRS _FlashTest:

- In chapter "6.1 Functional Requirements": Rename "Development Error Tracer" to
"Default Error Tracer"

- In chapter "7 References":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS_DefaultErrorTracer”

SWS_MFXLibrary:
- In chapter "2 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

SWS_MemoryAbstractioninterface:

- In chapter "3.1 Input documents":

Rename "Development Error Tracer" to "Default Error Tracer"”

Rename "AUTOSAR_SWS_ DevelopmentErrorTracer" to "AU-
TOSAR_SWS DefaultErrorTracer"

SWS_FlexRayNetworkManagement:

- In chapter "3.3 Related AUTOSAR documents":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS_DefaultErrorTracer"

SWS_CANStateManager:
- In chapter "3.1 Input documents": Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_ DefaultErrorTracer”

AUTOSAR

SWS_PDURouter:
- In chapter "3.1 Input documents™: Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_ DefaultErrorTracer”

SWS_EEPROMDriver:

- In chapter "3.1 Input documents”: Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_DefaultErrorTracer"
—Last change on issue 73570 comment 47—

BW-C-Level:

Application | Specification | Bus
1 1 1

1.36 Specification Iltem SWS_CAN_00492

Trace References:

none

Content:

If default development error detection for the Can module is enabled:

The function Can_SetBaudrate shall raise the error CAN_E_UNINIT and return
E_NOT_OK if the driver is not yet initialized.

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:
e RfC #73570: No "default error" in AUTOSAR
Problem description:

The DET was renamed from development error tracer to default error tracer.

This change was most of the time done automatically and unfortunately re-
named "developement error" to "default error".

"default error" should always be followed by "tracer", otherwise, "development
error" is probably the right term.

This could increase the impact (compared to my selection of impacted docu-

https://www.autosar.org/bugzilla/show_bug.cgi?id=73570

AUTOSAR

ment, but formally, the configuration parameters *DevErrorDetect are not using the
correct description:
"Switches the Default Error Tracer (Det) detection and notification..."

The parameter switches on/off the developement error detection. The DET
does not need to be detected and can be present even when the parameter is set to
false.

Agreed solution:

Rename "default error" to "development error" in all impacted documents, but not
in an automated way (Do not change "default error tracer" to "developement error
tracer"!)

Blueprint/Example:

- sub chapter is now called "7.x Default errors"

- "[SWS_xxx_yyyyy]

In case default error detection is enabled for the xxxx module: The xxxx module
shall check API parameters for validity and report detected errors to the DET. ()"

- "[SWS_xxx_yyyyy]

If default error detection is enabled: the function shall check that the service xxx_Init
was previously called. If the check fails, the function shall raise the default error
XXX_E_NOT_INITIALIZED otherwise (if DET is disabled) return E_NOT_OK. ()"

- "In case default errors are enabled,..."

- "module raises the Default error XXX_E_TRANSITION"

- "The DET provides services to store default errors”

The correct text would be:

- sub chapter is called "7.x Development errors"

- "[SWS_xxx_yyyyy]

In case development error detection is enabled for the xxxx module: The xxxx
module shall check APl parameters for validity and report detected development
errors to the DET. ()"

- "[SWS_xxx_yyyyy]

If development error detection is enabled: the function shall check that the service
xxx_Init was previously called. If the check fails, the function shall raise the
development error XXX_E_NOT_INITIALIZED otherwise (if DET is disabled) return
E_NOT_OK. ()"

- "In case development errors are enabled,..."

- "module raises the development error XXX_E_TRANSITION"

- "The DET provides services to store development errors"

AUTOSAR

Solution for SWS_RTE:

- SWS_RTE —

- Change 4.8 Default errors to 4.8 Development errors

- Change "Errors which can occur at runtime in the RTE are classified as default er-
rors" to "Errors which can occur at runtime in the RTE are classified as development
errors”

- Remove [SWS_Rte_07676]

- Change [SWS_RTE_06611]"If a violation is detected the RTE shall report a default
error to the DET." to "If a violation is detected the RTE shall report a development
error to the DET."

- Change [SWS_Rte_06631]

[SWS_Rte_06631] d The RTE shall use the OS Application Identifier as the Instance
Id to enable the developer to identify in which runtime section of the RTE the error
occurs. This Instance ID is even unique across multi cores and so implicitly allows
the development error to be traced to a specific core. ¢(SRS_BSW_00337)

SRS _Libraries:
- In chapter "3 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

SRS_SPALGeneral:

- In chapter "6.1.1.3.1 [SRS_SPAL_00157] ...": Rename "Development Error Tracer"
to "Default Error Tracer"

- In chapter "6.1.1.4.2 [SRS_SPAL_12448] ...": Rename "Development Error Tracer"
to "Default Error Tracer"

SRS _FlashTest:

- In chapter "6.1 Functional Requirements": Rename "Development Error Tracer" to
"Default Error Tracer"

- In chapter "7 References":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS DevelopmentErrorTracer" to "AU-
TOSAR_SWS DefaultErrorTracer"

SWS_MFXLibrary:
- In chapter "2 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

AUTOSAR

SWS_MemoryAbstractioninterface:
- In chapter "3.1 Input documents":
Rename "Development Error Tracer" to "Default Error Tracer"
Rename "AUTOSAR_SWS_ DevelopmentErrorTracer"
TOSAR_SWS DefaultErrorTracer"

SWS_FlexRayNetworkManagement:

- In chapter "3.3 Related AUTOSAR documents™:

Rename "Development Error Tracer" to "Default Error Tracer"
Rename "AUTOSAR_SWS_DevelopmentErrorTracer"
TOSAR_SWS_DefaultErrorTracer"

SWS_CANStateManager:
- In chapter "3.1 Input documents":

to

to

Rename

"AU-

IIAU_

"AU-

TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_ DefaultErrorTracer”

SWS_ PDURouter:
- In chapter "3.1 Input documents":

Rename

IIAU_

TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_ DefaultErrorTracer"”

SWS_ EEPROMDriver:
- In chapter "3.1 Input documents":

Rename

IIAU_

TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_ DefaultErrorTracer”

—Last change on issue 73570 comment 47—

BW-C-Level:

Application | Specification | Bus
1 1 1

1.37 Specification ltem SWS_CAN_00493

Trace References:

none

Content:

If default development error detection for the Can module is enabled:

AUTOSAR

The function Can_SetBaudrate shall raise the error CAN_E_PARAM_BAUDRATE and re-
turn E_NOT_OK if the parameter BaudRateConfiglD has an invalid value.

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:
e RfC #73570: No "default error" in AUTOSAR
Problem description:

The DET was renamed from development error tracer to default error tracer.

This change was most of the time done automatically and unfortunately re-
named "developement error" to "default error".

"default error" should always be followed by "tracer", otherwise, "development
error" is probably the right term.

This could increase the impact (compared to my selection of impacted docu-
ment, but formally, the configuration parameters *DevErrorDetect are not using the
correct description:

"Switches the Default Error Tracer (Det) detection and notification..."

The parameter switches on/off the developement error detection. The DET
does not need to be detected and can be present even when the parameter is set to
false.

Agreed solution:

Rename "default error" to "development error" in all impacted documents, but not
in an automated way (Do not change "default error tracer" to "developement error
tracer"!)

Blueprint/Example:

- sub chapter is now called "7.x Default errors"

- "[SWS_xxx_yyyyy]

In case default error detection is enabled for the xxxx module: The xxxx module
shall check APl parameters for validity and report detected errors to the DET. ()"

- "[SWS_xxx_yyyyy]

If default error detection is enabled: the function shall check that the service xxx_Init
was previously called. If the check fails, the function shall raise the default error
XXX_E_NOT_INITIALIZED otherwise (if DET is disabled) return E_NOT_OK. ()"

- "In case default errors are enabled,..."

- "module raises the Default error XXX_E_TRANSITION"

- "The DET provides services to store default errors"

https://www.autosar.org/bugzilla/show_bug.cgi?id=73570

AUTOSAR

The correct text would be:

- sub chapter is called "7.x Development errors"

- "[SWS_xxx_yyyyy]

In case development error detection is enabled for the xxxx module: The xxxx
module shall check APl parameters for validity and report detected development
errors to the DET. ()"

- "[SWS_xxx_yyyyy]

If development error detection is enabled: the function shall check that the service
xxx_Init was previously called. If the check fails, the function shall raise the
development error XXX_E_NOT_INITIALIZED otherwise (if DET is disabled) return
E NOT_OK. ()"

- "In case development errors are enabled,..."

- "module raises the development error XXX_E_TRANSITION"

- "The DET provides services to store development errors"

Solution for SWS_RTE:

— SWS_RTE —

- Change 4.8 Default errors to 4.8 Development errors

- Change "Errors which can occur at runtime in the RTE are classified as default er-
rors" to "Errors which can occur at runtime in the RTE are classified as development
errors”

- Remove [SWS_Rte 07676]

- Change [SWS_RTE_06611]"If a violation is detected the RTE shall report a default
error to the DET." to "If a violation is detected the RTE shall report a development
error to the DET."

- Change [SWS_Rte_06631]

[SWS_Rte_06631] d The RTE shall use the OS Application Identifier as the Instance
Id to enable the developer to identify in which runtime section of the RTE the error
occurs. This Instance ID is even unique across multi cores and so implicitly allows
the development error to be traced to a specific core. ¢(SRS_BSW_00337)

SRS _Libraries:
- In chapter "3 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

SRS _SPALGeneral:

- In chapter "6.1.1.3.1 [SRS_SPAL_00157] ...": Rename "Development Error Tracer"
to "Default Error Tracer"

- In chapter "6.1.1.4.2 [SRS_SPAL_12448] ...": Rename "Development Error Tracer"

AUTOSAR

to "Default Error Tracer"

SRS _FlashTest:

- In chapter "6.1 Functional Requirements": Rename "Development Error Tracer" to
"Default Error Tracer"

- In chapter "7 References":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_ DevelopmentErrorTracer" to "AU-
TOSAR_SWS DefaultErrorTracer"

SWS_MFXLibrary:
- In chapter "2 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

SWS_MemoryAbstractioninterface:

- In chapter "3.1 Input documents":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS DefaultErrorTracer"

SWS_FlexRayNetworkManagement:

- In chapter "3.3 Related AUTOSAR documents":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS_DefaultErrorTracer"

SWS_CANStateManager:
- In chapter "3.1 Input documents™: Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_ DefaultErrorTracer”

SWS_ PDURouter:
- In chapter "3.1 Input documents": Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_ DefaultErrorTracer”

SWS_ EEPROMDiriver:
- In chapter "3.1 Input documents": Rename "AU-

AUTOSAR

TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_ DefaultErrorTracer"”
—Last change on issue 73570 comment 47—

BW-C-Level:

Application | Specification | Bus
1 1 1

1.38 Specification tem SWS_CAN_00494

Trace References:

none

Content:

If default development error detection for the Can module is enabled

the function Can_SetBaudrate shall raise the error CAN_E_PARAM_CONTROLLER and
return E_NOT_OK if the parameter Controller is out of range.

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:
e RfC #73570: No "default error" in AUTOSAR
Problem description:

The DET was renamed from development error tracer to default error tracer.

This change was most of the time done automatically and unfortunately re-
named "developement error" to "default error”.

"default error" should always be followed by "tracer", otherwise, "development
error" is probably the right term.

This could increase the impact (compared to my selection of impacted docu-
ment, but formally, the configuration parameters *DevErrorDetect are not using the
correct description:

"Switches the Default Error Tracer (Det) detection and notification..."

The parameter switches on/off the developement error detection. The DET
does not need to be detected and can be present even when the parameter is set to
false.

Agreed solution:

https://www.autosar.org/bugzilla/show_bug.cgi?id=73570

AUTOSAR

Rename "default error" to "development error" in all impacted documents, but not
in an automated way (Do not change "default error tracer" to "developement error
tracer"!)

Blueprint/Example:

- sub chapter is now called "7.x Default errors"

- "[SWS_xxx_yyyyy]

In case default error detection is enabled for the xxxx module: The xxxx module
shall check API parameters for validity and report detected errors to the DET. ()"

- "[SWS_xxx_yyyyy]

If default error detection is enabled: the function shall check that the service xxx_Init
was previously called. If the check fails, the function shall raise the default error
XXX_E_NOT_INITIALIZED otherwise (if DET is disabled) return E_NOT_OK. ()"

- "In case default errors are enabled,..."

- "module raises the Default error XXX_E_TRANSITION"

- "The DET provides services to store default errors”

The correct text would be:

- sub chapter is called "7.x Development errors"

- "[SWS_xxx_yyyyy]

In case development error detection is enabled for the xxxx module: The xxxx
module shall check API| parameters for validity and report detected development
errors to the DET. ()"

- "[SWS_xxx_yyyyy]

If development error detection is enabled: the function shall check that the service
xxx_Init was previously called. If the check fails, the function shall raise the
development error XXX_E_NOT _INITIALIZED otherwise (if DET is disabled) return
E_NOT_OK. ()"

- "In case development errors are enabled,..."

- "module raises the development error XXX_E_TRANSITION"

- "The DET provides services to store development errors"

Solution for SWS_RTE:

- SWS_RTE —

- Change 4.8 Default errors to 4.8 Development errors

- Change "Errors which can occur at runtime in the RTE are classified as default er-
rors" to "Errors which can occur at runtime in the RTE are classified as development
errors"

- Remove [SWS_Rte 07676]

- Change [SWS_RTE_06611]"If a violation is detected the RTE shall report a default
error to the DET." to "If a violation is detected the RTE shall report a development

AUTOSAR

error to the DET."

- Change [SWS_Rte_06631]

[SWS_Rte_06631] d The RTE shall use the OS Application Identifier as the Instance
Id to enable the developer to identify in which runtime section of the RTE the error
occurs. This Instance ID is even unique across multi cores and so implicitly allows
the development error to be traced to a specific core. ¢(SRS_BSW_00337)

SRS Libraries:
- In chapter "3 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

SRS _SPALGeneral:

- In chapter "6.1.1.3.1 [SRS_SPAL_00157] ...": Rename "Development Error Tracer"
to "Default Error Tracer"

- In chapter "6.1.1.4.2 [SRS_SPAL_12448] ...": Rename "Development Error Tracer"
to "Default Error Tracer"

SRS FlashTest:

- In chapter "6.1 Functional Requirements": Rename "Development Error Tracer" to
"Default Error Tracer"

- In chapter "7 References":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS_DefaultErrorTracer"

SWS_MFXLibrary:
- In chapter "2 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

SWS_MemoryAbstractioninterface:

- In chapter "3.1 Input documents":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS_DefaultErrorTracer"

SWS_FlexRayNetworkManagement:
- In chapter "3.3 Related AUTOSAR documents":

AUTOSAR

Rename "Development Error Tracer" to "Default Error Tracer"
Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS DefaultErrorTracer"

SWS_CANStateManager:
- In chapter "3.1 Input documents": Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_DefaultErrorTracer”

SWS_ PDURouter:
- In chapter "3.1 Input documents": Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_ DefaultErrorTracer”

SWS_EEPROMDriver:

- In chapter "3.1 Input documents": Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_ DefaultErrorTracer”
—Last change on issue 73570 comment 47—

BW-C-Level:

Application | Specification | Bus
1 1 1

1.39 Specification tem SWS_CAN_00504

Trace References:
none
Content:

If the trigger transmit API is enabled for the hardware object, Can_Write() shall interpret
a null pointer as SDU (Can_PduType.Can_SduPtrType = NULL) as request for using the
trigger transmit interface. If so and the hardware object is free, Can_Write() shall call Can
If_TriggerTransmit() with the maximum size of the message buffer to acquire the PDU’s
data.

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:
e RfC #70123: [Can] TriggerTransmit does not work for dynamic length PDUs

Problem description:

https://www.autosar.org/bugzilla/show_bug.cgi?id=70123

AUTOSAR

The CAN driver was inadvertently not addressed by RfC # 68517. The API de-
scription already implies the correct behavior, but it should be clearly stated, that
TriggerTransmit needs to set the SdulLength in the TriggerTransmit call to the size of
the CAN hardware buffer.

Agreed solution:

Change SWS_CAN_00504 to:

/If the trigger transmit API is enabled for the hardware object, Can_Write() shall
interpret a null pointer as SDU (Can_PduType.Can_SduPtrType = NULL) as
request for using the trigger transmit interface. If so and the hardware object is
free, Can_Write() shall call Canlf_TriggerTransmit() with the maximum size of the
message buffer to acquire the PDUs data./

Add a note:

Using the message buffer size allows for late changes of the PDU size, e.g. if a
container PDU receives another contained PDU between the call to Can_Write()
and the call of Canlf_TriggerTransmit().

—Last change on issue 70123 comment 21—

BW-C-Level:

Application | Specification | Bus
1 1 1

1.40 Specification ltem SWS_CAN_00505

Trace References:

none

Content:

If default development error detection for CanDrv is enabled: Can_Write() shall raise
CAN_E_PARAM_POINTER and shall return CANE_NOT_OK if the trigger transmit API
is disabled for this hardware object (CanTriggerTransmitEnable = FALSE) and the SDU
pointer inside Pdulnfo is a null pointer.

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:

RfC #73570: No "default error" in AUTOSAR
Problem description:

The DET was renamed from development error tracer to default error tracer.

https://www.autosar.org/bugzilla/show_bug.cgi?id=73570

AUTOSAR

This change was most of the time done automatically and unfortunately re-
named "developement error" to "default error".

"default error" should always be followed by "tracer", otherwise, "development
error" is probably the right term.

This could increase the impact (compared to my selection of impacted docu-
ment, but formally, the configuration parameters *DevErrorDetect are not using the
correct description:

"Switches the Default Error Tracer (Det) detection and notification..."

The parameter switches on/off the developement error detection. The DET
does not need to be detected and can be present even when the parameter is set to
false.

Agreed solution:

Rename "default error" to "development error" in all impacted documents, but not
in an automated way (Do not change "default error tracer" to "developement error
tracer"!)

Blueprint/Example:

- sub chapter is now called "7.x Default errors"

- "[SWS_xxx_yyyyy]

In case default error detection is enabled for the xxxx module: The xxxx module
shall check APl parameters for validity and report detected errors to the DET. ()"

- "[SWS_xxx_yyyyy]

If default error detection is enabled: the function shall check that the service xxx_Init
was previously called. If the check fails, the function shall raise the default error
XXX_E_NOT_INITIALIZED otherwise (if DET is disabled) return E_NOT_OK. ()"

- "In case default errors are enabled,..."

- "module raises the Default error XXX_E_TRANSITION"

- "The DET provides services to store default errors"

The correct text would be:

- sub chapter is called "7.x Development errors"

- "[SWS_xxx_yyyyy]

In case development error detection is enabled for the xxxx module: The xxxx
module shall check APl parameters for validity and report detected development
errors to the DET. ()"

- "[SWS_xxx_yyyyy]

If development error detection is enabled: the function shall check that the service

AUTOSAR

xxx_Init was previously called. If the check fails, the function shall raise the
development error XXX_E_NOT_INITIALIZED otherwise (if DET is disabled) return
E NOT_OK. ()"

- "In case development errors are enabled,..."

- "module raises the development error XXX_E_TRANSITION"

- "The DET provides services to store development errors"

Solution for SWS_RTE:

- SWS_RTE —

- Change 4.8 Default errors to 4.8 Development errors

- Change "Errors which can occur at runtime in the RTE are classified as default er-
rors" to "Errors which can occur at runtime in the RTE are classified as development
errors"

- Remove [SWS_Rte 07676]

- Change [SWS_RTE_06611]"If a violation is detected the RTE shall report a default
error to the DET." to "If a violation is detected the RTE shall report a development
error to the DET."

- Change [SWS_Rte_06631]

[SWS_Rte_06631] d The RTE shall use the OS Application Identifier as the Instance
Id to enable the developer to identify in which runtime section of the RTE the error
occurs. This Instance ID is even unique across multi cores and so implicitly allows
the development error to be traced to a specific core. ¢(SRS_BSW_00337)

SRS Libraries:
- In chapter "3 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

SRS_SPALGeneral:

- In chapter "6.1.1.3.1 [SRS_SPAL_00157] ...": Rename "Development Error Tracer"
to "Default Error Tracer"

- In chapter "6.1.1.4.2 [SRS_SPAL_12448] ...": Rename "Development Error Tracer"
to "Default Error Tracer"

SRS _FlashTest:

- In chapter "6.1 Functional Requirements": Rename "Development Error Tracer" to
"Default Error Tracer"

- In chapter "7 References":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS DefaultErrorTracer"

AUTOSAR

SWS_MFXLibrary:
- In chapter "2 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

SWS_MemoryAbstractioninterface:

- In chapter "3.1 Input documents":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS_DefaultErrorTracer"

SWS_FlexRayNetworkManagement:

- In chapter "3.3 Related AUTOSAR documents™:

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS_DefaultErrorTracer”

SWS_CANStateManager:
- In chapter "3.1 Input documents™: Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_ DefaultErrorTracer”

SWS_ PDURouter:
- In chapter "3.1 Input documents™: Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_DefaultErrorTracer”

SWS_EEPROMDriver:
- In chapter "3.1 Input documents": Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_ DefaultErrorTracer”
—Last change on issue 73570 comment 47—
BW-C-Level:

Application | Specification | Bus

1 1 1

e RfC #77952: [Can][Canlf] Incompatible return types of Can and CanTrcv

Problem description:

https://www.autosar.org/bugzilla/show_bug.cgi?id=77952

AUTOSAR

While CanTrcv only uses Std_ReturnType, Can uses Can_ReturnType in many
places, even when only CAN_OK and CAN_NOT_OK are available.

This leads to complicated code in Canlf, because it needs to implement sepa-
rate checks for return values from CanTrcv and Can and cannot just combine the
results.

Agreed solution:

=== CanDrv ===

Change of SWS_Can_00039 Can_ReturnType:

* type change from enumeration to extra_litaral

* Remove range element CAN_OK

* Remove range element CAN_NOT_OK

* Assign value "0x02" to range element "CAN_BUSY"

* Description: Overlayed return value of Std_ReturnType for CAN driver API
Can_Write().

~SWS_ Can 00230 Can_SetControllerMode

Syntax: Std_ReturnType Can_SetControllerMode(uint8 Controller,
Can_StateTransitionType Transition)

Return value:

Std_ReturnType

E_OK: request accepted

E_NOT_OK: request not accepted, a development error occurred

~SWS_Can_00360 Can_CheckWakeup

Syntax: Std_ReturnType Can_CheckWakeup(uint8 Controller)
Return value:

Std_ReturnType

E_OK: API call has been accepted

E_NOT_OK: API call has not been accepted

~SWS Can_00233 Can_Write

Syntax: Std_ReturnType Can_Write(Can_HwHandleType Hth, const
Can_PduType* Pdulnfo)

Return value:

Std_ReturnType

E_OK: Write command has been accepted

E_NOT_OK: development error occurred

CAN_BUSY: No TX hardware buffer available or pre-emptive call of Can_Write that
can’t be implemented re-entrant (see Can_ReturnType)

AUTOSAR

Rename CAN_OK to E_OK and CAN_NOT_OK to E_NOT_OK:
~SWS_ Can_00048
~SWS_ Can_00089
7.11.5 Return Values
~SWS Can 00198
~SWS Can_00199
~SWS_Can_00200
~SWS Can_00216
~SWS_Can_00217
~SWS Can 00218
~SWS_ CAN_00219
~SWS_CAN_00505
~SWS_CAN_00506
~SWS_Can_00212

=== Canlf ===

Adapt APl Can_Write() to new signature:

* Figure 7.10 "Transmission request with multiple CAN Drivers - simplified"
* Figure 9.1 "Transmission request with a single CAN Driver"

* Figure 9.2 "Transmission request with multiple CAN Drivers"

* Figure 9.5 "Transmit confirmation with buffering"

* Figure 9.6 "Transmit Cancelation”

* Figure 9.7 "Trigger Transmit Request"

Adapt API Can_SetControllerMode() to new signature:
* Figure 9.11: Start CAN network
* Figure 9.13: BusOff recovery

Figure 9.13: Change typo "Cnange" to "Change"

~SWS_CANIF_00678: If all calls of Can_CheckWakeup() or
CanTrcv_CheckWakeup() return E_NOT_OK to Canlf, then Canlf_CheckWakeup()
shall return E_NOT_OK.

~SWS_CANIF_00720: If at least one function call of Can_CheckWakeup() or
CanTrcv_CheckWakeup() returns E_OK to Canlf, then
Canlf_CheckWakeup() shall return E_OK.

Rename CAN_OK to E_ OK and CAN_NOT_OK to E_NOT_OK:
Note between SWS_CANIF_00162 and SWS_CANIF_00319
Table in chapter 9.7 Trigger Transmit Request

Table in chapter 9.11 Start CAN network

AUTOSAR

=== CanTrcv ===

Adapt API Can_SetControllerMode() to new signature:
* 9.3 De-Initialization (SPI Synchronous)

* 9.4 De-Initialization (SPI1 Asynchronous)

=== ECUSM ===

Adapt APl Can_CheckWakeup() to new signature:

* Figure 42 CAN controller wake up by interrupt

* Figure 43 CAN controller or transceiver wake up by polling

=== TTCanlf ===
Adapt APl Can_Write() to new signature:
* Figure 9.1: CAN Interface Time Triggered transmission with Job List

Correct APl Can_TTReceive() which has return void instead of Can_ReturnType
indeed:
* Figure 9.2: CAN Interface Time Triggered reception with Job List

Rename CAN_OK to E_OK and CAN_NOT_OK to E_NOT_OK:
~SWS_TtCanlf_00071

=== TTCanDrv ===

Rename CAN_OK to E_ OK and CAN_NOT_OK to E_NOT_OK:
~SWS TtCan_00014

~SWS_TtCan_00018

~SWS_ TitCan 00022

~SWS_TtCan_00026

~SWS_TtCan_00059

~SWS_ TtCan_00078

~SWS_TtCan_00112

=== XCP ===

Adapt APl Can_Write() to new signature:

* Figure 5: Xcp on Can Transmit

—Last change on issue 77952 comment 22—

BW-C-Level:

Application | Specification | Bus
1 4 1

AUTOSAR

1.41 Specification tem SWS_CAN_00506

Trace References:
SRS BSW 00449, SRS BSW 00357, SRS BSW 00369, SRS _Can 01130
Content:

Can_Write() shall return CANE_NOT_OK if the trigger transmit API (Canlf_TriggerTrans-
mit()) returns E_NOT_OK.

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:
e RfC #77952: [Can][Canlf] Incompatible return types of Can and CanTrcv
Problem description:

While CanTrcv only uses Std ReturnType, Can uses Can_ReturnType in many
places, even when only CAN_OK and CAN_NOT_OK are available.

This leads to complicated code in Canlf, because it needs to implement sepa-
rate checks for return values from CanTrcv and Can and cannot just combine the
results.

Agreed solution:

=== CanDrv ===

Change of SWS_Can_00039 Can_ReturnType:

* type change from enumeration to extra_litaral

* Remove range element CAN_OK

* Remove range element CAN_NOT_OK

* Assign value "0x02" to range element "CAN_BUSY"

* Description: Overlayed return value of Std_ReturnType for CAN driver API
Can_Write().

~SWS Can_00230 Can_SetControllerMode

Syntax: Std_ReturnType Can_SetControllerMode(uint8 Controller,
Can_StateTransitionType Transition)

Return value:

Std_ReturnType

E_OK: request accepted

E_NOT_OK: request not accepted, a development error occurred

~SWS_Can_00360 Can_CheckWakeup
Syntax: Std_ReturnType Can_CheckWakeup(uint8 Controller)

https://www.autosar.org/bugzilla/show_bug.cgi?id=77952

AUTOSAR

Return value:

Std_ReturnType

E_OK: API call has been accepted
E_NOT_OK: API call has not been accepted

~SWS Can_00233 Can_Write

Syntax: Std_ReturnType Can_Write(Can_HwHandleType Hth, const
Can_PduType* Pdulnfo)

Return value:

Std_ReturnType

E_OK: Write command has been accepted

E_NOT_OK: development error occurred

CAN_BUSY: No TX hardware buffer available or pre-emptive call of Can_Write that
can’'t be implemented re-entrant (see Can_ReturnType)

Rename CAN_OK to E_OK and CAN_NOT_OK to E_NOT_OK:
~SWS Can_00048
~SWS_ Can_00089
7.11.5 Return Values
~SWS Can 00198
~SWS Can 00199
~SWS_Can_00200
~SWS Can_00216
~SWS_Can_00217
~SWS_ Can_00218
~SWS_CAN_00219
~SWS_CAN_00505
~SWS_CAN_00506
~SWS_Can_00212

=== Canlf ===

Adapt APl Can_Write() to new signature:

* Figure 7.10 "Transmission request with multiple CAN Drivers - simplified"
* Figure 9.1 "Transmission request with a single CAN Driver"

* Figure 9.2 "Transmission request with multiple CAN Drivers"

* Figure 9.5 "Transmit confirmation with buffering"

* Figure 9.6 "Transmit Cancelation”

* Figure 9.7 "Trigger Transmit Request"

Adapt API Can_SetControllerMode() to new signature:
* Figure 9.11: Start CAN network
* Figure 9.13: BusOff recovery

AUTOSAR

Figure 9.13: Change typo "Cnange" to "Change"

~SWS_CANIF_00678: If all calls of Can_CheckWakeup() or
CanTrcv_CheckWakeup() return E_NOT_OK to Canlf, then Canlf_CheckWakeup()
shall return E_NOT_OK.

~SWS_CANIF_00720: If at least one function call of Can_CheckWakeup() or
CanTrcv_CheckWakeup() returns E_OK to Canlf, then
Canlf_CheckWakeup() shall return E_OK.

Rename CAN_OK to E_OK and CAN_NOT_OK to E_NOT_OK:
Note between SWS_CANIF_00162 and SWS_CANIF_00319
Table in chapter 9.7 Trigger Transmit Request

Table in chapter 9.11 Start CAN network

=== CanTrcv ===

Adapt API Can_SetControllerMode() to new signature:
* 9.3 De-Initialization (SPI Synchronous)

* 9.4 De-Initialization (SP1 Asynchronous)

=== ECUSM ===

Adapt APl Can_CheckWakeup() to new signature:

* Figure 42 CAN controller wake up by interrupt

* Figure 43 CAN controller or transceiver wake up by polling

=== TTCanlf ===
Adapt APl Can_Write() to new signature:
* Figure 9.1: CAN Interface Time Triggered transmission with Job List

Correct APl Can_TTReceive() which has return void instead of Can_ReturnType
indeed:
* Figure 9.2: CAN Interface Time Triggered reception with Job List

Rename CAN_OK to E_ OK and CAN_NOT_OK to E_NOT_OK:
~SWS_TtCanlf 00071

=== [1CanDrv ===

Rename CAN_OK to E_ OK and CAN_NOT_OK to E_NOT_OK:
~SWS_ TtCan_00014

~SWS_ TtCan_00018

~SWS_ TtCan 00022

~SWS_ TtCan 00026

~SWS_TtCan_00059

AUTOSAR

~SWS_TtCan_00078
~SWS TtCan_ 00112

=== XCP ===

Adapt APl Can_Write() to new signature:

* Figure 5: Xcp on Can Transmit

—Last change on issue 77952 comment 22—

BW-C-Level:
Application | Specification | Bus
1 4 1

1.42 Specification ltem SWS_Can_91005

Trace References:
SRS _BSW 00406, SRS _BSW 00416
Content:

If default development error detection for the Can module is enabled: if the module is not
yet initialized, the function Can_GetControllerErrorState shall raise default development
error CAN_E_UNINIT and return E_NOT_OK.

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:
e RfC #73570: No "default error" in AUTOSAR
Problem description:
The DET was renamed from development error tracer to default error tracer.

This change was most of the time done automatically and unfortunately re-
named "developement error" to "default error".

"default error" should always be followed by "tracer", otherwise, "development
error" is probably the right term.

This could increase the impact (compared to my selection of impacted docu-
ment, but formally, the configuration parameters *DevErrorDetect are not using the
correct description:

"Switches the Default Error Tracer (Det) detection and notification..."

The parameter switches on/off the developement error detection. The DET

https://www.autosar.org/bugzilla/show_bug.cgi?id=73570

AUTOSAR

does not need to be detected and can be present even when the parameter is set to
false.

Agreed solution:

Rename "default error" to "development error" in all impacted documents, but not
in an automated way (Do not change "default error tracer" to "developement error
tracer"!)

Blueprint/Example:

- sub chapter is now called "7.x Default errors"

- "[SWS_xxx_yyyyy]

In case default error detection is enabled for the xxxx module: The xxxx module
shall check API parameters for validity and report detected errors to the DET. ()"

- "[SWS_xxx_yyyyy]

If default error detection is enabled: the function shall check that the service xxx_Init
was previously called. If the check fails, the function shall raise the default error
XXX_E_NOT_INITIALIZED otherwise (if DET is disabled) return E_NOT_OK. ()"

- "In case default errors are enabled,..."

- "module raises the Default error XXX_E_TRANSITION"

- "The DET provides services to store default errors”

The correct text would be:

- sub chapter is called "7.x Development errors"

- "[SWS_xxx_yyyyy]

In case development error detection is enabled for the xxxx module: The xxxx
module shall check API| parameters for validity and report detected development
errors to the DET. ()"

- "[SWS_xxx_yyyyy]

If development error detection is enabled: the function shall check that the service
xxx_Init was previously called. If the check fails, the function shall raise the
development error XXX_E_NOT _INITIALIZED otherwise (if DET is disabled) return
E_NOT_OK. ()"

- "In case development errors are enabled,..."

- "module raises the development error XXX_E_TRANSITION"

- "The DET provides services to store development errors"

Solution for SWS_RTE:

- SWS_RTE —

- Change 4.8 Default errors to 4.8 Development errors

- Change "Errors which can occur at runtime in the RTE are classified as default er-
rors" to "Errors which can occur at runtime in the RTE are classified as development

AUTOSAR

errors"

- Remove [SWS_Rte_07676]

- Change [SWS_RTE_06611]"If a violation is detected the RTE shall report a default
error to the DET." to "If a violation is detected the RTE shall report a development
error to the DET."

- Change [SWS_Rte_06631]

[SWS_Rte_06631] d The RTE shall use the OS Application Identifier as the Instance
Id to enable the developer to identify in which runtime section of the RTE the error
occurs. This Instance ID is even unique across multi cores and so implicitly allows
the development error to be traced to a specific core. ¢(SRS_BSW_00337)

SRS _Libraries:
- In chapter "3 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

SRS _SPALGeneral:

- In chapter "6.1.1.3.1 [SRS_SPAL_00157] ...": Rename "Development Error Tracer"
to "Default Error Tracer"

- In chapter "6.1.1.4.2 [SRS_SPAL_12448] ...": Rename "Development Error Tracer"
to "Default Error Tracer"

SRS FlashTest:

- In chapter "6.1 Functional Requirements": Rename "Development Error Tracer" to
"Default Error Tracer"

- In chapter "7 References":

Rename "Development Error Tracer" to "Default Error Tracer"”

Rename "AUTOSAR_SWS_ DevelopmentErrorTracer" to "AU-
TOSAR_SWS DefaultErrorTracer"

SWS_MFXLibrary:
- In chapter "2 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

SWS_MemoryAbstractioninterface:

- In chapter "3.1 Input documents":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS DefaultErrorTracer"

AUTOSAR

SWS_FlexRayNetworkManagement:

- In chapter "3.3 Related AUTOSAR documents™:

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS_DefaultErrorTracer"

SWS_CANStateManager:
- In chapter "3.1 Input documents": Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_ DefaultErrorTracer”

SWS_ PDURouter:
- In chapter "3.1 Input documents": Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer” to "AUTOSAR_SWS_ DefaultErrorTracer”

SWS_ EEPROMDriver:

- In chapter "3.1 Input documents": Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_ DefaultErrorTracer”
—Last change on issue 73570 comment 47—

BW-C-Level:

Application | Specification | Bus
1 1 1

1.43 Specification ltem SWS_Can_91006

Trace References:
SRS _BSW 00323
Content:

If default development error detection for the Can module is enabled: if the parameter
Controllerld is out of range, the function Can_GetControllerErrorState shall raise default
development error CAN_E_PARAM_CONTROLLER and return E_NOT_OK.

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:

e RfC #73570: No "default error" in AUTOSAR

https://www.autosar.org/bugzilla/show_bug.cgi?id=73570

AUTOSAR

Problem description:

The DET was renamed from development error tracer to default error tracer.

This change was most of the time done automatically and unfortunately re-
named "developement error" to "default error".

"default error" should always be followed by "tracer", otherwise, "development
error" is probably the right term.

This could increase the impact (compared to my selection of impacted docu-
ment, but formally, the configuration parameters *DevErrorDetect are not using the
correct description:

"Switches the Default Error Tracer (Det) detection and notification..."

The parameter switches on/off the developement error detection. The DET
does not need to be detected and can be present even when the parameter is set to
false.

Agreed solution:

Rename "default error" to "development error" in all impacted documents, but not
in an automated way (Do not change "default error tracer" to "developement error
tracer"!)

Blueprint/Example:

- sub chapter is now called "7.x Default errors"

- "[SWS_xxx_yyyyy]

In case default error detection is enabled for the xxxx module: The xxxx module
shall check API parameters for validity and report detected errors to the DET. ()"

- "[SWS_xxx_yyyyy]

If default error detection is enabled: the function shall check that the service xxx_Init
was previously called. If the check fails, the function shall raise the default error
XXX_E_NOT_INITIALIZED otherwise (if DET is disabled) return E_NOT_OK. ()"

- "In case default errors are enabled,..."

- "module raises the Default error XXX_E_TRANSITION"

- "The DET provides services to store default errors”

The correct text would be:

- sub chapter is called "7.x Development errors"

- "[SWS_xxx_yyyyy]

In case development error detection is enabled for the xxxx module: The xxxx

AUTOSAR

module shall check API| parameters for validity and report detected development
errors to the DET. ()"

- "[SWS_xxx_yyyyy]

If development error detection is enabled: the function shall check that the service
xxx_Init was previously called. If the check fails, the function shall raise the
development error XXX_E_NOT_INITIALIZED otherwise (if DET is disabled) return
E _NOT_OK. ()"

- "In case development errors are enabled,..."

- "module raises the development error XXX_E_TRANSITION"

- "The DET provides services to store development errors"

Solution for SWS_RTE:

- SWS_RTE —

- Change 4.8 Default errors to 4.8 Development errors

- Change "Errors which can occur at runtime in the RTE are classified as default er-
rors" to "Errors which can occur at runtime in the RTE are classified as development
errors"

- Remove [SWS_Rte _07676]

- Change [SWS_RTE_06611]"If a violation is detected the RTE shall report a default
error to the DET." to "If a violation is detected the RTE shall report a development
error to the DET."

- Change [SWS_Rte_06631]

[SWS_Rte_06631] d The RTE shall use the OS Application Identifier as the Instance
Id to enable the developer to identify in which runtime section of the RTE the error
occurs. This Instance ID is even unique across multi cores and so implicitly allows
the development error to be traced to a specific core. ¢(SRS_BSW_00337)

SRS _Libraries:
- In chapter "3 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

SRS_SPALGeneral:

- In chapter "6.1.1.3.1 [SRS_SPAL_00157] ...": Rename "Development Error Tracer"
to "Default Error Tracer"

- In chapter "6.1.1.4.2 [SRS_SPAL_12448] ...": Rename "Development Error Tracer"
to "Default Error Tracer"

SRS FlashTest:
- In chapter "6.1 Functional Requirements": Rename "Development Error Tracer" to
"Default Error Tracer"

AUTOSAR

- In chapter "7 References":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS_DefaultErrorTracer”

SWS_MFXLibrary:
- In chapter "2 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

SWS_MemoryAbstractioninterface:

- In chapter "3.1 Input documents":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS_DefaultErrorTracer"

SWS_FlexRayNetworkManagement:

- In chapter "3.3 Related AUTOSAR documents":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS DefaultErrorTracer"

SWS_CANStateManager:
- In chapter "3.1 Input documents": Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_ DefaultErrorTracer”

SWS PDURouter:
- In chapter "3.1 Input documents": Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_ DefaultErrorTracer”

SWS_EEPROMDiriver:

- In chapter "3.1 Input documents": Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_ DefaultErrorTracer”
—Last change on issue 73570 comment 47—

BW-C-Level:

Application | Specification | Bus
1 1 1

AUTOSAR

1.44 Specification ltem SWS_Can_91007

Trace References:
SRS BSW 00323
Content:

If default development error detection for the Can module is enabled: if the parameter
ErrorStatePtr is a null pointer, the function Can_GetControllerErrorState shall raise default
development error CAN_E_PARAM_POINTER and return E_NOT_OK.

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:
e RfC #73570: No "default error" in AUTOSAR
Problem description:

The DET was renamed from development error tracer to default error tracer.

This change was most of the time done automatically and unfortunately re-
named "developement error" to "default error".

"default error" should always be followed by "tracer", otherwise, "development
error" is probably the right term.

This could increase the impact (compared to my selection of impacted docu-
ment, but formally, the configuration parameters *DevErrorDetect are not using the
correct description:

"Switches the Default Error Tracer (Det) detection and notification..."

The parameter switches on/off the developement error detection. The DET
does not need to be detected and can be present even when the parameter is set to
false.

Agreed solution:

Rename "default error" to "development error" in all impacted documents, but not
in an automated way (Do not change "default error tracer" to "developement error
tracer"!)

Blueprint/Example:

- sub chapter is now called "7.x Default errors"

- "[SWS_xxx_yyyyy]

In case default error detection is enabled for the xxxx module: The xxxx module
shall check APl parameters for validity and report detected errors to the DET. ()"

https://www.autosar.org/bugzilla/show_bug.cgi?id=73570

AUTOSAR

- "[SWS_xxx_yyyyy]

If default error detection is enabled: the function shall check that the service xxx_Init
was previously called. If the check fails, the function shall raise the default error
XXX_E_NOT_INITIALIZED otherwise (if DET is disabled) return E_NOT_OK. ()"

- "In case default errors are enabled,..."

- "module raises the Default error XXX_E_TRANSITION"

- "The DET provides services to store default errors"

The correct text would be:

- sub chapter is called "7.x Development errors"

- "[SWS_xxx_yyyyy]

In case development error detection is enabled for the xxxx module: The xxxx
module shall check APl parameters for validity and report detected development
errors to the DET. ()"

- "[SWS_xxx_yyyyy]

If development error detection is enabled: the function shall check that the service
xxx_Init was previously called. If the check fails, the function shall raise the
development error XXX_E_NOT_INITIALIZED otherwise (if DET is disabled) return
E_NOT_OK. ()"

- "In case development errors are enabled,..."

- "module raises the development error XXX_E_TRANSITION"

- "The DET provides services to store development errors”

Solution for SWS_RTE:

- SWS_RTE —

- Change 4.8 Default errors to 4.8 Development errors

- Change "Errors which can occur at runtime in the RTE are classified as default er-
rors" to "Errors which can occur at runtime in the RTE are classified as development
errors”

- Remove [SWS_Rte 07676]

- Change [SWS_RTE_06611]"If a violation is detected the RTE shall report a default
error to the DET." to "If a violation is detected the RTE shall report a development
error to the DET."

- Change [SWS_Rte 06631]

[SWS_Rte_06631] d The RTE shall use the OS Application Identifier as the Instance
Id to enable the developer to identify in which runtime section of the RTE the error
occurs. This Instance ID is even unique across multi cores and so implicitly allows
the development error to be traced to a specific core. ¢(SRS_BSW_00337)

SRS _Libraries:

AUTOSAR

- In chapter "3 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

SRS _SPALGeneral:

- In chapter "6.1.1.3.1 [SRS_SPAL_00157] ...": Rename "Development Error Tracer"
to "Default Error Tracer"

- In chapter "6.1.1.4.2 [SRS_SPAL_12448] ...": Rename "Development Error Tracer"
to "Default Error Tracer"

SRS_FlashTest:

- In chapter "6.1 Functional Requirements": Rename "Development Error Tracer" to
"Default Error Tracer"

- In chapter "7 References":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS DefaultErrorTracer"

SWS_MFXLibrary:
- In chapter "2 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

SWS_MemoryAbstractioninterface:

- In chapter "3.1 Input documents":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_ DevelopmentErrorTracer" to "AU-
TOSAR_SWS_DefaultErrorTracer”

SWS_FlexRayNetworkManagement:

- In chapter "3.3 Related AUTOSAR documents™:

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS_DefaultErrorTracer"

SWS_CANStateManager:
- In chapter "3.1 Input documents": Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_ DefaultErrorTracer"”

AUTOSAR

SWS_PDURouter:
- In chapter "3.1 Input documents™: Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_DefaultErrorTracer”

SWS_EEPROMDriver:

- In chapter "3.1 Input documents": Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_DefaultErrorTracer”
—Last change on issue 73570 comment 47—

BW-C-Level:

Application | Specification | Bus
1 1 1

1.45 Specification Iltem SWS_Can_91016

Trace References:

SRS_BSW_00406, SRS_BSW_00416

Content:

If default development error detection for the Can module is enabled:

The function Can_GetControllerMode shall raise the error CAN_E_UNINIT and return
E_NOT_OK if the driver is not yet initialized.

RfCs affecting this spec item between releases 4.3.0 and 4.3.1:
e RfC #73570: No "default error" in AUTOSAR
Problem description:

The DET was renamed from development error tracer to default error tracer.

This change was most of the time done automatically and unfortunately re-
named "developement error" to "default error".

"default error" should always be followed by "tracer", otherwise, "development
error" is probably the right term.

This could increase the impact (compared to my selection of impacted docu-
ment, but formally, the configuration parameters *DevErrorDetect are not using the

https://www.autosar.org/bugzilla/show_bug.cgi?id=73570

AUTOSAR

correct description:
"Switches the Default Error Tracer (Det) detection and notification..."

The parameter switches on/off the developement error detection. The DET
does not need to be detected and can be present even when the parameter is set to
false.

Agreed solution:

Rename "default error" to "development error" in all impacted documents, but not
in an automated way (Do not change "default error tracer" to "developement error
tracer"!)

Blueprint/Example:

- sub chapter is now called "7.x Default errors"

- "[SWS_xxx_yyyyy]

In case default error detection is enabled for the xxxx module: The xxxx module
shall check API parameters for validity and report detected errors to the DET. ()"

- "[SWS_xxx_yyyyy]

If default error detection is enabled: the function shall check that the service xxx_Init
was previously called. If the check fails, the function shall raise the default error
XXX_E_NOT_INITIALIZED otherwise (if DET is disabled) return E_NOT_OK. ()"

- "In case default errors are enabled,..."

- "module raises the Default error XXX_E_TRANSITION"

- "The DET provides services to store default errors"

The correct text would be:

- sub chapter is called "7.x Development errors"

- "[SWS_xxx_yyyyy]

In case development error detection is enabled for the xxxx module: The xxxx
module shall check API| parameters for validity and report detected development
errors to the DET. ()"

- "[SWS_xxx_yyyyy]

If development error detection is enabled: the function shall check that the service
xxx_Init was previously called. If the check fails, the function shall raise the
development error XXX_E_NOT_INITIALIZED otherwise (if DET is disabled) return
E NOT_OK. ()"

- "In case development errors are enabled,..."

- "module raises the development error XXX_E_TRANSITION"

- "The DET provides services to store development errors"

Solution for SWS_RTE:

AUTOSAR

— SWS_RTE —

- Change 4.8 Default errors to 4.8 Development errors

- Change "Errors which can occur at runtime in the RTE are classified as default er-
rors" to "Errors which can occur at runtime in the RTE are classified as development
errors”

- Remove [SWS_Rte 07676]

- Change [SWS_RTE_06611]"If a violation is detected the RTE shall report a default
error to the DET." to "If a violation is detected the RTE shall report a development
error to the DET."

- Change [SWS_Rte 06631]

[SWS_Rte_06631] d The RTE shall use the OS Application Identifier as the Instance
Id to enable the developer to identify in which runtime section of the RTE the error
occurs. This Instance ID is even unique across multi cores and so implicitly allows
the development error to be traced to a specific core. ¢(SRS_BSW_00337)

SRS Libraries:
- In chapter "3 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

SRS_SPALGeneral:

- In chapter "6.1.1.3.1 [SRS_SPAL_00157] ...": Rename "Development Error Tracer"
to "Default Error Tracer"

- In chapter "6.1.1.4.2 [SRS_SPAL_12448] ...": Rename "Development Error Tracer"
to "Default Error Tracer"

SRS FlashTest:

- In chapter "6.1 Functional Requirements": Rename "Development Error Tracer" to
"Default Error Tracer"

- In chapter "7 References":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS DefaultErrorTracer"

SWS_MFXLibrary:
- In chapter "2 Acronyms and abbreviations": Rename "Development Error Tracer"
to "Default Error Tracer"

SWS_MemoryAbstractioninterface:

AUTOSAR

- In chapter "3.1 Input documents":

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS_DefaultErrorTracer”

SWS_FlexRayNetworkManagement:

- In chapter "3.3 Related AUTOSAR documents™:

Rename "Development Error Tracer" to "Default Error Tracer"

Rename "AUTOSAR_SWS_DevelopmentErrorTracer" to "AU-
TOSAR_SWS_DefaultErrorTracer"

SWS_CANStateManager:
- In chapter "3.1 Input documents": Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_ DefaultErrorTracer"”

SWS_PDURouter:
- In chapter "3.1 Input documents": Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_ DefaultErrorTracer"”

SWS_EEPROMDiriver:

- In chapter "3.1 Input documents”: Rename "AU-
TOSAR_SWS_DevelopmentErrorTracer" to "AUTOSAR_SWS_ DefaultErrorTracer"”
—Last change on issue 73570 comment 47—

BW-C-Level:

Application | Specification | Bus
1 1 1

	1 SWS_CANDriver
	1.1 Specification Item ECUC_Can_00317
	1.2 Specification Item ECUC_Can_00318
	1.3 Specification Item ECUC_Can_00324
	1.4 Specification Item ECUC_Can_00490
	1.5 Specification Item SWS_Can_00031
	1.6 Specification Item SWS_Can_00039
	1.7 Specification Item SWS_Can_00048
	1.8 Specification Item SWS_Can_00089
	1.9 Specification Item SWS_Can_00091
	1.10 Specification Item SWS_Can_00108
	1.11 Specification Item SWS_Can_00174
	1.12 Specification Item SWS_Can_00177
	1.13 Specification Item SWS_Can_00198
	1.14 Specification Item SWS_Can_00199
	1.15 Specification Item SWS_Can_00200
	1.16 Specification Item SWS_Can_00205
	1.17 Specification Item SWS_Can_00206
	1.18 Specification Item SWS_Can_00209
	1.19 Specification Item SWS_Can_00210
	1.20 Specification Item SWS_Can_00212
	1.21 Specification Item SWS_Can_00216
	1.22 Specification Item SWS_Can_00217
	1.23 Specification Item SWS_Can_00218
	1.24 Specification Item SWS_CAN_00219
	1.25 Specification Item SWS_Can_00222
	1.26 Specification Item SWS_Can_00230
	1.27 Specification Item SWS_Can_00233
	1.28 Specification Item SWS_Can_00234
	1.29 Specification Item SWS_Can_00360
	1.30 Specification Item SWS_Can_00362
	1.31 Specification Item SWS_Can_00363
	1.32 Specification Item SWS_Can_00395
	1.33 Specification Item SWS_Can_00408
	1.34 Specification Item SWS_Can_00416
	1.35 Specification Item SWS_CAN_00475
	1.36 Specification Item SWS_CAN_00492
	1.37 Specification Item SWS_CAN_00493
	1.38 Specification Item SWS_CAN_00494
	1.39 Specification Item SWS_CAN_00504
	1.40 Specification Item SWS_CAN_00505
	1.41 Specification Item SWS_CAN_00506
	1.42 Specification Item SWS_Can_91005
	1.43 Specification Item SWS_Can_91006
	1.44 Specification Item SWS_Can_91007
	1.45 Specification Item SWS_Can_91016

