
Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

1 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

Document Change History
Release Changed by Change Description

4.2.2 AUTOSAR
Release
Management

 Clarification regarding wake-up flag indication

 Editorial changes

4.2.1 AUTOSAR
Release
Management

 Revised the configuration of CAN Tranceiver.

 Minor corrections in wait state functionality.

 Clarification regarding the wakeup sources.

4.1.3 AUTOSAR
Release
Management

 Revised configuration for SPI interface.

 Revised naming convention for transceiver driv-
er

4.1.2 AUTOSAR
Release
Management

 Removed 'Timing' row from scheduled functions
API table.

 Editorial changes

 Removed chapter(s) on change documentation

4.1.1 AUTOSAR
Administration

 Updated sequence diagrams

 Reworked according to the new
SWS_BSWGeneral

4.0.3 AUTOSAR
Administration

 Added support for Partial Networking

 Implemented Production error concept

 Updated Baud rate configuration parameter
handling

 Added support to detect that power-on was
caused by CAN communication

 Reentrancy attribute is corrected for APIs

 Corrections in few requirements

 Optional Interfaces Table is corrected

4.0.1 AUTOSAR
Administration

 CanTrcv state names changed and state dia-
gram modified

 Usage of SBCs are no longer restricted

 Mode switch requests to the current mode are
allowed

 CanTrvc driver has to invoke
CanIf_TrcvModeIndication after each mode
switch request, when the requested mode has
been reached

Document Title Specification of CAN Trans-
ceiver Driver

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 071

Document Classification Standard

Document Status Final

Part of AUTOSAR Release 4.2.2

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

2 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

Document Change History
Release Changed by Change Description

3.1.4 AUTOSAR
Administration

 Wakeup event reporting: In R4.0, CanTrcv
stores wakeup events. CanIf invokes function
CanTrcv_CheckWakeup() periodically to check
for wakeup events.

 Wakeup modes: In R4.0, wakeup through inter-
rupt mechanism is not supported. Only POLL-
ING and NOT_SUPPORTED wakeup modes
are available in CanTrcv.

 Sleep Wait Count added: Wait count for transi-
tioning into sleep mode (CanTrcvSleep-
WaitCount) added.

 Legal disclaimer revised

3.1.1 AUTOSAR
Administration

 Legal disclaimer revised

3.0.1 AUTOSAR
Administration

 Changed API name CanIf_TrcvWakeupByBus
to CanIf_SetWakeupEvent

 New error code
CANTRCV_E_PARAM_TRCV_WAKEUP_MOD
E has been added.

 Output parameter in the API’s
CanTrcv_GetOpMode,
CanTrcv_GetBusWuReason and
CanTrcv_GetVersionInfo is changed to pointer
type.

 API CanTrcv_CB_WakeupByBus has been
modified

 Document meta information extended

 Small layout adaptations made

2.1.15 AUTOSAR
Administration

 CAN transceiver driver is below CAN interface.
All API access from higher layers are routed
through CAN interface.

 One CAN transceiver driver used per CAN
transceiver hardware type. For different CAN
transceiver hardware types different CAN trans-
ceiver drivers are used. One CAN transceiver
driver supports all CAN transceiver hardware of
same type

 Legal disclaimer revised

 Release Notes added

 “Advice for users” revised

 “Revision Information” added

2.0 AUTOSAR
Administration

 Initial release

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

3 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

Disclaimer

This specification and the material contained in it, as released by AUTOSAR, is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only. For any other purpose, no part of
the specification may be utilized or reproduced, in any form or by any means, without
permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR specifications may contain exemplary items (exemplary reference mo-
dels, "use cases", and/or references to exemplary technical solutions, devices, pro-
cesses or software).

Any such exemplary items are contained in the specifications for illustration purposes
only, and they themselves are not part of the AUTOSAR Standard. Neither their
presence in such specifications, nor any later documentation of AUTOSAR confor-
mance of products actually implementing such exemplary items, imply that intellectu-
al property rights covering such exemplary items are licensed under the same rules
as applicable to the AUTOSAR Standard.

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

4 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

Table of Content

1 Introduction .. 6

1.1 Goal of CAN Transceiver Driver .. 7
1.2 Explicitly uncovered CAN transceiver functionality .. 7
1.3 Single wire CAN transceivers according SAE J2411 7

2 Acronyms and abbreviations ... 8

3 Related documentation.. 9

3.1 Input documents .. 9
3.2 Related standards and norms ... 9
3.3 Related specification ... 9

4 Constraints and assumptions .. 10

4.1 Limitations ... 10
4.2 Applicability to car domains ... 10

5 Dependencies to other modules .. 11

5.1 File structure .. 11
5.1.1 Code file structure ... 11
5.1.2 Header file structure .. 12

6 Requirements Traceability ... 13

7 Functional specification ... 23

7.1 CAN transceiver driver operation modes ... 23
7.1.1 Operation mode switching .. 24

7.2 CAN transceiver hardware operation modes ... 24
7.2.1 Example for temporary “Go-To-Sleep” mode .. 25

7.2.2 Example for “PowerOn/ListenOnly” mode ... 25
7.3 CAN transceiver wake up types .. 25
7.4 Enabling/Disabling wakeup notification ... 26

7.5 CAN transceiver wake up modes .. 26
7.6 Error classification ... 27

7.6.1 Development Errors .. 27
7.6.2 Production Errors .. 27

7.6.3 Extended Production Errors .. 27
7.7 Preconditions for driver initialization .. 28
7.8 Instance concept ... 28
7.9 Wait states ... 29

7.10 Transceivers with selective wakeup functionality 29

8 API specification .. 30

8.1 Imported types ... 30

8.2 Type definitions ... 31
8.3 Function definitions.. 32

8.3.1 CanTrcv_Init.. 32
8.3.2 CanTrcv_SetOpMode ... 33
8.3.3 CanTrcv_GetOpMode ... 35
8.3.4 CanTrcv_GetBusWuReason ... 36
8.3.5 CanTrcv_GetVersionInfo .. 37
8.3.6 CanTrcv_ SetWakeupMode .. 37

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

5 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

8.3.7 CanTrcv_GetTrcvSystemData .. 39

8.3.8 CanTrcv_ClearTrcvWufFlag.. 40
8.3.9 CanTrcv_ReadTrcvTimeoutFlag ... 40
8.3.10 CanTrcv_ClearTrcvTimeoutFlag .. 41
8.3.11 CanTrcv_ReadTrcvSilenceFlag ... 42
8.3.12 CanTrcv_CheckWakeup .. 42

8.3.13 CanTrcv_SetPNActivationState ... 43
8.3.14 CanTrcv_CheckWakeFlag ... 44

8.4 Scheduled functions .. 44
8.4.1 CanTrcv_MainFunction ... 44
8.4.2 CanTrcv_MainFunctionDiagnostics .. 45

8.5 Call-back notifications .. 46
8.6 Expected Interfaces ... 46

8.6.1 Mandatory Interfaces .. 46

8.6.2 Optional Interfaces .. 46
8.6.3 Configurable interfaces ... 47

9 Sequence diagram .. 48

9.1 Wake up with valid validation .. 48

9.2 Interaction with DIO module .. 49

9.3 De-Initialization (SPI Synchronous) ... 52
9.4 De-Initialization (SPI Asynchronous) ... 54

10 Configuration specification ... 56

10.1 How to read this chapter ... 56
10.2 Containers and configuration parameters ... 57

10.2.1 Variants ... 57

10.2.2 CanTrcv ... 57

10.2.3 CanTrcvGeneral .. 57
10.2.4 CanTrcvConfigSet ... 61
10.2.5 CanTrcvChannel .. 62

10.2.6 CanTrcvAccess ... 67
10.2.7 CanTrcvDioAccess .. 67

10.2.8 CanTrcvDioChannelAccess ... 67
10.2.9 CanTrcvSpiAccess .. 68
10.2.10 CanTrcvSpiSequence .. 69

10.2.11 CanTrcvDemEventParameterRefs .. 70
10.2.12 CanTrcvPartialNetwork .. 71

10.2.13 CanTrcvPnFrameDataMaskSpec .. 74
10.3 Published Information ... 75

11 Not applicable requirements .. 76

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

6 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

1 Introduction

This specification describes the functionality, APIs and configuration of CAN Trans-
ceiver Driver module. The CAN Transceiver Driver module is responsible for handling
the CAN transceiver hardware chips on an ECU.
The CAN Transceiver is a hardware device, which adapts the signal levels that are
used on the CAN bus to the logical (digital) signal levels recognised by a microcon-
troller.
In addition, the transceivers are able to detect electrical malfunctions like wiring is-
sues, ground offsets or transmission of long dominant signals. Depending on the in-
terfacing with the microcontroller, they flag the detected error summarized by a single
port pin or very detailed by SPI.
Some transceivers support power supply control and wake up via the CAN bus. Dif-
ferent wake up/sleep and power supply concepts are usual on the market.
Within the automotive environment, there are mainly three different CAN bus physics
used. These are ISO11898 for high-speed CAN (up to 1Mbits/s), ISO11519 for low-
speed CAN (up to 125Kbits/s) and SAE J2411 for single-wire CAN.
Latest developments include System Basis Chips (SBCs) where power supply con-
trol and advanced watchdogs are implemented in addition to CAN. These are en-
closed in one housing and controlled through single interface (e.g. via SPI).

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

7 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

1.1 Goal of CAN Transceiver Driver

The target of this document is to specify the interfaces and behavior which are appli-
cable to most current and future CAN transceiver devices.
The CAN transceiver driver abstracts the CAN transceiver hardware. It offers a
hardware independent interface to the higher layers. It abstracts from the ECU layout
by using APIs of MCAL layer to access the CAN transceiver hardware.

1.2 Explicitly uncovered CAN transceiver functionality

Some CAN bus transceivers offer additional functionality, for example, ECU self test
or error detection capability for diagnostics.
ECU self test and error detection are not defined within AUTOSAR and requiring
such functionality would lock out most currently used transceiver hardware chips.
Therefore, features like “ground shift detection”, “selective wake up”, “slope control”
are not supported.

1.3 Single wire CAN transceivers according SAE J2411

Single wire CAN according SAE J2411 is not supported by AUTOSAR.

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

8 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

2 Acronyms and abbreviations

Abbreviation Description

ComM Communication Manager

DEM Diagnostic Event Manager

DET Development Error Tracer

DIO Digital Input Output (SPAL module)

EB Externally Buffered channels. Buffers containing data to transfer are outside the
SPI Handler/Driver.

EcuM ECU State Manager

IB Internally Buffered channels. Buffers containing data to transfer are inside the SPI
Handler/Driver.

ISR Interrupt Service Routine

MCAL Micro Controller Abstraction Layer

Port Port module (SPAL module)

n/a Not Applicable

SBC System Basis Chip; a device, which integrates e.g. CAN and/or LIN transceiver,
watchdog and power control.

SPAL Standard Peripheral Abstraction Layer

SPI

Channel

A channel is a software exchange medium for data that are defined with the same
criteria: configuration parameters, number of data elements with same size and
data pointers (source & destination) or location. See specification of SPI driver for
more details.

SPI

Job

A job is composed of one or several channels with the same chip select. A job is
considered to be atomic and therefore cannot be interrupted. A job has also an
assigned priority. See specification of SPI driver for more details.

SPI

Sequence

A sequence is a number of consecutive jobs to be transmitted. A sequence de-
pends on a static configuration. See specification of SPI driver for more details.

CAN Channel A physical channel which is connected to a CAN network from a CAN controller
through a CAN transceiver.

API Application Programming Interface

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

9 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

3 Related documentation

3.1 Input documents

[1] List of Basic Software Modules
 AUTOSAR_TR_BSWModuleList.pdf

[2] Layered Software Architecture
 AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf

[3] Specification of ECU Configuration
 AUTOSAR_TPS_ECUConfiguration.pdf

[4] General Requirements on Basic Software
 AUTOSAR_SRS_BSWGeneral.pdf

[5] Specification of Specification of CAN Interface
 AUTOSAR_SWS_CANInterface.pdf

[6] Basic Software Module Description Template,

 AUTOSAR_TPS_BSWModuleDescriptionTemplate.pdf

[7] General Specification of Basic Software Modules

AUTOSAR_SWS_BSWGeneral.pdf

3.2 Related standards and norms

[8] ISO11898 – Road vehicles - Controller area network (CAN)

3.3 Related specification

AUTOSAR provides a General Specification on Basic Software modules [7] (SWS
BSW General), which is also valid for CAN Transceiver Driver.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for CAN Transceiver Driver.

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

10 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

4 Constraints and assumptions

4.1 Limitations

[SWS_CanTrcv_00098] ⌈ The CAN bus transceiver hardware shall provide the
functionality and an interface which can be mapped to the operation mode model of
the AUTOSAR CAN transceiver driver. ⌋ (SRS_BSW_00172)
See also Chapter 7.1.
The used APIs of underlying drivers (SPI and DIO) shall be synchronous.
Implementations of underlying drivers which does not support synchronous behavior
cannot be used together with CAN transceiver driver.

4.2 Applicability to car domains

This driver might be applicable in all car domains using CAN for communication.

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

11 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

5 Dependencies to other modules

Module Dependencies

CanIf All CAN transceiver drivers are arranged below CanIf.

ComM ComM steers CAN transceiver driver communication modes via CanIf. Each CAN trans-
ceiver driver is steered independently.

DET DET gets development error information from CAN transceiver driver.

DEM DEM gets production error information from CAN transceiver driver.

DIO DIO module is used to access CAN transceiver device connected via ports.

EcuM EcuM gets information about wake up events from CAN transceiver driver via CanIf.

SPI SPI module is used to access CAN transceiver device connected via SPI.

5.1 File structure

5.1.1 Code file structure

[SWS_CanTrcv_00064] ⌈ The naming convention prescribed by AUTOSAR is ap-
plied to all files of the CanTrcv module. ⌋ (SRS_BSW_00300)
[SWS_CanTrcv_00065] ⌈ The CanTrcv module consists of the following files:
File name Requirements Description

CanTrcv.c SWS_CanTrcv_00069
The implementation general c file. It does not contain
interrupt routines.

CanTrcv.h SWS_CanTrcv_00052
It contains only information relevant for other BSW
modules (API). Differences in API depending in con-
figuration are encapsulated.

CanTrcv_Cfg.h SWS_CanTrcv_00083
Pre-compile time configuration parameter file. It’s gen-
erated by the configuration tool.

CanTrcv_Cfg.c SWS_CanTrcv_00062
Pre-compile time configuration code file. It’s generated
by the configuration tool.
(SRS_BSW_00346, SRS_BSW_00158)

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

12 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

5.1.2 Header file structure

[SWS_CanTrcv_00067]
⌈

⌋ (SRS_BSW_00301, SRS_BSW_00409)
[SWS_CanTrcv_00162] ⌈ CanTrcv.h shall include Can_GeneralTypes.h, for the
general CAN type definitions. ⌋ ()
[SWS_CanTrcv_00166] ⌈ The imported types described in SWS_CanTrcv_00163,
SWS_CanTrcv_00164 and SWS_CanTrcv_00165 shall be defined in
Can_GeneralTypes.h. ⌋ ()

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

13 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

6 Requirements Traceability

Requirement Description Satisfied by

- - SWS_CanTrcv_00002

- - SWS_CanTrcv_00065

- - SWS_CanTrcv_00084

- - SWS_CanTrcv_00086

- - SWS_CanTrcv_00087

- - SWS_CanTrcv_00089

- - SWS_CanTrcv_00094

- - SWS_CanTrcv_00100

- - SWS_CanTrcv_00102

- - SWS_CanTrcv_00103

- - SWS_CanTrcv_00104

- - SWS_CanTrcv_00105

- - SWS_CanTrcv_00106

- - SWS_CanTrcv_00107

- - SWS_CanTrcv_00111

- - SWS_CanTrcv_00113

- - SWS_CanTrcv_00114

- - SWS_CanTrcv_00115

- - SWS_CanTrcv_00116

- - SWS_CanTrcv_00117

- - SWS_CanTrcv_00120

- - SWS_CanTrcv_00121

- - SWS_CanTrcv_00122

- - SWS_CanTrcv_00123

- - SWS_CanTrcv_00124

- - SWS_CanTrcv_00125

- - SWS_CanTrcv_00127

- - SWS_CanTrcv_00128

- - SWS_CanTrcv_00129

- - SWS_CanTrcv_00130

- - SWS_CanTrcv_00131

- - SWS_CanTrcv_00132

- - SWS_CanTrcv_00133

- - SWS_CanTrcv_00143

- - SWS_CanTrcv_00144

- - SWS_CanTrcv_00145

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

14 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

- - SWS_CanTrcv_00146

- - SWS_CanTrcv_00148

- - SWS_CanTrcv_00150

- - SWS_CanTrcv_00158

- - SWS_CanTrcv_00161

- - SWS_CanTrcv_00162

- - SWS_CanTrcv_00163

- - SWS_CanTrcv_00164

- - SWS_CanTrcv_00165

- - SWS_CanTrcv_00166

- - SWS_CanTrcv_00167

- - SWS_CanTrcv_00168

- - SWS_CanTrcv_00171

- - SWS_CanTrcv_00172

- - SWS_CanTrcv_00173

- - SWS_CanTrcv_00174

- - SWS_CanTrcv_00175

- - SWS_CanTrcv_00177

- - SWS_CanTrcv_00178

- - SWS_CanTrcv_00180

- - SWS_CanTrcv_00181

- - SWS_CanTrcv_00182

- - SWS_CanTrcv_00183

- - SWS_CanTrcv_00184

- - SWS_CanTrcv_00186

- - SWS_CanTrcv_00187

- - SWS_CanTrcv_00188

- - SWS_CanTrcv_00189

- - SWS_CanTrcv_00190

- - SWS_CanTrcv_00191

- - SWS_CanTrcv_00192

- - SWS_CanTrcv_00193

- - SWS_CanTrcv_00194

- - SWS_CanTrcv_00195

- - SWS_CanTrcv_00196

- - SWS_CanTrcv_00197

- - SWS_CanTrcv_00198

- - SWS_CanTrcv_00199

- - SWS_CanTrcv_00200

- - SWS_CanTrcv_00201

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

15 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

- - SWS_CanTrcv_00202

- - SWS_CanTrcv_00203

- - SWS_CanTrcv_00204

- - SWS_CanTrcv_00205

- - SWS_CanTrcv_00207

- - SWS_CanTrcv_00209

- - SWS_CanTrcv_00210

- - SWS_CanTrcv_00211

- - SWS_CanTrcv_00213

- - SWS_CanTrcv_00215

- - SWS_CanTrcv_00216

- - SWS_CanTrcv_00217

- - SWS_CanTrcv_00218

- - SWS_CanTrcv_00219

- - SWS_CanTrcv_00220

- - SWS_CanTrcv_00221

- - SWS_CanTrcv_00222

- - SWS_CanTrcv_00223

- - SWS_CanTrcv_00224

- - SWS_CanTrcv_00225

- - SWS_CanTrcv_00226

- - SWS_CanTrcv_00229

- - SWS_CanTrcv_00230

SRS_BSW_00005 Modules of the ÂµC Abstraction Layer
(MCAL) may not have hard coded hori-
zontal interfaces

SWS_CanTrcv_00999

SRS_BSW_00006 The source code of software modules
above the ÂµC Abstraction Layer
(MCAL) shall not be processor and
compiler dependent.

SWS_CanTrcv_00999

SRS_BSW_00007 All Basic SW Modules written in C lan-
guage shall conform to the MISRA C
2004 Standard.

SWS_CanTrcv_00999

SRS_BSW_00009 All Basic SW Modules shall be docu-
mented according to a common stan-
dard.

SWS_CanTrcv_00999

SRS_BSW_00010 The memory consumption of all Basic
SW Modules shall be documented for a
defined configuration for all supported
platforms.

SWS_CanTrcv_00999

SRS_BSW_00101 The Basic Software Module shall be
able to initialize variables and hardware
in a separate initialization function

SWS_CanTrcv_00001

SRS_BSW_00160 Configuration files of AUTOSAR Basic
SW module shall be readable for human
beings

SWS_CanTrcv_00090,
SWS_CanTrcv_00091,
SWS_CanTrcv_00093,

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

16 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

SWS_CanTrcv_00095

SRS_BSW_00161 The AUTOSAR Basic Software shall
provide a microcontroller abstraction
layer which provides a standardized
interface to higher software layers

SWS_CanTrcv_00999

SRS_BSW_00164 The Implementation of interrupt service
routines shall be done by the Operating
System, complex drivers or modules

SWS_CanTrcv_00999

SRS_BSW_00168 SW components shall be tested by a
function defined in a common API in the
Basis-SW

SWS_CanTrcv_00999

SRS_BSW_00171 Optional functionality of a Basic-SW
component that is not required in the
ECU shall be configurable at pre-
compile-time

SWS_CanTrcv_00013

SRS_BSW_00172 The scheduling strategy that is built
inside the Basic Software Modules shall
be compatible with the strategy used in
the system

SWS_CanTrcv_00001,
SWS_CanTrcv_00013,
SWS_CanTrcv_00090,
SWS_CanTrcv_00091,
SWS_CanTrcv_00098,
SWS_CanTrcv_00099

SRS_BSW_00300 All AUTOSAR Basic Software Modules
shall be identified by an unambiguous
name

SWS_CanTrcv_00064

SRS_BSW_00301 All AUTOSAR Basic Software Modules
shall only import the necessary informa-
tion

SWS_CanTrcv_00067

SRS_BSW_00304 All AUTOSAR Basic Software Modules
shall use the following data types
instead of native C data types

SWS_CanTrcv_00999

SRS_BSW_00305 Data types naming convention SWS_CanTrcv_00999

SRS_BSW_00306 AUTOSAR Basic Software Modules
shall be compiler and platform indepen-
dent

SWS_CanTrcv_00999

SRS_BSW_00307 Global variables naming convention SWS_CanTrcv_00999

SRS_BSW_00308 AUTOSAR Basic Software Modules
shall not define global data in their hea-
der files, but in the C file

SWS_CanTrcv_00999

SRS_BSW_00309 All AUTOSAR Basic Software Modules
shall indicate all global data with read-
only purposes by explicitly assigning the
const keyword

SWS_CanTrcv_00999

SRS_BSW_00310 API naming convention SWS_CanTrcv_00001,
SWS_CanTrcv_00005,
SWS_CanTrcv_00007,
SWS_CanTrcv_00008,
SWS_CanTrcv_00009,
SWS_CanTrcv_00013

SRS_BSW_00312 Shared code shall be reentrant SWS_CanTrcv_00999

SRS_BSW_00321 The version numbers of AUTOSAR
Basic Software Modules shall be enu-
merated according specific rules

SWS_CanTrcv_00999

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

17 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

SRS_BSW_00325 The runtime of interrupt service routines
and functions that are running in inter-
rupt context shall be kept short

SWS_CanTrcv_00999

SRS_BSW_00326 - SWS_CanTrcv_00999

SRS_BSW_00327 Error values naming convention SWS_CanTrcv_00050,
SWS_CanTrcv_00206,
SWS_CanTrcv_00227

SRS_BSW_00328 All AUTOSAR Basic Software Modules
shall avoid the duplication of code

SWS_CanTrcv_00999

SRS_BSW_00329 - SWS_CanTrcv_00001,
SWS_CanTrcv_00005,
SWS_CanTrcv_00007,
SWS_CanTrcv_00008,
SWS_CanTrcv_00009,
SWS_CanTrcv_00013

SRS_BSW_00330 It shall be allowed to use macros
instead of functions where source code
is used and runtime is critical

SWS_CanTrcv_00999

SRS_BSW_00331 All Basic Software Modules shall strictly
separate error and status information

SWS_CanTrcv_00206,
SWS_CanTrcv_00227

SRS_BSW_00333 For each callback function it shall be
specified if it is called from interrupt
context or not

SWS_CanTrcv_00999

SRS_BSW_00334 All Basic Software Modules shall provi-
de an XML file that contains the meta
data

SWS_CanTrcv_00999

SRS_BSW_00336 Basic SW module shall be able to shut-
down

SWS_CanTrcv_00999

SRS_BSW_00337 Classification of development errors SWS_CanTrcv_00206,
SWS_CanTrcv_00227

SRS_BSW_00338 - SWS_CanTrcv_00050

SRS_BSW_00339 Reporting of production relevant error
status

SWS_CanTrcv_00228

SRS_BSW_00341 Module documentation shall contains all
needed informations

SWS_CanTrcv_00999

SRS_BSW_00342 It shall be possible to create an AUTO-
SAR ECU out of modules provided as
source code and modules provided as
object code, even mixed

SWS_CanTrcv_00999

SRS_BSW_00343 The unit of time for specification and
configuration of Basic SW modules shall
be preferably in physical time unit

SWS_CanTrcv_00112

SRS_BSW_00344 BSW Modules shall support link-time
configuration

SWS_CanTrcv_00999

SRS_BSW_00347 A Naming seperation of different in-
stances of BSW drivers shall be in place

SWS_CanTrcv_00016

SRS_BSW_00350 All AUTOSAR Basic Software Modules
shall apply a specific naming rule for
enabling/disabling the detection and
reporting of development errors

SWS_CanTrcv_00050

SRS_BSW_00355 - SWS_CanTrcv_00999

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

18 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

SRS_BSW_00358 The return type of init() functions imple-
mented by AUTOSAR Basic Software
Modules shall be void

SWS_CanTrcv_00001

SRS_BSW_00359 All AUTOSAR Basic Software Modules
callback functions shall avoid return
types other than void if possible

SWS_CanTrcv_00999

SRS_BSW_00360 AUTOSAR Basic Software Modules
callback functions are allowed to have
parameters

SWS_CanTrcv_00999

SRS_BSW_00369 All AUTOSAR Basic Software Modules
shall not return specific development
error codes via the API

SWS_CanTrcv_00001,
SWS_CanTrcv_00005,
SWS_CanTrcv_00007,
SWS_CanTrcv_00008,
SWS_CanTrcv_00009,
SWS_CanTrcv_00013

SRS_BSW_00370 - SWS_CanTrcv_00085

SRS_BSW_00371 The passing of function pointers as API
parameter is forbidden for all AUTOSAR
Basic Software Modules

SWS_CanTrcv_00001,
SWS_CanTrcv_00005,
SWS_CanTrcv_00007,
SWS_CanTrcv_00008,
SWS_CanTrcv_00009,
SWS_CanTrcv_00013

SRS_BSW_00373 The main processing function of each
AUTOSAR Basic Software Module shall
be named according the defined con-
vention

SWS_CanTrcv_00013

SRS_BSW_00375 Basic Software Modules shall report
wake-up reasons

SWS_CanTrcv_00007

SRS_BSW_00376 - SWS_CanTrcv_00013

SRS_BSW_00377 A Basic Software Module can return a
module specific types

SWS_CanTrcv_00005,
SWS_CanTrcv_00007

SRS_BSW_00378 AUTOSAR shall provide a boolean type SWS_CanTrcv_00999

SRS_BSW_00383 The Basic Software Module specifica-
tions shall specify which other configu-
ration files from other modules they use
at least in the description

SWS_CanTrcv_00999

SRS_BSW_00384 The Basic Software Module specifica-
tions shall specify at least in the descrip-
tion which other modules they require

SWS_CanTrcv_00999

SRS_BSW_00385 List possible error notifications SWS_CanTrcv_00050,
SWS_CanTrcv_00206,
SWS_CanTrcv_00227,
SWS_CanTrcv_00228

SRS_BSW_00386 The BSW shall specify the configuration
for detecting an error

SWS_CanTrcv_00050

SRS_BSW_00387 - SWS_CanTrcv_00999

SRS_BSW_00388 Containers shall be used to group confi-
guration parameters that are defined for
the same object

SWS_CanTrcv_00090,
SWS_CanTrcv_00091,
SWS_CanTrcv_00093,
SWS_CanTrcv_00095

SRS_BSW_00389 Containers shall have names SWS_CanTrcv_00090,
SWS_CanTrcv_00091,

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

19 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

SWS_CanTrcv_00093,
SWS_CanTrcv_00095

SRS_BSW_00390 Parameter content shall be unique
within the module

SWS_CanTrcv_00090,
SWS_CanTrcv_00091,
SWS_CanTrcv_00093,
SWS_CanTrcv_00095

SRS_BSW_00391 - SWS_CanTrcv_00090,
SWS_CanTrcv_00091,
SWS_CanTrcv_00093,
SWS_CanTrcv_00095

SRS_BSW_00392 Parameters shall have a type SWS_CanTrcv_00090,
SWS_CanTrcv_00091,
SWS_CanTrcv_00093,
SWS_CanTrcv_00095

SRS_BSW_00393 Parameters shall have a range SWS_CanTrcv_00090,
SWS_CanTrcv_00091,
SWS_CanTrcv_00093,
SWS_CanTrcv_00095

SRS_BSW_00394 The Basic Software Module specifica-
tions shall specify the scope of the con-
figuration parameters

SWS_CanTrcv_00090,
SWS_CanTrcv_00091,
SWS_CanTrcv_00093,
SWS_CanTrcv_00095

SRS_BSW_00395 The Basic Software Module specifica-
tions shall list all configuration parame-
ter dependencies

SWS_CanTrcv_00091,
SWS_CanTrcv_00093,
SWS_CanTrcv_00095

SRS_BSW_00396 The Basic Software Module specifica-
tions shall specify the supported confi-
guration classes for changing values
and multiplicities for each parame-
ter/container

SWS_CanTrcv_00017

SRS_BSW_00398 The link-time configuration is achieved
on object code basis in the stage after
compiling and before linking

SWS_CanTrcv_00999

SRS_BSW_00399 Parameter-sets shall be located in a
separate segment and shall be loaded
after the code

SWS_CanTrcv_00999

SRS_BSW_00400 Parameter shall be selected from mul-
tiple sets of parameters after code has
been loaded and started

SWS_CanTrcv_00999

SRS_BSW_00401 Documentation of multiple instances of
configuration parameters shall be
available

SWS_CanTrcv_00999

SRS_BSW_00404 BSW Modules shall support post-build
configuration

SWS_CanTrcv_00999

SRS_BSW_00405 BSW Modules shall support multiple
configuration sets

SWS_CanTrcv_00999

SRS_BSW_00406 A static status variable denoting if a
BSW module is initialized shall be initia-
lized with value 0 before any APIs of the
BSW module is called

SWS_CanTrcv_00005,
SWS_CanTrcv_00007,
SWS_CanTrcv_00008,
SWS_CanTrcv_00009,
SWS_CanTrcv_00013

SRS_BSW_00407 Each BSW module shall provide a func-
tion to read out the version information

SWS_CanTrcv_00008

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

20 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

of a dedicated module implementation

SRS_BSW_00408 All AUTOSAR Basic Software Modules
configuration parameters shall be
named according to a specific naming
rule

SWS_CanTrcv_00090,
SWS_CanTrcv_00091,
SWS_CanTrcv_00093,
SWS_CanTrcv_00095

SRS_BSW_00409 All production code error ID symbols are
defined by the Dem module and shall be
retrieved by the other BSW modules
from Dem configuration

SWS_CanTrcv_00067

SRS_BSW_00410 Compiler switches shall have defined
values

SWS_CanTrcv_00999

SRS_BSW_00411 All AUTOSAR Basic Software Modules
shall apply a naming rule for enab-
ling/disabling the existence of the API

SWS_CanTrcv_00008

SRS_BSW_00413 An index-based accessing of the in-
stances of BSW modules shall be done

SWS_CanTrcv_00016

SRS_BSW_00414 Init functions shall have a pointer to a
configuration structure as single para-
meter

SWS_CanTrcv_00001

SRS_BSW_00416 The sequence of modules to be initiali-
zed shall be configurable

SWS_CanTrcv_00999

SRS_BSW_00417 Software which is not part of the SW-C
shall report error events only after the
DEM is fully operational.

SWS_CanTrcv_00999

SRS_BSW_00420 - SWS_CanTrcv_00999

SRS_BSW_00422 Pre-de-bouncing of error status informa-
tion is done within the DEM

SWS_CanTrcv_00999

SRS_BSW_00423 BSW modules with AUTOSAR inter-
faces shall be describable with the me-
ans of the SW-C Template

SWS_CanTrcv_00999

SRS_BSW_00424 BSW module main processing functions
shall not be allowed to enter a wait state

SWS_CanTrcv_00013

SRS_BSW_00425 The BSW module description template
shall provide means to model the defi-
ned trigger conditions of schedulable
objects

SWS_CanTrcv_00090

SRS_BSW_00426 BSW Modules shall ensure data consis-
tency of data which is shared between
BSW modules

SWS_CanTrcv_00999

SRS_BSW_00427 ISR functions shall be defined and
documented in the BSW module
description template

SWS_CanTrcv_00999

SRS_BSW_00428 A BSW module shall state if its main
processing function(s) has to be exe-
cuted in a specific order or sequence

SWS_CanTrcv_00013

SRS_BSW_00429 BSW modules shall be only allowed to
use OS objects and/or related OS ser-
vices

SWS_CanTrcv_00999

SRS_BSW_00431 - SWS_CanTrcv_00999

SRS_BSW_00432 Modules should have separate main
processing functions for read/receive

SWS_CanTrcv_00999

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

21 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

and write/transmit data path

SRS_BSW_00433 Main processing functions are only al-
lowed to be called from task bodies
provided by the BSW Scheduler

SWS_CanTrcv_00999

SRS_BSW_00434 - SWS_CanTrcv_00999

SRS_Can_01090 The bus transceiver driver package
shall offer configuration parameters that
are needed to configure the driver for a
given bus and the supported notifica-
tions

SWS_CanTrcv_00090,
SWS_CanTrcv_00091,
SWS_CanTrcv_00093,
SWS_CanTrcv_00095

SRS_Can_01091 The CAN bus transceiver driver shall
support the configuration for more than
one bus

SWS_CanTrcv_00005,
SWS_CanTrcv_00007,
SWS_CanTrcv_00009,
SWS_CanTrcv_00016,
SWS_CanTrcv_00017

SRS_Can_01092 The bus transceiver driver shall support
the independent configuration of the bus
operation mode for each supported bus.

SWS_CanTrcv_00091

SRS_Can_01095 The bus transceiver driver shall support
the compile time configuration of one
notification to an upper layer for change
notification for "wakeup by bus" events

SWS_CanTrcv_00007

SRS_Can_01096 The bus transceiver driver shall provide
an API to initialize the driver internally
and set then all attached transceivers in
their pre-selected operation modes

SWS_CanTrcv_00001

SRS_Can_01097 CAN Bus Transceiver driver API shall
be synchronous

SWS_CanTrcv_00001,
SWS_CanTrcv_00005,
SWS_CanTrcv_00007,
SWS_CanTrcv_00009,
SWS_CanTrcv_00013

SRS_Can_01098 The bus transceiver driver shall support
an API to send the addressed transcei-
ver into its Standby mode

SWS_CanTrcv_00055

SRS_Can_01099 The bus transceiver driver shall support
an API to send the addressed transcei-
ver into its Sleep mode

SWS_CanTrcv_00055

SRS_Can_01100 The bus transceiver driver shall support
an API to send the addressed transcei-
ver into its Normal mode

SWS_CanTrcv_00055

SRS_Can_01101 The bus transceiver driver shall support
an API to read out the current operation
mode of the transceiver of a specified
bus within the ECU

SWS_CanTrcv_00005

SRS_Can_01103 The bus transceiver driver shall support
an API to read out the reason of the last
wakeup of a specified bus within the
ECU

SWS_CanTrcv_00007

SRS_Can_01106 The bus transceiver driver shall call the
appropriate callback function of EcuM in
case a wakeup by bus event is detected

SWS_CanTrcv_00007

SRS_Can_01107 The CAN Transceiver Driver shall sup-
port the situation where a wakeup by

SWS_CanTrcv_00999

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

22 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

bus occurs during the same time the
transition to standby/sleep is in progress

SRS_Can_01108 The bus transceiver driver shall support
the AUTOSAR ECU state manager in a
way that a safe system startup and
shutdown is possible

SWS_CanTrcv_00001

SRS_Can_01109 The bus transceiver driver shall check
the control communication to the
transceiver and the reaction of the
transceiver for correctness

SWS_CanTrcv_00001,
SWS_CanTrcv_00005,
SWS_CanTrcv_00007,
SWS_CanTrcv_00009,
SWS_CanTrcv_00013

SRS_Can_01110 CAN Bus Transceiver driver shall hand-
le the transceiver specific timing requi-
rements internally

SWS_CanTrcv_00001,
SWS_CanTrcv_00005,
SWS_CanTrcv_00007,
SWS_CanTrcv_00009,
SWS_CanTrcv_00013

SRS_Can_01115 The bus transceiver driver shall support
an API to enable and disable the wa-
keup notification for each bus separately

SWS_CanTrcv_00009

SRS_Can_01138 The CAN Bus Transceiver Driver shall
provide one callback function for lower
layer ICU Driver for wake up by bus
events

SWS_CanTrcv_00999

SRS_Can_01157 The bus transceiver driver shall provide
an API for clearing the WUF bit in the
tranceiver hardware

SWS_CanTrcv_00214

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

23 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

7 Functional specification

7.1 CAN transceiver driver operation modes

[SWS_CanTrcv_00055] ⌈ The CanTrcv module shall implement the state diagram
shown below, independently for each configured transceiver. ⌋ (SRS_Can_01098,
SRS_Can_01099, SRS_Can_01100)

POWER_ON

Power on Power off

NOT_ACTIVE

ACTIVE

CANTRCV_TRCVMODE_SLEEP CANTRCV_TRCVMODE_NORMAL

CANTRCV_TRCVMODE_STANDBY

Legend:�

1 - CanTrcv_SetOpMode(CANTRCV_TRCVMODE_NORMAL)

2 - CanTrcv_SetOpMode(CANTRCV_TRCVMODE_STANDBY)

3 - CanTrcv_SetOpMode(CANTRCV_TRCVMODE_SLEEP)

3(a)

1(c)

2(a)

1(b)

3(b)

1(a)

2(b)

CanTrcv_Init()

[CFG3]

CanTrcv_Init()

[CFG1]

CanTrcv_Init()

[CFG2]

The main idea intended by this diagram, is to support a lot of up to now available
CAN bus transceivers in a generic view. Depending on the CAN transceiver hard-
ware, the model may have one or two states more than necessary for a given CAN
transceiver hardware but this will clearly decouple the ComM and EcuM from the
used hardware.

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

24 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

[SWS_CanTrcv_00148] ⌈ The function CanTrcv_Init causes a state change to

either CANTRCV_TRCVMODE_SLEEP, CANTRCV_TRCVMODE _NORMAL or
CANTRCV_TRCVMODE _STANDBY. This depends on the configuration and is in-
dependently configurable for each transceiver. ⌋ ()
State Description

POWER_ON ECU is fully powered.

NOT_ACTIVE
State of CAN transceiver hardware depends on ECU hardware
and on Dio and Port driver configuration. CAN transceiver
driver is not initialized and therefore not active.

ACTIVE

The function CanTrcv_Init has been called. It carries CAN
transceiver driver to active state.

Depending on configuration CAN transceiver driver enters the
state CANTRCV_TRCVMODE_SLEEP,
CANTRCV_TRCVMODE_STANDBY or
CANTRCV_TRCVMODE_NORMAL.

CANTRCV_TRCVMODE_NORMAL
Full bus communication. If CAN transceiver hardware controls
ECU power supply, ECU is fully powered. The CAN transceiv-
er driver detects no further wake up information.

CANTRCV_TRCVMODE_STANDBY

No communication is possible. ECU is still powered if CAN
transceiver hardware controls ECU power supply. A transition
to CANTRCV_TRCVMODE_SLEEP is only valid from this
mode. A wake up by bus or by a local wake up event is possi-
ble.

CANTRCV_TRCVMODE_SLEEP
No communication is possible. ECU may be unpowered de-
pending on responsibility to handle power supply. A wake up
by bus or by a local wake up event is possible.

If a CAN transceiver driver covers more than one CAN transceiver (configured as
channels), all transceivers (channels) are either in the state NOT_ACTIVE or in the
state ACTIVE.

In state ACTIVE, each transceiver may be in a different sub state.

7.1.1 Operation mode switching

A mode switch is requested with a call to the function CanTrcv_SetOpMode.

[SWS_CanTrcv_00161] ⌈ A mode switch request to the current mode is allowed
and shall not lead to an error, even if DET is enabled. ⌋ ()
[SWS_CanTrcv_00158] ⌈ The CanTrcv module shall invoke the callback function

CanIf_TrcvModeIndication, for each mode switch request with call to

CanTrcv_SetOpMode, after the requested mode has been reached referring to the

corresponding CAN transceiver with the abstract CanIf TransceiverId.⌋ ()

7.2 CAN transceiver hardware operation modes

The CAN transceiver hardware may support more mode transitions than shown in
the state diagram above. The dependencies and the recommended implementations
behaviour are explained in this chapter.

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

25 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

It is implementation specific to decide which CAN transceiver hardware state is cov-
ered by which CAN transceiver driver software state. An implementation has to guar-
antee that the whole functionality of the described CAN transceiver driver software
state is realized by the implementation.

7.2.1 Example for temporary “Go-To-Sleep” mode

The mode often referred to as “Go-to-sleep” is a temporary mode when switching
from Normal to Sleep. The driver encapsulates such a temporary mode within one of
the CAN transceiver driver software states. In addition, the CAN transceiver driver
switches first from Normal to Standby and then with an additional API call from
Standby to Sleep.

7.2.2 Example for “PowerOn/ListenOnly” mode

The mode often referred to as “PowerOn“ or “ListenOnly” is a mode where the CAN
transceiver hardware is only able to receive messages but not able to send messag-
es. Also, transmission of the acknowledge bit during reception of a message is sup-
pressed. This mode is not supported because it is outside of the CAN standard and
not supported by all CAN transceiver hardware chips.

7.3 CAN transceiver wake up types

There are three different scenarios which are often called wake up:

Scenario 1:
 MCU is not powered.

 Parts of ECU including CAN transceiver hardware are powered.

 The considered CAN transceiver is in SLEEP mode.

 A wake up event on CAN bus is detected by CAN transceiver hardware.

 The CAN transceiver hardware causes powering of MCU.

In terms of AUTOSAR, this is kept as a cold start and NOT as a wake up.

Scenario 2:
 MCU is in low power mode.

 Parts of ECU including CAN transceiver hardware are powered.

 The considered CAN transceiver is in STANDBY mode.

 A wake up event on CAN bus is detected by CAN transceiver hardware.

 The CAN transceiver hardware causes a SW interrupt for waking up.

In terms of AUTOSAR, this is kept as a wake up of the CAN channel and of the
MCU.

Scenario 3:
 MCU is in full power mode.

 At least parts of ECU including CAN transceiver hardware are powered.

 The considered CAN transceiver is in STANDBY mode.

 A wake up event on CAN is detected by CAN transceiver hardware.

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

26 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

 The CAN transceiver hardware either causes a SW interrupt for waking up or
is polled cyclically for wake up events.

In terms of AUTOSAR, this is kept as a wake up of the CAN channel.

7.4 Enabling/Disabling wakeup notification

[SWS_CanTrcv_00171] ⌈ CanTrcv driver shall use the following APIs provided by

ICU driver, to enable and disable the wakeup event notification:
- Icu_EnableNotification
- Icu_DisableNotification

CanTrcv driver shall enable/disable ICU channels only if reference is configured for

the parameter CanTrcvIcuChannelRef.⌋ ()

CanTrcv driver shall ensure the following to avoid the loss of wakeup events:

[SWS_CanTrcv_00172] ⌈ It shall enable the ICU channels when the transceiver

transitions to the Standby mode (CANTRCV_STANDBY). ⌋ ()

[SWS_CanTrcv_00173] ⌈ It shall disable the ICU channels when the transceiver

transitions to the Normal mode (CANTRCV_NORMAL). ⌋ ()

7.5 CAN transceiver wake up modes

CAN transceiver driver offers two wake up modes:
[SWS_CanTrcv_00090] ⌈ NOT_SUPPORTED mode ⌋ (SRS_BSW_00388,
SRS_BSW_00389, SRS_BSW_00390, SRS_BSW_00391, SRS_BSW_00392,
SRS_BSW_00393, SRS_BSW_00394, SRS_BSW_00408, SRS_BSW_00425,
SRS_BSW_00160, SRS_BSW_00172, SRS_Can_01090)
In mode NOT_SUPPORTED, no wake ups are generated by CAN transceiver driver.
This mode is supported by all CAN transceiver hardware types.

[SWS_CanTrcv_00091] ⌈ POLLING mode ⌋ (SRS_BSW_00388,
SRS_BSW_00389, SRS_BSW_00390, SRS_BSW_00391, SRS_BSW_00392,
SRS_BSW_00393, SRS_BSW_00394, SRS_BSW_00395, SRS_BSW_00408,
SRS_BSW_00160, SRS_BSW_00172, SRS_Can_01090, SRS_Can_01092)
In mode POLLING, wake ups generated by CAN transceiver driver may cause CAN
channel wake ups. In this mode, no MCU wake ups are possible. This mode pre-
sumes a support by used CAN transceiver hardware type. Wake up mode POLLING

requires function CanTrcv_CheckWakeup and main function

CanTrcv_MainFunction to be present in source code.

The main function CanTrcv_MainFunction shall be called by BSW scheduler

and CanTrcv_CheckWakeup by CanIf.

The selection of the wake up mode is done by the configuration parameter

CanTrcvWakeUpSupport. The support of wake ups may be switched on and off for

each CAN transceiver individually by the configuration parameter CanTrcvWakeup-

ByBusUsed.

Note: In both modes the function CanTrcv_CheckWakeup shall be present, but the

functionality shall be based on the configured wakeup mode (NOT_SUPPORTED
OR POLLING).
Implementation Hint:

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

27 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

If a CAN transceiver needs a specific state transition (e.g. Sleep -> Normal) initiated
by the software after detection of a wake-up, this may be accomplished by the

CanTrcv module, during the execution of CanTrcv_CheckWakeup. This behaviour

is implementation specific.
It has to be assured by configuration of modules, which are involved in wake-up pro-

cess (EcuM, CanIf, ICU etc…) that CanTrcv_CheckWakeup is called, when a trans-

ceiver needs a specific state transition.

7.6 Error classification

7.6.1 Development Errors

[SWS_CanTrcv_00050]
⌈

Type or error Relevance Related error code
Value
[hex]

API called with
wrong parameter for
the CAN transceiver

Development CANTRCV_E_INVALID_TRANSCEIVER 1

API called with null
pointer parameter

Development CANTRCV_E_PARAM_POINTER 2

API service used
without initialization

Development CANTRCV_E_UNINIT 11

API service called in
wrong transceiver
operation mode

Development
CANTRCV_E_TRCV_NOT_STANDBY

CANTRCV_E_TRCV_NOT_NORMAL

21

22

API service called
with invalid parame-
ter for TrcvWakeup-
Mode

Development CANTRCV_E_PARAM_TRCV_WAKEUP_MODE 23

API service called
with invalid parame-
ter for OpMode

Development CANTRCV_E_PARAM_TRCV_OPMODE 24

Configured baud
rate is not supported
by the transceiver

Development CANTRCV_E_BAUDRATE_NOT_SUPPORTED 25

No/incorrect com-
munication to trans-
ceiver.

Development CANTRCV_E_NO_TRCV_CONTROL 26

Module initialization
has failed, e.g.
CanTrcv_Init() called
with an invalid point-
er in postbuild.

Development CANTRCV_E_INIT_FAILED 27

⌋ (SRS_BSW_00327, SRS_BSW_00338, SRS_BSW_00350, SRS_BSW_00385,
SRS_BSW_00386)

7.6.2 Production Errors

This module does not specify any production errors

7.6.3 Extended Production Errors

[SWS_CanTrcv_00228]
⌈

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

28 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

Error Name: CANTRCV_E_BUS_ERROR

Short Description: A CAN bus error occured during communication

Long Description: This Extended Production Error shall be issued when a bus failure is
detected by the transceiver during the CAN communication..

Detection Criteria:

Fail When the flag corresponding to bus failure is set,

Dem_ReportErrorStatus shall be reported with param-

eters EventId as CANTRCV_E_BUS_ERROR and EventSta-

tus as DEM_EVENT_STATUS_FAILED.

SWS_CanTrcv_00206, SWS_CanTrcv_00229

Pass When the flag corresponding to bus failure is not set,

Dem_ReportErrorStatus shall be reported with param-

eters EventId as CANTRCV_E_BUS_ERROR and EventSta-

tus as DEM_EVENT_STATUS_PASSED.

SWS_CanTrcv_00227, SWS_CanTrcv_00229

Secondary Parameters: N/A

Time Required: N/A

Monitor Frequency continuous

⌋ (SRS_BSW_00339, SRS_BSW_00385)

[SWS_CanTrcv_00229] ⌈ The extended production error CANTRCV_E_BUS_ERROR

(value assigned by DEM) shall be detectable by the CAN tranceiver module when
Bus Error (BUSERR) flag is set, depending on whether it is configured and supported

by hardware. ⌋ ()

7.7 Preconditions for driver initialization

[SWS_CanTrcv_00099] ⌈ The environment of the CanTrcv module shall make sure
that all necessary BSW drivers (used by the CanTrcv module) have been initialized

and are usable before CanTrcv_Init is called. ⌋ (SRS_BSW_00172)

The CAN bus transceiver driver uses drivers for Spi and Dio to control the CAN bus
transceiver hardware. Thus, these drivers must be available and ready to operate
before the CAN bus transceiver driver is initialized.
The CAN transceiver driver may have timing requirements for the initialization se-
quence and the access to the transceiver device which must be fulfilled by these
used underlying drivers.
The timing requirements might be that
1) The call of the CAN bus transceiver driver initialization has to be performed very

early after power up to be able to read all necessary information out of the trans-
ceiver hardware in time for all other users within the ECU.

2) The runtime of the used underlying services is very short and synchronous to en-
able the driver to keep his own timing requirements limited by the used hardware
device.

3) The runtime of the driver may be enlarged due to some hardware devices config-
uring the port pin level to be valid for e.g. 50µs before changing it again to reach a
specific state (e.g. sleep).

7.8 Instance concept

[SWS_CanTrcv_00016] ⌈ For each different CAN transceiver hardware type, an
ECU has one CAN transceiver driver instance. One instance serves all CAN trans-

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

29 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

ceiver hardware of same type. ⌋ (SRS_BSW_00347, SRS_BSW_00413,
SRS_Can_01091)

7.9 Wait states

For changing operation modes, the CAN transceiver hardware may have to perform
wait states.

[SWS_CanTrcv_00230] ⌈ The CAN Tranceiver Driver shall use the Time service

Tm_BusyWait1us16bit to realize the wait time for transceiver state changes.⌋ ()

7.10 Transceivers with selective wakeup functionality

This section describes requirements for CAN transceivers with selective wakeup
functionality.
Partial Networking is a state in a CAN system where some nodes are in low power
mode while other nodes are communicating. This reduces the power consumption by
the entire network. Nodes in the low-power modes are woken up by pre-defined
wakeup frames.
Transceivers which support selective wakeup can be woken up by Wake Up Frame/
Frames (WUF), in addition to the wakeup by Wake Up Pattern (WUP) offered by
normal transceivers.

[SWS_CanTrcv_00174] ⌈ If selective wakeup is supported by the transceiver hard-

ware, it shall be indicated with the configuration parameter CanTrcvHwPnSupport.

⌋ ()

[SWS_CanTrcv_00175] ⌈ The configuration container for selective wakeup func-

tionality (CanTrcvPartialNetwork) and for the following APIs:

- 8.4.7 CanTrcv_GetTrcvSystemData,
- 8.4.8 CanTrcv_ClearTrcvWufFlag,
- 8.4.9 CanTrcv_ReadTrcvTimeoutFlag,
- 8.4.10 CanTrcv_ClearTrcvTimeoutFlag and
- 8.4.11 CanTrcv_ReadTrcvSilenceFlag

shall exist only if CanTrcvHwPnSupport = TRUE. ⌋ ()

[SWS_CanTrcv_00177] ⌈ If selective wakeup is supported, CAN transceivers shall

be configured to wake up on a particular CAN frame or a group of CAN frames using

the parameters CanTrcvPnFrameCanId, CanTrcvPnFrameCanIdMask and

CanTrcvPnFrameDataMask. ⌋ ()

[SWS_CanTrcv_00178] ⌈ If the transceiver has the ability to identify bus failures

(and distinguish between bus failures and other hardware failures), it shall be indicat-

ed using the configuration parameter CanTrcvBusErrFlag for bus diagnostic pur-

poses. ⌋ ()

Note:
For CAN transceivers supporting selective wakeup functionality, detection of wakeup

frames is possible during Normal mode (CANTRCV_TRCVMODE_NORMAL). Detected

wakeup frames are signaled by the transceiver WUF flag. This ensures that no
wakeup frame is lost during a transition to Standby mode
(CANTRCV_TRCVMODE_STANDBY).

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

30 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

8 API specification

8.1 Imported types

In this chapter all types included from the following files are listed:
[SWS_CanTrcv_00084]
⌈
Module Imported Type

Can_GeneralTypes CanTrcv_TrcvModeType

CanTrcv_TrcvWakeupModeType

CanTrcv_TrcvWakeupReasonType

Dem Dem_EventIdType

Dem_EventStatusType

Dio Dio_ChannelGroupType

Dio_ChannelType

Dio_LevelType

Dio_PortLevelType

Dio_PortType

EcuM EcuM_WakeupSourceType

Icu Icu_ChannelType

Spi Spi_ChannelType

Spi_DataBufferType

Spi_NumberOfDataType

Spi_SequenceType

Spi_StatusType

Std_Types Std_ReturnType

Std_VersionInfoType

 ⌋ ()

[SWS_CanTrcv_00163]
⌈
Name: CanTrcv_TrcvModeType

Type: Enumeration

Range: CANTRCV_TRCVMODE_SLEEP Transceiver mode SLEEP

CANTRCV_TRCVMODE_STANDBY Transceiver mode STANDBY

CANTRCV_TRCVMODE_NORMAL = 0
Transceiver mode NORMAL

Description: Operating modes of the CAN Transceiver Driver.

 ⌋ ()

[SWS_CanTrcv_00164]
⌈
Name: CanTrcv_TrcvWakeupModeType

Type: Enumeration

Range: CANTRCV_WUMODE_ENABLE = 0
The notification for wakeup events is enabled on the
addressed transceiver.

CANTRCV_WUMODE_DISABLE The notification for wakeup events is disabled on the
addressed transceiver.

CANTRCV_WUMODE_CLEAR A stored wakeup event is cleared on the addressed
transceiver.

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

31 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

Description: This type shall be used to control the CAN transceiver concerning wake up events
and wake up notifications.

 ⌋ ()

[SWS_CanTrcv_00165]
⌈
Name: CanTrcv_TrcvWakeupReasonType

Type: Enumeration

Range: CANTRCV_WU_ERROR = 0
Due to an error wake up reason was not detected.
This value may only be reported when error was
reported to DEM before.

CANTRCV_WU_NOT_SUPPORTED The transceiver does not support any information
for the wake up reason.

CANTRCV_WU_BY_BUS The transceiver has detected, that the network has
caused the wake up of the ECU.

CANTRCV_WU_INTERNALLY The transceiver has detected, that the network has
woken up by the ECU via a request to NORMAL
mode.

CANTRCV_WU_RESET The transceiver has detected, that the "wake up" is
due to an ECU reset.

CANTRCV_WU_POWER_ON The transceiver has detected, that the "wake up" is
due to an ECU reset after power on.

CANTRCV_WU_BY_PIN The transceiver has detected a wake-up event at
one of the transceiver's pins (not at the CAN bus).

CANTRCV_WU_BY_SYSERR The transceiver has detected, that the wake up of
the ECU was caused by a HW related device fail-
ure.

Description: This type denotes the wake up reason detected by the CAN transceiver in detail.

 ⌋ ()

8.2 Type definitions

[SWS_CanTrcv_00209]

⌈

Name: CanTrcv_ConfigType

Type: Structure

Range: Implementation

specific

--

Description: This is the type of the external data structure containing the overall initialization
data for the CAN transceiver driver and settings affecting all transceivers. Fur-
thermore it contains pointers to transceiver configuration structures. The contents
of the initialization data structure are CAN transceiver hardware specific.

⌋ ()

[SWS_CanTrcv_00210]

⌈

Name: CanTrcv_PNActivationType

Type: Enumeration

Range: PN_ENABLED PN wakeup functionality in CanTrcv is enabled.

PN_DISABLED PN wakeup functionality in CanTrcv is disabled.

Description: Datatype used for describing whether PN wakeup functionality in CanTrcv is ena-
bled or disabled.

⌋ ()

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

32 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

[SWS_CanTrcv_00211]

⌈

Name: CanTrcv_TrcvFlagStateType

Type: Enumeration

Range: CANTRCV_FLAG_SET The flag is set in the transceiver hardware.

CANTRCV_FLAG_CLEARED The flag is cleared in the transceiver hardware.

Description: Provides the state of a flag in the transceiver hardware.

⌋ ()

8.3 Function definitions

8.3.1 CanTrcv_Init

[SWS_CanTrcv_00001]
⌈
Service name: CanTrcv_Init

Syntax: void CanTrcv_Init(

 const CanTrcv_ConfigType* ConfigPtr

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): ConfigPtr Pointer to driver configuration.

Parameters (in-
out):

None

Parameters (out): None

Return value: None

Description: Initializes the CanTrcv module.

⌋ (SRS_BSW_00310, SRS_BSW_00329, SRS_BSW_00358, SRS_BSW_00369,
SRS_BSW_00371, SRS_BSW_00414, SRS_BSW_00101, SRS_BSW_00172,
SRS_Can_01096, SRS_Can_01097, SRS_Can_01109, SRS_Can_01110,
SRS_Can_01108)

[SWS_CanTrcv_00180] ⌈ The function CanTrcv_Init shall initialize all the con-

nected CAN transceivers based on their initialization sequences and configuration

(provided by parameter ConfigPtr). Meanwhile, it shall support the configuration

sequence of the AUTOSAR stack also. ⌋ ()

[SWS_CanTrcv_00100] ⌈ The function CanTrcv_Init shall set the CAN trans-

ceiver hardware to the state configured by the configuration parameter

CanTrcvInitState. ⌋ ()

Note that in the time span between power up and the call to CanTrcv_Init, the

CAN transceiver hardware may be in a different state. This depends on hardware
and SPAL driver configuration.
The initialization sequence after reset (e.g. power up) is a critical phase for the CAN
transceiver driver.
This API shall store the wake up event, if any, during initialization time.
See also requirement SWS_CanTrcv_00099.

[SWS_CanTrcv_00167] ⌈ If supported by hardware, CanTrcv_Init shall validate

whether there has been a wake up due to transceiver activity and if TRUE, reporting

shall be done to EcuM via API EcuM_SetWakeupEvent with the wakeup source ref-

erenced in CanTrcvWakeupSourceRef. ⌋ ()

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

33 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

[SWS_CanTrcv_00181] ⌈ If selective wakeup is enabled and supported by hard-
ware: POR and SYSERR flags of the transceiver status shall be checked by

CanTrcv_Init API. ⌋ ()

[SWS_CanTrcv_00182] ⌈ If the POR flag or SYSERR flag is set, transceiver shall

be re-configured for selective wakeup functionality by running the configuration se-
quence.
If the POR flag or SYSERR flag is not set, the configuration stored in the transceiver

memory will be still valid and re-configuration is not necessary. ⌋ ()

[SWS_CanTrcv_00183] ⌈ If the POR flag is set, wakeup shall be reported to EcuM

through API EcuM_SetWakeupEvent with a wakeup source value, which has a “1”

at the bit position according to the symbolic name value referred by CanTrcvPor-

WakeupsourceRef, and “0” on all others. ⌋ ()

[SWS_CanTrcv_00184] ⌈ If the SYSERR flag is set, wakeup shall be reported to

EcuM through API EcuM_SetWakeupEvent with a wakeup source value, which has

a “1” at the bit position according to the symbolic name value referred by

CanTrcvSyserrWakeupSourceRef, and “0” on all others. ⌋ ()

[SWS_CanTrcv_00113] ⌈ If there is no/incorrect communication towards the trans-

ceiver, the function CanTrcv_Init shall report the development error

CANTRCV_E_NO_TRCV_CONTROL.

For Eg., there are different transceiver types and different access ways (port connec-
tion, SPI). This development error should be signaled if you detect any miscommuni-
cation with your hardware. Depending on connection type and depending on your
transceiver hardware you may not run in situations where you have to signal this er-
ror. ⌋ ()
[SWS_CanTrcv_00168] ⌈ If DET is enabled for CanTrcv module: the function

CanTrcv_Init shall raise the development error

CANTRCV_E_BAUDRATE_NOT_SUPPORTED, if the configured baud rate is not sup-

ported by the transceiver. ⌋ ()
 [SWS_CanTrcv_00226] ⌈ In order to implement the AUTOSAR Partial Networking
mechanism CAN transceivers shall support the definition of a data mask for the

Wake Up Frame (the configuration structure of CanTrcvPnFrameDataMask is

mandatory). ⌋ ()

8.3.2 CanTrcv_SetOpMode

[SWS_CanTrcv_00002]
⌈
Service name: CanTrcv_SetOpMode

Syntax: Std_ReturnType CanTrcv_SetOpMode(

 uint8 Transceiver,

 CanTrcv_TrcvModeType OpMode

)

Service ID[hex]: 0x01

Sync/Async: Asynchronous

Reentrancy: Reentrant for different transceivers

Parameters (in):
Transceiver CAN transceiver to which API call has to be applied.

OpMode This parameter contains the desired operating mode

Parameters (in-
out):

None

Parameters (out): None

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

34 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

Return value:

Std_ReturnType E_OK: will be returned if the request for transceiver mode change
has been accepted.
E_NOT_OK: will be returned if the request for transceiver mode
change has not been accepted or any parameter is out of the
allowed range.

Description: Sets the mode of the Transceiver to the value OpMode.

⌋ (SRS_BSW_00310, SRS_BSW_00329; SRS_BSW_00357, SRS_BSW_00369,
SRS_BSW_00371, SRS_BSW_00406, SRS_Can_01091, SRS_Can_01097,
SRS_Can_01098, SRS_Can_01099, SRS_Can_01100, SRS_Can_01109,
SRS_Can_01110, SRS_Can_01108)

[SWS_CanTrcv_00102] ⌈ The function CanTrcv_SetOpMode shall switch the in-

ternal state of Transceiver to the value of the parameter OpMode, which can be
CANTRCV_TRCVMODE_NORMAL, CANTRCV_TRCVMODE_STANDBY or
CANTRCV_TRCVMODE_SLEEP. ⌋ ()
[SWS_CanTrcv_00103] ⌈ The user of the CanTrcv module shall call the function

CanTrcv_SetOpMode with OpMode = CANTRCV_TRCVMODE_STANDBY or

CANTRCV_TRCVMODE_NORMAL, if the Transceiver is in mode
CANTRCV_TRCVMODE_NORMAL. ⌋ ()
[SWS_CanTrcv_00104] ⌈ The user of the CanTrcv module shall call the function

CanTrcv_SetOpMode with OpMode = CANTRCV_TRCVMODE_SLEEP or

CANTRCV_TRCVMODE_STANDBY, if the Transceiver is in mode
CANTRCV_TRCVMODE_STANDBY. ⌋ ()
This API is applicable to each transceiver with each value for parameter

CanTrcv_SetOpMode, regardless of whether the transceiver hardware supports

these modes or not. This is to simplify the view of the CanIf to the assigned bus.
[SWS_CanTrcv_00105] ⌈ If the requested mode is not supported by the underlying

transceiver hardware, the function CanTrcv_SetOpMode shall return E_NOT_OK.

⌋ ()
The number of supported busses is set up in the configuration phase.

[SWS_CanTrcv_00186] ⌈ If selective wakeup is supported by hardware: the flags

POR and SYSERR of the transceiver status shall be checked by

CanTrcv_SetOpMode API. ⌋ ()

[SWS_CanTrcv_00187] ⌈ If the POR flag is set, transceiver shall be re-initialized to

run the transceiver’s configuration sequence.⌋ ()

[SWS_CanTrcv_00188] ⌈ If the SYSERR flag is NOT set and the requested mode

is CANTRCV_NORMAL, transceiver shall call the API

CanIf_ConfirmPnAvailability() for the corresponding abstract CanIf Trans-

ceiverId. CanIf_ConfirmPnAvailability informs CanNm (through CanIf and

CanSm) that selective wakeup is enabled.⌋ ()

[SWS_CanTrcv_00114] ⌈ If there is no/incorrect communication to the transceiver,

the function CanTrcv_SetOpMode shall report development error

CANTRCV_E_NO_TRCV_CONTROL and return E_NOT_OK. ⌋ ()

[SWS_CanTrcv_00120] ⌈ If development error detection for the module CanTrcv is
enabled:

If the function CanTrcv_SetOpMode is called with OpMode =

CANTRCV_TRCVMODE_STANDBY, and the Transceiver is not in mode
CANTRCV_TRCVMODE_NORMAL or CANTRCV_TRCVMODE_STANDBY, the

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

35 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

function CanTrcv_SetOpMode shall raise the development error

CANTRCV_E_TRCV_NOT_NORMAL and return E_NOT_OK. ⌋ ()

[SWS_CanTrcv_00121] ⌈ If development error detection for the module CanTrcv is
enabled:

If the function CanTrcv_SetOpMode is called with OpMode =

CANTRCV_TRCVMODE_SLEEP, and the Transceiver is not in mode
CANTRCV_TRCVMODE_STANDBY or CANTRCV_TRCVMODE_SLEEP, the func-

tion CanTrcv_SetOpMode shall raise the development error

CANTRCV_E_TRCV_NOT_STANDBY and return E_NOT_OK. ⌋ ()

[SWS_CanTrcv_00122] ⌈ If development error detection for the module CanTrcv is
enabled:
If called before the CanTrcv module has been initialized, the function

CanTrcv_SetOpMode shall raise the development error CANTRCV_E_UNINIT and

return E_NOT_OK. ⌋ ()

[SWS_CanTrcv_00123] ⌈ If development error detection for the module CanTrcv is
enabled: If called with an invalid Transceiver number, the function

CanTrcv_SetOpMode shall raise the development error

CANTRCV_E_INVALID_TRANSCEIVER and return E_NOT_OK. ⌋ ()

[SWS_CanTrcv_00087] ⌈ If development error detection for the module CanTrcv is

enabled: If called with an invalid OpMode, the function CanTrcv_SetOpMode shall

raise the development error CANTRCV_E_PARAM_TRCV_OPMODE and return

E_NOT_OK. ⌋ ()

8.3.3 CanTrcv_GetOpMode

[SWS_CanTrcv_00005]
⌈
Service name: CanTrcv_GetOpMode

Syntax: Std_ReturnType CanTrcv_GetOpMode(

 uint8 Transceiver,

 CanTrcv_TrcvModeType* OpMode

)

Service ID[hex]: 0x02

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): Transceiver CAN transceiver to which API call has to be applied.

Parameters (in-
out):

None

Parameters (out): OpMode Pointer to operation mode of the bus the API is applied to.

Return value:
Std_ReturnType E_OK: will be returned if the operation mode was detected.

E_NOT_OK: will be returned if the operation mode was not de-
tected.

Description: Gets the mode of the Transceiver and returns it in OpMode.

⌋ (SRS_BSW_00310, SRS_BSW_00329, SRS_BSW_00369, SRS_BSW_00371,
SRS_BSW_00377, SRS_BSW_00406, SRS_Can_01091, SRS_Can_01097,
SRS_Can_01101, SRS_Can_01109, SRS_Can_01110)
[SWS_CanTrcv_00106] ⌈ The function CanTrcv_GetOpMode shall collect the actual
state of the CAN transceiver driver in the out parameter OpMode. ⌋ ()

See function CanTrcv_Init for the provided state after the CAN transceiver driver

initialization till the first operation mode change request.

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

36 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

The number of supported busses is statically set in the configuration phase.
[SWS_CanTrcv_00115] ⌈ If there is no/incorrect communication to the transceiver,

the function CanTrcv_GetOpMode shall report the development error

CANTRCV_E_NO_TRCV_CONTROL and return E_NOT_OK. ⌋ ()

[SWS_CanTrcv_00124] ⌈ If development error detection for the module CanTrcv is
enabled: If called before the CanTrcv module has been initialized, the function

CanTrcv_GetOpMode shall raise the development error CANTRCV_E_UNINIT and

return E_NOT_OK. ⌋ ()

[SWS_CanTrcv_00129] ⌈ If development error detection for the module CanTrcv is
enabled: If called with an invalid Transceiver number, the function

CanTrcv_GetOpMode shall raise the development error

CANTRCV_E_INVALID_TRANSCEIVER and return E_NOT_OK. ⌋ ()

[SWS_CanTrcv_00132] ⌈ If development error detection for the module CanTrcv is

enabled: If called with OpMode = NULL, the function CanTrcv_GetOpMode shall

raise the development error CANTRCV_E_PARAM_POINTER and return E_NOT_OK.

⌋ ()

8.3.4 CanTrcv_GetBusWuReason

[SWS_CanTrcv_00007]
⌈
Service name: CanTrcv_GetBusWuReason

Syntax: Std_ReturnType CanTrcv_GetBusWuReason(

 uint8 Transceiver,

 CanTrcv_TrcvWakeupReasonType* reason

)

Service ID[hex]: 0x03

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): Transceiver CAN transceiver to which API call has to be applied.

Parameters (in-
out):

None

Parameters (out): reason Pointer to wake up reason of the bus the API is applied to.

Return value:

Std_ReturnType E_OK: will be returned if the transceiver wakeup reason was
provided.
E_NOT_OK: will be returned if no wake up reason is available or
if the service request failed due to development errors.

Description: Gets the wakeup reason for the Transceiver and returns it in parameter Reason.

⌋ (SRS_BSW_00310, SRS_BSW_00329, SRS_BSW_00369, SRS_BSW_00371,
SRS_BSW_00375, SRS_BSW_00377, SRS_BSW_00406, SRS_Can_01091,
SRS_Can_01095, SRS_Can_01097, SRS_Can_01103, SRS_Can_01106,
SRS_Can_01109, SRS_Can_01110)
[SWS_CanTrcv_00107] ⌈ The function CanTrcv_GetBusWuReason shall collect the
reason for the wake up that the CAN transceiver has detected in the parameter Rea-
son. ⌋ ()
The ability to detect and differentiate the possible wake up reasons depends strongly
on the CAN transceiver hardware.
Be aware if more than one bus is available, each bus may report a different wake up
reason. E.g. if an ECU has CAN, a wake up by CAN may occur and the incoming
data may cause an internal wake up for another CAN bus.
The CAN transceiver driver has a “per bus” view and does not vote the more im-
portant reason or sequence internally. The same may be true if e.g. one transceiver
controls the power supply and the other is just powered or un-powered.

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

37 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

The number of supported busses is statically set in the configuration phase.
[SWS_CanTrcv_00116] ⌈ If there is no/incorrect communication to the transceiver,

the function CanTrcv_GetBusWuReason shall report the development error

CANTRCV_E_NO_TRCV_CONTROL and return E_OK. ⌋ ()

[SWS_CanTrcv_00125] ⌈ If development error detection for the module CanTrcv is
enabled: If called before the CanTrcv module has been initialized, the function

CanTrcv_GetBusWuReason shall raise development error CANTRCV_E_UNINIT

and return E_NOT_OK. ⌋ ()

[SWS_CanTrcv_00130] ⌈ If development error detection for the module CanTrcv is
enabled: If called with an invalid Transceiver number, the function

CanTrcv_GetBusWuReason shall raise development error

CANTRCV_E_INVALID_TRANSCEIVER and return E_NOT_OK. ⌋ ()

[SWS_CanTrcv_00133] ⌈ If development error detection for the module CanTrcv is

enabled: If called with Reason = NULL, the function CanTrcv_GetBusWuReason

shall raise the development error CANTRCV_E_PARAM_POINTER and return

E_NOT_OK. ⌋ ()

8.3.5 CanTrcv_GetVersionInfo

[SWS_CanTrcv_00008]
⌈
Service name: CanTrcv_GetVersionInfo

Syntax: void CanTrcv_GetVersionInfo(

 Std_VersionInfoType* versioninfo

)

Service ID[hex]: 0x04

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): None

Parameters (in-
out):

None

Parameters (out): versioninfo Pointer to version information of this module.

Return value: None

Description: Gets the version of the module and returns it in VersionInfo.

⌋ (SRS_BSW_00310, SRS_BSW_00329, SRS_BSW_00369, SRS_BSW_00371,
SRS_BSW_00406, SRS_BSW_00407, SRS_BSW_00411)

8.3.6 CanTrcv_ SetWakeupMode

[SWS_CanTrcv_00009]
⌈
Service name: CanTrcv_SetWakeupMode

Syntax: Std_ReturnType CanTrcv_SetWakeupMode(

 uint8 Transceiver,

 CanTrcv_TrcvWakeupModeType TrcvWakeupMode

)

Service ID[hex]: 0x05

Sync/Async: Synchronous

Reentrancy: Reentrant for different transceivers

Parameters (in):
Transceiver CAN transceiver to which API call has to be applied.

TrcvWakeupMode Requested transceiver wakeup reason

Parameters (in- None

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

38 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

out):

Parameters (out): None

Return value:

Std_ReturnType E_OK: Will be returned, if the wakeup state has been changed
to the requested mode.
E_NOT_OK: Will be returned, if the wakeup state change has
failed or the parameter is out of the allowed range. The previ-
ous state has not been changed.

Description: Enables, disables or clears wake-up events of the Transceiver according to
TrcvWakeupMode.

⌋ (SRS_BSW_00310, SRS_BSW_00329, SRS_BSW_00369, SRS_BSW_00371,
SRS_BSW_00406, SRS_Can_01091, SRS_Can_01097, SRS_Can_01109,
SRS_Can_01110, SRS_Can_01115)

[SWS_CanTrcv_00111] ⌈ Enabled: If the function CanTrcv_SetWakeupMode is

called with TrcvWakupMode = CANTRCV_ WUMODE_ENABLE and if the CanTrcv
module has a stored wakeup event pending for the addressed bus, the CanTrcv
module shall update its wakeup event as ‘present’. ⌋ ()

[SWS_CanTrcv_00093] ⌈ Disabled: If the function CanTrcv_SetWakeupMode is

called with TrcvWakeupMode = CANTRCV_ WUMODE_DISABLE, the wakeup
events are disabled on the addressed transceiver. It is required by the transceiver
device and the transceiver driver to detect the wakeup events and store it internally,
in order to raise the wakeup events when the wakeup mode is enabled again.
⌋ (SRS_BSW_00388, SRS_BSW_00389, SRS_BSW_00390, SRS_BSW_00391,
SRS_BSW_00392, SRS_BSW_00393, SRS_BSW_00394, SRS_BSW_00395,
SRS_BSW_00408, SRS_BSW_00160, SRS_Can_01090)

[SWS_CanTrcv_00094] ⌈ Clear: If the function CanTrcv_SetWakeupMode is

called with TrcvWakeupMode = CANTRCV_ WUMODE_CLEAR, then a stored
wakeup event is cleared on the addressed transceiver. ⌋ ()
[SWS_CanTrcv_00150] ⌈ Clearing of wakeup events have to be used when the
wake up notification is disabled to clear all stored wake up events under control of
the higher layer. ⌋ ()
[SWS_CanTrcv_00095] ⌈ The implementation can enable, disable or clear wake up
events from the last communication cycle. It is very important not to lose wake up
events during the disabled period. ⌋ (SRS_BSW_00388, SRS_BSW_00389,
SRS_BSW_00390, SRS_BSW_00391, SRS_BSW_00392, SRS_BSW_00393,
SRS_BSW_00394, SRS_BSW_00395, SRS_BSW_00408, SRS_BSW_00160,
SRS_Can_01090)
The number of supported busses is statically set in the configuration phase.
[SWS_CanTrcv_00117] ⌈ If there is no/incorrect communication to the transceiver,

the function CanTrcv_SetWakeupMode shall report the development error

CANTRCV_E_NO_TRCV_CONTROL and return E_NOT_OK. ⌋ ()

[SWS_CanTrcv_00127] ⌈ If development error detection for the module CanTrcv is
enabled: If called before the CanTrcv has been initialized, the function

CanTrcv_SetWakeupMode shall raise development error CANTRCV_E_UNINIT and

return E_NOT_OK. ⌋ ()

[SWS_CanTrcv_00131] ⌈ If development error detection for the module CanTrcv is
enabled: If called with an invalid Transceiver number, the function

CanTrcv_SetWakeupMode shall raise development error

CANTRCV_E_INVALID_TRANSCEIVER and return E_NOT_OK. ⌋ ()

[SWS_CanTrcv_00089] ⌈ If development error detection for the module CanTrcv is
enabled: If called with an invalid TrcvWakeupMode, the function

CanTrcv_SetWakeupMode shall raise the development error

CANTRCV_E_PARAM_TRCV_WAKEUP_MODE

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

39 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

and return E_NOT_OK. ⌋ ()

8.3.7 CanTrcv_GetTrcvSystemData

[SWS_CanTrcv_00213]

⌈

Service name: CanTrcv_GetTrcvSystemData

Syntax: Std_ReturnType CanTrcv_GetTrcvSystemData(

 uint8 Transceiver,

 const uint32* TrcvSysData

)

Service ID[hex]: 0x09

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): Transceiver CAN transceiver ID.

Parameters (in-
out):

None

Parameters (out): TrcvSysData Configuration/Status data of the transceiver.

Return value:

Std_ReturnType E_OK: will be returned if the transceiver status is successfully
read.
E_NOT_OK: will be returned if the transceiver status data is not
available or a development error occurs.

Description: Reads the transceiver configuration/status data and returns it through parameter
TrcvSysData. This API shall exist only if CanTrcvHwPnSupport = TRUE.

⌋ ()

[SWS_CanTrcv_00189] ⌈ The function CanTrcv_GetTrcvSystemData shall read

the configuration/status of the CAN transceiver and store the read data in the out pa-

rameter TrcvSysData. If this is successful, E_OK shall be returned.

Hint: This API can be invoked through diagnostic services or during initialization to
determine the transceiver status and its availability.
Note: Currently an agreement on the parameter set for the transceiver HW specifica-
tion has not been reached. For this reason, the diagnostic data is now returned as a
uint32 (as stored in the transceiver registers). When a definitive and standard pa-
rameter set is defined, a data structure may be defined for abstracting the diagnostic

data. ⌋ ()

[SWS_CanTrcv_00190] ⌈ If there is no/incorrect communication to the transceiver,

the function CanTrcv_GetTrcvSystemData shall report the development error

CANTRCV_E_NO_TRCV_CONTROL and return E_NOT_OK. ⌋ ()

[SWS_CanTrcv_00191] ⌈ If DET is enabled for the CanTrcv module: if called be-

fore the CanTrcv has been initialized, the function CanTrcv_GetTrcvSystemData

shall raise development error CANTRCV_E_UNINIT and return E_NOT_OK. ⌋ ()

[SWS_CanTrcv_00192] ⌈ If DET is enabled for the CanTrcv module: if called with

an invalid transceiver ID for parameter Transceiver, function

CanTrcv_GetTrcvSystemData shall raise the development error

CANTRCV_E_INVALID_TRANSCEIVER and return E_NOT_OK. ⌋ ()

[SWS_CanTrcv_00193] ⌈ If DET is enabled for the CanTrcv module: if called with

NULL pointer for parameter TrcvSysData, function

CanTrcv_GetTrcvSystemData shall raise the development error

CANTRCV_E_PARAM_POINTER and return E_NOT_OK. ⌋ ()

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

40 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

8.3.8 CanTrcv_ClearTrcvWufFlag

[SWS_CanTrcv_00214]

⌈

Service name: CanTrcv_ClearTrcvWufFlag

Syntax: Std_ReturnType CanTrcv_ClearTrcvWufFlag(

 uint8 Transceiver

)

Service ID[hex]: 0x0a

Sync/Async: Synchronous

Reentrancy: Reentrant for different transceivers

Parameters (in): Transceiver CAN Transceiver ID.

Parameters (in-
out):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: will be returned if the WUF flag has been cleared.

E_NOT_OK: will be returned if the WUF flag has not been
cleared or a development error occurs.

Description: Clears the WUF flag in the transceiver hardware. This API shall exist only if
CanTrcvHwPnSupport = TRUE.

⌋ (SRS_Can_01157)

[SWS_CanTrcv_00194] ⌈ The function CanTrcv_ClearTrcvWufFlag shall clear

the wakeup flag in the CAN transceiver. If successful, E_OK shall be returned.

Implementation Hints:
This API shall be used by the CanSM module for ensuring that no frame wakeup
event is lost, during entering a low-power mode. This API clears the WUF flag.

The CAN transceiver shall be shall be put into Standby mode (CANTRCV_STANDBY)

after clearing of the WUF flag.
If a system error (SYSERR, e.g. configuration error) occurs while selective wakeup
functionality is being enabled, transceiver will disable the functionality. Transceiver
will wake up on the next CAN wake pattern (WUP).
In case of any other hardware error (e.g. frame detection error), transceiver will wake

up if the error counter inside the transceiver overflows. ⌋ ()

[SWS_CanTrcv_00195] ⌈ CanTrcv shall inform CanIf that the wakeup flag has been

cleared for the requested Transceiver, through the callback notification

CanIf_ClearTrcvWufFlagIndication referring to the corresponding CAN

transceiver with the abstract CanIf TransceiverId. ⌋ ()

[SWS_CanTrcv_00196] ⌈ If there is no/incorrect communication to the transceiver,

the function CanTrcv_ClearTrcvWufFlag shall report the development error

CANTRCV_E_NO_TRCV_CONTROL and return E_NOT_OK. ⌋ ()

[SWS_CanTrcv_00197] ⌈ If DET is enabled for the CanTrcv module: if called be-

fore the CanTrcv has been initialized, the function CanTrcv_ClearTrcvWufFlag

shall raise development error CANTRCV_E_UNINIT and return E_NOT_OK. ⌋ ()

[SWS_CanTrcv_00198] ⌈ If DET is enabled for the CanTrcv module: if called with

an invalid transceiver ID for parameter Transceiver, function

CanTrcv_ClearTrcvWufFlag shall raise the development error

CANTRCV_E_INVALID_TRANSCEIVER and return E_NOT_OK. ⌋ ()

8.3.9 CanTrcv_ReadTrcvTimeoutFlag

[SWS_CanTrcv_00215]

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

41 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

⌈

Service name: CanTrcv_ReadTrcvTimeoutFlag

Syntax: Std_ReturnType CanTrcv_ReadTrcvTimeoutFlag(

 uint8 Transceiver,

 CanTrcv_TrcvFlagStateType* FlagState

)

Service ID[hex]: 0x0b

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): Transceiver CAN transceiver ID.

Parameters (in-
out):

None

Parameters (out): FlagState State of the timeout flag.

Return value:

Std_ReturnType E_OK: Will be returned, if status of the timeout flag is success-
fully read.
E_NOT_OK: Will be returned, if status of the timeout flag
could not be read.

Description: Reads the status of the timeout flag from the transceiver hardware. This API shall
exist only if CanTrcvHwPnSupport = TRUE.

⌋ ()

[SWS_CanTrcv_00199] ⌈ If DET for the module CanTrcv is enabled: If called with

an invalid transceiver ID Transceiver, the function

CanTrcv_ReadTrcvTimeoutFlag shall raise the development error

CANTRCV_E_INVALID_TRANSCEIVER and return E_NOT_OK. ⌋ ()

[SWS_CanTrcv_00200] ⌈ If DET for the module CanTrcv is enabled: If called with

FlagState = NULL, the function CanTrcv_ReadTrcvTimeoutFlag shall raise

the development error CANTRCV_E_PARAM_POINTER and return E_NOT_OK. ⌋ ()

8.3.10 CanTrcv_ClearTrcvTimeoutFlag

[SWS_CanTrcv_00216]

⌈

Service name: CanTrcv_ClearTrcvTimeoutFlag

Syntax: Std_ReturnType CanTrcv_ClearTrcvTimeoutFlag(

 uint8 Transceiver

)

Service ID[hex]: 0x0c

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): Transceiver CAN transceiver ID.

Parameters (in-
out):

None

Parameters (out): None

Return value:

Std_ReturnType E_OK: Will be returned, if the timeout flag is successfully
cleared.
E_NOT_OK: Will be returned, if the timeout flag could not be
cleared.

Description: Clears the status of the timeout flag in the transceiver hardware. This API shall
exist only if CanTrcvHwPnSupport = TRUE.

⌋ ()

[SWS_CanTrcv_00201] ⌈ If DET for the module CanTrcv is enabled: If called with

an invalid transceiver ID Transceiver, the function

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

42 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

CanTrcv_ClearTrcvTimeoutFlag shall raise the development error

CANTRCV_E_INVALID_TRANSCEIVER and return E_NOT_OK. ⌋ ()

8.3.11 CanTrcv_ReadTrcvSilenceFlag

[SWS_CanTrcv_00217]

⌈

Service name: CanTrcv_ReadTrcvSilenceFlag

Syntax: Std_ReturnType CanTrcv_ReadTrcvSilenceFlag(

 uint8 Transceiver,

 CanTrcv_TrcvFlagStateType* FlagState

)

Service ID[hex]: 0x0d

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): Transceiver CAN transceiver ID.

Parameters (in-
out):

None

Parameters (out): FlagState State of the silence flag.

Return value:

Std_ReturnType E_OK: Will be returned, if status of the silence flag is success-
fully read.
E_NOT_OK: Will be returned, if status of the silence flag could
not be read.

Description: Reads the status of the silence flag from the transceiver hardware. This API shall
exist only if CanTrcvHwPnSupport = TRUE.

⌋ ()

[SWS_CanTrcv_00202] ⌈ If DET for the module CanTrcv is enabled: If called with

an invalid transceiver ID Transceiver, the function

CanTrcv_ReadTrcvSilenceFlag shall raise the development error

CANTRCV_E_INVALID_TRANSCEIVER and return E_NOT_OK. ⌋ ()

[SWS_CanTrcv_00203] ⌈ If DET for the module CanTrcv is enabled: If called with

FlagState = NULL, the function CanTrcv_ReadTrcvSilenceFlag shall raise

the development error CANTRCV_E_PARAM_POINTER and return E_NOT_OK. ⌋ ()

8.3.12 CanTrcv_CheckWakeup

[SWS_CanTrcv_00143]
⌈
Service name: CanTrcv_CheckWakeup

Syntax: Std_ReturnType CanTrcv_CheckWakeup(

 uint8 Transceiver

)

Service ID[hex]: 0x07

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): Transceiver CAN transceiver to which API call has to be applied.

Parameters (in-
out):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: API call has been accepted

E_NOT_OK: API call has not been accepted

Description: Service is called by underlying CANIF in case a wake up interrupt is detected.

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

43 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

 ⌋ ()

EcuM_EndCheckWakeup(WakeupSource) is called by CanTrcv_CheckWakeup for

checking the wakeup source asynchronously.

[SWS_CanTrcv_00144] ⌈ If development error detection for the module CanTrcv is
enabled: If called before the CanTrcv module has been initialized, the function

CanTrcv_CheckWakeup shall raise the development error CANTRCV_E_UNINIT

and return E_NOT_OK. ⌋ ()

[SWS_CanTrcv_00145] ⌈ If development error detection for the module CanTrcv is
enabled: If called with an invalid Transceiver number, the function

CanTrcv_CheckWakeup shall raise the development error

CANTRCV_E_INVALID_TRANSCEIVER and return E_NOT_OK. ⌋ ()

[SWS_CanTrcv_00146] ⌈ If supported by hardware, CanTrcv_CheckWakeup shall

validate whether there has been a wake up due to transceiver activity and if TRUE,

reporting shall be done to EcuM via API EcuM_SetWakeupEvent with the wakeup

source referenced in CanTrcvWakeupSourceRef.⌋ ()

8.3.13 CanTrcv_SetPNActivationState

[SWS_CanTrcv_00219]

⌈

Service name: CanTrcv_SetPNActivationState

Syntax: Std_ReturnType CanTrcv_SetPNActivationState(

 CanTrcv_PNActivationType ActivationState

)

Service ID[hex]: 0x0f

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in):

ActivationState PN_ENABLED: PN wakeup functionality in CanTrcv shall be
enabled.
PN_DIABLED: PN wakeup functionality in CanTrcv shall be
disabled.

Parameters (in-
out):

None

Parameters (out): None

Return value:

Std_ReturnType E_OK: Will be returned, if the PN has been changed to the
requested configuration.
E_NOT_OK: Will be returned, if the PN configuration change
has failed. The previous configuration has not been changed.

Description: The API configures the wake-up of the transceiver for Standby and Sleep Mode:
Either the CAN transceiver is woken up by a remote wake-up pattern (standard
CAN wake-up) or by the configured remote wake-up frame.

⌋ ()

[SWS_CanTrcv_00220] ⌈ If development error detection for the module CanTrcv is

enabled: If called before the CanTrcv module has been initialized, the function

CanTrcv_SetPNActivationState shall raise the development error

CANTRCV_E_UNINIT and return E_NOT_OK. ⌋ ()

[SWS_CanTrcv_00221] ⌈ CanTrcv shall enable the PN wakeup functionality when

function CanTrcv_SetPNActivationState is called with ActivationState=

PN_ENABLED and return E_OK. ⌋ ()

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

44 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

[SWS_CanTrcv_00222] ⌈ CanTrcv shall disable the PN wakeup functionality when

function CanTrcv_SetPNActivationState is called with ActivationState=

PN_DISABLED and return E_OK. ⌋ ()

8.3.14 CanTrcv_CheckWakeFlag

[SWS_CanTrcv_00223] ⌈

Service name: CanTrcv_CheckWakeFlag

Syntax: Std_ReturnType CanTrcv_CheckWakeFlag(

 uint8 Transceiver

)

Service ID[hex]: 0x0e

Sync/Async: Asynchronous

Reentrancy: Non Reentrant

Parameters (in): Transceiver CAN transceiver ID.

Parameters (in-
out):

None

Parameters (out): None

Return value:

Std_ReturnType E_OK: Will be returned, if the request for checking the wakeup
flag has been accepted.
E_NOT_OK: Will be returned, if the request for checking the
wakeup flag has not been accepted.

Description: Requests to check the status of the wakeup flag from the transceiver hardware.

⌋ ()

[SWS_CanTrcv_00224] ⌈ CanTrcv shall inform the CanIf with the callback notifica-

tion CanIf_CheckTrcvWakeFlagIndication, that the wake flag of the CAN

Transceiver with the corresponding TransceiverId has been checked.⌋()
[SWS_CanTrcv_00225] ⌈ If DET for the module CanTrcv is enabled: If called with

an invalid transceiver ID Transceiver, the function CanTrcv_CheckWakeFlag shall

raise the development error CANTRCV_E_INVALID_TRANSCEIVER and return

E_NOT_OK.⌋ ()

8.4 Scheduled functions

This chaper lists all functions provided by the CanTrcv module and called directly by
the Basic Software Module Scheduler.

8.4.1 CanTrcv_MainFunction

[SWS_CanTrcv_00013]
⌈
Service name: CanTrcv_MainFunction

Syntax: void CanTrcv_MainFunction(

 void

)

Service ID[hex]: 0x06

Description: Service to scan all busses for wake up events and perform these event.

⌋ (SRS_BSW_00310, SRS_BSW_00329, SRS_BSW_00369, SRS_BSW_00371,
SRS_BSW_00373, SRS_BSW_00376, SRS_BSW_00406, SRS_BSW_00424,

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

45 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

SRS_BSW_00428, SRS_BSW_00171, SRS_BSW_00172, SRS_Can_01097,
SRS_Can_01109, SRS_Can_01110)
The CAN bus transceiver driver may have cyclic jobs like polling for wake up events
(if configured).

[SWS_CanTrcv_00112] ⌈ The CanTrcv_MainFunction shall scan all busses in

STANDBY and SLEEP for wake up events.
This function shall set a wake-up event flag to perform these events.
⌋ (SRS_BSW_00343)
According to [SRS_BSW_00424], main processing functions shall be allocated by
basic tasks. No special call order to be kept. This function is directly called by Basic
Software Scheduler.

See configuration parameter CanTrcvWakeUpSupport.

[SWS_CanTrcv_00128] ⌈ If development error detection for the module CanTrcv is
enabled: If called before the CanTrcv has been initialized, the function

CanTrcv_MainFunction shall raise development error CANTRCV_E_UNINIT. ⌋ ()

8.4.2 CanTrcv_MainFunctionDiagnostics

[SWS_CanTrcv_00218]

⌈

Service name: CanTrcv_MainFunctionDiagnostics

Syntax: void CanTrcv_MainFunctionDiagnostics(

 void

)

Service ID[hex]: 0x08

Description: Reads the transceiver diagnostic status periodically and sets product/development
accordingly.

⌋ ()

[SWS_CanTrcv_00204] ⌈ The cyclic function

CanTrcv_MainFunctionDiagnostics shall read the transceiver status periodi-

cally and report production/development errors accordingly. ⌋ ()

[SWS_CanTrcv_00205] ⌈ The cyclic function

CanTrcv_MainFunctionDiagnostics shall exist only if CanTrcvBusErrFlag

= TRUE. ⌋ ()

[SWS_CanTrcv_00206] ⌈ If configured and supported by hardware: if the BUSERR

flag reported from BSW is set, function CanTrcv_MainFunctionDiagnostics

shall call the API Dem_ReportErrorStatus with parameters EventId as

CANTRCV_E_BUS_ERROR and EventStatus as DEM_EVENT_STATUS_FAILED.

⌋ (SRS_BSW_00337, SRS_BSW_00385, SRS_BSW_00327, SRS_BSW_00331)

[SWS_CanTrcv_00227] ⌈ If configured and supported by hardware: if the BUSERR

flag reported from BSW is reset, function CanTrcv_MainFunctionDiagnostics

shall call the API Dem_ReportErrorStatus with parameters EventId as

CANTRCV_E_BUS_ERROR and EventStatus as DEM_EVENT_STATUS_PASSED.⌋

(SRS_BSW_00337, SRS_BSW_00385, SRS_BSW_00327, SRS_BSW_00331)

[SWS_CanTrcv_00207] ⌈ If DET for the module CanTrcv is enabled: If called be-

fore the CanTrcv has been initialized, the function

CanTrcv_MainFunctionDiagnostics shall raise development error

CANTRCV_E_UNINIT. ⌋ ()

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

46 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

8.5 Call-back notifications

Since the CanTrcv is a driver module, it doesn’t provide any callback functions for
lower layer modules.

8.6 Expected Interfaces

This chapter lists all functions the module CanTrcv requires from other modules.

8.6.1 Mandatory Interfaces

This chapter defines all interfaces which are required to fulfill the core functionality of
the module.
[SWS_CanTrcv_00085]
⌈
API function Description

CanIf_TrcvModeIndication This service indicates a transceiver state transition referring to the cor-
responding CAN transceiver with the abstract CanIf TransceiverId.

Dem_ReportErrorStatus Queues the reported events from the BSW modules (API is only used
by BSW modules). The interface has an asynchronous behavior, be-
cause the processing of the event is done within the Dem main function.
OBD Events Suppression shall be ignored for this computation.

⌋ (SRS_BSW_00370)
8.6.2 Optional Interfaces

This chapter defines all interfaces which are required to fulfill an optional functionality
of the module.

[SWS_CanTrcv_00086]
⌈
API function Description

CanIf_CheckTrcvWakeFlagIndication This service indicates that the check of the transceiver's wake-up
flag has been finished by the corresponding CAN transceiver with
the abstract CanIf TransceiverId. This indication is used to cope
with the asynchronous transceiver communication.

CanIf_ClearTrcvWufFlagIndication This service indicates that the transceiver has cleared the
WufFlag referring to the corresponding CAN transceiver with the
abstract CanIf TransceiverId.

CanIf_ConfirmPnAvailability This service indicates that the transceiver is running in PN com-
munication mode referring to the corresponding CAN transceiver
with the abstract CanIf TransceiverId.

Det_ReportError Service to report development errors.

Dio_ReadChannel Returns the value of the specified DIO channel.

Dio_ReadChannelGroup This Service reads a subset of the adjoining bits of a port.

Dio_ReadPort Returns the level of all channels of that port.

Dio_WriteChannel Service to set a level of a channel.

Dio_WriteChannelGroup Service to set a subset of the adjoining bits of a port to a speci-
fied level.

Dio_WritePort Service to set a value of the port.

EcuM_SetWakeupEvent Sets the wakeup event.

Icu_DisableNotification This function disables the notification of a channel.

Icu_EnableNotification This function enables the notification on the given channel.

Spi_GetStatus Service returns the SPI Handler/Driver software module status.

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

47 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

Spi_ReadIB Service for reading synchronously one or more data from an IB
SPI Handler/Driver Channel specified by parameter.

Spi_SetupEB Service to setup the buffers and the length of data for the EB SPI
Handler/Driver Channel specified.

Spi_SyncTransmit Service to transmit data on the SPI bus

Spi_WriteIB Service for writing one or more data to an IB SPI Handler/Driver
Channel specified by parameter.

Tm_BusyWait1us16bit Performs busy waiting by polling with a guaranteed minimum
waiting time.

 ⌋ ()

1. The interfaces of the SPI module are used by the CanTrcv module if there are
instances of the container CanTrcvSpiSequence.

2. The interfaces of the DIO module are used by the CanTrcv module if there are
instances of the container CanTransceiverDIOAccess.

Note: If the Can transceiver is controlled via Dio/Spi, the Dio/Spi interfaces are re-
quired to fulfill the core functionality of the module. Which interfaces are needed ex-
actly shall not be detailed further in this specification

8.6.3 Configurable interfaces

There are no configurable interfaces for CAN transceiver driver.

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

48 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

9 Sequence diagram

The focus of the following diagrams is on the interaction between the CAN transceiv-
er driver and the BSW modules CanIf, ComM, EcuM and Dio. Depending on the CAN

transceiver hardware, one or more calls to Dio_WriteChannels may be neces-

sary.
Depending on the transceiver hardware, there may be a need of wait states for some
transitions.

9.1 Wake up with valid validation

For all wakeup related sequence diagrams please refer to chapter 9 of ECU State
Manager.

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

49 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

9.2 Interaction with DIO module

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

50 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

«mod...

EcuM

«module»

ComM

«module»

CanIf

«module»

CanTrcv

«mod...

Dio

«Peripheral»

CAN Transceiver

Hardware

Comment:

�

CAN transceiver

hardware is now in

NORMAL mode. It's

ready to operate.

Comment:

CAN transceiver

hardware is now in

STANDBY mode. No

transmitting or receiving

possible. It's ready to

wake up again.

Comment:

CAN transceiver

hardware is now in

SLEEP mode. No

transmitting or receiving

possible. It's ready to

wake up again

ref
Start CAN Network

ref
Stop & Sleep CAN Network

ComM_EcuM_WakeUpIndication(NetworkHandleType)

ComM_EcuM_WakeUpIndication()

CanIf_SetTrcvMode(CANIF_TRCV_MODE_NORMAL)

CanTrcv_SetOpMode(CANIF_TRCV_MODE_NORMAL)

Dio_WriteChannel(Dio_ChannelType,

Dio_LevelType)

set/reset HW

ports()
Dio_WriteChannel()

Dio_WriteChannel(Dio_ChannelType,

Dio_LevelType) set/reset HW

ports()Dio_WriteChannel()

CanTrcv_SetOpMode()

CanIf_SetTrcvMode()

start CAN

Communication()

stop CAN

Communication()

CanIf_SetTrcvMode(CANIF_TRCV_MODE_STANDBY)

CanTrcv_SetOpMode(CANIF_TRCV_MODE_STANDBY)

Dio_WriteChannel(Dio_ChannelType,

Dio_LevelType) set/reset HW

ports()
Dio_WriteChannel()

Dio_WriteChannel(Dio_ChannelType,

Dio_LevelType) set/reset HW

ports()Dio_WriteChannel()

CanTrcv_SetOpMode()

CanIf_SetTrcvMode()

CanIf_SetTrcvMode(CANIF_TRCV_MODE_SLEEP)

CanTrcv_SetOpMode(CANIF_TRCV_MODE_SLEEP)

Dio_WriteChannel(Dio_ChannelType,

Dio_LevelType)

set/reset HW

ports()Dio_WriteChannel()

Dio_WriteChannel(Dio_ChannelType,

Dio_LevelType)
set/reset HW

ports()Dio_WriteChannel()

CanTrcv_SetOpMode()

CanIf_SetTrcvMode()

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

51 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

52 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

9.3 De-Initialization (SPI Synchronous)

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

53 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

«module»

CanTrcv

«module»

EcuM

«module»

CanIf

«module»

ComM

«module»

CanSM

«module»

Spi

«module»

Can

ComM state ==

NoCom

CanSM mode ==

SilentCom

Trcv == NORMAL Ctrl == STARTED

SPI request is processed synchronously

[1] CanSm_MainFunction() shall not return if response indication was

called during request function. The next step in Shutdown sequence

shall directly be performed.

-> Here CanSM_ClearWufFlagIndication was called during

CanSM_ClearTrcvWufFlag

-> next step in sequence (CanIf_SetControllerMode) shall be

performed

alt CanSM_ClearTrcvWufFlagIndication() was called

In CanSM buffered CtrlMode =

CANIF_CS_STOPPED

see note [1]

alt CanSM_TransceiverModeIndication was called with TransceiverMode == STANDBY

In CanSM buffered CtrlMode =

CANIF_CS_SLEEP if E_OK has

been returned

If CanIf_SetControllerMode(ControllerId, CANIF_CS_SLEEP) returns E_NOT_OK, the

buffered CC state in CanSM is not changed to CANIF_CS_SLEEP

alt Wakeup Source

[bus (priority_high)]

[pin (prio_medium)]

[no wakeup (prio_low)]

see note [1]

see note [1]
If Wake Flags are cleared, the

dominant level on RxD has to be

cleared. -> OEM HW requirement

alt return value of SetCtrlMode (SLEEP)

[E_OK]

[E_NOT_OK]

alt return value of SetCtrlMode (SLEEP)

[E_OK]

[E_NOT_OK]

see note [1]

CanSM_RequestComMode(NetworkA,

NoCom)

CanSM_MainFunction()

CanIf_ClearTrcvWufFlag(TransceiverId)

CanTrcv_ClearTrcvWufFlag(Transceiver)

Spi_SyncTransmit(Sequence)

CanIf_ClearTrcvWufFlagIndication(TransceiverId)

CanSM_ClearTrcvWufFlagIndication(Transceiver)

CanIf_SetControllerMode(ControllerId,

CANIF_CS_STOPPED)

Can_SetControllerMode(Controller,

CAN_T_STOP) :Can_ReturnType

CanIf_SetTrcvMode(TransceiverId,

CANIF_TRCV_MODE_STANDBY)

CanTrcv_SetOpMode(Transceiver, CANIF_TRCV_MODE_STANDBY)

:Std_ReturnType
Spi_SyncTransmit(Sequence)

CanIf_TrcvModeIndication(TransceiverId,

CANIF_TRCV_MODE_STANDBY)

CanSM_TransceiverModeIndication(TransceiverId,

CANIF_TRCV_MODE_STANDBY)

CanIf_SetControllerMode(ControllerId,

CANIF_CS_SLEEP)

Can_SetControllerMode(Controller,

CAN_T_SLEEP) :

Can_ReturnType

:CAN_OK / CAN_NOT_OK

:E_OK / E_NOT_OK

CanIf_CheckTrcvWakeFlag(TransceiverId)

CanTrcv_CheckWakeFlag(Transceiver)

Read Wake Flag via

Spi_SyncTransmit()

EcuM_SetWakeupEvent(WuSourceBus)

[optional]:

EcuM_SetWakeupEvent(WuSourcePin)

Clear Wake Flag via

Spi_SyncTransmit()

CanIf_CheckTrcvWakeFlagIndication(TransceiverId)

CanSM_CheckTransceiverWakeFlagIndication(Transceiver)

ComM_CanSM_ModeIndication(NetworkA,

NoCom)

CanIf_CheckTrcvWakeFlagIndication(TransceiverId)

CanSM_CheckTransceiverWakeFlagIndication(Transceiver)

ComM_BusSM_ModeIndication(NetworkA,

NoCom)

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

54 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

9.4 De-Initialization (SPI Asynchronous)

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

55 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

«module»

CanTrcv

«module»

EcuM

«module»

CanIf

«module»

ComM

«module»

CanSM

«module»

Spi

«module»

Can

ComM state ==

NoCom

CanSM mode ==

SilentCom

Trcv == NORMAL Ctrl == STARTED

alt CanSM_ClearTrcvWufFlagIndication() was called

In CanSM buffered CtrlMode =

CANIF_CS_STOPPED

alt CanSM_TransceiverModeIndication was called with TransceiverMode == STANDBY

In CanSM buffered CtrlMode =

CANIF_CS_SLEEP if E_OK has

been returned

If CanIf_SetControllerMode(ControllerId, CANIF_CS_SLEEP) returns E_NOT_OK, the

buffered CC state in CanSM is not changed to CANIF_CS_SLEEP

alt Wakeup Source

[bus (priority_high)]

[pin (prio_medium)]

[no wakeup (prio_low)]

see note [1] above

see note [1] above
If Wake Flags are cleared, the

dominant level on RxD has to be

cleared. -> OEM HW requirement

alt return value of SetCtrlMode (SLEEP)

[E_OK]

[E_NOT_OK]

alt return value of SetCtrlMode (SLEEP)

[E_OK]

[E_NOT_OK]

see note [1] above

[1] It could be checked via

- Spi_JobEndNotification() callback or

- Spi_GetSequenceResult() or

- Spi_ReadIB()

whether SPI request was successfully transmitted via SPI l ines.

This could either be done in interrupt context or in

CanTrcv_MainFunction().

see note [1] above

see note [1] above

In CanSM buffered Trcv Mode =

CANIF_TRCV_MODE_STANDBY

CanSM_RequestComMode(NetworkA, NoCom)

:Std_ReturnType

CanSM_MainFunction()

CanIf_ClearTrcvWufFlag(TransceiverId)

:Std_ReturnType

CanTrcv_ClearTrcvWufFlag(Transceiver) :

Std_ReturnType

Spi_AsyncTransmit(Sequence)

:Std_ReturnType

CanIf_ClearTrcvWufFlagIndication(TransceiverId)

CanSM_ClearTrcvWufFlagIndication(Transceiver)

CanSM_MainFunction()

CanIf_SetControllerMode(ControllerId,

CANIF_CS_STOPPED) :

Std_ReturnType

Can_SetControllerMode(Controller,

CAN_T_STOP) :Can_ReturnType

CanIf_SetTrcvMode(TransceiverId, CANIF_TRCV_MODE_STANDBY) :

Std_ReturnType

CanTrcv_SetOpMode(Transceiver, CANIF_TRCV_MODE_STANDBY) :

Std_ReturnType
Spi_AsyncTransmit(Sequence)

:Std_ReturnType

CanIf_TrcvModeIndication(TransceiverId,

CANIF_TRCV_MODE_STANDBY)

CanSM_TransceiverModeIndication(TransceiverId,

CANIF_TRCV_MODE_STANDBY)

CanIf_SetControllerMode(ControllerId,

CANIF_CS_SLEEP) :Std_ReturnType

Can_SetControllerMode(Controller,

CAN_T_SLEEP) :Can_ReturnType

:CAN_OK / CAN_NOT_OK

:E_OK / E_NOT_OK

CanIf_CheckTrcvWakeFlag(TransceiverId)

:Std_ReturnType

CanTrcv_CheckWakeFlag(Transceiver)

:Std_ReturnType

Read Wake Flag via Spi_AsyncTransmit()

EcuM_SetWakeupEvent(WuSourceBus)

[optional]:

EcuM_SetWakeupEvent(WuSourcePin)

Clear Wake Flag via Spi_AsyncTransmit()

CanIf_CheckTrcvWakeFlagIndication(TransceiverId)

CanSM_CheckTransceiverWakeFlagIndication(Transceiver)

ComM_CanSM_ModeIndication(NetworkA,

NoCom)

CanIf_CheckTrcvWakeFlagIndication(TransceiverId)

CanSM_CheckTransceiverWakeFlagIndication(Transceiver)

ComM_BusSM_ModeIndication(NetworkA, NoCom)

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

56 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

10 Configuration specification

In general this chapter defines configuration parameters and their clustering into con-
tainers. In order to support the specification Chapter 10.1 describes fundamentals.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
CanTrcv.

Chapter 0 specifies published information of the module CanTrcv.

10.1 How to read this chapter

For details refer to the chapter 10.1 “Introduction to configuration specification” in
SWS_BSWGeneral

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

57 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed mean-
ings of the parameters are described in preeding hapters.

10.2.1 Variants

Currently VARIANT-PRE-COMPILE variant is defined for CanTrcv.
VARIANT-PRE-COMPILE:Only parameters with “Pre-compile time” configuration are
allowed in this variant
[SWS_CanTrcv_00017] ⌈ Only Pre-compile time configuration is allowed. Thus only
VARIANT-PRE-COMPILE is allowed. ⌋ (SRS_BSW_00396, SRS_Can_01091)

10.2.2 CanTrcv
Module Name CanTrcv

Module Description Configuration of the CanTrcv (CAN Transceiver driver) module.

Post-Build Variant Support true

Included Containers

Container Name Multiplicity Scope / Dependency

CanTrcvConfigSet 1
This container contains the configuration parameters and sub
containers of the AUTOSAR WdgM module.

CanTrcvGeneral 1 Container gives CAN transceiver driver basic information.

CanTrcv :EcucModuleDef

upperMultiplicity = *

lowerMultiplicity = 0

CanTrcvChannel :

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

CanTrcvGeneral :

EcucParamConfContainerDef

lowerMultiplicity = 1

upperMultiplicity = 1

CanTrcvAccess :

EcucChoiceContainerDef

upperMultiplicity = 1

lowerMultiplicity = 1

CanTrcvConfigSet :

EcucParamConfContainerDef

CanTrcvPartialNetwork :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = 1

CanTrcvSPICommTimeout :

EcucIntegerParamDef

min = 0

max = 100

defaultValue = 0

CanTrcvSPICommRetries :

EcucIntegerParamDef

min = 0

max = 255

defaultValue = 0

+parameter

+parameter

+subContainer

+subContainer

+subContainer

+container

+container

10.2.3 CanTrcvGeneral
SWS Item ECUC_CanTrcv_00090 :

Container Name CanTrcvGeneral

Description Container gives CAN transceiver driver basic information.

Configuration Parameters

SWS Item ECUC_CanTrcv_00152 :

Name

CanTrcvDevErrorDetect

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

58 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

Description Switches the Default Error Tracer (Det) detection and notification ON or
OFF.

 true: enabled (ON).

 false: disabled (OFF).

If enabled, #define CANTRCV_DEV _ERROR_DETECT ON shall be gen-
erated. If disabled, #define CANTRCV_DEV_ERROR _DETECT OFF shall
be generated.
Define shall be part of file CanTrcv_Cfg.h.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_CanTrcv_00153 :

Name

CanTrcvGetVersionInfo

Description Switches version information API on and off. If switched off, function need
not be present in compiled code.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_CanTrcv_00184 :

Name

CanTrcvIndex

Description Specifies the InstanceId of this module instance. If only one instance is
present it shall have the Id 0.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 255

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_CanTrcv_00187 :

Name

CanTrcvMainFunctionDiagnosticsPeriod

Description This parameter describes the period for cyclic call to
CanTrcv_MainFunctionDiagnostics. Unit is seconds.

Multiplicity 0..1

Type EcucFloatParamDef

Range 0.001 .. 65.535

Default value --

Post-Build Variant Multi-
plicity

false

Post-Build Variant Value false

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

59 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_CanTrcv_00186 :

Name

CanTrcvMainFunctionPeriod

Description This parameter describes the period for cyclic call to
CanTrcv_MainFunction. Unit is seconds.

Multiplicity 0..1

Type EcucFloatParamDef

Range 0.001 .. 65.535

Default value --

Post-Build Variant Multi-
plicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_CanTrcv_00190 :

Name

CanTrcvTimerType

Description Type of the Time Service Predefined Timer.

Multiplicity 0..1

Type EcucEnumerationParamDef

Range None None

Timer_1us16bit 16 bit 1us timer

Post-Build Variant
Multiplicity

false

Post-Build Variant
Value

false

Multiplicity Config-
uration Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configura-
tion Class

Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependen-
cy

scope: local

SWS Item ECUC_CanTrcv_00191 :

Name

CanTrcvWaitTime

Description Wait time for transceiver state changes in seconds.

Multiplicity 0..1

Type EcucFloatParamDef

Range 0 .. 2.55E-4

Default value --

Post-Build Variant Multi-
plicity

false

Post-Build Variant Value false

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

60 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_CanTrcv_00154 :

Name

CanTrcvWakeUpSupport

Description Informs whether wake up is supported by polling or not supported. In case no
wake up is supported by the hardware, setting has to be NOT_SUPPORTED. Only in
the case of wake up supported by polling, function CanTrcv_MainFunction has to be
present and to be invoked by the scheduler.

Multiplicity 1

Type EcucEnumerationParamDef

Range CANTRCV_WAKEUP_BY_POLLING Wake up by polling

CANTRCV_WAKEUP_NOT_SUPPORTED Wake up is not supported

Post-Build Vari-
ant Value

false

Value Configura-
tion Class

Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Depend-
ency

scope: local
dependency: CanTrcvWakeupByBusUsed

No Included Containers

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

61 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

CanTrcvGeneral :

EcucParamConfContainerDef

lowerMultiplicity = 1

upperMultiplicity = 1

CanTrcvDevErrorDetect :

EcucBooleanParamDef

CanTrcvGetVersionInfo :

EcucBooleanParamDef

defaultValue = false

CanTrcvWakeUpSupport :

EcucEnumerationParamDef

CANTRCV_WAKEUP_BY_POLLING :

EcucEnumerationLiteralDef

CANTRCV_WAKEUP_NOT_SUPPORTED :

EcucEnumerationLiteralDef

CanTrcvIndex :

EcucIntegerParamDef

min = 0

max = 255

CanTrcvMainFunctionPeriod :

EcucFloatParamDef

min = 0.001

max = 65.535

lowerMultiplicity = 0

upperMultiplicity = 1

CanTrcvMainFunctionDiagnosticsPeriod :

EcucFloatParamDef

min = 0.001

max = 65.535

lowerMultiplicity = 0

upperMultiplicity = 1

CanTrcvTimerType :

EcucEnumerationParamDef

lowerMultiplicity = 0

upperMultiplicity = 1

None :

EcucEnumerationLiteralDef

Timer_1us16bit :

EcucEnumerationLiteralDef

CanTrcvWaitTime :

EcucFloatParamDef

min = 0

max = 0.000255

lowerMultiplicity = 0

upperMultiplicity = 1

+literal

+literal

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+literal

+literal

10.2.4 CanTrcvConfigSet
SWS Item ECUC_CanTrcv_00173 :

Container Name CanTrcvConfigSet

Description
This container contains the configuration parameters and sub containers of
the AUTOSAR WdgM module.

Configuration Parameters

SWS Item ECUC_CanTrcv_00175 :

Name

CanTrcvSPICommRetries

Description Indicates the maximum number of communication retries in case of a failed
SPI communication (applies both to timed out communication and to er-
rors/NACK in the response data).
If configured value is '0', no retry is allowed (communication is expected to
succeed at first try).

Multiplicity 1

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

62 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

Type EcucIntegerParamDef

Range 0 .. 255

Default value 0

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local
dependency: This parameter exists only if atleast one SPI Sequence is
referenced in CanTrcvSpiSequence.

SWS Item ECUC_CanTrcv_00174 :

Name

CanTrcvSPICommTimeout

Description Indicates the maximum time allowed to the CanTrcv for replying (either
positively or negatively) to a SPI command.
Timeout is configured in milliseconds. Timeout value of '0' means that no
specific timeout is to be used by CanTrcv and the communication is exe-
cuted at the best of the SPI HW capacity.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 100

Default value 0

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local
dependency: This parameter exists only if atleast one SPI Sequence is
referenced in CanTrcvSpiSequence.

Included Containers

Container Name Multiplicity Scope / Dependency

CanTrcvChannel 1..*
Container gives CAN transceiver driver information about a
single CAN
transceiver (channel).

10.2.5 CanTrcvChannel
SWS Item ECUC_CanTrcv_00143 :

Container Name CanTrcvChannel

Description
Container gives CAN transceiver driver information about a single CAN
transceiver (channel).

Configuration Parameters

SWS Item ECUC_CanTrcv_00155 :

Name

CanTrcvChannelId

Description Unique identifier of the CAN Transceiver Channel.

Multiplicity 1

Type EcucIntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 255

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

63 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

SWS Item ECUC_CanTrcv_00096 :

Name

CanTrcvChannelUsed

Description Shall the related CAN transceiver channel be used?

Multiplicity 1

Type EcucBooleanParamDef

Default value true

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_CanTrcv_00097 :

Name

CanTrcvControlsPowerSupply

Description Is ECU power supply controlled by this transceiver?
TRUE = Controlled by transceiver. FALSE = Not controlled by transceiver.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_CanTrcv_00160 :

Name

CanTrcvHwPnSupport

Description Indicates whether the HW supports the selective wake-up function
TRUE = Selective wakeup feature is supported by the transceiver FALSE
= Selective wakeup functionality is not available in transceiver

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local
dependency: CanTrcvWakeUpSupport

SWS Item ECUC_CanTrcv_00146 :

Name

CanTrcvInitState

Description State of CAN transceiver after call to CanTrcv_Init.

Multiplicity 1

Type EcucEnumerationParamDef

Range CANTRCV_OP_MODE_NORMAL Normal operation mode

CANTRCV_OP_MODE_SLEEP Sleep operation mode

CANTRCV_OP_MODE_STANDBY Standby operation mode

Default value CANTRCV_OP_MODE_NORMAL

Post-Build Variant
Value

false

Value Configura-
tion Class

Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Depend-
ency

scope: local

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

64 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

SWS Item ECUC_CanTrcv_00147 :

Name

CanTrcvMaxBaudrate

Description Max baudrate for transceiver hardware type. Only used for validation pur-
poses. Value shall be configured by configuration tool based on
transceiver hardware type.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 1000

Default value --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_CanTrcv_00148 :

Name

CanTrcvWakeupByBusUsed

Description Is wake up by bus supported? If CAN transceiver hardware does not sup-
port wake up by bus value is always FALSE. If CAN transceiver hardware
supports wake up by bus value is TRUE or FALSE depending whether it is
used or not.
TRUE = Is used. FALSE = Is not used.

Multiplicity 0..1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Multi-
plicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local
dependency: CanTrcvWakeUpSupport

SWS Item ECUC_CanTrcv_00185 :

Name

CanTrcvIcuChannelRef

Description Reference to the IcuChannel to enable/disable the interrupts
for wakeups.

Multiplicity 0..1

Type Reference to [IcuChannel]

Post-Build Variant Multi-
plicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency

SWS Item ECUC_CanTrcv_00181 :

Name

CanTrcvPorWakeupSourceRef

Description Symbolic name reference to specify the wakeup sources that should be
used in the calls to EcuM_SetWakeupEvent as specified in

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

65 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

[SWS_CanTrcv_00183] and [SWS_CanTrcv_00184].
This reference is mandatory if the HW supports POR or SYSERR flags

Multiplicity 0..1

Type Symbolic name reference to [EcuMWakeupSource]

Post-Build Variant Multi-
plicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_CanTrcv_00182 :

Name

CanTrcvSyserrWakeupSourceRef

Description Symbolic name reference to specify the wakeup sources that should be
used in the calls to EcuM_SetWakeupEvent as specified in
[SWS_CanTrcv_00183] and [SWS_CanTrcv_00184]
This reference is mandatory if the HW supports POR or SYSERR flags

Multiplicity 0..1

Type Symbolic name reference to [EcuMWakeupSource]

Post-Build Variant Multi-
plicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_CanTrcv_00177 :

Name

CanTrcvWakeupSourceRef

Description Reference to a wakeup source in the EcuM configuration.
This reference is only needed if CanTrcvWakeupByBusUsed is true.

Multiplicity 0..1

Type Reference to [EcuMWakeupSource]

Post-Build Variant Multi-
plicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU
dependency: CanTrcvWakeupByBusUsed

Included Containers

Container Name Multiplicity Scope / Dependency

CanTrcvAccess 1
Container gives CanTrcv Driver information about access
to a single CAN transceiver.

CanTrcvDemEventParameter-
Refs

0..1
Container for the references to DemEventParameter ele-
ments which shall be invoked using the API

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

66 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

Dem_ReportErrorStatus in case the corresponding error
occurs. The EventId is taken from the referenced DemEv-
entParameter's DemEventId value.

CanTrcvPartialNetwork 0..1
Container gives CAN transceiver driver information about
the configuration of Partial Networking functionality.

CANTRCV_OP_MODE_NORMAL :

EcucEnumerationLiteralDef

CANTRCV_OP_MODE_STANDBY :

EcucEnumerationLiteralDef

CANTRCV_OP_MODE_SLEEP :

EcucEnumerationLiteralDef

CanTrcvChannel :

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

CanTrcvWakeupByBusUsed :

EcucBooleanParamDef

defaultValue = false

lowerMultiplicity = 0

upperMultiplicity = 1

CanTrcvInitState :EcucEnumerationParamDef

defaultValue = CANTRCV_OP_MODE_NORMAL

CanTrcvControlsPowerSupply :

EcucBooleanParamDef

defaultValue = false

CanTrcvChannelUsed :EcucBooleanParamDef

defaultValue = true

CanTrcvMaxBaudrate :EcucIntegerParamDef

max = 1000

min = 0

CanTrcvAccess :EcucChoiceContainerDef

upperMultiplicity = 1

lowerMultiplicity = 1

CanTrcvChannelId :EcucIntegerParamDef

symbolicNameValue = true

max = 255

CanTrcvPartialNetwork :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = 1

CanTrcvWakeupSourceRef :EcucReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

EcuMWakeupSource :EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

(from EcuM)

CanTrcvPorWakeupSourceRef :

EcucSymbolicNameReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

CanTrcvSyserrWakeupSourceRef :

EcucSymbolicNameReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

CanTrcvIcuChannelRef :

EcucReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

IcuChannel :

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

(from ICU)

CanTrcvDemEventParameterRefs :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = 1

CANTRCV_E_BUS_ERROR :

EcucReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

DemEventParameter :

EcucParamConfContainerDef

upperMultiplicity = 65535

lowerMultiplicity = 1

(from Dem)

+reference

+subContainer

+parameter

+parameter

+parameter

+subContainer

+parameter

+parameter

+reference

+parameter

+reference

+destination
+subContainer

+literal

+literal

+literal

+destination

+destination

+destination

+destination

+reference

+reference

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

67 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

10.2.6 CanTrcvAccess
SWS Item ECUC_CanTrcv_00101 :

Choice container Name CanTrcvAccess

Description
Container gives CanTrcv Driver information about access to a single CAN
transceiver.

Container Choices

Container Name Multiplicity Scope / Dependency

CanTrcvDioAccess 0..1

Container gives CAN transceiver driver information about ac-
cessing ports and port pins. In addition relation between CAN
transceiver hardware pin names and Dio port access infor-
mation is given.
If a CAN transceiver hardware has no Dio interface, there is no
instance of this container.

CanTrcvSpiAccess 0..1
Container gives CAN transceiver driver information about ac-
cessing Spi. If a CAN transceiver hardware has no Spi inter-
face, there is no instance of this container.

CanTrcvSpiSequence :

EcucParamConfContainerDef

lowerMultiplicity = 1

upperMultiplicity = *

CanTrcvDioAccess :

EcucParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 0

CanTrcvSpiSequenceName :

EcucSymbolicNameReferenceDef

lowerMultiplicity = 0

upperMultiplicity = *

CanTrcvHardwareInterfaceName :

EcucStringParamDef
CanTrcvAccess :

EcucChoiceContainerDef

upperMultiplicity = 1

lowerMultiplicity = 1

CanTrcvDioSymNameRef :

EcucChoiceReferenceDef

CanTrcvDioChannelAccess :

EcucParamConfContainerDef

lowerMultiplicity = 1

upperMultiplicity = *

CanTrcvSpiAccessSynchronous :

EcucBooleanParamDef

defaultValue = false

lowerMultiplicity = 0

upperMultiplicity = 1

CanTrcvSpiAccess :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = 1

+subContainer

+reference

+parameter

+choice

+choice

+subContainer

+reference

+parameter

10.2.7 CanTrcvDioAccess
SWS Item ECUC_CanTrcv_00145 :

Container Name CanTrcvDioAccess

Description

Container gives CAN transceiver driver information about accessing ports
and port pins. In addition relation between CAN transceiver hardware pin
names and Dio port access information is given. If a CAN transceiver
hardware has no Dio interface, there is no instance of this container.

Configuration Parameters

Included Containers

Container Name Multiplicity Scope / Dependency

CanTrcvDioChannelAccess 1..*
Container gives DIO channel access by single Can transceiver
channel.

10.2.8 CanTrcvDioChannelAccess
SWS Item ECUC_CanTrcv_00157 :

Container Name CanTrcvDioChannelAccess

Description Container gives DIO channel access by single Can transceiver channel.

Configuration Parameters

SWS Item ECUC_CanTrcv_00150 :

Name

CanTrcvHardwareInterfaceName

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

68 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

Description CAN transceiver hardware interface name. It is typically the name of a pin.
From a Dio point of view it is either a port, a single channel or a channel
group. Depending on this fact either
CANTRCV_DIO_PORT_SYMBOLIC_NAME or
CANTRCV_DIO_CHANNEL_SYMBOLIC_NAME or
CANTRCV_DIO_CHANNEL_GROUP_SYMBOLIC_NAME shall reference
a Dio configuration. The CAN transceiver driver implementation description
shall list up this name for the appropriate CAN transceiver hardware.

Multiplicity 1

Type EcucStringParamDef

Default value --

maxLength --

minLength --

regularExpression --

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_CanTrcv_00149 :

Name

CanTrcvDioSymNameRef

Description Choice Reference to a DIO Port, DIO Channel or DIO Channel Group. This
reference replaces the CANTRCV_DIO_PORT_SYM_NAME,
CANTRCV_DIO_CHANNEL_SYM_NAME and
CANTRCV_DIO_GROUP_SYM_NAME references in the Can Trcv SWS.

Multiplicity 1

Type Choice reference to [DioChannel , DioChannelGroup , DioPort]

Post-Build Variant Value false

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency

No Included Containers

10.2.9 CanTrcvSpiAccess
SWS Item ECUC_CanTrcv_00183 :

Container Name CanTrcvSpiAccess

Description
Container gives CAN transceiver driver information about accessing Spi. If
a CAN transceiver hardware has no Spi interface, there is no instance of
this container.

Configuration Parameters

Included Containers

Container Name Multiplicity Scope / Dependency

CanTrcvSpiSequence 1..*

Container gives CAN transceiver driver information about one
SPI sequence.
One SPI sequence used by CAN transceiver driver is in exclu-
sive use for it. No other driver is allowed to access this se-
quence. CAN transceiver driver may use one sequence to
access n CAN transceiver hardwares chips of the same type
or n sequences are used to access one single CAN transceiv-
er hardware chip. If a CAN transceiver hardware has no SPI
interface, there is no instance of this container.

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

69 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

10.2.10 CanTrcvSpiSequence
SWS Item ECUC_CanTrcv_00144 :

Container Name CanTrcvSpiSequence

Description

Container gives CAN transceiver driver information about one SPI se-
quence. One SPI sequence used by CAN transceiver driver is in exclusive
use for it. No other driver is allowed to access this sequence. CAN trans-
ceiver driver may use one sequence to access n CAN transceiver hard-
wares chips of the same type or n sequences are used to access one sin-
gle CAN transceiver hardware chip. If a CAN transceiver hardware has no
SPI interface, there is no instance of this container.

Configuration Parameters

SWS Item ECUC_CanTrcv_00176 :

Name

CanTrcvSpiAccessSynchronous

Description This parameter is used to define whether the access to the Spi sequence
is synchronous or asynchronous.
true: SPI access is synchronous. false: SPI access is asynchronous.

Multiplicity 0..1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Multi-
plicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_CanTrcv_00151 :

Name

CanTrcvSpiSequenceName

Description Reference to a Spi sequence configuration container.

Multiplicity 0..*

Type Symbolic name reference to [SpiSequence]

Post-Build Variant Multi-
plicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local
dependency: SpiSequence

No Included Containers

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

70 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

CanTrcvSpiSequenceName :

EcucSymbolicNameReferenceDef

lowerMultiplicity = 0

upperMultiplicity = *

SpiSequence :

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

(from SPI)

DioChannelGroup :

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

(from DIO)

CanTrcvDioAccess :

EcucParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 0

CanTrcvSpiSequence :

EcucParamConfContainerDef

lowerMultiplicity = 1

upperMultiplicity = *

DioPort :EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

(from DIO)

DioChannel :EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

(from DIO)

CanTrcvDioSymNameRef :

EcucChoiceReferenceDef

CanTrcvDioChannelAccess :

EcucParamConfContainerDef

lowerMultiplicity = 1

upperMultiplicity = *

+reference

+destination+reference

+destination

+subContainer

+destination

+subContainer

+subContainer

+destination

10.2.11 CanTrcvDemEventParameterRefs
SWS Item ECUC_CanTrcv_00188 :

Container Name CanTrcvDemEventParameterRefs

Description

Container for the references to DemEventParameter elements which shall
be invoked using the API Dem_ReportErrorStatus in case the correspond-
ing error occurs. The EventId is taken from the referenced DemEventPa-
rameter's DemEventId value.

Configuration Parameters

SWS Item ECUC_CanTrcv_00189 :

Name

CANTRCV_E_BUS_ERROR

Description Reference to the DemEventParameter which shall be issued when bus
error has occurred.

Multiplicity 0..1

Type Reference to [DemEventParameter]

Post-Build Variant Multi-
plicity

false

Post-Build Variant Value false

Multiplicity Configuration
Class

Pre-compile time X All Variants

Link time --

Post-build time --

Value Configuration Class Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU
dependency: DEM

No Included Containers

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

71 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

10.2.12 CanTrcvPartialNetwork
SWS Item ECUC_CanTrcv_00161 :

Container Name CanTrcvPartialNetwork

Description
Container gives CAN transceiver driver information about the configuration
of Partial Networking functionality.

Configuration Parameters

SWS Item ECUC_CanTrcv_00169 :

Name

CanTrcvBaudRate

Description Indicates the CAN Bus communication baud rate in kbps.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 1000

Default value --

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local
dependency: Although WUF with DLC=0 is technically possible, it is explic-
itly not wanted.

SWS Item ECUC_CanTrcv_00171 :

Name

CanTrcvBusErrFlag

Description Indicates if the Bus Error (BUSERR) flag is managed by the BSW. This
flag is set if a bus failure is detected by the transceiver.
TRUE = Supported by transceiver and managed by BSW. FALSE = Not
managed by BSW.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_CanTrcv_00164 :

Name

CanTrcvPnCanIdIsExtended

Description Indicates whether extended or standard ID is used.
TRUE = Extended Can identifier is used. FALSE = Standard Can identifier
is used

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_CanTrcv_00172 :

Name

CanTrcvPnEnabled

Description Indicates whether the selective wake-up function is enabled or disabled in
HW.
TRUE = Selective wakeup feature is enabled in the transceiver hardware

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

72 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

FALSE = Selective wakeup feature is disabled in the transceiver hardware

Multiplicity 1

Type EcucBooleanParamDef

Default value false

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_CanTrcv_00163 :

Name

CanTrcvPnFrameCanId

Description CAN ID of the Wake-up Frame (WUF).

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value --

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_CanTrcv_00162 :

Name

CanTrcvPnFrameCanIdMask

Description ID Mask for the selective activation of the transceiver. It is used to enable-
Frame Wake-up (WUF) on a group of IDs.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value --

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_CanTrcv_00168 :

Name

CanTrcvPnFrameDlc

Description Data Length of the Wake-up Frame (WUF).

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 8

Default value --

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_CanTrcv_00170 :

Name

CanTrcvPowerOnFlag

Description Description: Indicates if the Power On Reset (POR) flag is available and is
managed by the transceiver.
TRUE = Supported by Hardware. FALSE = Not supported by Hardware

Multiplicity 1

Type EcucBooleanParamDef

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

73 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

Default value false

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

Included Containers

Container Name Multiplicity Scope / Dependency

CanTrcvPnFrameData-
MaskSpec

0..8
Defines data payload mask to be used on the received
payload in order to determine if the transceiver must be
woken up by the received Wake-up Frame (WUF).

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

74 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

CanTrcvPartialNetwork :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = 1

CanTrcvPnFrameCanIdMask :

EcucIntegerParamDef

min = 0

max = 4294967295

CanTrcvPnFrameCanId :

EcucIntegerParamDef

min = 0

max = 4294967295

CanTrcvPnCanIdIsExtended :

EcucBooleanParamDef

defaultValue = false

CanTrcvPnFrameDataMaskSpec :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = 8

CanTrcvPnFrameDataMask :

EcucIntegerParamDef

min = 0

max = 255

CanTrcvPnFrameDataMaskIndex :

EcucIntegerParamDef

min = 0

max = 7

CanTrcvPnFrameDlc :

EcucIntegerParamDef

min = 0

max = 8

CanTrcvBaudRate :EcucIntegerParamDef

min = 0

max = 1000

CanTrcvPowerOnFlag :

EcucBooleanParamDef

defaultValue = false

CanTrcvBusErrFlag :

EcucBooleanParamDef

defaultValue = false

CanTrcvPnEnabled :

EcucBooleanParamDef

defaultValue = false

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+subContainer

10.2.13 CanTrcvPnFrameDataMaskSpec
SWS Item ECUC_CanTrcv_00165 :

Container Name CanTrcvPnFrameDataMaskSpec

Description
Defines data payload mask to be used on the received payload in order to
determine if the transceiver must be woken up by the received Wake-up
Frame (WUF).

Configuration Parameters

SWS Item ECUC_CanTrcv_00166 :

Name

CanTrcvPnFrameDataMask

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

75 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

Description Defines the n byte (Byte0 = LSB) of the data payload mask to be used on
the received payload in order to determine if the transceiver must be wok-
en up by the received Wake-up Frame (WUF).

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 255

Default value --

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_CanTrcv_00167 :

Name

CanTrcvPnFrameDataMaskIndex

Description holds the position n in frame of the mask-part

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 7

Default value --

Post-Build Variant Value true

Value Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

No Included Containers

10.3 Published Information

For details refer to the chapter 10.3 “Published Information” in SWS_BSWGeneral

Specification of CAN Transceiver Driver
AUTOSAR Release 4.2.2

76 of 76 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

11 Not applicable requirements

[SWS_CanTrcv_00999] ⌈ These requirements are not applicable to this specifica-
tion. ⌋ (SRS_BSW_00304, SRS_BSW_00305, SRS_BSW_00306,
SRS_BSW_00307, SRS_BSW_00308, SRS_BSW_00309, SRS_BSW_00312,
SRS_BSW_00321, SRS_BSW_00325, SRS_BSW_00326, SRS_BSW_00328,
SRS_BSW_00330, SRS_BSW_00333, SRS_BSW_00334, SRS_BSW_00336,
SRS_BSW_00341, SRS_BSW_00342, SRS_BSW_00344, SRS_BSW_00355,
SRS_BSW_00359, SRS_BSW_00360, SRS_BSW_00378, SRS_BSW_00383,
SRS_BSW_00384, SRS_BSW_00387, SRS_BSW_00398, SRS_BSW_00399,
SRS_BSW_00400, SRS_BSW_00401, SRS_BSW_00404, SRS_BSW_00405,
SRS_BSW_00410, SRS_BSW_00416, SRS_BSW_00417, SRS_BSW_00420,
SRS_BSW_00422, SRS_BSW_00423, SRS_BSW_00426, SRS_BSW_00427,
SRS_BSW_00429, SRS_BSW_00431, SRS_BSW_00432, SRS_BSW_00433,
SRS_BSW_00434, SRS_BSW_00005, SRS_BSW_00006, SRS_BSW_00007,
SRS_BSW_00009, SRS_BSW_00010, SRS_BSW_00161, SRS_BSW_00164,
SRS_BSW_00168, SRS_Can_01107, SRS_Can_01138)

	1 Introduction
	1.1 Goal of CAN Transceiver Driver
	1.2 Explicitly uncovered CAN transceiver functionality
	1.3 Single wire CAN transceivers according SAE J2411

	2 Acronyms and abbreviations
	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms
	3.3 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 File structure
	5.1.1 Code file structure
	5.1.2 Header file structure

	6 Requirements Traceability
	7 Functional specification
	7.1 CAN transceiver driver operation modes
	7.1.1 Operation mode switching

	7.2 CAN transceiver hardware operation modes
	7.2.1 Example for temporary “Go-To-Sleep” mode
	7.2.2 Example for “PowerOn/ListenOnly” mode

	7.3 CAN transceiver wake up types
	7.4 Enabling/Disabling wakeup notification
	7.5 CAN transceiver wake up modes
	7.6 Error classification
	7.6.1 Development Errors
	7.6.2 Production Errors
	7.6.3 Extended Production Errors

	7.7 Preconditions for driver initialization
	7.8 Instance concept
	7.9 Wait states
	7.10 Transceivers with selective wakeup functionality

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.3 Function definitions
	8.3.1 CanTrcv_Init
	8.3.2 CanTrcv_SetOpMode
	8.3.3 CanTrcv_GetOpMode
	8.3.4 CanTrcv_GetBusWuReason
	8.3.5 CanTrcv_GetVersionInfo
	8.3.6 CanTrcv_ SetWakeupMode
	8.3.7 CanTrcv_GetTrcvSystemData
	8.3.8 CanTrcv_ClearTrcvWufFlag
	8.3.9 CanTrcv_ReadTrcvTimeoutFlag
	8.3.10 CanTrcv_ClearTrcvTimeoutFlag
	8.3.11 CanTrcv_ReadTrcvSilenceFlag
	8.3.12 CanTrcv_CheckWakeup
	8.3.13 CanTrcv_SetPNActivationState
	8.3.14 CanTrcv_CheckWakeFlag

	8.4 Scheduled functions
	8.4.1 CanTrcv_MainFunction
	8.4.2 CanTrcv_MainFunctionDiagnostics

	8.5 Call-back notifications
	8.6 Expected Interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.3 Configurable interfaces

	9 Sequence diagram
	9.1 Wake up with valid validation
	9.2 Interaction with DIO module
	9.3 De-Initialization (SPI Synchronous)
	9.4 De-Initialization (SPI Asynchronous)

	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.2.1 Variants
	10.2.2 CanTrcv
	10.2.3 CanTrcvGeneral
	10.2.4 CanTrcvConfigSet
	10.2.5 CanTrcvChannel
	10.2.6 CanTrcvAccess
	10.2.7 CanTrcvDioAccess
	10.2.8 CanTrcvDioChannelAccess
	10.2.9 CanTrcvSpiAccess
	10.2.10 CanTrcvSpiSequence
	10.2.11 CanTrcvDemEventParameterRefs
	10.2.12 CanTrcvPartialNetwork
	10.2.13 CanTrcvPnFrameDataMaskSpec

	10.3 Published Information

	11 Not applicable requirements

