
Specification of Watchdog Driver 
 V3.1.1 

R4.1 Rev 3 

1 of 43 Document ID 039: AUTOSAR_SWS_WatchdogDriver 

- AUTOSAR confidential - 

 
 

Document Change History 
Date Version Changed by Change Description 

31.03.2014 3.1.1 AUTOSAR Release 
Management 

 Minor editorial changes 

31.10.2013 3.1.0 AUTOSAR Release 
Management 

 Shift Dem_ReportErrorStatus from 
mandatory to optional interfaces 

 Editorial changes 

 Removed chapter(s) on change 
documentation 

28.01.2013 3.0.0 AUTOSAR 
Administration 

 Add chapter for production errors  

 Rename MemMap.h to 
Wdg_MemMap.h  

  Remove GPT usage  

 Added Subchapter 3.x due to SWS 
General Rollout  

 Reworked according to the new 
SWS_BSWGeneral  

 Reworded SWS_Wdg_00018, 
SWS_Wdg_00019, 
SWS_Wdg_00052 for debugging 
purpose  

27.09.2011 2.5.0 AUTOSAR  
Administration 

 DET-Error for Wdg_GetVersionInfo 
added 

13.10.2010 2.4.0 AUTOSAR  
Administration 

 Requirement WDG141/WDG143 
removed  

01.12.2009 2.3.0 AUTOSAR  
Administration 

 Modifications for windowed 
watchdog concept 

 Further maintenance for R4.0: see 
Chapter 11 

 Legal disclaimer revised 

23.06.2008 
 

2.2.1 AUTOSAR  
Administration 

Legal disclaimer revised 

Document Title Specification of Watchdog 
Driver 

Document Owner AUTOSAR 

Document Responsibility AUTOSAR 

Document Identification No 039 

Document Classification Standard 

  

Document Version 3.1.1 

Document Status Final 

Part of Release 4.1 

Revision 3 



Specification of Watchdog Driver 
 V3.1.1 

R4.1 Rev 3 

2 of 43 Document ID 039: AUTOSAR_SWS_WatchdogDriver 

- AUTOSAR confidential - 

Document Change History 
Date Version Changed by Change Description 

07.12.2007 
 

2.2.0 AUTOSAR  
Administration 

 Section 5.1.2 the file include 
structure has been changed. 

 Section 8.6.2 
Dem_ReportErrorStatus added as 
optional interfaces. 

 Rephrased the 
requirementsWDG019, 
SWS_Wdg_00031, 
SWS_Wdg_00034. 

 Modified sequence diagrams in 
chapter 9. 

 Document meta information 
extended  

 Small layout adaptations made 

31.01.2007 2.1.0 AUTOSAR  
Administration 

 In chapter 5.1.2 the file include 
structure has been changed to 
comply with the SPAL general 
include structure. 

 In chapter WdgDefaultMode has 
been added as PC variant and 
WDG003 has been changed to allow 
passing NULL pointer. 

 For WDG037 the requirement was 
changed to allow configuration of 
activation code if the H/W allows for 
the same. 

 For SWS_Wdg_00078 the 
requirement was changed to add 
reference to SPI/DIO for accessing 
the external watchdog 

 

 Legal disclaimer revised 

 Release Notes added 

 “Advice for users” revised 

 “Revision Information” added 

20.03.2006 2.0.0 AUTOSAR 
Administration  

Document structure adapted to 
common Release 2.0 SWS Template 

31.05.2005 1.0.0 AUTOSAR 
Administration 

Initial Release 



Specification of Watchdog Driver 
 V3.1.1 

R4.1 Rev 3 

3 of 43 Document ID 039: AUTOSAR_SWS_WatchdogDriver 

- AUTOSAR confidential - 

Disclaimer 
 
This specification and the material contained in it, as released by AUTOSAR is for 
the purpose of information only. AUTOSAR and the companies that have contributed 
to it shall not be liable for any use of the specification. 
 
The material contained in this specification is protected by copyright and other types 
of Intellectual Property Rights. The commercial exploitation of the material contained 
in this specification requires a license to such Intellectual Property Rights.  
 
This specification may be utilized or reproduced without any modification, in any form 
or by any means, for informational purposes only.  
For any other purpose, no part of the specification may be utilized or reproduced, in 
any form or by any means, without permission in writing from the publisher.  
 
The AUTOSAR specifications have been developed for automotive applications only. 
They have neither been developed, nor tested for non-automotive applications. 
 
The word AUTOSAR and the AUTOSAR logo are registered trademarks. 
 
 
 
Advice for users  
 
AUTOSAR Specification Documents may contain exemplary items (exemplary 
reference models, "use cases", and/or references to exemplary technical solutions, 
devices, processes or software).  
 
Any such exemplary items are contained in the Specification Documents for 
illustration purposes only, and they themselves are not part of the AUTOSAR 
Standard. Neither their presence in such Specification Documents, nor any later 
documentation of AUTOSAR conformance of products actually implementing such 
exemplary items, imply that intellectual property rights covering such exemplary 
items are licensed under the same rules as applicable to the AUTOSAR Standard. 



Specification of Watchdog Driver 
 V3.1.1 

R4.1 Rev 3 

4 of 43 Document ID 039: AUTOSAR_SWS_WatchdogDriver 

- AUTOSAR confidential - 

Table of Contents 
 

1 Introduction and functional overview ................................................................... 6 

2 Acronyms and abbreviations ............................................................................... 7 

3 Related documentation........................................................................................ 8 

3.1 Input documents ............................................................................................ 8 
3.2 Related standards and norms ....................................................................... 8 
3.3 Related specification ..................................................................................... 8 

4 Constraints and assumptions .............................................................................. 9 

4.1 Limitations ..................................................................................................... 9 
4.2 Applicability to car domains ........................................................................... 9 

5 Dependencies to other modules ........................................................................ 10 

5.1 File structure ................................................................................................ 10 

5.1.1 Code file structure ................................................................................. 10 

5.1.2 Header file structure .............................................................................. 11 
5.1.3 Version check ....................................................................................... 12 

5.2 System clock ............................................................................................... 12 
5.3 Onboard communication handlers ............................................................... 12 

6 Requirements traceability .................................................................................. 13 

7 Functional specification ..................................................................................... 22 

7.1 General design rules ................................................................................... 22 
7.2 Error classification ....................................................................................... 23 
7.3 Production errors ......................................................................................... 23 

7.4 Extended production errors ......................................................................... 23 
7.5 Error detection ............................................................................................. 23 

7.6 Error notification .......................................................................................... 23 
7.7 External watchdog driver ............................................................................. 23 
7.8 Internal watchdog driver .............................................................................. 24 
7.9 Triggering concept to support windowed watchdogs ................................... 25 

7.10 Debugging ................................................................................................ 26 

8 API specification ................................................................................................ 27 

8.1 Imported types ............................................................................................. 27 
8.2 Type definitions ........................................................................................... 27 

8.2.1 Wdg_ConfigType .................................................................................. 27 
8.3 Function definitions...................................................................................... 27 

8.3.1 Wdg_Init ................................................................................................ 27 

8.3.2 Wdg_SetMode ...................................................................................... 29 
8.3.3 Wdg_SetTriggerCondition ..................................................................... 31 
8.3.4 Wdg_GetVersionInfo ............................................................................. 32 

8.4 Call-back Notifications ................................................................................. 32 

8.5 Scheduled functions .................................................................................... 32 
8.6 Expected interfaces ..................................................................................... 32 

8.6.1 Mandatory interfaces ............................................................................ 33 

8.6.2 Optional interfaces ................................................................................ 33 



Specification of Watchdog Driver 
 V3.1.1 

R4.1 Rev 3 

5 of 43 Document ID 039: AUTOSAR_SWS_WatchdogDriver 

- AUTOSAR confidential - 

8.6.3 Configurable interfaces ......................................................................... 33 

9 Sequence diagrams .......................................................................................... 34 

9.1 Watchdog initialization, setting trigger condition and mode. ........................ 34 
9.2 Data exchange between watchdog driver and hardware ............................. 35 

10 Configuration specification ................................................................................ 36 

10.1 How to read this chapter .......................................................................... 36 

10.2 Containers and configuration parameters ................................................ 37 
10.2.1 Variants ............................................................................................. 37 
10.2.2 Wdg ................................................................................................... 37 

10.2.3 WdgDemEventParameterRefs .......................................................... 37 
10.2.4 WdgGeneral ...................................................................................... 38 
10.2.5 WdgSettingsConfig ............................................................................ 40 
10.2.6 WdgSettingsFast ............................................................................... 41 

10.2.7 WdgSettingsSlow .............................................................................. 41 
10.2.8 WdgSettingsOff ................................................................................. 41 
10.2.9 WdgExternalConfiguration ................................................................. 42 

10.3 Published information ............................................................................... 42 

10.3.1 WdgPublishedInformation .................................................................. 42 

11 Not applicable requirements .............................................................................. 43 

 



Specification of Watchdog Driver 
 V3.1.1 

R4.1 Rev 3 

6 of 43 Document ID 039: AUTOSAR_SWS_WatchdogDriver 

- AUTOSAR confidential - 

1 Introduction and functional overview 
 
This document specifies the functionality, API and the configuration of the AUTOSAR 
Basic Software module watchdog driver (Wdg).  
 
This module provides services for initialization, changing the operation mode and 
setting the trigger condition (timeout).  
 
The functional requirements and the functional scope are the same for both internal 
and external watchdog drivers. Hence the API is semantically identical. 
 
An internal watchdog driver belongs to the Microcontroller Abstraction Layer (MCAL), 
whereas an external watchdog driver belongs to the Onboard Device Abstraction 
Layer. Therefore, an external watchdog driver needs other drivers (in MCAL) in order 
to access the microcontroller hardware. 
 



Specification of Watchdog Driver 
 V3.1.1 

R4.1 Rev 3 

7 of 43 Document ID 039: AUTOSAR_SWS_WatchdogDriver 

- AUTOSAR confidential - 

2 Acronyms and abbreviations 
 
Acronyms and abbreviations that have a local scope are not contained in the 
AUTOSAR glossary. These must appear in a local glossary. 
 
Abbreviation / 
Acronym: 

Description: 

DIP Digital Input/Output 

DET Development Error Tracer – module to catch development errors. 

DEM  Diagnostic Event Manager – module to handle diagnostic relevant events. 

SPI Serial Peripheral Interface 

WDG Watchdog (module specific prefix) 

 
Definitions needed for understanding of the concepts  
 
Definition: Description: 

Off-Mode The watchdog hardware is disabled / shut down. 
This might be necessary in order to shut down the complete ECU and not get cyclic 
resets from a still running external watchdog. 
This mode might not be allowed for safety critical systems. In this case, the Wdg 
module has to be configured to prevent switching to this mode.  

Slow-Mode Triggering the watchdog hardware can be done with a long timeout period. 
This mode can e.g. be used during system startup / initialization phase. E.g. the 
watchdog hardware is configured for toggle mode (no constraints on the point in 
time at which the triggering is done) and a timeout period of 20 milliseconds. 

Fast-Mode Triggering the watchdog hardware has to be done with a short timeout period. 
This mode can e.g. be used during normal operations of the ECU. E.g. the 
watchdog hardware is configured for window mode (triggering the watchdog has to 
occur within certain minimum / maximum boundaries within the timeout period) and 
a timeout period of 5 milliseconds. 

 
 



Specification of Watchdog Driver 
 V3.1.1 

R4.1 Rev 3 

8 of 43 Document ID 039: AUTOSAR_SWS_WatchdogDriver 

- AUTOSAR confidential - 

3 Related documentation 
 

3.1 Input documents  
 
[1] Layered Software Architecture 

AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf 
 

[2] General Requirements on Basic Software Modules 
AUTOSAR_SRS_BSWGeneral.pdf 
 

[3] General Requirements on SPAL 
AUTOSAR_SRS_SPALGeneral.pdf 
 

[4] Requirements on Watchdog Driver 
AUTOSAR_SRS_WatchdogDriver.pdf 
 

[5] Specification of Watchdog Interface 
AUTOSAR_SWS_WatchdogInterface.pdf 
 

[6] Basic Software Module Description Template 
AUTOSAR_TPS_BSWModuleDescriptionTemplate.pdf 

 
[7] Specification of RTE Software Specification of Watchdog Driver 

AUTOSAR_SWS_RTE.pdf 
 

[8] List of Basic Software Modules 
AUTOSAR_TR_BSWModuleList 

 
[9] General Specification of Basic Software Modules 

AUTOSAR_SWS_BSWGeneral.pdf 
 

3.2 Related standards and norms 
 
None 
 

3.3 Related specification 
 
AUTOSAR provides a General Specification on Basic Software modules [9] (SWS 
BSW General), which is also valid for Watchdog Driver. 
 
Thus, the specification SWS BSW General shall be considered as additional and 
required specification for Watchdog Driver. 
 



Specification of Watchdog Driver 
 V3.1.1 

R4.1 Rev 3 

9 of 43 Document ID 039: AUTOSAR_SWS_WatchdogDriver 

- AUTOSAR confidential - 

4 Constraints and assumptions 
 

4.1 Limitations 
 
No limitations.  
 
 

4.2 Applicability to car domains 
 
No restrictions. 



Specification of Watchdog Driver 
 V3.1.1 

R4.1 Rev 3 

10 of 43 Document ID 039: AUTOSAR_SWS_WatchdogDriver 

- AUTOSAR confidential - 

5 Dependencies to other modules 
 
A Wdg module for an internal (on-chip) watchdog accesses the microcontroller 
hardware directly and is located in the Microcontroller Abstraction layer.  
 
A Wdg module for an external watchdog uses other modules (e.g. SPI) to access the 
external watchdog device. Such a Wdg module is located in the Onboard Device 
Abstraction Layer (see [1]). 
 

[SWS_Wdg_00055] ⌈The Wdg module for an external watchdog driver shall have 

source code that is independent of the microcontroller platform.⌋ () 
 

5.1 File structure 
 
5.1.1 Code file structure 

[SWS_Wdg_00079] ⌈The code file structure shall not be defined within this 
specification completely. At this point it shall be pointed out that the code-file 
structure shall include the following files (as far as required; for name expansion see 
SWS_Wdg_00169):  

- Wdg_Lcfg.c – for link time configurable parameters 
- Wdg_PBcfg.c – for post build time configurable parameters 
- Wdg_Irq.c – for holding the interrupt frames in case an internal watchdog 

servicing is implemented as interrupt routine (and not via timer callback) 

These files shall contain all link time and post-build time configurable parameters.⌋ 
(SRS_BSW_00380, SRS_BSW_00346, SRS_BSW_00158, SRS_BSW_00314, SRS_SPAL_12263) 
 
Note: These names are required by SRS_BSW_00314 and SRS_BSW_00346 
 

[SWS_Wdg_00169] ⌈If more than one watchdog driver instance exists on an ECU 
(namely an external and an internal one) the implementer shall provide unique code 

file names by expanding the names according to SRS_BSW_00347.⌋ 
(SRS_BSW_00347) 



Specification of Watchdog Driver 
 V3.1.1 

R4.1 Rev 3 

11 of 43 Document ID 039: AUTOSAR_SWS_WatchdogDriver 

- AUTOSAR confidential - 

5.1.2 Header file structure 

 

[SWS_Wdg_00061] ⌈The Wdg module shall adhere to the following file structure: 
 

 
 
Figure 1: File include structure 

⌋ (SRS_BSW_00345, SRS_BSW_00159, SRS_BSW_00381, SRS_BSW_00412, SRS_BSW_00346, 

SRS_BSW_00158, SRS_BSW_00370, SRS_BSW_00435, SRS_BSW_00436, SRS_BSW_00301) 
 
Notes to the figure:  

 The possible name expansion for multiple driver modules are indicated as 
<xxx> in Figure 1. 

 Since the API names are also to be expanded, the header Wdg<xxx>.h will 
become instance specific. 



Specification of Watchdog Driver 
 V3.1.1 

R4.1 Rev 3 

12 of 43 Document ID 039: AUTOSAR_SWS_WatchdogDriver 

- AUTOSAR confidential - 

 Wdg<xxx>.h contains the pre-compile configuration macros. It is not expected 
that, source code is required to implement the pre-compile configuration for 
the watchdog driver module. This file also contains – if required – references 
to the c-data for link-time and/or post-build configuration. 

 Wdg_<xxx>Cbk.h contains the declaration of callback functions from other 
modules implemented by the Wdg module (see SRS_BSW_00370). This file is 
mandatory, even if there are no callback functions required. 

 SchM_Wdg<xxx>.h is a mandatory include file (see SRS_BSW_00335) 
provided by the RTE generator. Though the Watchdog Driver has no 
scheduled function, this header is e.g. needed, if the Wdg module defines 
critical section. 

 The need to include headers from SPI-, DIO- or other drivers depends on how 
the watchdog is serviced and the watchdog hardware is accessed, see 
chapters 7.7 and 7.8. 

 

[SWS_Wdg_00170] ⌈If more than one watchdog driver instance exists on an ECU 

(namely an external and an internal one) the implementer shall provide unique 

header file names by expanding the names according to SRS_BSW_00347.⌋ 
(SRS_BSW_00347) 
 

 
Note: 
In case of multiple watchdog driver instances, the Event Id symbols for production 
errors defined in this specification (see  SWS_Wdg_00010 and  ECUC_Wdg_00148) 
might be expanded in the configuration of the DEM in order to make them unique. 
 
 
5.1.3 Version check 

For details refer to the chapter 5.1.8 “Version Check” in SWS_BSWGeneral. 
 

5.2 System clock 
 
If the hardware of the internal watchdog depends on the system clock, changes to 
the system clock (e.g. PLL on  PLL off) may also affect the clock settings of the 
watchdog hardware. 
 
 

5.3 Onboard communication handlers 
 
A Wdg module for an external watchdog device depends on the API and capabilities 
of the used onboard communication handlers or drivers (e.g. SPI handler). 
 



Specification of Watchdog Driver 
 V3.1.1 

R4.1 Rev 3 

13 of 43 Document ID 039: AUTOSAR_SWS_WatchdogDriver 

- AUTOSAR confidential - 

6 Requirements traceability 
 
 

Requirement Description Satisfied by 

- - SWS_Wdg_00034 

- - SWS_Wdg_00055 

- - SWS_Wdg_00103 

- - SWS_Wdg_00105 

- - SWS_Wdg_00107 

- - SWS_Wdg_00109 

- - SWS_Wdg_00111 

- - SWS_Wdg_00136 

- - SWS_Wdg_00138 

- - SWS_Wdg_00139 

- - SWS_Wdg_00140 

- - SWS_Wdg_00145 

- - SWS_Wdg_00146 

- - SWS_Wdg_00152 

- - SWS_Wdg_00153 

- - SWS_Wdg_00154 

- - SWS_Wdg_00157 

- - SWS_Wdg_00158 

- - SWS_Wdg_00159 

- - SWS_Wdg_00161 

- - SWS_Wdg_00168 

- - SWS_Wdg_00173 

- - SWS_Wdg_00174 

BSW00434 - SWS_Wdg_00175 

BSW00443 - SWS_Wdg_00175 

BSW00444 - SWS_Wdg_00175 

BSW00445 - SWS_Wdg_00175 

BSW00446 - SWS_Wdg_00175 

BSW12155 - SWS_Wdg_00175 

see[1] - SWS_Wdg_00162 

SRS_BSW_00004 All Basic SW Modules shall 
perform a pre-processor check of 
the versions of all imported include 
files 

SWS_Wdg_00086 

SRS_BSW_00005 Modules of the æC Abstraction 
Layer (MCAL) may not have hard 
coded horizontal interfaces 

SWS_Wdg_00175 

SRS_BSW_00006 The source code of software SWS_Wdg_00175 



Specification of Watchdog Driver 
 V3.1.1 

R4.1 Rev 3 

14 of 43 Document ID 039: AUTOSAR_SWS_WatchdogDriver 

- AUTOSAR confidential - 

modules above the æC Abstraction 
Layer (MCAL) shall not be 
processor and compiler dependent.  

SRS_BSW_00007 All Basic SW Modules written in C 
language shall conform to the 
MISRA C 2004 Standard. 

SWS_Wdg_00175 

SRS_BSW_00009 All Basic SW Modules shall be 
documented according to a 
common standard. 

SWS_Wdg_00175 

SRS_BSW_00010 The memory consumption of all 
Basic SW Modules shall be 
documented for a defined 
configuration for all supported 
platforms. 

SWS_Wdg_00175 

SRS_BSW_00101 The Basic Software Module shall 
be able to initialize variables and 
hardware in a separate initialization 
function 

SWS_Wdg_00001 

SRS_BSW_00158 All modules of the AUTOSAR 
Basic Software shall strictly 
separate configuration from 
implementation  

SWS_Wdg_00061, SWS_Wdg_00079 

SRS_BSW_00159 All modules of the AUTOSAR 
Basic Software shall support a tool 
based configuration 

SWS_Wdg_00061 

SRS_BSW_00161 The AUTOSAR Basic Software 
shall provide a microcontroller 
abstraction layer which provides a 
standardized interface to higher 
software layers 

SWS_Wdg_00175 

SRS_BSW_00162 The AUTOSAR Basic Software 
shall provide a hardware 
abstraction layer  

SWS_Wdg_00175 

SRS_BSW_00164 The Implementation of interrupt 
service routines shall be done by 
the Operating System, complex 
drivers or modules 

SWS_Wdg_00166 

SRS_BSW_00167 All AUTOSAR Basic Software 
Modules shall provide configuration 
rules and constraints to enable 
plausibility checks 

SWS_Wdg_00086 

SRS_BSW_00168 SW components shall be tested by 
a function defined in a common 
API in the Basis-SW 

SWS_Wdg_00175 

SRS_BSW_00170 The AUTOSAR SW Components 
shall provide information about 
their dependency from faults, 
signal qualities, driver demands 

SWS_Wdg_00175 

SRS_BSW_00172 The scheduling strategy that is built 
inside the Basic Software Modules 
shall be compatible with the 
strategy used in the system 

SWS_Wdg_00175 



Specification of Watchdog Driver 
 V3.1.1 

R4.1 Rev 3 

15 of 43 Document ID 039: AUTOSAR_SWS_WatchdogDriver 

- AUTOSAR confidential - 

SRS_BSW_00301 All AUTOSAR Basic Software 
Modules shall only import the 
necessary information 

SWS_Wdg_00061 

SRS_BSW_00302 All AUTOSAR Basic Software 
Modules shall only export 
information needed by other 
modules  

SWS_Wdg_00175 

SRS_BSW_00304 - SWS_Wdg_00175 

SRS_BSW_00306 AUTOSAR Basic Software 
Modules shall be compiler and 
platform independent  

SWS_Wdg_00175 

SRS_BSW_00307 Global variables naming 
convention 

SWS_Wdg_00175 

SRS_BSW_00308 AUTOSAR Basic Software 
Modules shall not define global 
data in their header files, but in the 
C file 

SWS_Wdg_00175 

SRS_BSW_00309 All AUTOSAR Basic Software 
Modules shall indicate all global 
data with read-only purposes by 
explicitly assigning the const 
keyword 

SWS_Wdg_00175 

SRS_BSW_00312 Shared code shall be reentrant  SWS_Wdg_00175 

SRS_BSW_00314 All internal driver modules shall 
separate the interrupt frame 
definition from the service routine  

SWS_Wdg_00079 

SRS_BSW_00321 The version numbers of AUTOSAR 
Basic Software Modules shall be 
enumerated according specific 
rules 

SWS_Wdg_00175 

SRS_BSW_00323 All AUTOSAR Basic Software 
Modules shall check passed API 
parameters for validity 

SWS_Wdg_00025, SWS_Wdg_00026, 
SWS_Wdg_00089, SWS_Wdg_00090, 
SWS_Wdg_00091, SWS_Wdg_00092 

SRS_BSW_00325 The runtime of interrupt service 
routines and functions that are 
running in interrupt context shall be 
kept short  

SWS_Wdg_00166 

SRS_BSW_00326 - SWS_Wdg_00166 

SRS_BSW_00327 Error values naming convention SWS_Wdg_00010 

SRS_BSW_00328 All AUTOSAR Basic Software 
Modules shall avoid the duplication 
of code 

SWS_Wdg_00175 

SRS_BSW_00330 It shall be allowed to use macros 
instead of functions where source 
code is used and runtime is critical 

SWS_Wdg_00175 

SRS_BSW_00331 All Basic Software Modules shall 
strictly separate error and status 
information 

SWS_Wdg_00010 

SRS_BSW_00333 For each callback function it shall 
be specified if it is called from 
interrupt context or not 

SWS_Wdg_00175 



Specification of Watchdog Driver 
 V3.1.1 

R4.1 Rev 3 

16 of 43 Document ID 039: AUTOSAR_SWS_WatchdogDriver 

- AUTOSAR confidential - 

SRS_BSW_00334 All Basic Software Modules shall 
provide an XML file that contains 
the meta data 

SWS_Wdg_00175 

SRS_BSW_00335 Status values naming convention SWS_Wdg_00017, SWS_Wdg_00018, 
SWS_Wdg_00019 

SRS_BSW_00336 Basic SW module shall be able to 
shutdown 

SWS_Wdg_00031 

SRS_BSW_00337 Classification of development 
errors 

SWS_Wdg_00010 

SRS_BSW_00338 - SWS_Wdg_00017, SWS_Wdg_00018, 
SWS_Wdg_00025, SWS_Wdg_00026, 
SWS_Wdg_00035, SWS_Wdg_00052, 
SWS_Wdg_00089, SWS_Wdg_00090, 
SWS_Wdg_00091, SWS_Wdg_00092 

SRS_BSW_00339 Reporting of production relevant 
error status 

SWS_Wdg_00175 

SRS_BSW_00341 Module documentation shall 
contains all needed informations 

SWS_Wdg_00175 

SRS_BSW_00343 The unit of time for specification 
and configuration of Basic SW 
modules shall be preferably in 
physical time unit  

SWS_Wdg_00155 

SRS_BSW_00344 BSW Modules shall support link-
time configuration 

SWS_Wdg_00175 

SRS_BSW_00345 BSW Modules shall support pre-
compile configuration 

SWS_Wdg_00061 

SRS_BSW_00346 All AUTOSAR Basic Software 
Modules shall provide at least a 
basic set of module files 

SWS_Wdg_00061, SWS_Wdg_00079 

SRS_BSW_00347 A Naming seperation of different 
instances of BSW drivers shall be 
in place 

SWS_Wdg_00169, SWS_Wdg_00170, 
SWS_Wdg_00172 

SRS_BSW_00348 All AUTOSAR standard types and 
constants shall be placed and 
organized in a standard type 
header file 

SWS_Wdg_00175 

SRS_BSW_00353 All integer type definitions of target 
and compiler specific scope shall 
be placed and organized in a 
single type header  

SWS_Wdg_00175 

SRS_BSW_00355 - SWS_Wdg_00175 

SRS_BSW_00358 The return type of init() functions 
implemented by AUTOSAR Basic 
Software Modules shall be void 

SWS_Wdg_00106 

SRS_BSW_00359 All AUTOSAR Basic Software 
Modules callback functions shall 
avoid return types other than void if 
possible 

SWS_Wdg_00175 

SRS_BSW_00360 AUTOSAR Basic Software 
Modules callback functions are 
allowed to have parameters 

SWS_Wdg_00175 



Specification of Watchdog Driver 
 V3.1.1 

R4.1 Rev 3 

17 of 43 Document ID 039: AUTOSAR_SWS_WatchdogDriver 

- AUTOSAR confidential - 

SRS_BSW_00361 All mappings of not standardized 
keywords of compiler specific 
scope shall be placed and 
organized in a compiler specific 
type and keyword header  

SWS_Wdg_00175 

SRS_BSW_00370 - SWS_Wdg_00061 

SRS_BSW_00371 The passing of function pointers as 
API parameter is forbidden for all 
AUTOSAR Basic Software 
Modules 

SWS_Wdg_00175 

SRS_BSW_00373 The main processing function of 
each AUTOSAR Basic Software 
Module shall be named according 
the defined convention 

SWS_Wdg_00175 

SRS_BSW_00375 Basic Software Modules shall 
report wake-up reasons  

SWS_Wdg_00175 

SRS_BSW_00376 - SWS_Wdg_00175 

SRS_BSW_00377 A Basic Software Module can 
return a module specific types  

SWS_Wdg_00175 

SRS_BSW_00378 AUTOSAR shall provide a boolean 
type 

SWS_Wdg_00175 

SRS_BSW_00380 Configuration parameters being 
stored in memory shall be placed 
into separate c-files 

SWS_Wdg_00079 

SRS_BSW_00381 The pre-compile time parameters 
shall be placed into a separate 
configuration header file 

SWS_Wdg_00061 

SRS_BSW_00383 The Basic Software Module 
specifications shall specify which 
other configuration files from other 
modules they use at least in the 
description 

SWS_Wdg_00175 

SRS_BSW_00385 List possible error notifications SWS_Wdg_00010 

SRS_BSW_00400 Parameter shall be selected from 
multiple sets of parameters after 
code has been loaded and started 

SWS_Wdg_00001 

SRS_BSW_00401 Documentation of multiple 
instances of configuration 
parameters shall be available 

SWS_Wdg_00175 

SRS_BSW_00404 BSW Modules shall support post-
build configuration 

SWS_Wdg_00175 

SRS_BSW_00405 BSW Modules shall support 
multiple configuration sets 

SWS_Wdg_00175 

SRS_BSW_00406 A static status variable denoting if 
a BSW module is initialized shall 
be initialized with value 0 before 
any APIs of the BSW module is 
called 

SWS_Wdg_00019 

SRS_BSW_00410 Compiler switches shall have 
defined values  

SWS_Wdg_00175 



Specification of Watchdog Driver 
 V3.1.1 

R4.1 Rev 3 

18 of 43 Document ID 039: AUTOSAR_SWS_WatchdogDriver 

- AUTOSAR confidential - 

SRS_BSW_00412 References to c-configuration 
parameters shall be placed into a 
separate h-file 

SWS_Wdg_00061 

SRS_BSW_00413 An index-based accessing of the 
instances of BSW modules shall be 
done  

SWS_Wdg_00175 

SRS_BSW_00414 The init function may have 
parameters 

SWS_Wdg_00106, SWS_Wdg_00171 

SRS_BSW_00415 Interfaces which are provided 
exclusively for one module shall be 
separated into a dedicated header 
file 

SWS_Wdg_00175 

SRS_BSW_00416 The sequence of modules to be 
initialized shall be configurable 

SWS_Wdg_00175 

SRS_BSW_00417 Software which is not part of the 
SW-C shall report error events only 
after the DEM is fully operational. 

SWS_Wdg_00175 

SRS_BSW_00419 If a pre-compile time configuration 
parameter is implemented as 
"const" it should be placed into a 
separate c-file 

SWS_Wdg_00175 

SRS_BSW_00422 Pre-de-bouncing of error status 
information is done within the DEM 

SWS_Wdg_00175 

SRS_BSW_00423 BSW modules with AUTOSAR 
interfaces shall be describable with 
the means of the SW-C Template 

SWS_Wdg_00175 

SRS_BSW_00424 BSW module main processing 
functions shall not be allowed to 
enter a wait state  

SWS_Wdg_00175 

SRS_BSW_00425 The BSW module description 
template shall provide means to 
model the defined trigger 
conditions of schedulable objects 

SWS_Wdg_00175 

SRS_BSW_00426 BSW Modules shall ensure data 
consistency of data which is 
shared between BSW modules 

SWS_Wdg_00040 

SRS_BSW_00427 ISR functions shall be defined and 
documented in the BSW module 
description template 

SWS_Wdg_00166 

SRS_BSW_00428 A BSW module shall state if its 
main processing function(s) has to 
be executed in a specific order or 
sequence  

SWS_Wdg_00175 

SRS_BSW_00429 BSW modules shall be only 
allowed to use OS objects and/or 
related OS services  

SWS_Wdg_00040 

SRS_BSW_00432 Modules should have separate 
main processing functions for 
read/receive and write/transmit 
data path 

SWS_Wdg_00175 

SRS_BSW_00433 Main processing functions are only SWS_Wdg_00175 



Specification of Watchdog Driver 
 V3.1.1 

R4.1 Rev 3 

19 of 43 Document ID 039: AUTOSAR_SWS_WatchdogDriver 

- AUTOSAR confidential - 

allowed to be called from task 
bodies provided by the BSW 
Scheduler 

SRS_BSW_00435 - SWS_Wdg_00061 

SRS_BSW_00436 - SWS_Wdg_00061 

SRS_BSW_00437 Memory mapping shall provide the 
possibility to define RAM segments 
which are not to be initialized 
during startup 

SWS_Wdg_00175 

SRS_BSW_00439 Enable BSW modules to handle 
interrupts  

SWS_Wdg_00166 

SRS_BSW_00440 The callback function invocation by 
the BSW module shall follow the 
signature provided by RTE to 
invoke servers via Rte_Call API 

SWS_Wdg_00175 

SRS_BSW_00441 Naming convention for type, macro 
and function 

SWS_Wdg_00175 

SRS_BSW_00447 Standardizing Include file structure 
of BSW Modules Implementing 
Autosar Service 

SWS_Wdg_00175 

SRS_BSW_00449 BSW Service APIs used by 
Autosar Application Software shall 
return a Std_ReturnType 

SWS_Wdg_00175 

SRS_BSW_00450 A Main function of a un-initialized 
module shall return immediately 

SWS_Wdg_00175 

SRS_SPAL_00157 All drivers and handlers of the 
AUTOSAR Basic Software shall 
implement notification mechanisms 
of drivers and handlers 

SWS_Wdg_00175 

SRS_SPAL_12056 All driver modules shall allow the 
static configuration of notification 
mechanism 

SWS_Wdg_00175 

SRS_SPAL_12057 All driver modules shall implement 
an interface for initialization  

SWS_Wdg_00100, SWS_Wdg_00101 

SRS_SPAL_12063 All driver modules shall only 
support raw value mode  

SWS_Wdg_00175 

SRS_SPAL_12064 All driver modules shall raise an 
error if the change of the operation 
mode leads to degradation of 
running operations  

SWS_Wdg_00016, SWS_Wdg_00017 

SRS_SPAL_12067 All driver modules shall set their 
wake-up conditions depending on 
the selected operation mode  

SWS_Wdg_00175 

SRS_SPAL_12068 The modules of the MCAL shall be 
initialized in a defined sequence 

SWS_Wdg_00175 

SRS_SPAL_12069 All drivers of the SPAL that wake 
up from a wake-up interrupt shall 
report the wake-up reason  

SWS_Wdg_00175 

SRS_SPAL_12075 All drivers with random streaming 
capabilities shall use application 

SWS_Wdg_00175 



Specification of Watchdog Driver 
 V3.1.1 

R4.1 Rev 3 

20 of 43 Document ID 039: AUTOSAR_SWS_WatchdogDriver 

- AUTOSAR confidential - 

buffers  

SRS_SPAL_12077 All drivers shall provide a non 
blocking implementation  

SWS_Wdg_00175 

SRS_SPAL_12078 The drivers shall be coded in a way 
that is most efficient in terms of 
memory and runtime resources  

SWS_Wdg_00175 

SRS_SPAL_12092 The driver's API shall be accessed 
by its handler or manager 

SWS_Wdg_00076 

SRS_SPAL_12125 All driver modules shall only 
initialize the configured resources  

SWS_Wdg_00100, SWS_Wdg_00101 

SRS_SPAL_12129 The ISRs shall be responsible for 
resetting the interrupt flags and 
calling the according notification 
function  

SWS_Wdg_00166 

SRS_SPAL_12163 All driver modules shall implement 
an interface for de-initialization  

SWS_Wdg_00025, SWS_Wdg_00026, 
SWS_Wdg_00031 

SRS_SPAL_12263 The implementation of all driver 
modules shall allow the 
configuration of specific module 
parameter types at link time  

SWS_Wdg_00079 

SRS_SPAL_12265 Configuration data shall be kept 
constant 

SWS_Wdg_00175 

SRS_SPAL_12267 Wakeup sources shall be initialized 
by MCAL drivers and/or the MCU 
driver  

SWS_Wdg_00175 

SRS_SPAL_12448 All driver modules shall have a 
specific behavior after a 
development error detection 

SWS_Wdg_00017, SWS_Wdg_00089, 
SWS_Wdg_00090, SWS_Wdg_00091, 
SWS_Wdg_00092 

SRS_SPAL_12461 Specific rules regarding 
initialization of controller registers 
shall apply to all driver 
implementations  

SWS_Wdg_00100, SWS_Wdg_00101 

SRS_SPAL_12462 The register initialization settings 
shall be published 

SWS_Wdg_00175 

SRS_SPAL_12463 The register initialization settings 
shall be combined and forwarded 

SWS_Wdg_00175 

SRS_Wdg_12015 The watchdog driver shall allow the 
static configuration of watchdog 
modes 

SWS_Wdg_00051, SWS_Wdg_00160 

SRS_Wdg_12018 The watchdog driver shall provide 
a service for selecting the 
watchdog mode 

SWS_Wdg_00160 

SRS_Wdg_12019 The watchdog driver shall provide 
a watchdog trigger routine. 

SWS_Wdg_00093, SWS_Wdg_00094, 
SWS_Wdg_00095, SWS_Wdg_00134, 
SWS_Wdg_00135, SWS_Wdg_00144, 
SWS_Wdg_00166 

SRS_Wdg_12105 The watchdog driver shall provide 
an initialization service that allows 
the selection of one of the statically 
configured watchdog modes 

SWS_Wdg_00001, SWS_Wdg_00100, 
SWS_Wdg_00101 



Specification of Watchdog Driver 
 V3.1.1 

R4.1 Rev 3 

21 of 43 Document ID 039: AUTOSAR_SWS_WatchdogDriver 

- AUTOSAR confidential - 

SRS_Wdg_12106 The disabling of the watchdog shall 
not be possible 

SWS_Wdg_00025, SWS_Wdg_00026 

SRS_Wdg_12165 For an external watchdog driver 
the same requirements shall apply 
like for an internal watchdog driver 

SWS_Wdg_00077 

SRS_Wdg_12166 A driver for an external SPI 
watchdog shall allow the static 
configuration of the required SPI 
parameters 

SWS_Wdg_00078 

SRS_Wdg_12167 The external watchdog driver shall 
have a semantically identical API 
as an internal watchdog driver 

SWS_Wdg_00175 

SRS_Wdg_12168 The source code of the external 
watchdog driver shall be 
independent from the underlying 
microcontroller 

SWS_Wdg_00175 

 
 
 
 



Specification of Watchdog Driver 
 V3.1.1 

R4.1 Rev 3 

22 of 43 Document ID 039: AUTOSAR_SWS_WatchdogDriver 

- AUTOSAR confidential - 

7 Functional specification 
 

7.1 General design rules 
 

[SWS_Wdg_00086] ⌈The Wdg module shall statically check the configuration 

parameters (at the latest during compile time) for correctness.⌋ (SRS_BSW_00167, 

SRS_BSW_00004) 
 

[SWS_Wdg_00031] ⌈The Wdg module shall not implement an interface for de-
initialization/shutdown. If the watchdog supports a de-initialization/shutdown and the 
environment allows the usage of this feature, the de-initialization/shutdown shall be 

achieved by calling the Wdg_SetMode routine with OFF mode parameter.⌋ 

(SRS_BSW_00336, SRS_SPAL_12163) 
 
Rationale: Some watchdogs do not support the de-initialization/shutdown 
functionality and in some environments this feature must not be used (e.g. in safety 
critical systems). 
 

[SWS_Wdg_00034] ⌈The start address of the watchdog trigger routine shall be 
statically configurable to a fixed memory location by the user. The user needs to take 
care that  
Configured memory location is valid for the platform on which driver is being 
implemented on.This configuration parameter shall only be given if supported/needed 

by the hardware.⌋ () 
 
Rationale: This allows the watchdog device to identify the correct trigger input if 
supported by the hardware. 
 

[SWS_Wdg_00040] ⌈If interrupts have to be disabled in order to ensure data 
consistency or correct functionality of this module (e.g. while switching the watchdog 
mode or during the watchdog trigger routine), this shall be done by using the 
corresponding BSW Scheduler functionality if possible (this means definition of an 
exclusive area). The internal watchdog driver (because it belongs to MCAL) may also 

directly disable interrupts – see SRS_BSW_00429.⌋ (SRS_BSW_00426, 

SRS_BSW_00429) 
 

[SWS_Wdg_00168] ⌈Depending on a static configuration (see ECUC_Wdg_00147), 

the code of the Wdg module is executed either from ROM or from RAM.⌋ () 
 
Motivation: For certain use cases, e.g. for flash programming in bootloader mode, the 
watchdog module has to be part of an executable which runs in RAM. 
 
Hint: This is more a requirement for the build environment than for the watchdog 
module itself. However, since it might also influence the implementation of the code,  
it is stated here and a corresponding configuration parameter is given. 
 



Specification of Watchdog Driver 
 V3.1.1 

R4.1 Rev 3 

23 of 43 Document ID 039: AUTOSAR_SWS_WatchdogDriver 

- AUTOSAR confidential - 

 

7.2 Error classification 
 

[SWS_Wdg_00010] ⌈The Wdg module shall detect the following errors and 
exceptions depending on its configuration (development/production mode): 
 

Type or error Related error code Value [hex] 
API service used in wrong context (e.g. 
module not initialized). 

WDG_E_DRIVER_STATE 0x10 

API service called with wrong / inconsistent 
parameter(s) 

WDG_E_PARAM_MODE 

WDG_E_PARAM_CONFIG 

0x11 
0x12 

The passed timeout value is higher than the 
maximum timeout value 

WDG_E_PARAM_TIMEOUT 0x13 

API is called with wrong pointer value (e.g. 
NULL pointer) 

WDG_E_PARAM_POINTER 

 

0x14 

⌋ (SRS_BSW_00337, SRS_BSW_00385, SRS_BSW_00327, SRS_BSW_00331) 
 
 

7.3 Production errors 
 
There exist no Production Errors for the WatchdogDriver. 
 
 

7.4 Extended production errors 
 

Type or error Related error code Value [hex] 
Setting a watchdog mode failed (during 
initialization or mode switch). 

WDG_E_MODE_FAILED Assigned by DEM 

Initialization or watchdog mode switch failed 
because it would disable the watchdog 
though this is not allowed in this configuration 

WDG_E_DISABLE_REJECTED Assigned by DEM 

 
 

7.5 Error detection 
 
 For details refer to the chapter 7.3 “Error Detection” in SWS_BSWGeneral. 
 
 

7.6 Error notification 
 
 For details refer to the chapter 7.4 “Error notification” in SWS_BSWGeneral. 
 
 

7.7 External watchdog driver 
 



Specification of Watchdog Driver 
 V3.1.1 

R4.1 Rev 3 

24 of 43 Document ID 039: AUTOSAR_SWS_WatchdogDriver 

- AUTOSAR confidential - 

[SWS_Wdg_00076] ⌈To access the external watchdog hardware, the corresponding 
Wdg module instance shall use the functionality and API of the corresponding 

handler or driver, e.g. the SPI handler or DIO driver.⌋ (SRS_SPAL_12092) 
 

[SWS_Wdg_00162] ⌈The routine servicing an external watchdog shall be 
implemented by usage of an own internal hardware timer to be independent from 

other peripherals or by using a GPT driver callback ⌋ 
 
Hint: An external watchdog driver is part of the Onboard Device Abstraction Layer 
(see [1]), which excludes direct hardware access. 
This architectural discrepancy will be resolved in an upcoming release. 
 

[SWS_Wdg_00077] ⌈A Wdg module for an external watchdog shall satisfy the same 
functional requirements and offer the same functional scope as a Wdg module for an 

internal watchdog. Hence their respective APIs are semantically identical.⌋ 
(SRS_Wdg_12165) 
 

[SWS_Wdg_00078] ⌈The Wdg module shall add all parameters required for 
accessing the external watchdog hardware, e.g. the used SPI channel or DIO port, to 

the module’s published parameters and to the module’s configuration parameters.⌋ 
(SRS_Wdg_12166) 
 

7.8 Internal watchdog driver 
 

[SWS_Wdg_00161] ⌈To access the internal watchdog hardware, the corresponding 

Wdg module instance shall access the hardware for watchdog servicing directly.⌋ () 
 
Hint: An internal watchdog driver is part of the Microcontroller Abstraction Layer (see 
[1]), which allows direct hardware access. 
 

[SWS_Wdg_00166] ⌈The routine servicing an internal watchdog shall be 

implemented as an interrupt routine driven by a hardware timer⌋ (SRS_BSW_00427, 

SRS_BSW_00164, SRS_BSW_00325, SRS_BSW_00326, SRS_BSW_00439, SRS_SPAL_12129, 

SRS_Wdg_12019) 
 
Notes: 
In both cases, the watchdog servicing routine runs in interrupt context. 
 
If the watchdog servicing routine is implemented as an interrupt routine (i.e. as a cat1 
or cat2 interrupt routine and not via the GPT), it shall be described in the Basic 
Software Module Description and the implementation shall follow the requirements 
for interrupt handling as given by [2] and [2] [3] (SRS_BSW_00427, 
SRS_BSW_00325, SRS_BSW_00326, SRS_BSW_00439, SRS_BSW_00314, 
SRS_BSW_00429, SRS_SPAL_12129). 
 
 



Specification of Watchdog Driver 
 V3.1.1 

R4.1 Rev 3 

25 of 43 Document ID 039: AUTOSAR_SWS_WatchdogDriver 

- AUTOSAR confidential - 

7.9 Triggering concept to support windowed watchdogs 
 
In former versions of this specification, the watchdog servicing routine was called 
from an upper layer of the software which made it difficult to guarantee timing 
constraints namely for windowed watchdog conditions. This concept has been 
changed leading to the requirements explained in this chapter.  
 
The basic idea of this concept is to decouple the timing for servicing the watchdog 
hardware from the logical control. 
 
As already stated by SWS_Wdg_00162 and SWS_Wdg_00166, the time base for 
triggering the watchdog shall be provided by means of a hardware. This ensures 
minimum timing jitter. 
 
These two requirements SWS_Wdg_00162 and SWS_Wdg_00166 also imply that 
servicing of the watchdog hardware is done directly from a timer ISR. This ensures 
minimum latencies. 
 
These two conditions – minimum jitter and latencies - ensure that the time window of 
a windowed watchdog can be met. 
 
The Wdg Driver expects, that the logical control of the watchdog (whether the 
watchdog shall be triggered or not) shall be the responsibility of the environment, e.g. 
the Wdg Manager, so that the basic concepts of the Wdg Manager (alive supervision) 
shall remain unchanged. 
 

[SWS_Wdg_00144] ⌈The Wdg Manager (or other entities) shall control the watchdog 
driver via a so called trigger condition: as long as the trigger condition is valid the 
Wdg Driver services the watchdog hardware, if the trigger condition becomes invalid 
the Wdg Driver stops triggering and the watchdog expires. 
The semantics of the trigger condition can be interpreted as a “permission to service 
the watchdog for the next n milliseconds”. Within this time frame the trigger condition 
has to be updated by the controlling entity else the watchdog will expire. 
Handover of the watchdog control logic is simply done by shared usage of the trigger 

condition (e.g. during startup / shutdown).⌋ (SRS_Wdg_12019) 
 

[SWS_Wdg_00134] ⌈If the trigger counter is greater than zero, the watchdog 
servicing routine shall decrement the trigger counter and trigger the hardware 

watchdog.⌋ (SRS_Wdg_12019) 
 

[SWS_Wdg_00135] ⌈If the trigger counter has reached zero, the watchdog servicing 

routine shall do nothing (i.e. the watchdog is not triggered and will therefore expire).⌋ 
(SRS_Wdg_12019) 
 

[SWS_Wdg_00093] ⌈If the watchdog hardware requires an activation code which 
can be configured or changed, the Wdg Driver shall handle the activation code 
internally. In this case, the Wdg Driver shall pass the correct activation code to the 
watchdog hardware and the watchdog hardware in turn shall update the Wdg 



Specification of Watchdog Driver 
 V3.1.1 

R4.1 Rev 3 

26 of 43 Document ID 039: AUTOSAR_SWS_WatchdogDriver 

- AUTOSAR confidential - 

module’s internal variable where the next expected access code is stored.⌋ 

(SRS_Wdg_12019) 
 

[SWS_Wdg_00094] ⌈If the watchdog hardware requires an activation code which 
can be configured or changed, the trigger cycle of the Wdg Driver shall be defined 
with a value so that updating the activation code by the watchdog hardware can be 
guaranteed (see Figure 3). 

⌋ (SRS_Wdg_12019) 

 

[SWS_Wdg_00095] ⌈If the watchdog hardware requires an activation code which 
can be configured or changed and the initial activation code can be configured, the 
activation code shall be provided in the Wdg Driver’s configuration set. If the 
activation code is fixed for a particular hardware the above requirement can be 

ignored.⌋ (SRS_Wdg_12019) 
 

[SWS_Wdg_00035] ⌈When development error detection is enabled for the Wdg 
Driver module: the watchdog servicing routine shall check whether the Wdg module’s 

state is WDG_IDLE (meaning the watchdog driver and hardware are initialized and 

the watchdog is currently not being triggered or switched). If this is not the case, the 
function shall not trigger the watchdog hardware but raise the development error 

WDG_E_DRIVER_STATE.⌋ (SRS_BSW_00338) 

 

[SWS_Wdg_00052] ⌈When development error detection or debugging support is 
enabled for the Wdg Driver module: the watchdog servicing routine shall set the Wdg 

module’s state to WDG_BUSY during its execution (indicating, that the module is busy) 

and shall reset the module’s state to WDG_IDLE (indicating, that the module is 

initialized and not busy) as last operation before it returns.⌋ (SRS_BSW_00338) 
 

Note: This specification prescribes the symbols WDG_IDLE and WDG_BUSY only, if 

they are externally visible, e.g. for debugging (see SRS_BSW_00335). Choosing the 
data type for the status variable is up to the implementation.  
 
Hint for the integration: The Wdg module’s environment shall make sure that the Wdg 
Driver module has been initialized before watchdog servicing routine is called. 

7.10 Debugging 

 

[SWS_Wdg_00152] ⌈The internal state of the module (which indicates whether it is 

not initialized, idle or busy) shall be available for debugging.⌋ () 
 

[SWS_Wdg_00153] ⌈The internal variable for the watchdog timeout counter shall be 

available for debugging.⌋ () 
 

[SWS_Wdg_00154] ⌈The internal variable for the watchdog mode shall be available 

for debugging.⌋ () 



Specification of Watchdog Driver 
 V3.1.1 

R4.1 Rev 3 

27 of 43 Document ID 039: AUTOSAR_SWS_WatchdogDriver 

- AUTOSAR confidential - 

8 API specification 
 
 

[SWS_Wdg_00172] ⌈If more than one watchdog driver instance exits on an ECU 
(namely an external and an internal one) the API names and instance specific type 
names specified in this chapter shall be made unique by expansion according to 

SRS_BSW_00347. ⌋ (SRS_BSW_00347) 
 
 

8.1 Imported types  
 
In this chapter all types included from the following files are listed: 
 

[SWS_Wdg_00105] ⌈ 
 

Module Imported Type 

Dem Dem_EventIdType 

Dem_EventStatusType 

Std_Types Std_ReturnType 

Std_VersionInfoType 

WdgIf WdgIf_ModeType 

⌋ () 
 

8.2 Type definitions 
 
8.2.1 Wdg_ConfigType 

[SWS_Wdg_00171] ⌈ 
 

Name: Wdg_ConfigType 

Type: Structure 

Range: Hardware 

dependent 

structure 

Structure to hold the watchdog driver configuration set. 

Description: Used for pointers to structures holding configuration data provided to the Wdg 
module initialization routine for configuration of the module and watchdog 
hardware. 

⌋ (SRS_BSW_00414) 
 

8.3 Function definitions 
 
8.3.1 Wdg_Init 

[SWS_Wdg_00106] ⌈ 
 

Service name: Wdg_Init 

Syntax: void Wdg_Init( 

    const Wdg_ConfigType* ConfigPtr 



Specification of Watchdog Driver 
 V3.1.1 

R4.1 Rev 3 

28 of 43 Document ID 039: AUTOSAR_SWS_WatchdogDriver 

- AUTOSAR confidential - 

) 

Service ID[hex]: 0x00 

Sync/Async: Synchronous 

Reentrancy: Non Reentrant 

Parameters (in): ConfigPtr Pointer to configuration set. 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: Initializes the module. 

⌋ (SRS_BSW_00358, SRS_BSW_00414) 
 

[SWS_Wdg_00001] ⌈The Wdg_Init function shall initialize the Wdg module and the 

watchdog hardware, i.e. it shall set the default watchdog mode and timeout period as 

provided in the configuration set.⌋ (SRS_BSW_00400, SRS_BSW_00101, SRS_Wdg_12105) 
 
Note: 
Via post-build configuration, the user can choose the configuration set to be used 

with the Wdg_Init function from a limited number of statically configured sets (see 

also SRS_BSW_00314). 
 

[SWS_Wdg_00100] ⌈The Wdg_Init function shall initialize all global variables of the 

Wdg module and set the default watchdog mode and initial timeout period⌋ 

(SRS_SPAL_12057, SRS_SPAL_12125, SRS_SPAL_12461, SRS_Wdg_12105) 
 

[SWS_Wdg_00101] ⌈The Wdg_Init function shall initialize those controller registers 

that are needed for controlling the watchdog hardware and that do not 
influence/depend on other (hardware) modules. 
 
Registers that can influence or depend on other modules are initialized by a common 

system module.⌋ (SRS_SPAL_12057, SRS_SPAL_12125, SRS_SPAL_12461, SRS_Wdg_12105) 
 

[SWS_Wdg_00025] ⌈If disabling the watchdog is not allowed (because pre-compile 

configuration parameter WdgDisableAllowed==OFF) and if the default mode given 

in the provided configuration set disables the watchdog,  the Wdg_Init function shall 

not execute the initialization but raise the extended production error 

WDG_E_DISABLE_REJECTED.⌋ (SRS_BSW_00338, SRS_BSW_00323, SRS_SPAL_12163, 

SRS_Wdg_12106) 
 

[SWS_Wdg_00173] ⌈If switching the Wdg module and the watchdog hardware into 
the default mode is not possible, e.g. because of inconsistent mode settings or 

because some timing constraints have not been met, the Wdg_Init function shall 

raise the extended production error WDG_E_MODE_FAILED.⌋ () 

 

[SWS_Wdg_00089] ⌈When development error detection is enabled for the Wdg 

module: The function Wdg_Init shall check that the parameter ConfigPtr is not 

NULL (except for the Pre-Compiled variant).  If this error is detected, the function 
Wdg_Init shall not execute the initialization but raise the development error 

WDG_E_PARAM_POINTER.⌋ (SRS_BSW_00338, SRS_BSW_00323, SRS_SPAL_12448) 



Specification of Watchdog Driver 
 V3.1.1 

R4.1 Rev 3 

29 of 43 Document ID 039: AUTOSAR_SWS_WatchdogDriver 

- AUTOSAR confidential - 

 

[SWS_Wdg_00090] ⌈When development error detection is enabled for the Wdg 

module: The Wdg_Init function shall check that the (hardware specific) contents of 

the given configuration set is within the allowed boundaries. If this error is detected, 

the function Wdg_Init shall not execute the initialization but raise the extended error 

WDG_E_PARAM_CONFIG.⌋ (SRS_BSW_00338, SRS_BSW_00323, SRS_SPAL_12448) 

 

[SWS_Wdg_00019] ⌈When development error detection or debugging support is 

enabled for the Wdg module: The Wdg_Init function shall set the Wdg module’s 

internal state from WDG_UNINIT (the default state indicating a non-initialized module) 

to WDG_IDLE if the initialization was successful.⌋ (SRS_BSW_00406, SRS_BSW_00335) 

 

Note: This specification prescribes the symbols WDG_IDLE and WDG_UNINIT  only, 

if they are externally visible, e.g. for debugging (see SRS_BSW_00335). Choosing 
the data type for the status variable is up to the implementation.  
 
 
8.3.2 Wdg_SetMode 

[SWS_Wdg_00107] ⌈ 
 

Service name: Wdg_SetMode 

Syntax: Std_ReturnType Wdg_SetMode( 

    WdgIf_ModeType Mode 

) 

Service ID[hex]: 0x01 

Sync/Async: Synchronous 

Reentrancy: Non Reentrant 

Parameters (in): 

Mode One of the following statically configured modes: 
1. WDGIF_OFF_MODE 
2. WDGIF_SLOW_MODE 
3. WDGIF_FAST_MODE 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: Std_ReturnType Std_ReturnType. 

Description: Switches the watchdog into the mode Mode. 

⌋ () 
 

[SWS_Wdg_00160] ⌈The function Wdg_SetMode shall switch the watchdog driver 

from the current watchdog mode into the mode given by the argument Mode. This 

means: By choosing one of a limited number of statically configured settings (e.g. 
toggle or window watchdog, different timeout periods) the Wdg module and the 
watchdog hardware are switched to one of  the following three different modes: 

 WDGIF_OFF_MODE 

 WDGIF_SLOW_MODE 

 WDGIF_FAST_MODE ⌋ (SRS_Wdg_12015, SRS_Wdg_12018) 
 



Specification of Watchdog Driver 
 V3.1.1 

R4.1 Rev 3 

30 of 43 Document ID 039: AUTOSAR_SWS_WatchdogDriver 

- AUTOSAR confidential - 

[SWS_Wdg_00051] ⌈The configuration set provided to the Wdg module’s 
initialization routine shall contain the hardware / driver specific parameters to be used 

in the different watchdog modes.⌋ (SRS_Wdg_12015) 
 

[SWS_Wdg_00145] ⌈The Wdg_SetMode function shall reset the watchdog timeout 

counter based on the new watchdog mode i.e. the timeout frame remaining shall be 

recalculated based on a changed trigger period.⌋ () 
 

[SWS_Wdg_00103] ⌈The Wdg_SetMode function shall return E_OK if the mode 

switch has been executed completely and successfully, i.e. all parameters of the 

Wdg module and the watchdog hardware have been set to the new values⌋ () 
 

[SWS_Wdg_00016] ⌈If switching the Wdg module and the watchdog hardware into 
the requested mode is not possible, e.g. because of inconsistent mode settings or 

because some timing constraints have not been met, the Wdg_SetMode function 

shall return the value E_NOT_OK and raise the extended production error 

WDG_E_MODE_FAILED.⌋ (SRS_SPAL_12064) 

 

[SWS_Wdg_00026] ⌈If disabling the watchdog is not allowed (e.g. in safety relevant 

systems, seeECUC_Wdg_00115) the Wdg_SetMode function shall check whether 

the settings for the requested mode would disable the watchdog. In this case, the 
function shall not execute the mode switch but raise the extended production error 

WDG_E_DISABLE_REJECTED and return with the value E_NOT_OK.⌋ 

(SRS_BSW_00338, SRS_BSW_00323, SRS_SPAL_12163, SRS_Wdg_12106) 
 

[SWS_Wdg_00091] ⌈When development error detection is enabled for the Wdg 

module: The Wdg_SetMode function shall check that the parameter Mode is within 

the allowed range. If this is not the case, the function shall not execute the mode 

switch but raise development error WDG_E_PARAM_MODE and return with the value 

E_NOT_OK⌋ (SRS_BSW_00338, SRS_BSW_00323, SRS_SPAL_12448) 

 

[SWS_Wdg_00092] ⌈When development error detection is enabled for the Wdg 

module: The Wdg_SetMode function shall check that the (hardware specific) settings 

for the requested mode are within the allowed boundaries. If this is not the case, the 
function shall not execute the mode switch but raise the development error 

WDG_E_PARAM_MODE and return with the value E_NOT_OK. ⌋ (SRS_BSW_00338, 

SRS_BSW_00323, SRS_SPAL_12448) 
 

[SWS_Wdg_00017] ⌈When development error detection is enabled for the Wdg 

module: The Wdg_SetMode function shall check that the Wdg module’s state is 

WDG_IDLE (meaning the Wdg module and the watchdog hardware are initialized and 

the watchdog is currently not being triggered or switched). If this is not the case, the 
function shall not execute the mode switch but raise the development error 

WDG_E_DRIVER_STATE and return with the value E_NOT_OK. ⌋ (SRS_BSW_00338, 

SRS_BSW_00335, SRS_SPAL_12064, SRS_SPAL_12448) 
 



Specification of Watchdog Driver 
 V3.1.1 

R4.1 Rev 3 

31 of 43 Document ID 039: AUTOSAR_SWS_WatchdogDriver 

- AUTOSAR confidential - 

[SWS_Wdg_00018] ⌈When development error detection or debugging support is 

enabled for the Wdg module: The function Wdg_SetMode shall set the Wdg module’s 

state to WDG_BUSY during its execution (indicating, that the module is busy) and shall 

reset the Wdg module’s state to WDG_IDLE as last operation before it returns to the 

caller. ⌋ (SRS_BSW_00338, SRS_BSW_00335) 
 

Note: This specification prescribes the symbols WDG_IDLE and WDG_BUSY  only, if 

they are externally visible, e.g. for debugging (see SRS_BSW_00335). Choosing the 
data type for the status variable is up to the implementation.  
 
 
8.3.3 Wdg_SetTriggerCondition 

[SWS_Wdg_00155] ⌈ 
 

Service name: Wdg_SetTriggerCondition 

Syntax: void Wdg_SetTriggerCondition( 

    uint16 timeout 

) 

Service ID[hex]: 0x03 

Sync/Async: Synchronous 

Reentrancy: Non Reentrant 

Parameters (in): timeout Timeout value (milliseconds) for setting the trigger counter. 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: Sets the timeout value for the trigger counter. 

⌋ (SRS_BSW_00343) 
 

[SWS_Wdg_00136] ⌈The function Wdg_SetTriggerCondition shall reset the 

watchdog timeout counter according to the timeout value passed.⌋ () 
 

[SWS_Wdg_00138] ⌈The timeout value passed shall be interpreted as 'milliseconds'. 
The conversion from milliseconds to the corresponding counter value shall be done 

internally by the Wdg module.⌋ () 
 

[SWS_Wdg_00139] ⌈The current watchdog mode shall be taken into account when 

calculating the counter value from the timeout parameter.⌋ () 
 

[SWS_Wdg_00140] ⌈This function shall also allow to set “0” as the time frame for 
triggering which will result in an (almost) immediate stop of the watchdog triggering 

and an (almost) instantaneous watchdog reset of the ECU.⌋ () 
 

[SWS_Wdg_00146] ⌈When development error detection is enabled for the module: 

The function Wdg_SetTriggerCondition shall check that the timeout parameter 

given is less or equal to the maximum timeout value (WdgMaxTimeout). If this is not 



Specification of Watchdog Driver 
 V3.1.1 

R4.1 Rev 3 

32 of 43 Document ID 039: AUTOSAR_SWS_WatchdogDriver 

- AUTOSAR confidential - 

the case the function shall not reload the timeout counter but raise the development 

error WDG_E_PARAM_TIMEOUT and return to the caller.⌋ () 

 
 
8.3.4 Wdg_GetVersionInfo 

 [SWS_Wdg_00109] ⌈ 
 

Service name: Wdg_GetVersionInfo 

Syntax: void Wdg_GetVersionInfo( 

    Std_VersionInfoType* versioninfo 

) 

Service ID[hex]: 0x04 

Sync/Async: Synchronous 

Reentrancy: Reentrant 

Parameters (in): None 

Parameters 
(inout): 

None 

Parameters (out): versioninfo Pointer to where to store the version information of this module. 

Return value: None 

Description: Returns the version information of the module. 

⌋ () 
 
 

[SWS_Wdg_00174] ⌈If DET is enabled for the Wdg Driver module, the function 

Wdg_GetVersionInfo shall raise WDG_E_PARAM_POINTER, if the argument is a 

NULL pointer and return without any action.⌋ () 
 

8.4 Call-back Notifications 
 
This chapter lists all functions provided by the Wdg module to lower layer modules. 
 
The Wdg module has no call back notifications 
 
 

8.5 Scheduled functions 
 
This chapter lists all functions provided by the Wdg module and called directly by the 
Basic Software Module Scheduler. 
 
The Wdg module has no scheduled functions. 
 
 

8.6 Expected interfaces 
 
This chapter lists all functions that the Wdg module requires from other modules. 
 
 



Specification of Watchdog Driver 
 V3.1.1 

R4.1 Rev 3 

33 of 43 Document ID 039: AUTOSAR_SWS_WatchdogDriver 

- AUTOSAR confidential - 

8.6.1 Mandatory interfaces  

This module does not require any mandatory interfaces. 
 
 
8.6.2 Optional interfaces 

This chapter lists all interfaces which are required to fulfill an optional functionality of 
the module. 
 

[SWS_Wdg_00111] ⌈ 
 

API function Description 

Dem_ReportErrorStatus Queues the reported events from the BSW modules (API is only used 
by BSW modules). The interface has an asynchronous behavior, 
because the processing of the event is done within the Dem main 
function. 
OBD Events Suppression shall be ignored for this computation. 

Det_ReportError Service to report development errors. 

 
In addition to the functions listed above, further functions might be used to access the 

external watchdog over Dio or Spi. ⌋ () 
 
8.6.3 Configurable interfaces 

This module does not require any configurable interfaces. 
 
 



Specification of Watchdog Driver 
 V3.1.1 

R4.1 Rev 3 

34 of 43 Document ID 039: AUTOSAR_SWS_WatchdogDriver 

- AUTOSAR confidential - 

9 Sequence diagrams 
 

9.1 Watchdog initialization, setting trigger condition and mode. 
 
The diagram shows the sequence to initialize the Wdg module, to set the trigger 
condition and to change the watchdog mode. Note that this is only an example. 
Especially, another “client” module than the Watchdog Manager (WdgM) could set 
the trigger condition.  
 

«module»

WdgM

«module»

WdgIf

«module»

Wdg

«module»

EcuM

Wdg_Init(const Wdg_ConfigType*)

Wdg_Init()

WdgIf_SetTriggerCondition(uint8,

uint16)
Wdg_SetTriggerCondition(uint16)

Wdg_SetTriggerCondition()
WdgIf_SetTriggerCondition()

WdgIf_SetMode(Std_ReturnType, uint8,

WdgIf_ModeType) Wdg_SetMode(Std_ReturnType,

WdgIf_ModeType)

Wdg_SetMode()

WdgIf_SetMode()

 
 
Figure 2: Sequence of watchdog initialization, setting trigger condition and mode 
switching. 
 
 
 
 
 
 
 
 
 
 
 
 



Specification of Watchdog Driver 
 V3.1.1 

R4.1 Rev 3 

35 of 43 Document ID 039: AUTOSAR_SWS_WatchdogDriver 

- AUTOSAR confidential - 

9.2 Data exchange between watchdog driver and hardware 
 
The diagram shows the sequence to trigger the watchdog hardware. Note that this is 
only an example. For an external watchdog, the watchdog hardware cannot be 
accessed directly, but only via drivers of the MCAL layer, like SPI or DIO.  
 

«module»

WdgM

«Peripheral»

Watchdog Hardware

«module»

Wdg

«module»

WdgIf

Timer Hardware

Hint: Access to external 

Wdg hardware will be 

done via peripheral 

drivers as SPI or DIO.

WdgIf_SetTriggerCondition(uint8,

uint16)
Wdg_SetTriggerCondition(uint16)

Wdg_SetTriggerCondition()
WdgIf_SetTriggerCondition()

interrupt()

trigger WDG hardware()

update activation code()

interrupt()

trigger WDG hardware()

update activation code()

WdgIf_SetTriggerCondition(uint8,

uint16)
Wdg_SetTriggerCondition(uint16)

Wdg_SetTriggerCondition()

WdgIf_SetTriggerCondition()

interrupt()

trigger WDG hardware()

update activation code()

 
 
Figure 3: Data exchange between watchdog driver and hardware 
 



Specification of Watchdog Driver 
 V3.1.1 

R4.1 Rev 3 

36 of 43 Document ID 039: AUTOSAR_SWS_WatchdogDriver 

- AUTOSAR confidential - 

10  Configuration specification 
 
In general, this chapter defines configuration parameters and their clustering into 
containers. In order to support the specification Chapter 10.1 describes 
fundamentals. It also specifies a template (table) you shall use for the parameter 
specification. We intend to leave Chapter 10.1 in the specification to guarantee 
comprehension. 
 
Chapter 10.2 specifies the structure (containers) and the parameters of the module 
Wdg.  
 
Chapter 10.3 specifies published information of the module Wdg. 
 
 

10.1  How to read this chapter 
 
For details refer to the chapter 10.1 “Introduction to configuration specification” in 
SWS_BSWGeneral. 
 



Specification of Watchdog Driver 
 V3.1.1 

R4.1 Rev 3 

37 of 43 Document ID 039: AUTOSAR_SWS_WatchdogDriver 

- AUTOSAR confidential - 

10.2  Containers and configuration parameters 
 
The following chapters summarize all configuration parameters. The detailed 
meanings of the parameters describe Chapters 7 and Chapter 8. 
 
10.2.1 Variants 

[SWS_Wdg_00157] ⌈This module shall support the configuration variant VARIANT-
PRE-COMPILE. Only parameters with "Pre-compile time" configuration are allowed 

in this variant.⌋ () 
 

[SWS_Wdg_00158] ⌈This module shall support the configuration variant VARIANT-
LINK-TIME. 

Parameters with "Pre-compile time" and "Link time" are allowed in this variant.⌋ () 
 

[SWS_Wdg_00159] ⌈This module shall support the configuration variant VARIANT-
POST-BUILD. Parameters with "Pre-compile time", "Link time" and "Post-build time" 

are allowed in this variant.⌋ () 
 
 
10.2.2 Wdg 

SWS Item  ECUC_Wdg_00073 :  

Module Name  Wdg  

Module Description  Configuration of the Wdg (Watchdog driver) module. 

   

Included Containers  

Container Name  Multiplicity  Scope / Dependency  

WdgDemEventParameterRef
s  

0..1  

Container for the references to DemEventParameter elements 
which shall be invoked using the API Dem_ReportErrorStatus 
in case the corresponding error occurs. The EventId is taken 
from the referenced DemEventParameter's DemEventId 
value. 
The standardized errors are provided in the container and can 
be extended by vendor-specific error references. 

WdgGeneral  1  
All general parameters of the watchdog driver are collected 
here. 

WdgPublishedInformation  1  
Container holding all Wdg specific published information 
parameters 

WdgSettingsConfig  1  
Configuration items for the different watchdog settings, 
including those for external watchdog hardware. 
Note: All postbuild parameters are handled via this container. 

   

10.2.3 WdgDemEventParameterRefs 

SWS Item  ECUC_Wdg_00148 :  

Container Name  WdgDemEventParameterRefs  

Description  

Container for the references to DemEventParameter elements which shall 
be invoked using the API Dem_ReportErrorStatus in case the 
corresponding error occurs. The EventId is taken from the referenced 
DemEventParameter's DemEventId value.  



Specification of Watchdog Driver 
 V3.1.1 

R4.1 Rev 3 

38 of 43 Document ID 039: AUTOSAR_SWS_WatchdogDriver 

- AUTOSAR confidential - 

The standardized errors are provided in the container and can be extended 
by vendor-specific error references. 

Configuration Parameters  

   

SWS Item  ECUC_Wdg_00150 :  

Name  
 

WDG_E_DISABLE_REJECTED  

Description  Reference to the DemEventParameter which shall be issued when the 
error "Initialization or mode switch failed because it would disable the 
watchdog" has occurred. 

Multiplicity  0..1  

Type  Symbolic name reference to [ DemEventParameter ]  

ConfigurationClass  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  

   

SWS Item  ECUC_Wdg_00149 :  

Name  
 

WDG_E_MODE_FAILED  

Description  Reference to the DemEventParameter which shall be issued when the 
error "Setting a watchdog mode failed (during initialization or mode 
switch)" has occurred. 

Multiplicity  0..1  

Type  Symbolic name reference to [ DemEventParameter ]  

ConfigurationClass  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  

   

No Included Containers  

   

10.2.4 WdgGeneral 

SWS Item  ECUC_Wdg_00114 :  

Container Name  WdgGeneral  

Description  All general parameters of the watchdog driver are collected here. 

Configuration Parameters  

   

SWS Item  ECUC_Wdg_00115 :  

Name  
 

WdgDevErrorDetect {WDG_DEV_ERROR_DETECT}  

Description  Compile switch to enable / disable development error detection for this 
module. 
True: Development error detection enabled False: Development error 
detection disabled 

Multiplicity  1  

Type  EcucBooleanParamDef  

Default value  --  

ConfigurationClass  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  

   

SWS Item  ECUC_Wdg_00116 :  

Name  
 

WdgDisableAllowed {WDG_DISABLE_ALLOWED}  

Description  Compile switch to allow / forbid disabling the watchdog driver during 
runtime. 
True: Disabling the watchdog driver at runtime is allowed. False: Disabling 



Specification of Watchdog Driver 
 V3.1.1 

R4.1 Rev 3 

39 of 43 Document ID 039: AUTOSAR_SWS_WatchdogDriver 

- AUTOSAR confidential - 

the watchdog driver at runtime is not allowed. 

Multiplicity  1  

Type  EcucBooleanParamDef  

Default value  --  

ConfigurationClass  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  
dependency: Safety relevant compile switch, this has to be in accordance 
with the corresponding settings for the watchdog manager.  

   

SWS Item  ECUC_Wdg_00117 :  

Name  
 

WdgIndex  

Description  Represents the watchdog driver's ID so that it can be referenced by the 
watchdog interface. 

Multiplicity  1  

Type  EcucIntegerParamDef (Symbolic Name generated for this parameter)  

Range  0 .. 255    

Default value  --  

ConfigurationClass  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  

   

SWS Item  ECUC_Wdg_00130 :  

Name  
 

WdgInitialTimeout  

Description  The initial timeout (sec) for the trigger condition to be initialized during Init 
function. It shall be not larger than WdgMaxTimeout. 

Multiplicity  1  

Type  EcucFloatParamDef  

Range  0 .. 65.535    

Default value  --  

ConfigurationClass  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  

   

SWS Item  ECUC_Wdg_00131 :  

Name  
 

WdgMaxTimeout  

Description  The maximum timeout (sec) to which the watchdog trigger condition can 
be initialized. 

Multiplicity  1  

Type  EcucFloatParamDef  

Range  0 .. 65.535    

Default value  --  

ConfigurationClass  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  

   

SWS Item  ECUC_Wdg_00147 :  

Name  
 

WdgRunArea  

Description  Represents the watchdog driver execution area is either from ROM(Flash) or 
RAM as required with the particular microcontroller. 

Multiplicity  1  

Type  EcucEnumerationParamDef  



Specification of Watchdog Driver 
 V3.1.1 

R4.1 Rev 3 

40 of 43 Document ID 039: AUTOSAR_SWS_WatchdogDriver 

- AUTOSAR confidential - 

Range  RAM  Watchdog driver to be executed out of 
RAM area 

ROM  Watchdog driver to be executed out of 
ROM area 

ConfigurationClass  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  

   

SWS Item  ECUC_Wdg_00118 :  

Name  
 

WdgTriggerLocation {WDG_TRIGGER_LOCATION}  

Description  Location (memory address) of the watchdog trigger routine. 

Multiplicity  1  

Type  EcucFunctionNameDef  

Default value  --  

maxLength  --  

minLength  --  

regularExpression  --  

ConfigurationClass  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  
dependency: Only relevant if provided by hardware and needed by the 
system.  

   

SWS Item  ECUC_Wdg_00119 :  

Name  
 

WdgVersionInfoApi  

Description  Compile switch to enable / disable the version information API 

 True: API enabled  

 False: API disabled 

Multiplicity  1  

Type  EcucBooleanParamDef  

Default value  --  

ConfigurationClass  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  

   

No Included Containers  

   

10.2.5 WdgSettingsConfig 

SWS Item  ECUC_Wdg_00082 :  

Container Name  WdgSettingsConfig [Multi Config Container]  

Description  
Configuration items for the different watchdog settings, including those for 
external watchdog hardware.  
Note: All postbuild parameters are handled via this container. 

Configuration Parameters  

   

SWS Item  ECUC_Wdg_00120 :  

Name  
 

WdgDefaultMode {WDG_DEFAULT_MODE}  

Description  Default mode for watchdog driver initialization. 
ImplementationType: WdgIf_ModeType 

Multiplicity  1  



Specification of Watchdog Driver 
 V3.1.1 

R4.1 Rev 3 

41 of 43 Document ID 039: AUTOSAR_SWS_WatchdogDriver 

- AUTOSAR confidential - 

Type  EcucEnumerationParamDef  

Range  WDGIF_FAST_MODE  Default watchdog mode is "fast" 

WDGIF_OFF_MODE  Default watchdog mode is "off" 

WDGIF_SLOW_MODE  Default watchdog mode is "slow" 

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  
dependency: "Off" mode only possible if disabling the watchdog driver is 
allowed.  

   

Included Containers  

Container Name  Multiplicity  Scope / Dependency  

WdgExternalConfiguration  0..1  Configuration items for an external watchdog hardware 

WdgSettingsFast  1  
Hardware dependent settings for the watchdog driver's "fast" 
mode. 

WdgSettingsOff  1  
Hardware dependent settings for the watchdog driver's "off" 
mode. 

WdgSettingsSlow  1  
Hardware dependent settings for the watchdog driver's "slow" 
mode. 

   

Note:  
The three modes are provided as containers for the reason that they might be 
referred by other modules and hence no parameters are needed. However those 
containers might be extended by the vendor (resp. hardware) specific configuration 
parameters, but these could not be standardized. 
 
 
10.2.6 WdgSettingsFast 

SWS Item  ECUC_Wdg_00121 :  

Container Name  WdgSettingsFast{WDG_SETTINGS_FAST}  

Description  Hardware dependent settings for the watchdog driver's "fast" mode. 

Configuration Parameters  

   

No Included Containers  

   

10.2.7 WdgSettingsSlow 

SWS Item  ECUC_Wdg_00123 :  

Container Name  WdgSettingsSlow{WDG_SETTINGS_SLOW}  

Description  Hardware dependent settings for the watchdog driver's "slow" mode. 

Configuration Parameters  

   

No Included Containers  

   

10.2.8 WdgSettingsOff 

SWS Item  ECUC_Wdg_00122 :  

Container Name  WdgSettingsOff{WDG_SETTINGS_OFF}  

Description  Hardware dependent settings for the watchdog driver's "off" mode. 

Configuration Parameters  

   

No Included Containers  

   



Specification of Watchdog Driver 
 V3.1.1 

R4.1 Rev 3 

42 of 43 Document ID 039: AUTOSAR_SWS_WatchdogDriver 

- AUTOSAR confidential - 

10.2.9 WdgExternalConfiguration 

SWS Item  ECUC_Wdg_00112 :  

Container Name  WdgExternalConfiguration{Wdg_ExternalConfiguration}  

Description  Configuration items for an external watchdog hardware 

Configuration Parameters  

   

SWS Item  ECUC_Wdg_00113 :  

Name  
 

WdgExternalContainerRef {WDG_EXTERNAL_CONTAINER_REF}  

Description  Reference to either 
- a DioChannelGroup container in case the hardware watchdog is 
connected via DIO pins - an SpiSequenceConfiguration container in case 
the watchdog hardware is accessed via SPI  

Multiplicity  0..1  

Type  Choice reference to [ DioChannelGroup , SpiSequence ]  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  X  VARIANT-LINK-TIME  

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  
dependency: See DIO resp. SPI SWS  

   

No Included Containers  

   

 

10.3 Published information 
 
 For details refer to the chapter 10.3 “Published Information” in SWS_BSWGeneral. 
 
 
10.3.1 WdgPublishedInformation 

SWS Item  ECUC_Wdg_00074 :  

Container Name  WdgPublishedInformation  

Description  Container holding all Wdg specific published information parameters 

Configuration Parameters  

   

SWS Item  ECUC_Wdg_00127 :  

Name  
 

WdgTriggerMode {WDG_TRIGGER_MODE}  

Description  Watchdog trigger mode (toggle/window/both) 

Multiplicity  1  

Type  EcucEnumerationParamDef  

Range  WDG_BOTH  -- 

WDG_TOGGLE  -- 

WDG_WINDOW  -- 

ConfigurationClass  Published Information  X  All Variants  

Scope / Dependency  scope: local  

   

No Included Containers  

   

Note: 

WdgTriggerMode is only published for information purposes; this parameter is not 

used to configure the Watchdog Driver or the modules using the Watchdog Driver. 



Specification of Watchdog Driver 
 V3.1.1 

R4.1 Rev 3 

43 of 43 Document ID 039: AUTOSAR_SWS_WatchdogDriver 

- AUTOSAR confidential - 

11 Not applicable requirements 
[SWS_Wdg_00175] ⌈ These requirements are not applicable to this specification.⌋ 

(SRS_BSW_00344, SRS_BSW_00404, SRS_BSW_00405, SRS_BSW_00170, SRS_BSW_00419, 

SRS_BSW_00383, SRS_BSW_00375, SRS_BSW_00416, SRS_BSW_00437, SRS_BSW_00168, 
SRS_BSW_00423, SRS_BSW_00424, SRS_BSW_00425, SRS_BSW_00428, SRS_BSW_00432, 
SRS_BSW_00433, SRS_BSW_00450, BSW00434, SRS_BSW_00339, SRS_BSW_00422, 
SRS_BSW_00417, SRS_BSW_00161, SRS_BSW_00162, SRS_BSW_00005, SRS_BSW_00415, 
SRS_BSW_00007, SRS_BSW_00413, SRS_BSW_00441, SRS_BSW_00307, SRS_BSW_00373, 
SRS_BSW_00410, SRS_BSW_00447, SRS_BSW_00348, SRS_BSW_00353, SRS_BSW_00361, 
SRS_BSW_00302, SRS_BSW_00328, SRS_BSW_00312, SRS_BSW_00006, SRS_BSW_00449, 
SRS_BSW_00377, SRS_BSW_00304, SRS_BSW_00355, SRS_BSW_00378, SRS_BSW_00306, 
SRS_BSW_00308, SRS_BSW_00309, SRS_BSW_00371, SRS_BSW_00376, SRS_BSW_00359, 
SRS_BSW_00360, SRS_BSW_00440, SRS_BSW_00330, BSW00443, BSW00444, BSW00445, 
BSW00446, SRS_BSW_00009, SRS_BSW_00401, SRS_BSW_00172, SRS_BSW_00010, 
SRS_BSW_00333, SRS_BSW_00321, SRS_BSW_00341, SRS_BSW_00334, SRS_SPAL_12056, 
SRS_SPAL_12267, SRS_SPAL_12462, SRS_SPAL_12463, SRS_SPAL_12068, SRS_SPAL_12069, 
SRS_SPAL_00157, BSW12155, SRS_SPAL_12063, SRS_SPAL_12075, SRS_SPAL_12067, 

SRS_SPAL_12077, SRS_SPAL_12078, SRS_SPAL_12265, SRS_Wdg_12167, SRS_Wdg_12168) 
 
 
 


	1 Introduction and functional overview
	2 Acronyms and abbreviations
	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms
	3.3 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 File structure
	5.1.1 Code file structure
	5.1.2  Header file structure
	5.1.3 Version check

	5.2 System clock
	5.3 Onboard communication handlers

	6 Requirements traceability
	7 Functional specification
	7.1 General design rules
	7.2 Error classification
	7.3 Production errors
	7.4 Extended production errors
	7.5 Error detection
	7.6 Error notification
	7.7 External watchdog driver
	7.8 Internal watchdog driver
	7.9 Triggering concept to support windowed watchdogs
	7.10 Debugging

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 Wdg_ConfigType

	8.3 Function definitions
	8.3.1 Wdg_Init
	8.3.2 Wdg_SetMode
	8.3.3 Wdg_SetTriggerCondition
	8.3.4 Wdg_GetVersionInfo

	8.4 Call-back Notifications
	8.5 Scheduled functions
	8.6 Expected interfaces
	8.6.1 Mandatory interfaces
	8.6.2 Optional interfaces
	8.6.3 Configurable interfaces


	9 Sequence diagrams
	9.1 Watchdog initialization, setting trigger condition and mode.
	9.2 Data exchange between watchdog driver and hardware

	10  Configuration specification
	10.1  How to read this chapter
	10.2  Containers and configuration parameters
	10.2.1 Variants
	10.2.2 Wdg
	10.2.3 WdgDemEventParameterRefs
	10.2.4 WdgGeneral
	10.2.5 WdgSettingsConfig
	10.2.6 WdgSettingsFast
	10.2.7 WdgSettingsSlow
	10.2.8 WdgSettingsOff
	10.2.9 WdgExternalConfiguration

	10.3 Published information
	10.3.1 WdgPublishedInformation


	11 Not applicable requirements

