
 Specification of ECU State Manager
AUTOSAR Release 4.2.2

1 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Document Title Specification of ECU State
Manager

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 078

Document Classification Standard

Document Status Final

Part of AUTOSAR Release 4.2.2

Document Change History
Release Changed by Change Description

4.2.2 AUTOSAR
Release
Management

 Reworked slave core poll sequence

 Reviewed multicore shutdown syncronization

 Reclassified error types

 Editorial changes

4.2.1 AUTOSAR
Release
Management

 Added switch configuration

 Defined initialization order for
InitListZero/InitListOne

 Definition of the name pattern of c-init-data
struct corrected

 Type conflicts solved

 Editorial changes

4.1.3 AUTOSAR
Release
Management

 EcuM errors reworked

 Inconsistencies between API’s and Interfaces
resolved

 Type conflicts solved

 Editorial changes

4.1.2 AUTOSAR
Release
Management

 Added API table for service interfaces

 Fixed traceability topics

 General clean-up of requirements (reviewed
different interfaces, operations, descriptions and
figures).

 Editorial changes

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

2 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Document Change History
Release Changed by Change Description

4.1.1 AUTOSAR
Administration

 Specified reset mode to use in case of pending
wakeup events during shutdown

 Added callout for Reset Loop Detection

 Extended specification of parameter “time” of
function “EcuM_GetMostRecentShutdown”

 Improved configuration description

 Added new APIs to enable asynchronous Trcv
handling for CAN/FR Wakeup

 Adaption of EcuM Flex to support BSW modules
distributed over multiple partitions

 Reclassified which Production Errors are
Extended Production Errors

 Added possible error to operations of
Client/Server-Interfaces, where no errors where
defined

 Enhancement of configuration to initialize BSW
modules by the EcuM Flex

4.0.3 AUTOSAR
Administration

 Fixed interoperability problems between EcuM
and BswM

 Terminology of ECU State Manager Flexible
more consistently described

 Modification of sleep sequences to minimize
misses of wakeup interrupts

3.1.5 AUTOSAR
Administration

 Updated pseudo code for AUTOSAR Services

 Update startup procedure for multi core systems

3.1.4 AUTOSAR
Administration

 Removed state machine to accommodate
mode-dependent scheduling

 Added Multi-Core support

 Added Alarm Clock feature

 Revised disclaimer

3.1.1 AUTOSAR
Administration

 Legal disclaimer revised

3.0.1 AUTOSAR
Administration

 Fixed Wakeup mechanisms

 Included optional triggering of Watchdog
Manager during Startup, Shutdown, and Sleep

 Extended startup sequence to have more
flexibility and to directly initialize all other BSW
modules

 Generated APIs from BSW UML model

 Generated configuration from Meta Model

 Document meta information extended

 Small layout adaptations made

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

3 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Document Change History
Release Changed by Change Description

2.1.15 AUTOSAR
Administration

 Corrected startup flow and wakeup concept.

 Added specification for AUTOSAR ports.

 Modified configuration for compliance with
variant management.

 Added new API services.

 Legal disclaimer revised

 Release Notes added

 “Advice for users” revised

 “Revision Information” added

2.0 AUTOSAR
Administration

 Initial Release

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

4 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Disclaimer

This specification and the material contained in it, as released by AUTOSAR, is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only. For any other purpose, no part of
the specification may be utilized or reproduced, in any form or by any means, without
permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR specifications may contain exemplary items (exemplary reference
models, "use cases", and/or references to exemplary technical solutions, devices,
processes or software).

Any such exemplary items are contained in the specifications for illustration purposes
only, and they themselves are not part of the AUTOSAR Standard. Neither their
presence in such specifications, nor any later documentation of AUTOSAR
conformance of products actually implementing such exemplary items, imply that
intellectual property rights covering such exemplary items are licensed under the
same rules as applicable to the AUTOSAR Standard.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

5 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Table of Contents

1 Introduction and Functional Overview ... 10

1.1 Backwards Compatibility to Previous ECU Manager Module Versions 11

2 Definitions and Acronyms .. 12

3 Related documentation.. 13

3.1 Input documents ... 13
3.2 Related standards and norms .. 13
3.3 Related AUTOSAR Software Specifications .. 13

4 Constraints and Assumptions .. 15

4.1 Limitations .. 15
4.2 Hardware Requirements .. 15
4.3 Applicability to car domains .. 15

5 Dependencies to other modules .. 16

5.1 SPAL Modules ... 16
5.1.1 MCU Driver ... 16
5.1.2 Driver Dependencies and Initialization Order 16

5.2 Peripherals with Wakeup Capability ... 16
5.3 Operating System ... 17

5.4 BSW Scheduler .. 17
5.5 BSW Mode Manager .. 17

5.6 Software Components .. 18
5.7 File Structure .. 19

5.7.1 Code file structure ... 20
5.7.2 Header file structure .. 20

6 Requirements traceability .. 21

7 Functional Specification... 31

7.1 Phases of the ECU Manager Module ... 32

7.1.1 STARTUP Phase .. 34
7.1.2 UP Phase .. 34

7.1.3 SHUTDOWN Phase .. 35
7.1.4 SLEEP Phase ... 35
7.1.5 OFF Phase .. 35

7.2 Structural Description of the ECU Manager ... 36
7.2.1 Standardized AUTOSAR Software Modules 37
7.2.2 Software Components ... 37

7.3 STARTUP Phase ... 38

7.3.1 Activities before EcuM_Init .. 38
7.3.2 Activities in StartPreOS Sequence .. 39
7.3.3 Activities in the StartPostOS Sequence .. 41
7.3.4 Checking Configuration Consistency .. 42
7.3.5 Driver Initialization ... 45
7.3.6 DET Initialization ... 46

7.4 SHUTDOWN Phase ... 48

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

6 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

7.4.1 Activities in the OffPreOS Sequence ... 49

7.4.2 Activities in the OffPostOS Sequence ... 50
7.5 SLEEP Phase .. 52

7.5.1 Activities in the GoSleep Sequence .. 54
7.5.2 Activities in the Halt Sequence .. 55
7.5.3 Activities in the Poll Sequence .. 57

7.5.4 Leaving Halt or Poll ... 58
7.5.5 Activities in the WakeupRestart Sequence ... 59

7.6 UP Phase ... 60
7.6.1 Alarm Clock Handling .. 61
7.6.2 Wakeup Source State Handling .. 61

7.6.3 Internal Representation of Wakeup States .. 63

7.6.4 Activities in the WakeupValidation Sequence 63

7.6.5 Requirements for Wakeup Validation .. 68
7.6.6 Wakeup Sources and Reset Reason .. 68
7.6.7 Wakeup Sources with Integrated Power Control 68

7.7 Shutdown Targets .. 69

7.7.1 Sleep ... 70
7.7.2 Reset ... 70

7.8 Alarm Clock .. 71
7.8.1 Alarm Clocks and Users .. 72
7.8.2 EcuM Clock Time .. 72

7.9 MultiCore .. 73
7.9.1 Master Core .. 75

7.9.2 Slave Core .. 75

7.9.3 Master Core – Slave Core Signalling .. 75
7.9.4 UP Phase .. 77
7.9.5 STARTUP Phase .. 78
7.9.6 SHUTDOWN Phase .. 81

7.9.7 SLEEP Phase ... 86
7.9.8 Runnables and Entry points .. 94

7.10 EcuM Mode Handling ... 96
7.10.1 Differences to ECU Manager with fixed State Machine 98

7.11 Advanced Topics .. 98

7.11.1 Relation to Bootloader ... 98
7.11.2 Relation to Complex Drivers.. 99

7.11.3 Handling Errors during Startup and Shutdown 99
7.12 Errors ... 100

7.12.1 Development Errors .. 100
7.12.2 Runtime Errors .. 101
7.12.3 Transient Faults .. 101
7.12.4 Production Errors .. 101
7.12.5 Extended Production Errors .. 101

7.13 Error detection .. 101
7.14 Error notification ... 102

8 API specification .. 103

8.1 Imported Types .. 103
8.2 Type definitions .. 103

8.2.1 EcuM_ConfigType ... 103

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

7 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

8.2.2 EcuM_StateType ... 104

8.2.3 EcuM_RunStatusType .. 105
8.2.4 EcuM_UserType ... 105
8.2.5 EcuM_WakeupSourceType... 105
8.2.6 EcuM_WakeupStatusType .. 106
8.2.7 EcuM_BootTargetType ... 106

8.2.8 EcuM_ResetType .. 107
8.2.9 EcuM_ShutdownCauseType ... 107
8.2.10 EcuM_ShutdownModeType .. 107
8.2.11 EcuM_TimeType ... 108
8.2.12 EcuM_ShutdownTargetType ... 108

8.3 Function Definitions .. 108

8.3.1 General ... 108

8.3.2 Initialization and Shutdown Sequences ... 109
8.3.3 State Management .. 112
8.3.4 Shutdown Management .. 115
8.3.5 Wakeup Handling .. 118

8.3.6 Alarm Clock ... 121
8.3.7 Miscellaneous ... 124

8.4 Scheduled Functions .. 125
8.4.1 EcuM_MainFunction ... 125

8.5 Callback Definitions .. 126

8.5.1 Callbacks from Wakeup Sources .. 126
8.6 Callout Definitions .. 129

8.6.1 Generic Callouts .. 129

8.6.2 Callouts from the STARTUP Phase .. 130
8.6.3 Callouts from the SHUTDOWN Phase .. 132
8.6.4 Callouts from the SLEEP Phase ... 134
8.6.5 Callouts from the UP Phase .. 140

8.7 Expected Interfaces .. 142
8.7.1 Optional Interfaces .. 143

8.7.2 Configurable interfaces ... 144
8.8 Specification of the Port Interfaces ... 144

8.8.1 Ports and Port Interface for EcuM_ShutdownTarget Interface 144

8.8.2 Port Interface for EcuM_BootTarget Interface 147
8.8.3 Port Interface for EcuM_AlarmClock Interface 148

8.8.4 Port Interface for EcuM_Time Interface .. 151
8.8.5 Port Interface for EcuM_StateRequest Interface 152

8.8.6 Port Interface for EcuM_CurrentMode .. 154
8.8.7 Port Interface for EcuM_CurrentMode Interface 155

8.9 API Parameter Checking .. 158

9 Sequence Charts ... 159

9.1 State Sequences .. 159

9.2 Wakeup Sequences ... 161
9.2.1 GPT Wakeup Sequences .. 161
9.2.2 ICU Wakeup Sequences ... 166
9.2.3 CAN Wakeup Sequences ... 170
9.2.4 LIN Wakeup Sequences ... 177
9.2.5 FlexRay Wakeup Sequences .. 181

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

8 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

10 Configuration specification ... 184

10.1 Common Containers and configuration parameters 184
10.1.1 EcuM ... 184
10.1.2 EcuMGeneral .. 185
10.1.3 EcuMConfiguration .. 186
10.1.4 EcuMCommonConfiguration ... 186

10.1.5 EcuMDefaultShutdownTarget ... 188
10.1.6 EcuMDriverInitListOne .. 189
10.1.7 EcuMDriverInitListZero .. 189
10.1.8 EcuMDriverRestartList .. 190
10.1.9 EcuMDriverInitItem .. 191

10.1.10 EcuMSleepMode ... 193

10.1.11 EcuMWakeupSource ... 194

10.2 EcuM-Flex Containers and configuration parameters 196
10.2.1 EcuMFlexGeneral ... 196
10.2.2 EcuMFlexConfiguration ... 198
10.2.3 EcuMAlarmClock ... 199

10.2.4 EcuMFlexUserConfig .. 200
10.2.5 EcuMGoDownAllowedUsers ... 201

10.2.6 EcuMResetMode ... 201
10.2.7 EcuMSetClockAllowedUsers ... 202
10.2.8 EcuMShutdownCause ... 202

10.3 Published Information ... 204

11 Not applicable requirements .. 205

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

9 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Known Limitations

 The ECU Manager module interfaces must be specified as reentrant in the
Multi-Core context.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

10 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

1 Introduction and Functional Overview

The ECU Manager module (as specified in this document) is a basic software module
(see [1]) that manages common aspects of ECU states. Specifically, the ECU
Manager module

 Initializes and de-initializes the OS, the SchM and the BswM as well as some
basic software driver modules.

 configures the ECU for SLEEP and SHUTDOWN when requested.

 manages all wakeup events on the ECU
The ECU Manager module provides the wakeup validation protocol to distinguish
‘real’ wakeup events from ‘erratic’ ones.

There are actually two variants of AUTOSAR ECU management: flexible and fixed.

Flexible ECU management is much more powerful than in previous versions of the
ECU Manager. Most notably, the fixed schema of ECU states and transitions
between them has been eliminated to allow the following additional scenarios:

 Partial or fast startup where he ECU starts up with limited capabilities and
later, as determined by the application, continues startup step by step.

 Interleaved startup where the ECU starts minimally and then starts the RTE to
execute functionality in SW-Cs as soon as possible. It then continues to start
further BSW and SW-Cs, thus interleaving BSW and application functionality..

 Multiple operational states where the ECU has more than one RUN state.
This, among other things, refines the notion of a spectrum of SLEEP states to
RUN states. There can now be a continuum of operational states spanning
from the classic RUN (fully operational) to the deepest SLEEP (processor
halted).

 Multi-Core ECUs: STARTUP, SHUTDOWN, SLEEP and WAKEUP are
coordinated on all cores of the ECU.

Flexible ECU management employs the generic mode management facilities
provided by the following modules:

 RTE and BSW Scheduler module [15] are now amalgamated into one module:
This module supports freely configurable BSW and application modes and
their mode-switching facilities.

 BSW Mode Manager module [22]: This module implements configurable rules
and action lists to evaluate the conditions for switching ECU modes and to
implement the necessary actions to do so.

Thus with Flexible ECU Management, most ECU states are no longer implemented
in the ECU Manager module itself. In general, the ECU Manager module takes over
control when the generic mode management facilities are unavailable in:

 Early STARTUP phases,

 Late SHUTDOWN phases,

 SLEEP phases where the facilities are locked out by the scheduler.

During the UP Phase of the ECU Manager module the BSW Mode Manager is
responsible for further actions. Whereas, the ECU Manager module arbitrates RUN

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

11 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

and POST_RUN Requests from SW-Cs and notifies BswM about the status of the
modes.

The RUN request protocol is an established method in ECU State Manager Fixed to
determine whether the ECU shall be kept alive or is ready to shut down.

Fixed ECU Management continues ECU management in the form of previous
AUTOSAR releases. It has a fixed set of ECU states and transistions between them
and is sufficient for conventional ECUs that do not have special requirements such
as partial or fast startup, interleaved startup, and multiple operational states (multiple
RUN states). Fixed ECU managament does not support Multicore ECUs, among
other things.

This document specifies the ECU Manager module for flexible ECU management.
[23] specifies the ECU Manager module for fixed ECU management.

1.1 Backwards Compatibility to Previous ECU Manager Module
Versions

Flexible ECU management is backward compatible to previous ECU Manager
versions and Fixed ECU Manager if it is configured accordingly.

For more information about a configuration in respect to compatibility see the “Guide
to Mode Management” [24].

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

12 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

2 Definitions and Acronyms

This section defines terms that are of special significance to the ECU Manager and
the acronyms of related modules.

Term Description

Callback Refer to the Glossary [7]

Callout ‘Callouts’ are function stubs that the system designer can replace with code,
usually at configuration time, to add functionality to the ECU Manager module.
Callouts are separated into two classes. One class provides mandatory ECU
Manager module functionality and serves as a hardware abstraction layer. The
other class provides optional functionality.

Integration Code Refer to the Glossary [7]

Mode A Mode is a certain set of states of the various state machines (not only of the
ECU Manager) that are running in the vehicle and are relevant to a particular
entity, an application or the whole vehicle

Passive Wakeup A wakeup caused from an attached bus rather than an internal event like a timer
or sensor activity.

Phase A logical or temporal assembly of ECU Manager’s actions and events, e.g.
STARTUP, UP, SHUTDOWN, SLEEP, …
Phases can consist of Sub-Phases which are often called Sequences if they
above all exist to group sequences of executed actions into logical units.

Phases in this context are not the phases of the AUTOSAR Methodology.

Shutdown Target The ECU must be shut down before it is put to sleep, before it is powered off or
before it is reset. SLEEP, OFF, and RESET are therefore valid shutdown targets.
By selecting a shutdown target, an application can communicate its wishes for the
ECU behavior after the next shutdown to the ECU Manager module.

State States are internal to their respective BSW component and thus not visible to the
application. So they are only used by the BSW’s internal state machine. The
States inside the ECU Manager build the phases and therefore handle the modes.

Wakeup Event A physical event which causes a wakeup. A CAN message or a toggling IO line
can be wakeup events.
Similarly, the internal SW representation, e.g. an interrupt, may also be called a
wakeup event.

Wakeup Reason The wakeup reason is the wakeup event that is the actual cause of the last
wakeup.

Wakeup Source The peripheral or ECU component which deals with wakeup events is called a
wakeup source.

Acronym Description

BswM Basic Software Mode Manager

DEM Diagnostic Event Manager

DET Default Error Tracer

EcuM ECU Manager

GPT General Purpose Timer

ICU Input Capture Unit

ISR Interrupt Service Routine

MCU Microcontroller Unit

NVRAM Non-volatible random access memory

OS Operating System

RTE Runtime Environment

VFB Virtual Function Bus

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

13 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

3 Related documentation

3.1 Input documents

[1] List of Basic Software Modules

AUTOSAR_TR_BSWModuleList.pdf

[2] Layered Software Architecture

AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf

[3] General Requirements on Basic Software Modules

AUTOSAR_SWS_BSWGeneral.pdf

[4] General Requirements on Basic Software Modules
AUTOSAR_SRS_BSWGeneral.pdf

[5] Requirements on Mode Management

AUTOSAR_SRS_ModeManagement.pdf

[6] Specification of ECU Configuration
AUTOSAR_TPS_ECUConfiguration.pdf

3.2 Related standards and norms

None

3.3 Related AUTOSAR Software Specifications

[7] Glossary

AUTOSAR_TR_Glossary.pdf

[8] Specification of Communication Manager

AUTOSAR_SWS_COMManager.pdf

[9] Specification of Watchdog Manager

AUTOSAR_SWS_WatchdogManager.pdf

[10] Specification of MCU Driver

AUTOSAR_SWS_MCUDriver.pdf

[11] Specification of SPI Handler/Driver

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

14 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

AUTOSAR_SWS_SPIHandlerDriver.pdf

[12] Specification of EEPROM Interface

AUTOSAR_SWS_EEPROMDriver.pdf

[13] Specification of Flash Interface

AUTOSAR_SWS_FlashDriver.pdf

[14] Specification of Operating System

AUTOSAR_SWS_OS.pdf

[15] Specification of RTE

AUTOSAR_SWS_RTE.pdf

[16] Specification of the Virtual Function Bus
AUTOSAR_EXP_VFB.pdf

[17] Specification of Diagnostic Event Manager

AUTOSAR_SWS_DiagnosticEventManager.pdf

[18] Specification of Default Error Tracer

AUTOSAR_SWS_ DefaultErrorTracer.pdf

[19] Specification of CAN Transceiver Driver

AUTOSAR_SWS_CANTransceiverDriver.pdf

[20] Specification of C Implementation Rules

AUTOSAR_TR_CImplementationRules.pdf

[21] Basic Software Module Description Template

AUTOSAR_TPS_BSWModuleDescriptionTemplate.pdf

[22] Specification of BSW Mode Manager

AUTOSAR_SWS_BSWModeManager.pdf

[23] Specification of ECU State Manager Fixed

AUTOSAR_SWS_ECUStateManagerFixed.pdf

[24] Guide to Mode Management

AUTOSAR_Guide_ModeManagement.pdf

AUTOSAR provides a General Specification on Basic Software modules [4] (SWS
BSW General), which is also valid for ECU State Manager.

Thus, the specification SWS BSW General shall be considered as additional and
required specification for ECU State Manager.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

15 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

4 Constraints and Assumptions

4.1 Limitations

ECUs cannot always be switched off (i.e. zero power consumption).

Rationale: The shutdown target OFF can only be reached using ECU special
hardware (e.g. a power hold circuit). If this hardware is not available, this
specification proposes to issue a reset instead. Other default behaviors are
permissable, however.

4.2 Hardware Requirements

In this section, the term “EcuM RAM” refers to a block of RAM reserved for use by
the ECU Manager module.

The EcuM RAM shall keep contents of vital data while the ECU clock is switched off.

Rationale: This requirement is needed to implement sleep states as required in
Section 7.5 SLEEP .

The EcuM RAM shall provide a no-init area that keeps contents over a reset cycle.

The no-init area of the EcuM RAM (see EcuM2869) shall only be initialized on a
power on event (clamp 30).

The system designer is responsible for establishing an initialization strategy for the
no init area of the ECU RAM.

4.3 Applicability to car domains

The ECU Manager module is applicable to all car domains.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

16 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

5 Dependencies to other modules

The following sections outline the important relationships to other modules. They also
contain some requirements that these modules must fulfill to collaborate correctly
with the ECU Manager module.

If data pointers are passed to a BSW module, the address needs to point to a
location in the shared part of the memory space.

5.1 SPAL Modules

5.1.1 MCU Driver

The MCU Driver is the first basic software module initialized by the ECU Manager
module. When MCU_Init returns (see SWS_EcuM_02858), the MCU module and the
MCU Driver module are not necessarily fully initialized, however. Additional MCU
module specific steps may be needed to complete the initialization. The ECU
Manager module provides two callout where this additional code can be placed.
Refer to section 7.3.2 Activities in StartPreOS Sequence for details.

5.1.2 Driver Dependencies and Initialization Order

BSW drivers may depend on each other. A typical example is the watchdog driver,
which needs the SPI driver to access an external watchdog. This means on the one
hand, that drivers may be stacked (not relevant to the ECU Manager module) and on
the other hand that the called module must be initialized before the calling module is
initialized.

The system designer is responsible for defining the initialization order at configuration

time in EcuMDriverInitListZero (see ECUC_EcuM_00114),

EcuMDriverInitListOne (see ECUC_EcuM_00111) and in

EcuMDriverRestartList (see ECUC_EcuM_00115).

5.2 Peripherals with Wakeup Capability

Wakeup sources must be handled and encapsulated by drivers.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

17 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

These drivers must follow the protocols and requirements presented in this document
to ensure a seamless integration into the AUTOSAR BSW. Basically, the protocol is
as follows:

The driver must invoke EcuM_SetWakeupEvent (see SWS_EcuM_02826) to notify
the ECU Manager module that a pending wakeup event has been detected. The
driver must not only invoke EcuM_SetWakeupEvent while the ECU is waiting for a
wakeup event during a sleep phase but also during the driver initialization phase and
during normal operation when EcuM_MainFunction is running.

The driver must provide an explicit function to put the wakeup source to sleep. This
function shall put the wakeup source into an energy saving and inert operation mode
and rearm the wakeup notification mechanism.

If the wakeup source is capable of generating spurious events1 then either

 the driver or

 the software stack consuming the driver or

 another appropriate BSW module
must either provide a validation callout for the wakeup event or call the ECU
Manager module’s validation function. If validation is not necessary, then this
requirement is not applicable for the corresponding wakeup source.

5.3 Operating System

The ECU Manager module starts the AUTOSAR OS and also shuts it down. The
ECU Manager module defines the protocol how control is handled before the OS is
started and how control is handled after the OS has been shut down.

5.4 BSW Scheduler

The ECU Manager module initializes the BSW Scheduler and the ECU Manager
module also contains EcuM_MainFunction (see SWS_EcuM_02837) which is
scheduled to periodically evaluate wakeup requests and update the Alarm Clock.

5.5 BSW Mode Manager

ECU states are generally implemented as AUTOSAR modes and the BSW Mode
Manager is responsible for monitoring changes in the ECU and affecting the

1
 Spurious wakeup events may result from EMV spikes, bouncing effects on wakeup lines etc.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

18 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

corresponding changes to the ECU state machine as appropriate. Refer to the
Specification of the Virtual Function Bus [16] for a discussion of AUTOSAR mode
management and to the Guide to Mode Management [24] for ECU state machine
implementation details and for guidelines about how to configure the BSW Mode
Manager to implement the ECU state machine

The BSW Mode Manager can only manage the ECU state machine after mode
management is operational – that is, after the SchM has been initialized and until the
SchM is de-initialised or halted. The ECU Manager module takes control of the ECU
when the BSW Mode manager is not operational.

The ECU Manager module therefore takes control immediately after the ECU has
booted and relegates control to the BSW Mode Manager after initializing the SchM
and the BswM.

The BswM passes control of the ECU back to the ECU Manager module to lock the
operating system and handle wakeup events.

The BswM also passes control back to the ECU Manager immediately before the OS
is stopped on shutdown.

When wakeup sources are being validated, the ECU Manager module indicates
wakeup source state changes to the BswM through mode switch requests.

5.6 Software Components

The ECU Manager module handles the following ECU-wide properties:

 Shutdown targets.

This specification assumes that SW-Cs set these properties (through AUTOSAR
ports), typically by some ECU specific part of the SW-C. The ECU Manager does not
prevent a SW-C from overrighting settings made by SW-Cs. The policy must be
defined at a higher level.

The following measures might help to resolve this issue.

 The SW-C Template may contain a field to indicate whether the SW-C sets
the shutdown target.

 The generation tool may only allow configurations that have one SW-C
accessing the shutdown target.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

19 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

5.7 File Structure

[SWS_EcuM_03023]⌈

Figure 1 - ECU Manager Module Code File Structure

⌋(SRS_BSW_00300,SRS_BSW_00346)

In SWS_EcuM_03023 the file structure is specified using an empty Implementation

Extention so that <MIP> is equal to <MA>. The filenames hasve to be adjusted if the

Implementation Extension constsing of _<vi>_<ai> is used. (See

SWS_BSW_00102)

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

20 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

5.7.1 Code file structure

This specification does not define the code file structure completely.

[SWS_EcuM_02990] ⌈The ECU Manager module implementation shall provide a

single EcuM_Callout_Stubs.c file which contains the stubs of the callouts

realized in this implementation (see section 8.6 Callout Definitions for a list of the

callouts that could possibly be implemented)⌋()

Whether EcuM_Callout_Stubs.c can be edited manually or is composed only of

other generated files depends on the implementation.

5.7.2 Header file structure

[SWS_EcuM_02992] ⌈The ECU Manager module implementation shall provide a

EcuM_Generated_Types.h file which contains generated type declarations that

fulfill the forward declarations in EcuM.h.⌋(SRS_BSW_00447)

[SWS_EcuM_02677] ⌈IEcuM_Cbk.h shall contain all declarations necessary to

interact with the callbacks and callouts of the ECU Manager

module.⌋(SRS_BSW_00447)

[SWS_EcuM_03025] ⌈The file EcuM_Types.h shall include Rte_EcuM_Type.h to
include the types which are common used by BSW Modules and Software
Components. EcuM_Types.h and EcuM.h shall only contain types, that are not

already defined in Rte_EcuM_Type.h.⌋(SRS_BSW_00447)

Also refer to chapter 8.7 Expected Interfaces for dependencies to other modules.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

21 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

6 Requirements traceability

Requirement Description Satisfied by

- - ECUC_EcuM_02719

- - ECUC_EcuM_02720

- - ECUC_EcuM_02721

- - SWS_EcuM_00487

- - SWS_EcuM_00507

- - SWS_EcuM_00624

- - SWS_EcuM_01117

- - SWS_EcuM_01156

- - SWS_EcuM_02156

- - SWS_EcuM_02157

- - SWS_EcuM_02165

- - SWS_EcuM_02166

- - SWS_EcuM_02171

- - SWS_EcuM_02172

- - SWS_EcuM_02181

- - SWS_EcuM_02185

- - SWS_EcuM_02188

- - SWS_EcuM_02247

- - SWS_EcuM_02336

- - SWS_EcuM_02337

- - SWS_EcuM_02345

- - SWS_EcuM_02389

- - SWS_EcuM_02411

- - SWS_EcuM_02479

- - SWS_EcuM_02496

- - SWS_EcuM_02532

- - SWS_EcuM_02533

- - SWS_EcuM_02539

- - SWS_EcuM_02546

- - SWS_EcuM_02559

- - SWS_EcuM_02561

- - SWS_EcuM_02562

- - SWS_EcuM_02563

- - SWS_EcuM_02565

- - SWS_EcuM_02566

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

22 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

- - SWS_EcuM_02572

- - SWS_EcuM_02585

- - SWS_EcuM_02589

- - SWS_EcuM_02601

- - SWS_EcuM_02603

- - SWS_EcuM_02623

- - SWS_EcuM_02625

- - SWS_EcuM_02634

- - SWS_EcuM_02645

- - SWS_EcuM_02664

- - SWS_EcuM_02677

- - SWS_EcuM_02683

- - SWS_EcuM_02684

- - SWS_EcuM_02707

- - SWS_EcuM_02709

- - SWS_EcuM_02710

- - SWS_EcuM_02712

- - SWS_EcuM_02730

- - SWS_EcuM_02756

- - SWS_EcuM_02783

- - SWS_EcuM_02788

- - SWS_EcuM_02790

- - SWS_EcuM_02791

- - SWS_EcuM_02794

- - SWS_EcuM_02795

- - SWS_EcuM_02796

- - SWS_EcuM_02798

- - SWS_EcuM_02799

- - SWS_EcuM_02801

- - SWS_EcuM_02806

- - SWS_EcuM_02807

- - SWS_EcuM_02810

- - SWS_EcuM_02811

- - SWS_EcuM_02812

- - SWS_EcuM_02813

- - SWS_EcuM_02822

- - SWS_EcuM_02824

- - SWS_EcuM_02825

- - SWS_EcuM_02827

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

23 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

- - SWS_EcuM_02828

- - SWS_EcuM_02829

- - SWS_EcuM_02830

- - SWS_EcuM_02831

- - SWS_EcuM_02835

- - SWS_EcuM_02836

- - SWS_EcuM_02837

- - SWS_EcuM_02838

- - SWS_EcuM_02858

- - SWS_EcuM_02859

- - SWS_EcuM_02863

- - SWS_EcuM_02867

- - SWS_EcuM_02868

- - SWS_EcuM_02904

- - SWS_EcuM_02905

- - SWS_EcuM_02906

- - SWS_EcuM_02907

- - SWS_EcuM_02916

- - SWS_EcuM_02917

- - SWS_EcuM_02918

- - SWS_EcuM_02919

- - SWS_EcuM_02920

- - SWS_EcuM_02921

- - SWS_EcuM_02922

- - SWS_EcuM_02923

- - SWS_EcuM_02924

- - SWS_EcuM_02925

- - SWS_EcuM_02926

- - SWS_EcuM_02928

- - SWS_EcuM_02929

- - SWS_EcuM_02951

- - SWS_EcuM_02957

- - SWS_EcuM_02958

- - SWS_EcuM_02960

- - SWS_EcuM_02961

- - SWS_EcuM_02962

- - SWS_EcuM_02963

- - SWS_EcuM_02975

- - SWS_EcuM_02976

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

24 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

- - SWS_EcuM_02979

- - SWS_EcuM_02980

- - SWS_EcuM_02990

- - SWS_EcuM_02992

- - SWS_EcuM_03000

- - SWS_EcuM_03003

- - SWS_EcuM_03010

- - SWS_EcuM_03011

- - SWS_EcuM_03012

- - SWS_EcuM_03017

- - SWS_EcuM_03018

- - SWS_EcuM_03019

- - SWS_EcuM_03020

- - SWS_EcuM_04001

- - SWS_EcuM_04002

- - SWS_EcuM_04003

- - SWS_EcuM_04004

- - SWS_EcuM_04005

- - SWS_EcuM_04006

- - SWS_EcuM_04007

- - SWS_EcuM_04008

- - SWS_EcuM_04011

- - SWS_EcuM_04012

- - SWS_EcuM_04014

- - SWS_EcuM_04015

- - SWS_EcuM_04016

- - SWS_EcuM_04017

- - SWS_EcuM_04018

- - SWS_EcuM_04019

- - SWS_EcuM_04020

- - SWS_EcuM_04021

- - SWS_EcuM_04022

- - SWS_EcuM_04023

- - SWS_EcuM_04025

- - SWS_EcuM_04026

- - SWS_EcuM_04027

- - SWS_EcuM_04028

- - SWS_EcuM_04029

- - SWS_EcuM_04030

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

25 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

- - SWS_EcuM_04033

- - SWS_EcuM_04038

- - SWS_EcuM_04040

- - SWS_EcuM_04041

- - SWS_EcuM_04042

- - SWS_EcuM_04044

- - SWS_EcuM_04045

- - SWS_EcuM_04046

- - SWS_EcuM_04048

- - SWS_EcuM_04049

- - SWS_EcuM_04050

- - SWS_EcuM_04051

- - SWS_EcuM_04061

- - SWS_EcuM_04062

- - SWS_EcuM_04063

- - SWS_EcuM_04065

- - SWS_EcuM_04067

- - SWS_EcuM_04069

- - SWS_EcuM_04070

- - SWS_EcuM_04071

- - SWS_EcuM_04072

- - SWS_EcuM_04073

- - SWS_EcuM_04074

- - SWS_EcuM_04075

- - SWS_EcuM_04076

- - SWS_EcuM_04078

- - SWS_EcuM_04079

- - SWS_EcuM_04080

- - SWS_EcuM_04081

- - SWS_EcuM_04082

- - SWS_EcuM_04084

- - SWS_EcuM_04085

- - SWS_EcuM_04086

- - SWS_EcuM_04087

- - SWS_EcuM_04088

- - SWS_EcuM_04089

- - SWS_EcuM_04092

- - SWS_EcuM_04093

- - SWS_EcuM_04094

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

26 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

- - SWS_EcuM_04095

- - SWS_EcuM_04096

- - SWS_EcuM_04097

- - SWS_EcuM_04098

- - SWS_EcuM_04101

- - SWS_EcuM_04102

- - SWS_EcuM_04105

- - SWS_EcuM_04106

- - SWS_EcuM_04107

- - SWS_EcuM_04108

- - SWS_EcuM_04109

- - SWS_EcuM_04110

- - SWS_EcuM_04111

- - SWS_EcuM_04112

- - SWS_EcuM_04113

- - SWS_EcuM_04135

- - SWS_EcuM_04136

- - SWS_EcuM_04137

- - SWS_EcuM_04138

BSW00434 - SWS_EcuM_09999

BSW00445 - SWS_EcuM_04032

BSW00446 - SWS_EcuM_09999

SRS_BSW_00005 Modules of the ÂµC Abstraction
Layer (MCAL) may not have hard
coded horizontal interfaces

SWS_EcuM_09999

SRS_BSW_00010 The memory consumption of all
Basic SW Modules shall be
documented for a defined
configuration for all supported
platforms.

SWS_EcuM_09999

SRS_BSW_00159 All modules of the AUTOSAR
Basic Software shall support a
tool based configuration

SWS_EcuM_09999

SRS_BSW_00160 Configuration files of AUTOSAR
Basic SW module shall be
readable for human beings

SWS_EcuM_09999

SRS_BSW_00161 The AUTOSAR Basic Software
shall provide a microcontroller
abstraction layer which provides a
standardized interface to higher
software layers

SWS_EcuM_09999

SRS_BSW_00162 The AUTOSAR Basic Software
shall provide a hardware
abstraction layer

SWS_EcuM_09999

SRS_BSW_00164 The Implementation of interrupt SWS_EcuM_09999

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

27 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

service routines shall be done by
the Operating System, complex
drivers or modules

SRS_BSW_00167 All AUTOSAR Basic Software
Modules shall provide
configuration rules and
constraints to enable plausibility
checks

SWS_EcuM_09999

SRS_BSW_00168 SW components shall be tested
by a function defined in a
common API in the Basis-SW

SWS_EcuM_09999

SRS_BSW_00300 All AUTOSAR Basic Software
Modules shall be identified by an
unambiguous name

SWS_EcuM_03023

SRS_BSW_00307 Global variables naming
convention

SWS_EcuM_09999

SRS_BSW_00308 AUTOSAR Basic Software
Modules shall not define global
data in their header files, but in
the C file

SWS_EcuM_09999

SRS_BSW_00309 All AUTOSAR Basic Software
Modules shall indicate all global
data with read-only purposes by
explicitly assigning the const
keyword

SWS_EcuM_09999

SRS_BSW_00314 All internal driver modules shall
separate the interrupt frame
definition from the service routine

SWS_EcuM_09999

SRS_BSW_00323 All AUTOSAR Basic Software
Modules shall check passed API
parameters for validity

SWS_EcuM_03009

SRS_BSW_00325 The runtime of interrupt service
routines and functions that are
running in interrupt context shall
be kept short

SWS_EcuM_09999

SRS_BSW_00326 - SWS_EcuM_09999

SRS_BSW_00327 Error values naming convention SWS_EcuM_04032

SRS_BSW_00330 It shall be allowed to use macros
instead of functions where source
code is used and runtime is
critical

SWS_EcuM_09999

SRS_BSW_00331 All Basic Software Modules shall
strictly separate error and status
information

SWS_EcuM_04039

SRS_BSW_00334 All Basic Software Modules shall
provide an XML file that contains
the meta data

SWS_EcuM_09999

SRS_BSW_00337 Classification of development
errors

SWS_EcuM_04032

SRS_BSW_00338 - SWS_EcuM_04032

SRS_BSW_00339 Reporting of production relevant SWS_EcuM_02987

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

28 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

error status

SRS_BSW_00341 Module documentation shall
contains all needed informations

SWS_EcuM_09999

SRS_BSW_00344 BSW Modules shall support link-
time configuration

SWS_EcuM_03007

SRS_BSW_00345 BSW Modules shall support pre-
compile configuration

SWS_EcuM_03007

SRS_BSW_00346 All AUTOSAR Basic Software
Modules shall provide at least a
basic set of module files

SWS_EcuM_03023

SRS_BSW_00347 A Naming seperation of different
instances of BSW drivers shall be
in place

SWS_EcuM_09999

SRS_BSW_00348 All AUTOSAR standard types and
constants shall be placed and
organized in a standard type
header file

SWS_EcuM_09999

SRS_BSW_00350 All AUTOSAR Basic Software
Modules shall apply a specific
naming rule for enabling/disabling
the detection and reporting of
development errors

SWS_EcuM_04032

SRS_BSW_00353 All integer type definitions of
target and compiler specific scope
shall be placed and organized in a
single type header

SWS_EcuM_09999

SRS_BSW_00359 All AUTOSAR Basic Software
Modules callback functions shall
avoid return types other than void
if possible

SWS_EcuM_02826

SRS_BSW_00360 AUTOSAR Basic Software
Modules callback functions are
allowed to have parameters

SWS_EcuM_02826

SRS_BSW_00361 All mappings of not standardized
keywords of compiler specific
scope shall be placed and
organized in a compiler specific
type and keyword header

SWS_EcuM_09999

SRS_BSW_00385 List possible error notifications SWS_EcuM_04032

SRS_BSW_00404 BSW Modules shall support post-
build configuration

SWS_EcuM_03007

SRS_BSW_00405 BSW Modules shall support
multiple configuration sets

SWS_EcuM_03007

SRS_BSW_00406 A static status variable denoting if
a BSW module is initialized shall
be initialized with value 0 before
any APIs of the BSW module is
called

SWS_EcuM_09999

SRS_BSW_00410 Compiler switches shall have
defined values

SWS_EcuM_09999

SRS_BSW_00413 An index-based accessing of the SWS_EcuM_09999

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

29 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

instances of BSW modules shall
be done

SRS_BSW_00415 Interfaces which are provided
exclusively for one module shall
be separated into a dedicated
header file

SWS_EcuM_09999

SRS_BSW_00417 Software which is not part of the
SW-C shall report error events
only after the DEM is fully
operational.

SWS_EcuM_09999

SRS_BSW_00422 Pre-de-bouncing of error status
information is done within the
DEM

SWS_EcuM_09999

SRS_BSW_00426 BSW Modules shall ensure data
consistency of data which is
shared between BSW modules

SWS_EcuM_09999

SRS_BSW_00427 ISR functions shall be defined and
documented in the BSW module
description template

SWS_EcuM_09999

SRS_BSW_00432 Modules should have separate
main processing functions for
read/receive and write/transmit
data path

SWS_EcuM_09999

SRS_BSW_00437 Memory mapping shall provide
the possibility to define RAM
segments which are not to be
initialized during startup

SWS_EcuM_09999

SRS_BSW_00439 Enable BSW modules to handle
interrupts

SWS_EcuM_09999

SRS_BSW_00440 The callback function invocation
by the BSW module shall follow
the signature provided by RTE to
invoke servers via Rte_Call API

SWS_EcuM_02826

SRS_BSW_00447 Standardizing Include file
structure of BSW Modules
Implementing Autosar Service

SWS_EcuM_03025

SRS_BSW_00449 BSW Service APIs used by
Autosar Application Software shall
return a Std_ReturnType

SWS_EcuM_09999

SRS_BSW_00450 A Main function of a un-initialized
module shall return immediately

SWS_EcuM_09999

SRS_BSW_00453 BSW Modules shall be
harmonized

SWS_EcuM_09999

SRS_ModeMgm_09072 ECU shutdown shall be forced SWS_EcuM_03022

SRS_ModeMgm_09098 Storing the wake-up reasons shall
be available

SWS_EcuM_02826

SRS_ModeMgm_09104 ECU State Manager shall take
over control after OS shutdown

SWS_EcuM_02952, SWS_EcuM_02953

SRS_ModeMgm_09113 Initialization of Basic Software
modules shall be done

SWS_EcuM_02932

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

30 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

SRS_ModeMgm_09116 Requesting and releasing the
RUN state shall be provided

SWS_EcuM_04115,
SWS_EcuM_04116,
SWS_EcuM_04117,
SWS_EcuM_04118,
SWS_EcuM_04119,
SWS_EcuM_04120,
SWS_EcuM_04121,
SWS_EcuM_04123, SWS_EcuM_04130

SRS_ModeMgm_09127 The ECU State Manager shall de-
initialize Basic Software modules
where appropriate during the
shutdown process

SWS_EcuM_03021

SRS_ModeMgm_09136 The ECU State Manager shall be
the receiver of all wake-up events

SWS_EcuM_04091

SRS_ModeMgm_09186 Alarm Clock shall be active while
the ECU is powered

SWS_EcuM_04054,
SWS_EcuM_04055,
SWS_EcuM_04056,
SWS_EcuM_04057,
SWS_EcuM_04058,
SWS_EcuM_04059, SWS_EcuM_04060

SRS_ModeMgm_09187 In Case of wakeup, all the alarm
clock shall be canceled

SWS_EcuM_04009

SRS_ModeMgm_09188 In Case of startup, all the alarm
clock shall be canceled

SWS_EcuM_04010

SRS_ModeMgm_09190 The alarm clock service shall
allow setting an alarm relative to
the current time using a time
resolution of seconds

SWS_EcuM_04054

SRS_ModeMgm_09194 The alarm clock service shall
allow setting the clock

SWS_EcuM_04064

SRS_ModeMgm_09199 The alarm clock service shall
allow setting an alarm absolute by
using an absolute time with a
resolution of seconds

SWS_EcuM_04057

SRS_ModeMgm_09234 The EcuM shall handle the
initialization of Basic Software
modules

SWS_EcuM_02947

SRS_ModeMgm_09239 To shutdown, ShutdownAllCores
shall be called on the master core
after synchronizing all cores

SWS_EcuM_04024

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

31 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

7 Functional Specification

Chapter 1 introduced the new, more flexible approach to ECU state management.

However, this flexibility comes at the price of responsibility. There are no standard
ECU modes, or states. The integrator of an ECU must decide which states are
needed and also configure them.

When ECU Mode Handling is used, the standard states RUN and POST_RUN are
arbitrated by the RUN Request Protocol and propagated to the BswM. The system
designer has to make sure that pre-conditions of respective states are met when
setting an EcuM Mode by BswM actions.

Note that neither the BSW nor SW-Cs will be able to rely on certain ECU modes or
states, although previous versions of the BSW have largely not relied on them..

This document only specifies the functionality that remains in the ECU Manager
module. For a complete picture of ECU State Management, refer to the specifications
of the other relevant modules, i.e., RTE and BSW Scheduler module [15] and BSW
Mode Manager module [22].

Refer to the Guide to Mode Management [24] for some example use cases for ECU
states and the interaction between the involved BSW modules.

The ECU Manager module manages the state of wakeup sources in the same way
as it has in the past. The APIs to set/clear/validate wakeup events remain the same –
with the notable difference that these APIs are Callbacks.

It was always intended that wakeup source handling take place not only during
wakeup but continuously, in parallel to all other EcuM activities. This functionality is
now fully decoupled from the rest of ECU management via mode requests.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

32 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

7.1 Phases of the ECU Manager Module

Previous versions of the ECU Manager Module specification have differentiated
between ECU states and ECU modes.

ECU modes were longer-lasting periods of operational ECU activities that were
visible to applications and provided orientation to them, i.e. starting up, shutting
down, going to sleep and waking up.

The ECU Manager states were generally continuous sequences of ECU Manager
Module operations terminated by waiting until external conditions were fulfilled.
Startup1, for example, contained all BSW initilalzation before the OS was started and
terminated when the OS returned control to the ECU Manager module.

For the current Flexible ECU Manager there exist States, Modes and Phases which
are defined in Definitions and Acronyms.

Here the ECU state machine is implemented as general modes under the control of
the BSW Mode Manager module. This creates a terminology problem as the old ECU
States now become Modes that are visible through the RTE_Mode port interface and
the old ECU Modes become Phases.

Because Modes as defined by the VFB and used in the RTE are only available in the
UP phase (where the ECU Manager is passive) the change of terminology from
Modes to Phases got necessary.

Figure 2 shows an overview over the the phases of the Flexible ECU Manager
module.
The STARTUP phase lasts until the mode management facitliies are running.
Basically the STARTUP phase consists of the minimal activities needed to start
mode management: initializing low-level drivers, starting the OS and initializing the
BSW Scheduler and the BSW Mode Manager modules. Similarly the SHUTDOWN
phase is the reverse of the STARTUP phase is where mode management is de-
initialized.

The UP phase consists of all states that are not highlighted. During that phase, the
ECU goes from State to State and from Mode to Mode, as dictated by the Integrator-
defined state machine.

The UP phase contains default Modes in case ECU Mode Handling is used. The
transition between these Modes is done by cooperation between the ECU State
Manager module and the BSW Mode Manager module.
Note that the UP phase contains some former sleep states. The mode management
facilities do not operate from the point where the OS Scheduler has been locked to
prevent other tasks from running in sleep to the point where the MCU mode that puts
the ECU to sleep has been exited. The ECU Manager module provides wakeup
handling support at this time.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

33 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

A diagram which maps the new Phases to the old States of the ECU Manager of
AUTOSAR 3 and to the States of the ECU Manager Fixed of AUTOSAR 4 can be
found in the “Guide to Mode Management” [24].

SHUTDOWN

STARTUP

StartPreOs

StartPostOs

UP

OffPreOs

OffPostOs

OFF

SLEEP

GoSleep

Poll Halt

WakeUpRestart

WakeUpSources will

be enabled

WakeUpSources will

be disabled

After Sleep the

WakeupValidation is

started if needed

Reset if Shutdown

Target is RESET

SchM and BswM

de-initialized; OS will

be shutdown

BswM, Os and SchM

initialized

OS started

Figure 2 – Phases of the ECU Manager

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

34 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

7.1.1 STARTUP Phase

The purpose of the STARTUP phase is to initialize the basic software modules to the
point where Generic Mode Management facilities are operational. For more details
about the initialization see chapter 7.3.

7.1.2 UP Phase

Essentially, the UP phase starts when the BSW Scheduler has started and
BswM_Init has been called. At that point, memory management is not initialized,
there are no communication stacks, no SW-C support (RTE) and the SW-Cs have
not started. Processing starts in a certain mode (the next one configured after
Startup) with corresponding runnables, i.e. the BSW MainFunctions, and continues
as an arbitrary combination of mode changes which cause the BswM to execute
actions as well as triggering and disabling corresponding runnables.

From the ECU Manager Module perspective, the ECU is “up”, however. The BSW
Mode Manager Module then starts mode arbitration and all further BSW initialization,
starting the RTE and (implicitly) starting SW-Cs becomes code executed in the
BswM’s action lists or driven by mode-dependent scheduling, effectively under the
control of the integrator.

Initializing the NvM and calling NvM_Readall therefore also becomes integration
code. This means that the integrator is responsible for triggering the initialization of
Com, DEM and FIM at the end of NvM_ReadAll. The NvM will notify the BswM when
NvM_ReadAll has finished.

Note that the RTE can be started after NvM and COM have been initialized. Note
also that the communication stack need not be fully initialized before COM can be
initialized.

These changes initialize BSW modules as well as starting SW-Cs in arbitrary order
until the ECU reaches full capacity and the changes continue to determine the ECU
capabilities thereafter as well.

Ultimately mode switches stop SW-Cs and de-initialize the BSW so that the Up
phase ends when the ECU reaches a state where it can be powered off.

So, as far as the ECU Manager module is concerned, the BSW and SW-Cs run until
they are ready for the ECU to be shut down or put to sleep.

Refer to the Guide to Mode Management [24] for guidance on how to design mode-
driven ECU management and for configuring the BSW Mode Manager accordingly.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

35 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

7.1.3 SHUTDOWN Phase

[SWS_EcuM_03022]⌈The SHUTDOWN phase handles the controlled shutdown of
basic software modules and finally results in the selected shutdown target OFF or

RESET.⌋(SRS_ModeMgm_09072)

7.1.4 SLEEP Phase

The ECU saves energy in the SLEEP phase. Typically, no code is executed but
power is still supplied, and if configured accordingly, the ECU is wakeable in this
state2. The ECU Manager module provides a configurable set of (hardware) sleep
modes which typically are a trade off between power consumption and time to restart
the ECU.

The ECU Manager module wakes the ECU up in response to intended or unintended
wakeup events. Since unintended wakeup events should be ignored, the ECU
Manager module provides a protocol to validate wakeup events. The protocol
specifies a cooperative process between the driver which handles the wakeup source
and the ECU Manager (see section 7.6.4 Activities in the WakeupValidation
Sequence).

7.1.5 OFF Phase

The ECU enters the OFF state when it is powered down. The ECU may be wakeable
in this state but only for wakeup sources with integrated power control. In any case
the ECU must be startable (e.g. by reset events).

2
 Some ECU designs actually do require code execution to implement a SLEEP state (and the wakeup

capability). For these ECUs, the clock speed is typically dramatically reduced. These could be
implemented with a small loop inside the SLEEP state.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

36 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

7.2 Structural Description of the ECU Manager

«module»

EcuM_flex

BswM_Deinit

BswM_EcuM_CurrentWakeup

BswM_Init

ComM_EcuM_WakeUpIndication

Mcu_GetResetReason

Mcu_Init

Mcu_PerformReset

Mcu_SetMode

SchM_Init

SchM_Deinit

WdgM_PerformReset

GetResource

ReleaseResource

ShutdownOS

StartOS

Adc_Init

Can_Init

CanTrcv_Init

Det_Init

Det_ReportError

Dio_Init

Eth_Init

EthTrcv_Init

Fls_Init

Fr_Init

FrTrcv_Init

GetCoreID

Gpt_Init

Icu_Init

IoHwAb_Init

LinTrcv_Init

Lin_Init

Port_Init

Pwm_Init

ShutdownAllCores

StartCore

Wdg_Init

Spi_Init

DisableAllInterrupts

EnableAllInterrupts

GetEvent

SetEvent

EcuM_GoDown

Dem_Init

Dem_PreInit

Dem_ReportErrorStatus

Dem_Shutdown

Ocu_Init

EcuM_SelectShutdownTarget

EcuM_GetLastShutdownTarget

EcuM_GetShutdownTarget

CanSM_EcuMWakeUpValidation

EcuM_flex_Types

BswM_EcuM_RequestedState

EcuM_SetState

EthSwt_Init

EthSwt_SwitchInit

«mandatory»

«optional»

«optional»

«optional»

«optional»

«optional»

«optional»

«optional»

«optional»

«optional»

«optional»

«mandatory»

«mandatory»

«mandatory»

«optional»

«optional»

«mandatory»

«mandatory»

«mandatory»

«mandatory»

«mandatory»

«mandatory»

«mandatory»

«mandatory»

«mandatory»

«mandatory»

«realize»

«mandatory»

«mandatory»

«optional»

«realize»

«mandatory»

«optional»

«realize»

«realize»

«optional»

«mandatory»

«mandatory»

«mandatory»

«realize»

«realize»

«optional»

«optional»

«optional»

«mandatory»

«optional»

«optional»

«optional»

«optional»

«optional»

«optional»

«optional»

«optional»

«optional»

«optional»

«optional»

«optional»

Figure 3 – ECU Manager Module Relationships

Figure 3 illustrates the ECU Manager module’s relationship to the interfaces of other
BSW modules. In most cases, the ECU Manager module is simply responsible for
initialization3. There are however some modules that have a functional relationship
with the ECU Manager module, which is explained in the following paragraphs.

3
 To be precise, “initialization” could also mean de-initialization.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

37 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

7.2.1 Standardized AUTOSAR Software Modules

Some Basic Software driver modules are initialized, shut down and re-initialized upon
wakeup by the ECU Manager module.

The OS is initialized and shut down by the ECU Manager.

After the OS initialization, additional initialization steps are undertaken by the ECU
Manager module before passing control to the BswM. The BswM hands execution
control back to the ECU Manager module immediately before OS shutdown. Details
are provided in the chapters 7.3 STARTUP and 7.4 SHUTDOWN .

7.2.2 Software Components

SW-Components contain the AUTOSAR ECU’s application code.

A SW-C interacts with the ECU Manager module using AUTOSAR ports.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

38 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

7.3 STARTUP Phase

See Chapter 7.1.1 for an overview description of the STARTUP phase.

«module»

Os

C Init Code «module»

EcuM

BSW Task (OS task

or cyclic call)

Boot Menu

ResetReset

ref
StartPostOS Sequence

ref
StartPreOS Sequence

Reset

Vector()

Jump()

Set up

stack()

EcuM_Init()

StartOS()

StartupHook()

ActivateTask()

EcuM_StartupTwo()

Figure 4 – STARTUP Phase

Figure 4 shows the startup behavior of the ECU. When invoked through EcuM_Init,

the ECU Manager module takes control of the ECU startup procedure. With the call

to StartOS, the ECU Manager module temporarily relinquishes control. To regain

control, the Integrator has to implement an OS task that is automatically started and
calls EcuM_StartupTwo as its first action.

7.3.1 Activities before EcuM_Init

The ECU Manager module assumes that before EcuM_Init (see
SWS_EcuM_02811) is called a minimal initialization of the MCU has taken place, so
that a stack is set up and code can be executed, also that C initialization of variables
has been performed.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

39 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

7.3.2 Activities in StartPreOS Sequence

[SWS_EcuM_02411]⌈Table 1 shows the activities in StartPreOS Sequence and the
order in which they shall be executed in EcuM_Init (see SWS_EcuM_02811).

StartPreOS Sequence

 Initialization Activity Comment Opt.
4

 Callout
EcuM_AL_SetProgrammableI
nterrupts

On ECUs with programmable interrupt priorities, these
priorities must be set before the OS is started.

yes

 Callout
EcuM_AL_DriverInitZero

Init block 0
This callout may only initialize BSW modules that do
not use post-build configuration parameters. The
callout may not only contain driver initialization but
also any kind of pre-OS, low level initialization code.
See 7.3.5 Driver Initialization

yes

 Callout
EcuM_DeterminePbConfigura
tion

This callout is expected to return a pointer to a fully
initialized EcuM_ConfigType structure containing the
post-build configuration data for the ECU Manager
module and all other BSW modules.

no

 Check consistency of
configuration data

If check fails the EcuM_ErrorHook is called. See 7.3.4
Checking Configuration Consistency for details on the
consistency check.

no

 Callout
EcuM_AL_DriverInitOne

Init block I
The callout may not only contain driver initialization
but any kind of pre-OS, low level initialization code.
See 7.3.5 Driver Initialization

yes

 Get reset reason The reset reason is derived from a call to

Mcu_GetResetReason and the mapping defined via

the EcuMWakeupSource configuration containers.

See 8.5.1.2 EcuM_SetWakeupEvent and 8.3.5.3
EcuM_GetValidatedWakeupEvents (see
SWS_EcuM_02830)

no

 Select default shutdown
target

See SWS_EcuM_02181 no

 Callout EcuM_LoopDetection If Loop Detection is enabled, this callout is called on

every startup. It returns true, if a reset loop was

detected. Otherwise it returns false.

yes

 Start OS Start the AUTOSAR OS, see SWS_EcuM_02603 no

Table 1 – StartPreOS Sequence

⌋()

[SWS_EcuM_02623] ⌈The ECU Manager module shall remember the wakeup
source resulting from the reset reason translation (see table 1).⌋()

Rationale for SWS_EcuM_02623: The wakeup sources must be validated by the
EcuM_MainFunction (see section 7.6.4 Activities in the WakeupValidation
Sequence).

4
 Optional activities can be switched on or off by configuration. See section 10.1 Common Containers

and configuration parameters for details.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

40 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

[SWS_EcuM_02684] ⌈When activated through the EcuM_Init (see
SWS_EcuM_02811) function, the ECU Manager module shall perform the actions in

the StartPreOS Sequence (see Table 1 – StartPreOS Sequence).⌋()

«module»

Os

«module»

Mcu

«module»

EcuM

Integration Code

Init Block I

opt Configuration data inconsistent

Init Block 0

This call never returns!

EcuM_AL_DriverInitZero()

EcuM_DeterminePbConfiguration(EcuM_ConfigType*)

Check consistency of configuration

data()

EcuM_ErrorHook(ECUM_E_CONFIGURATION_DATA_INCONSISTENT)

EcuM_AL_DriverInitOne(const

EcuM_ConfigType*)

Mcu_GetResetReason(Mcu_ResetType)

Mcu_GetResetReason()

Map reset reason to wakeup

source()

EcuM_SelectShutdownTarget(Std_ReturnType,

EcuM_ShutdownTargetType, EcuM_ShutdownModeType)

EcuM_LoopDetection()

StartOS(ECUM_DEFAULT_APP_MODE)

Figure 5 – StartPreOS Sequence

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

41 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

The StartPreOS Sequence is intended to prepare the ECU to initialize the OS and
should be kept as short as possible. Drivers should be initialised in the UP phase
when possible and the callouts should also be kept short. Interrupts should not be
used during this sequence. If interrupts have to be used, only category I interrupts
are allowed in the StartPreOS Sequence 15.

Initialization of drivers and hardware abstraction modules is not strictly defined by the
ECU Manager. Two callouts EcuM_AL_DriverInitZero (see SWS_EcuM_02905) and
EcuM_AL_DriverInitOne (see SWS_EcuM_02907) are provided to define the init
blocks 0 and I. These blocks contain the initialization activities associated with the
StartPreOS sequence.

MCU_Init does not provide complete MCU initialization. Additionally, hardware

dependent steps have to be executed and must be defined at system design time.
These steps are supposed to be taken within the EcuM_AL_DriverInitZero (see
8.6.2.2 EcuM_AL_DriverInitZero, SWS_EcuM_02905) or EcuM_AL_DriverInitOne
callouts (see 8.6.2.4 EcuM_AL_DriverInitOne, SWS_EcuM_02907). Details can be
found in the Specification of MCU Driver [10].

[SWS_EcuM_02181] ⌈The ECU Manager module shall call 8.3.5.3
EcuM_GetValidatedWakeupEvents (see SWS_EcuM_02822) with the configured
default shutdown target (see section 7.7 Shutdown Targets and

EcuMDefaultShutdownTarget ECUC_EcuM_00105).⌋()

[SWS_EcuM_02603] ⌈The StartPreOS Sequence shall initialize all basic software
modules that are needed to start the OS.⌋()

7.3.3 Activities in the StartPostOS Sequence

StartPostOS Sequence

 Initialization Activity Comment Opt.
6

 Init BSW Scheduler Initialize the semaphores for critical sections used by
BSW modules

no

 Init BSW Mode Manager no

Table 2 – StartPostOS Sequence

[SWS_EcuM_02932] ⌈When activated through the EcuM_StartupTwo (see
SWS_EcuM_02838) function, the ECU Manager module shall perform the actions in

5
 Category II interrupts require a running OS while category I interrupts do not. AUTOSAR OS requires

each interrupt vector to be exclusively put into one category.
6
 Optional activities can be switched on or off by configuration. See section 10.1 Common Containers

and configuration parameters for details.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

42 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

StartPostOS Sequence (see Table 2 – StartPostOS

Sequence).⌋(SRS_ModeMgm_09113)

«module»

SchM

«module»

EcuM

«module»

BswM

SchM_Init(const

SchM_ConfigType*)

BswM_Init(const BswM_ConfigType *)

Figure 6 – StartPostOS Sequence

7.3.4 Checking Configuration Consistency

7.3.4.1 The Necessity for Checking Configuration Consistency in the ECU

Manager

In an AUTOSAR ECU several configuration parameters are set and put into the ECU
at different times. Pre-compile parameters are set, inserted into the generated source
code and compiled into object code. When the source code has been compiled, link-
time parameters are set, compiled, and linked with the previously configured object
code into an image that is put into the ECU. Finally, post-build parameters are set,
compiled, linked, and put into the ECU at a different time. All these parameters must
match to obtain a stable ECU.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

43 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Per BSW Module

Pre-Compile and Link-Time Part

Post-Build Part

.XML.XML

ECU

Configuration

Description

.obj.obj

Compiled

BSW Code

.c.c

BSW

Code

.h.h

BSW

Header

.XML.XML

BSW Pre-

Compile

Parameters

Generate BSW

Configuration

.XML.XML

BSW Link-

Time

Parameters

.XML.XML

BSW Post-

Build

Parameters

.h.h

BSW

Configuration

Header

.h.h

BSW Pre-

Compile

Parameters

.c.c

BSW Link-

Time

Parameters

Compile BSW Code

Compile BSW Post-Build

Configuration

.c.c

BSW Post-

Build

Parameters

Compile BSW Link-Time

Configuration

.obj.obj

Compiled

BSW Link-

Time

Configuration

.obj.obj

Compiled

BSW Post-

Build

Configuration

Link BSW Modules, RTE,

and SWCs

.exe.exe

ECU Code

Image

Link Post-Build

Configuration

.exe.exe

ECU Post-

Build Data

Image

.obj.obj

Compiled

RTE Code

.obj.obj

Compiled

SWC Code

Figure 7 – BSW Configuration Steps

The configuration tool can check the consistency of configuration time parameters
itself. The compiler may detect parameter errors at compilation time and the linker
may find additional errors at link time. Unfortunately, finding configuration errors in
post-build parameters is very difficult. This can only be achieved by checking that

 the pre-compile and link-time parameter settings used when compiling the
code

are exactly the same as

 the pre-compile and link-time parameter settings used when configuring and
compiling the post-build parameters.

This can only be done at run-time.

Explanation for SWS_EcuM_02796: The ECU Manager module checks the
consistency once before initializing the first BSW module to avoid multiple checks
scattered over the different BSW modules.

This also implies that:

[SWS_EcuM_02796] ⌈The ECU Manager module shall not only check the
consistency of its own parameters but of all post-build configurable BSW modules

before initializing the first BSW module.⌋()

The ECU Manager Configuration Tool must compute a hash value over all pre-
compile and link-time configuration parameters of all BSW modules and store the

value in the link-time ECUM_CONFIGCONSISTENCY_HASH (see ECUC_EcuM_00102)

configuration parameter. The hash value is necessary for two reasons. First, the pre-

compile and link-time parameters are not accessible at run-time. Second, the check
must be very efficient at run-time. Comparing hundreds of parameters would cause
an unacceptable delay in the ECU startup process.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

44 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

The ECU Manager module Configuration Tool must in turn put the computed

ECUM_CONFIGCONSISTENCY_HASH value into the field in the EcuM_ConfigType

structure which contains the root of all post-build configuration parameters.

[SWS_EcuM_02798] ⌈The ECU Manager module shall check in EcuM_Init (see
SWS_EcuM_02811) that the field in the structure is equal to the value of

ECUM_CONFIGCONSISTENCY_HASH.⌋()

By computing hash values at configuration time and comparing them at run-time the
EcuM code can be very efficient and is furthermore independent of a particular hash
computation algorithm. This allows the use of complex hash computation algorithms,
e.g. cryptographically strong hash functions.

Note that the same hash algorithm can be used to produce the value for the post-
build configuration identifier in the EcuM_ConfigType structure. Then the hash
algorithm is applied to the post-build parameters instead of the pre-compile and link-
time parameters.

[SWS_EcuM_02799] ⌈The hash computation algorithm used to compute a hash
value over all pre-compile and link-time configuration parameters of all BSW modules
shall always produce the same hash value for the same set of configuration data

regardless of the order of configuration parameters in the XML files.⌋()

7.3.4.2 Example Hash Computation Algorithm

Note: This chapter is not normative. It describes one possible way to compute hash
values.

A simple CRC over the values of configuration parameters will not serve as a good
hash algorithm. It only detects global changes, e.g. one parameter has changed from
1 to 2. But if another parameter changed from 2 to 1, the CRC might stay the same.

Additionally, not only the values of the configuration parameters but also their names
must be taken into account in the hash algorithm. One possibility is to build a text file
that contains the names of the configuration parameters and containers, separate
them from the values using a delimiter, e.g. a colon, and putting each parameter as a
line into a text file.

If there are multiple containers of the same type, each container name can be
appended with a number, e.g. “_0”, “_1” and so on.

To make the hash value independent of the order in which the parameters are written
into the text file, the lines in the file must now be sorted lexicographically.

Finally, a cryptographically strong hash function, e.g. MD5, can be run on the text file
to produce the hash value. These hash functions produce completely different hash
values for slightly changed input files.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

45 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

7.3.5 Driver Initialization

A driver’s location in the initialization process depends strongly on its implementation
and the target hardware design.

Drivers can be initialized by the ECU Manager module in Init Block 0 or Init Block 1 of
the STARTUP phase or re-initialized in the EcuM_AL_DriverRestart callout of the
WakeupRestart Sequence. Drivers can also be initialized or re-initialized by the
BswM during the UP phase.

This chapter applies to those AUTOSAR Basic Software drivers, other than SchM
and BswM, whose initialization and re-initialization is handled by the ECU Manager
module and not the BswM.

[SWS_EcuM_02559] ⌈The configuration of the ECU Manager module shall specify
the order of initialization calls inside init block 0 and init block 1. (see

EcuMDriverInitListZero ECUC_EcuM_00114 and EcuMDriverInitListOne

ECUC_EcuM_00111).⌋(SRS_BSW_00416,SRS_ModeMgm_09234)
[SWS_EcuM_02730] ⌈The ECU Manager module shall call each driver’s init function

with the parameters derived from the driver’s EcuMModuleService configuration

container (see ECUC_EcuM_00124).⌋(SRS_ModeMgm_09234)

[SWS_EcuM_02947] ⌈For re-initialization during WakeupRestart, the integrator shall
integrate a restart block into the integration code for EcuM_AL_DriverRestart (see

SWS_EcuM_02923) using the EcuMDriverRestartList (see

ECUC_EcuM_00115)⌋(SRS_ModeMgm_09234)

[SWS_EcuM_02562] ⌈EcuMDriverRestartList (see ECUC_EcuM_00115) may

contain drivers that serve as wakeup sources. EcuM_AL_DriverRestart (see
SWS_EcuM_02923) shall re-arm the trigger mechanism of these drivers’ ‘wakeup

detected’ callback (see Section 7.6.4 Activities in the WakeupRestart Sequence).⌋()

[SWS_EcuM_02563] ⌈When hardware has been put into a sleep mode during
SHUTDOWN then this hardware must be restarted by its driver. The ECU Manager
module shall invoke in the WakeupRestart Sequence (see Section 7.6.4 Activities in

the WakeupRestart Sequence).⌋()

[SWS_EcuM_02561] ⌈The ECU Manager module shall initialize the drivers in

EcuMDriverRestartList in the same order as in the combined list of init block 0

and init block 1.⌋()

Hint for SWS_EcuM_02561: EcuMDriverRestartList will typically only contain a

subset of the combined list of init block 0 and init block 1 drivers.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

46 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Table 3 shows one possible (and recommended) sequence of activities for the Init
Blocks 0 and I. Depending on hardware and software configuration, BSW modules
may be added or left out and other sequences may also be possible.

Recommended Init Block

 Init Activity Comment

Init Block 0
7

 Default Error Tracer This should always be the first module to be initialized, so that
other modules can report development errors.

 Diagnostic Event Manager Pre-Initialization

 Any drivers needed to
access post-build
configuration data

These drivers shall not depend on the post-build configuration or
on OS features.

Init Block I

8

 MCU Driver

 Port Driver

 DIO Driver

 General Purpose Timer

 Watchdog Driver Internal watchdogs only, external ones may need SPI

 Watchdog Manager

 ADC Driver

 ICU Driver

 PWM Driver

 OCU Driver

Table 3 - Driver Initialization Details, Sample Configuration

7.3.6 DET Initialization

The Default Error Tracer module is a BSW module which contains software used for

debugging. The DET must be both initialized (by calling Det_Init) and started (by

calling Det_Start) before becoming operational. Refer to [18] Specification of

Default Error Tracer for details.

In production environments, the DET module must not be compiled in and in
development environments, at least one module must use the DET before its
initialization is relevant to the system.

[SWS_EcuM_02783] ⌈If at least one module is configured to track development
errors, the ECU Manager module shall initialize the DET before all other drivers
during the StartPreOS sequence (see Section7.3.2 Activities in StartPreOS

Sequence).⌋()

7
 Drivers in Init Block 0 are listed in the EcuMDriverInitListZero configuration container.

8
 Drivers in Init Block I are listed in the EcuMDriverInitListOne configuration container.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

47 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Rational for SWS_EcuM_02783: Other modules cannot report development errors
before the DET is initialized.

[SWS_EcuM_02634] ⌈The ECU Manager module shall not start the DET by
default.⌋()

Rationale for SWS_EcuM_02634: The system designer has to configure the point
where DET is started, preferably into the EcuM_AL_DriverInitOne callout (see
SWS_EcuM_02907). The best point for starting DET depends on its implementation
and behavior.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

48 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

7.4 SHUTDOWN Phase

Refer to Section 7.1.3 SHUTDOWN Phase for an overview of the SHUTDOWN

phase. EcuM_GoDown initiates the SHUTDOWN Phase.

[SWS_EcuM_02756]⌈When a wakeup event occurs during the shutdown phase, the
ECU Manager module shall complete the shutdown and restart immediately

thereafter.⌋()

«module»

Os

«module»

EcuM

Integration Code«module»

BswM

ref
OffPreOS Sequence

ref
OffPostOS Sequence

EcuM_SelectShutdownTarget(Std_ReturnType,

EcuM_ShutdownTargetType, EcuM_ShutdownModeType)

EcuM_GoDown(Std_ReturnType,

uint16)

ShutdownOS()

ShutdownHook()

EcuM_Shutdown()

Figure 8 – SHUTDOWN Phase

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

49 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

7.4.1 Activities in the OffPreOS Sequence

[SWS_EcuM_03021] ⌈
OffPreOS Sequence

 Shutdown Activity Comment Opt.
9

 De-init BSW Mode Manager no

 De-init BSW Scheduler no

 Check for pending wakeup events Purpose is to detect wakeup events
that occurred during shutdown

no

 Set RESET as shutdown target, if wakeup
events are pending (default reset mode of
EcuMDefaultResetModeRef
(ECUC_EcuM_00205) will be used)

This action shall only be carried out
when pending wakeup events were
detected to allow an immediate
startup

no

 ShutdownOS Last operation in this OS task no

Table 4 – OffPreOS Sequence

⌋(SRS_ModeMgm_09127)

[SWS_EcuM_02952] ⌈As its last activity, the ECU Manager module shall call the

ShutdownOS function.⌋(SRS_ModeMgm_09104)

The OS calls the shutdown hook at the end of its shutdown.

[SWS_EcuM_02953] ⌈The shutdown hook shall call EcuM_Shutdown (see
SWS_EcuM_02812) to terminate the shutdown process. EcuM_Shutdown(see
SWS_EcuM_02812) shall not return but switch off the ECU or issue a

reset.⌋(SRS_ModeMgm_09104)

9
 Optional activities can be switched on or off by configuration. It shall be the system designers choice

if a module is compiled in or not for an ECU design. See chapter . See section 10.1 Common
Containers and configuration parameters for details.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

50 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

«module»

EcuM

«module»

Os

«module»

SchM

«module»

BswM

Integration Code

opt Pending wakeup events?

EcuM_OnGoOffOne()

BswM_Deinit()

SchM_Deinit()

EcuM_GetPendingWakeupEvents(EcuM_WakeupSourceType)

EcuM_SelectShutdownTarget(Std_ReturnType,

EcuM_ShutdownTargetType, EcuM_ShutdownModeType)

ShutdownOS()

Figure 9 – OffPreOS Sequence

7.4.2 Activities in the OffPostOS Sequence

The OffPostOS sequence implements the final steps to reach the shutdown target
after the OS has been shut down. EcuM_Shutdown (see SWS_EcuM_02812)
initiates the sequence.

The shutdown target can be either ECUM_STATE_RESET or ECUM_STATE_OFF,
whereby the specific reset modality is determined by the reset mode. See section 7.7
Shutdown Targets for details.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

51 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

OffPostOS Seqeunce

 Shutdown Activity Comment Opt.
10

 Callout EcuM_OnGoOffTwo no

 Callout EcuM_AL_Reset or Callout
EcuM_AL_SwitchOff

Depends on the selected shutdown
target (RESET or OFF)

no

Table 5 – OffPostOS Sequence

Integration Code«module»

EcuM

alt Shutdown Target

[Reset]

[Off]

EcuM_OnGoOffTwo()

EcuM_AL_Reset(EcuM_ResetType)

EcuM_AL_SwitchOff()

Figure 10 – OffPostOS Sequence

[SWS_EcuM_04074] ⌈When the shutdown target is RESET, the ECU Manager
module shall call the EcuM_AL_Reset callout. See section 8.6.3.4 EcuM_AL_Reset

(SWS_EcuM_04065) for details.⌋()

[SWS_EcuM_04075] ⌈When the shutdown target is OFF, the ECU Manager module
shall call the EcuM_AL_SwitchOff callout. See section 8.6.3.3 EcuM_AL_SwitchOff

(SWS_EcuM_02920) for details.⌋()

10

 Optional activities can be switched on or off by configuration. It shall be the system designers choice
if a module is compiled in or not for an ECU design. See chapter. See section 10.1 Common
Containers and configuration parameters for details.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

52 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

7.5 SLEEP Phase

Refer to Section 7.1.4 SLEEP Phase for an overview of the SLEEP phase.
EcuM_GoHalt or EcuM_GoPoll initiate the SLEEP phase.

EcuM_GoHalt and EcuM_GoPoll initiate two control streams that differ structurally in
the mechanisms used to realize sleep. They share the sequences for preparing for
and recovering from sleep, however.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

53 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

«module»

EcuM

«module»

BswM

ref
GoSleep Sequence

alt

[EcuM_GoHalt called]

[EcuM_GoPoll called]

ref
Halt Sequence

ref
Polling Sequence

ref
WakeupRestart Sequence

EcuM_SelectShutdownTarget(Std_ReturnType,

EcuM_ShutdownTargetType, EcuM_ShutdownModeType)

EcuM_GoHalt(Std_ReturnType)

Figure 11 – SLEEP Phase

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

54 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Another module, presumably the BswM, although it could be an SW-C as well, must
ensure that an appropriate ECUM_STATE_SLEEP shutdown target has been
selected before calling either EcuM_GoHalt or EcuM_GoPoll.

7.5.1 Activities in the GoSleep Sequence

In the GoSleep sequence the ECU Manager module configures hardware for the
upcoming sleep phase and sets the ECU up for the next wakeup event.

[SWS_EcuM_02389] ⌈To set the wakeup sources up for the next sleep mode, the
ECU Manager module shall execute the EcuM_EnableWakeupSources callout (see
SWS_EcuM_02546) for each wakeup source that is configured in

EcuMWakeupSourceMask (see ECUC_EcuM_00152) for the target sleep

mode.⌋(SRS_ModeMgm_09100)

[SWS_EcuM_02951] ⌈In contrast to the SHUTDOWN phase, the ECU Manager
module shall not shut down the OS when entering the SLEEP phase. The sleep
mode, i.e. combination of the EcuM SLEEP phase and the Mcu Mode, shall be

transparent to the OS.⌋()

«module»

EcuM

«module»

Os

Integration Code «module»

:BswM

BswM_EcuM_CurrentWakeup(sources, ECUM_WKSTATUS_NONE)

EcuM_EnableWakeupSources(EcuM_WakeupSourceType)

GetResource(RES_AUTOSAR_ECUM_<core#>)

Figure 12 – GoSleep Sequence

[SWS_EcuM_03010] ⌈When operating on a multicore ECU ECUM shall reserve a
dedicated resource (RES_AUTOSAR_ECUM) for each core, which is allocated

during GoSleep.⌋()

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

55 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

7.5.2 Activities in the Halt Sequence

[SWS_EcuM_02960] ⌈The ECU Manager module shall execute the Halt Sequence in
sleep modes that halt the microcontroller. In these sleep modes the ECU Manager

module does not execute any code.⌋()

[SWS_EcuM_02863] ⌈The ECU Manager module shall invoke the
EcuM_GenerateRamHash (see SWS_EcuM_02919) callout before halting the

microcontroller the EcuM_CheckRamHash (see SWS_EcuM_02921) callout after the

processor returns from halt.
In case of applied multi core and existence of "slave" EcuM(s) this check should be
executed on the "master" EcuM only. The "master" EcuM generates the hash out of

all data that lie within its reach. Private data of "slave" EcuMs are out of scope.⌋()

Rationale for SWS_EcuM_02863 : Ram memory may become corrupted when an
ECU is held in sleep mode for a long time. The RAM memory’s integrity should
therefore be checked to prevent unforeseen behavior. The system designer may
choose an adequate checksum algorithm to perform the check.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

56 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Integration Code «module»

:BswM

«Peripheral»

Wakeup Source

«module»

Mcu

«module»

EcuM

«module»

Wakeup Source

«module»

Os

HALT

(from Sleep

Sequence I)

opt RAM check failed

This call never returns!

alt Validation Needed

[Yes]

[No]

ECU Returns to Halt (Execution

continues with the interrupt above)

alt AlarmClock Service Present

[EcuM_AlarmClock only pending event AND Alarm not expired]

DisableAllInterrupts()

EcuM_GenerateRamHash()

Mcu_SetMode(Mcu_ModeType)

Interrupt()

EcuM_CheckWakeup(EcuM_WakeupSourceType)

Activate

PLL()

<Module>_CheckWakeup()

EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

Return from

interrupt()
Mcu_SetMode()

EnableAllInterrupts()

DisableAllInterrupts()

EcuM_GenerateRamHash()

Mcu_SetMode(Mcu_ModeType)

EcuM_CheckRamHash(uint8)

EcuM_ErrorHook(uint16)

BswM_EcuM_CurrentWakeup(sources.

ECUM_WKSTATUS_PENDING)

BswM_EcuM_CurrentWakeup(sources,

ECUM_WKSTATUS_VALIDATED)

Figure 13 – Halt Sequence

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

57 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

[SWS_EcuM_02961] ⌈The ECU Manager module shall invoke the
EcuM_GenerateRamHash (see SWS_EcuM_02919) where the system designer can

place a RAM integrity check.⌋()

7.5.3 Activities in the Poll Sequence

[SWS_EcuM_02962] ⌈The ECU Manager module shall execute the Poll Sequence in
sleep modes that reduce the power consumption of the microcontroller but still

execute code.⌋()
[SWS_EcuM_03020] ⌈In the Poll sequence the EcuM shall call the callouts
EcuM_SleepActivity() and EcuM_CheckWakeup() in a blocking loop until a pending

wakeup event is reported.⌋()

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

58 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

«module»

EcuM

«module»

:BswM

Integration Code «module»

Mcu

«module»

Wakeup Source

«module»

Os

loop WHILE no pending/validated wakeup events

loop FOR all wakeup sources that need polling

opt Wakeup detected

alt Validation Needed

[Yes]

[No]

Additional Confidition to Loop: While (AlarmClockService Present AND

EcuM_AlarmClock only pending event AND Alarm not expired)

DisableAllInterrupts()

Mcu_SetMode(Mcu_ModeType)

EnableAllInterrupts()

EcuM_SleepActivity()

EcuM_CheckWakeup(EcuM_WakeupSourceType)

<Module>_CheckWakeup()

EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

EcuM_GetPendingWakeupEvents(EcuM_WakeupSourceType)

BswM_EcuM_CurrentWakeup(sources.

ECUM_WKSTATUS_PENDING)

BswM_EcuM_CurrentWakeup(sources.

ECUM_WKSTATUS_VALIDATED)

Figure 14 – Poll Sequence

7.5.4 Leaving Halt or Poll

[SWS_EcuM_02963] ⌈If a wakeup event (e.g. toggling a wakeup line, communication
on a CAN bus etc.) occurs while the ECU is in Halt or Poll, then the ECU Manager

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

59 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

module shall regain control and exit the SLEEP phase by executing the
WakeupRestart sequence (see section 7.5.5 Activities in the WakeupRestart
Sequence).

An ISR may be invoked to handle the wakeup event, but this depends on the

hardware and the driver implementation. ⌋()

[SWS_EcuM_04001] ⌈If irregular events (a hardware reset or a power cycle) occur
while the ECU is in Halt or Poll, the ECU Manager module shall restart the ECU in

the STARTUP phase.⌋()

7.5.5 Activities in the WakeupRestart Sequence

WakeupRestart

11

 Wakeup Activity Comment Opt.

 Restore MCU normal mode Selected MCU mode is configured in the
configuration parameter
EcuMNormalMcuModeRef

 Get the pending wakeup sources

 Callout EcuM_DisableWakeupSources Disable currently pending wakeup source but
leave the others armed so that later wakeups
are possible.

 Callout EcuM_AL_DriverRestart Initialize drivers that need restarting

 Unlock Scheduler From this point on, all other tasks may run
again.

Table 6 - WakeupRestart Activities

The ECU Manager module invokes the EcuM_AL_DriverRestart (see
SWS_EcuM_02923) callout which is intended for re-initializing drivers. Among
others, drivers with wakeup sources typically require re-initialization. For more details
on driver initialization refer to section 7.3.5 Driver Initialization.

During re-initialization, a driver must check if one of its assigned wakeup sources
was the reason for the previous wakeup. If this test is true, the driver must invoke its
‘wakeup detected’ callback (see the Specification of CAN Transceiver Driver [19] for
an example), which in turn must call the EcuM_SetWakeupEvent (see
SWS_EcuM_02826) function.

The driver implementation should only invoke the wakeup callback once. Thereafter it
should not invoke the wakeup callback again until it has been re-armed by an explicit
function call. The driver must thus be re-armed to fire the callback again.

11

 Rows marked with × are conditional.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

60 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

[SWS_EcuM_02539] ⌈If the ECU Manager module has a list of wakeup source
candidates when the WakeupRestart Sequence has finished, the ECU Manager

module shall validate these wakeup source candidates in EcuM_MainFunction.

See section 7.6.4 Activities in the WakeupValidation Sequence.⌋()

[SWS_EcuM_04066]

«module»

Mcu

«module»

Os

«module»

EcuM

Integration Code

DisableAllInterrupts()

Mcu_SetMode(Mcu_ModeType)

EnableAllInterrupts()

EcuM_GetPendingWakeupEvents(EcuM_WakeupSourceType)

EcuM_DisableWakeupSources(EcuM_WakeupSourceType)

EcuM_AL_DriverRestart(const

EcuM_ConfigType*)

ReleaseResource(RES_AUTOSAR_ECUM_<core#>)

Figure 15 – WakeupRestart Sequence

7.6 UP Phase

In the UP Phase, the EcuM_MainFunction is executed regularly and it has three
major functions:

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

61 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

 To check if wakeup sources have woken up and to initiate wakeup validation,
if necessary (see 7.6.4 Activities in the WakeupValidation Sequence)

 To update the Alarm Clock timer

 Arbitrate RUN and POST_RUN requests and releases.

7.6.1 Alarm Clock Handling

See section 7.8.2.1 EcuM Clock Time in the UP Phase for implementation details.

[SWS_EcuM_04002] ⌈When the Alarm Clock service is present (see

EcuMAlarmClockPresent ECUC_EcuM_00199) the EcuM_MainFunction shall

update the Alarm Clock Timer⌋()

7.6.2 Wakeup Source State Handling

Wakeup source are not only handled during wakeup but continuously, in parallel to
all other EcuM activities. This functionality runs in the EcuM_MainFunction fully
decoupled from the rest of ECU management via mode requests.

[SWS_EcuM_04091] ⌈
The wakeup sources can be in the following states:

States Description

ENABLED The wakeup sources are enabled.

NONE No wakeup event was detected or has been cleared.

PENDING A wakeup event was detected but not yet validated.

VALIDATED A wakeup event was detected and succesfully validated.

EXPIRED A wakeup event was detected but validation failed.

⌋(SRS_ModeMgm_09136)

Figure 16 illustrates the relationship between the wakeup source states and the

conditions functions that evoke state changes. The two super-states Disabled and

Validation are only shown here for clarification and better understandability.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

62 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Figure 16 - Wakeup Source States

[SWS_EcuM_04003] ⌈When an ECU Manager action causes the state of a wakeup
source to change, the ECU Manager module shall issue a mode request to the BswM

to change the wakeup source’s mode to the new the wakeup source state.⌋()

For the communication of these wakeup source states the type

EcuM_WakeupStatusType (see SWS_ECUM_04041) is used.

When the ECU Manager module is in the UP phase, wakeup events do not usually
trigger state changes. They trigger the end of the Halt and Poll Sub-Phases,
however. The ECU Manager module then executes the WakeupRestart Sequence
automatically and returns thereafter to the UP phase.

It is up to the integrator to configure rules in the BswM so that the ECU reacts
correctly to the wakeup events, as the reaction depends fully on the current ECU (not
ECU Management) state.

If the wakeup source is valid, the BswM returns the ECU to its RUN state. If all
wakeup events have gone back to NONE or EXPIRED, the BswM prepares the BSW

for SLEEP or OFF again and invokes to EcuM_GoPoll or EcuM_GoHalt or

EcuM_GoDown depending on the last shutdown target.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

63 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Summarizing: every pending event is validated independently (if configured) and the
EcuM publishes the result as a mode request to the BswM, which in turn can trigger
state changes in the EcuM.

7.6.3 Internal Representation of Wakeup States

The EcuM manager module offers the following interfaces to ascertain the state of
those wakeup sources:

 EcuM_GetPendingWakeupEvents

 EcuM_GetValidatedWakeupEvents

 EcuM_GetExpiredWakeupEvents
and manipulates the state of the wakeup sources through the following interfaces

 EcuM_ClearWakeupEvent

 EcuM_SetWakeupEvent

 EcuM_ValidateWakeupEvent

 EcuM_CheckWakeup

 EcuM_DisableWakeupSources

 EcuM_EnableWakeupSources

 EcuM_StartWakeupSources

 EcuM_StopWakeupSources

The ECU Manager module can manage up to 32 wakeup sources. The state of the
wakeup sources is typically represented at the EcuM interfaces named above by
means of an EcuM_WakeupSourceType bitmask where the individual wakeup
sources correspond to a fixed bit position. There are 5 predefined bit positions and
the rest can be assigned by configuration. See section 8.2.5
EcuM_WakeupSourceType for details.

On the one hand, the ECU Manager module manages the modes of each wakeup
source. On the other hand, the ECU Manager module presupposes that there are
“internal variables” (i.e. EcuM_WakeupSourceType instances) that track which
wakeup sources are in a particular state (especially NONE (i.e. cleared), PENDING,
VALIDATED and EXPIRED). The ECU Manager module uses these “internal
variables” in the respective interface definitions to define the semantics of the
interface.

Whether these “internal variables” are indeed implemented is therefore of secondary
importance. They are simply used to explain the semantics of the interfaces.

7.6.4 Activities in the WakeupValidation Sequence

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

64 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Since wakeup events can be generated unintentionally (e.g. EVM spike on CAN line),
it is necessary to validate wakeups before the ECU resumes full operation.

The validation mechanism is the same for all wakeup sources. When a wakeup event
occurs, the ECU is woken up from its SLEEP state and execution resumes within the

MCU_SetMode service of the MCU driver12. When the WakeupRestart Sequence has

finished, the ECU Manager module will have a list of pending wakeup events to be
validated (see SWS_EcuM_02539). The ECU Manager module then releases the
BSW Scheduler and all BSW MainFunctions; most notably in this case, the EcuM
MainFunction can resume processing.

Implementation hint: Since SchM will be running at the end of the StartPostOS and
WakeupRestart sequences, there is the possibility that the EcuM_MainFunction will
initiate validation for a source whose stack has not yet been initialized. The integrator
should configure appropriate modes which indicate that the stack is not available and

disable the EcuM_MainFunction accordingly (see [15]).

12

 Actually, the first code to be executed may be an ISR, e.g. a wakeup ISR. However, this is specific
to hardware and/or driver implementation.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

65 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

«module»

EcuM

«module»

ComM

«module»

Wakeup Source

Integration Code «module»

BswM

«module»

CanSM

loop WHILE no wakeup event has been validated AND timeout not expired

opt Wakeup validated

opt No wakeup event was validated

EcuM_GetPendingWakeupEvents(EcuM_WakeupSourceType)

EcuM_StartWakeupSources(EcuM_WakeupSourceType)

CanSM_StartWakeupSource(Std_ReturnType,

NetworkHandleType)

Start validation

timeout()

EcuM_CheckValidation(EcuM_WakeupSourceType)

<Module>_CheckValidation()

EcuM_ValidateWakeupEvent(EcuM_WakeupSourceType)

ComM_EcuM_WakeUpIndication(NetworkHandleType)

BswM_EcuM_CurrentWakeup(Source,

ECUM_WKSTATUS_VALIDATED)

BswM_EcuM_CurrentWakeup(Source,

ECUM_WKSTATUS_EXPIRED)

EcuM_StopWakeupSources(EcuM_WakeupSourceType)

CanSM_StopWakeupSource(Std_ReturnType,

NetworkHandleType)

Figure 17 – The WakeupValidation Sequence

[SWS_EcuM_02566] ⌈The ECU Manager module shall only invoke wakeup
validation on those wakeup sources where it is required by configuration. If the

validation protocol is not configured (see EcuMValidationTimeout

ECUC_EcuM_00150), then a call to EcuM_SetWakeupEvent (see
SWS_EcuM_02826) shall also imply a call to EcuM_ValidateWakeupEvent (see

SWS_EcuM_02829).⌋()

[SWS_EcuM_02565] ⌈The ECU Manager module shall start a validation timeout for
each pending wakeup event that should be validated. The timeout shall be event-

specific (see EcuMValidationTimeout ECUC_EcuM_00150).⌋()

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

66 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Implementation hint for SWS_EcuM_02565: It is sufficient for an implementation to
provide only one timer, which is prolonged to the largest timeout when new wakeup
events are reported.

[SWS_EcuM_04081]⌈When the validation timeout expires for a pending wakeup

event, the EcuM_MainFunction sets (OR-operation) set the bit in the internal

expired wakeup events variable (see section 7.6.3 Internal Representation of

Wakeup States).⌋()

[SWS_EcuM_04082] ⌈When the validation timeout expires for a pending wakeup

event, the EcuM_MainFunction shall invoke BswM_EcuM_CurrentWakeup with

an EcuM_WakeupSourceType bitmask parameter with the bit corresponding to the
wakeup event set and state value parameter set to ECUM_WKSTATUS_EXPIRED.⌋()

The BswM will be configured to monitor the wakeup validation through mode switch
requests coming from the EcuM as the wakeup sources are validated or the timers
expire. If the last validation timeout (see SWS_EcuM_02565) expires without
validation then the BswM shall consider wakeup validation to have failed. If at least
one of the pending events is validated then the entire validation shall have passed.

Pending events are validated with a call of EcuM_ValidateWakeupEvent (see
SWS_EcuM_02829). This call must be placed in the driver or the consuming stack
on top of the driver (e.g. the handler). The best place to put this depends on
hardware and software design. See also section 7.6.4.4 Requirements for Drivers
with Wakeup Sources .

7.6.4.1 Wakeup of Communication Channels

If a wakeup occurs on a communication channel, the corresponding bus transceiver
driver must notify the ECU Manager module by invoking EcuM_SetWakeupEvent
(see SWS_EcuM_02826) function. Requirements for this notification are described in
section 5.2 Peripherals with Wakeup Capability.

[SWS_EcuM_02479] ⌈The ECU Manager module shall execute the Wakeup
Validation Protocol upon the EcuM_SetWakeupEvent (see SWS_EcuM_02826)
function call according to 7.6.4.2 Interaction of Wakeup Sources and the ECU

Manager later in this chapter.⌋()

7.6.4.2 Interaction of Wakeup Sources and the ECU Manager

The ECU Manager module shall treat all wakeup sources in the same way. The
procedure shall be as follows:

When a wakeup event occurs, the corresponding driver shall notify the ECU Manager
module of the wakeup. The most likely modalities for this notification are:

 After exiting the Halt or Poll sequences. In this scenario, the ECU Manager
module invokes EcuM_AL_DriverRestart (see SWS_EcuM_02923) to re-

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

67 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

initialize of the relevant drivers, which in turn get a chance to scan their
hardware e.g. for pending wakeup interrupts.

 If the wakeup source is actually in sleep mode, the driver must scan
autonomously for wakeup events; either by polling or by waiting for an
interrupt.

[SWS_EcuM_02975] ⌈If a wakeup event requires validation then the ECU Manager

module shall invoke the validation protocol⌋()

[SWS_EcuM_02976] ⌈If a wakeup event does not require validation, the ECU
Manager module shall issue a mode switch request to set the event’s mode to

ECUM_WKSTATUS_VALIDATED.⌋()

[SWS_EcuM_02496] ⌈If the wakeup event is validated (either immediately or by the
wakeup validation protocol), the ECU Manager module shall make the information
that it is a source of the current ECU wakeup through the

EcuM_GetValidatedWakeupEvents (see SWS_EcuM_02830) function.⌋()

7.6.4.3 Wakeup Validation Timeout

[SWS_EcuM_04004] ⌈The ECU Manager Module shall either provide a single
wakeup validation timeout timer or one timer per wakeup source.⌋()

The following requirements apply:

[SWS_EcuM_02709] ⌈The ECU Manager module shall start the wakeup validation
timeout timer when EcuM_SetWakeupEvent (see SWS_EcuM_02826) is called.⌋()

[SWS_EcuM_02710] ⌈EcuM_ValidateWakeupEvent shall stop the wakeup validation

timeout timer (see SWS_EcuM_02829).⌋()

[SWS_EcuM_02712] ⌈If EcuM_SetWakeupEvent (see SWS_EcuM_02826) is called
subsequently for the same wakeup source, the ECU Manager module shall not

restart the wakeup validation timeout.⌋()

If only one timer is used, the following approach is proposed:

If EcuM_SetWakeupEvent (see SWS_EcuM_02826) is called for a wakeup source
that did not yet fire during the same wakeup cycle then the ECU Manager module
should prolong the validation timeout of that wakeup source.

Wakeup timeouts are defined by configuration (see ECUC_EcuM_00148).

7.6.4.4 Requirements for Drivers with Wakeup Sources

The driver must invoke EcuM_SetWakeupEvent (see SWS_EcuM_02826) once
when the wakeup event is detected and supply a EcuM_WakeupSourceType
parameter identifying the source of the wakeup (see SWS_EcuM_02165,

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

68 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

SWS_EcuM_02166) as specified in the configuration (see EcuMWakeupSourceId,

ECUC_EcuM_00151).

[SWS_EcuM_02572] ⌈The ECU Manager module shall detect wakeups that occurr
prior to driver initialization, both from Halt/Poll or from OFF.⌋()
The driver must provide an API to configure the wakeup source for the SLEEP state,
to enable or disable the wakeup source, and to put the related peripherals to sleep.
This requirement only applies if hardware provides these capabilities.

The driver should enable the callback invocation in its initialization function.

7.6.5 Requirements for Wakeup Validation

If the wakeup source requires validation, this may be done by any but only by one
appropriate module of the basic software. This may be a driver, an interface, a
handler, or a manager.

Validation is done by calling the EcuM_ValidateWakeupEvent (see
SWS_EcuM_02829) function.

[SWS_EcuM_02601] ⌈If the EcuM cannot determine the reset reason returned by the
Mcu driver, then the EcuM set a wakeup event for default wakeup source

ECUM_WKSOURCE_RESET instead.⌋()

7.6.6 Wakeup Sources and Reset Reason

The ECU Manager module API only provides one type (EcuM_WakeupSourceType,

see 8.2.5 EcuM_WakeupSourceType), which can describe all reasons why the ECU
starts or wakes up.

[SWS_EcuM_02625] ⌈The ECU Manager module shall never invoke validation for
the following wakeup sources:

 ECUM_WKSOURCE_POWER

 ECUM_WKSOURCE_RESET

 ECUM_WKSOURCE_INTERNAL_RESET

 ECUM_WKSOURCE_INTERNAL_WDG

 ECUM_WKSOURCE_EXTERNAL_WDG.

⌋()

7.6.7 Wakeup Sources with Integrated Power Control

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

69 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

SLEEP can be realized by a system chip which controls the MCU’s power supply.
Typical examples are CAN transceivers with integrated power supplies which switch
power off at application request and switch power on upon CAN activity.

The consequence is that SLEEP looks like OFF to the ECU Manager module on this
type of hardware. This distinction is rather philosophical and not of practical
importance.

The practical impact is that a passive wakeup on CAN looks like a power on reset to
the ECU. Hence, the ECU will continue with the STARTUP sequence after a wakeup
event. Wakeup validation is required nonetheless and the system designer must
consider the following topics:

 The CAN transceiver is initialized during one of the driver initialization blocks
(under BswM control by default). This is configured or generated code, i.e.
code which is under control of the system designer.

 The CAN transceiver driver API provides functions to find out if it was the CAN
transceiver which started the ECU due to a passive wakeup. It is the system
designer’s responsibility to check the CAN transceiver for wakeup reasons
and pass this information on to the ECU Manager module by using the
EcuM_SetWakeupEvent (see SWS_EcuM_02826) and
EcuM_ClearWakeupEvent (see SWS_EcuM_02828) functions.

These principles can be applied to all wakeup sources with integrated power control.
The CAN transceiver only serves as an example.

7.7 Shutdown Targets

“Shutdown Targets” is a descriptive term for all states ECU where no code is
executed. They are called shutdown targets because they are the destination states
where the state machine will drive to when the UP phase is left. The following states
are shutdown targets:

 Off13

 Sleep

 Reset

Note that the time at which a shutdown target is or can be determined is not
necessarily the start of the shutdown. Since the BswM now controls most ECU
resources, it will determine the time at which the shutdown target should be set and
will set it, either directly or indirectly. The BswM must therefore ensure that, for
example, the shutdown target must be changed from its default to

ECUM_STATE_SLEEP before calling EcuM_GoHalt or EcuM_GoPoll.

13

 The OFF state requires the capability of the ECU to switch off itself. This is not granted for all
hardware designs.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

70 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

In previous versions of the ECU Manager module, sleep targets were treated
specially, as the sleep modes realized in the ECU depended on the capabilities of the
ECU. These sleep modes depend on hardware and differ typically in clock settings or
other low power features provided by the hardware. These different features are
accessible through the MCU driver as so-called MCU modes (see [10]).

There are also various modalities for performing a reset which are controlled, or
triggered, by different modules:

 Mcu_PerformReset

 WdgM_PerformReset

 Toggle I/O Pin via DIO / SPI

The ECU Manager module offers a facility to manage these reset modalities by to
tracking the time and cause of previous resets. The various reset modalities will be
treated as reset modes, using the same mode facitlities as sleep.

Refer to section 8.3.4 Shutdown Managementfor the shutdown management facility’s
interface definitions.

7.7.1 Sleep

[SWS_EcuM_02188] ⌈No wakeup event shall be missed in the SLEEP phase. The
Halt or Poll Sequences shall not be entered if a wakeup event has occurred in the

GoSleep sequence.⌋()

[SWS_EcuM_02957] ⌈The ECU Manager module may define a configurable set of

sleep modes (see EcuMSleepMode ECUC_EcuM_00131) where each mode itself is

a shutdown target.⌋()

[SWS_EcuM_02958] ⌈The ECU Manager module shall allow mapping the MCU
sleep modes to ECU sleep modes and hence allow them to be addressed as

shutdown targets.⌋()

[SWS_EcuM_04092]

⌈The ShutdownTarget Sleep shall put the all cores into sleep.⌋()

7.7.2 Reset

[SWS_EcuM_04005] ⌈The ECU Manager module shall define a configurable set of

reset modes (see EcuMResetMode ECUC_EcuM_00172 and section 8.2.8

EcuM_ResetType SWS_EcuM_04044), where each mode itself is a shutdown target.
The set will minimally contain targets for

 Mcu_PerformReset

 WdgM_PerformReset

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

71 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

 Toggle I/O Pin via DIO / SPI⌋()

[SWS_EcuM_04006] ⌈The ECU Manager module shall allow defining aliases for

reset targets (See EcuM180_Conf).⌋()

[SWS_EcuM_04007] ⌈The ECU Manager module shall define a configurable set of

reset causes (see EcuMShutdownCause ECUC_EcuM_00175 and section 8.2.9

EcuM_ShutdownCauseType SWS_EcuM_04045). The set shall minimally contain
targets for

 ECU state machine entered a shutdown state

 WdgM detected a failure

 DCM requests shutdownI

and the time of the reset.⌋()

[SWS_EcuM_04008] ⌈The ECU Manager Module shall offer facilities (see section
8.3.4 Shutdown Management) to BSW modules and SW-Cs to

 Record a shutdown cause

 Get a set of recent shutdown causes⌋()

7.8 Alarm Clock

The ECU Manager module provides an optional persistent clock service which
remains “active” even during sleep. It thus guarantees that an ECU will be woken up
at a certain time in the future (assuming that the hardware does not fail) and provides
clock services for long-term activities (i.e. measured in hours to days, even years).

Generally, this service will be realized with timers in the ECU that can induce
wakeups. In some cases, external devices can also use a regular interrupt line to
periodically wake the ECU up, however. Whatever the mechanism used, the service
uses one wakeup source privately.

The ECU Manager module maintains a master alarm clock whose value determines
the time at which the ECU will be woken up. Moreover the ECU manager manages
an internal clock, the EcuM clock, which is used to compare with the master alarm.

Note that the alarm wakeup mechanisms are only relevant to the SLEEP phase. SW-
Cs and BSW modules can set and retrieve alarm values during the UP phase (and
only during the UP phase), which will be respected during the SLEEP phase,
however.

Compared to other timing/wakeup mechanisms that could be implemented using
general ECU Manager module facilities, the Alarm Clock service will not initiate the
WakeupRestart Sequence until the timer expires. When the ECU Module detects that
its timer has caused a wakeup event, it increments its timer and returns immediately
to sleep unless the clock time has exceeded the alarm time.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

72 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

[SWS_EcuM_04069] ⌈When the Alarm Clock service is present (see

EcuMAlarmClockPresent ECUC_EcuM_00199) the EcuM Manager module shall

maintain an EcuM clock whose time shall be the time in seconds since battery

connect.⌋()

[SWS_EcuM_04086] ⌈The EcuM clock shall track time in the UP and SLEEP
phases.⌋()

[SWS_EcuM_04087] ⌈Hardware permitting, the EcuM clock time shall not be reset

by an ECU reset.⌋()

[SWS_EcuM_04088] ⌈There shall be one and only one wakeup source assigned to

the EcuM Clock (see EcuMAlarmWakeupSource ECUC_EcuM_00200).⌋()

7.8.1 Alarm Clocks and Users

SW-Cs and BSW modules can each maintain an alarm clock (user alarm clock).

Each user alarm clock (see EcuMAlarmClock ECUC_EcuM_00184) is associated

with an EcuMUser (see ECUC_EcuM_00195) which identifies the respective SW-C

or BSW module.

[SWS_EcuM_04070] ⌈Each EcuM User shall have at most one user alarm clock.⌋()

[SWS_EcuM_04071] ⌈An EcuM User shall not be able to set the value of another
user’s alarm clock.⌋()

[SWS_EcuM_04072] ⌈The ECU Manager module shall set always the master alarm
clock value to the value of the earliest user alarm clock value.⌋()

This means as well that when an EcuM User issues an abort on its alarm clock and
that user alarm clock determines the current master alarm clock value, the ECU
Manager module shall set the master alarm clock value to the next earliest user
alarm clock value.

[SWS_EcuM_04073] ⌈Only authorized EcuM Users can set the EcuM clock time

(see ECUC_EcuM_00197, a user list in ECUC_EcuM_00168⌋()

Rationale for SWS_EcuM_04073: Generally EcuM Users shall not be able to set the
EcuM clock time. The EcuM clock time can be set to an arbitrary time to allow testing
alarms that take days to expire.

7.8.2 EcuM Clock Time

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

73 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

[SWS_EcuM_04089] ⌈If the underlying hardware mechanism is tick based, the
ECUM shall "correct" the time accordingly⌋()

7.8.2.1 EcuM Clock Time in the UP Phase

The EcuM_MainFunction increments the EcuM clock during the UP Phase. It uses
standard OS mechanisms (alarms / counters) to derive its time. Note the difference in
granularity between the counters and EcuM time, which is measured in seconds
(SWS_EcuM_04069).

7.8.2.2 EcuM Clock Time in the Sleep Phase

There are two alternatives to increment the EcuM clock during sleep depending on

whether EcuM_GoHalt or EcuM_GoPoll were called.

Within the Halt Sequence (see 7.5.2 Activities in the Halt Sequence) the GPT Driver

must be put in to a GPT_MODE_SLEEP to only configure those timer channels

required for the time base. It also requires the GPT to enable the timer based

wakeup channel using the Gpt_EnableWakeup API. Preferably the Gpt_StartTimer

API will be set to 1 sec but if this value is not reachable the EcuM will need to be
woken up more often to accumulate several timer wakeups until 1 sec has been
accumulated to increment the clock value.

Within the Poll Sequence (see 7.5.3 Activities in the Poll Sequence) the EcuM clock

can be periodically updated during the EcuM_SleepActivity function using the

EcuM_SetClock function, assuming a notion of time is still available. The clock must
only be incremented when 1 sec of time has been accumulated.

In both situations after the clock has been incremented during Sleep the ECU
Manager module must evaluate if the master alarm has expired. If so the BswM will
initiate a full startup or set the ECU in Sleep again.

[SWS_EcuM_04009] ⌈When leaving the Sleep state the ECU Manager Module will
abort any active user alarm clock and the master alarm clock. This means that both
clock induced and wakeups due to other events will result in clearing all

alarms.⌋(SRS_ModeMgm_09187)

[SWS_EcuM_04010] ⌈User alarms and the master alarm shall be cancelled during
the StartPreOS Sequence, in the WakeupRestart Sequence and the OffPreOS

Sequence.⌋(SRS_ModeMgm_09188)

7.9 MultiCore

The distribution of BSW modules onto different partitions was introduced.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

74 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

A partition can be seen as an independent section that is mapped on one core. So
every core (both in single and in multi core architectures) contains at least one but
also can contain arbitrary numbers of partitions. But no partition can span over more
than one core.

The BSW modules can be distributed over different partitions and therefore over
different cores. Some BSW modules as the BswM have to be included into every
partition. Other modules like the OS or the EcuM have be included into one partition
per core.

An example is shown in Figure 18.

Figure 18: Partitions inside an ECU

In a multi core architecture the EcuM has to be distributed in a way, that one instance
per core exists.

There is one designated master core in which the boot loader starts the master EcuM
via EcuM_init. The master EcuM starts some drivers, determines the Post Build
configuration and starts all remaining cores with all their satellite EcuMs.

Each EcuM now starts the core local OS and all core local BswMs (in every partition
resides exactly one BswM).

If the same image of EcuM is executed on every core of the ECU, the ECU
Manager’s behavior has to differ on the different cores. This can be accomplished by
the ECU Manager by testing first whether it is on a master or a slave core and act
appropriately.

The ECU Manager module supports the same phases on a MultiCore ECU as are
available on conventional ECUs (i.e. STARTUP, UP, SHUTDOWN and SLEEP).

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

75 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

If safety mechanisms are used, The ECU State Manager has to run with full trust
level.

This section uses previous ECU Manager terms for various ECU states, notably
Run/PostRun. With flexible ECU management, the system integrator determines the
ECU’s states’ names and semantics. Methods to ensure a de-initialization phase
must be upheld, however. The names used here are therefore not normative.

7.9.1 Master Core

There is one explicit master core. Which core the master core is, is determined by
the boot loader. The EcuM of the master core gets started as first BSW module and
performs initialization actions.

Then is starts all other cores with all other EcuMs.

When these are started, it initializes together with each satellite EcuM the core local
OS and BswM.

7.9.2 Slave Core

On every slave core, one satellite EcuM has to run. If a core contains more than one
partition, only on EcuM per core has to exist.

7.9.3 Master Core – Slave Core Signalling

This section discusses the general mechanisms with which BSW can communicate
over cores. It presupposed general knowledge of the SchM, which is described and
specified in the RTE.

7.9.3.1 BSW Level

The Operating System provides a basic mechanism for synchronizing the starts of
the operating systems on the master and slave cores. The Scheduler Manager
provides basic mechanisms for communication of BSW modules across partition

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

76 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

boundaries. One BSW Mode Manager per core is responsible for starting and
stopping the RTE.

Refer to the Guide to Mode Management [23] for a more complete description of the
solution approaches and for a discussion of the considerations in choosing between
them.

7.9.3.2 Example for Shutdown Synchronization

Before calling ShutdownAllCores, the “master” ECU Manager Module must start

the shutdown of all “slave” ECU Manager Modules and has to wait until all modules
have de-initialized the BSW modules for which they are responsible and successfully
shutdown.

Therefore the master ECU Manager Module sets a shutdown flag which can be read
by all slave modules. The EcuM activates afterwards tasks for every configured slave
core. The slave modules read the flag inside the main routine and shutdown if
requested. The task name is “EcuM_SlaveCore<X>_Task”, where X is a number.
The task need to be configured by the integrator. The number of tasks which need to
be activated can be calculated by counting the instances of EcuMPartitionRef minus
one, because one EcuMFlexPartionRef is used for the master.
Example: Three instances of EcuMPartitionRef are configured. Then during call of
EcuM_GoDown() “EcuM_SlaveCore1_Task” and “EcuM_SlaveCore2_Task” would
be started. The slave modules read the flag inside the main routine and shutdown if
requested.

The Operating System extends the OSEK SetEvent function across cores. A task on
one core can wait for an event set on another core. Figure 19 illustrates how this
applies to the problem of synchronizing the cores before calling ShutdownAllCores
(whereby the de-intialization details have been omitted). The Set/WaitEvent functions
accept a bitmask which can be used to indicate shutdown-readiness on the individual
slave cores. Each SetEvent call from a “slave” ECU Manager module will stop the
“master” ECU Manager module’s wait. The “master” ECU Manager module must
therefore track the state of the individual slave cores and set the wait until all cores
have registered their readiness.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

77 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Slave Core nMaster Core

«module»

Master :EcuM

«module»

:McOs

«module»

Slave n :EcuM

«module»

:BswM

«module»

Master :McOs

loop until all cores done

BSW De-Initialization

on Slave Core

BSW De-Initialization

on Master Core

Set a shutdown flag

which can be read by

all EcuMs of all slave

cores

Unset the shutdown flag

loop FOR all configured Slave Cores

EcuM_GoDown(Std_ReturnType, uint16)

ActivateTask(EcuM_SlaveCore<X>_Task)

EcuM_MainFunction()

SetEvent(TaskId, Mask)

WaitEvent(Mask)

ShutdownAllCores(StatusType)

Figure 19: Master / Slave Core Shutdown Synchronization

7.9.4 UP Phase

From the hardware perspective, it is possible that wakeup interrupts could occur on
all cores. Then the whole ECU gets woken up and the EcuM running on that
processes the wakeup event.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

78 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

[SWS_EcuM_04011] ⌈ The EcuM_MainFunction shall run in all EcuM instances.⌋()

[SWS_EcuM_04012] ⌈ Each instance of the ECU Manager module shall process the
wakeup events of its core.⌋()

As in the single-core case, the BswM (as configured by the integrator) has the
responsibility for controlling ECU resources, establishing that the local core can be
powered down or halted as well as de-initializing the appropriate applications and
BSW before handing control over to the EcuM of its core.

7.9.5 STARTUP Phase

The ECU Manager module functions nearly identically on all cores. That is, as for the
single-core case, the ECU Manager module performs the steps specified for Startup;
most importantly starting the OS, initializing the SchM and starting the core local
BswMs.

The master EcuM activates all slave cores after calling InitBlock 1 and doing the
reset / wakeup housekeeping. After being activated, the slave cores execute their
startup routines, which call EcuM_Init on their core.

After each EcuM has called StartOs on its core, the OS synchronizes the cores
before executing the core-individual startup hooks and synchronizes the cores again
before executing the first tasks on each core.

StartPostOS is executed on each core and the SchM is initialized on each core. All
core local BswMs are initialized by each EcuM.

One BswM on every partition has to start the RTE for that core.

[SWS_EcuM_04093] ⌈The ECU Manager module shall start the SchM and the OS
on every core.⌋()

[SWS_EcuM_04014] ⌈The ECU Manager module shall call BswM_Init for all core
local BswMs on the master and all slave cores.⌋()

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

79 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

7.9.5.1 Master Core STARTUP

[SWS_EcuM_04015]⌈

«module»

Os

«module»

Mcu

«module»

EcuM

Integration Code «module»

McOs

Init Block I

opt Configuration data inconsistent

Init Block 0

This call never returns!

loop FOR all configured cores

GetCoreID(CoreIdType)

EcuM_AL_DriverInitZero()

EcuM_DeterminePbConfiguration(EcuM_ConfigType*)

Check consistency of configuration

data()

EcuM_ErrorHook(ECUM_E_CONFIGURATION_DATA_INCONSISTENT)

EcuM_AL_DriverInitOne(const

EcuM_ConfigType*)

Mcu_GetResetReason(Mcu_ResetType)

Mcu_GetResetReason()

Map reset reason to wakeup

source()

EcuM_SelectShutdownTarget(Std_ReturnType,

EcuM_ShutdownTargetType, EcuM_ShutdownModeType)

EcuM_LoopDetection()

StartCore(CoreIdType, StatusType*)

StartOS(ECUM_DEFAULT_APP_MODE)

Figure 20 -Master Core StartPreOS Sequence

⌋()

[SWS_EcuM_04016]⌈

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

80 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

«module»

SchM

«module»

EcuM

«module»

BswM

«module»

McOs

loop over every BswM running in this core

GetCoreID(CoreIdType)

SchM_Init(const

SchM_ConfigType*)

BswM_Init(const BswM_ConfigType *)

Figure 21 - Master Core StartPostOS Sequence

⌋()

7.9.5.2 Slave Core STARTUP

[SWS_EcuM_04017]⌈

«module»

Os

«module»

EcuM

«module»

McOs

GetCoreID(CoreIdType)

StartOS(ECUM_DEFAULT_APP_MODE)

Figure 22 - Slave Core StartPreOS Sequence

⌋()

[SWS_EcuM_04018]⌈

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

81 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

«module»

SchM

«module»

EcuM

«module»

BswM

«module»

McOs

loop over every BswM running in this core

GetCoreID(CoreIdType)

SchM_Init(const

SchM_ConfigType*)

BswM_Init(const BswM_ConfigType *)

Figure 23 - Slave Core StartPostOS Sequence

⌋()

7.9.6 SHUTDOWN Phase

Individual core shutdown (i.e. while the rest of the ECU continues to run) is currently
not supported. All cores are shut down simultaneously.

When the ECU shall be shut down, the master ECU Manager module calls
ShutdownAllCores rather than somehow calling ShutdownOs on the individual cores.
The ShutdownAllCores stops the OS on all cores and stops all cores as well.

Since the master core could issue the ShutdownAllCores before all slave cores are
finished processing, the cores must be synchronized before entering SHUTDOWN.

The BswM (which is distributed over all partitions) ascertains that the ECU should be
shut down and synchronizes with each BwsM in the ECU. All BswMs induce de-
initialization of all the partition’s BSWs, SWCs and CDDs and send appropriate
signals to the other BswMs to indicate their readiness to shut down.

For a shutdown of the ECU, the BswM (which lies in the same partition of the master
EcuM) ultimately calls GoOff on the master core which distributes that request to all
slave cores. The “master” EcuM de-initializes the BswM, and the SchM. The EcuMs
on the slave cores de-initialize their SchM and BswM and then send a signal to

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

82 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

indicate that the core is ready for ShutdownOS (again, see section section 7.9.3
Master Core – Slave Core Signalling for details).

The master EcuM waits for the signal from each slave core EcuM and then initiates
shutdown as usual on the master core (the master EcuM calls ShutdownAllCores,
and the ECU is put to bed with the global shutdown hook)

7.9.6.1 Master Core SHUTDOWN

[SWS_EcuM_04019]⌈

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

83 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

«module»

EcuM

«module»

SchM

«module»

BswM

«module»

McOs

Integration Code

opt Pending wakeup events?

loop over every BswM running in this core

loop FOR all configured cores

Unset the shutdown flag

GetCoreID(CoreIdType)

EcuM_OnGoOffOne()

BswM_Deinit()

SchM_Deinit()

EcuM_GetPendingWakeupEvents(EcuM_WakeupSourceType)

EcuM_SelectShutdownTarget(Std_ReturnType,

EcuM_ShutdownTargetType, EcuM_ShutdownModeType)

WaitEvent(Mask)

ShutdownAllCores(StatusType)

Figure 24 - Master Core OffPreOS Sequence

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

84 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

⌋()

[SWS_EcuM_04020]⌈

Integration Code«module»

EcuM

«module»

McOs

alt Shutdown Target

[Reset]

[Off]

GetCoreID(CoreIdType)

EcuM_OnGoOffTwo()

EcuM_AL_Reset(EcuM_ResetType)

EcuM_AL_SwitchOff()

Figure 25 - Master Core OffPostOS Sequence

⌋()

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

85 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

7.9.6.2 Slave Core SHUTDOWN

[SWS_EcuM_04021]⌈

«module»

EcuM

«module»

McOs

«module»

:SchM

Integration Code «module»

BswM

loop over every BswM running in this core

GetCoreID(CoreIdType)

EcuM_OnGoOffOne()

BswM_Deinit()

SchM_Deinit()

SetEvent(TaskId, Mask)

Figure 26 - Slave Core OffPreOS Sequence

⌋()

[SWS_EcuM_04022]⌈

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

86 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

«module»

EcuM

«module»

McOs

Integration Code

GetCoreID(CoreIdType)

EcuM_OnGoOffTwo()

Figure 27 - Slave Core OffPostOS Sequence

⌋()

7.9.7 SLEEP Phase

When the shutdown target Sleep is requested, all cores are put to sleep

simultaneously. The MCU must issue a halt for each core. As task timing and priority
are local to a core in the OS, neither the scheduler nor the RTE must be
synchronized after a halt. Because the master core could issue the MCU halt before
all slave cores are finished processing, the cores must be synchronized before
entering GoHalt.

The BswMs ascertain that sleep should be initiated and distribute an appropriate
ECU mode to each core. The BSWs, SWCs and CDDs on the slave cores must be
informed by their partition local BswM, de-initialize appropriately and send
appropriate mode requests to the BswM to indicate their readiness.

If the ECU is put to sleep, the “halt”s must be synchronized so that all slave cores are
halted before the master core computes the checksum. The ECU Manager module
on the master core uses the same “signal” mechanism as for synchronizing cores on
GoOff.

Similarly, the ECU Manager module on the master core must validate the checksum
before releasing the slave cores from the “halt” state

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

87 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

7.9.7.1 Master Core SLEEP

[SWS_EcuM_04023]⌈

«module»

EcuM

«module»

Os

Integration Code «module»

:BswM

GetCoreID(CoreIdType)

EcuM_EnableWakeupSources(EcuM_WakeupSourceType)

BswM_EcuM_CurrentWakeup(sources, ECUM_WKSTATUS_NONE)

GetResource(RES_AUTOSAR_ECUM_<core#>)

Figure 28 - Master Core GoSleep Sequence

⌋()
[SWS_EcuM_04024]⌈

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

88 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Figure 29 - Master Core Halt Sequence

⌋(SRS_ModeMgm_09239)

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

89 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

[SWS_EcuM_04025]⌈

«module»

EcuM

«module»

:BswM

Integration Code «module»

Mcu

«module»

Wakeup Source

«module»

Os

loop WHILE no pending wakeup events

loop FOR all wakeup sources that need polling

opt Wakeup detected

alt

[Yes]

[No]

Additional Confidition to Loop: While (AlarmClockService Present AND

EcuM_AlarmClock only pending event AND Alarm not expired)

DisableAllInterrupts()

Mcu_SetMode(Mcu_ModeType)

EnableAllInterrupts()

EcuM_SleepActivity()

EcuM_CheckWakeup(EcuM_WakeupSourceType)

<Module>_CheckWakeup()

EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

EcuM_GetPendingWakeupEvents(EcuM_WakeupSourceType)

BswM_EcuM_CurrentWakeup(sources,

ECUM_WKSTATUS_PENDING)

BswMEcuM_CurrentWakeup(sources,

ECUM_WKSTATUS_VALIDATED)

Signal SlaveCores

to continue()

Figure 30 - Master Core Poll Sequence

⌋()
[SWS_EcuM_04026]⌈

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

90 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

«module»

Mcu

«module»

Os

«module»

EcuM

Integration Code «module»

:BswM

DisableAllInterrupts()

Mcu_SetMode(Mcu_ModeType)

EnableAllInterrupts()

EcuM_GetPendingWakeupEvents(EcuM_WakeupSourceType)

EcuM_DisableWakeupSources(EcuM_WakeupSourceType)

BswM_EcuM_CurrentState(ECUM_WKSTATUS_DISABLED)

EcuM_AL_DriverRestart(const

EcuM_ConfigType*)

ReleaseResource(RES_AUTOSAR_ECUM_<core#>)

Figure 31 - Master Core WakeupRestart Sequence

⌋()

7.9.7.2 Slave Core SLEEP

[SWS_EcuM_04027]⌈

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

91 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

«module»

EcuM

«module»

Os

«module»

:BswM

Integration Code

GetCoreID(CoreIdType)

EcuM_EnableWakeupSources(EcuM_WakeupSourceType)

BswM_EcuM_CurrentWakeup(EcuM_WakeupSourceType,

EcuM_WakeupStatusType)

GetResource(RES_AUTOSAR_ECUM_<core#>)

Figure 32 - Slave Core GoSleep Sequence

⌋()

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

92 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

[SWS_EcuM_04028]⌈

Figure 33 - Slave Core Halt Sequence

⌋()

[SWS_EcuM_04029]⌈

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

93 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Figure 34 - Slave Core Poll Sequence

⌋()

[SWS_EcuM_04030]⌈

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

94 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

«module»

Mcu

«module»

Os

«module»

EcuM

Integration Code «module»

BswM

DisableAllInterrupts()

Mcu_SetMode(Mcu_ModeType)

EnableAllInterrupts()

EcuM_DisableWakeupSources(EcuM_WakeupSourceType)

BswM_EcuM_CurrentState(ECUM_WKSTATUS_DISABLED)

ReleaseResource(RES_AUTOSAR_ECUM_<core#>)

Figure 35 - Slave Core WakeupRestart Sequence

⌋()

7.9.8 Runnables and Entry points

7.9.8.1 Internal behavior

[SWS_EcuM_03018] ⌈The definition of the internal behavior of the the ECU Manager
module shall be as follows. This detailed description is only needed for the
configuration of the local RTE.

InternalBehavior EcuStateManager {

 // Runnable entities of the EcuStateManager

RunnableEntity SelectShutdownTarget

 symbol “EcuM_SelectShutdownTarget”

 canbeInvokedConcurrently = TRUE

RunnableEntity GetShutdownTarget

 symbol “EcuM_GetShutdownTarget”

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

95 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

 canbeInvokedConcurrently = TRUE

RunnableEntity GetLastShutdownTarget

 symbol “EcuM_GetLastShutdownTarget”

 canbeInvokedConcurrently = TRUE

RunnableEntity SelectShutdownCause

 symbol “EcuM_SelectShutdownCause”

 canbeInvokedConcurrently = TRUE

RunnableEntity GetShutdownCause

 symbol “EcuM_GetShutdownCause”

 canbeInvokedConcurrently = TRUE

RunnableEntity SelectBootTarget

 symbol “EcuM_SelectBootTarget”

 canbeInvokedConcurrently = TRUE

RunnableEntity GetBootTarget

 symbol “EcuM_GetBootTarget”

 canbeInvokedConcurrently = TRUE

RunnableEntity SetRelWakeupAlarm

 symbol “EcuM_SetRelWakeupAlarm”

 canbeInvokedConcurrently = TRUE

RunnableEntity SetAbsWakeupAlarm

 symbol “EcuM_SetAbsWakeupAlarm”

 canbeInvokedConcurrently = TRUE

RunnableEntity AbortWakeupAlarm

 symbol “EcuM_AbortWakeupAlarm”

 canbeInvokedConcurrently = TRUE

RunnableEntity GetCurrentTime

 symbol “EcuM_GetCurrentTime”

 canbeInvokedConcurrently = TRUE

RunnableEntity GetWakeupTime

 symbol “EcuM_GetWakeupTime”

 canbeInvokedConcurrently = TRUE

RunnableEntity SetClock

 symbol “EcuM_SetClock”

 canbeInvokedConcurrently = TRUE

RunnableEntity RequestRUN

 symbol “EcuM_RequestRUN”

 canbeInvokedConcurrently = TRUE

RunnableEntity ReleaseRUN

 symbol “EcuM_ReleaseRUN”

 canbeInvokedConcurrently = TRUE

RunnableEntity RequestPOSTRUN

 symbol “EcuM_RequestPOST_RUN”

 canbeInvokedConcurrently = TRUE

RunnableEntity ReleasePOSTRUN

 symbol “EcuM_ReleasePOST_RUN”

 canbeInvokedConcurrently = TRUE

// Port present for each user. There are NU users

SR000.RequestRUN -> RequestRUN

SR000.ReleaseRUN -> ReleaseRUN

SR000.RequestPOSTRUN -> RequestPOSTRUN

SR000.ReleasePOSTRUN -> RequestPOSTRUN

PortArgument {port=SR000, value.type=EcuM_UserType,

value.value=EcuM_User[0].User}

(...)

SRnnn.RequestRUN -> RequestRUN

SRnnn.ReleaseRUN -> ReleaseRUN

SRnnn.RequestPOSTRUN -> RequestPOSTRUN

SRnnn.ReleasePOSTRUN -> RequestPOSTRUN

PortArgument {port=SRnnn, value.type=EcuM_UserType,

value.value=EcuM_User[nnn].User}

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

96 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

shutDownTarget.SelectShutdownTarget -> SelectShutdownTarget

shutDownTarget.GetShutdownTarget -> GetShutdownTarget

shutDownTarget.GetLastShutdownTarget -> GetLastShutdownTarget

shutDownTarget.SelectShutdownCause -> SelectShutdownCause

shutDownTarget.GetShutdownCause -> GetShutdownCause

bootTarget.SelectBootTarget -> SelectBootTarget

bootTarget.GetBootTarget -> GetBootTarget

alarmClock.SetRelWakeupAlarm-> SetRelWakeupAlarm

alarmClock.SetAbsWakeupAlarm -> SetAbsWakeupAlarm

alarmClock.AbortWakeupAlarm -> AbortWakeupAlarm

alarmClock.GetCurrentTime -> GetCurrentTime

alarmClock.GetWakeupTime -> GetWakeupTime

alarmClock.SetClock -> SetClock

};⌋()

7.10 EcuM Mode Handling

The ECU Mode Handling introduces a common interface for SW-Cs as known from
ECU State Manger with fixed state machine (EcuMFixed). The ECU State Manager
with flexible state machine (EcuMFlex) provides interfaces for SW-Cs to request and
release the modes RUN and POST_RUN optionally.

EcuMFixed uses such an interface to decide whether the ECU must be kept alive or
is ready to shut down. In contrast to EcuMFixed, EcuMFlex only arbitrates the
requests and releases made by SW-Cs and propagates the result to BswM. The
cooperation between EcuM and BswM is necessary as only the BswM can decide
when a transition to a different mode can be made. Due to the fact that the EcuM
does not have an own state machine, the EcuM relies on the state transitions made
by BswM. Therefore the EcuM does not request a state. Furthermore it notifies the
BswM about the current arbitration of all requests. And the BswM is notified when the
RTE has executed all Runnables belonging to a certain mode.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

97 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Figure 36 - Architectural Components of ECU Mode Handling

Figure 36 illustrates the architectural components of ECU Mode Handling.

[SWS_EcuM_04115]

⌈ECU Mode Handling shall be applied when the container EcuModeHandling (see
10.2) is available.⌋(SRS_ModeMgm_09116)

[SWS_EcuM_04116]

⌈When the BswM sets a state of the EcuM by EcuM_SetState(), the EcuM shall
indicate the corresponding mode to the RTE. ⌋(SRS_ModeMgm_09116)

[SWS_EcuM_04117]

⌈When the last RUN request has been released, ECU State Manager module shall
request the state POST_RUN from the BswM, using the API
BswM_EcuM_RequestedState(POST_RUN,

ECUM_RUNSTATUS_RELEASED).⌋(SRS_ModeMgm_09116)

If a SW-C needs post run activity during POST_RUN (e.g. shutdown preparation),
then it must request POST_RUN before releasing the RUN request. Otherwise it is
not guaranteed that this SW-C will get a chance to run its POST_RUN code.

[SWS_EcuM_04118]

⌈When the ECU State Manager is not in the state which is requested by a SWC, it
shall inform BswM about requested states using the BswM_EcuM_RequestedState()

API.⌋(SRS_ModeMgm_09116)

POST_RUN state provides a post run phase for SW-C’s and allows them to save
important data or switch off peripherals.

[SWS_EcuM_04119]

 ⌈When the last POST_RUN request has been released, ECU State Manager module
shall request the state SHUTDOWN from the BswM, using the API

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

98 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

BswM_EcuM_RequestedState(SHUTDOWN,

ECUM_RUNSTATUS_RELEASED).⌋(SRS_ModeMgm_09116)

Hint: To prevent, that the mode machine instance of ECU Mode lags behind and the
states EcuM and the RTE get out of phase, the EcuM can use acknowledgement
feedback for the mode switch notification.

Note that EcuM only requests Modes from and to RUN and POST_RUN, the SLEEP
Mode has to be set by BswM, as the EcuM has no information about when this Mode
can be entered.

States Description

STARTUP Initial value. Set by Rte when Rte_Start() has been called.

RUN As soon as all necesseray BSW modules are inistialized,
BswM switches to this Mode.

POST_RUN EcuM requests POST_RUN, when no RUN requests are
available.

SLEEP EcuM requests SLEEP Mode when no RUN and POST_RUN
requests are available and Shutdown Target is set to SLEEP.

SHUTDOWN EcuM requests SHUTDOWN Mode when no RUN and
POST_RUN requests are available and Shutdown Target is
set to SHUTDOWN.

7.10.1 Differences to ECU Manager with fixed State Machine
In comparison to the specification of the RUN Request Protocol in ECU Manager with
fixed State Machine this specification has some deviations. The Master of the State
Machine is the BswM instead of the EcuM. The EcuM gives advices to the BswM,
depending on the arbitrations of the RUN Request protocol. But the EcuM can not
avoid a Shutdown, as it is possible in EcuMFixed.

EcuMFlex does not provide the following interfaces: EcuM_KillAllRunRequests and
EcuM_KillAllPostRunRequests, as this behavior can be implemented by BswM
Rules.

For more information about a configuration in respect to compatibility see the “Guide
to Mode Management” [24].

7.11 Advanced Topics

7.11.1 Relation to Bootloader

The Bootloader is not part of AUTOSAR. Still, the application needs an interface to
activate the bootloader. For this purpose, two functions are provided:

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

99 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

EcuM_SelectBootTarget (see SWS_EcuM_02835) and EcuM_GetBootTarget (see
SWS_EcuM_02836).

Reset

Boot Menu

Boot Target

Bootloader

Application

SS

Bootloader

Figure 37 – Selection of Boot Targets

Bootloader, system supplier bootloader and application are separate program
images, which in many cases even can be flashed separately. The only way to get
from one image to another is through reset. The boot menu will branch into the one
or other image depending on the selected boot target.

7.11.2 Relation to Complex Drivers

If a complex driver handles a wakeup source, it must follow the protocol for handling
wakeup events specified in this document.

7.11.3 Handling Errors during Startup and Shutdown

[SWS_EcuM_02980] ⌈The ECU Manager module shall ignore all types of errors that
occur during initialization, e.g. values returned by init functions⌋()

Initialization is a configuration issue (see EcuMDriverInitListZero

(ECUC_EcuM_00114), EcuMDriverListOne (ECUC_EcuM_00111) and

EcuMDriverRestartList (ECUC_EcuM_00115)) and therefore cannot be

standardized.

BSW modules are responsible themselves for reporting errors occurring during their
initialization directly to the DEM module or the DET module, as specified in their
SWSs. The ECU Manager module does not report the errors. The BSW module is

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

100 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

also responsible for taking any special measures to react to errors occurring during
their initialization.

7.12 Errors

AUTOSAR BSW modules normaly report their errors to Det (development errors) or
Dem (production errors).

The EcuM handles errors differently and does not report its errors to Dem/Det.

If a reporting of errors to Dem/Det is needed the user can perform these actions in
the EcuM_ErrorHook().

The following subchapters contains all error codes which might be reported from the
EcuM (besides those individual error codes defined by the integratior).

7.12.1 Development Errors

 [SWS_EcuM_04032]⌈
The value of all errors can be assigned during the implementation.

Type or error Related error code Value [hex]

A service was called prior to
initialization

ECUM_E_UNINIT Assigned by

Implementation

A function was called which was
disabled by configuration

ECUM_E_SERVICE_DISABLED Assigned by

Implementation

A invalid pointer was passed as an
argument

ECUM_E_NULL_POINTER Assigned by

Implementation

A parameter was invalid (unspecific) ECUM_E_INVALID_PAR Assigned by

Implementation

A state, passed as an argument to a
service, was out of range (specific
parameter test)

ECUM_E_STATE_PAR_OUT_OF_RANGE Assigned by

Implementation

An unknown wakeup source was
passed as a parameter to an API

ECUM_E_UNKNOWN_WAKEUP_SOURCE Assigned by

Implementation

The initialization failed ECUM_E_INIT_FAILED Assigned by

Implementation

Table 7 – Development Errors

⌋(SRS_BSW_00327, SRS_BSW_00337, SRS_BSW_00338, SRS_BSW_00350,
SRS_BSW_00385, BSW00445)

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

101 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

7.12.2 Runtime Errors

Type or error Related error code Value [hex]

The RAM check during wakeup failed
(see section 7.5.2 Activities in the Halt
Sequence

ECUM_E_RAM_CHECK_FAILED Assigned by

Implementation

Postbuild configuration data is
inconsistent (see section 7.3.2
Activities in StartPreOS Sequence)

ECUM_E_CONFIGURATION_DATA_INC

ONSISTENT

Assigned by

Implementation

Table 8 – Runtime Errors

7.12.3 Transient Faults

There are no transient faults.

7.12.4 Production Errors

There are no production errors.

7.12.5 Extended Production Errors

There are no extended production errors.

7.13 Error detection

[SWS_EcuM_04033] ⌈In the unrecoverable error situations defined in the first
column of Table 7, the ECU Manager module shall call the EcuM_ErrorHook callout

with the parameter value set to the corresponding related error code.⌋()

Clarification to SWS_EcuM_04033: EcuM shall assume that the EcuM_ErrorHook
will not return (integrator’s code).

Clarification to SWS_EcuM_04033: In case a Dem error is needed, it is integrator’s
responsibility to define a strategy to handle it (e.g.: As EcuM does not directly call
Dem, set the Dem error after a reset recovery).

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

102 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

7.14 Error notification

[SWS_EcuM_02987] ⌈ When the RAM check fails on wakeup (see section 7.5.2
Activities in the Halt Sequence) the ECU Manager module shall invoke

EcuM_ErrorHook with the parameter ECUM_E_RAM_CHECK_FAILED. It is left

integrator’s discretion to allow EcuM_ErrorHook to relay the error to the DEM when

he judges that the DEM will not write damaged NVRAM blocks.⌋(SRS_BSW_00339)

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

103 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

8 API specification

8.1 Imported Types

This section lists all types imported by the ECU Manager module from the
corresponding AUTOSAR modules.

[SWS_EcuM_02810]⌈
Module Imported Type

BswM BswM_ConfigType

⌋(SRS_BSW_00301)

[SWS_EcuM_03019] ⌈ECUM_E_EARLIER_ACTIVE and ECUM_E_PAST shall be of
type Std_ReturnType and represent the following values

 ECUM_E_EARLIER_ACTIVE = 3

 ECUM_E_PAST = 4
⌋()

8.2 Type definitions

8.2.1 EcuM_ConfigType

[SWS_EcuM_04038]⌈

Name: EcuM_ConfigType

Type: Structure

Range: - The content of this structure depends on the post-build
configuration of EcuM.

Description: A pointer to such a structure shall be provided to the ECU State Manager
initialization routine for configuration.

⌋()
[SWS_EcuM_02801] ⌈The structure defined by type EcuM_ConfigType shall hold

the post-build configuration parameters for the ECU Manager module as well as
pointers to all ConfigType structures of modules that are initialized by the ECU

Manager module.⌋()

The ECU Manager module Configuration Tool must generate the structure defined by
the EcuM_ConfigType type specifically for a given set of basic software modules that
comprise the ECU configuration. The set of basic software modules is derived from

the corresponding EcuM parameters

[SWS_EcuM_02794] ⌈The structure defined in the EcuM_ConfigType type shall

contain an additional post-build configuration variant identifier (uint8/uint16/uint32

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

104 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

depending on algorithm to compute the identifier). See also Chapter 7.3.4 Checking

Configuration Consistency.⌋()

[SWS_EcuM_02795] ⌈The structure defined by the EcuM_ConfigType type shall

contain an additional hash code that is tested against the configuration parameter

EcuMConfigConsistencyHash (see ECUC_EcuM_00102) for checking

consistency of the configuration data. See also section 7.3.4 Checking Configuration

Consistency.⌋()

For each given ECU configuration, the ECU Manager module Configuration Tool
must generate an instance of this structure that is filled with the post-build
configuration parameters of the ECU Manager module as well as pointers to
instances of configuration structures for the modules mentioned above. The pointers

are derived from the corresponding EcuM parameters.

8.2.2 EcuM_StateType

[SWS_EcuM_04039]⌈

Name: EcuM_StateType

Type: uint8

Range: ECUM_SUBSTATE_MASK 0x0f --

ECUM_STATE_STARTUP 0x10 --

ECUM_STATE_RUN 0x30 --

ECUM_STATE_APP_RUN 0x32 --

ECUM_STATE_APP_POST_RUN 0x33 --

ECUM_STATE_SHUTDOWN 0x40 --

ECUM_STATE_SLEEP 0x50 --

Description: ECU State Manager states.

⌋(SRS_BSW_00331)

[SWS_EcuM_00507] ⌈The EcuM_StateType shall encode states and sub-states of

the ECU Manager module. States shall be encoded in the high-nibble, sub-states in
the low-nibble.

Hint for SWS_EcuM_00507: The sub-state encoded in EcuM_StateType can be

determined by applying a bitwise AND to the state value and

ECUM_SUBSTATE_MASK (first entry in the range section,

above).⌋(SRS_BSW_00335)

[SWS_EcuM_02664] ⌈The ECU Manager module shall define all states as listed in

the EcuM_StateType.⌋()

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

105 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

8.2.3 EcuM_RunStatusType

[SWS_EcuM_04120]⌈

Name: EcuM_RunStatusType

Type: uint8

Range: ECUM_RUNSTATUS_UNKNOWN 0 Unknown status. Init Value.

ECUM_RUNSTATUS_REQUESTED 1 Status requested from EcuM

ECUM_RUNSTATUS_RELEASED 2 Status released from EcuM.

Description: Result of the Run Request Protocol sent to BswM

⌋(SRS_ModeMgm_09116)

[SWS_EcuM_04121] ⌈The ECU Manager module shall inform BswM about the state

of the Run Request Protocol as listed in the EcuM_RunStatusType.

⌋(SRS_ModeMgm_09116)

8.2.4 EcuM_UserType

[SWS_EcuM_04067]⌈

Name: EcuM_UserType

Type: uint8

Description: Unique value for each user.

⌋()

[SWS_EcuM_00487], ⌈The integrator shall define a unique value for each user at
system generation time. See ECUC_EcuM_00146⌋(SRS_ModeMgm_09122)

8.2.5 EcuM_WakeupSourceType

[SWS_EcuM_04040]⌈

Name: EcuM_WakeupSourceType

Type: uint32

Range: ECUM_WKSOURCE_POWER -- Power cycle (bit 0)

ECUM_WKSOURCE_RESET

(default)

-- Hardware reset (bit 1).
If the Mcu driver cannot distinguish
between a power cycle and a reset
reason, then this shall be the default
wakeup source.

ECUM_WKSOURCE_INTERNAL_RESET -- Internal reset of µC (bit 2)
The internal reset typically only resets the
µC core but not peripherals or memory
controllers. The exact behavior is
hardware specific.
This source may also indicate an
unhandled exception.

ECUM_WKSOURCE_INTERNAL_WDG -- Reset by internal watchdog (bit 3)

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

106 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

ECUM_WKSOURCE_EXTERNAL_WDG -- Reset by external watchdog (bit 4), if
detection supported by hardware

Description: EcuM_WakeupSourceType defines a bitfield with 5 pre-defined positions (see
Range). The bitfield provides one bit for each wakeup source.
In WAKEUP, all bits cleared indicates that no wakeup source is known.
In STARTUP, all bits cleared indicates that no reason for restart or reset is known.
In this case, ECUM_WKSOURCE_RESET shall be assumed.

⌋()
[SWS_EcuM_02165] ⌈Additional wakeup sources (to the pre-defined sources) shall
be assigned individually to bitfield positions 5 to 31 by configuration. The bit

assignment shall be done by the configuration tool.⌋()

[SWS_EcuM_02166] ⌈The EcuMWakeupSourceId (see ECUC_EcuM_00151) field

in the EcuMWakeupSource container shall define the position corresponding to that

wakeup source in all instances the EcuM_WakeupSourceType bitfield.⌋()

8.2.6 EcuM_WakeupStatusType

[SWS_EcuM_04041]⌈

Name: EcuM_WakeupStatusType

Type: uint8

Range: ECUM_WKSTATUS_NONE 0 No pending wakeup event was detected

ECUM_WKSTATUS_PENDING 1 The wakeup event was detected but not yet
validated

ECUM_WKSTATUS_VALIDATED 2 The wakeup event is valid

ECUM_WKSTATUS_EXPIRED 3 The wakeup event has not been validated and has
expired therefore

ECUM_WKSTATUS_ENABLED 6 The wakeup source is enabled (armed) and is
ready to call EcuM_SetWakeupEvent().

Description: The type describes the possible states of a wakeup source.

⌋()
NOTE: This declaration has to be changed to a mode. The name has to be changed.

8.2.7 EcuM_BootTargetType

[SWS_EcuM_04042]⌈

Name: EcuM_BootTargetType

Type: uint8

Range: ECUM_BOOT_TARGET_APP 0 The ECU will boot into the
application

ECUM_BOOT_TARGET_OEM_BOOTLOADER 1 The ECU will boot into the OEM
bootloader

ECUM_BOOT_TARGET_SYS_BOOTLOADER 2 The ECU will boot into the system
supplier bootloader

Description: This type represents the boot targets the ECU Manager module can be
configured with. The default boot target is

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

107 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

ECUM_BOOT_TARGET_OEM_BOOTLOADER.

⌋()

8.2.8 EcuM_ResetType

[SWS_EcuM_04044]⌈

Name: EcuM_ResetType

Type: uint8

Range: ECUM_RESET_MCU 0 Microcontroller reset via Mcu_PerformReset

ECUM_RESET_WDG 1 Watchdog reset via WdgM_PerformReset

ECUM_RESET_IO 2 Reset by toggeling an I/O line.

Description: This type describes the reset mechanisms supported by the ECU State Manager.
It can be extended by configuration.

⌋()

8.2.9 EcuM_ShutdownCauseType

[SWS_EcuM_04045]⌈

Name: EcuM_ShutdownCauseType

Type: uint8

Range: ECUM_CAUSE_UNKNOWN 0 No cause was set.

ECUM_CAUSE_ECU_STATE 1 ECU state machine entered a state for shutdown

ECUM_CAUSE_WDGM 2 Watchdog Manager detected a failure

ECUM_CAUSE_DCM 3 Diagnostic Communication Manager requests a
shutdown due to a service request

Description: This type describes the cause for a shutdown by the ECU State Manager. It can be
extended by configuration.

⌋()

8.2.10 EcuM_ShutdownModeType

[SWS_EcuM_04101]⌈

Name EcuM_ShutdownModeType

Kind Type

Derived
from

uint16

Description This data type represents the modes of the ECU Manager module.

Range
{ecuc(EcuM/EcuMConfiguration/
EcuMFlexConfiguration/
EcuMResetMode.SHORT-NAME)}

{256 + ecuc(EcuM/
EcuMConfiguration/
EcuMFlexConfiguration/
EcuMResetMode.

Configured
Reset
Modes

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

108 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

EcuMResetModeId)}

{ecuc(EcuM/EcuMConfiguration/
EcuMCommonConfiguration/
EcuMSleepMode.SHORT-NAME)}

{ecuc(EcuM/ EcuMConfiguration/
EcuMCommonConfiguration/
EcuMSleepMode.
EcuMSleepModeId)}

Configured
Sleep
Modes

Variation --

⌋()

8.2.11 EcuM_TimeType

[SWS_EcuM_04102]⌈

Name: EcuM_TimeType

Type: uint32

Description: This data type represents the time of the ECU Manager module.

⌋()

8.2.12 EcuM_ShutdownTargetType

[SWS_EcuM_04136]⌈

Name: EcuM_ShutdownTargetType

Type: uint8

Range: ECUM_SHUTDOWN_TARGET_SLEEP 0x0 --

ECUM_SHUTDOWN_TARGET_RESET 0x1 --

ECUM_SHUTDOWN_TARGET_OFF 0x2 --

Description: --

⌋()

8.3 Function Definitions

This is a list of functions provided for upper layer modules.

8.3.1 General

8.3.1.1 EcuM_GetVersionInfo

[SWS_EcuM_02813]⌈

Service name: EcuM_GetVersionInfo

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

109 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Syntax: void EcuM_GetVersionInfo(

 Std_VersionInfoType* versioninfo

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): versioninfo Pointer to where to store the version information of this module.

Return value: None

Description: Returns the version information of this module.

⌋(SRS_BSW_00407,SRS_BSW_00411)

8.3.2 Initialization and Shutdown Sequences

8.3.2.1 EcuM_GoDown

[SWS_EcuM_04046]⌈

Service name: EcuM_GoDown

Syntax: Std_ReturnType EcuM_GoDown(

 uint16 caller

)

Service ID[hex]: 0x1f

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in):
caller Module ID of the calling module. Only special modules are

allowed to call this function.

Parameters
(inout):

None

Parameters (out): None

Return value:
Std_ReturnType E_NOT_OK: The shutdown request was not accepted.

E_OK: This cannot occur because if the request was accepted,
this call will not return.

Description: Instructs the ECU State Manager module to perform a power off or a reset
depending on the selected shutdown target.

⌋()

8.3.2.2 EcuM_GoHalt

[SWS_EcuM_04048]⌈

Service name: EcuM_GoHalt

Syntax: Std_ReturnType EcuM_GoHalt(

 void

)

Service ID[hex]: 0x20

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): None

Parameters None

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

110 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

(inout):

Parameters (out): None

Return value:

Std_ReturnType E_NOT_OK: The request was not accepted, e.g. due to a
wrong shutdown target.
E_OK: If the call successfully returns, the ECU has left the
sleep again.

Description: Instructs the ECU State Manager module to go into a sleep mode where the
microcontroller is halted, depending on the selected shutdown target.

⌋()

8.3.2.3 EcuM_GoPoll

[SWS_EcuM_04049]⌈

Service name: EcuM_GoPoll

Syntax: Std_ReturnType EcuM_GoPoll(

 void

)

Service ID[hex]: 0x21

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value:

Std_ReturnType E_NOT_OK: The request was not accepted, e.g. due to a
wrong shutdown target.
E_OK: If the call successfully returns, the ECU has left the
sleep again.

Description: Instructs the ECU State Manager module to go into a polling sleep mode
depending on the selected shutdown target.

⌋()

8.3.2.4 EcuM_Init

[SWS_EcuM_02811] ⌈

Service name: EcuM_Init

Syntax: void EcuM_Init(

 void

)

Service ID[hex]: 0x01

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: Initializes the ECU state manager and carries out the startup procedure. The
function will never return (it calls StartOS)

⌋(SRS_BSW_00358,SRS_BSW_00414,SRS_BSW_00101)

8.3.2.5 EcuM_StartupTwo

[SWS_EcuM_02838] ⌈

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

111 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Service name: EcuM_StartupTwo

Syntax: void EcuM_StartupTwo(

 void

)

Service ID[hex]: 0x1a

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: This function implements the STARTUP II state.

⌋()

[SWS_EcuM_02806] ⌈Caveats of EcuM_StartupTwo: This function must be called

from a task, which is started directly as a consequence of StartOS. I.e. either the

EcuM_StartupTwo function must be called from an autostart task or the

EcuM_StartupTwo function must be called from a task, which is explicitly started.⌋()

Clarification to SWS_EcuM_02806 : The OS offers different mechanisms to activate
a task on startup. Normally EcuM_StartupTwo would be configured as an autostart
task in the default application mode.

The integrator can configure the OS to activate the EcuM_StartupTwo task by any
mechanism, as long as it is started immediately after StartOS is called. The task can
also be activated from within another task and this other task could be an autostart
task.

Starting EcuM_StartupTwo as an autostart task is an implicit activation. The other
mechanisms would be an explicit activation.

8.3.2.6 EcuM_Shutdown

[SWS_EcuM_02812]⌈

Service name: EcuM_Shutdown

Syntax: void EcuM_Shutdown(

 void

)

Service ID[hex]: 0x02

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: Typically called from the shutdown hook, this function takes over execution control
and will carry out GO OFF II activities.

⌋(BSW0036,SRS_ModeMgm_09114)

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

112 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

8.3.3 State Management

8.3.3.1 EcuM_ SetState

SWS_EcuM_04122:
Service name: EcuM_SetState

Syntax: void EcuM_SetState(

 EcuM_StateType state

)

Service ID[hex]: 0x2b

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): state State indicated by BswM.

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: Function called by BswM to notify about State Switch.

[SWS_EcuM_04123] ⌈The EcuM_SetState function shall set the EcuM State to the

value of the State parameter. Only the following subset of the EcuM_StateType

values are valid State parameter values:

 ECUM_STATE_STARTUP

 ECUM_STATE_APP_RUN

 ECUM_STATE_APP_POST_RUN

 ECUM_STATE_SHUTDOWN

 ECUM_STATE_SLEEP

If the State parameter is not a valid value, the EcuM_SetState function shall not

change the State and if Development Error Reporting is turned on, the

EcuM_SetState function shall additionally send an

ECUM_E_STATE_PAR_OUT_OF_RANGE error message to the DET module. ⌋
(SRS_ModeMgm_09116)

8.3.3.2 EcuM_RequestRUN

SWS_EcuM_04124:
Service name: EcuM_RequestRUN

Syntax: Std_ReturnType EcuM_RequestRUN(

 EcuM_UserType user

)

Service ID[hex]: 0x03

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): user ID of the entity requesting the RUN state.

Parameters
(inout):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: The request was accepted by EcuM.

E_NOT_OK: The request was not accepted by EcuM, a detailed
error condition was sent to DET (see Error Codes below).

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

113 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Description: Places a request for the RUN state. Requests can be placed by every user made
known to the state manager at configuration time.

⌋(SRS_ModeMgm_09116)

SWS_EcuM_04125: Requests of EcuM_RequestRUN cannot be nested, i.e. one
user can only place one request but not more. Additional or duplicate user requests
by the same user shall be reported to DET. Of course the DET will only be notified

under development conditions.⌋ (SRS_ModeMgm_09116)

SWS_EcuM_04126: An implementation must track requests for each user known on

the ECU. Run requests are specific to the user.⌋ (SRS_ModeMgm_09116)

Error Codes of EcuM_RequestRUN: ECUM_E_MULTIPLE_RUN_REQUESTS: On

multiple requests by the same user ID

8.3.3.3 EcuM_ReleaseRUN

SWS_EcuM_04127:
Service name: EcuM_ReleaseRUN

Syntax: Std_ReturnType EcuM_ReleaseRUN(

 EcuM_UserType user

)

Service ID[hex]: 0x04

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): user ID of the entity releasing the RUN state.

Parameters
(inout):

None

Parameters (out): None

Return value:

Std_ReturnType E_OK: The release request was accepted by EcuM
E_NOT_OK: The release request was not accepted by EcuM, a
detailed error condition was sent to DET (see Error Codes
below).

Description: Releases a RUN request previously done with a call to EcuM_RequestRUN. The
service is intended for implementing AUTOSAR ports.

⌋(SRS_ModeMgm_09116)

Configuration of EcuM_ReleaseRUN: Refer to 8.2.4 EcuM_UserType for more

information about user IDs and their generation.

Error Codes of EcuM_ReleaseRUN: ECUM_E_MISMATCHED_RUN_RELEASE: On

releasing without a matching request.

8.3.3.4 EcuM_RequestPOST_RUN

SWS_EcuM_04128:
Service name: EcuM_RequestPOST_RUN

Syntax: Std_ReturnType EcuM_RequestPOST_RUN(

 EcuM_UserType user

)

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

114 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Service ID[hex]: 0x0a

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): user ID of the entity requesting the POST RUN state.

Parameters
(inout):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: The request was accepted by EcuM

E_NOT_OK: The request was not accepted by EcuM, a detailed
error condition was sent to DET (see Error Codes below).

Description: Places a request for the POST RUN state. Requests can be placed by every user
made known to the state manager at configuration time.
Requests for RUN and POST RUN must be tracked independently (in other
words: two independent variables).
The service is intended for implementing AUTOSAR ports.

⌋(SRS_ModeMgm_09116)

All requirements of 8.3.3.2 EcuM_RequestRUN apply accordingly to the function
EcuM_RequestPOST_RUN.

Configuration of EcuM_RequestPOST_RUN: Refer to 8.2.4 EcuM_UserType for more

information about user IDs and their generation.

Error Codes of EcuM_RequestPOST_RUN: ECUM_E_MULTIPLE_RUN_REQUESTS:

On multiple requests by the same user ID.

8.3.3.5 EcuM_ReleasePOST_RUN

SWS_EcuM_04129:
Service name: EcuM_ReleasePOST_RUN

Syntax: Std_ReturnType EcuM_ReleasePOST_RUN(

 EcuM_UserType user

)

Service ID[hex]: 0x0b

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): user ID of the entity releasing the POST RUN state.

Parameters
(inout):

None

Parameters (out): None

Return value:

Std_ReturnType E_OK: The release request was accepted by EcuM
E_NOT_OK: The release request was not accepted by EcuM, a
detailed error condition was sent to DET (see Error Codes
below).

Description: Releases a POST RUN request previously done with a call to
EcuM_RequestPOST_RUN. The service is intended for implementing AUTOSAR
ports.

⌋(SRS_ModeMgm_09116)

Configuration of EcuM_ReleasePOST_RUN: Refer to 8.2.4 EcuM_UserType for more

information about user IDs and their generation.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

115 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Error Codes of EcuM_ReleasePOST_RUN: ECUM_E_MISMATCHED_RUN_RELEASE:

On releasing without a matching request.

8.3.4 Shutdown Management

8.3.4.1 EcuM_SelectShutdownTarget

[SWS_EcuM_02822] ⌈

Service name: EcuM_SelectShutdownTarget

Syntax: Std_ReturnType EcuM_SelectShutdownTarget(

 EcuM_ShutdownTargetType shutdownTarget,

 EcuM_ShutdownModeType shutdownMode

)

Service ID[hex]: 0x06

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in):

shutdownTarget The selected shutdown target.

shutdownMode The identfier of a sleep mode (if target is ECUM_STATE_SLEEP)
or a reset mechanism (if target is ECUM_STATE_RESET) as
defined by configuration.

Parameters
(inout):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: The new shutdown target was set

E_NOT_OK: The new shutdown target was not set

Description: EcuM_SelectShutdownTarget selects the shutdown target.
EcuM_SelectShutdownTarget is part of the ECU Manager Module port interface.

⌋(SRS_ModeMgm_09114,SRS_ModeMgm_09128,SRS_ModeMgm_09235)

[SWS_EcuM_00624] ⌈The EcuM_SelectShutdownTarget function shall set the

shutdown target to the value of the shutdownTarget

parameter.⌋(SRS_ModeMgm_09114,SRS_ModeMgm_09235)

[SWS_EcuM_02185] ⌈The parameter mode of the function

EcuM_SelectShutdownTarget shall be the identifier of a sleep or reset mode.

The mode parameter shall only be used if the target parameter equals

ECUM_STATE_SLEEP or ECUM_STATE_RESET. In all other cases, it shall be ignored.

Only sleep or reset modes that are defined at configuration time and are stored in the

EcuMCommonConfiguration container (see ECUC_EcuM_00181) are allowed as

parameters.⌋(SRS_ModeMgm_09114)

[SWS_EcuM_02585] ⌈EcuM_SelectShutdownTarget shall not initiate any setup

activities but only store the value for later use in the SHUTDOWN or SLEEP

phase.⌋(SRS_ModeMgm_09114)

Implementation hint: The ECU Manager module does not define any mechanism to
resolve conflicts arising from requests from different sources. The shutdown target is
always the last value set.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

116 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

8.3.4.2 EcuM_GetShutdownTarget

[SWS_EcuM_02824] ⌈

Service name: EcuM_GetShutdownTarget

Syntax: Std_ReturnType EcuM_GetShutdownTarget(

 EcuM_ShutdownTargetType* shutdownTarget,

 EcuM_ShutdownModeType* shutdownMode

)

Service ID[hex]: 0x09

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out):

shutdownTarget One of these values is returned:
• ECUM_STATE_SLEEP
• ECUM_STATE_RESET
• ECUM_STATE_OFF

shutdownMode If the out parameter "shutdownTarget" is ECUM_STATE_SLEEP,
sleepMode tells which of the configured sleep modes was
actually chosen. If "shutdownTarget" is ECUM_STATE_RESET,
sleepMode tells which of the configured reset modes was actually
chosen.

Return value:
Std_ReturnType E_OK: The service has succeeded

E_NOT_OK: The service has failed, e.g. due to NULL pointer
being passed

Description: EcuM_GetShutdownTarget returns the currently selected shutdown target as set
by EcuM_SelectShutdownTarget.
EcuM_GetShutdownTarget is part of the ECU Manager Module port interface.

⌋(SRS_ModeMgm_09128,SRS_ModeMgm_09235)

[SWS_EcuM_02788] ⌈If the pointer to the shutdownMode parameter is NULL,

EcuM_GetShutdownTarget shall simply ignore the shutdownMode parameter. If

Default Error Detection is activated, EcuM_GetShutdownTarget shall send the

ECUM_E_PARAM_POINTER development error to the DET module.⌋()

8.3.4.3 EcuM_GetLastShutdownTarget

[SWS_EcuM_02825] ⌈

Service name: EcuM_GetLastShutdownTarget

Syntax: Std_ReturnType EcuM_GetLastShutdownTarget(

 EcuM_ShutdownTargetType* shutdownTarget,

 EcuM_ShutdownModeType* shutdownMode

)

Service ID[hex]: 0x08

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): shutdownTarget One of these values is returned:

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

117 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

• ECUM_STATE_SLEEP
• ECUM_STATE_RESET
• ECUM_STATE_OFF

shutdownMode If the out parameter "shutdownTarget" is ECUM_STATE_SLEEP,
sleepMode tells which of the configured sleep modes was
actually chosen. If "shutdownTarget" is ECUM_STATE_RESET,
sleepMode tells which of the configured reset modes was actually
chosen.

Return value:
Std_ReturnType E_OK: The service has succeeded

E_NOT_OK: The service has failed, e.g. due to NULL pointer
being passed

Description: EcuM_GetLastShutdownTarget returns the shutdown target of the previous
shutdown process.
EcuM_GetLastShutdownTarget is part of the ECU Manager Module port interface.

⌋(SRS_ModeMgm_09128,SRS_ModeMgm_09235)

[SWS_EcuM_02156] ⌈ EcuM_GetLastShutdownTarget shall return the ECU state
from which the last wakeup or power up occurred in the shutdownTarget parameter.
EcuM_GetLastShutdownTarget shall always return the same value until the next

shutdown. ⌋ (SRS_ModeMgm_09235)

[SWS_EcuM_02336] ⌈If the call of GetLastShutdownTarget() passes

ECU_STATE_SLEEP in the parameter shutdownTarget, in the parameter

shutdownMode it returns which of the configured sleep modes was actually chosen.

If the call of GetLastShutdownTarget() passes ECU_STATE_RESET in the

parameter shutdownTarget, in the parameter sleepMode it returns which of the

configured reset modes was actually chosen.⌋()

[SWS_EcuM_02337] ⌈If the pointer to the shutdownMode parameter is NULL,

EcuM_GetLastShutdownTarget shall simply ignore the shutdownMode

parameter and return the last shutdown target regardless of whether it was SLEEP or

not. If Default Error Detection is activated, EcuM_GetShutdownTarget shall send

the ECUM_E_PARAM_POINTER development error to the DET module.⌋()

[SWS_EcuM_02157] ⌈EcuM_GetLastShutdownTarget may return a shutdown

target in a STARTUP phase that set late in a previous SHUTDOWN phase. If so,

implementation specific limitations shall be clearly documented.⌋()

Rationale for SWS_EcuM_02157

The EcuM_GetLastShutdownTarget function is intended primarily for use in the

ECU STARTUP or RUN states. To simplify implementation, it is acceptable if the
value is set in late shutdown phase for use during the next startup.

8.3.4.4 EcuM_SelectShutdownCause

[SWS_EcuM_04050]⌈

Service name: EcuM_SelectShutdownCause

Syntax: Std_ReturnType EcuM_SelectShutdownCause(

 EcuM_ShutdownCauseType target

)

Service ID[hex]: 0x1b

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

118 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): target The selected shutdown cause.

Parameters
(inout):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: The new shutdown cause was set

E_NOT_OK: The new shutdown cause was not set

Description: EcuM_SelectShutdownCause elects the cause for a shutdown.
EcuM_SelectShutdownCause is part of the ECU Manager Module port interface.

⌋()

8.3.4.5 EcuM_GetShutdownCause

[SWS_EcuM_04051]⌈

Service name: EcuM_GetShutdownCause

Syntax: Std_ReturnType EcuM_GetShutdownCause(

 EcuM_ShutdownCauseType* shutdownCause

)

Service ID[hex]: 0x1c

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): shutdownCause The selected cause of the next shutdown.

Return value:
Std_ReturnType E_OK: The service has succeeded

E_NOT_OK: The service has failed, e.g. due to NULL pointer
being passed

Description: EcuM_GetShutdownCause returns the selected shutdown cause as set by
EcuM_SelectShutdownCause.
EcuM_GetShutdownCause is part of the ECU Manager Module port interface.

⌋()

8.3.5 Wakeup Handling

8.3.5.1 EcuM_GetPendingWakeupEvents

[SWS_EcuM_02827]⌈

Service name: EcuM_GetPendingWakeupEvents

Syntax: EcuM_WakeupSourceType EcuM_GetPendingWakeupEvents(

 void

)

Service ID[hex]: 0x0d

Sync/Async: Synchronous

Reentrancy: Non-Reentrant, Non-Interruptible

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

119 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Return value: EcuM_WakeupSourceType All wakeup events

Description: Gets pending wakeup events.

⌋(SRS_ModeMgm_09126)

[SWS_EcuM_01156] ⌈EcuM_GetPendingWakeupEvents shall return wakeup

events which have been set to pending but not yet validated as bits set in a

EcuM_WakeupSourceType bitmask.⌋()

[SWS_EcuM_02172] ⌈EcuM_GetPendingWakeupEvents shall be callable from

interrupt context, from OS context and an OS-free context.⌋()

[SWS_EcuM_03003] ⌈Caveat of EcuM_GetPendingWakeupEvents: This function

only returns the wakeup events with status ECUM_WKSTATUS_PENDING.⌋()

8.3.5.2 EcuM_ClearWakeupEvent

[SWS_EcuM_02828] ⌈

Service name: EcuM_ClearWakeupEvent

Syntax: void EcuM_ClearWakeupEvent(

 EcuM_WakeupSourceType sources

)

Service ID[hex]: 0x16

Sync/Async: Synchronous

Reentrancy: Non-Reentrant, Non-Interruptible

Parameters (in): sources Events to be cleared

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: Clears wakeup events.

⌋(SRS_ModeMgm_09126)

[SWS_EcuM_02683] ⌈EcuM_ClearWakeupEvent clears all pending events

passed as a bit set in the sources in parameter (EcuM_WakeupSourceType

bitmask) from the internal pending wakeup events variable, the internal validated
events variable and the internal expired events variable (see section 7.6.3 Internal

Representation of Wakeup States).⌋()

[SWS_EcuM_02807] ⌈EcuM_ClearWakeupEvent shall be callable from interrupt

context, from OS context and an OS-free context.⌋()

Integration note: The clearing of wakeup sources shall take place during ECU
shutdown prior to the call of Dem_Shutdown() and NvM_WriteAll(). This can be
achieved by configuring BswMRules in the BswM module containing BswMActions of
type BswMUserCallout with their BswMUserCalloutFunction parameter set to
"EcuM_ClearWakeupEvents(<sources>)". Hereby <sources> needs to be derived
from the EcuMWakeupSourceIds in the EcuM configuration. These BswMRules must
then be configured in a way that they get triggered during ECU shutdown prior to the
call of Dem_Shutdown() and NvM_WriteAll().

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

120 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

8.3.5.3 EcuM_GetValidatedWakeupEvents

[SWS_EcuM_02830]⌈

Service name: EcuM_GetValidatedWakeupEvents

Syntax: EcuM_WakeupSourceType EcuM_GetValidatedWakeupEvents(

 void

)

Service ID[hex]: 0x15

Sync/Async: Synchronous

Reentrancy: Non-Reentrant, Non-Interruptible

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: EcuM_WakeupSourceType All wakeup events

Description: Gets validated wakeup events.

⌋(SRS_ModeMgm_09126)

[SWS_EcuM_02533] ⌈EcuM_GetValidatedWakeupEvents shall return wakeup

events which have been set to validated in the internal validated events variable (see
section 7.6.3 Internal Representation of Wakeup States) as bits set in a

EcuM_WakeupSourceType bitmask.⌋()

[SWS_EcuM_02532] ⌈EcuM_GetValidatedWakeupEvents shall be callable from

interrupt context, from OS context and an OS-free context.⌋()

8.3.5.4 EcuM_GetExpiredWakeupEvents

[SWS_EcuM_02831]⌈

Service name: EcuM_GetExpiredWakeupEvents

Syntax: EcuM_WakeupSourceType EcuM_GetExpiredWakeupEvents(

 void

)

Service ID[hex]: 0x19

Sync/Async: Synchronous

Reentrancy: Non-Reentrant, Non-Interruptible

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value:

EcuM_WakeupSourceType All wakeup events: Returns all events that have been
set and for which validation has failed. Events which
do not need validation must never be reported by this
function.

Description: Gets expired wakeup events.

⌋(SRS_ModeMgm_09126)

[SWS_EcuM_04076] ⌈EcuM_GetExpiredWakeupEvents shall return wakeup

events which have been set to validated in the internal expired events variable (see
section 7.6.3 Internal Representation of Wakeup States) as bits set in a

EcuM_WakeupSourceType bitmask.⌋()

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

121 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

[SWS_EcuM_02589] ⌈EcuM_GetExpiredWakeupEvents shall be callable from

interrupt context, from OS context and an OS-free context.⌋()

8.3.6 Alarm Clock

8.3.6.1 EcuM_SetRelWakeupAlarm

[SWS_EcuM_04054]⌈

Service name: EcuM_SetRelWakeupAlarm

Syntax: Std_ReturnType EcuM_SetRelWakeupAlarm(

 EcuM_UserType user,

 EcuM_TimeType time

)

Service ID[hex]: 0x22

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in):
user The user that wants to set the wakeup alarm.

time Relative time from now in seconds.

Parameters
(inout):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: The service has succeeded

E_NOT_OK: The service failed
ECUM_E_EARLIER_ACTIVE: An earlier alarm is already set

Description: EcuM_SetRelWakeupAlarm sets a user's wakeup alarm relative to the current
point in time.
EcuM_SetRelWakeupAlarm is part of the ECU Manager Module port interface.

⌋(SRS_ModeMgm_09186,SRS_ModeMgm_09190)

[SWS_EcuM_04055] ⌈If the relative time from now is earlier than the current wakeup

time, EcuM_SetRelWakeupAlarm shall update the wakeup

time.⌋(SRS_ModeMgm_09186)

[SWS_EcuM_04056] ⌈If the relative time from now is later than the current wakeup

time, EcuM_SetRelWakeupAlarm shall not update the wakeup time and shall return

ECUM_E_EARLIER_ACTIVE.⌋(SRS_ModeMgm_09186)

8.3.6.2 EcuM_SetAbsWakeupAlarm

[SWS_EcuM_04057]⌈

Service name: EcuM_SetAbsWakeupAlarm

Syntax: Std_ReturnType EcuM_SetAbsWakeupAlarm(

 EcuM_UserType user,

 EcuM_TimeType time

)

Service ID[hex]: 0x23

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): user The user that wants to set the wakeup alarm.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

122 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

time Absolute time in seconds. Note that, absolute alarms use
knowledge of the current time.

Parameters
(inout):

None

Parameters (out): None

Return value:

Std_ReturnType E_OK: The service has succeeded
E_NOT_OK: The service failed
ECUM_E_EARLIER_ACTIVE: An earlier alarm is already set
ECUM_E_PAST: The given point in time has already passed

Description: EcuM_SetAbsWakeupAlarm sets the user's wakeup alarm to an absolute point in
time.
EcuM_SetAbsWakeupAlarm is part of the ECU Manager Module port interface.

⌋(SRS_ModeMgm_09186,SRS_ModeMgm_09199)

[SWS_EcuM_04058] ⌈If the time parameter is earlier than the current wakeup time,

EcuM_SetAbsWakeupAlarm shall update the wakeup

time.⌋(SRS_ModeMgm_09186)

[SWS_EcuM_04059] ⌈If the time parameter is later than the current wakeup time,

EcuM_SetAbsWakeupAlarm shall not update the wakeup time and shall return

ECUM_E_EARLIER_ACTIVE.⌋(SRS_ModeMgm_09186)

[SWS_EcuM_04060] ⌈If the time parameter is earlier than now,

EcuM_SetAbsWakeupAlarm shall not update the wakeup time and shall return

ECUM_E_PAST.⌋(SRS_ModeMgm_09186)

8.3.6.3 EcuM_AbortWakeupAlarm

[SWS_EcuM_04061]⌈

Service name: EcuM_AbortWakeupAlarm

Syntax: Std_ReturnType EcuM_AbortWakeupAlarm(

 EcuM_UserType user

)

Service ID[hex]: 0x24

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): user The user that wants to cancel the wakeup alarm.

Parameters
(inout):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: The service has succeeded

E_NOT_OK: The service failed
ECUM_E_NOT_ACTIVE: No owned alarm found

Description: Ecum_AbortWakeupAlarm aborts the wakeup alarm previously set by this user.
EcuM_AbortWakeupAlarm is part of the ECU Manager Module port interface.

⌋()

8.3.6.4 EcuM_GetCurrentTime

[SWS_EcuM_04062]⌈

Service name: EcuM_GetCurrentTime

Syntax: Std_ReturnType EcuM_GetCurrentTime(

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

123 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

 EcuM_TimeType* time

)

Service ID[hex]: 0x25

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): time Absolute time in seconds since battery connect.

Return value:
Std_ReturnType E_OK: The service has succeeded

E_NOT_OK: time points to NULL or the module is not
initialized

Description: EcuM_GetCurrentTime returns the current value of the EcuM clock (i.e. the time
since battery connect).
EcuM_GetCurrentTime is part of the ECU Manager Module port interface.

⌋()

8.3.6.5 EcuM_GetWakeupTime

[SWS_EcuM_04063]⌈

Service name: EcuM_GetWakeupTime

Syntax: Std_ReturnType EcuM_GetWakeupTime(

 EcuM_TimeType* time

)

Service ID[hex]: 0x26

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out):
time Absolute time in seconds for next wakeup. 0xFFFFFFFF

means no active alarm.

Return value:
Std_ReturnType E_OK: The service has succeeded

E_NOT_OK: time points to NULL or the module is not
initialized

Description: EcuM_GetWakeupTime returns the current value of the master alarm clock (the
minimum absolute time of all user alarm clocks).
EcuM_GetWakeupTime is part of the ECU Manager Module port interface.

⌋()

8.3.6.6 EcuM_SetClock

[SWS_EcuM_04064]⌈
Service name: EcuM_SetClock

Syntax: Std_ReturnType EcuM_SetClock(

 EcuM_UserType user,

 EcuM_TimeType time

)

Service ID[hex]: 0x27

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in):
user User that wants to set the clock

time Absolute time in seconds since battery connect.

Parameters None

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

124 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

(inout):

Parameters (out): None

Return value:
Std_ReturnType E_OK: The service has succeeded

E_NOT_OK: The service failed

Description: EcuM_SetClock sets the EcuM clock time to the provided value. This API is useful
for testing the alarm services; Alarms that take days to expire can be tested.
EcuM_SetClock is part of the ECU Manager Module port interface.

⌋(SRS_ModeMgm_09194)

8.3.7 Miscellaneous

8.3.7.1 EcuM_SelectBootTarget

[SWS_EcuM_02835]⌈

Service name: EcuM_SelectBootTarget

Syntax: Std_ReturnType EcuM_SelectBootTarget(

 EcuM_BootTargetType target

)

Service ID[hex]: 0x12

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): target The selected boot target.

Parameters
(inout):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: The new boot target was accepted by EcuM

E_NOT_OK: The new boot target was not accepted by EcuM

Description: EcuM_SelectBootTarget selects a boot target.
EcuM_SelectBootTarget is part of the ECU Manager Module port interface.

⌋()

[SWS_EcuM_02247] ⌈The service EcuM_SelectBootTarget shall store the

selected target in a way that is compatible with the boot loader.⌋()

Explanation for SWS_EcuM_02247: This may mean format AND location. The
implementer must ensure that the boot target information is placed at a safe location
which then can be evaluated by the boot manager after a reset.

[SWS_EcuM_03000] ⌈Caveat for the function EcuM_SelectBootTarget: This

service may depend on the boot loader used. This service is only intended for use by

SW-C’s related to diagnostics (boot management).⌋()

8.3.7.2 EcuM_GetBootTarget

[SWS_EcuM_02836]⌈

Service name: EcuM_GetBootTarget

Syntax: Std_ReturnType EcuM_GetBootTarget(

 EcuM_BootTargetType * target

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

125 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

)

Service ID[hex]: 0x13

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): target The currently selected boot target.

Return value: Std_ReturnType E_OK: The service always succeeds.

Description: EcuM_GetBootTarget returns the current boot target - see
EcuM_SelectBootTarget.
EcuM_GetBootTarget is part of the ECU Manager Module port interface.

⌋(SRS_BSW_00172)

8.4 Scheduled Functions

These functions are directly called by Basic Software Scheduler. The following
functions shall have no return value and no parameter. All functions shall be non
reentrant.

8.4.1 EcuM_MainFunction

[SWS_EcuM_02837]⌈

Service name: EcuM_MainFunction

Syntax: void EcuM_MainFunction(

 void

)

Service ID[hex]: 0x18

Description: The purpose of this service is to implement all activities of the ECU State Manager
while the OS is up and running.

⌋(SRS_BSW_00425,SRS_BSW_00373,SRS_BSW_00376)

To determine the period, the system designer should consider:

 The function will perform wakeup validation (see 7.8 Wakeup Validation
Protocol). The shortest validation timeout typically should limit the period.

 As a rule of thumb, the period of this function should be approximately half as
long as the shortest validation timeout.

EcuM_MainFunction should not be called from tasks that may invoke runnable

entities.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

126 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

8.5 Callback Definitions

8.5.1 Callbacks from Wakeup Sources

8.5.1.1 EcuM_CheckWakeup

See 8.6.4.4 EcuM_StartCheckWakeup (SWS_EcuM_02929) for a description of the

EcuM_CheckWakeup function.

This service EcuM_CheckWakeup is a Callout of the ECU Manager module as well

as a Callback that wakeup sources invoke when they process wakeup interrupts.

8.5.1.2 EcuM_SetWakeupEvent

[SWS_EcuM_02826]⌈

Service name: EcuM_SetWakeupEvent

Syntax: void EcuM_SetWakeupEvent(

 EcuM_WakeupSourceType sources

)

Service ID[hex]: 0x0c

Sync/Async: Synchronous

Reentrancy: Non-Reentrant, Non-Interruptible

Parameters (in): sources Value to be set

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: Sets the wakeup event.

⌋(SRS_BSW_00359,SRS_BSW_00360,SRS_BSW_00440,SRS_ModeMgm_09098)

[SWS_EcuM_01117] ⌈EcuM_SetWakeupEvent sets (OR-operation) all events

passed as a bit set in the sources in parameter (EcuM_WakeupSourceType

bitmask) in the internal pending wakeup events variable (see section 7.6.3 Internal

Representation of Wakeup States).⌋()

[SWS_EcuM_02707] ⌈EcuM_SetWakeupEvent shall start the wakeup validation

timeout timer according to section 7.6.4.3 Wakeup Validation Timeout.⌋()

[SWS_EcuM_02867] ⌈If Development Error Reporting is turned on and parameter

“sources” contains an unknown (unconfigured) wakeup source,

EcuM_SetWakeupEvent shall not update its internal variable and shall send the

ECUM_E_UNKNOWN_WAKEUP_SOURCE error message to the DET module instead.⌋()

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

127 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

[SWS_EcuM_02171] ⌈EcuM_SetWakeupEvent must be callable from interrupt

context, from OS context and an OS-free context.⌋(SRS_BSW_00333)

[SWS_EcuM_04138] ⌈EcuM_SetWakeupEvent shall ignore all events passed in the

sources parameter that are not associated to the selected sleep mode.⌋

8.5.1.3 EcuM_ValidateWakeupEvent

[SWS_EcuM_02829]⌈

Service name: EcuM_ValidateWakeupEvent

Syntax: void EcuM_ValidateWakeupEvent(

 EcuM_WakeupSourceType sources

)

Service ID[hex]: 0x14

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): sources Events that have been validated

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: After wakeup, the ECU State Manager will stop the process during the WAKEUP
VALIDATION state/sequence to wait for validation of the wakeup event.This API
service is used to indicate to the ECU Manager module that the wakeup events
indicated in the sources parameter have been validated.

⌋(SRS_BSW_00359,SRS_BSW_00360,SRS_BSW_00440)

[SWS_EcuM_04078] ⌈EcuM_ValidateWakeupEvent sets (OR-operation) all

events passed as a bit set in the sources in parameter (EcuM_WakeupSourceType

bitmask) in the internal validated wakeup events variable (see section 7.6.3 Internal

Representation of Wakeup States).⌋()

[SWS_EcuM_04079] ⌈EcuMValidateWakeupEvent shall invoke

BswM_EcuM_CurrentWakeup with its sources parameter and state value
ECUM_WKSTATUS_VALIDATED.⌋()

[SWS_EcuM_02645] ⌈EcuM_ValidateWakeupEvent shall invoke

ComM_EcuM_WakeUpIndication for each wakeup event if the

EcuMComMChannelRef parameter (see ECUC_EcuM_00101) in the

EcuMWakeupSource configuration container for the corresponding wakeup source

is configured.⌋()

[SWS_EcuM_02868] ⌈If Development Error Reporting is turned on and the sources

parameter contains an unknown (unconfigured) wakeup source,

EcuM_ValidateWakeupEvent shall ignore the call and send the

ECUM_E_UNKNOWN_WAKEUP_SOURCE error message to the DET module.⌋()

[SWS_EcuM_02345] ⌈EcuM_ValidateWakeupEvent shall be callable from

interrupt context and task context.⌋(SRS_BSW_00333)

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

128 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

[SWS_EcuM_02790] ⌈EcuM_ValidateWakeupEvent shall return without effect for

all sources except communication channels when called while the ECU Manager

module is in the RUN state.⌋()

[SWS_EcuM_02791] ⌈EcuM_ValidateWakeupEvent shall have full effect in any

ECU Phase for those sources that correspond to a communication channel (see

SWS_EcuM_02645),.⌋()

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

129 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

8.6 Callout Definitions

Callouts are code fragments that must be added to the ECU Manager module during
ECU integration. The content of most callouts is hand-written code. The ECU
Manager module configuration tool generates a default implementation for some
callouts which is edited manually by the integrator. Conceptually, these callouts
belong to the ECU integration code.

Since callouts are not ECU Manager module functions they do not have an assigned
Service ID.

8.6.1 Generic Callouts

8.6.1.1 EcuM_ErrorHook

[SWS_EcuM_02904] ⌈

Service name: EcuM_ErrorHook

Syntax: void EcuM_ErrorHook(

 uint16 reason

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): reason Reason for calling the error hook

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: The ECU State Manager will call the error hook if the error codes
"ECUM_E_RAM_CHECK_FAILED" or
"ECUM_E_CONFIGURATION_DATA_INCONSISTENT" occur. In this situation it
is not possible to continue processing and the ECU must be
stopped. The integrator may choose the modality how the ECU is stopped, i.e.
reset, halt, restart, safe state etc.

⌋()

The ECU Manager module can invoke EcuM_ErrorHook: in all phases

Class of EcuM_ErrorHook: Mandatory

EcuM_ErrorHook is integration code and the integrator is free to define additional

individual error codes to be passed as the reason parameter. These codes shall not

conflict with the development and production error codes as defined in Table 1 and
Table 7 nor with the standard error codes, i.e. E_OK, E_NOT_OK, etc.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

130 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

8.6.2 Callouts from the STARTUP Phase

8.6.2.1 EcuM_AL_SetProgrammableInterrupts

[SWS_EcuM_04085]⌈

Service name: EcuM_AL_SetProgrammableInterrupts

Syntax: void EcuM_AL_SetProgrammableInterrupts(

 void

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: If the configuration parameter EcuMSetProgrammableInterrupts is set to true, this
callout EcuM_AL_SetProgrammableInterrupts is executed and shall set the
interrupts on ECUs with programmable interrupts.

⌋()

8.6.2.2 EcuM_AL_DriverInitZero

[SWS_EcuM_02905] ⌈

Service name: EcuM_AL_DriverInitZero

Syntax: void EcuM_AL_DriverInitZero(

 void

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: This callout shall provide driver initialization and other hardware-related startup
activities for loading the post-build configuration data. Beware: Here only pre-
compile and link-time configurable modules may be used.

⌋()

The ECU Manager module invokes EcuM_AL_DriverInitZero early in the PreOS

Sequence (see section 7.3.2 Activities in StartPreOS Sequence)

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

131 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

The ECU Manager module configuration tool must generate a default implementation

of the EcuM_AL_DriverInitZero callout (SWS_EcuM_02905) from the sequence

of modules defined in the EcuMDriverInitListZero configuration container (see

ECUC_EcuM_00114). See also SWS_EcuM_02559 and SWS_EcuM_02730.

8.6.2.3 EcuM_DeterminePbConfiguration

[SWS_EcuM_02906] ⌈

Service name: EcuM_DeterminePbConfiguration

Syntax: const EcuM_ConfigType* EcuM_DeterminePbConfiguration(

 void

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value:
const EcuM_ConfigType* Pointer to the EcuM post-build configuration which

contains pointers to all other BSW module post-build
configurations.

Description: This callout should evaluate some condition, like port pin or NVRAM value, to
determine which post-build configuration shall be used in the remainder of the
startup process. It shall load this configuration data into a piece of memory that is
accessible by all BSW modules and shall return a pointer to the EcuM post-build
configuration as a base for all BSW module post-build configrations.

⌋()

The ECU Manager module invokes EcuM_DeterminePbConfiguration early in

the PreOS Sequence (see section 7.3.2 Activities in StartPreOS Sequence)

Content is written manually.

8.6.2.4 EcuM_AL_DriverInitOne

[SWS_EcuM_02907] ⌈

Service name: EcuM_AL_DriverInitOne

Syntax: void EcuM_AL_DriverInitOne(

 const EcuM_ConfigType* ConfigPtr

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in):
ConfigPtr Pointer to the EcuM post-build configuration which contains pointers to

all other BSW module post-build configurations.

Parameters
(inout):

None

Parameters (out): None

Return value: None

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

132 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Description: This callout shall provide driver initialization and other hardware-related startup
activities in case of a power on reset.

⌋()

The ECU Manager module invokes EcuM_AL_DriverInitOne in the PreOS

Sequence (see section 7.3.2 Activities in StartPreOS Sequence)

The ECU Manager module configuration tool must generate a default implementation

of the EcuM_AL_DriverInitOne callout from the sequence of modules defined in

the EcuMDriverInitListOne configuration container (see ECUC_EcuM_00111).

See also SWS_EcuM_02559 and SWS_EcuM_02730.

Besides driver initialization, the following initialization sequences should be
considered in this block: MCU initialization according to
AUTOSAR_SWS_Mcu_Driver chapter 9.1.

8.6.2.5 EcuM_AL_LoopDetection

[SWS_EcuM_04137] ⌈

Service name: EcuM_LoopDetection

Syntax: boolean EcuM_LoopDetection(

 void

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value:
boolean FALSE: no reset loop is detected

TRUE: reset loop is detected

Description: If the configuration parameter EcuMResetLoopDetection is set to true, this callout
EcuM_LoopDetection is called on every startup.

⌋()

8.6.3 Callouts from the SHUTDOWN Phase

8.6.3.1 EcuM_OnGoOffOne

[SWS_EcuM_02916] ⌈

Service name: EcuM_OnGoOffOne

Syntax: void EcuM_OnGoOffOne(

 void

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

133 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: This call allows the system designer to notify that the GO OFF I state is about to
be entered.

⌋()

The ECU Manager module invokes EcuM_OnGoOffOne on entry to the OffPreOS

Sequence (see section 7.4.1 Activities in the OffPreOS Sequence).

8.6.3.2 EcuM_OnGoOffTwo

[SWS_EcuM_02917] ⌈

Service name: EcuM_OnGoOffTwo

Syntax: void EcuM_OnGoOffTwo(

 void

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: This call allows the system designer to notify that the GO OFF II state is about to
be entered.

⌋()

The ECU Manager module invokes EcuM_OnGoOffTwo on entry to the OffPostOS

Sequence (see section 7.4.2 Activities in the OffPostOS Sequence).

8.6.3.3 EcuM_AL_SwitchOff

[SWS_EcuM_02920] ⌈

Service name: EcuM_AL_SwitchOff

Syntax: void EcuM_AL_SwitchOff(

 void

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: This callout shall take the code for shutting off the power supply of the ECU. If the
ECU cannot unpower itself, a reset may be an adequate reaction.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

134 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

⌋()
The ECU Manager module invokes EcuM_AL_SwitchOff as the last activity in the

OffPostOS Sequence (see section 7.4.2 Activities in the OffPostOS Sequence).

Note: In some cases of HW/SW concurrency, it may happen that during the power
down in EcuM_AL_SwitchOff (endless loop) some hardware (e.g. a CAN transceiver)
switches on the ECU again. In this case the ECU may be in a deadlock until the
hardware watchdog resets the ECU. To reduce the time until the hardware watchdog
fixes this deadlock, the integrator code in EcuM_AL_SwitchOff as last action can
limit the endless loop and after a sufficient long time reset the ECU using
Mcu_PerformReset().

8.6.3.4 EcuM_AL_Reset

[SWS_EcuM_04065]⌈

Service name: EcuM_AL_Reset

Syntax: void EcuM_AL_Reset(

 EcuM_ResetType reset

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): reset Type of reset to be performed.

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: This callout shall take the code for resetting the ECU.

⌋()

8.6.4 Callouts from the SLEEP Phase

8.6.4.1 EcuM_EnableWakeupSources

[SWS_EcuM_02918] ⌈

Service name: EcuM_EnableWakeupSources

Syntax: void EcuM_EnableWakeupSources(

 EcuM_WakeupSourceType wakeupSource

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): wakeupSource --

Parameters
(inout):

None

Parameters (out): None

Return value: None

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

135 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Description: The ECU Manager Module calls EcuM_EnableWakeupSource to allow the system
designer to notify wakeup sources defined in the wakeupSource bitfield that
SLEEP will be entered and to adjust their source accordingly.

⌋()
The ECU Manager module invokes EcuM_EnableWakeupSources in the GoSleep

Sequence (see section 7.5.1 Activities in the GoSleep Sequence)

[SWS_EcuM_02546] ⌈The ECU Manager module shall derive the wakeup sources to

be enabled (and used as the wakeupSource parameter) from the

EcuMWakeupSource (see ECUC_EcuM_00152) bitfield configured for the current

sleep mode.⌋()

8.6.4.2 EcuM_GenerateRamHash

[SWS_EcuM_02919] ⌈

Service name: EcuM_GenerateRamHash

Syntax: void EcuM_GenerateRamHash(

 void

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: see EcuM_CheckRamHash

⌋()

IThe ECU Manager module invokes EcuM_GenerateRamHash: in the Halt

Sequence just before putting the ECU physically to sleep (see section 7.5.2 Activities
in the Halt Sequence).

8.6.4.3 EcuM_SleepActivity

[SWS_EcuM_02928] ⌈

Service name: EcuM_SleepActivity

Syntax: void EcuM_SleepActivity(

 void

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: This callout is invoked periodically in all reduced clock sleep modes.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

136 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

It is explicitely allowed to poll wakeup sources from this callout and to call wakeup
notification functions to indicate the end of the sleep state to the ECU State
Manager.

⌋()

The ECU Manager module invokes EcuM_SleepActivity periodically during the

Poll Sequence (see section 7.5.3 Activities in the Poll Sequence) if the MCU is not
halted (i.e. clock is reduced).
Note: If called from the Poll sequence the EcuMcalls this callout functions in a
blocking loop at maximum frequency. The callout implementation must ensure by
other means if callout code shall be executed with a lower period. The integrator may
choose any method to control this, e.g. with the help of OS counters, OS alarms,
or Gpt timers.

8.6.4.4 EcuM_StartCheckWakeup

[SWS_EcuM_04096] ⌈

Service name: EcuM_StartCheckWakeup

Syntax: void EcuM_StartCheckWakeup(

 EcuM_WakeupSourceType WakeupSource

)

Service ID[hex]: 0x28

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in):
WakeupSource For this wakeup source the corresponding CheckWakeupTimer

shall be started.

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: This API is called by the ECU Firmware to start the CheckWakeupTimer for the
corresponding WakeupSource.
If EcuMCheckWakeupTimeout > 0 the CheckWakeupTimer for the WakeupSource
is started.
If EcuMCheckWakeupTimeout ≤ 0 the API call is ignored by the EcuM.

⌋()

8.6.4.5 EcuM_CheckWakeup

[SWS_EcuM_02929] ⌈

Service name: EcuM_CheckWakeup

Syntax: void EcuM_CheckWakeup(

 EcuM_WakeupSourceType wakeupSource

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): wakeupSource --

Parameters
(inout):

None

Parameters (out): None

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

137 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Return value: None

Description: This callout is called by the EcuM to poll a wakeup source. It shall also be called
by the ISR of a wakeup source to set up the PLL and check other wakeup sources
that may be connected to the same interrupt.

⌋()

[SWS_EcuM_04098] ⌈
If EcuM_SetWakeupEvent is called for the corresponding wakeup source the

CheckWakeupTimer is cancelled.⌋()

8.6.4.6 EcuM_EndCheckWakeup

[SWS_EcuM_04097] ⌈

Service name: EcuM_EndCheckWakeup

Syntax: void EcuM_EndCheckWakeup(

 EcuM_WakeupSourceType WakeupSource

)

Service ID[hex]: 0x29

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in):
WakeupSource For this wakeup source the corresponding

CheckWakeupTimer shall be canceled.

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: This API is called by any SW Module whose wakeup source is checked
asynchronously (e.g. asynchronous Can Trcv Driver) and the Check of the
Wakeup returns a negative Result (no Wakeup by this Source).
The API cancels the CheckWakeupTimer for the WakeupSource.
If the correponding CheckWakeupTimer is canceled the check of this wakeup
source is finished.

⌋()

The ECU Manager module invokes EcuM_CheckWakeup periodically during the Poll

Sequence (see section 7.5.3 Activities in the Poll Sequence) if the MCU is not halted,
or when handling a wakeup interrupt.
Note: If called from the Poll sequence the EcuMcalls this callout functions in a
blocking loop at maximum frequency. The callout implementation must ensure by
other means if callout code shall be executed with a lower period. The integrator may
choose any method to control this, e.g. with the help of OS counters, OS alarms,
or Gpt timers.

[SWS_EcuM_04080] ⌈The ECU Manager module shall derive the wakeup sources to

be checked (and used as the wakeupSource parameter) from the

EcuMWakeupSource (see ECUC_EcuM_00152) bitfield configured for the current

sleep mode. The integration code used for this callout must determine which wakeup

sources must be checked.⌋()

8.6.4.7 EcuM_CheckRamHash

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

138 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

[SWS_EcuM_02921] ⌈

Service name: EcuM_CheckRamHash

Syntax: uint8 EcuM_CheckRamHash(

 void

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value:
uint8 0: RAM integrity test failed

else: RAM integrity test passed

Description: This callout is intended to provide a RAM integrity test. The goal of this test is to
ensure that after a long SLEEP duration, RAM contents is still consistent. The
check does not need to be exhaustive since this would consume quite some
processing time during wakeups. A well designed check will execute quickly and
detect RAM integrity defects with a sufficient probability.
This specification does not make any assumption about the algorithm chosen for a
particular ECU.
The areas of RAM which will be checked have to be chosen carefully. It depends
on the check algorithm itself and the task structure. Stack contents of the task
executing the RAM check e.g. very likely cannot be checked. It is good practice to
have the hash generation and checking in the same task and that this task is not
preemptible and that there is only little activity between hash generation and hash
check.
The RAM check itself is provided by the system designer.
In case of applied multi core and existence of Satellite-EcuM(s): this API will be
called by the Master-EcuM only.

⌋()

The ECU Manager module invokes EcuM_CheckRamHash early in the

WakeupRestart Sequence (see section 7.5.5 Activities in the WakeupRestart
Sequence)

8.6.4.8 EcuM_DisableWakeupSources

[SWS_EcuM_02922] ⌈

Service name: EcuM_DisableWakeupSources

Syntax: void EcuM_DisableWakeupSources(

 EcuM_WakeupSourceType wakeupSource

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): wakeupSource --

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: The ECU Manager Module calls EcuM_DisableWakeupSources to set the wakeup
source(s) defined in the wakeupSource bitfield so that they are not able to wake
the ECU up.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

139 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

⌋()

The ECU Manager module invokes EcuM_DisableWakeupSources in the

WakeupRestart Sequence (see section 7.5.5 Activities in the WakeupRestart
Sequence)

[SWS_EcuM_04084] ⌈The ECU Manager module shall derive the wakeup sources to

be disabled (and used as the wakeupSource parameter) from the internal pending

events variable (NOT operation). The integration code used for this callout must

determine which wakeup sources must be disabled.⌋()

8.6.4.9 EcuM_AL_DriverRestart

[SWS_EcuM_02923] ⌈

Service name: EcuM_AL_DriverRestart

Syntax: void EcuM_AL_DriverRestart(

 const EcuM_ConfigType* ConfigPtr

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in):
ConfigPtr Pointer to the EcuM post-build configuration which contains pointers to

all other BSW module post-build configurations.

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: This callout shall provide driver initialization and other hardware-related startup
activities in the wakeup case.

⌋()

The ECU Manager module invokes EcuM_EcuM_AL_DriverRestart in the

WakeupRestart Sequence (see section 7.5.5 Activities in the WakeupRestart
Sequence)

The ECU Manager module Configuration Tool shall generate a default

implementation of the EcuM_AL_DriverRestart callout from the sequence of

modules defined in the EcuMDriverRestartList configuration container (see

ECUC_EcuM_00115). See also SWS_EcuM_02561, SWS_EcuM_02559 and
SWS_EcuM_02730.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

140 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

8.6.5 Callouts from the UP Phase

8.6.5.1 EcuM_StartWakeupSources

[SWS_EcuM_02924] ⌈

Service name: EcuM_StartWakeupSources

Syntax: void EcuM_StartWakeupSources(

 EcuM_WakeupSourceType wakeupSource

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): wakeupSource --

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: The callout shall start the given wakeup source(s) so that they are ready to
perform wakeup validation.

⌋()

The EcuM Manager module invokes EcuM_StartWakeupSources in the

WakeupValidation Sequence (see section 7.6.4 Activities in the WakeupValidation
Sequence).

8.6.5.2 EcuM_CheckValidation

[SWS_EcuM_02925] ⌈

Service name: EcuM_CheckValidation

Syntax: void EcuM_CheckValidation(

 EcuM_WakeupSourceType wakeupSource

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): wakeupSource --

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: This callout is called by the EcuM to validate a wakeup source. If a valid wakeup
has been detected, it shall be reported to EcuM via
EcuM_ValidateWakeupEvent().

⌋()

The EcuM Manager module invokes EcuM_CheckValidation in the

WakeupValidation Sequence (see section 7.6.4 Activities in the WakeupValidation
Sequence).

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

141 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

8.6.5.3 EcuM_StopWakeupSources

[SWS_EcuM_02926] ⌈

Service name: EcuM_StopWakeupSources

Syntax: void EcuM_StopWakeupSources(

 EcuM_WakeupSourceType wakeupSource

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): wakeupSource --

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: The callout shall stop the given wakeup source(s) after unsuccessful wakeup
validation.

⌋()

The EcuM Manager module invokes EcuM_StopWakeupSources in the

WakeupValidation Sequence (see section 7.6.4 Activities in the WakeupValidation
Sequence).

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

142 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

8.7 Expected Interfaces

In this chapter all interfaces required from other modules are listed.

This chapter defines all interfaces which are required to fulfill the core functionality of
the module.

[SWS_EcuM_02858]⌈

API function Description

BswM_Deinit Deinitializes the BSW Mode Manager.

BswM_EcuM_CurrentWakeup Function called by EcuM to indicate the current state of a wakeup
source.

BswM_Init Initializes the BSW Mode Manager.

CanSM_StartWakeupSource This function shall be called by EcuM when a wakeup source shall be
started.

CanSM_StopWakeupSource This function shall be called by EcuM when a wakeup source shall be
stopped.

ComM_EcuM_WakeUpIndication Notification of a wake up on the corresponding channel.

Dem_Init Initializes or reinitializes this module.

Dem_PreInit Initializes the internal states necessary to process events reported by
BSW-modules.

Dem_ReportErrorStatus Queues the reported events from the BSW modules (API is only used
by BSW modules). The interface has an asynchronous behavior,
because the processing of the event is done within the Dem main
function.
OBD Events Suppression shall be ignored for this computation.

Dem_Shutdown Shuts down this module.

GetResource --

Mcu_GetResetReason The service reads the reset type from the hardware, if supported.

Mcu_Init This service initializes the MCU driver.

Mcu_PerformReset The service performs a microcontroller reset.

Mcu_SetMode This service activates the MCU power modes.

ReleaseResource --

SchM_Deinit SchM_Deinit is used to finalize Basic Software Scheduler part of the
RTE of the core on which it is called.
This service releases all system resources allocated by the Basic
Software Scheduler part on that core.

SchM_Init SchM_Init is intended to allocate and initialize system resources used
by the Basic Software Scheduler part of the RTE for the core on
which it is called.
After initialization the scheduling of BswSchedulableEntitys is
enabled.

ShutdownOS --

StartOS --

Table 9 - Mandatory interfaces

⌋()

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

143 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

8.7.1 Optional Interfaces

This chapter defines all interfaces which are required to fulfill an optional functionality
of the module.

[SWS_EcuM_02859]⌈

API function Description

Adc_Init Initializes the ADC hardware units and driver.

BswM_EcuM_RequestedState Function called by EcuM to notify about current Status of the Run
Request Protocol.

Can_Init This function initializes the module.

CanTrcv_Init Initializes the CanTrcv module.

Det_Init Service to initialize the Default Error Tracer.

Det_ReportError Service to report development errors.

Dio_Init Initializes the module.

Eth_Init Initializes the Ethernet Driver

EthSwt_Init Initializes the Ethernet Switch Driver

EthSwt_SwitchInit Initializes the indexed swtich with a given configuration for the switch
index

EthTrcv_Init Initializes the Ethernet Transceiver Driver

Fls_Init Initializes the Flash Driver.

Fr_Init Initializes the Fr.

FrTrcv_Init This service initializes the FrTrcv.

GetCoreID The function returns a unique core identifier.

Gpt_Init Initializes the GPT driver.

Icu_Init This function initializes the driver.

IoHwAb_Init<Init_Id> Initializes either all the IO Hardware Abstraction software or is a part of
the IO Hardware Abstraction.

Lin_Init Initializes the LIN module.

LinTrcv_Init Initializes the Lin Transceiver Driver module.

Ocu_Init Service for OCU initialization.

Port_Init Initializes the Port Driver module.

Pwm_Init Service for PWM initialization.

ShutdownAllCores After this service the OS on all AUTOSAR cores is shut down. Allowed
at TASK level and ISR level and also internally by the OS. The function
will never return. The function will force other cores into a shutdown.

Spi_Init Service for SPI initialization.

StartCore It is not supported to call this function after StartOS(). The function
starts the core specified by the parameter CoreID. The OUT parameter
allows the caller to check whether the operation was successful or not.
If a core is started by means of this function StartOS shall be called on
the core.

Wdg_Init Initializes the module.

WdgM_PerformReset Instructs the Watchdog Manager to cause a watchdog reset.

Table 10 - Optional Interfaces

⌋()

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

144 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

8.7.2 Configurable interfaces

There are no configurable interfaces.

8.8 Specification of the Port Interfaces

This chapter specifies the port interfaces and ports needed to access the ECU
Manager module over the VFB.

8.8.1 Ports and Port Interface for EcuM_ShutdownTarget Interface

8.8.1.1 General Approach

The EcuM_ShutdownTarget client-server interface allows an SW-C to select a

shutdown target which will be respected during the next shutdown phase.

Note that the ECU Manager module does not offer a port interface to allow a SW-C
to initiate shutdown, however.

8.8.1.2 Service Interfaces

[SWS_EcuM_03011] ⌈

Name EcuM_ShutdownTarget

Comment A SW-C can select a shutdown target using this interface

IsService true

Variation --

Possible Errors
0 E_OK

1 E_NOT_OK

Operations

GetLastShutdownTarget

Comments Returns the shutdown target of the previous shutdown

Variation --

Parameters shutdownTarget

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

145 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Comment The shutdown target of the previous shutdown

Type EcuM_ShutdownTargetType

Variation --

Direction OUT

shutdownMode

Comment
The sleep mode (if target is ECUM_STATE_SLEEP) or the reset
mechanism (if target is ECUM_STATE_RESET) of the shutdown

Type EcuM_ShutdownModeType

Variation --

Direction OUT

Possible
Errors

E_OK Operation successful

E_NOT_OK Operation not successful

GetShutdownCause

Comments Returns the selected shutdown cause as set by the operation SelectShutdownCause.

Variation --

Parameters

shutdownCause

Comment The selected cause of the next shutdown

Type EcuM_ShutdownCauseType

Variation --

Direction OUT

Possible
Errors

E_OK Operation successful

E_NOT_OK The shutdown cause has not been set

GetShutdownTarget

Comments
Returns the currently selected shutdown target for the next shutdown as set by the
operation SelectShutdownTarget.

Variation --

Parameters

shutdownTarget

Comment The shutdown target of the next shutdown

Type EcuM_ShutdownTargetType

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

146 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Variation --

Direction OUT

shutdownMode

Comment
The sleep mode (if target is ECUM_STATE_SLEEP) or the reset
mechanism (if target is ECUM_STATE_RESET) of the shutdown

Type EcuM_ShutdownModeType

Variation --

Direction OUT

Possible
Errors

E_OK Operation successful

E_NOT_OK Operation not successful

SelectShutdownCause

Comments --

Variation --

Parameters

shutdownCause

Comment The selected shutdown cause

Type EcuM_ShutdownCauseType

Variation --

Direction IN

Possible
Errors

E_OK Operation successful

E_NOT_OK The new shutdown cause was not set

SelectShutdownTarget

Comments The SW-C selects the cause corresponding to the next shutdown target

Variation --

Parameters

shutdownTarget

Comment The selected shutdown cause

Type EcuM_ShutdownTargetType

Variation --

Direction IN

shutdownMode

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

147 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Comment
The identfier of a sleep mode (if shutdownTarget is
ECUM_STATE_SLEEP) or a reset mechanism (if shutdownTarget is
ECUM_STATE_RESET) as defined by configuration.

Type EcuM_ShutdownModeType

Variation --

Direction IN

Possible
Errors

E_OK The new shutdown target was set.

E_NOT_OK The new shutdown target was not set

⌋()

[SWS_EcuM_02979] ⌈The shutdownMode parameter shall determine the specific

sleep or reset mode (see ECUC_EcuM_00132) relevant to

SelectShutdownTarget, GetShutdownTarget and

GetLastShutdownTarget. The ECU Manager module shall only use the

shutdownMode parameter is if the shutdownTarget parameter is equal to

ECUM_STATE_SLEEP or ECUM_STATE_RESET, otherwise it shall be ignored.⌋()

8.8.2 Port Interface for EcuM_BootTarget Interface

8.8.2.1 General Approach

A SW-C that wants to select a boot target must require the client-server interface

EcuM_BootTarget.

8.8.2.2 Service Interfaces

[SWS_EcuM_03012] ⌈

Name EcuM_BootTarget

Comment
A SW-C that wants to select a boot target must use the client-server interface
EcuM_BootTarget.

IsService true

Variation --

Possible
Errors

0 E_OK

1 E_NOT_OK

Operations

GetBootTarget

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

148 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Comments Returns the current boot target

Variation --

Parameters

target

Comment The currently selected boot target

Type EcuM_BootTargetType

Variation --

Direction OUT

Possible Errors E_OK Operation successful (the service always succeeds)

SelectBootTarget

Comments Selects a boot target

Variation --

Parameters

target

Comment The selected boot target

Type EcuM_BootTargetType

Variation --

Direction IN

Possible Errors
E_OK The new boot target was accepted by EcuM

E_NOT_OK The new boot target was not accepted by EcuM

⌋()

8.8.3 Port Interface for EcuM_AlarmClock Interface

8.8.3.1 General Approach

A SW-C that wants to use an alarm clock must require the client-server interface

EcuM_AlarmClock.

The EcuM_AlarmClock interface uses port-defined argument values to identify the
user that manages its alarm clock. See [SWS_Rte_1350] in the Specification of RTE
[15] for a description of port-defined argument values.

8.8.3.2 Data Types

[SWS_EcuM_04106]⌈

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

149 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Name EcuM_TimeType

Kind Type

Derived from uint32

Description This data type represents the time of the ECU Manager module.

Variation --

⌋ ()

8.8.3.3 Service Interfaces

[SWS_EcuM_04105]⌈

Name EcuM_AlarmClock

Comment
A SW-C that wants to use an alarm clock must use the client-server interface
EcuM_AlarmClock.

IsService true

Variation {ecuc(EcuM/EcuMFlexGeneral/EcuMAlarmClockPresent)} == True

Possible
Errors

0 E_OK

1 E_NOT_OK

3 ECUM_E_EARLIER_ACTIVE

4 ECUM_E_PAST

5 ECUM_E_NOT_ACTIVE

Operations

AbortWakeupAlarm

Comments Aborts the wakeup alarm previously set by this user

Variation --

Possible
Errors

E_OK Operation successful

E_NOT_OK Service failed

ECUM_E_NOT_ACTIVE No active alarm found

SetAbsWakeupAlarm

Comments Sets the user's wakeup alarm to an absolute point in time

Variation --

Parameters time

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

150 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Comment
Absolute time in seconds. Note that, absolute alarms
use knowledge of the current time

Type EcuM_TimeType

Variation --

Direction IN

Possible
Errors

E_OK Operation successful

E_NOT_OK Service failed

ECUM_E_EARLIER_ACTIVE An earlier alarm is already set

ECUM_E_PAST The desired point in time has already passed

SetClock

Comments Sets the EcuM clock time to the provided value

Variation --

Parameters

time

Comment Absolute time in seconds since battery connect

Type EcuM_TimeType

Variation --

Direction IN

Possible
Errors

E_OK Operation successful

E_NOT_OK Service failed

SetRelWakeupAlarm

Comments Sets a user's wakeup alarm relative to the current point in time

Variation --

Parameters

time

Comment Relative time from now in seconds

Type EcuM_TimeType

Variation --

Direction IN

Possible
Errors

E_OK Operation successful

E_NOT_OK Service failed

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

151 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

ECUM_E_EARLIER_ACTIVE An earlier alarm is already set

⌋ ()

8.8.4 Port Interface for EcuM_Time Interface

8.8.4.1 General Approach

A SW-C that wants to use the time functionality of the EucM must require the client-

server interface EcuM_Time.

8.8.4.2 Data Types

The EcuM_Time service does not have any specific data types.

8.8.4.3 Service Interfaces

[SWS_EcuM_04109]⌈

Name EcuM_Time

Comment --

IsService true

Variation --

Possible Errors
0 E_OK

1 E_NOT_OK

Operations

GetCurrentTime

Comments
Returns the current value of the EcuM clock (i.e. the time in seconds since battery
connect)

Variation --

Parameters

time

Comment Absolute time in seconds since battery connect

Type EcuM_TimeType

Variation --

Direction OUT

Possible
Errors

E_OK Operation successful

E_NOT_OK time points to NULL or the module is not initialized

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

152 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

GetWakeupTime

Comments
Returns the current value of the master alarm clock (the minimum absolute time of
all user alarm clocks)

Variation --

Parameters

time

Comment
Absolute time in seconds for next wakeup.
0xFFFFFFFF means no active alarm.

Type EcuM_TimeType

Variation --

Direction OUT

Possible
Errors

E_OK Operation successful

E_NOT_OK time points to NULL or the module is not initialized

⌋ ()

8.8.5 Port Interface for EcuM_StateRequest Interface

[SWS_EcuM_04130]

⌈The ECU State Manager module shall provide System Services for the following
functionalities when the container EcuMModeHandling (see 10.2.1) is available:

 requesting RUN

 releasing RUN

 requesting POST_RUN

 releasing POST_RUN

⌋(SRS_ModeMgm_09116)

8.8.5.1 General Approach

A SW-C which needs to keep the ECU alive or needs to execute any operations
before the ECU is shut down shall require the client-server interface

EcuM_StateRequest.

This interface uses port-defined argument values to identify the user that requests
modes. See [SWS_Rte_1350] for a description of port-defined argument values.

8.8.5.2 Data Types

No data types are needed for this interface.

8.8.5.3 Service Interfaces

[SWS_EcuM_04131]

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

153 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Name EcuM_StateRequest

Comment Interface to request a specific ECU state

IsService true

Variation --

Possible Errors
0 E_OK

1 E_NOT_OK

Operations

ReleasePOSTRUN

Comments --

Variation --

Possible
Errors

E_OK The request was accepted by EcuM

E_NOT_OK
The request was not accepted by EcuM, a detailed error condition
was sent to DET

ReleaseRUN

Comments --

Variation --

Possible
Errors

E_OK The request was accepted by EcuM

E_NOT_OK
The request was not accepted by EcuM, a detailed error condition
was sent to DET

RequestPOSTRUN

Comments --

Variation --

Possible
Errors

E_OK The request was accepted by EcuM

E_NOT_OK
The request was not accepted by EcuM, a detailed error condition
was sent to DET

RequestRUN

Comments --

Variation --

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

154 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Possible
Errors

E_OK The request was accepted by EcuM

E_NOT_OK
The request was not accepted by EcuM, a detailed error condition
was sent to DET

8.8.6 Port Interface for EcuM_CurrentMode

8.8.6.1 General Approach

SWS_EcuM_04132: The mode port of the ECU State Manager module shall declare
the following modes:

 STARTUP

 RUN

 POST_RUN

 SLEEP

 SHUTDOWN

⌋(SRS_ModeMgm_09116)

This definition is a simplified view of ECU Modes that applications do need to know. It
does not restrict or limit in any way how application modes could be defined.
Applications modes are completely handled by the application itself.

SWS_EcuM_04133: Mode changes shall be notified to SW-Cs through the RTE
mode ports when the mode change occurs. The ECU State Manager Fixed module
shall not wait until the RTE has performed the mode switch completely.

This specification assumes that the port name is currentMode and that the direct API
of RTE will be used. Under these conditions mode changes signaled by invoking

Rte_StatusType Rte_Switch_currentMode_currentMode(

Rte_ModeType_EcuM_Mode mode)

where mode is the new mode to be notified. The value range is specified by the

previous requirement. The return value shall be ignored.

A SW-C which wants to be notified of mode changes should require the mode switch

interface EcuM_CurrentMode.

8.8.6.2 Data Types

The mode declaration group EcuM_Mode represents the modes of the ECU State

Manager module that will be notified to the SW-Cs.

ModeDeclarationGroup EcuM_Mode {

 { STARTUP,

 RUN,

 POST_RUN,

 SLEEP,

 SHUTDOWN

 }

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

155 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

 initialMode = STARTUP

};

Note that the mode WAKE_SLEEP, as known from ECU State Manager Fixed, has
been eliminated. This mode covers the “Time Triggered Increased Inoperation”
protocol in EcuMFixed, which is not part of ECU State Manager Flexible.

8.8.6.1 SWS_EcuM_04134: EcuM_CurrentMode

Name EcuM_CurrentMode

Comment Interface to read the current ECU mode

IsService true

Variation --

ModeGroup currentMode EcuM_Mode

⌋ (SRS_ModeMgm_09116)

8.8.7 Port Interface for EcuM_CurrentMode Interface

8.8.7.1 General Approach

A SW-C that wants to be informed about ECU mode changes must require the mode

switch interface EcuM_CurrentMode.

8.8.7.2 Data Types

[SWS_EcuM_04107]⌈

Name EcuM_Mode

Kind ModeDeclarationGroup

Category ALPHABETIC_ORDER

Initial mode STARTUP

On transition value --

Modes

POST_RUN --

RUN --

SHUTDOWN --

SLEEP --

STARTUP --

WAKE_SLEEP --

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

156 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Description --

⌋ ()

8.8.7.3 Service Interfaces

[SWS_EcuM_04108]⌈

Name EcuM_CurrentMode

Comment Interface to read the current ECU mode

IsService true

Variation --

ModeGroup currentMode EcuM_Mode

⌋ ()

8.8.7.4 Definition of the ECU Manager Service

This section provides guidance on the definition of the ECU Manager module
Service. Note that these definitions can only be completed during ECU configuration
(since certain ECU Manager module configuration parameters determine the number
of ports provided by the ECU Manager module service). Also note a SW-C’s
implementation does not depend on these definitions.

In an AUTOSAR system, there are ports both above and below the RTE. The ECU
Manager module service description defines ports provided to the RTE and the
descriptions of every SW-C that uses this service must contain “service ports” which
required these ECU Manager module ports from the RTE.

The EcuM provides the following ports:

[SWS_EcuM_03017]⌈

Name AlarmClock_{UserName}

Kind ProvidedPort Interface EcuM_AlarmClock

Description
Provides to SW-Cs an alarm clock. The EcuM_AlarmClock port uses port-defined
argument values to identify the user that manages its alarm clock.

Variation
{ecuc(EcuM/EcuMFlexGeneral/EcuMAlarmClockPresent)} == true
UserName = {ecuc(EcuM/EcuMConfiguration/EcuMFlexConfiguration/
EcuMAlarmClock.SHORT-NAME)}

⌋ ()

[SWS_EcuM_04110]⌈

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

157 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Name BootTarget_{UserName}

Kind ProvidedPort Interface EcuM_BootTarget

Description
Provides an interface to SW-Cs to select a new boot target and query the current boot
target.

Variation
UserName = {ecuc(EcuM/EcuMConfiguration/EcuMFlexConfiguration/
EcuMFlexUserConfig/EcuMFlexUser.SHORT-NAME)}

⌋ ()

[SWS_EcuM_04111]⌈

Name ShutdownTarget_{UserName}

Kind ProvidedPort Interface EcuM_ShutdownTarget

Description
Provides an interface to SW-Cs to select a new shutdown target and query the current
shutdown target.

Variation
UserName = {ecuc(EcuM/EcuMConfiguration/EcuMFlexConfiguration/
EcuMFlexUserConfig/EcuMFlexUser.SHORT-NAME)}

⌋ ()

[SWS_EcuM_04112]⌈

Name currentMode

Kind ProvidedPort Interface EcuM_CurrentMode

Description --

Variation --

⌋ ()

[SWS_EcuM_04113]⌈

Name time

Kind ProvidedPort Interface EcuM_Time

Description Provides the EcuM's time service to SWCs

Variation --

⌋ ()

[SWS_EcuM_04135]⌈

Name StateRequest_{UserName}

Kind ProvidedPort Interface EcuM_StateRequest

Description
Provides an interface to SW-Cs to request state changes of the ECU state.
The port uses port-defined argument values to identify the user.

Variation
UserName = {ecuc(EcuM/EcuMConfiguration/EcuMFlexConfiguration/
EcuMFlexUserConfig/EcuMFlexUser.SHORT-NAME)}

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

158 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

⌋ ()

[SWS_EcuM_04094]

⌈In the case of a MultiCore ECU, the EcuM AUTOSAR service (Standardized

AUTOSAR Interfaces) should be offered on the master core only. ⌋()

Although the EcuM service interfaces are available on every core (see section 7.9
MultiCore for details), the EcuC allows the provided ports to be bound to the interface
on a particular partition, and therefore to a particular core (see the Specification of
ECU Configuration [5]) and only that port will be visible to the VFB. In the case of
Multi-Core, this should be bound to the master core. SW-Cs and CDDs on the ECU
that need to access EcuM Services can access the master core via the IOC as
generated by the RTE.

[SWS_EcuM_04095]

⌈In the case of a MultiCore ECU, the EcuM C-API Interfaces(Standardized Interfaces)
which are used by other BSW modules should be offered in every partition a EcuM

runs in. ⌋()

The C-API interfaces which are used by other BSW module to communicate with the
EcuM are offered by every EcuM instance because every EcuM instance can do
some independent actions. If BSW modules want to use the EcuM but are inside
partitions that contain no own EcuM instance. These modules can use the SchM
functions to cross partition boundaries.

8.9 API Parameter Checking

[SWS_EcuM_03009] ⌈If Default Error Detection is enabled for this module, then all
functions shall test input parameters and running conditions and use the following
error codes in an adequate way:

 ECUM_E_UNINIT

 ECUM_E_SERVICE_DISABLED

 ECUM_E_PARAM_POINTER

 ECUM_E_INVALID_PAR
Specific development errors are listed in the functions, where they apply.

⌋(SRS_BSW_00323)

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

159 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

9 Sequence Charts

9.1 State Sequences

Sequence charts showing the behavior of the ECU Manager module in various states
are contained in the flow of the specification text. The following list shows all
sequence charts presented in this specification.

 Figure 4 – STARTUP Phase

 Figure 5 – StartPreOS Sequence

 Figure 6 – StartPostOS Sequence

 Figure 8 – SHUTDOWN Phase

 Figure 9 – OffPreOS Sequence

 Figure 10 – OffPostOS Sequence

 Figure 11 – SLEEP Phase

 Figure 12 – GoSleep Sequence

 Figure 13 – Halt Sequence

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

160 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

«module»

EcuM

«module»

:BswM

Integration Code «module»

Mcu

«module»

Wakeup Source

«module»

Os

loop WHILE no pending/validated wakeup events

loop FOR all wakeup sources that need polling

opt Wakeup detected

alt Validation Needed

[Yes]

[No]

Additional Confidition to Loop: While (AlarmClockService Present AND

EcuM_AlarmClock only pending event AND Alarm not expired)

DisableAllInterrupts()

Mcu_SetMode(Mcu_ModeType)

EnableAllInterrupts()

EcuM_SleepActivity()

EcuM_CheckWakeup(EcuM_WakeupSourceType)

<Module>_CheckWakeup()

EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

EcuM_GetPendingWakeupEvents(EcuM_WakeupSourceType)

BswM_EcuM_CurrentWakeup(sources.

ECUM_WKSTATUS_PENDING)

BswM_EcuM_CurrentWakeup(sources.

ECUM_WKSTATUS_VALIDATED)

 Figure 14 – Poll Sequence

 Figure 15 – WakeupRestart Sequence

 Figure 17 – The WakeupValidation Sequence

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

161 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

9.2 Wakeup Sequences

The Wake-up Sequences show how a number of modules cooperate to put the ECU
into a sleep state to be able to wake up and startup the ECU when a wake up event
has occurred.

9.2.1 GPT Wakeup Sequences

The General Purpose Timer (GPT) is one of the possible wake up sources. Usually
the GPT is started before the ECU is put to sleep and the hardware timer causes an
interrupt when it expires. The interrupt wakes the microcontroller, and executes the
interrupt handler in the GPT module. It informs the ECU State Manager module that
a GPT wake up has occurred. In order to distinguish different GPT channels that
caused the wake up, the integrator can assign a different wake up source identifier to
each GPT channel. Figure 38 shows the corresponding sequence of calls.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

162 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Integration Code «Peripheral»

GPT Hardware

«module»

Mcu

«module»

EcuM

«module»

Os

«module»

Gpt

If the Scheduler will not be acquired as resource it is not assured that the program flow continues

after HALT instruction because re-scheduling takes place after occurrence of an ISR Cat 2.

GOSLEEP

HALT

Execution continues after HALT instruction.

WAKEUP I

SLEEP

Release Scheduler resource to allow other tasks to run.

EcuM_EnableWakeupSources(EcuM_WakeupSourceType)

Gpt_EnableWakeup(Gpt_ChannelType)

Gpt_EnableWakeup()

Gpt_StartTimer(Gpt_ChannelType,

Gpt_ValueType)

Gpt_SetMode(Gpt_ModeType)

EcuM_EnableWakeupSources()

GetResource(RES_AUTOSAR_ECUM_<core#>)

GetResource()

DisableAllInterrupts()

Mcu_SetMode(Mcu_ModeType)

Wakeup

interrupt()

EcuM_CheckWakeup(EcuM_WakeupSourceType)

Gpt_CheckWakeup(EcuM_WakeupSourceType)

EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

EcuM_SetWakeupEvent()

Gpt_CheckWakeup()

EcuM_CheckWakeup()

Return from

interrupt()

Mcu_SetMode()

EnableAllInterrupts()

DisableAllInterrupts()

Mcu_SetMode(Mcu_ModeType)

Mcu_SetMode()

EnableAllInterrupts()

EcuM_DisableWakeupSources(EcuM_WakeupSourceType)

Gpt_DisableWakeup(Gpt_ChannelType)

Gpt_DisableWakeup()

Gpt_SetMode(Gpt_ModeType)

EcuM_DisableWakeupSources()

ReleaseResource(RES_AUTOSAR_ECUM_<core#>)

ReleaseResource()

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

163 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Figure 38 – GPT wake up by interrupt

If the GPT hardware is capable of latching timer overruns, it is also possible to poll
the GPT for wake ups as shown in Figure 39.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

164 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

«module»

EcuM

Integration Code «module»

Os

«module»

Mcu

«module»

Gpt

loop WHILE no pending wakeup events

opt Wakeup detected

GOSLEEP

Acquire the Scheduler to prevent other tasks

from running.

SLEEP

WAKEUP I

Mcu_SetMode() puts the microcontroller

in some power saving mode. In this

mode software execution continues, but

with reduced clock speed.

Release Scheduler resource to allow

other tasks to run.

EcuM_EnableWakeupSources(EcuM_WakeupSourceType)

Gpt_EnableWakeup(Gpt_ChannelType)

Gpt_EnableWakeup()

Gpt_StartTimer(Gpt_ChannelType,

Gpt_ValueType)

Gpt_SetMode(Gpt_ModeType)

EcuM_EnableWakeupSources()

GetResource(RES_AUTOSAR_ECUM_<core#>)

GetResource()

DisableAllInterrupts()

Mcu_SetMode(Mcu_ModeType)

Mcu_SetMode()

EnableAllInterrupts()

EcuM_SleepActivity()

EcuM_SleepActivity()

EcuM_CheckWakeup(EcuM_WakeupSourceType)

Gpt_CheckWakeup(EcuM_WakeupSourceType)

EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

EcuM_SetWakeupEvent()

Gpt_CheckWakeup()

EcuM_CheckWakeup()

DisableAllInterrupts()

Mcu_SetMode(Mcu_ModeType)

Mcu_SetMode()

EnableAllInterrupts()

EcuM_DisableWakeupSources(EcuM_WakeupSourceType)

Gpt_DisableWakeup(Gpt_ChannelType)

Gpt_DisableWakeup()

Gpt_SetMode(Gpt_ModeType)

EcuM_DisableWakeupSources()

ReleaseResource(RES_AUTOSAR_ECUM_<core#>)

ReleaseResource()

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

165 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Figure 39 – GPT wake up by polling

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

166 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

9.2.2 ICU Wakeup Sequences

The Input Capture Unit (ICU) is another wake up source. In contrast to GPT, the ICU
driver is not itself the wake up source. It is just the module that processes the wake
up interrupt. Therefore, only the driver of the wake up source can tell if it was
responsible for that wake up. This makes it necessary for EcuM_CheckWakeup (see
SWS_EcuM_02929) to ask the module that is the actual wake up source. In order to
know which module to ask, the ICU has to pass the identifier of the wake up source
to EcuM_CheckWakeup.

For shared interrupts the Integration Code may have to check multiple wake up
sources within EcuM_CheckWakeup (see SWS_EcuM_02929). To this end, the ICU
has to pass the identifiers of all wake up sources that may have caused this interrupt
to EcuM_CheckWakeup. Note that, EcuM_WakeupSourceType (see 8.2.5
EcuM_WakeupSourceType) contains one bit for each wake up source, so that
multiple wake up sources can be passed in one call.

Figure 40 shows the resulting sequence of calls.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

167 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Since the ICU is only responsible for processing the wake up interrupt, polling the ICU is not
sensible. For polling the wake up sources have to be checked directly as shown in

«module»

EcuM

«module»

:BswM

Integration Code «module»

Mcu

«module»

Wakeup Source

«module»

Os

loop WHILE no pending/validated wakeup events

loop FOR all wakeup sources that need polling

opt Wakeup detected

alt Validation Needed

[Yes]

[No]

Additional Confidition to Loop: While (AlarmClockService Present AND

EcuM_AlarmClock only pending event AND Alarm not expired)

DisableAllInterrupts()

Mcu_SetMode(Mcu_ModeType)

EnableAllInterrupts()

EcuM_SleepActivity()

EcuM_CheckWakeup(EcuM_WakeupSourceType)

<Module>_CheckWakeup()

EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

EcuM_GetPendingWakeupEvents(EcuM_WakeupSourceType)

BswM_EcuM_CurrentWakeup(sources.

ECUM_WKSTATUS_PENDING)

BswM_EcuM_CurrentWakeup(sources.

ECUM_WKSTATUS_VALIDATED)

Figure 14 – Poll Sequence.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

168 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

«module»

EcuM

Integration Code «module»

Wakeup Source

«module»

Os

«module»

Mcu

«module»

Icu

«Peripheral»

ICU Hardware

HALT

GOSLEEP

SLEEP

WAKEUP I

Release Scheduler resource to allow other tasks to run.

Execution continues after HALT instruction.

If the Scheduler wil l not be acquired as resource it is not assured that the program flow continues

after HALT instruction because re-scheduling takes place after occurrence of an ISR Cat 2.

EcuM_EnableWakeupSources(EcuM_WakeupSourceType)

Icu_EnableWakeup(Icu_ChannelType)

Icu_EnableWakeup()

EcuM_EnableWakeupSources()

GetResource(RES_AUTOSAR_ECUM_<core#>)

GetResource()

DisableAllInterrupts()

Mcu_SetMode(Mcu_ModeType)

Wakeup

interrupt()

EcuM_CheckWakeup(EcuM_WakeupSourceType)

activate

PLL()

<Module>_CheckWakeup(EcuM_WakeupSourceType)

EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

EcuM_SetWakeupEvent()

<Module>_CheckWakeup()

EcuM_CheckWakeup()

Return from

interrupt()

Mcu_SetMode()

EnableAllInterrupts()

DisableAllInterrupts()

Mcu_SetMode(Mcu_ModeType)

Mcu_SetMode()

EnableAllInterrupts()

EcuM_DisableWakeupSources(EcuM_WakeupSourceType)

Icu_DisableWakeup(Icu_ChannelType)

Icu_DisableWakeup()

EcuM_DisableWakeupSources()

ReleaseResource(RES_AUTOSAR_ECUM_<core#>)

ReleaseResource()

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

169 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Figure 40 – ICU wake up by interrupt

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

170 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

9.2.3 CAN Wakeup Sequences

On CAN a wake up can be detected by the transceiver or the communication
controller using either an interrupt or polling. Wake up source identifiers should be
shared between transceiver and controller as the ECU State Manager module only
needs to know the network that has woken up and passes that on to the
Communication Manager module.

In interrupt case or in shared interrupt case it is not clear which specific wake up
source (CAN controller, CAN transceiver, LIN controller etc.) detected the wake up.
Therefore the integrator has to assign the derived wakeupSource of
EcuM_CheckWakeup(wakeupSource), which could stand for a shared interrupt or
just for a interrupt channel, to specific wake up sources which are passed to
CanIf_CheckWakeup(WakeupSource). So here the parameters wakeupSource from
EcuM_CheckWakeup() could be different to WakeupSource of CanIf_CheckWakeup
or they could equal. It depends on the hardware topology and the implementation in
the integrator code of EcuM_CheckWakeup().

During CanIf_CheckWakeup(WakeupSource) the CAN Interface module (CanIf) will
check if any device (CAN communication controller or transceiver) is configured with
the value of “WakeupSource”. If this is the case, the device is checked for wake up
via the corresponding device driver module. If the device detected a wake up, the
device driver informs EcuM via EcuM_SetWakeupEvent(sources). The parameter
“sources” is set to the configured value at the device. Thus it is set to the value
CanIf_CheckWakeup() was called with.

Multiple devices might be configured with the same wake up source value. But if
devices are connected to different bus medium and they are wake-able, it makes
sense to configure them with different wake up sources.

The following CAN Wake-up Sequences are partly optional, because there is no
specification for the “Integration Code”. Thus it is implementation specific if e.g.
during EcuM_CheckWakeup() the CanIf is called to check the wake up source.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

171 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

«Peripheral»

CAN Transceiver

Hardware

«Peripheral»

CanController

«module»

CanTrcv

«module»

Can

«module»

CanIf

«module»

Icu

«module»

Mcu

Integration Code«module»

EcuM

«module»

Os

Release Scheduler resource to allow other tasks to run.

If the Scheduler will not be acquired as resource it is not assured that the program flow continues

after HALT instruction because re-scheduling takes place after occurrence of an ISR Cat 2.

HALT

Execution continues after HALT instruction.

CanSM will have called CanIf_SetControllerMode and CanIf_SetTransceiverMode when going to sleep.

GOSLEEP

SLEEP

WAKEUP I

WAKEUP

VALIDATION

EcuM_EnableWakeupSources(EcuM_WakeupSourceType)

CanIf_SetTrcvWakeupMode(uint8,

CanTrcv_TrcvWakeupModeType)
CanTrcv_SetWakeupMode(uint8,

CanTrcv_TrcvWakeupModeType)

Icu_EnableWakeup(Icu_ChannelType)

GetResource(uint8)

DisableAllInterrupts()

Mcu_SetMode(Mcu_ModeType)

Wakeup

interrupt()
EcuM_CheckWakeup(EcuM_WakeupSourceType)

activate

PLL()

CanIf_CheckWakeup(EcuM_WakeupSourceType)

:Std_ReturnType
CanTrcv_CheckWakeup(uint8) :

Std_ReturnType

EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

Return from

interrupt()

Mcu_SetMode()

EnableAllInterrupts()

DisableAllInterrupts()

Mcu_SetMode(Mcu_ModeType)

EnableAllInterrupts()

EcuM_DisableWakeupSources(EcuM_WakeupSourceType)

Icu_DisableWakeup(Icu_ChannelType)

CanIf_SetTrcvWakeupMode(uint8,

CanTrcv_TrcvWakeupModeType)
CanTrcv_SetWakeupMode(uint8,

CanTrcv_TrcvWakeupModeType)

ReleaseResource(uint8)

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

172 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Figure 41 – CAN transceiver wake up by interrupt

Figure 41 shows the CAN transceiver wakeup via interrupt. The interrupt is usually
handled by the ICU Driver as described in Chapter 9.2.2.

A CAN controller wakeup by interrupt works similar to the GPT wakeup. Here the
interrupt handler and the CheckWakeup functionality are both encapsulated in the
CAN Driver module, as shown in Figure 42.

«Peripheral»

CanController

«module»

CanTrcv

«module»

Icu

Integration Code «module»

CanIf

«module»

Can

«module»

Mcu

«module»

EcuM

«module»

Os

«Peripheral»

CAN Transceiver

Hardware

HALT

Execution continues after HALT instruction.

GOSLEEP

CanSM will have called CanIf_SetControllerMode and CanIf_SetTransceiverMode when going to sleep.

SLEEP

If the Scheduler wil l not be acquired as resource it is not assured that the program flow continues

after HALT instruction because re-scheduling takes place after occurrence of an ISR Cat 2.

WAKEUP I

WAKEUP

VALIDATION

Release Scheduler resource to allow other tasks to run.

EcuM_EnableWakeupSources(EcuM_WakeupSourceType)

GetResource(uint8)

DisableAllInterrupts()

Mcu_SetMode(Mcu_ModeType)

Wakeup

interrupt()

EcuM_CheckWakeup(EcuM_WakeupSourceType)

Activate

PLL()

CanIf_CheckWakeup(EcuM_WakeupSourceType)

:Std_ReturnType
Can_CheckWakeup(uint8) :

Can_ReturnType

EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

Return from

interrupt()

Mcu_SetMode()

EnableAllInterrupts()

DisableAllInterrupts()

Mcu_SetMode(Mcu_ModeType)

EcuM_DisableWakeupSources(EcuM_WakeupSourceType)

ReleaseResource(uint8)

Figure 42 – CAN controller wake up by interrupt

Wake up by polling is possible both for CAN transceiver and controller. The ECU
State Manager module will regularly check the CAN Interface module, which in turn
asks either the CAN Driver module or the CAN Transceiver Driver module depending

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

173 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

on the wake up source parameter passed to the CAN Interface module, as shown in
Figure 43.

«Peripheral»

CAN Transceiver

Hardware

«Peripheral»

CanController

«module»

CanTrcv

«module»

Can

«module»

CanIf

«module»

Icu

«module»

Mcu

Integration Code«module»

EcuM

«module»

Os

loop WHILE no pending wakeup events

alt WakeupSource parameter of CanIf_CheckWakeup()

[CAN Controller]

[CAN Transceiver]

opt Wakeup Detected

GOSLEEP

CanSM will have called CanIf_SetControllerMode and CanIf_SetTransceiverMode when going to sleep.

Acquire the Scheduler to prevent other tasks from running.

Mcu_SetMode() puts the microcontroller

in some power saving mode. In this

mode software execution continues, but

with reduced clock speed.

SLEEP

Release Scheduler resource to allow other tasks to run.

WAKEUP I

WAKEUP

VALIDATION

opt Wakeup Detected

EcuM_EnableWakeupSources(EcuM_WakeupSourceType)

GetResource(uint8)

DisableAllInterrupts()

Mcu_SetMode(Mcu_ModeType)

EnableAllInterrupts()

EcuM_SleepActivity()

EcuM_CheckWakeup(EcuM_WakeupSourceType)

CanIf_CheckWakeup(EcuM_WakeupSourceType)

:Std_ReturnType

Can_CheckWakeup(uint8) :

Can_ReturnType

EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

CanTrcv_CheckWakeup(uint8) :

Std_ReturnType

EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

DisableAllInterrupts()

Mcu_SetMode(Mcu_ModeType)

Mcu_SetMode()

EnableAllInterrupts()

EcuM_DisableWakeupSources(EcuM_WakeupSourceType)

ReleaseResource(uint8)

Figure 43 – CAN controller or transceiver wake up by polling

After the detection of a wake up event from the CAN transceiver or controller by
either interrupt or polling, the wake up event can be validated (see

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

174 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

SWS_EcuM_02566). This is done by switching on the corresponding CAN
transceiver and controller in EcuM_StartWakeupSources (see SWS_EcuM_02924).
It depends on the used CAN transceivers and controllers, which function calls in
Integrator Code EcuM_StartWakeupSource are necessary. In Figure 43 e.g. the
needed function calls to start and stop the wake up sources from CAN state manager
module are mentioned.
Note that, although controller and transceiver are switched on, no CAN message will
be forwarded by the CAN interface module (CanIf) to any upper layer module.
Only when the corresponding PDU channel modes of the CanIf are set to “Online”, it
will forward CAN messages.
The CanIf recognizes the successful reception of at least one message and records it
as a successful validation. During validation the ECU State Manager module
regularly checks the CanIf in Integrator Code EcuM_CheckValidation (see
SWS_EcuM_02925).
The ECU State Manager module will, after successful validation, continue the normal
startup of the CAN network via the Communication Manager module.
Otherwise, it will shutdown the CAN controller and transceiver in
EcuM_StopWakeupSources (see SWS_EcuM_02926) and go back to sleep.

The resulting sequence is shown in Figure 44.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

175 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

«module»

EcuM

Integration Code «module»

Mcu

«module»

Icu

«module»

CanIf

«module»

CanSM

loop Validate Wakeup Event

alt Check Validation Result

[SUCCESSFUL VALIDATION]

[NO VALIDATION YET]

[VALIDATION TIMEOUT]

On CAN successful validation is indicated

by a correctly received message.

WAKEUP

VALIDATION

GOSLEEP

EcuM_StartWakeupSources(EcuM_WakeupSourceType)

CanSM_StartWakeupSource(Std_ReturnType,

NetworkHandleType)

Start validation

timeout()

EcuM_CheckValidation(EcuM_WakeupSourceType)

CanIf_CheckValidation(EcuM_WakeupSourceType)

EcuM_ValidateWakeupEvent(EcuM_WakeupSourceType)

Stop validation

timeout()

Detect validation

timeout()

EcuM_StopWakeupSources(EcuM_WakeupSourceType)

CanSM_StopWakeupSource(Std_ReturnType,

NetworkHandleType)

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

176 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Figure 44 – CAN wake up validation

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

177 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

9.2.4 LIN Wakeup Sequences

Figure 45 shows the LIN transceiver wakeup via interrupt. The interrupt is usually
handled by the ICU Driver as described in Chapter 9.2.2.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

178 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

«Peripheral»

Lin Transceiver

Hardware

«module»

LinIf

«module»

Lin

«module»

Icu

«module»

Mcu

Integration Code«module»

EcuM

«module»

Os

«module»

LinTrcv

HALT

Execution continues after HALT instruction.

GOSLEEP

LinSM will already have called LinIf_GotoSleep when changing to NO_COM state.

In Sleep state the LIN Controller is wakeable or not by configuration.

SLEEP

If the Scheduler will not be acquired as resource it is not assured that the program flow continues

after HALT instruction because re-scheduling takes place after occurrence of an ISR Cat 2.

Release Scheduler resource to allow other tasks to run.

WAKEUP I

EcuM_EnableWakeupSources(EcuM_WakeupSourceType)

Icu_EnableWakeup(Icu_ChannelType)

GetResource(uint8)

DisableAllInterrupts()

Mcu_SetMode(Mcu_ModeType)

Wakeup

interrupt()

EcuM_CheckWakeup(EcuM_WakeupSourceType)

Activate

PLL()

LinIf_CheckWakeup(EcuM_WakeupSourceType)

LinTrcv_CheckWakeup(uint8)

EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

Return from

interrupt()

Mcu_SetMode()

EnableAllInterrupts()

DisableAllInterrupts()

Mcu_SetMode(Mcu_ModeType)

EnableAllInterrupts()

EcuM_DisableWakeupSources(EcuM_WakeupSourceType)

Icu_DisableWakeup(Icu_ChannelType)

ReleaseResource(uint8)

Figure 45 – LIN transceiver wake up by interrupt

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

179 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

As shown in Figure 46, the LIN controller wake up by interrupt works similar to the
CAN controller wake up by interrupt. In both cases the Driver module encapsulates
the interrupt handler.

«module»

LinIf

«module»

Lin

«module»

Icu

«module»

Mcu

Integration Code«module»

EcuM

«module»

Os

«module»

LinTrcv

«Peripheral»

LinController/UART

Release Scheduler resource to allow other tasks to run.

HALT

LinSM will already have called LinIf_GotoSleep when changing to NO_COM state.

In Sleep state the LIN Controller is wakeable or not by configuration.

�

Nothing to be done in this callout.

EcuM will later inform ComM about the wakeup which in turn will

inform LinSM, which will then call LinIf_Wakeup.

GOSLEEP

If the Scheduler will not be acquired as resource it is not assured that the program flow continues

after HALT instruction because re-scheduling takes place after occurrence of an ISR Cat 2.

SLEEP

Execution continues after HALT instruction.

WAKEUP I

EcuM_EnableWakeupSources(EcuM_WakeupSourceType)

GetResource(RES_AUTOSAR_ECUM_<core#>)

DisableAllInterrupts()

Mcu_SetMode(Mcu_ModeType)

Wakeup

interrupt()

EcuM_CheckWakeup(EcuM_WakeupSourceType)

Activate

PLL()

LinIf_CheckWakeup(EcuM_WakeupSourceType)

Lin_CheckWakeup(uint8)

EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

Return from

interrupt()

Mcu_SetMode()

EnableAllInterrupts()

DisableAllInterrupts()

Mcu_SetMode(Mcu_ModeType)

EnableAllInterrupts()

EcuM_DisableWakeupSources(EcuM_WakeupSourceType)

ReleaseResource(RES_AUTOSAR_ECUM_<core#>)

Figure 46 – LIN controller wake up by interrupt

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

180 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Wake up by polling is possible for LIN transceiver and controller. The ECU State
Manager module will regularly check the LIN Interface module, which in turn asks
either the LIN Driver module or the LIN Transceiver Driver module, as shown in
Figure 47.

«Peripheral»

Lin Transceiver

Hardware

«module»

LinIf

«module»

Lin

«module»

Icu

«module»

Mcu

Integration Code«module»

EcuM

«module»

Os

«module»

LinTrcv

loop WHILE no pendings wakeup events

alt WakeupSource parameter of LinIf_CheckWakeup()

LinSM will already have called LinIf_GotoSleep when changing to NO_COM state.

In Sleep state the LIN Controller is wakeable or not by configuration.

�

Nothing to be done in this callout.

Acquire the Scheduler to prevent other tasks from running.

GOSLEEP

SLEEP

Mcu_SetMode() puts the microcontroller

in some power saving mode. In this

mode software execution continues, but

with reduced clock speed.

WAKEUP I

Release Scheduler resource to allow other tasks to run.

EcuM_EnableWakeupSources(EcuM_WakeupSourceType)

GetResource(uint8)

Mcu_SetMode(Mcu_ModeType)

EcuM_CheckWakeup(EcuM_WakeupSourceType)

LinIf_CheckWakeup(EcuM_WakeupSourceType)

Lin_CheckWakeup(uint8)

EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

LinTrcv_CheckWakeup(uint8)

EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

*

Mcu_SetMode(Mcu_ModeType)

EcuM_DisableWakeupSources(EcuM_WakeupSourceType)

ReleaseResource(uint8)

Figure 47 – LIN controller or transceiver wake up by polling

Note that LIN does not require wakeup validation.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

181 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

9.2.5 FlexRay Wakeup Sequences

For FlexRay a wake up is only possible via the FlexRay transceivers. There are two
transceivers for the two different channels in a FlexRay cluster. They are treated as
belonging to one network and thus, there should be only one wake up source
identifier configured for both channels.

Figure 48 shows the FlexRay transceiver wakeup via interrupt. The interrupt is
usually handled by the ICU Driver as described in Chapter 9.2.2.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

182 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

«Peripheral»

FlexRay

Transceiver

Hardware

«module»

Os

«module»

EcuM

Integration Code «module»

Mcu

«module»

Icu

«module»

FrIf

«module»

Fr

«module»

FrTrcv

«Peripheral»

FlexRay Controller

HALT

GOSLEEP

SLEEP

If the Scheduler will not be acquired as resource it is not assured that the program flow continues

after HALT instruction because re-scheduling takes place after occurrence of an ISR Cat 2.

Execution continues after HALT instruction.

WAKEUP I

Release Scheduler resource to allow other tasks to run.

This call has to be repeated for both FlexRay channels

on the same network (i.e. FlexRay cluster)!

opt Wakeup detected

EcuM_EnableWakeupSources(EcuM_WakeupSourceType)

Icu_EnableWakeup(Icu_ChannelType)

Icu_EnableWakeup()

EcuM_EnableWakeupSources()

GetResource(RES_AUTOSAR_ECUM_<core#>)

GetResource()

DisableAllInterrupts()

Mcu_SetMode(Mcu_ModeType)

Wakeup

interrupt()
EcuM_CheckWakeup(EcuM_WakeupSourceType)

activate

PLL()

FrIf_CheckWakeupByTransceiver(uint8,

Fr_ChannelType)

FrTrcv_CheckWakeupByTransceiver(uint8)

EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

EcuM_SetWakeupEvent()

FrTrcv_CheckWakeupByTransceiver()

FrIf_CheckWakeupByTransceiver()

EcuM_CheckWakeup()

Return from

interrupt()

Mcu_SetMode()

EnableAllInterrupts()

DisableAllInterrupts()

Mcu_SetMode(Mcu_ModeType)

Mcu_SetMode()

EnableAllInterrupts()

EcuM_DisableWakeupSources(EcuM_WakeupSourceType)

Icu_DisableWakeup(Icu_ChannelType)

Icu_DisableWakeup()

EcuM_DisableWakeupSources()

ReleaseResource(RES_AUTOSAR_ECUM_<core#>)

ReleaseResource()

Figure 48 – FlexRay transceiver wake up by interrupt

Note that in EcuM_CheckWakeup (see SWS_EcuM_02929) there need to be two
separate calls to FrIf_WakeupByTransceiver, one for each FlexRay channel.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

183 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

«Peripheral»

FlexRay

Transceiver

Hardware

«Peripheral»

FlexRay Controller

«module»

FrTrcv

«module»

Fr

«module»

FrIf

«module»

Icu

«module»

Mcu

Integration Code«module»

EcuM

«module»

Os

loop WHILE no pending wakeup events

GOSLEEP

Acquire the Scheduler to prevent other tasks from running.

Mcu_SetMode() puts the microcontroller

in some power saving mode. In this

mode software execution continues, but

with reduced clock speed.

SLEEP

opt Wakeup detected

WAKEUP I

Release Scheduler resource to allow other tasks to run.

This call has to be repeated for both FlexRay channels on

the same network (i.e. FlexRay cluster)!

EcuM_EnableWakeupSources(EcuM_WakeupSourceType)

GetResource(RES_AUTOSAR_ECUM_<core#>)

GetResource()

DisableAllInterrupts()

Mcu_SetMode(Mcu_ModeType)

Mcu_SetMode()

EnableAllInterrupts()

EcuM_SleepActivity()

EcuM_CheckWakeup(EcuM_WakeupSourceType)

FrIf_CheckWakeupByTransceiver(uint8,

Fr_ChannelType)

FrTrcv_CheckWakeupByTransceiver(uint8)

EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

EcuM_SetWakeupEvent()

FrTrcv_CheckWakeupByTransceiver()

FrIf_CheckWakeupByTransceiver()

EcuM_CheckWakeupEvent()

DisableAllInterrupts()

Mcu_SetMode(Mcu_ModeType)

Mcu_SetMode()

EnableAllInterrupts()

EcuM_DisableWakeupSources(EcuM_WakeupSourceType)

ReleaseResource(RES_AUTOSAR_ECUM_<core#>)

ReleaseResource()

Figure 49 – FlexRay transceiver wake up by polling

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

184 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into
containers.

Chapters 10.1 and 10.2 specify the structure (containers) and the parameters of the
module ECU Manager.

Chapter 10.3 specifies published information of the module ECU State Manager.

[SWS_EcuM_03007] ⌈The ECU State Manager shall support the configuration
variant VARIANT-POST-BUILD: This configuration variant contains a mix of pre-

compile time, link time and post-build time parameters.⌋ (SRS_BSW_00344,

SRS_BSW_00404,SRS_BSW_00405,SRS_BSW_00345)

10.1 Common Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed
meanings of the parameters describe Chapters 7 and Chapter 8.

The following containers contain various references to initialization structures of BSW
modules. NULL shall be a valid reference meaning ‘no configuration data available’
but only if the implementation of the initialized BSW module supports this.

10.1.1 EcuM

Module Name EcuM

Module Description Configuration of the EcuM (ECU State Manager) module.

Post-Build Variant Support true

Included Containers

Container Name Multiplicity Scope / Dependency

EcuMConfiguration 1
This container contains the configuration (parameters) of the
ECU State Manager.

EcuMFixedGeneral 0..1
This container holds the general, pre-compile configuration
parameters for the EcuMFixed.
Only applicable if EcuMFixed is implemented.

EcuMFlexGeneral 0..1
This container holds the general, pre-compile configuration
parameters for the EcuMFlex.
Only applicable if EcuMFlex is implemented.

EcuMGeneral 1
This container holds the general, pre-compile configuration
parameters.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

185 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

10.1.2 EcuMGeneral

SWS Item ECUC_EcuM_00116 :

Container Name EcuMGeneral

Description This container holds the general, pre-compile configuration parameters.

Configuration Parameters

SWS Item ECUC_EcuM_00108 :

Name

EcuMDevErrorDetect

Description If false, no debug artifacts (e.g. calls to DET) shall remain in the
executable object. Initialization of DET, however is controlled by
configuration of optional BSW modules.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-POST-BUILD

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_EcuM_00118 :

Name

EcuMIncludeDet

Description If defined, the according BSW module will be initialized by the ECU State
Manager

Multiplicity 1

Type EcucBooleanParamDef

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-POST-BUILD

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_EcuM_00121 :

Name

EcuMMainFunctionPeriod

Description This parameter defines the schedule period of EcuM_MainFunction.
Unit: [s]

Multiplicity 1

Type EcucFloatParamDef

Range 0 .. INF

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-POST-BUILD

Link time --

Post-build time --

Scope / Dependency scope: ECU
dependency: Dependency is applicable for EcuMFixed:
SWS_EcuM_00594.

No Dependency for EcuMFlex.

SWS Item ECUC_EcuM_00149 :

Name

EcuMVersionInfoApi

Description Switches the version info API on or off

Multiplicity 1

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

186 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Type EcucBooleanParamDef

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-POST-BUILD

Link time --

Post-build time --

Scope / Dependency scope: local

No Included Containers

10.1.3 EcuMConfiguration

SWS Item ECUC_EcuM_00103 :

Container Name EcuMConfiguration

Description
This container contains the configuration (parameters) of the ECU State
Manager.

Configuration Parameters

Included Containers

Container Name Multiplicity Scope / Dependency

EcuMCommonConfiguration 1
This container contains the common configuration
(parameters) of the ECU State Manager.

EcuMFixedConfiguration 0..1
This container contains the configuration (parameters) of the
EcuMFixed.
Only applicable if EcuMFixed is implemented.

EcuMFlexConfiguration 0..1
This container contains the configuration (parameters) of the
EcuMFlex.
Only applicable if EcuMFlex is implemented.

10.1.4 EcuMCommonConfiguration

SWS Item ECUC_EcuM_00181 :

Container Name EcuMCommonConfiguration

Description
This container contains the common configuration (parameters) of the
ECU State Manager.

Configuration Parameters

SWS Item ECUC_EcuM_00102 :

Name

EcuMConfigConsistencyHash

Description A hash value generated across all pre-compile and link-time parameters of
all BSW modules. This hash value is compared against a field in the
EcuM_ConfigType and hence allows checking the consistency of the entire
configuration.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 ..
18446744073709551615

Default value --

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

187 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Post-Build Variant Value false

Value Configuration Class Pre-compile time --

Link time X VARIANT-POST-BUILD

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_EcuM_00104 :

Name

EcuMDefaultAppMode

Description The default application mode loaded when the ECU comes out of reset.

Multiplicity 1

Type Reference to [OsAppMode]

Post-Build Variant Value true

Value Configuration Class Pre-compile time --

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_EcuM_00183 :

Name

EcuMOSResource

Description This parameter is a reference to a OS resource which is used to bring the
ECU into sleep mode.
In case of multi core each core shall have an own OsResource.

Multiplicity 1..*

Type Reference to [OsResource]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-POST-BUILD

Link time --

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-POST-BUILD

Link time --

Post-build time --

Scope / Dependency scope: local

Included Containers

Container Name Multiplicity Scope / Dependency

EcuMDefaultShutdownTarget 1
This container describes the default shutdown target to be
selected by EcuM. The actual shutdown target may be
overridden by the EcuM_SelectShutdownTarget service.

EcuMDriverInitListOne 0..1

Container for Init Block I.
This container holds a list of module IDs that will be initialized.
Each module in the list will be called for initialization in the list
order.
All modules in this list are initialized before the OS is started
and so these modules require no OS support.

EcuMDriverInitListZero 0..1

Container for Init Block 0.
This container holds a list of module IDs that will be initialized.
Each module in the list will be called for initialization in the list
order.
All modules in this list are initialized before the post-build
configuration has been loaded and the OS is initialized.
Therefore, these modules may not use post-build
configuration.

EcuMDriverRestartList 0..1 List of module IDs.

EcuMSleepMode 1..*
These containers describe the configured sleep modes.
The names of these containers specify the symbolic names of

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

188 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

the different sleep modes.

EcuMWakeupSource 1..* These containers describe the configured wakeup sources.

10.1.5 EcuMDefaultShutdownTarget

SWS Item ECUC_EcuM_00105 :

Container Name EcuMDefaultShutdownTarget

Description
This container describes the default shutdown target to be selected by
EcuM. The actual shutdown target may be overridden by the
EcuM_SelectShutdownTarget service.

Configuration Parameters

SWS Item ECUC_EcuM_00107 :

Name

EcuMDefaultState

Description This parameter describes the state part of the default shutdown target selected
when the ECU comes out of reset. If EcuMStateSleep is selected, the parameter
EcuMDefaultSleepModeRef selects the specific sleep mode.

Multiplicity 1

Type EcucEnumerationParamDef

Range EcuMStateOff Corresponds to ECUM_STATE_OFF in
EcuM_StateType.

EcuMStateReset Corresponds to ECUM_STATE_RESET in
EcuM_StateType. This literal is only be
applicable for EcuMFlex.

EcuMStateSleep Corresponds to ECUM_STATE_SLEEP in
EcuM_StateType.

Post-Build Variant
Value

true

Value
Configuration
Class

Pre-compile time --

Link time --

Post-build time X VARIANT-POST-BUILD

Scope /
Dependency

scope: local

SWS Item ECUC_EcuM_00205 :

Name

EcuMDefaultResetModeRef

Description If EcuMDefaultShutdownTarget is EcuMStateReset, this parameter selects
the default reset mode. Otherwise this parameter may be ignored.

Multiplicity 0..1

Type Symbolic name reference to [EcuMResetMode]

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time --

Link time --

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time --

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_EcuM_00106 :

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

189 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Name

EcuMDefaultSleepModeRef

Description If EcuMDefaultShutdownTarget is EcuMStateSleep, this parameter selects
the default sleep mode. Otherwise this parameter may be ignored.

Multiplicity 0..1

Type Symbolic name reference to [EcuMSleepMode]

Post-Build Variant
Multiplicity

true

Post-Build Variant Value true

Multiplicity Configuration
Class

Pre-compile time --

Link time --

Post-build time X VARIANT-POST-BUILD

Value Configuration Class Pre-compile time --

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

No Included Containers

10.1.6 EcuMDriverInitListOne

SWS Item ECUC_EcuM_00111 :

Container Name EcuMDriverInitListOne

Description

Container for Init Block I.
This container holds a list of module IDs that will be initialized. Each
module in the list will be called for initialization in the list order.
All modules in this list are initialized before the OS is started and so these
modules require no OS support.

Configuration Parameters

Included Containers

Container Name Multiplicity Scope / Dependency

EcuMDriverInitItem 1..* These containers describe the entries in a driver init list.

10.1.7 EcuMDriverInitListZero

SWS Item ECUC_EcuM_00114 :

Container Name EcuMDriverInitListZero

Description

Container for Init Block 0.
This container holds a list of module IDs that will be initialized. Each
module in the list will be called for initialization in the list order.
All modules in this list are initialized before the post-build configuration has
been loaded and the OS is initialized. Therefore, these modules may not
use post-build configuration.

Configuration Parameters

Included Containers

Container Name Multiplicity Scope / Dependency

EcuMDriverInitItem 1..* These containers describe the entries in a driver init list.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

190 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

10.1.8 EcuMDriverRestartList

SWS Item ECUC_EcuM_00115 :

Container Name EcuMDriverRestartList

Description List of module IDs.

Configuration Parameters

Included Containers

Container Name Multiplicity Scope / Dependency

EcuMDriverInitItem 1..* These containers describe the entries in a driver init list.

[ECUC_EcuM_02719] ⌈
A configuration tool shall fill the callout EcuM_AL_DriverRestart with initialization
calls to the listed drivers in the order in which they occur in the list.

⌋ ()

[ECUC_EcuM_02720] ⌈
Entries in this list must appear in the same order as in the combined list of
EcuM_DriverInitListOne and EcuM_DriverInitListTwo. This list may be a real subset
though. In all other cases, the generation tool shall report an error. The included
container has the same structure as EcuM_DriverInitItem.

⌋ ()

[ECUC_EcuM_02721] ⌈
Requirements for EcuM to initialize the BSW modules in EcuM_DriverInit and in
EcuM_DriverRestart:

1.) EcuM code generator shall determine the function names in
EcuM_AL_DriverInitItems and in EcuM_AL_DriverInitRestart based on the
referenced module instance in <EcuMModuleRef> and take this as <Mip>.
Therefore the function name is <Mip>_<EcuModuleService>
2.) If <EcuMModuleService> is not configured it shall be "Init" by default.
3.) Evaluation of <EcuMModuleParameter>

Example of Dem Initialization in EcuM_DriverInitItemsOne:

- EcuMDriverInitItem: DemPreInit
 - EcuMModuleParameter: VOID
 - EcuMModuleRef: /EcucModuleConfigurationValues/Dem
 - EcuMModuleServiceId: "PreInit”

- EcuMDriverInitItem: DemInit
 - EcuMModuleRef: .../EcucModuleConfigurationValues/Dem
 - EcuMServiceId: "" => Can be empty because it's Init
 - EcuMModuleParameter: "POSTBUILD_PTR"

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

191 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Dem_PreInit();
Dem_Init(&Dem_Config);

In EcuMDriverInitListZero, the EcuMModuleParameter of the EcuMDriverInitItem

must be configured always to VOID.⌋ ()

10.1.9 EcuMDriverInitItem

SWS Item ECUC_EcuM_00110 :

Container Name EcuMDriverInitItem

Description
These containers describe the entries in a driver init list.
Attributes:
requiresIndex=true

Configuration Parameters

SWS Item ECUC_EcuM_00123 :

Name

EcuMModuleID

Description Short name of the module to be initialized, e.g. Mcu, Gpt etc.
In case EcuMModuleRef is used the EcuMModuleID is optional (in case it
is given it shall have the same value as the referenced module
configuration).

Multiplicity 0..1

Type EcucStringParamDef

Default value --

maxLength --

minLength --

regularExpression --

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_EcuM_00224 :

Name

EcuMModuleParameter

Description Definition of the function prototype and the parameter passed to the function.

Multiplicity 1

Type EcucEnumerationParamDef

Range NULL_PTR If NULL_PTR is configured EcuM expects as prototype: void
<Mip>_<EcuMModuleService>(const <Mip>_ConfigType* <Mip>_Config).
EcuM shall call this function with NULL Pointer:
<Mip>_<EcuMModuleService>(NULL).

POSTBUILD_PTR If POSTBUILD_PTR is configured EcuM expects as prototype: void
<Mip>_<EcuMModuleService>(const <Mip>_ConfigType* <Mip>_Config).
EcuM shall call this function with a valid pointer:
<Mip>_<EcuMModuleService>(&<Mip>_Config[Predefinedvariant.shortName]).

VOID If VOID is configured EcuM expects as prototype: void

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

192 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

<Mip>_<EcuMModuleService>(void). EcuM will call
<Mip>_<EcuMModuleService>().

Post-Build
Variant Value

false

Value
Configuratio
n Class

Pre-compile time X All Variants

Link time --

Post-build time --

Scope /
Dependency

scope: local

SWS Item ECUC_EcuM_00124 :

Name

EcuMModuleService

Description The service to be called to initialize that module, e.g. Init, PreInit, Start etc.
If nothing is defined "Init" is taken by default.

Multiplicity 0..1

Type EcucStringParamDef

Default value --

maxLength --

minLength --

regularExpression --

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_EcuM_00223 :

Name

EcuMModuleRef

Description Foreign reference to the configuration of a module instance which shall be
initialized by EcuM

Multiplicity 1

Type Foreign reference to [ECUC-MODULE-CONFIGURATION-VALUES]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

No Included Containers

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

193 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

10.1.10 EcuMSleepMode

SWS Item ECUC_EcuM_00131 :

Container Name EcuMSleepMode

Description
These containers describe the configured sleep modes.
The names of these containers specify the symbolic names of the different
sleep modes.

Configuration Parameters

SWS Item ECUC_EcuM_00132 :

Name

EcuMSleepModeId

Description This ID identifies this sleep mode in services like
EcuM_SelectShutdownTarget.

Multiplicity 1

Type EcucIntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 255

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-POST-BUILD

Link time --

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_EcuM_00136 :

Name

EcuMSleepModeSuspend

Description Flag, which is set true, if the CPU is suspended, halted, or powered off in
the sleep mode. If the CPU keeps running in this sleep mode, then this flag
must be set to false.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-POST-BUILD

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_EcuM_00133 :

Name

EcuMSleepModeMcuModeRef

Description This parameter is a reference to the corresponding MCU mode for this
sleep mode.

Multiplicity 1

Type Symbolic name reference to [McuModeSettingConf]

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-POST-BUILD

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_EcuM_00152 :

Name

EcuMWakeupSourceMask

Description These parameters are references to the wakeup sources that shall be
enabled for this sleep mode.

Multiplicity 1..*

Type Symbolic name reference to [EcuMWakeupSource]

Post-Build Variant false

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

194 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Multiplicity

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-POST-BUILD

Link time --

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-POST-BUILD

Link time --

Post-build time --

Scope / Dependency scope: local

No Included Containers

10.1.11 EcuMWakeupSource

SWS Item ECUC_EcuM_00150 :

Container Name EcuMWakeupSource

Description These containers describe the configured wakeup sources.

Configuration Parameters

SWS Item ECUC_EcuM_00208 :

Name

EcuMCheckWakeupTimeout

Description This Parameter is the initial Value for the Time of the EcuM to delay shut
down of the ECU if the check of the Wakeup Source is done
asynchronously (CheckWakeupTimer).
The unit is in seconds.

Multiplicity 0..1

Type EcucFloatParamDef

Range 0 .. 10

Default value 0

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_EcuM_00148 :

Name

EcuMValidationTimeout

Description The validation timeout (period for which the ECU State Manager will wait
for the validation of a wakeup event) can be defined for each wakeup
source independently. The timeout is specified in seconds.
When the timeout is not instantiated, there is no validation routine and the
ECU Manager shall not validate the wakeup source.

Multiplicity 0..1

Type EcucFloatParamDef

Range 0 .. INF

Default value --

Post-Build Variant false

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

195 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Multiplicity

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-POST-BUILD

Link time --

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-POST-BUILD

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_EcuM_00151 :

Name

EcuMWakeupSourceId

Description This parameter defines the identifier of this wakeup source.

Multiplicity 1

Type EcucIntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 31

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-POST-BUILD

Link time --

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_EcuM_00153 :

Name

EcuMWakeupSourcePolling

Description This parameter describes if the wakeup source needs polling.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-POST-BUILD

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_EcuM_00101 :

Name

EcuMComMChannelRef

Description This parameter is a reference to a Network (channel) defined in the
Communication Manager. No reference indicates that the wakeup source
is not a communication channel.

Multiplicity 0..1

Type Symbolic name reference to [ComMChannel]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-POST-BUILD

Link time --

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-POST-BUILD

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_EcuM_00128 :

Name

EcuMResetReasonRef

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

196 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Description This parameter describes the mapping of reset reasons detected by the
MCU driver into wakeup sources.

Multiplicity 0..*

Type Symbolic name reference to [McuResetReasonConf]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-POST-BUILD

Link time --

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-POST-BUILD

Link time --

Post-build time --

Scope / Dependency scope: local

No Included Containers

10.2 EcuM-Flex Containers and configuration parameters

10.2.1 EcuMFlexGeneral

SWS Item ECUC_EcuM_00168 :

Container Name EcuMFlexGeneral

Description
This container holds the general, pre-compile configuration parameters for
the EcuMFlex.
Only applicable if EcuMFlex is implemented.

Configuration Parameters

SWS Item ECUC_EcuM_00199 :

Name

EcuMAlarmClockPresent

Description This flag indicates whether the optional AlarmClock feature is present.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_EcuM_00221 :

Name

EcuMModeHandling

Description If false, Run Request Protocol is not performed.

Multiplicity 0..1

Type EcucBooleanParamDef

Default value --

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

197 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Multiplicity Configuration
Class

Pre-compile time X VARIANT-POST-BUILD

Link time --

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-POST-BUILD

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_EcuM_00171 :

Name

EcuMResetLoopDetection

Description If false, no reset loop detection is performed. If this configuration
parameter exists and is set to true, the callout "EcuM_LoopDetection" is
called during startup of EcuM (during StartPreOS).

Multiplicity 0..1

Type EcucBooleanParamDef

Default value --

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_EcuM_00210 :

Name

EcuMSetProgrammableInterrupts

Description If this configuration parameter exists and is to true, the callout
"EcuM_AL_SetProgrammableInterrupts" is called during startup of EcuM
(during StartPreOS).

Multiplicity 0..1

Type EcucBooleanParamDef

Default value --

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-POST-BUILD

Link time --

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-POST-BUILD

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_EcuM_00200 :

Name

EcuMAlarmWakeupSource

Description This parameter describes the reference to the EcuMWakeupSource being
used for the EcuM AlarmClock.

Multiplicity 0..1

Type Symbolic name reference to [EcuMWakeupSource]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration Pre-compile time X All Variants

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

198 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Class Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

No Included Containers

10.2.2 EcuMFlexConfiguration

SWS Item ECUC_EcuM_00167 :

Container Name EcuMFlexConfiguration

Description
This container contains the configuration (parameters) of the EcuMFlex.
Only applicable if EcuMFlex is implemented.

Configuration Parameters

SWS Item ECUC_EcuM_00204 :

Name

EcuMNormalMcuModeRef

Description This parameter is a reference to the normal MCU mode to be restored
after a sleep.

Multiplicity 1

Type Symbolic name reference to [McuModeSettingConf]

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_EcuM_00217 :

Name

EcuMPartitionRef

Description Reference denotes the partition a EcuM shall run inside.
Please note that in case of a multicore ECU this reference is mandatory.

Multiplicity 0..*

Type Reference to [EcucPartition]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

Included Containers

Container Name Multiplicity Scope / Dependency

EcuMAlarmClock 0..*
These containers describe the configured alarm clocks.
The name of these conatiners allows giving a symbolic name
to one alarm clock.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

199 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

EcuMFlexUserConfig 1..*
These containers describe the identifiers that are needed to
refer to a software component or another appropriate entity in
the system which uses the EcuMFlex Interfaces.

EcuMGoDownAllowedUsers 0..1
This container describes the collection of allowed users which
are allowed to call the EcuM_GoDown API.

EcuMResetMode 1..*

These containers describe the configured reset modes.
The name of these containers allows one of the following
symbolic names to be given to the different reset modes: -
ECUM_RESET_MCU - ECUM_RESET_WDG -
ECUM_RESET_IO.

EcuMSetClockAllowedUsers 0..1
This container describes the collection of allowed users which
are allowed to call the EcuM_SetClock API.

EcuMShutdownCause 1..*

These containers describe the configured shut down or reset
causes.
The name of these containers allows to give one of the
following symbolic names to the different shut down causes: -
ECUM_CAUSE_ECU_STATE - ECU state machine entered a
state for shutdown, - ECUM_CAUSE_WDGM - WdgM
detected failure, - ECUM_CAUSE_DCM - Dcm requests
shutdown (split into UDS services?), - and values from
configuration.

10.2.3 EcuMAlarmClock

SWS Item ECUC_EcuM_00184 :

Container Name EcuMAlarmClock

Description
These containers describe the configured alarm clocks.
The name of these conatiners allows giving a symbolic name to one alarm
clock.

Configuration Parameters

SWS Item ECUC_EcuM_00186 :

Name

EcuMAlarmClockId

Description This ID identifies this alarmclock.

Multiplicity 1

Type EcucIntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 255

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_EcuM_00188 :

Name

EcuMAlarmClockTimeOut

Description This parameter allows to define a timeout for this alarm clock.

Multiplicity 1

Type EcucFloatParamDef

Range 0 .. INF

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

200 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_EcuM_00195 :

Name

EcuMAlarmClockUser

Description This parameter allows an alarm to be assigned to a user.

Multiplicity 1

Type Symbolic name reference to [EcuMFlexUserConfig]

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

No Included Containers

10.2.4 EcuMFlexUserConfig

SWS Item ECUC_EcuM_00201 :

Container Name EcuMFlexUserConfig

Description
These containers describe the identifiers that are needed to refer to a
software component or another appropriate entity in the system which
uses the EcuMFlex Interfaces.

Configuration Parameters

SWS Item ECUC_EcuM_00146 :

Name

EcuMFlexUser

Description Parameter used to identify one user.

Multiplicity 1

Type EcucIntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 255

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X VARIANT-POST-BUILD

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_EcuM_00203 :

Name

EcuMFlexEcucPartitionRef

Description Denotes in which "EcucPartition" the user of the EcuM is executed.

Multiplicity 0..1

Type Reference to [EcucPartition]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X VARIANT-POST-BUILD

Link time --

Post-build time --

Value Configuration Class Pre-compile time X VARIANT-POST-BUILD

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

201 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Link time --

Post-build time --

Scope / Dependency scope: local

No Included Containers

10.2.5 EcuMGoDownAllowedUsers

SWS Item ECUC_EcuM_00206 :

Container Name EcuMGoDownAllowedUsers

Description
This container describes the collection of allowed users which are allowed
to call the EcuM_GoDown API.

Configuration Parameters

SWS Item ECUC_EcuM_00207 :

Name

EcuMGoDownAllowedUserRef

Description These parameters describe the references to the users which are allowed
to call the EcuM_GoDown API.

Multiplicity 1..*

Type Symbolic name reference to [EcuMFlexUserConfig]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

No Included Containers

10.2.6 EcuMResetMode

SWS Item ECUC_EcuM_00172 :

Container Name EcuMResetMode

Description

These containers describe the configured reset modes.
The name of these containers allows one of the following symbolic names
to be given to the different reset modes: - ECUM_RESET_MCU -
ECUM_RESET_WDG - ECUM_RESET_IO.

Configuration Parameters

SWS Item ECUC_EcuM_00173 :

Name

EcuMResetModeId

Description This ID identifies this reset mode in services like
EcuM_SelectShutdownTarget.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

202 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Multiplicity 1

Type EcucIntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 255

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

No Included Containers

10.2.7 EcuMSetClockAllowedUsers

SWS Item ECUC_EcuM_00197 :

Container Name EcuMSetClockAllowedUsers

Description
This container describes the collection of allowed users which are allowed
to call the EcuM_SetClock API.

Configuration Parameters

SWS Item ECUC_EcuM_00198 :

Name

EcuMSetClockAllowedUserRef

Description These parameters describe the references to the users which are allowed
to call the EcuM_SetClock API.

Multiplicity 1..*

Type Symbolic name reference to [EcuMFlexUserConfig]

Post-Build Variant
Multiplicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

No Included Containers

10.2.8 EcuMShutdownCause

SWS Item ECUC_EcuM_00175 :

Container Name EcuMShutdownCause

Description

These containers describe the configured shut down or reset causes.
The name of these containers allows to give one of the following symbolic
names to the different shut down causes: - ECUM_CAUSE_ECU_STATE -
ECU state machine entered a state for shutdown, -
ECUM_CAUSE_WDGM - WdgM detected failure, - ECUM_CAUSE_DCM
- Dcm requests shutdown (split into UDS services?), - and values from
configuration.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

203 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

Configuration Parameters

SWS Item ECUC_EcuM_00176 :

Name

EcuMShutdownCauseId

Description This ID identifies this shut down cause.

Multiplicity 1

Type EcucIntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 255

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

No Included Containers

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

204 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

10.3 Published Information

Currently there exists no published information except the ones specified in SWS
BSW General.

 Specification of ECU State Manager
AUTOSAR Release 4.2.2

205 of 205 Document ID 078: AUTOSAR_SWS_ECUStateManager

- AUTOSAR confidential -

11 Not applicable requirements

[SWS_EcuM_09999]⌈These requirements are not applicable to this
specification.⌋(SRS_BSW_00159,SRS_BSW_00167,SRS_BSW_00406,SRS_BSW_
00437,SRS_BSW_00168,SRS_BSW_00426,SRS_BSW_00427,SRS_BSW_00432,B
SW00434,SRS_BSW_00417,SRS_BSW_00422,SRS_BSW_00161,SRS_BSW_001
62,SRS_BSW_00005,SRS_BSW_00415,SRS_BSW_00325,SRS_BSW_00164,SRS
_BSW_00326,SRS_BSW_00160,SRS_BSW_00453,SRS_BSW_00413,SRS_BSW_
00347,SRS_BSW_00307,SRS_BSW_00450,SRS_BSW_00410,SRS_BSW_00314,S
RS_BSW_00348,SRS_BSW_00353,SRS_BSW_00361,SRS_BSW_00439,SRS_BS
W_00449,SRS_BSW_00308,SRS_BSW_00309,SRS_BSW_00330,BSW00446,SRS
_BSW_00010,SRS_BSW_00341,SRS_BSW_00334)

	1 Introduction and Functional Overview
	1.1 Backwards Compatibility to Previous ECU Manager Module Versions

	2 Definitions and Acronyms
	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms
	3.3 Related AUTOSAR Software Specifications

	4 Constraints and Assumptions
	4.1 Limitations
	4.2 Hardware Requirements
	4.3 Applicability to car domains

	5 Dependencies to other modules
	5.1 SPAL Modules
	5.1.1 MCU Driver
	5.1.2 Driver Dependencies and Initialization Order

	5.2 Peripherals with Wakeup Capability
	5.3 Operating System
	5.4 BSW Scheduler
	5.5 BSW Mode Manager
	5.6 Software Components
	5.7 File Structure
	5.7.1 Code file structure
	5.7.2 Header file structure

	6 Requirements traceability
	7 Functional Specification
	7.1 Phases of the ECU Manager Module
	7.1.1 STARTUP Phase
	7.1.2 UP Phase
	7.1.3 SHUTDOWN Phase
	7.1.4 SLEEP Phase
	7.1.5 OFF Phase

	7.2 Structural Description of the ECU Manager
	7.2.1 Standardized AUTOSAR Software Modules
	7.2.2 Software Components

	7.3 STARTUP Phase
	7.3.1 Activities before EcuM_Init
	7.3.2 Activities in StartPreOS Sequence
	7.3.3 Activities in the StartPostOS Sequence
	7.3.4 Checking Configuration Consistency
	7.3.4.1 The Necessity for Checking Configuration Consistency in the ECU Manager
	7.3.4.2 Example Hash Computation Algorithm

	7.3.5 Driver Initialization
	7.3.6 DET Initialization

	7.4 SHUTDOWN Phase
	7.4.1 Activities in the OffPreOS Sequence
	7.4.2 Activities in the OffPostOS Sequence

	7.5 SLEEP Phase
	7.5.1 Activities in the GoSleep Sequence
	7.5.2 Activities in the Halt Sequence
	7.5.3 Activities in the Poll Sequence
	7.5.4 Leaving Halt or Poll
	7.5.5 Activities in the WakeupRestart Sequence

	7.6 UP Phase
	7.6.1 Alarm Clock Handling
	7.6.2 Wakeup Source State Handling
	7.6.3 Internal Representation of Wakeup States
	7.6.4 Activities in the WakeupValidation Sequence
	7.6.4.1 Wakeup of Communication Channels
	7.6.4.2 Interaction of Wakeup Sources and the ECU Manager
	7.6.4.3 Wakeup Validation Timeout
	7.6.4.4 Requirements for Drivers with Wakeup Sources

	7.6.5 Requirements for Wakeup Validation
	7.6.6 Wakeup Sources and Reset Reason
	7.6.7 Wakeup Sources with Integrated Power Control

	7.7 Shutdown Targets
	7.7.1 Sleep
	7.7.2 Reset

	7.8 Alarm Clock
	7.8.1 Alarm Clocks and Users
	7.8.2 EcuM Clock Time
	7.8.2.1 EcuM Clock Time in the UP Phase
	7.8.2.2 EcuM Clock Time in the Sleep Phase

	7.9 MultiCore
	7.9.1 Master Core
	7.9.2 Slave Core
	7.9.3 Master Core – Slave Core Signalling
	7.9.3.1 BSW Level
	7.9.3.2 Example for Shutdown Synchronization

	7.9.4 UP Phase
	7.9.5 STARTUP Phase
	7.9.5.1 Master Core STARTUP
	7.9.5.2 Slave Core STARTUP

	7.9.6 SHUTDOWN Phase
	7.9.6.1 Master Core SHUTDOWN
	7.9.6.2 Slave Core SHUTDOWN

	7.9.7 SLEEP Phase
	7.9.7.1 Master Core SLEEP
	7.9.7.2 Slave Core SLEEP

	7.9.8 Runnables and Entry points
	7.9.8.1 Internal behavior

	7.10 EcuM Mode Handling
	7.10.1 Differences to ECU Manager with fixed State Machine

	7.11 Advanced Topics
	7.11.1 Relation to Bootloader
	7.11.2 Relation to Complex Drivers
	7.11.3 Handling Errors during Startup and Shutdown

	7.12 Errors
	7.12.1 Development Errors
	7.12.2 Runtime Errors
	7.12.3 Transient Faults
	7.12.4 Production Errors
	7.12.5 Extended Production Errors

	7.13 Error detection
	7.14 Error notification

	8 API specification
	8.1 Imported Types
	8.2 Type definitions
	8.2.1 EcuM_ConfigType
	8.2.2 EcuM_StateType
	8.2.3 EcuM_RunStatusType
	8.2.4 EcuM_UserType
	8.2.5 EcuM_WakeupSourceType
	8.2.6 EcuM_WakeupStatusType
	8.2.7 EcuM_BootTargetType
	8.2.8 EcuM_ResetType
	8.2.9 EcuM_ShutdownCauseType
	8.2.10 EcuM_ShutdownModeType
	8.2.11 EcuM_TimeType
	8.2.12 EcuM_ShutdownTargetType

	8.3 Function Definitions
	8.3.1 General
	8.3.1.1 EcuM_GetVersionInfo

	8.3.2 Initialization and Shutdown Sequences
	8.3.2.1 EcuM_GoDown
	8.3.2.2 EcuM_GoHalt
	8.3.2.3 EcuM_GoPoll
	8.3.2.4 EcuM_Init
	8.3.2.5 EcuM_StartupTwo
	8.3.2.6 EcuM_Shutdown

	8.3.3 State Management
	8.3.3.1 EcuM_ SetState
	8.3.3.2 EcuM_RequestRUN
	8.3.3.3 EcuM_ReleaseRUN
	8.3.3.4 EcuM_RequestPOST_RUN
	8.3.3.5 EcuM_ReleasePOST_RUN

	8.3.4 Shutdown Management
	8.3.4.1 EcuM_SelectShutdownTarget
	8.3.4.2 EcuM_GetShutdownTarget
	8.3.4.3 EcuM_GetLastShutdownTarget
	8.3.4.4 EcuM_SelectShutdownCause
	8.3.4.5 EcuM_GetShutdownCause

	8.3.5 Wakeup Handling
	8.3.5.1 EcuM_GetPendingWakeupEvents
	8.3.5.2 EcuM_ClearWakeupEvent
	8.3.5.3 EcuM_GetValidatedWakeupEvents
	8.3.5.4 EcuM_GetExpiredWakeupEvents

	8.3.6 Alarm Clock
	8.3.6.1 EcuM_SetRelWakeupAlarm
	8.3.6.2 EcuM_SetAbsWakeupAlarm
	8.3.6.3 EcuM_AbortWakeupAlarm
	8.3.6.4 EcuM_GetCurrentTime
	8.3.6.5 EcuM_GetWakeupTime
	8.3.6.6 EcuM_SetClock

	8.3.7 Miscellaneous
	8.3.7.1 EcuM_SelectBootTarget
	8.3.7.2 EcuM_GetBootTarget

	8.4 Scheduled Functions
	8.4.1 EcuM_MainFunction

	8.5 Callback Definitions
	8.5.1 Callbacks from Wakeup Sources
	8.5.1.1 EcuM_CheckWakeup
	8.5.1.2 EcuM_SetWakeupEvent
	8.5.1.3 EcuM_ValidateWakeupEvent

	8.6 Callout Definitions
	8.6.1 Generic Callouts
	8.6.1.1 EcuM_ErrorHook

	8.6.2 Callouts from the STARTUP Phase
	8.6.2.1 EcuM_AL_SetProgrammableInterrupts
	8.6.2.2 EcuM_AL_DriverInitZero
	8.6.2.3 EcuM_DeterminePbConfiguration
	8.6.2.4 EcuM_AL_DriverInitOne
	8.6.2.5 EcuM_AL_LoopDetection

	8.6.3 Callouts from the SHUTDOWN Phase
	8.6.3.1 EcuM_OnGoOffOne
	8.6.3.2 EcuM_OnGoOffTwo
	8.6.3.3 EcuM_AL_SwitchOff
	8.6.3.4 EcuM_AL_Reset

	8.6.4 Callouts from the SLEEP Phase
	8.6.4.1 EcuM_EnableWakeupSources
	8.6.4.2 EcuM_GenerateRamHash
	8.6.4.3 EcuM_SleepActivity
	8.6.4.4 EcuM_StartCheckWakeup
	8.6.4.5 EcuM_CheckWakeup
	8.6.4.6 EcuM_EndCheckWakeup
	8.6.4.7 EcuM_CheckRamHash
	8.6.4.8 EcuM_DisableWakeupSources
	8.6.4.9 EcuM_AL_DriverRestart

	8.6.5 Callouts from the UP Phase
	8.6.5.1 EcuM_StartWakeupSources
	8.6.5.2 EcuM_CheckValidation
	8.6.5.3 EcuM_StopWakeupSources

	8.7 Expected Interfaces
	8.7.1 Optional Interfaces
	8.7.2 Configurable interfaces

	8.8 Specification of the Port Interfaces
	8.8.1 Ports and Port Interface for EcuM_ShutdownTarget Interface
	8.8.1.1 General Approach
	8.8.1.2 Service Interfaces

	8.8.2 Port Interface for EcuM_BootTarget Interface
	8.8.2.1 General Approach
	8.8.2.2 Service Interfaces

	8.8.3 Port Interface for EcuM_AlarmClock Interface
	8.8.3.1 General Approach
	8.8.3.2 Data Types
	8.8.3.3 Service Interfaces

	8.8.4 Port Interface for EcuM_Time Interface
	8.8.4.1 General Approach
	8.8.4.2 Data Types
	8.8.4.3 Service Interfaces

	8.8.5 Port Interface for EcuM_StateRequest Interface
	8.8.5.1 General Approach
	8.8.5.2 Data Types
	8.8.5.3 Service Interfaces

	8.8.6 Port Interface for EcuM_CurrentMode
	8.8.6.1 General Approach
	8.8.6.2 Data Types
	8.8.6.1 SWS_EcuM_04134: EcuM_CurrentMode

	8.8.7 Port Interface for EcuM_CurrentMode Interface
	8.8.7.1 General Approach
	8.8.7.2 Data Types
	8.8.7.3 Service Interfaces
	8.8.7.4 Definition of the ECU Manager Service

	8.9 API Parameter Checking

	9 Sequence Charts
	9.1 State Sequences
	9.2 Wakeup Sequences
	9.2.1 GPT Wakeup Sequences
	9.2.2 ICU Wakeup Sequences
	9.2.3 CAN Wakeup Sequences
	9.2.4 LIN Wakeup Sequences
	9.2.5 FlexRay Wakeup Sequences

	10 Configuration specification
	10.1 Common Containers and configuration parameters
	10.1.1 EcuM
	10.1.2 EcuMGeneral
	10.1.3 EcuMConfiguration
	10.1.4 EcuMCommonConfiguration
	10.1.5 EcuMDefaultShutdownTarget
	10.1.6 EcuMDriverInitListOne
	10.1.7 EcuMDriverInitListZero
	10.1.8 EcuMDriverRestartList
	10.1.9 EcuMDriverInitItem
	10.1.10 EcuMSleepMode
	10.1.11 EcuMWakeupSource

	10.2 EcuM-Flex Containers and configuration parameters
	10.2.1 EcuMFlexGeneral
	10.2.2 EcuMFlexConfiguration
	10.2.3 EcuMAlarmClock
	10.2.4 EcuMFlexUserConfig
	10.2.5 EcuMGoDownAllowedUsers
	10.2.6 EcuMResetMode
	10.2.7 EcuMSetClockAllowedUsers
	10.2.8 EcuMShutdownCause

	10.3 Published Information

	11 Not applicable requirements

