

Document Title	Explanation of Application In- terfaces of the Powertrain Do-	
	main	
Document Owner	AUTOSAR	
Document Responsibility	AUTOSAR	
Document Identification No	269	
Document Classification	Auxiliary	

Document Status	Final
Part of AUTOSAR Standard	Classic Platform
Part of Standard Release	4.3.0

Document Change History			
Date	Release	Changed by	Change Description
2016-11-30	4.3.0	AUTOSAR Re- lease Man- agement	 Chapters "Terminology – Torque within the Powertrain Domain" and "Overview of AUTOSAR torque ap- plication interfaces" updated by new torque signals requested by WP-I- TRSM. Update Chapter "Appendix: Mapping Ports to Display Names - Powertrain Domain" according Sensor/Actuator Pattern Definitions. Keep elements from earlier AUTOSAR Releases in- side.
2015-07-31	4.2.2	AUTOSAR Release Management	 Chapter "Timing and Accuracy Re- quirements to Torque Signals" and related figure removed and moved into description of related Interfaces in AI-Tool
2014-10-31	4.2.1	AUTOSAR Release Management	 Chapter "Sensor/Actuator Design Pattern" moved to new document "AIDesignPatternsCatalogue" Integrate new interfaces / update ex- isting interfaces for network repre- sentation of engine & transmission interfaces

Document Change History			
Date	Release	Changed by	Change Description
2013-10-31	4.1.2	AUTOSAR Release Management	 Updated/Rework of Chapter "Sensor/Actuator Design Pattern" Update of Chapter "Appendix: Mapping Ports to Display Names - Powertrain Domain" according to changes in application interfaces model or patterns
2013-03-15	4.1.1	AUTOSAR Administration	 New: chapter describing Sensor Actuator Design Pattern Update w.r.t. to obsolete names etc. according to changes in AISpecification etc.
2011-12-22	4.0.3	AUTOSAR Administration	 Splitting of document: Topic of Measurement and Calibration moved to new document TR_AIMeasurementCalibrationDiag nostics_537 Update w.r.t. to names etc. accord- ing to changes in AISpecification
2010-09-30	3.1.5	AUTOSAR Administration	 Display names made consistent to AISpecification Rule MCM390 added: Suffix should not exceed 3 char
2010-02-02	3.1.4	AUTOSAR Administration	 Added: overview figures of different torque interfaces New: chapter about modeling aspects and automatic generation of display names New: Mapping Ports to Display Names Legal disclaimer revised
2008-08-13	3.1.1	AUTOSAR Administration	Legal disclaimer revised
2007-12-21	3.0.1	AUTOSAR Administration	 Initial Release

Disclaimer

This specification and the material contained in it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the companies that have contributed to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types of Intellectual Property Rights. The commercial exploitation of the material contained in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form or by any means, for informational purposes only. For any other purpose, no part of the specification may be utilized or reproduced, in any form or by any means, without permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only. They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR specifications may contain exemplary items (exemplary reference models, "use cases", and/or references to exemplary technical solutions, devices, processes or software).

Any such exemplary items are contained in the specifications for illustration purposes only, and they themselves are not part of the AUTOSAR Standard. Neither their presence in such specifications, nor any later documentation of AUTOSAR conformance of products actually implementing such exemplary items, imply that intellectual property rights covering such exemplary items are licensed under the same rules as applicable to the AUTOSAR Standard.

Table of Contents

1	Purpo	se of this Document	5
2	Refere	ences	6
3	Descr	iption of Terms and Concepts	7
4	3.1 3.2 3.3 3.4 3.5 Archite	Abbreviations Terminology – Torque within the Powertrain Domain Terminology – Fast and Slow Torque Requests Typical combinations of signals for transmission shift intervention Overview of AUTOSAR torque application interfaces	7 7 8 10 .12
' 5	Descr	intion of Exemplary Software Components	10
5	5.1 5.2 5.3 5.3.1 5.3.2 5.3.3 5.4 5.4.1 5.4.2 5.4.3 5.4.4 5.5	Powertrain Coordinator – PTC (PtCoorr) Transmission System (Trsm) Combustion Engine (CmbEng) Engine Speed and Position (EngSpdAndPosn) Engine Torque Mode Management (EngTqModMngt) Combustion Engine: Miscellaneous (CmbEngMisc) Vehicle Motion relevant for Powertrain (VehMtnForPt) Driver Request (DrvReq) Accelerator Pedal Position (AccrPedIPosn) Safety Vehicle Speed Limitation (VehSpdLimnForSfty) Vehicle Motion (Powertrain): Miscellaneous (VehMtnForPtMisc) Powertrain: Miscellaneous (PtMisc)	19 19 20 21 21 21 21 21 21 21 22 22 22
0	6.1 6.2 6.3 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.3.6 power	Differences between SW-Cs and ECUs Functional safety Powertrain Application Interfaces - Decisions / Assumptions Scope PTC Composition (PtCoorr) Definition of overboost Coordination at the vehicle level PTC Arbitration between Driver and Chassis torque requests Assumptions on modeling style and naming aspects specific for train domain	23 23 23 23 23 23 23 23 24 24 24
7	Apper	ndix: Mapping Ports to Display Names - Powertrain Domain	29

1 Purpose of this Document

This document explains design decisions that lead to the standardized applications interfaces relevant to the Powertrain Domain.

The sensor actuator pattern described in this document is not specific to the powertrain domain but can be applied to other domains too, e.g. the chassis domain.

<u>NOTE:</u> If any information in diagrams or text (or conclusions drawn from them) conflict with the information in [2] or [3] or [3b] and this is not explicitly mentioned the information in [2] or [3] or [3b], resp., should be regarded as definitive.

2 References

- [1] SW-C and System Modeling Guide AUTOSAR_TR_SW-CModelingGuide
- [2] Table of Application Interfaces AUTOSAR_MOD_AITable
- [3] XML Specification of Application Interfaces AUTOSAR_MOD_AISpecification
- [3b] Application Interfaces Examples AUTOSAR_MOD_AISpecificationExamples
- [4] Explanation of Application Interfaces of the Chassis Domain AUTOSAR_EXP_AIChassisExplanation

[5] Unique Names for Documentation, Measurement and Calibration: Modeling and Naming Aspects including Automatic Generation AUTOSAR_TR_AIMeasurementCalibrationDiagnostics

- [6] Software Component Template AUTOSAR_TPS_SoftwareComponentTemplate
- [7] Standardization Template AUTOSAR_TPS_StandardizationTemplate
- [8] ANTLR parser generator V3 http://www.antlr.org
- [9] Virtual Function Bus AUTOSAR_EXP_VFB
- [10] Glossary AUTOSAR_TR_Glossary
- [11] AUTOSAR TR AIDesignPatternCatalogue AUTOSAR_TR_AIDesignPatternCatalogue

3 Description of Terms and Concepts

3.1 Abbreviations

For abbreviations used in this document please refer to the keyword list in [2] (as .xls) and in [3] (as .arxml).

Additionally please also refer to [10] for explanation of commonly used terms and abbreviations within AUTOSAR.

3.2 Terminology – Torque within the Powertrain Domain

Sign definition for torque at clutch / torque at wheels:

Positive value means that torque is transmitted from the engine to the drivetrain / from the powertrain to the wheels.

Negative value means that torque is transmitted from the drivetrain to the engine / from the wheels to the powertrain.

Zero means that no torque is transmitted between engine and drivetrain / between wheels and powertrain.

Ancillary torque losses:

Ancillary torque losses are losses with influence on torque at clutch caused by alternator, airconditioning, power steering etc..

Engine Clutch:

For Hybrid Systems an additional clutch can be present between combustion engine and electric machine.

3.3 Terminology – Fast and Slow Torque Requests

Many torque request interfaces have the additional descriptors "Fast" or "Slow". These descriptors are relevant to gasoline spark ignition engines, whose torque output can be modified by means of throttle angle (and hence air mass) and ignition timing. In general, the torque output responds slowly to changes in throttle angle due to fluid dynamics in the manifold and cylinder head. The reaction to ignition timing changes is almost instantaneous, especially at higher engine speeds.

"Fast" refers to the "immediate" / "instant" torque request, typically achieved by ignition timing.

"Slow" refers to the longer term or "torque reserve" request, usually the input to throttle control.

Note that a gasoline engine running at optimum ignition timing cannot **increase** torque quickly as the throttle is the only means for the increase. However, preemptively opening the throttle and running with retarded ignition to maintain the the original (lower) torque allows the torque to be increased quickly by ignition a short time in the future. This operation is usually achieved by setting the "Slow" torque request to be greater than the "Fast" torque request to provide this "torque reserve", allowing the torque to be rapidly increased by increasing the "Fast" request.

Figure 1: The Torque Reserve concept, with "Fast" and "Slow" torque requests

For conventional diesel engines only the fast torque interfaces are relevant. However, future diesel engines could have the possibility to use both fast and slow torque interfaces.

3.4 Typical combinations of signals for transmission shift intervention

Basically there are two different possibilities to transmit a transmission torque at clutch request:

A) Torque request via <u>one</u> torque signal, which can transmit increasing and reducing torque requests *Transmission: Torque at Clutch Requested by Transmission for Shift Intervention on Fast Path*

in combination with a Request for realization type, which defines if the request on the torque signal is an increasing or a reducing one, an absolute or a relative one *Transmission: Request for Realisation Type of Torque at Clutch Requested by Transmission for Shift Intervention on Fast Path*

or

B) Request via two torque signals and one signal for realization type:

- One torque signal defines the "maximum torque", which reflects the upper limit of the allowed torque. This is used to request a reducing torque intervention, *Transmission: Maximum Torque at Clutch Requested by Transmission for Shift Intervention on Fast Path,*
- The other torque signal defines the "minimum torque", which reflects the lower limit of the requested torque. This is used to request an increasing torque intervention, *Transmission: Minimum Torque at Clutch Requested by Transmission for Shift Intervention on Fast Path*,
- The signal for realization type defines, if the request is an absolute one (request to decrease/increase torque TONm) or a relative one (request to decrease/increase torque BYNm), *Transmission: Request for Realization Type of Max and Min Torque at Clutch Requested by Transmission for Shift Intervention on Fast and Slow Path.*

Both possibilities may be accompanied project specific by extended or more detailed requirements as, for example,

- Intervention mode, which requests that the intervention has to be realized by ignition angle and/or air and/or cylinder cut off.
- A torque reserve (which has no influence to "torque at clutch") and its request for realization type. These two signals prepare the possibility for an upcoming fast increasing torque intervention on gasoline engines.

Request for shift intervention concerning possibility A:

Request for a torque reserve as add on for possibilities A and B:

Transmission: Torque Reserve at Clutch Requested by Transmission

Transmission: Realization Type of Torque Reserve at Clutch Requested by Transmission Predicted non-binding information about an upcoming fast increasing engine intervention. Initiates a torque reserve. Request for realisation type of the torque reserve: absolute / relative

Signals must not initiate a real torque modification! Consideration has to be neutral for torque at clutch!

3.5 Overview of AUTOSAR torque application interfaces

Legend within Figure 2:

<ShortName of Powertrain Port>/ <ShortName of Chassis Port>] <LongName of Port>

Note: Obsolete Interfaces from before AUTOSAR 4.1.1 are still included.

Crankshaft torque	view of AUTOSAR	crankshaftto	rque interfaces
Upper limit of data type			
EngTqCrksftMaxOptmCdn/EngTqCr Maximum Engine Torque at Crankshaft Engine: Maximum Torque at Crankshaft EngTqCrksftMax Maximum Engine Torque at Crankshaft	ksftMaxSpdCur at Optimum Conditions at Current Speed	Aaximum air mass at current speed	Torque intervention EngTqCrksftMaxProtn ▼Maximum Allowed Torque at Crankshaft for Engine Protection
EngTqCrksftMaxFast Maximum Engine Torque at Crankshaft Fa	astPath	Setpoint	PtTqCrksftReqSlow Crankshaft Torgue Request to be realized by the Slow Path of Powertrain
EngTqCrksft Engine Torque at Crankshaft	rrent parameters (spark retard, lambda etc.) Maximun spark reta	n Current air mass and speed	PtTqCrksftReqFast CrankshaftTorque Request to be realized by the Fast Path of Powertrain
EngTqCrksftMinFast	-4 D-44	Setpoint	
0 EngTqCrksftMinBasc Minimum Engine Torque at Crankshaft for Indicated torque EngTqCrksftMinWoCutOff Minimum Engine Torque at Crankshaft for F EngTqCrksftMin Minimum Engine Torque at Crankshaft co	Powertrain realized by Slow Path ² owertrain realized by Slow and F nsidering all engine losses	Maximum spark retard	Minimum air mass at current speed
			Additional interfaces
			PrigesvEng
			Torque Reserve Request from Powertrain to Engine
			Torque Reserve Request from Powertrain to Engine EngTqResvPt Torque Reserve Request from Engine to Powertrain

Figure 2: Overview of AUTOSAR crankshaft torque interfaces

Overview of AUTOSAR torque at clutch interfaces (1)

Figure 3: Overview of AUTOSAR torque at clutch interfaces (1)

Figure 4: Overview of AUTOSAR torque at clutch interfaces (2)

Figure 5: Overview of AUTOSAR torque loss interfaces

Upper limit of data type	
PtTqWhIMax / PtTqTotAvIMaxAtWhIs Powertrain: Maximum Possible Total Torque at Wheels PtTqWhIMaxDrv Maximum Possible Total Torque at Wheels at Optimum Conditions Delivered by Powertrain for Driver (maximumair mass at current speed) VICTqWhIPtMax / PtTqTotMaxAtWhIsReqdByVic Maximum Torque at Wheelby Vehicle Longitudinal Control (VLC) DrvReqTqWhISlow Driver Request of Wheel Torque (Slow Torque Path) PtTqWhI/PtTqTotActAtWhis Total wheel torque provided by powertrain DrvReqTqWhIFast Total wheel Torque provided by powertrain DrvReqtaWhIFast Torque Maximum Torque at Wheel Torque (Fast Torque Path)	VehTqWhIMaxSttyLinn Safety Torque Limit calculated from the Vehicle's Maximum Speed EscTqWhIPtMaxSlow / PtTqDecAtWhIsReqdByEscSlow Maximum Powertrain Wheel Torque Requested by Electronic Stabilit Control (ESC) Slow Path (also EscTqCluPtMaxSlow exists) EscTqWhIPtMaxFast / PtTqDecAtWhIsReqdByEscFast Maximum Powertrain Wheel Torque Requested by Electronic Stabilit Control (ESC) Fast Path (also EscTqCluPtMaxFast exists) PtTqWhIReqDrvUic / PtTqTotReqdAtWhIsForVIC Powertrain: Total Requested Propulsion Wheel Torque by the Driver or Ve Longitudinal Control (VLC) PtTqWhIReq / PtTqTotReqdAtWhIs
Production of the Powertrain to the Individual Wheels Possible range for driver request PtqWhIMinWoCutOff / PtTqTotAvIMinAtWhIs Minimum Possible Tatal Powertrain Torque at Wheels Without Complete Fuel Cut Off	Powertrain: Total Requested Propulsion Wheel Torque (Driver, VLC, ESF
PtTqWhIMinDrv Minimum Possible Total Torque at Wheels Delivered by Powertrain for Driver (with or without fuel PtTqWhIMin Minimum Available Total Powertrain Torque at Wheels (with fuel cut-off)	cut-off)
VIcTqWhIPtMin / PtTqTotMinAtWhIsReqdByVIc Minimum Torque at Wheel by Vehic <u>le Long</u> itudinal Control (VLC)	EscTqWhIPtMinSlow / PtTqIncAtWhIsReqdByEscSlow Minimum Powertrain Wheel Torque Requested by Electronic Stab Control (ESC) Slow Path (also EscTqCluPtMin exists) EscTqWhIPtMinFast / PtTqIncAtWhIsReqdByEscFast Minimum Powertrain Wheel Torque Requested by Electronic Stab Control (ESC) Fast Path (also EscTqCluPtMin exists)

Figure 6: Overview of AUTOSAR torque at wheel interfaces

4 Architecture Overview

The following figures give an overview of the domain or functional architecture. They not necessarily give a complete picture but show the most relevant interconnections and components.

Figure 7: Overview of Functional Architecture

Figure 8: Detail – Combustion Engine Domain Architecture

Figure 9: Detail – Transmission System Domain Architecture

5 Description of Exemplary Software Components

For being able to use and understand the standardized application interfaces a typical domain architecture was used as basis for demonstrating the signal flow. The components of this example domain architecture are described in the following.

5.1 Powertrain Coordinator – PTC (PtCoorr)

This composition includes all functions that coordinate the operation of the Powertrain, including:

Powertrain operation mode – management of states of all actuators (e.g. combustion engine, clutch(es), transmission, electric motors, etc.), including engine start / stop management (conventional & hybrid Powertrains).

Powertrain torque coordination – Torque coordination at Powertrain (PT) level, torque prioritisation, torque distribution for realisation at at PT level, torque reserve request for the PTC, pre-coordination of driveability functions for hybrids, Powertrain driveability filters, determination of total Powertrain losses for torque calculation, wheel torque calculation (min, max, consolidated), torque at clutch calculation (min, max, consolidated), torque at clutch calculation (min, max, consolidated), transformation of torque set point from wheel torque to torque at clutch, transformation of torque set point from torque at clutch to torque at crankshaft, control/coordination of auxiliary drivers/actuators.

Powertrain speed coordination – Maximum speed limitation coordination (for protection of all PT components from damage from over speed) and coordination of idle speed / engine speed set point requests from all sources, e.g. transmission.

Powertrain ratio coordination – all transmission ratio set point logic. Note that realisation of ratio set point is carried out by transmission system, not PTC.

5.2 Transmission System (Trsm)

This composition includes all functions of the transmission system, including: *Transmission system coordination* – Determines the torque and speed ratio over transmission, converter and differential, including the calculation of torque losses in the transmission system. Coordinates mechanical protection of the Drivetrain (gearbox, driveshafts, etc.), including calculation of torque limitation.

For manual transmission, this function includes the determination of the current gear and clutch status.

Transmission – Management of particular states in the transmission, including shift transition, driving off situation, creeping mode etc.. In case of shift transition, this functionality calculates torque requests to optimise the transition.

Control of transmission actuators to adjust the gear to the target gear (or to adjust the gear ratio to the target gear ratio in case of CVT). Gear ratio means the theoretical / physical ratio belonging to each gear and not any actual measured value. Control of gearbox countershaft (low/higher range) actuators is not included.

Calculates the torque gain of a hydrodynamic converter and the torque required to the converter input side in idle, etc. and controls clutch or converter actuators.

All functionality related to the protection of the transmission, including calculation of torque limitation, measurement or calculation of gearbox oil temperature, etc., and calculation of requests to other systems.

Example of signal flow of gear signals during an single upshift or downshift

Figure 10: Example of signal flow of gear signals during a single upshift or downshift

Drivetrain Torque Distribution (DtTqDibtn) Differential Lock – All functionality related to the differential(s), which manage the torgue distribution between left and right wheels, for example locking of the differential. Does not include the calculation of the distribution set point.

Drivetrain Torque Distribution (DtTqDibtn) Transfer Case - All functionality related to the transfer case, which manages the torque distribution between front and rear wheels. Does not include the calculation of the distribution set point.

Drivetrain Torque Distribution (DtTqDibtn) Torque vectoring axle transmission - All functionality related to active distribution of powertrain torque to all four wheels individually. Does not include the calculation of the distribution set point.

For additional information on Drivetrain Torque Distribution (DtTqDibtn) please also refer to [4].

5.3 Combustion Engine (CmbEng)

This composition includes all functions directly related to the operation and control of the vehicle's combustion engine. The following sections, 5.3.1 to 5.3.3 inclusive, define the components as a result of Combustion Engine functionality decomposition agreed to date.

5.3.1 Engine Speed and Position (EngSpdAndPosn)

Functions that provide all parameters linked to engine shaft position and speed, including the synchronisation on between crankshaft and camshaft. 20 of 39

Crankshaft and camshaft signal acquisition.

Calculation of the engine position.

Calculation of the relative camshaft position for systems with variable valve timing and/or lift.

Related diagnosis and plausibility checks.

5.3.2 Engine Torque Mode Management (EngTqModMngt)

Includes calculation of engine torque set point, realisation of that set point (coordination of air / fuel / ignition, etc.), determination of consolidated engine torque, control of engine speed (idle / off-idle / limitation), and management of engine modes (including overall mode, modes for realisation of engine start & stop, and combustion modes).

5.3.3 Combustion Engine: Miscellaneous (CmbEngMisc)

Combustion Engine Misc gathers together miscellaneous engine interfaces. In general these are common data required for correct operation of the engine (engine temperature, ambient air pressure and battery voltage) or required for fail-safe actions (crash status). The way in which these interfaces are used is not standardised In future AUTOSAR releases, it is likely that these interfaces may be moved to different (more appropriate) provider or receiver components / compositions.

5.4 Vehicle Motion relevant for Powertrain (VehMtnForPt)

This composition includes Powertrain functions related to vehicle motion. The following sections, 5.4.1 to 5.4.3 inclusive, define the components that have so far been agreed as part of this composition.

5.4.1 Driver Request (DrvReq)

Driver-specific conversion of accelerator pedal position to requested torque: determines the driver request related to the motion of the vehicle. For longitudinal motion, this functionality interprets the driver request as a torque request.

5.4.2 Accelerator Pedal Position (AccrPedIPosn)

The component calculates a percentage from the acquired position of the sensor, and contains plausibility checks to ensure the information. Kick-down detection is included in this component.

5.4.3 Safety Vehicle Speed Limitation (VehSpdLimnForSfty)

Hard limitation of vehicle speed by engine torque reduction, without any comfort functionality.

5.4.4 Vehicle Motion (Powertrain): Miscellaneous (VehMtnForPtMisc)

VehMtnForPtMisc gathers together miscellaneous interfaces in the context of vehicle motion powertrain. The way in which these interfaces are used is not standardised. In future AUTOSAR releases, it is likely that these interfaces may be moved to different (more appropriate) provider or receiver components / compositions. It is even not excluded that they are moved to components that already exist.

VehMtnForPtMisc e.g. is used to close open interfaces in the case that it is committed that some component within vehicle motion powertrain will request or provide it but it is not yet decided which component or the component is missing.

5.5 Powertrain: Miscellaneous (PtMisc)

PtMisc gathers together miscellaneous powertrain interfaces. The way in which these interfaces are used is not standardised. In future AUTOSAR releases, it is likely that these interfaces may be moved to different (more appropriate) provider or receiver components / compositions. It is even not excluded that they are moved to components that already exist.

PtMisc e.g. is used to close open interfaces in the case that it is committed that some component within powertrain will request or provide it but it is not yet decided which component or the component is missing.

6 Additional Information

6.1 Differences between SW-Cs and ECUs

The SW components defined in chapter 4 are not to be confused with an ECU's functionalities.

For example, a combustion engine control ECU may contain the Combustion Engine SW-C plus other SW-Cs.

6.2 Functional safety

Many Powertrain signals are safety-relevant, therefore

- The AUTOSAR RTE will provide reliable communication for these signals at the low level, and
- Diagnostics and safety concepts for these signals must be applied at the higher, functional level.

AUTOSAR does not provide a Safety Concept for Powertrain systems. This must be done at the project level. This means that the specified interfaces must be checked to fulfill the safety requirements on each specific project.

6.3 Powertrain Application Interfaces - Decisions / Assumptions

6.3.1 Scope

In this document only passenger cars are considered.

6.3.2 PTC Composition (PtCoorr)

The PTC is not an atomic AUTOSAR SW-Component. In fact its functionalities should be separated, into several sub-components. These sub-components will communicate with each other and with AUTOSAR SW-Components outside the PTC. The interfaces between the sub-components are not in the current scope, which is restricted to the definition of main interfaces between the non-PTC components and the PTC sub-components.

6.3.3 Definition of overboost

Overboost is a state in which the maximum torque which the combustion engine can deliver is increased for a limited period of time. Depending on the engine type, this could be realised, for example, as an increase in boost pressure on a turbocharged engine.

6.3.4 Coordination at the vehicle level

Coordination of vehicle energy (mechanical / electrical / thermal), vehicle operation modes, vehicle personalisation, etc., should be done at the vehicle level. This is not in the scope of the Powertrain Application Interfaces.

The composition VehMtnForPtMisc was added to [2] as an interim solution for some vehicle level issues relevant to the powertrain domain.

6.3.5 PTC Arbitration between Driver and Chassis torque requests

Figure 11 and 12, unterhalb, shows how the VLC and Stability Control torques requests could be arbitrated with the Driver Request. This is just an example to illustrate the concept behind the powertrain torque request interfaces defined in [2], it is not intended to standardise the arbitration behavior in the PTC.

Figure 11: Example of possible PTC arbitration between Driver and Chassis torque requests (request based on wheel torque)

Figure 12: Example of possible PTC arbitration between Driver and Chassis torque requests (request based on clutch torque)

6.3.6 Assumptions on modeling style and naming aspects specific for powertrain domain

AUTOSAR provides a guideline for modeling and naming of model elements ([1]).

There are architectural design patterns like the sensor actuator design pattern described in [11] that also include modeling and naming aspects.

In this section only additional patterns and modeling styles followed are explained to get an overall understanding of the signals standardized for the powertrain domain.

Please note: Here standardized ports or port interfaces mean standardized port prototype blueprints or port interface blueprints [7].

Kind of Modeling in general applied within powertrain domain, especially if the sys-		
tem modeling guideline [1] gives some freedom.		
Kind of modeling or as- Rationale		
sumptions		
All SenderReceiverInterfaces standardized are assumed to be measurable.	In earlier versions of the standard [2] the standard did not contain information about calibration and measurement.	
	Since R4.0.3 all data types allow measurement by default (see generated .arxml [3]). So our implicit assumption that all signals are measurable is ful-	

Kind of Modeling in general applied within powertrain domain, especially if the system modeling quideline [1] gives some freedom		
Kind of modeling or as-	Rationale	
sumptions		
	filled	
All ports are assumed to be optional.	Within our example components all ports are as- sumed to be optional. The ports are derived from the port prototype blueprints with the same name. It is optional per default that port prototype blueprints are allowed to be used but not necessarily used in every project.	
	In previous releases without blueprints this assump- tion was very important because there was no vari- ant handling done in [2]. So within the powertrain domain it was assumed that all ports are optional. Since only ports but no components are standard- ized this was even more important: it means that a supplier or OEM may create a single SW-C (Soft- ware Component) and use only the standardized ports that are relevant for this SW-C in his sw archi- tecture.	
Port interfaces are not de- signed to be reused: there is a 1:1 relationship between port and port interface. The port interface has the same name as the port + an addi- tional index as required by the System Modeling Guideline [1]. Exception: If powertrain is not the provid- er then the rules of other do- mains are respected.	Ports are attached to SW-C. Since SW-C are not standardized only port interfaces were really subject of usage in projects up to Release 3.1. With Release 4.0 the standardization of ports is sup- ported by using so-called <i>PortPrototypeBlueprints</i> in the meta model. However, in practice older versions of the AUTOSAR meta model are still in use and the exist- ing tools do not yet fully support <i>PortPrototypeBlue- prints</i> . To be backward compatible and to enable the easy introduction of the standardized application interfac- es within the powertrain domain not all features of the meta model (like e.g. connectiong of compatible interfaces with different port interface short names) therefore were yet fully exploited. A second reason was that [2] does not support con- necting of compatible interfaces with different port interface short names.	
If a port interface contains exactly one data prototype its name is identical to the port interface excluding the trailing index.	There were only two alternatives: - using full name - using name "Val" for Value Disadvantage of solution 2) would have been that many ports would have been assumed to be com- patible by tools because identical data prototype names (with compatible interfaces) allow an auto- matic connection. Within specification tools like e.g. ASCET-SD or	

Kind of Modeling in general applied within powertrain domain, especially if the sys-		
tem modeling guideline [1] gives some freedom.		
Kind of modeling or as-	Rationale	
sumptions	MATLAD/Circulial, it might be peecile to each show	
	WAILAB/SIMULINK IT MIGHT be possible to only show	
	the data prototype name and to not display the port	
The revea of data turned was	Nithin the neurotrain demain it uses an important	
The reuse of data types was	within the powertrain domain it was an important	
explicit goal within the power-	design goal to use as tew data types as possible.	
train domain.		
Computation methods were	The [2] does not support the reuse of computation	
not subject to reuse yet.	methods, only of data types. But reuse of computa-	
	tion methods should be considered for the next re-	
In most cases only one data	I his kind of modeling allows the biggest flexibility in	
prototype was defined per	implementing the standard.	
pon intenace.	On accomply lovel a git is not allowed that the g	
	On assembly level e.g. it is not allowed that the r-	
	figure 6.2) Therefore in such asses when several	
	data prototypes are part of one r-port the data proto-	
	types themselves cannot be assumed to be entional	
	only the complete r-port	
	In older versions of the ALITOSAR standard is was	
	not allowed that a sub-component provides only part	
	of the port i.e. if several data prototypes were part of	
	a port interface it was implicitly standardized that	
	there is one SW-C providing it. When splitting the	
	information on several port interfaces each data pro-	
	totype might be provided by a different SW-C.	
In most cases no records	The rationale is similar to the one stated for the as-	
were used to define port inter-	sumption to only define one DataPrototype per Port-	
faces.	Interface.	
	Since within the powertrain domain PortInterfaces	
	with multiple <i>DataPrototypes</i> are seldomly used,	
	there is no necessity to use records and it is as-	
	sumed that timing related aspects of the data proto-	
	types are to be handled separately, that there are	
	other more flexible possibilities to do so.	

Specific Naming Assumptions for Powertrain Domain		
Assumption	Rationale	
The names were chosen such that automatic generation of display names is possible.	In Powertrain ECUs there are thousands of calibra- tion relevant data. So it is important to apply the System Modeling Guideline [1] in a way that auto- matic generation of display names is possible. See [5] for details.	
In general the keyword abbre-	Reason for doing so is to have short names when-	

Specific Naming Assumptions for Powertrain Domain		
Assumption	Rationale	
viation "Consold" for "Consoli-	ever possible (see [TR_MCM_70020] in [5])	
dated" as well as the abbrevia-	Example:	
tion "Act" for "Actual" was sup-	<i>PtTqClu</i> for "Torque at Clutch "	
pressed.		
In case a port is only for Fast	Reason for doing so is to have short names when-	
Path or Slow Path "Fast" and	ever possible (see [TR_MCM_70020] in [5])	
"Slow" is added. In the other	Example:	
cases "SlowFast" is suppres-	<i>PtTqWhlMinWoCutOff</i> affects Slow and Fast path	
sed.	EscTqWhIPtMaxSlow or EscTqWhIPtMaxFast is for	
	a specific path	
	For more details on fast and slow paths see chap-	
	ter 3.3	
"State" is used as abbreviation	In most cases it is very difficult to explain the differ-	
"St" for "State" and "Status".	ence between State and Status. So for sake of	
	simplicity and consistency within the powertrain	
	domain only "St" is used.	
TqWhI means sum of Torque	Within Powertrain the sum of torque wheels is more	
Wheels whereas TqWhlInd	often used. So information ("Ind") is added in the	
means the torque of an indi-	case that individual wheel torques are meant.	
vidual wheel.	Example:	
	<i>PtTqWhI</i> for "Total Wheel Torque Provided by	
	Powertrain"	
	<i>PtTqWhlInd</i> for "Torque Delivered by the Power-	
	train to the Individual Wheels"	
Prepositions are only used in	In most cases the preposition does not really add	
the short name if it really helps	information and makes short names unnecessarily	
understanding.	long (see [TR_MCM_70020] in [5]).	
	Examples:	
	<i>PtTqWhlMinWoCutOff</i> for Minimum Possible Total	
	Powertrain Torque at Wheels Without Complete	
	Fuel Cut Off	
	using the preposition 'Wo' (without)	
	<i>PtTqWhIReqDrvVIc</i> for Powertrain: Total Request-	
	ed Propulsion Wheel Torque by the Driver or Vehi-	
	cle Longitudinal Control (VLC)	
	instead of	
	PtTqAtWhIReqByDrvForVIc as recommended by	
	the system modeling guideline [1].	

7 Appendix: Mapping Ports to Display Names - Powertrain Domain

In the following display names for the standardized port prototype blueprints are defined. It is recommended to use the display name without name space identifier "AR_" in case no naming conflicts are expected within the system or for the ECU. In all other cases it is recommended to use the display name with name space identifier.

The rules of [5] for generating display names are followed.

There are only the following exceptions in which a name was choosen manually: EscVWhIInd: Instead of numbers for the index element a meaningful name part was added.

The virtual name space for ports is the top-level package AUTOSAR abbreviated with AR_ (see [TR_MCM_70040] in [5]). Virtual name spaces are described in [5]. Port prototype blueprint names are unique within top-level package "AUTOSAR". The sub packages of the top-level package AUTOSAR partly define virtual name spaces (e.g. for data types and port interfaces) but none of these name spaces are relevant for the generation of display names.

Note: Long Names might differ in [2] (in content but not in meaning) since not all long names were yet made consistent with new sensor/actuator pattern. Consolidation with Chassis application interfaces might also lead to additional long name changes.

Abs_flgActvAbsFlgActvAntilock Braking System (ABS) Control ActiveAccrPedl_ratAccrPedlRatAccelerator Pedal RatioAccrPedl_measdAccrPedlMeasdPosition of the accelera- tor pedalAccrPedl_ratFildAccrPedlRatFildFiltered Accelerator Pe- dal RatioAccrPedlAccrPedlShaped / time filtered value based on acceler- ator pedal ratioAccrPedl_ratGrdtAccrPedlRatGrdtAccelerator Pe- dal RatioAccrPedl_ratGrdtAccrPedlRatGrdtAccelerator Pedal RatioAccrPedl_grdtAccrPedlGrdtGradientAlt_tqAltTqAlternator Mechanical Torque (Load)Alt_tqReqAltTqReqRequested Mechanical Torque for Alternator	DisplayName w/o Name Space. With Name Space add AR_ before name, e.g. AR_Abs_flgActv	Shortname of Port / additional information if needed	Longname of Display- name (= PortProto- typeBlueprint name ex- tended in case of multi- ple data prototypes or arrays)
AccrPedl_ratAccrPedlRatAccelerator Pedal RatioAccrPedl_measdAccrPedlMeasdPosition of the accelerator pedalAccrPedl_ratFildAccrPedlRatFildFiltered Accelerator Pedal RatioAccrPedlAccrPedlRatFildShaped / time filteredAccrPedlAccrPedlshaped / time filteredAccrPedl_ratGrdtAccrPedlRatGrdtAccelerator Pedal RatioAccrPedl_grdtAccrPedlGrdtAccelerator Pedal RatioAlt_tqAltTqAlternator Mechanical Torque (Load)Alt_tqReqAltTqReqRequested Mechanical Torque for Alternator	Abs_flgActv	AbsFlgActv	Antilock Braking System (ABS) Control Active
AccrPedI_measdAccrPedIMeasdPosition of the accelerator tor pedal tor pedalAccrPedI_ratFildAccrPedIRatFildFiltered Accelerator Pedal RatioAccrPedIAccrPedIShaped / time filtered value based on accelerator pedal ratioAccrPedI_ratGrdtAccrPedIRatGrdtAccelerator Pedal RatioAccrPedI_ratGrdtAccrPedIRatGrdtAccelerator Pedal RatioAccrPedI_ratGrdtAccrPedIGrdtAccelerator Pedal RatioAlt_tqAltTqAlternator Mechanical Torque (Load)Alt_tqReqAltTqReqRequested Mechanical Torque for Alternator	AccrPedl_rat	AccrPedIRat	Accelerator Pedal Ratio
AccrPedl_ratFildAccrPedlRatFildFiltered Accelerator Pedal RatioAccrPedlAccrPedlshaped / time filtered value based on acceler- ator pedal ratioAccrPedl_ratGrdtAccrPedlRatGrdtAccelerator Pedal RatioAccrPedl_grdtAccrPedlGrdtGradientAlt_tqAltTqAlternator Mechanical Torque (Load)Alt_tqReqAltTqReqRequested Mechanical Torque for Alternator	AccrPedI_measd	AccrPedIMeasd	Position of the accelera- tor pedal
AccrPedIAccrPedIshaped / time filtered value based on acceler- ator pedal ratioAccrPedI_ratGrdtAccrPedIRatGrdtAccelerator Pedal Ratio GradientAccrPedI_grdtAccrPedIGrdtGradientAlt_tqAltTqAlternator Mechanical 	AccrPedI_ratFild	AccrPedIRatFild	Filtered Accelerator Pe- dal Ratio
AccrPedI_ratGrdtAccrPedIRatGrdtAccelerator Pedal RatioAccrPedI_grdtAccrPedIGrdtGradientAlt_tqAltTqAlternator Mechanical Torque (Load)Alt_tqReqAltTqReqRequested Mechanical Torque for Alternator	AccrPedI	AccrPedI	shaped / time filtered value based on acceler- ator pedal ratio
AccrPedI_grdt AccrPedIGrdt Gradient Alt_tq AltTq Alternator Mechanical Torque (Load) Alt_tqReq AltTqReq Requested Mechanical Torque for Alternator	AccrPedl_ratGrdt	AccrPedIRatGrdt	Accelerator Pedal Ratio
Alt_tq AltTq Alternator Mechanical Torque (Load) Alt_tqReq AltTqReq Requested Mechanical Torque for Alternator	AccrPedl_grdt	AccrPedlGrdt	Gradient
Alt_tqReq AltTqReq Requested Mechanical Torque for Alternator	Alt_tq	AltTq	Alternator Mechanical Torque (Load)
	Alt_tqReq	AltTqReq	Requested Mechanical Torque for Alternator

Remark: List below contains also obsolete elements from earlier AUTOSAR releases.

		(Generator) at Engine Crank Shaft
AxleFrntCoorr_st	AxleFrntCoorrSt	Status of the Front Axle Coordinator
AxleReCoorr_st	AxleReCoorrSt	Status of the Rear Axle Coordinator
Batt_u	BattU	Battery Voltage
BrkPedl_flgPsd	BrkPedIFIgPsd	Brake Pedal Pressed
BrkPedI_rat	BrkPedIRat	Brake Pedal Position
CluPedl_rat	CluPedIRat	Clutch Pedal Ratio
Drv_flgGearShiftDwnRe	DrvFlgGearShiftDwnReq	Gear Shift Down Re- quest by Driver
Drv_flgGearShiftUpReq	DrvFlgGearShiftUpReq	Gear Shift Up Request by Driver
Drv_flgKdDetd	DrvFlgKdDetd	Driver: Kickdown Detec- ted
DrvReq_ratVirtAccrPedI	DrvReqRatVirtAccrPedI	Driver Request: Virtual Accelerator Pedal Ratio
DrvReq_tqCluFast	DrvReqTqCluFast	Powertrain: Driver Re- quest of Clutch Torque Fast Path
DrvReq_tqCluSlow	DrvReqTqCluSlow	Driver Request of Clutch Torque (Slow Torque Path)
DrvReq_tqWhIFast	DrvReqTqWhIFast	Driver Request of Wheel Torque (Fast Torque Path)
DrvReq_tqWhISlow	DrvReqTqWhISlow	Driver Request of Wheel Torque (Slow Torque Path)
Dtd_ratTqDistbnReqWh IFrntLe	DtdRatTqDistbnReq / Front Left Wheel	Requested Drivetrain Torque Distribution - Front Left Wheel
Dtd_ratTqDistbnReqWh IFrntRi	DtdRatTqDistbnReq / Front Right Wheel	Requested Drivetrain Torque Distribution - Front Right Wheel
Dtd_ratTqDistbnReqWh IReLe	DtdRatTqDistbnReq / Rear Left Wheel	Requested Drivetrain Torque Distribution - Rear Left Wheel
Dtd_ratTqDistbnReqWh IReRi	DtdRatTqDistbnReq / Rear Right Wheel	Requested Drivetrain Torque Distribution - Rear Right Wheel
Dtd_tqDftlAxleFrntReq	DtdTqDftlAxleFrntReq	Drivetrain Torque Distri- bution: Requested Dif- ferential Torque at Front Axle Actuator
Dtd_tqDftlAxleReReq	DtdTqDftlAxleReReq	Drivetrain Torque Distri- bution: Requested Dif- ferential Torque at Rear Axle Actuator

Dtd_tqDftlTrfReq	DtdTqDftlTrfReq	Drivetrain Torque Distri- bution: Requested Dif- ferential Torque at Transfer Case
EgyMngt_st	EgyMngtSt	State of Energy Ma- nagement
Eng_n	EngN	Engine Speed
Eng_nGearTar	EngNGearTar	Engine Speed at Target Gear
Eng_nGrdt	EngNGrdt	Engine Speed Gradient
Eng_nMax	EngNMax	Maximum Allowed En- gine Speed
Eng_nMin	EngNMin	Minimum Allowed Engi- ne Speed
Eng_pAmbAir	EngPAmbAir	Engine Ambient Air Pressure
Eng_t	EngT	Engine Temperature
Eng_tqCrksft	EngTqCrksft	Engine Torque at Crankshaft
Eng_tqCrksftMax	EngTqCrksftMax	Maximum Engine Torque at Crankshaft
Eng_tqCrksftMaxFast	EngTqCrksftMaxFast	Maximum Engine Torque at Crankshaft Fast Path
Eng_tqCrksftMaxOptm Cdn	EngTqCrksftMaxOptmCdn	Maximum Engine Torque at Crankshaft at Optimum Conditions
Eng_tqCrksftMaxProtn	EngTqCrksftMaxProtn	Maximum Allowed Torque at Crankshaft for Engine Protection
Eng_tqCrksftMin	EngTqCrksftMin	Minimum Engine Torque at Crankshaft considering all engine losses
Eng_tqCrksftMinBasc	EngTqCrksftMinBasc	Minimum Engine Torque at Crankshaft for Power- train realized by Slow Path
Eng_tqCrksftMinFast	EngTqCrksftMinFast	Minimum Engine Torque at Crankshaft Fast Path
Eng_tqCrksftMinWoCut Off	EngTqCrksftMinWoCutOff	Minimum Engine Torque at Crankshaft for Power- train realized by Slow and Fast Path
Eng_tqDynJ	EngTqDynJ	Engine Dynamic Mo- ment of Inertia
Eng_tqResvPt	EngTqResvPt	Torque Reserve Re-
Eng_tqResvReqPt	EngTqResvReqPt	quest from Engine to Powertrain
Esc_flgNoFuCutOff	EscFlgNoFuCutOff	Request "No Fuel Cut
31 of 39		Document ID 269: AUTOSAR_EXP_AIPowertrain

- AUTOSAR confidential -

		Off" by Electronic Stabil- ity Control (ESC)
Esc_st	EscSt	Electronic Stability Con- trol (ESC) Status
Esc_stShiftPrevnStaby	EscStShiftPrevnStaby	Electronic Stability Con- trol (ESC): State of Shift Prevention for Stability Reasons
Esc_tqCluPtMaxFast	EscTqCluPtMaxFast	Maximum Powertrain Clutch Torque Request- ed by Electronic Stability Control (ESC) Fast Path
Esc_tqCluPtMaxSlow	EscTqCluPtMaxSlow	Maximum Powertrain Clutch Torque Request- ed by Electronic Stability Control (ESC) Slow Path
Esc_tqCluPtMin	EscTqCluPtMin	Minimum Powertrain Clutch Torque Request- ed by Electronic Stability Control (ESC)
Esc_tqWhIPtMaxFast	EscTqWhIPtMaxFast	Maximum Powertrain Wheel Torque Request- ed by Electronic Stability Control (ESC) Fast Path
Esc_tqWhIPtMaxSlow	EscTqWhIPtMaxSlow	Maximum Powertrain Wheel Torque Request- ed by Electronic Stability Control (ESC) Slow Path
Esc_tqWhIPtMinFast	EscTqWhIPtMinFast	Minimum Powertrain Wheel Torque Request- ed by Electronic Stability Control (ESC) Fast Path
Esc_tqWhIPtMinSlow	EscTqWhIPtMinSlow	Minimum Powertrain Wheel Torque Request- ed by Electronic Stability Control (ESC) Slow Path
Esc_vMax	EscVMax	Maximum Vehicle Speed due to Electronic Stability Control (ESC)
Esc_vVhIIndFrntLe	EscVWhlInd / Index 0	Electronic Stability Con- trol (ESC): Vector of Individual Speed of Wheels - Front Left
Esc_vVhlIndFrntRi	EscVWhlInd / Index 1	Electronic Stability Con- trol (ESC): Vector of Individual Speed of Wheels - Front Right

Esc_vVhlIndReLe	EscVWhlInd / Index 2	Electronic Stability Con- trol (ESC): Vector of Individual Speed of Wheels - Rear Left
Esc_vVhlIndReRi	EscVWhlInd / Index 3	Electronic Stability Con- trol (ESC): Vector of Individual Speed of Wheels - Rear Right
Ac_tq	АсТq	Mechanical Torque for A/C Compressor
Ac_tqReq	AcTqReq	Requested Mechanical Torque for A/C Com- pressor
Outd t	OutdT	Outdoor Temperature
Pt_flgAltDeactvt Pt_flgAltDeactvtReq	PtFlgAltDeactvt PtFlgAltDeactvtReq	Powertrain: Request to Deactivate Alternator (Generator)
Pt_flgDrvOvrdVlc	PtFlgDrvOvrdVlc	Powertrain: Driver Re- quest Overrides Vehicle Longitudinal Control (VLC)
Pt_flgEngRun	PtFlgEngRun	Powertrain: Engine is Running
Pt_flgEngStop	PtFlgEngStop	Powertrain: Engine is Stopped
Pt_flgEngStopReq	PtFlgEngStopReq	Powertrain: Engine Stop Request
Pt_flgEngStopReqAllwd	PtFlgEngStopReqAllwd	Powertrain: Request to Stop Engine is Allowed
Pt_flgEngStrtReq	PtFlgEngStrtReq	Powertrain: Engine Start Request
Pt_flgEngStrtReqAllwd	PtFlgEngStrtReqAllwd	Powertrain: Request to Start Engine is Allowed
Pt_flgAcDeactvt Pt_flgAcDeactvtReq	PtFlgAcDeactvt PtFlgAcDeactvtReq	Powertrain: Request to Deactivate Air Condi- tioner (A/C)
Pt_flgNoTqWhlReq	PtFlgNoTqWhlReq	Powertrain: No Torque Request for Wheel Torque
Pt_flgTqDecPsbl	PtFlgTqDecPsbl	Powertrain: Torque De- crease Possible
Pt_flgTqIncPsbl	PtFlgTqIncPsbl	Powertrain: Torque In- crease Possible
Pt_nClu	PtNClu	Powertrain: Speed at Clutch
Pt_nEngSp	PtNEngSp	Powertrain: Engine Speed Setpoint
Pt_ratTqDistbnReqFrnt Le	PtRatTqDistbnReq	Powertrain: Requested Percental Distribution of Torque to Wheels -

34 of 39		Document ID 269: AUTOSAR FXP AIPowertrain
Dt taMayStoor	DtTaMayStoor	Allowed Torque for A/C Compressor
Pt_tqMaxAlt Pt_tqMaxAc	PtTqMaxAlt PtTqMaxAc	Powertrain: Maximum Allowed Mechanical Load for Alternator (Generator) at Engine Crank Shaft. Powertrain: Maximum
Pt_tqCrksftReqSlow	PtTqCrksftReqSlow	Crankshaft Torque Re- quest to be realized by the Slow Path of Power- train
Pt_tqCrksftReqFast	PtTqCrksftReqFast	Crankshaft Torque Re- quest to be realized by the Fast Path of Power- train
Pt_tqCluWoTrsmIntv	PtTqCluWoTrsmIntv	Powertrain: Torque at Clutch Without Trans- mission Intervention
Pt_tqCluTarGear	PtTqCluTarGear	Powertrain: Predicted Torque at Clutch at Tar- get Gear
Pt_tqCluReqWoTrsmInt v	PtTqCluReqWoTrsmIntv	Powertrain: Torque at Clutch Request Without Transmission Interven- tion
Pt_tqCluMinDrv	PtTqCluMinDrv	Powertrain: Minimum Available Torque at Clutch for Driver
Pt_tqCluMaxDrv	PtTqCluMaxDrv	Powertrain: Maximum Available Torque at Clutch for Driver
Pt_tqCluDyn	PtTqCluDyn	Powertrain: Dynamic
Pt_tqClu	PtTqClu	Powertrain: Torque at
Pt_ratTqDistbnReqReRi	PtRatTqDistbnReq	Powertrain: Requested Percental Distribution of Torque to Wheels - Rear Right Wheel
Pt_ratTqDistbnReqReL e	PtRatTqDistbnReq	Powertrain: Requested Percental Distribution of Torque to Wheels - Rear Left Wheel
Pt_ratTqDistbnReqFrnt Ri	PtRatTqDistbnReq	Powertrain: Requested Percental Distribution of Torque to Wheels - Front Right Wheel
		Front Left Wheel

- AUTOSAR confidential -

. ..

. . . .

		Allowed Mechanical Load for Steering at En- gine Crank Shaft
Pt_tqMaxTrsmOilPmp	PtTqMaxTrsmOilPmp	Maximum Allowed Transmission Oil Pump Load
Pt_tqResvEng	PtTqResvEng	Torque Reserve Re-
Pt_tqResvReqEng	PtTqResvReqEng	quest from Powertrain to Engine
Pt_tqWhl	PtTqWhl	Total Wheel Torque Provided by Powertrain
Pt_tqWhlIndFrntLe	PtTqWhlInd	Torque Delivered by the Powertrain to the Indi- vidual Wheels - Front Left Wheel
Pt_tqWhlIndFrntRi	PtTqWhlInd	Torque Delivered by the Powertrain to the Indi- vidual Wheels - Front Right Wheel
Pt_tqWhlIndReLe	PtTqWhlInd	Torque Delivered by the Powertrain to the Indi- vidual Wheels - Rear Left Wheel
Pt_tqWhlIndReRi	PtTqWhlInd	Torque Delivered by the Powertrain to the Indi- vidual Wheels - Rear Right Wheel
Pt_tqWhIMax	PtTqWhIMax	Powertrain: Maximum Possible Total Torque at Wheels
Pt_tqWhIMaxDrv	PtTqWhIMaxDrv	Maximum Possible Total Torque at Wheels at Optimum Conditions Delivered by Powertrain for Driver
Pt_tqWhlMin	PtTqWhIMin	Minimum Available Total Powertrain Torque at Wheels
Pt_tqWhlMinDrv	PtTqWhIMinDrv	Minimum Possible Total Torque at Wheels De- livered by Powertrain for Driver
Pt_tqWhlMinWoCutOff	PtTqWhIMinWoCutOff	Minimum Possible Total Powertrain Torque at Wheels Without Com- plete Fuel Cut Off
Pt_tqWhIReq	PtTqWhIReq	Powertrain: Total Re- quested Propulsion Wheel Torque
Pt_tqWhIReqDrvVIc	PtTqWhIReqDrvVIc	Powertrain: Total Re-
35 of 39		Document ID 269: AUTOSAR_EXP_AIPowertrain

- AUTOSAR confidential -

		quested Propulsion Wheel Torque by the Driver or Vehicle Longi- tudinal Control (VLC)
Ssm_flgGearParkReq	SsmFlgGearParkReq	Standstill Manager: Re- quest to Engage the Parking Lock
Steer_tq	SteerTq	Hydraulic Power Steer- ing Load at Engine Crank Shaft
Steer_tqReq	SteerTqReq	Requested Hydraulic Power Steering Load at Engine Crank Shaft
TrfCaseCoorr_st	TrfCaseCoorrSt	Status of the Transfer Case Coordinator
TrsmClu_stAct	TrsmCluStAct	Transmission: Actual Clutch State
TrsmClu_stTar	TrsmCluStTar	Transmission: Target State of the Clutch
Trsm_flgCtrsftActv	TrsmFlgCtrsftActv	Transmission: Coun- tershaft Active
Trsm_flgDtOpen	TrsmFlgDtOpen	Transmission: Drivetrain Opened
Trsm_flgParkLockEngd	TrsmFlgParkLockEngd	Transmission: Park Lock Engaged
Trsm_flgShiftProgs	TrsmFlgShiftProgs	Transmission: Flag indi- cates that a Gear Shift is In Progress
Trsm_flgSptMod		Transmission: Sport
Trsm_figSptiviodReq	TrsmFIgSptWodReq	Transmission: Winter
Trsm_flgWntrModReg	TrsmFlgWntrModReg	Mode Request by Driver
Trsm_nInp	TrsmNinp	Transmission: Speed at Input
Trsm_nrGearAct	TrsmNrGearAct	Transmission: Actual Gear
Trsm_nrGearReq	TrsmNrGearReq	Transmission: Reques- ted Gear
Trsm_nrGearTar	TrsmNrGearTar	Transmission: Target Gear
Trsm_nrTyp	TrsmNrTyp	Transmission Type
Trsm_ratGear	TrsmRatGear	Transmission: Get the Gear Ratio of the Gear of Interest (C/S)
Trsm_ratGearAct	TrsmRatGearAct	Transmission: The Ac- tual Gear Ratio being Currently Engaged in the Gear Box
Trsm_ratGearReq	TrsmRatGearReq	Transmission: Reques- ted Gear Ratio

Trsm_ratGearTar	TrsmRatGearTar	Transmission: The Gear Ratio which will be En- gaged in the Gear Box when Target Gear is Reached
Trsm_ratTqPtAct	TrsmRatTqPtAct	Transmission: Actual Powertrain Torque Ratio
Trsm_stAxelFrntActr	TrsmStAxleFrntActr	Transmission: Status of the Front Axle Actuator
Trsm_stAxelReActr	TrsmStAxleReActr	Transmission: Status of the Rear Axle Actuator
Trsm_stGearLvr	TrsmStGearLvr	Transmission: Actual Gear Lever Position
Trms_stTrfCaseDftl	TrsmStTrfCaseDftl	Transmission: Status of the Transfer Case Dif- ferential
Trsm_tOil	TrsmTOil	Transmission: Oil Tem- perature
Trsm_tqCluMaxFast	TrsmTqCluMaxFast	Transmission: Maximum Torque at Clutch Re- quested by Transmis- sion for Shift Energy Management on Fast Path
Trsm_tqCluMaxProtn	TrsmTqCluMaxProtn	Transmission: Maximum Torque at Clutch Re- quested by Transmis- sion for Gearbox Protec- tion
Trsm_tqCluMaxSlow	TrsmTqCluMaxSlow	Transmission: Maximum Torque at Clutch Re- quested by Transmis- sion for Shift Energy Management on Slow Path
Trsm_tqCluMinFast	TrsmTqCluMinFast	Transmission: Minimum Torque at Clutch Re- quested by Transmis- sion for Shift Energy Management on Fast Path
Trsm_tqCluMinSlow	TrsmTqCluMinSlow	Transmission: Minimum Torque at Clutch Re- quested by Transmis- sion for Shift Energy Management on Slow Path
Trsm_tqDftlAxleFrntAct	TrsmTqDftlAxleFrntAct	Transmission: Actual Differential Torque at Front Axle

37 of 39

Trsm_tqDftlAxleFrntMa x	TrsmTqDftlAxleFrntMax	Transmission: Maximum Differential Torque at Front Axle
Trsm_tqDftlAxleReAct	TrsmTqDftlAxleReAct	Transmission: Actual Differential Torque at Rear Axle
Trsm_tqDftlAxleReMax	TrsmTqDftlAxleReMax	Transmission: Maximum Differential Torque at Rear Axle
Trsm_tqDftlTrfAct	TrsmTqDftlTrfAct	Transmission: Actual Differential Transfer Torque
Trsm_tqDftlTrfMax	TrsmTqDftlTrfMax	Transmission: Maximum Differential Transfer Torque
Trsm_tqOilPmp	TrsmTqOilPmp	Transmission Oil Pump Load
Trsm_tqOilPmpReq	TrsmTqOilPmpReq	Requested Transmis- sion Oil Pump Load
Trsm_tqWhlIndDistbnFr ntLe	TrsmTqWhlIndDistbn	Individual Torque at Wheel Distribution as realized by Transmis- sion System - Front Left Wheel
Trsm_tqWhlIndDistbnFr ntRi	TrsmTqWhlIndDistbn	Individual Torque at Wheel Distribution as realized by Transmis- sion System - Front Right Wheel
Trsm_tqWhlIndDistbnR eLe	TrsmTqWhlIndDistbn	Individual Torque at Wheel Distribution as realized by Transmis- sion System - Rear Left Wheel
Trsm_tqWhlIndDistbnR eRi	TrsmTqWhlIndDistbn	Individual Torque at Wheel Distribution as realized by Transmis- sion System - Rear Right Wheel
Veh_stOper	VehStOper	Vehicle Operating State
Veh_tqWhIMaxSftyLimn	VehTqWhIMaxSftyLimn	Safety Torque Limit cal- culated from the Vehi- cle's Maximum Speed
Veh_vLgt	VehVLgt	Vehicle Speed (Longitu- dinal)
Vlc_stShiftPrevnCmft	VIcStShiftPrevnCmft	Vehicle Longitudinal Control (VLC): State of Shift Prevention for Comfort Reasons
Vlc_tqWhIPtMax	VIcTqWhIPtMax	Maximum Torque at

		Wheel by Vehicle Longi- tudinal Control (VLC)
Vlc_tqWhlPtMin	VIcTqWhIPtM in	Minimum Torque at Wheel by Vehicle Longi- tudinal Control (VLC)
Eng_tqCluMin	EngTqCluMin	Minimum Engine Torque at Clutch
Pt_tqCluDynJ	PtTqCluDynJ	Powertrain: Dynamic Moment of Inertia at Clutch
Eng_tqCrksftMaxSpdCu r	EngTqCrksftMaxSpdCur	Engine: Maximum Torque at Crankshaft at Current Speed
Pt_tqCluMaxSpdCluCur	PtTqCluMaxSpdCluCur	Powertrain: Maximum Torque at Clutch at Cur- rent Clutch Speed
PtEng_tgCrksftMinFast	PtEngTqCrksftMinFast	Powertrain: Minimum Engine Torque at Clutch Fast Path
Em_tqDynJ	EmTqDynJ	Electric Machine Dy- namic Moment of Inertia
Trsm_tqCluStsFast	TrsmTqCluStsFast	Transmission: Status of Torque at Clutch Re- quested by Transmis- sion for Shift Energy Management on Fast Path
Pt_drvTqCluVirtEngSpd	PtDrvReqTqCluVirtEngSpd	Powertrain: Virtual Driv- er Request of Torque at Clutch at Target Speed
Trsm_tqCluFast	TrsmTqCluFast	Transmission: Torque at Clutch Requested by Transmission for Shift Energy Management on Fast Path