
Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

1 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

Document Change History
Date Version Changed by Change Description

31.03.2014 2.5.0 AUTOSAR
Release
Management

 Addition of the OS counters for
deadline monitoring

 Fixed data types for Supervised
Entity and Checkpoint types
(uint16)

 Several minor corrections
throughout the document

31.10.2013 2.4.0 AUTOSAR
Release
Management

 Minor fixes (mode switching,
dependencies to other modules)

 Quality corrections in the document
(e.g. formatting of requirements)

 Editorial changes

 Removed chapter(s) on change
documentation

25.02.2013 2.3.0 AUTOSAR
Administration

 Reworked according to the new
SWS_BSWGeneral

 New indexing scheme for
requirements

 Clarification in Deadline Supervision

 Minor corrections in Specification of
the Ports and Port Interfaces

02.11.2011 2.2.0 AUTOSAR
Administration

 Include file structure changed

 Added a method to read after restart
which SE caused the reset:
WdgM_GetFirstExpiredSEID.

 New template with requirements
traceability

Document Title Specification of Watchdog
Manager

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 080

Document Classification Standard

Document Version 2.5.0

Document Status Final

Part of Release 4.1

Revision 3

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

2 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

Document Change History
Date Version Changed by Change Description

07.10.2010 2.1.0 AUTOSAR
Administration

 Streamlined the used terms

 Reorganized structure of some
chapters

 Clarified ambigious statements and
resolved contradicting ones

 Corrected several bugs

 Provided more details what WdgM
functions do and in which sequence

07.12.2009 2.0.0 AUTOSAR
Administration

 New concept of windowed
watchdogs

 New supervision functions, Logical
Supervision and Deadline
Supervision

 Split of the supervision status into
local and global supervision status

 New concept for activation and
deactivation of supervision

 New concept of Defensive Behavior

 New failure recovery concept for
partition (application) restart

 Legal disclaimer revised

23.06.2008

1.2.1 AUTOSAR
Administration

Legal disclaimer revised

05.12.2007 1.2.0 AUTOSAR
Administration

 Extended mode concept
 Added GPT as activation source for

operation during Startup, Shutdown,
and Sleep

 Restructured module configuration
 Generated APIs from BSW UML model
 Generated configuration from Meta

Model
 Document meta information extended
 Small layout adaptations made

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

3 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

Document Change History
Date Version Changed by Change Description

31.01.2007 1.1.0 AUTOSAR
Administration

 New chapter "Specification of the ports
and port interfaces" added from
"AUTOSAR Services" document

 New feature added : active reset as
optional behavior

 New behavior of Deinit function :
triggering of the Watchdog Driver added

 Default mode for the Watchdog
Manager when SetMode service fails

 Legal disclaimer revised

 Release Notes added

 “Advice for users” revised

 “Revision Information” added

12.05.2006 1.0.0 AUTOSAR
Administration

Initial release

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

4 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

Disclaimer

This specification and the material contained in it, as released by AUTOSAR is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only.
For any other purpose, no part of the specification may be utilized or reproduced, in
any form or by any means, without permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR Specification Documents may contain exemplary items (exemplary
reference models, "use cases", and/or references to exemplary technical solutions,
devices, processes or software).

Any such exemplary items are contained in the Specification Documents for
illustration purposes only, and they themselves are not part of the AUTOSAR
Standard. Neither their presence in such Specification Documents, nor any later
documentation of AUTOSAR conformance of products actually implementing such
exemplary items, imply that intellectual property rights covering such exemplary
items are licensed under the same rules as applicable to the AUTOSAR Standard.

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

5 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

Table of Contents

1 Introduction and Functional Overview ... 9

1.1 Supervised Entities and Checkpoints .. 9
1.2 Interaction of Supervision Mechanisms ... 10

1.3 Supervision Functions ... 10
1.3.1 Alive Supervision .. 10
1.3.2 Deadline Supervision .. 10
1.3.3 Logical Supervision ... 10

1.4 Watchdog Handling ... 11

1.5 Error Handling ... 11
1.5.1 Error Handling in the Supervised Entity .. 11
1.5.2 Partition Shutdown .. 12

1.5.3 Reset by Hardware Watchdog .. 12
1.5.4 Immediate MCU Reset ... 12

2 Acronyms, Abbreviations and Terms ... 13

3 Related Documentation ... 15

3.1 Input Documents ... 15
3.2 Related specification ... 15

4 Constraints and Assumptions .. 16

4.1 Limitations and conditions of use .. 16

4.2 Applicability to Car Domains .. 17

5 Dependencies to Other Modules ... 18

5.1 File Structure ... 19
5.1.1 Code File Structure ... 19
5.1.2 Header File Structure .. 19

5.2 Version Check ... 20

6 Requirements Traceability ... 21

7 Functional Specification... 33

7.1 Interaction of Supervision Functions.. 33
7.1.1 Overview ... 33
7.1.2 Core Configurable Parameters ... 35

7.1.3 Local Supervision Status .. 35
7.1.4 Global Supervision Status .. 39
7.1.5 Alive Supervision .. 43
7.1.6 Deadline Supervision .. 47
7.1.7 Logical Supervision ... 52

7.2 Error Handling / Failure Recovery ... 59
7.2.1 RTE Mode Mechanism Notifications ... 59
7.2.2 Report to DEM in WDGM_GLOBAL_STATUS_STOPPED 59
7.2.3 Partition Restart / Shutdown ... 59

7.2.4 Not Setting the Watchdog Trigger Condition .. 60
7.2.5 MCU Reset ... 60

7.3 Watchdog Handling ... 61

7.3.1 Support for Multiple Watchdog Instances ... 61

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

6 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

7.3.2 Setting the Trigger Conditions .. 61

7.3.3 Configurable Parameters .. 62
7.4 Development Errors ... 63
7.5 Detection of Development Errors .. 63
7.6 Production Errors... 63
7.7 Extended Production Errors .. 64

7.8 Debugging Support.. 65
7.9 Watchdog Manager Configuration ... 65

7.9.1 Mode-independent Supervision Settings .. 65
7.9.2 Mode-Dependent Parameters .. 68

7.10 Switching Modes .. 72

7.10.1 Effect on Supervision Status ... 72
7.10.2 Effect on Watchdogs ... 73

7.10.3 Watchdog Handling during Sleep ... 73
7.11 Specification of the Ports and Port Interfaces .. 74

7.11.1 Ports and Port Interface for Alive Supervision .. 74
7.11.2 Ports and Port Interface for Status Reporting ... 77

7.11.3 Definition of the Watchdog Manager Service .. 83

8 API Specification ... 86

8.1 Imported Types ... 86
8.2 Type Definitions ... 86

8.2.1 WdgM_ConfigType ... 86

8.2.2 WdgM_SupervisedEntityIdType.. 88

8.2.3 WdgM_CheckpointIdType .. 88
8.2.4 WdgM_ModeType .. 88
8.2.5 WdgM_LocalStatusType ... 88
8.2.6 WdgM_GlobalStatusType ... 89

8.3 Function Definitions ... 90
8.3.1 WdgM_Init .. 90

8.3.2 WdgM_DeInit .. 91
8.3.3 WdgM_GetVersionInfo ... 92

8.3.4 WdgM_SetMode ... 93
8.3.5 WdgM_GetMode ... 94
8.3.6 WdgM_CheckpointReached ... 95

8.3.7 WdgM_UpdateAliveCounter ... 97
8.3.8 WdgM_GetLocalStatus ... 98
8.3.9 WdgM_GetGlobalStatus ... 99
8.3.10 WdgM_PerformReset ... 100

8.3.11 WdgM_GetFirstExpiredSEID .. 101
8.4 Call-back Notifications ... 102
8.5 Scheduled Functions ... 102

8.5.1 WdgM_MainFunction .. 102
8.6 Expected Interfaces ... 104

8.6.1 Mandatory Interfaces .. 106
8.6.2 Optional Interfaces .. 106
8.6.3 Configurable Interfaces ... 106

8.6.4 Job End Notification .. 107

9 Sequence Diagrams .. 108

9.1 Initialization .. 108

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

7 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

10 Configuration Specification .. 109

10.1 Parameter Differentiation ... 109
10.1.1 Static Configuration Parameters ... 109
10.1.2 Runtime Configuration Parameters ... 109
10.1.3 Precompile Options .. 109

10.2 Containers and Configuration Parameters ... 109

10.2.1 Variants .. 110
10.2.2 WdgM ... 110
10.2.3 WdgMGeneral... 110
10.2.4 WdgMSupervisedEntity .. 113
10.2.5 WdgMCheckpoint ... 115

10.2.6 WdgMInternalTransition .. 116
10.2.7 WdgMWatchdog ... 117

10.2.8 WdgMConfigSet .. 118
10.2.9 WdgMDemEventParameterRefs ... 119
10.2.10 WdgMMode ... 120
10.2.11 WdgMAliveSupervision .. 122

10.2.12 WdgMDeadlineSupervision ... 124
10.2.13 WdgMExternalLogicalSupervision ... 126

10.2.14 WdgMExternalTransition ... 127
10.2.15 WdgMTrigger ... 128
10.2.16 WdgMLocalStatusParams ... 129

10.2.17 WdgMCallerIds .. 130

10.3 Published Information... 131
10.4 Callback Routines .. 131

11 Annex A: Example Implementation of Alive Supervision Algorithm 132

11.1 Scenario A .. 133
11.2 Scenario B .. 134

12 Not applicable requirements .. 136

List of Figures

Figure 1: File include structure for the Watchdog Manager 19
Figure 2: Overview of Watchdog Manager Monitoring .. 34

Figure 3: Local Supervision Status ... 36
Figure 4: Global Supervision Status ... 40
Figure 5: Simplest Alive Supervision Checkpoint Configuration 44
Figure 6: Multiple Checkpoints for Alive Supervision in one Supervised Entity 45
Figure 7: Simplest Deadline Supervision Configuration .. 48

Figure 8: Multiple Transitions for Deadline Supervision in one Supervised Entity 49
Figure 9: Example Control Flow Graph .. 53

Figure 10: Abstracted Example Control Flow Graph .. 54
Figure 11: Two Supervised Entities with their Checkpoints and Internal Transitions 68
Figure 12: Two Supervised Entities with a External Transition 70

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

8 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

Figure 13: Example of SW-Cs connected to the Watchdog Manager via service ports
 .. 76

Figure 14: Example of SW-Cs connected to the Watchdog Manager via service ports
and mode ports ... 81

Figure 15: Expected Interfaces ... 106
Figure 16: Initialization of the Watchdog Manager module 108

Figure 17: Configuration Module WdgM ... 110
Figure 18: Configuration Container WdgMGeneral ... 113
Figure 19: Configuration Container WdgMSupervisedEntity 115
Figure 20: Configuration Container WdgMCheckpoint ... 116
Figure 21: Configuration Container WdgMInternalTransition 117

Figure 22: Configuration Container WdgMWatchdog ... 118
Figure 23: Configuration Container WdgMConfigSet .. 119

Figure 24: Configuration Container WdgMMode .. 122
Figure 25: Configuration Container WdgMAliveSupervision 124
Figure 26: Configuration Container WdgMDeadlineSupervision 126
Figure 27: Configuration Container WdgMExternalLogicalSupervision 127

Figure 28: Configuration Container WdgMExternalTransition 128
Figure 29: Configuration Container WdgMTrigger .. 129

Figure 30: Configuration Container WdgMLocalStatusParams 130
Figure 31: Alive-supervision algorithm – Scenario A .. 134
Figure 32: Alive Supervision algorithm – Scenario B .. 135

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

9 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

1 Introduction and Functional Overview

The Watchdog Manager is a basic software module at the service layer of the
standardized basic software architecture of AUTOSAR.

The Watchdog Manager is able to supervise the program execution abstracting from
the triggering of hardware watchdog entities.

The Watchdog Manager supervises the execution of a configurable number of so-
called Supervised Entities. When it detects a violation of the configured temporal
and/or logical constraints on program execution, it takes a number of configurable
actions to recover from this failure.

The watchdog Manager provides three mechanisms:

1. Alive supervision – for supervision of timing of periodic software

2. Deadline monitoring – for aperiodic software

3. Logical monitoring – for supervision of the correctness of the execution
sequence.

1.1 Supervised Entities and Checkpoints

The Watchdog Manager supervises the execution of software. The logical units of
supervision are Supervised Entities. There is no fixed relationship between
Supervised Entities and the architectural building blocks in AUTOSAR, i.e., SW-Cs,
CDDs, RTE, BSW modules, but typically a Supervised Entity may represent one SW-
Cs or a Runnable within an SW-C, a BSW module or CDD depending on the choice
of the developer.

Important places in a Supervised Entity are defined as Checkpoints. The code of
Supervised Entities is interlaced with the calls of Watchdog Manger that report to the
Watchdog Manager when they have reached a Checkpoint.

Each Supervised Entity has one or more Checkpoints. The Checkpoints and
Transitions between the Checkpoints of a Supervised Entity form a Graph. This
Graph is called Internal Graph. Moreover, Checkpoints from different Supervised
Entities may also be connected by External Transition, forming an External Graph.
There can be several External Graphs in each Watchdog Manager mode.

A Graph may have one or more initial Checkpoints and one or more final
Checkpoints. Any sequence of starting with any initial checkpoint and finishing with
any final checkpoint is correct (assuming that the checkpoints belong to the same
Graph). After the final Checkpoint, any initial Checkpoint can be reported.

Within the Watchdog Manager settings it is possible to configure the required timing
of Checkpoints as well as the allowed External and Internal Graphs.

At runtime, Watchdog Manager verifies if the configured Graphs are executed. This is
called Logical Supervision. Watchdog Manager verifies also the timing of
Checkpoints and Transitions. The mechanism for periodic Checkpoints is called Alive
Supervision and for aperiodic Checkpoints it is called Deadline Supervision.

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

10 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

The granularity of Checkpoints is not fixed by the Watchdog Manager. Few coarse-
grained Checkpoints limit the detection abilities of the Watchdog Manager. For
example, if an application SW-C only has one Checkpoint that indicates that a cyclic
Runnable has been started, then the Watchdog Manager is only capable of detecting
that this Runnable is re-started and check the timing constraints. In contrast, if that
SW-C has Checkpoints at each block and branch in the Runnable the Watchdog
Manager may also detect failures in the control flow of that SW-C. High granularity of
Checkpoints causes a complex and large configuration of the Watchdog Manager.

1.2 Interaction of Supervision Mechanisms

The three supervision mechanisms supervise each supervised entity. A Supervised
Entity may have one, two or three mechanisms enabled. Based on the results from
each of enabled mechanisms, the status of the Supervised Entity (called Local
Status) is computed.

When the status of each Supervised Entity is determined, then based on each Local
Supervision Status, the status of the whole MCU is determined (called Global
Supervision Status).

1.3 Supervision Functions

1.3.1 Alive Supervision

Periodic Supervised Entities have constraints on the number of times they are
executed within a given time span. By means of Alive Supervision, Watchdog
Manager checks periodically if the Checkpoints of a Supervised Entity have been
reached within the given limits. This means that Watchdog Manger checks if a
Supervised Entity is run not too frequently or not too rarely.

1.3.2 Deadline Supervision

Aperiodic or episodical Supervised Entities have individual constraints on the timing
between two Checkpoints. By means of Deadline Supervision, Watchdog Manager
checks the timing of transitions between two Checkpoints of a Supervised Entity.
This means that Watchodog Manager checks if some steps in a Supervised Entity
take a time that is within the configured minimum and maximum

1.3.3 Logical Supervision

Logical supervision is a fundamental technique for checking the correct execution of
embedded system software. Please refer to the safety standards (IEC 61508 or
ISO26262) when logical supervision is required.

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

11 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

Logical supervision focuses on control flow errors, which cause a divergence from
the valid (i.e. coded/compiled) program sequence during the error-free execution of
the application. An incorrect control flow occurs if one or more program instructions
are processed either in the incorrect sequence or are not even processed at all.
Control flow errors can lead to data corruption, microcontroller resets, or fail-silence
violations.

For the control flow graph this implies that every time the Supervised Entity reports a
new Checkpoint, it must be verified that there is a Transition configured between the
previous Checkpoint and the reported one.

1.4 Watchdog Handling

Watchdog Manager communicates with Watchdog Interface to control the hardware
watchdog.

In contrast to versions V1.x.y, the Watchdog Manager is no longer responsible for
triggering the hardware watchdog via the Watchdog Interface and the Watchdog
Driver. Instead, the Watchdog Manager reports via the Watchdog Interface a
triggering condition to the Watchdog Driver. The Watchdog Driver is then responsible
for triggering the hardware watchdog with the right timing for as long as the condition
is true. The triggering condition is a counter value that the Watchdog Manager sets
cyclically. The Watchdog Driver decrements this counter every time it triggers the
hardware watchdog. When the counter reaches 0, the Watchdog Driver stops
triggering the hardware watchdog. Therefore, when the Watchdog Manager fails to
execute, this automatically causes a watchdog reset (after the time needed to
decrement the counter plus the timeout value of HW watchdog).

When the Supervised Entities are not correctly evaluated due to a programming error
or memory failure in the Watchdog Manager itself, it may still happen that the
Watchdog Manager erroneously sets the triggering condition and no watchdog reset
will be caused. Therefore, it may be needed to use Supervised Entities and
Checkpoints (or some other internal supervision mechanism) within Watchdog
Manager itself, while avoiding recursion in Watchdog Manager.

1.5 Error Handling

Depending on the Local Supervision Status of each Supervised Entity and on the
Global Supervision Status, the Watchdog Manager initiates a number of mechanisms
to recover from supervision failures. These range from local error recovery within the
Supervised Entity to a global reset of the ECU.

1.5.1 Error Handling in the Supervised Entity

In case the Supervised Entity is an SW-C or a CDD, then the Watchdog Manager
may inform the Supervised Entity about supervision failures via the RTE Mode
mechanism. The Supervised Entity may then take its actions to recover from that
failure.

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

12 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

The Watchdog Manager may register an entry with the Diagnostic Event Manager
(DEM) when it detects a supervision failure. A Supervised Entity may take recovery
actions based on that error entry.

1.5.2 Partition Shutdown

If the Watchdog Manager module detects a supervision failure in a Supervised Entity
which is located in a non-trusted partition, the Watchdog Manager module may
request a partition shutdown by calling the BswM.

1.5.3 Reset by Hardware Watchdog

The Watchdog Manager indicates to the Watchdog Interface when Watchdog
Interface shall no longer trigger the hardware watchdog. After the timeout of the
hardware watchdog, the hardware watchdog resets the ECU or the MCU. This leads
to a re-initialization of the ECU and/or MCU hardware and the complete
reinitialization of software.

1.5.4 Immediate MCU Reset

In case an immediate, global reaction to the supervision failure is necessary, the
Watchdog Manager may directly cause an MCU reset. This will lead to a re-
initialization of the MCU hardware and the complete software. Usually, a MCU reset
will not re-initialize the rest of the ECU hardware.

Note that a MCU reset is not available on some types of micro controllers.

MCU reset and watchdog reset are two mostly equivalent mechanisms for system-
level error reaction. In safety-related systems, it is recommended to use both of them
in parallel. By this means, the two mechanisms make a “redundant shutdown path”.

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

13 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

2 Acronyms, Abbreviations and Terms

Abbreviation /
Acronym

Description

AI Alive Indication

BSW Basic Software

BswM Basic Software Mode Manager

DEM Diagnostic Event Manager

DET Development Error Tracer

FiM Function Inhibition Manager

EAI Expected Alive Indications

EcuM ECU State Manager

HW Hardware

ID Identifier

MCU Micro Controller Unit

OS Operating System

SC Supervision Cycle

SE Supervised Entity

SW-C Software Component

RTE Runtime Environment

WdgM Watchdog Manager

Term Description

Alive Counter An independent data resource in the Watchdog
Manager in context of a Checkpoint to track and
handle its amount of Alive Indications.

Alive Indication An indication provided by a Checkpoint of a
Supervised Entity to signal its aliveness to the
Watchdog Manager.

Alive Supervision Kind of supervision that checks if a Supervised Entity
executed sufficiently often and not too often (including
tolerances).

Checkpoint A point in the control flow of a Supervised Entity where
the activity is reported to the Watchdog Manager.

Deadline Supervision Kind of supervision that checks if the execution time
between two Checkpoints are lower then a given upper
execution time limit.

Deadline Start Checkpoint A Checkpoint for which Deadline Supervision is
configured and which is a starting point for a particular
Deadline Supervision.

Deadline End Checkpoint A Checkpoint for which Deadline Supervision is
configured and which is a ending point for a particular
Deadline Supervision.
It is possible that a Checkpoint is both a Deadline Start
Checkpoint and Deadline End Checkpoint – if Deadline
Supervision is chained.

Expired Supervision Cycle A Supervision Cycle where the alive-supervision has
failed its two escalation steps (Alive Counter fails the
expected amount of Alive Indications (including
tolerances) more often than the allowed amount of
failed reference cycles).

Failed Supervision Reference Cycle A Supervision Reference Cycle that ends with a
detected deviation (including tolerances) between the
Alive Counter and the expected amount of Alive
Indications.

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

14 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

Term Description

Global Supervision Status Status that summarizes the Local Supervision Status
of all Supervised Entities.

Graph A set of Checkpoints connected through Transitions,
where at least one of Checkpoints is an Initial
Checkpoint. There is a path (through Transitions)
between any two Checkpoints of the Graph

External Graph Graph that may involve more than one Supervised
Entity. Its configuration is mode-dependent.

External Transition An External Transition is a transition between two
Checkpoints, where the Checkpoints belong to
different Supervised Entities.

Local Supervision Status Status that represents the current result of alive-
supervision of a single Supervised Entity.

Logical Supervision Kind of online supervision of software that checks if the
software (Supervised Entity or set of Supervised
Entities) is executed in the sequence defined by the
programmer (by the developed code).

Internal Graph Graph that may not span over several Supervised
Entity. Its configuration is mode-independent and can
be disabled by disabling the corresponding Supervised
Entity.

Internal Transition An Internal Transition is a transition between two
Checkpoints of a Supervised Entity.

Mode A mode is a certain set of states of the various state
machines that are running in the vehicle that are
relevant to a particular entity, e.g. a SW-C, a BSW
module, an application, a whole vehicle
In its lifetime, an entity changes between a set of
mutually exclusive modes. These changes are
triggered by environmental data, e.g. signal reception,
operation invocation.
In the context of the Watchdog Manager a mode is
defined by a set of configuration options. The set of
Supervised Entities to be supervised may vary from
mode to mode.

Supervised Entity A software entity which is included in the supervision of
the Watchdog Manager. Each Supervised Entity has
exactly one identifier. A Supervised Entity denotes a
collection of Checkpoints within a Software Component
or Basic Software Module. There may be zero, one or
more Supervised Entities in a Software Component or
Basic Software Module.

Supervised Entity Identifier An Identifier that identifies uniquely a Supervised Entity
within an Application.

Supervision Counter An independent data resource in context of a
Supervised Entity which is updated by the Watchdog
Manager during each supervision cycle and which is
used by the alive-supervision algorithm to perform the
check against counted Alive Indications.

Supervision Cycle The time period of Watchdog Manager, where the
cyclic Alive Supervision is performed. This is done by
the main function of Watchdog Manager.

Supervision Reference Cycle The amount of Supervision Cycles to be used as
reference by the Alive Supervision to perform the
check of counted Alive Indications (individually for each
Supervised Entity).

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

15 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

3 Related Documentation

3.1 Input Documents

[1] Layered Software Architecture
AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf

[2] General Requirements on Basic Software Modules

AUTOSAR_SRS_BSWGeneral.pdf

[3] Requirements on Mode Management

AUTOSAR_SRS_ModeManagement.pdf

[4] Specification of Platform Types

AUTOSAR_SWS_PlatformTypes.pdf

[5] Specification of RTE

AUTOSAR_SWS_RTE.pdf

[6] Specification of ECU State Manager

AUTOSAR_SWS_ECUStateManager.pdf

[7] Basic Software Module Description Template

AUTOSAR_TPS_BSWModuleDescriptionTemplate.pdf

[8] List of Basic Software Modules

AUTOSAR_TR_BSWModuleList.pdf

[9] AUTOSAR General Specification for Basic Software Modules
AUTOSAR_SWS_BSWGeneral.pdf

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [9] (SWS
BSW General), which is also valid for Watchdog Manager.

Thus, the specification SWS BSW General shall be considered as additional and
required specification for Watchdog Manager.

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

16 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

4 Constraints and Assumptions

4.1 Limitations and conditions of use

The main limitations of Watchdog Manager design are as follows. They may be
removed in upcoming versions of this document:

 For Logical Supervision, Watchdog manager does not support any
overlapping graphs - a checkpoint shall belong to maximum one Graph. This
is required to be able to allocate a received Checkpoint notification to a Graph.
This means that:

o No checkpoint shall belong to two external graphs,

o No checkpoint shall belong to two internal graphs,

o No checkpoint shall belong to one internal and one external graphs.

 Watchdog Manager does not support Logical Supervision of concurrently
executed Supervised Entities, because it follows only one instance of a Graph
at a time. This means that the current specification of Watchdog Manager
does not support the following:

o Logical Supervision of functions of BSW modules that are executed in
more than one task.

 Libraries cannot call BSWs, so libraries cannot be supervised by Watchdog
Manager.

 It is not standardized how BSW modules are identified with Supervised Entity
IDs.

 The Deadline Supervision has a weakness: it only detects the delays (when
the End Checkpoint is reported), but it does not detect the timeouts (when the
End Checkpoint is not reported at all).

 The nesting of Deadline Supervision (i.e. start 1, start 2, end 2, end 1) is not
supported.

 The Alive Supervision function with more than one checkpoint per Supervised
Entity is not consistently specified within the document. For now it is
recommended to support only one alive supervision checkpoint per
Supervision Entity.

 In order to shutdown or restart (as error reaction) a partition containing
Supervised Entities, the integrator code (OS Application's restart task) must
deactivate (or deactivate + activate) all Supervised Entities of the involved
partition, by calling available functions of Watchdog Manager. This is a bit
complex, in future releases of this document it is considered to add a new
function of Watchdog Manager for this.

Further limitations:

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

17 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

 The Watchdog Manager does not encapsulate the Watchdog Driver
initialization. The Watchdog Driver initialization will be performed by the ECU
State Manager [6] early in the startup process.

 The Watchdog Manager is initialized after the OS has been started. Hence, it
cannot be responsible for controlling the Watchdog Driver earlier in the startup
process. Usually, it is sufficient to configure a large enough initial timeout in
the Watchdog Driver to bridge the gap between Watchdog Driver and
Watchdog Manager initialization. Alternatively, the Integrator may use ECU
State Manager facilities (callouts).

 The Watchdog Manager is de-initialized before the OS shutdown. Hence, it
cannot be responsible for controlling the Watchdog Driver later in the
shutdown process. Usually, it is sufficient to configure a large enough final
timeout that is set when the Watchdog Manager is de-initialized. This allows
bridging the gap between Watchdog Manager de-initialization and system
power-off or resetting. Alternatively, the Integrator may use ECU State
Manager facilities (callouts).

 For ECUs which implement sleep modes, if the hardware watchdog remains
active in these sleep modes, its triggering shall also be handled by the ECU
State Manager.

 The error recovery mechanism “Immediate MCU Reset” is available only on
microcontrollers that are able to perform a reset by using the hardware feature
of the microcontroller.

 The following is neded for the operation of WdgM monitoring:

o Initialized Wdg Interface,

o Initialized OS (because of possible usage of OSCounter)

o Initialized WdgM (done by calling WdgM_Init)

o Periodic invocation of WdgM_MainFunction preferrably by AUTOSAR
scheduler; during startup the invocation may be done by another
module.

 A Supervised Entity with all its Checkpoints may belong to only one OS-
Application (at most). Because OS-application can run on one core only,
therefore one specific Supervised Entity may run at one core.

4.2 Applicability to Car Domains

No restriction

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

18 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

5 Dependencies to Other Modules

 Watchdog Interface (WdgIf)
The Watchdog Manager module is responsible for changing the mode of the
Watchdog Driver and for reporting to the Watchdog Driver the condition to
trigger the hardware watchdog. The services of the Watchdog Driver are
accessed via the Watchdog Interface which allows addressing multiple
watchdog instances.

 ECU State Manager (EcuM)
The ECU State Manager is responsible for initializing, de-initializing of the
Watchdog Manager module and for triggering the hardware watchdog in sleep
modes.

 Micro Controller Unit Driver (Mcu)
The Watchdog Manager module may perform an immediate reset of the ECU
in case of a supervision failure. This reset service is provided by the MCU
driver.

 Development Error Tracer (Det)
If development error detection is enabled, the Watchdog Manager module
informs the Development Error Tracer about detected development errors.

 Diagnostic Event Manager (Dem)
The Watchdog Manager may notify the Diagnostic Event Manager about
detected functional / production-code relevant errors.

 BSW Scheduler (SchM)
The BSW Scheduler is responsible for calling the scheduled functions of the
Watchdog Manager module. The Watchdog Manager module uses the
services of the BSW Scheduler to implement critical sections.

 Runtime Environment (Rte)
The Runtime Environment is responsible for propagating Checkpoint
information from Supervised Entities in SW-Cs or in CDDs to the Watchdog
Manager module. The Watchdog Manager module uses the services of the
Runtime Environment to inform SW-Cs about changes in the supervision
status. BSW Modules can call the Watchdog Manager module without using
RTE.

 BSW Mode Manager (BswM)
The Basic Software Mode Manager is responsible for restarting a non-trusted
partition. A Supervised Entity can be associated to an OS Application. If the
supervision of the Supervised Entity fails, the Watchdog Manager requests a
restart of the corresponding partition.

 Operating system (OS)
The Operating System is used by Watchog Manager to provide the timestamp.

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

19 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

5.1 File Structure

5.1.1 Code File Structure

For details refer to the chapter 5.1.6 “Code file structure” in SWS_BSWGeneral.

5.1.2 Header File Structure

[SWS_WdgM_00369]⌈ The module header file WdgM.h shall include

Rte_WdgM_Type.h to include the types which are common used by BSW Modules
and Software Components. WdgM.h file shall only contain types, that are not already

defined or included via in Rte_WdgM_Type.h.⌋(SRS_BSW_00447)

[SWS_WdgM_00014]⌈The file include structure shall be as follows:

Figure 1: File include structure for the Watchdog Manager

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

20 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

Gray boxes are optional.⌋(SRS_BSW_00301, SRS_BSW_00346, SRS_BSW_00348,

SRS_BSW_00353, SRS_BSW_00361, SRS_BSW_00381, SRS_BSW_00383,
SRS_BSW_00409, SRS_BSW_00412, SRS_BSW_00415, SRS_BSW_00435,
SRS_BSW_00436, SRS_BSW_00158)

5.2 Version Check

For details refer to the chapter 5.1.8 “Version Check” in SWS_BSWGeneral.

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

21 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

6 Requirements Traceability

Requirement Description Satisfied by

- - SWS_WdgM_00029

- - SWS_WdgM_00146

- - SWS_WdgM_00147

- - SWS_WdgM_00149

- - SWS_WdgM_00161

- - SWS_WdgM_00162

- - SWS_WdgM_00170

- - SWS_WdgM_00171

- - SWS_WdgM_00178

- - SWS_WdgM_00179

- - SWS_WdgM_00181

- - SWS_WdgM_00182

- - SWS_WdgM_00186

- - SWS_WdgM_00195

- - SWS_WdgM_00196

- - SWS_WdgM_00197

- - SWS_WdgM_00198

- - SWS_WdgM_00199

- - SWS_WdgM_00200

- - SWS_WdgM_00201

- - SWS_WdgM_00202

- - SWS_WdgM_00203

- - SWS_WdgM_00204

- - SWS_WdgM_00205

- - SWS_WdgM_00206

- - SWS_WdgM_00207

- - SWS_WdgM_00208

- - SWS_WdgM_00209

- - SWS_WdgM_00212

- - SWS_WdgM_00216

- - SWS_WdgM_00217

- - SWS_WdgM_00218

- - SWS_WdgM_00221

- - SWS_WdgM_00225

- - SWS_WdgM_00228

- - SWS_WdgM_00229

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

22 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

- - SWS_WdgM_00232

- - SWS_WdgM_00233

- - SWS_WdgM_00238

- - SWS_WdgM_00239

- - SWS_WdgM_00240

- - SWS_WdgM_00241

- - SWS_WdgM_00245

- - SWS_WdgM_00268

- - SWS_WdgM_00269

- - SWS_WdgM_00275

- - SWS_WdgM_00282

- - SWS_WdgM_00283

- - SWS_WdgM_00285

- - SWS_WdgM_00286

- - SWS_WdgM_00290

- - SWS_WdgM_00291

- - SWS_WdgM_00293

- - SWS_WdgM_00294

- - SWS_WdgM_00295

- - SWS_WdgM_00296

- - SWS_WdgM_00297

- - SWS_WdgM_00298

- - SWS_WdgM_00299

- - SWS_WdgM_00300

- - SWS_WdgM_00304

- - SWS_WdgM_00305

- - SWS_WdgM_00306

- - SWS_WdgM_00308

- - SWS_WdgM_00309

- - SWS_WdgM_00310

- - SWS_WdgM_00311

- - SWS_WdgM_00313

- - SWS_WdgM_00314

- - SWS_WdgM_00315

- - SWS_WdgM_00316

- - SWS_WdgM_00318

- - SWS_WdgM_00319

- - SWS_WdgM_00320

- - SWS_WdgM_00321

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

23 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

- - SWS_WdgM_00322

- - SWS_WdgM_00323

- - SWS_WdgM_00324

- - SWS_WdgM_00325

- - SWS_WdgM_00326

- - SWS_WdgM_00327

- - SWS_WdgM_00328

- - SWS_WdgM_00329

- - SWS_WdgM_00331

- - SWS_WdgM_00332

- - SWS_WdgM_00333

- - SWS_WdgM_00334

- - SWS_WdgM_00335

- - SWS_WdgM_00336

- - SWS_WdgM_00338

- - SWS_WdgM_00344

- - SWS_WdgM_00346

- - SWS_WdgM_00347

- - SWS_WdgM_00348

- - SWS_WdgM_00349

- - SWS_WdgM_00351

- - SWS_WdgM_00354

- - SWS_WdgM_00355

- - SWS_WdgM_00356

- - SWS_WdgM_00357

- - SWS_WdgM_00358

- - SWS_WdgM_00359

- - SWS_WdgM_00360

- - SWS_WdgM_00366

- - SWS_WdgM_00370

- - SWS_WdgM_00371

- - SWS_WdgM_00372

- - SWS_WdgM_00373

- - SWS_WdgM_00374

BSW00431 - SWS_WdgM_00345

BSW00434 - SWS_WdgM_00345

BSW09111 - SWS_WdgM_00119, SWS_WdgM_00120,
SWS_WdgM_00121, SWS_WdgM_00122,
SWS_WdgM_00292

BSW09142 - SWS_WdgM_00083

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

24 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

SRS_BSW_00005 Modules of the æC
Abstraction Layer (MCAL)
may not have hard coded
horizontal interfaces

SWS_WdgM_00345

SRS_BSW_00006 The source code of
software modules above
the æC Abstraction Layer
(MCAL) shall not be
processor and compiler
dependent.

SWS_WdgM_00345

SRS_BSW_00007 All Basic SW Modules
written in C language
shall conform to the
MISRA C 2004 Standard.

SWS_WdgM_00345

SRS_BSW_00009 All Basic SW Modules
shall be documented
according to a common
standard.

SWS_WdgM_00345

SRS_BSW_00010 The memory consumption
of all Basic SW Modules
shall be documented for a
defined configuration for
all supported platforms.

SWS_WdgM_00345

SRS_BSW_00158 All modules of the
AUTOSAR Basic
Software shall strictly
separate configuration
from implementation

SWS_WdgM_00014

SRS_BSW_00160 Configuration files of
AUTOSAR Basic SW
module shall be readable
for human beings

SWS_WdgM_00345

SRS_BSW_00161 The AUTOSAR Basic
Software shall provide a
microcontroller
abstraction layer which
provides a standardized
interface to higher
software layers

SWS_WdgM_00345

SRS_BSW_00162 The AUTOSAR Basic
Software shall provide a
hardware abstraction
layer

SWS_WdgM_00345

SRS_BSW_00164 The Implementation of
interrupt service routines
shall be done by the
Operating System,
complex drivers or
modules

SWS_WdgM_00345

SRS_BSW_00167 All AUTOSAR Basic
Software Modules shall
provide configuration
rules and constraints to
enable plausibility checks

SWS_WdgM_00345

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

25 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

SRS_BSW_00168 SW components shall be
tested by a function
defined in a common API
in the Basis-SW

SWS_WdgM_00345

SRS_BSW_00170 The AUTOSAR SW
Components shall provide
information about their
dependency from faults,
signal qualities, driver
demands

SWS_WdgM_00345

SRS_BSW_00171 Optional functionality of a
Basic-SW component that
is not required in the ECU
shall be configurable at
pre-compile-time

SWS_WdgM_00104

SRS_BSW_00172 The scheduling strategy
that is built inside the
Basic Software Modules
shall be compatible with
the strategy used in the
system

SWS_WdgM_00345

SRS_BSW_00300 All AUTOSAR Basic
Software Modules shall
be identified by an
unambiguous name

SWS_WdgM_00345

SRS_BSW_00301 All AUTOSAR Basic
Software Modules shall
only import the necessary
information

SWS_WdgM_00014

SRS_BSW_00304 - SWS_WdgM_00345

SRS_BSW_00306 AUTOSAR Basic
Software Modules shall
be compiler and platform
independent

SWS_WdgM_00345

SRS_BSW_00307 Global variables naming
convention

SWS_WdgM_00345

SRS_BSW_00308 AUTOSAR Basic
Software Modules shall
not define global data in
their header files, but in
the C file

SWS_WdgM_00345

SRS_BSW_00309 All AUTOSAR Basic
Software Modules shall
indicate all global data
with read-only purposes
by explicitly assigning the
const keyword

SWS_WdgM_00345

SRS_BSW_00310 API naming convention SWS_WdgM_00151, SWS_WdgM_00153,
SWS_WdgM_00154, SWS_WdgM_00155,
SWS_WdgM_00159, SWS_WdgM_00168,
SWS_WdgM_00169, SWS_WdgM_00175,
SWS_WdgM_00261, SWS_WdgM_00263,
SWS_WdgM_00264

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

26 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

SRS_BSW_00312 Shared code shall be
reentrant

SWS_WdgM_00345

SRS_BSW_00314 All internal driver modules
shall separate the
interrupt frame definition
from the service routine

SWS_WdgM_00345

SRS_BSW_00321 The version numbers of
AUTOSAR Basic
Software Modules shall
be enumerated according
specific rules

SWS_WdgM_00345

SRS_BSW_00323 All AUTOSAR Basic
Software Modules shall
check passed API
parameters for validity

SWS_WdgM_00010, SWS_WdgM_00020,
SWS_WdgM_00021, SWS_WdgM_00027,
SWS_WdgM_00028, SWS_WdgM_00030,
SWS_WdgM_00031, SWS_WdgM_00039,
SWS_WdgM_00172, SWS_WdgM_00173,
SWS_WdgM_00176, SWS_WdgM_00253,
SWS_WdgM_00254, SWS_WdgM_00255,
SWS_WdgM_00256, SWS_WdgM_00257,
SWS_WdgM_00258, SWS_WdgM_00270,
SWS_WdgM_00278, SWS_WdgM_00279,
SWS_WdgM_00284, SWS_WdgM_00288

SRS_BSW_00325 The runtime of interrupt
service routines and
functions that are running
in interrupt context shall
be kept short

SWS_WdgM_00345

SRS_BSW_00326 - SWS_WdgM_00345

SRS_BSW_00327 Error values naming
convention

SWS_WdgM_00004, SWS_WdgM_00364

SRS_BSW_00328 All AUTOSAR Basic
Software Modules shall
avoid the duplication of
code

SWS_WdgM_00345

SRS_BSW_00333 For each callback function
it shall be specified if it is
called from interrupt
context or not

SWS_WdgM_00345

SRS_BSW_00334 All Basic Software
Modules shall provide an
XML file that contains the
meta data

SWS_WdgM_00345

SRS_BSW_00335 Status values naming
convention

SWS_WdgM_00345

SRS_BSW_00336 Basic SW module shall be
able to shutdown

SWS_WdgM_00261

SRS_BSW_00337 Classification of
development errors

SWS_WdgM_00004, SWS_WdgM_00364

SRS_BSW_00338 - SWS_WdgM_00010, SWS_WdgM_00020,
SWS_WdgM_00021, SWS_WdgM_00027,
SWS_WdgM_00028, SWS_WdgM_00030,
SWS_WdgM_00031, SWS_WdgM_00039

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

27 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

SRS_BSW_00339 Reporting of production
relevant error status

SWS_WdgM_00129, SWS_WdgM_00142

SRS_BSW_00341 Module documentation
shall contains all needed
informations

SWS_WdgM_00345

SRS_BSW_00342 It shall be possible to
create an AUTOSAR ECU
out of modules provided
as source code and
modules provided as
object code, even mixed

SWS_WdgM_00345

SRS_BSW_00343 The unit of time for
specification and
configuration of Basic SW
modules shall be
preferably in physical time
unit

SWS_WdgM_00345

SRS_BSW_00344 BSW Modules shall
support link-time
configuration

SWS_WdgM_00345

SRS_BSW_00345 BSW Modules shall
support pre-compile
configuration

SWS_WdgM_00025, SWS_WdgM_00104

SRS_BSW_00346 All AUTOSAR Basic
Software Modules shall
provide at least a basic
set of module files

SWS_WdgM_00014

SRS_BSW_00347 A Naming seperation of
different instances of
BSW drivers shall be in
place

SWS_WdgM_00345

SRS_BSW_00348 All AUTOSAR standard
types and constants shall
be placed and organized
in a standard type header
file

SWS_WdgM_00014

SRS_BSW_00353 All integer type definitions
of target and compiler
specific scope shall be
placed and organized in a
single type header

SWS_WdgM_00014

SRS_BSW_00355 - SWS_WdgM_00345

SRS_BSW_00357 For success/failure of an
API call a standard return
type shall be defined

SWS_WdgM_00011

SRS_BSW_00358 The return type of init()
functions implemented by
AUTOSAR Basic
Software Modules shall
be void

SWS_WdgM_00151

SRS_BSW_00359 All AUTOSAR Basic
Software Modules
callback functions shall

SWS_WdgM_00345

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

28 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

avoid return types other
than void if possible

SRS_BSW_00360 AUTOSAR Basic
Software Modules
callback functions are
allowed to have
parameters

SWS_WdgM_00345

SRS_BSW_00361 All mappings of not
standardized keywords of
compiler specific scope
shall be placed and
organized in a compiler
specific type and keyword
header

SWS_WdgM_00014

SRS_BSW_00370 - SWS_WdgM_00345

SRS_BSW_00371 The passing of function
pointers as API parameter
is forbidden for all
AUTOSAR Basic
Software Modules

SWS_WdgM_00345

SRS_BSW_00373 The main processing
function of each
AUTOSAR Basic
Software Module shall be
named according the
defined convention

SWS_WdgM_00159

SRS_BSW_00375 Basic Software Modules
shall report wake-up
reasons

SWS_WdgM_00345

SRS_BSW_00377 A Basic Software Module
can return a module
specific types

SWS_WdgM_00345

SRS_BSW_00378 AUTOSAR shall provide a
boolean type

SWS_WdgM_00345

SRS_BSW_00381 The pre-compile time
parameters shall be
placed into a separate
configuration header file

SWS_WdgM_00014

SRS_BSW_00383 The Basic Software
Module specifications
shall specify which other
configuration files from
other modules they use at
least in the description

SWS_WdgM_00014

SRS_BSW_00385 List possible error
notifications

SWS_WdgM_00004, SWS_WdgM_00364

SRS_BSW_00386 The BSW shall specify the
configuration for detecting
an error

SWS_WdgM_00345

SRS_BSW_00387 The Basic Software
Module specifications
shall specify how the
callback function is to be

SWS_WdgM_00345

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

29 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

implemented

SRS_BSW_00398 The link-time
configuration is achieved
on object code basis in
the stage after compiling
and before linking

SWS_WdgM_00345

SRS_BSW_00405 BSW Modules shall
support multiple
configuration sets

SWS_WdgM_00345

SRS_BSW_00406 A static status variable
denoting if a BSW module
is initialized shall be
initialized with value 0
before any APIs of the
BSW module is called

SWS_WdgM_00021, SWS_WdgM_00028,
SWS_WdgM_00039

SRS_BSW_00409 All production code error
ID symbols are defined by
the Dem module and shall
be retrieved by the other
BSW modules from Dem
configuration

SWS_WdgM_00014

SRS_BSW_00412 References to c-
configuration parameters
shall be placed into a
separate h-file

SWS_WdgM_00014

SRS_BSW_00413 An index-based accessing
of the instances of BSW
modules shall be done

SWS_WdgM_00345

SRS_BSW_00415 Interfaces which are
provided exclusively for
one module shall be
separated into a
dedicated header file

SWS_WdgM_00014

SRS_BSW_00416 The sequence of modules
to be initialized shall be
configurable

SWS_WdgM_00345

SRS_BSW_00417 Software which is not part
of the SW-C shall report
error events only after the
DEM is fully operational.

SWS_WdgM_00345

SRS_BSW_00422 Pre-de-bouncing of error
status information is done
within the DEM

SWS_WdgM_00345

SRS_BSW_00423 BSW modules with
AUTOSAR interfaces
shall be describable with
the means of the SW-C
Template

SWS_WdgM_00345

SRS_BSW_00424 BSW module main
processing functions shall
not be allowed to enter a
wait state

SWS_WdgM_00345

SRS_BSW_00425 The BSW module SWS_WdgM_00345

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

30 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

description template shall
provide means to model
the defined trigger
conditions of schedulable
objects

SRS_BSW_00426 BSW Modules shall
ensure data consistency
of data which is shared
between BSW modules

SWS_WdgM_00345

SRS_BSW_00427 ISR functions shall be
defined and documented
in the BSW module
description template

SWS_WdgM_00345

SRS_BSW_00428 A BSW module shall state
if its main processing
function(s) has to be
executed in a specific
order or sequence

SWS_WdgM_00345

SRS_BSW_00429 BSW modules shall be
only allowed to use OS
objects and/or related OS
services

SWS_WdgM_00345

SRS_BSW_00432 Modules should have
separate main processing
functions for read/receive
and write/transmit data
path

SWS_WdgM_00345

SRS_BSW_00433 Main processing functions
are only allowed to be
called from task bodies
provided by the BSW
Scheduler

SWS_WdgM_00345

SRS_BSW_00435 - SWS_WdgM_00014

SRS_BSW_00436 - SWS_WdgM_00014

SRS_BSW_00437 Memory mapping shall
provide the possibility to
define RAM segments
which are not to be
initialized during startup

SWS_WdgM_00345

SRS_BSW_00439 Enable BSW modules to
handle interrupts

SWS_WdgM_00345

SRS_BSW_00440 The callback function
invocation by the BSW
module shall follow the
signature provided by
RTE to invoke servers via
Rte_Call API

SWS_WdgM_00345

SRS_BSW_00447 Standardizing Include file
structure of BSW Modules
Implementing Autosar
Service

SWS_WdgM_00369

SRS_ModeMgm_09028 The Watchdog Manager
shall support multiple

SWS_WdgM_00002

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

31 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

watchdog instances

SRS_ModeMgm_09106 The list of entities
supervised by the
Watchdog Manager shall
be configurable at pre-
compile time

SWS_WdgM_00042, SWS_WdgM_00085

SRS_ModeMgm_09107 The Watchdog Manager
shall provide an
initialization service

SWS_WdgM_00018, SWS_WdgM_00135,
SWS_WdgM_00151

SRS_ModeMgm_09109 It shall be possible to
prohibit the disabling of
watchdog

SWS_WdgM_00030, SWS_WdgM_00031

SRS_ModeMgm_09110 The watchdog Manager
shall provide a service
interface, to select a
mode of the Watchdog
Manager

SWS_WdgM_00139, SWS_WdgM_00154

SRS_ModeMgm_09112 The Watchdog Manager
shall cyclically check the
periodicity of the
supervised entities

SWS_WdgM_00063, SWS_WdgM_00076,
SWS_WdgM_00077, SWS_WdgM_00078,
SWS_WdgM_00083, SWS_WdgM_00098,
SWS_WdgM_00115, SWS_WdgM_00117,
SWS_WdgM_00213, SWS_WdgM_00214

SRS_ModeMgm_09125 The Watchdog Manager
shall provide a service
allowing the Update
temporal program flow
monitoring

SWS_WdgM_00155

SRS_ModeMgm_09143 The Watchdog Manager
shall set the triggering
condition during inactive
monitoring

SWS_WdgM_00083

SRS_ModeMgm_09158 The Watchdog Manager
shall support Post build
time and mode dependent
selectable configuration
sets for the Watchdog
Manager

SWS_WdgM_00145

SRS_ModeMgm_09159 The Watchdog Manager
shall report failure of
temporal or program flow
monitoring to DEM

SWS_WdgM_00129

SRS_ModeMgm_09160 The Watchdog Manager
shall provide the
indication of failed
temporal monitoring

SWS_WdgM_00148, SWS_WdgM_00150

SRS_ModeMgm_09161 The Watchdog Manager
shall reset the triggering
condition in the Watchdog
Driver in Case of temporal
failure

SWS_WdgM_00223

SRS_ModeMgm_09162 The Watchdog Manager
shall be able to notify the
software of an upcoming

SWS_WdgM_00150

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

32 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

watchdog reset

SRS_ModeMgm_09163 It shall be possible to
configure a delay before
provoking a watchdog
reset

SWS_WdgM_00077, SWS_WdgM_00215,
SWS_WdgM_00219, SWS_WdgM_00220

SRS_ModeMgm_09169 The Watchdog Manager
shall be able to
immediately reset the
MCU

SWS_WdgM_00133, SWS_WdgM_00134

SRS_ModeMgm_09221 The Watchdog Manager
shall check the correct
sequence of code
execution in supervised
entities

SWS_WdgM_00242, SWS_WdgM_00246,
SWS_WdgM_00252, SWS_WdgM_00271,
SWS_WdgM_00273, SWS_WdgM_00274

SRS_ModeMgm_09222 The Watchdog Manager
shall provide a service
allowing the Update
logical program flow
monitoring

SWS_WdgM_00242, SWS_WdgM_00246,
SWS_WdgM_00252, SWS_WdgM_00271,
SWS_WdgM_00273, SWS_WdgM_00274

SRS_ModeMgm_09225 The Watchdog Manager
shall provide the
indication of failed logical
monitoring

SWS_WdgM_00148, SWS_WdgM_00150

SRS_ModeMgm_09226 The Watchdog Manager
shall reset reset the
triggering condition in the
Watchdog Driver in Case
of logical program flow
violation

SWS_WdgM_00223

SRS_ModeMgm_09232 The Watchdog Manager
shall provide a service to
cause a watchdog reset

SWS_WdgM_00264

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

33 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

7 Functional Specification

This chapter presents the specification details of the internal functional behavior of
the Watchdog Manager module.

7.1 Interaction of Supervision Functions

7.1.1 Overview

Supervised Entities are the units of supervision for the Watchdog Manager module.
Each Supervised Entity can be supervised by a different supervision function or a
combination of them.

The available supervision functions are:

 Alive Supervision (see Chapter 7.1.5)

 Deadline Supervision (see Chapter 7.1.6)

 Logical Supervision (see Chapter 7.1.7)

Each of three Supervision Functions results with a list of Results of Supervision
Function for each Supervised Entity (highlighted in Blue on Figure 2), where each

Result is either correct or incorrect. At Watchdog Manager initialization, all the

Results are set to correct. This means that for every Supervised Entity there are

three partial results (one from Alive Supervision, one from Deadline Supervision and
one from Logical Supervision).

In a given mode, each Supervised entity may have zero, one or more Alive

Supervisions (WdgMAliveSupervision), each having one correct/incorrect

result.

In a given mode, each Supervised entity may have zero, one or more Deadline

Supervisions (WdgMDeadlineSupervision), each having one correct/incorrect

result.

In a given mode, each Supervised entity may have zero, one or more Logical
Supervisions (i.e. graphs) configured (WdgMExternalLogicalSupervision for one
External Graph, a set of WdgMInternalTransition-s for one Internal Graph), each

having one correct/incorrect result. Each Logical Supervision is for one external

or internal graph.

Based on the results of Supervisions Functions (correct/incorrect), the Local

Status of each Supervision Entity (highlighted in Green on Figure 2) is determined by
means of the Local Supervision Status state machine (see Chapter 7.1.2).

Based on Local Supervision Status of each Supervised Entity, the Global Supervision
Status highlighted in Red on Figure 2) is determined by means of Global Supervision
Status state machine (see Chapter 7.1.4).

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

34 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

Based on the Global Supervision Status, the error handling (see Chapter 7.2) and
watchdog handling (see Chapter 7.2) take place.

SE context OS Scheduler context

For each SE

Alive

Supervision

of SE
Deadline

Supervision

of SE

Logical

Supervision

of SE

Result of each Alive

Supervision of SE

(correct/incorrect)

Result of each Deadline

Supervision of SE

(correct/incorrect)

Result of each Logical

Supervision of SE

(correct/incorrect)

WdgM_CheckpointReached() WdgM_MainFunction()

Determine the Local Supervision

Status of SE

Local Supervision

Status of SE (state)

Determine Global Supervision Status

Handle errors

Set condition for HW watchdog

triggering

Global Supervision

Status (state)

Increment Alive

Indication Counter of

Checkpoint

Alive Indication

Counters

Figure 2: Overview of Watchdog Manager Monitoring

The determination of supervision result for Deadline Supervision and Logical

Supervision is executed within the function WdgM_CheckpointReached. During one

execution of this function, it updates the result for one particular Supervision Entity
only.

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

35 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

The determination of supervision result for Alive Supervision is executed within the

function WdgM_MainFunction. During one execution of this function, it updates the

Results of Alive Supervision for all Supervised Entities.

7.1.2 Core Configurable Parameters

Supervised Entities are be defined within the container WdgMGeneral. (see

WdgMSupervisedEntity [ECUC_WdgM_00303]). Supervised Entities contain

Checkpoints (see WdgMCheckpoint).

7.1.3 Local Supervision Status

The Local Supervision Status state machine determines the status of the Supervised
Entity. This is done based on the following:

1. Previous value of the Local Supervision Status,

2. Current values of: result of Alive Supervision, result of Deadline Supervision,
result of Logical Supervision.

The change in the Local Status state machine is done by function

WdgM_MainFunction. The state machine is initialized by the function WdgM_Init.

For the Alive Supervision, the state machine provides fault tolerance by means of the
state WDGM_LOCAL_STATUS_FAILED and the configuration parameter
WdgMFailedSupervisionRefCycleTol, allowing some failed reference cycles of
deadline and

[SWS_WdgM_00200]⌈The Watchdog Manager module shall track the Local

Supervision Status of each Supervised Entity.⌋()

Possible values of the Local Supervision Status are described in
WdgM_LocalStatusType (see Chapter 8.2.5).

[SWS_WdgM_00238]⌈The Local Supervision Status of each Supervised Entity shall

be available for debugging within the Watchdog Manager module.⌋()

See chapter 7.8 for additional debugging requirements.

Figure 3 shows the state machine for Local Supervision Status of a Supervised Entity
with all possible states.

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

36 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

WDGM_LOCAL_STATUS_OK

WDGM_LOCAL_STATUS_FAILED

WDGM_LOCAL_STATUS_EXPIRED

WDGM_LOCAL_STATUS_DEACTIVATED

(11)(10)

(8)

(9)

(3)

(2)

(7)

(1)

(12)

(6)

(5)

(4)

Figure 3: Local Supervision Status

For the transitions between the states of the Local Supervision Status the following
rules apply:

[SWS_WdgM_00268]⌈If the function WdgM_Init is successfully called, then for

each Supervised Entity that is referenced from the Initial Mode (WdgMInitialMode)

(i.e. each Supervised Entity that is activated in the initial mode), the function

WdgM_Init shall set the Local Monitoring Status for this Supervised Entity to

WDGM_LOCAL_STATUS_OK. (see Transition (10) in Figure 2).⌋()

[SWS_WdgM_00269]⌈If the function WdgM_Init is successfully called, then for

each Supervised Entity that is not referenced from the Initial Mode

(WdgMInitialMode), the function WdgM_Init shall set the Local Monitoring Status

for this Supervised Entity to WDGM_LOCAL_STATUS_DEACTIVATED (see
Transition (11) in Figure 2).

If the function WdgM_Init is successfully called and the parameter

WdgMInitialMode [ECUC_WdgM_00336] of this Supervised Entity in

WdgMInitialMode is not configured to WDGM_LOCAL_STATUS_OK then the

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

37 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

Watchdog Manager module shall set the Local Supervision Status for this Supervised

Entity to WDGM_LOCAL_STATUS_DEACTIVATED. (see Transition (11) in Figure 3)⌋()

[SWS_WdgM_00201]⌈If all values in three sets of results of Supervision (results of

Alive Supervision, results of Deadline Supervision, results of Logical Supervision) for

the Supervised Entity are correct and the Supervised Entity was in Local

Supervision Status WDGM_LOCAL_STATUS_OK, then the function

WdgM_MainFunction shall leave the Supervised Entity in the Local Supervision

Status WDGM_LOCAL_STATUS_OK (see Transition (1) in Figure 3).⌋()

[SWS_WdgM_00202]⌈If the Supervised Entity was in Local Supervision Status

WDGM_LOCAL_STATUS_OK AND:

1. (At least one result of Alive Supervision of the Supervised Entity is

incorrect and a Failure Tolerance of zero is configured (see configuration

parameter WdgMFailedAliveSupervisionRefCycleTol

[ECUC_WdgM_00327]) OR

2. If the result of at least one Deadline Supervision of the Supervised Entity or
the result of at least one Logical supervision of the Supervised Entity is

incorrect),

THEN the function WdgM_MainFunction shall change the Local Supervision Status

to WDGM_LOCAL_STATUS_EXPIRED (see Transition (2) in Figure 3).⌋()

The below requirements shows the important difference of Alive Supervision versus
Deadline and Logical Supervision: the Alive Supervision has an error tolerance for
failed reference cycles.

[SWS_WdgM_00203]⌈If the Supervised Entity was in Local Supervision Status

WDGM_LOCAL_STATUS_OK AND:

1. (If the result of at least one Alive Supervision of the Supervised Entity is

incorrect and a Failure Tolerance greater than zero is configured (see

configuration parameter WdgMFailedAliveSupervisionRefCycleTol

[ECUC_WdgM_00327]) AND

2. If all the results of Deadline Supervision of the Supervised Entity and all

results of Logical supervision of the Supervised Entity are correct),

THEN the function WdgM_MainFunction shall change the Local Supervision Status

to WDGM_LOCAL_STATUS_FAILED and increment the counter for failed supervision

reference cycles (see Transition (3) in Figure 3).⌋()

[SWS_WdgM_00204]⌈If the Supervised Entity was in Local Supervision Status

WDGM_LOCAL_STATUS_FAILED AND:

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

38 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

1. (If the result of at least one Alive Supervision is incorrect and the counter

for failed supervision reference cycles does not exceed the configured Failure

Tolerance (see parameter WdgMFailedAliveSupervisionRefCycleTol

[ECUC_WdgM_00327]) AND

2. If all the results of Deadline Supervisions of the Supervised Entity and all the

result of Logical Supervision of the Supervised Entity are correct),

THEN the function WdgM_MainFunction shall keep the Local Supervision Status in

WDGM_LOCAL_STATUS_FAILED and increment the counter for failed supervision

reference cycles (see Transition (4) in Figure 3).⌋()

[SWS_WdgM_00300]⌈If the Supervised Entity was in Local Supervision Status

WDGM_LOCAL_STATUS_FAILED AND:

1. (If all the results of Alive Supervision of the Supervised Entity are correct

and the counter for failed supervision reference cycles is > 1) AND

2. If all the result of Deadline Supervision of the Supervised Entity and all the

result of Logical supervision of the Supervised Entity are correct),

THEN the function WdgM_MainFunction shall keep the Local Supervision Status in

WDGM_LOCAL_STATUS_FAILED and decrement the counter for failed supervision

reference cycles (see Transition (4) in Figure 3).⌋()

[SWS_WdgM_00205]⌈If the Supervised Entity was in Local Supervision Status

WDGM_LOCAL_STATUS_FAILED AND:

1. (If all the results of Alive Supervision of the Supervised Entity are correct

and the counter for failed supervision reference cycles equals 1) AND

2. If all the results of Deadline Supervisions of the Supervised Entity and all the

results of Logical supervision of the Supervised Entity are correct),

THEN the function WdgM_MainFunction shall change the Local Supervision Status

to WDGM_LOCAL_STATUS_OK and decrement the counter for failed supervision

reference cycles (see Transition (5) in Figure 3).⌋()

[SWS_WdgM_00206]⌈If the Supervised Entity was in Local Supervision Status

WDGM_LOCAL_STATUS_FAILED AND:

1. (If at least one result of Alive Supervision is incorrect and the counter for

failed supervision reference cycles exceeds the configured Failure Tolerance
(see configuration parameter

WdgMFailedAliveSupervisionRefCycleTol [ECUC_WdgM_00327])

OR

2. If at least one result of Deadline Supervision of the Supervised Entity or at
least one the result of Logical supervision of the Supervised Entity is

incorrect),

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

39 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

THEN the function WdgM_MainFunction shall change the Local Supervision Status

to WDGM_LOCAL_STATUS_EXPIRED (see Transition (6) in Figure 3).⌋()

[SWS_WdgM_00207]⌈If the Supervised Entity was in Local Supervision Status

WDGM_LOCAL_STATUS_OK and if a call of WdgM_SetMode switches to a mode which

deactivates the Supervised Entity (see [SWS_WdgM_00283]), then the Watchdog
Manager module shall change the Local Supervision Status to

WDGM_LOCAL_STATUS_DEACTIVATED (see Transition (7) in Figure 3).⌋()

[SWS_WdgM_00291]⌈If the Supervised Entity was in Local Supervision Status

WDGM_LOCAL_STATUS_FAILED and if a call of WdgM_SetMode switches to a mode

in which the Supervised Entity is Deactivated (see [SWS_WdgM_00283]), then the
Watchdog Manager module shall change the Local Supervision Status to

WDGM_LOCAL_STATUS_DEACTIVATED (see Transition (12) in Figure 3).⌋()

Note that the above requirement is only applicable for the

WDGM_LOCAL_STATUS_FAILED status, but not for
WDGM_LOCAL_STATUS_EXPIRED.

[SWS_WdgM_00208]⌈If the Supervised Entity was in the Local Supervision Status

WDGM_LOCAL_STATUS_DEACTIVATED, the functions WdgM_CheckpointReached

and WdgM_MainFunction shall not perform any Supervision Functions for this

Supervised Entity and leave the Local Supervision Status in the state

WDGM_LOCAL_STATUS_DEACTIVATED. (see Transition (8) in Figure 3)⌋()

[SWS_WdgM_00209]⌈If the Supervised Entity was in Local Supervision Status

WDGM_LOCAL_STATUS_DEACTIVATED and if a call of WdgM_SetMode switches to a

mode in which the Supervised Entity is active (see [SWS_WdgM_00282]), then the
Watchdog Manager module shall change the Local Supervision Status to

WDGM_LOCAL_STATUS_OK. (see Transition (9) in Figure 3)⌋()

7.1.4 Global Supervision Status

Based on the Local Supervision Status of all Supervised Entities, the Global
Supervision Status is computed.

The Global Supervision Status has similar values as the Local Supervision Status.

The main differences are the addition of the WDGM_GLOBAL_STATUS_STOPPED

value. Figure 4 shows the values and Transitions between them.

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

40 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

WDGM_GLOBAL_STATUS_OK

WDGM_GLOBAL_STATUS_FAILED

WDGM_GLOBAL_STATUS_EXPIRED

WDGM_GLOBAL_STATUS_STOPPED

WDGM_GLOBAL_STATUS_DEACTIVATED

(11)

(10)
(9)

(6)

(5)

(1)

(13)

(2)

(14)

(12)

(7)

(8)

(3)

(4)

Figure 4: Global Supervision Status

[SWS_WdgM_00213]⌈The Watchdog Manager module shall have one Global

Supervision Status for the whole monitored software.⌋(SRS_ModeMgm_09112)

[SWS_WdgM_00239]⌈The Global Supervision Status shall be available for

debugging within the Watchdog Manager module.⌋()

See chapter 7.8 for additional debugging requirements.

The Watchdog Manager module provides a feature to postpone the error reaction
(the error reaction being not setting a correct trigger condition) for a configurable
amount of time measured in multiples of the Supervision Cycle (Supervision cycle is

the period at which Wdgm_MainFunction is called), named Expired Supervision

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

41 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

Tolerance (see configuration parameter WdgMExpiredSupervisionCycleTol
[ECUC_WdgM_00329]).
The Expired Supervision Tolerance is implemented within the state machine of the
Global Supervision Status. The defined state machine is in the state
WDGM_GLOBAL_STATUS_EXPIRED while the blocking is postponed.

[SWS_WdgM_00214]⌈The function Wdgm_MainFunction shall calculate the Global

Supervision Status in every Supervision cycle. The function shall compute the Global
Supervision Cycle after it computed every Local Supervision Status.

The cyclic update of Global Supervision Status is necessary to trigger the timely
transition from WDGM_GLOBAL_STATUS_EXPIRED to

WDGM_GLOBAL_STATUS_STOPPED.⌋(SRS_ModeMgm_09112)

Following rules shall be used to calculate the Global Supervision Status:

[SWS_WdgM_00285]⌈If the function WdgM_Init [SWS_WdgM_00151] was

successfully called then the function shall change the Global Supervision Status to

WDGM_GLOBAL_STATUS_OK (see Transition (13) in Figure 9).⌋()

[SWS_WdgM_00286]⌈If the Global Supervision Status was

WDGM_GLOBAL_STATUS_OK and the function WdgM_DeInit
[SWS_WdgM_00261] was successfully called function shall change the Global
Supervision Status to WDGM_GLOBAL_STATUS_ DEACTIVATED (see Transition

(14) in Figure 9)⌋()

[SWS_WdgM_00078]⌈If the Global Supervision Status was

WDGM_GLOBAL_STATUS_OK and the Local Supervision Status of all Supervised
Entities are either WDGM_LOCAL_STATUS_OK or

WDGM_LOCAL_STATUS_DEACTIVATED then the function Wdgm_MainFunction

shall keep the Global Supervision Status WDGM_GLOBAL_STATUS_OK (see

Transition (1) in Figure 4).⌋(SRS_ModeMgm_09112)

[SWS_WdgM_00076]⌈If the Global Supervision Status was

WDGM_GLOBAL_STATUS_OK, the Local Supervision Status of at least one
Supervised Entity is WDGM_LOCAL_STATUS_FAILED, and no Supervised Entity is
in Local Supervision Status WDGM_LOCAL_STATUS_EXPIRED, then the function

Wdgm_MainFunction shall change the Global Supervision Status to

WDGM_GLOBAL_STATUS_FAILED (see Transition (2) in Figure

4).⌋(SRS_ModeMgm_09112)

The Watchdog Manager module supports a feature to delay the error reaction
(switching to WDGM_LOCAL_STATUS_EXPIRED) for a configurable amount of
time. This could be used to allow clean-up activities before a watchdog reset, e.g.
writing the error cause, writing NVRAM data.

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

42 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

[SWS_WdgM_00215]⌈If the Global Supervision Status was

WDGM_GLOBAL_STATUS_OK, the Local Supervision Status of at least one
Supervised Entity is WDGM_LOCAL_STATUS_EXPIRED, and the Expired
Supervision Tolerance is configured to a value larger than zero (see configuration

parameter WdgMExpiredSupervisionCycleTol [ECUC_WdgM_00329]), then

function Wdgm_MainFunction shall change the Global Supervision Status to

WDGM_GLOBAL_STATUS_EXPIRED (see Transition (3) in Figure

4).⌋(SRS_ModeMgm_09163)

[SWS_WdgM_00216]⌈If the Global Supervision Status was

WDGM_GLOBAL_STATUS_OK, the Local Supervision Status of at least one
Supervised Entity is WDGM_LOCAL_STATUS_EXPIRED, and the Expired
Supervision Tolerance is configured to zero (see configuration parameter

WdgMExpiredSupervisionCycleTol [ECUC_WdgM_00329]), then the function

Wdgm_MainFunction shall change the Global Supervision Status to

WDGM_GLOBAL_STATUS_STOPPED (see Transition (4) in Figure 4).⌋()

[SWS_WdgM_00217]⌈If the Global Supervision Status was

WDGM_GLOBAL_STATUS_FAILED, the Local Supervision Status of at least one
Supervised Entity is WDGM_LOCAL_STATUS_FAILED, and no Supervised Entity is
in Local Supervision Status WDGM_LOCAL_STATUS_EXPIRED, then function

Wdgm_MainFunction shall remain in Global Supervision Status

WDGM_GLOBAL_STATUS_FAILED. (see Transition (5) in Figure 4)⌋()

[SWS_WdgM_00218]⌈If the Global Supervision Status was

WDGM_GLOBAL_STATUS_FAILED and the Local Supervision Status of all
Supervised Entities is either WDGM_LOCAL_STATUS_OK or

WDGM_LOCAL_STATUS_DEACTIVATED then function Wdgm_MainFunction

shall change the Global Supervision Status to WDGM_GLOBAL_STATUS_OK (see

Transition (6) in Figure 4).⌋()

[SWS_WdgM_00077]⌈If the Global Supervision Status was

WDGM_GLOBAL_STATUS_FAILED, the Local Supervision Status of at least one
Supervised Entity is WDGM_LOCAL_STATUS_EXPIRED, and the Expired
Supervision Tolerance is configured to a value larger than zero (see configuration
parameter WdgMExpiredSupervisionCycleTol [ECUC_WdgM_00329]), then function

Wdgm_MainFunction shall change the Global Supervision Status to

WDGM_GLOBAL_STATUS_EXPIRED (see Transition (7) in Figure

4).⌋(SRS_ModeMgm_09112, SRS_ModeMgm_09163)

[SWS_WdgM_00117]⌈If the Global Supervision Status was

WDGM_GLOBAL_STATUS_FAILED, the Local Supervision Status of at least one
Supervised Entity is WDGM_LOCAL_STATUS_EXPIRED, and the Expired
Supervision Tolerance is configured to zero (see configuration parameter

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

43 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

WdgMExpiredSupervisionCycleTol [ECUC_WdgM_00329]), then function

Wdgm_MainFunction shall change the Global Supervision Status to

WDGM_GLOBAL_STATUS_STOPPED (see Transition (8) in Figure

4).⌋(SRS_ModeMgm_09112)

[SWS_WdgM_00219]⌈If the Global Supervision Status was

WDGM_GLOBAL_STATUS_EXPIRED, the Local Supervision Status of at least one
Supervised Entity is WDGM_LOCAL_STATUS_EXPIRED, and the Expired Cycle
Counter is less or equal to the configured Expired Supervision Tolerance (see

configuration parameter WdgMExpiredSupervisionCycleTol

[ECUC_WdgM_00329]), then function Wdgm_MainFunction shall keep Global

Supervision Status WDGM_GLOBAL_STATUS_EXPIRED and increment the

Expired Cycle Counter (see Transition (9) in Figure 4).⌋(SRS_ModeMgm_09163)

[SWS_WdgM_00220]⌈If the Global Supervision Status was

WDGM_GLOBAL_STATUS_EXPIRED, the Local Supervision Status of at least one
Supervised Entity is WDGM_LOCAL_STATUS_EXPIRED, and the Expired Cycle
Counter is larger than the configured Expired Supervision Tolerance (see

configuration parameter WdgMExpiredSupervisionCycleTol

[ECUC_WdgM_00329]), then function Wdgm_MainFunction shall change the

Global Supervision Status to WDGM_GLOBAL_STATUS_STOPPED (see Transition

(10) in Figure 4).⌋(SRS_ModeMgm_09163)

[SWS_WdgM_00221]⌈If the Global Supervision Status was

WDGM_GLOBAL_STATUS_STOPPED, then function Wdgm_MainFunction shall

remain in Global Supervision Status WDGM_GLOBAL_STATUS_STOPPED (see

Transition (11) in Figure 4).⌋()

[SWS_WdgM_00139]⌈If a call to WdgIf_SetMode fails (see chapter 7.10.2),

function shall assume a global supervision failure and set the Global Supervision
Status to WDGM_GLOBAL_STATUS_STOPPED. (see Transition (12) in Figure 9)

⌋(SRS_ModeMgm_09110)

This is the final state and the failure recovery mechanisms will be started. Usually a
watchdog reset will occur after the hardware watchdog has expired. Supervision
Functions

7.1.5 Alive Supervision

Alive Supervision is one of the supervision functions of the Watchdog Manager
module. The Alive Supervision offers a mechanism to periodically check the
execution reliability of one or several Supervised Entities. This mechanism supports
a check of cyclic timing constraints of independent Supervised Entities.

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

44 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

7.1.5.1 Alive Supervision Configuration

To provide Alive Supervision, the Checkpoints and their timing constraints need to be
configured. The simplest configuration for Alive Supervision is one Checkpoint
without any Transitions, as shown in Figure 5.

SE3

CP3-1

+ WdgMExpectedAliveIndications

+ WdgMMaxMargin

+ WdgMMinMargin

+ WdgMSupervisionReferenceCycle

Figure 5: Simplest Alive Supervision Checkpoint Configuration

The above configuration provides backward compatibility to Alive Supervision as
defined in versions before v2.0.0 of the Watchdog Manager module, where each
Supervised Entity could be supervised with one set of parameters only.

Moreover, it is also possible to have more than one Checkpoint as shown in Figure 6.

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

45 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

SE3

CP3-1

+ WdgMExpectedAliveIndications

+ WdgMMaxMargin

+ WdgMMinMargin

+ WdgMSupervisionReferenceCycle

CP3-2

+ WdgMExpectedAliveIndications

+ WdgMMaxMargin

+ WdgMMinMargin

+ WdgMSupervisionReferenceCycle

CP3-3

+ WdgMExpectedAliveIndications

+ WdgMMaxMargin

+ WdgMMinMargin

+ WdgMSupervisionReferenceCycle

Figure 6: Multiple Checkpoints for Alive Supervision in one Supervised Entity

Each Checkpoint has its own set of Alive Supervision Parameters. Transitions are
not used by Alive Supervision. Although each Checkpoint has its own parameters, it
is the Supervised Entity for which status is determined based on the frequency of
Checkpoints.

The parameters of the Alive Supervision (see WdgMAliveSupervision) depend on

the Watchog Manager Mode and are defined for per Checkpoint (and not globally for
the whole Supervised Entity).

None, some, or all of the Checkpoints of a Supervised Entity can be configured for
Alive Supervision in a given Mode. Moreover, in each Mode the Alive Supervision
options of Checkpoints can be different.

The WdgMExpectedAliveInidications [ECUC_WdgM_00311] (EAI) specifies

the amount of expected alive indications from a given Checkpoint, within a fixed
period of supervision cycles. The period length is defined by

WdgMSupervisionReferenceCycle [ECUC_WdgM_00310].

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

46 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

An acceptable negative variation (WdgMMinMargin [ECUC_WdgM_00312]) and

acceptable positive variation (WdgMMaxMargin [ECUC_WdgM_00313]) can be

configured.

The Watchdog Manager module has to support a configurable amount of
independent Supervised Entities. As a consequence the following general issue has
to be considered.

[SWS_WdgM_00085]⌈The Watchdog Manager module shall derive the required

number of independent data resources to perform the Alive Supervision within the
Watchdog Manager module from the number of Supervised Entities, number of

WdgMModes and their WdgMAliveSupervisions.⌋(SRS_ModeMgm_09106)

Examples of independent data resources in context of the Watchdog Manager
module are: alive counters, supervision cycles counters, failed supervision reference
cycles counters, expired supervision cycles counters, Local Supervision Status.

[SWS_WdgM_00240]⌈The Alive Counters of each Checkpoint shall be available for

debugging within the Watchdog Manager module.⌋()

See chapter 7.8 for additional debugging requirements.

7.1.5.2 Alive Supervision Algorithm

To send an Alive Indication, a Supervised Entity invokes the function

WdgM_CheckpointReached, which results with incrementation of an Alive Counter

for the Checkpoint.

This Main Function is executed by the AUTOSAR Scheduler with the period defined

by the configuration parameter Supervision Cycle (see WdgMSupervisionCycle).

The cyclic examination of the Counter of each Checkpoint of a Supervised Entity by
the Main Function happens at every Supervision Reference Cycle (which is a
multiple of Supervision Cycle).

The Supervision Cycle (see WdgMSupervisionCycle) is the property of the

Watchdog Manager mode. This means that in a given mode, the function

WdgM_MainFunction is executed with a given period. In contrary, the Supervision

Reference Cycle (see WdgMSupervisionReferenceCycle) is the property of an

Alive Supervision of a Checkpoint in a given Watchdog Manager mode.

[SWS_WdgM_00098]⌈The function WdgM_MainFunction shall perform for each

Alive Supervision (WdgMAliveSupervision) configured in the active Mode, the

examination of the Alive Counter of each Checkpoint of the Supervised Entity. The

examination shall be done at the period WdgMSupervisionReferenceCycle of

the corresponding Alive Supervision(WdgMAliveSupervision). During the

intermediate Supervision Cycles (see WdgMSupervisionCycle) of the Alive

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

47 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

Supervision, the function WdgM_MainFunction shall not perform the examination of

Alive Counters.⌋(SRS_ModeMgm_09112)

[SWS_WdgM_00074⌈The function WdgM_MainFunction shall examine an Alive

Counter by checking if it is within the allowed tolerance (Expected – Min Margin;

Expected + Max Margin) (see WdgMExpectedAliveIndications

[ECUC_WdgM_00311], WdgMMinMargin,

WdgMMaxMargin).⌋(SRS_ModeMgm_09112)

If any Checkpoint of a Supervised Entity fails the examination, then the result of Alive
Monitoring for the Supervised Entity is set to incorrect.

[SWS_WdgM_00115]⌈If the function WdgM_MainFunction detects a deviation

between the counted Alive Indications and the expected amount of alive indications
[ECUC_WdgM_00311] (including tolerance margins [ECUC_WdgM_00312],
[ECUC_WdgM_00313]) for any Checkpoint of a Supervised Entity, then Alive
Supervision at this Supervision Reference Cycle for this Supervised Entity shall be

defined as incorrect. Otherwise, it shall be defined as correct.

⌋(SRS_ModeMgm_09112)

If a checkpoint is not Alive-Supervised in a mode, then it is ignored by Watchdog
Manager.

[SWS_WdgM_00083]⌈The function WdgM_MainFunction shall not perform the

examination of the Alive Counter of a Checkpoint if no corresponding Alive

Supervision (WdgMAliveSupervision) is defined in the active Watchdog Manager

Mode.⌋(SRS_ModeMgm_09112, BSW09142, SRS_ModeMgm_09143)

7.1.6 Deadline Supervision

Deadline Supervision checks the timing constraints of non-cyclic Supervised Entities.
In these Supervised Entities, a certain event happens and a following event happens
within a given time span. This time span can have a maximum and minimum
deadline (time window).

7.1.6.1 Deadline Supervision Configuration

For every Deadline Supervision, two Checkpoints connected by a Transition are
configured. The Deadline is attached to the Transition from the start Checkpoint to
the end Checkpoint. The simplest Deadline Supervision configuration contains two
Checkpoints and one Transition, as shown in Figure 7.

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

48 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

SE4

CP4-1

CP4-2

+ WdgMDeadlineMin,+

WdgMDeadlineMax

Figure 7: Simplest Deadline Supervision Configuration

More than one Transition can be defined in a Supervised Entity. The Transitions and
Checkpoints do not have to form a closed graph. Since only the start and end
Checkpoints are considered by this Supervision Function, there can be independent
graphs, as shown in Figure 8. Moreover, the Checkpoints can be chained.

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

49 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

SE4

CP4-1

CP4-2

CP4-3

CP4-4

CP4-5

+ WdgMDeadlineMin,+

WdgMDeadlineMax

+ WdgMDeadlineMin,+

WdgMDeadlineMax

+WdgMDeadlineMin,

+WdgMDeadlineMax

Figure 8: Multiple Transitions for Deadline Supervision in one Supervised Entity

The configuration of Deadline Supervision is similar to the one of Alive Supervision.

The parameters of the Deadline Supervision (see WdgMDeadlineSupervision)

depend on the Watchog Manager Mode (WdgMMode) and are defined for per a set of

two Checkpoints. None, some, or all of the Checkpoints of a Supervised Entity can
be configured for Deadline Supervision in a given Mode.

A Deadline Supervision is defined as a set of Transitions with time constraints. A
Transition is defined as two references to two Checkpoints, called Deadline Start

Checkpoint and Deadline End Checkpoint (WdgMDeadlineStartRef and

WdgMDeadlineEndRef). A Transition has minimum and maximum time (

WdgMDeadlineMin [ECUC_WdgM_00317], WdgMDeadlineMax
[ECUC_WdgM_00318]).

[SWS_WdgM_00293]⌈The Watchdog Manager module shall derive the required

number of independent data resources to perform the Deadline Supervision within
the Watchdog Manager module from the number of Supervised Entities, number of

WdgMModes and their WdgMAliveSupervisions.⌋()

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

50 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

7.1.6.2 Deadline Supervision Algorithm

For each Deadline Start Checkpoints (i.e. Checkpoint referenced by

WdgMDeadlineStartRef), Watchdog Manager has a timestamp variable storing

the time when that Checkpoint has been reached.

A timestamp variable for deadline monitoring is obtained by reading OS tick. For
each Supervised Entity, an OS counter is configured.

An OS counter can be shared between Supervised Entities, or a separate OS
counter can be used for each Supervised Entity (implementation-specific). In case
OS-Applications/partitioning is used and a counter is shared across Supervised
Entities belonging to different OS-applications, then the list of allowed OS-
Applications to access the counter needs to be configured
(OsCounterAccessingApplication).

[SWS_WdgM_00373]⌈ To determine the timestamp and to compute the timestamp

differences, the function WdgM_CheckpointReached shall use OS functions

(GetCounterValue or GetElapsedTime), using as 1st parameter the CounterID that is

configured for the Supervised Entity.⌋()

The timestamps are in ticks. However, the Watchdog deadline configuration is in
seconds. The scaling between ticks and seconds is configured in OS.

[SWS_WdgM_00374]⌈For scaling of timestamp difference to the limit values

(WdgMDeadlineMin and WdgMDeadlineMax) (see SWS_WdgM_00294), the

function WdgM_CheckpointReached shall use OsSecondsPerTick configuration

parameter. ⌋()

During the initialization, all the timestamps of Deadline Start Checkpoints (i.e.

Checkpoint referenced by WdgMDeadlineStartRef) are cleared – set to 0.

[SWS_WdgM_00298]⌈The function WdgM_Init shall for all Deadline Start

Checkpoints set their timestamps to 0.⌋()

When a Deadline Start Checkpoint (i.e. Checkpoint referenced by

WdgMDeadlineStartRef) is reached, a Supervised Entity invokes the function

WdgM_CheckpointReached, which results with the execution of Deadline

Supervision.

[SWS_WdgM_00228]⌈When the Deadline Start Checkpoint is reached and this

Checkpoint is referenced in the active Mode, then the function

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

51 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

WdgM_CheckpointReached shall record the current timestamp under the

timestamp of the reached Deadline Start Checkpoint. The current timestamp shall be
used as the reference to examining the time of the corresponding Deadline End

Checkpoint.⌋()

The function WdgM_CheckpointReached shall determine the current timestamp by

invoking the OS functions ()

SWS_WdgM_00228 means that the timestamp of the reached Deadline Start
Checkpoint is overwritten by the current timestamp, regardless of the value (just
before the overwriting) of the reached Deadline Start Checkpoint. Moreover,
SWS_WdgM_00228 means that it is not considered as an error by Deadline
Supervision if a given Deadline Start Checkpoint is reached several times without
reaching the corresponding Deadline End Checkpoint (each time the timestamp is
just updated).

[SWS_WdgM_00229]⌈When the Deadline End Checkpoint is reached and this

Checkpoint is referenced in the active Mode, and timestamp of the corresponding

Deadline Start Checkpoint is <>0, then the function WdgM_CheckpointReached

shall measure the time difference between current timestamp and the corresponding
Deadline Start Checkpoint timestamp. Then, the function shall clear (i.e. set to 0) the

timestamp of the corresponding Deadline Start Checkpoint.⌋()

SWS_WdgM_00229 means that the error is not detected if the Deadline End
Checkpoint is never reached (because the Deadline End Checkpoint is needed to
measure the time difference).

[SWS_WdgM_00354]⌈When the Deadline End Checkpoint is reached and this

Checkpoint is referenced in the active Mode, and timestamp of the corresponding

Deadline Start Checkpoint is =0, then the function WdgM_CheckpointReached

shall exit with success (without measuring the time difference).⌋()

SWS_WdgM_00354 means that it is not considered as an error by Deadline
Supervision if a given Deadline End Checkpoint is reached several times in a
sequence.

[SWS_WdgM_00294]⌈If the measured time difference (see SWS_WdgM_00229) is

not within the minimum and the maximum limits (WdgMDeadlineMin and

WdgMDeadlineMax), then the function WdgM_CheckpointReached shall define the

result of Deadline Supervision for this Supervised Entity as incorrect. Otherwise, it

shall be defined as correct. ⌋()

[SWS_WdgM_00299]⌈For any reported Checkpoint that is neither a Deadline Start

Checkpoint nor a Deadline End Checkpoint, the function

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

52 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

WdgM_CheckpointReached [SWS_WdgM_00263] shall ignore this Checkpoint

and not update the result of the Deadline Supervision for the Supervised Entity.⌋()

[SWS_WdgM_00241]⌈For each start Checkpoint, the timestamp when each

Checkpoint has been reached and the result of Deadline Supervision for each
Supervised Entity shall be available for debugging within the Watchdog Manager

module.⌋()

7.1.7 Logical Supervision

Logical Supervision checks if the code of Supervised Entities is executed in the
correct sequence.

7.1.7.1 Alive Supervision Configuration

For every Logical Supervision, there is a graph of Checkpoints connected by
Transitions. The graph abstracts the behavior of the Supervised Entity for the
Watchdog Manager module.

As an example for a Supervised Entity, let us consider the following code fragment,
which contains the Checkpoints CP0-0 to CP0-6.

CP0-0 i = 0;

CP0-1 while(i < n) {

CP0-2 if (a[i] < b[i])

CP0-3 a[i] = b[i];

CP0-4
 else

 a[i] = 0;

CP0-5 i++;

CP0-6 }

This Supervised Entity can be represented by the Graph shown by Figure 9.

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

53 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

SE0

CP0-0

CP0-1

CP0-2

CP0-3 CP0-4

CP0-5

CP0-6

Figure 9: Example Control Flow Graph

A more abstract view of the Supervised Entity is given by the Graph shown in Figure
10, where the Checkpoint CP0-1 represents the complete while loop.

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

54 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

SE0

CP0-0

CP0-1

CP0-6

Figure 10: Abstracted Example Control Flow Graph

There are two types of Graphs for Logical Supervision. Firstly, there is an Internal
Graph, in which all the Checkpoints belong to the same Supervised Entity and the
Checkpoints are connected by Internal Transitions. There can be zero or one Internal
Graphs per Supervised Entity.
Second, there is an External Graph, in which at least two Checkpoints belong to
different Supervised Entities. The checkpoints are connected with External
Transitions.

There are two types of Graphs for Logical Supervision. The main difference of the
Internal and External Graph is that Internal Graph is a property of a Supervised Entity
(it does not depend on Watchdog Manager Mode), whereas the External Graph is
Mode dependent.

The parameters of the Logical Supervision for Internal Graphs are Internal

Transitions (see WdgMInternalTransition), which are contained in a Supervised

Entity (WdgMSupervisedEntity). Each Internal Transition connects two

Checkpoints. This means that all the modes share the same Internal Transitions. It is
only possible to deactivate a Supervised Entity in a mode, which makes its Logical
Supervision of internal transitions inactive.

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

55 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

The parameters of the External Graphs (see

WdgMExternalLogicalSupervision) are contained in a Mode (WdgMMode).

Each External Transition connects two Checkpoints.

The Checkpoints exist irrespective if they are connected by any transitions.

[SWS_WdgM_00366]⌈The Watchdog Manager module shall derive the required

number of independent data resources to perform the Logical Supervision within the
Watchdog Manager module from the number of Supervised Entities, number of
WdgMModes and their WdgMExternalLogicalSupervisions and

WdgMInternalTransitions.⌋()

7.1.7.2 Logical Supervision Algorithm

Immediately after initialization of the Watchdog Manager there has not yet been a
Checkpoint reported, i.e. the Supervised Entity is passive. This information is held in
the Activity Flag (one flag per Graph).

Each Internal Graph represents as well one Logical Supervision. Assuming N internal
graphs, this means that a Supervised Entity has N results from Logical Supervision
for the Supervised Entity.

Each External Graph represents one Logical Supervision, but it spans across
possibly several Supervised Entities. Assuming M External Graphs that cross a
Supervised Entity, this results with M results from the Logical Supervision for the
Supervised Entity.

[SWS_WdgM_00271]⌈The Watchdog Manager module shall maintain for each

Graph an Activity Flag.⌋(SRS_ModeMgm_09221, SRS_ModeMgm_09222)

[SWS_WdgM_00296]⌈The function WdgM_Init shall be set the Activity Flag for

each Graph to false. ⌋()

Each Graph may have one or more Initial Checkpoints. Initial Checkpoints are
Checkpoints with which a Graph can start.

To notify reaching a Checkpoint, a Supervised Entity invokes the function

WdgM_CheckpointReached, which results with execution of Logical Supervision

algorithm.

To verify if transitions are valid, the algorithm needs to store the most recently
reached Checkpoint. For every External and Internal Graph, the Watchdog Manger
stores the most recently reached Checkpoint.

Because a Checkpoint can belong to only one Graph, the function

WdgM_CheckpointReached is able to identify to which Graph a Checkpoint

belongs.

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

56 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

[SWS_WdgM_00295]⌈The function WdgM_CheckpointReached shall identify to

which one Graph a reached Checkpoint belongs.⌋()

[SWS_WdgM_00246]⌈The function WdgM_CheckpointReached shall store for

each External Graph and for each Internal Graph the Checkpoint that has been most
recently reported by a Supervised Entity (see WdgM_CheckpointReached
[SWS_WdgM_00263]).

If the Activity Flag for a Graph is true, the function WdgM_CheckpointReached

checks for each new Checkpoint if the Transition between the stored Checkpoint and

the newly reported Checkpoint is allowed.⌋(SRS_ModeMgm_09221,

SRS_ModeMgm_09222)

[SWS_WdgM_00274]⌈The function WdgM_CheckpointReached

[SWS_WdgM_00263] shall verify if the reported Checkpoint belonging to an Internal
Graph is a correct one by the following checks:

1. If the Activity Flag for the Graph of the reported Checkpoint is false, then:

a. If the Checkpoint is an Initial Checkpoint

(WdgMInternalCheckpointInitialRef) the result of Logical

Supervision for the Supervised Entity is correct, otherwise

incorrect.

2. else (i.e. Activity Flag is true), then:

a. If the reported Checkpoint is a successor of the stored Checkpoint
within the Graph of the reported Checkpoint (this means there is an

WdgMInternalTransition with

WdgMInternalTransitionSourceRef and

WdgMInternalTransitionDestRef), then the result of this Logical

Supervision of the Supervised Entity is correct, otherwise

incorrect.⌋(SRS_ModeMgm_09221, SRS_ModeMgm_09222)

A similar check takes place for Checkpoints belonging to External Graphs.

[SWS_WdgM_00252]⌈The function WdgM_CheckpointReached

[SWS_WdgM_00263] shall verify if the reported Checkpoint belonging to an External
Graph is a correct one by the following checks:

1. If the Activity Flag for the Graph of the reported Checkpoint is false, then:

a. If the Checkpoint is an Initial Checkpoint

(WdgMExternalCheckpointInitialRef), then the result of this

Logical Supervision within the Supervised Entity of the reported

Checkpoint is correct, otherwise incorrect.

2. Else (i.e. activity Flag is true), then:

a. If the reported Checkpoint is a successor of the stored Checkpoint
within the Graph of the reported Checkpoint (this means there is an

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

57 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

WdgMExternalTransition with

WdgMExternalTransitionSourceRef and

WdgMExternalTransitionDestRef), then the result of this Logical

Supervision for Supervised Entity of the reported Checkpoint is

correct, otherwise incorrect.

The above requirement means that in case of an incorrect external transition, the
Supervised Entity that is considered as erroneous is the one that reported the

incorrect Checkpoint.⌋(SRS_ModeMgm_09221, SRS_ModeMgm_09222)

If a Checkpoint is one of the initial Checkpoints of a Graph, then the Graph is set as
active.

[SWS_WdgM_00332]⌈If the function WdgM_CheckpointReached the result

correct, and the Checkpoint is defined as a initial one, then the function

WdgM_CheckpointReached shall set the Activity Flag of the corresponding graph

to true.⌋()

The reverse applies for the final Checkpoint.

[SWS_WdgM_00331]⌈If the function WdgM_CheckpointReached the result

correct, and the Checkpoint is defined as a final one, then the function

WdgM_CheckpointReached shall set the Activity Flag of the corresponding graph

to false.

After a final checkpoint, the only possible are initial checkpoints.⌋()

A Checkpoint can belong to either Internal or External Graph, this means that either
the check defined in SWS_WdgM_00274 or the one in SWS_WdgM_00252 is

executed. This means that in any execution of WdgM_CheckpointReached, if the

reported checkpoint belongs to any Internal or External Graphs, the function can set

the result of the Logical Supervision of one Supervised Entity to correct or

incorrect.

If the reported Checkpoint does not belong to any Graph, then the result of Logical
Supervision is not be updated. This is because the checkpoint may be used by other
Supervision Functions (Alive or Deadline).

[SWS_WdgM_00297]⌈For any reported Checkpoint that does not belong to any

Graph, the function WdgM_CheckpointReached [SWS_WdgM_00263] shall ignore

it and not update the result of the Logical Supervision for the Supervised Entity.⌋()

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

58 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

[SWS_WdgM_00273]⌈If the function WdgM_CheckpointReached determines that

the result of the Logical Supervision for the given Checkpoint is true, and the

Checkpoint is the initial one (WdgMInternalCheckpointInitialRef), then shall

set the Activity Flag of the Graph corresponding to the Checkpoint to

true.⌋(SRS_ModeMgm_09221, SRS_ModeMgm_09222)

[SWS_WdgM_00329]⌈If the function WdgM_CheckpointReached determines that

the result of the Logical Supervision for the given Checkpoint is true, and the

Checkpoint is the initial one (WdgMInternalCheckpointFinalRef), then shall set

the Activity Flag of the Graph corresponding to the Checkpoint to true.⌋()

[SWS_WdgM_00242]⌈The information about the most recently reached Checkpoints

for each Graph, the Activity Flag for Each Graph and the result of Logical Supervision
for each Supervised Entity shall be available for debugging within the Watchdog

Manager module.⌋(SRS_ModeMgm_09221, SRS_ModeMgm_09222)

See chapter 7.8 for additional debugging requirements

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

59 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

7.2 Error Handling / Failure Recovery

The Watchdog Manager module initiates a number of mechanisms to recover from
supervision failures. These range from local error recovery within the Supervised
Entity to a global reset of the ECU.

7.2.1 RTE Mode Mechanism Notifications

The Watchdog Manager module informs SW-Cs and CDDs about supervision
failures via the RTE Mode mechanism. The SW-C and CDDs can then take its
actions to recover from that failure. (see [SWS_WdgM_00196],
[SWS_WdgM_00197], [SWS_WdgM_00198]).

7.2.2 Report to DEM in WDGM_GLOBAL_STATUS_STOPPED

The Watchdog Manager module registers an entry with the Diagnostic Event
Manager (DEM) when Watchdog Manages reaches the state

WDGM_GLOBAL_STATUS_STOPPED. An SW-C or a CDD can take recovery actions

based on that error entry.

[SWS_WdgM_00129]⌈When the Global Supervision Status has reached

WDGM_GLOBAL_STATUS_STOPPED and if the configuration parameter

WdgMDemStoppedSupervisionReport is set to TRUE, the Watchdog Manager

module shall report an error status to the DEM.⌋(SRS_BSW_00339,

SRS_ModeMgm_09159)

7.2.3 Partition Restart / Shutdown

If the Watchdog Manager module detects a supervision failure for a Supervised
Entity that is located in a non-trusted partition it can restart/shutdown that partition by
terminating the corresponding OS Application.

[SWS_WdgM_00225]⌈If the Local Supervision Status of a Supervised Entity

changes to WDGM_LOCAL_STATUS_FAILED and this Supervised Entity has a

corresponding OS Application configured (see configuration parameter

WdgMOsApplicationRef [ECUC_WdgM_00346]), then the Watchdog Manager

module shall call the API function BswM_WdgM_RequestPartitionReset of the

Basic Software Mode Manager module to request a restart/shutdown of the

corresponding partition for the configured OS Application.⌋()

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

60 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

7.2.4 Not Setting the Watchdog Trigger Condition

In the state WDGM_GLOBAL_STATUS_STOPPED, the Watchdog Manager module

stops setting the trigger condition to Watchdog Interface. As a result, after the
timeout of the hardware watchdog, it will cause a reset of the ECU.

See chapter 7.3.2 for the corresponding requirements.

7.2.5 MCU Reset

For applications which need a microcontroller reset as soon as an unrecoverable
supervision failure is detected, or to have the independent shutdown path from the
Hardware Watchdog, the Watchdog Manager module can perform an immediate
reset of the MCU.

[SWS_WdgM_00133]⌈If the configuration parameter WdgMImmediateReset

[ECUC_WdgM_00339] is set to TRUE and the Global Supervision Status has
reached the state WDGM_GLOBAL_STATUS_STOPPED, the Watchdog Manager

module shall call the MCU service Mcu_PerformReset on the MCU Driver module.

The Watchdog Manager configuration tool should not allow to configure the

parameter WdgMImmediateReset [ECUC_WdgM_00339] to TRUE if the

McuPerformResetApi (defined in SWS_Mcu_Driver) is not set to

TRUE.⌋(SRS_ModeMgm_09169)

[SWS_WdgM_00134]⌈In case of an immediate MCU reset, the Watchdog Manager

module shall not provide a notification to the application via the RTE mode

mechanism.⌋(SRS_ModeMgm_09169)

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

61 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

7.3 Watchdog Handling

The handling of watchdogs is an important feature of the Watchdog Manager
module. It prevents the ECU from resets by expired hardware watchdog instances
while program execution is running properly.

Usually hardware watchdogs have their own timing constraints and the trigger for
each watchdog instance must be performed cyclically within a maximum time span or
within a defined time window according to the timing constraints of the corresponding
watchdog instance. If the trigger does not occur, the corresponding hardware
watchdog instance will cause a reset.

The actual timing of watchdog triggering is encapsulated in the Watchdog Driver. The
Watchdog Manager only sets via the Watchdog Interface a triggering condition that
instructs the Watchdog Driver to continue triggering.

7.3.1 Support for Multiple Watchdog Instances

Some hardware platforms can be designed to have multiple watchdog instances (i.e.
an internal and an external watchdog in parallel).

[SWS_WdgM_00002]⌈The Watchdog Manager module shall support the parallel

usage of multiple watchdogs.⌋(SRS_ModeMgm_09028)

7.3.2 Setting the Trigger Conditions

The Watchdog Manager module uses the service WdgIf_SetTriggerCondition of the
Watchdog Interface modules to set (update) the trigger condition of the watchdogs.
This service requires the watchdog device index and the timeout/counter as a

parameter (see configuration parameter WdgMTrigger [ECUC_WdgM_00331]).

[SWS_WdgM_00223]⌈The Watchdog Manager module shall update the trigger

condition every time the Global Supervision Status has been recomputed.

Following rules shall be used to derive the decision, how to set the triggering
condition. In short:

1. For the states WDGM_GLOBAL_STATUS_OK,
WDGM_GLOBAL_STATUS_FAILED and
WDGM_GLOBAL_STATUS_EXPIRED, the function WdgM_MainFunction
shall set correctly the trigger conditions.

2. For the states WDGM_GLOBAL_STATUS_DEACTIVATED, and
WDGM_GLOBAL_STATUS_STOPPED, the function WdgM_MainFunction
shall set the trigger conditions to 0, which results with a reset through HW

watchdog(s).⌋(SRS_ModeMgm_09161, SRS_ModeMgm_09226)

[SWS_WdgM_00292]⌈If the Global Supervision Status has recomputed as

WDGM_GLOBAL_STATUS_DEACTIVATED, then this means that the Watchdog

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

62 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

Manager module is not properly initialized and it shall not call

WdgIf_SetTriggerCondition.⌋(BSW09111)

[SWS_WdgM_00119]⌈If the Global Supervision Status has recomputed as

WDGM_GLOBAL_STATUS_OK, then the Watchdog Manager module shall call

WdgIf_SetTriggerCondition for all watchdogs not configured as

WDGIF_OFF_MODE [ECUC_WdgM_00332] with <parameter for id> set to

WdgMWatchdogDeviceRef [ECUC_WdgM_00348] and <parameter for trigger

condition> set to WdgMTriggerCondition [ECUC_WdgM_00333].⌋(BSW09111)

[SWS_WdgM_00120]⌈If the Global Supervision Status has recomputed as

WDGM_GLOBAL_STATUS_FAILED, then the Watchdog Manager module shall call

WdgIf_SetTriggerCondition for all watchdogs not configured as

WDGIF_OFF_MODE [ECUC_WdgM_00332] with <parameter for id> set to

WdgMWatchdogDeviceRef [ECUC_WdgM_00348] and <parameter for trigger

condition> set to WdgMTriggerCondition [ECUC_WdgM_00333].⌋(BSW09111)

[SWS_WdgM_00121]⌈If the Global Supervision Status has recomputed as

WDGM_GLOBAL_STATUS_EXPIRED, then the Watchdog Manager module shall

call WdgIf_SetTriggerCondition for all watchdogs not configured as

WDGIF_OFF_MODE [ECUC_WdgM_00332] with <parameter for id> set to

WdgMWatchdogDeviceRef [ECUC_WdgM_00348] and <parameter for trigger

condition> set to WdgMTriggerCondition [ECUC_WdgM_00333].⌋(BSW09111)

[SWS_WdgM_00122]⌈If the Global Supervision Status has recomputed as

WDGM_GLOBAL_STATUS_STOPPED, then the Watchdog Manager module shall

call WdgIf_SetTriggerCondition for all watchdogs not configured as

WDGIF_OFF_MODE [ECUC_WdgM_00332] with <parameter for id> set to

WdgMWatchdogDeviceRef [ECUC_WdgM_00348] and <parameter for trigger

condition> set to zero.⌋(BSW09111)

Setting the trigger condition to zero will immediately prevent the Watchdog Driver
module from triggering the hardware watchdog.

7.3.3 Configurable Parameters

Further parameters of the watchdog triggering are configurable and on the current
mode of the Watchdog Manager module.

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

63 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

7.4 Development Errors

[SWS_WdgM_00004]⌈The Watchdog Manager module shall be able to detect the

following development errors:
Type or error Related error code Value

API service used in wrong context (without
module initialization)

WDGM_E_NO_INIT 0x10

API service Wdg_Init was called with an
erroneous configuration set.

WDGM_E_PARAM_CONFIG

0x11

API service called with wrong “mode”
parameter

WDGM_E_PARAM_MODE

0x12

API service called with wrong “supervised
entity identifier” parameter

WDGM_E_PARAM_SEID 0x13

API service called with a null pointer parameter WDGM_E_INV_POINTER 0x14

Disabling of watchdog not allowed (e.g. in
safety-related systems)

WDGM_E_DISABLE_NOT_ALLOWED 0x15

API service used with an invalid CheckpointId. WDGM_E_CPID 0x16

Deprecated API service was used. WDGM_E_DEPRECATED 0x17

Function WdgM_UpdateAliveIndication cannot
determine the Checkpoint, because there are
more than one alive supervisions configured in
the current mode for the given Supervised
Entity.

WDGM_E_AMBIGIOUS 0x18

API service used with a checkpoint of a
Supervised Entity that is deactivated in the
current Watchdog Manager mode.

WDGM_E_SEDEACTIVATED 0x19

⌋(SRS_BSW_00327, SRS_BSW_00337, SRS_BSW_00385)

7.5 Detection of Development Errors

For details refer to the chapter 7.3 “Error Detection” in SWS_BSWGeneral.

7.6 Production Errors

None

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

64 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

7.7 Extended Production Errors

[SWS_WdgM_00364]⌈The Watchdog Manager module shall be able to detect the

following extended production errors:

Type or error Related error code Value

Supervision has failed and a watchdog reset
will occur

WDGM_E_SUPERVISION assigned by

DEM

Watchdog drivers’ mode switch has failed WDGM_E_SET_MODE assigned by

DEM

Defensive behavior checks have detected an
improper caller.

WDGM E_IMPROPER_CALLER assigned by

DEM

⌋(SRS_BSW_00327, SRS_BSW_00337, SRS_BSW_00385)

Values for production code Event Ids are assigned externally by the Diagnostic Event
Manager (DEM).

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

65 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

7.8 Debugging Support

For details refer to the chapter 7.1.17 “Debugging support” in SWS_BSWGeneral.

For the Watchdog Manager module the following variables shall be accessible by
AUTOSAR Debugging:

 Local Supervision Status of each Supervised Entity (see SWS_WdgM_00238)

 Global Supervision Status (see SWS_WdgM_00239)

 Alive Counters of each Checkpoint (see SWS_WdgM_00240)

 Timestamp when Checkpoint has been reached (see SWS_WdgM_00241)

 Reached Checkpoints (see SWS_WdgM_00242) ⌋ ()

7.9 Watchdog Manager Configuration

7.9.1 Mode-independent Supervision Settings

7.9.1.1 Supervised Entity

To support portability of SW-Cs across platforms, the Watchdog Manager module
needs to be adapted to the amount of Supervised Entities located on the respective
ECU.

[SWS_WdgM_00304](configuration)⌈A unique Supervised Entity identifier for each

Supervised Entity is provided in configuration parameter WdgMSupervisedEntityID
(see [ECUC_WdgM_00304]). The Identifier shall be unique in the scope of the

Watchdog Manager module.⌋()

[SWS_WdgM_00306](configuration)⌈Each BSW module shall use its module ID as

the Supervised Entity ID.⌋()

[SWS_WdgM_00305](configuration)⌈No SW-Cs shall have as Supervised Entity ID a

value of any BSW Module ID, regardless which BSW Modules are deployed.⌋()

[SWS_WdgM_00307]⌈The Watchdog Manager configuration generator shall reject

configurations where Supervised Entity ID is not unique and the configurations where
SW-C Supervised Entities use as a Supervised Entity ID a value that is equal to the

Module ID of any BSW module.⌋

The Supervised Entities and Checkpoints exist irrespective of Modes. On the other
side, the Supervision Functions exist partially irrespective of Modes, and partially
dependent on Modes.

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

66 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

[SWS_WdgM_00282]⌈In order to have a Supervised Entity with supervision

activated in a given mode (in short: Activated Supervised Entity), the following shall
be fulfilled:

1. The Supervised Entity shall be referenced from the Mode (see WdgMMode 
WdgMLocalStatusParams  WdgMLocalStatusSupervisedEntityRef 
WdgMSupervised Entity AND

2. At least one of mode-dependent settings of Supervision Functions shall be set

for the given mode (Alive, Deadline, Logical for external graphs)⌋()

[SWS_WdgM_00283]⌈In order to have a Supervised Entity with supervision

deactivated in a given mode (in short: Deactivated Supervised Entity), the following
shall be fulfilled:

1. The Supervised Entity shall not be referenced from the Mode (see
WdgMMode  WdgMLocalStatusParams 
WdgMLocalStatusSupervisedEntityRef  WdgMSupervised Entity AND

2. No mode-dependent settings of Supervision Functions shall be set for the
given mode (Alive, Deadline, Logical for external graphs)

Because the Logical supervision for internal graphs is a property of a Supervised
Entity, the configuration of Logical supervision for internal graphs do not impact the

deactivation/activation status of Supervised Entity.⌋()

7.9.1.2 OS Application

Supervised Entities can reside in trusted or non-trusted partitions. Each non-trusted
partition has its memory access isolated so that its failure does not corrupt the
memory of other partitions of the MCU. The partition can be terminated and restarted
independently. Each partition corresponds one-to-one to and OS-Application,
managed by AUTOSAR OS.

If a Supervised Entity has an OS-Application configured, the Watchdog Manager
module requests a restart of the corresponding partition when the Local Supervision

Status WDGM_LOCAL_STATUS_FAILED for that Supervised Entity is reached. (see

chapter 7.2.3).

To enable partition restart, the Supervised Entity need to refer to an OS Application
(see WdgMOsApplicationRef). The OS Application must be non-trusted.

[SWS_WdgM_00311]⌈The Watchdog Manager configuration generator shall reject

the configurations where WdgMOsApplicationRef points to a trusted OS-Application

(i.e. where OsTrusted the of OsApplication is true).⌋()

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

67 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

7.9.1.3 Logical Supervision of Internal Graphs

Each Supervised Entity can have a configured control flow that is supervised by
Watchdog Manager. This control flow is abstracted by its Checkpoints and
Transitions (see [ECUC_WdgM_00303]). One of the Checkpoints is marked as the
initial one (see [ECUC_WdgM_00323]).

[SWS_WdgM_00212]⌈The Watchdog Manager configuration generator shall reject

configurations where Internal Transitions (see WdgMInternalTransition) in a
Supervised Entity connect Checkpoints that do not both belong to the same

Supervised Entity.⌋()

To switch on and off the Logical monitoring of an Internal Graph depending on the
mode, it is needed to reference (or respectively do not reference) the Supervised
Entity from each mode (see WdgMLocalStatusParams).

It is possible to have only zero, one or more Internal Graphs per Supervised Entity.
Moreover, not all Checkpoints of a Supervised Entity need to be monitored. However,
no checkpoint may belong to more than one Graph. This is because it is assumed
that each Graph can be executed concurrently and in case of overlaps, there are no
means to differentiate to which Graph a given Checkpoint would belong.

[SWS_WdgM_00308]⌈The Watchdog manager shall reject configurations where a

Checkpoint belongs to more than one Internal Graphs.⌋()

[SWS_WdgM_00309]⌈The Watchdog manager shall reject configurations where in

any mode there is a Checkpoint that belongs to an External Graph and to an Internal

Graph.⌋()

The Internal Transitions and Internal Graphs are a property of Supervised Entity.
These Internal Transitions depend only on the control flow within the Supervised
Entity. Thus, the developer of an SW-C or BSW module that contains the Supervised
Entity can deliver this configuration of Checkpoints and Internal Transitions
independently of other Supervised Entities. Figure 11 shows a configuration of two
independently Supervised Entities, with independently configured Internal Graphs.

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

68 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

SE2SE1

CP1-1

CP1-2 CP1-3

CP1-4

CP2-1

CP2-2

Figure 11: Two Supervised Entities with their Checkpoints and Internal Transitions

7.9.2 Mode-Dependent Parameters

7.9.2.1 Mode

Changing the mode of the Watchdog Manager module also leads to changed
conditions for handling the watchdogs, such as different watchdog modes. Therefore
the Watchdog Manager module provides for each configured mode and for each
watchdog a number of statically configured watchdog parameters (see WdgMTrigger
[ECUC_WdgM_00331]).

[SWS_WdgM_00181]⌈For each watchdog instance, the watchdog mode shall be

statically configured and represented by the parameter WdgMWatchdogMode.⌋()

The corresponding watchdog can be disabled by configuring the watchdog mode to
WDG_OFF_MODE.

The Watchdog Manager module has a set of statically configured supervision

parameters for each configured mode (WdgMMode [ECUC_WdgM_00335]) and for

each Supervised Entity that is expected to be supervised in the given mode.

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

69 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

7.9.2.2 Logical Supervision of External Graphs

There are also Transitions that cross the boundaries of Supervised Entities. These
External Transitions appear when the Watchdog Manager module should also
supervise the execution sequence of multiple Supervised Entities. The External
Transitions form External Graphs.

Thus, External Transitions have to be configured independently from the Internal
Transitions and only in the context of Logical Supervision. (see

WdgMExternalLogicalSupervision [ECUC_WdgM_00319])

When we integrate the two Supervised Entities from Figure 11, we can for example
decide that Supervised Entity SE1 must always be executed to Checkpoint CP1-4
and then Supervised Entity SE2 has to start execution at Checkpoint CP2-1. Then it
is necessary to configure a Transition from CP1-4 to CP2-1. This Transition does
neither belong to SE1 nor to SE2. Figure 6 shows the External Transition.

There is a significant difference in configuring internal and external transitions. An
internal transition belongs to one Supervised Entity and it does not depend on the
Watchdog Manager modes. One can configure to activate/deactivate an SE in a
given mode by referencing it from the mode. However, it is not possible to have
different transitions or checkpoints within the same SE depending on the mode. In
contrary, external transitions are contained in a particular Watchdog Manager mode.
There can be several external transition graphs per mode. In case two different
modes have same global graphs of global transitions, then they need to be
duplicated.

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

70 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

SE2SE1

CP1-1

CP1-2 CP1-3

CP1-4

CP2-1

CP2-2

Figure 12: Two Supervised Entities with a External Transition

The start points (see [ECUC_WdgM_00324]), endpoints (see
[ECUC_WdgM_00323]) and the External Transitions are configured for each
Watchdog Manager Mode (see [ECUC_WdgM_00319]).

The Watchdog Manager module supports a number of different modes (see

WdgMConfigSet [ECUC_WdgM_00337]) of operation. Each mode (see WdgMMode

[ECUC_WdgM_00335]) is defined by:

 the set of Activated Supervised Entities (see [SWS_WdgM_00282]) and their

parameters (see WdgMLocalStatusParams [ECUC_WdgM_00325]),

 the supervision functions (see WdgMAliveSupervision

[ECUC_WdgM_00308], WdgMDeadlineSupervision

[ECUC_WdgM_00314], WdgMProgramFlow- Supervision

[ECUC_WdgM_00319]),

 the set of watchdogs to have their trigger condition updated (see

WdgMTrigger [ECUC_WdgM_00331])

Different modes are needed for different phases in the ECU life cycle. E.g. one mode
is active during startup and shutdown, another during normal operation and yet
another during sleep. Even during normal operation, multiple modes could be

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

71 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

needed: when multiple applications run on the same ECU, one application could be
shutdown already and require no supervision, while another application still runs and
needs to be supervised.

[SWS_WdgM_00178]⌈Each mode of the Watchdog Manager module has an

identifier (see WdgMModeId [ECUC_WdgM_00307]) which shall be unique.⌋()

[SWS_WdgM_00179]⌈The Watchdog Manager module has one initial mode

WdgMMInitialMode [ECUC_WdgM_00336] which shall be activated when it is

initialized.⌋()

The external Graphs cannot overlap.

[SWS_WdgM_00310]⌈The Watchdog manager shall reject configurations where in

the same mode a Checkpoint belongs to more than one External Graphs.⌋()

7.9.2.3 Alive Supervision

The timing constraints of each Checkpoint are represented by configurable

parameters of the Watchdog Manager module (see WdgMAliveSupervision

[ECUC_WdgM_00308]). Although the timing constraints are defined for a
Checkpoint, the Watchdog Manager determines the result of the Alive Monitoring for
the whole Supervised Entity.

The acceptable amount of failed supervision reference cycles is based on application
context of each Supervised Entity. Therefore the individual thresholds to check if
Alive Supervision of the corresponding Supervised Entity has failed finally, needs to

be a configurable parameter (see WdgMFailedSupervisionRefCycleTol

[ECUC_WdgM_00327]).

When the Alive Supervision has reached expired conditions by any Local Supervision
Status, this will make recovery obsolete. As a consequence the watchdog triggering
will be stopped, but to ensure a certain time-period for any further reactions on this
condition, the blocking of watchdog triggering could be postponed for an amount of

consecutive supervision cycles (see WdgMExpiredSupervisionCycleTol

[ECUC_WdgM_00329]).

7.9.2.4 Deadline Supervision

[SWS_WdgM_00313]⌈The Watchdog Manager configuration generator shall reject

configurations where the Deadline Supervision (WdgMDeadlineSupervision) of a
Supervised Entity refer to Checkpoints (WdgMDeadlineStartRef,
WdgMDeadlineEndRef) that does not both belong to that Supervised Entity (i.e. both

referred Checkpoints shall belong to the Supervised Entity).⌋()

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

72 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

[SWS_WdgM_00314]⌈The Watchdog Manager configuration generator shall reject

configurations where for an ordered set of two Checkpoints there are more than one

Deadline Supervision (WdgMDeadlineSupervision) defined.⌋()

7.10 Switching Modes

7.10.1 Effect on Supervision Status

The function WdgM_SetMode (see [SWS_WdgM_00154]) is used to switch between

different modes. The modes are statically configured and contained in the Watchdog
Manager module configuration set.

A mode switch changes the supervision parameters of the Supervised Entities.

[SWS_WdgM_00182]⌈If the current global status is WDGM_GLOBAL_STATUS_OK

or WDGM_GLOBAL_STATUS_FAILED then for each Supervised Entity that is

activated in the new mode (passed to function WdgM_SetMode as parameter), the

function WdgM_SetMode shall retain the current state of the Supervised Entity.

Switching to the mode where a Supervised Entity is deactivated clears also errors

that had resulted with the WDGM_GLOBAL_STATUS_FAILED status.⌋()

[SWS_WdgM_00315]⌈If the current global status is WDGM_GLOBAL_STATUS_OK

or WDGM_GLOBAL_STATUS_FAILED then for each Supervised Entity that is
deactivated in the new mode (passed to function WdgM_SetMode as parameter), the
function WdgM_SetMode shall change the state of the Supervised Entity to
WDGM_LOCAL_STATUS_DEACTIVATED; It shall set its Results of Active, Deadline
and Logical Supervision to correct; It shall also clear its failed reference cycle counter

to 0.⌋()

Executing a mode switch is possible when the Watchdog Manager module is in the
state WDGM_GLOBAL_STATUS_OK or WDGM_GLOBAL_STATUS_FAILED. In
other modes the function WdgM_SetMode has no effect (see [SWS_WdgM_00145]).

[SWS_WdgM_00316]⌈If the current global status is not

WDGM_GLOBAL_STATUS_OK nor WDGM_GLOBAL_STATUS_FAILED then the

function WdgM_SetMode shall return without doing any actions.⌋()

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

73 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

7.10.2 Effect on Watchdogs

A mode switch also changes the parameters for watchdog triggering.

[SWS_WdgM_00186]⌈If function WdgM_SetMode (see [SWS_WdgM_00154]) is

called, the Watchdog Manager module shall apply the configured watchdog mode

parameters (see WdgMWatchdogMode [ECUC_WdgM_00332]) to each watchdog by

calling the WdgIf_SetMode service.⌋()

Note: If a call to WdgIf_SetMode service fails, the Watchdog Manager module
assumes a global supervision failure and set the Global Supervision Status to
WDGM_GLOBAL_STATUS_STOPPED (see [SWS_WdgM_00139]). This will cause
a reset, either when the first watchdog expires or immediately, if an immediate reset
of the Watchdog Manager module is configured.

There is also the possibility to forbid switching off the watchdogs (see
[SWS_WdgM_00031]).

7.10.3 Watchdog Handling during Sleep

When the ECU State Manager enters SLEEP state it activates the sleep mode and

calls the service WdgM_DeInit.

The WdgM_DeInit (see [SWS_WdgM_00261]) updates the trigger conditions via a

watchdog manager mode switch to a sleep mode defined by the integrator and
deinitializes the Watchdog Manager module. The mode switch is needed to update
the watchdogs trigger conditions of all running watchdogs to a timeout that allows the
rest of the shutdown to be executed without a watchdog reset. This is needed as a
consequence of the concept “Windowed Watchdogs”.

While the ECU is in SLEEP state, the normal execution of code and therefore also of
the Watchdog Manager module is suspended. If the hardware watchdogs cannot or
shall not be deactivated during SLEEP, this would inevitably lead to a watchdog
reset.

 Thus the watchdogs have to be triggered at some time during SLEEP. BSW
components which are still in-service (like the BswM or the EcuM) have to care
about the triggering of the hardware watchdogs while the Watchdog Manager module
is deactivated. The Integrator has to configure the needed modes accordingly.

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

74 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

7.11 Specification of the Ports and Port Interfaces

This chapter specifies the AUTOSAR Interfaces which are provided by the Watchdog
Manager module. The SW-C description of the Watchdog Manager Service will
define the Watchdog Manager ports available to SW-Cs and CDDs. Each AUTOSAR
SW-C or CDD that uses the service must contain service ports in its own description.
These ports are typed with the same interfaces and have to be connected to the
ports of the Watchdog Manager module, so that the RTE can generate the
appropriate IDs and the required symbols.

The Local Supervision Status and the Global Supervision Status of the Watchdog
Manager module are reported to SW-Cs and CDDs through mode ports. An SW-C
and CDD can define its own mode port with the same interface as the mode ports of
the Watchdog Manager module. Afterwards the SW-C or CDD can query the status
and will be informed of status changes via the mode port. In addition, the SW-C can
define Runnables that are started or stopped by the RTE because of status changes.

BSW modules should call the API functions directly and taking into account the
mapping by RTE.

All the following interface definitions are interpreted to be in:

ARPackage AUTOSAR/Services/WdgM

7.11.1 Ports and Port Interface for Alive Supervision

7.11.1.1 General Approach

To reduce the number of ports provided by the Watchdog Manager module all
interfaces between SW-Cs / CDD and the service are modeled as Client/Server
communication. To report Checkpoints the sender-receiver paradigm may seem
more appropriate, but this kind of modeling would double the number of ports.
Therefore also for this functionality the Client/Server paradigm has been chosen.

The unique Supervised Entity IDs are used to identify the Supervised Entities within
an ECU. In order to keep the application code independent of the configuration of
ECU-dependent Supervised Entity IDs, the IDs used by SW-Cs and CDDs are not
modeled explicitly as data elements to be passed between SW-C and service. These
IDs are modeled as “port defined argument values” of the Provide Ports of the
Watchdog Manager module. As a consequence, the Supervised Entity IDs will not
show up as arguments in the operations of the client-server interface. As a further
consequence for this approach, there will be separate ports for each Supervised
Entity.

7.11.1.2 Data Types

The parameters passed between the application and the service are:

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

75 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

1. ID to identify a Supervised Entity and

2. ID to indentify a Checkpoint.

The type for this Supervised Entity Identifier shall be based on the type

WdgM_SupervisedEntityIdType. This type is defined as uint16. Therefore the

following type description is required:

[SWS_WdgM_00371]⌈

ImplementationDataType WdgM_SupervisedEntityIdType {

 CATEGORY = TYPE_REFERENCE;

implementationDataType = uint16;

};⌋()

The type for this Checkpoint Identifier shall be based on the type

WdgM_CheckpointIdType. This type is defined as uint16. Therefore the following

type description is required:

[SWS_WdgM_00372]⌈

ImplementationDataType WdgM_CheckpointIdType {

 CATEGORY = TYPE_REFERENCE;

implementationDataType = uint16;

};⌋()

7.11.1.3 Port Interface for Alive Supervision

All operations are put into one single interface, in order to minimize the number of
ports and names needed in the XML description.

Thus we will have the following operations which match the APIs defined within this
specification:

[SWS_WdgM_00333]⌈
ClientServerInterface WdgM_AliveSupervision {

isService = true;

PossibleErrors {

 E_OK = 0

 E_NOT_OK

};

/* Functions for a specific SEID. */

CheckpointReached(IN WdgM_CheckpointIdType CheckpointID, ERR{E_OK, E_NOT_OK});

UpdateAliveCounter(ERR{E_OK, E_NOT_OK});

};

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

76 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

Compared to the API, the “WdgM_” prefix in the names is not required, because the

names given here will show up in the XML not globally but as part of an interface

description.⌋()

7.11.1.4 Service Ports

Figure 13 shows how AUTOSAR Software components (single or multiple instances)
are connected via service ports to the Watchdog Manager module. On the left side,

there are two instances (swc1 and swc2) of component SWC Type A and one

instance (swc3) of component SWC Type B.

:WdgM

alive000

alive001

alive002

alive003

alive004

swc1 :SWC Type A

se1

se2

swc2 :SWC Type A

se1

se2

swc3 :SWC Type B

se

WdgM_AliveSupervision

WdgM_AliveSupervision

WdgM_AliveSupervision

WdgM_AliveSupervision

WdgM_AliveSupervision

Figure 13: Example of SW-Cs connected to the Watchdog Manager via service ports

On the Watchdog Manager side, there is one port per Supervised Entity providing all

the services of the interface WdgM_AliveSupervision described above. Each

Supervised Entity has one port for requiring those services for each Supervised
Entity associated with that application.

[SWS_WdgM_00146]⌈The Watchdog Manager module shall provide a single service

port for Alive Supervision for each Supervised Entity that is configured.

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

77 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

To be able to match an Alive Supervision port with its corresponding mode port for

Status Reporting, a naming convention is necessary.⌋()

[SWS_WdgM_00147]⌈The Alive Supervision ports of the Watchdog Manager

module shall be named alive000, alive001, to alive<#SE-1>. The numbers

shall start with 0 and be consecutive until the number of configured Supervised

Entities is reached.⌋()

7.11.1.5 Error Codes

The Alive Supervision service does not return any service specific error codes.

7.11.2 Ports and Port Interface for Status Reporting

7.11.2.1 General Approach

To control the state-dependent behavior of SW-Cs and CDDs, the RTE provides the
mechanism of mode ports. A mode manager can switch between different modes
that are defined in the mode port. The SW-C / CDD that connects to the mode port
can use the mode information in two ways:

 The SW-C / CDD can query the current mode via the mode port.

 The SW-C / CDD can declare Runnables that are started or stopped by the
RTE because of mode changes.

According to RTE Specification [5] a mode port has a ModeSwitchInterface. The

mode manager, here the Watchdog Manager module, is the sender and the SW-Cs
are the receivers.

The Watchdog Manager module uses mode ports to provide two kinds of information:

 First, it provides the Local Supervision Status of each Supervised Entity.
Therefore, the Watchdog Manager module has a mode port for each
Supervised Entity.

 Second, the Watchdog Manager module provides the Global Supervision
Status which reflects the combined Supervision Status of all Supervised
Entities. Therefore, it has one additional mode port.

[SWS_WdgM_00195]⌈The mode ports of the Watchdog Manager module shall

declare the following modes:
STATUS_OK

STATUS_FAILED

STATUS_EXPIRED

STATUS_STOPPED

STATUS_DEACTIVATED

This definition corresponds to the type WdgM_LocalStatusType.⌋()

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

78 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

[SWS_WdgM_00196]⌈The Watchdog Manager module shall notify SW-Cs / CDDs

through the RTE mode ports when the state change occurs.

It is an implementation choice whether to use the Direct or the Indirect RTE API for
this notification.

Via the Direct API the implementation must invoke the generated API for individual
Supervised Entities

Rte_StatusType Rte_Switch_mode<SEID>_currentMode(

Rte_ModeType_WdgMMode mode)

and for the global state

Rte_StatusType Rte_Switch_globalMode_currentMode(

Rte_ModeType_WdgMMode mode)

⌋()

where mode is the new mode to be notified. The value range is specified by the

previous requirement. The return value can be ignored.

Using the indirect port API as shown in chapter 7.11.2.3 Port Interfaces can result in
less code when reporting the state to individual Supervised Entities and can therefore
be used alternatively to the above API.

[SWS_WdgM_00197]⌈When the Local Supervision Status of a single Supervised

Entity changes, the Watchdog Manager module shall report that change via the

mode port for that Supervised Entity immediately after it has been recognized.⌋()

[SWS_WdgM_00198]⌈When the Global Supervision Status changes, the Watchdog

Manager module shall report that change via the global mode port.⌋()

[SWS_WdgM_00199]⌈After computing the Global Supervision Status from all Local

Supervision Status, the Watchdog Manager module shall report any change in the
resulting Global Supervision Status only once.

The resulting behavior is that first all changes in Local Supervision Status are
reported. Afterwards the Global Supervision Status is reported only once and only if it
changed due to the individual changes.

For instance, if in one supervision cycle SE1 goes from
WDGM_LOCAL_STATUS_OK to WDGM_LOCAL_STATUS_FAILED,
WDGM_LOCAL_STATUS_FAILED is reported on the individual mode port for SE1.
In the same supervision cycle SE2 goes from WDGM_LOCAL_STATUS_OK to
WDGM_LOCAL_STATUS_EXPIRED directly, WDGM_LOCAL_STATUS_EXPIRED
is reported on the individual mode port for SE2. The resulting Global Supervision
Status in this supervision cycle changes from WDGM_GLOBAL_STATUS_OK to

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

79 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

WDGM_GLOBAL_STATUS_EXPIRED and only
WDGM_GLOBAL_STATUS_EXPIRED is reported on the global mode port. In that
example WDGM_GLOBAL_STATUS_FAILED is not reported on the global mode
port, because it was only an intermediate state while evaluating a subset of

Supervised Entities.⌋()

7.11.2.2 Data Types

The mode declaration group WdgMMode represents the modes of the Watchdog

Manager module that will be notified to the SW-Cs / CDDs and the RTE. The
definition of this mode corresponds to the type WdgM_LocalStatusType.

[SWS_WdgM_00334]⌈

ModeDeclarationGroup WdgMMode {

 { SUPERVISION_OK,

 SUPERVISION_FAILED,

 SUPERVISION_EXPIRED,

 SUPERVISION_STOPPED,

 SUPERVISION_DEACTIVATED

 }

 initialMode = SUPERVISION_OK

};⌋()

7.11.2.3 Port Interfaces

There are two different interfaces to indicate changes in the Supervision Status to
interested SW-Cs / CDDs and the RTE.

The interface WdgM_IndividualMode is used to signal the Local Supervision

Status of a single Supervised Entity.

[SWS_WdgM_00335]⌈

ModeSwitchInterface WdgM_IndividualMode {

 isService = true;

 WdgMMode currentMode;

};

The interface WdgM_GlobalMode is used to signal the Global Supervision Status

that is combined from all individual Supervised Entities.⌋()

[SWS_WdgM_00336]⌈

ModeSwitchInterface WdgM_GlobalMode {

 isService = true;

 WdgMMode currentMode;

};

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

80 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

The reason for defining two different interfaces is the way these interfaces are used.

For the WdgM_GlobalMode interfaces the Watchdog Manager module provides only

one single port with that interface. By contrast, for the WdgM_IndividualMode

interface the Watchdog Manager module provides as many ports as there are
Supervised Entities. In order to access these ports efficiently, the Indirect Port API of
the RTE can be used. This API provides a list of all ports that have the same
interface, e.g.:

/**

 * Called within WdgM. Reports the status/mode of the SE

 * to SW-Cs / CDDs through Rte

 */

void WdgM_NotifyOKToSE(WdgM_SupervisedEntityIdType se)

{

 Rte_PortHandle_WdgM_IndividualMode_P ph =

 Rte_Ports_WdgM_IndividualMode_P();

 ph[se].Switch_currentMode(RTE_MODE_WdgM_Mode_SUPERVISION_OK);

}

To avoid that the mode port for the Global Supervision Status shows up in this list,

this port uses a different interface, i.e. WdgM_GlobalMode instead of

WdgM_IndividualMode.⌋()

7.11.2.4 Mode Ports

Figure 14 shows how AUTOSAR Software components (single or multiple instances)
are connected via mode and service ports to the Watchdog Manager module. On the

left side, there are two instances (swc1 and swc2) of component SWC Type A and

one instance (swc3) of component SWC Type B. Each component is connected to

the mode ports that correspond to its own Supervised Entities. In addition swc3 is

connected to the global mode port and can therefore react to changes in the
combined supervision status of all Supervised Entities.

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

81 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

swc1 :SWC Type A

se1

se1Mode

se2

se2Mode

:WdgM

alive000

alive001

alive002

alive003

alive004

globalMode

mode000

mode001

mode002

mode003

mode004

swc2 :SWC Type A

se1

se1Mode

se2

se2Mode

swc3 :SWC Type B

ecuMode

se

seMode

WdgM_IndividualMode

WdgM_AliveSupervision

WdgM_GlobalMode

WdgM_IndividualMode

WdgM_AliveSupervision

WdgM_IndividualMode

WdgM_AliveSupervision

WdgM_IndividualMode

WdgM_AliveSupervision

WdgM_IndividualMode

WdgM_AliveSupervision

Figure 14: Example of SW-Cs connected to the Watchdog Manager via service ports and mode
ports

This results in one mode port per Supervised Entity.

[SWS_WdgM_00148]⌈The Watchdog Manager module shall provide a single mode

port for reporting the Local Supervision Status of each Supervised Entity that is
configured.

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

82 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

To be able to match an Alive Supervision port with its corresponding mode port for

Status Reporting, a naming convention is necessary.⌋(SRS_ModeMgm_09160,

SRS_ModeMgm_09225)

[SWS_WdgM_00149]⌈The Watchdog Manager module’s single mode ports for

reporting the Supervision Status of each Supervised Entity shall be named mode000,

mode001, to mode<#SE-1>. The numbers shall start with 0 and be consecutive until

the number of configured Supervised Entities is reached.

Furthermore, the Watchdog Manager module must be able to report the Global

Supervision Status.⌋()

[SWS_WdgM_00150]⌈The Watchdog Manager module shall provide one mode port

for reporting the Global Supervision Status.⌋(SRS_ModeMgm_09160,

SRS_ModeMgm_09225, SRS_ModeMgm_09162)

7.11.2.5 Error Codes

Mode ports are not able to signal any errors.
Internal Behavior

First of all, the runnable entities of a service shall be specified within the “Internal
Behavior” description. Runnable entities relevant for the service description are API’s
of a basic software module realizing the service which are accessed by application
software components. The following description results out of that:

// Runnable entities of the Watchdog Manager

RunnableEntity SetMode

 symbol “WdgM_SetMode”

canbeInvokedConcurrently = FALSE

RunnableEntity GetMode

 symbol “WdgM_GetMode”

canbeInvokedConcurrently = FALSE

RunnableEntity CheckpointReached

 symbol “WdgM_CheckpointReached”

canbeInvokedConcurrently = TRUE

RunnableEntity UpdateAliveCounter

 symbol “WdgM_UpdateAliveCounter”

canbeInvokedConcurrently = TRUE

RunnableEntity GetLocalStatus

 symbol “WdgM_GetLocalStatus”

canbeInvokedConcurrently = TRUE

RunnableEntity GetGlobalStatus

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

83 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

 symbol “WdgM_GetGlobalStatus”

canbeInvokedConcurrently = TRUE

RunnableEntity PerformReset

 symbol “WdgM_PerformReset”

canbeInvokedConcurrently = TRUE

RunnableEntity GetFirstExpiredSEID

 symbol “WdgM_GetFirstExpiredSEID”

canbeInvokedConcurrently = TRUE

Then the Internal Behavior defines the port-defined argument values for the Alive
Supervision ports:

PortArgument{port= alive000, value.type=

WdgM_SupervisedEntityIdType, value.value=0};

PortArgument{port= alive001, value.type=

WdgM_SupervisedEntityIdType, value.value=1};

…

PortArgument{port= alive<#SE-1>, value.type=

WdgM_SupervisedEntityIdType, value.value=<#SE-1>};

And finally the Internal Behavior instructs the RTE to generate additional APIs to
indirectly access the mode ports for Status Reporting:

IndirectAPI{port= mode000};

IndirectAPI{port= mode001};

…

IndirectAPI{port= mode<#SE-1>};

7.11.3 Definition of the Watchdog Manager Service

This section shows the an example of a complete definition of the Watchdog
Manager Service. Note that these definitions can only be completed during ECU
configuration (because it depends on certain configuration parameters of the
Watchdog Manager module which determine the number of ports provided by the
Watchdog Manager Service). Also note that the implementation of a SW-C/CDD
does not depend on these definitions.
There are ports on both sides of the RTE: This description of the Watchdog Manager
Service defines the ports below the RTE. Each SW-C/CDD that uses the Service,
must contain “service ports” in its own SW-C/CDD description which will be
connected to the ports of the Watchdog Manager module, so that the RTE can be
generated.

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

84 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

[SWS_WdgM_00338]⌈

/** This is the definition of the Watchdog Manager as a

 * service. This is the outside view of the Watchdog Manager,

 * which must be visible to the SW-Cs/CDDs / ECU integrator

 **/

Service WdgM {

// For each supervised entity the Watchdog Manager

// provides a port to update the alive counter

ProvidePort WdgM_AliveSupervision alive000;

…

ProvidePort WdgM_AliveSupervision alive<#SE-1>;

// For each supervised entity the Watchdog Manager

// provides a mode port to signal the Local

// Supervision Status to interested SW-Cs/CDDs and the RTE

ProvidePort WdgM_IndividualMode mode000;

…

ProvidePort WdgM_IndividualMode mode<#SE-1>;

// The Watchdog Manager also provides a single mode port

// to signal the Global Supervision Status to

// interested SW-Cs/CDDs and the RTE

ProvidePort WdgM_GlobalMode globalMode;

InternalBehavior

{

 // Runnable entities of the Watchdog Manager

 RunnableEntity UpdateAliveCounter

 symbol “WdgM_UpdateAliveCounter”

canbeInvokedConcurrently = TRUE

 RunnableEntity CheckpointReached

 symbol “WdgM_CheckpointReached”

canbeInvokedConcurrently = TRUE

 PortArgument{port= alive000, value.type=

WdgM_SupervisedEntityIdType, value.value=0};

 PortArgument{port= alive001, value.type=

WdgM_SupervisedEntityIdType, value.value=1};

…

PortArgument{port= alive<#SE-1>, value.type=

WdgM_SupervisedEntityIdType, value.value=<#SE-1>};

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

85 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

IndirectAPI{port= mode000};

IndirectAPI{port= mode001};

…

IndirectAPI{port= mode<#SE-1>};

};

};

⌋()

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

86 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

8 API Specification

8.1 Imported Types

[SWS_WdgM_00011]⌈The Watchdog Manager module shall use only the following

imported types of other modules:

Module Imported Type

Dem Dem_EventIdType

Dem_EventStatusType

Os ApplicationType

CounterType

ISRType

RestartType

StatusType

TaskType

TickRefType

Std_Types Std_ReturnType

Std_VersionInfoType

WdgIf WdgIf_ModeType

⌋(SRS_BSW_00357)

8.2 Type Definitions

The following Data Types are used for the functions defined in this specification.

8.2.1 WdgM_ConfigType

[SWS_WdgM_00355]WdgM_ConfigType

⌈

Name: WdgM_ConfigType

Type: Structure

Range: - The contents of this structure depends on the configuration
variant.

Description: This structure contains all post-build configurable parameters of the Watchdog
Manager. A pointer to this structure is passed to the Watchdog Manager
initialization function for configuration.

⌋()

[SWS_WdgM_00042]⌈The structure WdgM_ConfigType shall contain all post-build

configurable parameters of the Watchdog Manager module. The exact content of this
structure depends on the selected configuration variant.

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

87 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

See Chapter 10.2 for information on configuration

parameters.⌋(SRS_ModeMgm_09106)

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

88 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

8.2.2 WdgM_SupervisedEntityIdType

[SWS_WdgM_00356]WdgM_SupervisedEntityIdType

⌈

Name: WdgM_SupervisedEntityIdType

Type: uint16

Range: 0-<Number of

Supervised

Entities>

-- The range of valid IDs depends on the number of
configured Supervised Entities.

Description: This type identifies an individual Supervised Entity for the Watchdog Manager.

⌋()

8.2.3 WdgM_CheckpointIdType

[SWS_WdgM_00357]WdgM_CheckpointIdType

⌈

Name: WdgM_CheckpointIdType

Type: uint16

Range: 0-<Maximum

number of

Checkpoints>

-- The range of valid IDs depends on the maximum number
of configured Checkpoints within all configured Supervised
Entities.

Description: This type identifies a Checkpoint in the context of a Supervised Entity for the
Watchdog Manager. Note that an individual Checkpoint can only be identified by
the pair of Supervised Entity ID and Checkpoint ID.

⌋()

Beware, that the Checkpoint ID by itself is not unique. Only the pair of Supervised
Entity ID and Checkpoint ID uniquely identifies a Checkpoint.

8.2.4 WdgM_ModeType

[SWS_WdgM_00358]WdgM_ModeType

⌈

Name: WdgM_ModeType

Type: uint8

Range: 0-<Number of

Modes>

-- The actual upper limit depends on the number of
configured modes for Watchdog Manager.

Description: This type distinguishes the different modes that were configured for the Watchdog
Manager.

⌋()

8.2.5 WdgM_LocalStatusType

[SWS_WdgM_00359]WdgM_LocalStatusType

⌈

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

89 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

Name: WdgM_LocalStatusType

Type: uint8

Range: WDGM_LOCAL_STATUS_OK 0 The supervision of this Supervised Entity
has not shown any failures.

WDGM_LOCAL_STATUS_FAILED 1 The supervision of this Supervised Entity
has failed but can still be "healed". I.e., if
the Supervised Entity returns to a normal
behavior, its supervision state will also
return to WDGM_LOCAL_STATUS_OK.
Furthermore, the number of times that the
supervision has failed has not yet
exceeded a configurable limit. When this
limit has been exceeded the state will
change to
WDGM_LOCAL_STATUS_EXPIRED.

WDGM_LOCAL_STATUS_EXPIRED 2 The supervision of this Supervised Entity
has failed permanently. This state cannot
be left.

WDGM_LOCAL_STATUS_DEACTIVATED 4 The supervision of this Supervised Entity
is temporarily disabled.

Description: This type shall be used for variables that represent the current status of supervision
for individual Supervised Entities.

⌋()

8.2.6 WdgM_GlobalStatusType

[SWS_WdgM_00360]WdgM_GlobalStatusType

⌈

Name: WdgM_GlobalStatusType

Type: uint8

Range: WDGM_GLOBAL_STATUS_OK 0 Supervision did not show any failures.

WDGM_GLOBAL_STATUS_FAILED 1 Supervision has failed but is still within
the limit of allowed failures.

WDGM_GLOBAL_STATUS_EXPIRED 2 Supervision has failed, the allowed limit
of failures has been exceeded, but the
Watchdog Driver has not yet been
instructed to stop triggering.

WDGM_GLOBAL_STATUS_STOPPED 3 Supervision has failed, the allowed limit
of failures has been exceeded, and the
Watchdog Driver has been instructed to
stop triggering. A watchdog reset is
about to happen.

WDGM_GLOBAL_STATUS_DEACTIVATED 4 WdgM is not initialized and therefore
will not manage the watchdogs.

Description: This type shall be used for variables that represent the global supervision status of
the Watchdog Manager module.

⌋()

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

90 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

8.3 Function Definitions

8.3.1 WdgM_Init

[SWS_WdgM_00151]WdgM_Init

⌈

Service name: WdgM_Init

Syntax: void WdgM_Init(

 const WdgM_ConfigType* ConfigPtr

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): ConfigPtr Pointer to post-build configuration data

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: Initializes the Watchdog Manager.

This function initializes the Watchdog Manager. After execution of this function,
supervision is activated according to the list of Supervised Entities defined in the

initial mode.⌋(SRS_BSW_00310, SRS_BSW_00358, SRS_ModeMgm_09107)

[SWS_WdgM_00018]⌈The function WdgM_Init shall initialize all module variables

(global and static) of the Watchdog Manager module.⌋(SRS_ModeMgm_09107)

[SWS_WdgM_00135]⌈The function WdgM_Init shall establish the initial mode of

the Watchdog Manager module.

The behavior in case the initial mode cannot be established is described in
SWS_WdgM_00139.

There are optional checks that are executed if and only if WdgMDevErrorDetect is

enabled.⌋(SRS_ModeMgm_09107)

[SWS_WdgM_00255]⌈If the WdgMDevErrorDetect [ECUC_WdgM_00301] switch

is enabled and the configuration variant is VARIANT-POST-BUILD, the function

WdgM_Init shall check if a NULL pointer is passed for the ConfigPtr parameter.

In case of an error the remaining function WdgM_Init shall not be executed and the

function WdgM_Init shall report development error code WDGM_E_INV_POINTER to

the Det_ReportError service of the Development Error

Tracer.⌋(SRS_BSW_00323)

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

91 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

[SWS_WdgM_00010]⌈If the WdgMDevErrorDetect [ECUC_WdgM_00301] switch

is enabled and the configuration variant is VARIANT-POST-BUILD, the function

WdgM_Init shall check the contents of the given configuration set for being within

the allowed boundaries. If the function WdgM_Init detects an error, then it shall not

execute the initialization of the Watchdog Manager module and it shall report

development error code WDGM_E_PARAM_CONFIG to the Det_ReportError service

of the Development Error Tracer.⌋(SRS_BSW_00323, SRS_BSW_00338)

[SWS_WdgM_00030]⌈If the WdgMOffModeEnabled [ECUC_WdgM_00340] switch

is not enabled, and the initial mode provided by the configuration (ConfigPtr) will

disable the watchdog (WDGIF_OFF_MODE) then the function WdgM_Init shall not

execute the initialization routine and if the WdgMDevErrorDetect switch is enabled,

the function WdgM_Init shall report development error code

WDGM_E_DISABLE_NOT_ALLOWED to the Det_ReportError service of the

Development Error Tracer.⌋(SRS_BSW_00323, SRS_BSW_00338,

SRS_ModeMgm_09109)

[SWS_WdgM_00370]⌈ The function WdgM_Init shall clear from the non-initialized

RAM the double-inverse value storing the SEID that first reached the EXIRED state.

See 8.3.11 for more information.⌋()

8.3.2 WdgM_DeInit

[SWS_WdgM_00261]WdgM_DeInit

⌈

Service name: WdgM_DeInit

Syntax: void WdgM_DeInit(

 void

)

Service ID[hex]: 0x01

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: De-initializes the Watchdog Manager.

⌋(SRS_BSW_00310, SRS_BSW_00336)

Deinitializes the Watchdog Manager module and updates the trigger conditions of all
Watchdog Drivers via a mode switch (see [SWS_WdgM_00154]).

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

92 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

Note this service is needed as a consequence of the concept “Windowed
Watchdogs”. Before the Watchdog Manager module stops working, it has to set the
trigger conditions of all running watchdogs to a timeout that allows the rest of the
shutdown to be executed without a watchdog reset.

There are optional checks that are executed if and only if WdgMDevErrorDetect is

enabled.

[SWS_WdgM_00288]⌈If the configuration parameter WdgMDevErrorDetect

[ECUC_WdgM_00301] is enabled, the function WdgM_DeInit shall check if the

Watchdog Manager is initialized. In case of an error, the function WdgM_DeInit shall

return without any effect and shall report the error to the Development Error Tracer

with the error code WDGM_E_NO_INIT.⌋(SRS_BSW_00323)

8.3.3 WdgM_GetVersionInfo

[SWS_WdgM_00153]WdgM_GetVersionInfo

⌈

Service name: WdgM_GetVersionInfo

Syntax: void WdgM_GetVersionInfo(

 Std_VersionInfoType* VersionInfo

)

Service ID[hex]: 0x02

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): VersionInfo Pointer to where to store the version information of the module WdgM.

Return value: None

Description: Returns the version information of this module.

⌋(SRS_BSW_00310)

[SWS_WdgM_00256]⌈If the WdgMDevErrorDetect [ECUC_WdgM_00301] switch

is enabled, the function WdgM_GetVersionInfo shall check if a NULL pointer is

passed for the VersionInfo parameter. In case of an error the remaining function

WdgM_GetVersionInfo shall not be executed and the function

WdgM_GetVersionInfo shall report development error code

WDGM_E_INV_POINTER to the Det_ReportError service of the Development Error

Tracer.⌋(SRS_BSW_00323)

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

93 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

8.3.4 WdgM_SetMode

[SWS_WdgM_00154]WdgM_SetMode

⌈

Service name: WdgM_SetMode

Syntax: Std_ReturnType WdgM_SetMode(

 WdgM_ModeType Mode,

 uint16 CallerID

)

Service ID[hex]: 0x03

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in):
Mode One of the configured Watchdog Manager modes.

CallerID Module ID of the calling module.

Parameters
(inout):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: Successfully changed to the new mode

E_NOT_OK: Changing to the new mode failed

Description: Sets the current mode of Watchdog Manager.

⌋(SRS_BSW_00310, SRS_ModeMgm_09110)

The behavior of this service and the corresponding functional requirements are
described in chapter 7.10.

[SWS_WdgM_00145]⌈The Watchdog Manager module shall only execute the

service WdgM_SetMode if the Global Supervision Status is equal to

[WDGM_GLOBAL_STATUS_OK or

WDGM_GLOBAL_STATUS_FAILED.⌋(SRS_ModeMgm_09158)

[SWS_WdgM_00142]⌈If the function WdgM_SetMode [SWS_WdgM_00154] fails and

the error is not a defined development error [SWS_WdgM_00004], the Watchdog
Manager shall report to the Diagnostic Event Manager an error with the value

WDGM_E_SET_MODE.⌋(SRS_BSW_00339)

There are optional checks that are executed if and only if WdgMDevErrorDetect is

enabled

[SWS_WdgM_00020]⌈If the configuration parameter WdgMDevErrorDetect

[ECUC_WdgM_00301] is enabled, the parameter Mode shall be checked for being in

the allowed range. In case of an error the mode switch shall not be executed, the
error shall be reported to the Development Error Tracer with the value

WDGM_E_PARAM_MODE and the routine shall return the value

E_NOT_OK.⌋(SRS_BSW_00323, SRS_BSW_00338)

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

94 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

[SWS_WdgM_00021]⌈If the configuration parameter WdgMDevErrorDetect

[ECUC_WdgM_00301] is enabled, the routine shall check if the Watchdog Manager
is initialized. In case of an error the mode switch shall not be executed, the error shall

be reported to the Development Error Tracer with the error code WDGM_E_NO_INIT

and the routine shall return the value E_NOT_OK.⌋(SRS_BSW_00323,

SRS_BSW_00338, SRS_BSW_00406)

[SWS_WdgM_00031]⌈If disabling the watchdog is not allowed by setting the

parameter WdgMOffModeEnabled [ECUC_WdgM_00340] to FALSE, the routine

shall check if the requested mode would disable the watchdog
(WDGIF_OFF_MODE). In this case, the mode switch shall not be executed, and if If

the configuration parameter WdgMDevErrorDetect is enabled, the error shall be

reported to the Development Error Tracer with the error code

WDGM_E_DISABLE_NOT_ALLOWED and the routine shall return the value E_NOT_OK.

⌋(SRS_BSW_00323, SRS_BSW_00338, SRS_ModeMgm_09109)

[SWS_WdgM_00245]⌈If the configuration parameter WdgMDevErrorDetect

[ECUC_WdgM_00352] switch is enabled, the Watchdog Manager shall check if the
given CallerID is in the list of allowed CallerIDs [ECUC_WdgM_00358]. If it is not,
then the service shall return without any effect, it shall return the value E_NOT_OK,

and shall report the error status WDGM_E_IMPROPER_CALLER to the DEM.⌋()

8.3.5 WdgM_GetMode

[SWS_WdgM_00168]WdgM_GetMode

⌈

Service name: WdgM_GetMode

Syntax: Std_ReturnType WdgM_GetMode(

 WdgM_ModeType* Mode

)

Service ID[hex]: 0x0b

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): Mode Current mode of the Watchdog Manager.

Return value:
Std_ReturnType E_OK: Current mode successfully returned

E_NOT_OK: Returning current mode failed

Description: Returns the current mode of the Watchdog Manager.

⌋(SRS_BSW_00310)

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

95 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

[SWS_WdgM_00170]⌈The WdgM_GetMode service shall return the currently active

mode of the Watchdog Manager. If the WdgM_SetMode service is active while this

service is called, WdgM_GetMode shall return the previously active mode as long as

the new mode has not been completely activated.⌋()

There are optional checks that are executed if and only if WdgMDevErrorDetect is

enabled.

[SWS_WdgM_00253]⌈If the configuration parameter WdgMDevErrorDetect

[ECUC_WdgM_00301] is enabled, the routine shall check if the Watchdog Manager
is initialized. In case of an error the service shall not be executed, the error shall be

reported to the Development Error Tracer with the error code WDGM_E_NO_INIT and

the routine shall return the value E_NOT_OK.⌋(SRS_BSW_00323)

[SWS_WdgM_00254]⌈If the configuration parameter WdgMDevErrorDetect

[ECUC_WdgM_00301] is enabled, the routine shall check if NULL pointers are
passed for OUT parameters. In case of an error the service shall not be executed,
the error shall be reported to the Development Error Tracer with the error code

WDGM_E_INV_POINTER and the routine shall return the value

E_NOT_OK.⌋(SRS_BSW_00323)

8.3.6 WdgM_CheckpointReached

[SWS_WdgM_00263]WdgM_CheckpointReached

⌈

Service name: WdgM_CheckpointReached

Syntax: Std_ReturnType WdgM_CheckpointReached(

 WdgM_SupervisedEntityIdType SEID,

 WdgM_CheckpointIdType CheckpointID

)

Service ID[hex]: 0x0e

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in):

SEID Identifier of the Supervised Entity that reports a Checkpoint.

CheckpointID Identifier of the Checkpoint within a Supervised Entity that has
been reached.

Parameters
(inout):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: Successfully updated alive counter

E_NOT_OK: Update failed

Description: Indicates to the Watchdog Manager that a Checkpoint within a Supervised Entity
has been reached.

⌋(SRS_BSW_00310)

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

96 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

[SWS_WdgM_00321]⌈The function WdgM_CheckpointReached() shall increment

the alive counter of reported Checkpoint.⌋()

[SWS_WdgM_00322]⌈The function WdgM_CheckpointReached() shall perform the

Deadline Supervision for the reported Supervised Entity using the reported
Checkpoint. The output shall be an updated result of Deadline Supervision for the

Supervised Entity.⌋()

[SWS_WdgM_00323]⌈The function WdgM_CheckpointReached() shall perform the

Logical Supervision for the reported Supervised Entity using the reported Checkpoint.
The output shall be an updated result of Logical Supervision for the Supervised

Entity.⌋()

There are optional checks that are executed if and only if WdgMDevErrorDetect is

enabled.

[SWS_WdgM_00278]⌈If the configuration parameter WdgMDevErrorDetect

[ECUC_WdgM_00301] is enabled, the parameter SEId shall be checked for being in
the list of the entities under control of the Watchdog Manager. In case of an error the
service shall not be executed, the error shall be reported to the Development Error

Tracer with the error code WDGM_E_PARAM_SEID and the routine shall return the

value E_NOT_OK.⌋(SRS_BSW_00323)

[SWS_WdgM_00279]⌈If the configuration parameter WdgMDevErrorDetect

[ECUC_WdgM_00301] is enabled, the routine shall check if the Watchdog Manager
is initialized. In case of an error the service shall not be executed, the error shall be

reported to the Development Error Tracer with the error code WDGM_E_NO_INIT

and the routine shall return the value E_NOT_OK⌋(SRS_BSW_00323)

[SWS_WdgM_00284]⌈If the configuration parameter WdgMDevErrorDetect

[ECUC_WdgM_00301] is enabled, the routine shall check if the parameter
CheckpointID is within the set of Checkpoints (see [ECUC_WdgM_00303])

associated with the Supervised Entity given by the parameter SEID. In case of an

error the service shall not be executed, the error shall be reported to the

Development Error Tracer with the error code WDGM_E_CPID and the routine shall

return the value E_NOT_OK.⌋(SRS_BSW_00323)

[SWS_WdgM_00319]⌈If the configuration parameter WdgMDevErrorDetect

[ECUC_WdgM_00301] is enabled, the routine shall check if Supervised Entity to
which the parameter CheckpointID belongs, is activated in the current mode. In case
of an error (i.e. the Supervised Entity is deactivated in the current mode), the service
shall not be executed, the error shall be reported to the Development Error Tracer

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

97 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

with the error code WDGM_E_SEDEACTIVATED and the routine shall return the value

E_NOT_OK.⌋()

8.3.7 WdgM_UpdateAliveCounter

[SWS_WdgM_00155]WdgM_UpdateAliveCounter

⌈

Service name: WdgM_UpdateAliveCounter

Syntax: Std_ReturnType WdgM_UpdateAliveCounter(

 WdgM_SupervisedEntityIdType SEID

)

Service ID[hex]: 0x04

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in):
SEID Identifier of the entity under control of the WdgM whose alive

counter shall be updated

Parameters
(inout):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: Successfully updated alive counter

E_NOT_OK: Update failed

Description: BEWARE, this API is deprecated. Gives alive indications to the Watchdog
Manager.

This function is deprecated and should not be used anymore. It is only provided for

backward compatibility. Use WdgM_CheckpointReached instead!

If the function WdgM_UpdateAliveCounter is used, then there shall be at most one
Alive Supervision configured for a Supervised Entity for a given mode. By this

means, at runtime the function WdgM_CheckpointReached is able to identify the

Checkpoint from the Supervised Entity ID. If more than one are configured, the

function returns an error code to DET.⌋(SRS_BSW_00310, SRS_ModeMgm_09125)

[SWS_WdgM_00318]⌈This function shall call the function

WdgM_CheckpointReached and shall provide as parameter the Checkpoint of the

Alive Supervision of the current mode.⌋()

There are optional checks that are executed if and only if WdgMDevErrorDetect is

enabled.

[SWS_WdgM_00320]⌈If the configuration parameter WdgMDevErrorDetect

[ECUC_WdgM_00301] is enabled, the routine shall check if in the current mode there
are more than one Alive Supervisions (WdgMAliveSupervision) configured. If so, then

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

98 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

the routine shall report the error code WDGM_E_AMBIGIOUS to the Development

Error Tracer.⌋()

[SWS_WdgM_00027]⌈If the configuration parameter WdgMDevErrorDetect

[ECUC_WdgM_00301] is enabled, the parameter SEId shall be checked for being in
the list of the entities under control of the Watchdog Manager. In case of an error the
service shall not be executed, the error shall be reported to the Development Error

Tracer with the error code WDGM_E_PARAM_SEID and the routine shall return the

value E_NOT_OK.⌋(SRS_BSW_00323, SRS_BSW_00338)

[SWS_WdgM_00028]⌈If the configuration parameter WdgMDevErrorDetect

[ECUC_WdgM_00301] is enabled, the routine shall check if the Watchdog Manager
is initialized. In case of an error the service shall not be executed, the error shall be
reported to the Development Error Tracer with the error code WDGM_E_NO_INIT

and the routine shall return the value E_NOT_OK.⌋(SRS_BSW_00323,

SRS_BSW_00338, SRS_BSW_00406)

[SWS_WdgM_00290]⌈If the configuration parameter WdgMDevErrorDetect

[ECUC_WdgM_00301] is enabled, the function shall report the error code

WDGM_E_DEPRECATED to the Development Error Tracer.⌋()

8.3.8 WdgM_GetLocalStatus

[SWS_WdgM_00169]WdgM_GetLocalStatus

⌈

Service name: WdgM_GetLocalStatus

Syntax: Std_ReturnType WdgM_GetLocalStatus(

 WdgM_SupervisedEntityIdType SEID,

 WdgM_LocalStatusType* Status

)

Service ID[hex]: 0x0c

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in):
SEID Identifier of the supervised entity whose supervision status shall

be returned.

Parameters
(inout):

None

Parameters (out): Status Supervision status of the given supervised entity.

Return value:
Std_ReturnType E_OK: Current supervision status successfully returned

E_NOT_OK: Returning current supervision status failed

Description: Returns the supervision status of an individual Supervised Entity.

⌋(SRS_BSW_00310)

[SWS_WdgM_00171]⌈The WdgM_GetLocalStatus service shall return the

individual supervision status of the given Supervised Entity.⌋()

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

99 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

There are optional checks that are executed if and only if WdgMDevErrorDetect is

enabled.

[SWS_WdgM_00172]⌈If the configuration parameter WdgMDevErrorDetect

[ECUC_WdgM_00301] is enabled, the parameter SEId shall be checked for being in
the list of entities under control of the Watchdog Manager. In case of an error the
service shall not be executed, the error shall be reported to the Development Error

Tracer with the error code WDGM_E_PARAM_SEID and the routine shall return the

value E_NOT_OK.⌋(SRS_BSW_00323)

[SWS_WdgM_00257]⌈If the configuration parameter WdgMDevErrorDetect

[ECUC_WdgM_00301] is enabled, the routine shall check if NULL pointers are
passed for OUT parameters. In case of an error the service shall not be executed,
the error shall be reported to the Development Error Tracer with the error code

WDGM_E_INV_POINTER and the routine shall return the value

E_NOT_OK.⌋(SRS_BSW_00323)

[SWS_WdgM_00173]⌈If the configuration parameter WdgMDevErrorDetect

[ECUC_WdgM_00301] is enabled, the routine shall check if the Watchdog Manager
is initialized. In case of an error the service shall not be executed, the error shall be

reported to the Development Error Tracer with the error code WDGM_E_NO_INIT

and the routine shall return the value E_NOT_OK.⌋(SRS_BSW_00323)

8.3.9 WdgM_GetGlobalStatus

[SWS_WdgM_00175]WdgM_GetGlobalStatus

⌈

Service name: WdgM_GetGlobalStatus

Syntax: Std_ReturnType WdgM_GetGlobalStatus(

 WdgM_GlobalStatusType* Status

)

Service ID[hex]: 0x0d

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): Status Global monitoring status of the Watchdog Manager.

Return value:
Std_ReturnType E_OK: Current supervision status successfully returned

E_NOT_OK: Returning current supervision status failed

Description: Returns the global supervision status of the Watchdog Manager.

⌋(SRS_BSW_00310)

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

100 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

[SWS_WdgM_00344]⌈If development error detection for the Watchdog Manager

module is enabled, then the function WdgM_GetGlobalStatus shall check whether

the parameter Status is a NULL pointer (NULL_PTR). If Status is a NULL pointer,

then the function shall raise the development error WDGM_E_INV_POINTER (i.e.

invalid pointer) and return.⌋()

There are optional checks that are executed if and only if WdgMDevErrorDetect is

enabled.

[SWS_WdgM_00258]⌈If the configuration parameter WdgMDevErrorDetect

[ECUC_WdgM_00301] is enabled, the routine shall check if NULL pointers are
passed for OUT parameters. In case of an error the service shall not be executed,
the error shall be reported to the Development Error Tracer with the error code

WDGM_E_INV_POINTER and the routine shall return the value

E_NOT_OK.⌋(SRS_BSW_00323)

[SWS_WdgM_00176]⌈If the configuration parameter WdgMDevErrorDetect

[ECUC_WdgM_00301] is enabled, the routine shall check if the Watchdog Manager
is initialized. In case of an error the service shall not be executed, the error shall be

reported to the Development Error Tracer with the error code WDGM_E_NO_INIT

and the routine shall return the value E_NOT_OK.⌋(SRS_BSW_00323)

8.3.10 WdgM_PerformReset

[SWS_WdgM_00264]WdgM_PerformReset

⌈

Service name: WdgM_PerformReset

Syntax: void WdgM_PerformReset(

 void

)

Service ID[hex]: 0x0f

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: Instructs the Watchdog Manager to cause a watchdog reset.

⌋(SRS_BSW_00310, SRS_ModeMgm_09232)

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

101 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

[SWS_WdgM_00232]⌈When this service is called, the Watchdog Manager shall set

the trigger condition for all configured Watchdog Drivers to 0 (zero).⌋()

Thereby, the hardware watchdogs will cause an external hardware reset.

[SWS_WdgM_00233]⌈After this service has been called, the Watchdog Manager

shall not update the trigger condition anymore.⌋()

When this API has been called, Global Supervision Status is not considered
anymore.

There are optional checks that are executed if and only if WdgMDevErrorDetect is

enabled.

[SWS_WdgM_00270]⌈If the configuration parameter WdgMDevErrorDetect

[ECUC_WdgM_00301] is enabled, the routine shall check if the Watchdog Manager
is initialized. In case of an error the service shall not be executed, the error shall be
reported to the Development Error Tracer with the error code

WDGM_E_NO_INIT.⌋(SRS_BSW_00323)

8.3.11 WdgM_GetFirstExpiredSEID

[SWS_WdgM_00346]WdgM_GetFirstExpiredSEID

⌈

Service name: WdgM_GetFirstExpiredSEID

Syntax: Std_ReturnType WdgM_GetFirstExpiredSEID(

 WdgM_SupervisedEntityIdType* SEID

)

Service ID[hex]: 0x10

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out):
SEID Identifier of the supervised entity that first reached the state

WDGM_LOCAL_STATUS_EXPIRED.

Return value:
Std_ReturnType E_OK: SEID successfully returned

E_NOT_OK: Error when returning the SEID

Description: Returns SEID that first reached the state WDGM_LOCAL_STATUS_EXPIRED.

⌋()

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

102 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

[SWS_WdgM_00347]⌈If development error detection for the Watchdog Manager

module is enabled, then the function WdgM_GetFirstExpiredSEID() shall check

whether the parameter SEID is a NULL pointer (NULL_PTR). If Status is a NULL

pointer, then the function shall raise the development error WDGM_E_INV_POINTER

(i.e. invalid pointer) and return.⌋()

[SWS_WdgM_00348]⌈The function WdgM_GetFirstExpiredSEID() shall be

available before WdgM_Init.⌋()

[SWS_WdgM_00349]⌈The function WdgM_GetFirstExpiredSEID() shall read

the SEID from non-initialized RAM location, stored as a double-inverse value. In case
the value and the inverse value do not correspond to each other, then the function
shall return E_NOT_OK and shall write 0 to *SEID. In case the value and the inverse
value correspond, the function shall return E_OK and set write the read value to

*SEID.⌋()

8.4 Call-back Notifications

Not Applicable

8.5 Scheduled Functions

These functions are directly called by Basic Software Scheduler.

8.5.1 WdgM_MainFunction

[SWS_WdgM_00159]WdgM_MainFunction

⌈

Service name: WdgM_MainFunction

Syntax: void WdgM_MainFunction(

 void

)

Service ID[hex]: 0x08

Description: Performs the processing of the cyclic Watchdog Manager jobs.

⌋(SRS_BSW_00310, SRS_BSW_00373)

[SWS_WdgM_00324]⌈The function WdgM_MainFunction()shall perform the Alive

Supervision for the reported Supervised Entity using the reported Checkpoint. The
input of this function shall be the Alive Counters of the Checkpoint. The output of this

function shall be the Results of Alive Supervision for the Supervised Entity.⌋()

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

103 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

[SWS_WdgM_00325]⌈Based on the results from Alive, Deadline and Logical

Supervision, for each activated Supervised Entity the function

WdgM_MainFunction() shall determine the Local Supervision Status.⌋()

[SWS_WdgM_00351]⌈For the first Supervised Entity that switched to the state

WDGM_LOCAL_STATUS_EXPIRED since the last time WdgM_Init() was called, the

function WdgM_MainFunction() shall store the SEID of that supervised entity in a

non-initialized RAM, as a double-inverted value (i.e. SEID and ~SEID).⌋()

[SWS_WdgM_00326]⌈Based on the Local Supervision Status of each activated

Supervised Entity, the function WdgM_MainFunction() shall determine the Global

Supervision status.⌋()

[SWS_WdgM_00327]⌈Based on the Local Supervision status of each Supervision

Status and the Global Supervision Status, the function WdgM_MainFunction()

shall manage the corresponding error handling.⌋()

[SWS_WdgM_00328]⌈Based on the Global Supervision Status, the function

WdgM_MainFunction() shall call set correspondingly the trigger condition of

Watchdog Interface modules.⌋()

[SWS_WdgM_00063]⌈If the Global Supervision Status is not in the state

WDGM_GLOBAL_STATUS_DEACTIVATED, then the WdgM_MainFunction()

shall be executed according to the configured Supervision Cycle (see

WdgMSupervisionCycle [ECUC_WdgM_00330]).⌋(SRS_ModeMgm_09112)

If a Supervised Entity finishes in a deadlock and does not exit, it could be that the
watchdog manager main function is not called and therefore they do not detect the
failed supervised entity. Therefore the tasks containing the main function shall be
separated from the tasks containing Supervised Entities that are supervised by the
Watchdog Manager Module.

[SWS_WdgM_00275]⌈The OS task which is executing the main function

WdgM_MainFunction shall be separated from the OS task(s) calling any function

from a Supervised Entity under supervision.⌋()

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

104 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

[SWS_WdgM_00039]⌈If the configuration parameter WdgMDefensiveBehavior

[ECUC_WdgM_00301] is enabled, the routine shall check if the Watchdog Manager
is initialized. In case of an error the main function shall not be executed, the error
shall be reported to the Development Error Tracer with the error code

WDGM_E_NO_INIT.⌋(SRS_BSW_00323, SRS_BSW_00338, SRS_BSW_00406)

8.6 Expected Interfaces

In this chapter all interfaces required from other modules are listed.

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

105 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

«module»

WdgM

WdgIf

Dem_ReportErrorStatus

Mcu_PerformReset

GetElapsedValue

Det_ReportError

BswM_WdgM_RequestPartitionReset

Os_TerminateApplication

GetApplicationID

GetISRID

GetTaskID

«optional»

«optional»

«optional»

«optional»

«optional»

«optional»

«optional»

«mandatory»

«mandatory»

«optional»

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

106 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

Figure 15: Expected Interfaces

8.6.1 Mandatory Interfaces

This chapter defines a superset of interfaces which are required to fulfill the core
functionality of the module.

[SWS_WdgM_00161]

⌈

API function Description

GetElapsedValue This service gets the number of ticks between the current tick value and
a previously read tick value.

WdgIf_SetMode Map the service WdgIf_SetMode to the service Wdg_SetMode of the
corresponding Watchdog Driver.

WdgIf_SetTriggerCondition Map the service WdgIf_SetTriggerCondition to the service
Wdg_SetTriggerCondition of the corresponding Watchdog Driver.

⌋()

8.6.2 Optional Interfaces

This chapter defines all interfaces which are required to fulfill an optional functionality
of the module.

[SWS_WdgM_00162]

⌈

API function Description

BswM_WdgM_RequestPartitionReset Function called by WdgM to request a partition reset.

Dem_ReportErrorStatus Queues the reported events from the BSW modules (API is only
used by BSW modules). The interface has an asynchronous
behavior, because the processing of the event is done within the
Dem main function.
OBD Events Suppression shall be ignored for this computation.

Det_ReportError Service to report development errors.

GetApplicationID This service determines the currently running OS-Application (a
unique identifier has to be allocated to each application).

GetISRID This service returns the identifier of the currently executing ISR.

GetTaskID GetTaskID returns the information about the TaskID of the task
which is currently running.

Mcu_PerformReset The service performs a microcontroller reset.

TerminateApplication This service terminates the OS-Application to which the calling
Task/Category 2 ISR/application specific error hook belongs.

⌋()

8.6.3 Configurable Interfaces

Not Applicable

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

107 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

8.6.4 Job End Notification

Not Applicable

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

108 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

9 Sequence Diagrams

This chapter shows the interactions between the Watchdog Manager and other BSW
modules as well as supervised entities.

9.1 Initialization

The diagram shows the initialization of the Watchdog Manager module. The
initialization should be done at a late phase of ECU initialization after the initialization
of the OS.

:EcuM :WdgM :WdgIf

A

After the initialization of the OS the EcuM should

initialize the Watchdog Manager.

WdgM_Init(const

WdgM_ConfigType*)

WdgM_SetMode(Std_ReturnType,

WdgM_ModeType, uint16)

WdgIf_SetMode(Std_ReturnType, uint8,

WdgIf_ModeType)

Figure 16: Initialization of the Watchdog Manager module

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

109 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

10 Configuration Specification

10.1 Parameter Differentiation

Within this chapter, you find a brief introduction of terms, which are used to
differentiate type of configuration parameters. In the subchapter you find concrete
specification issue for parameters in Watchdog Manager context.

For details refer to the chapter 10.1 “Introduction to configuration specification” in
SWS_BSWGeneral.

10.1.1 Static Configuration Parameters

[SWS_WdgM_00025]⌈The parameters of the Watchdog Manager module that shall

minimally be configurable at system generation and / or system compile time (pre-
compile) shall be located in the module’s configuration header file

WdgM_Cfg.h.⌋(SRS_BSW_00345)

10.1.2 Runtime Configuration Parameters

[SWS_WdgM_00029]⌈The parameters of the Watchdog Manager module that shall

be configurable at post-build time shall be located in an external data structure of

type WdgM_ConfigType. The type declaration shall be located in the file WdgM.h.⌋()

10.1.3 Precompile Options

[SWS_WdgM_00104]⌈The precompile options shall be used for code

implementations that are not directly generated out of code generators. Therefore the
precompile options support the optimization of re-used sourcecode-file of the
Watchdog Manager module according to settings of static configuration. They should
be located at the module's configuration header file

WdgM_Cfg.h⌋(SRS_BSW_00345, SRS_BSW_00171)

10.2 Containers and Configuration Parameters

The following variants are supported by Watchdog Manager module:

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

110 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

10.2.1 Variants

For details refer to the chapter 10.1.2 “Variants” in SWS_BSWGeneral.

10.2.2 WdgM

SWS Item ECUC_WdgM_00001 :

Module Name WdgM

Module Description Configuration of the WdgM (Watchdog Manager) module.

Included Containers

Container Name Multiplicity Scope / Dependency

WdgMConfigSet 1

This container describes one of multiple configuration sets of
WdgM.
This is a MultipleConfigurationContainer, i.e. this container and
its sub-containers exist once per configuration set.

WdgMGeneral 1
Container defines all general configuration parameters of the
Watchdog Manager.

WdgM :EcucModuleDef

upperMultiplicity = 1

lowerMultiplicity = 0

WdgMGeneral :

EcucParamConfContainerDef

WdgMConfigSet :

EcucParamConfContainerDef

multipleConfigurationContainer = true

+container

+container

Figure 17: Configuration Module WdgM

10.2.3 WdgMGeneral

SWS Item ECUC_WdgM_00300 :

Container Name WdgMGeneral

Description
Container defines all general configuration parameters of the Watchdog
Manager.

Configuration Parameters

SWS Item ECUC_WdgM_00352 :

Name

WdgMDefensiveBehavior {WDGM_DEFENSIVE_BEHAVIOR}

Description Preprocessor switch to enable/disable the defensive behavior of the
Watchdog Manager module.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

111 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

SWS Item ECUC_WdgM_00338 :

Name

WdgMDemStoppedSupervisionReport
{WDGM_DEM_ALIVE_SUPERVISION_REPORT}

Description Parameter to enable/disable the error reporting to DEM.
true: A notification to DEM is sent if the Watchdog Manager reaches the
state WDGM_GLOBAL_STATUS_STOPPED.
false: The notification is disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_WdgM_00301 :

Name

WdgMDevErrorDetect {WDGM_DEV_ERROR_DETECT}

Description Preprocessor switch to enable/disable development error detection and
reporting.
Shall be used to remove unneeded code segments regarding DET
features
true: Development error detection is enabled false: Development error
detection is disabled

Multiplicity 1

Type EcucBooleanParamDef

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_WdgM_00339 :

Name

WdgMImmediateReset {WDGM_IMMEDIATE_RESET}

Description This parameter enables/disablse the immediate reset feature in case of
alive-supervision failure.
true: Immediate reset is enabled false: Immediate reset is disabled

Multiplicity 1

Type EcucBooleanParamDef

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_WdgM_00340 :

Name

WdgMOffModeEnabled {WDGM_OFF_MODE_ENABLED}

Description This parameter enables/disables the selection of the "OffMode" of the
watchdog driver.
true: "OffMode" selection is allowed false: "OffMode" selection is
disallowed

Multiplicity 1

Type EcucBooleanParamDef

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

112 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

Scope / Dependency scope: local

SWS Item ECUC_WdgM_00302 :

Name

WdgMVersionInfoApi {WDGM_VERSION_INFO_API}

Description Preprocessor switch to enable/disable the existence of the API
WdgM_GetVersionInfo. Shall be used to remove unneeded code
segments.
true: API is enabled false: API is disabled

Multiplicity 1

Type EcucBooleanParamDef

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

Included Containers

Container Name Multiplicity Scope / Dependency

WdgMCallerIds 0..1
Contains the definition of valid CallerIds for the callers who
have permission to call the function WdgM_SetMode.

WdgMSupervisedEntity 0..65535
This container collects all common (mode-independent)
parameters of a Supervised Entity to be supervised by the
Watchdog Manager.

WdgMWatchdog 0..255
This container collects all common (mode-independent)
parameters of a Watchdog to be triggered by the Watchdog
Manager.

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

113 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

WdgMGeneral :

EcucParamConfContainerDef

WdgMImmediateReset :

EcucBooleanParamDef

WdgMDemStoppedSupervisionReport :

EcucBooleanParamDef

WdgMVersionInfoApi :

EcucBooleanParamDef

WdgMDevErrorDetect :

EcucBooleanParamDef

WdgMSupervisedEntity :

EcucParamConfContainerDef

upperMultiplicity = 65535

lowerMultiplicity = 0

WdgMWatchdog :

EcucParamConfContainerDef

upperMultiplicity = 255

lowerMultiplicity = 0

WdgMOffModeEnabled :

EcucBooleanParamDef

WdgMDefensiveBehavior :

EcucBooleanParamDef

defaultValue = false

WdgMCallerId :EcucIntegerParamDef

min = 0

max = 65535

lowerMultiplicity = 0

upperMultiplicity = 255

WdgMCallerIds :

EcucParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 0

+parameter

+parameter

+subContainer

+parameter

+parameter

+subContainer

+parameter

+subContainer

+parameter

+parameter

Figure 18: Configuration Container WdgMGeneral

10.2.4 WdgMSupervisedEntity

SWS Item ECUC_WdgM_00303 :

Container Name WdgMSupervisedEntity{WdgMSupervisedEntity}

Description
This container collects all common (mode-independent) parameters of a
Supervised Entity to be supervised by the Watchdog Manager.

Configuration Parameters

SWS Item ECUC_WdgM_00304 :

Name

WdgMSupervisedEntityId {WDGM_SUPERVISED_ENTITY_ID}

Description This parameter shall contain the unique identifier of the supervised entity.

Multiplicity 1

Type EcucIntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 65535

Default value --

ConfigurationClass Pre-compile time X All Variants

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

114 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_WdgM_00360 :

Name

WdgMEcucPartitionRef

Description Denotes in which "EcucPartition" the supervised entity is executed. When
the partition is stopped, the supervised entity shall be de-activated in the
WdgM to avoid an ECU reset.

Multiplicity 0..1

Type Reference to [EcucPartition]

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_WdgM_00343 :

Name

WdgMInternalCheckpointInitialRef

Description This is the reference to the initial Checkpoint for this Supervised Entity.

Multiplicity 1

Type Symbolic name reference to [WdgMCheckpoint]

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_WdgM_00344 :

Name

WdgMInternallCheckpointFinalRef

Description This is the reference to the final Checkpoint(s) for this Supervised Entity.

Multiplicity 1..65535

Type Symbolic name reference to [WdgMCheckpoint]

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_WdgM_00361 :

Name

WdgMOSCounter

Description OS counter used by Watchdog Manager to perform the deadline
monitoring of the Supervised Entity.

Multiplicity 0..1

Type Reference to [OsCounter]

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency

SWS Item ECUC_WdgM_00346 :

Name

WdgMOsApplicationRef

Description Optional reference to an OS Application. Beware, the Watchdog Manager
module will trigger a partition restart of this OS Application when the
corresponding Supervised Entity reaches
WDGM_LOCAL_STATUS_FAILED.

Multiplicity 0..1

Type Reference to [OsApplication]

ConfigurationClass Pre-compile time X All Variants

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

115 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

Link time --

Post-build time --

Scope / Dependency scope: local

Included Containers

Container Name Multiplicity Scope / Dependency

WdgMCheckpoint 1..65535
This container collects all Checkpoints of this Supervised
Entity. Each Supervised Entity has at least one Checkpoint.

WdgMInternalTransition 0..65535
This container defines the graph of Internal Transitions within
this Supervised Entity.

WdgMSupervisedEntity :

EcucParamConfContainerDef

upperMultiplicity = 65535

lowerMultiplicity = 0

WdgMSupervisedEntityId :

EcucIntegerParamDef

symbolicNameValue = true

max = 65535

min = 0

WdgMCheckpoint :

EcucParamConfContainerDef

upperMultiplicity = 65535

lowerMultiplicity = 1

WdgMInternalCheckpointInitialRef :

EcucSymbolicNameReferenceDef

WdgMInternallCheckpointFinalRef :

EcucSymbolicNameReferenceDef

lowerMultiplicity = 1

upperMultiplicity = 65535

WdgMInternalTransition :

EcucParamConfContainerDef

upperMultiplicity = 65535

lowerMultiplicity = 0

OsApplication :

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

(from OS)

WdgMOsApplicationRef :

EcucReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

WdgMCheckpointId :

EcucIntegerParamDef

symbolicNameValue = true

max = 65535

min = 0

WdgMEcucPartitionRef :

EcucReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

EcucPartition :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

postBuildChangeable = false

(from EcucPartition)

WdgMOSCounter :

EcucReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

OsCounter :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

(from OS)

+destination

+destination

+destination

+destination

+parameter

+destination

+reference

+subContainer

+reference

+subContainer

+reference

+parameter

+reference

+reference

Figure 19: Configuration Container WdgMSupervisedEntity

10.2.5 WdgMCheckpoint

SWS Item ECUC_WdgM_00305 :

Container Name WdgMCheckpoint{WdgMCheckpoint}

Description
This container collects all Checkpoints of this Supervised Entity. Each
Supervised Entity has at least one Checkpoint.

Configuration Parameters

SWS Item ECUC_WdgM_00306 :

Name

WdgMCheckpointId {WdgMCheckPointId}

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

116 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

Description This parameter shall contain the unique identifier of Checkpoint.

Multiplicity 1

Type EcucIntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 65535

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

No Included Containers

WdgMCheckpoint :

EcucParamConfContainerDef

upperMultiplicity = 65535

lowerMultiplicity = 1

WdgMCheckpointId :

EcucIntegerParamDef

symbolicNameValue = true

max = 65535

min = 0

+parameter

Figure 20: Configuration Container WdgMCheckpoint

10.2.6 WdgMInternalTransition

SWS Item ECUC_WdgM_00345 :

Container Name WdgMInternalTransition

Description
This container defines the graph of Internal Transitions within this
Supervised Entity.

Configuration Parameters

SWS Item ECUC_WdgM_00351 :

Name

WdgMInternalTransitionDestRef

Description This is the reference to the destination Checkpoint of a Internal Transition
within this Supervised Entity.

Multiplicity 1

Type Symbolic name reference to [WdgMCheckpoint]

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_WdgM_00350 :

Name

WdgMInternalTransitionSourceRef

Description This is the reference to the source Checkpoint of a Internal Transition
within this Supervised Entity.

Multiplicity 1

Type Symbolic name reference to [WdgMCheckpoint]

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

117 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

No Included Containers

WdgMInternalTransition :

EcucParamConfContainerDef

upperMultiplicity = 65535

lowerMultiplicity = 0

WdgMCheckpoint :

EcucParamConfContainerDef

upperMultiplicity = 65535

lowerMultiplicity = 1

WdgMInternalTransitionSourceRef :

EcucSymbolicNameReferenceDef

WdgMInternalTransitionDestRef :

EcucSymbolicNameReferenceDef

+reference

+reference

+destination

+destination

 Figure 21: Configuration Container WdgMInternalTransition

10.2.7 WdgMWatchdog

SWS Item ECUC_WdgM_00347 :

Container Name WdgMWatchdog

Description
This container collects all common (mode-independent) parameters of a
Watchdog to be triggered by the Watchdog Manager.

Configuration Parameters

SWS Item ECUC_WdgM_00348 :

Name

WdgMWatchdogName {WDGM_WATCHDOG_INSTANCE_ID}

Description This parameter shall contain the symbolic name of the watchdog instance.

Multiplicity 1

Type EcucStringParamDef (Symbolic Name generated for this parameter)

Default value --

maxLength --

minLength --

regularExpression --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_WdgM_00349 :

Name

WdgMWatchdogDeviceRef

Description Reference to one device container of Watchdog Interface. In the
referenced container WdgIfDevice, the parameter WdgIfDeviceIndex
contains the Index parameter that WdgM has to use for
WdgIf_SetTriggerCondition calls for that watchdog instance.

Multiplicity 1

Type Symbolic name reference to [WdgIfDevice]

ConfigurationClass Pre-compile time X All Variants

Link time --

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

118 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

Post-build time --

Scope / Dependency scope: local

No Included Containers

WdgMWatchdog :

EcucParamConfContainerDef

upperMultiplicity = 255

lowerMultiplicity = 0

WdgMWatchdogName :

EcucStringParamDef

symbolicNameValue = true

WdgMWatchdogDeviceRef :

EcucSymbolicNameReferenceDef

WdgIfDevice :

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

(from WdgInterface)

WdgIfDeviceIndex :

EcucIntegerParamDef

symbolicNameValue = true

min = 0

max = 255

(from WdgInterface)

+reference

+parameter

+destination

+parameter

Figure 22: Configuration Container WdgMWatchdog

10.2.8 WdgMConfigSet

SWS Item ECUC_WdgM_00337 :

Container Name WdgMConfigSet [Multi Config Container]

Description
This container describes one of multiple configuration sets of WdgM.
This is a MultipleConfigurationContainer, i.e. this container and its sub-
containers exist once per configuration set.

Configuration Parameters

SWS Item ECUC_WdgM_00336 :

Name

WdgMInitialMode

Description The mode that the Watchdog Manager is in after it has been initialized.

Multiplicity 1

Type Symbolic name reference to [WdgMMode]

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

Included Containers

Container Name Multiplicity Scope / Dependency

WdgMDemEventParameterRef
s

0..1

Container for the references to DemEventParameter
elements which shall be invoked using the API
Dem_ReportErrorStatus API in case the corresponding
error occurs. The EventId is taken from the referenced
DemEventParameter's DemEventId value. The

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

119 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

standardized errors are provided in the container and can
be extended by vendor specific error references.

WdgMMode 1..255
The container describes one of several modes of the
Watchdog Manager.

WdgMConfigSet :

EcucParamConfContainerDef

multipleConfigurationContainer = true

WdgMMode :

EcucParamConfContainerDef

upperMultiplicity = 255

lowerMultiplicity = 1

WdgMInitialMode :

EcucSymbolicNameReferenceDef

WdgMDemEventParameterRefs :

EcucParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 0

DemEventParameter :

EcucParamConfContainerDef

upperMultiplicity = 65535

lowerMultiplicity = 1

(from Dem)

WDGM_E_MONITORING :

EcucSymbolicNameReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

WDGM_E_SET_MODE :

EcucSymbolicNameReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

WDGM_E_IMPROPER_CALLER :

EcucSymbolicNameReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

+subContainer

+subContainer

+reference

+destination

+reference

+reference

+reference

+destination

+destination

+destination

Figure 23: Configuration Container WdgMConfigSet

10.2.9 WdgMDemEventParameterRefs

SWS Item ECUC_WdgM_00353 :

Container Name WdgMDemEventParameterRefs

Description

Container for the references to DemEventParameter elements which shall
be invoked using the API Dem_ReportErrorStatus API in case the
corresponding error occurs. The EventId is taken from the referenced
DemEventParameter's DemEventId value. The standardized errors are
provided in the container and can be extended by vendor specific error
references.

Configuration Parameters

SWS Item ECUC_WdgM_00357 :

Name

WDGM_E_IMPROPER_CALLER

Description Reference to the DemEventParameter which shall be issued when the
defensive behavior checks have detected an improper caller.

Multiplicity 0..1

Type Symbolic name reference to [DemEventParameter]

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_WdgM_00354 :

Name

WDGM_E_MONITORING

Description Reference to the DemEventParameter which shall be issued when the
error "Monitoring has failed and a watchdog reset will occur" has occurred.

Multiplicity 0..1

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

120 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

Type Symbolic name reference to [DemEventParameter]

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_WdgM_00355 :

Name

WDGM_E_SET_MODE

Description Reference to the DemEventParameter which shall be issued when the
error "Watchdog drivers' mode switch has failed" has occurred.

Multiplicity 0..1

Type Symbolic name reference to [DemEventParameter]

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

No Included Containers

10.2.10 WdgMMode

SWS Item ECUC_WdgM_00335 :

Container Name WdgMMode{WDGM_MODE}

Description The container describes one of several modes of the Watchdog Manager.

Configuration Parameters

SWS Item ECUC_WdgM_00329 :

Name

WdgMExpiredSupervisionCycleTol
{WDGM_EXPIRED_SUPERVISION_CYCLE_TOLERANCE}

Description This parameter shall be used to define a value that fixes the amount of
expired supervision cycles for how long the blocking of watchdog triggering
shall be postponed, AFTER THE GLOBAL SUPERVISION STATUS HAS
REACHED THE STATE EXPIRED.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 65535

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

SWS Item ECUC_WdgM_00307 :

Name

WdgMModeId

Description This parameter fixes the identifier for the mode. This identifier is for
instance passed as a parameter to the WdgM_SetMode service.

Multiplicity 1

Type EcucIntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 255

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

121 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

SWS Item ECUC_WdgM_00330 :

Name

WdgMSupervisionCycle {WDGM_SUPERVISION_CYCLE}

Description This parameter defines the schedule period of the main function
WdgM_MainFunction.
Unit: [s]

Multiplicity 1

Type EcucFloatParamDef

Range 0 .. INF

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

Included Containers

Container Name Multiplicity Scope / Dependency

WdgMAliveSupervision 0..65535

This container collects all configuration parameters of
Alive-Supervision of one Checkpoint. Note that each
Checkpoint may have different parameters. For example, it
may have different min and max margin.

WdgMDeadlineSupervision 0..65535
This container collects all configuration parameters for
Deadline Supervision for a Supervised Entity.

WdgMExternalLogicalSupervisio
n

0..65535
This container collects all configuration parameters for
Logical Supervision for one external graph.

WdgMLocalStatusParams 0..65535
This container collects all configuration parameters for the
Local Status of a Supervised Entity.

WdgMTrigger 0..255
This container collects all configuration parameters for the
triggering of hardware watchdogs.

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

122 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

WdgMMode :

EcucParamConfContainerDef

upperMultiplicity = 255

lowerMultiplicity = 1

WdgMModeId :EcucIntegerParamDef

max = 255

min = 0

symbolicNameValue = true

WdgMAliveSupervision :

EcucParamConfContainerDef

upperMultiplicity = 65535

lowerMultiplicity = 0

WdgMTrigger :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = 255

WdgMExpiredSupervisionCycleTol :

EcucIntegerParamDef

min = 0

max = 65535

WdgMExternalLogicalSupervision :

EcucParamConfContainerDef

upperMultiplicity = 65535

lowerMultiplicity = 0

WdgMDeadlineSupervision :

EcucParamConfContainerDef

upperMultiplicity = 65535

lowerMultiplicity = 0

WdgMSupervisionCycle :

EcucFloatParamDef

min = 0

max = INF

WdgMLocalStatusParams :

EcucParamConfContainerDef

upperMultiplicity = 65535

lowerMultiplicity = 0

+subContainer

+subContainer

+subContainer

+parameter

+parameter

+subContainer

+subContainer

+parameter

Figure 24: Configuration Container WdgMMode

10.2.11 WdgMAliveSupervision

SWS Item ECUC_WdgM_00308 :

Container Name WdgMAliveSupervision{WdgMAliveSupervision}

Description
This container collects all configuration parameters of Alive-Supervision of
one Checkpoint. Note that each Checkpoint may have different
parameters. For example, it may have different min and max margin.

Configuration Parameters

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

123 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

SWS Item ECUC_WdgM_00311 :

Name

WdgMExpectedAliveIndications
{WDGM_EXPECTED_ALIVE_INDICATIONS}

Description This parameter contains the amount of expected alive indications of the
Checkpoint within the referenced amount of defined supervision cycles
according to corresponding SE.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 65535

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_WdgM_00313 :

Name

WdgMMaxMargin {WDGM_MAX_MARGIN}

Description This parameter contains the amount of alive indications of the Checkpoint
that are acceptable to be additional to the expected alive indications within
the corresponding supervision reference cycle.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 255

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_WdgM_00312 :

Name

WdgMMinMargin {WDGM_MIN_MARGIN}

Description This parameter contains the amount of alive indications of the Checkpoint
that are acceptable to be missed from the expected alive indications within
the corresponding supervision reference cycle.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 255

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_WdgM_00310 :

Name

WdgMSupervisionReferenceCycle
{WDGM_SUPERVISION_REFERENCE_CYCLE}

Description This parameter shall contain the amount of supervision cycles to be used
as reference by the alive-supervision mechanism to perform the checkup
with counted alive indications according to corresponding SE.

Multiplicity 1

Type EcucIntegerParamDef

Range 1 .. 65535

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

124 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

Scope / Dependency scope: local

SWS Item ECUC_WdgM_00309 :

Name

WdgMAliveSupervisionCheckpointRef

Description Reference to Checkpoint within a Supervised Entity that shall be
supervised.

Multiplicity 1

Type Symbolic name reference to [WdgMCheckpoint]

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

No Included Containers

WdgMAliveSupervision :

EcucParamConfContainerDef

upperMultiplicity = 65535

lowerMultiplicity = 0

WdgMExpectedAliveIndications :

EcucIntegerParamDef

min = 0

max = 65535

WdgMSupervisionReferenceCycle :

EcucIntegerParamDef

min = 1

max = 65535

WdgMMinMargin :

EcucIntegerParamDef

min = 0

max = 255

WdgMMaxMargin :

EcucIntegerParamDef

min = 0

max = 255

WdgMAliveSupervisionCheckpointRef :

EcucSymbolicNameReferenceDef
WdgMCheckpoint :

EcucParamConfContainerDef

upperMultiplicity = 65535

lowerMultiplicity = 1

+destination

+parameter

+parameter

+reference

+parameter

+parameter

Figure 25: Configuration Container WdgMAliveSupervision

10.2.12 WdgMDeadlineSupervision

SWS Item ECUC_WdgM_00314 :

Container Name WdgMDeadlineSupervision

Description
This container collects all configuration parameters for Deadline
Supervision for a Supervised Entity.

Configuration Parameters

SWS Item ECUC_WdgM_00318 :

Name

WdgMDeadlineMax

Description This parameter contains the longest time span after which the deadline is
considered to be met.
Unit: [s]

Multiplicity 1

Type EcucFloatParamDef

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

125 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

Range 0 .. INF

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_WdgM_00317 :

Name

WdgMDeadlineMin

Description This parameter contains the shortest time span after which the deadline is
considered to be met.
Unit: [s]

Multiplicity 1

Type EcucFloatParamDef

Range 0 .. INF

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_WdgM_00315 :

Name

WdgMDeadlineStartRef

Description This is the reference to the start Checkpoint for Deadline Supervision.

Multiplicity 1

Type Symbolic name reference to [WdgMCheckpoint]

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_WdgM_00316 :

Name

WdgMDeadlineStopRef

Description This is the reference to the stop Checkpoint for Deadline Supervision.

Multiplicity 1

Type Symbolic name reference to [WdgMCheckpoint]

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

No Included Containers

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

126 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

WdgMDeadlineSupervision :

EcucParamConfContainerDef

upperMultiplicity = 65535

lowerMultiplicity = 0

WdgMCheckpoint :

EcucParamConfContainerDef

upperMultiplicity = 65535

lowerMultiplicity = 1

WdgMDeadlineStartRef :

EcucSymbolicNameReferenceDef

WdgMDeadlineStopRef :

EcucSymbolicNameReferenceDef

WdgMDeadlineMin :

EcucFloatParamDef

min = 0

max = INF

WdgMDeadlineMax :

EcucFloatParamDef

min = 0

max = INF

+reference

+parameter

+reference

+parameter

+destination

+destination

Figure 26: Configuration Container WdgMDeadlineSupervision

10.2.13 WdgMExternalLogicalSupervision

SWS Item ECUC_WdgM_00319 :

Container Name WdgMExternalLogicalSupervision

Description
This container collects all configuration parameters for Logical Supervision
for one external graph.

Configuration Parameters

SWS Item ECUC_WdgM_00324 :

Name

WdgMExternalCheckpointFinalRef

Description This is the reference to the final Checkpoint(s) for this External Graph.

Multiplicity 1..65535

Type Symbolic name reference to [WdgMCheckpoint]

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_WdgM_00323 :

Name

WdgMExternalCheckpointInitialRef

Description This is the reference to the initial Checkpoint(s) for this External Graph.

Multiplicity 1..65535

Type Symbolic name reference to [WdgMCheckpoint]

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

Included Containers

Container Name Multiplicity Scope / Dependency

WdgMExternalTransition 0..65535
This container collects the Checkpoints for an External
Transition across Supervised Entities.

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

127 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

WdgMExternalLogicalSupervision :

EcucParamConfContainerDef

upperMultiplicity = 65535

lowerMultiplicity = 0

WdgMExternalTransition :

EcucParamConfContainerDef

upperMultiplicity = 65535

lowerMultiplicity = 0

WdgMExternalCheckpointInitialRef :

EcucSymbolicNameReferenceDef

lowerMultiplicity = 1

upperMultiplicity = 65535

WdgMExternalCheckpointFinalRef :

EcucSymbolicNameReferenceDef

lowerMultiplicity = 1

upperMultiplicity = 65535

WdgMCheckpoint :

EcucParamConfContainerDef

upperMultiplicity = 65535

lowerMultiplicity = 1

+destination

+destination

+reference

+reference

+subContainer

 Figure 27: Configuration Container WdgMExternalLogicalSupervision

10.2.14 WdgMExternalTransition

SWS Item ECUC_WdgM_00320 :

Container Name WdgMExternalTransition

Description
This container collects the Checkpoints for an External Transition across
Supervised Entities.

Configuration Parameters

SWS Item ECUC_WdgM_00322 :

Name

WdgMExternalTransitionDestRef

Description This is the reference to the destination Checkpoint of an External
Transition.

Multiplicity 1

Type Symbolic name reference to [WdgMCheckpoint]

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_WdgM_00321 :

Name

WdgMExternalTransitionSourceRef

Description This is the reference to the source Checkpoint of an External Transition.

Multiplicity 1

Type Symbolic name reference to [WdgMCheckpoint]

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

No Included Containers

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

128 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

WdgMExternalTransition :

EcucParamConfContainerDef

upperMultiplicity = 65535

lowerMultiplicity = 0

WdgMCheckpoint :

EcucParamConfContainerDef

upperMultiplicity = 65535

lowerMultiplicity = 1

WdgMExternalTransitionSourceRef :

EcucSymbolicNameReferenceDef

WdgMExternalTransitionDestRef :

EcucSymbolicNameReferenceDef

+reference

+reference

+destination

+destination

Figure 28: Configuration Container WdgMExternalTransition

10.2.15 WdgMTrigger

SWS Item ECUC_WdgM_00331 :

Container Name WdgMTrigger{WdgMTrigger}

Description
This container collects all configuration parameters for the triggering of
hardware watchdogs.

Configuration Parameters

SWS Item ECUC_WdgM_00333 :

Name

WdgMTriggerConditionValue

Description This parameter shall contain the value that is passed to
WdgIf_SetTriggerCondition for this watchdog.

Multiplicity 1

Type EcucIntegerParamDef

Range 1 .. 65535

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_WdgM_00332 :

Name

WdgMWatchdogMode

Description This parameter contains the watchdog mode that shall be used for the
referenced watchdog in this Watchdog Manager mode.
Implementation Type: WdgIf_ModeType

Multiplicity 1

Type EcucEnumerationParamDef

Range WDGIF_FAST_MODE --

WDGIF_OFF_MODE --

WDGIF_SLOW_MODE --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_WdgM_00334 :

Name

WdgMTriggerWatchdogRef

Description This parameter is a reference to the configured watchdog.

Multiplicity 1

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

129 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

Type Symbolic name reference to [WdgMWatchdog]

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

No Included Containers

WdgMTrigger :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = 255

WdgMWatchdog :

EcucParamConfContainerDef

upperMultiplicity = 255

lowerMultiplicity = 0

WdgMTriggerWatchdogRef :

EcucSymbolicNameReferenceDef

WdgMWatchdogName :

EcucStringParamDef

symbolicNameValue = true

WdgMTriggerConditionValue :

EcucIntegerParamDef

min = 1

max = 65535

WdgMWatchdogMode :

EcucEnumerationParamDef

WDGIF_FAST_MODE :

EcucEnumerationLiteralDef

WDGIF_OFF_MODE :

EcucEnumerationLiteralDef

WDGIF_SLOW_MODE :

EcucEnumerationLiteralDef

+parameter

+reference

+parameter

+literal

+literal

+literal

+parameter

+destination

Figure 29: Configuration Container WdgMTrigger

10.2.16 WdgMLocalStatusParams

SWS Item ECUC_WdgM_00325 :

Container Name WdgMLocalStatusParams

Description
This container collects all configuration parameters for the Local Status of
a Supervised Entity.

Configuration Parameters

SWS Item ECUC_WdgM_00327 :

Name

WdgMFailedAliveSupervisionRefCycleTol
{WDGM_FAILED_SUPERVISION_REFERENCE_CYCLE_TOLERANCE}

Description This parameter shall contain the acceptable amount of reference cycles
with incorrect/failed alive supervisions for this Supervised Entity.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 255

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

130 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

Scope / Dependency scope: local

SWS Item ECUC_WdgM_00326 :

Name

WdgMLocalStatusSupervisedEntityRef

Description This is the reference to the Supervised Entity for which the Local Status
parameters are specified.

Multiplicity 1

Type Symbolic name reference to [WdgMSupervisedEntity]

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

No Included Containers

WdgMLocalStatusParams :

EcucParamConfContainerDef

upperMultiplicity = 65535

lowerMultiplicity = 0

WdgMFailedAliveSupervisionRefCycleTol :

EcucIntegerParamDef

min = 0

max = 255

WdgMSupervisedEntity :

EcucParamConfContainerDef

upperMultiplicity = 65535

lowerMultiplicity = 0

WdgMLocalStatusSupervisedEntityRef :

EcucSymbolicNameReferenceDef

+destination+reference

+parameter

Figure 30: Configuration Container WdgMLocalStatusParams

10.2.17 WdgMCallerIds

SWS Item ECUC_WdgM_00358 :

Container Name WdgMCallerIds

Description
Contains the definition of valid CallerIds for the callers who have
permission to call the function WdgM_SetMode.

Configuration Parameters

SWS Item ECUC_WdgM_00359 :

Name

WdgMCallerId

Description This parameter defines one valid CallerId for the callers who have
permission to call the function WdgM_SetMode.

Multiplicity 0..255

Type EcucIntegerParamDef

Range 0 .. 65535

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

No Included Containers

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

131 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

10.3 Published Information

For details refer to the chapter 10.3 “Published Information” in SWS_BSWGeneral.

10.4 Callback Routines

The Watchdog Manager module follows the standardized AUTOSAR concept to
report development errors. The provided callback routines are specified in the
Development Error Tracer (DET) specification.

The Watchdog Manager module follows the standardized AUTOSAR concept to
report production errors. The provided callback routines are specified in the
Diagnostic Event Manager (DEM) specification.

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

132 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

11 Annex A: Example Implementation of Alive Supervision
Algorithm

For the Alive Supervision, an algorithm to detect mismatching timing constraints of
the Checkpoints is provided in order to clearly define the parameters needed for the
Alive Supervision.

Doing this with incremental alive counters for the Checkpoints brings up a
representation of aliveness by a counted number of alive indications in relationship
with the Alive Supervision period.

With this approach, it must be possible to deal with two different scenarios:

A) The alive indications of a Checkpoint are expected to occur at least one time
within one supervision cycle. The number of alive indications (AI) within one
supervision cycle (SC) shall be counted.

B) The alive indication of a Checkpoint is expected to occur less often than the
supervision cycle. The number of supervision cycles (SC) between two alive
indications (AI) has to be counted.

To cope with these two scenarios, it is necessary to count both AI and SC.

We also need the parameter WdgMExpectedAliveIndications

[ECUC_WdgM_00311] (EAI) which represents the expected amount of alive
indications of the Checkpoint within the referenced amount of supervision cycles also
called supervision reference cycle [ECUC_WdgM_00310] (SRC). The value of this
parameter should have been determined during the design phase and defined by
configuration.

To avoid the detection of too many supervision errors for the Checkpoints, there are

parameters WdgMMinMargin [ECUC_WdgM_00312] and WdgMMaxMargin

[ECUC_WdgM_00313] to define tolerances on the timing constraints.

WdgMMinMargin represents the allowed number of missing executions of the

Checkpoint.

WdgMMaxMargin represents the allowed number of additional executions of the

Checkpoint.

Therefore the algorithm becomes:

(n (AI) – n (SC) + f(EAI, SRC) <= WdgMMaxMargin) and

(n (AI) – n (SC) + f(EAI, SRC) >= - WdgMMinMargin),

where the function f is defined as

f(EAI, SRC) = SRC - EAI .

Note that f(EAI, SRC) has a constant value and can be preliminary computed if EAI
and SRC are constant.

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

133 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

11.1 Scenario A

The alive indications (AI) of a Checkpoint are expected to occur at least one time
within one supervision cycle.

Example: 2 alive indications are expected in one supervision cycle which represents
the supervision reference cycle then the value of f(EAI, SRC) is:

f(EAI, SRC) = 1 - 2 = -1

When SC occurs, the number of supervision cycles is incremented (n (SC) = 1) and
the regularly checkup is performed during each supervision cycle (supervision
reference cycle = 1 supervision cycle) with the algorithm.

After performing the check, the current numbers of alive indications and supervision
cycles are reset.

For our examples, Max and Min margins are set to 0 for more simplicity, so the
algorithm used is

n (AI) – n (SC) + f(EAI, SRC) = 0.

This brings the compare algorithm to a negative result if not enough alive indications
occurred before the supervision cycle. If the number of alive indications fits exactly to
the expected number the result is 0. If more alive indications have occurred, the
number is bigger than 0.

The result of the algorithm represents exactly the number of "extra" alive indications
within the last supervision cycle.

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

134 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

Figure 31: Alive-supervision algorithm – Scenario A

11.2 Scenario B

The supervision cycle is expected more often than the alive indication. In this case,
we have to count the supervision cycles, which have occurred, until the alive counter
is incremented again. The check of aliveness should be performed during each
supervision reference cycle and the same algorithm should be used:

n (AI) – n (SC) + f(EAI, SRC) = 0

The alive indication must occur at least within a predefined number of supervision
cycles which represent the supervision reference cycle.

Example: one alive indication is expected within 2 supervision cycles (supervision
reference cycle = 2 supervision cycles):

f(EAI, SRC) = 2 – 1 = +1

The alive counter has to be incremented by 1 with every alive indication. Aliveness
should be evaluated in the supervision cycle corresponding to the supervision
reference cycle. The compare-conditions of the algorithm remain in the same
manner, but the detected incrementation of the alive counter should also invoke a
reset of the alive counter and supervision counter after this compare-operation.

scenario A : one or several alive indications within one
supervision cycle

t

t (WdgM _ MainFunction) T (SC) Alive Indications for SE (A)

t
1

3

5 n (AI)

n () : counted number of
AI : alive indications
SC : supervision cycle
f (EAI) : - expected n (AI) + 1 = - 1

= -
1

SC 1 SC 2 SC 3
perform check of
alive counter
(reference cycle)

reset
alive counter
and
supervision
counter

n (AI) - n (SC) + f (EAI) = 2 - 1 - 1 = 0
cycle 1

n (AI) - n (SC) + f (EAI) = 2 - 1 - 1 = 0
cycle 2

o . k .

o . k .

n (AI) - n (SC) + f (EAI) = 1 - 1 - 1 = - 1
cycle 3

not
o . k .

n (AI) - n (SC) + f (EAI) = 3 - 1 - 1 = 1
cycle 4

SC 4 ...

continuous alivness t

supervision reference cycle = 1 SC

CYCLE 1 :

CYCLE 2 :

CYCLE 3 :

CYCLE 4 :
in this example : expected n (AI) = 2 ;
2 expected alive indications within one
supervision cycle ;

n

2

4

missing Alive Indication for SE (A)

corrupted aliveness recovering aliveness corrupted

n (SC)

not
o . k .

MinMargin = MaxMargin = 0

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

135 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

Figure 32: Alive Supervision algorithm – Scenario B

t

t
(WdgM_MainFunction_

AliveSupervision)
T (SC) Alive Indications for SE(B)

t

n

1
2
3
4
5

n () : counted number of
AI : alive indication
SC : supervision cycle
f(EAI) : expected n(SC)

missing Alive Indication for SE(B)

SC 1 SC 2
perform check of
alive counter
(reference cycle)

reset
supervision

counter
(caused by Alive indication)

and
alive counter

o.k.

not o.k.

...

continuous aliveness corrupted aliveness recovering
aliveness continuous aliveness t

scenario B : alive indication period longer than one supervision cycle

supervision reference cycle = 2 SC

CYCLE 1 :

SC 3 SC 4 SC 5 SC 6 SC 7

n (SC) n(AI)

CYCLE 3 : n(AI) - n (SC) + f(EAI) = 1 - 2 + 1 = 0
cycle 3 cycle 3

n(AI) - n (SC) + f(EAI) = 1 - 2 + 1 = 0
cycle 1 cycle 1

o.k.

CYCLE 5 : n(AI) - n (SC) + f(EAI) = 0 - 2 + 1 = -1

- 1 = 1

reset
supervision counter
(caused by detected corruption)

and
alive counter

CYCLE 7 : n(AI) - n (SC) + f(EAI) = 0 - 1 + 1 = 0

cycle 5 cycle 5

o.k.
cycle 7 cycle 7

in this example : expected n(SC) = 2 ;
max. 2 expected supervision cycles, before AI must occur ;

MinMargin = MaxMargin = 0

Specification of Watchdog Manager
 V2.5.0

R4.1 Rev 3

136 of 136 Document ID 080: AUTOSAR_SWS_WatchdogManager

- AUTOSAR confidential -

12 Not applicable requirements

[SWS_WdgM_00345]⌈These requirements are not applicable to this

specification.⌋(SRS_BSW_00300, SRS_BSW_00304, SRS_BSW_00306, SRS_BSW_00307,

SRS_BSW_00308, SRS_BSW_00309, SRS_BSW_00312, SRS_BSW_00314, SRS_BSW_00321,
SRS_BSW_00325, SRS_BSW_00326, SRS_BSW_00328, SRS_BSW_00333, SRS_BSW_00334,
SRS_BSW_00335, SRS_BSW_00422, SRS_BSW_00341, SRS_BSW_00342, SRS_BSW_00343,
SRS_BSW_00344, SRS_BSW_00347, SRS_BSW_00355, SRS_BSW_00359, SRS_BSW_00360,
SRS_BSW_00440, SRS_BSW_00370, SRS_BSW_00371, SRS_BSW_00375, SRS_BSW_00377,
SRS_BSW_00378, SRS_BSW_00386, SRS_BSW_00387, SRS_BSW_00398, SRS_BSW_00405,
SRS_BSW_00413, SRS_BSW_00416, SRS_BSW_00437, SRS_BSW_00417, SRS_BSW_00423,
SRS_BSW_00424, SRS_BSW_00425, SRS_BSW_00426, SRS_BSW_00427, SRS_BSW_00428,
SRS_BSW_00429, BSW00431, SRS_BSW_00432, SRS_BSW_00433, BSW00434,
SRS_BSW_00005, SRS_BSW_00006, SRS_BSW_00439, SRS_BSW_00007, SRS_BSW_00009,
SRS_BSW_00010, SRS_BSW_00160, SRS_BSW_00161, SRS_BSW_00162, SRS_BSW_00164,

SRS_BSW_00167, SRS_BSW_00168, SRS_BSW_00170, SRS_BSW_00172)

	1 Introduction and Functional Overview
	1.1 Supervised Entities and Checkpoints
	1.2 Interaction of Supervision Mechanisms
	1.3 Supervision Functions
	1.3.1 Alive Supervision
	1.3.2 Deadline Supervision
	1.3.3 Logical Supervision

	1.4 Watchdog Handling
	1.5 Error Handling
	1.5.1 Error Handling in the Supervised Entity
	1.5.2 Partition Shutdown
	1.5.3 Reset by Hardware Watchdog
	1.5.4 Immediate MCU Reset

	2 Acronyms, Abbreviations and Terms
	3 Related Documentation
	3.1 Input Documents
	3.2 Related specification

	4 Constraints and Assumptions
	4.1 Limitations and conditions of use
	4.2 Applicability to Car Domains

	5 Dependencies to Other Modules
	5.1 File Structure
	5.1.1 Code File Structure
	5.1.2 Header File Structure

	5.2 Version Check

	6 Requirements Traceability
	7 Functional Specification
	7.1 Interaction of Supervision Functions
	7.1.1 Overview
	7.1.2 Core Configurable Parameters
	7.1.3 Local Supervision Status
	7.1.4 Global Supervision Status
	7.1.5 Alive Supervision
	7.1.5.1 Alive Supervision Configuration
	7.1.5.2 Alive Supervision Algorithm

	7.1.6 Deadline Supervision
	7.1.6.1 Deadline Supervision Configuration
	7.1.6.2 Deadline Supervision Algorithm

	7.1.7 Logical Supervision
	7.1.7.1 Alive Supervision Configuration
	7.1.7.2 Logical Supervision Algorithm

	7.2 Error Handling / Failure Recovery
	7.2.1 RTE Mode Mechanism Notifications
	7.2.2 Report to DEM in WDGM_GLOBAL_STATUS_STOPPED
	7.2.3 Partition Restart / Shutdown
	7.2.4 Not Setting the Watchdog Trigger Condition
	7.2.5 MCU Reset

	7.3 Watchdog Handling
	7.3.1 Support for Multiple Watchdog Instances
	7.3.2 Setting the Trigger Conditions
	7.3.3 Configurable Parameters

	7.4 Development Errors
	7.5 Detection of Development Errors
	7.6 Production Errors
	7.7 Extended Production Errors
	7.8 Debugging Support
	7.9 Watchdog Manager Configuration
	7.9.1 Mode-independent Supervision Settings
	7.9.1.1 Supervised Entity
	7.9.1.2 OS Application
	7.9.1.3 Logical Supervision of Internal Graphs

	7.9.2 Mode-Dependent Parameters
	7.9.2.1 Mode
	7.9.2.2 Logical Supervision of External Graphs
	7.9.2.3 Alive Supervision
	7.9.2.4 Deadline Supervision

	7.10 Switching Modes
	7.10.1 Effect on Supervision Status
	7.10.2 Effect on Watchdogs
	7.10.3 Watchdog Handling during Sleep

	7.11 Specification of the Ports and Port Interfaces
	7.11.1 Ports and Port Interface for Alive Supervision
	7.11.1.1 General Approach
	7.11.1.2 Data Types
	7.11.1.3 Port Interface for Alive Supervision
	7.11.1.4 Service Ports
	7.11.1.5 Error Codes

	7.11.2 Ports and Port Interface for Status Reporting
	7.11.2.1 General Approach
	7.11.2.2 Data Types
	7.11.2.3 Port Interfaces
	7.11.2.4 Mode Ports
	7.11.2.5 Error Codes

	7.11.3 Definition of the Watchdog Manager Service

	8 API Specification
	8.1 Imported Types
	8.2 Type Definitions
	8.2.1 WdgM_ConfigType
	8.2.2 WdgM_SupervisedEntityIdType
	8.2.3 WdgM_CheckpointIdType
	8.2.4 WdgM_ModeType
	8.2.5 WdgM_LocalStatusType
	8.2.6 WdgM_GlobalStatusType

	8.3 Function Definitions
	8.3.1 WdgM_Init
	8.3.2 WdgM_DeInit
	8.3.3 WdgM_GetVersionInfo
	8.3.4 WdgM_SetMode
	8.3.5 WdgM_GetMode
	8.3.6 WdgM_CheckpointReached
	8.3.7 WdgM_UpdateAliveCounter
	8.3.8 WdgM_GetLocalStatus
	8.3.9 WdgM_GetGlobalStatus
	8.3.10 WdgM_PerformReset
	8.3.11 WdgM_GetFirstExpiredSEID

	8.4 Call-back Notifications
	8.5 Scheduled Functions
	8.5.1 WdgM_MainFunction

	8.6 Expected Interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.3 Configurable Interfaces
	8.6.4 Job End Notification

	9 Sequence Diagrams
	9.1 Initialization

	10 Configuration Specification
	10.1 Parameter Differentiation
	10.1.1 Static Configuration Parameters
	10.1.2 Runtime Configuration Parameters
	10.1.3 Precompile Options

	10.2 Containers and Configuration Parameters
	10.2.1 Variants
	10.2.2 WdgM
	10.2.3 WdgMGeneral
	10.2.4 WdgMSupervisedEntity
	10.2.5 WdgMCheckpoint
	10.2.6 WdgMInternalTransition
	10.2.7 WdgMWatchdog
	10.2.8 WdgMConfigSet
	10.2.9 WdgMDemEventParameterRefs
	10.2.10 WdgMMode
	10.2.11 WdgMAliveSupervision
	10.2.12 WdgMDeadlineSupervision
	10.2.13 WdgMExternalLogicalSupervision
	10.2.14 WdgMExternalTransition
	10.2.15 WdgMTrigger
	10.2.16 WdgMLocalStatusParams
	10.2.17 WdgMCallerIds

	10.3 Published Information
	10.4 Callback Routines

	11 Annex A: Example Implementation of Alive Supervision Algorithm
	11.1 Scenario A
	11.2 Scenario B

	12 Not applicable requirements

