
 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

1 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

Document Title General Specification of Basic
Software Modules

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 578

Document Classification Standard

Document Status Final

Part of AUTOSAR Release 4.2.2

Document Change History
Release Changed by Change Description

4.2.2 AUTOSAR
Release
Management

 Debugging support marked as obsolete

 minor corrections / clarifications / editorial
changes; For details please refer to the
ChangeDocumentation

4.2.1 AUTOSAR
Release
Management

 Update in error handling classification

 Update in initialization function requirements

 Updated due to
SupportForPBLAndPBSECUConfiguration
concept

 minor corrections / clarifications / editorial
changes; For details please refer to the
BWCStatement

4.1.3 AUTOSAR
Release
Management

 Update of include file structure and required
header files requirement specification

 Update of inter-module version check –
removed REVISION/PATCH_VERSION from
the required check

 Formating and spelling corrections

4.1.2 AUTOSAR
Release
Management

 Moved declarations of MainFunctions and
BswModuleClientServerEntrys from the module
header files to RTE/BswScheduler

 Modified the Published Information definitions

 Added the NULL pointer checking mechanism
description

 Removed the "Fixed cyclic", "Variable cyclic"
and "On pre condition" from the Scheduled
Functions description

 Editorial changes

4.1.1 AUTOSAR
Administration

 Initial release

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

2 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

3 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

Disclaimer

This specification and the material contained in it, as released by AUTOSAR, is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only. For any other purpose, no part of
the specification may be utilized or reproduced, in any form or by any means, without
permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR specifications may contain exemplary items (exemplary reference
models, "use cases", and/or references to exemplary technical solutions, devices,
processes or software).

Any such exemplary items are contained in the specifications for illustration purposes
only, and they themselves are not part of the AUTOSAR Standard. Neither their
presence in such specifications, nor any later documentation of AUTOSAR
conformance of products actually implementing such exemplary items, imply that
intellectual property rights covering such exemplary items are licensed under the
same rules as applicable to the AUTOSAR Standard.

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

4 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

Table of Contents

1 Introduction and functional overview ... 6

1.1 Traceability ... 6
1.2 Document conventions ... 6

2 Acronyms and abbreviations ... 8

3 Related documentation.. 9

3.1 Input documents ... 9
3.2 Related standards and norms .. 10

4 Constraints and assumptions .. 11

4.1 Limitations .. 11
4.2 Applicability to car domains .. 11

5 Dependencies to other modules .. 12

5.1 File structure .. 12

5.1.1 Module implementation prefix ... 12
5.1.2 Module implementation files.. 13

5.1.3 Imported and exported information ... 14
5.1.4 BSW Module Description .. 15
5.1.5 Module documentation .. 15

5.1.6 Code file structure ... 16

5.1.7 Header file structure .. 20
5.1.8 Version check ... 26

6 Requirements traceability .. 27

7 Functional specification ... 35

7.1 General implementation specification ... 35
7.1.1 Conformance to MISRA C .. 35
7.1.2 Conformance to AUTOSAR Basic Software Requirements 35
7.1.3 Conformance to AUTOSAR Methodology ... 35
7.1.4 Platform independency and compiler abstraction 36

7.1.5 Configurability ... 38
7.1.6 Various naming conventions ... 39
7.1.7 Configuration parameters ... 40

7.1.8 Shared code.. 41
7.1.9 Global data ... 41
7.1.10 Usage of macros and inline functions .. 42
7.1.11 Calling Scheduled functions (Main processing functions) 42

7.1.12 Exclusive areas ... 42
7.1.13 Callouts .. 43
7.1.14 AUTOSAR Interfaces ... 44
7.1.15 Interrupt service routines ... 44
7.1.16 Restricted OS functionality access .. 45
7.1.17 Access to hardware registers .. 47
7.1.18 Debugging support .. 48

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

5 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

7.1.19 Data types ... 48

7.1.20 Distributed execution on multi-partitioned systems 51
7.2 Error Handling .. 52

7.2.1 Classification ... 52
7.2.2 Development errors .. 52
7.2.3 Runtime errors .. 55

7.2.4 Transient faults ... 56
7.2.5 Extended production errors and production errors 57
7.2.6 Specific topics ... 61

8 API specification .. 63

8.1 Imported types.. 63

8.2 Type definitions .. 63

8.3 Function definitions .. 64

8.3.1 General specification on API functions ... 64
8.3.2 Initialization function .. 67
8.3.3 De-Initialization function .. 68
8.3.4 Get Version Information .. 69

8.4 Callback notifications .. 72
8.5 Scheduled functions ... 73

8.6 Expected Interfaces .. 74
8.6.1 Mandatory Interfaces .. 74
8.6.2 Optional Interfaces .. 74

8.6.3 Configurable interfaces ... 74

9 Sequence diagrams .. 75

10 Configuration specification .. 76

10.1 Introduction to configuration specification .. 76
10.1.1 Configuration and configuration parameters 76
10.1.2 Variants ... 76
10.1.3 Containers ... 77

10.1.4 Configuration parameter tables ... 77
10.1.5 Configuration class labels .. 78

10.2 General configuration specification .. 79
10.2.1 Configuration files .. 79
10.2.2 Implementation names for configuration parameters 79

10.2.3 Pre-compile time configuration .. 80
10.2.4 Link time configuration ... 81

10.2.5 Post-build time configuration ... 81
10.2.6 Configuration variants .. 83

10.3 Published Information ... 84

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

6 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

1 Introduction and functional overview

This document is the general basic software specification on AUTOSAR Basic
Software modules. It complements the specification of BSW modules with as a
common specification, which is valid for various BSW modules.

1.1 Traceability

The Specification items from this document describe the work products from the
BSW Module implementation or their parts with regard to the Basic Software
Requirements, which are described in AUTOSAR General Requirements on Basic
Software Modules [3].

For every BSW Module, the traceability between Specification items and Basic
Software Requirements is in scope of this document and the according BSW Module
Software Specification. See also chapter 6 - Requirements traceability.

The BSW Module implementation must guarantee traceability to the corresponding
Specification items of this document and of the corresponding BSW Module
specification.

Some Specification items are not applicable to every BSW Module. In such a case,
its description explicitly mentions the condition for its applicability. If no condition is
mentioned, the Specification item is applicable for all BSW Modules.

Please refer to AUTOSAR Standardization Template [14], chapter “Support for
traceability” for further information.

1.2 Document conventions

Code examples, symbols and other technical terms in general are typeset in

monospace font, e.g. const.

Terms and expressions defined in AUTOSAR Glossary [7], within this specification
(see chapter 2 - Acronyms and abbreviations) or in related documentation are
typeset in italic font, e.g. Module implementation prefix.

The Basic Software Requirements are described in document SRS BSW General [3].
These are referenced using SRS_BSW_<n> where <n> is its requirement id. For
instance: SRS_BSW_00009.

Every Specification item starts with [SWS_BSW_<nr>], where <nr> is its unique
identifier number of the Specification item. This number is followed by the
Specification item title. The scope of the Specification item description is marked with
half brackets and is followed by the list of related requirements from SRS BSW
General, between braces.

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

7 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

 Example:

[SWS_BSW_<nr>] Specification item title
⌈ Specification item description. ⌋(SRS_BSW_00001, SRS_BSW_00002)

References to Specification items from other AUTOSAR documents use the
conventions from the according document, for instance [SWS_CANIF_00001].

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

8 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

2 Acronyms and abbreviations

Abbreviation /
Acronym:

Description:

BSW driver For a list of BSW drivers see the List of Basic Software Modules [1],
column “AUTOSAR SW layer”.

Camel case This document does not aim to specify rules for the camel case
notation. Definition of CamelCase according to Wikipedia (see
chapter 3.1):
 “camelCase (…) is the practice of writing compound words or
phrases in which the elements are joined without spaces, with each
element's initial letter capitalized within the compound and the first
letter either upper or lower case (…).”
Example: GetVersionInfo

<Ie> Implementation specific file name extension, see SWS_BSW_00103.

<Ma> Module abbreviation, see SWS_BSW_00101.
<MA> Capitalized module abbreviation. The Capitalized module abbreviation

<MA> is the Module abbreviation <Ma> (see bsw_constr_001)

completely written in upper case.

MCAL The MCAL, Microcontroller Abstraction Layer, is defined in
AUTOSAR Layered Software Architecture [2]

<Mip> Module implementation prefix, see SWS_BSW_00102.

<MIP> Capitalized module implementation prefix. The Capitalized module

implementation prefix <MIP> is the Module implementation prefix

<Mip> (SWS_BSW_00102) completely written in upper case.

Module
implementation
prefix

Module implementation prefix, see SWS_BSW_00102.

Module
abbreviation

Module abbreviation, see SWS_BSW_00101.

WCET Worst case execution time.

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

9 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

3 Related documentation

3.1 Input documents

[1] List of Basic Software Modules
AUTOSAR_TR_BSWModuleList.pdf

[2] AUTOSAR Layered Software Architecture
AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf

[3] AUTOSAR General Requirements on Basic Software Modules
AUTOSAR_SRS_BSWGeneral.pdf

[4] AUTOSAR Specification of BSW Module Description Template
AUTOSAR_TPS_BSWModuleDescriptionTemplate.pdf

[5] AUTOSAR Specification of RTE
AUTOSAR_SWS_RTE.pdf

[6] AUTOSAR Specification of Memory Mapping
AUTOSAR_SWS_MemoryMapping.pdf

[7] AUTOSAR Glossary
AUTOSAR_TR_Glossary.pdf

[8] AUTOSAR Specification of Operating System
AUTOSAR_SWS_OS.pdf

[9] AUTOSAR Specification of Software Component Template
AUTOSAR_TPS_SoftwareComponentTemplate.pdf

[10] AUTOSAR Specification of Diagnostic Event Manager
AUTOSAR_SWS_DiagnosticEventManager.pdf

[11] AUTOSAR Methodology
AUTOSAR_TR_Methodology.pdf

[12] AUTOSAR Specification of Debugging
AUTOSAR_SWS_Debugging.pdf

[13] AUTOSAR Specification of Standard Types
AUTOSAR_SWS_PlatformTypes.pdf

[14] AUTOSAR Standardization Template
AUTOSAR_TPS_StandardizationTemplate.pdf

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

10 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

[15] AUTOSAR Specification of ECU Configuration
AUTOSAR_TPS_ECUConfiguration.pdf

[16] AUTOSAR Specification of Default Error Tracer
AUTOSAR_SWS_ DefaultErrorTracer.pdf

[17] CamelCase – Wikipedia, the free encyclopedia
http://en.wikipedia.org/wiki/CamelCase

3.2 Related standards and norms

[18] MISRA C 2004 Standard

Homepage: http://www.misra.org.uk/

[19] IEC 7498-1 The Basic Model, IEC Norm, 1994

[20] HIS Software Supplier Identifications
http://www.automotive--his.de/his--ergebnisse.htm

http://en.wikipedia.org/wiki/CamelCase
http://www.misra.org.uk/
http://www.automotive--his.de/his--ergebnisse.htm

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

11 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

4 Constraints and assumptions

4.1 Limitations

This specification is common to all AUTOSAR BSW Modules [1] and contains only
general Specification items on BSW Modules. Some of these specification items may
not be relevant to particular BSW Modules, whenever the conditions specified are not
fulfilled.

4.2 Applicability to car domains

This document can be used for all domain applications when AUTOSAR Basic
Software modules are used.

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

12 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

5 Dependencies to other modules

This specification is common to all AUTOSAR BSW Modules [1] and contains only
general Specification items, which complement every single BSW Module
specification. It shall not be used as a standalone specification.

Example: The CAN Interface module is specified by this specification (General
Specification for BSW Modules) and by the document Specification on CAN Interface
(SWS CAN Interface).

5.1 File structure

This specification does not completely define the BSW Module file structure.
Nevertheless, names of implementation files not specified here must anyway follow
SWS_BSW_00103.

5.1.1 Module implementation prefix

The BSW Module implementation prefix is used to form various identifiers used in
work products of the BSW Module implementation, e.g. API names, parameter
names, symbols and file names. This prefix is mainly formed by the Module
abbreviation and, when necessary, additional vendor specific information.

The list of Module abbreviations is available in the List of Basic Software Modules [1]
within the column “Module Abbreviation”.

[SWS_BSW_00101] Module abbreviation

⌈The Module abbreviation <Ma> of a BSW Module shall be the same as defined in

the List of Basic Software Modules [1].⌋(SRS_BSW_00300)

The Capitalized module abbreviation <MA> is the Module abbreviation completely

written in upper case.

Examples of BSW Module abbreviations: EcuM, CanIf, OS, Com. The corresponding
Capitalized module abbreviations are ECUM, CANIF, OS, COM.

[SWS_BSW_00102] Module implementation prefix

⌈The Module implementation prefix <Mip> shall be formed in the following way:

<Ma>[_<vi>_<ai>]

Where <Ma> is the Module abbreviation of the BSW Module (SWS_BSW_00101),

<vi> is its vendorId and <ai> is its vendorApiInfix. The sub part in square

brackets [_<vi>_<ai>] is omitted if no vendorApiInfix is defined for the BSW

Module. For Complex Drivers and transformers, the <Mip> is directly derived from

the apiServicePrefix.⌋(SRS_BSW_00300, SRS_BSW_00347)

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

13 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

The elements vendorId and vendorApiInfix are defined in BSW Module

Description Template [4]. Their usage may be obligatory in some situations, like in
case of multiple instantiation of BSW Driver modules. These constraints are not in
scope of SWS BSW General.

The element apiServicePrefix is defined in BSW Module Description Template

[4].

The Capitalized module implementation prefix <MIP> is the Module implementation

prefix completely written in upper case.

In some situations, the Module implementation prefix is written in the same way as
the Module abbreviation. Nevertheless, their meanings are different: The usage of
Module implementation prefix is requested whenever a differentiation within the same
module type could be necessary, e.g. to differentiate symbols from different module
instances.

Examples of Module implementation prefixes:

 FrIf: Prefix for FlexRay Interface module implementation, where no

vendorId and vendorApiInfix are defined.

 Eep_21_LDExt: Prefix for EEPROM driver implementation, where

vendorApiInfix and vendorId are identified by “LDExt” and “21”

respectively.

Examples of Module abbreviations:

 FrIf: FlexRay Interface module abbreviation

 Eep: EEPROM driver module abbreviation

5.1.2 Module implementation files

This specification defines the following file types. Some of these types are mandatory
for all BSW Modules, other depend on the according BSW Module specification:

File type, for all BSW Modules Classification Example: Com

Module documentation mandatory Not defined.

BSW Module description mandatory Not defined. See [4].

Implementation source mandatory Com.c

Implementation header mandatory Com.h

Callback header conditional Com_Cbk.h

Debugging header conditional Com_Dbg.h

Pre-compile time configuration header conditional Com_Cfg.h

Link time configuration source conditional Com_Lcfg.c

Link time configuration header conditional Com_Lcfg.h

Post-build time configuration source conditional Com_PBcfg.c

Post-build time configuration header conditional Com_PBcfg.h

Interrupt frame implementation source conditional Gpt_Irq.c

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

14 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

Table 1: Module Implementation Files

Note that according to AUTOSAR Methodology [11] it is possible to deliver a BSW
Module with its object files and only part of the source code. See also
SWS_BSW_00117.

[SWS_BSW_00103] General file naming convention
⌈The name of all BSW Module implementation files shall be formed in the following
way:

<Mip>[_<Ie>]*.*

The sup-part in square brackets [<Ie>] is an optional implementation specific file

name extension. The wildcards * are replaced according to the different types of files

specified for the module.⌋(SRS_BSW_00300)

Example:
Implementation sources for Can Interface module with vendor specific file name

extensions added: CanIf_MainFncs.c, CanIf_Api.c.

[SWS_BSW_00170] File names are case sensitive

⌈File names shall be considered case sensitive regardless of the file system in which
they are used.⌋(SRS_BSW_00464)

[SWS_BSW_00171] File names are non-ambiguous

⌈It shall not be allowed to name any two files so that they only differ by the case of
their letters.⌋(SRS_BSW_00465)

5.1.3 Imported and exported information

[SWS_BSW_00104] Restrict imported information
⌈The BSW Module shall import only the necessary information (i.e. header files) that
is required to fulfill its functional requirements.⌋(SRS_BSW_00301)

Note that the availability of other modules in the basic software depends on the used
configuration. This has to be considered before including header files of these
modules.

Example: The BSW module implementation is generated by an AUTOSAR toolchain.
The module generator has to check before including header files of other modules if
the respective module is available in the system according to the used configuration.

[SWS_BSW_00105] Restrict exported information
⌈The BSW Module shall export only that kind of information in their corresponding
header files that is explicitly needed by other modules.⌋(SRS_BSW_00302)

This is necessary to avoid modules importing or exporting functionality that could be
misused. Also compile time might possibly be shortened through this restriction.

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

15 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

Example: The NVRAM Manager does not need to know all processor registers just
because some implementation has included the processor register file in another
header file used by the NVRAM Manager.

Note: After the module configuration, some imported or exported information may
also become unnecessary, as part of the implementation may be disabled.

5.1.4 BSW Module Description

[SWS_BSW_00001] Provide BSW Module description

⌈The BSW Module description (.arxml) shall be provided for the module according

to the AUTOSAR Specification of BSW Module Description Template
[4].⌋(SRS_BSW_00423, SRS_BSW_00426, SRS_BSW_00427, SRS_BSW_00334)

This specification does not define any file of the package structure for the BSW
Module Description, as this delivery is specified in AUTOSAR Specification of BSW
Module Description Template [4].

5.1.5 Module documentation

[SWS_BSW_00002] Provide BSW Module documentation

⌈The BSW Module documentation shall be provided with the BSW Module
implementation.
The following content shall be part of it:

 Cover sheet with title, version number, date, company, document status,
document name;

 Change history with version number, date, company, change description,
document status;

 Table of contents (navigable);

 Functional overview;

 Source file list and description;

 Deviations to specification

 Deviations to requirements;

 Used resources (interrupts, µC peripherals etc.);

 Integration description (OS, interface to other modules etc.);

 Configuration description with parameter, description, unit, valid range, default
value, relation to other parameters.

 Examples for:
o The correct usage of the API;
o The configuration of the module.

The following content may be part of it:

 Memory footprint (RAM, ROM, stack size) together with the module
configuration, platform information, compiler and compiler options, which were
used for the calculation.⌋(SRS_BSW_00009, SRS_BSW_00010)

If possible the Memory footprint documentation may include a dependency

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

16 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

formula between configuration elements and used memory (e.g. each configured
DTC additionally requires x bytes ROM and y bytes RAM).

[SWS_BSW_00003] Provide information on supported microcontroller and used tool
chain
⌈If the BSW Module implementation depends on microcontroller, then the BSW
Module documentation shall also contain the following information:

 Microcontroller vendor

 Microcontroller family

 Microcontroller derivative

 Microcontroller stepping (mask revision), if relevant

 Tool chain name and version

 Tool chain options which were used for development / qualification of module
⌋(SRS_BSW_00341)

The scheduling strategy that is built inside the BSW Modules shall be compatible with
the strategy used in the system. To achieve this, the scheduling strategy of module
implementation shall be accordingly documented:

[SWS_BSW_00054] Document calling sequence of Scheduled functions

⌈The BSW Module documentation shall provide information about the execution order
of his Scheduled functions, i.e. for every one of these functions, if it has to be
executed in a specific order or sequence with respect to other BSW Scheduled

function (or functions).⌋(SRS_BSW_00428)

The BSW Module own specification provides further details on the intended
sequence order of its Scheduled functions. This information shall be considered in
documentation either.

[SWS_BSW_00061] Document configuration rules and constraints
⌈The BSW Module implementation shall provide configuration rules and constraints in
the Module documentation to enable plausibility checks of configuration during ECU

configuration time where possible.⌋(SRS_BSW_00167)

5.1.6 Code file structure

The code file structure for the BSW Module implementation is provided in this
chapter. Note that the file structure delivered to user may be different.

Example:
Source code is not delivered; various post-build configuration sets are delivered.

5.1.6.1 Implementation source

The Implementation source provides the implementation for functionality of the BSW
Module.

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

17 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

[SWS_BSW_00004] Provide Implementation source files

⌈The code file structure shall contain one or more files for the implementation of the
provided BSW Module functionality: the Implementation source files. The file names
shall be formed in the following way:

<Mip>[_<Ie>].c

⌋(SRS_BSW_00346)

[SWS_BSW_00060] Declarations within Implementation source files are restricted

⌈The Implementation source files of the BSW Module shall declare all constants,
global data types and functions that are only used by the module internally. Pre-link

time configuration parameters are an exception of this rule.⌋()

To allow the compiler to check for consistency between declaration and definition of
global variables and functions, the Implementation source shall include its own
header file.

[SWS_BSW_00005] Include Implementation header

⌈The module Implementation source files of the BSW Module shall include its own
Implementation header .⌋(SRS_BSW_00346)

The Memory mapping header is necessary to enable the BSW Module to access the
module specific functionality provided by the BSW Memory Mapping [6].

[SWS_BSW_00006] Include Memory mapping header

⌈The Implementation source files of the BSW Module shall include the BSW Memory

mapping header (<Mip>_MemMap.h).⌋(SRS_BSW_00436)

The Module interlink header is necessary in order to access the module specific
functionality provided by the BSW Scheduler.

[SWS_BSW_00007] Include Module interlink header

⌈If the BSW Module uses BSW Scheduler API or if it implements

BswSchedulableEntitys, then the corresponding Implementation source files

shall include the Module interlink header file in order to access the module specific

functionality provided by the BSW Scheduler.⌋(SRS_BSW_00435)

The Module Interlink Header (SchM_<Mip>.h) defines the Basic Software Scheduler

API and any associated data structures that are required by the Basic Software

Scheduler implementation [5]. BswSchedulableEntitys are defined in BSW

Module Description Template [4].

Examples:

The CAN Driver Module implementation file Can_21_EXT.c includes the header file

SchM_Can_21_EXT.h.

The Fee Module implementation file Fee.c includes the header file SchM_Fee.h.

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

18 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

To retrieve Production error EventID symbols and their values the Implementation

header of Diagnostic Event Manager (Dem) is necessary:

[SWS_BSW_00008] Include Implementation header of Dem

⌈If the BSW Module reports errors to Dem, then the corresponding Implementation
source files of the BSW Module shall include the Implementation header of Dem –

Diagnostic Event Manager (Dem.h).⌋(SRS_BSW_00409)

For further information, see chapter 7.2 - Error .

[SWS_BSW_00009] Include own Callback header

⌈If the BSW Module implementation contains Callback functions, then its
Implementation source files shall include the BSW Modules’ own Callback header

.⌋(SRS_BSW_00370)

To access callbacks from other modules, the according Callback headers must be
included either. It must be taken in consideration that some headers are not
necessary if the usage of the according callbacks is not part of implementation after
configuration. See also SWS_BSW_00104.

[SWS_BSW_00010] Include Callback headers

⌈If the BSW Module implementation calls Callback functions from other modules,
then the Implementation source files of the BSW Module shall include the Callback
headers from all modules defining the called Callback functions. In case the callback
functions are located on application layer, then the BSW module shall include the

RTE exported application header file instead.⌋
(SRS_BSW_00370)

The inclusion of application header file is specified in SWS_BSW_00023.

The implementation of Interrupt service routines called from Interrupt frames is done
in the Implementation source. See also SWS_BSW_00021.

[SWS_BSW_00017] Implement ISRs
⌈If the BSW Module implements Interrupt Service Routines, then these routines shall
be implemented in one or more of its Implementation source

files.⌋(SRS_BSW_00314)

[SWS_BSW_00181] Implement ISRs in a separate file
⌈If the BSW Module implements Interrupt Service Routines, then these routines
should be implemented in a file or in files separated from the remaining
implementation.⌋(SRS_BSW_00314)

5.1.6.2 Link time configuration source

The Link time configuration source contains definitions of link time configuration
parameters for the BSW Module.

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

19 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

[SWS_BSW_00013] Provide Link time configuration source files

⌈If the BSW Module implementation contains link time configuration parameters, the
code file structure shall contain one or more files for their definition: the Link time
configuration source files. The file names shall be formed in the following way:

<Mip>[_<Ie>]_Lcfg.c

⌋(SRS_BSW_00346)

[SWS_BSW_00014] Define all Link time configuration parameters

⌈The Link time configuration source shall contain definitions for all link time

configuration parameters specified for this module.⌋(SRS_BSW_00158,
SRS_BSW_00380)

See also chapter 10.2.4 - Link time configuration.

5.1.6.3 Post-build time configuration source

The Post-build time configuration source contains definitions of post-build time
configuration parameters for the BSW Module.

[SWS_BSW_00015] Provide Post-build time configuration source files

⌈If the BSW Module implementation contains post-build time configuration
parameters, then the code file structure shall contain one or more files for their
definition: the Post-build time configuration source files. The file names shall be
formed in the following way:

<Mip>[_<Ie>]_PBcfg.c

⌋(SRS_BSW_00346)

[SWS_BSW_00063] Define all Post-build time configuration parameters

⌈The Post-build time configuration source files shall contain definitions for all post-
build time configuration parameters specified for this module. Definitions of
Precompile and Linktime configuration parameters may as well be placed in Post-
build time configuration source files.⌋(SRS_BSW_00158, SRS_BSW_00380)

See also chapter 10.2.5 - Post-build time configuration.

Rationale for adding Precompile and Linktime configuration parameters in Post-build
time configuration source files:
Use Case 1: In case a new configuration container is introduced in Postbuild time all
the Precompile and Linktime which may exist in this configuration container may be
assigned a new value.
Use Case 2: In case a configuration container is implemented as one struct in c-code
that contains at least one postbuild configurable parameter the entire struct needs to
be placed in the Post-build time configuration source files.

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

20 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

5.1.6.4 Interrupt frame implementation source

The Interrupt frame implementation source contains implementation of Interrupt
frame routines of the BSW Module.

The implementation of Interrupt frames, done within the Interrupt frame
implementation source, is separated from the implementation of Interrupt service
routines, which is done within the Implementation source (SWS_BSW_00017)

This separation enables flexibility in the usage of different compilers and or OS
integrations. For instance, the interrupt could be realized as ISR frame of the
operating system or implemented directly without changing the driver code. The
service routine can be called directly during module test without the need of causing
an interrupt.

[SWS_BSW_00016] Provide Interrupt frame implementation source files

⌈If the BSW Module implements Interrupt frames, then the code file structure shall
contain one or more files for their implementation: the Interrupt frame implementation
source files. The file names shall be formed in the following way:

<Mip>[_<Ie>]_Irq.c

⌋(SRS_BSW_00314)

[SWS_BSW_00021] Implement Interrupt frame routines

⌈The Interrupt frame implementation source shall contain implementation of all

Interrupt frame routines specified for this BSW Module.⌋(SRS_BSW_00314)

The declaration of Interrupt frames routines is done in the Implementation header.
See also SWS_BSW_00018.

[SWS_BSW_00019] Include Implementation Header to Interrupt frame
implementation source

⌈The Interrupt frame implementation source files of a BSW Module shall include the
Implementation Header of this BSW Module.⌋(SRS_BSW_00314)

The implementation of Interrupt service routines called from Interrupt frames is done
in the Implementation source. See also SWS_BSW_00017.

5.1.7 Header file structure

5.1.7.1 Implementation header

The Implementation header of the BSW Module provides the declaration of the
modules’ API. This header file or files are included by other modules that use the
BSW Modules’ API.

[SWS_BSW_00020] Provide Implementation header file

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

21 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

⌈The header file structure shall contain one or more files that provide the declaration
of functions from the BSW Module API: the Implementation header files. The file
names shall be formed in the following way:

<Mip>[_<Ie>].h

At least the file <Mip>.h shall be available. ⌋(SRS_BSW_00346)

[SWS_BSW_00110] Content of Implementation header

⌈The Implementation header files may contain extern declarations of constants,
global data and services. They shall at least contain those declarations of constants,

global data and services that are available to users of the BSW Module. ⌋()

To avoid double and inconsistent definition of data types in both BSW Module and
Software Components, common data types are defined in the RTE Type header file.
This file is included in BSW Module indirectly through its Application Types Header
File.

[SWS_BSW_00023] Include Application Types Header File to Implementation
header

⌈If the BSW Module implements AUTOSAR Services, then it shall include its
Application Types Header File in its Implementation header file or

files.⌋(SRS_BSW_00447)

The Application Types Header File is named Rte_<swc>_Type.h, where <swc> is

the Short Name of the according Software Component Type. More information about
this file can be found in the Specification of RTE [5] – section “Application Types
Header File”.

Example:

The same data Data Type NvM_RequestResultType is used in BSW C-API

NvM_GetErrorStatus and in the AUTOSAR Interface NvMService operation

GetErrorStatus (OUT NvM_RequestResultType RequestResultPtr).

This implies:

 The proper types shall be generated in Rte_Type.h.

 Rte_Type.h shall be included in Implementation header of BSW Module

(NvM.h) via Rte_NvM_Type.h

 Rte_Type.h shall be included in the application types header file

(Rte_<swc>_Type.h) of SW-C modules that are using the service

GetErrorStatus.

This header is included in the application header file (Rte_<swc>.h), which is used

by the SW-C implementation. These headers are generated by the RTE Generator.

[SWS_BSW_00024] Include AUTOSAR Standard Types Header to Implementation
header

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

22 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

⌈If the BSW Module implementation uses AUTOSAR Standard Types, then its
Implementation header file or files shall include the AUTOSAR Standard Types

Header (Std_Types.h).⌋(SRS_BSW_00348)

The AUTOSAR Standard Types Header includes the following headers:

 Platform Specific Types Header (Platform_Types.h)

 Compiler Specific Language Extension Header (Compiler.h)

For more information on AUTOSAR Standard Types, see also chapter 7.1.19 - Data
types.

[SWS_BSW_00048] Declare API services in Implementation header

⌈If the BSW Module implements API services, then their declaration shall be done in
its Implementation header file or files. ⌋()

See also 8.3.1 - General specification on API functions.

[SWS_BSW_00018] Declare Interrupt frame routines

⌈If the BSW Module implements Interrupt frame routines (SWS_BSW_00021), then
their declaration shall be done in its Implementation header file or files.

⌋(SRS_BSW_00314)

[SWS_BSW_00043] Declare Interrupt Service Routines

⌈If the BSW Module implements Interrupt Service Routines (ISR), then their
declaration shall be done in its Implementation header file or

files.⌋(SRS_BSW_00439)

[SWS_BSW_00068]
Support Interrupt Service Routines categories 1 and 2

⌈If the BSW Module implements Interrupt Service Routines (ISR) and provides
declarations for both interrupt categories CAT1 and CAT2, then the interrupt category
shall be selectable via configuration. ⌋(SRS_BSW_00439)

See also chapter 7.1.15 - Interrupt service routines.

[SWS_BSW_00210] Exclusion of MainFunction and BswModuleClientServerEntrys
from the Implementation header

⌈The module header files shall not include the prototype declarations of
MainFunctions and BswModuleClientServerEntrys that are expected to be invoked
by the RTE/BswScheduler.⌋()

5.1.7.2 Application Header File

If the BSW Module implements AUTOSAR Services, the according Application
Header File is generated with the RTE. This file provides interfaces for the interaction
of the BSW Module with the RTE. The Application Header File is named

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

23 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

Rte_<swc>.h, where <swc> is the Short Name of the according Software

Component Type.

[SWS_BSW_00025] Include Application Header File

⌈If the BSW Module implements AUTOSAR Services, then it shall include its
Application Header File in module files using RTE interfaces. ⌋(SRS_BSW_00447)

[SWS_BSW_00069] Restrict inclusion for Application Header File

⌈The Application Header File shall not be included in BSW Module files that are
included directly or indirectly by other modules.⌋(SRS_BSW_00447)

If the Application Header File is included in module files which are included directly or
indirectly by other modules, other Services or CDDs would also include several
Application Header Files and this is not supported by RTE. See Specification of RTE
[5] – section “File Contents”, requirement [SWS_Rte_1006].

More information about the Application Header File can be found in the Specification
of RTE [5] – section “Application Header File”.

Note that the application header file includes by its own the Application Types
Header File. See Specification of RTE [5], [SWS_Rte_7131], and SWS_BSW_00023.

5.1.7.3 Callback header

[SWS_BSW_00026] Provide Callback header files

⌈If the BSW Module implementation contains Callback functions, then the header file
structure shall contain one or more files that provide their declarations: the Callback
header files. The file names shall be formed in the following way:

<Mip>[_<Ie>]_Cbk.h

⌋(SRS_BSW_00346, SRS_BSW_00370)

Example:
The Callback header content for module NVRAM Manager may look like this:

/* File: NvM_Cbk.h */

…

void NvM_NotifyJobOk (void);

void NvM_NotifyJobError (void);

…

The separation of callback declaration from explicitly exported module functions is
necessary to prevent misuse of unintentionally exposed API. Only modules calling
callbacks of this module need to include its Callback header.

Please refer to chapter 8.4 “Callback notifications” of according BSW Module SWS
for information on callbacks defined for this module.

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

24 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

5.1.7.4 Debugging header

The implementation of debugging features is optional in AUTOSAR modules. The
debugging support is helped by the definition of Debugging variables.

[SWS_BSW_00027] {OBSOLETE} Provide Debugging header files

⌈If the BSW Module implementation contains Debugging variables the header file
structure shall contain one or more files that provide their declarations: the
Debugging header files. The file name shall be formed in the following way:

<Mip>[_<Ie>]_Dbg.h

⌋(SRS_BSW_00346, SRS_BSW_00442)

[SWS_BSW_00028] {OBSOLETE} Declare Debugging variables

⌈If the BSW Module implementation contains Debugging variables, their declaration

shall be provided in its Debugging header file or files.⌋(SRS_BSW_00442)

[SWS_BSW_00141] {OBSOLETE} Access to type definitions of Debugging variables

⌈If the BSW Module implementation contains Debugging variables, all type definitions
of Debugging variables shall be accessible by including the module Implementation

header.⌋(SRS_BSW_00442)

For further information, see chapter 7.1.18 - Debugging support.

5.1.7.5 Pre-compile time configuration header

The Pre-compile time configuration header contains definitions of pre-compile time
configuration parameters for the BSW Module.

[SWS_BSW_00030] Provide Pre-compile time configuration header files

⌈All BSW Module implementation contains definitions of pre-compile time

configuration parameters which are defined as pre-processor directives(#define).

The code file structure shall contain one or more files for the definition of these
parameters: the Pre-compile time configuration header files. The file names shall be
formed in the following way:

<Mip>[_<Ie>]_Cfg.h

⌋(SRS_BSW_00346, SRS_BSW_00381)

[SWS_BSW_00031] Define all Pre-compile time configuration parameters

(#define)

⌈The Pre-compile time configuration header shall contain definitions for all Pre-

compile time configuration parameters defined as pre-processor directive(#define)

which are specified for this BSW Module.⌋(SRS_BSW_00158, SRS_BSW_00345,
SRS_BSW_00381)

Example:

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

25 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

The pre-processor switches for Eep module are defined in Eep_21_LDExt_Cfg.h.

See also chapter 10.2.3 - Pre-compile time configuration.

5.1.7.6 Link time configuration header

The Link time configuration header contains declarations of link time configuration
parameters for this BSW Module.

[SWS_BSW_00032] Provide Link time configuration header files

⌈If the BSW Module implementation contains link time configuration parameters, the
code file structure shall contain one or more files for their declaration: the Link time
configuration header files. The file names shall be formed in the following way:

<Mip>[_<Ie>]_Lcfg.h

⌋(SRS_BSW_00346)

[SWS_BSW_00033] Declare all Link time configuration parameters

⌈The Link time configuration header files shall contain declarations for all link time
configuration parameters specified for this BSW Module.⌋(SRS_BSW_00158,
SRS_BSW_00380)

See also chapter 10.2.4 - Link time configuration.

5.1.7.7 Post-build time configuration header

The Post-build time configuration header contains declarations of post-build time
configuration parameters for the BSW Module.

[SWS_BSW_00034] Provide Post-build time configuration header files

⌈If the BSW Module implementation contains post-build time configuration
parameters, the code file structure shall contain one or more files for declaration of
these parameters: the Post-build time configuration header files. The file names shall
be formed in the following way:

<Mip>[_<Ie>]_PBcfg.h

⌋(SRS_BSW_00346)

[SWS_BSW_00035] Declare all Post-build time configuration parameters

⌈The Post-build time configuration header files shall contain declarations for all post-
build time configuration parameters specified for this BSW Module. Declarations of
Precompile and Linktime configuration parameters may as well be placed in Post-
build time configuration header files.⌋(SRS_BSW_00158)

See also chapter 10.2.5 - Post-build time configuration.

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

26 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

Rationale for adding Precompile and Linktime configuration parameters in Post-build
time configuration header files:
Use Case 1: In case a new configuration container is introduced in Postbuild time all
the Precompile and Linktime which may exist in this configuration container may be
assigned a new value.
Use Case 2: In case a configuration container is implemented as one struct in c-code
that contains at least one postbuild configurable parameter the entire struct needs to
be placed in the Post-build time configuration header files.

5.1.8 Version check

The integration of AUTOSAR BSW Modules is supported by the execution of Inter
Module Checks: Each BSW Module performs a pre-processor check of the versions
of all imported include files. During configuration, a methodology supporting tool
checks whether the version numbers of all integrated modules belong to the same
AUTOSAR major and minor release, i.e. if all modules are from the same AUTOSAR
baseline. If not, an error is reported.

The execution of Inter Module Checks is necessary to avoid integration of
incompatible modules. Version conflicts are then detected in early integration phase.

[SWS_BSW_00036] Perform Inter Module Checks

⌈The BSW Module shall perform Inter Module Checks to avoid integration of
incompatible files: For every included header file that does not belong to this module,
the following Published information elements (SWS_BSW_00059) shall be verified
through pre-processor checks:

 Major AUTOSAR Release Number (<MIP>_AR_RELEASE_MAJOR_VERSION)

 Minor AUTOSAR Release Number (<MIP>_AR_RELEASE_MINOR_VERSION)

If the values are not identical to the values expected by the implementation of this
module, an error shall be reported.⌋(SRS_BSW_00004)

Note: The intention of the AUTOSAR standard is to keep revisions of the same
AUTOSAR Major and Minor release compatible.

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

27 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

6 Requirements traceability

For every BSW Module, both the according BSW specification and this document
(SWS BSW General) satisfy requirements from AUTOSAR General Requirements on
Basic Software Modules [3]. The following situations are possible:

 Requirement traceability from: Result for BSW Module
implementation: Module SWS SWS BSW General

1 “Not applicable.” “See module’s SWS.” Requirement is not applicable
for BSW Module.

2 “Not applicable.” Specified Requirement is not applicable
for BSW Module.
The module implementation can
ignore specification items from
SWS BSW General that are
tracing to this requirement.
Please attempt also to
comments in module’s own
SWS document.

3 Specified “See module’s SWS.” Requirement is applicable to
BSW Module.
The module specific SWS
satisfies this requirement.

4 “Satisfied by SWS
BSW General”

Specified Requirement is applicable to
BSW Module.
SWS BSW General satisfies this
requirement.

5 Specified Specified Requirement is applicable to
BSW Module.
Both general SWS and module
specific SWS are needed to
satisfy this requirement.
I.e. module specific specification
items complement general
specification items from SWS
BSW General.

Requirements traceability to document:
General Requirements on Basic Software Modules [3]

Requirement Description Satisfied by

- - SWS_BSW_00048

- - SWS_BSW_00060

- - SWS_BSW_00110

- - SWS_BSW_00144

- - SWS_BSW_00186

- - SWS_BSW_00187

- - SWS_BSW_00188

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

28 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

- - SWS_BSW_00190

- - SWS_BSW_00191

- - SWS_BSW_00192

- - SWS_BSW_00200

- - SWS_BSW_00201

- - SWS_BSW_00202

- - SWS_BSW_00203

- - SWS_BSW_00204

- - SWS_BSW_00205

- - SWS_BSW_00206

- - SWS_BSW_00207

- - SWS_BSW_00208

- - SWS_BSW_00209

- - SWS_BSW_00210

- - SWS_BSW_00212

- - SWS_BSW_00218

- - SWS_BSW_00219

- - SWS_BSW_00220

- - SWS_BSW_00221

- - SWS_BSW_00222

- - SWS_BSW_00223

- - SWS_BSW_00224

- - SWS_BSW_00225

- - SWS_BSW_00226

- - SWS_BSW_00227

- - SWS_BSW_00230

- - SWS_BSW_00231

- - SWS_BSW_00232

- - SWS_BSW_00233

SRS_BSW_00001 - noname

SRS_BSW_00002 - noname

SRS_BSW_00003 All software modules shall provide
version and identification
information

SWS_BSW_00059

SRS_BSW_00004 All Basic SW Modules shall perform
a pre-processor check of the
versions of all imported include files

SWS_BSW_00036

SRS_BSW_00006 The source code of software
modules above the ÂµC
Abstraction Layer (MCAL) shall not
be processor and compiler
dependent.

SWS_BSW_00119

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

29 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

SRS_BSW_00007 All Basic SW Modules written in C
language shall conform to the
MISRA C 2004 Standard.

SWS_BSW_00115

SRS_BSW_00009 All Basic SW Modules shall be
documented according to a
common standard.

SWS_BSW_00002

SRS_BSW_00010 The memory consumption of all
Basic SW Modules shall be
documented for a defined
configuration for all supported
platforms.

SWS_BSW_00002

SRS_BSW_00101 The Basic Software Module shall be
able to initialize variables and
hardware in a separate initialization
function

SWS_BSW_00150

SRS_BSW_00158 All modules of the AUTOSAR Basic
Software shall strictly separate
configuration from implementation

SWS_BSW_00014, SWS_BSW_00031,
SWS_BSW_00033, SWS_BSW_00035,
SWS_BSW_00063

SRS_BSW_00159 All modules of the AUTOSAR Basic
Software shall support a tool based
configuration

SWS_BSW_00116

SRS_BSW_00160 Configuration files of AUTOSAR
Basic SW module shall be readable
for human beings

SWS_BSW_00157

SRS_BSW_00164 The Implementation of interrupt
service routines shall be done by
the Operating System, complex
drivers or modules

SWS_BSW_00137

SRS_BSW_00167 All AUTOSAR Basic Software
Modules shall provide configuration
rules and constraints to enable
plausibility checks

SWS_BSW_00061

SRS_BSW_00171 Optional functionality of a Basic-SW
component that is not required in
the ECU shall be configurable at
pre-compile-time

SWS_BSW_00029

SRS_BSW_00300 All AUTOSAR Basic Software
Modules shall be identified by an
unambiguous name

SWS_BSW_00101, SWS_BSW_00102,
SWS_BSW_00103

SRS_BSW_00301 All AUTOSAR Basic Software
Modules shall only import the
necessary information

SWS_BSW_00104

SRS_BSW_00302 All AUTOSAR Basic Software
Modules shall only export
information needed by other
modules

SWS_BSW_00105

SRS_BSW_00304 All AUTOSAR Basic Software
Modules shall use the following
data types instead of native C data
types

SWS_BSW_00120

SRS_BSW_00305 Data types naming convention SWS_BSW_00146

SRS_BSW_00306 AUTOSAR Basic Software Modules SWS_BSW_00121

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

30 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

shall be compiler and platform
independent

SRS_BSW_00307 Global variables naming convention SWS_BSW_00130

SRS_BSW_00308 AUTOSAR Basic Software Modules
shall not define global data in their
header files, but in the C file

SWS_BSW_00129

SRS_BSW_00309 All AUTOSAR Basic Software
Modules shall indicate all global
data with read-only purposes by
explicitly assigning the const
keyword

SWS_BSW_00131

SRS_BSW_00310 API naming convention SWS_BSW_00148

SRS_BSW_00314 All internal driver modules shall
separate the interrupt frame
definition from the service routine

SWS_BSW_00016, SWS_BSW_00017,
SWS_BSW_00018, SWS_BSW_00019,
SWS_BSW_00021, SWS_BSW_00181

SRS_BSW_00318 Each AUTOSAR Basic Software
Module file shall provide version
numbers in the header file

SWS_BSW_00059

SRS_BSW_00321 The version numbers of AUTOSAR
Basic Software Modules shall be
enumerated according specific
rules

SWS_BSW_00162

SRS_BSW_00323 All AUTOSAR Basic Software
Modules shall check passed API
parameters for validity

SWS_BSW_00049

SRS_BSW_00325 The runtime of interrupt service
routines and functions that are
running in interrupt context shall be
kept short

SWS_BSW_00167

SRS_BSW_00326 - SWS_BSW_00182

SRS_BSW_00327 Error values naming convention SWS_BSW_00125

SRS_BSW_00328 All AUTOSAR Basic Software
Modules shall avoid the duplication
of code

SWS_BSW_00127

SRS_BSW_00330 It shall be allowed to use macros
instead of functions where source
code is used and runtime is critical

SWS_BSW_00132

SRS_BSW_00333 For each callback function it shall
be specified if it is called from
interrupt context or not

SWS_BSW_00167

SRS_BSW_00334 All Basic Software Modules shall
provide an XML file that contains
the meta data

SWS_BSW_00001

SRS_BSW_00335 Status values naming convention SWS_BSW_00124

SRS_BSW_00337 Classification of development errors SWS_BSW_00073

SRS_BSW_00338 - SWS_BSW_00042, SWS_BSW_00045

SRS_BSW_00339 Reporting of production relevant
error status

SWS_BSW_00046, SWS_BSW_00066

SRS_BSW_00341 Module documentation shall SWS_BSW_00003

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

31 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

contains all needed informations

SRS_BSW_00342 It shall be possible to create an
AUTOSAR ECU out of modules
provided as source code and
modules provided as object code,
even mixed

SWS_BSW_00117

SRS_BSW_00344 BSW Modules shall support link-
time configuration

SWS_BSW_00056

SRS_BSW_00345 BSW Modules shall support pre-
compile configuration

SWS_BSW_00031

SRS_BSW_00346 All AUTOSAR Basic Software
Modules shall provide at least a
basic set of module files

SWS_BSW_00004, SWS_BSW_00005,
SWS_BSW_00013, SWS_BSW_00015,
SWS_BSW_00020, SWS_BSW_00026,
SWS_BSW_00027, SWS_BSW_00030,
SWS_BSW_00032, SWS_BSW_00034

SRS_BSW_00347 A Naming seperation of different
instances of BSW drivers shall be in
place

SWS_BSW_00102, SWS_BSW_00126,
SWS_BSW_00148, SWS_BSW_00153

SRS_BSW_00348 All AUTOSAR standard types and
constants shall be placed and
organized in a standard type
header file

SWS_BSW_00024

SRS_BSW_00353 All integer type definitions of target
and compiler specific scope shall
be placed and organized in a single
type header

SWS_BSW_00120, SWS_BSW_00122

SRS_BSW_00355 - SWS_BSW_00122

SRS_BSW_00358 The return type of init() functions
implemented by AUTOSAR Basic
Software Modules shall be void

SWS_BSW_00185

SRS_BSW_00359 All AUTOSAR Basic Software
Modules callback functions shall
avoid return types other than void if
possible

SWS_BSW_00172

SRS_BSW_00360 AUTOSAR Basic Software Modules
callback functions are allowed to
have parameters

SWS_BSW_00173

SRS_BSW_00361 All mappings of not standardized
keywords of compiler specific scope
shall be placed and organized in a
compiler specific type and keyword
header

SWS_BSW_00178

SRS_BSW_00370 - SWS_BSW_00009, SWS_BSW_00010,
SWS_BSW_00026

SRS_BSW_00371 The passing of function pointers as
API parameter is forbidden for all
AUTOSAR Basic Software Modules

SWS_BSW_00149

SRS_BSW_00373 The main processing function of
each AUTOSAR Basic Software
Module shall be named according
the defined convention

SWS_BSW_00153, SWS_BSW_00154

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

32 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

SRS_BSW_00374 All Basic Software Modules shall
provide a readable module vendor
identification

SWS_BSW_00059, SWS_BSW_00161

SRS_BSW_00376 - SWS_BSW_00154

SRS_BSW_00378 AUTOSAR shall provide a boolean
type

SWS_BSW_00142

SRS_BSW_00379 All software modules shall provide a
module identifier in the header file
and in the module XML description
file.

SWS_BSW_00059

SRS_BSW_00380 Configuration parameters being
stored in memory shall be placed
into separate c-files

SWS_BSW_00014, SWS_BSW_00033,
SWS_BSW_00063

SRS_BSW_00381 The pre-compile time parameters
shall be placed into a separate
configuration header file

SWS_BSW_00030, SWS_BSW_00031

SRS_BSW_00397 The configuration parameters in
pre-compile time are fixed before
compilation starts

SWS_BSW_00183

SRS_BSW_00398 The link-time configuration is
achieved on object code basis in
the stage after compiling and before
linking

SWS_BSW_00184

SRS_BSW_00400 Parameter shall be selected from
multiple sets of parameters after
code has been loaded and started

SWS_BSW_00050, SWS_BSW_00228

SRS_BSW_00402 Each module shall provide version
information

SWS_BSW_00059

SRS_BSW_00404 BSW Modules shall support post-
build configuration

SWS_BSW_00160

SRS_BSW_00405 BSW Modules shall support
multiple configuration sets

SWS_BSW_00228

SRS_BSW_00407 Each BSW module shall provide a
function to read out the version
information of a dedicated module
implementation

SWS_BSW_00052, SWS_BSW_00059,
SWS_BSW_00064, SWS_BSW_00164,
SWS_BSW_00168

SRS_BSW_00408 All AUTOSAR Basic Software
Modules configuration parameters
shall be named according to a
specific naming rule

SWS_BSW_00126

SRS_BSW_00409 All production code error ID
symbols are defined by the Dem
module and shall be retrieved by
the other BSW modules from Dem
configuration

SWS_BSW_00008, SWS_BSW_00143

SRS_BSW_00410 Compiler switches shall have
defined values

SWS_BSW_00123

SRS_BSW_00411 All AUTOSAR Basic Software
Modules shall apply a naming rule
for enabling/disabling the existence
of the API

SWS_BSW_00051

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

33 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

SRS_BSW_00413 An index-based accessing of the
instances of BSW modules shall be
done

SWS_BSW_00047, SWS_BSW_00148

SRS_BSW_00414 Init functions shall have a pointer to
a configuration structure as single
parameter

SWS_BSW_00049, SWS_BSW_00050,
SWS_BSW_00151, SWS_BSW_00215,
SWS_BSW_00216, SWS_BSW_00229

SRS_BSW_00423 BSW modules with AUTOSAR
interfaces shall be describable with
the means of the SW-C Template

SWS_BSW_00001, SWS_BSW_00040

SRS_BSW_00424 BSW module main processing
functions shall not be allowed to
enter a wait state

SWS_BSW_00156

SRS_BSW_00426 BSW Modules shall ensure data
consistency of data which is shared
between BSW modules

SWS_BSW_00001, SWS_BSW_00038,
SWS_BSW_00134

SRS_BSW_00427 ISR functions shall be defined and
documented in the BSW module
description template

SWS_BSW_00001, SWS_BSW_00041,
SWS_BSW_00065

SRS_BSW_00428 A BSW module shall state if its
main processing function(s) has to
be executed in a specific order or
sequence

SWS_BSW_00054

SRS_BSW_00429 BSW modules shall be only allowed
to use OS objects and/or related
OS services

SWS_BSW_00138

SRS_BSW_00433 Main processing functions are only
allowed to be called from task
bodies provided by the BSW
Scheduler

SWS_BSW_00133

SRS_BSW_00435 - SWS_BSW_00007

SRS_BSW_00436 - SWS_BSW_00006

SRS_BSW_00438 Configuration data shall be defined
in a structure

SWS_BSW_00050, SWS_BSW_00057,
SWS_BSW_00158

SRS_BSW_00439 Enable BSW modules to handle
interrupts

SWS_BSW_00043, SWS_BSW_00068

SRS_BSW_00440 The callback function invocation by
the BSW module shall follow the
signature provided by RTE to
invoke servers via Rte_Call API

SWS_BSW_00180

SRS_BSW_00441 Naming convention for type, macro
and function

SWS_BSW_00124

SRS_BSW_00442 {OBSOLETE} The AUTOSAR
architecture shall support
standardized debugging and tracing
features

SWS_BSW_00027, SWS_BSW_00028,
SWS_BSW_00044, SWS_BSW_00139,
SWS_BSW_00140, SWS_BSW_00141

SRS_BSW_00447 Standardizing Include file structure
of BSW Modules Implementing
Autosar Service

SWS_BSW_00023, SWS_BSW_00025,
SWS_BSW_00069, SWS_BSW_00147

SRS_BSW_00450 A Main function of a un-initialized
module shall return immediately

SWS_BSW_00037, SWS_BSW_00071,
SWS_BSW_00072

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

34 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

SRS_BSW_00451 Hardware registers shall be
protected if concurrent access to
these registers occur

SWS_BSW_00179

SRS_BSW_00460 Reentrancy Levels SWS_BSW_00039

SRS_BSW_00463 Naming convention of callout
prototypes

SWS_BSW_00135, SWS_BSW_00136

SRS_BSW_00464 File names shall be considered
case sensitive regardless of the
filesystem in which they are used

SWS_BSW_00170

SRS_BSW_00465 It shall not be allowed to name any
two files so that they only differ by
the cases of their letters

SWS_BSW_00171

SRS_BSW_00467 The init / deinit services shall only
be called by BswM or EcuM

SWS_BSW_00150, SWS_BSW_00152

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

35 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

7 Functional specification

7.1 General implementation specification

7.1.1 Conformance to MISRA C

MISRA C describes programming rules for the C programming language and a
process to implement and follow these rules.

[SWS_BSW_00115] Conformance to MISRA C
⌈If the BSW Module implementation is written in C language, then it shall conform to

the MISRA C 2004 Standard [18].⌋(SRS_BSW_00007)

Only in technically reasonable and exceptional cases, a MISRA violation is
permissible. Such violations against MISRA rules shall be clearly identified and
documented within comments in the C source code.

Example: MISRA violations could be commented next to the instruction causing the
violation saying "/* MISRA RULE XX VIOLATION: This is the reason why the MISRA
rule could not be followed in this special case*/" while XX is the MISRA number.

7.1.2 Conformance to AUTOSAR Basic Software Requirements

The BSW Module implementation shall conform to all applicable Basic Software
Requirements, which are described in document SRS BSW General [3].

Note that some BSW Module specifications, in particular included code examples,
may ignore some General BSW requirement for sake of simplicity. Examples:

 Memory abstraction is not used within the BSW specification text because of
readability.

 The use of pre-processor directives (#defines) without “u” or “s” is widely

present in the specifications, but this violates MISRA.

However, the implementation shall not interpret this as a simplification, redefinition or
relaxation of general BSW requirements.

7.1.3 Conformance to AUTOSAR Methodology

The BSW Module implementation shall consider the AUTOSAR (see chapter 3.1):,
e.g. supporting the capability use cases Develop Basic Software and Integrate
Software for ECU.

[SWS_BSW_00116] Support to tool-based configuration
⌈The BSW Module implementation shall support a tool based configuration, as
described in AUTOSAR Methodology [11].⌋(SRS_BSW_00159)

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

36 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

For more information about ECU configuration, see also AUTOSAR Specification of
ECU Configuration [15].

With the AUTOSAR Methodology it is possible to configure an AUTOSAR ECU out of
BSW Modules provided as source code and out of BSW Modules provided as object
code, or even mixed. This must be of course supported by the implementation, i.e. it
shall not require that the source code is always part of the delivery.

[SWS_BSW_00117] Support object code delivery and configuration
⌈ The BSW Module implementation shall support configuration of its link-time and
post-build configuration parameters even if only the object code and the
corresponding header files are available, i.e. even if the source code files are not
available.⌋(SRS_BSW_00342)

7.1.4 Platform independency and compiler abstraction

According to their dependency on implementation platform, this specification
classifies BSW Modules in two distinct categories:

 Platform independent BSW Modules: All BSW Modules except Complex
Drivers, MCAL modules and the OS.

 Platform dependent BSW Modules: MCAL modules, Complex Drivers, OS.

The platform dependency comprises dependencies on used toolchain and hardware,
e.g. compiler and processor dependencies

Platform dependent BSW Modules have or may have direct access to microcontroller
hardware. Thus, their implementation is platform specific.

Platform independent BSW Modules can be developed once and then be compilable
for all platforms without any changes. Any necessary processor or compiler specific
instructions (e.g. memory locators, pragmas, use of atomic bit manipulations etc.)
have to be encapsulated by macros and imported through include files. This is
necessary to minimize number of variants and the according development effort.

The Microcontroller Abstraction Layer (MCAL) is defined in AUTOSAR Layered
Software Architecture [2]. The list of BSW Modules from MCAL is available in the List
of BSW Modules [1]: Microcontroller Drivers, I/O Drivers, Communication Drivers and
Memory Drivers.

[SWS_BSW_00119] Platform independent BSW Modules

⌈If the BSW Module is classified as Platform independent BSW Module, then its

source code shall not be processor dependent.⌋(SRS_BSW_00006)

The direct use of not standardized keywords like _near, _far, _pascal in the

source code would create compiler and platform dependencies, that must strictly be

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

37 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

avoided. If no precautions are made, portability and reusability of affected code is
deteriorated and effective release management is costly and hard to maintain.

[SWS_BSW_00121] Usage of platform or compile specific keywords is restricted
⌈The BSW Module implementation shall not use compiler and platform specific
keywords directly.⌋(SRS_BSW_00306)

[SWS_BSW_00178] Mapping of compile specific keywords
⌈If the BSW Module implementation needs compiler specific keywords, then these
keywords shall be redefined (mapped) in a separate file, the Compiler Specific

Language Extension Header (Compiler.h).⌋(SRS_BSW_00361)

Example: Compiler specific keywords can be mapped to compiler independent

keywords by defining macros in Compiler.h:

/* Compiler.h */

#define FAR(X) __far__ X

This enables the usage of this macro within source code in the following way:

FAR(void) function();

In this example, the compiler dependency is encapsulated in a separate file

(Compiler.h) which can be exchanged if a new compiler is used. This enables the

provision of a compiler specific header containing proprietary pre-processor
directives as well as wrapper macros for all specialized language extensions.

Note that different compilers can require extended keywords to be placed in different
places. Example:

Compiler 1 requires:
void __far__ function();

Compiler 2 requires:

__far__ void function();

In this case it is not possible to accommodate the different implementations with
inline macros, so a function-like macro style is adopted instead. This macro wraps
the return type of the function and therefore permits additions to be made, such as

__far__, either before or after the return type.

Example:

Compiler 1:
/* Compiler.h */
#define FAR(x) x __far__

Compiler 2:

/* Compiler.h */
#define FAR(x) __far__ x

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

38 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

The following usage can expand to the examples given above:

FAR(void) function();

Although this last example conflicts with the MISRA Rule 19.4, see chapter 3.1, it is a
reasonable solution and this exception is acceptable when necessary.

7.1.5 Configurability

Plausibility checks on configuration parameters can be made by a configuration tool
during configuration or by the pre-processor during runtime. See also
BSW_SWS_061

Detailed configuration rules and constraints may also be part of module’s own
specification and the BSW Module’s documentation, which is delivered with the
module implementation.

Optional functionalities of a BSW Module shall not consume resources (RAM, ROM
and runtime). These functionalities can be enabled or disabled at pre-compile time
with suitable configuration parameters, like defined in chapter 10 of the respective
BSW Module specification.

[SWS_BSW_00029] Implement configuration of optional functionality
⌈If the BSW Module contains optional functionality, then this functionality shall be

enabled (STD_ON) or disabled (STD_OFF) by a Pre-compile time configuration

parameter.⌋(SRS_BSW_00171)

Disabled functionality will not become part of compiled code. If the code is
automatically generated, e.g. after configuration, the disabled functionality may even
not be part of source code. It may also never have been implemented, if the BSW
software provider does not support this configuration.

These symbols, STD_ON and STD_OFF, and their values are defined in

Std_Types.h(SWS_BSW_00024).

The module configuration shall be according to the AUTOSAR Methodology, see
chapter 3.1, see SWS_BSW_118. The module configuration parameters are defined
in chapter 10 of the corresponding BSW Module specification.

[SWS_BSW_00123] Check compiler switches by comparison with defined values

⌈Compiler switches shall be compared with defined values. Simply checking if a
compiler switch is defined shall not be used in implementation.⌋(SRS_BSW_00410)

Example:

#if (EEP_21_LDEXT_DEV_ERROR_DETECT == STD_ON)

…

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

39 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

Example of a wrong implementation:

#ifdef EEP_21_LDEXT_DEV_ERROR_DETECT

…

7.1.6 Various naming conventions

[SWS_BSW_00124] Naming convention for enumeration literals, status values and
pre-processor directives

⌈All enumeration literals, status values and pre-processor directives (#define) shall

be labeled in the following way:

<MIP>_<SN>

Where here <MIP> is the Capitalized module implementation prefix of this BSW

Module (SWS_BSW_00102) and <SN> is the specific name. Only capital letters shall

be used. If <SN> consists of several words, they shall be separated by underscore.

The pre-processor directives E_OK and E_NOT_OK are exceptions to this

rule.⌋(SRS_BSW_00441, SRS_BSW_00335)

Example: The Eeprom driver has the following status values:

EEP_21_LDEXT_UNINIT

EEP_21_LDEXT_IDLE

EEP_21_LDEXT_BUSY

Examples for pre-processor directives:

#define EEP_21_LDEXT_PARAM_CONFIG

#define EEP_21_LDEXT_SIZE

Example for enumeration literals:

typedef enum

{

 EEP_21_LDEXT_DRA_CONFIG,

 EEP_21_LDEXT_ARE,

 EEP_21_LDEXT_EV

} Eep_21_LDExt_NotificationType;

[SWS_BSW_00125] Naming convention for Error values

⌈Error values shall be named in the following way:

<MIP>_E_<EN>

Where here <MIP> is the Capitalized module implementation prefix of this BSW

Module (SWS_BSW_00102) <EN> is the error name. Only capital letters shall be

used. If <EN> consists of several words, they shall be separated by

underscore.⌋(SRS_BSW_00327)

Example: The EEPROM driver has the following error values:

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

40 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

EEP_21_LDEXT_E_BUSY

EEP_21_LDEXT_E_PARAM_ADDRESS

EEP_21_LDEXT_E_PARAM_LENGTH

EEP_21_LDEXT_E_WRITE_FAILED

7.1.7 Configuration parameters

The BSW Module implementation must use Configuration parameter names and
Configuration parameter labels derived from the respective configuration parameters
specification. For further information, see also chapter 10.2.2- Implementation
names.

[SWS_BSW_00126] Naming conventions for Configuration parameters names and
Configuration parameter labels

⌈Configuration parameter names and Configuration parameter labels for
configuration parameters which are not published shall be named in one of the
following ways:

Camel case: <Ma><Pn>

Upper case: <MA><PN>

If the configuration parameter is published, then one of the following conventions
shall be used:

Camel case: <Mip><Pn>

Upper case: <MIP><PN>

Where:

 <Pn> is the specific parameter name in camel case;

 <PN> is the specific parameter name in upper case;

The term <Pn> (or <PN>) may consist of several words which may or may not be

separated by underscore.

The usage of the camel case or upper case notation shall be chosen according to the
original Configuration parameter name specification and the respective Configuration

parameter label specification.⌋(SRS_BSW_00408, SRS_BSW_00347)

Examples:

 CanIfTxConfirmation

 PDUR_E_INIT_FAILED

 EEP_21_LDEXT_NORMAL_WRITE_BLOCK_SIZE

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

41 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

7.1.8 Shared code

Duplicated code may result in bugs during code maintenance. This can be avoided
by sharing code whenever necessary. Shared code eases functional composition,
reusability, code size reduction and maintainability.

[SWS_BSW_00127] Avoid duplication of code
⌈The BSW Module implementation shall avoid duplication of
code.⌋(SRS_BSW_00328)

Note that if the BSW Module implements shared code, then the implementation may
need to ensure reentrancy for this code if it is exposed to preemptive environments.
Reentrancy support is part of the API specification. See also chapter 8.3.1.

7.1.9 Global data

To avoid multiple definition and uncontrolled spreading of global data, the visibility of
global variables must be limited. Except Debugging variables – see chapter 7.1.18.
“Debugging support” – the BSW Module shall not define global data in its header file.

[SWS_BSW_00129] Definition of global variables
⌈If the BSW Module defines global variables, then their definition shall take place in
the Implementation source file.⌋(SRS_BSW_00308)

[SWS_BSW_00130] Naming convention for global variables
⌈All global variables defined by the BSW Module shall be labeled according to the
following:

<Mip>_<Vn>

Where <Mip> is the Module implementation prefix of the BSW Module

(SWS_BSW_00102) and <Vn> is the Variable name, which shall be written in camel

case.⌋(SRS_BSW_00307)

Example of global variable names:

 Can_21_Ext_MessageBuffer[CAN_21_EXT_BUFFER_LENGTH]

 Nm_RingData[NM_RINGDATA_LENGTH]

In principle, all global data shall be avoided due to extra blocking efforts when used
in preemptive runtime environments. Unforeseen effects may occur if no precautions
were made. If data is intended to serve as constant data, global exposure is

permitted only if data is explicitly declared read-only using the const modifier

keyword.

[SWS_BSW_00131] Definition of constant global variables
⌈If the BSW Module defines global variables with read-only purpose, this shall be

formalized by assigning the const modifier to their definitions.⌋(SRS_BSW_00309)

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

42 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

7.1.10 Usage of macros and inline functions

The usage of macros and inline functions instead of functions is allowed to improve
the runtime behavior. Special attention has to be paid with regard to reentrant
functions.

[SWS_BSW_00132] Usage of macros and inline functions

⌈The usage of macros and inline functions is allowed, for instance, to improve
runtime behavior.⌋(SRS_BSW_00330)

Macros can be used instead of functions where source code is used and runtime is
critical. Inline functions can be used for the same purpose. Inline functions have the
advantage (compared to macros) that the compiler can do type checking of function
parameters and return values.

7.1.11 Calling Scheduled functions (Main processing functions)

Main Processing Functions, also called Scheduled Functions, are defined in chapter
8.5.

To avoid indirect and non-transparent timing dependencies between BSW Modules,
the calling of Scheduled functions is restricted to task bodies provided by the BSW
Scheduler – see the Specification of RTE [5].

[SWS_BSW_00133] Calling Scheduled functions is restricted

⌈The BSW Module implementation shall not contain calls to Scheduled functions
(Main processing functions).⌋(SRS_BSW_00433)

Calling Scheduled functions of an un-initialized BSW Module may result in undesired
and non-defined behavior.

[SWS_BSW_00037] Behavior of un-initialized Scheduled functions

⌈If a Scheduled functions (Main processing functions) of un-initialized BSW Module is
called from the BSW Scheduler, then it shall return immediately without performing

any functionality and without raising any errors.⌋(SRS_BSW_00450)

7.1.12 Exclusive areas

Exclusive areas are defined to allow priority determination for preventing
simultaneous access to shared resources. Every Exclusive area has a unique name.
The description of Exclusive areas includes the accessing Scheduled functions (Main
processing functions), API services, Callback functions and ISR functions.

[SWS_BSW_00038] Define and document Exclusive areas

⌈The Exclusive areas of the BSW Module shall be defined and documented as
described in the specification of BSW Module Description Template [4] within the

BSW Module Description.⌋(SRS_BSW_00426)

[SWS_BSW_00134] Restriction to usage of Exclusive areas

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

43 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

⌈The Exclusive areas of the BSW Module shall only protect module internal
data.⌋(SRS_BSW_00426)

7.1.13 Callouts

[SWS_BSW_00039] Define prototypes of Callout functions

⌈If the BSW Module uses Callout functions, then it shall define the prototype of the
callouts in its own Implementation header.⌋(SRS_BSW_00460)

The file containing the implementation of the Callout function can include this header
to check if declaration and definition of callout match.

Example: Operating System

/* File: Os.h */

…

/* Callout declaration */

void ErrorHook (StatusType);

…

[SWS_BSW_00135] Conventions for Callout functions prototype declaration

⌈The following convention shall be used for declaration of Callout functions
prototypes:

/* --- Start section definition: --- */

#define <MIP>_START_SEC_<CN>_CODE

/* --- Function prototype definition: --- */

FUNC(void, <MIP>_<CN>_CODE) <Mip>_<Cn> (void);

/* --- Stop section definition: --- */

#define <MIP>_STOP_SEC_<CN>_CODE

Where MIP is the Module implementation prefix of the calling module, <CN> is the

Callback name, which shall have the same spelling of the Callback name, including

module reference, but written in upper case and <Cn> is the Callback name, using

the conventional camel case notation for API names.⌋(SRS_BSW_00463)

The memory segment used for a Callout function is not known to the module
developer. The integrator needs the freedom to map these functions independently
from the module design.

[SWS_BSW_00136] Memory section and memory class of Callout functions

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

44 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

⌈Each Callout function shall be mapped to its own memory section and memory
class. These memory classes will then be mapped to the actually implemented
memory classes at integration time.⌋(SRS_BSW_00463)

For example:

#define COM_START_SEC_SOMEMODULE_SOMECALLOUT_CODE

#include “Com_MemMap.h”

FUNC(void, COM_SOMEMODULE_SOMECALLOUT_CODE)

Somemodule_SomeCallout (void);

#define COM_STOP_SEC_SOMEMODULE_SOMECALLOUT_CODE

#include “Com_MemMap.h”

7.1.14 AUTOSAR Interfaces

AUTOSAR Services are located in the BSW, but have to interact with AUTOSAR
Software Components above the RTE via ports, which realize AUTOSAR Interfaces.
Therefore, the RTE generator shall be able to read the interface description to
generate the RTE properly.

[SWS_BSW_00040] Define and document implemented AUTOSAR Interfaces
⌈If the BSW Module implements AUTOSAR Services, then the related AUTOSAR
Interfaces shall be defined and documented as described in the specification of
Software Component Template [9] within the BSW Module

Description.⌋(SRS_BSW_00423)

Note that the BSW Module Description Template inherits the description classes from
the Software Component Template.

7.1.15 Interrupt service routines

The implementation of Interrupt Service Routines (ISR) is highly microcontroller
dependent. See also chapter 7.1.4 - Platform independency and compiler
abstraction.

[SWS_BSW_00137] ISR implementation is platform dependent
⌈If the BSW Module is classified as Platform independent BSW Module, it shall not
implement interrupt service routines.⌋(SRS_BSW_00164)

For more explanation on Platform independent BSW Modules, see the section 7.1.4 -
Platform independency and compiler abstraction.

[SWS_BSW_00167] Keep runtime of ISR as short as possible

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

45 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

⌈The runtime of Interrupt Service Routines (ISR) and functions that are running in
interrupt context should be kept short. This affects also, for instance, Callback
functions which are called from ISRs.
Where an ISR is likely to take a long time, an Operating System task should be used

instead.⌋(SRS_BSW_00325, SRS_BSW_00333)

ISR functions are defined with a name and the category according to the AUTOSAR
OS, see chapter 3.1.

[SWS_BSW_00041] Define and document ISR routines
⌈If the BSW Module implements Interrupt service routines (ISR), then these functions
shall be defined and documented as described in the specification of BSW Module

Description Template [4] within the BSW Module Description.⌋(SRS_BSW_00427)

[SWS_BSW_00065] Support for interrupt category CAT2
⌈If the BSW Module implements Interrupt service routines (ISR), then the
implementation shall at least support interrupt category CAT2.⌋(SRS_BSW_00427)

The AUTOSAR architecture does not allow execution in interrupt context on
application level. Considering this, special care is needed with nested functions
called by interrupt routines.

[SWS_BSW_00182] The transition from ISR to OS task is restricted
⌈If the BSW Module has implementation of Interrupt Service Routines (ISR) and a
transition from an ISR to an OS task is needed, then this transition shall take place at
the lowest level possible of the Basic Software:

 In the case of CAT2 ISR this shall be at the latest in the RTE.

 In the case of CAT1 ISR this shall be at the latest in the MCAL layer.

⌋(SRS_BSW_00326)

The definition of ISR categories CAT1 and CAT2 is available in AUTOSAR General
Requirements on Basic Software Modules [3]. For more information see also the
Specification of RTE [5], chapter “Interrupt decoupling and notification”.

A BSW Module that handles interrupts shall be delivered partially or completely as
source code so that it can be compiled to use CAT1 or CAT2 interrupts. See also
SWS_BSW_00043.

Example: A BSW Module from MCAL layer is delivered as object code. The interrupt
handler could be written as a pair of small stubs (a CAT1 stub and a CAT2 stub) that
are delivered as source code. During the module integration the code is compiled as
necessary – the main handler is called.

7.1.16 Restricted OS functionality access

To avoid too much complexity in the OS integration of BSW Modules, some
restrictions in the usage of OS services are necessary.

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

46 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

[SWS_BSW_00138] Restriction to usage of OS services
⌈The BSW Module implementation is only allowed to use OS services according to
the following table:

OS Services RTE ,
BSW
Sched
uler,
BswM,
CDD

EcuM MCAL StbM Other
BSW
Modules

Activate Task 

Terminate Task 

Chain Task 

Schedule 

GetTaskID 

GetTaskState 

DisableAllInterrupts  

EnableAllInterrupts  

SuspendAllInterrupts  

ResumeAllInterrupts  

SuspendOSInterrupts  

ResumeOSInterrupts  

GetResource 

ReleaseResource 

SetEvent 

ClearEvent 

GetEvent 

WaitEvent 

GetAlarmBase 

GetAlarm 

SetRelAlarm 

SetAbsAlarm 

CancelAlarm 

GetActiveApplicationMode  

StartOS 

ShutdownOS 

GetApllicationID 

StartScheduleTable  

StopScheduleTable  

NextScheduleTable  

SyncScheduleTable   

GetScheduleTableStatus   

SetScheduleTableAsync  

IncrementCounter 

GetCounterValue     

GetElapsedCounterValue     

TerminateApplication 

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

47 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

OS Services RTE ,
BSW
Sched
uler,
BswM,
CDD

EcuM MCAL StbM Other
BSW
Modules

AllowAccess 

GetApplicationState 

ControlIdle  

GetNumberOfActivatedCores 

GetCoreID     

StartCore 

StartNonAutosarCore 

GetSpinlock   

ReleaseSpinlock   

TryToGetSpinlock   

ShutdownAllCores 

Table 2: OS Services and associated permissions

.⌋(SRS_BSW_00429)

The according services are described in AUTOSAR OS.

7.1.17 Access to hardware registers

[SWS_BSW_00179] Concurrent access to registers

⌈All BSW modules with direct access to hardware registers shall tolerate
concurrent access to these registers from other modules, especially from
Complex Drivers. This is required for the following registers:
- registers which are currently not used due to configuration reasons,
 e.g. channel or group not configured/enabled
- common registers with fields or bits which are used widely,
 e.g. interrupt mask, memory protection bits
BSW modules shall tolerate concurrent access to HW registers using defensive
behavior and the techniques like:
- Protecting the read-modify-write access from interruption
- Using atomic (non-interruptible) instructions for read-modify-write access
- Protecting the access to set of registers, which have to be modified together, from
interruption⌋(SRS_BSW_00451)

Note:
- Memory mapped hardware registers in multi-master systems (multi-core systems,
systems with DMA) are assumed to be manipulated by one master only
- Memory mapped hardware registers are not assumed to be manipulated by the
non-maskable interrupt routines or non-maskable exception/trap routines

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

48 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

[SWS_BSW_00188] Access to “write-once” registers

⌈If a MCAL driver initializes "write-once" registers, then the driver shall offer
configuration options to disable the functionalities that have access those register, or

have dependencies to them.⌋()

Example:

In MCU, there should be a switch to disable the call to Mcu_InitClock(), if the

clock set-up is performed during the start-up code, before AUTOSAR platform is
started and the hardware does not allow reconfiguration.

7.1.18 Debugging support

The AUTOSAR architecture supports standardized debugging and tracing features
for basic software, RTE and software components. The debugging feature is
optional. Mainly, the debugging feature is supported by the definition of Debugging
variables in the module implementation. See also the see chapter 3.1 [12].

Debugging variables are an individual implementer choice and cannot be
standardized. If a BSW Module contains such variables, these variables have to be
described in the BSW Module Description. According to this description, it is possible
to derive their data size and data names and to configure the Debugging module
(Dbg) [12].

[SWS_BSW_00044] {OBSOLETE} Describe Debugging variables

⌈All Debugging variables shall be described within the respective BSW Module
Description (SWS_BSW_00001) like specified in BSW Module Description Template

[4].⌋(SRS_BSW_00442)

[SWS_BSW_00139] {OBSOLETE} Debugging variables are global variables
⌈If the BSW Module supports debugging, each variable that shall be accessible for
debugging (Debugging variables) shall be defined as global variable(i.e., they must

not be static).⌋(SRS_BSW_00442)

[SWS_BSW_00140] {OBSOLETE} Enable calculation of Debugging variables’ size
⌈The declaration of Debugging variables shall be such, that it is possible to calculate

the size of each variable by using the C operator sizeof.⌋(SRS_BSW_00442)

The declaration of Debugging variables is provided in the Debugging header of the
BSW Module, see chapter 5.1.7.4 - Debugging header and requirements
SWS_BSW_00027 and SWS_BSW_00028.

7.1.19 Data types

7.1.19.1 AUTOSAR Standard Types

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

49 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

All AUTOSAR standard types and constants are placed and organized in the

AUTOSAR Standard Types Header (Std_Types.h). This header:

 includes the Platform Specific Types Header (Platform_Types.h)

 includes the Compiler Specific Language Extension Header (Compiler.h)

 defines the type Std_ReturnType

 defines E_OK and E_NOT_OK symbols and their values

 defines STD_ON and STD_OFF symbols and their values

See also SWS_BSW_00024.

7.1.19.2 Platform Specific Types

Changing the microcontroller and or compiler shall only affect a limited number of
files. Thus in AUTOSAR all integer type definitions of target and compiler specific
scope are placed and organized in a single file, the Platform Specific type header

(Platform_Types.h).

See also the Specification of Platform Types [13].

7.1.19.2.1 AUTOSAR Integer Data Types

The usage of native C-data types (char, int, short, long) is in general not

portable and reusable throughout different platforms.

[SWS_BSW_00120] Do not use native C data types
⌈The BSW Module shall not use native C data types. AUTOSAR Integer Data Types
shall be used instead. These types are defined in the Platform Specific Types Header

(Platform_Types.h)⌋(SRS_BSW_00304, SRS_BSW_00353)

The Platform Specific Types Header (Platform_Types.h) is included through the

AUTOSAR Standard Types Header (Std_Types.h). See SWS_BSW_00024.

The following AUTOSAR Integer Data Types are available:

1. Fixed size guaranteed:

Data type Representation
 uint8 8 bit
 uint16 16 bit
 uint32 32 bit
 sint8 7 bit + 1 bit sign
 sint16 15 bit + 1 bit sign
 sint32 31 bit + 1 bit sign

2. Minimum size guaranteed, best type is chosen for specific platform (only

allowed for module internal use, not for API parameters)

Data type Representation
 uint8_least At least 8 bit

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

50 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

 uint16_least At least 16 bit
 uint32_least At least 32 bit
 sint8_least At least 7 bit + 1 bit sign
 sint16_least At least 15 bit + 1 bit sign
 sint32_least At least 31 bit + 1 bit sign

The data types with suffix _least can be chosen if optimal performance is required

(e.g. for loop counters).

Example: Both uint8_least and uint32_least could be compiled as 32 bit on a

32 bit platform.

[SWS_BSW_00122] Redefinition of integer data types is restricted

⌈The implementation shall not define own types on top of the AUTOSAR Integer Data
Types if this is not necessary and the data size is known at specification
time.⌋(SRS_BSW_00355, SRS_BSW_00353)

Example 1:

The data size of parameter DeviceIndex is known at specification time (8 bit).

Hence the following is not allowed:

typedef uint8 DeviceIndexType /* wrong! */

...

static DeviceIndexType DeviceIndex

Use the following instead:

static uint8 DeviceIndex

Example 2:

The parameter DeviceAddress is platform dependent (could by 16..32 bit). It is

required for runtime efficiency, that the best type is chosen for a specific platform.

On 16 bit platforms:

typedef uint16 DeviceAddressType

On 32 bit platforms:
typedef uint32 DeviceAddressType

7.1.19.2.2 Boolean type

For simple logical values, for their checks and for API return values the AUTOSAR

type boolean, defined in Platform_Types.h, can be used. For usage with this

type, the following values are also defined:

 FALSE = 0

 TRUE = 1

[SWS_BSW_00142] Allowed operations with boolean variables

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

51 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

⌈The only allowed operations with variables from type boolean are: assignment,

return and test for equality with TRUE or FALSE.⌋(SRS_BSW_00378)

Note: Compiler vendors that provide a boolean data type that cannot be disabled
have to change their compiler (i.e. make it ANSI C compliant).

Example: API returns boolean value

/* File Eep_21_LDExt.h: */

…

/* this automatically includes Platform_Types.h: */

#include "Std_Types.h"

…

boolean Eep_21_LDExt_Busy(void) {…}

…

/* File: calling module */

…

if (Eep_21_LDExt_Busy() == FALSE) {…}

…

7.1.20 Distributed execution on multi-partitioned systems

The AUTOSAR architecture supports the execution of BSW modules functionality on
multiple partitions, possibly running on different cores. If a module provides services
on multiple partitions, then either

1. the RTE transports the service call to the partition where the BSW module
entity that shall execute the call is located, or

2. the BSW module entity receives the call on the partition where it has been
called and handles its execution autonomously (new in Release 4.1). That
means, it can execute the call on the same partition, forward it to another
partition or do a combination of both – depending on the implementation
strategy of the BSW vendor.

[SWS_BSW_00190] Same API on each partition

⌈If a BSW module entity shall be accessible from multiple partitions (e.g. multiple
cores), then it shall provide the same API on each partition where the module entity

shall be accessible. ⌋()

 [SWS_BSW_00191] Multi-core safety

⌈ If a BSW module entity shall be executable on multiple partitions (e.g. multiple
cores), then the whole module entity code shall be “concurrency safe”.. ⌋()

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

52 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

Note: “Concurrency safe” refers to the overall design of the BSW module entity that
shall be executable in multiple partitions on different cores in parallel. If, for example,
the module code in different partitions accesses the same data, then the shared data
shall be protected by exclusive areas.

[SWS_BSW_00192] Reentrant function code

⌈ If a BSW module entity is provided to SWCs and it shall be executable on multiple
partitions (e.g. multiple cores), then the module entity’s function code shall be

implemented according to the level “concurrency safe”.⌋()

This allows the usage of the same entry point in the code for a module function called
from different partitions. The partition specific handling of the module function shall
then be implemented by partition dependent branching within the module.

7.2 Error Handling

Particular errors are specified in Chapter 7 of the respective BSW Module
specifications.

The following section forms the foundation for this. Above all, it specifies a
classification scheme consisting of five error types that may occur in BSW modules
during different life cycles.

7.2.1 Classification

 [SWS_BSW_00144] Error classification
⌈All errors, which may be detected and/or reported by a BSW Module, are classified
in five different types:

 development errors [SRS_BSW_00337]

 runtime errors [SRS_BSW_00452]

 transient faults [SRS_BSW_00473]

 production errors [SRS_BSW_00458]

 extended production errors [SRS_BSW_00466]

⌋

7.2.2 Development errors

7.2.2.1 Synopsis

Development errors are mainly specified as software bugs which occur during the
software development process, cf. SRS_BSW_00337 for the detailed specification.

For instance, the attempt to use uninitialized software is a typical development error.

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

53 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

Development errors are reported to the BSW module Det (Default Error Tracer)

through the interface Det_ReportError, which also reflects the event-oriented

character of this type. Development errors eventually happen and corresponding
error monitors will immediately signal their occurrence.

Although the specification document of the module Det does not specify any
particular behavior or implementation, SRS_BSW_00337 requires that development
errors behave like assertions. Their appearance will abort the normal control flow of
execution by halting or resetting of the entire ECU.

7.2.2.2 Documentation

The SWS shall list the development errors in its chapter 7 in accordance with the
classification of SRS_BSW_00337.

[SWS_BSW_00201] Development error type

⌈Development error values are of type uint8. ⌋()

7.2.2.3 Configuration

[SWS_BSW_00202] Activation of Development Errors

⌈ The activation of development errors is configurable (ON / OFF) at pre-compile
time. The switch <MIP>_DEV_ERROR_DETECT (see chapter 10 of the respective
module SWS) shall activate or deactivate the detection of all development errors. ⌋()

[SWS_BSW_00203] API parameter checking
⌈ If the <MIP>_DEV_ERROR_DETECT switch is enabled API parameter checking is
enabled. The detailed description of the detected errors can be found in chapter 7.2
and chapter 8 of the respective module SWS.⌋ ()

[SWS_BSW_00042] Detection of Development errors

⌈The detection and reporting of Development errors shall be performed only if the
configuration parameter for detection of Development errors is set.⌋
(SRS_BSW_00338).

The detection of development errors is configurable. It enables extended debugging
capabilities for the according BSW Module.

Example: The EEPROM driver provides internal checking of API parameters which is
only activated for the first software integration test (“development build”) and disabled
afterwards (“deployment build”).

The detection of Development errors is configurable at Pre-compile time for every
single BSW Module [SRS_BSW_00338]. The configuration parameter is specified in
chapter 10 of the respective BSW Module. Its name is formed in the following way
[SRS_BSW_00350]:

<Ma>DevErrorDetect{<MIP>_DEV_ERROR_DETECT}

Example:

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

54 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

The implementation code is generated automatically by the supporting tool chain
considering the configuration parameter for the detection of Development errors. If
the detection is not configured, the generated code does not contain error detection
and reporting implementation.

Example:
The implementation code contains compiler switches, which implement the
configuration of error detection:

/* File: Nm_Cfg.h */

/* Pre-compile configuration parameters for Network Manager */

…

/* NM_DEV_ERROR_DETECT */

/* To activate (STD_ON) or deactivate (STD_OFF) detection of */

/* development errors. */

/* Satisfies BSW_SWS_042. */

#define NM_DEV_ERROR_DETECT STD_ON

…

/* File: Nm.c */

/* Network Manager implementation */

…

#include “Nm_Cfg.h”

…

#if (NM_DEV_ERROR_DETECT == STD_ON)

 …

 … /* development errors to be detected */

 …

#endif /* NM_DEV_ERROR_DETECT */

Note that for switching this configuration through compiler switches the standard

types STD_ON and STD_OFF shall be used [SWS_BSW_00029].

The configuration parameter for detection of Development errors is listed in the
Chapter 10 of the respective BSW Module specification.

If the detection of Development errors is active, then API parameter checking is

enabled [SWS_BSW_00049]. The detailed description of the detected errors can be

found in chapter 7 and chapter 8 of the according BSW Module specification.

7.2.2.4 Reporting

If the detection of Development errors is configured [see SWS_BSW_00042] than
any detected error shall be reported:

[SWS_BSW_00045] Report detected Development errors to Det

⌈The BSW Module shall report detected Development errors to the Default error

tracer (Det) using the service Det_ReportError.⌋(SRS_BSW_00338)

Note that the reported development error values must be of type uint8, in order to

comply with the signature of Det_ReportError.

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

55 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

See chapter 7.2.2 – „Development errors“ for more information about activation and
deactivation of Development error detection. See the Specification of Det[16] for

more information about the service Det_ReportError.

7.2.3 Runtime errors

7.2.3.1 Synopsis

Runtime errors are specified as systematic faults that do not necessarily affect the
overall system behavior.

For instance, wrong post-build configurations or wrongly assigned PDU-IDs are
typical causes for runtime errors.

Like development errors, runtime errors are reported to the BSW module Det, in this

particular case through the interface Det_ReportRuntimeError. Just as

development errors, runtime errors also eventually happen and cause the
corresponding error monitors to signal their occurrence immediately.

Unlike development errors however, runtime errors shall not cause assertions, i.e.,
the control flow of execution will continue. Instead of that, an occurrence of a runtime
error triggers the execution of a corresponding error handler. This error handler may
be implemented as callout within the Det by an integrator of a particular ECU and
may only include the storage of the corresponding error event to a memory, a call to
the module Dem or the execution of short and reasonable actions.

The Det module provides an optional callout interface to handle runtime errors. If it is

configured, the service Det_ReportRuntimeError shall call this callout function.

Independent from any particular implementation, the service

Det_ReportRuntimeError always returns E_OK to its caller.

Monitors dedicated to detect runtime errors may stay in the deployment build
(production code).

7.2.3.2 Documentation

The SWS shall list the runtime errors in its chapter 7 in accordance with the
classification of SRS_BSW_00452.

[SWS_BSW_00219] Runtime error type
⌈Runtime error values are of type uint8. ⌋()

7.2.3.3 Configuration

[SWS_BSW_00220] Activation of Runtime Errors

⌈The activation of runtime errors is configurable (ON / OFF) at pre-compile time. The

switch <Mip>RuntimeErrorDetect (see chapter 10 of the respective module

SWS) shall activate or deactivate the detection of all runtime errors. ⌋()

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

56 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

[SWS_BSW_00221]Detection of Runtime errors

⌈The detection and reporting of runtime errors shall be performed only if the
configuration parameter for detection of Runtime errors is set.⌋

If the Det implements the handling of runtime errors by a callout function, then the
particular callout function name of the Det must be configured by

DetReportRuntimeErrorCallout [ECUC_Det_00010].

7.2.3.4 Reporting

If detection of runtime errors is configured (see SWS_BSW_00220) than any
detected error shall be reported:

[SWS_BSW_00222] Report detected Runtime errors to Det

⌈The BSW Module shall report detected runtime errors to the Default error tracer

(Det) using the service Det_ReportRuntimeErrors.⌋()

Note that the reported runtime error values must be of type uint8, in order to comply

with the signature of Det_ReportRuntimeError.

See chapter 7.2.3 “Runtime errors” activation and deactivation of Development error
detection. See the Specification of Det[16] for more information about the service

Det_ReportRuntimeError.

7.2.4 Transient faults

7.2.4.1 Synopsis

Transient faults are caused by dysfunctional hardware. They occur if thermal noise or
particle radiation influences the functionality of the hardware and so the functionality
of the software connected with it. That also means that transient errors may heal,
because the cause for the fault may disappear, again.

For instance, a CAN controller could go off-line due to a bit-flip in its control registers,
induced by particle radiation.

Transient faults are reported to the module Det through the interface

Det_ReportTransientFault. Although a certain implementation is not stipulated,

SRS_BSW_00473 requires that transient faults will not cause to stop the control flow
of execution of the software.

The handling of those transient faults may require use case dependent actions.
Therefore, it is most likely that particular error handlers are implemented as callouts

by an integrator. In this case the service Det_ReportTransientFault returns the

return value of the callout function, otherwise it returns immediately with E_OK.

Monitors dedicated to detect transient faults must stay in the deployment build
(production code).

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

57 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

7.2.4.2 Documentation

The SWS shall list the transient faults in its chapter 7 in accordance with the
classification of SRS_BSW_00473.

[SWS_BSW_00223]Transient faults type
⌈Transient faults values are of Type uint8. ⌋()

7.2.4.3 Configuration

[SWS_BSW_00224] Detection of transient faults

⌈The detection of transient faults cannot be switched off, unless the Module SWS
describes configuration parameters or other conditions, which define the activation of
certain transient faults. ⌋()

If the Det implements the handling of transient faults by a callout function, then the
particular callout function name of the Det must be configured by

DetReportTransientFaultCallout[ECUC_Det_00011].

7.2.4.4 Reporting

[SWS_BSW_00225]Report detected Transient faults to Det

⌈The BSW Module shall report detected transient faults to the Default error tracer

(Det) using the service Det_ReportTransientFaults.⌋()

Note that the reported runtime error values must be of type uint8, in order to comply

with the signature of Det_ReportTransientFaults.

See chapter 7.2.4 “Transient faults” activation and deactivation of Development error
detection. See the Specification of Det[16] for more information about the service

Det_ReportRuntimeError.

7.2.5 Extended production errors and production errors

7.2.5.1 Synopsis Production errors

According to SRS_BSW_00458 production errors are caused by any hardware
problems, e.g., aging, deterioration, total hardware failure, bad production quality,
incorrect assembly, etc. These hardware problems qualify for being production
errors, if at least one of the following criteria is met (cf. SRS_BSW_00458):

 The error leads to an increase of emissions and must be detected to fulfill
applicable regulations.

 The error limits the capability of any other OBD relevant diagnostic monitor.

 The error requests limp-home reactions, e.g., to prevent further damage to the
hardware or customer perceivable properties.

 The garage shall be pointed to the failed component for repair actions.

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

58 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

In addition, SRS_BSW_00458 and SRS_BSW_00472 require to avoid duplicate
production errors which have the same root cause as failure. This means in first
place that the specification of particular production errors need some wider scope
than only the one of a specific BSW module.

A particular production error is reported to the module Dem and may utilize all
available features of it. In general, any 'fail' of a corresponding error monitor will lead
to an entry into the primary event memory, a 'pass' may revoke this entry.

It is generally possible to combine distinct options of the Dem for a single production
error. Thus, a particular production error may lead to an entry in the primary event
memory and may trigger a dedicated callout routine that utilizes its states for
deduced actions, at the same time.

7.2.5.2 Synopsis Extended production errors

Extended production errors indicate, like production errors, hardware problems or
misbehavior of the environment (cf. SRS_BSW_00466).

Unlike production errors, however, extended production errors are not “first-class
citizens” which means either that they do not meet any criteria of SRS_BSW_00458
or that the error points to the same root cause as an already defined production error
[SRS_BSW_00472].

In this spirit, extended production errors may be utilized:

 to gain more information about the real cause of a corresponding production
error

 to come to “deduced entries into the event memories” as a result of the
combination of various information representing a certain ECU state

Extended production errors are also reported to the module Dem.

However, the appearance of a 'fail' state of a specific extended production error must
not lead to an immediate entry into the primary event memory. Thus, extended
production errors may utilze all features of the Dem, except the one to bind an error
to an entry of the primary event memory directly.

It may be good practice to attach extended production errors to callback routines. It is
then the responsibility of an ECU integrator to provide reasonable implementations.
In this respect, the integrator still has every freedom, even to trigger an entry into the
primary event memory.

7.2.5.3 Documentation

[SWS_BSW_00204] Documentation of (extended) production errors
⌈For each production error and extended production error,
appropriate documentation shall be provided according to the AUTOSAR SWS
template. ⌋()

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

59 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

7.2.5.4 Configuration

[SWS_BSW_00205] Detection of (extended) production errors
⌈The detection of production code errors and extended production errors cannot be
switched off, unless the Module SWS describes configuration parameters or other
conditions, which define the activation of certain (extended) production errors. ⌋()

7.2.5.5 Reporting

Event IDs of (extended) production errors are provided as symbolic name values by
Dem through Dem.h.

The EventId symbols of production errors are the short name of the SericeNeeds

of the BSW module (through the Dem ECUC) prefixed with
DemConf_DemEventParameter_

See ecuc_sws_2108 (AUTOSAR_TPS_ECUConfiguration.pdf “3.4.5.2
Representation of Symbolic Names”).

[SWS_BSW_00143] Values for Event IDs of production errors and extended
production errors are imported
⌈Values for Event IDs of (extended) production errors are assigned externally by the
configuration of the Dem module.⌋(SRS_BSW_00409)

For reporting production errors and extended production errors, the Dem interface

Dem_ReportErrorStatus is used:

[SWS_BSW_00046] Report production errors and extended production errors to
Dem
⌈The BSW Module shall report all detected production errors and extended
production errors to the Diagnostic Event Manager (Dem) using the service

Dem_ReportErrorStatus if this specific production error or extended production

error has been configured for this BSW Module.⌋(SRS_BSW_00339)

Note that the configuration of production errors and extended production errors is
optional in the ECU Configuration of the BSW Modules.

[SWS_BSW_00066] Report EventStatus to Dem

⌈For reporting an (extended) production error state the following BSW specific
interface of DEM shall be called:

void Dem_ReportErrorStatus(

Dem_EventIdType EventId,

Dem_EventStatusType EventStatus

)

If an error event occurred EventStatus shall be equal to:
‘DEM_EVENT_STATUS_FAILED’.

If an error event is not detected with sufficient precision and requires maturing by

pre-debouncing EventStatus shall be equal to:

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

60 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

‘DEM_EVENT_STATUS_PREFAILED’.

If the BSW modules has explicitly detected that the error is not present

EventStatus shall be equal to: ‘DEM_EVENT_STATUS_PASSED’.

If a failure free detection is not possible with sufficient precision and requires further

maturing by pre-debouncing EventStatus shall be equal to:
‘DEM_EVENT_STATUS_PREPASSED’.

If a check is not possible (e.g., requires specific operating mode), no result shall be
reported.⌋(SRS_BSW_00339)

The error state information could be reported either by a state change or when the
state is checked (event or cyclic) depending upon the configuration of the error event.
Checks are not required to be cyclic.

Pre-de-bouncing is handled inside the Diagnostic event manager using AUTOSAR
predefined generic signal de-bouncing algorithms.

[Note]
The callback service <Mip>_InitMonitorForEvent<EventName> is principally
specified by the specification [Dem256] within Section 8.4.3.1.1 of the
specification document for the module Diagnostic Event Manager (Dem). This
document only specifies extensions which matter for the correct functionality
of error monitors.

[SWS_BSW_00206] Only event-based error monitors shall implement the callback
service

⌈<Mip>_InitMonitorForEvent<EventName>.

[Note]
The BSW module Dem calls an implemented callback service
<Mip>_InitMonitorForEvent<EventName> to trigger the re-initialization of an
event-based error monitor depending on the EnableConditions or
ControlDTCSettings. The re-initialization reason is passed by the parameter

InitMonitorReason. ⌋()

[SWS_BSW_00207] On each trigger of the callback service
⌈<Mip>_InitMonitorForEvent<EventName>, the particular BSW module shall
re-initialize the monitor functionality and report a new error status to the
BSW module Dem immediately, if the error status could be evaluated anytime,

otherwise at the next opportunity. ⌋()

[SWS_BSW_00208] If a particular BSW module implements a callback service

⌈<Mip>_InitMonitorForEvent<EventName>, then the BSWMD shall specify a
corresponding ServiceNeeds. ⌋()

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

61 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

7.2.5.6 Example use case: Error is detected and notified

The timer function shall be provided (in this example) in the pre-de-bouncing library
of the Diagnostic event manager.

7.2.6 Specific topics

7.2.6.1 Implementation specific errors

[SWS_BSW_00073] Implementation specific errors

⌈If the BSW Module implementation defines additional errors, then these shall be
described in the BSW module documentation. The error classification table shall be

extended by implementation specific errors. ⌋ (SRS_BSW_00337)

7.2.6.2 Handling of Symbolic Name Values

[SWS_BSW_00200] Symbolic Name values
⌈Symbolic Name Values shall be imported through the header of the BSW module

that provides the value.⌋ ()

Symbolic Name Values in the implementation are using the short name of the

Container in the ECUC prefixed with <ModuleAbbreviation>Conf_ (of the

providing module) and the short name of the EcucParamConfContainerDef

container [TPS_ECUC_02108].

Example: For production errors, which are provided by the Dem, and are configured
as DemEventParameter within the ECUC of the Dem, the #define provided through
Dem.h is DemConf_DemEventParameter_<short-name>.
The following two code integration examples show the utilization of a production code

event ID (14) and its symbol

(DemConf_DemEventParameter_EEP_21_LDEXT_E_COM_FAILURE) for the

module Eep:

1. Example for source code integration:
/* File: Dem.h */

…

/* DEM specifies the production code error ID: */

#define

DemConf_DemEventParameter_EEP_21_LDEXT_E_COM_FAILURE

Dem
Main Function

0 20 40 60 80 100

Dem
ReportError

BSW Module
A

Error Event

Dem
LibraryTimer

.

Starts
Timer

Error Event treated as
“Real“ Error

t

P: DEM_PASSED
F: DEM_FAILED

P P F F F

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

62 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

((Dem_EventIdType) 14u)

…
/* File: Eep_21_LDExt.c */

#include “Dem.h”

…

Dem_ReportErrorStatus(DemConf_DemEventParameter_EEP_21_LDE

XT_E_COM_

FAILURE, DEM_EVENT_STATUS_PREFAILED);

2. Example for object code integration:
/* File: Dem.h */

…

/* DEM specifies the production code error ID: */

#define

DemConf_DemEventParameter_EEP_21_LDEXT_E_COM_FAILURE

((Dem_EventIdType) 14u)

/* File: Eep_21_LDExt_PBcfg.c

Post-build configuration source

This file needs to be compiled and linked with the

object code delivery: */

#include “Dem.h”

#include “Eep_21_LDExt_cfg.h”

…

const Dem_EventIdType Eep_21_LDExt_E_Com_Failure =

DemConf_DemEventParameter_EEP_21_LDEXT_E_COM_FAILURE;

…

/* File: Eep_21_LDExt_cfg.h

This file needs to be compiled and linked with the

object code delivery: */

…

extern const Dem_EventIdType Eep_21_LDExt_E_Com_Failure;

…

/* File: Eep_21_LDExt.c

This file is delivered as object file. */

#include “Dem.h”

#include “Eep_21_LDExt_cfg.h”

…

Dem_ReportErrorStatus(Eep_21_LDExt_E_Com_Failure,

DEM_EVENT_STATUS_PREFAILED);

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

63 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

8 API specification

8.1 Imported types

A list with imported types and the according included header files is specified in
chapter 8 of the according BSW Module specification.

8.2 Type definitions

[SWS_BSW_00146] Naming conventions for data types
⌈All data types defined by the BSW Module, except ConfigType, shall be labelled
according to the following convention:

<Ma>_<Tn>Type

Where <Ma> is the Module abbreviation (SWS_BSW_00101) and <Tn> is the Type

name, which shall be written in camel case.⌋(SRS_BSW_00305)

Examples:

 Eep_LengthType

 Dio_SignalType

 Nm_StateType

Note that Basic AUTOSAR types [SRS_BSW_00304] do not need to support the
naming convention defined in [SWS_BSW_00146].

The BSW Module type definitions are specified in chapter 8 of the according BSW
Module specification. Type definitions are defined using the following template:

[SWS_BSW_00209]⌈
Name: Name of type

Type: Allowed entries: ‘enumeration’, ‘structure’, ‘reference to’ (pointer) a type, allowed
AUTOSAR integer data types (SRS_BSW_00304)

Range: Range of legal
values

Meanings, units, etc..

Description: Informal description of the use of this type.

Constants of this
type: (optional)

Predefined names of this type.

⌋ ()

To avoid double and inconsistent definition of data types in both BSW Module and
Software Components, common data types are defined in RTE Types header files.
See also SWS_BSW_00023.

[SWS_BSW_00147] Definition of data types used in Standard Interfaces and
AUTOSAR Interfaces

⌈Data types used in Standard Interface and AUTOSAR Interface shall only be defined

in RTE Types header file (Rte_Type.h).⌋(SRS_BSW_00447)

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

64 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

8.3 Function definitions

8.3.1 General specification on API functions

The function definitions for this module are specified in chapter 8 of the according
BSW Module specification. These functions are defined using the following template:

Service name: Name of API call

Syntax: Syntax of call including return type and parameters.

Service ID [hex]: This is the ID of service. Numbering starts for each BSW Module at 0x00. This ID
is used as parameter for the error report API of Default Error Tracer

Sync/Async: Behavior of this service (Synchronous / Asynchronous)

Reentrancy: Reentrant / Non Reentrant

Parameters (in): Parameter 1 Description of parameter 1

Parameter 2 Description of parameter 2

Parameters
(inout):

Parameter 3 Description of parameter 3

Parameters (out): Parameter 4 Description of parameter 4

Return value: Range of legal values Description and the circumstances under which that value
is returned, and the values of configuration attributes in
which the value can be returned

Description: Short description of the API call

Reentrancy terms and definitions:

 Concurrency safe: Unlimited concurrent execution of this interface is
possible, including preemption and parallel execution on multi core systems.

 Reentrant: Pseudo-concurrent execution (i.e. preemption) of this interface is
possible on single core systems.

 Not reentrant: Concurrent execution of this interface is not possible.

 Conditionally reentrant: Concurrent execution of this interface may be
possible under certain conditions. These conditions are part of API
specification.

Please note that the implementation of a module entity shall be “concurrency safe”
whenever its implemented entry is reentrant and the function is supposed to be
executed on a multi-partitioned system.

The following reentrancy techniques are suggested:
Avoid use of static and global variables
Guard static and global variables using blocking mechanisms
Use dynamic stack variables

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

65 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

To avoid name clashes, all modules API functions have unique names. The Module
implementation prefix is part of API functions name, what also eases the code
reading, as every API shows to which module it belongs.

[SWS_BSW_00148] Naming convention for API services
⌈In the BSW Module implementation, all services from modules API shall be named
in the following way:

<Mip>_<Sn>

Where <Mip> is the Module implementation prefix (SWS_BSW_00102) and <Sn> is

the API Service name.⌋(SRS_BSW_00310, SRS_BSW_00413, SRS_BSW_00347)

Note that the Module implementation prefix includes additional information from BSW
Module provider in case of BSW Driver modules. This information is also part of the
modules API names (SWS_BSW_00102).

For instance, the following API names are defined:

 Eep_21_LDExt_Init() /* BSW Driver API */

 Can_21_Ext_TransmitFrame()

 Com_DeInit()

[SWS_BSW_00186] Input Pointer Parameters

⌈All input parameters which are passed as pointers shall use the type qualifier
“const”. The compiler abstraction macro P2CONST must be use.⌋()

For example:
Std_ReturnType <Mip>_DoWithInputBuffer (void* Buffer)

Shall be changed to

Std_ReturnType <Mip>_DoWithInputBuffer (

 P2CONST(void,AUTOMATIC,<MIP>_APPL_DATA))

[SWS_BSW_00187] Input-Output Pointer parameters

⌈All INOUT / OUT parameters which are passed as pointers shall use the compiler
abstraction macro P2VAR.⌋()

For example:
Std_ReturnType <Mip>_DoWithInOutBuffer (uint8* Buffer)

Shall be changed to

Std_ReturnType <Mip>_DoWithInOutBuffer (

 P2VAR(uint8,AUTOMATIC,<MIP>_APPL_DATA))

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

66 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

[SWS_BSW_00049] Implement API parameter checking
⌈If the detection of Development errors/Runtime errors is active for this BSW Module
(see SWS_BSW_00042, SWS_BSW_00221), then parameter checking for all API
services shall be enabled.⌋(SRS_BSW_00323, SRS_BSW_00414)

Details about API parameter checking and which results to a development error (e.g.
NULL_PTR) and which to a runtime error (e.g. PduId range) are available in the
according BSW Module specifications.

[SWS_BSW_00212] NULL pointer checking
⌈ If the detection of development errors is active for this BSW Module (see
SWS_BSW_00042), then pointer parameters shall be checked against NULL_PTR
unless NULL_PTR is explicitly allowed as a valid pointer address value in the API
parameter specification. If such a violation is detected a development error shall be
raised.⌋ ()

[SWS_BSW_00215] NULL pointer development error naming convention
⌈ The name for the development errors for NULL pointer violations is
<MIP>_E_PARAM_POINTER.⌋ (SRS_BSW_00414)

Examples for legal NULL_PTR parameters are the configuration pointers for pre-
compile variants in the <Mip>_Init functions, PduInfoPtr->SduDataPtr in CopyRxData
and CopyTxData with SduLength set to zero, or the RetryInfoPtr in CopyTxData if
retry is not supported.

[SWS_BSW_00149] Do not pass function pointers as API parameter
⌈Function pointers shall not be passed as API parameter.⌋(SRS_BSW_00371)

If different instances of the BSW Module are used, it may be necessary to
differentiate API calls through an instance index.

[SWS_BSW_00047] Implement index based API services
⌈If different instances of the BSW Module are characterized by:

 same vendor and

 same functionality and

 same hardware device
then their API shall be accessed index based. ⌋(SRS_BSW_00413)

Example:

MyFunction(uint8 MyIdx, MyType MyParameters, ...);

Or, optimized for source-code delivery:
 #define MyInstance(index, p) Function##index (p)

The BSW Module API is further specified in chapter 8 of the according BSW Module
specification.

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

67 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

8.3.2 Initialization function

When the BSW Module needs to initialize variables and hardware resources, this is
done in a separate Initialization function. This section contains general requirements
valid for all module specific implementations of an Initialization function service.

The Initialization function API name follows SWS_BSW_00148 and has Init as

Service name.

Examples:

 CanIf_Init()

 Eep_21_LDExt_Init()

Not all BSW Module have an Initialization function. Refer to chapter 7 and 8 of the
according BSW Module specification for further details.

To protect the system against faulty initialization of the ECU or parts of the BSW, the
usage of the Initialization function of a BSW Module is restricted.

[SWS_BSW_00150] Call to Initialization functions is restricted

⌈Only the ECU State Manager and Basic Software Mode Manager are allowed to call
Initialization functions.⌋(SRS_BSW_00101, SRS_BSW_00467)

[SWS_BSW_00229] Initialization function signature

⌈ The Initialization function signature shall always have the same pattern, where the

only argument is the Configuration pointer.⌋ (SRS_BSW_00414)

For instance:

void Eep_21_LDExt_Init(const Eep_21_LDExt_ConfigType

*ConfigPtr)

(SWS_BSW_00047)

[SWS_BSW_00185] Return type of initialization functions

⌈The return type of Initialization functions is always void ⌋(SRS_BSW_00358).

[SWS_BSW_00216] Name convention for type of the parameter passed to
initialization functions
⌈ The name for the type of the parameter passed to Initialization functions should be
formed in the following way:

<Mip>_ConfigType

Where <Mip> is the Module implementation prefix

[SWS_BSW_00102].⌋ (SRS_BSW_00414)

The Initialization function is responsible to set the selection of configuration
parameters for the module. This selection is passed as argument to the function by
ECU State Manager (EcuM) or by the Basic Software Mode Manager (BswM). See
also SWS_BSW_00058.

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

68 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

[SWS_BSW_00050] Check parameters passed to Initialization functions

⌈If the parameter checking for the Initialization function is enabled
(SWS_BSW_00049), the Configuration pointer argument shall be checked with the
following conditions:

 In the supportedConfigVariants VariantPreCompile and VariantLinkTime if only
one configuration variant set is used, the initialization function does not need
nor evaluate the passed argument. Thus the Configuration pointer shall have

a NULL_PTR value.

 In the supportedConfigVariant VariantPostBuild or if multiple configuration
variant sets are used, the initialization function requires the passed argument.

Thus the Configuration pointer shall be different from NULL_PTR.

If these conditions are not satisfied, a Development error with type "Invalid
configuration set selection" shall be reported to Default Error Tracer (Det), see

[SWS_BSW_00151]. ⌋(SRS_BSW_00414, SRS_BSW_00400, SRS_BSW_00438)

[SWS_BSW_00151] Name convention for error “Invalid configuration set selection”
⌈The name for the Development error “Invalid configuration set selection” should be
formed in the following way:

<MIP>_E_INIT_FAILED

Where <MIP> is the Module implementation prefix of this BSW

Module.⌋(SRS_BSW_00414)

See chapter 7, Error classification, of the according BSW Module specification for
additional information about this error – for instance, the Error ID.

 [SWS_BSW_00071] Set module initialization status
⌈The module initialization status must be set at the end of Initialization function
execution. ⌋(SRS_BSW_00450)

[SWS_BSW_00230] Call to Initialization functions

⌈ After a reset/reboot the module initialization function shall be called before any
other module function. There are some module specific exceptions, e.g. pre-Init in

Dem or <Mip>_GetVerisonInfo() is always possible. ⌋()

[SWS_BSW_00231] Multiple calls to Initialization functions

⌈ The module initialization function shall not be called more than one time. The
initialization function shall be called only after a reset/reboot or after a call of the

modules De-Initialization function.⌋()

8.3.3 De-Initialization function

When the BSW Module needs to perform functionality during ECU shutdown, change
to sleep and similar phases, this is in general done in a separate De-initialization

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

69 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

function. This section contains general requirements valid for all module specific
implementations of a De-initialization function service.

The De-initialization function API name follows SWS_BSW_00148 and has DeInit

as Service name.

Example:

The AUTOSAR COM modules function Com_DeInit() stops all started I-PDU

groups.

To protect the system against faulty de-initialization of the ECU or parts of the BSW,
the usage of the De-Initialization function of a BSW Module is restricted.

[SWS_BSW_00152] Call to De-Initialization functions is restricted

⌈Only the ECU State Manager and Basic Software Mode Manager are allowed to call
De-Initialization functions. ⌋(SRS_BSW_00467)

[SWS_BSW_00072] Module state after De-Initialization function

⌈The state of a BSW Module shall be set to UNINIT at the beginning of the De-

Initialization function.⌋(SRS_BSW_00450)

[SWS_BSW_00232] Call to De-Initialization functions
⌈The module De-Initialization function shall be called only if the module was initialized
before (initialization function was called). ⌋()

[SWS_BSW_00233] Multiple calls to De-Initialization functions
⌈The module De-Initialization function shall not be called more than one time after the
module initialization function was called. ⌋()

Not all BSW Module have a De-Initialization function. Refer to chapter 7 and 8 of the
according BSW Module specification for further details.

8.3.4 Get Version Information

This section contains general requirements valid for all module specific
implementations of the Get Version Information service.

[SWS_BSW_00168] Get Version Information function name

⌈The Get Version Information API name follows SWS_BSW_00148 and has

GetVersionInfo as Service name.⌋(SRS_BSW_00407)

Example:

void Eep_21_LDExt_GetVersionInfo (

 Std_VersionInfoType *versioninfo

)

[SWS_BSW_00064] Execution behavior of Get Version Information

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

70 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

⌈Get Version Information function shall be executed synchronously to its call and
shall be reentrant.⌋(SRS_BSW_00407)

[SWS_BSW_00052] Return result from Get Version Information

⌈Get Version Information function shall have only one parameter. This parameter
shall return the version information of this BSW Module with type

Std_VersionInfoType, imported from Standard Types header

(Std_Types.h).⌋(SRS_BSW_00407)

Note that the parameter name is part of each BSW Module specification.

The returned version information has type Std_VersionInfoType, which includes

Published information from this module (see also SWS_BSW_00059 and AUTOSAR
Specification of Standard Types [13]):

 Vendor Id

 Module Id

 Vendor specific version number

[SWS_BSW_00051] Configuration parameter for enabling Get Version Information
service
⌈The BSW Module shall provide a Pre-compile time configuration parameter for
enabling or disabling the Get Version Information API. The configuration parameter
name shall be formed in the following way:

<MIP>_VERSION_INFO_API

⌋(SRS_BSW_00411)

Example:

/* File: Eep_21_LDExt_Cfg.h

 */

#define EEP_21_LDEXT_VERSION_INFO_API STD_ON /*API is

enabled */

Note that for switching this configuration, the standard types STD_ON and STD_OFF

shall be used (SWS_BSW_00029).

Note that if source code for both caller and callee of Get Version Information service
are available, the Implementation source of the BSW Module may realize

<Mip>_GetVersionInfo as a macro, defined in its Implementation header file.

Note: If <Mip>_GetVersionInfo is provided as a macro and a function is required,

the provided macro could additionally be wrapped by a function definition.

[SWS_BSW_00164] No restriction to Get Version Information calling context
⌈It shall be possible to call Get Version Information function at any time (e.g. before

the Initialization function is called). ⌋(SRS_BSW_00407)

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

71 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

API configuration:

 The configuration of Published information (SWS_BSW_00059) of this BSW
Module affects the API return values.

Please refer to the according BSW Module specification for further implementation
details.

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

72 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

8.4 Callback notifications

Callbacks are functions, which are used for notifications to other modules.

The function prototypes of the callback functions shall be provided in the Callback
header file, see SWS_BSW_00026, chapter 5.1.7.3.

Callbacks, which are AUTOSAR Services, follow the signature expected by the RTE.

In this case, the return value of these functions has the type Std_ReturnType and

the caller can assume, that always E_OK is returned. Callback functions should never

fail, but this can happen, e.g. in partitioned systems

[SWS_BSW_00180] Signature of Callback functions of AUTOSAR Services

⌈If the BSW Module provides Callback functions which are AUTOSAR Services, i.e.
the function invocation is routed via RTE, then the signature of these functions shall

follow the signature provided by the RTE to invoke servers via RTE_Call

API.⌋(SRS_BSW_00440)

[SWS_BSW_00172] Avoid return types other than void in Callback functions

⌈If the BSW Module provides Callback functions which are not AUTOSAR Services,
then the return type of these functions shall avoid types other than

void.⌋(SRS_BSW_00359)

If Callback functions do serve as simple triggers, no parameter is necessary to be
passed. If additional data is to be passed to the caller within the callback scope, it
must be possible to forward the content of that data using a parameter.

[SWS_BSW_00173] Callback function parameters

⌈Callback functions are allowed to have parameters.⌋(SRS_BSW_00360)

Some Callback functions are called in interrupt context. According to
SRS_BSW_00333 the BSW Module specification contains the information, for each
Callback function, if it is called in interrupt context or not. The implementation of
Callback functions called in interrupt context must be kept as short as possible, as
specified in SWS_BSW_00167.

Example: A callback from CAN Interface could be called from an ISR of the CAN
driver. In this case, this information is part of the callback specification within the
SWS for the CAN Interface module.

The list of callbacks is specific for every BSW Module. Please refer to the respective
BSW Module specification for further details.

[SWS_BSW_00218] Usage of Callback functions of AUTOSAR Services
⌈ A BSW Module shall not call RTE interfaces (e.g. Rte_Call) before the first
invocation of the own MainFunction. ⌋ ()

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

73 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

8.5 Scheduled functions

Many BSW Modules have one or more Scheduled Functions (also called Main
processing functions) that have to be called cyclically or upon an event (e.g. within an
OS Task) and that do the main work of the module.

Scheduled functions are directly called by Basic Software Scheduler. They have no
return value and no parameter. Calling of Scheduled functions is restricted to the
BSW Scheduler, see chapter 7.1.11.

The according BSW Module specification either defines one Scheduled function and
handles all the processing internally or defines multiple Scheduled functions with
appropriate module specific extensions. This depends on specific BSW Module
requirements.

Scheduled functions are specified in chapter 8 of the corresponding BSW Module
specification. These functions are defined using the following template:

 Service name: Name of API call

Syntax: Syntax of call including return type and parameters.

Service ID[hex]: Number of service ID. This ID is used as parameter for the error report API of
Default Error Tracer.

Description: Short description of the scheduled function

[SWS_BSW_00153] Naming convention for Scheduled functions

⌈Scheduled functions of a BSW Module shall be named according to the following:

<Mip>_MainFunction[_<Sd>]

Where <Mip> is the Module implementation prefix (SWS_BSW_00102) . The content

between brackets shall be used only if the module defines more than one Scheduled

function, where <Sd> is a module specific name extension given to every

function.⌋(SRS_BSW_00373, SRS_BSW_00347)

Examples (for illustration only):

a) Possible main processing function of EEPROM driver:
void Eep_21_LDExt_MainFunction(void)

b) Possible main processing functions of Communication module:

void Com_MainFunctionRx(void)

void Com_MainFunctionTx(void)

void Com_MainFunctionRouteSignals(void)

[SWS_BSW_00154] Scheduled functions have no parameters

⌈Scheduled functions shall have no parameters and no return value. Their return type

is always void.⌋(SRS_BSW_00373, SRS_BSW_00376)

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

74 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

Note: Scheduled functions are typically not reentrant.

Scheduled functions must be able to be allocated to a basic task. Because of this,
they are not allowed to enter any wait state.

[SWS_BSW_00156] Scheduled functions do not enter a wait state

⌈Scheduled functions shall not enter any wait state.⌋(SRS_BSW_00424)

Typically, basic tasks are more efficient then extended tasks. Extended and basic
task are classified in the Specification of Operating System [8].

The scheduling strategy that is built inside the BSW Modules must be properly
documented, see also SWS_BSW_00054.

8.6 Expected Interfaces

8.6.1 Mandatory Interfaces

The list of mandatory interfaces is specific for every BSW Module. Please refer to the
corresponding BSW Module specification.

8.6.2 Optional Interfaces

The list of optional interfaces is specific for every BSW Module. Please refer to the
corresponding BSW Module specification.

8.6.3 Configurable interfaces

Please refer to the corresponding BSW Module specification. In this chapter, all
interfaces are listed where the target function could be configured. The target
function is usually a callback function. The name of this kind of interfaces is not fixed
because they are configurable.

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

75 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

9 Sequence diagrams

Please refer to according BSW Module specification.

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

76 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

10 Configuration specification

This chapter complements chapter 10 of according BSW Module specification.

10.1 Introduction to configuration specification

In addition to this section, it is highly recommended to read the documents:

 AUTOSAR Layered Software Architecture [2]

 AUTOSAR ECU Configuration Specification

 This document describes the AUTOSAR configuration methodology and
the AUTOSAR configuration metamodel in detail.

The following is only a short survey of the topic and it will not replace the ECU
Configuration Specification document.

10.1.1 Configuration and configuration parameters

Configuration parameters define the variability of the generic parts of an
implementation of a BSW Module. This means that only generic or configurable
module implementation can be adapted to the environment (software and hardware)
in use during system and ECU configuration.

The configuration of parameters can be achieved at different times during the
software process: before compile time, before link time or after build time. In the
following, the term “configuration class” of a parameter is used in order to refer to a
specific configuration point in time.

Different configuration classes will result in different implementations and design
processes, as specified in this document and in the BSW Module own specification.

10.1.2 Variants

Variants describe sets of configuration parameters. E.g., Variant 1: only pre-compile
time configuration parameters; Variant 2: mix of pre-compile- and post build time-
configuration parameters. In one variant, a parameter can only be of one
configuration class.

The possible configuration variants of a BSW Module are described in its
specification. Each Variant has a unique name, which could be referenced to in later
chapters. The maximum number of allowed variants is three. Note that each variant
has its own requirement ID in the BSW Module specification.

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

77 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

10.1.3 Containers

Containers hold a set of configuration parameters. This means:

 All configuration parameters are kept in containers.

 (sub-) containers can reference (sub-) containers. It is possible to assign a
multiplicity to these references. The multiplicity then defines the possible
number of instances of the contained parameters.

Configuration parameters are clustered into a container whenever:

 The configuration parameters logically belong together (e.g., general
parameters which are valid for the entire module NVRAM manager)

 The configuration parameters need to be instantiated (e.g., parameters of the
memory block specification of the NVRAM manager – those parameters must
be instantiated for each memory block)

10.1.4 Configuration parameter tables

The tables for configuration parameters are divided in three sections:

 General section

 Configuration parameter section

 Section of included/referenced containers

10.1.4.1 General section:

10.1.4.2 Configuration parameter section:

Name Identifies the parameter by name.

Description Explains the intention of the configuration parameter.

Type Specifies the type of the parameter (e.g., uint8..uint32) if possible or
mark it “--“.

Unit Specifies the unit of the parameter (e.g., ms) if possible or mark it “--“

Range Specifies the range (or
possible values) of the
parameter (e.g., 1..15,
ON,OFF) if possible or
mark it “--“.

Describes the value(s) or ranges.

Post-Build Variant
Multiplicity

 True: The multiplicity of this parameter is subject to change at
post-build time

 False: The multiplicity of this parameter is not subject to
change at post-build time

Post-Build Variant Value  True: The value of this parameter is subject to change at post-
build time

 False: The value of this parameter is not subject to change at
post-build time

SWS Item Requirement ID

Container Name
Identifies the container by a name, e.g.,
CanDriverConfiguration

Description Explains the intention and the content of the container .

Configuration Parameters

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

78 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -


Multiplicity
Configuration Class

Pre-compile see
1
 Reference to (a) variant(s).

Link time see
2
 Reference to (a) variant(s).

Post Build see
3
 Reference to (a) variant(s).

Value Configuration
Class

Pre-compile see
4
 Reference to (a) variant(s).

Link time see
5
 Reference to (a) variant(s).

Post Build see
6
 Reference to (a) variant(s).

Scope  LOCAL : The parameter is applicable only for the module it is
defined in

 ECU : The parameter may be shared with other modules (i.e.
exported)

Dependency Describe the dependencies with respect to the scope if known ot mark it
as “- -“.

10.1.4.3 Section of included/referenced containers:

10.1.5 Configuration class labels

The configuration parameter section is complemented by a label with additional
specification for each type of configuration class:

Pre-compile time: Specifies whether the configuration parameter shall be of
configuration class Pre-compile time or not.

1
 see the explanation for configuration class label: Pre-compile time

2
 see the explanation for configuration class label: Link time

3
 see the explanation for configuration class label: Post Build time

4
 see the explanation for configuration class label: Pre-compile time

5
 see the explanation for configuration class label: Link time

6
 see the explanation for configuration class label: Post Build time

Included Containers

Container Name Multiplicity Scope / Dependency

Reference to a valid
(sub)container by its
name, e.g. CanController

Specifies the
possible number
of instances of
the referenced
container and its
contained
configuration
parameters.

Possible values:
<multiplicity>
<min_multiplicity..
max_multiplicity>

Describes the scope of the referenced sub-
container if known or mark it as “- -“.
The scope describes the impact of the
configuration parameter: Does the setting affect
only one instance of the module (instance), all
instances of this module (module), the ECU or a
network.

Possible values of scope :
instance, module, ECU, network>

Describes the dependencies with respect to the
scope if known or mark it as “- -“.

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

79 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

Label Description

x The configuration parameter shall be of configuration class Pre-compile time.

-- The configuration parameter shall never be of configuration class Pre-compile time.

Link time: Specifies whether the configuration parameter shall be of configuration
class Link time or not.

Label Description

x The configuration parameter shall be of configuration class Link time.

-- The configuration parameter shall never be of configuration class Link time.

Post Build: Specifies whether the configuration parameter shall be of configuration
class Post Build or not.

Label Description

x
The configuration parameter shall be of configuration class Post Build and no specific
implementation is required.

-- The configuration parameter shall never be of configuration class Post Build.

10.2 General configuration specification

10.2.1 Configuration files

See chapter 5.1 for more information about the configuration file structure.

[SWS_BSW_00157] Configuration files shall be human-readable
⌈Files holding configuration data for the BSW Module shall have a format that is
readable and understandable by human beings.⌋(SRS_BSW_00160)

10.2.2 Implementation names for configuration parameters

Configuration parameters’ names are specified in chapter 10 of the according BSW
Module specification.

Example:

Name EepNormalWriteBlockSize
{EEP_NORMAL_WRITE_BLOCK_SIZE}

Description Number of bytes written within one job processing cycle in
normal mode. Implementation Type: Eep_LengthType.

Two distinct names are specified:

 Configuration parameter name specification: It specifies the Configuration
parameter name of this configuration parameter object in the AUTOSAR

Model, for instance: EepNormalWriteBlockSize.

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

80 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

 Configuration parameter label specification: It specifies the Configuration
parameter label to be used for this parameter in implementation files, for

instance: EEP_NORMAL_WRITE_BLOCK_SIZE.

The same principles used for defining the names of implementation files and API
functions also apply for the naming of parameters.

Note that according to SWS_BSW_00126 all Configuration parameter names and
Configuration parameter labels shall start with the Module implementation prefix
(SWS_BSW_00102) or its capitalized form. This is achieved by replacing the Module
abbreviation term within the respective Configuration parameter name specification
and Configuration parameter label specification through the Module implementation
or its capitalized form.

Example:

The Configuration parameter label specification EEP_NORMAL_WRITE_BLOCK_SIZE,

results in the derived Configuration parameter label

EEP_21_LDEXT_NORMAL_WRITE_BLOCK_SIZE for the vendor with VendorID==21

and with vendorApiInfix==LDEXT.

These rules allow configuration of multiple BSW driver modules from the same
module type, even modules provided by same vendor.

10.2.3 Pre-compile time configuration

[SWS_BSW_00183] Pre-Compile time configuration

⌈The configuration parameters in pre-compile time are set before compilation starts.
Thus, the related configuration must be done at source code level. Pre-compile time
configuration allows decoupling of the static configuration from implementation

⌋(SRS_BSW_00397).

All Pre-compile time configuration parameters are defined in the Pre-compile time
configuration source (SWS_BSW_00012) or in the Pre-compile time configuration
header (SWS_BSW_00031).

Example:

/* File: CanTp_Cfg.h */

/* Pre-compile time configuration */

…

#define CANTP_USE_NORMAL_ADDRESSING STD_OFF

#define CANTP_USE_NORMAL_FIXED_ADDRESSING STD_OFF

#define CANTP_USE_EXTENDED_ADDRESSING STD_ON

…

/* File: CanTp.c */

…

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

81 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

#include "CanTp_Cfg.h"

…

#if (CANTP_USE_NORMAL_ADDRESSING == STD_OFF)

…

#endif

The separation of configuration dependent data at compile time furthermore
enhances flexibility, readability and reduces efforts for version management, as no
source code is affected.

10.2.4 Link time configuration

The usage of link time parameters allows configurable functionality in BSW Modules
that are delivered as object code. This is common, for instance, for BSW drivers.

[SWS_BSW_00184] Link time configuration
⌈The configuration of BSW Modules with link time parameters is achieved on object
code basis in the stage after compiling and before linking⌋ (SRS_BSW_00398). See
also [SWS_BSW_00117].

[SWS_BSW_00056] Configuration pointer to link-time configurable data
⌈If the BSW Module depends on link-time configurable data at runtime, then it shall
use a read only reference (Configuration pointer) to an external configuration

instance.⌋(SRS_BSW_00344)

All Link time configuration parameters are defined in the Link time configuration
source (SWS_BSW_00014) and declared in the Link time configuration header
(SWS_BSW_00033).

10.2.5 Post-build time configuration

Post-build time configuration mechanism allows configurable functionality of BSW
Modules that are deployed as object code.

[SWS_BSW_00057] Implement Post-build configuration data structure

⌈If the BSW Module has Post-build time configuration parameters, the post-build
configuration data shall be defined in a structure: the Post-build configuration data

structure.⌋(SRS_BSW_00438)

[SWS_BSW_00158] Use of Configuration pointers to Post-build configuration data
structure is restricted

⌈The Post-build configuration data structure of each BSW module shall be pointed to
by Configuration pointers. Only EcuM contains Configuration pointers to the Post-
build configuration data structure of post-build configurable modules which need to
be initialized before the initialization of BswM. The rest of the BSW modules are

initialized via configuration pointers by BswM.⌋(SRS_BSW_00438)

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

82 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

Post-build configuration data is located in a separate segment and can be loaded
independently of the actual code [7]. This is the case, for instance, for loadable CAN
configuration. To enable this independent loading of the configuration, the memory
layout of these parameters must be known:

[SWS_BSW_00160] Reference pointer to Post-build time configurable data
⌈If the BSW Module operates on post-build configuration data, then it shall use a
reference (pointer) to an external configuration instance. This reference shall be

provided via the BSW module’s initialization function (i.e., <Mip>_Init()) via a

const-qualified function parameter.⌋(SRS_BSW_00404)

Example:

/* File: ComM_PBcfg.h */

…

/* Type declaration of the Configuration Type */

struct ComM_ConfigType_Tag {

…

};

…

/* File: ComM_PBcfg.c */

#include <ComM.h>

…

/* post-build time configurable data */

const ComM_ConfigType ComM_Config =

{

 …

};

…

/* File: ComM.h */

#include <ComM_PBCfg.h>

…

/* Forward declaration: */

typedef struct ComM_ConfigType_Tag ComM_ConfigType;

extern void ComM_Init(const ComM_ConfigType *

ComMConfigPtr);

…

If the Post-build configuration is placed at a fixed memory location and if there are no
BSW modules with a configuration using variations points which shall be resolved at
post-build time (see section 10.3) the references can be resolved as constant
pointers. In that case a fixed pointer will be passed to the BSW module’s initialization
function. Any indirections shall be kept as simple as possible.

All Post-build time configuration parameters are defined in the Post-build time
configuration source (SWS_BSW_00015) and declared in the Post-build time
configuration header (SWS_BSW_00035).

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

83 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

10.2.6 Configuration variants

Independent from the configuration classes (pre-compile, link, and post-build time),
configuration variants enable the reuse of ECUs in different roles within the vehicle,
depending on the selected configuration variant.

[SWS_BSW_00226] Handling of different configuration variants
⌈ Regardless of the chosen pre-compile time, link time or post-build time
configuration of a BSW module, multiple configuration variants may exist in the same
configuration which is indicated by different variation points. These variation points
may either be bound at pre-compile time, link time or post-build time.⌋ ()

[SWS_BSW_00227] Generation of multiple configuration variants
⌈ In case of variation points that are bound at post-build time the selection of a
particular variant is possible without reprogramming the ECU. To this end several
post-build time configuration sets (i.e., one for each configuration variant) are
generated and loaded into the ECU.⌋ ()

[SWS_BSW_00228] Selection/binding of the configuration variant
⌈ The EcuM will determine (via a call to EcuM_DeterminePbConfiguration()) which of
these post-build time configuration variants shall be used. Based on the used
configuration variant, the EcuM will then call the BSW modules’ initialization functions
(SWS_BSW_00050, SWS_BSW_00150) with a pointer to the appropriate post-build
configuration variant for the particular BSW module.⌋ (SRS_BSW_00400,
SRS_BSW_00405)

Example:

/* File: ComM_PBcfg.h */

…

/* Type declaration of the Configuration Type */

typedef struct ComM_ConfigType_Tag {

…

};

…

/* File: ComM_PBcfg.c */

#include <ComM.h>

…

/* post-build time configurable data for predefined

variant “VariantA” */

const ComM_ConfigType ComM_Config_VariantA =

{

 …

};

/* post-build time configurable data for predefined

variant “VariantB” */

const ComM_ConfigType ComM_Config_VariantB =

{

 …

};

…

/* File: ComM.h */

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

84 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

#include <ComM_Cfg.h>

…

/* Forward declaration: */

typedef struct ComM_ConfigType_Tag ComM_ConfigType;

extern void ComM_Init(const ComM_ConfigType *

ComMConfigPtr);

…

10.3 Published Information

Published information contains data defined by the implementer of the BSW Module
that does not change when the module is adapted (i.e. configured) to the actual
hardware and software environment. It contains version and manufacturer
information.

This is necessary to provide unambiguous version identification for each BSW
Module and enable version cross check as well as basic version retrieval facilities.
Thus, the module compatibility is always visible.

[SWS_BSW_00059] Define Published information elements

⌈The Published information of the BSW Module shall be provided within all header
files by defining pre-processor directives (#define) and protect them against multiple
definition. The preprocessor identifier is formed in the following way:

<MIP>_<PI>

Where <PI> is the according Published information element name. The module

shall provide definitions for the Published information elements listed in the table
below. These definitions shall have values with range as specified in this table:

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

85 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

Published information elements

Information element Type / Range Information element description
<MIP>_VENDOR_ID #define/uint16 Vendor ID (vendorId) of the

dedicated implementation of this
module according to the AUTOSAR
vendor list. The ID is the same as in
HIS Software Supplier Identifications
[20].

<MIP>_MODULE_ID #define/uint16 Module ID of this module, as defined
in the BSW Module List [1].

<MIP>_AR_RELEASE_MAJOR_VERSION #define/uint8 Major version number of AUTOSAR
release on which the appropriate
implementation is based on.

<MIP>_AR_RELEASE_MINOR_VERSION #define/uint8 Minor version number of AUTOSAR
release on which the appropriate
implementation is based on.

<MIP>_AR_RELEASE_REVISION_VERSION #define/uint8 Revision version number of
AUTOSAR release on which the
appropriate implementation is based
on.

<MIP>_SW_MAJOR_VERSION #define/uint8 Major version number of the vendor
specific implementation of the
module. The numbering is vendor
specific.

<MIP>_SW_MINOR_VERSION #define/uint8 Minor version number of the vendor
specific implementation of the
module. The numbering is vendor
specific.

<MIP>_SW_PATCH_VERSION #define/uint8 Patch level version number of the
vendor specific implementation of
the module. The numbering is
vendor specific.

The Published information is configured in the BSW Module Description [4] for this

module.⌋(SRS_BSW_00402, SRS_BSW_00003, SRS_BSW_00379,
SRS_BSW_00374, SRS_BSW_00318, SRS_BSW_00407)

[SWS_BSW_00161] Restriction to declaration of vendor identification

 ⌈The vendor identification shall be declared only in the following way, without any
cast, to allow verification in a pre-processor.

#define <MIP>_VENDOR_ID <vi>

Where <vi> is the corresponding Vendor Id, as required in

[SWS_BSW_00059].⌋(SRS_BSW_00374)

The following example shows the declaration of Published information for the CAN
module implementation version 1.2.3 of vendor 43 developed according to
AUTOSAR Release 4.0.3. The module ID is obtained from BSW Modules List [1].

Example:

/* File: CanIf.h */

…

/* Published information */

 General Specification of Basic Software Modules
AUTOSAR Release 4.2.2

86 of 86 Document ID 578: AUTOSAR_SWS_BSWGeneral

 - AUTOSAR confidential -

#define CANIF_MODULE_ID_CFG 0x003Cu

#define CANIF_VENDOR_ID_CFG 0x002Bu

#define CANIF_AR_RELEASE_MAJOR_VERSION_CFG 0x04u

#define CANIF_AR_RELEASE_MINOR_VERSION_CFG 0x00u

#define CANIF_AR_RELEASE_PATCH_VERSION_CFG 0x03u

#define CANIF_SW_MAJOR_VERSION_CFG 0x01u

#define CANIF_SW_MINOR_VERSION_CFG 0x02u

#define CANIF_SW_PATCH_VERSION_CFG 0x03u

Note that the Published information elements <MIP>_SW_MAJOR_VERSION,

<MIP>_SW_MINOR_VERSION and <MIP>_SW_PATCH_VERSION are defined by

software vendor.

[SWS_BSW_00162] Convention for version numbers
⌈The version numbers of successive BSW Module implementations shall be
enumerated according to the following rules:

 Increasing a more significant digit of a version number resets all less
significant digits.

 The <MIP>_SW_PATCH_VERSION is incremented if the module is still upwards

and downwards compatible (e.g. bug fixed)

 The <MIP>_SW_MINOR_VERSION is incremented if the module is still

downwards compatible (e.g. new functionality added)

 The <MIP>_SW_MAJOR_VERSION is incremented if the module is not

compatible any more (e.g. existing API changed)

The digit <MIP>_SW_MAJOR_VERSION is more significant than

<MIP>_SW_MINOR_VERSION, which is more significant than

<MIP>_SW_PATCH_VERSION.⌋(SRS_BSW_00321)

Example:
Take an ADC module implementation with version 1.14.2. Then:

 Versions 1.14.2 and 1.14.9 are exchangeable.

 Version 1.14.2 may contain bugs which are corrected in 1.14.9

 Version 1.14.2 can be used instead of 1.12.0, but not vice versa

 Version 1.14.2 cannot be used instead of 1.15.4 or 2.0.0

	1 Introduction and functional overview
	1.1 Traceability
	1.2 Document conventions

	2 Acronyms and abbreviations
	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 File structure
	5.1.1 Module implementation prefix
	5.1.2 Module implementation files
	5.1.3 Imported and exported information
	5.1.4 BSW Module Description
	5.1.5 Module documentation
	5.1.6 Code file structure
	5.1.6.1 Implementation source
	5.1.6.2 Link time configuration source
	5.1.6.3 Post-build time configuration source
	5.1.6.4 Interrupt frame implementation source

	5.1.7 Header file structure
	5.1.7.1 Implementation header
	5.1.7.2 Application Header File
	5.1.7.3 Callback header
	5.1.7.4 Debugging header
	5.1.7.5 Pre-compile time configuration header
	5.1.7.6 Link time configuration header
	5.1.7.7 Post-build time configuration header

	5.1.8 Version check

	6 Requirements traceability
	7 Functional specification
	7.1 General implementation specification
	7.1.1 Conformance to MISRA C
	7.1.2 Conformance to AUTOSAR Basic Software Requirements
	7.1.3 Conformance to AUTOSAR Methodology
	7.1.4 Platform independency and compiler abstraction
	7.1.5 Configurability
	7.1.6 Various naming conventions
	7.1.7 Configuration parameters
	7.1.8 Shared code
	7.1.9 Global data
	7.1.10 Usage of macros and inline functions
	7.1.11 Calling Scheduled functions (Main processing functions)
	7.1.12 Exclusive areas
	7.1.13 Callouts
	7.1.14 AUTOSAR Interfaces
	7.1.15 Interrupt service routines
	7.1.16 Restricted OS functionality access
	7.1.17 Access to hardware registers
	7.1.18 Debugging support
	7.1.19 Data types
	7.1.19.1 AUTOSAR Standard Types
	7.1.19.2 Platform Specific Types
	7.1.19.2.1 AUTOSAR Integer Data Types
	7.1.19.2.2 Boolean type

	7.1.20 Distributed execution on multi-partitioned systems

	7.2 Error Handling
	7.2.1 Classification
	7.2.2 Development errors
	7.2.2.1 Synopsis
	7.2.2.2 Documentation
	7.2.2.3 Configuration
	7.2.2.4 Reporting

	7.2.3 Runtime errors
	7.2.3.1 Synopsis
	7.2.3.2 Documentation
	7.2.3.3 Configuration
	7.2.3.4 Reporting

	7.2.4 Transient faults
	7.2.4.1 Synopsis
	7.2.4.2 Documentation
	7.2.4.3 Configuration
	7.2.4.4 Reporting

	7.2.5 Extended production errors and production errors
	7.2.5.1 Synopsis Production errors
	7.2.5.2 Synopsis Extended production errors
	7.2.5.3 Documentation
	7.2.5.4 Configuration
	7.2.5.5 Reporting
	7.2.5.6 Example use case: Error is detected and notified

	7.2.6 Specific topics
	7.2.6.1 Implementation specific errors
	7.2.6.2 Handling of Symbolic Name Values

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.3 Function definitions
	8.3.1 General specification on API functions
	8.3.2 Initialization function
	8.3.3 De-Initialization function
	8.3.4 Get Version Information

	8.4 Callback notifications
	8.5 Scheduled functions
	8.6 Expected Interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.3 Configurable interfaces

	9 Sequence diagrams
	10 Configuration specification
	10.1 Introduction to configuration specification
	10.1.1 Configuration and configuration parameters
	10.1.2 Variants
	10.1.3 Containers
	10.1.4 Configuration parameter tables
	10.1.4.1 General section:
	10.1.4.2 Configuration parameter section:
	10.1.4.3 Section of included/referenced containers:

	10.1.5 Configuration class labels

	10.2 General configuration specification
	10.2.1 Configuration files
	10.2.2 Implementation names for configuration parameters
	10.2.3 Pre-compile time configuration
	10.2.4 Link time configuration
	10.2.5 Post-build time configuration
	10.2.6 Configuration variants

	10.3 Published Information

