
 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

1 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

 
 

Document Change History 
Release Changed by Change Description 

4.2.2 AUTOSAR 
Release 
Management 

 Debugging support marked as obsolete 

 Error classification reworked 

 Reference to DEM removed 

 Description for configuration parameter 
FlsUseInterrupts clarified 

4.2.1 AUTOSAR 
Release 
Management 

 Requirements linked to features and BSW 
requirements. 

4.1.3 AUTOSAR 
Release 
Management 

 Requirements for NULL pointer check during 
Fls_Init removed 

 Minor formatting changes 

4.1.2 AUTOSAR 
Release 
Management 

 Timing requirement removed from module’s 
main function 

 Fls_GetStatus returns MEMIF_UNINIT if module 
is not initialized 

 Editorial changes 

 Removed chapter(s) on change documentation 

4.1.1 AUTOSAR 
Administration 

 Reworked according to the new 
SWS_BSWGeneral 

 Scope attribute in tables in chapter 10 added 

 Production errors changed to extended 
production errors 

 Requirement IDs for type definitions added 

4.0.3 AUTOSAR 
Administration 

 References to HW specific errors corrected 

 Range of configuration parameters adapted 

 Consistency checking reformulated 

 Module short name changed 

3.1.5 AUTOSAR 
Administration 

 Configuration parameter FlsDefaultMode added 

 Container with SPI reference added 

 Check for NULL pointer added 

Document Title Specification of Flash Driver 
Document Owner AUTOSAR 

Document Responsibility AUTOSAR 

Document Identification No 025 

Document Classification Standard 

  

Document Status Final 

Part of Release 4.2.2 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

2 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

Document Change History 
Release Changed by Change Description 

3.1.4 AUTOSAR 
Administration 

 References to AUTOSAR Standard Errors 
added 

 Range of configuration parameters restricted  

 Multiplicity of notification routines corrected 

 Several typing and formatting errors corrected 

 Legal disclaimer revised 

3.1.1 AUTOSAR  
Administration 

 Legal disclaimer revised 

3.0.2 AUTOSAR  
Administration 

 Table formatting corrected 

3.0.1 AUTOSAR  
Administration 

 NULL pointer check added to Fls_Compare 

 NULL pointer check detailed (in general) 

 Restriction removed to allow re-initialization of 
module 

 Tables in chapters 8 and 10 generated from 
UML model 

 Document meta information extended  

 Small layout adaptations made 

2.1.15 AUTOSAR  
Administration 

 File include structure updated 

 Type usage corrected 

 Compare Job results adapted 

 API towards DEM corrected 

 Legal disclaimer revised 

 Release Notes added 

 “Advice for users” revised 

 “Revision Information” added 

2.0 AUTOSAR 
Administration 

 Document structure adapted to common 
Release 2.0 SWS Template 

 new functionality: Read, Compare and SetMode 
functions 

 scalability: functionality can be configured 
(on/off) 

 adapted to new MemHwA architecture 

1.0 AUTOSAR 
Administration 

 Initial release 

 
 

 
 
 
 
 
 

 
 

  
 

 
 

  



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

3 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

Disclaimer 
 
This specification and the material contained in it, as released by AUTOSAR, is for 
the purpose of information only. AUTOSAR and the companies that have contributed 
to it shall not be liable for any use of the specification. 
 
The material contained in this specification is protected by copyright and other types 
of Intellectual Property Rights. The commercial exploitation of the material contained 
in this specification requires a license to such Intellectual Property Rights. 
 
This specification may be utilized or reproduced without any modification, in any form 
or by any means, for informational purposes only. For any other purpose, no part of 
the specification may be utilized or reproduced, in any form or by any means, without 
permission in writing from the publisher. 
 
The AUTOSAR specifications have been developed for automotive applications only. 
They have neither been developed, nor tested for non-automotive applications. 
 
The word AUTOSAR and the AUTOSAR logo are registered trademarks. 
 

Advice for users 
 
AUTOSAR specifications may contain exemplary items (exemplary reference 
models, "use cases", and/or references to exemplary technical solutions, devices, 
processes or software). 
 
Any such exemplary items are contained in the specifications for illustration purposes 
only, and they themselves are not part of the AUTOSAR Standard. Neither their 
presence in such specifications, nor any later documentation of AUTOSAR 
conformance of products actually implementing such exemplary items, imply that 
intellectual property rights covering such exemplary items are licensed under the 
same rules as applicable to the AUTOSAR Standard. 
 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

4 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

Table of Contents 
 

1 Introduction and functional overview ................................................................... 6 

2 Acronyms and abbreviations ............................................................................... 7 

3 Related documentation........................................................................................ 8 

3.1 AUTOSAR deliverables ................................................................................. 8 
3.2 Related standards and norms ....................................................................... 8 
3.3 Related specification ..................................................................................... 8 

4 Constraints and assumptions ............................................................................ 10 

4.1 Limitations ................................................................................................... 10 
4.2 Applicability to car domains ......................................................................... 10 

5 Dependencies to other modules ........................................................................ 11 

5.1 Header File Structure .................................................................................. 11 
5.2 System clock ............................................................................................... 12 

5.3 Communication or I/O drivers ...................................................................... 12 

6 Requirements traceability .................................................................................. 13 

7 Functional specification ..................................................................................... 24 

7.1 General design rules ................................................................................... 24 
7.2 Error classification ....................................................................................... 25 

7.3 Production Errors......................................................................................... 26 

7.4 Runtime Errors ............................................................................................ 26 
7.5 External flash driver ..................................................................................... 27 
7.6 Loading, executing and removing the flash access code ............................ 27 

7.7 Support for Debugging ................................................................................ 28 

8 API specification ................................................................................................ 29 

8.1 Imported types ............................................................................................. 29 
8.2 Type definitions ........................................................................................... 29 

8.2.1 Fls_ConfigType ..................................................................................... 29 
8.2.2 Fls_AddressType .................................................................................. 29 

8.2.3 Fls_LengthType .................................................................................... 30 
8.3 Function definitions...................................................................................... 30 

8.3.1 Fls_Init .................................................................................................. 30 
8.3.2 Fls_Erase .............................................................................................. 31 
8.3.3 Fls_Write ............................................................................................... 33 
8.3.4 Fls_Cancel ............................................................................................ 35 
8.3.5 Fls_GetStatus ....................................................................................... 36 

8.3.6 Fls_GetJobResult ................................................................................. 37 
8.3.7 Fls_Read .............................................................................................. 38 
8.3.8 Fls_Compare ........................................................................................ 39 
8.3.9 Fls_SetMode ......................................................................................... 41 
8.3.10 Fls_GetVersionInfo ............................................................................ 42 
8.3.11 Fls_BlankCheck ................................................................................. 43 

8.4 Call-back notifications .................................................................................. 44 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

5 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

8.5 Scheduled functions .................................................................................... 45 

8.5.1 Fls_MainFunction .................................................................................. 45 
8.6 Expected Interfaces ..................................................................................... 48 

8.6.1 Mandatory Interfaces ............................................................................ 48 
8.6.2 Optional Interfaces ................................................................................ 49 
8.6.3 Configurable interfaces ......................................................................... 49 

9 Sequence diagrams .......................................................................................... 51 

9.1 Initialization .................................................................................................. 51 
9.2 Synchronous functions ................................................................................ 51 
9.3 Asynchronous functions .............................................................................. 52 
9.4 Canceling a running job ............................................................................... 53 

10 Configuration specification ............................................................................. 54 

10.1 Containers and configuration parameters ................................................ 54 

10.1.1 Variants ............................................................................................. 54 
10.1.2 Fls ...................................................................................................... 55 
10.1.3 FlsGeneral ......................................................................................... 55 
10.1.4 FlsConfigSet ...................................................................................... 59 

10.1.5 FlsDemEventParameterRefs ............................................................. 63 
10.1.6 FlsExternalDriver ............................................................................... 65 

10.1.7 FlsSectorList ...................................................................................... 66 
10.1.8 FlsSector ........................................................................................... 66 

10.2 Published Information............................................................................... 67 

10.2.1 FlsPublishedInformation .................................................................... 67 

11 Not applicable requirements .......................................................................... 71 

 
 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

6 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

1 Introduction and functional overview 

 
This document specifies the functionality, API and the configuration of the AUTOSAR 
Basic Software module Flash Driver.  
 
This specification is applicable to drivers for both internal and external flash memory.  
 
The flash driver provides services for reading, writing and erasing flash memory and 
a configuration interface for setting / resetting the write / erase protection if supported 
by the underlying hardware.  
 
In application mode of the ECU, the flash driver is only to be used by the Flash 
EEPROM emulation module for writing data. It is not intended to write program code 
to flash memory in application mode. This shall be done in boot mode which is out of 
scope of AUTOSAR. 
 
A driver for an internal flash memory accesses the microcontroller hardware directly 
and is located in the Microcontroller Abstraction Layer. An external flash memory is 
usually connected via the microcontroller’s data / address busses (memory mapped 
access), the flash driver then uses the handlers / drivers for those busses to access 
the external flash memory device. The driver for an external flash memory device is 
located in the ECU Abstraction Layer. 
 

[SWS_Fls_00088] ⌈The functional requirements and the functional scope are the 

same for both internal and external drivers. Hence the API is semantically identical.⌋ 
(SRS_Fls_12147, SRS_Fls_12148) 
 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

7 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

2 Acronyms and abbreviations 

 

Abbreviation / 
Acronym: 

Description: 

DET Default Error Tracer – module to which development errors are reported. 

DEM Diagnostic Event Manager – module to which production relevant errors are 
reported.  

Fls, FLS Official AUTOSAR abbreviation for the module flash driver  
(different writing depending on the context, same meaning). 

AC (Flash) access code – abbreviation introduced to keep the names of the 
configuration parameters reasonably short. 

 
 
Further definitions of terms used throughout this document 
 

Term: Definition 

Flash sector A flash sector is the smallest amount of flash memory that can be erased in one 
pass. The size of the flash sector depends upon the flash technology and is 
therefore hardware dependent. 

Flash page A flash page is the smallest amount of flash memory that can be programmed in 
one pass. The size of the flash page depends upon the flash technology and is 
therefore hardware dependent. 

Flash access 
code 

Internal flash driver routines called by the main function (job processing function) to 
erase or write the flash hardware. 

 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

8 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

3 Related documentation 

 

3.1 AUTOSAR deliverables 

 
[1] List of Basic Software Modules  
AUTOSAR_TR_BSWModuleList.pdf  
 
[2] Layered Software Architecture, 
AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf  
 
[3] General Requirements on Basic Software Modules,  
AUTOSAR_SRS_BSWGeneral.pdf  
 
[4] General Requirements on SPAL,   
AUTOSAR_SRS_SPALGeneral.pdf  
 
[5] Requirements on Flash Driver 
AUTOSAR_SRS_FlashDriver.pdf  
 
[6] Requirements on Memory Hardware Abstraction Layer 
AUTOSAR_SRS_MemoryHWAbstractionLayer.pdf  

 
[7] Specification of ECU Configuration 
AUTOSAR_TPS_ECUConfiguration.pdf 
 
[8] Basic Software Module Description Template 
AUTOSAR_TPS_BSWModuleDescriptionTemplate.pdf 
 

[9] General Specification of Basic Software Modules 
AUTOSAR_SWS_BSWGeneral.pdf 
 

 

3.2 Related standards and norms 

 
[10] HIS Flash Driver Specification 

HIS flash driver v130.pdf on  
http://www.automotive-his.de/download/  

 

3.3 Related specification 

 

http://www.automotive-his.de/download/


 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

9 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

AUTOSAR provides a General Specification on Basic Software modules [9] (SWS 
BSW General), which is also valid for Flash Driver. 
 
Thus, the specification SWS BSW General shall be considered as additional and 
required specification for Flash Driver. 
 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

10 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

4 Constraints and assumptions 

 

4.1 Limitations 

 

 The flash driver only erases or programs complete flash sectors respectively 
flash pages, i.e. it does not offer any kind of re-write strategy since it does not 
use any internal buffers. 

 The flash driver does not provide mechanisms for providing data integrity (e.g. 
checksums, redundant storage, etc.).  

 
 

4.2 Applicability to car domains 

 
No restrictions. 
 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

11 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

5 Dependencies to other modules 

 

5.1 Header File Structure 

 

[SWS_Fls_00107] ⌈The Fls module shall comply with the following file structure:  

 

 

Figure 1: File include structure 

 
Note: The files shown in grey are optional and might not be present for all 
implementations and/or configurations of a specific implementation of the Fls module. 

⌋ (SRS_BSW_00381, SRS_BSW_00412, SRS_BSW_00409, SRS_BSW_00346, SRS_BSW_00158, 

SRS_BSW_00301) 
 

[SWS_Fls_00308] ⌈Types and definitions common to several flash driver instances 

shall be given in the header file MemIf_Types.h. ⌋ (SRS_BSW_00392, 

SRS_BSW_00456) 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

12 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

 

[SWS_Fls_00309] ⌈Types and definitions specific for one flash driver shall be given 

in the header file Fls.h. ⌋ (SRS_BSW_00392, SRS_BSW_00415) 

 
 

5.2 System clock 

 
If the hardware of the internal flash memory depends on the system clock, changes 
to the system clock (e.g. PLL on  PLL off) may also affect the clock settings of the 
flash memory hardware. 
 
 

5.3 Communication or I/O drivers 

 
If the flash memory is located in an external device, the access to this device shall be 
enacted via the corresponding communication respectively I/O driver. 
 
 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

13 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

6 Requirements traceability 

 

Requirement Description Satisfied by 

- - SWS_Fls_00371 

RS_BRF_01064 AUTOSAR BSW shall 
provide callback functions 
in order to access upper 
layer modules 

SWS_Fls_00147, SWS_Fls_00167, 
SWS_Fls_00262, SWS_Fls_00263, 
SWS_Fls_00273 

RS_BRF_01076 AUTOSAR basic software 
shall perform module local 
error recovery to the extent 
possible 

SWS_Fls_00272, SWS_Fls_00359, 
SWS_Fls_00360, SWS_Fls_00361, 
SWS_Fls_00362, SWS_Fls_00373 

RS_BRF_01144 AUTOSAR shall support 
configuration parameters 
which allow to trade 
interrupt response time 
against runtime 

SWS_Fls_00233, SWS_Fls_00234 

RS_BRF_02240 AUTOSAR debugging shall 
provide relevant internal 
data of Basic Software to 
the developer 

SWS_Fls_00302 

SRS_BSW_00004 All Basic SW Modules shall 
perform a pre-processor 
check of the versions of all 
imported include files 

SWS_Fls_00205, SWS_Fls_00206 

SRS_BSW_00005 Modules of the ÂµC 
Abstraction Layer (MCAL) 
may not have hard coded 
horizontal interfaces 

SWS_Fls_00366 

SRS_BSW_00006 The source code of 
software modules above 
the ÂµC Abstraction Layer 
(MCAL) shall not be 
processor and compiler 
dependent. 

SWS_Fls_00366 

SRS_BSW_00007 All Basic SW Modules 
written in C language shall 
conform to the MISRA C 
2004 Standard. 

SWS_Fls_00366 

SRS_BSW_00009 All Basic SW Modules shall 
be documented according 
to a common standard. 

SWS_Fls_00366 

SRS_BSW_00010 The memory consumption 
of all Basic SW Modules 
shall be documented for a 
defined configuration for all 
supported platforms. 

SWS_Fls_00366 

SRS_BSW_00101 The Basic Software 
Module shall be able to 
initialize variables and 
hardware in a separate 
initialization function 

SWS_Fls_00014, SWS_Fls_00086, 
SWS_Fls_00191, SWS_Fls_00249, 
SWS_Fls_00351 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

14 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

SRS_BSW_00158 All modules of the 
AUTOSAR Basic Software 
shall strictly separate 
configuration from 
implementation 

SWS_Fls_00107 

SRS_BSW_00160 Configuration files of 
AUTOSAR Basic SW 
module shall be readable 
for human beings 

SWS_Fls_00366 

SRS_BSW_00161 The AUTOSAR Basic 
Software shall provide a 
microcontroller abstraction 
layer which provides a 
standardized interface to 
higher software layers 

SWS_Fls_00366 

SRS_BSW_00162 The AUTOSAR Basic 
Software shall provide a 
hardware abstraction layer 

SWS_Fls_00366 

SRS_BSW_00164 The Implementation of 
interrupt service routines 
shall be done by the 
Operating System, 
complex drivers or 
modules 

SWS_Fls_00193, SWS_Fls_00232 

SRS_BSW_00167 All AUTOSAR Basic 
Software Modules shall 
provide configuration rules 
and constraints to enable 
plausibility checks 

SWS_Fls_00205, SWS_Fls_00206 

SRS_BSW_00168 SW components shall be 
tested by a function 
defined in a common API 
in the Basis-SW 

SWS_Fls_00366 

SRS_BSW_00170 The AUTOSAR SW 
Components shall provide 
information about their 
dependency from faults, 
signal qualities, driver 
demands 

SWS_Fls_00366 

SRS_BSW_00171 Optional functionality of a 
Basic-SW component that 
is not required in the ECU 
shall be configurable at 
pre-compile-time 

SWS_Fls_00183, SWS_Fls_00184, 
SWS_Fls_00185, SWS_Fls_00186, 
SWS_Fls_00187 

SRS_BSW_00172 The scheduling strategy 
that is built inside the Basic 
Software Modules shall be 
compatible with the 
strategy used in the system 

SWS_Fls_00366 

SRS_BSW_00300 All AUTOSAR Basic 
Software Modules shall be 
identified by an 
unambiguous name 

SWS_Fls_00366 

SRS_BSW_00301 All AUTOSAR Basic SWS_Fls_00107 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

15 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

Software Modules shall 
only import the necessary 
information 

SRS_BSW_00302 All AUTOSAR Basic 
Software Modules shall 
only export information 
needed by other modules 

SWS_Fls_00366 

SRS_BSW_00304 All AUTOSAR Basic 
Software Modules shall 
use the following data 
types instead of native C 
data types 

SWS_Fls_00366 

SRS_BSW_00306 AUTOSAR Basic Software 
Modules shall be compiler 
and platform independent 

SWS_Fls_00366 

SRS_BSW_00307 Global variables naming 
convention 

SWS_Fls_00366 

SRS_BSW_00308 AUTOSAR Basic Software 
Modules shall not define 
global data in their header 
files, but in the C file 

SWS_Fls_00366 

SRS_BSW_00309 All AUTOSAR Basic 
Software Modules shall 
indicate all global data with 
read-only purposes by 
explicitly assigning the 
const keyword 

SWS_Fls_00366 

SRS_BSW_00312 Shared code shall be 
reentrant 

SWS_Fls_00366 

SRS_BSW_00314 All internal driver modules 
shall separate the interrupt 
frame definition from the 
service routine 

SWS_Fls_00366 

SRS_BSW_00321 The version numbers of 
AUTOSAR Basic Software 
Modules shall be 
enumerated according 
specific rules 

SWS_Fls_00366 

SRS_BSW_00323 All AUTOSAR Basic 
Software Modules shall 
check passed API 
parameters for validity 

SWS_Fls_00015, SWS_Fls_00020, 
SWS_Fls_00021, SWS_Fls_00026, 
SWS_Fls_00027, SWS_Fls_00097, 
SWS_Fls_00098, SWS_Fls_00157, 
SWS_Fls_00205, SWS_Fls_00206, 
SWS_Fls_00363 

SRS_BSW_00325 The runtime of interrupt 
service routines and 
functions that are running 
in interrupt context shall be 
kept short 

SWS_Fls_00193 

SRS_BSW_00326 - SWS_Fls_00366 

SRS_BSW_00327 Error values naming 
convention 

SWS_Fls_00310, SWS_Fls_00311, 
SWS_Fls_00312, SWS_Fls_00313, 
SWS_Fls_00314, SWS_Fls_00315, 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

16 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

SWS_Fls_00316, SWS_Fls_00317, 
SWS_Fls_00318, SWS_Fls_00319 

SRS_BSW_00328 All AUTOSAR Basic 
Software Modules shall 
avoid the duplication of 
code 

SWS_Fls_00366 

SRS_BSW_00330 It shall be allowed to use 
macros instead of functions 
where source code is used 
and runtime is critical 

SWS_Fls_00366 

SRS_BSW_00331 All Basic Software Modules 
shall strictly separate error 
and status information 

SWS_Fls_00310, SWS_Fls_00311, 
SWS_Fls_00312, SWS_Fls_00313, 
SWS_Fls_00314, SWS_Fls_00315, 
SWS_Fls_00316, SWS_Fls_00317, 
SWS_Fls_00318, SWS_Fls_00319 

SRS_BSW_00333 For each callback function 
it shall be specified if it is 
called from interrupt 
context or not 

SWS_Fls_00366 

SRS_BSW_00334 All Basic Software Modules 
shall provide an XML file 
that contains the meta data 

SWS_Fls_00366 

SRS_BSW_00336 Basic SW module shall be 
able to shutdown 

SWS_Fls_00366 

SRS_BSW_00337 Classification of 
development errors 

SWS_Fls_00310, SWS_Fls_00311, 
SWS_Fls_00312, SWS_Fls_00313, 
SWS_Fls_00314, SWS_Fls_00315, 
SWS_Fls_00316, SWS_Fls_00317, 
SWS_Fls_00318, SWS_Fls_00319 

SRS_BSW_00339 Reporting of production 
relevant error status 

SWS_Fls_00104, SWS_Fls_00105, 
SWS_Fls_00106, SWS_Fls_00154, 
SWS_Fls_00260, SWS_Fls_00366 

SRS_BSW_00341 Module documentation 
shall contains all needed 
informations 

SWS_Fls_00366 

SRS_BSW_00342 It shall be possible to 
create an AUTOSAR ECU 
out of modules provided as 
source code and modules 
provided as object code, 
even mixed 

SWS_Fls_00366 

SRS_BSW_00344 BSW Modules shall 
support link-time 
configuration 

SWS_Fls_00366 

SRS_BSW_00345 BSW Modules shall 
support pre-compile 
configuration 

SWS_Fls_00171 

SRS_BSW_00346 All AUTOSAR Basic 
Software Modules shall 
provide at least a basic set 
of module files 

SWS_Fls_00107 

SRS_BSW_00347 A Naming seperation of SWS_Fls_00366 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

17 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

different instances of BSW 
drivers shall be in place 

SRS_BSW_00348 All AUTOSAR standard 
types and constants shall 
be placed and organized in 
a standard type header file 

SWS_Fls_00366 

SRS_BSW_00353 All integer type definitions 
of target and compiler 
specific scope shall be 
placed and organized in a 
single type header 

SWS_Fls_00366 

SRS_BSW_00355 - SWS_Fls_00366 

SRS_BSW_00359 All AUTOSAR Basic 
Software Modules callback 
functions shall avoid return 
types other than void if 
possible 

SWS_Fls_00366 

SRS_BSW_00360 AUTOSAR Basic Software 
Modules callback functions 
are allowed to have 
parameters 

SWS_Fls_00366 

SRS_BSW_00361 All mappings of not 
standardized keywords of 
compiler specific scope 
shall be placed and 
organized in a compiler 
specific type and keyword 
header 

SWS_Fls_00366 

SRS_BSW_00370 - SWS_Fls_00366 

SRS_BSW_00371 The passing of function 
pointers as API parameter 
is forbidden for all 
AUTOSAR Basic Software 
Modules 

SWS_Fls_00366 

SRS_BSW_00375 Basic Software Modules 
shall report wake-up 
reasons 

SWS_Fls_00366 

SRS_BSW_00378 AUTOSAR shall provide a 
boolean type 

SWS_Fls_00366 

SRS_BSW_00381 The pre-compile time 
parameters shall be placed 
into a separate 
configuration header file 

SWS_Fls_00107 

SRS_BSW_00385 List possible error 
notifications 

SWS_Fls_00004, SWS_Fls_00104, 
SWS_Fls_00105, SWS_Fls_00106, 
SWS_Fls_00154, SWS_Fls_00310, 
SWS_Fls_00311, SWS_Fls_00312, 
SWS_Fls_00313, SWS_Fls_00314, 
SWS_Fls_00315, SWS_Fls_00316, 
SWS_Fls_00317, SWS_Fls_00318, 
SWS_Fls_00319 

SRS_BSW_00387 - SWS_Fls_00109, SWS_Fls_00110, 
SWS_Fls_00167, SWS_Fls_00262, 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

18 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

SWS_Fls_00263, SWS_Fls_00347, 
SWS_Fls_00348, SWS_Fls_00349, 
SWS_Fls_00366 

SRS_BSW_00388 Containers shall be used to 
group configuration 
parameters that are 
defined for the same object 

SWS_Fls_00352 

SRS_BSW_00392 Parameters shall have a 
type 

SWS_Fls_00248, SWS_Fls_00308, 
SWS_Fls_00309, SWS_Fls_00368, 
SWS_Fls_00369, SWS_Fls_00370 

SRS_BSW_00398 The link-time configuration 
is achieved on object code 
basis in the stage after 
compiling and before 
linking 

SWS_Fls_00366 

SRS_BSW_00401 Documentation of multiple 
instances of configuration 
parameters shall be 
available 

SWS_Fls_00366 

SRS_BSW_00404 BSW Modules shall 
support post-build 
configuration 

SWS_Fls_00014 

SRS_BSW_00405 BSW Modules shall 
support multiple 
configuration sets 

SWS_Fls_00014 

SRS_BSW_00406 A static status variable 
denoting if a BSW module 
is initialized shall be 
initialized with value 0 
before any APIs of the 
BSW module is called 

SWS_Fls_00065, SWS_Fls_00066, 
SWS_Fls_00099, SWS_Fls_00117, 
SWS_Fls_00240, SWS_Fls_00268, 
SWS_Fls_00358, SWS_Fls_00382, 
SWS_Fls_00383 

SRS_BSW_00407 Each BSW module shall 
provide a function to read 
out the version information 
of a dedicated module 
implementation 

SWS_Fls_00259 

SRS_BSW_00409 All production code error ID 
symbols are defined by the 
Dem module and shall be 
retrieved by the other BSW 
modules from Dem 
configuration 

SWS_Fls_00107 

SRS_BSW_00412 References to c-
configuration parameters 
shall be placed into a 
separate h-file 

SWS_Fls_00107 

SRS_BSW_00415 Interfaces which are 
provided exclusively for 
one module shall be 
separated into a dedicated 
header file 

SWS_Fls_00309, SWS_Fls_00366 

SRS_BSW_00416 The sequence of modules 
to be initialized shall be 

SWS_Fls_00366 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

19 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

configurable 

SRS_BSW_00417 Software which is not part 
of the SW-C shall report 
error events only after the 
DEM is fully operational. 

SWS_Fls_00366 

SRS_BSW_00422 Pre-de-bouncing of error 
status information is done 
within the DEM 

SWS_Fls_00366 

SRS_BSW_00423 BSW modules with 
AUTOSAR interfaces shall 
be describable with the 
means of the SW-C 
Template 

SWS_Fls_00366 

SRS_BSW_00424 BSW module main 
processing functions shall 
not be allowed to enter a 
wait state 

SWS_Fls_00366 

SRS_BSW_00426 BSW Modules shall ensure 
data consistency of data 
which is shared between 
BSW modules 

SWS_Fls_00366 

SRS_BSW_00427 ISR functions shall be 
defined and documented in 
the BSW module 
description template 

SWS_Fls_00366 

SRS_BSW_00428 A BSW module shall state 
if its main processing 
function(s) has to be 
executed in a specific order 
or sequence 

SWS_Fls_00366 

SRS_BSW_00429 BSW modules shall be only 
allowed to use OS objects 
and/or related OS services 

SWS_Fls_00366 

SRS_BSW_00432 Modules should have 
separate main processing 
functions for read/receive 
and write/transmit data 
path 

SWS_Fls_00269 

SRS_BSW_00433 Main processing functions 
are only allowed to be 
called from task bodies 
provided by the BSW 
Scheduler 

SWS_Fls_00366 

SRS_BSW_00438 Configuration data shall be 
defined in a structure 

SWS_Fls_00352, SWS_Fls_00353, 
SWS_Fls_00354, SWS_Fls_00355 

SRS_BSW_00442 {OBSOLETE} The 
AUTOSAR architecture 
shall support standardized 
debugging and tracing 
features 

SWS_Fls_00261 

SRS_BSW_00456 - A Header file shall be 
defined in order to 
harmonize BSW Modules 

SWS_Fls_00308 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

20 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

SRS_BSW_00466 Classification of extended 
production errors 

SWS_Fls_00104, SWS_Fls_00105, 
SWS_Fls_00106, SWS_Fls_00154 

SRS_BSW_00469 Fault detection and healing 
of production errors and 
extended production errors 

SWS_Fls_00260 

SRS_Fls_00134 - SWS_Fls_00001 

SRS_Fls_00135 - SWS_Fls_00001 

SRS_Fls_00136 - SWS_Fls_00001 

SRS_Fls_00323 - SWS_Fls_00158 

SRS_Fls_12083 HIS specification shall be 
used as basis for 
specifying the Flash driver 

SWS_Fls_00366 

SRS_Fls_12107 The external flash driver 
shall check if the 
configured flash type 
matches with the hardware 
flash ID 

SWS_Fls_00144 

SRS_Fls_12132 Flash driver shall be 
statically configurable 

SWS_Fls_00048, SWS_Fls_00171, 
SWS_Fls_00208, SWS_Fls_00209, 
SWS_Fls_00216, SWS_Fls_00217 

SRS_Fls_12134 The flash driver shall 
provide an asynchronous 
read function 

SWS_Fls_00035, SWS_Fls_00097, 
SWS_Fls_00098, SWS_Fls_00236, 
SWS_Fls_00238, SWS_Fls_00239, 
SWS_Fls_00254, SWS_Fls_00256, 
SWS_Fls_00337, SWS_Fls_00338, 
SWS_Fls_00339, SWS_Fls_00340 

SRS_Fls_12135 The flash driver shall 
provide an asynchronous 
write function 

SWS_Fls_00026, SWS_Fls_00027, 
SWS_Fls_00035, SWS_Fls_00146, 
SWS_Fls_00223, SWS_Fls_00225, 
SWS_Fls_00226, SWS_Fls_00251, 
SWS_Fls_00254, SWS_Fls_00331, 
SWS_Fls_00332, SWS_Fls_00333, 
SWS_Fls_00334 

SRS_Fls_12136 The flash driver shall 
provide an asynchronous 
erase function 

SWS_Fls_00020, SWS_Fls_00021, 
SWS_Fls_00035, SWS_Fls_00145, 
SWS_Fls_00218, SWS_Fls_00220, 
SWS_Fls_00221, SWS_Fls_00250, 
SWS_Fls_00254, SWS_Fls_00327, 
SWS_Fls_00328, SWS_Fls_00329, 
SWS_Fls_00330 

SRS_Fls_12137 The flash driver shall 
provide a synchronous 
cancel function 

SWS_Fls_00033, SWS_Fls_00183, 
SWS_Fls_00229, SWS_Fls_00230, 
SWS_Fls_00252, SWS_Fls_00335, 
SWS_Fls_00336 

SRS_Fls_12138 The flash driver shall 
provide a synchronous 
status function 

SWS_Fls_00034, SWS_Fls_00184, 
SWS_Fls_00253 

SRS_Fls_12141 The flash driver shall verify 
written data 

SWS_Fls_00056, SWS_Fls_00200 

SRS_Fls_12143 The flash driver shall 
handle only one job at one 
time 

SWS_Fls_00002, SWS_Fls_00003, 
SWS_Fls_00023, SWS_Fls_00030, 
SWS_Fls_00033, SWS_Fls_00036, 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

21 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

SWS_Fls_00100, SWS_Fls_00268, 
SWS_Fls_00323, SWS_Fls_00324 

SRS_Fls_12144 The flash driver shall 
provide a function that has 
to be called for job 
processing 

SWS_Fls_00037, SWS_Fls_00038, 
SWS_Fls_00039, SWS_Fls_00196, 
SWS_Fls_00220, SWS_Fls_00225, 
SWS_Fls_00235, SWS_Fls_00238, 
SWS_Fls_00243, SWS_Fls_00255, 
SWS_Fls_00272, SWS_Fls_00345, 
SWS_Fls_00346, SWS_Fls_00374, 
SWS_Fls_00375, SWS_Fls_00376, 
SWS_Fls_00377, SWS_Fls_00378, 
SWS_Fls_00379 

SRS_Fls_12145 The job processing 
function of the flash driver 
shall process only as much 
data as the flash hardware 
can handle 

SWS_Fls_00040 

SRS_Fls_12147 The same requirements 
shall apply for an external 
and internal flash driver 

SWS_Fls_00088 

SRS_Fls_12148 The external flash driver 
shall have a semantically 
identical API as an internal 
flash driver 

SWS_Fls_00088 

SRS_Fls_12149 The source code of the 
external flash driver shall 
be independent from the 
underlying microcontroller 

SWS_Fls_00366 

SRS_Fls_12158 Before writing, the flash 
driver shall verify if the 
addressed memory area 
has been erased 

SWS_Fls_00055 

SRS_Fls_12159 The write and erase 
functions of the Flash 
driver shall check the 
passed address 
parameters 

SWS_Fls_00020, SWS_Fls_00021, 
SWS_Fls_00026, SWS_Fls_00027, 
SWS_Fls_00097, SWS_Fls_00098, 
SWS_Fls_00380, SWS_Fls_00381 

SRS_Fls_12160 After execution of an erase 
job, the flash driver shall 
verify that the addressed 
block has been erased 
completely 

SWS_Fls_00022 

SRS_Fls_12184 The flash driver shall limit 
the read access blocking 
times to the configured 
time 

SWS_Fls_00040 

SRS_Fls_12193 The flash driver shall load 
the code that accesses the 
flash hardware to RAM 
whenever an erase or write 
job is started 

SWS_Fls_00137, SWS_Fls_00140, 
SWS_Fls_00141, SWS_Fls_00214 

SRS_Fls_12194 The flash driver shall 
execute the code that 
accesses the flash 

SWS_Fls_00211, SWS_Fls_00212, 
SWS_Fls_00213, SWS_Fls_00215 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

22 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

hardware from RAM 

SRS_Fls_13300 The flash driver shall 
remove the code that 
accesses the flash 
hardware from RAM after 
the current job has been 
finished or canceled 

SWS_Fls_00143 

SRS_Fls_13301 The flash driver shall 
provide an asynchronous 
compare function 

SWS_Fls_00001, SWS_Fls_00150, 
SWS_Fls_00151, SWS_Fls_00152, 
SWS_Fls_00153, SWS_Fls_00186, 
SWS_Fls_00241, SWS_Fls_00243, 
SWS_Fls_00244, SWS_Fls_00257, 
SWS_Fls_00341, SWS_Fls_00342, 
SWS_Fls_00343, SWS_Fls_00344 

SRS_Fls_13302 The flash driver shall 
provide a synchronous 
selection function 

SWS_Fls_00155, SWS_Fls_00156, 
SWS_Fls_00187, SWS_Fls_00258 

SRS_Fls_13303 In normal mode, one cycle 
of the job processing 
function of the flash driver 
shall limit the block size to 
the default block size 

SWS_Fls_00040 

SRS_Fls_13304 In fast mode, one cycle of 
the job processing function 
of the flash driver shall limit 
the block size to the 
maximum block size 

SWS_Fls_00040 

SRS_MemHwAb_14005 The FEE and EA modules 
shall provide upper layers 
with a virtual 32bit address 
space 

SWS_Fls_00209, SWS_Fls_00216, 
SWS_Fls_00217 

SRS_SPAL_12057 All driver modules shall 
implement an interface for 
initialization 

SWS_Fls_00014 

SRS_SPAL_12063 All driver modules shall 
only support raw value 
mode 

SWS_Fls_00366 

SRS_SPAL_12064 All driver modules shall 
raise an error if the change 
of the operation mode 
leads to degradation of 
running operations 

SWS_Fls_00366 

SRS_SPAL_12067 All driver modules shall set 
their wake-up conditions 
depending on the selected 
operation mode 

SWS_Fls_00366 

SRS_SPAL_12069 All drivers of the SPAL that 
wake up from a wake-up 
interrupt shall report the 
wake-up reason 

SWS_Fls_00366 

SRS_SPAL_12078 The drivers shall be coded 
in a way that is most 
efficient in terms of 

SWS_Fls_00366 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

23 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

memory and runtime 
resources 

SRS_SPAL_12163 All driver modules shall 
implement an interface for 
de-initialization 

SWS_Fls_00366 

SRS_SPAL_12267 Wakeup sources shall be 
initialized by MCAL drivers 
and/or the MCU driver 

SWS_Fls_00366 

SRS_SPAL_12462 The register initialization 
settings shall be published 

SWS_Fls_00366 

SRS_SPAL_12463 The register initialization 
settings shall be combined 
and forwarded 

SWS_Fls_00366 

SRS_SWS_12137 - SWS_Fls_00035, SWS_Fls_00254 

SWS_BSW_00345 - SWS_Fls_00203 

SWS_BSW_00404 - SWS_Fls_00204 

SWS_BSW_00406 - SWS_Fls_00356 

 
 
 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

24 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

7 Functional specification 

 

7.1 General design rules 

 

[SWS_Fls_00001] ⌈The FLS module shall offer asynchronous services for 

operations on flash memory (read/erase/write). ⌋ (SRS_Fls_00134, SRS_Fls_00135, 
SRS_Fls_00136, SRS_Fls_13301) 
 

[SWS_Fls_00002] ⌈The FLS module shall not buffer data. The FLS module shall use 

application data buffers that are referenced by a pointer passed via the API. ⌋ 
(SRS_Fls_12143) 
 

[SWS_Fls_00003] ⌈The FLS module shall not ensure data consistency of the given 

application buffer. ⌋ (SRS_Fls_12143) 
 
It is the responsibility of the FLS module’s environment to ensure consistency of flash 
data during a flash read or write operation. 
 

[SWS_Fls_00205] ⌈The FLS module shall check static configuration parameters 

statically (at the latest during compile time) for correctness. ⌋ (SRS_BSW_00323, 
SRS_BSW_00167, SRS_BSW_00004) 
 

[SWS_Fls_00206] ⌈The FLS module shall validate the version information in the FLS 
module header and source files for consistency (e.g. by comparing the version 

information in the module header and source files with a pre-processor macro). ⌋ 
(SRS_BSW_00323, SRS_BSW_00167, SRS_BSW_00004) 
 

[SWS_Fls_00208] ⌈The FLS module shall combine all available flash memory areas 

into one linear address space (denoted by the parameters FlsBaseAddress and 

FlsTotalSize). ⌋ (SRS_Fls_12132) 

 

[SWS_Fls_00209] ⌈The FLS module shall map the address and length parameters 
for the read, write, erase and compare functions as “virtual” addresses to the physical 

addresses according to the physical structure of the flash memory areas. ⌋ 
(SRS_Fls_12132, SRS_MemHwAb_14005) 
 
As long as the restrictions regarding the alignment of those addresses are met, it is 
allowed that a read, write or erase job crosses the boundaries of a physical flash 
memory area. 
 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

25 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

7.2 Error classification 

 
The FLS module shall be able to detect the following errors and exceptions 
depending on its configuration (development/production): 
 

[SWS_Fls_00004] ⌈ 
 
Type or error Relevance Related error code Value [hex] 
API service called with wrong 
parameter 

Development FLS_E_PARAM_CONFIG 

FLS_E_PARAM_ADDRESS 

FLS_E_PARAM_LENGTH 

FLS_E_PARAM_DATA 

0x01 

0x02 

0x03 

0x04 

API service called without module 
initialization 

Development FLS_E_UNINIT 0x05 

API service called while driver still 
busy 

Development FLS_E_BUSY 0x06 

Erase verification (blank check) 
failed 

Development FLS_E_VERIFY_ERASE_

FAILED 

0x07 

Write verification (compare) failed Development FLS_E_VERIFY_WRITE_

FAILED 

0x08 

Timeout exceeded Development FLS_E_TIMEOUT 0x09 

API service called with NULL 
pointer 

Development FLS_E_PARAM_POINTER 0x0a 

⌋ (SRS_BSW_00385) 
 

[SWS_Fls_00310] ⌈The following development error codes shall be reported when 

an API service is called with a wrong parameter: FLS_E_PARAM_CONFIG, 

FLS_E_PARAM_ADDRESS, FLS_E_PARAM_LENGTH, FLS_E_PARAM_DATA. ⌋ 

(SRS_BSW_00337, SRS_BSW_00385, SRS_BSW_00327, SRS_BSW_00331) 
 

[SWS_Fls_00311] ⌈The development error code FLS_E_UNINIT shall be reported 

when an API service is called prior to module initialization. Exceptions are the 

functions Fls_Init and Fls_GetVersionInfo. ⌋ (SRS_BSW_00337, 

SRS_BSW_00385, SRS_BSW_00327, SRS_BSW_00331) 
 

[SWS_Fls_00312] ⌈The development error code FLS_E_BUSY shall be reported 

when an API service is called while the module is still busy. ⌋ (SRS_BSW_00337, 

SRS_BSW_00385, SRS_BSW_00327, SRS_BSW_00331) 
 

[SWS_Fls_00313] ⌈The development error code FLS_E_VERIFY_ERASE_FAILED 

shall be reported when the erase verification (blankcheck) failed. ⌋ (SRS_BSW_00337, 

SRS_BSW_00385, SRS_BSW_00327, SRS_BSW_00331) 
 

[SWS_Fls_00314] ⌈The development error code FLS_E_VERIFY_WRITE shall be 

reported when the write verification (compare) failed. ⌋ (SRS_BSW_00337, 

SRS_BSW_00385, SRS_BSW_00327, SRS_BSW_00331) 
 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

26 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

[SWS_Fls_00361] ⌈The development error code FLS_E_TIMEOUT shall be reported 

when the timeout supervision of a read, write, erase or compare job failed. ⌋ 
(RS_BRF_01076) 
 
 
Note: SWS_Fls_00313, SWS_Fls_00314 and SWS_Fls_00361 describe 
development errors although from their  ehavior those errors may also occur in a 
production system. Since erase verification (blankcheck, SWS_Fls_00022, 
SWS_Fls_00055), write verification (SWS_Fls_00056) and timeout supervision 
(SWS_Fls_00272, SWS_Fls_00359, SWS_Fls_00360) will have a significant impact 
on the systems performance and since data consistency in a production system will 
most likely be ensured by other means (like e.g. checksums, signatures, diagnostic 
timeouts) it was a design decision from the working group to make these features 
available only during the development phase (i.e. when development error detection 
is enabled). This way anyone who wants to use these features (and pay the price) 
can do so also in a production system by leaving development error detection 
enabled whilst anyone who doesn’t want to have the overhead can simply switch 
those features off. 
 

7.3 Production Errors 

This module does not specify any production errors. 

7.4 Runtime Errors 

Type or error Related error code Value [hex] 
Flash erase failed (HW) FLS_E_ERASE_FAILED 0x01 

Flash write failed (HW) FLS_E_WRITE_FAILED 0x02 

Flash read failed (HW) FLS_E_READ_FAILED 0x03 

Flash compare failed (HW) FLS_E_COMPARE_FAILED 0x04 

Expected hardware ID not matched 
(see SWS_Fls_00144) 

FLS_E_UNEXPECTED_FLASH_ID 0x05 

 
 

[SWS_Fls_00315] ⌈The runtime error code FLS_E_ERASE_FAILED shall be 

reported when the flash erase function failed. ⌋ (SRS_BSW_00337, SRS_BSW_00385, 

SRS_BSW_00327, SRS_BSW_00331) 
 

[SWS_Fls_00316] ⌈The runtime error code FLS_E_WRITE_FAILED shall be 

reported when the flash write function failed. ⌋ (SRS_BSW_00337, SRS_BSW_00385, 

SRS_BSW_00327, SRS_BSW_00331) 
 

[SWS_Fls_00317] ⌈The runtime error code FLS_E_READ_FAILED shall be reported 

when the flash read function failed. ⌋ (SRS_BSW_00337, SRS_BSW_00385, 

SRS_BSW_00327, SRS_BSW_00331) 
 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

27 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

[SWS_Fls_00318] ⌈The runtime error code FLS_E_COMPARE_FAILED shall be 

reported when the flash compare function failed. ⌋ (SRS_BSW_00337, SRS_BSW_00385, 

SRS_BSW_00327, SRS_BSW_00331) 
 

[SWS_Fls_00319] ⌈The runtime error code FLS_E_UNEXPECTED_FLASH_ID shall 

be reported when the expected flash ID is not matched (see SWS_Fls_00144). ⌋ 
(SRS_BSW_00337, SRS_BSW_00385, SRS_BSW_00327, SRS_BSW_00331) 
 
 

7.5 External flash driver 

[SWS_Fls_00144] ⌈During the initialization of the external flash driver, the FLS 
module shall check the hardware ID of the external flash device against the 
corresponding published parameter. If a hardware ID mismatch occurs, the FLS 

module shall report the error code FLS_E_UNEXPECTED_FLASH_ID to the Default Error 

Tracer (DET), set the FLS module status to FLS_E_UNINIT and shall not initialize 

itself. ⌋ (SRS_Fls_12107) 
 
A complete list of required parameters is specified in the SPI Handler/Driver Software 
Specification (Chapter “Configuration Specification”, marked as “SPI User”). 

7.6 Loading, executing and removing the flash access code 

Technical background information: Flash technology or flash memory segmentation 
may require that the routines that access the flash hardware (internal erase and write 
routines) are executed from RAM because reading the flash – for instruction fetch 
needed for code execution – is not allowed while programming the flash.  
 

[SWS_Fls_00137] ⌈The FLS module’s implementer shall place the code of the flash 

access routines into a separate C-module Fls_ac.c. ⌋ (SRS_Fls_12193) 

 

[SWS_Fls_00215] ⌈The FLS module’s flash access routines shall only disable 
interrupts and wait for the completion of the erase / write command if necessary (that 
is if it has to be ensured that no other code is executed in the meantime). ⌋  
(SRS_Fls_12194) 
 

[SWS_Fls_00211] ⌈The FLS module’s implementer shall keep the execution time for 

the flash access code as short as possible. ⌋ (SRS_Fls_12194) 
 

[SWS_Fls_00140] ⌈The FLS module’s erase routine shall load the flash access code 
for erasing the flash memory to the location in RAM pointed to by the erase function 
pointer contained in the flash drivers configuration set if the FLS module is configured 

to load the flash access code to RAM on job start. ⌋ (SRS_Fls_12193) 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

28 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

 

[SWS_Fls_00141] ⌈The FLS module’s write routine shall load the flash access code 
for writing the flash memory to the location in RAM pointed to by the write function 
pointer contained in the flash drivers configuration set if the FLS module is configured 

to load the flash access code to RAM on job start. ⌋ (SRS_Fls_12193) 
 

[SWS_Fls_00212] ⌈The FLS module’s main processing routine shall execute the 

flash access code routines. ⌋ (SRS_Fls_12194) 
 

[SWS_Fls_00213] ⌈The FLS module’s main processing routine shall access the 
flash access code routines by means of the respective function pointer contained in 
the FLS module’s configuration set (post-compile parameters) regardless whether 
the flash access code routines have been loaded to RAM or whether they can be 

executed directly from (flash) ROM. ⌋ (SRS_Fls_12194) 
 

[SWS_Fls_00143] ⌈After an erase or write job has been finished or canceled, the 
FLS module’s main processing routine shall unload (i.e. overwrite) the flash access 
code (internal erase / write routines) from RAM if they have been loaded to RAM by 

the flash driver. ⌋ (SRS_Fls_13300) 
 

[SWS_Fls_00214] ⌈The FLS module shall only load the access code to the RAM if 

the access code cannot be executed out of flash ROM. ⌋ (SRS_Fls_12193) 

7.7 Support for Debugging 

[SWS_Fls_00302] {Obsolete} ⌈ The module’s status, mode and the job result shall 

be made available for debugging (reading). ⌋  (RS_BRF_02240) 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

29 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

8 API specification 

8.1 Imported types  

[SWS_Fls_00248] ⌈ 
 

Module Imported Type 

MemIf MemIf_JobResultType 

MemIf_ModeType 

MemIf_StatusType 

Std_Types Std_ReturnType 

Std_VersionInfoType 

⌋ (SRS_BSW_00392) 

8.2 Type definitions 

8.2.1 Fls_ConfigType 

[SWS_Fls_00368]⌈  

Name: Fls_ConfigType 

Type: Structure 

Range: Hardware 

dependend 

structure 

Structure to hold the flash driver configuration set. The 
contents of the initialisation data structure are specific to the 
flash memory hardware. 

Description: A pointer to such a structure is provided to the flash driver initialization routine for 
configuration of the driver and flash memory hardware. 

⌋ (SRS_BSW_00392) 

8.2.2 Fls_AddressType 

[SWS_Fls_00369]⌈  

Name: Fls_AddressType 

Type: uint 

Range: 8 / 16 / 32 

bits 

-- Size depends on target platform and flash device. 

Description: Used as address offset from the configured flash base address to access a certain 
flash memory area. 

⌋ (SRS_BSW_00392) 

 

 [SWS_Fls_00216]  ⌈The type Fls_AddressType shall have 0 as lower limit for each 

flash device. ⌋ (SRS_Fls_12132, SRS_MemHwAb_14005) 
 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

30 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

[SWS_Fls_00217]  ⌈The FLS module shall add a device specific base address to the 

address type Fls_AddressType if necessary. ⌋ (SRS_Fls_12132, 
SRS_MemHwAb_14005) 
 

8.2.3 Fls_LengthType 

[SWS_Fls_00370]⌈  

Name: Fls_LengthType 

Type: uint 

Range: Same as 

Fls_AddressType 

-- Shall be the same type as Fls_AddressType because of 
arithmetic operations. Size depends on target platform and 
flash device. 

Description: Specifies the number of bytes to read/write/erase/compare. 

⌋ (SRS_BSW_00392) 

8.3 Function definitions 

8.3.1 Fls_Init 

 

[SWS_Fls_00249] ⌈ 
 

Service name: Fls_Init 

Syntax: void Fls_Init( 

    const Fls_ConfigType* ConfigPtr 

) 

Service ID[hex]: 0x00 

Sync/Async: Synchronous 

Reentrancy: Non Reentrant 

Parameters (in): ConfigPtr Pointer to flash driver configuration set. 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: Initializes the Flash Driver. 

⌋ (SRS_BSW_00101) 
 

[SWS_Fls_00014] ⌈The function Fls_Init shall initialize the FLS module 

(software) and all flash memory relevant registers (hardware) with parameters 

provided in the given configuration set. ⌋ (SRS_BSW_00404, SRS_BSW_00405, 

SRS_BSW_00101, SRS_SPAL_12057) 
 

[SWS_Fls_00191] ⌈The function Fls_Init shall store the pointer to the given 

configuration set in a variable in order to allow the FLS module access to the 

configuration set contents during runtime. ⌋ (SRS_BSW_00101) 
 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

31 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

[SWS_Fls_00086] ⌈The function Fls_Init shall initialize all FLS module global 

variables and those controller registers that are needed for controlling the flash 
device and that do not influence or depend on other (hardware) modules. Registers 
that can influence or depend on other modules shall be initialized by a common 

system module. ⌋ (SRS_BSW_00101) 
 

[SWS_Fls_00015] ⌈If development error detection for the module Fls is enabled: the 

function Fls_Init shall check the (hardware specific) contents of the given 

configuration set for being within the allowed range.  If this is not the case, it shall 

raise the development error FLS_E_PARAM_CONFIG. ⌋ (SRS_BSW_00323) 

 

[SWS_Fls_00323] ⌈The function Fls_Init shall set the FLS module state to 

MEMIF_IDLE after having finished the FLS module initialization. ⌋ (SRS_Fls_12143) 

 

[SWS_Fls_00324] ⌈The function Fls_Init shall set the flash job result to 

MEMIF_JOB_OK after having finished the FLS module initialization. ⌋ (SRS_Fls_12143) 

 

[SWS_Fls_00268] ⌈If development error detection for the module Fls is enabled: the 

function Fls_Init shall check that the FLS module is currently not busy (FLS 

module state is not MEMIF_BUSY). If this check fails, the function Fls_Init shall 

raise the development error FLS_E_BUSY. ⌋ (SRS_Fls_12143, SRS_BSW_00406) 

 

[SWS_Fls_00048] ⌈If supported by hardware, the function Fls_Init shall set the 

flash memory erase/write protection as provided in the configuration set. ⌋ 
(SRS_Fls_12132) 
 

8.3.2  Fls_Erase 

 

[SWS_Fls_00250] ⌈ 
 

Service name: Fls_Erase 

Syntax: Std_ReturnType Fls_Erase( 

    Fls_AddressType TargetAddress, 

    Fls_LengthType Length 

) 

Service ID[hex]: 0x01 

Sync/Async: Asynchronous 

Reentrancy: Non Reentrant 

Parameters (in): 

TargetAddress Target address in flash memory. This address offset will be 
added to the flash memory base address. 
Min.: 0 
Max.: FLS_SIZE - 1 

Length Number of bytes to erase 
Min.: 1 
Max.: FLS_SIZE - TargetAddress 

Parameters None 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

32 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

(inout): 

Parameters (out): None 

Return value: 
Std_ReturnType E_OK: erase command has been accepted 

E_NOT_OK: erase command has not been accepted 

Description: Erases flash sector(s). 

⌋ (SRS_Fls_12136) 
 

[SWS_Fls_00218] ⌈The job of the function Fls_Erase shall erase one or more 

complete flash sectors. ⌋ (SRS_Fls_12136) 
 

[SWS_Fls_00327] ⌈The function Fls_Erase shall copy the given parameters to 

FLS module internal variables and initiate an erase job. ⌋ (SRS_Fls_12136) 
 

[SWS_Fls_00328] ⌈After initiating the erase job, the function Fls_Erase shall set 

the FLS module status to MEMIF_BUSY. ⌋ (SRS_Fls_12136) 

 

[SWS_Fls_00329] ⌈After initiating the erase job, the function Fls_Erase shall set 

the job result to MEMIF_JOB_PENDING. ⌋ (SRS_Fls_12136) 

 

[SWS_Fls_00330] ⌈After initiating the erase job, the function Fls_Erase shall 

return with E_OK. ⌋ (SRS_Fls_12136) 

 

[SWS_Fls_00220] ⌈The FLS module shall execute the job of the function 

Fls_Erase asynchronously within the FLS module’s main function. ⌋ (SRS_Fls_12136, 

SRS_Fls_12144) 
 

[SWS_Fls_00221] ⌈The job of the function Fls_Erase shall erase a flash memory 

block starting from FlsBaseAddress + TargetAddress of size Length. 

 

Note: Length will be rounded up to the next full sector boundary since only complete 

flash sectors can be erased. ⌋ (SRS_Fls_12136) 
 

[SWS_Fls_00020] ⌈If development error detection for the module Fls is enabled: the 

function Fls_Erase shall check that the erase start address (FlsBaseAddress + 

TargetAddress) is aligned to a flash sector boundary and that it lies within the 

specified lower and upper flash address boundaries. If this check fails, the function 

Fls_Erase shall reject the erase request, raise the development error 

FLS_E_PARAM_ADDRESS and return with E_NOT_OK. ⌋ (SRS_BSW_00323, 

SRS_Fls_12136, SRS_Fls_12159) 
 

[SWS_Fls_00021] ⌈If development error detection for the module Fls is enabled: the 

function Fls_Erase shall check that the erase length is greater than 0 and that the 

erase end address (erase start address + length) is aligned to a flash sector 
boundary and that it lies within the specified upper flash address boundary. If this 

check fails, the function Fls_Erase shall reject the erase request, raise the 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

33 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

development error FLS_E_PARAM_LENGTH and return with E_NOT_OK. ⌋ 

(SRS_BSW_00323, SRS_Fls_12136, SRS_Fls_12159) 
  

[SWS_Fls_00065] ⌈If development error detection for the module Fls is enabled: the 

function Fls_Erase shall check that the FLS module has been initialized. If this 

check fails, the function Fls_Erase shall reject the erase request, raise the 

development error FLS_E_UNINIT and return with E_NOT_OK. ⌋ (SRS_BSW_00406) 

 

[SWS_Fls_00023] ⌈If development error detection for the module Fls is enabled: the 

function Fls_Erase shall check that the FLS module is currently not busy. If this 

check fails, the function Fls_Erase shall reject the erase request, raise the 

development error FLS_E_BUSY and return with E_NOT_OK. ⌋ (SRS_Fls_12143) 

 

[SWS_Fls_00145] ⌈If possible, e.g. with interrupt controlled implementations, the 
FLS module shall start the first round of the erase job directly within the function 

Fls_Erase to reduce overall runtime. ⌋ (SRS_Fls_12136) 

8.3.3 Fls_Write 

 

[SWS_Fls_00251] ⌈ 
 

Service name: Fls_Write 

Syntax: Std_ReturnType Fls_Write( 

    Fls_AddressType TargetAddress, 

    const uint8* SourceAddressPtr, 

    Fls_LengthType Length 

) 

Service ID[hex]: 0x02 

Sync/Async: Asynchronous 

Reentrancy: Non Reentrant 

Parameters (in): 

TargetAddress Target address in flash memory. This address offset will be 
added to the flash memory base address. 
Min.: 0 
Max.: FLS_SIZE - 1 

SourceAddressPtr Pointer to source data buffer 

Length Number of bytes to write 
Min.: 1 
Max.: FLS_SIZE - TargetAddress 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: 
Std_ReturnType E_OK: write command has been accepted 

E_NOT_OK: write command has not been accepted 

Description: Writes one or more complete flash pages. 

⌋ (SRS_Fls_12135) 

[SWS_Fls_00223] ⌈The job of the function Fls_Write shall write one or more 

complete flash pages to the flash device. ⌋ (SRS_Fls_12135) 
 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

34 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

[SWS_Fls_00331] ⌈The function Fls_Write shall copy the given parameters to Fls 

module internal variables and initiate a write job. ⌋ (SRS_Fls_12135) 
 

[SWS_Fls_00332] ⌈After initiating the write job, the function Fls_Write shall set 

the FLS module status to MEMIF_BUSY. ⌋ (SRS_Fls_12135) 

 

[SWS_Fls_00333] ⌈After initiating the write job, the function Fls_Write shall set 

the job result to MEMIF_JOB_PENDING. ⌋ (SRS_Fls_12135) 

 

[SWS_Fls_00334] ⌈After initiating the write job, the function Fls_Write shall return 

with E_OK. ⌋ (SRS_Fls_12135) 

 

[SWS_Fls_00225] ⌈The FLS module shall execute the write job of the function 

Fls_Write asynchronously within the FLS module’s main function. ⌋ (SRS_Fls_12135, 

SRS_Fls_12144) 
 

[SWS_Fls_00226] ⌈The job of the function Fls_Write shall program a flash 

memory block with data provided via SourceAddressPtr starting from 

FlsBaseAddress + TargetAddress of size Length. ⌋ (SRS_Fls_12135) 

 

[SWS_Fls_00026] ⌈If development error detection for the module Fls is enabled: the 

function Fls_Write shall check that the write start address (FlsBaseAddress + 

TargetAddress) is aligned to a flash page boundary and that it lies within the 

specified lower and upper flash address boundaries. If this check fails, the function 

Fls_Write shall reject the write request, raise the development error 

FLS_E_PARAM_ADDRESS and return with E_NOT_OK. ⌋ (SRS_BSW_00323, 

SRS_Fls_12135, SRS_Fls_12159) 
 

[SWS_Fls_00027] ⌈If development error detection for the module Fls is enabled: the 

function Fls_Write shall check that the write length is greater than 0, that the write 

end address (write start address + length) is aligned to a flash page boundary and 
that it lies within the specified upper flash address boundary. If this check fails, the 

function Fls_Write shall reject the write request, raise the development error 

FLS_E_PARAM_LENGTH and return with E_NOT_OK. ⌋ (SRS_BSW_00323, 

SRS_Fls_12135, SRS_Fls_12159) 
 

[SWS_Fls_00066] ⌈If development error detection for the module Fls is enabled: the 

function Fls_Write shall check that the FLS module has been initialized. If this 

check fails, the function Fls_Write shall reject the write request, raise the 

development error FLS_E_UNINIT and return with E_NOT_OK. ⌋ (SRS_BSW_00406) 

 

[SWS_Fls_00030] ⌈If development error detection for the module Fls is enabled: the 

function Fls_Write shall check that the FLS module is currently not busy. If this 

check fails, the function Fls_Write shall reject the write request, raise the 

development error FLS_E_BUSY and return with E_NOT_OK. ⌋ (SRS_Fls_12143) 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

35 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

 

[SWS_Fls_00157] ⌈If development error detection for the module Fls is enabled: the 

function Fls_Write shall check the given data buffer pointer for not being a null 

pointer. If the data buffer pointer is a null pointer, the function Fls_Write shall reject 

the write request, raise the development error FLS_E_PARAM_DATA and return with 

E_NOT_OK. ⌋ (SRS_BSW_00323) 

 

[SWS_Fls_00146] ⌈If possible, e.g. with interrupt controlled implementations, the 
FLS module shall start the first round of the write job directly within the function 

Fls_Write to reduce overall runtime. ⌋ (SRS_Fls_12135) 

8.3.4 Fls_Cancel 

 

[SWS_Fls_00252] ⌈ 
 

Service name: Fls_Cancel 

Syntax: void Fls_Cancel( 

    void 

) 

Service ID[hex]: 0x03 

Sync/Async: Synchronous 

Reentrancy: Non Reentrant 

Parameters (in): None 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: Cancels an ongoing job. 

⌋ (SRS_Fls_12137) 
 

[SWS_Fls_00229] ⌈The function Fls_Cancel shall cancel an ongoing flash read, 

write, erase or compare job. ⌋ (SRS_Fls_12137) 
 

[SWS_Fls_00230] ⌈The function Fls_Cancel shall abort a running job 

synchronously so that directly after returning from this function a new job can be 

started. ⌋ (SRS_Fls_12137) 
 

Note: The function Fls_Cancel is synchronous in its behaviour but at the same time 

asynchronous w.r.t. the underlying hardware: The job of the Fls_Cancel function 

(i.e. make the module ready for a new job request) is finished when it returns to the 
caller (hence it’s synchronous) but on the other hand e.g. an erase job might still be 
ongoing in the hardware device (hence it’s asynchronous w.r.t. the hardware).  
 

[SWS_Fls_00335] ⌈The function Fls_Cancel shall reset the FLS module’s internal 

job processing variables (like address, length and data pointer). ⌋ (SRS_Fls_12137) 
 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

36 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

[SWS_Fls_00336] ⌈The function Fls_Cancel shall set the FLS module state to 

MEMIF_IDLE. ⌋ (SRS_Fls_12137) 

 

[SWS_Fls_00033] ⌈The function Fls_Cancel shall set the job result to 

MEMIF_JOB_CANCELED if the job result currently has the value 

MEMIF_JOB_PENDING. Otherwise the function Fls_Cancel shall leave the job 

result unchanged. ⌋ (SRS_Fls_12137, SRS_Fls_12143) 
 

[SWS_Fls_00147] ⌈If configured, the function Fls_Cancel shall call the error 

notification function to inform the caller about the cancellation of a job. ⌋ 
(RS_BRF_01064) 
 

Note: The content of the affected flash memory cells will be undefined when 

canceling an ongoing job with the function Fls_Cancel.  

 

[SWS_Fls_00183] ⌈The function Fls_Cancel shall be pre-compile time 

configurable On/Off by the configuration parameter FlsCancelApi. ⌋ 

(SRS_BSW_00171, SRS_Fls_12137) 
 

[SWS_Fls_00356] ⌈If development error detection for the module Fls is enabled: the 

function Fls_Cancel shall check that the FLS module has been initialized. If this 

check fails, the function Fls_Cancel shall raise the development error 

FLS_E_UNINIT and return. ⌋ (SWS_BSW_00406) 

 

8.3.5 Fls_GetStatus 

 

[SWS_Fls_00253] ⌈ 
 

Service name: Fls_GetStatus 

Syntax: MemIf_StatusType Fls_GetStatus( 

    void 

) 

Service ID[hex]: 0x04 

Sync/Async: Synchronous 

Reentrancy: Reentrant 

Parameters (in): None 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: MemIf_StatusType -- 

Description: Returns the driver state. 

⌋ (SRS_Fls_12138) 

[SWS_Fls_00034] ⌈The function Fls_GetStatus shall return the FLS module state 

synchronously. ⌋ (SRS_Fls_12138) 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

37 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

 

[SWS_Fls_00184] ⌈The function Fls_GetStatus shall be pre-compile time 

configurable On/Off by the configuration parameter FlsGetStatusApi. ⌋ 

(SRS_Fls_12138, SRS_BSW_00171) 
 

Note: The function Fls_GetStatus may be called before the module has been 

initialized in which case it shall return MEMIF_UNINIT. 

8.3.6 Fls_GetJobResult 

 

[SWS_Fls_00254] ⌈ 
 

Service name: Fls_GetJobResult 

Syntax: MemIf_JobResultType Fls_GetJobResult( 

    void 

) 

Service ID[hex]: 0x05 

Sync/Async: Synchronous 

Reentrancy: Reentrant 

Parameters (in): None 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: MemIf_JobResultType -- 

Description: Returns the result of the last job. 

⌋ (SRS_Fls_12134, SRS_Fls_12135, SRS_Fls_12136, SRS_SWS_12137) 
 

[SWS_Fls_00035] ⌈The function Fls_GetJobResult shall return the result of the 

last job synchronously⌋  (SRS_Fls_12134, SRS_Fls_12135, SRS_Fls_12136, 
SRS_SWS_12137) 
 

[SWS_Fls_00036]  ⌈The erase, write, read and compare functions shall share the 
same job result, i.e. only the result of the last job can be queried. The FLS module 

shall overwrite the job result with MEMIF_JOB_PENDING if the FLS module has 

accepted a new job. ⌋ (SRS_Fls_12143) 
 

[SWS_Fls_00185] ⌈The function Fls_GetJobResult shall be pre-compile time 

configurable On/Off by the configuration parameter FlsGetJobResultApi. ⌋ 

(SRS_BSW_00171) 
 

[SWS_Fls_00358] ⌈If development error detection for the module Fls is enabled: the 

function Fls_GetJobResult shall check that the FLS module has been initialized. If 

this check fails, the function Fls_GetJobResult shall raise the development error 

FLS_E_UNINIT and return with MEMIF_JOB_FAILED. ⌋ (SRS_BSW_00406) 

 
 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

38 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

 

8.3.7 Fls_Read 

 

[SWS_Fls_00256] ⌈ 
 

Service name: Fls_Read 

Syntax: Std_ReturnType Fls_Read( 

    Fls_AddressType SourceAddress, 

    uint8* TargetAddressPtr, 

    Fls_LengthType Length 

) 

Service ID[hex]: 0x07 

Sync/Async: Asynchronous 

Reentrancy: Non Reentrant 

Parameters (in): 

SourceAddress Source address in flash memory. This address offset will be 
added to the flash memory base address. 
Min.: 0 
Max.: FLS_SIZE - 1 

Length Number of bytes to read 
Min.: 1 
Max.: FLS_SIZE - SourceAddress 

Parameters 
(inout): 

None 

Parameters (out): TargetAddressPtr Pointer to target data buffer 

Return value: 
Std_ReturnType E_OK: read command has been accepted 

E_NOT_OK: read command has not been accepted 

Description: Reads from flash memory. 

⌋ (SRS_Fls_12134) 
 

[SWS_Fls_00236] ⌈The function Fls_Read shall read from flash memory. ⌋ 

(SRS_Fls_12134) 
 

[SWS_Fls_00337] ⌈The function Fls_Read shall copy the given parameters to FLS 

module internal variables and initiate a read job. ⌋ (SRS_Fls_12134) 
 

[SWS_Fls_00338] ⌈After initiating a read job, the function Fls_Read shall set the 

FLS module status to MEMIF_BUSY. ⌋ (SRS_Fls_12134) 

 

[SWS_Fls_00339] ⌈After initiating a read job, the function Fls_Read shall set the 

FLS module job result to MEMIF_JOB_PENDING. ⌋ (SRS_Fls_12134) 

 

[SWS_Fls_00340] ⌈After initiating a read job, the function Fls_Read shall return 

with E_OK. ⌋ (SRS_Fls_12134) 

 

[SWS_Fls_00238] ⌈The FLS module shall execute the read job of the function 

Fls_Read asynchronously within the FLS module’s main function. ⌋ (SRS_Fls_12134, 

SRS_Fls_12144) 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

39 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

 

[SWS_Fls_00239] ⌈The read job of the function Fls_Read shall copy a continuous 

flash memory block starting from FlsBaseAddress + SourceAddress of size 

Length to the buffer pointed to by TargetAddressPtr. ⌋ (SRS_Fls_12134) 

 

[SWS_Fls_00097] ⌈If development error detection for the module Fls is enabled: the 

function Fls_Read shall check that the read start address (FlsBaseAddress + 

SourceAddress) lies within the specified lower and upper flash address 

boundaries. If this check fails, the function Fls_Read shall reject the read job, raise 

development error FLS_E_PARAM_ADDRESS and return with E_NOT_OK. ⌋ 

(SRS_BSW_00323, SRS_Fls_12134, SRS_Fls_12159) 
 

[SWS_Fls_00098] ⌈If development error detection for the module Fls is enabled: the 

function Fls_Read shall check that the read length is greater than 0 and that the 

read end address (read start address + length) lies within the specified upper flash 

address boundary. If this check fails, the function Fls_Read shall reject the read job, 

raise the development error FLS_E_PARAM_LENGTH and return with E_NOT_OK. ⌋ 

(SRS_BSW_00323, SRS_Fls_12134, SRS_Fls_12159) 
 

[SWS_Fls_00099] ⌈If development error detection for the module Fls is enabled: the 

function Fls_Read shall check that the driver has been initialized. If this check fails, 

the function Fls_Read shall reject the read request, raise the development error 

FLS_E_UNINIT and return with E_NOT_OK. ⌋ (SRS_BSW_00406) 

 

[SWS_Fls_00100] ⌈If development error detection for the module Fls is enabled: the 

function Fls_Read shall check that the driver is currently not busy. If this check fails, 

the function Fls_Read shall reject the read request, raise the development error 

FLS_E_BUSY and return with E_NOT_OK. ⌋ (SRS_Fls_12143) 

 

[SWS_Fls_00158] ⌈If development error detection for the module Fls is enabled: the 

function Fls_Read shall check the given data buffer pointer for not being a null 

pointer. If the data buffer pointer is a null pointer, the function Fls_Read shall reject 

the read request, raise the development error FLS_E_PARAM_DATA and return with 

E_NOT_OK. ⌋ (SRS_Fls_00323) 

 

[SWS_Fls_00240] ⌈The FLS module’s environment shall only call the function 

Fls_Read after the FLS module has been initialized. ⌋ (SRS_BSW_00406) 

8.3.8 Fls_Compare 

 

[SWS_Fls_00257] ⌈ 
 

Service name: Fls_Compare 

Syntax: Std_ReturnType Fls_Compare( 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

40 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

    Fls_AddressType SourceAddress, 

    const uint8* TargetAddressPtr, 

    Fls_LengthType Length 

) 

Service ID[hex]: 0x08 

Sync/Async: Asynchronous 

Reentrancy: Non Reentrant 

Parameters (in): 

SourceAddress Source address in flash memory. This address offset will be 
added to the flash memory base address. 
Min.: 0 
Max.: FLS_SIZE - 1 

TargetAddressPtr Pointer to target data buffer 

Length Number of bytes to compare 
Min.: 1 
Max.: FLS_SIZE - SourceAddress 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: 
Std_ReturnType E_OK: compare command has been accepted 

E_NOT_OK: compare command has not been accepted 

Description: Compares the contents of an area of flash memory with that of an application data 
buffer. 

⌋ (SRS_Fls_13301) 
 

[SWS_Fls_00241] ⌈The function Fls_Compare shall compare the contents of an 

area of flash memory with that of an application data buffer. ⌋ (SRS_Fls_13301) 
 

[SWS_Fls_00341] ⌈The function Fls_Compare shall copy the given parameters to 

Fls module internal variables and initiate a compare job. ⌋ (SRS_Fls_13301) 
 

[SWS_Fls_00342] ⌈After initiating the compare job, the function Fls_Compare shall 

set the status to MEMIF_BUSY. ⌋ (SRS_Fls_13301) 

 

[SWS_Fls_00343] ⌈After initiating the compare job, the function Fls_Compare shall 

set the job result to MEMIF_JOB_PENDING. ⌋ (SRS_Fls_13301) 

 

[SWS_Fls_00344] ⌈After initiating the compare job, the function Fls_Compare shall 

return with E_OK. ⌋ (SRS_Fls_13301) 

 

[SWS_Fls_00243] ⌈The FLS module shall execute the job of the function 

Fls_Compare asynchronously within the FLS module’s main function. ⌋ 

(SRS_Fls_13301, SRS_Fls_12144) 
 

[SWS_Fls_00244] ⌈The job of the function Fls_Compare shall compare a 

continuous flash memory block starting from FlsBaseAddress + SourceAddress 

of size Length with the buffer pointed to by TargetAddressPtr. ⌋ (SRS_Fls_13301) 

 

[SWS_Fls_00150] ⌈If development error detection for the module Fls is enabled: the 

function Fls_Compare shall check that the compare start address 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

41 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

(FlsBaseAddress + SourceAddress) lies within the specified lower and upper 

flash address boundaries. If this check fails, the function Fls_Compare shall reject 

the compare job, raise the development error FLS_E_PARAM_ADDRESS and return 

with E_NOT_OK. ⌋ (SRS_Fls_13301) 

 

[SWS_Fls_00151] ⌈If If development error detection for the module Fls is enabled: 

the function Fls_Compare shall check that the given length is greater than 0 and 

that the compare end address (compare start address + length) lies within the 
specified upper flash address boundary. If this check fails, the function 

Fls_Compare shall reject the compare job, raise the development error 

FLS_E_PARAM_LENGTH and return with E_NOT_OK. ⌋ (SRS_Fls_13301) 

 

[SWS_Fls_00152] ⌈If development error detection for the module Fls is enabled: the 

function Fls_Compare shall check that the driver has been initialized. If this check 

fails, the function Fls_Compare shall reject the compare job, raise the development 

error FLS_E_UNINIT and return with E_NOT_OK. ⌋ (SRS_Fls_13301) 

 

[SWS_Fls_00153] ⌈If development error detection for the module Fls is enabled: the 

function Fls_Compare shall check that the driver is currently not busy. If this check 

fails, the function Fls_Compare shall reject the compare job, raise the development 

error FLS_E_BUSY and return with E_NOT_OK. ⌋ (SRS_Fls_13301) 
 

[SWS_Fls_00273] ⌈If development error detection for the module Fls is enabled: the 

function Fls_Compare shall check the given data buffer pointer for not being a null 

pointer. If the data buffer pointer is a null pointer, the function Fls_Compare shall 

reject the request, raise the development error FLS_E_PARAM_DATA and return with 

E_NOT_OK. ⌋ (RS_BRF_01064) 

 

[SWS_Fls_00186] ⌈The function Fls_Compare shall be pre-compile time 

configurable On/Off by the configuration parameter FlsCompareApi. ⌋ 

(SRS_BSW_00171, SRS_Fls_13301) 

8.3.9 Fls_SetMode 

 

[SWS_Fls_00258] ⌈ 
 

Service name: Fls_SetMode 

Syntax: void Fls_SetMode( 

    MemIf_ModeType Mode 

) 

Service ID[hex]: 0x09 

Sync/Async: Synchronous 

Reentrancy: Non Reentrant 

Parameters (in): 
Mode MEMIF_MODE_SLOW: Slow read access / normal SPI access. 

MEMIF_MODE_FAST: Fast read access / SPI burst access. 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

42 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: Sets the flash driver’s operation mode. 

⌋ (SRS_Fls_13302) 
 

[SWS_Fls_00155] ⌈The function Fls_SetMode shall set the FLS module’s 

operation mode to the given “Mode” parameter. ⌋ (SRS_Fls_13302) 
 

[SWS_Fls_00156] ⌈If development error detection for the module Fls is enabled: the 

function Fls_SetMode shall check that the FLS module is currently not busy. If this 

check fails, the function Fls_SetMode shall reject the set mode request and raise 

the development error code FLS_E_BUSY. ⌋ (SRS_Fls_13302) 

 

[SWS_Fls_00187] ⌈The function Fls_SetMode shall be pre-compile time 

configurable On/Off by the configuration parameter FlsSetModeApi. ⌋ 

(SRS_BSW_00171, SRS_Fls_13302) 

8.3.10 Fls_GetVersionInfo 

  

[SWS_Fls_00259] ⌈ 
 

Service name: Fls_GetVersionInfo 

Syntax: void Fls_GetVersionInfo( 

    Std_VersionInfoType* VersioninfoPtr 

) 

Service ID[hex]: 0x10 

Sync/Async: Synchronous 

Reentrancy: Reentrant 

Parameters (in): None 

Parameters 
(inout): 

None 

Parameters (out): VersioninfoPtr Pointer to where to store the version information of this module. 

Return value: None 

Description: Returns the version information of this module. 

⌋ (SRS_BSW_00407) 
-  

 

 

[SWS_Fls_00363]⌈If development error detection for the module Fls is enabled: the 

function Fls_GetVersionInfo shall raise the development error 

FLS_E_PARAM_POINTER   if the argument is a NULL pointer and return without any 

action.  ⌋ (SRS_BSW_00323) 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

43 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

8.3.11 Fls_BlankCheck 

[SWS_Fls_00371]⌈  
 

Service name: Fls_BlankCheck 

Syntax: Std_ReturnType Fls_BlankCheck( 

    Fls_AddressType TargetAddress, 

    Fls_LengthType Length 

) 

Service ID[hex]: 0x0a 

Sync/Async: Asynchronous 

Reentrancy: Non Reentrant 

Parameters (in): 

TargetAddress Address in flash memory from which the blank check 
should be started. 
Min.: 0 
Max.: FLS_SIZE - 1 

Length Number of bytes to be checked for erase pattern. 
Min.: 1 
Max.: FLS_SIZE - TargetAddress 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: 

Std_ReturnType E_OK: request for blank checking has been accepted by 
the module 
E_NOT_OK: request for blank checking has not been 
accepted by the module 

Description: The function Fls_BlankCheck shall verify, whether a given memory area has been 
erased but not (yet) programmed. The function shall limit the maximum number of 
checked flash cells per main function cycle to the configured value 
FlsMaxReadNormalMode or FlsMaxReadFastMode respectively. 

(RS_BRF_01076) 
 

[SWS_Fls_00373]⌈ The function Fls_BlankCheck shall verify, whether a given 

memory area has been erased but not (yet) re-programmed.⌋ (RS_BRF_01076) 

 

[SWS_Fls_00374] ⌈ The function Fls_BlankCheck shall copy the given 

parameters to FLS module internal variables and initiate the verification job. ⌋
(SRS_Fls_12144) 
 

[SWS_Fls_00375] ⌈ After initiating the verification job, the function 

Fls_BlankCheck shall set the FLS module status to MEMIF_BUSY. ⌋
(SRS_Fls_12144) 
 

[SWS_Fls_00376]⌈ After initiating the verification job, the function 

Fls_BlankCheck shall set the FLS module job result to MEMIF_JOB_PENDING.⌋
(SRS_Fls_12144) 
 

[SWS_Fls_00377] ⌈ After initiating the verification job, the function 

Fls_BlankCheck shall return with E_OK.⌋ (SRS_Fls_12144) 

 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

44 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

[SWS_Fls_00378]⌈ The FLS module shall execute the verification job of the function 

Fls_BlankCheck asynchronously within the FLS module’s main function. ⌋
(SRS_Fls_12144) 
 

[SWS_Fls_00379] ⌈ The verification job of the function Fls_BlankCheck shall 

check, that the continuous flash memory area starting from FlsBaseAddress + 

TargetAddress of size Length is erased.⌋ (SRS_Fls_12144) 

 

[SWS_Fls_00380]⌈ If development error detection for the module FLS is enabled; 

the function Fls_BlankCheck shall check that the verification start address 

(FlsBaseAddress + TargetAddress) lies within the specified lower and upper flash 

address boundaries. If this check fails, the function Fls_BlankCheck shall reject 

the verification job, raise the development error FLS_E_PARAM_ADDRESS and return 

with E_NOT_OK.⌋ (SRS_Fls_12159) 

 

[SWS_Fls_00381]⌈  If development error detection for the module FLS is enabled: 

the function Fls_BlankCheck shall check that the given length is greater than 0 

and that the verification end address (verification start address + length) lies within 
the specified upper flash address boundary. If this check fails, the function 

Fls_BlankCheck shall reject the verification job, raise the development error 

FLS_E_PARAM_LENGTH and return with E_NOT_OK.⌋ (SRS_Fls_12159) 

 

[SWS_Fls_00382]⌈  If development error detection for the module FLS is enabled: 

the function Fls_BlankCheck shall check that the driver has been initialized. If this 

check fails, the function Fls_BlankCheck shall reject the verification request, raise 

the development error FLS_E_UNINIT and return with E_NOT_OK. ⌋
(SRS_BSW_00406) 
 

[SWS_Fls_00383]⌈  If development error detection for the module FLS is enabled: 

the function Fls_BlankCheck shall check that the driver is currently not busy. If this 

check fails, the function Fls_BlankCheck shall reject the verification request, raise 

the development error FLS_E_BUSY and return with E_NOT_OK. ⌋
(SRS_BSW_00406) 
 

8.4 Call-back notifications 

 
This chaper lists all functions provided by the Fls module to lower layer modules. 
 
Note: There are no callback functions to lower layer modules provided by the Flash  
Driver since this module is at the lowest (software) layer. 
 

[SWS_Fls_00193] ⌈Depending on implementation, callback routines provided and/or 
invoked by the FLS module may be called on interrupt level. The module providing 
those routines has therefore to make sure that their runtime is reasonably short, i.e. 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

45 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

since callbacks may be propagated upward through several software layers. ⌋ 
(SRS_BSW_00164, SRS_BSW_00325) 

8.5 Scheduled functions 

This chapter lists all functions provided by the Fls module and called directly by the 
Basic Software Module Scheduler. 
 

[SWS_Fls_00269] ⌈The Fls module shall provide only one scheduled function. 
Reading from / writing to flash memory cannot usually be done simultaneously and 
the overhead for synchronizing two scheduled functions would outweigh the benefits. 

⌋ (SRS_BSW_00432) 

8.5.1 Fls_MainFunction 

 

[SWS_Fls_00255] ⌈ 
 

Service name: Fls_MainFunction 

Syntax: void Fls_MainFunction( 

    void 

) 

Service ID[hex]: 0x06 

Description: Performs the processing of jobs. 

⌋ (SRS_Fls_12144) 
 

[SWS_Fls_00037] ⌈The function Fls_MainFunction shall perform the processing 

of the flash read, write, erase and compare jobs. ⌋ (SRS_Fls_12144) 
 

[SWS_Fls_00038] ⌈When a job has been initiated, the FLS module’s environment 

shall call the function Fls_MainFunction cyclically until the job is finished. ⌋ 

(SRS_Fls_12144) 
 
Note: The function Fls_MainFunction may also be called cyclically if no job is 
currently pending. 
 

[SWS_Fls_00039] ⌈The function Fls_MainFunction shall return without any 

action if no job is pending. ⌋ (SRS_Fls_12144) 
 

[SWS_Fls_00040] ⌈The function Fls_MainFunction shall only process as much 

data in one call cycle as statically configured for the current job type (read, write or 

compare) and the current FLS module’s operating mode (normal, fast). ⌋ 

(SRS_Fls_13303, SRS_Fls_13304, SRS_Fls_12145, SRS_Fls_12184) 
 

[SWS_Fls_00104] ⌈The function Fls_MainFunction shall set the job result to 

MEMIF_JOB_FAILED and report the error code FLS_E_ERASE_FAILED to the DET 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

46 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

if a flash erase job fails due to a hardware error. ⌋ (SRS_BSW_00339, SRS_BSW_00385, 

SRS_BSW_00466) 
 

[SWS_Fls_00105] ⌈The function Fls_MainFunction shall set the job result to 

MEMIF_JOB_FAILED and report the error code FLS_E_WRITE_FAILED to the DET 

if a flash write job fails due to a hardware error. ⌋ (SRS_BSW_00339, SRS_BSW_00385, 

SRS_BSW_00466) 
 

[SWS_Fls_00106] ⌈The function Fls_MainFunction shall set the job result to 

MEMIF_JOB_FAILED and report the error code FLS_E_READ_FAILED to the DET if 

a flash read job fails due to a hardware error. ⌋ (SRS_BSW_00339, SRS_BSW_00385, 

SRS_BSW_00466) 
 

[SWS_Fls_00154] ⌈The function Fls_MainFunction shall set the job result to 

MEMIF_JOB_FAILED and report the error code FLS_E_COMPARE_FAILED to the 

DET if a flash compare job fails due to a hardware error. ⌋ (SRS_BSW_00339, 

SRS_BSW_00385, SRS_BSW_00466) 
 

[SWS_Fls_00200] ⌈The function Fls_MainFunction shall set the job result to 

MEMIF_BLOCK_INCONSISTENT if the compared data from a flash compare job are 

not equal. ⌋ (SRS_Fls_12141) 
 

[SWS_Fls_00022] ⌈If development error detection for the module Fls is enabled: 

After a flash block has been erased, the function Fls_MainFunction shall compare 

the contents of the addressed memory area against the value of an erased flash cell 
to check that the block has been completely erased. If this check fails, the function 

Fls_MainFunction shall set the FLS module’s job result to MEMIF_JOB_FAILED 

and raise development error FLS_E_VERIFY_ERASE_FAILED. ⌋ (SRS_Fls_12160) 

 

[SWS_Fls_00055] ⌈If development error detection for the module Fls is enabled: 

Before writing a flash block, the function Fls_MainFunction shall compare the 

contents of the addressed memory area against the value of an erased flash cell to 
check that the block has been completely erased. If this check fails, the function 

Fls_MainFunction shall set the FLS module’s job result to MEMIF_JOB_FAILED 

and raise development error FLS_E_VERIFY_ERASE_FAILED. ⌋ (SRS_Fls_12158) 

 

[SWS_Fls_00056] ⌈If development error detection for the module Fls is enabled: 

After writing a flash block, the function Fls_MainFunction shall compare the 

contents of the reprogrammed memory area against the contents of the provided 
application buffer to check that the block has been completely reprogrammed. If this 

check fails, the function Fls_MainFunction shall set the FLS module’s job result to 

MEMIF_JOB_FAILED and raise the development error 

FLS_E_VERIFY_WRITE_FAILED. ⌋ (SRS_Fls_12141) 

 

[SWS_Fls_00345] ⌈After a read, erase, write or compare job has been finished, the 

function Fls_MainFunction shall set the FLS module’s job result to 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

47 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

MEMIF_JOB_OK if it is currently in state MEMIF_JOB_PENDING. Otherwise, it shall 

leave the result unchanged. ⌋ (SRS_Fls_12144) 
 

[SWS_Fls_00346] ⌈After a read, erase, write or compare job has been finished, the 

function Fls_MainFunction shall set the FLS module’s state to MEMIF_IDLE and 

call the job end notification function if configured (see ECUC_Fls_00307). ⌋ 

(SRS_Fls_12144) 
 

[SWS_Fls_00232] ⌈The configuration parameter FlsUseInterrupts shall switch 

between interrupt and polling controlled job processing if this is supported by the 

flash memory hardware. ⌋ (SRS_BSW_00164) 
 

[SWS_Fls_00233] ⌈The FLS module’s implementer shall locate the interrupt service 

routine in Fls_Irq.c. ⌋ (RS_BRF_01144) 

 

[SWS_Fls_00234] ⌈If interrupt controlled job processing is supported and enabled 

with the configuration parameter FlsUseInterrupts, the interrupt service routine 

shall reset the interrupt flag, check for errors reported by the underlying hardware, 
reload the hardware finite state machine for the next round of the pending job or call 

the appropriate notification routine if the job is finished or aborted. ⌋ (RS_BRF_01144) 
 

[SWS_Fls_00235] ⌈The function Fls_MainFunction shall process jobs without 

hardware interrupt support (e.g. read jobs). ⌋ (SRS_Fls_12144) 
 

[SWS_Fls_00272] ⌈If development error detection for the module Fls is enabled: the 

function Fls_MainFunction shall provide a timeout monitoring for the currently 

running job, that is it shall supervise the deadline of the read / compare / erase or 

write job. ⌋ (SRS_Fls_12144, RS_BRF_01076) 
 

[SWS_Fls_00359] ⌈If development error detection for the module Fls is enabled: the 

function Fls_MainFunction shall check, whether the configured maximum erase 

time (see ECUC_Fls_00298 FlsEraseTime) has been exceeded. If this is the case, 

the function Fls_MainFunction shall raise the development error 

FLS_E_TIMEOUT. ⌋ (RS_BRF_01076) 

 

[SWS_Fls_00360] ⌈If development error detection for the module Fls is enabled: the 

function Fls_MainFunction shall check, whether the expected maximum write 

time (see note below) has been exceeded. If this is the case, the function 

Fls_MainFunction shall raise the development error FLS_E_TIMEOUT. ⌋ 

(RS_BRF_01076) 
 
Note: The expected maximum write time depends on the current mode of the Fls 
module (see SWS_Fls_00258), the configured number of bytes to write in this mode 
(see ECUC_Fls_00278 and ECUC_Fls_00277 respectively), the size of a single flash 
page (see ECUC_Fls_00281) and last the maximum time to write one flash page 
(see ECUC_Fls_00301). The number of bytes to write divided by the size of one 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

48 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

flash page yields the number of pages to write in one cycle. This multiplied with the 
maximum write time for one flash page gives you the expected maximum write time. 
 

[SWS_Fls_00362] ⌈If development error detection for the module Fls is enabled: the 

function Fls_MainFunction shall check, whether the expected maximum read / 

compare time (see note below) has been exceeded. If this is the case, the function 

Fls_MainFunction shall raise the development error FLS_E_TIMEOUT. ⌋ 

(RS_BRF_01076) 
 
Note: There are no published timings for read / compare (these would mostly depend 
on whether the flash device is internal or external e.g. connected via SPI). The 
solution would be similar as for write jobs above: the configured number of bytes to 
read (and to compare) is coupled to the expected read / compare times which should 
be supervised by the Fls_MainFunction. If this is not detailed enough there are two 
possibilities: 

- specify expected read / compare times (difficult because of the dependency 
mentioned above) 

- leave read / compare jobs out of the timeout supervision (change 
SWS_Fls_00272). 

 

[SWS_Fls_00117] ⌈If development error detection for the module Fls is enabled: the 

function Fls_MainFunction shall check that the FLS module has been initialized. If 

this check fails, the function Fls_MainFunction shall raise the development error 

FLS_E_UNINIT. ⌋ (SRS_BSW_00406 ) 

 

[SWS_Fls_00196] ⌈The function Fls_MainFunction shall at the most issue one 

sector erase command (to the hardware) in each cycle. ⌋ (SRS_Fls_12144) 
 
Note: The requirement above shall ensure that maximum one sector is erased 
sequentially within one cycle of the driver’s main function. If the hardware is capable 
of erasing more than one sector in parallel, this shall not be restricted by this 
specification. 

8.6 Expected Interfaces 

This chapter lists all functions the Fls module requires from other modules. 

8.6.1 Mandatory Interfaces 

 
This chapter defines all interfaces which are required to fulfill the core functionality of 
the module. 
 

[SWS_Fls_00260] ⌈ 
 

API function Description 

⌋ (SRS_BSW_00469, SRS_BSW_00339) 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

49 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

 
Note: If the flash device is connected via SPI, also the SPI interfaces are required to 
fulfill the modules core functionality. Which interfaces are needed exactly shall not be 
detailed further in this specification. 

8.6.2 Optional Interfaces 

 
This chapter defines all interfaces which are required to fulfill an optional functionality 
of the module. 
 

[SWS_Fls_00261] ⌈ 
 

API function Description 

Det_ReportError Service to report development errors. 

⌋ (SRS_BSW_00442) 

8.6.3 Configurable interfaces 

In this chapter, all interfaces are listed for which the target function can be 
configured. The target function is usually a call-back function. The names of these 
kind of interfaces is not fixed because they are configurable. 
 

[SWS_Fls_00109] ⌈The job processing callback notifications shall be configurable as 

function pointers within the initialization data structure (Fls_ConfigType). ⌋ 

(SRS_BSW_00387) 
 

[SWS_Fls_00110] ⌈The callback notifications shall have no parameters and no 

return value. ⌋ (SRS_BSW_00387) 
 

[SWS_Fls_00262] ⌈ 
 

Service name: Fee_JobEndNotification 

Syntax: void Fee_JobEndNotification( 

    void 

) 

Sync/Async: Synchronous 

Reentrancy: Don't care 

Parameters (in): None 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: This callback function is called when a job has been completed with a positive 
result. 

⌋ (RS_BRF_01064, SRS_BSW_00387) 
 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

50 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

[SWS_Fls_00167] ⌈The FLS module shall call the callback function 

Fee_JobEndNotification when the module has completed a job with a positive 

result: 

 Read job finished & OK 

 Write job finished & OK 

 Erase job finished & OK 

 Compare job finished & memory blocks are the same⌋ (RS_BRF_01064, 
SRS_BSW_00387) 

 

[SWS_Fls_00263]  ⌈ 
 

Service name: Fee_JobErrorNotification 

Syntax: void Fee_JobErrorNotification( 

    void 

) 

Sync/Async: Synchronous 

Reentrancy: Don't care 

Parameters (in): None 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: This callback function is called when a job has been canceled or finished with 
negative result. 

⌋ (RS_BRF_01064, SRS_BSW_00387) 
 

[SWS_Fls_00347] ⌈The FLS module shall call the callback function 

Fee_JobErrorNotification when the module has finished a job with a negative 

result: 

 Read job failed 

 Write job failed 

 Erase job failed 

 Compare job failed⌋ (SRS_BSW_00387) 
 

[SWS_Fls_00348] ⌈The FLS module shall call the callback function 

Fee_JobErrorNotification when the module has canceled an ongoing job: 

 Read job aborted 

 Write job aborted 

 Erase job aborted 

 Compare job aborted⌋ (SRS_BSW_00387) 
 

[SWS_Fls_00349] ⌈The FLS module shall call the callback function 

Fee_JobErrorNotification when the module has finished a compare job and 

the memory blocks differ: 

 Compare job finished and memory blocks differ⌋ (SRS_BSW_00387) 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

51 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

9 Sequence diagrams 

9.1 Initialization 

 

«module»

EcuM

«module»

Fls

Fls_Init(Fls_ConfigType*)

Fls_Init()

 

Figure 2: Flash driver initialization sequence 

9.2 Synchronous functions 

The following sequence diagram shows the function Fls_GetJobResult as an 

example for the synchronous functions of this module. The same sequence applies 

also to the functions Fls_GetStatus and Fls_SetMode. 

 

«module»

NvM

«module»

Fls

«module»

Fee

«module»

MemIf

MemIf_GetJobResult(MemIf_JobResultType, uint8)

Fee_GetJobResult(MemIf_JobResultType)

Fls_GetJobResult(MemIf_JobResultType)

Fls_GetJobResult()

Fee_GetJobResult()

MemIf_GetJobResult()

 

Figure 3: Fls_GetJobResult 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

52 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

9.3 Asynchronous functions 

 
The following sequence diagram shows the flash write function (with the 

configuration option FlsAcLoadOnJobStart set) as an example for the 

asynchronous functions of this module. The same sequence applies to the erase, 
read and compare jobs, with the only difference that for the read and compare jobs 
no flash access code needs to be loaded to / unloaded from RAM. 
 

BSW Task (OS task

or cyclic call)

«module»

NvM

«module»

Fls

«module»

Fee

«module»

MemIf

loop Fls_MainFunction

MemIf_Write(Std_ReturnType, uint8, uint16, const uint8*)

Fee_Write(Std_ReturnType, uint16, const

uint8*)

Fls_Write(Std_ReturnType, Fls_AddressType, const

uint8*, Fls_LengthType)
Load flash access

code to RAM()

Fls_Write()

Fee_Write()

MemIf_Write()

Fls_MainFunction()

Fls_MainFunction()

Fls_MainFunction()

Unload flash

access code from

RAM()

Fee_JobEndNotification()

NvM_JobEndNotification()

NvM_JobEndNotification()

Fee_JobEndNotification()

Fls_MainFunction()

 

Figure 4: Flash write sequence, flash access code loaded on job start 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

53 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

9.4 Canceling a running job 

«module»

NvM

«module»

MemIf

«module»

Fee

«module»

Fls

MemIf_Cancel(uint8)

Fee_Cancel()

Fls_Cancel()

Fee_JobErrorNotification()

NvM_JobErrorNotification()

NvM_JobErrorNotification()

Fee_JobErrorNotification()

Fls_Cancel()

Fee_Cancel()

MemIf_Cancel()

 

Figure 5: Canceling a running flash job 

 

Note: The FLS module’s environment shall not call the function Fls_Cancel during 

a running Fls_MainFunction invocation. 

 
This can be achieved by one of the following scheduling configurations: 

 Possibility 1: The job functions of the NVRAM manager and the flash driver 
are synchronized (e.g. called sequentially within one task) 

 Possibility 2: The task that calls the Fls_MainFunction function can not be 

preempted by another task. 
 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

54 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

10 Configuration specification 

 
 

10.1 Containers and configuration parameters 

 
The following chapters summarize all configuration parameters. The detailed 
meanings of the parameters describe Chapters 10.2 and Chapter 10.3. 

10.1.1 Variants 

[SWS_Fls_00203] ⌈VARIANT-PRE-COMPILE 

Only parameters with “Pre-compile time” configuration are allowed in this variant. ⌋ 
(SWS_BSW_00345) 
 

[SWS_Fls_00204] ⌈VARIANT-POST-BUILD 
Parameters with “Pre-compile time”, “Link time” and “Post-build time” are 

allowed in this variant. ⌋ (SWS_BSW_00404) 
 

 [SWS_Fls_00351] ⌈Only one interface for initialization shall be implemented (in 
contradiction to SRS_BSW_00414) and it shall not depend on the modules 

configuration which interface the calling software module shall use. ⌋ 
(SRS_BSW_00101) 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

55 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

10.1.2 Fls 

SWS Item  ECUC_Fls_00001 :  

Module Name  Fls  

Module Description  

Configuration of the Fls (internal or external flash driver) module. 
Its multiplicity describes the number of flash drivers present, so there will 
be one container for each flash driver in the ECUC template. When no 
flash driver is present then the multiplicity is 0. 

Post-Build Variant Support  true  

   

Included Containers  

Container Name  Multiplicity  Scope / Dependency  

FlsConfigSet  1  
Container for runtime configuration parameters of the flash 
driver. 
Implementation Type: Fls_ConfigType. 

FlsGeneral  1  
Container for general parameters of the flash driver. These 
parameters are always pre-compile. 

FlsPublishedInformation  1  

Additional published parameters not covered by 
CommonPublishedInformation container. 
Note that these parameters do not have any configuration 
class setting, since they are published information. 

   

[SWS_Fls_00171⌈The table above specifies parameters that shall be configured 

during system generation. These parameters shall be located in the file Fls_Cfg.h. 

Further hardware or implementation specific parameters can be added if necessary. 

⌋ (SRS_BSW_00345, SRS_Fls_12132) 
 

10.1.3 FlsGeneral 

SWS Item  ECUC_Fls_00172 :  

Container Name  FlsGeneral  

Description  
Container for general parameters of the flash driver. These parameters are 
always pre-compile. 

Configuration Parameters  

   

SWS Item  ECUC_Fls_00284 :  

Name  
 

FlsAcLoadOnJobStart  

Description  The flash driver shall load the flash access code to RAM whenever an 
erase or write job is started and unload (overwrite) it after that job has 
been finished or canceled. 
true: Flash access code loaded on job start / unloaded on job end  
 

                        or error. 
                         

false: Flash access code not loaded to / unloaded from RAM at all. 

Multiplicity  1  

Type  EcucBooleanParamDef  

Default value  false  

Post-Build Variant Value  false  

Value Configuration Class  Pre-compile time  X  All Variants  

Link time  --     



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

56 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

Post-build time  --     

Scope / Dependency  scope: local  

   

SWS Item  ECUC_Fls_00169 :  

Name  
 

FlsBaseAddress  

Description  The flash memory start address (see also SWS_Fls_00208 and 
SWS_Fls_00209). 
This parameter defines the lower boundary for read / write / erase and 
compare jobs. 

Multiplicity  1  

Type  EcucIntegerParamDef  

Range  0 .. 4294967295    

Default value  --  

Post-Build Variant Value  false  

Value Configuration Class  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  

   

SWS Item  ECUC_Fls_00319 :  

Name  
 

FlsBlankCheckApi  

Description  Compile switch to enable/disable the Fls_BlankCheck function. 
true: API supported / function provided. false: API not supported / function 
not provided 

Multiplicity  1  

Type  EcucBooleanParamDef  

Default value  false  

Post-Build Variant Value  false  

Value Configuration Class  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  

   

SWS Item  ECUC_Fls_00285 :  

Name  
 

FlsCancelApi  

Description  Compile switch to enable and disable the Fls_Cancel function. 
true: API supported / function provided. false: API not supported / function 
not provided 

Multiplicity  1  

Type  EcucBooleanParamDef  

Default value  --  

Post-Build Variant Value  false  

Value Configuration Class  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  

   

SWS Item  ECUC_Fls_00286 :  

Name  
 

FlsCompareApi  

Description  Compile switch to enable and disable the Fls_Compare function. 
true: API supported / function provided. false: API not supported / function 
not provided 

Multiplicity  1  

Type  EcucBooleanParamDef  

Default value  --  

Post-Build Variant Value  false  



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

57 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

Value Configuration Class  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  

   

SWS Item  ECUC_Fls_00287 :  

Name  
 

FlsDevErrorDetect  

Description  Switches the Default Error Tracer (Det) detection and notification ON or 
OFF. 

 true: enabled (ON).  

 false: disabled (OFF). 

Multiplicity  1  

Type  EcucBooleanParamDef  

Default value  true  

Post-Build Variant Value  false  

Value Configuration Class  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  

   

SWS Item  ECUC_Fls_00288 :  

Name  
 

FlsDriverIndex  

Description  Index of the driver, used by FEE. 

Multiplicity  1  

Type  EcucIntegerParamDef (Symbolic Name generated for this parameter)  

Range  0 .. 254    

Default value  --  

Post-Build Variant Value  false  

Value Configuration Class  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: ECU  

   

SWS Item  ECUC_Fls_00289 :  

Name  
 

FlsGetJobResultApi  

Description  Compile switch to enable and disable the Fls_GetJobResult function. 
true: API supported / function provided. false: API not supported / function 
not provided 

Multiplicity  1  

Type  EcucBooleanParamDef  

Default value  --  

Post-Build Variant Value  false  

Value Configuration Class  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  

   

SWS Item  ECUC_Fls_00290 :  

Name  
 

FlsGetStatusApi  

Description  Compile switch to enable and disable the Fls_GetStatus function. 
true: API supported / function provided. false: API not supported / function 
not provided 

Multiplicity  1  

Type  EcucBooleanParamDef  



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

58 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

Default value  --  

Post-Build Variant Value  false  

Value Configuration Class  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  

   

SWS Item  ECUC_Fls_00291 :  

Name  
 

FlsSetModeApi  

Description  Compile switch to enable and disable the Fls_SetMode function. 
true: API supported / function provided. false: API not supported / function 
not provided 

Multiplicity  1  

Type  EcucBooleanParamDef  

Default value  --  

Post-Build Variant Value  false  

Value Configuration Class  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  

   

SWS Item  ECUC_Fls_00170 :  

Name  
 

FlsTotalSize  

Description  The total amount of flash memory in bytes (see also SWS_Fls_00208 and 
SWS_Fls_00209). 
This parameter in conjunction with FLS_BASE_ADDRESS defines the 
upper boundary for read / write / erase and compare jobs. 

Multiplicity  1  

Type  EcucIntegerParamDef  

Range  0 .. 4294967295    

Default value  --  

Post-Build Variant Value  false  

Value Configuration Class  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  

   

SWS Item  ECUC_Fls_00292 :  

Name  
 

FlsUseInterrupts  

Description  Job processing triggered by hardware interrupt. 
true: Job processing triggered by interrupt (hardware controlled). false: Job 
processing not triggered by interrupt (software controlled) or the underlying 
hardware does not support interrupt mode for flash operations. 

Multiplicity  1  

Type  EcucBooleanParamDef  

Default value  false  

Post-Build Variant Value  false  

Value Configuration Class  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  
dependency: Only available if supported by underlying flash hardware  

   

SWS Item  ECUC_Fls_00293 :  

Name  
 

FlsVersionInfoApi  

Description  Pre-processor switch to enable / disable the API to read out the modules 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

59 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

version information. 
true: Version info API enabled. false: Version info API disabled. 

Multiplicity  1  

Type  EcucBooleanParamDef  

Default value  --  

Post-Build Variant Value  false  

Value Configuration Class  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  

   

No Included Containers  

   

 

10.1.4  FlsConfigSet 

SWS Item  ECUC_Fls_00174 :  

Container Name  FlsConfigSet  

Description  
Container for runtime configuration parameters of the flash driver.  
Implementation Type: Fls_ConfigType. 

Configuration Parameters  

   

SWS Item  ECUC_Fls_00270 :  

Name  
 

FlsAcErase  

Description  Address offset in RAM to which the erase flash access code shall be 
loaded. 
Used as function pointer to access the erase flash access code. 

Multiplicity  1  

Type  EcucIntegerParamDef  

Range  0 .. 4294967295    

Default value  --  

Post-Build Variant Value  true  

Value Configuration Class  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  --     

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_Fls_00305 :  

Name  
 

FlsAcWrite  

Description  Address offset in RAM to which the write flash access code shall be 
loaded. 
Used as function pointer to access the write flash access code. 

Multiplicity  1  

Type  EcucIntegerParamDef  

Range  0 .. 4294967295    

Default value  --  

Post-Build Variant Value  true  

Value Configuration Class  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  --     

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_Fls_00306 :  

Name  
 

FlsCallCycle  



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

60 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

Description  Cycle time of calls of the flash driver's main function (in seconds). 

Multiplicity  1  

Type  EcucFloatParamDef  

Range  0 .. 1    

Default value  --  

Post-Build Variant Value  true  

Value Configuration Class  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  --     

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  
dependency: Only relevant if deadline monitoring for internal functionality 
has to be done in software (e.g. erase / write timings)  

   

SWS Item  ECUC_Fls_00318 :  

Name  
 

FlsDefaultMode  

Description  This parameter is the default FLS device mode after initialization. 
Implementation Type: MemIf_ModeType. 

Multiplicity  1  

Type  EcucEnumerationParamDef  

Range  MEMIF_MODE_FAST  The driver is working in fast mode 
(fast read access / SPI burst access). 

MEMIF_MODE_SLOW  The driver is working in slow mode. 

Default value  MEMIF_MODE_SLOW  

Post-Build Variant 
Value  

true  

Value 
Configuration 
Class  

Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  --     

Post-build time  X  VARIANT-POST-BUILD  

Scope / 
Dependency  

scope: local  

   

SWS Item  ECUC_Fls_00307 :  

Name  
 

FlsJobEndNotification  

Description  Mapped to the job end notification routine provided by some upper layer 
module, typically the Fee module. 

Multiplicity  0..1  

Type  EcucFunctionNameDef  

Default value  --  

maxLength  --  

minLength  --  

regularExpression  --  

Post-Build Variant 
Multiplicity  

true  

Post-Build Variant Value  true  

Multiplicity Configuration 
Class  

Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  --     

Post-build time  X  VARIANT-POST-BUILD  

Value Configuration Class  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  --     

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_Fls_00274 :  

Name  
 

FlsJobErrorNotification  

Description  Mapped to the job error notification routine provided by some upper layer 
module, typically the Fee module. 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

61 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

Multiplicity  0..1  

Type  EcucFunctionNameDef  

Default value  --  

maxLength  --  

minLength  --  

regularExpression  --  

Post-Build Variant 
Multiplicity  

true  

Post-Build Variant Value  true  

Multiplicity Configuration 
Class  

Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  --     

Post-build time  X  VARIANT-POST-BUILD  

Value Configuration Class  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  --     

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_Fls_00275 :  

Name  
 

FlsMaxReadFastMode  

Description  The maximum number of bytes to read or compare in one cycle of the 
flash driver's job processing function in fast mode. 

Multiplicity  1  

Type  EcucIntegerParamDef  

Range  0 .. 4294967295    

Default value  --  

Post-Build Variant Value  true  

Value Configuration Class  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  --     

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  
dependency: The minimum number might depend on the underlying flash 
device or communication driver, e.g. if the access to an external flash 
device is done via SPI and the minimum transfer size on SPI is four bytes.  

   

SWS Item  ECUC_Fls_00276 :  

Name  
 

FlsMaxReadNormalMode  

Description  The maximum number of bytes to read or compare in one cycle of the 
flash driver's job processing function in normal mode. 

Multiplicity  1  

Type  EcucIntegerParamDef  

Range  0 .. 4294967295    

Default value  --  

Post-Build Variant Value  true  

Value Configuration Class  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  --     

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  
dependency: The minimum number might depend on the underlying flash 
device or communication driver, e.g. if the access to an external flash 
device is done via SPI and the minimum transfer size on SPI is four bytes.  

   

SWS Item  ECUC_Fls_00277 :  

Name  
 

FlsMaxWriteFastMode  

Description  The maximum number of bytes to write in one cycle of the flash driver's job 
processing function in fast mode. 

Multiplicity  1  



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

62 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

Type  EcucIntegerParamDef  

Range  0 .. 4294967295    

Default value  --  

Post-Build Variant Value  true  

Value Configuration Class  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  --     

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  
dependency: FLS182: This value has to correspond to the settings in 
FLS_PAGE_LIST. The minimum number is defined by the size of one flash 
page and therefore depends on the underlying flash device.  

   

SWS Item  ECUC_Fls_00278 :  

Name  
 

FlsMaxWriteNormalMode  

Description  The maximum number of bytes to write in one cycle of the flash driver's job 
processing function in normal mode. 

Multiplicity  1  

Type  EcucIntegerParamDef  

Range  0 .. 4294967295    

Default value  --  

Post-Build Variant Value  true  

Value Configuration Class  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  --     

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  
dependency: This value has to correspond to the settings in 
FLS_PAGE_LIST. The minimum number is defined by the size of one flash 
page and therefore depends on the underlying flash device.  

   

SWS Item  ECUC_Fls_00279 :  

Name  
 

FlsProtection  

Description  Erase/write protection settings. Only relevant if supported by hardware. 

Multiplicity  1  

Type  EcucIntegerParamDef  

Range  0 .. 4294967295    

Default value  --  

Post-Build Variant Value  true  

Value Configuration Class  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  --     

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  
dependency: Only relevant if supported by hardware.  

   

Included Containers  

Container Name  Multiplicity  Scope / Dependency  

FlsDemEventParameterRefs  0..1  

Container for the references to DemEventParameter elements 
which shall be invoked using the Dem_ReportErrorStatus API 
in case the corresponding error occurs. The EventId is taken 
from the referenced DemEventParameter's DemEventId value. 
The standardized errors are provided in the container and can 
be extended by vendor specific error references. 
Tags: 
atp.Status=obsolete 
atp.StatusComment=This container is set to obsolete and will 
be removed in release 4.3. 
atp.StatusRevisionBegin=4.2.2 

FlsExternalDriver  0..1  This container is present for external Flash drivers only. 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

63 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

Internal Flash drivers do not use the parameter listed in this 
container, hence its multiplicity is 0 for internal drivers. 

FlsSectorList  1  List of flashable sectors and pages. 

   

[SWS_Fls_00352] ⌈The table above specifies the parameters that shall be located in 

an external data structure of type Fls_ConfigType. ⌋ (SRS_BSW_00438, 

SRS_BSW_00388) 
 

[SWS_Fls_00353] ⌈The organization and location of the data structure 

Fls_ConfigType shall be up to the implementer. ⌋ (SRS_BSW_00438) 

 

[SWS_Fls_00354] ⌈The type declaration for Fls_ConfigType shall be located in 

the file Fls.h. ⌋ (SRS_BSW_00438) 

 

[SWS_Fls_00355] ⌈Hardware or implementation specific parameters can be added 

to Fls_ConfigType if necessary. ⌋ (SRS_BSW_00438) 

10.1.5 FlsDemEventParameterRefs 

SWS Item  ECUC_Fls_00310 : (Obsolete)  

Container Name  FlsDemEventParameterRefs  

Description  

Container for the references to DemEventParameter elements which shall 
be invoked using the Dem_ReportErrorStatus API in case the 
corresponding error occurs. The EventId is taken from the referenced 
DemEventParameter's DemEventId value. The standardized errors are 
provided in the container and can be extended by vendor specific error 
references. 
Tags: 
atp.Status=obsolete 
atp.StatusComment=This container is set to obsolete and will be removed 
in release 4.3. 
atp.StatusRevisionBegin=4.2.2 

Configuration Parameters  

   

SWS Item  ECUC_Fls_00314 : (Obsolete)  

Name  
 

FLS_E_COMPARE_FAILED  

Description  Reference to the DemEventParameter which shall be issued when the 
error "Flash compare failed (HW)" has occurred. 
Tags: 
atp.Status=obsolete 
atp.StatusComment=This reference is set to obsolete and will be removed 
in release 4.3. 
atp.StatusRevisionBegin=4.2.2 

Multiplicity  0..1  

Type  Symbolic name reference to [ DemEventParameter ]  

Post-Build Variant 
Multiplicity  

true  

Post-Build Variant Value  true  

Multiplicity Configuration 
Class  

Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  --     

Post-build time  X  VARIANT-POST-BUILD  

Value Configuration Class  Pre-compile time  X  VARIANT-PRE-COMPILE  



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

64 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

Link time  --     

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_Fls_00311 : (Obsolete)  

Name  
 

FLS_E_ERASE_FAILED  

Description  Reference to the DemEventParameter which shall be issued when the 
error "Flash erase failed (HW)" has occurred. 
Tags: 
atp.Status=obsolete 
atp.StatusComment=This reference is set to obsolete and will be removed 
in release 4.3. 
atp.StatusRevisionBegin=4.2.2 

Multiplicity  0..1  

Type  Symbolic name reference to [ DemEventParameter ]  

Post-Build Variant 
Multiplicity  

true  

Post-Build Variant Value  true  

Multiplicity Configuration 
Class  

Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  --     

Post-build time  X  VARIANT-POST-BUILD  

Value Configuration Class  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  --     

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_Fls_00313 : (Obsolete)  

Name  
 

FLS_E_READ_FAILED  

Description  Reference to the DemEventParameter which shall be issued when the 
error "Flash read failed (HW)" has occurred. 
Tags: 
atp.Status=obsolete 
atp.StatusComment=This reference is set to obsolete and will be removed 
in release 4.3. 
atp.StatusRevisionBegin=4.2.2 

Multiplicity  0..1  

Type  Symbolic name reference to [ DemEventParameter ]  

Post-Build Variant 
Multiplicity  

true  

Post-Build Variant Value  true  

Multiplicity Configuration 
Class  

Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  --     

Post-build time  X  VARIANT-POST-BUILD  

Value Configuration Class  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  --     

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_Fls_00315 : (Obsolete)  

Name  
 

FLS_E_UNEXPECTED_FLASH_ID  

Description  Reference to the DemEventParameter which shall be issued when the 
error "Expected hardware ID not matched" has occurred. 
Tags: 
atp.Status=obsolete 
atp.StatusComment=This reference is set to obsolete and will be removed 
in release 4.3. 
atp.StatusRevisionBegin=4.2.2 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

65 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

Multiplicity  0..1  

Type  Symbolic name reference to [ DemEventParameter ]  

Post-Build Variant 
Multiplicity  

true  

Post-Build Variant Value  true  

Multiplicity Configuration 
Class  

Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  --     

Post-build time  X  VARIANT-POST-BUILD  

Value Configuration Class  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  --     

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_Fls_00312 : (Obsolete)  

Name  
 

FLS_E_WRITE_FAILED  

Description  Reference to the DemEventParameter which shall be issued when the 
error "Flash write failed (HW)" has occurred. 
Tags: 
atp.Status=obsolete 
atp.StatusComment=This reference is set to obsolete and will be removed 
in release 4.3. 
atp.StatusRevisionBegin=4.2.2 

Multiplicity  0..1  

Type  Symbolic name reference to [ DemEventParameter ]  

Post-Build Variant 
Multiplicity  

true  

Post-Build Variant Value  true  

Multiplicity Configuration 
Class  

Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  --     

Post-build time  X  VARIANT-POST-BUILD  

Value Configuration Class  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  --     

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

No Included Containers  

   

 

10.1.6 FlsExternalDriver 

SWS Item  ECUC_Fls_00316 :  

Container Name  FlsExternalDriver  

Description  
This container is present for external Flash drivers only. Internal Flash 
drivers do not use the parameter listed in this container, hence its 
multiplicity is 0 for internal drivers. 

Configuration Parameters  

   

SWS Item  ECUC_Fls_00317 :  

Name  
 

FlsSpiReference  

Description  Reference to SPI sequence (required for external Flash drivers). 

Multiplicity  1..*  

Type  Symbolic name reference to [ SpiSequence ]  

Post-Build Variant 
Multiplicity  

false  



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

66 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

Post-Build Variant Value  false  

Multiplicity Configuration 
Class  

Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Value Configuration Class  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  

   

No Included Containers  

   

10.1.7  FlsSectorList 

SWS Item  ECUC_Fls_00201 :  

Container Name  FlsSectorList  

Description  List of flashable sectors and pages. 

Configuration Parameters  

   

Included Containers  

Container Name  Multiplicity  Scope / Dependency  

FlsSector  1..*  Configuration description of a flashable sector 

   

10.1.8 FlsSector 

SWS Item  ECUC_Fls_00202 :  

Container Name  FlsSector  

Description  Configuration description of a flashable sector 

Configuration Parameters  

   

SWS Item  ECUC_Fls_00280 :  

Name  
 

FlsNumberOfSectors  

Description  Number of continuous sectors with identical values for FlsSectorSize and 
FlsPageSize. The parameter FlsSectorStartAddress denotes the start 
address of the first sector. 

Multiplicity  1  

Type  EcucIntegerParamDef  

Range  0 .. 65535    

Default value  --  

Post-Build Variant Value  false  

Value Configuration Class  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  

   

SWS Item  ECUC_Fls_00281 :  

Name  
 

FlsPageSize  

Description  Size of one page of this sector. 
Implementation Type: Fls_LengthType. 

Multiplicity  1  

Type  EcucIntegerParamDef  

Range  0 .. 4294967295    

Default value  --  



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

67 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

Post-Build Variant Value  false  

Value Configuration Class  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  
dependency: The sector size has to be an integer multiple of the page 
size.  

   

SWS Item  ECUC_Fls_00282 :  

Name  
 

FlsSectorSize  

Description  Size of this sector. 
Implementation Type: Fls_LengthType. 

Multiplicity  1  

Type  EcucIntegerParamDef  

Range  0 .. 4294967295    

Default value  --  

Post-Build Variant Value  false  

Value Configuration Class  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  
dependency: The sector size has to be an integer multiple of the page 
size.  

   

SWS Item  ECUC_Fls_00283 :  

Name  
 

FlsSectorStartaddress  

Description  Start address of this sector. 
Implementation Type: Fls_AddressType. 

Multiplicity  1  

Type  EcucIntegerParamDef  

Range  0 .. 4294967295    

Default value  --  

Post-Build Variant Value  false  

Value Configuration Class  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  

   

No Included Containers  

   

 

10.2 Published Information 

10.2.1 FlsPublishedInformation 

SWS Item  ECUC_Fls_00178 :  

Container Name  FlsPublishedInformation  

Description  

Additional published parameters not covered by 
CommonPublishedInformation container.  
Note that these parameters do not have any configuration class setting, 
since they are published information. 

Configuration Parameters  



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

68 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

   

SWS Item  ECUC_Fls_00294 :  

Name  
 

FlsAcLocationErase  

Description  Position in RAM, to which the erase flash access code has to be loaded. 
Only relevant if the erase flash access code is not position independent. If 
this information is not provided it is assumed that the erase flash access 
code is position independent and that therefore the RAM position can be 
freely configured. 

Multiplicity  1  

Type  EcucIntegerParamDef  

Range  0 .. 4294967295    

Default value  --  

Post-Build Variant Value  false  

Value Configuration Class  Published Information  X  All Variants  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_Fls_00295 :  

Name  
 

FlsAcLocationWrite  

Description  Position in RAM, to which the write flash access code has to be loaded. 
Only relevant if the write flash access code is not position independent. If 
this information is not provided it is assumed that the write flash access 
code is position independent and that therefore the RAM position can be 
freely configured. 

Multiplicity  1  

Type  EcucIntegerParamDef  

Range  0 .. 4294967295    

Default value  --  

Post-Build Variant Value  false  

Value Configuration Class  Published Information  X  All Variants  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_Fls_00296 :  

Name  
 

FlsAcSizeErase  

Description  Number of bytes in RAM needed for the erase flash access code. 

Multiplicity  1  

Type  EcucIntegerParamDef  

Range  0 .. 4294967295    

Default value  --  

Post-Build Variant Value  false  

Value Configuration Class  Published Information  X  All Variants  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_Fls_00297 :  

Name  
 

FlsAcSizeWrite  

Description  Number of bytes in RAM needed for the write flash access code. 

Multiplicity  1  

Type  EcucIntegerParamDef  

Range  0 .. 4294967295    

Default value  --  

Post-Build Variant Value  false  

Value Configuration Class  Published Information  X  All Variants  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_Fls_00298 :  

Name  
 

FlsEraseTime  

Description  Maximum time to erase one complete flash sector. 



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

69 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

Multiplicity  1  

Type  EcucFloatParamDef  

Range  0 .. INF    

Default value  --  

Post-Build Variant Value  false  

Value Configuration Class  Published Information  X  All Variants  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_Fls_00299 :  

Name  
 

FlsErasedValue  

Description  The contents of an erased flash memory cell. 

Multiplicity  1  

Type  EcucIntegerParamDef  

Range  0 .. 4294967295    

Default value  --  

Post-Build Variant Value  false  

Value Configuration Class  Published Information  X  All Variants  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_Fls_00300 :  

Name  
 

FlsExpectedHwId  

Description  Unique identifier of the hardware device that is expected by this driver (the 
device for which this driver has been implemented). 
Only relevant for external flash drivers. 

Multiplicity  1  

Type  EcucStringParamDef  

Default value  --  

maxLength  --  

minLength  --  

regularExpression  --  

Post-Build Variant Value  false  

Value Configuration Class  Published Information  X  All Variants  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_Fls_00198 :  

Name  
 

FlsSpecifiedEraseCycles  

Description  Number of erase cycles specified for the flash device (usually given in the 
device data sheet). 
If the number of specified erase cycles depends on the operating 
environment (temperature, voltage, ...) during reprogramming of the flash 
device, the minimum number for which a data retention of at least 15 years 
over the temperature range from -40°C .. +125°C can be guaranteed shall 
be given.  
Note: If there are different numbers of specified erase cycles for different 
flash sectors of the device this parameter has to be extended to a 
parameter list (similar to the sector list above). 

Multiplicity  1  

Type  EcucIntegerParamDef  

Range  0 .. 4294967295    

Default value  --  

Post-Build Variant Value  false  

Value Configuration Class  Published Information  X  All Variants  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_Fls_00301 :  

Name  
 

FlsWriteTime  



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

70 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

Description  Maximum time to program one complete flash page. 

Multiplicity  1  

Type  EcucFloatParamDef  

Range  0 .. INF    

Default value  --  

Post-Build Variant Value  false  

Value Configuration Class  Published Information  X  All Variants  

Scope / Dependency  scope: local  

   

No Included Containers  

   

  



 Specification of Flash Driver 
AUTOSAR Release 4.2.2 

71 of 71 Document ID 025: AUTOSAR_SWS_FlashDriver 

  - AUTOSAR confidential - 

11 Not applicable requirements 

[SWS_Fls_00366] ⌈These requirements are not applicable to this specification.⌋ 
(SRS_BSW_00344, SRS_BSW_00170, SRS_BSW_00387, SRS_BSW_00398, SRS_BSW_00375, 

SRS_BSW_00416, SRS_BSW_00168, SRS_BSW_00423, SRS_BSW_00424, SRS_BSW_00426, 
SRS_BSW_00427, SRS_BSW_00428, SRS_BSW_00429, SRS_BSW_00433, SRS_BSW_00336, 
SRS_BSW_00339, SRS_BSW_00422, SRS_BSW_00417, SRS_BSW_00161, SRS_BSW_00162, 
SRS_BSW_00005, SRS_BSW_00415, SRS_BSW_00326, SRS_BSW_00342, SRS_BSW_00160, 
SRS_BSW_00007, SRS_BSW_00300, SRS_BSW_00347, SRS_BSW_00307, SRS_BSW_00314, 
SRS_BSW_00370, SRS_BSW_00348, SRS_BSW_00353, SRS_BSW_00361, SRS_BSW_00302, 
SRS_BSW_00328, SRS_BSW_00312, SRS_BSW_00006, SRS_BSW_00304, SRS_BSW_00355, 
SRS_BSW_00378, SRS_BSW_00306, SRS_BSW_00308, SRS_BSW_00309, SRS_BSW_00371, 
SRS_BSW_00359, SRS_BSW_00360, SRS_BSW_00330, SRS_BSW_00009, SRS_BSW_00401, 
SRS_BSW_00172, SRS_BSW_00010, SRS_BSW_00333, SRS_BSW_00321, SRS_BSW_00341, 
SRS_BSW_00334, SRS_SPAL_12267, SRS_SPAL_12163, SRS_SPAL_12462, SRS_SPAL_12463, 
SRS_SPAL_12069, SRS_SPAL_12063, SRS_SPAL_12064, SRS_SPAL_12067, SRS_SPAL_12078, 

SRS_SPAL_12078, SRS_Fls_12083, SRS_Fls_12149) 


	1 Introduction and functional overview
	2 Acronyms and abbreviations
	3 Related documentation
	3.1 AUTOSAR deliverables
	3.2 Related standards and norms
	3.3 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 Header File Structure
	5.2 System clock
	5.3 Communication or I/O drivers

	6 Requirements traceability
	7 Functional specification
	7.1 General design rules
	7.2 Error classification
	7.3 Production Errors
	7.4 Runtime Errors
	7.5 External flash driver
	7.6 Loading, executing and removing the flash access code
	7.7 Support for Debugging

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 Fls_ConfigType
	8.2.2 Fls_AddressType
	8.2.3 Fls_LengthType

	8.3 Function definitions
	8.3.1 Fls_Init
	8.3.2  Fls_Erase
	8.3.3 Fls_Write
	8.3.4 Fls_Cancel
	8.3.5 Fls_GetStatus
	8.3.6 Fls_GetJobResult
	8.3.7 Fls_Read
	8.3.8 Fls_Compare
	8.3.9 Fls_SetMode
	8.3.10 Fls_GetVersionInfo
	8.3.11 Fls_BlankCheck

	8.4 Call-back notifications
	8.5 Scheduled functions
	8.5.1 Fls_MainFunction

	8.6 Expected Interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.3 Configurable interfaces


	9 Sequence diagrams
	9.1 Initialization
	9.2 Synchronous functions
	9.3  Asynchronous functions
	9.4  Canceling a running job

	10 Configuration specification
	10.1 Containers and configuration parameters
	10.1.1 Variants
	10.1.2  Fls
	10.1.3 FlsGeneral
	10.1.4  FlsConfigSet
	10.1.5 FlsDemEventParameterRefs
	10.1.6 FlsExternalDriver
	10.1.7  FlsSectorList
	10.1.8 FlsSector

	10.2 Published Information
	10.2.1 FlsPublishedInformation


	11 Not applicable requirements

