
Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

1 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

Document Title Specification of Module Secure 
Onboard Communication 

Document Owner AUTOSAR 

Document Responsibility AUTOSAR  

Document Identification No 654 

Document Classification Standard 

  

Document Status Final 

Part of AUTOSAR Release 4.2.2 

 

Document Change History 
Release Changed by Change Description 

4.2.2 AUTOSAR 
Release 
Management 

 Minor corrections / clarifications / editorial 
changes; For details please refer to the 
ChangeDocumentation 

4.2.1 AUTOSAR 
Release 
Management 

 Initial Release 

 
 

 
 
 
 
 
 

 
 
 
 

 
 

 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

2 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

Disclaimer 
 
This specification and the material contained in it, as released by AUTOSAR, is for 
the purpose of information only. AUTOSAR and the companies that have contributed 
to it shall not be liable for any use of the specification. 
 
The material contained in this specification is protected by copyright and other types 
of Intellectual Property Rights. The commercial exploitation of the material contained 
in this specification requires a license to such Intellectual Property Rights. 
 
This specification may be utilized or reproduced without any modification, in any form 
or by any means, for informational purposes only. For any other purpose, no part of 
the specification may be utilized or reproduced, in any form or by any means, without 
permission in writing from the publisher. 
 
The AUTOSAR specifications have been developed for automotive applications only. 
They have neither been developed, nor tested for non-automotive applications. 
 
The word AUTOSAR and the AUTOSAR logo are registered trademarks. 
 

Advice for users 
 
AUTOSAR specifications may contain exemplary items (exemplary reference 
models, "use cases", and/or references to exemplary technical solutions, devices, 
processes or software). 
 
Any such exemplary items are contained in the specifications for illustration purposes 
only, and they themselves are not part of the AUTOSAR Standard. Neither their 
presence in such specifications, nor any later documentation of AUTOSAR 
conformance of products actually implementing such exemplary items, imply that 
intellectual property rights covering such exemplary items are licensed under the 
same rules as applicable to the AUTOSAR Standard. 
 
 
 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

3 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

Table of contents 
 

1 Introduction and functional overview ................................................................... 6 

2 Acronyms, abbreviations and definitions ............................................................. 8 

2.1 Acronyms and abbreviations ......................................................................... 8 

2.2 Definitions ...................................................................................................... 8 

3 Related documentation...................................................................................... 10 

3.1 Input documents .......................................................................................... 10 
3.2 Related standards and norms ..................................................................... 11 
3.3 Related specification ................................................................................... 11 

4 Constraints and assumptions ............................................................................ 12 

4.1 Limitations ................................................................................................... 12 
4.2 Applicability to car domains ......................................................................... 12 

5 Dependencies to other modules ........................................................................ 13 

5.1 Dependencies to PduR ................................................................................ 13 
5.2 Dependencies to CSM or CAL .................................................................... 13 

5.3 Dependencies to the RTE ........................................................................... 13 
5.4 File structure ................................................................................................ 14 

5.4.1 Header file structure .............................................................................. 14 

6 Requirements traceability .................................................................................. 16 

7 Functional specification ..................................................................................... 27 

7.1 Specification of the security solution ............................................................ 27 
7.1.1 Basic entities of the security solution .................................................... 28 

7.1.1.1 Authentic I-PDU and Secured I-PDU ..................................................................................................... 28 
7.1.1.2 Data covered by Authenticator ............................................................................................................... 30 
7.1.1.3 Freshness Counters and Freshness Timestamps ..................................................................................... 30 
7.1.1.4 Secondary Freshness Value .................................................................................................................... 33 

7.1.2 Authentication of I-PDUs ....................................................................... 34 
7.1.3 Verification of I-PDUs ............................................................................ 35 

7.1.3.1 Successful verification of I-PDUs .......................................................................................................... 40 
7.1.4 Adaptation in case of asymmetric approach ......................................... 40 

7.2 Relationship to PduR ................................................................................... 41 

7.3 Initialization .................................................................................................. 41 
7.4 Authentication of outgoing PDUs ................................................................. 42 

7.4.1 Authentication during direct transmission ............................................. 43 
7.4.2 Authentication during triggered transmission ........................................ 44 
7.4.3 Authentication during transport protocol transmission .......................... 46 
7.4.4 Error handling and cancelation of transmission .................................... 48 

7.5 Verification of incoming PDUs ..................................................................... 49 

7.5.1 Verification during bus interface reception ............................................ 50 
7.5.2 Verification during transport protocol reception ..................................... 51 
7.5.3 Error handling and cancelation of transmission .................................... 52 

7.6 Gateway functionality .................................................................................. 53 
7.7 Development Errors ..................................................................................... 53 
7.8 Error detection ............................................................................................. 54 
7.9 Error notification .......................................................................................... 54 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

4 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

8 API specification ................................................................................................ 56 

8.1 Imported types ............................................................................................. 56 
8.2 Type definitions ........................................................................................... 56 

8.2.1 SecOC_ConfigType .............................................................................. 56 
8.2.2 SecOC_StateType ................................................................................ 57 
8.2.3 SecOC_AlignType ................................................................................ 57 

8.2.4 SecOC_KeyType .................................................................................. 57 
8.2.5 SecOC_VerificationResultType............................................................. 57 
8.2.6 SecOC_VerificationStatusType............................................................. 58 

8.3 Function definitions...................................................................................... 58 
8.3.1 SecOC_Init............................................................................................ 58 

8.3.2 SecOC_GetVersionInfo ........................................................................ 59 

8.3.3 SecOC_Transmit .................................................................................. 60 

8.3.4 SecOC_CancelTransmit ....................................................................... 60 
8.3.5 SecOC_AssociateKey ........................................................................... 61 
8.3.6 SecOC_FreshnessValueRead .............................................................. 61 
8.3.7 SecOC_FreshnessValueWrite .............................................................. 61 

8.3.8 Optional Interfaces ................................................................................ 62 
8.4 Call-back notifications .................................................................................. 63 

8.4.1 SecOC_RxIndication ............................................................................. 63 
8.4.2 SecOC_TpRxIndication ........................................................................ 63 
8.4.3 SecOC_TxConfirmation ........................................................................ 64 

8.4.4 SecOC_TpTxConfirmation .................................................................... 64 
8.4.5 SecOC_TriggerTransmit ....................................................................... 64 

8.4.6 SecOC_CopyRxData ............................................................................ 65 

8.4.7 SecOC_CopyTxData ............................................................................ 66 
8.4.8 SecOC_StartOfReception ..................................................................... 67 
8.4.9 CSM callback interfaces ....................................................................... 68 

8.5 Scheduled functions .................................................................................... 68 

8.5.1 SecOC_MainFunction ........................................................................... 68 
8.6 Expected Interfaces ..................................................................................... 69 

8.6.1 Mandatory Interfaces ............................................................................ 69 
8.6.2 Optional Interfaces ................................................................................ 69 
8.6.3 Configurable Interfaces ......................................................................... 73 

8.6.3.1 SecOC_VerificationStatusCallout .......................................................................................................... 74 
8.7 Service Interfaces ........................................................................................ 74 

8.7.1 Overview ............................................................................................... 74 
8.7.2 Sender Receiver Interfaces .................................................................. 75 

8.7.2.1 Verification Status Service ..................................................................................................................... 75 
8.7.3 Client Server Interfaces ........................................................................ 75 

8.7.3.1 Key Management Service ....................................................................................................................... 75 
8.7.3.2 Counter Management Service ................................................................................................................ 76 
8.7.3.3 Verification Status Configuration Service .............................................................................................. 78 

9 Sequence diagrams .......................................................................................... 80 

9.1 Authentication of outgoing PDUs ................................................................. 81 
9.1.1 Authentication during direct transmission ............................................. 81 
9.1.2 Authentication during triggered transmission ........................................ 82 
9.1.3 Authentication during transport protocol transmission .......................... 83 

9.2 Verification of incoming PDUs ..................................................................... 84 
9.2.1 Verification during direct reception ........................................................ 84 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

5 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

9.2.2 Verification during transport protocol reception ..................................... 85 

9.3 Re-authentication Gateway ......................................................................... 86 

10 Configuration specification ............................................................................. 87 

10.1.1 Variants ............................................................................................. 87 
10.1.1.1 VARIANT-PRE-COMPILE ................................................................................................................... 87 
10.1.1.2 VARIANT-LINK-TIME ........................................................................................................................ 87 
10.1.1.3 VARIANT-POST-BUILD...................................................................................................................... 87 

10.2 Containers and configuration parameters ................................................ 87 
10.2.1 SecOC ............................................................................................... 88 
10.2.2 SecOCGeneral .................................................................................. 89 

10.2.3 SecOCSameBufferPduCollection ...................................................... 90 
10.2.4 SecOCRxPduProcessing ................................................................... 91 

10.2.5 SecOCRxSecuredPduLayer .............................................................. 95 

10.2.6 SecOCRxAuthenticPduLayer ............................................................ 96 
10.2.7 SecOCTxPduProcessing ................................................................... 96 
10.2.8 SecOCTxAuthenticPduLayer ........................................................... 100 
10.2.9 SecOCTxSecuredPduLayer ............................................................ 100 

10.3 Configuration Rules ................................................................................ 101 
10.4 Published Information............................................................................. 101 

A Not applicable requirements ................................................................................ 102 

 
 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

6 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

1 Introduction and functional overview 

This specification is the AUTOSAR Secure Onboard Communication (SecOC) 
module Software Specification. It is based on AUTOSAR SecOC [5] and specifies 
how the requirements of the AUTOSAR SecOC SRS shall be realized. It describes 
the basic security features, the functionality and the API of the AUTOSAR SecOC 
module. 
 
The SecOC module aims for resource-efficient and practicable authentication 
mechanisms for critical data on the level of PDUs. The authentication mechanisms 
shall be seamlessly integrated with the current AUTOSAR communication systems. 
The impact with respect to resource consumption should be as small as possible in 
order to allow protection as add-on for legacy systems. The specification is based on 
the assumption that mainly symmetric authentication approaches with message 
authentication codes (MACs) are used. They achieve the same level of security with 
much smaller keys than asymmetric approaches and can be implemented compactly 
and efficiently in software and in hardware. However, the specification provides the 
necessary level of abstraction so that both, symmetric approaches as well as 
asymmetric authentication approaches can be used. 
 
The SecOC module integrates on the level of the AUTOSAR PduR. Figure 1 shows 
the integration of the SecOC module as part of the Autosar communication stack. 
 

 

 Figure 1: Integration of the SecOC BSW 

 
In this setting, PduR is responsible to route incoming and outgoing security related I-
PDUs to the SecOC module. The SecOC module shall then add or process the 
security relevant information and shall propagate the results in the form of an I-PDU 
back to the PduR. PduR is then responsible to further route the I-PDUs. Moreover, 
the SecOC module makes use of the cryptographic services provided by either the 
CSM or the CAL and interacts with the RTE to allow key and counter management. 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

7 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

The SecOC module shall support all kind of communication paradigms and principles 
that are supported by PduR, especially Multicast communications, Transport 
Protocols and the PduR Gateway. However, since the SecOC module is restricted to 
the IF API towards the upper layer, the authentication of PDUs from and to 
DCM/J1939DCM is currently not supported. The following sections provide a detailed 
specification of SecOC interfaces, functionality and configuration. 
 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

8 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

2 Acronyms, abbreviations and definitions 

2.1 Acronyms and abbreviations 

Abbreviation / 
Acronym: 

Description: 
 

CAL The AUTOSAR Crypto Abstraction Layer 

CSM The AUTOSAR Crypto Service Manager 

SecOC Secure Onboard Communication  

MAC Message Authentication Code 

2.2 Definitions 

For this document the definitions of data integrity, authentication, entity 
authentication, data origin, message authentication and transaction authentication 
from [14] are used: 
 

Term: Description: 

Authentic I-PDU An Authentic I-PDU is an arbitrary AUTOSAR I-PDU that is 
completely secured during network transmission by means of the 
Secured I-PDU 

Authentication Authentication is a service related to identification. This function 
applies to both entities and information itself. Two parties entering 
into a communication should identify each other. Information 
delivered over a channel should be authenticated as to origin, date 
of origin, data content, time sent, etc. For these reasons, this 
aspect of cryptography is usually subdivided into two major classes: 
entity authentication and data origin authentication. Data origin 
authentication implicitly provides data integrity (for if a message is 
modified, the source has changed). 

Authentication 
Information  

The Authentication Information consists of a Freshness Value (or a 
part thereof) and an Authenticator (or a part thereof). Authentication 
Information are the additional pieces of information that are added 
by SecOC to realize the Secured I-PDU 

Authenticator Authenticator is data that is used to provide message 
authentication. In general, the term Message Authentication Code 
(MAC) is used for symmetric approaches while the term Signature 
or Digital Signature refers to asymmetric approaches having 
different properties and constraints. 
 

Data integrity Data integrity is the property whereby data has not been altered in 
an unauthorized manner since the time it was created, transmitted, 
or stored by an authorized source. To assure data integrity, one 
should have the ability to detect data manipulation by unauthorized 
parties. Data manipulation includes such things as insertion, 
deletion, and substitution. 

Data origin 
authentication 

Data origin authentication is a type of authentication whereby a 
party is corroborated as the (original) source of specified data 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

9 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

created at some (typically unspecified) time in the past. By 
definition, data origin authentication includes data integrity. 

Distinction 
unilateral/ 
bilateral 
authentication 

In unilateral authentication, one side proves identity. The requesting 
side is not even authenticated to the extent of proving that it is 
allowed to request authentication. In bilateral authentication, the 
requester is also authenticated at least (see below) to prove the 
privilege of requesting. There is an efficient and more secure way 
to authenticate both endpoints, based on the bilateral 
authentication described above. Along with the authentication (in 
the second message) requested initially by the receiver (in the first 
message), the sender also requests an authentication. The receiver 
sends a third message providing the authentication requested by 
the sender. This is only three messages (in contrast to four with two 
unilateral messages). 

Entity 
authentication 

Entity authentication is the process whereby one party is assured 
(through acquisition of corroborative evidence) of the identity of a 
second party involved in a protocol, and that the second has 
actually participated (i.e., is active at, or immediately prior to, the 
time the evidence is acquired). 
 
Note: Entity authentication means to prove presence and operational readiness 
of a communication endpoint. This is for example often done by proving access 
to a cryptographic key and knowledge of a secret. It is necessary to do this 
without disclosing either key or secret. Entity authentication can be used to 
prevent record-and-replay attacks. Freshness of messages only complicates 
them by the need to record a lifetime and corrupt either senders or receivers 
(real-time) clock. Entity authentication is triggered by the receiver, i.e. the one to 
be convinced, while the sender has to react by convincing.  
 
Record and replay attacks on entity authentication are usually prevented by 
allowing the receiver some control over the authentication process. In order to 
prevent the receiver from using this control for steering the sender to malicious 
purposes or from determining a key or a secret ("oracle attack"), the sender can 
add more randomness. If not only access to a key (implying membership to a 
privileged group) but also individuality is to be proven, the sender additionally 
adds and authenticates its unique identification. 

Message 
authentication 

Message authentication is a term used analogously with data origin 
authentication. It provides data origin authentication with respect to 
the original message source (and data integrity, but no uniqueness 
and timeliness guarantees). 

Secured I-PDU A Secured I-PDU is an AUTOSAR I-PDU that contains Payload of 
an Authentic I-PDU supplemented by additional Authentication 
Information. 

Transaction 
authentication 

Transaction authentication denotes message authentication 
augmented to additionally provide uniqueness and timeliness 
guarantees on data (thus preventing undetectable message 
replay). 

 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

10 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

3 Related documentation 

3.1 Input documents  

[1] AUTOSAR Layered Software Architecture 
AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf 

[2] AUTOSAR General Requirements on Basic Software Modules 
AUTOSAR_SRS_BSWGeneral.pdf 

[3] AUTOSAR General Specification for Basic Software Modules 
AUTOSAR_SWS_BSWGeneral.pdf 

[4] Specification of Communication 

AUTOSAR_SWS_COM - Specification of Communication 

[5] AUTOSAR SecOC Software Requirements Specification 

AUTOSAR_SRS_SecureOnboardCommunication.pdf 

[6] Specification of I-PDU Multiplexer 

AUTOSAR_SWS_I-PDUMultiplexer.pdf 

[7] Specification of PDU Router 

AUTOSAR_SWS_PduRouter.pdf 

[8] Specification of Crypt Service Manager 

AUTOSAR_SWS_CryptoServiceManager.pdf 

[9] System Template, 
https://svn3.autosar.org/repos2/work/24_Sources/branches/R4.0/TPS_SystemTe
mplate_063/AUTOSAR_TPS_SystemTemplate.pdf 

[10] Software Component Template, 
https://svn3.autosar.org/repos2/work/24_Sources/branches/R4.0/TPS_SoftwareC
omponentTemplate_062/AUTOSAR_TPS_SoftwareComponentTemplate.pdf 

[11] Koscher et al: Experimental Security Analysis of a Modern Automobile, 2010 

IEEE Symposium on Security and Privacy 

[12] Checkoway et al: Comprehensive Experimental Analyses of Automotive Attack 

Surfaces, USENIX Security 2011 

[13] Auguste Kerckhoffs, ‘La cryptographie militaire’, Journal des sciences 

militaires, vol. IX, pp. 5–38, Jan. 1883, pp. 161–191, Feb. 1883. 

[14] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied 

Cryptography. CRC Press, 1996. 

https://svn3.autosar.org/repos2/work/24_Sources/branches/R4.0/TPS_SystemTemplate_063/AUTOSAR_TPS_SystemTemplate.pdf
https://svn3.autosar.org/repos2/work/24_Sources/branches/R4.0/TPS_SystemTemplate_063/AUTOSAR_TPS_SystemTemplate.pdf
https://svn3.autosar.org/repos2/work/24_Sources/branches/R4.0/TPS_SoftwareComponentTemplate_062/AUTOSAR_TPS_SoftwareComponentTemplate.pdf
https://svn3.autosar.org/repos2/work/24_Sources/branches/R4.0/TPS_SoftwareComponentTemplate_062/AUTOSAR_TPS_SoftwareComponentTemplate.pdf


Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

11 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

[15] Danny Dolev and Andrew C. Yao: On the security of public key protocols, In 

Foundations of Computer Science, SFCS 1981 

[16] M. Dworkin: Recommendation for Block Cipher Modes of Operation: The 

CMAC Mode for Authentication, U.S. Department of Commerce, Information 

Technology Laboratory (ITL), National Institute of Standards and Technology 

(NIST), Gaithersburg, MD, USA, NIST Special Publication 800-38B, 2005  

3.2 Related standards and norms 

[17] IEC 7498-1 The Basic Model, IEC Norm, 1994 

[18] National Institute of Standards and Technology (NIST): FIPS-180-4, Secure 

Hash Standard (SHS), March 2012, available electronically at 

http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf  

[19] FIPS Pub 197: Advanced Encryption Standard (AES), U.S. Department of 

Commerce, Information Technology Laboratory (ITL), National Institute of 

Standards and Technology (NIST), Gaithersburg, MD, USA, Federal Information 

Processing Standards Publication, 2001, electronically available at 

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf 

3.3 Related specification 

AUTOSAR provides a General Specification on Basic Software (SWS BSW General) 
[3], which is also valid for SecOC module 
 
Thus, the SWS BSW General specification [3] shall be considered as an additional 
set of requirements for the AUTOSAR SecOC module. 

http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf


Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

12 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

4 Constraints and assumptions 

This document is applicable for AUTOSAR release 4.2. 
 

4.1 Limitations 

The SecOC module is restricted to only provide the IF API towards the upper layer. 
Thus, the authentication of PDUs from and to DCM/J1939DCM is currently not 
supported. 

4.2 Applicability to car domains 

The SecOC module is used in all ECUs where secure communication is necessary. 
 
The SecOC module has not been specified to work with MOST and LIN 
communication networks. With MOST not being specifically supported, the 
applicability to multimedia and telematic car domains may be limited. 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

13 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

5 Dependencies to other modules 

This chapter lists all the features from other modules that are used by the AUTOSAR 
SecOC module and functionalities that are provided by the AUTOSAR SecOC 
module to other modules. Because the SecOC module deals with I-PDUs that are 
either sourced or sunk by other modules, care should be taken that shared 
configuration items are consistent between the modules. 

5.1 Dependencies to PduR 

The SecOC module depends on the API and capabilities of the PduR. It provides the 
upper and lower layer API functions required by the PDU Router, namely 

 the API of the communication interface modules, 

 the API of the Transport Protocol Modules, 

 the API of the upper layer modules which use transport protocol modules, 

 the API of the upper layer modules which process I-PDUs originating from communication 

interface modules. 

To serve the PduR with the results of the security processing, the SecOC module 
requires the respective API function of the PduR. 

5.2 Dependencies to CSM or CAL 

The SecOC module depends on cryptographic algorithms that are provided in 
AUTOSAR by either the CSM module or the CAL module. The SecOC module 
requires API functions to generate and verify Cryptographic Signatures or Message 
Authentication Codes, namely 

 the MAC-generate interface (<Csm/Cal>_MacGenerate<Start/Update/Finish>), 

 the MAC-verify interface (<Csm/Cal>_MacVerify<Start/Update/Finish>), 

 the Signature-generate interface (<Csm/Cal>_SignatureGenerate<Start/Update/Finish>), 

 the Signature-verify interface (<Csm/Cal>_SignatureVerify<Start/Update/Finish>), 

5.3 Dependencies to the RTE 

The SecOC module provides an API to manage keys and freshness values. This API 
contains the following API functions that are provided as Service Interfaces by the 
RTE.  

 SecOC_AssociateKey, 

 SecOC_FreshnessValueRead, 

 SecOC_FreshnessValueWrite, 

 SecOC_VerificationStatus, 

 SecOC_VerifyStatusOverride. 

The API functions are specified in more detail in Section 8. 
 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

14 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

The RTE includes the BSW-Scheduler. The SecOC module relies on the BSW-
scheduler calling the SecOC_MainFunction function at a period as configured in 
SecOCMainFunctionPeriod. 

5.4 File structure 

5.4.1 Header file structure 

 
 

Figure 2: SecOC header file structure 

 
 
 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

15 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

[SWS_SecOC_00001]⌈  
General SecOC module definitions shall be defined in SecOC.h. 
⌋ (SRS_BSW_00348, SRS_BSW_00353, SRS_BSW_00381, SRS_BSW_00415) 
 
[SWS_SecOC_00002]⌈  
Type definitions of the SecOC module shall be defined in SecOC_Types.h. 
⌋ (SRS_BSW_00348, SRS_BSW_00353, SRS_BSW_00381, SRS_BSW_00415) 
 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

16 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

6 Requirements traceability 

The following table references the requirements specified in [3] and [5] and links to 
the fulfillment of these. 
 

Requirement Description Satisfied by 

- - SWS_SecOC_00106 

- - SWS_SecOC_00147 

SRS_BSW_00003 All software modules shall provide version and 
identification information 

SWS_SecOC_00107 

SRS_BSW_00004 All Basic SW Modules shall perform a pre-processor 
check of the versions of all imported include files 

SWS_SecOC_00999 

SRS_BSW_00005 Modules of the ÂµC Abstraction Layer (MCAL) may not 
have hard coded horizontal interfaces 

SWS_SecOC_00999 

SRS_BSW_00006 The source code of software modules above the ÂµC 
Abstraction Layer (MCAL) shall not be processor and 
compiler dependent. 

SWS_SecOC_00999 

SRS_BSW_00007 All Basic SW Modules written in C language shall 
conform to the MISRA C 2004 Standard. 

SWS_SecOC_00999 

SRS_BSW_00009 All Basic SW Modules shall be documented according 
to a common standard. 

SWS_SecOC_00999 

SRS_BSW_00010 The memory consumption of all Basic SW Modules 
shall be documented for a defined configuration for all 
supported platforms. 

SWS_SecOC_00999 

SRS_BSW_00158 All modules of the AUTOSAR Basic Software shall 
strictly separate configuration from implementation 

SWS_SecOC_00999 

SRS_BSW_00159 All modules of the AUTOSAR Basic Software shall 
support a tool based configuration 

SWS_SecOC_00143, 
SWS_SecOC_00144 

SRS_BSW_00160 Configuration files of AUTOSAR Basic SW module 
shall be readable for human beings 

SWS_SecOC_00999 

SRS_BSW_00161 The AUTOSAR Basic Software shall provide a 
microcontroller abstraction layer which provides a 
standardized interface to higher software layers 

SWS_SecOC_00999 

SRS_BSW_00162 The AUTOSAR Basic Software shall provide a 
hardware abstraction layer 

SWS_SecOC_00999 

SRS_BSW_00164 The Implementation of interrupt service routines shall 
be done by the Operating System, complex drivers or 
modules 

SWS_SecOC_00999 

SRS_BSW_00167 All AUTOSAR Basic Software Modules shall provide 
configuration rules and constraints to enable plausibility 
checks 

SWS_SecOC_00999 

SRS_BSW_00168 SW components shall be tested by a function defined in 
a common API in the Basis-SW 

SWS_SecOC_00999 

SRS_BSW_00170 The AUTOSAR SW Components shall provide 
information about their dependency from faults, signal 
qualities, driver demands 

SWS_SecOC_00999 

SRS_BSW_00171 Optional functionality of a Basic-SW component that is 
not required in the ECU shall be configurable at pre-
compile-time 

SWS_SecOC_00153 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

17 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

SRS_BSW_00172 The scheduling strategy that is built inside the Basic 
Software Modules shall be compatible with the strategy 
used in the system 

SWS_SecOC_00999 

SRS_BSW_00300 All AUTOSAR Basic Software Modules shall be 
identified by an unambiguous name 

SWS_SecOC_00999 

SRS_BSW_00301 All AUTOSAR Basic Software Modules shall only 
import the necessary information 

SWS_SecOC_00103 

SRS_BSW_00302 All AUTOSAR Basic Software Modules shall only 
export information needed by other modules 

SWS_SecOC_00999 

SRS_BSW_00304 All AUTOSAR Basic Software Modules shall use the 
following data types instead of native C data types 

SWS_SecOC_00999 

SRS_BSW_00305 Data types naming convention SWS_SecOC_00999 

SRS_BSW_00306 AUTOSAR Basic Software Modules shall be compiler 
and platform independent 

SWS_SecOC_00999 

SRS_BSW_00307 Global variables naming convention SWS_SecOC_00999 

SRS_BSW_00308 AUTOSAR Basic Software Modules shall not define 
global data in their header files, but in the C file 

SWS_SecOC_00999 

SRS_BSW_00309 All AUTOSAR Basic Software Modules shall indicate all 
global data with read-only purposes by explicitly 
assigning the const keyword 

SWS_SecOC_00999 

SRS_BSW_00310 API naming convention SWS_SecOC_00999 

SRS_BSW_00312 Shared code shall be reentrant SWS_SecOC_00999 

SRS_BSW_00314 All internal driver modules shall separate the interrupt 
frame definition from the service routine 

SWS_SecOC_00999 

SRS_BSW_00318 Each AUTOSAR Basic Software Module file shall 
provide version numbers in the header file 

SWS_SecOC_00999 

SRS_BSW_00321 The version numbers of AUTOSAR Basic Software 
Modules shall be enumerated according specific rules 

SWS_SecOC_00999 

SRS_BSW_00323 All AUTOSAR Basic Software Modules shall check 
passed API parameters for validity 

SWS_SecOC_00107, 
SWS_SecOC_00112, 
SWS_SecOC_00113, 
SWS_SecOC_00116, 
SWS_SecOC_00117, 
SWS_SecOC_00118, 
SWS_SecOC_00122, 
SWS_SecOC_00124, 
SWS_SecOC_00125, 
SWS_SecOC_00126, 
SWS_SecOC_00127, 
SWS_SecOC_00128, 
SWS_SecOC_00129, 
SWS_SecOC_00130, 
SWS_SecOC_00152, 
SWS_SecOC_00156, 
SWS_SecOC_00157, 
SWS_SecOC_00161 

SRS_BSW_00325 The runtime of interrupt service routines and functions 
that are running in interrupt context shall be kept short 

SWS_SecOC_00999 

SRS_BSW_00327 Error values naming convention SWS_SecOC_00999 

SRS_BSW_00328 All AUTOSAR Basic Software Modules shall avoid the SWS_SecOC_00999 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

18 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

duplication of code 

SRS_BSW_00330 It shall be allowed to use macros instead of functions 
where source code is used and runtime is critical 

SWS_SecOC_00999 

SRS_BSW_00331 All Basic Software Modules shall strictly separate error 
and status information 

SWS_SecOC_00999 

SRS_BSW_00333 For each callback function it shall be specified if it is 
called from interrupt context or not 

SWS_SecOC_00999 

SRS_BSW_00334 All Basic Software Modules shall provide an XML file 
that contains the meta data 

SWS_SecOC_00999 

SRS_BSW_00335 Status values naming convention SWS_SecOC_00999 

SRS_BSW_00336 Basic SW module shall be able to shutdown SWS_SecOC_00999 

SRS_BSW_00337 Classification of development errors SWS_SecOC_00101, 
SWS_SecOC_00102, 
SWS_SecOC_00164, 
SWS_SecOC_00165, 
SWS_SecOC_00166, 
SWS_SecOC_00167 

SRS_BSW_00339 Reporting of production relevant error status SWS_SecOC_00999 

SRS_BSW_00341 Module documentation shall contains all needed 
informations 

SWS_SecOC_00999 

SRS_BSW_00342 It shall be possible to create an AUTOSAR ECU out of 
modules provided as source code and modules 
provided as object code, even mixed 

SWS_SecOC_00999 

SRS_BSW_00343 The unit of time for specification and configuration of 
Basic SW modules shall be preferably in physical time 
unit 

SWS_SecOC_00999 

SRS_BSW_00344 BSW Modules shall support link-time configuration SWS_SecOC_00144 

SRS_BSW_00345 BSW Modules shall support pre-compile configuration SWS_SecOC_00143 

SRS_BSW_00346 All AUTOSAR Basic Software Modules shall provide at 
least a basic set of module files 

SWS_SecOC_00999 

SRS_BSW_00347 A Naming seperation of different instances of BSW 
drivers shall be in place 

SWS_SecOC_00999 

SRS_BSW_00348 All AUTOSAR standard types and constants shall be 
placed and organized in a standard type header file 

SWS_SecOC_00001, 
SWS_SecOC_00002 

SRS_BSW_00350 All AUTOSAR Basic Software Modules shall apply a 
specific naming rule for enabling/disabling the detection 
and reporting of development errors 

SWS_SecOC_00102, 
SWS_SecOC_00164, 
SWS_SecOC_00165, 
SWS_SecOC_00166, 
SWS_SecOC_00167 

SRS_BSW_00353 All integer type definitions of target and compiler 
specific scope shall be placed and organized in a single 
type header 

SWS_SecOC_00001, 
SWS_SecOC_00002 

SRS_BSW_00357 For success/failure of an API call a standard return type 
shall be defined 

SWS_SecOC_00112, 
SWS_SecOC_00113, 
SWS_SecOC_00116, 
SWS_SecOC_00117, 
SWS_SecOC_00118, 
SWS_SecOC_00122, 
SWS_SecOC_00127, 
SWS_SecOC_00128, 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

19 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

SWS_SecOC_00129, 
SWS_SecOC_00130 

SRS_BSW_00359 All AUTOSAR Basic Software Modules callback 
functions shall avoid return types other than void if 
possible 

SWS_SecOC_00107, 
SWS_SecOC_00119, 
SWS_SecOC_00124, 
SWS_SecOC_00125, 
SWS_SecOC_00126, 
SWS_SecOC_00152, 
SWS_SecOC_00161 

SRS_BSW_00360 AUTOSAR Basic Software Modules callback functions 
are allowed to have parameters 

SWS_SecOC_00999 

SRS_BSW_00361 All mappings of not standardized keywords of compiler 
specific scope shall be placed and organized in a 
compiler specific type and keyword header 

SWS_SecOC_00999 

SRS_BSW_00369 All AUTOSAR Basic Software Modules shall not return 
specific development error codes via the API 

SWS_SecOC_00107, 
SWS_SecOC_00112 

SRS_BSW_00371 The passing of function pointers as API parameter is 
forbidden for all AUTOSAR Basic Software Modules 

SWS_SecOC_00999 

SRS_BSW_00373 The main processing function of each AUTOSAR Basic 
Software Module shall be named according the defined 
convention 

SWS_SecOC_00131 

SRS_BSW_00374 All Basic Software Modules shall provide a readable 
module vendor identification 

SWS_SecOC_00999 

SRS_BSW_00375 Basic Software Modules shall report wake-up reasons SWS_SecOC_00999 

SRS_BSW_00377 A Basic Software Module can return a module specific 
types 

SWS_SecOC_00999 

SRS_BSW_00378 AUTOSAR shall provide a boolean type SWS_SecOC_00999 

SRS_BSW_00379 All software modules shall provide a module identifier in 
the header file and in the module XML description file. 

SWS_SecOC_00999 

SRS_BSW_00380 Configuration parameters being stored in memory shall 
be placed into separate c-files 

SWS_SecOC_00999 

SRS_BSW_00381 The pre-compile time parameters shall be placed into a 
separate configuration header file 

SWS_SecOC_00001, 
SWS_SecOC_00002 

SRS_BSW_00383 The Basic Software Module specifications shall specify 
which other configuration files from other modules they 
use at least in the description 

SWS_SecOC_00999 

SRS_BSW_00384 The Basic Software Module specifications shall specify 
at least in the description which other modules they 
require 

SWS_SecOC_00137, 
SWS_SecOC_00138 

SRS_BSW_00385 List possible error notifications SWS_SecOC_00077, 
SWS_SecOC_00089, 
SWS_SecOC_00101, 
SWS_SecOC_00102, 
SWS_SecOC_00108, 
SWS_SecOC_00109, 
SWS_SecOC_00121, 
SWS_SecOC_00151, 
SWS_SecOC_00155, 
SWS_SecOC_00164, 
SWS_SecOC_00165, 
SWS_SecOC_00166, 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

20 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

SWS_SecOC_00167 

SRS_BSW_00386 The BSW shall specify the configuration for detecting 
an error 

SWS_SecOC_00101 

SRS_BSW_00388 Containers shall be used to group configuration 
parameters that are defined for the same object 

SWS_SecOC_00999 

SRS_BSW_00389 Containers shall have names SWS_SecOC_00999 

SRS_BSW_00390 Parameter content shall be unique within the module SWS_SecOC_00999 

SRS_BSW_00392 Parameters shall have a type SWS_SecOC_00999 

SRS_BSW_00393 Parameters shall have a range SWS_SecOC_00999 

SRS_BSW_00394 The Basic Software Module specifications shall specify 
the scope of the configuration parameters 

SWS_SecOC_00999 

SRS_BSW_00395 The Basic Software Module specifications shall list all 
configuration parameter dependencies 

SWS_SecOC_00999 

SRS_BSW_00396 The Basic Software Module specifications shall specify 
the supported configuration classes for changing 
values and multiplicities for each parameter/container 

SWS_SecOC_00999 

SRS_BSW_00397 The configuration parameters in pre-compile time are 
fixed before compilation starts 

SWS_SecOC_00999 

SRS_BSW_00398 The link-time configuration is achieved on object code 
basis in the stage after compiling and before linking 

SWS_SecOC_00999 

SRS_BSW_00399 Parameter-sets shall be located in a separate segment 
and shall be loaded after the code 

SWS_SecOC_00999 

SRS_BSW_00400 Parameter shall be selected from multiple sets of 
parameters after code has been loaded and started 

SWS_SecOC_00999 

SRS_BSW_00401 Documentation of multiple instances of configuration 
parameters shall be available 

SWS_SecOC_00999 

SRS_BSW_00402 Each module shall provide version information SWS_SecOC_00107 

SRS_BSW_00404 BSW Modules shall support post-build configuration SWS_SecOC_00145 

SRS_BSW_00405 BSW Modules shall support multiple configuration sets SWS_SecOC_00999 

SRS_BSW_00406 A static status variable denoting if a BSW module is 
initialized shall be initialized with value 0 before any 
APIs of the BSW module is called 

SWS_SecOC_00999 

SRS_BSW_00407 Each BSW module shall provide a function to read out 
the version information of a dedicated module 
implementation 

SWS_SecOC_00107 

SRS_BSW_00408 All AUTOSAR Basic Software Modules configuration 
parameters shall be named according to a specific 
naming rule 

SWS_SecOC_00999 

SRS_BSW_00409 All production code error ID symbols are defined by the 
Dem module and shall be retrieved by the other BSW 
modules from Dem configuration 

SWS_SecOC_00999 

SRS_BSW_00410 Compiler switches shall have defined values SWS_SecOC_00999 

SRS_BSW_00411 All AUTOSAR Basic Software Modules shall apply a 
naming rule for enabling/disabling the existence of the 
API 

SWS_SecOC_00999 

SRS_BSW_00412 References to c-configuration parameters shall be 
placed into a separate h-file 

SWS_SecOC_00999 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

21 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

SRS_BSW_00413 An index-based accessing of the instances of BSW 
modules shall be done 

SWS_SecOC_00999 

SRS_BSW_00415 Interfaces which are provided exclusively for one 
module shall be separated into a dedicated header file 

SWS_SecOC_00001, 
SWS_SecOC_00002 

SRS_BSW_00416 The sequence of modules to be initialized shall be 
configurable 

SWS_SecOC_00999 

SRS_BSW_00417 Software which is not part of the SW-C shall report 
error events only after the DEM is fully operational. 

SWS_SecOC_00999 

SRS_BSW_00419 If a pre-compile time configuration parameter is 
implemented as "const" it should be placed into a 
separate c-file 

SWS_SecOC_00999 

SRS_BSW_00422 Pre-de-bouncing of error status information is done 
within the DEM 

SWS_SecOC_00999 

SRS_BSW_00423 BSW modules with AUTOSAR interfaces shall be 
describable with the means of the SW-C Template 

SWS_SecOC_00999 

SRS_BSW_00424 BSW module main processing functions shall not be 
allowed to enter a wait state 

SWS_SecOC_00999 

SRS_BSW_00425 The BSW module description template shall provide 
means to model the defined trigger conditions of 
schedulable objects 

SWS_SecOC_00131 

SRS_BSW_00426 BSW Modules shall ensure data consistency of data 
which is shared between BSW modules 

SWS_SecOC_00110, 
SWS_SecOC_00111 

SRS_BSW_00427 ISR functions shall be defined and documented in the 
BSW module description template 

SWS_SecOC_00999 

SRS_BSW_00428 A BSW module shall state if its main processing 
function(s) has to be executed in a specific order or 
sequence 

SWS_SecOC_00999 

SRS_BSW_00429 BSW modules shall be only allowed to use OS objects 
and/or related OS services 

SWS_SecOC_00999 

SRS_BSW_00432 Modules should have separate main processing 
functions for read/receive and write/transmit data path 

SWS_SecOC_00999 

SRS_BSW_00433 Main processing functions are only allowed to be called 
from task bodies provided by the BSW Scheduler 

SWS_SecOC_00999 

SRS_BSW_00437 Memory mapping shall provide the possibility to define 
RAM segments which are not to be initialized during 
startup 

SWS_SecOC_00999 

SRS_BSW_00438 Configuration data shall be defined in a structure SWS_SecOC_00999 

SRS_BSW_00439 Enable BSW modules to handle interrupts SWS_SecOC_00999 

SRS_BSW_00440 The callback function invocation by the BSW module 
shall follow the signature provided by RTE to invoke 
servers via Rte_Call API 

SWS_SecOC_00999 

SRS_BSW_00441 Naming convention for type, macro and function SWS_SecOC_00999 

SRS_BSW_00442 {OBSOLETE} The AUTOSAR architecture shall support 
standardized debugging and tracing features 

SWS_SecOC_00999 

SRS_BSW_00447 Standardizing Include file structure of BSW Modules 
Implementing Autosar Service 

SWS_SecOC_00999 

SRS_BSW_00448 Module SWS shall not contain requirements from Other 
Modules 

SWS_SecOC_00999 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

22 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

SRS_BSW_00449 BSW Service APIs used by Autosar Application 
Software shall return a Std_ReturnType 

SWS_SecOC_00112, 
SWS_SecOC_00113, 
SWS_SecOC_00116, 
SWS_SecOC_00117, 
SWS_SecOC_00118, 
SWS_SecOC_00122, 
SWS_SecOC_00125, 
SWS_SecOC_00127, 
SWS_SecOC_00152 

SRS_BSW_00450 A Main function of a un-initialized module shall return 
immediately 

SWS_SecOC_00102 

SRS_BSW_00451 Hardware registers shall be protected if concurrent 
access to these registers occur 

SWS_SecOC_00999 

SRS_BSW_00452 Classification of runtime errors SWS_SecOC_00999 

SRS_BSW_00453 BSW Modules shall be harmonized SWS_SecOC_00999 

SRS_BSW_00454 An alternative interface without a parameter of category 
DATA_REFERENCE shall be available. 

SWS_SecOC_00999 

SRS_BSW_00456 - A Header file shall be defined in order to harmonize 
BSW Modules 

SWS_SecOC_00999 

SRS_BSW_00457 - Callback functions of Application software 
components shall be invoked by the Basis SW 

SWS_SecOC_00012 

SRS_BSW_00458 Classification of production errors SWS_SecOC_00999 

SRS_BSW_00459 It shall be possible to concurrently execute a service 
offered by a BSW module in different partitions 

SWS_SecOC_00999 

SRS_BSW_00460 Reentrancy Levels SWS_SecOC_00999 

SRS_BSW_00461 Modules called by generic modules shall satisfy all 
interfaces requested by the generic module 

SWS_SecOC_00999 

SRS_BSW_00462 All Standardized Autosar Interfaces shall have unique 
requirement Id / number 

SWS_SecOC_00999 

SRS_BSW_00463 Naming convention of callout prototypes SWS_SecOC_00999 

SRS_BSW_00464 File names shall be considered case sensitive 
regardless of the filesystem in which they are used 

SWS_SecOC_00999 

SRS_BSW_00465 It shall not be allowed to name any two files so that 
they only differ by the cases of their letters 

SWS_SecOC_00999 

SRS_BSW_00466 Classification of extended production errors SWS_SecOC_00999 

SRS_BSW_00467 The init / deinit services shall only be called by BswM 
or EcuM 

SWS_SecOC_00999 

SRS_BSW_00469 Fault detection and healing of production errors and 
extended production errors 

SWS_SecOC_00999 

SRS_BSW_00470 Execution frequency of production error detection SWS_SecOC_00999 

SRS_BSW_00471 Do not cause dead-locks on detection of production 
errors - the ability to heal from previously detected 
production errors 

SWS_SecOC_00999 

SRS_BSW_00472 Avoid detection of two production errors with the same 
root cause. 

SWS_SecOC_00999 

SRS_SecOC_00001 Selection of Authentic I-PDU 
[open/proposed/conflicts/approved/rejected] 

SWS_SecOC_00104 

SRS_SecOC_00002 Range of verification retry by the receiver SWS_SecOC_00015, 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

23 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

[open/proposed/conflicts/approved/rejected] SWS_SecOC_00022, 
SWS_SecOC_00023, 
SWS_SecOC_00024, 
SWS_SecOC_00045, 
SWS_SecOC_00047, 
SWS_SecOC_00049, 
SWS_SecOC_00052, 
SWS_SecOC_00053, 
SWS_SecOC_00091, 
SWS_SecOC_00092, 
SWS_SecOC_00093, 
SWS_SecOC_00094, 
SWS_SecOC_00117, 
SWS_SecOC_00118, 
SWS_SecOC_00140, 
SWS_SecOC_00168 

SRS_SecOC_00003 Configuration of different security properties / 
requirements 
[open/proposed/conflicts/approved/rejected] 

SWS_SecOC_00012, 
SWS_SecOC_00104, 
SWS_SecOC_00116, 
SWS_SecOC_00139 

SRS_SecOC_00005 Initialisation of security information 
[open/proposed/conflicts/approved/rejected] 

SWS_SecOC_00054, 
SWS_SecOC_00105, 
SWS_SecOC_00132, 
SWS_SecOC_00154, 
SWS_SecOC_00162 

SRS_SecOC_00006 Creation of a Secured I-PDU from an Authentic I-PDU 
[open/proposed/conflicts/approved/rejected] 

SWS_SecOC_00011, 
SWS_SecOC_00031, 
SWS_SecOC_00033, 
SWS_SecOC_00034, 
SWS_SecOC_00035, 
SWS_SecOC_00036, 
SWS_SecOC_00037, 
SWS_SecOC_00038, 
SWS_SecOC_00040, 
SWS_SecOC_00042, 
SWS_SecOC_00046, 
SWS_SecOC_00057, 
SWS_SecOC_00058, 
SWS_SecOC_00146, 
SWS_SecOC_00156, 
SWS_SecOC_00157, 
SWS_SecOC_00161 

SRS_SecOC_00007 Verification retry by the receiver 
[open/proposed/conflicts/approved/rejected] 

SWS_SecOC_00015, 
SWS_SecOC_00017, 
SWS_SecOC_00018, 
SWS_SecOC_00019, 
SWS_SecOC_00020, 
SWS_SecOC_00021, 
SWS_SecOC_00022, 
SWS_SecOC_00023, 
SWS_SecOC_00024, 
SWS_SecOC_00028, 
SWS_SecOC_00045, 
SWS_SecOC_00047, 
SWS_SecOC_00049, 
SWS_SecOC_00052, 
SWS_SecOC_00053, 
SWS_SecOC_00091, 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

24 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

SWS_SecOC_00092, 
SWS_SecOC_00093, 
SWS_SecOC_00094, 
SWS_SecOC_00168 

SRS_SecOC_00010 Communication security is available for all 
communication paradigms of AUTOSAR 
[open/proposed/conflicts/approved/rejected] 

SWS_SecOC_00060, 
SWS_SecOC_00061, 
SWS_SecOC_00062, 
SWS_SecOC_00063, 
SWS_SecOC_00064, 
SWS_SecOC_00065, 
SWS_SecOC_00066, 
SWS_SecOC_00067, 
SWS_SecOC_00068, 
SWS_SecOC_00069, 
SWS_SecOC_00070, 
SWS_SecOC_00071, 
SWS_SecOC_00072, 
SWS_SecOC_00073, 
SWS_SecOC_00074, 
SWS_SecOC_00075, 
SWS_SecOC_00078, 
SWS_SecOC_00079, 
SWS_SecOC_00080, 
SWS_SecOC_00082, 
SWS_SecOC_00083, 
SWS_SecOC_00084, 
SWS_SecOC_00085, 
SWS_SecOC_00086, 
SWS_SecOC_00150 

SRS_SecOC_00012 Support of Automotive BUS Systems 
[open/proposed/conflicts/approved/rejected] 

SWS_SecOC_00060, 
SWS_SecOC_00061, 
SWS_SecOC_00062, 
SWS_SecOC_00063, 
SWS_SecOC_00064, 
SWS_SecOC_00065, 
SWS_SecOC_00066, 
SWS_SecOC_00067, 
SWS_SecOC_00068, 
SWS_SecOC_00069, 
SWS_SecOC_00070, 
SWS_SecOC_00071, 
SWS_SecOC_00072, 
SWS_SecOC_00073, 
SWS_SecOC_00074, 
SWS_SecOC_00075, 
SWS_SecOC_00078, 
SWS_SecOC_00079, 
SWS_SecOC_00080, 
SWS_SecOC_00082, 
SWS_SecOC_00083, 
SWS_SecOC_00084, 
SWS_SecOC_00085, 
SWS_SecOC_00086, 
SWS_SecOC_00113, 
SWS_SecOC_00124, 
SWS_SecOC_00125, 
SWS_SecOC_00126, 
SWS_SecOC_00127, 
SWS_SecOC_00128, 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

25 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

SWS_SecOC_00129, 
SWS_SecOC_00130, 
SWS_SecOC_00150, 
SWS_SecOC_00152 

SRS_SecOC_00013 Support for end-to-end and point-to-point protection SWS_SecOC_00060, 
SWS_SecOC_00061, 
SWS_SecOC_00062, 
SWS_SecOC_00063, 
SWS_SecOC_00064, 
SWS_SecOC_00065, 
SWS_SecOC_00066, 
SWS_SecOC_00067, 
SWS_SecOC_00068, 
SWS_SecOC_00069, 
SWS_SecOC_00070, 
SWS_SecOC_00071, 
SWS_SecOC_00072, 
SWS_SecOC_00073, 
SWS_SecOC_00074, 
SWS_SecOC_00075, 
SWS_SecOC_00078, 
SWS_SecOC_00079, 
SWS_SecOC_00080, 
SWS_SecOC_00082, 
SWS_SecOC_00083, 
SWS_SecOC_00084, 
SWS_SecOC_00085, 
SWS_SecOC_00086, 
SWS_SecOC_00150 

SRS_SecOC_00017 PDU security information override 
[open/proposed/conflicts/approved/rejected] 

SWS_SecOC_00119, 
SWS_SecOC_00122, 
SWS_SecOC_00142 

SRS_SecOC_00020 Security operational information 
persistency[open/proposed/conflicts/approved/rejected] 

SWS_SecOC_00019, 
SWS_SecOC_00055, 
SWS_SecOC_00156, 
SWS_SecOC_00161 

SRS_SecOC_00021 Transmitted PDU authentication failure handling 
[open/proposed/conflicts/approved/rejected] 

SWS_SecOC_00076, 
SWS_SecOC_00087, 
SWS_SecOC_00151 

SRS_SecOC_00022 Received PDU verification failure 
handling[open/proposed/conflicts/approved/rejected] 

SWS_SecOC_00045, 
SWS_SecOC_00047, 
SWS_SecOC_00048, 
SWS_SecOC_00050, 
SWS_SecOC_00052, 
SWS_SecOC_00053, 
SWS_SecOC_00087, 
SWS_SecOC_00121, 
SWS_SecOC_00141, 
SWS_SecOC_00148, 
SWS_SecOC_00149, 
SWS_SecOC_00160 

SRS_SecOC_00025 Authentication and verification processing time 
[open/proposed/conflicts/approved/rejected] 

SWS_SecOC_00133, 
SWS_SecOC_00134, 
SWS_SecOC_00135, 
SWS_SecOC_00136 

 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

26 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

 
 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

27 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

7 Functional specification 

Authentication and integrity protection of sensitive data is necessary to protect 

correct and safe functionality of the vehicle systems – this ensures that received data 

comes from the right ECU and has the correct value. 
 
The SecOC module aims for resource-efficient and practicable authentication 
mechanisms of sensitive data on the level of PDUs. The approach proposed in this 
specification generally supports the use of symmetric and asymmetric methods for 
authenticity and integrity protection. Both methods roughly aim at the same goal and 
show major similarities in the concept, but there are also some differences due to 
differing technical properties of the underlying primitives. In addition, the commonly 
used terms for Authenticator are different. In general, the term Message 
Authentication Code (MAC) is used for symmetric approaches while the term 
signature or digital signature refers to asymmetric approaches having different 
properties and constraints. 
 
In order to ease presentation and improve legibility, the following approach is taken: 
The subsequent section describes the technical approach using symmetric 
mechanisms in some detail. Here also the common terms for symmetric primitives 
are used. The adaptations that need to be done in case of an asymmetric approach 
are separately given in section 7.1.4. 

7.1 Specification of the security solution 

The SecOC module as described in this document provides functionality necessary 
to verify the authenticity and freshness of PDU based communication between ECUs 
within the vehicle architecture. The approach requires both the sending ECU and the 
receiving ECU to implement a SecOC module. Both SecOC modules are integrated 
providing the upper and lower layer PduR APIs on the sender and receiver side. The 
SecOC modules on both sides generally interact with the PduR module. 
 
To provide message freshness, the SecOC module on the sending and receiving 
side maintains Freshness Values (e.g. Freshness Counter, Timestamp) for each 
uniquely identifiable Secured I-PDU, i.e. for each secured communication link. 
 
On the sender side, the SecOC module creates a Secured I-PDU by adding 
authentication information to the outgoing Authentic I-PDU. The authentication 
information comprises of an Authenticator (e.g. Message Authentication Code) and 
optionally a Freshness Value. Regardless if the Freshness Value is or is not included 
in the Secure I-PDU payload, the Freshness Value is considered during generation of 
the Authenticator. When using a Freshness Counter instead of a Timestamp, the 
Freshness Counter is incremented prior to providing the authentication information to 
the receiver side. 
 
On the receiver side, the SecOC module checks the freshness and authenticity of the 
Authentic I-PDU by verifying the authentication information that has been appended 
by the sending side SecOC module. To verify the authenticity and freshness of an 
Authentic I-PDU, the Secured I-PDU provided to the receiving side SecOC should be 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

28 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

the same Secured I-PDU provided by the sending side SecOC and the receiving side 
SecOC should have knowledge of the Freshness Value used by the sending side 
SecOC during creation of the Authenticator. 
 

 

Figure 3: Message Authentication and Freshness Verification 

 
The main purpose of the SecOC module is the realization of the security functionality 
described throughout this specification. 

7.1.1 Basic entities of the security solution 

7.1.1.1 Authentic I-PDU and Secured I-PDU 
 
The term Authentic I-PDU refers to an AUTOSAR I-PDU that requires protection 
against unauthorized manipulation and replay attacks. 
 
The payload of a Secured I-PDU consists of the Authentic I-PDU and an 
Authenticator (e.g. Message Authentication Code). The payload of a Secured I-PDU 
may optionally include the Freshness Value used to create the Authenticator (e.g. 
MAC). The order in which the contents are structured in the Secured I-PDU is 
compliant with Figure 4. 
 

 

Figure 4: Secured I-PDU contents  

 

Authentic I-PDU  Freshness Value Authenticator

Secured I-PDU



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

29 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

The length of the Authentic I-PDU, the Freshness Value and the Authenticator within 
a Secured I-PDU may vary from one uniquely indefinable Secured I-PDU to another. 
 
The Authenticator (e.g. MAC) refers to a unique authentication data string generated 
using a Key, Data Identifier of the Secured I-PDU, Authentic Payload, and Freshness 
Value. The Authenticator provides a high level of confidence that the data in an 
Authentic I-PDU is generated by a legitimate source and is provided to the receiving 
ECU at the time in which it is intended for.  
 
Depending on the authentication algorithm (parameter 
SecOCTxAuthServiceConfigRef or SecOCRxAuthServiceConfigRef ) used to 
generate the Authenticator, it may be possible to truncate the resulting Authenticator 
(e.g. in case of a MAC) generated by the authentication algorithm. Truncation may be 
desired when the message payload is limited in length and does not have sufficient 
space to include the full Authenticator.  
 
The Authenticator length contained in a Secured I-PDU (parameter 
SecOCAuthInfoTxLength) is specific to a uniquely identifiable Secured I-PDU. This 
allows provision of flexibility across the system (i.e. two independent unique Secured 
I-PDUs may have different Authenticator lengths included in the payload of the 
Secure I-PDU) by providing fine grain configuration of the MAC truncation length for 
each Secured I-PDU.  
 
If truncation is possible, the Authenticator should only be truncated down to the most 
significant bits of the resulting Authenticator generated by the authentication 
algorithm. Figure 5 shows the truncation of the Authenticator and the Freshness 
Values respecting the parameter SecOCFreshnessValueTxLength and 
SecOCAuthInfoTxLength. 

 
Figure 5: Secured I-PDU contents with truncated Freshness Counter and truncated 
Authenticator 

 
Note: For the resource constraint embedded use case with static participants, we propose using 
Message Authentication Codes (MACs) as a basis for authentication (e.g. a CMAC [16] based on AES 
[19] with an adequate key length). 

 

Authentic I-PDU
Truncated 

Freshness Value

Truncated 

Authenticator

Secured I-PDU

Feshness Value Authenticator

SecOCAuthInfoTxLengthSecOCFreshnessValueTxLength

MSB MSBLSB LSB



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

30 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

Note: In case a MAC is used, it is possible to transmit and compare only parts of the MAC. This is 
known as MAC truncation. However, this results in a lower security level at least for forgery of single 
MACs. While we propose to always use a key length of at least 128 bit, a MAC truncation can be 
beneficial. Of course, the actual length of the MAC for each use case has to be chosen carefully. For 
some guidance, we refer to appendix A of [16]. In general, MAC sizes of 64 bit and above are 
considered to provide sufficient protection against guessing attacks by NIST. Depending on the use 
case, different MAC sizes can be appropriate, but this requires careful judgment by a security expert. 

 
[SWS_SecOC_00011]⌈  
All SecOC data (i.e. Freshness Value, Authenticator, Data Identifier) that is directly or 
indirectly transmitted to the other side of a communication link shall be encoded in 
Big Endian byte order so that each SecOC module interprets the data in the same 
way. 
⌋ (SRS_SecOC_00006) 
 
7.1.1.2 Data covered by Authenticator  
 
The data that the Authenticator is calculated on consists of the Data Identifier of the 
Secured I-PDU (parameter SecOCDataId), Authentic I-PDU data, and the Complete 
Freshness Value. The Data Identifier of the Secured I-PDU (parameter 
SecOCDataId), the complete Authentic I-PDU, and the complete Freshness Value 
are concatenated together respectively to make up the bit array that is passed into 
the authentication algorithm for Authenticator generation/verification. 
 
DataToAuthenticator = Data Identifier | Authentic I-PDU | Complete Freshness 
Value 
 
Note: “|” denotes concatenation 

 
7.1.1.3 Freshness Counters and Freshness Timestamps 
 
Each Secured I-PDU is configured with at least one Freshness Value. The Freshness 
Value refers to a monotonic counter that is used to ensure freshness of the Secured 
I-PDU. Such a monotonic counter could be realized by means of individual message 
counters, called Freshness Counter, or by a time stamp value called Freshness 
Timestamp.  
 
[SWS_SecOC_00015]⌈  
If SecOCUseFreshnessTimestamp is set to TRUE, the SecOC module shall use a 
Freshness Timestamp to generate the Freshness Value. 
⌋ (SRS_SecOC_00002, SRS_SecOC_00007) 
 
Note: As base for the Freshness Timestamp, the global synchronized time can be used. As this global 
synchronized time will have the same value at the sender and all receivers, its value can be used as 
Freshness Value with the advantage that it does not necessarily need to be transmitted within the 
Secured PDU itself and it does not need to be transmitted for every sender and receiver individually. 

 
[SWS_SecOC_00091]⌈  
If SecOCUseFreshnessTimestamp is set to TRUE, the parameter 
SecOCFreshnessTimestampTimePeriodFactor shall be used to configure the 
resolution. 
⌋ (SRS_SecOC_00002, SRS_SecOC_00007) 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

31 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

 
Note: The parameter specifies a multiplication factor that defines the actual resolution of the 
timestamp with a basis in microseconds. It is chosen such that transmission delays and jitters are 
compensated. Moreover, the resolution of the timestamp should consider the maximum expected 
deviation between the global time master and the receiving nodes. 
 
Note: e.g. the global synchronized time may provide a resolution of one microsecond and the 
maximum expected deviation of the global synchronized time value is one hundred microseconds 
whereas for securing against replay attacks an accuracy of several milliseconds would be sufficient. In 
this case, the resolution of the timestamp could be reduced to one millisecond. 

 
[SWS_SecOC_00092]⌈  
If SecOCUseFreshnessTimestamp is set to TRUE, an acceptance window shall be 
defined for each receiver of a secured I-PDU using SecOCRxAcceptanceWindow. 
⌋ (SRS_SecOC_00002, SRS_SecOC_00007) 
 
Note: E.g. the acceptance window for a receiver could be configured to one second, meaning that the 
timestamp value on the sender side is allowed to be one second more or one second less than the 
current value on the receiver’s side. In this case, the receiver would first try to authenticate the 
received message using its current timestamp value. If this authentication fails it would try the 
authentication again with a timestamp value incremented / decremented as long as the timestamp 
value is not larger/lower than the timestamp value +/- the value of SecOCRxAcceptanceWindow w.r.t 
the resolution of the timestamp (for details please refer to SWS_SecOC_00053). 
 
Note: If possible, the resolution of the timestamp should be chosen such, that no acceptance window 
is needed, that is that the expected deviation between sender and receiver is zero w.r.t. the configured 
resolution of the timestamp. 

 
 
[SWS_SecOC_00093]⌈  
If SecOCUseFreshnessTimestamp is set to FALSE, SecOC shall use individual 
freshness counters to generate the freshness value. The SecOC module shall 
provide a Freshness Counter for each configured Freshness Value ID (parameter 
SecOCFreshnessValueId and SecOCSecondaryFreshnessValueId). 
⌋ (SRS_SecOC_00002, SRS_SecOC_00007) 
 
[SWS_SecOC_00094]⌈  
If the parameter SecOCFreshnessValueTxLength is configured to a smaller length 
than the actual freshness value, SecOC shall include only the least significant bits of 
the freshness value up to SecOCFreshnessValueTxLength within the secured I-PDU. 
If the parameter SecOCFreshnessValueTxLength is configured to 0, the freshness 
value shall not be included in the secured I-PDU. 
⌋ (SRS_SecOC_00002, SRS_SecOC_00007) 
Note: The larger number of bits of the complete Freshness Value included in the authenticated 
message payload results in a larger window where the receiver remains synchronized with the 
transmitters Freshness Value without executing a synchronization strategy. 

 
Note: When including part of the Freshness Value in the authenticated message payload, the 
Freshness Value is referred to as two parts, the most significant bits and the least significant bits. The 
part of the counter included in the Secured I-PDU payload is referred to as the least significant bits of 
the Freshness Value and the remaining part of the counter is referred to as the most significant bits of 
the Freshness Value. 

 
[SWS_SecOC_00017]⌈  



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

32 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

The Freshness Value shall not roll over or overflow for the life of the Key used to 
generate/verify corresponding Authenticators.  
⌋ (SRS_SecOC_00007) 
 
Note: The length of the value (parameter SecOCFreshnessValueLength) should be determined based 
on the expected lifetime of the corresponding key and the expected frequency of value increments. 

 
Note: The Freshness Value is always linked to a Key. Decreasing/resetting the value (at sender and/or 
receiver side) is ONLY allowed during a key update/initialization process.  

 
[SWS_SecOC_00168]⌈  
The SecOC shall check if the Freshness Value has reached its limit and thus might 
overflow. If the SecOC detects that a Freshness Value has reached its limit, it shall 
stop sending or verifying Secured I-PDUs that are related to that Freshness Value.  
⌋ (SRS_SecOC_00002, SRS_SecOC_00007) 
 
[SWS_SecOC_00018]⌈  
Upon update/initialization of a new key when Freshness Counters are used, the 
sender counter shall be set to 1 and the receiver counter to 0.  
⌋ (SRS_SecOC_00007) 
 
[SWS_SecOC_00019]⌈  
As long as the key has not changed, the Freshness Counter shall be set to the last 
know valid counter value stored in NVM. 
⌋ (SRS_SecOC_00020, SRS_SecOC_00007) 
 
To properly ensure freshness, the Freshness Value on both sides of the 
communication channel should be incremented synchronically.  
 

[SWS_SecOC_00020]⌈  
The Freshness Counter has to be incremented for each outgoing message that is 
intended to be recognized as an individual incoming message on the receiver side. 
On the receiver side, the MAC verification of each received message including the 
counter update shall be performed exactly once. 
⌋ (SRS_SecOC_00007) 
 
 
[SWS_SecOC_00021]⌈  
If verification of the Secured I-PDU fails  and either 
SecOCFreshnessCounterSyncAttempts or SecOCRxAcceptanceWindow is 
configured to a value greater than 0, the SecOC module shall reevaluate the Secured 
I-PDU using a different Freshness Value before considering the received data as 
non-authentic (e.g. counter or time de-synchronization is suspected to be the reason 
of the failed authentication verification). 
⌋ (SRS_SecOC_00007) 
 
[SWS_SecOC_00022]⌈  
The number of verification attempts using a different Freshness Value before 
considering the received data as non-authentic shall be limited by 
SecOCFreshnessCounterSyncAttempts in case of SecOCUseFreshnessTimestamp 
is set to FALSE or by SecOCRxAcceptanceWindow in case of 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

33 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

SecOCUseFreshnessTimestamp is set to TRUE. 
⌋ (SRS_SecOC_00002, SRS_SecOC_00007) 
 
7.1.1.4 Secondary Freshness Value 
When a Secondary Freshness Value is configured, the Freshness Value previously 
described in this document is referred to as the Primary Freshness Value. 
 
[SWS_SecOC_00023]⌈  
If a Secured I-PDU configured with a Secondary Freshness Value, the length of the 
Secondary Freshness Value shall have the same length as the corresponding 
Primary Freshness Value for that I-PDU. 
⌋ (SRS_SecOC_00002, SRS_SecOC_00007) 
 
[SWS_SecOC_00024]⌈  
If a Secondary Freshness Value is configured for a Secured I-PDU and the 
authentication verification fails for that PDU using the counter value corresponding to 
the Primary Freshness Value, authentication verification shall be re-attempted using 
the value corresponding to the Secondary Freshness Value. 
⌋ (SRS_SecOC_00002, SRS_SecOC_00007) 
 
Note:  The Secondary Freshness Value is only applicable to the receiving ECU and thus is not 
transmitted nor used to generate the Authenticator. 

 
[SWS_SecOC_00028]⌈  
Regardless if a Secondary Freshness Counter is configured for a Secured I-PDU, the 
counter value corresponding to the Primary Freshness Value shall always be used 
first to attempt authentication verification.  
⌋ (SRS_SecOC_00007) 
 
Support and usage of a Secondary Freshness Value is optional. If a Secondary 
Value is used, this adds flexibility to the counter synchronization strategies.  
 
In case the counter value corresponding to the Primary Freshness Value fails 
authentication verification and the counter value corresponding to Secondary 
Freshness Value results in successful authentication verification, OEM specific 
software should utilize the SecOC_FreshnessValueRead and 
SecOC_FreshnessValueWrite interfaces to replace the counter value corresponding 
to the Primary Freshness Value with the counter value corresponding to Secondary 
Freshness Value. 
 
Note: This will ensure that during future authentication attempts, the first counter value considered is 
the counter value that most recently resulted in successful authentication verification. 

 
In order to not influence security negatively, some general (monotony) rules for 
usage of multiple values should be considered: 

- Secondary value should never be smaller than primary counter. 

- Primary value has to stay monotonous, also when updated according to successful 

verification using secondary counter. 

 
Usage Example: 
  



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

34 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

A Secured I-PDU on receiver side is configured with a Freshness Value ID and a 
Secondary Freshness Value ID. An OEM specific SWC managing the counter values 
suspects the counter shared between the transmitter and receiver are out of sync. 
Based on an OEM specific algorithm, the SWC managing the counters determines a 
new counter value that should be used if indeed the counters are out of sync. The 
OEM SWC managing the counters then overwrites the counter corresponding to 
Secondary Freshness Value ID with the new predetermined counter value using the 
SecOC_FreshnessValueWrite interface. 
  
A Secured I-PDU is received and authentication verification is initially performed 
based on the counter value corresponding to Freshness Value ID. Assume the 
counter value corresponding to Freshness Value ID resulted in failed authentication 
verification. At this point SecOC does not explicitly inform the consuming SWC of the 
failed authentication status, rather it re-evaluates authentication using the counter 
value corresponding to Secondary Freshness Value ID. If the counter value 
corresponding to Secondary Freshness Value ID results in successful authentication 
verification, SecOC sends the received data to the consuming SWC. The OEM 
specific SWC managing the counters is informed of the status for each verification 
attempt by means of the SecOC_VerifyStatus interface (see Section 8.7.2.1). In case 
of a successful verification using the Secondary Freshness Value, the OEM specific 
SWC overwrites the counter value corresponding to Freshness Value ID with the 
counter value corresponding to Secondary Freshness Value ID via the 
SecOC_FreshnessValueRead and SecOC_FreshnessValueWrite interfaces.  
 
Note:  The OEM specific SWC managing the counters utilize the SecOC_VerificationStatus interface 
to determine which counts passed/failed authentication verification. 

7.1.2 Authentication of I-PDUs 

[SWS_SecOC_00031]⌈  
The creation of a Secured I-PDU and thus the authentication of an Authentic I-PDU 
consists of the following six steps: 

1. Prepare Secured I-PDU 

2. Construct Data to Authenticator 

3. Generate Authenticator 

4. Construct Secured I-PDU 

5. Increment Freshness Counter 

6. Broadcast Secured I-PDU 

⌋ (SRS_SecOC_00006) 
 
[SWS_SecOC_00033]⌈  
The SecOC module shall prepare the Secured I-PDU. During preparation, SecOC 
shall allocate the necessary buffers to hold the intermediate and final results of the 
authentication process. 
⌋ (SRS_SecOC_00006) 
 
[SWS_SecOC_00034]⌈  

The SecOC module shall construct the DataToAuthenticator, i.e. the data that is 

used to calculate the Authenticator. DataToAuthenticator is formed by 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

35 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

concatenating the full 16 bit representation of the Data Id (parameter SecOCDataId), 

the complete Authentic I-PDU and the complete Freshness Value corresponding to 

SecOCFreshnessValueID in the given order. The Data Id and the Freshness 

Value shall be encoded in Big Endian byte order for that purpose. 
⌋ (SRS_SecOC_00006) 
 
[SWS_SecOC_00035]⌈  
The SecOC module shall generate the Authenticator by passing 

DataToAuthenticator, length of DataToAuthenticator and a pointer to a key 

corresponding to SecOCKeyID into the Authentication Algorithm corresponding to 
SecOCTxAuthServiceConfigRef. 

⌋ (SRS_SecOC_00006) 
 
[SWS_SecOC_00036]⌈  
The SecOC module shall truncate the resulting Authenticator down to the number of 

bits specified by SecOCAuthInfoTxLength. 

⌋ (SRS_SecOC_00006) 
 
[SWS_SecOC_00037]⌈  
The SecOC module shall construct the Secured I-PDU by adding the Freshness 
Value and the Authenticator to the Authentic I-PDU.  
⌋ (SRS_SecOC_00006) 
 
Note: The Freshness Counter and the Authenticator included as part of the Secured I-PDU may be 
truncated per configuration specific to the identifier of the Secured I-PDU. The scheme for the Secured 
I-PDU looks as follows: 
SecuredPDU =  

AuthenticIPDU 

| FreshnessValue [SecOCFreshnessValueTxLength] 

| Authenticator [SecOCAuthInfoTxLength] 

 
[SWS_SecOC_00038]⌈  
If SecOCUseFreshnessTimestamp is set to FALSE, the SecOC module shall 

increment the Freshness Counter corresponding to SecOCFreshnessValueID by 1 

(CNT ++) only if it has started the transmission of the Secured I-PDU by calling the 
PduR for further routing.  
⌋ (SRS_SecOC_00006) 
 
Note: If the transmission of the Secured I-PDU has been cancelled before, it should not increment the 
Freshness Counter corresponding to SecOCFreshnessValueID. 

7.1.3 Verification of I-PDUs 

[SWS_SecOC_00040]⌈  
The verification of a Secured I-PDU consists of the following six steps: 

 Parse Authentic I-PDU, Freshness Value and Authenticator 

 Construct Freshness Value 

 Construct Data to Authentication 

 Verify Authentication Information  

 Set Freshness Value 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

36 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

 Pass Authentic I-PDU to upper layer 

⌋ (SRS_SecOC_00006) 
 
 

 [SWS_SecOC_00042]⌈  
Upon reception of a secured I-PDU, SecOC shall parse the Authentic I-PDU, the 
Freshness Value and the Authenticator from it. 
⌋ (SRS_SecOC_00006) 
 
 [SWS_SecOC_00045]⌈  
If SecOCUseFreshnessTimestamp is set to FALSE, the SecOC module shall 
construct Freshness Verify Value (i.e. the Freshness Value to be used for 
Verification). In the event the complete Freshness Value is transmitted in the secured 
I-PDU, it needs to be verified that the constructed FreshnessVerifyValue is larger 
than the last stored notion of the Freshness Value. If it is not larger than the last 
stored notion of the Freshness Value, the SecOC module shall stop the verification 
and drop the Secured I-PDU. 
 
 
Otherwise, constructing the Authentication Verify Counter is defined as outlined by 

the following pseudo code. 

 
If (SecOCFreshnessValueTxLength = FreshnessValueLength) 
{ 
   FreshnessVerifyValue = FreshnessValue parsed from Secured I-PDU; 
} 
Else 
{ 
   If (FreshnessValue parsed from Secured I-PDU > least significant bits of FreshnessValue corresponding to SecOCFreshnessValueID) 
   { 
      Attempts = 0; 
      FreshnessVerifyValue =  
      most significant bits of FreshnessValue corresponding to SecOCFreshnessValueID | FreshnessValue parsed from Secured I-PDU; 
   } 
   Else 
   { 
      Attempts = 0; 
      FreshnessVerifyValue =  
      most significant bits of FreshnessValue corresponding to SecOCFreshnessValueID + 1 | FreshnessValue parsed from payload; 
   } 
} 

 

⌋ (SRS_SecOC_00002, SRS_SecOC_00007, SRS_SecOC_00022) 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

37 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

 

Figure 6: Construction of Freshness Value 

[SWS_SecOC_00052]⌈  
If SecOCUseFreshnessTimestamp is set to TRUE, the SecOC module shall 
construct Freshness Verify Value (i.e. the Freshness Value to be used for 
Verification). In case of complete Freshness Value transmission, it needs to be 

verified that the constructed FreshnessVerifyValue is within the acceptance 

window defined by SecOCRxAcceptanceWindow. If it is not in that window, the 

SecOC module shall stop the verification and drop the Secured I-PDU. 
 
Otherwise, constructing the Authentication Verify Value is defined as outlined by the 

following pseudo code. 

 
If (SecOCFreshnessValueTxLength = FreshnessValueLength) 
{ 
   FreshnessVerifyValue = FreshnessValue parsed from Secured I-PDU; 
} 
Else 
{ 
   If ((most significant bits of FreshnessValue corresponding to SecOCFreshnessValueID | FreshnessValue parsed from Secured I-PDU)  
      < (max(0: (most significant bits of FreshnessValue corresponding to SecOCFreshnessValueID | least significant bits of 
      FreshnessValue corresponding to SecOCFreshnessValueID) – SecOCRxAcceptanceWindow))) 
   { 
      Attempts = 0; 
      FreshnessVerifyBaseValue = most significant bits of FreshnessValue corresponding to SecOCFreshnessValueID + 1;  
   } 
   Else 

 act Construct Freshness_Counter

Attempts = 0

FreshnessVerifyValue = 

FreshnessValue parsed 

from Secured I-PDU

FreshnessVerifyBaseValue := most 

significant bits of FreshnessValue 

corresponding to 

SecOCFreshnessValueID  |  

FreshnessValue parsed from 

Secured I-PDU

FreshnessVerifyValue := most 

significant bits of (FreshnessValue 

corresponding to 

SecOCFreshnessValueID + 1)  |  

FreshnessValue parsed from Secured 

I-PDU 

[FreshnessValue parsed from

Secured I-PDU > least significant

bits of FreshnessValue

corresponding to

SecOCFreshnessValueID]

[true][false]

[false]

FreshnessValue parsed from Secured I-PDU >

least significant bits of FreshnessValue

parsed from Secured I-PDU > least significant

bits ofFreshnessValue parsed from Secured

I-PDU > least significant bits of

FreshnessValue parsed from Secured I-PDU >

least significant bits of FreshnessValue

corresponding to SecOCFreshnessValueID

[true]

[SecOCFreshnessValueTxLength ==

FreshnessValueLength]



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

38 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

   { 
      Attempts = 0; 
      FreshnessVerifyBaseValue = most significant bits of FreshnessValue corresponding to SecOCFreshnessValueID; 
   } 
   FreshnessVerifyValue = FreshnessVerifyUpperValue = FreshnessVerifyLowerValue =  
   FreshnessVerifyBaseValue | FreshnessValue parsed from Secured I-PDU; 
} 

⌋ ( SRS_SecOC_00002, SRS_SecOC_00007, SRS_SecOC_00022) 
 
[SWS_SecOC_00046]⌈  
The SecOC module shall construct the data that is used to calculate the 
Authenticator (DataToAuthenticator) on the receiver side. This data is comprised of 
SecOCDataId | AuthenticIPDU | FreshnessVerifyValue 

⌋ (SRS_SecOC_00006) 
 
[SWS_SecOC_00047]⌈  
If SecOCUseFreshnessTimestamp is set to FALSE, the SecOC module shall verify 

the Authenticator by passing DataToAuthenticator, length of 

DataToAuthenticator, handle to a key corresponding to SecOCKeyID, the 

Authenticator parsed from Secured I-PDU, and SecOCAuthInfoTxLength into 

the authentication algorithm corresponding to SecOCRxAuthServiceConfigRef.  

The verification process is repeated as outlined in the following pseudo code: 
If (Authentication Verification Passes) 
{ 
   Pass Authentic I-PDU to upper layer; 
} 
If (Authentication Verification Fails && Attempts < SecOCFreshnessCounterSyncAttempts) 
{ 
   Attempts ++; 
   Increment most significant bits of FreshnessVerifyValue by 1; 
   Re-attempt Authentication; 
} 
Else 
{ 
   Drop message; 
} 

⌋ ( SRS_SecOC_00002, SRS_SecOC_00007, SRS_SecOC_00022) 
 
 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

39 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

 

Figure 7: Verification of MAC 

[SWS_SecOC_00053]⌈  
If SecOCUseFreshnessTimestamp is set to TRUE, the SecOC module shall verify 

the Authenticator by passing DataToAuthenticator, length of 

DataToAuthenticator, handle to a key corresponding to SecOCKeyID, the 

Authenticator parsed from Secured I-PDU, and SecOCAuthInfoTxLength into 

the authentication algorithm corresponding to SecOCRxAuthServiceConfigRef. 

The verification process is repeated as outlined in the following pseudo code: 

 
If (Authentication Verification Passes) 

{ 

   Pass Authentic I-PDU to upper layer; 

} 

Else 

{ 

   Attempts ++; 

   If (Attempts mod 2! == 0) 

   { 

      FreshnessVerifyValue = FreshnessVerifyLowerValue =  

      (FreshnessVerifyBaseValue - floor(Attempts/2)+1) | FreshnessValue parsed from Secured I-PDU; 

      // check lower bound 

      If ((FreshnessValue corresponding to SecOCFreshnessValueID – SecOCRxAcceptanceWindow) <= FreshnessVerifyLowerValue) 

      { 

         Re-attempt Authentication; 

      } 

   } 

   Else 

   { 

      FreshnessVerifyValue = FreshnessVerifyUpperValue =  

      (FreshnessVerifyBaseValue + (Attempts/2)) | FreshnessValue parsed from Secured I-PDU; 

      // check upper bound 

      If ((FreshnessValue corresponding to SecOCFreshnessValueID + SecOCRxAcceptanceWindow) >= FreshnessVerifyUpperValue) 

      { 

         Re-attempt Authentication; 

      } 

   } 

   // check upper and lower bound 

   If (((FreshnessValue corresponding to SecOCFreshnessValueID – SecOCRxAcceptanceWindow) > FreshnessVerifyLowerValue) 

      && ((FreshnessValue corresponding to SecOCFreshnessValueID + SecOCRxAcceptanceWindow) < FreshnessVerifyUpperValue)) 

 act Verify MAC

Attempts++

most significant bits of 

FreshnessVerifyValue ++1

Drop message

abortcontinuestep back

MAC Verification

fails &&

[Attempts < SecOCFreshnessValueSyncAttempts]

fails &&

[Attempts >= SecOCFreshnessValueSyncAttempts]

passes



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

40 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

   { 

      Drop message; 

   } 

} 

⌋ ( SRS_SecOC_00002, SRS_SecOC_00007, SRS_SecOC_00022) 

 
[SWS_SecOC_00048]⌈  
The SecOC module shall report each individual verification status (the final one as 
well as all intermediate ones) by serving the call out function 
SecOC_VerificationStatusCallout and the SecOC_VerificationStatus interface 
according to its current configuration (see parameter 
SecOCVerificationStatusPropagationMode). 
⌋ (SRS_SecOC_00022) 
 
7.1.3.1 Successful verification of I-PDUs 

 
[SWS_SecOC_00049]⌈  
If the verification of a Secured I-PDU was successful and If 
SecOCUseFreshnessTimestamp is set to FALSE, the SecOC module shall set the 
Freshness Value corresponding to the successfully used Freshness Value (i.e. 

SecOCFreshnessValueID or SecOCSecondaryFreshnessValueID) equal to 
FreshnessVerifyValue. 

⌋ (SRS_SecOC_00002, SRS_SecOC_00007) 
 
[SWS_SecOC_00050]⌈  
Only if the verification of a Secured I-PDU was successful, the SecOC module shall 

pass the Authentic I-PDU to the upper layer communication modules using the 

lower layer interfaces of the PduR. 
⌋ (SRS_SecOC_00022) 
 
Note: In case the verification has eventually failed, the SecOC module must not pass the Authentic I-
PDU to the PduR for further routing. 

7.1.4 Adaptation in case of asymmetric approach 

Although this document consequently uses the terms and concepts from 
synchronous cryptography, the SecOC module can be configured to use both, 
synchronous as well as asynchronous cryptographic algorithms. In case of an 
asymmetric approach using digital signatures instead of the MAC-approach 
described throughout the whole document, some adaptations have to be made: 
 

1. Instead of a shared secret between sender and (all) receivers, a key pair consisting of 

public key and secret key is used. The secret (or private) key is used by the sender to 

generate the signature, the corresponding public keys is used by (all) receiver(s) to 

verify the signature. The private key must not be feasibly computable from the public 

key and it shall not be assessable by the receivers.  

2. In order to verify a message, the receiver needs access to the complete signature 

/output of the signature generation algorithm. Therefore, a truncation of the signature 

as proposed in the MAC case is NOT possible. The parameter 

SecOCAuthInfoTxLength has to be set to the complete length of the signature. 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

41 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

3. The signature verification uses a different algorithm then the signature generation. So 

instead of „rebuilding“ the MAC on receiver side and comparing it with the received 

(truncated) MAC as given above, the receiver / verifier performs the verification 

algorithm using the DataToAuthenticator (including full counter) and the signature as 

inputs and getting a Boolean value as output, determining whether the verification 

passed or failed. 

7.2 Relationship to PduR 

The SecOC module is arranged next to the PDU-Router in the layered architecture of 
AUTOSAR; see Figure 8.  
 

 

Figure 8 Transformation of an Authentic I-PDU in a Secured I-PDU by SecOC  

 
 
[SWS_SecOC_00153]⌈  
The SecOC module shall be implemented so that no other modules depend on it and 
that it is possible to build a system without the SecOC module if it is not needed. 
⌋ (SRS_BSW_00171) 
 

7.3 Initialization 

The SecOC module provides an initialization function (SecOC_Init) as defined in 
SWS_SecOC_00106. This function initializes all internal global variables and the 
buffers to store the SecOC I-PDUs and all intermediate results. The environment of 
the SecOC shall call SecOC_Init before calling any other function of the SecOC 
module except SecOC_GetVersionInfo. The implementer has to ensure that 
SecOC_E_UNINIT is returned in development mode in case an API function is called 
before the module is initialized. 
 

Upper Layer SW Module (e.g. COM)

Lower Layer Communication Modules (e.g. CanIf, CanTp)

PDUR

Authentic I-PDU

SecOC 
(Secure Onboard 
Communication)

Secured I-PDU

Authentic I-PDU
Authentication 

Information



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

42 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

For the I-PDU data transmission pathway through the SecOC module, a buffer is 
allocated inside the SecOC module. This buffer needs to be initialized because it 
might be transmitted before it has been fully populated with data by the upper layer of 
lower layer communication modules.  
 
 [SWS_SecOC_00054]⌈  
Within SecOC_Init, the module shall initialize all internal global variables and the 
buffers of the SecOC I-PDUs. 
⌋ (SRS_SecOC_00005) 
 
[SWS_SecOC_00055]⌈  
Within SecOC_Init, the module shall restore all Freshness Value values from 
NVRAM so that all counter values show the status they had before the SecOC has 
been shut down. 
⌋ (SRS_SecOC_00020) 

7.4 Authentication of outgoing PDUs 

The term authentication describes the creation of a Secured I-PDU by adding 
Authentication Information to an Authentic I-PDU. This process is described in 
general terms in Section 7.1.2. This section refines the general description with 
respect to requirements arising from the integration with the PduR module 
considering different bus interfaces and transport protocols. In general, the 
interaction with the PduR module and the authentication of Authentic I-PDUs are 
organized according to the following scheme: 
 

1. For each transmission request of an Authentic I-PDU, the upper layer communication 

module shall call the PduR module through PduR_<Up>Transmit.  

2. The PduR routes this request to the SecOC module and calls SecOC_Transmit. 

3. The SecOC module copies the Authentic I-PDU to its own memory and returns. 

4. During the next scheduled call of its main function, the SecOC module creates the 

Secured I-PDU by calculating the Authentication Information and initiates the 

transmission of the Secured I-PDU by notifying the respective lower layer module via 

the PduR module. 

5. Thereafter, the SecOC module takes the role of an upper layer communication module 

and thus serves all lower layer requests to provide information on or to copy data of the 

Secured I-PDU. 

6. Finally, the confirmation of the successful or unsuccessful transmission of the Secured 

I-PDU are provided to the upper layer communication module as confirmation of the 

successful or unsuccessful transmission of the Authentic I-PDU 

Note: For each Authentic I-PDU, the upper layer communication module shall be configured in such a 
way that it calls the PduR module as it normally does for a direct transmission request. In this case, 
the upper layer is decoupled from TriggerTransmit and TP behavior by means of the SecOC module. 

 
The SecOC module decouples the interaction between upper layer modules and 
lower layer modules. It gets all transmission relevant information to be transmitted 
and thus could manage the interaction with lower layer module on its own and 
without affecting the upper layer module. 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

43 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

 
To initiate the transmission of an Authentic I-PDU, the upper layer module always 
(and independent of the bus interface that is used for the concrete transmission) calls 
the PduR module through PduR_<Up>Transmit. The PduR routes this request to the 
SecOC module so that the SecOC module has immediate access to the Authentic I-
PDU in the buffer of the upper layer communication module. 
 
[SWS_SecOC_00057]⌈  
The SecOC module shall provide sufficient buffer capacities to store the incoming 
Authentic I-PDU, the outgoing Secured I-PDU and all intermediate data of the 
authentication process according to the process described in SWS_SecOC_00031. 
⌋ (SRS_SecOC_00006) 
 
[SWS_SecOC_00146]⌈  
The SecOC module shall provide separate buffers for the Authentic I-PDU and the 
Secured I-PDU.  
⌋ (SRS_SecOC_00006) 
 
[SWS_SecOC_00110]⌈  
Any transmission request from the upper layer communication module shall overwrite 
the buffer that contains the Authentic I-PDU without affecting the buffer of the 
respective Secured I-PDU.  
⌋ (SRS_BSW_00426) 
 
Thus, upper layer updates for Authentic I-PDUs could be processed without affecting 
ongoing transmission activities of Secured I-PDUs with the lower layer 
communication module. 

7.4.1 Authentication during direct transmission 

For transmission of an Authentic I-PDU using bus interfaces that allow ad-hoc 
transmission (e.g. CanIf), the PDU Router module triggers the transmit operation of 
the SecOC module for an Authentic I-PDU. In this case, the SecOC module prepares 
the creation of a Secured I-PDU on basis of the Authentic I-PDU by allocating 
internal buffer capacities and by copying the Authentic I-PDU to a local buffer 
location. Afterwards it returns SecOC_Transmit. 
 
[SWS_SecOC_00058]⌈  
The SecOC module shall allocate internal buffer capacities to store the Authentic I-
PDU and the Authentication Information in a consecutive memory location. 
⌋ (SRS_SecOC_00006) 
 
The actual creation of the Secured I-PDU is processed during the next subsequent 
call of the scheduled main function. This includes calculating the Authentication 
Information according to SWS_SecOC_00031 and adding the Authentication 
Information (i.e. the Authenticator and the possibly truncated Freshness Value) 
consecutively to the buffer location directly behind the Authentic I-PDU. Thereafter, 
SecOC module triggers the transmission of the Secured I-PDU to the destination 
lower layer module by calling PduR_SecOCTransmit at the PduR. 
 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

44 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

[SWS_SecOC_00060]⌈  
For transmission of Authentic I-PDUs using bus interfaces that allow ad-hoc 
transmission (e.g. CanIf), the SecOC module shall calculate the Authenticator in the 
scheduled main function according to the overall approach specified in 
SWS_SecOC_00031.  
⌋ (SRS_SecOC_00010, SRS_SecOC_00010, SRS_SecOC_00012, 
SRS_SecOC_00013) 
 
[SWS_SecOC_00061]⌈  
For transmission of Authentic I-PDUs using bus interfaces that allow ad-hoc 
communication (e.g. CanIf), the SecOC module shall create the Secured I-PDU in 
the scheduled main function.  
⌋ (SRS_SecOC_00010, SRS_SecOC_00010, SRS_SecOC_00012, 
SRS_SecOC_00013) 
 
[SWS_SecOC_00062]⌈  
The SecOC module shall provide the complete Secured I-PDU for further 
transmission to the destination lower layer module by triggering 
PduR_SecOCTransmit. 
⌋ (SRS_SecOC_00010, SRS_SecOC_00010, SRS_SecOC_00012, 
SRS_SecOC_00013) 
 
[SWS_SecOC_00063]⌈  
If the PDU Router module notifies the SecOC module that the destination lower layer 
module has confirmed the transmission of the Secured I-PDU by calling 
SecOC_TxConfirmation, the SecOC module shall confirm the reception of the 
respective Authentic I-PDU to the upper layer module by calling 
PduR_SecOCTxConfirmation. 
⌋ (SRS_SecOC_00010, SRS_SecOC_00010, SRS_SecOC_00012, 
SRS_SecOC_00013) 
  
[SWS_SecOC_00064]⌈  
For transmission of Authentic I-PDUs using bus interfaces that allow ad-hoc 
communication (e.g. CanIf), the SecOC module shall free the buffer that contains the 
Secured I-PDU if SecOC_TxConfirmation is called for the Secured I-PDU.  
⌋ (SRS_SecOC_00010, SRS_SecOC_00010, SRS_SecOC_00012, 
SRS_SecOC_00013) 

7.4.2 Authentication during triggered transmission 

For transmission of an Authentic I-PDU using bus interfaces that allow triggered 
transmission (e.g. FrIf), the upper layer is configured in such a way that it calls the 
PduR module like it normally does for a direct transmission (see SWS_SecOC0054). 
Thus, the upper layer module immediately provides access to the Authentic I-PDU by 
providing the required buffer information through PduR_<Up>Transmit. The PduR 
forwards this transmission request to the SecOC module by calling 
SecOC_TriggerTransmit. 
 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

45 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

Note: Authentication for triggered transmission is only supported, if the upper layer initiates the 
transmission by explicitly calling PduR_<Up>Transmit in before. Triggered transmission in mode 
AlwaysTransmit shall not be used. 

 
In turn, the SecOC module allocates sufficient buffer capacities to store the Authentic 
I-PDU, the Secured I-PDU and all intermediate data of the authentication process. 
The SecOC module copies the Authentic I-PDU into its own buffer and returns (see 
SWS_SecOC_00057, SWS_SecOC_00058, SWS_SecOC_00059). 
 
The actual creation of the Secured I-PDU is processed during the subsequent call of 
the scheduled main function. This includes calculating the Authentication Information 
according to SWS_SecOC_00031 and adding the Authentication Information (i.e. the 
Authenticator and the possibly truncated Freshness Value) consecutively to the 
buffer location directly behind the Authentic I-PDU. Thereafter, SecOC module 
triggers the transmission of the Secured I-PDU to the destination lower layer module 
by calling PduR_SecOCTransmit at the PduR. 
 
[SWS_SecOC_00065]⌈  
For transmission of Authentic I-PDUs using bus interfaces that allow triggered 
transmission (e.g. FrIf), the SecOC module shall calculate the Authenticator in the 
scheduled main function according to the overall approach specified in 
SWS_SecOC_00031.  
⌋ (SRS_SecOC_00010, SRS_SecOC_00010, SRS_SecOC_00012, 
SRS_SecOC_00013) 
 
[SWS_SecOC_00066]⌈  
For transmission of Authentic I-PDUs using bus interfaces that allow triggered 
transmission (e.g. FrIf), the SecOC module shall create the Secured I-PDU in the 
scheduled main function.  
⌋ (SRS_SecOC_00010, SRS_SecOC_00010, SRS_SecOC_00012, 
SRS_SecOC_00013) 
 
In the following, the SecOC module serves as a data provider for the subsequent 
transmission request from the lower layer module. Thus, the SecOC module holds 
the complete Secured I-PDU and acts as the upper layer module. The upper layer 
module does not expect any further call back that request the copying of the 
Authentic I-PDU to the lower layer module.  
 
[SWS_SecOC_00067]⌈  
For transmission of Authentic I-PDUs using bus interfaces that allow triggered 
transmission (e.g. FrIf), the SecOC module shall indicate the transmission request for 
the complete Secured I-PDU by triggering PduR_SecOCTransmit at the PduR. The 
PduR is responsible to further process the request and to notify the respective lower 
layer module. 
⌋ (SRS_SecOC_00010, SRS_SecOC_00010, SRS_SecOC_00012, 
SRS_SecOC_00013) 
 
The destination lower layer module calls PduR_<Lo>TriggerTransmit when it is ready 
to transmit the Secured I-PDU. PduR forwards this request to the SecOC module and 
the SecOC module copies the complete Secured I-PDU to the lower layer. 
Afterwards it returns.  



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

46 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

 
Note: The SecOc module must not forward the trigger transmit call to the upper layer but takes itself 
the role of the upper layer and copies the complete Secured I-PDU to the lower layer. 

 
[SWS_SecOC_00068]⌈  
When SecOC_TriggerTransmit is called by the PduR module, the SecOC module 
shall copy the Secured I-PDU to the lower layer destination module. 
⌋ (SRS_SecOC_00010, SRS_SecOC_00010, SRS_SecOC_00012, 
SRS_SecOC_00013) 
 
[SWS_SecOC_00150]⌈  
When SecOC_TriggerTransmit is called by the PduR module and the SecOC module 
is not able to provide a Secured I-PDU to the lower layer (no Secured I-PDU 
available), the SecOC module shall return the call with E_NOT_OK. 
⌋ (SRS_SecOC_00010, SRS_SecOC_00010, SRS_SecOC_00012, 
SRS_SecOC_00013) 
 
Finally, when the lower layer confirms the transmission of the Secured I-PDU via 
PduR_<Lo>TxConfirmation, the confirmation is forwarded to the SecOC module by 
calling SecOC_TxConfirmation. In turn, the SecOC module confirms the transmission 
of the Authentic I-PDU at the PduR module so that the PduR module could forward 
the confirmation via <Up>_TxConfirmation to the destination upper layer module (see 
SWS_SecOC_00063). 
 
During triggered transmission, the update rates of the upper layer modules and the 
lower layer modules might be different. Thus, the lower layer module might request a 
new transmission of a Secured I-PDU while the upper layer has not updated the 
Authentic I-PDU. In this case, the SecOC module supports the repeated transmission 
of the Authentic I-PDU by means of an updated Secure I-PDU. Thus, it has to 
preserve the Authentic I-PDU until the Secured I-PDU has been sent and its 
transmission has been confirmed by a means of SecOC_TxConfirmation. In this 
case, the SecOC module treats the existing Authentic I-PDU as new and re-
authenticates it during the subsequent call to the SecOC_MainFunction.   
 
[SWS_SecOC_00069]⌈  
For transmission of Authentic I-PDUs using bus interfaces that allow triggered 
transmission (e.g. FrIf) and after having successfully sent the Secured I-PDU, the 
SecOC module shall free the buffer that contain Authentication Information and 
preserve the buffer that contain the Authentic I-PDU. The Authentic I-PDU shall be 
treated as if it has been set by the upper layer and thus shall undergo a new 
authentication procedure with the subsequent call of the SecOC_MainFunction. 
⌋ (SRS_SecOC_00010, SRS_SecOC_00010, SRS_SecOC_00012, 
SRS_SecOC_00013) 

7.4.3 Authentication during transport protocol transmission 

For transmission of an Authentic I-PDU using transport protocol transmission (e.g. 
CanTP, FrTp), the PDU Router module triggers the transmit operation of the SecOC 
module for an Authentic I-PDU. In this case, the SecOC module prepares the 
creation of a Secured I-PDU on basis of the Authentic I-PDU by allocation internal 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

47 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

buffer capacities and by copying the Authentic I-PDU to a local buffer location. 
Afterwards it returns SecOC_Transmit. 
 
The actual creation of the Secured I-PDU is processed during the next following call 
of the scheduled main function. This includes calculating the Authentication 
Information according to SWS_SecOC_00031 and adding the Authentication 
Information (i.e. the Authenticator and the possibly truncated Freshness Value) 
consecutively to the buffer location directly behind the Authentic I-PDU.  
 
Note: The overall approach of using IF API towards the upper layer and TP API towards the lower 
layer will not work with DCM/J1939DCM. 
 

[SWS_SecOC_00070]⌈  
For transmission of Authentic I-PDUs using transport protocol, the SecOC module 
shall calculate the Authenticator in the scheduled main function according to the 
overall approach specified in SWS_SecOC_00031.  
⌋ (SRS_SecOC_00010, SRS_SecOC_00010, SRS_SecOC_00012, 
SRS_SecOC_00013) 
 
[SWS_SecOC_00071]⌈  
For transmission of Authentic I-PDUs using transport protocol, the SecOC module 
shall create the Secured I-PDU in the scheduled main function.  
⌋ (SRS_SecOC_00010, SRS_SecOC_00010, SRS_SecOC_00012, 
SRS_SecOC_00013) 
 
Thereafter, SecOC module triggers the transmission of the Secured I-PDU to the 
destination lower layer module by calling PduR_SecOCStartOfReception at the 
PduR. Thus, it notifies the lower level module about its transmission request for the 
Secured I-PDU. 
 
[SWS_SecOC_00072]⌈  
For transmission of Authentic I-PDUs using transport protocol, the SecOC module 
shall indicate the transmission request for the complete Secured I-PDU by triggering 
PduR_SecOCTransmit at the PduR. The PduR is responsible to further process the 
request and to notify the respective lower layer module. 
⌋ (SRS_SecOC_00010, SRS_SecOC_00010, SRS_SecOC_00012, 
SRS_SecOC_00013) 
 
In the following, the SecOC module serves as a data provider for the subsequent 
transmission request from the lower layer module. Thus, the SecOC module holds 
the complete Secured I-PDU and acts as the upper layer module. The upper layer 
module does not expect any further call back that request the copying of the 
Authentic I-PDU to the lower layer module.  
 
When the PduR iteratively polls the SecOC module by means of 
SecOC_CopyTxData to effectively transmit the Secured I-PDU to a lower layer 
module, the SecOC module copies the NPDUs for the Secured I-PDU to the lower 
layer transport protocol module.  
 
[SWS_SecOC_00073]⌈  



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

48 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

For transmission of Authentic I-PDUs using transport protocol, the SecOC module 
shall copy the NPDUs addressed by SecOC_CopyTxData into the buffer of the 
transport protocol module. After each copy process, it returns from 
SecOC_CopyTxData. 
⌋ (SRS_SecOC_00010, SRS_SecOC_00010, SRS_SecOC_00012, 
SRS_SecOC_00013) 
 
Finally, when the lower layer confirms the transmission of the Secured I-PDU via 
PduR_<Lo>TxConfirmation, the confirmation is forwarded to the SecOC module and 
the SecOC module in turn confirms the transmission of the Authentic I-PDU, so that 
the PduR module could forward the confirmation via <Up>_TxConfirmation to the 
upper layer,  
 
[SWS_SecOC_00074]⌈  
For transmission of Authentic I-PDUs using transport protocol and when the lower 
layer confirms the transmission of the Secured I-PDU by SecOC_TpTxConfirmation, 
the SecOC module shall in turn confirm the transmission of the Authentic I-PDU by 
PduR_SecOCTxConfirmation.⌋ (SRS_SecOC_00010, SRS_SecOC_00010, 
SRS_SecOC_00012, SRS_SecOC_00013) 
 
[SWS_SecOC_00075]⌈  
For transmission of Authentic I-PDUs using transport protocol, the SecOC module 
shall free the buffer that contains the Secured I-PDU only, if 
SecOC_TpTxConfirmation is called for the Secured I-PDU.  
⌋ (SRS_SecOC_00010, SRS_SecOC_00010, SRS_SecOC_00012, 
SRS_SecOC_00013) 

7.4.4 Error handling and cancelation of transmission  

[SWS_SecOC_00076]⌈  
If the upper layer module requests a cancelation of an ongoing transmission of the 
Authentic I-PDU by calling SecOC_CancelTransmit, the SecOC module shall 
immediately inform the lower layer transport protocol module to cancel the ongoing 
transmission of the Secured I-PDU, stop all internal actions related to the Authentic I-
PDU, and free all related buffers. 
⌋ (SRS_SecOC_00021) 
 
[SWS_SecOC_00077]⌈  
If the lower layer transport protocol module reports an error during transmission of a 
Secured I-PDU using the return value E_NOT_OK, the SecOC module shall not 
perform any error handling other than skipping the confirmation of the transmission 
request for the corresponding Authentic I-PDU to the upper layer module. 
⌋ (SRS_BSW_00385) 
 
[SWS_SecOC_00151]⌈  
If the CSM module reports an error during authentication of an Authentic I-PDU 
(authentication attempt returns E_NOT_OK), the SecOC module shall not provide a 
Secured I-PDU to the lower layer. It shall keep that Authentic I-PDU (if not 
overwritten by an incoming Authentic I-PDU of the same type) to start the 
authentication with the next call of the scheduled main function until the number of 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

49 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

additional authentication attempts for that Authentic I-PDU has reached 
SecOCAuthenticationRetries. 
⌋ (SRS_SecOC_00021, SRS_BSW_00385) 
 
[SWS_SecOC_00155]⌈  
If the number of additional authentication attempts for an Authentic I-PDU has 
reached SecOCAuthenticationRetries, the SecOC module shall remove the Authentic 
I-PDU from its internal buffer and shall report SECOC_E_CRYPTO_FAILURE to the 
DET module. 
⌋ (SRS_BSW_00385) 
 
[SWS_SecOC_00108]⌈  
If the SecOC module is not able to serve any upper layer or lower layer request 
during transmission of an Authentic I-PDU due to an arbitrary internal error, it shall 
return this request with E_NOT_OK. 
⌋ (SRS_BSW_00385) 

7.5 Verification of incoming PDUs 

The term verification describes the process of comparing the Authentication 
Information contained in a Secured I-PDU with the Authentication Information 
calculated on basis of the local Data Identifier, the local Freshness Value and the 
Authentic I-PDU contained in the Secured I-PDU.  
 
The process of verifying incoming Secured I-PDUs is described in general terms in 
Section 7.1.3. This section refines the general description with respect to 
requirements arising from the integration with the PduR module considering different 
bus interfaces and transport protocols. The overall interaction with the PduR module 
and the verification of Secured I-PDUs is organized as described in the following 
scheme: 
 

1. For each indication of an incoming Secured I-PDU from a lower layer bus interface or 

transport protocol module, the SecOC module takes the role of an upper layer 

communication module and thus serves all lower layer requests that are necessary to 

receive the complete Secured I-PDU. 

2. The SecOC module copies the Secured I-PDU into its own memory. 

3. Thereafter, when the complete Secured I-PDU is available and during the next 

scheduled call of its main function, the SecOC module verifies the contents of the 

Secured I-PDU according to SWS_SecOC_00040. 

4. If the verification fails, the SecOC module drops the Secured I-PDU. 

5. If the verification succeeds, the SecOC module takes the role of a lower layer 

communication module and calls PduR_SecOCRxIndication for the Authentic I-PDU. 

6. The SecOC reports the verification results according to SWS_SecOC_00048. 

Thus, SecOC decouples the interaction between upper layer modules and lower 
layer modules. The SecOC module manages the interaction with lower layer module 
until it has copied the complete Secured I-PDU into its own buffer. It does so without 
affecting the upper layer module. Thereafter, it verifies the contents of the Secured I-



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

50 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

PDU and, dependent on the verification results, initiates the transmission of the 
Authentic I-PDU to the upper layer communication module. 
 
 
[SWS_SecOC_00111]⌈  
Any reception process initiated from the lower layer communication module shall 
overwrite the buffer that contains the Secured I-PDU without affecting the buffer of 
the respective Authentic I-PDU.  
⌋ (SRS_BSW_00426) 
 
Thus, lower layer updates of Secured I-PDUs could be processed without affecting 
ongoing deliveries of an Authentic I-PDU to the upper layer communication modules. 

7.5.1 Verification during bus interface reception 

When a Secured I-PDU is received by means of a lower layer bus interface (e.g. 
CanIf, FrIf), the PduR module calls SecOC_RxIndication to inform the SecOC 
module for each incoming Secured I-PDU. During the processing of 
SecOC_RxIndication, the SecOC module copies the Authentic I-PDU to its own 
buffer. 
 
Note: The overall approach of using IF API towards the upper layer and TP API towards the lower 
layer will not work with DCM/J1939DCM. 

 
[SWS_SecOC_00078]⌈  
During reception of a Secured I-PDU that is received by means of a lower layer bus 
interface and when SecOC_RxIndication has been called, the SecOC module shall 
copy the complete Secured I-PDU into its own buffer. Afterwards it returns from 
SecOC_RxIndication. 
⌋ (SRS_SecOC_00010, SRS_SecOC_00010, SRS_SecOC_00012, 
SRS_SecOC_00013) 
 
Thereafter, the actual verification of an incoming Secured I-PDU is initiated during  
the next call of the scheduled main function. The SecOC module extracts the 
Authentic I-PDU, the Authentication Information from the Secured I-PDU. The SecOC 
module verifies the authenticity and freshness of the Authentic I-PDU according to 
SecOC_SWS_0040. If the verification is successful, the SecOC indicates the 
reception of the Authentic I-PDU by calling PduR_SecOCRxIndication for the 
Authentic I-PDU. If the verification fails, the SecOC drops the PDU and does not call 
PduR_SecOCRxIndication. 
 
[SWS_SecOC_00079]⌈  
During reception of a Secured I-PDU that is received by means of a lower layer bus 
interface, the SecOC module shall verify the Authenticator according to the overall 
approach specified in SWS_SecOC_00040. The verification shall be processed in 
the scheduled main function. 
⌋ (SRS_SecOC_00010, SRS_SecOC_00010, SRS_SecOC_00012, 
SRS_SecOC_00013) 
 
[SWS_SecOC_00080]⌈  



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

51 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

During reception of a Secured I-PDU that is received by means of a lower layer bus 
interface and if the verification eventually succeeds, the SecOC module shall call 
PduR_SecOCRxIndication referencing the Authentic I-PDU that is contained in the 
Secured I-PDU. 
⌋ (SRS_SecOC_00010, SRS_SecOC_00010, SRS_SecOC_00012, 
SRS_SecOC_00013) 
 
Note:  if the verification eventually fails, the SecOC module does not call PduR_SecOCRxIndication 
for the Authentic I-PDU that is contained in the Secured I-PDU. 

7.5.2 Verification during transport protocol reception 

When a Secured I-PDU is received by means of a lower layer transport protocol 
interface (e.g. CanTp, FrTp), the PduR module calls SecOC_StartOfReception to 
notify the SecOC module that the reception process of the respective Secured I-PDU 
will start. 
 
[SWS_SecOC_00082]⌈  
During reception of a Secured I-PDU that is received by means of a lower layer 
transport protocol interface and when SecOC_StartOfReception is called, the SecOC 
module shall provide buffer capacities to store the complete Secured I-PDU. 
⌋ (SRS_SecOC_00010, SRS_SecOC_00010, SRS_SecOC_00012, 
SRS_SecOC_00013) 
 
Note: The required buffer capacities for the Secured I-PDU could be directly derived from the length of 
the Secured I-PDU, which is given in the system template. 

 
When the lower layer iteratively indicates the reception of the individual NPDUs that 
constitute the Secured I-PDU (i.e. when SecOC_CopyRxData is called), the SecOC 
module copies the NPDUs to its own buffer. 
 
[SWS_SecOC_00083]⌈  
During reception of a Secured I-PDU that is received by means of a lower layer 
transport protocol interface and when SecOC_CopyRxData is called, the SecOC 
module shall copy the NPDUs addressed by SecOC_CopyRxData into its own 
buffers. Finally, it returns from SecOC_CopyRxData. 
⌋ (SRS_SecOC_00010, SRS_SecOC_00010, SRS_SecOC_00012, 
SRS_SecOC_00013) 
 
Finally, when the lower layer confirms the complete reception of the Secured I-PDU 
via SecOC_TpRxIndication and thus the complete Secured I-PDU is available in the 
buffer of the SecOC module for further processing, the SecOC module starts the 
verification of the Authentication Information according to Section 7.1.3 during its 
next scheduled call of its main function.  
 
[SWS_SecOC_00084]⌈  
During reception of a Secured I-PDU that is received by means of a lower layer 
transport protocol interface and when SecOC_TpRxIndication is called, the SecOC 
module shall returns SecOC_TpRxIndication without any further processing. 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

52 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

⌋ (SRS_SecOC_00010, SRS_SecOC_00010, SRS_SecOC_00012, 
SRS_SecOC_00013) 
 
 
[SWS_SecOC_00085]⌈  
During reception of a Secured I-PDU that is received by means of a lower layer 
transport protocol interface and when SecOC_TpRxIndication has been called, the 
SecOC module shall verify the contents of the Secured I-PDU according to the 
process described in Section 7.1.3. 
⌋ (SRS_SecOC_00010, SRS_SecOC_00010, SRS_SecOC_00012, 
SRS_SecOC_00013) 
 
[SWS_SecOC_00086]⌈  
During reception of a Secured I-PDU that is received by means of a lower layer 
transport protocol interface and when the verification eventually succeeds, the 
SecOC module shall call PduR_SecOCRxIndication with references to the Authentic 
I-PDU contained in the Secured I-PDU. 
⌋ (SRS_SecOC_00010, SRS_SecOC_00010, SRS_SecOC_00012, 
SRS_SecOC_00013) 
 
[SWS_SecOC_00087]⌈  
The SecOC module shall free all buffer related to a Secured I-PDU either if  

1. it has passed the respective authenticated I-PDU to the PduR via 

PduR_SecOCRxIndication, 

2. the verification of a Secured I-PDU eventually failed, 

3. the transmission of a Secured I-PDU has been canceled by the upper or lower layer, or 

4. the transmission of a Secured I-PDU with the same Pdu Identifier has been initiated via 

SecOC_StartOfReception. 

⌋ (SRS_SecOC_00021, SRS_SecOC_00022) 

7.5.3 Error handling and cancelation of transmission  

[SWS_SecOC_00089]⌈  
If the lower layer transport protocol module reports an error by returning something 
else than E_OK during reception of a Secured I-PDU using SecOC_TpRxIndication, 
the SecOC module shall drop the Secured I-PDU and free all corresponding buffers. 
⌋ (SRS_BSW_00385) 
 
[SWS_SecOC_00121]⌈  
If the CSM module reports an error during verification (verification attempt returns 
E_NOT_OK) of a Secured I-PDU, the SecOC module shall not provide the Authentic 
I-PDU. It shall keep the Secured I-PDU (if not overwritten by an incoming Secured I-
PDU of the same type) and start the verification with the next call of the scheduled 
main function. 
⌋ (SRS_SecOC_00022, SRS_BSW_00385) 
 
[SWS_SecOC_00109]⌈  



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

53 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

If the SecOC module is not able to serve any upper layer or lower layer request 
during reception of A Secured I-PDU due to an arbitrary internal error, it shall return 
this request with E_NOT_OK. 
⌋ (SRS_BSW_00385) 

7.6 Gateway functionality 

The SecOC module supports authentication and verification for I-PDUs that are 
routed from one source bus to one or more destination busses. This allows for the 
realization of re-authentication gateways that can be used to realize networks with 
different security zones or properties. The actions necessary to support the required 
gateway functionality can be simply derived from the authentication and verification 
scenarios in Sections 7.4 and 7.5. Each authentication or verification process for a 
given I-PDU need to be configured separately. This functionality includes: 
 authentication of outgoing I-PDUs, 

 verification of incoming I-PDUs, 

 re-authentication gateways, i.e. the verification of incoming I-PDUs in combination of 

their immediate re-authentication, when the I-PDU is routed to another lower layer 

module. 

Note: “Gatewaying-on-the-fly” is not supported by SecOC 

7.7 Development Errors 

[SWS_SecOC_00101] Development Error Types 

⌈ 
The following errors and exceptions shall be detectable by the SecOC module 
depending on its build version (development/production mode): 
Type or error Related error code Value [hex] 

An API service was 
called with a NULL 
pointer 

SECOC_E_PARAM_POINTER 0x01 

API service used 
without module 
initialization or 
PduR_Init called  

SECOC_E_INVALID_REQUEST 0x02 

Invalid I-PDU 
identifier 

SECOC_E_INVALID_PDU_SDU_ID 0x03 

Crypto service failed SECOC_E_CRYPTO_FAILURE 0x04 

Unable to restore 
Freshness Value 
and key information 
from NVRAM 

SECOC_E_RESTORE_FAILURE 0x05 

Freshness Value at 
limit 

SECOC_E_FRESHNESS_VALUE_AT_LIMIT 0x06 

⌋ (SRS_BSW_00337, SRS_BSW_00385, SRS_BSW_00386) 
 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

54 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

7.8 Error detection 

The detection of development errors is configurable (see Section 10.2, 
SecOcDevErrorDetect). 

7.9 Error notification 

The SecOC module checks the initialization state when one of its API functions is 
called, and reports the DET error SECOC_E_INVALID_REQUEST in case an API 
call other than SecOC_Init or SecOC_GetVersionInfo occurs. Besides this, the 
SecOC module performs parameter checks for all called APIs. It reports the DET 
error SECOC_E_PARAM_POINTER when a call provides a NULL pointer and 
SECOC_E_INVALID_PDU_SDU_ID when a check of a I-PDU ID fails. It reports 
SECOC_E_CRYPTO_FAILURE when the use of CSM function finally lead to a 
situation that PDUs can’t be authenticated or validated and 
SECOC_E_RESTORE_FAILURE when the SecOC module is not able to restore 
Freshness Values and key related information from NVRAM during initialization and 
SECOC_E_FRESHNESS_VALUE_AT_LIMIT when a Freshness Value has reached 
its limit.  
 

[SWS_SecOC_00102]⌈  
If DET reporting is enabled via SecOCDevErrorDetect and if the SecOC module has 
not been initialized, all functions except SecOC_Init and SecOC_GetVersionInfo shall 
report the error SECOC_E_INVALID_REQUEST. 
⌋ (SRS_BSW_00337, SRS_BSW_00350, SRS_BSW_00385, SRS_BSW_00450) 

[SWS_SecOC_00164]⌈  
If DET reporting is enabled via SecOCDevErrorDetect, the SecOC module shall 
check the I-PDU Id parameters of its API functions against its configuration and shall 
report the DET error SECOC_E_INVALID_PDU_SDU_ID when an unknown I-PDU 
Id is referenced by the call. 
⌋ (SRS_BSW_00337, SRS_BSW_00350, SRS_BSW_00385) 

[SWS_SecOC_00165]⌈  
If DET reporting is enabled via SecOCDevErrorDetect, the SecOC module shall 
report the DET error SECOC_E_RESTORE_FAILURE when it is not able to restore 
the Freshness Values and key related information from the NVRAM during 
initialization. 
⌋ (SRS_BSW_00337, SRS_BSW_00350, SRS_BSW_00385) 

[SWS_SecOC_00166]⌈  
If DET reporting is enabled via SecOCDevErrorDetect, the SecOC module shall 
report the DET error SECOC_E_CRYPTO_FAILURE when it is finally not able to get 
the required security services for authentication/verification from the CSM. 
⌋ (SRS_BSW_00337, SRS_BSW_00350, SRS_BSW_00385) 

[SWS_SecOC_00167]⌈  
If DET reporting is enabled via SecOCDevErrorDetect, the SecOC module shall 
report the DET error SECOC_E_FRESHNESS_VALUE_AT_LIMIT when a 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

55 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

Freshness Value has reached its limit (see SWS_SecOC_00017 and 
SWS_SecOC_00168). 
⌋ (SRS_BSW_00337, SRS_BSW_00350, SRS_BSW_00385) 

 

 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

56 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

8 API specification 

8.1 Imported types  

In this chapter, all types included from the following files are listed: 
 
[SWS_SecOC_00103] Imported Types 

⌈ 

Module Imported Type 

Cal Cal_AsymPrivateKeyType 

Cal_AsymPublicKeyType 

Cal_ConfigIdType 

Cal_MacGenerateCtxBufType 

Cal_MacVerifyCtxBufType 

Cal_ReturnType 

Cal_SignatureGenerateCtxBufType 

Cal_SignatureVerifyCtxBufType 

Cal_SymKeyType 

Cal_VerifyResultType 

ComStack_Types BufReq_ReturnType 

PduIdType 

PduInfoType 

PduLengthType 

RetryInfoType 

Csm Csm_AsymPrivateKeyType 

Csm_AsymPublicKeyType 

Csm_ConfigIdType 

Csm_SymKeyType 

Csm_VerifyResultType 

NvM NvM_BlockIdType 

NvM_RequestResultType 

Std_Types Std_ReturnType 

Std_VersionInfoType 

⌋ (SRS_BSW_00301) 

8.2 Type definitions 

8.2.1 SecOC_ConfigType 

[SWS_SecOC_00104] SecOC_ConfigType 
⌈ 
Name: SecOC_ConfigType 

Type: Structure 

Range: implementation 

specific 

The content of the configuration data structure is 
implementation specific. 

Description: Configuration data structure of SecOC module 

⌋ (SRS_SecOC_00001, SRS_SecOC_00003) 
 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

57 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

8.2.2 SecOC_StateType 

[SWS_SecOC_00162] SecOC_StateType 

⌈ 
Name: SecOC_StateType 

Type: Enumeration 

Range: SECOC_UNINIT SecOC module is not initialized 
 

SECOC_INIT SecOC module is initialized 
 

Description: States of the SecOC module 

⌋ (SRS_SecOC_00005) 

8.2.3 SecOC_AlignType 

 [SWS_SecOC_00154] SecOC_AlignType 

⌈ 
Name: SecOC_AlignType 

Type: <maxAlignScalarType> 

Description: A scalar type which has maximum alignment restrictions on the given platform. 
This value is configured by "SecOCMaxAlignScalarType". 
 
<maxAlignScalarType> can be e.g. uint8, uint16 or uint32. 
 
This type shall be consistent with Csm_AlignType (if CSM is used) or 
Cal_AlignType (if CAL is used). 

⌋ (SRS_SecOC_00005) 

8.2.4 SecOC_KeyType 

 [SWS_SecOC_00105] SecOC_KeyType 

⌈ 
Name: SecOC_KeyType 

Type: Structure 

Element: uint32 length This element contains 
the length of the key 
stored in element 'data'. 

SecOC_AlignType[SECOC_KEY_MAX_SIZE] data This element contains 
the key data or a key 
handle. 

Description: Data structure to refer to key data or a key handle. 

⌋ (SRS_SecOC_00005) 

8.2.5 SecOC_VerificationResultType 

 [SWS_SecOC_00149] SecOC_VerificationResultType 

⌈ 
Name: SecOC_VerificationResultType 

Type: Enumeration 

Range: SECOC_VERIFICATIONSUCCESS Verification successful 
 

SECOC_VERIFICATIONFAILURE Verification not successful 
 

SECOC_FRESHNESSFAILURE Verification not successful because of wrong 
freshness value.  



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

58 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

Description: Enumeration to indicate verification results. 

⌋ (SRS_SecOC_00022) 
 
Note: SECOC_FRESHNESSFAILURE is only applicable if the complete freshness value has been 
transmitted. 

8.2.6 SecOC_VerificationStatusType 

 [SWS_SecOC_00160] SecOC_VerificationStatusType 

⌈ 
Name: SecOC_VerificationStatusType 

Type: Structure 

Element: uint16 freshnessValueID Identifier of the Freshness Value 
which resulted in the Verification 
Status 

SecOC_VerificationResultType verificationStatus Result of verification attempt: 
SECOC_VERIFICATIONSUCCESS 
= Verification successful 
SECOC_VERIFICATIONFAILURE 
= Verification not successful 
SECOC_FRESHNESSFAILURE = 
Verification not successful because 
of wrong freshness value 

Description: Data structure to bundle the status of a verification attempt for a specific Freshness Value. 

⌋ (SRS_SecOC_00022) 

8.3 Function definitions 

8.3.1 SecOC_Init 

Add the following function: 
 
[SWS_SecOC_00106] SecOC_Init 

⌈ 

Service name: SecOC_Init 

Syntax: void SecOC_Init( 

    const SecOC_ConfigType* config 

) 

Service ID[hex]: 0x01 

Sync/Async: Synchronous 

Reentrancy: Non Reentrant 

Parameters (in): config Pointer to a selected configuration structure 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: Initializes the the SecOC module. Successful initialization leads to state 
SecOC_INIT. 

⌋ (SRS_BSW_00101, SRS_BSW_00323, SRS_BSW_00358, SRS_BSW_00359,  
SRS_BSW_00414, , SRS_SecOC_00006) 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

59 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

 
[SWS_SecOC_00161] SecOC_DeInit 

⌈ 
Service name: SecOC_DeInit 

Syntax: void SecOC_DeInit( 

    void 

) 

Service ID[hex]: 0x05 

Sync/Async: Synchronous 

Reentrancy: Non Reentrant 

Parameters (in): None 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: This service stops the secure onboard communication. All buffered I-PDU are 
removed and have to be obtained again, if needed, after SecOC_Init has been 
called. 
By a call to SecOC_DeInit the AUTOSAR SecOC module is put into a not 
initialized state (SecOC_UNINIT). 

⌋ (SRS_BSW_00323, SRS_BSW_00359, SRS_SecOC_00006, SRS_SecOC_00020) 
 
[SWS_SecOC_00157]⌈  
Within SecOC_DeInit the module shall clear all internal global variables and the 
buffers of the SecOC I-PDUs. 
⌋ (SRS_BSW_00323, SRS_SecOC_00006) 
 
[SWS_SecOC_00156]⌈  
Within SecOC_DeInit the module shall store all Freshness Values and all key related 
information (e.g. key handles) to NVRAM, so that all values could be restored to the 
status they had before SecOC_DeInit has been called. 
⌋ (SRS_BSW_00323, SRS_SecOC_00006, SRS_SecOC_00020) 

8.3.2 SecOC_GetVersionInfo 

 
[SWS_SecOC_00107] SecOC_GetVersionInfo 

⌈ 
Service name: SecOC_GetVersionInfo 

Syntax: void SecOC_GetVersionInfo( 

    Std_VersionInfoType* versioninfo 

) 

Service ID[hex]: 0x02 

Sync/Async: Synchronous 

Reentrancy: Reentrant 

Parameters (in): None 

Parameters 
(inout): 

None 

Parameters (out): versioninfo Pointer to where to store the version information of this module. 

Return value: None 

Description: Returns the version information of this module. 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

60 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

⌋ (SRS_BSW_00323, SRS_BSW_00359, SRS_BSW_00407, SRS_BSW_00369, 
SRS_BSW_00003, SRS_BSW_00402) 

8.3.3 SecOC_Transmit 

 
[SWS_SecOC_00112] SecOC_Transmit 

⌈ 
Service name: SecOC_Transmit 

Syntax: Std_ReturnType SecOC_Transmit( 

    PduIdType id, 

    const PduInfoType* info 

) 

Service ID[hex]: 0x03 

Sync/Async: Synchronous 

Reentrancy: Non Reentrant for the same PDU-ID. Reentrant for different PDU-ID. 

Parameters (in): 

id ID of the Authentic I-PDU to be transmitted 

info A pointer to a structure with Authentic I-PDU related data that 
shall be transmitted: data length and pointer to I-SDU buffer 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: 

Std_ReturnType E_OK: request is accepted by the SecOC module; transmission is 
continued. 
E_NOT_OK: request is not accepted by the SecOC module; 
transmission is aborted. 

Description: Service is called by the PduR to request authentication and transmission of an 
Authentic I-PDU. 

⌋ (SRS_BSW_00323, SRS_BSW_00357, SRS_BSW_00369, SRS_BSW_00449) 
 For detailed description, see Section 7.4. 
 

8.3.4 SecOC_CancelTransmit 

 
[SWS_SecOC_00113] SecOC_CancelTransmit 

⌈ 
Service name: SecOC_CancelTransmit 

Syntax: Std_ReturnType SecOC_CancelTransmit( 

    PduIdType id 

) 

Service ID[hex]: 0x04 

Sync/Async: Synchronous 

Reentrancy: Non Reentrant for the same PDU-ID. Reentrant for different PDU-ID. 

Parameters (in): id ID of the Authentic I-PDU to be cancelled 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: 
Std_ReturnType E_OK: Cancellation request was executed successfully by the 

SecOC module. 
E_NOT_OK: Cancellation request was rejected. 

Description: Service is called by the PduR to request the cancellation of an authentication and 
transmission of an Authentic I-PDU. 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

61 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

⌋ (SRS_BSW_00323, SRS_BSW_00357, SRS_BSW_00449, SRS_SecOC_00012) 

8.3.5 SecOC_AssociateKey 

[SWS_SecOC_00116] SecOC_AssociateKey 
⌈ 
Service name: SecOC_AssociateKey 

Syntax: Std_ReturnType SecOC_AssociateKey( 

    uint8 keyID, 

    const SecOC_KeyType* keyPtr 

) 

Service ID[hex]: 0x07 

Sync/Async: Synchronous 

Reentrancy: Reentrant 

Parameters (in): 
keyID Identifier of a local key slot 

keyPtr This element points to the key data or a key handle 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: 
Std_ReturnType E_OK: request successful 

E_NOT_OK: request failed 

Description: Service associates a given key value to a given key id (see also parameter 
SecOCKeyID). 

⌋ (SRS_BSW_00323, SRS_BSW_00357, SRS_BSW_00449, SRS_SecOC_00003) 

8.3.6 SecOC_FreshnessValueRead 

[SWS_SecOC_00117] SecOC_FreshnessValueRead 

⌈ 
Service name: SecOC_FreshnessValueRead 

Syntax: Std_ReturnType SecOC_FreshnessValueRead( 

    uint16 freshnessValueID, 

    uint64* counterValue 

) 

Service ID[hex]: 0x08 

Sync/Async: Synchronous 

Reentrancy: Non Reentrant for the same FreshnessValueID. Reentrant for different 
FreshnessValueIDs 

Parameters (in): freshnessValueID Identifier of a specific Freshness Value 

Parameters 
(inout): 

None 

Parameters (out): counterValue Holds the current value of the counter 

Return value: 
Std_ReturnType E_OK: request successful 

E_NOT_OK: request failed 

Description: This service is used to read a specific Freshness Value value residing in the 
SecOC module. 

⌋ (SRS_BSW_00323, SRS_BSW_00357, SRS_BSW_00449, SRS_SecOC_00002) 
 

8.3.7 SecOC_FreshnessValueWrite 

[SWS_SecOC_00118] SecOC_FreshnessValueWrite⌈ 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

62 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

Service name: SecOC_FreshnessValueWrite 

Syntax: Std_ReturnType SecOC_FreshnessValueWrite( 

    uint16 freshnessValueID, 

    uint64 counterValue 

) 

Service ID[hex]: 0x09 

Sync/Async: Synchronous 

Reentrancy: Non Reentrant for the same FreshnessValueID. Reentrant for different 
FreshnessValueIDs 

Parameters (in): 
freshnessValueID Identifier of a specific Freshness Value 

counterValue Holds the counter value to be written 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: 
Std_ReturnType E_OK: request successful 

E_NOT_OK: request failed 

Description: This service is used to write a specific Freshness Value residing in the SecOC 
module. 

⌋ (SRS_BSW_00323, SRS_BSW_00357, SRS_BSW_00449, SRS_SecOC_00002) 

8.3.8 Optional Interfaces 

This chapter defines all external interfaces that are required to fulfil an optional 
functionality of the module. 
 

[SWS_SecOC_00122] SecOC_VerifyStatusOverride⌈ 

Service name: SecOC_VerifyStatusOverride 

Syntax: Std_ReturnType SecOC_VerifyStatusOverride( 

    uint16 freshnessValueID, 

    uint8 overrideStatus, 

    uint8 numberOfMessagesToOverride 

) 

Service ID[hex]: 0x0b 

Sync/Async: Synchronous 

Reentrancy: Non Reentrant for the same FreshnessValueID. Reentrant for different 
FreshnessValueIDs 

Parameters (in): 

freshnessValueID ID of the Freshness Value which when used to 
authenticate data, results in SecOC_VerifyStatus 
equal to OverrideStatus independent of the actual 
authentication status. 

overrideStatus 0 = Override VerifyStatus to "Fail" until further 
notice 
1 = Override VerifyStatus to "Fail" until 
NumberOfMessagesToOverride is reached 
2 = Cancel Override of VerifyStatus 

numberOfMessagesToOverride Number of sequential VerifyStatus to override 
when using a specific counter for authentication 
verification. This is only considered when 
OverrideStatus is equal to 1 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: 
Std_ReturnType E_OK: request successful 

E_NOT_OK: request failed 

Description: This service provides the ability to override the VerifyStatus with â€œFailâ€• 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

63 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

when using a specific Freshness Value to verify authenticity of data making up an 
I-PDU. Using this interface, VerifyStatus may be overridden 
1. Indefinitely for received I-PDUs which use the specific Freshness Value for 
authentication verification 
2. For a number of sequentially received I-PDUs which use the specific Freshness 
Value for authentication verification. 
Note: When overriding the VerifyStatus, the CSM shall still be used to validate 
authentication of the data making up an I-PDU. This service is optional. 

⌋ (SRS_BSW_00323, SRS_BSW_00357, SRS_BSW_00449, SRS_SecOC_00017) 

8.4 Call-back notifications 

8.4.1 SecOC_RxIndication 

[SWS_SecOC_00124] SecOc_RxIndication 

⌈ 

Service name: SecOC_RxIndication 

Syntax: void SecOC_RxIndication( 

    PduIdType RxPduId, 

    const PduInfoType* PduInfoPtr 

) 

Service ID[hex]: 0x42 

Sync/Async: Synchronous 

Reentrancy: Reentrant for different PduIds. Non reentrant for the same PduId. 

Parameters (in): 

RxPduId ID of the received I-PDU. 

PduInfoPtr Contains the length (SduLength) of the received I-PDU and a pointer to 
a buffer (SduDataPtr) containing the I-PDU. 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: Indication of a received I-PDU from a lower layer communication interface module. 

⌋ (SRS_BSW_00323, SRS_BSW_00359, SRS_SecOC_00012) 

8.4.2 SecOC_TpRxIndication 

[SWS_SecOC_00125] SecOc_TpRxIndication 

⌈ 
Service name: SecOC_TpRxIndication 

Syntax: void SecOC_TpRxIndication( 

    PduIdType id, 

    Std_ReturnType result 

) 

Service ID[hex]: 0x45 

Sync/Async: Synchronous 

Reentrancy: Reentrant 

Parameters (in): 
id Identification of the received I-PDU. 

result Result of the reception. 

Parameters 
(inout): 

None 

Parameters (out): None 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

64 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

Return value: None 

Description: Called after an I-PDU has been received via the TP API, the result indicates 
whether the transmission was successful or not. 

⌋ (SRS_BSW_00323, SRS_BSW_00359, SRS_BSW_00449, SRS_SecOC_00012) 

8.4.3 SecOC_TxConfirmation 

[SWS_SecOC_00126] SecOc_TxConfirmation 

⌈ 

Service name: SecOC_TxConfirmation 

Syntax: void SecOC_TxConfirmation( 

    PduIdType TxPduId 

) 

Service ID[hex]: 0x40 

Sync/Async: Synchronous 

Reentrancy: Reentrant for different PduIds. Non reentrant for the same PduId. 

Parameters (in): TxPduId ID of the I-PDU that has been transmitted. 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: The lower layer communication interface module confirms the transmission of an I-
PDU. 

⌋ (SRS_BSW_00323, SRS_BSW_00359, SRS_SecOC_00012) 

8.4.4 SecOC_TpTxConfirmation 

[SWS_SecOC_00152] SecOc_TpTxConfirmation ⌈  

⌈ 
Service name: SecOC_TpTxConfirmation 

Syntax: void SecOC_TpTxConfirmation( 

    PduIdType id, 

    Std_ReturnType result 

) 

Service ID[hex]: 0x48 

Sync/Async: Synchronous 

Reentrancy: Reentrant 

Parameters (in): 
id Identification of the transmitted I-PDU. 

result Result of the transmission of the I-PDU. 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: This function is called after the I-PDU has been transmitted on its network, the 
result indicates whether the transmission was successful or not. 

⌋ (SRS_BSW_00323, SRS_BSW_00359, SRS_BSW_00449, SRS_SecOC_00012) 

8.4.5 SecOC_TriggerTransmit 

[SWS_SecOC_00127] SecOc_TriggerTransmit⌈  



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

65 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

⌈ 
Service name: SecOC_TriggerTransmit 

Syntax: Std_ReturnType SecOC_TriggerTransmit( 

    PduIdType TxPduId, 

    PduInfoType* PduInfoPtr 

) 

Service ID[hex]: 0x41 

Sync/Async: Synchronous 

Reentrancy: Reentrant for different PduIds. Non reentrant for the same PduId. 

Parameters (in): TxPduId ID of the SDU that is requested to be transmitted. 

Parameters 
(inout): 

PduInfoPtr Contains a pointer to a buffer (SduDataPtr) to where the SDU 
data shall be copied, and the available buffer size in SduLengh. 
On return, the service will indicate the length of the copied SDU 
data in SduLength. 

Parameters (out): None 

Return value: 

Std_ReturnType E_OK: SDU has been copied and SduLength indicates the 
number of copied bytes. 
E_NOT_OK: No SDU data has been copied. PduInfoPtr must not 
be used since it may contain a NULL pointer or point to invalid 
data. 

Description: Within this API, the upper layer module (called module) shall check whether the 
available data fits into the buffer size reported by PduInfoPtr->SduLength. 
If it fits, it shall copy its data into the buffer provided by PduInfoPtr->SduDataPtr 
and update the length of the actual copied data in PduInfoPtr->SduLength. 
If not, it returns E_NOT_OK without changing PduInfoPtr. 

⌋ (SRS_BSW_00323, SRS_BSW_00357, SRS_BSW_00449, SRS_SecOC_00012) 

8.4.6 SecOC_CopyRxData 

[SWS_SecOC_00128] SecOc_CopyRxData 

⌈ 
Service name: SecOC_CopyRxData 

Syntax: BufReq_ReturnType SecOC_CopyRxData( 

    PduIdType id, 

    const PduInfoType* info, 

    PduLengthType* bufferSizePtr 

) 

Service ID[hex]: 0x44 

Sync/Async: Synchronous 

Reentrancy: Reentrant 

Parameters (in): 

id Identification of the received I-PDU. 

info Provides the source buffer (SduDataPtr) and the number of 
bytes to be copied (SduLength). 
An SduLength of 0 can be used to query the current amount 
of available buffer in the upper layer module. In this case, the 
SduDataPtr may be a NULL_PTR. 

Parameters 
(inout): 

None 

Parameters (out): bufferSizePtr Available receive buffer after data has been copied. 

Return value: 
BufReq_ReturnType BUFREQ_OK: Data copied successfully 

BUFREQ_E_NOT_OK: Data was not copied because an 
error occurred. 

Description: This function is called to provide the received data of an I-PDU segment (N-PDU) 
to the upper layer. 
Each call to this function provides the next part of the I-PDU data. 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

66 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

The size of the remaining data is written to the position indicated by bufferSizePtr. 

⌋ (SRS_BSW_00323, SRS_BSW_00357, SRS_SecOC_00012) 

8.4.7 SecOC_CopyTxData 

[SWS_SecOC_00129] SecOc_CopyTxData⌈  

⌈ 
Service name: SecOC_CopyTxData 

Syntax: BufReq_ReturnType SecOC_CopyTxData( 

    PduIdType id, 

    const PduInfoType* info, 

    RetryInfoType* retry, 

    PduLengthType* availableDataPtr 

) 

Service ID[hex]: 0x43 

Sync/Async: Synchronous 

Reentrancy: Reentrant 

Parameters (in): 

id Identification of the transmitted I-PDU. 

info Provides the destination buffer (SduDataPtr) and the number 
of bytes to be copied (SduLength). 
If not enough transmit data is available, no data is copied by 
the upper layer module and BUFREQ_E_BUSY is returned. 
The lower layer module may retry the call. 
An SduLength of 0 can be used to indicate state changes in 
the retry parameter or to query the current amount of 
available data in the upper layer module. In this case, the 
SduDataPtr may be a NULL_PTR. 

retry This parameter is used to acknowledge transmitted data or 
to retransmit data after transmission problems. 
 
If the retry parameter is a NULL_PTR, it indicates that the 
transmit data can be removed from the buffer immediately 
after it has been copied. Otherwise, the retry parameter 
must point to a valid RetryInfoType element. 
 
If TpDataState indicates TP_CONFPENDING, the previously 
copied data must remain in the TP buffer to be available for 
error recovery. 
TP_DATACONF indicates that all data that has been copied 
before this call is confirmed and can be removed from the 
TP buffer. Data copied by this API call is excluded and will 
be confirmed later. 
TP_DATARETRY indicates that this API call shall copy 
previously copied data in order to recover from an error. In 
this case TxTpDataCnt specifies the offset in bytes from the 
current data copy position. 

Parameters 
(inout): 

None 

Parameters (out): 

availableDataPtr Indicates the remaining number of bytes that are available in 
the upper layer module's Tx buffer. availableDataPtr can be 
used by TP modules that support dynamic payload lengths 
(e.g. FrIsoTp) to determine the size of the following CFs. 

Return value: 

BufReq_ReturnType BUFREQ_OK: Data has been copied to the transmit buffer 
completely as requested. 
BUFREQ_E_BUSY: Request could not be fulfilled, because 
the required amount of Tx data is not available. The lower 
layer module may retry this call later on. No data has been 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

67 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

copied. 
BUFREQ_E_NOT_OK: Data has not been copied. Request 
failed. 

Description: This function is called to acquire the transmit data of an I-PDU segment (N-PDU). 
Each call to this function provides the next part of the I-PDU data unless retry-
>TpDataState is TP_DATARETRY. In this case the function restarts to copy the 
data beginning at the offset from the current position indicated by retry-
>TxTpDataCnt. The size of the remaining data is written to the position indicated 
by availableDataPtr. 

⌋ (SRS_BSW_00323, SRS_BSW_00357, SRS_SecOC_00012) 

8.4.8 SecOC_StartOfReception 

[SWS_SecOC_00130] SecOc_StartOfReception⌈  

⌈ 
Service name: SecOC_StartOfReception 

Syntax: BufReq_ReturnType SecOC_StartOfReception( 

    PduIdType id, 

    const PduInfoType* info, 

    PduLengthType TpSduLength, 

    PduLengthType* bufferSizePtr 

) 

Service ID[hex]: 0x46 

Sync/Async: Synchronous 

Reentrancy: Reentrant 

Parameters (in): 

id Identification of the I-PDU. 

info Pointer to a PduInfoType structure containing the payload 
data (without protocol information) and payload length of the 
first frame or single frame of a transport protocol I-PDU 
reception. Depending on the global parameter 
MetaDataLength, additional bytes containing MetaData (e.g. 
the CAN ID) are appended after the payload data, increasing 
the length accordingly. If neither first/single frame data nor 
MetaData are available, this parameter is set to NULL_PTR. 

TpSduLength Total length of the N-SDU to be received. 

Parameters 
(inout): 

None 

Parameters (out): 
bufferSizePtr Available receive buffer in the receiving module. This 

parameter will be used to compute the Block Size (BS) in the 
transport protocol module. 

Return value: 

BufReq_ReturnType BUFREQ_OK: Connection has been accepted. bufferSizePtr 
indicates the available receive buffer; reception is continued. 
If no buffer of the requested size is available, a receive buffer 
size of 0 shall be indicated by bufferSizePtr. 
BUFREQ_E_NOT_OK: Connection has been rejected; 
reception is aborted. bufferSizePtr remains unchanged. 
BUFREQ_E_OVFL: No buffer of the required length can be 
provided; reception is aborted. bufferSizePtr remains 
unchanged. 

Description: This function is called at the start of receiving an N-SDU. The N-SDU might be 
fragmented into multiple N-PDUs (FF with one or more following CFs) or might 
consist of a single N-PDU (SF). 

⌋ (SRS_BSW_00323, SRS_BSW_00357, SRS_SecOC_00012) 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

68 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

8.4.9 CSM callback interfaces 

[SWS_SecOC_00012] ⌈ 
If the SecOC module uses the Csm module asynchronously to calculate or verify the 
authenticator, SecOC shall provide callback functions according to 
Csm_CallbackType. 

⌋ (SRS_BSW_00457, SRS_SecOC_00003) 

8.5 Scheduled functions 

8.5.1 SecOC_MainFunction 

[SWS_SecOC_00131] SecOC_MainFunction 

⌈ 
Service name: SecOC_MainFunction 

Syntax: void SecOC_MainFunction( 

    void 

) 

Service ID[hex]: 0x06 

Description: This function performs the processing of the SecOC module's authentication and 
verification processing. 

⌋ (SRS_BSW_00373, SRS_BSW_00425) 
 

[SWS_SecOC_00132] ⌈ 
If the SecOC module was not previously initialized with a call to SecOC_Init, then a 
call to SecOC_MainFunction shall simply return. 

 ⌋ (SRS_SecOC_00005) 
 

[SWS_SecOC_00133] ⌈ 
The cycle time of the SecOC_MainFunction is configured by the parameter 
SecOCMainFunctionPeriod. 
 ⌋ (SRS_SecOC_00025) 
 

[SWS_SecOC_00134] ⌈ 
If SecOC_MainFunction is scheduled, the SecOC shall firstly check if there are new 
Authentic I-PDUs to be authenticated or new Secured I-PDUs to be verified. If yes 
the SecOC module shall process the authentication or verification of each of the 
IPDUs identified as new subsequently in the very same main function call. 

⌋ (SRS_SecOC_00025) 

[SWS_SecOC_00135] ⌈ 
For each newly authenticated Authentic I-PDU, the SecOC module shall immediately 
trigger the transmission of the Secured I-PDU at the lower layer module by calling the 
PduR. 

⌋ (SRS_SecOC_00025) 

[SWS_SecOC_00136] ⌈ 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

69 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

For each newly successfully verified Secured I-PDU, the SecOC module shall 
immediately pass the Authentic I-PDU to the upper layer communication module by 
calling PduR_SecOCRxIndication for the Authentic I-PDU. 

⌋ (SRS_SecOC_00025) 

8.6 Expected Interfaces 

8.6.1 Mandatory Interfaces 

This chapter defines all external interfaces that are required to fulfill the core 
functionality of the module. 
 
[SWS_SecOC_00137] Mandatory Interfaces 

⌈ 

API function Description 

NvM_GetErrorStatus Service to read the block dependent error/status information. 

NvM_ReadBlock Service to copy the data of the NV block to its corresponding RAM 
block. 

NvM_WriteBlock Service to copy the data of the RAM block to its corresponding NV 
block. 

PduR_SecOCCancelTransmit Requests cancellation of an ongoing transmission of an I-PDU in a 
lower layer communication interface or transport protocol module. 

PduR_SecOCRxIndication Indication of a received I-PDU from a lower layer communication 
interface module. 

PduR_SecOCTransmit Requests transmission of an I-PDU. 

PduR_SecOCTxConfirmation The lower layer communication interface module confirms the 
transmission of an I-PDU. 

⌋ (SRS_BSW_00384) 

8.6.2 Optional Interfaces 

[SWS_SecOC_00138] Optional Interfaces 

⌈ 
API function Description 

Cal_MacGenerateFinish This function shall be used to finish the MAC generation service. 
 
If the service state given by the context buffer is "idle", the function has 
to return with "CAL_E_NOT_OK". 
 
Otherwise, this function shall call the function Cpl_<Primitive>Finish of 
the primitive which is identified by the "cfgId", and return the value 
returned by that function. If Cpl_<Primitive>Finish returned 
successfully, the function shall set the state of this service to "idle", 
and store this state in the context buffer. The MAC computation is 
done by the underlying primitive. 

Cal_MacGenerateStart This function shall be used to initialize the MAC generate service of 
the CAL module. 
 
The function shall initialize the context buffer given by "contextBuffer", 
call the function Cpl_<Primitive>Start of the primitive which is identified 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

70 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

by the "cfgId" and return the value returned by that function. If 
Cpl_<Primitive>Start returned successfully, the function shall set the 
state of this service to "active", and store this state in the context 
buffer. 

Cal_MacGenerateUpdate This function shall be used to feed the MAC generate service with the 
input data.  
 
If the service state given by the context buffer is "idle", the function has 
to return with "CAL_E_NOT_OK". 
 
Otherwise, this function shall call the function Cpl_<Primitive>Update 
of the primitive which is identified by the "cfgId", and return the value 
returned by that function. 
The MAC computation is done by the underlying primitive. 

Cal_MacVerifyFinish This function shall be used to finish the MAC verification service. 
 
If the service state given by the context buffer is "idle", the function has 
to return with "CAL_E_NOT_OK". 
 
Otherwise, this function shall call the function Cpl_<Primitive>Finish of 
the primitive which is identified by the "cfgId", and return the value 
returned by that function. If Cpl_<Primitive>Finish returned 
successfully, the function shall set the state of this service to "idle", 
and store this state in the context buffer. The MAC computation is 
done by the underlying primitive.The MAC computation is done by the 
underlying primitive. 

Cal_MacVerifyStart This function shall be used to initialize the MAC verify service of the 
CAL module. 
 
The function shall initialize the context buffer given by "contextBuffer", 
call the function Cpl_<Primitive>Start of the primitive which is identified 
by the "cfgId" and return the value returned by that function. If 
Cpl_<Primitive>Start returned successfully, the function shall set the 
state of this service to "active", and store this state in the context 
buffer. 

Cal_MacVerifyUpdate This function shall be used to feed the MAC verification service with 
the input data. 
 
If the service state given by the context buffer is "idle", the function has 
to return with "CAL_E_NOT_OK". 
 
Otherwise, this function shall call the function Cpl_<Primitive>Update 
of the primitive which is identified by the "cfgId", and return the value 
returned by that function. 
The MAC computation is done by the underlying primitive.The MAC 
computation is done by the underlying primitive. 

Cal_SignatureGenerateFinish This function shall be used to finish the signature generation service. 
 
If the service state given by the context buffer is "idle", the function has 
to return with "CAL_E_NOT_OK". 
 
Otherwise, this function shall call the function Cpl_<Primitive>Finish of 
the primitive which is identified by the "cfgId", and return the value 
returned by that function. If Cpl_<Primitive>Finish returned 
successfully, the function shall set the state of this service to "idle", 
and store this state in the context buffer. The signature computation is 
done by the underlying primitive. 

Cal_SignatureGenerateStart This function shall be used to initialize the signature generate service 
of the CAL module. 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

71 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

 
The function shall initialize the context buffer given by "contextBuffer", 
call the function Cpl_<Primitive>Start of the primitive which is identified 
by the "cfgId" and return the value returned by that function. If 
Cpl_<Primitive>Start returned successfully, the function shall set the 
state of this service to "active", and store this state in the context 
buffer. 

Cal_SignatureGenerateUpdate This function shall be used to feed the signature generation service 
with the input data.  
 
If the service state given by the context buffer is "idle", the function has 
to return with "CAL_E_NOT_OK". 
 
Otherwise, this function shall call the function Cpl_<Primitive>Update 
of the primitive which is identified by the "cfgId", and return the value 
returned by that function. 
The signature computation is done by the underlying primitive. 

Cal_SignatureVerifyFinish This function shall be used to finish the signature verification service. 
 
If the service state given by the context buffer is "idle", the function has 
to return with "CAL_E_NOT_OK". 
 
Otherwise, this function shall call the function Cpl_<Primitive>Finish of 
the primitive which is identified by the "cfgId", and return the value 
returned by that function. If Cpl_<Primitive>Finish returned 
successfully, the function shall set the state of this service to "idle", 
and store this state in the context buffer. The signature computation is 
done by the underlying primitive. 

Cal_SignatureVerifyStart This function shall be used to initialize the signature verify service of 
the CAL module. 
 
The function shall initialize the context buffer given by "contextBuffer", 
call the function Cpl_<Primitive>Start of the primitive which is identified 
by the "cfgId" and return the value returned by that function. If 
Cpl_<Primitive>Start returned successfully, the function shall set the 
state of this service to "active", and store this state in the context 
buffer. 

Cal_SignatureVerifyUpdate This function shall be used to feed the signature verification service 
with the input data. 
 
If the service state given by the context buffer is "idle", the function has 
to return with "CAL_E_NOT_OK". 
 
Otherwise, this function shall call the function Cpl_<Primitive>Update 
of the primitive which is identified by the "cfgId", and return the value 
returned by that function. The signature computation is done by the 
underlying primitive. 

Csm_MacGenerateFinish This interface shall be used to finish the MAC generation service. 
 
If the service state is "idle", the function has to return with 
"E_NOT_OK". 
 
Otherwise, this function shall call the function Cry_<Primitive>Finish of 
the primitive which is identified by the stored configuration information 
and return the value returned by that function. 
The MAC computation is done by the underlying primitive. 

Csm_MacGenerateStart This interface shall be used to initialize the MAC generate service of 
the CSM module. 
 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

72 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

If the service state is "active", the function shall return with 
"CSM_E_BUSY". 
 
Otherwise, this function shall store the given configuration information 
which is identified by "cfgId", call the function Cry_<Primitive>Start of 
the primitive which is identified by the "cfgId" and return the value 
returned by that function. If Cry_<Primitive>Start returned 
successfully, the service state has to be set to "active". 

Csm_MacGenerateUpdate This interface shall be used to feed the MAC generate service with the 
input data.  
 
If the service state is "idle", the function has to return with 
"E_NOT_OK". 
 
Otherwise, this function shall call the function Cry_<Primitive>Update 
of the primitive which is identified by the stored configuration 
information and return the value returned by that function. 
The MAC computation is done by the underlying primitive. 

Csm_MacVerifyFinish This interface shall be used to finish the MAC verification service.  
 
If the service state is "idle", the function has to return with 
"E_NOT_OK". 
 
Otherwise, this function shall call the function Cry_<Primitive>Finish of 
the primitive which is identified by the stored configuration information 
and return the value returned by that function. 
The MAC computation is done by the underlying primitive. 

Csm_MacVerifyStart This interface shall be used to initialize the MAC verify service of the 
CSM module.  
 
If the service state is "active", the function shall return with 
"CSM_E_BUSY". 
 
Otherwise, this function shall store the given configuration information 
which is identified by "cfgId", call the function Cry_<Primitive>Start of 
the primitive which is identified by the "cfgId" and return the value 
returned by that function. If Cry_<Primitive>Start returned 
successfully, the service state has to be set to "active". 

Csm_MacVerifyUpdate This interface shall be used to feed the MAC verification service with 
the input data.  
 
If the service state is "idle", the function has to return with 
"E_NOT_OK". 
 
Otherwise, this function shall call the function Cry_<Primitive>Update 
of the primitive which is identified by the stored configuration 
information and return the value returned by that function. 
The MAC computation is done by the underlying primitive. 

Csm_SignatureGenerateFinish This interface shall be used to finish the signature generation service. 
 
If the service state is "idle", the function has to return with 
"E_NOT_OK". 
 
Otherwise, this function shall call the function Cry_<Primitive>Finish of 
the primitive which is identified by the stored configuration information 
and return the value returned by that function. 
The signature computation is done by the underlying primitive. 

Csm_SignatureGenerateStart This interface shall be used to initialize the signature generate service 
of the CSM module. 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

73 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

 
If the service state is "active", the function shall return with 
"CSM_E_BUSY". 
 
Otherwise, this function shall store the given configuration information 
which is identified by "cfgId", call the function Cry_<Primitive>Start of 
the primitive which is identified by the "cfgId" and return the value 
returned by that function. If Cry_<Primitive>Start returned 
successfully, the service state has to be set to "active". 

Csm_SignatureGenerateUpdate This interface shall be used to feed the signature generation service 
with the input data.  
 
If the service state is "idle", the function has to return with 
"E_NOT_OK". 
 
Otherwise, this function shall call the function Cry_<Primitive>Update 
of the primitive which is identified by the stored configuration 
information and return the value returned by that function. 
The signature computation is done by the underlying primitive. 

Csm_SignatureVerifyFinish This interface shall be used to finish the signature verification service. 
 
If the service state is "idle", the function has to return with 
"E_NOT_OK". 
Otherwise, this function shall call the function Cry_<Primitive>Finish of 
the primitive which is identified by the stored configuration information 
and return the value returned by that function. 
The signature computation is done by the underlying primitive. 

Csm_SignatureVerifyStart This interface shall be used to initialize the signature verify service of 
the CSM module. 
 
If the service state is "active", the function shall return with 
"CSM_E_BUSY". 
 
Otherwise, this function shall store the given configuration information 
which is identified by "cfgId", call the function Cry_<Primitive>Start of 
the primitive which is identified by the "cfgId" and return the value 
returned by that function. If Cry_<Primitive>Start returned 
successfully, the service state has to be set to "active". 

Csm_SignatureVerifyUpdate This interface shall be used to feed the signature verification service 
with the input data.  
 
If the service state is "idle", the function has to return with 
"E_NOT_OK". 
 
Otherwise, this function shall call the function Cry_<Primitive>Update 
of the primitive which is identified by the stored configuration 
information and return the value returned by that function. 
The signature computation is done by the underlying primitive. 

Det_ReportError Service to report development errors. 

⌋ (SRS_BSW_00384) 

8.6.3 Configurable Interfaces 

 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

74 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

8.6.3.1 SecOC_VerificationStatusCallout 

[SWS_SecOC_00119] ⌈If configured by SecOCVerificationStatusCallout (see 
ECUC_SecOC_00004), the SecOC module shall invoke a callout function to notify 
other modules on the verification status of the most recently received Secured I-PDU. 
 

Service name: SecOC_VerificationStatusCallout 

Syntax: void SecOC_VerificationStatusCallout( 

    SecOC_VerificationStatusType verificationStatus 

) 

Sync/Async: Synchronous 

Reentrancy: Non Reentrant for the same FreshnessValueID. Reentrant for different 
FreshnessValueIDs 

Parameters (in): 
verificationStatus Data structure to bundle the status of a verification attempt for 

a specific Freshness Value. 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: Service is used to propagate the status of each verification attempt from the 
SecOC module to other modules. This service can be configured such that: 
- Only: "False" Verification Status is propagated to modules 
- Both: "True" and "False" Verification Status are propagated to modules 
- None: No Verification Status is propagated 

⌋ (SRS_BSW_00359, SRS_SecOC_00017) 
 
Note: The argument freshnessValueID allows for unambiguously identifying the Secured I-PDU that 
was subject of the verification attempt. Since each Secured I-PDU has at least one but possibly two 
related Freshness Value IDs (i.e. a Secured I-PDU may have a Secondary Freshness Value ID), 
SecOC_VerificationStatusCallout is able to indicate for which of the freshness values the verification 
attempt has been carried out.  
 

Note: Any module that is configured to be notified by the means of SecOC_VerificationStatusCallout 
has to implement a target function that is conforming to the above signature. The name of the target 
function listed above are not fixed. The name could be configured by means of the parameter 
SecOCVerificationStatusCallout.  

8.7 Service Interfaces 

This chapter defines the AUTOSAR Interfaces of the SecOC Service (<MA>). 

The definitions in this section are interpreted to be in ARPackage 

AUTOSAR/Services/<MA>. 

8.7.1 Overview 

This chapter is an addition to the specification of the SecOC module. Whereas the 
other parts of the specification define the behavior and the C-interfaces of the 
corresponding basic software module, this chapter formally specifies the 
corresponding AUTOSAR service in terms of the SWC template. The interfaces 
described here will be visible on the VFB and are used to generate the RTE between 
application software and the SecOC module. 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

75 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

8.7.2 Sender Receiver Interfaces 

8.7.2.1 Verification Status Service 
 
[SWS_SecOC_00141]⌈  
 

Name VerificationStatus 

Comment 

This service realizes a notification service that is used to propagate the status of each 

authentication attempt from the SecOC module to the application layer. This service can be 

configured such that: 

- Only "False" Verification Status is propagated to the application layer 

- Both "True" and "False" Verification Status are propagated to the application layer 

- No Verification Status is propagated to the application layer 

IsService true  

Variation -- 

Data 
Elements 

verificationStatus 

Type SecOC_VerificationStatusType 

Variation -- 

⌋ (SRS_SecOC_00022) 
 
 
Note: The SecOC_VerificationStatusService is used to propagate the status of each verification 
attempt from the SecOC module to an arbitrary number of application software components. It can be 
used to continuously monitor the number of failed verification attempts for a given FreshnessValueID 
or a set thereof and would allow setting up a security management system/intrusion detection system 
that is able to detect an attack flood and react with adequate dynamic countermeasures. 

 

[SWS_SecOC_00148]⌈  
SecOC shall define a provide port for the SecOC_VerificationStatusService interface 
and call the generated Rte function as configured by the parameter 
SecOCVerificationStatusPropagationMode. The sender/receiver interface shall be 
defined as standard interface. 

⌋(SRS_SecOC_00022) 

8.7.3 Client Server Interfaces 

8.7.3.1 Key Management Service 
 
[SWS_SecOC_00139]⌈  
 

Name KeyManagement 

Comment Key Management Service of SecOC  

IsService true  

Variation -- 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

76 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

Possible Errors 
0 E_OK 

1 E_NOT_OK 

Operations 

AssociateKey 

Comments Associates a given key value to a given key id (see also parameter SecOCKeyID).  

Variation -- 

Parameters 

keyId 

Comment Identifier of a local key slot  

Type uint8 

Variation -- 

Direction IN 

keyPtr 

Comment 
Comment This element points to the key data or a key 
handle  

Type SecOC_KeyType 

Variation -- 

Direction IN 

Possible 
Errors 

E_OK Operation successful 
 

E_NOT_OK -- 
 

⌋ (SRS_SecOC_00003) 
 
8.7.3.2 Counter Management Service 
[SWS_SecOC_00140]⌈  

Name CounterManagement 

Comment Counter Management Service of SecOC  

IsService true  

Variation -- 

Possible Errors 
0 E_OK 

1 E_NOT_OK 

Operations 

FreshnessValueRead 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

77 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

Comments 
This service is used to read a specific Freshness Value value residing in the SecOC 
module.  

Variation -- 

Parameters 

freshnessValueId 

Comment Identifier of a specific Freshness Value  

Type uint16 

Variation -- 

Direction IN 

counterValue 

Comment Holds the current value of the counter  

Type uint64 

Variation -- 

Direction OUT 

Possible 
Errors 

E_OK Operation successful 
 

E_NOT_OK -- 
 

  

FreshnessValueWrite 
 

Comments 
This service is used to write a specific Freshness Value residing in the SecOC 
module.   

Variation -- 
 

Parameters 

freshnessValueId 

Comment Identifier of a specific Freshness Value  

Type uint16 

Variation -- 

Direction IN 

counterValue 

Comment Holds the counter value to be written  

Type uint64 

Variation -- 

Direction IN 

Possible 
Errors 

E_OK Operation successful 
 

E_NOT_OK -- 
 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

78 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

⌋ (SRS_SecOC_00002) 
 
 
 

8.7.3.3 Verification Status Configuration Service 
[SWS_SecOC_00142]⌈  

Name VerifyStatusConfiguration 

Comment Verify Status Configuration Service of SecOC  

IsService true  

Variation -- 

Possible Errors 
0 E_OK 

1 E_NOT_OK 

Operations 

VerifyStatusOverride 

Comments 

This service provides the ability to override the VerifyStatus with "Fail" when using a specific 

Freshness Value to verify authenticity of data making up an I-PDU. Using this interface, 

VerifyStatus may be overridden 

1. Indefinitely for received I-PDUs which use the specific Freshness Value for authentication 

verification 

2. For a number of sequentially received I-PDUs which use the specific Freshness Value for 

authentication verification. 

Note: When overriding the VerifyStatus, the CSM shall still be used to validate authentication 

of the data making up an I-PDU. This service is optional. 

Variation -- 

Parameters 

freshnessValueId 

Comment 
Identifier of the Freshness Value which resulted in the 
AuthenticationStatus  

Type uint16 

Variation -- 

Direction IN 

overrideStatus 

Comment 

0 = Override VerifyStatus to "Fail" until further notice 
1 = Override VerifyStatus to "Fail" until 
NumberOfMessagesToOverride is reached 
2 = Cancel Override of VerifyStatus  

Type uint8 

Variation -- 

Direction IN 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

79 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

numberOfMessagesToOverride 

Comment 
Number of sequential VerifyStatus to override when using a 
specific counter for authentication verification. This is only 
considered when OverrideStatus is equal to 1  

Type uint8 

Variation -- 

Direction IN 

Possible 
Errors 

E_OK Operation successful 
 

E_NOT_OK -- 
 

⌋ (SRS_SecOC_00017) 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

80 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

9 Sequence diagrams 

The sequence diagrams in the following sections show interactions between the SecOC 
module, the PDuR and the upper layer and lower layer communication modules. These 
sequences serve as examples to express the different kinds of interactions that are served by 
the SecOC module for authentication and verification. 
 
Note: The examples show the interaction with distinct bus interface (e.g FrIf), transport protocol 
module (e.g. CanTp) or upper layer communication module (e.g. COM) only. However, they are valid 
for other bus interfaces, transport protocol modules and upper layer communication modules as well. 
 
Note: The examples use the following color scheme to distinguish the handling of Authentic I-PDUs 
and Secured I-PDUs: Operation that refer to Authentic I-PDUs are denoted in blue and operations that 
refer to Secured I-PDUs are denoted in green. 
 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

81 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

9.1 Authentication of outgoing PDUs 

9.1.1 Authentication during direct transmission 

 

Figure 9 Authentication during direct transmission 

scheduled main task

«module»

Com

«module»

PduR

«module»

SecOC

«module»

CanIf

Scheduled main task: 

Checks first if  messages 

need to be processed:

if yes it does the 

processing,

if not it returns.

PduR_ComTransmit(Std_ReturnType,

PduIdType, const PduInfoType*)

SecOC_Transmit(Std_ReturnType,

PduIdType, const PduInfoType*)

prepare()

copyBuffer()

authenticate()

PduR_SecOCTransmit(Std_ReturnType,

PduIdType, const PduInfoType*)

CanIf_Transmit(Std_ReturnType,

PduIdType, const PduInfoType*)

copyBuffer()

PduR_CanIfTxConfirmation(PduIdType)

SecOC_TxConfirmation(PduIdType)

PduR_SecOCTxConfirmation(PduIdType)

Com_TxConfirmation(PduIdType)



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

82 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

9.1.2 Authentication during triggered transmission 

 

Figure 10  Authentication during Triggered Transmission 

 

scheduled main task

«module»

FrIf

«module»

Com

«module»

PduR

«module»

SecOC

Scheduled main task: 

Checks first if  messages 

need to be processed:

if yes it does the 

processing,

if not it returns.

Please note, triggered 

transmission has to be 

mapped to normal 

transmission for the upper 

layer. SecOC buffers and 

authenticates the data and 

serves the LL when trans data 

request are handled by the 

SOC

PduR_ComTransmit(Std_ReturnType,

PduIdType, const PduInfoType*)

SecOC_Transmit(Std_ReturnType,

PduIdType, const PduInfoType*)

prepare()

copyBuffer()

authenticate()

PduR_SecOCTransmit(Std_ReturnType,

PduIdType, const PduInfoType*)

FrIf_Transmit(Std_ReturnType,

PduIdType, const PduInfoType *)

PduR_FrIfTriggerTransmit(Std_ReturnType,

PduIdType, PduInfoType*)

SecOC_TriggerTransmit(Std_ReturnType,

PduIdType, PduInfoType*)

copyBuffer()

PduR_FrIfTxConfirmation(PduIdType)

SecOC_TxConfirmation(PduIdType)

PduR_SecOCTxConfirmation(PduIdType)

Com_TxConfirmation(PduIdType)



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

83 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

9.1.3 Authentication during transport protocol transmission 

 

Figure 11 Authentication during TP transmission 

scheduled main task

«module»

CanTp

«module»

Com

«module»

PduR

«module»

SecOC

Scheduled main task: 

Checks first if  messages 

need to be processed:

if yes it does the processing,

if not it returns.

loop 

PduR_ComTransmit(Std_ReturnType,

PduIdType, const PduInfoType*)

SecOC_Transmit(Std_ReturnType,

PduIdType, const PduInfoType*)

prepare()

copy()

authenticate()

PduR_SecOCTransmit(Std_ReturnType,

PduIdType, const PduInfoType*)

CanTp_Transmit(Std_ReturnType,

PduIdType, const PduInfoType*)

PduR_CanTpCopyTxData(BufReq_ReturnType,

PduIdType, const PduInfoType*, RetryInfoType*,

PduLengthType*)

SecOC_CopyTxData(BufReq_ReturnType,

PduIdType, const PduInfoType*, RetryInfoType*,

PduLengthType*)

copyData()

PduR_CanTpTxConfirmation(PduIdType, Std_ReturnType)

SecOC_TpTxConfirmation(PduIdType,

Std_ReturnType)

PduR_SecOCTxConfirmation(PduIdType)

Com_TxConfirmation(PduIdType)



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

84 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

9.2 Verification of incoming PDUs 

9.2.1 Verification during direct reception 

 

Figure 12 Verification during direct reception 

scheduled main task

«module»

Com

«module»

PduR

«module»

SecOC

«module»

CanIf

opt verification successful

Scheduled main task: 

Checks first if  messages need 

to be processed:

if yes it does the processing,

if not it returns.

PduR_CanIfRxIndication(PduIdType,

const PduInfoType*)

SecOC_RxIndication(PduIdType,

const PduInfoType*)

prepare()

copy()

verify()

PduR_SecOCRxIndication(PduIdType,

const PduInfoType*)

Com_RxIndication(PduIdType,

const PduInfoType*)

copyData()



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

85 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

9.2.2 Verification during transport protocol reception 

 

Figure 13 Verification during transport protocol reception 

scheduled main task

«module»

CanTp

«module»

Com

«module»

PduR

«module»

SecOC

loop 

opt verification successful

Scheduled main task: 

Checks first if  messages 

need to be processed:

if yes it does the processing,

if not it returns.

PduR_CanTpStartOfReception(BufReq_ReturnType, PduIdType,

const PduInfoType*, PduLengthType, PduLengthType*)

SecOC_StartOfReception(BufReq_ReturnType, PduIdType,

const PduInfoType*, PduLengthType, PduLengthType*)

prepare()

PduR_CanTpCopyRxData(BufReq_ReturnType,

PduIdType, const PduInfoType*, PduLengthType*)

SecOC_CopyRxData(BufReq_ReturnType,

PduIdType, const PduInfoType*, PduLengthType*)

copyData()

PduR_CanTpRxIndication(PduIdType, Std_ReturnType)

SecOC_TpRxIndication(PduIdType,

Std_ReturnType)

verify()

PduR_SecOCRxIndication(PduIdType,

const PduInfoType*)

Com_RxIndication(PduIdType,

const PduInfoType*)

copyData()



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

86 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

 

9.3 Re-authentication Gateway 

 

Figure 14 Verification and authentication in a gateway situation 

 

scheduled main task

scheduled main task

«module»

Com

«module»

PduR

«module»

SecOC

«module»

CanIf

opt verification successful

PduR_CanIfRxIndication(PduIdType,

const PduInfoType*)

SecOC_RxIndication(PduIdType,

const PduInfoType*)

prepare()

copyBuffer()

verify()

PduR_SecOCRxIndication(PduIdType,

const PduInfoType*)

Com_RxIndication(PduIdType,

const PduInfoType*)

copyBuffer()

SecOC_Transmit(Std_ReturnType,

PduIdType, const PduInfoType*)

prepare()

copyBuffer()

authenticate()

PduR_SecOCTransmit(Std_ReturnType,

PduIdType, const PduInfoType*)

CanIf_Transmit(Std_ReturnType,

PduIdType, const PduInfoType*)

copyBuffer()



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

87 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

10 Configuration specification 

The following chapters summarize all configuration parameters. The detailed 
meanings of the parameters are described in the Chapters below. 

10.1.1 Variants 

Currently three configuration variants for the AUTOSAR SecOC module are defined. 

10.1.1.1 VARIANT-PRE-COMPILE 

[SWS_SecOC_00143] ⌈VARIANT-PRE-COMPILE only supports pre-compile 
configurable parameters. Parameters below that are marked as Pre-compile 
configurable shall be configurable in a pre-compile manner, for example as #defines. 

A VARIANT-PRE-COMPILE module is most likely delivered as source code.⌋ 
(SRS_BSW_00345, SRS_BSW_00159) 
 
Remark: Even though the module is delivered as source code, the implementation 
might use techniques similar to link time, i.e. table driven configuration. 

10.1.1.2 VARIANT-LINK-TIME 

[SWS_SecOC_00144] ⌈VARIANT-LINK-TIME includes mainly link-time and some 
pre-compile configurable parameters. All parameters defined below as link-time 
configurable shall be configurable at link time for example by linking a special 
configured parameter object file. A VARIANT-LINK-TIME module is most likely 

delivered as object code.⌋ (SRS_BSW_00159, SRS_BSW_00344) 

10.1.1.3 VARIANT-POST-BUILD 

[SWS_SecOC_00145] ⌈VARIANT-POST-BUILD includes post-build-time, link-time 
and some pre-compile configurable parameters. All parameters defined below as 
post build configurable shall be configurable post build for example by flashing 
configuration data. A VARIANT-POST-BUILD configurable module is most likely 

delivered as object code.⌋ (SRS_BSW_00404) 

10.2 Containers and configuration parameters 

For an overview of the AUTOSAR SecOC module’s configuration, see Figure 15. 
 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

88 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

 

Figure 15: The AUTOSAR SecOC module’s Configuration Overview 

10.2.1 SecOC 

SWS Item  ECUC_SecOC_00001 :  

Module Name  SecOC  

Module Description  Configuration of the SecOC (SecureOnboardCommunication) module. 

Post-Build Variant Support  true  

   

Included Containers  

Container Name  Multiplicity  Scope / Dependency  

SecOCGeneral  1  
Contains the general configuration parameters of the 
SecOC module. 

SecOCRxPduProcessing  0..*  
Contains the parameters to configure the RxPdus to be 
verified by the SecOC module. 

SecOCSameBufferPduCollectio
n  

0..*  
SecOCBuffer configuration that may be used by a 
collection of Pdus. 

SecOCTxPduProcessing  0..*  
Contains the parameters to configure the TxPdus to be 
secured by the SecOC module. 

   
 
  

SecOC :EcucModuleDef

upperMultiplicity = 1

lowerMultiplicity = 0

SecOCGeneral :

EcucParamConfContainerDef

SecOCTxPduProcessing :

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

SecOCVersionInfoApi :

EcucBooleanParamDef

SecOCSameBufferPduRef :

EcucReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

SecOCSameBufferPduCollection :

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

SecOCBufferLength :

EcucIntegerParamDef

min = 0

max = 4294967295

SecOCMainFunctionPeriod :

EcucFloatParamDef

min = 0

max = 0.255

SecOCRxPduProcessing :

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

SecOCNvMBlockDescriptor :

EcucSymbolicNameReferenceDef

lowerMultiplicity = 1

upperMultiplicity = 1

NvMBlockDescriptor :

EcucParamConfContainerDef

upperMultiplicity = 65536

lowerMultiplicity = 1

(from Nvm)

NvMNvramBlockIdentifier :

EcucIntegerParamDef

symbolicNameValue = true

min = 1

max = 65535

(from Nvm)

SecOCVerificationStatusCallout :

EcucFunctionNameDef

lowerMultiplicity = 0

upperMultiplicity = *

SecOCDevErrorDetect :

EcucBooleanParamDef

SecOCMaxAlignScalarType :

EcucStringParamDef

+reference +destination

+container

+container

+container

+container

+parameter

+parameter

+destination

+parameter

+parameter

+parameter

+reference

+reference

+parameter

+parameter



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

89 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

 

10.2.2 SecOCGeneral 

SWS Item  ECUC_SecOC_00002 :  

Container Name  SecOCGeneral  

Description  Contains the general configuration parameters of the SecOC module. 

Configuration Parameters  

   

SWS Item  ECUC_SecOC_00007 :  

Name  
 

SecOCDevErrorDetect  

Description  Switches the Default Error Tracer (Det) detection and notification ON or 
OFF. 

 true: enabled (ON).  

 false: disabled (OFF). 

Multiplicity  1  

Type  EcucBooleanParamDef  

Default value  --  

Post-Build Variant Value  false  

Value Configuration Class  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  

   

SWS Item  ECUC_SecOC_00005 :  

Name  
 

SecOCMainFunctionPeriod  

Description  Allows to configure the time for the MainFunction (as float in seconds). 

Multiplicity  1  

Type  EcucFloatParamDef  

Range  0 .. 0.255    

Default value  --  

Post-Build Variant Value  false  

Value Configuration Class  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: ECU  

   

SWS Item  ECUC_SecOC_00047 :  

Name  
 

SecOCMaxAlignScalarType  

Description  The scalar type which has the maximum alignment restrictions on the 
given platform. This type can be e.g. uint8, uint16 or uint32. 

Multiplicity  1  

Type  EcucStringParamDef  

Default value  --  

maxLength  --  

minLength  --  

regularExpression  --  

Post-Build Variant Value  false  

Value Configuration Class  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  

   



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

90 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

SWS Item  ECUC_SecOC_00004 :  

Name  
 

SecOCVerificationStatusCallout  

Description  Entry address of the customer specific call out routine which shall be 
invoked in case of a verification attempt. 

Multiplicity  0..*  

Type  EcucFunctionNameDef  

Default value  --  

maxLength  --  

minLength  --  

regularExpression  --  

Post-Build Variant 
Multiplicity  

false  

Post-Build Variant Value  false  

Multiplicity Configuration 
Class  

Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Value Configuration Class  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  

   

SWS Item  ECUC_SecOC_00003 :  

Name  
 

SecOCVersionInfoApi  

Description  If true the SecOC_GetVersionInfo API is available. 

Multiplicity  1  

Type  EcucBooleanParamDef  

Default value  --  

Post-Build Variant Value  false  

Value Configuration Class  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  

   

SWS Item  ECUC_SecOC_00006 :  

Name  
 

SecOCNvMBlockDescriptor  

Description  Reference to NVRAM block containing the none volatile data. If this 
parameter is not configured it means that no NVRAM is used at all. 

Multiplicity  1  

Type  Symbolic name reference to [ NvMBlockDescriptor ]  

Post-Build Variant Value  false  

Value Configuration Class  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  

   

No Included Containers  

   

 

10.2.3 SecOCSameBufferPduCollection 

SWS Item  ECUC_SecOC_00009 :  

Container Name  SecOCSameBufferPduCollection  

Description  SecOCBuffer configuration that may be used by a collection of Pdus. 

Configuration Parameters  



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

91 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

   

SWS Item  ECUC_SecOC_00008 :  

Name  
 

SecOCBufferLength  

Description  This parameter defines the Buffer in bytes that is used by the SecOC 
module. 

Multiplicity  1  

Type  EcucIntegerParamDef  

Range  0 .. 4294967295    

Default value  --  

Post-Build Variant Value  false  

Value Configuration Class  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  

   

No Included Containers  

   

 

10.2.4 SecOCRxPduProcessing 

SWS Item  ECUC_SecOC_00011 :  

Container Name  SecOCRxPduProcessing  

Description  
Contains the parameters to configure the RxPdus to be verified by the 
SecOC module. 

Configuration Parameters  

   

SWS Item  ECUC_SecOC_00034 :  

Name  
 

SecOCAuthInfoTxLength  

Description  This parameter defines the length in bits of the authentication code to be 
included in the payload of the Secured I-PDU. 

Multiplicity  1  

Type  EcucIntegerParamDef  

Range  0 .. 65535    

Default value  --  

Post-Build Variant Value  true  

Value Configuration Class  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_SecOC_00030 :  

Name  
 

SecOCDataId  

Description  This parameter defines a unique numerical identifier for the Secured I-
PDU. 

Multiplicity  1  

Type  EcucIntegerParamDef  

Range  0 .. 65535    

Default value  --  

Post-Build Variant Value  true  

Value Configuration Class  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

92 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

SWS Item  ECUC_SecOC_00037 :  

Name  
 

SecOCFreshnessCounterSyncAttempts  

Description  This parameter defines the number of Freshness Counter re-
synchronization attempts when a verification failed for a Secured I-PDU. If 
the value is zero, there will be no additional verification attempt to 
synchronize with a potentially better fitting Freshness Counter value. This 
parameter is only applicable if SecOCUseFreshnessTimestamp is FALSE. 

Multiplicity  0..1  

Type  EcucIntegerParamDef  

Range  0 .. 65535    

Default value  --  

Post-Build Variant Value  true  

Value Configuration Class  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_SecOC_00033 :  

Name  
 

SecOCFreshnessTimestampTimePeriodFactor  

Description  This parameter defines a factor that specifies the time period for the 
Freshness Timestamp. It holds a multiplication factor that specifies the 
concrete meaning of a Freshness Timestamp increment by one on basis of 
microseconds. 

Multiplicity  1  

Type  EcucIntegerParamDef  

Range  0 .. 4294967295    

Default value  --  

Post-Build Variant Value  true  

Value Configuration Class  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  
dependency: SecOCUseFreshnessTimestamp == true  

   

SWS Item  ECUC_SecOC_00038 :  

Name  
 

SecOCFreshnessValueId  

Description  This parameter defines the Id of the Freshness Value. 
The Freshness Value might be a normal counter or a time value. 

Multiplicity  1  

Type  EcucIntegerParamDef  

Range  0 .. 65535    

Default value  --  

Post-Build Variant Value  true  

Value Configuration Class  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_SecOC_00031 :  

Name  
 

SecOCFreshnessValueLength  

Description  This parameter defines the complete length in bits of the Freshness Value. 
As long as the key doesn't change the counter shall not overflow. The 
length of the counter shall be determined based on the expected life time 
of the corresponding key and frequency of usage of the counter. 

Multiplicity  1  

Type  EcucIntegerParamDef  



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

93 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

Range  0 .. 64    

Default value  --  

Post-Build Variant Value  true  

Value Configuration Class  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_SecOC_00032 :  

Name  
 

SecOCFreshnessValueTxLength  

Description  This parameter defines the length in bits of the Freshness Value to be 
included in the payload of the Secured I-PDU. This length is specific to the 
least significant bits of the complete Freshness Counter. If the parameter is 
0 no Freshness Value is included in the Secured I-PDU. 

Multiplicity  1  

Type  EcucIntegerParamDef  

Range  0 .. 64    

Default value  --  

Post-Build Variant Value  true  

Value Configuration Class  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  
dependency: SecOCFreshnessCounterTxLength ≤ 
SecOCFreshnessCounterLength  

   

SWS Item  ECUC_SecOC_00035 :  

Name  
 

SecOCKeyId  

Description  This parameter specifies the local Key identifier of the stored Key used to 
generate or verify a MAC. 

Multiplicity  1  

Type  EcucIntegerParamDef  

Range  0 .. 65535    

Default value  --  

Post-Build Variant Value  true  

Value Configuration Class  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_SecOC_00040 :  

Name  
 

SecOCRxAcceptanceWindow  

Description  This parameter defines the maximum allowed deviation in seconds from 
the expected timestamp for which a Secured I-PDU is still deemed 
authentic. 
This parameter is only applicable if SecOCUseFreshnessTimestamp is 
TRUE. 

Multiplicity  0..1  

Type  EcucFloatParamDef  

Range  0 .. INF    

Default value  --  

Post-Build Variant Value  true  

Value Configuration Class  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

94 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

dependency: SecOCUseFreshnessTimestamp == true  

   

SWS Item  ECUC_SecOC_00039 :  

Name  
 

SecOCSecondaryFreshnessValueId  

Description  This parameter defines the Id of the Secondary Freshness Value. 
The Secondary Freshness Value might be a normal counter or a time 
value. 

Multiplicity  0..1  

Type  EcucIntegerParamDef  

Range  0 .. 65535    

Default value  --  

Post-Build Variant 
Multiplicity  

true  

Post-Build Variant Value  true  

Multiplicity Configuration 
Class  

Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Value Configuration Class  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_SecOC_00036 :  

Name  
 

SecOCUseFreshnessTimestamp  

Description  This parameter specifies whether the Freshness Value is generated 
through individual Freshness Counters or by a Timestamps. The value is 
set to TRUE when Timestamps are used. 

Multiplicity  1  

Type  EcucBooleanParamDef  

Default value  --  

Post-Build Variant Value  true  

Value Configuration Class  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_SecOC_00046 :  

Name  
 

SecOCVerificationStatusPropagationMode  

Description  This parameter is used to describe the propagation of the status of each verification 
attempt from the SecOC module to SWCs. 

Multiplicity  1  

Type  EcucEnumerationParamDef  

Range  BOTH  Both “True” and “False” 
AuthenticationStatus is propagated to 
SWC 

FAILURE_ONLY  Only “False” AuthenticationStatus is 
propagated to SWC 

NONE  No AuthenticationStatus is propagated 
to SWC 

Post-Build Variant 
Value  

true  

Value 
Configuration 
Class  

Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / 
Dependency  

scope: local  



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

95 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

   

SWS Item  ECUC_SecOC_00048 :  

Name  
 

SecOCRxAuthServiceConfigRef  

Description  This choice container is used to define which module and which service is 
used for verification. 

Multiplicity  1  

Type  Choice reference to [ CalMacVerifyConfig , CalSignatureVerifyConfig , 
CsmMacVerifyConfig , CsmSignatureVerifyConfig ]  

Post-Build Variant Value  false  

Scope / Dependency   
   

SWS Item  ECUC_SecOC_00049 :  

Name  
 

SecOCSameBufferPduRef  

Description  This reference is used to collect Pdus that are using the same SecOC 
buffer. 

Multiplicity  0..1  

Type  Reference to [ SecOCSameBufferPduCollection ]  

Post-Build Variant 
Multiplicity  

false  

Post-Build Variant Value  false  

Multiplicity Configuration 
Class  

Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Value Configuration Class  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  

   

Included Containers  

Container Name  Multiplicity  Scope / Dependency  

SecOCRxAuthenticPduLayer  1  
This container specifies the Pdu that is transmitted by the 
SecOC module to the PduR after the Mac was verified. 

SecOCRxSecuredPduLayer  1  
This container specifies the Pdu that is received by the SecOC 
module from the PduR. For this Pdu the Mac verification is 
provided. 

   

 

10.2.5 SecOCRxSecuredPduLayer 

SWS Item  ECUC_SecOC_00041 :  

Container Name  SecOCRxSecuredPduLayer  

Description  
This container specifies the Pdu that is received by the SecOC module 
from the PduR. For this Pdu the Mac verification is provided. 

Configuration Parameters  

   

SWS Item  ECUC_SecOC_00043 :  

Name  
 

SecOCRxSecuredLayerPduId  

Description  PDU identifier assigned by SecOC module. Used by PduR for 
SecOC_PduRRxIndication. 

Multiplicity  1  

Type  EcucIntegerParamDef (Symbolic Name generated for this parameter)  

Range  0 .. 65535    

Default value  --  

Post-Build Variant Value  false  



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

96 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

Value Configuration Class  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  

   

SWS Item  ECUC_SecOC_00042 :  

Name  
 

SecOCRxSecuredLayerPduRef  

Description  Reference to the global Pdu. 

Multiplicity  1  

Type  Reference to [ Pdu ]  

Post-Build Variant Value  true  

Value Configuration Class  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

No Included Containers  

   

 

10.2.6 SecOCRxAuthenticPduLayer 

SWS Item  ECUC_SecOC_00044 :  

Container Name  SecOCRxAuthenticPduLayer  

Description  
This container specifies the Pdu that is transmitted by the SecOC module 
to the PduR after the Mac was verified. 

Configuration Parameters  

   

SWS Item  ECUC_SecOC_00045 :  

Name  
 

SecOCRxAuthenticLayerPduRef  

Description  Reference to the global Pdu. 

Multiplicity  1  

Type  Reference to [ Pdu ]  

Post-Build Variant Value  true  

Value Configuration Class  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

No Included Containers  

   

 

10.2.7 SecOCTxPduProcessing 

SWS Item  ECUC_SecOC_00012 :  

Container Name  SecOCTxPduProcessing  

Description  
Contains the parameters to configure the TxPdus to be secured by the 
SecOC module. 

Configuration Parameters  

   

SWS Item  ECUC_SecOC_00018 :  

Name  
 

SecOCAuthInfoTxLength  



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

97 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

Description  This parameter defines the length in bits of the authentication code to be 
included in the payload of the Secured I-PDU. 

Multiplicity  1  

Type  EcucIntegerParamDef  

Range  0 .. 65535    

Default value  --  

Post-Build Variant Value  true  

Value Configuration Class  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_SecOC_00022 :  

Name  
 

SecOCAuthenticationRetries  

Description  This parameter defines the additional number of authentication attempts 
that are to be carried out when the generation of the authentication 
information failed for a given Secured I-PDU. If zero is set than only one 
authentication attempt is done. 

Multiplicity  1  

Type  EcucIntegerParamDef  

Range  0 .. 65535    

Default value  --  

Post-Build Variant Value  true  

Value Configuration Class  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_SecOC_00014 :  

Name  
 

SecOCDataId  

Description  This parameter defines a unique numerical identifier for the Secured I-
PDU. 

Multiplicity  1  

Type  EcucIntegerParamDef  

Range  0 .. 65535    

Default value  --  

Post-Build Variant Value  true  

Value Configuration Class  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_SecOC_00017 :  

Name  
 

SecOCFreshnessTimestampTimePeriodFactor  

Description  This parameter defines a factor that specifies the time period for the 
Freshness Timestamp. It holds a multiplication factor that specifies the 
concrete meaning of a Freshness Timestamp increment by one on basis of 
microseconds. 

Multiplicity  1  

Type  EcucIntegerParamDef  

Range  0 .. 4294967295    

Default value  --  

Post-Build Variant Value  true  

Value Configuration Class  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

98 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

Scope / Dependency  scope: local  
dependency: SecOCUseFreshnessTimestamp == true  

   

SWS Item  ECUC_SecOC_00021 :  

Name  
 

SecOCFreshnessValueId  

Description  This parameter defines the Id of the Freshness Value. 
The Freshness Value might be a normal counter or a time value. 

Multiplicity  1  

Type  EcucIntegerParamDef  

Range  0 .. 65535    

Default value  --  

Post-Build Variant Value  true  

Value Configuration Class  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_SecOC_00015 :  

Name  
 

SecOCFreshnessValueLength  

Description  This parameter defines the complete length in bits of the Freshness Value. 
As long as the key doesn't change the counter shall not overflow. The 
length of the counter shall be determined based on the expected life time 
of the corresponding key and frequency of usage of the counter. 

Multiplicity  1  

Type  EcucIntegerParamDef  

Range  0 .. 64    

Default value  --  

Post-Build Variant Value  true  

Value Configuration Class  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_SecOC_00016 :  

Name  
 

SecOCFreshnessValueTxLength  

Description  This parameter defines the length in bits of the Freshness Value to be 
included in the payload of the Secured I-PDU. This length is specific to the 
least significant bits of the complete Freshness Counter. If the parameter is 
0 no Freshness Value is included in the Secured I-PDU. 

Multiplicity  1  

Type  EcucIntegerParamDef  

Range  0 .. 64    

Default value  --  

Post-Build Variant Value  true  

Value Configuration Class  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  
dependency: SecOCFreshnessCounterTxLength ≤ 
SecOCFreshnessCounterLength  

   

SWS Item  ECUC_SecOC_00019 :  

Name  
 

SecOCKeyId  

Description  This parameter specifies the local Key identifier of the stored Key used to 
generate or verify a MAC. 

Multiplicity  1  



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

99 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

Type  EcucIntegerParamDef  

Range  0 .. 65535    

Default value  --  

Post-Build Variant Value  true  

Value Configuration Class  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_SecOC_00020 :  

Name  
 

SecOCUseFreshnessTimestamp  

Description  This parameter specifies whether the Freshness Value is generated 
through individual Freshness Counters or by a Timestamps. The value is 
set to TRUE when Timestamps are used. 

Multiplicity  1  

Type  EcucBooleanParamDef  

Default value  --  

Post-Build Variant Value  true  

Value Configuration Class  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_SecOC_00010 :  

Name  
 

SecOCSameBufferPduRef  

Description  This reference is used to collect Pdus that are using the same SecOC 
buffer. 

Multiplicity  0..1  

Type  Reference to [ SecOCSameBufferPduCollection ]  

Post-Build Variant 
Multiplicity  

false  

Post-Build Variant Value  false  

Multiplicity Configuration 
Class  

Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Value Configuration Class  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  

   

SWS Item  ECUC_SecOC_00013 :  

Name  
 

SecOCTxAuthServiceConfigRef  

Description  This choice container is used to define which module and which service is 
used for authentication. 

Multiplicity  1  

Type  Choice reference to [ CalMacGenerateConfig , 
CalSignatureGenerateConfig , CsmMacGenerateConfig , 
CsmSignatureGenerateConfig ]  

Post-Build Variant Value  false  

Scope / Dependency   
   

Included Containers  

Container Name  Multiplicity  Scope / Dependency  

SecOCTxAuthenticPduLayer  1  
This container specifies the Pdu that is received by the SecOC 
module from the PduR. For this Pdu the Mac generation is 
provided. 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

100 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

SecOCTxSecuredPduLayer  1  
This container specifies the Pdu that is transmitted by the 
SecOC module to the PduR after the Mac was generated. 

   

 

10.2.8 SecOCTxAuthenticPduLayer 

SWS Item  ECUC_SecOC_00023 :  

Container Name  SecOCTxAuthenticPduLayer  

Description  
This container specifies the Pdu that is received by the SecOC module 
from the PduR. For this Pdu the Mac generation is provided. 

Configuration Parameters  

   

SWS Item  ECUC_SecOC_00026 :  

Name  
 

SecOCTxAuthenticLayerPduId  

Description  PDU identifier assigned by SecOC module. Used by PduR for 
SecOC_PduRTransmit. 

Multiplicity  1  

Type  EcucIntegerParamDef (Symbolic Name generated for this parameter)  

Range  0 .. 65535    

Default value  --  

Post-Build Variant Value  false  

Value Configuration Class  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  

   

SWS Item  ECUC_SecOC_00025 :  

Name  
 

SecOCTxAuthenticLayerPduRef  

Description  Reference to the global Pdu. 

Multiplicity  1  

Type  Reference to [ Pdu ]  

Post-Build Variant Value  true  

Value Configuration Class  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

No Included Containers  

   

 

10.2.9 SecOCTxSecuredPduLayer 

SWS Item  ECUC_SecOC_00024 :  

Container Name  SecOCTxSecuredPduLayer  

Description  
This container specifies the Pdu that is transmitted by the SecOC module 
to the PduR after the Mac was generated. 

Configuration Parameters  

   

SWS Item  ECUC_SecOC_00028 :  

Name  
 

SecOCTxSecuredLayerPduId  

Description  PDU identifier assigned by SecOC module. Used by PduR for confirmation 



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

101 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

(SecOC_PduRTxConfirmation) and for TriggerTransmit. 

Multiplicity  1  

Type  EcucIntegerParamDef (Symbolic Name generated for this parameter)  

Range  0 .. 65535    

Default value  --  

Post-Build Variant Value  false  

Value Configuration Class  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  

   

SWS Item  ECUC_SecOC_00027 :  

Name  
 

SecOCTxSecuredLayerPduRef  

Description  Reference to the global Pdu. 

Multiplicity  1  

Type  Reference to [ Pdu ]  

Post-Build Variant Value  true  

Value Configuration Class  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

No Included Containers  

   

 
 

10.3 Configuration Rules 

SecOCFreshnessValueId and SecOCSecondaryFreshnessValueId are used to 
unambiguously identify the related I-PDU. 
 
[SWS_SecOC_00147] ⌈The parameter values for SecOCFreshnessValueId and 
SecOCSecondaryFreshnessValueId shall be unique. 
⌋ 

10.4 Published Information 

For details, refer to the chapter 10.3 “Published Information” in SWS_BSWGeneral.  



Specification of Module Secure Onboard 
Communication 

AUTOSAR Release 4.2.2 

102 of 102 Document ID 654: AUTOSAR_SWS_SecureOnboardCommunication 

  - AUTOSAR confidential - 

A Not applicable requirements 

[SWS_SecOC_00999]⌈These requirements are not applicable to this specification. 
⌋(SRS_BSW_00004, SRS_BSW_00005, SRS_BSW_00006, SRS_BSW_00007, 
SRS_BSW_00009, SRS_BSW_00010, SRS_BSW_00158, SRS_BSW_00160, 
SRS_BSW_00161, SRS_BSW_00162, SRS_BSW_00164, SRS_BSW_00167, 
SRS_BSW_00168, SRS_BSW_00170, SRS_BSW_00172, SRS_BSW_00300, 
SRS_BSW_00302, SRS_BSW_00304, SRS_BSW_00305, SRS_BSW_00306, 
SRS_BSW_00307, SRS_BSW_00308, SRS_BSW_00309, SRS_BSW_00310, 
SRS_BSW_00312, SRS_BSW_00314, SRS_BSW_00318, SRS_BSW_00321, 
SRS_BSW_00325, SRS_BSW_00327, SRS_BSW_00328, SRS_BSW_00330, 
SRS_BSW_00331, SRS_BSW_00333, SRS_BSW_00334, SRS_BSW_00335, 
SRS_BSW_00336, SRS_BSW_00339, SRS_BSW_00341, SRS_BSW_00342, 
SRS_BSW_00343, SRS_BSW_00346, SRS_BSW_00347, SRS_BSW_00360, 
SRS_BSW_00361, SRS_BSW_00371, SRS_BSW_00374, SRS_BSW_00375, 
SRS_BSW_00377, SRS_BSW_00378, SRS_BSW_00379, SRS_BSW_00380, 
SRS_BSW_00383, SRS_BSW_00388, SRS_BSW_00389, SRS_BSW_00390, 
SRS_BSW_00392, SRS_BSW_00393, SRS_BSW_00394, SRS_BSW_00395, 
SRS_BSW_00396, SRS_BSW_00397, SRS_BSW_00398, SRS_BSW_00399, 
SRS_BSW_00400, SRS_BSW_00401, SRS_BSW_00405, SRS_BSW_00406, 
SRS_BSW_00408, SRS_BSW_00409, SRS_BSW_00410, SRS_BSW_00411, 
SRS_BSW_00412, SRS_BSW_00413, SRS_BSW_00416, SRS_BSW_00417, 
SRS_BSW_00419, SRS_BSW_00422, SRS_BSW_00423, SRS_BSW_00424, 
SRS_BSW_00427, SRS_BSW_00428, SRS_BSW_00429, SRS_BSW_00432, 
SRS_BSW_00433, SRS_BSW_00437, SRS_BSW_00438, SRS_BSW_00439, 
SRS_BSW_00440, SRS_BSW_00441, SRS_BSW_00442, SRS_BSW_00447, 
SRS_BSW_00448, SRS_BSW_00451, SRS_BSW_00452, SRS_BSW_00453, 
SRS_BSW_00454, SRS_BSW_00456, SRS_BSW_00458, SRS_BSW_00459, 
SRS_BSW_00460, SRS_BSW_00461, SRS_BSW_00462, SRS_BSW_00463, 
SRS_BSW_00464, SRS_BSW_00465, SRS_BSW_00466, SRS_BSW_00467, 
SRS_BSW_00469, SRS_BSW_00470, SRS_BSW_00471, SRS_BSW_00472) 
 


	1 Introduction and functional overview
	2 Acronyms, abbreviations and definitions
	2.1 Acronyms and abbreviations
	2.2 Definitions

	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms
	3.3 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 Dependencies to PduR
	5.2 Dependencies to CSM or CAL
	5.3 Dependencies to the RTE
	5.4 File structure
	5.4.1 Header file structure


	6 Requirements traceability
	7 Functional specification
	7.1 Specification of the security solution
	7.1.1 Basic entities of the security solution
	7.1.1.1 Authentic I-PDU and Secured I-PDU
	7.1.1.2 Data covered by Authenticator
	7.1.1.3 Freshness Counters and Freshness Timestamps
	7.1.1.4 Secondary Freshness Value

	7.1.2 Authentication of I-PDUs
	7.1.3 Verification of I-PDUs
	7.1.3.1 Successful verification of I-PDUs

	7.1.4 Adaptation in case of asymmetric approach

	7.2 Relationship to PduR
	7.3 Initialization
	7.4 Authentication of outgoing PDUs
	7.4.1 Authentication during direct transmission
	7.4.2 Authentication during triggered transmission
	7.4.3 Authentication during transport protocol transmission
	7.4.4 Error handling and cancelation of transmission

	7.5 Verification of incoming PDUs
	7.5.1 Verification during bus interface reception
	7.5.2 Verification during transport protocol reception
	7.5.3 Error handling and cancelation of transmission

	7.6 Gateway functionality
	7.7 Development Errors
	7.8 Error detection
	7.9 Error notification

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 SecOC_ConfigType
	8.2.2 SecOC_StateType
	8.2.3 SecOC_AlignType
	8.2.4 SecOC_KeyType
	8.2.5 SecOC_VerificationResultType
	8.2.6 SecOC_VerificationStatusType

	8.3 Function definitions
	8.3.1 SecOC_Init
	8.3.2 SecOC_GetVersionInfo
	8.3.3 SecOC_Transmit
	8.3.4 SecOC_CancelTransmit
	8.3.5 SecOC_AssociateKey
	8.3.6 SecOC_FreshnessValueRead
	8.3.7 SecOC_FreshnessValueWrite
	8.3.8 Optional Interfaces

	8.4 Call-back notifications
	8.4.1 SecOC_RxIndication
	8.4.2 SecOC_TpRxIndication
	8.4.3 SecOC_TxConfirmation
	8.4.4 SecOC_TpTxConfirmation
	8.4.5 SecOC_TriggerTransmit
	8.4.6 SecOC_CopyRxData
	8.4.7 SecOC_CopyTxData
	8.4.8 SecOC_StartOfReception
	8.4.9 CSM callback interfaces

	8.5 Scheduled functions
	8.5.1 SecOC_MainFunction

	8.6 Expected Interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.3 Configurable Interfaces
	8.6.3.1 SecOC_VerificationStatusCallout


	8.7 Service Interfaces
	8.7.1 Overview
	8.7.2 Sender Receiver Interfaces
	8.7.2.1 Verification Status Service

	8.7.3 Client Server Interfaces
	8.7.3.1 Key Management Service
	8.7.3.2 Counter Management Service
	8.7.3.3 Verification Status Configuration Service



	9 Sequence diagrams
	9.1 Authentication of outgoing PDUs
	9.1.1 Authentication during direct transmission
	9.1.2 Authentication during triggered transmission
	9.1.3 Authentication during transport protocol transmission

	9.2 Verification of incoming PDUs
	9.2.1 Verification during direct reception
	9.2.2 Verification during transport protocol reception

	9.3 Re-authentication Gateway

	10 Configuration specification
	10.1.1 Variants
	10.1.1.1 VARIANT-PRE-COMPILE
	10.1.1.2 VARIANT-LINK-TIME
	10.1.1.3 VARIANT-POST-BUILD

	10.2 Containers and configuration parameters
	10.2.1 SecOC
	10.2.2 SecOCGeneral
	10.2.3 SecOCSameBufferPduCollection
	10.2.4 SecOCRxPduProcessing
	10.2.5 SecOCRxSecuredPduLayer
	10.2.6 SecOCRxAuthenticPduLayer
	10.2.7 SecOCTxPduProcessing
	10.2.8 SecOCTxAuthenticPduLayer
	10.2.9 SecOCTxSecuredPduLayer

	10.3 Configuration Rules
	10.4 Published Information

	A Not applicable requirements

