
Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

1 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

Document Title Specification of SPI Han-
dler/Driver

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 038

Document Classification Standard

Document Version 4.3.0

Document Status Final

Part of Release 4.1

Revision 3

Document Change History
Date Version Changed by Change Description

31.03.2014 4.3.0 AUTOSAR Release
Management

 Description for Spi_AsyncTransmit
and Spi_SyncTransmit development
errors for already ongoing transmis-
sion

 Clarification of Spi Channel width and
data access type relation

31.10.2013 4.2.0 AUTOSAR Release
Management

 ECUC_Spi_00242 (added)

 ECUC_Spi_00240 (added)

 SWS_Spi_00189 (modified)

 Editorial changes

 Removed chapter(s) on change doc-
umentation

11.03.2013 4.1.0 AUTOSAR Admin-
istration

 Added chapter 7.6 and 7.7, table
from chapter 7.4 moved to chapter
7.7

 SWS_Spi_00129 removed,
SWS_Spi_00128 reformulated

 ECUC_Spi_00180,
ECUC_Spi_00204 Lengh is in data
elements instead of bytes

 MemMap header file remname

 Added Subchapter 3.x due to SWS
General Rollout

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

2 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

Document Change History
Date Version Changed by Change Description

24.11.2011 3.2.0 AUTOSAR Admin-
istration

 Rephrased: requirement
SWS_Spi_00002, SWS_Spi_00046,
SWS_Spi_00129, SWS_Spi_00233,
SWS_Spi_00163, SPI 171,
SWS_Spi_00172, SWS_Spi_00289
and SWS_Spi_00290, block 2 in
chapter 7.2.2

 Removed: requirement SPI083;
SPI132, SPI284 and SPI107 removed
from statement

 Corrected:Dem_EventStatusType in
SWS_Spi_00191, Spi_SyncTransmit
Syn/Async changed to Synchronous,
SPI_E_PARAM_POINTER in
SWS_Spi_00371,

 Reference to MCU in
SWS_Spi_00244 and
SWS_Spi_00342

 Added: requirement
SWS_Spi_00140, chapter 10 -
SpiCsSelection, SWS_Spi_00194 -
SPI_JOB_QUEUED state introduced,
SWS_Spi_00195 with error table up-
date

 Modified: SWS_Spi_00114 and
SWS_Spi_00135, chapter 10 -
SpiEnableCs

12.11.2010 3.1.0 AUTOSAR Admin-
istration

 Added SWS_Spi_00369,
SWS_Spi_00371, SWS_Spi_00370

 Removed SPI190, SPI094

 Updated configuration: base on min-
max value for defined parameter;
SpiHwUnit belongs to SpiExter-
nalDevice Container; updated
SpiTimeClk2Cs

11.12.2009 3.0.0 AUTOSAR Admin-
istration

 Splitting and refinement of several
requirements

 Removal of redundant requirements

 Introduction of new IDs to allow im-
plementation of debugging concept

 Inserted UML diagram in chapter 9

 Updating of Chapter 10 with the in-
clusion of 2 new container and the
definition of the Chip Select configura-
tion

 Legal disclaimer revised

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

3 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

Document Change History
Date Version Changed by Change Description

23.06.2008 2.2.1 AUTOSAR
Administration

 Legal disclaimer revised

12.12.2007 2.2.0 AUTOSAR
Administration

 Updated Chapter 10 with the inclusion
of CS configuration

 Document meta information extended

 Small layout adaptations made

31.01.2007 2.1.0 AUTOSAR
Administration

 Configuration Specification updating

 General rephrasing for clarification

 Syntax error

 Legal disclaimer revised

 Release Notes added

 “Advice for users” revised

 “Revision Information” added

28.04.2006 2.0.0 AUTOSAR Admin-
istration

Document structure adapted to common
Release 2.0 SWS Template.

 Major changes in chapter 10

 Structure of document changed partly

 Other changes see chapter 13

09.06.2005 1.0.0 AUTOSAR Admin-
istration

Initial Release

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

4 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

Disclaimer

This specification and the material contained in it, as released by AUTOSAR is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only.
For any other purpose, no part of the specification may be utilized or reproduced, in
any form or by any means, without permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR Specification Documents may contain exemplary items (exemplary refer-
ence models, "use cases", and/or references to exemplary technical solutions, devic-
es, processes or software).

Any such exemplary items are contained in the Specification Documents for illustra-
tion purposes only, and they themselves are not part of the AUTOSAR Standard.
Neither their presence in such Specification Documents, nor any later documentation
of AUTOSAR conformance of products actually implementing such exemplary items,
imply that intellectual property rights covering such exemplary items are licensed un-
der the same rules as applicable to the AUTOSAR Standard.

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

5 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

Table of Contents

1 Introduction and functional overview ... 8

2 Acronyms and abbreviations ... 9

3 Related documentation.. 10

3.1 Input documents ... 10
3.2 Related standards and norms .. 10
3.3 Related specification .. 11

4 Constraints and assumptions .. 11

4.1 Limitations .. 11
4.2 Applicability to car domains .. 11

5 Dependencies to other modules .. 12

5.1 File structure .. 12

5.1.1 Header file structure .. 12

6 Requirements traceability .. 14

7 Functional specification ... 34

7.1 Overall view of functionalities and features .. 34

7.2 General behaviour .. 35

7.2.1 Common configurable feature: Allowed Channel Buffers 38
7.2.1.1 Behaviour of IB channels ... 38
7.2.1.2 Behaviour of EB channels ... 39

7.2.1.3 Buffering channel usage .. 39
7.2.2 LEVEL 0, Simple Synchronous behaviour .. 40

7.2.3 LEVEL 1, Basic Asynchronous behavior ... 41
7.2.4 Asynchronous configurable feature: Interruptible Sequences 43

7.2.4.1 Behavior of Non-Interruptible Sequences .. 43

7.2.4.2 Behavior of Mixed Sequences ... 44
7.2.5 LEVEL 2, Enhanced behaviour ... 44

7.3 Scheduling Advices .. 46
7.4 Error classification .. 46

7.4.1 Development Errors .. 47
7.4.2 Production Errors .. 48

7.4.3 Extended Production Errors .. 48
7.5 Error detection .. 48

7.5.1 API parameter checking .. 48
7.5.2 SPI state checking .. 49

7.6 Debugging .. 49

8 API specification .. 50

8.1 Imported types.. 50
8.2 Type definitions .. 50

8.2.1 Spi_ConfigType ... 50

8.2.2 Spi_StatusType ... 51
8.2.3 Spi_JobResultType ... 52
8.2.4 Spi_SeqResultType .. 53

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

6 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

8.2.5 Spi_DataBufferType .. 54

8.2.6 Spi_NumberOfDataType ... 54
8.2.7 Spi_ChannelType .. 55
8.2.8 Spi_JobType ... 55
8.2.9 Spi_SequenceType ... 55
8.2.10 Spi_HWUnitType ... 56

8.2.11 Spi_AsyncModeType .. 56
8.3 Function definitions .. 57

8.3.1 Spi_Init .. 57
8.3.2 Spi_DeInit.. 58
8.3.3 Spi_WriteIB ... 59

8.3.4 Spi_AsyncTransmit ... 60
8.3.5 Spi_ReadIB ... 63

8.3.6 Spi_SetupEB ... 64
8.3.7 Spi_GetStatus ... 67
8.3.8 Spi_GetJobResult ... 67
8.3.9 Spi_GetSequenceResult ... 68

8.3.10 Spi_GetVersionInfo ... 69
8.3.11 Spi_SyncTransmit ... 70

8.3.12 Spi_GetHWUnitStatus ... 71
8.3.13 Spi_Cancel .. 72
8.3.14 Spi_SetAsyncMode ... 73

8.4 Callback notifications .. 74

8.5 Scheduled functions ... 74
8.5.1 Spi_MainFunction_Handling ... 74

8.6 Expected Interfaces .. 75
8.6.1 Mandatory Interfaces .. 75
8.6.2 Optional Interfaces .. 75
8.6.3 Configurable interfaces ... 75

8.6.3.1 Spi_JobEndNotification ... 76
8.6.3.2 Spi_SeqEndNotification ... 77

9 Sequence diagrams .. 79

9.1 Initialization .. 79
9.2 Modes transitions ... 79

9.3 Write/AsyncTransmit/Read (IB) .. 80
9.3.1 One Channel, one Job then one Sequence .. 80
9.3.2 Many Channels, one Job then one Sequence 82
9.3.3 Many Channels, many Jobs and one Sequence 83

9.3.4 Many Channels, many Jobs and many Sequences 85
9.4 Setup/AsyncTransmit (EB) ... 86

9.4.1 Variable Number of Data / Constant Number of Data 87
9.4.2 One Channel, one Job then one Sequence .. 87
9.4.3 Many Channels, one Job then one Sequence 88

9.4.4 Many Channels, many Jobs and one Sequence 89
9.4.5 Many Channels, many Jobs and many Sequences 91

9.5 Mixed Jobs Transmission ... 92

9.6 LEVEL 0 SyncTransmit diagrams... 93
9.6.1 Write/SyncTransmit/Read (IB): Many Channels, many Jobs and one
Sequence .. 93

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

7 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

9.6.2 Setup/SyncTransmit (EB): Many Channels, many Jobs and one
Sequence .. 94

10 Configuration specification ... 95

10.1 How to read this chapter .. 95
10.2 Containers and configuration parameters .. 95

10.2.1 Variants ... 95

10.2.2 Spi ... 95
10.2.3 SpiDemEventParameterRefs .. 96
10.2.4 SpiGeneral .. 96
10.2.5 SpiSequence ... 98

10.2.6 SpiChannel.. 99
10.2.7 SpiChannelList .. 101
10.2.8 SpiJob ... 102

10.2.9 SpiExternalDevice ... 103
10.2.10 SpiDriver .. 106
10.2.11 SpiPublishedInformation .. 106

10.3 Published information ... 107

10.4 Configuration concept .. 107

11 Not applicable requirements .. 109

12 Appendix .. 110

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

8 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

1 Introduction and functional overview

The SPI Handler/Driver provides services for reading from and writing to devices
connected via SPI busses. It provides access to SPI communication to several users
(e.g. EEPROM, Watchdog, I/O ASICs). It also provides the required mechanism to
configure the onchip SPI peripheral.

This specification describes the API for a monolithic SPI Handler/Driver. This soft-
ware module includes handling and driving functionalities. Main objectives of this
monolithic SPI Handler/Driver are to take the best of each microcontroller features
and to allow implementation optimization depending on static configuration to fit as
much as possible to ECU needs.

Hence, this specification defines selectable levels of functionalities and configurable
features to allow the design of a high scalable module that exploits the peculiarities of
the microcontroller.

To configure the SPI Handler/Driver these steps shall be followed:

 SPI Handler/Driver Level of Functionality shall be selected and optional fea-
tures configured.

 SPI Channels shall be defined according to data usage, and they could be
buffered inside the SPI Handler/Driver (IB) or provided by the user (EB).

 SPI Jobs shall be defined according to HW properties (CS), and they will con-
tain a list of channels using those properties.

 As a final step, Sequences of Jobs shall be defined, in order to transmit data
in a sorted way (priority sorted).

The general behaviour of the SPI Handler/Driver can be asynchronous or synchro-
nous according to the Level of Functionality selected.

The specification covers the Handler/Driver functionality combined in one single
module. One is the SPI handling part that handles multiple access to busses that
could be located in the ECU Abstraction layer. The other part is the SPI driver that
accesses the microcontroller hardware directly that could be located in the Microcon-
troller Abstraction layer.

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

9 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

2 Acronyms and abbreviations

Acronyms and abbreviations which have a local scope and therefore are not con-
tained in the AUTOSAR glossary must appear in a local glossary.

Acronym: Description:

DET Development Error Tracer – module to which development errors are reported.

DEM Diagnostic Event Manager – module to which production relevant errors are report-
ed.

SPI Serial Peripheral Interface. It is exactly defined hereafter in this document.

CS Chip Select

MISO Master Input Slave Output

MOSI Master Output Slave Input

Abbreviation: Description:

EB Externally buffered channels. Buffers containing data to transfer are outside the SPI
Handler/Driver.

IB Internally buffered channels. Buffers containing data to transfer are inside the SPI
Handler/Driver.

ID Identification Number of an element (Channel, Job, Sequence).

Definition: Description:

Channel A Channel is a software exchange medium for data that are defined with the same
criteria: Config. Parameters, Number of Data elements with same size and data
pointers (Source & Destination) or location.

Job A Job is composed of one or several Channels with the same Chip Select (is not
released during the processing of Job). A Job is considered atomic and therefore
cannot be interrupted by another Job. A Job has an assigned priority.

Sequence A Sequence is a number of consecutive Jobs to transmit but it can be rescheduled
between Jobs using a priority mechanism. A Sequence transmission is interruptible
(by another Sequence transmission) or not depending on a static configuration.

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

10 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

3 Related documentation

3.1 Input documents

[1] Layered Software Architecture

AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf

[2] General Requirements on SPAL
AUTOSAR_SRS_SPALGeneral.pdf

[3] General Requirements on Basic Software Modules

AUTOSAR_SRS_BSWGeneral.pdf

[4] Specification of Development Error Tracer

AUTOSAR_SWS_DevelopmentErrorTracer.pdf

[5] Specification of ECU Configuration

AUTOSAR_TPS_ECUConfiguration.pdf

[6] Requirements on SPI Handler/Driver
AUTOSAR_SRS_SPIHandlerDriver.pdf

[7] Specification of Diagnostic Event Manager
AUTOSAR_SWS_DiagnosticEventManager.pdf

[8] Glossary
AUTOSAR_TR_Glossary.pdf

[9] Specification of MCU Driver

AUTOSAR_SWS_MCUDriver .pdf

[10] Specification of PORT Driver

AUTOSAR_SWS_PORTDriver

[11] Basic Software Module Description Template,
 AUTOSAR_TPS_BSWModuleDescriptionTemplate.pdf

[12] List of Basic Software Modules

AUTOSAR_TR_BSWModuleList

[13] Specification of Standard Types,

AUTOSAR_SWS_StandardTypes.pdf

[14] General Specification of Basic Software Modules

AUTOSAR_SWS_BSWGeneral.pdf

3.2 Related standards and norms

Not related.

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

11 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

3.3 Related specification

AUTOSAR provides a General Specification on Basic Software modules [14] (SWS
BSW General), which is also valid for SPI Handler Driver.

Thus, the specification SWS BSW General shall be considered as additional and re-
quired specification for SPI Handler Driver.

4 Constraints and assumptions

4.1 Limitations

[SWS_Spi_00040] ⌈The SPI Handler/Driver handles only the Master mode.⌋()

[SWS_Spi_00050] ⌈The SPI Handler/Driver only supports full-duplex mode.⌋()

[SWS_Spi_00108] ⌈The LEVEL 2 SPI Handler/Driver is specified for microcontrollers

that have to provide, at least, two SPI busses using separated hardware units. Oth-

erwise, using this level of functionality does not make sense.⌋()

4.2 Applicability to car domains

No restrictions.

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

12 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

5 Dependencies to other modules

[SWS_Spi_00239] ⌈SPI peripherals may depend on the system clock, prescaler(s)

and PLL. Thus, changes of the system clock (e.g. PLL on PLL off) may also affect

the clock settings of the SPI hardware. ⌋()

[SWS_Spi_00244] ⌈The SPI Handler/Driver module does not take care of setting

the registers which configure the clock, prescaler(s) and PLL in its init function. This

has to be done by the MCU module [9].⌋()

[SWS_Spi_00342] ⌈Depending on microcontrollers, the SPI peripheral could share

registers with other peripherals. In this typical case, the SPI Handler/Driver has a re-

lationship with MCU module [9] for initialising and de-initialising those registers.⌋()

[SWS_Spi_00343] ⌈If Chip Selects are done using microcontroller pins the SPI

Handler/Driver has a relationship with PORT module [10]. In this case, this specifica-
tion assumes that these microcontroller pins are directly accessed by the SPI Han-
dler/Driver module without using APIs of DIO module.
Anyhow, the SPI depends on ECU hardware design and for that reason it may de-

pend on other modules.⌋()

5.1 File structure

5.1.1 Header file structure

[SWS_Spi_00092] ⌈The SPI module shall adhere to the following include file struc-

ture: Spi.c shall include Spi.h, Spi_MemMap.h, Det.h and SchM_Spi.h.

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

13 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

⌋(SRS_BSW_00412, SRS_BSW_00415, SRS_BSW_00435, SRS_BSW_00436)

[SWS_Spi_00272] ⌈Spi.h shall include Std_Types.h.⌋()

[SWS_Spi_00273] ⌈Spi.h shall include Spi_Cfg.h.⌋()

[SWS_Spi_00274] ⌈Spi_Xcfg.c shall include Spi.h.⌋()

[SWS_Spi_00275] ⌈Spi_Xcfg.c shall include Spi_MemMap.h.⌋()

[SWS_Spi_00276] ⌈Spi_Irq.c file could exist depending upon implementation and

also it could or not include Spi.h.⌋()

[SWS_Spi_00159] ⌈The DEM configuration tool shall assign ECU dependent values

to the Event Id symbols and publish the symbols in

Dem_IntErrId.h.⌋(SRS_BSW_00384)

The names of the Event Id symbols which are provided by XML to the DEM configu-
ration tool are specified in this document.

dd SPI File include structure

«source»
Std_Types.h

«source»
Platform_Types.h

«source»
Spi.h

«source»
Spal_xxx.c

«source»
Spi_Cfg.h

«source»
Spi_Xcfg.c

«source»
Compiler.h

«source»
Spi_Irq.c

«source»
Det.h

«source»
Dem.h

«source»
Spi.c

«source»
SchM_Spi.h

«source»
Spi_MemMap.h «include»

«include»
«include»

«include» «include»
optional

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

14 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

6 Requirements traceability

Requirement Description Satisfied by

- - SWS_Spi_00011

- - SWS_Spi_00012

- - SWS_Spi_00017

- - SWS_Spi_00023

- - SWS_Spi_00024

- - SWS_Spi_00027

- - SWS_Spi_00028

- - SWS_Spi_00030

- - SWS_Spi_00036

- - SWS_Spi_00037

- - SWS_Spi_00040

- - SWS_Spi_00049

- - SWS_Spi_00050

- - SWS_Spi_00051

- - SWS_Spi_00080

- - SWS_Spi_00081

- - SWS_Spi_00082

- - SWS_Spi_00085

- - SWS_Spi_00086

- - SWS_Spi_00088

- - SWS_Spi_00108

- - SWS_Spi_00112

- - SWS_Spi_00114

- - SWS_Spi_00115

- - SWS_Spi_00116

- - SWS_Spi_00117

- - SWS_Spi_00123

- - SWS_Spi_00126

- - SWS_Spi_00128

- - SWS_Spi_00130

- - SWS_Spi_00131

- - SWS_Spi_00133

- - SWS_Spi_00135

- - SWS_Spi_00136

- - SWS_Spi_00137

- - SWS_Spi_00138

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

15 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

- - SWS_Spi_00139

- - SWS_Spi_00140

- - SWS_Spi_00141

- - SWS_Spi_00142

- - SWS_Spi_00143

- - SWS_Spi_00144

- - SWS_Spi_00145

- - SWS_Spi_00146

- - SWS_Spi_00149

- - SWS_Spi_00150

- - SWS_Spi_00151

- - SWS_Spi_00152

- - SWS_Spi_00154

- - SWS_Spi_00155

- - SWS_Spi_00156

- - SWS_Spi_00157

- - SWS_Spi_00160

- - SWS_Spi_00161

- - SWS_Spi_00164

- - SWS_Spi_00165

- - SWS_Spi_00166

- - SWS_Spi_00167

- - SWS_Spi_00168

- - SWS_Spi_00169

- - SWS_Spi_00170

- - SWS_Spi_00171

- - SWS_Spi_00172

- - SWS_Spi_00173

- - SWS_Spi_00175

- - SWS_Spi_00176

- - SWS_Spi_00177

- - SWS_Spi_00178

- - SWS_Spi_00179

- - SWS_Spi_00180

- - SWS_Spi_00181

- - SWS_Spi_00182

- - SWS_Spi_00183

- - SWS_Spi_00184

- - SWS_Spi_00185

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

16 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

- - SWS_Spi_00186

- - SWS_Spi_00187

- - SWS_Spi_00188

- - SWS_Spi_00189

- - SWS_Spi_00191

- - SWS_Spi_00192

- - SWS_Spi_00193

- - SWS_Spi_00194

- - SWS_Spi_00195

- - SWS_Spi_00233

- - SWS_Spi_00235

- - SWS_Spi_00236

- - SWS_Spi_00237

- - SWS_Spi_00238

- - SWS_Spi_00239

- - SWS_Spi_00240

- - SWS_Spi_00241

- - SWS_Spi_00242

- - SWS_Spi_00243

- - SWS_Spi_00244

- - SWS_Spi_00245

- - SWS_Spi_00246

- - SWS_Spi_00251

- - SWS_Spi_00252

- - SWS_Spi_00253

- - SWS_Spi_00254

- - SWS_Spi_00255

- - SWS_Spi_00256

- - SWS_Spi_00257

- - SWS_Spi_00258

- - SWS_Spi_00259

- - SWS_Spi_00260

- - SWS_Spi_00261

- - SWS_Spi_00262

- - SWS_Spi_00263

- - SWS_Spi_00264

- - SWS_Spi_00265

- - SWS_Spi_00266

- - SWS_Spi_00267

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

17 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

- - SWS_Spi_00268

- - SWS_Spi_00269

- - SWS_Spi_00270

- - SWS_Spi_00271

- - SWS_Spi_00272

- - SWS_Spi_00273

- - SWS_Spi_00274

- - SWS_Spi_00275

- - SWS_Spi_00276

- - SWS_Spi_00279

- - SWS_Spi_00280

- - SWS_Spi_00281

- - SWS_Spi_00282

- - SWS_Spi_00283

- - SWS_Spi_00285

- - SWS_Spi_00286

- - SWS_Spi_00287

- - SWS_Spi_00288

- - SWS_Spi_00289

- - SWS_Spi_00290

- - SWS_Spi_00292

- - SWS_Spi_00293

- - SWS_Spi_00294

- - SWS_Spi_00295

- - SWS_Spi_00298

- - SWS_Spi_00299

- - SWS_Spi_00300

- - SWS_Spi_00301

- - SWS_Spi_00302

- - SWS_Spi_00303

- - SWS_Spi_00304

- - SWS_Spi_00305

- - SWS_Spi_00306

- - SWS_Spi_00307

- - SWS_Spi_00308

- - SWS_Spi_00309

- - SWS_Spi_00310

- - SWS_Spi_00311

- - SWS_Spi_00312

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

18 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

- - SWS_Spi_00313

- - SWS_Spi_00314

- - SWS_Spi_00315

- - SWS_Spi_00316

- - SWS_Spi_00317

- - SWS_Spi_00318

- - SWS_Spi_00319

- - SWS_Spi_00320

- - SWS_Spi_00321

- - SWS_Spi_00322

- - SWS_Spi_00323

- - SWS_Spi_00324

- - SWS_Spi_00325

- - SWS_Spi_00327

- - SWS_Spi_00328

- - SWS_Spi_00329

- - SWS_Spi_00330

- - SWS_Spi_00331

- - SWS_Spi_00332

- - SWS_Spi_00333

- - SWS_Spi_00334

- - SWS_Spi_00335

- - SWS_Spi_00336

- - SWS_Spi_00337

- - SWS_Spi_00338

- - SWS_Spi_00339

- - SWS_Spi_00340

- - SWS_Spi_00341

- - SWS_Spi_00342

- - SWS_Spi_00343

- - SWS_Spi_00344

- - SWS_Spi_00345

- - SWS_Spi_00346

- - SWS_Spi_00347

- - SWS_Spi_00348

- - SWS_Spi_00349

- - SWS_Spi_00350

- - SWS_Spi_00351

- - SWS_Spi_00352

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

19 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

- - SWS_Spi_00353

- - SWS_Spi_00354

- - SWS_Spi_00355

- - SWS_Spi_00356

- - SWS_Spi_00357

- - SWS_Spi_00358

- - SWS_Spi_00359

- - SWS_Spi_00360

- - SWS_Spi_00361

- - SWS_Spi_00362

- - SWS_Spi_00367

- - SWS_Spi_00368

- - SWS_Spi_00370

- - SWS_Spi_00371

- - SWS_Spi_00372

- - SWS_Spi_00373

- - SWS_Spi_00374

- - SWS_Spi_00375

- - SWS_Spi_00376

- - SWS_Spi_00377

- - SWS_Spi_00378

- - SWS_Spi_00379

- - SWS_Spi_00380

- - SWS_Spi_00381

- - SWS_Spi_00382

- - SWS_Spi_00437

- - SWS_Spi_00438

BSW00324 - SWS_Spi_00999

BSW00420 - SWS_Spi_00999

BSW00431 - SWS_Spi_00999

BSW00434 - SWS_Spi_00999

SRS_BSW_00005 Modules of the æC Abstraction Layer
(MCAL) may not have hard coded hori-
zontal interfaces

SWS_Spi_00999

SRS_BSW_00006 The source code of software modules
above the æC Abstraction Layer
(MCAL) shall not be processor and
compiler dependent.

SWS_Spi_00999

SRS_BSW_00009 All Basic SW Modules shall be docu-
mented according to a common stand-
ard.

SWS_Spi_00999

SRS_BSW_00010 The memory consumption of all Basic SWS_Spi_00999

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

20 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

SW Modules shall be documented for a
defined configuration for all supported
platforms.

SRS_BSW_00101 The Basic Software Module shall be
able to initialize variables and hardware
in a separate initialization function

SWS_Spi_00013, SWS_Spi_00015

SRS_BSW_00161 The AUTOSAR Basic Software shall
provide a microcontroller abstraction
layer which provides a standardized
interface to higher software layers

SWS_Spi_00999

SRS_BSW_00164 The Implementation of interrupt service
routines shall be done by the Operating
System, complex drivers or modules

SWS_Spi_00999

SRS_BSW_00168 SW components shall be tested by a
function defined in a common API in the
Basis-SW

SWS_Spi_00999

SRS_BSW_00170 The AUTOSAR SW Components shall
provide information about their depend-
ency from faults, signal qualities, driver
demands

SWS_Spi_00999

SRS_BSW_00172 The scheduling strategy that is built
inside the Basic Software Modules shall
be compatible with the strategy used in
the system

SWS_Spi_00999

SRS_BSW_00301 All AUTOSAR Basic Software Modules
shall only import the necessary infor-
mation

SWS_Spi_00999

SRS_BSW_00302 All AUTOSAR Basic Software Modules
shall only export information needed by
other modules

SWS_Spi_00999

SRS_BSW_00306 AUTOSAR Basic Software Modules
shall be compiler and platform inde-
pendent

SWS_Spi_00999

SRS_BSW_00307 Global variables naming convention SWS_Spi_00999

SRS_BSW_00308 AUTOSAR Basic Software Modules
shall not define global data in their
header files, but in the C file

SWS_Spi_00999

SRS_BSW_00309 All AUTOSAR Basic Software Modules
shall indicate all global data with read-
only purposes by explicitly assigning
the const keyword

SWS_Spi_00999

SRS_BSW_00312 Shared code shall be reentrant SWS_Spi_00999

SRS_BSW_00323 All AUTOSAR Basic Software Modules
shall check passed API parameters for
validity

SWS_Spi_00031, SWS_Spi_00032,
SWS_Spi_00060

SRS_BSW_00325 The runtime of interrupt service routines
and functions that are running in inter-
rupt context shall be kept short

SWS_Spi_00999

SRS_BSW_00326 - SWS_Spi_00999

SRS_BSW_00327 Error values naming convention SWS_Spi_00004

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

21 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

SRS_BSW_00328 All AUTOSAR Basic Software Modules
shall avoid the duplication of code

SWS_Spi_00999

SRS_BSW_00330 It shall be allowed to use macros in-
stead of functions where source code is
used and runtime is critical

SWS_Spi_00999

SRS_BSW_00331 All Basic Software Modules shall strictly
separate error and status information

SWS_Spi_00999

SRS_BSW_00334 All Basic Software Modules shall pro-
vide an XML file that contains the meta
data

SWS_Spi_00999

SRS_BSW_00335 Status values naming convention SWS_Spi_00019, SWS_Spi_00061,
SWS_Spi_00062

SRS_BSW_00336 Basic SW module shall be able to shut-
down

SWS_Spi_00021, SWS_Spi_00022

SRS_BSW_00337 Classification of development errors SWS_Spi_00004

SRS_BSW_00341 Module documentation shall contains all
needed informations

SWS_Spi_00999

SRS_BSW_00342 It shall be possible to create an AU-
TOSAR ECU out of modules provided
as source code and modules provided
as object code, even mixed

SWS_Spi_00999

SRS_BSW_00343 The unit of time for specification and
configuration of Basic SW modules
shall be preferably in physical time unit

SWS_Spi_00999

SRS_BSW_00344 BSW Modules shall support link-time
configuration

SWS_Spi_00009

SRS_BSW_00345 BSW Modules shall support pre-
compile configuration

SWS_Spi_00056

SRS_BSW_00347 A Naming seperation of different in-
stances of BSW drivers shall be in
place

SWS_Spi_00999

SRS_BSW_00350 All AUTOSAR Basic Software Modules
shall apply a specific naming rule for
enabling/disabling the detection and
reporting of development errors

SWS_Spi_00056

SRS_BSW_00355 - SWS_Spi_00999

SRS_BSW_00357 For success/failure of an API call a
standard return type shall be defined

SWS_Spi_00174

SRS_BSW_00359 All AUTOSAR Basic Software Modules
callback functions shall avoid return
types other than void if possible

SWS_Spi_00048

SRS_BSW_00360 AUTOSAR Basic Software Modules
callback functions are allowed to have
parameters

SWS_Spi_00048

SRS_BSW_00369 All AUTOSAR Basic Software Modules
shall not return specific development
error codes via the API

SWS_Spi_00048

SRS_BSW_00375 Basic Software Modules shall report
wake-up reasons

SWS_Spi_00999

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

22 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

SRS_BSW_00384 The Basic Software Module specifica-
tions shall specify at least in the de-
scription which other modules they re-
quire

SWS_Spi_00159

SRS_BSW_00385 List possible error notifications SWS_Spi_00004

SRS_BSW_00396 The Basic Software Module specifica-
tions shall specify one classe (of the
three) to be supported

SWS_Spi_00056, SWS_Spi_00076

SRS_BSW_00397 The configuration parameters in pre-
compile time are fixed before compila-
tion starts

SWS_Spi_00056

SRS_BSW_00398 The link-time configuration is achieved
on object code basis in the stage after
compiling and before linking

SWS_Spi_00076

SRS_BSW_00399 Parameter-sets shall be located in a
separate segment and shall be loaded
after the code

SWS_Spi_00999

SRS_BSW_00400 Parameter shall be selected from multi-
ple sets of parameters after code has
been loaded and started

SWS_Spi_00999

SRS_BSW_00401 Documentation of multiple instances of
configuration parameters shall be avail-
able

SWS_Spi_00999

SRS_BSW_00404 BSW Modules shall support post-build
configuration

SWS_Spi_00148

SRS_BSW_00405 BSW Modules shall support multiple
configuration sets

SWS_Spi_00008, SWS_Spi_00013,
SWS_Spi_00076, SWS_Spi_00148

SRS_BSW_00406 A static status variable denoting if a
BSW module is initialized shall be ini-
tialized with value 0 before any APIs of
the BSW module is called

SWS_Spi_00015, SWS_Spi_00046

SRS_BSW_00412 References to c-configuration parame-
ters shall be placed into a separate h-
file

SWS_Spi_00092

SRS_BSW_00413 An index-based accessing of the in-
stances of BSW modules shall be done

SWS_Spi_00999

SRS_BSW_00415 Interfaces which are provided exclu-
sively for one module shall be separat-
ed into a dedicated header file

SWS_Spi_00092

SRS_BSW_00416 The sequence of modules to be initial-
ized shall be configurable

SWS_Spi_00999

SRS_BSW_00417 Software which is not part of the SW-C
shall report error events only after the
DEM is fully operational.

SWS_Spi_00999

SRS_BSW_00422 Pre-de-bouncing of error status infor-
mation is done within the DEM

SWS_Spi_00999

SRS_BSW_00423 BSW modules with AUTOSAR interfac-
es shall be describable with the means
of the SW-C Template

SWS_Spi_00999

SRS_BSW_00424 BSW module main processing functions SWS_Spi_00999

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

23 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

shall not be allowed to enter a wait
state

SRS_BSW_00426 BSW Modules shall ensure data con-
sistency of data which is shared be-
tween BSW modules

SWS_Spi_00999

SRS_BSW_00427 ISR functions shall be defined and doc-
umented in the BSW module descrip-
tion template

SWS_Spi_00999

SRS_BSW_00428 A BSW module shall state if its main
processing function(s) has to be exe-
cuted in a specific order or sequence

SWS_Spi_00999

SRS_BSW_00429 BSW modules shall be only allowed to
use OS objects and/or related OS ser-
vices

SWS_Spi_00999

SRS_BSW_00432 Modules should have separate main
processing functions for read/receive
and write/transmit data path

SWS_Spi_00999

SRS_BSW_00433 Main processing functions are only
allowed to be called from task bodies
provided by the BSW Scheduler

SWS_Spi_00999

SRS_BSW_00435 - SWS_Spi_00092

SRS_BSW_00436 - SWS_Spi_00092

SRS_SPAL_00157 All drivers and handlers of the AU-
TOSAR Basic Software shall implement
notification mechanisms of drivers and
handlers

SWS_Spi_00026, SWS_Spi_00038,
SWS_Spi_00039, SWS_Spi_00042,
SWS_Spi_00057, SWS_Spi_00071,
SWS_Spi_00073, SWS_Spi_00075

SRS_SPAL_12056 All driver modules shall allow the static
configuration of notification mechanism

SWS_Spi_00009, SWS_Spi_00044,
SWS_Spi_00054, SWS_Spi_00064

SRS_SPAL_12057 All driver modules shall implement an
interface for initialization

SWS_Spi_00013, SWS_Spi_00015

SRS_SPAL_12063 All driver modules shall only support
raw value mode

SWS_Spi_00999

SRS_SPAL_12064 All driver modules shall raise an error if
the change of the operation mode leads
to degradation of running operations

SWS_Spi_00021, SWS_Spi_00025

SRS_SPAL_12067 All driver modules shall set their wake-
up conditions depending on the select-
ed operation mode

SWS_Spi_00999

SRS_SPAL_12068 The modules of the MCAL shall be ini-
tialized in a defined sequence

SWS_Spi_00999

SRS_SPAL_12069 All drivers of the SPAL that wake up
from a wake-up interrupt shall report the
wake-up reason

SWS_Spi_00999

SRS_SPAL_12075 All drivers with random streaming ca-
pabilities shall use application buffers

SWS_Spi_00053

SRS_SPAL_12077 All drivers shall provide a non blocking
implementation

SWS_Spi_00999

SRS_SPAL_12078 The drivers shall be coded in a way that
is most efficient in terms of memory and
runtime resources

SWS_Spi_00999

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

24 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

SRS_SPAL_12092 The driver's API shall be accessed by
its handler or manager

SWS_Spi_00999

SRS_SPAL_12125 All driver modules shall only initialize
the configured resources

SWS_Spi_00008, SWS_Spi_00009,
SWS_Spi_00013

SRS_SPAL_12129 The ISRs shall be responsible for reset-
ting the interrupt flags and calling the
according notification function

SWS_Spi_00999

SRS_SPAL_12163 All driver modules shall implement an
interface for de-initialization

SWS_Spi_00021, SWS_Spi_00022

SRS_SPAL_12263 The implementation of all driver mod-
ules shall allow the configuration of
specific module parameter types at link
time

SWS_Spi_00076

SRS_SPAL_12265 Configuration data shall be kept con-
stant

SWS_Spi_00999

SRS_SPAL_12267 Wakeup sources shall be initialized by
MCAL drivers and/or the MCU driver

SWS_Spi_00999

SRS_Spi_12024 The SPI Handler/Driver shall allow the
static configuration of the following op-
tions

SWS_Spi_00008, SWS_Spi_00063

SRS_Spi_12025 The SPI Handler/Driver shall allow the
static configuration of all software and
hardware properties related to SPI

SWS_Spi_00008, SWS_Spi_00009,
SWS_Spi_00052, SWS_Spi_00053,
SWS_Spi_00063

SRS_Spi_12026 The SPI Handler/Driver shall allow the
static configuration of the desired num-
ber of SPI channels

SWS_Spi_00009

SRS_Spi_12032 For an SPI channel assigned to an SPI
HW Unit the chip select mode "normal"
shall be available

SWS_Spi_00009, SWS_Spi_00066

SRS_Spi_12033 For an SPI channel assigned to an SPI
HW Unit the chip select mode "hold"
shall be available

SWS_Spi_00009, SWS_Spi_00066

SRS_Spi_12037 The SPI Handler/Driver shall allow a
priority controlled allocation of the HW
SPI unit

SWS_Spi_00014, SWS_Spi_00059,
SWS_Spi_00124, SWS_Spi_00127

SRS_Spi_12093 The SPI Handler/Driver shall be able to
handle multiple busses of communica-
tion

SWS_Spi_00009, SWS_Spi_00010,
SWS_Spi_00034, SWS_Spi_00041

SRS_Spi_12094 The SPI Handler/Driver shall handle the
chip select

SWS_Spi_00009, SWS_Spi_00066

SRS_Spi_12099 The SPI Handler/Driver shall provide an
asynchronous read functionality

SWS_Spi_00016, SWS_Spi_00020,
SWS_Spi_00162, SWS_Spi_00163

SRS_Spi_12101 The SPI Handler/Driver shall provide an
asynchronous write functionality

SWS_Spi_00018, SWS_Spi_00020,
SWS_Spi_00162, SWS_Spi_00163

SRS_Spi_12103 The SPI Handler/Driver shall provide an
asynchronous read-write functionality

SWS_Spi_00020, SWS_Spi_00053,
SWS_Spi_00058, SWS_Spi_00067,
SWS_Spi_00162, SWS_Spi_00163

SRS_Spi_12104 The SPI Handler/Driver shall provide a
synchronous functionality which returns
any transfer status

SWS_Spi_00025, SWS_Spi_00026,
SWS_Spi_00039

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

25 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

SRS_Spi_12108 The SPI Handler/Driver shall call the
statically configured notification function

SWS_Spi_00057, SWS_Spi_00118,
SWS_Spi_00119, SWS_Spi_00120

SRS_Spi_12150 The SPI Handler/Driver shall allow the
static configuration of all software and
hardware properties related to asyn-
chronous SPI aspects

SWS_Spi_00009, SWS_Spi_00064,
SWS_Spi_00093

SRS_Spi_12152 The SPI Handler/Driver shall provide a
synchronous read functionality

SWS_Spi_00016, SWS_Spi_00134

SRS_Spi_12153 The SPI Handler/Driver shall provide a
synchronous write functionality

SWS_Spi_00018, SWS_Spi_00134

SRS_Spi_12154 The SPI Handler/Driver shall provide a
synchronous write-read functionality

SWS_Spi_00134

SRS_Spi_12170 The SPI Handler/Driver shall not pro-
vide the ability to prevent a channel
data overwrite

SWS_Spi_00042, SWS_Spi_00084

SRS_Spi_12179 The SPI Handler/Driver shall allow link-
ing consecutive SPI channels by static
configuration

SWS_Spi_00003, SWS_Spi_00009,
SWS_Spi_00064, SWS_Spi_00065

SRS_Spi_12180 The SPI Driver shall access the SPI bus
only for the channel

SWS_Spi_00003, SWS_Spi_00065

SRS_Spi_12181 If an SPI access request for a linked
channel is performed, the SPI Han-
dler/Driver shall use this SPI channel
and all the linked channels

SWS_Spi_00055, SWS_Spi_00065

SRS_Spi_12197 The transmission data width of each
SPI channel shall be configurable

SWS_Spi_00063

SRS_Spi_12198 The SPI Handler/Driver shall provide
the functionality of transferring one
short data sequence with variable data
content

SWS_Spi_00053, SWS_Spi_00077

SRS_Spi_12199 The SPI Handler/Driver shall provide
the functionality of transferring any data
to any devices in one transfer sequence

SWS_Spi_00003, SWS_Spi_00064,
SWS_Spi_00065

SRS_Spi_12200 Reading large data sequences from
one slave device using dummy send
data shall be possible

SWS_Spi_00003, SWS_Spi_00035,
SWS_Spi_00053, SWS_Spi_00065,
SWS_Spi_00077

SRS_Spi_12201 Reading large data sequences from
multiple slave devices using dummy
send data shall be possible

SWS_Spi_00003, SWS_Spi_00035,
SWS_Spi_00065, SWS_Spi_00077

SRS_Spi_12202 The SPI Handler/Driver shall support
data streams to a HW device with vari-
able number of data

SWS_Spi_00053, SWS_Spi_00078

SRS_Spi_12253 The SPI Handler/Driver shall provide
the functionality of transferring one
short data sequence with constant data
content

SWS_Spi_00052, SWS_Spi_00078

SRS_Spi_12256 The SPI Handler/Driver shall support all
controller peripherals

SWS_Spi_00008, SWS_Spi_00009,
SWS_Spi_00034

SRS_Spi_12257 The SPI Handler/Driver shall support
the communication to daisy chained
HW devices

SWS_Spi_00008, SWS_Spi_00009,
SWS_Spi_00010, SWS_Spi_00034,
SWS_Spi_00063, SWS_Spi_00065,

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

26 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

SWS_Spi_00066

SRS_Spi_12258 Data shall be accessible from each
device individually

SWS_Spi_00003, SWS_Spi_00009,
SWS_Spi_00065

SRS_Spi_12259 Different timing and HW parameters
shall be supported

SWS_Spi_00009

SRS_Spi_12260 Different priorities of sequences shall
be supported

SWS_Spi_00002, SWS_Spi_00009,
SWS_Spi_00014, SWS_Spi_00059,
SWS_Spi_00064, SWS_Spi_00093

SRS_Spi_12261 Reading large data sequences from
one slave device using variable send
data shall be possible

SWS_Spi_00003, SWS_Spi_00053,
SWS_Spi_00065

SRS_Spi_12262 Reading large data sequences from
multiple slave devices using variable
send data shall be possible

SWS_Spi_00003, SWS_Spi_00053,
SWS_Spi_00065, SWS_Spi_00078

SRS_Spi_13400 The SPI Handler/Driver shall have a
scalable functionality to fit the needs of
the ECU

SWS_Spi_00110

SRS_Spi_13401 The SPI Handler/Driver functionalities
shall be statically configurable

SWS_Spi_00109, SWS_Spi_00111,
SWS_Spi_00121, SWS_Spi_00122,
SWS_Spi_00125

Document: AUTOSAR requirements on Basic Software, general

Requirement Satisfied by
[SRS_BSW_00003] Version identification SWS_Spi_00068 SWS_Spi_00089

[SRS_BSW_00004] Version check SWS_Spi_00369

[SRS_BSW_00300] Module naming convention Chapter 5.1

[SRS_BSW_00301] Limit imported information Not applicable
(requirement on implementation, not on specifica-
tion)

[SRS_BSW_00302] Limit exported information Not applicable
(requirement on implementation, not on specifica-
tion)

[SRS_BSW_00304] AUTOSAR integer data types Chapters 5.1.1, 8.2, 10.2 and 10.3

[SRS_BSW_00305] Self-defined data types nam-
ing convention

Chapter 8.2

[SRS_BSW_00306] Avoid direct use of compiler
and platform specific keywords

Not applicable
(requirement on implementation, not on specifica-
tion)

[SRS_BSW_00307] Global variables naming con-
vention

Not applicable
(requirement on implementation, not on specifica-
tion)

[SRS_BSW_00308] Definition of global data Not applicable
(requirement on implementation, not on specifica-
tion)

[SRS_BSW_00309] Global data with read-only
constraint

Not applicable
(requirement on implementation, not on specifica-
tion)

[SRS_BSW_00310] API naming convention Chapter 8.3

[SRS_BSW_00312] Shared code shall be reen-
trant

Not applicable
(requirement on implementation, not on specifica-
tion)

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

27 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

[SRS_BSW_00314] Separation of interrupt frames
and service routines

Chapter 5.1

[SRS_BSW_00318] Format of module version
numbers

SWS_Spi_00168

[SRS_BSW_00321] Enumeration of module ver-
sion numbers

SWS_Spi_00068

[SRS_BSW_00323] API parameter checking SWS_Spi_00029 SWS_Spi_00031
SWS_Spi_00032 SWS_Spi_00060

[BSW00324] Do not use HIS I/O Library Not applicable
(requirement on AUTOSAR architecture, not a
single module)

[SRS_BSW_00325] Runtime of interrupt service
routines

Not applicable
(Cannot be detailed at this point of time, because
this depends on module implementation.)

[SRS_BSW_00326] Transition from ISRs to OS
tasks

Not applicable
(Cannot be detailed at this point of time, because
this depends on module implementation.)

[SRS_BSW_00327] Error values naming
convention

SWS_Spi_00004

[SRS_BSW_00328] Avoid duplication of code Not applicable
(requirement on implementation, not on specifica-
tion)

[SRS_BSW_00329] Avoidance of generic inter-
faces

Chapter 8

[SRS_BSW_00330] Usage of macros / inline func-
tions instead of functions

Not applicable
(requirement on implementation, not on specifica-
tion)

[SRS_BSW_00331] Separation of error and status
values

Not applicable
(requirement on implementation, not on specifica-
tion)

[SRS_BSW_00333] Documentation of callback
function context

Chapters 8.6.3.1 and 8.6.3.2

[SRS_BSW_00334] Provision of XML file Not applicable
(requirement on implementation, not on specifica-
tion)

[SRS_BSW_00335] Status values naming
convention

SWS_Spi_00061 SWS_Spi_00062
SWS_Spi_00019

[SRS_BSW_00336] Shutdown interface SWS_Spi_00021 SWS_Spi_00022

[SRS_BSW_00337] Classification of errors SWS_Spi_00004 SWS_Spi_00007
SWS_Spi_00097 SWS_Spi_00098

[SRS_BSW_00338] Reporting of development
errors

SWS_Spi_00100

[SRS_BSW_00339] Reporting of production rele-
vant error status

SWS_Spi_00006 SWS_Spi_00099 and Chapter
8.6.2

[SRS_BSW_00341] Microcontroller compatibility
documentation

Not applicable
(requirement on implementation, not on specifica-
tion)

[SRS_BSW_00342] Usage of source code and
object code

Not applicable
(requirement on implementation, not on specifica-
tion)

[SRS_BSW_00343] Specification and configura-
tion of time

Not applicable
(requirement on implementation, not on specifica-
tion)

[SRS_BSW_00344] Reference to link-time config-
uration

SWS_Spi_00009 SPI091

[SRS_BSW_00345] Pre-compile-time
configuration

SWS_Spi_00056

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

28 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

[SRS_BSW_00347] Naming separation of differ-
ent instances of BSW drivers

Not applicable
(requirement on implementation, not on specifica-
tion)

[SRS_BSW_00348] Standard type header Chapter 8.1

[SRS_BSW_00350] Development error detection
keywords

SWS_Spi_00005 SPI103 SWS_Spi_00056

[SRS_BSW_00353] Platform specific type header Chapter 8.1

[SRS_BSW_00355] Do not redefine AUTOSAR
integer data types

Not applicable
(requirement on implementation, not on specifica-
tion)

[SRS_BSW_00357] Standard API return type SWS_Spi_00174 Chapter 8.3

[SRS_BSW_00358] Return type of init() functions Chapter 8.3.1

[SRS_BSW_00359] Return type of callback
functions

SWS_Spi_00048

[SRS_BSW_00360] Parameters of callback func-
tions

SWS_Spi_00048

[SRS_BSW_00361] Compiler specific language
extension header

Chapter 5.1.1

[SRS_BSW_00369] Do not return development
error codes via API

SWS_Spi_00005 SWS_Spi_00029
SWS_Spi_00048 SWS_Spi_00006

[SRS_BSW_00370] Separation of callback inter-
face from API

Chapter 8.4

[SRS_BSW_00371] Do not pass function pointers
via API

Chapters 8.6.3, 10.2

[SRS_BSW_00373] Main processing function
naming convention

Chapter 8.5

[SRS_BSW_00374] Module vendor identification SWS_Spi_00068 SWS_Spi_00089

[SRS_BSW_00375] Notification of wake-up rea-
son

Not applicable.
(Only master mode is supported. Master mode
does not provide wake up events.)

[SRS_BSW_00376] Return type and parameters
of main processing functions

Chapter 8.5

[SRS_BSW_00377] Module specific API return
types

Chapters 0, 8.2.3 and 8.2.4

[SRS_BSW_00378] AUTOSAR boolean type SPI105

[SRS_BSW_00379] Module identification SWS_Spi_00068 SWS_Spi_00089

[SRS_BSW_00380] Separate C-Files for configu-
ration parameters

SWS_Spi_00095

[SRS_BSW_00381] Separate configuration head-
er file for pre-compile time parameters

SPI103

[SRS_BSW_00383] List dependencies of configu-
ration files

Chapter 5

[SRS_BSW_00384] List dependencies to other
modules

Chapter 5, SWS_Spi_00158 SWS_Spi_00159

[SRS_BSW_00385] List possible error notifica-
tions

SWS_Spi_00004 SWS_Spi_00007

[SRS_BSW_00386] Configuration for detecting an
error

SWS_Spi_00005 SWS_Spi_00029

[SRS_BSW_00387] Specify the configuration
class of callback function

Chapters 8.4 and 8.6.3

[SRS_BSW_00388] Introduce containers SPI103 SPI091 SPI104 SPI105 SPI106

[SRS_BSW_00389] Containers shall have names SPI103 SPI091 SPI104 SPI105 SPI106

[SRS_BSW_00390] Parameter content shall be
unique within the module

SPI103 SPI091 SPI104 SPI105 SPI106

SWS_Spi_00068

[SRS_BSW_00391] Parameter shall have unique
names

SPI103 SPI091 SPI104 SPI105 SPI106

SWS_Spi_00068

[SRS_BSW_00392] Parameters shall have a type SPI103 SPI091 SPI104 SPI105 SPI106

[SRS_BSW_00393] Parameters shall have a
range

SPI103 SPI091 SPI104 SPI105 SPI106

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

29 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

[SRS_BSW_00394] Specify the scope of the pa-
rameters

SPI103 SPI091 SPI104 SPI105 SPI106

[SRS_BSW_00395] List the required parameters
(per parameter)

SPI103 SPI091 SPI104 SPI105 SPI106

[SRS_BSW_00396] Configuration classes SWS_Spi_00056 SWS_Spi_00076 SPI103
SPI091 SPI104 SPI105 SPI106

[SRS_BSW_00397] Pre-compile-time parameters SWS_Spi_00056 SPI103

[SRS_BSW_00398] Link-time parameters SWS_Spi_00076 SPI091 SPI104 SPI105 SPI106

[SRS_BSW_00399] Loadable Post-build time
parameters

Non applicable
(Cannot be detailed at this point of time, because
this depends on ECU integration.)

[SRS_BSW_00004] Version check SWS_Spi_00069

[SRS_BSW_00400] Selectable Post-build time
parameters

Non applicable
(Cannot be detailed at this point of time, because
this depends on ECU integration.)

[SRS_BSW_00401] Documentation of multiple
instances of configuration parameters

Not applicable
(requirement on implementation, not on specifica-
tion)

[SRS_BSW_00402] Published information SWS_Spi_00068 SWS_Spi_00089

[SRS_BSW_00404] Reference to post build time
configuration

SWS_Spi_00148

[SRS_BSW_00405] Reference to multiple
configuration sets

SWS_Spi_00008 SWS_Spi_00013
SWS_Spi_00076 SWS_Spi_00148

[SRS_BSW_00406] Check module initialization SWS_Spi_00015 SWS_Spi_00046

[SRS_BSW_00407] Function to read out pub-
lished parameters

SWS_Spi_00101 SWS_Spi_00102

[SRS_BSW_00408] Configuration parameter
naming convention

Chapter 10.2

[SRS_BSW_00409] Header files for production
code error IDs

SWS_Spi_00097

[SRS_BSW_00410] Compiler switches shall have
defined values

SPI103

[SRS_BSW_00411] Get version info keyword SWS_Spi_00102

[SRS_BSW_00412] Separate H-File for configura-
tion parameters

SWS_Spi_00092

[SRS_BSW_00413] Accessing instances of BSW
modules

Not applicable
(requirement on implementation, not on specifica-
tion)

[SRS_BSW_00414] Parameter of init function Chapter 8.3.1

[SRS_BSW_00415] User dependent include files SWS_Spi_00092

[SRS_BSW_00416] Sequence of Initialization Not applicable
(this is a general software integration requirement)

[SRS_BSW_00417] Reporting of Error Events by
Non-Basic Software

Not applicable
(applies only for non BSW modules)

[SRS_BSW_00419] Separate C-Files for pre-
compile time configuration parameters

SWS_Spi_00095

[BSW00420] Production relevant error event rate
detection

Not applicable
(applies only for DEM)

[BSW00421] Reporting of production relevant
error events

SWS_Spi_00006 SWS_Spi_00099 and Chapter
8.6.2

[SRS_BSW_00422] Debouncing of production
relevant error status

Not applicable
(applies only for DEM)

[SRS_BSW_00423] Usage of SW-C template to
describe BSW modules with AUTOSAR Interfaces

Not applicable
(EEPROM driver has no Autosar Interface)

[SRS_BSW_00424] BSW main processing func-
tion task allocation

Not applicable
(this is a general software integration requirement)

[SRS_BSW_00425] Trigger conditions for sched-
ulable objects

Chapter 8.5

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

30 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

[SRS_BSW_00426] Exclusive areas in BSW
modules

Not applicable
(Cannot be detailed at this point of time, because
this depends on module implementation.)

[SRS_BSW_00427] ISR description for BSW
modules

Not applicable
(Cannot be detailed at this point of time, because
this depends on module implementation.)

[SRS_BSW_00428] Execution order dependen-
cies of main processing functions

Not applicable
(Cannot be detailed at this point of time, because
this depends on module implementation.)

[SRS_BSW_00429] Restricted BSW OS function-
ality access

Not applicable
(requirement on implementation, not on specifica-
tion)

[BSW00431] The BSW Scheduler module imple-
ments task bodies

Not applicable
(SPI Handler/Driver Module is not the BSW
Scheduler)

[SRS_BSW_00432] Modules should have sepa-
rate main processing functions for read/receive
and write/transmit data path

Not applicable
(requirement on implementation, not on specifica-
tion)

[SRS_BSW_00433] Calling of main processing
functions

Not applicable
(this is a general software integration requirement)

[BSW00434] The Schedule Module shall provide
an API for exclusive areas

Not applicable
(SPI Handler/Driver Module is not the BSW
Scheduler)

[SRS_BSW_00435] Module Header File Structure
for the Basic Software Scheduler

SWS_Spi_00092

[SRS_BSW_00436] Module Header File Structure
for the Memory Mapping

SWS_Spi_00092

[SRS_BSW_00005] No hard coded horizontal
interfaces within MCAL

Not applicable
(requirement on AUTOSAR architecture, not a
single module)

[SRS_BSW_00006] Platform independency Not applicable
(requirement on implementation, not on specifica-
tion)

[SRS_BSW_00007] HIS MISRA C Not applicable
(requirement on implementation, not on specifica-
tion)

[SRS_BSW_00009] Module User Documentation Not applicable
(requirement on implementation, not on specifica-
tion)

[SRS_BSW_00010] Memory resource documen-
tation

Not applicable
(requirement on implementation, not on specifica-
tion)

[SRS_BSW_00101] Initialization interface SWS_Spi_00013 SWS_Spi_00015

[SRS_BSW_00158] Separation of configuration
from implementation

SPI103 SPI091 SWS_Spi_00089
SWS_Spi_00095

[SRS_BSW_00159] Tool-based configuration Both static and runtime configuration parameters
are located outside the source code of the mod-
ule. This is the prerequisite for automatic configu-
ration.

[SRS_BSW_00160] Human-readable configura-
tion data

Requirement on configuration methodology and
tools

[SRS_BSW_00161] Microcontroller abstraction Not applicable
(requirement on AUTOSAR architecture, not a
single module)

[SRS_BSW_00162] ECU layout abstraction Not applicable
(requirement on AUTOSAR architecture, not a
single module)

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

31 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

[SRS_BSW_00164] Implementation of interrupt
service routines

Not applicable
(Cannot be detailed at this point of time, because
this depends on module implementation.)

[SRS_BSW_00167] Static configuration checking Requirement on configuration tool

[SRS_BSW_00168] Diagnostic Interface of SW
components

Not applicable (no use case)

[SRS_BSW_00170] Data for reconfiguration of
AUTOSAR SW-Components

Not applicable
(requirement on SW Component)

[SRS_BSW_00171] Configurability of optional
functionality

Conflicts partly with SPAL requirement
[SRS_SPAL_12263] Configuration after compile
time.

[SRS_BSW_00172] Compatibility and documenta-
tion of scheduling strategy

Not applicable
(requirement on implementation, not on specifica-
tion)

Document: AUTOSAR requirements on Basic Software, cluster SPAL

Requirement Satisfied by
[SRS_SPAL_12263] Object code compatible
configuration concept

SWS_Spi_00076

[SRS_SPAL_12056] Configuration of notification
mechanisms

SWS_Spi_00009 SWS_Spi_00064
SWS_Spi_00044 SWS_Spi_00054

[SRS_SPAL_12267] Configuration of wake-up
sources

Not applicable. (
Only master mode is supported. Master mode
does not provide wake up events.)

[SRS_SPAL_12057] Driver module initialization SWS_Spi_00013 SWS_Spi_00015

[SRS_SPAL_12125] Initialization of hardware
resources

SWS_Spi_00013 SWS_Spi_00008
SWS_Spi_00009

[SRS_SPAL_12163] Driver module deinitialization SWS_Spi_00021 SWS_Spi_00022

[SRS_SPAL_12461] Responsibility for register
initialization

See chapter 5

[SRS_SPAL_12462] Provide settings for register
initialization

Cannot be detailed at this point of time, because
this depends on SPI hardware and implementa-
tion.

[SRS_SPAL_12463] Combine and forward
settings for register initialization

Cannot be detailed at this point of time (see
above)

[SRS_SPAL_12068] MCAL initialization sequence Not applicable
(this is a general software integration requirement)

[SRS_SPAL_12069] Wake-up notification of ECU
State Manager

Not applicable
(the SPI does not cause any wake-ups)

[SRS_SPAL_00157] Notification mechanisms of
drivers and handlers

SWS_Spi_00026 SWS_Spi_00038
SWS_Spi_00039 SWS_Spi_00042
SWS_Spi_00057 SWS_Spi_00071
SWS_Spi_00073 SWS_Spi_00075

[SRS_SPAL_12169] Control of operation mode Chapter 9.2

[SRS_SPAL_12063] Raw value mode Not applicable (no I/O functionality)

[SRS_SPAL_12075] Use of application buffers SWS_Spi_00053

[SRS_SPAL_12129] Resetting of interrupt flags No Applicable to the Handler API but shall be
define for the Driver API.

[SRS_SPAL_12064] Change of operation mode
during running operation

Chapter 9.2, SWS_Spi_00025 SWS_Spi_00021

[SRS_SPAL_12448] Behavior after development
error detection

Chapters 7.5.1 and 7.5.2

[SRS_SPAL_12067] Setting of wake-up
conditions

Not applicable (the SPI resource does not cause
any wake-ups)

[SRS_SPAL_12077] Non-blocking implementation Not applicable
(requirement on implementation, not on specifica-

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

32 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

tion)

[SRS_SPAL_12078] Runtime and memory
efficiency

Not applicable
(requirement on implementation, not on specifica-
tion)

[SRS_SPAL_12092] Access to drivers Not applicable
(requirement on implementation, not on specifica-
tion)

[SRS_SPAL_12265] Configuration data shall be
kept constant

Not applicable
(requirement on implementation, not on specifica-
tion)

[SRS_SPAL_12264] Specification of configuration
items

Chapter 10.2

Document: AUTOSAR requirements on Basic Software, SPI Handler/Driver

Requirement Satisfied by
[SRS_Spi_12093] SPI Channel support SWS_Spi_00009 SWS_Spi_00010

SWS_Spi_00034 SWS_Spi_00041

[SRS_Spi_12094] Chip select SWS_Spi_00009 SWS_Spi_00066

[SRS_Spi_12256] Support of all Controller Pe-
ripherals

SWS_Spi_00008 SWS_Spi_00009
SWS_Spi_00034

[SRS_Spi_12257] Support of chained HW devic-
es

SWS_Spi_00008 SWS_Spi_00063
SWS_Spi_00009 SWS_Spi_00010
SWS_Spi_00034 SWS_Spi_00065
SWS_Spi_00066

[SRS_Spi_13400] Scalable functionality SWS_Spi_00110 Chapters 7.2.1 and 7.2.4

[SRS_Spi_12025] Configuration of SPI general
SW and HW properties

SWS_Spi_00008 SWS_Spi_00009
SWS_Spi_00063 SWS_Spi_00052
SWS_Spi_00053

[SRS_Spi_12179] SPI Channel linkage SWS_Spi_00009 SWS_Spi_00003
SWS_Spi_00064 SWS_Spi_00065

[SRS_Spi_12026] Assignment of SPI Channel to
SPI HW Unit

SWS_Spi_00009

[SRS_Spi_12197] Definition of data width SWS_Spi_00063

[SRS_Spi_13401] Statically configurable func-
tionalities

SWS_Spi_00109 SWS_Spi_00111
SWS_Spi_00121 SWS_Spi_00122
SWS_Spi_00125

[SRS_Spi_12258] Data shall be accessible de-
vice individually

SWS_Spi_00003 SWS_Spi_00065
SWS_Spi_00009

[SRS_Spi_12259] Support of different timing and
HW parameters

SWS_Spi_00009

[SRS_Spi_12260] Support of different priorities of
sequences

SWS_Spi_00009 SWS_Spi_00064
SWS_Spi_00002 SWS_Spi_00014
SWS_Spi_00059 SWS_Spi_00093

[SRS_Spi_12180] Handling of single SPI
channels

SWS_Spi_00003 SWS_Spi_00065

[SRS_Spi_12181] Handling of linked SPI
channels

SWS_Spi_00065 SWS_Spi_00055

[SRS_Spi_12032] Chip select mode – normal
mode

SWS_Spi_00009 SWS_Spi_00066

[SRS_Spi_12033] Chip select mode – hold mode SWS_Spi_00009 SWS_Spi_00066

[SRS_Spi_12198] Transfer one short data se-
quence with variable data

SWS_Spi_00053 SWS_Spi_00077

[SRS_Spi_12253] Transfer one short data se-
quence with constant data

SWS_Spi_00052 SWS_Spi_00078

[SRS_Spi_12199] Transfer data to several de-
vices in one Sequence

SWS_Spi_00065 SWS_Spi_00003
SWS_Spi_00064

[SRS_Spi_12200] Read large data sequences SWS_Spi_00053 SWS_Spi_00065

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

33 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

from one slave device using dummy send data SWS_Spi_00003 SWS_Spi_00035
SWS_Spi_00077

[SRS_Spi_12261] Read large data sequences
from one slave device using variable send data

SWS_Spi_00053 SWS_Spi_00065
SWS_Spi_00003

[SRS_Spi_12201] Read large data sequences
from several slave devices using dummy send
data

SWS_Spi_00065 SWS_Spi_00003
SWS_Spi_00035 SWS_Spi_00077

[SRS_Spi_12262] Read large data sequences
from several slave devices using variable send
data

SWS_Spi_00053 SWS_Spi_00065
SWS_Spi_00003 SWS_Spi_00078

[SRS_Spi_12202] Support of variable data length SWS_Spi_00053 SWS_Spi_00078

[SRS_Spi_12024] Configuration of SPI HW Unit SWS_Spi_00008 SWS_Spi_00063

[SRS_Spi_12150] Configuration of SPI asyn-
chronous SW and HW properties

SWS_Spi_00009 SWS_Spi_00064
SWS_Spi_00093

[SRS_Spi_12108] Callback notification Chapter 8.6.3 SWS_Spi_00057 SWS_Spi_00118
SWS_Spi_00119 SWS_Spi_00120

[SRS_Spi_12099] Asynchronous Read Function-
ality

SWS_Spi_00020 SWS_Spi_00162
SWS_Spi_00163 SWS_Spi_00016
SWS_Spi_00020

[SRS_Spi_12101] Asynchronous Write Function-
ality

SWS_Spi_00020 SWS_Spi_00162
SWS_Spi_00163 SWS_Spi_00018
SWS_Spi_00020

[SRS_Spi_12103] Asynchronous Read-Write
Functionality

SWS_Spi_00020 SWS_Spi_00053
SWS_Spi_00058 SWS_Spi_00067

[SRS_Spi_12037] Job Management Strategy –
Priority controlled

Chapter 7.2.3, 7.2.4 and 7.3 SWS_Spi_00014
SWS_Spi_00059 SWS_Spi_00124
SWS_Spi_00127

[SRS_Spi_12104] SPI status functionality SWS_Spi_00025 SWS_Spi_00026
SWS_Spi_00039

[SRS_Spi_12170] Concurrent Channel access SWS_Spi_00042 SWS_Spi_00084

[SRS_Spi_12152] Synchronous Read Function Chapter 7.2.2 SWS_Spi_00134 SWS_Spi_00016

[SRS_Spi_12153] Synchronous Write Function Chapter 7.2.2 SWS_Spi_00134 SWS_Spi_00018

[SRS_Spi_12154] Synchronous Write-Read
Function

Chapter 7.2.2 SWS_Spi_00134

[SRS_Spi_12151] Job Management Strategy –
Order of requests

Chapter 7.2.2

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

34 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

7 Functional specification

The SPI (Serial Peripheral Interface) has a 4-wire synchronous serial interface. Data
communication is enabled with a Chip select wire (CS). Data is transmitted with a 3-
wire interface consisting of wires for serial data output (MOSI), serial data input (MI-
SO) and serial clock (CLOCK).

7.1 Overall view of functionalities and features

This specification is based on previous specification experiences and also based on
predominant identified use cases. The intention of this section is to summarize how
the scalability of this monolithic SPI Handler/Driver allows getting a simple software
module that fits simple needs up to a smart software module that fits enhanced
needs.

This document specifies the following 3 Levels of Scalable Functionality for the SPI
Handler/Driver:

 LEVEL 0, Simple Synchronous SPI Handler/Driver: the communication is
based on synchronous handling with a FIFO policy to handle multiple access-
es. Buffer usage is configurable to optimize and/or to take advantage of HW
capabilities.

MCAL

HAL

µC Simple SPI

Queued SPI

DMA SPI

Scalability of functionalities

SPI Handler/Driver

F
e

a
tu

re
 #

1

…

F
e

a
tu

re
 #

n

F
e

a
tu

re
 #

1

…

F
e

a
tu

re
 #

m

F
e

a
tu

re

#
1

…

F
e

a
tu

re

#
k

SPI API standardized

MCAL

HAL

µC Simple SPI

Queued SPI

DMA SPI

Scalability of functionalities

SPI Handler/Driver

F
e

a
tu

re
 #

1

…

F
e

a
tu

re
 #

n

F
e

a
tu

re
 #

1

…

F
e

a
tu

re
 #

m

F
e

a
tu

re

#
1

…

F
e

a
tu

re

#
k

SPI API standardized

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

35 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

 LEVEL 1, Basic Asynchronous SPI Handler/Driver: the communication is
based on asynchronous behavior and with a Priority policy to handle multiple
accesses. Buffer usage is configurable as for “Simple Synchronous” level.

 LEVEL 2, Enhanced (Synchronous/Asynchronous) SPI Handler/Driver:
the communication is based on asynchronous behavior or synchronous han-
dling, using either interrupts or polling mechanism selectable during execution
time and with a Priority policy to handle multiple accesses. Buffer usage is
configurable as for other levels.

[SWS_Spi_00109] ⌈The SPI Handler/Driver’s level of scalable functionality shall al-

ways be statically configurable, i.e. configured at pre-compile time to allow the best

source code optimisation.⌋(SRS_Spi_13401)

[SWS_Spi_00110] ⌈The SpiLevelDelivered parameter shall be configured with

one of the 3 authorized values according to the described levels (0, 1 or 2) to allow
the selection of the SPI Handler/Driver’s level of scalable functionali-

ty.⌋(SRS_Spi_13400)

To improve the scalability, each level has optional features which are configurable

(ON / OFF) or selectable. These are described in detail in the dedicated chapters.

7.2 General behaviour

This chapter, on the one hand, introduces common behavior and configuration for all
levels. On the other, it specifies the behavior of each level and also the allowed op-
tional features.

[SWS_Spi_00041] ⌈The SPI Handler/Driver interface configuration shall be based on

Channels, Jobs and Sequences as defined in this document (see chapter

2).⌋(SRS_Spi_12093)

[SWS_Spi_00034] ⌈The SPI Handler/Driver shall support one or more Channels,

Jobs and Sequences to drive all kind of SPI compatible HW devic-

es.⌋(SRS_Spi_12093, SRS_Spi_12256, SRS_Spi_12257)

[SWS_Spi_00255] ⌈Data transmissions shall be done according to Channels, Jobs

and Sequences configuration parameters.⌋()

[SWS_Spi_00066] ⌈The Chip Select (CS) is attached to the Job defini-

tion.⌋(SRS_Spi_12094, SRS_Spi_12257, SRS_Spi_12032, SRS_Spi_12033)

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

36 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

[SWS_Spi_00263] ⌈Chip Select shall be handled during Job transmission and shall

be released at the end of it. This Chip Select handling shall be done according to the

Job configuration parameters.⌋()

[SWS_Spi_00370] ⌈It shall be possible to define if the Chip Select handling is man-

aged autonomously by the HW peripheral, without explicit chip select control by the
driver, or the SPI driver shall drive the chip select lines explicitly as DIO (see

ECUC_Spi_00212).⌋()

Example of CS handling: Set the CS active at the beginning of Job transmission;
maintain it until the end of transmission of all Channels belonging to this Job after-
wards set the CS inactive.

A Channel is defined one time but it could belong to several Jobs according to the
user needs and this software specification.

[SWS_Spi_00065] ⌈A Job shall contain at least one Channel.⌋(SRS_Spi_12257,

SRS_Spi_12179, SRS_Spi_12258, SRS_Spi_12180, SRS_Spi_12181,
SRS_Spi_12199, SRS_Spi_12200, SRS_Spi_12261, SRS_Spi_12201,
SRS_Spi_12262)

[SWS_Spi_00368] ⌈Each Channel shall have an associated index which is used for

specifying the order of the Channel within the Job.⌋()

[SWS_Spi_00262] ⌈If a Job contains more than one Channel, all Channels con-

tained have the same Job properties during transmission and shall be linked together

statically.⌋()

A Job is defined one time but it could belong to several Sequences according to the
user needs and this software specification.

[SWS_Spi_00003] ⌈A Sequence shall contain at least one Job.⌋(SRS_Spi_12179,

SRS_Spi_12258, SRS_Spi_12180, SRS_Spi_12199, SRS_Spi_12200,
SRS_Spi_12261, SRS_Spi_12201, SRS_Spi_12262)

[SWS_Spi_00236] ⌈If it contains more than one, all Jobs contained have the same

Sequence properties during transmission and shall be linked together statically.⌋()

A Channel used for a transmission should have its parameters configured but it is
allowed to pass Null pointers as source and destination pointers to generate a dum-
my transmission (See also [SWS_Spi_00028] & [SWS_Spi_00030]).

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

37 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

b
u
s
 i
s
 a

rb
it
ra

te
d
 b

y

jo
b
 n

CLOCK

MOSI

MISO

CSn

CSm

Channel x

D D D D

D DD D

D D D D D D

D D D D D D

Channel y Channel z

Job n Job m

D D D D D D

Sequence a

D D D D D D

CSo

...

linkage

b
u
s
 i
s
 r

e
le

a
s
e
d

s
c
h
e
d
u
lin

g
 a

c
c
o
rd

in
g

to
 j
o
b
 p

ri
o
ri
ty

 i
s
 d

o
n
e

a
ft

e
r
th

e
 tr

a
n
c
e
iv

in
g

d
a
ta

 o
f

C
h
a
n
n
e
l x

 i
s

fi
n
is

h
e
d
,

th
e
 n

e
x
t

C
h
a
n
n
e
l
o
f

jo
b
 n

 i
s

tr
a
n
c
e
iv

e
d
 w

it
h
o
u
t

re
le

a
s
in

g
 t

h
e
 b

u
s

b
u
s
 i
s
 a

rb
it
ra

te
d
 b

y

jo
b
 m

b
u
s
 i
s
 r

e
le

a
s
e
d

tr
a
n
s
m

is
s
io

n
 o

f

S
e
q
u
e
n
c
e
 a

 i
s

in
it
ia

te
d
 v

ia
 A

P
I c

a
ll

Channel data may differ from the hardware handled and user (client application) giv-
en. On the client side the data is handled in 8, 16 or 32bits mode base on SpiDa-
taWidth (see chapter 8.2.5). On the microcontroller side, the hardware may handle
between 1 and 32bits or may handle a fixed value (8 or 16bits) and this width is con-
figurable for each Channel (see SpiDataWidth)..

[SWS_Spi_00149] ⌈The SPI Handler/Driver shall take care of the differences be-

tween the frame width of channel (SpiDataWidth) and data access data type (given

by SWS_Spi_00437).⌋()

[SWS_Spi_00289] ⌈If data width (SpiDataWidth) are exactly same (8 or 16 or 32

bits), the SPI Handler/Driver can send and receive data without any bit changes

straightforward.⌋()

[SWS_Spi_00290] ⌈If data access casting type is superior to data width (for exam-

ple SpiDataWidth = 12bits, data access is 16 bits), the data transmitted through the
SPI Handler/Driver shall send the lower part, ignore the upper part. Receive the low-

er part, extend with zero.⌋()

This ensures that the user always gets the same interface.

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

38 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

[SWS_Spi_00437] ⌈Data buffers are accessed as uint8, uint16 or uint32 according

to SpiDataWidth
independently to Spi_DataBufferType.

The data access will use following casting:
uint8 for SpiDataWidth < 9
uint16 for 9 =< SpiDataWidth < 17

uint32 for 17 =< SpiDataWidth⌋()

7.2.1 Common configurable feature: Allowed Channel Buffers

In order to allow taking advantages of all microcontroller capabilities but also to allow
sending/receiving of data to/from a dedicated memory location, all levels have an
optional feature with respect to the location of Channel Buffers.

Hence, two main kinds of channel buffering can be used by configuration:

 Internally buffered Channels (IB): The buffer to transmit/receive data is provid-
ed by the Handler/Driver.

 Externally buffered Channels (EB): The buffer to transmit/receive is provided
by the user (statically and/or dynamically).

Both channel buffering methods may be used depending on the 3 use cases de-
scribed below:

 Usage 0: the SPI Handler/Driver manages only Internal Buffers.

 Usage 1: the SPI Handler/Driver manages only External Buffers.

 Usage 2: the SPI Handler/Driver manages both buffers types.

[SWS_Spi_00111] ⌈The SpiChannelBuffersAllowed parameter shall be configured

with one of the 3 authorized values (0, 1 or 2) according to the described us-

age.⌋(SRS_Spi_13401)

[SWS_Spi_00279] ⌈The SpiChannelBuffersAllowed parameter shall be configured

to select which Channel Buffers the SPI Handler/Driver manages.⌋()

7.2.1.1 Behaviour of IB channels

The intention of Internal Buffer channels is to take advantage of microcontrollers in-
cluding this feature by hardware. Otherwise, this feature should be simulated by
software.

[SWS_Spi_00052] ⌈For the IB Channels, the Handler/Driver shall provide the buffer-

ing but it is not able to take care of the consistency of the data in the buffer during

transmission. The size of the Channel buffer is fixed.⌋(SRS_Spi_12025,

SRS_Spi_12253)

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

39 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

[SWS_Spi_00049] ⌈The channel data received shall be stored in 1 entry deep inter-

nal buffers by channel. The SPI Handler/Driver shall not take care of the overwriting

of these “receive” buffers by another transmission on the same channel.⌋()

[SWS_Spi_00051] ⌈The channel data to be transmitted shall be copied in 1 entry

deep internal buffers by channel.⌋()

[SWS_Spi_00257] ⌈The SPI Handler/Driver is not able to prevent the overwriting of

these “transmit” buffers by users during transmissions.⌋()

[SWS_Spi_00438] ⌈The Handler/Driver shall provide separate buffer for receive and

transmit to ensure that transmitted data are not overwritten by the receive data.⌋()

7.2.1.2 Behaviour of EB channels

The intention of External Buffer channels is to reuse existing buffers that are located
outside. That means the SPI Handler/Driver does not monitor them.

[SWS_Spi_00053] ⌈For EB Channels the application shall provide the buffering and

shall take care of the consistency of the data in the buffer during transmis-

sion.⌋(SRS_SPAL_12075, SRS_Spi_12025, SRS_Spi_12198, SRS_Spi_12200,

SRS_Spi_12261, SRS_Spi_12262, SRS_Spi_12202, SRS_Spi_12103)

[SWS_Spi_00112] ⌈The size of the Channel buffer is either fixed or variable. A max-

imum size for the Channel buffer shall be defined by the configuration.⌋()

[SWS_Spi_00280] ⌈The buffer provided by the application for the SPI Handler Driv-

er may have a different size.⌋()

7.2.1.3 Buffering channel usage

The following table provides information about the Channel characteristics:

IB Channels
It provides… A more abstracted concept (buffering mechanisms are hidden)

 Actual and future optimal implementation taken profit of HW buffer facili-
ties (Given size of 256 bytes covers nowadays requirements).

Suggested
use …

 Daisy-chain implementation.

 Small data transfer devices (up to 10 Bytes).
EB Channels

It provides… Efficient mechanism to support large stream communication.

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

40 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

 Send constant data out of ROM tables and spare RAM size.

 Send various data tables each for a different device (highly complex
ASICS with several integrated peripheral devices, also mixed signal
types, could exceed IB HW buffer size)

Suggested use
…

 Large streams communication.

 EEPROM communication.

 Control of complex HW Chips .

7.2.2 LEVEL 0, Simple Synchronous behaviour

The intention of this functionality level is to provide a Handler/Driver with a reduced
set of services to handle only simple synchronous transmissions. This is often the
case for ECU including simple SPI networks but also for ECU using high speed ex-
ternal devices.

A simple synchronous transmission means that the function calling the transmission
service is blocked during the ongoing transmission until the transmition is finished.

[SWS_Spi_00160] ⌈The LEVEL 0 SPI Handler/Driver shall offer a synchronous

transfer service for SPI busses.⌋()

[SWS_Spi_00161] ⌈ For an SPI Handler/Driver operating in LEVEL 0, when there is

no on going Sequence transmission, the SPI Handler/Driver shall be in the idle state

SPI_IDLE.⌋()

[SWS_Spi_00294] ⌈This monolithic SPI Handler/Driver is able to handle one to n

SPI buses according to the microcontroller used.⌋()

Then SPI buses are assigned to Jobs and not to Sequences. Consequently, Jobs, on
different SPI buses, could belong to the same Sequence. Therefore:

[SWS_Spi_00114] ⌈The LEVEL 0 SPI Handler/Driver shall accept concurrent

Spi_SyncTransmit(), if the sequences to be transmitted use different bus and param-

eter SPI_SUPPORT_CONCURRENT_SYNC_TRANSMIT is enabled. This feature shall

be disabled per default. That means during a Sequence on-going transmission, all

requests to transmit another Sequence shall be rejected.⌋()

[SWS_Spi_00115] ⌈The LEVEL 0 SPI Handler/Driver behaviour shall include the

common feature: Allowed Channel Buffers, which is selected.⌋()

[SWS_Spi_00084] ⌈If different Jobs (and consequently also Sequences) have com-

mon Channels, the SPI Handler/Driver’ environment shall ensure that read and/or

write functions are not called during transmission.⌋(SRS_Spi_12170)

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

41 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

Read and write functions can not guarantee the data integrity while Channel data is
being transmitted.

7.2.3 LEVEL 1, Basic Asynchronous behavior

The intention of this functionality level is to provide a Handler/Driver with a reduced
set of services to handle asynchronous transmissions only. This is often the case for
ECU with functions related to SPI networks having different priorities but also for
ECU using low speed external devices.

An asynchronous transmission means that the user calling the transmission service
is not blocked when the transmission is on-going. Furthermore, the user can be noti-
fied at the end of transmission1.

[SWS_Spi_00162] ⌈The LEVEL 1 SPI Handler/Driver shall offer an asynchronous

transfer service for SPI buses. An asynchronous transmission means that the user
calling the transmission service is not blocked when the transmission is on go-

ing.⌋(SRS_Spi_12099, SRS_Spi_12101, SRS_Spi_12103)

[SWS_Spi_00295] ⌈The LEVEL 1 SPI Handler/Driver shall offer an asynchronous

transfer service for SPI buses. Furthermore, the user can be notified at the end of

transmission.⌋()

[SWS_Spi_00163] ⌈For an SPI Handler/Driver operating in LEVEL 1, when there is

no on-going Sequence transmission, the SPI Handler/Driver shall be in the idle state

(SPI_IDLE).⌋(SRS_Spi_12099, SRS_Spi_12101, SRS_Spi_12103)

This Handler/Driver will be used by several software modules which may be inde-
pendent from each other and also may belong to different layers. Therefore, priorities
will be assigned to Jobs in order to figure out specific cases of multiple accesses.
These cases usually occur within real time systems based on asynchronous mecha-
nisms.

[SWS_Spi_00002] ⌈Jobs have priorities assigned. Jobs linked in a Sequence shall

have same or de-creasing priorities. That means the first Job shall have the equal

priority or the highest priority of all Jobs within the Sequence.⌋(SRS_Spi_12260)

[SWS_Spi_00093] ⌈Priority order of jobs shall be from the lower to the higher value

defined, higher value higher priority (from 0, the lower to 3, the higher, limited to 4

priority levels see [SWS_Spi_00009]).⌋(SRS_Spi_12260, SRS_Spi_12150)

1
 This basic asynchronous behaviour might be implemented either by using interrupt or by polling

mechanism. This software design choice is not in the scope of this document, but only solution is re-
quired for the LEVEL 1.

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

42 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

With reference to Jobs priorities, this Handler/Driver needs rules to make a decision
in these specific cases of multiple accesses.

[SWS_Spi_00059] ⌈The SPI Handler/Driver scheduling method shall schedule Jobs

in order to send the highest priority Job first.⌋(SRS_Spi_12260, SRS_Spi_12037)

This monolithic SPI Handler/Driver is able to handle one to n SPI busses according
to the microcontroller used. But SPI busses are assigned to Jobs and not to Se-
quences. Consequently, Jobs on different SPI buses could belong to the same Se-
quence. Therefore:

[SWS_Spi_00116] ⌈The LEVEL 1 SPI Handler/Driver may allow transmitting more

than one Sequence at the same time. That means during a Sequence transmission,
all requests to transmit another Sequence shall be evaluated in order to accept to

start a new sequence or to reject it accordingly to the lead Job.⌋()

[SWS_Spi_00117] ⌈The LEVEL 1 SPI Handler/Driver behaviour shall include the

common feature: Allowed Channel Buffers, which is selected, and the configured

asynchronous feature: Interruptible Sequence (see next chapter).⌋()

[SWS_Spi_00267] ⌈When a hardware error is detected, the SPI Handler/Driver shall

stop the current Sequence, report an error to the DEM as configured and set the
state of the Job to SPI_JOB_FAILED and the state of the Sequence to

SPI_SEQ_FAILED.⌋()

[SWS_Spi_00118] ⌈If Jobs are configured with a specific end notification function,

the SPI Handler/Driver shall call this notification function at the end of the Job trans-

mission.⌋(SRS_Spi_12108)

[SWS_Spi_00281] ⌈If Sequences are configured with a specific end notification

function, the SPI Handler/Driver shall call this notification function at the end of the

Sequence transmission.⌋()

[SWS_Spi_00119] ⌈When a valid notification function pointer is configured (see

[SWS_Spi_00071]), the SPI Handler/Driver shall call this notification function at the
end of a Job transmission regardless of the result of the Job transmission being ei-

ther SPI_JOB_FAILED or SPI_JOB_OK (rational: avoid deadlocks or endless

loops).⌋(SRS_Spi_12108)

[SWS_Spi_00120] ⌈When a valid notification function pointer is configured (see

[SWS_Spi_00073]), the SPI Handler/Driver shall call this notification function at the
end of a Sequence transmission regardless of the result of the Sequence transmis-

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

43 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

sion being either SPI_SEQ_FAILED, SPI_SEQ_OK or SPI_SEQ_CANCELLED (ra-

tional: avoid deadlocks or endless loops).⌋(SRS_Spi_12108)

7.2.4 Asynchronous configurable feature: Interruptible Sequences

In order to allow taking advantages of asynchronous transmission mechanism, level
1 and level 2 of this SPI Handler/Driver have an optional feature with respect to sus-
pending the transmission of Sequences.

Hence two main kinds of sequences can be used by configuration:

 Non-Interruptible Sequences, every Sequence transmission started is not
suspended by the Handler/Driver until the end of transmission.

 Mixed Sequences, according to its configuration, a Sequence transmission
started may be suspended by the Handler/Driver between two of their consec-
utives Jobs.

[SWS_Spi_00121] ⌈The SPI Handler/Driver’s environment shall configure the Spi-

InterruptibleSeqAllowed parameter (ON / OFF) in order to select which kind of

Sequences the SPI Handler/Driver manages.⌋(SRS_Spi_13401)

7.2.4.1 Behavior of Non-Interruptible Sequences

The intention of the Non-Interruptible Sequences feature is to provide a simple soft-
ware module based on a basic asynchronous mechanism, if only non blocking
transmissions should be used.

[SWS_Spi_00122] ⌈Interruptible Sequences are not allowed within levels 1 and 2 of

the SPI/Handler/Driver when the SpiInterruptibleSeqAllowed parameter is

switched off (i.e. configured with value “OFF”). ⌋(SRS_Spi_13401)

[SWS_Spi_00123] ⌈When the SPI Handler/Driver is configured not allowing inter-

ruptible Sequences, all Sequences declared are considered as Non-Interruptible Se-

quences2.⌋()

[SWS_Spi_00282] ⌈When the SPI Handler/Driver is configured not allowing inter-

ruptible Sequences their dedicated parameter SpiInterruptibleSequence can be omit-

ted or the FALSE value should be used as default.⌋()

2
 The intention of this requirement is not to enforce any implementation solution in comparison with

another one. But, it is only to ensure that anyhow, all Sequences will be considered as Non Interrupti-
ble Sequences.

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

44 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

[SWS_Spi_00124] ⌈According to [SWS_Spi_00116] and [SWS_Spi_00122] require-

ments, the SPI Handler/Driver is not allowed to suspend a Sequence transmission

already started in favour of another Sequence.⌋(SRS_Spi_12037)

7.2.4.2 Behavior of Mixed Sequences

The intention of the Mixed Sequences feature is to provide a software module with
specific asynchronous mechanisms, if, for instance, very long Sequences that could
or should be suspended by others with higher priority are used.

[SWS_Spi_00125] ⌈Interruptible Sequences are allowed within levels 1 and 2 of SPI

Handler/Driver when the SpiInterruptibleSeqAllowed parameter is switched

on (i.e. configured with value “ON”).⌋(SRS_Spi_13401)

[SWS_Spi_00126] ⌈When the SPI Handler/Driver is configured allowing interruptible

Sequences, all Sequences declared shall have their dedicated parameter Spi-

InterruptibleSequence (see SWS_Spi_00064 & SPI106) to identify whether the

Sequence can be suspended during transmission.⌋()

[SWS_Spi_00014] ⌈In case of a Sequence configured as Interruptible Sequence and

according to [SWS_Spi_00125] requirement, the SPI Handler/Driver is allowed to
suspend an already started Sequence transmission in favour of another Sequence
with a higher priority Job (see SWS_Spi_00002 & SWS_Spi_00093). That means, at
the end of a Job transmission (that belongs to the interruptible sequence) with anoth-
er Sequence transmit request pending, the SPI Handler/Driver shall perform a re-

scheduling in order to elect the next Job to transmit.⌋(SRS_Spi_12260,

SRS_Spi_12037)

[SWS_Spi_00127] ⌈In case of a Sequence configured as Non-Interruptible Se-

quence and according to requirement [SWS_Spi_00125], the SPI Handler/Driver is
not allowed to suspend this already started Sequence transmission in favour of an-

other Sequence.⌋(SRS_Spi_12037)

[SWS_Spi_00080] ⌈When using Interruptible Sequences, the caller must be aware

that if the multiple Sequences access the same Channels, the data for these Chan-

nels may be overwritten by the highest priority Job accessing each Channel.⌋()

7.2.5 LEVEL 2, Enhanced behaviour

The intention of this functionality level is to provide a Handler/Driver with a complete
set of services to handle synchronous and asynchronous transmissions. This could

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

45 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

be the case for ECU with a lot of functions related to SPI networks having different
priorities but also for ECU using external devices with different speeds.

Handling asynchronous and synchronous transmissions means that the microcontrol-
ler for which this software module is dedicated has to provide more than one SPI bus
(see [SWS_Spi_00108]). In fact, the goal is to support SPI buses using a so-called
synchronous driver and to support other SPI buses using a so-called asynchronous
driver.

[SWS_Spi_00128] ⌈The LEVEL 2 SPI Handler/Driver shall offer a synchronous

transfer service for all SPI HW units configured as synchronous and it shall also offer

an asynchronous transfer service for all other SPI buses.⌋()

[SWS_Spi_00283] ⌈In LEVEL 2 if there is no on going Sequence transmission, the

SPI Handler/Driver shall be in idle state (SPI_IDLE).⌋()

This functionality level, based on a mixed usage of synchronous transmission on one
prearranged SPI bus and asynchronous transmission on others, generates re-
strictions on configuration and usage of Sequences and Jobs.

[SWS_Spi_00130] ⌈The so-called synchronous Sequences shall only be composed

of Jobs that are associated to the prearranged SPI bus. These Sequences shall be

used with synchronous services3 only.⌋()

[SWS_Spi_00131] ⌈Jobs associated with the prearranged SPI bus shall not belong

to Sequences containing Jobs associated with another SPI bus. In other words,

mixed Sequences (synchronous with asynchronous Jobs) shall not be allowed.⌋()

Usually, depending on software design, asynchronous end transmission may be de-
tected by polling or interrupt mechanisms. This level of functionality proposes both
mechanisms that are selectable during execution time.

[SWS_Spi_00155] ⌈The SPI Handler/Driver LEVEL 2 shall implement one polling

mechanism mode and one interrupt mechanism mode for SPI busses handled asyn-

chronously.⌋()

[SWS_Spi_00156] ⌈Both the polling mechanism and interrupt mechanism modes for

SPI busses shall be selectable during execution time (see [SWS_Spi_00188]).⌋()

3
 The second part of this requirement is aim at SPI Handler/Driver users. But, it is up to the software

module supplier to implement mechanisms in order to prevent potential misuses by users.

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

46 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

[SWS_Spi_00140] ⌈If SpiHwUnitSynchronous is set to "Synchronous" for a job,

the associated bus defined by SpiHwUnit behave same as prearranged bus. It

means that all requirements valid for prearranged bus will be valid also for the bus

assigned to this job.⌋()

The requirements for LEVEL 0 apply to synchronous behaviour.
The requirements for LEVEL 1 apply to asynchronous behaviour.

7.3 Scheduling Advices

For asynchronous levels, LEVEL 1 and LEVEL 2, the SPI Handler/Driver can call end
notification functions at the end of a Job and/or Sequence transmission (see
[SWS_Spi_00118]). In a second time, in case of interruptible Sequences (that could
be suspended), if another Sequence transmit request is pending, a rescheduling is
also done by the SPI Handler/Driver in order to elect the next Job to transmit (see
[SWS_Spi_00014]).

[SWS_Spi_00088] ⌈For asynchronous levels, LEVEL 1 and LEVEL 2, the SPI Han-

dler/Driver can call end notification functions at the end of a Job.⌋()

[SWS_Spi_00268] ⌈For asynchronous levels, LEVEL 1 and LEVEL 2, the SPI Han-

dler/Driver can call end notification functions at the end of a Sequence transmis-

sion.⌋()

[SWS_Spi_00269] ⌈For asynchronous levels, LEVEL 1 and LEVEL 2 in case of in-

terruptible Sequences, if another Sequence transmit request is pending, a reschedul-
ing is also done by the SPI Handler/Driver in order to elect the next Job to trans-

mit.⌋()

[SWS_Spi_00270] ⌈In case call end notification function and rescheduling are fully

done by software, the order between these shall be first scheduling and then the call

of end notification function executed.⌋()

[SWS_Spi_00271] ⌈In case call end notification function and rescheduling are fully

done by hardware, the order could not be configured as required; the order shall be

completely documented.⌋()

7.4 Error classification

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

47 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

[SWS_Spi_00004] ⌈SPI Handler/driver shall be able to detect the error

SPI_E_PARAM_CHANNEL(0x0A) when API service called with wrong parame-

ter.⌋(SRS_BSW_00327, SRS_BSW_00337, SRS_BSW_00385)

[SWS_Spi_00237] ⌈SPI Handler/driver shall be able to detect the error

SPI_E_PARAM_JOB(0x0B) when API service called with wrong parameter.⌋()

[SWS_Spi_00238] ⌈SPI Handler/driver shall be able to detect the error

SPI_E_PARAM_SEQ(0x0C) when API service called with wrong parameter.⌋()

[SWS_Spi_00240] ⌈SPI Handler/driver shall be able to detect the error

SPI_E_PARAM_LENGTH(0x0D) when API service called with wrong parameter.⌋()

[SWS_Spi_00241] ⌈SPI Handler/driver shall be able to detect the error

SPI_E_PARAM_UNIT(0x0E) when API service called with wrong parameter.⌋()

[SWS_Spi_00242] ⌈SPI Handler/driver shall be able to detect the error

SPI_E_UNINIT(0x1A) when API service used without module initialization.⌋()

[SWS_Spi_00243] ⌈SPI Handler/driver shall be able to detect the error

SPI_E_SEQ_PENDING(0x2A) when services called in a wrong sequence.⌋()

[SWS_Spi_00245] ⌈SPI Handler/driver shall be able to detect the error

SPI_E_SEQ_IN_PROCESS(0x3A) when synchronous transmission service called at

wrong time.⌋()

[SWS_Spi_00246] ⌈SPI Handler/driver shall be able to detect the error

SPI_E_ALREADY_INITIALIZED(0x4A) when API SPI_Init service called while the

SPI driver has already been initialized time.⌋()

[SWS_Spi_00195] ⌈SPI Handler/driver shall be able to detect the error

SPI_E_HARDWARE_ERROR when an hardware error occur during asynchronous

transmit. Please see also SWS_Spi_00267.⌋()

The Sections 7.4.1, 7.4.2 and 7.4.3 summarize the errors that the SPI Handler/Driver
shall be able to detect.

7.4.1 Development Errors

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

48 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

Type or error Related error code Value[hex]

API service called with wrong parameter SPI_E_PARAM_CHANNEL
SPI_E_PARAM_JOB

SPI_E_PARAM_SEQ

SPI_E_PARAM_LENGTH

SPI_E_PARAM_UNIT

0x0A

0x0B

0x0C

0x0D

0x0E

APIs called with a Null Pointer SPI_E_PARAM_POINTER

0x10

API service used without module initiali-
zation

SPI_E_UNINIT 0x1A

Services called in a wrong sequence SPI_E_SEQ_PENDING 0x2A

Synchronous transmission service
called at wrong time

SPI_E_SEQ_IN_PROCESS 0x3A

API SPI_Init service called while the SPI
driver has already been initialized

SPI_E_ALREADY_INITIALIZED 0x4A

7.4.2 Production Errors

There are no production errors defined by this SWS.

7.4.3 Extended Production Errors

Type or error Related error code Value[hex]

The HW error is reported when an
hardware error occurs during asynchro-
nous SPI transmit

SPI_E_HARDWARE_ERROR Assigned by

DEM

7.5 Error detection

7.5.1 API parameter checking

[SWS_Spi_00031] ⌈The API parameter Channel shall have a value within the de-

fined channels in the initialization data structure, and the correct type of channel (IB

or EB) has to be used with services. Related error value: SPI_E_PARAM_CHANNEL.

Otherwise, the service is not done and the return value shall be E_NOT_OK.

⌋(SRS_BSW_00323)

[SWS_Spi_00032] ⌈The API parameters Sequence and Job shall have values within

the specified range of values. Related errors values: SPI_E_PARAM_SEQ or

SPI_E_PARAM_JOB.⌋(SRS_BSW_00323)

[SWS_Spi_00254] ⌈If the Sequence and Job related service is not done and, de-

pending on services, either the return value shall be E_NOT_OK or a failed result

(SPI_JOB_FAILED or SPI_SEQ_FAILED).⌋()

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

49 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

[SWS_Spi_00060] ⌈The API parameter Length of data shall have a value within the

specified buffer maximum value. Related error value:

SPI_E_PARAM_LENGTH.⌋(SRS_BSW_00323)

[SWS_Spi_00258] ⌈ If the API parameter Length related service is not done and the

return value shall be E_NOT_OK.⌋()

[SWS_Spi_00143] ⌈The API parameter HWUnit shall have a value within the speci-

fied range of values. Related error value: SPI_E_PARAM_UNIT.⌋()

[SWS_Spi_00288] ⌈If HWUnit related service is not done and the return value shall

be SPI_UNINIT.⌋()

7.5.2 SPI state checking

[SWS_Spi_00046] ⌈If development error detection for the SPI module is enabled

and the SPI Handler/Driver’s environment calls any API function before initialization,
an error should be reported to the DET with the error value SPI_E_UNINIT according

to the configuration.⌋(SRS_BSW_00406)

[SWS_Spi_00256] ⌈The SPI Handler/Driver shall not process the invoked function

but, depending on the invoked function, shall either return the value E_NOT_OK or a

failed result (SPI_JOB_FAILED or SPI_SEQ_FAILED).⌋()

[SWS_Spi_00233] ⌈

If development error detection for the SPI module is enabled, the calling of the rou-
tine SPI_Init() while the SPI driver is already initialized will cause a development error

SPI_E_ALREADY_INITIALIZED and the desired functionality shall be left without

any action.⌋()

7.6 Debugging

[SWS_Spi_00367] ⌈The states SPI_UNINIT, SPI_IDLE, SPI_BUSY shall be availa-

ble for debugging.⌋()

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

50 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

8 API specification

8.1 Imported types

In this chapter all types included from the following files are listed:

[SWS_Spi_00174] ⌈Dem_EventIdType shall be imported from

Dem_Types.h.⌋(SRS_BSW_00357)

Module Imported Type

Dem Dem_EventIdType

Dem_EventStatusType

Std_Types Std_ReturnType

Std_VersionInfoType

8.2 Type definitions

8.2.1 Spi_ConfigType

[SWS_Spi_00372]⌈

Name: Spi_ConfigType

Type: Structure

Range: Implementation

Specific

The contents of the initialization data structure are SPI specif-
ic.

Description: This type of the external data structure shall contain the initialization data for the
SPI Handler/Driver.

⌋()

 [SWS_Spi_00344] ⌈The description of the type Spi_ConfigType is implementation

specific and it shall be provided for external use.⌋()

[SWS_Spi_00008] ⌈The type Spi_ConfigType is an external data structure and

shall contain the initialization data for the SPI Handler/Driver. It shall contain:

 MCU dependent properties for SPI HW units

 Definition of Channels

 Definition of Jobs

 Definition of Sequences⌋(SRS_BSW_00405, SRS_SPAL_12125,

SRS_Spi_12256, SRS_Spi_12257, SRS_Spi_12025, SRS_Spi_12024)

[SWS_Spi_00063] ⌈For the type Spi_ConfigType, the definition for each Channel

shall contain:

 Buffer usage with EB/IB Channel

 Transmit data width (1 up to 32 bits)

 Number of data buffers for IB Channels (at least 1) or it is the maximum of da-
ta for EB Channels (a value of 0 makes no sense)

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

51 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

 Transfer start LSB or MSB

 Default transmit value⌋(SRS_Spi_12257, SRS_Spi_12025, SRS_Spi_12197,

SRS_Spi_12024)

[SWS_Spi_00009] ⌈For the type Spi_ConfigType, the definition for each Job shall

contain:

 Assigned SPI HW Unit

 Assigned Chip Select pin (it is possible to assign no pin)

 Chip select functionality on/off

 Chip select pin polarity high or low

 Baud rate

 Timing between clock and chip select

 Shift clock idle low or idle high

 Data shift with leading or trailing edge

 Priority (4 levels are available from 0, the lower to 3, the higher)

 Job finish end notification function

 MCU dependent properties for the Job (only if needed)

 Fixed link of Channels (at least one)⌋(SRS_BSW_00344, SRS_SPAL_12056,

SRS_SPAL_12125, SRS_Spi_12093, SRS_Spi_12094, SRS_Spi_12256,
SRS_Spi_12257, SRS_Spi_12025, SRS_Spi_12179, SRS_Spi_12026,
SRS_Spi_12259, SRS_Spi_12258, SRS_Spi_12260, SRS_Spi_12032,
SRS_Spi_12033, SRS_Spi_12150)

[SWS_Spi_00064] ⌈For the type Spi_ConfigType, the definition for each Se-

quence shall contain:

 Collection of Jobs (at least one)

 Interruptible or not interruptible after each Job

 Sequence finish end notification function⌋(SRS_SPAL_12056,

SRS_Spi_12179, SRS_Spi_12260, SRS_Spi_12199, SRS_Spi_12150)

[SWS_Spi_00010] ⌈For the type Spi_ConfigType, the configuration will map the

Jobs to the different SPI hardware units and the devices.⌋(SRS_Spi_12093,

SRS_Spi_12257)

8.2.2 Spi_StatusType

[SWS_Spi_00373]⌈

Name: Spi_StatusType

Type: Enumeration

Range: SPI_UNINIT The SPI Handler/Driver is not initialized or not usable.

SPI_IDLE The SPI Handler/Driver is not currently transmitting any Job.

SPI_BUSY The SPI Handler/Driver is performing a SPI Job (transmit).

Description: This type defines a range of specific status for SPI Handler/Driver.

⌋()

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

52 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

 [SWS_Spi_00061] ⌈The type Spi_StatusType defines a range of specific status for

SPI Handler/Driver. It informs about the SPI Handler/Driver status or specified SPI

Hardware microcontroller peripheral.⌋(SRS_BSW_00335)

[SWS_Spi_00259] ⌈The type Spi_StatusType can be obtained calling the API ser-

vice Spi_GetStatus.⌋()

[SWS_Spi_00260] ⌈The type Spi_StatusType can be obtained calling the API ser-

vice Spi_GetHWUnitStatus.⌋()

[SWS_Spi_00011] ⌈After reset, the type Spi_StatusType shall have the default

value SPI_UNINIT with the numeric value 0.⌋()

[SWS_Spi_00345] ⌈ API service Spi_GetStatus shall return SPI_UNINIT when the

SPI Handler/Driver is not initialized or not usable.⌋()

[SWS_Spi_00346] ⌈API service Spi_GetStatus shall return SPI_IDLE when The SPI

Handler/Driver is not currently transmitting any Job.⌋()

[SWS_Spi_00347] ⌈API service Spi_GetStatus shall return SPI_BUSY when The

SPI Handler/Driver is performing a SPI Job transmit.⌋()

[SWS_Spi_00348] ⌈Spi_GetHWUnitStatus function shall return SPI_IDLE when The

SPI Hardware microcontroller peripheral is not currently transmitting any Job,⌋()

[SWS_Spi_00349] ⌈Spi_GetHWUnitStatus function shall return SPI_BUSYwhen

The SPI Hardware microcontroller peripheral is performing a SPI Job transmit.⌋()

8.2.3 Spi_JobResultType

[SWS_Spi_00374]⌈

Name: Spi_JobResultType

Type: Enumeration

Range: SPI_JOB_OK The last transmission of the Job has been finished success-
fully.

SPI_JOB_PENDING The SPI Handler/Driver is performing a SPI Job. The mean-
ing of this status is equal to SPI_BUSY.

SPI_JOB_FAILED The last transmission of the Job has failed.

SPI_JOB_QUEUED An asynchronous transmit Job has been accepted, while
actual transmission for this Job has not started yet.

Description: This type defines a range of specific Jobs status for SPI Handler/Driver.

⌋()

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

53 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

 [SWS_Spi_00062] ⌈The type Spi_JobResultType defines a range of specific Jobs

status for SPI Handler/Driver.⌋(SRS_BSW_00335)

[SWS_Spi_00261] ⌈The type Spi_JobResultType it informs about a SPI Han-

dler/Driver Job status and can be obtained calling the API service Spi_GetJobResult

with the Job ID.⌋()

[SWS_Spi_00012] ⌈After reset, the type Spi_JobResultType shall have the de-

fault value SPI_JOB_OK with the numeric value 0.⌋()

[SWS_Spi_00350] ⌈The function Spi_GetJobResult shall return SPI_JOB_OK when

the last transmission of the Job has been finished successfully.⌋()

8.2.4 Spi_SeqResultType

[SWS_Spi_00375]⌈

Name: Spi_SeqResultType

Type: Enumeration

Range: SPI_SEQ_OK The last transmission of the Sequence has been finished
successfully.

SPI_SEQ_PENDING The SPI Handler/Driver is performing a SPI Sequence. The
meaning of this status is equal to SPI_BUSY.

SPI_SEQ_FAILED The last transmission of the Sequence has failed.

SPI_SEQ_CANCELED The last transmission of the Sequence has been canceled
by user.

Description: This type defines a range of specific Sequences status for SPI Handler/Driver.

⌋()

 [SWS_Spi_00351] ⌈The type Spi_SeqResultType defines a range of specific Se-

quences status for SPI Handler/Driver and can be obtained calling the API service

Spi_GetSequenceResult, it shall be provided for external use.⌋()

[SWS_Spi_00019] ⌈The type Spi_SeqResultType defines the range of specific Se-

quences status for SPI Handler/Driver.⌋(SRS_BSW_00335)

[SWS_Spi_00251] ⌈The type Spi_SeqResultType defines about SPI Handler/Driver

Sequence status and can be obtained calling the API service

Spi_GetSequenceResult with the Sequence ID.⌋()

[SWS_Spi_00017] ⌈After reset, the type Spi_SeqResultType shall have the de-

fault value SPI_SEQ_OK with the numeric value 0.⌋()

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

54 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

[SWS_Spi_00352] ⌈Spi_GetSequenceResult function shall return SPI_SEQ_OK

when the last transmission of the Sequence has been finished successfully.⌋()

[SWS_Spi_00353] ⌈Spi_GetSequenceResult function shall return

SPI_SEQ_PENDING when the SPI Handler/Driver is performing a SPI Sequence.

The meaning of this status is equal to SPI_BUSY.⌋()

 [SWS_Spi_00354] ⌈Spi_GetSequenceResult function shall return

SPI_SEQ_FAILED when the last transmission of the Sequence has failed.⌋()

8.2.5 Spi_DataBufferType

[SWS_Spi_00376]⌈

Name: Spi_DataBufferType

Type: uint8

Description: Type of application data buffer elements.

⌋()

 [SWS_Spi_00355] ⌈Spi_DataBufferType defines the type of application data buffer

elements. Type is uint8. Access to the data is selected dynamically as is described in

SWS_SPI_00437. The data buffer has to be aligned to 32 bits. It shall be provided for

external use.⌋()

[SWS_Spi_00164] ⌈The type Spi_DataBufferType refers to application data

buffer elements.⌋()

8.2.6 Spi_NumberOfDataType

[SWS_Spi_00377]⌈

Name: Spi_NumberOfDataType

Type: uint16

Description: Type for defining the number of data elements of the type Spi_DataBufferType to
send and / or receive by Channel

⌋()

 [SWS_Spi_00165] ⌈The type Spi_NumberOfDataType is used for defining the

number of data elements of the type specified in [SWS_SPI_00437] to send and / or

receive by Channel.⌋()

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

55 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

8.2.7 Spi_ChannelType

[SWS_Spi_00378]⌈

Name: Spi_ChannelType

Type: uint8

Description: Specifies the identification (ID) for a Channel.

⌋()

 [SWS_Spi_00356] ⌈The type Spi_ChannelType specifies the identification (ID) for a

Channel.⌋()

[SWS_Spi_00166] ⌈The type Spi_ChannelType is used for specifying the identifi-

cation (ID) for a Channel.⌋()

8.2.8 Spi_JobType

[SWS_Spi_00379]⌈

Name: Spi_JobType

Type: uint16

Description: Specifies the identification (ID) for a Job.

⌋()

 [SWS_Spi_00357] ⌈The type Spi_JobType specifies the identification (ID) for a

Job.⌋()

[SWS_Spi_00167] ⌈The type Spi_JobType is used for specifying the identification

(ID) for a Job.⌋()

8.2.9 Spi_SequenceType

[SWS_Spi_00380]⌈

Name: Spi_SequenceType

Type: uint8

Description: Specifies the identification (ID) for a sequence of jobs.

⌋()

 [SWS_Spi_00358] ⌈The type Spi_SequenceType specifies the identification (ID) for

a sequence of jobs.⌋()

[SWS_Spi_00168] ⌈The type Spi_SequenceType is used for specifying the identi-

fication (ID) for a sequence of jobs.⌋()

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

56 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

8.2.10 Spi_HWUnitType

[SWS_Spi_00381]⌈

Name: Spi_HWUnitType

Type: uint8

Description: Specifies the identification (ID) for a SPI Hardware microcontroller peripheral
(unit).

⌋()

 [SWS_Spi_00359] ⌈The type Spi_HWUnitType specifies the identification (ID) for a

SPI Hardware microcontroller peripheral (unit).⌋()

[SWS_Spi_00169] ⌈The type Spi_HWUnitType is used for specifying the identifica-

tion (ID) for a SPI Hardware microcontroller peripheral (unit).⌋()

8.2.11 Spi_AsyncModeType

[SWS_Spi_00382]⌈

Name: Spi_AsyncModeType

Type: Enumeration

Range: SPI_POLLING_MODE The asynchronous mechanism is ensured by polling, so
interrupts related to SPI busses handled asynchronously
are disabled.

SPI_INTERRUPT_MODE The asynchronous mechanism is ensured by interrupt, so
interrupts related to SPI busses handled asynchronously
are enabled.

Description: Specifies the asynchronous mechanism mode for SPI busses handled asynchro-
nously in LEVEL 2.

⌋()

 [SWS_Spi_00360] ⌈The type Spi_AsyncModeType specifies the asynchronous

mechanism mode for SPI buses handled asynchronously in LEVEL 2 and obtained

by the API Spi_SetAsyncMode.⌋()

[SWS_Spi_00170] ⌈The type Spi_AsyncModeType is used for specifying the asyn-

chronous mechanism mode for SPI busses handled asynchronously in LEVEL 2.⌋()

[SWS_Spi_00150] ⌈The type Spi_AsyncModeType is made available or not de-

pending on the pre-compile time parameter: SpiLevelDelivered. This is only rel-

evant for LEVEL 2.⌋()

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

57 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

[SWS_Spi_00361] ⌈If API Spi_SetAsyncMode function is called by the parameter

value SPI_POLLING_MODE then asynchronous mechanism is ensured by polling.

So interrupts related to SPI buses handled asynchronously are disabled.⌋()

[SWS_Spi_00362] ⌈If API Spi_SetAsyncMode function is called by the parameter

value SPI_INTERRUPT_MODE asynchronous mechanism is ensured by interrupt,

so interrupts related to SPI buses handled asynchronously are enabled.⌋()

8.3 Function definitions

8.3.1 Spi_Init

[SWS_Spi_00175] ⌈void Spi_Init(const Spi_ConfigType* ConfigPtr)

Service name: Spi_Init

Syntax: void Spi_Init(

 const Spi_ConfigType* ConfigPtr

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): ConfigPtr Pointer to configuration set

Parameters (in-
out):

None

Parameters (out): None

Return value: None

Description: Service for SPI initialization.

⌋()

[SWS_Spi_00298] ⌈The operation Spi_Init is Non Re-entrant.⌋()

[SWS_Spi_00299] ⌈The function Spi_Init provides the service for SPI initializa-

tion.⌋()

[SWS_Spi_00013] ⌈The function Spi_Init shall initialize all SPI relevant registers

with the values of the structure referenced by the parameter Config-

Ptr.⌋(SRS_BSW_00405, SRS_BSW_00101, SRS_SPAL_12057,

SRS_SPAL_12125)

[SWS_Spi_00082] ⌈The function Spi_Init shall define default values for required

parameters of the structure referenced by the ConfigPtr. For example: all buffer

pointers shall be initialized as a null value pointer.⌋()

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

58 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

[SWS_Spi_00015] ⌈After the module initialization using the function Spi_Init, the

SPI Handler/Driver shall set its state to SPI_IDLE, the Sequences result to

SPI_SEQ_OK and the jobs result to SPI_JOB_OK.⌋(SRS_BSW_00406,

SRS_BSW_00101, SRS_SPAL_12057)

[SWS_Spi_00151] ⌈For LEVEL 2 (see chapter 7.2.5 and SPI103), the function

Spi_Init shall set the SPI Handler/Driver asynchronous mechanism mode to

SPI_POLLING_MODE by default. Interrupts related to SPI busses shall be disa-

bled.⌋()

A re-initialization of a SPI Handler/Driver by executing the Spi_Init() function requires
a de-initialization before by executing a Spi_DeInit().

Parameters of the function Spi_Init shall be checked as it is explained in section

API parameter checking

8.3.2 Spi_DeInit

[SWS_Spi_00176] ⌈Std_ReturnType Spi_DeInit()

Service name: Spi_DeInit

Syntax: Std_ReturnType Spi_DeInit(

 void

)

Service ID[hex]: 0x01

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters (in-
out):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: de-initialisation command has been accepted

E_NOT_OK: de-initialisation command has not been accepted

Description: Service for SPI de-initialization.

⌋()

[SWS_Spi_00300] ⌈The operation Std_ReturnType Spi_DeInit() is Non Re-

entrant.⌋()

[SWS_Spi_00301] ⌈When the API Spi_DeInit has been accepted the return value of

this function shall be E_OK.⌋()

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

59 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

[SWS_Spi_00302] ⌈When the API Spi_DeInit has not been accepted the return val-

ue of this function shall be E_NOT_OK.⌋()

[SWS_Spi_00303] ⌈The function Spi_DeInit provides the service for SPI de-

initialization.⌋()

[SWS_Spi_00021] ⌈The function Spi_DeInit shall de-initialize SPI Han-

dler/Driver.⌋(SRS_BSW_00336, SRS_SPAL_12163, SRS_SPAL_12064)

[SWS_Spi_00252] ⌈In case of the SPI Handler/Driver state is not SPI_BUSY, the

deInitialization function shall put all already initialized microcontroller SPI peripherals

into the same state such as Power On Reset.⌋()

[SWS_Spi_00253] ⌈The function call Spi_DeInit shall be rejected if the status of SPI

Handler/Driver is SPI_BUSY.⌋()

[SWS_Spi_00022] ⌈After the module de-initialization using the function

Spi_DeInit, the SPI Handler/Driver shall set its state to

SPI_UNINIT.⌋(SRS_BSW_00336, SRS_SPAL_12163)

The SPI Handler/Driver shall have been initialized before the function Spi_DeInit

is called, otherwise see [SWS_Spi_00046].

8.3.3 Spi_WriteIB

[SWS_Spi_00177] ⌈Std_ReturnType Spi_WriteIB(Spi_ChannelType Channel, const

Spi_DataBufferType* DataBufferPtr)

Service name: Spi_WriteIB

Syntax: Std_ReturnType Spi_WriteIB(

 Spi_ChannelType Channel,

 const Spi_DataBufferType* DataBufferPtr

)

Service ID[hex]: 0x02

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in):

Channel Channel ID.

DataBufferPtr Pointer to source data buffer. If this pointer is null, it is assumed
that the data to be transmitted is not relevant and the default
transmit value of this channel will be used instead.

Parameters (in-
out):

None

Parameters (out): None

Return value: Std_ReturnType E_OK: write command has been accepted

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

60 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

E_NOT_OK: write command has not been accepted

Description: Service for writing one or more data to an IB SPI Handler/Driver Channel specified
by parameter.

⌋()

[SWS_Spi_00304] ⌈The operation Spi_WriteIB is Re-entrant.⌋()

[SWS_Spi_00305] ⌈When the API Spi_WriteIB command has been accepted the

function returns the value E_OK.⌋()

[SWS_Spi_00306] ⌈When the API Spi_WriteIB command has not been accepted

the function returns the value E_NOT_OK.⌋()

[SWS_Spi_00307] ⌈The function Spi_WriteIB provides the service for writing one or

more data to an IB SPI Handler/Driver Channel by the respective parameter.⌋()

[SWS_Spi_00018] ⌈The function Spi_WriteIB shall write one or more data to an

IB SPI Handler/Driver Channel specified by the respective parame-

ter.⌋(SRS_Spi_12101, SRS_Spi_12153)

[SWS_Spi_00024] ⌈The function Spi_WriteIB shall take over the given parame-

ters, and save the pointed data to the internal buffer defined with the function

Spi_Init.⌋()

[SWS_Spi_00023] ⌈If the given parameter “DataBufferPtr” is null, the function

Spi_WriteIB shall assume that the data to be transmitted is not relevant and the

default transmit value of the given channel shall be used instead.⌋()

[SWS_Spi_00137] ⌈The function Spi_WriteIB shall be pre-compile time configu-

rable by the parameter SpiChannelBuffersAllowed. This function is only rele-

vant for Channels with IB.⌋()

Parameters of the function Spi_WriteIB shall be checked as it is explained in sec-

tion API parameter checking.

The SPI Handler/Driver shall have been initialized before the function Spi_WriteIB

is called, otherwise see [SWS_Spi_00046].

8.3.4 Spi_AsyncTransmit

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

61 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

[SWS_Spi_00178] ⌈Std_ReturnType Spi_AsyncTransmit(Spi_SequenceType Se-

quence)

Service name: Spi_AsyncTransmit

Syntax: Std_ReturnType Spi_AsyncTransmit(

 Spi_SequenceType Sequence

)

Service ID[hex]: 0x03

Sync/Async: Asynchronous

Reentrancy: Reentrant

Parameters (in): Sequence Sequence ID.

Parameters (in-
out):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: Transmission command has been accepted

E_NOT_OK: Transmission command has not been accepted

Description: Service to transmit data on the SPI bus.

⌋()

[SWS_Spi_00308] ⌈The operation Std_ReturnType Spi_AsyncTransmit(

Spi_SequenceType Sequence) is Re-entrant.⌋()

[SWS_Spi_00309] ⌈When the API Spi_AsyncTransmit command has been accept-

ed the function shall return the value E_OK.⌋()

[SWS_Spi_00310] ⌈When the API Spi_AsyncTransmit command has not been ac-

cepted the function shall return the value E_NOT_OK.⌋()

[SWS_Spi_00311] ⌈The function Spi_AsyncTransmit provides service to transmit

data on the SPI bus.⌋()

[SWS_Spi_00020] ⌈The function Spi_AsyncTransmit shall take over the given

parameter, initiate a transmission, set the SPI Handler/Driver status to SPI_BUSY,

set the sequence result to SPI_SEQ_PENDING and return. ⌋(SRS_Spi_12099,

SRS_Spi_12101, SRS_Spi_12103)

[SWS_Spi_00194] ⌈When the function Spi_AsyncTransmit is called, shall take over

the given parameter and set the Job status to SPI_JOB_QUEUED, which can be ob-

tained by calling the API service Spi_GetJobResult.⌋()

[SWS_Spi_00157] ⌈When the function Spi_AsyncTransmit is called, the SPI Han-

dler/Driver shall handle the Job results. Result shall be SPI_JOB_PENDING when

the transmission of Jobs is started.⌋()

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

62 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

[SWS_Spi_00292] ⌈When the function Spi_AsyncTransmit is called, the SPI Han-

dler/Driver shall handle the Job results. Result shall be SPI_JOB_OK when the

transmission of Jobs is success.⌋()

[SWS_Spi_00293] ⌈When the function Spi_AsyncTransmit is called, the SPI Han-

dler/Driver shall handle the Job results. Result shall be SPI_JOB_FAILED when the

transmission of Jobs is failed.⌋()

[SWS_Spi_00081] ⌈When the function Spi_AsyncTransmit is called and the re-

quested Sequence is already in state SPI_SEQ_PENDING, the SPI Handler/Driver
shall not take in account this new request and this function shall return with value

E_NOT_OK, in this case.⌋()

[SWS_Spi_00266] ⌈When the function Spi_AsyncTransmit is called and the re-

quested Sequence is already in state SPI_SEQ_PENDING the SPI Handler/Driver
shall report the SPI_E_SEQ_PENDING error according to [SWS_BSW_00042] and

[SWS_BSW_00045].⌋()

[SWS_Spi_00086] ⌈When the function Spi_AsyncTransmit is called and the re-

quested Sequence shares Jobs with another sequence that is in the state
SPI_SEQ_PENDING, the SPI Handler/Driver shall not take into account this new re-
quest and this function shall return the value E_NOT_OK. In this case and according
to [SWS_BSW_00042] and [SWS_BSW_00045], the SPI Handler/Driver shall report

the SPI_E_SEQ_PENDING error.⌋()

[SWS_Spi_00035] ⌈When the function Spi_SyncTransmit is called while a se-

quence is on transmission and SPI_SUPPORT_CONCURRENT_SYNC_TRANSMIT
is disabled or another sequence is on transmition on same bus, the SPI Han-
dler/Driver shall not take into account this new transmission request and the function
shall return the value E_NOT_OK (see [SWS_Spi_00114]). In this case and accord-
ing to [SWS_BSW_00042] and [SWS_BSW_00045], the SPI Handler/Driver shall

report the SPI_E_SEQ_IN_PROCESS error.)⌋(SRS_Spi_12200, SRS_Spi_12201)

[SWS_Spi_00036] ⌈When the function Spi_AsyncTransmit is used with EB and

the destination data pointer has been provided as NULL using the Spi_SetupEB

method, the SPI Handler/Driver shall ignore receiving data (See also

[SWS_Spi_00030])⌋()

[SWS_Spi_00055] ⌈When the function Spi_AsyncTransmit is used for a Se-

quence with linked Jobs, the function shall transmit from the first Job up to the last

Job in the sequence.⌋(SRS_Spi_12181)

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

63 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

[SWS_Spi_00057] ⌈ At the end of a sequence transmission initiated by the function

Spi_AsyncTransmit and if configured, the SPI Handler/Driver shall invoke the se-

quence notification call-back function after the last Job end notification if this one is

also configured.⌋(SRS_SPAL_00157, SRS_Spi_12108)

[SWS_Spi_00133] ⌈The function Spi_AsyncTransmit is pre-compile time se-

lectable by the configuration parameter SpiLevelDelivered. This function is only

relevant for LEVEL 1 and LEVEL 2.⌋()

[SWS_Spi_00173] ⌈The SPI Handler/Driver’s environment shall call the function

Spi_AsyncTransmit after a function call of Spi_SetupEB for EB Channels or a

function call of Spi_WriteIB for IB Channels but before the function call

Spi_ReadIB.⌋()

Parameters of the function Spi_AsyncTransmit shall be checked as explained in

section API parameter checking

The SPI Handler/Driver shall have been initialized before the function

Spi_AsyncTransmit is called otherwise see [SWS_Spi_00046].

8.3.5 Spi_ReadIB

[SWS_Spi_00179] ⌈Std_ReturnType Spi_ReadIB(Spi_ChannelType Channel,

Spi_DataBufferType* DataBufferPointer)

Service name: Spi_ReadIB

Syntax: Std_ReturnType Spi_ReadIB(

 Spi_ChannelType Channel,

 Spi_DataBufferType* DataBufferPointer

)

Service ID[hex]: 0x04

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): Channel Channel ID.

Parameters (in-
out):

None

Parameters (out): DataBufferPointer Pointer to destination data buffer in RAM

Return value:
Std_ReturnType E_OK: read command has been accepted

E_NOT_OK: read command has not been accepted

Description: Service for reading synchronously one or more data from an IB SPI Handler/Driver
Channel specified by parameter.

⌋()

[SWS_Spi_00312] ⌈The operation Spi_ReadIB is Re-entrant.⌋()

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

64 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

[SWS_Spi_00313] ⌈The function Spi_ReadIB return values E_OK: read command

has been accepted.⌋()

[SWS_Spi_00314] ⌈The function Spi_ReadIB return values E_NOT_OK: read com-

mand has not been accepted.⌋()

[SWS_Spi_00315] ⌈The function Spi_ReadIB provides the service for reading syn-

chronously one or more data from an IB SPI Handler/Driver Channel specified by

parameter.⌋()

[SWS_Spi_00016] ⌈The function Spi_ReadIB shall read synchronously one or

more data from an IB SPI Handler/Driver Channel specified by the respective

parameter.⌋(SRS_Spi_12099, SRS_Spi_12152)

[SWS_Spi_00027] ⌈The SPI Handler/Driver’s environment shall call the function

Spi_ReadIB after a Transmit method call to have relevant data within IB Channel.⌋()

[SWS_Spi_00138] ⌈The function Spi_ReadIB is pre-compile time configurable by

the parameter SpiChannelBuffersAllowed. This function is only relevant for

Channels with IB.⌋()

Parameters of the function Spi_ReadIB shall be checked as it is explained in sec-

tion API parameter checking.

The SPI Handler/Driver shall have been initialized before the function Spi_ReadIB

is called otherwise see [SWS_Spi_00046].

8.3.6 Spi_SetupEB

[SWS_Spi_00180] ⌈Std_ReturnType Spi_SetupEB(Spi_ChannelType Channel,

const Spi_DataBufferType* SrcDataBufferPtr, Spi_DataBufferType* DesDataBuff-
erPtr, Spi_NumberOfDataType Length)

Service name: Spi_SetupEB

Syntax: Std_ReturnType Spi_SetupEB(

 Spi_ChannelType Channel,

 const Spi_DataBufferType* SrcDataBufferPtr,

 Spi_DataBufferType* DesDataBufferPtr,

 Spi_NumberOfDataType Length

)

Service ID[hex]: 0x05

Sync/Async: Synchronous

Reentrancy: Reentrant

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

65 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

Parameters (in):

Channel Channel ID.

SrcDataBufferPtr Pointer to source data buffer.

DesDataBufferPtr Pointer to destination data buffer in RAM.

Length Length (number of data elements) of the data to be transmitted
from SrcDataBufferPtr and/or received from DesDataBufferPtr
Min.: 1
Max.: Max of data specified at configuration for this channel

Parameters (in-
out):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: Setup command has been accepted

E_NOT_OK: Setup command has not been accepted

Description: Service to setup the buffers and the length of data for the EB SPI Handler/Driver
Channel specified.

⌋()

[SWS_Spi_00316] ⌈The operation Spi_SetupEB is Re-entrant.⌋()

[SWS_Spi_00317] ⌈Return values of the function Spi_SetupEB are E_OK: Setup

command has been accepted and E_NOT_OK: Setup command has not been ac-

cepted.⌋()

[SWS_Spi_00318] ⌈The function Spi_SetupEB provides the service to setup the

buffers and the length of data for the EB SPI Handler/Driver Channel specified.⌋()

[SWS_Spi_00058] ⌈The function Spi_SetupEB shall set up the buffers and the

length of data for the specific EB SPI Handler/Driver Channel.⌋(SRS_Spi_12103)

[SWS_Spi_00067] ⌈The function Spi_SetupEB shall update the buffer pointers and

length attributes of the specified Channel with the provided val-

ues.⌋(SRS_Spi_12103)

As these attributes are persistent, they will be used for all succeeding calls to a
Transmit method (for the specified Channel).

[SWS_Spi_00028] ⌈When the SPI Handler/Driver’s environment is calling the func-

tion Spi_SetupEB with the parameter SrcDataBufferPtr being a Null pointer, the

function shall transmit the default transmit value configured for the channel after a

Transmit method is requested. (See also [SWS_Spi_00035])⌋()

[SWS_Spi_00030] ⌈When the function Spi_SetupEB is called with the parameter

DesDataBufferPtr being a Null pointer, the SPI Handler/Driver shall ignore the

received data after a Transmit method is requested.(See also [SWS_Spi_00036])⌋()

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

66 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

[SWS_Spi_00037] ⌈The SPI Handler/Driver’s environment shall call the

Spi_SetupEB function once for each Channel with EB declared before the SPI

Handler/Driver’s environment calls a Transmit method on them.⌋()

[SWS_Spi_00139] ⌈The function Spi_SetupEB is pre-compile time configurable by

the parameter SpiChannelBuffersAllowed. This function is only relevant for

Channels with EB.⌋()

Parameters of the function Spi_SetupEB shall be checked as it is explained in sec-

tion API parameter checking.

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

67 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

The SPI Handler/Driver shall have been initialized before the function Spi_SetupEB

is called otherwise see [SWS_Spi_00046].

8.3.7 Spi_GetStatus

[SWS_Spi_00181] ⌈Spi_StatusType Spi_GetStatus()

Service name: Spi_GetStatus

Syntax: Spi_StatusType Spi_GetStatus(

 void

)

Service ID[hex]: 0x06

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): None

Parameters (in-
out):

None

Parameters (out): None

Return value: Spi_StatusType Spi_StatusType

Description: Service returns the SPI Handler/Driver software module status.

⌋()

[SWS_Spi_00319] ⌈The operation Spi_GetStatus is Re-entrant.⌋()

[SWS_Spi_00320] ⌈The function Spi_GetStatus returns the SPI Handler/Driver

software module status.⌋()

[SWS_Spi_00025] ⌈The function Spi_GetStatus shall return the SPI Han-

dler/Driver software module status.⌋(SRS_SPAL_12064, SRS_Spi_12104)

8.3.8 Spi_GetJobResult

[SWS_Spi_00182] ⌈Spi_JobResultType Spi_GetJobResult(Spi_JobType Job)

Service name: Spi_GetJobResult

Syntax: Spi_JobResultType Spi_GetJobResult(

 Spi_JobType Job

)

Service ID[hex]: 0x07

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): Job Job ID. An invalid job ID will return an undefined result.

Parameters (in-
out):

None

Parameters (out): None

Return value: Spi_JobResultType Spi_JobResultType

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

68 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

Description: This service returns the last transmission result of the specified Job.

⌋()

[SWS_Spi_00321] ⌈The operation Spi_GetJobResult is Re-entrant.⌋()

[SWS_Spi_00322] ⌈The function Spi_GetJobResult service returns the last trans-

mission result of the specified Job.⌋()

[SWS_Spi_00026] ⌈The function Spi_GetJobResult shall return the last transmis-

sion result of the specified Job. ⌋(SRS_SPAL_00157, SRS_Spi_12104)

[SWS_Spi_00038] ⌈The SPI Handler/Driver’s environment shall call the function

Spi_GetJobResult to inquire whether the Job transmission has succeeded

(SPI_JOB_OK) or failed (SPI_JOB_FAILED).⌋(SRS_SPAL_00157)

NOTE: Every new transmit job that has been accepted by the SPI Handler/Driver

overwrites the previous job result with SPI_JOB_QUEUED or SPI_JOB_PENDING.

Parameters of the function Spi_GetJobResult shall be checked as it is explained

in section API parameter checking.

If SPI Handler/Driver has not been initialized before the function

Spi_GetJobResult is called, the return value is undefined.

8.3.9 Spi_GetSequenceResult

[SWS_Spi_00183] ⌈Spi_SeqResultType Spi_GetSequenceResult(

Spi_SequenceType Sequence)

Service name: Spi_GetSequenceResult

Syntax: Spi_SeqResultType Spi_GetSequenceResult(

 Spi_SequenceType Sequence

)

Service ID[hex]: 0x08

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in):
Sequence Sequence ID. An invalid sequence ID will return an undefined

result.

Parameters (in-
out):

None

Parameters (out): None

Return value: Spi_SeqResultType Spi_SeqResultType

Description: This service returns the last transmission result of the specified Sequence.

⌋()

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

69 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

[SWS_Spi_00323] ⌈The operation Spi_GetSequenceResult is Re-entrant.⌋()

[SWS_Spi_00324] ⌈The function Spi_GetSequenceResult shall return the last

transmission result of the specified Sequence.⌋()

[SWS_Spi_00039] ⌈The function Spi_GetSequenceResult shall return the last

transmission result of the specified Sequence. ⌋(SRS_SPAL_00157,

SRS_Spi_12104)

[SWS_Spi_00042] ⌈The SPI Handler/Driver’s environment shall call the function

Spi_GetSequenceResult to inquire whether the full Sequence transmission has

succeeded (SPI_SEQ_OK) or failed (SPI_SEQ_FAILED).⌋(SRS_SPAL_00157,

SRS_Spi_12170)

Note:

- Every new transmit sequence that has been accepted by the SPI Han-

dler/Driver overwrites the previous sequence result with SPI_SEQ_PENDING.

- If the SPI Handler/Driver has not been initialized before the function

Spi_GetSequenceResult is called, the return value is undefined.

Parameters of the function Spi_GetSequenceResult shall be checked as it is ex-

plained in section API parameter checking.

8.3.10 Spi_GetVersionInfo

[SWS_Spi_00184] ⌈void Spi_GetVersionInfo(Std_VersionInfoType* versioninfo)

Service name: Spi_GetVersionInfo

Syntax: void Spi_GetVersionInfo(

 Std_VersionInfoType* versioninfo

)

Service ID[hex]: 0x09

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): None

Parameters (in-
out):

None

Parameters (out): versioninfo Pointer to where to store the version information of this module.

Return value: None

Description: This service returns the version information of this module.

⌋()

[SWS_Spi_00325] ⌈The operation Spi_GetVersionInfo is Non Re-entrant.⌋()

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

70 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

[SWS_Spi_00371] ⌈If Det is enabled, the parameter versioninfo shall be checked for

being NULL. The error SPI_E_PARAM_POINTER shall be reported in case the value

is a NULL pointer.⌋()

8.3.11 Spi_SyncTransmit

[SWS_Spi_00185] ⌈Std_ReturnType Spi_SyncTransmit(Spi_SequenceType Se-

quence)

Service name: Spi_SyncTransmit

Syntax: Std_ReturnType Spi_SyncTransmit(

 Spi_SequenceType Sequence

)

Service ID[hex]: 0x0a

Sync/Async: Asynchronous

Reentrancy: Reentrant

Parameters (in): Sequence Sequence ID.

Parameters (in-
out):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: Transmission command has been accepted

E_NOT_OK: Transmission command has not been accepted

Description: Service to transmit data on the SPI bus

⌋()

[SWS_Spi_00327] ⌈The operation Spi_SyncTransmit is Re-entrant.⌋()

[SWS_Spi_00328] ⌈Return value of the function Spi_SyncTransmit is E_OK: when

Transmission command has been accepted.⌋()

[SWS_Spi_00329] ⌈Return value of the function Spi_SyncTransmit is E_NOT_OK:

When Transmission command has not been accepted.⌋()

[SWS_Spi_00330] ⌈The function Spi_SyncTransmit provides the service to transmit

data on the SPI bus.⌋()

[SWS_Spi_00134] ⌈When the function Spi_SyncTransmit is called, shall take over

the given parameter and set the SPI Handler/Driver status to SPI_BUSY can be ob-

tained calling the API service SPI_GetStatus.⌋(SRS_Spi_12152, SRS_Spi_12153,

SRS_Spi_12154)

[SWS_Spi_00285] ⌈When the function Spi_SyncTransmit is called, shall take over

the given parameter and set the Sequence status to SPI_SEQ_PENDING can be

obtained calling the API service Spi_GetSequenceResult.⌋()

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

71 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

[SWS_Spi_00286] ⌈When the function Spi_SyncTransmit is called, shall take over

the given parameter and set the Job status to SPI_JOB_PENDING can be obtained

calling the API service Spi_GetJobResult.⌋()

[SWS_Spi_00135] ⌈When the function Spi_SyncTransmit is called while a se-

quence is on transmission and SPI_SUPPORT_CONCURRENT_SYNC_TRANSMIT is

disabled or another sequence is on transmition on same bus, the SPI Handler/Driver
shall not take into account this new transmission request and the function shall return

the value E_NOT_OK (see [SWS_Spi_00114]). In this case and according to

[SWS_Spi_00100], the SPI Handler/Driver shall report the

SPI_E_SEQ_IN_PROCESS error.⌋()

[SWS_Spi_00136] ⌈The function Spi_SyncTransmit is pre-compile time se-

lectable by the configuration parameter SpiLevelDelivered. This function is only

relevant for LEVEL 0 and LEVEL 2.⌋()

Parameters of the function Spi_SyncTransmit shall be checked as it is explained

in section API parameter checking

8.3.12 Spi_GetHWUnitStatus

[SWS_Spi_00186] ⌈Spi_StatusType Spi_GetHWUnitStatus(Spi_HWUnitType

HWUnit)

Service name: Spi_GetHWUnitStatus

Syntax: Spi_StatusType Spi_GetHWUnitStatus(

 Spi_HWUnitType HWUnit

)

Service ID[hex]: 0x0b

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): HWUnit SPI Hardware microcontroller peripheral (unit) ID.

Parameters (in-
out):

None

Parameters (out): None

Return value: Spi_StatusType Spi_StatusType

Description: This service returns the status of the specified SPI Hardware microcontroller pe-
ripheral.

⌋()

[SWS_Spi_00331] ⌈The operation Spi_GetHWUnitStatus is Re-entrant.⌋()

[SWS_Spi_00332] ⌈The function Spi_GetHWUnitStatus service returns the status of

the specified SPI Hardware microcontroller peripheral.⌋()

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

72 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

[SWS_Spi_00141] ⌈The function Spi_GetHWUnitStatus shall return the status of the

specified SPI Hardware microcontroller peripheral.⌋()

[SWS_Spi_00287] ⌈The SPI Handler/Driver’s environment shall call this function to

inquire whether the specified SPI Hardware microcontroller peripheral is SPI_IDLE or

SPI_BUSY.⌋()

[SWS_Spi_00142] ⌈The function Spi_GetHWUnitStatus is pre-compile time con-

figurable On / Off by the configuration parameter SpiHwStatusApi.⌋()

Parameters of the function Spi_GetHWUnitStatus shall be checked as it is ex-

plained in section API parameter checking.

If SPI Handler/Driver has not been initialized before the function

Spi_GetHWUnitStatus is called, the return value is undefined.

8.3.13 Spi_Cancel

[SWS_Spi_00187] ⌈void Spi_Cancel(Spi_SequenceType Sequence)

Service name: Spi_Cancel

Syntax: void Spi_Cancel(

 Spi_SequenceType Sequence

)

Service ID[hex]: 0x0c

Sync/Async: Asynchronous

Reentrancy: Reentrant

Parameters (in): Sequence Sequence ID.

Parameters (in-
out):

None

Parameters (out): None

Return value: None

Description: Service cancels the specified on-going sequence transmission.

⌋()

[SWS_Spi_00333] ⌈The operation Spi_Cancel is Re-entrant.⌋()

[SWS_Spi_00334] ⌈The function Spi_Cancel service cancels the specified on-going

sequence transmission.⌋()

[SWS_Spi_00144] ⌈The function Spi_Cancel shall cancel the specified on-going

sequence transmission without cancelling any Job transmission and set the se-

quence result to SPI_SEQ_CANCELLED.⌋()

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

73 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

With other words, the Spi_Cancel function stops a Sequence transmission after a

(possible) on transmission Job ended and before a (potential) next Job transmission
starts.

[SWS_Spi_00145] ⌈When the sequence is cancelled by the function Spi_Cancel

and if configured, the SPI Handler/Driver shall call the sequence notification call-back

function instead of starting a potential next job belonging to it.⌋()

[SWS_Spi_00146] ⌈The function Spi_Cancel is pre-compile time configurable On /

Off by the configuration parameter SpiCancelApi.⌋()

The SPI Handler/Driver is not responsible on external devices damages or undefined
state due to cancelling a sequence transmission. It is up to the SPI Handler/Driver’s
environment to be aware to what it is doing!

8.3.14 Spi_SetAsyncMode

[SWS_Spi_00188] ⌈Std_ReturnType Spi_SetAsyncMode(Spi_AsyncModeType

Mode)

Service name: Spi_SetAsyncMode

Syntax: Std_ReturnType Spi_SetAsyncMode(

 Spi_AsyncModeType Mode

)

Service ID[hex]: 0x0d

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): Mode New mode required.

Parameters (in-
out):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: Setting command has been done

E_NOT_OK: setting command has not been accepted

Description: Service to set the asynchronous mechanism mode for SPI busses handled asyn-
chronously.

⌋()

[SWS_Spi_00335] ⌈The operation Spi_SetAsyncMode is Non Re-entrant.⌋()

[SWS_Spi_00336] ⌈Return value of the function Spi_SetAsyncMode is E_OK: Set-

ting command has been done.⌋()

[SWS_Spi_00337] ⌈Return value of the function Spi_SetAsyncMode is E_NOT_OK:

setting command has not been accepted.⌋()

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

74 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

[SWS_Spi_00338] ⌈The function Spi_SetAsyncMode service to set the asynchro-

nous mechanism mode for SPI buses handled asynchronously.⌋()

[SWS_Spi_00152] ⌈The function Spi_SetAsyncMode according to the given pa-

rameter shall set the asynchronous mechanism mode for SPI channels configured to

behave asynchronously.⌋()

[SWS_Spi_00171] ⌈If the function Spi_SetAsyncMode is called while the SPI Han-

dler/Driver status is SPI_BUSY and an asynchronous transmition is in progress, the

SPI Handler/Driver shall not change the AsyncModeType and keep the mode type as

it is. The function shall return the value E_NOT_OK.⌋()

[SWS_Spi_00172] ⌈If Spi_SetAsyncMode is called while a synchronous transmis-

sion is in progress, the SPI Handler/Driver shall set the AsyncModeType according to

parameter 'Mode', even if the SPI Handler/Driver status is SPI_BUSY. The function

shall return the value E_OK.⌋()

[SWS_Spi_00154] ⌈The function Spi_SetAsyncMode is pre-compile time se-

lectable by the configuration parameter SpiLevelDelivered. This function is only

relevant for LEVEL 2.⌋()

8.4 Callback notifications

This chapter lists all functions provided by the SPI module to lower layer modules.

The SPI Handler/Driver module belongs to the lowest layer of AUTOSAR Software
Architecture hence this module specification has not identified any callback functions.

8.5 Scheduled functions

This chapter lists all functions provided by the SPI Handler/Driver and called directly
by the Basic Software Module Scheduler.

The SPI Handler/Driver module requires a scheduled function for the management of
the asynchronous mode managed with polling (see SWS_Spi_00361). The specified
functions below exemplify how to implement them if they are needed.

8.5.1 Spi_MainFunction_Handling

[SWS_Spi_00189] ⌈void Spi_MainFunction_Handling (void)

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

75 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

Service name: Spi_MainFunction_Handling

Syntax: void Spi_MainFunction_Handling(

 void

)

Service ID[hex]: 0x10

Description: --

⌋()

This function shall polls the SPI interrupts linked to HW Units allocated to the trans-
mission of SPI sequences to enable the evolution of transmission state machine.

8.6 Expected Interfaces

This chapter lists all functions that the SPI Handler/Driver requires from other mod-
ules.

8.6.1 Mandatory Interfaces

The SPI Handler/Driver module does not define any interface which is required to
fulfill its core functionality.

8.6.2 Optional Interfaces

This chapter defines all interfaces which are required to fulfill an optional functionality
of SPI Handler/Driver module.

[SWS_Spi_00191] ⌈void Dem_ReportErrorStatus(Dem_EventIdType EventId,

Dem_EventStatusType EventStatus)⌋()

[SWS_Spi_00339] ⌈void Det_ReportError(uint16 ModuleId, uint8 InstanceId, uint8

ApiId, uint8 ErrorId)

API function Description

Dem_ReportErrorStatus Queues the reported events from the BSW modules (API is only used
by BSW modules). The interface has an asynchronous behavior, be-
cause the processing of the event is done within the Dem main function.
OBD Events Suppression shall be ignored for this computation.

Det_ReportError Service to report development errors.

⌋()

8.6.3 Configurable interfaces

In this chapter all interfaces are listed where the target function could be configured.
The target function is usually a call-back function. The name of these interfaces is not
fixed because they are configurable.

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

76 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

[SWS_Spi_00075] ⌈The SPI Handler/Driver shall use the callback routines

Spi_JobEndNotification to inform other software modules about certain states or

state changes.⌋(SRS_SPAL_00157)

[SWS_Spi_00264] ⌈The SPI Handler/Driver shall use the callback routines

Spi_SeqEndNotification to inform other software modules about certain states or

state changes.⌋()

[SWS_Spi_00265] ⌈For implement the call back function other modules are required

to provide the routines in the expected manner.⌋()

[SWS_Spi_00044] ⌈The SPI Handler/Driver’s implementer must implement the

callback notifications Spi_JobEndNotification and

Spi_SeqEndNotification as function pointers defined within the initialization da-

ta structure (Spi_ConfigType).⌋(SRS_SPAL_12056)

[SWS_Spi_00048] ⌈The callback notifications Spi_JobEndNotification and

Spi_SeqEndNotification shall have no parameters and no return val-

ue.⌋(SRS_BSW_00359, SRS_BSW_00360, SRS_BSW_00369)

[SWS_Spi_00054] ⌈If a callback notification is configured as null pointer, no callback

shall be executed.⌋(SRS_SPAL_12056)

[SWS_Spi_00085] ⌈It is allowed to use the following API calls within the SPI callback

notifications:

 Spi_ReadIB

 Spi_WriteIB

 Spi_SetupEB

 Spi_GetJobResult

 Spi_GetSequenceResult

 Spi_GetHWUnitStatus

 Spi_Cancel

All other SPI Handler/Driver API calls are not allowed.⌋()

8.6.3.1 Spi_JobEndNotification

[SWS_Spi_00192] ⌈void (*Spi_JobEndNotification)()

Service name: (*Spi_JobEndNotification)

Syntax: void (*Spi_JobEndNotification)(

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

77 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

 void

)

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): None

Parameters (in-
out):

None

Parameters (out): None

Return value: None

Description: Callback routine provided by the user for each Job to notify the caller that a job
has been finished.

⌋()

[SWS_Spi_00340] ⌈The operation SpiJobEndNotification is Re-entrant.⌋()

[SWS_Spi_00071] ⌈If the SpiJobEndNotification is configured (i.e. not a null

pointer), the SPI Handler/Driver shall call the configured callback notification at the

end of a Job transmission.⌋(SRS_SPAL_00157)

Note: This routine might be called on interrupt level, depending on the calling func-
tion.

8.6.3.2 Spi_SeqEndNotification

[SWS_Spi_00193] ⌈void (*Spi_SeqEndNotification)()

Service name: (*Spi_SeqEndNotification)

Syntax: void (*Spi_SeqEndNotification)(

 void

)

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): None

Parameters (in-
out):

None

Parameters (out): None

Return value: None

Description: Callback routine provided by the user for each Sequence to notify the caller that a
sequence has been finished.

⌋()

[SWS_Spi_00341] ⌈The operation SpiSeqEndNotification is Re-entrant.⌋()

[SWS_Spi_00073] ⌈If the SpiSeqEndNotification is configured (i.e. not a null

pointer), the SPI Handler/Driver shall call the configured callback notification at the

end of a Sequence transmission.⌋(SRS_SPAL_00157)

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

78 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

Note: This routine might be called on interrupt level, depending on the calling func-
tion.

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

79 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

9 Sequence diagrams

9.1 Initialization

«module»

Spi

Spi User

Spi_Init(const

Spi_ConfigType*)

Spi_Init()

9.2 Modes transitions

The following sequence diagram shows an example of an Init / DeInit calls for a run-
ning mode transition.

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

80 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

«module»

Spi

Spi User

Description:

Initialization of SPI Handler/Driver is

performed synchronously with a

parameter to run in a mode.

For instance, "FullPowerConf" is the

structure containing all configurations

for the "RUN State" with PLL enable.

Description:

Use the get status service of SPI

Handler/Driver to know its state before

to de-initialize it.

Description:

Initialization of SPI Handler/Driver is

performed with a specific parameter to run in

another mode.

For instance, "ReducePowerConf" is the

structure containing all configurations for the

"SLEEP State" with PLL disable.

Use of SPI

Handler/Driver:

Embedded software

execution, time and

code execution

undefined during this

l ife period.

Use of SPI

Handler/Driver:

Embedded software

execution, time and

code execution

undefined during this

l ife period.

Spi_Init(const

Spi_ConfigType*)

Spi_Init()

Spi_GetStatus(Spi_StatusType) :

Spi_StatusType

Spi_GetStatus=SPI_BUSY()

Spi_GetStatus(Spi_StatusType) :

Spi_StatusType

Spi_GetStatus=SPI_IDLE()

Spi_DeInit(Std_ReturnType)

Spi_DeInit()

Spi_Init(const

Spi_ConfigType*)

Spi_Init()

9.3 Write/AsyncTransmit/Read (IB)

9.3.1 One Channel, one Job then one Sequence

The following sequence diagram shows an example of Spi_WriteIB /
Spi_AsyncTransmit / Spi_ReadIB calls for a Sequence transmission with only one
Job composed of only one Channel. Write or Read step could be skipped when Job
is just reading or writing respectively.

Example: Channel ID 2 belongs to Job ID 1 which belongs to Sequence ID 0

Sequence Job Channel

ID0 ID1 ID2

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

81 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

«module»

Spi

Spi User

Description:

Write to the Channel is done synchronously.

You pass the Channel ID and the buffer.

Description:

Transmission is performing asynchronously. The

SPI Handler/Driver records the sequence and

returns.

Description:

Transmission processing (writing to SPI bus) is

done asynchronously according to the sequence

requested and the prioritization mechanism.

This case is not a Sequence of l inked Jobs so

the SPI Handler/Driver becomes idle at the end

of the Channel transmission.

Description:

When a Job transmission ends, if it is

configured, the “End Job Notification” of the

Job process is called.

Description:

When the Sequence transmission ends, if it is

configured, the “End Seq Notification” of the

Sequence process is called.

Description:

The received data will be allocated in the

configured receive buffers, and can be read

using the read function for IB Channels.

Spi_WriteIB(Std_ReturnType,

Spi_ChannelType, const Spi_DataBufferType*)

Spi_WriteIB()

Spi_AsyncTransmit(Std_ReturnType,

Spi_SequenceType)

Spi_AsyncTransmit()

Seq0.Job1()

<Spi_Job1EndNotification>()

<Spi_Job1EndNotification>()

<Spi_Seq0EndNotification>()

<Spi_Seq0EndNotification>()

Spi_ReadIB(Std_ReturnType, Spi_ChannelType,

Spi_DataBufferType*)

Spi_ReadIB()

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

82 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

9.3.2 Many Channels, one Job then one Sequence

The following sequence diagram shows an example of Spi_WriteIB /
Spi_AsyncTransmit / Spi_ReadIB calls for a Sequence transmission with only one
Job composed of many Channels. Write or Read steps could be skipped when Job is
just reading or writing respectively.

Example: Channels ID 2 & 3 belong to Job ID 1 which belongs to Sequence ID 0

Sequence Job Channel

ID0 ID1
ID2

ID3

«module»

Spi

User1 :Spi User User2 :Spi User

Description:

Write to a Channel is done synchronously. You

pass the Channel ID and the buffer.

In this case, Channels are within the same Job.

Description:

Transmission is performing asynchronously. The

SPI Handler/Driver records the sequence and

returns.

Description:

Transmission processing (writing to SPI bus) is

done asynchronously according to the sequence

requested and the prioritization mechanism.

This case is not a sequence of l inked Jobs. At

the end of Channels transmission the SPI

Handler/Driver becomes idle.

Description:

When a Job transmission ends, if it is

configured, the “End Job Notification” of the

Job process is called.

Description:

When the Sequence transmission ends, if it is

configured, the “End Seq Notification” of the

Sequence process is called.

Description:

The received data, if there are, will be

allocated in the configured receive buffers,

and can be read using the read function for

IB Channels.

Spi_WriteIB(Std_ReturnType,

Spi_ChannelType, const Spi_DataBufferType*)

Spi_WriteIB()

Spi_WriteIB(Std_ReturnType,

Spi_ChannelType, const Spi_DataBufferType*)

Spi_WriteIB()

Spi_AsyncTransmit(Std_ReturnType,

Spi_SequenceType)

Spi_AsyncTransmit()

Seq0.Job1()

<Spi_Job1EndNotification>()

<Spi_Job1EndNotification>()

<Spi_Seq0EndNotification>()

<Spi_Seq0EndNotification>()

Spi_ReadIB(Std_ReturnType, Spi_ChannelType,

Spi_DataBufferType*)

Spi_ReadIB()

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

83 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

9.3.3 Many Channels, many Jobs and one Sequence

The following sequence diagram shows an example of Spi_WriteIB /
Spi_AsyncTransmit / Spi_ReadIB calls for a Sequence transmission of linked Jobs.
Write or Read steps could be skipped when Jobs are just reading or writing respec-
tively.

Example: Channels ID 0 to 3 belong to Job ID 1 (higher priority), Channels ID 4 to 10
belong to Job ID 2 (Lower priority) which has not an end notification function. These
Jobs belong to the same Sequence ID 0

Sequence Job Channel

Name Priority

ID0
ID1 High ID0…ID3

ID2 Low ID4…ID10

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

84 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

User2 :Spi UserUser1 :Spi User «module»

Spi

Description:

Write to a Channel is done synchronously. You

pass the Channel ID and the buffer.

In this case, Channels are not within the same

Job.

Description:

Transmission is performing asynchronously. The

SPI Handler/Driver records the sequence and

returns.

Description:

Transmission processing (writing to SPI bus) is

done asynchronously according to the sequence

requested and the prioritization mechanism.

This case is a sequence of l inked Jobs. At the

end of Channels transmission the SPI

Handler/Driver becomes idle.

Description:

When the Sequence transmission ends, if it is

configured, the “End Seq Notification” of the

Sequence process is called.

Description:

The received data, if there are, will be allocated

in the configured receive buffers, and can be

read using the read function for IB Channels.

Description:

When a Job transmission ends, if it is

configured, the “End Job Notification” of the

Job process is called.

loop Channel:=5...10

loop Channel:=1...3

opt If channel needed

opt If channel needed

Spi_WriteIB(Std_ReturnType,

Spi_ChannelType, const Spi_DataBufferType*)

Spi_WriteIB()

Spi_WriteIB(Std_ReturnType,

Spi_ChannelType, const Spi_DataBufferType*)

Spi_WriteIB()

Spi_WriteIB(Std_ReturnType,

Spi_ChannelType, const Spi_DataBufferType*)

Spi_WriteIB()

Spi_WriteIB(Std_ReturnType,

Spi_ChannelType, const Spi_DataBufferType*)

Spi_WriteIB()

Spi_AsyncTransmit(Std_ReturnType,

Spi_SequenceType)

Spi_AsyncTransmit()

Seq0.Job1()

<Spi_Job1EndNotification>()

<Spi_Job1EndNotification>()

Seq0.Job2()

<Spi_Seq0EndNotification>()

<Spi_Seq0EndNotification>()

Spi_ReadIB(Std_ReturnType, Spi_ChannelType,

Spi_DataBufferType*)

Spi_ReadIB()

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

85 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

9.3.4 Many Channels, many Jobs and many Sequences

The following sequence diagram shows an example of Spi_WriteIB /
Spi_AsyncTransmit / Spi_ReadIB calls for Sequences transmission. Write or Read
steps could be skipped when Jobs are just reading or writing respectively.

Example: Channels ID 0 to 3 belong to Job ID 1 (high priority 2), Channels ID 4 to 10
belong to Job ID 2 (Low priority 1) which has not an end notification function. These
Jobs belong to the same Sequence ID 0 which is configured as interruptible.
Channels ID 11 to 13 belong to Job ID 0 (higher priority 3) which belongs to Se-
quence ID 1 which is configured as not interruptible.

Sequence Job Channel

Name Interruptible Name Priority

ID0 Yes
ID1 2 ID0…ID3

ID2 1 ID4…ID10

ID1 No ID0 3 ID11…ID13

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

86 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

User1 :Spi User User2 :Spi User «module»

Spi

Description:

Write to a Channel is done

synchronously. You pass the Channel

ID and the buffer.

In this case, Channels are not within

the same Job.

Description:

Transmission processing (writing to SPI

bus) is done asynchronously according to

the job requested and the prioritization

mechanism.

This case concerns many Sequences of

many Jobs so at the end of a Job

transmission SPI Handler/Driver schedule

the next Job to transmit.

The Job selected has the higher priority

and could belong to another Sequence

only if the sequence on going is

configured as interruptible.

At the end of all Sequences transmission

SPI Handler/Driver becomes idle.

Description:

The received data, if there are, will be

allocated in the configured receive

buffers, and can be read using the read

function for IB Channels.

Description:

Transmission is performing

asynchronously. The SPI

Handler/Driver records the

sequence and returns.

Description:

When a Job transmission ends, if it is configured, the “End Job

Notification” of the Job process is called.

Description:

When the Sequence

transmission ends, if it is

configured, the “End

Seq Notification” of the

Sequence process is

called.

loop Channel:=5...10

loop Channel:=12...13

opt If channel needed

opt If channel needed

Spi_WriteIB(Std_ReturnType,

Spi_ChannelType, const Spi_DataBufferType*)

Spi_WriteIB()

Spi_WriteIB(Std_ReturnType,

Spi_ChannelType, const Spi_DataBufferType*)

Spi_WriteIB()

Spi_WriteIB(Std_ReturnType,

Spi_ChannelType, const Spi_DataBufferType*)

Spi_WriteIB()

Spi_WriteIB(Std_ReturnType,

Spi_ChannelType, const Spi_DataBufferType*)

Spi_WriteIB()

Spi_AsyncTransmit(Std_ReturnType,

Spi_SequenceType)

Spi_AsyncTransmit()

Seq0.Job1 (part1)

Spi_AsyncTransmit(Std_ReturnType,

Spi_SequenceType)

Spi_AsyncTransmit()

Seq0.Job1 (part2)

<Spi_Job1EndNotification>()

<Spi_Job1EndNotification>()

Seq1.Job0()

<Spi_Seq1EndNotification>()

<Spi_Seq1EndNotification>()

Spi_ReadIB(Std_ReturnType, Spi_ChannelType,

Spi_DataBufferType*)

Spi_ReadIB()

Seq0.Job2()

<Spi_Seq0EndNotification>()

<Spi_Seq0EndNotification>()

Spi_ReadIB(Spi_ChannelType, Spi_DataType*) :

Std_ReturnType

Spi_ReadIB()

9.4 Setup/AsyncTransmit (EB)

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

87 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

9.4.1 Variable Number of Data / Constant Number of Data

[SWS_Spi_00077] ⌈To transmit a variable number of data, it is mandatory to call the

Spi_SetupEB function to store new parameters within SPI Handler/Driver before

each Spi_AsyncTransmit function call.⌋(SRS_Spi_12198, SRS_Spi_12200,

SRS_Spi_12201)

[SWS_Spi_00078] ⌈To transmit a constant number of data, it is only mandatory to

call the Spi_SetupEB function to store parameters within SPI Handler/Driver before

the first Spi_AsyncTransmit function call.⌋(SRS_Spi_12253, SRS_Spi_12262,

SRS_Spi_12202)

9.4.2 One Channel, one Job then one Sequence

The following sequence diagram shows an example of Spi_SetupEB /

Spi_AsyncTransmit calls for a Sequence transmission with only one Job com-

posed of only one Channel. Write or Read accesses are “User Dependant” and could
be skipped when Job is just reading or writing respectively.

Example: Channel ID 2 belongs to Job ID 1 which belongs to Sequence ID 0

Sequence Job Channel

ID0 ID1 ID2

«module»

Spi

Spi User

Description:

Setup a Channel; initialize buffer pointers

and length synchronously. Parameters are

saved.

Description:

Transmission is performing asynchronously. The

SPI Handler/Driver records the sequence and

returns.

Description:

Transmission processing (writing to SPI bus) is

done asynchronously according to the sequence

requested and the prioritization mechanism.

This case is not a Sequence of l inked Jobs so

the SPI Handler/Driver becomes idle at the end

of the Channel transmission.

Description:

When a Job transmission ends, if it is

configured, the “End Job Notification” of the

Job process is called.

Description:

When the Sequence transmission ends, if it is

configured, the “End Seq Notification” of the

Sequence process is called.

Spi_SetupEB(Std_ReturnType, Spi_ChannelType, const

Spi_DataBufferType*, Spi_DataBufferType*, Spi_NumberOfDataType)

Spi_SetupEB()

Spi_AsyncTransmit(Std_ReturnType,

Spi_SequenceType)

Spi_AsyncTransmit()

Seq0.Job1()

<Spi_Job1EndNotification>()

<Spi_Job1EndNotification>()

<Spi_Seq0EndNotification>()

<Spi_Seq0EndNotification>()

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

88 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

9.4.3 Many Channels, one Job then one Sequence

The following sequence diagram shows an example of Spi_SetupEB /

Spi_AsyncTransmit calls for a Sequence transmission with only one Job com-

posed of many Channels. Write or Read accesses are “User Dependant” and could
be skipped when Job is just reading or writing respectively.

Example: Channels ID 2 & 3 belong to Job ID 1 which belongs to Sequence ID 0

Sequence Job Channel

ID0 ID1
ID2

ID3

«module»

Spi

User1 :Spi User User2 :Spi User

Description:

Setup a Channel; initialize buffer pointers

and length synchronously. Parameters are

saved.

In this case, Channels are within the same

Job.

Description:

Transmission is performing asynchronously.

The SPI Handler/Driver records the sequence

and returns.

Description:

Transmission processing (writing to SPI bus) is

done asynchronously according to the

sequence requested and the prioritization

mechanism.

This case is not a sequence of l inked Jobs. At

the end of Channels transmission the SPI

Handler/Driver becomes idle.

Description:

When a Job transmission ends, if it is

configured, the “End Job Notification” of the

Job process is called.

Description:

When the Sequence transmission ends, if it is

configured, the “End Seq Notification” of the

Sequence process is called.

The received data, if there are, will be

directly stored in EB Channel receive buffer

and can be used such as.

Spi_SetupEB(Std_ReturnType, Spi_ChannelType, const

Spi_DataBufferType*, Spi_DataBufferType*, Spi_NumberOfDataType)

Spi_SetupEB()

Spi_SetupEB(Std_ReturnType, Spi_ChannelType, const

Spi_DataBufferType*, Spi_DataBufferType*, Spi_NumberOfDataType)

Spi_SetupEB()

Spi_AsyncTransmit(Std_ReturnType,

Spi_SequenceType)

Spi_AsyncTransmit()

Seq0.Job1()

<Spi_Job1EndNotification>()

<Spi_Job1EndNotification>()

<Spi_Seq0EndNotification>()

<Spi_Seq0EndNotification>()

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

89 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

9.4.4 Many Channels, many Jobs and one Sequence

The following sequence diagram shows an example of Spi_SetupEB /

Spi_AsyncTransmit calls for a Sequence transmission of linked Jobs. Write or

Read accesses are “User Dependant” and could be skipped when Job is just read-
ing or writing respectively.

Example: Channels ID 0 to 3 belong to Job ID 1 (higher priority), Channels ID 4 to 10
belong to Job ID 2 (Lower priority) which has not an end notification function. These
Jobs belong to the same Sequence ID 0

Sequence Job Channel

ID0
ID1 ID0…ID3

ID2 ID4…ID10

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

90 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

User1 :Spi User User2 :Spi User «module»

Spi

Description:

Setup a Channel; initialize buffer pointers

and length synchronously. Parameters are

saved.

In this case, Channels are not within the same

Job.

Description:

Transmission is performing asynchronously.

The SPI Handler/Driver records the sequence

and returns.

Description:

Transmission processing (writing to SPI bus) is

done asynchronously according to the job

requested and the prioritization mechanism.

This case is a Sequence of l inked Jobs so at

the end of a Job transmission SPI

Handler/Driver schedule the next Job to

transmit.

At the end of Sequence transmission the SPI

Handler/Driver becomes idle.

Description:

The received data will be allocated in the

configured receive buffers, and can be read

using the read function for IB Channels.

Description:

When the Sequence transmission ends, if it

is configured, the “End Seq Notification” of

the Sequence process is called.

The received data, if there are, will be

directly stored in EB Channel receive buffer

and can be used such as.

Description:

When a Job transmission

ends, if it is configured, the

“End Job Notification” of the

Job process is called.

loop Channel:=5...10

loop Channel:=1...3

opt If channel needed

opt If channel needed

Spi_SetupEB(Std_ReturnType, Spi_ChannelType, const

Spi_DataBufferType*, Spi_DataBufferType*, Spi_NumberOfDataType)

Spi_SetupEB()

Spi_SetupEB(Std_ReturnType, Spi_ChannelType, const

Spi_DataBufferType*, Spi_DataBufferType*, Spi_NumberOfDataType)

Spi_SetupEB()

Spi_SetupEB(Std_ReturnType, Spi_ChannelType, const

Spi_DataBufferType*, Spi_DataBufferType*, Spi_NumberOfDataType)

Spi_SetupEB()

Spi_SetupEB(Std_ReturnType, Spi_ChannelType, const

Spi_DataBufferType*, Spi_DataBufferType*,

Spi_NumberOfDataType)
Spi_SetupEB()

Spi_AsyncTransmit(Std_ReturnType,

Spi_SequenceType)

Spi_AsyncTransmit()

Seq0.Job1()

<Spi_Job1EndNotification>()

<Spi_Job1EndNotification>()

Seq0.Job2()

<Spi_Seq0EndNotification>()

<Spi_Seq0EndNotification>()

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

91 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

9.4.5 Many Channels, many Jobs and many Sequences

The following sequence diagram shows an example of Spi_SetupEB /

Spi_AsyncTransmit calls for Sequences transmission. Write or Read accesses

are “User Dependant” and could be skipped when Job is just reading or writing re-
spectively.

Example: Channels ID 0 to 3 belong to Job ID 1 (high priority 2), Channels ID 4 to 10
belong to Job ID 2 (Low priority 1) which has not an end notification function. These
Jobs belong to the same Sequence ID 0 which is configured as interruptible.
Channels ID 11 to 13 belong to Job ID 0 (higher priority 3) which belongs to Se-
quence ID 1 which is configured as not interruptible.

Sequence Job Channel

Name Interruptible Name Priority

ID0 Yes
ID1 2 ID0…ID3

ID2 1 ID4…ID10

ID1 No ID0 3 ID11…ID13

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

92 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

User2 :Spi UserUser1 :Spi User «module»

Spi

Description:

Setup a Channel; initialize buffer pointers

and length synchronously. Parameters are

saved.

In this case, Jobs of those Channels are not

within the same Sequence.

Description:

Transmission processing (writing to SPI bus) is

done asynchronously according to the job

requested and the prioritization mechanism.

This case concerns many Sequences of many

Jobs so at the end of a Job transmission SPI

Handler/Driver schedule the next Job to

transmit.

The Job selected has the higher priority and

could belong to another Sequence only if the

sequence on going is configured as

interruptible.

At the end of all Sequences transmission SPI

Handler/Driver becomes idle.

Description:

Transmission is performing asynchronously.

The SPI Handler/Driver records the sequence

and returns.

Description:

When a Job transmission ends, if it is

configured, the “End Job Notification” of the

Job process is called.

Description:

When the Sequence transmission ends, if it is

configured, the “End Seq Notification” of the

Sequence process is called.

The received data, if there are, will be

directly stored in EB Channel receive buffer

and can be used such as.

loop Channel:=5...10

loop Channel:=12...13

opt If channel needed

opt If channel needed

Spi_SetupEB(Std_ReturnType, Spi_ChannelType, const

Spi_DataBufferType*, Spi_DataBufferType*, Spi_NumberOfDataType)

Spi_SetupEB()

Spi_SetupEB(Std_ReturnType, Spi_ChannelType, const

Spi_DataBufferType*, Spi_DataBufferType*, Spi_NumberOfDataType)

Spi_SetupEB()

Spi_SetupEB(Std_ReturnType, Spi_ChannelType, const

Spi_DataBufferType*, Spi_DataBufferType*, Spi_NumberOfDataType)

Spi_SetupEB()

Spi_SetupEB(Std_ReturnType, Spi_ChannelType, const

Spi_DataBufferType*, Spi_DataBufferType*, Spi_NumberOfDataType)

Spi_SetupEB()

Spi_AsyncTransmit(Std_ReturnType,

Spi_SequenceType)

Spi_AsyncTransmit()

Seq0.Job1 (part1)

Spi_AsyncTransmit(Std_ReturnType,

Spi_SequenceType)

Spi_AsyncTransmit()

Seq0.Job1 (part2)

<Spi_Job1EndNotification>()

<Spi_Job1EndNotification>()

Seq1.Job0()

<Spi_Seq1EndNotification>()

<Spi_Seq1EndNotification>()

Seq0.Job2()

<Spi_Seq0EndNotification>()

<Spi_Seq0EndNotification>()

9.5 Mixed Jobs Transmission

All kind of mixed Jobs transmission is possible according to the Channels configura-
tion and the priority requirement inside Sequences.

The user knows which Channels are in use. Then, according to the types of these
Channels, the appropriate methods shall be called.

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

93 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

9.6 LEVEL 0 SyncTransmit diagrams

9.6.1 Write/SyncTransmit/Read (IB): Many Channels, many Jobs and one
Sequence

The following sequence diagram shows an example of Spi_WriteIB /
Spi_SyncTransmit / Spi_ReadIB calls for a Sequence transmission of linked Jobs.
Write or Read steps could be skipped when Jobs are just reading or writing respec-
tively.

Example: Channels ID 0 to 3 belong to Job ID 1 (higher priority), Channels ID 4 to 10
belong to Job ID 2 (Lower priority). These Jobs belong to the same Sequence ID 0

Sequence Job Channel

Name Priority

ID0
ID1 High ID0…ID3

ID2 Low ID4…ID10

User1 :Spi User User2 :Spi User «module»

Spi

loop Channel:=5...10

loop Channel:=1...3

Write to a Channel is done

synchronously. You pass the

Channel ID and the buffer.

In this case, Channels are not

within the same Job.

The received data, if there are,

will be allocated in the

configured receive buffers, and

can be read using the read

function for IB Channels.

Transmission is performing

synchronously. The SPI

Handler/Driver transmits the

complete Sequence and it

returns. At the end of Sequence

transmission, the SPI

Handler/Driver becomes idle.

opt If channel needed

opt If channel needed

Spi_WriteIB(Std_ReturnType,

Spi_ChannelType, const Spi_DataBufferType*)

Spi_WriteIB()

Spi_WriteIB(Std_ReturnType,

Spi_ChannelType, const Spi_DataBufferType*)

Spi_WriteIB()

Spi_WriteIB(Std_ReturnType,

Spi_ChannelType, const Spi_DataBufferType*)

Spi_WriteIB()

Spi_WriteIB(Std_ReturnType,

Spi_ChannelType, const Spi_DataBufferType*)

Spi_WriteIB()

Spi_SyncTransmit(Std_ReturnType,

Spi_SequenceType)

Seq0.Job1()

Seq0.Job2()

Spi_SyncTransmit()

Spi_ReadIB(Std_ReturnType,

Spi_ChannelType, Spi_DataBufferType*)

Spi_ReadIB()

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

94 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

9.6.2 Setup/SyncTransmit (EB): Many Channels, many Jobs and one
Sequence

The following sequence diagram shows an example of Spi_SetupEB /

Spi_SyncTransmit calls for a Sequence transmission of linked Jobs. Write or

Read accesses are “User Dependant” and could be skipped when Job is just read-
ing or writing respectively.

Example: Channels ID 0 to 3 belong to Job ID 1 (higher priority), Channels ID 4 to 10
belong to Job ID 2 (Lower priority). These Jobs belong to the same Sequence ID 0

Sequence Job Channel

ID0
ID1 ID0…ID3

ID2 ID4…ID10

User2 :Spi UserUser1 :Spi User «module»

Spi

loop Channel:=5...10

loop Channel:=1...3

Setup a Channel; initialize

buffer pointers and length

synchronously. Parameters are

saved. In this case, Channels are

not within the same Job.

Description:

The received data, if there are,

will be directly stored in EB

Channel receive buffer and can

be used such as.

Transmission is performing

synchronously. The SPI

Handler/Driver transmits the

complete Sequence and it

returns. At the end of Sequence

transmission, the SPI

Handler/Driver becomes idle.

opt If channel needed

opt If channel needed

Spi_SetupEB(Std_ReturnType, Spi_ChannelType, const

Spi_DataBufferType*, Spi_DataBufferType*, Spi_NumberOfDataType)

Spi_SetupEB()

Spi_SetupEB(Std_ReturnType, Spi_ChannelType, const

Spi_DataBufferType*, Spi_DataBufferType*, Spi_NumberOfDataType)

Spi_SetupEB()

Spi_SetupEB(Std_ReturnType, Spi_ChannelType, const

Spi_DataBufferType*, Spi_DataBufferType*, Spi_NumberOfDataType)

Spi_SetupEB()

Spi_SetupEB(Std_ReturnType, Spi_ChannelType, const

Spi_DataBufferType*, Spi_DataBufferType*, Spi_NumberOfDataType)

Spi_SetupEB()

Spi_SyncTransmit(Std_ReturnType,

Spi_SequenceType)

Seq0.Job1()

Seq0.Job2()

Spi_SyncTransmit()

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

95 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

10 Configuration specification

10.1 How to read this chapter

For details refer to the chapter 10.1 “Introduction to configuration specification” in
SWS_BSWGeneral.

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed mean-
ings of the parameters are described in Chapter 7 and Chapter 8. Further hardware /
implementation specific parameters can be added if necessary.

10.2.1 Variants

[SWS_Spi_00056] ⌈VARIANT-PRE-COMPILE: Only parameters with "Pre-compile

time" configuration are allowed in this variant.⌋(SRS_BSW_00345,

SRS_BSW_00350, SRS_BSW_00396, SRS_BSW_00397)

[SWS_Spi_00076] ⌈VARIANT-LINK-TIME: Only parameters with "Pre-compile time"

and "Link time" are allowed in this variant.⌋(SRS_BSW_00396, SRS_BSW_00398,

SRS_BSW_00405, SRS_SPAL_12263)

[SWS_Spi_00148] ⌈VARIANT-POST-BUILD: Parameters with "Pre-compile time",

"Link time" and "Post-build time" are allowed in this variant.⌋(SRS_BSW_00404,

SRS_BSW_00405)

[SWS_Spi_00235] ⌈If not applicable, the SPI Handler/Driver module’s environment

shall pass a NULL pointer to the function Spi_Init.⌋()

10.2.2 Spi

SWS Item ECUC_Spi_00103 :

Module Name Spi

Module Description Configuration of the Spi (Serial Peripheral Interface) module.

Included Containers

Container Name Multiplicity Scope / Dependency

SpiDemEventParameterRefs 0..1

Container for the references to DemEventParameter elements
which shall be invoked using the API Dem_ReportErrorStatus
API in case the corresponding error occurs. The EventId is
taken from the referenced DemEventParameter's DemEventId
value. The standardized errors are provided in the container
and can be extended by vendor specific error references.

SpiDriver 1 Multiple Configuration Set Container

SpiGeneral 1 General configuration settings for SPI-Handler

SpiPublishedInformation 1 Container holding all SPI specific published information pa-

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

96 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

rameters

10.2.3 SpiDemEventParameterRefs

SWS Item ECUC_Spi_00240 :

Container Name SpiDemEventParameterRefs

Description

Container for the references to DemEventParameter elements which shall
be invoked using the API Dem_ReportErrorStatus API in case the corre-
sponding error occurs. The EventId is taken from the referenced DemEv-
entParameter's DemEventId value. The standardized errors are provided
in the container and can be extended by vendor specific error references.

Configuration Parameters

SWS Item ECUC_Spi_00241 :

Name

SPI_E_HARDWARE_ERROR

Description Reference to configured DEM event to report "Hardware failure". If the
reference is not configured the error shall not be reported.

Multiplicity 0..1

Type Symbolic name reference to [DemEventParameter]

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

No Included Containers

10.2.4 SpiGeneral
SWS Item ECUC_Spi_00225 :

Container Name SpiGeneral

Description General configuration settings for SPI-Handler

Configuration Parameters

SWS Item ECUC_Spi_00226 :

Name

SpiCancelApi {SPI_CANCEL_API}

Description Switches the Spi_Cancel function ON or OFF.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Spi_00227 :

Name

SpiChannelBuffersAllowed {SPI_CHANNEL_BUFFERS_ALLOWED}

Description Selects the SPI Handler/Driver Channel Buffers usage allowed and
delivered.
IB = 0; EB = 1; IB/EB = 2;

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 2

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

97 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

SWS Item ECUC_Spi_00228 :

Name

SpiDevErrorDetect {SPI_DEV_ERROR_DETECT}

Description Switches the Development Error Detection and Notification ON or OFF.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Spi_00229 :

Name

SpiHwStatusApi {SPI_HW_STATUS_API}

Description Switches the Spi_GetHWUnitStatus function ON or OFF.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Spi_00230 :

Name

SpiInterruptibleSeqAllowed {SPI_INTERRUPTIBLE_SEQ_ALLOWED}

Description Switches the Interruptible Sequences handling functionality ON or OFF.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local
dependency: This parameter depends on SPI_LEVEL_DELIVERED value.
It is only
used for SPI_LEVEL_DELIVERED configured to 1 or 2.

SWS Item ECUC_Spi_00231 :

Name

SpiLevelDelivered {SPI_LEVEL_DELIVERED}

Description Selects the SPI Handler/Driver level of scalable functionality that is
available and delivered.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 2

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Spi_00242 :

Name

SpiMainFunctionPeriod {SPI_MAIN_FUNCTION_PERIOD}

Description This parameter defines the cycle time of the function
Spi_MainFunction_Handling in seconds. The parameter is not used by the
driver it self, but it is used by upper layer.

Multiplicity 0..1

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

98 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

Type EcucFloatParamDef

Range 1E-7 .. 1

Default value 0.01

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Spi_00237 :

Name

SpiSupportConcurrentSyncTransmit
{SPI_SUPPORT_CONCURRENT_SYNC_TRANSMIT}

Description Specifies whether concurrent Spi_SyncTransmit() calls for different se-
quences shall be configurable.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Spi_00232 :

Name

SpiVersionInfoApi {SPI_VERSION_INFO_API}

Description Switches the Spi_GetVersionInfo function ON or OFF.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

No Included Containers

10.2.5 SpiSequence

SWS Item ECUC_Spi_00106 :

Container Name SpiSequence{SpiSequenceConfiguration}

Description All data needed to configure one SPI-sequence

Configuration Parameters

SWS Item ECUC_Spi_00222 :

Name

SpiInterruptibleSequence {SPI_INTERRUPTIBLE_SEQUENCE}

Description This parameter allows or not this Sequence to be suspended by another
one.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local
dependency: This SPI_INTERRUPTIBLE_SEQ_ALLOWED parameter as
to be
configured as ON.

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

99 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

SWS Item ECUC_Spi_00223 :

Name

SpiSeqEndNotification {SPI_SEQ_END_NOTIFICATION}

Description This parameter is a reference to a notification function.

Multiplicity 0..1

Type EcucFunctionNameDef

Default value --

maxLength --

minLength --

regularExpression --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_Spi_00224 :

Name

SpiSequenceId {SPI_SEQUENCE_NAME}

Description SPI Sequence ID, used as parameter in SPI API functions.

Multiplicity 1

Type EcucIntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 255

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Spi_00221 :

Name

SpiJobAssignment {SPI_JOB_LINKING}

Description A sequence references several jobs, which are executed during a commu-
nication sequence

Multiplicity 1..*

Type Reference to [SpiJob]

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

No Included Containers

10.2.6 SpiChannel

SWS Item ECUC_Spi_00104 :

Container Name SpiChannel{SpiChannelConfiguration}

Description All data needed to configure one SPI-channel

Configuration Parameters

SWS Item ECUC_Spi_00200 :

Name

SpiChannelId {SPI_CHANNEL_NAME}

Description SPI Channel ID, used as parameter in SPI API functions.

Multiplicity 1

Type EcucIntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 255

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

100 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Spi_00201 :

Name

SpiChannelType {SPI_CHANNEL_TYPE}

Description Buffer usage with EB/IB channel.

Multiplicity 1

Type EcucEnumerationParamDef

Range EB External Buffer

IB Internal Buffer

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local
dependency: SPI_CHANNEL_BUFFERS_ALLOWED

SWS Item ECUC_Spi_00202 :

Name

SpiDataWidth {SPI_DATA_WIDTH}

Description This parameter is the width of a transmitted data unit.

Multiplicity 1

Type EcucIntegerParamDef

Range 1 .. 32

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_Spi_00203 :

Name

SpiDefaultData {SPI_DEFAULT_DATA}

Description The default data to be transmitted when (for internal buffer or external
buffer) the pointer passed to Spi_WriteIB (for internal buffer) or to
Spi_SetupEB (for external buffer) is NULL.

Multiplicity 0..1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_Spi_00204 :

Name

SpiEbMaxLength {SPI_EB_MAX_LENGTH}

Description This parameter contains the maximum size (number of data elements) of
data buffers in case of EB Channels and only.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 65535

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local
dependency: The SPI_CHANNEL_TYPE parameter has to be configured
as EB for this Channel.

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

101 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

The SPI_CHANNEL_BUFFERS_ALLOWED parameter has to be config-
ured as 1 or 2.

SWS Item ECUC_Spi_00205 :

Name

SpiIbNBuffers {SPI_IB_N_BUFFERS}

Description This parameter contains the maximum number of data buffers in case of IB
Channels and only.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 65535

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local
dependency: The SPI_CHANNEL_TYPE parameter has to be configured
as IB for this Channel. The SPI_CHANNEL_BUFFERS_ALLOWED pa-
rameter has to be configured as 0 or 2.

SWS Item ECUC_Spi_00206 :

Name

SpiTransferStart {SPI_TRANSFER_START}

Description This parameter defines the first starting bit for transmission.

Multiplicity 1

Type EcucEnumerationParamDef

Range LSB Transmission starts with the Least Sig-
nificant Bit first

MSB Transmission starts with the Most Signif-
icant Bit first

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

No Included Containers

10.2.7 SpiChannelList

SWS Item ECUC_Spi_00233 :

Container Name SpiChannelList{SpiChannelList}

Description References to SPI channels and their order within the Job.

Configuration Parameters

SWS Item ECUC_Spi_00234 :

Name

SpiChannelIndex

Description This parameter specifies the order of Channels within the Job.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 255

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_Spi_00215 :

Name

SpiChannelAssignment {SPI_CHANNEL_LINKING}

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

102 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

Description A job reference to a SPI channel.

Multiplicity 1

Type Reference to [SpiChannel]

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

No Included Containers

10.2.8 SpiJob

SWS Item ECUC_Spi_00105 :

Container Name SpiJob{SpiJobConfiguration}

Description
All data needed to configure one SPI-Job, amongst others the connection
between the internal SPI unit and the special settings for an external de-
vice is done.

Configuration Parameters

SWS Item ECUC_Spi_00238 :

Name

SpiHwUnitSynchronous {SPI_HW_UNIT_SYNCHRONOUS}

Description If SpiHwUnitSynchronous is set to "SYNCHRONOUS", the SpiJob uses its con-
taining SpiDriver in a synchronous manner. If it is set to "ASYNCHRONOUS", it
uses the driver in an asynchronous way. If the parameter is not set, the
SpiChannel uses the driver also in an asynchronous way.

Multiplicity 0..1

Type EcucEnumerationParamDef

Range ASYNCHRONOUS --

SYNCHRONOUS --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_Spi_00218 :

Name

SpiJobEndNotification {SPI_JOB_END_NOTIFICATION}

Description This parameter is a reference to a notification function.

Multiplicity 0..1

Type EcucFunctionNameDef

Default value --

maxLength --

minLength --

regularExpression --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_Spi_00219 :

Name

SpiJobId {SPI_JOB_NAME}

Description SPI Job ID, used as parameter in SPI API functions.

Multiplicity 1

Type EcucIntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 65535

Default value --

ConfigurationClass Pre-compile time X All Variants

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

103 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Spi_00220 :

Name

SpiJobPriority {SPI_JOB_PRIORITY}

Description Priority set accordingly to SPI093: 0, lowest, 3, highest priority

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 3

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_Spi_00216 :

Name

SpiDeviceAssignment

Description Reference to the external device used by this job

Multiplicity 1

Type Reference to [SpiExternalDevice]

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

Included Containers

Container Name Multiplicity Scope / Dependency

SpiChannelList 1..* References to SPI channels and their order within the Job.

10.2.9 SpiExternalDevice

SWS Item ECUC_Spi_00207 :

Container Name SpiExternalDevice

Description
The communication settings of an external device. Closely linked to Spi-
Job.

Configuration Parameters

SWS Item ECUC_Spi_00208 :

Name

SpiBaudrate {SPI_BAUDRATE}

Description This parameter is the communication baudrate - This parameter allows
using a range of values, from the point of view of configuration tools, from
Hz up to MHz.

Multiplicity 1

Type EcucFloatParamDef

Range 0 .. INF

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_Spi_00209 :

Name

SpiCsIdentifier {SPI_CS_IDENTIFIER}

Description This parameter is the symbolic name to identify the Chip Select (CS) allo-

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

104 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

cated to this Job.

Multiplicity 1

Type EcucStringParamDef (Symbolic Name generated for this parameter)

Default value --

maxLength --

minLength --

regularExpression --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_Spi_00210 :

Name

SpiCsPolarity {SPI_CS_POLARITY}

Description This parameter defines the active polarity of Chip Select.

Multiplicity 1

Type EcucEnumerationParamDef

Range HIGH --

LOW --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_Spi_00239 :

Name

SpiCsSelection {SPI_CS_SELECTION}

Description When the Chip select handling is enabled (see SpiEnableCs), then this parame-
ter specifies if the chip select is handled automatically by Peripheral HW engine
or via general purpose IO by Spi driver.

Multiplicity 0..1

Type EcucEnumerationParamDef

Range CS_VIA_GPIO chip select handled via gpio by
Spi driver.

CS_VIA_PERIPHERAL_ENGINE chip select is handled automati-
cally by Peripheral HW engine.
(default)

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local
dependency: SpiEnableCs

SWS Item ECUC_Spi_00211 :

Name

SpiDataShiftEdge {SPI_DATA_SHIFT_EDGE}

Description This parameter defines the SPI data shift edge.

Multiplicity 1

Type EcucEnumerationParamDef

Range LEADING --

TRAILING --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_Spi_00212 :

Name

SpiEnableCs {SPI_ENABLE_CS}

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

105 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

Description This parameter enables or not the Chip Select handling functions. If this
parameter is enabled then parameter SpiCsSelection further details the
type of chip selection.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_Spi_00217 :

Name

SpiHwUnit {SPI_HW_UNIT}

Description This parameter is the symbolic name to identify the HW SPI Hardware
microcontroller peripheral allocated to this Job.

Multiplicity 1

Type EcucEnumerationParamDef

Range CSIB0 --

CSIB1 --

CSIB2 --

CSIB3 --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_Spi_00213 :

Name

SpiShiftClockIdleLevel {SPI_SHIFT_CLOCK_IDLE_LEVEL}

Description This parameter defines the SPI shift clock idle level.

Multiplicity 1

Type EcucEnumerationParamDef

Range HIGH --

LOW --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_Spi_00214 :

Name

SpiTimeClk2Cs {SPI_TIME_CLK2CS}

Description Timing between clock and chip select (in seconds) - This parameter allows
to use a range of values from 0 up to 0.0001 seconds.
The real configuration-value used in software BSW-SPI is calculated out of
this by the generator-tools

Multiplicity 1

Type EcucFloatParamDef

Range 0 .. 1E-4

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

No Included Containers

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

106 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

10.2.10 SpiDriver
SWS Item ECUC_Spi_00091 :

Container Name SpiDriver{SpiDriverConfiguration} [Multi Config Container]

Description Multiple Configuration Set Container

Configuration Parameters

SWS Item ECUC_Spi_00197 :

Name

SpiMaxChannel {SPI_MAX_CHANNEL}

Description This parameter contains the number of Channels configured. It will be
gathered by tools during the configuration stage.

Multiplicity 0..1

Type EcucIntegerParamDef

Range 0 .. 255

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_Spi_00198 :

Name

SpiMaxJob {SPI_MAX_JOB}

Description Total number of Jobs configured.

Multiplicity 0..1

Type EcucIntegerParamDef

Range 0 .. 65535

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_Spi_00199 :

Name

SpiMaxSequence {SPI_MAX_SEQUENCE}

Description Total number of Sequences configured.

Multiplicity 0..1

Type EcucIntegerParamDef

Range 0 .. 255

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

Included Containers

Container Name Multiplicity Scope / Dependency

SpiChannel 1..* All data needed to configure one SPI-channel

SpiExternalDevice 1..*
The communication settings of an external device. Closely
linked to SpiJob.

SpiJob 1..*
All data needed to configure one SPI-Job, amongst others the
connection between the internal SPI unit and the special set-
tings for an external device is done.

SpiSequence 1..* All data needed to configure one SPI-sequence

10.2.11 SpiPublishedInformation
SWS Item ECUC_Spi_00235 :

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

107 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

Container Name SpiPublishedInformation

Description Container holding all SPI specific published information parameters

Configuration Parameters

SWS Item ECUC_Spi_00236 :

Name

SpiMaxHwUnit

Description Number of different SPI hardware microcontroller peripherals
(units/busses) available and handled by this SPI Handler/Driver module.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 ..
18446744073709551615

Default value --

ConfigurationClass Published Information X All Variants

Scope / Dependency scope: local

No Included Containers

10.3 Published information

For details refer to the chapter 10.3 “Published Information” in SWS_BSWGeneral

10.4 Configuration concept

There is a relationship between the SPI Handler/Driver module and the modules that
use it. This relationship is resolved during the configuration stage and the result of it
influences the proper API and behaviour between those modules.

The user needs to provide to the SPI Handler/Driver part of the configuration to adapt
it to its necessities. The SPI Handler/Driver shall take this configuration and provide
the needed tools to the user.

The picture shows the information flow during the configuration of the SPI Han-
dler/Driver. It is shown only for one user, using an External EEPROM Driver as ex-
ample, but this situation is common to all users of the SPI Handler/Driver. To high-
light the situation where more users are affected, several overlapping documents are
drawn.

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

108 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

SPI Handler/Driver full

configuration

User of SPI Handler/Driver (e.g: External EEPROM Driver)

Eep.c Eep.h Eep_Cfg.h

Eep_Cfg.c

Configuration

Tool
Part of SPI configuration

XML
Hardware ECU Resources

containing all hardware

configuration

(e.g: Number of SPI

buses, list of all CS)

XML
User driver XML sheet

(e.g: EEPROM External

Driver)

Configures

Imported

Configures

Imported

Includes Includes

Spi_Cfg.c

Spi_Cfg.h

Publishes

Generates

Includes

Includes

Basic software

responsable

EEPROM External

Driver responsable

Includes

The steps on the diagrams are:

1. The user (External EEPROM Driver) of SPI Handler/Driver edits a XML con-
figuration file. This XML configuration file is the same used by the user to gen-
erate its own configuration.

2. For each ECU, a XML HW configuration document contains information which
should be used in order to configure some parameters.

3. The “SPI generation tool”. The Generation tool (here is reflected only the part
that generates code to SPI usage) shall generate the handles to export and
the instance of the configuration sets. In this step the software integrator will
provide missing information.

4. SPI instance configuration file. As a result of the generation all the symbolic
handlers needed by the user are included in the configuration header file of
the SPI Handler/Driver.

5. User gets the symbolic name of handlers. User imports the handle generated
to make use of them as requested by its XML configuration file.

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

109 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

11 Not applicable requirements

[SWS_Spi_00999] ⌈ These requirements are not applicable to this specification. ⌋

(SRS_BSW_00301, SRS_BSW_00302, SRS_BSW_00306, SRS_BSW_00307,
SRS_BSW_00308, SRS_BSW_00309, SRS_BSW_00312, BSW00324,
SRS_BSW_00325, SRS_BSW_00326, SRS_BSW_00328, SRS_BSW_00330,
SRS_BSW_00331, SRS_BSW_00334, SRS_BSW_00341, SRS_BSW_00342,
SRS_BSW_00343, SRS_BSW_00347, SRS_BSW_00355, SRS_BSW_00375,
SRS_BSW_00399, SRS_BSW_00400, SRS_BSW_00401, SRS_BSW_00413,
SRS_BSW_00416, SRS_BSW_00417, BSW00420, SRS_BSW_00422,
SRS_BSW_00423, SRS_BSW_00424, SRS_BSW_00426, SRS_BSW_00427,
SRS_BSW_00428, SRS_BSW_00429, BSW00431, SRS_BSW_00432,
SRS_BSW_00433, BSW00434, SRS_BSW_00005, SRS_BSW_00006,
SRS_BSW_00009, SRS_BSW_00010, SRS_BSW_00161, SRS_BSW_00164,
SRS_BSW_00168, SRS_BSW_00170, SRS_BSW_00172, SRS_SPAL_12267,
SRS_SPAL_12068, SRS_SPAL_12069, SRS_SPAL_12063, SRS_SPAL_12129,
SRS_SPAL_12067, SRS_SPAL_12077, SRS_SPAL_12078, SRS_SPAL_12092,
SRS_SPAL_12265)

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

110 of 112 Document ID 038: AUTOSAR_SWS_SPIHandlerDriver

- AUTOSAR confidential -

12 Appendix

The table shown on the next page is just an example to help future users (and/or de-
velopers) that have to configure software modules to use the SPI Handler/Driver.

This table is independent of the Spi_ConfigType structure but contains all ele-

ments and aggregations like Channels, Jobs and Sequences.

EEP_WRITE_SEQ EEP_READ_SEQ

EEP_CMD_JOB EEP_DATA_JOB

EEP_CMD_CH EEP_ADR_CH EEP_DATA_CH

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

111 of 112 AUTOSAR_SWS_SPIHandler_Driver

- AUTOSAR confidential -

External EEPROM Write/Read Configuration for SPI Handler/Driver

Sequences Jobs Channels

Symbolic Name ID Attributes Symbolic Name ID Attributes Symbolic Name ID Attributes

EEP_WRITE_SEQ 0

2 (Number of Jobs),
{EEP_CMD_JOB,
EEP_DATA_JOB} (List of
Jobs),
Not Interruptible,
EEP_vidEndOfWriteSeq

EEP_CMD_JOB 0

SPI_BUS_0,
CS_EEPROM,
CS_ON,
CS_LOW,
CLK_2MHz,
1 (time in µs),
Polarity 180,
Falling Edge,
3,
EEP_vidEndOfStartWrJob,
1 (Number of Channels)
{EEP_CMD_CH} (List of Chan-
nels)

EEP_CMD_CH 0

EB,
8 bits,
1 data to TxD,
MSB First,
Default value is
0x00

EEP_READ_SEQ 1

1 (Number of Jobs),
{EEP_DATA_JOB} (List of
Jobs),
Not Interruptible,
EEP_vidEndOfReadSeq

EEP_DATA_JOB 1

SPI_BUS_0,
CS_EEPROM,
CS_ON,
CS_LOW,
CLK_2MHz,
1 (time in µs),
Polarity 180,
Falling Edge,
2,
NULL,
3 (Number of Channels)
{EEP_CMD_CH, EEP_ADR_CH,
EEP_DATA_CH} (List of Chan-
nels)

EEP_ADR_CH 1

EB,
16 bits,
1 data to TxD,
MSB First,
Default value is
0x0000

EEP_DATA_CH 2

EB,
8 bits,
32 data to TxD,
MSB First,
Default value is
0x00

Specification of SPI Handler/Driver
 V4.3.0

R4.1 Rev 3

112 of 112 AUTOSAR_SWS_SPIHandler_Driver

- AUTOSAR confidential -

	Table of Contents
	1 Introduction and functional overview
	2 Acronyms and abbreviations
	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms
	3.3 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 File structure
	5.1.1 Header file structure

	6 Requirements traceability
	7 Functional specification
	7.1 Overall view of functionalities and features
	7.2 General behaviour
	7.2.1 Common configurable feature: Allowed Channel Buffers
	7.2.1.1 Behaviour of IB channels
	7.2.1.2 Behaviour of EB channels
	7.2.1.3 Buffering channel usage

	7.2.2 LEVEL 0, Simple Synchronous behaviour
	7.2.3 LEVEL 1, Basic Asynchronous behavior
	7.2.4 Asynchronous configurable feature: Interruptible Sequences
	7.2.4.1 Behavior of Non-Interruptible Sequences
	7.2.4.2 Behavior of Mixed Sequences

	7.2.5 LEVEL 2, Enhanced behaviour

	7.3 Scheduling Advices
	7.4 Error classification
	7.4.1 Development Errors
	7.4.2 Production Errors
	7.4.3 Extended Production Errors

	7.5 Error detection
	7.5.1 API parameter checking
	7.5.2 SPI state checking

	7.6 Debugging

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 Spi_ConfigType
	8.2.2 Spi_StatusType
	8.2.3 Spi_JobResultType
	8.2.4 Spi_SeqResultType
	8.2.5 Spi_DataBufferType
	8.2.6 Spi_NumberOfDataType
	8.2.7 Spi_ChannelType
	8.2.8 Spi_JobType
	8.2.9 Spi_SequenceType
	8.2.10 Spi_HWUnitType
	8.2.11 Spi_AsyncModeType

	8.3 Function definitions
	8.3.1 Spi_Init
	8.3.2 Spi_DeInit
	8.3.3 Spi_WriteIB
	8.3.4 Spi_AsyncTransmit
	8.3.5 Spi_ReadIB
	8.3.6 Spi_SetupEB
	8.3.7 Spi_GetStatus
	8.3.8 Spi_GetJobResult
	8.3.9 Spi_GetSequenceResult
	8.3.10 Spi_GetVersionInfo
	8.3.11 Spi_SyncTransmit
	8.3.12 Spi_GetHWUnitStatus
	8.3.13 Spi_Cancel
	8.3.14 Spi_SetAsyncMode

	8.4 Callback notifications
	8.5 Scheduled functions
	8.5.1 Spi_MainFunction_Handling

	8.6 Expected Interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.3 Configurable interfaces
	8.6.3.1 Spi_JobEndNotification
	8.6.3.2 Spi_SeqEndNotification

	9 Sequence diagrams
	9.1 Initialization
	9.2 Modes transitions
	9.3 Write/AsyncTransmit/Read (IB)
	9.3.1 One Channel, one Job then one Sequence
	9.3.2 Many Channels, one Job then one Sequence
	9.3.3 Many Channels, many Jobs and one Sequence
	9.3.4 Many Channels, many Jobs and many Sequences

	9.4 Setup/AsyncTransmit (EB)
	9.4.1 Variable Number of Data / Constant Number of Data
	9.4.2 One Channel, one Job then one Sequence
	9.4.3 Many Channels, one Job then one Sequence
	9.4.4 Many Channels, many Jobs and one Sequence
	9.4.5 Many Channels, many Jobs and many Sequences

	9.5 Mixed Jobs Transmission
	9.6 LEVEL 0 SyncTransmit diagrams
	9.6.1 Write/SyncTransmit/Read (IB): Many Channels, many Jobs and one Sequence
	9.6.2 Setup/SyncTransmit (EB): Many Channels, many Jobs and one Sequence

	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.2.1 Variants
	10.2.2 Spi
	10.2.3 SpiDemEventParameterRefs
	10.2.4 SpiGeneral
	10.2.5 SpiSequence
	10.2.6 SpiChannel
	10.2.7 SpiChannelList
	10.2.8 SpiJob
	10.2.9 SpiExternalDevice
	10.2.10 SpiDriver
	10.2.11 SpiPublishedInformation

	10.3 Published information
	10.4 Configuration concept

	11 Not applicable requirements
	12 Appendix

