
Specification of Time Service
 R4.2.2

1 of 54 Document ID 624: AUTOSAR_SWS_TimeService

- AUTOSAR confidential -

Document Change History
Release Changed by Change Description

4.2.2 AUTOSAR
Release
Management

 Editorial changes

4.2.1 AUTOSAR
Release
Management

 Editorial changes

4.1.2 AUTOSAR
Release
Management

 Editorial changes

4.1.1 AUTOSAR
Administration

 Initial Release

Document Title Specification of Time
Service

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 624

Document Classification Standard

Document Status Final

Part of AUTOSAR Release 4.2.2

Specification of Time Service
 R4.2.2

2 of 54 Document ID 624: AUTOSAR_SWS_TimeService

- AUTOSAR confidential -

Disclaimer

This specification and the material contained in it, as released by AUTOSAR, is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only. For any other purpose, no part of
the specification may be utilized or reproduced, in any form or by any means, without
permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR specifications may contain exemplary items (exemplary reference
models, "use cases", and/or references to exemplary technical solutions, devices,
processes or software).

Any such exemplary items are contained in the specifications for illustration purposes
only, and they themselves are not part of the AUTOSAR Standard. Neither their
presence in such specifications, nor any later documentation of AUTOSAR
conformance of products actually implementing such exemplary items, imply that
intellectual property rights covering such exemplary items are licensed under the
same rules as applicable to the AUTOSAR Standard.

Specification of Time Service
 R4.2.2

3 of 54 Document ID 624: AUTOSAR_SWS_TimeService

- AUTOSAR confidential -

Table of Contents

1 Introduction and functional overview .. 6

1.1 Use cases ... 7
1.1.1 Time measurement ... 7

1.1.2 Time based state machine .. 8
1.1.3 Timeout supervision and busy waiting .. 8

2 Acronyms, abbreviations and terms ... 9

3 Related documentation ... 10

3.1 Input documents ... 10

3.2 Related standards and norms .. 10
3.3 Related specification .. 10

4 Constraints and assumptions ... 12

4.1 Assumptions ... 12
4.2 Limitations .. 12
4.3 Applicability to car domains .. 12

5 Dependencies to other modules ... 13

5.1 File structure ... 13
5.1.1 Header file structure ... 13

6 Requirements traceability ... 15

7 Functional specification .. 22

7.1 General behavior .. 22
7.1.1 GPT Predef Timers ... 22

7.1.2 Time Service Predef Timers ... 22
7.1.3 Maximal measurable time span .. 23

7.1.4 Time quantization error ... 25
7.1.5 Execution times of services / measurement of short time spans 26
7.1.6 Service ResetTimer .. 26
7.1.7 Service GetTimeSpan ... 27

7.1.8 Service ShiftTimer .. 28
7.1.9 Service SyncTimer .. 28
7.1.10 Service BusyWait .. 29

7.1.10.1 Unintentional behaviour of BusyWait services 30
7.1.11 Configuration of API services ... 30

7.2 Module initialization .. 31
7.3 Sample code of use cases ... 31

7.3.1 Time measurement ... 31
7.3.2 Time based state machine .. 32
7.3.3 Timeout supervision .. 33
7.3.4 Busy waiting.. 33

7.4 Version check ... 34
7.5 Error classification .. 34

7.5.1 Development Errors .. 34
7.5.2 Runtime Errors .. 35

Specification of Time Service
 R4.2.2

4 of 54 Document ID 624: AUTOSAR_SWS_TimeService

- AUTOSAR confidential -

7.5.3 Transient Faults .. 35

7.5.4 Production Errors .. 35
7.5.5 Extended Production Errors .. 35

7.6 Error detection .. 35
7.7 Error notification ... 35
7.8 Debugging support ... 35

8 API specification ... 36

8.1 Imported types .. 36
8.2 Type Definitions .. 36

8.2.1 Tm_PredefTimer1us16bitType ... 36
8.2.2 Tm_PredefTimer1us24bitType ... 36

8.2.3 Tm_PredefTimer1us32bitType ... 36

8.2.4 Tm_PredefTimer100us32bitType ... 37

8.3 Function definitions... 37
8.3.1 Tm_GetVersionInfo ... 37
8.3.2 Tm_ResetTimer1us16bit .. 37
8.3.3 Tm_GetTimeSpan1us16bit ... 38

8.3.4 Tm_ShiftTimer1us16bit ... 38
8.3.5 Tm_SyncTimer1us16bit .. 39

8.3.6 Tm_BusyWait1us16bit .. 39
8.3.7 Tm_ResetTimer1us24bit .. 40
8.3.8 Tm_GetTimeSpan1us24bit ... 40

8.3.9 Tm_ShiftTimer1us24bit ... 40
8.3.10 Tm_SyncTimer1us24bit .. 41

8.3.11 Tm_BusyWait1us24bit .. 41

8.3.12 Tm_ResetTimer1us32bit .. 42
8.3.13 Tm_GetTimeSpan1us32bit ... 42
8.3.14 Tm_ShiftTimer1us32bit ... 43
8.3.15 Tm_SyncTimer1us32bit .. 43

8.3.16 Tm_BusyWait1us32bit .. 43
8.3.17 Tm_ResetTimer100us32bit .. 44

8.3.18 Tm_GetTimeSpan100us32bit ... 44
8.3.19 Tm_ShiftTimer100us32bit ... 45
8.3.20 Tm_SyncTimer100us32bit .. 45

8.4 Call-back Notifications .. 45
8.5 Scheduled functions ... 46

8.6 Expected Interfaces .. 46

8.6.1 Mandatory Interfaces .. 46

8.6.2 Optional Interfaces .. 46
8.6.3 Configurable Interfaces ... 46

9 Sequence diagrams.. 47

9.1 Tm Normal Operation ... 47

10 Configuration specification ... 49

10.1 How to read this chapter ... 49
10.2 Containers and configuration parameters ... 50

10.2.1 Variants .. 50
10.2.2 Tm .. 51
10.2.3 TmGeneral .. 51

Specification of Time Service
 R4.2.2

5 of 54 Document ID 624: AUTOSAR_SWS_TimeService

- AUTOSAR confidential -

10.3 Published Information ... 53

11 Not applicable requirements ... 54

Specification of Time Service
 R4.2.2

6 of 54 Document ID 624: AUTOSAR_SWS_TimeService

- AUTOSAR confidential -

1 Introduction and functional overview

This specification specifies the functionality, API and the configuration of the
AUTOSAR Basic Software module “Time Service”.

The Time Service module is part of the Services Layer. The module provides
services for time based functionality. Use cases are:

 Time measurement

 Time based state machine

 Timeout supervision

 Busy waiting

Figure 1 – Architectural overview

The Time Service module does not use and distribute all features of the GPT driver.
The Time Service module is not the top of a “Timer Stack”.

Several “timer types” - so called “Time Service Predef Timers” - are available, if
supported by hardware and enabled by configuration.

Each Predef Timer has a predefined tick duration (physical time unit) and a
predefined number of bits (physical range). By this, compatibility of time based
functionality is ensured for all platforms which support the required Predef Timers.

The Time Service Predef Timers are based on so-called “GPT Predef Timers”, which
are free running hardware timers, provided by the GPT driver.

Specification of Time Service
 R4.2.2

7 of 54 Document ID 624: AUTOSAR_SWS_TimeService

- AUTOSAR confidential -

The following Time Service Predef Timers are defined:
 Tm_PredefTimer1us16bitType
 Tm_PredefTimer1us24bitType
 Tm_PredefTimer1us32bitType
 Tm_PredefTimer100us32bitType

If a user wants to implement a time-based functionality, no user specific configuration
of the Time Service module is necessary. The user can instantiate any timers (only
limited by available memory) and can use the timer instances completely indepen-
dently. So, hardware timers are reused.

The following time based services are provided (“…” means: extension on the left
side):
 Tm_ResetTimer…
 Tm_GetTimeSpan…
 Tm_ShiftTimer…
 Tm_SyncTimer…
 Tm_BusyWait…

All services are called by user (polling mode). Notifications are not supported.

The time services can be used in:
 Initialization phase
 Tasks
 Cat2 interrupt service routines
 OS hooks

For implementation of the Time Service module no interrupts are needed.

1.1 Use cases

1.1.1 Time measurement

By using the Time Service module, execution time and cycle time of code can be
measured, even run time and cycle time of:

 Tasks
 Cat2 interrupt service routines
 Functions
 Pieces of software

Time stamps can be generated.

Services of the Time Service module may be used to measure CPU load and task
load, because the services may be called in the PreTaskHook (and PostTaskHook)
of the Operating System.

Specification of Time Service
 R4.2.2

8 of 54 Document ID 624: AUTOSAR_SWS_TimeService

- AUTOSAR confidential -

1.1.2 Time based state machine

"Time base state machine" means: State transitions depending on timing.
By using the Time Service module, time based state machines can be implemented,
which are nearly independently from the cycle time of the calling task.
The user software has to ensure that the cycle time of the task is short enough
relating to the desired timing behavior, due to polling of time information.

1.1.3 Timeout supervision and busy waiting

By using the Time Service module, errors and ambiguous behavior may be
prevented in software modules by applying Predef Timers instead of "loops" or "nop
instructions" to implement timeout supervision or busy waiting.
Using "loops" or "nop instructions” is a poor and critical design, because time
intervals implemented in such a way are dependent on:
 CPU speed
 Pipeline effects
 Cache effects
 Access time to memory (bus width, wait states, ...)
 Interruption by Interrupt Service Routines
 Compiler version, compiler options, compiler optimizations

Specification of Time Service
 R4.2.2

9 of 54 Document ID 624: AUTOSAR_SWS_TimeService

- AUTOSAR confidential -

2 Acronyms, abbreviations and terms

Only a few acronyms and abbreviations are listed here which are helpful to
understand this document or which have a local scope. Further information can be
found in the official AUTOSAR glossary [8].

Acronym /
Abbreviation

Description

nop No Operation

Table 1: Acronyms and abbreviations

The terms defined in the table below have a local scope within this document.

Term Description

GPT Predef Timer A GPT Predef Timer is a free running up counter provided by the GPT driver.
Which GPT Predef Timer(s) are available depends on hardware (clock,
hardware timers, prescaler, width of timer register, …) and configuration. A
GPT Predef Timer has predefined physical time unit and range.

Time Service Predef
Timer

A Time Service Predef Timer is a free running up counter with predefined
physical time unit and range. The hardware timer functionality is based on
the corresponding GPT Predef Timer. For each Predef Timer a set of API
services is provided by the Time Service module. The user can instantiate
any timers (only limited by available memory) and can use the instances
completely independently of each other.

Timer instance A timer instance is a data object of an API data type

Tm_PredefTimer…bitType, this means it is an instantiation of a Time

Service Predef Timer on user software level. The user can instantiate any
timers (only limited by available memory). The timer instances can be used
completely independently of each other by methodes provided as API
services.

Reference time The reference time is a time value stored for each timer instance. It’s an
implementation specific element of the API data types

Tm_PredefTimer…bitType.

Table 2: Terms

Specification of Time Service
 R4.2.2

10 of 54 Document ID 624: AUTOSAR_SWS_TimeService

- AUTOSAR confidential -

3 Related documentation

3.1 Input documents

[1] List of Basic Software Modules,
AUTOSAR_TR_BSWModuleList.pdf

[2] Layered Software Architecture,

AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf

[3] General Requirements on Basic Software Modules,

AUTOSAR_SRS_BSWGeneral.pdf

[4] Specification of Standard Types,

AUTOSAR_SWS_StandardTypes.pdf

[5] Specification of Default Error Tracer,

AUTOSAR_SWS_ DefaultErrorTracer.pdf

[6] Specification of ECU Configuration,

AUTOSAR_TPS_ECUConfiguration.pdf

[7] Requirements on Time Service,

AUTOSAR_SRS_TimeService.pdf

[8] Glossary,

AUTOSAR_TR_Glossary.pdf

[9] Basic Software Module Description Template,

AUTOSAR_TPS_BSWModuleDescriptionTemplate.pdf

[10] General Specification of Basic Software Modules,

AUTOSAR_SWS_BSWGeneral.pdf

[11] Specification of GPT Driver,

AUTOSAR_SWS_GPTDriver.pdf

3.2 Related standards and norms

[12] IEC 7498-1 The Basic Model, IEC Norm, 1994

3.3 Related specification

Specification of Time Service
 R4.2.2

11 of 54 Document ID 624: AUTOSAR_SWS_TimeService

- AUTOSAR confidential -

AUTOSAR provides a General Specification on Basic Software modules [10] (SWS
BSW General), which is also valid for Time Service.

Thus, the specification SWS BSW General shall be considered as additional and
required specification for Time Service.

Specification of Time Service
 R4.2.2

12 of 54 Document ID 624: AUTOSAR_SWS_TimeService

- AUTOSAR confidential -

4 Constraints and assumptions

4.1 Assumptions

No assumptions.

4.2 Limitations

Functionality is based on HW timers which are not perhaps available
The functionality of the Time Service module is based on hardware timers (GPT
Predef Timers) provided by the GPT Driver.
Which GPT Predef Timer(s) can be enabled depends on clock and available timer
hardware (prescaler, width of timer register). It is recommended to enable all GPT
Predef Timers to ensure compatibility of time based functionality for all platforms.

No Standardized AUTOSAR Interfaces
In this specification no Standardized AUTOSAR Interfaces are defined. This means
the services of the Time Service module are not accessible by AUTOSAR Software
Components (SW-Cs) which are located above the RTE. In a further step (future
AUTOSAR release/revision) the Standardized AUTOSAR Interfaces may be added
to the specification.

Multi Partition Support
Because the Time Service module uses the GPT module to get the current time of a
hardware timer both modules should run on the same BSW partition. If the Time
Service module is used in systems with distributed BSW (e.g. in multi-core systems)
it’s recommended to have a functional cluster with a Time Service and GPT module
in each BSW partition to prevent inter-partition communication.
A master/satellite approach with GPT and Time Service master in one BSW partition
and Time service satellite in another BSW partition seams not appropriate due to
performance reasons.

4.3 Applicability to car domains

No restrictions.

Specification of Time Service
 R4.2.2

13 of 54 Document ID 624: AUTOSAR_SWS_TimeService

- AUTOSAR confidential -

5 Dependencies to other modules

This section describes the relations to other modules.

The Time Service module has dependencies to the following other AUTOSAR
modules:

GPT:
The functionality of the Time Service module is based on so called “GPT Predef
Timers”. A GPT Predef Timer is a free running up counter provided by the GPT
driver, see [11] (SWS GPT Driver).

5.1 File structure

5.1.1 Header file structure

Figure 2 - Include file structure

Std_Types.h

Tm.h Tm_Cfg.h

Tm.c

Det.h

includes

Gpt.h

Tm_MemMap.h

SchM_Tm.h

(included, if default error
detection is switched on)

Specification of Time Service
 R4.2.2

14 of 54 Document ID 624: AUTOSAR_SWS_TimeService

- AUTOSAR confidential -

[SWS_Tm_00061] ⌈ The Tm.c file shall include Tm.h, Tm_MemMap.h, SchM_Tm.h,

Gpt.h and optionally Det.h if default error detection is switched on. ⌋

(SRS_BSW_00300, SRS_BSW_00346, SRS_BSW_00436, SRS_BSW_00435)

[SWS_Tm_00062] ⌈ The Tm.h file shall include Tm_Cfg.h and Std_Types.h. ⌋

(SRS_BSW_00300, SRS_BSW_00346, SRS_BSW_00381)

Specification of Time Service
 R4.2.2

15 of 54 Document ID 624: AUTOSAR_SWS_TimeService

- AUTOSAR confidential -

6 Requirements traceability

This chapter refers to input requirements specified in the SRS documents (Software
Requirements Specifications) that are applicable for this software module.

The table below lists links to specification items of the SWS document, which satisfy
the input requirements. Only functional requirements are referenced.

Requirement Description Satisfied by

- - SWS_Tm_00010

- - SWS_Tm_00014

- - SWS_Tm_00015

- - SWS_Tm_00058

- - SWS_Tm_00063

- - SWS_Tm_00065

SRS_BSW_00005 Modules of the ÂµC
Abstraction Layer (MCAL)
may not have hard coded
horizontal interfaces

SWS_Tm_00059

SRS_BSW_00006 The source code of software
modules above the ÂµC
Abstraction Layer (MCAL)
shall not be processor and
compiler dependent.

SWS_Tm_00059

SRS_BSW_00007 All Basic SW Modules
written in C language shall
conform to the MISRA C
2004 Standard.

SWS_Tm_00059

SRS_BSW_00009 All Basic SW Modules shall
be documented according to
a common standard.

SWS_Tm_00059

SRS_BSW_00010 The memory consumption of
all Basic SW Modules shall
be documented for a defined
configuration for all
supported platforms.

SWS_Tm_00059

SRS_BSW_00159 All modules of the
AUTOSAR Basic Software
shall support a tool based
configuration

SWS_Tm_00059

SRS_BSW_00160 Configuration files of
AUTOSAR Basic SW
module shall be readable for
human beings

SWS_Tm_00059

SRS_BSW_00161 The AUTOSAR Basic
Software shall provide a
microcontroller abstraction

SWS_Tm_00059

Specification of Time Service
 R4.2.2

16 of 54 Document ID 624: AUTOSAR_SWS_TimeService

- AUTOSAR confidential -

layer which provides a
standardized interface to
higher software layers

SRS_BSW_00162 The AUTOSAR Basic
Software shall provide a
hardware abstraction layer

SWS_Tm_00059

SRS_BSW_00167 All AUTOSAR Basic
Software Modules shall
provide configuration rules
and constraints to enable
plausibility checks

SWS_Tm_00059

SRS_BSW_00168 SW components shall be
tested by a function defined
in a common API in the
Basis-SW

SWS_Tm_00059

SRS_BSW_00170 The AUTOSAR SW
Components shall provide
information about their
dependency from faults,
signal qualities, driver
demands

SWS_Tm_00059

SRS_BSW_00172 The scheduling strategy that
is built inside the Basic
Software Modules shall be
compatible with the strategy
used in the system

SWS_Tm_00059

SRS_BSW_00300 All AUTOSAR Basic
Software Modules shall be
identified by an
unambiguous name

SWS_Tm_00061, SWS_Tm_00062

SRS_BSW_00306 AUTOSAR Basic Software
Modules shall be compiler
and platform independent

SWS_Tm_00059

SRS_BSW_00307 Global variables naming
convention

SWS_Tm_00059

SRS_BSW_00308 AUTOSAR Basic Software
Modules shall not define
global data in their header
files, but in the C file

SWS_Tm_00059

SRS_BSW_00309 All AUTOSAR Basic
Software Modules shall
indicate all global data with
read-only purposes by
explicitly assigning the const
keyword

SWS_Tm_00059

SRS_BSW_00312 Shared code shall be
reentrant

SWS_Tm_00007, SWS_Tm_00011,
SWS_Tm_00017, SWS_Tm_00020,
SWS_Tm_00025

SRS_BSW_00321 The version numbers of
AUTOSAR Basic Software
Modules shall be
enumerated according
specific rules

SWS_Tm_00059

Specification of Time Service
 R4.2.2

17 of 54 Document ID 624: AUTOSAR_SWS_TimeService

- AUTOSAR confidential -

SRS_BSW_00323 All AUTOSAR Basic
Software Modules shall
check passed API
parameters for validity

SWS_Tm_00008, SWS_Tm_00012,
SWS_Tm_00016, SWS_Tm_00018,
SWS_Tm_00021, SWS_Tm_00037

SRS_BSW_00325 The runtime of interrupt
service routines and
functions that are running in
interrupt context shall be
kept short

SWS_Tm_00059

SRS_BSW_00326 - SWS_Tm_00059

SRS_BSW_00328 All AUTOSAR Basic
Software Modules shall
avoid the duplication of code

SWS_Tm_00059

SRS_BSW_00330 It shall be allowed to use
macros instead of functions
where source code is used
and runtime is critical

SWS_Tm_00059

SRS_BSW_00331 All Basic Software Modules
shall strictly separate error
and status information

SWS_Tm_00059

SRS_BSW_00333 For each callback function it
shall be specified if it is
called from interrupt context
or not

SWS_Tm_00059

SRS_BSW_00334 All Basic Software Modules
shall provide an XML file
that contains the meta data

SWS_Tm_00059

SRS_BSW_00335 Status values naming
convention

SWS_Tm_00059

SRS_BSW_00337 Classification of
development errors

SWS_Tm_00030

SRS_BSW_00338 - SWS_Tm_00028, SWS_Tm_00060,
SWS_Tm_00064

SRS_BSW_00341 Module documentation shall
contains all needed
informations

SWS_Tm_00059

SRS_BSW_00342 It shall be possible to create
an AUTOSAR ECU out of
modules provided as source
code and modules provided
as object code, even mixed

SWS_Tm_00059

SRS_BSW_00344 BSW Modules shall support
link-time configuration

SWS_Tm_00059

SRS_BSW_00346 All AUTOSAR Basic
Software Modules shall
provide at least a basic set
of module files

SWS_Tm_00061, SWS_Tm_00062

SRS_BSW_00347 A Naming seperation of
different instances of BSW
drivers shall be in place

SWS_Tm_00059

SRS_BSW_00348 All AUTOSAR standard SWS_Tm_00031

Specification of Time Service
 R4.2.2

18 of 54 Document ID 624: AUTOSAR_SWS_TimeService

- AUTOSAR confidential -

types and constants shall be
placed and organized in a
standard type header file

SRS_BSW_00353 All integer type definitions of
target and compiler specific
scope shall be placed and
organized in a single type
header

SWS_Tm_00059

SRS_BSW_00357 For success/failure of an
API call a standard return
type shall be defined

SWS_Tm_00059

SRS_BSW_00359 All AUTOSAR Basic
Software Modules callback
functions shall avoid return
types other than void if
possible

SWS_Tm_00059

SRS_BSW_00360 AUTOSAR Basic Software
Modules callback functions
are allowed to have
parameters

SWS_Tm_00059

SRS_BSW_00361 All mappings of not
standardized keywords of
compiler specific scope shall
be placed and organized in
a compiler specific type and
keyword header

SWS_Tm_00059

SRS_BSW_00369 All AUTOSAR Basic
Software Modules shall not
return specific development
error codes via the API

SWS_Tm_00008, SWS_Tm_00012,
SWS_Tm_00038, SWS_Tm_00039,
SWS_Tm_00043, SWS_Tm_00044,
SWS_Tm_00048, SWS_Tm_00049,
SWS_Tm_00053, SWS_Tm_00054,
SWS_Tm_00066

SRS_BSW_00373 The main processing
function of each AUTOSAR
Basic Software Module shall
be named according the
defined convention

SWS_Tm_00059

SRS_BSW_00376 - SWS_Tm_00059

SRS_BSW_00377 A Basic Software Module
can return a module specific
types

SWS_Tm_00059

SRS_BSW_00378 AUTOSAR shall provide a
boolean type

SWS_Tm_00059

SRS_BSW_00381 The pre-compile time
parameters shall be placed
into a separate configuration
header file

SWS_Tm_00062

SRS_BSW_00398 The link-time configuration is
achieved on object code
basis in the stage after
compiling and before linking

SWS_Tm_00059

SRS_BSW_00407 Each BSW module shall
provide a function to read

SWS_Tm_00036

Specification of Time Service
 R4.2.2

19 of 54 Document ID 624: AUTOSAR_SWS_TimeService

- AUTOSAR confidential -

out the version information
of a dedicated module
implementation

SRS_BSW_00413 An index-based accessing
of the instances of BSW
modules shall be done

SWS_Tm_00059

SRS_BSW_00415 Interfaces which are
provided exclusively for one
module shall be separated
into a dedicated header file

SWS_Tm_00059

SRS_BSW_00416 The sequence of modules to
be initialized shall be
configurable

SWS_Tm_00059

SRS_BSW_00417 Software which is not part of
the SW-C shall report error
events only after the DEM is
fully operational.

SWS_Tm_00059

SRS_BSW_00422 Pre-de-bouncing of error
status information is done
within the DEM

SWS_Tm_00059

SRS_BSW_00423 BSW modules with
AUTOSAR interfaces shall
be describable with the
means of the SW-C
Template

SWS_Tm_00059

SRS_BSW_00424 BSW module main
processing functions shall
not be allowed to enter a
wait state

SWS_Tm_00059

SRS_BSW_00425 The BSW module
description template shall
provide means to model the
defined trigger conditions of
schedulable objects

SWS_Tm_00059

SRS_BSW_00426 BSW Modules shall ensure
data consistency of data
which is shared between
BSW modules

SWS_Tm_00059

SRS_BSW_00427 ISR functions shall be
defined and documented in
the BSW module description
template

SWS_Tm_00059

SRS_BSW_00428 A BSW module shall state if
its main processing
function(s) has to be
executed in a specific order
or sequence

SWS_Tm_00059

SRS_BSW_00429 BSW modules shall be only
allowed to use OS objects
and/or related OS services

SWS_Tm_00059

SRS_BSW_00432 Modules should have
separate main processing
functions for read/receive

SWS_Tm_00059

Specification of Time Service
 R4.2.2

20 of 54 Document ID 624: AUTOSAR_SWS_TimeService

- AUTOSAR confidential -

and write/transmit data path

SRS_BSW_00433 Main processing functions
are only allowed to be called
from task bodies provided
by the BSW Scheduler

SWS_Tm_00059

SRS_BSW_00435 - SWS_Tm_00061

SRS_BSW_00436 - SWS_Tm_00061

SRS_BSW_00437 Memory mapping shall
provide the possibility to
define RAM segments which
are not to be initialized
during startup

SWS_Tm_00059

SRS_BSW_00439 Enable BSW modules to
handle interrupts

SWS_Tm_00059

SRS_BSW_00440 The callback function
invocation by the BSW
module shall follow the
signature provided by RTE
to invoke servers via
Rte_Call API

SWS_Tm_00059

SRS_Tm_00001 Different types of Predef
Timers shall be supported
by the Time Service module

SWS_Tm_00032, SWS_Tm_00033,
SWS_Tm_00034, SWS_Tm_00035,
SWS_Tm_00038, SWS_Tm_00039,
SWS_Tm_00040, SWS_Tm_00041,
SWS_Tm_00042, SWS_Tm_00043,
SWS_Tm_00044, SWS_Tm_00045,
SWS_Tm_00046, SWS_Tm_00047,
SWS_Tm_00048, SWS_Tm_00049,
SWS_Tm_00050, SWS_Tm_00051,
SWS_Tm_00052, SWS_Tm_00053,
SWS_Tm_00054, SWS_Tm_00055,
SWS_Tm_00056

SRS_Tm_00002 The GPT Predef Timers
shall be used as time base
for the Predef Timers of the
Time Service module

SWS_Tm_00001, SWS_Tm_00002,
SWS_Tm_00003, SWS_Tm_00004,
SWS_Tm_00005, SWS_Tm_00057

SRS_Tm_00003 The Time Service module
shall make it possible to
configure which Predef
Timers are enabled

SWS_Tm_00026, SWS_Tm_00027

SRS_Tm_00004 The Time Service module
shall provide a synchronous
service to reset a timer
instance

SWS_Tm_00038, SWS_Tm_00043,
SWS_Tm_00048, SWS_Tm_00053

SRS_Tm_00005 The Time Service module
shall provide a synchronous
service to get the time span

SWS_Tm_00009, SWS_Tm_00039,
SWS_Tm_00044, SWS_Tm_00049,
SWS_Tm_00054

SRS_Tm_00006 The Time Service module
shall provide a synchronous
service to shift the reference
time of a timer instance

SWS_Tm_00006, SWS_Tm_00013,
SWS_Tm_00040, SWS_Tm_00045,
SWS_Tm_00050, SWS_Tm_00055

SRS_Tm_00007 The Time Service module
shall provide a synchronous

SWS_Tm_00019, SWS_Tm_00041,
SWS_Tm_00046, SWS_Tm_00051,

Specification of Time Service
 R4.2.2

21 of 54 Document ID 624: AUTOSAR_SWS_TimeService

- AUTOSAR confidential -

service to synchronize two
timer instances

SWS_Tm_00056

SRS_Tm_00008 The Time Service module
shall provide a synchronous
service with tick duration
1Âµs to perform busy
waiting by polling

SWS_Tm_00022, SWS_Tm_00023,
SWS_Tm_00024, SWS_Tm_00042,
SWS_Tm_00047, SWS_Tm_00052

Specification of Time Service
 R4.2.2

22 of 54 Document ID 624: AUTOSAR_SWS_TimeService

- AUTOSAR confidential -

7 Functional specification

7.1 General behavior

7.1.1 GPT Predef Timers

The functionality of the Time Service module is based on so called “GPT Predef
Timers”, see [11] (SWS GPT Driver).

7.1.2 Time Service Predef Timers

A Time Service Predef Timer is based on the corresponding GPT Predef Timer.

For each Time Service Predef Timer a data type is defined.

Data type name of
Time Service Predef Timer

Tick
duration

Maximum
tick value

Number
of bits

Maximum
time span
(circa values)

Tm_PredefTimer1us16bitType
1 µs

65535 16 bit 65 ms

Tm_PredefTimer1us24bitType 16777215 24 bit 16 s

Tm_PredefTimer1us32bitType 4294967295 32 bit 71 minutes

Tm_PredefTimer100us32bitType 100 µs 4294967295 32 bit 4.9 days

Table 3 - Characteristics of Time Service Predef Timers

A timer instance can be created by defining a data object (RAM data) of a “Time
Service Predef Timer data type”, for example:
 Tm_PredefTimer1us32bitType Timer1; /* Define timer instance */

The data type (and so the timer instance) contains a so called “reference time”. This
reference time is necessary for some API services.

The detailed definition of the data types is out of scope of this specification, because
the structure element(s) shall not be used outside the Time Service module.

Example for data type Tm_PredefTimer1us32bitType:
 typedef struct

 {

 uint32 ui32RefTime; /* Reference time of the timer */

 } Tm_PredefTimer1us32bitType;

Each Time Service Predef Timer has its own set of API services, due to performance
reasons, especially for the 1µs timers. The services provide “simple” functionalitiy like
a stopwatch:
 ResetTimer
 GetTimeSpan

Specification of Time Service
 R4.2.2

23 of 54 Document ID 624: AUTOSAR_SWS_TimeService

- AUTOSAR confidential -

 ShiftTimer
 SyncTime
 BusyWait (only for 1µs timers)

Each service has at least one parameter (e.g. TimerPtr), which is a pointer to a timer
instance defined on user software level.

The service names are built of two parts:

 Part1: what to do, e.g. Tm_ResetTimer

 Part2: which Predef Timer type is used, e.g. 1us32bit

Example of service name: Tm_ResetTimer1us32bit

[SWS_Tm_00001] ⌈ The Time Service module shall use the GPT driver service

Gpt_GetPredefTimerValue to get the current time value for the desired Predef

Timer. ⌋ (SRS_Tm_00002)

[SWS_Tm_00002] ⌈ The “1us16bit” functions shall use the Timer

GPT_PREDEF_TIMER_1US_16BIT as time base if a time base is needed. ⌋
(SRS_Tm_00002)

An example for a “1us16bit” function is: Tm_ResetTimer1us16bit

[SWS_Tm_00003] ⌈ The “1us24bit” functions shall use the Timer

GPT_PREDEF_TIMER_1US_24BIT as time base if a time base is needed. ⌋
(SRS_Tm_00002)

[SWS_Tm_00004] ⌈ The “1us32bit” functions shall use the Timer

GPT_PREDEF_TIMER_1US_32BIT as time base if a time base is needed. ⌋
(SRS_Tm_00002)

[SWS_Tm_00005] ⌈ The “100us32bit” functions shall use the Timer

GPT_PREDEF_TIMER_100US_32BIT as time base if a time base is needed. ⌋
(SRS_Tm_00002)

7.1.3 Maximal measurable time span

This chapter has to be considered on user software level.

The measurable time span is restricted to the maximum value of the corresponding
GPT Predef Timer. A wrap-around of a timer is handled by the GetTimeSpan
functions, see SWS_Tm_00010.

The diagram “Free running up counter” below shows the general behaviour of a free

running up counter provided by the GPT driver. The services Tm_ResetTimer… and

Tm_GetTimeSpan… are used to measure three time spans, as example.

Specification of Time Service
 R4.2.2

24 of 54 Document ID 624: AUTOSAR_SWS_TimeService

- AUTOSAR confidential -

Figure 3 – Free running up counter

By calling Tm_ResetTimer… the current time of the related GPT Predef Timer is

stored as a reference time. For details see chapter 7.1.6.

By calling Tm_GetTimeSpan… the time difference between the current time and the

reference time is calculated and delivered. For details see chapter 7.1.7.

For:
 Tm_GetTimeSpan… 1
 Tm_GetTimeSpan… 2

the time span will be calculated correctly.

For:
 Tm_GetTimeSpan… 3

it is not possible to calculate the correct time span, because the maximum time span
is exceeded. It is not possible to detect such an exceeding. This is not a fault of this
specification, it’s a logical consequence caused by the technical principle. See also
“Unintentional behaviour of BusyWait services” in chapter 7.1.10.1.

To ensure correct behavior under every possible circumstance, the user of the
GetTimeSpan service has to check:
 which Predef Timer is required/sufficient
 the task scheduling
 whether an interrupt or resource lock is necessary on user software level
 whether the user software is tolerant of such problems

t

Tm_ResetTimer…

Tm_GetTimeSpan…
1

Tm_GetTimeSpan…
2

timer value

reference
time

current
time

1

current
time

2

Tm_GetTimeSpan…
3

current
time

3

0

max. value

Specification of Time Service
 R4.2.2

25 of 54 Document ID 624: AUTOSAR_SWS_TimeService

- AUTOSAR confidential -

7.1.4 Time quantization error

This chapter has to be considered on user software level.

The theory of quantization error has to be considered at using/interpretation of the
values delivered by the GetTimeSpan functions.
The value delivered by a GetTimeSpan function has an accuracy of +/- 1 tick.

For example:

Value delivered by
GetTimeSpan function

Real time
minimum

Real time
maximum

Comment

Value Tick duration

1 µs nearly 0 µs nearly 2 µs See figure
Time quantization
example diagram

3400 µs nearly 3399 µs nearly 3401 µs

56 100µs nearly 5500 µs nearly 5700 µs

Figure 4 – Time quantization example diagram

In the example diagram above both calls of Tm_GetTimeSpan1us32bit (1 and 2)

deliver the value 1, this means 1µs.

Tm_ResetTimer1us32bit
1

Tm_GetTimeSpan1us32bit
1

5

4 5 6 7 8 9

6

7

4

3

8

10 11 12

Tm_ResetTimer1us32bit
2

Tm_GetTimeSpan1us32bit
2

9

quantized time
in µs ticks

time in µs

Specification of Time Service
 R4.2.2

26 of 54 Document ID 624: AUTOSAR_SWS_TimeService

- AUTOSAR confidential -

Depending on points in time the calls of Tm_ResetTimer1us32bit and

Tm_GetTimeSpan1us32bit occur, the real time span can be in a range nearly 0µs

to nearly 2µs.

If a GetTimeSpan function is used to check a minimum time, e.g. for:
 Timeout supervision
 Busy waiting

n+1 ticks must be observed by user software to ensure that an interval of at least n
ticks has passed, see also SWS_Tm_00024.
For busy waiting please use the BusyWait services, see chapter 7.1.10

7.1.5 Execution times of services / measurement of short time spans

This chapter has to be considered on user software level.

If short time spans shall be measured on user software level, the execution times of
the Tm services and the underlying GPT driver services shall be short enough
related to the time spans to be measured.

The execution times are dependent on:
 Implementation
 CPU speed
 Realization of related GPT Predef Timer, see chapter GPT Predef Timer in [11]

(SWS GPT Driver)

The user has to check whether the execution times are sufficient for his use case.

7.1.6 Service ResetTimer

The service ResetTimer resets a timer instance from user point of view.

An example for a ResetTimer function is: Tm_ResetTimer1us32bit

[SWS_Tm_00006] ⌈ The ResetTimer functions shall reset the timer instance passed

by the parameter TimerPtr. This means, the reference time of the timer instance

shall be set to the current time of the related GPT Predef Timer. ⌋ (SRS_Tm_00006)

[SWS_Tm_00007] ⌈ The ResetTimer functions shall be reentrant, if the timer
instances used in concurrent calls are different. ⌋ (SRS_BSW_00312)

[SWS_Tm_00008] ⌈ If default error detection for the Time Service module is
enabled:
If the pointer parameter is a null pointer, the ResetTimer functions shall raise the

error TM_E_PARAM_POINTER and shall return E_NOT_OK. ⌋ (SRS_BSW_00369,

SRS_BSW_00323)

Specification of Time Service
 R4.2.2

27 of 54 Document ID 624: AUTOSAR_SWS_TimeService

- AUTOSAR confidential -

7.1.7 Service GetTimeSpan

An example for a GetTimeSpan function is: Tm_GetTimeSpan1us32bit

[SWS_Tm_00009] ⌈ The GetTimeSpan functions shall calculate and deliver the time
difference between the current time and the reference time of the timer instance. ⌋
(SRS_Tm_00005)

Note:
The restriction of maximal measurable time span has to be considered on user
software level, see chapter 7.1.3.

Note:
Because the GetTimeSpan functions deliver time differences as integer values, the
theory of quantization error has to be considered on user software level at
using/interpretation of the values, see chapter 7.1.4.

[SWS_Tm_00010] ⌈ The GetTimeSpan functions shall perform proper wrap-around
handling at subtraction (current time - reference time), if value of current time is less
than value of reference time. ⌋ ()

Hint:
Proper wrap-around handling can be achieved e.g. by following C code:
For 16bit timer:
ui16TimeSpan = (uint16)(ui16CurrentTime

 - TimerPtr->ui16RefTime);

For 24bit timer:
ui32TimeSpan = (uint32)(ui32CurrentTime

 - TimerPtr->ui32RefTime)

 & (uint32)0x00FFFFFFu;

For 32bit timer:
ui32TimeSpan = (uint32)(ui32CurrentTime

 - TimerPtr->ui32RefTime;

[SWS_Tm_00011] ⌈ The GetTimeSpan functions shall be fully reentrant, this means
even for the same timer instance. ⌋ (SRS_BSW_00312)

[SWS_Tm_00012] ⌈ If default error detection for the Time Service module is
enabled:
If a pointer parameter is a null pointer, the GetTimeSpan functions shall raise the

error TM_E_PARAM_POINTER and shall return E_NOT_OK. ⌋ (SRS_BSW_00369,

SRS_BSW_00323)

[SWS_Tm_00065] ⌈ When an error is detected and the parameter TimeSpanPtr

is not a null pointer, the GetTimeSpan functions shall deliver the time span “0”. ⌋ ()

Note:
This is to achieve defined (repeatable) behavior on user software level, even if the

return value (E_OK, E_NOT_OK) is not used.

Specification of Time Service
 R4.2.2

28 of 54 Document ID 624: AUTOSAR_SWS_TimeService

- AUTOSAR confidential -

7.1.8 Service ShiftTimer

An example for a ShiftTimer function is: Tm_ShiftTimer1us32bit

[SWS_Tm_00013] ⌈ The ShiftTimer functions shall shift the reference time of the

timer instance. This means, the value TimeValue shall be added to the reference

time of the timer instance. ⌋ (SRS_Tm_00006)

[SWS_Tm_00014] ⌈ The ShiftTimer functions shall perform proper wrap-around
handling at adding (reference time + TimeValue), if the sum is greater than the
maximum value of the timer. ⌋ ()

Hint:
Proper wrap-around handling can be achieved e.g. by following C code:
For 16bit timer:
TimerPtr->ui16RefTime = (uint16)(TimerPtr->ui16RefTime

 + TimeValue);

For 24bit timer:
TimerPtr->ui32RefTime = (uint32)(TimerPtr->ui32RefTime

 + TimeValue) & (uint32)0x00FFFFFFu;

For 32bit timer:
TimerPtr->ui32RefTime = (uint32)(TimerPtr->ui32RefTime

 + TimeValue;

[SWS_Tm_00015] ⌈ The ShiftTimer functions with range 24bit shall limit the value of

the parameter TimeValue to 0xFFFFFF. ⌋ ()

[SWS_Tm_00016] ⌈ If default error detection for the Time Service module is
enabled:

If the value of the parameter TimeValue is greater than 0xFFFFFF, the ShiftTimer

functions with range 24bit shall raise the error TM_E_PARAM_VALUE. ⌋

(SRS_BSW_00323)

[SWS_Tm_00017] ⌈ The ShiftTimer functions shall be reentrant, if the timer
instances used in concurrent calls are different. ⌋ (SRS_BSW_00312)

[SWS_Tm_00018] ⌈ If default error detection for the Time Service module is
enabled:
If the pointer parameter is a null pointer, the ShiftTimer functions shall raise the error

TM_E_PARAM_POINTER. ⌋ (SRS_BSW_00323)

7.1.9 Service SyncTimer

An example for a “SyncTimer” function is: Tm_SyncTimer1us32bit

Specification of Time Service
 R4.2.2

29 of 54 Document ID 624: AUTOSAR_SWS_TimeService

- AUTOSAR confidential -

[SWS_Tm_00019] ⌈ The SyncTimer functions shall synchronize two timer instances.
This means, the reference time of the destination timer instance shall be set to the
reference time of the source timer instance. ⌋ (SRS_Tm_00007)

[SWS_Tm_00020] ⌈ The SyncTimer functions shall be reentrant, if the destination
timer instances used in concurrent calls are different. ⌋ (SRS_BSW_00312)

[SWS_Tm_00021] ⌈ If default error detection for the Time Service module is
enabled:
If a pointer parameter is a null pointer, the SyncTimer functions shall raise the error

TM_E_PARAM_POINTER. ⌋ (SRS_BSW_00323)

7.1.10 Service BusyWait

The service BusyWait performs busy waiting (active waiting) by polling with a
guaranteed minimum waiting time. The BusyWait service should be used instead of
own implementations on user software level to avoid risks of bad implementations.

Risks may be:

 minimum waiting time is not guaranteed

 "loops" or "nop instructions” are used instead of hardware timers, see chapter
1.1.3

Note:
The specification of the BusyWait functions considers the theory of quantization
error, see chapter 7.1.4.

Note:
Because the BusyWait service is based on polling, the user of the BusyWait service
is responsible for avoiding unintentional behaviour, see chapter 7.1.10.1.

The service is available for Predef Timers with tick duration 1µs. The waiting time is
restricted to 8 bits (255µs) to prevent long time blocking of code execution.

An example for a BusyWait function is: Tm_BusyWait1us32bit

[SWS_Tm_00022] ⌈ The BusyWait functions shall perform busy waiting for the

minimum time passed by the parameter WaitingTimeMin.⌋ (SRS_Tm_00008)

[SWS_Tm_00023] ⌈ The BusyWait functions shall not disable the interrupts. This
means the real waiting time may be greater than the desired waiting time. ⌋
(SRS_Tm_00008)

[SWS_Tm_00024] ⌈ The BusyWait functions shall guarantee the minimum waiting.
This means, n+1 ticks must be observed to ensure that an interval of at least n ticks
has passed. ⌋ (SRS_Tm_00008)

Specification of Time Service
 R4.2.2

30 of 54 Document ID 624: AUTOSAR_SWS_TimeService

- AUTOSAR confidential -

[SWS_Tm_00025] ⌈ The BusyWait functions shall be reentrant. ⌋
(SRS_BSW_00312)

[SWS_Tm_00066] ⌈ When an error is detected, the BusyWait functions shall return

E_NOT_OK and shall abort “waiting” immediately. ⌋ (SRS_BSW_00369)

7.1.10.1 Unintentional behaviour of BusyWait services

This chapter has to be considered on user software level.

Because the BusyWait services are based on polling, the user of a BusyWait service
is responsible for avoiding unintentional behaviour.

Example of unintentional behaviour:

Elapsed
time
in µs

16-bit base
timer value

in µs

Action

0 0 Task is in state Running
Call of service
Tm_BusyWait1us16bit(50); /* Wait for 50us */

2 2 Task goes in state Ready

21055 21055 Task still in state Ready

65535 65535 Task still in state Ready, wrap-around of timer value with next tick

65536 0 Task still in state Ready

65559 23 Task goes in state Running again.
Problem: Busy wait service does not return although 65559µs
 (> 50µs) elapsed since calling.

To ensure correct behavior under every possible circumstance, the user of the
BusyWait service has to check:
 which Busy wait service is required/sufficient

(Tm_BusyWait1us16bit, Tm_BusyWait1us24bit, Tm_BusyWait1us32bit)

 the task scheduling
 whether an interrupt or resource lock is necessary on user software level
 whether the user software is tolerant of such problems

By using the service Tm_BusyWait1us32bit a problem as described above can only
occur, if a task which calls the busy wait service is preempted (not executed, in state
Ready) for more than 71 minutes.

7.1.11 Configuration of API services

The Time Service module allows to configure which Predef Timers are enabled, see
configuration parameters in chapter 10.

Example of configuration parameter: TmEnablePredefTimer1us16bit .

Specification of Time Service
 R4.2.2

31 of 54 Document ID 624: AUTOSAR_SWS_TimeService

- AUTOSAR confidential -

[SWS_Tm_00026] ⌈ For each Predef Timer enabled by configuration the following
set of API services shall be available: ResetTimer, GetTimeSpan, ShiftTimer,
SyncTimer. ⌋ (SRS_Tm_00003).

[SWS_Tm_00027] ⌈ For each Predef Timer with tick duration 1µs enabled by
configuration the API service BusyWait shall be available. ⌋ (SRS_Tm_00003).

7.2 Module initialization

There is no requirement for an init function (Tm_Init).

No variables (e.g. states) or hardware resources have to be initialized by the Time
Service module. All GPT Predef Timers required by the Time Service module
(assumed to be configured correct) run automatically whenwever possible. This is
ensured by the GPT driver, see chapter 7.1.1.

For default error detection, please refer to chapter 7.6.

7.3 Sample code of use cases

This chapter contains example code of use cases in addition to the use cases
described in chapter 1.1.

7.3.1 Time measurement

Sometimes execution time of code shall be measured.

Sample code:

#include “Os.h”

#include “Tm.h”

Tm_PredefTimer1us24bitType TimerIsr1; /* Define timer instance */

Tm_PredefTimer1us24bitType TimerTask100ms; /* Define timer instance */

uint32 RunTimeIsr1_us; /* Gross runtime of Isr1 */

uint32 RunTimeTask100ms_us; /* Gross runtime of Task100ms */

ISR(Isr1)

{

 (void)Tm_ResetTimer1us24bit(&TimerIsr1);

 /* Code */

 (void)Tm_GetTimeSpan1us24bit(&TimerIsr1, &RunTimeIsr1_us);

}

TASK(Task100ms)

{

 (void)Tm_ResetTimer1us24bit(&TimerTask100ms);

Specification of Time Service
 R4.2.2

32 of 54 Document ID 624: AUTOSAR_SWS_TimeService

- AUTOSAR confidential -

 /* Code */

 (void)Tm_GetTimeSpan1us24bit(&TimerTask100ms, &RunTimeTask100ms_us);

 (void)TerminateTask();

}

7.3.2 Time based state machine

By implementing a time based state machine it is possible to realize time based
functionality nearly independently from the cycle time of the calling task.

Sample code:

#include “Os.h”

#include “Tm.h”

#define MY_INIT 0

#define MY_WAIT1 1

#define MY_WAIT2 2

uint8_least State = MY_INIT;

TASK(Task5ms)

{

 static Tm_PredefTimer1us24bitType Timer; /* Define timer instance */

 uint32 WaitingTime1_us = 500000u; /* 500ms */

 uint32 WaitingTime2_us = 250000u; /* 250ms */

 switch (State)

 {

 case MY_INIT:

 {

 (void)Tm_ResetTimer1us24bit(&Timer);

 State = MY_WAIT1;

 break;

 }

 case MY_WAIT1:

 {

 uint32 Time_us;

 (void)Tm_GetTimeSpan1us24bit(&Timer, &Time_us);

 if (Time_us >= WaitingTime1_us)

 {

 /* Action ... */

 Tm_ShiftTimer1us24bit(&Timer, WaitingTime1_us);

 State = MY_WAIT2;

 }

 break;

 }

 case MY_WAIT2:

 {

 uint32 Time_us;

 (void)Tm_GetTimeSpan1us24bit(&Timer, &Time_us);

 if (Time_us >= WaitingTime2_us)

 {

 /* Action ... */

Specification of Time Service
 R4.2.2

33 of 54 Document ID 624: AUTOSAR_SWS_TimeService

- AUTOSAR confidential -

 Tm_ShiftTimer1us24bit(&Timer, WaitingTime2_us);

 State = MY_WAIT1;

 }

 break;

 }

 }

 (void)TerminateTask();

}

7.3.3 Timeout supervision

In case of hardware accessing MCAL driver, sometimes it is necessary that a
hardware reaction is expected within certain but short time frame.

Sample code:

#include “Register.h”

#include “Tm.h”

Tm_PredefTimer1us32bitType Timer1; /* Define timer instance */

uint16 StatusRegisterBit0;

uint32 TimeElapsed_us;

void SampleFunction(void)

{

 (void)Tm_ResetTimer1us32bit(&Timer1);

 do

 {

 StatusRegisterBit0 = HW_STATUS_REG & 0x0001u;

 (void)Tm_GetTimeSpan1us32bit(&Timer1, &TimeElapsed_us);

 } while ((StatusRegisterBit0 != 0x0001u) /* Wait until bit 0 is set*/

 && (TimeElapsed_us <= 40) /* Timeout 40us */

);

}

7.3.4 Busy waiting

In case of hardware accessing MCAL driver, sometimes it is necessary that a certain
but short time frame shall elapse.

Sample code:

#include “Tm.h”

Std_ReturnType CanTrcv_SetOpMode(uint8 Transceiver,

 CanIf_TrcvModeType OpMode)

{

 /* Code */

 switch(OpMode)

 {

Specification of Time Service
 R4.2.2

34 of 54 Document ID 624: AUTOSAR_SWS_TimeService

- AUTOSAR confidential -

 case CANIF_TRCV_MODE_NORMAL:

 {

 /* Code */

 break;

 }

 case CANIF_TRCV_MODE_SLEEP:

 {

 /* Code */

 SetPinEnableHigh();

 /* Busy waiting: 50us (for TJA1054: at least 50us) */

 (void)Tm_BusyWait1us32bit(50);

 SetPinEnableLow();

 /* Code */

 break;

 }

 case CANIF_TRCV_MODE_STANDBY:

 {

 /* Code */

 break;

 }

 }

 /* Code */

}

7.4 Version check

Please refer to chapter “Version Check” in SWS_BSWGeneral.

7.5 Error classification

7.5.1 Development Errors

[SWS_Tm_00028] ⌈ The following errors shall be detectable by the Time Service
module depending on its build version (development / production):

Type of error Relevance Related error code Value [hex]

API parameter checking:
invalid pointer

Development TM_E_PARAM_POINTER 0x01

API parameter checking:
invalid value

Development TM_E_PARAM_VALUE 0x02

Access to underlaying hardware
timer failed

Development TM_E_HARDWARE_TIMER 0x03

⌋ (SRS_BSW_00338)
Table 4: Error classification

[SWS_Tm_00030] ⌈ Additional errors that are detected because of specific
implementation shall be added in the specific implementation specification. The
classification and enumeration shall be compatible to the errors listed above. ⌋
(SRS_BSW_00337)

Specification of Time Service
 R4.2.2

35 of 54 Document ID 624: AUTOSAR_SWS_TimeService

- AUTOSAR confidential -

7.5.2 Runtime Errors

There are no runtime errors.

7.5.3 Transient Faults

There are no transient faults.

7.5.4 Production Errors

No production errors are defined for the Time Service module.

7.5.5 Extended Production Errors

There are no extended production errors.

7.6 Error detection

Please refer to chapter “Error detection” in SWS_BSWGeneral.

[SWS_Tm_00063] ⌈ When an error occurs the corresponding Time Service function

shall return without any action, unless it is specified for the specific function

differently / more in detail. ⌋ ()

[SWS_Tm_00064] ⌈ If default error detection for the Time Service module is

enabled:

If the underlying GPT driver service returns E_NOT_OK, the functions ResetTimer,

GetTimeSpan and BusyWait shall raise the error TM_E_HARDWARE_TIMER. ⌋

(SRS_BSW_00338)

7.7 Error notification

Please refer to chapter “Error notification” in SWS_BSWGeneral.

7.8 Debugging support

Please refer to chapter “Debugging support” in SWS_BSWGeneral.

Specification of Time Service
 R4.2.2

36 of 54 Document ID 624: AUTOSAR_SWS_TimeService

- AUTOSAR confidential -

8 API specification

8.1 Imported types

In this chapter all types included from the following files are listed:

[SWS_Tm_00031] ⌈

Module Imported Type

Gpt Gpt_PredefTimerType

Std_Types Std_ReturnType

Std_VersionInfoType

⌋ (SRS_BSW_00348)

8.2 Type Definitions

8.2.1 Tm_PredefTimer1us16bitType

[SWS_Tm_00032] ⌈

Name: Tm_PredefTimer1us16bitType

Type: Structure

Range: Implementation specific.

Description: Data type of Time Service Predef Timer 1us16bit.
The structure contains the reference time.

⌋ (SRS_Tm_00001)

8.2.2 Tm_PredefTimer1us24bitType

[SWS_Tm_00033] ⌈

Name: Tm_PredefTimer1us24bitType

Type: Structure

Range: Implementation specific.

Description: Data type of Time Service Predef Timer 1us24bit.
The structure contains the reference time.

⌋ (SRS_Tm_00001)

8.2.3 Tm_PredefTimer1us32bitType

[SWS_Tm_00034] ⌈

Name: Tm_PredefTimer1us32bitType

Type: Structure

Range: Implementation specific.

Description: Data type of Time Service Predef Timer 1us32bit.
The structure contains the reference time.

⌋ (SRS_Tm_00001)

Specification of Time Service
 R4.2.2

37 of 54 Document ID 624: AUTOSAR_SWS_TimeService

- AUTOSAR confidential -

8.2.4 Tm_PredefTimer100us32bitType

[SWS_Tm_00035] ⌈

Name: Tm_PredefTimer100us32bitType

Type: Structure

Range: Implementation specific.

Description: Data type of Time Service Predef Timer 100µs32bit.
The structure contains the reference time.

⌋ (SRS_Tm_00001)

8.3 Function definitions

8.3.1 Tm_GetVersionInfo

[SWS_Tm_00036] ⌈

Service name: Tm_GetVersionInfo

Syntax: void Tm_GetVersionInfo(

 Std_VersionInfoType* VersionInfoPtr

)

Service ID[hex]: 0x1

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): VersionInfoPtr Pointer to where to store the version information of this module.

Return value: None

Description: Returns the version information of this module.

⌋ (SRS_BSW_00407)

[SWS_Tm_00037] ⌈ If default error detection for the Time Service module is
enabled:

If the parameter VersionInfoPtr is a null pointer, the function

Tm_GetVersionInfo shall raise the error TM_E_PARAM_POINTER. ⌋

(SRS_BSW_00323)

8.3.2 Tm_ResetTimer1us16bit

[SWS_Tm_00038] ⌈

Service name: Tm_ResetTimer1us16bit

Syntax: Std_ReturnType Tm_ResetTimer1us16bit(

 Tm_PredefTimer1us16bitType* TimerPtr

)

Service ID[hex]: 0x2

Sync/Async: Synchronous

Specification of Time Service
 R4.2.2

38 of 54 Document ID 624: AUTOSAR_SWS_TimeService

- AUTOSAR confidential -

Reentrancy: Reentrant but not for the same timer instance

Parameters (in): None

Parameters
(inout):

None

Parameters (out): TimerPtr Pointer to a timer instance defined by the user.

Return value:

Std_ReturnType E_OK: The underlying GPT driver service has returned E_OK
and no development error has been detected
E_NOT_OK: The underlying GPT driver service has returned
E_NOT_OK, or a development error has been detected

Description: Resets a timer instance (user point of view).

⌋ (SRS_Tm_00001, SRS_Tm_00004, SRS_BSW_00369)

8.3.3 Tm_GetTimeSpan1us16bit

[SWS_Tm_00039] ⌈

Service name: Tm_GetTimeSpan1us16bit

Syntax: Std_ReturnType Tm_GetTimeSpan1us16bit(

 const Tm_PredefTimer1us16bitType* TimerPtr,

 uint16* TimeSpanPtr

)

Service ID[hex]: 0x3

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): TimerPtr Pointer to a timer instance defined by the user.

Parameters
(inout):

None

Parameters (out): TimeSpanPtr Pointer to time span destination data in RAM

Return value:

Std_ReturnType E_OK: The underlying GPT driver service has returned E_OK
and no development error has been detected
E_NOT_OK: The underlying GPT driver service has returned
E_NOT_OK, or a development error has been detected

Description: Delivers the time difference (current time - reference time).

⌋ (SRS_Tm_00001, SRS_Tm_00005, SRS_BSW_00369)

8.3.4 Tm_ShiftTimer1us16bit

[SWS_Tm_00040] ⌈

Service name: Tm_ShiftTimer1us16bit

Syntax: void Tm_ShiftTimer1us16bit(

 Tm_PredefTimer1us16bitType* TimerPtr,

 uint16 TimeValue

)

Service ID[hex]: 0x4

Sync/Async: Synchronous

Reentrancy: Reentrant but not for the same timer instance

Parameters (in): TimeValue Time value in µs, the reference time has to be shifted.

Parameters
(inout):

TimerPtr Pointer to a timer instance defined by the user.

Parameters (out): None

Return value: None

Description: Shifts the reference time of the timer instance.

Specification of Time Service
 R4.2.2

39 of 54 Document ID 624: AUTOSAR_SWS_TimeService

- AUTOSAR confidential -

⌋ (SRS_Tm_00001, SRS_Tm_00006)

8.3.5 Tm_SyncTimer1us16bit

[SWS_Tm_00041] ⌈

Service name: Tm_SyncTimer1us16bit

Syntax: void Tm_SyncTimer1us16bit(

 Tm_PredefTimer1us16bitType* TimerDstPtr,

 const Tm_PredefTimer1us16bitType* TimerSrcPtr

)

Service ID[hex]: 0x5

Sync/Async: Synchronous

Reentrancy: Reentrant but not for the same destination timer instance

Parameters (in): TimerSrcPtr Pointer to the source timer instance defined by the user.

Parameters
(inout):

None

Parameters (out): TimerDstPtr Pointer to the destination timer instance defined by the user.

Return value: None

Description: Synchronizes two timer instances.

⌋ (SRS_Tm_00001, SRS_Tm_00007)

8.3.6 Tm_BusyWait1us16bit

[SWS_Tm_00042] ⌈

Service name: Tm_BusyWait1us16bit

Syntax: Std_ReturnType Tm_BusyWait1us16bit(

 uint8 WaitingTimeMin

)

Service ID[hex]: 0x6

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): WaitingTimeMin Minimum waiting time in microseconds.

Parameters
(inout):

None

Parameters (out): None

Return value:

Std_ReturnType E_OK: The underlying GPT driver service has returned E_OK
and no development error has been detected
E_NOT_OK: The underlying GPT driver service has returned
E_NOT_OK, or a development error has been detected

Description: Performs busy waiting by polling with a guaranteed minimum waiting time.

⌋ (SRS_Tm_00001, SRS_Tm_00008)

Note:
Because the BusyWait service is based on polling, the user of the BusyWait service
is responsible for avoiding unintentional behaviour, see chapter 7.1.10 Service
BusyWait.

Specification of Time Service
 R4.2.2

40 of 54 Document ID 624: AUTOSAR_SWS_TimeService

- AUTOSAR confidential -

8.3.7 Tm_ResetTimer1us24bit

[SWS_Tm_00043] ⌈

Service name: Tm_ResetTimer1us24bit

Syntax: Std_ReturnType Tm_ResetTimer1us24bit(

 Tm_PredefTimer1us24bitType* TimerPtr

)

Service ID[hex]: 0x7

Sync/Async: Synchronous

Reentrancy: Reentrant but not for the same timer instance

Parameters (in): None

Parameters
(inout):

None

Parameters (out): TimerPtr Pointer to a timer instance defined by the user.

Return value:

Std_ReturnType E_OK: The underlying GPT driver service has returned E_OK
and no development error has been detected
E_NOT_OK: The underlying GPT driver service has returned
E_NOT_OK, or a development error has been detected

Description: Resets a timer instance (user point of view).

⌋ (SRS_Tm_00001, SRS_Tm_00004, SRS_BSW_00369)

8.3.8 Tm_GetTimeSpan1us24bit

[SWS_Tm_00044] ⌈

Service name: Tm_GetTimeSpan1us24bit

Syntax: Std_ReturnType Tm_GetTimeSpan1us24bit(

 const Tm_PredefTimer1us24bitType* TimerPtr,

 uint32* TimeSpanPtr

)

Service ID[hex]: 0x8

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): TimerPtr Pointer to a timer instance defined by the user.

Parameters
(inout):

None

Parameters (out): TimeSpanPtr Pointer to time span destination data in RAM

Return value:

Std_ReturnType E_OK: The underlying GPT driver service has returned E_OK
and no development error has been detected
E_NOT_OK: The underlying GPT driver service has returned
E_NOT_OK, or a development error has been detected

Description: Delivers the time difference (current time - reference time).

⌋ (SRS_Tm_00001, SRS_Tm_00005, SRS_BSW_00369)

8.3.9 Tm_ShiftTimer1us24bit

[SWS_Tm_00045] ⌈

Service name: Tm_ShiftTimer1us24bit

Syntax: void Tm_ShiftTimer1us24bit(

 Tm_PredefTimer1us24bitType* TimerPtr,

 uint32 TimeValue

)

Specification of Time Service
 R4.2.2

41 of 54 Document ID 624: AUTOSAR_SWS_TimeService

- AUTOSAR confidential -

Service ID[hex]: 0x9

Sync/Async: Synchronous

Reentrancy: Reentrant but not for the same timer instance

Parameters (in):
TimeValue Time value in µs, the reference time has to be shifted.

Range: 0-0xFFFFFF

Parameters
(inout):

TimerPtr Pointer to a timer instance defined by the user.

Parameters (out): None

Return value: None

Description: Shifts the reference time of the timer instance.

⌋ (SRS_Tm_00001, SRS_Tm_00006)

8.3.10 Tm_SyncTimer1us24bit

[SWS_Tm_00046] ⌈

Service name: Tm_SyncTimer1us24bit

Syntax: void Tm_SyncTimer1us24bit(

 Tm_PredefTimer1us24bitType* TimerDstPtr,

 const Tm_PredefTimer1us24bitType* TimerSrcPtr

)

Service ID[hex]: 0xa

Sync/Async: Synchronous

Reentrancy: Reentrant but not for the same destination timer instance

Parameters (in): TimerSrcPtr Pointer to the source timer instance defined by the user.

Parameters
(inout):

None

Parameters (out): TimerDstPtr Pointer to the destination timer instance defined by the user.

Return value: None

Description: Synchronizes two timer instances.

⌋ (SRS_Tm_00001, SRS_Tm_00007)

8.3.11 Tm_BusyWait1us24bit

[SWS_Tm_00047] ⌈

Service name: Tm_BusyWait1us24bit

Syntax: Std_ReturnType Tm_BusyWait1us24bit(

 uint8 WaitingTimeMin

)

Service ID[hex]: 0xb

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): WaitingTimeMin Minimum waiting time in microseconds.

Parameters
(inout):

None

Parameters (out): None

Return value:

Std_ReturnType E_OK: The underlying GPT driver service has returned E_OK
and no development error has been detected
E_NOT_OK: The underlying GPT driver service has returned
E_NOT_OK, or a development error has been detected

Description: Performs busy waiting by polling with a guaranteed minimum waiting time.

Specification of Time Service
 R4.2.2

42 of 54 Document ID 624: AUTOSAR_SWS_TimeService

- AUTOSAR confidential -

⌋ (SRS_Tm_00001, SRS_Tm_00008)

Note:
Because the BusyWait service is based on polling, the user of the BusyWait service
is responsible for avoiding unintentional behaviour, see chapter 7.1.10 Service
BusyWait.

8.3.12 Tm_ResetTimer1us32bit

[SWS_Tm_00048] ⌈

Service name: Tm_ResetTimer1us32bit

Syntax: Std_ReturnType Tm_ResetTimer1us32bit(

 Tm_PredefTimer1us32bitType* TimerPtr

)

Service ID[hex]: 0xc

Sync/Async: Synchronous

Reentrancy: Reentrant but not for the same timer instance

Parameters (in): None

Parameters
(inout):

None

Parameters (out): TimerPtr Pointer to a timer instance defined by the user.

Return value:

Std_ReturnType E_OK: The underlying GPT driver service has returned E_OK
and no development error has been detected
E_NOT_OK: The underlying GPT driver service has returned
E_NOT_OK, or a development error has been detected

Description: Resets a timer instance (user point of view).

⌋ (SRS_Tm_00001, SRS_Tm_00004, SRS_BSW_00369)

8.3.13 Tm_GetTimeSpan1us32bit

[SWS_Tm_00049] ⌈

Service name: Tm_GetTimeSpan1us32bit

Syntax: Std_ReturnType Tm_GetTimeSpan1us32bit(

 const Tm_PredefTimer1us32bitType* TimerPtr,

 uint32* TimeSpanPtr

)

Service ID[hex]: 0xd

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): TimerPtr Pointer to a timer instance defined by the user.

Parameters
(inout):

None

Parameters (out): TimeSpanPtr Pointer to time span destination data in RAM

Return value:

Std_ReturnType E_OK: The underlying GPT driver service has returned E_OK
and no development error has been detected
E_NOT_OK: The underlying GPT driver service has returned
E_NOT_OK, or a development error has been detected

Description: Delivers the time difference (current time - reference time).

⌋ (SRS_Tm_00001, SRS_Tm_00005, SRS_BSW_00369)

Specification of Time Service
 R4.2.2

43 of 54 Document ID 624: AUTOSAR_SWS_TimeService

- AUTOSAR confidential -

8.3.14 Tm_ShiftTimer1us32bit

[SWS_Tm_00050] ⌈

Service name: Tm_ShiftTimer1us32bit

Syntax: void Tm_ShiftTimer1us32bit(

 Tm_PredefTimer1us32bitType* TimerPtr,

 uint32 TimeValue

)

Service ID[hex]: 0xe

Sync/Async: Synchronous

Reentrancy: Reentrant but not for the same timer instance

Parameters (in): TimeValue Time value in µs, the reference time has to be shifted.

Parameters
(inout):

TimerPtr Pointer to a timer instance defined by the user.

Parameters (out): None

Return value: None

Description: Shifts the reference time of the timer instance.

⌋ (SRS_Tm_00001, SRS_Tm_00006)

8.3.15 Tm_SyncTimer1us32bit

[SWS_Tm_00051] ⌈

Service name: Tm_SyncTimer1us32bit

Syntax: void Tm_SyncTimer1us32bit(

 Tm_PredefTimer1us32bitType* TimerDstPtr,

 const Tm_PredefTimer1us32bitType* TimerSrcPtr

)

Service ID[hex]: 0xf

Sync/Async: Synchronous

Reentrancy: Reentrant but not for the same destination timer instance

Parameters (in): TimerSrcPtr Pointer to the source timer instance defined by the user.

Parameters
(inout):

None

Parameters (out): TimerDstPtr Pointer to the destination timer instance defined by the user.

Return value: None

Description: Synchronizes two timer instances.

⌋ (SRS_Tm_00001, SRS_Tm_00007)

8.3.16 Tm_BusyWait1us32bit

[SWS_Tm_00052] ⌈

Service name: Tm_BusyWait1us32bit

Syntax: Std_ReturnType Tm_BusyWait1us32bit(

 uint8 WaitingTimeMin

)

Service ID[hex]: 0x10

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): WaitingTimeMin Minimum waiting time in microseconds.

Parameters None

Specification of Time Service
 R4.2.2

44 of 54 Document ID 624: AUTOSAR_SWS_TimeService

- AUTOSAR confidential -

(inout):

Parameters (out): None

Return value:

Std_ReturnType E_OK: The underlying GPT driver service has returned E_OK
and no development error has been detected
E_NOT_OK: The underlying GPT driver service has returned
E_NOT_OK, or a development error has been detected

Description: Performs busy waiting by polling with a guaranteed minimum waiting time.

⌋ (SRS_Tm_00001, SRS_Tm_00008)

Note:
Because the BusyWait service is based on polling, the user of the BusyWait service
is responsible for avoiding unintentional behaviour, see chapter 7.1.10 Service
BusyWait.

8.3.17 Tm_ResetTimer100us32bit

[SWS_Tm_00053] ⌈

Service name: Tm_ResetTimer100us32bit

Syntax: Std_ReturnType Tm_ResetTimer100us32bit(

 Tm_PredefTimer100us32bitType* TimerPtr

)

Service ID[hex]: 0x11

Sync/Async: Synchronous

Reentrancy: Reentrant but not for the same timer instance

Parameters (in): None

Parameters
(inout):

None

Parameters (out): TimerPtr Pointer to a timer instance defined by the user.

Return value:

Std_ReturnType E_OK: The underlying GPT driver service has returned E_OK
and no development error has been detected
E_NOT_OK: The underlying GPT driver service has returned
E_NOT_OK, or a development error has been detected

Description: Resets a timer instance (user point of view).

⌋ (SRS_Tm_00001, SRS_Tm_00004, SRS_BSW_00369)

8.3.18 Tm_GetTimeSpan100us32bit

[SWS_Tm_00054] ⌈

Service name: Tm_GetTimeSpan100us32bit

Syntax: Std_ReturnType Tm_GetTimeSpan100us32bit(

 const Tm_PredefTimer100us32bitType* TimerPtr,

 uint32* TimeSpanPtr

)

Service ID[hex]: 0x12

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): TimerPtr Pointer to a timer instance defined by the user.

Parameters
(inout):

None

Parameters (out): TimeSpanPtr Pointer to time span destination data in RAM

Specification of Time Service
 R4.2.2

45 of 54 Document ID 624: AUTOSAR_SWS_TimeService

- AUTOSAR confidential -

Return value:

Std_ReturnType E_OK: The underlying GPT driver service has returned E_OK
and no development error has been detected
E_NOT_OK: The underlying GPT driver service has returned
E_NOT_OK, or a development error has been detected

Description: Delivers the time difference (current time - reference time).

⌋ (SRS_Tm_00001, SRS_Tm_00005, SRS_BSW_00369)

8.3.19 Tm_ShiftTimer100us32bit

[SWS_Tm_00055] ⌈

Service name: Tm_ShiftTimer100us32bit

Syntax: void Tm_ShiftTimer100us32bit(

 Tm_PredefTimer100us32bitType* TimerPtr,

 uint32 TimeValue

)

Service ID[hex]: 0x13

Sync/Async: Synchronous

Reentrancy: Reentrant but not for the same timer instance

Parameters (in): TimeValue Time value in unit 100µs, the reference time has to be shifted.

Parameters
(inout):

TimerPtr Pointer to a timer instance defined by the user.

Parameters (out): None

Return value: None

Description: Shifts the reference time of the timer instance.

⌋ (SRS_Tm_00001, SRS_Tm_00006)

8.3.20 Tm_SyncTimer100us32bit

[SWS_Tm_00056] ⌈

Service name: Tm_SyncTimer100us32bit

Syntax: void Tm_SyncTimer100us32bit(

 Tm_PredefTimer100us32bitType* TimerDstPtr,

 const Tm_PredefTimer100us32bitType* TimerSrcPtr

)

Service ID[hex]: 0x14

Sync/Async: Synchronous

Reentrancy: Reentrant but not for the same destination timer instance

Parameters (in): TimerSrcPtr Pointer to the source timer instance defined by the user.

Parameters
(inout):

None

Parameters (out): TimerDstPtr Pointer to the destination timer instance defined by the user.

Return value: None

Description: Synchronizes two timer instances.

⌋ (SRS_Tm_00001, SRS_Tm_00007)

8.4 Call-back Notifications

None.

Specification of Time Service
 R4.2.2

46 of 54 Document ID 624: AUTOSAR_SWS_TimeService

- AUTOSAR confidential -

8.5 Scheduled functions

None.

8.6 Expected Interfaces

In this chapter all interfaces required from other modules are listed.

8.6.1 Mandatory Interfaces

This chapter defines all interfaces, which are required to fulfill the core functionality of
the module.

[SWS_Tm_00057] ⌈

API function Description

Gpt_GetPredefTimerValue Delivers the current value of the desired GPT Predef Timer.

 ⌋ (SRS_Tm_00002)

8.6.2 Optional Interfaces

This chapter defines all interfaces, which are required to fulfill an optional
functionality of the module.

[SWS_Tm_00060]⌈

API function Description

Det_ReportError Service to report development errors.

 ⌋ (SRS_BSW_00338)

8.6.3 Configurable Interfaces

In this chapter all interfaces are listed where the target function could be configured.
The target function is usually a call-back function. The names of these kinds of
interfaces is not fixed because they are configurable.

None.

Specification of Time Service
 R4.2.2

47 of 54 Document ID 624: AUTOSAR_SWS_TimeService

- AUTOSAR confidential -

9 Sequence diagrams

9.1 Tm Normal Operation

Specification of Time Service
 R4.2.2

48 of 54 Document ID 624: AUTOSAR_SWS_TimeService

- AUTOSAR confidential -

Tm User «module»

Tm

«module»

Gpt

Reference time of Timer2 is set to the reference

time of Timer1

TimeSpan1 is time span since marker 1

marker 1

marker 2

TimeSpan2 is time span since marker 1

TimeSpan3 is time span since marker 2

TimeSpan4 is time span since marker 1

Reference time of Timer1 is set

TimeSpan1 is added to reference time of Timer1

Tm_ResetTimer1us32bit(&Timer1)

Gpt_GetPredefTimerValue(GPT_PREDEF_TIMER_1US_32BIT, &…)

Tm_SyncTimer1us32bit(&Timer2, &Timer1)

Tm_GetTimeSpan1us32bit(&Timer1, &TimeSpan1)

Gpt_GetPredefTimerValue(GPT_PREDEF_TIMER_1US_32BIT, &…)

Tm_GetTimeSpan1us32bit(&Timer2, &TimeSpan2)

Gpt_GetPredefTimerValue(GPT_PREDEF_TIMER_1US_32BIT, &…)

Tm_ShiftTimer1us32bit(&Timer1, TimeSpan1)

Tm_GetTimeSpan1us32bit(&Timer1, &TimeSpan3)

Gpt_GetPredefTimerValue(GPT_PREDEF_TIMER_1US_32BIT, &…)

Tm_GetTimeSpan1us32bit(&Timer2, &TimeSpan4)

Gpt_GetPredefTimerValue(GPT_PREDEF_TIMER_1US_32BIT, &…)

Figure 5 – Sequence diagram “Tm_Normal_Operation”

Specification of Time Service
 R4.2.2

49 of 54 Document ID 624: AUTOSAR_SWS_TimeService

- AUTOSAR confidential -

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into
containers. In order to support the specification Chapter 10.1 describes
fundamentals. It also specifies a template (table) you shall use for the parameter
specification. We intend to leave Chapter 10.1 in the specification to guarantee
comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
GPT

Chapter 10.3 specifies published information of the module

10.1 How to read this chapter

For details refer to the chapter 10.1 Introduction to configuration specification in
SWS_BSWGeneral

Specification of Time Service
 R4.2.2

50 of 54 Document ID 624: AUTOSAR_SWS_TimeService

- AUTOSAR confidential -

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed
meanings of the parameters describe Chapter 7 and Chapter 8.

10.2.1 Variants

Configuration variants describe sets of configuration parameters:

- VARIANT-PRE-COMPILE (PC)

Only parameters with "Pre-compile time" configuration are allowed in this variant.

- VARIANT-LINK-TIME (LT)
Only parameters with "Pre-compile time" and "Link time" are allowed in this
variant.

- VARIANT-POST-BUILD (PB)
Parameters with "Pre-compile time", "Link time" and "Post-build time" are allowed
in this variant.

[SWS_Tm_00058] ⌈ For module TimeService only the VARIANT-PRE-COMPILE is
relevant. ⌋ ()

Specification of Time Service
 R4.2.2

51 of 54 Document ID 624: AUTOSAR_SWS_TimeService

- AUTOSAR confidential -

10.2.2 Tm

Module Name Tm

Module Description Configuration of the Time Service module.

Post-Build Variant Support false

Included Containers

Container Name Multiplicity Scope / Dependency

TmGeneral 1 General configuration of Time Service module.

Tm :EcucModuleDef

lowerMultiplicity = 0

upperMultiplicity = 1

TmGeneral :

EcucParamConfContainerDef

TmDevErrorDetect :

EcucBooleanParamDef

TmEnablePredefTimer1us16bit :

EcucBooleanParamDef

TmEnablePredefTimer1us24bit :

EcucBooleanParamDef

TmEnablePredefTimer1us32bit :

EcucBooleanParamDef

TmEnablePredefTimer100us32bit :

EcucBooleanParamDef

TmVersionInfoApi :

EcucBooleanParamDef

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+container

Figure 6 – Configuration Tm

10.2.3 TmGeneral

SWS Item ECUC_Tm_00001 :

Container Name TmGeneral

Description General configuration of Time Service module.

Configuration Parameters

SWS Item ECUC_Tm_00002 :

Name

TmDevErrorDetect

Description Switches the Default Error Tracer (Det) detection and notification ON or
OFF.

 true: enabled (ON).

Specification of Time Service
 R4.2.2

52 of 54 Document ID 624: AUTOSAR_SWS_TimeService

- AUTOSAR confidential -

 false: disabled (OFF).

Multiplicity 1

Type EcucBooleanParamDef

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Tm_00006 :

Name

TmEnablePredefTimer100us32bit

Description Specifies if the Predef Timer 100µs32bit shall be enabled (functionality and
set of API services). ON or OFF.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Tm_00003 :

Name

TmEnablePredefTimer1us16bit

Description Specifies if the Predef Timer 1µs16bit shall be enabled (functionality and
set of API services). ON or OFF.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Tm_00004 :

Name

TmEnablePredefTimer1us24bit

Description Specifies if the Predef Timer 1µs24bit shall be enabled (functionality and
set of API services). ON or OFF.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Tm_00005 :

Name

TmEnablePredefTimer1us32bit

Description Specifies if the Predef Timer 1µs32bit shall be enabled (functionality and
set of API services). ON or OFF.

Multiplicity 1

Type EcucBooleanParamDef

Specification of Time Service
 R4.2.2

53 of 54 Document ID 624: AUTOSAR_SWS_TimeService

- AUTOSAR confidential -

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Tm_00007 :

Name

TmVersionInfoApi

Description Adds / removes the service Tm_GetVersionInfo() from the code. ON or
OFF.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

No Included Containers

10.3 Published Information

For details refer to the chapter 10.3 Published Information in SWS_BSWGeneral.

Specification of Time Service
 R4.2.2

54 of 54 Document ID 624: AUTOSAR_SWS_TimeService

- AUTOSAR confidential -

11 Not applicable requirements

[SWS_Tm_00059] ⌈ These requirements are not applicable to this specification.⌋
(SRS_BSW_00344, SRS_BSW_00159, SRS_BSW_00167, SRS_BSW_00170,
SRS_BSW_00398, SRS_BSW_00416, SRS_BSW_00437, SRS_BSW_00168,
SRS_BSW_00423, SRS_BSW_00424, SRS_BSW_00425, SRS_BSW_00426,
SRS_BSW_00427, SRS_BSW_00428, SRS_BSW_00429, SRS_BSW_00432,
SRS_BSW_00433, SRS_BSW_00422, SRS_BSW_00417, SRS_BSW_00161,
SRS_BSW_00162, SRS_BSW_00005, SRS_BSW_00415, SRS_BSW_00325,
SRS_BSW_00326, SRS_BSW_00342, SRS_BSW_00160, SRS_BSW_00007,
SRS_BSW_00413, SRS_BSW_00347, SRS_BSW_00307, SRS_BSW_00373,
SRS_BSW_00335, SRS_BSW_00353, SRS_BSW_00361, SRS_BSW_00328,
SRS_BSW_00006, SRS_BSW_00439, SRS_BSW_00357, SRS_BSW_00377,
SRS_BSW_00378, SRS_BSW_00306, SRS_BSW_00308, SRS_BSW_00309,
SRS_BSW_00376, SRS_BSW_00359, SRS_BSW_00360, SRS_BSW_00440,
SRS_BSW_00330, SRS_BSW_00331, SRS_BSW_00009, SRS_BSW_00172,
SRS_BSW_00010, SRS_BSW_00333, SRS_BSW_00321, SRS_BSW_00341,
SRS_BSW_00334)

	1 Introduction and functional overview
	1.1 Use cases
	1.1.1 Time measurement
	1.1.2 Time based state machine
	1.1.3 Timeout supervision and busy waiting

	2 Acronyms, abbreviations and terms
	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms
	3.3 Related specification

	4 Constraints and assumptions
	4.1 Assumptions
	4.2 Limitations
	4.3 Applicability to car domains

	5 Dependencies to other modules
	5.1 File structure
	5.1.1 Header file structure

	6 Requirements traceability
	7 Functional specification
	7.1 General behavior
	7.1.1 GPT Predef Timers
	7.1.2 Time Service Predef Timers
	7.1.3 Maximal measurable time span
	7.1.4 Time quantization error
	7.1.5 Execution times of services / measurement of short time spans
	7.1.6 Service ResetTimer
	7.1.7 Service GetTimeSpan
	7.1.8 Service ShiftTimer
	7.1.9 Service SyncTimer
	7.1.10 Service BusyWait
	7.1.10.1 Unintentional behaviour of BusyWait services

	7.1.11 Configuration of API services

	7.2 Module initialization
	7.3 Sample code of use cases
	7.3.1 Time measurement
	7.3.2 Time based state machine
	7.3.3 Timeout supervision
	7.3.4 Busy waiting

	7.4 Version check
	7.5 Error classification
	7.5.1 Development Errors
	7.5.2 Runtime Errors
	7.5.3 Transient Faults
	7.5.4 Production Errors
	7.5.5 Extended Production Errors

	7.6 Error detection
	7.7 Error notification
	7.8 Debugging support

	8 API specification
	8.1 Imported types
	8.2 Type Definitions
	8.2.1 Tm_PredefTimer1us16bitType
	8.2.2 Tm_PredefTimer1us24bitType
	8.2.3 Tm_PredefTimer1us32bitType
	8.2.4 Tm_PredefTimer100us32bitType

	8.3 Function definitions
	8.3.1 Tm_GetVersionInfo
	8.3.2 Tm_ResetTimer1us16bit
	8.3.3 Tm_GetTimeSpan1us16bit
	8.3.4 Tm_ShiftTimer1us16bit
	8.3.5 Tm_SyncTimer1us16bit
	8.3.6 Tm_BusyWait1us16bit
	8.3.7 Tm_ResetTimer1us24bit
	8.3.8 Tm_GetTimeSpan1us24bit
	8.3.9 Tm_ShiftTimer1us24bit
	8.3.10 Tm_SyncTimer1us24bit
	8.3.11 Tm_BusyWait1us24bit
	8.3.12 Tm_ResetTimer1us32bit
	8.3.13 Tm_GetTimeSpan1us32bit
	8.3.14 Tm_ShiftTimer1us32bit
	8.3.15 Tm_SyncTimer1us32bit
	8.3.16 Tm_BusyWait1us32bit
	8.3.17 Tm_ResetTimer100us32bit
	8.3.18 Tm_GetTimeSpan100us32bit
	8.3.19 Tm_ShiftTimer100us32bit
	8.3.20 Tm_SyncTimer100us32bit

	8.4 Call-back Notifications
	8.5 Scheduled functions
	8.6 Expected Interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.3 Configurable Interfaces

	9 Sequence diagrams
	9.1 Tm Normal Operation

	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.2.1 Variants
	10.2.2 Tm
	10.2.3 TmGeneral

	10.3 Published Information

	11 Not applicable requirements

