AUTOSAR

Document Title | Specification of CAN Interface
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 012

Document Classification Standard

Document Status Final

Part of AUTOSAR Release 4.2.2

Document Change History

Release | Changed by Description
AUTOSAR e Clarified wakeup, buffering, transmit, and variants
422 Release e Removed deprecated APIs
Management | o Editorial changes
491 Release e Global Time Synchronization over CAN
Management e Removed Canlf_CancelTxConfirmation
e Small improvements
AUTOSAR e Removed BSW Exclusive areas
413 Release e Set ICOM support to optional
Management e Can_IdType handling
e Small improvements
e Restricted PDU mode changes
AUTOSAR e Removed critical section handling description in
4.1.2 Release chapter9
Management e Set CanlfinitRefCfgSet oboslete
e Pretended Networking section
e Small improvements
e CAN FD (without DLC extension)
e Pretended Networking (ICOM)
411 AUTOSAR' e Heavy Duty Vehicle (J1939) support
Administration | ¢ PduModes and PnTxFilter for clean wake-up
¢ Relation between PDUs & HOHs
e Post-build loadable concept

AUTOSAR

AUTOSAR e Partial Networking Support
4.0.3 Administration | ® !mproved Transmit Buffering
e Improved Error Detection
e Updated chapters "Version Checking" and
"Published Information”
e Multiple CAN IDs could optionally be assigned to
one |-PDU
e Wake-up validation optionally only via NM PDUs
e Asynch. mode indication call-backs instead of
synch. mode changes
4.0.1 AUTOSAR o No automatic PDU channel mode change when CC
Administration mode changes
e TxConfirmation state entered for BusOff Recovery
e WakeupSourceRefln and WakeupSourceRefOut
e PdulnfoPtr instead of SduDataPtr
¢ Introduction of Can_GeneralTypes.h and
Can_HwHandleType
e Transceiver types of chapter 8. shifted to
transceiver SWS
e HOH definition
e abstracted Controllerld and Transceiverld
¢ No changing of baudrate via Canlf and
Canlf_ControllerInit
e Dispatcher adapted because of CDD
AUTOSAR e TxBuffering: only one buffer per L-PDU
3.1.4 Administration | ® Wake up mechanism adapted to environment
behavior (network -> controller/transceiver;
wakeupSource)
e Mode changes made asynchronous
e no complete state machine in Canlf, just buffered
states per controller
e Legal disclaimer revised
3.1.1 ﬁgr-;(i?liss?rzion Legal disclaimer revised
3002 AUTOSAR' e Replaced chapter 10 content with generated tables
Administration from AUTOSAR MetaModel.

AUTOSAR

3.0.2

AUTOSAR
Administration

¢ Interface abstraction: network related interface
changed into a controller related one

e Wakeup mechanism completely reworked, APls
added & changed for Wakeup

e Initialization changed (flat initialization)

e Scheduled main functions skipped due to changed
BSW Scheduler responsibility

e Document meta information extended

e Small layout adaptations made

3.0.1

AUTOSAR
Administration

e Header file structure changed
e Support of mixed mode operation (Standard CAN &
Extended CAN in parallel on one network) added
e Support of CAN Transceiver API
<User>_DlIcErrorNotification deleted
e Pre-compile/Link-Time/Post-Built definition for
configuration parameters partly changed
Re-entrant interface call allowed for certain APls
Support of AUTOSAR BSW Scheduler added
Support of memory mapping added
Configuration container structure reworked
Various of clarification extensions and corrections

2.0.0

AUTOSAR
Administration

Second Release

1.0.0

AUTOSAR
Administration

Initial Release

AUTOSAR

Disclaimer

This specification and the material contained in it, as released by AUTOSAR, is for the
purpose of information only. AUTOSAR and the companies that have contributed to it
shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types of
Intellectual Property Rights. The commercial exploitation of the material contained in
this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only. For any other purpose, no part of
the specification may be utilized or reproduced, in any form or by any means, without
permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR specifications may contain exemplary items (exemplary reference models,
"use cases", and/or references to exemplary technical solutions, devices, processes or
software).

Any such exemplary items are contained in the specifications for illustration purposes
only, and they themselves are not part of the AUTOSAR Standard. Neither their pres-
ence in such specifications, nor any later documentation of AUTOSAR conformance of
products actually implementing such exemplary items, imply that intellectual property
rights covering such exemplary items are licensed under the same rules as applicable
to the AUTOSAR Standard.

AUTOSAR

Table of Contents

—

Introduction and functional overview

Acronyms and Abbreviations

Related documentation

3.1
3.2

Input documents & related standards and norms
Related specification,

Constraints and assumptions

4.1
4.2

Limitations e
Applicability to cardomains L

Dependencies to other modules

5.1
5.2
5.3
5.4
5.5
5.6
5.7

Upper Protocol Layers
Initialization: Ecu State Manager
Mode Control: CAN State Manager
Lower layers: CAN Driver o
Lower layers: CAN Transceiver Driver
Configuration
File structure
5.7.1 Codefilestructure, .
5.7.2 Header file structure L.

Requirements Tracing

Functional specification

7.1
7.2
7.3
7.4

7.5
7.6
7.7
7.8
7.9

General Functionality o
Hardware objecthandles
Static CANL-PDU handles
Dynamic CANL-PDUhandles
7.4.1 Dynamic transmit L-PDU handles
7.4.2 Dynamic receive L-PDU handles
Physical channelview
CANHardware Unit.
BasicCAN and FullCAN reception
Initialization
Transmitrequest

710 Transmitdataflow.

711

Transmitbuffering
7111 General behavior
7.11.2 Buffer characteristics

7.11.21 Storage of L-PDUs in the transmit L-PDU buffer . . .
7.11.2.2 Clearance of transmit L-PDU buffers
7.11.2.3 Initialization of transmit L-PDU buffers
7113 Data integrity of transmit L-PDU buffers

12

14

14
15

16

16
16

17

18
18
18
18
19
20
21
21
21

24

AUTOSAR

7.12 Transmitconfirmation, 47
7.12.1 Confirmation after transmission completion 47

713 Receivedataflow Lo 48
7.14 Receive indication 50
715 Readreceiveddata o o 52
7.16 Read Tx/Rx notificationstatus 52
717 Dataintegrity 53
7.18 CANControllerMode 54
7.18.1 General Functionality 54
7.18.2 CAN Controller Operation Modes 56
7.18.2.1 CANIF_CS_UNINIT 57

7.18.2.2 CANIF_CS_INIT 57

7.18.2.3 BUSOFF 59

7.18.2.4 Mode Indication 59

7.18.3 Controller Mode Transitions 60
7.18.4 Wake-up 60
7.18.41 Wake-up detection 61

7.18.4.2 Wake-up Validation 61

7.19 PDUchannel mode control 63
7.19.1 PDU channelgroups 63
7.19.2 PDUchannelmodes. 64
7.19.2.1 CANIF_OFFLINE 64

7.19.2.2 CANIF_ONLINE 65

7.19.2.3 CANIF_OFFLINE_ACTIVE 66

7.20 Softwarereceivefilter. Lo Lo 66
7.20.1 Software filteringconcepto 67
7.20.2 Software filter algorithms 68

721 DLCCheck e 68
7.22 L-SDU dispatchertoupperlayers 69
7.23 Pollingmode 69
7.24 Multiple CAN Driver support oo 70
7.241 Transmit requests by using multiple CAN Drivers 70
7.24.2 Notification mechanism using multiple CAN Drivers 72

7.25 Partial Networking 73
7.26 CANFD Support 74
7.27 Errorclassification 75
7.271 DevelopmentErrorso 75
7.27.2 Runtime Errors 76
7.27.3 TransientFaults o 76
7.27.4 ProductionErrors oo 76
7.27.5 Extended ProductionErrors 76

7.28 Errordetection 76
7.29 Error notification 76
8 API specification 77

8.1 Importedtypes 77

AUTOSAR

8.2

8.3

8.4

8.5
8.6

Type definitions 77
8.2.1 Canlf_ConfigType 77
8.2.2 Canlf_ControllerModeType 78
8.2.3 Canlf_PduModeType 79
8.24 Canlf_NotifStatusType 79

Function definitions Lo 80
8.3.1 Canlf Init 80
8.3.2 Canlf_SetControllerMode 80
8.3.3 Canlf_GetControllerMode 81
8.3.4 Canlf Transmit 82
8.3.5 Canlf CancelTransmit 85
8.3.6 Canlf ReadRxPduData 85
8.3.7 Canlf ReadTxNotifStatus 87
8.3.8 Canlf ReadRxNotifStatus 88
8.3.9 Canlf SetPduMode 89
8.3.10 Canlf GetPduMode 89
8.3.11 Canlf _GetVersioninfo 90
8.3.12 Canlf_SetDynamicTxIld 91
8.3.13 Canlf SetTrcvMode 92
8.3.14 Canlf GetTrevMode 93
8.3.15 Canlf_GetTrcvWakeupReason 94
8.3.16 Canlf_SetTrcvWakeupMode 96
8.3.17 Canlf CheckWakeup 98
8.3.18 Canlf CheckValidation 99
8.3.19 Canlf_GetTxConfirmationState 100
8.3.20 Canlf_ClearTrcvWufFlag 100
8.3.21 Canlf_CheckTrcvWakeFlag 101
8.3.22 Canlf SetBaudrate 102
8.3.23 Canlf_SetlcomConfiguration 103

Callback notifications L 104
8.4.1 Canlf_TriggerTransmit 104
8.4.2 Canlf_TxConfirmation 105
8.4.3 Canlf RxIndication 106
8.4.4 Canlf _ControllerBusOff 107
8.4.5 Canlf_ConfirmPnAvailability 108
8.4.6 Canlf_ClearTrcvWufFlagindication 109
8.4.7 Canlf_CheckTrcvWakeFlaglndication 110
8.4.8 Canlf_ControllerModelndication 112
8.4.9 Canlf_TrcvModelndication 112
8.4.10 Canlf_CurrentlcomConfiguration 114

Scheduled functions L L 114

Expectedinterfaces Lo oo 115
8.6.1 Mandatory interfaces L. 115
8.6.2 Optionalinterfaces 115
8.6.3 Configurable interfaces 117

8.6.3.1 <User_TriggerTransmit> 117

AUTOSAR

8.6.3.2 <User_TxConfirmation>
8.6.3.3 <User_RxIndication>
8.6.3.4 <User_ValidateWakeupEvent>
8.6.3.5 <User_ControllerBusOff>
8.6.3.6 <User_ConfirmPnAvailability>
8.6.3.7 <User_ClearTrcvWufFlaglndication>
8.6.3.8 <User_CheckTrcvWakeFlagIndication>
8.6.3.9 <User_ ControllerModelndication>
8.6.3.10 <User_TrcvModelndication>
9 Sequence diagrams

9.1 Transmit request (single CAN Driver)

9.2 Transmit request (multiple CAN Drivers)

9.3 Transmit confirmation (interrupt mode)

9.4 Transmit confirmation (polling mode)

9.5 Transmit confirmation (with buffering)

9.6 Transmit Cancelation

9.7 Trigger Transmit Request

9.8 Receive indication (interrupt mode)

9.9 Receive indication (polling mode)

9.10 Read received data

9.11 Start CAN network

9.12 BusOff notification

9.13 BusOff recovery . .

10

Configuration specification
10.1

How to read this chapter
10.2 Containers and configuration parameters

A Not applicable requirements

AUTOSAR

1 Introduction and functional overview

This specification describes the functionality, APl and the configuration for the AUTOSAR
Basic Software module CAN Interface.

As depicted in Figure 1.1 the CAN Interface module is located between the low level
CAN device drivers (CAN Driver [1] and Transceiver Driver [2]) and the upper commu-
nication service layers (i.e. CAN State Manager [3], CAN Network Management [4],
CAN Transport Protocol [5], PDU Router [6]). It represents the interface to the services
of the CAN Driver for the upper communication layers.

The CAN Interface module provides a unique interface to manage different CAN hard-
ware device types like CAN Controllers and CAN Transceivers used by the defined
ECU hardware layout. Thus multiple underlying internal and external CAN Controller-
s/CAN Transceivers can be controlled by the CAN State Managers module based on a
physical CAN channel related view.

AUTOSAR

Specification of CAN Interface
AUTOSAR Release 4.2.2

CAM
State
Manager
CAM M

CAM Transport

Protocol

AN Interface

CAM Transceiver Driver for ext.
Diriver CAMN ASIC

CAM Driver

External
CAMN Gontraller

Figure 1.1: AUTOSAR CAN Layer Model (see [7])

The CAN Interface module consists of all CAN hardware independent tasks, which
belongs to the CAN communication device drivers of the corresponding ECU. Those
functionality is implemented once in the CAN Interface module, so that underlying CAN
device drivers only focus on access and control of the corresponding specific CAN
hardware device.

canIf fulfils main control flow and data flow requirements of the PDU Router and
upper layer communication modules of the AUTOSAR COM stack: transmit request
processing, transmit confirmation / receive indication / error notification and start /
stop of a CAN Controller and thus waking up / participating on a network. Its data
processing and notification API is based on CAN 1L-SDUs, whereas APls for control
and mode handling provides a CAN Controller related view.

In case of Transmit Requests CanIf completes the L-PDU transmission with cor-
responding parameters and relays the CAN L-PDU via the appropriate CanDrv to the

10 of 215 Document ID 012: AUTOSAR_SWS_CANiInterface
— AUTOSAR CONFIDENTIAL —

AUTOSAR

CAN Controller. At reception canIf distributes the Received L-PDUs as L-
SDUs to the upper layer. The assignment between Receive 1L.—sSDU and upper layer
is statically configured. At transmit confirmation can1f is responsible for the notifica-
tion of upper layers about successful transmission.

The CAN Interface module provides CAN communication abstracted access to the
CAN Driver and CAN Transceiver Driver services for control and supervision of the
CAN network. The CAN Interface forwards downwards the status change requests
from the CAN State Manager to the lower layer CAN device drivers, and upwards
the CAN Driver / CAN Transceiver Driver events are forwarded by the CAN Interface
module to e.g. the corresponding NM module.

AUTOSAR

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the CAN Interface
module that are not included in the [8, AUTOSAR glossary].

Abbreviation / Acronym:

Description:

CAN L-PDU

CAN Protocol Data Unit. Consists of an identifier, DLC and data
(SDU). Visible to the CAN driver.

CAN Service Data Unit. Data that are transported inside the CAN

CAN L-SDU L-PDU. Visible to the upper layers of the CAN interface (e.g. PDU
Router).

CanDrv CAN Driver module

CANFD CAN with Flexible Data-Rate

Canld CAN Identifier

Canlf CAN Interface module

CanNm CAN Network Management module

CanSm CAN State Manager module

CanTp CAN Transport Layer module

CanTrcv CAN Transceiver Driver module

CanTSyn Global Time Synchronization over CAN

CCMSM CAN Interface Controller Mode State Machine (for one controller)

ComM Communication Manager module

DCM Diagnostic Communication Manager module

EcuM ECU State Manager module

HOH CAN hardware object handle

HRH CAN hardware receive handle

HTH CAN hardware transmit handle

J1939Nm J1939 Network Management module

J1939Tp J1939 Transport Layer module

PduR PDU Router module

PN Partial Networking

SchM Scheduler Module

Abbreviation / Acronym: Description:

Buffer

Fixed sized memory area for a single data unit (e.g. CAN ID, DLC,
SDU, etc.) is stored at a dedicated memory address in RAM.

CAN communication matrix

Describes the complete CAN network:
¢ Participating nodes
e Definition of all CAN PDUs (identifier, DLC)

e Source and Sinks for PDUs

CAN Controller

A CAN Controller is a CPU on-chip or external standalone hard-
ware device. One CAN Controller is connected to one physical
channel.

CAN Device Driver

Generic term of CAN Driver and CAN Transceiver Driver.

CAN Hardware Unit

A CAN Hardware Unit may consist of one or multiple CAN Con-
trollers of the same type and one, two or multiple CAN RAM
areas. The CAN Hardware Unit is located on-chip or as exter-
nal device. The CAN hardware unit is represented by one CAN
Driver.

AUTOSAR

Canlf Controller mode state ma-
chine

This is not really a state machine, which may be influenced by
transmission requests. This is an image of the current abstracted
state of an appropriate CAN Controller. The state transitions can
only be realized by upper layer modules like the CanSm or by
external events like e.g. if a BusOff occurred.

Canlf Receive L-PDU / Canlf Rx
L-PDU

L-PDU handle of which the direction is set to "lower to upper
layer".

Canlf Receive L-PDU buffer /
CanlfRxBuffer

Single element RAM buffer located in the CAN Interface module
to store whole receive L-PDUs.

Canlf Transmit L-PDU / Canlf Tx
L-PDU

L-PDU handle of which the direction is set to "upper to lower
layer".

Canlf Transmit L-PDU buffer /
CanlfTxBuffer

Single CanlfTxBuffer element located in the Canlf to store one
or multiple Canlf Tx L-PDUs. If the buffersize of a single Canl-
fTxBuffer element is set to 0, a CanlfTxBuffer element is only
used to refer a HTH.

Hardware object / HW object

A CAN hardware object is defined as a PDU buffer inside the
CAN RAM of the CAN Hardware Unit / CAN Controller.

The Hardware Receive Handle (HRH) is defined and provided by
the CAN Driver. Each HRH typically represents just one hard-
ware object. The HRH is used as a parameter by the CAN Inter-
face Layer for i.e. software filtering.

Hardware Receive Handle
(HRH)
Hardware Transmit Handle
(HTH)

The Hardware Transmit Handle (HTH) is defined and provided by
the CAN Driver. Each HTH typically represents just one or multi-
ple CAN hardware objects that are configured as CAN hardware
transmit buffer pool.

Inner priority inversion

Transmission of a high-priority L-PDU is prevented by the pres-
ence of a pending low-priority L-PDU in the same transmit hard-
ware object.

Integration Code

Code that the Integrator needs to add to an AUTOSAR System,
to adapt non-standardized functionalities. Examples are Call-
outs of the ECU State Manager and Callbacks of various other
BSW modules. The I/O Hardware Abstraction is called Integra-
tion Code, too.

Lowest In - First Out / LOFO

This is a data storage procedure, whereas always the elements
with the lowest values will be extracted.

L-PDU Handle

The L-PDU handle is defined as integer type and placed inside
the CAN Interface layer. Typically, each handle represents an
L-PDU, which is a constant structure with information for Tx/Rx
processing.

L-PDU channel group

Group of CAN L-PDUs, which belong to just one underlying net-
work. Usually they are handled by one upper layer module.

Outer priority inversion

A time gap occurs between two consecutive transmit L-PDUs. In
this case a lower priority L-PDU from another node can prevent
sending the own higher priority L-PDU. Here the higher priority L-
PDU cannot participate in arbitration during network access be-
cause the lower priority L-PDU already won the arbitration.

Physical channel

A physical channel represents an interface from a CAN Controller
to the CAN Network. Different physical channels of the CAN
Hardware Unit may access different networks.

Tx request

Transmit request to the CAN Interface module from a upper layer
module of the Canlf

AUTOSAR

3 Related documentation
3.1 Input documents & related standards and norms
Bibliography

[1] Specification of CAN Driver

AUTOSAR_SWS_ CANDriver

[2] Specification of CAN Transceiver Driver
AUTOSAR_SWS CANTransceiverDriver

[3] Specification of CAN State Manager
AUTOSAR_SWS_ CANStateManager

[4] Specification of CAN Network Management
AUTOSAR_SWS_CANNetworkManagement

[5] Specification of CAN Transport Layer
AUTOSAR_SWS_ CANTransportLayer

[6] Specification of PDU Router
AUTOSAR_SWS PDURouter

[7] Layered Software Architecture
AUTOSAR_EXP_LayeredSoftwareArchitecture

[8] Glossary
AUTOSAR_TR_Glossary

[9] General Specification of Basic Software Modules
AUTOSAR_SWS BSWGeneral

[10] General Requirements on Basic Software Modules
AUTOSAR_SRS BSWGeneral

[11] Requirements on CAN
AUTOSAR_SRS CAN

[12] ISO 11898-1:2003 - Road vehicles — Controller area network (CAN)

[13] Specification of ECU State Manager
AUTOSAR_SWS_ECUStateManager

[14] Specification of ECU Configuration
AUTOSAR_TPS_ECUConfiguration

AUTOSAR

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [9, SWS BSW
General], which is also valid for CAN Interface.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for CAN Interface.

AUTOSAR

4 Constraints and assumptions

4.1 Limitations

The CAN Interface can be used for CAN communication only and is specifically de-
signed to operate with one or multiple underlying CAN Drivers and CAN Transceiver
Drivers. Several CAN Driver modules covering different CAN Hardware Units are rep-
resented by just one generic interface as specified in the CAN Driver specification [1].
As well in the same manner several CAN Transceiver Driver modules covering different
CAN Transceiver devices are represented by just one generic interface as specified in
the CAN Transceiver Driver specification [2, Specification of CAN Transceiver Driver].
Other protocols than CAN (i.e. LIN or FlexRay) are not supported.

Please be aware that an active PnTxFilter ensures that the first messages on bus
is CanlfTxPduPnFilterPdu. In case that CanlfTxPduPnFilterPdu is the NM-PDU the
COM-Stack start up takes care that the PduGroups are disabled until successful trans-
mission of that PDU. However, transmit requests for other PDUs (i.e. initially started
PDUs, TP-PDUs, XCP-PDUs) will be rejected until the configured PDU was sent.

4.2 Applicability to car domains

The CAN Interface can be used for all domain applications when the CAN protocol is
used.

AUTOSAR

5 Dependencies to other modules

This section describes the relations to other modules within the AUTOSAR basic soft-
ware architecture. It contains brief descriptions of configuration information and ser-
vices, which are required by the CAN Interface Layer from other modules (see Figure 5.1).

cmp Can Stack
ComServices
= _ 2]
Com emandstors | amodules
arealizes CanSM
' |
«realizes E arealizes
Corm_Chk 1 amodules /
l,."l‘-,' cn'a'rddorynl Com =S /
(o||:|ticns|n m‘?_m / (};;ﬂw_ﬂak
| dedlize- /
!
arealizes
- e — — 2]
armodules aptionallys Canlp / / amodules
PduR S0 | redlizes | -"'Eﬂdﬁw-f CanTp =
!
J— Pl CanTp / wreslizes
\ Ty
N /oy
PoaR Canif ., o-pﬁondly-\ / ;‘E’ - = CanTp_Cbk
~ N -~
= U=
- O/
t}fi‘f - t}mlTrw
"~ aredlizes -~ «rea]lize-
Canif amodules
o= CanTrev ==
| | |
arealizes arealizes
| I
- ()
allzEn
| Canif Gk CanTrov_Cbk
i A
ComDrivers | |
|
ocrrancllstory-
Can |
1
wrealizes
| |
armodules
Can P
I
T

Figure 5.1: CANIF dependencies in AUTOSAR BSW

AUTOSAR

5.1 Upper Protocol Layers

Inside the AUTOSAR BSW architecture the upper layers of the CAN Interface module
(Abbr.: canIf) are represented by the PDU Router module (Abbr.: Pdur), CAN Net-
work Management module (Abbr.: cannNm), CAN Transport Layer module (Abbr.: CanTp),
CAN State Manager module (Abbr.: cansm), ECU State Manager module (Abbr.: EcuM),
Complex Driver modules (Abbr.: CDD), Universal Calibration Protocol module (Abbr.: XCP),
Global Time Synchronization over CAN (Abbr.: CanTsyn), J1939 Transport Layer mod-

ule (Abbr.: 71939Tp) and J1939 Network Management module (Abbr.: J1 93 9Nm).

The AUTOSAR BSW architecture indicates that the application data buffers are lo-
cated in the upper layer, to which they belong. Direct access to these buffers is pro-
hibited. The buffer location is passed by the Canlf from or to the CAN Driver module
(Abbr.: canDrv) during transmission and reception. During execution of these trans-
mission/reception indication services buffer location is passed. Data integrity is guar-
anteed by use of lock mechanisms each time the buffer has been accessed. See
section 7.17 Data integrity.

The API used by the Canlf consists of notification services as basic agents for the
transfer of CAN related data (i.e. CAN DLC) to the target upper layer. The call param-
eters of these services points to the information buffered in the CanDrv or they refer
directly to the CAN Hardware.

5.2 |Initialization: Ecu State Manager

The EcuM initializes the Canlf (refer to [3, Specification of ECU State Manager]).

5.3 Mode Control: CAN State Manager

The CanSm module is responsible for mode control management of all supported CAN
Controllers and CAN Transceivers.

5.4 Lower layers: CAN Driver

The main lower layer CAN device driver is represented by the CanDrv (see [1, Specifi-
cation of CAN Driver]). The Canlf has a close relation to the CanDrv as a result of its
position in the AUTOSAR Basic Software Architecture.

The CanDrv provides a hardware abstracted access to the CAN Controller only, but
control of operation modes is done in CanSm only.

The CanDrv detects and processes events of the CAN Controllers and notifies those
to the Canlf.

AUTOSAR

The Canlf passes operation mode requests of the CanSm to the corresponding under-
lying CAN Controllers.

CanDrv provides a normalized L-PDU to ensure hardware independence of CanIf.
The pointer to this normalized L-PDU points either to a temporary buffer (for e.g. data
normalizing) or to the CAN hardware dependent CanDrv. For Can1 f the kind of L-PDU
buffer is invisible.

The Canlf provides notification services used by the CanDrv in all notifications scenar-

ios, for example: transmit confirmation (subsection 8.4.2 Canlf_TxConfirmation, see
[SWS_CANIF_00007]), receive indication (subsection 8.4.3 Canlf_RxIndication, see
[SWS_CANIF_00006]), transmit cancellation notification (subsection 8.4.4 Canlf_ControllerBusOff,
see [SWS_CANIF_00218]) and notification of a controller mode change (subsection 8.4.8,

see [SWS_CANIF_00699]).

In case of using multiple CanDrv serving different interrupt vectors these callback ser-
vices mentioned above must be re-entrant, refer to section 7.24 Multiple CAN Driver
support. Reentrancy of callback functions is specified in section 8.4.

The callback services called by the CanDrv are declared and implemented inside the
Canlf. The callback services called by the Canlf are declared and placed inside the
appropriate upper communication service layer, for example PduR, CanNm, CanTp.
The Canlf structure is specified in section 5.7 File structure.

The number of configured CAN Controllers does not necessarily belong to the number
of used CAN Transceivers. In case multiple CAN Controllers of a different types operate
on the same CAN network, one CAN Transceiver and CanTrcv is sufficient, whereas
dependent to the type of the CAN Controller devices one or two different CanDrv are
needed (see section 7.5 Physical channel view).

5.5 Lower layers: CAN Transceiver Driver

The second available lower layer CAN device driver is represented by the CanTrcv (see
[2, Specification of CAN Transceiver Driver]).

Each CanTrcv itself does operation mode control of the CAN Transceiver device. The
Canlf just maps all APIs of several underlying CanTrcvs to a unique one, thus CanSm
is able to trigger a transition of the corresponding CAN Transceiver modes. No control
or handling functionality belonging to CanTrcv is done inside the Canlf.

The Canlf maps the following services of all underlying CanTrcvs to one unique inter-
face. These are further described in the CAN Transceiver Driver SWS (see [2, Specifi-
cation of CAN Transceiver Driver]):

¢ Unique CanTrcv mode request and read services to manage the operation modes
of each underlying CAN Transceiver device.

e Read service for CAN Transceiver wake up reason support.

AUTOSAR

e Mode request service to enable/disable/clear wake up event state of each used
CAN transceiver (CanIf_SetTrcvMode (), see [SWS_CANIF_00287]).

5.6 Configuration

The can1f design is optimized to manage CAN protocol specific capabilities and han-
dling of the used underlying CAN Controller.

The Canlf is capable to change the CAN configuration without a re-build. Therefore, the
function canIf_Init (see [SWS_CANIF_00001]) retrieves the required CAN config-
uration information from configuration containers and parameters, which are specified
(linked as references, or additional parameters) in chapter 10, see Figure 10.1.

This section gives a summary of the retrieved information, e.g.:

e Number of CAN Controllers. The number of CAN Controllers is necessary for
dispatching of transmit and receive L-PDUs and for the control of the status of
the available CAN Drivers (see CanlfCanControllerldRef).

e Number of Hardware Object Handles. To supervise transmit requests the CAN
Interface needs to know the number of HTHs and the assignments between each
HTH and the corresponding CAN Controller (see CANIF_HTH_CAN_CONTROLLER_ID_REF,
ECUC _Canlf 00625; CANIF_HTH_ID_SYMREF, ECUC Canlf 00627).

e Range of received CAN IDs passing hardware acceptance filter for each hard-
ware object. The CAN Interface uses fixed assignments between HRHs and L-
PDUs to be received in the corresponding hardware object to conduct a search al-
gorithm (see section 7.20 Software receive filter, see CANIF_SOFTWARE_FILTER_HRH,
CANIF_HRH_CAN_CONTROLLER_ID_REF,CANIF_HRH_ID_SYMREF, ECUC Canlf 00634)

CanTIf needs information about all used upper communication service layers and .-
SDUs to be dispatched. The following information has to be set up at configuration time
for integration of canIf inside the AUTOSAR COM stack:

e Transmitting upper layer module and transmit /-PDU for each transmit L-SDU.
=> Used for dispatching of transmit confirmation services
(see CANIF_CANTXPDUID, ECUC Canlf 00247).

e Receiving upper layer module and receive [-PDU for each receive L.—SDU.
=> Used for 1,-sDU dispatching during receive indication
(see CANIF_CANRXPDUID, ECUC_Canlf_00249).

The Canlf needs the description of the controller and the own ECU, which is con-
nected to one or multiple CAN networks. The following information is therefore re-
trieved from the CAN communication matrix, part of the AUTOSAR system configu-
ration (see containers: CanlfTxPduConfig, ECUC_Canlf_00248; CanlfRxPduConfig,
ECUC_Canlf_00249):

AUTOSAR

e All L-PDUs received on each physical channel of this ECU.
=> Used for software filtering and receive 1.-SDU dispatch

e All L-sDUs that shall be transmitted by each physical channel on this ECU.
=> Used for the transmit request and Transmit L-PDU dispatch

e Properties of these L-PDUs (ID, DLC).
=> Used for software filtering, receive indication services, DLC check

e Transmitter for each transmitted .—-sDU (i.e. PduR, CanNm, CanTp).
=> Used for the transmit confirmation services

e Receiver for each receive 1L-sDU (i.e. PduR, CanNm, CanTp)
=> Used for the L-PDU dispatch

e Symbolic L.-PDU/L-SDU hame.
=> Used for the representation of Rx/Tx data buffer addresses

5.7 File structure

5.7.1 Code file structure

[SWS_CANIF_00377] | canIf shall access the location of the API of all used un-
derlying canDrvs for pre-compile time configuration either by using of external dec-
laration in includes of all canDrvs public header files can_<x>.h or by the code file
CanIf_Cfg.c. [()

[SWS_CANIF_00378] | canIf shall access the location of the API of all used under-
lying CanDrvs for link time configuration by a set of function pointers for each CanDrv.

10

The values for the function pointers for each canDrv are given at link time.

Rationale for [SWS_CANIF_00377] and [SWS_CANIF_00378]: The API of all used
underlying CanDrv must be known at the latest at link time.

The include file structure can be constructed as shown in Figure 5.2.

5.7.2 Header file structure

[SWS_CANIF_00672] [The header file canIf.h only contains extern declarations of
constants, global data and services that are specified in canIf. |()

Constants, global data types and functions that are only used by can1f internally, are
declared within canIf.c.

AUTOSAR

[SWS_CANIF_00643] | The generic type definitions of cCanIf which are described in
section 8.2 shall be performed in the header file canIf_Types.h. This file has to be
included in the header file canIf.h. |()

Dem_IntErrid.h Std_Types.h
(Event |d Symbols)
1\ Can_GeneralTypes.h A
ComStack_Types.h
Dem.h
CAN Interface 7‘
Det.h Canlf_Cfg.h Canlf_Types.h
{included if developmert error

detection is turned on) ’\ N f

optional

MemMap.h \ Canlfh
<Module>_Canlfh < Canlf.c
\'
<Module>_Cbk.h Canlf Cbk.h Canlf Cfg.c

/

optional

/

¥

| PAUR_Cfg h
CanNm_Cfg.h
CanTp_Cfg.h

Can_<vID>_<V specific name>.c

optional ‘

Can_<vID=_<V specific name>.h

Can_<viD>_<V specific name>_Cfg.h J

CanTrev_<vID>_<V specific name>h CanTrcv_<viD>_<V specific name>_Cfg.h

Description:
» This means that fie X includes fie Y.

» V' ostands for Vendor: <vl D= == <vendonD=; <V specific name> == <\/endor specific name=

Figure 5.2: Code and include file structure

[SWS_CANIF_00463] | canIf include the following header files <Module> . h:

Can_<vendorID>_<Vendor specific name><driver

abbreviation>.h for services and type definitions of the CanDrv
(e.g.: Can_99_FExtl1.h, Can_99_Ext2.h)

CanTrcv_<vendorID>_<Vendor specific name><driver

abbreviation>.h for services and type definitions of the CanTrcv
(e.g.: CanTrcv_99_Extl.h)
Dem.h for services of the DEM

Can_GeneralTypes.h for general CAN stack type declarations

AUTOSAR

ComStack_Types.h for COM related type definitions
MemMap . h for accessing the module specific functionality provided by the
BSW Memory Mapping

|(SRS_BSW _00436)
Note: The following header files are indirectly included by ComStack_Types.h:

Std_Types.h for AUTOSAR standard types
Platform_Types.h for platform specific types
Compiler.h for compiler specific language extensions

[SWS_CANIF_00208] | can1 £ shall include the following header files <Module>_CanIf.h
of those upper layer modules, from which declarations of only canI £ specific API ser-
vices or type definitions are needed:

PduR_CanIf.h for services and callback declarations of the PduRr
SchM_CanIf.h for services and callback declarations of the SchM

|(SRS_BSW _00415)

[SWS_CANIF_00233] | can1I £ shall include the following header files <Module>_Cbk.h,
in which the callback functions called by canTf at the upper layers are declared:

CanSM_Cbk.h for callback declarations of the cCansSm
CanNm_Cbk.h for callback declarations of the CanNm
CanTp_Cbk.h for callback declarations of the canTp
EcuM_Cbk.h for callback declarations of the EcuM
<CDD>_Cbk.h for callback declarations of CDD; <CDD> is configurable via parameter
CANIF_CDD_HEADERFILE (see ECUC_Canlf 00671)

Xcp_Cbk.h for callback declarations of the XCP
CanTSyn_Cbk.h for callback declarations of the CanTSyn
J1939Tp_Cbk.h for callback declarations of the J1939Tp
J1939Nm_Cbk.h for callback declarations of the J1939Nm

10

[SWS_CANIF_00280] [canIf shall include the following header files <Module>.h,
which contain the configuration data used by canT f:

Can_<vendorID>_<Vendor specific name><driver abbreviation>.h
for configuration data of CanDrv (e.g.: Can_99_Ext1.h)
CanTrcv_<Vendor Id>_<Vendor specific name><driver abbreviation>.h
for configuration data of CanTrcv (€.9.: CanTrcv_99_Ext1.h)

PduR.h for PduR configuration data (e.g. PduR target PDU Ids)
CanNm.h for CanNm configuration data (e.g. CanNm target PDU Ids)
CanTp.h for CanTp configuration data (e.g. CanTp target PDU Ids)
Xcp.h for XCP configuration data (e.g. XCP target PDU Ids)
J1939Tp.h for J1939Tp configuration data (e.g. J1939Tp target PDU Ids)
J1939Nm.h for J1939Nm configuration data (e.g. J1939Nm target PDU Ids)

10

AUTOSAR

6 Requirements Tracing

The following tables references the requirements specified in [10] as well as [11] and
links to the fulfillment of these. Please note that if column ’Satisfied by’ is empty for a
specific requirement this means that this requirement is not fulfilled by this document.

Requirement Description Satisfied by

[BSW00431] No description [SWS_CANIF_00999]
[BSW00434] No description [SWS_CANIF_00999]
[BSW01024] No description [SWS_CANIF_00999]

[SRS_BSW_00007]

All Basic SW Modules written in C language
shall conform to the MISRA C 2004 Standard.

[SWS_CANIF_00999]

[SRS_BSW _00010]

The memory consumption of all Basic SW
Modules shall be documented for a defined
configuration for all supported platforms.

[SWS_CANIF_00999]

[SRS_BSW_00101]

The Basic Software Module shall be able to
initialize variables and hardware in a separate
initialization function

[SWS_CANIF_00001]

[SRS_BSW_00159]

All modules of the AUTOSAR Basic Software
shall support a tool based configuration

[SWS_CANIF_00999]

[SRS_BSW_00164]

The Implementation of interrupt service routines
shall be done by the Operating System, complex
drivers or modules

[SWS_CANIF_00999]

[SRS_BSW_00167]

All AUTOSAR Basic Software Modules shall
provide configuration rules and constraints to
enable plausibility checks

[SWS_CANIF_00999]

[SRS_BSW_00168]

SW components shall be tested by a function
defined in a common API in the Basis-SW

[SWS_CANIF_00999]

[SRS_BSW _00170]

The AUTOSAR SW Components shall provide
information about their dependency from faults,
signal qualities, driver demands

[SWS_CANIF_00999]

[SRS_BSW _00172]

The scheduling strategy that is built inside the
Basic Software Modules shall be compatible
with the strategy used in the system

[SWS_CANIF_00999]

[SRS_BSW_00306]

AUTOSAR Basic Software Modules shall be
compiler and platform independent

[SWS_CANIF_00999]

[SRS_BSW_00307]

Global variables naming convention

[SWS_CANIF_00999]

[SRS_BSW _00308]

AUTOSAR Basic Software Modules shall not
define global data in their header files, but in the
C file

[SWS_CANIF_00999]

[SRS_BSW_00309]

All AUTOSAR Basic Software Modules shall
indicate all global data with read-only purposes
by explicitly assigning the const keyword

[SWS_CANIF_00999]

[SRS_BSW_00312]

Shared code shall be reentrant

[SWS_CANIF_00064]

AUTOSAR

[SRS_BSW_00323]

All AUTOSAR Basic Software Modules shall
check passed API parameters for validity

[SWS_CANIF_00311]
[SWS_CANIF_00313]
[SWS_CANIF_00319]
[SWS_CANIF_00320]
[SWS_CANIF_00325]
[SWS_CANIF_00326]
[SWS_CANIF_00331]
[SWS_CANIF_00336]
[SWS_CANIF_00341]
[SWS_CANIF_00346]
[SWS_CANIF_00352]
[SWS_CANIF_00353]
[SWS_CANIF_00364]
[SWS_CANIF_00398]
[SWS_CANIF_00404]
[SWS_CANIF_00410]
[SWS_CANIF_00416]
[SWS_CANIF_00417]
[SWS_CANIF_00419]
[SWS_CANIF_00429]
[SWS_CANIF_00535]
[SWS_CANIF_00536]
[SWS_CANIF_00537]
[SWS_CANIF_00538]
[SWS_CANIF_00648]
[SWS_CANIF_00649]
[SWS_CANIF_00650]
[SWS_CANIF_00652]
[SWS_CANIF_00656]
[SWS_CANIF_00657]
[SWS_CANIF_00774]
[SWS_CANIF_00860]
[SWS_CANIF_00869]
[SWS_CANIF_00872]
[SWS_CANIF_00873]

[SRS_BSW_00325]

The runtime of interrupt service routines and
functions that are running in interrupt context
shall be kept short

[SWS_CANIF_00135]

[SRS_BSW_00326]

No description

[SWS_CANIF_00999]

[SRS_BSW_00328]

All AUTOSAR Basic Software Modules shall
avoid the duplication of code

[SWS_CANIF_00999]

[SRS_BSW_00330]

It shall be allowed to use macros instead of
functions where source code is used and
runtime is critical

[SWS_CANIF_00999]

[SRS_BSW_00334]

All Basic Software Modules shall provide an
XML file that contains the meta data

[SWS_CANIF_00999]

[SRS_BSW_00336]

Basic SW module shall be able to shutdown

[SWS_CANIF_00999]

[SRS_BSW_00341]

Module documentation shall contains all needed
informations

[SWS_CANIF_00999]

[SRS_BSW _00342]

It shall be possible to create an AUTOSAR ECU
out of modules provided as source code and
modules provided as object code, even mixed

[SWS_CANIF_00462]

AUTOSAR

[SRS_BSW_00344]

BSW Modules shall support link-time
configuration

[SWS_CANIF_00460]
[SWS_CANIF_00461]
[SWS_CANIF_00462]

[SRS_BSW_00348]

All AUTOSAR standard types and constants
shall be placed and organized in a standard
type header file

[SWS_CANIF_00142]

[SRS_BSW_00353]

All integer type definitions of target and compiler
specific scope shall be placed and organized in
a single type header

[SWS_CANIF_00142]

[SRS_BSW_00358]

The return type of init() functions implemented
by AUTOSAR Basic Software Modules shall be
void

[SWS_CANIF_00001]

[SRS_BSW_00361]

All mappings of not standardized keywords of
compiler specific scope shall be placed and
organized in a compiler specific type and
keyword header

[SWS_CANIF_00142]

[SRS_BSW_00373]

The main processing function of each
AUTOSAR Basic Software Module shall be
named according the defined convention

[SWS_CANIF_00999]

[SRS_BSW_00376]

No description

[SWS_CANIF_00999]

[SRS_BSW_00378]

AUTOSAR shall provide a boolean type

[SWS_CANIF_00999]

[SRS_BSW_00404]

BSW Modules shall support post-build
configuration

[SWS_CANIF_00462]

[SRS_BSW_00405]

BSW Modules shall support multiple
configuration sets

[SWS_CANIF_00001]

[SRS_BSW_00407]

Each BSW module shall provide a function to
read out the version information of a dedicated
module implementation

[SWS_CANIF_00158]

[SRS_BSW _00411]

All AUTOSAR Basic Software Modules shall
apply a naming rule for enabling/disabling the
existence of the API

[SWS_CANIF_00158]

[SRS_BSW _00414]

Init functions shall have a pointer to a
configuration structure as single parameter

[SWS_CANIF_00001]

[SRS_BSW_00415]

Interfaces which are provided exclusively for one
module shall be separated into a dedicated
header file

[SWS_CANIF_00208]

[SRS_BSW_00416]

The sequence of modules to be initialized shall
be configurable

[SWS_CANIF_00999]

[SRS_BSW_00417]

Software which is not part of the SW-C shall
report error events only after the DEM is fully
operational.

[SWS_CANIF_00999]

[SRS_BSW_00423]

BSW modules with AUTOSAR interfaces shall
be describable with the means of the SW-C
Template

[SWS_CANIF_00999]

[SRS_BSW_00424]

BSW module main processing functions shall
not be allowed to enter a wait state

[SWS_CANIF_00999]

[SRS_BSW_00425]

The BSW module description template shall
provide means to model the defined trigger
conditions of schedulable objects

[SWS_CANIF_00999]

[SRS_BSW_00426]

BSW Modules shall ensure data consistency of
data which is shared between BSW modules

[SWS_CANIF_00999]

[SRS_BSW_00427]

ISR functions shall be defined and documented
in the BSW module description template

[SWS_CANIF_00999]

AUTOSAR

[SRS_BSW_00428]

A BSW module shall state if its main processing
function(s) has to be executed in a specific order
or sequence

[SWS_CANIF_00999]

[SRS_BSW_00429]

BSW modules shall be only allowed to use OS
objects and/or related OS services

[SWS_CANIF_00999]

[SRS_BSW_00432]

Modules should have separate main processing
functions for read/receive and write/transmit
data path

[SWS_CANIF_00999]

[SRS_BSW_00433]

Main processing functions are only allowed to
be called from task bodies provided by the BSW
Scheduler

[SWS_CANIF_00999]

[SRS_BSW_00435]

No description

[SWS_CANIF_00999]

[SRS_BSW_00436]

No description

[SWS_CANIF_00463]

[SRS_CAN_01001]

The CAN Interface implementation and interface
shall be independent from underlying CAN
Controller and CAN Transceiver

[SWS_CANIF_00023]

[SRS_CAN_01003]

The appropriate higher communication stack
shall be notified by the CAN Interface about an
occurred reception

[SWS_CANIF_00012]

[SRS_CAN_01005]

The CAN Interface shall perform a check for
correct DLC of received PDUs

[SWS_CANIF_00026]

[SRS_CAN_01008]

The CAN Interface shall provide a transmission
request service

[SWS_CANIF_00005]

[SRS_CAN_01009]

The CAN Interface shall provide a transmission
confirmation dispatcher

[SWS_CANIF_00007]

[SRS_CAN_01011]

The CAN Interface shall provide a transmit
buffer

[SWS_CANIF_00068]

[SRS_CAN_01014]

The CAN State Manager shall offer a network
configuration independent interface for upper
layers

[SWS_CANIF_00999]

[SRS_CAN_01015]

The CAN Interface configuration shall be able to
import information from CAN communication
matrix.

[SWS_CANIF_00104]

[SRS_CAN 01018]

The CAN Interface shall allow the configuration
of its software reception filter Pre-Compile-Time
as well as Link-Time and Post-Build-Time

[SWS_CANIF_00030]

[SRS_CAN_01020]

The TX-Buffer shall be statically configurable

[SWS_CANIF_00063]

[SRS_CAN_01021]

CAN The CAN Interface shall implement an
interface for initialization

[SWS_CANIF_00001]

[SRS_CAN_01022]

The CAN Interface shall support the selection of
configuration sets

[SWS_CANIF_00001]

[SRS_CAN_01027]

The CAN Interface shall provide a service to
change the CAN Controller mode.

[SWS_CANIF_00003]

[SRS_CAN_01028]

The CAN Interface shall provide a service to
query the CAN controller state

[SWS_CANIF_00229]

[SRS_CAN_01029]

The CAN Interface shall report bus-off state of a
device to an upper layer

[SWS_CANIF_00014]

[SRS_CAN_01114]

Data Consistency of L-PDUs to transmit shall be
guaranteed

[SWS_CANIF_00033]

[SRS_CAN 01125]

The CAN stack shall ensure not to lose
messages in receive direction

[SWS_CANIF_00194]

[SRS_CAN_01126]

The CAN stack shall be able to produce 100%
bus load

[SWS_CANIF_00381]
[SWS_CANIF_00382]
[SWS_CANIF_00881]

AUTOSAR

[SRS_CAN_01129]

The CAN Interface module shall provide a
procedural interface to read out data of single
CAN messages by upper layers (Polling
mechanism)

[SWS_CANIF_00194]

[SRS_CAN_01130]

Receive Status Interface of CAN Interface

[SWS_CANIF_00202]
[SWS_CANIF_00230]

[SRS_CAN_01131]

The CAN Interface module shall provide the
possibility to have polling and callback
notification mechanism in parallel

[SWS_CANIF_00230]

[SRS_CAN _01136]

The CAN Interface module shall provide a
service to check for validation of a CAN wake-up
event

[SWS_CANIF_00179]

[SRS_CAN 01139]

The CAN Interface and Driver shall offer a CAN
Controller specific interface for initialization

[SWS_CANIF_00999]

[SRS_CAN_01140]

The CAN Interface shall support both Standard
(11bit) and Extended (29bit) Identifiers

[SWS_CANIF_00281]

[SRS_CAN_01141]

The CAN Interface shall support both Standard
(11bit) and Extended (29bit) Identifiers at same
time on one network

[SWS_CANIF_00243]

[SRS_Can_01140]

The CAN Interface shall support both Standard
(11bit) and Extended (29bit) Identifiers

[SWS_CANIF_00877]

[SRS_Can_01141]

The CAN Interface shall support both Standard
(11bit) and Extended (29bit) Identifiers at same
time on one network

[SWS_CANIF_00877]

[SRS_Can_01151]

The CAN Interface shall provide a service to
check for a CAN Wake-up event.

[SWS_CANIF_00286]

[SRS_Can_01162]

The CAN Interface shall support classic CAN
and CAN FD frames

[SWS_CANIF_00877]

AUTOSAR

7 Functional specification

7.1 General Functionality

The services of CanIf can be divided into the following main groups:

e Initialization

Transmit request services

Transmit confirmation services

Reception indication services

Controller mode control services

e PDU mode control services
Possible applications of CanTf:

i. Interrupt Mode
CanDrv processes interrupts triggered by the CAN Controller. CanIf, which
is event based, is notified when an event occurs. In this case the relevant can1f
services are called within the corresponding /SRs in CanDrv.

ii. Polling Mode

CanDrv is triggered by the schM and performs subsequent processes (Polling

Mode). Inthis case Can_MainFunction_<Write/Read/BusOff/Wakeup/ Transceiver>
must be called periodically within a defined time interval. Can1f is notified by Can-

Drv about events (Reception, Transmission, BusOff, Transmit Cancelation, Time-

out), that occurred in one of the CAN Controllers, equally to the interrupt driven

operation. CanDrv is responsible for the update of the corresponding information

which belongs to the occurred event in the CAN Controller, for example recep-

tion of a L.-PDU.

iii. Mixed Mode: interrupt and polling driven CanDrv
The functionality can be divided between interrupt driven and polling driven opera-
tion mode depending on the used CAN Controllers.
Examples: Polling driven FullCAN reception and interrupt driven BasicCAN recep-
tion, polling driven transmit and interrupt driven reception, etc.

This specification describes a unique interface, which is valid for all three types of
operation modes. Summarized, CanIf works in the same way, either if any events are
processed on interrupt, task level or mixed. The only difference is the call context and
probably the way of interruption of the notifications: pre-emptive or co-operative. All
services are performed in accordance with the configuration.

The following paragraphs describe the functionality of canIf.

AUTOSAR

7.2 Hardware object handles

Hardware Object Handles (HOH) for transmission (HTH) as well as for reception
(HRH) represent an abstract reference to a CAN mailbox structure, that contains CAN
related parameters such as CanId, DLC and data. Based on the CAN hardware buffer
abstraction each Hardware Object is referenced in CanIf independent of the CAN
hardware buffer layout. The HOH is used as a parameter in the calls of cCanDrv’s
interface services and is provided by canDrv’s configuration and used by CanDrv as
identifier for communication buffers of the CAN mailbox.

CanIf acts only as user of the Hardware Object Handle, but does not interpret it
on the basis of hardware specific information. CanIf therefore remains independent
of hardware.

[SWS_CANIF_00023] | canIf shall avoid direct access to hardware specific commu-
nication buffers and shall access it exclusively via canDrv interface services. |(SRS_CAN_01001)

Rationale for [SWS_CANIF_00023]: canIf remains independent of hardware, be-
cause CanDrv interfaces are called with HOH parameters, which abstract from the con-
crete CAN hardware buffer properties.

Each CAN Controller can provide multiple CAN Transmit Hardware Objects
in the CAN mailbox. These can be logically linked to one entire pool of Hardware
Objects (multiplexed Hardware Objects) and thus addressed by one HTH.

[SWS_CANIF_00662] [canIf shall use two types of HOHs to enable access to Can-—
Drv:

e Hardware Transmit Handle (HTH) and

e Hardware Receive Handle (HRH).

10

[SWS_CANIF_00291] | Definition of HRH: The HRH shall be a handle referencing a
logical Hardware Receive Object of the CAN Controller mailbox. |()

[SWS_CANIF_00665] | The #RH shall enable can1f to use BasicCAN or a FullCAN
reception method of the referenced reception unit and to indicate a Received 1.-SDU to
a target upper layer module. |()

[SWS_CANIF_00663] | If the HRH references a reception unit configured for BasicCAN
transmission, software filtering shall be enabled in canIf. |()

[SWS_CANIF_00664] | If multiple HERHs are used, each HRH shall belong at least to a
single or fixed group of Rx L-sbU handles (CanRxPdulds). |()

AUTOSAR

The HRH can be configured to receive
e one single can1d (FullCAN)
e a group of single can1ds (BasicCAN)
e arange/area of CanIds (BasicCAN) or

e all canIds.

CAN Interface
PDU channel group A
outlet range
R uld #0000
(CANID,DLC,
HRH #000, etc)
PDU channel group B
CAN Driver
outlet ran
<Canlf_User> ®
R uld #0010
Fgg,jg[')g;‘mf’} - > HRH #000
» BlC, 0 addre ssto HW Object
RPduld #0000 HRH#®0 P (ject)
RxPduld 0010 R uld #0011 TRH 2001 : 5 HRH #001
(CANID,DLC, i (addressto HW Object)
1
RPduld #0011 HRH#001, etc) HTH#00 P i
TxPduld #0000 ! Ed HTH#00
HTH#001 [} (addressto HW Object)
1
TxPduld #0001 -{ﬁNul%#DU%U proidedby | - HTH 2001
HTH#000, etc) CAN Driver | (addre ssto HW Object)
module's :
confi guration 0
1
POU channel groupC | | TTTTEEEERERTS
TxPduld #0001
(CANID,DLC,
HTH #001, etc)
CAN controller0 CAN confroller 1 CAN controller 2
i T 1 v rEE 1 ! el 1
| Mailbox N i | Mailbox 4 i | Mailbox 4 1
i HW Cbject |4 0 ‘ HW Object ‘ ‘ HW Cbject ‘ ! i HWObject |3
1 1
e :
CAN Network A CAN Network B CAN Network C
Descriptions:

Outlet range= Range of Rx LPDUs which will be passed
All arrows within this picture are references w‘:y%oé;ﬁcfgmﬁ;gt:gure that contains (Canld. DLC, data)
andno comnunication directions ot sth. else. HRH = abstract reference to the CAN RAM structre

Transmit path is coloured red

Receive pathiscoloured graen.

Figure 7.1: Mapping between PDU Ids and HW object handles

AUTOSAR

[SWS_CANIF_00292] | Definition of HTH: The HTH shall be a handle referencing a
logical Hardware Transmit Object of the CAN Controller mailbox. |()

[SWS_CANIF_00666] [The HTH shall enable canIf to use BasicCAN or FullCAN
transmission method of the referenced transmission unit and to confirm a transmitted
L-sDU to a target upper layer module. |()

[SWS_CANIF_00466] | Each canIf Tx L-PDU shall statically be assigned to one
CanIfTxBuffer configuration container at configuration time (see CanIfTxPduBuf-
ferRef). |()

Rationale for [SWS_CANIF_00466]: cCanIf Tx L-PDUs do notrefer HTHs, but CanI-
fTxBuffer, which in turn do refer HTHs.

[SWS_CANIF_00667] | If multiple HTHs are used, each HTH shall belong to a single
or fixed group of Tx L-PDU handles (CanTxPdulIds). |()

[SWS_CANIF_00115] [canIf shall be able to use all HERHs and HTHs of one CanDrv
as common, single numbering area starting with zero. |()

The dedicated HRHs and HTHs are derived from the configuration set of CanDrv. The
definition of HTH/HRH inside the numbering area and Hardware ObJjects is up to
CanDrv.

7.3 Static CAN L-PDU handles

canIf offers general access to the CAN L-SDU related data for upper layers. The
L-SDU Handle facilitates this access. The L-PDU Handle refers to data structures,
which consists of can1 f and CAN PCI specific attributes describing the 1.-PDU/L.-SDU.
Attributes of the following table are represented as configuration parameters and are
specified in chapter 10:

CAN Interface specific attributes CAN Protocol Control Information (PCI)
Method of SW filtering CAN Identifier (CanId)
CanIfPrivateSoftwareFilterType CanIfTxPduCanId, range of CanIds per PDU

(see CanIfRxPduCanIdRange),
CanIfRxPduCanId, CanIfRxPduCanIdMask

Direction of L-PDU (Tx, Rx) CanI£TxPduld, Type of CAN Identifier (StandardCAN,
CanIfRxPduld) ExtendedCAN) referenced from CanDrv via
CanIfHthIdSymRef, CanIfHrhIdSymRef
HTH/HRH of the CAN Controller Data Length Code (DLC) CanIfRxPduDlc
Target ID for the corresponding upper layer Reference to the PDU data (see [1,
CanIfTxPduUserTxConfirmationUL, Specification of CAN Driver])

CanIfRxPduUserRxIndicationUL

Type of Transmit L-PDU Handle (STATIC,
DYNAMIC) CanIfTxPduType

Type of Tx/Rx L-PDU (FullCAN, BasicCAN)
CanIfHthIdSymRef, CanIfHrhIdSymRef

AUTOSAR

[SWS_CANIF_00046] | canIf shall assign each L-PDU Handle to one CAN Con-
troller only. Thus, the assignment of single L-PDU Handles to more than one CAN
Controller is prohibited. |()

Rationale for [SWS_CANIF_00046]: This relation is used in order to ensure correct L-
SDU dispatching at transmission confirmation and reception indication events. In this
manner Can1If is able to identify the CAN Controller fromthe L-PDU Handle.

CanIf supports activation and deactivation of all L-PDUs belonging to one CAN Con-
troller fortransmission as well as for reception (see 7.19.2, see CanIf_SetPduMode (),
[SWS_CANIF_00008]). For .-pDU mode control refer to section 7.19.

Each L-PDU Handle is associated with an upper layer module in order to ensure cor-

rect dispatching during reception, transmission confirmation, and data access. Each

upper layer module can use the L-PDU Handles to serve different CAN Controllers
simultaneously.

According to the PDU architecture defined for the entire AUTOSAR communication
stack (see [7, Layered Software Architecture]), the usage of 1.-PDUs is split in two
different ways:

e For transmission request and transmission/reception polling API the upper layer
module uses the 1.—-sDU ID (CanTxPdulId/CanRxPduld) defined by canIf as
parameter.

e For all callback APIs, which are invoked by canIf at upper layer modules, CanIf
passes the target Pdu1d defined by each upper layer module as parameter.

The principle is that the caller must use the defined target L-pPDU/L-SDU Id of the
callee.

If power on initialization is not performed and upper layer performs transmit requests
to canIf, no L-sSDUs are transmitted to lower layer and DET shall be invoked. Thus,
no un-initialized data can be transmitted on the network. Behavior of L-PDU/L.-SDU
transmitting function is specified in detail in subsection 8.3.4.

7.4 Dynamic CAN L-PDU handles

CanIf shall support the ability to filter incoming messages using the CanIfRxPdu-
CanIdMask. The filtering shall be done by comparing the incoming canId with the
stored CanIfRxPduCanId after applying the CanIfRxPduCanIdMask to both IDs.
This should be done after the filtering of regular canIds without mask, to allow for
separate handling of some of the CanIds that fall into the range defined by the mask
or a CanId based range.

Additionally, pynamIC Tx and Rx L-SDUs shall be supported, where parts of the
CanId reside in the MetaData of the L-SDU.

AUTOSAR

During transmission of dynamic L-SDUs, when a CanIfTxPduCanIdMask is defined,
the variable parts of the can1d provided via the MetaData must be merged with the
CanId by using this mask. When no CanIfTxPduCanIdMask and no CanIfTxPdu-—
CanId are configured, the MetaData shall be used directly as canId. In this case, the
MetaDataLength of the L—sDuU must be large enough to contain the whole canId.

During reception of dynamic L-SDUs, the lower <MetaDataLength> bytes of the
received CanId shall be placed in the L-SDU MetaData (in little endian byte order),
while the L.—sDU length is incremented accordingly. The layout of the MetaData is
independent of the cCanI fRxPduCanIdMask parameter. For efficiency reasons, the
ID could already be placed at the end of the data by canDrv.

[SWS_CANIF_00844] | canIf shall support dynamic L-PDU Handles, where the
CanId or parts of the Can1d are placed in the MetaData of a L-SDU, which resides in
the data buffer directly behind the payload data. The number of ID bytes in the payload
data is defined by the parameter MetaDataLength of the global PDUs referenced
by CanIfTxPduRef or CanIfRxPduRef. The L-SDU length is set to the sum of the
payload length and MetaDatalength. |()

[SWS_CANIF_00845] | The sequence of the CanId bytes in the MetaData is little
endian, i.e. the lowest byte of the ID (the 8 least significant bits) is placed in the first
byte after the actual L-spu data. |()

[SWS_CANIF_00846] | If MetaDataLength is smaller than the actual can1d size,
the highest bytes of the can1d shall be omitted. If MetaDataLength is larger than
the canId size, the space after the ID bytes shall be padded with zeros. |()

7.4.1 Dynamic transmit L-PDU handles

Definition of dynamic Transmit L-PDUs: L-PDUs Which allow reconfiguration of the
CanId during runtime (CanIfTxPduType == DYNAMIC) or where the ID or parts
thereof are provided as MetaData of the L-SDU (MetaDatalLength >= 1).

The usage of all other L.-PDU elements are equal to normal static Transmit L-PDUs:

e The transmit confirmation notification
CanIfTxPduUserTxConfirmationUL cannot be reconfigured as it belongs to
the L-PDU Handle.

e The Data Length Code (DLC) and the pointer to the data buffer are both deter-
mined by the upper layer module at call of CanIf_Transmit ().

The function CanIf_SetDynamicTxId () (see [SWS_CANIF_00189]) reconfigures
the canId of a dynamic L-PDU with CanTfTxPduType == DYNAMIC.

[SWS_CANIF_00188] | can1I £ shall process the two most significant bits of the can1d
(see [1, Specification of CAN Driver], definition of Can_1dType [SWS_Can_00416]) to
determine which type of can1d is used and thus how the dynamic Transmit L-PDU
shall be transmitted. |()

AUTOSAR

[SWS_CANIF_00673] | The Canlf shall guarantee data consistency of the canId in
case of running function CanIf_SetDynamicTxId (). This service may be inter-
rupted by a pre-emptive call of CanIf_Transmit () affecting the same L-PDU handle,
see [SWS_CANIF_00064]. |()

[SWS_CANIF_00853] | If MetaDataLength is smaller than the actual canId size,
the parameters CanIfTxPduCanIdMask and CanIfTxPduCanId must be config-
ured. |()

[SWS_CANIF_00855] | If MetaDataLength is at least as large as the actual canId
size, CanIfTxPduCanIdMask and CanIfTxPduCanId can be omitted. In this case,
the canId is directly taken from the MetaData. |()

[SWS_CANIF_00856] [cCanIfTxPduCanIdMask shall beignored when MetaDatal—
ength is not configured for this L-spu. |()

[SWS_CANIF_00854] [If MetaDataLength, CanIfTxPduCanIdMask and CanI-
fTxPduCanId are available, CanIfTxPduCanIdMask defines the bits in CanIfTx-
PduCanId that shall appear in the actual can1d, the other bits are taken from the
MetaData. [()

Note: The resulting ID could be calculated in the following way: (CanI fTxPduCanId &
CanIfTxPduCanIdMask) | (<dynamic ID parts> & ~CanIfTxPduCanIdMask)

[SWS_CANIF_00857] [canIf_Init () (see [SWS_CANIF_00085]) initializes the CanIds
of the dynamic Transmit L-PDUs with CanIfTxPduType == DYNAMIC to the value
configured via CanIfTxPduCanId. |()

7.4.2 Dynamic receive L-PDU handles

Definition of dynamic Receive L-PDUs: L-PDUs that correspond to a set of CanIds,
where the actually received can1d is provided to upper layers as part of the PDU data.

[SWS_CANIF_00847] [Configuration shall ensure that dynamic Receive L-PDUs
use an ID range or a mask and that the Met aDat a is configured for the 1.—sDU. Besides
this, the software filtering must be enabled for these 1.—SDUs. |()

[SWS_CANIF_00848] | Upon reception of a dynamic L.—sSDU, CanIf shall ensure that
<MetaDataLength> bytes of the CanId are placed in the MetaData, and shall in-
crease the L-sDU length accordingly. |()

7.5 Physical channel view

A physical channel is linked with one CAN Controller and one CAN Transceiver, whereas
one or multiple physical channels may be connected to a single network.

The Canlf provides services to control all CAN devices like CAN Controllers and CAN
Transceivers of all supported ECU’s CAN channel. Those APIs are used by the CanSm

AUTOSAR

to provide a network view to the comM (see [3]) used to perform wake up and sleep
request for all physical channels connected to a single network.

The Canlf passes status information provided by the CanDrv and CanTrcv separately
for each physical channel as status information for the CanSm (<User_ControllerBusOff> (),
refer to [SWS_CANIF_00014]).

[SWS_CANIF_00653] [The Canlf shall provide a ControllerId, which abstracts

from the different Controllers of the different CanDrv instances. The range of the Con-
trollerIds withinthe Canlf shall start with’0’. It shall be configurable via CANIF_CTRL_ID
(see ECUC_Canlf_00647). |()

Example:
Canlf CanDrv A CanDrv B
Controllerld 0 Controller 0
Controllerld 1 Controller 1
Controllerld 2 Controller 0

[SWS_CANIF_00655] | The Canlf shall provide a TransceiverId, which abstracts
from the different Transceivers of the different CanTrcv instances. The range of the
TransceiverIds within the Canlf shall start with '0’. It shall be configurable via
CANIF_TRCV_ID (see ECUC_Canlf_00654). |()

Example:
Canlf CanDrv A CanDrv B
Transceiverld 0 Transceiver 0
Transceiverld 1 Transceiver 1
Transceiverld 2 Transceiver 0

During the notification process the Canlf maps the original CAN Controller or CAN
Transceiver parameter from the Driver module to the CanSm. This mapping is done as
the referenced CAN Controller or CAN Transceiver parameters are configured with the
abstracted Canlf parameters ControllerId or TransceiverId.

AUTOSAR

CAN NM A

COM Manager

CAN NM B

CAN State Manager

CAN Interface
F 3 Jr Jr
A 4 v JF
CAN transceiver driver CAN driver CAN Transceiver

0

Driverl

same.

CAN controller 0

CAN controller 1

* P

CAN transceiver

(=]

Same types of

CA

transceiver 1

CAN controllers

CAN network A

CAN network B
Only one CAN transceiver driveris Different types of

needed, of the transceiver type is

CAN transceivers

Use Case: 1:1 relation between CAN

network and physical

channel

The Canlf supports multiple physical CAN channels. These have to be distinguished
by the CanSm for network control. The Canlf API provides request and read control for

Figure 7.2: Physical channel view definition example A

multiple underlying physical CAN channels.

Moreover the Canlf does not distinguish between dedicated types of CAN physical
layers (i.e. Low-Speed CAN or High-Speed CAN), to which one or multiple CAN Con-

trollers are connected.

AUTOSAR

CAN NM A COM Manager CAN NM B
Network view
CAN State Manager
Physical channel view
CAN Interface
F 3 F 3 y y y
Y y y y y
CANT . - 7 i CANT .
dn_vzar”;“ CAN driver 0 CAN driver 1 CAN driver 2 dn_v'::‘l“

CAN controller 0

CAN controller 1

CAN controller 2

CAN controller 3

o |

=i

e[

CAN

network A

e.g CAN class C

Tx \

CAN transceiver 0 Same types of CAN

controllers

. |

L=

R

Tx

CAN transceiver 1

Use Case: 1:n relation between CAN
network and physical channel

CAN network B

e.g. CAN class B

Figure 7.3: Physical channel view definition example B

7.6 CAN Hardware Unit

The CAN Hardware Unit combines one or multiple CAN Controller modules of the
same type, which may be located on-chip or as external standalone devices. Each

CAN Hardware Unit is served by the corresponding CanDrv.

If different types of CAN Controllers are used, also different types of CanDrvs have
to be applied with a unified APl to canIf. CcanIf collects information about number
and types of CAN Controllers andtheir Hardware Objects atconfiguration time.
This allows transparent and hardware independent access to the CAN Controllers
from upper layer modules using HOHs (refer to section 7.2 Hardware object handles

and section 7.24 Multiple CAN Driver support).

Figure 7.4 shows a CAN Hardware Unit consisting of two CAN Controllers of the same

type connected to two physical channels:

AUTOSAR

CAN controller
device A
—T A —m CAM » CAN
network Physical channel A
W RxA — transceiver [A
Hardware objects
)
of mailbox A
N
CAN controller
device B
—TTxB —i= CAN —— CAN]
. network Physical channelB
+RxE — ftransceiver jgp—————o B
Hardware objects
of mailbox B

CAN hardware unit CAN controllers

Figure 7.4: Typical CAN Hardware Unit

7.7 BasicCAN and FullCAN reception

canIf distinguishes between BasicCAN and FullCAN handling for activation of soft-
ware acceptance filtering.

A CAN mailbox (Hardware Object) for FUllCAN operation only enables transmission
or reception of single canIds. Accordingly, BasicCAN operation of one Hardware
Object enables to transmit or receive a range of CanIds.

A Hardware Receive Object for configured BasicCAN reception is able to receive
a range of canIds, which pass its hardware acceptance filter. This range may ex-
ceed the list of predefined Rx L-PDUs to be received by this HRH. Therefore, CanIf
subsequently shall execute software filtering to pass only the predefined list of Rx .-
PDUs to the corresponding upper layer modules. For more details please refer to sec-
tion 7.20 Software receive filter.

AUTOSAR

[SWS_CANIF_00467] [canIf shall configure and store an order on HTHs and HRHs
for all HOHs derived from the configuration containers CanIfHthCfg (see ECUC Canlf 00258)
and CanIfHrhCfg (see ECUC_Canlf_00259) |()

[SWS_CANIF_00468] | canIf shall reference a hardware acceptance filter for each
HOH derived from the configuration parameters CANIF_HTH_ID_SYMREF (see ECUC_Canlf_00627)
and CANIF_HRH_ID_SYMREF (see ECUC_Canlf_00634). |()

The main difference between BasicCAN and FullCAN operation is in the need of a
software acceptance filtering mechanism (see section 7.20 Software receive filter).

[SWS_CANIF_00469] | canIf shall give the possibility to configure and store a soft-
ware acceptance filter for each HRH of type BasicCAN configured by parameter CANIF_HRH__SOFTW2
(see ECUC_Canlf_00632). |()

[SWS_CANIF_00211] [canIf shall execute the software acceptance filter from [SWS_CANIF_004¢
for the HRH passed by callback function CanIf RxIndication(). |()

BasicCAN and FullCAN objects may coexist in a single configuration setup. Multiple
BasicCAN and FullCAN receive objects can be used, if provided by the underlying CAN
Controllers.

[SWS_CANIF_00877] | If canIf receives a L-PDU (see CanIf_ RxIndication), it
shall perform the following comparisons to select the correct reception L-SDU config-
ured in CanIfRxPduCfg:

e compare CanIfRxPduCanId withthe passedMailbox—>CanId(Can_IdType)
excluding the two most significant bits

e compare CanIfRxPduCanIdType With the two most significant bits of the passed
Mailbox->CanId (Can_IdType)

| (SRS _Can_01140, SRS_Can_01141, SRS Can_01162)

Basically, can1f supports reception either of Standard CAN IDs or Extended CAN
IDsonone Physical CAN Channel bythe parameters CANIF_TXPDU_CANIDTYPE
(see ECUC_Canlf_00590) and CANIF_RXPDU_CANIDTYPE (see ECUC_Canlf_00596).

[SWS_CANIF_00281] | canIf shall accept and handle StandardCAN IDs and Ex-
tendedCAN IDs on the same Physical Channel (= mixed mode operation). |(SRS_CAN_01140)

In a mixed mode operation Standard CAN IDs and Extended CAN IDs can be used

mixed at the same time on the same CAN network. Mixed mode operation can be
accomplished, if the BasicCAN/FullCAN Hardware Objects have been configured

separately for either StandardCAN or ExtendedCAN operation using configuration pa-

rameters CANIF_TXPDU_CANIDTYPE (see ECUC_Canlf_00590) and CANIF_RXPDU_CANIDTYPE
(see ECUC Canlf _00596). In case of mixed mode operation the software acceptance

filter algorithm (see section 7.20 Software receive filter) must be able to deal with both

type of CanIds.

[SWS_CANIF_00281] is an optional feature. This feature can be realized by different
variants of implementations, no configuration options are available.

AUTOSAR

7.8 Initialization

The EcuM calls the Canlf’s function canIf_1Init () forinitialization of the entire Canlf
(see [SWS_CANIF_00001]). All global variables and data structures are initialized
including flags and buffers during the initialization process. The EcuM executes initial-
ization of canDrvs and CanTrcvs separately by call of their corresponding initialization
services (refer to [1] and [2, Specification of CAN Transceiver Driver]).

The Canlf expects that the CAN Controller remains in STOPPED mode like after power-
on reset after the initialization process has been completed. In this mode the Canlf and
CanDrv are neither able to transmit nor receive CAN L-PDUs (see [SWS_CANIF_00001]).

If re-initialization of the entire CAN modules during runtime is required, the EcuM shall
invoke the CanSm (see [3]) to initiate the required state transitions of the CAN Con-
troller by call of CAN Interface module’s APl service CanIf_SetControllerMode ().
The Canlf maps the calls from CanSm to calls of the respective cCanDrvs (see sub-
section 8.6.3).

7.9 Transmit request

CanIf’s transmit request function CanIf_Transmit () ([SWS_CANIF_00005]) is a
common interface for upper layers to transmit L-pDUs on the CAN network. The up-
per communication layer modules initiate the transmission only via CanIf’s services
without direct access to CanDrv. The initiated Transmit Request is successfully
completed, if canDrv could write the L-PDU data into the CAN hardware transmit ob-
ject.

Upper layer modules use the API service CanIf_Transmit () to initiate a transmit
request (refer to subsection 8.3.4 Canlf_Transmit).

CanIf performs following actions for L.—PDU transmission at call of the service CanIf_Transmit ():
e Check, initialization status of canIf
e Identify canDrv (only if multiple CanDrvs are used)
e Determine HTH for access to the CAN hardware transmit object
e Call can_Write () of CanDrv

The transmission is successfully completed, if the transmit request service CanIf_Transmit ()
returns E_OK.

[SWS_CANIF_00382] | If an L-PDU is requested to be transmitted via a PDU channel

mode (refer to subsection 7.19.2 PDU channel modes), which equals CANIF_OFFLINE,

the Canlf shall report the development error code CANIF_E_STOPPED to the Det_ReportError
service ofthe DET and CanIf_Tranmsit () shallreturn E_NOT_OK. |(SRS_CAN_01126)

[SWS_CANIF_00723] | If an L-PDU is requested to be transmitted via a CAN Con-
troller, whose ccMsM (see section 7.18) equals CANIF_CS_STOPPED, the Canlf shall

AUTOSAR

report the development error code CANIF_E_STOPPED to the Det_ReportError ser-
vice of the DET and CanIf_Transmit () shall return E_NOT_OK. |()

If the call of can_write () returns with CAN_BUSY, please refer to section 7.12 Trans-
mit confirmation for further details.

7.10 Transmit data flow

The Transmit Request service CanIf_Transmit () is based on L-PDU Han-
dles. The access to the L-SDU specific data is organized by the following parameters:

e Transmit L-PDU Handle => L-spu ID

e Reference to a data structure, which contains L.—-SDU related data: .—spuU length
(1) and pointer to the 1.—-sDU (2), including MetaData for dynamic Transmit
L-PDUs handle when MetaDataLength is configured for that 1.—sDU.

The reference to the L—sDU data structure is used as a parameter in several CanIf’s

APl services, e.g. CanIf_Transmit () orthe callback service <User_RxIndication> ().
In case the L-PDU is configured for triggered transmission, the .—sDU pointer is a null
pointer.

AUTOSAR

Upper layers call
CANIE S ace Canlf_Transmit(‘

Call of Can_Write()
CAN Driver
CAN Hardware is
free? [No]

[Yes]

Trigger-transmit
PDU?

[No] [Yes]

v

«datastore» «datastore» «datastore»
Copy data into CAN Copy data into ueue transmit
CAN Controller 24 57 5 Q
hardware transmit buffer request
Bufferisfree Can Interface
Set transmit request in
CAN controller

Canlf_Transmit() retumswith E_OK

Figure 7.5: Transmit data flow

CanIf stores information about the available hardware objects configured for trans-
mission purposes. The function CanIf_Transmit () maps the CanTxPduld to the
corresponding HTH and calls the function can_write () (see [SWS_CANIF_00318]).

7.11 Transmit buffering

7.11.1 General behavior

At the scope of Can1If the transmit process starts with the call of CanIf_Transmit ()
and it ends with invocation of upper layer module’s callback service <User_TxConfirmation> ().
During the transmit process CanIf, CanDrv and the CAN Mailbox altogether shall
store the L-PDU to be transmitted only once at a single location. Depending on the
transmit method, these are:

e The CAN hardware transmit object or

e The Transmit L-PDU Buffer inside CanIf, if transmit buffering is enabled.

AUTOSAR

For triggered transmission, CanIf only has to store the transmit request for the given
L—PDU but not its data. The data is fetched just in time by means of the trigger transmit
function when the HTH is free (again). A single Tx L-PDU, requested for transmission,
shall never be stored twice. This behavior corresponds to the usual way of periodic
communication on the CAN network.

If transmit buffering is enabled, canIf will store a Tx L-PDU in @ CanIf Trans-
mit L-PDU Buffer (CanIfTxBuffer), if it is rejected by CanDrv at Transmit
Request.

Basically, the overall buffer in canIf for buffering Tx L-PDUs consits of one or multi-
ple canIfTxBuffers (see ECUC_Canlf_00832). Whereas each CanIfTxBuffer is
assigned to one or multiple dedicated HTH (see ECUC_Canlf_00833) and can be con-
figured to buffer one or multiple Tx L-PDUs. But as already mentioned above only one
instance per Tx L—PDU can be buffered in the overall amount of CanIfTxBuffers.

The behavior of canIf during L-PDU transmission differs whether transmit buffering
is enabled in the configuration setup for the corresponding Tx L-PDU, or not. If trans-
mit buffering is disabled and a transmit request to CanDrv fails (CAN Controller
mailbox is in use, BasicCAN), the L-PDU is not copied to the CAN Controller’s
mailbox and CanIf_ Transmit () returns the value E_NOT_OK. If transmit buffering is
enabled and a transmit request to CanDrv fails, depending on the CanIfTxBuffer
configuration the L—PDU can be stored in a CanIfTxBuffer. In this case the API
CanIf_Transmit () returns the value E_OK although the transmission could not be
performed. In this case can1f takes care of the outstanding transmission of the L.—-pDU
viaCanIf_TxConfirmation () callback and the upper layer doesn’t have to retry the
transmit request.

The number of available transmit CanIf Tx L-PDU Buffers can be configured com-
pletely independent from the number of used Transmit L-PDUs defined in the CAN
network description file for this ECU.

As per [SWS_CANIF_00835] a Tx L-PDU refers HTHs via the CanIfTxBuffer con-
figuration container (see ECUC_Canlf_00832). This is valid if transmit buffering is not
needed as well. In this case, the buffer size (see ECUC_Canlf _00834) of the canI-
fTxBuffer hasto be setto 0. Then canIfTxBuffer configuration container is only
used to refer a HTH.

7.11.2 Buffer characteristics

ECUC_Canlf_00831, ECUC_Canlf 00832, ECUC_Canlf_00833 and ECUC_Canlf 00834
describe the possible CanIfTxBuf fer configurations.

AUTOSAR

7.11.2.1 Storage of L-PDUs in the transmit L-PDU buffer

CanIftriestostoreanew Transmit L-PDUOrits Transmit Request inthe Trans-—
mit L-PDU Buffer only, if CanDrv return CAN_BUSY during a call of Can_wWrite ()
(see [SWS_CANIF_00381]).

[SWS_CANIF_00063] | If the parameter: CanIfPublicTxBuffering (see ECUC_Canlf_00618)
is enabled. can1f shall support the following for BasicCAN transmissions:

e Buffering of CAN L-PDU Handles in CanIf, if CanIfTxPduTriggerTrans-—
mit is FALSE for this HTH.

e Buffering of Transmit Requests in CanIf, if CanIfTxPduTriggerTrans-—
mit iS TRUE for this HTH.

|(SRS_CAN_01020)

[SWS_CANIF_00849] | For dynamic Transmit L-PDU Handles, also the CanId
has to be stored in the CanIfTxBuffer. |()

[SWS_CANIF_00381] | If transmit buffering is enabled (see [SWS_CANIF_00063])
and if the call of can_write () for a PDU configured for direct transmission returns
with CAN_BUSY, canIf shall check if it is possible to buffer the canIf Tx L-PDU,
which was requested to be transmitted via Can_write () inaCanIfTxBuffer. |(SRS_CAN_0112

When the call of can_Write () returns with CAN_BUSY, CanDrv has rejected the
requested transmission of the .-PDU (see [1]) because there is no free hardware object
available at time of the transmit request (Tx request).

[SWS_CANIF_00895] | If the rejected data length exceeds the configured size, CanIf
shall:

e buffer the configured amount of data and discard the rest

e and report development error code CANIF_E_DATA_LENGTH_MISMATCH to the
Det_ReportError service of the DET.

10

[SWS_CANIF_00881] | If transmit buffering is enabled (see [SWS_CANIF_00063])
and if the call of can_write () for a PDU configured for triggered transmission returns
with CAN_BUSY, canIf shall check if it is possible to buffer the Transmit Request,
which was requested to be transmitted via Can_wWrite () inaCanIfTxBuffer. |(SRS_CAN_0112

[SWS_CANIF_00835] [When can1f checks whether it is possible to buffer a canIf
Tx L-PDUOraTransmit Request (see [SWS_CANIF_00381], [SWS_CANIF_00881]),
this shall only be possible, ifthe canTf Tx L-PDU s assigned (see ECUC_Canlf_00831)
toacanIfTxBuffer (see ECUC_Canlf _00832), which is configured with a buffer size
(see ECUC_Canlf_00834) bigger than zero. |()

The buffer size of any CanI fTxBuf fer is only configurable bigger than zero, if transmit
buffering is enabled. Additionally the buffer size of a single CanIfTxBuffer is only

AUTOSAR

configurable bigger than zero if the CanI fTxBuffer is not assigned to a FUllCAN HTH
(see ECUC_Canlf_00834).

[SWS_CANIF_00836] | If it is possible to buffer a CanIf Tx L-PDUOra Transmit
Request, because the buffer size of the assigned CanIfTxBuf fer is bigger than zero
(see [SWS_CANIF_00835]), canIf shall bufferacanIf Tx L-PDUoOrthe Transmit
Request in a free buffer element of the assigned CcanIfTxBuffer, if the CanIf Tx
L-PDU or the Transmit Request is not already buffered in the CanIfTxBuffer.

10

[SWS_CANIF_00068] | If it is possible to buffer a CanIf Tx L-PDUOra Transmit
Request, because the buffer size of the assigned canIfTxBuffer is bigger than
zero (see [SWS_CANIF_00835]), canIf shall overwrite direct transmitted CanIf Tx
L-PDU in the assigned CanIfTxBuffer, ifthe CanIf Tx L-PDU is already buffered
inthe CanIfTxBuffer when Can_Write () returns CAN_BUSY. |(SRS_CAN_01011)

Note: There is nothing to do for already stored Transmit Requests (see [SWS_CANIF_00068])
due to the fact the data will be catched by canDrv directly (using CanIf_TriggerTransmit).
Therefore, the latest data will be sent automatically.

If the order of various transmit requests of different L-PDUs shall be kept, transmit
requests of upper layer modules must be connected to previous transmit confirmation
notifications. This means that a subsequent .—PDU is requested for transmission by the
upper layer modules only, if the transmit confirmation of the previous one was notified
by CanIf.

Note: Additionally the order of transmit requests can differ depending on the number
of configured hardware transmit objects.

[SWS_CANIF_00837] | If the buffer size is greater zero, all buffer elements are busy
and CanIf_Transmit () is called with a new L-PDU (no other instance of the same
L-PDU is already stored in the buffer), then the new L.-PDU or its Transmit Request
shall not be stored and CanIf_Transmit () shall return E_NOT_OK. |()

7.11.2.2 Clearance of transmit L-PDU buffers

[SWS_CANIF_00386] | can1I f shall evaluate during transmit confirmation (see [SWS_CANIF_0000°
whether pending CanIf Tx L-PDUs Or Transmit Requests are stored within the
CanIfTxBuffers, which are assigned to the new free Hardware Transmit Ob-

ject (see [SWS_CANIF_00466]). |()

[SWS_CANIF_00668] | If pending CanIf Tx L-PDUs Of Transmit Requests are
available in the canIfTxBuffers as per [SWS_CANIF_00386], then canIf shall
call can_write () for that pending CanIf Tx L-PDU Or Transmit Requests (of
the one assigned to the new Hardware Transmit Object) with the highest priority
(see [SWS_CANIF_00070]). |()

AUTOSAR

[SWS_CANIF_00070] [CanIf shalltransmit L-PDUs of Transmit Requests stored
in the Transmit L-PDU Buffers in priority order (see [12]) per each HTH. CanIf
shall not differentiate between 1L.-PDUs and Transmit Requests. [()

[SWS_CANIF_00183] | When can1f calls the function Can_write () for prioritized
L-PDUs and Transmit Requests storedin CanIfTxBuffer and the return value of
Can_Write () is E_OK, then CanIf shall remove this L-PDU or Transmit Request
fromthe Transmit L-PDU Buffer immediately, before the transmit confirmation re-
turns. |()

The behavior specified in [SWS_CANIF_00183] simplifies the choice of the new trans-
mit L-PDU stored in the Transmit L-PDU Buffer.

7.11.2.3 Initialization of transmit L-PDU buffers

[SWS_CANIF_00387] | When function CanIf_Init () iscalled, canIf shallinitialize
every Transmit L-PDU Buffer assignedto canIf. |()

The requirement [SWS_CANIF_00387] is necessary to prevent transmission of old
data after restart of the CAN Controller.

7.11.3 Data integrity of transmit L-PDU buffers

[SWS_CANIF_00033] [canIf shall protect against concurrent access to Transmit
L-PDU Buffers fortransmit L-PDUs and Transmit Requests. |(SRS_CAN_01114)

This may be realized by using exclusive areas defined within the BSW Scheduler.
These exclusive areas can e.g. configured, that all interrupts will be disabled while
the exclusive area is entered. The corresponding services from the BSW Scheduler
module are SchM_Enter_CanIf () and SchM_Exit_CanIf ().

Rationale: for [SWS_CANIF_00033]: pre-emptive accesses to the Transmit L-PDU
Buffer cannot always be avoided. Such Transmit L-PDU Buffer access like
storing a new L—-PDU or removing transmitted L—PDU may occur preemptively.

7.12 Transmit confirmation

7.12.1 Confirmation after transmission completion

If a previous transmit request is completed successfully, CanDrv notifies it to CanIf
by the call of CanIf_TxConfirmation () ([SWS_CANIF_00007]).

[SWS_CANIF_00383] | When callback notification CanIf_TxConfirmation () is
called, can1f shall identify the upper layer communication layer (see [SWS_CANIF_00414]),
which is linked to the successfully transmitted .—pDU, and shall notify it about the per-

AUTOSAR

formed transmission by call of canT £’s transmit confirmation service <User_TxConfirmation> ()
(refer to section 7.12 Transmit confirmation). |()

The callback service <User_TxConfirmation> () is implemented by the notified
upper layer module.

An upper communication layer module can be designed or configured in a way, that
transmit confirmations can be processed with single or multiple callback services for
different L-PDUs or groups of L-PDUs. All that services are called by CanIf attransmit
confirmation of the corresponding L-PDU transmission request. The transmit L-PDU
handle enables to dispatch different confirmation services associated to the target up-
per layer module. This assignment is made statically during configuration.

One transmit L-PDU can only be assigned to one single transmit confirmation callback
service. Please refer to subsubsection 8.6.3.2 <User_TxConfirmations.

[SWS_CANIF_00740] | If CANIF_PUBLIC_TXCONFIRM_ POLLING_SUPPORT (see ECUC_Canlf O
is enabled, can1f shall buffer the information about a received TxConfirmation per
CAN Controller, if the ccMsM of that controller is in state CANIF_CS_STARTED. |()

7.13 Receive data flow

According to the AUTOSAR Basic Software Architecture the received data will be eval-
uated and processed in the upper layer communication stacks (i.e. AUTOSAR COM,
CanNm, CanTp, DCM). This means, upper layer modules may neither work with (i.e.
change) buffers of canDrv (Rx) nor do they have access to buffers of canTf (Tx).

Can1f provides internal buffering in the receive path only if CANIF_PUBLIC_READRXPDU_DATA_AP
(see ECUC _Canlf_00607) is set to TRUE (refer to section 7.15). Tx buffering is ad-
dressed in section 7.11 and dynamic L.-PDUs are concerned in section 7.4.

In case of a new reception of an L.—-PDU CanDrv calls CanIf_RxIndication () (refer
to [SWS_CANIF_00006]) of canIf. The access to the L-PDU specific data is orga-
nized by these parameters:

e Hardware Receive Handle (HRH)
e Received CAN Identifier (Canld)
e Received Data Length Code (DLC)
e Reference to Received L-PDU

The Received L-PDU is hardware dependent (nibble and byte ordering, access type)
and allocated to the lowest layer in the communication system -to CanDrv. HRH serves
as a link between canDrv and the upper layer module using the L-PDU. The HRH
identifies one CAN hardware receive object, where a new CAN 1L-PDU was received.

After the indication of a received L-PDU by CanDrv (CanIf_RxIndication() is
called) the canIf shall proceed as described in 7.14 Receive indication. CanIf is

AUTOSAR

not able to recognize, whether canDrv uses temporary buffering or a direct hardware
access. It expects normalized 1.-PDU data in calls of the CanIf_RxIndication ().

The CAN hardware receive object is locked until the end of the copy process to the tem-
porary or upper layer module buffer. The hardware object will be immediately released
after CanIf_RxIndication () of CanIf returns to avoid loss of data.

CanDrv, CanIf and the upper layer module, which belongs to the received 1.-PDU,
access the same temporary intermediate buffer, which can be located either in the CAN
hardware receive object of the CAN Controller or as temporary buffer in CanDrv.

AUTOSAR

Receive Interrupt

CAN Controller

«datastore»

CAN Dri o izati res
rver normalization Temporary bufferin CAN
necessary? Driver

[No]

CAN Interface ' Call Canlf_RxIndication() '
Rx L-PDU [Yes|
received in Software filtering
BasicCAN ?

[No]

[t

[Yes]
CANIF_DLC_CHECI
nabled? [L-PDU passed]
[No]

DLC Check [No]

failed ?

[Yes]

[L-PDU not

Call Dem_ReportErrorStatus() with passed]
Eventld == CANIF_E_INVALID_DLC

Call <User_RxIndication>() to
upper layers
«datastore»
Upper Layer Copy data to L-PDU
buffer

° <User_RxIndication>() returns
Canlf_RxIndication() returns

Figure 7.6: Receive data flow

7.14 Receive indication

A call of canIf_RxIndication () (see [SWS_CANIF_00006]) references in its pa-
rameters a newly received CAN L-PDU. If the function CanIf_RxIndication () is

AUTOSAR

called, the Canlf evaluates the CAN L-PDU for acceptance and prepares the 1.—spu
for later access by the upper communication layers. The Canlf notifies upper layer
modules about this asynchronous event using <User_RxIndication> () (see sub-
subsection 8.6.3.3 <User_RxIndication>, [SWS_CANIF_00012]), if configured and if
this CAN L-PDU is successfully detected and accepted for further processing. The
detailed requirements for this behavior follow here.

[SWS_CANIF_00389] | If the function CanIf_RxIndication () is called, the Canlf
shall process the Software Filtering on the received L-PDU as specified in 7.20, if
configured (see multiplicity of ECUC_Canlf_00628 equals 0..x) If Software Filtering
rejects the received L-PDU, the Canlf shall end the receive indication for that call of
CanIf_RxIndication(). |()

[SWS_CANIF_00390] [If the Canlf accepts an L-PDU received via CanIf_RxIndication ()
during Software Filtering (see [SWS_CANIF_00389]), the Canlf shall process the DLC
check afterwards, if configured (see ECUC_Canlf_00617). |()

For further details, please refer to section 7.21 DLC Check.

[SWS_CANIF_00297] [If canIf has accepted a L-PDU received via CanIf_RxIndication ()
during DLC check (see [SWS_CANIF_00390]), can1f shall copy the number of bytes
according to the configured DLC value (see canIfRxPduDlc) to the static receive
buffer, if configured for that L-PDU (see [SWS_CANIF_00198], CanIfRxPduRead-

Data). |()

[SWS_CANIF_00851] | If MetaData is configured for a received L.—SDU, CanIf shall
copy the PDU payload and the CAN ID to the static receive buffer. |()

[SWS_CANIF_00056] | If canIf accepts a L-PDU received via CanIf_RxIndication ()
during DLC check (see [SWS_CANIF_00390], [SWS_CANIF_00026]), can1f shall
identify if a target upper layer module was configured (see configuration descrption

of [SWS_CANIF_00012] and ECUC_Canlf 00529, ECUC _Canlf_00530) to be called
with its providing receive indication service for the received L-sDuU. |()

[SWS_CANIF_00135] | If a target upper layer module was configured to be called
with its providing receive indication service (see [SWS_CANIF_00056]), the Canlf shall
call this configured receive indication callback service (see ECUC Canlf_00530) and
shall provide the parameters required for upper layer notification callback functions
(see [SWS_CANIF_00012]) based on the parameters of CanIf_RxIndication ().
|(SRS_BSW _00325)

Note: A single receive L-PDU can only be assigned to a single receive indication call-
back service (refer to multiplicity of CANIF_USERRXINDICATION_NAME, ECUC Canlf 00530).

Overview: Canlf performs the following steps at a call of CanIf_RxIndication():
e Software Filtering (only BasicCAN), if configured
e DLC check, if configured

e buffer received 1.—sDU if configured

AUTOSAR

e call upper layer receive indication callback service, if configured.

7.15 Read received data

The read received data APl CanIf_ReadRxPduData () (see [SWS_CANIF_00194])
is a common interface for upper layer modules to read CAN L-SDUs recently received
from the CAN network. The upper layer modules initiate the receive request only via
CanIf services without direct access to CanDrv. The initiated receive request is suc-
cessfully completed, if CanIf wrote the received 1L-SDU into the upper layer module
[-PDU buffer.

The function canIf_ReadRxPduData () makes reading out data without dependence

of reception event (RxIndication) possible. When it is enabled at configuration time

(see CANIF_PUBLIC_READRXPDU_DATA_API, ECUC_ Canlf_00607), not necessarily

a receive indication service for the same L.-SDU has to be configured (see ECUC_Canlf_00529).
If needed, the receive indication can be enabled, too.

By this way the type of mechanism to receive L-SDUs (in the upper layer modules of

Can1If) can be chosen at configuration time by the parameter CANTIF_RXPDU_USERRXINDICATION.
(see ECUC_Canlf_00529) and parameter CANTF_RXPDU_READ_DATA (see ECUC_Canlf_00600)
according to the needs of the upper layer module, to which the corresponding receive

L-SDU belongs to. For details please refer to section 9.10 Read received data.

[SWS_CANIF_00198] | If the configuration parameter CANIF_PUBLIC_READRXPDU_DATA_API
(ECUC_Canlf_00607) is set to TRUE, can1f shall store each received 1.-sSDU, at

which CANIF_RXPDU_READDATA (ECUC_Canlf_00600) is enabled, into a receive L-

SDU buffer. This means that if the configuration parameter CANIF_RXPDU_READDATA

(ECUC _Canlf_00600) is set to TRUE, Can1If has to allocate a receive 1.—sDU buffer for

this receive L-spu. |()

[SWS_CANIF_00199] | After call of CanIf RxIndication () and passing of soft-
ware filtering and DLC check, can1f shall store the received 1L.-SDU in this receive 1.-
SDU buffer. During the call of CanIf_ReadRxPduData () the assigned receive L—SDU
buffer containing a recently received L-sDU, CanIf shall avoid preemptive receive L—
SDU buffer access events (refer to [SWS_CANIF_00064]) to that receive 1.—sDU buffer.

10

7.16 Read Tx/Rx notification status

In addition to the notification callback functions can1 £ provides the API service CanIf_ReadTxNot1
(see [SWS_CANIF_00202]) to read the transmit confirmation status of any transmit

L-SDU and the API service CanIf_ReadRxNotifStatus () is provided to read the

receive indication status of any receive L—sSDU.

CanIf’s API services CanIf_ReadTxNotifStatus () (see [SWS_CANIF_00202])
and CanIf_ReadRxNotifStatus () (see [SWS_CANIF_00230]) can be enabled/dis-

AUTOSAR

abled globally or per .—sDU at pre-compile time configuration using the configuration

parameters CANIF_PUBLIC_READTXPDU_NOTIFY_STATUS_API (ECUC_Canlf_00609),
CANIF_PUBLIC_READRXPDU_NOTIFY_STATUS_API (ECUC_Canlf_00608), CANIF_TXPDU_REAL
(ECUC _Canlf 00589), and CANIF_RXPDU_READ_NOTIFYSTATUS (ECUC Canlf _00595).

[SWS_CANIF_00472] [If configuration parameter CANIF_PUBLIC_READTXPDU_NOTIFY_STATUS
(ECUC_Canlf_00609) is set to TRUE, Can1f shall store the current notification status
for each transmit L—sDU. |()

[SWS_CANIF_00473] | If configuration parameter CANIF_PUBLIC_READRXPDU_NOTIFY_STATUS
(ECUC_Canlf_00608) is set to TRUE, canIf shall store the current notification status
for each receive L-spu. |()

Rationale for [SWS_CANIF_00391] and [SWS_CANIF_00393] respectively [SWS_CANIF_00392]
and [SWS_CANIF_00394]: This 'read-and-consume’ behavior ensures, that at least
one successful transmit or receive event occurred after last call of this service.

7.17 Data integrity

[SWS_CANIF_00064] Shared code shall be reentrant | CanI £ shall protect preemp-
tive events, which access shared resources, that could be changed during CanIf’s
event handling, against each other. | (SRS_BSW_00312)

Rationale: An attempt to update the data in the upper layer module buffers as well
as in can1If’s internal buffers has to be done with respect to possible changes done
in the context of an interrupt service routine or other preemptive events. Preemptive
events probably occur either from preemptive tasks, multiple CAN interrupts, if multiple
physical channels i.e. for gateways are used, or in case of other peripherals or net-
work systems interrupts, which have the needs to transmit and receive 1.-PDUs on the
network.

[SWS_CANIF_00058] | If canIf’s environment reads data from canIf controlled

memory areas initiated by calling one of the functions CanIf_Transmit (), CanIf_TxConfirmat:
and CanIf_ReadRxPduData (), CanIf shall guarantee that the provided values are

the most recently acquired values. |()

Hint: The functions CanIf_Transmit (), CanIf_TxConfirmation(),and CanIf_ReadRxPduD
access data from can1f controlled memory areas only, if CanIf is configured to use
transmit buffers or receive buffers.

Handling of shared transmit and receive L-PDU/L-SDU buffers are critical issues for the
implementation of can1f. Therefore cCanIf shall ensure data integrity and thus use
appropriate mechanisms for access to shared resources like transmission/reception
L-PDU/L-SDU buffers. Preemptive events, i.e. transmission and reception event from
other CAN Controllers could compromise data integrity by writing into the same
L-PDU/L-SDU buffer.

AUTOSAR

CanIf cane.g. use CanDrv servicesto enable (Can_EnableControllerInterrupts())
and disable (Can_bDisable-ControllerInterrupts ()) CAN interrupts and its no-
tifications at entry and exit of the critical sections separately for each CAN Controller.

If there are common resources for multiple CAN Controllers, the entire CAN Inter-

rupts must be locked. These sections must not take a long time in order to prevent
serious performance degradation. Thus copying of data, change of static variables,
counters and semaphores should be carried out inside these critical sections. It is

up to the implementation to use appropriate mechanisms to guarantee data integrity,
interrupt ability and reentrancy.

The transmit request APl CanIf_ Transmit () must be able to operate re-entrant to
allow multiple transmit request calls caused by different preemptive events of different
L-PDU/L-SDU Handles. CanDrv’s transmit request APl Can_Write () operates re-
entrant as well.

7.18 CAN Controller Mode

7.18.1 General Functionality

CanTf provides services for controlling the communication mode of all supported caN
Controllers represented by the underlying cCanDrv. This means that all CAN Con-
trollers are controlled by the corresponding provided API services to request and
read the current controller mode.

The CAN Controller status information which is stored within canIf is accessible
via CanIf_GetControllerMode ().

The cAN Controller status may be changed at request of the upper layer by the call-
ing of CanIf_SetControllerMode () service. The request is validated and passed
by CanIf viathe canDrv APl to the addressed CAN Controller.

The consistent management of all CAN Controllers connected at one CAN network
is the task of cansm. By this way Cansm is responsible to set all CAN Controllers
of one CAN network sequentially to sleep mode or to wake them up.

Hint: Because of CDDs, the names of the callback services of the Communication
Services are configurable (see subsection 8.6.3). In the following paragraph the usual
services of CanSm and EcuM are mentioned.

When aCAN Controller signals the network event BusOff, the CanI f service CanIf_Controlle
is called which transitions the buffered CAN Controller Mode (see Figure 7.7, CCMSM)

in CanIf to CANIF_CS_STOPPED and which in turn notifies cansm by the callback

service CanSm_ControllerBusOff (ControllerId).

The state machine (ccMswM) in Figure 7.7 gives an overview about the possible CAN
Controller State Transitions, which may be requested by surrounding modules of CanIf
(CanDrv, CanSm, EcuM, CDD, etc.). CanIf does not check these requests for correct-
ness.

AUTOSAR

CanTf analyses the function calls CanTIf_ControllerBusOff () andCanIf_ControllerModel
and determines the current mode of the assigned CAN Controller, which are rep-
resented in CanIf as states:

e CANIF_CS_UNINIT
e CANIF_CS_STOPPED
e CANIF_CS_STARTED
e CANIF_CS_SLEEP

Requirements describing transitions to one of these CAN Controller Mode representing
states in detail are structured according to the source state. State CANIF_CS_INIT
and sub states of CANIF_CS_STOPPED are introduced to clarify the different and the
common behavior when CAN Controller mode changes to CANIF_CS_STOPPED,
from CANIF_CS_START {0 CANIF_CS_SLEEP, or from CANIF_CS_SLEEP to CANIF_CS_START
are requested. Changes of the PDU Channel Mode are not represented in Figure 7.7.

Figure 7.7 shows only one sub-state-machine representing the required behavior of
one CAN Controller for sake of lucidity, but there should be a separate sub-state-
machine for each assigned CAN Controller.

The calling modules requesting state transitions of the ccMsMm can do this indepen-

dently of the current state of the ccMswM, i.e. CanIf accepts every state transition re-

quest by calling the function CanIf_SetControllerMode () Or CanIf_ControllerBusOff ().
CanTf does not decide if a requested mode transition of the CAN Controller isvalid

or not. CanIf only includes the execution of requested mode transitions (see [SWS_CANIF_00474]).

This network related state machine is implemented in CanSm. Refer to [3]. CanIf only
stores the requested mode and executes the requested transition.

Hint: It has to be regarded that not only cansm is able to request CAN Controller Mode
changes.

AUTOSAR

CANIF_CS_UNINIT
PowerOn Reset
PowerOff

Canlf_Init()

Canlf_InitController()

Canlf_ControllerBusOff(Controller)

CANIF_CS_INIT

+ entry/ clear temporarily stored wakeup events

Canlf_SetControllerMode(
Controller, CAN_CS_STARTED)
/Can_SetControllerMode(
Controller, CAN_T_START)

-+

CANIF_CS_STARTED

I<User_ControllerBusOff>(

Canlf_SetControllerMode(
Controller, CANIF_CS_STOPPED)
/Can_SetControllerMode(
Controller, CAN_T_STOP)

CanNetwork)
Canlf_SetControllerMode(

Controller, CAN_CS_STARTED)

/Can_SetControllerMode(
Controller, CAN_T_START)

CANIF_CS_STOPPED

o —

Canlf_SetControllerMode(
Controller, CANIF_CS_STOPPED)
/Can_SetControllerMode(

.

+ entry / cancel pending transmit requests
+ entry / clear Canlf transmit buffers

Canlf_Init()

v

Controller, CAN_T_STOP)

Canlf_SetControllerMode(
Controller, CANIF_CS_SLEEP)
/Can_SetControllerMode(
Controller, CAN_T_SLEEP)

Canlf_SetControllerMode(

Controller, CANIF_CS_STOPPED)

/Can_SetControllerMode(
Controller, CAN_T_WAKEUP)

Canlf_SetControllerMode(

CANIF_CS_SLEEP

Controller, CANIF_CS_SLEEP)
/Can_SetControllerMode(
Controller, CAN_T_SLEEP)

N I;[] J

Figure 7.7: canIf Controller mode state machine for one CAN Controller

General remarks to be considered during implementation:

[SWS_CANIF_00474] | canIf shall not contain any complete CAN Controller State
Machine. |()

Hint for [SWS_CANIF_00474]: can1f only buffers the modes of the CAN Controllers,
but it contains no state machine, which checks the transitions.

Because only the ccMSM modes CANIF_CS_UNINIT, CANIF_CS_STOPPED, CANIF_CS_STARTED,
and CANIF_CS_SLEEP are visible at canI f’s interfaces, the additional states of ccMsM
are not mandatory for the implementation of CanIf.

7.18.2 CAN Controller Operation Modes

According to the requested operation mode by Cansm CanIf translates it into the
right order of mode transitions for the CAN Controller. CanIf changes or stores
the new operation mode of the CAN Controller after an indication of a successful
mode transition via CanIf_ControllerModeIndication (ControllerId, Con-
trollerMode).

AUTOSAR

[SWS_CANIF_00475] | If during function CanIf_SetControllerMode () the call of
Can_SetControllerMode () returns with CAN_NOT_OK,CanIf_ SetControllerMode ()
returns E_NOT_OK. |()

[SWS_CANIF_00481] | When CanIf_SetControllerMode (ControllerId, CANIF_CS_STA?
is called with parameter Cont rollerId referencing that ccMsM, then canIf shall call
Can_SetControllerMode (Controller, CAN_T_START). |()

[SWS_CANIF_00714] [When CanIf_ControllerModeIndication (ControllerId,
CANIF_CS_STARTED) is called with parameter Cont rollerId referencingthat ccMswM,
then canIf shall take the ccMsMto sub state CANIF_CS_STARTED of state CANIF_CS_INIT.

10

[SWS_CANIF_00480] | If a ccMsMis in state CANIF_CS_STOPPED Of CANIF_CS_STARTED

when CanIf_SetControllerMode (ControllerId, CANIF_CS_STOPPED) iscalled

with parameter Cont rol1erId referencingthat ccMsy, then canIf shall call Can_SetControlle:
CAN_T_STOP). |()

[SWS_CANIF_00713] [When CanIf_ControllerModeIndication (ControllerId,
CANIF_CS_STOPPED) is called with parameter Cont rollerId referencingthat ccMsM,
then canIf shall take the ccMsMto sub state CANIF_CS_STOPPED of state CANIF_CS_INIT.

10

[SWS_CANIF_00482] | When CanIf_SetControllerMode (ControllerId, CANIF_CS_SLE!
is called with parameter ControllerId referencing that ccMsyM, then canIf shall call
Can_SetControllerMode (Controller, CAN_T_SLEEP). |()

[SWS_CANIF_00715] [When CanIf_ControllerModeIndication (ControllerId,
CANIF_CS_SLEEP) is called with parameter ControllerId referencing that ccMsM,
then can1f shall take the ccMsM to sub state CANTF_CS_SLEEP of state CANIF_CS_INIT.

10

7.18.2.1 CANIF_CS_UNINIT

CanIf is notinitialized. EcuM has to consider, that also CAN Drivers and CAN Con-
trollers are not initialized.

[SWS_CANIF_00476] | If a ccMsM is in state CANIF_CS_UNINIT when the function
CanIf_TInit () is called, then can1f shall take the ccMswM for every assigned CAN
Controller to state CANIF_CS_INIT. |()

7.18.22 CANIF_CS_INIT

[SWS_CANIF_00477] | If the ccMsM is in state CANIF_CS_INIT for every assigned
CAN Controller when the function canIf_TInit () is called, then can1f shall take
the ccMsM for every assigned CAN Controller to state CANIF_CS_INIT. |()

AUTOSAR

The explicit transition from CANIF_CS_INIT to CANIF_CS_INIT described in require-
ment [SWS_CANIF_00477] models the reinitialization of the state machine contained
within CANIF_CS_INIT.

[SWS_CANIF_00478] | If the state CANIF_CS_INIT of a CCMSM is entered, then
CanIf shall take that ccMsMto sub state CANIF_CS_STOPPED of state CANIF_CS_INIT.

10

[SWS_CANIF_00479] | If a ccMsM enters state CANIF_CS_INIT, then canIf shall
clear all temporarily stored wakeup events corresponding to that state machine. |()

[SWS_CANIF_00298] | If a ccMSMis in state CANIF_CS_INIT whenCanIf_ControllerBusOff
is called with parameter Controller1d referencing that ccmswy, then the ccMsM shall
be changed to CANIF_CS_STOPPED. |()

7.18.2.2.1 CANIF_CS_STOPPED

The CAN Controller cannot receive or transmit CAN L-PDUs on the network in the
corresponding mode CAN_T_STOP.

[SWS_CANIF_00677] [If a ccMsMis in state CANIF_CS_STOPPED and if the PduId-

Type parameterinacall of CanIf_Transmit () isassignedtothat CAN Controller,

thenthe call of CanIf_Transmit () doesnotresultinacall of Can_write () (see [SWS_CANIF_O
and returns E_NOT_OK (see [SWS_CANIF_00005]). |()

[SWS_CANIF_00485] | If a ccMsM enters state CANIF_CS_STOPPED, then CanIf
shall clear the Canlf transmit buffers assigned to the CAN Controller corresponding
to that state machine. |()

7.18.2.2.2 CANIF_CS_STARTED

In the mode CANIF_CS_STARTED CanIf passes all transmit requests to correspond-

ing CanDrv and CanIf can receive CAN L-PDUs and notify upper layers about re-
ceived L-PDUs.

[SWS_CANIF_00488] | If a ccMsMis in state CANIF_CS_STARTED when CanIf_ControllerBus(
is called with parameter Cont rol1lerId referencing that ccMsy, then the ccMsM shall
be changed to CANIF_CS_STOPPED. |()

Note: A direct transition from CANIF_CS_STARTED to CANIF_CS_SLEEP is not al-

lowed and will never be requested by cansM. Such an invalid state transition (i.e.
CCMsMisin state CANIF_CS_STARTED and CanIf_SetControllerMode (ControllerId,
CANIF_CS_SLEEP) is called) will be detected by CanDrv.

AUTOSAR

7.18.2.2.3 CANIF_CS_SLEEP

If a CAN Controller does not support a sleep mode, canDrv will handle corre-
sponding requests with a logical sleep mode (see [1, SWS_Can_00290 in SWS Can-
Drv]). canIf is not able to differ between logical and real sleep mode of a CAN Con-
troller.

[SWS_CANIF_00487] | If a ccMsMis in state CANIF_CS_SLEEP When CanIf_SetControllerMoc
CANIF_CS_STOPPED) is called with parameter ControllerId referencingthat ccMsM,
then can1f shall call Can_SetControllerMode (Controller, CAN_T_WAKEUP).

10

Note: A direct transition from CANIF_CS_SLEEP to CANIF_CS_STARTED is not al-
lowed and will never be requested by cansM. Such an invalid state transition (i.e.
CCMsMisin state CANIF_CS_SLEEP and CanIf_SetControllerMode (ControllerId,
CANIF_CS_STARTED) is called) will be detected by CanDrv."

7.18.2.3 BUSOFF

[SWS_CANIF_00739] | If CANIF_PUBLIC_TXCONFIRM_POLLING_SUPPORT (see ECUC_Canlf O
is enabled, can1f shall clear the information about a TxConfirmation (see [SWS_CANIF_00740])
when callback CanIf_ControllerBusOff (ControllerId) is called. |()

[SWS_CANIF_00724] | When callback CanIf_ControllerBusOff (ControllerId)
is called, the canIf shall call canSM_ControllerBusOff (ControllerId) of the
Cansm (see subsubsection 8.6.3.9 ora CDD (see [SWS_CANIF_00559], [SWS_CANIF_00560]).

10

Influence on cCMsM of CanIf_ControllerBusOff isdescribedin [SWS_CANIF_00298]
and [SWS_CANIF_00488].

7.18.2.4 Mode Indication

Note: When the callback canIf ControllerModeIndication (ControllerId,
ControllerMode) is called, canIf sets the ccMsM of the corresponding CAN Con-—
troller to the delivered ControllerMode without checking correctness of CCMSM
transition.

[SWS_CANIF_00711] [When callback CanIf_ControllerModeIndication(Con-—
trollerId, ControllerMode) iscalled, CanIf shallcallCanSm_ControllerModeIndicati
ControllerMode) of the Cansm (see subsubsection 8.6.3.9 <User_ControllerModelndication>)
ora CDD (see [SWS_CANIF_00691], [SWS_CANIF_00692]). |()

[SWS_CANIF_00712] [When callback CanIf_TrcvModeIndication(Transceiver,
TransceiverMode) iscalled, CanIf shallcallCanSM_TransceiverModeIndication (Transc
TransceiverMode) of the Cansm (see subsubsection 8.6.3.9 <User_ControllerModelndication>)
or a CDD (see [SWS_CANIF_00697], [SWS_CANIF_00698]). |()

AUTOSAR

7.18.3 Controller Mode Transitions

The API for state change requests to the CAN Controller behaves in an asyn-
chronous manner with asynchronous notification via callback services.

The real transition to the requested mode occurs asynchronously based on setting
of transition requests in the CAN controller hardware, e.g. request for sleep transi-
tion CANIF_CS_SLEEP. After successful change to e.g. CAN_T_SLEEP mode Can-
Drv calls function CanIf_ControllerModeIndication () and CanIf inturn calls
function <User_ControllerModeIndication> () besides changing the ccMsM to
CANIF_CS_SLEEP. If CAN transitions very fast, CanIf_ControllerModeIndication ()
can be called during CanIf_SetControllerMode (). This is implementation spe-
cific.

Unsuccessful or no mode transitions of the CAN Controllers have to be tracked by
upper layer modules. Mode transitions CANTF_CS_STARTED and CANIF_CS_STOPPED
are treated similar.

Upper layer modules of canIf can poll the current Controller Mode within the Canlf
buffered operation mode (CCMsSM) by CanIf_GetControllerMode () (see [SWS_CANIF_00229]).

Not all types of CAN Controllers support Sleep and Wake-Up Mode. These modes
are then encapsulated by canDrv by providing hardware independent operation modes
via its interface, which has to be managed by canIf.

Note: It is possible that during transition from CANTIF_CS_STOPPED t0 CANIF_CS_SLEEP
CAN Controller may indicate a wake-up interrupt to the ECU Integration Code.

CanIf distinguishes between internal initiated CAN controller wake-up request (inter-
nal request) and network wake-up request (external request). The internal request is
initiated by call of canIf’s function CanIf_SetControllerMode (ControllerId,
CANIF_CS_STARTED) and it is an internal asynchronous request. The external re-
quest is a CAN controller event, which is notified by canDrv or CanTrcv to the ECU
Integration Code. For details see respective UML diagram in the chapter "CAN Wakeup
Sequences" of document [13].

7.18.4 Wake-up

The ECU supports wake-up over CAN network, regardless of the used wake-up method
(directly about CAN Controller or CAN Transceiver),onlyifthe CAN Controller
and CAN Transceiver are setto some kind of "listen for wake-up" mode. This is usu-
ally a Sleep Mode, where the usual communication is disabled. Only this mode ensures
that the CAN Controller is stopped. Thus, the wake-up interrupt can be enabled.

AUTOSAR

7.18.4.1 Wake-up detection

If wake-up support is enabled (see [SWS_CANIF_00180]) can1If is notified by the In-
tegration Code about a detected CAN wake-up by the service CanIf_CheckWakeup ()
(see CAN Wakeup Sequences of [13]).

In case of a CAN bus "wake-up" event the function CanIf_CheckWakeup (WakeupSource)
may be called during execution of EcuM_CheckWakeup (WakeupSource) (see wake-

up sequence diagrams of EcuM). CanIf in turn checks by configured input reference to
EcuMWakeupSource in CanDrvs, Which CanDrvs have to be checked. canIf gets

this information via reference CanIfCtrlCanCtrlRef (see ECUC Canlf 00636).

The Communication Service, which is called, belongs to the service defined during
configuration (see ECUC _Canlf_00250). In this way EcuM as well as Cansm are able
to change CAN Controller States and to control the system behavior concerning the
BusOff recovery or wake-up procedure.

[SWS_CANIF_00395] [When CanIf_CheckWakeup (EcuM_WakeupSourceType Wake-
upSource) isinvoked, CanIf shallquery CanDrvs/CanTrcvs via CanTrcv_CheckWakeup ()
or Can_CheckWakeup (), which exact CAN hardware device caused the bus wake-up.

10

Note: It is implementation specific, which controllers and transceivers are queried.
CanIf just has to find out the exact CAN hardware device.

[SWS_CANIF_00720] [If at least one function call of Can_CheckWakeup () Oor CanTrcv_CheckWa
returns (CAN_OK / E_OK) to CanIf, then CanIf_CheckWakeup () shall return E_OK.

10

[SWS_CANIF_00678] | If all calls of Can_CheckWakeup () or CanTrcv_CheckWakeup ()
return (CAN_NOT_OK / E_NOT_OK) to CanIf, then CanIf_CheckWakeup () shall re-
turn E_NOT_OKXK. |()

[SWS_CANIF_00679] | If the ccMsM (see section 7.18) of the CAN Controller,

which shall be checked for a wake-up event via CanIf_CheckWakeup (), is not in

mode CANIF_CS_SLEEP, CanIf shall reportthe development error code CANIF_E_NOT_SLEEP
to the Det_ReportError service of the DET module and CanIf_CheckWakeup ()

shall return E_NOT_OX. |()

7.18.4.2 Wake-up Validation

Note: When a CAN Controller /CAN Transceiver detects a bus wake-up event,

then this will be notified to the ECU State Manager directly. If such a wake-up event

needs to be validated, the EcuM (or a CDD) switches on the corresponding CAN Con-

troller (CanIf_SetControllerMode ())andCAN Transceiver (CanIf_SetTrcvMode ())
(For more details see chapter 9 of [13]).

Attention: can1If notifies the upper layer modules about received messages after the
corresponding CCMSM has been transitioned to CANIF_CS_STARTED and the PDU

AUTOSAR

Channel Mode has been set to CANIF_ONLINE or CANIF_TX_OFFLINE. Thus, it is

necessary that the PDU Channel Mode is not setto CANIF_ONLINE or CANIF_TX_OFFLINE

if wake-up validation is required.

Note: As per [SWS_CAN_00411] and CAN Controller State Diagram (see [1]) a direct
transition from mode CAN_T_SLEEP to CAN_T_START is not allowed.

[SWS_CANIF_00226] | canIf shall provide wake-up service CanIf_CheckValidation ()

only, if

e underlying CAN Controller provides wake-up support and wake-up is enabled
by the parameter CANIF_CTRL_WAKEUP_SUPPORT (see ECUC Canlf 00637)
and by canDrv configuration

e and/or underlying CAN Transceiver provides wake-up support and wake-up is

enabled by the parameter CANIF_TRCV_WAKEUP_SUPPORT (see ECUC_Canlf_00606)

and by canTrcv configuration

e and configuration parameter

CANIF_PUBLIC_WAKEUP_CHECK_VALIDATION_SUPPORT (see ECUC_Canlf 00611)

is enabled.

10

[SWS_CANIF_00286] [If CanIfPublicWakeupCheckValidSupport equals TRUE,
CanIf enables the detection for CAN wake-up validation. Therefore, Can1 f stores the
event of the first valid call of CanTIf_RxIndication () ofa CAN Controller which
has been set to CANIF_CS_STARTED. The first call of CanIf_RxIndication () is
valid:

e only for received NM messages if CanIfPublicWakeupCheckValidByNM is
TRUE

e for all received messages corresponding to a configured Rx PDU if CanIfPub-
licWakeupCheckValidByNM iS FALSE.

|(SRS_Can_01151)

[SWS_CANIF_00179] [<User_ValidateWakeupEvent> (sources) shall be called
during CanIf_CheckValidation (WakeupSource),whereas sources is setto Wake-
upSource, if the event of the first called CanIf_RxIndication () isstoredin CanIf

at the corresponding CAN Controller. |(SRS_CAN_01136)

Note: If there is no wake-up event stored in CanIf, CanIf_CheckValidation ()
should not call <User_validateWakeupEvent> ().

Note: The parameter of the function <User_validateWakeupEvent> () is of type:
e sources: EcuM_WakeupSourceType (see [13])

[SWS_CANIF_00756] | When ccMsM is set to CANIF_CS_SLEEP the stored event
(first call of CanIf_ RxIndication) shall be cleared. |()

AUTOSAR

7.19 PDU channel mode control

7.19.1 PDU channel groups

Each 1.-pPDU is assigned to one dedicated physical CAN channel connected to one
CAN Controller and one CAN network. By this way all .-PDUs belonging to one
Physical Channel can be controlled on the view of handling logically single .-pPDU
channel groups. Those logical groups represent all .—-pDUs of one ECU connected to
one underlying CAN network.

Figure 7.8 below shows one possible usage of .—PDU channel group and its relation to
the upper layers and/or networks.

An L-PDU can only be assigned to one channel group.

Typical users like PduRr or the Network Management are responsible for controlling the
PDU operation modes.

CAN NM A CAN NM B
Channel Channel Channel Channel
Network 0 Network 0 Network 1 Network 1
TxPath
~_ FxPa li‘l’\ X T ‘nﬁ',m:h

CAN Interface

Y

CAN device drivers

[[
CAN controller/ CAN controller/
transceiver 0 transceiver 1

Network &

Network B

Figure 7.8: Channel PDU groups

AUTOSAR

7.19.2 PDU channel modes

CanIf provides the services CanIf_SetPduMode () and CanIf_GetPduMode () 10
prevent the processing of

e all Transmit L-PDUs belonging to one logical channel,
e all Transmit L-PDUs and Receive L-PDUs belonging to one logical channel.

Changing the PDU channel mode is only allowed during the network mode CANTF_CS_STARTED
(refer to CANIF_CS_STARTED and [SWS_CANIF_00874]).

While CANIF_ONLINE and CANIF_OFFLINE affecting the whole communicatoin the
PDU channel modes CANIF_TX_OFFLINE and CANIF_TX_OFFLINE_ACTIVE en-
able/disable transmission path seperately.

CanIf provides information about the current PDU channel mode via the service
CanIlIf_GetPduMode ().

D>

\Q S

Figure 7.9: PDU channel mode control

Figure 7.9 shows a diagram with possible PDU channel modes. Each 1.-PDU chan-
nel can be in CANIF_OFFLINE (n0O communication), CANIF_TX_OFFLINE (passive
mode => listen without sending), CANIF_TX_OFFLINE_ACTIVE (simulated transmis-
sion without listening (see [SWS_CANIF_00072]), and CANIF_ONLINE (full communi-
cation). The default state is the CANTIF_OFFLINE mode.

7.19.2.1 CANIF_OFFLINE

[SWS_CANIF_00864] | During initialization canI £ shall switch every channelto CANIF_OFFLINE.

10

[SWS_CANIF_00865] [If CanIf_SetControllerMode (ControllerId, CANIF_CS_SLEEP)
is called, can1f shall set the PDU channel mode of the corresponding channel to
CANIF_OFFLINE. |()

AUTOSAR

[SWS_CANIF_00073] | ForPhysical Channels switchingto CANIF_OFFLINE mode
CanIf shall:

e prevent forwarding of transmit requests CanIf_Transmit () of associated L-
PDUs to CanDrv (return E_NOT_OK to the calling upper layer modules),

e clear the corresponding Can1 f transmit buffers,

e prevent invocation of receive indication callback services of the upper layer mod-
ules,

e prevent invocation of transmit confirmation callback services of the upper layer
modules.

10

[SWS_CANIF_00866] | If CanIf_SetControllerMode (ControllerId, CANIF_CS_STOPPED
orCanIf ControllerBusOff (ControllerId) iscalled, canIf shall setthe PDU
channel mode of the corresponding channel to CANIF_TX_OFFLINE. |()

[SWS_CANIF_00489] | For Physical Channels switchingto CANIF_TX_ OFFLINE
mode CanTf shall:

e prevent forwarding of transmit requests CanIf_Transmit () of associated L-
PDUs to CanDrv (return E_NOT_OK to the calling upper layer modules),

e clear the corresponding Canlf transmit buffers,

e prevent invocation of transmit confirmation callback services of the upper layer
modules.

e enable invocation of receive indication callback services of the upper layer mod-
ules.

10

The BusOff notification is implicitly suppressed in case of CANIF_OFFLINE and CANIF_TX_OFFLIN
due to the fact, that no L-pPDUs can be transmitted and thus the CAN Controller is
not able to go in BusOff mode by newly requested 1.—-PDUs for transmission.

[SWS_CANIF_00118] | If those Transmit L-PDUs, which are already waiting for
transmission in the CAN Transmit Hardware Object, will be transmitted immedi-
ately after change to CANIF_TX_OFFLINE or CANIF_OFFLINE mode and a subse-
quent BusOff event occurs, CanIf does not prohibit execution of the BusOff notifica-
tion <User_ControllerBusOff> (ControllerId). [()

The wake-up notification is not affected concerning PDU channel mode changes.

7.19.2.2 CANIF_ONLINE

[SWS_CANIF_00075] [ForPhysical Channels switchingto CANIF_ONLINE mode
CanIf shall:

AUTOSAR

e enable forwarding of transmit requests CanIf_Transmit () of associated L-
PDUs 10 CanDrv,

e enable invocation of receive indication callback services of the upper layer mod-
ules,

e enable invocation of transmit confirmation callback services of the upper layer
modules.

10

7.19.2.3 CANIF_OFFLINE_ACTIVE

IfCanIfTxOfflineActiveSupport = TRUE CanIf provides simulation of success-
ful transmission by CANIF_TX_OFFLINE_ACTIVE mode. This mode is enabled by
call of CanIf_SetPduMode (ControllerId, CANIF_TX_ OFFLINE_ACTIVE) and
only affects the transmission path.

[SWS_CANIF_00072] | For every L-PDU assigned to a channel which is in CANIF_TX_OFFLINE_AC
mode canIf shall call the transmit confirmation callback services of the upper layer

modules immediately instead of buffering or forwarding of the L-PDUs to CanDrv dur-

ing the call of CanIf_Transmit (). |()

Note: During CANIF_TX_OFFLINE_ACTIVE mode the upper layer has to handle the
execution of the transmit confirmations. The transmit confirmation handling is executed
immediately at the end of the transmit request (see [SWS_CANIF_00072]).

Rational: This functionality is useful to realize special operating modes (i.e. diagnosis
passive mode) to avoid bus traffic without impact to the notification mechanism. This
mode is typically used for diagnostic usage.

7.20 Software receive filter

Not all L-PDUs, which may pass the hardware acceptance filter and therefore are
successful received in BasicCAN Hardware Objects, are defined as Receive L-
PDUs and thus needed from the corresponding ECU. can1 £ optionally filters out these
L-PDUs and prohibits further software processing.

Certain software filter algorithms are provided to optimize software filter runtime. The
approach of software filter mechanisms is to find out the corresponding L-PDU Han-
dle from the HRH and CanId currently being processed. After the L-PDU Handle is
found, canIf accepts the L.—-PDU and enables upper layers to access L.—SDU informa-
tion directly.

AUTOSAR

7.20.1 Software filtering concept

The configuration tool handles the information about hardware acceptance filter set-
tings. The most important settings are the number of the L-PDU hardware objects
and their range. The outlet range defines, which Receive L-PDUs belongs to each
Hardware Receive Object. The following definitions are possible:

e asingle Receive L-PDU (FullCAN reception),
e alist of Receive L-PDUs Or

e one or multiple ranges of Receive L-PDUs can be linked t0 a Hardware Re-
ceive Object (BasicCAN reception).

For definition of range reception it is necessary to define at least one Rx L-PDU where
the canId or the complete ID range is inside the defined range.

[SWS_CANIF_00645] | A range of canIds which shall pass the software receive

filter shall either be defined by its upper limit (see CANIF_HRHRANGE_UPPER_CANID,

ECUC Canlf 00630) and lower limit (see CANIF_HRHRANGE_LOWER_CANID, ECUC Canlf 00629)
CanId, orby abase ID (see CANIF_HRHRANGE_BASEID) and a mask that defines the

relevant bits of the base ID (see CANIF_HRHRANGE_MASK). |()

Note: Software receive filtering is optional (see multiplicity of 0..x in ECUC_Canlf_00628).

[SWS_CANIF_00646] | Each configurable range of Can1ds (see [SWS_CANIF_00645]),
which shall pass the software receive filter, shall be configurable either for Standard
CAN IDs or Extended CAN IDs via CANIF_HRHRANGE_CANIDTYPE (see ECUC Canlf 00644).

10

Receive L-PDUs are provided as constant structures statically generated from the
communication matrix. They are arranged according to the corresponding hardware
acceptance filter, so that there is one single list of receive CanIds for every Hardware
Receive Object (HRH). The corresponding list can be derived by the HRH, if multiple
BasicCAN obijects are used. The subsequent filtering is the search through one list of
multiple CanIds by comparing them with the new received canId. In case of a hit the
Receive L-PDU Handle is derived from the found canId.

[SWS_CANIF_00030] | If canIf has found the canId of the received L-PDU in the
list of receive can1ds for the HRH of the received 1.-PDU, then Ccan1f shall accept this
L-pPDU and the software filtering algorithm shall derive the Receive L-PDU Handle
from the found can1d. |(SRS_CAN_01018)

AUTOSAR

Harchere -

Receive Handle

¥ ¥ L
Rov Hardle Mr. | [Rov Handle k. | | Rov Handle Mr. Ricy Hande M. Rov Handle Mr. | |RovHandleMr. | [RovHandebr. | | Rov Hande Nr.
CAM I CAM I CA g CAN Id A g CAM Id CAM I CAN Id
DLC OLC DLC DLC DLC DL DIC DL
Upper Laver D | [Upper Layer 1D | | Upper Laver D Upper Laver D Upper Laver 1D | | Upper Lever 1D | {Upper Laver ID | | Upper Laver 1D
*desfiration *destiration *desfination | *dedinaion | *edinaion detindion *oedindion *destindion
lizt end fac=0 list end flag=0 lit end flac=1 list end 1a0=1 list end flac=0 list end flac=0 list end flag=0 list end flag=1

Figure 7.10: Software filtering example

[SWS_CANIF_00852] | If a range is (partly) contained in another range, or a sin-
gle canId is contained in a range, the software filter shall select the .-PDU Handle

based on the following assumptions:
e Asingle canId is always more relevant than a range.

e A smaller range is more relevant than a larger range.

10

7.20.2 Software filter algorithms

The choice of suitable software search algorithms it is up to the implementation of
canIf. According to the wide range of possible receive BasicCAN operations provided
by the CAN Controller it is recommended to offer several search algorithms like
linear search, table search and/or hash search variants to provide the most optimal
solution for most use cases.

7.21 DLC Check

The received DLC value is compared with the configured DLC value of the received
L-PDU. The configured DLC value shall be derived from the size of used bytes inside
this L-PDU. The configured DLC value may not be necessarily that DLC value defined
in the CAN communication matrix and used by the sender of this CAN L-PDU.

[SWS_CANIF_00026] | canIf shall accept all received L-PDUs (see [SWS_CANIF_00390])
with a DLC value equal or greater then the configured DLC value (see ECUC_Canlf_00599).

|(SRS_CAN_01005)

Hint: The DLC Check can be enabled or disabled globally by can1 £ configuration (see
parameter CANIF_PRIVATE_DLC_CHECK, ECUC Canlf 00617)forallused CanDrvs.

[SWS_CANIF_00168] [If the DLC check rejects a received L-PDU (see [SWS_CANIF_00026]),
CanTf shall report development error code CANIF_E_INVALID_DLC tothe Det_ReportError ()

service of the DET module. |()

AUTOSAR

[SWS_CANIF_00829] | canIf shall pass the received (see [SWS_CANIF_00006])
length value (DLC) to the target upper layer module (see [SWS_CANIF_00135]), if the
DLC check is passed. |()

[SWS_CANIF_00830] | canIf shall pass the received (see [SWS_CANIF_00006])
length value (DLC) to the target upper layer module (see [SWS_CANIF_00135]), if the
DLC check is not configured (see ECUC_Canlf_00617) |()

7.22 L-SDU dispatcher to upper layers

Rationale: At transmission side the 1.—sDU dispatcher has to find out the corresponding
Tx confirmation callback service of the target upper layer module. At reception side
each 1L.—spU handle belongs to one single upper layer module as destination for the
corresponding receive 1,—sDU or group of such L.—-spuUs. This relation is assigned
statically at configuration time. The task of the 1.—sSDU dispatcher inside of CanIf is to
find out the customer for a received 1.—sDU and to dispatch the indications towards the
found upper layer. These transmit confirmation as well as receive indication notification
services may exist several times with different names defined in the notified upper layer
modules. Those notification services are statically configured, depending on the layers
that have to be served.

7.23 Polling mode

The polling mode provides handling of transmit, receive and error events occurred
in the CAN hardware without the usage of hardware interrupts. Thus the Canlf and
the CanDrv provides notification services for detection and execution corresponding
hardware events. In polling mode the behavior of these Canlf notification services
does not change. By this way upper layer modules are abstracted from the strategy to
detect hardware events. If different CanDrvs are in use, the calling frequency has to
be harmonized during configuration setup and system integration.

These notification services are able to detect new events that occurred in the CAN
hardware objects since its last execution. The Canlf’s notification services for for-
warding of detected events by the CanDrv are the same like for interrupt operation
(see section 8.4 Callback notifications).

The user has to consider, that the Canlf has to be able to perform notification ser-
vices triggered by interrupt on interrupt level as well as to perform invoked notification
services on task level. If any access to the CAN controller’s mailbox is blocked, subse-
qguent transmit buffering takes place (refer section 7.11 Transmit buffering).

The Polling and Interrupt mode can be configured for each underlying CAN controller.

AUTOSAR

7.24 Multiple CAN Driver support

CanTf needs a specific mapping to cover multiple CanDrv to provide a common inter-
face to upper layers. Thus, canIf must dispatch all actions up-down to the APIs of the
corresponding CanDrv and underlying CAN Controller(s). For the way down-up
CanIf has to provide adequate callback notifications to differentiate between multiple
CanDrvs.

Each canDrv supports a certain number of underlying CAN Controllers and a fixed
number of HTH/HRHs. Each canDrv has an own numbering area, which starts always
at zero for CAN Controllers and HTHs. CanIf has to derive the corresponding
CanDrv from the L-sDU Handle passed in the APIs. The parameters have to be
translated accordingly: i.e. L-SDU Handle => HTH/HRH, Canld, DLC."

The support for multiple CanDrvs can be enabled and disabled by the configuration
parameter CanIfPublicMultipleDrvSupport.

7.24.1 Transmit requests by using multiple CAN Drivers

Each Transmit L-PDU enables CanTf to derive the corresponding CAN Controller
and implicitly canDrv serving the affected Hardware Unit. Resolving of these de-
pendencies is possible because of the construction of the CAN Controller Handle: it
combines CanDrv Handle and the corresponding CAN Controller inthe Hardware
Unit.

At configuration time a CAN Controller Handle willbe mappedto each CAN Con-
troller. The sequence diagram Figure 7.11 below demonstrates two transmit re-
quests directed to different CanDrvs. CanIf needs only to select the corresponding
CcanDrv in order to call the correct API service.

Note: Figure 7.11 and the following table serve only as an example. Finally, it is up to
the implementation to access the correct APls of underlying CanDrvs.

AUTOSAR

[CAN Contrqller A used]

Canlf User «mod... Can_99_Ext1 «Peripheral» Can_99_Ext2 «Peripheral»

Canlf ‘Can CanController A :Can CanController B

:CanController :CanController
T T T
| | |
alt CAN Controller A/B /J | |
I I
I I
' '

: Canlf_Transm it(StdiReturnTy;E qu
>

Canlf_Transmit()

[CAN Contioller B used]

Can_Write(Can_ReturnType, Can_HwHandleType,
const Can_PduType*)

Canlf_Transmit()

P

const Can_PduType*) T

Can_Write()

I
|
I
I
|
I
I
I
Can_Write(Can_RetumnType, Can_HwHandleType, |
+
|
I
I
I
|
I
I

IdType, const PdulnfoTyp'e*)

Copy L-PDU in CAN
Hardware A()

Copy L-PDU in CAN
Hardware A()

Copy L-PDU in CAN
Hardware B()

Copy L-PDU in CAN
Hardware B()

Can_Write() < ——————

Figure 7.11: Transmission request with multiple CAN Drivers - simplified

Operations called

Description

CanIf_Transmit
(PduId_1,
PduInfoPtr_1)

Upper layer initiates a transmit request. The pdu1d is used for
tracing the requested CAN Controller and then to serving the
Hardware Unit.

The number of the Hardware Unit is relevant for the dispatch
as it is used as index for the array with pointer to functions. At first
the number of the PDU channel group will be extracted from the
Pduld_1. Each PDU channel group refers to a CAN channel and
thus as well the Hardware Unit Number and the CAN Controller
Number.

The Hardware Unit Number points on an instance of CanDrv and
therefore refers all AP services configured for the used
Hardware Unit(s). One of these services is the requested
transmit service.

Can_Write (Hth,
PduInfoPtr)

Request for transmission to the corresponding CAN_Driver
serving i.e. CAN Controller #0 within the "A" Hardware Unit.

Hardware request

All L-pPDU data will be set in the Hardware of i.e. CAN
Controller #0 within Hardware Unit "A" and the transmit
request enabled.

CanIf_ Transmit
(PduId_2,
PduInfoPtr_2)

Upper layer initiates Transmit Request. The parameter
transmit handle leads to another CAN Controller and then to
another Hardware Unit.

The number of the Hardware Unit is relevant for the dispatch
as it is used as index for the array with pointer to functions. At first
the number of the PDU channel group will be extracted from the
Pduld_2. Each PDU channel group refers to a CAN channel and
thus as well to the Hardware Unit Number and to the CAN
Controller Number.

AUTOSAR

The Hardware Unit Number points on an instance of canDrv and
therefore refers all AP services configured for the used
Hardware Unit(s). One of these services is the requested
transmit service.

Can_Write (Hth, Request for transmission to the corresponding CAN_Driver
PduInfoPtr_2) serving i.e. CAN Controller #1 within the "B" Hardware Unit.
Hardware request All L-pDU data will be set in the Hardware of i.e. CAN

Controller #1 within Hardware Unit "B" and the transmit
request enabled.

7.24.2 Notification mechanism using multiple CAN Drivers

Even if multiple CanDrvs are used in a single ECU Every notification callback service
invoked by canDrvs at the canIf exists only once. This means, that canIf has
to identify calling CanDrv using the passed parameters. CanIf identifies the calling
CanDrv from the ControllerId within the Mailbox (Can_HwType) structure.

Canlf User «module» Can_99_Extl Can_99_Ext2 «Peripheral»
Canlf ‘Can ‘Can CanController
T T T T T
I I I I I
| 1 ! | Receive |
: : ! < : Interrupt() !
I I | I
! ! Canlf_RxIndication(const Can_HwType*, !
! ! const PduinfoType*) !
I | @ I
I il I
I I
: Received L-PDU :
| validation check (SW |
| [Filtering, DLC ChecK) |
I <User_RxIndication>(PduldType, !
[const PdulnfoType*) I
~ |
Copy I
Data() I
Copy |]
| Datal !
] || ___ _pata o _______] 1o __ L
I
<User_RxIndication>() |
——————————————————— > |
Canlf_RxIndication() |
| it | Receive
! - ! Interrupt
I) S e o)
I I L I
: : : : Receive
| | | | Interrupt()
: : Canlf_RxIndication(const Can_Hvlvape*,
| | g const PdulnfoType*) |
I il]
I I
| |
! Received L-PDU validation check
: O (SW Filtering, DLC Check):
| <User_RxIndication>(PduldType, |
| const PdulnfoType*) |
ad |
Copy |
data() |
[[N
Copy |
| data() I
S mm————m—————— R e e Fo—————- H=—mmm—— =1
|
<User_RxIndication>() |
|: —————————————— > I
Y N I Canif Rdndication) __ _ _ _ |
| L I Receive
| | | Interrupt
| I I - - el)
I I I
I I I
I

Figure 7.12: Receive interrupt with multiple canDrvs - simplified

AUTOSAR

Operations called

Description

Receive Interrupt

CAN Controller 1 signals a successful reception and triggers a
receive interrupt. The ISR of CanDrv A is invoked.

CanIf_ RxIndication
(Mailbox_1,
PduInfoPtr_1)

The reception is indicated to canIf by calling of
CanIf_RxIndication (). The pointer Mailbox_1 identifies
the HRH and its corresponding CAN Controller, Which contains
the received L—-PDU specified by PduInfoPtr_1.

Validation check
(SW Filtering, DLC Check)

The Software Filtering checks, whether the Received L-PDU will
be processed on a local ECU. If not, the Received 1.-SDU is not
indicated to upper layers and further processing is suppressed.

If the 1.-PDU is found, the DLC of the Received L-PDU s
compared with the expected, statically configured one for the
received L-PDU.

<User_RxIndication>
(CanRxPduld_1,
CanPdulInfoPtr_1)

The corresponding receive indication service of the upper layer is
called. This signals a successful reception to the target upper
layer. The parameter CanRxPduld_1 specifies the ID of the
received L-sDU. The second parameter is the reference on
PduInfoType Which provides access to the buffer containing the
L-SDU.

Receive Interrupt

The CAN Controller 2 signals a successful reception and
triggers a receive interrupt. The ISR of cCanDrv B is invoked.

CanIf RxIndication
(Mailbox_2,
PduInfoPtr_2)

The reception is indicated to CanIf by calling of
CanIf_RxIndication (). The pointer Mailbox_2 identifies
the HRH and its corresponding CAN Controller, which contains
the received L-PDU specified by PduInfoPtr_2.

Validation check
(SW Filtering, DLC Check)

The Software Filtering checks, whether the Received L-PDU will
be processed on a local ECU. If not, the Received L.—SDU is not
indicated to upper layers and further processing is suppressed.

If the .—PDU is found, the DLC of the Received L-PDU s
compared with the expected, statically configured one for the
received L-PDU.

<User_RxIndication>
(CanRxPduld_2,
CanPdulInfoPtr_2)

The corresponding receive indication service of the upper layer is
called. This signals a successful reception to the target upper
layer. The parameter CanRxPduId_2 specifies the ID of the
received 1.-SDU. The second parameter is the reference on
PduInfoType Which provides access to the buffer containing the
L-SDU.

7.25 Partial Networking

[SWS_CANIF_00747] [If Partial Networking (PN) is enabled (see CANIF_PUBLIC_PN_SUPPORT,
ECUC_Canlf_00772), canIf shall support a PnTxFilter per CAN Controller
which overlays the PDU channel modes. |()

[SWS_CANIF_00748] | The pnTxFilter of [SWS_CANIF_00747] shall only have

an effect and transition its modes (enabled/disabled) if more than zero Tx L-PDUs per

CAN Controller areconfiguredas CanIfTxPduPnFilterPdu (see CANIF_TXPDU_PNFILTERF
ECUC_Canlf_00773). |()

[SWS_CANIF_00863] | pnTxFilter shall be enabled during initialization (ref. to
[SWS_CANIF_00747] and [SWS_CANIF_00748]). |()

AUTOSAR

[SWS_CANIF_00749] [If CanIf_SetControllerMode (ControllerId, CANIF_CS_SLEEP)
is called the PnTxFilter of the corresponding CAN Controller shall be enabled
(ref. to [SWS_CANIF_00748] and [SWS_CANIF_00747]). |()

[SWS_CANIF_00750] | If the PnTxFilter ofaCAN Controllerisenabled, CanIf

shall block all Tx requests to that CAN Controller (return E_NOT_OKwhen CanIf_Transmit ()
is called), except if the requested Tx L—PDUs is one of the configured CanI fTxPduP—
nFilterPdus of that CAN Controller. These CanIfTxPduPnFilterPdus shall

always be passed to the corresponding CAN Driver. |()

[SWS_CANIF_00751] [If canIf_TxConfirmation () is called, the corresponding
PnTxFilter shall be disabled (ref. to [SWS_CANIF_00747]and [SWS_CANIF_00748]).

10

[SWS_CANIF_00752] [Ifthe PnTxFilter ofaCAN Controller isdisabled, CanIf
shall behave as requested via CanIf_SetPduMode (see [SWS_CANIF_00008]). |()

[SWS_CANIF_00878] [If CanIf_SetPduMode (ControllerId, CANIF_TX_OFFLINE)
is called and Partial Networking is enabled (ref. to CANIF_PUBLIC_PN_SUPPORT,
ECUC_Canlf_00772) the pnTxFilter of the corresponding CAN Controller shall

be enabled (ref. to [SWS_CANIF_00748] and [SWS_CANIF_00747]). |()

7.26 CAN FD Support

For performance reasons some CAN Controllers allow to use a Flexible Data-Rate
feature called cAN FD (see [12, ISO 11898-1:2015]). Besides, the higher baud rate for
the payload CAN FD also supports an extended payload which allows the transmission
of up to 64 bytes. If these features are available depends on the general CAN FD
support by the CAN Controller and if the CAN Controller is in CAN FD mode
(valid canControllerFdBaudrateConfig).

If an 1.—-sDU shall be sent as CAN FD or conventional CAN 2.0 frame depends on
the configured CanIfTxPduCanIdType. CanIf indicates this to canDrv utilizing
the second most significant bit of PduInfo->id (Can_IdType) passed while calling
Can_Write ().

Note: If CanDrv is not in CAN FD mode (no CanControllerFdBaudrateConfig,
the L-PDU will be sent as conventional CAN 2.0 frame as long as the SduLength <=
8 bytes.

Note: The arbitration phase of conventional CAN 2.0 frames and CAN FD frames does
not differ if the same can1d is used. Therefore, even when using CAN FD frames each
CanId must not be used more than once.

Which kind of frame was received by CanDrv is also indicated utilizing the second most
significant bit of the Can_IdType passed with CanIf RxIndication () (Mailbox-
>CanId). Based on this information canIf decides how to map to the configured
L-SDU (CanIfRxPduCfg) as described in [SWS_CANIF_00877].

AUTOSAR

Note: If upper layers don’t care if a message was received by conventional CAN 2.0
frame or CAN FD frame, it is possible to use only one CanIfRxPduCfg for both types
(see CanIfRxPduCanIdType). This might allow local optimization. However, from a
system point of view, the format for each frame has to be configured. Otherwise the
sender wouldn’t know which kind of frame shall be transmitted.

7.27 Error classification
This chapter lists and classifies all errors that can be detected within this software

module. Each error is classified according to relevance (development / production)
and related error code. For development errors, a value is defined.

7.27.1 Development Errors

The following table shows the available error codes. canIf shall detect them to the
DET, if configured.

Type of error Relevance Related error code Value

API service called with Development | CANIF_E_PARAM_CANID 10

invalid parameter CANIF_E_PARAM_HOH 12
CANIF_E_PARAM LPDU 13
CANIF_E_PARAM CONTROLLER 14
CANIF_E_PARAM CONTROLLERID 15
CANIF_E_PARAM WAKEUPSOURCE 16
CANIF_E_PARAM_TRCV 17
CANIF_E_PARAM TRCVMODE 18
CANIF_E_PARAM TRCVWAKEUPMODE | 19
CANIF_E_PARAM CTRLMODE 21
CANIF_E_PARAM PDU_MODE 22

API service called with Development | CANIF_E_PARAM POINTER 20

invalid pointer

API service used without Development | CANIF_E_UNINIT 30

module initialization

Transmit PDU ID invalid Development | CANIF_E_INVALID_TXPDUID 50

Receive PDU ID invalid Development | CANIF_E_INVALID_ RXPDUID 60

Failed DLC Check Development | CANIF_E_INVALID_DLC 61

Data Length Development | CANIF_E_DATA LENGTH_MISMATCH | 62

CAN Interface controller Development | CANIF_E_STOPPED 70

mode state machine is in

mode

CANIF_CS_STOPPED

CAN Interface controller Development | CANIF_E_NOT_SLEEP 71

mode state machine is not

in mode

CANIF_CS_SLEEP

CAN Interface initialisation | Development | CANIF_E_INIT_FAILED 80

failed

AUTO SAR

7.27.2 Runtime Errors

There are no runtime errors.

7.27.3 Transient Faults

There are no transient faults.

7.27.4 Production Errors

There are no production errors.

7.27.5 Extended Production Errors

There are no extended production errors.

7.28 Error detection

[SWS_CANIF_00661] [If the switch CANIF_PUBLIC_DEV_ERROR_DETECT is en-
abled, all Canlf API services other than CanIf_Init () and CanIf_GetVersion ()
shall:

e not execute their normal operation
e report to the DET (using CANIF_E_UNINIT)
e and return E_NOT_OK

unless the Canlf has been initialized with a preceding call of canIf_Init (). |()

7.29 Error notification

[SWS_CANIF_00223] | For all defined production errors it is only required to report
the event, when an error or diagnostic relevant event (e.g. state changes, no L-PDU
events) occurs. Any status has not to be reported. |()

[SWS_CANIF_00119] | Additional errors that are detected because of specific imple-
mentation and/or specific hardware properties shall be added in the can1f specific
implementation specification. For doing that, the classification and enumeration listed
above can be extended with incremented enumerations. |()

AUTOSAR

8 API specification

8.1 Imported types

In this chapter all types included from the following files are listed.

[SWS_CANIF_00142] [

Module Imported Type

Can_GeneralTypes | CanTrcv_TrcvModeType
CanTrcv_TrcvWakeupModeType
CanTrcv_TrcvWakeupReasonType
Can_HwHandleType
Can_HwType

Can_IdType

Can_PduType

Can_ReturnType
Can_StateTransitionType

ComStack_Types IcomConfigldType
lcomSwitch_ErrorType

PduldType

PdulnfoType
EcuM EcuM_WakeupSourceType
Std_Types Std_ReturnType

Std_VersionInfoType

Table 8.1: Canlf_ImportedTypes

|(SRS_BSW _00348, SRS_BSW _00353, SRS_BSW _00361)

8.2 Type definitions

8.2.1 Canlf_ConfigType

[SWS_CANIF_00144] [

Name: CanIf_ConfigType
Type: Structure
Element: implementation The contents of the initial-
specific ization data structure are
CAN interface specific
Description: This type defines a data structure for the post build parameters of the CAN
interface for all underlying CAN drivers. At initialization the Canlf gets a
pointer to a structure of this type to get access to its configuration data, which
is necessary for initialization.

Table 8.2: Canlf_ConfigType

10

AUTOSAR

[SWS_CANIF_00523] | The initialization data structure for a specific CanIf CanIf_ ConfigType
shall include the definition of canIf public parameters and the definition for each 1.-
PDU/L-SDU handle. |()

Note: The definition of canI £ public parameters and the definition for each L-PDU/L-
SDU handle are specified in chapter 10.

Note: The definition of CAN Interface public parameters contains:
e Number of transmit L-PDUs/L-SDUs
e Number of receive L-PDUs/L-SDUs
e Number of dynamic transmit L-PDU/L-SDU handles

Note: The definition for each L-PDU handle contains:

Handle for transmit L-PDUs/L-SDUs

Handle for receive 1.-PDUs/L.-SDUs

Name of transmit L-PDUs/L-SDUs

Name for receive L-PDUs/L-SDUs

CAN ldentifier for static and dynamic transmit L-PDUs/L—SDUs

CAN ldentifier for receive L-PDUs/L-SDUs

DLC for transmit .-PDUs/L.—SDUs

e DLC for receive .-PDUs/L-SDUs

Data buffer for receive L.-PDUs/L.-SDUs in case of polling mode

Transmit L.-PDUs/L-SDUs handle type

Transmission mode of L-PDUs/L-SDUs (CanIfTxPduTriggerTransmit)

8.2.2 Canlif_ControllerModeType

[SWS_CANIF_00136] [

Name: CanIf_ControllerModeType
Type: Enumeration
Range: CANIF_CS_SLEEP The CAN controller is in SLEEP mode
and can be woken up by an internal
(SW) request or by a network event
(This must be supported by CAN
hardware.).
CANIF_CS_STARTED The CAN controller is in
full-operational mode.
CANIF_CS_STOPPED The CAN controller is halted and does
not operate on the network.

AUTOSAR

CANIF_CS_UNINIT UNINIT mode. Default mode of each
CAN controller after power on.

Description: Operating modes of a CAN controller.

Table 8.3: Canlf_ControllerModeType

10

8.2.3 Canlif_PduModeType

[SWS_CANIF_00137] [

Name: CanIf_PduModeType
Type: Enumeration
Range: CANIF_OFFLINE = 0 Transmit and receive path of the
corresponding channel are disabled
=> no communication mode
CANIF_TX_OFFLINE Transmit path of the corresponding
channel is disabled. The receive path
is enabled.
CANIF_TX_OFFLINE_ACTIVE Transmit path of the corresponding

channel is in offline active mode (see
SWS_CANIF_00072). The receive
path is disabled.

This mode requires
CanlfTxOfflineActiveSupport = TRUE.
CANIF_ONLINE Transmit and receive path of the
corresponding channel are enabled
=> full operation mode

Description: The PduMode of a channel defines its transmit or receive activity.
Communication direction (transmission and/or reception) of the channel can
be controlled separately or together by upper layers.

Table 8.4: Canlf_PduModeType

10

8.2.4 Canlf_NotifStatusType

[SWS_CANIF_00201] [

Name: CanIf_NotifStatusType

Type: Enumeration

Range: CANIF_TX_RX_NOTIFICATION The requested Rx/Tx CAN L-PDU
was successfully transmitted or
received.

CANIF_NO_NOTIFICATION =0

No transmit or receive event occurred
for the requested L-PDU.

Description: Return value of CAN L-PDU notification status.

AUTOSAR

Table 8.5: Canlf_NotifStatusType

10

8.3 Function definitions
8.3.1 Canlf_Init

[SWS_CANIF_00001] Initialization interface |

Service name: Canlf_Init

Syntax: void CanIf_TInit (

const CanIf ConfigTypex ConfigPtr
)

Service ID[hex]: 0x01

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): ConfigPtr Pointer to configuration parameter set, used e.g. for

post build parameters

Parameters (inout): | None

Parameters (out): None
Return value: None
Description: This service Initializes internal and external interfaces of the CAN Inter-

face for the further processing.

Table 8.6: Canlf_Init
|(SRS_BSW _00405, SRS_BSW _00101, SRS_BSW _00358, SRS_BSW 00414, SRS_CAN_01021
SRS_CAN_01022)
Note: All underlying CAN controllers and transceivers still remain not operational.
Note: The service CanIf_1Init () is called only by the EcuM.

[SWS_CANIF_00085] | The service CanIf_Init () shall initialize the global vari-
ables and data structures of the can1f including flags and buffers. |()

8.3.2 Canlf_SetControllerMode

[SWS_CANIF_00003] [

Service name: Canlf_SetControllerMode

Syntax: Std_ReturnType CanIf_SetControllerMode (
uint8 ControllerId,
CanIf_ControllerModeType ControllerMode
)

Service ID[hex]: 0x03

AUTOSAR

Sync/Async: Asynchronous

Reentrancy: Reentrant (Not for the same controller)

Parameters (in): Controllerld Abstracted Canlf Controllerld which is assigned to a
CAN controller, which is requested for mode transi-
tion.

ControllerMode Requested mode transition

Parameters (inout): | None

Parameters (out): None

Return value: Std_ReturnType E_OK: Controller mode request has been accepted
E_NOT_OK: Controller mode request has not been
accepted

Description: This service calls the corresponding CAN Driver service for changing of

the CAN controller mode.

Table 8.7: Canlf_SetControllerMode

|(SRS_CAN_01027)

Note: The service CanIf_SetControllerMode () initiates a transition to the re-
quested CAN controller mode ControllerMode of the CAN controller which is as-
signed by parameter ControllerId.

[SWS_CANIF_00308] | The service CanIf_SetControllerMode () shallcallCan_SetControl.
Transition) for the requested CAN controller. |()

[SWS_CANIF_00311] [If parameter ControllerIdof CanIf_SetControllerMode ()

has an invalid value, the Canlf shall report development error code CANIF_E_PARAM_CONTROLLERI
tothe Det_ReportError service of the DET module, when CanIf_SetControllerMode ()

is called. |(SRS_BSW _00323)

[SWS_CANIF_00774] [If parameter ControllerMode Of CanIf_SetControllerMode ()
has an invalid value (not CANIF_CS_STARTED, CANIF_CS_SLEEP Of CANIF_CS_STOPPED),
the Canlfshall report development error code CANIF_E_PARAM_CTRLMODE to the Det_ReportErrc
service of the DET module, when CanIf_SetControllerMode () iscalled. |(SRS_BSW_0032¢

[SWS_CANIF_00312] [Caveats of CanIf_SetControllerMode ():
e The CAN Driver module must be initialized after Power ON.
e The CAN Interface module must be initialized after Power ON.

10

Note: The ID of the CAN controller is published inside the configuration description of
the Canlf.

8.3.3 Canlf_GetControllerMode

[SWS_CANIF_00229] [

| Service name: | Canlf_GetControllerMode

AUTOSAR

Syntax: Std_ReturnType CanIf_GetControllerMode (
uint8 ControllerId,
CanIf_ControllerModeTypex ControllerModePtr
)

Service ID[hex]: 0x04

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): Controllerld Abstracted Canlf Controllerld which is assigned to a
CAN controller, which is requested for current oper-
ation mode.

Parameters (inout): | None

Parameters (out): ControllerModePtr Pointer to a memory location, where the current
mode of the CAN controller will be stored.

Return value: Std_ReturnType E_OK: Controller mode request has been accepted.
E_NOT_OK: Controller mode request has not been
accepted.

Description: This service reports about the current status of the requested CAN con-

troller.

Table 8.8: Canlf_GetControllerMode

|(SRS_CAN_01028)

[SWS_CANIF_00541] | The service CanIf_GetControllerMode shall return the
mode of the requested CAN controller. This mode is the mode which is buffered within
the CAN Interface module (see subsection 7.18.2). |()

[SWS_CANIF_00313] [If parameter ControllerIdof CanIf_GetControllerMode ()

has an invalid, the Canlf shall report development error code CANIF_FE_PARAM_CONTROLLERID
tothe Det_ReportError service of the DET, when CanIf_GetControllerMode ()

is called. |(SRS_BSW _00323)

[SWS_CANIF_00656] | If parameter ControllerModePtr Of CanIf_GetControllerMode ()
has an invalid value, the Canlf shall report development error code CANIF_E_PARAM_POINTER
tothe Det_ReportError service ofthe DET,whencCanIf_GetControllerMode ()

is called. |(SRS_BSW _00323)

[SWS_CANIF_00316] | Caveats of CanIf_GetControllerMode:
e The canDrv must be initialized after Power ON.

e The canIf must be initialized after Power ON.

10

Note: The ID of the CAN controller module is published inside the configuration de-
scription of the Canlf.

8.3.4 Canlf_Transmit

[SWS_CANIF_00005] |

AUTOSAR

Service name: Canlf _Transmit

Synkut Std_ReturnType CanIf_Transmit (
PduIldType CanIfTxSduld,

const PduInfoTypex CanIfTxInfoPtr
)

Service ID[hex]: 0x05

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): CanlfTxSduld L-SDU handle to be transmitted.

This handle specifies the corresponding CAN L-
SDU ID and implicitly the CAN Driver instance as
well as the corresponding CAN controller device.
CanlfTxInfoPtr Pointer to a structure with CAN L-SDU related data:
DLC and pointer to CAN L-SDU buffer including the
MetaData of dynamic L-PDUs.

Parameters (inout): | None

Parameters (out): None

Return value: Std_ReturnType E_OK: Transmit request has been accepted
E_NOT_OK: Transmit request has not been ac-
cepted

Description: This service initiates a request for transmission of the CAN L-PDU spec-

ified by the CanTxSduld and CAN related data in the L-SDU structure.

Table 8.9: Canlf_Transmit

|(SRS_CAN_01008)

Note: The corresponding CAN Controller and HTH have to be resolved by the
CanIfTxSduld.

[SWS_CANIF_00317] [The service CanIf_Transmit () shall not accept a transmit
request, if the controller mode is not CANIF_CS_STARTED and the channel mode at
least for the transmit path is not online or offline active. |()

[SWS_CANIF_00318] | The service CanIf_ Transmit () shall map the parameters
of the data structure:

e the L—-sDU handle (CanIfTxSdulId) refersto (CanlD, HTH/HRH of the CAN Con-
troller)

e andthe CanIfTxInfoPtr which specifies length and data pointer of the Trans-
mit Request

to the corresponding CanDrv and call the function Can_Write (Hth, *Pdulnfo).

10

Note: CanIfTxInfoPtr is a pointer to a L-sDU user memory, CAN Identifier, 1.—SDU
handle and DLC (see [1, Specification of CAN Driver]).

[SWS_CANIF_00243] | canIf shall set the two most significant bits ('IDentifier Exten-
sion flag’ (see [12, 1SO11898 (CAN)]) and 'CAN FD flag’) of the Canld (CanTIfTxInfoPtr-
>1id) before canIf passes the predefined Canld to CanDrv at call of Can_Write ()
(see [1, Specification of CAN Driver], definition of can_1dType [SWS_Can_00416]).

AUTOSAR

The Canld format type of each CAN L-PDU can be configured by CanIfTxPdu-
CanIdType, referto ECUC_Canlf_00590. | (SRS_CAN_01141)

[SWS_CANIF_00882] [canIf_Transmit () shallaccepta NULL pointeras CanIfTxInfoPtr-
>SduDataPtr, if the PDU is configured for triggered transmission: CanI fTxPduTrig-
gerTransmit = TRUE. |()

[SWS_CANIF_00162] | If the call of can_write () returns E_OK the transmit request
service CanIf_Transmit () shall return E_OK. |()

Note: If the call of can_write () returns CAN_NOT_OK, then the transmit request
service CanIf_Transmit () shall return E_NOT_OK. If the transmit request service
CanIf_Transmit () returns E_NOT_OK, then the upper layer module is responsible
to repeat the transmit request.

[SWS_CANIF_00319] | If parameter CanIfTxSduld of CanIf_Transmit () has an
invalid value, can1 f shall report development error code CANIF_E_INVALID_TXPDUID
tothe Det_ReportError service ofthe DET,whenCanIf Transmit () iscalled.
|(SRS_BSW _00323)

[SWS_CANIF_00320] | If parameter CanIfTxInfoPtr of CanIf_ Transmit () has
aninvalid value, canT f shall report development error code CANIF_E_PARAM_POINTER
to the Det_ReportError service of the DET module, when CanIf_ Transmit ()

is called. |(SRS_BSW _00323)

[SWS_CANIF_00893] | When CanIf_Transmit () iscalledwith CanIfTxInfoPtr-
>SduLength exceeding the maximum length of the PDU referenced by canIfTxS-
duld:

e SduLength > 8 ifthe cCan_IdType indicates a classic CAN frame
e Sdulength > 64 ifthe Can_IdType indicates a CAN FD frame

CanIf shall report development error code CANIF_E_DATA_ LENGTH_MISMATCH to
the Det_ReportError service of the DET. |()

Note: Besides static configured transmissions there are dynamic transmissions, too.
Therefore, the valid data length is always passed by CanIfTxInfoPtr->SduLength.
Furthermore, even the frame type might change via CanIf_ SetDynamicTxId ().
[SWS_CANIF_00893] ensures that not matching transmit requests can be detected
via DET.

[SWS_CANIF_00894] | When CanIf_Transmit () iscalledwithCanIfTxInfoPtr-
>SduLength exceeding the maximum length of the PDU referenced by CanIfTxS-
duld, CanIf shall transmit as much data as possible and discard the rest. |()

[SWS_CANIF_00323] | Caveats of CanIf_ Transmit ():

e During the call of this API the buffer of CanTIfTxInfoPtr is controlled by CanIf
and this buffer should not be accessed for read/write from another call context.
After return of this call the ownership changes to the upper layer.

AUTOSAR

e CanIf must be initialized after Power ON.

10

8.3.5 Canlf_CancelTransmit

[SWS_CANIF_00520] [

Service name: Canlf_CancelTransmit

Syntax: Std_ReturnType CanIf_CancelTransmit (
PduldType CanIfTxSduld

)

Service ID[hex]: 0x18

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): CanlfTxSduld L-SDU handle to be transmitted.

This handle specifies the corresponding CAN L-
SDU ID and implicitly the CAN Driver instance as
well as the corresponding CAN controller device.

Parameters (inout): | None

Parameters (out): None
Return value: Std_ReturnType | Always return E_OK
Description: This is a dummy method introduced for interface compatibility.

Table 8.10: Canlf_CancelTransmit

10

Note: The service CanIf_CancelTransmit () has no functionality and is called by
the AUTOSAR PduR to achieve bus agnostic behavior.

[SWS_CANIF_00521] [The service CanIf_CancelTransmit () shall be pre-compile

time configurable on/0f £ by the configuration parameter CANIF_PUBLIC_CANCEL_TRANSMIT_SUP
(see ECUC _Canlf_00614). It shall be configured oN if PduRComCancelTransmit—

Support is configured as ON. |()

[SWS_CANIF_00652] [If parameter CanIfTxSduIdof CanIf_CancelTransmit ()

has an invalid value, CanI £ shall report development error code CANIF_E_INVALID_TXPDUID
to the Det_ReportError service ofthe DET, when canIf_CancelTransmit ()

is called. |(SRS_BSW _00323)

8.3.6 Canif ReadRxPduData

[SWS_CANIF_00194] [

| Service name: | Canlf_ReadRxPduData

AUTOSAR

Syntax: Std_ReturnType CanIf_ReadRxPduData (
PduldType CanIfRxSduld,
PduInfoTypex CanlfRxInfoPtr

)

Service ID[hex]: 0x06

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): CanlfRxSduld Receive L-SDU handle specifying the correspond-

ing CAN L-SDU ID and implicitly the CAN Driver in-
stance as well as the corresponding CAN controller
device.

Parameters (inout): | None
Parameters (out): CanlfRxInfoPtr Pointer to a structure with CAN L-SDU related data:
DLC and pointer to CAN L-SDU buffer including the
MetaData of dynamic L-PDUs.

Return value: Std_ReturnType E_OK: Request for L-SDU data has been accepted
E_NOT_OK: No valid data has been received
Description: This service provides the CAN DLC and the received data of the re-

quested CanlfRxSduld to the calling upper layer.
Table 8.11: Canlf_ReadRxPduData

|(SRS_CAN 01125, SRS _CAN_01129)

[SWS_CANIF_00324] | The function CanIf ReadRxPduData () shall not accept a
request and return E_NOT_OK, if the corresponding ccMsM does not equal CANIF_CS_STARTED
and the channel mode is in the receive path online. |()

[SWS_CANIF_00325] | If parameter CanIfRxSduld of CanIf_ReadRxPduData ()

has an invalid value, e.g. not configured to be stored within CanTf via CANIF_READRXPDU_DATA
(ECUC _Canlf _00600), can1f shall report development error code CANIF_E_INVALID_RXPDUID
tothe Det_ReportError service ofthe DET,when CanIf_ ReadRxPduData () IS

called. |(SRS_BSW _00323)

[SWS_CANIF_00326] | If parameter CanIfRxInfoPtr of CanIf_ReadRxPduData ()

has an invalid value, can1 f shall report development error code CANIF_FE_PARAM_POINTER
tothe Det_ReportError service ofthe DET module, when CanIf_ ReadRxPduData ()
is called. |(SRS_BSW _00323)

[SWS_CANIF_00329] | Caveats of CanIf_ReadRxPduData ():

e During the call of this API the buffer of CanIfRxInfoPtr is controlled by CanIf
and this buffer should not be accessed for read/write from another call context.
After return of this call the ownership changes to the upper layer.

e This APl must not be used for cCanIfRxSdulId, which are defined to receive
multiple CAN-Ids (range reception).

e CanIf must be initialized after Power ON.

10

AUTOSAR

[SWS_CANIF_00330] | Configuration of CanIf_ReadRxPduData (): This APl can
be enabled or disabled at pre-compile time configuration by the configuration parameter
CANIF_PUBLIC_READRXPDU_DATA_API (ECUC_Canlf_00607). |()

8.3.7 Canlf_ReadTxNotifStatus

[SWS_CANIF_00202] [

Service name: Canlf _ReadTxNotifStatus

Syntax: CanIf_NotifStatusType CanIf_ReadTxNotifStatus (
PduldType CanIfTxSduld

)

Service ID[hex]: 0x07

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): CanlfTxSduld L-SDU handle to be transmitted.

This handle specifies the corresponding CAN L-
SDU ID and implicitly the CAN Driver instance as
well as the corresponding CAN controller device.

Parameters (inout): | None

Parameters (out): None

Return value: Canlf_NotifStatus Current confirmation status of the corresponding
Type CAN Tx L-PDU.

Description: This service returns the confirmation status (confirmation occurred or
not) of a specific static or dynamic CAN Tx L-PDU, requested by the
CanlfTxSduld.

Table 8.12: Canlf ReadTxNotifStatus

|(SRS_CAN_01130)

Note: This function notifies the upper layer about any transmit confirmation event to
the corresponding requested 1.—SDU.

[SWS_CANIF_00393] | If configuration parameters CANIF_PUBLIC_READTXPDU_NOTIFY_STATU.
(ECUC_Canlf_00609) and CANIF_TXPDU_READ_NOTIFYSTATUS (ECUC_Canlf_00589)

for the transmitted 1.—sSDU are set to TRUE, and if CanIf_ReadTxNotifStatus () IS

called, the can1f shall reset the notification status for the transmitted L.—spu. |()

[SWS_CANIF_00331] | If parameter CanIfTxSduIdof CanIf_ReadTxNotifStatus ()

is out of range or if no status information was configured for this CAN Tx L—SDU, CanIf

shall report development error code CANIF_E_INVALID_TXPDUID tothe Det_ReportError
service ofthe DET when CanIf_ReadTxNotifStatus () iscalled. |(SRS_BSW _00323)

[SWS_CANIF_00334] | Caveats of CanIf_ReadTxNotifyStatus(): CanIf must
be initialized after Power ON. |()

[SWS_CANIF_00335] | Configuration of CanIf_ReadTxNotifyStatus (): This API
can be enabled or disabled at pre-compile time configuration globally by the parameter
CANIF_PUBLIC_READTXPDU_NOTIFY_ STATUS_API (see ECUC_Canlf_00609). |()

AUTOSAR

8.3.8 Canlf_ReadRxNotifStatus

[SWS_CANIF_00230] [

Service name: Canlf_ReadRxNotifStatus

Syntax: CanIf_NotifStatusType CanIf_ReadRxNotifStatus (
PduldType CanIfRxSduld

)

Service ID[hex]: 0x08

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): CanlfRxSduld Receive L-SDU handle specifying the correspond-
ing CAN L-SDU ID and implicitly the CAN Driver in-
stance as well as the corresponding CAN controller
device.

Parameters (inout): | None

Parameters (out): None

Return value: Canlf_NotifStatus Current indication status of the corresponding CAN

Type Rx L-PDU.
Description: This service returns the indication status (indication occurred or not) of a

specific CAN Rx L-PDU, requested by the CanlfRxSduld.
Table 8.13: Canlf ReadRxNotifStatus

|(SRS_CAN_01130, SRS_CAN_01131)

Note: This function notifies the upper layer about any receive indication event to the
corresponding requested L.—SDU.

[SWS_CANIF_00394] | If configuration parameters CANIF_PUBLIC_READRXPDU_NOTIFY_STATU.
(ECUC_Canlf_00608) and CANIF_RXPDU_READ_NOTIFYSTATUS (ECUC_Canlf_00595)

are set to TRUE, and if CanIf_ReadRxNotifStatus () is called, then canIf shall

reset the notification status for the received 1.—SDU. |()

[SWS_CANIF_00336] | If parameter CanIfRxSduIldof CanIf_ReadRxNotifStatus ()

is out of range or if status for CanRxPduId was requested whereas CANIF_READRXPDU_DATA_API
is disabled or if no status information was configured for this CAN Rx L-sSDU, CanIf

shall report development error code CANIF_E_INVALID_RXPDUID tothe Det_ReportError
service ofthe DET, when CanIf_ReadRxNotifStatus () iscalled. | (SRS_BSW _00323)

Note: The function CanIf_ReadRxNotifStatus () must not be used for CanI-
frRxSdulIds, which are defined to receive multiple CAN-Ids (range reception).

[SWS_CANIF_00339] | Caveats of CanIf_ReadRxNotifStatus ():
e CanIf must be initialized after Power ON.

10

[SWS_CANIF_00340] | Configuration of CanIf_ReadRxNotifStatus (): This API
can be enabled or disabled at pre-compile time configuration globally by the parameter
CANIF_PUBLIC_READRXPDU_NOTIFY_STATUS_API (see ECUC_Canlf 00608). |()

AUTOSAR

8.3.9 Canlf_SetPduMode

[SWS_CANIF_00008] [

Service name:

Canlf_SetPduMode

Syntax: Std_ReturnType CanIf_SetPduMode (
uint8 ControllerId,
CanIf_PduModeType PduModeRequest
)
Service ID[hex]: 0x09
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): Controllerld All PDUs of the own ECU connected to the corre-
sponding Canlf Controllerld, which is assigned to a
physical CAN controller are addressed.
PduModeRequest Requested PDU mode change
Parameters (inout): | None
Parameters (out): None

Return value:

Std_ReturnType

E_OK: Request for mode transition has been ac-
cepted.

E_NOT_OK: Request for mode transition has not
been accepted.

Description: This service sets the requested mode at the L-PDUs of a predefined
logical PDU channel.
Table 8.14: Canlf SetPduMode
10

Note: The channel parameter denoting the predefined logical PDU channel can be
derived from parameter ControllerId of function CanIf_SetPduMode ().

[SWS_CANIF_00341] | If canIf_SetPduMode () is called with invalid Control-
lerId, CanIf shallreportdevelopment error code CANIF_E_PARAM_CONTROLLERID
to the Det_ReportError service of the DET module. |(SRS_BSW _00323)

[SWS_CANIF_00860] | If canIf_SetPduMode () is called with invalid PduModeRequest,
CanIf shall report development error code CANIF_E_PARAM_PDU_MODE to the Det_ReportError

service of the DET module. |(SRS_BSW _00323)

[SWS_CANIF_00874] | The service CanIf_SetPduMode () shall not accept any re-
quest and shall return E_NOT_OK, if the ccMsM referenced by ControllerId is not
in state CANIF_CS_STARTED. |()

[SWS_CANIF_00344] | Caveats of CanIf_SetPduMode ():

ized after Power ON. |()

8.3.10 Canlif_GetPduMode

[SWS_CANIF_00009] [

CanIf must be initial-

AUTOSAR

Service name:

Canlf_GetPduMode

Eﬂﬂﬂax: Std_ReturnType CanIf_GetPduMode (
uint8 ControllerId,
CanIf_PduModeTypex PduModePtr
)

Service ID[hex]: 0x0a

Sync/Async: Synchronous

Reentrancy: Reentrant (Not for the same channel)

Parameters (in): Controllerld All PDUs of the own ECU connected to the corre-
sponding Canlf Controllerld, which is assigned to a
physical CAN controller are addressed.

Parameters (inout): | None

Parameters (out): PduModePtr Pointer to a memory location, where the current

mode of the logical PDU channel will be stored.

Return value:

Std_ReturnType E_OK: PDU mode request has been accepted
E_NOT_OK: PDU mode request has not been ac-

cepted

Description:

This service reports the current mode of a requested PDU channel.

10

Table 8.15: Canlf _GetPduMode

[SWS_CANIF_00346] | If canIf_GetPduMode () is called with invalid Control-
lerId, CanIf shall report development error code CANIF_E_PARAM_CONTROLLERID
to the Det_ReportError service of the DET module. |(SRS_BSW _00323)

[SWS_CANIF_00657] [If canIf_GetPduMode () is called with invalid PduModePtr,

CanTf shall report development error code CANIF_E_PARAM_POINTER1t0the Det_ReportError

service of the DET module. | (SRS_BSW_00323)

[SWS_CANIF_00349] | Caveats of CanIf_GetPduMode ():

CanIf must be initial-

ized after Power ON. |()

8.3.11

Canlf_GetVersioninfo

[SWS_CANIF_00158] |

Service name:

Canlf_GetVersioninfo

Syntax: void CanIf_GetVersionInfo (
Std_VersionInfoTypex VersionInfo
)

Service ID[hex]: 0x0b

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): None

Parameters (inout): | None

Parameters (out): VersionInfo Pointer to where to store the version information of

this module.
Return value: None

AUTOSAR

Description: This service returns the version information of the called CAN Interface
module.

Table 8.16: Canlf_GetVersioniInfo

|(SRS_BSW_00407, SRS _BSW _00411)

8.3.12 Canlf_SetDynamicTxId

[SWS_CANIF_00189] [

Service name: Canlf_SetDynamicTxId

Syntax: void CanIf_SetDynamicTxId (
PduldType CanlfTxSduld,
Can_IdType CanId

)

Service ID[hex]: 0x0c

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): CanlfTxSduld L-SDU handle to be transmitted.
This handle specifies the corresponding CAN L-
SDU ID and implicitly the CAN Driver instance as
well as the corresponding CAN controller device.

Canld Standard/Extended CAN ID of CAN L-SDU that

shall be transmitted as FD or conventional CAN
frame.

Parameters (inout): | None

Parameters (out): None

Return value: None

Description: This service reconfigures the corresponding CAN identifier of the re-

quested CAN L-PDU.

Table 8.17: Canlf_SetDynamicTxId

10

[SWS_CANIF_00352] [If parameter CanIfTxSduIdof CanIf_SetDynamicTxId ()

has an invalid value, CanIf shall report development error code CANIF_E_INVALID_TXPDUID
tothe Det_ReportError service ofthe DET module, whenCanIf_SetDynamicTxId ()
is called. |(SRS_BSW_00323)

[SWS_CANIF_00353] | If parameter CanId of CanIf_SetDynamicTxId () has an
invalid value, canIf shall report development error code CANIF_E_PARAM_CANID to

the Det_ReportError service ofthe DET module, when canIf_SetDynamicTxId ()
is called. |(SRS_BSW_00323)

[SWS_CANIF_00355] [If canIf was not initialized before calling CanIf_SetDynamicTxId (),
then the function canIf_sSetDynamicTxId () shall not execute a reconfiguration of
Tx Canld. |()

AUTOSAR

[SWS_CANIF_00356] [Caveats of CanIf SetDynamicTxId():
e CanIf must be initialized after Power ON.

e This function may not be interrupted by CanIf_Transmit (), if the same L-SDU
ID is handled.

10

[SWS_CANIF_00357] | Configuration of CanIf_SetDynamicTxId (): This function
shall be pre compile time configurable on/0f f by the configuration parameter CANIF_PUBLIC_SETD
(see ECUC_Canlf_00610). |()

8.3.13 Canlf_SetTrcvMode

[SWS_CANIF_00287] [

Service name: Canlf_SetTrcvMode

Syntax: Std_ReturnType CanIf_SetTrcvMode (
uint8 TransceiverlId,
CanTrcv_TrcvModeType TransceiverMode

)

Service ID[hex]: 0x0d

Sync/Async: Asynchronous

Reentrancy: Non Reentrant

Parameters (in): Transceiverld Abstracted Canlf Transceiverld, which is assigned
to a CAN transceiver, which is requested for mode
transition

TransceiverMode Requested mode transition

Parameters (inout): | None

Parameters (out): None

Return value: Std_ReturnType E_OK: Transceiver mode request has been ac-
cepted.
E_NOT_OK: Transceiver mode request has not
been accepted.

Description: This service changes the operation mode of the tansceiver Transceiverld,
via calling the corresponding CAN Transceiver Driver service.

Table 8.18: Canlf_SetTrcvMode

10

Note: For more details, please refer to the [2, Specification of CAN Transceiver Driver].

[SWS_CANIF_00358] | The function CanIf_SetTrcvMode () shall call the function
CanTrcv_SetOpMode (Transceiver, OpMode) on the corresponding requested
CAN Transceiver Driver module. |()

Note: The parameters of the service CanTrcv_SetOpMode () are of type:
e OpMode: CanTrcv_TrcvModeType(desired operation mode)

e Transceiver: uint8 (Transceiver to which function call has to be applied)

AUTOSAR

(see [2, Specification of CAN Transceiver Driver])

[SWS_CANIF_00538] | If parameter TransceiverId of CanIf_SetTrcvMode ()

has an invalid value, the Canlf shall report development error code CANIF_E_PARAM_TRCV
to the Det_ReportError service of the DET, when canIf_SetTrcvMode () is
called. |(SRS_BSW _00323)

Note: The mode of a transceiver can only be changed to CANTRCV_TRCVMODE_ STANDBY,
when the former mode of the transceiver has been CANTRCV_TRCVMODE_NORMAL
(see [2]). But this is not checked by the Canlf.

Note: The mode of a transceiver can only be changed to CANTRCV_TRCVMODE_SLEEP,
when the former mode of the transceiver has been CANTRCV_TRCVMODE_STANDBY
(see [2]). But this is not checked by the Canlf.

[SWS_CANIF_00648] | If parameter TransceiverMode of CanIf_ SetTrcvMode ()

has an invalid value (not CANTRCV_TRCVMODE_STANDBY, CANTRCV_TRCVMODE_SLEEP

or CANTRCV_TRCVMODE_NORMAL), the Canlf shall report development error code CANIF_E_PARAM_
tothe Det_ReportError service ofthe DET module, whencanIf_SetTrcvMode ()

is called. |(SRS_BSW _00323)

Note: The function CanIf_SetTrcvMode () should be applicable to all CAN transceivers
with all values of TransceiverMode independent, if the transceiver hardware supports
these modes or not. This is to ease up the view of the Canlf to the assigned physical
CAN channel.

[SWS_CANIF_00362] | Configuration of CanIf_ SetTrcvMode (): The number of
supported transceiver types for each network is set up in the configuration phase (see
CanlinterfaceTransceiverConfiguration ECUC _Canlf_00587 and CanlnterfaceTransceiver-
DriverConfiguration ECUC _Canlf_00273). If no transceiver is used, this function may
be omitted. Therefore, if no transceiver is configured in LT or PB class the API shall
return with E_NOT_OK. |()

8.3.14 Canlf_GetTrcvMode

[SWS_CANIF_00288] [

Service name: Canlf_GetTrcvMode

Syntax: Std_ReturnType CanIf_GetTrcvMode (
CanTrcv_TrcvModeType* TransceiverModePtr,
uint8 TransceiverId

)

Service ID[hex]: 0x0e

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): Transceiverld Abstracted Canlf Transceiverld, which is assigned

to a CAN transceiver, which is requested for current
operation mode.

Parameters (inout): | None

AUTOSAR

Parameters (out): TransceiverModePtr | Requested mode of requested network the
Transceiver is connected to.

Return value: Std_ReturnType E_OK: Transceiver mode request has been ac-
cepted.

E_NOT_OK: Transceiver mode request has not
been accepted.

Description: This function invokes CanTrcv_GetOpMode and updates the parameter
TransceiverModePtr with the value OpMode provided by CanTrcv.

Table 8.19: Canlf_GetTrcvMode

10

Note: For more details, please refer to the [2, Specification of CAN Transceiver Driver].

[SWS_CANIF_00363] | The function CanIf_GetTrcvMode () shall call the function
CanTrcv_GetOpMode (Transceiver, OpMode) on the corresponding requested
CAN Transceiver Driver module. |()

Note: The parameters of the function CanTrcv_GetOpMode are of type:

e OpMode: CanTrcv_TrcvModeType (desired operation mode)

e Transceiver: uint8 (Transceiver to which API call has to be applied)
(see [2, Specification of CAN Transceiver Driver])

[SWS_CANIF_00364] | If parameter TransceiverId of CanIf_GetTrcvMode ()

has an invalid value, the Canlf shall report development error code CANIF_E_PARAM_TRCV
tothe Det_ReportError service ofthe DET module, when CcanIf_GetTrcvMode ()
is called. |(SRS_BSW _00323)

[SWS_CANIF_00650] | If parameter TransceiverModePtr of CanIf_GetTrcvMode ()

has an invalid value, the Canlf shall report development error code CANIF_E_PARAM_POINTER
tothe Det_ReportError service ofthe DET module, when CcanIf_GetTrcvMode ()

was called. |(SRS_BSW_00323)

[SWS_CANIF_00367] | Configuration of CanIf GetTrcvMode (): The number of
supported transceiver types for each network is set up in the configuration phase (see
CanlinterfaceTransceiverConfiguration ECUC_Canlf 00587 and CanlnterfaceTransceiver-
DriverConfiguration ECUC _Canlf_00273). If no transceiver is used, this function may
be omitted. Therefore, if no transceiver is configured in LT or PB class the API shall
return with E_NOT_OK. |()

8.3.15 Canlf_GetTrcvWakeupReason

[SWS_CANIF_00289] [

\ Service name: \ Canlf_GetTrcvWakeupReason

AUTOSAR

Syntax: Std_ReturnType CanIf_GetTrcvWakeupReason (
uint8 TransceiverlId,
CanTrcv_TrcvWakeupReasonTypex TrcvWuReasonPtr

)

Service ID[hex]: 0xOf

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): Transceiverld Abstracted Canlf Transceiverld, which is assigned
to a CAN transceiver, which is requested for wake
up reason.

Parameters (inout): | None

Parameters (out): TrcvWuReasonPir provided pointer to where the requested transceiver
wake up reason shall be returned

Return value: Std_ReturnType E_OK: Transceiver wake up reason request has

been accepted.

E_NOT_OK: Transceiver wake up reason request
has not been accepted.

Description: This service returns the reason for the wake up of the transceiver
Transceiverld, via calling the corresponding CAN Transceiver Driver ser-
vice.

Table 8.20: Canlf_GetTrcvWakeupReason

10

Note: The ability to detect and differentiate the possible wake up reasons depends
strongly on the CAN transceiver hardware. For more details, please refer to the [2,
Specification of CAN Transceiver Driver].

[SWS_CANIF_00368] | The function CanIf_GetTrcvWWakeupReason () shall call
CanTrcv_GetBusWuReason (Transceiver, Reason) onthe corresponding requested
CanTrcv. |()

Note: The parameters of the function CanTrcv_GetBusWuReason () are of type:
e Reason: CanTrcv_TrcviWWakeupReasonType
e Transceiver: uint8 (Transceiver to which API call has to be applied)
(see [2, Specification of CAN Transceiver Driver])

[SWS_CANIF_00537] [If parameter TransceiverIdof CanIf_GetTrcviWakeupReason ()

has an invalid value, the Canlf shall report development error code CANIF_E_PARAM_TRCV

tothe Det_ReportError service ofthe DET module, when CanIf_GetTrcvWakeupReason ()
is called. |(SRS_BSW _00323)

[SWS_CANIF_00649] | If parameter TrcviwuReasonPtr of CanIf_GetTrcvWakeupReason ()
has an invalid value, the Canlf shall report development error code CANIF_E_PARAM_POINTER
tothe Det_ReportError service ofthe DET module, when CanIf_GetTrcvWakeupReason ()
is called. |(SRS_BSW _00323)

AUTOSAR

Note: Please be aware, that if more than one network is available, each network may
report a different wake-up reason. E.g. if an ECU uses CAN, a wake-up by CAN may
occur and the incoming data may cause an internal wake-up for another CAN network.

The service CanIf_GetTrcviWlakeupReason () has a "per network" view and does
not vote the more important reason or sequence internally. The same may be true if
e.g. one transceiver controls the power supply and the other is just powered or un-
powered. Then one may be able to return CANIF_TRCV_WU_POWER_ON, whereas the
other may state e.g. CANIF_TRCV_WU_RESET. It is up to the calling module to decide,
how to handle the wake-up information.

[SWS_CANIF_00371] [Configuration of CanIf_GetTrcvWakeupReason (): The
number of supported transceiver types for each network is set up in the configuration
phase (see CanlnterfaceTransceiverConfiguration ECUC_Canlf_00587 and Canlnter-
faceTransceiverDriverConfiguration ECUC_Canlf_00273). If no transceiver is used,
this function may be omitted. Therefore, if no transceiver is configured in LT or PB
class the API shall return with E_NOT_OX. |()

8.3.16 Canlf_SetTrcvWakeupMode

[SWS_CANIF_00290] [

Service name: Canlf_SetTrcvWakeupMode
Syntax: Std_ReturnType CanIf_SetTrcvWakeupMode (
uint8 TransceiverlId,
CanTrcv_TrcvWakeupModeType TrcvWakeupMode
)
Service ID[hex]: 0x10
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): Transceiverld Abstracted Canlf Transceiverld, which is assigned
to a CAN transceiver, which is requested for wake
up notification mode transition.
TrcvWakeupMode Requested transceiver wake up notification mode
Parameters (inout): | None
Parameters (out): None
Return value: Std_ReturnType E_OK: Will be returned, if the wake up notifications
state has been changed to the requested mode.
E_NOT_OK: Will be returned, if the wake up notifi-
cations state change has failed or the parameter is
out of the allowed range. The previous state has not
been changed.
Description: This function shall call CanTrcv_SetTrcvWakeupMode.

Table 8.21: Canlf_SetTrcvWakeupMode

10

Note: For more details, please refer to [2, Specification of CAN Transceiver Driver].

AUTOSAR

[SWS_CANIF_00372] [The function CanIf_SetTrcvWakeupMode () shallcall CanTrcv_SetWak
TrcviWakeupMode) on the corresponding requested CanTrcv. |()

Info: The parameters of the function CanTrcv_SetWakeupMode () are of type:

e TrcvWakeupMode: CanTrcv_TrcvilakeupModeType (see [2, Specification of
CAN Transceiver Driver))

e Transceiver: uint8 (Transceiver to which API call has to be applied)
(see [2, Specification of CAN Transceiver Driver])

Note: The following three paragraphs are already described in the Specification of
CanTrev (see [2]). They describe the behavior of a canTrcv in the respective transceiver
wake-up mode, which is requested in parameter TrcviakeupMode.

CANIF_TRCV_WU_ENABLE:
If the canTrcv has a stored wake-up event pending for the addressed CanNetwork, the

notification is executed within or immediately after the function CanTrcv_SetTrcviWakeupMode ()
(depending on the implementation).

CANIF_TRCV_WU_DISABLE:
No notifications for wake-up events for the addressed CanNetwork are passed through
the canTrcv. The transceiver device and the underlying communication driver has to
buffer detected wake-up events and raise the event(s), when the wake-up notification
is enabled again.

CANIF_TRCV_WU_CLEAR:

If notification of wake-up events is disabled (see description of mode CANIF_TRCV_WU_DISABLE),
detected wake-up events are buffered. Calling CanIf_SetTrcvWakeupMode () with

parameter CANIF_TRCV_WU_CLEAR clears these bufferd events. Clearing of wake-up

events has to be used, when the wake-up notification is disabled to clear all stored

wake-up events under control of the higher layers of the CanTrcv.

[SWS_CANIF_00535] [If parameter TransceiverIdof CanIf_SetTrcviWWakeupMode ()

has an invalid value, the Canlf shall report development error code CANIF_E_PARAM_TRCV

tothe Det_ReportError service ofthe DET module, when CanIf_SetTrcvWakeupMode ()
is called. |(SRS_BSW _00323)

[SWS_CANIF_00536] [If parameter TrcvitakeupMode of CanIf_SetTrcvilakeupMode ()

has an invalid value, the Canlf shall report development error code CANIF_E_PARAM_TRCVWAKEUPM
tothe Det_ReportError service ofthe DET module, when CanIf_SetTrcvWakeupMode ()

is called. |(SRS_BSW _00323)

[SWS_CANIF_00373] | Configuration of CanIf_SetTrcvilakeupMode () : The num-
ber of supported transceiver types for each network is set up in the configuration
phase (see CanlnterfaceTransceiverConfiguration ECUC_Canlf 00587 and Canlnter-
faceTransceiverDriverConfiguration ECUC_Canlf_00273). If no transceiver is used,
this function may be omitted. Therefore, if no transceiver is configured in LT or PB
class the API shall return with E_NOT_OX. |()

AUTOSAR

8.3.17 Canlf_CheckWakeup

[SWS_CANIF_00219] [

Service name: Canlf_CheckWakeup
Syntax: Std_ReturnType CanIf_CheckWakeup (
EcuM_WakeupSourceType WakeupSource

)

Service ID[hex]: 0x11

Sync/Async: Asynchronous

Reentrancy: Reentrant

Parameters (in): WakeupSource Source device, which initiated the wake up event:

CAN controller or CAN transceiver

Parameters (inout): | None
Parameters (out): None
Return value: Std_ReturnType E_OK: Will be returned, if the check wake up re-
quest has been accepted

E_NOT_OK: Will be returned, if the check wake up
request has not been accepted

Description: This service checks, whether an underlying CAN driver or a CAN
transceiver driver already signals a wakeup event.

Table 8.22: Canlf_CheckWakeup

10

Note: Integration Code calls this function

[SWS_CANIF_00398] | If parameter WwakeupSource of CanIf_CheckWakeup () has

an invalid value, canIf shall report development error code CANIF_E_PARAM WAKEUPSOURCE
to the Det_ReportError service of the DET, when CanIf_CheckWakeup () IS

called. |(SRS_BSW _00323)

[SWS_CANIF_00401] [Caveats of CanIf_CheckWakeup ():

e The call context is either on interrupt level (interrupt mode) or on task level (polling
mode).

e CanIf must be initialized after Power ON.

10

[SWS_CANIF_00180] [canIf shall provide wake-up service CanIf_CheckWakeup ()
only, if

e underlying CAN Controller provides wake-up support and wake-up is enabled
by the parameter CanIfCtrlWakeupSupport and by CanDrv configuration.

e and/or underlying CAN Transceiver provides wake-up support and wake-up
is enabled by the parameter CanIfTrcviWakeupSupport and by CanTrcv con-
figuration.

e and configuration parameter CanIfWakeupSupport is enabled.

AUTOSAR

10

[SWS_CANIF_00892] [Configuration of CanIf_CheckWakeup () : If no wake-up shall
be used, this API can be omitted by disabling of CanIfWakeupSupport. |()

8.3.18 Canlf_CheckValidation

[SWS_CANIF_00178] [

Service name: Canlf_CheckValidation
Syntax: Std_ReturnType CanIf_ CheckValidation (
EcuM_WakeupSourceType WakeupSource

)

Service ID[hex]: 0x12

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): WakeupSource Source device which initiated the wake-up event and

which has to be validated: CAN controller or CAN
transceiver

Parameters (inout): | None
Parameters (out): None
Return value: Std_ReturnType E_OK: Will be returned, if the check validation re-
quest has been accepted.

E_NOT_OK: Will be returned, if the check validation
request has not been accepted.

Description: This service is performed to validate a previous wakeup event.

Table 8.23: Canlf_CheckValidation

10

Note: Integration Code calls this function

[SWS_CANIF_00404] | If parameter WakeupSource of CanIf_CheckValidation ()
has an invalid value, the Canlf shall report development error code CANIF_E_PARAM_ WAKEUP SOURC

tothe Det_ReportError service ofthe DET module, whenCcanIf_CheckValidation ()
is called. |(SRS_BSW _00323)

[SWS_CANIF_00407] [Caveats of CanIf_CheckValidation():
e The CAN Interface module must be initialized after Power ON.

e The call context is either on interrupt level (interrupt mode) or on task level (polling
mode).

e The corresponding CAN controller and transceiver must be switched on via CanTrcv_SetOpMc
CANTRCV_TRCVMODE_NORMAL) and Can_SetControllerMode (Controller,
CAN_T_START) and the corresponding mode indications must have been called.

10

AUTOSAR

[SWS_CANIF_00408] | Configuration of CanIf_ CheckValidation (): If no valida-
tion is needed, this APl can be omitted by disabling of CANIF_PUBLIC_WAKEUP_CHECK_VALIDATI(
(see ECUC_Canlf_00611). |()

8.3.19 Canlf_GetTxConfirmationState

[SWS_CANIF_00734] [

Service name: Canlf_GetTxConfirmationState

Syntax: CanIf_NotifStatusType CanIf_GetTxConfirmationState (
uint8 ControllerId

)

Service ID[hex]: 0x19

Sync/Async: Synchronous

Reentrancy: Reentrant (Not for the same controller)

Parameters (in): Controllerld Abstracted Canlf Controllerld which is assigned to a

CAN controller

Parameters (inout): | None

Parameters (out): None

Return value: Canlf_NotifStatus Combined TX confirmation status for all TX PDUs of
Type the CAN controller

Description: This service reports, if any TX confirmation has been done for the whole

CAN controller since the last CAN controller start.

Table 8.24: Canlf _GetTxConfirmationState

10

[SWS_CANIF_00736] [If parameter ControllerIdof CanIf_GetTxConfirmationState ()
has an invalid value, the Canlf shall report development error code CANIF_E_PARAM_CONTROLLERI
tothe Det_ReportError service ofthe DET module,when CanIf_ GetTxConfirmationStat
is called. |()

[SWS_CANIF_00737] [Caveats of CanIf_GetTxConfirmationState ():
e The call context is on task level (polling mode).
e The Canlf must be initialized after Power ON.

10

[SWS_CANIF_00738] | Configuration of CanIf_GetTxConfirmationState(): If

BusOff Recovery of CanSm doesn’t need the status of the Tx confirmations (see
[SWS_CANIF_00740]), this APl can be omitted by disabling of CANTIF_PUBLIC_TXCONFIRM_POLLI
(see ECUC_Canlf_00733). |()

8.3.20 Canlf_ClearTrcvWufFlag

[SWS_CANIF_00760] [

AUTOSAR

Service name: Canlf_ClearTrcvWufFlag
Eﬂﬂﬂax: Std_ReturnType CanIf_ClearTrcvWufFlag (
uint8 TransceiverId

)

Service ID[hex]: Oxle

Sync/Async: Asynchronous

Reentrancy: Reentrant for different CAN transceivers

Parameters (in): Transceiverld Abstract Canlf Transceiverld, which is assigned to

the designated CAN transceiver.

Parameters (inout): | None

Parameters (out): None
Return value: Std_ReturnType E_OK: Request has been accepted
E_NOT_OK: Request has not been accepted
Description: Requests the Canlf module to clear the WUF flag of the designated CAN
transceiver.

Table 8.25: Canlf_ClearTrcvWufFlag

10

[SWS_CANIF_00766] | Within CanIf_ ClearTrcvWufFlag () thefunction CanTrcv_ClearTrcv
shall be called. |()

[SWS_CANIF_00769] | If parameter TransceiverIdof CanIf_ClearTrcvWufFlag ()

has an invalid value, the Canlf shall report development error code CANTIF_E_PARAM_TRCV
tothe Det_ReportError service ofthe DET module, whenCanIf_ ClearTrcvWufFlag()
is caled. |()

[SWS_CANIF_00771] | Configuration of CanIf_ClearTrcvWufFlag (): Whether
the Canlf supports this function shall be pre compile time configurable on/of £ by the
configuration parameter CANIF_PUBLIC_PN_SUPPORT (see ECUC_Canlf_00772). |()

8.3.21 Canlf_CheckTrcvWakeFlag

[SWS_CANIF_00761] [

Service name: Canlf_CheckTrcvWakeFlag
Syntax: Std_ReturnType CanIf_CheckTrcvWakeFlag (
uint8 TransceiverlId

)

Service ID[hex]: Ox1f

Sync/Async: Asynchronous

Reentrancy: Reentrant for different CAN transceivers

Parameters (in): Transceiverld Abstract Canlf Transceiverld, which is assigned to

the designated CAN transceiver.

Parameters (inout): | None

Parameters (out): None
Return value: Std_ReturnType E_OK: Request has been accepted

E_NOT_OK: Request has not been accepted
Description: Requests the Canlf module to check the Wake flag of the designated

CAN transceiver.

AUTOSAR

Table 8.26: Canlf_CheckTrcvWakeFlag

10

[SWS_CANIF_00765] [Within CanIf_CheckTrcvilakeFlag () the function CanTrcv_CheckTrc
shall be called. |()

[SWS_CANIF_00770] [If parameter TransceiverIdof CanIf_CheckTrcviWakeFlag ()

has an invalid value, the Canlf shall report development error code CANIF_E_PARAM_TRCV

tothe Det_ReportError service ofthe DET module, when CanIf_CheckTrcvWakeFlag ()
is caled. |()

[SWS_CANIF_00813] | Configuration of CanIf_CheckTrcvilakeFlag (): Whether
the Canlf supports this function shall be pre compile time configurable on/of £ by the
configuration parameter CANIF_PUBLIC_PN_SUPPORT (see ECUC_Canlf_00772). |()

8.3.22 Canlf_SetBaudrate

[SWS_CANIF_00867] |

Service name: Canlf_SetBaudrate

Syntax: Std_ReturnType CanIf_SetBaudrate (
uint8 ControllerId,

uintl6 BaudRateConfigID

)

Service ID[hex]: 0x27

Sync/Async: Synchronous

Reentrancy: Reentrant for different Controllerlds. Non reentrant for the same Con-
trollerld.

Parameters (in): Controllerld Abstract Canlf Controllerld which is assigned to a

CAN controller, whose baud rate shall be set.
BaudRateConfigID references a baud rate configuration by ID (see Can-
ControllerBaudRateConfigID)

Parameters (inout): | None
Parameters (out): None
Return value: Std_ReturnType E_OK: Service request accepted, setting of (new)
baud rate started

E_NOT_OK: Service request not accepted
Description: This service shall set the baud rate configuration of the CAN controller.
Depending on necessary baud rate modifications the controller might
have to reset.

Table 8.27: Canlf _SetBaudrate

10

[SWS_CANIF_00868] | The service CanIf_SetBaudrate () shall call Can_SetBaudrate (Cont.
BaudRateConfigID) for the requested CAN Controller. [()

AUTOSAR

[SWS_CANIF_00869] | If CanIf_SetBaudrate () is called with invalid Control-
lerId, CanIf shall report development error code CANIF_E_PARAM_CONTROLLERID
to the Det_ReportError service of the DET module. |(SRS_BSW _00323)

Note: The parameter BaudRateConfigID of CanIf_SetBaudrate () is not checked
by canIf. This has to be done by responsible CanDrv.

[SWS_CANIF_00870] [Caveats of CanIf_SetBaudrate ():
e The call context is on task level (polling mode).

e CanIf must be initialized after Power ON.

10

[SWS_CANIF_00871] [If canIf supports changing baud rate and thus CanIf_SetBaudrate (),
shall be configurable via CANIF_SET_BAUDRATE_API (see ECUC_Canlf _00838). |()

8.3.23 Canlf_SetlcomConfiguration

[SWS_CANIF_00861] |

Service name: Canlf_SetlcomConfiguration
Syntax: Std_ReturnType CanIf_SetIcomConfiguration (
uint8 ControllerId,
IcomConfigIdType ConfigurationId
)
Service ID[hex]: 0x25
Sync/Async: Asynchronous
Reentrancy: Reentrant only for different controller Ids
Parameters (in): Controllerld Abstracted Canlf Controller Id which is assigned to
a CAN controller.
Configurationld Requested Configuration
Parameters (inout): | None
Parameters (out): None
Return value: Std_ReturnType E_OK: Request accepted
E_NOT_OK: Request denied
Description: This service shall change the Ilcom Configuration of a CAN controller to
the requested one.

Table 8.28: Canlf_SetlcomConfiguration

10

Note: The interface CanIf_SetIcomConfiguration () is called by Cansm to acti-
vate Pretended Networking and load the requested /ICOM configuration via CAN Driver.

[SWS_CANIF_00838] | The service CanIf_SetIcomConfiguration () shall call
Can_SetIcomConfiguration (Controller, ConfigurationId) forthe requested
CanDrv to set the requested ICOM configuration. |()

AUTOSAR

[SWS_CANIF_00872] | If CanIf_ SetIcomConfiguration () is called with invalid

ControllerId, CanIf shall reportdevelopment error code CANIF_E_PARAM_CONTROLLERID

to the Det_ReportError service of the DET module. |(SRS_BSW _00323)

[SWS_CANIF_00875] [CanIf_SetIcomConfiguration ()shallbe pre compiletime

configurable ON/OFF by the configuration parameter CANIF_PUBLIC_ICOM_SUPPORT
(see ECUC_Canlf_00839). |()

8.4 Callback notifications

This is a list of functions provided for other modules.

8.4.1 Canlf_TriggerTransmit

[SWS_CANIF_00883] [

Service name:

Canlf_TriggerTransmit

Syntax: Std_ReturnType CanIf_TriggerTransmit (
PduldType TxPduld,
PduInfoTypex PdulnfoPtr
)
Service ID[hex]: 0x41
Sync/Async: Synchronous
Reentrancy: Reentrant for different Pdulds. Non reentrant for the same Pduld.

Parameters (in): TxPduld ID of the SDU that is requested to be transmitted.

Parameters (inout): | PdulnfoPtr Contains a pointer to a buffer (SduDataPtr) to where
the SDU data shall be copied, and the available
buffer size in SduLengh.
On return, the service will indicate the length of the
copied SDU data in SduLength.

Parameters (out): None

Return value:

Std_ReturnType

E_OK: SDU has been copied and SdulLength indi-
cates the number of copied bytes.

E_NOT_OK: No SDU data has been copied. Pduln-
foPtr must not be used since it may contain a NULL
pointer or point to invalid data.

Description:

Within this API, the upper layer module (called module) shall check
whether the available data fits into the buffer size reported by PdulnfoPtr-

>Sdulength. If it fits,

it shall copy its data into the buffer provided by

PdulnfoPtr->SduDataPtr and update the length of the actual copied data
in PdulnfoPtr->SdulLength. If not, it returns E_NOT_OK without changing

PdulnfoPtr.

10

Table 8.29: Canlf_TriggerTransmit

AUTOSAR

[SWS_CANIF_00884] [canIf shall only provide the APl function CanIf TriggerTransmit ()
if TriggerTransmit support is enabled (CanIfTriggerTransmitSupport = TRUE).

10

[SWS_CANIF_00885] | The function CanIf_TriggerTransmit shall call the corre-
sponding <User_TriggerTransmit> function, passing the translated TxPduId and

the pointer to the PduInfo structure (PduInfoPtr). Uponreturn, CanIf_TriggerTransmit
shall return the return value of its <User_TriggerTransmit>. |()

8.4.2 Canlf_TxConfirmation

[SWS_CANIF_00007] [

Service name: Canlf_TxConfirmation

Syntax: void CanIf_TxConfirmation
PduldTIype CanTxPduld

)

Service ID[hex]: 0x13

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): CanTxPduld L-PDU handle of CAN L-PDU successfully transmit-

ted.

This ID specifies the corresponding CAN L-PDU ID
and implicitly the CAN Driver instance as well as the
corresponding CAN controller device.

Parameters (inout): | None

Parameters (out): None
Return value: None
Description: This service confirms a previously successfully processed transmission

of a CAN TxPDU.

Table 8.30: Canlf TxConfirmation

|(SRS_CAN_01009)

Note: The service CanIf_TxConfirmation () is implemented in canIf and called
by the canDrv after the CAN L-PDU has been transmitted on the CAN network.

Note: Due to the fact canDrv does not support the Handleld concept as described in
[14, Specification of ECU Configuration]: Within the service CanIf_TxConfirmation (),
CanDrv uses PduInfo->swPduHandle as CanTxPduld, which was preserved from
Can_Write (Hth, *Pdulnfo).

[SWS_CANIF_00391] [If configuration parameters CANIF_PUBLIC_READTXPDU_NOTIFY_STATU,
(ECUC _Canlf _00609) and CANIF_TXPDU_READ_NOTIFYSTATUS (ECUC_Canlf_00589)

for the Transmitted L-PDU are setto TRUE, and if CanIf_TxConfirmation () is

called, canIf shall set the notification status for the Transmitted L-PDU. |()

[SWS_CANIF_00410] | If parameter CanTxPduId of CanIf_TxConfirmation ()
has an invalid value, can1 £ shall report development error code CANIF_E_PARAM_LPDU

AUTOSAR

tothe Det_ReportError service of the DET module, when CanIf_TxConfirmation ()
is called. |(SRS_BSW _00323)

[SWS_CANIF_00412] [If canIf was not initialized before calling CanIf_TxConfirmation (),
CanTIf shall not call the service <User_TxConfirmation> () and shall not set the
Tx confirmation status, when CanIf TxConfirmation () is called. |()

[SWS_CANIF_00413] [Caveats of CanIf_TxConfirmation():

e The call context is either on interrupt level (interrupt mode) or on task level (polling
mode).

e The canIf must be initialized after Power ON.

10

[SWS_CANIF_00414] | Configuration of CanIf_TxConfirmation (): Each Tx L-
PDU (see ECUC_Canlf_00248) has to be configured with a corresponding transmit
confirmation service of an upper layer module (see [SWS_CANIF_00011]) which is
called in CanIf_TxConfirmation(). [()

8.4.3 Canlf RxIndication

[SWS_CANIF_00006] [

Service name: Canlf_RxIndication
Syntax: void CanIf RxIndication(
const Can_HwTypex* Mailbox,
const PduInfoTypex PdulnfoPtr
)
Service ID[hex]: 0x14
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): Mailbox Identifies the HRH and its corresponding CAN Con-
troller
PdulnfoPtr Pointer to the received L-PDU
Parameters (inout): | None
Parameters (out): None
Return value: None
Description: This service indicates a successful reception of a received CAN Rx L-
PDU to the Canlf after passing all filters and validation checks.

Table 8.31: Canlf_RxIndication

10

Note: The service CanIf_RxIndication () isimplemented in canIf and called by
CanDrv after a CAN L-PDU has been received.

[SWS_CANIF_00415] | Within the service CanIf_RxIndication () the CanIf routes
this indication to the configured upper layer target service(s). |()

AUTOSAR

[SWS_CANIF_00392] [If configuration parameters CANIF_PUBLIC_READRXPDU_NOTIFY_STATU.
(ECUC_Canlf_00608) and CANTIF_RXPDU_READ_NOTIFYSTATUS (ECUC _Canlf 00595)

for the Received L-PDU are setto TRUE, and if CanIf_RxIndication () is called,

the can1f shall set the notification status for the Received L-PDU. |()

[SWS_CANIF_00416] | If parameter Mailbox->Hoh of CanIf RxIndication ()
has an invalid value, Can1 £ shall report development error code CANIF_E_PARAM_HOH
tothe Det_ReportError service of the DET module, when CanIf_RxIndication ()
is called. |(SRS_BSW _00323)

[SWS_CANIF_00417] [If parameter Mailbox->CanIdof CanIf RxIndication ()
has an invalid value, can1 f shall report development error code CANIF_E_PARAM_CANID
tothe Det_ReportError service of the DET module, when CanIf_RxIndication ()

is called. |(SRS_BSW _00323)

Note: If CanIf_RxIndication () is called with invalid PduInfoPtr—->Sdulength,
development error CANIF_E_INVALID_DLC is reported (see [SWS_CANIF_00168]).

[SWS_CANIF_00419] [If parameter PduInfoPtr Or Mailbox Of CanIf_RxIndication ()
has an invalid value, CanI £ shall report development error code CANIF_E_PARAM POINTER
tothe Det_ReportError service of the DET module, when CanIf_RxIndication ()

is called. |(SRS_BSW _00323)

[SWS_CANIF_00421] [If canIf was not initialized before calling CanIf_RxIndication (),
CanIf shall not execute Rx indication handling, when CanIf_RxIndication (), IS
called. |()

[SWS_CANIF_00422] [Caveats of CanIf_RxIndication():

e The call context is either on interrupt level (interrupt mode) or on task level (polling
mode).

e The canIf must be initialized after Power ON.

10

[SWS_CANIF_00423] | Configuration of CanIf_RxIndication(): EachRx L-PDU
(see ECUC _Canlf_00249) has to be configured with a corresponding receive indica-
tion service of an upper layer module (see [SWS_CANIF_00012]) which is called in
CanIf_RxIndication (). |()

8.4.4 Canlf_ControllerBusOff

[SWS_CANIF_00218] [

Service name: Canlf_ControllerBusOff

Syntax: void CanIf_ControllerBusOff (
uint8 ControllerId

)

Service ID[hex]: 0x16

Sync/Async: Synchronous

AUTOSAR

Reentrancy: Reentrant
Parameters (in): Controllerld Abstract Canlf Controllerld which is assigned to a
CAN controller, where a BusOff occured.

Parameters (inout): | None

Parameters (out): None
Return value: None
Description: This service indicates a Controller BusOff event referring to the corre-

sponding CAN Controller with the abstract Canlf Controllerld.

Table 8.32: Canlf ControllerBusOff

10

Note: The callback service CanIf_ControllerBusOff () is called by cCanDrv and
implemented in canIf. Itis calledin case of a mode change notification of the CanDrv.

[SWS_CANIF_00429] | If parameter ControllerIdof CanIf_ControllerBusOff ()

has an invalid value, cCanIf shall report development error code CANIF_E_PARAM_CONTROLLER
tothe Det_ReportError service of the DET module, when CanIf_ControllerBusOff ()

is called. |(SRS_BSW _00323)

[SWS_CANIF_00431] [If canIf was not initialized before calling CanIf_ControllerBusOff (),
canIf shall not execute BusOff notification, when CanIf_ControllerBusOff (), is
called. |()

[SWS_CANIF_00432] [Caveats of CanIf_ControllerBusOff ():

e The call context is either on interrupt level (interrupt mode) or on task level (polling
mode).

e The canIf must be initialized after Power ON.

10

[SWS_CANIF_00433] | Configuration of CanIf_ControllerBusOff (): ID of the
CAN Controller is published inside the configuration description of the can1f (see ECUC_Canlf_

10

Note: This service always has to be available, so there does not exist an appropriate
configuration parameter.

8.4.5 Canlf_ConfirmPnAvailability

[SWS_CANIF_00815] [

Service name: Canlf_ConfirmPnAvailability

Syntax: void CanIf_ConfirmPnAvailability (
uint8 TransceiverId

)

Service ID[hex]: Ox1a

Sync/Async: Synchronous

AUTOSAR

Reentrancy: Reentrant

Parameters (in): Transceiverld Abstract Canlf Transceiverld, which is assigned to a
CAN transceiver, which was checked for PN avail-
ability.

Parameters (inout): | None

Parameters (out): None

Return value: None

Description: This service indicates that the transceiver is running in PN communica-

tion mode referring to the corresponding CAN transceiver with the ab-
stract Canlf Transceiverld.

Table 8.33: Canlf_ConfirmPnAvailability

10

[SWS_CANIF_00753] [If CanIf_ConfirmPnAvailability () iscalled, CanIf calls
<User_ConfirmPnAvailability> (). |()

Note: canTf passes the delivered parameter TransceiverIdto the upper layer mod-
ule.

[SWS_CANIF_00816] [If parameter TransceiverIdof CanIf_ConfirmPnAvailability ()
has an invalid value, canI £ shall report development error code CANIF_E_PARAM_TRCV

tothe Det_ReportError service of the DET module, when CanIf_ConfirmPnAvailability ()
is called. |()

[SWS_CANIF_00817] [If canIf was not initialized before calling CanIf_ConfirmPnAvailabili:
canIf shall not execute notification, when CanIf_ConfirmPnAvailability () is
called. |()

[SWS_CANIF_00818] [Caveats of CanIf ConfirmPnAvailability():

e The call context is either on interrupt level (interrupt mode) or on task level (polling
mode).

e The canIf must be initialized after Power ON.

10

[SWS_CANIF_00754] | Configuration of CanIf_ ConfirmPnAvailability (): This
function shall be pre compile time configurable ON/OFF by the configuration parameter
CANIF_PUBLIC_PN_SUPPORT (see ECUC_Canlf_00772). |()

8.4.6 Canlf_ClearTrcvWufFlagindication

[SWS_CANIF_00762] |

Service name: Canlf_ClearTrcvWufFlagindication
Syntax: void CanIf_ClearTrcvWufFlagIndication (
uint8 TransceiverId

)

AUTOSAR

Service ID[hex]: 0x20

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): Transceiverld Abstract Canlf Transceiverld, which is assigned to a

CAN transceiver, for which this function was called.

Parameters (inout): | None

Parameters (out): None
Return value: None
Description: This service indicates that the transceiver has cleared the WufFlag re-

ferring to the corresponding CAN transceiver with the abstract Canlf
Transceiverld.

Table 8.34: Canlf_ClearTrcvWufFlagindication

10

[SWS_CANIF_00757] [If CanIf_ClearTrcvWufFlagIndication () iscalled, CanIf
calls <User_ClearTrcvWufFlagIndication> (). |()

Note: canT f passes the delivered parameter TransceiverIdtothe upper layer mod-
ule.

[SWS_CANIF_00805] [If parameter TransceiverIdof CanIf_ClearTrcviWufFlagIndicatio
has an invalid value, CanI £ shall report development error code CANIF_E_PARAM_TRCV

tothe Det_ReportError service of the DET module, when CanIf_ClearTrcvWufFlagIndicat
is called. |()

[SWS_CANIF_00806] | If canTf was not initialized before calling CanIf_ClearTrcvWufFlagInd.
Ccan1If shall not execute notification, when CanIf_ClearTrcviWufFlagIndication ()
is called. |()

[SWS_CANIF_00807] [Caveats of CanIf_ClearTrcvWufFlagIndication():

e The call context is either on interrupt level (interrupt mode) or on task level (polling
mode).

e The canIf must be initialized after Power ON.

10

[SWS_CANIF_00808] [Configuration of

CanIf_ClearTrcvWufFlagIndication (): This function shall be pre compile time
configurable ON/OFF by the configuration parameter CANIF_PUBLIC_PN_SUPPORT
(see ECUC_Canlf_00772). |()

8.4.7 Canlf_CheckTrcvWakeFlagindication

[SWS_CANIF_00763] [

] Service name: | Canlf_CheckTrcvWakeFlaglndication

AUTOSAR

Syntax: void CanIf_CheckTrcvWakeFlagIndication (
uint8 TransceiverId

)

Service ID[hex]: 0x21

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): Transceiverld Abstract Canlf Transceiverld, which is assigned to a

CAN transceiver, for which this function was called.

Parameters (inout): | None

Parameters (out): None
Return value: None
Description: This service indicates that the check of the transceiver’s wake-up flag

has been finished by the corresponding CAN transceiver with the ab-
stract Canlf Transceiverld. This indication is used to cope with the asyn-
chronous transceiver communication.

Table 8.35: Canlf_CheckTrcvWakeFlaglndication

10

[SWS_CANIF_00759] | If canIf_CheckTrcvWakeFlagIndication () is called,
CanIf calls <User_CheckTrcvWakeFlagIndication> (). |()

Note: CanT f passes the delivered parameter TransceiverIdto the upper layer mod-
ule.

[SWS_CANIF_00809] | If parameter TransceiverIdof CanIf_CheckTrcvWakeFlagIndicati
has an invalid value, CanI £ shall report development error code CANIF_E_PARAM_ TRCV

tothe Det_ReportError service of the DET module, when CanIf_CheckTrcvWakeFlagIndica
is called. |()

[SWS_CANIF_00810] [If the Canlf was not initialized before calling CanIf_CheckTrcvilakeFlagl
can1If shall not execute notification, when canIf_CheckTrcviWakeFlagIndication ()
is called. |()

[SWS_CANIF_00811] [Caveats of CanIf_CheckTrcviakeFlagIndication():

e The call context is either on interrupt level (interrupt mode) or on task level (polling
mode).

e The canIf must be initialized after Power ON.

10

[SWS_CANIF_00812] | Configuration of

CanIf_CheckTrcvWakeFlagIndication (): Thisfunction shall be pre compile time
configurable ON/OFF by the configuration parameter CANIF_PUBLIC_PN_SUPPORT
(see ECUC_Canlf_00772). |()

AUTOSAR

8.4.8 Canlf_ControllerModelndication

[SWS_CANIF_00699] [

Service name: Canlf _ControllerModelndication
Syntax: void CanIf_ControllerModeIndication (
uint8 ControllerId,
CanIf_ControllerModeType ControllerMode
)
Service ID[hex]: 0x17
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): Controllerld Abstract Canlf Controllerld which is assigned to a
CAN controller, which state has been transitioned.
ControllerMode Mode to which the CAN controller transitioned
Parameters (inout): | None
Parameters (out): None
Return value: None
Description: This service indicates a controller state transition referring to the corre-
sponding CAN controller with the abstract Canlf Controllerld.

Table 8.36: Canlf ControllerModelndication

10

Note: The callback service CanIf_ControllerModeIndication () is called by

CanDrv and implemented in CanIf. Itis called in case of a state transition notification
of the canDrv.

[SWS_CANIF_00700] | If parameter ControllerIdof CanIf_ControllerModeIndication ()
has an invalid value, cCanIf shall report development error code CANIF_E_PARAM_CONTROLLER
tothe Det_ReportError service of the DET module, when CanIf_ControllerModeIndicatio
is called. |()

[SWS_CANIF_00702] [If canIf was not initialized before calling CanIf_ControllerModeIndic:
canI £ shall not execute state transition notification, when CanIf_ControllerModeIndication (
is called. |()

[SWS_CANIF_00703] [Caveats of CanIf ControllerModeIndication():

e The call context is either on interrupt level (interrupt mode) or on task level (polling
mode).

e The canIf must be initialized after Power ON.

10

8.4.9 Canlf_TrcvModelndication

[SWS_CANIF_00764] [

AUTOSAR

Service name: Canlf_TrcvModelndication
Synkut void CanIf_TrcvModelIndication (
uint8 TransceiverId,
CanTrcv_TrcvModeType TransceiverMode
)
Service ID[hex]: 0x22
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): Transceiverld Abstract Canlf Transceiverld, which is assigned to a
CAN transceiver, which state has been transitioned.
TransceiverMode Mode to which the CAN transceiver transitioned
Parameters (inout): | None
Parameters (out): None
Return value: None
Description: This service indicates a transceiver state transition referring to the corre-
sponding CAN transceiver with the abstract Canlf Transceiverld.

Table 8.37: Canlf_TrcvModelndication

10

Note: The callback service CanIf_TrcvModeIndication () is called by CanDrv
and implemented in canIf. Itis called in case of a state transition notification of the
CanDrv.

[SWS_CANIF_00706] [If parameter TransceiverIdof CanIf_TrcvModeIndication ()
has an invalid value, CanI £ shall report development error code CANIF_E_PARAM_ TRCV

tothe Det_ReportError service of the DET module, when CanIf_TrcvModeIndication ()
is called. |()

[SWS_CANIF_00708] [If canIf was not initialized before calling CanIf_TrcvModeIndication (
CanIf shall not execute state transition notification, when CanIf TrcvModeIndication ()
is called. |()

[SWS_CANIF_00709] | Caveats of CanIf_TrcvModeIndication ():

e The call context is either on interrupt level (interrupt mode) or on task level (polling
mode).

e The canIf must be initialized after Power ON.

10

[SWS_CANIF_00710] [Configuration of CanIf_TrcvModeIndication (): ID of
the CAN Transceiver is published inside the configuration description of CanIf via
parameter CANIF_TRCV_ID (see ECUC_Canlf_00654). |()

[SWS_CANIF_00730] | Configuration of CanIf_TrcvModeIndication (): Iftransceivers
are not supported (CanIfTrcvDrvCfg is not configured, see ECUC Canlf 00273),
CanIf_TrcvModeIndication () shall not be provided by canIf. |()

AUTOSAR

8.4.10 Canlf_CurrenticomConfiguration

[SWS_CANIF_00862] |

Service name: Canlf_CurrentlcomConfiguration

Syntax: void CanIf_CurrentIcomConfiguration (
uint8 ControllerId,

IcomConfigIdType ConfigurationId,
IcomSwitch_ErrorType Error

)

Service ID[hex]: 0x26
Sync/Async: Synchronous
Reentrancy: Reentrant only for different controller Ids
Parameters (in): Controllerld Abstract Canlf Controllerld which is assigned to a
CAN controller, which informs about the Configura-
tion Id.
Configurationld Active Configuration Id.
Error ICOM_SWITCH_E_OK: No Error
ICOM_SWITCH_E_FAILED: Switch to requested
Configuration failed. Severe Error.

Parameters (inout): | None

Parameters (out): None
Return value: None
Description: This service shall inform about the change of the Icom Configuration of

a CAN controller using the abstract Canlf Controllerld.

Table 8.38: Canlf_CurrenticomConfiguration

10

Note: The interface CanIf_ CurrentIcomConfiguration () isusedbythe CanDrv
to inform canIf about the status of activation or deactivation of Pretended Networking
for a given channel.

[SWS_CANIF_00839] [If CanIf_CurrentIcomConfiguration () iscalled, CanIf
shall call cCansM_CurrentIcomConfiguration (ControllerId, ConfigurationId,
Error) to inform cansM about current status of ICOM. |()

[SWS_CANIF_00873] | If CanIf_CurrentIcomConfiguration () iscalled within-
valid ControllerId, CanIf shall reportdevelopment errorcode CANIF_E_PARAM_CONTROLLERI
to the Det_ReportError service of the DET module. |(SRS_BSW _00323)

[SWS_CANIF_00876] [CanIf_CurrentIcomConfiguration () shall be pre com-
pile time configurable ON/OFF by the configuration parameter CANIF_PUBLIC_ICOM_SUPPORT
(see ECUC_Canlf_00839). |()

8.5 Scheduled functions

Note: canIf does not have scheduled functions or needs some.

AUTOSAR

8.6 Expected interfaces

In this chapter all interfaces required from other modules are listed.

8.6.1 Mandatory interfaces

Note: This section defines all interfaces, which are required to fulfill the core function-

ality of the module.
[SWS_CANIF_00040] |

API function

Description

Can_SetControllerMode

This function performs software triggered state transi-
tions of the CAN controller State machine.

Can_Write

This function is called by Canlf to pass a CAN message
to CanDrv for transmission.

SchM_Enter_CanIf_ <Exclu-

Invokes the SchM_Enter function to enter a module local

siveArea> exclusive area.
SchM_Exit_CanIf_<Exclusive | Invokesthe SchM_Exit function to exit an exclusive area.
Area>

Table 8.39: Canlf Mandatory Interfaces

8.6.2 Optional interfaces

This section defines all interfaces, which are required to fulfill an optional functionality

of the module.
[SWS_CANIF_00294] |

API function

Description

Can_ChangeBaudrate

This service shall change the baudrate of the CAN
controller.

Please note that this API is deprecated and is kept
only for backward compatibility reasons. Can_SetBau-
drate API shall be used instead to change the baud rate
configuration. In the next major release this APl will be
deleted.

Can_CheckBaudrate

This service shall check, if a certain CAN controller
supports a requested baudrate

Please note that this API is deprecated and is kept
only for backward compatibility reasons. In the next
major release this API will be deleted.

Can_CheckWakeup

This function checks if a wakeup has occurred for the
given controller.

AUTOSAR

Can_SetBaudrate

This service shall set the baud rate configuration of the
CAN controller. Depending on necessary baud rate mod-
ifications the controller might have to reset.

Can_SetIcomConfiguration

This service shall change the Icom Configuration of a
CAN controller to the requested one.

CanNm_RxIndication

Indication of a received I-PDU from a lower layer commu-
nication interface module.

CanNm_TxConfirmation

The lower layer communication interface module con-
firms the transmission of an I-PDU.

CanSM_CheckTransceiverWake
FlagIndication

This callback function indicates the CheckTransceiver-
WakeFlag APl process end for the notified CAN
Transceiver.

CanSM_ClearTrcvWufFlag
Indication

This callback function shall indicate the Canlf_ClearTr-
cvWufFlag APl process end for the notified CAN
Transceiver.

CanSM_ConfirmPnAvailabil-
ity

This callback function indicates that the transceiver is
running in PN communication mode.

CanSM_ControllerBusOff

This callback function notifies the CanSM about a bus-
off event on a certain CAN controller, which needs to be
considered with the specified bus-off recovery handling
for the impacted CAN network.

CanSM_ControllerModeIndi-
cation

This callback shall notify the CanSM module about a CAN
controller mode change.

CanSM_CurrentIcomConfigu-
ration

This service shall inform about the change of the Icom
Configuration of a CAN network.

CanSM_TransceiverModeIndi-
cation

This callback shall notify the CanSM module about a CAN
transceiver mode change.

CanTp_RxIndication

Indication of a received I-PDU from a lower layer commu-
nication interface module.

CanTp_TxConfirmation

The lower layer communication interface module con-
firms the transmission of an I-PDU.

CanTrcv_CheckWakeup

Service is called by underlying CANIF in case a wake up
interrupt is detected.

CanTrcv_GetBusWuReason

Gets the wakeup reason for the Transceiver and returns
it in parameter Reason.

CanTrcv_GetOpMode

Gets the mode of the Transceiver and returns it in Op-
Mode.

CanTrcv_SetOpMode

Sets the mode of the Transceiver to the value OpMode.

CanTrcv_SetWakeupMode

Enables, disables or clears wake-up events of the
Transceiver according to TrcvWakeupMode.

Det_ReportError

Service to report development errors.

EcuM_ValidateWakeupEvent

After wakeup, the ECU State Manager will stop the pro-
cess during the WAKEUP VALIDATION state/sequence
to wait for validation of the wakeup event.This APl service
is used to indicate to the ECU Manager module that the
wakeup events indicated in the sources parameter have
been validated.

J1939Nm_RxIndication

Indication of a received I-PDU from a lower layer commu-
nication interface module.

J1939Nm_TxConfirmation

The lower layer communication interface module con-
firms the transmission of an I-PDU.

J1939Tp_RxIndication

Indication of a received I-PDU from a lower layer commu-
nication interface module.

AUTOSAR

J1939Tp_TxConfirmation The lower layer communication interface module con-
firms the transmission of an I-PDU.

PduR_CanIfRxIndication Indication of a received I-PDU from a lower layer commu-
nication interface module.

PduR_CanIfTxConfirmation The lower layer communication interface module con-
firms the transmission of an I-PDU.

Xcp_CanIfRxIndication Indication of a received I-PDU from a lower layer commu-
nication interface module.

Xcp_CanIfTxConfirmation The lower layer communication interface module con-
firms the transmission of an [-PDU.

Table 8.40: Canlif Optional Interfaces

10

8.6.3 Configurable interfaces

In this section all interfaces are listed, where the target function of any upper layer
to be called has to be set up by configuration. These callback services are specified
and implemented in the upper communication modules, which use canIf according to
the AUTOSAR BSW architecture. The specific callback notification is specified in the
corresponding SWS document (see chapter 3 Related documentation).

As far the interface name is not specified to be mandatory, no callback is performed,
if no API name is configured. This section describes only the content of notification of
the callback, the call context inside canTf and exact time by the call event.

<User_NotificationName> - This condition is applied for such interface services
which will be implemented in the upper layer and called by canIf. This condition
displays the symbolic name of the functional group in a callback service in the corre-
sponding upper layer module. Each upper layer module can define no, one or several
callback services for the same functionality (i.e. transmit confirmation). The dispatch
is ensured by the .-spu ID.

The upper layer module provides the Service ID of the following functions.

8.6.3.1 <User_TriggerTransmit>

[SWS_CANIF_00886] |

Service name: <User_TriggerTransmit>

Syntax: Std_ReturnType <User_TriggerTransmit> (

PduldType TxPduld,

PduInfoTypex PdulnfoPtr

)

Sync/Async: Synchronous

Reentrancy: Reentrant for different Pdulds. Non reentrant for the same Pduld.
Parameters (in): TxPduld \ ID of the SDU that is requested to be transmitted.

AUTOSAR

Parameters (inout): | PdulnfoPtr Contains a pointer to a buffer (SduDataPtr) to where
the SDU data shall be copied, and the available
buffer size in SduLengh.

On return, the service will indicate the length of the
copied SDU data in SduLength.

Parameters (out): None
Return value: Std_ReturnType E_OK: SDU has been copied and SduLength indi-
cates the number of copied bytes.

E_NOT_OK: No SDU data has been copied. Pduln-
foPtr must not be used since it may contain a NULL
pointer or point to invalid data.

Description: Within this API, the upper layer module (called module) shall check
whether the available data fits into the buffer size reported by PdulnfoPtr-
>Sdulength. If it fits, it shall copy its data into the buffer provided by
PdulnfoPtr->SduDataPtr and update the length of the actual copied data

in PdulnfoPtr->SdulLength. If not, it returns E_NOT_OK without changing
PdulnfoPtr.

Table 8.41: <User_TriggerTransmit>

10

Note: This callback service is called by canIf and implemented in the corresponding
upper layer module. It is called in case of a Trigger Transmit request of CanDrv.

[SWS_CANIF_00887] | Caveats of <User_TriggerTransmit> (): The call context
is either on interrupt level (interrupt mode) or on task level (polling mode). |()

[SWS_CANIF_00888] | Configuration of <User_TriggerTransmit> (): The upper
layer module, which provides the TriggerTransmit callback service, has to be con-
figured by CanIfTxPduUserTxConfirmationUL (see ECUC_Canlf 00527). If no
upper layer modules are configured, no TriggerTransmit callback service is exe-
cuted and therefore Trigger Transmit functionality is not supported for that PDU. | ()

[SWS_CANIF_00889] | Configuration of <User_TriggerTransmit> (): The name
of the AP| <User_TriggerTransmit> () which is called by canIf shall be config-
ured for CanIf by parameter CanIfTxPduUserTriggerTransmitName (See ECUC_Canlf_ 0084z

10

Note: If CanTfTxPduTriggerTransmit is not specified or FALSE, no upper layer
modules have to be configured for Trigger Transmit. Therefore, <User_TriggerTransmit> ()
will not be called and CanIfTxPduUserTxConfirmationUL as well as CanIfTxP-
duUserTriggerTransmitName need not to be configured.

[SWS_CANIF_00890] | Configuration of <User_TriggerTransmit>(): If CanI-
fTxPduUserTxConfirmationULis setto PDUR, CanIfTxPduUserTriggerTrans—
mitName must be PduR_CanIfTriggerTransmit. |()

[SWS_CANIF_00891] | Configuration of <User_TriggerTransmit>(): If CanI-
fTxPduUserTxConfirmationULis setto CDD, the name of the APl <User_ TriggerTransmit>
has to be configured via parameter CanIfTxPduUserTriggerTransmitName. One
function parameter has to be of type PduIdType and one of type PduInfoTypex*. |()

AUTOSAR

8.6.3.2 <User_TxConfirmation>

[SWS_CANIF_00011] |

Service name: <User_TxConfirmation>

Syntax: void <User_TxConfirmation> (
PduldType TxPduld

)

Sync/Async: Synchronous

Reentrancy: Reentrant for different Pdulds. Non reentrant for the same Pduld.
Parameters (in): TxPduld | ID of the I-PDU that has been transmitted.
Parameters (inout): | None

Parameters (out): None

Return value: None

Description: The lower layer communication interface module confirms the transmis-

sion of an I-PDU.

Table 8.42: <User_TxConfirmation>

10

Note: This callback service is called by canIf and implemented in the corresponding
upper layer module. It is called in case of a transmit confirmation of CanDrv.

Note: This type of confirmation callback service is mainly designed for PduR, CanNm,
and CanTp, but not exclusive.

Note: Parameter TxPduId is derived from <User> configuration.

[SWS_CANIF_00437] | Caveats of <User_TxConfirmation> (): The call context
is either on interrupt level (interrupt mode) or on task level (polling mode). |()

[SWS_CANIF_00438] [Configuration of <User_TxConfirmation> (): The upper
layer module, which provides this callback service, has to be configured by CANIF_TXPDU_USERTXC
(see ECUC _Canlf_00527). If no upper layer modules are configured for transmit con-
firmation using <User_TxConfirmation> (), No transmit confirmation is executed.

10

[SWS_CANIF_00542] | Configuration of <User_TxConfirmation> (): The name of
the API <User_TxConfirmation> () which is called by can1f shall be configured
for canIf by parameter CANIF_TXPDU_USERTXCONFIRMATION_NAME (see ECUC_Canlf_00528).

10

Note: If transmit confirmations are not necessary or no upper layer modules are con-

figured for transmit confirmations and thus <User_TxConfirmation> () shall not be

called, CANIF_TXPDU_USERTXCONFIRMATION_UL and CANIF_TXPDU_USERTXCONFIRMATION_]
need not to be configured.

[SWS_CANIF_00439] [Configuration of <User_TxConfirmation> (): If CANIF_TXPDU_USERTX
is set to PDUR, CANIF_TXPDU_USERTXCONFIRMATION_NAME mustbe PduR_CanIfTxConfirmat

10

AUTOSAR

[SWS_CANIF_00543] | Configuration of <User_TxConfirmation> (): If CANIF_TXPDU_USERTX
is setto CAN_NM, CANIF_TXPDU_USERTXCONFIRMATION_NAME mustbe CanNm_TxConfirmatio

10

Hint (Dependency to another module):

If at least one canIf Tx L-SDU is configured with CanNm_TxConfirmation (), which

means CANIF_TXPDU_USERTXCONFIRMATION_UL equals CAN_NM, the CanNm con-

figuration parameter CANNM_IMMEDIATE_TXCONF_ENABLED must be set to FALSE

(for canNm related details see [4, Specification of CAN Network Management], [SWS_CANNM_0028.

[SWS_CANIF_00858] | Configuration of <User_TxConfirmation> (): If CANIF_TXPDU_USERTX
issetto J1939NM, CANIF_TXPDU_USERTXCONFIRMATION_NAME mustbe J1939Nm_TxConfirma

10

[SWS_CANIF_00544] [Configuration of <User_TxConfirmation> (): If CANIF_TXPDU_USERTX
issetto J1939TP, CANIF_TXPDU_USERTXCONFIRMATION_NAME mustbe J1939Tp_TxConfirma

10

[SWS_CANIF_00550] | Configuration of <User_TxConfirmation> (): If CANIF_TXPDU_USERTX
is setto CAN_TP, CANIF_TXPDU_USERTXCONFIRMATION_NAME mustbe CanTp_TxConfirmatio

10

[SWS_CANIF_00556] | Configuration of <User_TxConfirmation> (): If CANIF_TXPDU_USERTX
is setto XCP, CANIF_TXPDU_USERTXCONFIRMATION_NAME mustbe Xcp_CanIfTxConfirmatio

10

[SWS_CANIF_00551] | Configuration of <User_TxConfirmation> (): If CANIF_TXPDU_USERTX
is set to CDD, the name of the APl <User_TxConfirmation> () has to be configured

via parameter CANIF_TXPDU_USERTXCONFIRMATION_NAME. The function parame-

ter has to be of type PduIdType. |()

[SWS_CANIF_00879] | Configuration of <User_TxConfirmation> (): If CANIF_TXPDU_USERTX
is setto CAN_TSYN, CANIF_TXPDU_USERTXCONFIRMATION_NAME mustbe CanTSyn_CanIfTxCo

10

8.6.3.3 <User_RxIndication>

[SWS_CANIF_00012] |

Service name: <User_RxIndication>

Syntax: void <User_RxIndication> (
PduldType RxPduld,

const PduInfoType*x PdulnfoPtr
)

Sync/Async: Synchronous
Reentrancy: Reentrant for different Pdulds. Non reentrant for the same Pduld.
Parameters (in): RxPduld ID of the received |I-PDU.

PdulnfoPtr Contains the length (SduLength) of the received I-

PDU and a pointer to a buffer (SduDataPtr) contain-
ing the I-PDU.

AUTOSAR

Parameters (inout): | None

Parameters (out): None

Return value: None

Description: Indication of a received I-PDU from a lower layer communication interface
module.

Table 8.43: <User_RxIndication>

|(SRS_CAN_01003)

Note: This service indicates a successful reception of an L-SDU to the upper layer
module after passing all filters and validation checks.

Note: This callback service is called by canIf and implemented in the configured up-
per layer module (e.g. PduR, CanNm, CanTp, etc.) if configured accordingly (see ECUC_Canlf_0052¢

Note: Besides the 1.-sDU the buffer referenced by parameter PduInfoPtr->SduDataPtr
also contains the MetaData of dynamic L-SDUs.

[SWS_CANIF_00440] [Caveats of <User_RxIndication>:

e Until this service returns, canIf will not access <PduInfoPtr>. The <PdulIn-
foPtr>is only valid and can be used by upper layers, until the indication returns.
CanIf guarantees that the number of configured bytes for this <PduInfoPtr>
is valid.

e CanDrv module must be initialized after Power ON.

e The call context is either on interrupt level (interrupt mode) or on task level (polling
mode).

10

[SWS_CANIF_00441] [Configuration of <User_RxIndication> (): The upper layer
module, which provides this callback service, has to be configured by CANIF_RXPDU_USERRXINDIC
(see ECUC_Canlf_00529). |()

[SWS_CANIF_00552] | Configuration of <User_RxIndication>(): The name of
the APl <User_RxIndication> () which will be called by can1 f shall be configured
for canIf by parameter CANIF_RXPDU_USERRXINDICATION_NAME (see ECUC_Canlf_00530).

10

Note: If receive indications are not necessary or no upper layer modules are config-

ured for receive indications and thus <User_RxIndication> () shall not be called,
CANIF_RXPDU_USERRXINDICATION_UL and CANIF_RXPDU_USERRXINDICATION_NAME
need not to be configured.

[SWS_CANIF_00442] | Configuration of <User_RxIndication> (): If CANIF_RXPDU_USERRXIN
is set to PDUR, CANIF_RXPDU_USERRXINDICATION_NAME mustbe PduR_CanIfRxIndication.

10

AUTOSAR

[SWS_CANIF_00445] | Configuration of <User_RxIndication> (): [f CANIF_RXPDU_USERRXIN
is set to CAN_NM, CANIF_RXPDU_USERRXINDICATION_NAME mustbe CanNm_RxIndication.

10

The value passed to CanNm via the APl parameter CanNmRxPduId refers to the CanNm
channel handle within the canNm module (for canNm related details see [4, Specifica-
tion of CAN Network Management]).

[SWS_CANIF_00859] | Configuration of <User_RxIndication> (): If CANIF_RXPDU_USERRXIN
is setto J1939NM, CANIF_RXPDU_USERRXINDICATION_NAME mustbe J1939Nm_RxIndication

10

[SWS_CANIF_00448] | Configuration of <User_RxIndication> (): If CANIF_RXPDU_USERRXIN
is setto CAN_TP, CANIF_RXPDU_USERRXINDICATION_NAME mustbe CanTp_RxIndication.

10

[SWS_CANIF_00554] | Configuration of <User_RxIndication> (): If CANIF_RXPDU_USERRXIN
issetto J1939TP, CANIF_RXPDU_USERRXINDICATION_NAME mustbe J1939Tp_RxIndication

10

[SWS_CANIF_00555] | Configuration of <User_RxIndication> (): If CANIF_RXPDU_USERRXIN
is setto XCP, CANIF_RXPDU_USERRXINDICATION_NAME mustbe Xcp_CanIfRxIndication.

10

[SWS_CANIF_00557] [Configuration of <User_RxIndication> (): If CANIF_RXPDU_USERRXIN
is set to CDD the name of the API has to be configured via parameter CANIF_RXPDU_USERRXINDICZ2

10

[SWS_CANIF_00880] | Configuration of <User_RxIndication> (): If CANIF_RXPDU_USERRXIN
is setto CAN_TSYN, CANIF_RXPDU_USERRXINDICATION_NAME mustbe CanTSyn_CanIfRxIndi

10

8.6.3.4 <User_ValidateWakeupEvent>

[SWS_CANIF_00532] |

Service name: <User_ValidateWakeupEvent>
Syntax: void <User_ValidateWakeupEvent> (
EcuM_WakeupSourceType sources

)

Sync/Async: (defined within providing upper layer module)
Reentrancy: (defined within providing upper layer module)
Parameters (in): sources Validated CAN wakeup events. Every CAN con-

troller or CAN transceiver can be a separate wakeup
source.

Parameters (inout): | None

Parameters (out): None
Return value: None
Description: This service indicates if a wake up event initiated from the wake up

source (CAN controller or transceiver) after a former request to the CAN
Driver or CAN Transceiver Driver module is valid.

AUTOSAR

Table 8.44: User_ValidateWakeupEvent

10

Note: This callback service is mainly implemented in and used by the ECU State Man-
ager module (see [13, Specification of ECU State Manager]).

Note: The canIf calls this callback service. It is implemented by the configured up-
per layer module. It is called only during the call of CanIf_CheckVvalidation () if
a first CAN L-PDU reception event after a wake up event has been occurred at the
corresponding CAN Controller.

[SWS_CANIF_00455] [Caveats of <User_ValidateWakeupEvent>:
e The canDrv must be initialized after Power ON.

e The call context is either on interrupt level (interrupt mode) or on task level (polling
mode).

e This callback service is in general re-entrant for multiple CAN Controller us-
age, but not for the same CAN Controller.

10

[SWS_CANIF_00659] | Configuration of <User_validateWakeupEvent> (): If no
validation is needed, this APl can be omitted by disabling CANTIF_PUBLIC_WAKEUP_CHECK_VALID2
(see ECUC_Canlf_00611). |()

[SWS_CANIF_00456] | Configuration of <User_vValidateWakeupEvent> (): The
upper layer module which provides this callback service has to be configured by CANTF_DISPATCH_I
(see ECUC _Canlf_00549), but:

¢ |f no upper layer modules are configured for wake up notification using <User_validateWake
no wake up notification needs to be configured. CANIF_DISPATCH_USERVALIDATEWAKEUPEY
needs not to be configured.

¢ If wake up is not supported (CANIF_CTRL_WAKEUP_SUPPORT and CANIF_TRCV_WAKEUP_ SU!
equal FALSE, see ECUC _Canlf 00637, ECUC_Canlf 00606), CANIF_DISPATCH_USERVALI
is not configurable.

10

[SWS_CANIF_00563] | Configuration of <User_validateWakeupEvent> (): If CANIF_DISPATC
is setto ECUM, CANIF_DISPATCH_USERVALIDATEWAKEUPEVENT_NAME mustbe EcuM_validate

10

[SWS_CANIF_00564] | Configuration of <User_validateWakeupEvent> (): If CANIF_DISPATC
is set to cDD the name of the API has to be configured via parameter CANIF_DISPATCH_USERVALIL
The function parameter has to be of type EcuM_WakeupSourceType. |()

AUTOSAR

8.6.3.5 <User_ControllerBusOff>

[SWS_CANIF_00014] |

Service name: <User_ControllerBusOff>

Syntax: void <User_ControllerBusOff> (
uint8 ControllerId

)

Sync/Async: (defined within providing upper layer module)
Reentrancy: (defined within providing upper layer module)
Parameters (in): Controllerld Abstracted Canlf Controllerld which is assigned to a

CAN controller, at which a BusOff occurred.

Parameters (inout): | None

Parameters (out): None
Return value: None
Description: This service indicates a bus-off event to the corresponding upper layer

module (mainly the CAN State Manager module).

Table 8.45: User_ControllerBusOff

|(SRS_CAN_01029)

Note: This callback service is mainly implemented in and used by Cansm (see [3,
Specification of CAN State Manager])).

Note: This callback service is called by canTf and implemented by the configured up-

per layer module. ltis called in case of a BusOff notificationvia CanIf_ControllerBusOff ()

of the canDrv. The delivered parameter ControllerId ofthe service CanIf_ControllerBusOf
is passed to the upper layer module.

[SWS_CANIF_00449] | Caveats of <User_ControllerBusOff>():
e The canDrv must be initialized after Power ON.

e The call context is either on interrupt level (interrupt mode) or on task level (polling
mode).

e This callback service is in general re-entrant for multiple CAN Controller us-
age, but not for the same CAN Controller.

e Before re-initialization/restart during BusOff recovery is executed this callback
service is performed only once in case of multiple BusOff events at CAN Con-
troller.

10

Configuration of <User_ControllerBusOff> ()

[SWS_CANIF_00450] [Configuration of <User_ControllerBusOff> ():
The upper layer module which provides this callback service has to be configured by
CANIF_DISPATCH_USERCTRLBUSOFF_UL (see ECUC Canlf 00547). |()

AUTOSAR

[SWS_CANIF_00558] | Configuration of <User_ControllerBusOff> (): The name
of the APl <User_ControllerBusOff> () which will be called by canIf shall be
configured for Can1f by parameter CANIF_DISPATCH_USERCTRLBUSOFF_NAME (see ECUC_Canl

10

[SWS_CANIF_00524] | Configuration of <User_ControllerBusOff>(): At least
one upper layer module and hence an API of <User_ControllerBusOff> () has
mandatorily to be configured, which canIf can call in case of an occurred call of
CanIf_ControllerBusOff (). |()

[SWS_CANIF_00559] | Configuration of <User_ControllerBusOff> (): [f CANIF_DISPATCH_U
is setto CAN_SM, CANIF_DISPATCH_USERCTRLBUSOFF_NAME mustbe CanSM_ControllerBusO

10

[SWS_CANIF_00560] [Configuration of <User_ControllerBusOff> (): [f CANIF_DISPATCH_U
is set to CDD the name of the API has to be configured via parameter CANIF_DISPATCH_USERCTRLE
The function parameter has to be of type uint8. |()

8.6.3.6 <User_ConfirmPnAvailability>

[SWS_CANIF_00821] [

Service name: <User_ConfirmPnAvailability>
Syntax: void <User_ConfirmPnAvailability>(
uint8 TransceiverId

)

Sync/Async: (defined within providing upper layer module)

Reentrancy: (defined within providing upper layer module)

Parameters (in): Transceiverld Abstract Canlf Transceiverld, which is assigned to a
CAN transceiver, which was checked for PN avail-
ability.

Parameters (inout): | None

Parameters (out): None

Return value: None

Description: This service indicates that the CAN transceiver is running in PN commu-

nication mode.

Table 8.46: User_ConfirmPnAvailability

10

Note: This callback service is mainly implemented in and used by Cansm (see [3,
Specification of CAN State Manager])).

[SWS_CANIF_00822] [Caveats of <User_ConfirmPnAvailability>():
e The CanTrcv must be initialized after Power ON.

e The call context is either on interrupt level (interrupt mode) or on task level (polling
mode).

AUTOSAR

e This callback service is in general re-entrant for multiple CAN Transceiver us-
age, but not for the same CAN Transceiver.

10

[SWS_CANIF_00823] | Configuration of <User_ConfirmPnAvailability>(): The
upper layer module, which is called (see [SWS_CANIF_00753]), has to be configurable
by CANIF_DISPATCH_USERCONFIRMPNAVAILABILITY_ UL (see ECUC Canlf 00820)
if CANIF_PUBLIC_PN_SUPPORT (see ECUC_Canlf_00772) equals True. |()

[SWS_CANIF_00824] | Configuration of <User_ConfirmPnAvailability>(): The

name of <User_ConfirmPnAvailability> () shall be configurable by CANIF_DISPATCH_USER
(see ECUC _Canlf _00819)if CANIF_PUBLIC_PN_SUPPORT (see ECUC Canlf 00772)

equals True. ()

[SWS_CANIF_00825] | Configuration of <User_ConfirmPnAvailability>(): It
shall be configurable by CANIF_PUBLIC_PN_SUPPORT (see ECUC Canlf 00772), if
CanIf supports this service (False: not supported, True: supported) |()

[SWS_CANIF_00826] | Configuration of <User_ConfirmPnAvailability>(): If
CANIF_DISPATCH_USERCONFIRMPNAVAILABILITY ULIissetto CAN_SM, CANIF_DISPATCH_US
must be CanSM_ConfirmPnAvailability. ()

[SWS_CANIF_00827] | Configuration of <User_ConfirmPnAvailability>(): If
CANIF_DISPATCH_USERCONFIRMPNAVAILABILITY_UL is set to cDD, the name of

the service has to be configurable via parameter CANIF_DISPATCH_USERCONFIRMPNAVATLABILI
and the function parameter has to be of type uints. |()

8.6.3.7 <User_ClearTrcvWufFlagindication>

[SWS_CANIF_00788] [

Service name: <User_ClearTrcvWufFlagindication>
Syntax: void <User_ClearTrcvWufFlagIndication> (
uint8 TransceiverId

)

Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): Transceiverld Abstracted Canlf Transceiverld, for which this func-

tion was called.

Parameters (inout): | None

Parameters (out): None
Return value: None
Description: This service indicates that the CAN transceiver has cleared the WufFlag.

This function is called in Canlf_ClearTrcvWufFlaglndication.

Table 8.47: <User_ClearTrcvWufFlagindication>

10

AUTOSAR

Note: This callback service is mainly implemented in and used by Cansm (see [3,
Specification of CAN State Manager]).

[SWS_CANIF_00793] [Caveats of <User_ClearTrcviWufFlagIndication> ():
e The CanTrcv must be initialized after Power ON.

e The call context is either on interrupt level (interrupt mode) or on task level (polling
mode).

e This callback service is in general re-entrant for multiple CAN Transceiver us-
age, but not for the same CAN Transceiver.

10

[SWS_CANIF_00794] | Configuration of

<User_ClearTrcvWufFlagIndication> (): The upperlayer module, which is called

(see [SWS_CANIF_00757]), has to be configurable by CANIF_DISPATCH_USERCLEARTRCVWUFF L]
(see ECUC Canlf 00790)if CANIF_PUBLIC_PN_SUPPORT (see ECUC Canlf 00772)

equals True. ()

[SWS_CANIF_00795] | Configuration of

<User_ClearTrcvWufFlagIndication> (): The name of <User_ClearTrcvWufFlagIndic:
shall be configurable by CANIF_DISPATCH_USERCLEARTRCVWUFFLAGINDICATION_NAME

(see ECUC_Canlf_00789) if CANIF_PUBLIC_PN_SUPPORT (see ECUC_Canlf_00772)

equals True. |()

[SWS_CANIF_00796] | Configuration of

<User_ClearTrcvWufFlagIndication> (): It shall be configurable by CANIF_PUBLIC_PN_SUI
(see ECUC Canlf 00772), if canIf supports this service (False: not supported,

True: supported) |()

[SWS_CANIF_00797] | Configuration of

<User_ClearTrcvWufFlagIndication>():

If CANIF_DISPATCH_USERCLEARTRCVWUFFLAGINDICATION_ UL is set to CAN__SM,
CANIF_DISPATCH USERCLEARTRCVWUFFLAGINDICATION_NAME mustbe CanSM_ClearTrcvilt

10
[SWS_CANIF_00798] | Configuration of

<User_ClearTrcvWufFlagIndication>():

If CANIF_DISPATCH_USERCLEARTRCVWUFFLAGINDICATION_UL is set to CDD, the

name of the service has to be configurable via parameter CANIF_DISPATCH_USERCLEARTRCVWUFE
and the function parameter has to be of type uints. |()

8.6.3.8 <User_CheckTrcvWakeFlagindication>

[SWS_CANIF_00814] [

\ Service name: \ <User_CheckTrcvWakeFlaglndication>

AUTOSAR

Syntax: void <User_CheckTrcvWakeFlagIndication> (
uint8 TransceiverId

)

Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): Transceiverld Abstracted Canlf Transceiverld, for which this func-

tion was called.

Parameters (inout): | None

Parameters (out): None
Return value: None
Description: This service indicates that the wake up flag in the CAN transceiver is set.

This function is called in Canlf_CheckTrcvWakeFlaglndication.

Table 8.48: <User_CheckTrcvWakeFlagindication>

10

Note: This callback service is mainly implemented in and used by Cansm (see [3,
Specification of CAN State Manager])).

[SWS_CANIF_00799] | Caveats of <User_CheckTrcvWakeFlagIndication> ():
e The canTrcv must be initialized after Power ON.

e The call context is either on interrupt level (interrupt mode) or on task level (polling
mode).

e This callback service is in general re-entrant for multiple CAN Transceiver us-
age, but not for the same CAN Transceiver.

10

[SWS_CANIF_00800] [Configuration of

<User_CheckTrcvWakeFlagIndication> (): The upper layer module, which is

called (see [SWS_CANIF_00759]), has to be configurable by CANTF_DISPATCH_USERCHECKRCVW2
(see ECUC_Canlf_00792) if CANIF_PUBLIC_PN_SUPPORT (see ECUC_Canlf_00772)

equals True. ()

[SWS_CANIF_00801] [Configuration of

<User_CheckTrcvWakeFlagIndication> (): The name of <User_CheckTrcviWakeFlagIndi
shall be configurable by CANIF_DISPATCH_USERCHECKRCVWAKEFLAGINDICATION_NAME

(see ECUC_Canlf_00791) if CANIF_PUBLIC_PN_SUPPORT (see ECUC_Canlf_00772)

equals True. ()

[SWS_CANIF_00802] | Configuration of

<User_CheckTrcviWakeFlagIndication> (): It shall be configurable by CANIF_PUBLIC_PN_ST
(see ECUC Canlf 00772), if canIf supports this service (False: not supported,

True: supported) |()

[SWS_CANIF_00803] | Configuration of

<User_CheckTrcvWakeFlagIndication>():
If CANIF DISPATCH USERCHECKRCVWAKEFLAGINDICATION_UL is set to CAN_SM,

AUTOSAR

CANIF_DISPATCH_USERCHECKRCVWAKEFLAGINDICATION_NAME mustbe CanSM_CheckTrcvWe

10
[SWS_CANIF_00804] [Configuration of

<User_CheckTrcvWakeFlagIndication> ():

If CANIF_DISPATCH_USERCHECKRCVWAKEFLAGINDICATION_UL is set to CDD, the

name of the service has to be configurable via parameter CANIF_DISPATCH_USERCHECKRCVWAKEF
and the function parameter has to be of type uints. |()

8.6.3.9 <User_ControllerModelndication>

[SWS_CANIF_00687] [

Service name: <User_ControllerModelndication>
Synkut void <User_ControllerModeIndication> (
uint8 ControllerId,
CanIf_ControllerModeType ControllerMode
)
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): Controllerld Abstracted Canlf Controllerld which is assigned to a
CAN controller, at which a controller state transition
occurred.
ControllerMode Notified CAN controller mode
Parameters (inout): | None
Parameters (out): None
Return value: None
Description: This service indicates a CAN controller state transition to the correspond-
ing upper layer module (mainly the CAN State Manager module).

Table 8.49: <User_ControllerModelndication>

10

Note: The upper layer module provides the Service ID.

Note: This callback service is mainly implemented in and used by cansm (see [3,
Specification of CAN State Manager]).

Note: The can1f calls this callback service. It is implemented by the configured upper

layer module. It is called in case of a state transition notificationvia CanIf_ControllerModeIndic
of the CanDrv. The delivered parameter ControllerId of the service CanIf_ControllerModel
is passed to the upper layer module. The delivered parameter ControllerMode of

the service CanIf_ControllerModeIndication () is mapped to the appropriate

parameter ControllerMode 0Of <User_ControllerModeIndication> ().

Note: For different upper layer users different service names shall be used.
[SWS_CANIF_00688] | Caveats of <User_ControllerModeIndication>():

e The canDrv must be initialized after Power ON.

AUTOSAR

e The call context is either on task level (polling mode).

e This callback service is in general re-entrant for multiple CAN Controller us-
age, but not for the same CAN Controller.

10

[SWS_CANIF_00689] | Configuration of

<User_ControllerModeIndication> (): The upper layer module which provides

this callback service has to be configured by CANIF_USERCONTROLLERMODEINDICATION_UL
(see ECUC_Canlf_00684). |()

[SWS_CANIF_00690] | Configuration of

<User_ControllerModeIndication> (): The nameof <User_ControllerModeIndicatior
which is called by can1f shall be configured for CanIf by parameter CANIF_DISPATCH_USERCTRL
(see ECUC Canlf _00683). This is only necessary if state transition notifications are

configured via CANIF_DISPATCH_USERCTRLMODEINDICATION_UL. |()

[SWS_CANIF_00691] [Configuration of

<User_ControllerModeIndication> ():

If CANIF_DISPATCH_USERCTRLMODEINDICATION_ULIis setto CAN_SM, CANIF_DISPATCH_USER
must be CanSM_ControllerModeIndication. [()

[SWS_CANIF_00692] | Configuration of

<User_ControllerModeIndication> ():

If CANIF_DISPATCH_USERCTRLMODEINDICATION_UL is setto cDD the name of the

function has to be configured via parameter CANIF_DISPATCH_USERCTRLMODEINDICATION_NAMI
The function parameter has to be of type uints. |()

8.6.3.10 <User_TrcvModelndication>

[SWS_CANIF_00693] [

Service name: <User_TrcvModelndication>
Synkmt void <User_TrcvModeIndication> (
uint8 TransceiverId,
CanTrcv_TrcvModeType TransceiverMode
)
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): Transceiverld Abstracted Canlf Transceiverld which is assigned to
a CAN transceiver, at which a transceiver state tran-
sition occurred.
TransceiverMode Notified CAN transceiver mode
Parameters (inout): | None
Parameters (out): None
Return value: None
Description: This service indicates a CAN transceiver state transition to the corre-
sponding upper layer module (mainly the CAN State Manager module).

Table 8.50: <User_TrcvModelndication>

AUTOSAR

10

Note: The upper layer module provides the Service ID.

Note: This callback service is mainly implemented in and used by Cansm (see [3,
Specification of CAN State Manager]).

Note: The can1f calls this callback service. It is implemented by the configured upper

layer module. Itis called in case of a state transition notification via CanIf_TrcvModeIndication (
of the CanTrcv. The delivered parameter Transceiver of the service CanIf_TrcvModeIndicat
is mapped (as configured) to the appropriate parameter TransceiverId which will

be passed to the upper layer module. The delivered parameter TransceiverMode of

the service CanIf_TrcvModeIndication () is mapped to the appropriate parame-

ter TransceiverMode of <User_TrcvModeIndication> ().

Note: For different upper layer users different service names shall be used.
[SWS_CANIF_00694] | Caveats of <User_TrcvModeIndication> ():
e The canTrcv must be initialized after Power ON.
e The call context is either on task level (polling mode).

e This callback service is in general re-entrant for multiple CAN Transceiver us-
age, but not for the same CAN Transceiver.

10

[SWS_CANIF_00695] [Configuration of <User_TrcvModeIndication> ():

The upper layer module which provides this callback service has to be configured
by CANIF_DISPATCH_USERTRCVMODEINDICATION_UL (see ECUC _Canlf_00686),
but:

e |f no upper layer modules are configured for transceiver mode indications using
<User_TrcvModeIndication> (), no transceiver mode indication needs to be
configured. CANIF_DISPATCH_USERTRCVMODEINDICATION_UL needs not to
be configured.

e If transceivers are not supported
(CanInterfaceTransceiverDriverConfiguration is not configured, see
ECUC _Canlf 00273), CANIF_DISPATCH_USERTRCVMODEINDICATION_UL is
not configurable.

10

If no upper layer modules are configured for state transition notifications using <User_TrcvModeInc
no state transition notification needs to be configured.

[SWS_CANIF_00696] | Configuration of <User_TrcvModeIndication>(): The
name of <User_TrcvModeIndication> () which will be called by can1f shall be
configured for CanT f by parameter CANTIF_DISPATCH_USERTRCVMODEINDICATION_NAME
(see ECUC _Canlf _00685). This is only necessary if state transition notifications are
configured via CANIF_DISPATCH_USERTRCVMODEINDICATION_UL. |()

AUTOSAR

[SWS_CANIF_00697] | Configuration of <User_TrcvModeIndication> (): If CANIF_DISPATCH
is set to CAN_SM, CANTF_DISPATCH_USERTRCVMODEINDICATION_NAME must be
CanSM_TransceiverModeIndication. |()

[SWS_CANIF_00698] [Configuration of <User_TrcvModeIndication> (): If CANIF_DISPATCH
is set to CDD the name of the API has to be configured via parameter CANIF_DISPATCH_USERTRCVD
The function parameter has to be of type uints. |()

AUTOSAR

9 Sequence diagrams

The following sequence diagrams show the interactions between canIf and CanDrv.

9.1 Transmit request (single CAN Driver)

Canlf User «module» «module» «module» «Peripheral»

Schm Canlf Can CanController
oo

T T T
| | |
Canlf_Transmit(Std_ReturnType, PduldType, const Pdulnfone*)

T
|
I
L I
|
Can_Write(Can_RetumType, Can_HwHandleType,
L

Insert L-PDU in transmit buffer()

T

I

|

: const Can_PduType*)
alt CAN Controller/ !

. _' Copy L-PDU into CAN Hardware()

[CAN [cqntroller hardware object ik free] L

I

: Copy L-PDU into CAN Hardware()

| Can_Write() < T

[I =P

I

..... i e T R e R o e e R T R LT P T R R

[CAN [cqntroller hardware object is busy]

|

| Can_Write()

5 N e ——

I

|

I

I

|

1
Can If_Tra'nsmit()
< ——-----= et
T | s
| |

Figure 9.1: Transmission request with a single CAN Driver

Activity Description

Transmission request The upper layer initiates a transmit request via the service
CanIf_Transmit (). The parameter CanTxPduId identifies the
requested L-sDU. The service performs following steps:

¢ validation of the input parameter
e definition of the CAN Controller to be used

The second parameter xPduInfoPtr is a pointer on the structure
with transmit L.—-sDU related data such as sduLength and

*SduDataPtr.

Start transmission CanIf_Transmit () requests a transmission and calls the
CanDrv service Can_Write () with corresponding processing of
the HTH.

Hardware request Can_Write () writes all L-PDU data in the CAN Hardware (if it is
free) and sets the hardware request for transmission.

E_OK from Can_Write Can_Write () returns E_OK to CanIf_Transmit ().

service

E_BUSY from Can_Write If canDrv detects, there are no free hardware objects available, it

service returns CAN_E_BUSY to CanIf.

Copying into the buffer The 1.-PDU of the rejected transmit request will be inserted in the

transmit buffer of canIf until the next transmit confirmation.
E_OK from CanIf CanIf_Transmit () returns E_OK to the upper layer.

AUTOSAR

9.2 Transmit request (multiple CAN Drivers)

:l Insert L-PDU in |
m| transmit buffer() :

Canlf User «module» «module» Can_99_Extl «Peripheral» Can_99_Ext2 «Peripheral»
Schm Canlf ‘Can CanController A :Can CanController B
:CanController :CanController
I I I I I I I
| | | | | | |
alt CAN Controller A/B : : : : : :
[CAN Cdntroller A used] | | | | | |
| '
| CanILTransmit(S‘diRetumType, PduldType, const PdulnfoType*) : : : :
-
]] I I I I
Can_Write(Can_RetumType, Can_HwHandleType,			
const Can_PduType*)			
I I I I			
alt CAN Controller A hardware iatus/			
T Copy L-PDU in CAN			
[CAN Eontroller hardware object is free] Hardware A()			
I I I			
Copy L-PDU in CAN			
Hardware A()			
I ; I I I			
Can_Write()			
[N			
et i S LR & EEEEEEEEEEEEE R e R qmmmmm s k-			
[CAN Fontroller hardware object in busy] I I			
: Can_Write() : : :			
N Dl			
T			
Insert L-PDU in transmit buffer()			
I I I I I			
0			
T T T T T			
Canlf_Transmit()			
< -——----- [ity I I I I			
-			
----- E i R e i e] s			
[CAN Gontroller B used]			
I I I I I I			
	I I I I		
Canlf_Transmit(Std_ReturnType, PduldType, const PdulnfoType*)	I I I		
t L			
: Can_Write(Can_RetumType, CaninHar;deeType, : : :			
const Can_PduType*)			
L + + +			
alt CAN Controller B hardware satus/			
T	I Copy L-PDU in CAN		
[CAN Conroller hardware objgct is free]		Hardware B()	
: : : Copy L-PDU in CAN			
		Hardware B()	
[Can_Write()	[I Sttt		
N r--TTT T Tt T T T			
I I I			
o S il th St [rm-mmmemmes [y i et dhlid			
[CAN controller hardware objgct is busy]			
Can_Write()			
B D	t (i		
I			
I			
I			

Canlf_Transmit()
'

T |

<o - 4-----

L

L
|
|
|
|
|
|
|
|
T

d———_ | _—_—_—_—_ —_ g —

Figure 9.2: Transmission request with multiple CAN Drivers

First transmit request:

Activity

Description

Transmission request A

The upper layer initiates a transmit request via the service

CanIf_Transmit (). The parameter CanTxPduId identifies the

requested L-sDU. The service performs following steps:

¢ validation of the input parameter

e definition of the CAN Controller to be used (here:

Can_99 Ext1)

The second parameter xPduInfoPtr is a pointer on the structure

with transmit L.—sDU related data such as SduLength and

*SduDataPtr.

AUTOSAR

Start transmission

CanIf_Transmit () requests a transmission and calls the
CanDrv Can_99_FExtl service Can_Write_99 Extl () with
corresponding processing of the HTH.

Hardware request

Can_Write_99_Ext1 () writes all L-PDU data in the CAN
Hardware of Controller A (if it is free) and sets the hardware
request for transmission.

E_OK from Can_Write
service

Can_Write_99 Extl () returns E_OKto CanIf_ Transmit ().

E_BUSY from Can_Write
service

If canDrv Can_99_Ext1 detects, there are no free hardware
objects available, it returns CAN_E_BUSY to CanTf.

Copying into the buffer

The 1.-PDU of the rejected transmit request will be inserted in the
transmit buffers of canIf until the next transmit confirmation.

E_OK from CanIf

CanIf_Transmit () returns E_OX to the upper layer.

Second transmit request:

Activity

Description

Transmission request B

The upper layer initiates a transmit request via the service
CanIf_Transmit (). The parameter CanTxPduld identifies the
requested L-sDU. The service performs following steps:

¢ validation of the input parameter

e definition of the CAN Controller to be used (here:
Can_99 Ext2)

The second parameter xPduInfoPtr is a pointer on the structure
with transmit L.—sDU related data such as sduLength and
x*SduDataPtr.

Start transmission

CanIf_Transmit () starts a transmission and calls the CanDrv
Can_99_FExt2 service Can_Write_99 Ext2 () with
corresponding processing of the HTH.

Hardware request

Can_Write_99_Ext2 () writes all L—-PDU data in the CAN
Hardware of Controller B (if it is free) and sets the hardware
request for transmission.

E_OK from Can_Write
service

Can_Write_ 99 Ext2 () returns E_OKto CanIf Transmit ().

E_BUSY from Can_Write
service

If canDrv Can_99_Ext2 detects, there are no free hardware
objects available, it returns CAN_E_BUSY to CanTIf.

Copying into the buffer

The 1.-PDU of the rejected transmit request will be inserted in the
transmit buffers of can1f until the next transmit confirmation.

E_OK from CcanIf

CanIf_Transmit () returns E_OX to the upper layer.

AUTOSAR

9.3 Transmit confirmation (interrupt mode)

Canlf User

«module» «module» «Peripheral»
Canlf Can CanController

<User_TxConfirmation>(PduldType)

T T T
I I I
| | Transmit |
: —Interrupt()
|
L

Canlf_TxConfirmation(PduldType)

A

<
-

<User_TxConfirmation>()

S e N

___________________ = Canlf_TxConfirmation()

Transmit
" Tinterupty) ~ T T T T >

Figure 9.3: Transmit confirmation interrupt driven

Activity

Description

Transmit interrupt

The acknowledged CAN frame signals a successful transmission to
the receiving CAN Controller and triggers the transmit interrupt.

Confirmation to canIf

CcanDrv calls the service CanIf_TxConfirmation (). The
parameter CanTxPduld specifies the L-PDU previously sent by
Can_Write ().

CanDrv must store the all in HTHs pending L—-PDU Ids in an array
organized per HTH to avoid new search of the L.—-pDU ID for call of
CanIf_ TxConfirmation ().

Confirmation to upper layer

Calling of the corresponding upper layer confirmation service
<User_TxConfirmation> (). It signals a successful L-SDU
transmission to the upper layer.

AUTOSAR

9.4 Transmit confirmation (polling mode)

Q Canlf User

BSW Scheduler]
I I

«module» «module» «Peripheral»
Canlf Can CanController

1 1
loop Cyclic Task of Interface /

T
I
1
|
Can_MainFunction_Write() !

T
I
1
|
I
I
Check for pending TX |

confirmations() |
»l

< ___________

alt Pending Tx confirmation /

[Tx confirmation is pending]

<User_TxConfirmation>(PduldType)

T

I

1

|

I

L

I

|

I

L

: Check for pending TX
| confirmations()

|

|

I

I

|

I

Canlf_TxConfirmation(PduldType)|

<
<

<
<

<User_TxConfirmation>()

Canlf_TxConfirmation()

Figure 9.4: Transmit confirmation polling driven

Activity

Description

Cyclic Task CanDrv

The service Can_MainFunction_Write () is called by the BSW
Scheduler.

Check for pending transmit
confirmations

Can_MainFunction_Write () checks the underlying CAN
Controller(s) about pending transmit confirmations of
previously succeeded transmit events.

Transmit Confirmation

The acknowledged CAN frame signals a successful transmission
to the sending CAN Controller.

Confirmation to canIf

CanDrv calls the service CanIf_ TxConfirmation (). The
parameter CanTxPdulId specifies the L-PDU previously sent by
Can_Write ().

CanDrv must store the all in HTHs pending L-PDU Ids in an array
organized per HTH to avoid new search of the .—pDU ID for call of
CanIf_TxConfirmation ().

Confirmation to upper layer

Calling of the corresponding upper layer confirmation service
<User_TxConfirmation> (). It signals a successful L-sSDU
transmission to the upper layer.

AUTOSAR

9.5 Transmit confirmation (with buffering)

Canlf User

«module» «module» «module» «Peripheral»
Schm Canlf Can CanController
oo
I I I I
| | | |
: : _!_ Transmit Confirmation |
Interrupt
| | Canlf_TxConfirmation(PduldType) emupt)
! <
| check transmit
] buffers for other
| pending L-PDU()
I
I
L
alt Transmit Buffering /
[Buffer is fill d]' Can_Write(Can_ReturnType,
uffer isfilled] L "
| Can_HwHandleType, const Can_PduType*) Write L-PDU into CAN
| Hardware ()]
| Write L-PDU into CAN
|) Hardware()- — — — — — — — — —
! IS can_wite) | Hardware ()
|
: Remove L-PDU successfully
| requested for transmission
| L from transmit buffer()
|
.......... o e
[Buffer isempty]
L
|
<User_TxConfirmation>(PduldType)
t
<User_TxC6nfirmation>()
_______ :___________> Canlf_TxConfirmation() =
| L] Transmit Confirmation
: : _'Interrupt()'__________>
| |

Figure 9.5: Transmit confirmation with buffering

Activity

Description

Transmit interrupt

Acknowledged CAN frame signals successful transmission to
receiving CAN Controller and triggers transmit interrupt.

Confirmation to canIf

CanDrv calls service CanIf_TxConfirmation (). Parameter
CanTxPduld specifies the L-PDU previously transmitted by
Can_Write (). CanDrv must store the all in HTHs pending L-PDU
Ids in an array organized per HTH to avoid new search of the
L-PDU ID for call of CanIf TxConfirmation ().

Check of transmit buffers

The transmit buffers of canIf checked, whether a pending L-PDU
is stored or not.

CanDrv

Transmit request passed to

In case of pending L-PDUs in the transmit buffers the highest
priority order the latest L-PDU is requested for transmission by
Can_Write (). It signals a successful L-PDU transmission to the
upper layer. Thus Can_Write () can be called re-entrant.

Remove transmitted L-PDU
from transmit buffers

The L-PDU pending for transmission is removed from the
transmission buffers by canIf.

layer

Confirmation to the upper

Calling of the corresponding upper layer confirmation service
<User_TxConfirmation> (). It signals a successful L-SDU
transmission to the upper layer.

AUTOSAR

9.6 Transmit Cancelation

«module» «module» «module» «module» «module» «Peripheral»

SchMm Com PduR Canlf Can CanController
oo o0

T T T T

I I
PduR_ComTransmit(Std_R'eturnType, PduldType, :
const PdulnfoType*) |

I I
| Com_MainFunctionTx |

I
Canlf_Transmit(Std_ReturnType, PduldType,
const PdulnfoType*) |

T
I
I
I
|
I
I
Can_Write(Can_ReturnType, Can_HwHandleType, I
|
I
I
I
|
e

const Can_PduType*)
alt CAN controller .
Copy L-PDU into CAN Hardware()
[CAN controller hafdyvare object is free]
Can_Write() < TTTTTTTo
an_Write
le— _
[CAN controller hafdfvare object is busy]
Can_Write()
e - 2= 22

Insert L-PDU in
[]4—, transmit buffer()

< ___________

< ———— — = — —
Tcom: Activate T
timeout supervision()

< ___________

alt Transmission

T
I
[Successful] :
I

L
|
|
|
L
|
|
|
|
|
|
|
|
|
T
|

_ Transmit Interrupt()

Canlf_TxConfirmation(PduldType) [T®
<
. <
| PduR_CanIf'Il'xConfirmalion(PduIdType)
Com;TxConfirma!ion(PduIdType) ‘
L
Tcom: Stop timeout]
supervision()
—————————— >
__________ > N
1
I] I =
[L R S < NP mAB
1 T I 1

[Pending - Timeout Qccured] |

opt Pre-Compile Switch [Com_CancelTransmitSupport] /

1 1
[TRUE] ! !

opt Pre-Compile Switch [PduR_CancelTranwitSuppon]/
[TRUE] :

I

|
opt Pre-Compile Switch [CanIf_CancelTransmitSupport] /
[TRUE] 1|

Tcom: Timer
expired() |

PduR_ComCancelTransmit(PduldType,
Std_ReturnType) ! |

S |

Canlf_CancelTransmit(PduldType,
Std_ReturnType) |
»l
g
Dummy API:
Can_CancelTransmit()
e ——m - - i
—————————— |
I I
------ R e B i S e
[FALSE] | ! ! !
| | | |
1 1 1 1
.......... o
FALSE ! ! ! !
l ! | | | |
| | | |
............. ol ...
I
[FALSE] | |
I | If TURNED OFF, no code iscompiled. Same timeout handling asin OSEK COM
|

Figure 9.6: Transmit Cancelation

AUTOSAR

Activity

Description

Call of scheduled Function

Com_MainFunctionTx () will be called cyclic by SchM.

Transmission request to
PduR

Within cyclic called Com_MainFunctionTx () atransmission
request through PduR arises: PduR_ComTransmit ()

Transmission request to
CanIf

PduR passes the transmit request via CanIf Transmit () to
CanIf. The parameter CanTxPdulId identifies the requested
L-SDU. The service performs following steps:

e validation of the input parameter
e definition of the CAN Controller to be used

The second parameter xPduInfoPtr is a pointer on the structure
with transmit L.—SDU related data such as SduLength and
*SduDataPtr

Transmission request to
CanDrv

CanIf_Transmit () requests a transmission and calls the
CanDrv service Can_Write () with corresponding processing of
the HTH.

Transmission request to
the hardware

Can_Write () writes all L-PDU data in the CAN Hardware (if itis
free) and sets the hardware request for transmission.

E_OK from Can_Write
service

Can_Write () returns E_OK to CanIf_Transmit ().

E_BUSY from Can_Write
service

If canDrv detects, there are no free hardware objects available, it
returns CAN_E_BUSY to CanIf.

Copying into the buffer

The 1L-PDU of the rejected transmit request will be inserted in the
transmit buffer of canIf until the next transmit confirmation.

E_OK from CanIf

CanIf_ Transmit () returns E_OK to the PduR.

E_OK from PdurR

PduR_ComTransmit () returns E_OK to COM.

Starting Timeout
supervision

PduR starts a timeout supervision which checks if a confirmation
for the successful transmission will arrive.

E_OK from COM

The Com_MainFunctionTx () returns E_OK to SchM.

Transmit confirmation interrupt driven:

Activity

Description

Transmit interrupt

If it appears, the acknowledged CAN frame signals a successful
transmission to the receiving CAN Controller and triggers the
transmit interrupt.

Confirmation to canIf

CanDrv calls service CanIf TxConfirmation (). Parameter
CanTxPduld specifies the L-PDU previously sent by

Can_Write (). CanDrv must store the all in HTHs pending L-PDU
Ids in an array organized per HTH to avoid new search of the
L-PDU ID for call of CanIf_TxConfirmation ().

Confirmation to PdurR

CanIf calls the service PduR_CanIfTxConfirmation () with
the corresponding CanTxPduId.

Confirmation to COM

PduR informs COM about the successful L-PDU transmission via
the APl Com_TxConfirmation () with the corresponding
ComTxPduId.

If this happened, the timeout supervision, which has been started
after the successful request for transmission has been signaled to
COM, is stopped.

Cancellation confirmation notification:

AUTOSAR

Activity

Description

Transmit cancellation to
PduR

If Com_CancelTransmitSupport,
PduR_CancelTransmitSupport and
CanIf_CancelTransmitSupport are activated, the API
PduR_ComCancelTransmit () is called by COM with the
corresponding parameter ComTxPduld e.g. after a timer has been
expired.

Transmit cancellation to
CanIf

If PduR passes the transmit cancellation via the service
CanIf_CancelTransmit () to CanIf. The parameter
CanTxPduId identifies the requested L.—PDU.

E_NOT_OK from
CanIf CancelTransmit

The dummy function CanIf_CancelTransmit () returns
E_NOT_OK to PduR.

E_NOT_OK from
PduR_ComCancelTransmit

PduR returns E_NOT_0K to COM.

9.7 Trigger Transmit Request

«peripheral»
CanController

Copy L-Pdu into CAN hardware

<
<<
H Copy L-PDU into CAN hardware
~

L
|
|

L
|
|

CanlfUser «module» «module»
Canlf Can
oo
T T T
I Canlf_Transmit(Std_RetumType, | I
| * | |
PduldType, const PdulnfoType*) Can_Wite(Can_RetumType, X
Can_HwHandleType, const Can_PduType*) |
|
alt Controller HW Status / Canlf_TriggerTransmit(Std_ReturnType,
N PduldT , PduinfoT *
[Controller HW object free] | |< uctype ulnfoType*)
\
<CainlfUser>_CanlfTriggerTransmit(Std_RetumType,
*
PﬂjldType, PdulnfoType*) r Pass pointer to HW
Bl object
7] Canlf_TriggerTransmit()
____________________ >
Can_Write()
DR L il (R ——
[Controller HW object busy] Can_Write()
e - — - - — = = 27 Bt SR ———
L
I
- -4 Queue transmit request| :
[; . |
I
|
|
|
I
|
I
Canlf_Transmit() |
< m - m T m - — = — |
I
I
|

Figure 9.7: Trigger Transmit Request

AUTOSAR

Activity

Description

Transmission request

The upper layer initiates a transmit request via the service
CanIf_Transmit (). The parameter CanTxPduId identifies the
requested L-sDU. The service performs following steps:

¢ validation of the input parameter
e definition of the CAN Controller to be used

The second parameter xPduInfoPtr is a pointer to the structure
with the size (SduLength) of the L-sSDU to be transmitted. The
actual SDU data has not been passed by the upper layer. Hence,
the pointer xSdubataPtr points to NULL.

Start transmission

CanIf_Transmit () requests a transmission and calls the
CanDrv service Can_Write () with corresponding processing of
the HTH.

Trigger transmission

If the CAN hardware is free Can_urite () requests the SDU data
from CanIf by its service CanIf_TriggerTransmit passing the
L-sDUs corresponding ID and a pointer to the CAN hardware’s
buffer. can1f forwards the trigger transmit request to the
corresponding upper layer (CanIfUser). CanIf passes the buffer
pointer received by CanDrv. The CanIfUser finally copies the
SDU data to the buffer provided by can1f (the CAN hardware
buffer) and returns status and number of bytes effectively written.

E_OK from Can_Write ()
service

Can_Write () returns E_OK to CanIf_Transmit ().

E_BUSY from Can_Write ()
service

If canDrv detects, there are no free hardware objects available, it
returns CAN_E_BUSY to CanIf.

Queuing of transmission
request

The Transmit Request for the L.—PDU, which has been rejected
by canDrv, is queued by CanIf until the next transmit
confirmation.

E_OK from canIf

CanIf_Transmit () returns E_OX to the upper layer.

AUTOSAR

9.8 Receive indication (interrupt mode)

Canlf User «module» «module» «Peripheral»
Canlf Can CanController
oo
T T T T
I I I I
1 1 [Receive !
: : Il Interrupt()
| | Invalidation of hardware
I I object() L]
! ! Invalidation of hardware
: : <object)= — T~ ~"~— ==~
| |
: : alt Temporary buffer usage)
: : [Temp. buffer used = Data normalizafign necessary]
| | Copy received L-PDU into temporary
| | [~ buffer() =|'LL:J
| | T) .
| | | Copy received L-PDU into temporary
| | bufferg” ~ " T T T T T T T T
I [B el & R
: : [Temp. buffer not used = Data normajization not necessary]
| |
I I
I I
: : Canlf_RxIndication(const Can_HwType*,
| | const PdulnfoType*)
| <
! DLC check and software R .
| filteri . Software filtering (optional)
| iltering are only performed, if X
- 5 and L-PDU assignment
| enabled (configuration)
I
! [CAN L-PDU ID was found]:DLC
: Check (optional)
I
: <User_RxIndication>(PduldType, Exemplary call: parameters
| const PdulnfoType*) ____..- - t - = 1 differ for User=CanTp
< -
alt Temporary bufferusage/
[Temp. bu used = Data normalization necessary]
Copy
Datal() ’[]
Copy
ey TData) T T T T T T T T T T T T T
[Temp. bu not used = Data normalization not necessary] Copy
Data() [
Copy
r< _________________ 17770 Data)~ ~ ~ " T T T T T B
<User_RxIndication>()
\\ ————————————————— >
Canlf_RxIndication()
T I ettt =
| L Validation of hardware
| | |~ object() L]
I I T
: : _:_ Validation of hardware
| | object)” ~ T T T T T T T T
| | Receive
! ! T T temuptg T T >
| |
| |
| |
I I

R,

Figure 9.8: Receive indication interrupt driven

Activity Description

Receive Interrupt The CAN Controller indicates a successful reception and
triggers a receive interrupt.

Invalidation of CAN The CPU (canDrv) get exclusive access rights to the CAN mailbox

hardware object, provide or at least to the corresponding hardware object, where new data

CPU access to CAN were received.

mailbox

AUTOSAR

Buffering, nhormalizing

The 1L-PDU is normalized and is buffered in the temporary buffer
located in CanDrv. Each canDrv owns such a temporary buffer
for every Physical Channel only if normalizing of the data is
necessary.

Indication to CanIf

The reception is indicated to canIf by calling of
CanIf_RxIndication (). The HRH specifies the CAN RAM
Hardware Object and the corresponding CAN Controller,
which contains the received 1L.-pDU. The temporary buffer is
referenced to CanIf by PduInfoPtr—->SduDataPtr.

Software Filtering

The Software Filtering checks, whether the received 1.-pPDU will be
processed on a local ECU. If not, the received 1.-PDU is not
indicated to upper layers. Further processing is suppressed.

DLC check

If the .—PDU is found, the DLC of the received 1.-PDU is compared
with the expected, statically configured one for the received 1.-pPDU.

Receive Indication to the
upper layer

The corresponding receive indication service of the upper layer is
called. This signals a successful reception to the target upper
layer. The parameter RxPduId specifies the L-SDU, the second
parameter is the reference on the temporary buffer within the
L-SDU.

During is execution of this service the CAN hardware buffers must
be unlocked for CPU access/locked for CAN Controller access.

Validation of CAN hardware
object, allow access of CAN
Controller to CAN
mailbox

The CAN Controller get back exclusive access rights to the
CAN mailbox or at least to the corresponding hardware object,
where new data were already being copied into the upper layer
buffer.

AUTOSAR

9.9 Receive indication (polling mode)

Canlf User

«module»

«module»

«Peripheral»

BSW Scheduler
|

Canlf

Can

o0

CanController

loop Cyclic Task of Interface /
I

'
Can_MainFunction_Read()

Check for pending Rx

— -1

L
|
|
I

Figure 9.9: Receive indication polling driven

I
: indication()
|
| S —
I
I I N
alt Pending Rx indication : Invalidation of hardware :
[Rx indication pending] | object() |
I I
I I
| | e mm e
| | T
I | |
: alt Temporary buffer usage) :
| [Temp. buffer used = bata normalization necessary] Copy received L-PDU into |
| | temporary buffer() - |
| | L
I I
I I e —— — —————
| |
I I I
[it St § SRR L LR - -1
I [Temp. buffer not used = Data normalization not necessary] I
| |
| L L
I | I
I Canlf_RxIndication(const Can_HwType*, I
: c:)nst PdulnfoType*) :
| N
I I
: Software filtering (optional) :
| | DLC checkand software []4_—| and L-PDU assignment |
| | filtering are only performed, if |
I i i I
| enbaled (configuration) [CAN L-PDU ID was found]: |
| []<__| DLC Check (optional) |
| |
| <User_RxIndication>(PduldType, |
I const PdulnfoType*) |
1 <l — |
i B S Exemplary call: |
parameters differ for |
User=CanTp |
I
I
alt Temporary buffer usage/ |
|
[Temp. buffer used = Data normalization r vl |
Copy data() :
I
|
e m e - — e |
R [I L . B P | B T T ! -
[Temp. buffer not used = Data normalizatign|not necessary]]
Copy data() !
L
< ______________ iy g U8 S g S
I
I
<User_RxIndication>()
——————————————— > o |
. | __ _cont Rundicationg __ .
| Validation of hardware |
: T object() |
| |
| | < ——————————————
I | L
------- [e R B e e EEEE
[No Rx indlication pending] | |
| | |
1 1 1
I | I
| Can_MainFunction_Read() |
<---=------ TomT oo — T — = (i I
I I
| |
I I
I I

AUTOSAR

Activity

Description

Cyclic Task CanDrv

The service Can_MainFunction_Read () is called by the BSW
Scheduler.

Check for new received
L-PDU

Can_MainFunction_Read () checks the underlying CAN
Controller(s) about new received 1.-PDUs.

Invalidation of CAN
hardware object, provide
CPU access to CAN
mailbox

In case of a new receive event the CPU (CanDrv) get exclusive
access rights to the CAN mailbox or at least to the corresponding
hardware object, where new data were received.

Buffering, normalizing

In case of a new receive event the L-PDU is normalized and is
buffered in the temporary buffer located in CanDrv. Each CanDrv
owns such a temporary buffer for every Physical Channel only
if normalizing of the data is necessary.

Indication to CanIf

The reception is indicated to can1f by calling of
CanIf_RxIndication (). The HRH specifies the CAN RAM
Hardware Object and the corresponding CAN Controller,
which contains the received 1.-pDU. The temporary buffer is
referenced to CanIf by PduInfoPtr->SduDataPtr.

Software Filtering

The Software Filtering checks, whether the received 1.-PDU will be
processed on a local ECU. If not, the received 1.-PDU is not
indicated to upper layers. Further processing is suppressed.

DLC check

If the L—PDU is found, the DLC of the received L.—PDU is compared
with the expected, statically configured one for the received 1.-pPDU.

Receive Indication to the
upper layer

If configured, the corresponding receive indication service of the
upper layer is called. This signals a successful reception to the
target upper layer. The parameter RxPduId specifies the L-sSDU,
the second parameter is the reference on the temporary buffer
within the L-SDU.

During is execution of this service the CAN hardware buffers must
be unlocked for CPU access/locked for CAN Controller access.

Validation of CAN hardware
object, allow access of CAN
Controller to CAN
mailbox

The CAN Controller get back exclusive access rights to the
CAN mailbox or at least to the corresponding hardware object,
where new data were already being copied into the upper layer
buffer.

AUTOSAR

9.10 Read received data

Canlf User «module»
SchMm

«module» «module» «Peripheral»
Canlf Can CanController
oo
T T
I I
[Receive |
il Interrupt()

Invalidation of hardware
object() L]

| -
0 Invalidation of hardware

Tobject)]
anlf_RxIndication(const Can_HwType*,
onst PdulnfoType*)

Ci
C
<
%

Here no
temporary buffer
in CAN driveris
used.

[L-PDU reception in BasicCAN]:

Software filtering and L-PDU
)

assignment()

:I [CAN L-PDU ID was found]:DLC
Check()
01

Copy data to CANIF receive L-PDU

buffer() [H}

Exemp'ta'y c;;_ ; Notification is only I Copy data to CANIF receive L-PDU
[PEIEIIS ST el performed, if enabled M<—-——-——-——-—-—-- bufferg ~ F-—————————————
User=CanTp (configured)

1 M | Set Indication

| o I Flag0

: <User7RxIndication>(‘PduIdType,

| const PdulnfoType*) |~ | N

il T
|
<User_RxIndication>()
—————————— i Bl _—
Canlf_RxIndication()
I s Er

| | L Validation of hardware

: : : —object() |

: : : J'_ Validation of hardware

| | | ~object)’ — T T T T T T T

| | | Receive

: ! ! I~ T Tinterrupt()) T~ T T T T - >

I

1

CanIfﬁRead;TxNotifStatus(CanIfiNotifStatusType, PduldType)

|
For transmit CAN L-PDUs, the service

Canlf_ReadNotifStatus retums the
Confirmation flag status

PdulnfoType*) |

<<_ _________ s ——

Canlf_head NotifStatus() j]

1
Canlf_ReadRxPduData(Std_ReturnType, PduldType,

Read Indication

Lo o
Reset Indication

:I flag()

| e ReadRdiona0 j] bt

Read data from
:' CANIF Rx

Figure 9.10: Read received data

Activity

Description

Receive Interrupt

The CAN Controller indicates a successful reception and
triggers a receive interrupt.

Invalidation of CAN
hardware object, provide
CPU access to CAN
mailbox

The CPU (canDrv) get exclusive access rights to the CAN mailbox
or at least to the corresponding hardware object, where new data
were received.

AUTOSAR

Buffering, nhormalizing

The 1L-PDU is normalized and is buffered in the temporary buffer
located in CanDrv. Each canDrv owns such a temporary buffer
for every Physical Channel only if normalizing of the data is
necessary.

Indication to CanIf

The reception is indicated to canIf by calling of
CanIf_RxIndication (). The HRH specifies the CAN RAM
Hardware Object and the corresponding CAN Controller,
which contains the received 1L.-pDU. The temporary buffer is
referenced to CanIf by PduInfoPtr—->SduDataPtr.

Software Filtering

The Software Filtering checks, whether the received 1.-pPDU will be
processed on a local ECU. If not, the received 1.-PDU is not
indicated to upper layers. Further processing is suppressed.

DLC check If the L-PDU is found, the DLC of the received L-PDU is compared
with the expected, statically configured one for the received 1.-pPDU.
Copy data The data is copied out of the CAN hardware into the receive CAN

L-PDU buffers in canIf. During access the CAN hardware buffers
must be unlocked for CPU access/locked for CAN Controller
access.

Indication Flag

Set indication status flag for the received 1.-PDU in CanTf.

Receive Indication to the
upper layer

The corresponding receive indication service of the upper layer is
called. This signals a successful reception to the target upper
layer. The parameter RxPduld specifies the L-spu, the second
parameter is the reference on the temporary buffer within the
L-SDU.

Validation of CAN hardware
object, allow access of CAN
Controller to CAN
mailbox

The CAN Controller get back exclusive access rights to the
CAN mailbox or at least to the corresponding hardware object,
where new data were already being copied into the upper layer
buffer.

Read indication status

Times later the upper layer can read the indication status by call of
CanIf_ReadRxNotifStatus (). This service can also be used
for transmit L—-PDUs. Then it return the confirmation status.

Reset indication status

Before canIf_ReadRxNotifStatus () returns, the indication
status is reset.

Read received data

Times later the upper layer can read the received data by call of
CanIf_ReadRxPduData ().

Read Canlf Rx buffer

CanIf_ ReadRxPduData () reads the data from canIf Rx buffer.

E_OK from canIf

If canIf_ReadRxPduData () was successful, the request returns
E_OK with valid PduInfoPtr.

AUTOSAR

9.11

Start CAN network

Canlf User «module» «module»

Canlf Can

«Peripheral»
CanController

loop Requesting CAN controller mode consecutively. If mode changed > CanILCOntrollerModeIndication()/

! Can_MainFunction_Mode()

Canlf_SetControllerMode(Std_RetumType, uint8, Canlf_ControllerModeType)

Lt

Can_SetControllerMode(Can_RetumType, uint8,
Can_StateTransitionType) 1

=)

request CAN controller mode transition to START()
v

Disable Wakeup
interrupt, if supported()

<___

----------- i

alt CAN Controller Mode/

Can_SetControllerMode returns with CAN_OK()

[STOPPED]

<User_ControllerModelndication>(uint8,
Canlf_ControllerModeType)

[STOPPED wah direct indication]

'
<User7c0ntr_o|IerModeIndication>(uint8,
Canlf_ControllerModeTypey)

<User_ControllerModelIndication>(uint8,
Canlf ControllerMor'GT\mm

[SLEEP]

ICanIf_SeIComroIIerMode returns with E_OK(() < - -

[l
Canlf_ControllerModelndication(uint8,
Canlf_ControllerModeType)

Change to
CANIF_CS_STARTED()

<User_ControllerModelndication>()

-

Canlf_ControllerModelndication()

Canlf_ ControllerModelndlcauon (Controller, ControllerMode)
| H
| Change to

CANIF_CS_STARTED()

<User_ControllerModelndication>()

Canlf_ControllerModelndication()

I I

| Canlf_ControllerModelndication(uint8, |
| Canlf_ControllerModeType)
|

Change to
CANIF_CS_STARTED()

ser_ControllerModelndication>()

1
Canlf_SetControllerMode returs with E_NOT_OK()

e T T

CCAN controller mode changes to

START

Can_MainFunction_Mode() detects the
successful mode transition to STARTED
which resultsin a call of
Canlf_ControllerModelndication()

Canlf_ControllerModelndication is called
during Can_SetControllerMode(). This
happensif CAN controller transitions fast
enough.

CAN Driver module not even requests CAN
controller to transition to START mode

Figure 9.11: Start CAN network

This sequence diagram resembles "Stop CAN network" or "Sleep CAN network".

Activity

Description

Loop requesting CAN
controller mode
consecutively.

via a function call of

ControllerMode).

The Can_MainFunction_Mode ()
checks the HW if a controller mode has changed. If so, it is notified

is triggered consecutively. It

CanIf_ControllerModeIndication (Controller,

AUTOSAR

The upper layer requests
"STARTED" mode of the
desired CAN controller

The upper layer calls CanIf_SetControllerMode
(ControllerId, CANIF_CS_STARTED) torequest STARTED
mode for the requested CAN controller.

CanDrv disables wake up
interrupts, if supported

This is only done in case of requesting "STARTED" mode. If
"SLEEP" mode of CAN controller is requested, here the wake up
interrupts are enabled. In case of "STOPPED", nothing happens.

CanDrv requests the CAN
controller to transition into
the requested mode
(CAN_T_START).

During function call Can_SetControllerMode (Controller,
Can_StateTransitionType), the CanDrv enters the request
into the hardware of the CAN controller. This may mean that the
controller mode transitions directly, but it could mean that it takes a
few milliseconds until the controller changes its state. It depends
on the controllers.

The following reaction depends

on the controller and its current operation mode

CAN controller was in
STOPPED mode

The former request Can_SetControllerMode () returns and
informs Canlf about a successful request which in turn returns the
upper layer request CanIf_SetControllerMode (). The
Can_MainFunction_Mode () detects the successful mode
transition of the CAN controller and inform the Canlf
asynchronously via

CanIf_ControllerModeIndication (Controller,
CANIF_CS_STARTED) . Then the Canlf updates its cCMSM mode.

CAN controller was in
STOPPED mode and the
CAN controller transitions
very fast so that mode
indication is called during
transition request

During the former request Can_SetControllerMode () the
function CanIf_ControllerModeIndication (Controller,
CANIF_CS_STARTED) is called to inform the Canlf directly about
the successful mode transition. Then the Canlf updates its ccMsM
mode. When

CanIf_ControllerModeIndication (Controller,
CANIF_CS_STARTED) returned, the request
Can_SetControllerMode () returns and informs Canlf about a
successful request which in turn returns the upper layer request
CanIf_SetControllerMode ().

CAN controller was in
STARTED mode

During the former request Can_SetControllerMode () the
function CanIf_ControllerModeIndication (Controller,
CANIF_CS_STARTED) is called to inform the Canlf directly about
the successful mode transition (because the mode was already
started). Then the Canlf updates its ccMsM mode (not really
necessary). When

CanIf_ControllerModeIndication (Controller,
CANIF_CS_STARTED) returned, the request
Can_SetControllerMode () returns and informs Canlf about a
successful request which in turn returns the upper layer request
CanIf_SetControllerMode ().

CAN controller was in
SLEEP mode

This transition is not allowed -> CAN_NOT_OK and E_NOT_OK.

AUTOSAR

9.12 BusOff notification

«interface» «module» «module» «Peripheral»
Canlf_User_Cbk Canlf Can CanController
oo

I I I I
I I I I
I I I I
! ! ! BusOff Detection() !
1 1) 1
I I

I I

| | Set CAN Controller to STOPPED mode, if

: : necessary()

| |]
: : T Set CAN Controller to STOPPED mode, if

| | | necessary()

I I """~~~ 7=7777
! ! Canlf_ControllerBusOff(uint8)

| | @

| <

I

I

|

: Change to

| F CANIF_CS_STOPPED()

| L Transmit queues being

| reset to avoid

| Reset __________ld..._..__] transmission of old L-

| F transmit PDUs after CAN

| <User_ControllerBusOff>(uint8) [queue() controller restart

L@

<
H <User_ControllerBusOff>() =]
Canlf_ControllerBusOff()

N I i) >

I L] .

I i | _____ Busoffbetectiony ___ _ =

I I

| |

Figure 9.12: BusOff notification

Activity

Description

BusOff detection interrupt

The CAN controller signals a BusOff event.

Stop CAN controller

CAN controller is set to STOPPED mode by the CAN Driver, if
necessary.

BusOff indication to CAN
Interface

BusOff is notified to the Canlf by calling of
CanIf_ControllerBusOff ()

BusOff indication to upper
layer (CanSM)

BusOff is notified to the upper layer by calling of
<User_ControllerBusOff> ()

9.13 BusOff recovery

AUTOSAR

«interface»
Canlf_User_Cbk

«module»
Canlf

«module»
Can

oo

«Peripheral»
CanController

loop Requesting CAN controller mode consecutively. If mode changed -> Canlf_ControllerModelndication(). /

T Can_MainFunction_Mode()

opt CAN controller)

[BUSSOFF]

1
[STOPPED]

BusOff Detection()

<
Rl

| Canlf_ControllerBusOff(uint8)
-

<User_ControllerBusOff>(uint8)

Cnange to
CANIF_CS_STOPPED()

Reset transmit
queue()

<User_ControllerBusOff>()

Canlf_ControllerBusOff()

Canlf_SetControllerM ode(Std_RetunLT

.y
|
|

I
ype, uint8, Canlf_ControllerModeType)

L

Canlf_SetControllerMode()

can StateTransitionType)

L
|
|
|
|

Can_SetControllerMode(Can_RetumType, uint8,

Set CAN controller to STOPPED mode, if neces:ar);(l

g

Set CAN controller to STOPPED mode, if necessary|

Transmit qeues being reset to avoid

transmission of old L-PDUs after CAN

controller restart

BusOff Detection()
______________________ >
L

device.

Processing of CAN controller reset
depends on the used CAN controller

Can_SetContollerMode()

Reset CAN controller, if necessary() |

< ______________________

request CAN controller mode transition to START()

e - —— e — - —

I

<-—-————-—-—-"—-"—-—————4 T |

| |

[l [l [l [l

I I I I

| Canlf_ControllerModelndication(uints, ! |

: Canlf_ControllerModeType) L :

| Change to |

) -) CANIF_CS_STARTED() |
<UserfComroIIerMongndlcat|0n>(u|nt8, - T I
Canlf_ControllerModeTvoeY — |
<User_ControllerModelndication>(), |
Canlf_ControllerModelndication() I

—————————————— > 1

| s |

|

Figure 9.13: BusOff recovery

AUTOSAR

Activity

Description

BusOff detection interrupt

The CAN controller signals a BusOff event.

Stop CAN controller

CAN controller is set to STOPPED mode by the CanDrv, if
necessary

BusOff indication to canIf

BusOff is notified to the canIf by calling of
CanIf_ControllerBusOff (). The transmit buffers inside
canIf will be reset.

BusOff indication to upper
layer

BusOff is notified to the upper layer by calling of
<User_ControllerBusOff> ()

Upper Layer (CanSM)
initiates BusOff Recovery

After a time specified by the BusOff Recovery algorithm the
Recovery process itself in initiated by

CanIf_ SetControllerMode (ControllerId,
CANTIF_CS_STARTED).

Restart of CAN controller

The driver restarts the CAN controller by call of
Can_SetControllerMode (Controller, CAN_T_STARTED).

CAN controller started

CanDrv informs CanIf about the successful start by calling
CanIf_ControllerModeIndication (). CanIf changes
mode to CANIF_CS_STARTED and informs in turn upper layers
about the mode change.

AUTOSAR

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into con-
tainers. In order to support the specification section 10.1 describes fundamentals. It
also specifies a template (table) you shall use for the parameter specification. We
intend to leave section 10.1 in the specification to guarantee comprehension.

section 10.2 specifies the structure (containers) and the parameters of the Canlf.

10.1 How to read this chapter

For details refer to the [9, chapter 10.1 "Introduction to configuration specification” in
SWS_BSWGeneral]

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed mean-
ings of the parameters describe chapter 7 Functional specification and chapter 8 API
specification.

[SWS_CANIF_00104] | The listed configuration items can be derived from a network
description database, which is based on the EcuConfigurationTemplate. The configu-
ration tool shall extract all information to configure the can1f. |(SRS_CAN_01015)

[SWS_CANIF_00066] | The Canlf has access to the canDrv configuration data. All
public CanDrv configuration data are described in [1, Specification of CAN Driver]. |()

[SWS_CANIF_00132] | These dependencies between CanDrv and Canlf configura-
tion must be provided at configuration time by the configuration tools. |()

AUTOSAR

Canlf :EcucModuleDef CanlfPrivateCfg :

+container EcucParamConfContainerDef
upperMultiplicity = 1
lowerMultiplicity = 0
CanlfHthCfg :
EcucParamConfContainerDef
CanifPublicCfg :
+container EcucParamConfContainerDef

CanlflnitHohCfg : +subContainer lowerMultiplicity = 0
EcucParamConfContainerDef [«@—————— upperMultiplicity = *

upperMultiplicity = 1
lemeiiiipiey = i lowerMultiplicity = 0
upperMultiplicity = *

+subContainer +subContainer

CanlfInitCfg :EcucParamConfContainerDef

CanlfHrhCfg :
lowerMultiplicity = 1 TRl & EcucParamConfContainerDef
. upperMultiplicity = 1 A
+container +subContainer EctcRaameoniContanerbet lowerMultiplicity = 0

upperMultiplicity = *

lowerMultiplicity = 0
upperMultiplicity = *

+subContainer +stC0ntaine$
CanlfTxPduCfg :
EcucParamConfContainerDef CanlfHrhRangeCfg :

EcucParamConfContainerDef

CanlfDispatchCfg :

+container A lowerMultiplicity = 0
EcucParamConfContainerDef upperMultiplicity = * lowerMultiplicity = 0
upperMultiplicity = *
CanlfCtrlCfg :EcucParamConfContainerDef
CanlfCtriDrvCfg : .
+container EcucParamConfContainerDef +subContainer upperMultiplicity = *
P lowerMultiplicity = 1
lowerMultiplicity = 1
upperMultiplicity = *
CanlfTrevDrvCfg : CanlfTrevCig :
. EcucParamConfContainerDef ’ EcucParamConfContainerDef
+container —_— +subContainer
lowerMultiplicity = 0 lowerMultiplicity = 1
upperMultiplicity = * upperMultiplicity = *

Figure 10.1: Overview about CAN Interface configuration containers

Variants

[SWS_CANIF_00460] | Variant 1: Only pre compile time parameters. |(SRS_BSW_00344)
[SWS_CANIF_00461] | Variant 2: Mix of pre compile- and link time parameters. | (SRS_BSW_0034+

[SWS_CANIF_00462] | Variant 3:Mix of pre compile-, link time and post build time
parameters. |(SRS_BSW _00344, SRS _BSW_00404, SRS_BSW _00342)

Canlf

[ECUC_Canlf _00244] belongs to the table below. The generated Artifact is faulty.

AUTOSAR

Module Name

Canlf

Module Description

This container includes all necessary configuration sub-containers
according the CAN Interface configuration structure.

Post-Build Variant true

Support

Included Containers

Container Name Multiplicity | Scope / Dependency

CanlfCtrIDrvCfg 1.* Configuration parameters for all the underlying CAN
Driver modules are aggregated under this container.
For each CAN Driver module a seperate instance of
this container has to be provided.

CanlfDispatchCfg 1 Callback functions provided by upper layer modules of
the Canlf. The callback functions defined in this
container are common to all configured CAN Driver /
CAN Transceiver Driver modules.

CanlflnitCfg 1 This container contains the init parameters of the CAN
Interface.

CanlfPrivateCfg 1 This container contains the private configuration
(parameters) of the CAN Interface.

CanlfPublicCfg 1 This container contains the public configuration
(parameters) of the CAN Interface.

CanlfTrcvDrvCfg 0.x This container contains the configuration (parameters)

of all addressed CAN transceivers by each underlying
CAN Transceiver Driver module. For each CAN
transceiver Driver a seperate instance of this container
shall be provided.

AUTOSAR

CanlfPrivateCfg

+container

lowerMultiplicity = 1
upperMultiplicity = *

CanlfInitCfg :EcucParamConfContainerDef|

lowerMultiplicity = 1
upperMultiplicity = 1

+subContainer

+subContainer

+subContainer

+subContainer

Figure 10.2: AR_EcucDef_Canlf

Canlf :EcucModuleDef CanlfPublicCfq :
+container EcucParamConfContainerDef
upperMultiplicity = 1
lowerMultiplicity = 0 upperMultiplicity = 1
lowerMultiplicity = 1
+container CanlfPrivateCfg :
EcucParamConfContainerDef
gt
. CanlfDispatchCig :
+eontainer| cycParamConfContainerDef
CanlfTrevDrvCfg :
. EcucParamConfContainerDef
+container
gt
lowerMultiplicity = 0
upperMultiplicity = *
CanlfCtrlDrvCfg : Canlfctricfg :
EcucParamConfContainerDef i
+container e +subContainer EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 1

CanlflnitHohCfg :

EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

CanlfTxPduCfg :

EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

CanlfRxPduCfg :

EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

CanlfBufferCfg :

EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

SWS ltem

[ECUC_Canlf_00245]

Container Name

CanlfPrivateCfg

Description

This container contains the private configuration (parameters) of the

CAN Interface.

Configuration Parameters

AUTOSAR

Name CanlfFixedBuffer [ECUC_Canlf_00827]

Description This parameter defines if the buffer element length shall be fixed to 8
Bytes for buffers to which only PDUs < 8 Bytes are assigned.
TRUE: Minimum buffer element length is fixed to 8 Bytes. FALSE:
Buffer element length depends on the size of the referencing PDUs.

Multiplicity 0..1

Type EcucBooleanParamDef

Default Value false

Post-Build Variant false

Multiplicity

Post-Build Variant false

Value

Multiplicity Pre-compile time X | All Variants

Configuration Class
Link time —
Post-build time -

Value Configuration Pre-compile time X | All Variants

Class
Link time -
Post-build time -

Scope / Dependency scope: local

Name CanlfPrivateDlcCheck [ECUC_Canlf_00617]
Description Selects whether the DLC check is supported.
True: Enabled False: Disabled
Multiplicity 1
Type EcucBooleanParamDef
Default Value true
Post-Build Variant false
Value
Value Configuration Pre-compile time X | All Variants
Class
Link time -
Post-build time -
Scope / Dependency scope: local

Name CanlfPrivateSoftwareFilterType [ECUC_Canlf_00619]

Description Selects the desired software filter mechanism for reception only. Each
implemented software filtering method is identified by this enumeration
number.

Range: Types implemented software filtering methods

Multiplicity 1

Type EcucEnumerationParamDef

Range BINARY Selects Binary Filter method.

INDEX Selects Index Filter method.
LINEAR Selects Linear Filter method.
TABLE Selects Table Filter method.

AUTOSAR

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time

Link time
Post-build time

All Variants

Scope / Dependency

scope: local

dependency: BasicCAN reception must be enabled by referenced
parameter CAN_HANDLE_TYPE of the CAN Driver module via
CANIF_HRH_HANDLETYPE_REF for at least one HRH.

Default Value

Name CanlfSupportTTCAN [ECUC_Canlf_00675]

Description Defines whether TTCAN is supported.
TRUE: TTCAN is supported. FALSE: TTCAN is not supported, only
normal CAN communication is possible.

Multiplicity 1

Type EcucBooleanParamDef

false

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time

Link time
Post-build time

All Variants

Scope / Dependency

scope: ECU

Included Containers

Container Name

Multiplicity | Scope / Dependency

CanlfTTGeneral

0..1 CanlfTTGeneral is specified in the SWS TTCAN

Interface and defines if and in which way TTCAN is
supported.

This container is only included and valid if TTCAN is
supported by the controller, enabled (see
CanlfSupportTTCAN, ECUC_Canlf_00675), and used.

AUTOSAR

Canlf :EcucModuleDef

upperMultiplicity = 1
lowerMultiplicity = 0

+container

. A CanlfPrivateDIcCheck :
GanifRvate ek +parameter| EcucBooleanParamDef
EcucParamConfContainerDef _—

defaultValue = True

+parameter CanlfPrivateSoftwareFilterType :
EcucEnumerationParamDef

+literal +literal
LINEAR : BINARY :
EcucEnumerationLiteralDef EcucEnumerationLiteralDef
+literal +literal
TABLE : INDEX :

EcucEnumerationLiteralDef | [EcucEnumerationLiteralDef

CanlfFixedBuffer :
+parameter EcucBooleanParamDef

defaultvalue = false
lowerMultiplicity = 0
upperMultiplicity = 1

Figure 10.3: AR_EcucDef_CanlfPrivateCfg

CanlifPublicCfg
SWS Item [ECUC_Canlf_00246]
Container Name CanlfPublicCfg
Description This container contains the public configuration (parameters) of the
CAN Interface.

Configuration Parameters

Name CanlfMetaDataSupport [ECUC_Canlf_00824]
Description Enable support for dynamic ID handling using L-SDU MetaData.
Multiplicity 0..1
Type EcucBooleanParamDef
Default Value false
Post-Build Variant false
Multiplicity
Post-Build Variant false
Value
Multiplicity Pre-compile time X | All Variants
Configuration Class
Link time -
Post-build time -

AUTOSAR

Value Configuration Pre-compile time X | All Variants
Class
Link time -
Post-build time -
Scope / Dependency scope: ECU
Name CanlfPublicCancelTransmitSupport [ECUC_Canlf_00522]
Description Configuration parameter to enable/disable dummy API for upper layer
modules which allows to request the cancellation of an [-PDU.
Multiplicity 1
Type EcucBooleanParamDef
Default Value
Post-Build Variant false
Value
Value Configuration Pre-compile time X | All Variants
Class
Link time —
Post-build time -

Scope / Dependency scope: ECU

Name CanlfPublicCddHeaderFile [ECUC_Canlf_00671]
Description Defines header files for callback functions which shall be included in
case of CDDs. Range of characters is 1.. 32.
Multiplicity 0..*
Type EcucStringParamDef
Default Value
Length 1-32
Regular Expression
Post-Build Variant false
Multiplicity
Post-Build Variant false
Value
Multiplicity Pre-compile time X | All Variants
Configuration Class
Link time -
Post-build time -
Value Configuration Pre-compile time X | All Variants
Class
Link time —

Post-build time -

Scope / Dependency scope: ECU

AUTOSAR

Name CanlfPublicDevErrorDetect [ECUC_Canlf_00614]
Description Switches the Default Error Tracer (Det) detection and notification ON or
OFF.
e true: enabled (ON).
o false: disabled (OFF).
Multiplicity 1
Type EcucBooleanParamDef
Default Value true
Post-Build Variant false
Value
Value Configuration Pre-compile time X | All Variants
Class
Link time -
Post-build time -
Scope / Dependency scope: local

Name CanlfPublicHandleTypeEnum [ECUC_Canlf_00742]

Description This parameter is used to configure the Can_HwHandleType. The
Can_HwHandleType represents the hardware object handles of a CAN
hardware unit. For CAN hardware units with more than 255 HW objects
the extended range shall be used (UINT16).

Multiplicity 1

Type EcucEnumerationParamDef

Range UINT16
UINT8

Post-Build Variant false

Value

Value Configuration Pre-compile time X | All Variants

Class
Link time -

Post-build time -

Scope / Dependency scope: ECU

dependency: Can_HwHandleType

Name CanlfPubliclcomSupport [ECUC_Canlf_00839]
Description Selects support of Pretended Network features in Canlf. True: Enabled
False: Disabled
Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Post-Build Variant false
Value
Value Configuration Pre-compile time X | All Variants
Class
Link time -
Post-build time -
Scope / Dependency scope: ECU

AUTOSAR

Name CanlfPublicMultipleDrvSupport [ECUC_Canlf_00612]
Description Selects support for multiple CAN Drivers.
True: Enabled False: Disabled
Multiplicity 1
Type EcucBooleanParamDef
Default Value true
Post-Build Variant false
Value
Value Configuration Pre-compile time X | All Variants
Class
Link time —
Post-build time -
Scope / Dependency scope: ECU

Name CanlfPublicPnSupport [ECUC_Canlf_00772]
Description Selects support of Partial Network features in Canlf.
True: Enabled
False: Disabled
Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Post-Build Variant false
Value
Value Configuration Pre-compile time X | All Variants
Class
Link time —
Post-build time -
Scope / Dependency scope: ECU

Name CanlfPublicReadRxPduDataApi [ECUC_Canlf_00607]
Description Enables / Disables the API Canlf_ReadRxPduData() for reading
received L-SDU data.
True: Enabled False: Disabled
Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Post-Build Variant false
Value
Value Configuration Pre-compile time X | All Variants
Class
Link time —
Post-build time -
Scope / Dependency scope: ECU

AUTOSAR

Name CanlfPublicReadRxPduNotifyStatusApi [ECUC_Canlf_00608]
Description Enables and disables the API for reading the notification status of
receive L-PDUs.
True: Enabled False: Disabled
Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Post-Build Variant false
Value
Value Configuration Pre-compile time X | All Variants
Class
Link time —
Post-build time -
Scope / Dependency scope: ECU

Name CanlfPublicRead TxPduNotifyStatusApi [ECUC_Canlf_00609]
Description Enables and disables the API for reading the notification status of
transmit L-PDUs.
True: Enabled False: Disabled
Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Post-Build Variant false
Value
Value Configuration Pre-compile time X | All Variants
Class
Link time —
Post-build time -
Scope / Dependency scope: ECU

Name CanlfPublicSetDynamicTxIdApi [ECUC_Canlf_00610]
Description Enables and disables the API for reconfiguration of the CAN Identifier
for each Transmit L-PDU.
True: Enabled False: Disabled
Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Post-Build Variant false
Value
Value Configuration Pre-compile time X | All Variants
Class
Link time -
Post-build time -
Scope / Dependency scope: ECU

AUTOSAR

Name CanlfPublicTxBuffering [ECUC_Canlf_00618]
Description Enables and disables the buffering of transmit L-PDUs (rejected by the
CanDrv) within the CAN Interface module.
True: Enabled False: Disabled
Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Post-Build Variant false
Value
Value Configuration Pre-compile time X | All Variants
Class
Link time —
Post-build time -
Scope / Dependency scope: ECU

Default Value

Name CanlfPublicTxConfirmPollingSupport [ECUC_Canlf_00733]

Description Configuration parameter to enable/disable the API to poll for Tx
Confirmation state.

Multiplicity 1

Type EcucBooleanParamDef

Post-Build Variant false
Value
Value Configuration Pre-compile time X | All Variants
Class
Link time —
Post-build time -
Scope / Dependency scope: local

dependency: CAN State Manager module

Name CanlfPublicVersioninfoApi [ECUC_Canlf_00613]
Description Enables and disables the API for reading the version information about
the CAN Interface.
True: Enabled False: Disabled
Multiplicity 1
Type EcucBooleanParamDef
Default Value true
Post-Build Variant false
Value
Value Configuration Pre-compile time X | All Variants
Class
Link time —
Post-build time -
Scope / Dependency scope: local

AUTOSAR

Name CanlfPublicWakeupCheckValidByNM [ECUC_Canlf_00741]

Description If enabled, only NM messages shall validate a detected wake-up event
in Canlf. If disabled, all received messages corresponding to a
configured Rx PDU shall validate such a wake-up event. This
parameter depends on CanlfPublicWakeupCheckValidSupport and
shall only be configurable, if it is enabled.
True: Enabled False: Disabled

Multiplicity 0..1

Type EcucBooleanParamDef

Default Value false

Post-Build Variant false

Multiplicity

Post-Build Variant false

Value

Multiplicity Pre-compile time X | All Variants

Configuration Class
Link time —
Post-build time -

Value Configuration Pre-compile time X | All Variants

Class
Link time -
Post-build time -

Scope / Dependency scope: ECU

dependency: CanlfPublicWakeupCheckValidSupport

Name CanlfPublicWakeupCheckValidSupport [ECUC_Canlf_00611]
Description Selects support for wake up validation
True: Enabled False: Disabled
Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Post-Build Variant false
Value
Value Configuration Pre-compile time X | All Variants
Class
Link time —
Post-build time -
Scope / Dependency scope: ECU

Multiplicity

Name CanlfSetBaudrateApi [ECUC_Canlf_00838]

Description Configuration parameter to enable/disable the Canlf_SetBaudrate API
to change the baud rate of a CAN Controller. If this parameter is set to
true the Canlf_SetBaudrate API shall be supported. Otherwise the API
is not supported.

Multiplicity 0..1

Type EcucBooleanParamDef

Default Value false

Post-Build Variant false

AUTOSAR

Post-Build Variant false
Value
Multiplicity Pre-compile time X | All Variants
Configuration Class
Link time —
Post-build time -
Value Configuration Pre-compile time X | All Variants
Class
Link time —
Post-build time -
Scope / Dependency scope: ECU

Name CanlfTriggerTransmitSupport [ECUC_Canlf_00844]
Description Enables the Canlf_TriggerTransmit API at Pre-Compile-Time.
Therefore, this parameter defines if there shall be support for trigger
transmit transmissions. TRUE: Enabled FALSE: Disabled
Multiplicity 1
Type EcucBooleanParamDef
Default Value true
Post-Build Variant false
Multiplicity
Multiplicity Pre-compile time X | All Variants
Configuration Class
Link time -
Post-build time -
Scope / Dependency scope: ECU

Name CanlfTxOfflineActiveSupport [ECUC_Canlf_00837]
Description Determines wether TxOffLineActive feature (see SWS_CANIF_00072)
is supported by Canlf. True: Enabled False: Disabled
Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Post-Build Variant false
Value
Value Configuration Pre-compile time X | All Variants
Class
Link time -
Post-build time -
Scope / Dependency scope: ECU

Default Value

Name CanlfWakeupSupport [ECUC_Canlf_00843]

Description Enables the Canlf_CheckWakeup API at Pre-Compile-Time.
Therefore, this parameter defines if there shall be support for wake-up.
TRUE: Enabled FALSE: Disabled

Multiplicity 1

Type EcucBooleanParamDef

true

AUTOSAR

Post-Build Variant
Value

false

Value Configuration
Class

Pre-compile time

Link time
Post-build time

All Variants

Scope / Dependency

scope: ECU

| No Included Containers

AUTOSAR

CanlfPublicCfg :
EcucParamConfContainerDef

CanlfPublicReadRxPduDataApi :

upperMultiplicity = 1
lowerMultiplicity = 1

>

CanlfinitCfg

+parameter
EcucBooleanParamDef
—
defaultValue = False
CanlfPublicReadRxPduNotifyStatusApi :
*parameter EcucBooleanParamDef
>
CanlfPublicReadTxPduNotifyStatusApi : defaultValue = False
‘+parameter EcucBooleanParamDef
gt
defaultValue = False CanlfPublicSetDynamicTxIdApi :
+parameter EcucBooleanParamDef
gt
CanlfPublicWakeupCheckvalidSupport : defaultvalue = False
+parameter
EcucBooleanParamDef
gt
defaultValue = False
+parameter| CanlfPublicMultipleDrvSupport :
= = EcucBooleanParamDef
+parameter CanlfPublicVersioninfoApi : defaultvalue = True
EcucBooleanParamDef
gt
CanlfPublicDevErrorDetect :
CEENREID S Wis EcucBooleanParamDef
+parameter
gt defaultValue = True
+parameter|CanlfPublicTxConfirmPollingSupport :
EcucBooleanParamDef
+parameter CanlfPublicTxBuffering :
® EcucBooleanParamDef
CanlfPublicCancelTransmitSupport : defaultValue = False
+parameter EcucBooleanParamDef
+parameter CanlIfTxOfflineActiveSupport :
S EcucBooleanParamDef
CanlfPublicCddHeaderFile : defaultvalue = False
EcucStringParam Def
+parameter o
lowerMultiplicity = 0
upperMultiplicity = * i
minLength = 1 CanlfSetBaudrateApi :
maxLength = 32 EcucBooleanParamDef
+parameter
S defaultValue = False
) ; . lowerMultiplicity = 0
CanlfPublicWakeupCheckvalidByNM : upperMultiplicity = 1
EcucBooleanParamDef
+parameter —_——————
lowerMultiplicity = 0
upperMultiplicity = 1
defaultValue = False CanlfPubliclcomSupport :
EcucBooleanParamDef
gt
+parameter defaultValue = false
+parameter CanlfPublicPnSupport :
P EcucBooleanParamDef
CanlfWakeupSupport :
EcucBooleanParamDef
defaultValue = false +parameter| —
gt defaultValue = true
CanlfMetaDataSupport :
EcucBooleanParamDef
+parameter _—
_ CanlfTriggerTransmitSupport :
defauItVa!ug » false EcucBooleanParamDef
lowerMultiplicity = 0 —_—
UEPER Ty = 2 *tparameter defaultvalue = true
gt
CanlfPublicHandleTypeEnum :
EcucEnumerationParamDef +literal UINTS :
EcucEnumerationLiteral Def
+parameter -
+literal

UINT16 :
EcucEnumerationLiteralDef

Figure 10.4: AR_EcucDef_CanlfPublicCfg

| SWS ltem

| [ECUC_Canlf_00247]

AUTOSAR

Container Name

CanlfInitCfg

Description

This container contains the init parameters of the CAN Interface.

Configuration Parameters

Name CanlfInitCfgSet [ECUC_Canlf_00623]

Description Selects the CAN Interface specific configuration setup. This type of the
external data structure shall contain the post build initialization data for
the CAN Interface for all underlying CAN Dirvers.
constant to Canlf_ConfigType

Multiplicity 1

Type EcucStringParamDef

Default Value

Length 1-32

Regular Expression

Post-Build Variant true

Value

Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE

Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD

Scope / Dependency scope: local

Name CanlfMaxBufferSize [ECUC_Canlf_00828]

Description Maximum total size of all Tx buffers. This parameter is needed only in
case of post-build loadable implementation using static memory
allocation.

Multiplicity 0..1

Type EcuclntegerParamDef

Range 0.

18446744073709551615

Default Value

Post-Build Variant false

Multiplicity

Post-Build Variant false

Value

Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE

Configuration Class
Link time X | VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Value Configuration
Class

Pre-compile time X | VARIANT-PRE-COMPILE

Link time X | VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Scope / Dependency

scope: local

AUTOSAR

Name CanlfMaxRxPduCfg [ECUC_Canlf_00830]
Description Maximum number of Pdus. This parameter is needed only in case of
post-build loadable implementation using static memory allocation.
Multiplicity 0..1
Type EcuclntegerParamDef
Range 0..
18446744073709551615
Default Value
Post-Build Variant false
Multiplicity
Post-Build Variant false
Value
Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE
Configuration Class
Link time X | VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Value Configuration
Class

Pre-compile time X | VARIANT-PRE-COMPILE

Link time X | VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time -

Scope / Dependency

scope: local

Name CanlfMaxTxPduCfg [ECUC_Canlf_00829]
Description Maximum number of Pdus. This parameter is needed only in case of
post-build loadable implementation using static memory allocation.
Multiplicity 0..1
Type EcuclntegerParamDef
Range 0.
18446744073709551615
Default Value
Post-Build Variant false
Multiplicity
Post-Build Variant false
Value
Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE
Configuration Class
Link time X | VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Value Configuration
Class

Pre-compile time X | VARIANT-PRE-COMPILE

Link time X | VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Scope / Dependency

scope: local

AUTOSAR

Included Containers

Container Name

Multiplicity

Scope / Dependency

CanlfBufferCfg

0.”

This container contains the Txbuffer configuration.
Multiple buffers with different sizes could be configured.
If CanlfBufferSize (ECUC_Canlf_00834) equals 0, the
Canlf Tx L-PDU only refers via this CanlfBufferCfg the
corresponding CanlfHthCfg.

CanlflnitHohCfg

This container contains the references to the
configuration setup of each underlying CAN Driver.

CanlfRxPduCfg

This container contains the configuration (parameters)
of each receive CAN L-PDU.

The SHORT-NAME of "CanlfRxPduConfig" container
itself represents the symolic name of Receive L-PDU.

CanlfTxPduCfg

This container contains the configuration (parameters)
of a transmit CAN L-PDU. It has to be configured as
often as a transmit CAN L-PDU is needed.

The SHORT-NAME of "CanlfTxPduConfig" container
represents the symolic name of Transmit L-PDU.

AUTOSAR

Canlf :EcucModuleDef

upperMultiplicity = 1
lowerMultiplicity = 0

+containeI

CanlfInitCfg :EcucParamConfContainerDef|

lowerMultiplicity = 1
upperMultiplicity = 1

CanlfTxPduCfg

+parameter

+subContainer

+subContainer

CanlfInitCfgSet :EcucStringParamDef|

minLength = 1
maxLength = 32

CanlfRxPducCfg :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

CanlfinitHohCfg :
EcucParamConfContainerDef

+subContainer

+parameter

+parameter

+parameter

lowerMultiplicity = 0
upperMultiplicity = *

CanlfTxPducCfg :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

CanlfMaxBufferSize :
EcucintegerParamDef

lowerMultiplicity = 0
upperMultiplicity = 1

CanlfMaxTxPduCfg :
EcucintegerParamDef

lowerMultiplicity = 0
upperMultiplicity = 1

CanlfMaxRxPduCfg :
EcucintegerParamDef

lowerMultiplicity = 0
upperMultiplicity = 1

Figure 10.5: AR_EcucDef_CanlfInitCfg

is needed.

SWS ltem [ECUC_Canlf_00248]
Container Name CanlfTxPduCfg
Description This container contains the configuration (parameters) of a transmit

CAN L-PDU. It has to be configured as often as a transmit CAN L-PDU

The SHORT-NAME of "CanlfTxPduConfig" container represents the
symolic name of Transmit L-PDU.

Configuration Class

Post-Build Variant true
Multiplicity
Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE

Link time
Post-build time

X | VARIANT-LINK-TIME

X | VARIANT-POST-BUILD

AUTOSAR

Configuration Parameters

Name CanlfTxPduBufferRef [ECUC_Canlf_00831]
Description Configurable reference to a Canlf buffer configuration.
Multiplicity 1
Type Reference to CanlfBufferCfg
true
Post-Build Variant
Value
Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: ECU

Name CanlfTxPduCanld [ECUC_Canlf_00592]
Description CAN Identifier of transmit CAN L-PDUs used by the CAN Driver for
CAN L-PDU transmission. Range: 11 Bit For Standard CAN Identifier
... 29 Bit For Extended CAN identifier
The CAN Identifier may be omitted for dynamic transmit L-PDUs.
Multiplicity 0..1
Type EcuclntegerParamDef
Range 0 .. 536870911 |
Default Value
Post-Build Variant true
Multiplicity
Post-Build Variant true
Value
Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE
Configuration Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: ECU

Name CanlfTxPduCanldMask [ECUC_Canlf_00823]

Description Identifier mask which denotes relevant bits in the CAN Identifier. This
parameter may be used to keep parts of the CAN Identifier of dynamic
transmit L-PDUs static. Range: 11 bits for Standard CAN Identifier, 29
bits for Extended CAN Identifier.

Multiplicity 0..1

Type EcuclntegerParamDef

Range 0 .. 536870911 |

Default Value

536870911

AUTOSAR

Post-Build Variant true
Multiplicity
Post-Build Variant true
Value
Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE
Configuration Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: ECU

Name CanlfTxPduCanldType [ECUC_Canlf_00590]
Description Type of CAN Identifier of the transmit CAN L-PDU used by the CAN
Driver module for CAN L-PDU transmission.
Multiplicity 1
Type EcucEnumerationParamDef
Range EXTENDED_CAN CAN frame with extended identifier (29
bits)
EXTENDED_FD_CAN CAN FD frame with extended identifier
(29 bits)
STANDARD_CAN CAN frame with standard identifier (11
bits)
STANDARD_FD_CAN CAN FD frame with standard identifier
(11 bits)
Post-Build Variant true
Value
Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: ECU

Name CanlfTxPduld [ECUC_Canlf_00591]
Description ECU wide unique, symbolic handle for transmit CAN L-SDU.
Range: 0..max. number of CantTxPdulds
Multiplicity 1
Type EcuclntegerParamDef (Symbolic Name generated for this parameter)
Range 0 .. 4294967295 |
Default Value
Post-Build Variant false
Value
Value Configuration Pre-compile time X | All Variants
Class
Link time -
Post-build time -
Scope / Dependency scope: ECU

AUTOSAR

Name CanlfTxPduPnFilterPdu [ECUC_Canlf_00773]
Description If CanlfPublicPnFilterSupport is enabled, by this parameter PDUs
could be configured which will pass the CanlfPnFilter.
If there is no CanIfTxPduPnFilterPdu configured per controller,
the corresponding controller applies no CanIfPnFilter.
Multiplicity 0..1
Type EcucBooleanParamDef
Default Value false
Post-Build Variant true
Multiplicity
Post-Build Variant true
Value
Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE
Configuration Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: local

dependency: This parameter shall only be configurable if
CanlfPublicPnSupport equals True.

Name CanlfTxPduReadNotifyStatus [ECUC_Canlf_00589]
Description Enables and disables transmit confirmation for each transmit CAN
L-SDU for reading its notification status.
True: Enabled False: Disabled
Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Post-Build Variant true
Value
Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: local

dependency: CANIF_READTXPDU_NOTIFY_STATUS_API must be
enabled.

Name CanlfTxPduRef [ECUC_Canlf_00603]

Description Reference to the "global" Pdu structure to allow harmonization of
handle IDs in the COM-Stack.

Multiplicity 1

Type Reference to Pdu

Post-Build Variant
Value

true

AUTOSAR

Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: ECU

Name CanlfTxPduTriggerTransmit [ECUC_Canlf_00840]

Description Determines if or if not Canlf shall use the trigger transmit API for this
PDU.

Multiplicity 0..1

Type EcucBooleanParamDef

Default Value false

Post-Build Variant true

Value

Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE

Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD

Scope / Dependency scope: ECU

dependency: If CanlfTxPduTriggerTransmit is TRUE then
CanlfTxPduUserTxConfirmationUL has to be either PDUR or CDD and
CanlfTxPduUserTriggerTransmitName has to be specified accordingly.

Name CanlfTxPduType [ECUC_Canlf_00593]

Description Defines the type of each transmit CAN L-PDU.

Multiplicity 1

Type EcucEnumerationParamDef

Range DYNAMIC CAN ID is defined at runtime.
STATIC CAN ID is defined at compile-time.

Post-Build Variant true

Value

Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE

Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD

Scope / Dependency scope: ECU

AUTOSAR

Name CanlfTxPduUserTriggerTransmitName [ECUC_Canlf_00842]

Description This parameter defines the name of the <User_TriggerTransmit>. This
parameter depends on the parameter
CanlfTxPduUserTxConfirmationUL. If
CanlfTxPduUserTxConfirmationUL equals CAN_TP, CAN_NM, PDUR,
XCP, CAN_TSYN, J1939NM or J1939TP, the name of the
<User_TriggerTransmit> is fixed. If CanlfTxPduUserTxConfirmationUL
equals CDD, the name of the <User_TxConfirmation> is selectable.
Please be aware that this parameter depends on the same parameter
as CanlfTxPduUserTxConfirmationName. It shall be clear which upper
layer is responsible for that PDU.

Multiplicity 0..1

Type EcucFunctionNameDef

Default Value

Length 1-32

Regular Expression

Post-Build Variant false

Multiplicity

Post-Build Variant false

Value

Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE

Configuration Class
Link time X | VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Value Configuration
Class

Pre-compile time X | VARIANT-PRE-COMPILE

Link time X | VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Scope / Dependency

scope: ECU
dependency: CanlfTxPduUserTriggerTransmitName requires
CanlfTxPduUserTxConfirmationUL to be either PDUR or CDD.

Multiplicity

Name CanlfTxPduUserTxConfirmationName [ECUC_Canlf_00528]

Description This parameter defines the name of the <User_TxConfirmation>. This
parameter depends on the parameter
CANIF_TXPDU_USERTXCONFIRMATION_UL. If
CANIF_TXPDU_USERTXCONFIRMATION_UL equals CAN_TP,
CAN_NM, PDUR, XCP, CAN_TSYN, J1939NM or J1939TP, the name
of the <User_TxConfirmation> is fixed. If
CANIF_TXPDU_USERTXCONFIRMATION_UL equals CDD, the name
of the <User_TxConfirmation> is selectable.

Multiplicity 0..1

Type EcucFunctionNameDef

Default Value

Length 1-32

Regular Expression

Post-Build Variant false

AUTOSAR

Post-Build Variant
Value

false

Multiplicity
Configuration Class

Pre-compile time
Link time

Post-build time

X | VARIANT-PRE-COMPILE

X | VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Value Configuration
Class

Pre-compile time
Link time

Post-build time

X | VARIANT-PRE-COMPILE

X | VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Scope / Dependency

scope: ECU

Value

Name CanlfTxPduUserTxConfirmationUL [ECUC_Canlf_00527]
Description This parameter defines the upper layer (UL) module to which the
confirmation of the successfully transmitted CANTXPDUID has to be
routed via the <User_TxConfirmation>. This <User_TxConfirmation>
has to be invoked when the confirmation of the configured
CANTXPDUID will be received by a Tx confirmation event from the
CAN Driver module. If no upper layer (UL) module is configured, no
<User_TxConfirmation> has to be called in case of a Tx confirmation
event of the CANTXPDUID from the CAN Driver module.
Multiplicity 0..1
Type EcucEnumerationParamDef
Range CAN_NM CAN NM
CAN_TP CANTP
CAN_TSYN Global Time Synchronization over CAN
CDD Complex Driver
J1939NM J1939Nm
J1939TP J1939Tp
PDUR PDU Router
XCP Extended Calibration Protocol
Post-Build Variant false
Multiplicity
Post-Build Variant false

Multiplicity
Configuration Class

Pre-compile time
Link time

Post-build time

X | VARIANT-PRE-COMPILE

X | VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Value Configuration
Class

Pre-compile time
Link time

Post-build time

X | VARIANT-PRE-COMPILE

X | VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Scope / Dependency

scope: ECU

AUTOSAR

Included Containers

Container Name

Multiplicity

Scope / Dependency

CanlfTTTxFrame
Triggering

0..1

CanlfTTTxFrameTriggering is specified in the SWS
TTCAN Interface and defines Frame trigger for TTCAN
transmission.

This container is only included and valid if TTCAN is
supported by the controller, enabled (see
CanlfSupportTTCAN, ECUC_Canlf_00675), and a
joblist is used.

AUTOSAR

Pdu :

EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

(from EcucPdu)

CanlfTxPducCfg : . " CanlfTxPduReadNotifyStatus :
EcucParamConfContainerDef parameter EcucBooleanParamDef
lowerMultiplicity = 0 defaultvalue = False CanlfTxPduRef : +destination
upperMultiplicity = * EcucReferenceDef
+reference
gt
+literal i]
CanlfTxPduUserTxConfirmationUL : CAN_TP :EcucEnumerationLiteralDef
EcucEnumerationParamDef +Iitera|l
‘ | PDUR :EcucEnumerationLiteral Def |
lowerMultiplicity = 0 .
upperMultiplicity = 1 Hiteral N
CAN_NM :EcucEnumerationLiteralDef
+literal
‘—' J1939TP :EcucEnumerationLiteralDef
+parameter +literal
‘—' XCP :EcucEnumerationLiteralDef
+literal
‘—' CDD :EcucEnumerationLiteralDef
+literal
‘—' J1939NM :EcucEnumerationLiteralDef
+literal
® CAN_TSYN :EcucEnumerationLiteralDef|
|
+literal
CanlfTxPduCanldType : STANDARD_CAN :EcucEnumerationLiteral Def
EcucEnumerationParamDef +literal
+parameter ‘—' EXTENDED_CAN :EcucEnumerationLiteral Def |
+literal
‘—l STANDARD_FD_CAN :EcucEnumerationLiteral Defl
L l
+literal
< EXTENDED_FD_CAN :EcucEnumerationLiteraIDefl
L 1]
CanlfTxPduld :
EcucintegerParam Def
+parameter
symbolicNameValue = true
min =0 CanlfTxPduUserTxConfirmationName :
max = 4294967295 EcucFunctionNameDef
+parameter =S
lowerMultiplicity = 0
CanlfTxPduCanldMask : upperMultiplicity = 1
EcucintegerParamDef minLength =1
maxLength = 32
+parameter .
min =0
max = 536870911
lowerMultiplicity = 0
upperMultiplicity = 1 .
defaultvalue = 536870911 CanlfTxPduPnFilterPdu
*P EcucBooleanParamDef
o
CanlfTxPduCanid : defauItVa!ug ffalse
—_—— lowerMultiplicity = 0
EcucIntegerParamDef Multiplicity = 1
+parameter upperMultipficity =
min =0
max = 536870911
lowerMultiplicity = 0
upperMultiplicity = 1 CanlfBufferCfg :
EcucParamConfContainerDef
CanlfTxPduBufferRef : +destination .
+reference EcucReferenceDef lowerMultiplicity = 0
upperMultiplicity = *
+literal
CanlfTxPduType : ‘—' DYNAMIC :EcucEnumerationLiteralDef |
+parameter o
EcucEnumerationParamDef
+literal
STATIC :EcucEnumerationLiteral Def
can|ixRdUNHggeRiransm] CanlfTxPduUserTriggerTransmitName :
EcucBooleanParamDef 5
+parameter -_— EcucFunctionNameDef
defauItVa!ug ?false lowerMultiplicity = 0
lowerMultiplicity = 0 S
Multiolicity = 1 upperMultiplicity = 1
upperMultiplicity = » minLength = 1
maxLength = 32
et

Figure 10.6: AR_EcucDef_CanlfTxPduCfg

AUTOSAR

CanlfRxPduCfg
SWS Item [ECUC_Canlf_00249]
Container Name CanlfRxPduCfg
Description This container contains the configuration (parameters) of each receive

CAN L-PDU.

The SHORT-NAME of "CanlfRxPduConfig" container itself represents
the symolic name of Receive L-PDU.

Post-Build Variant true
Multiplicity
Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE
Configuration Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD

Configuration Parameters

Default Value

Name CanlfRxPduCanld [ECUC_Canlf_00598]

Description CAN Identifier of Receive CAN L-PDUs used by the CAN Interface.
Exa: Software Filtering. This parameter is used if exactly one Can
Identifier is assigned to the Pdu. If a range is assigned then the
CanlfRxPduCanldRange parameter shall be used.
Range: 11 Bit For Standard CAN Identifier ... 29 Bit For Extended CAN
identifier

Multiplicity 0.1

Type EcuclntegerParamDef

Range 0 .. 536870911

Post-Build Variant true
Multiplicity
Post-Build Variant true
Value
Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE
Configuration Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: ECU

AUTOSAR

Name CanlfRxPduCanldMask [ECUC_Canlf_00822]

Description Identifier mask which denotes relevant bits in the CAN Identifier. This
parameter defines a CAN Identifier range in an alternative way to
CanlfRxPduCanldRange. It identifies the bits of the configured CAN
Identifier that must match the received CAN Identifier. Range: 11 bits
for Standard CAN Identifier, 29 bits for Extended CAN Identifier.

Multiplicity 0..1

Type EcuclntegerParamDef

Range 0 .. 536870911 |

Default Value 536870911

Post-Build Variant true

Multiplicity

Post-Build Variant true

Value

Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE

Configuration Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD

Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE

Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD

Scope / Dependency scope: ECU

Name CanlfRxPduCanldType [ECUC_Canlf_00596]

Description CAN Identifier of receive CAN L-PDUs used by the CAN Driver for CAN
L-PDU reception.

Multiplicity 1

Type EcucEnumerationParamDef

Range EXTENDED_CAN CAN 2.0 or CAN FD frame with

extended identifier (29 bits)

EXTENDED_FD_CAN CAN FD frame with extended identifier

(29 bits)

EXTENDED_NO _FD CA CAN 2.0 frame with extended identifier
N (29 bits)

STANDARD_CAN CAN 2.0 or CAN FD frame with
standard identifier (11 bits)

STANDARD_FD CAN CAN FD frame with standard identifier

(11 bits)

STANDARD_NO_FD_CA | CAN 2.0 frame with standard identifier

N (11 bits)
Post-Build Variant true
Value
Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD

Scope / Dependency

scope: local

AUTOSAR

Name CanlfRxPduDlc [ECUC_Canlf_00599]

Description Data length of the received CAN L-PDUs used by the CAN Interface.
This information is used for DLC checking. Additionally it might specify
the valid bits in case of the discrete DLC for CAN FD L-PDUs > 8 bytes.
The data area size of a CAN L-PDU can have a range from 0 to 64
bytes.

Multiplicity 1

Type EcuclntegerParamDef

Range 0. 64 \

Default Value

Post-Build Variant true

Value

Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE

Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD

Scope / Dependency scope: ECU

dependency: If CanlfRxPduDlc > 8 then CanlfRxPduCanldType must
not be STANDARD_NO_FD_CAN or EXTENDED_NO_FD_CAN

Name CanlfRxPduHrhldRef [ECUC_Canlf_00602]
Description The HRH to which Rx L-PDU belongs to, is referred through this
parameter.
Multiplicity 1
Type Reference to CanlfHrhCfg
true
Post-Build Variant
Value
Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: local

dependency: This information has to be derived from the CAN Driver
configuration.

Default Value

Name CanlfRxPduld [ECUC_Canlf_00597]
Description ECU wide unique, symbolic handle for receive CAN L-SDU. It shall
fulfill ANSI/AUTOSAR definitions for constant defines.
Range: 0..max. number of defined CanRxPdulds
Multiplicity 1
Type EcuclntegerParamDef (Symbolic Name generated for this parameter)
Range 0 .. 4294967295 |

Post-Build Variant
Value

false

AUTOSAR

Value Configuration Pre-compile time X | All Variants
Class

Link time —

Post-build time -
Scope / Dependency scope: ECU

Name CanlfRxPduReadData [ECUC_Canlf_00600]
Description Enables and disables the Rx buffering for reading of received L-SDU
data.
True: Enabled False: Disabled
Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Post-Build Variant true
Value
Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: ECU

dependency: CANIF_CANPDUID_READDATA_API must be enabled.

Name CanlfRxPduReadNotifyStatus [ECUC_Canlf_00595]
Description Enables and disables receive indication for each receive CAN L-SDU
for reading its notification status.
True: Enabled False: Disabled
Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Post-Build Variant true
Value
Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: local

dependency: CANIF_READRXPDU_NOTIFY_STATUS_API must be
enabled.

Name CanlfRxPduRef [ECUC_Canlf_00601]

Description Reference to the "global" Pdu structure to allow harmonization of
handle IDs in the COM-Stack.

Multiplicity 1

Type Reference to Pdu

Post-Build Variant
Value

true

AUTOSAR

Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: ECU

Name CanlfRxPduUserRxIndicationName [ECUC_Canlf_00530]
Description This parameter defines the name of the <User_RxIndication>. This
parameter depends on the parameter

CANIF_RXPDU_USERRXINDICATION_UL. If
CANIF_RXPDU_USERRXINDICATION_UL equals CAN_TP,
CAN_NM, PDUR, XCP, CAN_TSYN, J1939NM or J1939TP, the name
of the <User_RxIndication> is fixed. If
CANIF_RXPDU_USERRXINDICATION_UL equals CDD, the name of
the <User_RxIndication> is selectable.

Multiplicity 0..1

Type EcucFunctionNameDef

Default Value

Length 1-32

Regular Expression

Post-Build Variant false

Multiplicity

Post-Build Variant false

Value

Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE

Configuration Class
Link time X | VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Value Configuration
Class

Pre-compile time X | VARIANT-PRE-COMPILE

Link time X | VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Scope / Dependency

scope: ECU

Name CanlfRxPduUserRxIndicationUL [ECUC_Canlf_00529]

Description This parameter defines the upper layer (UL) module to which the
indication of the successfully received CANRXPDUID has to be routed
via <User_RxIndication>. This <User_RxIndication> has to be invoked
when the indication of the configured CANRXPDUID will be received
by an Rx indication event from the CAN Driver module. If no upper
layer (UL) module is configured, no <User_RxIndication> has to be
called in case of an Rx indication event of the CANRXPDUID from the
CAN Driver module.

Multiplicity 0..1

Type EcucEnumerationParamDef

Range CAN_NM CAN NM
CAN_TP CANTP
CAN_TSYN Global Time Synchronization over CAN

AUTOSAR

CDD Complex Driver

J1939NM J1939Nm

J1939TP J1939Tp

PDUR PDU Router

XCP Extended Calibration Protocol
Post-Build Variant false
Multiplicity
Post-Build Variant false

Value

Multiplicity
Configuration Class

Pre-compile time
Link time

Post-build time

X | VARIANT-PRE-COMPILE

X | VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Value Configuration
Class

Pre-compile time
Link time

Post-build time

X | VARIANT-PRE-COMPILE

X | VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Scope / Dependency

scope: ECU

Included Containers

Container Name

Multiplicity | Scope / Dependency

CanlfRxPduCanldRange

0..1 Optional container that allows to map a range of CAN

Ids to one Pduld.

CanlfTTRxFrame
Triggering

0..1 CanlfTTRxFrameTriggering is specified in the SWS

TTCAN Interface and defines Frame trigger for TTCAN
reception.

This container is only included and valid if TTCAN is
supported by the controller, enabled (see
CanlfSupportTTCAN, ECUC_Canlf_00675), and a
joblist is used for reception.

AUTOSAR

CanlfInitCfg :EcucParamConfContainerDef

lowerMultiplicity = 1

upperMultiplicity = 1 of Receive L-PDU.

The SHORT-NAME of "CanlfRxPduConfig"
container itself represents the symolic name

+SubContaine$

] CanlfHrhCfg : +reference
CanlfRxPducCfg : +reference CanlfRxPduHrhldRef : +destination| EcucParamConfContainerDef |q@p—
EcucParamConfContainerDef EcucReferenceDef CanlfHrhldSymRef :
lowerMultiplicity = 0 EcucSymbolicNameReferenceDef
lowerMultiplicity = 0 upperMultiplicity = *
upperMultiplicity = * . ter| CanifRxPduReadNotifyStatus :
parameter EcucBooleanParamDef
defaultValue = False
+parameter
S CanlfRxPduUserRxIndicationName :
EcucFunctionNameDef
Pdu :
EcucParamConfContainerDef lowerMultiplicity = 0
upperMultiplicity = 1
+reference CanlfRxPduRef : +destination lowerMultiplicity = 0 minLength =1
EcucReferenceDef upperMultiplicity = * maxLength = 32
E (from EcucPdu)
+literal

CanlfRxPduUserRxIndicationUL :

1:

EcucEnumerationParamDef

CAN_TP :EcucEnumerationLiteralDef |

+literal

upperMultiplicity = 1
lowerMultiplicity = 0

CDD :EcucEnumerationLiteralDef |

+literal

1

CAN_NM :EcucEnumerationLiteralDef

J1939TP :EcucEnumerationLiteralDef

PDUR :EcucEnumerationLiteral Def

XCP :EcucEnumerationLiteral Def |

J1939NM :EcucEnumerationLiteralDef

CAN_TSYN :EcucEnumerationLiteralDef

EXTENDED_CAN :EcucEnumerationLiteralDef

STANDARD_CAN :EcucEnumerationLiteral Def

STANDARD_FD_CAN :EcucEnumerationLiteral Def

EXTENDED_NO_FD_CAN :EcucEnumerationLiteralDef

EXTENDED_FD_CAN :EcucEnumerationLiteral Def |
STANDARD_NO_FD_CAN :EcucEnumerationLiteralDef |

CanlfRxPduDlc :
EcucintegerParamDef

min =0
max = 64

CanlfRxPduCanld :
EcucIntegerParamDef

+literal
+parameter +literal
+literal
+literal
+literal
+literal
CanlfRxPduCanldType : ‘_|
EcucEnumerationParamDef .
— = +literal
+literal
+parameter ®
<& +literal
+literal
+literal
CanlfRxPduld :
EcucintegerParamDef
+parameter K
symbolicNameValue = true
upperMultiplicity = 1
lowerMultiplicity = 1
min =0
max = 4294967295
+parameter
gt
" " CanlfRxPduReadData :
parameter EcucBooleanParamDef
defaultvValue = False
+parameter
gt

min =0
max = 536870911
lowerMultiplicity = 0

upperMultiplicity = 1

| CanlfRxPduCanldRange :

|CanIfoPduCanIdRangeUpperCanId 3

Figure 10.7: AR_EcucDef_CanlfRxPduCfg

AUTOSAR

CanlfRxPduCanldRange

SWS ltem [ECUC_Canlf_00743]

Container Name CanlfRxPduCanldRange

Description Optional container that allows to map a range of CAN Ids to one Pduld.
Configuration Parameters

Name CanlfRxPduCanldRangelLowerCanld [ECUC_Canlf_00745]
Description Lower CAN Identifier of a receive CAN L-PDU for identifier range
definition, in which all CAN Ids are mapped to one Pduld.
Multiplicity 1
Type EcuclntegerParamDef
Range 0 .. 536870911 |
Default Value
Post-Build Variant true
Value
Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: local

Name CanlfRxPduCanldRangeUpperCanlid [ECUC_Canlf_00744]
Description Upper CAN Identifier of a receive CAN L-PDU for identifier range
definition, in which all CAN Ids are mapped to one Pduld.
Multiplicity 1
Type EcuclntegerParamDef
Range 0 .. 536870911 |
Default Value
Post-Build Variant true
Value
Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: local

| No Included Containers

CanlfDispatchCfg
SWS Item [ECUC_Canlf_00250]
Container Name CanlfDispatchCfg
Description Callback functions provided by upper layer modules of the Canlf. The

callback functions defined in this container are common to all
configured CAN Driver / CAN Transceiver Driver modules.

Configuration Parameters

AUTOSAR

Name

CanlfDispatchUserCheckTrcvWakeFlagindicationName
[ECUC_Canlf_00791]

Description

This parameter defines the name of
<User_ClearTrcvWufFlagindication>. If
CANIF_DISPATCH_USERCHECKTRCVWAKEFLAGINDICATION_UL
equals CAN_SM the name of <User_CheckTrcvWakeFlaglndication> is
fixed. If it equals CDD, the name is selectable. If
CANIF_PUBLIC_PN_SUPPORT equals False, this parameter shall not
be configurable.

Multiplicity

0..1

Type
Default Value

EcucFunctionNameDef

Regular Expression

Post-Build Variant false
Multiplicity
Post-Build Variant false
Value
Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE
Configuration Class
Link time X | VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Value Configuration
Class

Pre-compile time X | VARIANT-PRE-COMPILE

Link time X | VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Scope / Dependency

scope: ECU

dependency:
CANIF_DISPATCH_USERCHECKTRCVWAKEFLAGINDICATION_UL,
CANIF_PUBLIC_PN_SUPPORT

Name CanlfDispatchUserCheckTrcvWakeFlaglndicationUL
[ECUC_Canlf_00792]

Description This parameter defines the upper layer module to which the
CheckTrcvWakeFlaglindication from the Driver modules have to be
routed. If CANIF_PUBLIC_PN_SUPPORT equals False, this
parameter shall not be configurable.

Multiplicity 0..1

Type EcucEnumerationParamDef

Range CAN_SM CAN State Manager
CDD Complex Driver

Post-Build Variant false

Multiplicity

Post-Build Variant false

Value

Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE

Configuration Class
Link time X | VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

AUTOSAR

Value Configuration
Class

Pre-compile time X | VARIANT-PRE-COMPILE

Link time X | VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Scope / Dependency

scope: ECU
dependency: CANIF_PUBLIC_PN_SUPPORT

Name CanlfDispatchUserClearTrcvWufFlagIndicationName
[ECUC_Canlf_00789]

Description This parameter defines the name of
<User_ClearTrcvWufFlagindication>. If
CANIF_DISPATCH_USERCLEARTRCVWUFFLAGINDICATION_UL
equals CAN_SM the name of <User_ClearTrcvWufFlagindication> is
fixed. If it equals CDD, the name is selectable. If
CANIF_PUBLIC_PN_SUPPORT equals False, this parameter shall not
be configurable.

Multiplicity 0..1

Type EcucFunctionNameDef

Default Value

Regular Expression

Post-Build Variant false

Multiplicity

Post-Build Variant false

Value

Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE

Configuration Class
Link time X | VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Value Configuration
Class

Pre-compile time X | VARIANT-PRE-COMPILE

Link time X | VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Scope / Dependency

scope: ECU

dependency:
CANIF_DISPATCH_USERCLEARTRCVWUFFLAGINDICATION_UL,
CANIF_PUBLIC_PN_SUPPORT

Name CanlfDispatchUserClearTrcvWufFlaglndicationUL
[ECUC_Canlf_00790]

Description This parameter defines the upper layer module to which the
ClearTrcvWufFlaglindication from the Driver modules have to be routed.
If CANIF_PUBLIC_PN_SUPPORT equals False, this parameter shall
not be configurable.

Multiplicity 0..1

Type EcucEnumerationParamDef

Range CAN_SM CAN State Manager

CDD Complex Driver

AUTOSAR

Post-Build Variant false
Multiplicity
Post-Build Variant false
Value
Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE
Configuration Class
Link time X | VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Value Configuration
Class

Pre-compile time X | VARIANT-PRE-COMPILE

Link time X | VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time -

Scope / Dependency

scope: ECU
dependency: CANIF_PUBLIC_PN_SUPPORT

Name CanlfDispatchUserConfirmPnAvailabilityName [ECUC_Canlf _00819]

Description This parameter defines the name of <User_ConfirmPnAvailability>. If
CANIF_DISPATCH_USERCONFIRMPNAVAILABILITY_UL equals
CAN_SM the name of <User_ConfirmPnAvailability> is fixed. If it
equals CDD, the name is selectable. If
CANIF_PUBLIC_PN_SUPPORT equals False, this parameter shall not
be configurable.

Multiplicity 0..1

Type EcucFunctionNameDef

Default Value

Regular Expression

Post-Build Variant false

Multiplicity

Post-Build Variant false

Value

Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE

Configuration Class
Link time X | VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Value Configuration
Class

Pre-compile time X | VARIANT-PRE-COMPILE

Link time X | VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time -

Scope / Dependency

scope: ECU

dependency:
CANIF_DISPATCH_USERCONFIRMPNAVAILABILITY_UL,
CANIF_PUBLIC_PN_SUPPORT

AUTOSAR

Name CanlfDispatchUserConfirmPnAvailabilityUL [ECUC_Canlf_00820]

Description This parameter defines the upper layer module to which the
ConfirmPnAvailability notification from the Driver modules have to be
routed. If CANIF_PUBLIC_PN_SUPPORT equals False, this
parameter shall not be configurable.

Multiplicity 0..1

Type EcucEnumerationParamDef

Range CAN_SM CAN State Manager
CDD Complex Driver

Post-Build Variant false

Multiplicity

Post-Build Variant false

Value

Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE

Configuration Class
Link time X | VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Value Configuration
Class

Pre-compile time X | VARIANT-PRE-COMPILE

Link time X | VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Scope / Dependency

scope: ECU
dependency: CANIF_PUBLIC_PN_SUPPORT

Name CanlfDispatchUserCtrIBusOffName [ECUC_Canlf_00525]

Description This parameter defines the name of <User_ControllerBusOff>. This
parameter depends on the parameter
CANIF_USERCTRLBUSOFF_UL. If CANIF_USERCTRLBUSOFF_UL
equals CAN_SM the name of <User_ControllerBusOff> is fixed. If
CANIF_USERCTRLBUSOFF_UL equals CDD, the name of
<User_ControllerBusOff> is selectable.

Multiplicity 0..1

Type EcucFunctionNameDef

Default Value

Length 1-32

Regular Expression

Post-Build Variant false

Multiplicity

Post-Build Variant false

Value

Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE

Configuration Class
Link time X | VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Value Configuration
Class

Pre-compile time X | VARIANT-PRE-COMPILE

Link time X | VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

AUTOSAR

Scope / Dependency

scope: ECU
dependency: CANIF_DISPATCH_USERCTRLBUSOFF_UL

Name CanlfDispatchUserCtrIBusOffUL [ECUC_Canlf_00547]

Description This parameter defines the upper layer (UL) module to which the
notifications of all ControllerBusOff events from the CAN Driver
modules have to be routed via <User_ControllerBusOff>. There is no
possibility to configure no upper layer (UL) module as the provider of
<User_ControllerBusOff>.

Multiplicity 1

Type EcucEnumerationParamDef

Range CAN_SM CAN State Manager
CDD Complex Driver

Post-Build Variant false

Value

Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE

Class
Link time X | VARIANT-LINK-TIME,

VARIANT-POST-BUILD
Post-build time -

Scope / Dependency

scope: ECU

Name CanlfDispatchUserCtrIModelndicationName [ECUC_Canlf_00683]
Description This parameter defines the name of <User_ControllerModelndication.
This parameter depends on the parameter

CANIF_USERCTRLMODEINDICATION_UL. If
CANIF_USERCTRLMODEINDICATION_UL equals CAN_SM the
name of <User_ControllerModelndication> is fixed. If
CANIF_USERCTRLMODEINDICATION_UL equals CDD, the name of
<User_ControllerModelndication> is selectable.

Multiplicity 0..1

Type EcucFunctionNameDef

Default Value

Length 1-32

Regular Expression

Post-Build Variant false

Multiplicity

Post-Build Variant false

Value

Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE

Configuration Class
Link time X | VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Value Configuration
Class

Pre-compile time X | VARIANT-PRE-COMPILE

Link time X | VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

AUTOSAR

Scope / Dependency

scope: ECU
dependency: CANIF_DISPATCH_USERCTRLMODEINDICATION_UL

Name CanlfiDispatchUserCtrIModelndicationUL [ECUC_Canlf_00684]
Description This parameter defines the upper layer (UL) module to which the
notifications of all ControllerTransition events from the CAN Driver
modules have to be routed via <User_ControllerModelndication>.
Multiplicity 1
Type EcucEnumerationParamDef
Range CAN_SM CAN State Manager
CDD Complex Driver
Post-Build Variant false
Value
Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME,
VARIANT-POST-BUILD
Post-build time -

Scope / Dependency

scope: ECU

Name CanlfiDispatchUserTrcvModelndicationName [ECUC_Canlf_00685]

Description This parameter defines the name of <User_TrcvModelndication>. This
parameter depends on the parameter
CANIF_USERTRCVMODEINDICATION_UL. If
CANIF_USERTRCVMODEINDICATION_UL equals CAN_SM the
name of <User_TrcvModelndication> is fixed. If
CANIF_USERTRCVMODEINDICATION_UL equals CDD, the name of
<User_TrcvModelndication> is selectable.

Multiplicity 0..1

Type EcucFunctionNameDef

Default Value

Length 1-32

Regular Expression

Post-Build Variant false

Multiplicity

Post-Build Variant false

Value

Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE

Configuration Class
Link time X | VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Value Configuration
Class

Pre-compile time X | VARIANT-PRE-COMPILE

Link time X | VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Scope / Dependency

scope: ECU
dependency: CANIF_DISPATCH_USERTRCVMODEINDICATION_UL

AUTOSAR

Name CanlfDispatchUserTrcvModelndicationUL [ECUC_Canlf_00686]

Description This parameter defines the upper layer (UL) module to which the
notifications of all TransceiverTransition events from the CAN
Transceiver Driver modules have to be routed via
<User_TrcvModelndication>. If no UL module is configured, no upper
layer callback function will be called.

Multiplicity 0..1

Type EcucEnumerationParamDef

Range CAN_SM CAN State Manager
CDD Complex Driver

Post-Build Variant false

Multiplicity

Post-Build Variant false

Value

Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE

Configuration Class
Link time X | VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Value Configuration
Class

Pre-compile time X | VARIANT-PRE-COMPILE

Link time X | VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Scope / Dependency

scope: ECU

Name CanlfDispatchUserValidateWakeupEventName [ECUC_Canlf_00531]

Description This parameter defines the name of <User_ValidateWakeupEvent>.
This parameter depends on the parameter
CANIF_USERVALIDATEWAKEUPEVENT_UL.
CANIF_USERVALIDATEWAKEUPEVENT_UL equals ECUM the name
of <User_ValidateWakeupEvent> is fixed.
CANIF_USERVALIDATEWAKEUPEVENT_UL equals CDD, the name
of <User_ValidateWakeupEvent> is selectable. If parameter
CANIF_WAKEUP_CHECK_VALIDATION_API is disabled, no
<User_ValidateWakeupEvent> API can be configured.

Multiplicity 0..1

Type EcucFunctionNameDef

Default Value

Length 1-32

Regular Expression

Post-Build Variant false

Multiplicity

Post-Build Variant false

Value

Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE

Configuration Class
Link time X | VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

AUTOSAR

Value Configuration
Class

Pre-compile time X | VARIANT-PRE-COMPILE

Link time X | VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time -

Scope / Dependency

scope: ECU
dependency: CANIF_WAKEUP_CHECK_VALIDATION_API,
CANIF_DISPATCH_USERVALIDATEWAKEUPEVENT_UL

Name CanlfiDispatchUserValidateWakeupEventUL [ECUC_Canlf_00549]

Description This parameter defines the upper layer (UL) module to which the
notifications about positive former requested wake up sources have to
be routed via <User_ValidateWakeupEvent>. If parameter
CANIF_WAKEUP_CHECK_VALIDATION_API is disabled, this
parameter cannot be configured.

Multiplicity 0..1

Type EcucEnumerationParamDef

Range CDD Complex Driver
ECUM ECU State Manager

Post-Build Variant false

Multiplicity

Post-Build Variant false

Value

Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE

Configuration Class
Link time X | VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Value Configuration
Class

Pre-compile time X | VARIANT-PRE-COMPILE

Link time X | VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time -

Scope / Dependency

scope: ECU
dependency: CANIF_WAKEUP_CHECK_VALIDATION_API

| No Included Containers

AUTOSAR

CanlfDispatchCfg :
EcucParamConfContainerDef

CanlfDispatchUserCtrIBusOffName :
EcucFunctionNameDef

+parameter
lowerMultiplicity = 0
upperMultiplicity = 1 CanlfDispatchUserValidateWakeupEventName :
minLength = 1 EcucFunctionNameDef
maxLength = 32
+parameter : IV
> owerMultiplicity =
upperMultiplicity =
Multiplici 1
minLength = 1
maxLength = 32
+literal
+parameter CanlfDispatchUserCtriBusOffUL : g I CAN_SM :EcucEnumerationLiteral Def |
EcucEnumerationParamDef Hiteral
I —— iteral
g | CDD :EcucEnumerationLiteralDef |
CanlfDispatchUserValidateWakeupEventUL : Hliteral
+parameter EcucEnumerationParamDef ‘—' ECUM :EcucEnumerationLiteralDef |
lowerMultiplicity = 0 +iteral
upperMultiplicity = 1 CDD :EcucEnumerationLiteralDef
CanlfDispatchUserCtriModelndicationName :
(EcucEunctionNamene
+parameter
lowerMultiplicity = 0
upperMultiplicity = 1 CanlfDispatchUserT rcvModelndicationName :
minLength = 1 EcucFunctionNameDef
maxLength = 32
+parameter lowerMultiplicity = 0
[upperMultiplicity = 1
minLength = 1
maxLength = 32
. _— +literal
CanlfDispatchUserCtriModelndicationUL : X Lo
+parameter EcucEnumerationParamDef CAN_SM :EcucEnumerationLiteralDef
o +literal
lowerMultiplicity = 1 ‘—' CDD :EcucEnumerationLiteralDef |
upperMultiplicity = 1
; Ay +literal
CanlfDi atchUserTrcyModelndlcatlonUL : ‘ | CAN SM :EcucEnumerationLiteral Def
+parameter EcucEnumerationParamDef |
+literal
lowerMultiplicity = 0 [I CDD :EcucEnumerationLiteralDef |
upperMultiplicity = 1
+parameter| canfpispatchUserConfirmPnAvailabilityName :
gt EcucFunctionNameDef
CanlfDispatchUserClearT rcvWufFlaglindicationName :
+parameter EcucFunctionNameDef lowerMultiplicity = 0
upperMultiplicity = 1
lowerMultiplicity = 0
upperMultiplicity = 1 CanlfDispatchUserChecKT rcvWakeFlagindicationName :
EcucFunctionNameDef
+parameter o
o P lowerMultiplicity = 0
upperMultiplicity = 1
CanlfDispatchUserClearT revWufFlagindicationUL : +literal
+parameter EcucEnumerationParamDef ‘—| CAN_SM :EcucEnumerationLiteral Def |
lowerMultiplicity = 0 +literal
upperMultiplicity = 1 ‘—' CDD :EcucEnumerationLiteral Def |
CanlfDispatchUserCheckT rovWWakeFlagindicationUL : Hiteral [.
: N CAN_SM :EcucEnumerationLiteral Def
+parameter EcucEnumerationParam Def |
lowerMultiplicity = 0 +literal .
upperMultiplicity = 1 CDD :EcucEnumerationLiteralDef
:) o] +Iitera||
N " CanlfDlmatchUserConf!rmPnAvalIabllltyUL. > CAN SM :EcucEnumerationLiteral Def
parameter EcucEnumerationParamDef |
L +Iilera||
lowerMultiplicity = 0 = = | CDD :EcucEnumerationLiteralDef |

CanlfCtriCfg

upperMultiplicity = 1

Figure 10.8: AR_EcucDef_CanlfDispatchCfg

| SWS ltem

|

[ECUC_Canlf_00546]

AUTOSAR

Container Name

CanlfCtrICfg

Description

This container contains the configuration (parameters) of an adressed
CAN controller by an underlying CAN Driver module. This container is
configurable per CAN controller.

Post-Build Variant false
Multiplicity
Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE,
Configuration Class VARIANT-LINK-TIME,
VARIANT-POST-BUILD
Link time -
Post-build time -

Configuration Parameters

Name CanlfCtrICanCtrIRef [ECUC_Canlf_00636]

Description This parameter references to the logical handle of the underlying CAN
controller from the CAN Driver module to be served by the CAN
Interface module. The following parameters of CanController config
container shall be referenced by this link: CanControllerld,
CanWakeupSourceRef
Range: 0..max. number of underlying supported CAN controllers

Multiplicity 1

Type Symbolic name reference to CanController
false

Post-Build Variant

Value

Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE

Class
Link time X | VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Scope / Dependency

scope: ECU
dependency: amount of CAN controllers

Name CanlfCtrlld [ECUC_Canlf_00647]

Description This parameter abstracts from the CAN Driver specific parameter
Controller. Each controller of all connected CAN Driver modules shall
be assigned to one specific Controllerld of the Canlf. Range:
0..number of configured controllers of all CAN Driver modules

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)

Range 0.. 255 |

Default Value

Post-Build Variant false

Value

Value Configuration Pre-compile time X | All Variants

Class
Link time -

Post-build time -

Scope / Dependency scope: ECU

AUTOSAR

Value

Name CanlfCtrlWakeupSupport [ECUC_Canlf_00637]

Description This parameter defines if a respective controller of the referenced CAN
Driver modules is queriable for wake up events.
True: Enabled False: Disabled

Multiplicity 1

Type EcucBooleanParamDef

Default Value false

Post-Build Variant false

Value Configuration
Class

Pre-compile time

Link time

Post-build time

VARIANT-PRE-COMPILE

VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Scope / Dependency scope: ECU
| No Included Containers
Canlf :EcucModuleDef
upperMultiplicity = 1
lowerMultiplicity = 0
+comaine$
CanlfCtriDrvCfg :
EcucParamConfContainerDef
lowerMultiplicity = 1
upperMultiplicity = *
+subC0nlaine$
CanlfCtriCfg : +reference inati CanController :
i CanlfCtriCanCtriRef : +destination
EcucParamConfContainerDef |«@» :
EcucSymbolicNameReferenceDef EcucParamConfContainerbef
upperMultiplicity = * upperMultiplicity = *
lowerMultiplicity = 1 lowerMultiplicity = 1
CanlfCtrlld :EcucintegerParam Def (from @nDrv)
+parameter +parameter
> min =0
max = 255 CanControllerld :
symbolicNameValue = true EcuclintegerParamDef
upperMultiplicity = 1
lowerMultiplicity = 1
symbolicNameValue = true
min =0
+parameter CanlfCtriWakeupSupport : max = 255
= EcucBooleanParamDef (from CanDr)

CanlfCtrIDrvCfg

defaultvValue = False

Figure 10.9: AR_EcucDef_CanlfCtrICfg

SWS ltem

[ECUC_Canlf_00253]

Container Name

CanlfCtrIDrvCfg

AUTOSAR

Description

Configuration parameters for all the underlying CAN Driver modules
are aggregated under this container. For each CAN Driver module a
seperate instance of this container has to be provided.

Post-Build Variant

false

Multiplicity
Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE,
Configuration Class VARIANT-LINK-TIME,
VARIANT-POST-BUILD
Link time -
Post-build time -

Configuration Parameters

Name CanlfCtrIDrvInitHohConfigRef [ECUC_Canlf_00642]
Description Reference to the Init Hoh Configuration
Multiplicity 1
Type Reference to CanlflnitHohCfg
false
Post-Build Variant
Value
Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Scope / Dependency

scope: local

Name CanlfCtrIDrvNameRef [ECUC_Canlf_00638]
Description CAN Interface Driver Reference.
This reference can be used to get any information (Ex. Driver Name,
Vendor ID) from the CAN driver.
The CAN Driver name can be derived from the ShortName of the CAN
driver module.
Multiplicity 1
Type Reference to CanGeneral
false
Post-Build Variant
Value
Value Configuration Pre-compile time X | All Variants
Class
Link time —
Post-build time -
Scope / Dependency scope: local

AUTOSAR

Included Containers

Container Name

Multiplicity | Scope / Dependency

CanlfCtrICfg

1.7 This container contains the configuration (parameters)

of an adressed CAN controller by an underlying CAN
Driver module. This container is configurable per CAN
controller.

Canlf :EcucModuleDef

upperMultiplicity = 1
lowerMultiplicity = 0

+contai ne$

CanlfCtrlDrvCfg :
EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = *

+reference CanlfCtrIDrvNameRef :

CanGeneral :
+destination| EcucParamConfContainerDef

EcucReferenceDef

upperMultiplicity = 1
lowerMultiplicity = 1

(from CanDrv)

CanlfinitHohCfg :

+reference

CanlfCtriDrvinitHohConfigRef :

EcucReferenceDef

+destination

EcucParamConfContainerDef

The values for "CanlfDriverName" and "CanlfDriverVendorld" can be found in the
"CommonPublishedInformation” of the corresponding CAN driver's configuration description.

lowerMultiplicity = 0
upperMultiplicity = *

Figure 10.10: AR_EcucDef_CanlfCtrIDrvCfg

CanlfTrcvDrvCfg
SWS Item [ECUC_Canlf_00273]
Container Name CanlfTrcvDrvCfg
Description This container contains the configuration (parameters) of all addressed

CAN transceivers by each underlying CAN Transceiver Driver module.
For each CAN transceiver Driver a seperate instance of this container

shall be provided.

Post-Build Variant
Multiplicity

false

Multiplicity
Configuration Class

Pre-compile time

Link time
Post-build time

VARIANT-PRE-COMPILE,
VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Configuration Parameters

AUTOSAR

Included Containers

Container Name

Multiplicity | Scope / Dependency

CanlfTrcvCfg

1.7 This container contains the configuration (parameters) of
one addressed CAN transceiver by the underlying CAN
Transceiver Driver module. For each CAN transceiver a
seperate instance of this container has to be provided.

Canlf :EcucModuleDef

upperMultiplicity = 1
lowerMultiplicity = 0

+c0maineI

CanlfTrevDrvCfg :
EcucParamConfContainerDef CanlfTrevCfg :

EcucParamConfContainerDef}

+subContainer

lowerMultiplicity = 0

upperMultiplicity = * lowerMultiplicity = 1

upperMultiplicity = *

Figure 10.11: AR_EcucDef_CanlfTrcvDrvCfg

CanlfTrcvCfg
SWS Item [ECUC_Canlf_00587]
Container Name CanlfTrcvCfg
Description This container contains the configuration (parameters) of one

addressed CAN transceiver by the underlying CAN Transceiver Driver
module. For each CAN transceiver a seperate instance of this
container has to be provided.

Post-Build Variant false
Multiplicity
Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE,
Configuration Class VARIANT-LINK-TIME,
VARIANT-POST-BUILD
Link time -
Post-build time -

Configuration Parameters

Name CanlfTrcvCanTrcvRef [ECUC_Canlf_00605]

Description This parameter references to the logical handle of the underlying CAN
transceiver from the CAN transceiver driver module to be served by the
CAN Interface module.
Range: 0..max. number of underlying supported CAN transceivers

Multiplicity 1

Type Symbolic name reference to CanTrcvChannel

Post-Build Variant
Value

false

AUTOSAR

Value Configuration
Class

Pre-compile time X | VARIANT-PRE-COMPILE

Link time X | VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Scope / Dependency

scope: ECU
dependency: amount of CAN transceivers

Default Value

Name CanlfTrevild [ECUC_Canlf_00654]

Description This parameter abstracts from the CAN Transceiver Driver specific
parameter Transceiver. Each transceiver of all connected CAN
Transceiver Driver modules shall be assigned to one specific
Transceiverld of the Canlf.
Range: 0..number of configured transceivers of all CAN Transceiver
Driver modules

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for this parameter)

Range 0..255 |

Post-Build Variant false
Value
Value Configuration Pre-compile time X | All Variants
Class
Link time -
Post-build time -
Scope / Dependency scope: ECU

Name CanlfTrcvWakeupSupport [ECUC_Canlf_00606]

Description This parameter defines if a respective transceiver of the referenced
CAN Transceiver Driver modules is queriable for wake up events.
True: Enabled False: Disabled

Multiplicity 1

Type EcucBooleanParamDef

Default Value false

Post-Build Variant false

Value

Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE

Class
Link time X | VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Scope / Dependency

scope: ECU

| No Included Containers

AUTOSAR

Canlf :EcucModuleDef

upperMultiplicity = 1
lowerMultiplicity = 0

+containeI

CanlfTrevDrvCig :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

+subContainer'

CanlfTrevCfg : CanlfTrevWakeupSupport :
EcucParamConfContainerDef +parameter EcucBooleanParamDef
lowerMultiplicity = 1 defaultValue = False

upperMultiplicity = *

CanlfTrevld :EcuclntegerParamDef

+parameter

min =0
max = 255
symbolicNameValue = true

CanlfTrcvCanTrevRef : CanTrcvChannel :EcucParamConfContainerDef

+reference | EcucSymbolicNameReferenceDef +destination

upperMultiplicity = *

lowerMultiplicity = 1 lowerMultiplicity = 1
upperMultiplicity = 1
(from CanTrcv)
+reference +parameter
CanTrcvWakeupSourceRef : CanTrcvChannelld :
EcucReferenceDef EcucintegerParamDef
lowerMultiplicity = 0 symbolicNameValue = true
upperMultiplicity = 1 max = 255
(from CanTrcv) (from CanTrcv)

Figure 10.12: AR_EcucDef_CanlfTrcvCfg

CanlflnitHohCfg

SWS Item [ECUC_Canlf_00257]

Container Name CanlflnitHohCfg

Description This container contains the references to the configuration setup of
each underlying CAN Driver.

Post-Build Variant false

Multiplicity

Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE,

Configuration Class VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Link time -
Post-build time -

Configuration Parameters

Included Containers

Container Name Multiplicity | Scope / Dependency

CanlfHrhCfg 0.rx This container contains configuration parameters for
each hardware receive object (HRH).

CanlfHthCfg 0.* This container contains parameters related to each HTH.

AUTOSAR

CanlfInitCfg :EcucParam ConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = 1

+subComainex

CanlfinitHohCfg :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

+subContainer

CanlfHrhCfg :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

+subContainer

CanlfHthCfg :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

Figure 10.13: AR_EcucDef_CanlflnitHohCfg

CanlfHthCfg
SWS Item [ECUC_Canlf_00258]
Container Name CanlfHthCfg
Description This container contains parameters related to each HTH.
Post-Build Variant true
Multiplicity
Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE

Configuration Class

Link time
Post-build time

X | VARIANT-LINK-TIME

X | VARIANT-POST-BUILD

Configuration Parameters

Name CanlfHthCanCtrlldRef [ECUC_Canlf_00625]

Description Reference to controller Id to which the HTH belongs to. A controller
can contain one or more HTHs.

Multiplicity 1

Type Reference to CanlfCtrICfg

Post-Build Variant
Value

true

Value Configuration
Class

Pre-compile time

X | VARIANT-PRE-COMPILE

Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: ECU

AUTOSAR

Name CanlfHthldSymRef [ECUC_Canlf_00627]

Description The parameter refers to a particular HTH object in the CanDrv
configuration (see CanHardwareObject ECUC_Can_00324).

CanIf receives the following information of the CanDrv module by

this reference:

e CanHandleType (see ECUC_Can_00323)
e CanObijectld (see ECUC_Can_00326)

Multiplicity 1
Type Symbolic name reference to CanHardwareObject
false
Post-Build Variant
Value
Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class

Link time X | VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time -

Scope / Dependency scope: ECU

| No Included Containers

CanlflnitHohCfg :

EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

+subComainerf

CanlfHthCfg :

CanlfCtrlCfg :

EcucParam ConfContainerDef +reference CanlftthCanCtridRef . +destinalion | gy cparamConfContainerDef
EcucReferenceDef
lowerMultiplicity = 0 upperMultiplicity = *
upperMultiplicity = * lowerMultiplicity = 1
+reference CanlfHthldSymRef : +destination CanHardwareObject :
EcucSymbolicNameReferenceDef EcucParam ConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 1

(from CanDrv)
+parameter +parameter

CanObjectld :EcucintegerParamDef CanHandleType :
EcucEnumerationParamDef

upperMultiplicity = 1
lowerMultiplicity = 1
symbolicNameValue = true
min =0

max = 65535

(from CanDrv)

(from CanDrv)

Figure 10.14: AR_EcucDef_CanlfHthCfg

CanifHrhCfg

[SWS Item [[ECUC_Canlf_00259]

AUTOSAR

Container Name

CanlfHrhCfg

Description This container contains configuration parameters for each hardware
receive object (HRH).
Post-Build Variant true
Multiplicity
Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE
Configuration Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD

Configuration Parameters

Name CanlfHrhCanCitrlidRef [ECUC_Canlf_00631]
Description Reference to controller Id to which the HRH belongs to. A controller
can contain one or more HRHs.
Multiplicity 1
Type Reference to CanlfCtrICfg
false
Post-Build Variant
Value
Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time -

Scope / Dependency

scope: ECU

Name CanlfHrhldSymRef [ECUC_Canlf_00634]
Description The parameter refers to a particular HRH object in the CanDrv
configuration (see CanHardwareObject ECUC_Can_00324).
CanIf receives the following information of the CanDrv module by
this reference:
e CanHandleType (see ECUC_Can_00323)
e CanObijectld (see ECUC_Can_00326)
Multiplicity 1
Type Symbolic name reference to CanHardwareObject
true
Post-Build Variant
Value
Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: ECU

AUTOSAR

Value

Name CanlfHrhSoftwareFilter [ECUC_Canlf_00632]

Description Selects the hardware receive objects by using the HRH range/list from
CAN Driver configuration to define, for which HRH a software filtering
has to be performed at during receive processing.

True: Software filtering is enabled False: Software filtering is enabled

Multiplicity 1

Type EcucBooleanParamDef

Default Value true

Post-Build Variant false

Value Configuration
Class

Pre-compile time
Link time

Post-build time

VARIANT-PRE-COMPILE

VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Scope / Dependency scope: local
Included Containers
Container Name Multiplicity | Scope / Dependency
CanlfHrhRangeCfg 0.” Defines the parameters required for configurating
multiple CANID ranges for a given same HRH.
CanlflnitHohCfg :
EcucParamConfContainerDef
lowerMultiplicity = 0
upperMultiplicity = *
+subContainer? CanlfCtriCfg :
e — +reference CanlfHrhCanCtrildRef : +destination| EcucParamConfContainerDef
EcucParamConfContainerDef [EGUskeferenceDef upperMultiplicity = *
; —— o lowerMultiplicity = 1
owerMultiplicity =
upperMulli‘?JIicit);/= *
+reference +destination CanHardwareObject :

>

CanlfHrhldSymRef :

EcucSymbolicNameReferenceDef

EcucParamConfContainerDef

+parameter

CanlfHrhSoftwareFilter :

EcucBooleanParamDef

defaultValue = True

+subContainer

CanlfHrhRangeCfg :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

upperMultiplicity = *
lowerMultiplicity = 1

’ (from CanDrv)

+parameter

+parameter

CanHandleType :
EcucEnumerationParamDef

(from CanDrv)

CanObjectld :EcucintegerParamDef

min =0
max = 65535

upperMultiplicity = 1
lowerMultiplicity = 1
symbolicNameValue = true

(from CanDrv)

Figure 10.15: AR_EcucDef_CanlfHrhCfg

AUTOSAR

CanlfHrhRangeCfg

SWS Item [ECUC_Canlf_00628]

Container Name CanlfHrhRangeCfg

Description Defines the parameters required for configurating multiple CANID
ranges for a given same HRH.

Post-Build Variant true

Multiplicity

Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE

Configuration Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD

Configuration Parameters

Default Value

Name CanlfHrhRangeBaseld [ECUC_Canlf_00825]

Description CAN Identifier used as base value in combination with
CanlfHrhRangeMask for a masked ID range in which all CAN Ids shall
pass the software filtering. The size of this parameter is limited by
CanlfHrhRangeRxPduRangeCanldType.

Multiplicity 0..1

Type EcuclntegerParamDef

Range 0 .. 536870911 |

Post-Build Variant true
Multiplicity
Post-Build Variant true
Value
Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE
Configuration Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: local

Default Value

Name CanlfHrhRangeMask [ECUC_Canlf_00826]

Description Used as mask value in combination with CanlfHrhRangeBaseld for a
masked ID range in which all CAN Ids shall pass the software filtering.
The size of this parameter is limited by
CanlfHrhRangeRxPduRangeCanldType.

Multiplicity 0..1

Type EcuclntegerParamDef

Range 0 .. 536870911 |

Value

Post-Build Variant true
Multiplicity
Post-Build Variant true

AUTOSAR

Multiplicity
Configuration Class

Pre-compile time

Link time
Post-build time

VARIANT-PRE-COMPILE

VARIANT-LINK-TIME

VARIANT-POST-BUILD

Value Configuration
Class

Pre-compile time

VARIANT-PRE-COMPILE

Link time VARIANT-LINK-TIME
Post-build time VARIANT-POST-BUILD
Scope / Dependency scope: local

Value

Name CanlfHrhRangeRxPduLowerCanld [ECUC_Canlf_00629]

Description Lower CAN Identifier of a receive CAN L-PDU for identifier range
definition, in which all CAN Ids shall pass the software filtering.

Multiplicity 0..1

Type EcuclntegerParamDef

Range 0 .. 536870911

Default Value

Post-Build Variant true

Multiplicity

Post-Build Variant true

Multiplicity
Configuration Class

Pre-compile time

Link time
Post-build time

VARIANT-PRE-COMPILE

VARIANT-LINK-TIME

VARIANT-POST-BUILD

Value Configuration
Class

Pre-compile time

VARIANT-PRE-COMPILE

Link time VARIANT-LINK-TIME
Post-build time VARIANT-POST-BUILD
Scope / Dependency scope: local

Name CanlfHrhRangeRxPduRangeCanldType [ECUC_Canlf_00644]
Description Specifies whether a configured Range of CAN Ids shall only consider
standard CAN Ids or extended CAN Ids.
Multiplicity 1
Type EcucEnumerationParamDef
Range EXTENDED All the CANIDs are of type extended
only (29 bit).
STANDARD All the CANIDs are of type standard
only (11bit).
Post-Build Variant true
Value
Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: local

AUTOSAR

Name CanlfHrhRangeRxPduUpperCanld [ECUC_Canlf_00630]
Description Upper CAN Identifier of a receive CAN L-PDU for identifier range
definition, in which all CAN Ids shall pass the software filtering.
Multiplicity 0..1
Type EcuclntegerParamDef
Range 0 .. 536870911 |
Default Value
Post-Build Variant true
Multiplicity
Post-Build Variant true
Value
Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE
Configuration Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE
Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD
Scope / Dependency scope: local
| No Included Containers
EcucParamConfContainerDef
lowerMultiplicity = 0
upperMultiplicity = *
CanlfHrhRangeRxPduUpperCanld :
+waontaine? EcucIntegerParamDef
fHrhRangeCfg : + 1R =@
Ecuc(;:rr\ellgrcgigoitcainemef ‘ﬂ [ERSE 5368?0,911
lowerMultiplicity = 0
lowerMultiplicity = 0 Uy =4
upperMultiplicity = *
CanlfHrhRangeRxPduLowerCanld :
EcucintegerParamDef
+parameter
upperMultiplicity = 1
lowerMultiplicity = 0
min =0
max = 536870911 STANDARD :
+literal |EcucEnumerationLiteralDe
CanlfHrhRangeRxPduRangeCanldType
+parameter EcucEnumerationParamDef
+literal EXTENDED :
EcucEnumerationLiteralDe
CanlfHrhRangeBaseld :
EcucintegerParamDef
+parameter
upperMultiplicity = 1
lowerMultiplicity = 0
min =0
max = 536870911
CanlfHihRangeMask :
EcucintegerParamDef
+parameter
upperMultiplicity = 1
lowerMultiplicity = 0
min =0
max = 536870911

Figure 10.16: AR_EcucDef_CanlfHrhRangeCfg

AUTOSAR

CanlfBufferCfg
SWS ltem [ECUC_Canlf_00832]
Container Name CanlfBufferCfg
Description This container contains the Txbuffer configuration. Multiple buffers with

different sizes could be configured. If CanlfBufferSize
(ECUC_Canlf_00834) equals 0, the Canlf Tx L-PDU only refers via this
CanlfBufferCfg the corresponding CanlfHthCfg.

Post-Build Variant true
Multiplicity
Multiplicity Pre-compile time X | VARIANT-PRE-COMPILE
Configuration Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD

Configuration Parameters

Name CanlfBufferHthRef [ECUC_Canlf_00833]

Description Reference to HTH, that defines the hardware object or the pool of
hardware objects configured for transmission. All the Canlf Tx L-PDUs
refer via the CanlfBufferCfg and this parameter to the HTHSs if
TxBuffering is enabled, or not.

Each HTH shall not be assigned to more than one buffer.

Multiplicity 1

Type Reference to CanlfHthCfg
true

Post-Build Variant

Value

Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE

Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD

Scope / Dependency scope: local

Name CanlfBufferSize [ECUC_Canlf_00834]

Description This parameter defines the number of Canlf Tx L-PDUs which can be
buffered in one Txbuffer. If this value equals 0, the Canlf does not
perform Txbuffering for the Canlf Tx L-PDUs which are assigned to this
Txbuffer. If CanlfPublicTxBuffering equals False, this parameter equals
0 for all TxBuffer. If the CanHandleType of the referred HTH equals
FULL, this parameter equals 0 for this TxBuffer.

Multiplicity 1

Type EcuclntegerParamDef

Range 0.. 255 |

Default Value 0

Post-Build Variant true

Value

Value Configuration Pre-compile time X | VARIANT-PRE-COMPILE

Class
Link time X | VARIANT-LINK-TIME
Post-build time X | VARIANT-POST-BUILD

AUTOSAR

Scope / Dependency scope: local
dependency: CanlfPublicTxBuffering, CanHandleType

| No Included Containers
CanlfBufferCfg sreference CanlfBufferHthRef : +destination CanlfHthCfg : :
EcucParamConfContainerDef o EcucReferenceDef EcucParamConfContainerDef
lowerMultiplicity = 0 lowerMultiplicity = 0
upperMultiplicity = *

upperMultiplicity = *
CanlfBufferSize :

+parameter EcucintegerParamDef

min =0
max = 255
defaultvalue = 0

Figure 10.17: AR_EcucDef_CanlfBufferCfg

AUTOSAR

A Not applicable requirements

[SWS_CANIF_00999] | These requirements are not applicable to this specification.

|(SRS_BSW _00159, SRS _BSW 00167, SRS BSW _00170, SRS_BSW _00416, SRS _BSW _0016&
SRS BSW 00423, SRS BSW 00424, SRS BSW 00425, SRS BSW 00426, SRS BSW 00427,
SRS BSW 00428, SRS BSW 00429, BSW00431, SRS BSW 00432, SRS BSW 00433,
BSW00434, SRS BSW 00336, SRS BSW 00417, SRS BSW 00164, SRS BSW 00326,

SRS BSW 00007, SRS BSW 00307, SRS BSW 00373, SRS BSW 00435, SRS BSW 00328,
SRS BSW 00378, SRS BSW 00306, SRS BSW 00308, SRS BSW 00309, SRS BSW 00376,
SRS BSW 00330, SRS BSW 00172, SRS BSW 00010, SRS BSW 00341, SRS BSW 00334,
SRS CAN_01139, SRS _CAN_01014, BSW01024)

	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents & related standards and norms
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 Upper Protocol Layers
	5.2 Initialization: Ecu State Manager
	5.3 Mode Control: CAN State Manager
	5.4 Lower layers: CAN Driver
	5.5 Lower layers: CAN Transceiver Driver
	5.6 Configuration
	5.7 File structure
	5.7.1 Code file structure
	5.7.2 Header file structure

	6 Requirements Tracing
	7 Functional specification
	7.1 General Functionality
	7.2 Hardware object handles
	7.3 Static CAN L-PDU handles
	7.4 Dynamic CAN L-PDU handles
	7.4.1 Dynamic transmit L-PDU handles
	7.4.2 Dynamic receive L-PDU handles

	7.5 Physical channel view
	7.6 CAN Hardware Unit
	7.7 BasicCAN and FullCAN reception
	7.8 Initialization
	7.9 Transmit request
	7.10 Transmit data flow
	7.11 Transmit buffering
	7.11.1 General behavior
	7.11.2 Buffer characteristics
	7.11.2.1 Storage of L-PDUs in the transmit L-PDU buffer
	7.11.2.2 Clearance of transmit L-PDU buffers
	7.11.2.3 Initialization of transmit L-PDU buffers

	7.11.3 Data integrity of transmit L-PDU buffers

	7.12 Transmit confirmation
	7.12.1 Confirmation after transmission completion

	7.13 Receive data flow
	7.14 Receive indication
	7.15 Read received data
	7.16 Read Tx/Rx notification status
	7.17 Data integrity
	7.18 CAN Controller Mode
	7.18.1 General Functionality
	7.18.2 CAN Controller Operation Modes
	7.18.2.1 CANIF_CS_UNINIT
	7.18.2.2 CANIF_CS_INIT
	7.18.2.3 BUSOFF
	7.18.2.4 Mode Indication

	7.18.3 Controller Mode Transitions
	7.18.4 Wake-up
	7.18.4.1 Wake-up detection
	7.18.4.2 Wake-up Validation

	7.19 PDU channel mode control
	7.19.1 PDU channel groups
	7.19.2 PDU channel modes
	7.19.2.1 CANIF_OFFLINE
	7.19.2.2 CANIF_ONLINE
	7.19.2.3 CANIF_OFFLINE_ACTIVE

	7.20 Software receive filter
	7.20.1 Software filtering concept
	7.20.2 Software filter algorithms

	7.21 DLC Check
	7.22 L-SDU dispatcher to upper layers
	7.23 Polling mode
	7.24 Multiple CAN Driver support
	7.24.1 Transmit requests by using multiple CAN Drivers
	7.24.2 Notification mechanism using multiple CAN Drivers

	7.25 Partial Networking
	7.26 CAN FD Support
	7.27 Error classification
	7.27.1 Development Errors
	7.27.2 Runtime Errors
	7.27.3 Transient Faults
	7.27.4 Production Errors
	7.27.5 Extended Production Errors

	7.28 Error detection
	7.29 Error notification

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 CanIf_ConfigType
	8.2.2 CanIf_ControllerModeType
	8.2.3 CanIf_PduModeType
	8.2.4 CanIf_NotifStatusType

	8.3 Function definitions
	8.3.1 CanIf_Init
	8.3.2 CanIf_SetControllerMode
	8.3.3 CanIf_GetControllerMode
	8.3.4 CanIf_Transmit
	8.3.5 CanIf_CancelTransmit
	8.3.6 CanIf_ReadRxPduData
	8.3.7 CanIf_ReadTxNotifStatus
	8.3.8 CanIf_ReadRxNotifStatus
	8.3.9 CanIf_SetPduMode
	8.3.10 CanIf_GetPduMode
	8.3.11 CanIf_GetVersionInfo
	8.3.12 CanIf_SetDynamicTxId
	8.3.13 CanIf_SetTrcvMode
	8.3.14 CanIf_GetTrcvMode
	8.3.15 CanIf_GetTrcvWakeupReason
	8.3.16 CanIf_SetTrcvWakeupMode
	8.3.17 CanIf_CheckWakeup
	8.3.18 CanIf_CheckValidation
	8.3.19 CanIf_GetTxConfirmationState
	8.3.20 CanIf_ClearTrcvWufFlag
	8.3.21 CanIf_CheckTrcvWakeFlag
	8.3.22 CanIf_SetBaudrate
	8.3.23 CanIf_SetIcomConfiguration

	8.4 Callback notifications
	8.4.1 CanIf_TriggerTransmit
	8.4.2 CanIf_TxConfirmation
	8.4.3 CanIf_RxIndication
	8.4.4 CanIf_ControllerBusOff
	8.4.5 CanIf_ConfirmPnAvailability
	8.4.6 CanIf_ClearTrcvWufFlagIndication
	8.4.7 CanIf_CheckTrcvWakeFlagIndication
	8.4.8 CanIf_ControllerModeIndication
	8.4.9 CanIf_TrcvModeIndication
	8.4.10 CanIf_CurrentIcomConfiguration

	8.5 Scheduled functions
	8.6 Expected interfaces
	8.6.1 Mandatory interfaces
	8.6.2 Optional interfaces
	8.6.3 Configurable interfaces
	8.6.3.1 <User_TriggerTransmit>
	8.6.3.2 <User_TxConfirmation>
	8.6.3.3 <User_RxIndication>
	8.6.3.4 <User_ValidateWakeupEvent>
	8.6.3.5 <User_ControllerBusOff>
	8.6.3.6 <User_ConfirmPnAvailability>
	8.6.3.7 <User_ClearTrcvWufFlagIndication>
	8.6.3.8 <User_CheckTrcvWakeFlagIndication>
	8.6.3.9 <User_ControllerModeIndication>
	8.6.3.10 <User_TrcvModeIndication>

	9 Sequence diagrams
	9.1 Transmit request (single CAN Driver)
	9.2 Transmit request (multiple CAN Drivers)
	9.3 Transmit confirmation (interrupt mode)
	9.4 Transmit confirmation (polling mode)
	9.5 Transmit confirmation (with buffering)
	9.6 Transmit Cancelation
	9.7 Trigger Transmit Request
	9.8 Receive indication (interrupt mode)
	9.9 Receive indication (polling mode)
	9.10 Read received data
	9.11 Start CAN network
	9.12 BusOff notification
	9.13 BusOff recovery

	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters

	A Not applicable requirements

