
Specification of RTE
V3.5.0

R4.1 Rev 3

Document Title Specification of RTE
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 084

Document Classification Standard

Document Version 3.5.0

Document Status Final

Part of Release 4.1

Revision 3

Document Change History
Date Version Changed by Change Description

31.03.2014 3.5.0 AUTOSAR
Release
Management

• Various fixes and clarifications

29.10.2013 3.4.0 AUTOSAR
Release
Management

• Various fixes and clarifications

05.03.2013 3.3.0 AUTOSAR
Administra-
tion

• Adapted to new version of meta
model
• Bypass support added
• Support for parameter serializa-

tion of client-server communication
added
• Support for inter-partition communi-

cation of BSW modules added
• General consolidation and bug

fixes

1 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

26.10.2011 3.2.0 AUTOSAR
Administra-
tion

• Adapted to new version of meta
model
• Support for mixed compu meth-

ods with categories SCALE_
LINEAR_AND_TEXTTABLE and
SCALE_RATIONAL_AND_
TEXTTABLE added
• Support for compatibility of partial

record types added
• Consolidation of signal invalidation,

data conversion, and out-of-range
handling
• General consolidation and bug

fixes

29.10.2010 3.1.0 AUTOSAR
Administra-
tion

• Adapted to new version of meta
model
• Backward compatibility to implicit

communication behavior of AU-
TOSAR 2.1/3.0/3.1 added
• Support of inter-runnable variables

extended to composite data types
• Clarification which API calls shall

be implemented as macro ac-
cesses to the component data
structure in compatibility mode (see
[SWS_Rte_01156])
• General consolidation and bug

fixes

18.12.2009 3.0.0 AUTOSAR
Administra-
tion

• Adapted to new version of meta
model
• RTE and Basic Software Scheduler

merged
• Support of multi core architectures

added
• Re-scaling at ports added
• API enhancements added

2 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

04.02.2009 2.1.0 AUTOSAR
Administra-
tion

• updated VFB-Tracing: changes
[SWS_Rte_01327],[SWS_Rte_01328]
• unconnected R-Ports

are supported: changed
[SWS_Rte_01329],
[SWS_Rte_03019]; added
[SWS_Rte_01330],
[SWS_Rte_01331],
[SWS_Rte_01333],
[SWS_Rte_01334], rte_sws_1336,
rte_sws_1337, [SWS_Rte_01346],
[SWS_Rte_02621],
[SWS_Rte_02638],
[SWS_Rte_02639],
[SWS_Rte_02640],
[SWS_Rte_03785],
[SWS_Rte_05099],
rte_sws_5100, [SWS_Rte_05101],
[SWS_Rte_05102]
• incompatible function declarations:

changed [SWS_Rte_01018],
[SWS_Rte_01019],
[SWS_Rte_01020]; added
[SWS_Rte_05107],
[SWS_Rte_05108],
[SWS_Rte_05109]; removed
rte_sws_6030.
• Insufficient RTE server map-

ping requirement: changed
[SWS_Rte_02204].

15.02.2008 2.0.1 AUTOSAR
Administra-
tion

Layout adaptations

20.12.2007 2.0.0 AUTOSAR
Administra-
tion

• Adapted to new version of meta
model
• "RTE ECU Configuration" added
• Calibration and measurement re-

vised
• Document meta information ex-

tended
• Small layout adaptations made

3 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

31.01.2007 1.1.1 AUTOSAR
Administra-
tion

• "Advice for users" revised
• "Revision Information" added

01.12.2006 1.1.0 AUTOSAR
Administra-
tion

Updated for AUTOSAR Release 2.1.
• Adapted to new version of meta

model
• New feature ’debouncing of runn-

able activation’
• New feature ’runnable activation

offset’
• ’Measurement and Calibration’

added
• Semantics of implicit communica-

tion enhanced
• Legal disclaimer revised

18.07.2006 1.0.1 AUTOSAR
Administra-
tion

Second release. Additional features in-
tegrated, adapted to updated version of
meta-model.

05.05.2006 1.0.0 AUTOSAR
Administra-
tion

Initial release

4 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Disclaimer

This specification and the material contained in it, as released by AUTOSAR, is for the
purpose of information only. AUTOSAR and the companies that have contributed to it
shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types of
Intellectual Property Rights. The commercial exploitation of the material contained in
this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only.
For any other purpose, no part of the specification may be utilized or reproduced, in
any form or by any means, without permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice to users of AUTOSAR Specification Documents

AUTOSAR specifications may contain exemplary items (exemplary reference models,
"use cases", and/or references to exemplary technical solutions, devices, processes or
software).

Any such exemplary items are contained in the specifications for illustration purposes
only, and they themselves are not part of the AUTOSAR Standard. Neither their pres-
ence in such specifications, nor any later documentation of AUTOSAR conformance of
products actually implementing such exemplary items, imply that intellectual property
rights covering such exemplary items are licensed under the same rules as applicable
to the AUTOSAR Standard.

5 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Table of Contents

1 Introduction 21

1.1 Scope . 21
1.2 Dependency to other AUTOSAR specifications 22
1.3 Acronyms and Abbreviations . 23
1.4 Technical Terms . 23
1.5 Document Conventions . 31
1.6 Requirements Tracing . 31

2 RTE Overview 61

2.1 The RTE in the Context of AUTOSAR 61
2.2 AUTOSAR Concepts . 61

2.2.1 AUTOSAR Software-components 61
2.2.2 Basic Software Modules . 62
2.2.3 Communication . 63

2.2.3.1 Communication Paradigms 63
2.2.3.2 Communication Modes 63
2.2.3.3 Static Communication 64
2.2.3.4 Multiplicity . 64

2.2.4 Concurrency . 65
2.3 The RTE Generator . 65
2.4 Design Decisions . 66

3 RTE Generation Process 67

3.1 Contract Phase . 72
3.1.1 RTE Contract Phase . 72
3.1.2 Basic Software Scheduler Contract Phase 73

3.2 PreBuild Data Set Contract Phase . 73
3.3 Edit ECU Configuration of the RTE . 74
3.4 Generation Phase . 75

3.4.1 Basic Software Scheduler Generation Phase 75
3.4.2 RTE Generation Phase . 76
3.4.3 Basic Software Module Description generation 77

3.4.3.1 Bsw Module Description 78
3.4.3.2 Bsw Internal Behavior 79
3.4.3.3 Bsw Implementation . 80

3.5 PreBuild Data Set Generation Phase . 81
3.6 PostBuild Data Set Generation Phase 81
3.7 RTE Configuration interaction with other BSW Modules 82

4 RTE Functional Specification 84

4.1 Architectural concepts . 84
4.1.1 Scope . 84
4.1.2 RTE and Data Types . 85
4.1.3 RTE and AUTOSAR Software-Components 86

6 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4.1.3.1 Hierarchical Structure of Software-Components 87
4.1.3.2 Ports, Interfaces and Connections 88
4.1.3.3 Internal Behavior . 89
4.1.3.4 Implementation . 94

4.1.4 Instantiation . 95
4.1.4.1 Scope and background 95
4.1.4.2 Concepts of instantiation 96
4.1.4.3 Single instantiation . 96
4.1.4.4 Multiple instantiation . 97

4.1.5 RTE and AUTOSAR Services . 98
4.1.6 RTE and ECU Abstraction . 99
4.1.7 RTE and Complex Device Driver 99
4.1.8 Basic Software Scheduler and Basic Software Modules 100

4.1.8.1 Description of a Basic Software Module 100
4.1.8.2 Basic Software Interfaces 100
4.1.8.3 Basic Software Internal Behavior 100
4.1.8.4 Basic Software Implementation 101
4.1.8.5 Multiple Instances of Basic Software Modules 101
4.1.8.6 AUTOSAR Services / ECU Abstraction / Complex De-

vice Drivers . 101
4.2 RTE and Basic Software Scheduler Implementation Aspects 102

4.2.1 Scope . 102
4.2.2 OS . 104

4.2.2.1 OS Objects . 105
4.2.2.2 Basic Software Schedulable Entities 107
4.2.2.3 Runnable Entities . 107
4.2.2.4 RTE Events . 108
4.2.2.5 BswEvents . 109
4.2.2.6 Mapping of Runnable Entities and Basic Software

Schedulable Entities to tasks (informative) 111
4.2.2.7 Monitoring of runnable execution time 118
4.2.2.8 TimingEvent activated runnables 123
4.2.2.9 Synchronization of TimingEvent activated runnables . . 123
4.2.2.10 BackgroundEvent activated Runnable Entities and Ba-

sicSoftware Scheduleable Entities 124
4.2.2.11 InitEvent activated Runnable Entities 125

4.2.3 Activation and Start of ExecutableEntitys 126
4.2.3.1 Activation by direct function call 134
4.2.3.2 Activation Offset for RunnableEntitys and

BswSchedulableEntitys 135
4.2.3.3 Provide activating RTE event 138

4.2.4 Interrupt decoupling and notifications 139
4.2.4.1 Basic notification principles 139
4.2.4.2 Interrupts . 140
4.2.4.3 Decoupling interrupts on RTE level 140
4.2.4.4 RTE and interrupt categories 141

7 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4.2.4.5 RTE and Basic Software Scheduler and BswExecu-
tionContext . 142

4.2.5 Data Consistency . 143
4.2.5.1 General . 143
4.2.5.2 Communication Patterns 144
4.2.5.3 Concepts . 145
4.2.5.4 Mechanisms to guarantee data consistency 146
4.2.5.5 Exclusive Areas . 148
4.2.5.6 InterRunnableVariables 151

4.2.6 Multiple trigger of Runnable Entities and Basic Software Schedu-
lable Entities . 154

4.2.7 Implementation of Parameter and Data elements 156
4.2.7.1 General . 156
4.2.7.2 Compatibility rules . 156
4.2.7.3 Implementation of an interface element 157
4.2.7.4 Initialization of VariableDataPrototypes 157
4.2.7.5 Initial value calculation 158

4.2.8 Measurement and Calibration . 160
4.2.8.1 General . 160
4.2.8.2 Measurement . 162
4.2.8.3 Calibration . 168
4.2.8.4 Generation of McSupportData 183

4.2.9 Access to NVRAM data . 199
4.2.9.1 General . 199
4.2.9.2 Usage of the NvBlockSwComponentType 199
4.2.9.3 Interface of the NvBlockSwComponentType 205
4.2.9.4 Data Consistency . 209

4.3 Communication Paradigms . 209
4.3.1 Sender-Receiver . 210

4.3.1.1 Introduction . 210
4.3.1.2 Receive Modes . 210
4.3.1.3 Multiple Data Elements 213
4.3.1.4 Multiple Receivers and Senders 214
4.3.1.5 Implicit and Explicit Data Reception and Transmission . 215
4.3.1.6 Transmission Acknowledgement 228
4.3.1.7 Communication Time-out 230
4.3.1.8 Data Element Invalidation 231
4.3.1.9 Filters . 235
4.3.1.10 Buffering . 236
4.3.1.11 Operation . 238
4.3.1.12 “Never received status” for Data Element 245
4.3.1.13 “Update flag” for Data Element 246
4.3.1.14 Dynamic data type . 246
4.3.1.15 Inter-ECU communication through TP 247
4.3.1.16 Inter-ECU communication of arrays of bytes 248
4.3.1.17 Handling of acknowledgment events 249

8 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4.3.2 Client-Server . 251
4.3.2.1 Introduction . 251
4.3.2.2 Multiplicity . 253
4.3.2.3 Communication Time-out 255
4.3.2.4 Port-Defined argument values 257
4.3.2.5 Buffering . 258
4.3.2.6 Inter-ECU and Inter-Partition Response to Request

Mapping . 258
4.3.2.7 Parameter Serialization 261
4.3.2.8 Operation . 262

4.3.3 SWC internal communication . 266
4.3.3.1 Inter Runnable Variables 266

4.3.4 Inter-Partition communication . 268
4.3.4.1 Inter partition data communication using IOC 269
4.3.4.2 Inter partition data communication using Basic Soft-

ware Scheduler . 270
4.3.4.3 Accessing COM from slave core in multicore configura-

tion . 270
4.3.4.4 Signaling and control flow support for inter partition

communication . 275
4.3.4.5 Trusted Functions . 275
4.3.4.6 Memory Protection and Pointer Type Parameters in

RTE API . 276
4.3.5 PortInterface Element Mapping and Data Conversion 277

4.3.5.1 PortInterface Element Mapping 277
4.3.5.2 Network Representation 280
4.3.5.3 Data Conversion . 281
4.3.5.4 Range Checks during Runtime 284

4.4 Modes . 291
4.4.1 Mode User . 292
4.4.2 Mode Manager . 294
4.4.3 Refinement of the semantics of ModeDeclarations and Mode-

DeclarationGroups . 295
4.4.4 Order of actions taken by the RTE / Basic Software Scheduler

upon interception of a mode switch notification 296
4.4.5 Assignment of mode machine instances to RTE and Basic Soft-

ware Scheduler . 304
4.4.6 Initialization of mode machine instances 305
4.4.7 Notification of mode switches . 308
4.4.8 Mode switch acknowledgment 311
4.4.9 Mode switch error handling . 312

4.4.9.1 Mode User gets terminated 312
4.4.9.2 Mode Manager gets terminated 315

4.5 External and Internal Trigger . 317
4.5.1 External Trigger Event Communication 317

4.5.1.1 Introduction . 317

9 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4.5.1.2 Trigger Sink . 319
4.5.1.3 Trigger Source . 320
4.5.1.4 Multiplicity . 321
4.5.1.5 Synchronized Trigger 322

4.5.2 Inter Runnable Triggering . 323
4.5.2.1 Multiplicity . 323

4.5.3 Inter Basic Software Module Entity Triggering 324
4.5.4 Intra ECU Trigger Communication 325
4.5.5 Queuing of Triggers . 325
4.5.6 Activation of triggered ExecutableEntities 327

4.6 Initialization and Finalization . 329
4.6.1 Initialization and Finalization of the RTE 329

4.6.1.1 Initialization of the Basic Software Scheduler 329
4.6.1.2 Initialization of the RTE 330
4.6.1.3 Stop and restart of the RTE 331
4.6.1.4 Finalization of the RTE 332
4.6.1.5 Finalization of the Basic Software Scheduler 332

4.6.2 Initialization and Finalization of AUTOSAR Software-Components 332
4.7 Variant Handling Support . 334

4.7.1 Overview . 334
4.7.2 Choosing a Variant and Binding Variability 335

4.7.2.1 General impact of Binding Times on RTE generation . . 335
4.7.2.2 Choosing a particular variant 336
4.7.2.3 SystemDesignTime . 337
4.7.2.4 CodeGenerationTime 338
4.7.2.5 PreCompileTime . 338
4.7.2.6 LinkTime . 339
4.7.2.7 PostBuild . 339

4.7.3 Variability affecting the RTE generation 340
4.7.3.1 Software Composition 340
4.7.3.2 Atomic Software Component and its Internal Behavior . 342
4.7.3.3 NvBlockComponent and its Internal Behavior 345
4.7.3.4 Parameter Component 346
4.7.3.5 Data Type . 347
4.7.3.6 Constants . 347
4.7.3.7 Basic Software Modules and its Internal Behavior . . . 348

4.7.4 Variability affecting the Basic Software Scheduler generation . . 348
4.7.4.1 Basic Software Scheduler API which is subject to vari-

ability . 348
4.7.4.2 Basic Software Entities 350
4.7.4.3 API behavior . 350

4.7.5 Variability affecting SWC implementation 350
4.8 Development errors . 352

4.8.1 DET Report Identifiers . 352
4.8.2 DET Error Identifiers . 353
4.8.3 DET Error Classification . 354

10 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4.9 Bypass Support . 357
4.9.1 Bypass description . 357
4.9.2 Component wrapper method . 357
4.9.3 Direct buffer access method . 359

5 RTE Reference 360

5.1 Scope . 360
5.1.1 Programming Languages . 360
5.1.2 Generator Principles . 361

5.1.2.1 Operating Modes . 361
5.1.2.2 Optimization Modes . 363
5.1.2.3 Build support . 363
5.1.2.4 Debugging support . 365
5.1.2.5 Software Component Namespace 365

5.1.3 Generator external configuration switches 366
5.2 API Principles . 367

5.2.1 RTE Namespace . 368
5.2.2 Direct API . 368
5.2.3 Indirect API . 369

5.2.3.1 Accessing Port Handles 369
5.2.4 VariableAccess in the dataReadAccess and

dataWriteAccess roles . 370
5.2.5 Per Instance Memory . 371
5.2.6 API Mapping . 375

5.2.6.1 “RTE Contract” Phase 376
5.2.6.2 “RTE Generation” Phase 378
5.2.6.3 Function Elision . 378
5.2.6.4 API Naming Conventions 379
5.2.6.5 API Parameters . 380
5.2.6.6 Return Values . 382
5.2.6.7 Return References . 384
5.2.6.8 Error Handling . 386
5.2.6.9 Success Feedback . 386

5.2.7 Unconnected Ports . 387
5.2.7.1 Data Elements . 387
5.2.7.2 Mode Switch Ports . 389
5.2.7.3 Client-Server . 390

5.2.8 Non-identical port interfaces . 390
5.3 RTE Modules . 391

5.3.1 RTE Header File . 392
5.3.2 Lifecycle Header File . 392
5.3.3 Application Header File . 392

5.3.3.1 File Name . 393
5.3.3.2 Scope . 393
5.3.3.3 File Contents . 395

5.3.4 RTE Types Header File . 398

11 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

5.3.4.1 File Contents . 398
5.3.4.2 Classification of Implementation Data Types 399
5.3.4.3 Primitive Implementation Data Type 400
5.3.4.4 Array Implementation Data Type 401
5.3.4.5 Structure Implementation Data Type and Union Imple-

mentation Data Type 404
5.3.4.6 Union Implementation Data Type 405
5.3.4.7 Implementation Data Type redefinition 410
5.3.4.8 Pointer Implementation Data Type 410
5.3.4.9 ImplementationDataTypes with Variation-

Points . 412
5.3.4.10 Naming of data types 412
5.3.4.11 C/C++ . 414

5.3.5 RTE Data Handle Types Header File 414
5.3.5.1 File Name . 414
5.3.5.2 File Contents . 414

5.3.6 Application Types Header File . 415
5.3.6.1 File Name . 415
5.3.6.2 Scope . 416
5.3.6.3 File Contents . 416
5.3.6.4 RTE Modes . 417
5.3.6.5 Enumeration Data Types 417
5.3.6.6 Range Data Types . 417
5.3.6.7 Implementation Data Type symbols 417

5.3.7 VFB Tracing Header File . 417
5.3.7.1 C/C++ . 417
5.3.7.2 File Contents . 418

5.3.8 RTE Configuration Header File 419
5.3.8.1 C/C++ . 419
5.3.8.2 File Contents . 419

5.3.9 Generated RTE . 427
5.3.9.1 Header File Usage . 427
5.3.9.2 C/C++ . 428
5.3.9.3 File Contents . 429
5.3.9.4 Reentrancy . 431

5.3.10 RTE Post Build Variant Sets . 431
5.3.10.1 Example 1: File Contents Rte_PBCfg.h 432
5.3.10.2 Example 2: File Contents Rte_PBCfg.h 432
5.3.10.3 Examples: File Contents Rte_PBCfg.c 433

5.4 RTE Data Structures . 434
5.4.1 Instance Handle . 435
5.4.2 Component Data Structure . 436

5.4.2.1 Data Handles Section 437
5.4.2.2 Per-instance Memory Handles Section 441
5.4.2.3 Inter Runnable Variable Handles Section 442
5.4.2.4 Exclusive-area API Section 443

12 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

5.4.2.5 Port API Section . 444
5.4.2.6 Calibration Parameter Handles Section 449
5.4.2.7 Inter Runnable Variable API Section 449
5.4.2.8 Inter Runnable Triggering API Section 451
5.4.2.9 Instance Id Section . 451
5.4.2.10 Vendor Specific Section 452

5.5 API Data Types . 452
5.5.1 Std_ReturnType . 452

5.5.1.1 Infrastructure Errors . 454
5.5.1.2 Application Errors . 454
5.5.1.3 Predefined Error Codes 455

5.5.2 Rte_Instance . 458
5.5.3 RTE Modes . 459
5.5.4 Enumeration Data Types . 461
5.5.5 Range Data Types . 464
5.5.6 Data Types with bitfield conversions 465

5.6 API Reference . 467
5.6.1 Rte_Ports . 467
5.6.2 Rte_NPorts . 468
5.6.3 Rte_Port . 468
5.6.4 Rte_Write . 469
5.6.5 Rte_Send . 471
5.6.6 Rte_Switch . 474
5.6.7 Rte_Invalidate . 475
5.6.8 Rte_Feedback . 476
5.6.9 Rte_SwitchAck . 480
5.6.10 Rte_Read . 483
5.6.11 Rte_DRead . 484
5.6.12 Rte_Receive . 486
5.6.13 Rte_Call . 488
5.6.14 Rte_Result . 491
5.6.15 Rte_Pim . 494
5.6.16 Rte_CData . 495
5.6.17 Rte_Prm . 496
5.6.18 Rte_IRead . 497
5.6.19 Rte_IWrite . 499
5.6.20 Rte_IWriteRef . 500
5.6.21 Rte_IInvalidate . 501
5.6.22 Rte_IStatus . 502
5.6.23 Rte_IrvIRead . 503
5.6.24 Rte_IrvIWrite . 504
5.6.25 Rte_IrvRead . 505
5.6.26 Rte_IrvWrite . 507
5.6.27 Rte_Enter . 508
5.6.28 Rte_Exit . 509
5.6.29 Rte_Mode . 510

13 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

5.6.30 Enhanced Rte_Mode . 512
5.6.31 Rte_Trigger . 516
5.6.32 Rte_IrTrigger . 517
5.6.33 Rte_IFeedback . 518
5.6.34 Rte_IsUpdated . 520
5.6.35 Rte_PBCon . 521

5.7 Runnable Entity Reference . 522
5.7.1 Signature . 523
5.7.2 Entry Point Prototype . 523
5.7.3 Role Parameters . 526
5.7.4 Return Value . 526
5.7.5 Triggering Events . 527

5.7.5.1 TimingEvent . 527
5.7.5.2 BackgroundEvent . 527
5.7.5.3 SwcModeSwitchEvent 528
5.7.5.4 AsynchronousServerCallReturnsEvent 528
5.7.5.5 DataReceiveErrorEvent 528
5.7.5.6 OperationInvokedEvent 528
5.7.5.7 DataReceivedEvent . 530
5.7.5.8 DataSendCompletedEvent 531
5.7.5.9 ModeSwitchedAckEvent 531
5.7.5.10 SwcModeManagerErrorEvent 531
5.7.5.11 ExternalTriggerOccurredEvent 532
5.7.5.12 InternalTriggerOccurredEvent 532
5.7.5.13 DataWriteCompletedEvent 532
5.7.5.14 InitEvent . 532

5.7.6 Reentrancy . 533
5.8 RTE Lifecycle API Reference . 533

5.8.1 Rte_Start . 533
5.8.2 Rte_Stop . 535
5.8.3 Rte_PartitionTerminated . 535
5.8.4 Rte_PartitionRestarting . 536
5.8.5 Rte_RestartPartition . 537
5.8.6 Rte_Init . 538
5.8.7 Rte_StartTiming . 539

5.9 RTE Call-backs Reference . 540
5.9.1 RTE-COM Message Naming Conventions 540
5.9.2 Communication Service Call-backs 541
5.9.3 Naming convention of Communication Callbacks 541
5.9.4 NVM Service Call-backs . 545

5.9.4.1 Rte_SetMirror . 545
5.9.4.2 Rte_GetMirror . 546
5.9.4.3 Rte_NvMNotifyJobFinished 547
5.9.4.4 Rte_NvMNotifyInitBlock 548

5.10 Expected interfaces . 549
5.10.1 Expected Interfaces from Com 549

14 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

5.10.2 Expected Interfaces from Os . 550
5.10.3 Expected Interfaces for Serialization 550

5.10.3.1 Serialization . 550
5.10.3.2 Deserialization . 552

5.11 VFB Tracing Reference . 553
5.11.1 Principle of Operation . 554
5.11.2 Support for multiple clients . 554
5.11.3 Support for Multiple Instantiation 555
5.11.4 Contribution to the Basic Software Module Description 555
5.11.5 Trace Events . 555

5.11.5.1 RTE API Trace Events 555
5.11.5.2 COM Trace Events . 557
5.11.5.3 OS Trace Events . 559
5.11.5.4 Runnable Entity Trace Events 560

5.11.6 Configuration . 561
5.11.7 Interaction with Object-code Software-Components 562

6 Basic Software Scheduler Reference 563

6.1 Scope . 563
6.2 API Principles . 563

6.2.1 Basic Software Scheduler Namespace 563
6.2.2 BSW Scheduler Name Prefix and Section Name Prefix 564

6.3 Basic Software Scheduler modules . 568
6.3.1 Module Interlink Types Header 568

6.3.1.1 File Name . 568
6.3.1.2 Scope . 569
6.3.1.3 File Contents . 570
6.3.1.4 Basic Software Scheduler Modes 570

6.3.2 Module Interlink Header . 570
6.3.2.1 File Name . 571
6.3.2.2 Scope . 572
6.3.2.3 File Contents . 572

6.4 API Data Types . 575
6.4.1 Predefined Error Codes for Std_ReturnType 575
6.4.2 Basic Software Modes . 576

6.5 API Reference . 578
6.5.1 SchM_Enter . 579
6.5.2 SchM_Exit . 580
6.5.3 SchM_Call . 581
6.5.4 SchM_Result . 583
6.5.5 SchM_Send . 585
6.5.6 SchM_Receive . 587
6.5.7 SchM_Switch . 588
6.5.8 SchM_Mode . 589
6.5.9 Enhanced SchM_Mode . 591
6.5.10 SchM_SwitchAck . 593

15 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

6.5.11 SchM_Trigger . 595
6.5.12 SchM_ActMainFunction . 596
6.5.13 SchM_CData . 597

6.6 Bsw Module Entity Reference . 598
6.6.1 Signature . 599
6.6.2 Entry Point Prototype . 601
6.6.3 Reentrancy . 604
6.6.4 Provide activating Bsw event . 604

6.7 Basic Software Scheduler Lifecycle API Reference 605
6.7.1 SchM_Init . 605
6.7.2 SchM_Deinit . 606
6.7.3 SchM_GetVersionInfo . 606

7 RTE ECU Configuration 608

7.1 Ecu Configuration Variants . 608
7.2 RTE Module Configuration . 609

7.2.1 RTE Configuration Version Information 611
7.3 RTE Generation Parameters . 612
7.4 RTE PreBuild configuration . 618
7.5 RTE PostBuild configuration . 620
7.6 Handling of Software Component instances 622

7.6.1 RTE Event to task mapping . 623
7.6.1.1 Evaluation and execution order 625
7.6.1.2 Direct function call . 625
7.6.1.3 Schedule Points . 627
7.6.1.4 Timeprotection support 628
7.6.1.5 Os Interaction . 629
7.6.1.6 Background activation 630
7.6.1.7 Constraints . 630

7.6.2 Rte Os Interaction . 634
7.6.2.1 Activation using Os features 635
7.6.2.2 Modes and Schedule Tables 637

7.6.3 Exclusive Area implementation 641
7.6.4 NVRam Allocation . 644
7.6.5 SWC Trigger queuing . 647

7.7 Handling of Software Component types 651
7.7.1 Selection of Software-Component Implementation 651
7.7.2 Component Type Calibration . 652

7.8 Implicit communication configuration . 655
7.9 Communication infrastructure . 658
7.10 Configuration of Client-Server Serialization 658
7.11 Configuration of the BSW Scheduler . 660

7.11.1 BSW Scheduler General configuration 661
7.11.2 BSW Module Instance configuration 662

7.11.2.1 BSW ExclusiveArea configuration 664
7.11.2.2 BswEvent to task mapping 667

16 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

7.11.2.3 BSW Trigger configuration 671
7.11.2.4 BSW ModeDeclarationGroup configuration 675
7.11.2.5 BSW Client Server configuration 678
7.11.2.6 BSW Sender Receiver configuration 679

7.12 Configuration of Initialization . 681

A Metamodel Restrictions 686

A.1 Restrictions concerning WaitPoint . 686
A.2 Restrictions concerning RTEEvent . 687
A.3 Restrictions concerning queued implementation policy 687
A.4 Restrictions concerning ServerCallPoint 688
A.5 Restriction concerning multiple instantiation of software components . . 689
A.6 Restrictions concerning runnable entity 689
A.7 Restrictions concerning runnables with dependencies on modes 689
A.8 Restriction concerning SwcInternalBehavior 692
A.9 Restrictions concerning Initial Value . 692
A.10 Restriction concerning PerInstanceMemory 693
A.11 Restrictions concerning unconnected r-port 693
A.12 Restrictions regarding communication of mode switch notifications . . . 693
A.13 Restrictions regarding Measurement and Calibration 694
A.14 Restriction concerning ExclusiveAreaImplMechanism 694
A.15 Restrictions concerning AtomicSwComponentTypes 695
A.16 Restriction concerning the enableUpdate attribute of Nonqueue-

dReceiverComSpecs . 695
A.17 Restrictions concerning the large and dynamic data type 696
A.18 Restriction concerning REFERENCE types 696
A.19 Restriction concerning ModeDeclarationGroup categories and value at-

tributes . 696
A.20 Restrictions concerning C/S Interfaces 697

B External Requirements 698

C MISRA C Compliance 699

D Referenced Meta Classes 701

E Referenced ECUC Configuration Parameters 849

F Examples 894

F.1 ModeDeclarationGroupMapping . 894
F.2 Stability need for received data . 900
F.3 CompuMethod with bitfield texttable conversion 906

G Changes History 912

G.1 Changes in Rel. 4.0 Rev. 2 compared to Rel. 4.0 Rev. 1 912
G.1.1 Deleted SWS Items . 912
G.1.2 Changed SWS Items . 912

17 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

G.1.3 Added SWS Items . 912
G.2 Changes in Rel. 4.0 Rev. 3 compared to Rel. 4.0 Rev. 2 913

G.2.1 Deleted SWS Items . 913
G.2.2 Changed SWS Items . 913
G.2.3 Added SWS Items . 914

G.3 Changes in Rel. 4.1 Rev. 1 compared to Rel. 4.0 Rev. 3 915
G.3.1 Renamed SWS Items . 915
G.3.2 Added constraints . 917
G.3.3 Deleted SWS Items . 917
G.3.4 Changed SWS Items . 918
G.3.5 Added SWS Items . 919

G.4 Changes in Rel. 4.1 Rev. 2 compared to Rel. 4.1 Rev. 1 920
G.4.1 Added Traceables in 4.1.2 . 920
G.4.2 Changed Traceables in 4.1.2 . 920
G.4.3 Deleted Traceables in 4.1.2 . 921
G.4.4 Added Constraints in 4.1.2 . 921
G.4.5 Changed Constraints in 4.1.2 . 921
G.4.6 Deleted Constraints in 4.1.2 . 921

G.5 Changes in Rel. 4.1 Rev. 3 compared to Rel. 4.1 Rev. 2 921
G.5.1 Added Traceables in 4.1.3 . 921
G.5.2 Changed Traceables in 4.1.3 . 922
G.5.3 Deleted Traceables in 4.1.3 . 922
G.5.4 Added Constraints in 4.1.3 . 922
G.5.5 Changed Constraints in 4.1.3 . 922
G.5.6 Deleted Constraints in 4.1.3 . 923

18 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

References

[1] Virtual Functional Bus
AUTOSAR_EXP_VFB

[2] Software Component Template
AUTOSAR_TPS_SoftwareComponentTemplate

[3] Specification of Communication
AUTOSAR_SWS_COM

[4] Specification of Operating System
AUTOSAR_SWS_OS

[5] Specification of ECU Configuration
AUTOSAR_TPS_ECUConfiguration

[6] Methodology
AUTOSAR_TR_Methodology

[7] Specification of ECU State Manager
AUTOSAR_SWS_ECUStateManager

[8] System Template
AUTOSAR_TPS_SystemTemplate

[9] Basic Software Module Description Template
AUTOSAR_TPS_BSWModuleDescriptionTemplate

[10] Generic Structure Template
AUTOSAR_TPS_GenericStructureTemplate

[11] Glossary
AUTOSAR_TR_Glossary

[12] General Requirements on Basic Software Modules
AUTOSAR_SRS_BSWGeneral

[13] Requirements on Runtime Environment
AUTOSAR_SRS_RTE

[14] Specification of Timing Extensions
AUTOSAR_TPS_TimingExtensions

[15] Layered Software Architecture
AUTOSAR_EXP_LayeredSoftwareArchitecture

[16] Specification of ECU Resource Template
AUTOSAR_TPS_ECUResourceTemplate

[17] Specification of I/O Hardware Abstraction
AUTOSAR_SWS_IOHardwareAbstraction

19 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[18] Requirements on Operating System
AUTOSAR_SRS_OS

[19] Requirements on Communication
AUTOSAR_SRS_COM

[20] ASAM MCD 2MC ASAP2 Interface Specification
http://www.asam.net
ASAP2-V1.51.pdf

[21] Specification of NVRAM Manager
AUTOSAR_SWS_NVRAMManager

[22] Guide to Multi-Core Systems
AUTOSAR_EXP_MultiCoreGuide

[23] Specification of Development Error Tracer
AUTOSAR_SWS_DevelopmentErrorTracer

[24] Gemeinsames Subset der MISRA C Guidelines
HIS_SubSet_MISRA_C_1.0.3.pdf

[25] Specification of Memory Mapping
AUTOSAR_SWS_MemoryMapping

[26] Specification of Debugging in AUTOSAR
AUTOSAR_SWS_Debugging

[27] General Specification of Basic Software Modules
AUTOSAR_SWS_BSWGeneral

[28] Specification of Compiler Abstraction
AUTOSAR_SWS_CompilerAbstraction

[29] Specification of Standard Types
AUTOSAR_SWS_StandardTypes

[30] Specification of Bit Handling Routines
AUTOSAR_SWS_BFXLibrary

[31] Specification of Diagnostic Log and Trace
AUTOSAR_SWS_DiagnosticLogAndTrace

[32] Collection of constraints on AUTOSAR M1 models
AUTOSAR_TR_AutosarModelConstraints

20 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

http://www.asam.net

Specification of RTE
V3.5.0

R4.1 Rev 3

Note on XML examples
This specification includes examples in XML based on the AUTOSAR metamodel avail-
able at the time of writing. These examples are included as illustrations of configura-
tions and their expected outcome but should not be considered part of the specification.

1 Introduction

This document contains the software specification of the AUTOSAR Run-Time Environ-
ment (RTE) and the Basic Software Scheduler. Basically, the RTE together with the
OS, AUTOSAR COM and other Basic Software Modules is the implementation of the
Virtual Functional Bus concepts (VFB, [1]). The RTE implements the AUTOSAR Virtual
Functional Bus interfaces and thereby realizes the communication between AUTOSAR
software-components.

This document describes how these concepts are realized within the RTE. Further-
more, the Application Programming Interface (API) of the RTE and the interaction of
the RTE with other basic software modules is specified.

The Basic Software Scheduler offers concepts and services to integrate Basic Soft-
ware Modules Hence, the Basic Software Scheduler

• embed Basic Software Module implementations into the AUTOSAR OS context

• trigger main processing functions of the Basic Software Modules

• apply data consistency mechanisms for the Basic Software Modules

• to communicate modes between Basic Software Modules

1.1 Scope

This document is intended to be the main reference for developers of an RTE gener-
ator tool or of a concrete RTE implementation respectively. The document is also the
reference for developers of AUTOSAR software-components and basic software mod-
ules that interact with the RTE, since it specifies the application programming interface
of the RTE and therefore the mechanisms for accessing the RTE functionality. Fur-
thermore, this specification should be read by the AUTOSAR working groups that are
closely related to the RTE (see Section 1.2 below), since it describes the interfaces of
the RTE to these modules as well as the behavior / functionality the RTE expects from
them.

This document is structured as follows. After this general introduction, Chapter 2 gives
a more detailed introduction of the concepts of the RTE. Chapter 3 describes how an
RTE is generated in the context of the overall AUTOSAR methodology. Chapter 4 is
the central part of this document. It specifies the RTE functionality in detail. The RTE
API is described in Chapter 5.

21 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

The appendix of this document consists of five parts: Appendix A lists the restrictions to
the AUTOSAR metamodel that this version of the RTE specification relies on. Appendix
B explicitly lists all external requirements, i.e. all requirements that are not about the
RTE itself but specify the assumptions on the environment and the input of an RTE
generator. In Appendix C some HIS MISRA rules are listed that are likely to be violated
by RTE code, and the rationale why these violations may occur.

Note that Chapters 1 and 2, as well as Appendix C do not contain any requirements
and are thus intended for information only.

Chapters 4 and 5 are probably of most interest for developers of an RTE Generator.
Chapters 2, 3, 5 are important for developers of AUTOSAR software-components and
basic software modules. The most important chapters for related AUTOSAR work
packages would be Chapters 4, 5, as well as Appendix B.

The specifications in this document do not define details of the implementation of a
concrete RTE or RTE generator respectively. Furthermore, aspects of the ECU- and
system-generation process (like e.g. the mapping of SW-Cs to ECUs, or schedulability
analysis) are also not in the scope of this specification. Nevertheless, it is specified
what input the RTE generator expects from these configuration phases.

1.2 Dependency to other AUTOSAR specifications

The main documents that served as input for the specification of the RTE are the spec-
ification of the Virtual Functional Bus [1] and the specification of the Software Com-
ponent Template [2]. Also of primary importance are the specifications of those Basic
Software modules that closely interact with the RTE (or vice versa). These are espe-
cially the communication module [3] and the operating system [4]. The main input of
an RTE generator is described (among others) in the ECU Configuration Description.
Therefore, the corresponding specification [5] is also important for the RTE specifica-
tion. Furthermore, as the process of RTE generation is an important part of the overall
AUTOSAR Methodology, the corresponding document [6] is also considered.

The following list shows the specifications that are closely interdependent to the speci-
fication of the RTE:

• Specification of the Virtual Functional Bus [1]

• Specification of the Software Component Template [2]

• Specification of AUTOSAR COM [3]

• Specification of AUTOSAR OS [4]

• Specification of ECU State Manager and Communication Manager [7]

• Specification of ECU Configuration [5]

• Specification of System Description / Generation [8]

22 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

• AUTOSAR Methodology [6]

• Specification of BSW Module Description Template [9]

• AUTOSAR Generic Structure Template [10]

1.3 Acronyms and Abbreviations

All abbreviations used throughout this document – except the ones listed here – can
be found in the official AUTOSAR glossary [11].

1.4 Technical Terms

All technical terms used throughout this document – except the ones listed here – can
be found in the official AUTOSAR glossary [11] or the Software Component Template
Specification [2].

Term Description

mode switch port
The port for receiving (or sending) a mode switch noti-
fication. For this purpose, a mode switch port is typed
by a ModeSwitchInterface.

mode user

An AUTOSAR SW-C or AUTOSAR Basic Soft-
ware Module that depends on modes is called a
mode user. The dependency can occur through
a SwcModeSwitchEvent/BswModeSwitchEvent, a
ModeAccessPoint for a provided/required mode
switch port, or a accessedModeGroup for a
providedModeGroup/requiredModeGroup Mod-
eDeclarationGroupPrototype. See also section
4.4.1.

mode manager

Entering and leaving modes is initiated by a mode
manager. A mode manager is either a software
component that provides a p-port typed by a Mod-
eSwitchInterface or a BSW module which de-
fines in its BswModuleDescription a ModeDecla-
rationGroupPrototype in the role providedModeGroup.
See also section 4.4.2.

application mode manager

An application mode manager is an AUTOSAR
software-component that provides the service of
switching modes. The modes of an application
mode manager do not have to be standardized.

23 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

mode switch notification

The communication of a mode switch from the mode
manager to the mode user using either the Mod-
eSwitchInterface or providedModeGroup and re-
quiredModeGroup ModeDeclarationGroupPrototypes
is called mode switch notification.

mode machine instance

The instances of mode machines or ModeDeclaration-
Groups are defined by the ModeDeclarationGroup-
Prototypes of the mode managers.
Since a mode switch is not executed instantaneously,
The RTE or Basic Software Scheduler has to main-
tain it’s own states. For each mode manager’s Mod-
eDeclarationGroupPrototype, RTE or Basic Software
Scheduler has one state machine. This state ma-
chine is called mode machine instance. For all mode
users of the same mode manager’s ModeDeclara-
tionGroupPrototype, RTE and Basic Software Sched-
uler uses the same mode machine instance. See also
section 4.4.2.

common mode machine
instance

A ‘common mode machine instance’ is a special
‘mode machine instance’ shared by BSW Modules
and SW-Cs:
The RTE Generator creates only one mode ma-
chine instance if a ModeDeclarationGroupProto-
type instantiated in a port of a software-component
is synchronized (synchronizedModeGroup of a SwcB-
swMapping) with a providedModeGroup ModeDecla-
rationGroupPrototype of a Basic Software Module in-
stance. The related mode machine instance is
called common mode machine instance.

ModeDisablingDependency

A RTEEvent (respectively a BswEvent) that starts
a Runnable Entity (respectively a Basic Software
Schedulable Entity) can contain a disabledMode (re-
spectively disabledInMode) association which refer-
ences a ModeDeclaration. This association is called
ModeDisablingDependency in this document.

mode disabling dependent
ExecutableEntity

A mode disabling dependent Runnable Entity or
a Basic Software Schedulable Entity is triggered
by an RTEEvent respectively a BswEvent with a
ModeDisablingDependency. RTE and Basic Soft-
ware Scheduler prevent the start of those Runn-
able Entity or Basic Software Schedulable Entity by
the RTEEvent / BswEvent, when the corresponding
mode disabling is active. See also section 4.4.1.

24 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

mode disabling

When a ‘mode disabling’ is active, RTE and Basic
Software Scheduler disables the start of mode dis-
abling dependent ExecutableEntitys. The
‘mode disabling’ is active during the mode that is refer-
enced in the mode disabling dependency and during
the transitions that enter and leave this mode. See
also section 4.4.1.

OnEntry ExecutableEntity

A Runnable Entity or a Basic Software Schedulable
Entity that is triggered by a SwcModeSwitchEvent
respectively a BswModeSwitchEvent with ModeAc-
tivationKind ‘entry’ is triggered on entering the mode.
It is called OnEntry ExecutableEntity. See also section
4.4.1.

OnExit ExecutableEntity

A Runnable Entity or a Basic Software Schedulable
Entity that is triggered by a SwcModeSwitchEvent
respectively a BswModeSwitchEvent with ModeAc-
tivationKind ‘exit’ is triggered on exiting the mode. It
is called OnExit ExecutableEntity. See also section
4.4.1.

OnTransition Exe-
cutableEntity

A Runnable Entity or a Basic Software Schedulable
Entity that is triggered by a SwcModeSwitchEvent
respectively a BswModeSwitchEvent with ModeAc-
tivationKind ‘transition’ is triggered on a transition be-
tween the two specified modes. It is called OnTransi-
tion ExecutableEntity. See also section 4.4.1.

mode switch acknowledge
ExecutableEntity

A Runnable Entity or a Basic Software Schedulable
Entity that is triggered by a ModeSwitchedAck-
Event respectively a BswModeSwitchedAck-
Eventconnected to the mode manager’s ModeDec-
larationGroupPrototype. It is called mode
switch acknowledge ExecutableEntity. See also
section 4.4.1.

server runnable

A server that is triggered by an OperationIn-
vokedEvent. It has a mixed behavior between a
runnable and a function call. In certain situations, RTE
can implement the client server communication as a
simple function call.

server ExecutableEntity

A server that is triggered either by an OperationIn-
vokedEvent or by an BswOperationInvokedE-
vent. In certain situations, RTE can implement the
client server communication as a simple function call.

25 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

runnable activation

The activation of a runnable is linked to the RTEEvent
that leads to the execution of the runnable. It is defined
as the incident that is referred to by the RTEEvent.
E.g., for a timing event, the corresponding runnable is
activated, when the timer expires, and for a data re-
ceived event, the runnable is activated when the data
is received by the RTE.

Basic Software Schedula-
ble Entity activation

The activation of a Basic Software Schedulable Entity
is defined as the activation of the task that contains
the Basic Software Schedulable Entity and eventually
includes setting a flag that tells the glue code in the
task which Basic Software Schedulable Entity is to be
executed.

runnable start A runnable is started by the calling the C-function that
implements the runnable from within a started task.

Basic Software Schedula-
ble Entity start

A Basic Software Schedulable Entity is started by the
calling the C-function that implements the Basic Soft-
ware Schedulable Entity from within a started task.

Trigger Emitter

A Trigger Emitter has the ability to release trig-
gers which in turn are activating triggered Ex-
ecutableEntitys. Trigger Emitter are described
by the meta model with provide trigger ports,
Trigger in role releasedTrigger, Internal-
TriggeringPoints and BswInternalTrigger-
ingPoints.

Trigger Source

A Trigger Source administrate the particular Trigger
and informs the RTE or Basic Software Scheduler if
the Trigger is raised. A Trigger Source has dedicated
provide trigger port(s) or / and releasedTrigger
Trigger (s) to communicate to the Trigger Sink(s).

Trigger Sink

A Trigger Sink relies on the activation of Runnable
Entities or Basic Software Schedulable Entities if a
particular Trigger is raised. A Trigger Sink has
a dedicated require trigger port(s) or / and re-
quiredTrigger Trigger (s) to communicate to the Trig-
ger Source(s).

trigger port A PortPrototype which is typed by an Trigger-
Interface

26 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

triggered ExecutableEntity

A Runnable Entity or a Basic Software Schedulable
Entity that is triggered at least by one External-
TriggerOccurredEvent / BswExternalTrigge-
rOccurredEvent or InternalTriggerOccurre-
dEvent / BswInternalTriggerOccurredEvent.
In particular cases, the Trigger Event Communication
or the Inter Runnable Triggering is implemented by
RTE or Basic Software Scheduler as a direct function
call of the triggered ExecutableEntity by the triggering
ExecutableEntity.

triggered runnable

A Runnable Entity that is triggered at least by one
ExternalTriggerOccurredEvent or Internal-
TriggerOccurredEvent. In particular cases, the
Trigger Event Communication or the Inter Runnable
Triggering is implemented by RTE as a direct function
call of the triggered runnable by the triggering runn-
able.

triggered Basic Software
Schedulable Entity

A Basic Software Schedulable Entity that is trig-
gered at least by one BswExternalTriggerOc-
curredEvent or BswInternalTriggerOccurre-
dEvent. In particular cases, the Trigger Event Com-
munication or the Inter Basic Software Schedulable
Entity Triggering is implemented by Basic Software
Scheduler as a direct function call of the triggered Ex-
ecutableEntity by the triggering ExecutableEntity.

execution-instance

An execution-instance of a ExecutableEntity is
one instance or call context of an ExecutableEn-
tity with respect to concurrent execution, see sec-
tion 4.2.3.

inter-ECU communication
The communication between ECUs, typically using
COM is called inter-ECU communication in this doc-
ument.

inter-partition communica-
tion

The communication within one ECU but between dif-
ferent partitions, represented by different OS appli-
cations, is called inter-partition communication
in this document. It typically involves the use of OS
mechanisms like IOC or trusted function calls. The
partitions can be located on different cores or use dif-
ferent memory sections of the ECU.

intra-partition communica-
tion

The communication within one partition of one ECU
is called intra-partition communication. In this
case, RTE can make use of internal buffers and
queues for communication.

27 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

intra-ECU communication

The communication within one ECU is called intra-
ECU communication in this document. It is a super set
of inter-partition communication and intra-
partition communication.

SystemDesignTime Vari-
ability

Variability defined with an VariationPoint or At-
tributeValueVariationPoint with latest bindingTime
SystemDesignTime.

CodeGenerationTime Vari-
ability

Variability defined with an VariationPoint or At-
tributeValueVariationPoint with latest bindingTime
CodeGenerationTime.

PreCompileTime Variabil-
ity

Variability defined with an VariationPoint or At-
tributeValueVariationPoint with latest bindingTime
PreCompileTime.

LinkTime Variability
Variability defined with an VariationPoint or At-
tributeValueVariationPoint with latest bindingTime
LinkTime.

PreBuild Variability

Variability defined with an VariationPoint or At-
tributeValueVariationPoint with latest bindingTime
SystemDesignTime, CodeGenerationTime,
PreCompileTime or LinkTime.

PostBuild Variability Variability defined with an VariationPoint having
an postBuildVariantCriterion

Preemption Area

A preemption area defines a set of tasks which are
scheduled cooperatively. Therefore tasks of one pre-
emption area are preempting each other only at dedi-
cated schedule points. A schedule point is not allowed
to occur during the execution of a RunnableEntity.

Copy Semantic

Copy semantic means, that the accessing entities are
able to read or write the "copied" data from their exe-
cution context in a non concurrent and non preempting
manner. If all accessing entities are in the same Pre-
emption Area this might not require a real physical
data copy.

Primitive Data Type
Primitive data types are the types implemented by
a boolean, integer (up to 32 bits), floating point, or
opaque type (up to 32 bits).

NvBlockSwComponent NvBlockSwComponent is a SwComponentProto-
type typed an NvBlockSwComponentType.

’C’ typed PerInstance-
Memory

’C’ typed PerInstanceMemory is defined with the class
PerInstanceMemory. The type of the memory is
defined with a ’C’ typedef in the attribute typeDefi-
nition.

28 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

AutosarDataProto-
type implementation

Definitions and declarations for non automatic1 mem-
ory objects which are allocated by the RTE and imple-
menting AutosarDataPrototypes or their belong-
ing status handling.

Implicit Read Access
VariableAccess aggregated in the role
dataReadAccess to a VariableDataProto-
type

Implicit Write Access VariableAccess aggregated in the role
dataWriteAccess to a VariableDataPrototype

Incoherent Implicit Data
Access

An Implicit Read Access or an Implicit
Write Access which does not belong to a Co-
herency Group. Therefore it is NOT referenced
by any RteVariableReadAccessRef or Rte-
VariableWriteAccessRef belonging to a RteIm-
plicitCommunication container which RteCo-
herentAccess parameter is set to true.

Incoherent Implicit Read
Access

An Implicit Read Access which does not be-
long to a Coherency Group. Therefore it is NOT
referenced by any RteVariableReadAccessRef
belonging to a RteImplicitCommunication con-
tainer which RteCoherentAccess parameter is set
to true.

Incoherent Implicit Write
Access

An Implicit Write Access which does not be-
long to a Coherency Group. Therefore it is NOT
referenced by any RteVariableWriteAccessRef
belonging to a RteImplicitCommunication con-
tainer which RteCoherentAccess parameter is set
to true.

Coherency Group

A set of Implicit Read Accesses and Implicit
Write Accesses for which the RTE cares for data
coherency. Please note that in the context of this spec-
ification the definition of coherency includes that
• read data values of different VariableDat-
aPrototypes have to be from the same age,
except the values are changed by Implicit
Write Accesses belonging to the Coherency
Group
• written data values of different VariableDat-
aPrototypes are communicated to readers
NOT belonging to the Coherency Group after
the last Implicit Write Access belonging
to the Coherency Group.

1declaration with no static or external specifier defines an automatic variable

29 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Coherent Implicit Data Ac-
cess

An Implicit Read Access or an Implicit
Write Access which belongs to Coherency
Group. Therefore it is referenced by a RteVari-
ableReadAccessRef or RteVariableWriteAc-
cessRef belonging to a RteImplicitCommu-
nication container which RteCoherentAccess
parameter is set to true.

Coherent Implicit Read Ac-
cess

An Implicit Read Access which belongs to
Coherency Group. Therefore it is referenced
by a RteVariableReadAccessRef belonging to
a RteImplicitCommunication container which
RteCoherentAccess parameter is set to true.

Coherent Implicit Write Ac-
cess

An Implicit Write Access which belongs to
Coherency Group. Therefore it is referenced
by a RteVariableReadAccessRef or RteVari-
ableWriteAccessRef belonging to a RteIm-
plicitCommunication container which RteCo-
herentAccess parameter is set to true.

event semantic

When events are distributed the whole history of re-
ceived events is of interest, hence they must be
queued on receiver side. Therefore the software im-
plementation policy, stated in the swImplPolicy at-
tribute of the SwDataDefProps, will have the value
’queued’(corresponding to event distribution with a
queue).

data semantic

When data is distributed, the last received value
is of interest (last-is-best semantics). Therefore
the software implementation policy, stated in the
swImplPolicy attribute of the SwDataDefProps,
shouldn’t be ’queued’.

client

A client is defined as one ClientServerOper-
ation in one RPortPrototype of one Software
Component instance. For the definition of the
client neither the number of ServerCallPoints nor
RunnableEntity accesses to the ServerCall-
Point are relevant. A Software Component in-
stance can appear as several clients to the same
server if it defines ServerCallPoints for several
PortPrototypes of the same PortInterface’s
ClientServerOperation.

server
A server is defined as one RunnableEntity which
is the target of an OperationInvokedEvent. Call
serialization is on activation of RunnableEntity.

30 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

1.5 Document Conventions

Requirements in the SRS are referenced using [SRS_Rte_<n>] where <n> is the
requirement id. For example, [SRS_Rte_00098].

Requirements in the SWS are marked with [SWS_Rte_nnnnn] d as the first text in a
paragraph. The scope of the requirement is marked with the half brackets. c

Constraints on the input of the RTE are marked with [constr_<nnnn>].

Technical terms are typeset in monospace font, e.g. Warp Core.

AUTOSAR Meta Class Names and Attributes are typeset in monospace font, e.g. Ap-
plicationSwComponentType. As a general rule, plural forms of AUTOSAR Meta
Class Names and Attributes are created by adding "s" to the singular form, e.g. Port-
Prototypes. By this means the document resembles terminology used in the AU-
TOSAR XML Schema.

AUTOSAR ECU Configuration Parameters are typeset in monospace font, e.g. Rte-
CodeVendorId. As a general rule, plural forms of ECU Configuration Parameters
are created by adding "s" to the singular form, e.g. RteEventToTaskMappings. By
this means the document resembles terminology used in the ARXML file of AUTOSAR
ECU Configuration Parameter Definition.

API function calls are also marked with monospace font, like Rte_EjectWarpCore.

1.6 Requirements Tracing

The following table references the requirements specified in [12] as well as [13] and
links to the fulfillment of these. Please note that if column “Satisfied by” is empty for a
specific requirement this means that this requirement is not fulfilled by this document.

Requirement Description Satisfied by
[SRS_BSW_00004] All Basic SW Modules shall

perform a pre-processor check
of the versions of all imported
include files

[SWS_Rte_07692]

[SRS_BSW_00007] All Basic SW Modules written in
C language shall conform to the
MISRA C 2004 Standard.

[SWS_Rte_01168] [SWS_Rte_03715]
[SWS_Rte_06804] [SWS_Rte_06805]
[SWS_Rte_06806] [SWS_Rte_06807]
[SWS_Rte_06808] [SWS_Rte_06809]
[SWS_Rte_06810] [SWS_Rte_07086]
[SWS_Rte_07300]

[SRS_BSW_00101] The Basic Software Module shall
be able to initialize variables and
hardware in a separate
initialization function

[SWS_Rte_07270] [SWS_Rte_07271]
[SWS_Rte_07273]

31 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Requirement Description Satisfied by
[SRS_BSW_00161] The AUTOSAR Basic Software

shall provide a microcontroller
abstraction layer which provides
a standardized interface to
higher software layers

[SWS_Rte_02734]

[SRS_BSW_00300] All AUTOSAR Basic Software
Modules shall be identified by an
unambiguous name

[SWS_Rte_01003] [SWS_Rte_01157]
[SWS_Rte_01158] [SWS_Rte_01161]
[SWS_Rte_01169] [SWS_Rte_01171]
[SWS_Rte_07122] [SWS_Rte_07139]
[SWS_Rte_07284] [SWS_Rte_07288]
[SWS_Rte_07295] [SWS_Rte_07504]
[SWS_Rte_07922]

[SRS_BSW_00305] Data types naming convention [SWS_Rte_01055] [SWS_Rte_01150]
[SWS_Rte_02301] [SWS_Rte_03714]
[SWS_Rte_03731] [SWS_Rte_03733]

[SRS_BSW_00307] Global variables naming
convention

[SWS_Rte_01171] [SWS_Rte_03712]
[SWS_Rte_07284]

[SRS_BSW_00308] AUTOSAR Basic Software
Modules shall not define global
data in their header files, but in
the C file

[SWS_Rte_03786] [SWS_Rte_07121]
[SWS_Rte_07502] [SWS_Rte_07921]

[SRS_BSW_00310] API naming convention [SWS_Rte_01071] [SWS_Rte_01072]
[SWS_Rte_01083] [SWS_Rte_01091]
[SWS_Rte_01092] [SWS_Rte_01102]
[SWS_Rte_01111] [SWS_Rte_01118]
[SWS_Rte_01120] [SWS_Rte_01123]
[SWS_Rte_01206] [SWS_Rte_01252]
[SWS_Rte_02569] [SWS_Rte_02631]
[SWS_Rte_02725] [SWS_Rte_03550]
[SWS_Rte_03553] [SWS_Rte_03560]
[SWS_Rte_03565] [SWS_Rte_03741]
[SWS_Rte_03744] [SWS_Rte_03800]
[SWS_Rte_03928] [SWS_Rte_03929]
[SWS_Rte_05509] [SWS_Rte_07367]
[SWS_Rte_07390] [SWS_Rte_07394]
[SWS_Rte_07556]

[SRS_BSW_00312] Shared code shall be reentrant [SWS_Rte_01012]
[SRS_BSW_00327] Error values naming convention [SWS_Rte_01058] [SWS_Rte_01060]

[SWS_Rte_01061] [SWS_Rte_01064]
[SWS_Rte_01065] [SWS_Rte_01317]
[SWS_Rte_02571] [SWS_Rte_02594]
[SWS_Rte_02702] [SWS_Rte_02739]
[SWS_Rte_02747] [SWS_Rte_02757]
[SWS_Rte_07054] [SWS_Rte_07289]
[SWS_Rte_07290] [SWS_Rte_07384]
[SWS_Rte_07562] [SWS_Rte_07563]
[SWS_Rte_07655] [SWS_Rte_08065]
[SWS_Rte_08725] [SWS_Rte_08726]

[SRS_BSW_00330] It shall be allowed to use macros
instead of functions where
source code is used and runtime
is critical

[SWS_Rte_01274]

32 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Requirement Description Satisfied by
[SRS_BSW_00336] Basic SW module shall be able

to shutdown
[SWS_Rte_07274] [SWS_Rte_07275]
[SWS_Rte_07277]

[SRS_BSW_00337] Classification of development
errors

[SWS_Rte_06630] [SWS_Rte_06631]
[SWS_Rte_06632] [SWS_Rte_06633]
[SWS_Rte_06634] [SWS_Rte_06635]
[SWS_Rte_06637] [SWS_Rte_07675]
[SWS_Rte_07676] [SWS_Rte_07682]
[SWS_Rte_07683] [SWS_Rte_07684]
[SWS_Rte_07685]

[SRS_BSW_00342] It shall be possible to create an
AUTOSAR ECU out of modules
provided as source code and
modules provided as object
code, even mixed

[SWS_Rte_07511]

[SRS_BSW_00345] BSW Modules shall support
pre-compile configuration

[SWS_Rte_05103]

[SRS_BSW_00346] All AUTOSAR Basic Software
Modules shall provide at least a
basic set of module files

[SWS_Rte_06638]

[SRS_BSW_00347] A Naming seperation of different
instances of BSW drivers shall
be in place

[SWS_Rte_06532] [SWS_Rte_06535]
[SWS_Rte_06536] [SWS_Rte_07093]
[SWS_Rte_07250] [SWS_Rte_07253]
[SWS_Rte_07255] [SWS_Rte_07260]
[SWS_Rte_07263] [SWS_Rte_07266]
[SWS_Rte_07282] [SWS_Rte_07295]
[SWS_Rte_07504] [SWS_Rte_07528]
[SWS_Rte_07694] [SWS_Rte_08765]

[SRS_BSW_00353] All integer type definitions of
target and compiler specific
scope shall be placed and
organized in a single type
header

[SWS_Rte_01163] [SWS_Rte_01164]
[SWS_Rte_07104] [SWS_Rte_07641]

[SRS_BSW_00397] The configuration parameters in
pre-compile time are fixed before
compilation starts

[SWS_Rte_05103]

[SRS_BSW_00399] Parameter-sets shall be located
in a separate segment and shall
be loaded after the code

[SWS_Rte_05104]

[SRS_BSW_00400] Parameter shall be selected
from multiple sets of parameters
after code has been loaded and
started

[SWS_Rte_05104]

[SRS_BSW_00405] BSW Modules shall support
multiple configuration sets

[SWS_Rte_06544] [SWS_Rte_06545]

[SRS_BSW_00407] Each BSW module shall provide
a function to read out the version
information of a dedicated
module implementation

[SWS_Rte_07278] [SWS_Rte_07279]
[SWS_Rte_07280] [SWS_Rte_07281]

[SRS_BSW_00415] Interfaces which are provided
exclusively for one module shall
be separated into a dedicated
header file

[SWS_Rte_07295] [SWS_Rte_07500]
[SWS_Rte_07501] [SWS_Rte_07503]
[SWS_Rte_07504] [SWS_Rte_07505]
[SWS_Rte_07506] [SWS_Rte_07510]

33 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Requirement Description Satisfied by
[SRS_BSW_00447] Standardizing Include file

structure of BSW Modules
Implementing Autosar Service

[SWS_Rte_07120]

[SRS_Rte_00003] Tracing of sender-receiver
communication

[SWS_Rte_01238] [SWS_Rte_01240]
[SWS_Rte_01241] [SWS_Rte_01242]
[SWS_Rte_01357] [SWS_Rte_03814]
[SWS_Rte_07639]

[SRS_Rte_00004] Tracing of client-server
communication

[SWS_Rte_01238] [SWS_Rte_01240]
[SWS_Rte_01241] [SWS_Rte_01242]
[SWS_Rte_01357] [SWS_Rte_03814]
[SWS_Rte_07639]

[SRS_Rte_00005] The RTE generator shall support
"trace" builds

[SWS_Rte_01320] [SWS_Rte_01322]
[SWS_Rte_01323] [SWS_Rte_01327]
[SWS_Rte_01328] [SWS_Rte_03607]
[SWS_Rte_05091] [SWS_Rte_05092]
[SWS_Rte_05093] [SWS_Rte_05106]
[SWS_Rte_06031] [SWS_Rte_08000]

[SRS_Rte_00008] VFB tracing configuration [SWS_Rte_01236] [SWS_Rte_01320]
[SWS_Rte_01321] [SWS_Rte_01322]
[SWS_Rte_01323] [SWS_Rte_01324]
[SWS_Rte_01325] [SWS_Rte_03607]
[SWS_Rte_05091] [SWS_Rte_05092]
[SWS_Rte_05093] [SWS_Rte_08000]

[SRS_Rte_00011] Support for multiple Application
Software Component instances.

[SWS_Rte_01012] [SWS_Rte_01013]
[SWS_Rte_01016] [SWS_Rte_01126]
[SWS_Rte_01148] [SWS_Rte_01349]
[SWS_Rte_02001] [SWS_Rte_02002]
[SWS_Rte_02008] [SWS_Rte_02009]
[SWS_Rte_02015] [SWS_Rte_03015]
[SWS_Rte_03711] [SWS_Rte_03716]
[SWS_Rte_03717] [SWS_Rte_03718]
[SWS_Rte_03719] [SWS_Rte_03720]
[SWS_Rte_03721] [SWS_Rte_03722]
[SWS_Rte_03793] [SWS_Rte_03806]
[SWS_Rte_06031] [SWS_Rte_07132]
[SWS_Rte_07194] [SWS_Rte_07225]
[SWS_Rte_07837] [SWS_Rte_07838]
[SWS_Rte_07839]

[SRS_Rte_00012] Multiple instantiated AUTOSAR
software components delivered
as binary code shall share code.

[SWS_Rte_01007] [SWS_Rte_02015]
[SWS_Rte_03015]

[SRS_Rte_00013] Per-instance memory [SWS_Rte_02301] [SWS_Rte_02302]
[SWS_Rte_02303] [SWS_Rte_02304]
[SWS_Rte_02305] [SWS_Rte_03782]
[SWS_Rte_05062] [SWS_Rte_07045]
[SWS_Rte_07133] [SWS_Rte_07134]
[SWS_Rte_07135] [SWS_Rte_07161]
[SWS_Rte_07182] [SWS_Rte_07183]
[SWS_Rte_07184] [SWS_Rte_08303]
[SWS_Rte_08304]

[SRS_Rte_00017] Rejection of inconsistent
component implementations

[SWS_Rte_01004] [SWS_Rte_01276]
[SWS_Rte_02751] [SWS_Rte_07123]
[SWS_Rte_07510]

34 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Requirement Description Satisfied by
[SRS_Rte_00018] Rejection of invalid

configurations
[SWS_Rte_01287] [SWS_Rte_01313]
[SWS_Rte_01358] [SWS_Rte_01373]
[SWS_Rte_02009] [SWS_Rte_02051]
[SWS_Rte_02204] [SWS_Rte_02254]
[SWS_Rte_02500] [SWS_Rte_02526]
[SWS_Rte_02529] [SWS_Rte_02579]
[SWS_Rte_02662] [SWS_Rte_02663]
[SWS_Rte_02664] [SWS_Rte_02670]
[SWS_Rte_02706] [SWS_Rte_02723]
[SWS_Rte_02724] [SWS_Rte_02730]
[SWS_Rte_02733] [SWS_Rte_02738]
[SWS_Rte_02750] [SWS_Rte_03010]
[SWS_Rte_03014] [SWS_Rte_03018]
[SWS_Rte_03019] [SWS_Rte_03526]
[SWS_Rte_03527] [SWS_Rte_03594]
[SWS_Rte_03605] [SWS_Rte_03755]
[SWS_Rte_03764] [SWS_Rte_03813]
[SWS_Rte_03817] [SWS_Rte_03820]
[SWS_Rte_03823] [SWS_Rte_03826]
[SWS_Rte_03831] [SWS_Rte_03851]
[SWS_Rte_03862] [SWS_Rte_03950]
[SWS_Rte_03951] [SWS_Rte_03970]
[SWS_Rte_05111] [SWS_Rte_05149]
[SWS_Rte_06502] [SWS_Rte_06503]
[SWS_Rte_06504] [SWS_Rte_06505]
[SWS_Rte_06508] [SWS_Rte_06509]
[SWS_Rte_06511] [SWS_Rte_06547]
[SWS_Rte_06548] [SWS_Rte_06610]
[SWS_Rte_06613] [SWS_Rte_06719]
[SWS_Rte_06724] [SWS_Rte_06732]
[SWS_Rte_06768] [SWS_Rte_06769]
[SWS_Rte_06770] [SWS_Rte_06801]
[SWS_Rte_06802] [SWS_Rte_06803]
[SWS_Rte_07005] [SWS_Rte_07006]
[SWS_Rte_07007] [SWS_Rte_07026]
[SWS_Rte_07028] [SWS_Rte_07039]
[SWS_Rte_07044] [SWS_Rte_07057]
[SWS_Rte_07075] [SWS_Rte_07101]
[SWS_Rte_07135] [SWS_Rte_07157]
[SWS_Rte_07170] [SWS_Rte_07175]
[SWS_Rte_07181] [SWS_Rte_07190]
[SWS_Rte_07191] [SWS_Rte_07192]
[SWS_Rte_07343] [SWS_Rte_07347]
[SWS_Rte_07353] [SWS_Rte_07356]
[SWS_Rte_07357] [SWS_Rte_07402]
[SWS_Rte_07403] [SWS_Rte_07516]
[SWS_Rte_07524] [SWS_Rte_07545]
[SWS_Rte_07548] [SWS_Rte_07549]
[SWS_Rte_07564] [SWS_Rte_07588]
[SWS_Rte_07610] [SWS_Rte_07621]
[SWS_Rte_07638] [SWS_Rte_07640]
[SWS_Rte_07642] [SWS_Rte_07654]
[SWS_Rte_07662] [SWS_Rte_07667]
[SWS_Rte_07670] [SWS_Rte_07681]

35 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Requirement Description Satisfied by
[SWS_Rte_07686] [SWS_Rte_07803]
[SWS_Rte_07808] [SWS_Rte_07809]
[SWS_Rte_07810] [SWS_Rte_07811]
[SWS_Rte_07812] [SWS_Rte_07842]
[SWS_Rte_07845] [SWS_Rte_07927]
[SWS_Rte_08072] [SWS_Rte_08076]
[SWS_Rte_08311] [SWS_Rte_08700]
[SWS_Rte_08701] [SWS_Rte_08702]
[SWS_Rte_08767] [SWS_Rte_08768]
[SWS_Rte_08800]

[SRS_Rte_00019] RTE is the communication
infrastructure

[SWS_Rte_01231] [SWS_Rte_01264]
[SWS_Rte_02527] [SWS_Rte_02528]
[SWS_Rte_02610] [SWS_Rte_02611]
[SWS_Rte_02612] [SWS_Rte_03000]
[SWS_Rte_03001] [SWS_Rte_03002]
[SWS_Rte_03004] [SWS_Rte_03005]
[SWS_Rte_03007] [SWS_Rte_03008]
[SWS_Rte_03760] [SWS_Rte_03761]
[SWS_Rte_03762] [SWS_Rte_03769]
[SWS_Rte_03775] [SWS_Rte_03776]
[SWS_Rte_03795] [SWS_Rte_03796]
[SWS_Rte_04515] [SWS_Rte_04516]
[SWS_Rte_04520] [SWS_Rte_04522]
[SWS_Rte_04526] [SWS_Rte_04527]
[SWS_Rte_05063] [SWS_Rte_05065]
[SWS_Rte_05084] [SWS_Rte_05085]
[SWS_Rte_05500] [SWS_Rte_06000]
[SWS_Rte_06011] [SWS_Rte_06023]
[SWS_Rte_06024] [SWS_Rte_07662]
[SWS_Rte_08001] [SWS_Rte_08002]

[SRS_Rte_00020] Access to OS [SWS_Rte_02250]
[SRS_Rte_00021] Per-ECU RTE customization [SWS_Rte_01316] [SWS_Rte_05000]
[SRS_Rte_00022] Interaction with call-backs [SWS_Rte_01165]
[SRS_Rte_00023] RTE Overheads [SWS_Rte_05053]
[SRS_Rte_00024] Source-code AUTOSAR

software components
[SWS_Rte_01000] [SWS_Rte_01195]
[SWS_Rte_01315] [SWS_Rte_07120]

[SRS_Rte_00025] Static communication [SWS_Rte_06026]
[SRS_Rte_00027] VFB to RTE mapping shall be

semantic preserving
[SWS_Rte_01274] [SWS_Rte_02200]
[SWS_Rte_02201] [SWS_Rte_02649]
[SWS_Rte_02651] [SWS_Rte_02653]
[SWS_Rte_02654] [SWS_Rte_02657]
[SWS_Rte_07346] [SWS_Rte_08700]
[SWS_Rte_08701] [SWS_Rte_08702]
[SWS_Rte_08703] [SWS_Rte_08704]
[SWS_Rte_08705] [SWS_Rte_08706]
[SWS_Rte_08707] [SWS_Rte_08708]
[SWS_Rte_08709] [SWS_Rte_08710]
[SWS_Rte_08730]

36 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Requirement Description Satisfied by
[SRS_Rte_00028] "1:n" Sender-receiver

communication
[SWS_Rte_01071] [SWS_Rte_01072]
[SWS_Rte_01082] [SWS_Rte_01091]
[SWS_Rte_01092] [SWS_Rte_01135]
[SWS_Rte_02631] [SWS_Rte_02633]
[SWS_Rte_02635] [SWS_Rte_04526]
[SWS_Rte_06023] [SWS_Rte_06024]
[SWS_Rte_07394] [SWS_Rte_07824]
[SWS_Rte_07825] [SWS_Rte_07826]
[SWS_Rte_07827] [SWS_Rte_08413]
[SWS_Rte_08414] [SWS_Rte_08415]

[SRS_Rte_00029] "n:1" Client-server
communication

[SWS_Rte_01102] [SWS_Rte_01109]
[SWS_Rte_01133] [SWS_Rte_01166]
[SWS_Rte_01359] [SWS_Rte_02579]
[SWS_Rte_03763] [SWS_Rte_03767]
[SWS_Rte_03768] [SWS_Rte_03769]
[SWS_Rte_03770] [SWS_Rte_04517]
[SWS_Rte_04519] [SWS_Rte_05111]
[SWS_Rte_05193] [SWS_Rte_06019]
[SWS_Rte_07023] [SWS_Rte_07024]
[SWS_Rte_07025] [SWS_Rte_07026]
[SWS_Rte_07027] [SWS_Rte_07845]
[SWS_Rte_08310]

[SRS_Rte_00031] Multiple Runnable Entities [SWS_Rte_01016] [SWS_Rte_01126]
[SWS_Rte_01130] [SWS_Rte_01132]
[SWS_Rte_02202] [SWS_Rte_06713]

[SRS_Rte_00032] Data consistency mechanisms [SWS_Rte_01122] [SWS_Rte_02740]
[SWS_Rte_02741] [SWS_Rte_02743]
[SWS_Rte_02744] [SWS_Rte_02745]
[SWS_Rte_02746] [SWS_Rte_03500]
[SWS_Rte_03503] [SWS_Rte_03504]
[SWS_Rte_03514] [SWS_Rte_03516]
[SWS_Rte_03517] [SWS_Rte_03519]
[SWS_Rte_03595] [SWS_Rte_03739]
[SWS_Rte_03740] [SWS_Rte_03812]
[SWS_Rte_05164] [SWS_Rte_07005]
[SWS_Rte_08318] [SWS_Rte_08319]
[SWS_Rte_08320] [SWS_Rte_08321]
[SWS_Rte_08322]

[SRS_Rte_00033] Serialized execution of Server
Runnable Entities

[SWS_Rte_02527] [SWS_Rte_02528]
[SWS_Rte_02529] [SWS_Rte_02530]
[SWS_Rte_04515] [SWS_Rte_04518]
[SWS_Rte_04522] [SWS_Rte_07008]
[SWS_Rte_08001] [SWS_Rte_08002]

[SRS_Rte_00036] Assignment to OS Applications [SWS_Rte_07347]
[SRS_Rte_00045] Standardized VFB tracing

interface
[SWS_Rte_01238] [SWS_Rte_01239]
[SWS_Rte_01240] [SWS_Rte_01241]
[SWS_Rte_01242] [SWS_Rte_01243]
[SWS_Rte_01244] [SWS_Rte_01245]
[SWS_Rte_01246] [SWS_Rte_01247]
[SWS_Rte_01248] [SWS_Rte_01249]
[SWS_Rte_01250] [SWS_Rte_01251]
[SWS_Rte_01319] [SWS_Rte_01321]
[SWS_Rte_01326] [SWS_Rte_03814]
[SWS_Rte_06032] [SWS_Rte_07639]

37 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Requirement Description Satisfied by
[SRS_Rte_00046] Support for "Executable Entity

runs inside" Exclusive Areas
[SWS_Rte_01120] [SWS_Rte_01122]
[SWS_Rte_01123] [SWS_Rte_02740]
[SWS_Rte_02741] [SWS_Rte_02743]
[SWS_Rte_02744] [SWS_Rte_02745]
[SWS_Rte_02746] [SWS_Rte_03500]
[SWS_Rte_03515] [SWS_Rte_07250]
[SWS_Rte_07251] [SWS_Rte_07252]
[SWS_Rte_07253] [SWS_Rte_07254]
[SWS_Rte_07522] [SWS_Rte_07523]
[SWS_Rte_07524] [SWS_Rte_07578]
[SWS_Rte_07579] [SWS_Rte_08318]
[SWS_Rte_08319] [SWS_Rte_08320]
[SWS_Rte_08321] [SWS_Rte_08322]

[SRS_Rte_00048] RTE Generator input [SWS_Rte_08769] [SWS_Rte_08770]
[SWS_Rte_08771] [SWS_Rte_08772]
[SWS_Rte_08773] [SWS_Rte_08774]
[SWS_Rte_08775] [SWS_Rte_08776]

[SRS_Rte_00049] Construction of task bodies [SWS_Rte_02204] [SWS_Rte_02251]
[SWS_Rte_02254] [SWS_Rte_07516]

38 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Requirement Description Satisfied by
[SRS_Rte_00051] RTE API mapping [SWS_Rte_01053] [SWS_Rte_01055]

[SWS_Rte_01119] [SWS_Rte_01123]
[SWS_Rte_01132] [SWS_Rte_01146]
[SWS_Rte_01148] [SWS_Rte_01153]
[SWS_Rte_01156] [SWS_Rte_01159]
[SWS_Rte_01197] [SWS_Rte_01266]
[SWS_Rte_01268] [SWS_Rte_01269]
[SWS_Rte_01274] [SWS_Rte_01276]
[SWS_Rte_01280] [SWS_Rte_01281]
[SWS_Rte_01282] [SWS_Rte_01283]
[SWS_Rte_01284] [SWS_Rte_01285]
[SWS_Rte_01286] [SWS_Rte_01287]
[SWS_Rte_01288] [SWS_Rte_01289]
[SWS_Rte_01290] [SWS_Rte_01293]
[SWS_Rte_01294] [SWS_Rte_01296]
[SWS_Rte_01297] [SWS_Rte_01298]
[SWS_Rte_01299] [SWS_Rte_01300]
[SWS_Rte_01301] [SWS_Rte_01302]
[SWS_Rte_01303] [SWS_Rte_01304]
[SWS_Rte_01305] [SWS_Rte_01306]
[SWS_Rte_01307] [SWS_Rte_01308]
[SWS_Rte_01309] [SWS_Rte_01310]
[SWS_Rte_01312] [SWS_Rte_01313]
[SWS_Rte_01342] [SWS_Rte_01343]
[SWS_Rte_01349] [SWS_Rte_01354]
[SWS_Rte_01355] [SWS_Rte_01363]
[SWS_Rte_01364] [SWS_Rte_01365]
[SWS_Rte_01366] [SWS_Rte_02301]
[SWS_Rte_02302] [SWS_Rte_02588]
[SWS_Rte_02589] [SWS_Rte_02607]
[SWS_Rte_02608] [SWS_Rte_02613]
[SWS_Rte_02614] [SWS_Rte_02615]
[SWS_Rte_02616] [SWS_Rte_02617]
[SWS_Rte_02618] [SWS_Rte_02619]
[SWS_Rte_02620] [SWS_Rte_02621]
[SWS_Rte_02623] [SWS_Rte_02632]
[SWS_Rte_02666] [SWS_Rte_02676]
[SWS_Rte_02677] [SWS_Rte_02678]
[SWS_Rte_02679] [SWS_Rte_02730]
[SWS_Rte_03014] [SWS_Rte_03562]
[SWS_Rte_03567] [SWS_Rte_03602]
[SWS_Rte_03603] [SWS_Rte_03605]
[SWS_Rte_03706] [SWS_Rte_03707]
[SWS_Rte_03716] [SWS_Rte_03717]
[SWS_Rte_03718] [SWS_Rte_03719]
[SWS_Rte_03720] [SWS_Rte_03721]
[SWS_Rte_03723] [SWS_Rte_03725]
[SWS_Rte_03726] [SWS_Rte_03730]
[SWS_Rte_03731] [SWS_Rte_03733]
[SWS_Rte_03734] [SWS_Rte_03739]
[SWS_Rte_03740] [SWS_Rte_03746]
[SWS_Rte_03752] [SWS_Rte_03791]
[SWS_Rte_03799] [SWS_Rte_03801]

39 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Requirement Description Satisfied by
[SWS_Rte_03812] [SWS_Rte_03835]
[SWS_Rte_03837] [SWS_Rte_03927]
[SWS_Rte_03930] [SWS_Rte_03949]
[SWS_Rte_03952] [SWS_Rte_05510]
[SWS_Rte_05511] [SWS_Rte_06639]
[SWS_Rte_06713] [SWS_Rte_07136]
[SWS_Rte_07137] [SWS_Rte_07138]
[SWS_Rte_07170] [SWS_Rte_07225]
[SWS_Rte_07226] [SWS_Rte_07227]
[SWS_Rte_07228] [SWS_Rte_07291]
[SWS_Rte_07395] [SWS_Rte_07396]
[SWS_Rte_07677] [SWS_Rte_07837]
[SWS_Rte_07838] [SWS_Rte_07839]
[SWS_Rte_07850] [SWS_Rte_07851]
[SWS_Rte_08073] [SWS_Rte_08309]
[SWS_Rte_08312] [SWS_Rte_08777]
[SWS_Rte_08778] [SWS_Rte_08779]
[SWS_Rte_08780] [SWS_Rte_08781]
[SWS_Rte_08782] [SWS_Rte_08783]
[SWS_Rte_08784] [SWS_Rte_08785]
[SWS_Rte_08786]

[SRS_Rte_00052] Initialization and finalization of
components

[SWS_Rte_02503] [SWS_Rte_02562]
[SWS_Rte_02564] [SWS_Rte_02707]
[SWS_Rte_03852] [SWS_Rte_07046]

[SRS_Rte_00055] RTE use of global namespace [SWS_Rte_01171] [SWS_Rte_06706]
[SWS_Rte_06707] [SWS_Rte_06708]
[SWS_Rte_07036] [SWS_Rte_07037]
[SWS_Rte_07104] [SWS_Rte_07109]
[SWS_Rte_07110] [SWS_Rte_07111]
[SWS_Rte_07114] [SWS_Rte_07115]
[SWS_Rte_07116] [SWS_Rte_07117]
[SWS_Rte_07118] [SWS_Rte_07119]
[SWS_Rte_07144] [SWS_Rte_07145]
[SWS_Rte_07146] [SWS_Rte_07148]
[SWS_Rte_07149] [SWS_Rte_07162]
[SWS_Rte_07163] [SWS_Rte_07166]
[SWS_Rte_07284]

[SRS_Rte_00059] RTE API shall pass "in" primitive
data types by value

[SWS_Rte_01017] [SWS_Rte_01020]
[SWS_Rte_06805] [SWS_Rte_06807]
[SWS_Rte_07069] [SWS_Rte_07070]
[SWS_Rte_07071] [SWS_Rte_07072]
[SWS_Rte_07073] [SWS_Rte_07074]
[SWS_Rte_07076] [SWS_Rte_07077]
[SWS_Rte_07078] [SWS_Rte_07079]
[SWS_Rte_07080] [SWS_Rte_07081]
[SWS_Rte_07083] [SWS_Rte_07084]
[SWS_Rte_07661] [SWS_Rte_08300]

[SRS_Rte_00060] RTE API shall pass "in"
composite data types by
reference.

[SWS_Rte_01018] [SWS_Rte_05107]
[SWS_Rte_05108] [SWS_Rte_06804]
[SWS_Rte_06807] [SWS_Rte_07082]
[SWS_Rte_07084] [SWS_Rte_07086]

40 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Requirement Description Satisfied by
[SRS_Rte_00061] "in/out" and "out" parameters [SWS_Rte_01017] [SWS_Rte_01018]

[SWS_Rte_01019] [SWS_Rte_01020]
[SWS_Rte_05107] [SWS_Rte_05108]
[SWS_Rte_05109] [SWS_Rte_06806]
[SWS_Rte_07082] [SWS_Rte_07083]
[SWS_Rte_07084] [SWS_Rte_07661]

[SRS_Rte_00062] Local access to basic software
components

[SWS_Rte_02051]

[SRS_Rte_00065] Deterministic generation [SWS_Rte_02514] [SWS_Rte_05150]
[SRS_Rte_00068] Signal initial values [SWS_Rte_02517] [SWS_Rte_03852]

[SWS_Rte_05078] [SWS_Rte_07046]
[SWS_Rte_07642] [SWS_Rte_07668]
[SWS_Rte_08311]

[SRS_Rte_00069] Communication timeouts [SWS_Rte_01064] [SWS_Rte_01095]
[SWS_Rte_01107] [SWS_Rte_01114]
[SWS_Rte_03754] [SWS_Rte_03758]
[SWS_Rte_03759] [SWS_Rte_03763]
[SWS_Rte_03767] [SWS_Rte_03768]
[SWS_Rte_03770] [SWS_Rte_03771]
[SWS_Rte_03772] [SWS_Rte_03773]
[SWS_Rte_06002] [SWS_Rte_06013]
[SWS_Rte_07056] [SWS_Rte_07059]
[SWS_Rte_07060] [SWS_Rte_08310]

[SRS_Rte_00070] Invocation order of Runnable
Entities

[SWS_Rte_02207]

[SRS_Rte_00072] Activation of Runnable Entities [SWS_Rte_01131] [SWS_Rte_01133]
[SWS_Rte_01135] [SWS_Rte_01137]
[SWS_Rte_01166] [SWS_Rte_01292]
[SWS_Rte_01359] [SWS_Rte_02203]
[SWS_Rte_02512] [SWS_Rte_02697]
[SWS_Rte_02758] [SWS_Rte_03520]
[SWS_Rte_03523] [SWS_Rte_03524]
[SWS_Rte_03526] [SWS_Rte_03527]
[SWS_Rte_03530] [SWS_Rte_03531]
[SWS_Rte_03532] [SWS_Rte_05193]
[SWS_Rte_06748] [SWS_Rte_06759]
[SWS_Rte_06760] [SWS_Rte_06771]
[SWS_Rte_07023] [SWS_Rte_07024]
[SWS_Rte_07025] [SWS_Rte_07026]
[SWS_Rte_07027] [SWS_Rte_07061]
[SWS_Rte_07177] [SWS_Rte_07178]
[SWS_Rte_07207] [SWS_Rte_07208]
[SWS_Rte_07379] [SWS_Rte_07403]
[SWS_Rte_07515] [SWS_Rte_07575]

[SRS_Rte_00073] Atomic transport of Data
Elements

[SWS_Rte_04527]

[SRS_Rte_00075] API for accessing per-instance
memory

[SWS_Rte_01118] [SWS_Rte_01119]

41 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Requirement Description Satisfied by
[SRS_Rte_00077] Instantiation of per-instance

memory
[SWS_Rte_02303] [SWS_Rte_02304]
[SWS_Rte_02305] [SWS_Rte_03782]
[SWS_Rte_05062] [SWS_Rte_07045]
[SWS_Rte_07133] [SWS_Rte_07161]
[SWS_Rte_07182] [SWS_Rte_07183]
[SWS_Rte_07184] [SWS_Rte_08303]
[SWS_Rte_08304]

[SRS_Rte_00078] Support for Data Element
Invalidation

[SWS_Rte_01206] [SWS_Rte_01231]
[SWS_Rte_01282] [SWS_Rte_02589]
[SWS_Rte_02590] [SWS_Rte_02594]
[SWS_Rte_02599] [SWS_Rte_02600]
[SWS_Rte_02603] [SWS_Rte_02607]
[SWS_Rte_02609] [SWS_Rte_02626]
[SWS_Rte_02629] [SWS_Rte_02666]
[SWS_Rte_02702] [SWS_Rte_03778]
[SWS_Rte_03800] [SWS_Rte_03801]
[SWS_Rte_03802] [SWS_Rte_05024]
[SWS_Rte_05025] [SWS_Rte_05026]
[SWS_Rte_05030] [SWS_Rte_05032]
[SWS_Rte_05048] [SWS_Rte_05049]
[SWS_Rte_05063] [SWS_Rte_05064]
[SWS_Rte_06727] [SWS_Rte_07031]
[SWS_Rte_07032] [SWS_Rte_08004]
[SWS_Rte_08005] [SWS_Rte_08007]
[SWS_Rte_08008] [SWS_Rte_08009]
[SWS_Rte_08046] [SWS_Rte_08047]
[SWS_Rte_08048] [SWS_Rte_08049]
[SWS_Rte_08050] [SWS_Rte_08405]
[SWS_Rte_08406] [SWS_Rte_08407]
[SWS_Rte_08501]

[SRS_Rte_00079] Single asynchronous
client-server interaction

[SWS_Rte_01105] [SWS_Rte_01109]
[SWS_Rte_01133] [SWS_Rte_01166]
[SWS_Rte_01359] [SWS_Rte_02658]
[SWS_Rte_03765] [SWS_Rte_03766]
[SWS_Rte_03771] [SWS_Rte_03772]
[SWS_Rte_05193] [SWS_Rte_07023]
[SWS_Rte_07024] [SWS_Rte_07025]
[SWS_Rte_07026] [SWS_Rte_07027]
[SWS_Rte_08800]

[SRS_Rte_00080] Multiple requests of servers [SWS_Rte_03769] [SWS_Rte_04516]
[SWS_Rte_04520]

[SRS_Rte_00082] Standardized communication
protocol

[SWS_Rte_02579] [SWS_Rte_02649]
[SWS_Rte_02651] [SWS_Rte_02653]
[SWS_Rte_02654] [SWS_Rte_02655]
[SWS_Rte_02656] [SWS_Rte_02657]
[SWS_Rte_05111] [SWS_Rte_07346]
[SWS_Rte_08700] [SWS_Rte_08701]
[SWS_Rte_08702] [SWS_Rte_08703]
[SWS_Rte_08704] [SWS_Rte_08705]
[SWS_Rte_08706] [SWS_Rte_08707]
[SWS_Rte_08708] [SWS_Rte_08709]
[SWS_Rte_08710] [SWS_Rte_08711]
[SWS_Rte_08712] [SWS_Rte_08713]
[SWS_Rte_08730]

42 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Requirement Description Satisfied by
[SRS_Rte_00083] Optimization for source-code

components
[SWS_Rte_01152] [SWS_Rte_01274]

[SRS_Rte_00084] Support infrastructural errors [SWS_Rte_01318] [SWS_Rte_02593]
[SRS_Rte_00087] Software Module Header File

generation
[SWS_Rte_01000] [SWS_Rte_01004]
[SWS_Rte_01006] [SWS_Rte_01132]
[SWS_Rte_01274] [SWS_Rte_03786]
[SWS_Rte_05078] [SWS_Rte_06703]
[SWS_Rte_06704] [SWS_Rte_06705]
[SWS_Rte_06713] [SWS_Rte_07127]
[SWS_Rte_07131] [SWS_Rte_07924]

[SRS_Rte_00089] Independent access to interface
elements

[SWS_Rte_06008]

[SRS_Rte_00091] Inter-ECU Marshalling [SWS_Rte_02557] [SWS_Rte_04504]
[SWS_Rte_04505] [SWS_Rte_04506]
[SWS_Rte_04507] [SWS_Rte_04508]
[SWS_Rte_04527] [SWS_Rte_05081]
[SWS_Rte_05173] [SWS_Rte_08700]
[SWS_Rte_08701] [SWS_Rte_08702]
[SWS_Rte_08703] [SWS_Rte_08704]
[SWS_Rte_08705] [SWS_Rte_08706]
[SWS_Rte_08707] [SWS_Rte_08708]
[SWS_Rte_08709] [SWS_Rte_08710]
[SWS_Rte_08711] [SWS_Rte_08712]
[SWS_Rte_08713] [SWS_Rte_08725]
[SWS_Rte_08726] [SWS_Rte_08727]
[SWS_Rte_08728] [SWS_Rte_08729]
[SWS_Rte_08730] [SWS_Rte_08731]
[SWS_Rte_08761] [SWS_Rte_08762]

[SRS_Rte_00092] Implementation of VFB model
"waitpoints"

[SWS_Rte_01358] [SWS_Rte_02740]
[SWS_Rte_02741] [SWS_Rte_02743]
[SWS_Rte_02744] [SWS_Rte_02745]
[SWS_Rte_02746] [SWS_Rte_03010]
[SWS_Rte_03018] [SWS_Rte_07402]
[SWS_Rte_07846] [SWS_Rte_07847]
[SWS_Rte_08318] [SWS_Rte_08319]
[SWS_Rte_08320] [SWS_Rte_08321]
[SWS_Rte_08322]

43 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Requirement Description Satisfied by
[SRS_Rte_00094] Communication and Resource

Errors
[SWS_Rte_01034] [SWS_Rte_01084]
[SWS_Rte_01086] [SWS_Rte_01093]
[SWS_Rte_01094] [SWS_Rte_01095]
[SWS_Rte_01103] [SWS_Rte_01104]
[SWS_Rte_01105] [SWS_Rte_01106]
[SWS_Rte_01107] [SWS_Rte_01112]
[SWS_Rte_01113] [SWS_Rte_01114]
[SWS_Rte_01207] [SWS_Rte_01259]
[SWS_Rte_01260] [SWS_Rte_01261]
[SWS_Rte_01262] [SWS_Rte_01318]
[SWS_Rte_01330] [SWS_Rte_01331]
[SWS_Rte_01333] [SWS_Rte_01334]
[SWS_Rte_01339] [SWS_Rte_01344]
[SWS_Rte_02524] [SWS_Rte_02525]
[SWS_Rte_02571] [SWS_Rte_02572]
[SWS_Rte_02578] [SWS_Rte_02598]
[SWS_Rte_02602] [SWS_Rte_02674]
[SWS_Rte_02721] [SWS_Rte_02727]
[SWS_Rte_02728] [SWS_Rte_02729]
[SWS_Rte_03606] [SWS_Rte_03774]
[SWS_Rte_03785] [SWS_Rte_03853]
[SWS_Rte_07258] [SWS_Rte_07374]
[SWS_Rte_07375] [SWS_Rte_07376]
[SWS_Rte_07392] [SWS_Rte_07393]
[SWS_Rte_07636] [SWS_Rte_07637]
[SWS_Rte_07650] [SWS_Rte_07651]
[SWS_Rte_07652] [SWS_Rte_07659]
[SWS_Rte_07660] [SWS_Rte_07673]
[SWS_Rte_07820] [SWS_Rte_07821]
[SWS_Rte_07822] [SWS_Rte_07823]
[SWS_Rte_07848] [SWS_Rte_07849]
[SWS_Rte_08301] [SWS_Rte_08302]
[SWS_Rte_08727] [SWS_Rte_08728]
[SWS_Rte_08729]

[SRS_Rte_00098] Explicit Sending [SWS_Rte_01071] [SWS_Rte_06011]
[SWS_Rte_06016]

[SRS_Rte_00099] Decoupling of interrupts [SWS_Rte_03530] [SWS_Rte_03531]
[SWS_Rte_03532] [SWS_Rte_03594]
[SWS_Rte_03600]

[SRS_Rte_00100] Compiler independent API [SWS_Rte_01314]
[SRS_Rte_00107] Support for

INFORMATION_TYPE attribute
[SWS_Rte_01135] [SWS_Rte_01137]
[SWS_Rte_01331] [SWS_Rte_02516]
[SWS_Rte_02518] [SWS_Rte_02520]
[SWS_Rte_02521] [SWS_Rte_02522]
[SWS_Rte_02523] [SWS_Rte_02524]
[SWS_Rte_02525] [SWS_Rte_02571]
[SWS_Rte_02572] [SWS_Rte_02718]
[SWS_Rte_02719] [SWS_Rte_02720]
[SWS_Rte_02721] [SWS_Rte_02758]
[SWS_Rte_04500] [SWS_Rte_06010]
[SWS_Rte_06771]

44 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Requirement Description Satisfied by
[SRS_Rte_00108] Support for INIT_VALUE

attribute
[SWS_Rte_01268] [SWS_Rte_02517]
[SWS_Rte_04501] [SWS_Rte_04502]
[SWS_Rte_05078] [SWS_Rte_06009]
[SWS_Rte_07642] [SWS_Rte_07668]
[SWS_Rte_07680] [SWS_Rte_07681]
[SWS_Rte_08311]

[SRS_Rte_00109] Support for RECEIVE_MODE
attribute

[SWS_Rte_02519] [SWS_Rte_03018]
[SWS_Rte_06002] [SWS_Rte_06012]

[SRS_Rte_00110] Support for BUFFERING
attribute

[SWS_Rte_01331] [SWS_Rte_02515]
[SWS_Rte_02522] [SWS_Rte_02523]
[SWS_Rte_02524] [SWS_Rte_02525]
[SWS_Rte_02526] [SWS_Rte_02527]
[SWS_Rte_02529] [SWS_Rte_02530]
[SWS_Rte_02571] [SWS_Rte_02572]
[SWS_Rte_02719] [SWS_Rte_02720]
[SWS_Rte_02721] [SWS_Rte_02723]
[SWS_Rte_07008]

[SRS_Rte_00111] Support for CLIENT_MODE
attribute

[SWS_Rte_01293] [SWS_Rte_01294]
[SWS_Rte_06639]

[SRS_Rte_00115] API for data consistency
mechanism

[SWS_Rte_01120] [SWS_Rte_01122]
[SWS_Rte_01307] [SWS_Rte_01308]

[SRS_Rte_00116] RTE Initialization and finalization [SWS_Rte_02535] [SWS_Rte_02536]
[SWS_Rte_02538] [SWS_Rte_02544]
[SWS_Rte_02569] [SWS_Rte_02570]
[SWS_Rte_02584] [SWS_Rte_02585]
[SWS_Rte_03852] [SWS_Rte_06766]
[SWS_Rte_06767] [SWS_Rte_07046]
[SWS_Rte_07270] [SWS_Rte_07586]

[SRS_Rte_00121] Support for FILTER attribute [SWS_Rte_05500] [SWS_Rte_05501]
[SWS_Rte_05503] [SWS_Rte_08077]
[SWS_Rte_08078] [SWS_Rte_08079]

45 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Requirement Description Satisfied by
[SRS_Rte_00122] Support for Transmission

Acknowledgement
[SWS_Rte_01080] [SWS_Rte_01083]
[SWS_Rte_01084] [SWS_Rte_01086]
[SWS_Rte_01137] [SWS_Rte_01283]
[SWS_Rte_01284] [SWS_Rte_01285]
[SWS_Rte_01286] [SWS_Rte_01287]
[SWS_Rte_01344] [SWS_Rte_02612]
[SWS_Rte_02676] [SWS_Rte_02677]
[SWS_Rte_02678] [SWS_Rte_02725]
[SWS_Rte_02727] [SWS_Rte_02729]
[SWS_Rte_02758] [SWS_Rte_03002]
[SWS_Rte_03005] [SWS_Rte_03604]
[SWS_Rte_03754] [SWS_Rte_03756]
[SWS_Rte_03757] [SWS_Rte_03758]
[SWS_Rte_03774] [SWS_Rte_03775]
[SWS_Rte_03776] [SWS_Rte_05065]
[SWS_Rte_05084] [SWS_Rte_05085]
[SWS_Rte_05504] [SWS_Rte_06771]
[SWS_Rte_07055] [SWS_Rte_07286]
[SWS_Rte_07367] [SWS_Rte_07374]
[SWS_Rte_07375] [SWS_Rte_07376]
[SWS_Rte_07379] [SWS_Rte_07557]
[SWS_Rte_07558] [SWS_Rte_07560]
[SWS_Rte_07561] [SWS_Rte_07634]
[SWS_Rte_07635] [SWS_Rte_07636]
[SWS_Rte_07637] [SWS_Rte_07646]
[SWS_Rte_07647] [SWS_Rte_07648]
[SWS_Rte_07650] [SWS_Rte_07651]
[SWS_Rte_07652] [SWS_Rte_07659]
[SWS_Rte_07660] [SWS_Rte_07846]
[SWS_Rte_07847] [SWS_Rte_07848]
[SWS_Rte_07849] [SWS_Rte_07850]
[SWS_Rte_07851] [SWS_Rte_07927]
[SWS_Rte_08017] [SWS_Rte_08018]
[SWS_Rte_08020] [SWS_Rte_08021]
[SWS_Rte_08022] [SWS_Rte_08023]
[SWS_Rte_08043] [SWS_Rte_08044]
[SWS_Rte_08045] [SWS_Rte_08074]
[SWS_Rte_08075] [SWS_Rte_08076]

[SRS_Rte_00123] The RTE shall forward
application level errors from
server to client

[SWS_Rte_01103] [SWS_Rte_02576]
[SWS_Rte_02577] [SWS_Rte_02578]
[SWS_Rte_02593] [SWS_Rte_07925]
[SWS_Rte_07926] [SWS_Rte_08705]
[SWS_Rte_08706] [SWS_Rte_08709]
[SWS_Rte_08710]

[SRS_Rte_00124] API for application level errors
during Client Server
communication

[SWS_Rte_01103] [SWS_Rte_01130]
[SWS_Rte_02573] [SWS_Rte_02575]

46 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Requirement Description Satisfied by
[SRS_Rte_00126] C language support [SWS_Rte_01005] [SWS_Rte_01162]

[SWS_Rte_01167] [SWS_Rte_01169]
[SWS_Rte_03709] [SWS_Rte_03710]
[SWS_Rte_03724] [SWS_Rte_07124]
[SWS_Rte_07125] [SWS_Rte_07126]
[SWS_Rte_07297] [SWS_Rte_07298]
[SWS_Rte_07299] [SWS_Rte_07507]
[SWS_Rte_07508] [SWS_Rte_07509]
[SWS_Rte_07678] [SWS_Rte_07923]

[SRS_Rte_00128] Implicit Reception [SWS_Rte_01268] [SWS_Rte_03598]
[SWS_Rte_03599] [SWS_Rte_03741]
[SWS_Rte_03954] [SWS_Rte_03955]
[SWS_Rte_03956] [SWS_Rte_06000]
[SWS_Rte_06001] [SWS_Rte_06004]
[SWS_Rte_06011] [SWS_Rte_07007]
[SWS_Rte_07020] [SWS_Rte_07062]
[SWS_Rte_07063] [SWS_Rte_07064]
[SWS_Rte_07652] [SWS_Rte_08408]

[SRS_Rte_00129] Implicit Sending [SWS_Rte_03570] [SWS_Rte_03571]
[SWS_Rte_03572] [SWS_Rte_03573]
[SWS_Rte_03574] [SWS_Rte_03598]
[SWS_Rte_03744] [SWS_Rte_03746]
[SWS_Rte_03953] [SWS_Rte_03954]
[SWS_Rte_03955] [SWS_Rte_03957]
[SWS_Rte_05509] [SWS_Rte_06011]
[SWS_Rte_07007] [SWS_Rte_07021]
[SWS_Rte_07041] [SWS_Rte_07062]
[SWS_Rte_07065] [SWS_Rte_07066]
[SWS_Rte_07067] [SWS_Rte_07068]
[SWS_Rte_07367] [SWS_Rte_07374]
[SWS_Rte_07375] [SWS_Rte_07376]
[SWS_Rte_07646] [SWS_Rte_07647]
[SWS_Rte_07648] [SWS_Rte_07650]
[SWS_Rte_07651] [SWS_Rte_07660]
[SWS_Rte_08408]

[SRS_Rte_00131] "n:1" Sender-receiver
communication

[SWS_Rte_01071] [SWS_Rte_01072]
[SWS_Rte_01091] [SWS_Rte_01092]
[SWS_Rte_01135] [SWS_Rte_02631]
[SWS_Rte_02633] [SWS_Rte_02635]
[SWS_Rte_02670] [SWS_Rte_02724]
[SWS_Rte_03760] [SWS_Rte_03761]
[SWS_Rte_03762] [SWS_Rte_07394]
[SWS_Rte_07824] [SWS_Rte_07825]
[SWS_Rte_07826] [SWS_Rte_07827]

[SRS_Rte_00133] Concurrent invocation of
Runnable Entities

[SWS_Rte_02697] [SWS_Rte_03523]
[SWS_Rte_07007]

[SRS_Rte_00134] Runnable Entity categories
supported by the RTE

[SWS_Rte_03574] [SWS_Rte_03954]
[SWS_Rte_06003] [SWS_Rte_06007]
[SWS_Rte_07062]

[SRS_Rte_00137] API for mismatched ports [SWS_Rte_01368] [SWS_Rte_01369]
[SWS_Rte_01370]

47 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Requirement Description Satisfied by
[SRS_Rte_00138] C++ language support [SWS_Rte_01005] [SWS_Rte_01011]

[SWS_Rte_03709] [SWS_Rte_03710]
[SWS_Rte_07124] [SWS_Rte_07125]
[SWS_Rte_07126] [SWS_Rte_07297]
[SWS_Rte_07298] [SWS_Rte_07299]
[SWS_Rte_07507] [SWS_Rte_07508]
[SWS_Rte_07509]

[SRS_Rte_00139] Support for unconnected ports [SWS_Rte_01329] [SWS_Rte_01330]
[SWS_Rte_01331] [SWS_Rte_01332]
[SWS_Rte_01333] [SWS_Rte_01334]
[SWS_Rte_01344] [SWS_Rte_01346]
[SWS_Rte_01347] [SWS_Rte_01375]
[SWS_Rte_02638] [SWS_Rte_02639]
[SWS_Rte_02640] [SWS_Rte_02641]
[SWS_Rte_02642] [SWS_Rte_02749]
[SWS_Rte_02750] [SWS_Rte_03019]
[SWS_Rte_03783] [SWS_Rte_03784]
[SWS_Rte_03785] [SWS_Rte_03978]
[SWS_Rte_03980] [SWS_Rte_05099]
[SWS_Rte_05101] [SWS_Rte_05102]
[SWS_Rte_05170] [SWS_Rte_06030]
[SWS_Rte_07378] [SWS_Rte_07655]
[SWS_Rte_07659] [SWS_Rte_07660]
[SWS_Rte_07663] [SWS_Rte_07667]
[SWS_Rte_07668] [SWS_Rte_07669]
[SWS_Rte_07847]

[SRS_Rte_00140] Binary-code AUTOSAR software
components

[SWS_Rte_01000] [SWS_Rte_01195]
[SWS_Rte_01315] [SWS_Rte_07120]

[SRS_Rte_00141] Explicit Reception [SWS_Rte_01072] [SWS_Rte_01091]
[SWS_Rte_01092] [SWS_Rte_06011]
[SWS_Rte_07394] [SWS_Rte_07673]

[SRS_Rte_00142] Support for
InterRunnableVariables

[SWS_Rte_01303] [SWS_Rte_01304]
[SWS_Rte_01305] [SWS_Rte_01306]
[SWS_Rte_01350] [SWS_Rte_01351]
[SWS_Rte_02636] [SWS_Rte_03516]
[SWS_Rte_03517] [SWS_Rte_03519]
[SWS_Rte_03550] [SWS_Rte_03553]
[SWS_Rte_03560] [SWS_Rte_03562]
[SWS_Rte_03565] [SWS_Rte_03567]
[SWS_Rte_03580] [SWS_Rte_03582]
[SWS_Rte_03583] [SWS_Rte_03584]
[SWS_Rte_03589] [SWS_Rte_07007]
[SWS_Rte_07022] [SWS_Rte_07187]

48 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Requirement Description Satisfied by
[SRS_Rte_00143] Mode Switches [SWS_Rte_02500] [SWS_Rte_02503]

[SWS_Rte_02504] [SWS_Rte_02512]
[SWS_Rte_02544] [SWS_Rte_02546]
[SWS_Rte_02562] [SWS_Rte_02563]
[SWS_Rte_02564] [SWS_Rte_02587]
[SWS_Rte_02630] [SWS_Rte_02631]
[SWS_Rte_02634] [SWS_Rte_02661]
[SWS_Rte_02662] [SWS_Rte_02663]
[SWS_Rte_02664] [SWS_Rte_02665]
[SWS_Rte_02667] [SWS_Rte_02668]
[SWS_Rte_02669] [SWS_Rte_02675]
[SWS_Rte_02679] [SWS_Rte_02706]
[SWS_Rte_02707] [SWS_Rte_02708]
[SWS_Rte_02730] [SWS_Rte_06766]
[SWS_Rte_06767] [SWS_Rte_06768]
[SWS_Rte_06769] [SWS_Rte_06770]
[SWS_Rte_06772] [SWS_Rte_06773]
[SWS_Rte_06774] [SWS_Rte_06775]
[SWS_Rte_06776] [SWS_Rte_06777]
[SWS_Rte_06778] [SWS_Rte_06779]
[SWS_Rte_06780] [SWS_Rte_06785]
[SWS_Rte_06786] [SWS_Rte_06787]
[SWS_Rte_06788] [SWS_Rte_06789]
[SWS_Rte_06790] [SWS_Rte_06791]
[SWS_Rte_06792] [SWS_Rte_06793]
[SWS_Rte_06794] [SWS_Rte_06795]
[SWS_Rte_06796] [SWS_Rte_06797]
[SWS_Rte_07056] [SWS_Rte_07057]
[SWS_Rte_07058] [SWS_Rte_07059]
[SWS_Rte_07060] [SWS_Rte_07150]
[SWS_Rte_07151] [SWS_Rte_07152]
[SWS_Rte_07153] [SWS_Rte_07154]
[SWS_Rte_07155] [SWS_Rte_07157]
[SWS_Rte_07173] [SWS_Rte_07259]
[SWS_Rte_07533] [SWS_Rte_07535]
[SWS_Rte_07559] [SWS_Rte_07564]

49 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Requirement Description Satisfied by
[SRS_Rte_00144] RTE shall support the

notification of mode switches via
AUTOSAR interfaces

[SWS_Rte_02508] [SWS_Rte_02544]
[SWS_Rte_02546] [SWS_Rte_02549]
[SWS_Rte_02566] [SWS_Rte_02567]
[SWS_Rte_02568] [SWS_Rte_02624]
[SWS_Rte_02627] [SWS_Rte_02628]
[SWS_Rte_02659] [SWS_Rte_02660]
[SWS_Rte_02732] [SWS_Rte_02738]
[SWS_Rte_03858] [SWS_Rte_03859]
[SWS_Rte_06742] [SWS_Rte_06743]
[SWS_Rte_06744] [SWS_Rte_06745]
[SWS_Rte_06746] [SWS_Rte_06747]
[SWS_Rte_06766] [SWS_Rte_06767]
[SWS_Rte_06772] [SWS_Rte_06773]
[SWS_Rte_06774] [SWS_Rte_06775]
[SWS_Rte_06776] [SWS_Rte_06777]
[SWS_Rte_06778] [SWS_Rte_06779]
[SWS_Rte_06780] [SWS_Rte_06781]
[SWS_Rte_06782] [SWS_Rte_06783]
[SWS_Rte_06784] [SWS_Rte_06785]
[SWS_Rte_06786] [SWS_Rte_06787]
[SWS_Rte_06788] [SWS_Rte_06789]
[SWS_Rte_06790] [SWS_Rte_06791]
[SWS_Rte_06792] [SWS_Rte_06793]
[SWS_Rte_06794] [SWS_Rte_06795]
[SWS_Rte_06796] [SWS_Rte_06797]
[SWS_Rte_07155] [SWS_Rte_07262]
[SWS_Rte_07540] [SWS_Rte_07640]
[SWS_Rte_07666] [SWS_Rte_08500]
[SWS_Rte_08504] [SWS_Rte_08505]
[SWS_Rte_08506] [SWS_Rte_08509]
[SWS_Rte_08510]

[SRS_Rte_00145] Compatibility mode [SWS_Rte_01151] [SWS_Rte_01216]
[SWS_Rte_01234] [SWS_Rte_01257]
[SWS_Rte_01277] [SWS_Rte_01279]
[SWS_Rte_01326] [SWS_Rte_03794]

[SRS_Rte_00146] Vendor mode [SWS_Rte_01234]
[SRS_Rte_00147] Support for communication

infrastructure time-out
notification

[SWS_Rte_02589] [SWS_Rte_02590]
[SWS_Rte_02599] [SWS_Rte_02600]
[SWS_Rte_02604] [SWS_Rte_02607]
[SWS_Rte_02609] [SWS_Rte_02610]
[SWS_Rte_02611] [SWS_Rte_02629]
[SWS_Rte_02666] [SWS_Rte_02703]
[SWS_Rte_02710] [SWS_Rte_03759]
[SWS_Rte_05021] [SWS_Rte_05022]
[SWS_Rte_08004] [SWS_Rte_08061]
[SWS_Rte_08062] [SWS_Rte_08501]

50 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Requirement Description Satisfied by
[SRS_Rte_00148] Support "Specification of

Memory Mapping"
[SWS_Rte_03788] [SWS_Rte_05088]
[SWS_Rte_05089] [SWS_Rte_06741]
[SWS_Rte_07047] [SWS_Rte_07048]
[SWS_Rte_07049] [SWS_Rte_07050]
[SWS_Rte_07051] [SWS_Rte_07052]
[SWS_Rte_07053] [SWS_Rte_07194]
[SWS_Rte_07195] [SWS_Rte_07589]
[SWS_Rte_07590] [SWS_Rte_07591]
[SWS_Rte_07592] [SWS_Rte_07593]
[SWS_Rte_07594] [SWS_Rte_07595]
[SWS_Rte_07596] [SWS_Rte_07830]
[SWS_Rte_07831] [SWS_Rte_07832]

[SRS_Rte_00149] Support "Specification of
Compiler Abstraction"

[SWS_Rte_01164] [SWS_Rte_03787]
[SWS_Rte_07194] [SWS_Rte_07195]
[SWS_Rte_07593] [SWS_Rte_07594]
[SWS_Rte_07595] [SWS_Rte_07596]
[SWS_Rte_07641]

[SRS_Rte_00150] Support "Specification of
Platform Types"

[SWS_Rte_01164] [SWS_Rte_07641]

[SRS_Rte_00152] Support for port-defined
argument values

[SWS_Rte_01166] [SWS_Rte_01360]

[SRS_Rte_00153] Support for Measurement [SWS_Rte_03900] [SWS_Rte_03901]
[SWS_Rte_03902] [SWS_Rte_03903]
[SWS_Rte_03904] [SWS_Rte_03950]
[SWS_Rte_03951] [SWS_Rte_03972]
[SWS_Rte_03973] [SWS_Rte_03974]
[SWS_Rte_03975] [SWS_Rte_03976]
[SWS_Rte_03977] [SWS_Rte_03978]
[SWS_Rte_03979] [SWS_Rte_03980]
[SWS_Rte_03981] [SWS_Rte_03982]
[SWS_Rte_05087] [SWS_Rte_05101]
[SWS_Rte_05102] [SWS_Rte_05120]
[SWS_Rte_05121] [SWS_Rte_05122]
[SWS_Rte_05123] [SWS_Rte_05124]
[SWS_Rte_05125] [SWS_Rte_05136]
[SWS_Rte_05168] [SWS_Rte_05169]
[SWS_Rte_05170] [SWS_Rte_05172]
[SWS_Rte_05174] [SWS_Rte_05175]
[SWS_Rte_05176] [SWS_Rte_06700]
[SWS_Rte_06701] [SWS_Rte_06702]
[SWS_Rte_06726] [SWS_Rte_07160]
[SWS_Rte_07174] [SWS_Rte_07197]
[SWS_Rte_07198] [SWS_Rte_07344]
[SWS_Rte_07349]

51 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Requirement Description Satisfied by
[SRS_Rte_00154] Support for Calibration [SWS_Rte_03835] [SWS_Rte_03905]

[SWS_Rte_03906] [SWS_Rte_03907]
[SWS_Rte_03908] [SWS_Rte_03909]
[SWS_Rte_03910] [SWS_Rte_03911]
[SWS_Rte_03912] [SWS_Rte_03913]
[SWS_Rte_03914] [SWS_Rte_03915]
[SWS_Rte_03916] [SWS_Rte_03922]
[SWS_Rte_03932] [SWS_Rte_03933]
[SWS_Rte_03934] [SWS_Rte_03935]
[SWS_Rte_03936] [SWS_Rte_03942]
[SWS_Rte_03943] [SWS_Rte_03947]
[SWS_Rte_03948] [SWS_Rte_03949]
[SWS_Rte_03958] [SWS_Rte_03959]
[SWS_Rte_03960] [SWS_Rte_03961]
[SWS_Rte_03962] [SWS_Rte_03963]
[SWS_Rte_03964] [SWS_Rte_03965]
[SWS_Rte_03968] [SWS_Rte_03970]
[SWS_Rte_03971] [SWS_Rte_05112]
[SWS_Rte_05145] [SWS_Rte_05194]
[SWS_Rte_07029] [SWS_Rte_07030]
[SWS_Rte_07033] [SWS_Rte_07034]
[SWS_Rte_07035] [SWS_Rte_07096]
[SWS_Rte_07185] [SWS_Rte_07186]
[SWS_Rte_07693]

[SRS_Rte_00155] API to access calibration
parameters

[SWS_Rte_01252] [SWS_Rte_01300]
[SWS_Rte_03835] [SWS_Rte_03927]
[SWS_Rte_03928] [SWS_Rte_03929]
[SWS_Rte_03930] [SWS_Rte_03949]
[SWS_Rte_03952] [SWS_Rte_07093]
[SWS_Rte_07094] [SWS_Rte_07095]

[SRS_Rte_00156] Support for different calibration
data emulation methods

[SWS_Rte_03905] [SWS_Rte_03906]
[SWS_Rte_03908] [SWS_Rte_03909]
[SWS_Rte_03910] [SWS_Rte_03911]
[SWS_Rte_03913] [SWS_Rte_03914]
[SWS_Rte_03915] [SWS_Rte_03916]
[SWS_Rte_03922] [SWS_Rte_03932]
[SWS_Rte_03933] [SWS_Rte_03934]
[SWS_Rte_03935] [SWS_Rte_03936]
[SWS_Rte_03942] [SWS_Rte_03943]
[SWS_Rte_03947] [SWS_Rte_03948]
[SWS_Rte_03960] [SWS_Rte_03961]
[SWS_Rte_03962] [SWS_Rte_03963]
[SWS_Rte_03964] [SWS_Rte_03965]
[SWS_Rte_03968] [SWS_Rte_03970]
[SWS_Rte_03971] [SWS_Rte_05145]

[SRS_Rte_00157] Support for calibration
parameters in NVRAM

[SWS_Rte_03936]

[SRS_Rte_00158] Support separation of calibration
parameters

[SWS_Rte_03907] [SWS_Rte_03908]
[SWS_Rte_03911] [SWS_Rte_03912]
[SWS_Rte_03959] [SWS_Rte_05145]
[SWS_Rte_05194] [SWS_Rte_07096]

[SRS_Rte_00159] Sharing of calibration
parameters

[SWS_Rte_02749] [SWS_Rte_02750]
[SWS_Rte_03958] [SWS_Rte_05112]
[SWS_Rte_07186]

52 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Requirement Description Satisfied by
[SRS_Rte_00160] Debounced start of Runnable

Entities
[SWS_Rte_02697]

[SRS_Rte_00161] Activation offset of Runnable
Entities

[SWS_Rte_07000]

[SRS_Rte_00162] "1:n" External Trigger
communication

[SWS_Rte_07200] [SWS_Rte_07201]
[SWS_Rte_07207] [SWS_Rte_07212]
[SWS_Rte_07213] [SWS_Rte_07214]
[SWS_Rte_07215] [SWS_Rte_07216]
[SWS_Rte_07218] [SWS_Rte_07229]
[SWS_Rte_07543]

[SRS_Rte_00163] Support for
InterRunnableTriggering

[SWS_Rte_07203] [SWS_Rte_07204]
[SWS_Rte_07208] [SWS_Rte_07220]
[SWS_Rte_07221] [SWS_Rte_07223]
[SWS_Rte_07224] [SWS_Rte_07226]
[SWS_Rte_07227] [SWS_Rte_07228]
[SWS_Rte_07229] [SWS_Rte_07555]

[SRS_Rte_00164] Ensure a unique naming of
generated types visible in the
global namespace.

[SWS_Rte_06706] [SWS_Rte_06707]
[SWS_Rte_06708] [SWS_Rte_07110]
[SWS_Rte_07111] [SWS_Rte_07114]
[SWS_Rte_07115] [SWS_Rte_07116]
[SWS_Rte_07117] [SWS_Rte_07118]
[SWS_Rte_07119] [SWS_Rte_07144]
[SWS_Rte_07145] [SWS_Rte_07146]

[SRS_Rte_00165] Suppress identical "C" type
re-definitions.

[SWS_Rte_07105] [SWS_Rte_07107]
[SWS_Rte_07112] [SWS_Rte_07113]
[SWS_Rte_07134] [SWS_Rte_07143]
[SWS_Rte_07167] [SWS_Rte_07169]

[SRS_Rte_00166] Use the AUTOSAR Standard
Types in the global namespace if
the AUTOSAR data type is
mapped to an AUTOSAR
Standard Type.

[SWS_Rte_07036] [SWS_Rte_07037]
[SWS_Rte_07104] [SWS_Rte_07109]
[SWS_Rte_07148] [SWS_Rte_07149]
[SWS_Rte_07162] [SWS_Rte_07163]
[SWS_Rte_07166]

[SRS_Rte_00167] Encapsulate a Software
Component local name space.

[SWS_Rte_01004] [SWS_Rte_01276]
[SWS_Rte_02575] [SWS_Rte_03809]
[SWS_Rte_03810] [SWS_Rte_03854]
[SWS_Rte_05051] [SWS_Rte_05052]
[SWS_Rte_06513] [SWS_Rte_06515]
[SWS_Rte_06518] [SWS_Rte_06519]
[SWS_Rte_06520] [SWS_Rte_06530]
[SWS_Rte_06541] [SWS_Rte_06542]
[SWS_Rte_06551] [SWS_Rte_06552]
[SWS_Rte_06716] [SWS_Rte_06717]
[SWS_Rte_06718] [SWS_Rte_07122]
[SWS_Rte_07123] [SWS_Rte_07132]
[SWS_Rte_07140] [SWS_Rte_07410]
[SWS_Rte_07411] [SWS_Rte_07412]
[SWS_Rte_08401] [SWS_Rte_08402]
[SWS_Rte_08416]

[SRS_Rte_00168] Typing of RTE API. [SWS_Rte_07104]

53 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Requirement Description Satisfied by
[SRS_Rte_00169] Map code and memory allocated

by the RTE to memory sections.
[SWS_Rte_05088] [SWS_Rte_05089]
[SWS_Rte_06741] [SWS_Rte_07047]
[SWS_Rte_07048] [SWS_Rte_07049]
[SWS_Rte_07050] [SWS_Rte_07051]
[SWS_Rte_07052] [SWS_Rte_07053]
[SWS_Rte_07589] [SWS_Rte_07590]
[SWS_Rte_07591] [SWS_Rte_07592]

[SRS_Rte_00170] Provide used memory sections
description

[SWS_Rte_05086] [SWS_Rte_05089]
[SWS_Rte_06725]

[SRS_Rte_00171] Support for fixed and constant
data

[SWS_Rte_03930]

[SRS_Rte_00176] Sharing of NVRAM data [SWS_Rte_07301]
[SRS_Rte_00177] Support of

NvBlockComponentType
[SWS_Rte_07303] [SWS_Rte_07312]
[SWS_Rte_07317] [SWS_Rte_07343]
[SWS_Rte_07353] [SWS_Rte_07355]
[SWS_Rte_07398] [SWS_Rte_07399]
[SWS_Rte_07632] [SWS_Rte_07633]
[SWS_Rte_08063] [SWS_Rte_08064]

[SRS_Rte_00178] Data consistency of
NvBlockComponentType

[SWS_Rte_07310] [SWS_Rte_07311]
[SWS_Rte_07315] [SWS_Rte_07316]
[SWS_Rte_07319] [SWS_Rte_07350]
[SWS_Rte_07601] [SWS_Rte_07602]
[SWS_Rte_07613] [SWS_Rte_07614]

[SRS_Rte_00179] Support of Update Flag for Data
Reception

[SWS_Rte_07385] [SWS_Rte_07386]
[SWS_Rte_07387] [SWS_Rte_07390]
[SWS_Rte_07391] [SWS_Rte_07392]
[SWS_Rte_07393] [SWS_Rte_07654]
[SWS_Rte_07689]

[SRS_Rte_00180] DataSemantics range check
during runtime

[SWS_Rte_01371] [SWS_Rte_01372]
[SWS_Rte_01374] [SWS_Rte_03839]
[SWS_Rte_03840] [SWS_Rte_03841]
[SWS_Rte_03842] [SWS_Rte_03843]
[SWS_Rte_03845] [SWS_Rte_03846]
[SWS_Rte_03847] [SWS_Rte_03848]
[SWS_Rte_03849] [SWS_Rte_03861]
[SWS_Rte_07038] [SWS_Rte_08016]
[SWS_Rte_08024] [SWS_Rte_08025]
[SWS_Rte_08026] [SWS_Rte_08027]
[SWS_Rte_08028] [SWS_Rte_08029]
[SWS_Rte_08030] [SWS_Rte_08031]
[SWS_Rte_08032] [SWS_Rte_08033]
[SWS_Rte_08034] [SWS_Rte_08035]
[SWS_Rte_08036] [SWS_Rte_08037]
[SWS_Rte_08038] [SWS_Rte_08039]
[SWS_Rte_08040] [SWS_Rte_08041]
[SWS_Rte_08042] [SWS_Rte_08065]

[SRS_Rte_00181] Conversion between internal
and network data types

[SWS_Rte_03827] [SWS_Rte_03828]
[SWS_Rte_06737] [SWS_Rte_06738]
[SWS_Rte_07828] [SWS_Rte_07829]
[SWS_Rte_07844]

54 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Requirement Description Satisfied by
[SRS_Rte_00182] Self Scaling Signals at Port

Interfaces
[SWS_Rte_01374] [SWS_Rte_03815]
[SWS_Rte_03816] [SWS_Rte_03817]
[SWS_Rte_03818] [SWS_Rte_03819]
[SWS_Rte_03820] [SWS_Rte_03821]
[SWS_Rte_03822] [SWS_Rte_03823]
[SWS_Rte_03829] [SWS_Rte_03830]
[SWS_Rte_03831] [SWS_Rte_03832]
[SWS_Rte_03833] [SWS_Rte_03855]
[SWS_Rte_03856] [SWS_Rte_03857]
[SWS_Rte_03860] [SWS_Rte_07038]
[SWS_Rte_07091] [SWS_Rte_07092]
[SWS_Rte_07099] [SWS_Rte_07925]
[SWS_Rte_07926] [SWS_Rte_07928]
[SWS_Rte_08801]

[SRS_Rte_00183] RTE Read API returning the
dataElement value

[SWS_Rte_07394] [SWS_Rte_07395]
[SWS_Rte_07396]

[SRS_Rte_00184] RTE Status "Never Received" [SWS_Rte_07381] [SWS_Rte_07382]
[SWS_Rte_07383] [SWS_Rte_07384]
[SWS_Rte_07643] [SWS_Rte_07644]
[SWS_Rte_07645] [SWS_Rte_08005]
[SWS_Rte_08008] [SWS_Rte_08009]
[SWS_Rte_08046] [SWS_Rte_08047]
[SWS_Rte_08048]

[SRS_Rte_00185] RTE API with Rte_IFeedback [SWS_Rte_02589] [SWS_Rte_02590]
[SWS_Rte_02608] [SWS_Rte_02666]
[SWS_Rte_03836] [SWS_Rte_07367]
[SWS_Rte_07374] [SWS_Rte_07375]
[SWS_Rte_07376] [SWS_Rte_07378]
[SWS_Rte_07379] [SWS_Rte_07646]
[SWS_Rte_07647] [SWS_Rte_07648]
[SWS_Rte_07650] [SWS_Rte_07651]
[SWS_Rte_07652] [SWS_Rte_07660]

55 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Requirement Description Satisfied by
[SRS_Rte_00189] A2L Generation Support [SWS_Rte_05087] [SWS_Rte_05118]

[SWS_Rte_05119] [SWS_Rte_05120]
[SWS_Rte_05121] [SWS_Rte_05122]
[SWS_Rte_05123] [SWS_Rte_05124]
[SWS_Rte_05125] [SWS_Rte_05126]
[SWS_Rte_05127] [SWS_Rte_05128]
[SWS_Rte_05129] [SWS_Rte_05130]
[SWS_Rte_05131] [SWS_Rte_05132]
[SWS_Rte_05133] [SWS_Rte_05135]
[SWS_Rte_05136] [SWS_Rte_05137]
[SWS_Rte_05138] [SWS_Rte_05139]
[SWS_Rte_05140] [SWS_Rte_05141]
[SWS_Rte_05142] [SWS_Rte_05143]
[SWS_Rte_05144] [SWS_Rte_05152]
[SWS_Rte_05153] [SWS_Rte_05154]
[SWS_Rte_05155] [SWS_Rte_05156]
[SWS_Rte_05157] [SWS_Rte_05158]
[SWS_Rte_05159] [SWS_Rte_05160]
[SWS_Rte_05161] [SWS_Rte_05162]
[SWS_Rte_06702] [SWS_Rte_06726]
[SWS_Rte_07097] [SWS_Rte_08313]
[SWS_Rte_08314] [SWS_Rte_08315]
[SWS_Rte_08316] [SWS_Rte_08317]

[SRS_Rte_00190] Support for variable-length Data
Types

[SWS_Rte_07813] [SWS_Rte_07814]

[SRS_Rte_00191] Support for Variant Handling [SWS_Rte_05168] [SWS_Rte_05169]
[SWS_Rte_05174] [SWS_Rte_05175]
[SWS_Rte_05176] [SWS_Rte_06500]
[SWS_Rte_06501] [SWS_Rte_06507]
[SWS_Rte_06509] [SWS_Rte_06510]
[SWS_Rte_06512] [SWS_Rte_06543]
[SWS_Rte_06546] [SWS_Rte_06547]
[SWS_Rte_06549] [SWS_Rte_06550]
[SWS_Rte_06553] [SWS_Rte_06611]
[SWS_Rte_06612] [SWS_Rte_08066]
[SWS_Rte_08067] [SWS_Rte_08068]
[SWS_Rte_08069] [SWS_Rte_08070]

[SRS_Rte_00192] Support multiple trace clients [SWS_Rte_05086] [SWS_Rte_05091]
[SWS_Rte_05092] [SWS_Rte_05093]
[SWS_Rte_05106] [SWS_Rte_06725]

[SRS_Rte_00193] Support for Runnable Entity
execution chaining

[SWS_Rte_07800] [SWS_Rte_07802]

[SRS_Rte_00195] No activation of Runnable
Entities in terminated or
restarting partitions

[SWS_Rte_07604] [SWS_Rte_07606]

[SRS_Rte_00196] Inter-partition communication
consistency

[SWS_Rte_02761] [SWS_Rte_05147]
[SWS_Rte_07610]

[SRS_Rte_00200] Support of unconnected R-Ports [SWS_Rte_01330] [SWS_Rte_01331]
[SWS_Rte_01333] [SWS_Rte_01334]
[SWS_Rte_03785] [SWS_Rte_07655]
[SWS_Rte_07663]

56 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Requirement Description Satisfied by
[SRS_Rte_00201] Contract Phase with Variant

Handling support
[SWS_Rte_05104] [SWS_Rte_06500]
[SWS_Rte_06502] [SWS_Rte_06505]
[SWS_Rte_06514] [SWS_Rte_06515]
[SWS_Rte_06516] [SWS_Rte_06518]
[SWS_Rte_06519] [SWS_Rte_06520]
[SWS_Rte_06521] [SWS_Rte_06522]
[SWS_Rte_06523] [SWS_Rte_06524]
[SWS_Rte_06525] [SWS_Rte_06526]
[SWS_Rte_06527] [SWS_Rte_06528]
[SWS_Rte_06529] [SWS_Rte_06530]
[SWS_Rte_06531] [SWS_Rte_06539]
[SWS_Rte_06540] [SWS_Rte_06541]
[SWS_Rte_06542] [SWS_Rte_06543]
[SWS_Rte_06546] [SWS_Rte_06551]
[SWS_Rte_06552] [SWS_Rte_06620]
[SWS_Rte_06638]

[SRS_Rte_00202] Support for array size variants [SWS_Rte_06500] [SWS_Rte_06505]
[SWS_Rte_06543] [SWS_Rte_06546]

[SRS_Rte_00203] API to read system constant [SWS_Rte_03854] [SWS_Rte_06513]
[SWS_Rte_06514] [SWS_Rte_06517]

[SRS_Rte_00204] Support the selection /
de-selection of SWC prototypes

[SWS_Rte_05104] [SWS_Rte_06544]
[SWS_Rte_06545] [SWS_Rte_06601]

[SRS_Rte_00206] Support the selection of a signal
provider

[SWS_Rte_05104] [SWS_Rte_06544]
[SWS_Rte_06545] [SWS_Rte_06601]
[SWS_Rte_06602] [SWS_Rte_06603]
[SWS_Rte_06604] [SWS_Rte_06605]
[SWS_Rte_06606]

[SRS_Rte_00207] Support N to M communication
patterns while unresolved
variations are affecting these
communications.

[SWS_Rte_05104] [SWS_Rte_06544]
[SWS_Rte_06545] [SWS_Rte_06601]
[SWS_Rte_06602] [SWS_Rte_06603]
[SWS_Rte_06604] [SWS_Rte_06605]
[SWS_Rte_06606]

[SRS_Rte_00210] Support for inter OS application
communication

[SWS_Rte_02728] [SWS_Rte_02732]
[SWS_Rte_02752] [SWS_Rte_02753]
[SWS_Rte_02754] [SWS_Rte_02755]
[SWS_Rte_02756] [SWS_Rte_03853]
[SWS_Rte_07606] [SWS_Rte_08400]
[SWS_Rte_08504] [SWS_Rte_08506]

[SRS_Rte_00211] Cyclic time based scheduling of
BSW Schedulable Entities

[SWS_Rte_02697] [SWS_Rte_07282]
[SWS_Rte_07283] [SWS_Rte_07514]
[SWS_Rte_07574] [SWS_Rte_07584]

[SRS_Rte_00212] Activation Offset of BSW
Schedulable Entities

[SWS_Rte_07520]

57 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Requirement Description Satisfied by
[SRS_Rte_00213] Mode Switches for BSW

Modules
[SWS_Rte_02500] [SWS_Rte_02562]
[SWS_Rte_02563] [SWS_Rte_02564]
[SWS_Rte_02587] [SWS_Rte_02630]
[SWS_Rte_02661] [SWS_Rte_02662]
[SWS_Rte_02663] [SWS_Rte_02664]
[SWS_Rte_02665] [SWS_Rte_02667]
[SWS_Rte_02668] [SWS_Rte_02669]
[SWS_Rte_02707] [SWS_Rte_02708]
[SWS_Rte_07055] [SWS_Rte_07150]
[SWS_Rte_07151] [SWS_Rte_07152]
[SWS_Rte_07153] [SWS_Rte_07154]
[SWS_Rte_07157] [SWS_Rte_07173]
[SWS_Rte_07258] [SWS_Rte_07259]
[SWS_Rte_07260] [SWS_Rte_07282]
[SWS_Rte_07283] [SWS_Rte_07286]
[SWS_Rte_07292] [SWS_Rte_07293]
[SWS_Rte_07294] [SWS_Rte_07514]
[SWS_Rte_07530] [SWS_Rte_07531]
[SWS_Rte_07532] [SWS_Rte_07534]
[SWS_Rte_07535] [SWS_Rte_07538]
[SWS_Rte_07539] [SWS_Rte_07540]
[SWS_Rte_07541] [SWS_Rte_07556]
[SWS_Rte_07557] [SWS_Rte_07558]
[SWS_Rte_07559] [SWS_Rte_07560]
[SWS_Rte_07561] [SWS_Rte_07564]
[SWS_Rte_07694] [SWS_Rte_08600]
[SWS_Rte_08601]

[SRS_Rte_00214] Common Mode handling for
Basic SW and Application SW

[SWS_Rte_02697] [SWS_Rte_07258]
[SWS_Rte_07259] [SWS_Rte_07286]
[SWS_Rte_07535] [SWS_Rte_07564]
[SWS_Rte_07582] [SWS_Rte_07583]

[SRS_Rte_00215] API for Mode switch notification
to the SchM

[SWS_Rte_07255] [SWS_Rte_07256]
[SWS_Rte_07261] [SWS_Rte_08507]

[SRS_Rte_00216] Triggering of BSW Schedulable
Entities by occurrence of
External Trigger

[SWS_Rte_07213] [SWS_Rte_07214]
[SWS_Rte_07216] [SWS_Rte_07218]
[SWS_Rte_07282] [SWS_Rte_07283]
[SWS_Rte_07514] [SWS_Rte_07542]
[SWS_Rte_07544] [SWS_Rte_07545]
[SWS_Rte_07546] [SWS_Rte_07548]
[SWS_Rte_07549]

[SRS_Rte_00217] Synchronized activation of
Runnable Entities and BSW
Schedulable Entities

[SWS_Rte_02697] [SWS_Rte_07218]
[SWS_Rte_07549]

[SRS_Rte_00218] API for Triggering BSW modules
by Triggered Events

[SWS_Rte_07263] [SWS_Rte_07264]
[SWS_Rte_07266] [SWS_Rte_07267]

[SRS_Rte_00219] Support for interlaced execution
sequences of Runnable Entities
and BSW Schedulable Entities

[SWS_Rte_02697] [SWS_Rte_07517]
[SWS_Rte_07518]

[SRS_Rte_00220] ECU life cycle dependent
scheduling

[SWS_Rte_02538] [SWS_Rte_07580]

[SRS_Rte_00221] Support for "BSW integration"
builds

[SWS_Rte_07569] [SWS_Rte_07585]

58 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Requirement Description Satisfied by
[SRS_Rte_00222] Support shared exclusive areas

in BSW Service Modules and
the corresponding Service
Component

[SWS_Rte_07250] [SWS_Rte_07251]
[SWS_Rte_07252] [SWS_Rte_07253]
[SWS_Rte_07254] [SWS_Rte_07522]
[SWS_Rte_07523] [SWS_Rte_07524]
[SWS_Rte_07578] [SWS_Rte_07579]

[SRS_Rte_00223] Callout for partition termination
notification

[SWS_Rte_07330] [SWS_Rte_07331]
[SWS_Rte_07334] [SWS_Rte_07335]
[SWS_Rte_07617] [SWS_Rte_07619]
[SWS_Rte_07620] [SWS_Rte_07622]

[SRS_Rte_00224] Callout for partition restart
request

[SWS_Rte_07188] [SWS_Rte_07336]
[SWS_Rte_07338] [SWS_Rte_07339]
[SWS_Rte_07340] [SWS_Rte_07341]
[SWS_Rte_07342] [SWS_Rte_07643]
[SWS_Rte_07644] [SWS_Rte_07645]

[SRS_Rte_00228] Fan-out NvBlock callback
function

[SWS_Rte_07623] [SWS_Rte_07624]
[SWS_Rte_07625] [SWS_Rte_07626]
[SWS_Rte_07627] [SWS_Rte_07628]
[SWS_Rte_07629] [SWS_Rte_07630]
[SWS_Rte_07631] [SWS_Rte_07671]
[SWS_Rte_07672]

[SRS_Rte_00229] Support for Variant Handling of
BSW Modules

[SWS_Rte_05104] [SWS_Rte_06500]
[SWS_Rte_06503] [SWS_Rte_06504]
[SWS_Rte_06507] [SWS_Rte_06508]
[SWS_Rte_06532] [SWS_Rte_06533]
[SWS_Rte_06534] [SWS_Rte_06535]
[SWS_Rte_06536] [SWS_Rte_06537]
[SWS_Rte_06543] [SWS_Rte_06544]
[SWS_Rte_06545] [SWS_Rte_06546]
[SWS_Rte_06548]

[SRS_Rte_00230] Triggering of BSW Schedulable
Entities by occurrence of
Internal Trigger

[SWS_Rte_07229] [SWS_Rte_07551]
[SWS_Rte_07552] [SWS_Rte_07553]
[SWS_Rte_07554]

[SRS_Rte_00231] Support native interface
between Rte and Com for
Strings and uint8 arrays

[SWS_Rte_07408] [SWS_Rte_07817]

[SRS_Rte_00232] Synchronization of runnable
entities

[SWS_Rte_07804] [SWS_Rte_07805]
[SWS_Rte_07806] [SWS_Rte_07807]

[SRS_Rte_00233] Generation of the Basic
Software Module Description

[SWS_Rte_05086] [SWS_Rte_05165]
[SWS_Rte_05166] [SWS_Rte_05167]
[SWS_Rte_05177] [SWS_Rte_05179]
[SWS_Rte_05180] [SWS_Rte_05181]
[SWS_Rte_05182] [SWS_Rte_05183]
[SWS_Rte_05184] [SWS_Rte_05185]
[SWS_Rte_05186] [SWS_Rte_05187]
[SWS_Rte_05188] [SWS_Rte_05189]
[SWS_Rte_05190] [SWS_Rte_05191]
[SWS_Rte_05192] [SWS_Rte_06725]
[SWS_Rte_07085] [SWS_Rte_08305]
[SWS_Rte_08404]

[SRS_Rte_00234] Support for Record Type
sub-setting

[SWS_Rte_07091] [SWS_Rte_07092]
[SWS_Rte_07099]

59 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Requirement Description Satisfied by
[SRS_Rte_00235] Support queued triggers [SWS_Rte_06720] [SWS_Rte_06721]

[SWS_Rte_06722] [SWS_Rte_06723]
[SWS_Rte_07087] [SWS_Rte_07088]
[SWS_Rte_07089] [SWS_Rte_07090]

[SRS_Rte_00236] Support for
ModeInterfaceMapping

[SWS_Rte_08511] [SWS_Rte_08512]
[SWS_Rte_08513] [SWS_Rte_08514]

[SRS_Rte_00237] Time recurrent activation of
Runnable Entities

[SWS_Rte_06728] [SWS_Rte_06729]
[SWS_Rte_06730]

[SRS_Rte_00238] Allow enabling of RTE-Feature
to get the activating Event of
Executable Entity

[SWS_Rte_01126] [SWS_Rte_07194]
[SWS_Rte_07195] [SWS_Rte_07282]
[SWS_Rte_08051] [SWS_Rte_08052]
[SWS_Rte_08053] [SWS_Rte_08054]
[SWS_Rte_08055] [SWS_Rte_08056]
[SWS_Rte_08057] [SWS_Rte_08058]
[SWS_Rte_08059] [SWS_Rte_08060]
[SWS_Rte_08071]

[SRS_Rte_00239] Support rule-based initialization
of composite DataPrototypes
and compound primitive
DataPrototypes

[SWS_Rte_06733] [SWS_Rte_06734]
[SWS_Rte_06735] [SWS_Rte_06736]
[SWS_Rte_06764] [SWS_Rte_06765]

[SRS_Rte_00240] Support of init runnables for
initialization purposes

[SWS_Rte_06748] [SWS_Rte_06749]
[SWS_Rte_06750] [SWS_Rte_06751]
[SWS_Rte_06752] [SWS_Rte_06753]
[SWS_Rte_06754] [SWS_Rte_06755]
[SWS_Rte_06756] [SWS_Rte_06757]
[SWS_Rte_06758] [SWS_Rte_06759]
[SWS_Rte_06760] [SWS_Rte_06761]
[SWS_Rte_06762] [SWS_Rte_06767]
[SWS_Rte_06768] [SWS_Rte_06769]
[SWS_Rte_06770]

[SRS_Rte_00241] Support for Local or Remote
Handling of BSW Service Calls
on Partitioned Systems

[SWS_Rte_08765]

[SRS_Rte_00243] Support for inter-partition
communication of BSW modules

[SWS_Rte_08733] [SWS_Rte_08734]
[SWS_Rte_08735] [SWS_Rte_08736]
[SWS_Rte_08737] [SWS_Rte_08738]
[SWS_Rte_08739] [SWS_Rte_08743]
[SWS_Rte_08744] [SWS_Rte_08747]
[SWS_Rte_08748] [SWS_Rte_08751]
[SWS_Rte_08752] [SWS_Rte_08753]
[SWS_Rte_08754] [SWS_Rte_08755]
[SWS_Rte_08756] [SWS_Rte_08763]
[SWS_Rte_08764] [SWS_Rte_08765]
[SWS_Rte_08766]

[SRS_Rte_00244] Support for bypass [SWS_Rte_07833] [SWS_Rte_07834]
[SWS_Rte_07835] [SWS_Rte_07836]
[SWS_Rte_07837] [SWS_Rte_07838]
[SWS_Rte_07839] [SWS_Rte_07840]
[SWS_Rte_07841]

60 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

2 RTE Overview

2.1 The RTE in the Context of AUTOSAR

The Run-Time Environment (RTE) is at the heart of the AUTOSAR ECU architecture.
The RTE is the realization (for a particular ECU) of the interfaces of the AUTOSAR
Virtual Function Bus (VFB). The RTE provides the infrastructure services that enable
communication to occur between AUTOSAR software-components as well as acting as
the means by which AUTOSAR software-components access basic software modules
including the OS and communication service.

The RTE encompasses both the variable elements of the system infrastructure that
arise from the different mappings of components to ECUs as well as standardized RTE
services.

In principle the RTE can be logically divided into two sub-parts realizing:

• the communication between software components

• the scheduling of the software components

To fully describe the concept of the RTE, the Basic Software Scheduler has to be
considered as well. The Basic Software Scheduler schedules the schedulable entities
of the basic software modules. In some documents the schedulable entities are also
called main processing functions.

Due to the situation that the same OS Task might be used for the scheduling of software
components and basic software modules the scheduling part of the RTE is strongly
linked with the Basic Software Scheduler and can not be clearly separated.

The RTE and the Basic Software Scheduler is generated1 for each ECU to ensure that
the RTE and Basic Software Scheduler is optimal for the ECU [SRS_Rte_00023].

2.2 AUTOSAR Concepts

This section introduces some important AUTOSAR concepts and how they are imple-
mented within the context of the RTE.

2.2.1 AUTOSAR Software-components

In AUTOSAR, “application” software is conceptually located above the AUTOSAR RTE
and consists of “AUTOSAR application software-components” that are ECU and loca-

1An implementation is free to configure rather than generate the RTE and Basic Software Sched-
uler. The remainder of this specification refers to generation for reasons of simplicity only and these
references should not be interpreted as ruling out either a wholly configured, or partially generated and
partially configured, RTE and Basic Software Scheduler implementation.

61 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

tion independent and “AUTOSAR sensor-actuator components” that are dependent on
ECU hardware and thus not readily relocatable for reasons of performance/efficiency.
This means that, subject to constraints imposed by the system designer, an AUTOSAR
software-component can be deployed to any available ECU during system configura-
tion. The RTE is then responsible for ensuring that components can communicate
and that the system continues to function as expected wherever the components are
deployed. Considering sensor/actuator software components, they may only directly
address the local ECU abstraction. Therefore, access to remote ECU abstraction shall
be done through an intermediate sensor/actuator software component which broad-
casts the information on the remote ECU. Hence, moving the sensor/actuator software
components on different ECUs, may then imply to also move connected devices (sen-
sor/actuator) to the same ECU (provided that efficient access is needed).

An AUTOSAR software-component is defined by a type definition that defines the com-
ponent’s interfaces. A component type is instantiated when the component is deployed
to an ECU. A component type can be instantiated more than once on the same ECU in
which case the component type is said to be “multiple instantiated”. The RTE supports
per-instance memory sections that enable each component instance to have private
states.

The RTE supports both AUTOSAR software-components where the source is available
(“source-code software-components”) [SRS_Rte_00024] and AUTOSAR software-
components where only the object code (“object-code software components”) is avail-
able [SRS_Rte_00140].

Details of AUTOSAR software-components in relation to the RTE are presented in
Section 4.1.3.

2.2.2 Basic Software Modules

As well as “AUTOSAR software-components” an AUTOSAR ECU includes basic soft-
ware modules. Basic software modules can access the ECU abstraction layer as well
as other basic software modules directly and are thus neither ECU nor location inde-
pendent 2.

An “AUTOSAR software-component” cannot directly access basic software modules –
all communication is via AUTOSAR interfaces and therefore under the control of the
RTE. The requirement to not have direct access applies to all Basic Software Modules
including the operating system [SRS_Rte_00020] and the communication service.

2The functionality provided by a basic software module cannot be relocated in another ECU. However,
the source of some basic software modules can be reused on other ECUs.

62 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

2.2.3 Communication

The communication interface of an AUTOSAR software-component consists of several
ports (which are characterized by port-interfaces). An AUTOSAR software-component
can communicate through its interfaces with other AUTOSAR software-components
(whether that component is located on the same ECU or on a different ECU) or
with basic software modules that have ports and runnables (i.e ServiceSwCompo-
nents, EcuAbstractionSwComponents and ComplexDeviceDriverSwCompo-
nents) and are located on the same ECU. This communication can only occur via
the component’s ports. A port can be categorized by either a sender-receiver or client-
server port-interface. A sender-receiver interface provides a message passing facility
whereas a client-server interface provides function invocation.

2.2.3.1 Communication Paradigms

The RTE provides different paradigms for the communication between software-
component instances: sender-receiver (signal passing), client-server (function invo-
cation), mode switch, and NvBlockSwComponentType interaction.

Each communication paradigm can be applied to intra-partition software-component
distribution (which includes both intra-task and inter-task distribution, within the same
Partition), inter-Partition software-component distribution, and inter-ECU software-
component distribution. Intra-task communication occurs between runnable entities
that are mapped to the same OS task whereas inter-task communication occurs be-
tween runnable entities mapped to different tasks of the same Partition and can there-
fore involve a context switch. Inter-Partition communication occurs between runnable
entities in components mapped to different partitions of the same ECU and therefore in-
volve a context switch and crossing a protection boundary (memory protection, timing
protection, isolation on a core). Inter-ECU communication occurs between runnable
entities in components that have been mapped to different ECUs and so is inherently
concurrent and involves potentially unreliable communication.

Details of the communication paradigms that are supported by the RTE are contained
in Section 4.3.

2.2.3.2 Communication Modes

The RTE supports two modes for sender-receiver communication:

• Explicit — A component uses explicit RTE API calls to send and receive data
elements [SRS_Rte_00098].

• Implicit — The RTE automatically reads a specified set of data elements before
a runnable is invoked and automatically writes (a different) set of data elements
after the runnable entity has terminated [SRS_Rte_00128] [SRS_Rte_00129].

63 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

The term “implicit” is used here since the runnable does not actively initiate the
reception or transmission of data.

Implicit and explicit communication is considered in greater detail in Section 4.3.1.5.

2.2.3.3 Static Communication

[SWS_Rte_06026] d The RTE shall support static communication only.
c(SRS_Rte_00025)

Static communication includes only those communication connections where the
source(s) and destination(s) of all communication is known at the point the RTE is
generated. [SRS_Rte_00025]. This includes also connections which are subject to
variability because the variant handling concept of AUTOSAR does only support the
selection of connectors from a superset of possible connectors to define a particular
variant.
Dynamic reconfiguration of communication is not supported due to the run-time and
code overhead which would therefore limit the range of devices for which the RTE is
suitable.

2.2.3.4 Multiplicity

As well as point to point communication (i.e. “1:1”) the RTE supports communication
connections with multiple providers or requires:

• When using sender-receiver communication, the RTE supports both “1:n” (sin-
gle sender with multiple receivers) [SRS_Rte_00028] and “n:1” (multiple senders
and a single receiver) [SRS_Rte_00131] communication with the restriction that
multiple senders are not allowed for mode switch notifications, see meta-
model restrictions [SWS_Rte_02670].

The execution of the multiple senders or receivers is not coordinated by the RTE.
This means that the actions of different software-components are independent –
the RTE does not ensure that different senders transmit data simultaneously and
does not ensure that all receivers read data or receive events simultaneously.

• When using client-server communication, the RTE supports “n:1” (multiple clients
and a single server) [SRS_Rte_00029] communication. The RTE does not sup-
port “1:n” (single client with multiple servers) client-server communication.

Irrespective of whether “1:1”, “n:1” or “1:n” communication is used, the RTE is respon-
sible for implementing the communication connections and therefore the AUTOSAR
software-component is unaware of the configuration. This permits an AUTOSAR
software-component to be redeployed in a different configuration without modification.

64 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

2.2.4 Concurrency

AUTOSAR software-components have no direct access to the OS and hence there are
no “tasks” in an AUTOSAR application. Instead, concurrent activity within AUTOSAR
is based around RunnableEntitys within components that are invoked by the RTE.

The AUTOSAR VFB specification [1] defines a runnable entity as a “sequence of in-
structions that can be started by the Run-Time Environment”. A component provides
one3 or more runnable entities [SRS_Rte_00031] and each runnable entity has exactly
one entry point. An entry point defines the symbol within the software-component’s
code that provides the implementation of a runnable entity.

The RTE is responsible for invoking runnable entities – AUTOSAR software-
components are not able to (dynamically) create private threads of control. Hence,
all activity within an AUTOSAR application is initiated by the triggering of runnable en-
tities by the RTE as a result of RTEEvents.

An RTEEvent encompasses all possible situations that can trigger execution of a runn-
able entity by the RTE. The different classes of RTEEvent are defined in Section 5.7.5.

The RTE supports runnable entities in any component that has an AUTOSAR interface
- this includes AUTOSAR software-components and basic software modules.4

Runnable entities are divided into multiple categories with each category supporting
different facilities. The categories supported by the RTE are described in Section
4.2.2.3.

2.3 The RTE Generator

The RTE generator is one of a set of tools5 that create the realization of the AUTOSAR
virtual function bus for an ECU based on information in the ECU Configuration De-
scription. The RTE Generator is responsible for creating the AUTOSAR software-
component API functions that link AUTOSAR software-components to the OS and
manage communication between AUTOSAR software-components and between AU-
TOSAR software-components and basic software modules.

Additionally the RTE Generator creates both the Basic Software Scheduler and the Ba-
sic Software Scheduler API functions for each particular instance of a Basic Software
Module.

The RTE generation process for SWCs has two main phases:
3The VFB specification does not permit zero runnable entities.
4The OS and COM are basic software modules but present a standardized interface to the RTE and

have no AUTOSAR interface. The OS and COM therefore do not have runnable entities.
5The RTE generator works in conjunction with other tools, for example, the OS and COM generators,

to fully realize the AUTOSAR VFB.

65 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

• RTE Contract phase – a limited set of information about a component, principally
the AUTOSAR interface definitions, is used to create an application header file
for a component type. The application header file defines the “contract” between
component and RTE.

• RTE Generation phase - all relevant information about components, their de-
ployment to ECUs and communication connections is used to generate the RTE
and optionally the Ioc configuration [4]. One RTE is generated for each ECU in
the system.

The two-phase development model ensures that the RTE generated application header
files are available for use for source-code AUTOSAR software-components as well
as object-code AUTOSAR software-components with both types of component having
access to all definitions created as part of the RTE generation process.

The RTE generation process, and the necessary inputs in each phase, are considered
in more detail in chapter 3.

2.4 Design Decisions

This section details decisions that affect both the general direction that has been taken
as well as the actual content of this document.

1. The role of this document is to specify RTE behavior, not RTE implementation.
Implementation details should not be considered to be part of the RTE software
specification unless they are explicitly marked as RTE requirements.

2. An AUTOSAR system consists of multiple ECUs each of which contains an RTE
that may have been generated by different RTE generators. Consequently, the
specification of how RTEs from multiple vendors interoperate is considered to be
within the scope of this document.

3. The RTE does not have sufficient information to be able to derive a mapping from
runnable entity to OS task. The decision was therefore taken to require that the
mapping be specified as part of the RTE input.

4. Support for C++ is provided by making the C RTE API available for C++ com-
ponents rather than specifying a completely separate object-oriented API. This
decision was taken for two reasons; firstly the same interface for the C and C++

simplifies the learning curve and secondly a single interface greatly simplifies
both the specification and any subsequent implementations.

5. There is no support within the specification for Java.

6. The AUTOSAR meta-model is a highly expressive language for defining sys-
tems however for reasons of practicality certain restrictions and constraints have
been placed on the use of the meta-model. The restrictions are described in
Appendix A.

66 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

3 RTE Generation Process

This chapter describes the methodology of the RTE and Basic Software Scheduler
generation. For a detailed description of the overall AUTOSAR methodology refer to
methodology document [6].

[SWS_Rte_02514] d The RTE generator shall produce the same RTE API, RTE code,
SchM API and SchM code when the input information is the same. c(SRS_Rte_00065)

The RTE Generator gets involved in the AUTOSAR Methodology several times in dif-
ferent roles. Technically the RTE Generator can be implemented as one tool which
is invoked with options to switch between the different roles. Or the RTE Generator
could be a set of separate tools. In the following section the individual applications of
the RTE Generator are described based on the roles that are take, not necessarily the
actual tools.

The RTE Generator is used in different roles for the following phases:

• RTE Contract Phase

• Basic Software Scheduler Contract Phase

• PreBuild Data Set Contract Phase

• Basic Software Scheduler Generation Phase

• RTE Generation Phase

• PreBuild Data Set Generation Phase

• PostBuild Data Set Generation Phase

RTE Generator for Software-Components

In Figure 3.1 the overall AUTOSAR Methodology wrt. Application SW-Components
and the RTE Generator.

67 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Configure
System.XML.XML

Collection
of

Available
SWC

Implementations

.XML.XML

System
Configuration

Description
:System

Extract
ECU-Specific
Information

Generate
Base ECU

Configuration

.XML.XML

ECU
Extract of
System

Configuration
:System

.XML.XML

ECU
Configuration

Values

Generate
RTE

AUTOSAR
RTE

Generator

Edit ECU
Configuration

AUTOSAR
ECU

Configuration
Editors

.obj.obj

Compiled
RTE

.c.c

RTE
Code

Compile
RTE

.h.h

RTE
Header

.obj.obj

Compiled
BSW

.exe.exe

ECU
Executable

Generate
Executable

.obj.obj

Compiled
SWC

Implementations

Figure 3.1: System Build Methodology

The whole vehicle functionality is described with means of CompositionSwCom-
ponents, SwComponentPrototypes and AtomicSwComponents [2]. In the
CompositionSwComponent descriptions the connections between the software-
components’ ports are also defined. Such a collection of software-components con-
nected to each other, without the mapping on actual ECUs, is called the VFB view.

During the ’Configure System’ step the needed software-components, the available
ECUs and the System Constraints are resolved into a System Configuration Descrip-
tion. Now the SwComponentPrototypes and thus the associated AtomicSwCompo-
nents are mapped on the available ECUs.

Since in the VFB view the communication relationships between the AtomicSwCom-
ponents have been described and the mapping of each SwComponentPrototypes
and AtomicSwComponents to a specific ECU has been fixed, the communication ma-
trix can be generated. In the SwComponentType Description (using the format of
the AUTOSAR Software Component Template [2]) the data that is exchanged through
ports is defined in an abstract way. Now the ’System Configuration Generator’ needs to
define system signals (including the actual signal length and the frames in which they
will be transmitted) to be able to transmit the application data over the network. COM
signals that correspond to the system signals will be later used by the ’RTE Generator’
to actually transmit the application data.

68 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

In the next step the ’System Configuration Description’ is split into descriptions for
each individual ECU. During the generation of the Ecu Extract also the hierarchical
structure of the CompositionSwComponents of the VFB view is flattened and the
SwComponentPrototypes of the ECU Extract represent actual instances. The Ecu
Extract only contains information necessary to configure one ECU individually and it is
fed into the ECU Configuration for each ECU.

[SWS_Rte_05000] d The RTE is configured and generated for each ECU instance
individually. c(SRS_Rte_00021)

The ’ECU Configuration Editors’ (see also Section 3.3) are working iteratively on the
’ECU Configuration Values’ until all configuration issues are resolved. There will be
the need for several configuration editors, each specialized on a specific part of ECU
Configuration. So one editor might be configuring the COM stack (not the communica-
tion matrix but the interaction of the individual modules) while another editor is used to
configure the RTE.

Since the configuration of a specific Basic-SW module is not entirely independent from
other modules there is the need to apply the editors several times to the ’ECU Config-
uration Values’ to ensure all configuration parameters are consistent.

Only when the configuration issues are resolved the ’RTE Generator’ will be used to
generate the actual RTE code (see also Section 3.4.2) which will then be compiled and
linked together with the other Basic-SW modules and the software-components code.

The ’RTE Generator’ needs to cope with many sources of information since the nec-
essary information for the RTE Generator is based on the ’ECU Configuration Values’
which might be distributed over several files and itself references to multiple other AU-
TOSAR descriptions.

[SWS_Rte_08769] d RTE Generator shall support for reading single files and of sets
of files that are stored in a file system. The tool shall provide a mechanism to select a
specific file and sets of files in the file system. c(SRS_Rte_00048)

An AUTOSAR XML description can be shipped in several files. Some files could con-
tain data types others could contain interfaces, etc.

[SWS_Rte_08770] d An RTE Generator tools SHALL support the merging of AU-
TOSAR models that have been split up and stored in multiple partial models while
reading an set of files. Thereby the to be supported minimum granularity of an AU-
TOSAR model is defined by �atpSplitable�. The Merging of a model also in-
cludes the resolution of references. The RTE Generator SHALL be able to read the
submodels in any order. There is no preference. c(SRS_Rte_00048)

[SWS_Rte_08771] d RTE Generator SHALL support the interpretation and creation of
AUTOSAR XML descriptions. These descriptions SHALL be ’well-formed’ and ’valid’
as defined by the XML recommendation, W3C XML 1.1 Specification, whether used
with or without the document’s corresponding AUTOSAR XML schema(s). In other
words: Even if the tool does not use standard XML mechanisms for validating the XML

69 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

descriptions it SHALL ensure that the XML descriptions can be successfully validated
against the AUTOSAR XML schema. c(SRS_Rte_00048)

[SWS_Rte_08772] d If an RTE Generator wants to validate an AUTOSAR XML de-
scription against an AUTOSAR schema, it SHALL provide the necessary schema files
in its own resources.

An RTE Generator shall use the SYSTEM-Identifier in the xsi:schemaLocation to iden-
tify an appropriate schema file. c(SRS_Rte_00048)

[SWS_Rte_08773] d RTE Generator shall provide a serialization for XML.
c(SRS_Rte_00048)

[SWS_Rte_08774] d RTE Generator shall not change model content passed to the
Generator c(SRS_Rte_00048)

[SWS_Rte_08775] d An RTE Generator MAY support the AUTOSAR extension mech-
anism SDGs if applicable.

If the RTE Generator does not need the additional information for its intended purpose
it SHALL ignore the irrelevant extensions SDGs. c(SRS_Rte_00048)

[SWS_Rte_08776] d An RTE Generator may use well structured error messages.
c(SRS_Rte_00048)

The following list is a collection of proposed information items in particular applicable
to log files used for exchanging information about errors.

• ErrorCode – A symbolic name for the message text

• StandardErrorCode – The reference to the AUTOSAR error code

• ConstraintCode – Reference to the semantic constraint mentioned in the AU-
TOSAR template specification.

• Signature – Signature of the message for duplicate checks

• Timestamp – A time stamp for the message

• ShortName – A unique identification which allows to refer to particular error mes-
sages
This can also be used to establish references between error messages, e.g. for
screening and also to trace back to root cause

• Desc – The human readable message text

• Component – Such information item may help the user to locate the problem in
the model

• BaseUrl – An url for a base directory which can be used as basis for file refer-
ences in a log file. This is typically the root direactory of a project structure.

• ColumNumber – The column of the error position

• LineNumber – The line number of the error position

70 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

• LongName – The title of the error message

• ObjectCategory – The category of for example the involved ApplicationPrimitve-
DataType (e.g.VALUE)

• PrimaryErrorReference – Reference to the root cause if applicable

• ScopeEntryReference – Reference to a scoping message if applicable

• Object – The shortName based reference to the AUTOSAR element which
caused the error

• ToolName – The name of the tool which reported the error

• ToolVersion – The version of the tools which reported the error

• IncidentUrl – The Url which refers to the artifact in which the error occurs

• Value – The actual found value which caused the problem

This is just a rough sketch of the main steps necessary to build an ECU with AUTOSAR
and how the RTE is involved in this methodology. For a more detailed description of
the AUTOSAR Methodology please refer to the methodology document [6]. In the next
sections the steps with RTE interaction are explained in more detail.

RTE Generator for Basic Software Scheduler

In Figure 3.2 the overall AUTOSAR Methodology wrt. Basis Software Scheduler and
the RTE Generator interaction.

.XML.XML

ECU
Configuration

Values

Edit ECU
Configuration

AUTOSAR
ECU

Configuration
Editors

Generate
SchM

AUTOSAR
RTE

Generator

.c.c

Rte
Code

.h.h

Schm
Bsw

Header

.obj.obj

Compiled
Rte

Compile
SchM

.obj.obj

Compiled
BSW

.exe.exe

ECU
Executable

Generate
Executable

Figure 3.2: Basic Software Scheduler Methodology

The ECU Configuration phase is the start of the Basic Software Scheduler configura-
tion where all the requirements of the different Basic Software Modules are collected.
The Input information is provided in the Basic Software Module Descriptions [9] of the
individual Basic Software Modules.

The Basic Software Scheduler configuration is then generated into the Basic Software
Scheduler code which is compiled and built into the Ecu executable.

71 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

3.1 Contract Phase

3.1.1 RTE Contract Phase

To be able to support the AUTOSAR software-component development with RTE-
specific APIs the ’Component API’ (application header file) is generated from the
’software-component Internal Behavior Description’ (see Figure 3.1) by the RTE Gen-
erator in the so called ’RTE Contract Phase’ (see Figure 3.3).

In the software-component Interface description – which is using the AUTOSAR
Software Component Template – at least the AUTOSAR Interfaces of the particular
software-component have to be described. This means the software-component Types
with Ports and their Interfaces. In the software-component Internal Behavior descrip-
tion additionally the Runnable Entities and the RTE Events are defined. From this
information the RTE Generator can generate specific APIs to access the Ports and
send and receive data.

.h.h

Component
API

Generate
Component

API

.XML.XML

SW-Component
Internal

Behavior
Description

[API
Generation]

:
SwcInternalBehavior

.XML.XML

SW-Component
Type

Description
:

AtomicSwComponentType

Implement
Component

.c.c

SW-Component
Implementation

Compile
Component

.obj.obj

Compiled
SW-Component
Implementation

Measure
Resources

.XML.XML

SW-Component
Implementation

Description
[resource
needs] :

Implementation

.XML.XML

SW-Component
Implementation

Description
[for

Object-Code]
:

Implementation

AUTOSAR
Component

API
Generator

Figure 3.3: RTE Contract Phase

With the generated ’Component API’ (application header file) the Software Compo-
nent developer can provide the Software Component’s source code without being con-
cerned as to whether the communication will later be local or using some network(s).

It has to be considered that the AUTOSAR software-component development process
is iterative and that the AUTOSAR software-component description might be changed
during the development of the AUTOSAR software-component. This requires the ap-
plication header file to be regenerated to reflect the changes done in the software-
component description.

When the software-component has been compiled successfully the ’Component Im-
plementation Description Generation’ tool will analyze the resulting object files and

72 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

enhance the software-component description with the information from the specific im-
plementation. This includes information about the actual memory needs for ROM as
well as for RAM and goes into the ’Component Implementation Description’ section of
the AUTOSAR Software Component Template.

Please note that in case of implemented PreCompileTime Variability addition-
ally the PreBuild Data Set Contract Phase is required 3.2 to be able to compile the
software component.

So when a software-component is delivered it will consist of the following parts:

• SW-Component Type Description

• SW-Component Internal Behavior Description

• The actual SW-Component implementation and/or compiled SW-Component

• SW-Component Implementation Description

The above listed information will be needed to provide enough information for the Sys-
tem Generation steps when the whole system is assembled.

3.1.2 Basic Software Scheduler Contract Phase

To be able to support the Basic Software Module development with Basic Software
Scheduler specific APIs the Module Interlink Header (6.3.2) and Module Interlink
Types Header (6.3.1) containing the definitions and declaration for the Basic Soft-
ware Scheduler API related to the single Basic Software Module instance is generated
by the RTE Generator in the so called ’Basic Software Scheduler Contract Phase’.

The required input is

• Basic Software Module Description and

• Basic Software Module Internal Behavior and

• Basic Software Module Implementation

Please note that in case of implemented PreCompileTime Variability addition-
ally the PreBuild Data Set Contract Phase is required 3.2 to be able to compile the
Basic Software Module.

3.2 PreBuild Data Set Contract Phase

In the RTE PreBuild Data Set Contract Phase are the Condition Value Macros (see
5.3.8.2.2) generated which are required to resolve the implemented PreBuild Vari-
ability of a particular software component or Basic Software Module.

73 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

The particular values are defined via PredefinedVariants. These Predefined-
Variant elements containing definition of SwSystemconstValues for SwSystem-
consts which shall be applied when resolving the variability during ECU Configuration.

The output of this phase is the RTE Configuration Header File 5.3.8. This file is re-
quired to compile a particular variant of a software component using PreCompile-
Time Variability. The Condition Value Macros are used for the implementation
of PreCompileTime Variability with preprocessor statements and therefore are
needed to run the C preprocessor resolving the implemented variability.

3.3 Edit ECU Configuration of the RTE

During the configuration of an ECU the RTE also needs to be configured. This is
divided into several steps which have to be performed iteratively: The configuration of
the RTE and the configuration of other modules.

So first the ’RTE Configuration Editor’ needs to collect all the information needed to
establish an operational RTE. This gathering includes information on the software-
component instances and their communication relationships, the Runnable Entities and
the involved RTE-Events and so on. The main source for all this information is the ’ECU
Configuration Values’, which might provide references to further descriptions like the
software-component description or the System Configuration description.

An additional input source is the Specification of Timing Extensions [14]. This template
can be used to specify the execution order of runnable entities (see section ’Execution
order constraint’). An ’RTE Configuration Editor’ can use the information to create and
check the configuration of the Rte Event to Os task mapping (see section 7.6.1).

The usage of ’ECU Configuration Editors’ covering different parts of the ’ECU Con-
figuration Values’ will – if there are no cyclic dependencies which do not converge –
converge to a stable configuration and then the ECU Configuration process is finished.
A detailed description of the ECU Configuration can be found in [5]. The next phase is
the generation of the actual RTE code.

74 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

3.4 Generation Phase

After the ECU has been entirely configured the generation of the actual RTE inclusive
the Basic Software Scheduler part can be performed. Since all the relationships to
and from the other Basic-SW modules have been already resolved during the ECU
Configuration phase, the generation can be performed in parallel for all modules (see
Figure 3.4).

.obj.obj

Compiled
RTE.c.c

RTE
Code

Compile
RTE

.h.h

RTE
Header

AUTOSAR
RTE

Generator

Generate
RTE

.XML.XML

ECU
Configuration

Values

.XML.XML

BSW-Module
Description :

BswModuleDescription

.XML.XML

MC-Support.XML.XML

IOC-Configuration

Figure 3.4: RTE Generation Phase

The Basic Software Scheduler is a part of the Rte and therefore not explicitly shown in
figure 3.4.

3.4.1 Basic Software Scheduler Generation Phase

Depending on the complexity of the ECU and the cooperation model of the different
software vendors it might be required to integrate the Basic Software stand alone with-
out software components.

Therefore the RTE Generator has to support the generation of the Basic Software
Scheduler without software component related RTE fragments. The Basic Software
Scheduler Generation Phase is only applicable for software builds which are not con-
taining any kind of software components.

[SWS_Rte_07569] d In the Basic Software Scheduler Generation Phase the RTE
Generator shall generate the Basic Software Scheduler without the RTE functional-
ity. c(SRS_Rte_00221)

In this case the RTE Generator generates the API for Basic Software Modules and the
Basic Software Scheduling code only. When the input contains software component
related information this information raises an error.

75 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

For instance:

• Application Header Files are not generated for the software components con-
tained in the ECU extract.

• Mapped RTEEvents are not permitted and the runnable calls are not generated
into the OS task bodies. Nevertheless all OS task bodies related to the Basic
Software Scheduler configuration are generated.

• Mode machine instances mapped to the RTE are not supported.

[SWS_Rte_07585] d In the Basic Software Scheduler Generation Phase the RTE Gen-
erator shall reject input configuration containing software component related informa-
tion. c(SRS_Rte_00221)

The RTE Generator in the Basic Software Scheduler Generation Phase is also respon-
sible to generate additional artifacts which contribute to the further build, deployment
and calibration of the ECU’s software.

[SWS_Rte_06725] d The RTE Generator in Basic Software Scheduler Genera-
tion Phase shall provide its Basic Software Module Description in order to cap-
ture the generated RTE’s / Basic Software Scheduler attributes. c(SRS_Rte_00170,
SRS_Rte_00192, SRS_Rte_00233)

Details about the Basic Software Module Description generation can can be found in
section 3.4.3.

[SWS_Rte_06726] d The RTE Generator in Basic Software Scheduler Generation
Phase shall provide an MC-Support (Measurement and Calibration) description as part
of the Basic Software Module Description. c(SRS_Rte_00153, SRS_Rte_00189)

Details about the MC-Support can be found in section 4.2.8.4.

For software builds which are containing software components the RTE Generation
Phase 3.4.2 is applicable where the Basic Software Scheduler part of the RTE is gen-
erated as well.

3.4.2 RTE Generation Phase

The actual AUTOSAR software-components and Basic-SW modules code will be linked
together with the RTE and Basic Software Scheduler code to build the entire ECU
software.

Please note that in case of implemented PreCompileTime Variability addition-
ally the PreBuild Data Set Generation Phase is required (see section 3.5) to be able
to compile the ECU software. Further on in case of implemented PostBuild Vari-
ability PostBuild Data Set Generation Phase is required (see section 3.6) to be able
to link the full ECU software.

76 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

The RTE Generator in the Generation Phase is also responsible to generate additional
artifacts which contribute to the further build, deployment and calibration of the ECU’s
software.

[SWS_Rte_05086] d The RTE Generator in Generation Phase shall provide its Ba-
sic Software Module Description in order to capture the generated RTE’s attributes.
c(SRS_Rte_00170, SRS_Rte_00192, SRS_Rte_00233)

Details about the Basic Software Module Description generation can can be found in
section 3.4.3.

[SWS_Rte_05087] d The RTE Generator in Generation Phase shall provide an MC-
Support (Measurement and Calibration) description as part of the Basic Software Mod-
ule Description. c(SRS_Rte_00153, SRS_Rte_00189)

Details about the MC-Support can be found in section 4.2.8.4.

[SWS_Rte_05147] d The RTE Generator in Generation Phase shall provide the con-
figuration for the Ioc module [4] if the Ioc module is used. c(SRS_Rte_00196)

The RTE generates the IOC configurations and uses an implementation specific deter-
ministic generation scheme. This generation scheme can be used by implementations
to reuse these IOC configurations (e.g. if the configuration switch strictConfigu-
rationCheck is used).

[SWS_Rte_08400] d The RTE Generator in Generation Phase shall generate internal
ImplementationDataTypes types used for IOC configuration. c(SRS_Rte_00210)

The corresponding C data types will be generated into the Rte_Type.h. This
Rte_Type.h header file will be used by the IOC to get the types for the IOC API.

Changing the RTE generator will require a new IOC configuration generation.

Details about the Ioc module can be found in section 4.3.4.1.

[SWS_Rte_08305] d The RTE Generator in Generation Phase shall ignore XML-
Content categorized as ICS. c(SRS_Rte_00233)

3.4.3 Basic Software Module Description generation

The Basic Software Module Description [9] generated by the RTE Generator in gen-
eration phase describes features of the actual RTE code. The following requirements
specify which elements of the Basic Software Module Description are mandatory to be
generated by the RTE Generator.

77 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

3.4.3.1 Bsw Module Description

[SWS_Rte_05165] d The RTE Generator in Generation Phase shall provide the
BswModuleDescription element of the Basic Software Module Description for the
generated RTE. c(SRS_Rte_00233)

[SWS_Rte_08404] d The RTE BswModuleDescription shall be provided in
ARPackage AUTOSAR_Rte according to AUTOSAR Generic Structure Template [10]
(chapter "Identifying M1 elements in packages"). c(SRS_Rte_00233)

[SWS_Rte_05177] d The RTE Generator in Generation Phase shall provide the
BswModuleEntry and a reference to it from the BswModuleDescription in the role
providedEntry for each Standardized Interface provided by the RTE (see Layered
Software Architecture [15] page tz76a and page 94ju5). The provided Standardized
Interfaces are the Rte Lifecycle API (section 5.8) and the SchM Lifecycle API (sec-
tion 6.7). c(SRS_Rte_00233)

[SWS_Rte_05179] d The RTE Generator in Generation Phase shall provide the
BswModuleDependency in the BswModuleDescription with the role bswMod-
uleDependency for each callback API provided by the RTE and called by the re-
spective Basic Software Module. The reference from the BswModuleDependency to
the BswModuleEntry shall be in the role expectedCallback. The calling Basic
Software Module is specified in the attribute targetModuleId of the BswModuleDe-
pendency. c(SRS_Rte_00233)

For all the APIs the RTE code is invoking in other Basic Software Modules the depen-
dencies are described via requirement [SWS_Rte_05180].

[SWS_Rte_05180] d The RTE Generator in Generation Phase shall provide the
BswModuleDependency in the BswModuleDescription with the role bswMod-
uleDependency for each API called by the RTE in another Basic Software Module.
The reference from the BswModuleDependency to the BswModuleEntry shall be
in the role requiredEntry. The called Basic Software Module is specified in the
attribute targetModuleId of the BswModuleDependency. c(SRS_Rte_00233)

[SWS_Rte_07085] d If the Basic Software Module Description for the generated RTE
depends from elements in Basic Software Module Descriptions of other Basic Software
Modules the RTE Generator shall use the full qualified path name to this elements ac-
cording the rules in "Identifying M1 elements in packages" of the document AUTOSAR
Generic Structure Template [10]. c(SRS_Rte_00233)

For instance the description of the the hook function
1 void Rte_Dlt_Task_Activate(TaskType task)

for the Dlt needs the ImplementationDataType "TaskType" from the OS in order to
describe the data type of the SwServiceArg "task" in the description of the related
BswModuleEntry.

In this case the full qualified path name to the ImplementationDataType "Task-
Type" shall be

78 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

1 AUTOSAR_OS/ImplementationDataTypes/TaskType

The full example about the description is given below:
<AR-PACKAGE>

<SHORT-NAME>AUTOSAR_RTE</SHORT-NAME>
<AR-PACKAGES>

<AR-PACKAGE>
<SHORT-NAME>BswModuleEntrys</SHORT-NAME>
<ELEMENTS>

<BSW-MODULE-ENTRY>
<SHORT-NAME>Rte_Dlt_Task_Activate</SHORT-NAME>
<ARGUMENTS>

<SW-SERVICE-ARG>
<SHORT-NAME>task</SHORT-NAME>
<CATEGORY>TYPE_REFERENCE</CATEGORY>
<SW-DATA-DEF-PROPS>

<SW-DATA-DEF-PROPS-VARIANTS>
<SW-DATA-DEF-PROPS-CONDITIONAL>

<IMPLEMENTATION-DATA-TYPE-REF DEST="IMPLEMENTATION-
DATA-TYPE">AUTOSAR_OS/ImplementationDataTypes/
TaskType</IMPLEMENTATION-DATA-TYPE-REF>

</SW-DATA-DEF-PROPS-CONDITIONAL>
</SW-DATA-DEF-PROPS-VARIANTS>

</SW-DATA-DEF-PROPS>
</SW-SERVICE-ARG>

</ARGUMENTS>
</BSW-MODULE-ENTRY>

</ELEMENTS>
</AR-PACKAGE>

3.4.3.2 Bsw Internal Behavior

[SWS_Rte_05166] d The RTE Generator in Generation Phase shall provide the
BswInternalBehavior element in the BswModuleDescription of the Basic Soft-
ware Module Description for the generated RTE. c(SRS_Rte_00233)

[SWS_Rte_05181] d The RTE Generator in Generation Phase shall provide the
BswCalledEntity element in the BswInternalBehavior for each C-function im-
plementing the lifecycle APIs (section 5.8) and the SchM Lifecycle API (section 6.7).
The BswCalledEntity shall have a reference to the respective BswModuleEntry
([SWS_Rte_05177]) in the role implementedEntry. c(SRS_Rte_00233)

[SWS_Rte_05182] d The RTE Generator in Generation Phase shall provide the Vari-
ableDataPrototype element in the BswInternalBehavior in the role stat-
icMemory for each variable memory object the RTE allocates. c(SRS_Rte_00233)

[SWS_Rte_05183] d The RTE Generator in Generation Phase shall provide
the ParameterDataPrototype element in the BswInternalBehavior in the
role constantMemory for each constant memory object the RTE allocates.
c(SRS_Rte_00233)

79 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

3.4.3.3 Bsw Implementation

[SWS_Rte_05167] d The RTE Generator in Generation Phase shall provide the
BswImplementation element and a reference to the BswInternalBehavior of
the Basic Software Module Description in the role behavior. c(SRS_Rte_00233)

[SWS_Rte_05187] d The RTE Generator in Generation Phase shall provide the pro-
grammingLanguage element in the BswImplementation element according to the
actual RTE implementation. c(SRS_Rte_00233)

[SWS_Rte_05186] d The RTE Generator in Generation Phase shall provide the
swVersion element in the BswImplementation element according to the input in-
formation from the RTE Ecu configuration ([SWS_Rte_05184], [SWS_Rte_05185]).
c(SRS_Rte_00233)

[SWS_Rte_05190] d The RTE Generator in Generation Phase shall provide the ar-
ReleaseVersion element in the BswImplementation element according to AU-
TOSAR release version the RTE Generator is based on. c(SRS_Rte_00233)

[SWS_Rte_05188] d The RTE Generator in Generation Phase shall provide the used-
CodeGenerator element in the BswImplementation element according to the ac-
tual RTE implementation. c(SRS_Rte_00233)

[SWS_Rte_05189] d The RTE Generator in Generation Phase shall provide the ven-
dorId element in the BswImplementation element according to the input informa-
tion from the RTE Ecu configuration (RteCodeVendorId). c(SRS_Rte_00233)

The RteCodeVendorId specifies the vendor id of the actual user of the RTE Gener-
ator, not the id of the RTE Vendor itself.

[SWS_Rte_05191] d If the generated RTE code is hardware specific (due to ven-
dor specific optimizations of the RTE Generator) then the reference to the applicable
HwElements from the ECU Resource Description [16] shall be provided in the BswIm-
plementation element with the role hwElement. c(SRS_Rte_00233)

[SWS_Rte_05192] d The RTE Generator in Generation Phase shall provide the De-
pendencyOnArtifact element in the BswImplementation with the role gener-
atedArtifact for all c- and header-files which are required to compile the Rte
code. This does not include other Basic Software modules or Application Software.
c(SRS_Rte_00233)

Note: The use case is the support of the build-environment (automatic or manual).

Attributes shall be used in this context as follow:

• category shall be used as defined in Generic Structure Template [10] (e.g.
SWSRC, SWOBJ, SWHDR)

• domain is optional and can be chosen freely

• revisionLabel shall contain the revision label out of RTE Configuration

80 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

• shortLabel is the name of artifact

Details on the description of DependencyOnArtifact can be found in the Generic
Structure Template [10].

Additional elements of the Basic Software Module Description which shall be exported
are specified in later requirements e.g. in section 4.2.8.4 and sectionsection 5.1.2.4.

3.5 PreBuild Data Set Generation Phase

During the PreBuild Data Set Generation Phase are the Condition Value Macros (see
5.3.8.2.2) generated which are required to resolve the implemented PreBuild Vari-
ability of the software components, generated RTE and Basic Software Scheduler.

The particular values are defined via the EcucVariationResolver configuration
selecting PredefinedVariants. These PredefinedVariant elements containing
definition of SwSystemconstValues for SwSystemconsts which shall be applied
when resolving the variability during ECU Configuration.

The values of the Condition Value Macros are the results of evaluated Condition-
ByFormulas of the related VariationPoints. These ConditionByFormulas ref-
erencing SwSystemconsts in the formula expressions. It is supported that the as-
signed SwSystemconstValue might contain again a formula expressions referenc-
ing SwSystemconsts. Therefore the input might be a tree of formula expressions
and SwSystemconstValues but the leaf SwSystemconstValues are required to
be values which are not dependent from other SwSystemconsts to ensure that the
evaluation of the tree results in a unique number.

[SWS_Rte_06610] d The RTE generator shall validate the resolved pre-build variants
and check the integrity with regards to the meta model. Any meta model violation shall
result in the rejection of the input configuration. c(SRS_Rte_00018)

The output of this phase is the RTE Configuration Header File 5.3.8.This file is required
to compile a particular variant of ECU software including software component code and
RTE code using PreCompileTime Variability. The Condition Value Macros are
used for the implementation of PreCompileTime Variability with preprocessor
statements and therefore are needed to run the C preprocessor resolving the imple-
mented variability.

3.6 PostBuild Data Set Generation Phase

In the PostBuild Data Set Generation Phase the PredefinedVariant values are
generated which are required to resolve the implemented PostBuild Variability
of the software components and generated RTE.

81 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

The output of this phase are the RTE Post Build Variant Sets 5.3.10. This file is required
to link the ECU software and to select a particular PostBuild variant in the generated
RTE code during start up when the Basic Software Scheduler is initialized.

[SWS_Rte_06611] d If the DET is enabled then the RTE shall generate validation code
which at runtime (i.e. during initialization) validates the resolved post-build variants and
check the integrity with regards to the active variants. If a violation is detected the RTE
shall report a development error to the DET. To execute this validation RTE initialization
will get a pointer to the RtePostBuildVariantConfiguration instance to allow it
to validate the selected variant. c(SRS_Rte_00191)

[SWS_Rte_06612] d The RTE generator shall create an RTE Post Build Data Set con-
figuration (i.e. Rte_PBCfg.c) representing the collection of PredefinedVariant def-
initions (typically for each subsystem and/or system configuration) providing and defin-
ing the post build variants of the RTE. c(SRS_Rte_00191)

Note that the Rte_PBCfg.h is generated during the Rte Generation phase. An
Rte_PBCfg.c may also have to be generated at that time to reserve memory (with
default values).

Additional details about these configuration files are described in section 5.3.10.

An RTE variant can consist of a collection of PredefinedVariants. Each Pre-
definedVariant contains a collection of PostBuildVariantCriterionValues
which assigns a value to a specific PostBuildVariantCriterion which in turn is
used to resolve the variability at runtime by evaluating a PostBuildVariantCon-
dition. Different PredefinedVariants could assign different values to the same
PostBuildVariantCriterion and as such create conflicts for a specific Post-
BuildVariantCriterionValueSet. It is allowed to have different assignments if
these assignment assign the same value.

[SWS_Rte_06613] d The RTE Generator shall reject configurations where
different PredefinedVariants assign different values to the same Post-
BuildVariantCriterion for the same RtePostBuildVariantConfiguration.
c(SRS_Rte_00018)

3.7 RTE Configuration interaction with other BSW Modules

The generated RTE interacts heavily with other AUTOSAR Basic Software Modules
like Com and Os. The configuration values for the different BSW Modules are stored
in individual structures of ECU Configuration it is however essential that the common
used values are synchronized between the different BSW Module’s configurations. AU-
TOSAR does not provide a standardized way how the individual configurations can be
synchronized, it is assumed that during the generation of the BSW Modules the input
information provided to the individual BSW Module is in sync with the input information
provided to other (dependent) BSW Modules.

82 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

The AUTOSAR BSW Module code-generation methodology is heavily relying on the
logical distinction between Configuration editors and configuration generators. These
tools do not necessarily have to be implemented as two separate tools, it just shall
be possible to distinguish the different roles the tools take during a certain step in the
methodology.

For the RTE it is assumed that tool support for the resolution of interactions between
the Rte and other BSW Modules is needed to allow an efficient configuration of the Rte.
It is however not specified how and in which tools this support shall be implemented.

The RTE Generator in Generation Phase needs information about other BSW Module’s
configurations based on the configuration input of the Rte itself (there are references in
the configuration of the Rte which point to configuration values of other BSW Modules).
If during RTE Generation Phase the provided input information is inconsistent wrt. the
Rte input the Rte Generator will have to consider the input as invalid configuration.

[SWS_Rte_05149] d The RTE Generator in Generation Phase shall consider errors in
the Rte configuration input information as invalid configuration. c(SRS_Rte_00018)

Due to implementation freedom of the RTE Generator it is possible to correct / update
provided input configurations of other BSW Modules based on the RTE configuration
requirements. But to allow a stable build process it is also possible to disallow such an
update behavior.

[SWS_Rte_05150] d If the external configuration switch
strictConfigurationCheck is set to true the Rte Generator shall not create
or modify any configuration input. c(SRS_Rte_00065)

If the external configuration switch strictConfigurationCheck
(see [SWS_Rte_05148]) is set to false the Rte Generator may update the input
configuration information of the Rte and other BSW Modules.

Example: If the Rte configuration is referencing an OsTask which is not configured in
the provided Os configuration, the RTE Generator would behave like:

• In case [SWS_Rte_05150] applies: Only show an error message.

• Otherwise: Possible behavior: Show a warning message and modify the Os con-
figuration to contain the OsTask which is referred to by the Rte configuration (Of
course the Os configuration of this new OsTask needs to be refined afterwards).

83 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4 RTE Functional Specification

4.1 Architectural concepts

4.1.1 Scope

In this section the concept of an AUTOSAR software-component and its usage within
the RTE is introduced.

The AUTOSAR Software Component Template [2] defines the kinds of software-
components within the AUTOSAR context. These are shown in Figure 4.1. The ab-
stract SwComponentType can not be instantiated, so there can only be either a Com-
positionSwComponentType, a ParameterSwComponentType, or a specialized
class ApplicationSwComponentType, ServiceProxySwComponentType, Sen-
sorActuatorSwComponentType, NvBlockSwComponentType, ServiceSwCom-
ponentType, ComplexDeviceDriverSwComponentType, or EcuAbstraction-
SwComponentType of the abstract class AtomicSwComponentType.

In the following document the term AtomicSwComponentType is used as collective
term for all the mentioned non-abstract derived meta-classes.

The SwComponentType is defining the type of an AUTOSAR software-component
which is independent of any usage and can be potentially re-used several times in
different scenarios. In a composition the types are occurring in specific roles which are
called SwComponentPrototypes. The prototype is the utilization of a type within a
certain scenario. In AUTOSAR any SwComponentType can be used as a type for a
prototype.

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

AtomicSwComponentType CompositionSwComponentType

AtpPrototype

SwComponentPrototype

SensorActuatorSwComponentType

ParameterSwComponentType

ApplicationSwComponentType

EcuAbstractionSwComponentType

ComplexDeviceDriverSwComponentTypeNvBlockSwComponentType

ServiceProxySwComponentType

ServiceSwComponentType

+component 0..*

«atpVariation,atpSplitable»

«isOfType»

+type

1
{redefines
atpType}

Figure 4.1: AUTOSAR software-component classification

The AUTOSAR software-components shown in Figure 4.1 are located above and below
the RTE in the architectural Figure 4.2.

84 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Below the RTE there are also software entities that have an AUTOSAR Interface.
These are the AUTOSAR services, the ECU Abstraction and the Complex Device
Drivers. For these software not only the AUTOSAR Interface will be described but
also information about their internal structure will be available in the Basic Software
Module Description.

Figure 4.2: AUTOSAR ECU architecture diagram

In the next sections the different AUTOSAR software-components kinds will be de-
scribed in detail with respect to their influence on the RTE.

4.1.2 RTE and Data Types

The AUTOSAR Meta Model defines ApplicationDataTypes and Implementa-
tionDataTypes. A AutosarDataPrototype can be typed by an Application-
DataType or an ImplementationDataType. But the RTE Generator only imple-
ments ImplementationDataTypes as C data types and uses these C data types
to type the RTE API which is related to DataPrototypes. Therefore it is required
in the input configuration that every ApplicationDataType used for the typing of a

85 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

DataPrototype which is relevant for RTE generation is mapped to an Implemen-
tationDataType with a DataTypeMap. Which DataTypeMap is applicable for an
particular software component respectively Basic Software Module is defined by
the DataTypeMappingSets referenced by the InternalBehavior.

[SWS_Rte_07028] d The RTE Generator shall reject input configurations containing a
AutosarDataPrototype which influences the generated RTE and which is typed
by an ApplicationDataType not mapped to an ImplementationDataType.
c(SRS_Rte_00018)

Nevertheless a subset of the attributes given by the ApplicationDataTypes are
relevant for the RTE generator for instance

• to create the McSupportData (see section 4.2.8.4) information

• to calculate the conversion formula in case of Data Conversion (see section 4.3.5
and 4.3.5.3)

• to calculate numerical representation of values required for the RTE code but
defined in the physical representation (e.g. initialValues and invalid-
Values).

[SWS_Rte_01374] dWhen a value is required for the RTE code and is provided as an
ApplicationValueSpecification, if there is an applicable ConstantSpecifi-
cationMapping then the RTE Generator shall use the ValueSpecification ref-
erenced by its implConstant as the definitive numerical representation of the value
regardless of any compuMethod. c(SRS_Rte_00180, SRS_Rte_00182)

[SWS_Rte_07038] dWhen a value is required for the RTE code and is provided as an
ApplicationValueSpecification, if there is no applicable ConstantSpecifi-
cationMapping then the RTE Generator shall calculate the numerical representation
according to the conversion defined by an compuMethod. This shall be supported
for categorys VALUE, VAL_BLK, STRUCTURE, ARRAY, and BOOLEAN. If there is no
CompuMethod provided the conversion is treated like an CompuMethod of category
IDENTICAL. c(SRS_Rte_00180, SRS_Rte_00182)

In [SWS_Rte_01374] and [SWS_Rte_07038], an "applicable ConstantSpecifica-
tionMapping" is one that is aggregated by the relevant SwComponentType and
which references the ApplicationValueSpecification in its applConstant.

4.1.3 RTE and AUTOSAR Software-Components

The description of an AUTOSAR software-component is divided into the sections

• hierarchical structure

• ports and interfaces

• internal behavior

86 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

• implementation

which will be addressed separately in the following sections.

[SWS_Rte_07196] d The RTE Generator shall respect the precedence of data prop-
erties defined via SwDataDefProps as defined in the Software Component Template
[2]. c

Requirement [SWS_Rte_07196] means that:

1. SwDataDefProps defined on ApplicationDataType which may be overwrit-
ten by

2. SwDataDefProps defined on ImplementationDataType which may be over-
written by

3. SwDataDefProps defined on AutosarDataPrototype which may be over-
written by

4. SwDataDefProps defined on InstantiationDataDefProps which may be
overwritten by

5. SwDataDefProps defined on AccessPoint respectively Argument which may
be overwritten by

6. SwDataDefProps defined on FlatInstanceDescriptor which may be over-
written by

7. SwDataDefProps defined on McDataInstance

The SwDataDefProps defined on McDataInstance are not relevant for the RTE
generation but rather the documentation of the generated RTE.

Especially the attributes swAddrMethod, swCalibrationAccess, swImplPolicy
and dataConstr do have an impact on the generated RTE. In the following document
only the attribute names are mentioned with the semantic that this refers to the most
significant one.

4.1.3.1 Hierarchical Structure of Software-Components

In AUTOSAR the structure of an E/E-system is described using the AUTOSAR Soft-
ware Component Template and especially the mechanism of compositions. Such a
Top Level Composition assembles subsystems and connects their ports.

Of course such a composition utilizes a lot of hierarchical levels where compositions
instantiate other composition types and so on. But at some low hierarchical level each
composition only consists of AtomicSwComponentType instances. And those in-
stances of AtomicSwComponentTypes are what the RTE is going to be working with.

87 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4.1.3.2 Ports, Interfaces and Connections

Each AUTOSAR software-component (SwComponentType) can have ports (Port-
Prototype). An AUTOSAR software-component has provide ports (PPortProto-
type) and/or has require ports (RPortPrototype) to communicate with other AU-
TOSAR software-components. The requiredInterface or providedInterface
(PortInterface) determines if the port is a sender/receiver or a client/server port.
The attribute isService is used with AUTOSAR Services (see section 4.1.5).

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

AtpBlueprintable
AtpPrototype

PortPrototype

RPortPrototype PPortPrototype

«atpVariation» Tags:
vh.latestBindingTime =
preCompileTime

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

PortInterface

+ isService :Boolean
+ serviceKind :ServiceProviderEnum [0..1]

PRPortPrototype

AbstractProvidedPortPrototypeAbstractRequiredPortPrototype

+port

0..*«atpVariation,atpSplitable»

«isOfType»

+providedInterface

1
{redefines
atpType}

«isOfType»

+requiredInterface

1
{redefines
atpType}

«isOfType»

+providedRequiredInterface

1
{redefines
atpType}

Figure 4.3: Software-Components and Ports

When compositions are built of instances the ports can be connected either within the
composition or made accessible to the outside of the composition. For the connections
inside a composition the AssemblySwConnector is used, while the Delegation-
SwConnector is used to connect ports from the inside of a composition to the outside.
Ports not connected will be handled according to the requirement [SRS_Rte_00139].

The next step is to map the SW-C instances on ECUs and to establish the communi-
cation relationships. From this step the actual communication is derived, so it is now

88 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

fixed if a connection between two instance’s ports is going to be over a communication
bus or locally within one ECU.

[SWS_Rte_02200] d The RTE shall implement the communication paths specified by
the ECU Configuration description. c(SRS_Rte_00027)

[SWS_Rte_02201] d The RTE shall implement the semantic of the communication at-
tributes given by the AUTOSAR software-component description. The semantic of the
given communication mechanism shall not change regardless of whether the commu-
nication partner is located on the same partition, on another partition of the same ECU
or on a remote ECU, or whether the communication is done by the RTE itself or by the
RTE calling COM or IOC. c(SRS_Rte_00027)

E.g., according to [SWS_Rte_02200] and [SWS_Rte_02201] the RTE is not permitted
to change the semantic of an asynchronous client to synchronous because both client
and server are mapped to the very same ECU.

4.1.3.3 Internal Behavior

Only for AtomicSwComponentTypes the internal structure is exposed in the SwcIn-
ternalBehavior description. Here the definition of the RunnableEntitys and
used RTEEvents is done (see Figure 4.4).

The AUTOSAR MetaModel enforces that there is at most one SwcInternalBehav-
ior per AtomicSwComponentType

SwcInternalBehavior

AtpStructureElement
ExecutableEntity

RunnableEntity

AbstractEvent
AtpStructureElement

RTEEvent

Identifiable

ExclusiveArea

AtpStructureElement
Identifiable

PerInstanceMemory

PortAPIOption

AutosarDataPrototype

ParameterDataPrototype

AutosarDataPrototype

VariableDataPrototype

AtpStructureElement

InternalBehavior

«atpVariation» Tags:
vh.latestBindingTime =
preCompileTime

«atpVariation» Tags:
vh.latestBindingTime =
preCompileTime

«atpVariation» Tags:
vh.latestBindingTime =
preCompileTime

«atpVariation» Tags:
vh.latestBindingTime =
preCompileTime

+event *

«atpVariation,atpSplitable»

+explicitInterRunnableVariable

* «atpVariation»

+implicitInterRunnableVariable

* «atpVariation»

+arTypedPerInstanceMemory

* «atpVariation»

+perInstanceMemory *

«atpVariation»

+runnable 1..*

«atpVariation,atpSplitable»

+perInstanceParameter *

«atpVariation,atpSplitable»

+sharedParameter *

«atpVariation,atpSplitable»

+portAPIOption 0..*

«atpVariation»

«atpVariation»

+staticMemory

0..*

«atpVariation»

+exclusiveArea

0..* «atpVariation»

+constantMemory

0..*

Figure 4.4: Software-component internal behavior

89 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

RunnableEntitys (also abbreviated simply as Runnable) are the smallest code frag-
ments that are provided by AUTOSAR software-components and those basic software
modules that implement AUTOSAR Interfaces. They are represented by the meta-class
RunnableEntity, see Figure 4.5.

In general, software components are composed of multiple RunnableEntitys in or-
der to accomplish servers, receivers, feedback, etc.

[SWS_Rte_02202] d The RTE shall support multiple RunnableEntitys in AUTOSAR
software-components. c(SRS_Rte_00031)

RunnableEntitys are executed in the context of an OS task, their execution is
triggered by RTEEvents. Section 4.2.2.3 gives a more detailed description of the
concept of RunnableEntitys, Section 4.2.2.6 discusses the problem of mapping
RunnableEntitys to OS tasks. RTEEvents and the activation of RunnableEn-
titys by RTEEvents is treated in Section 4.2.2.4.

[SWS_Rte_02203] d The RTE shall trigger the execution of RunnableEntitys in
accordance with the connected RTEEvent. c(SRS_Rte_00072)

[SWS_Rte_02204] d The RTE Generator shall reject configurations where an RTE-
Event instance which can start a RunnableEntity is not mapped to an OS task.
The only exceptions are RunnableEntitys that are invoked by a direct function call.
c(SRS_Rte_00049, SRS_Rte_00018)

[SWS_Rte_07347] d The RTE Generator shall reject configurations where
RunnableEntitys of a SW-C are mapped to tasks of different partitions.
c(SRS_Rte_00036, SRS_Rte_00018)

[SWS_Rte_02207] d The RTE shall respect the configured execution order of
RunnableEntitys within one OS task. c(SRS_Rte_00070)

[SWS_Rte_08768] d The RTE generator shall reject configuration where the scope
of a VariableAccess is violated by the system and/or ECU configuration.
c(SRS_Rte_00018)

[constr_9081] Mapping to partition vs the value of VariableAccess.scope d For
every connection between SwComponentPrototypes mapped to different parti-
tions the value of VariableAccess.scope shall not be set to VariableAccessS-
copeEnum.communicationIntraPartition. c

90 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

AtpStructureElement
ExecutableEntity

SwcInternalBehavior::RunnableEntity

+ canBeInvokedConcurrently :Boolean
+ symbol :CIdentifier

InternalBehavior

SwcInternalBehavior::SwcInternalBehavior

+ handleTerminationAndRestart :HandleTerminationAndRestartEnum
+ supportsMultipleInstantiation :Boolean

Identifiable

RTEEvents::WaitPoint

+ timeout :TimeValue

AbstractEvent
AtpStructureElement

RTEEvents::RTEEvent

«atpVariation» Tags:
vh.latestBindingTime =
preCompileTime

+event *

«atpVariation,atpSplitable»

+startOnEvent

0..1

*

+trigger 1

+waitPoint

*

+runnable 1..*

«atpVariation,atpSplitable»

Figure 4.5: Software-component runnable entity, wait points and RTE Events

91 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

AtpStructureElement
ExecutableEntity

SwcInternalBehavior::RunnableEntity

+ canBeInvokedConcurrently :Boolean
+ symbol :CIdentifier

InternalBehavior

SwcInternalBehavior::SwcInternalBehavior

+ handleTerminationAndRestart :HandleTerminationAndRestartEnum
+ supportsMultipleInstantiation :Boolean

AtpStructureElement
Identifiable

DataElements::VariableAccess

+ scope :VariableAccessScopeEnum [0..1]

AtpStructureElement
Identifiable

DataElements::ParameterAccess

«atpVariation» Tags:
vh.latestBindingTime =
preCompileTime

«atpVariation» Tags:
vh.latestBindingTime =
preCompileTime

«atpVariation» Tags:
vh.latestBindingTime =
preCompileTime

«atpVariation»

+dataReceivePointByArgument

0..*

«atpVariation»

+dataWriteAccess

0..*

«atpVariation»

+dataReadAccess

0..*

«atpVariation»

+dataSendPoint

0..*

«atpVariation»

+readLocalVariable

0..*

+runnable 1..*

«atpVariation,atpSplitable»

«atpVariation»

+dataReceivePointByValue

0..*

«atpVariation»

+writtenLocalVariable

0..*

«atpVariation»

+parameterAccess

0..*

Figure 4.6: Software-component runnable entity and data accesses

92 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

AtpStructureElement
ExecutableEntity

SwcInternalBehavior::RunnableEntity

+ canBeInvokedConcurrently :Boolean
+ symbol :CIdentifier

InternalBehavior

SwcInternalBehavior::SwcInternalBehavior

+ handleTerminationAndRestart :HandleTerminationAndRestartEnum
+ supportsMultipleInstantiation :Boolean

AtpStructureElement
Identifiable

ServerCall::ServerCallPoint

+ timeout :TimeValue

AtpStructureElement
Identifiable

ServerCall::AsynchronousServerCallResultPoint

Trigger::ExternalTriggeringPoint

AtpStructureElement
Identifiable

Trigger::InternalTriggeringPoint

+ swImplPolicy :SwImplPolicyEnum [0..1]

«atpVariation» Tags:
vh.latestBindingTime =
preCompileTime

«atpVariation» Tags:
vh.latestBindingTime =
preCompileTime

ModeDeclarationGroup::ModeAccessPoint

AtpStructureElement
Identifiable

ModeDeclarationGroup::ModeSwitchPoint

«atpVariation» Tags:
vh.latestBindingTime =
preCompileTime

«atpVariation» Tags:
vh.latestBindingTime =
preCompileTime

+internalTriggeringPoint

0..*«atpVariation»

+externalTriggeringPoint

0..*«atpVariation»

+asynchronousServerCallResultPoint

0..*
«atpVariation»+runnable

+serverCallPoint

*«atpVariation»

+runnable

+runnable 1..*

«atpVariation,atpSplitable»

+modeSwitchPoint

*«atpVariation»

+runnable

+modeAccessPoint

*«atpVariation»

Figure 4.7: Software-component runnable entity and server invocation, trigger, and
mode switches

93 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

With the information from SwcInternalBehavior a part of the setup of the AU-
TOSAR software-component within the RTE and the OS can already be configured.
Furthermore, the information (description) of the structure (ports, interfaces) and the
internal behavior of an AUTOSAR software component are sufficient for the RTE Con-
tract Phase.

However, some detailed information is still missing and this is part of the Implementa-
tion description.

4.1.3.4 Implementation

In the Implementation description an actual implementation of an AUTOSAR software-
component is described including the memory consumption (see Figure 4.8).

ARElement

Implementation

Identifiable

ExecutionTime

Identifiable

ResourceConsumption

Identifiable

StackUsage

A

Identifiable

HeapUsage

Identifiable

MemorySection

Identifiable

ExecutableEntity

«atpVariation» Tags:
vh.latestBindingTime
= preCompileTime

+executableEntity

0..*

+heapUsage 0..*

«atpVariation»

+executionTime 0..*

«atpVariation»

+executableEntity

0..1

«atpVariation»

+memorySection 0..*

+resourceConsumption 1

+executableEntity

0..1

+stackUsage 0..*

«atpVariation»

Figure 4.8: Software-component resource consumption

Note that the information from the Implementation part are only required for the RTE
Generation Phase, if at all.

94 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4.1.4 Instantiation

4.1.4.1 Scope and background

Generally spoken, the term instantiation refers to the process of deriving specific in-
stances from a model or template. But, this process can be accomplished on different
levels of abstraction. Therefore, the instance of the one level can be the model for the
next.

With respect to AUTOSAR four modeling levels are distinguished. They are referred to
as the levels M3 to M0.

The level M3 describes the concepts used to derive an AUTOSAR meta model of level
M2. This meta model at level M2 defines a language in order to be able to describe
specific attributes of a model at level M1, e.g., to be able to describe an specific type
of an AUTOSAR software component. E.g., one part of the AUTOSAR meta model
is called Software Component Template or SW-C-T for short and specified in [2]. It is
discussed more detailed in section 4.1.3.

At level M1 engineers will use the defined language in order to design components or
interfaces or compositions, say to describe an specific type of a LightManager. Hereby,
e.g., the descriptions of the (atomic) software components will also contain an internal
behavior as well as an implementation part as mentioned in section 4.1.3.

Those descriptions are input for the RTE Generator in the so-called ’Contract Phase’
(see section 3.1.1). Out of this information specific APIs (in a programming language)
to access ports and interfaces will be generated.

Software components generally consist of a set of Runnable Entities. They can now
specifically be described in a programming language which can be refered to as “im-
plementation”. As one can see in section 4.1.3 this “implementation” then corresponds
exactly to one implementation description as well as to one internal behavior descrip-
tion.

M0 refers to a specific running instance on a specific car.

Objects derived from those specified component types can only be executed in a spe-
cific run time environment (on a specific target). The objects embody the real and
running implementation and shall therefore be referred to as software component in-
stances (on modeling level M0). E.g., there could be two component instances derived
from the same component type LightManager on a specific light controller ECU each
responsible for different lights. Making instances means that it should be possible to
distinguish them even though the objects are descended from the same model.

With respect to this more narrative description the RTE as the run time environment
shall enable the process of instantiation. Thereby the term instantiation throughout
the document shall refer to the process of deriving and providing explicit particular
descriptions of all occuring instances of all types. Therefore, this section will address
the problems which can arise out of the instantiation process and will specify the needs
for AUTOSAR components and the AUTOSAR RTE respectively.

95 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4.1.4.2 Concepts of instantiation

Regardless of the fact that the (aforementioned) instantiation of AUTOSAR software
components can be generally achieved on a per-system basis, the RTE Generator
restricts its view to a per-ECU customization (see [SWS_Rte_05000]).

Generally, there are two different kinds of instantiations possible:

• single instantiation – which refers to the case where only one object or AUTOSAR
software component instance will be derived out of the AUTOSAR software com-
ponent description

• multiple instantiation – which refers to the case where multiple objects or AU-
TOSAR software component instances will be derived out of the AUTOSAR soft-
ware component description

[SWS_Rte_02001] d The RTE Generator shall be able to instantiate one or more AU-
TOSAR software component instances out of a single AUTOSAR software component
description. c(SRS_Rte_00011)

[SWS_Rte_02008] d The RTE Generator shall evaluate the attribute supportsMultiple-
Instantiation of the SwcInternalBehavior of an AUTOSAR software component descrip-
tion. c(SRS_Rte_00011)

[SWS_Rte_02009] d The RTE Generator shall reject configurations where multiple
instantiation is required, but the value of the attribute supportsMultipleInstantiation of
the SwcInternalBehavior of an AUTOSAR software component description is set to
FALSE. c(SRS_Rte_00011, SRS_Rte_00018)

4.1.4.3 Single instantiation

Single instantiation refers to the easiest case of instantiation.

To be instantiated merely means that the code and the corresponding data of a particu-
lar RunnableEntity are embedded in a runtime context. In general, this is achieved
by the context of an OS task (see example 4.1).

Example 4.1

Runnable entity R1 called out of a task context:
1 TASK(Task1){
2 ...
3 R1();
4 ...
5 }

Since the single instance of the software component is unambigous per se no addi-
tional concepts have to be added.

96 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4.1.4.4 Multiple instantiation

[SWS_Rte_02002] d Multiple objects instantiated from a single AUTOSAR software
component (type) shall be identifiable without ambiguity. c(SRS_Rte_00011)

There are two principle ways to achieve this goal –

• by code duplication (of runnable entities)

• by code sharing (of reentrant runnable entities)

For now it was decided to solely concentrate on code sharing and not to support code
duplication.

[SWS_Rte_03015] d The RTE only supports multiple objects instantiated from a sin-
gle AUTOSAR software component by code sharing, the RTE doesn’t support code
duplication. c(SRS_Rte_00011, SRS_Rte_00012)

Multiple instances can share the same code, if the code is reentrant. For a multi core
controller, the possibility to share code between the cores depends on the hardware.

Example 4.2 is similar to the example 4.1, but for a software-component that sup-
port multiple instantiations, and where two instances have their R1 RunnableEntity
mapped to the same task.

Example 4.2

Runnable entity R1 called for two instances out of the same task context:
1 TASK(Task1){
2 ...
3 R1(instance1);
4 R1(instance2);
5 ...
6 }

The same code for R1 is shared by the different instances.

4.1.4.4.1 Reentrant code

In general, side effects can appear if the same code entity is invoked by different
threads of execution running, namely tasks. This holds particularly true, if the invoked
code entity inherits a state or memory by the means of static variables which are vis-
ible to all instances. That would mean that all instances are coupled by those static
variables.

Thus, they affect each other. This would lead to data consistency problems on one
hand. On the other – and that is even more important – it would introduce a new
communication mechanism to AUTOSAR and this is forbidden. AUTOSAR software
components can only communicate via ports.

97 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

To be complete, it shall be noted that a calling code entity also inherits the reentrancy
problems of its callee. This holds especially true in case of recursive calls.

4.1.4.4.2 Unambiguous object identification

[SWS_Rte_02015] d The instantiated AUTOSAR software component objects shall be
unambiguously identifiable by an instance handle, if multiple instantiation by sharing
code is required. c(SRS_Rte_00011, SRS_Rte_00012)

4.1.4.4.3 Multiple instantiation and Per-instance memory

An AUTOSAR SW-C can define internal memory only accessible by a SW-C instance
itself. This concept is called PerInstanceMemory. The memory can only be accessed
by the runnable entities of this particular instance. That means in turn, other instances
don’t have the possibility to access this memory.

PerInstanceMemory API principles are explained in Section 5.2.5.

The API for PerInstanceMemory is specified in Section 5.6.15.

4.1.5 RTE and AUTOSAR Services

According to the AUTOSAR glossary [11] “an AUTOSAR service is a logical entity of the
Basic Software offering general functionality to be used by various AUTOSAR software
components. The functionality is accessed via standardized AUTOSAR interfaces”.

Therefore, AUTOSAR services provide standardized AUTOSAR Interfaces: ports typed
by standardized PortInterfaces.

When connecting AUTOSAR service ports to ports of AUTOSAR software components
the RTE maps standard RTE API calls to the symbols defined in the RTE input (i.e.
XML) for the AUTOSAR service runnables of the BSW. The key technique to distin-
guish ECU dependent identifiers for the AUTOSAR services is called “port-defined
argument values”, which is described in Section 4.3.2.4. Currently “port-defined argu-
ment values” are only supported for client-server communication. It is not possible to
use a pre-defined symbol for sending or receiving data.

The RTE does not pass an instance handle to the C-based API of AUTOSAR services
since the latter are single-instantiatable (see [SWS_Rte_03806]).

As displayed on figure 4.2, there can be direct interactions between the RTE and some
Basic Software Modules. This is the case of the Operating System, the AUTOSAR
Communication, and the NVRAM Manager.

98 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4.1.6 RTE and ECU Abstraction

The ECU Abstraction provides an interface to physical values for AUTOSAR software
components. It abstracts the physical origin of signals (their pathes to the ECU hard-
ware ports) and normalizes the signals with respect to their physical appearance (like
specific values of current or voltage).

See the AUTOSAR ECU architecture in figure 4.2. From an architectural point of view
the ECU Abstraction is part of the Basic Software layer and offers AUTOSAR interfaces
to AUTOSAR software components.

Seen from the perspective of an RTE, regular AUTOSAR ports are connected. With-
out any restrictions all communication paradigms specified by the AUTOSAR Virtual
Functional Bus (VFB) shall be applicable to the ports, interfaces and connections –
sender-receiver just as well as client-server mechanisms.

However, ports of the ECU Abstraction shall always only be connected to ports of
specific AUTOSAR software components: sensor or actuator software components. In
this sense they are tightly coupled to a particular ECU Abstraction.

Furthermore, it must not be possible (by an RTE) to connect AUTOSAR ports of the
ECU Abstraction to AUTOSAR ports of any AUTOSAR component located on a remote
ECU (see [SWS_Rte_02051].

This means, e.g., that sensor-related signals coming from the ECU Abstraction are
always received by an AUTOSAR sensor component located on the same ECU. The
AUTOSAR sensor component will then process the received signal and deploy it to
other AUTOSAR components regardless of whether they are located on the same or
any remote ECU. This applies to actuator-related signals accordingly, however, the
opposite way around.

[SWS_Rte_02050] d The RTE Generator shall generate a communication path be-
tween connected ports of AUTOSAR sensor or actuator software components and the
ECU Abstraction in the exact same manner like for connected ports of AUTOSAR soft-
ware components. c

[SWS_Rte_02051] d The RTE Generator shall reject configurations which require a
communication path from a AUTOSAR software component to an ECU Abstraction
located on a remote ECU. c(SRS_Rte_00062, SRS_Rte_00018)

Further information about the ECU Abstraction can be found in the corresponding spec-
ification document [17].

4.1.7 RTE and Complex Device Driver

A Complex Device Driver has an AUTOSAR Interface, therefore the RTE can deal with
the communication on the Complex Device Drivers ports. The Complex Device Driver
is allowed to have code entities that are not under control of the RTE but yet still may
use the RTE API (e.g. ISR2, BSW main processing functions).

99 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4.1.8 Basic Software Scheduler and Basic Software Modules

4.1.8.1 Description of a Basic Software Module

The description of a Basic Software Module is divided into the sections

• interfaces

• internal behavior

• implementation

For further details see document [9].

4.1.8.2 Basic Software Interfaces

The interface of a Basic Software Module is described with Basic Software Module
Entries (BswModuleEntry). For the functionality of the Basic Software Scheduler only
BswModuleEntrys from BswCallType SCHEDULED are relevant. Nevertheless for op-
timization purpose the analysis of the full call tree might be required which requires the
consideration of all BswModuleEntry ’s

4.1.8.3 Basic Software Internal Behavior

The Basic Software Internal Behavior specifies the behavior of a BSW module or a
BSW cluster w.r.t. the code entities visible by the BSW Scheduler. For the Basic Soft-
ware Scheduler mainly Basic Software Schedulable Entities (BswSchedulableEntity ’s)
are relevant. These are Basic Software Module Entities, which are designed for control
by the Basic Software Scheduler. Basic Software Schedulable Entities are implement-
ing main processing functions. Furthermore all Basic Software Schedulable Entities
are allowed to use exclusive areas and for call tree analysis all Basic Software Module
Entities are relevant.

[SWS_Rte_07514] d The Basic Software Scheduler shall support multiple Basic Soft-
ware Module Entities in AUTOSAR Basic Software Modules. c(SRS_Rte_00211,
SRS_Rte_00213, SRS_Rte_00216)

[SWS_Rte_07515] d The Basic Software Scheduler shall trigger the execution of
Schedulable Entity ’s in accordance with the connected BswEvent. c(SRS_Rte_00072)

[SWS_Rte_07516] d The RTE Generator shall reject configurations where an Bsw-
Event which can start a Schedulable Entity is not mapped to an OS task. The excep-
tions are BswEvent that are implemented by a direct function call. c(SRS_Rte_00049,
SRS_Rte_00018)

[SWS_Rte_07517] d The RTE Generator shall respect the configured execution order
of Schedulable Entities within one OS task. c(SRS_Rte_00219)

100 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_07518] d The RTE shall support the execution sequences of Runnable
Entities and Schedulable Entities within the same OS task in an arbitrarily configurable
order. c(SRS_Rte_00219)

4.1.8.4 Basic Software Implementation

The implementation defines further details of the implantation of the Basic Software
Module. The vendorApiInfix attribute is of particular interest, because it defines the
name space extension for multiple instances of the same basic software module. Fur-
ther on the category of the codeDescriptor specifies if the Basic Software Module
is delivered as source code or as object.

4.1.8.5 Multiple Instances of Basic Software Modules

In difference to the multiple instantiation concept of software components, where the
same component code is used for all component instances, basic software modules are
multiple instantiated by creation of own code per instance in a different name space.
The attribute vendorApiInfix allows to define name expansions required for global sym-
bols.

4.1.8.6 AUTOSAR Services / ECU Abstraction / Complex Device Drivers

AUTOSAR Services, ECU Abstraction and Complex Device Drivers are hybrid of AU-
TOSAR software-component and Basic Software Module. These kinds of modules
might use AUTOSAR Interfaces to communicate via RTE as well as C-API to directly
access other Basic Software Modules. Caused by the structure of the AUTOSAR Meta
Model some entities of the ’C’ implementation have to be described twice; on the one
hand by the means of the Software Component Template [2] and on the other hand by
the means of the Basic Software Module Description Template [9]. Further on the du-
alism of port based communication between software component and non-port based
communication between Basic Software Modules requires in some cases the coordi-
nation and synchronization between both principles. The information about elements
belonging together is provided by the so called SwcBswMapping.

4.1.8.6.1 RunnableEntity / BswModuleEntity mapping

A Runnable Entity which is mapped to a Basic Software Module Entity has to be treated
as one common entity. This means it describes an entity which can use the features of
a Runnable Entity and a Basic Software Module Entity as well. For instance it supports
to use the port based API as well as Basic Software Scheduler API in one C function.

101 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4.1.8.6.2 Synchronized ModeDeclarationGroupPrototype

Two synchronized ModeDeclarationGroupPrototype are resulting in the implementation
of one common mode machine instance. Consequently the call of the belonging
Rte_Switch API and the SchM_Switch API are having the same effect. For opti-
mization purpose the Rte_Switch API might just refer to the SchM_Switch API.

4.1.8.6.3 Synchronized Trigger

Two synchronized Trigger are behaving like one common Trigger. Consequently the
call of the belonging Rte_Trigger API and the SchM_Trigger API are having the
same effect. For optimization purpose the Rte_Trigger API might just refer to the
SchM_Trigger API.

4.2 RTE and Basic Software Scheduler Implementation Aspects

4.2.1 Scope

This section describes some specific implementation aspects of an AUTOSAR RTE
and the Basic Software Scheduler. It will mainly address

• the mapping of logical concepts (e.g., Runnable Entities, BSW Schedulable Enti-
ties) to technical architectures (namely, the AUTOSAR OS)

• the decoupling of pending interrupts (in the Basic Software) and the notification
of AUTOSAR software components

• data consistency problems to be solved by the RTE

Therefore this section will also refer to aspects of the interaction of the AUTOSAR RTE
and Basic Software Scheduler and the two modules of the AUTOSAR Basic Software
with standardized interfaces (see Figure 4.9):

• the module AUTOSAR Operating System [18, 4]

• the module AUTOSAR COM [19, 3]

Having a standardized interface means first that the modules do not provide or request
services for/of the AUTOSAR software components located above the RTE. They do
not have ports and therefore cannot be connected to the aforementioned AUTOSAR
software components. AUTOSAR OS as well as AUTOSAR COM are simply invisible
for them.

Secondly AUTOSAR OS and AUTOSAR COM are used by the RTE in order to achieve
the functionality requested by the AUTOSAR software components. The AUTOSAR
COM module is used by the RTE to route a signal over ECU boundaries, but this
mechanism is hidden to the sending as well as to the receiving AUTOSAR software

102 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Figure 4.9: Scope of the section on Basic Software modules

component. The AUTOSAR OS module is used for two main purposes. First, OS is
used by the RTE to route a signal over core and partition boundaries. Secondly, the
AUTOSAR OS module is used by the RTE in order to properly schedule the single
Runnables in the sense that the RTE Generator generates Task-bodies which contain
then the calls to appropriate Runnables.

In this sense the RTE shall also use the available means to convert interrupts to notifi-
cations in a task context or to guarantee data consistency.

With respect to this view, the RTE is thirdly not a generic abstraction layer for AU-
TOSAR OS and AUTOSAR COM. It is generated for a specific ECU and offers the
same interface to the AUTOSAR Software Components as the VFB. It implements the
functionality of the VFB using modules of the Basic Software, including a specific im-
plementation of AUTOSAR OS and AUTOSAR COM.

The Basic Software Scheduler offers services to integrate Basic Software Modules for
all modules of all layers. Hence, the Basic Software Scheduler provides the following
functions:

• embed Basic Software Modules implementations into the AUTOSAR OS context

• trigger BswSchedulableEntitys of the Basic Software Modules

• apply data consistency mechanisms for the Basic Software Modules

103 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

The integrator’s task is to apply given means (of the AUTOSAR OS) in order to assem-
ble BSW modules in a well-defined and efficient manner in a project specific context.

This also means that the BSW Scheduler only uses the AUTOSAR OS. It is not in the
least a competing entity for the AUTOSAR OS scheduler.

[SWS_Rte_02250] d The RTE shall only use the AUTOSAR OS and AUTOSAR
COM in order to provide the RTE functionality to the AUTOSAR components.
c(SRS_Rte_00020)

[SWS_Rte_07519] d The Basic Software Scheduler shall only use the AUTOSAR OS
in order to provide the Basic Software Scheduler functionality to the Basic Software
Modules. c

[SWS_Rte_02251] d The RTE Generator shall construct task bodies for those
tasks which contain RunnableEntitys and Basic Software Schedulable Entities.
c(SRS_Rte_00049)

The information for the construction of task bodies has to be given by the ECU Con-
figuration description. The mapping of Runnable Entities to tasks is given as an input
by the ECU Configuration description. The RTE Generator does not decide on the
mapping of RunnableEntitys to tasks.

[SWS_Rte_02254] d The RTE Generator shall reject configurations where in-
put information is missing regarding the mapping of Runnable Entities and Ba-
sic Software Schedulable Entities to OS tasks or the construction of tasks bodies.
c(SRS_Rte_00049, SRS_Rte_00018)

4.2.2 OS

This section describes the interaction between the RTE + Basic Software Scheduler
and the AUTOSAR OS. The interaction is realized via the standardized interface of the
OS - the AUTOSAR OS API. See Figure 4.9.

The OS is statically configured by the ECU Configuration. The RTE generator however
may be allowed to create tasks and other OS objects, which are necessary for the run-
time environment (see [SWS_Rte_05150]). The mapping of RunnableEntitys and
BSW Schedulable Entities to OS tasks is not the job of the RTE generator. This map-
ping has to be done in a configuration step before, in the RTE-Configuration phase. The
RTE generator is responsible for the generation of OS task bodies, which contain the
calls for the RunnableEntitys and BSW Schedulable Entities. The RunnableEn-
titys and BSW Schedulable Entities themselves are OS independent and are not
allowed to use OS service calls. The RTE and Basic Software Scheduler have to en-
capsulate such calls via the standardized RTE API respectively Basic Software Sched-
uler API.

104 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4.2.2.1 OS Objects

Tasks

• The RTE generator has to create the task bodies, which contain the calls of the
RunnableEntitys and BswSchedulableEntitys. Note that the term task
body is used here to describe a piece of code, while the term task describes a
configuration object of the OS.

• The RTE and Basic Software Scheduler controls the task activation/resumption
either directly by calling OS services like SetEvent() or ActivateTask() or
indirectly by initializing OS alarms or starting Schedule-Tables for time-based ac-
tivation of RunnableEntitys. If the task terminates, the generated taskbody
also contains the calls of TerminateTask() or ChainTask().

• The RTE generator does not create tasks. The mapping of RunnableEntitys
and BswSchedulableEntitys to tasks is the input to the RTE generator and
is therefore part of the RTE Configuration.

• The RTE configurator has to allocate the necessary tasks in the OS configuration.

OS applications

• AUTOSAR OS has in R4.0 a new feature called Inter-OS-Application Commu-
nication (IOC). IOC is generated by the OS based on the configuration partially
generated by the RTE. The appropriate objects (OS-Applications) are generated
by the OS, and are used by RTE to for task/runnable mapping.

Events

• The RTE and Basic Software Scheduler may use OS Events for the implementa-
tion of the abstract RTEEvents and BswEvents.

• The RTE and Basic Software Scheduler therefore may call the OS service func-
tions SetEvent(), WaitEvent(), GetEvent() and ClearEvent().

• The used OS Events are part of the input information of the RTE generator.

• The RTE configurator has to allocate the necessary events in the OS configura-
tion.

Resources

• The RTE and Basic Software Scheduler may use OS Resources (standard or
internal) e.g. to implement data consistency mechanisms.

• The RTE and Basic Software Scheduler may call the OS services GetRe-
source() and ReleaseResource().

• The used Resources are part of the input information of the RTE generator.

• The RTE configurator has to allocate the necessary resources (all types of re-
sources) in the OS configuration.

105 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Interrupt Processing

• An alternative mechanism to get consistent data access is disabling/enabling of
interrupts. The AUTOSAR OS provides different service functions to handle in-
terrupt enabling/disabling. The RTE may use these functions and must not use
compiler/processor dependent functions for the same purpose.

Alarms

• The RTE may use Alarms for timeout monitoring of asynchronous client/server
calls. The RTE is responsible for Timeout handling.

• The RTE and Basic Software Scheduler may setup cyclic alarms for periodic trig-
gering of RunnableEntitys and BswSchedulableEntitys (RunnableEn-
tity activation via RTEEvent TimingEvent respectively BswSchedula-
bleEntity activation via BswEvent BswTimingEvent)

• The RTE and Basic Software Scheduler therefore may call the OS service func-
tions GetAlarmBase(), GetAlarm(), SetRelAlarm(), SetAbsAlarm()
and CancelAlarm().

• The used Alarms are part of the input information of the RTE generator.

• The RTE configurator has to allocate the necessary alarms in the OS configura-
tion.

Schedule Tables

• The RTE and Basic Software Scheduler may setup schedule tables for cyclic task
activation (e.g. RunnableEntity activation via RTEEvent TimingEvent)

• The used schedule tables are part of the input information of the RTE generator.

• The RTE configurator has to allocate the necessary schedule tables in the OS
configuration.

Common OS features

Depending on the global scheduling strategy of the OS, the RTE can make decisions
about the necessary data consistency mechanisms. E.g. in an ECU, where all tasks
are non-preemptive - and as the result also the global scheduling strategy of the com-
plete ECU is non-preemptive - the RTE may optimize the generated code regarding
the mechanisms for data consistency.

Hook functions

The AUTOSAR OS Specification defines hook functions as follows:

A Hook function is implemented by the user and invoked by the operating system in
the case of certain incidents. In order to react to these on system or application level,
there are two kinds of hook functions.

• application-specific: Hook functions within the scope of an individual OS Appli-
cation.

106 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

• system-specific: Hook functions within the scope of the complete ECU (in gen-
eral provided by the integrator).

If no memory protection is used (scalability classes SCC1 and SCC2) only the system-
specific hook functions are available.

In the SRS the requirements to implement the system-specific hook functions were
rejected [RTE00001], [RTE00101], [RTE00102] and [RTE00105], as well as the
application-specific hook functions [RTE00198]. The reason for the rejection is the
system (ECU) global scope of those functions. The RTE is not the only user of those
functions. Other BSW modules might have requirements to use hook functions as well.
This is the reason why the RTE is not able to generate these functions without the
necessary information of the BSW configuration.

It is intended that the implementation of the hook functions is done by the system
integrator and NOT by the RTE generator.

4.2.2.2 Basic Software Schedulable Entities

BswSchedulableEntitys are Basic Software Module Entities, which are designed
for control by the BSW Scheduler. BswSchedulableEntitys are implementing main
processing functions. The configuration of the Basic Software Scheduler allows map-
ping of BswSchedulableEntitys to both types; basic tasks and extended tasks.

BswSchedulableEntitys not mapped to a RunnableEntity are not allowed
to enter a wait state. Therefore such BswSchedulableEntitys are compara-
ble to RunnableEntitys of category 1. BswSchedulableEntitys mapped to
a RunnableEntity can enter wait states by usage of the RTE API and such
BswSchedulableEntitys have to be treated according the classification of the
mapped RunnableEntity. The mapping of BswSchedulableEntitys to a
RunnableEntitys is typically used for AUTOSAR Services, ECU Abstraction and
Complex Device Drivers. See sections 4.1.8.6.

4.2.2.3 Runnable Entities

The following section describes the RunnableEntitys, their categories and their
task-mapping aspects. The prototypes of the functions implementing RunnableEn-
titys are described in section 5.7

Runnable entities are the schedulable parts of SW-Cs. With the exception of reentrant
server runnables that are invoked via direct function calls, they have to be mapped to
tasks. The mapping must be described in the ECU Configuration Description. This
configuration - or just the RTE relevant parts of it - is the input of the RTE generator.

All RunnableEntitys are activated by the RTE as a result of an RTEEvent. Pos-
sible activation events are described in the meta-model by using RTEEvents (see

107 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

section 4.2.2.4). If no RTEEvent is specified in the role startOnEvent for the
RunnableEntity, the RunnableEntity is never activated by the RTE.

The categories of RunnableEntitys are described in [2].

RunnableEntitys and BswSchedulableEntitys are generalized by Exe-
cutableEntitys.

4.2.2.4 RTE Events

The meta model describes the following RTE events:

Abbreviation Name
T TimingEvent
BG BackgroundEvent
DR DataReceivedEvent (S/R Communication only)
DRE DataReceiveErrorEvent (S/R Communication only)
DSC DataSendCompletedEvent (explicit S/R Communication only)
DWC DataWriteCompletedEvent (implicit S/R Communication only)
OI OperationInvokedEvent (C/S Communication only)
ASCR AsynchronousServerCallReturnsEvent (C/S communication only)
MS SwcModeSwitchEvent
MSA ModeSwitchedAckEvent
MME SwcModeManagerErrorEvent
ETO ExternalTriggerOccurredEvent
ITO InternalTriggerOccurredEvent
I InitEvent

According to the meta model each kind of RTEEvent can either

ACT activate a RunnableEntity, or

WUP wakeup a RunnableEntity at its WaitPoints

The meta model makes no restrictions which kind of RTEEvents are referred by Wait-
Points. As a consequence RTE API functions would be necessary to set up the
WaitPoints for each kind of RTEEvent.

Nevertheless in some cases it seems to make no sense to implement all possible com-
binations of the general meta model. E.g. setting up a WaitPoint, which should be
resolved by a cyclic TimingEvent . Therefore the RTE SWS defines some restric-
tions, which are also described in section A.

The meta model also allows, that the same RunnableEntity can be triggered by
several RTEEvents. For the current approach of the RTE and restrictions see sec-
tion 4.2.6.

108 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

T BG DR DRE DSC DWC OI ASCR
ACT x x x x x x x x
WUP x x x

MS MSA MME ETO ITO I
ACT x x x x x x
WUP x

The table shows, that activation of RunnableEntity is possible for each kind of RTE-
Event. For RunnableEntity activation, no explicit RTE API in the to be activated
RunnableEntity is necessary. The RTE itself is responsible for the activation of the
RunnableEntity depending on the configuration in the SW-C Description.

If the RunnableEntity contains a WaitPoint, it can be resolved by the assigned
RTEEvent(s). Entering the WaitPoint requires an explicit call of a RTE API function.
The RTE (together with the OS) has to implement the WaitPoint inside this RTE API.

The following list shows which RTE API function has to be called to set up Wait-
Points.

• DataReceivedEvent: Rte_Receive()

• DataSendCompletedEvent: Rte_Feedback()

• ModeSwitchedAckEvent: Rte_SwitchAck()

• AsynchronousServerCallReturnsEvent: Rte_Result()

[SWS_Rte_01292] d When a DataReceivedEvent references a RunnableEn-
tity and a required VariableDataPrototype and no WaitPoint references the
DataReceivedEvent, the RunnableEntity shall be activated when the data is re-
ceived. [SWS_Rte_01135]. c(SRS_Rte_00072)

Requirement [SWS_Rte_01292] merely affects when the runnable is activated –
an API call should still be created, according to requirement [SWS_Rte_01288],
[SWS_Rte_01289], and [SWS_Rte_07395] as appropriate, to actually read the data.

4.2.2.5 BswEvents

The meta model describes the following BswEvents.

109 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

AbstractEvent

BswBehavior::BswEvent

BswBehavior::BswTimingEvent

+ period :TimeValue

BswBehavior::BswInternalTriggerOccurredEvent

BswBehavior::
BswSchedulableEntity

BswBehavior::BswModeSwitchEvent

+ activation :ModeActivationKind

BswBehavior::BswExternalTriggerOccurredEvent

ExecutableEntity

BswBehavior::BswModuleEntity

BswBehavior::BswModeSwitchedAckEvent

BswBehavior::BswBackgroundEvent

BswBehavior::
BswOperationInvokedEvent

BswBehavior::BswDataReceivedEvent

BswBehavior::
BswAsynchronousServerCallReturnsEvent

BswBehavior::
BswScheduleEvent

BswBehavior::
BswCalledEntity

BswBehavior::BswModeManagerErrorEvent

+startsOnEvent

1

Figure 4.10: Different kinds of BswEvents

110 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Similar to RTEEvents the activation of Basic Software Schedulable Entities is possi-
ble for each kind of BswEvent. For of BswSchedulableEntitys activation, no ex-
plicit Basic Software Scheduler API in the to be activated BswSchedulableEntity
is necessary. The Basic Software Scheduler itself is responsible for the activation of
the BswSchedulableEntity depending on the configuration in the Basic Software
Module Description. In difference to RTEEvents, none of the BswEvents support
WaitPoints. For more details see document [9].

4.2.2.6 Mapping of Runnable Entities and Basic Software Schedulable Entities
to tasks (informative)

One of the main requirements of the RTE generator is "Construction of task bod-
ies" [SRS_Rte_00049]. The necessary input information e.g. the mapping of
RunnableEntitys and BswSchedulableEntity to tasks must be provided by the
ECU configuration description.

The ECU configuration description (or an extract of it) is the input for the RTE Generator
(see Figure 3.4). It is also the purpose of this document to define the necessary input
information. Therefore the following scenarios may help to derive requirements for the
ECU Configuration Template as well as for the RTE-generator itself.
Note: The scenarios do not cover all possible combinations.

The RTE-Configurator uses parts of the ECU Configuration of other BSW Modules,
e.g. the mapping of RunnableEntitys to OsTasks. In this configuration process the
RTE-Configurator expects OS objects (e.g. Tasks, Events, Alarms...) which are used
in the generated RTE and Basic Software Scheduler.

Some figures for better understanding use the following conventions:

Figure 4.11: Element description

Note: The following examples are only showing RunnableEntitys. But taking the
categorization of BswSchedulableEntitys defined in section 4.2.2.2 into account,
the scenarios are applicable for BswSchedulableEntitys as well.

111 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4.2.2.6.1 Scenario for mapping of RunnableEntitys to tasks

The different properties of RunnableEntitys with respect to data access and termi-
nation have to be taken into account when discussing possible scenarios of mapping
RunnableEntitys to tasks.

• RunnableEntitys using VariableAccesses in the dataReadAccess or
dataWriteAccess roles (implicit read and send) have to terminate.

• RunnableEntitys of category 1 can be mapped either to basic or extended
tasks. (see next subsection).

• RunnableEntitys using at least one WaitPoint are of category 2.

• RunnableEntitys of category 2 that contain WaitPoints will be typically
mapped to extended tasks.

• RunnableEntitys that contain a SynchronousServerCallPoint generally
have to be mapped to extended tasks.

• RunnableEntitys that contain a SynchronousServerCallPoint can be
mapped to basic tasks if no timeout monitoring is required and the server runn-
able is on the same partition.

• RunnableEntitys that contain a SynchronousServerCallPoint can be
mapped to basic tasks if the server runnable is invoked directly and is itself of
category 1.

Note that the runnable to task mapping scenarios supported by a particular RTE im-
plementation might be restricted.

4.2.2.6.1.1 Scenario 1

Runnable entity category 1A: "runnable1"

• Ports: only S/R with VariableAccesses in the dataReadAccess or
dataWriteAccess role

• RTEEvents: TimingEvent

• no sequence of RunnableEntitys specified

• no VariableAccess in the dataSendPoint role

• no WaitPoint

Possible mappings of "runnable1" to tasks:

Basic Task
If only one of those kinds of RunnableEntitys is mapped to a task (task contains only
one RunnableEntity), or if multiple RunnableEntitys with the same activation
period are mapped to the same task, a basic task can be used. In this case, the

112 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

execution order of the RunnableEntitys within the task is necessary. In case the
RunnableEntitys have different activation periods, the RTE has to provide the glue-
code to guarantee the correct call cycle of each RunnableEntity.

The ECU Configuration-Template has to provide the sequence of RunnableEntitys
mapped to the same task, see RtePositionInTask.

Figure 4.12 shows the possible mappings of RunnableEntitys into a basic task. If
and only if a sequence order is specified, more than one RunnableEntity can be
mapped into a basic task.

Figure 4.12: Mapping of Category 1 RunnableEntitys to Basic Tasks

Extended Task

If more than one RunnableEntity is mapped to the same task and the special con-
dition (same activation period) does not fit, an extended task is used.

If an extended task is used, the entry points to the different RunnableEntitys might
be distinguished by evaluation of different OS events. In the scenario above, the differ-
ent activation periods may be provided by different OS alarms. The corresponding OS
events have to be handled inside the task body. Therefore the RTE-generator needs
for each task the number of assigned OS Events and their names.

The ECU Configuration has to provide the OS events assigned to the RTEEvents
triggering the RunnableEntitys that are mapped to an extended task, see RteUse-
dOsEventRef.

Figure 4.13 shows the possible mapping of the multiple RunnableEntitys of cate-
gory 1 into an Extended Task. Note: The Task does not terminate.

113 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Figure 4.13: Mapping of Category 1 RunnableEntitys to Extended Tasks

For both, basic tasks and extended tasks, the ECU Configuration must provide the
name of the task.

The ECU Configuration has to provide the name of the task, see OsTask.

The ECU Configuration has to provide the task type (BASIC or EXTENDED), which
can be determined from the presence or absence of OS Events associated with that
task, see OsTask.

4.2.2.6.1.2 Scenario 2

Runnable entity category 1B: "runnable2"

• Ports: S/R with VariableAccesses in the dataSendPoint role.

• RTEEvents: TimingEvent

• no WaitPoint

Possible mappings of "runnable2" to tasks:

The following figure shows the different mappings:

• One category 1B runnable

• More than one category 1B runnable mapped to the same basic task with a spec-
ified sequence order

• More than one category 1B runnable mapped into an extended task

The gluecode to realize the VariableAccessin the dataReadAccess and
dataWriteAccess roles respectively before entering the runnable and after exiting
is not necessary.

114 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Figure 4.14: Mapping of Category 1 RunnableEntitys using no VariableAccesses in
the dataReadAccess or dataWriteAccess role

4.2.2.6.1.3 Scenario 3

Runnable entity category 1A: "runnable3"

• Ports: S/R with VariableAccesses in the dataReadAccess or
dataWriteAccess role

• RTEEvents: Runnable is activated by a DataReceivedEvent

• no VariableAccess in the dataSendPoint role

• no WaitPoint

There is no difference between Scenario 1 and 3. Only the RTEEvent that activates
the RunnableEntity is different.

4.2.2.6.1.4 Scenario 4

Runnable entity category 2: "runnable4"

• Ports: S/R with VariableAccesses in the dataReceivePointByValue or
dataReceivePointByArgument role and WaitPoint (blocking read)

• RTEEvents: WaitPoint referencing a DataReceivedEvent

Runnable is activated by an arbitrary RTEEvent (e.g. by a TimingEvent). When
the RunnableEntity has entered the WaitPoint and the DataReceivedEvent
occurs, the RunnableEntity resumes execution.

The runnable has to be mapped to an extended task. Normally each category 2 runn-
able has to be mapped to its own task. Nevertheless it is not forbidden to map multiple
category 2 RunnableEntitys to the same task, though this might be restricted by an
RTE generator. Mapping multiple category 2 RunnableEntitys to the same task can
lead to big delay times if e.g. a WaitPoint is resolved by the incoming RTEEvent,
but the task is still waiting at a different WaitPoint.

115 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Figure 4.15: Mapping of Category 2 RunnableEntitys to Extended Tasks

4.2.2.6.1.5 Scenario 5

There are two RunnableEntitys implementing a client (category 2) and a server
for synchronous C/S communication and the timeout attribute of the ServerCall-
Point is 0.

On a single core, there are two ways to invoke a server synchronously:

• Simple function call for intra-partition C/S communication if the canBeInvoked-
Concurrently attribute of the server runnable is set and if the server runnable
is of category 1. In that case the server runnable is executed in the same task
context (same stack) as the client runnable that has invoked the server. The client
runnable can be mapped to a basic task.

• The server runnable is mapped to its own task. If the canBeInvokedConcur-
rently attribute is not set, the server runnable must be mapped to a task.

If the implementation of the synchronous server invocation does not use OS
events, the client runnable can be mapped to a basic task and the task of the
server runnable must have higher priority than the task of the client runnable.
Furthermore, the task to which the client runnable is mapped must be preempt-
able. This has to be checked by the RTE generator. Activation of the server
runnable can be done by ActivateTask() for a basic task or by SetEvent()
for an extended task. In both cases, the task to be activated must have higher
priority than the task of the client runnable to enforce a task switch (necessary,
because the server invocation is synchronous).

4.2.2.6.1.6 Scenario 6

There are two RunnableEntitys implementing a client (category 2) and a server for
synchronous C/S communication and the timeout attribute of the ServerCallPoint
is greater than 0.

There are again two ways to invoke a server synchronously:

• Simple function call for intra-partition C/S communication if the canBeInvoked-
Concurrently attribute of the server runnable is set and the server is of cat-

116 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

egory 1. In that case the server runnable is executed in the same task context
(same stack) as the client runnable that has invoked the server and no timeout
monitoring is performed (see [SWS_Rte_03768]). In this case the client runnable
can be mapped to a basic task.

• The server runnable is mapped to its own task. If the canBeInvokedConcur-
rently attribute is not set, the server runnable must be mapped to a task.

If the implementation of the timeout monitoring uses OS events, the task of the
server runnable must have lower priority than the task of the client runnable and
the client runnable must be mapped to an extended task. Furthermore, both
tasks must be preemptable1. This has to be checked by the RTE generator. The
notification that a timeout occurred is then notified to the client runnable by using
an OS Event. In order for the client runnable to immediately react to the timeout,
a task switch to the client task must be possible when the timeout occurs.

4.2.2.6.1.7 Scenario 7

Runnable entity category 2: "runnable7"

• Ports: only C/S with AsynchronousServerCallPoint and WaitPoint

• RTEEvents: AsynchronousServerCallReturnsEvent (C/S communication
only)

The mapping scenario for "runnable7", the client runnable that collects the result of the
asynchronous server invocation, is similar to Scenario 4.

1Strictly speaking, this restriction is not necessary for the task to which the client runnable is mapped.
If OS events are used to implement the timeout monitoring and the notification that the server is finished,
the RTE API implementation generally uses the OS service WaitEvent, which is a point of reschedul-
ing.

117 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4.2.2.7 Monitoring of runnable execution time

This section describes how the monitoring of RunnableEntity execution time can
be done.

The RTE doesn’t directly support monitoring of RunnableEntitys execution time but
the AUTOSAR OS support for monitoring of OsTasks execution time can be used for
this purpose.

If execution time monitoring of a RunnableEntity is required a possible solution is
to map the RunnableEntity alone to an OsTask and to configure the OS to monitor
the execution time of the OsTask.

This solution can lead to dispatch to individual OsTasks RunnableEntitys that
should be initially mapped to the same OsTask because of for example:

• requirements on execution order of the RunnableEntitys and/or

• requirements on evaluation order of the RTEEvents that activate the
RunnableEntitys and

• constraints to have no preemption between the RunnableEntitys

In order to keep the control on the execution order of the RunnableEntitys, the eval-
uation order of the RTEEvents and the non-preemption between the RunnableEn-
titys when then RunnableEntitys are individually mapped to several OsTasks
for the purpose of monitoring, a possible solution is to replace the calls to the C-
functions of the RunnableEntitys by activations of the OsTasks to which the moni-
tored RunnableEntitys are mapped.

Figure 4.16: Inter task activation and mapping of runnable to individual task for monitor-
ing purpose

This behavior of the RTE can be configured with the attributes RteVirtual-
lyMappedToTaskRef of the RteEventToTaskMapping. RteVirtuallyMapped-

118 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

ToTaskRef references the OsTask in which the execution order of the RunnableEn-
titys and/or the evaluation order of the RTEEvents are controlled. RteMapped-
ToTaskRef references the individual OsTasks to which the RunnableEntitys are
mapped for the purpose of monitoring.

[SWS_Rte_07800] d The RTE Generator shall respect the configured virtual runn-
able to task mapping (RteVirtuallyMappedToTaskRef) in the RTE configuration.
c(SRS_Rte_00193)

Of course this solution requires that the task priorities and scheduling properties are
well configured in the OS to allow immediate preemption by the OsTasks to which the
monitored RunnableEntitys are mapped. A possible solution is:

• Priority of the OsTask to which the RunnableEntity is mapped is higher than
the priority of the OsTask to which the RunnableEntity is virtually mapped
and

• the OsTask to which the RunnableEntity is virtually mapped have a full pre-
emptive scheduling or

• the RTE call the OS service Schedule() just after activation of the OsTask to
which the RunnableEntity is mapped

Example 1: Without OsEvent

Description of the example:
RunnableEntity RE1 is activated by TimingEvent 100ms T1.
RunnableEntity RE2 is activated by TimingEvent 100ms T2.
RunnableEntity RE3 is activated by TimingEvent 100ms T3.
Execution order of the RunnableEntitys shall be R1, R2 then R3.
RE2 shall be monitored.

Possible RTE configuration:
RE1/T1 is mapped to OsTask TaskA with RtePositionInTask equal to 1.
RE2/T2 is mapped to OsTask TaskB but virtually mapped to TaskA with RtePosi-
tionInTask equal to 2.
RE3/T3 is mapped to OsTask TaskA with RtePositionInTask equal to 3.

Possible RTE implementation:
RTE starts cyclic OsAlarm with 100ms period.
This OsAlarm is configured to activate TaskA.
Non preemptive scheduling is configured for Task A.
TaskB priority = TaskA priority + 1

1 void TaskA(void)
2 {
3 RE1();
4 ActivateTask(TaskB);
5 Schedule();
6 RE3();
7 TerminateTask();

119 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

8 }
9

10 void TaskB(void)
11 {
12 RE2();
13 TerminateTask();
14 }

Example 2: With OsEvent

Description of the example:
RunnableEntity RE1 is activated by DataReceivedEvent DR1.
RunnableEntity RE2 is activated by DataReceivedEvent DR2.
RunnableEntity RE3 is activated by DataReceivedEvent DR3.
Evaluation order of the RTEEvents shall be DR1, DR2 then DR3.
All the runnables shall be monitored.

Possible RTE configuration:
RE1 is mapped to OsTask TaskB but virtually mapped to TaskA with a reference to
OsEvent EvtA and RtePositionInTask equal to 1.
RE2 is mapped to OsTask TaskC but virtually mapped to TaskA with a reference to
OsEvent EvtB and RtePositionInTask equal to 2.
RE3 is mapped to OsTask TaskD but virtually mapped to TaskA with a reference to
OsEvent EvtC and RtePositionInTask equal to 3.

Possible RTE implementation:
RTE set EvtA, EvtB and EvtC according to the callbacks from COM.
Full preemptive scheduling is configured for Task A.
TaskB priority = TaskC priority = TaskD priority = TaskA priority + 1

1 void TaskA(void)
2 {
3 EventMaskType Event;
4

5 while(1)
6 {
7 WaitEvent(EvtA | EvtB | EvtC);
8 GetEvent(TaskA, &Event);
9 if (Event & EvtA)

10 {
11 ClearEvent(EvtA);
12 ActivateTask(TaskB);
13 }
14 else if (Event & EvtB)
15 {
16 ClearEvent(EvtB);
17 ActivateTask(TaskC);
18 }
19 else if (Event & EvtC)
20 {
21 ClearEvent(EvtC);
22 ActivateTask(TaskD);
23 }
24 }

120 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

25 }
26

27 void TaskB(void)
28 {
29 RE1();
30 TerminateTask();
31 }
32

33 void TaskC(void)
34 {
35 RE2();
36 TerminateTask();
37 }
38

39 void TaskD(void)
40 {
41 RE3();
42 TerminateTask();
43 }

It is also possible to configure the RTE for the monitoring of group of runnable = moni-
toring of the sum of the runnable execution times.

Example 3: Monitoring of group of runnables

Description of the example:
RunnableEntity RE1 is activated by TimingEvent 100ms T1.
RunnableEntity RE2 is activated by TimingEvent 100ms T2.
RunnableEntity RE3 is activated by TimingEvent 100ms T3.
RunnableEntity RE4 is activated by DataReceivedEvent DR1.
RunnableEntity RE5 is activated by DataReceivedEvent DR2.
RunnableEntity RE6 is activated by DataReceivedEvent DR3.
RunnableEntity RE7 is activated by DataReceivedEvent DR4.
DataReceivedEvent DR2, DR3 and DR4 references the same dataElement. Eval-
uation order of the RTEEvents shall be T1, T2, T3, DR1, DR2, DR3 then DR4.
RE2 and RE3 shall be monitored as a group.
RE6 and RE7 shall be monitored as a group.

Possible RTE configuration:
RE1 is mapped to OsTask TaskA with a reference to OsEvent EvtA and RtePosi-
tionInTask equal to 1.
RE2 is mapped to OsTask TaskB but virtually mapped to TaskA with a reference to
OsEvent EvtA and RtePositionInTask equal to 2.
RE3 is mapped to OsTask TaskB but virtually mapped to TaskA with a reference to
OsEvent EvtA and RtePositionInTask equal to 3.
RE4 is mapped to OsTask TaskA with a reference to OsEvent EvtB and RtePosi-
tionInTask equal to 4.
RE5 is mapped to OsTask TaskA with a reference to OsEvent EvtC and RtePosi-
tionInTask equal to 5.
RE6 is mapped to OsTask TaskC but virtually mapped to TaskA with a reference to
OsEvent EvtC and RtePositionInTask equal to 6.

121 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

RE7 is mapped to OsTask TaskC but virtually mapped to TaskA with a reference to
OsEvent EvtC and RtePositionInTask equal to 7.

Possible RTE implementation:
RTE starts cyclic OsAlarm with 100ms period.
This OsAlarm is configured to set EvtA.
RTE set EvtB and EvtC according to the callbacks from COM.
Full preemptive scheduling is configured for Task A.
TaskB priority = TaskC priority = TaskA priority + 1

1 void TaskA(void)
2 {
3 EventMaskType Event;
4

5 while(1)
6 {
7 WaitEvent(EvtA | EvtB | EvtC);
8 GetEvent(TaskA, &Event);
9 if (Event & EvtA)

10 {
11 ClearEvent(EvtA);
12 RE1();
13 ActivateTask(TaskB);
14 }
15 else if (Event & EvtB)
16 {
17 ClearEvent(EvtB);
18 RE4();
19 }
20 else if (Event & EvtC)
21 {
22 ClearEvent(EvtC);
23 RE5();
24 ActivateTask(TaskC);
25 }
26 }
27 }
28

29 void TaskB(void)
30 {
31 RE2();
32 RE3();
33 TerminateTask();
34 }
35

36 void TaskC(void)
37 {
38 RE6();
39 RE7():
40 TerminateTask();
41 }

122 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4.2.2.8 TimingEvent activated runnables

A TimingEvent / BswTimingEvent is a recurring RTEEvent / BswEvent which is
used to perform recurrent activities in RunnableEntitys or BswSchedulableEn-
titys.

[SWS_Rte_06728] d The RTE shall activate RunnableEntitys triggered by a
TimingEvent recurring with the effective period time of an TimingEvent for the
component instance. c(SRS_Rte_00237)

[SWS_Rte_06729] d The RTE Generator shall determine the effective period time of
a TimingEvent from the period attribute of the TimingEvent if no Instantia-
tionRTEEventProps are defined for the TimingEvent of the component instance.
c(SRS_Rte_00237)

[SWS_Rte_06730] d The RTE Generator shall determine the effective period time of
a TimingEvent from the period attribute of the InstantiationRTEEventProps if
InstantiationRTEEventProps are defined for the TimingEvent of the compo-
nent instance. c(SRS_Rte_00237)

Please note the component instance is defined by RteSoftwareComponentIn-
stanceRef of RteSwComponentInstance referring to the SwComponentProto-
type. See figure 7.2.

4.2.2.9 Synchronization of TimingEvent activated runnables

This section describes how the synchronization of TimingEvent activated
RunnableEntitys can be done.

The following cases have to be distinguished:

• the RunnableEntitys are mapped to the same OsTask

• the RunnableEntitys are mapped to different OsTasks in the same OsAp-
plication

• the RunnableEntitys are mapped to different OsTasks in different OsAppli-
cations on the same core

• the RunnableEntitys are mapped to different OsTasks in different OsAppli-
cations on different cores on the same microcontroler

• the RunnableEntitys are mapped to different OsTasks in different OsAppli-
cations on different microcontrolers within the same ECU

• the RunnableEntitys are mapped to different OsTasks in different OsAppli-
cations on different microcontrolers within different ECUs

123 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

As OsAlarms and OsScheduleTableExpiryPoints are used to implement
TimingEvents the following different possible solutions exist to synchronize the
RunnableEntitys according to the different cases:

• use the same OsAlarm or OsScheduleTableExpiryPoint to implement all
the TimingEvents

• use different OsAlarms or OsScheduleTableExpiryPoints in different OsS-
cheduleTables based on the same OsCounter and start them with absolute
start offset to control the synchronization between them

• use different OsScheduleTableExpiryPoints in different explicitely synchro-
nized OsScheduleTables based on different OsCounters but with same period
and max value

The choice of the OsAlarms or OsScheduleTableExpiryPoints used to imple-
ment the TimingEvents can be configured in the RTE with RteUsedOsAlarmRef or
RteUsedOsSchTblExpiryPointRef in the RteEventToTaskMapping.

[SWS_Rte_07804] d The RTE Generator shall respect the configured Os-
Alarms (RteUsedOsAlarmRef) and OsScheduleTableExpiryPoints (RteUse-
dOsSchTblExpiryPointRef) for the implementation of the TimingEvents.
c(SRS_Rte_00232)

The choice of the absolute start offset of the OsAlarms and OsScheduleTables can
be configured in the RTE with RteExpectedActivationOffset in the RteUse-
dOsActivation.

[SWS_Rte_07805] d The RTE Generator shall respect the configured absolute
start offset (RteExpectedActivationOffset) when it starts the OsAlarms
and OsScheduleTables used for the implementation of the TimingEvents.
c(SRS_Rte_00232)

The RTE / Basic Software Scheduler is not responsible to synchronize/desynchronize
the explicitly synchronized OsScheduleTables. The RTE / Basic Software Scheduler
is only responsible to start the explicitly synchronized OsScheduleTables. In this
case no RteExpectedActivationOffset has to be configured.

4.2.2.10 BackgroundEvent activated Runnable Entities and BasicSoftware
Scheduleable Entities

A BackgroundEvent is a recurring RTEEvent / BswEvent which is used to perform
background activities in RunnableEntitys or BswSchedulableEntitys. It is sim-
ilar to a TimingEvent but has no fixed time period and is typically activated only with
lowest priority.

A BackgroundEvent triggering can be implemented in two principle ways by the
RTE Generator. Either the background activation is done by a real background
OS task; or the BackgroundEvents are activated like TimingEvents on a fixed

124 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

recurrence which is defined by the ECU integrator (see [SWS_Rte_07179] and
[SWS_Rte_07180]). The second way might be required to overcome the limitation of a
single real background OS task if BackgroundEvents are used in several partitions.

If the background activation is done by a real background OS task, the OS Task has
to have the lowest priority on the CPU core (see [SWS_Rte_07181]). If a implemen-
tation is used where the OS Task terminates (BasicTask) the background OS Task is
immediately reactivated after its termination, e.g. by usage of ChainTask call of the
OS.

4.2.2.11 InitEvent activated Runnable Entities

An InitEvent which is used to activate RunnableEntitys for initialization purpose
in case of start of the RTE or restart of a partition.

[SWS_Rte_06761] d The RTE shall activate RunnableEntitys triggered by a
InitEvent once when Rte_Start is executed. c(SRS_Rte_00240)

[SWS_Rte_06762] d The RTE shall activate RunnableEntitys triggered by
a InitEvent once when Rte_RestartPartition is executed for those
RunnableEntitys belonging to the restarted partition. c(SRS_Rte_00240)

The activation of RunnableEntitys for initialization purpose can basically imple-
mented in two ways. Either the InitEvent is mapped to an OsTask or the
InitEvent is mapped to an RteInitializationRunnableBatch.

In case of an OsTask the RunnableEntitys are scheduled once when the related
task gets active. In this case the RtePositionInTask decides in which order the
RunnableEntitys are scheduled in the whole task. For instance if the InitEvent
is mapped after an TimingEvent ans the TimingEvent is already triggered when
the OsTask gets active the initialization runnable is called after time periodic runn-
able. Therefore its in the responsibility of the ECU integrator to ensure the correct and
intended order.

In the case the InitEvent is mapped to an RteInitializationRunnableBatch
the RunnableEntitys are scheduled when the related Rte_Init function is called.
In this case the RtePositionInTask decides in which order in which order the
RunnableEntitys are scheduled in the same Rte_Init function.

The triggering of the recurrent RTEEvents is released with the call of
Rte_StartTiming.

125 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4.2.3 Activation and Start of ExecutableEntitys

This section defines the activation of ExecutableEntity execution-instances
by using a state machine (Fig. 4.17).

Figure 4.17: General state machine of an ExecutableEntity execution-instance.

An ExecutableEntity execution-instance is one execution-instance of an Ex-
ecutableEntity (RunnableEntity or BswSchedulableEntity) with respect to
concurrent execution.

For a RunnableEntity with canBeInvokedConcurrently = false or for a
BswSchedulableEntity whose referenced BswModuleEntry in the role im-
plementedEntry has a isReentrant attribute set to false, there is only one
execution-instance. For a RunnableEntity with canBeInvokedConcurrently =
true or for a BswSchedulableEntity whose referenced BswModuleEntry in the
role implementedEntry has its isReentrant attribute set to true, there is a well
defined number of execution-instances.

E.g., for a server runnable that is executed as direct function call, each Server-
CallPoint relates to exactly one ExecutableEntity execution-instance.

The main principles for the activation of runnables are:

• RunnableEntitys are activated by RTEEvents

• BswSchedulableEntitys are activated by BswEvents

• only server runnables (RunnableEntitys activated by an OperationIn-
vokedEvent) are queued. All other ExecutableEntitys are unqueued.

126 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

If a RunnableEntity is activated due to several DataReceivedEvents of
dataElements with swImplPolicy = queued, it is the responsibility of the
RunnableEntity to dequeue all queued data.

• A minimumStartInterval will delay the activation of RunnableEntitys
and BswSchedulableEntitys to prevent that a RunnableEntity or a
BswSchedulableEntity is started more than once within the minimum-
StartInterval.

Each ExecutableEntity execution-instance has its own state machine. The
full state machine is shown in Fig. 4.17.

Note on Figure 4.17: the debounce timer debounceTimer is an increasing timer. It
is local to the ExecutableEntity execution-instance. The activation counter
activations is a local integer to count the pending activations. The runnable de-
bounce timer and the activation counter are like the whole state machine just concepts
for the specification of the behavior, not for the implementation.

127 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

The pending activations are only counted for server runnables when RTE imple-
ments a call serialization of their invocation. In all other cases, RTE does not queue ac-
tivations and the state machine for the activation of ExecutableEntity execution-
instances simplifies as shown in Figure 4.18.

sm state machine for an EcexutableEntity execution-instance w ith unqueued activation

ExecutableEntity execution-instance is schedulable

continuously increasing timer

- debounceTimer: float = minimumStartInterval

constraints

{queue length == 0}

Main Activ ation

started

suspended

debounce

activ ation

running

waiting

preempted activated

not

activated

to be started

corresponds to task state "ready"

[Activation in

state activated]

[debounceTimer >=

minimumStartInterval]

wait

preempt

terminate

resume

start

/debounceTimer = 0

activate

/debounceTimer =

minimumStartInterval

start

[RTE / SchM of the partition is stopped]

[RTE / SchM of the partition is running]

release

Figure 4.18: Statemachine of an unqueued execution-instance (not a server runnable)

If RTE implements an ExecutableEntity execution-instance by direct func-
tion call, as described in section 4.2.3.1, the simplified state machine is shown in Fig-
ure 4.21.

The state machine of an ExecutableEntity execution-instance is not identical
to that of the task containing the ExecutableEntity execution-instance, but
there are dependencies between them. E.g., the ExecutableEntity execution-
instance can only be ‘running’ when the corresponding task is ‘running’.

Table 4.1 describes all ExecutableEntity execution-instance states in de-
tail. The ExecutableEntity execution-instance state machine is split in
two threads. The Main states describe the real state of the ExecutableEntity
execution-instance and the transitions between a suspended and a running Ex-
ecutableEntity execution-instance, while the supporting Activation states de-
scribe the state of the pending activations by RTEEvents or BswEvents.

ExecutableEntity
execution-instance state

description

128 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

ExecutableEntity
execution-instance is
schedulable

This super state describes the life time of the state
machine. Only when RTE or the SchM that runs the
ExecutableEntity execution-instance is started in
the corresponding partition, this state machine is ac-
tive.

ExecutableEntity execution-instance Main states
suspended The ExecutableEntity execution-instance is not

started and there is no pending request to start the
ExecutableEntity execution-instance.

to be started The ExecutableEntity execution-instance is acti-
vated but not yet started. Entering the to be started
state, usually implies the activation of a task that starts
the ExecutableEntity execution-instance. The
ExecutableEntity execution-instance stays in the
‘to be started’ state, when the task is already running
until the gluecode of the task actually calls the function
implementing the ExecutableEntity.

running The function, implementing the ExecutableEntity
code is being executed. The task that contains the
ExecutableEntity execution-instance is running.

waiting A task containing the ExecutableEntity execution-
instance is waiting at a WaitPoint within the Exe-
cutableEntity.

preempted A task containing the ExecutableEntity execution-
instance is preempted from executing the function that
implements the ExecutableEntity.

started ‘started’ is the super state of ‘running’, ‘waiting’ and
‘preempted’ between start and termination of the Ex-
ecutableEntity execution-instance.

ExecutableEntity execution-instance Activation states
not activated No RTEEvent / BswEvent requires the activation of

the ExecutableEntity execution-instance.
debounce activation One or more RTEEvents with a startOnEvent re-

lation to the ExecutableEntity execution-instance
have occurred 2, but the debounce timer has not yet
exceeded the minimumStartInterval. The activa-
tion will automatically advance to activated, when the
debounce timer reaches the minimumStartInter-
val.

2Note that, e.g., the same OperationInvokedEvent may lead to the activation of different Exe-
cutableEntity execution-instances, depending on the client that caused the event.

129 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

activated One or more RTEEvents or BswEvents with a star-
tOnEvent relation to the ExecutableEntity have
occurred, and the debounce timer has exceeded the
minimumStartInterval. While the activated state
is active, the Main state of the ExecutableEntity
execution-instance automatically advances from the
suspended to the ’to be started’ state.
For a server runnable where RTE implements
a serialization of server calls, an activation counter
counts the number of activations.
When the ExecutableEntity execution-instance
starts, the activation counter will be decremented.
When there is still a pending activation, the Activation
state will turn to debounce activation and otherwise to
no activation.

Table 4.1: States defined for each ExecutableEntity execution-instance.

Note: For tasks, the equivalent state machine does not distinguish between preempted
and to be started. They are subsumed as ‘ready’.

ExecutableEntity
execution-instance tran-
sition

description of event and actions

initial transition to ‘Exe-
cutableEntity execution-
instance is schedulable’

RTE or the SchM that runs the ExecutableEntity
execution-instance is being started in the correspond-
ing partition.

termination transition
from ‘ExecutableEntity
execution-instance is
schedulable’

RTE or the SchM that runs the ExecutableEntity
execution-instance gets stopped in the corresponding
partition.

transitions to ExecutableEntity execution-instance Main states
initial transition to sus-
pended

the suspended state is the initial state of the Exe-
cutableEntity execution-instance Main states.

from started to suspended The ExecutableEntity execution-instance has run
to completion.

from suspended to ‘to be
started’

This transition is automatically executed, while the Ac-
tivation state is ’activated’.

from ‘to be started’ to run-
ning

The function implementing the ExecutableEntity
is called from the context of this execution-instance.

from preempted to running A task that is preempted from executing the Exe-
cutableEntity execution-instance changes state
from preempted to running.

from running to waiting The runnable enters a WaitPoint.

130 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

from waiting to preempted The task that contains a runnable waiting at a wait
point changes from waiting to preempted.

from running to preempted A task containing the ExecutableEntity execution-
instance gets preempted from executing the function
that implements the ExecutableEntity.

transitions to ExecutableEntity execution-instance Activation states
initial transition to ‘not acti-
vated’

The ‘not activated’ state is the initial state of the
ExecutableEntity execution-instance Activation
states.
The debounce timer is set to the minimumStartIn-
terval value, to prevent a delay for the first activation
of the ExecutableEntity execution-instance.

from activated to ‘not acti-
vated’

The function implementing the ExecutableEntity
is called from the context of this execution-instance
and no further activations are pending.
The debounce timer is reset to 0.

from ‘not activated’ to ‘de-
bounce activation’

The occurrence of an RTEEvent or BswEvent re-
quires the activation of the ExecutableEntity
execution-instance.
A local activation counter is set to 1. If no mini-
mumStartInterval is configured, or the debounce
timer has already exceeded the minimumStartIn-
terval, the ‘debounce activation’ state will be omit-
ted and the transition leads directly to the activated
state.

from activated to ‘de-
bounce activation’

The function implementing the ExecutableEntity
is called from the context of this execution-instance
(start), and another activation is pending (only for
server runnable).
The activation counter is decremented and the de-
bounce timer reset to 0.
If no minimumStartInterval is configured, the ‘de-
bounce activation’ state will be omitted and the transi-
tion returns directly at the activated state.

from ‘debounce activation’
to ‘debounce activation’

If RTE implements server call serialization for a
server runnable, and an OperationInvokedE-
vent occurs for the server runnable.
The activation counter is incremented (at most to the
queue length).

from ’debounce activation’
to activated

The debounce timer is expired,
debounce timer > minimumStartInterval.

131 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

from activated to activated If RTE implements server call serialization for a
server runnable, and an OperationInvokedE-
vent occurs for the server runnable.
The activation counter is incremented (at most to the
queue length).

Table 4.2: States defined for each ExecutableEntity execution-instance.

[SWS_Rte_02697] d The activation of ExecutableEntity execution-instances
shall behave as described by the state machine in Fig. 4.17, Table 4.1, and Ta-
ble 4.2. c(SRS_Rte_00072, SRS_Rte_00160, SRS_Rte_00133, SRS_Rte_00211,
SRS_Rte_00214, SRS_Rte_00217, SRS_Rte_00219)

The RTE will not activate, start or release ExecutableEntity execution-
instances of a terminated or restarting partition (see [SWS_Rte_07604]), or when
RTE is stopped in that partition (see [SWS_Rte_02538]).

The following examples in Fig. 4.19 and Fig. 4.20 show the different timing situations
of the ExecutableEntity execution-instances with or without a minimum-
StartInterval. The minimumStartInterval can reduce the number of activa-
tions by collecting more activating RTEEvents / BswEvents within that interval. No
activation will be lost. The activations are just delayed and combined to keep the min-
imumStartInterval. The started state of the ExecutableEntity execution-
instance Main states and the activated state of the Activation states are shown in the
figures. Each flash indicates the occurrence of an RTEEvent or BswEvent.

Figure 4.19: Activation of a ExecutableEntity execution-instance without minimum-
StartInterval

Figure 4.19 illustrates the activation of an ExecutableEntity execution-
instance without minimumStartInterval. The execution-instance can only
be activated once (does not apply for server runnables). The activation is not
queued. The execution-instance can already be activated again when it is still
started (see Figure 4.17).

132 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

With configuration of the RteEventToTaskMapping such activation can even be
used for an immediately restart of the ExecutableEntity before other Exe-
cutableEntitys which are mapped subsequently in the task are getting started.

[SWS_Rte_07061] d When the parameter RteImmediateRestart / RteBswImme-
diateRestart is TRUE the RTE shall immediately restart the ExecutableEntity
after termination if the ExecutableEntity was activated by this RTEEvent / Bsw-
Event while it was already started. c(SRS_Rte_00072)

This can be utilized to spread a long-lasting calculation in several smaller slices with
the aim to reduce the maximum blocking time of Tasks in a Cooperative Environment.
Typically between each iteration one Schedule Point has to be placed and the number
of iteration might depend on operating conditions of the ECU. Further on in a calcu-
lation chain the long-lasting calculation shall be completed before consecutive Exe-
cutableEntitys are called.

Example 4.3

Example of RunnableEntity code:
1 LongLastingRunnable()
2 {
3 /* the very long calculation */
4 if(!finished)
5 {
6 /* further call is required to complete the calculation*/
7 Rte_IrTrigger_LongLastingCalculation_ProceedCalculation();
8 }
9 }

Therefore the ExecutableEntity with a long lasting calculation issues a trigger as
long as the calculation is not finished. These trigger activates the ExecutableEntity
again. The first activation of the ExecutableEntity might be triggered by another
RTEEvent / BswEvent.

Figure 4.20: Activation of an ExecutableEntity with a minimumStartInterval

Figure 4.20 illustrates the activation of an ExecutableEntity with a minimum-
StartInterval. (Here no execution-instances have to be distinguished, there
is only one.) The red arrows in this figure indicate the minimumStartInterval af-

133 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

ter each start of the ExecutableEntity. An RTEEvent or BswEventwithin this
minimumStartInterval leads to the debounce activation state. When the min-
imumStartInterval ends, the debounce activation state changes to the activated
state.

When a data received event activates a runnable when it is still running, it might be
that the data is already dequeued during the current execution of the runnable. Still,
the runnable will be started again. So, it is possible that a runnable that is activated by
a data received event finds an empty receive queue.

4.2.3.1 Activation by direct function call

In many cases, ExecutableEntity execution-instances can be implemented
by RTE by a direct function call if allowed by the canBeInvokedConcurrently.
In these cases, the activation and start of the ExecutableEntity execution-
instance collapse to one event. The states ‘to be started’, ‘debounce activation’,
and ‘activated’ are passed immediately.

Obviously, debounce activation is not possible (see meta model restriction
[SWS_Rte_02733]).

There is one ExecutableEntity execution-instance per call point, trigger
point, mode switch point, etc.. The state chart simplifies as shown in Figure 4.21.

A triggered ExecutableEntity is activated at least by one ExternalTrig-
gerOccurredEvent or InternalTriggerOccurredEvent. In some cases, the
Trigger Event Communication or the Inter Runnable Triggering is implemented by RTE
generator as a direct function call of the triggered ExecutableEntity by the trig-
gering ExecutableEntity.

An OnEntry ExecutableEntity, OnTransition ExecutableEntity, OnExit
ExecutableEntity or a mode switch acknowledge ExecutableEntity
might be executed in the context of the Rte_Switch API if an asynchronous mode
switch procedure is implemented.

A server runnable is exclusively activated by OperationInvokedEvents and
implements the server in client server communication. In some cases, the client server
communication is implemented by RTE as a direct function call of the server by the
client.

134 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

sm statemachine for direct function calls of an ExecutableEntity execution-instance

ExecutableEntity execution-instance is schedulable

constraints

{queue length == 0}

{debounceTimer == 0}

{canBeInvocecConcurrently == true}

{runnable not mapped to task}

Main

started

suspended

running

waiting

preempted

corresponds to task state "ready"

activate

[RTE / SchM of the partition is running]

[RTE / SchM of the partition is stopped]

resume

release

preempt

wait

terminate

Figure 4.21: State machine of an ExecutableEntity execution-instance that is imple-
mented by direct function calls.

4.2.3.2 Activation Offset for RunnableEntitys and BswSchedulableEntitys

In order to allow optimizations (smooth cpu load, mapping of RunnableEntitys and
BswSchedulableEntitys with different periods in the same task to avoid data shar-
ing, etc.), the RTE has to handle the activation offset information from a task shared
reference point only for time trigger RunnableEntitys and BswSchedulableEn-
titys. The maximum period of a task can be calculated automatically as the great-
est common divisor (GCD) of all runnables period and offset.It is assumed that the
runnables worst case execution is less than the GCD. In case of the worst case execu-
tion is greater than the GCD, the behavior becomes undefined.

[SWS_Rte_07000] d The RTE shall respect the configured activation offset of
RunnableEntitys mapped within one OS task. c(SRS_Rte_00161)

[SWS_Rte_07520] d The Basic Software Scheduler shall respect the config-
ured activation offset of BswSchedulableEntitys mapped within one OS task.
c(SRS_Rte_00212)

[constr_9010] Worst case execution time shall be less than the GCD d The
RunnableEntitys or BswSchedulableEntitys worst case execution time shall
be less than the GCD of all BswSchedulableEntitys and RunnableEntitys pe-
riod and offset in activation offset context for RunnableEntitys and BswSchedula-
bleEntitys. c

135 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Note: The following examples are showing RunnableEntitys only. Nevertheless it
is applicable for BswSchedulableEntitys or a mixture of RunnableEntitys and
BswSchedulableEntitys as well.

Example 1:
This example describes 3 runnables mapped in one task with an activation offset de-
fined for each runnables.

Runnable Period Activation Offset
R1 100ms 20ms
R2 100ms 60ms
R3 100ms 100ms

Table 4.3: Runnables timings

The runnables R1, R2 and R3 are mapped in the task T1 at 20 ms which is the GCD
of all runnables period and activation offset.

136 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Figure 4.22: Example of activation offset for runnables

Example 2:
This example describes 4 runnables mapped in one task with an activation offset and
position in task defined for each runnables.

Runnable Period Position in task Activation Offset
R1 50ms 1 0ms
R2 100ms 2 0ms
R3 100ms 3 70ms
R4 50ms 4 20ms

Table 4.4: Runnables timings with position in task

The runnables R1, R2, R3 and R4 are mapped in the task T1 at 10 ms which is the
GCD of all runnables period and activation offset.

Figure 4.23: Example of activation offset for runnables with position in task

137 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4.2.3.3 Provide activating RTE event

It is possible to define the activation of one runnable entity by several RTE events. But
when the runnable entity is invoked by the RTE it is shall be possible to query which of
the RTE events actually triggered the execution of this runnable entity run.

Contract Phase:

The provide activating event feature is enabled if the runnable entity has at least one
activationReason defined.

[SWS_Rte_08051] d If the provide activating event feature is enabled, the RTE gen-
erator in contract phase shall generate the runnable entity signature according to
[SWS_Rte_01126] and [SWS_Rte_08071]. c(SRS_Rte_00238)

[SWS_Rte_08052] d If the provide activating event feature is en-
abled, the RTE generator in contract phase shall generate the type
Rte_ActivatingEvent_<name> (activation vector), where <name> is
the symbol describing the runnable entity’s entry point, to store the activation bits.
Based on the highest value of ExecutableEntityActivationReason.bitPosi-
tion for this runnable entity the type shall be either uint8, uint16, or uint32 so
that the highest value of bitPosition fits into the data type. c(SRS_Rte_00238)

Note that it is considered an invalid configuration if ExecutableEntityActiva-
tionReason.bitPosition has a value higher than 31 (see [constr_1226] in soft-
ware component template [2])

[SWS_Rte_08053] d If the provide activating RTE event feature is enabled, the RTE
generator in contract phase shall generate for each ExecutableEntityActiva-
tionReason of one executable entity a definition to provide the specific bit position in
the Rte_ActivatingEvent_<name> data type:

#define Rte_ActivatingEvent_<name>_<activation> xxU

The value of xx is defined by the bitPosition xx = 2∧bitPosition. c(SRS_Rte_00238)

Example: runnable entity symbol = "greek" and has 3 ExecutableEntityActiva-
tionReasons aggregated. Those are referenced by 4 RTE events:

• RTEEvent: "alpha" symbol: aleph

• RTEEvent: "beta" symbol: beth

• RTEEvent: "gamma" symbol: gimel

• RTEEvent: "delta" symbol: gimel

This will result in a unit8 Rte_ActivatingEvent_<name> data type:
typedef uint8 Rte_ActivatingEvent_greek and 3 definitions:

• #define Rte_ActivatingEvent_greek_aleph 01U

• #define Rte_ActivatingEvent_greek_beth 02U

138 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

• #define Rte_ActivatingEvent_greek_gimel 04U

Generation Phase:

[SWS_Rte_08054] d If the provide activating RTE event feature is enabled, the RTE
shall collect the activating RTE events, which have the activationReasonRep-
resentation reference defined, in the context of the OS task the runnable entity
is mapped to in an activation vector at the corresponding bit position as defined in
[SWS_Rte_08053]. c(SRS_Rte_00238)

[SWS_Rte_08055] d If the provide activating RTE event feature is enabled, the RTE
shall provide the collected activating RTE events (activation vector) to the runnable
entity API when the runnable entity is "started". The activation vector shall be reset
immediately after it has been provided. c(SRS_Rte_00238)

Since it is possible that there is a time gap between the activation and the execution
(start) of a runnable entity the subsequent activations are summed up and provided
with the start of the runnable entity.

Activations during the execution of a runnable entity are collected for the next start of
that runnable entity.

4.2.4 Interrupt decoupling and notifications

4.2.4.1 Basic notification principles

Several BSW modules exist which contain functionality which is not directly activated,
triggered or called by AUTOSAR software-components but by other circumstances, like
digital input port level changes, complex driver actions, CAN signal reception, etc. In
most cases interrupts are a result of those circumstances. For a definition of interrupts,
see the VFB [1].

Several of these BSW functionalities create situations, signalled by an interrupt, when
AUTOSAR SW-Cs have to be involved. To inform AUTOSAR software components of
those situations, runnables in AUTOSAR software components are activated by no-
tifications. So interrupts that occur in the basic software have to be transformed into
notifications of the AUTOSAR software components. Such a transformation has to take
place at RTE level at the latest! Which interrupt is connected to which notification is
decided either during system configuration/generation time or as part of the design of
Complex Device Drivers or the Microcontroller Abstraction Layer.

This means that runnables in AUTOSAR SW-Cs have to be activated or "waiting" cat2
runnables in extended tasks have to be set to "ready to run" again. In addition some
event specific data may have to be passed.

There are two different mechanisms to implement these notifications, depending on
the kind of BSW interfaces.

139 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

1. BSW with Standardized interface. Used with COM and OS.
Basic-SW modules with Standardized interfaces cannot create RTEEvents. So
another mechanism must be chosen: "callbacks"
The typical callback realization in a C/C++ environment is a function call.

2. BSW with AUTOSAR interface: Used in all the other BSW modules.
Basic-SW modules with AUTOSAR-Interfaces have their interface specified in an
AUTOSAR BSW description XML file which contains signal specifications accord-
ing to the AUTOSAR specification. The BSW modules can employ RTE API calls
like Rte_Send – see 5.6.5). RTEEvents may be connected with the RTE API
calls, so realizing AUTOSAR SW-C activation.

Note that an AUTOSAR software component can send a notification to another AU-
TOSAR software component or a BSW module only via an AUTOSAR interface.

4.2.4.2 Interrupts

The AUTOSAR concept as stated in the VFB specification [1] does not allow AUTOSAR
software components to run in interrupt context. Only the Microcontroller Abstraction
Layer, Complex Device Drivers and the OS are allowed to directly interact with inter-
rupts and implement interrupt service routines (see Requirement [SRS_BSW_00164].
This ensures hardware independence and determinism.

If AUTOSAR software components were allowed to run in interrupt context, one AU-
TOSAR software component could block the entire system schedule for an unaccept-
ably long period of time. But the main reason is that AUTOSAR software components
are supposed to be independent of the underlying hardware so that exchangeability
between ECUs can be ensured. The schedule of an ECU is more predictable and bet-
ter testable if the timing effects of interrupts are restricted to the basic software of that
ECU.

Furthermore, AUTOSAR software components are not allowed to explicitly block inter-
rupts as a means to ensure data consistency. They have to use RTE functions for this
purpose instead, see Section 4.2.5.

4.2.4.3 Decoupling interrupts on RTE level

Runnables in AUTOSAR SW-Cs may be running as a consequence of an interrupt but
not in interrupt context, which means not within an interrupt service routine! Between
the interrupt service routine and an AUTOSAR SW-C activation there must always be
a decoupling instance. AUTOSAR SW-C runnables are only executed in the context of
tasks.

The decoupling instance is latest in the RTE. For the RTE there are several options to
realize the decoupling of interrupts. Which option is the best depends on the configu-
ration and implementation of the RTE, so only examples are given here.

140 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Example 1:

Situation:

• An interrupt routine calls an RTE callback function

Intention:

• Start a runnable

RTE job:

• RTE starts a task containing the runnable activation code by using the Acti-
vateTask()" OS service call.

• Other more sophisticated solutions are possible, e.g. if the task containing the
runnable is activated periodically.

Example 2:

Situation:

• An interrupt routine calls an RTE callback function

Intention:

• Make a runnable wake up from a wait point

RTE job:

• RTE sets an OS event

These scenarios described in the examples above not only hold for RTE callback func-
tions but for other RTE API functions as well.

[SWS_Rte_03600] d The RTE shall prevent runnable entities of AUTOSAR software-
components to run in interrupt context. c(SRS_Rte_00099)

4.2.4.4 RTE and interrupt categories

Since category 1 interrupts are not under OS control the RTE has absolutely no pos-
sibility to influence their execution behavior. So no category 1 interrupt is allowed to
reach RTE. This is different for interrupt of category 2.

[SWS_Rte_03594] d The RTE Generator shall reject the configuration if a SwcB-
swRunnableMapping associates a BswInterruptEntity with a RunnableEn-
tity and the attribute interruptCategory of the BswInterruptEntity is equal
to cat 1. c(SRS_Rte_00018, SRS_Rte_00099)

[constr_9012] Category 1 interrupts shall not access the RTE. d Category 1 inter-
rupts shall not access the RTE. c

141 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4.2.4.5 RTE and Basic Software Scheduler and BswExecutionContext

The RTE and Basic Software Scheduler do support the invocation triggered Exe-
cutableEntity via direct function call in some special cases. Nevertheless it shall
be prevented that an ExecutableEntity from a particular execution context calls a
triggered ExecutableEntity wich requires an execution context with more per-
missions. The table 4.5 lists the supported combinations.

caller’s BswExe-
cutionContext3

callee’s BswExecutionContext3

task interruptCat2 interruptCat1 hook unspecified
task supported supported supported supported
interruptCat2 supported supported supported
interruptCat1 supported supported
hook
unspecified supported supported

Table 4.5: Possible invocation of ExecutableEntitys by direct function call dependent
from BswExecutionContext

For example (fourth column), the invocation of an ExecutableEntity with an in-
terruptCat1 BswExecutionContext can be implemented with a direct function
call if the BswExecutionContext of the caller BswModuleEntry is set to task,
interruptCat2, or interruptCat1.

This applies to the invocation of a triggered ExecutableEntity by the
SchM_Trigger, SchM_ActMain or Rte_Trigger APIs, or to the invocation of
an OnEntry ExecutableEntity, OnTransition ExecutableEntity, OnExit
ExecutableEntity or mode switch acknowledge ExecutableEntity by the
SchM_Switch or Rte_Switch APIs.

4.2.4.5.1 Interrupt decoupling for COM

COM callbacks are used to inform the RTE about something that happened indepen-
dently of any RTE action. This is often interrupt driven, e.g. when a data item has been
received from another ECU or when a S/R transmission is completed.
It is the RTE’s job e.g. to create RTEEvents from the interrupt.

[SWS_Rte_03530] d The RTE shall provide callback functions to allow COM to signal
COM events to the RTE. c(SRS_Rte_00072, SRS_Rte_00099)

[SWS_Rte_03531] d The RTE shall support runnable activation by COM callbacks.
c(SRS_Rte_00072, SRS_Rte_00099)

[SWS_Rte_03532] d The RTE shall support category 2 runnables to wake up from a
wait point as a result of COM callbacks. c(SRS_Rte_00072, SRS_Rte_00099)

3The execution context of a RunnableEntity is considered as task

142 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

See RTE callback API in chapter 5.9.

4.2.5 Data Consistency

4.2.5.1 General

Concurrent accesses to shared data memory can cause data inconsistencies. In gen-
eral this must be taken into account when several code entities accessing the same
data memory are running in different contexts - in other words when systems using
parallel (multicore) or concurrent (singlecore) execution of code are designed. More
general: Whenever task context-switches occur and data is shared between tasks,
data consistency is an issue.

AUTOSAR systems use operating systems according to the AUTOSAR-OS specifica-
tion which is derived from the OSEK-OS specification. The Autosar OS specification
defines a priority based scheduling to allow event driven systems. This means that
tasks with higher priority levels are able to interrupt (preempt) tasks with lower priority
level.

The "lost update" example in Figure 4.24 illustrates the problem for concurrent
read-modify-write accesses:

Task B

Task A

Data X

X

1) X*=5
2) X*++ => X*=6

3) X = X* => X=6

Time

1) Get X‘=5

2) X‘+=2

3) X = X‘

1) X*=5

5 5 5 5 5 5 5 5 5 7 7 7 7 7 6 6 6 6 6 6 6 6

Figure 4.24: Data inconsistency example - lost update

There are two tasks. Task A has higher priority than task B. A increments the commonly
accessed counter X by 2, B increments X by 1. So in both tasks there is a read
(step1) – modify (step2) – write (step3) sequence. If there are no atomic accesses (fully
completed read-modify-write accesses without interruption) the following can happen:

143 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

1. Assume X=5.

2. B makes read (step1) access to X and stores value 5 in an intermediate store
(e.g. on stack or in a CPU register).

3. B cannot continue because it is preempted by A.

4. A does its read (step1) – modify (step2) – write (step3) sequence, which means
that A reads the actual value of X, which is 5, increments it by 2 and writes the
new value for X, which is 7. (X=5+2)

5. A is suspended again.

6. B continues where it has been preempted: with its modify (step2) and write
(step3) job. This means that it takes the value 5 form its internal store, incre-
ments it by one to 6 and writes the value 6 to X (X=5+1).

7. B is suspended again.

The correct result after both Tasks A and B are completed should be X=8, but the
update of X performed by task A has been lost.

4.2.5.2 Communication Patterns

In AUTOSAR systems the RTE has to take care that a lot of the communication is not
corrupted by data consistency problems. RTE Generator has to apply suitable means
if required.

The following communication mechanisms can be distinguished:

• Communication within one atomic AUTOSAR SW-C:
Communication between Runnables of one atomic AUTOSAR SW-C running in
different task contexts where communication between these Runnables takes
place via commonly accessed data. If the need to support data consistency by
the RTE exists, it must be specified by using the concepts of "ExclusiveAreas" or
"InterRunnableVariables" only.

• Intra-partition communication between AUTOSAR SW-Cs:
Sender/Receiver (S/R) communication between Runnables of different AU-
TOSAR SW-Cs using implicit or explicit data exchange can be realized by the
RTE through commonly accessed RAM memory areas. Data consistency in
Client/Server (C/S) communication can be put down to the same concepts as
S/R communication. Data access collisions must be avoided. The RTE is re-
sponsible for guaranteeing data consistency.

• Inter-Partition communication
The RTE has to guarantee data consistency. The different possibilities pro-
vided to the RTE for the communication between partitions are discussed in sec-
tion 4.3.4.

144 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

• Intra-ECU communication between AUTOSAR SW-Cs and BSW modules with
AUTOSAR interfaces:
This is a special case of the above two.

• Inter ECU communication
COM has to guarantee data consistency for communication between ECUs on
complete path between the COM modules of different ECUs. The RTE on each
ECU has to guarantee that no data inconsistency might occur when it invokes
COM send respectively receive calls supplying respectively receiving data items
which are concurrently accessed by application via RTE API call, especially when
queueing is used since the queues are provided by the RTE and not by COM.

[SWS_Rte_03514] d The RTE has to guarantee data consistency for communication
via AUTOSAR interfaces. c(SRS_Rte_00032)

4.2.5.3 Concepts

In the AUTOSAR SW-C Template [2] chapter "Interaction between runnables within
one component", the concepts of

1. ExclusiveAreas (see section 4.2.5.5 below)

2. InterRunnableVariables (see section 4.2.5.6 below)

are introduced to allow the user (SW-Designer) to specify where the RTE shall guar-
antee data consistency for AUTOSAR SW-C internal communication and execution
circumstances. This is discussed in more detail in next sections.

Additionally exclusive areas are also available for Basic Software Modules to protect
access to module internal data. See [9]. The exclusive areas for Basic Software Mod-
ules are handled by the Basic Software Scheduler.

The AUTOSAR SW-C template specification [2] also states that AUTOSAR SW-Cs may
define PerInstanceMemory or arTypedPerInstanceMemory, allowing reserva-
tion of static (permanent) need of global RAM for the SW-C. Nothing is specified about
the way Runnables might access this memory. RTE only provides a reference to this
memory (see section 5.6) but doesn’t guarantee data consistency for it.

The implementer of an AUTOSAR SW-C has to take care by himself that accesses
to RAM reserved as PerInstanceMemory out of Runnables running in different task
contexts don’t cause data inconsistencies. On the other hand this provides more
freedom in using the memory.

145 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4.2.5.4 Mechanisms to guarantee data consistency

ExclusiveAreas and InterRunnableVariables are only mentioned in association with
AUTOSAR SW-C internal communication. Nevertheless the data consistency mecha-
nisms behind can be applied to communication between AUTOSAR SW-Cs or between
AUTOSAR SW-Cs and BSW modules too. Everywhere where the RTE has to guaran-
tee data consistency.

The data consistency guaranteeing mechanisms listed here are derived from AU-
TOSAR SW-C Template and from further discussions. There might be more (see sec-
tion 4.3.4 for the mechanisms involved for inter-partition communication).
The RTE has the responsibility to apply such mechanisms if required. The details how
to apply the mechanisms are left open to the RTE supplier.

Mechanisms:

• Sequential scheduling strategy
The activation code of Runnables is sequentially placed in one task so that no
interference between them is possible because one Runnable is only activated
after the termination of the other. Data consistency is guaranteed.

• Interrupt blocking strategy
Interrupt blocking can be an appropriate means if collision avoidance is required
for a very short amount of time. This might be done by disabling respectively
suspending all interrupts, Os interrupts only or - if hardware supports it - only
of some interrupt levels. In general this mechanism must be applied with care
because it might influence SW in tasks with higher priority too and the timing of
the complete system.

• Usage of OS resources
Usage of OS resources. Advantage in comparison to Interrupt blocking strat-
egy is that less SW parts with higher priority are blocked. Disadvantage is that
implementation might consume more resources (code, runtime) due to the more
sophisticated mechanism. Appropriateness of this mechanism may vary depend-
ing on the number of OSs/cores and/or the number of available resources.

• Task blocking strategy
Mutual task preemption is prohibited. This might be reached e.g. by assigning
same priorities to affected tasks, by assigning same internal OS resource to af-
fected tasks or by configuring the tasks to be non-preemptive. This mechanism
may be inappropriate in multi-partitioned systems.

• Cooperative Runnable placement strategy
The principle is that tasks containing Runnables to be protected by "Cooper-
ative Runnable placement strategy" are not allowed to preempt other tasks also
containing Runnables to be protected by "Cooperative Runnable placement strat-
egy", when one of the Runnables to protect is active - but are allowed between
Runnable executions. The RTE’s job is to create appropriate task bodies and

146 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

use OS services or other mechanisms to achieve the required behavior. This
mechanism may be inappropriate in multi-partitioned systems.

To point out the difference to "Task blocking strategy":
In "Task blocking strategy" no task containing Runnables with access to the Ex-
clusiveArea at all is allowed to preempt another task containing Runnables with
access to same ExclusiveArea. In "Cooperative Runnable placement strategy"
this task blocking mechanism is limited to tasks defined to be within same coop-
erative context.

Example to explain the cooperative mechanism:

– Runnables R2 and R3a are marked to be protected by cooperative mecha-
nism.

– Runnables R1, R3b and R4 have no cooperative marking.

– R1 is activated in Task T1, R2 is activated in Task T2, R3a is activated in
Task T3a, R3b is activated in Task T3b, R4 is activated in Task T4.

– Task priorities are: T4 > T3a > T2 > T1, T3b has same priority as T3a

This setup results in this behavior:

– T4 can always preempt all other tasks (Higher prio than all others).

– T3b can preempt T2 (higher prio of T3b, no cooperative restriction)

– T3a cannot preempt T2 (Higher prio of T3a but same cooperative context).
So data access of Runnable R2 to common data cannot interfere with data
access by Runnable R3a. Nevertheless if both tasks T3a and T2 are ready
to run, it’s guaranteed that T3a is running first.

– T1 can never preempt one of the other tasks because of lowest assigned
prio.

• Copy strategy
Idea: The RTE creates copies of data items so that concurrent accesses in dif-
ferent task contexts cannot collide because some of the accesses are redirected
to the copies.

How it can work:

– Application for read conflicts:
For all readers with lower priority than the writer a read copy is provided.

Example:
There exist Runnable R1, Runnable R2, data item X and a copy data
item X*. When Runnable R1 is running in higher priority task context than
R2, and R1 is the only one writing X and R2 is reading X it is possible to
guarantee data consistency by making a copy of data item X to variable X*
before activation of R2 and redirecting write access from X to X* or the read

147 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

access from X to X* for R2.

– Application for write conflicts:
If one or more data item receiver with a higher priority than the sender exist,
a write copy for the sender is provided.

Example:
There exist Runnable R1, Runnable R2, data item X and copy data item X*.
When Runnable R1 (running in lower priority task context than R2) is
writing X and R2 is reading X, it is possible to guarantee data consistency
by making a copy of data item X to data item X* before activation of R1
together with redirecting the write access from X to X* for R1 or the read
access from X to X* for R2.

Usage of this copy mechanism may make sense if one or more of the following
conditions hold:

– This copy mechanism can handle those cases when only one instance does
the data write access.

– R2 is accessing X several times.

– More than one Runnable R2 has read (resp. write) access to X.

– To save runtime is more important than to save code and RAM.

– Additional RAM requirements to hold the copies is acceptable.

Further issues to be taken into account:

– AUTOSAR SW-Cs provided as source code and AUTOSAR SW-Cs pro-
vided as object code may or have to be handled in different ways. The
redirecting mechanism for source code could use macros for C and C++
very efficiently whereas object-code AUTOSAR SW-Cs most likely are
forced to use references.

Note that the copy strategy is used to guarantee data consistency for implicit
sender-receiver communication (VariableAccesses in the dataReadAccess
or dataWriteAccess role) and for AUTOSAR SW-C internal communication
using InterRunnableVariables with implicit behavior.

4.2.5.5 Exclusive Areas

The concept of ExclusiveArea is more a working model. It’s not a concrete imple-
mentation approach, although concrete possible mechanisms are listed in AUTOSAR
SW-C template specification [2].

148 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Focus of the ExclusiveArea concept is to block potential concurrent accesses
to get data consistency. ExclusiveAreas implement critical section

ExclusiveAreas are associated with RunnableEntitys. The RTE is forced to guar-
antee data consistency when the RunnableEntity runs in an ExclusiveArea. A
RunnableEntity can run inside one or several ExclusiveAreas completely or can
enter one or several ExclusiveAreas during their execution for one or several times
.

• If an AUTOSAR SW-C requests the RTE to look for data consistency for it’s inter-
nally used data (for a part of it or the complete one) using the ExclusiveArea
concept, the SW designer can use the API calls "Rte_Enter()" in 5.6.27 and
"Rte_Exit()" in 5.6.28 to specify where he wants to have the protection by RTE
applied.
"Rte_Enter()" defines the begin and "Rte_Exit()" defines the end of the code se-
quence containing data accesses the RTE has to guarantee data consistency
for.

• If the SW designer wants to have the mutual exclusion for complete
RunnableEntitys he can specify this by using the ExclusiveArea in the role
"runsInsideExclusiveArea" in the AUTOSAR SW-C description.

In principle the ExclusiveArea concept can handle the access to single data items
as well as the access to several data items realized by a group of instructions. It
also doesn’t matter if one Runnable is completely running in an ExclusiveArea and
another Runnable only temporarily enters the same ExclusiveArea. The RTE has
to guarantee data consistency.

[SWS_Rte_03500] d The RTE has to guarantee data consistency for arbitrary ac-
cesses to data items accessed by Runnables marked with the same ExclusiveArea.
c(SRS_Rte_00032, SRS_Rte_00046)

[SWS_Rte_03515] d RTE has to provide an API enabling the SW-Cs to access and
leave ExclusiveAreas. c(SRS_Rte_00046)

If Runnables accessing same ExclusiveArea are assigned to be executing in dif-
ferent task contexts, the RTE can apply suitable mechanisms, e.g. task blocking, to
guarantee data consistency for data accesses in the common ExclusiveArea. How-
ever, specials attributes can be set that require certain data consistency mechanisms
in which case the RTE generator is forced to apply the selected mechanism.

The Basic Software Scheduler provides ExclusiveAreas for the Basic Software
Modules. Basic Software Modules have to use the API calls SchM_Enter()" in 6.5.1
and SchM_Exit()" in 6.5.2 to specify where the protection by Basic Software Sched-
uler has to be applied.

[SWS_Rte_07522] d The Basic Software Scheduler has to guarantee data consistency
for arbitrary accesses to data items accessed by BswModuleEntitys marked with the
same ExclusiveArea. c(SRS_Rte_00222, SRS_Rte_00046)

149 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_07523] d Basic Software Scheduler has to provide an API enabling the
Basic Software Module to access and leave ExclusiveAreas. c(SRS_Rte_00222,
SRS_Rte_00046)

It is not supported, that a BswModuleEntity which is not a BswSchedulableEn-
tity uses an ExclusiveArea in the role runsInsideExclusiveArea This is not
possible, because such BswSchedulableEntity might be called directly by other
Basic Software Modules and therefore the Basic Software Scheduler is not able to
enter and exit the ExclusiveArea automatically.

[SWS_Rte_07524] d The RTE generator shall reject a configuration where a BswMod-
uleEntity which is not a BswSchedulableEntity uses an ExclusiveArea
in the role runsInsideExclusiveArea. c(SRS_Rte_00222, SRS_Rte_00046,
SRS_Rte_00018)

4.2.5.5.1 Assignment of data consistency mechanisms

The data consistency mechanism that has to be applied to anExclusiveArea might
be domain, ECU or even project specific. The decision which mechanism has to be
applied by RTE / Basic Software Scheduler is taken during ECU integration by set-
ting the ExclusiveArea configuration parameter RteExclusiveAreaImplMecha-
nism. This parameter is an input for RTE generator.

As stated in section 4.2.5.4 there might be more mechanisms to realize Exclu-
siveAreas as mentioned in this specification. So RTE implementations might provide
other mechanisms in plus by a vendor specific solutions. This allows further optimiza-
tions.

Actually following values for configuration parameter RteExclusiveAreaImplMech-
anism must be supported:

• ALL_INTERRUPT_BLOCKING
This value requests enabling and disabling of all Interrupts and is based on the
Interrupt blocking strategy.

• OS_INTERRUPT_BLOCKING
This value requests enabling and disabling of Os Interrupts and is based on the
Interrupt blocking strategy.

• OS_RESOURCE
This value requests to apply the Usage of OS resources mechanism.

• COOPERATIVE_RUNNABLE_PLACEMENT
This value requires to apply the Cooperative Runnable Placement Strategy.

The strategies / mechanisms are described in general in section 4.2.5.4.

150 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_03504] d If the configuration parameter RteExclusiveAreaImplMech-
anism of an ExclusiveArea is set to value ALL_INTERRUPT_BLOCKING the RTE
generator shall use the mechanism of Interrupt blocking (blocking all interrupts) to guar-
antee data consistency if data inconsistency could occur. c(SRS_Rte_00032)

[SWS_Rte_05164] d If the configuration parameter RteExclusiveAreaImplMech-
anism of an ExclusiveArea is set to value OS_INTERRUPT_BLOCKING the RTE
generator shall use the mechanism of Interrupt blocking (blocking Os interrupts only)
to guarantee data consistency if data inconsistency could occur. c(SRS_Rte_00032)

[SWS_Rte_03595] d If the configuration parameter RteExclusiveAreaImplMech-
anism of an ExclusiveArea is set to value OS_RESOURCE the RTE generator shall
use OS resources to guarantee data consistency if data inconsistency could occur.
c(SRS_Rte_00032)

The requirements above have the limitation "if data inconsistency could occur"
because it makes no sense to apply a data consistency mechanism if no potential
data inconsistency can occur. This can be relevant if e.g. the "Sequential scheduling
strategy" (described in section 4.2.5.4) still has solved the item by the ECU integrator
defining an appropriate runnable-to-task mapping.

[SWS_Rte_03503] d If the configuration parameter RteExclusiveAreaImplMech-
anism of an ExclusiveArea is set to value COOPERATIVE_RUNNABLE_PLACEMENT
the RTE generator shall generate code according the Cooperative Runnable Place-
ment Strategy to guarantee data consistency. c(SRS_Rte_00032)

Since the decision to select the Cooperative Runnable Placement Strategy to prohibit
data access conflicts affects the behavior of several tasks and potentially many Ex-
clusiveAreas the RTE generator is not allowed to override the decision.

In a SWC code, it is not allowed to use WaitPoints inside an ExclusiveArea:
The RTE generator might use OSEK services to implement ExclusiveAreas and
waiting for an OS event is not allowed when an OSEK resource has been taken for
example. For RunnableEntityEntersExclusiveArea, the RTE generator cannot check if
WaitPoints are inside an ExclusiveArea. Therefore, it is the responsibility of the
SWC Code writer to ensure that no WaitPoints are used inside an exclusive area.
But for RunnableEntitys running inside a ExclusiveArea, the RTE generator is
able to do the following check.

[SWS_Rte_07005] d The RTE generator shall reject a configuration with a WaitPoint
applied to a RunnableEntity which is using the ExclusiveArea in the role run-
sInsideExclusiveArea c(SRS_Rte_00032, SRS_Rte_00018)

4.2.5.6 InterRunnableVariables

A non-composite AUTOSAR SW-C can reserve InterRunnableVariables which can be
accessed by the Runnables of this one AUTOSAR SW-C (also see section 4.3.3.1).

151 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Read and write accesses are possible. There is a separate set of those variables per
AUTOSAR SW-C instance.

Again the RTE has to guarantee data consistency. Appropriate means will depend on
Runnable placement decisions which are taken during ECU configuration.

[SWS_Rte_03516] d The RTE has to guarantee data consistency for communication
between Runnables of one AUTOSAR software-component instance using the same
InterRunnableVariable. c(SRS_Rte_00142, SRS_Rte_00032)

Next the two kinds of InterRunnableVariables are treated:

1. InterRunnableVariables with implicit behavior

(implicitInterRunnableVariable)

2. InterRunnableVariables with explicit behavior

(explicitInterRunnableVariable)

4.2.5.6.1 InterRunnableVariables with implicit behavior

In applications with very high SW-C communication needs and much real time con-
straints (like in powertrain domain) the usage of a copy mechanism to get data con-
sistency might be a good choice because during RunnableEntity execution no data
consistency overhead in form of concurrent access blocking code and runtime during
its execution exists - independent of the number of data item accesses.
Costs are code overhead in the RunnableEntity prologue and epilogue which is
often be minimal compared to other solutions. Additional RAM need for the copies
comes in plus.

When InterRunnableVariables with implicit behavior are used the RTE is required to
make the data available to the Runnable using the semantics of a copy operation
but is not necessarily required to use a unique copy for each RunnableEntity.

Focus of InterRunnableVariable with implicit behavior is to avoid concurrent ac-
cesses by redirecting second, third, .. accesses to data item copies.

[SWS_Rte_03517] d The RTE shall guarantee data consistency for InterRunnableVari-
ables with implicit behavior by avoiding concurrent accesses to data items specified by
implicitInterRunnableVariable using one or more copies and redirecting ac-
cesses to the copies.
c(SRS_Rte_00142, SRS_Rte_00032)

Compared with Sender/Receiver communication

• Like with VariableAccesses in the dataReadAccess and dataWriteAc-
cess roles, the Runnable IN data is stable during Runnable execution, which
means that during an Runnable execution several read accesses to an implic-
itInterRunnableVariable always deliver the same data item value.

152 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

• Like with VariableAccesses in the dataReadAccess and dataWriteAc-
cess roles, the Runnable OUT data is forwarded to other Runnables not before
Runnable execution has terminated, which means that during an Runnable ex-
ecution write accesses to implicitInterRunnableVariable are not visible
to other Runnables.

This behavior requires that Runnable execution terminates.

[SWS_Rte_03582] d The value of several read accesses to implicitInter-
RunnableVariable during a RunnableEntity execution shall only change for write
accesses performed within this RunnableEntity to the implicitInterRunnabl-
eVariable c(SRS_Rte_00142)

[SWS_Rte_03583] d Several write accesses to implicitInterRunnableVari-
able during a RunnableEntity execution shall result in only one update of the im-
plicitInterRunnableVariable content visible to other RunnableEntitys with
the last written value.
c(SRS_Rte_00142)

[SWS_Rte_03584] d The update of implicitInterRunnableVariable done dur-
ing a RunnableEntity execution shall be made available to other RunnableEn-
titys after the RunnableEntity execution has terminated.
c(SRS_Rte_00142)

[SWS_Rte_07022] d If a RunnableEntity has both read and write access to an
implicitInterRunnableVariable the result of the write access shall be imme-
diately visible to subsequent read accesses from within the same runnable entity.
c(SRS_Rte_00142)

The usage of implicitInterRunnableVariables is permitted for all categories of
runnable entities. For runnable entities of category 2, the behavior is guaranteed only
if it has a finite execution time. A category 2 runnable that runs forever will not have its
data updated.

For API of implicitInterRunnableVariable see sections 5.6.23 and 5.6.24.

For more details how this mechanism could work see "Copy strategy" in section 4.2.5.4.

4.2.5.6.2 InterRunnableVariables with explicit behavior

In many applications saving RAM is more important than saving runtime. Also some
application require to have access to the newest data item value without any delay,
even several times during execution of a Runnable.

Both requirements can be fulfilled when RTE supports data consistency by blocking
second/third/.. concurrent accesses to a signal buffer if data consistency is jeopar-
dized. (Most likely RTE has nothing to do if SW is running on a 16bit machine and
making an access to an 16bit value when a 16bit data bus is present.)

153 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Focus of InterRunnableVariables with explicit behavior is to block potential con-
current accesses to get data consistency.

The mechanism behind is the same as in the ExclusiveArea concept (see section
4.2.5.5). But although ExclusiveAreas can handle single data item accesses too, their
API is made to make the RTE to apply data consistency means for a group of in-
structions accessing several data items as well. So when using an ExclusiveArea to
protect accesses to one single common used data item each time two RTE API calls
grouped around are needed. This is very inconvenient and might lead to faults if the
calls grouped around might be forgotten.
The solution is to support InterRunnableVariables with explicit behavior.

[SWS_Rte_03519] d The RTE shall guarantee data consistency for InterRunnableVari-
ables with explicit behavior by blocking concurrent accesses to data items specified by
explicitInterRunnableVariable.
c(SRS_Rte_00142, SRS_Rte_00032)

The RTE generator is not free to select on it’s own if implicit or explicit behavior shall
be applied. Behavior must be known at AUTOSAR SW-C design time because in case
of InterRunnableVariables with implicit behavior the AUTOSAR SW-C designer might
rely on the fact that several read accesses always deliver same data item value.

[SWS_Rte_03580] d The RTE shall supply different APIs for InterRunnableVariables
with implicit behavior and InterRunnableVariables with explicit behavior.
c(SRS_Rte_00142)

For API of InterRunnableVariables with explicit behavior see sections 5.6.25 and
5.6.26.

4.2.6 Multiple trigger of Runnable Entities and Basic Software Schedulable En-
tities

Concurrent activation

The AUTOSAR SW-C template specification [2] states that runnable entities (further
called "runnables") might be invoked concurrently several times if the Runnables at-
tribute canBeInvokedConcurrently is set. It’s then in the responsibility of the AU-
TOSAR SW-C designer that no data might be corrupted when the Runnable is activated
several times in parallel.

If a SW-C has multiple instances, they have distinct runnables. Two runnables that
use the same RunnableEntity description of the same SwcInternalBehavior
description but are instantiated with two different SW-C instances are treated as two
distinct runnables in the following. This kind of concurrency is always allowed between
SW-Cs, even if the runnables have their canBeInvokedConcurrently attribute set
to false.

[SWS_Rte_03523] d The RTE shall support concurrent activation of the same instance
of a runnable entity if the associative attribute canBeInvokedConcurrently is set

154 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

to TRUE. This includes concurrent activation in several tasks. If the attribute is not
set resp. set to FALSE, concurrent activation of the runnable entity is forbidden. (see
requirement [SWS_Rte_05083]) c(SRS_Rte_00072, SRS_Rte_00133)

The Basic Software Module Description Template [9] specifies the possible concurrent
activation of BswModuleEntitys by the attribute isReentrant.

[SWS_Rte_07525] d The Basic Software Scheduler shall support concurrent activation
of the same instance of a BswSchedulableEntity if the attribute isReentrant of
the referenced BswModuleEntry in the role implementedEntry is set to true.
This includes concurrent activation in several tasks. If the attribute is set to false
concurrent activation of the BswSchedulableEntity is forbidden. (see requirement
[SWS_Rte_07588]) c

Concurrent activation of the same instance of a ExecutableEntity results in mul-
tiple ExecutableEntity execution-instances. One for each context of activa-
tion.

Activation by several RTEEvents and BswEvents

Nevertheless a Runnable whose attribute canBeInvokedConcurrently is NOT set
might be still activated by several RTEEvents if activation configuration guarantees
that concurrent activation can never occur and the minimumStartInterval condi-
tion is kept. This includes activation in different tasks. In this case, the runnable is
still considered to have only one ExecutableEntity execution-instances. A
standard use case is the activation of same instance of a runnable in different modes.

[SWS_Rte_03520] d The RTE shall support activation of same instance of a runnable
entity by multiple RTEEvents. c(SRS_Rte_00072)

RTEEvents are triggering runnable activation and may supply 0..several role param-
eters, see section 5.7.3. Role parameters are not visible in the runnables signature -
except in those triggered by an OperationInvokedEvent. With the exception of the
RTEEvent OperationInvokedEvent all role parameters can be accessed by user
with implicit or explicit Receiver API.

[SWS_Rte_03524] d The RTE shall support activation of same instance of a runnable
entity by RTEEvents of different kinds. c(SRS_Rte_00072)

The RTE does NOT support a runnable entity triggered by an RTEEvent Opera-
tionInvokedEvent to be triggered by any other RTEEvent except for other Opera-
tionInvokedEvents of compatible operations. This limitation is stated in appendix
in section A.2 ([SWS_Rte_03526]).

The similar configuration as mentioned for the RunnableEntitys might be used for
BswSchedulableEntitys. Therefore even a BswSchedulableEntity whose ref-
erenced BswModuleEntry in the role implementedEntry has its isReentrant
attribute set to false can be activated by several BswEvents.

[SWS_Rte_07526] d The Basic Software Scheduler shall support activation of same
instance of a BswSchedulableEntity by multiple BswEvents. c

155 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_07527] d The Basic Software Scheduler shall support activation of same
instance of a BswSchedulableEntity by BswEvents of different kinds. c

4.2.7 Implementation of Parameter and Data elements

4.2.7.1 General

A SWC communicates with other SWCs through ports. A port is characterized by a
PortInterface and there are several kinds of PortInterfaces. In this section,
we focus on the ParameterInterface, the SenderReceiverInterface, and the
NvDataInterface. These three kinds of PortInterfaces aggregate some specific
interface elements. For example, a ParameterInterface aggregates 0..* Parame-
terDataPrototypes.

4.2.7.2 Compatibility rules

A receiver port can only be connected to a compatible provider port. The compatibility
rules are explained in the AUTOSAR Software Component Template [2]. The compat-
ibility mainly depends on the attribute swImplPolicy attached to the element of the
interface. The table 4.6 below gives an overview of compatibility rules.

Provide Port Require Port
Port Interface Prm S/R NvD

Interface Element PDP VDP VDP
swImplPolicy fixed const standard standard queued standard

fixed yes yes yes yes no yes
Prm PDP const no yes yes yes no yes

standard no no yes yes no yes
standard no no no yes no yes

S/R VDP
queued no no no no yes no

NvD VDP standard no no no yes no yes

Table 4.6: Overview of compatibility of ParameterDataPrototype and VariableDataProto-
types

For examples, a Require Port that expects a fixed parameter - i.e produced by a macro
#define - can only be connected to a Port that provides a fixed Parameter. This is be-
cause this fixed data may be used in a compilation directive like #IF and only macro
#define (fixed data) can be compiled in this case. On the other hand, this provided fixed
parameter can be connected to almost every require port, except a queued Sender/re-
ceiver interface.

The RTE doesn’t have to check the compatibility between ports since this task is per-
formed at the VFB level. But it shall provide the right implementation of interface el-

156 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Interface Element
PDP : ParameterDataPrototype
VDP : VariableDataPrototype

Port Interface
Prm : ParameterInterface
S/R : SenderReceiverInterface
NvD : NvDataInterface

Table 4.7: Key to table 4.6

ement and API according the attribute swImplPolicy attached to the interface ele-
ment.

4.2.7.3 Implementation of an interface element

The implementation of an interface element depends on the attribute swImplPolicy.
The attribute swCalibrationAccess determines how the interface element can be
accessed by e.g. an external calibration tool. The table 4.8 defines the supported
combinations of swImplPolicy and swCalibrationAccess attribute setting and
gives the corresponding implementation by the RTE.

4.2.7.4 Initialization of VariableDataPrototypes

Basically the need for initialization of any VariableDataPrototypes is specified by
the Software Component Descriptions defining the VariableDataPrototypes. This
information is basically defined by the existence of an initValue, the sectionIni-
tializationPolicy of the related SwAddrMethod. As described in section 7.12
additionally the initialization strategy can be adjusted by the integrator of the RTE to
adjust the behavior to the start-up code.

[SWS_Rte_07046] d Variables implementing VariableDataPrototypes shall be
initialized if

• an initValue is defined

AND

• no SwAddrMethod is defined for VariableDataPrototype.

c(SRS_Rte_00052, SRS_Rte_00068, SRS_Rte_00116)

[SWS_Rte_03852] d Variables implementing VariableDataPrototypes shall be
initialized if

4calibration parameter have to be allocated in RAM if data emulation with SW support is required,
see 4.2.8.3.5

157 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

swImplPolicy SwCalibrationAccess
not Acces-
sible

readOnly readWrite Implementation

fixed yes not sup-
ported

not supported macro defini-
tion or c const
declaration
dependent
from RTE
optimization

const yes yes not supported c const decla-
ration

standard yes yes yes standard
implemen-
tation i.e. a
variable for
VariableDat-
aPrototype
in RAM or
a calibration
parameter in
ROM 4

queued yes not sup-
ported

not supported FIFO Queue

measurement
Point

not sup-
ported

yes not supported Variable

Table 4.8: Data implementation according swImplPolicy

• an initValue is defined

AND

• a SwAddrMethod is defined for VariableDataPrototype

AND

• the RteInitializationStrategy for the sectionInitializa-
tionPolicy of the related SwAddrMethod is NOT configured to
RTE_INITIALIZATION_STRATEGY_NONE.

c(SRS_Rte_00052, SRS_Rte_00068, SRS_Rte_00116)

4.2.7.5 Initial value calculation

Basically the Meta Model defines two different flavors of rule based value specifica-
tions:

158 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

• ApplicationRuleBasedValueSpecification

• NumericalRuleBasedValueSpecification

The ApplicationRuleBasedValueSpecification defines the values in the
physical representation whereas the NumericalRuleBasedValueSpecification
defines the values in the numerical representation. (See document [2], section Data
Description) But both are using the RuleBasedValueSpecification to define a
set of values based on a rule and arguments for the rule.

Especially in case of large arrays an high amount of initial values are required. But
many arrays are initialized with identical values or at least filled up to the end with iden-
tical values. For such use case the RuleBasedValueSpecification of category
FILL_UNTIL_END can be used to avoid the creation and maintenance of redundant
ValueSpecifications.

[SWS_Rte_06764] d The RTE Generator shall support ApplicationRuleBased-
ValueSpecifications for DataPrototypes typed by ApplicationArray-
DataTypes. c(SRS_Rte_00239)

[SWS_Rte_06765] d The RTE Generator shall support NumericalRuleBasedVal-
ueSpecifications for DataPrototypes typed by ImplementationDataTypes
of category ARRAY and for Compound Primitive Data Types which are
mapped to ImplementationDataTypes of category ARRAY. c(SRS_Rte_00239)

[SWS_Rte_06733] d The RTE Generator shall support RuleBasedValueSpecifi-
cations with the rule FILL_UNTIL_END. c(SRS_Rte_00239)

[SWS_Rte_06734] d The RTE shall initialize the elements of the array according the
values defined by RuleBasedValueSpecification.arguments if a RuleBased-
ValueSpecification with the rule FILL_UNTIL_END is applicable.
Thereby the order of arguments corresponds to the order of elements in the array,
i.e. the first argument corresponds to the first element of the array, the second argu-
ment corresponds to the second element of the array, and so on. c(SRS_Rte_00239)
AUTOSAR defines a standardized behavior of RuleBasedValueSpecifications
only for the rule FILL_UNTIL_END. RTE vendors are free to add additional, non-
standardized rules (see [TPS_SWCT_01495]).

[SWS_Rte_06735] d The RTE Generator shall apply the value of the last RuleBased-
ValueSpecification argument to any following element of the array until the last
element of the array if the number of arguments is smaller than the number of elements
of the array to which it is applied. c(SRS_Rte_00239)

[SWS_Rte_06736] d The RTE Generator shall ignore arguments that go beyond the
last element of the array if the number of arguments exceeds the number of elements
of the array to which it is applied. c(SRS_Rte_00239)

159 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4.2.8 Measurement and Calibration

4.2.8.1 General

Calibration is the process of adjusting an ECU SW to fulfill its tasks to control physical
processes respectively to fit it to special project needs or environments. To do this two
different mechanisms are required and have to be distinguished:

1. Measurement
Measure what’s going on in the ECU e.g. by monitoring communication data
(Inter-ECU, Inter-Partition, Intra-partition, Intra-SWC). There are several ways to
get the monitor data out of the ECU onto external visualization and interpretation
tools.

2. Calibration
Based on the measurement data the ECU behavior is modified by changing
parameters like runtime SW switches, process controlling data of primitive or
composite data type, interpolation curves or interpolation fields. In the following
for such parameters the term calibration parameter is used.

With AUTOSAR, a calibration parameter is instantiated with a ParameterDataPro-
totype class that aggregates a SwDataDefProps with properties swCalibra-
tionAccess = readWrite and swImplPolicy = standard.

Nevertheless it is supported, that VariableDataPrototype is instantiated that
aggregates a SwDataDefProps with properties swCalibrationAccess = read-
Write and swImplPolicy = standard. But in this case the implementation of such
VariableDataPrototype is treated identical to swCalibrationAccess = read-
Only and the RTE Generator has not to implement further measures (for instance
"Data emulation with SW support" 4.2.8.3.5).

It’s possible that different SwDataDefProps settings are specified for a Variable-
DataPrototype and its referenced AutosarDataType. In this case the rules spec-
ified in the SWC-T shall be applied. See as well [SWS_Rte_07196].

SwDataDefProps contain more information how measurement values or characteris-
tics are to be interpreted and presented by external calibration tools. This information
is needed for the ASAM2 respectively A2L file generation. Afterwards the A2L file is
used by ECU-external measurement and calibration tools so that these tools know e.g.
how to interpret raw data received from ECU and how to get them.

4.2.8.1.1 Definition of Calibration Parameters

Calibration parameters can be defined in AUTOSAR SW as well as in Basic-SW. In
the AUTOSAR Architecture there are two possibilities to define calibration parameters.
Which one to choose is not in the focus of this RTE specification.

160 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

1. RTE provides the calibration parameter access if they are specified via a Param-
eterSwComponentType. A ParameterSwComponentType can be defined
in order to provide ParameterDataPrototypes (via ports) to other Software
Components.

2. Calibration parameter access invisible for RTE
Since multiple instantiation with code sharing is not allowed for Basic-SW and
multiple instantiation is not always required for software components it’s possi-
ble for these software to define own methods how calibration parameters are
allocated. Nevertheless these calibration parameters shall be described in the
belonging Basic Software Module Description respectively Software Component
Description. In case data emulation with SW-support is used, the whole software
and tool chain for calibration and measurement, e.g. Basic-SW (respectively XCP
driver) which handles emulation details and data exchange with external calibra-
tion tools then has to deal with several emulation methods at once: The one
the RTE uses and the other ones each Basic-SW or SWC using local calibration
parameters practices.

4.2.8.1.2 Online and offline calibration

The way how measurement and calibration is performed is company, domain and
project specific. Nevertheless two different basic situations can be distinguished and
are important for understanding:

1. Offline calibration
Measure when ECU is running, change calibration data when ECU is off.
Process might look like this:

(a) Flash the ECU with current program file

(b) PowerUp ECU in target (actual or emulated) environment

(c) Measure running ECU behavior - log or monitor via external tooling

(d) Switch off ECU

(e) Change calibration parameters and create a new flashable program file (hex-
file) e.g. by performing a new SW make run

(f) Back to (a).

Do loop as long as a need for calibration parameter change exists or the Flash
survives.

2. Online calibration

Do measurement and calibration in parallel.
In this case in principle all steps mentioned in "Offline calibration" above have
to be performed in parallel. So other mechanisms are introduced avoiding ECU

161 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

flashing when modifying ECU parameters. ECU works temporarily with changed
data and when the calibration process is over the result is an updated set of
calibration data. In next step this new data set might be merged into the existing
program file or the new data set might be an input for a new SW make run. In
both cases the output is a new program file to flash into the ECU.

Process might look like this:

(a) Flash the ECU with current program file

(b) PowerUp ECU in target environment

(c) Measure running ECU behavior and temporarily modify calibration parame-
ters. Store set of updated calibration parameters (not on the ECU but on the
calibration tool computer). Actions in step c) may be done iteratively.

(d) Switch off ECU

(e) Create a new flashable program file (hex-file) containing the new calibration
parameters

Procedure over

4.2.8.2 Measurement

4.2.8.2.1 What can be measured

The AUTOSAR SW-C template specification [2] explains to which AUTOSAR proto-
types a measurement pattern can be applied.

RTE provides measurement support for

1. communication between Ports
Measurable are

• VariableDataPrototypes of a SenderReceiverInterface used in
a PortPrototype (of a SwComponentPrototype) to capture sender-
receiver communication or between SwComponentPrototypes

• VariableDataPrototypes of a NvDataInterface used in a PortPro-
totype (of a SwComponentPrototype) to capture non volatile data com-
munication or between SwComponentPrototypes

• ArgumentDataPrototypes of an ClientServerOperation in a
ClientServerInterface to capture client-server communication be-
tween SwComponentPrototypes

2. communication inside of AUTOSAR SW-Cs
Measurable are implicitInterRunnableVariable, explicitInter-
RunnableVariable or arTypedPerInstanceMemory

162 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

3. data structures inside a AUTOSAR NvBlockSwComponent
Measurable are ramBlocks and romBlocks of a NvBlockSwComponent’s
NvBlock

Further on AUTOSAR SW-Cs and Basic Software Modules can define measurables
which are not instantiated by RTE. These are described by VariableDataProto-
types in the role staticMemory. Hence those kind of measurables are not described
in the generated McSupportData of the RTE (see 4.2.8.4).

4.2.8.2.2 RTE support for Measurement

The way how measurement data is read out of the ECU is not focus of the RTE spec-
ification. But the RTE structure and behavior must be specified in that way that mea-
surement values can be provided by RTE during ECU program execution.

To avoid synchronization effort it shall be possible to read out measurement data asyn-
chronously to RTE code execution. For this the measurement data must be stable. As
a consequence this might forbid direct reuse of RAM locations for implementation of
several AUTOSAR communications which are independent of each other but occurring
sequentially in time (e.g. usage of same RAM cell to store uint8 data sender receiver
communication data between Runnables at positions 3 and 7 and later the same RAM
cell for the communication between Runnables at positions 9 and 14 of same periodi-
cally triggered task). So applying measurable elements might lead to less optimizations
in the generated RTE’s code and to increased RAM need.

There are circumstances when RTE will store same communication data in different
RAM locations, e.g. when realizing implicit sender receiver communication or Inter
Runnable Variables with implicit behavior. In these cases there is only the need to
have the content of one of these stores made accessible from outside.

The information that measurement shall be supported by RTE is defined in applied
SwDataDefProps:
The value readOnly or readWrite of the property swCalibrationAccess defines
that measurement shall be supported, any other value of the property swCalibra-
tionAccess is to be ignored for measurement.

Please note that the definition of [SWS_Rte_03900] and [SWS_Rte_03902] do
not have further conditions when the location in memory has to be provided to
support the usage of VariableDataPrototype with the swImplPolicy = mea-
surementPoint. In case that the MCD system is permitted to access such a
VariableDataPrototype the RTE is not allowed to do optimization which would
prevent such measurement even if there is no consuming software component in the
input configuration.

163 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

The memory locations containing measurement values are initialized according to
[SWS_Rte_07046] and [SWS_Rte_03852].

[SWS_Rte_07044] d The RTE generator shall reject input configurations in which a
RunnableEntity defines a read access (VariableAccess in the role readLocal-
Variable, dataReadAccess, dataReceivePointByValue or dataReceive-
PointByArgument) to an VariableDataPrototype with a swImplPolicy set to
measurementPoint. c(SRS_Rte_00018)

For sender-receiver resp. client-server communication same or compatible interfaces
are used to specified connected ports. So very often measurement will be demanded
two times for same or compatible VariableDataPrototype on provide and require
side of a 1:1 communication resp. multiple times in case of 1:N or M:1 communication.
In that case providing more than one measurement value for a VariableDataPro-
totype doesn’t make sense and would increase ECU resources need excessively.
Instead only one measurement value shall be provided.

Sender-receiver communication

[SWS_Rte_03900] d If the swCalibrationAccess of a VariableDataPrototype
used in an interface of a sender-receiver port of a SwComponentPrototype is set
to readOnly or readWrite the RTE generator has to provide one reference to
a location in memory where the actual content of the instance specific data of the
corresponding VariableDataPrototype of the communication can be accessed.
c(SRS_Rte_00153)

To prohibit multiple measurement values for same communication:
(Note that affected VariableDataPrototypes might be specified in same or com-
patible port interfaces.)

[SWS_Rte_03972] d For 1:1 and 1:N sender-receiver communication the RTE shall
provide measurement values taken from sender side if measurement is demanded in
provide and require port. c(SRS_Rte_00153)

[SWS_Rte_03973] d For N:1 intra-ECU sender-receiver communication the RTE shall
provide measurement values taken from receiver side if measurement is demanded in
provide and require ports. c(SRS_Rte_00153)

Note:
See further below for support of queued communication.

[SWS_Rte_03974] d For a VariableDataPrototype with measurement demand
associated with received data of inter-ECU sender-receiver communication the RTE
shall provide only one measurement store reference containing the actual received
data even if several receiver ports demand measurement. c(SRS_Rte_00153)

[SWS_Rte_07344] d For a VariableDataPrototype with measurement demand
associated with received data of inter-Partition sender-receiver communication the
RTE shall provide only one measurement store reference per partition containing the

164 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

actual received data even if several receiver ports demand measurement in the Parti-
tion. c(SRS_Rte_00153)

Client-Server communication

[SWS_Rte_03901] d If the swCalibrationAccess of an ArgumentDataProto-
type used in an interface of a client-server port of a SwComponentPrototype is set
to readOnly the RTE generator has to provide one reference to a location in memory
where the actual content of the instance specific argument data of the communication
can be read. c(SRS_Rte_00153)

To prohibit multiple measurement values for same communication:
(Note that affected ArgumentDataPrototypes might be specified in same or com-
patible port interfaces.)

[SWS_Rte_03975] d For intra-ECU client-server communication the RTE shall provide
measurement values taken from client side if measurement of an ArgumentDataPro-
totypes is demanded by provide and require ports. c(SRS_Rte_00153)

[SWS_Rte_03976] d For inter-ECU client-server communication with the client being
present on same ECU as the RTE, the RTE shall provide measurement values taken
from client side. c(SRS_Rte_00153)

[SWS_Rte_03977] d For inter-ECU client-server communication with the server being
present on same ECU as the RTE, the RTE shall provide measurement values taken
from server if no client present on same ECU as the server is connected with that
server too. c(SRS_Rte_00153)

[SWS_Rte_07349] d For inter-Partition client-server communication with the server
being present on the same ECU as the RTE, the RTE shall provide measurement
values taken from server if no client present on the same Partition as the server is
connected with that server too. c(SRS_Rte_00153)

Note:
When a measurement is applied to a client-server call additional copy code might be
produced so that a zero overhead direct server invocation is no longer possible for this
call.

Mode Switch Communication

[SWS_Rte_06700] d If the swCalibrationAccess of a ModeDeclarationGroup-
Prototype used in an interface of a mode switch port of a SwComponentPro-
totype is set to readOnly the RTE generator has to provide three references to
locations in memory where the current mode, the previous mode and the next mode of
the related mode machine instance can be accessed. c(SRS_Rte_00153)

The affected ModeDeclarationGroupPrototypes might be used at different ports
with the same or compatible port interfaces. [SWS_Rte_06701] prohibits the occur-
rence of multiple measurement values for the same communication:

165 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_06701] d For 1:1 and 1:N mode switch communication the RTE shall pro-
vide measurement values taken from mode manager side if measurement is de-
manded in provide and require port. c(SRS_Rte_00153)

Inter Runnable Variables

[SWS_Rte_03902] d If the swCalibrationAccess of a VariableDataPrototype
in the role implicitInterRunnableVariable or explicitInterRunnable-
Variable is set to readOnly or readWrite the RTE generator has to provide one
reference to a location in memory where the actual content of the Inter Runnable Vari-
able can be accessed for a specific instantiation of the AUTOSAR SWC.
c(SRS_Rte_00153)

PerInstanceMemory

[SWS_Rte_07160] d If the swCalibrationAccess of a VariableDataPrototype
in the role arTypedPerInstanceMemory is set to readOnly or readWrite the RTE
generator has to provide one reference to a location in memory where the actual con-
tent of the arTypedPerInstanceMemory can be accessed for a specific instantiation
of the AUTOSAR SWC.
c(SRS_Rte_00153)

Nv RAM Block

[SWS_Rte_07174] d If the swCalibrationAccess of a VariableDataPrototype
in the role ramBlock of a NvBlockSwComponentType’s NvBlockDescriptor is
set to readOnly or readWrite the RTE generator has to provide one reference to a
location in memory where the actual content of the Nv RAM Block can be accessed
for a specific instantiation of the AUTOSAR NvBlockSwComponentType.
c(SRS_Rte_00153)

Non Volatile Data communication

[SWS_Rte_07197] d If the swCalibrationAccess of a VariableDataPrototype
used in an NvDataInterface of a non volatile data port of a SwComponentPro-
totype is set to readOnly or readWrite the RTE generator has to provide one
reference to a location in memory where the actual content of the instance specific
data of the corresponding VariableDataPrototype of the communication can be
accessed. c(SRS_Rte_00153)

To prohibit multiple measurement values for same communication:
(Note that affected VariableDataPrototypes might be specified in same or com-
patible port interfaces.)

[SWS_Rte_07198] d For 1:1 and 1:N non volatile data communication the RTE
shall provide measurement values taken from ramBlock if measurement is de-
manded either in provide port, any require port ([SWS_Rte_07197] or ramBlock
([SWS_Rte_07174]). c(SRS_Rte_00153)

Unconnected ports or compatible interfaces

As stated in section 5.2.7 RTE supports handling of unconnected ports.

166 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Measurement support for unconnected sender-receiver provide ports makes sense
since a port might be intentionally added for monitoring purposes only.

Measurement support for unconnected sender-receiver require ports makes sense
since the measurement is specified on the type level of the Software Component and
therefore independent of the individual usage of the Software Component. In case
of unconnected sender-receiver require ports the measurement shall return the initial
value.

Support for unconnected client-server provide port does not make sense since the
server cannot be called and with this no data can be passed there.

Support for unconnected client-server require port makes sense since the measure-
ment is specified on the type level of the Software Component and therefore inde-
pendent of the individual usage of the Software Component. In case of unconnected
client-server require ports the measurement shall return the actually provided and re-
turned values.

[SWS_Rte_03978] d For sender-receiver communication the RTE generator
shall respect measurement demands enclosed in unconnected provide ports.
c(SRS_Rte_00139, SRS_Rte_00153)

[SWS_Rte_05101] d For sender-receiver communication the RTE generator shall re-
spect measurement demands enclosed in unconnected require ports and deliver the
initial value. c(SRS_Rte_00139, SRS_Rte_00153)

[SWS_Rte_03980] d For client-server communication the RTE generator shall ignore
measurement demands enclosed in unconnected provide ports. c(SRS_Rte_00139,
SRS_Rte_00153)

[SWS_Rte_05102] d For client-server communication the RTE generator shall respect
measurement demands enclosed in unconnected require ports. The behavior shall be
similar as if the require port would be connected and the server does not respond.
c(SRS_Rte_00139, SRS_Rte_00153)

[SWS_Rte_05170] d For client-server communication the RTE generator shall ignore
measurement requests for queued client-server communication. c(SRS_Rte_00139,
SRS_Rte_00153)

In case the measurement of client-server communication is not possible due
to requirement [SWS_Rte_05170] the McSupportData need to reflect this
(see [SWS_Rte_05172]).

In principle the same thoughts as above are applied to unused VariableDataProto-
types for sender-receiver communication where ports with compatible but not same
interfaces are connected. It’s no issue for client-server due to compatibility rules for
client-server interfaces since in compatible client-server interfaces all ClientServer-
Operations have to be present in provide and require port (see AUTOSAR SW-C
Template [2]).

167 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_03979] d For sender-receiver communication the RTE generator shall re-
spect measurement demands of those VariableDataPrototypes in connected
ports when provide and require port interfaces are not the same (but only compat-
ible) even when a VariableDataPrototype in the provide port has no assigned
VariableDataPrototype in the require port.
c(SRS_Rte_00153)

General measurement disabling switch

To support saving of ECU resources for projects where measurement isn’t required at
all whereas enclosed AUTOSAR SW-Cs contain SwDataDefProps requiring it, it shall
be possible to switch off support for measurement. This shall not influence support for
calibration (see 4.2.8.3).

[SWS_Rte_03903] d The RTE generator shall have the option to switch off support for
measurement for generated RTE code. This option shall influence complete RTE code
at once. c(SRS_Rte_00153)

There also might be projects in which monitoring of ECU internal behavior is required
but calibration is not.

[SWS_Rte_03904] d The enabling of RTE support for measurement shall be indepen-
dent of the enabling of the RTE support for calibration. c(SRS_Rte_00153)

Queued communication

Measurement of queued communication is not supported yet. Reasons are:

• A queue can be empty. What’s to measure then?

• Which of the queue entries is the one to take the data from might differ out of user
view?

• Only quite inefficient solutions possible because implementation of queues en-
tails storage of information dynamically at different memory locations. So always
additional copies are required.

[SWS_Rte_03950] d RTE generator shall reject configurations where measure-
ment for queued sender-receiver communication is configured. c(SRS_Rte_00153,
SRS_Rte_00018)

4.2.8.3 Calibration

The RTE and Basic Software Scheduler has to support the allocation of calibration
parameters and the access to them for SW using them. As seen later on for some
calibration methods the RTE and Basic Software Scheduler must contain support SW
too (see 4.2.8.3.5). But in general the RTE and Basic Software Scheduler is not re-
sponsible for the exchange of the calibration data values or the transportation of them
between the ECU and external calibration tools.

168 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

The following sections are mentioning only the RTE but this has to be understood in
the context that the support for Calibration is a functionality which affects the Basic
Software Scheduler part of the RTE as well. In case of the Basic Software Scheduler
Generation Phase (see 3.4.1) this functionality might even be provided with out any
other software component related RTE functionality.

With AUTOSAR, a calibration parameter (which the AUTOSAR SW-C template spec-
ification [2] calls ParameterSwComponentType) is instantiated with a Parameter-
DataPrototype that aggregates a SwDataDefProps with properties swCalibra-
tionAccess = readWrite and swImplPolicy = standard. This chapter applies
to this kind of ParameterSwComponentTypes. For other combinations of these prop-
erties, consult the section 4.2.7

4.2.8.3.1 Calibration parameters

Calibration parameters can be defined in ParameterSwComponentTypes, in AU-
TOSAR SW-Cs, NvBlockSwComponentTypes and in Basic Software Modules.

1. ParameterSwComponentTypes don’t have an internal behavior but contain
ParameterDataPrototypes and serve to provide calibration parameters used
commonly by several AUTOSAR SW-Cs. The use case that one or several of the
user SW-Cs are instantiated on different ECUs is supported by instantiation of
the ParameterSwComponentType on the affected ECUs too.
Of course several AUTOSAR SW-Cs allocated on one ECU can commonly ac-
cess the calibration parameters of ParameterSwComponentTypes too. Also
several instances of an AUTOSAR SW-Cs can share the same calibration pa-
rameters of a ParameterSwComponentType.

2. Calibration parameters defined in AUTOSAR SW-Cs can only be used inside
the SW-C and are not visible to other SW-Cs. Instance individual and common
calibration parameters accessible by all instances of an AUTOSAR SW-C are
possible.

3. For NvBlockSwComponentTypes it is supported to provide calibration access
to the ParameterDataPrototype defining the romBlock. These values can
not be directly accessed by AUTOSAR SW-Cs but are used to serve as ROM
Block default values for the Nv Block.

4. Calibration parameters defined in Basic Software Modules can only be used in-
side the defining Basic Software Module and are not visible to other Basic Soft-
ware Modules. In contrast to AUTOSAR SW-Cs, Basic Software Modules can
only define instance specific calibration parameters.

[SWS_Rte_03958] d Several AUTOSAR SW-Cs (and also several instances of AU-
TOSAR SW-Cs) shall be able to share same calibration parameters defined in Param-
eterSwComponentTypes. c(SRS_Rte_00154, SRS_Rte_00159)

169 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_07186] d The generated RTE shall initialize the memory objects im-
plementing ParameterDataPrototypes in p-ports of ParameterSwComponent-
Types according the ValueSpecification of the ParameterProvideComSpec
referring the ParameterDataPrototype in the p-port,

• if such ParameterProvideComSpec exists and

• if no CalibrationParameterValue refers to the FlatInstanceDescrip-
tor associated to the ParameterDataPrototype

This is also applicable if the swImplPolicy = fixed and if the related Parameter-
DataPrototype is implemented as preprocessor define which does not immediately
allocate a memory object. c(SRS_Rte_00154, SRS_Rte_00159)

[SWS_Rte_07029] d The generated RTE shall initialize the memory objects im-
plementing ParameterDataPrototypes in p-ports of ParameterSwComponent-
Types according the ValueSpecification in the role implInitValue of the Cal-
ibrationParameterValue referring the FlatInstanceDescriptor associated
to the ParameterDataPrototype if such CalibrationParameterValue is de-
fined. c(SRS_Rte_00154)

Note: the initialization according [SWS_Rte_07029] and [SWS_Rte_07030] precedes
the initialization values defined in the context of an component type and used in
[SWS_Rte_07185] and [SWS_Rte_07186]. This enables to provide initial values for
calibration parameter instances to:

• predefine start values for the calibration process

• utilizes the result of the calibration process

• take calibration parameter values from previous projects

[SWS_Rte_03959] d If the SwcInternalBehavior aggregates an ParameterDat-
aPrototype in the role perInstanceParameter the RTE shall support the access
to instance specific calibration parameters of the AUTOSAR SW-C. c(SRS_Rte_00154,
SRS_Rte_00158)

[SWS_Rte_05112] d If the SwcInternalBehavior aggregates an ParameterDat-
aPrototype in the role sharedParameter the RTE shall create a common access
to the shared calibration parameter. c(SRS_Rte_00154, SRS_Rte_00159)

[SWS_Rte_07096] d If the BswInternalBehavior aggregates an ParameterDat-
aPrototype in the role perInstanceParameter the Basic Software Scheduler
shall support the access to instance specific calibration parameters of the Basic Soft-
ware Module. c(SRS_Rte_00154, SRS_Rte_00158)

[SWS_Rte_07185] d The generated RTE and Basic Software Scheduler shall initialize
the memory objects implementing ParameterDataPrototype in the role perIn-
stanceParameter or sharedParameter

• if it has a ValueSpecification in the role initValue according to this Val-
ueSpecification and

170 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

• if no CalibrationParameterValue refer to the FlatInstanceDescriptor
associated to the ParameterDataPrototype

This is also applicable if the swImplPolicy = fixed and if the related Parameter-
DataPrototype is implemented as preprocessor define which does not immediately
allocate a memory object. c(SRS_Rte_00154)

[SWS_Rte_07030] d The generated RTE and Basic Software Scheduler shall initialize
the memory objects implementing ParameterDataPrototypes in the role perIn-
stanceParameter or sharedParameter according the ValueSpecification in
the role the implInitValue of the CalibrationParameterValue referring the
FlatInstanceDescriptor associated to the ParameterDataPrototype if such
CalibrationParameterValue is defined. c(SRS_Rte_00154)

It might be project specific or even project phase specific which calibration parameters
have to be calibrated and which are assumed to be stable. So it shall be selectable
on ParameterSwComponentTypes and AUTOSAR SW-C granularity level for which
calibration parameters RTE shall support calibration.

If an r-port contains a ParameterDataPrototype, the following requirements spec-
ify its behavior if the port is unconnected.

[SWS_Rte_02749] d In case of an unconnected parameter r-port, the RTE shall set the
values of the ParameterDataPrototypes of the r-port according to the initValue
of the r-port’s ParameterRequireComSpec referring to the ParameterDataPro-
totype. c(SRS_Rte_00139, SRS_Rte_00159)

If the port is unconnected, RTE expects an init value, see [SWS_Rte_02750].

ParameterDataPrototypes in role romBlock

[SWS_Rte_07033] d If the swCalibrationAccess of a ParameterDataProto-
type in the role romBlock is set to readWrite the RTE generator has to provide
one reference to a location in memory where the actual content of the romBlock can
be accessed. c(SRS_Rte_00154)

[SWS_Rte_07034] d The generated RTE shall initialize any ParameterDataProto-
type in the role romBlock

• if it has a ValueSpecification in the role initValue according to this Val-
ueSpecification and

• if no CalibrationParameterValue refer to the FlatInstanceDescriptor
associated to the ParameterDataPrototype

c(SRS_Rte_00154)

[SWS_Rte_07035] d The generated RTE shall initialize the memory objects imple-
menting ParameterDataPrototypes in the role romBlock according the Value-
Specification in the role the implInitValue of the CalibrationParameter-
Value referring the FlatInstanceDescriptor associated to the ParameterDat-
aPrototype if such CalibrationParameterValue is defined. c(SRS_Rte_00154)

171 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

ParameterDataPrototype used as romBlock are instantiated according to
[SWS_Rte_07693].

Configuration of calibration support

[SWS_Rte_03905] d It shall be configurable for each ParameterSwComponentType
if RTE calibration support for the enclosed ParameterDataPrototypes is enabled
or not. c(SRS_Rte_00154, SRS_Rte_00156)

[SWS_Rte_03906] d It shall be configurable for each AUTOSAR SW-C if RTE cal-
ibration support for the enclosed ParameterDataPrototypes is enabled or not.
c(SRS_Rte_00154, SRS_Rte_00156)

RTE calibration support means the creation of SW as specified in section 4.2.8.3.5
"Data emulation with SW support".

Require ports on ParameterSwComponentTypes don’t make sense. Parameter-
SwComponentTypes only have to provide calibration parameters to other Component
types. So the RTE generator shall reject configurations containing require ports at-
tached to ParameterSwComponentTypes. (see section A.13)

4.2.8.3.1.1 Separation of calibration parameters

Sometimes it is required that one or more calibration parameters out of the mass of cal-
ibration parameters of an ParameterSwComponentType respectively an AUTOSAR
SW-C shall be placed in another memory location than the other parameters of the Pa-
rameterSwComponentType respectively the AUTOSAR SW-C. This might be due to
security reasons (separate normal operation from monitoring calibration data in mem-
ory) or the possibility to change calibration data during a diagnosis session (which the
calibration parameter located in NVRAM).

[SWS_Rte_03907] d The RTE generator shall support separation of calibration param-
eters from ParameterSwComponentTypes, AUTOSAR SW-Cs and Basic Software
Modules depending on the ParameterDataPrototype property swAddrMethod.
c(SRS_Rte_00154, SRS_Rte_00158)

4.2.8.3.2 Support for offline calibration

As described in section 4.2.8.1 when using an offline calibration process measure-
ment is decoupled from providing new calibration parameters to the ECUs SW. During
measurement phase information is collected needed to define to which values the cal-
ibration parameters are to be set best. Afterwards the new calibration parameter set is
brought into the ECU e.g. by using a bootloader.

172 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_03971] d The RTE generator shall have the option to switch off all data
emulation support for generated RTE code. This option shall influence complete RTE
code at once. c(SRS_Rte_00154, SRS_Rte_00156)

The term data emulation is related to mechanisms described in section 4.2.8.3.3.

Out of view of RTE the situation is same as when data emulation without SW support
(described in section 4.2.8.3.4) is used:
The RTE is only responsible to provide access to the calibration parameters via the
RTE API as specified in section 5.6. Exchange of ParameterDataPrototype con-
tent is done invisibly for ECU program flow and with this for RTE too.

When no data emulation support is required calibration parameter accesses to param-
eters stored in FLASH could be performed by direct memory read accesses without
any indirection for those cases when accesses are coming out of single instantiated
AUTOSAR SW-Cs or from Basic Software Modules. Nevertheless it’s not goal of this
specification to require direct accesses since this touches implementation. It might be
ECU HW dependent or even be project dependent if other accesses are more efficient
or provide other significant advantages or not.

4.2.8.3.3 Support for online calibration: Data emulation

To allow online calibration it must be possible to provide alternative calibration param-
eters invisible for application. The mechanisms behind are described here. We talk of
data emulation.

In the following several calibration methods are described:

1. Data emulation without SW support and

2. several methods of data emulation with SW-support.

The term data emulation is used because the change of calibration parameters is
emulated for the ECU SW which uses the calibration data. This change is invisible for
the user-SW in the ECU.

RTE is significantly involved when SW support is required and has to create calibration
method specific SW. Different calibration methods means different support in Basic
SW which typically is ECU integrator specific. So it does not make sense to support
DIFFERENT data emulation with SW support methods in ANY one RTE build. But
it makes sense that the RTE supports direct access (see section 4.2.8.3.4) for some
AUTOSAR SW-Cs resp. ParameterSwComponentTypes resp. Basic Software Mod-
ules and one of the data emulation with SW support methods (see section 4.2.8.3.5)
for all the other AUTOSAR SW-Cs resp. ParameterSwComponentTypes resp. Basic
Software Modules at the same time.

[SWS_Rte_03909] d The RTE shall support only one of the data emulation with SW
support methods at once. c(SRS_Rte_00154, SRS_Rte_00156)

173 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4.2.8.3.4 Data emulation without SW support (direct access)

For "online calibration" (see section 4.2.8.1) the ECU is provided with additional
hardware which consists of control logic and memory to store modified calibration
parameters in. During ECU execution the brought in control logic redirects memory
accesses to new bought in memory whose content is modified by external tooling
without disturbing normal ECU program flow. Some microcontrollers contain features
supporting this. A lot of smaller microcontrollers don’t. So this methods is highly HW
dependent.

To support these cases the RTE doesn’t have to provide e.g. a reference table like
described in section 4.2.8.3.5. Exchange of ParameterDataPrototype content is
done invisibly for program flow and for RTE too.

[SWS_Rte_03942] d The RTE generator shall have the option to switch off data emu-
lation with SW support for generated RTE code. This option shall influence complete
RTE code at once. c(SRS_Rte_00154, SRS_Rte_00156)

4.2.8.3.5 Data emulation with SW support

In case "online calibration" (see section 4.2.8.1) is required, quite often data emulation
without support by special SW constructs isn’t possible. Several methods exist, all
have the consequence that additional need of ECU resources like RAM, ROM/FLASH
and runtime is required.

Data emulation with SW support is possible in different manners. During calibration
process in each of these methods modified calibration data values are kept typically in
RAM. Modification is controlled by ECU external tooling and supported by ECU internal
SW located in AUTOSAR basic SW or in complex driver.

If calibration process isn’t active the accessed calibration data is originated in
ROM/FLASH respectively in NVRAM in special circumstances (as seen later on).

Since multiple instantiation is to be supported several instances of the same
ParameterDataPrototypes have to be allocated. Because the RTE is the only
one SW in an AUTOSAR ECU able to handle the different instances the access to these
calibration parameters can only be handled by the RTE. So the RTE has to provide
additional SW constructs required for data emulation with SW support for calibration.

However the RTE doesn’t know which of the ECU functionality shall be calibrated dur-
ing a calibration session. To allow expensive RAM to be reused to calibrate different
ECU functionalities in one or several online calibration sessions (see 4.2.8.1) in case of
the single and double pointered methods for data emulation with SW support described
below the RTE has only to provide the access to ParameterDataPrototypes dur-
ing runtime but allowing other SW (a BSW module or a complex driver) to redirect the
access to alternative calibration parameter values (e.g. located in RAM) invisibly for
application.

174 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

The RTE is neither the instance to supply the alternative values for ParameterDat-
aPrototypes nor in case of the pointered methods for data emulation with SW sup-
port to do the redirection to the alternative values.

[SWS_Rte_03910] d The RTE shall support data emulation with SW support for cali-
bration. c(SRS_Rte_00154, SRS_Rte_00156)

[SWS_Rte_03943] d The RTE shall support these data emulation methods with SW
support:

• Single pointered calibration parameter access
further called "single pointered method"

• Double pointered calibration parameter access further called "double pointered
method"

• Initialized RAM parameters further called "initRAM parameter method"

c(SRS_Rte_00154, SRS_Rte_00156)

Please note that the support data emulation methods is applicable for calibration pa-
rameters provided for software components as well as calibration parameters provided
for basic software modules.

ParameterElementGroup

To save RAM/ROM/FLASH resources in single pointered method and double point-
ered method ParameterDataPrototype allocation is done in groups. One entry
of the calibration reference table references the begin of a group of Parameter-
DataPrototypes. For better understanding of the following, this group is called
ParameterElementGroup (which is no term out of the AUTOSAR SW-C template
specification [2]). One ParameterElementGroup can contain one or several
ParameterDataPrototypes.

[SWS_Rte_03911] d If data emulation with SW support is enabled, the RTE gen-
erator shall allocate all ParameterDataPrototypes marked with same property
swAddrMethod of one instance of a ParameterSwComponentType consecutively.
Together they build a separate ParameterElementGroup. c(SRS_Rte_00154,
SRS_Rte_00156, SRS_Rte_00158)

[SWS_Rte_03912] d If data emulation with SW support is enabled, the RTE shall
guarantee that all non-shared ParameterDataPrototypes marked with same prop-
erty swAddrMethod of an AUTOSAR SWC instance are allocated consecutively.
Together they build a separate ParameterElementGroup. c(SRS_Rte_00154,
SRS_Rte_00158)

[SWS_Rte_05194] d If data emulation with SW support is enabled, the RTE shall
guarantee that all shared ParameterDataPrototypes marked with same property
swAddrMethod of an AUTOSAR SWC type are allocated consecutively. Together they
build a separate ParameterElementGroup. c(SRS_Rte_00154, SRS_Rte_00158)

175 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

It is not possible to access same calibration parameter inside of a ParameterSwCom-
ponentType via several ports. This is a consequence of the need to support the
use case that a ParameterSwComponentType shall be able to contain several cali-
bration parameters derived from one ParameterDataPrototype which is contained
in one interface applied to several ports of the ParameterSwComponentType. Us-
ing only the ParameterDataPrototype names for the names of the elements of a
ParameterElementGroup would lead to a name clash since then several elements
with same name would have to created. So port prototype and ParameterDataPro-
totype name are concatenated to specify the ParameterElementGroup member
names.
This use case cannot be applied to AUTOSAR SW-C internal calibration parameters
since they cannot be accessed via AUTOSAR ports.

[SWS_Rte_03968] d The names of the elements of a ParameterElementGroup
derived from a ParameterSwComponentType shall be <port>_<element> where
<port> is the short-name of the provided AUTOSAR port prototype and <element>
the short-name of the ParameterDataPrototype within the ParameterInter-
face categorizing the PPort. c(SRS_Rte_00154, SRS_Rte_00156)

4.2.8.3.5.1 Single pointered method

There is one calibration reference table in RAM with references to one or several
ParameterElementGroups. Accesses to calibration parameters are indirectly per-
formed via this reference table.

Action during calibration procedure e.g. calibration parameter value exchange is not
focus of this specification. Nevertheless an example is given for better understanding.

Example how the exchange of calibration parameters could be done for single point-
ered method:

1. Fill a RAM buffer with the modified calibration parameter values for complete
ParameterElementGroup

2. Modify the corresponding entry in the calibration reference table so that a redi-
rection to new ParameterElementGroup is setup

Now calibration parameter accesses deliver the modified values.

Figure 4.25 illustrates the method.

176 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Figure 4.25: ParameterElementGroup in single pointered method context

[SWS_Rte_03913] d If data emulation with SW support with single pointered method
is enabled, the RTE generator shall create a table located in RAM with references
to ParameterElementGroups. The type of the table is an array of void pointers.
c(SRS_Rte_00154, SRS_Rte_00156)

One reason why in this approach the calibration reference table is realized as an array
is to make ECU internal reference allocation traceable for external tooling. Another is to
allow a Basic-SW respectively a complex driver to emulate other calibration parameters
which requires the standardization of the calibration reference table too.

[SWS_Rte_03947] d If data emulation with SW support with single method
is enabled the name (the label) of the calibration reference table shall be
<RteParameterRefTab>. c(SRS_Rte_00154, SRS_Rte_00156)

Calibration parameters located in NVRAM are handled same way (also see section
4.2.8.3.6).

[SWS_Rte_03936] d If data emulation with SW support with single or double point-
ered method is enabled and calibration parameter respectively a ParameterEle-
mentGroups is located in NVRAM the corresponding calibration reference table
entry shall reference the PerInstanceMemory working as the NVRAM RAM buffer.
c(SRS_Rte_00154, SRS_Rte_00156, SRS_Rte_00157)

4.2.8.3.5.2 Double pointered method

There is one calibration reference table in ROM respectively Flash with references
to one or several ParameterElementGroups. Accesses to calibration parameters
are performed through a double indirection access. During system startup the base
reference is initially filled with a reference to the calibration reference table.

Action during calibration procedure e.g. calibration parameter value exchange is not
focus of this specification. Nevertheless an example is given for better understanding.

177 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Example how the exchange of calibration parameters could be done for double point-
ered method:

1. Copy the calibration reference table into RAM

2. Fill a RAM buffer with modified calibration parameter values for complete Param-
eterElementGroup

3. Modify the corresponding entry in the RAM copy of the reference table so that a
redirection to new ParameterElementGroup is setup

4. Change the content of the base reference so that it references the calibration
reference table copy in RAM.

Now calibration parameter accesses deliver the modified values.

Figure 4.26: ParameterElementGroup in double pointered method context

[SWS_Rte_03914] d If data emulation with SW support with double pointered method
is enabled, the RTE generator shall create a table located in ROM respectively FLASH
with references to ParameterElementGroups. The type of the table is an array of
void pointers. c(SRS_Rte_00154, SRS_Rte_00156)

Figure 4.26 illustrates the method.

To allow a Basic-SW respectively a complex driver to emulate other calibration param-
eters the standardization of the base reference is required.

[SWS_Rte_03948] d If data emulation with SW support with double method is enabled
the name (the label) of the calibration base reference shall be <RteParameterBase>.
This label and the base reference type shall be exported and made available to other
SW on same ECU.
c(SRS_Rte_00154, SRS_Rte_00156)

Calibration parameters located in NVRAM are handled same way (also see section
4.2.8.3.6).

For handling of calibration parameters located in NVRAM with single or double point-
ered method see [SWS_Rte_03936] in section 4.2.8.3.5.1. General information is
found in section 4.2.8.3.6).

178 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4.2.8.3.5.3 InitRam parameter method

For each instance of a ParameterDataPrototype the RTE generator creates a cali-
bration parameter in RAM and a corresponding value in ROM/FLASH. During startup of
RTE the calibration parameter values of ROM/FLASH are copied into RAM. Accesses
to calibration parameters are performed through a direct access to RAM without any
indirection.

Action during calibration procedure e.g. calibration parameter value exchange is not
focus of this specification. Nevertheless an example is given for better understanding:
An implementation simply would have to exchange the content of the RAM cells during
runtime.

[SWS_Rte_03915] d If data emulation with SW support with initRam parameter method
is enabled, the RTE generator shall create code guaranteeing that

1. calibration parameters are allocated in ROM/Flash and

2. a copy of them is allocated in RAM made available latest during RTE startup

for those ParameterDataPrototypes for which calibration support is enabled.
c(SRS_Rte_00154, SRS_Rte_00156)

RTE access

Copy

Parameter in

ROM / FLASH

...

Copied parameter in

RAM

...

Figure 4.27: initRam Parameter method setup

Figure 4.27 illustrates the method.

A special case is the access of ParameterDataPrototypes instantiated in NVRAM
(also see section 4.2.8.3.6). In this no extra RAM copy is required because a RAM
location containing the calibration parameter value still exists.

[SWS_Rte_03935] d If data emulation with SW support with initRam parameter method
is enabled, the RTE generator shall create direct accesses to the PerInstanceMem-
ory working as RAM buffer for the calibration parameters defined to be in NVRAM.
c(SRS_Rte_00154, SRS_Rte_00156)

179 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4.2.8.3.5.4 Arrangement of a ParameterElementGroup for pointered methods

For data emulation with SW support with single or double pointered methods the RTE
has to guarantee access to each single member of a ParameterElementGroup for
source code and object code delivery independent if the member is a primitive or a
composite data type. For this the creation of a record type for a ParameterElement-
Group was chosen.

[SWS_Rte_03916] d One ParameterElementGroup shall be realized as one record
type. c(SRS_Rte_00154, SRS_Rte_00156)

The sequence order of ParameterDataPrototype in a ParameterElementGroup
and the order of ParameterElementGroups in the reference table will be docu-
mented by the RTE Generator by the means of the McSwEmulationMethodSupport,
see 4.2.8.4.4.

4.2.8.3.5.5 Further definitions for pointered methods

As stated in section 4.2.8.3.1.1, dependent of the value of property swAddrMethod
calibration parameters shall be separated in different memory locations.

[SWS_Rte_03908] d If data emulation with SW support with single or double point-
ered method is enabled the RTE shall create a separate instance specific Parame-
terElementGroup for all those ParameterDataPrototypes with a common value
of the appended property swAddrMethod. Those ParameterDataPrototypes
which have no property swAddrMethod appended, shall be grouped together too.
c(SRS_Rte_00154, SRS_Rte_00156, SRS_Rte_00158)

To allow traceability for external tooling the sequence order of ParameterDataPro-
totype in a ParameterElementGroup and the order of ParameterElement-
Groups in the reference table will be documented by the RTE Generator by the means
of the McSwEmulationMethodSupport, see 4.2.8.4.4.

4.2.8.3.5.6 Calibration parameter access

Calibration parameters are derived from ParameterDataPrototypes. The RTE has
to provide access to each calibration parameter via a separate API call.

API is specified in 5.6.

[SWS_Rte_03922] d If data emulation with SW support and single or double pointered
method is enabled the RTE generator shall export the label of the calibration reference
table. c(SRS_Rte_00154, SRS_Rte_00156)

[SWS_Rte_03960] d If data emulation with SW support and double pointered method
is enabled the RTE generator shall export the label and the type of the calibration base
reference. c(SRS_Rte_00154, SRS_Rte_00156)

180 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_03932] d If data emulation with SW support with single pointered method
is enabled the RTE generator shall create API calls using single indirect access via
the calibration reference table for those ParameterDataPrototypes which are in
a ParameterElementGroup for which calibration is enabled. c(SRS_Rte_00154,
SRS_Rte_00156)

[SWS_Rte_03933] d If data emulation with SW support with double pointered method
is enabled the RTE generator shall create API calls using double indirection access
via the calibration base reference and the calibration reference table for those Param-
eterDataPrototypes which are in a ParameterElementGroup for which calibra-
tion is enabled. c(SRS_Rte_00154, SRS_Rte_00156)

[SWS_Rte_03934] d If data emulation with SW support with double pointered method
is enabled, the calibration base reference shall be located in RAM. c(SRS_Rte_00154,
SRS_Rte_00156)

4.2.8.3.5.7 Calibration parameter allocation

Since only the RTE knows which instances of AUTOSAR SW-Cs, ParameterSwCom-
ponentTypes and Basic Software Modules are present on the ECU the RTE has
to allocate the calibration parameters and reserve memory for them. This approach
is also covering multiple instantiated object code integration needs. So memory for
instantiated ParameterDataPrototypes is neither provided by ParameterSwCom-
ponentTypes nor by AUTOSAR SW-C.

Nevertheless AUTOSAR SW-Cs and Basic Software Modules can define calibration
parameters which are not instantiated by RTE. These are described by Parameter-
DataPrototypes in the role constantMemory. Further on the RTE can not imple-
ment any software support for data emulation for such calibration parameters. Hence
those kind of calibration parameters are not described in the generated McSupportData
of the RTE (see 4.2.8.4).

[SWS_Rte_03961] d The RTE shall allocate the memory for calibration parameters.
c(SRS_Rte_00154, SRS_Rte_00156)

A ParameterDataPrototype can be defined to be instance specific or can be
shared over all instances of an AUTOSAR SW-C or a ParameterSwComponent-
Type. The input for the RTE generator contains the values the RTE shall apply to the
calibration parameters.

To support online and offline calibration (see section 4.2.8.1) all parameter values for
all instances have to be provided.
Background:

• For online calibration often initially the same default values for calibration param-
eters can be applied. Variation is then handled later by post link tools. Initial
ECU startup is not jeopardized. This allows the usage of a default value e.g. by

181 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

AUTOSAR SW-C or ParameterSwComponentType supplier for all instances of
a ParameterDataPrototype.

• On the other hand applying separate default values for the different instances of
a ParameterDataPrototype will be required often for online calibration too, to
make a vehicle run initially. This requires additional configuration work e.g. for
integrator.

• Offline calibration based on new SW build including new RTE build and com-
pilation process requires all calibration parameter values for all instances to be
available for RTE.

Shared ParameterDataPrototypes

[SWS_Rte_03962] d For accesses to a shared ParameterDataPrototype the RTE
API shall deliver the same one value independent of the instance the calibration pa-
rameter is assigned to. c(SRS_Rte_00154, SRS_Rte_00156)

[SWS_Rte_03963] d The calibration parameter of a shared ParameterDat-
aPrototype shall be stored in one memory location only. c(SRS_Rte_00154,
SRS_Rte_00156)

Requirements [SWS_Rte_03962] and [SWS_Rte_03963] are to guarantee that only
one physical location in memory has to be modified for a change of a shared Param-
eterDataPrototype. Otherwise this could lead to unforeseeable confusion.
Multiple locations are possible for calibration parameters stored in NVRAM. But there
a shared ParameterDataPrototype is allowed to have only one logical data too.

Instance specific ParameterDataPrototypes

[SWS_Rte_03964] d For accesses to an instance specific ParameterDataProto-
type the RTE API shall deliver a separate calibration parameter value for each in-
stance of a ParameterDataPrototype. c(SRS_Rte_00154, SRS_Rte_00156)

[SWS_Rte_03965] d For an instance specific ParameterDataPrototype the cali-
bration parameter value of each instance of the ParameterDataPrototype shall be
stored in a separate memory location. c(SRS_Rte_00154, SRS_Rte_00156)

Usage of swAddrMethod

SwDataDefProps contain the optional property swAddrMethod. It contains meta
information about the memory section in which a measurement data store resp. a
calibration parameter shall be allocated in. This abstraction is needed to support the
reuse of unmodified AUTOSAR SW-Cs resp. ParameterSwComponentTypes in
different projects but allowing allocation of measurement data stores resp. calibration
parameters in different sections.
Section usage typically depends on availability of HW resources. In one project the
micro controller might have less internal RAM than in another project, requiring that
most measurement data have to be placed in external RAM. In another project one
addressing method (e.g. indexed addressing) might be more efficient for most of the

182 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

measurement data - but not for all. Or some calibration parameters are accessed
less often than others and could be - depending on project specific FLASH availability
- placed in FLASH with slower access speed, others in FLASH with higher access
speed.

[SWS_Rte_03981] d The memory section used to store measurement values in shall
be the memory sections associated with the swAddrMethod enclosed in the Sw-
DataDefProps of a measurement definition. c(SRS_Rte_00153)

Since it’s measurement data obviously this must be in RAM.

[SWS_Rte_03982] d The memory section used to store calibration parameters in shall
be the memory sections associated with the swAddrMethod enclosed in the Sw-
DataDefProps of a calibration parameter definition. c(SRS_Rte_00153)

4.2.8.3.6 Calibration parameters in NVRAM

Calibration parameters can be located in NVRAM too. One use case for this is to have
the possibility to modify calibration parameters via a diagnosis service without need for
special calibration tool.

To allow NVRAM calibration parameters to be accessed, NVRAM with statically allo-
cated RAM buffer in form of PIM memory for the calibration parameters has to be de-
fined or the ramBlock of a NvBlockSwComponentType defines readWrite access
for the MCD system. Please see as well [SWS_Rte_07174] and [SWS_Rte_07160].

Note:

As the NVRAM Manager might not be able to access the PerInstanceMemory
across core boundaries in a multi core environment, the support of Calibration pa-
rameters in NVRAM for multi core controllers is limited. See also note in 4.2.9.1.

4.2.8.4 Generation of McSupportData

The RTE Generator supports the definition, allocation and access to measurement
and calibration data for Software Components as well as for Basic Software. The
specific support of measurement and calibration tools however is neither in the focus
of the RTE Generator nor AUTOSAR. This would require the generation of an "A2L"-
file (like specified in [20]) which is the standard in this domain – but out of the focus of
AUTOSAR.

The RTE Generator however shall support an intermediate exchange format called
McSupportData which is building the bridge between the ECU software and the fi-
nal "A2L"-file needed by the measurement and calibration tools. The details about
the McSupportData format and the involved methodology are described in the Basic
Software Module Description Template document [9].

183 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

In this section the requirements on the RTE Generator are collected which elements
shall be provided in the McSupportData element.

4.2.8.4.1 Export of the McSupportData

Figure 4.28 shows the structure of the McSupportData element. The McSupport-
Data element and its sub-content is part of the Implementation element. In case
of the RTE this is the BswImplementation element which is generated / updated by
the RTE Generator in the Generation Phase (see [SWS_Rte_05086] in chapter 3.4.2).

[SWS_Rte_05118] d The RTE Generator in Generation Phase shall create the McSup-
portData element as part of the BswImplementation description of the generated
RTE. c(SRS_Rte_00189)

ARElement

Implementation

McSupportData

Identifiable

McDataInstance

+ arraySize :PositiveInteger [0..1]
+ role :Identifier [0..1]
+ symbol :SymbolString [0..1]

«atpVariation»
SwDataDefProps

Identifiable

FlatInstanceDescriptor

+ role :Identifier [0..1]

ARElement
AtpBlueprint

AtpBlueprintable

FlatMap

AtpPrototype
Identifiable

RootSwCompositionPrototype

ARElement

EcucValueCollection

ARElement
AtpStructureElement

System

ARElement

EcucModuleConfigurationValues

BswImplementation

McSwEmulationMethodSupport

+ category :Identifier
+ shortLabel :Identifier

ARElement

SwSystemconstantValueSet

«atpVariation» Tags:
vh.latestBindingTime =
preCompileTime

«atpVariation» Tags:
vh.latestBindingTime =
systemDesignTime

«atpVariation» Tags:
vh.latestBindingTime =
postBuild

«atpVariation,atpSplitable»

+instance 1..*

+rootSoftwareComposition 0..1

«atpVariation»

«atpVariation»

+subElement
0..* {ordered}

+flatMapEntry

0..1

+resultingProperties 0..1

«atpSplitable»

+mcSupport 0..1

«atpVariation»
+ecucValue

1..*

«atpSplitable»

+flatMap 0..1

+moduleDescription
0..1

«atpVariation,atpSplitable»

+mcParameterInstance

0..*

+measurableSystemConstantValues 0..*

«atpVariation,atpSplitable»

+mcVariableInstance
0..*

«atpVariation»

+emulationSupport 0..*

+ecuExtract 1

Figure 4.28: Overview of the McSupportData element

184 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

The individual measurable and calibratable data is described using the element Mc-
DataInstance. This is aggregated from McSupportData in the role mcVariable-
Instance (for measurement) or mcParameterInstance (for calibration).

Usage of the FlatMap

The FlatMap is part of the Ecu Extract of System Description and contains a collection
of FlatInstanceDescriptor elements. The details of the FlatMap are described
in the Specification of the System Template [8].

Common attributes of McDataInstance

The element McDataInstance specifies one element of the McSupportData. The
following requirement specify common attributes which shall to be filled in a harmo-
nized way.

[SWS_Rte_05130] d The RTE Generator shall use the shortName of the
FlatInstanceDescriptor as the shortName of the McDataInstance.
c(SRS_Rte_00189)

[SWS_Rte_05131] d If the input element (e.g. ApplicationDataType or Im-
plementationDataType) has a category specified the category value shall be
copied to the McDataInstance element. c(SRS_Rte_00189)

[SWS_Rte_05132] d If the input element (e.g. ApplicationDataType or Imple-
mentationDataType) specifies an array, the attribute arraySize of McDataIn-
stance shall be set to the size of the array. c(SRS_Rte_00189)

[SWS_Rte_05133] d If the input element (e.g. ApplicationDataType or Im-
plementationDataType) specifies a record, the McDataInstance shall ag-
gregate the record element’s parts as subElements of type McDataInstance.
c(SRS_Rte_00189)

[SWS_Rte_05119] d The McSupportData element and its sub-structure shall be self-
contained in the sense that there is no need to deliver the whole upstream descriptions
of the ECU (including the ECU Extract, Software Component descriptions, Basic Soft-
ware Module descriptions, ECU Configuration Values descriptions, Flat Map, etc.) in
order to later generate the final "A2L"-file. This means that the RTE Generator has
to copy the required information from the upstream descriptions into the McSupport-
Data element. c(SRS_Rte_00189)

[SWS_Rte_05129] d The RTE Generator in Generation Phase shall export the effec-
tive SwDataDefProps (including all of the referenced and aggregated sub-elements
like e.g. CompuMethod or SwRecordLayout) in the role resultingProperties
for each McDataInstance after resolving the precedence rules defined in the SW-
Component Template [2] chapter Properties of Data Definitions. Thereby the Im-
plementationDataType properties compuMethod and dataConstraint are not
taken in consideration for effective SwDataDefProps of the McDataInstance due to
their refinement nature of C and AI. c(SRS_Rte_00189)

185 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_05135] d If a ParameterDataPrototype is associated with a Param-
eterAccess the corresponding SwDataDefProps and their sub-structure shall be
exported. c(SRS_Rte_00189)

For each flatMapEntry referencing to measurable or calibratible data prototype or
measureable ModeDeclarationGroupPrototype the McDataInstance shall be
generated in the McSupportData. Thereby the effected SwDataDefProps shall be
taken from the data prototype according the precedence rules defined in the SWCT.

[SWS_Rte_08313] d The RTE Generator shall create McDataInstance element(s)
in the McSupportData for each measurable or calibratible DataPrototype / Mod-
eDeclarationGroupPrototype referenced by a FlatInstanceDescriptor.
c(SRS_Rte_00189)

Explanation: In case of connected ports it may occur that the DataPrototype in the
DataInterface of the PPortPrototype and the DataPrototype in the DataInterface
of the RPortPrototype are referenced by FlatInstanceDescriptors. In this
case its intended to get two McDataInstance in order to access the value by MCD
system with two different names and may be with two different scaling (typically offset
and resolution).

In case of composite data FlatInstanceDescriptors may point to one or several
ApplicationCompositeElementDataPrototypes in order to define a individual
name for each record or array element. Thereby it is even possible that a FlatIn-
stanceDescriptor exists for the "whole" DataPrototype typed by an Appli-
cationCompositeDataType and additional FlatInstanceDescriptors exist for
the ApplicationCompositeElementDataPrototypes of such DataPrototype.

In this case a McDataInstance as child of McSupportData exists due to
the FlatInstanceDescriptors for the "whole" DataPrototype and addi-
tional McDataInstances as child of McSupportData exists for each FlatIn-
stanceDescriptor pointing to a ApplicationCompositeElementDataProto-
types in the "whole" DataPrototypes type.

[SWS_Rte_08314] d If the input element is typed by an ApplicationDataType the
subElements structure of the McDataInstance is determined by the Applica-
tionDataType. This means

• in case of ApplicationRecordDataType the number and shortName
of the subElement is determined by the ApplicationRecordElement if
[SWS_Rte_05133] and [SWS_Rte_08316] is applied,

• in case of ApplicationArrayDataType the number of the subElements is
determined by the ApplicationArrayElement if [SWS_Rte_08315] is ap-
plied,

• in case of a ApplicationPrimitiveDataType, inclusive compound primi-
tives, no subElements are applicable.

c(SRS_Rte_00189)

186 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_08315] d If the input element (e.g. ApplicationDataType or Imple-
mentationDataType) specifies an array, the McDataInstance shall aggregate
subElementss for each array element. The McDataInstance.subElements.sym-
bol shall express the array index in the C-notation. (e.g. [0], [4]). c(SRS_Rte_00189)

[SWS_Rte_08316] d If the input element (e.g. ApplicationDataType or Imple-
mentationDataType) specifies a record and no FlatInstanceDescriptor is de-
fined for the record element, the McDataInstance.subElement shortName shall be
set copied either from the related ApplicationRecordElement. Or from the Im-
plementationDataTypeElement if no ApplicationDataType is typing the Dat-
aPrototype. The McDataInstance.subElement.symbol is set to the related Im-
plementationDataTypeElement.shortName c(SRS_Rte_00189)

General handling of the symbol attribute: The concatenation of all symbol strings start-
ing from the root element over the hierarchy of McDataInstances shall represent
the full combined symbol in the programming language for all hierarchy levels in the
McDataInstance tree. When the concatenation is applied the subElements of Mc-
DataInstances of category STRUCTURE are separated by a dot.

[SWS_Rte_08317] d The RTE Generator shall document the Rte internal grouping
of measurement and calibration data in composite data datatypes in each symbol at-
tribute of the McDataInstances representing the data which is grouped.

This means the RTE Generator has to document the insertion of structures for Rte in-
ternal purpose in the symbol attribute of the related McDataInstance. For instance if
the Rte groups a set of measurable inside a Rte internal structure (here called RteInter-
nalBuffer) the McDataInstance.symbol of the first measurable child element carries
the information about the internal structure element. e.g. McDataInstance.short-
Name: "MyMeasurable" McDataInstance.symbol: "RteInternalBuffer.measurable1"
c(SRS_Rte_00189)

4.2.8.4.2 Export of Measurement information

Sender-Receiver communication

[SWS_Rte_05120] d If the swCalibrationAccess of a VariableDataPrototype
used in an interface of a sender-receiver port of a SwComponentPrototype is set
to readOnly or readWrite and RteMeasurementSupport is set to true the RTE
Generator shall create a McDataInstance element with

• symbol set to the C-symbol name used for the allocation (see also
[SWS_Rte_03900])

• flatMapEntry referencing to the corresponding FlatInstanceDescriptor
element of the VariableDataPrototype

c(SRS_Rte_00153, SRS_Rte_00189)

Client-Server communication

187 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_05121] d If the swCalibrationAccess of an ArgumentDataProto-
type used in an interface of a client-server port of a SwComponentPrototype is set
to readOnly and RteMeasurementSupport is set to true the RTE Generator shall
create a McDataInstance element with

• symbol set to the C-symbol name used for the allocation (see also
[SWS_Rte_03901])

• flatMapEntry referencing to the corresponding FlatInstanceDescriptor
element of the ArgumentDataPrototype

c(SRS_Rte_00153, SRS_Rte_00189)

[SWS_Rte_05172] d If the measurement of client-server communication is ignored due
to requirement [SWS_Rte_05170] the corresponding McDataInstance in the Mc-
SupportData shall have a resultingProperties swCalibrationAccess set
to notAccessible. c(SRS_Rte_00153)

Mode Switch Communication

[SWS_Rte_06702] d If the swCalibrationAccess of a ModeDeclarationGroup-
Prototype used in an interface of a mode switch port of a SwComponentPro-
totype is set to readOnly and RteMeasurementSupport is set to true the RTE
Generator shall create three McDataInstance elements with

• symbol set to the C-symbol name used for the allocation (see also
[SWS_Rte_06700])

• flatMapEntry referencing to the corresponding FlatInstanceDescriptor
element of the ModeDeclarationGroupPrototype

Thereby the McDataInstance element corresponding to the

• current mode has to reference the FlatInstanceDescriptor which role at-
tribute is set to CURRENT_MODE,

• previous mode has to reference the FlatInstanceDescriptor which role
attribute is set to PREVIOUS_MODE and

• next mode has to reference the FlatInstanceDescriptor which role at-
tribute is set to NEXT_MODE

c(SRS_Rte_00153, SRS_Rte_00189)

Please note that the resultingProperties of the McDataInstance elements cor-
responding to the ModeDeclarationGroupPrototype may get associated with a
CompuMethod if a CompuMethod is defined at the FlatInstanceDescriptor due
to [SWS_Rte_05129]. Those CompuMethod may specify a literal display of the mea-
sured modes.

InterRunnableVariable

188 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_05122] d If the swCalibrationAccess of a VariableDataPrototype
in the role implicitInterRunnableVariable or explicitInterRunnable-
Variable is set to readOnly or readWrite and RteMeasurementSupport is set
to true the RTE Generator shall create a McDataInstance element with

• symbol set to the C-symbol name used for the allocation (see also
[SWS_Rte_03902])

• flatMapEntry referencing to the corresponding FlatInstanceDescriptor
element of the VariableDataPrototype

c(SRS_Rte_00153, SRS_Rte_00189)

PerInstanceMemory

[SWS_Rte_05123] d If the swCalibrationAccess of a VariableDataProto-
type in the role arTypedPerInstanceMemory is set to readOnly or readWrite
and RteMeasurementSupport is set to true the RTE Generator shall create a Mc-
DataInstance element with

• symbol set to the C-symbol name used for the allocation (see also
[SWS_Rte_07160])

• flatMapEntry referencing to the corresponding FlatInstanceDescriptor
element of the VariableDataPrototype

c(SRS_Rte_00153, SRS_Rte_00189)

Nv RAM Block

[SWS_Rte_05124] d If the swCalibrationAccess of a VariableDataPrototype
in the role ramBlock of a NvBlockSwComponentType’s NvBlockDescriptor is
set to readOnly or readWrite and RteMeasurementSupport is set to true the
RTE Generator shall create a McDataInstance element with

• symbol set to the C-symbol name used for the allocation (see also
[SWS_Rte_07174])

• flatMapEntry referencing to the corresponding FlatInstanceDescriptor
element of the NvBlockSwComponentType

c(SRS_Rte_00153, SRS_Rte_00189)

Non Volatile Data communication

[SWS_Rte_05125] d If the swCalibrationAccess of a VariableDataPrototype
used in an NvDataInterface of a non volatile data port of a SwComponentProto-
type is set to readOnly or readWrite and RteMeasurementSupport is set to
true the RTE Generator shall create a McDataInstance element with

• symbol set to the C-symbol name used for the allocation (see also
[SWS_Rte_07197])

189 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

• flatMapEntry referencing to the corresponding FlatInstanceDescriptor
element of the VariableDataPrototype

c(SRS_Rte_00153, SRS_Rte_00189)

4.2.8.4.3 Export Calibration information

Calibration can be either actively supported by the RTE using the pre-defined cali-
bration mechanisms of section 4.2.8.3.5 or calibration can be transparent to the RTE.
In both cases the location and attributes of the calibratable data has to be provided
by the RTE Generator in the Generation Phase in order to support the setup of the
measurement and calibration tools.

ParameterDataPrototypes of ParameterSwComponentType

[SWS_Rte_05126] d For each ParameterDataPrototype in a PortPrototype
of a ParameterSwComponentType with the swCalibrationAccess set to read-
Only or readWrite an entry in the McSupportData with the role mcParameterIn-
stance shall be created with the following attributes:

• symbol set to the C-symbol name used for the allocation

• flatMapEntry referencing to the corresponding FlatInstanceDescriptor
element of the ParameterDataPrototype

c(SRS_Rte_00189)

Shared ParameterDataPrototypes

[SWS_Rte_05127] d For each ParameterDataPrototype of a AtomicSwCom-
ponentType’s SwcInternalBehavior aggregated in the role sharedParameter
with the swCalibrationAccess set to readOnly or readWrite an entry in the
McSupportData with the role mcParameterInstance shall be created with the fol-
lowing attributes:

• symbol set to the C-symbol name used for the allocation

• flatMapEntry referencing to the corresponding FlatInstanceDescriptor
element of the ParameterDataPrototype

c(SRS_Rte_00189)

Instance specific ParameterDataPrototypes

[SWS_Rte_05128] d For each ParameterDataPrototype of a AtomicSwCompo-
nentType’s SwcInternalBehavior aggregated in the role perInstanceParam-
eter with the swCalibrationAccess set to readOnly or readWrite an entry in
the McSupportData with the role mcParameterInstance shall be created with the
following attributes:

• symbol set to the C-symbol name used for the allocation

190 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

• flatMapEntry referencing to the corresponding FlatInstanceDescriptor
element of the ParameterDataPrototype

c(SRS_Rte_00189)

[SWS_Rte_07097] d For each ParameterDataPrototype of a BswMod-
uleDescription’s BswInternalBehavior aggregated in the role perInstan-
ceParameter with the swCalibrationAccess set to readOnly or readWrite an
entry in the McSupportData with the role mcParameterInstance shall be created
with the following attributes:

• symbol set to the C-symbol name used for the allocation

• flatMapEntry referencing to the corresponding FlatInstanceDescriptor
element of the ParameterDataPrototype

c(SRS_Rte_00189)

NvRom Block

[SWS_Rte_05136] d If the swCalibrationAccess of a ParameterDataProto-
type in the role romBlock is set to readOnly or readWrite an entry in the McSup-
portData with the role mcParameterInstance shall be created with the following
attributes:

• symbol set to the C-symbol name used for the allocation in [SWS_Rte_07033]

• flatMapEntry referencing to the corresponding FlatInstanceDescriptor
element of the ParameterDataPrototype

c(SRS_Rte_00153, SRS_Rte_00189)

4.2.8.4.4 Export of the Calibration Method

The RTE does provide several Software Emulation Methods which can be selected in
the Ecu Configuration of the RTE (see section 7.3).

Which Software Emulation Method has been used for a particular RTE Generation shall
be documented in the McSupportData in order to allow measurement and calibration
tools to support the RTE’s Software Emulation Methods. Additionally it is also possible
for an RTE Vendor to add custom Software Emulation Methods which needs to be
documented as well. The structure of the McSwEmulationMethodSupport is shown
in figure 4.29.

191 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

McSupportData

McSwEmulationMethodSupport

+ category :Identifier
+ shortLabel :Identifier

McParameterElementGroup

+ shortLabel :Identifier

AutosarDataPrototype

VariableDataPrototype

AutosarDataPrototype

ParameterDataPrototype

AtpStructureElement

InternalBehavior

RteCalibrationSupport :
EcucEnumerationParamDef

defaultValue = NONE

ARElement

Implementation

«atpVariation» Tags:
vh.latestBindingTime =
preCompileTime

«atpVariation» Tags:
vh.latestBindingTime =
preCompileTime

«atpVariation»

+staticMemory 0..*

«atpVariation»

+constantMemory

0..*

«atpSplitable»

+mcSupport 0..1

+elementGroup 0..*

+referenceTable

0..1

+baseReference

0..1

Provides the possible
names for the category.
This could include vendor
specific methods.

«atpVariation»

+emulationSupport 0..*

+romLocation

1

+ramLocation

1

Figure 4.29: Structure of the McSwEmulationMethodSupport element

[SWS_Rte_05137] d The RTE Generator in Generation Phase shall create the Mc-
SwEmulationMethodSupport element as part of the McSupportData description
of the generated RTE. c(SRS_Rte_00189)

[SWS_Rte_05138] d The RTE Generator in Generation Phase shall set the value of the
category attribute of McSwEmulationMethodSupport element according to the
implemented Software Emulation Method based on the Ecu configuration parameter
RteCalibrationSupport:

• NONE

• SINGLE_POINTERED

• DOUBLE_POINTERED

• INITIALIZED_RAM

• custom category name: vendor specific Software Emulation Method

c(SRS_Rte_00189)

The description of the generated structures is using the existing mechanisms already
available in the Basic Software Module Description Template [9].

Description of ParameterElementGroup

192 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

For the description of the ParameterElementGroup an Implementation-
DataType representing a structure of the group is created ([SWS_Rte_05139]).

[SWS_Rte_05139] d For each generated ParameterElementGroup an Implemen-
tationDataType shall be created. The contained ParameterDataPrototypes
are aggregated with the role subElement as ImplementationDataTypeElement.
c(SRS_Rte_00189)

In the example figure 4.30 the ImplementationDataTypes are called RteMcSup-
portGroupType1 and RteMcSupportGroupType2.

McSupport description of the InitRam parameter method

For the description of the InitRam parameter method the specific ParameterEle-
mentGroups allocated in ram and rom are specified ([SWS_Rte_05140] and
[SWS_Rte_05141]). Then the collection and correspondence of these groups is spec-
ified (in [SWS_Rte_05142]).

[SWS_Rte_05140] d If the RTE Generator is configured to support the
(INITIALIZED_RAM) method the RTE Generator in generation phase shall gener-
ate for each ParameterElementGroup a ParameterDataPrototype with the role
constantMemory in the InternalBehavior of the RTE’s Basic Software Module
Description. The ParameterDataPrototype shall have a reference to the corre-
sponding ImplementationDataType from [SWS_Rte_05139] with the role type.
c(SRS_Rte_00189)

[SWS_Rte_05141] d If the RTE Generator is configured to support the
(INITIALIZED_RAM) method the RTE Generator in generation phase shall gener-
ate for each ParameterElementGroup a VariableDataPrototype with the role
staticMemory in the InternalBehavior of the RTE’s Basic Software Module
Description. The VariableDataPrototype shall have a reference to the corre-
sponding ImplementationDataType from [SWS_Rte_05139] with the role type.
c(SRS_Rte_00189)

[SWS_Rte_05142] d If the RTE Generator is configured to support the
(INITIALIZED_RAM) method the RTE Generator in generation phase shall gener-
ate for each ParameterElementGroup a McParameterElementGroup with the
role elementGroup in the McSwEmulationMethodSupport [SWS_Rte_05137] el-
ement.

• The McParameterElementGroup shall have a reference to the corresponding
ParameterDataPrototype from [SWS_Rte_05140] with the role romLoca-
tion.

• The McParameterElementGroup shall have a reference to the correspond-
ing VariableDataPrototype from [SWS_Rte_05141] with the role ramLo-
cation.

c(SRS_Rte_00189)

McSupport description of the Single pointered method

193 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

For the description of the Single pointered method the specific ParameterElement-
Groups allocated in rom are specified ([SWS_Rte_05143]). Then an array data type
is specified which contains as many number of elements (void pointers) as there are
ParameterElementGroups ([SWS_Rte_05144]). Then the instance of this array is
specified in ram ([SWS_Rte_05152]) and referenced from the McSwEmulationMeth-
odSupport ([SWS_Rte_05153]). The actual values for each array element are speci-
fied as references to the ParameterElementGroup prototypes ([SWS_Rte_05154]).

[SWS_Rte_05143] d If the RTE Generator is configured to support the
(SINGLE_POINTERED) method the RTE Generator in generation phase shall gener-
ate for each ParameterElementGroup a ParameterDataPrototype with the role
constantMemory in the InternalBehavior of the RTE’s Basic Software Module
Description. The ParameterDataPrototype shall have a reference to the corre-
sponding ImplementationDataType from [SWS_Rte_05139] with the role type.
c(SRS_Rte_00189)

[SWS_Rte_05144] d If the RTE Generator is configured to support the
(SINGLE_POINTERED) method the RTE Generator in generation phase shall gener-
ate an ImplementationDataType with one ImplementationDataTypeElement
in the role subElement.

• The ImplementationDataTypeElement shall have the attribute arraySize
set to the number of ParameterElementGroups from [SWS_Rte_05139].

• The ImplementationDataTypeElement shall have a SwDataDefProps el-
ement with a reference to an ImplementationDataType representing a void
pointer, in the role implementationDataType.

c(SRS_Rte_00189)

[SWS_Rte_05152] d If the RTE Generator is configured to support the
(SINGLE_POINTERED) method the RTE Generator in generation phase shall gen-
erate a VariableDataPrototype with the role staticMemory in the Inter-
nalBehavior of the RTE’s Basic Software Module Description. The Vari-
ableDataPrototype shall have a reference to the ImplementationDataType
from [SWS_Rte_05144] with the role type. c(SRS_Rte_00189)

[SWS_Rte_05153] d If the RTE Generator is configured to support the
(SINGLE_POINTERED) method the RTE Generator in generation phase shall generate
a reference from the McSwEmulationMethodSupport [SWS_Rte_05137] element
to the VariableDataPrototype [SWS_Rte_05152] in the role referenceTable.
c(SRS_Rte_00189)

[SWS_Rte_05154] d If the RTE Generator is configured to support the
(SINGLE_POINTERED) method the RTE Generator in generation phase shall generate
an ArrayValueSpecification as the initValue of the array [SWS_Rte_05152]
and for each ParameterElementGroup a ReferenceValueSpecification el-
ement in the ArrayValueSpecification defining the references to the individual
ParameterElementGroup prototypes [SWS_Rte_05143]. c(SRS_Rte_00189)

194 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

McSupport description of the Double pointered method

The description of the Double pointered method is quite similar to the Single point-
ered method, but the allocation to ram and rom is different and it allocates the addi-
tional pointer parameter. The specific ParameterElementGroups allocated in rom
are specified ([SWS_Rte_05155]). Then an array data type is specified which con-
tains as many number of elements (void pointers) as there are ParameterEle-
mentGroups ([SWS_Rte_05156]). Then the instance of this array is specified in
rom ([SWS_Rte_05157]) and referenced from the McSwEmulationMethodSupport
([SWS_Rte_05158]). The actual values for each array element are specified as refer-
ences to the ParameterElementGroup prototypes ([SWS_Rte_05159]). Then the
type of the base pointer is then created ([SWS_Rte_05160]) and an instance is al-
located in ram ([SWS_Rte_05161]). The reference is initialized to the array in rom
([SWS_Rte_05162]).

[SWS_Rte_05155] d If the RTE Generator is configured to support the (DOU-
BLE_POINTERED) method the RTE Generator in generation phase shall generate
for each ParameterElementGroup a ParameterDataPrototype with the role
constantMemory in the InternalBehavior of the RTE’s Basic Software Module
Description. The ParameterDataPrototype shall have a reference to the corre-
sponding ImplementationDataType from [SWS_Rte_05139] with the role type.
c(SRS_Rte_00189)

In the example figure 4.30 the ParameterDataPrototypes are called RteMcSup-
portParamGroup1 and RteMcSupportParamGroup1.

[SWS_Rte_05156] d If the RTE Generator is configured to support the (DOU-
BLE_POINTERED) method the RTE Generator in generation phase shall generate an
ImplementationDataType with one ImplementationDataTypeElement in the
role subElement.

• The ImplementationDataTypeElement shall be of category ARRAY with the
attribute arraySize set to the number of ParameterElementGroups from
[SWS_Rte_05139].

• The ImplementationDataTypeElement shall have a SwDataDefProps el-
ement with a reference to an ImplementationDataType representing a void
pointer, in the role implementationDataType.

c(SRS_Rte_00189)

In the example figure 4.30 the ImplementationDataType is called RteMcSup-
portPointerTableType.

[SWS_Rte_05157] d If the RTE Generator is configured to support the (DOU-
BLE_POINTERED) method the RTE Generator in generation phase shall gener-
ate a ParameterDataPrototype with the role constantMemory in the Inter-
nalBehavior of the RTE’s Basic Software Module Description. The Parame-
terDataPrototype shall have a reference to the ImplementationDataType
from [SWS_Rte_05156] with the role type. c(SRS_Rte_00189)

195 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

In the example figure 4.30 the ParameterDataPrototype is called RteMcSup-
portPointerTable.

[SWS_Rte_05158] d If the RTE Generator is configured to support the (DOU-
BLE_POINTERED) method the RTE Generator in generation phase shall generate a
reference from the McSwEmulationMethodSupport [SWS_Rte_05137] element to
the ParameterDataPrototype [SWS_Rte_05157] in the role referenceTable.
c(SRS_Rte_00189)

[SWS_Rte_05159] d If the RTE Generator is configured to support the (DOU-
BLE_POINTERED) method the RTE Generator in generation phase shall generate an
ArrayValueSpecification as the initValue of the array [SWS_Rte_05157] and
for each ParameterElementGroup a ReferenceValueSpecification element
in the ArrayValueSpecification defining the references to the individual Param-
eterElementGroup prototypes [SWS_Rte_05155]. c(SRS_Rte_00189)

In the example figure 4.30 the ArrayValueSpecification is called RteMc-
SupportPointerTableInit. The ReferenceValueSpecifications are called
RteMcSupportParamGroup1Ref and RteMcSupportParamGroup2Ref.

[SWS_Rte_05160] d If the RTE Generator is configured to support the (DOU-
BLE_POINTERED) method the RTE Generator in generation phase shall generate an
ImplementationDataType with one ImplementationDataTypeElement being
a reference to the array type from [SWS_Rte_05156]. c(SRS_Rte_00189)

In the example figure 4.30 the ImplementationDataType is called RteMcSup-
portBasePointerType.

[SWS_Rte_05161] d If the RTE Generator is configured to support the (DOU-
BLE_POINTERED) method the RTE Generator in generation phase shall generate a
VariableDataPrototype with the role staticMemory in the InternalBehavior
of the RTE’s Basic Software Module Description. The VariableDataPrototype
shall have a reference to the ImplementationDataType from [SWS_Rte_05160]
with the role type. c(SRS_Rte_00189)

In the example figure 4.30 the VariableDataPrototype is called RteMcSupport-
BasePointer.

[SWS_Rte_05162] d If the RTE Generator is configured to support the (DOU-
BLE_POINTERED) method the RTE Generator in generation phase shall generate
a ReferenceValueSpecification to the array from [SWS_Rte_05157] as the
initValue of the reference [SWS_Rte_05161]. c(SRS_Rte_00189)

In the example figure 4.30 the ReferenceValueSpecification is called RteMc-
SupportBasePointerInit.

196 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

RteInternalBehavior :
BswInternalBehavior

RteMcSupportGroupType1 :
ImplementationDataType

MyCalParam111 :
ImplementationDataTypeElement

RteMcSupportGroupType2 :
ImplementationDataType

MyCalParam22 :
ImplementationDataTypeElement

MyCalParam13 :
ImplementationDataTypeElement

RteMcSupportParamGroup1 :
ParameterDataPrototype

RteMcSupportParamGroup2 :
ParameterDataPrototype

RteMcSupportPointerTableType :
ImplementationDataType

RteMcSupportPointerTableElement :
ImplementationDataTypeElement

arraySize = 2

RteMcSupportPointerTable :
ParameterDataPrototype

RteMcSupportPointerTableInit :
ArrayValueSpecification

RteMcSupportParamGroup1Ref :
ReferenceValueSpecification

RteMcSupportParamGroup2Ref :
ReferenceValueSpecification

RteMcSupportBasePointerType :
ImplementationDataType

RteMcSupportBasePointer :
VariableDataPrototype

RteMcSupportBasePointerInit :
ReferenceValueSpecification

«atpVariation»
RteMcSupportBaseTypePointerDDP :

SwDataDefProps

RteMcSupportBaseTypePointerTargetP :
SwPointerTargetProps

«atpVariation»
RteMcSupportBaseTypePointerTargetDDP :

SwDataDefProps

+referenceValue

+constantMemory

+staticMemory

+constantMemory

+constantMemory

+type

+referenceValue

+subElement
+type

+subElement

+referenceValue

+initValue

+initValue

+swPointerTargetProps

+implementationDataType

+subElement

+type

+element+element

+swDataDefProps

+swDataDefProps

+type

+subElement

197 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Figure 4.30: Example of the structure for Double Pointered Method

4.2.8.4.5 Export of Variant Handling

The Rte Generator shall provide information on values of system constants. The values
are part of the input information and need to be collected and copied into a dedicated
artifact to be delivered with the McSupportData.

[SWS_Rte_05168] d The Rte Generator in generation phase shall create an elements
of type SwSystemconstantValueSet and create copies of all system constant val-
ues found in the input information of type SwSystemconstValue where the refer-
enced SwSystemconst element has the swCalibrationAccess set to readOnly.
c(SRS_Rte_00153, SRS_Rte_00191)

In case the SwSystemconstValue is subject to variability and the variability can be
resolved during Rte generation phase

[SWS_Rte_05176] d If a SwSystemconst with swCalibrationAccess set to
readOnly has an assigned SwSystemconstValue which is subject to variabil-
ity with the latest binding time SystemDesignTime or CodeGenerationTime
the related SwSystemconstValue copy in the SwSystemconstantValueSet ac-
cording to [SWS_Rte_05168] shall contain the resolved value. c(SRS_Rte_00153,
SRS_Rte_00191)

[SWS_Rte_05174] d If a SwSystemconst with swCalibrationAccess set to
readOnly has an assigned SwSystemconstValue which is subject to variability with
the latest binding time PreCompileTime the related SwSystemconstValue copy
in the SwSystemconstantValueSet according to [SWS_Rte_05168] shall have an
AttributeValueVariationPoint. The PreBuild conditions of the Attribute-
ValueVariationPoint shall correspond to the PreBuild conditions of the input
SwSystemconstValue’s conditions. c(SRS_Rte_00153, SRS_Rte_00191)

[SWS_Rte_05169] d The Rte Generator in generation phase shall create a reference
from the McSupportData element ([SWS_Rte_05118]) to the SwSystemconstant-
ValueSet element ([SWS_Rte_05168]). c(SRS_Rte_00153, SRS_Rte_00191)

In case the RTE Generator implements variability on a element which is accessible by
a MCD system the related existence condition has to be documented in the McSup-
portData structure as well.

[SWS_Rte_05175] d If an element in the McSupportData is related to an element
in the input configuration which is subject to variability with the latest binding time
PreCompileTime or PostBuild the RTE Generator shall add a VariationPoint for
such element. The PreBuild and PostBuild conditions of the VariationPoint shall
correspond to the PreBuild and PostBuild conditions of the input element’s conditions.
c(SRS_Rte_00153, SRS_Rte_00191)

198 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4.2.9 Access to NVRAM data

4.2.9.1 General

There are different methods available for AUTOSAR SW-Cs to access data stored in
NVRAM:

• “Calibration data” – Calibrations can be stored in NVRAM, but are not modified
during a "normal" execution of the ECU. Calibrations are usually directly read from
their memory location, but can also be read from a RAM buffer when the access
time needs to be optimized (e.g. for interpolation tables). They are described in
section 4.2.8.

• “Access to NVM blocks” – This method uses PerInstanceMemory as a RAM
mirror for the NVRAM blocks. While this method is efficient, its use is restricted.

The NVRAM Manager [21] is a BSW module which provides services for SW-C
to access NVRAM blocks during runtime. The NVM block data is not accessed
directly, but through a RAM mirror, which can be a PerInstanceMemory instan-
tiated by the RTE, or a SW-C internal buffer. When this method is used, the RTE
does not provide any data consistency mechanisms (i.e. different runnables from
the SW-C and the NVM can access the RAM mirror concurrently without being
protected by the RTE).

Note:

This mechanism permits efficient usage of NVRAM data, but requires the SW-C
designer to take care that accesses to the PerInstanceMemory from different
task contexts don’t cause data inconsistencies. The “Access to NVM blocks”
should not be used in multi core environments. In AUTOSAR release 4.0, it can
not be expected that the NVRAM Manager can access the PerInstanceMem-
ory of another core. The presence of a shared memory section is not required by
AUTOSAR. Only in the case of arTypedPerInstanceMemory, a SwDataDef-
Props item is available to assign the PerInstanceMemory to a shared memory
section.

• “Access to NVRAM data with a NvBlockSwComponentType – The data is ac-
cessed through a NvDataInterface connected to a NvBlockSwComponent-
Types. This access is modeled at the VFB level, and, when necessary, protected
by the RTE against concurrent accesses. It will be described further in this sec-
tion.

4.2.9.2 Usage of the NvBlockSwComponentType

The code of NvBlock SwComponentPrototypes is implemented by the RTE Gener-
ator. NvBlockSwComponentTypes provide a port interface for the access and man-
agement of data stored in NVRAM.

199 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

SW-C SW-C SW-C

RTE

NvBlockComponentType

NvBlockDescriptor NvBlockDescriptor

NVM

NvM_WriteBlock
NvM_ReadBlock
...

Rte_SetMirror
Rte_GetMirror
Rte_NvMNotifyJobFinished
Rte_NvMNotifyInitBlock

Figure 4.31: Connection to the NvBlockSwComponentType

Figure 4.31 illustrates the usage of a NvBlockSwComponentType. Depending on
the use-case SW-Cs can be connected to a NvBlockSwComponentType in different
ways. For example by S/R communication only or by S/R and C/S communication. S/R
communication is used to provide access to NV data and C/S communication is used
for the management of NV data. Managing NV data by SW-Cs is useful in order to
copy data of the RAM mirror to NVM blocks and vice versa at certain points in time
(SW-Cs are clients). Additionally SW-Cs can get notifications from NVM (SW-Cs are
servers).

In the following sections the requirements for the usage of NvBlockSwComponent-
Type will be given.

[SWS_Rte_07301] d Several AUTOSAR SW-Cs (and also several instances of a AU-
TOSAR SW-C) shall be able to read the same VariableDataPrototypes of a
NvBlockSwComponentType. c(SRS_Rte_00176)

200 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

AtomicSwComponentType

NvBlockSwComponentType

Identifiable

NvBlockDescriptor

ServiceNeeds

NvBlockNeeds

+ calcRamBlockCrc :Boolean [0..1]
+ checkStaticBlockId :Boolean [0..1]
+ nDataSets :PositiveInteger [0..1]
+ nRomBlocks :PositiveInteger [0..1]
+ ramBlockStatusControl :RamBlockStatusControlEnum [0..1]
+ readonly :Boolean [0..1]
+ rel iabil ity :NvBlockNeedsReliabil ityEnum [0..1]
+ resistantToChangedSw :Boolean [0..1]
+ restoreAtStart :Boolean [0..1]
+ storeAtShutdown :Boolean [0..1]
+ writeOnlyOnce :Boolean [0..1]
+ writeVerification :Boolean [0..1]
+ writingFrequency :PositiveInteger [0..1]
+ writingPriority :NvBlockNeedsWritingPriorityEnum [0..1]

«enumeration»
NvBlockNeedsReliabili tyEnum

 noProtection
 errorDetection
 errorCorrection

ValueSpecification

+ shortLabel :Identifier [0..1]

AutosarDataPrototype

ParameterDataPrototype

AutosarDataPrototype

VariableDataPrototype

«atpVariation» Tags:
vh.latestBindingTime =
preCompileTime

«enumeration»
RamBlockStatusControlEnum

 api
 nvRamManager

«enumeration»
NvBlockNeedsWritingPriorityEnum

 low
 medium
 high

+initValue 0..1

+romBlock 0..1

+initValue 0..1

+ramBlock 1

«atpVariation,atpSplitable»

+nvBlockDescriptor 0..*

+nvBlockNeeds 1

Figure 4.32: NvBlockSwComponentType and NvBlockDescriptor

A NvBlockSwComponentType contains multiple NvBlockDescriptors. Each of
these NvBlockDescriptor is associated to exactly one NVM block.

A NvBlockDescriptor contains a VariableDataPrototype which acts as a RAM
mirror for the NVM block, and possibly a ParameterDataPrototype to act as the
default ROM value for the NVM block.

[SWS_Rte_07353] d The RTE Generator shall reject configurations where a
NvBlockDescriptor of a NvBlockSwComponentType contains a romBlock
whose data type is not compatible with the type of the ramBlock. c(SRS_Rte_00177,
SRS_Rte_00018)

201 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_07303] d The RTE shall allocate memory for the ramBlock Variable-
DataPrototype of the NvBlockDescriptor instances. c(SRS_Rte_00177)

[SWS_Rte_07632] d The variables allocated for the ramBlocks shall be initialized if
the general initialization conditions in [SWS_Rte_07046] are fulfilled. The initialization
as to be applied during Rte_Start and Rte_RestartPartition depending from
the configured RteInitializationStrategy. c(SRS_Rte_00177)

Note: When blocks are configured to be read by NvM_ReadAll, the initialization may
erase the value read by the NVM. These blocks should not have an initValue.

[SWS_Rte_07355] d For each NvBlockDescriptor with a romBlock Parameter-
DataPrototype, the RTE shall allocate a constant ROM block. c(SRS_Rte_00177)

[SWS_Rte_07633] d The constants allocated for the romBlocks shall be initialized to
the value of the initValue, if they have an initValue. c(SRS_Rte_00177)

202 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

AtomicSwComponentType

NvBlockSwComponentType

DataInterface

NvDataInterface

Identifiable

NvBlockDescriptor

NvBlockDataMapping

InstantiationDataDefProps

VariableDataPrototype

AutosarVariableRef

«atpVariation» Tags:
vh.latestBindingTime =
preCompileTime

«atpVariation» Tags:
vh.latestBindingTime =
preCompileTime

ArVariableInImplementationDataInstanceRef

Identifiable

ImplementationDataTypeElement

AtpBlueprint
AtpBlueprintable

ImplementationDataType

ARElement
AtpType

AutosarDataType

DataPrototype

AutosarDataPrototype

+readNvData

0..1

+variableInstance

0..1

«atpVariation,atpSplitable»

+nvBlockDescriptor 0..*

+nvBlockDataMapping1..*

«atpVariation»

+writtenReadNvData

0..1

+nvData 1..*

+ramBlock

1

+instantiationDataDefProps 0..*

«atpVariation»

+writtenNvData

0..1

«isOfType»

+type 1
{redefines atpType}

+autosarVariableInImplDatatype0..1

+nvRamBlockElement

1

+targetDataPrototype 1 +contextDataPrototype 0..*
{ordered}

+rootVariableDataPrototype 0..1

«atpVariation»

+subElement 0..* {ordered}

Figure 4.33: NvBlockDataMapping

For each element stored in the NvM block of a NvBlockDescriptor, there should
be one NvBlockDataMapping to associate the VariableDataPrototypes of the
ports used for read and write access and the VariableDataPrototype defining the
location of the element in the ramBlock. Thereby the ImplementationDataTypes
of the VariableDataPrototypes have to compatible.

[SWS_Rte_07621] d The RTE Generator shall reject configurations where [con-
str_2013] or [constr_1285] is violated. c(SRS_Rte_00018)

203 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Note: This is required to ensure that the default values in romBlock are structurally
matching data in the ramBlock and therefore can be copied to the ramBlock in case
that the callback Rte_NvMNotifyInitBlock of the related NvBlock is called.

[SWS_Rte_07343] d The RTE Generator shall reject configurations where a Vari-
ableDataPrototype instance in the role ramBlock is accessed by SW-C instances
of different partitions. c(SRS_Rte_00177, SRS_Rte_00018)

The rational for [SWS_Rte_07343] is to allow the implementation of cleanup activities
in case of termination or restart of a partition. These cleanup activities may require to
invalidate the RAM mirror or reload data from the NVRAM device, which would impact
other partitions if a the ramBlock is shared by SW-Cs of different partitions.

A NvBlockSwComponentType can be used to reduce the quantity of NVRAM blocks
needed on an ECU:

• the same block can be used to store different flags or other small DataElements;

• the same DataElement can be used by different SW-Cs or different instances of
a SW-C.

It also permits to simplify processes and algorithms when it must be guaranteed that
two SW-Cs of an ECU use the same NVRAM data.

Note: this feature can increase the RAM usage of the ECU because it forces the
NVRAM Manager to instantiate an additional RAM buffer. However, when the same
DataElements have to be shared between SW-Cs, it reduces the number of RAM mir-
rors needed to be instantiated by the RTE, and can reduce the overall RAM usage of
the ECU.

[SWS_Rte_07356] d The RTE Generator shall reject configurations where a Vari-
ableDataPrototype referenced by a NvDataInterface has a queued swImplPol-
icy. c(SRS_Rte_00018)

[SWS_Rte_07357] d The RTE Generator shall reject configurations where a DataRe-
ceivedEvent is referenced by a WaitPoint and references a VariableDataPro-
totype referenced by a NvDataInterface. c(SRS_Rte_00018)

[constr_9011] NvMBlockDescriptor related to a RAM Block of a NvBlock-
SwComponentType shall use NvmBlockUseSyncMechanism d The NVM block
associated to the NvBlockDescriptors of a NvBlockSwComponentType shall
be configured with the NvMBlockUseSyncMechanism feature enabled, and
the NvMWriteRamBlockToNvCallback and NvMReadRamBlockFromNvCallback
parameters set to the Rte_GetMirror and Rte_SetMirror API of the NvBlock-
Descriptor. c

An NvBlockSwComponentType may have unconnected p-ports or r-ports (see
[SWS_Rte_01329]).

[SWS_Rte_07669] d An NvBlockSwComponentType with an unconnected r-port
shall behave as if no updated data were received for VariableDataPrototypes
this unconnected r-port. c(SRS_Rte_00139)

204 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4.2.9.3 Interface of the NvBlockSwComponentType

4.2.9.3.1 Access to the NVRAM data

The NvBlockSwComponentType provides PPortPrototypes and RPortProto-
types with an NvDataInterface data Sender-Receiver semantic to read the value
of the NVRAM data or write the new value.

Like the SenderReceiverInterfaces, each of these NvDataInterfaces can pro-
vide access to multiple VariableDataPrototypes.

The same Rte_Read, Rte_IRead, Rte_DRead, Rte_Write, Rte_IWrite,
Rte_IWriteRef APIs are used to access these VariableDataPrototypes as for
SenderReceiverInterfaces.

[SWS_Rte_07667] d The RTE Generator shall reject configurations where an r-port
typed with an NvDataInterface is not connected and no NvRequireComSpec with
a initValue are provided for each VariableDataPrototype of this NvDataIn-
terface. This requirement does not apply if the r-port belongs to a NvBlockSwCom-
ponentType. c(SRS_Rte_00018, SRS_Rte_00139)

[SWS_Rte_07667] is required to avoid unconnected r-port without a defined init-
Value. Please note that for NvBlockSwComponent unconnected r-ports without init
values are not a fault because the init values are defined in the NvBlockDescriptors
ramBlock (see as well [SWS_Rte_07632], [SWS_Rte_07669])

[SWS_Rte_07668] d The RTE shall initialize the VariableDataPrototypes of an r-
port according to the initValue of the r-port’s NvRequireComSpec referring to the
VariableDataPrototype. c(SRS_Rte_00139, SRS_Rte_00108, SRS_Rte_00068)

4.2.9.3.2 NVM interfaces

The NvBlockSwComponentType can also have ports used for NV data management
and typed by Client-Server interfaces compatible to the NVRAM Manager [21] stan-
dardized one. Note that these ports shall always have a PortInterface with the
attribute isService set to FALSE.

The standardized NvM Client-Server interfaces are composed as follows:

• NvMService

This interface is used to send commands to the NVM. The NvBlockSwCompo-
nentType provides a server port intended to be used by the SW-C users of this
NvBlockSwComponentType.

• NvMNotifyJobFinished

This interface is used by the NVM to notify the end of job. The NvBlockSwCom-
ponentType provides a server port intended to be used by the NVM, and client

205 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

ports intended to be connected to the SW-C users of this NvBlockSwCompo-
nentType.

• NvMNotifyInitBlock

This interface is used by the NVM to request users to provide the default values
in the RAM mirror. The NvBlockSwComponentType provides a server port in-
tended to be used by the NVM, and client ports intended to be connected to the
SW-C users of this NvBlockSwComponentType.

• NvMAdmin

This interface is used to order some administrative operations to the NVM. The
NvBlockSwComponentType provides a server port intended to be used by the
SW-C users of this NvBlockSwComponentType.

For the implementation of NvBlockSwComponentTypes that have NvM service ports
the RTE has to call the API of NvM. In order to access NvM API the NvM.h file has to
be included.

[SWS_Rte_08063] d The RTE shall include the NvM.h file, if it has to access NvM API.
c(SRS_Rte_00177)

Note: no restrictions have been added to the NVM interfaces. However, some op-
erations of the NVM might require cooperation between the different users of the
NvBlockSwComponentType. For example, a ReadBlock operation will erase the
RAM mirror, which might affect multiple SW-Cs.

206 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

NvBlockSwComponentType

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

AtpBlueprintable
AtpPrototype

PortPrototype

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

PortInterface

+ isService :Boolean
+ serviceKind :ServiceProviderEnum [0..1]

RoleBasedPortAssignment

+ role :Identifier

Identifiable

NvBlockDescriptor

ClientServerInterface

AtpStructureElement
Identifiable

ClientServerOperation

InternalBehavior

SwcInternalBehavior

AtpStructureElement
ExecutableEntity

RunnableEntity

OperationInvokedEvent

AbstractEvent
AtpStructureElement

RTEEvent

AtomicSwComponentType

PortDefinedArgumentValue

PortAPIOption

«atpVariation» Tags:
vh.latestBindingTime =
preCompileTime

«atpVariation» Tags:
vh.latestBindingTime =
preCompileTime

«atpVariation» Tags:
vh.latestBindingTime =
preCompileTime

Relation of PortPrototype to
PortInterface is documented
elsewhere.

«instanceRef»

+operation
+clientServerPort 0..*

«atpVariation»

+portPrototype

1

+portArgValue
0..*
{ordered}

+portAPIOption

0..*«atpVariation»

0..1

+port 1

«atpVariation,atpSplitable»

+internalBehavior 0..1

+operation 1..*
«atpVariation»

+runnable 1..*

«atpVariation,atpSplitable»

+startOnEvent0..1

+event

*«atpVariation,atpSplitable»

«atpVariation,atpSplitable»
+nvBlockDescriptor 0..*

+port

0..*«atpVariation,atpSplitable»

+component

Figure 4.34: SwcInternalBehavior of NvBlockSwComponentTypes

207 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

NvBlockSwComponentType

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

AtpBlueprintable
AtpPrototype

PortPrototype

PPortPrototype RPortPrototype

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

PortInterface

+ isService :Boolean
+ serviceKind :ServiceProviderEnum [0..1]

RoleBasedPortAssignment

+ role :Identifier

Identifiable

NvBlockDescriptor

ClientServerInterface

AtpStructureElement
Identifiable

ClientServerOperation

«atpVariation» Tags:
vh.latestBindingTime =
preCompileTime

AtomicSwComponentType

«atpVariation» Tags:
vh.latestBindingTime =
preCompileTime

AbstractProvidedPortPrototype AbstractRequiredPortPrototype

PRPortPrototype

+port

0..*«atpVariation,atpSplitable»

+clientServerPort 0..*

«atpVariation»

+portPrototype1

«isOfType»

+
re

q
u

ire
d

In
te

rf
a

ce

1 {r
e

d
e

fin
e

s
a

tp
T

yp
e

}

«atpVariation,atpSplitable»

+nvBlockDescriptor 0..*

+operation 1..*
«atpVariation»

«isOfType»

+
p

ro
vi

d
e

d
In

te
rf

a
ce

1 {r
e

d
e

fin
e

s
a

tp
T

yp
e

}

«isOfType»

+
p

ro
vi

d
e

d
R

e
q

u
ire

d
In

te
rf

a
ce

1 {r
e

d
e

fin
e

s
a

tp
T

yp
e

}

Figure 4.35: NVM notifications

The requests received from the SW-C side are forwarded by the NvBlockSwCompo-
nentType’s runnables to the NVM module, using the NVM C API indicated by the
RoleBasedPortAssignment. See figure 4.34.

Notifications received from the NVM are forwarded to all the SW-C connected to the
notification interfaces of the NvBlockSwComponentTypewith a RoleBasedPortAs-
signment of the corresponding type. See figure 4.35.

[SWS_Rte_07398] d The RTE Generator shall implement runnables for each con-
nected server port of a NvBlockSwComponentType. c(SRS_Rte_00177)

208 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_07399] d The NvBlockSwComponentType’s runnables used as servers
connected to the SW-C shall forward the request to the NVM by calling the associated
NVM API. c(SRS_Rte_00177)

[SWS_Rte_08064] d The symbol attribute of RunnableEntitys of NvBlockSwCom-
ponentTypes shall be used by the RTE generator to identify the to be called NvM API
function (see [constr_1234] in software component template [2]). c(SRS_Rte_00177)

Note: A BlockId PortDefinedArgumentValue is also provided to runnables and
used as a first argument in the NVM APIs.

4.2.9.4 Data Consistency

A VariableDataPrototype contained in a NvBlockSwComponentType is ac-
cessed when SW-Cs read the value or write a new value. It is also accessed by the
NVM when read or write requests are processed by the NVM for the associated block.

The NVM does not access directly the VariableDataPrototypes, but shall use the
Rte_GetMirror, and Rte_SetMirror APIs specified in section 5.9.4

The RTE has to ensure the data consistency of the VariableDataPrototypes, with
any of the data consistency mechanisms defined in section 4.2.5. Depending on the
user’s input, an efficient scheduling with the use of implicit APIs should permit a low
resources (OS resources, RAM, and code) implementation.

4.3 Communication Paradigms

AUTOSAR supports two basic communication paradigms: Client-Server and Sender-
Receiver. AUTOSAR software-components communicate through well defined ports
and the behavior is statically defined by attributes. Some attributes are defined on
the modeling level and others are closely related to the network topology and must be
defined on the implementation level.

The RTE provides the implementation of these communication paradigms. For inter-
ECU communication the RTE uses the functionalities provided by COM. For inter-
Partition communication (within the same ECU) the RTE uses functionalities provided
by the IOC module. For intra-Partition the RTE provides the functionality on its own.

With Sender-Receiver communication there are two main principles: Data Distribu-
tion and Event Distribution. When data is distributed, the last received value is of
interest (last-is-best semantics). When events are distributed the whole history of re-
ceived events is of interest, hence they must be queued on receiver side. Therefore
the software implementation policy can be queued or non queued. This is stated in the
swImplPolicy attribute of the SwDataDefProps, which can have the value queued
(corresponding to event distribution with a queue) or standard (corresponding to last-
is-best data distribution). If a data element has event semantics, the swImplPol-

209 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

icy is set to queued. The other possible values of this attribute correspond to data
semantics.

[SWS_Rte_07192] d The RTE generator shall reject the configuration when an r-
port is connected to an r-port or a p-port is connected to a p-port with an
AssemblySwConnectorc(SRS_Rte_00018)

For example, a require port (r-port) of a component typed by an AUTOSAR sender-
receiver interface can read data elements of this interface. A provide port (p-port) of
a component typed by an AUTOSAR sender-receiver interface can write data elements
of this interface.

[SWS_Rte_07006] d The RTE generator shall reject the configuration violating the
[constr_1032], so when an r-port is connected to a p-port or a p-port is con-
nected to an r-port with a DelegationSwConnector. c(SRS_Rte_00018)

[SWS_Rte_08767] d In case of functionality depending on attributes of ComSpecs the
RTE Generator shall consider only the ComSpecs defined in the context of Atomic-
SwComponentTypes or ParameterSwComponentTypes. c(SRS_Rte_00018)

4.3.1 Sender-Receiver

4.3.1.1 Introduction

Sender-receiver communication involves the transmission and reception of signals con-
sisting of atomic data elements that are sent by one component and received by one
or more components. A sender-receiver interface can contain multiple data elements.
Sender-receiver communication is one-way - any reply sent by the receiver is sent as
a separate sender-receiver communication.

A require port (r-port) of a component typed by an AUTOSAR sender-receiver interface
can read data elements of this interface. A provide port (p-port) of a component typed
by an AUTOSAR sender-receiver interface can write data elements of this interface.

4.3.1.2 Receive Modes

The RTE supports multiple receive modes for passing data to receivers. The four
possible receive modes are:

• “Implicit data read access” – when the receiver’s runnable executes it shall
have access to a “copy” of the data that remains unchanged during the execution
of the runnable.

[SWS_Rte_06000] d For data elements specified with implicit data read access,
the RTE shall make the receive data available to the runnable through the se-
mantics of a copy. c(SRS_Rte_00128, SRS_Rte_00019)

210 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_06001] d For data elements specified with implicit data read ac-
cess the receive data shall not change during execution of the runnable.
c(SRS_Rte_00128)

When “implicit data read access” is used the RTE is required to make the data
available as a “copy”. It is not necessarily required to use a unique copy for each
runnable. Thus the RTE may use a unique copy of the data for each runnable
entity or may, if several runnables (even from different components) need the
same data, share the same copy between runnables. Runnable entities can only
share a copy of the same data when the scheduling structure can make sure the
contents of the data is protected from modification by any other party.

[SWS_Rte_06004] d The RTE shall read the data elements specified with
implicit data read access before the associated runnable entity is invoked.
c(SRS_Rte_00128)

Composite data types shall be handled in the same way as primitive data types,
i.e. RTE shall make a “copy” available for the RunnableEntity.

[SWS_Rte_06003] d The “implicit data read access” receive mode shall be valid
for all categories of runnable entity (i.e. 1A, 1B and 2). c(SRS_Rte_00134)

• “Explicit data read access” – the RTE generator creates a non-blocking API
call to enable a receiver to poll (and read) data. This receive mode is an “explicit”
mode since an explicit API call is invoked by the receiver.

The explicit “data read access” receive mode is only valid for category 1B or 2
runnable entities [SRS_Rte_00134].

• “wake up of wait point” – the RTE generator creates a blocking API call that the
receiver invokes to read data.

[SWS_Rte_06002] d The “wake up of wait point” receive mode shall support a
timeout to prevent infinite blocking if no data is available. c(SRS_Rte_00109,
SRS_Rte_00069)

The “wake up of wait point” receive mode is inherently only valid for a category 2
runnable entity.

A category 2 runnable entity is required since the implementation may need to
suspend execution of the caller if no data is available.

• “activation of runnable entity” – the receiving runnable entity is invoked auto-
matically by the RTE whenever new data is available. To access the new data, the
runnable entity either has to use “implicit data read access” or “explicit data read
access”, i.e. invoke an Rte_IRead, Rte_Read, Rte_DRead or Rte_Receive
call, depending on the input configuration. This receive mode differs from “im-
plicit data read access” since the receiver is invoked by the RTE in response to a
DataReceivedEvent.

[SWS_Rte_06007] d The “activation of runnable entity” receive mode shall be
valid for category 1A, 1B and 2 runnable entities. c(SRS_Rte_00134)

211 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

The validity of receive modes in conjunction with different categories of runnable entity
is summarized in Table 4.9.

Receive Mode Cat 1A Cat 1B Cat 2
Implicit Data Read Access Yes Yes Yes
Explicit Data Read Access No Yes Yes
Wake up of wait point No No Yes
Activation of runnable entity Yes Yes Yes

Table 4.9: Receive mode validity

The category of a runnable entity is not an inherent property but is instead determined
by the features of the runnable. Thus the presence of explicit API calls makes the
runnable at least category 1B and the presence of a WaitPoint forces the runnable
to be category 2.

4.3.1.2.1 Applicability

The different receive modes are not just used for receivers in sender-receiver commu-
nication. The same semantics are also applied in the following situations:

• Success feedback – The mechanism used to return transmission acknowledg-
ments to a component. See Section 5.2.6.9.

• Asynchronous client-server result – The mechanism used to return the result
of an asynchronous client-server call to a component. See Section 5.7.5.4.

4.3.1.2.2 Representation in the Software Component Template

The following list serves as a reference for how the RTE Generator determines the
Receive Mode from its input [SRS_Rte_00109]. Note that references to “the Vari-
ableDataPrototype” within this sub-section will implicitly mean “the Variable-
DataPrototype for which the API is being generated”.

• “wake up of wait point” – A VariableAccess in the dataReceivePointBy-
Value or dataReceivePointByArgument role references a VariableDat-
aPrototype and a WaitPoint references a DataReceivedEvent which in
turn references the same VariableDataPrototype.

• “activation of runnable entity” – a DataReceivedEvent references the Vari-
ableDataPrototype and a runnable entity to start when the data is received.

• “explicit data read access” – A VariableAccess in the dataReceive-
PointByValue or dataReceivePointByArgument role references the
VariableDataPrototype.

212 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

• “implicit data read access” – A VariableAccess in the dataReadAccess
role references the VariableDataPrototype.

It is possible to combine certain access methods; for example ‘activation of runnable
entity’ can be combined with ‘explicit’ or ‘implicit’ data read access (indeed, one of these
pairings is necessary to cause API generation to actually read the datum) but it is an
input error if ‘activation of runnable entity’ and ‘wakeup of wait point’ are combined (i.e.
a WaitPoint references a DataReceivedEvent that references a runnable entity).
It is also possible to specify both implicit and explicit data read access simultaneously.

For details of the semantics of “implicit data read access” and “explicit data read ac-
cess” see Section 4.3.1.5.

4.3.1.3 Multiple Data Elements

A sender-receiver interface can contain one or more data elements. The transmission
and reception of elements is independent – each data element, e.g. AUTOSAR signal,
can be considered to form a separate logical data channel between the “provide” port
and a “require” port.

[SWS_Rte_06008] d Each data element in a sender-receiver interface shall be sent
separately. c(SRS_Rte_00089)

Example 4.4

Consider an interface that has two data elements, speed and freq and that a compo-
nent template defines a provide port that is typed by the interface. The RTE generator
will then create two API calls; one to transmit speed and another to transmit freq.

Where it is important that multiple data elements are sent simultaneously they should
be combined into a composite data structure (Section 4.3.1.11.1). The sender then
creates an instance of the data structure which is filled with the required data before
the RTE is invoked to transmit the data.

4.3.1.3.1 Initial Values

[SWS_Rte_06009] d For each data element in an interface specified with data se-
mantics, the RTE shall support the initValue attribute. c(SRS_Rte_00108)

The initValue attribute is used to ensure that AUTOSAR software-components al-
ways access valid data even if no value has yet been received. This information is re-
quired for inter-ECU, inter-Partition, and intra-Partition communication. For inter-ECU
communication initial values can be handled by COM but for intra-ECU communication
RTE has to guarantee that initValue is handled.

213 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

In general, the specification of an initValue is mandatory for each data element
prototype with data semantics, see [SWS_Rte_07642]. If all senders and receivers
are located in the same partition, this restriction is relaxed, see [SWS_Rte_04501].

[SWS_Rte_06010] d The RTE shall use any specified initial value to prevent the
receiver performing calculations based on invalid (i.e. uninitialized) values when
the swImplPolicy is not queued and if the general initialization conditions in
[SWS_Rte_07046] are fulfilled. c(SRS_Rte_00107)

The above requirement ensures that RTE API calls return the initialized value until a
“real” value has been received, possibly via the communication service. The require-
ment does not apply when “event” semantics are used since the implied state change
when the event data is received will mean that the receiver will not start to process
invalid data and would therefore never see the initialized value.

[SWS_Rte_04500] d An initial value cannot be specified when the implementation pol-
icy is set to ’queued’ attribute is specified as true. c(SRS_Rte_00107)

For senders, an initial value is not used directly by the RTE (since an AUTOSAR SW-C
must supply a value using Rte_Send) however it may be needed to configure the com-
munication service - for example, an un-initialised signal can be transmitted if multiple
signals are mapped to a single frame and the communication service transmits the
whole frame when any contained signal is sent by the application. Note that it is not
the responsibility of the RTE generator to configure the communication service.

It is permitted for an initial value to be specified for either the sender or receiver. In this
case the same value is used for both sides of the communication.

[SWS_Rte_04501] d If in context of one partition a sender specifies an initial value and
the receiver does not (or vice versa) the same initial value is used for both sides of the
communication. c(SRS_Rte_00108)

It is also permitted for both sender and receiver to specify an initial value. In this case
it is defined that the receiver’s initial value is used by the RTE generator for both sides
of the communication.

[SWS_Rte_04502] d If in context of one partition both receiver and sender specify an
initial value the specification for the receiver takes priority. c(SRS_Rte_00108)

4.3.1.4 Multiple Receivers and Senders

Sender-receiver communication is not restricted to communication connections be-
tween a single sender and a single receiver. Instead, sender receiver communica-
tion connection can have multiple senders (’n:1’ communication) or multiple receivers
(’1:m’ communication) with the restrictions that multiple senders are not allowed for
mode switch notifications, see metamodel restriction [SWS_Rte_02670].

The RTE does not impose any co-ordination on senders – the behavior of senders is
independent of the behavior of other senders. For example, consider two senders A

214 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

and B that both transmit data to the same receiver (i.e. ’n:1’ communication). Trans-
missions by either sender can be made at any time and there is no requirement that
the senders co-ordinate their transmission. However, while the RTE does not impose
any co-ordination on the senders it does ensure that simultaneous transmissions do
not conflict.

In the same way that the RTE does not impose any co-ordination on senders there is no
co-ordination imposed on receivers. For example, consider two receivers P and Q that
both receive the same data transmitted by a single sender (i.e. ’1:m’ communication).
The RTE does not guarantee that multiple receivers see the data simultaneously even
when all receivers are on the same ECU.

4.3.1.5 Implicit and Explicit Data Reception and Transmission

[SWS_Rte_06011] d The RTE shall support ’explicit’ and ’implicit’ data recep-
tion and transmission. c(SRS_Rte_00019, SRS_Rte_00098, SRS_Rte_00129,
SRS_Rte_00128, SRS_Rte_00141)

Implicit data access transmission means that a runnable does not actively initiate the
reception or transmission of data. Instead, the required data is received automatically
when the runnable starts and is made available for other runnables at the earliest when
it terminates.

Explicit data reception and transmission means that a runnable employs an explicit
API call to send or receive certain data elements. Depending on the category of the
runnable and on the configuration of the according ports, these API calls can be either
blocking or non-blocking.

4.3.1.5.1 Implicit

Implicit Read

For the implicit reading of data, VariableAccesses aggregated with a dataReadAc-
cess role [SRS_Rte_00128], the data is made available when the runnable starts us-
ing the semantics of a copy operation and the RTE ensures that the ’copy’ will
not be modified until the runnable terminates.

When a runnable R is started, the RTE reads all VariableDataPrototypes refer-
enced by a VariableAccess in the dataReadAccess role, if the data elements may
be changed by other runnables a copy is created that will be available to runnable R.
The runnable R can read the data element by using the RTE APIs for implicit read
(see the API description in Section 5.6.18). That way, the data is guaranteed not to
change (e.g. by write operations of other runnables) during the entire lifetime of R. If
several runnables (even from different components) need the data, they can share the
same buffer. This is only applicable when the scheduling structure can make sure the
contents of the data is protected from modification by any other party.

215 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Note that this concept implies that the runnable does in fact terminate. Therefore, while
implicit read is allowed for category 1A and 1B runnable entities as well as category 2
only the former are guaranteed to have a finite execution time. A category 2 runnable
that runs forever will not see any updated data.

VariableAccess in the dataReadAccess role is only allowed for VariableDat-
aPrototypes with their swImplPolicy different from ’queued’ ([constr_2020]).

Implicit Write

Implicit writing, VariableAccesses aggregated with a dataWriteAccess role
[SRS_Rte_00129], is the opposite concept. VariableDataPrototypes referenced
by a VariableAccess in the dataWriteAccess role are sent by the RTE after the
runnable terminates. The runnable can write the data element by using the RTE APIs
for implicit write (see the API description in Sect. 5.6.19 and 5.6.20). The sending is
independent from the position in the execution flow in which the Rte_IWrite is per-
formed inside the Runnable. When performing several write accesses during runnable
execution to the same data element, only the last one will be recognized. Here we
have a last-is-best semantics.

Note:
If a VariableDataPrototype is referenced by a VariableAccess in the
dataWriteAccess role, but no RTE API for implicit write of this VariableDataPro-
totype is called during an execution of the runnable, an undefined value is written
back when the runnable terminates.

[SWS_Rte_03570] d For VariableAccesses in the dataWriteAccess role the RTE
shall make the sent data available to others (other runnables, other AUTOSAR SWCs,
Basic SW, ..) with the semantics of a copy. c(SRS_Rte_00129)

[SWS_Rte_03571] d For VariableAccesses in the dataWriteAccess role the RTE
shall make the sent data available to others (other runnables, other AUTOSAR SWCs,
Basic SW, ..) at the earliest when the runnable has terminated. c(SRS_Rte_00129)

[SWS_Rte_03572] d For VariableAccesses in the dataWriteAccess role several
accesses to the same VariableDataPrototype performed inside a runnable during
one runnable execution shall lead to only one transmission of the VariableDataPro-
totype. c(SRS_Rte_00129)

[SWS_Rte_03573] d If several VariableAccesses in the dataWriteAccess role
referencing the same VariableDataPrototype are performed inside a runnable
during the runnable execution, the RTE shall use the last value written. (last-is-best
semantics) c(SRS_Rte_00129)

A VariableAccess in the dataWriteAccess role is only sensible for runnable enti-
ties that are guaranteed to terminate, i.e. category 1A and 1B. If it is used for a category
2 runnable which does not terminate then no data write-back will occur.

[SWS_Rte_03574] d VariableAccess in the dataWriteAccess role shall be valid
for all categories of runnable entity. c(SRS_Rte_00129, SRS_Rte_00134)

216 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

To get common behavior in RTEs from different suppliers further requirements
defining the semantic of implicit communication exist:

Please note that the behavior of Implicit Communication can be adjusted with ECU
Configuration. For further information see section 7.8.

Implicit Communication Behavior in case of Incoherent Implicit Data Access

[SWS_Rte_03954] d The RTE generator shall use exactly one buffer to contain data
copies of the same VariableDataPrototype per Preemption Area for the im-
plementation of the copy semantic of Incoherent Implicit Data Access.
c(SRS_Rte_00128, SRS_Rte_00129, SRS_Rte_00134)

Requirement [SWS_Rte_03954] means that all runnable entities mapped to tasks of a
Preemption Area with a Incoherent Implicit Read Access or Incoherent
Implicit Write Access access the same buffers.

[SWS_Rte_03598] d For implicit communication, the RTE shall provide a single shared
read/write buffer when no runnable entity mapped to tasks of the Preemption Area
has VariableAccess in both Incoherent Implicit Read Access and Inco-
herent Implicit Write Access referencing the same VariableDataProto-
type. c(SRS_Rte_00128, SRS_Rte_00129)

If either the sender or the receiver uses a Data Element with Status and the
other uses a Data Element without Status, a Data Element with Status
can be implemented and casted in the component data structure when a pointer to a
Data Element without Status is needed.

[SWS_Rte_03955] d For implicit communication, in case that dedicated RPortPro-
totype and PPortPrototype are used, separate read and write buffers shall be
used when at least one RunnableEntity mapped to tasks of the Preemption
Area has Implicit Read Access and Implicit Write Access referencing the
same VariableDataPrototype. c(SRS_Rte_00128, SRS_Rte_00129)

In the case that a RunnableEntity defines dataWriteAccess and dataReadAc-
cess to the same VariableDataPrototype in the context of a PRPortPrototype
[SWS_Rte_03955] does not apply. In such configuration the writing RunnableEntity
immediately sees its own updates of the data values even before the RunnableEn-
tity has terminated.

[SWS_Rte_08408] d If a RunnableEntity has both dataWriteAccess and
dataReadAccess to a VariableDataPrototype in the context of a PRPort-
Prototype the result of the write access shall be immediately visible to subse-
quent read accesses from within the same RunnableEntity. c(SRS_Rte_00128,
SRS_Rte_00129)

Please note that the content of the write buffers are copied into the read buffer of the
Preemption Area after the RunnableEntity with the write access terminates (see
[SWS_Rte_07041]). Therefore the write buffer might be implemented as temporary
buffer.

217 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_03599] d For implicit communication with Incoherent Implicit Data
Access all readers within a Preemption Area shall access the same buffer.
c(SRS_Rte_00128)

[SWS_Rte_03953] d For implicit communication with Incoherent Implicit Data
Access all writers within a Preemption Area shall access the same buffer.
c(SRS_Rte_00129)

The content of a shared buffer (see [SWS_Rte_03598]) is not guaranteed to stay con-
stant during the whole task since a writer will change the shared copy and hence
readers mapped in the task after the writer will access the updated copy. When buffers
are shared, written data is visible to other RunnableEntitys within the same execu-
tion of the task. However since no runnable within the task will both read and write the
same buffer ([SWS_Rte_03598] and [SWS_Rte_03955]) consistency within a runnable
is ensured.

When separate buffers used for implicit communication (see [SWS_Rte_03955]) any
data written by a runnable is not visible (to either other RunnableEntitys or to the
writing runnable) until the data is written back after the runnable has terminated.

Implicit Communication Behavior in case of Coherent Implicit Data Access

[SWS_Rte_07062] d The RTE generator shall use exactly one buffer to contain
data copies of the same VariableDataPrototype per Coherency Group for the
implementation of the copy semantic of Coherent Implicit Data Access.
c(SRS_Rte_00128, SRS_Rte_00129, SRS_Rte_00134)

Requirement [SWS_Rte_07062] means that all runnable entities with Coherent Im-
plicit Data Accesses access the same buffers. Please note that it is only sup-
ported to group Implicit Read Accesses or Implicit Write Accesses of
RunnableEntitys executed in the same OS Task. Therefore a Coherent Im-
plicit Data Access results in a task local buffer as it was specified in previous
AUTOSAR releases. With this means a backward compatible bahavior of the RTE can
be ensured.

Please note that [SWS_Rte_03955] applies as well for Coherent Implicit Data Access.
[SWS_Rte_07062] includes already that a single shared read/write buffer shall be used
when no runnable entity has Coherent Implicit Read Access and Coherent
Implicit Write Access belonging to the same Coherency Group.

Implicit Communication buffer handling

The Preemption Area specific buffer should not be updated or made available more
often than required. The following requirements detail how to obtain that for read and
write access.

[SWS_Rte_03956] d The content of a Preemption Area specific buffer used for an
Incoherent Implicit Read Access to a VariableDataElement shall be filled
with actual data by a copy action between the beginning of the task and the execution
of the first RunnableEntity with access to this VariableDataElement in the task.
c(SRS_Rte_00128)

218 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_07020] d If the RteImmediateBufferUpdate = TRUE is configured for a
Incoherent Implicit Read Access to a VariableDataElement the content
of a Preemption Area specific buffer used for that VariableAccess shall be filled
with actual data by a copy action immediately before the RunnableEntity with the re-
lated implicit read access to the VariableDataElement starts. c(SRS_Rte_00128)

[SWS_Rte_07041] d The content of a separate write buffer (see [SWS_Rte_03955])
modified by a Incoherent Implicit Write Access of a RunnableEntity shall
be made available to RunnableEntitys using a Implicit Read Access allocated
in the same Preemption Area immediately after the execution of the RunnableEn-
tity with the related Implicit Write Access to the VariableDataElement.
c(SRS_Rte_00129)

[SWS_Rte_03957] d The content of a Preemption Area specific buffer modified by
a Incoherent Implicit Write Access in one task shall be made available to
RunnableEntitys using an Implicit Read Access allocated in other Preemp-
tion Areas at latest after the execution of the last RunnableEntity mapped to the
task. c(SRS_Rte_00129)

[SWS_Rte_07021] d If the RteImmediateBufferUpdate = TRUE is configured for a
Incoherent Implicit Write Access the content of a Preemption Area spe-
cific buffer shall be made available to RunnableEntitys using a Implicit Read
Access allocated in other Preemption Areas immediately after the execution of
the RunnableEntitywith the related Implicit Write Access to the Variable-
DataElement. c(SRS_Rte_00129)

Note:
It’s the semantic of implicit communication that a VariableAccess in the
dataWriteAccess role is interpreted as writing the whole dataElement.

Explicit Schedule Points defined by RteOsSchedulePoints are placed be-
tween RunnableEntitys after the data written with implicit write access by the
RunnableEntity are propagated to other RunnableEntitys and before the
Preemption Area specific buffer used for a implicit read access of the suc-
cessor RunnableEntity are filled with actual data by a copy action according
[SWS_Rte_07020]. This ensures that the data produced by one RunnableEn-
tity is propagated before RunnableEntitys assigned to other Os Tasks are ac-
tivated due to Task scheduling caused by the explicit Schedule Point. See as well
[SWS_Rte_07042] and [SWS_Rte_07043].

The requirements regarding buffer handling for implicit communication do not apply in
case of filters. Buffer handling of RTE for filters is specified in chapter 4.3.1.9 (require-
ments: [SWS_Rte_08077], [SWS_Rte_08078] and [SWS_Rte_08079]).

Implicit Communication buffer handling for Coherent Implicit Data Access

[SWS_Rte_07063] d The content of a Coherency Group specific buffer used for
an Coherent Implicit Read Access to one or more VariableDataElements
shall be filled with actual data by a copy action between the beginning of the task and

219 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

the execution of the first RunnableEntity in the task with a Coherent Implicit
Read Access belonging to the Coherency Group. c(SRS_Rte_00128)

[SWS_Rte_07064] d If the RteImmediateBufferUpdate = TRUE is configured for
Coherent Implicit Read Accesses the content of a Coherency Group spe-
cific buffer used for these VariableAccesses shall be filled with actual data by
a copy action immediately before the first RunnableEntity in the task with a
Coherent Implicit Read Access belonging to the Coherency Group starts.
c(SRS_Rte_00128)

[SWS_Rte_07065] d The content of a separate write buffer (see [SWS_Rte_03955])
modified by a Coherent Implicit Write Access of a RunnableEntity shall
be made available to RunnableEntitys using a Coherent Implicit Read Ac-
cess belonging to the same Coherency Group immediately after the execution
of the RunnableEntity with the related Coherent Implicit Write Access.
c(SRS_Rte_00129)

[SWS_Rte_07066] d The content of a Coherency Group specific buffer modified
by Coherent Implicit Write Accesses in one task shall be made available to
other RunnableEntitys at earliest after the execution of the last RunnableEntity
with a Coherent Implicit Write Access belonging to this Coherency Group.
c(SRS_Rte_00129)

[SWS_Rte_07067] d The content of a Coherency Group specific buffer modified
by Coherent Implicit Write Accesses in one task shall be made available to
other RunnableEntitys at latest after the execution of the last RunnableEntity
mapped to the task. c(SRS_Rte_00129)

[SWS_Rte_07068] d If the RteImmediateBufferUpdate = TRUE is configured for a
Coherent Implicit Write Accesses the content of a Coherency Group spe-
cific buffer modified by Coherent Implicit Write Accesses in one task shall be
made available to other readers not belonging to this Coherency Group immediately
after the execution of the last RunnableEntity with a Coherent Implicit Write
Access belonging to this Coherency Group c(SRS_Rte_00129)

Handling of ConsistencyNeeds

ConsistencyNeeds are not directly processed by the RTE Generator but provid-
ing an important information for the correct configuration of the RTE and OS with
respect to preemption, RteEventToTaskMapping and RteImplicitCommunica-
tion. Therefore following constraints apply:

[constr_9001] Whole DataPrototypeGroup in role dpgRequiresCoherency
shall be propagated coherently d

All RunnableEntitys in a RunnableEntityGroup with dataWriteAccess to
data belonging to the same DataPrototypeGroup in the role dpgRequiresCo-
herency shall

• Be mapped to the same OS Task

220 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

AND shall

• A) either be scheduled in a way that these RunnableEntitys can not be inter-
rupted by RunnableEntitys with dataReadAccess to (more than one) data
belonging to the DataPrototypeGroup.

• B) or the RteImplicitCommunication shall be configured to ensure a coher-
ent propagation (RteCoherentAccess == true) for reading RunnableEntitys
5.

c

Please note that the interruption of RunnableEntitys and between RunnableEn-
titys depends from many factors like the configuration of the OS and the configuration
of the RTE (e.g. RteOsSchedulePoint).

[constr_9002] The whole DataPrototypeGroup shall be read stable for the
whole RunnableEntityGroup in the role regRequiresStability d.

All RunnableEntitys with dataReadAccess to data belonging to the same Dat-
aPrototypeGroup and which are belonging to the same RunnableEntityGroup
in the role regRequiresStability shall

• either be configured in a way that the chain of RunnableEntitys with
dataReadAccess to the data of the DataPrototypeGroup can not be inter-
rupted by any of the RunnableEntity(s) with dataWriteAccess to data of
the DataPrototypeGroup

• or the RteImplicitCommunication shall be configured to ensure stable data
values (RteCoherentAccess == true) for reading RunnableEntitys belong-
ing to the RunnableEntityGroup.

c

Examples

Following examples shall illustrate how ConsistencyNeeds can be implemented with
either scheduling or Coherency Groups.

Example 4.5

Common definition of PortInterfaces

In order to simplify the examples all PortInterfaces are of type Sender-
ReceiverInterface and contain exactly one VariableDataPrototypewith iden-
tical shortName. For example SenderReceiverInterface "A" contains Vari-
ableDataPrototype "A"

5RunnableEntitys with have as well dataWriteAccess to data belonging to the DataProto-
typeGroup are excluded because inside the calculation chain the latest data values are visible

221 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Additionally the shortName of the SenderReceiverInterface is identical to the
shortName of the PortPrototype. For example PPortPrototype "A" is typed by
SenderReceiverInterface "A".

Example 4.6

Stability need for received data

Setup of SWCs

ApplicationSwComponentType "ASWC_A" with the PPortPrototypes: "A","B"

and the RunnableEntity "ASWC_A_RUN1" which in turn has following
dataWriteAccesses

• "DWP_ASWC_A_RUN1_A_A" referencing VariableDataPrototype "A" in
PPortPrototype "A"

• "DWP_ASWC_A_RUN1_B_B" referencing VariableDataPrototype "B" in
PPortPrototype "B"

ApplicationSwComponentType "ASWC_B" with the RPortPrototypes: "A","B"

and the RunnableEntity "ASWC_B_RUN1" which in turn has dataReadAccesses

• "DRP_ASWC_B_RUN1_A_A" referencing VariableDataPrototype "A" in
RPortPrototype "A"

• "DRP_ASWC_B_RUN1_B_B" referencing VariableDataPrototype "B" in
RPortPrototype "B"

ApplicationSwComponentType "ASWC_C" with the RPortPrototypes: "A","B"

and the RunnableEntity "ASWC_C_RUN1" which in turn has dataReadAccesses

• "DRP_ASWC_C_RUN1_A_A" referencing VariableDataPrototype "A" in
RPortPrototype "A"

• "DRP_ASWC_C_RUN1_B_B" referencing VariableDataPrototype "B" in
RPortPrototype "B"

The ConsistencyNeeds "CN_BC" defines a RunnableEntityGroup in the role
regRequiresStability with the members "ASWC_B_RUN1", "ASWC_C_RUN1"
In addition the ConsistencyNeeds "CN_BC" defines a DataPrototypeGroup
in the role dpgDoesNotRequireCoherency to the VariableDataPrototypes
ASWC_B.A.A.A, ASWC_C.A.A.A, ASWC_B.B.B.B and ASWC_C.B.B.B The com-
plete example is listed as ARXML in Appendix F.2.

Assuming now a configuration:

222 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

ASWC_A_RUN1 is mapped to OsTask T10MS

ASWC_B_RUN1 is mapped to OsTask T100MS

ASWC_C_RUN1 is mapped to OsTask T100MS

where T10MS can NOT interrupt T100MS during the execution of ASWC_B_RUN1 and
ASWC_C_RUN1. This configuration fulfills [constr_9002] with respect to "CN_BC" due
the scheduling conditions. Since the producer of "A" and "B" can NOT interrupt the
RunnableEntitys with the dataReadAccesses it is guaranteed that the value for
all accesses of ASWC_B_RUN1 and ASWC_C_RUN1 to the same data is identical (and
therefore stable) during one execution of OsTask T100MS.

Assuming now a configuration:

ASWC_A_RUN1 is mapped to OsTask T10MS

ASWC_B_RUN1 is mapped to OsTask T100MS + RteOsSchedulePoint == UNCON-
DITIONAL

ASWC_C_RUN1 is mapped to OsTask T100MS

where T10MS can interrupt T100MS after the execution of ASWC_B_RUN1. Without
further means this configuration would violate [constr_9002] due the scheduling con-
ditions. Since the producer of "A" and "B" can interrupt the RunnableEntitys
with the dataReadAccesse it is not guaranteed that the value for all accesses of
ASWC_B_RUN1 and ASWC_C_RUN1 to the same data is kept stable during one execu-
tion of OsTask T100MS.

With the additional configuration RteImplicitCommunication "CN_BC_A":

• RteVariableReadAccessRef referencing "DRP_ASWC_B_RUN1_A_A"

• RteVariableReadAccessRef referencing "DRP_ASWC_C_RUN1_A_A"

• RteCoherentAccess = true

and

RteImplicitCommunication "CN_BC_B":

• RteVariableReadAccessRef referencing "DRP_ASWC_B_RUN1_B_B"

• RteVariableReadAccessRef referencing "DRP_ASWC_C_RUN1_B_B"

• RteCoherentAccess = true

"ASWC_B_RUN1_A_A" and "ASWC_C_RUN1_A_A" as well as "ASWC_B_RUN1_B_B"
and "ASWC_C_RUN1_B_B" are in the same Coherency Group. Therefore the read
data values for "A" and "B" are from the same age in one execution of OsTask
T100MS for ASWC_B_RUN1 and ASWC_C_RUN1.

Please note, since it is not requested that data "A" and "B" are communicated coher-
ently the setup of RteImplicitCommunication for "A" and "B" can be handled

223 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

independently from each other. In particular if there a further RunnableEntitys with
dataReadAccesses to "A" or "B" mapped to the OsTask T100MS the buffers for
"A" and "B" can be loaded at different points in the execution sequence. Further on
it is not requested that "A" and "B" is produced in the same recurrence as it is show
in this example.

Example 4.7

Coherency need and stability need for received data

Setup of SWCs

ApplicationSwComponentType "ASWC_H" with the PPortPrototype: "X"

and the RunnableEntity "ASWC_H_RUN1" which in turn has following
dataWriteAccesses

• "DWP_ASWC_H_RUN1_X_X" referencing VariableDataPrototype "X" in
PPortPrototype "X"

ApplicationSwComponentType "ASWC_I" with the RPortPrototype: "Y"

and the RunnableEntity "ASWC_I_RUN1" which in turn has following
dataWriteAccesses

• "DWP_ASWC_I_RUN1_Y_Y" referencing VariableDataPrototype "Y" in
RPortPrototype "Y"

ApplicationSwComponentType "ASWC_J" with the RPortPrototypes: "X","Y"

and the RunnableEntity "ASWC_J_RUN1" which in turn has following
dataReadAccesses

• "DRP_ASWC_J_RUN1_X_X" referencing VariableDataPrototype "X" in
RPortPrototype "X"

• "DRP_ASWC_J_RUN1_Y_Y" referencing VariableDataPrototype "Y" in
RPortPrototype "Y"

ApplicationSwComponentType "ASWC_K" with the RPortPrototype: "X"

and the RunnableEntity "ASWC_K_RUN1" which in turn has following
dataReadAccesses

• "DRP_ASWC_K_RUN1_X_X" referencing VariableDataPrototype "X" in
RPortPrototype "X"

The ConsistencyNeeds "CN_J" defines a RunnableEntityGroup in the role
regDoesNotRequireStability with the member "ASWC_I_RUN1" In addi-

224 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

tion the ConsistencyNeeds "CN_J" defines a DataPrototypeGroup in the
role dpgRequiresCoherency to the VariableDataPrototypes ASWC_J.X.X.X,
ASWC_K.Y.Y.Y

The ConsistencyNeeds "CN_JK" defines a RunnableEntityGroup in the role
regRequiresStability with the member "ASWC_I_RUN1", "ASWC_J_RUN1"
In addition the ConsistencyNeeds "CN_JK" defines a DataPrototypeGroup
in the role dpgDoesNotRequireCoherency to the VariableDataPrototypes
ASWC_J.X.X.X, ASWC_K.X.X.X

Assuming now a configuration:

ASWC_H_RUN1 is mapped to OsTask T100MS + RteOsSchedulePoint == UNCON-
DITIONAL

ASWC_I_RUN1 is mapped to OsTask T100MS

ASWC_J_RUN1 is mapped to OsTask T10MS

ASWC_K_RUN1 is mapped to OsTask T10MS

where T10MS can interrupt T100MS Without further means this configuration would vi-
olate [constr_9001] with respect to "CN_J" due to the scheduling conditions. Since
the consumer of "X" and "Y" can interrupt the RunnableEntitys witch are produc-
ing "X" and "Y"it is not guaranteed that the value for all accesses of ASWC_J_RUN1
and ASWC_K_RUN1 returning data of the same age during one execution of Os-
Task T10MS. The ConsistencyNeeds "CN_JK" is already fulfilled since the con-
sumers "ASWC_J_RUN1" and "ASWC_K_RUN1" can’t be interrupted by the producing
RunnableEntity ASWC_H_RUN1

With the additional configuration RteImplicitCommunication "CN_J":

• RteVariableWriteAccessRef referencing "DWP_ASWC_H_RUN1_X_X"

• RteVariableReadAccessRef referencing "DWP_ASWC_I_RUN1_Y_Y"

• RteCoherentAccess = true

the write accesses to "X" and "Y" are in the same Coherency Group. Due to this
"CN_J" is fulfilled since the propagation of "X" and "Y" is delayed until the termination
of ASWC_I_RUN1.

4.3.1.5.2 Explicit

The behavior of explicit reception depends on the category of the runnable and on the
configuration of the according ports.

An explicit API call can be either non-blocking or blocking. If the call is non-blocking
(i.e. there is a VariableAccess in the dataReceivePointByValue or dataRe-
ceivePointByArgument role referencing the VariableDataPrototype for which

225 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

the API is being generated, but no WaitPoint referencing a DataReceivedEvent
which references the VariableDataPrototype for which the API is being gener-
ated), the API call immediately returns the next value to be read and, if the communi-
cation is queued (event reception), it removes the data from the receiver-side queue,
see Section 4.3.1.10

[SWS_Rte_06012] d A non-blocking RTE API “read” call shall indicate if no data is
available. c(SRS_Rte_00109)

In contrast, a blocking call (i.e. the VariableDataPrototype, referenced by a
VariableAccess in the role dataReceivePointByArgument, and for which the
API is being generated, is referenced by a DataReceivedEvent which is itself refer-
enced by a WaitPoint) will suspend execution of the caller until new data arrives (or
a timeout occurs) at the according port. When new data is received, the RTE resumes
the execution of the waiting runnable. ([SRS_Rte_00092])

To prevent infinite waiting, a blocking RTE API call can have a timeout applied. The RTE
monitors the timeout and if it expires without data being received returns a particular
error status.

[SWS_Rte_06013] d A blocking RTE API “read” call shall indicate the expiry of a time-
out. c(SRS_Rte_00069)

The “timeout expired” indication also indicates that no data was received before the
timeout expired.

Blocking reception of data (“wake up of wait point” receive mode as described in Sec-
tion 4.3.1.2) is only applicable for category 2 runnables whereas non-blocking reception
(“explicit data read access” receive mode) can be employed by runnables of category
2 or 1B. Neither blocking nor non-blocking explicit reception is applicable for category
1A runnable because they must not invoke functions with unknown execution time (see
table 4.9).

[SWS_Rte_06016] d The RTE API call for explicit sending (VariableAccessin the
dataSendPoint role, [SRS_Rte_00098]) shall be non-blocking. c(SRS_Rte_00098)

Using this API call, the runnable can explicitly send new values of the VariableDat-
aPrototype.

Explicit writing is valid for runnables of category 1b and 2 only. Explicit writing is not al-
lowed for a category 1A runnable since these require API calls with constant execution
time (i.e. macros).

Although the API call for explicit sending is non-blocking, it is possible for a cate-
gory 2 runnable to block waiting for a notification whether the (explicit) send oper-
ation was successful. This is specified by the AcknowledgementRequest attribute
and occurs by a separate API call Rte_Feedback. If the feedback method is
’wake_up_of_wait_point’, the runnable will block and be resumed by the RTE either
when a positive or negative acknowledgment arrives or when the timeout associated
with the WaitPoint expires.

226 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4.3.1.5.3 Concepts of data access

Tables 4.10 and 4.11 summarize the characteristics of implicit versus explicit data re-
ception and transmission.

227 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Implicit Read Explicit Read
Receiving of data element val-
ues is performed only once
when runnable starts

Runnable decides when and
how often a data element value
is received

Values of data elements do not
change while runnable is run-
ning.

Runnable can always decide to
receive the latest value

Several API calls to the same
signal always yield the same
data element value

Several API calls to the same
signal may yield different data
element values

Runnable must terminate (all
categories)

Runnable is of cat. 1B or 2

Table 4.10: Implicit vs. explicit read

Implicit Write Explicit Write
Sending of data element values
is only done once after runnable
returns

Runnable can decide when
sending of data element values
is done via the API call

Several usages of the API call
inside the runnable cause only
one data element transmission

Several usages of the API call
inside the runnable cause sev-
eral transmissions of the data el-
ement content. (Depending on
the behavior of COM, the num-
ber of API calls and the number
of transmissions are not neces-
sarily equal.)

Runnable must terminate (all
categories)

Runnable is cat. 1B or 2

Table 4.11: Implicit vs. explicit write

4.3.1.6 Transmission Acknowledgement

When TransmissionAcknowledgementRequest is specified, the RTE will inform
the sending component if the signal has been sent correctly or not. Note that there is
no insurance that the signal has actually been received correctly by the corresponding
receiver AUTOSAR software-component. Thus, only the RTE on the sender side is
involved in supporting TransmissionAcknowledgementRequest.

[SWS_Rte_05504] d The RTE shall support the use of TransmissionAcknowl-
edgementRequest independently for each data item of an AUTOSAR software-
component’s AUTOSAR interface. c(SRS_Rte_00122)

228 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_08076] d The RTE generator shall reject configurations violating [con-
str_3074] in System Template [8]. c(SRS_Rte_00122, SRS_Rte_00018)

[SWS_Rte_07927] d The RTE generator shall reject configurations violating [con-
str_1256] in Software Component Template [2]. c(SRS_Rte_00122, SRS_Rte_00018)

The result of the feedback can be collected using “wake up of wait point”, “explicit data
read access”, “implicit data read access” or “activation of runnable entity”.

The TransmissionAcknowledgementRequest allows to specify a timeout.

[SWS_Rte_03754] d If TransmissionAcknowledgementRequest is specified, the
RTE shall ensure that timeout monitoring is performed, regardless of the receive mode
of the acknowledgment. c(SRS_Rte_00069, SRS_Rte_00122)

For inter-ECU communication, AUTOSAR COM provides the necessary functionality,
for intra-ECU communication, the RTE has to implement the timeout monitoring.

If a WaitPoint is specified to collect the acknowledgment, two timeout values have
to be specified, one for the TransmissionAcknowledgementRequest and one for
the WaitPoint.

[SWS_Rte_03755] d The RTE generator shall reject the configuration, violating the
[constr_2033]. c(SRS_Rte_00018) The DataSendCompletedEvent associated with
the VariableAccess in the dataSendPoint role for a VariableDataPrototype
shall indicate that the transmission was successful or that the transmission was not
successful. The status information about the success of the transmission shall be
available as the return value of the generated RTE API call.

[SWS_Rte_03756] d For each transmission of a VariableDataPrototype only one
acknowledgment shall be passed to the sending component by the RTE. The acknowl-
edgment indicates either that the transmission was successful or that the transmission
was not successful. c(SRS_Rte_00122)

[SWS_Rte_03757] d The status information about the success or failure of the trans-
mission shall be available as the return value of the RTE API call to retrieve the ac-
knowledgment. c(SRS_Rte_00122)

[SWS_Rte_03604] d The status information about the success or failure of the trans-
mission shall be buffered with last-is-best semantics. When a data item is sent, the
status information is reset. c(SRS_Rte_00122)

[SWS_Rte_03604] implies that once the DataSendCompletedEvent has occurred,
repeated API calls to retrieve the acknowledgment shall always return the same result
until the next data item is sent.

[SWS_Rte_03758] d If the timeout value of the TransmissionAcknowledgemen-
tRequest is 0, no timeout monitoring shall be performed. c(SRS_Rte_00069,
SRS_Rte_00122)

229 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4.3.1.7 Communication Time-out

When sender-receiver communication is performed using some physical network there
is a chance this communication may fail and the receiver does not get an update of
data (in time or at all). To allow the receiver of a data element to react appropriately
to such a condition the SW-C template allows the specification of a time-out which the
infrastructure shall monitor and indicate to the interested software components.

A “data element” is the actual information exchanged in case of sender-receiver com-
munication. In the COM specification this is represented by a ComSignal. In the
SW-C template a data element is represented by the instance of a VariableDat-
aPrototype.

When present, the aliveTimeout attribute6 enables the monitoring of the timely re-
ception of the data element with data semantics transmitted over the network.

[SWS_Rte_08061] d If the aliveTimeout attribute is present
the RTE shall provide the RTE COM Rx timeout callback
(Rte_COMCbkRxTOut_<sg> or Rte_COMCbkRxTOut_<sn>). c(SRS_Rte_00147)

The monitoring functionality is provided by the COM module, the RTE transports the
event of reception time-outs to software components as “data element outdated”. The
software components can either subscribe to that event (activation of runnable entity)
or get that situation passed by the implicit and explicit status information (using API
calls).

[SWS_Rte_08062] d If COM indicates a reception timeout (via RTE COM Rx timeout
callback) the RTE shall raise an event of reception timeout to software components as
”data element outdated”. c(SRS_Rte_00147)

[SWS_Rte_05021] d The RTE shall have timeout monitoring disabled for commu-
nications local to the partition, independently of the presence of aliveTimeout.
c(SRS_Rte_00147)

In such case, The RTE does not raise events of reception timeout to software compo-
nents.

Therefore the Software Component shall not rely in its functionality on the time-out
notification, because for local communication the notification will never occur. Time-out
notification is intended as pure error reporting.

[SWS_Rte_02710] d If aliveTimeout is present, and the communication is between
different partitions of the same ECU, time-out monitoring is disabled. Instead, a time-
out notification of the receiver will occur immediately, when the partition of the sender
is stopped and the last correctly received value shall be provided to the software com-
ponents. c(SRS_Rte_00147)

6This attribute is called “LIVELIHOOD” in the VFB specification

230 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Therefore the Software Component shall not rely in its functionality on the time-out
notification, because for local communication the notification will never occur. Time-out
notification is intended as pure error reporting.

[SWS_Rte_03759] d If the aliveTimeout attribute is 0, no timeout monitoring shall
be performed. c(SRS_Rte_00069, SRS_Rte_00147)

[SWS_Rte_05022] d If a time-out has been detected in inter ECU communica-
tion, the value provided from COM shall be provided to the software components.
c(SRS_Rte_00147)

[SWS_Rte_08004] d If a signal is received, even if the signal is marked as invalid, the
time-out for the same signal shall be restarted. c(SRS_Rte_00078, SRS_Rte_00147)

Note: time-out detection may already be implemented by COM. Nevertheless this is
the expected behavior towards the software components.

The time-out support (called “deadline monitoring” in COM) provided by COM has
some restrictions which have to be respected when using this mechanism. Since the
COM module is configured based on the System Description the restrictions mainly
arise from the data element to I-PDU mapping. This already has to be considered
when developing the System Description and the RTE Generator can only provide
warnings when inconsistencies are detected. Therefore the RTE Generator needs to
have access to the configuration information of COM.

In case time-out is enabled on a data element with update bit, there shall
be a separate time-out monitoring for each data element with an update bit
[SWS_Com_00292].

There shall be an I-PDU based time-out for data elements without an update bit
[SWS_Com_00290]. For all data elements without update bits within the same I-PDU,
the smallest configured time-out of the associated data elements is chosen as time-out
for the I-PDU [SWS_Com_00291]. The notification from COM to RTE is performed per
data element.

In case one data element coming from COM needs to be distributed to several
AUTOSAR software-components the AUTOSAR Software Component Template allows
to specify different aliveTimeout values at each Port. Therefore the configurator of
COM has to decide about the aliveTimeout value to be used for the notification of
the time-out to several software-components. This is typically the smallest timeout.

4.3.1.8 Data Element Invalidation

The Software Component template allows to specify whether a data element, de-
fined in an AUTOSAR Interface, can be invalidated by the sender. The communication
infrastructure shall provide means to set a data element to invalid and also indicate an
invalid data element to the receiving software components. This functionality is called
“data element invalidation”. For an overview see figure 4.44.

231 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_05024] d If the handleInvalid attribute of the InvalidationPolicy
(when present) is set to keep or replace the invalidation support for this dataEle-
ment is enabled on sender side. The actual value used to represent the invalid data
element shall be specified in the Data Semantics part of the data element definition
defined in invalidValue7. c(SRS_Rte_00078)

[SWS_Rte_05032] d On receiver side the handleInvalid attribute of the associ-
ated InvalidationPolicy specifies how to handle the reception of the invalid value.
c(SRS_Rte_00078)

Data element invalidation is only supported for data elements with a swIm-
plPolicy different from ’queued’. Configurations violating this constraint are rejected
by the RTE generator, see [SWS_Rte_06727].

[SWS_Rte_06727] d The RTE generator shall reject configurations which are violating
[constr_1219]. c(SRS_Rte_00078)

The API to set a dataElement to invalid shall be provided to the RunnableEntitys
on data element level.

In case an invalidated data element is received a software component can be notified
using the activation of runnable entity. If an invalidated data element is read by the
SW-C the invalid status shall be indicated in the status code of the API.

[SWS_Rte_08005] d If the initValue of an unqueued data element equals the
invalidValue and handleInvalid is set to keep and the handleNever-
Received is set to FALSE, the RTE APIs Rte_Read() and Rte_IStatus()
shall return RTE_E_INVALID until first reception of data element. In this case
the APIs Rte_Read() and Rte_IRead() shall provide the invalidValue.
c(SRS_Rte_00078, SRS_Rte_00184)

[SWS_Rte_08008] d If the initValue of an unqueued data element equals
the invalidValue and handleInvalid is set to keep and the handleNev-
erReceived is not defined, the RTE APIs Rte_Read() and Rte_IStatus()
shall return RTE_E_INVALID until first reception of data element. In this case
the APIs Rte_Read() and Rte_IRead() shall provide the invalidValue.
c(SRS_Rte_00078, SRS_Rte_00184)

[SWS_Rte_08009] d If the initValue of an unqueued data element equals the in-
validValue and handleInvalid is set to keep and the handleNeverReceived
is set to TRUE, the RTE APIs Rte_Read() and Rte_IStatus() shall return
RTE_E_NEVER_RECEIVED until first reception of data element. In this case the APIs
Rte_Read() and Rte_IRead() shall provide the initValue. c(SRS_Rte_00078,
SRS_Rte_00184)

[SWS_Rte_08007] d The RTE Generator shall reject configurations in which the init-
Value of an unqueued data element equals the invalidValue and handleIn-
valid is set to replace. c(SRS_Rte_00078)

7When InvalidationPolicy is set to keep or replace but there is no invalidValue specified
it is considered as an invalid configuration.

232 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_08046] d If the initValue of an unqueued data element equals the in-
validValue and handleInvalid is set to dontInvalidate and the handleN-
everReceived is set to FALSE, the RTE APIs Rte_Read() and Rte_IStatus()
shall return RTE_E_OK until first reception of data element. In this case the APIs
Rte_Read() and Rte_IRead() shall provide the initValue. c(SRS_Rte_00078,
SRS_Rte_00184)

[SWS_Rte_08047] d If the initValue of an unqueued data element equals the in-
validValue and handleInvalid is set to dontInvalidate and the handleN-
everReceived is not defined, the RTE APIs Rte_Read() and Rte_IStatus()
shall return RTE_E_OK until first reception of data element. In this case the APIs
Rte_Read() and Rte_IRead() shall provide the initValue. c(SRS_Rte_00078,
SRS_Rte_00184)

[SWS_Rte_08048] d If the initValue of an unqueued data element equals the in-
validValue and handleInvalid is set to dontInvalidate and the handleN-
everReceived is set to TRUE, the RTE APIs Rte_Read() and Rte_IStatus()
shall return RTE_E_NEVER_RECEIVED until first reception of data element. In
this case the APIs Rte_Read() and Rte_IRead() shall provide the initValue.
c(SRS_Rte_00078, SRS_Rte_00184)

4.3.1.8.1 Data Element Invalidation in case of Inter-ECU communication

Sender:

If data element invalidation is enabled and the communication is Inter-ECU:

• explicit data transmission: data element invalidation will be performed by COM
(COM needs to be configured properly).

• implicit data transmission: data element invalidation will be performed by RTE.

Receiver:

If data element invalidation is enabled and the communication is Inter-ECU
and:

• if all receiving software components requesting the same value for handleIn-
valid attribute of the InvalidationPolicy associated to one dataElement:
data element invalidation will be performed by COM (COM needs to be configured
properly), see [SWS_Rte_05026], [SWS_Rte_05048].

• if the receiving software components requesting different values for handleIn-
valid attribute of the InvalidationPolicy associated to one dataElement:
data element invalidation will be performed by RTE, see [SWS_Rte_07031],
[SWS_Rte_07032]. This can occur in case of 1:n communication where for one
connector a VariableAndParameterInterfaceMapping is applied to two
SenderReceiverInterfaces with different InvalidationPolicys for the
mapped VariableDataPrototype.

233 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_05026] d If a data element has been received invalidated in case of Inter-
ECU communication and the attribute handleInvalid is set to keep for all receiving
software components – the query of the value shall return the value provided by COM
together with an indication of the invalid case. c(SRS_Rte_00078)

[SWS_Rte_08405] d In case of Inter-ECU communication with the attribute han-
dleInvalid set to keep for all receiving software components, the RTE shall
raise a DataReceiveErrorEvent in case of reception of a data element invalid.
c(SRS_Rte_00078)

[SWS_Rte_05048] d If a data element has been received invalidated in case of Inter-
ECU communication and the attribute handleInvalid is set to replace for all re-
ceiving software components – the query of the value shall return the initValue
(ComDataInvalidAction is REPLACE [SWS_Com_00314]). c(SRS_Rte_00078)

[SWS_Rte_08406] d In case of Inter-ECU communication with the attribute han-
dleInvalid set to replace for all receiving software components, in case of re-
ception of a data element invalid, the RTE shall raise a DataReceivedEvent as if a
valid value would have been received. c(SRS_Rte_00078)

[SWS_Rte_07031] d If a data element has been invalidated in case of Inter-ECU com-
munication where receiving software components requesting different values for han-
dleInvalid and the attribute handleInvalid is set to keep for a particular r-port
– the query of the value shall return for the r-port the same value as if COM would
have handled the invalidation (copy COM behavior). c(SRS_Rte_00078)

[SWS_Rte_08407] d In case of Inter-ECU communication where receiving software
components requesting different values for the attribute handleInvalid and this at-
tribute is set to keep for a particular R-Port, in case of reception of a data element
invalid, the RTE shall raise a DataReceiveErrorEvent. c(SRS_Rte_00078)

[SWS_Rte_07032] d If a data element has been received invalidated in case of Inter-
ECU communication where receiving software components requesting different val-
ues for handleInvalid and the attribute handleInvalid is set to replace for an
particular r-port – RTE shall perform the “invalid value substitution” with the init-
Value for the r-port. Then the reception will be handled as if a valid value would
have been received (activation of runnable entities using the DataReceivedEvent).
c(SRS_Rte_00078)

[SWS_Rte_08049] d If a data element has been received invalidated in case of Inter-
ECU communication and the attribute handleInvalid is set to dontInvalidate –
the query of the value shall return the value provided by COM. Then the reception will
be handled as if a valid value would have been received (activation of runnable entities
using the DataReceivedEvent). c(SRS_Rte_00078)

4.3.1.8.2 Data Element Invalidation in case of Intra-ECU communication

Sender:

234 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_05025] d If data element invalidation is enabled, and the com-
munication is Intra-ECU, data element invalidation can be implemented by the RTE
c(SRS_Rte_00078)

In case of implicit data transmission the RTE shall always implement the data element
invalidation and therefore provide an API to set the data element’s value to the invalid
value. The actual invalid value is specified in the SW-C template invalidValue.

Receiver:

[SWS_Rte_05030] d If a data element has been invalidated in case of Intra-ECU com-
munication and the attribute handleInvalid is set to keep – the query of the value
shall return the same value as if COM would have handled the invalidation (copy COM
behavior). Then the reception of the invalid value will be handled as an error and the ac-
tivation of runnable entities can be performed using the DataReceiveErrorEvent.
c(SRS_Rte_00078)

[SWS_Rte_05049] d If a data element has been received invalidated in case of Intra-
ECU communication and the attribute handleInvalid is set to replace – RTE shall
perform the “invalid value substitution” with the initValue. Then the reception will
be handled as if a valid value would have been received (activation of runnable entities
using the DataReceivedEvent). c(SRS_Rte_00078)

[SWS_Rte_08050] d If a data element has been received invalidated in case of Intra-
ECU communication and the attribute handleInvalid is set to dontInvalidate
– the query of the value shall return the received value. Then the reception will be
handled as if a valid value would have been received (activation of runnable entities
using the DataReceivedEvent). c(SRS_Rte_00078)

4.3.1.9 Filters

By means of the filter attribute [SRS_Rte_00121] an additional filter layer can be
added on the receiver side of unqueued S/R-Communication. Value-based filters can
be defined, i.e. only signal values fulfilling certain conditions are made available for the
receiving component. The possible filter algorithms are taken from OSEK COM version
3.0.2. They are listed in the meta model (see [2]. According to the SW-C template [2],
filters are only allowed for signals that are compatible to C language unsigned integer
types (i.e. characters, unsigned integers and enumerations). Thus, filters cannot be
applied to composite data types like for instance ApplicationRecordDataType or
ApplicationArrayDataType.

[SWS_Rte_05503] d The RTE shall provide value-based filters on the receiver-
side of unqueued S/R-Communication as specified in the SW-C template [2].
c(SRS_Rte_00121)

[SWS_Rte_05500] d For inter-ECU communication, the RTE shall use the filter im-
plementation of the COM layer [SRS_Rte_00121]. For intra-ECU and inter-Partition
communication, the RTE can use the filter implementation of COM, but may also im-

235 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

plement the filters itself for efficiency reasons, without using COM. c(SRS_Rte_00019,
SRS_Rte_00121)

[SWS_Rte_05501] d The RTE shall support a different filter specification for each
dataElement in a component’s AUTOSAR interface. c(SRS_Rte_00121)

[SWS_Rte_08077] d In case that filtering applies the input value shall be calculated
from the "unfiltered buffer" before the RunnableEntity starts, the result of the filter
calculation shall be stored in a "filtered buffer" and the RunnableEntity accessing
a dataElement in a Receiver Port with a filter shall get access to the "filtered buffer"
instead of the "unfiltered buffer". c(SRS_Rte_00121)

[SWS_Rte_08078] d For optimization reasons no "filtered buffer" should be provided,
if filtering applies for a dataElement and the "unfiltered buffer" is not used at all. The
"unfiltered buffer" should be used for filtering instead. c(SRS_Rte_00121)

[SWS_Rte_08079] d Separate "filtered buffers" shall be provided, if the same
dataElement is accessed by RunnableEntitys via different Receiver Ports and
filters with different semantics are applied in each Port. c(SRS_Rte_00121)

4.3.1.10 Buffering

[SWS_Rte_02515] d The buffering of sender-receiver communication shall be done
on the receiver side. This does not imply that COM does no buffering on the sender
side. On the receiver side, two different approaches are taken for the buffering of
‘data’ and of ‘events’, depending on the value of the software implementation policy.
c(SRS_Rte_00110)

4.3.1.10.1 Last-is-Best-Semantics for ‘data’ Reception

[SWS_Rte_02516] d On the receiver side, the buffering of ‘data’ (swImplPolicy not
queued) shall be realized by the RTE by a single data set for each data element
instance. c(SRS_Rte_00107)

The use of a single data set provides the required semantics of a single element queue
with overwrite semantics (new data replaces old). Since the RTE is required to ensure
data consistency, the generated RTE should ensure that non-atomic reads and writes
of the data set (e.g. for composite data types) are protected from conflicting concurrent
access. RTE may use lower layers like COM to implement the buffer.

[SWS_Rte_02517] d The RTE shall initialize this data set [SWS_Rte_02516] with a
startup value depending on the ports attributes and if the general initialization condi-
tions in [SWS_Rte_07046] are fulfilled. c(SRS_Rte_00068, SRS_Rte_00108)

[SWS_Rte_02518] d Implicit or explicit read access shall always return the last re-
ceived data. c(SRS_Rte_00107)

236 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Requirement [SWS_Rte_02518] applies whether or not there is a DataReceivedE-
vent referencing the VariableDataPrototype for which the API is being gener-
ated.

[SWS_Rte_02519] d Explicit read access shall be non blocking in the sense that it
does not wait for new data to arrive. The RTE shall provide mutual exclusion of read
and write accesses to this data, e.g., by ExclusiveAreas. c(SRS_Rte_00109)

[SWS_Rte_02520] dWhen new data is received, the RTE shall silently discard the pre-
vious value of the data, regardless of whether it was read or not. c(SRS_Rte_00107)

4.3.1.10.2 Queueing for ‘event’ Reception

The application of event semantics implies a state change. Events usually have
to be handled. In many cases, a loss of events can not be tolerated. Hence the
swImplPolicy is set to queued to indicate that the received ‘events’ have to be
buffered in a queue.

[SWS_Rte_02521] d The RTE shall implement a receive queue for each event-like data
element (swImplPolicy = queued) of a receive port. c(SRS_Rte_00107)

The queueLength attribute of the QueuedReceiverComSpec referencing the event
assigns a constant length to the receive queue.

[SWS_Rte_02522] d The events shall be written to the end of the queue and
read (consuming) from the front of the queue (i.e. the queue is first-in-first-out).
c(SRS_Rte_00107, SRS_Rte_00110)

[SWS_Rte_02523] d If a new event is received when the queue is already filled,
the RTE shall discard the received event and set an error flag. c(SRS_Rte_00107,
SRS_Rte_00110)

[SWS_Rte_02524] d The error flag described in [SWS_Rte_02523] shall be reset
during the next explicit read access on the queue. In this case, the status value
RTE_E_LOST_DATA shall be presented to the application together with the data.
c(SRS_Rte_00107, SRS_Rte_00110, SRS_Rte_00094)

[SWS_Rte_02525] d If an empty queue is polled, the RTE shall return with a sta-
tus RTE_E_NO_DATA to the polling function, (see chap. 5.5.1). c(SRS_Rte_00107,
SRS_Rte_00110, SRS_Rte_00094)

The minimum size of the queue is 1.

[SWS_Rte_02526] d The RTE generator shall reject a queueLength attribute of
an QueuedReceiverComSpec with a queue length ≤ 0. c(SRS_Rte_00110,
SRS_Rte_00018)

237 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4.3.1.10.3 Queueing of mode switches

The communication of mode switch notifications is typically event driven. Ac-
cordingly, RTE offers a similar queueing mechanism as for the ’queued’ sender receiver
communication, described above.

[SWS_Rte_02718] d The RTE shall implement a receive queue for the mode switch
notifications of each mode machine instance. c(SRS_Rte_00107)

The queueLength attribute of the ModeSwitchSenderComSpec referencing the
mode machine instance, assigns a constant length to the receive queue. In con-
trast to the event communication, for mode switch communication, the length is asso-
ciated with the sender side, the mode manager, because it is unique for the mode
machine instance.

[SWS_Rte_02719] d The mode switch notification shall be written to the end
of the queue and read (consuming) from the front of the queue (i.e. the queue is
first-in-first-out). c(SRS_Rte_00107, SRS_Rte_00110)

[SWS_Rte_02720] d If a new mode switch notification is received when
the queue is already filled, the RTE shall discard the received notification.
c(SRS_Rte_00107, SRS_Rte_00110) In this case, Rte_Switch will return an error,
see [SWS_Rte_02675].

[SWS_Rte_02721] d RTE shall dequeue a mode switch notification, when the
mode switch is completed. c(SRS_Rte_00107, SRS_Rte_00110, SRS_Rte_00094)

The minimum size of the queue is 1.

[SWS_Rte_02723] d The RTE generator shall reject a queueLength attribute of
an ModeSwitchSenderComSpec with a queue length ≤ 0. c(SRS_Rte_00110,
SRS_Rte_00018)

In case of a queue length of 1, RTE will reject new mode switch notifications during the
mode transition.

4.3.1.11 Operation

4.3.1.11.1 Inter-ECU Mapping

This section describes the mapping from VariableDataPrototypes to COM signals
or COM signal groups for sender-receiver communication. The mapping is described in
the input of the RTE generator, in the DataMapping section of the System Template [8].

If a VariableDataPrototype is mapped to a COM signal or COM signal group but
the communication is local, the RTE generator can use the COM signal/COM signal
group for the transmission or it can use its own direct implementation of the communi-
cation for the transmission.

238 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4.3.1.11.1.1 Primitive Data Types

[SWS_Rte_04504] d If a data element is a primitive type and the communication is
inter-ECU, the DataMappings element shall contain a mapping of the data element to
at least one COM signal, else the missing data mapping shall be interpreted as an
unconnected port. c(SRS_Rte_00091)

The mapping defines all aspects of the signal necessary to configure the communica-
tion service, for example, the network signal endianess and the communication bus.
The RTE generator only requires the COM signal handle id since this is necessary for
invoking the COM API.

[SWS_Rte_04505] d The RTE shall use the ComHandleId of the corresponding Com-
Signal when invoking the COM API for signal. c(SRS_Rte_00091)

The actual COM handle id has to be gathered from the ECU configuration of the COM
module. The input information ComSignalHandleId is used to establish the link
between the ComSignal of the COM module’s configuration and the corresponding
ISignal of the System Template.

4.3.1.11.1.2 Composite Data Types

When a data element is a composed type the RTE is required to perform more complex
actions to marshall the data [SRS_Rte_00091] than is the case for primitive data types.

The DataMappings element of the ECU configuration contains (or reference) sufficient
information to allow the data item or operation parameters to be transmitted. The
mapping indicates the COM signals or signal groups to be used when transmitting
a given data item of a given port of a given software component instance within the
composition.

[SWS_Rte_04506] d If a data element is a composite data type and the communication
is inter-ECU, the DataMappings element shall contain a mapping of the data element
to COM signals such that each element of the composite data type that is a primitive
data type is mapped to a separate COM signal(s), else the missing data mapping shall
be interpreted as an unconnected port. c(SRS_Rte_00091)

[SWS_Rte_04507] d If a data element is typed by a composite data type and the
communication is inter-ECU, the DataMappings element shall contain a mapping of
the data element to COM signals such that each element of the composite data type
that is itself a composite data type shall be recursively mapped to a primitive type and
hence to a separate COM signal(s). c(SRS_Rte_00091)

The above requirements have two key features; firstly, COM is responsible for endian-
ness conversion (if any is required) of primitive types and, secondly, differing structure
member alignment between sender and receiver is irrelevant since the COM signals
are packed into I-PDUs by the COM configuration.

239 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

The DataMappings shall contain sufficient COM signals to map each primitive element8

of the AUTOSAR signal.

[SWS_Rte_04508] d The RTE generator shall reject configuration violating the con-
straint [constr_3059]. c(SRS_Rte_00091)

[SWS_Rte_02557] d

1. Each signal that is mapped to an element of the same composite data item shall
be mapped to the same signal group.

2. If two signals are not mapped to an element of the same composite data item,
they shall not be mapped to the same signal group.

3. If a signal is not mapped to an element of a composite data item, it shall not be
mapped to a signal group.

c(SRS_Rte_00091)

[SWS_Rte_05081] d The RTE shall use the ComHandleId of the corresponding Com-
SignalGroup when invoking the COM API for signal groups. c(SRS_Rte_00091)

[SWS_Rte_05173] d The RTE shall use the ComHandleId of the corresponding Com-
GroupSignal when invoking the COM API for shadow signals. c(SRS_Rte_00091)

The actual COM handle id has to be gathered from the ECU configuration of the COM
module. The input information ComHandleId is used to establish the link between the
ComSignalGroup of the COM module’s configuration and the corresponding ISig-
nalGroup of the System Template.

The input information ComHandleId of shadow signals is used to establish the link be-
tween the ComGroupSignal of the COM module’s configuration and the correspond-
ing ISignal of the System Template.

4.3.1.11.2 Atomicity

[SWS_Rte_04527] d The RTE is required to treat AUTOSAR signals transmitted using
sender-receiver communication atomically [SRS_Rte_00073]. To achieve this the “sig-
nal group” mechanisms provided by COM shall be utilized. See [SWS_Rte_02557] for
the mapping. c(SRS_Rte_00019, SRS_Rte_00073, SRS_Rte_00091)

The RTE decomposes the composite data type into single signals as de-
scribed above and passes them to the COM module by using the COM API
call Com_SendSignal (if parameter RteUseComShadowSignalApi is FALSE) or
Com_UpdateShadowSignal (if parameter RteUseComShadowSignalApi is TRUE).
As this set of single signals has to be treated as atomic, it is placed in a “signal group”.
A signal group has to be placed always in a single I-PDU. Thus, atomicity is estab-

8An AUTOSAR signal that is a primitive data type contains exactly one one primitive element whereas
a signal that is a composite data type one or more primitive elements.

240 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

lished. When all signals have been updated, the RTE initiates transmission of the
signal group by using the COM API call Com_SendSignalGroup.

As would be expected, the receiver side is the exact reverse of the transmission
side: the RTE must first call Com_ReceiveSignalGroup precisely once for the sig-
nal group and then call Com_ReceiveSignal (if parameter RteUseComShadowSig-
nalApi is FALSE) or Com_ReceiveShadowSignal (if parameter RteUseComShad-
owSignalApi is TRUE) to extract the value of each signal within the signal group.

A signal group has the additional property that COM guarantees to inform the receiver
by invoking a call-back about its arrival only after all signals belonging to the signal
group have been unpacked into a shadow buffer.

4.3.1.11.3 Fan-out

Fan-out can be divided into two scenarios; PDU fanout where the same I-PDU is sent
to multiple destinations and signal fan-out where the same signal, i.e. data element is
sent in different I-PDUs to multiple receivers.

For Inter-ECU communication, the RTE does not perform PDU fan-out. Instead, the
RTE invokes Com_SendSignal once for a primitive data element and expects the fan-
out to multiple PDU destinations to occur lower down in the AUTOSAR communication
stack. However, it is necessary for the RTE to support signal fan-out since this cannot
be performed by any lower level layer of the AUTOSAR communication stack.

The data mapping in the System Template[8] is based on the SystemSignal and
SystemSignalGroup. The COM module however uses the ISignal and ISignal-
Group counterparts (ComSignal, ComSignalGroup, ComGroupSignal) to define
the COM API. The RTE Generator needs to identify whether there are several ISig-
nal or ISignalGroup elements defined for the SystemSignal or SystemSignal-
Group and implement the fan-out accordingly. Then the corresponding elements in
the COM ecu configuration (ComSignal, ComSignalGroup, ComGroupSignal) are
required to establish the interaction between Rte and COM.

[SWS_Rte_06023] d For inter-ECU transmission of a primitive data type, the RTE shall
invoke Com_SendSignal for each ISignal to which the primitive data element is
mapped. c(SRS_Rte_00019, SRS_Rte_00028)

For the invocation the ComHandleId from the ComSignal of COM’s ecu configuration
shall be used (see [SWS_Rte_04505]).

If the data element is typed by a composite data type, RTE invokes
Com_SendSignal (if parameter RteUseComShadowSignalApi is FALSE) or
Com_UpdateShadowSignal (if parameter RteUseComShadowSignalApi is TRUE)
for each primitive element (ISignal) in the composite data type and each COM sig-
nal to which that primitive element is mapped, and Com_SendSignalGroup for each
ISignalGroup to which the data element is mapped.

241 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_04526] d For inter-ECU transmission of composite data type, the RTE shall
invoke Com_SendSignal (if parameter RteUseComShadowSignalApi is FALSE) or
Com_UpdateShadowSignal (if parameter RteUseComShadowSignalApi is TRUE)
for each ISignal to which an element in the composite data type is mapped and
Com_SendSignalGroup for each ISignalGroup to which the composite data ele-
ment is mapped. c(SRS_Rte_00019, SRS_Rte_00028)

For the invocation the ComHandleId from the ComGroupSignal and ComSig-
nalGroup of COM’s ecu configuration shall be used (see [SWS_Rte_05173] and
[SWS_Rte_05081]).

For intra-ECU transmission of data elements, the situation is slightly different; the RTE
handles the communication (the lower layers of the AUTOSAR communication stack
are not used) and therefore must ensure that the data elements are routed to all re-
ceivers. For inter-partition communication, RTE may use the IOC.

[SWS_Rte_06024] d For inter-partition transmission of data elements, the RTE
shall perform the fan-out to each receiver. c(SRS_Rte_00019, SRS_Rte_00028)

4.3.1.11.4 Fan-in

When receiving data from multiple senders in inter-ECU communication, either the
RTE on the receiver side has to collect data received in different COM signals or COM
signal groups and pass it to one receiver or the RTE on the sender side has to pro-
vide shared access to a COM signal or COM signal group to multiple senders. The
receiver RTE, which has to handle multiple COM signals or signal groups, is notified
about incoming data for each COM signal or COM signal group separately but has
to ensure data consistency when passing the data to the receiver. The sender RTE,
which has to handle multiple senders sharing COM signals or signal groups, has to
ensure consistent access to the COM API, since COM API calls for the same signal
are not reentrant.

[SWS_Rte_03760] d If multiple senders use different COM signals or signal groups
for inter-ECU transmission of a data element prototype with swImplPolicy different
from queued to a receiver, the RTE on the receiver side has to pass the last received
value to the receiver component while ensuring data consistency. c(SRS_Rte_00019,
SRS_Rte_00131)

[SWS_Rte_03761] d If multiple senders use different COM signals or signal groups
for inter-ECU transmission of a data element prototype with event semantics to a
receiver, the RTE on the receiver side has to queue all incoming values while ensuring
data consistency. c(SRS_Rte_00019, SRS_Rte_00131)

[SWS_Rte_03762] d If multiple senders share COM signals or signal groups for inter-
ECU transmission of a data element prototype to a receiver, the RTE on the sender
side shall ensure that the COM API for those signals is not invoked concurrently.
c(SRS_Rte_00019, SRS_Rte_00131)

242 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4.3.1.11.5 Sequence diagrams of Sender Receiver communication

Figure 4.36 shows a sequence diagram of how Sender Receiver communication for
data transmission and non-blocking reception may be implemented by RTE. The se-
quence diagram also shows the Rte_Read API behavior if an initValue is specified.

Sender

Application

Sender's RTE Sender's COM

Network

Receiver's COM

Receiver's RTE Receiver

application

(3) init value is

stored in the

receiver's OUT

parameter.

(7) The last

received data item

a is stored in the

receiver's OUT

parameter

Inter-ECU communication

Explicit Sender-Receiver communication:

Port name = p

Data element name = a

VariableDataPrototype with a standard swImplPolicy (Data distribution)

The sender VariableDataPrototype is referenced by a VariableAccess in

role dataSendPoint

The receiver VariableDataPrototype is referenced by a VariableAccess

in role dataReceivePointByArgument

(5) RTE receives the data item a from

COM and replace the previous value in

the RTE buffer for data item a.

Note! The callback must block the

RTERead_p_a call.

(1) The initValue is

stored in the RTE

buffer allocated for

data item a.

(4) The received data item is

copied to the COM buffer for

data item a and the notification

callback provided by RTE is

invoked.

(2) The buffer for data

item a is copied to the

receiver's OUT

parameter.

(6) The buffer for data

item a is copied to the

receiver's OUT

parameter.

Rte_Read_p_a

RTE_E_OK

Rte_Write_p_a

Com_SendSignal

E_OK

RTE_E_OK

Rte_COMCbk_<sn>

Com_ReceiveSignal

E_OK

Rte_Read_p_a

RTE_E_OK

Figure 4.36: Sender Receiver communication with data semantics and dataReceive-
PointByArgument as reception mechanism

243 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Figure 4.37 shows a sequence diagram of how Sender Receiver communication for
event transmission and non-blocking reception may be implemented by RTE. The se-
quence diagram shows the Rte_Receive API behavior when the queue is empty.

Sender

Application

Sender's RTE Sender's COM

Netwok

Receiver's COM

Receiver's RTE Receiver

application

(2) The RTE - queue for event

p_e is empty =>

RTE_E_NO_DATA is returned

to Receiver application.

Inter-ECU communication

Explicit Sender-Receiver communication:

Port name = p

Data element name = e

VariableDataPrototype with a queued swImplPolicy (Event distribution)

The sender VariableDataPrototype is referenced by a VariableAccess in role dataSendPoint

The receiver VariableDataPrototype is referenced by a VariableAccess in role dataReceivePointByArgument

No WaitPoint is referencing the DataReceivedEvent that references the VariableDataPrototype (non-blocking

reception)

(6) The received

event item a is

stored in the

receiver's OUT

parameter

(1) The RTE -

queue for event

p_e is initialized

(flushed).

(4) RTE receives the

event item e from COM

and puts it into the RTE -

queue for event e.

(3) The receiver's COM

invokes the callback

function provided by RTE.

(5) RTE fetches an event

from the event e queue

and copies it to the

Receiver's OUT

parameter.

Rte_Receive_p_e

RTE_E_NO_DATA

Rte_Send_p_e

Com_SendSignal

E_OK

RTE_E_OK

Rte_COMCbk_<sn>

Com_ReceiveSignal

E_OK

Rte_Receive_p_e

RTE_E_OK

Figure 4.37: Sender Receiver communication with event semantics and dataReceive-
PointByArgument as reception mechanism

244 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Figure 4.38 shows a sequence diagram of how Sender Receiver communication for
event transmission and activation of runnable entity on the receiver side may be imple-
mented by RTE.

Sender

Application

Sender's RTE Sender's COM

Netwok

Receiver's COM

Receiver's RTE Receiver

runnable

(4) RTE fetches an event

from the event e queue

and calls the receiver's

runnable. (5) The task is

completed

(3) The AUTOSAR

OS task that wil l

execute the receiver's

runnable is started.

(1) The receiver's COM

invokes the callback

function provided by RTE.

Inter-ECU communication

Port name = p

Data element name = e

VariableDataPrototype with a queued swImplPolicy (Event distribution)

The sender VariableDataPrototype is referenced by a VariableAccess in

role dataSendPoint

The receiver VariableDataPrototype is referenced by a

DataReceivedEvent which in turn references the receiver

RunnableEntity.

(2) RTE receives the

event item e from COM

and puts it into the RTE

- queue for event e.

Rte_Send_p_e

Com_SendSignal

E_OK

RTE_E_OK

Rte_COMCbk_<sn>

Com_ReceiveSignal

E_OK

Activate an OSEK Task

ReceiversRunnable

Figure 4.38: Sender Receiver communication with event semantics and activation of
runnable entity as reception mechanism

4.3.1.12 “Never received status” for Data Element

The Software Component template allows specifying whether an unqueued data, de-
fined in an AUTOSAR Interface, has been updated since system start (or partition
restart) or not. This additional optional status establishes the possibility to check
whether a data element has been changed since system start (or partition restart).

[SWS_Rte_07381] d On receiver side the handleNeverReceived attribute of the
NonqueuedReceiverComSpec shall specify the handling of the never received sta-
tus. c(SRS_Rte_00184)

[SWS_Rte_07382] d The initial status of the data elements with the attribute handleN-
everReceived set to TRUE shall be RTE_E_NEVER_RECEIVED. c(SRS_Rte_00184)

245 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_07383] d The initial status of the data elements with the attribute han-
dleNeverReceived set to TRUE shall be cleared when the first reception occurs.
c(SRS_Rte_00184)

[SWS_Rte_07645] d The status of data elements shall be reset on the re-
ceiver side to RTE_E_NEVER_RECEIVED when the receiver’s partition is restarted.
c(SRS_Rte_00184, SRS_Rte_00224)

4.3.1.13 “Update flag” for Data Element

The Software Component template allows specifying whether an unqueued data, de-
fined in an AUTOSAR Interface, has been updated since last read or not. This addi-
tional optional status establishes the possibility to check, whether a data element has
been updated since last read.

On receiver side the “enableUpdate” attribute of the NonqueuedReceiverComSpec
has to activate the handling of the update flag.

[SWS_Rte_07385] d The RTE shall provide one update flag per dataElement
in a RPortPrototype where the “enableUpdate” attribute of the Nonqueue-
dReceiverComSpec is set to true and where at least one RunnableEntity defines
a VariableAccess in the dataReceivePointByArgument or dataReceive-
PointByValue role. c(SRS_Rte_00179)

[SWS_Rte_07386] d The update flag of the data elements configured with the “en-
ableUpdate” attribute shall be set by receiving new data from COM or from a local
software-conponent. c(SRS_Rte_00179)

[SWS_Rte_07387] d The update flag of a particular dataElement in a RPortPro-
totype shall be cleared after each read by Rte_Read or Rte_DRead of the data
element. c(SRS_Rte_00179)

Please note that the "UpdateFlag" for dataElements is only available for explicit com-
munication, see see [SWS_Rte_07391].

[SWS_Rte_07689] d The update flag shall be cleared when the RTE is started or when
the partition of the software-component is restarted. c(SRS_Rte_00179)

The update flag can be queried by the Rte_IsUpdated API, see 5.6.34.

4.3.1.14 Dynamic data type

Dynamic data are data whose length varies at runtime.

This includes:

• arrays with variable number of elements

• structures including arrays with variable number of elements

246 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

This excludes:

• structures including variable number of elements

The length of the dynamic data is accessed thanks to the optional parameter
<length> of the RTE APIs for communication. See chapter 5 for more information.

In case of inter-ECU communication, dynamic data are mapped to dynamic signals
and received/transmitted through the TP by the COM stack.

With the current release of SWS_COM, COM limits the dynamic signals to the Com-
SignalType UINT_8DYN (see the requirement COM569).

In order to respect the VFB concept the capability of inter-ECU and intra-ECU commu-
nication should be equal. So it has been decided to extend these limitation from COM
also to the intra-ECU communication. As a consequence the only one dynamic data
type supported by the RTE is the type uint8[n] whatever the communication is intra or
inter-ECU. See [SWS_Rte_07810].

4.3.1.15 Inter-ECU communication through TP

Inter-ECU communication can be configured in COM to be supported by the TP. This
is especially necessary if:

• Size of the signal exceed the size of the L-PDU (large signals)

• Size of the signal group exceed the size of the L-PDU

• Size of the signal varies at runtime (dynamic signals)

In the current release of SWS_COM, COM APIs to access signal values might return
the error code COM_BUSY for the signals mapped to N-PDU. This error code indicates
that the access to the signal value has failed (internally rejected by COM) and should
be retried later. This situation might only be possible when the transmission or the
reception of the corresponding PDU is in progress in COM at the time the access to
the signal value is requested.

This is a problem for the handling of data with data semantic (last is best behavior)
because:

• "COM_BUSY like" errors are not compatible with real time systems that should
have predictable response time.

• Forwarding this error code to the application implies that every applications
should handle it (implement a retry) even if it will never comes (data is not be
mapped to N-PDU).

• Error code can not be forwarded to the application in case of direct read or implicit
write.

247 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

This is not a problem for the handling of data with event semantic (queued behav-
ior) because:

• The COM_BUSY error should not be possible during the execution of COM call-
backs (Rx indication and Tx confirmation) that can be used by the RTE to handle
the queue.

• Data are queued internally by RTE and accessible at any time by the application.

Note: First point is especially true if the ComIPduSignalProcessing is configured
as IMMEDIATE. But if the ComIPduSignalProcessing is configured as DEFFERED
and 2 events are closely received, it is possible that at the time the RTE tries to access
the corresponding COM signal the second event reception has already started. In this
case the RTE will received COM_BUSY and the event will be lost but it is more a
problem of configuration than a limitation from COM.

As a consequence it has been decided to limit the data mapped to N-PDU to the event
semantic (queued behavior). See [SWS_Rte_07811].

Note: As the data mapping is not mandatory for the RTE contract phase, it is possible
that a configuration is accepted at contract phase but rejected at generation phase
when the data mapping is known.

Dynamic data are always mapped to N-PDU in case of inter-ECU communication. So
in order to avoid such situation (late rejection at generation phase) and in order to
respect the VFB concept (intra and inter-ECU should be equal) it has been decided
to extend this limitation to every dynamic data whatever the communication is intra or
inter-ECU. See [SWS_Rte_07812].

4.3.1.16 Inter-ECU communication of arrays of bytes

Generally the communication of arrays in the case of inter-ECU communication
must make use of the signal group mechanisms to send an array to COM.
This implies sending each array element to a shadow buffer in COM (with
Com_SendSignal() API, if parameter RteUseComShadowSignalApi is FALSE or
Com_UpdateShadowSignal() API, if parameter RteUseComShadowSignalApi is
TRUE), and in the end send the signal group (with Com_SendSignalGroup() API).

An exception to this general rule is for arrays of bytes. In this case, the RTE shall use
the native COM interface to send directly the data.

[SWS_Rte_07408] d The RTE shall use the Com_SendSignal or
Com_ReceiveSignal APIs to send or receive fixed-length arrays of bytes.
c(SRS_Rte_00231)

[SWS_Rte_07817] d The RTE shall use the Com_SendDynSignal or
Com_ReceiveDynSignal APIs to send or receive variable-length arrays of bytes.
c(SRS_Rte_00231)

248 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4.3.1.17 Handling of acknowledgment events

As a general rule, the acknowledgment events DataWriteCompletedEvent and
DataSendCompletedEvent shall be raised immediately after the sending to all re-
ceivers has been performed and in case of Inter-ECU communication all acknowledg-
ments from COM have been received. As part of the implementation detailed rules for
the following communication scenarios have to be considered:

Intra-Partition communication

[SWS_Rte_08017] d For intra-partition communication with implicit dataWriteAc-
cess the DataWriteCompletedEvent shall be fired if and only if a task ter-
minates and the write-back copy actions to the global RTE-buffer are completed.
The transmission status shall be RTE_E_TRANSMIT_ACK and can be collected with
Rte_IFeedback API. c(SRS_Rte_00122)

[SWS_Rte_08043] d For intra-partition communication with incoherent implicit
dataWriteAccess no write-back copy actions to a global RTE-buffer will be
performed, if the involved runnables are all running in one preemption area.
In this case the DataWriteCompletedEvent shall be fired after the termina-
tion of the last sending runnable in the sending task. The transmission status
shall be RTE_E_TRANSMIT_ACK and can be collected with Rte_IFeedback API.
c(SRS_Rte_00122)

[SWS_Rte_08018] d For intra-partition communication with explicit dataSendPoint
the DataSendCompletedEvent shall be fired if and only if the sending to all receivers
has been performed. The transmission status shall be RTE_E_TRANSMIT_ACK and
can be collected with Rte_Feedback API. c(SRS_Rte_00122)

Inter-Partition communication

[SWS_Rte_08020] d For inter-partition communication with implicit dataWriteAc-
cess the DataWriteCompletedEvent shall be fired if and only if a task terminates
and the write-back copy actions to the global RTE-buffer are completed. In addition
the execution of the data write operations at the data receiver partitions must have
taken place. Thereby the return status of the IOC for the different write operations can
be neglected. The transmission status shall be RTE_E_TRANSMIT_ACK and can be
collected with Rte_IFeedback API. c(SRS_Rte_00122)

[SWS_Rte_08044] d For inter-partition communication with incoherent implicit
dataWriteAccess no write-back copy actions to a global RTE-buffer will be per-
formed, if the involved runnables are all running in one preemption area. In this
case the DataWriteCompletedEvent shall be fired after the termination of the last
sending runnable in the sending task and after the execution of the data write oper-
ations at the data receiver partitions have taken place. Thereby the return status of
the IOC for the different write operations can be neglected. The transmission sta-
tus shall be RTE_E_TRANSMIT_ACK and can be collected with Rte_IFeedback API.
c(SRS_Rte_00122)

249 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_08021] d For inter-partition communication with explicit dataSendPoint
the DataSendCompletedEvent shall be fired if and only if the sending to all
receivers has been performed and the execution of the data write operations at
the data receiver partitions have taken place. Thereby the return status of the
IOC for the different write operations can be neglected. The transmission status
shall be RTE_E_TRANSMIT_ACK and can be collected with Rte_Feedback API.
c(SRS_Rte_00122)

Inter-ECU communication

[SWS_Rte_08022] d For inter-ECU communication with implicit dataWriteAccess
the DataWriteCompletedEvent shall be fired if and only if a task terminates and
the write-back copy actions to the global RTE-buffer are completed. In addition the
transmission acknowledgment from COM must be complete, i.e. the acknowledgment
has been received and in case of RTE-fanout all acknowledgments have been received.
The transmission status shall be RTE_E_TRANSMIT_ACK and can be collected with
Rte_IFeedback API. c(SRS_Rte_00122)

[SWS_Rte_08045] d For inter-ECU communication with incoherent implicit
dataWriteAccess no write-back copy actions to a global RTE-buffer will be per-
formed, if the involved runnables are all running in one preemption area. In this
case the DataWriteCompletedEvent shall be fired after the termination of the
last sending runnable in the sending task and after the transmission acknowledg-
ment from COM is complete, i.e. the acknowledgment has been received and in
case of RTE-fanout all acknowledgments have been received. The transmission sta-
tus shall be RTE_E_TRANSMIT_ACK and can be collected with Rte_IFeedback API.
c(SRS_Rte_00122)

[SWS_Rte_08023] d For inter-ECU communication with explicit dataSendPoint the
DataSendCompletedEvent shall be fired if and only if the sending to all receivers
has been performed and the transmission acknowledgment from COM is complete,
i.e. the acknowledgment has been received and in case of RTE-fanout all acknowledg-
ments have been received. The transmission status shall be RTE_E_TRANSMIT_ACK
and can be collected with Rte_Feedback API. c(SRS_Rte_00122)

250 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4.3.2 Client-Server

4.3.2.1 Introduction

Client-server communication involves two entities, the client which is the requirer (or
user) of a service and the server that provides the service.

The client initiates the communication, requesting that the server performs a ser-
vice, transferring a parameter set if necessary. The server, in the form of the RTE,
waits for incoming communication requests from a client, performs the requested
service and dispatches a response to the client’s request. So, the direction of initia-
tion is used to categorize whether a AUTOSAR software-component is a client or a
server.

A single component can be both a client and a server depending on the software
realization.

The invocation of a server is performed by the RTE itself when a request is made by
a client. The invocation occurs synchronously with respect to the RTE (typically via
a function call) however the client’s invocation can be either synchronous (wait for
server to complete) or asynchronous with respect to the server.

Note: servers which have an asynchronous operation (i.e. they accept a request
and another provide a feedback by invoking a server of the caller) should be avoided
as the RTE does not know the link between these 2 client-server communications. In
particular, the server should have no OUT (or INOUT) parameters because the RTE
cannot perform the copy of the result in the caller’s environment when the request was
processed.

[SWS_Rte_06019] d The only mechanism through which a server can be invoked is
through a client-server invocation request from a client. c(SRS_Rte_00029)

The above requirement means that direct invocation of the function implementing the
server outside the scope of the RTE is not permitted.

A server has a dedicated provide port and a client has a dedicated require port.
To be able to connect a client and a server, both ports must be categorized by the
same interface.

The client can be blocked (synchronous communication) respectively non-blocked
(asynchronous communication) after the service request is initiated until the response
of the server is received.

A server implemented by a RunnableEntity with attribute canBeInvokedCon-
currently set to FALSE is not allowed to be invoked concurrently and since a
server can have one or more clients the server may have to handle concur-
rent service calls (n:1 communication) the RTE must ensure that concurrent calls do
not interfere.

251 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_04515] d The RTE shall ensure that call serialization9 of the operation is en-
forced when the server runnable attribute canBeInvokedConcurrently is FALSE.
c(SRS_Rte_00019, SRS_Rte_00033)

Note that the same server may be called using both synchronous and asynchronous
communication.

Note also that even when canBeInvokedConcurrently is FALSE, an Atomic-
SwComponentType might be instantiated multiple times. In this case, the implemen-
tation of the RunnableEntity can still be invoked concurrently from several tasks.
However, there will be no concurrent invocations of the implementation with the same
instance handle.

[SWS_Rte_04516] d The RTE’s implementation of the client-server communication
shall ensure that a service result is dispatched to the correct client if more than one
client uses a service. c(SRS_Rte_00019, SRS_Rte_00080)

The result of the client/server operation can be collected using “wake up of wait point”,
“explicit data read access” or “activation of runnable entity”.

[SWS_Rte_07409] d The RTE generator shall support the optimization of a client-
server call to a direct function call without interaction with the RTE or the communica-
tion services, at least when the following conditions are true:

• the server runnable’s property canBeInvokedConcurrently is set to TRUE

• the client and server execute in the same partition, i.e. intra-partition
Client-Server communication

• the ServerCallPoint is Synchronous

• the OperationInvokedEvent is not mapped to an OsTask

c

Note: In case the conditions in [SWS_Rte_04522] are fulfilled the RTE Generator may
implement a client-server call with a direct function call, even when the server runn-
able’s property canBeInvokedConcurrently is set to FALSE.

Since the communication occurs conceptually via the RTE (it is initiated via an RTE API
call) the optimization does not violate the requirement that servers are only invoked via
client-server requests (see Sect. 5.6.13, [SWS_Rte_06019]).

[SWS_Rte_07662] d The RTE Generator shall reject configurations where an
ClientServerOperation has an ArgumentDataPrototype whose Implemen-

9Call Serialization ensures at most one thread of control is executing an instance of a runnable
entity at any one time. An AUTOSAR software-component can have multiple instances (and therefore
a runnable entity can also have multiple instances). Each instance represents a different server and
can be executed in parallel by different threads of control thus serialization only applies to an individual
instance of a runnable entity – multiple runnable entities within the same component instance may also
be executed in parallel.

252 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

tationDataType is of category DATA_REFERENCE and whose direction is
INOUT. c(SRS_Rte_00018, SRS_Rte_00019)

[SWS_Rte_08731] d If the return value of the serialization call is not equal to E_OK the
RTE shall not call Com_SendSignal c(SRS_Rte_00091)

4.3.2.2 Multiplicity

Client-server interfaces contain two dimensions of multiplicity; multiple clients invoking
a single server and multiple operations within a client-server interface.

4.3.2.2.1 Multiple Clients Single Server

Client-server communication involves an AUTOSAR software-component invoking a
defined “server” operation in another AUTOSAR software-component which may or
may not return a reply.

[SWS_Rte_04519] d The RTE shall support multiple clients invoking the same server
operation (’n:1’ communication where n ≥ 1). c(SRS_Rte_00029)

4.3.2.2.2 Multiple operations

A client-server interface contains one or more operations. A port of a AUTOSAR
software-component that requires an AUTOSAR client-server interface to the com-
ponent can independently invoke any of the operations defined in the interface
[SRS_Rte_00089].

[SWS_Rte_04517] d The RTE API shall support independent access to operations in
a client-server interface. c(SRS_Rte_00029)

Example 4.8

Consider a client-server interface that has two operations, op1 and op2 and that an
AUTOSAR software-component definition requires a port typed by the interface. As
a result, the RTE generator will create two API calls; one to invoke op1 and another
to invoke op2. The calls can invoke the server operations either synchronously or
asynchronously depending on the configuration.

Recall that each data element in a sender-receiver interface is transmitted indepen-
dently (see Section 4.3.1.3) and that the coherent transmission of multiple data items
is achieved through combining multiple items into a single composite data type. The
transmission of the parameters of an operation in a client-server interface is simi-

253 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

lar to a record since the RTE guarantees that all parameters are handled atomically
[SRS_Rte_00073].

[SWS_Rte_04518] d The RTE shall treat the parameters and the results of a client-
server operation atomically. c(SRS_Rte_00033)

However, unlike a sender-receiver interface, there is no facility to combine multiple
client-server operations so that they are invoked as a group.

4.3.2.2.3 Single Client Multiple Server

The RTE is not required to support multiple server operations invoked by a single client
component request (’1:n’ communication where n > 1).

4.3.2.2.4 Call Serialization

Each client can invoke the server simultaneously and therefore the RTE is required to
support multiple requests of servers. If the server requires call serialization, the RTE
has to ensure it.

[SWS_Rte_04520] d The RTE shall support simultaneous invocation requests of a
server operation. c(SRS_Rte_00019, SRS_Rte_00080)

[SWS_Rte_04522] d The RTE shall ensure that the RunnableEntity implementing
a server operation has completed the processing of a request before it begins process-
ing the next request, if serialization is required by the server operation, i.e canBeIn-
vokedConcurrently attribute of the server is set to FALSE and client RunnableEn-
titys to OsTask mapping (RteEventToTaskMapping) may lead to concurrent in-
vocations of the server. c(SRS_Rte_00019, SRS_Rte_00033)

When this requirement is met the operation is said to be “call serialized”. A call se-
rialized server only accepts and processes requests atomically and thus avoids the
potential for conflicting concurrent access.

Client requests that cannot be serviced immediately due to a server operation being
“busy” are required to be queued pending processing. The presence and depth of the
queue is configurable.

If the RunnableEntity implementing the server operation is reentrant , i.e. can-
BeInvokedConcurrently attribute set to TRUE, no serialization is necessary. This
allows to implement invocations of reentrant server operations as direct function calls
without involving the RTE.

But even when the canBeInvokedConcurrently attribute is set to FALSE the
RTE Generator still can utilize a direct function call, if the mapping of the client
RunnableEntitys to OsTasks will not imply a concurrent execution of the server.

254 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_08001] d If two operations are mapped to the same RunnableEntity,
and [SWS_Rte_04522] requires a call serialization, then the operation invoked events
shall be mapped to same task and they shall have the same position in task. Otherwise
the RTE Generator shall reject configuration. c(SRS_Rte_00019, SRS_Rte_00033)

[SWS_Rte_08002] d If two operations are mapped to the same RunnableEntity,
and [SWS_Rte_04522] requires a call serialization, then a single queue is imple-
mented for invocations coming from any of the operations. c(SRS_Rte_00019,
SRS_Rte_00033)

4.3.2.3 Communication Time-out

The ServerCallPoint allows to specify a timeout so that the client can be notified
that the server is not responding and can react accordingly. If the client invokes the
server synchronously, the RTE API call to invoke the server reports the timeout. If
the client invokes the server asynchronously, the timeout notification is passed to the
client by the RTE as a return value of the API call that collects the result of the server
operation.

[SWS_Rte_03763] d The RTE shall ensure that timeout monitoring is performed
for client-server communication, regardless of the receive mode for the result.
c(SRS_Rte_00069, SRS_Rte_00029)

If the server is invoked asynchronously and a WaitPoint is specified to collect the
result, two timeout values have to be specified, one for the ServerCallPoint and
one for the WaitPoint.

[SWS_Rte_03764] d The RTE generator shall reject the configuration if different
timeout values are specified for the AsynchronousServerCallPoint and for the
WaitPoint associated with the AsynchronousServerCallReturnsEvent for this
AsynchronousServerCallPoint. c(SRS_Rte_00018)

In asynchronous client-server communication the AsynchronousServerCall-
ReturnsEvent associated with the AsynchronousServerCallPoint for an
ClientServerOperation indicates that the server communication is finished or that
a timeout occurred. The status information about the success of the server operation
is available as the return value of the RTE API call generated to collect the result.

[SWS_Rte_03765] d For each asynchronous invocation of an operation prototype only
one AsynchronousServerCallReturnsEvent shall be passed to the client com-
ponent by the RTE. The AsynchronousServerCallReturnsEvent shall indicate
either that the transmission was successful or that the transmission was not success-
ful. c(SRS_Rte_00079)

[SWS_Rte_03766] d The status information about the success or failure of the asyn-
chronous server invocation shall be available as the return value of the RTE API call to
retrieve the result. c(SRS_Rte_00079)

After a timeout was detected, no result shall be passed to the client.

255 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_03770] d In case Rte_Call API returns RTE_E_LIMIT,
RTE_E_SERIALIZATION_LIMIT, RTE_E_SERIALIZATION_ERROR, RTE_E_COM_STOPPED,
RTE_E_TIMEOUT, RTE_E_UNCONNECTED, RTE_E_IN_EXCLUSIVE_AREA or RTE_E_SEG_FAULT,
the RTE shall not modify the OUT and INOUT parameters. c(SRS_Rte_00069,
SRS_Rte_00029)

[SWS_Rte_08310] d In case Rte_Result API returns RTE_E_NO_DATA,
RTE_E_SERIALIZATION_ERROR, RTE_E_COM_STOPPED, RTE_E_TIMEOUT, RTE_E_UNCONNECTED,
RTE_E_IN_EXCLUSIVE_AREA or RTE_E_SEG_FAULT, the RTE shall not modify the OUT and
INOUT parameters. c(SRS_Rte_00069, SRS_Rte_00029)

Since an asynchronous client can have only one outstanding server invocation at a
time, the RTE has to monitor when the server can be safely invoked again. In normal
operation, the server can be invoked again when the result of the previous invocation
was collected by the client.

[SWS_Rte_03773] d If a server is invoked asynchronously and no timeout occurred,
the RTE shall ensure that the server can be invoked again by the same client, after the
result was successfully passed to the client. c(SRS_Rte_00069)

In intra-partition client-server communication, the RTE can determine whether the
server runnable is still running or not.

[SWS_Rte_03771] d If a timeout was detected in asynchronous intra-partition client-
server communication, the RTE shall ensure that the server is not invoked again
by the same client until the server runnable has terminated. c(SRS_Rte_00069,
SRS_Rte_00079)

In inter-ECU communication, the client RTE has no knowledge about the actual status
of the server. The response of the server could have been lost because of a commu-
nication error or because the server itself did not respond. Since the client-side RTE
cannot distinguish the two cases, the client must be able to invoke the server again
after a timeout expired. As partitions in one ECU are decoupled in a similar way like
separate ECUs, and can be restarted separately, client server communication should
behave similar for inter-ECU and intra-partition communication.

[SWS_Rte_03772] d If a timeout was detected in asynchronous inter-ECU or
inter-partition client-server communication, the RTE shall ensure that the server
can be invoked again by the same client after the timeout notification was passed to
the client. c(SRS_Rte_00069, SRS_Rte_00079)

Note that this might lead to client and server running out of sync, i.e. the response of
the server belongs to the previous, timed-out invocation of the client. The application
has to handle the synchronization of client and server after a timeout occurred.

[SWS_Rte_03767] d If the timeout value of the ServerCallPoint is 0, no timeout
monitoring shall be performed. c(SRS_Rte_00069, SRS_Rte_00029)

[SWS_Rte_03768] d If the canBeInvokedConcurrently attribute of the server runn-
able is set to TRUE, no timeout monitoring shall be performed if the RTE API call

256 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

to invoke the server is implemented as a direct function call. c(SRS_Rte_00069,
SRS_Rte_00029)

[SWS_Rte_02709] d In case of inter partition communication, if the partition of the
server is stopped or restarting at the invocation time of the server call or during the
operation of the server call, the RTE shall immediately provide a timeout indication to
the client. c

Note: In case of inter-ECU or interpartition client-server communication it is recom-
mended to always specify a timeout>0. Otherwise in case of a full server queue the
client would wait for the server response infinitely.

4.3.2.4 Port-Defined argument values

Port-defined argument values exist in order to support interaction between Application
Software Components and Basic Software Modules.

Several Basic Software Modules use an integer identifier to represent an object that
should be acted upon. For instance, the NVRAM Manager uses an integer identifier
to represent the NVRAM block to access. This identifier is not known to the client,
as the client must be location independent, and the NVRAM block to access for a
given application software component cannot be identified until components have been
mapped onto ECUs.

There is therefore a mismatch between the information available to the client and that
required by the server. Port-defined argument values bridge that gap.

The required port-defined arguments (the fact that they are required, their data type
and their values) are specified within the input to the RTE generator.

[SWS_Rte_01360] d When invoking the runnable entity specified for an OperationIn-
vokedEvent, the RTE shall include the port-defined argument values between the in-
stance handle (if it is included) and the operation-specific parameters, in the order they
are given in the Software Component Template Specification [2]. c(SRS_Rte_00152)

Requirement [SWS_Rte_01360] means that a client will make a request for an opera-
tion on a require (Client-Server) port including only its instance handle (if required) and
the explicit operation parameters, yet the server will be passed the implicit parameters
as it requires.

Note that the values of implicit parameters are constant for a particular server runnable
entity; it is therefore expected that using port-defined argument values imposes no
RAM overhead (beyond any extra stack required to store the additional parameters).

257 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4.3.2.5 Buffering

Client-Server-Communication is a two-way-communication. A request is sent from the
client to the server and a response is sent back.

Unless a server call is implemented as direct function call, the RTE has to store or
buffer the communication on the corresponding receiving sides, requests on server
side and responses on client side, respectively:

• [SWS_Rte_02527] d Unless a server call is implemented as a direct function call,
the RTE shall buffer a request on the server side in a first-in-first-out queue as
described in chapter 4.3.1.10.2 for queued data elements.

Note: The data that shall be buffered is implementation specific but at least RTE
should store the IN parameters, the IN/OUT parameters and a client identifer.
c(SRS_Rte_00019, SRS_Rte_00033, SRS_Rte_00110)

• [SWS_Rte_02528] d Unless a server call is implemented as a direct function call,
RTE shall keep the response on the client side in a queue with queue length 1.

Note: The data that shall be buffered is implementation specific but at least RTE
should store the IN/OUT parameters, the OUT parameters and the error code.
c(SRS_Rte_00019, SRS_Rte_00033)

For the server side, the queueLength attribute of ServerComSpec specifies the
length of the queue.

[SWS_Rte_02529] d The RTE generator shall reject a queueLength attribute of a
ServerComSpec with a queue length ≤ 0. c(SRS_Rte_00033, SRS_Rte_00110,
SRS_Rte_00018)

[SWS_Rte_02530] dThe RTE shall use the queue of requests to call serialise access
to a server. c(SRS_Rte_00033, SRS_Rte_00110)

A buffer overflow of the server is not reported to the client. The client will receive a time
out.

[SWS_Rte_07008] d If a server call is implemented by direct function call the RTE
shall not create any copy for parameters passed by reference. c(SRS_Rte_00033,
SRS_Rte_00110)

Therefore, it is the responsibility of the application to provide consistency mechanisms
for referenced parameters if necessary.

4.3.2.6 Inter-ECU and Inter-Partition Response to Request Mapping

RTE is responsible to map a response to the corresponding request. With this map-
ping, RTE can activate or resume the corresponding runnable and provide the re-
sponse to the correct client. The following situations can be distinguished:

258 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

• Mapping of a response to the correct request within one ECU. In general, this is
solved already by the call stack. The details are implementation specific and will
not be discussed in this document.

• Mapping of a response coming from a different partition or a different ECU.

The problem of request to response mapping in inter-ECU and inter-Partition commu-
nication can be split into:

• Mapping of a response to the correct client. This is discussed in 4.3.2.6.1.

• Mapping of a response to the correct request within of one client. This is dis-
cussed in 4.3.2.6.2.

The general approach for the inter-ECU and inter-Partition request response mapping
is to use transaction handles.

[SWS_Rte_02649] d In case of inter-ECU client-server communication, the transaction
handle shall contain two parts of unsigned integer type:

• Client Identifier

• Client Sequence Counter

c(SRS_Rte_00027, SRS_Rte_00082)

[SWS_Rte_08711] d The Client Identifier of the transaction handle used for a inter-
ECU client server communication shall be of type uint8, uint16 or uint32. It
shall have at least the size given by the maximum lengthClientId attribute of
all ClientServerToSignalMappings. See [constr_9065]. c(SRS_Rte_00082,
SRS_Rte_00091)

[SWS_Rte_08712] d The Client Sequence Counter part of the transaction handle used
for a inter-ECU client server communication is optional. If existing it shall be of type
uint8, uint16 or uint32 and have at least the size given by the maximum length-
SequenceCounter attribute of all ClientServerToSignalMappings. See [con-
str_9065]. c(SRS_Rte_00082, SRS_Rte_00091)

[SWS_Rte_08713] d If the lengthClientId attribute of the all ClientServer-
ToSignalMapping is zero the client identifier part of the transaction handle shall be
omitted. See [constr_9065]. c(SRS_Rte_00082, SRS_Rte_00091)

The presence of an part of the transaction handle is an input to the RTE Generator and
up to the system design.

[SWS_Rte_07346] d In case of inter-Partition client-server communication, the RTE
shall not communicate any response to the client if the client is part of a partition that
was restarted since the request was sent. c(SRS_Rte_00027, SRS_Rte_00082)

[SWS_Rte_07346] could be implemented with a transaction handle that contains a
sequence counter.

259 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_02651] d In case of inter-ECU client-server communication, the transaction
handle shall be used for the identification of client server transactions communicated
via COM. c(SRS_Rte_00027, SRS_Rte_00082)

[SWS_Rte_02653] d The RTE on the server side shall return the transaction handle
of the request without modification together with the response. c(SRS_Rte_00027,
SRS_Rte_00082)

Since there is always at most one open request per client (see [SWS_Rte_02658]), the
transaction handle can be kept within the RTE and does not have to be exposed to the
AUTOSAR SW-C.

4.3.2.6.1 Client Identifier

In case of a server on one ECU with clients on other ECUs, the inter-ECU client-server
communication has to use different unique SystemSignals for each client-ECU to
allow the identification of the client-ECU associated with each client call.

[SWS_Rte_02579] d The RTE Generator shall reject configurations where there is
inter-ECU client-server communication from several client-ECUs using the same Sys-
temSignals. c(SRS_Rte_00029, SRS_Rte_00082, SRS_Rte_00018)

With this mechanism, the server-side RTE must handle the fan-in. This is done in the
same way as for sender-receiver communication.

However it is allowed to have several clients in one client-ECU communicating using
inter-ECU client-server communication with a server on a different ECU, if the client
identifier is used to distinguish the different clients.

[SWS_Rte_05111] d The RTE Generator shall reject configurations where there is
inter-ECU client-server communication from several clients on the same client-ECU
and no client identifier is configured for at least one of these inter-ECU client-server
communications. c(SRS_Rte_00018, SRS_Rte_00029, SRS_Rte_00082)

[SWS_Rte_03769] d If multiple clients have access to one server, the RTE on the
server side has to queue all incoming server invocations while ensuring data consis-
tency. c(SRS_Rte_00019, SRS_Rte_00029, SRS_Rte_00080)

4.3.2.6.2 SequenceCounter

The purpose of sequence counters is to map a response to the correct request of a
known client.

[SWS_Rte_02658] d In case of inter-ECU and inter-Partition communication, RTE shall
allow only one request per client and server operation at any time. c(SRS_Rte_00079)

[SWS_Rte_02658] does not apply to intra-partition communication because there can
be several execution-instances.

260 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_02658] implies under normal operation that a response can be mapped to
the previous request. But, when a request or response is lost or delayed, this order
can get out of phase. To allow a recovery from lost or delayed signals, a sequence
counter is used. The sequence counter can also be used to detect stale responses
after a restart of the client side RTE and SW-C.

[SWS_Rte_02654] d RTE shall support a sequence counter for the inter ECU client
server connection where configured in the input information. c(SRS_Rte_00027,
SRS_Rte_00082)

[SWS_Rte_02655] d RTE shall initialize all sequence counters with zero during
Rte_Start. c(SRS_Rte_00082)

[SWS_Rte_02656] d RTE shall increase each sequence counter in a cyclic man-
ner after a client server operation has finished successfully or with a timeout.
c(SRS_Rte_00082)

[SWS_Rte_02657] d RTE shall ignore incoming responses that do not match the se-
quence counter. c(SRS_Rte_00027, SRS_Rte_00082)

4.3.2.7 Parameter Serialization

[SWS_Rte_08710] d For inter-ECU client-server communication, the RTE of the
server ECU shall serialize the server’s results using the BswModuleEntry refer-
enced by the RteSerializedSignal of the returnSignal. c(SRS_Rte_00027,
SRS_Rte_00082, SRS_Rte_00091, SRS_Rte_00123)

[SWS_Rte_08700] d The RTE generator shall reject an input configuration where a
configured inter-ECU client-server communication of a client ECU (a ClientServer-
Operation of a PortPrototype of one Software Component instance) is not refer-
enced by one and only one ClientServerToSignalMapping. c(SRS_Rte_00018,
SRS_Rte_00027, SRS_Rte_00082, SRS_Rte_00091)

[SWS_Rte_08701] d The RTE generator shall reject an input configuration
where a configured inter-ECU client-server communication of a server ECU (a
ClientServerOperation of a PortPrototype of one Software Component
instance) is not referenced by at least one ClientServerToSignalMapping.
c(SRS_Rte_00018, SRS_Rte_00027, SRS_Rte_00082, SRS_Rte_00091)

[SWS_Rte_08702] d The RTE generator shall reject an input configuration where
the callSignal or returnSignal of a ClientServerToSignalMapping is not
referenced by a RteSerializedSignal. c(SRS_Rte_00018, SRS_Rte_00027,
SRS_Rte_00082, SRS_Rte_00091)

[SWS_Rte_08703] d For an inter-ECU client-server communication, the RTE of the
client ECU shall communicate the request to a remote server using the callSignal
of the ClientServerToSignalMapping which references the operation instance.
c(SRS_Rte_00027, SRS_Rte_00082, SRS_Rte_00091)

261 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_08704] d For an inter-ECU client-server communication, the RTE of the
client ECU shall serialize the client’s request using the BswModuleEntry refer-
enced by the RteSerializedSignal of the callSignal. c(SRS_Rte_00027,
SRS_Rte_00082, SRS_Rte_00091)

[SWS_Rte_08705] d For an inter-ECU client-server communication, the RTE of the
client ECU shall receive the results of a remote server using the returnSignal
of the ClientServerToSignalMapping which references the operation instance.
c(SRS_Rte_00027, SRS_Rte_00082, SRS_Rte_00091, SRS_Rte_00123)

[SWS_Rte_08706] d For an inter-ECU client-server communication, the RTE of the
client ECU shall deserialize the server’s results using the BswModuleEntry refer-
enced by the RteSerializedSignal of the returnSignal. c(SRS_Rte_00027,
SRS_Rte_00082, SRS_Rte_00091, SRS_Rte_00123)

[SWS_Rte_08730] d If the return value of the deserializer call is not equal to E_OK
the RTE on the server side shall not invoke the server runnable. c(SRS_Rte_00027,
SRS_Rte_00082, SRS_Rte_00091)

[SWS_Rte_08707] d For an inter-ECU client-server communication, the RTE of
the server ECU shall receive a request of a remote client using the callSignal
of the ClientServerToSignalMapping which references the operation instance.
c(SRS_Rte_00027, SRS_Rte_00082, SRS_Rte_00091)

[SWS_Rte_08708] d For an inter-ECU client-server communication, the RTE of the
server ECU shall deserialize a client’s request using the BswModuleEntry refer-
enced by the RteSerializedSignal of the callSignal. c(SRS_Rte_00027,
SRS_Rte_00082, SRS_Rte_00091)

[SWS_Rte_08709] d For inter-ECU client-server communication, the RTE of the server
ECU shall communicate the results to a remote client using the returnSignal
of the ClientServerToSignalMapping which references the operation instance.
c(SRS_Rte_00027, SRS_Rte_00082, SRS_Rte_00091, SRS_Rte_00123)

4.3.2.8 Operation

4.3.2.8.1 Inter-ECU Mapping

The client server protocol defines how a client call and the server response are mapped
onto the communication infrastructure of AUTOSAR in case of inter-ECU communica-
tion. This allows RTE implementations from different vendors to interpret the client
server communication in the same way.

The AUTOSAR System Template [8] does specify a protocol for the client server com-
munication in AUTOSAR.

262 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4.3.2.8.2 Atomicity

The requirements for atomicity from Section 4.3.1.11.2 also apply for the composite
data types described in Section 4.3.2.8.1.

4.3.2.8.3 Fault detection and reporting

Client Server communication may encounter interruption like:

• Buffer overflow at serialization

• Buffer overflow at the server side.

• Communication interruption.

• Server might be inaccessible for some reason.

The client specifies a timeout that will expire in case the server or communication fails
to complete within the specified time. The reporting method of an expired timeout
depends on the communication attributes:

• If the C/S communication is synchronous the RTE returns RTE_E_TIMEOUT on the
Rte_Call function (see section 5.6.13).

• If the C/S communication is asynchronous the RTE returns RTE_E_TIMEOUT on the
Rte_Result function (see section 5.6.14).

In the case that RTE detects that the COM service is not available when forwarding
signals to COM, the RTE returns RTE_E_COM_STOPPED on the Rte_Call (see section
5.6.13).

If the client still has an outstanding server invocation when the server is invoked again,
the RTE returns RTE_E_LIMIT on the Rte_Call (see chapter 5.6.13).

In the absence of structural errors, application errors will be reported if present.

263 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4.3.2.8.4 Asynchronous Client Server communication

Figure 4.39 shows a sequence diagram of how asynchronous client server communi-
cation may be implemented by RTE.

Cli ent's COM

Netwok Server's

COM

Se rver's RTE Se rverCli ent Application Cli ent's RTE Cli ent Seriali zer

an d Deseriali zer

Se rver Serial izer

an d Deseriali zer

(1) RTE serializes all IN
parameters of the operation
into a byte array

(3) The Server's COM
invokes RTE callback
when serialized data
have been received.

Inter-ECU communication
Asynchronous Client-Server communication
Port name = p
Operation name = o

The ClientResponseRunnable is referencing an
AsynchronousServerCallReturnsEvent.
The client runnable that invokes the server call is referencing
an AsynchronousServerCallPoint
The server runnable is refered by an OperationInvokedEvent
ServerComSpec attribute queueLength = number of possible
queued server calls

(9) RTE deserializes all OUT parameters and activates
the Client's response runnable.

(6) RTE fetches the server
parameter from its queue
and calls the Server
runnable.

(8) The Client's
COM invokes
RTE callback
when serialized
data have been
received.

(2) RTE calls Com_SendSignal for
the serialized byte array to transfer
all IN parameters using it's COM

(4) The Server's COM
receives the serialized
byte array

(5) RTE calls serializer to
transform byte array into
parameters. Additionally, the
RTE receives the Client ID
and puts them into the RTE
queue. The Server Task is
activated.

(7) RTE calls the serializer to
transform the response OUT
parameters into a response
byte array and sends the array
back to the client

alt dynamicLength of SystemSignal

[dynami cLen gth == true]

[dynami cLen gth == false]

alt dynamicLength of SystemSignal

[dynami cLen gth == true]

[dynami cLen gth == false]

alt dynamicLength of SystemSignal

[dynami cLen gth == true]

[dynami cLen gth == false]

alt dynamicLength of SystemSignal

[dynami cLen gth == true]

[dynami cLen gth == false]

Rte _Cal l_p_o ()

<se rializer>()

E_ OK()

Co m_Se ndDynSig nal()

E_ OK()

Co m_Se ndS ignal ()

E_ OK()

RT E_E_ OK()
Rte_COMCbk_<sg>()

Co m_Re ceie vDyn Signa l()

E_ OK()

Co m_Re ceiveSign al()

E_ OK()

<d eseria lizer>()

E_ OK() Activate Server's Task()

Se rverRunna ble()

<se rializer>()

E_ OK()

Co m_Se ndDynSig nal()

E_ OK()

Co m_Se ndS ignal ()

E_ OK()

Rte_COMCbk_<sg>()

Activate Client's response task()

Co m_Re ceiveDyn Signa l()

E_ OK()

Co m_Re ceiveSign al()

E_ OK()

<d eseria lizer>()

E_ OK()
Cli entRe spon seRu nnab le()

Figure 4.39: Client Server asynchronous

264 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4.3.2.8.5 Synchronous Client Server communication

Figure 4.40 shows a sequence diagram of how synchronous client server communica-
tion may be implemented by RTE.

Cli ent's RTE Cli ent's COM

Netwok Server's

COM

Se rver's RTE Se rverCli ent Application Cli ent Seriali zer

an d Deseriali zer

Se rver Serial izer

an d Deseriali zer

(2) RTE calls
Com_SendSignal for the
serialized byte array to
transfer all IN parameters
using it's COM

(4) The Server's COM
receives the serialized
byte array

Inter-ECU communication
Synchronous Client-Server communication
Port name = p
Operation name = o

The client runnable that invokes the server call is
referencing an SynchronousServerCallPoint
The server runnable is refered by an
OperationInvokedEvent
ServerComSpec attribute queueLength = number of
possible queued server calls

(8) RTE receives byte array
and transforms it back to
the OUT parameters using
the deserializer

(7) RTE calls the serializer to
transform the response OUT
parameters into a response
byte array and sends the array
back to the client

Client Application
is blocked. Client task is

set waiting

Client task is
started

Client Application
continues

Client task is
released

(6) RTE fetches the server
parameter from its queue and
calls the Server runnable.

(1) RTE serializes all IN
parameters of the operation
into a byte array

(5) RTE calls serializer to
transform byte array into
parameters. Additionally, the
RTE receives the Client ID
and puts them into the RTE
queue. The Server Task is
activated.

(3) The Server's COM
invokes RTE callback
when serialized data
have been received.

alt dynamicLength of SystemSignal

[dynami cLen gth == true]

[dynami cLen gth == false]

alt dynamicLength of SystemSignal

[dynami cLen gth == true]

[dynami cLen gth == false]

alt dynamicLength of SystemSignal

[dynami cLen gth == true]

[dynami cLen gth == false]

alt dynamicLength of SystemSignal

[dynami cLen gth == true]

[dynami cLen gth == false]

Rte _Cal l_p_o ()

<se rializer>()

E_ OK()

Co m_Se ndDynSig nal()

E_ OK()

Co m_Se ndS ignal ()

E_ OK()

Wa itEve nt(EventXY)

Rte_COMCbk_<sg>()

Co m_Re ceiveDyn Signa l()

E_ OK()

Co m_Re ceiveSign al()

E_ OK()

<d eseria lizer>()

E_ OK()

Activate Server's task()

Se rverRunna ble()

<se rializer>()

Co m_Se ndDynSig nal()

E_ OK()

Co m_Se ndS ignal ()

E_ OK()

Rte_COMCbk_<sg>()

Se ndEvent(EventXY)

Co m_Re ceiveDyn Signa l()

E_ OK()

Co m_Re ceiveSign al()

E_ OK()

<d eseria lizer>()

RT E_E_ OK()

Figure 4.40: Client Server synchronous

265 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4.3.3 SWC internal communication

4.3.3.1 Inter Runnable Variables

Sender/Receiver and Client/Server communication through AUTOSAR ports are the
model for communication between AUTOSAR SW-Cs.

For communication between Runnables inside of an AUTOSAR SW-C the AU-
TOSAR SW-C Template [2] establishes a separate mechanism. Non-composite AU-
TOSAR SW-C can reserve InterRunnableVariables which can only be accessed by the
Runnables of this one AUTOSAR SW-C. The Runnables might be running in the same
or in different task contexts. Read and write accesses are possible.

[SWS_Rte_03589] d The RTE shall support Inter Runnable Variables for single and
multiple instances of AUTOSAR SW-Cs. c(SRS_Rte_00142)

[SWS_Rte_07187] d The generated RTE shall initialize a defined implicitInter-
RunnableVariable and explicitInterRunnableVariable according to the
ValueSpecification of the VariableDataPrototype defining the implic-
itInterRunnableVariable respectively explicitInterRunnableVariable if
the general initialization conditions in [SWS_Rte_07046] and [SWS_Rte_03852] are
fulfilled. c(SRS_Rte_00142)

InterRunnableVariables have a behavior corresponding to Sender/Receiver commu-
nication between AUTOSAR SW-Cs (or rather between Runnables of different AU-
TOSAR SW-Cs).

But why not use Sender/Receiver communication directly instead? Purpose is data
encapsulation / data hiding. Access to InterRunnableVariables of an AUTOSAR SW-C
from other AUTOSAR SWCs is not possible and not supported by RTE. InterRunnabl-
eVariable content stays SW-C internal and so no other SW-C can use it. Especially not
misuse it without understanding how the data behaves.

Like in Sender/Receiver (S/R) communication between AUTOSAR SW-Cs two different
behaviors exist:

1. Inter Runnable Variables with implicit behavior (implicitInterRunnable-
Variable)
This behavior corresponds with VariableAccesses in the dataReadAccess
and dataWriteAccess roles of Sender/Receiver communication and is sup-
ported by implicit S/R API in this specification.

Note:
If a VariableAccess in the writtenLocalVariable role referring to a
VariableDataPrototype in the implicitInterRunnableVariable role
is specified for a certain interrunnable variable, but no RTE API for implicit write
of this interrunnable variable is called during an execution of the runnable, an
undefined value is written back when the runnable terminates.

266 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

For more details see section 4.2.5.6.1.
For APIs see sections 5.6.23 and 5.6.24.

Note 2:
As for the Implicit Sender/Receiver communication, the implicit concept for Inter-
RunnableVariables implies that the runnable does terminate. For runnable enti-
ties of category 2, the behavior is guaranteed only if it has a finite execution time.
A category 2 runnable that runs forever will not have its data updated.

2. Inter Runnable Variables with explicit behavior (explicitInterRunnable-
Variable)
This behavior corresponds with VariableAccesses in the dataSendPoint,
dataReceivePointByValue, or dataReceivePointByArgument roles of
Sender/Receiver communication and is supported by explicit S/R API in this
specification.

For more details see section 4.2.5.6.2
For APIs see sections 5.6.25 and 5.6.26.

267 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4.3.4 Inter-Partition communication

Partitions are used to decompose an ECU into functional units. Partitions can
contain both SW-Cs and BSW modules. The partitioning is done to protect the software
contained in the partitions against each other or to increase the performance by running
the partitions on different cores of a multi core controller.

Since the partitions may be separated by core boundaries or memory boundaries and
since the partitions can be stopped and restarted independently, the observable be-
havior to the SW-Cs for the communication between different partitions is rather similar
to the inter ECU communication than to the intra partition communication. The RTE
needs to use special mechanisms to communicate from one partition to another.

Like for the inter ECU communication, inter partition communication uses the connec-
tionless communication paradigm. This means, that a send operation is successful for
the sender, even if the receiving partition is stopped. A receiver will only, by means of
a timeout, be notified if the partition of the sender is stopped.

Unlike most basic software, the RTE does not have a main processing function. The
execution logic of the RTE is contained in the generated task bodies, the wrapper code
around the runnables whose execution RTE manages.

As the tasks that contain the SW-Cs runnables are uniquely assigned to partitions (see
page 11EER of [15]), the execution logic of the RTE is split among the partitions. It
can not be expected that the RTE generated wrapper code running in one partition can
directly access the memory objects assigned to the RTE part of another partition.

In this sense, there is one RTE per partition, that contains runnable entities.

Still, RTE is responsible to support the communication between SW-Cs allocated to the
different partitions. According to the AUTOSAR software layered architecture [], RTE
has to be independent of the micro controller architecture. AUTOSAR supports a wide
variety of multi core and memory protection architectures.

[SWS_Rte_02734] d The RTE generator shall support a mode in which the generated
code is independent of the micro controller. c(SRS_BSW_00161)

It can not be generally assumed that a cache coherent, shared memory is available
for the communication between partitions. Direct memory access and function calls
across partition boundaries are generally not possible. In the extreme case, communi-
cation might even be limited to a message passing interface.

To allow memory protection and multi core support in spite of [SWS_Rte_02734], the
AUTOSAR OS provides a list of mechanisms, that can be used for the communication
across cores (see [4]). Especially, the IOC has been designed to support the commu-
nication needs of RTE in a way that should not introduce additional run time overhead.

If a communication between Basic Software Modules is necessary for which the IOC
does not suffice, for example Sender-Receiver or Client-Server communication, there
are also mechanisms provided by the Basic Software Scheduler. These mechanisms
follow the Client-Server communication pattern or the Sender-Receiver communica-

268 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

tion pattern of the VFB but cannot be used for inter-ECU communication. The Basic
Software Scheduler can internally use the IOC to cross the partition boundaries. See
[22].

The following sections describe the use of some OS mechanisms that are designed for
inter partition communication.

4.3.4.1 Inter partition data communication using IOC

The general idea to allow the data communication between partitions in a most efficient
way and still be independent of the micro controller implementation is to take the buffers
and queues from the intra partition communication case and replace them with so
called IOC communication objects in the inter partition communication case.

In the ideal case, the access macros to the IOC communication object resolve to a
direct access to shared memory.

The IOC (Inter OS-Application Communication) is a feature of the AUTOSAR OS, which
provides a data oriented communication mechanism between partitions. The IOC pro-
vides communication buffers, queues, and protected access functions/macros to these
buffers that can be used from any pre-configured partitions concurrently.

The IOC offers communication of data to another core or between memory protected
partitions with guarantee of data consistency.

All data communications including the passing of parameters and return values in client
server communication, can be implemented by using the IOC. The basic principle for
using the IOC is to replace the RTE internal communication buffers by IOC buffers.

The IOC supports 1:1 and N:1 communication. For 1:N communication, N IOC com-
munication objects have to be used. The IOC is configured and provides generated
APIs for each IOC communication object. In case of N:1 communication, each sender
has a separate API.

The IOC API is not reentrant.

[SWS_Rte_02737] d RTE shall prevent concurrent access to the same IOC API from
different ExecutableEntity execution-instances. c

The IOC will use the appropriate mechanism to communicate between the partitions,
whether it requires communicating with another core, communicating with a partition
with a different level of trust, or communicating with another memory partition.

The IOC channels are configured in the OS Configuration. Their configurations has to
be provided as inputs for the RTE generator when the external configuration switch
strictConfigurationCheck [SWS_Rte_05148] is set to true, and can be pro-
vided by the RTE Generator or RTE Configuration Editor when strictConfigura-
tionCheck is set to false (see [SWS_Rte_05150]).

The IOC APIs use:

269 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

1. types declared by user on input to RTE (sender-receiver communication across
OsApplication boudaries).

2. types created by RTE to collect client-server operation arguments into single data
structure.

For the second item, RTE uses internal types that have to be described as Imple-
mentationDataTypes (see [SWS_Rte_08400]).

The signaling between partitions is not covered by the IOC. The callbacks of IOC are
in interrupt context and are mainly intended for direct use by BSW. For the signaling
between partitions, RTE can use the activation of tasks or setting of events, see section
4.3.4.4.

[SWS_Rte_02736] d The RTE shall not execute ExecutableEntitys in the context
of IOC callbacks. c

This is necessary to ensure that ExecutableEntitys will not be executed in interrupt
context or when a partition is terminated or restarted.

4.3.4.2 Inter partition data communication using Basic Software Scheduler

The Basic Software Scheduler provides Sender-Receiver and Client-Server communi-
cations mechanisms for communication between Basic Software Modules in different
partitions. Therefore these communication paradigms can be used by Basic Software
Modules in a multi core environment.

The usage is described in [9].

For Sender-Receiver communication currently only "explicit" transmission of data ele-
ments with "event" semantic (queued) is supported.

[SWS_Rte_08763] d For inter-ECU Sender-Receiver communication the length of the
queue is specified by the attribute queueLength of the BswQueuedDataRecep-
tionPolicy which references through receivedData the VariableDataProto-
type of the Sender-Receiver communication. c(SRS_Rte_00243)

[SWS_Rte_08764] d The RTE generator shall reject a queueLength attribute of a
BswQueuedDataReceptionPolicy with a queue length ≤ 0. c(SRS_Rte_00243)

4.3.4.3 Accessing COM from slave core in multicore configuration

In case of a multi core configuration, if a software component on the slave core wants
to send data to a software component on another ECU, the RTE has to send data
from the slave core through the IOC to the master core which in turn calls the send
API of COM. The same behavior is required for receive case where the master core is
responsible for forwarding received COM data to slave core through IOC.

270 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_08306] d It is the RTEs responsibility to interact with COM whenever it is
needed. c

This requires some special handling by the RTE since it implies, at least in the send
case, the need of a scheduable entity to do the actual call of COM send API.

[SWS_Rte_08307] d The RTE shall generate two (BswSchedulableEntity ’s):

• Rte_ComSendSignalProxyPeriodic.

• Rte_ComSendSignalProxyImmediate.

Rte_ComSendSignalProxyPeriodic shall handle the sending of periodic signals
and Rte_ComSendSignalProxyImmediate shall handle the sending of immediate
signals. c

[SWS_Rte_08308] d It shall be a possible to configure whether the return value of RTE
APIs is based on RTE-IOC interaction or RTE-COM interaction using the configuration
parameter RteIocInteractionReturnValue. A warning should preferably be is-
sued in case RTE-COM interaction return value is chosen since that will cause major
performance decrease. c

271 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4.3.4.3.1 Example sequence diagrams of accessing COM from Slave core

Figure 4.41 shows a sequence diagram of how receive data through COM from slave
core may be implemented by RTE.

Master Core Slave Core

SWC RTE IOC COM

Com_cbk(x)
IocSend_<id>(x)

IocReceive_<id>(&x)

RTE

Rte_Read()

Figure 4.41: Receive data through COM from slave core

272 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Figure 4.42 shows a sequence diagram of how send from COM to slave core may be
implemented by RTE.

Master Core Slave Core

SWC RTE

RTE_Write(x)

IOC

WaitEvent(returnInfo.event)

push(buffer_<id>,x)

Sw_Interrupt

COM

IocReceive_<id>(&x)

ComSendSignal(x) r

IocSend_<id>(returnInfo)

SetEvent(returnInfo.event>)
IocReceive_<id>(&r)

r

push(buffer_<id>,returnInfo)

(*returnInfo.IocSendReturn)(r)

IocSend_<id>(x)

ComSendSignal
ProxyImmediate

(*IocReceive[returnInfo])(x)

Figure 4.42: Send data through COM from slave core

273 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Figure 4.43 shows a sequence diagram of how send from COM to slave core using
return value based on RTE-IOC interaction may be implemented by RTE.

Master Core Slave Core

SWC RTE

RTE_Write(x)

IOC

Sw_Interrupt

ComSendSignal
ProxyImmediate COM

IocReceive_<id>(&signal_id)

ComSendSignal(x)

r

IocSend_<id>(signal_id)
push(buffer_<id>, signal_id)

IocSend_<id>(x) push(buffer_<id>,x)

(*IocReceive[signal_id])(x)

r

Figure 4.43: Send data through COM from slave core using return value based on RTE-
IOC interaction

274 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4.3.4.4 Signaling and control flow support for inter partition communication

The OS representation of a partition is an OS Application.

This is a (non-exhaustive) summary of OS features that can be used for signaling and
control flow across partition boundaries:

• activation of tasks

• start and stop of schedule tables

• event signaling

• alarms

• spin locks (for inter core synchronization)

The following are not available for inter core signaling:

• OS Resource

• DisableAllInterrupts

For inter core synchronization, spin locks are provided. But, for efficiency reasons they
should be used with care.

4.3.4.5 Trusted Functions

The call-trusted-function mechanism of AUTOSAR OS can be used in a memory pro-
tected controller to implement a function call from an untrusted to a trusted partition.

This Trusted Partition is a partition that has full access to the OS objects of other
partitions on the same core. The Basic Software is assumed to reside in a trusted
partition. It is assumed that the trusted partition cannot be terminated or restarted.

The typical use case for the call-trusted-function mechanism are AUTOSAR services
which are usually provided by a client/server interface where the service side resides
together with the basic software in the trusted partition.

Beware that this mechanism can not be used between two untrusted partitions or be-
tween cores.

The trusted functions are configured in the OS Configuration. Their configurations
shall be provided as inputs for the RTE generator when the external configuration
switch strictConfigurationCheck [SWS_Rte_05148] is set to true, and can be
provided by the RTE Generator or RTE Configuration Editor when strictConfigu-
rationCheck is set to false (see [SWS_Rte_05150]).

[SWS_Rte_07606] d Direct start of an ExecutableEntity execution-instance by the
mean of a trusted function shall only be used for the start of an ExecutableEntity
in the Trusted Partition. c(SRS_Rte_00195, SRS_Rte_00210)

275 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

The OS ensures that the partition of the caller is not terminated or restarted when a
trusted function is executed. If needed, the termination or restart of the caller’s partition
is delayed after the trusted function returns.

RTE has to ensure, that the OS does not kill an RTE-generated task due to stopping
or restarting a partition while this task is executing a function call to BSW or to the
software component of another partition when this call is not a pure function.

For this purpose, RTE can use either the OS mechanism of trusted function call, or it
can allocate the server to a different task than the client.

[SWS_Rte_02761] d In a partitioned system that supports stop or restart of partitions,
the RTE shall not use a direct function call (without use of OS call trusted function)
from a task of an untrusted partition to BSW or to the SW-C of another partition unless
this is a pure function. c(SRS_Rte_00196)

Please note that [SWS_Rte_02761] might require the use of OS call trusted function
for a partitioned system even without memory protection.

4.3.4.6 Memory Protection and Pointer Type Parameters in RTE API

In a memory protected ECU, a SW-C from an untrusted partition might misuse the
transition to the trusted context to modify memory in another partition. This can occur
when a pointer to a different memory partition is passed from the untrusted partition to
the trusted context. The RTE shall avoid this misuse by at least checking the validity
of the address of the pointer, and, where possible, also checking the integrity of the
associated memory object.

[SWS_Rte_02752] dWhen a SW-C in an untrusted partition receives (OUT parameter)
or provides (IN parameter with composite data type) an ArgumentDataPrototype
or VariableDataPrototype, it hands over a pointer to a memory object to an RTE
API. The RTE shall only forward this pointer to a trusted SW-C after it has checked that
the whole memory object is owned by the caller’s partition. c(SRS_Rte_00210)

[SWS_Rte_02753] d When a SW-C in an untrusted partition passes an Argument-
DataPrototype or VariableDataPrototype, as a reference type to a SW-C
in a trusted partition (DATA_REFERENCE as an IN parameter), the RTE shall only
check that the caller’s partition owns the start address of the referenced memory.
c(SRS_Rte_00210)

Note to [SWS_Rte_02753]: The RTE only checks whether the start address refer-
enced directly by the DataPrototypes belongs to the calling partition. Because the
RTE is not aware of the semantic of the pointed reference, it cannot check if the ref-
erenced object is completely contained in the calling partition (e.g. the RTE does not
know the size and does not know if the referenced object also contains references
to other objects). The BSW is responsible to make sure that the referenced memory
object does not cross memory section boundaries.

276 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

The OS API CheckTaskMemoryAccess can be used to fulfill [SWS_Rte_02752] and
[SWS_Rte_02753].

4.3.5 PortInterface Element Mapping and Data Conversion

AUTOSAR supports the connection of an R-port to a P-port with an interface that is not
compatible in the sense of the AUTOSAR compatibility rules. In addition, for sender-
receiver communication it is possible to specify how data elements are represented
given that the communication requires the usage of a dedicated communication bus.
In these cases the generated RTE has to support the conversion and re-scaling of
data.

4.3.5.1 PortInterface Element Mapping

Per default the shortNames of PortInterface elements are used to identify the
matching element pairs of connected ports. In case of non fitting names — might
be caused due to distributed development, off-the-shelf development, or re-use of soft-
ware components — it is required to explicitly specify which PortInterface elements
shall correlate. This is modelled with PortInterfaceMappings. A connection of two
ports can be associated with a set of PortInterfaceMappings. If two ports are
connected and a PortInterfaceMapping for the pair of interfaces of the two ports
is associated with the connection, the interface elements are mapped and converted
as specified in the PortInterfaceMapping. If no PortInterfaceMapping for the
respective pair of interfaces is associated with the connection, the ordinary interface
compatibility rules are applied.

The general approach is to perform the data conversion in the RTE of the ECU imple-
menting the R-port. The reason for this design decision is that in case of 1:n sender-
receiver communication it is inefficient to perform all the data conversions for the mul-
tiple receivers on the sender side and then send multiple sets of the same data just in
different representations over the communication bus.

[SWS_Rte_03815] d The RTE shall support the mapping of sender-receiver interfaces,
parameter interfaces and non-volatile data interface elements. c(SRS_Rte_00182)

[SWS_Rte_03816] d If a P-port specified by a SenderReceiverInterface or Nv-
DataInterface is connected to an R-port with an incompatible interface and a
VariableAndParameterInterfaceMapping for both interfaces is associated with
the connection, the RTE of the ECU implementing the R-port shall map and convert the
data elements of the sender’s interface to the data elements of the receiver’s interface.
c(SRS_Rte_00182)

[SWS_Rte_07091] d The RTE shall support the Mapping of elements of composite
data types in the context of a mapping of SenderReceiverInterface, NvDataIn-
terface or ParameterInterface elements. c(SRS_Rte_00182, SRS_Rte_00234)

277 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_07092] d The RTE of the ECU implementing the R-port shall map and con-
vert the composite data type elements of DataPrototypes of the sender’s interface
to the composite data type elements of DataPrototypes of the receiver’s interface
according the SubElementMapping
if a P-port specified by a SenderReceiverInterface, NvDataInterface or Pa-
rameterInterface is connected to an R-port with an incompatible interface and
a VariableAndParameterInterfaceMapping exists for both interfaces and is as-
sociated with the connection and
the SubElementMapping maps composite data type elements of the provided inter-
face to composite data type elements of the required interface. c(SRS_Rte_00182,
SRS_Rte_00234)

[SWS_Rte_07099] d The RTE of the ECU implementing the R-port shall map and con-
vert the composite data type elements of DataPrototype of the sender’s interface
to the primitive DataPrototype of the receiver’s interface according the SubEle-
mentMapping
if a P-port specified by a SenderReceiverInterface, NvDataInterface or Pa-
rameterInterface is connected to a R-port with an incompatible interface and
a VariableAndParameterInterfaceMapping exists for both interfaces and is
associated with the connection and the SubElementMapping exclusively maps
one composite data type element of the provided interface c(SRS_Rte_00182,
SRS_Rte_00234)

According to [TPS_SWCT_01551], incomplete SubElementMappings are allowed
for unqueued communication, when unmapped dataElements on the receiver side
have an initValue.

Please note that the DataPrototypes of the provide port and DataPrototypes of
the require port might use exclusively ApplicationDataTypes, exclusively Imple-
mentationDataTypes or both kinds of AutosarDataTypes in a mixed manner.

[SWS_Rte_03817] d If a P-port specified by a SenderReceiverInterface or Nv-
DataInterface is connected to an R-port with an incompatible interface and no
VariableAndParameterInterfaceMapping for this pair of interfaces is associ-
ated with the connection, the RTE generator shall reject the input as an invalid config-
uration. c(SRS_Rte_00182, SRS_Rte_00018)

[SWS_Rte_03818] d The RTE shall support the mapping of client-server interface ele-
ments. c(SRS_Rte_00182)

[SWS_Rte_03819] d If a P-port specified by a ClientServerInterface is con-
nected to an R-port with an incompatible interface and a ClientServerInter-
faceMapping for both interfaces is associated with the connection, the RTE of the
ECU implementing the R-port, i. e. the client, shall map the operation and map and
convert the operation arguments of the client’s interface to the operation arguments of
the server’s interface. c(SRS_Rte_00182)

278 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_07925] d If a ClientServerApplicationErrorMapping exists, the
RTE shall translate the error codes of the server into the corresponding error codes
described by the mapping. c(SRS_Rte_00182, SRS_Rte_00123)

[SWS_Rte_07926] d If a ClientServerApplicationErrorMapping exists and a
particular error of the server is not mapped, this error shall be translated to RTE_E_OK.
c(SRS_Rte_00182, SRS_Rte_00123)

[SWS_Rte_03820] d If a P-port specified by a ClientServerInterface is con-
nected to an R-port with an incompatible interface and no ClientServerInter-
faceMapping for this pair of interfaces is associated with the connection, the
RTE generator shall reject the input as an invalid configuration. c(SRS_Rte_00182,
SRS_Rte_00018)

[SWS_Rte_03821] d The RTE shall support the mapping of ModeSwitchInterface
elements. c(SRS_Rte_00182)

[SWS_Rte_03822] d If a P-port specified by a ModeSwitchInterface is connected
to an R-port with an incompatible interface and a ModeInterfaceMapping for both
interfaces is associated with the connection, the RTE of the ECU implementing the
R-port shall map and convert the mode elements of the sender’s interface to the mode
elements of the receiver’s interface. c(SRS_Rte_00182)

[SWS_Rte_03823] d If a P-port specified by a ModeSwitchInterface is connected
to an R-port with an incompatible interface and no ModeInterfaceMapping for this
pair of interfaces is associated with the connection, the RTE generator shall reject the
input as an invalid configuration. c(SRS_Rte_00182, SRS_Rte_00018)

[SWS_Rte_03824] d The RTE shall support the mapping of trigger interface elements.
c

[SWS_Rte_03825] d If a P-port specified by a TriggerInterface is connected to
an R-port with an incompatible interface and a TriggerInterfaceMapping for both
interfaces is associated with the connection, the RTE of the ECU implementing the
R-port shall map the trigger of the sender’s interface to the trigger of the receiver’s
interface. c

[SWS_Rte_03826] d If a P-port specified by a TriggerInterface is connected to
an R-port with an incompatible interface and no TriggerInterfaceMapping for this
pair of interfaces is associated with the connection, the RTE generator shall reject the
input as an invalid configuration. c(SRS_Rte_00018)

In order to generate the RTE for the ECU implementing the R-ports, the RTE generator
has to know the interfaces of the P-ports that are connected over the bus. This infor-
mation is provided in the ECU extract via the networkRepresentationProps (see
section 4.3.5.2) specified at the ISignal representing the data element.

279 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4.3.5.2 Network Representation

For sender-receiver communication it is possible to specify how data elements are
represented given that the communication requires the usage of a dedicated commu-
nication bus. For this purpose networkRepresentationProps can be specified at
the ISignal, describing the representation of the data element on the communication
bus via the attributes compuMethod and baseType.

[SWS_Rte_07842] d The RTE generator shall reject any input that violates
[TPS_SYST_02001] as an invalid configuration. c(SRS_Rte_00018)

[SWS_Rte_03827] d The RTE of the transmitting ECU shall perform the conversion
of the data element that has to be sent over a communication bus to the represen-
tation specified by the baseType and compuMethod of the networkRepresen-
tationProps of the respective ISignal if the dataTypePolicy of the ISig-
nal is set to override or legacy. The converted data shall be passed to COM.
c(SRS_Rte_00181)

[SWS_Rte_06737] d If the dataTypePolicy of the respective ISignal is set to
networkRepresentationFromComSpec and the networkRepresentation of
the respective SenderComSpec is defined, the RTE of the transmitting ECU shall per-
form the conversion of the data element that has to be sent over a communication
bus to the representation specified by the baseType and compuMethod of the net-
workRepresentation of the respective SenderComSpec. The converted data shall
then be passed to COM. c(SRS_Rte_00181)

[SWS_Rte_03828] d The RTE of the receiving ECU shall perform the conversion of
the data element that is received over a communication bus from the representation
specified by the baseType and compuMethod of the networkRepresentation-
Props of the respective ISignal to the data element’s application data type if the
dataTypePolicy of the ISignal is set to override or legacy. In this case
[SWS_Rte_03816] shall not be applied. c(SRS_Rte_00181)

[SWS_Rte_06738] d If the dataTypePolicy of the respective ISignal is set to
networkRepresentationFromComSpec and the networkRepresentation of
the respective ReceiverComSpec is defined, the RTE of the receiving ECU shall
perform the conversion of the data element that is received over a communica-
tion bus from the representation specified by the baseType and compuMethod of
the networkRepresentation of the respective ReceiverComSpec. In this case
[SWS_Rte_03816] shall not be applied. c(SRS_Rte_00181)

[SWS_Rte_07844] d If the dataTypePolicy of the respective ISignal is set to
networkRepresentationFromComSpec but there is no networkRepresenta-
tion defined by the ReceiverComSpec (respectively SenderComSpec) then no con-
version shall be performed by RTE. c(SRS_Rte_00181)

As an alternative to networkRepresentationProps the representation of the
VariableDataPrototypes and ArgumentDataPrototypes on the communica-
tion bus can be expressed by the used DataTypes in the PortInterfaces on the

280 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

outerPorts of the CompositionSwComponentType describing the ecu extract. In
this case the conversion between the network representation and the representation
for the software components on the ecu are described by a PortInterfaceMapping
which in turn is referenced by the DelegationSwConnector connecting the in-
nerPort of the software component and the outerPort. These supports especially
conversions of texttable data representation where a TextTableMapping is needed
to describe the particular conversion rule.

[SWS_Rte_07828] d If a PortInterfaceMapping is specified at the Delegation-
SwConnector of a P-port, the RTE of the transmitting ECU shall perform the conver-
sion of the VariableDataPrototypes or ArgumentDataPrototypes that has to
be sent over a communication bus to the representation specified by the outerPort.
The converted data shall be passed to COM. c(SRS_Rte_00181)

[SWS_Rte_07829] d d If a PortInterfaceMapping is specified at the Delega-
tionSwConnector of a R-port, the RTE of the receiving ECU shall perform the con-
version of the VariableDataPrototypes or ArgumentDataPrototypes that is re-
ceived over a communication bus from the representation specified by the outerPort
to the representation specified by the innerPort. In this case [SWS_Rte_03816]
shall not be applied. c(SRS_Rte_00181).

4.3.5.3 Data Conversion

[SWS_Rte_03829] d The RTE shall support the conversion of an identical or linear
scaled data representation to another identical or linear scaled data representation. In
this context, the term "linear scaled data representation" also includes floating-point
data representations. c(SRS_Rte_00182)

[SWS_Rte_08801] d The RTE shall support the conversion integer-to-float and float-
to-integer. c(SRS_Rte_00182)

Today the RTE Specification does not define any specific behavior supporting float to
integer and integer to float conversions. This enables the RTE implementers to develop
the most efficient, stable and robust solution.

[SWS_Rte_03830] d The RTE shall support the conversion of a texttable data repre-
sentation (enumeration) to another texttable data representation. c(SRS_Rte_00182)

[SWS_Rte_03855] d The RTE shall support the conversion of a mixed linear scaled
and texttable data representation to another mixed linear scaled and texttable data
representation. c(SRS_Rte_00182)

[SWS_Rte_03856] d The RTE shall support the conversion between a texttable data
representation (enumeration) and a mixed linear scaled and texttable data represen-
tation. In this case only the enumeration part of the data representation shall be con-
verted, the linear scaled part shall be handled as out of range data. c(SRS_Rte_00182)

[SWS_Rte_03857] d The RTE shall support the conversion between an identical or
linear scaled data representation and a mixed linear scaled and texttable data repre-

281 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

sentation. A scale with a compuConst shall be handled as out of range data if the
mapping to a value is not defined by a TextTableMapping. c(SRS_Rte_00182)

[SWS_Rte_03860] d The RTE shall support the conversion of composite data
representations. In this case, the respective requirements [SWS_Rte_03829],
[SWS_Rte_03830], [SWS_Rte_03855], [SWS_Rte_03856], [SWS_Rte_03857],
[SWS_Rte_03831], [SWS_Rte_03832], and [SWS_Rte_03833] are applicable to the
individual composite elements. c(SRS_Rte_00182)

[SWS_Rte_03831] d The RTE generator shall reject any input that requires a con-
version which is not supported according to [SWS_Rte_03829], [SWS_Rte_03830],
[SWS_Rte_03855], [SWS_Rte_03856], or [SWS_Rte_03860] as an invalid configura-
tion. c(SRS_Rte_00182, SRS_Rte_00018)

[SWS_Rte_07928] d The data conversion shall be supported for data
types that refer to CompuMethods of category LINEAR, IDENTICAL,
SCALE_LINEAR_AND_TEXTTABLE, and TEXTTABLE. c(SRS_Rte_00182)

[SWS_Rte_03832] d For the conversion between two data representations with
linear scaling described either by an ApplicationDataType or a combination
of BaseType and CompuMethod (used for the specification of the network rep-
resentation at the ComSpec respectively the SystemSignal) the RTE genera-
tor shall derive the data conversion code automatically from the referred Com-
puMethods of the two representations. In this context the scaling of a data rep-
resentation is linear if the referred CompuMethod is of category IDENTICAL, LIN-
EAR, or SCALE_LINEAR_AND_TEXTTABLE. In case of a CompuMethod of category
SCALE_LINEAR_AND_TEXTTABLE this requirement applies to the linear scaled part
only. The conversion shall only be performed if it does not violate [constr_1042] in
Software Component Template [2]. c(SRS_Rte_00182)

For a linear conversion the linear conversion factor can be calculated out of the fac-
torSiToUnit and offsetSiToUnit attributes of the referred Units and the Com-
puRationalCoeffs of a compuInternalToPhys of the referred CompuMethods.

Example 4.9

A software component SwcA on an ECU EcuA sends a data element u of an uint16
type t_VoltageAtSender via its port SenderPort. The referenced CompuMethod
is cm_VoltageAtSender, describing a fixpoint representation with offset 0 and LSB
1
4
= 2−2. The port SenderPort is connected to the port ReceiverPort of a soft-

ware component SwcB that is deployed on a different ECU EcuB. The sent data ele-
ment u is mapped to a data element u of an uint16 type t_VoltageAtReceiver on
the receiving side that references a CompuMethod named cm_VoltageAtReceiver.
cm_VoltageAtReceiver describes a fixpoint representation with offset 16

8
= 2 and

LSB 1
8
= 2−3. For transportation over the bus a networkRepresentation that refer-

ences an uint8 type t_VoltageOnNetwork is specified, using a fixpoint representation
described by the CompuMethod cm_VoltageOnNetwork with offset 1

2
= 0.5 and LSB

1
2
= 2−1.

282 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Definition of the CompuMethods in XML:
<COMPU-METHOD>

<SHORT-NAME>cm_VoltageAtSender</SHORT-NAME>
<CATEGORY>LINEAR</CATEGORY>
<COMPU-INTERNAL-TO-PHYS>

<COMPU-SCALES>
<COMPU-SCALE>

<COMPU-RATIONAL-COEFFS>
<COMPU-NUMERATOR><V>0</V><V>1</V></COMPU-NUMERATOR>
<COMPU-DENOMINATOR><V>4</V></COMPU-DENOMINATOR>

</COMPU-RATIONAL-COEFFS>
</COMPU-SCALE>

</COMPU-SCALES>
</COMPU-INTERNAL-TO-PHYS>

</COMPU-METHOD>

<COMPU-METHOD>
<SHORT-NAME>cm_VoltageAtReceiver</SHORT-NAME>
<CATEGORY>LINEAR</CATEGORY>
<COMPU-INTERNAL-TO-PHYS>

<COMPU-SCALES>
<COMPU-SCALE>

<COMPU-RATIONAL-COEFFS>
<COMPU-NUMERATOR><V>16</V><V>1</V></COMPU-NUMERATOR>
<COMPU-DENOMINATOR><V>8</V></COMPU-DENOMINATOR>

</COMPU-RATIONAL-COEFFS>
</COMPU-SCALE>

</COMPU-SCALES>
</COMPU-INTERNAL-TO-PHYS>

</COMPU-METHOD>

<COMPU-METHOD>
<SHORT-NAME>cm_VoltageOnNetwork</SHORT-NAME>
<CATEGORY>LINEAR</CATEGORY>
<COMPU-INTERNAL-TO-PHYS>

<COMPU-SCALES>
<COMPU-SCALE>

<COMPU-RATIONAL-COEFFS>
<COMPU-NUMERATOR><V>1</V><V>1</V></COMPU-NUMERATOR>
<COMPU-DENOMINATOR><V>2</V></COMPU-DENOMINATOR>

</COMPU-RATIONAL-COEFFS>
</COMPU-SCALE>

</COMPU-SCALES>
</COMPU-INTERNAL-TO-PHYS>

</COMPU-METHOD>

Implementation of Rte_Send on the sending ECU EcuA:
1 Std_ReturnType
2 Rte_Send_SwcA_SenderPort_u(t_voltageAtSender u)
3 {
4 ...
5 /*
6 u_NetworkRepresentation
7 = ((u * LSB_sender + off_sender) - off_network) / LSB_network
8 = ((u / 4 + 0) - 0.5) * 2

283 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

9 = (u / 2) - 1
10 */
11 u_NetworkRepresentation = (uint8) ((u >> 1) - 1);
12 ...
13 }

Implementation of Rte_Receive on the receiving ECU EcuB:
1 Std_ReturnType
2 Rte_Receive_SwcB_ReceiverPort_u(t_voltageAtReceiver * u)
3 {
4 ...
5 /*
6 *u
7 *u = ((u_NetworkRepresentation * LSB_network + off_network)
8 - off_receiver) / LSB_receiver
9 = ((u_NetworkRepresentation / 2 + 0.5)

10 - 2) * 8
11 = (u_NetworkRepresentation * 4 + 4)
12 - 16
13 = u_NetworkRepresentation * 4 - 12
14 */
15 *u = (uint16) ((u_NetworkRepresentation << 2) - 12);
16 ...
17 }

The intention of this specification is not to describe any mechanism that supports the
generation of identical conversion code for each implementation of an RTE generator.
Even if the generated C code for the conversion would be the same, the numerical
result of the conversion still depends on the microcontroller target and the compiler.

Strategies how to handle the conversion of values that are out of range of the target
representation are described in section 4.3.5.4.

[SWS_Rte_03833] d For the conversion between two texttable data representations
(enumerations) described either by an ApplicationDataType or an Implemen-
tationDataType (used for the specification of the network representation) the RTE
generator shall generate the data conversion code according to the TextTableMap-
ping. This requirement also applies to the texttable part of a mixed linear scaled and
texttable data representation. c(SRS_Rte_00182)

4.3.5.4 Range Checks during Runtime

A software component might try to send a value that is outside the range that is spec-
ified at a dataElement or ISignal. In case of different ranges the result of a data
conversion might also be a value that is out of range of the target representation. For a
safe handling of these use cases the RTE provides range checks during runtime. For
an overview see figure 4.44.

284 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_08024] d Range checks during runtime shall occur after data invalidation,
i.e. first the handleNeverReceived check, then the invalidation check and lastly the
range check shall be effected. c(SRS_Rte_00180)

[SWS_Rte_03861] d The range check is intended to be performed according to the
following rule: If a upper/lower limit is specified at the DataConstr, this value shall be
taken for the range check. If it is not specified at the DataConstr, the highest/lowest
representable value of the datatype shall be used. c(SRS_Rte_00180)

Whether a range check is required is specified in case of intra ECU communication at
the handleOutOfRange attribute of the respective SenderComSpec or Receiver-
ComSpec and in case of inter ECU communication at the handleOutOfRange at-
tribute of ISignalProps of the sending or receiving ISignal.

Range checks at sender’s side

Range checks during runtime for intra ECU communication at the sender’s side are
described in the following requirements:

[SWS_Rte_08026] d The RTE shall implement a range check of sent data in the
sending path of a particular component if the handleOutOfRange is defined at the
SenderComSpec and has any value other than none. In this case all receivers receive
the value after the range check was applied. c(SRS_Rte_00180)

[SWS_Rte_08039] d The RTE shall use the preceding limits ([SWS_Rte_07196]) from
the DataPrototype in the PPortPrototype or PRPortPrototype for the range
check of sent data in the sending path of a particular component if the handleOut-
OfRange is defined at the SenderComSpec. c(SRS_Rte_00180)

[SWS_Rte_03839] d If for a dataElement to be sent a SenderComSpec with han-
dleOutOfRange=ignore is provided, a range check shall be implemented in the
sending component. If the value is out of bounds, the sending of the dataElement
shall not be propagated. This means for a non-queued communication that the last
valid value will be propagated and for a queued communication that no value will be
enqueued.

In case of a composite datatype the sending of the whole dataElement shall not be
propagated, if any of the composite elements is out of bounds. c(SRS_Rte_00180)

[SWS_Rte_03840] d If for a dataElement to be sent a SenderComSpec with han-
dleOutOfRange=saturate is provided, a range check shall be implemented in the
sending component. If the value is out of bounds, the value actually sent shall be set
to the lower respectively the upper limit.

In case of a composite datatype each composite element whose actual value is out of
bounds shall be saturated. c(SRS_Rte_00180)

[SWS_Rte_03841] d If for a dataElement to be sent a NonqueuedSenderComSpec
with handleOutOfRange=default is provided, a range check shall be implemented

285 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

in the sending component. If the value is out of bounds and the initValue is not
equal to the invalidValue, the value actually sent shall be set to the initValue.

In case of a composite datatype each composite element whose actual value is out of
bounds shall be set to the initValue. c(SRS_Rte_00180)

[SWS_Rte_03842] d If for a dataElement to be sent a NonqueuedSenderComSpec
with handleOutOfRange=invalid is provided, a range check shall be implemented
in the sending component. If the value is out of bounds, the value actually sent shall
be set to the invalidValue.

In case of a composite datatype each composite element whose actual value is out of
bounds shall be set to the invalidValue. c(SRS_Rte_00180)

[SWS_Rte_03843] d If for a dataElement to be sent a QueuedSenderComSpec with
handleOutOfRange set to default or invalid is provided, the RTE generator
shall reject the input as an invalid configuration, since for a QueuedSenderComSpec
the attribute initValue is not defined (see SW-C Template [2]) and data invalidation
is not supported (see [SWS_Rte_06727]). c(SRS_Rte_00180)

Range checks during runtime for inter ECU communication at the sender’s side are
described in the following requirements:

[SWS_Rte_08027] d The RTE shall implement a range check of sent data in the send-
ing path of a particular signal if the handleOutOfRange is defined at the ISignal-
Props and has any value other than none. In this case only receivers of the specific
ISignal receive the value after the range check was applied. c(SRS_Rte_00180)

[SWS_Rte_08040] d The RTE shall use the limits from the ISignal for the range
check of sent data in the sending path of a particular signal if the handleOutOfRange
is defined at the ISignalProps. c(SRS_Rte_00180)

[SWS_Rte_08030] d If for an ISignal to be sent an ISignalProps with handle-
OutOfRange=ignore is provided, a range check shall be implemented in the sending
signal. If the value is out of bounds, the sending of the ISignal shall not be propa-
gated. In this case the RTE shall behave as if no sending occurred. c(SRS_Rte_00180)

[SWS_Rte_08031] d If for an ISignal to be sent an ISignalProps with handle-
OutOfRange=saturate is provided, a range check shall be implemented in the send-
ing signal. If the value is out of bounds, the value actually sent shall be set to the lower
respectively the upper limit. c(SRS_Rte_00180)

[SWS_Rte_08032] d If for an ISignal to be sent an ISignalProps with han-
dleOutOfRange=default is provided, a range check shall be implemented in the
sending signal. If the value is out of bounds and the initValue is not equal
to the invalidValue, the value actually sent shall be set to the initValue.
c(SRS_Rte_00180)

[SWS_Rte_08033] d If for an ISignal to be sent an ISignalProps with handle-
OutOfRange=invalid is provided, a range check shall be implemented in the send-

286 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

ing signal. If the value is out of bounds, the value actually sent shall be set to the
invalidValue. c(SRS_Rte_00180)

Range checks at receiver’s side

Range checks during runtime for intra ECU communication at the receiver’s side are
described in the following requirements:

[SWS_Rte_08028] d The RTE shall implement a range check in the receiving path of a
particular component if the handleOutOfRange is defined at the ReceiverComSpec
and has any value other than none. In this case the range check applies only for data
received by the particular component. c(SRS_Rte_00180)

[SWS_Rte_08041] d The RTE shall use the preceding limits ([SWS_Rte_07196]) from
the DataPrototype in the rPort for the range check of received data in the re-
ceiving path of a particular component if the handleOutOfRange is defined at the
ReceiverComSpec. c(SRS_Rte_00180)

[SWS_Rte_03845] d If for a dataElement to be received a ReceiverComSpec with
handleOutOfRange=ignore is provided, a range check shall be implemented in the
receiving component. If the value is out of bounds, the reception of the dataElement
shall not be propagated. This means for a non-queued communication that the last
valid value will be propagated and for a queued communication that no value will be
enqueued.

If the value of the received dataElement is out of bounds and a Nonqueue-
dReceiverComSpec with handleOutOfRangeStatus=indicate is provided, the
return value of the RTE shall be RTE_E_OUT_OF_RANGE.

In case of a composite datatype the reception of the whole dataElement shall not
be propagated, if any of the composite elements is out of bounds. If the handleOut-
OfRangeStatus attribute is set to indicate, the return value of the RTE shall be
RTE_E_OUT_OF_RANGE. c(SRS_Rte_00180)

[SWS_Rte_03846] d If for a dataElement to be received a ReceiverComSpec with
handleOutOfRange=saturate is provided, a range check shall be implemented in
the receiving component. If the value is out of bounds, the value actually received shall
be set to the lower respectively the upper limit.

If the value of the received dataElement is out of bounds and a Nonqueue-
dReceiverComSpec with handleOutOfRangeStatus=indicate is provided, the
return value of the RTE shall be RTE_E_OUT_OF_RANGE.

In case of a composite datatype each composite element whose actual value is out
of bounds shall be saturated. If the handleOutOfRangeStatus attribute is set to
indicate, the return value of the RTE shall be RTE_E_OUT_OF_RANGE, if any of the
composite elements is out of bounds. c(SRS_Rte_00180)

287 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_03847] d If for a dataElement to be received a NonqueuedReceiver-
ComSpec with handleOutOfRange=default is provided, a range check shall be
implemented in the receiving component. If the value is out of bounds and the init-
Value is not equal to the invalidValue, the value actually received shall be set to
the initValue.

If the value of the received dataElement is out of bounds and a Nonqueue-
dReceiverComSpec with handleOutOfRangeStatus=indicate is provided, the
return value of the RTE shall be RTE_E_OUT_OF_RANGE.

In case of a composite datatype each composite element whose actual value is out of
bounds shall be set to the initValue. If the handleOutOfRangeStatus attribute
is set to indicate, the return value of the RTE shall be RTE_E_OUT_OF_RANGE, if
any of the composite elements is out of bounds. c(SRS_Rte_00180)

[SWS_Rte_03848] d If for a dataElement to be received a NonqueuedReceiver-
ComSpec with handleOutOfRange=invalid is provided, a range check shall be im-
plemented in the receiving component. If the value is out of bounds, the value actually
received shall be set to the invalidValue.

If the value of the received dataElement is out of bounds and a ReceiverComSpec
with handleOutOfRangeStatus=indicate is provided, the return value of the RTE
shall be RTE_E_INVALID.

In case of a composite datatype each composite element whose actual value is out
of bounds shall be set to the invalidValue. If the handleOutOfRangeStatus
attribute is set to indicate, the return value of the RTE shall be RTE_E_INVALID, if
any of the composite elements is out of bounds. c(SRS_Rte_00180)

[SWS_Rte_08016] d If for a dataElement to be received a ReceiverComSpec with
handleOutOfRange=externalReplacement is provided, a range check shall be
implemented in the receiving component. If the value is out of bounds, the value
actually received shall be replaced by the value sourced from the ReceiverCom-
Spec.handleOutOfRange (e.g. constant, NVRAM parameter).

If the value of the received dataElement is out of bounds and a Nonqueue-
dReceiverComSpec with handleOutOfRangeStatus=indicate is provided, the
return value of the RTE shall be RTE_E_OUT_OF_RANGE.

In case of a composite datatype the value actually received shall be completely re-
placed by the external value, if any of the composite elements is out of bounds. If the
handleOutOfRangeStatus attribute is set to indicate, the return value of the RTE
shall be RTE_E_OUT_OF_RANGE. c(SRS_Rte_00180)

[SWS_Rte_03849] d If for a dataElement to be received a QueuedReceiver-
ComSpec with handleOutOfRange set to default or invalid is provided, the
RTE generator shall reject the input as an invalid configuration, since for a Queue-
dReceiverComSpec the attribute initValue is not defined (see SW-C Template [2])
and data invalidation is not supported (see [SWS_Rte_06727]). c(SRS_Rte_00180)

288 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_08025] d If for a dataElement to be received a QueuedReceiverCom-
Spec is provided and the handleOutOfRangeStatus attribute is set to indicate,
the RTE generator shall reject the input as an invalid configuration. c(SRS_Rte_00180)

Range checks during runtime for inter ECU communication at the receiver’s side are
described in the following requirements:

[SWS_Rte_08029] d The RTE shall implement a range check in the receiving path of a
particular signal if the handleOutOfRange is defined at the ISignalProps and has
any value other than none. In this case all receivers of the specific ISignal on that
ECU receive the value after the range check was applied. c(SRS_Rte_00180)

[SWS_Rte_08042] d The RTE shall use the limits from the ISignal for the range
check of received data in the receiving path of a particular signal if the handleOut-
OfRange is defined at the ISignalProps. c(SRS_Rte_00180)

[SWS_Rte_08034] d If for an ISignal to be received an ISignalProps with han-
dleOutOfRange=ignore is provided, a range check shall be implemented in the
receiving signal. If the value is out of bounds, the reception of the ISignal shall
not be propagated. In this case the RTE shall behave as if no reception occurred.
c(SRS_Rte_00180)

[SWS_Rte_08035] d If for an ISignal to be received an ISignalProps with han-
dleOutOfRange=saturate is provided, a range check shall be implemented in the
receiving signal. If the value is out of bounds, the value actually received shall be set
to the lower respectively the upper limit. c(SRS_Rte_00180)

[SWS_Rte_08036] d If for an ISignal to be received an ISignalProps with han-
dleOutOfRange=default is provided, a range check shall be implemented in the
receiving signal. If the value is out of bounds and the initValue is not equal
to the invalidValue, the value actually received shall be set to the initValue.
c(SRS_Rte_00180)

[SWS_Rte_08037] d If for an ISignal to be received an ISignalProps with han-
dleOutOfRange=invalid is provided, a range check shall be implemented in the
receiving signal. If the value is out of bounds, the value actually received shall be set
to the invalidValue. c(SRS_Rte_00180)

[SWS_Rte_08038] d If for an ISignal to be received an ISignalProps with han-
dleOutOfRange=externalReplacement is provided, a range check shall be im-
plemented in the receiving signal. If the value is out of bounds, the value actually
received shall be replaced by the value sourced from the ReceiverComSpec.exter-
nalReplacement (e.g. constant, NVRAM parameter). c(SRS_Rte_00180)

289 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

before
first reception?

no

yes

receiver

Configuration
handleInvalid

RTE status

DE propagation

init != invalid init == invalid

keep RTE_E_OK RTE_E_INVALID init value

replace RTE_E_OK REJECT init value

dontInvalidate RTE_E_OK RTE_E_OK init value

Configuration
handleInvalid

RTE status

DE propagation

init != invalid init == invalid

keep
RTE_E_

NEVER_RECEIVED
RTE_E_

NEVER_RECEIVED
init value

replace
RTE_E_

NEVER_RECEIVED
REJECT init value

dontInvalidate
RTE_E_

NEVER_RECEIVED
RTE_E_

NEVER_RECEIVED
init value

handle
NeverReceived?

yes

no

DE producer

yes
invalid?

no

receiver

Configuration
handleInvalid

RTE status

DE propagation

init != invalid init == invalid

keep RTE_E_INVALID RTE_E_INVALID last valid value1

replace RTE_E_OK REJECT init value

dontInvalidate RTE_E_OK RTE_E_OK value

yesout of
bounds?

Configuration
handleOutOfRange

RTE status

DE propagation
handleOutOfRange

Status == silent5
handleOutOfRange
Status == indicate4,5

none RTE_E_OK RTE_E_OK value

ignore RTE_E_OK
RTE_E_

OUT_OF_RANGE
last valid value2

saturate RTE_E_OK
RTE_E_

OUT_OF_RANGE
lower/upper limit

default4 RTE_E_OK
RTE_E_

OUT_OF_RANGE
init value3

invalid4 RTE_E_INVALID RTE_E_INVALID invalid value

external
Replacement5 RTE_E_OK

RTE_E_
OUT_OF_RANGE

external replacement
value

no

1. If no valid value was received previously then the init value shall be propagated
2. In case of queued communication the RTE behaves as if no value was enqueued
3. Init value shall not be equal to invalid value
4. Applicable only in combination with a non-queued COMSPEC
5. Applicable only in combination with a receiver COMSPECRTE status

DE
propagation

RTE_E_OK value

Figure 4.44: Overview for data invalidation and range checks

290 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4.4 Modes

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

ModeDeclarationGroup

+ onTransitionValue :PositiveInteger [0..1]

AtpStructureElement
Identifiable

ModeDeclaration

+ value :PositiveInteger [0..1]

AtpPrototype

ModeDeclarationGroupPrototype

+ swCalibrationAccess :SwCalibrationAccessEnum [0..1]

«enumeration»
ModeActivationKind

 onEntry
 onExit
 onTransition

AbstractEvent

BswEvent

BswScheduleEvent

BswModeSwitchEvent

+ activation :ModeActivationKind

AbstractEvent
AtpStructureElement

RTEEvent

SwcModeSwitchEvent

+ activation :ModeActivationKind

AtpStructureElement
ExecutableEntity

RunnableEntity

+ canBeInvokedConcurrently :Boolean
+ symbol :CIdentifier

BswSchedulableEntity

ExecutableEntity

BswModuleEntity

AtpStructureElement
Identifiable

ModeSwitchPoint

«isOfType»

+type

1
{redefines
atpType}

+modeDeclaration

1..*
«atpVariation»

+startsOnEvent 1

«instanceRef»

+disabledInMode
0..*

«atpVariation»

+managedModeGroup 0..*

«atpVariation»

+accessedModeGroup
0..*

0..*

«instanceRef»

+modeGroup 0..1

+modeSwitchPoint *

«atpVariation»

+runnable

«instanceRef»

+disabledMode 0..*

+startOnEvent

0..1

0..*

«instanceRef»

+mode
1..2
{ordered}

«instanceRef»

+mode 1..2
{ordered}

+initialMode

1

Figure 4.45: Summary of the use of ModeDeclarations by an AUTOSAR software-
components and Basic Software Modules as defined in the Software Component Tem-
plate Specification [2] and Specification of BSW Module Description Template [9].

The purpose of modes is to start RunnableEntitys and Basic Software Schedulable
Entities on the transition between modes and to disable (/enable) specified triggers of
RunnableEntitys and Basic Software Schedulable Entities in certain modes. Here,
we use the specification of modes from the Software Component Template Specifica-
tion [2]. Further on the document Specification of BSW Module Description Template
[9] describes how modes are described for Basic Software Modules.

The first subsection 4.4.1 describes how modes can be used by an AUTOSAR
software-component or Basic Software Module mode user. The role of the mode
manager who initiates mode switches is described in section 4.4.2. How ModeDec-
larations are connected to a state machine is described in subsection 4.4.3. The
behaviour of the RTE and Basic Software Scheduler regarding mode switches is de-
tailed in subsection 4.4.4.

One usecase of modes is described in section 4.6.2 for the initialization and finalization
of AUTOSAR software-components. Modes can be used for handling of communica-

291 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

tion states as well as for specific application purposes. The specific definition of modes
and their use is not in the scope of this document.

The status of the modes will be notified to the AUTOSAR software-component mode
user by mode communication - mode switch notifications - as described in
the subsection 4.4.7. The port for receiving (or sending) a mode switch notifi-
cation is called mode switch port.

A Basic Software Module mode users and the Basic Software Module mode man-
ager are not necessarily using ports. Basic Software Modules without AUTOSAR
Interfaces are connected via the configuration of the Basic Software Scheduler.

4.4.1 Mode User

To use modes, an AUTOSAR software-component (mode user) has to reference a
ModeDeclarationGroup by a ModeDeclarationGroupPrototype of a require
mode switch port, see section 4.4.7. The ModeDeclarationGroup contains the
required modes. Alternatively the mode manager can also contain a ModeAccess-
Point for a provided mode switch port and can combine the roles of mode user
and mode manager for the same ModeDeclarationGroupPrototype.

An Basic Software Module (mode user) has to define a requiredModeGroup Mod-
eDeclarationGroupPrototype.The ModeDeclarationGroup referred by these
ModeDeclarationGroupPrototype contains the required modes. Similar to a
software-component mode user, the Basic Software Module mode manager can
also contain a accessedModeGroup for a providedModeGroup ModeDeclara-
tionGroupPrototype. By this it combines the roles of mode user and mode man-
ager for the same ModeDeclarationGroupPrototype.

The ModeDeclarations can be used in two ways by the mode user (see also figure
4.45):

1. Modes can be used to trigger runnables: The SwcInternalBehavior of the
AUTOSAR SW-C or the BswInternalBehavior of the BSW module can de-
fine a SwcModeSwitchEvent respectively a BswModeSwitchEvent referenc-
ing the required ModeDeclaration. This SwcModeSwitchEvent or BswMod-
eSwitchEvent can then be used as trigger for a RunnableEntity / Ba-
sic Software Schedulable Entity. Both SwcModeSwitchEvent and BswMod-
eSwitchEvent carry an attribute ModeActivationKind which can be ‘exit’,
‘entry’, or ‘transition’.

A RunnableEntity or Basic Software Schedulable Entity that is triggered
by a SwcModeSwitchEvent or a BswModeSwitchEvent with ModeActi-
vationKind ‘exit’ is triggered on exiting the mode. For simplicity it will be
called OnExit ExecutableEntity. Correspondingly, an OnTransition
ExecutableEntity is triggered by a SwcModeSwitchEvent or a BswMod-
eSwitchEvent with ModeActivationKind ‘transition’ and will be executed
during the transition between two modes, and an OnEntry ExecutableEn-

292 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

tity is triggered by a SwcModeSwitchEvent or a BswModeSwitchEvent with
ModeActivationKind ‘entry’ and will be executed when the mode is entered.

Since a RunnableEntity as well as a Basic Software Schedulable Entity can
be triggered by multiple RTEEvents respectively BswEvents, both can be an
OnExit-, OnTransition and OnEntry ExecutableEntity at the same time.

RTE does not support a WaitPoint for a SwcModeSwitchEvent (see
[SWS_Rte_01358]).

2. An RTEEvent or BswEvent that starts a ExecutableEntity can contain a
ModeDisablingDependency.

[SWS_Rte_02503] d If a RunnableEntity r is referenced with startOnEvent
by an RTEEvent e that has a ModeDisablingDependency on a mode m, then
RTE shall not activate runnable r on any occurrence of e while the mode m
is active. c(SRS_Rte_00143, SRS_Rte_00052)

[SWS_Rte_07530] d If a Basic Software Schedulable Entity r is referenced
with startsOnEvent by an BswEvent e that has a ModeDisablingDepen-
dency on a mode m, then Basic Software Scheduler shall not activate Basic
Software Schedulable Entitys r on any occurrence of e while the mode
m is active. c(SRS_Rte_00213)

Note: As a consequence of [SWS_Rte_02503] and [SWS_Rte_07530] in combi-
nation with [SWS_Rte_02661], RTE or Basic Software Scheduler will not start
runnable or BswSchedulableEntity r on any occurrence of e while the
mode m is active.

The mode disabling is active during the transition to a mode, during the mode
itself and during the transition for exiting the mode. For a precise definition see
section 4.4.4.

The existence of a ModeDisablingDependency prevents the RTE to start the
mode disabling dependent ExecutableEntity by the disabled RTE-
Event / BswEvent during the mode, referenced by the ModeDisablingDe-
pendency, and during the transitions from and to that mode. ModeDis-
ablingDependencys override any activation of a RunnableEntity and Basic
Software Schedulable Entity by the disabled RTEEvents / BswEvents. This is
also true for the SwcModeSwitchEvent and BswModeSwitchEvent.

A RunnableEntity as well as a Basic Software Schedulable Entity can not be
‘enabled’ explicitly. RunnableEntitys are Basic Software Schedulable Entities
are only ‘enabled’ by the absence of any active ModeDisablingDependencys.

Note that ModeDisablingDependencys do not prevent the wake up from
a WaitPoint by the ‘disabled’ RTEEvent. This allows the wake-uped
RunnableEntity to run until completion if a transition occurred during the
RunnableEntitys execution.

293 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_02504] d The existence of a ModeDisablingDependency shall not
instruct the RTE to kill a running runnable at a mode switch. c(SRS_Rte_00143)

[SWS_Rte_07531] d The existence of a ModeDisablingDependency shall not
instruct the Basic Software Scheduler to kill a running Basic Software Schedula-
ble Entity at a mode switch. c(SRS_Rte_00213)

The RTE and the Basic Software Scheduler can be configured to switch sched-
ule tables to implement mode disabling dependencies for cyclic triggers of
RunnableEntitys or Basic Software Schedulable Entities. Sets of mutual ex-
clusive modes can be mapped to different schedule tables. The RTE shall imple-
ment the switch between schedule tables according to the mapping of modes to
schedule tables in RteModeScheduleTableRef, see [SWS_Rte_05146].

The mode user can specify in the ModeSwitchReceiverComSpec (software compo-
nents) or BswModeReceiverPolicy (BSW modules) that it is able to deal with asyn-
chronous mode switch behavior (supportsAsynchronousModeSwitch == TRUE).
If all mode users connected to the same ModeDeclarationGroupPrototype of
the mode manager support the asynchronous mode switch behavior, the related mode
machine instance can be implemented with the asynchronous mode switching pro-
cedure. Otherwise, the synchronous mode switching procedure has to be applied (see
[SWS_Rte_07150]).

4.4.2 Mode Manager

Entering and leaving modes is initiated by a mode manager. A mode manager might
be a basic software module, for example the Basic Software Mode Manager (BswM),
the communication manager (ComM), or the ECU state manager (EcuM). The mode
manager may also be an AUTOSAR SW-C. In this case, it is called an application
mode manager.

The mode manager contains the master state machine to represent the modes.

To provide modes, an AUTOSAR software-component (mode manager) has to ref-
erence a ModeDeclarationGroup by a ModeDeclarationGroupPrototype of a
provide mode switch port, see section 4.4.7. The ModeDeclarationGroup con-
tains the provided modes.

An Basic Software Module (mode manager) has to define a providedModeGroup
ModeDeclarationGroupPrototype. The ModeDeclarationGroup referred by
these ModeDeclarationGroupPrototype contains the provided modes.

The RTE / Basic Software Scheduler will take the actions necessary to switch between
the modes. This includes the termination and execution of several ExecutableEntities
from all mode users that are connected to the same ModeDeclarationGroupProto-
type of the mode manager. To do so, the RTE / Basic Software Scheduler needs a
state machine to keep track of the currently active modes and transitions initiated by
the mode manager. The RTE’s / Basic Software Scheduler ’s mode machine is called

294 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

mode machine instance. There is exactly one mode machine instance for
each ModeDeclarationGroupPrototype of a mode manager’s provide mode switch
port respectively providedModeGroup ModeDeclarationGroupPrototype.

It is the responsibility of the mode manager to advance the RTE’s / Basic Soft-
ware Scheduler ’s mode machine instance by sending mode switch notifi-
cations to the mode users. The mode switch notifications are imple-
mented by a non blocking API (see 5.6.6 / 6.5.7). So, the mode switch notifi-
cations alone provide only a loose coupling between the state machine of the mode
manager and the mode machine instance of the RTE / Basic Software Scheduler.
To prevent, that the mode machine instance lags behind and the states of the
mode manager and the RTE / Basic Software Scheduler get out of phase, the mode
manager can use acknowledgment feedback for the mode switch notification.
RTE / Basic Software Scheduler can be configured to send an acknowledgment of the
mode switch notification to the mode manager when the requested transition
is completed.

At the mode manager, the acknowledgment results in an ModeSwitchedAckEvent.
As with DataSendCompletedEvents, this event can be picked up with the polling or
blocking Rte_SwitchAck API. And the event can be used to trigger a mode switch
acknowledge ExecutableEntity to pick up the status. Note: The Basic Soft-
ware Scheduler do not support WaitPoints. Therefore the SchM_SwitchAck never
blocks.

Some possible usage patterns for the acknowledgement are:

• The most straight forward method is to use a sequence of Rte_Switch and a
blocking Rte_SwitchAck to send the mode switch notification and wait
for the completion. This requires the use of an extended task.

• Another possibility is to have a cyclic RunnableEntity / Basic Software
Schedulable Entity (maybe the same that switches the modes via Rte_Switch
/ SchM_Switch) to poll for the acknowledgement using Rte_SwitchAck /
SchM_SwitchAck.

• The acknowledgement can also be polled from a RunnableEntity or Basic
Software Schedulable Entity that is started by the ModeSwitchedAckEvent.

The mode manager can also use the Rte_Mode / SchM_Mode API to read the cur-
rently active mode from the RTE’s / Basic Software Scheduler ’s perspective.

4.4.3 Refinement of the semantics of ModeDeclarations and Mode-
DeclarationGroups

To implement the logic of mode switches, the RTE / Basic Software Scheduler needs
some basic information about the available modes. For this reason, RTE / Basic Soft-
ware Scheduler will make the following additional assumptions about the modes of one
ModeDeclarationGroup:

295 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

1. [constr_9013] Exactly one mode or one mode transition shall be active d
Whenever any RunnableEntity or Basic Software Schedulable Entity is run-
ning, there shall always be exactly one mode or one mode transition active of
each ModeDeclarationGroupPrototype. c

2. Immediately after initialization of a mode machine instance, RTE / Basic
Software Scheduler will execute a transition to the initial mode of each Mod-
eDeclarationGroupPrototype (see [SWS_Rte_02544]).

RTE / Basic Software Scheduler will enforce the mode disablings of the initial
modes and trigger the OnEntry ExecutableEntitys (if any defined) of the
initial modes of every ModeDeclarationGroupPrototype immediately after
initialization of the RTE / Basic Software Scheduler.

In other words, RTE / Basic Software Scheduler assumes, that the modes of one
ModeDeclarationGroupPrototype belong to exactly one state machine without
nested states. The state machines cover the whole lifetime of the atomic AUTOSAR
SW-Cs10 and mode dependent AUTOSAR Basic Software Modules 11.

4.4.4 Order of actions taken by the RTE / Basic Software Scheduler upon inter-
ception of a mode switch notification

This section describes what the ‘communication’ of a mode switch to a mode user
actually does. What does the RTE Basic Software Scheduler do to switch a mode and
especially in which order.

Mode switch procedures

Depending on the needs of mode users for synchronicity, the mode machine instance
can be implemented with two different realizations.

• synchronous mode switching procedure

• asynchronous mode switching procedure

The differences between these two realizations are the omitted waiting conditions in
case of asynchronous mode switching procedure. For instance with asynchronous
behavior a software component can not rely that all mode disabling dependent
ExecutableEntitys of the previous mode are terminated before OnEntry Exe-
cutableEntitys and OnExit ExecutableEntitys are started. On one hand
this might put some effort to the software component designer to enable the compo-
nents implementation to support this kind of scheduling but on the other hand it enables
fast and lean mode switching.

10The lifetime of an atomic AUTOSAR SW-C is considered to be the time span in which the SW-C’s
runnables are being executed.

11The lifetime of an mode dependent AUTOSAR Basic Software Module is considered to be the time
span in which the Basic Software Schedulable Entities are being executed.

296 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_07150] d The RTE generator shall use the synchronous mode switching
procedure if at least one mode user of the mode machine instance does not sup-
port the asynchronous mode switch behavior. c(SRS_Rte_00143, SRS_Rte_00213)

[SWS_Rte_07151] d The RTE generator shall apply the asynchronous mode switch
behavior, if all mode users support the asynchronous mode switch behavior and
if it is configured for the related mode machine instance. c(SRS_Rte_00143,
SRS_Rte_00213)

Typical usage of modes to protect resources

RTE / Basic Software Scheduler can start and prevent the execution of RunnableEn-
titys and BswSchedulableEntity. In the context of mode switches,

• RTE / Basic Software Scheduler starts OnExit ExecutableEntitys for leav-
ing the previous mode. This is typically used by ‘clean up ExecutableEntitys’
to free resources that were used during the previous mode.

• RTE / Basic Software Scheduler starts OnEntry ExecutableEntitys for en-
tering the next mode. This is typically used by ‘initialization ExecutableEn-
titys’ to allocate resources that are used in the next mode.

• And RTE / Basic Software Scheduler can prevent the execution of mode dis-
abling dependent ExecutableEntitys within a mode. This is typically
used with time triggered ‘work ExecutableEntity’ that use a resource which is not
available in a certain mode.

According to this use case, during the execution of ‘clean up ExecutableEntitys’
and ‘initialization ExecutableEntitys’ the ‘work ExecutableEntitys’ should be
disabled to protect the resource. Also, if the same resource is used (by different SW-
C’s) in two successive modes, the ‘clean up ExecutableEntitys’ should be safely
terminated before the ‘initialization ExecutableEntitys’ of the next mode are exe-
cuted (synchronous mode switching procedure). In summary, this would lead to the
following sequence of actions by the RTE / Basic Software Scheduler upon reception
of the mode switch notification:

1. activate mode disablings for the next mode

2. wait for the newly disabled ExecutableEntitys to terminate in case of syn-
chronous mode switching procedure

3. execute ‘clean up ExecutableEntitys’

4. wait for the ‘clean up ExecutableEntitys’ to terminate in case of synchronous
mode switching procedure

5. execute ‘initialization ExecutableEntitys’

6. wait for the ‘initialization ExecutableEntitys’ to terminate in case of syn-
chronous mode switching procedure

297 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

7. deactivate mode disablings for the previous modes and enable Exe-
cutableEntitys that have been disabled in the previous mode.

RTE / Basic Software Scheduler can also start OnTransition ExecutableEnti-
tys on a transition between two modes which is not shown in this use case example.

Often, only a fraction of the SW-Cs, Runnable Entities, Basic Software modules and
Basic Software Schedulable Entities of one ECU depends on the modes that are
switched. Consequently, it should be possible to design the system in a way, that
the mode switch does not influence the performance of the remaining software.

Figure 4.46: This figure shall illustrate what kind of ExecutableEntities will run in what or-
der during a synchronous mode transition. The boxes indicate activated ExecutableEn-
tities. Mode disabling dependant ExecutableEntities are printed in blue (old mode) and
pink (new mode). OnExit, OnTransition, and OnEntry ExecutableEntity are printed in red,
yellow, and green.

298 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Figure 4.47: This figure shall illustrate what kind of ExecutableEntity will run in what
order during an asynchronous mode transition where the ExecutableEntities are trig-
gered on a mode change are mapped to a higher priority task than the Mode Dependent
ExecutableEntity. The boxes indicate activated ExecutableEntity. Mode disabling de-
pendant ExecutableEntity are printed in blue (old mode) and pink (new mode). OnExit,
OnTransition, and OnEntry ExecutableEntity are printed in red, yellow, and green.

The remainder of this section lists the requirements that guarantee the behavior de-
scribed above.

All runnables with dependencies on modes have to be executed or terminated during
mode transitions. Restriction [SWS_Rte_02500] requires these runnables to be of
category 1 to guarantee finite execution time.

For simplicity of the implementation to guarantee the order of runnable executions, the
following restriction is made:

All OnEntry ExecutableEntitys, OnTransition ExecutableEntitys, and
OnExit ExecutableEntitys of the same mode machine instance should be
mapped to the same task in the execution order following OnExit, OnTransition, OnEn-
try (see [SWS_Rte_02662]).

A mode machine instance implementing an asynchronous mode switch proce-
dure might be fully implemented inside the Rte_Switch or SchM_Switch API. In
this case the OnEntry ExecutableEntitys, OnTransition ExecutableEn-
titys, OnExit ExecutableEntitys and mode switch acknowledge Exe-
cutableEntitys are not mapped to tasks as described in chapter 7.6.1.

[SWS_Rte_07173] d The RTE generator shall support invocation of OnEn-
try ExecutableEntitys, OnTransition ExecutableEntitys, OnExit Ex-
ecutableEntitys and mode switch acknowledge ExecutableEntitys via
direct function call, if all following conditions are fulfilled:

• if the asynchronous mode switch behavior is configured (see [SWS_Rte_07151])

• the OnEntry ExecutableEntitys, OnTransition ExecutableEnti-
tys, OnExit ExecutableEntitys and mode switch acknowledge Ex-
ecutableEntitys do not define a ’minimum start distance’

• the mode manager and mode user are in the same Partition

• if the preconditions of table 4.5 are fulfilled

c(SRS_Rte_00143, SRS_Rte_00213)

Further on the requirements [SWS_Rte_05083], [SWS_Rte_07155] and
[SWS_Rte_07157] has to be considered.

[SWS_Rte_02667] d Within the mode manager’s Rte_Switch / SchM_Switch API
call to indicate a mode switch, one of the following shall be done:

299 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

1. If the corresponding mode machine instance is in a transition, and the queue
for mode switch notifications is full, Rte_Switch / SchM_Switch shall
return an error immediately.

2. If the corresponding mode machine instance is in a transition, and the queue
for mode switch notifications is not full, the mode switch notifica-
tion shall be queued.

3. If the mode machine instance is not in a transition, Rte_Switch /
SchM_Switch shall initiate the transition as described by the sequence
in [SWS_Rte_02665] which in turn activates the mode disablings (see
[SWS_Rte_02661]) of the next mode.

c(SRS_Rte_00143, SRS_Rte_00213)

The following list holds the requirements for the steps of a mode transition.

• [SWS_Rte_02661] d At the beginning of a transition of a mode ma-
chine instance, the RTE / Basic Software Scheduler shall activate the
mode disablings of the next mode (see also [SWS_Rte_02503]), if any
ModeDisablingDependencys for that mode are defined. c(SRS_Rte_00143,
SRS_Rte_00213)

• [SWS_Rte_07152] d If any ModeDisablingDependencys for the next mode
are defined (as specified by [SWS_Rte_02661]), the RTE / Basic Software
Scheduler shall wait until the newly disabled RunnableEntitys and Basic Soft-
ware Schedulable Entities are terminated, in case of synchronous mode switch-
ing procedure. c(SRS_Rte_00143, SRS_Rte_00213)

Note: To guarantee in case of synchronous mode switching all activated mode
disabling dependent ExecutableEntitys of this mode machine in-
stance have terminated before the start of the OnExit ExecutableEnti-
tys of the transition, RTE generator can exploit the restriction [SWS_Rte_02663]
that mode disabling dependent ExecutableEntitys run with higher or
equal priority than the OnExit ExecutableEntitys and the OnEntry Exe-
cutableEntitys.

• [SWS_Rte_02562] d RTE / Basic Software Scheduler shall execute the
OnExit ExecutableEntitys of the previous mode. c(SRS_Rte_00143,
SRS_Rte_00052, SRS_Rte_00213)

• [SWS_Rte_07153] d If any OnExit ExecutableEntity is configured the RTE
/ Basic Software Scheduler shall wait after its execution ([SWS_Rte_02562]) until
all OnExit ExecutableEntitys are terminated in case of synchronous mode
switching procedure. c(SRS_Rte_00143, SRS_Rte_00213)

• [SWS_Rte_02707] d RTE / Basic Software Scheduler shall execute the OnTran-
sition ExecutableEntitys configured for the transition from previous mode
to next mode. c(SRS_Rte_00143, SRS_Rte_00052, SRS_Rte_00213)

300 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

• [SWS_Rte_02708] d If any OnTransition ExecutableEntity is config-
ured, the RTE / Basic Software Scheduler shall wait after its execution
([SWS_Rte_02707]) until all OnTransition ExecutableEntitys are termi-
nated in case of synchronous mode switching procedure. c(SRS_Rte_00143,
SRS_Rte_00213)

• [SWS_Rte_02564] d RTE / Basic Software Scheduler shall execute the OnEntry
ExecutableEntitys of the next mode. c(SRS_Rte_00143, SRS_Rte_00052,
SRS_Rte_00213)

• [SWS_Rte_07154] d If any OnEntry ExecutableEntity is configured the
RTE shall wait after its execution ([SWS_Rte_02564]) until all OnEntry Exe-
cutableEntitys are terminated in case of synchronous mode switching pro-
cedure. c(SRS_Rte_00143, SRS_Rte_00213)

• [SWS_Rte_02563] d The RTE / Basic Software Scheduler shall deactivate the
previous mode disablings and only keep the mode disablings of the next
mode. c(SRS_Rte_00143, SRS_Rte_00213)

With this, the transition is completed.

• [SWS_Rte_02587] d At the end of the transition, RTE / Basic Software Scheduler
shall trigger the ModeSwitchedAckEvents connected to the mode manager’s
ModeDeclarationGroupPrototype. c(SRS_Rte_00143, SRS_Rte_00213)

This will result in an acknowledgment on the mode manager’s side which allows
the mode manager to wait for the completion of the mode switch.

The dequeuing of the mode switch notification shall also be done at the end of
the transition, see [SWS_Rte_02721].

[SWS_Rte_02665] d During a transition of a mode machine instance each appli-
cable of the steps

1. [SWS_Rte_02661] (The transition is entered in parallel with this step),

2. [SWS_Rte_07152],

3. [SWS_Rte_02562],

4. [SWS_Rte_07153],

5. [SWS_Rte_02707],

6. [SWS_Rte_02708],

7. [SWS_Rte_02564],

8. [SWS_Rte_07154],

9. [SWS_Rte_02563] (The transition is completed with this step), and

10. immediately followed by [SWS_Rte_02587]

301 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

shall be executed in the order as listed. If a step is not applicable, the order of the
remaining steps shall be unchanged. c(SRS_Rte_00143, SRS_Rte_00213)

[SWS_Rte_02668] d Immediately after the execution of a transition as described
in [SWS_Rte_02665], RTE / Basic Software Scheduler shall check the queue for
pending mode switch notifications of this mode machine instance. If a
mode switch notification can be dequeued, the mode machine instance
shall enter the corresponding transition directly as described by the sequence in
[SWS_Rte_02665]. c(SRS_Rte_00143, SRS_Rte_00213)

In the case of a fast sequence of two mode switches, the Rte_Mode or SchM_Mode
API will not indicate an intermediate mode, if a mode switch notification to the
next mode is indicated before the transition to the intermediate mode is completed.

[SWS_Rte_02630] d In case of synchronous mode switch procedure, the RTE shall ex-
ecute all steps of a mode switch (see [SWS_Rte_02665]) synchronously for the whole
mode machine instance. c(SRS_Rte_00143, SRS_Rte_00213)

I.e., the mode transitions will be executed synchronously for all mode users that are
connected to the same mode manager’s ModeDeclarationGroupPrototype.

[SWS_Rte_02669] d If the next mode and the previous mode of a transition are the
same, the transition shall still be executed. c(SRS_Rte_00143, SRS_Rte_00213)

Mapping of ModeDeclarations

There exist several use cases (especially if software is reused), where mode users
are connected to mode managers providing ModeDeclarationGroups with differ-
ent ModeDeclarations than the user.

Examples:

• A mode manager can be able to differentiate more fin grained sub states as it
is required by the generic mode user. But due to the definition of the mode
communication it is not possible to use two p-ports at the mode manager be-
cause this would lead to two independent and unsynchronized mode machine
instances in the RTE.

• A generic mode user can support additionally modes which are not used by all
mode managers.

This would normally lead to an error as incompatible ports are connected. To overcome
this limitation the Software Component Template [2] provides a mapping between dif-
ferent ModeDeclarations so that the RTE can translated on mode to the other.

[SWS_Rte_08511] d If a ModeDeclaration of a mode user is mapped to a sin-
gle ModeDeclaration of a mode manager the related mode of the mode user
is entered or exit when the mapped mode of the mode manager is entered or exit.
c(SRS_Rte_00236)

[SWS_Rte_08512] d If one ModeDeclaration of a mode user is mapped to sev-
eral ModeDeclarations of a mode manager the related mode of the mode user

302 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

is entered when any of the mapped modes of the mode manager mapped by one
modeDeclarationMapping is entered. The related mode of the mode user is exit
when any of the mapped modes of the mode manager mapped by one modeDecla-
rationMapping is exit and if the new mode is not mapped by the same modeDec-
larationMapping to related mode of the mode user. c(SRS_Rte_00236)

Note: If one ModeDeclaration of a mode user is mapped to several ModeDecla-
rations of a mode manager by the means of several modeDeclarationMappings
the semantics is defined in a way that the individual mode transitions of the mode man-
ager are getting visible as “exit” and “enter” events for the mode user. Further on the
transition phase gets visible by the RTE_TRANSITION return value in the case that
Rte_Mode-API is called during such a transition phase.

If one ModeDeclaration of a mode user is mapped to several ModeDeclara-
tions of a mode manager by the means of a single modeDeclarationMapping
the semantics is defined in a way that the individual mode transitions of the mode
manager are not visible for the mode user.

Example:
The mode manager and the mode user have different ModeDeclaration-
Groups which are mapped by several modeDeclarationMappings. The Mode-
DeclarationGroup of the mode manager is more fine grained, so more than one
of its ModeDeclarations has to be mapped onto the same ModeDeclaration of
the mode user. The modeDeclarationMappings can be seen in table 4.12. The
complete example is listed as ARXML in Appendix F.1.

modeDeclarationMapping ModeDeclarations of the
mode manager

Mapped ModeDeclara-
tions of the mode user

StartUp_2_STARTUP StartUp STARTUP
Run_2_RUN Run RUN
PostRunX_2_POST_RUN PostRun1

PostRun2
POST_RUN

ShutDown_2_SHUTDOWN ShutDown SHUTDOWN
Sleep_Hibernate_2_SHUTDOWN Sleep

Hibernate
SHUTDOWN

Table 4.12: Example of a modeDeclarationMapping which maps ModeDeclarations
from mode manager to ModeDeclarations of the mode user

Table 4.13 shows a possible scenario how mode transitions of a mode manager
will be seen from the point of view of a mode user when the modeDeclaration-
Mapping maps more than one ModeDeclaration of the mode manager’s Mode-
DeclarationGroup onto the same ModeDeclaration of the mode user’s Mode-
DeclarationGroup.

Mode transitions of the
mode manager

Mode transitions of the
mode user resulting out of the map-
ping

Undefined→ StartUp Undefined→ STARTUP
StartUp→ Run STARTUP→ RUN

303 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Run→ PostRun1 RUN→ POST_RUN
PostRun1→ PostRun2 — (no transition)
PostRun2→ ShutDown POST_RUN→ SHUTDOWN
ShutDown→ Sleep SHUTDOWN→ SHUTDOWN
Sleep→ Hibernate — (no transition)

Table 4.13: Possible scenario of mode transitions by the mode manager and the result-
ing transitions from the point of view of the mode user

A configuration that maps several ModeDeclarations of a mode user to a single
ModeDeclaration representing a mode of a mode manager shall be rejected (see
also [constr_1209]). This is not valid as it violates the principle that modes are mutually
exclusive.

[SWS_Rte_08513] d The RTE-Generator shall reject configurations violating [con-
str_1209]. c(SRS_Rte_00236)

If a modeDeclarationMapping exists that references a ModeDeclaration repre-
senting a mode of the mode manager then ModeDeclarationMappings shall exist
that map all ModeDeclarations of the mode manager to ModeDeclarations of
the mode user (see also [constr_1210]).

[SWS_Rte_08514] d The RTE-Generator shall reject configurations violating [con-
str_1210]. c(SRS_Rte_00236)

Note: It is only supported that modes of the mode user might not be mapped.

4.4.5 Assignment of mode machine instances to RTE and Basic Software
Scheduler

[SWS_Rte_07533] d A mode machine instance shall be assigned to the RTE
if the correlating ModeDeclarationGroupPrototype is instantiated in a port of
a software-component and if the ModeDeclarationGroupPrototype is not syn-
chronized (synchronizedModeGroup of a SwcBswMapping) with a providedMode-
Group ModeDeclarationGroupPrototype of a Basic Software Module instance.
c(SRS_Rte_00143)

[SWS_Rte_07534] d A mode machine instance shall be assigned to the Basic
Software Scheduler if the correlating ModeDeclarationGroupPrototype is a pro-
videdModeGroup ModeDeclarationGroupPrototype of a Basic Software Mod-
ule instance. c(SRS_Rte_00213)

[SWS_Rte_07535] d The RTE Generator shall create only one mode machine in-
stance if a ModeDeclarationGroupPrototype instantiated in a port of a software-
component is synchronized (synchronizedModeGroup of a SwcBswMapping) with a
providedModeGroup ModeDeclarationGroupPrototype of a Basic Software
Module instance. The related common mode machine instance shall be as-

304 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

signed to the Basic Software Scheduler. c(SRS_Rte_00143, SRS_Rte_00213,
SRS_Rte_00214)

In case of synchronized ModeDeclarationGroupPrototypes the correlating com-
mon mode machine instance is initialized during the execution of the SchM_Init.
At this point of time the scheduling of RunnableEntitys is not enabled due to
the uninitialized RTE. Therefore situation occurs, that the RunnableEntitys being
OnEntry ExecutableEntitys are not called if the mode machine instance is
initialized. Further on the current mode of such mode machine instance might be
still switched until the RTE gets initialized. Nevertheless the OnEntry Runnables of the
current active mode are executed.

[SWS_Rte_07582] d For common mode machine instances the OnEntry Runn-
able Entities of the current active mode are executed during the initialization of the RTE
if the common mode machine instance is not in transition. c(SRS_Rte_00214)

[SWS_Rte_07583] d A common mode machine instances is not allowed to en-
ter transition phase during the RTE initialization if the common mode machine in-
stances has OnEntry Runnable Entities, OnTransition Runnable Entities or OnExit
Runnable Entities c(SRS_Rte_00214)

Note: [SWS_Rte_07582] and [SWS_Rte_07583] shall ensure a deterministic behavior
that the software components receiving a Mode Switch Request from a common mode
machine instances are receiving the current active mode during RTE initialization.

[SWS_Rte_07564] d The RTE generator shall reject configurations where Mod-
eSwitchPoint(s) referencing a ModeDeclarationGroupPrototype in a mode
switch port and a managedModeGroup association(s) to a providedMode-
Group ModeDeclarationGroupPrototype are not defined mutual exclusively to
one of two synchronized ModeDeclarationGroupPrototypes. c(SRS_Rte_00143,
SRS_Rte_00213, SRS_Rte_00214, SRS_Rte_00018)

[constr_9014] ModeSwitchPoint(s) and managedModeGroup(s) are mutually ex-
clusive for synchronized ModeDeclarationGroupPrototypes d Only one of two syn-
chronized ModeDeclarationGroupPrototypes shall mutual exclusively be referenced by
ModeSwitchPoint(s) or managedModeGroup association(s). c

Note: [constr_9014] shall ensure in the combination with the existence conditions
of the Rte_Switch, Rte_Mode, Rte_SwitchAck, SchM_Switch, SchM_Mode and
SchM_SwitchAck that either the port based RTE API or the Basic Software Scheduler
API ([SWS_Rte_07201] and [SWS_Rte_07264]) offered to the implementation of the
mode manager.

4.4.6 Initialization of mode machine instances

A mode machine instance can either be initialized during Rte_Start or during
Rte_Init. The initialization during Rte_Init enables a defined order when which

305 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

mode machine instance gets initialized and the belonging OnEntry Runnable En-
tities are scheduled.

[SWS_Rte_06766] d RTE shall initiate the transition to the initial modes of each mode
machine instance belonging to the RTE during Rte_Start if the OnEntry Runn-
able Entities for the initialMode are not mapped to any RteInitialization-
RunnableBatch container. c(SRS_Rte_00143, SRS_Rte_00144, SRS_Rte_00116)

[SWS_Rte_06767] d RTE shall initiate the transition to the initial modes of each mode
machine instance belonging to the RTE during Rte_Init if the OnEntry Runnable
Entities for the initialMode are mapped to one or several RteInitialization-
RunnableBatch container. c(SRS_Rte_00143, SRS_Rte_00144, SRS_Rte_00116,
SRS_Rte_00240)

Please note the restrictions on the mapping to RteInitializationRunnable-
Batch containers [constr_9062], [constr_9063] and [constr_9064].

[SWS_Rte_02544] d During the transition to the initial modes of mode machine in-
stances belonging to the RTE, the steps defined in the following requirements have
to be omitted as no previous mode is defined:

• [SWS_Rte_02562],

• [SWS_Rte_07153],

• [SWS_Rte_02707],

• [SWS_Rte_02708],

• [SWS_Rte_02563],

• [SWS_Rte_02587]

If applicable, the steps described by the following requirements still have to be executed
for entering the initial mode:

• [SWS_Rte_02661],

• [SWS_Rte_02564]

c(SRS_Rte_00143, SRS_Rte_00144, SRS_Rte_00116)

[SWS_Rte_07532] d Basic Software Scheduler shall initiate the transition to the initial
modes of each mode machine instance belonging to the Basic Software Sched-
uler during SchM_Init. During the transition to the initial modes, the steps defined in
the following requirements have to be omitted as no previous mode is defined:

• [SWS_Rte_02562],

• [SWS_Rte_07153],

• [SWS_Rte_02707],

• [SWS_Rte_02708],

306 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

• [SWS_Rte_02563],

• [SWS_Rte_02587]

If applicable, the steps described by the following requirements still have to be executed
for entering the initial mode:

• [SWS_Rte_02661],

• [SWS_Rte_02564]

c(SRS_Rte_00213)

307 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4.4.7 Notification of mode switches

ARElement
AtpBlueprint

AtpBlueprintable
AtpStructureElement

BswModuleDescription

+ moduleId :PositiveInteger [0..1]

AtpPrototype

ModeDeclarationGroupPrototype

+ swCalibrationAccess :SwCalibrationAccessEnum [0..1]

«atpVariation» Tags:
vh.latestBindingTime = preCompileTime

ModeSwitchInterface

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

PortInterface

+ isService :Boolean
+ serviceKind :ServiceProviderEnum [0..1]

PPortPrototypeRPortPrototype

AtpBlueprintable
AtpPrototype

PortPrototype

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

ModeDeclarationGroup

+ onTransitionValue :PositiveInteger [0..1]

AtpStructureElement
Identifiable

ModeDeclaration

+ value :PositiveInteger [0..1]

«atpVariation» Tags:
vh.latestBindingTime =
preCompileTime

ARElement
AtpStructureElement

SwcBswMapping

SwcBswSynchronizedModeGroupPrototype

AtomicSwComponentType

AbstractRequiredPortPrototype AbstractProvidedPortPrototype

PRPortPrototype

+modeDeclaration 1..*

«atpVariation»

«isOfType»

+type

1
{redefines
atpType}

+initialMode 1

«atpVariation»

+providedModeGroup

0..*

«atpVariation»

+requiredModeGroup

0..*

+rPort *

«isOfType»

+requiredInterface

+port

0..*«atpVariation,atpSplitable»

+component

«instanceRef»

+swcModeGroup

1

+modeGroup 1

1

+pPort *

«isOfType»

+providedInterface

«atpVariation»

+synchronizedModeGroup 0..*

«isOfType»

+providedRequiredInterface

+bswModeGroup

1

Figure 4.48: Definition of a ModeSwitchInterface.

308 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

• [SWS_Rte_02549] d Mode switches shall be communicated via RTE by Mod-
eDeclarationGroupPrototypes of a ModeSwitchInterface as defined in
[2], see Fig. 4.48. c(SRS_Rte_00144)

The mode switch ports of the mode manager and the mode user are of
the type of a ModeSwitchInterface.

• [SWS_Rte_07538] d Mode switches shall be communicated via Basic Software
Scheduler via providedModeGroup and requiredModeGroup ModeDecla-
rationGroupPrototypes as defined in [9], see Fig. 4.48. Which ModeDeclara-
tionGroupPrototypes are connected to each other is defined by the configuration
of the Basic Software Scheduler. c(SRS_Rte_00213)

• RTE / Basic Software Scheduler only requires the notification of switches be-
tween modes.

• AUTOSAR does not support inter ECU communication of mode switch notifica-
tions.

RTE does not support a configuration in which the mode users of
one mode machine instance are distributed over several partitions, see
[SWS_Rte_02724].

Rationale: Mode switch communication requires high synchronization effort.
Such a high coupling should be avoided between ECUs and between partitions.
This does not prevent distributed mode management.

For the distributed mode management mode requests can be distributed via Ser-
viceProxySwComponentTypes and the BswM of each target ECU to the mode
users of the BswMs.

• [SWS_Rte_02508] d A mode switch shall be notified asynchronously as indicated
by the use of a ModeSwitchInterface. c(SRS_Rte_00144)

Rationale: This simplifies the communication. Due to [SWS_Rte_02724] the
communication is local and no handshake is required to guarantee reliable trans-
mission.

RTE offers the Rte_Switch API to the mode manager for this notification, see
5.6.6.

Basic Software Scheduler offers the SchM_Switch API to the mode manager
for this notification, see 6.5.7.

• The mode manager might still require a feedback to keep it’s internal state
machine synchronized with the RTE / Basic Software Scheduler view of active
modes.

The RTE generator shall support an AcknowledgementRequest from the mode
switch port / providedModeGroup ModeDeclarationGroupPrototype
of a mode manager, see [SWS_Rte_02587], to notify the mode manager of the
completion of a mode switch.

309 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

• [SWS_Rte_02566] d A ModeSwitchInterface shall support 1:n communica-
tion. c(SRS_Rte_00144)

Rationale: This simplifies the configuration and the communication. One mode
switch can be notified to all receivers simultaneously.

A ModeSwitchInterface does not support n:1 communication, see
[SWS_Rte_02670].

• [SWS_Rte_07539] d The connection of providedModeGroup and required-
ModeGroup ModeDeclarationGroupPrototype shall support 1:n communi-
cation. c(SRS_Rte_00213)

• [SWS_Rte_02624] d A mode switch shall be notified with event seman-
tics, i.e., the mode switch notifications shall be buffered by RTE or Ba-
sic Software Scheduler to which the mode machine instance is assigned.
c(SRS_Rte_00144)

The queueing of mode switches (and SwcModeSwitchEvents) depends like
that of DataReceivedEvents on the settings for the receiving port, see sec-
tion 4.3.1.10.2.

• [SWS_Rte_02567] d A ModeSwitchInterface shall only indicate the next
mode of the transition. c(SRS_Rte_00144)

• [SWS_Rte_07541] d A providedModeGroup ModeDeclarationGroupPro-
totype shall only indicate the next mode of the transition. c(SRS_Rte_00213)

The API takes a single parameter (plus, optionally, the instance handle) that in-
dicates the requested ’next mode’. For this purpose, RTE and Basic Software
Scheduler will use identifiers of the modes as defined in [SWS_Rte_02568] and
[SWS_Rte_07294].

• [SWS_Rte_02546] d The RTE shall keep track of the active modes
of a mode manager’s ModeDeclarationGroupPrototypes (mode ma-
chine instances) which is assigned to the RTE. c(SRS_Rte_00143,
SRS_Rte_00144)

• [SWS_Rte_07540] d The Basic Software Scheduler shall keep track of the active
modes of a mode manager’s ModeDeclarationGroupPrototypes (mode
machine instances) which is assigned to the Basic Software Scheduler.
c(SRS_Rte_00213, SRS_Rte_00144)

Rationale: This allows the RTE / Basic Software Scheduler to guarantee con-
sistency between the timing for firing of SwcModeSwitchEvents / BswMod-
eSwitchEvents and disabling the start of ExecutableEntities by ModeDis-
ablingDependency without adding additional interfaces to a mode manager
with fine grained substates on the transitions.

• The RTE offers an Rte_Mode API to the SW-C to get information about the active
mode, see section 5.6.29.

310 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

• The Basic Software Scheduler offers an SchM_Mode API to the Basic Software
Module to get information about the active mode, see section 6.5.8.

• In addition to the mode switch ports, the mode manager may offer an AU-
TOSAR interface for requesting and releasing modes as a means to keep modes
alive like for ComM and EcuM.

4.4.8 Mode switch acknowledgment

In case of mode switch communication, the mode manager may specify a Mod-
eSwitchedAckEvent or BswModeSwitchedAckEvent to receive a notification from
the RTE that the mode transition has been completed, see [SWS_Rte_02679] and
[SWS_Rte_07559].

The ModeSwitchedAckEvent is triggered by the RTE regardless which runnable en-
tity has requested the mode switch notification, even if the meta model implies a link to
a specific ModeSwitchPoint.

[SWS_Rte_02679] d If acknowledgment is enabled for a provided Mod-
eDeclarationGroupPrototype and a ModeSwitchedAckEvent references a
RunnableEntity as well as the ModeDeclarationGroupPrototype, the
RunnableEntity shall be activated when the mode switch acknowledgment occurs
or when the RTE detects that the partition to which the mode users are mapped was
stopped or restarted. c(SRS_Rte_00051, SRS_Rte_00143)

Note the constraint that all mode users are in the same partition ([SWS_Rte_02724]).

The related Entry Point Prototype is defined in [SWS_Rte_02512].

[SWS_Rte_07559] d If acknowledgment is enabled for a provided (providedMode-
Group) ModeDeclarationGroupPrototype and a BswModeSwitchedAckEvent
references a BswSchedulableEntity as well as the ModeDeclarationGroup-
Prototype, the BswSchedulableEntity shall be activated when the mode switch
acknowledgment occurs or when a timeout was detected by the Basic Software Sched-
uler. [SWS_Rte_02587]. c(SRS_Rte_00213, SRS_Rte_00143)

The related Entry Point Prototype is defined in [SWS_Rte_07283].

Requirement [SWS_Rte_02679] and [SWS_Rte_07559] merely affects when the runn-
able is activated. The Rte_SwitchAck and SchM_SwitchAck shall still be created,
according to requirement [SWS_Rte_02678] and [SWS_Rte_07558] to actually read
the acknowledgment.

[SWS_Rte_02730] d A ModeSwitchedAckEvent that references a RunnableEn-
tity and is referenced by a WaitPoint shall be an invalid configuration which is re-
jected by the RTE generator. c(SRS_Rte_00051, SRS_Rte_00018, SRS_Rte_00143)

The attributes ModeSwitchedAckRequest and BswModeSwitchAckRequest allow
to specify a timeout.

311 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_07056] d If ModeSwitchedAckRequest or BswModeSwitchAckRe-
quest with a timeout greater than zero is specified, the RTE shall ensure that time-
out monitoring is performed, regardless of the receive mode of the acknowledgment.
c(SRS_Rte_00069, SRS_Rte_00143)

[SWS_Rte_07060] d Regardless of an occurred timeout during a mode transition
the RTE shall complete the transition of a mode machine instance as defined in
[SWS_Rte_02665]. c(SRS_Rte_00069, SRS_Rte_00143)

If a WaitPoint is specified to collect the acknowledgment, two timeout values have to
be specified, one for the ModeSwitchedAckRequest and one for the WaitPoint.

[SWS_Rte_07057] d The RTE generator shall reject configuration violating [con-
str_4012] in software component template [2]. c(SRS_Rte_00018, SRS_Rte_00143)

[SWS_Rte_07058] d The status information about the success or failure of the mode
transition shall be buffered with last-is-best semantics. When a new mode switch
notification is sent or when the mode switch notification was completed after a
timeout, the status information is overwritten. c(SRS_Rte_00143)

[SWS_Rte_07058] implies that once the ModeSwitchedAckEvent or BswMod-
eSwitchedAckEvent has occurred, repeated API calls (Rte_SwitchAck or
SchM_SwitchAck to retrieve the acknowledgment can return different values.

[SWS_Rte_07059] d If the timeout value of the ModeSwitchedAckRequest
or BswModeSwitchAckRequest is 0, no timeout monitoring shall be performed.
c(SRS_Rte_00069, SRS_Rte_00143)

4.4.9 Mode switch error handling

Since the mode switch communication may cross partitions basically two error scenar-
ios are possible:

• The partition of the mode users gets terminated.

• The partition of the mode manager gets terminated.

In both cases additionally the terminated partition may be restarted. For both error
scenarios the RTE offers functionality to handle the errors.

4.4.9.1 Mode User gets terminated

When a mode manager is getting out of sync with the mode user(s) (because the
partition of the mode user has been terminated) a sequence of error reactions is
defined.

This shall support on the one hand to inform the mode manager about the fact that the
mode users are absent. This might be used by the mode manager to set internal

312 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

states. This supports an active error handling by the mode manager as well as a
synchronization of the mode manager to the mode user’s partition restart.

Furthermore the RTE offers the ability to switch into a default mode automatically. This
feature can be used to ensure that either the mode users are re-initialized as during
ECU start (default mode is initial mode) or that the mode users are re-initialized by a
dedicated mode (default mode is different from initial mode) which in turn may be used
to ensure a secure behavior of the mode user’s, for instance suppressing the actuator
self tests in the running system.

[SWS_Rte_06794] d The RTE Generator shall take the modeManagerErrorBehav-
ior from the ModeDeclarationGroup typing the ModeDeclarationGroupPro-
totype in the ModeSwitchInterface of the PPortPrototype/PRPortProto-
type. c(SRS_Rte_00143, SRS_Rte_00144)

[SWS_Rte_06772] d The RTE shall clear all mode switch notifications in the
queue when the partition of the mode users gets terminated. c(SRS_Rte_00143,
SRS_Rte_00144)

[SWS_Rte_06773] d The RTE shall activate RunnableEntitys triggered by a Swc-
ModeManagerErrorEvent when the partition of the mode users gets terminated.
c(SRS_Rte_00143, SRS_Rte_00144)

[SWS_Rte_06774] d If ModeSwitchedAckRequest or BswModeSwitchAckRe-
quest is specified, the RTE shall detect a timeout when the partition of the mode users
gets terminated during an ongoing transition. c(SRS_Rte_00143, SRS_Rte_00144)

Also see [SWS_Rte_02679], [SWS_Rte_07559], and [SWS_Rte_03853].

The further behavior of the mode machine instance depends on the attribute
ModeDeclarationGroup.modeUserErrorBehavior.

[SWS_Rte_06775] d If the attribute modeManagerErrorBehavior.errorReac-
tionPolicy is set to lastMode the mode machine instance stays in the last
mode before the termination of the mode users. If the partition of the mode users
gets terminated during an ongoing transition the last mode is the next mode of the
transition. c(SRS_Rte_00143, SRS_Rte_00144)

Please note: In case the partition of the mode users gets terminated during an on-
going transition logically the transition is still completed even if the mode users didn’t
"survive" the transition.

[SWS_Rte_06776] d If the attribute modeManagerErrorBehavior.errorReac-
tionPolicy is set to defaultMode the RTE shall enqueue the mode defined
by modeManagerErrorBehavior.defaultMode to the mode switch notifi-
cation queue. c(SRS_Rte_00143, SRS_Rte_00144)

If the ModeSwitchInterface does not define a specific modeManagerErrorBe-
havior the RTE uses the initialMode as a default mode.

313 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_06777] d If the attribute modeManagerErrorBehavior is not defined the
RTE shall enqueue the mode defined by initialMode to the mode switch noti-
fication queue. c(SRS_Rte_00143, SRS_Rte_00144)

[SWS_Rte_06778] d The RTE shall execute the error reactions in case the partition of
the mode users gets terminated in following order:

1. [SWS_Rte_06772]

2. [SWS_Rte_06773]

3. [SWS_Rte_06774]

4. [SWS_Rte_06775] or [SWS_Rte_06776] or [SWS_Rte_06777]

c(SRS_Rte_00143, SRS_Rte_00144)

If the partition of the mode users is capable to restart (PartitionCanBeRestarted
== true) the mode manager shall be able to enqueue new mode switch requests
during the restart of the partition. This shall support a dedicated error handling by the
mode manager depending on other environmental conditions. In this case the mode
manager may decide which transitions are appropriate to get the mode users either
back in an operational mode or in a secure default mode. Therefore the errorReac-
tionPolicy equals lastMode avoids any automatically forced mode transitions by
the error handling of the RTE.

[SWS_Rte_06779] d RTE shall support the enqueueing of new mode switch requests
during the restart of the mode user’s partition by the mode manager after the call of
Rte_PartitionRestarting. c(SRS_Rte_00143, SRS_Rte_00144)

[SWS_Rte_06780] d When the partition with the mode users is restarted (after call of
Rte_PartitionRestart), RTE shall dequeue queued mode switch notifica-
tions. c(SRS_Rte_00143, SRS_Rte_00144)

When the first mode switch notification after a partition restart is dequeued
the previous mode is defined as "last mode" or "on transition" depending on the
modeManagerErrorBehavior.errorReactionPolicy. See [SWS_Rte_06783]
and [SWS_Rte_06784].

Initialization of mode machine instance during mode user’s partition restart

Depending on the modeManagerErrorBehavior the RTE has to re-initialize the
mode machine instance during the restart of the mode user’s partition. In
case modeManagerErrorBehavior.errorReactionPolicy is set to default-
Mode the behavior is similar as during the transition to the initial mode (see
[SWS_Rte_02544]). During the initialization of the RTE resources for a restarting mode
user partition only a subset of the single steps of a mode transition is applicable.

[SWS_Rte_06796] d During the transition to the default mode (next mode is default
mode) of mode machine instances when the mode user’s partition restarts, the
steps defined in the following requirements have to be omitted as no previous mode is
applicable:

314 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

• [SWS_Rte_02562],

• [SWS_Rte_07153],

• [SWS_Rte_02707],

• [SWS_Rte_02708],

• [SWS_Rte_02563],

• [SWS_Rte_02587]

If applicable, the steps described by the following requirements still have to be executed
for entering the default mode:

• [SWS_Rte_02661],

• [SWS_Rte_02564]

c(SRS_Rte_00143, SRS_Rte_00144)

In case modeManagerErrorBehavior.errorReactionPolicy is set to last-
Mode the behavior indicates a stable mode during the re-initialization in order to provide
the means to the mode manager to explicitly decide on the appropriate mode to han-
dle the fault.

[SWS_Rte_06797] d If the attribute modeManagerErrorBehavior.errorReac-
tionPolicy is set to lastMode the RTE / Basic Software Scheduler shall activate
the mode disablings of the last mode during the partition restart, if any ModeDis-
ablingDependencys for that mode are defined. c(SRS_Rte_00143, SRS_Rte_00144)

4.4.9.2 Mode Manager gets terminated

When a mode user gets out of sync with the mode manager (because the partition
of the mode manager has been terminated) a sequence of error reactions is defined.

Hereby the RTE offers the ability to automatically switch into a default mode. This
feature can be used to ensure that the mode users are automatically switched into
a defined mode which in turn may be used to ensure a secure behavior of the mode
users, for instance switching off some actuators.

As an alternative the mode machine instance can stay in the last mode which can
be used to keep the "status quo" until the mode manager is restarted.

[SWS_Rte_06795] d The RTE Generator shall take the modeUserErrorBehav-
ior from the ModeDeclarationGroup typing the ModeDeclarationGroupPro-
totype in the ModeSwitchInterface of the PPortPrototype/PRPortProto-
type. c(SRS_Rte_00143, SRS_Rte_00144)

[SWS_Rte_06785] d If the partition of the mode manager gets terminated during
an ongoing transition, the RTE shall complete the transition. c(SRS_Rte_00143,
SRS_Rte_00144)

315 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_06786] d If the partition of the mode manager gets terminated dur-
ing an ongoing transition, the RTE shall skip the mode switch acknowledg-
ment. c(SRS_Rte_00143, SRS_Rte_00144) For mode switch acknowledgment see
[SWS_Rte_02587] and section 4.4.8

[SWS_Rte_06787] d The RTE shall clear all mode switch notifications in the
queue when the partition of the mode manager gets terminated and after an ongoing
transition is completed. c(SRS_Rte_00143, SRS_Rte_00144)

[SWS_Rte_06788] d If the attribute modeUserErrorBehavior.errorReaction-
Policy is set to lastMode the mode machine instance stays in the last mode
before the termination of the mode manager. c(SRS_Rte_00143, SRS_Rte_00144)

[SWS_Rte_06789] d If the attribute modeUserErrorBehavior.errorReaction-
Policy is set to defaultMode the RTE shall enqueue the mode defined by
modeUserErrorBehavior.defaultMode to the mode switch notification
queue. c(SRS_Rte_00143, SRS_Rte_00144)

[SWS_Rte_06790] d If the attribute modeUserErrorBehavior is not defined the RTE
shall enqueue the mode defined by initialMode to the mode switch notifica-
tion queue. c(SRS_Rte_00143, SRS_Rte_00144)

[SWS_Rte_06791] d The RTE shall execute the error reactions in case the partition of
the mode manager gets terminated in the following order:

1. [SWS_Rte_06785], [SWS_Rte_06786]

2. [SWS_Rte_06787]

3. [SWS_Rte_06788] or [SWS_Rte_06789] or [SWS_Rte_06790]

c(SRS_Rte_00143, SRS_Rte_00144)

[SWS_Rte_06792] d The RTE shall dequeue queued mode switch notifica-
tions and execute them regardless whether the partition with the mode man-
ager is terminated, restarting or restarted. Thereby the restart of the mode man-
ager’s partition shall not abort the ongoing transition of a mode machine instance.
c(SRS_Rte_00143, SRS_Rte_00144)

This ensures that the defaultMode in the mode switch notification queue
gets effective.

[SWS_Rte_06793] d The RTE shall activate RunnableEntitys triggered by a Swc-
ModeManagerErrorEvent when the partition of the mode manager is restarted
c(SRS_Rte_00143, SRS_Rte_00144)

316 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4.5 External and Internal Trigger

4.5.1 External Trigger Event Communication

4.5.1.1 Introduction

With the mechanism of the trigger event communication a software component or a
Basic Software Module acting as a Trigger Source is able to request the activation
of Runnable Entities respectively Basic Software Schedulable Entities of connected
Trigger Sinks. Typically but not necessarily these Runnable Entities and Basic
Software Schedulable Entities are executed in a sequential order.

317 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

AtpBlueprintable
AtpPrototype

Components::PortPrototype

Components::RPortPrototype

Components::AtomicSwComponentType

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

Components::SwComponentType

AtpStructureElement
Identifiable

TriggerDeclaration::Trigger

+ swImplPolicy :SwImplPolicyEnum [0..1]

PortInterface::TriggerInterface

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

PortInterface::PortInterface

+ isService :Boolean
+ serviceKind :ServiceProviderEnum [0..1]

«atpVariation» Tags:
vh.latestBindingTime =
preCompileTime

ARElement
AtpBlueprint

AtpBlueprintable
AtpStructureElement

BswOverview::BswModuleDescription

+ moduleId :PositiveInteger [0..1]

InternalBehavior

BswBehavior::
BswInternalBehavior

BswBehavior::
BswTriggerDirectImplementation

+ task :Identifier

Components::PPortPrototype

«atpVariation» Tags:
vh.latestBindingTime =
preCompileTime

«atpVariation» Tags:
vh.latestBindingTime =
preCompileTime

«atpVariation» Tags:
vh.latestBindingTime =
preCompileTime

SwcBswMapping::
SwcBswSynchronizedTrigger

ARElement
AtpStructureElement

SwcBswMapping::SwcBswMapping

Components::
AbstractRequiredPortPrototype

Components::
AbstractProvidedPortPrototype

Components::
PRPortPrototype

+bswTrigger

1

«atpSplitable»
+internalBehavior 0..*

+rPort *

«isOfType»

+requiredInterface

«isOfType»

+providedRequiredInterface

+pPort *

«isOfType»

+providedInterface
1
{redefines
atpType}

+trigger 1..*

0..*

+masteredTrigger 1

«atpVariation»

+releasedTrigger

0..*

«atpVariation»

+requiredTrigger

0..*

«atpVariation»
+synchronizedTrigger 0..*

+port

0..*«atpVariation,atpSplitable»

+component

«atpVariation»

+triggerDirectImplementation

0..*

«instanceRef»

+swcTrigger

1

Figure 4.49: Summary of the use of Trigger by an AUTOSAR software-components and
Basic Software Modules as defined in the Software Component Template Specification
[2] and Specification of BSW Module Description Template [9].

[SWS_Rte_07212] d The RTE shall support External Trigger Event Communication.
c(SRS_Rte_00162)

318 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_07542] d The Basic Software Scheduler shall support the activation
of Basic Software Schedulable Entities occurrence of External Trigger Events.
c(SRS_Rte_00216)

4.5.1.2 Trigger Sink

A AUTOSAR software-component Trigger Sink has a dedicated require trigger
port. The trigger port is typed by an TriggerInterface declaring one or more Trig-
ger. See figure 4.49. The Runnable Entities of the of the software component are
activated at the occurrence of the external event by the means of a ExternalTrig-
gerOccurredEvent.

An Basic Software Module Trigger Sink has to define a requiredTrigger Trigger.
The Basic Software Schedulable Entities of the of the Basic Software Module are acti-
vated at the occurrence of the external event by the means of a BswExternalTrig-
gerOccurredEvent. See figure 4.49.

Basically there are two approaches to implement the activation of triggered Ex-
ecutableEntityss. In one case the triggered ExecutableEntityss of the
Trigger Sinkss triggered by one Trigger of the Trigger Source are mapped
in one or more tasks. In this case the event communication can be implemented by the
means of activating an Operating System Task. Please note that the tasks may belong
to different partitions.

[SWS_Rte_07213] d The RTE generator shall support invocation of triggered Ex-
ecutableEntitys via OS Task. c(SRS_Rte_00162, SRS_Rte_00216)

In the other case the Event Communication is mapped to a function call which means
that the triggered ExecutableEntitys of the Trigger Sinks are executed in
the Rte_Trigger API respectively SchM_Trigger API used to raise the trigger event
in the Trigger Sinks.

[SWS_Rte_07214] d The RTE generator shall support invocation of triggered Ex-
ecutableEntitys via direct function call, if all of the follwing conditions are fulfilled:

• the triggered ExecutableEntitys do not define a ‘minimum start distance’

• the Trigger Sink and Trigger Source are in the same Partition

• if no BswTriggerDirectImplementation is defined.

• if the preconditions of table 4.5 are fulfilled

• no queuing for the Trigger Source is configured

c(SRS_Rte_00162, SRS_Rte_00216)

319 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4.5.1.3 Trigger Source

An AUTOSAR software-component Trigger Source has a dedicated provide trig-
ger port. The trigger port is typed by an TriggerInterface declaring one or more
Trigger. See figure 4.49. To be able to connect a provide trigger port and a re-
quire trigger port, both ports must be categorized by the same or by compatible
TriggerInterface(s).

An Basic Software Module Trigger Source has to define a releasedTrigger Trigger.
See figure 4.49. The connection of releasedTrigger and requiredTrigger Trigger is
defined by the ECU configuration of the Basic Software Scheduler.

To inform the RTE about an occurrence of the external trigger event the RTE provides
the Rte_Trigger to an AUTOSAR software-component Trigger Source.

[SWS_Rte_07543] d The call of the Rte_Trigger API shall activate all Runnable
Entities that are activated by ExternalTriggerOccurredEvents associated to a con-
nected Trigger of the Trigger Source if either no queuing for the Trigger is con-
figured or if queuing for the Trigger is configured and the trigger queue is empty.
c(SRS_Rte_00162)

For Basic Software Module Trigger Source are two options defined to interfaces
with Basic Software Scheduler.

The first option is that the Basic Software Module Trigger Source inform the Basic
Software Scheduler about an occurrence of the external trigger event by the call of the
SchM_Trigger API.

[SWS_Rte_07544] d The call of the SchM_Trigger API shall activate all Exe-
cutableEntitys that are activated by ExternalTriggerOccurredEvents associated to
a connected Trigger of the Trigger Source if either no queuing for the Trigger is
configured or if queuing for the Trigger is configured and the trigger queue is empty.
c(SRS_Rte_00216)

The second option is that the Basic Software Module Trigger Source directly takes
care about the activation of the particular OS task to which the ExternalTriggerOc-
curredEvents of the triggered ExecutableEntitys are mapped. In this case
the Trigger Source has to define a BswTriggerDirectImplementation. The name
of the used OS tasks is annotated by the task attribute. If an BswTriggerDirectImple-
mentation is defined no SchM_Trigger API is generated by the RTE generator. see
[SWS_Rte_07548] and [SWS_Rte_07264].

[SWS_Rte_07545] d The RTE generator shall reject configurations where a BswTrig-
gerDirectImplementation is specified and an ExecutableEntity that is activated by
an ExternalTriggerOccurredEvent associated to a connected Trigger of the Trigger
Source is mapped to an OS task different from the one defined by the task attribute of
the BswTriggerDirectImplementation. c(SRS_Rte_00216, SRS_Rte_00018)

320 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_07548] d The RTE generator shall reject configurations where a issuedTrig-
ger association and a BswTriggerDirectImplementation is defined for the same re-
leasedTrigger Trigger. c(SRS_Rte_00216, SRS_Rte_00018)

[constr_9007] issuedTrigger and BswTriggerDirectImplementation are mutually
exclusive d A releasedTrigger Trigger shall not be referenced by both a issuedTrigger
and a BswTriggerDirectImplementation. c

Note: This shall ensure in the combination with the existence conditions
([SWS_Rte_07264]) of the SchM_Trigger that either the Trigger API or the direct
task activation is offered to the implementation of the Trigger Source.

Note also that several OS tasks might be used to implement a Trigger (several
BswTriggerDirectImplementation can be defined for a releasedTrigger).

If the BswTriggerDirectImplementation is defined for a releasedTrigger which
swImplPolicy attribute is set to queued it is part of the Trigger Source to imple-
ment the queue or to use the means of the OS (OsTaskActivation > 1) to queue the
number of raised triggers. (OsTaskActivation > 1). Further details about queuing of
triggers is described in 4.5.5.

4.5.1.4 Multiplicity

4.5.1.4.1 Multiple Trigger

A trigger interface contains one or more Trigger. A port of an AUTOSAR software-
component that provides an AUTOSAR trigger interface to the component can inde-
pendently raise events related to each Trigger defined in the interface .

[SWS_Rte_07215] d The RTE API shall support independent event raising for each
Trigger in a trigger interface. c(SRS_Rte_00162)

Further on a Basic Software Module Trigger Source can define several re-
leasedTrigger Trigger which can be independently raised.

[SWS_Rte_07546] d The Basic Software Scheduler API shall support independent
event raising for each releasedTrigger Trigger. c(SRS_Rte_00216)

4.5.1.4.2 Multiple Trigger Sinks Single Trigger Source

The concept of external event communication supports, that a Trigger Source ac-
tivates one or more triggered ExecutableEntitys in one or more Trigger
Sinks.

[SWS_Rte_07216] d The RTE generator shall support triggered ExecutableEn-
titys triggered by the same Trigger of a Trigger Source (‘1 : n’ communication
where n ≥ 1). c(SRS_Rte_00162, SRS_Rte_00216)

321 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

The execution order of the triggered ExecutableEntitys in the trigger sinks
depends from the RteEventToTaskMapping described in chapter 7.6.1 and the
configured priorities of the operating system.

4.5.1.4.3 Multiple Trigger Sources Single Trigger Sink

The RTE generator does not support multiple Trigger Sources communicating
events to the same Trigger in a Trigger Sink (‘n : 1’ communication where n > 1).

[SWS_Rte_07039] d The RTE generator shall reject configurations where multiple
Trigger Sources communicating events to the same Trigger in a Trigger Sink
(‘n : 1’ communication where n > 1). c(SRS_Rte_00018)

[constr_9008] The same Trigger in a Trigger Sink must not be connected to
multiple Trigger Sources d The same Trigger in a Trigger Sink must not be con-
nected to multiple Trigger Sources. c

4.5.1.5 Synchronized Trigger

If two Triggers are synchronized by the definition of a SwcBswSynchronizedTrig-
ger then the Trigger in the referenced provide trigger port and the referenced
releasedTrigger Trigger are treated as one common Trigger. This means that
all ExecutableEntitys activated by an ExternalTriggerOccurredEvent asso-
ciated to one of the connected Triggers are activated together.

[SWS_Rte_07218] d The RTE and Basic Software Scheduler shall activate to-
gether all ExecutableEntitys that are activated by ExternalTriggerOccurre-
dEvents associated to a synchronized connected Trigger. c(SRS_Rte_00162,
SRS_Rte_00216, SRS_Rte_00217)

[SWS_Rte_07549] d The RTE generator shall reject configurations where a synchro-
nized Trigger is referenced by more than one type of access method, where the type
is one of the following:

1. ExternalTriggeringPoint

2. issuedTrigger

3. BswTriggerDirectImplementation

c(SRS_Rte_00216, SRS_Rte_00217, SRS_Rte_00018)

[constr_9009] Synchronized Trigger shall not be referenced by more than one
type of access method d A synchronized Trigger shall only be referenced by either
ExternalTriggeringPoints, issuedTriggers or BswTriggerDirectImple-
mentations. c

322 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Note: This shall ensure in the combination with the existence conditions
of the Rte_Trigger and SchM_Trigger that only one kind of Trigger API
([SWS_Rte_07201] and [SWS_Rte_07264]) or the direct task activation is offered to
the implementation of the Trigger Source.

4.5.2 Inter Runnable Triggering

With the mechanism of Inter Runnable Triggering one Runnable Entity is able to re-
quest the activation of Runnable Entities of the same software-component instance.

[SWS_Rte_07220] d The RTE shall support Inter Runnable Triggering.
c(SRS_Rte_00163)

Similar to External Trigger Event Communication (described in chapter 4.5.1) the acti-
vation of triggered runnables can be implemented by means of activating an Operating
System Task or by direct function call.

[SWS_Rte_07555] d The call of the Rte_IrTrigger API shall activate all trig-
gered runnables which InternalTriggerOccurredEvents are associated with the
related InternalTriggeringPoint of the same software-component instance if either
no queuing for the InternalTriggeringPoint is configured or if queuing for
the InternalTriggeringPoint is configured and the trigger queue is empty.
c(SRS_Rte_00163)

[SWS_Rte_07221] d The RTE shall support for Inter Runnable Triggering that trig-
gered runnables entities are invoked via OS Task activation. c(SRS_Rte_00163)

[SWS_Rte_07224] d The RTE shall support for Inter Runnable Triggering that trig-
gered runnables are invoked via direct function call if all of the following conditions
are fulfilled:

• none of the triggered Basic Software Schedulable Entitys acti-
vated by this InternalTriggeringPoint define a ‘minimum start distance’

• no queuing for the InternalTriggeringPointis configured

c(SRS_Rte_00163)

4.5.2.1 Multiplicity

A InternalTriggeringPoint might be referenced by more than one Internal-
TriggerOccurredEvent. Therefore one RunnableEntity is able to request the
activation of several RunnableEntity’s with the mechanism of Inter Runnable Trig-
gering contemporaneously.

[SWS_Rte_07223] d The RTE shall support multiple RunnableEntity’s triggered
by the same InternalTriggeringPoint (‘1 : n’ Inter Runnable Triggering where
n ≥ 1). c(SRS_Rte_00163)

323 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

The execution order of the runnable entities in the trigger sinks depends from the Runn-
able Entity to task mapping described in chapter 7.6.1 and the configured priorities of
the operating system.

4.5.3 Inter Basic Software Module Entity Triggering

The Inter Basic Software Module Entity Triggering is similar to the mechanism of Inter
Runnable Triggering (see chapter 4.5.2) with the exception that it is used inside a
Basic Software Module. It can be used to request the activation of a Basic Software
Schedulable Entity by a Basic Software Entity of the same a Basic Software Module
instance.

[SWS_Rte_07551] d The Basic Software Scheduler shall support Inter Basic Software
Module Entity Triggering. c(SRS_Rte_00230)

Similar to External Trigger Event Communication (described in chapter 4.5.1) the acti-
vation of triggered Basic Software Schedulable Entity can be implemented by means
of activating an Operating System Task or by direct function call.

[SWS_Rte_07552] d The call of the SchM_ActMainFunction API shall activate all
triggered Basic Software Schedulable Entitys which BswInternalTrigge-
rOccurredEvents are associated by the related activationPoint of the same a Basic
Software Module instance if either no queuing for the BswInternalTriggering-
Point is configured or if queuing for the BswInternalTriggeringPoint is config-
ured and the trigger queue is empty.. c(SRS_Rte_00230)

[SWS_Rte_07553] d The Basic Software Scheduler shall support for Inter Basic Soft-
ware Module Entity Triggering that triggered Basic Software Schedulable
Entitys are invoked via OS Task activation. c(SRS_Rte_00230)

[SWS_Rte_07554] d The Basic Software Scheduler shall support for Inter Basic Soft-
ware Module Entity Triggering that triggered Basic Software Schedulable
Entitys are invoked via direct function call if

• the triggered Basic Software Schedulable Entitys do not define a
‘minimum start distance’

• if the preconditions of table 4.5 are fulfilled

• no queuing for the BswInternalTriggeringPointis configured

c(SRS_Rte_00230)

Note: Typically the feature of Inter Basic Software Module Entity Triggering is used
to decouple the execution context of Basic Software Entities. But if this decoupling
is really required depends from the particular scheduling concept and microcontroller
performance.

324 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4.5.4 Intra ECU Trigger Communication

The trigger communication is also possible in case of intra-ECU communication. In
this case, a software component on an ECU can act as a Trigger Source for a soft-
ware component on another ECU, so requesting the activation of software components
on the other ECU.

[SWS_Rte_08409] d The RTE shall support intra-ECU Trigger Communication. c

[SWS_Rte_08410] d The RTE shall support the activation of RunnableEntitys oc-
currence of Trigger Events coming from another ECU. c

[SWS_Rte_08411] d In case of an issued Trigger the RTE shall send the ISignal
to COM. The API call argument of the signal has no meaning. c

[SWS_Rte_08412] d In case of a received Trigger the RTE shall only care about the
COM Notification which indicates a reception of the zero size signal. The value of such
signal shall not be read (Com_ReceiveSignal shall not be called). c

[SWS_Rte_08072] d The RTE generator shall reject configurations violating the [con-
str_3065]. c(SRS_Rte_00018)

4.5.5 Queuing of Triggers

The queuing of triggers ensures that the number of executions of triggered Exe-
cutableEntitys is equal to the number of released triggers. Further on it ensures
that the number of activations of triggered ExecutableEntitys is equal for all
associated triggered ExecutableEntitys of a Trigger Emitter if the as-
sociated triggered ExecutableEntitys are not activated by other RTEEvents.
Therefore the trigger queue is rather a counter than a real queue.

[SWS_Rte_07087] d The RTE shall support the queuing of triggers for

• External Trigger Event Communication

• Inter Runnable Triggering

• Inter Basic Software Module Entity Triggering

if the RteTriggerSourceQueueLength / RteBswTriggerSourceQueueLength
is configured > 0. c(SRS_Rte_00235)

The attribute swImplPolicy specifies a queued or non queued processing of the
Trigger Emitter. Since the setup of a queue might have other side effects on
the dynamic behavior of the ECU its still an design decision of the ECU integrator to
configure a trigger queue.
Therefore it is possible to configure a trigger queue regardless on the value of the
attribute swImplPolicy of the Trigger Emitter.

325 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_07088] d The RTE shall enqueue a trigger when the RTE gets informed
about the occurrence of a trigger by the call of the related API (Rte_IrTrigger,
Rte_Trigger, SchM_Trigger, SchM_ActMainFunction) if queuing for this
Trigger Emitter is configured and if the maximum queue length (RteTrigger-
SourceQueueLength / RteBswTriggerSourceQueueLength) is not exceeded.
c(SRS_Rte_00235)

[SWS_Rte_07089] d The RTE shall dequeue a trigger when the Trigger Emitter is
informed about the end of execution of all triggered ExecutableEntitys which
are triggered by this Trigger Emitter. c(SRS_Rte_00235)

[SWS_Rte_07090] d The RTE shall activate all triggered ExecutableEntitys
associated to a Trigger Emitter when it has successfully dequeued a trigger from
the trigger queue of the Trigger Emitter except for the last dequeued trigger.
c(SRS_Rte_00235)

Figure 4.50: Queued activation of ExecutableEntitys

The figure 4.50 illustrates the basic behavior of a trigger queue.

• At "‘A"’ the RTE gets informed by the call of the API about the occurrence
of a Trigger. Since no trigger is in the queue all associated triggered
ExecutableEntitys are activated ([SWS_Rte_07544], [SWS_Rte_07555],
[SWS_Rte_07552]) and the trigger is enqueued ([SWS_Rte_07088]).

• At "‘B"’ all triggered ExecutableEntitys which are triggered by this Trig-
ger Emitter have terminated. The RTE dequeues the trigger but since it is the
last dequeued trigger the associated triggered ExecutableEntitys are
not activated again.

• At "‘C"’ the RTE gets informed by the call of the API about the occurrence of a
Trigger. Enqueuing of triggers and activating of triggered ExecutableEn-
titys is done as in "‘A"’

• At "‘D"’ the RTE gets informed again by occurrence of a trigger. Since a trigger
is already in the queue the associated triggered ExecutableEntitys are

326 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

not activated ([SWS_Rte_07544], [SWS_Rte_07555], [SWS_Rte_07552]). Nev-
ertheless the trigger is enqueued ([SWS_Rte_07088]).

• At "‘E"’ all triggered ExecutableEntitys which are triggered by this
Trigger Emitter have terminated. The RTE dequeues the trigger
([SWS_Rte_07089]) and activates all associated triggered ExecutableEn-
titys ([SWS_Rte_07090]).

• At "‘E"’ all triggered ExecutableEntitys which are triggered by this Trig-
ger Emitter have terminated. Dequeuing of triggers is done as in "‘B"’

Implementation hint:
One possible solution to implement the queue for the number of released triggers is
to use the means of the operation systems which already can queue the activation
requests for a OS task (OsTaskActivation > 1). This for sure is only possible
if all ExternalTriggerOccurredEvents, InternalTriggerOccurredEvents,
BswExternalTriggerOccurredEvent and BswInternalTriggerOccurredE-
vent connected to the same Trigger Emitter with configured queuing are mapped
exclusively to one OS task.

4.5.6 Activation of triggered ExecutableEntities

The activation of triggered ExecutableEntitys is done like described in chapter
4.2.3. See also Fig. 4.17.

If the triggered ExecutableEntitys are activated synchronous or asynchronous
depends how the RTEEvents and BswEvents are mapped to OS tasks.

If all ExternalTriggerOccurredEvents of the Trigger Sinks which are associated to
connected Trigger of the Trigger Source

• either are mapped to OS task(s) with higher priority as the OS task where the
Executable Entity calling the Rte_Trigger respectively the SchM_Trigger API
is mapped

• or are activated by direct function call

the triggering behaves synchronous. This means that all "triggered" Executable Entities
of the Trigger Sinks are executed before the Rte_Trigger or SchM_Trigger
API returns.

If any ExternalTriggerOccurredEvent of the Trigger Sinks which are associated to
connected Trigger of the Trigger Source

are mapped to an OS task with lower priority as the OS task where the Executable
Entity calling the Rte_Trigger respectively the SchM_Trigger API is mapped
the triggering behaves asynchronous. This means that not all triggered Exe-
cutableEntitys of the Trigger Sinks are executed before the Rte_Trigger
or SchM_Trigger API returns.

327 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

328 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4.6 Initialization and Finalization

4.6.1 Initialization and Finalization of the RTE

RTE and Basic Software Scheduler have a nested life cycle. It is only permitted to
initialize the RTE if the Basic Software Scheduler is initialized ([constr_9036]). Further
on it is only supported to finalize the Basic Software Scheduler after the RTE is finalized
([constr_9056]).

Basic Software Scheduler initialized

RTE initial ized

EcuM RTEBasic Software
Scheduler

alt Rte initialization

SchM_Init()

Rte_Start()

Rte_Stop()

SchM_Deinit()

Figure 4.51: Nested life cycle of RTE and Basic Software Scheduler

4.6.1.1 Initialization of the Basic Software Scheduler

Before the Basic Software Scheduler is initialized only the API calls SchM_Enter and
SchM_Exit are available ([SWS_Rte_07578]).

The ECU state manager calls the startup routine SchM_Init of the Basic Software
Scheduler before any Basic Software Module needs to be scheduled.

The initialization routine of the Basic Software Scheduler will return within finite execu-
tion time (see [SWS_Rte_07273]).

The Basic Software Scheduler will initialize the mode machine instances
([SWS_Rte_02544])assigned to the Basic Software Scheduler. This will activate the
mode disablings of all initial modes during SchM_Init and trigger the execution

329 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

of the OnEntry ExecutableEntitys of the initial modes. After initialization of the
Basic Software Scheduler internal data structure and mode machine instances
the activation of Basic Software Schedulable Entities triggered by BswTimingEvents
starts.

[SWS_Rte_07574] d The call of SchM_Init shall start the activation of BswSchedu-
lableEntitys triggered by BswTimingEvents. c(SRS_Rte_00211)

[SWS_Rte_07584] d The call of SchM_Init shall start the activation of BswSchedu-
lableEntitys triggered by BswBackgroundEvents. c(SRS_Rte_00211)

Note: In case of OS task where BswEvents and RTEEvents are mapped to the RTE
Generator has to ensure, that RunnableEntitys are not activated before the RTE is
initialized or after the RTE is finalized. See [SWS_Rte_07580] and [SWS_Rte_02538].

[SWS_Rte_07580] d The Basic Software Scheduler has to prevent the activation of
RunnableEntitys before the RTE is initialized. c(SRS_Rte_00220)

4.6.1.2 Initialization of the RTE

The ECU state manager calls the startup routine Rte_Start of the RTE at the end of
startup phase II when the OS is available and all basic software modules are initialized.

The initialization routine of the RTE will return within finite execution time (see
[SWS_Rte_02585]).

Before the RTE is initialized completely, there is only a limited capability of RTE to
handle incoming data from COM:

The RTE will initialize the mode machine instances ([SWS_Rte_02544]) assigned
to the RTE. This will activate the mode disablings of all initial modes during
Rte_Start and trigger the execution of the OnEntry ExecutableEntitys of the
initial modes. Further on for common mode machine instances the OnEntry
Runnable Entities of the current active mode are executed during the initialization of
the RTE ([SWS_Rte_07582]). common mode machine instances can not enter
the transition phase during RTE initialization ([SWS_Rte_07583]).

[SWS_Rte_07575] d The call of Rte_Start shall start the activation of RunnableEn-
titys triggered by TimingEvents if the Rte_StartTiming API does not exist.
c(SRS_Rte_00072)

[SWS_Rte_07178] d The call of Rte_Start shall start the activation of RunnableEn-
titys triggered by BackgroundEvents if the Rte_StartTiming API does not exist.
c(SRS_Rte_00072)

[SWS_Rte_06759] d The call of Rte_StartTiming shall start the activation of
RunnableEntitys triggered by TimingEvents if the Rte_StartTiming API does
exist. c(SRS_Rte_00072, SRS_Rte_00240)

330 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_06760] d The call of Rte_StartTiming shall start the activation of
RunnableEntitys triggered by BackgroundEvents if the Rte_StartTiming API
does exist. c(SRS_Rte_00072, SRS_Rte_00240)

[SWS_Rte_07615] d The call of Rte_Start shall be executed on every core indepen-
dently. c

[SWS_Rte_07616] d The Rte_Start includes the partition specific startup activities
of RTE for all partitions that are mapped to the core, from which the Rte_Start is
called. c

4.6.1.3 Stop and restart of the RTE

Partitions of the ECU can be stopped and restarted. In a stopped or restarting parti-
tion, the OS has killed all running tasks. RTE has to react to stopping and restarting
partitions.

The RTE does not execute ExecutableEntitys of a terminated or restarting parti-
tion.

[SWS_Rte_07604] d The RTE shall not activate, start or release ExecutableEntity
execution-instances of a terminated or restarting partition. c(SRS_Rte_00195)

The RTE is notified of the termination (respectively, the beginning of
restart) of a partition by the Rte_PartitionTerminated (respectively,
Rte_PartitionRestarting) API. At this point in time, the tasks containing
the runnables of this partition are already killed by the OS. In case of restart, RTE
is notified by the Rte_RestartPartition API when the communication can be
re-initialized and re-enabled.

[SWS_Rte_07604] also applies to ExecutableEntitys whose execution started be-
fore the notification to the RTE. RTE can rely on the OS functionality to stop or restart
an OS application and all related OS objects.

When a partition is restarted, the RTE will restore an initial environment for its SW-Cs.

[SWS_Rte_02735] dWhen the Rte_RestartPartition API for a partition is called,
the RTE shall restore an initial environment for its SW-Cs on this partition. c

The SW-Cs themselves are responsible to restore their internal initial environment and
should not rely on any initialization performed by the compiler. This should be done in
initialization runnables.

[SWS_Rte_07610] d The RTE Generator shall reject configurations where the
handleTerminationAndRestart attribute of a SW-C is not set to can-
BeTerminatedAndRestarted and this SW-C is mapped on a Partition with
the PartitionCanBeRestarted parameter set to TRUE. c(SRS_Rte_00018,
SRS_Rte_00196)

331 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

When a partition is terminated or is being restarted, it is important that the runnable
entities of this partition are not activated before the partition returns to the ACTIVE
state.

In case of partition restart or termination, event sent to this partition or activation of
tasks of this partition are discarded. The RTE can use these mechanism to ensure that
ExecutableEntitys are not activated.

4.6.1.4 Finalization of the RTE

The finalization routine Rte_Stop of the RTE is called by the ECU state manager at
the beginning of shutdown phase I when the OS is still available. (For details of the
ECU state manager, see [7]. For details of Rte_Start and Rte_Stop see section
5.8.)

[SWS_Rte_02538] d The RTE shall not activate, start or release RunnableEn-
titys on a core after Rte_Stop has been called on this core. c(SRS_Rte_00116,
SRS_Rte_00220)

Note: RTE does not kill the tasks during the ‘running’ state of the runnables.

[SWS_Rte_02535] d RTE shall ignore incoming client server communication requests,
before RTE is initialized completely and when it is stopped. c(SRS_Rte_00116)

[SWS_Rte_02536] d Incoming data and events from sender receiver communica-
tion shall be ignored, before RTE is initialized completely and when it is stopped.
c(SRS_Rte_00116)

4.6.1.5 Finalization of the Basic Software Scheduler

The ECU state manager calls the finalization routine SchM_Deinit of the Basic Soft-
ware Scheduler if the scheduling of Basic Software Modules has to be stopped.

[SWS_Rte_07586] d The BSW Scheduler shall neither activate nor start BswSchedu-
lableEntitys on a core after SchM_Deinit has been called on this core.
c(SRS_Rte_00116)

Note: The BSW Scheduler does not kill the tasks during the ‘running’ state of the
BswSchedulableEntitys.

4.6.2 Initialization and Finalization of AUTOSAR Software-Components

For the initialization and finalization of AUTOSAR software components, RTE provides
the mechanism of mode switches. A SwcModeSwitchEvent of an appropriate Mod-
eDeclaration can be used to trigger a corresponding initialization or finalization
runnable (see [SWS_Rte_02562]). Runnables that shall not run during initialization or

332 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

finalization can be disabled in the corresponding modes with a ModeDisablingDe-
pendency (see [SWS_Rte_02503]).

Since category 2 runnables have no predictable execution time and can not be ter-
minated using ModeDisablingDependencies, it is the responsibility of the imple-
menter to set meaningful termination criteria for the cat 2 runnables. These criteria
could include mode information. At latest, all runnables will be terminated by RTE
during the shutdown of RTE, see [SWS_Rte_02538].

It is appropriate to use user defined modes that will be handled in a proprietary ap-
plication mode manager.

All runnables that are triggered by entering an initial mode, are activated immediately
after the initialization of RTE. They can be used for initialization. In many cases it might
be preferable to have a multi step initialization supported by a sequence of different
initialization modes.

In addition to the mode-based approach RunnableEntitys to be used for initializa-
tion purposes can be activated by InitEvents as well. More information is provided
in section 4.2.2.11.

333 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4.7 Variant Handling Support

4.7.1 Overview

The AUTOSAR Templates support the creation of Variants in a subset of its model
elements. The Variant Handling support in the in AUTOSAR Templates is driven by
the purpose to describe variability in a AUTOSAR System on several aspects, e.g.

• Virtual Functional Bus

• Component SwcInternalBehavior and SwcImplementation

• Deployment of the software components to ECUs

• Communication Matrix

• Basic Software Modules

This approach requires that the RTE Generator is able to process the described Vari-
ability in input configurations and partially to implement described variability in the gen-
erated RTE and Basic Software Scheduler code.

In the meta-model all locations that may exhibit variability are marked with the stereo-
type �atpVariation�. This allows the definition of possible variation points.
Tagged Values are used to specify additional information.

There are four types of locations in the meta-model which may exhibit variability:

• Aggregations

• Associations

• Attribute Values

• Classes providing property sets

More details about the AUTOSAR Variant Handling Concept can be found in the AU-
TOSAR Generic Structure Template [10].

[SWS_Rte_06543] d The RTE generator shall support the VariationPoints defined
in the AUTOSAR Meta Model c(SRS_Rte_00201, SRS_Rte_00202, SRS_Rte_00229,
SRS_Rte_00191)

The list of VariationPoints shall provide an overview about the most prominent
ones which impacting the generated RTE code. Further on tables will show which
implementation of variability is standardized due to the relevance for contract phase.
(see tables 4.15, 4.17, 4.18, 4.19, 4.20, 4.21, 4.25, 4.26, 4.28 and 4.29. But please
note that these tables are not listing all possible variation of the input configuration. For
that the related Template Specifications are relevant.

334 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4.7.2 Choosing a Variant and Binding Variability

To understand the later definition it is required to clarify the difference between Choos-
ing a Variant and Resolving Variability.

A particular PreBuild Variant in a variant rich input configuration is chosen by assigning
particular values to the SwSystemconsts with the means of PredefinedVariants
and associated SwSystemconstantValueSets. With this information SwSystem-
constDependentFormulas can be evaluated which determines PreBuild conditions
of VariationPoints and attribute values. Nevertheless the input configuration con-
tains still the information of all potential variants.

A particular PostBuild Variant in a variant rich input configuration is chosen by as-
signing particular values to the PostBuildVariantCriterion with the means
of PredefinedVariants and associated PostBuildVariantCriterionValue-
Sets. With this information PostBuildVariantConditions can be evaluated for
instance to check the consistency of chosen PostBuild Variant. Nevertheless the input
configuration contains still the information of all potential variants.

From an RTE perspective this information is mainly used to generate the RTE Post
Build Variant Sets which are used to bind the PostBuild Variability during ini-
tialization of the RTE (call of SchM_Init).

The variability of an input configuration is bound if information related to other variants
is removed and only the information of the bound variant is kept. Binding respectively
resolving variability in the scope of this specification means that the generated code
only implements the particular variant which results out of the chosen variant of the
input configuration.

If the variability can not be resolved in a particular phase of the RTE Generation Pro-
cess (see chapter 3) the generated RTE files have to be able to support the potential
variants by implementing all potential variants.

If the variability is relevant for the software components contract the RTE Generator
uses standardized Condition Value Macros to implement the PreBuild Variabil-
ity. These Condition Value Macros are set in the RTE PreBuild Data Set Contract
Phase and RTE PreBuild Data Set Generation Phase to the resulting value of the eval-
uated ConditionByFormula of the related VariationPoint.

For further definition see sections 4.7.2.3, 4.7.2.4, 4.7.2.5, 4.7.2.6 and 4.7.2.7.

4.7.2.1 General impact of Binding Times on RTE generation

In the AUTOSAR meta-model, each VariationPoint is associated with a tag named
vh.latestBindingTime. The value of the tag yields the applicable latest binding
time for the given VariationPoint.

Each VariationPoint with a swSyscond has an attribute bindingTime in its Con-
ditionByFormula, which defines when the pre-build condition may be evaluated

335 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

earliest for this VariationPoint. This controls the capability of the software imple-
mentation to bind the variant earliest at a certain point of time.

Even if the variability is chosen earlier (for instance by assigning SwSystemconst-
Values to the SwSystemconsts used by the VariationPoint’s condition) the RTE
generator has to respect potential later binding of the VariationPoints.

Please note that variability with the bindingTime PreCompileTime and post-
BuildVariantConditions has a particular semantic for the RTE generation and
impacts the generated output.

For instance a conditional existence RTE API which is bound at PreCompileTime
requires that the RTE generator inserts specific pre processor statements.

RTE Phase System De-
signe Time

Code Gen-
eration Time

Pre Compile
Time

Link Time Post Build

RTE Contract Phase R R I n/a n/a
Basic Software
Scheduler Contract
Phase

R R I n/a n/a

RTE PreBuild Data
Set Contract Phase

n/a n/a RV n/a n/a

Basic Software
Scheduler Gener-
ation Phase

R R I n/a I

RTE Generation
Phase

R R I n/a I

RTE PreBuild Data
Set Generation Phase

n/a n/a RV n/a n/a

RTE PostBuild Data
Set Generation Phase

n/a n/a n/a n/a RV

Table 4.14: Overview impact of Binding Times on RTE generation

R resolve variability, a particular variant is the output
I implement variability, all possible variants in the output
RV provide values to resolve implemented variability PreBuild or PostBuild
n/a not applicable

4.7.2.2 Choosing a particular variant

A particular variant of the variant rich input configuration is chosen via the ECU con-
figuration For that purpose a set of PredefinedVariants is configured to chosen
a variant in the input configuration and to later on bind the variability in subsequent
phases of the RTE Generation Process 3. For further information see document [10].

[SWS_Rte_06500] d For each PreBuild Variability in the input configuration the
RTE Generator shall choose a particular variant according to the PredefinedVari-

336 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

ants selected by the parameter EcucVariationResolver. c(SRS_Rte_00201,
SRS_Rte_00202, SRS_Rte_00229, SRS_Rte_00191)

[SWS_Rte_06546] d For each PostBuild Variability in the input configura-
tion the RTE Generator shall choose a particular variant according to the Prede-
finedVariants selected by the parameter RtePostBuildVariantConfigura-
tion. c(SRS_Rte_00201, SRS_Rte_00202, SRS_Rte_00229, SRS_Rte_00191)

Having variants chosen the RTE generator can apply further consistency checks on
the particular variants.

4.7.2.3 SystemDesignTime

Variability with latest binding time SystemDesignTime (called SystemDesignTime
Variability) has to be bound before the RTE Contract Phase respectively Basic
Software Scheduler Contract Phase. Such variability is resolved by RTE generator in
all generation phases. Due to that such kind of variability results always in a particular
variant and needs no special code generation rules for RTE generator.

[SWS_Rte_06501] d The RTE generator shall bind SystemDesignTime Vari-
ability in the RTE Contract Phase, Basic Software Scheduler Contract Phase,
RTE Generation Phase and Basic Software Scheduler Generation Phase (3).
c(SRS_Rte_00191)

[SWS_Rte_06502] d The RTE Generator shall reject input configurations dur-
ing the RTE Contract Phase where not a particular variant is chosen for each
SystemDesignTime Variability affecting the software components contract.
c(SRS_Rte_00201, SRS_Rte_00018)

[SWS_Rte_06503] d The RTE Generator shall reject input configurations during the
Basic Software Scheduler Contract Phase where not a particular variant is chosen
for each SystemDesignTime Variability affecting the Basic Software Scheduler
contract. c(SRS_Rte_00229, SRS_Rte_00018)

[SWS_Rte_06504] d The RTE Generator shall reject input configurations during the
Basic Software Scheduler Generation Phase where not a particular variant is chosen
for each SystemDesignTime Variability affecting the Basic Software Scheduler
generation. c(SRS_Rte_00229, SRS_Rte_00018)

[SWS_Rte_06505] d The RTE Generator shall reject input configurations during the
RTE Generation Phase where not a particular variant is chosen for each Sys-
temDesignTime Variability affecting the RTE generation. c(SRS_Rte_00201,
SRS_Rte_00202, SRS_Rte_00018)

337 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4.7.2.4 CodeGenerationTime

During RTE Contract Phase, RTE Generation Phase and Basic Software Scheduler
Generation Phase the variability with latest binding time CodeGenerationTime (called
CodeGenerationTime Variability) has to be bound and the RTE generator re-
solves the variability. This denotes that the code is generated for a particular variant. To
do this it is required that a particular variant for each CodeGenerationTime Vari-
ability has to be chosen.

[SWS_Rte_06507] d The RTE generator shall bind CodeGenerationTime Vari-
ability in the RTE Contract Phase, Basic Software Scheduler Contract Phase, RTE
Generation Phase and Basic Software Scheduler Generation Phase (see sections
3.1.1, 3.1.2, 3.4.1 and 3.4.2). c(SRS_Rte_00229, SRS_Rte_00191)

[SWS_Rte_06547] d The RTE Generator shall reject input configurations dur-
ing the RTE Contract Phase where not a particular variant is chosen for each
CodeGenerationTime Variability affecting the software components contract.
c(SRS_Rte_00191, SRS_Rte_00018)

[SWS_Rte_06548] d The RTE Generator shall reject input configurations during the
Basic Software Scheduler Contract Phase where not a particular variant is chosen for
each CodeGenerationTime Variability affecting the Basic Software Scheduler
contract. c(SRS_Rte_00229, SRS_Rte_00018)

[SWS_Rte_06508] d The RTE Generator shall reject input configurations during the
Basic Software Scheduler Generation Phase where not a particular variant is chosen
for each CodeGenerationTime Variability affecting the Basic Software Sched-
uler generation. c(SRS_Rte_00229, SRS_Rte_00018)

[SWS_Rte_06509] d The RTE Generator shall reject input configurations during the
RTE Generation Phase where not a particular variant is chosen for each Code-
GenerationTime Variability affecting the RTE generation. c(SRS_Rte_00191,
SRS_Rte_00018)

4.7.2.5 PreCompileTime

Variability with latest binding time PreCompileTime (called PreCompileTime Vari-
ability) is relevant for the RTE Contract Phase and Basic Software Scheduler Con-
tract Phase as well as for the RTE Generation Phase and Basic Software Scheduler
Generation Phase. The Application Header File, Application Types Header File, Mod-
ule Interlink Header and Module Interlink Types Header and the generated RTE / Basic
Software Scheduler has to support the potential variability of the software components
and Basic Software Modules. The variability is resolved during the execution of the pre
processor of the C-Complier.

[SWS_Rte_06510] d The RTE generator shall implement PreCompileTime Vari-
ability in the RTE Contract Phase, Basic Software Scheduler Contract Phase, RTE
Generation Phase, Basic Software Scheduler Generation Phase via pre processor

338 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

statements in the generated RTE code (see sections 3.1.1, 3.1.2, 3.4.1 and 3.4.2).
c(SRS_Rte_00191)

[SWS_Rte_06553] d The RTE Generator shall use the defined Attribute Value
Macro instead of immediate values if the value depends on an Attribute-
ValueVariationPoint where the bindingTime is set to preCompileTime.
c(SRS_Rte_00191)

4.7.2.6 LinkTime

The latest Binding Time LinkTime will not be supported for VariationPoints relevant for
the RTE Generator.

[SWS_Rte_06511] d The RTE generator shall reject configuration which defines RTE
or Basic Software Scheduler relevant LinkTime Variability. c(SRS_Rte_00018)

4.7.2.7 PostBuild

Variability with latest binding time PostBuild (called PostBuild Variability) might
be bound / rebound after the generated RTE is compiled and has been linked to the
executable. The generated RTE binary code has to contain all variants. Which variant
is executed during ECU runtime is decided by variant selectors.

[SWS_Rte_06512] d The RTE generator shall implement PostBuild Variability
in the RTE Generation Phase and Basic Software Scheduler Generation Phase via C
statements in the generated RTE code (see 3.4.1 and 3.4.2). c(SRS_Rte_00191)

Combining PreBuild and PostBuild Variability

According document [10] it is supported that a VariationPoint defines a Pre-
Build Variability in conjunction with PostBuild Variability. If the Pre-
Build condition is false, it is not expected that the element which is subject to variability
including the code evaluating the PostBuild condition gets implemented at all.

[SWS_Rte_06549] d In cases where a VariationPoint defines a SystemDe-
signTime Variability or CodeGenerationTime Variability in conjunction
with PostBuild Variability the PostBuild Variability shall only be imple-
mented by the RTE Generator in the generated RTE code if the condition of the Pre-
Build Variability evaluates to true. c(SRS_Rte_00191)

[SWS_Rte_06550] d In cases where a VariationPoint defines a PreCompile-
Time Variability in conjunction with PostBuild Variability the PostBuild
Variability shall only be effective in the RTE executable if the condition of the Pre-
CompileTime Variability evaluates to true. c(SRS_Rte_00191)

339 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

In this case the PostBuild Variability implemented according
[SWS_Rte_06512] depends from the PreCompileTime Variability imple-
mented according [SWS_Rte_06510].

4.7.3 Variability affecting the RTE generation

4.7.3.1 Software Composition

This section describes the affects of the existence of variation points with regards to
compositions. Though the application software compositions have been flattened and
effectively eliminated after allocation to an ECU there is still one composition to con-
sider for the RTE (i.e. the RootSwCompositionPrototype). The RootSwCompo-
sitionPrototype contains the atomic software components allocated to the respec-
tive ECU, its assembly connections,its delegation connections and the connections of
the delegation ports to system signals. Once the variability is resolved for a varia-
tion point it must adhere to the constraints and limitations that apply to a model that
does not have any variations. For example dangling connectors are not allowed and
as such their existence will lead to undefined behavior if such configurations still exist
after resolving post-build variation points.

Also within this specification section the wording "‘a variant is enabled or disabled"’
refers to the variation point’s SwSystemconstDependentFormula and/or PostBuildVari-
antCondition evaluating to "‘true or false"’ respectively.

4.7.3.1.1 Variant existence of SwComponentPrototypes

[SWS_Rte_06601] d If a variant is disabled for the aggregation of a SwComponent-
Prototype in a CompositionSwComponentType then all RTEEvents destined for
Runnables in the respective SwComponentPrototype shall be blocked; No RTE-
Event is allowed to reach any Runnable that is contained in a "‘disabled"’ SwCompo-
nentPrototype. c(SRS_Rte_00206, SRS_Rte_00207, SRS_Rte_00204)

Potential misconfigurations of connectors connecting to ports of "‘disabled"’ SWC’s
will result in undefined behavior; It is the responsibility of the person considering the
variability of the SwComponentPrototype to make the connections also variable and
valid when a variant selection results in the elimination of a SwComponentPrototype
from a composition. It is recommended to use predefined variants to ensure proper
configurations are established.

4.7.3.1.2 Variant existence of SwConnectors

[SWS_Rte_06602] d If a variant is disabled for a SwConnector (i.e. Assem-
blySwConnector or DelegationSwConnector) aggregated in a Composition-
SwComponentType then the PortPrototypes at each end of the connector shall

340 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

behave as an unconnected port (see section 5.2.7 for the defined RTE behavior) if
no other variant enables a SwConnector between these ports. c(SRS_Rte_00206,
SRS_Rte_00207)

4.7.3.1.3 COM related Variant existence

This section describes the impact on the RTE interaction with the COM layer as a
result of variability of DataMappings (i.e. SenderReceiverToSignalMapping and
SenderReceiverToSignalGroupMapping in the SystemMapping) as well as the
existence of variants for ISignals The Meta Model allows for mapping the same data
to different SystemSignals as well as associating a SystemSignal with 1 or more
ISignals.

[SWS_Rte_06603] d If a variant is enabled for a SystemMapping aggregating a
DataMapping then the RTE shall call the appropriate API’s for the applicable map-
ping type. c(SRS_Rte_00206, SRS_Rte_00207)

[SWS_Rte_06604] d The appropriate API shall be determined based on the existence
of variants of ISignals to which a SystemSignal is associated to. For each enabled
ISignal the RTE shall call the proper COM API to send and receive data System-
Signals c(SRS_Rte_00206, SRS_Rte_00207)

For example for an instance mapping from a VariableDataPrototype to a Sys-
temSignal the RTE shall call the corresponding Com_SendSignal with the proper
SignalId and SignalDataPtr based on the selected variant DataMapping.

The existence of variants of ISignals is determined by the System element (see also
[constr_3028]).

[SWS_Rte_06605] d Delegation ports on a RootSwCompositionPrototype for
which no DataMapping exists (i.e. no variant DataMapping is enabled) shall be
considered unconnected because no path exists to a designated SystemSignal.
Since this is a delegation port all enabled delegation connectors linking SWC R-
ports to the respective delegation port must be considered unconnected (see section
5.2.7). P-Ports shall behave as documented in section 4.7.3.1.2. c(SRS_Rte_00206,
SRS_Rte_00207)

4.7.3.1.4 Variant existence of PortPrototypes

[SWS_Rte_06606] d If no variant is enabled for a delegation port on a RootSwCom-
positionPrototype then all connected R-Ports using a DelegationSwConnec-
tor to this delegation port shall be considered unconnected (see section 5.2.7). The
behavior of the P-ports shall be as defined in section 4.7.3.1.2. c(SRS_Rte_00206,
SRS_Rte_00207)

Note on variant disabling criteria: In a proper variant configuration the following should
be followed: when a PortPrototype is eliminated from any SwComponentType then

341 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

any associated SwConnector should also have a variation point removing the connec-
tion since the connection is illegal.

4.7.3.2 Atomic Software Component and its Internal Behavior

4.7.3.2.1 RTE API which is subject to variability

Following VariationPoints in the Meta Model do control the variant existence of
RTE API for a software component. If a RTE API is variant existent, the API mapping
and the related entries in the component data structure are ’variant’ as well. This
means, if a RTE API does not exist the API mapping does not exist as well. A part
of the component data structure entries are related to the existences of the port. In
these cases the component data structure entry depends from the existence of the
PortPrototype.

Variation Point RTE API which is
subject to variability

form kind infix

Condition Value Macro
ExclusiveArea Rte_Enter,

Rte_Exit
component
internal

ExAr

[SWS_Rte_06518]
VariableDataPrototype in the role arTyped-
PerInstanceMemory

Rte_Pim component
internal

PIM

[SWS_Rte_06518]
PerInstanceMemory Rte_Pim component

internal
PIM

[SWS_Rte_06518]
ParameterDataPrototype in the role perIn-
stanceParameter

Rte_CData component
internal

Prm

[SWS_Rte_06518]
ParameterDataPrototype in the role shared-
Parameter

Rte_CData component
internal

Prm

[SWS_Rte_06518]
ServerCallPoint Rte_Call component

port
[SWS_Rte_06515]
AsynchronousServerCallResultPoint Rte_Result component

port
[SWS_Rte_06515]
InternalTriggeringPoint Rte_IrTrigger entity

internal
IRT

[SWS_Rte_06519]
ExternalTriggeringPoint Rte_Trigger component

port
[SWS_Rte_06515]
ModeSwitchPoint Rte_Switch,

Rte_SwitchAck
component
port

[SWS_Rte_06515]
ModeAccessPoint Rte_Mode component

port

342 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_06515]
VariableAccess in the role dataReadAccess Rte_IRead ,

Rte_IStatus,
Rte_IsUpdated

entity port

[SWS_Rte_06515]
VariableAccess in the role dataWriteAccess Rte_IWrite,

Rte_IWriteRef,
Rte_IInvalidate,
Rte_IFeedback

entity port

[SWS_Rte_06515]
VariableAccess in the role dataSendPoint Rte_Write,

Rte_Invalidate,
Rte_Feedback

component
port

[SWS_Rte_06515]
VariableAccess in the role dataReceive-
PointByArgument

Rte_Read component
port

[SWS_Rte_06515]
VariableAccess in the role dataReceive-
PointByValue

Rte_DRead component
port

[SWS_Rte_06515]
VariableAccess in the role readLocalVari-
able referring an explicitInterRunnable-
Variable

Rte_IrvRead component
internal

IRV

[SWS_Rte_06518]
VariableAccess in the role writtenLo-
calVariable referring an explicitInter-
RunnableVariable

Rte_IrvWrite component
internal

IRV

[SWS_Rte_06518]
VariableAccess in the role readLocalVari-
able referring an implicitInterRunnable-
Variable

Rte_IrvIRead entity
internal

IRV

[SWS_Rte_06519]
VariableAccess in the role writtenLo-
calVariable referring an implicitInter-
RunnableVariable

Rte_IrvIWrite entity
internal

IRV

[SWS_Rte_06519]
PortPrototype referring a ParameterInter-
face

Rte_Prm component
port

[SWS_Rte_06515]
PortAPIOption with attribute indirectAPI Rte_Port
[SWS_Rte_06520]

Table 4.15: variant existence of RTE API

column description
kind infix The column kind infix defines infix strings to differentiate con-

dition value macros belonging to variation points of different
API sets

form The column form specifies which names for the macro of the
condition value are concatenated to ensure a unique name
space of the macro.

343 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

form description
component port The related API is provide for the whole software component

and belongs to a software components port
entity port The related API is provide for a particular RunnableEntity

and belongs to a software components port
component internal The related API is provide for the whole software component

and belongs to a software component internal functionality
entity internal The related API is provide per RunnableEntity and belongs

to a software component internal functionality

Table 4.16: Key to table 4.15

[SWS_Rte_06517] d The RTE generator shall treat RTE API as variant RTE API only
if all elements (e.g. VariableAccess) in the input configuration controlling the exis-
tence of the same RTE API are subject to variability. c(SRS_Rte_00203)

4.7.3.2.2 Conditional API options

Following variation points in the Meta Model do control the variant properties of RTE
API or allocated Memory.

Variation Point Subject to variability
Condition Value Macro
PortAPIOption with attribute portArgValue PortDefinedArgument-

Value is passed to a
RunnableEntity

not standardized
PortAPIOption with attribute indirectAPI Number of Ports which are

supporting indirect API, see
Rte_NPorts and Rte_Ports

not standardized

Table 4.17: Conditional API options

4.7.3.2.3 Runnable Entity’s and RTEEvents

Following variation points in the Meta Model do control the variant existence and acti-
vation of RunnableEntitys.

Variation Point Subject to variability
Condition Value Macro
RunnableEntity Existence of the RunnableEn-

tity prototype
[SWS_Rte_06530]
RTEEvent Activation of the RunnableEn-

tity

344 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

not standardized

Table 4.18: variation on Runnable Entity’s and RTEEvents

4.7.3.2.4 Conditional Memory Allocation

Following variation points in the Meta Model do control the variant existence of RTE
memory allocation for the software component instance.

Variation Point Subject to variability
Condition Value Macro
implicitInterRunnableVariable variable definition implementing

the implicitInterRunnabl-
eVariable

not standardized
explicitInterRunnableVariable variable definition implementing

the explicitInterRunnabl-
eVariable

not standardized
arTypedPerInstanceMemory variable definition implementing

the arTypedPerInstance-
Memory

not standardized
PerInstanceMemory variable definition implementing

the PerInstanceMemory
not standardized
perInstanceParameter constant definition implementing

the perInstanceParameter
not standardized
sharedParameter variable definition implementing

the sharedParameter
not standardized
InstantiationDataDefProps, SwDataDefProps Allocation of the memory

objects described via swAd-
drMethod, accessibility for
MCD systems described via
swCalibrationAccess,
displayFormat, mcFunc-
tion

not standardized

Table 4.19: Conditional Memory Allocation

4.7.3.3 NvBlockComponent and its Internal Behavior

Variation Point Subject to variability
Condition Value Macro

345 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

PortPrototype of a NvBlockSwComponentType typed by Nv-
DataInterface

Existence of the ability to access
the memory objects of the ram-
Block

not standardized
NvBlockDataMapping of a NvBlockDescriptor Existence of the ability to access

the memory objects of the ram-
Block

not standardized
provide PortPrototype of a NvBlockSwComponentType typed
by ClientServerInterface, RunnableEntity and referring
OperationInvokedEvent

Existence of the Block Manage-
ment port and the ability to
access the Block Management
API of the NvRAM Manager

not standardized
require PortPrototype of a NvBlockSwComponentType typed
by ClientServerInterface, RoleBasedPortAssignment
and referring the PortPrototype

Existence of the callback notifi-
cation port

not standardized
NumericalValueSpecification or TextValueSpecifica-
tion of the ramBlock or romBlocks initValue ValueSpec-
ification (aggregated or referred one)

initialization values of the mem-
ory objects implementing the
ramBlock or romBlock

not standardized
InstantiationDataDefProps Allocation of the memory objects

implementing the ramBlock
or romBlock described via
swAddrMethod, accessibility
for MCD systems described
via swCalibrationAccess,
displayFormat, mcFunc-
tion

not standardized

Table 4.20: variation in NvBlockSwComponentTypes

4.7.3.4 Parameter Component

Variation Point Subject to variability
Condition Value Macro
PortPrototype of a ParameterSwComponentType Existence of the memory objects

/ definitions related to the Pa-
rameterDataPrototypes in
the PortInterface referred
by the PortPrototype

not standardized
NumericalValueSpecification or TextValueSpecifica-
tion of the ParameterProvideComSpecs initValue Value-
Specification (aggregated or referred one)

initialization values of the mem-
ory objects / definitions related
to the ParameterDataProto-
types

not standardized

Table 4.21: variation in ParameterSwComponentTypes

346 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4.7.3.5 Data Type

Following variation points in the Meta Model do control the variant generation of data
types.

Variation Point Subject to variability
Condition Value Macro
ImplementationDataTypeElement Existence of the structure or

union element
[SWS_Rte_06542]
arraySize Number of elements in the array
[SWS_Rte_06541]
CompuMethod upperLimit Upper limit of the Implementa-

tionDataType

CompuMethod lowerLimit Lower limit of the Implementa-
tionDataType

CompuMethod v attributes Coefficients of nominator and
denominator

Table 4.22: variation in ImplementationDataTypes

Variation Point Subject to variability
Condition Value Macro
DataConstr upperLimit Upper limit of the Applica-

tionPrimitiveDataType
[SWS_Rte_06551]
DataConstr lowerLimit Lower limit of the Applica-

tionPrimitiveDataType
[SWS_Rte_06552]
CompuMethod upperLimit Upper limit of the Applica-

tionPrimitiveDataType

CompuMethod lowerLimit Lower limit of the Applica-
tionPrimitiveDataType

CompuMethod v attributes Coefficients of nominator and
denominator

Table 4.23: variation in ApplicationDataTypes and related meta classes

4.7.3.6 Constants

Variation Point Subject to variability
Condition Value Macro

347 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

NumericalValueSpecification value numerical value

ApplicationValueSpecification v (swArraysize) size of compound primitives

ApplicationValueSpecification v (value) attributes physical value

Table 4.24: variation in ValueSpecifications

4.7.3.7 Basic Software Modules and its Internal Behavior

4.7.3.7.1 Basic Software Interfaces

Variation Point Subject to variability
Condition Value Macro
providedEntry Existence of the provided

BswModuleEntry
not standardized
outgoingCallback Existence of the expected

BswModuleEntry
not standardized
ModeDeclarationGroupPrototype in role providedMode-
Group

Existence of the provided
ModeDeclarationGroup-
Prototype

not standardized
ModeDeclarationGroupPrototype in role requiredMode-
Group

Existence of the required
ModeDeclarationGroup-
Prototype

not standardized
Trigger in role releasedTrigger Existence of the released

Trigger
not standardized
Trigger in role requiredTrigger Existence of the required Trig-

ger
not standardized

Table 4.25: variability affecting Basic Software Interfaces

4.7.4 Variability affecting the Basic Software Scheduler generation

4.7.4.1 Basic Software Scheduler API which is subject to variability

The VariationPoints listed in table 4.26 in the input configuration are controlling
the variant existence of Basic Software Scheduler API.

Variation Point Subject to variability form kind infix
Condition Value Macro
ExclusiveArea SchM_Enter, SchM_Exit module

internal
ExAr

[SWS_Rte_06535]

348 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

managedModeGroup association to
providedModeGroup ModeDeclara-
tionGroupPrototype

SchM_Switch,
SchM_SwitchAck

module
external

MMod

[SWS_Rte_06536]
accessedModeGroup association to pro-
videdModeGroup or requiredModeGroup
ModeDeclarationGroupPrototype

SchM_Mode module
external

AMod

[SWS_Rte_06536]
issuedTrigger association to re-
leasedTrigger Trigger

SchM_Trigger module
external

Tr

[SWS_Rte_06536]
BswModuleCallPoint SchM_Call module

external
SrvCall

[SWS_Rte_06536]
BswAsynchronousServerCallResult-
Point

SchM_Result module
external

SrvRes

[SWS_Rte_06536]
dataSendPoint association to provided-
Data

SchM_Send module
external

DSP

[SWS_Rte_06536]
dataReceivePoint association to re-
quiredData

SchM_Receive module
external

DRP

[SWS_Rte_06536]
BswInternalTriggeringPoint SchM_ActMainFunction entity

internal
ITr

[SWS_Rte_06536]
perInstanceParameter Parameter-
DataPrototype

SchM_CData module
internal

PIP

[SWS_Rte_06535]

Table 4.26: variant existence of Basic Software Scheduler API

column description
kind infix The column kind infix defines infix strings to differentiate con-

dition value macros belonging to variation points of different
API sets

form The column form specifies which names for the macro of the
condition value are concatenated to ensure a unique name
space of the macro.

form description
module external The related API is provide for the whole module and belongs

to a module interface
module internal The related API is provide for the whole module and belongs

to a module internal functionality
entity internal The related API is provide per ExecutableEntity and be-

longs to a module internal functionality

Table 4.27: Key to table 4.26

349 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_06537] d The RTE generator shall treat the existence of Basic Software
Scheduler API as subject to variability only if all elements (e.g. managedModeGroup
association) in the input configuration controlling the existence of the same Basic Soft-
ware Scheduler API are subject to variability. c(SRS_Rte_00229)

4.7.4.2 Basic Software Entities

The VariationPoints listed in table 4.28 in the input configuration are controlling the
variant existence of BswModuleEntitys and the variant activation of BswSchedula-
bleEntitys.

Variation Point Subject to variability
Condition Value Macro
BswSchedulableEntity Existence of the BswSchedu-

lableEntity prototype
[SWS_Rte_06532]
BswEvent Activation of the BswSchedu-

lableEntity
not standardized

Table 4.28: variability affecting BswSchedulableEntitys

4.7.4.3 API behavior

The VariationPoints listed in table 4.29 in the input configuration are controlling
the variant behavior of Basic Software Scheduler API.

Variation Point Subject to variability
Condition Value Macro
BswModeSenderPolicy Queue length in the mode ma-

chine instance dependent
from the attribute

not standardized
BswModeReceiverPolicy attribute supportsAsyn-

chronousModeSwitch has to
be considered according the
bound variant

not standardized

Table 4.29: variant existence of BswSchedulableEntity

4.7.5 Variability affecting SWC implementation

In this section some examples will be given in order to describe the affects of variability
with regard to SWC implementation. The implemented variability in SWCs is described
through VariationPointProxys and can be resolved by pre-build evaluation, by

350 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

post-build evaluation or by the combination of them. Furthermore for each Varia-
tionPointProxy AUTOSAR defines the categorys VALUE and CONDITION (see
Software Component Template [2]). In the following code examples one scenario for
each category will be described. The first scenario addresses the post-build case
and the second one the case of combination of pre-build and post-build.

Scenario for category VALUE

VariationPointProxy FRIDA
postBuildValueAccess Rte_PBCon_FRIDA = 3
might result for example in something like:

1 /* Generated RTE-Code */
2

3 const Rte_PBCon_FRIDA 3

1 /* SWC-Code */
2

3 if (Rte_PBCon_FRIDA == 3) {
4 /* code depending on proxy FRIDA */
5 }
6 else {
7 /* functional alternative, if FRIDA is not selected */
8 }

Scenario for category CONDITION

SystemConstant FRANZ = 10
VariationPointProxy HUGO
conditionAccess Rte_SysCon_HUGO = (FRANZ == 10)
postBuildVariantCondition A = 3, postBuildVariantCondition B = 5
might result for example in something like:

1 /* Generated RTE-Code */
2

3 #define Rte_SysCon_HUGO 1
4

5 #define Rte_PBCon_HUGO (
6 Rte_SysCon_HUGO &&
7 RteInternal_EvalPostBuildVariantCondition_HUGO_A &&
8 RteInternal_EvalPostBuildVariantCondition_HUGO_B
9)

1 /*SWC-Code*/
2

3 /* ensure that no code for HUGO remains in
4 the binary, if HUGO is not selected */
5 #if Rte_SysCon_HUGO
6

7 /* check during run time, if HUGO is
8 active due to post-build conditions */
9 if (Rte_PBCon_HUGO) {

10 /* code depending on proxy HUGO */
11 }
12 else {

351 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

13 /* functional alternative, if HUGO is not selected */
14 }
15

16 #else
17 /* functional alternative is always
18 active since HUGO is not selected */
19 #endif

Since the post-build data structure is not standardized the algorithm for the evaluation
of the expressions RteInternal_EvalPostBuildVariantCondition_HUGO_A
and RteInternal_EvalPostBuildVariantCondition_HUGO_B is up to the im-
plementer.

In contrast to Rte_SysCon the Rte_PBCon API has no guarantee, that it can be re-
solved in the pre-processor. It is subject to the optimization of the compiler to reduce
code size. If one wants to be absolutely sure, that no superfluous code exists even with
non optimizing compilers, he needs to implement a pre-processor directive in addition
(see example).

4.8 Development errors

Errors which can occur at runtime in the RTE are classified as development errors. The
RTE uses a BSW module report these types of errors to the DET [23] (Development
Error Tracer).

4.8.1 DET Report Identifiers

[SWS_Rte_06630] d The RTE shall report development errors to the DET and use its
assigned module identifier (i.e. 2) to identify itself to the DET. c(SRS_BSW_00337)

[SWS_Rte_07676] d Development errors shall be reported to the DET if and only if
RteDevErrorDetect is enabled. c(SRS_BSW_00337)

[SWS_Rte_06631] d The RTE shall use the OS Application Identifier as the Instance
Id to enable the developer to identify in which runtime section of the RTE the error
occurs. This Instance ID is even unique across multi cores and so implicitly allows the
development error to be traced to a specific core. c(SRS_BSW_00337)

[SWS_Rte_06632] d The RTE shall use the Service Id as identified in the table 4.31.
Each RTE API template, RTE callback template and RTE API will have an Identifier.
This ID Service ID must be used when running code in the context of the respective
RTE call. c(SRS_BSW_00337)

352 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4.8.2 DET Error Identifiers

Only a limited set of development identifiers are currently recognized. Each of these
need to be detected either at runtime or during initialization of the RTE. To report these
errors extra development code must be generated by the RTE generator.

[SWS_Rte_06633] d An RTE_E_DET_ILLEGAL_SIGNAL_ID (0x01) shall be reported
at runtime by the RTE when it receives a COM callback for a signal name (e.g.
Rte_COMCbk_<sn>, Rte_COMCbkTAck_<sn>) which was not expected within the
context of the currently-selected postBuild variant. See section 5.9.2 for the list of
possible COM callback template API. c(SRS_BSW_00337)

[SWS_Rte_06634] d An RTE_E_DET_ILLEGAL_VARIANT_CRITERION_VALUE
(0x02) shall be reported by the RTE when it determines that a value is assigned to
a variant criterion which is not in the list of possible values for that criterion. This error
shall be detected during the RTE initialization phase. c(SRS_BSW_00337)

[SWS_Rte_07684] d An RTE_E_DET_ILLEGAL_VARIANT_CRITERION_VALUE
(0x02) shall be reported by the Basic Software Scheduler when the SchM_Init API
is called with a NULL parameter. c(SRS_BSW_00337)

[SWS_Rte_06635] d An RTE_E_DET_ILLEGAL_INVOCATION (0x03) shall be re-
ported by the RTE when it determines that an RTE API is called by a Runnable which
should not call that RTE API. The RTE can identify the active Runnable when it dis-
patches the RTE Event and if it subsequently receives a call from that Runnable to
an API that is not part of its contract then this particular error ID must me logged.
c(SRS_BSW_00337)

[SWS_Rte_06637] d An RTE_E_DET_WAIT_IN_EXCLUSIVE_AREA (0x04) shall be
reported by the RTE when an application has called an Rte_Enter API and subse-
quently asks the RTE to enter a wait state. This is illegal because it would lock the
ECU. c(SRS_BSW_00337)

[SWS_Rte_07675] d An RTE_E_DET_ILLEGAL_NESTED_EXCLUSIVE_AREA
(0x05) shall be reported by the RTE when an application violates [constr_9029].
c(SRS_BSW_00337)

[SWS_Rte_07685] d An RTE_E_DET_SEG_FAULT (0x06) shall be reported by the
RTE when the parameters of an RTE API call contain a direct or indirect reference to
memory that is not accessible from the callers partition as defined in [SWS_Rte_02752]
and [SWS_Rte_02753]. c(SRS_BSW_00337)

[SWS_Rte_07682] d If RteDevErrorDetectUninit is enabled, an
RTE_E_DET_UNINIT (0x07) shall be reported by the RTE when one of the APIs :

• Specified in 5.6.

• Rte_NvMNotifyInitBlock.

• Rte_PartitionTerminated.

• Rte_PartitionRestarting.

353 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

• Rte_RestartPartition.

is called before Rte_Start, after Rte_Stop or After the partition to witch the API
belongs is terminated. c(SRS_BSW_00337)

Note:

• In production mode, No checks are performed.

• In development mode, if an error is detected the API behaviour is undefined and
it is left to the Rte implementer.

Rational: The introduction of this developpement check should not introduce big
changes to production mode configuration.

[SWS_Rte_07683] d If RteDevErrorDetectUninit is enabled, an
RTE_E_DET_UNINIT (0x07) shall be reported by the Basic Software Scheduler
/ RTE when one of the APIs SchM_Switch, SchM_Mode, SchM_SwitchAck,
SchM_Trigger, SchM_ActMainFunction, or Rte_Start is called before
SchM_Init. c(SRS_BSW_00337)

4.8.3 DET Error Classification

The following abbreviations are used to identify the DET error in table 4.31.

Abbreviation RTE DET Error
ISI RTE_E_DET_ILLEGAL_SIGNAL_ID

IVCV RTE_E_DET_ILLEGAL_VARIANT_CRITERION_VALUE

II RTE_E_DET_ILLEGAL_INVOCATION

INEA RTE_E_DET_ILLEGAL_NESTED_EXCLUSIVE_AREA

WIEA RTE_E_DET_WAIT_IN_EXCLUSIVE_AREA

UNINIT RTE_E_DET_UNINIT

Table 4.30: Abbreviations of RTE DET Errors to APIs

The following table 4.31 indicates which DET errors are relevant for the various RTE
APIs, and the service ID associated with the RTE APIs (see [SWS_Rte_06632]):

API name Service ID I
S
I

I
V
C
V

I
I

I
N
E
A

W
I
E
A

U
N
I
N
I
T

Rte_Ports APIs 0x10 X
Rte_NPorts APIs 0x11 X
Rte_Port APIs 0x12 X
Rte_Send APIs 0x13 X
Rte_Write APIs 0x14 X
Rte_Switch APIs 0x15 X

354 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Rte_Invalidate APIs 0x16 X
Rte_Feedback APIs 0x17 X X
Rte_SwitchAck APIs 0x18 X X
Rte_Read APIs 0x19 X
Rte_DRead APIs 0x1A X
Rte_Receive APIs 0x1B X X
Rte_Call APIs 0x1C X X
Rte_Result APIs 0x1D X X
Rte_Pim APIs 0x1E X
Rte_CData APIs 0x1F X
Rte_Prm APIs 0x20 X
Rte_IRead APIs 0x21 X
Rte_IWrite APIs 0x22 X
Rte_IWriteRef APIs 0x23 X
Rte_IInvalidate APIs 0x24 X
Rte_IStatus APIs 0x25 X
Rte_IrvIRead APIs 0x26 X
Rte_IrvIWrite APIs 0x27 X
Rte_IrvRead APIs 0x28 X
Rte_IrvWrite APIs 0x29 X
Rte_Enter APIs 0x2A X
Rte_Exit APIs 0x2B X X
Rte_Mode APIs 0x2C
Rte_Trigger APIs 0x2D X
Rte_IrTrigger APIs 0x2E X
Rte_IFeedback APIs 0x2F X
Rte_IsUpdated APIs 0x30 X
trigger by TimingEvent 0x50 X
trigger by BackgroundEvent 0x51 X
trigger by SwcModeSwitchEvent 0x52 X
trigger by AsynchronousServerCall-
ReturnsEvent

0x53 X

trigger by DataReceiveErrorEvent 0x54 X
trigger by OperationInvokedEvent 0x55 X
trigger by DataReceivedEvent 0x56 X
trigger by DataSendCompletedEvent 0x57 X
trigger by ExternalTriggerOccurredEvent 0x58 X
trigger by InternalTriggerOccurredEvent 0x59 X
trigger by DataWriteCompletedEvent 0x5A X
Rte_Start API 0x70 X
Rte_Stop API 0x71

355 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Rte_PartitionTerminated APIs 0x72
Rte_PartitionRestarting APIs 0x73
Rte_RestartPartition APIs 0x74
Rte_Init API 0x75
Rte_StartTiming API 0x76
Rte_COMCbkTAck_<sn> callbacks 0x90 X
Rte_COMCbkTErr_<sn> callbacks 0x91 X
Rte_COMCbkInv_<sn> callbacks 0x92 X
Rte_COMCbkRxTOut_<sn> callbacks 0x93 X
Rte_COMCbkTxTOut_<sn> callbacks 0x94 X
Rte_COMCbk_<sg> callbacks 0x95 X
Rte_COMCbkTAck_<sg> callbacks 0x96 X
Rte_COMCbkTErr_<sg> callbacks 0x97 X
Rte_COMCbkInv_<sg> callbacks 0x98 X
Rte_COMCbkRxTOut_<sg> callbacks 0x99 X
Rte_COMCbkTxTOut_<sg> callbacks 0x9A X
Rte_COMCbk_<sn> callbacks 0x9F X
Rte_SetMirror callbacks 0x9B
Rte_GetMirror callbacks 0x9C
Rte_NvMNotifyJobFinished callbacks 0x9D
Rte_NvMNotifyInitBlock callbacks 0x9E X
SchM_Init API 0x00 X
SchM_Deinit API 0x01
SchM_GetVersionInfo API 0x02
SchM_Enter APIs 0x03 X
SchM_Exit APIs 0x04 X X
SchM_ActMainFunction APIs 0x05 X
SchM_Switch APIs 0x06 X
SchM_Mode APIs 0x07 X
SchM_SwitchAck APIs 0x08 X
SchM_Trigger APIs 0x09 X

Table 4.31: Applicability of RTE DET Errors to APIs

356 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4.9 Bypass Support

Rapid prototyping can be used during electronic control unit development to evaluate
and test new software control algorithms for various functions.

With Fullpass technology the original ECU is totally replaced by a Rapid Prototyping
Unit (RPU).

With Bypass technology the original ECU and software stays in the control loop to
supports the majority of the control algorithms and interface with sensors, actuators
and communication buses: only the specific control algorithm that shall be prototyped
is deported into the RPU (external bypass) or even directly executed in the original ECU
(internal bypass). Bypass mainly consists in replacing at run time inputs and/or outputs
of the original software algorithms by value computed by the prototype algorithm under
test.

The RTE does not directly implement bypass but the RTE provides supports for the
integration of such implementation by CDD and/or integration code.

4.9.1 Bypass description

In order to describe a rapid prototyping system as an Autosar Software Component a
System Description with the category RPT_SYSTEM is used. This System Description
is not relevant for the RTE itself but is only a support for the ECU integrator to setup
the rapid prototyping solution.

[SWS_Rte_07833] d RTE shall ignore definitions in System Description of category
RPT_SYSTEM. c(SRS_Rte_00244)

4.9.2 Component wrapper method

The component wrapper method consists in wrapping the original software component
implementation with a CDD that implements the bypass. With this method the CDD is
able to take the control of the AUTOSAR interfaces of the software component because
there is no more direct call between RTE and the SWC but everything go through the
CDD.

357 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

RTE

SWC ASWC A

RTE

SWC B

RPT CDD

SWC B

Figure 4.52: Component wrapper method

The RTE supports the component wrapper method by generating the SWC interfaces
with a c-namespace including an additional [Byps_] infix for the bypassed SWC (i.e.
SWC B in Figure 4.52). This includes:

• naming of Application Header File

• naming of the Application Type Header File

• naming of the RTE APIs (excepted life cycle APIs)

• naming of the runnables

• naming of the instance handle

• naming of the Component Data Structure type

• naming of the memory sections

The component wrapper method for bypass support is enabled per software compo-
nent type.

[SWS_Rte_07840] d The component wrapper method for bypass support is enabled for
a software component type if the general switch RteBypassSupport is set to COM-
PONENT_WRAPPER and the individual switch for this software component type RteBy-
passSupportEnabled is set to true. c(SRS_Rte_00244)

358 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_07841] d The component wrapper method for bypass support is disabled
for a software component type if the general switch RteBypassSupport is set to
value different from COMPONENT_WRAPPER or if the individual switch for this software
component type RteBypassSupportEnabled is not configured or is set to false.
c(SRS_Rte_00244)

[SWS_Rte_07834] d If the component wrapper method for bypass support is en-
abled for a software component type, the RTE generator shall include the optional
infix [Byps_] to the name of all the elements generated for this software com-
ponent type that are defined in this specification with the optional infix [Byps_].
c(SRS_Rte_00244)

[SWS_Rte_07835] d If the component wrapper method for bypass support is dis-
abled for a software component type, the RTE generator shall remove the optional
infix [Byps_] to the name of all the elements generated for this software com-
ponent type that are defined in this specification with the optional infix [Byps_].
c(SRS_Rte_00244)

4.9.3 Direct buffer access method

The direct buffer access method provides runtime direct read and write access to the
RTE buffers that implement the ECU communication infrastructure.

The RTE supports the direct buffer access method by generating the McSupportData
for these buffers. This is already supported by the RTE measurement and calibration
support but for the rapid prototyping purpose additional elements shall be generated.

The component wrapper method for bypass support is enabled per software compo-
nent type.

The component wrapper method for bypass support is enabled for a software compo-
nent type if the individual switch for this software component type RteBypassSup-
portEnabled is set to true.

[SWS_Rte_07836] d If the direct buffer access method for bypass support is en-
abled for a software component type, the RTE generator shall generate Mc-
SupportData with mcDataAccessDetails for each preemption area specific
buffer that implements the implicit communication for this software component type.
c(SRS_Rte_00244)

359 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

5 RTE Reference

“Everything should be as simple as possible, but no simpler.”
– Albert Einstein

5.1 Scope

This chapter presents the RTE API from the perspective of AUTOSAR applications
and basic software – the same API applies to all software whether they are AUTOSAR
software-components or basic software.

Section 5.2 presents basic principles of the API including naming conventions and
supported programming languages. Section 5.3 describes the header files used by the
RTE and the files created by an RTE generator. The data types used by the API are
described in Section 5.5 and Sections 5.6 and 5.7 provide a reference to the RTE API
itself including the definition of runnable entities. Section 5.11 defines the events that
can be monitored during VFB tracing.

5.1.1 Programming Languages

The RTE is required to support components written using the C and C++ programming
languages [SRS_Rte_00126] as well as legacy software modules. The ability for mul-
tiple languages to use the same generated RTE is an important step in reducing the
complexity of RTE generation and therefore the scope for errors.

[SWS_Rte_01167] d The RTE shall be generated in C. c(SRS_Rte_00126)

[SWS_Rte_01168] d All RTE code, whether generated or not, shall conform to the HIS
subset of the MISRA C standard [24]. In technically reasonable, exceptional cases
MISRA violations are permissible. Except for MISRA rule #11, such violations shall be
clearly identified and documented. c(SRS_BSW_00007)

Specified MISRA violations are defined in Appendix C.

In realistic use cases, the RTE will generate C identifiers (functions, types, variables,
etc) whose name will be longer than the maximum size supported by the MISRA C
standard (rule #11). Users should configure the RTE to indicate the maximum C iden-
tifiers’ size supported by their tool chain to make sure that no issues will be caused by
these MISRA violation.

[SWS_Rte_07300] d If a RteToolChainSignificantCharacters limit has been config-
ured, the RTE generator shall provide the list of C RTE identifiers whose name is
not unique when only the first RteToolChainSignificantCharacters characters are con-
sidered. c(SRS_BSW_00007)

360 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

The RTE API presented in Section 5.6 is described using C. The API is also directly
accessible from an AUTOSAR software-component written using C++ provided all API
functions and instances of data structures are imported with C linkage.

[SWS_Rte_01011] d The RTE generator shall ensure that, for a component written in
C++, all imported RTE symbols are declared using C linkage. c(SRS_Rte_00138)

For the RTE API for C and C++ components the import of symbols occurs within the
application header file (Section 5.3.3).

5.1.2 Generator Principles

5.1.2.1 Operating Modes

An object-code component is compiled against an application header file that is cre-
ated during the first “RTE Contract” phase of RTE generation. The object code is then
linked against an RTE created during the second “RTE Generation” phase. To ensure
that the object-code component and the RTE code are compatible the RTE generator
supports compatibility mode that uses well-defined data structures and types for the
component data structure. In addition, an RTE generator may support a vendor oper-
ating mode that removes compatibility between RTE generators from different vendors
but permits implementation specific, and hence potentially more efficient, data struc-
tures and types.

[SWS_Rte_01195] d All RTE operating modes shall be source-code compatible at the
SW-C level. c(SRS_Rte_00024, SRS_Rte_00140)

Requirement [SWS_Rte_01195] ensures that a SW-C can be used in any operating
mode as long as the source is available. The converse is not true – for example, an
object-code SW-C compiled after the “RTE Contract” phase must be linked against an
RTE created by an RTE generator operating in the same operating mode. If the vendor
mode is used in the “RTE Contract” phase, an RTE generator from the same vendor
(or one compatible to the vendor-mode features of the RTE generator used in the “RTE
Contract” phase) has to be used for the “RTE Generation” phase.

5.1.2.1.1 Compatibility Mode

Compatibility mode is the default operating mode for an RTE generator and guarantees
compatibility even between RTE generators from different vendors through the use of
well-defined, “standardized”, data structures. The data structures that are used by the
generated RTE in the compatibility mode are defined in Section 5.4.

Support for compatibility mode is required and therefore is guaranteed to be imple-
mented by all RTE generators.

361 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_01151] d The compatibility mode shall be the default operating mode and
shall be supported by all RTE generators, whether they are for the “RTE Contract” or
“RTE Generation” phases. c(SRS_Rte_00145)

The compatibility mode uses custom (generated) functions with standardized names
and data structures that are defined during the “RTE Contract” phase and used when
compiling object-code components.

[SWS_Rte_01216] d SW-Cs that are compiled against an “RTE Contract” phase ap-
plication header file (i.e. object-code SW-Cs) generated in compatibility mode shall be
compatible with an RTE that was generated in compatibility mode. c(SRS_Rte_00145)

The use of well-defined data structures imposes tight constraints on the RTE imple-
mentation and therefore restricts the freedom of RTE vendors to optimize the solution
of object-code components but have the advantage that RTE generators from different
vendors can be used to compile a binary-component and to generate the RTE.

Note that even when an RTE generator is operating in compatibility mode the data
structures used for source-code components are not defined thus permitting vendor-
specific optimizations to be applied.

5.1.2.1.2 Vendor Mode

Vendor mode is an optional operating mode where the data structures defined in the
“RTE Contract” phase and used in the “RTE Generation” phase are implementation
specific rather than “standardized”.

[SWS_Rte_01152] d An RTE generator may optionally support vendor mode.
c(SRS_Rte_00083)

The data structures defined and declared when an RTE generator operates in vendor
mode are implementation specific and therefore not described in this document. This
omission is deliberate and permits vendor-specific optimizations to be implemented for
object-code components. It also means that RTE generators from different vendors are
unlikely to be compatible when run in the vendor mode.

[SWS_Rte_01234] d An AUTOSAR software-component shall be assumed to be
operating in “compatibility” mode unless “vendor mode” is explicitly requested.
c(SRS_Rte_00145, SRS_Rte_00146)

The potential for more efficient implementations of object-code components offered by
the vendor mode comes at the expense of requiring high cohesion between object-
code components (compiled after the “RTE Contract” phase) and the generated RTE.
However, this is not as restrictive as it may seem at first sight since the tight coupling
is also reflected in many other aspects or the AUTOSAR methodology, not least of
which is the requirement that the same compiler (and compatible options) is used when
compiling both the object-code component and the RTE.

362 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

5.1.2.2 Optimization Modes

The actual RTE code is generated – based on the input information – for each ECU
individually. To allow optimization during the RTE generation one of the two general
optimization directions can be specified: MEMORY consumption or execution RUNTIME.

[SWS_Rte_05053] d The RTE Generator shall optimize the generated RTE code ei-
ther for memory consumption or execution runtime depending on the provided input
information RteOptimizationMode. c(SRS_Rte_00023)

5.1.2.3 Build support

The generated RTE code has to respect several rules in order to be integrated with
other AUTOSAR software in the build process.

[SWS_Rte_05088] d All memory1 allocated by the RTE shall be wrapped in the seg-
ment declarations defined in the Specification of Memory Mapping [25] using RTE as
the <MSN> (Module Short Name). c(SRS_Rte_00148, SRS_Rte_00169)

Due to the structure of the AUTOSAR Meta Model the input configuration might contain
several DataPrototypes which are resulting only in one memory object. In this case
it is required to define rules which SwAddrMethod is used to allocate the memory and
to decide about its initialization. Therefore precedence rules for SwAddrMethods are
defined by [SWS_Rte_07590] and [SWS_Rte_07591].

[SWS_Rte_07589] d For AutosarDataPrototype implementations the
<SEGMENT> infix for the Memory Allocation Keyword shall be set to the short-
Name of the preceding SwAddrMethod if there is one defined and if [SWS_Rte_07592]
is not applicable. c(SRS_Rte_00148, SRS_Rte_00169)

[SWS_Rte_07047] d If the memoryAllocationKeywordPolicy of the preceding
SwAddrMethod is set to addrMethodShortName the <ALIGNMENT> suffix with lead-
ing underscore of the Memory Allocation Keyword used by the AutosarDat-
aPrototype implementations and PerInstanceMemory implementations
shall be omitted. c(SRS_Rte_00148, SRS_Rte_00169)

[SWS_Rte_07048] d If the memoryAllocationKeywordPolicy of the pre-
ceding SwAddrMethod is set to addrMethodShortNameAndAlignment the
<ALIGNMENT> suffix with leading underscore of the Memory Allocation Keyword
used by the AutosarDataPrototype implementations and PerInstance-
Memory implementations shall be set to the resulting alignment as defined in
[SWS_Rte_07049], [SWS_Rte_07050], [SWS_Rte_07051], [SWS_Rte_07052] and
[SWS_Rte_07053]. c(SRS_Rte_00148, SRS_Rte_00169)

[SWS_Rte_08303] d The alignment of a PerInstanceMemory shall be set to UN-
SPECIFIED. c(SRS_Rte_00013, SRS_Rte_00077)

1memory refers to all elements in the generated RTE which will later occupy space in the ECU’s
memory and is directly associated with the RTE. This includes code, static data, parameters, etc.

363 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_07049] d The alignment defined by the preceding (see [SWS_Rte_07196])
swAlignment attribute of a AutosarDataPrototype precedes the alignment
defined by the ImplementationDataType related to the AutosarDataProto-
type as defined in [SWS_Rte_07050], [SWS_Rte_07051], [SWS_Rte_07052] and
[SWS_Rte_07053]. c(SRS_Rte_00148, SRS_Rte_00169)

[SWS_Rte_07050] d The alignment of a AutosarDataPrototype related to a Prim-
itive Implementation Data Type or Array Implementation Data Type
shall be set to the baseTypeSize of the referred SwBaseType. c(SRS_Rte_00148,
SRS_Rte_00169)

[SWS_Rte_07051] d The alignment of a AutosarDataPrototype related to
a Structure Implementation Data Type or Union Implementation Data
Type shall be set to to biggest baseTypeSize of the SwBaseTypes used by the ele-
ments. c(SRS_Rte_00148, SRS_Rte_00169)

Note: According [SWS_Rte_07051] structures and unions are aligned according the
size of the biggest primitive element in the structure.

[SWS_Rte_07052] d The alignment of a AutosarDataPrototype related to a Re-
definition Implementation Data Type shall be determined from the rede-
fined ImplementationDataType. c(SRS_Rte_00148, SRS_Rte_00169)

[SWS_Rte_07053] d The alignment of a AutosarDataPrototype related
to a Pointer Implementation Data Type shall be set to UNSPECIFIED.
c(SRS_Rte_00148, SRS_Rte_00169)

Note: If the RTE generator does not implement the memory objects related to Vari-
ableDataPrototypes and ParameterDataPrototypes for instance due to com-
munication via IOC the assigned SwAddrMethods might have no effect on the gener-
ated RTE code.

[SWS_Rte_07592] d If the RTE Generator requires several non automatic memory
objects per AutosarDataPrototypes (e.g. due to partitioning) the RTE Gener-
ator is permitted to select the <SEGMENT> infix for the auxiliary memory objects.
c(SRS_Rte_00148, SRS_Rte_00169)

Note: For definitions and declarations for memory objects allocated by the RTE and
implementing AutosarDataPrototypes without an assigned SwAddrMethod the
RTE Generator is permitted to select the <SEGMENT> infix but still has to follow
[SWS_Rte_05088].

[SWS_Rte_07590] d The SwAddrMethod of a AutosarDataPrototype in the
PPortPrototype precedes the assigned SwAddrMethod(s) of the AutosarDat-
aPrototype in the RPortPrototype and PRPortPrototype. c(SRS_Rte_00148,
SRS_Rte_00169)

[SWS_Rte_06741] d The SwAddrMethod of a AutosarDataPrototype in the PR-
PortPrototype precedes the assigned SwAddrMethod(s) of the AutosarDat-
aPrototype in the RPortPrototype. c(SRS_Rte_00148, SRS_Rte_00169)

364 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_07591] d The SwAddrMethod of the ramBlocks has always higher prece-
dence as the assigned SwAddrMethods of the VariableDataPrototypes in the
PortPrototypes. c(SRS_Rte_00148, SRS_Rte_00169)

[SWS_Rte_05089] d The RTE Generator shall provide information on the used mem-
ory segments and their attributes from [SWS_Rte_05088] in the generated Basic
Software Module Description(see [SWS_Rte_05086]). The information shall be pro-
vided in the MemorySection elements of the Basic Software Module Description [9].
c(SRS_Rte_00148, SRS_Rte_00169, SRS_Rte_00170)

[SWS_Rte_05090] d The RTE Generator shall provide information about the gener-
ated artifacts which are produced during the RTE generation, using the generated
Basic Software Module Description(see [SWS_Rte_05086]). The information shall be
provided in the BswImplementation::generatedArtifact elements of the Basic
Software Module Description [9]. c

5.1.2.4 Debugging support

For the support of the AUTOSAR Debugging (see [26]) several requirements have to
be respected.

[SWS_Rte_05094] d Each variable that shall be accessible by AUTOSAR Debugging,
shall be defined as global variable. c

[SWS_Rte_05095] d All type definitions of variables which shall be debugged, shall be
accessible by the Rte types header file Rte_Type.h. c

[SWS_Rte_05096] d The declaration of variables in the header file shall be such, that
it is possible to calculate the size of the variables by C-’sizeof()’. c

[SWS_Rte_05097] d Variables available for debugging shall be described in the re-
spective Basic Software Module Description (see [SWS_Rte_05086], [9]) using the
elements BswDebugInfo. c

[SWS_Rte_05098] d If the state of a Runnable Entity is kept in a variable in the
generated RTE, it shall be possible to debug the state of this Runnable Entity
([SWS_Rte_02697]). c

[SWS_Rte_05105] d If the Mode Machine Instance is kept in a variable in the generated
RTE, it shall be possible to debug the state of this Mode Machine Instance, c

5.1.2.5 Software Component Namespace

The concept of RTE requires that objects and definitions which are related to one soft-
ware component are generated in a global name space. Nevertheless in this global
name space labels have to be unique for instance to support a correct linkage by
C Linker Locater. To ensure unique labels such objects and definitions related to a

365 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

specific software component are typically prefixed or infixed with the component type
symbol.
When AtomicSwComponentTypes of several vendors are integrated in the same
ECU name clashes might occur if the identical component type name is accidentally
used twice. To ease the dissolving of name clashes the RTE supports the supersed-
ing of the AtomicSwComponentType.shortName with the SymbolProps.symbol
attribute.

The resulting name related to an AtomicSwComponentType is called component
type symbol in this document.

[SWS_Rte_06714] d The component type symbol shall be the value of the Sym-
bolProps.symbol attribute of the AtomicSwComponentType if the symbol attribute
is defined. c

[SWS_Rte_06715] d The component type symbol shall be the shortName of the
AtomicSwComponentType if no symbol attribute for this AtomicSwComponent-
Typeis defined. c

Please note that the component type symbol is not applied for file names, e.g
Application Header File or includes of Memory Mapping Header files. Its expected that
a build environment can handle two equally named files.

5.1.3 Generator external configuration switches

There are use-cases where there is need to influence the behavior of the RTE Gen-
erator without changing the RTE Configuration description. In order to support such
use-cases this section collects the external configuration switches.

Note: it is not specified how these switches shall be implemented in the actual RTE
Generator implementation.

Unconnected R-Port check

[SWS_Rte_05099] d The RTE Generator shall support the external configuration
switch strictUnconnectedRPortCheck which, when enabled, forces the RTE
Generator to consider unconnected R-Ports as an error. c(SRS_Rte_00139)

Missing input configuration check

[SWS_Rte_05148] d The RTE Generator shall support the external configuration
switch strictConfigurationCheck which, when enabled, forces the RTE Gen-
erator to consider missing input configuration information as an error. If the external
configuration switch strictConfigurationCheck is not provided the value shall be
considered as true. c

For Details on the use-cases please refer to section 3.7.

Missing initialization values

366 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_07680] d The RTE Generator shall support the external configuration
switch strictInitialValuesCheck. This switch, when enabled, forces the RTE
Generator to check initial values against constraints defined in [TPS_SYST_02011],
[SWS_Rte_07642] and [SWS_Rte_07681]. Not fulfilled constraints shall be consid-
ered as errors by the RTE Generator. c(SRS_Rte_00108)

5.2 API Principles

[SWS_Rte_01316] d The RTE shall be configured and/or generated for each ECU.
c(SRS_Rte_00021)

Part of the process is the customization (i.e. configuration or generation) of the RTE
API for each AUTOSAR software-component on the ECU. The customization of the
API implementation for each AUTOSAR software-component, whether by generation
anew or configuration of library code, permits improved run-time efficiency and reduces
memory overheads.

The design of the RTE API has been guided by the following core principles:

• The API should be orthogonal – there should be only one way of performing a
task.

• [SWS_Rte_01314] d The API shall be compiler independent. c(SRS_Rte_00100)

• [SWS_Rte_03787] d The RTE implementation shall use the compiler abstraction.
c(SRS_Rte_00149)

The consequence of [SWS_Rte_03787] is that no additional memory modifiers
(e.g. volatile) are permitted in the signatures of the RTE APIs.

• [SWS_Rte_01315] d The API shall support components where the source-
code is available [SRS_Rte_00024] and where only object-code is available
[SRS_Rte_00140]. c(SRS_Rte_00024, SRS_Rte_00140)

• The API shall support the multiple instantiation of AUTOSAR software-
components [SRS_Rte_00011] that share code [SRS_Rte_00012].

Two forms of the RTE API are available to software-components; direct and indirect.
The direct API has been designed with regard to efficient invocation and includes an
API mapping that can be used by an RTE generator to optimize a component’s API, for
example, to permit the direct invocation of the generated API functions or even eliding
the generated RTE completely. The indirect API cannot be optimized using the API
mapping but has the advantage that the handle used to access the API can be stored
in memory and accessed, via an iterator, to apply the same API to multiple ports.

367 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

5.2.1 RTE Namespace

All RTE symbols (e.g. function names, global variables, etc.) visible within the global
namespace are required to use the “Rte” prefix.

[SWS_Rte_01171] d All externally visible symbols created by the RTE generator shall
use the prefix Rte_.

This rule shall not be applied for the following symbols:

• type names representing AUTOSAR Data Types (specified in [SWS_Rte_07104],
[SWS_Rte_07109], [SWS_Rte_07110], [SWS_Rte_07111], [SWS_Rte_07114],
[SWS_Rte_07144], [SWS_Rte_07148])

• enumeration literals of implementation data types (specified in
[SWS_Rte_03810])

• range limits of ApplicationDataTypes (specified in [SWS_Rte_05052])

This rule shall be applied for RTE internal types to avoid name clashes with other
modules and SWCs. c(SRS_BSW_00307, SRS_BSW_00300, SRS_Rte_00055)

In order to maintain control over the RTE namespace the creation of symbols in the
global namespace using the prefix Rte_ is reserved for the RTE generator.

The generated RTE is required to work with components written in several source lan-
guages and therefore should not use language specific features, such as C++ names-
paces, to ensure symbol name uniqueness.

5.2.2 Direct API

The direct invocation form is the form used to present the RTE API in Section 5.6. The
RTE direct API mapping is designed to be optimizable so that the instance handle is
elided (and therefore imposes zero run-time overhead) when the RTE generator can
determine that exactly one instance of a component is mapped to an ECU.

All runnable entities for a AUTOSAR software-component type are passed the same
instance handle type (as the first formal parameter) and can therefore use the same
type definition from the component’s application header file.

The direct API can also be further optimized for source code components via the API
mapping.

The direct API is typically implemented as macros that are modified by the RTE gen-
erator depending on configuration. This technique places certain restrictions on how
the API can be used within a program, for example, it is not possible in C to take the
address of a macro and therefore direct API functions cannot be placed within a func-
tion table or array. If it is required by the implementation of a software-component to
derive a pointer to an object for the port API the PortAPIOption enableTakeAd-
dress can be used. For instance in an implementation of an AUTOSAR Service this

368 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

feature might be used to setup a constant function pointer table storing the configura-
tion of callback functions per ID. Additionally the indirect API provides support for API
addresses and iteration over ports.

[SWS_Rte_07100] d If a PortPrototype is referenced by PortAPIOption with en-
ableTakeAddress = TRUE the RTE generator has to provide "C" functions and non
function like macro for the API related to this port. c

The PortAPIOption enableTakeAddress = TRUE is not supported for software-
components supporting multiple instantiation.

5.2.3 Indirect API

The indirect API is an optional form of API invocation that uses indirection through a
port handle to invoke RTE API functions rather than direct invocation. This form is less
efficient (the indirection cannot be optimized away) but supports a different program-
ming style that may be more convenient. For example, when using the indirect API,
an array of port handles of the same interface and provide/require direction is provided
by RTE and the same RTE API can be invoked for multiple ports by iterating over the
array.

Both direct and indirect forms of API call are equivalent and result in the same gener-
ated RTE function being invoked.

Whether the indirect API is generated or not can be specified for each software com-
ponent and for each port prototype of the software component separately with the
indirectAPI attribute.

The semantics of the port handle must be the same in both the “RTE Contract” and
“RTE Generation” phases since the port handle accesses the standardized data struc-
tures of the RTE.

It is possible to mix the indirect and direct APIs within the same SW-C, if the indirect
API is present for the SW-C.

The indirect API uses port handles during the invocation of RTE API calls. The type
of the port handle is determined by the port interface that types the port which means
that if a component declares multiple ports typed by the same port interface the port
handle points to an array of port data structures and the same API invoked for each
element.

The port handle type is defined in Section 5.4.2.5.

5.2.3.1 Accessing Port Handles

An AUTOSAR SW-C needs to obtain port handles using the instance handle before the
indirect API can be used. The definition of the instance handle in Section 5.4.2 defines

369 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

the “Port API” section of the component data structure and these entries can be used
to access the port handles in either object-code or source-code components.

The API Rte_Ports and Rte_NPorts provides port data handles of a given interface.
Example 5.1 shows how the indirect API can be used to apply the same operation to
multiple ports in a component within a loop.

Example 5.1

The port handle points to an array that can be used within a loop to apply the same
operation to each port. The following example sends the same data to each receiver:

1 void TT1(Rte_Instance self)
2 {
3 Rte_PortHandle_interface1_P my_array;
4 my_array=Rte_Ports_interface1_P(self);
5 int s;
6 for(s = 0; s < Rte_NPorts_interface1_P(self); s++) {
7 my_array[s].Send_a(23);
8 }
9 }

Note that if csInterface1 is a client/server interface with an operation op, the
mechanism sketched in Example5.1 only works if op is invoked either by all clients
synchronously or by all clients asynchronously, since the signature of Rte_Call
and the existence of Rte_Result depend on the kind of invocation (see restriction
[SWS_Rte_03605].

5.2.4 VariableAccess in the dataReadAccess and dataWriteAccess roles

The RTE is required to support access to data with implicit semantics. The required
semantics are subject to two constraints:

• For VariableAccess in the dataReadAccess role, the data accessed by a
runnable entity must not change during the lifetime of the runnable entity.

• For VariableAccess in the dataWriteAccess role, the data written by a
runnable entity is only visible to other runnable entities after the accessing runn-
able entity has terminated.

The generated RTE satisfies both requirements through data copies that are created
when the RTE is generated based on the known task and runnable mapping.

Example 5.2

Consider a data element, a, of port p which is accessed using a VariableAc-
cess in the dataReadAccess role by runnable re1 and a VariableAccess in the
dataWriteAccess role by runnable re2. Furthermore, consider that re1 and re2
are mapped to different tasks and that execution of re1 can pre-empt re2.

370 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

In this example, the RTE will create two different copies to contain a to prevent updates
from re2 ‘corrupting’ the value access by re1 since the latter must remain unchanged
during the lifetime of re1.

The RTE API includes three API calls to support VariableAccesses in
the dataReadAccess and dataWriteAccess roles for a software-component;
Rte_IRead (see Section 5.6.18), Rte_IWrite, and Rte_IWriteRef (see Section
5.6.19 and 5.6.20). The API calls Rte_IRead and Rte_IWrite access the data
copies (for read and write access respectively). The API call Rte_IWriteRef returns
a reference to the data copy, thus enabling the runnable to write the data directly. This
is especially useful for Structure Implementation Data Type and Array Im-
plementation Data Type. The use of an API call for reading and writing enables
the definition to be changed based on the task and runnable mapping without affecting
the software-component code.

Example 5.3

Consider a data element, a, of port p which is declared as being accessed using
VariableAccesses in the dataWriteAccess role by runnables re1 and re2 within
component c. The RTE API for component c will then contain four API functions to
write the data element;

1 void Rte_IWrite_re1_p_a(Rte_Instance self, <type> val);
2 void Rte_IWrite_re2_p_a(Rte_Instance self, <type> val);
3 <type> Rte_IWriteRef_re1_p_a(Rte_Instance self);
4 <type> Rte_IWriteRef_re2_p_a(Rte_Instance self);

The API calls are used by re1 and re2 as required. The definitions of the API depend
on where the data copies are defined. If both re1 and re2 are mapped to the same
task then each can access the same copy. However, if re1 and re2 are mapped to
different (pre-emptable) tasks then the RTE will ensure that each API access a different
copy.

The Rte_IRead and Rte_IWrite use the “data handles” defined in the component
data structure (see Section 5.4.2).

5.2.5 Per Instance Memory

The RTE is required to support Per Instance Memory [SRS_Rte_00013].

The component’s instance handle defines a particular instance of a component and is
therefore used when accessing the Per Instance Memory using the Rte_Pim API.

The Rte_Pim API does not impose the RTE to apply a data consistency mechanism
for the access to Per Instance Memory. An application is responsible for consistency of
accessed data by itself. This design decision permits efficient (zero overhead) access
when required. If a component possesses multiple runnable entities that require con-

371 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

current access to the same Per Instance Memory, an exclusive area can be used to
ensure data consistency, either through explicit Rte_Enter and Rte_Exit API calls
or by declaring that, implicitly, the runnable entities run inside an exclusive area.

Thus, the Per Instance Memory is exclusively used by a particular software-component
instance and needs to be declared and allocated (statically).

In general there are two different kinds of Per Instance Memory available which are
varying in the typing mechanisms. ’C’ typed PerInstanceMemory is typed by
the description of a ’C’ typedef whereas arTypedPerInstanceMemory (AUTOSAR
Typed Per Instance Memory) is typed by the means of an AutosarDataType. Nev-
ertheless both kinds of Per Instance Memory are accessed via the Rte_Pim API.

[SWS_Rte_07161] d The generated RTE shall declare arTypedPerInstanceMem-
ory in accordance to the associated ImplementationDataType of a particular
arTypedPerInstanceMemory. c(SRS_Rte_00013, SRS_Rte_00077)

Note: The related AUTOSAR data type will generated in the RTE Types Header File
(see chapter 5.3.6).

[SWS_Rte_02303] d The generated RTE shall declare ’C’ typed PerInstance-
Memory in accordance to the attribute type of a particular PerInstanceMemory.
c(SRS_Rte_00013, SRS_Rte_00077)

In addition, the attribute type needs to be defined in the corresponding software-
component header. Therefore, the attribute typeDefinition of the PerInstance-
Memory contains its definition as plain text string. It is assumed that this text is valid
’C’ syntax, because it will be included verbatim in the application header file.

[SWS_Rte_02304] d The generated RTE shall define the type of a ’C’ typed PerIn-
stanceMemory by interpreting the text string of the attribute typeDefinition of
a particular PerInstanceMemory as the ’C’ definition. This type shall be named
according to the attribute type of the PerInstanceMemory. c(SRS_Rte_00013,
SRS_Rte_00077)

[SWS_Rte_07133] d The type of a ’C’ typed PerInstanceMemory shall be defined
in the RTE Types Header File as

typedef <typedefinition> Rte_PimType_<cts>_<type>;

where <typedefinition> is the content of the typeDefinition attribute of the
PerInstanceMemory,
<type> is the type name defined in the type attribute of the the PerInstanceMem-
ory and
<cts> the component type symbol of the AtomicSwComponentType to which
the PerInstanceMemory belongs.. c(SRS_Rte_00013, SRS_Rte_00077)

[SWS_Rte_03782] d The type of a ’C’ typed PerInstanceMemory shall be defined
in the Application Header File as

typedef Rte_PimType_<cts>_<type> <type>;

372 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

where <cts> is the component type symbol of the AtomicSwComponentType
to which the PerInstanceMemory belongs and
<type> is the type name defined in the type attribute of the PerInstanceMemory.
c(SRS_Rte_00013, SRS_Rte_00077)

[SWS_Rte_07134] d The RTE generator shall generate type definitions for ’C’ typed
PerInstanceMemory (see [SWS_Rte_07133] and [SWS_Rte_03782]) only once
for all ’C’ typed PerInstanceMemorys of same Software Component Type defin-
ing identical couples of type and typeDefinition attributes. c(SRS_Rte_00013,
SRS_Rte_00165)

Note: This shall support, that a Software Component Type can define several PerIn-
stanceMemory’s using the identical ’C’ type.

[SWS_Rte_07135] d The RTE generator shall reject configurations, violating [con-
str_2007], where ’C’ typed PerInstanceMemorys with identical type attributes but
different typeDefinition attributes in the same Software Component Type are de-
fined. c(SRS_Rte_00013, SRS_Rte_00018)

Note: This would lead to an compiler error due to incompatible redefinition of a ’C’ type.

[SWS_Rte_02305] d The generated RTE shall instantiate (or allocate) declared
PerInstanceMemory. c(SRS_Rte_00013, SRS_Rte_00077)

[SWS_Rte_07182] d The generated RTE shall initialize declared PerInstanceMem-
ory according the initValue attribute if

• an initValue is defined

AND

• no SwAddrMethod is defined for PerInstanceMemory.

c(SRS_Rte_00013, SRS_Rte_00077)

[SWS_Rte_08304] d Variables implementing PerInstanceMemory shall be initialized
by RTE if

• an initValue is defined

AND

• a SwAddrMethod is defined for PerInstanceMemory

AND

• the RteInitializationStrategy for the sectionInitializa-
tionPolicy of the related SwAddrMethod is NOT configured to
RTE_INITIALIZATION_STRATEGY_NONE.

c(SRS_Rte_00013, SRS_Rte_00077)

[SWS_Rte_07183] d The generated RTE shall instantiate (or allocate) declared
arTypedPerInstanceMemory. c(SRS_Rte_00013, SRS_Rte_00077)

373 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_07184] d The generated RTE shall initialize declared arTypedPerIn-
stanceMemory according the ValueSpecification of the VariableDataPro-
totype defining the arTypedPerInstanceMemory if the general initialization con-
ditions in [SWS_Rte_07046] are fulfilled. c(SRS_Rte_00013, SRS_Rte_00077)

[SWS_Rte_05062] d In case the PerInstanceMemory or arTypedPerInstance-
Memory is used as a permanent ram mirror for the NvRam manager the name for the
instantiated PerInstanceMemory or arTypedPerInstanceMemory shall be taken
from the input information RteNvmRamBlockLocationSymbol. Otherwise the RTE
generator is free to choose an arbitrary name. c(SRS_Rte_00013, SRS_Rte_00077)

Note that, in cases where a PerInstanceMemory is not initialized due to
[SWS_Rte_07182] or [SWS_Rte_07184], the memory allocated for a PerInstance-
Memory is not initialized by the generated RTE, but by the corresponding software-
component instances.

[SWS_Rte_07693] d In case a ParameterDataPrototype in the role perInstan-
ceParameter is used as a romBlock for the NVRam Manager, then the name for the
instantiated ParameterDataPrototype shall be taken from the input information
RteNvmRomBlockLocationSymbol. Otherwise the RTE generator is free to choose
an arbitrary name. c(SRS_Rte_00154)

Example 5.4

This description of a software component
<AR-PACKAGE>

<SHORT-NAME>SWC</SHORT-NAME>
<ELEMENTS>

<APPLICATION-SW-COMPONENT-TYPE>
<SHORT-NAME>TheSwc</SHORT-NAME>
<INTERNAL-BEHAVIORS>

<SWC-INTERNAL-BEHAVIOR>
<SHORT-NAME>TheSwcInternalBehavior</SHORT-NAME>
<PER-INSTANCE-MEMORYS>

<PER-INSTANCE-MEMORY>
<SHORT-NAME>MyPIM</SHORT-NAME>
<TYPE>MyMemType</TYPE>
<TYPE-DEFINITION>struct {uint16 val1; uint8 * val2;}</

TYPE-DEFINITION>
</PER-INSTANCE-MEMORY>

</PER-INSTANCE-MEMORYS>
</SWC-INTERNAL-BEHAVIOR>

</INTERNAL-BEHAVIORS>
</APPLICATION-SW-COMPONENT-TYPE>

</ELEMENTS>
</AR-PACKAGE>

will e. g. result in the following code:

In the RTE Types Header File:
1 /* typedef to ensure unique typename */
2 /* according to the attributes */

374 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

3 /* ’type’ and ’typeDefinition’ */
4 typedef struct{
5 uint16 val1;
6 uint8 * val2;
7 } Rte_PimType_TheSwc_MyMemType;

In the respective Application Header File:
1 /* typedef visible within the scope */
2 /* of the component according to the attributes */
3 /* ’type’ and ’typeDefinition’ */
4 typedef Rte_PimType_TheSwc_MyMemType MyMemType;

In Rte.c:
1 /* declare and instantiate mem1 */
2 /* "mem1" name may be taken from RteNvmRamBlockLocationSymbol */
3 Rte_PimType_TheSwc_MyMemType mem1;

Note that the name used for the definition of the PerInstanceMemory may be used
outside of the RTE. One use-case is to support the definition of the link between the
NvRam Manager’s permanent blocks and the software-components. The name in
RteNvmRamBlockLocationSymbol is used to configure the location at which the
NvRam Manager shall store and retrieve the permanent block content. For a detailed
description please refer to the AUTOSAR Software Component Template [2].

5.2.6 API Mapping

The RTE API is implemented by macros and generated API functions that are created
(or configured, depending on the implementation) by the RTE generator during the
“RTE Generation” phase. Typically one customized macro or function is created for
each “end” of a communication though the RTE generator may elide or combine custom
functions to improve run-time efficiency or memory overheads.

[SWS_Rte_01274] d The API mapping shall be implemented in the application header
file. c(SRS_BSW_00330, SRS_Rte_00027, SRS_Rte_00051, SRS_Rte_00083,
SRS_Rte_00087)

The RTE generator is required to provide a mapping from the RTE API name to the
generated function [SRS_Rte_00051]. The API mapping provides a level of indirec-
tion necessary to support binary components and multiple component instances. The
indirection is necessary for two reasons. Firstly, some information may not be known
when the component is created, for example, the component’s instance name, but
are necessary to ensure that the names of the generated functions are unique. Sec-
ondly, the names of the generated API functions should be unique (so that the ECU
image can link correctly) and the steps taken to ensure this may make the names not
“user-friendly”. Therefore, the primary rationale for the API mapping is to provide the
required abstraction that means that a component does not need to concern itself with
the preceding problems.

375 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

The requirements on the API mapping depend on the phase in which an RTE generator
is operating. The requirements on the API mapping are only binding for RTE generators
operating in compatibility mode.

5.2.6.1 “RTE Contract” Phase

Within the “RTE Contract” phase the API mapping is required to convert from the
source API call (as defined in Section 5.6) to the runnable entity provided by a software-
component or the implementation of the API function created by the RTE generator.

When compiled against a “RTE Contract” phase header file a software-component that
can be multiple instantiated is required to use a general API mapping that uses the
instance handle to access the function table defined in the component data structure.

[SWS_Rte_03706] d If a software-component supportsMultipleInstantiation,
the “RTE Contract” phase API mapping shall access the generated RTE functions using
the instance handle to indirect through the generated function table in the component
data structure. c(SRS_Rte_00051)

Example 5.5

For a require client-server port ‘p1’ with operation ‘a’ with a single argument, the gen-
eral form of the API mapping would be:

1 #define Rte_Call_p1_a(s,v) ((s)->p1.Call_a(v))

Where s is the instance handle.

[SWS_Rte_06516] d The RTE Generator shall wrap each API mapping and API func-
tion definition of a variant existent API according table 4.15 if the variability shall be
implemented.

1 #if (<condition> [||<condition>])
2

3 <API Mapping>
4

5 #endif

where condition are the condition value macro(s) of the VariationPoints rel-
evant for the conditional existence of the RTE API (see table 4.15), API Mapping
is the code according an invariant API Mapping (see also [SWS_Rte_01274],
[SWS_Rte_03707], [SWS_Rte_03837], [SWS_Rte_01156]) c(SRS_Rte_00201)

Note: In case of explicit communication any existent access points in the meta model
might result in the related API which results in a or condition for the pre processor.

Example 5.6

376 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

For a require client-server port ‘p1’ with operation ‘a’ with a single argument of the
component ‘c1’ defining a ServerCallPoint which is subject of variability in runn-
able ‘run1’, the general form of the conditional API mapping would be:

1

2 #if (Rte_VPCon_c1_run1_p1_a==TRUE)
3

4 #define Rte_Call_p1_a(s,v) ((s)->p1.Call_a(v))
5

6 #endif

[SWS_Rte_03707] d If a software-component does not supportsMultipleInstan-
tiation, the “RTE Contract” phase API mapping shall access the generated RTE
functions directly. c(SRS_Rte_00051)

[SWS_Rte_08073] d In compatibility mode or “RTE Contract” phase, the API mapping
for Rte_PBCon shall access the generated RTE functions directly. c(SRS_Rte_00051)

When accessed directly, the names of the generated functions are formed according
to the following rule:

[SWS_Rte_03837] d The function generated for API calls
Rte_<name>_<api_extension> that are intended to be called by the software
component shall be

Rte_<name>_<cts>_<api_extension>,

where <name> is the API root (e.g. Receive),
<cts> the component type symbol of the AtomicSwComponentType,
and <api_extension> is the extension of the API dependent on <name> (e.g.
<re>_<p>_<o>). c(SRS_Rte_00051)

[SWS_Rte_01156] d In compatibility mode, the following API calls shall be imple-
mented as macros:

• Rte_Pim

• Rte_IRead

• Rte_IWrite

• Rte_IWriteRef

• Rte_IStatus

• Rte_IrvIRead

• Rte_IrvIWrite

The generated macros for these API calls shall map to the relevant fields of the com-
ponent data structure. c(SRS_Rte_00051)

377 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Note that the rule described in [SWS_Rte_03837] does not apply for the life cycle
APIs, nor for the callback APIs, nor for the APIs that are implemented as macros
(see [SWS_Rte_01156]).

The functions generated that are the destination of the API mapping, which is created
during the “RTE Contract” phase, are created by the RTE generator during the second
“RTE Generation” phase.

[SWS_Rte_01153] d The generated function (or runnable) shall take the same param-
eters, in the same order, as the API mapping. c(SRS_Rte_00051)

Example 5.7

For a require client-server port ‘p1’ with operation ‘a’ with a single argument for compo-
nent type ‘c1’ for which multiple instantiation is forbidden, the following mapping would
be generated:

1 #define Rte_Call_p1_a Rte_Call_c1_p1_a

5.2.6.2 “RTE Generation” Phase

There are no requirements on the form that the API mapping created during the “RTE
Generation” phase should take. This is because the application header files defined
during this phase are used by source-code components and therefore compatibility
between the generated RTE and source-code components is automatic.

The RTE generator is required to produce the component data structure instances re-
quired by object-code components and multiple instantiated source-code components.

If multiple instantiation of a software-component is forbidden, then the API mapping
specified for the “RTE Contract” phase (Section 5.2.6.1) defines the names of the gen-
erated functions. If multiple instantiation is possible, there are no corresponding re-
quirements that define the name of the generated function since all accesses to the
generated functions are performed via the component data structure which contains
well-defined entries (Sections 5.4.2.5 and 5.4.2.5).

5.2.6.3 Function Elision

Using the “RTE Generation” phase API mapping, it is possible for the RTE generator
to elide the use of generated RTE functions.

[SWS_Rte_01146] d If the API mapping elides an RTE function the “RTE Generation”
phase API mapping mechanism shall ensure that the invoking component still receives
a “return value” so that no changes to the AUTOSAR software-component are neces-
sary. c(SRS_Rte_00051)

378 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

In C, the elision of API calls can be achieved using a comma expression2

Example 5.8

As an example, consider the following component code:
1 Std_ReturnType s;
2 s = Rte_Send_p1_a(self,23);

Furthermore, assume that the communication attributes are specified such that the
sender-receiver communication can be performed as a direct assignment and there-
fore no RTE API call needs to be generated. However, the component source cannot
be modified and expects to receive an Std_ReturnType as the return. The “RTE
Generation” phase API mapping could then be rewritten as:

1 #define Rte_Send_p1_a(s,a) (<var> = (a), RTE_E_OK)

Where <var> is the implementation dependent name for an RTE created cache be-
tween sender and receiver.

5.2.6.4 API Naming Conventions

An AUTOSAR software-component communicates with other components (including
basic software) through ports and therefore the names that constitute the RTE API are
formed from the combination of the API call’s functionality (e.g. Call, Send) that defines
the API root name and the access point through which the API operates.

For any API that operates through a port, the API’s access point includes the port
name.

A SenderReceiverInterface can support multiple data items and a
ClientServerInterface can support multiple operations, any of which can
be invoked through the requiring port by a client. The RTE API therefore needs a
mechanism to indicate which data item/operation on the port to access and this is
implemented by including the data item/operation name in the API’s access point.

As described above, the RTE API mapping is responsible for mapping the RTE API
name to the correct generated RTE function. The API mapping permits an RTE gener-
ator to include targeted optimization as well as removing the need to implement func-
tions that act as routing functions from generic API calls to particular functions within
the generated RTE.

For C and C++ the RTE API names introduce symbols into global scope and therefore
the names are required to be prefixed with Rte_ [SWS_Rte_01171].

2This is contrary to MISRA Rule 42 “comma expression shall not be used except in the control
expression of a for loop”. However, a comma expression is valid, legal, C and the elision cannot be
achieved without a comma expression and therefore the rule must be relaxed.

379 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

5.2.6.5 API Parameters

All API parameters fall into one of two classes; parameters that are strictly read-only
(“In” parameters) and parameters whose value may be modified by the API function
(“In/Out” and “Out” parameters).

The type of these parameters is taken from the data element prototype or operation
prototype in the interface that characterizes the port for which the API is being gener-
ated.

In the following, requirement [SWS_Rte_06806] reflects the standard defined by [27].
The remaining requirements are include to ensure the consistency between different
RTE implementations.

[SWS_Rte_06804] d All input parameters using the P2CONST macro shall
use memclass AUTOMATIC and ptrclass RTE_APPL_DATA. c(SRS_Rte_00060,
SRS_BSW_00007)

[SWS_Rte_06805] d All parameters using the VAR macro shall use memclass

AUTOMATIC. c(SRS_Rte_00059, SRS_BSW_00007)

[SWS_Rte_06806] d All output and bi-directional parameters (i.e. both input and out-
put) parameters shall use the P2VAR macro. c(SRS_Rte_00061, SRS_BSW_00007)

[SWS_Rte_06807] d All parameters using the P2VAR macro shall use memclass

AUTOMATIC and ptrclass RTE_APPL_DATA. c(SRS_Rte_00059, SRS_Rte_00060,
SRS_BSW_00007)

• “In” Parameters

[SWS_Rte_01017] d All input parameters that are a Primitive Imple-
mentation Data Type shall be passed by value. c(SRS_Rte_00059,
SRS_Rte_00061)

[SWS_Rte_01018] d All input parameters that are of type Structure Imple-
mentation Data Type or Union Implementation Data Type shall be
passed by reference. c(SRS_Rte_00060, SRS_Rte_00061)

[SWS_Rte_05107] d All input parameters that are an Array Implementation
Data Type shall be passed as an array expression (that is a pointer to the array
base type). c(SRS_Rte_00060, SRS_Rte_00061)

[SWS_Rte_07661] d All input parameters that are a data type of category
DATA_REFERENCE shall be passed as a pointer to the data type specified by
the SwPointerTargetProps. c(SRS_Rte_00059, SRS_Rte_00061)

[SWS_Rte_07086] d All input parameters that are passed by reference
([SWS_Rte_01018]) or passed as an array expression ([SWS_Rte_05107])
shall be declared as pointer to const with the means of the P2CONST macro.
c(SRS_Rte_00060, SRS_BSW_00007)

Please note that the description of the P2CONST macro can be found in [28].

380 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

• “Out” Parameters

[SWS_Rte_01019] d All output parameters that are of type Primitive Imple-
mentation Data Type shall be passed by reference. c(SRS_Rte_00061)

[SWS_Rte_07082] d All output parameters that are of type Structure Im-
plementation Data Type or Union Implementation Data Type shall
be passed by reference. c(SRS_Rte_00060, SRS_Rte_00061)

[SWS_Rte_05108] d All output parameters that are an Array Implementa-
tion Data Type shall be passed as an array expression (that is a pointer to
the array base type). c(SRS_Rte_00060, SRS_Rte_00061)

[SWS_Rte_07083] d All output parameters that are of type Pointer Imple-
mentation Data Type shall be passed as a pointer to the Pointer Imple-
mentation Data Type. c(SRS_Rte_00059, SRS_Rte_00061)

• “In/Out” Parameters

[SWS_Rte_01020] d All bi-directional parameters (i.e. both input and output) that
are of type Primitive Implementation Data Type or Structure Im-
plementation Data Type or Union Implementation Data Type shall
be passed by reference. c(SRS_Rte_00059, SRS_Rte_00061)

[SWS_Rte_05109] d All bi-directional parameters (i.e. both input and output) that
are an Array Implementation Data Type shall be passed as an array ex-
pression (that is a pointer to the array base type). c(SRS_Rte_00061)

[SWS_Rte_07084] d All input, output and bi-directional parameters which re-
lated DataPrototype is typed or mapped to an Redefinition Implemen-
tation Data Type shall be treated according the kind of data type rede-
fined by the Redefinition Implementation Data Type. The possible
kinds of data types supported by RTE are listed in 5.3.4.2. c(SRS_Rte_00059,
SRS_Rte_00060, SRS_Rte_00061)

In order to indicate the direction of the individual API parameters, the descriptions
of the API signatures in this API reference chapter use the direction qualifiers ”IN”,
”OUT”, and ”INOUT”. These direction qualifiers are not part of the actual API proto-
types. Especially, the user cannot expect that these direction qualifiers are available
for the application.

Example 5.9

This would be the Rte_Write API generated for the example 5.6 (example of a two
dimension array typed by an ImplementationDataType):

1 FUNC(Std_ReturnType, RTE_CODE) Rte_Write_<p>_<o>(P2CONST(uint8,
AUTOMATIC, AUTOMATIC) data)

Which can be used in the SWC code:
1 status = Rte_Write_<p>_<o> (&array[0][0]);

381 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

5.2.6.6 Return Values

A subset of the RTE API’s returning the values instead of using OUT Parameters. In
the API section these API signatures defining a <return> value. In addition to the
following rules some of the APIs might specify additionally const qualifiers.

[SWS_Rte_07069] d The RTE Generator shall determine the <return> type accord-
ing the applicable ImplementationDataType of the DataPrototype for which the
API provides access. c(SRS_Rte_00059)

[SWS_Rte_08300] d A pointer return value of an RTE API shall be declared as pointer
to const with the means of the FUNC_P2CONST macro or P2CONST if the pointer is not
used to modify the addressed object. c(SRS_Rte_00059)

Please note that the FUNC_P2CONSTmacro is applicable if the RTE API is implemented
as an real function and the P2CONST might be used if the RTE API is implemented as
a macro.

Requirement [SWS_Rte_08300] applies for instance for the RTE APIs Rte_Prm,
Rte_CData, Rte_IrvRead, Rte_IrvIRead in the cases where the API grants ac-
cess to composite data (arrays, structures, unions).

Please note, that the the implementation of the C data types are specified in section
5.3.4 "RTE Types Header File".

[SWS_Rte_07070] d If the DataPrototype is associated to a Primitive Imple-
mentation Data Type the RTE API shall return the value of the DataPrototype
for which the API provides access. The type name shall be equal to the shortName
of these ImplementationDataType. c(SRS_Rte_00059)

Example 5.10

Consider an RTE API call return a primitive as defined in the example 5.3 for a singly
instantiated SW-C. The signature of the API will be:

1 MyUint8 Rte_IRead_<re>_<p>_<o>(void);

Please note that the usage of Compiler Abstraction is not shown in the example.

[SWS_Rte_07071] d If the DataPrototype is associated to a Structure Imple-
mentation Data Type or Union Implementation Data Type, the RTE API
shall return a pointer to a variable holding the DataPrototype value provided by the
API. The type name shall be equal to the shortName of these Implementation-
DataType. c(SRS_Rte_00059)

Example 5.11

Consider an RTE API call return a structure as defined in the example 5.7 for a singly
instantiated SW-C. The signature of the API will be:

1

2 FUNC_P2CONST(RecA, RTE_VAR_FAST_INIT, RTE_CODE)

382 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

3 Rte_IRead_<re>_<p>_<o>(void);

Please note that the usage of Compiler Abstraction assumes that the SwAddrMethod
of the accessed VariableDataPrototype is named "‘VAR_FAST_INIT"’. Further
on the example does not respect the principles of API mapping.

[SWS_Rte_07072] d If the DataPrototype is associated to an Array Implemen-
tation Data Type the RTE API shall return an array expression (that is a pointer
to the array base type) pointing to variable holding the value of the DataPrototype
for which the API provides access. If the leaf ImplementationDataTypeElement
is typed by a SwBaseType the array type name shall be equal to the nativeDecla-
ration attribute of the SwBaseType. If the leaf ImplementationDataTypeEle-
ment is typed by an ImplementationDataType the type name shall be equal to the
shortName of these ImplementationDataType. c(SRS_Rte_00059)

Example 5.12

Consider an RTE API call return an array as defined in the example 5.5 for a singly
instantiated SW-C. The signature of the API will be:

1 FUNC_P2CONST(unsigned char, RTE_VAR_POWER_ON_INIT, RTE_CODE)
2 Rte_IRead_<re>_<p>_<o>(void);

Please note that the usage of Compiler Abstraction assumes that the SwAddrMethod
of the accessed VariableDataPrototype is named "‘VAR_POWER_ON_INIT"’.
Further on the example does not respect the principles of API mapping.

Example 5.13

Consider an RTE API call return an array as defined in the example 5.6 for a singly
instantiated SW-C. The signature of the API will be:

1 FUNC_P2CONST(uint8, RTE_VAR_NO_INIT, RTE_CODE)
2 Rte_IRead_<re>_<p>_<o>(void);

Please note that the usage of Compiler Abstraction assumes that the SwAddrMethod
of the accessed VariableDataPrototype is named "‘VAR_NO_INIT"’. Further on
the example does not respect the principles of API mapping.

[SWS_Rte_07073] d If the DataPrototype is associated to a Pointer Implemen-
tation Data Type the RTE API shall return the value of the DataPrototype for
which the API provides access. The type name shall be equal to the shortName of
these ImplementationDataType. c(SRS_Rte_00059) Please not that in this case
the value is a pointer.

[SWS_Rte_07074] d If the DataPrototype is associated to a Redefinition Im-
plementation Data Type the RTE Generator shall determine the API return value
behaviour as described in [SWS_Rte_07070], [SWS_Rte_07071], [SWS_Rte_07072],

383 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_07073], [SWS_Rte_07074] according the referenced Implementation-
DataType. Nevertheless except for Array Implementation Data Type the
type name shall be equal to the shortName of these ImplementationDataType.
c(SRS_Rte_00059)

Please note that Redefinition Implementation Data Type might redefine an
other Redefinition Implementation Data Type again.

5.2.6.7 Return References

A subset of the RTE API’s returning a reference to the memory location where the data
can be accessed instead of using IN/OUT Parameters. In the API section these API
signatures defining a <return reference> value.

[SWS_Rte_06808] d A <return reference> shall use the FUNC_P2VAR or P2VAR
macro. c(SRS_BSW_00007)

[SWS_Rte_06809] d A <return reference> which uses either the P2VAR or
the FUNC_P2VAR macro shall use memclass AUTOMATIC and ptrclass RTE_DATA.
c(SRS_BSW_00007)

[SWS_Rte_07076] d The RTE Generator shall determine the <return reference>
type according the applicable ImplementationDataType of the DataPrototype
for which the API provides access. c(SRS_Rte_00059)

Please note, that the the implementation of the C data types are specified in section
5.3.4 "RTE Types Header File".

[SWS_Rte_07077] d If the DataPrototype is associated to a Primitive Imple-
mentation Data Type the RTE API shall return a pointer to variable holding the
data of the value of the DataPrototype for which the API provides access. The
type name shall be equal to the shortName of these ImplementationDataType.
c(SRS_Rte_00059)

Example 5.14

Consider an RTE API call return a reference to a primitive as defined in the example
5.3 for a singly instantiated SW-C. The signature of the API will be:

1 MyUint8 * Rte_IWriteRef_<re>_<p>_<o>(void);

Please note that the usage of Compiler Abstraction is not shown in the example.

[SWS_Rte_07078] d If the DataPrototype is associated to a Structure Imple-
mentation Data Type or Union Implementation Data Type the RTE API
shall return a pointer to variable holding the value of the DataPrototype for which

384 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

the API provides access. The type name shall be equal to the shortName of these
ImplementationDataType. c(SRS_Rte_00059)

Example 5.15

Consider an RTE API call return a reference to a structure as defined in the example
5.7 for a singly instantiated SW-C. The signature of the API will be:

1 RecA * Rte_IWriteRef_<re>_<p>_<o>(void);

Please note that the usage of Compiler Abstraction is not shown in the example.

[SWS_Rte_07079] d If the DataPrototype is associated to an Array Implemen-
tation Data Type the RTE API shall return an array expression (that is a pointer
to the array base type) pointing to variable holding the value of the DataPrototype
for which the API provides access. If the leaf ImplementationDataTypeElement
is typed by a SwBaseType the array type name shall be equal to the nativeDecla-
ration attribute of the SwBaseType. If the leaf ImplementationDataTypeEle-
ment is typed by an ImplementationDataType the type name shall be equal to the
shortName of these ImplementationDataType. c(SRS_Rte_00059)

Example 5.16

Consider an RTE API call return a reference to an array as defined in the example 5.5
for a singly instantiated SW-C. The signature of the API will be:

1 unsigned char * Rte_IWriteRef_<re>_<p>_<o>(void);

Example 5.17

Consider an RTE API call return a reference to an array as defined in the example 5.6
for a singly instantiated SW-C. The signature of the API will be:

1 uint8 * Rte_IWriteRef_<re>_<p>_<o>(void);

Please note that the usage of Compiler Abstraction is not shown in the examples.

[SWS_Rte_07080] d If the DataPrototype is associated to a Pointer Imple-
mentation Data Type the RTE API shall return a pointer pointing to variable
holding the value of the DataPrototype for which the API provides access. The
type name shall be equal to the shortName of these ImplementationDataType.
c(SRS_Rte_00059) Please not that in this case the value is a pointer again.

[SWS_Rte_07081] d If the DataPrototype is associated to a Redefinition Im-
plementation Data Type the RTE Generator shall determine the API return value
behaviour as described in [SWS_Rte_07077], [SWS_Rte_07078], [SWS_Rte_07079],
[SWS_Rte_07080], [SWS_Rte_07081] according the referenced Implementation-
DataType. Nevertheless except for Array Implementation Data Type the

385 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

type name shall be equal to the shortName of these ImplementationDataType.
c(SRS_Rte_00059)

Please note that Redefinition Implementation Data Type might redefine an
other Redefinition Implementation Data Type again.

5.2.6.8 Error Handling

In RTE, error and status information is defined with the data type Std_ReturnType,
see Section 5.5.1.

It is possible to distinguish between infrastructure errors and application errors. Infras-
tructure errors are caused by a resource failure or an invalid input parameter. Infras-
tructure errors usually occur in the basic software or hardware along the communica-
tion path of a data element. Application errors are reported by a SW-C or by AUTOSAR
services. RTE has the capability to treat application errors that are forwarded

• by return value in client server communication or

• by signal invalidation in sender receiver communication with data semantics.

Errors that are detected during an RTE API call are notified to the caller using the API’s
return value.

[SWS_Rte_01034] d Error states (including ’no error’) shall only be passed as return
value of the RTE API to the AUTOSAR SW-C. c(SRS_Rte_00094)

Requirement [SWS_Rte_01034] ensures that, irrespective of whether the API is block-
ing or non-blocking, the error is collected at the same time the data is made available
to the caller thus ensuring that both items are accessed consistently.

Certain RTE API calls operate asynchronously from the underlying communication
mechanism. In this case, the return value from the API indicates only errors detected
during that API call. Errors detected after the API has terminated are returned using a
different mechanism [SWS_Rte_01111]. RTE also provides an ’implicit’ API for direct
access to virtually shared memory. This API does not return any errors. The underlying
communication is decoupled. Instead, an API is provided to pick up the current status
of the corresponding data element.

5.2.6.9 Success Feedback

The RTE supports the notification of results of transmission attempts to an AUTOSAR
software-component.

The Rte_Feedback API [SWS_Rte_01083] or the Rte_IFeedback API
[SWS_Rte_07367] can be configured to return the transmission result as either
a blocking or non-blocking API or via activation of a runnable entity.

386 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

5.2.7 Unconnected Ports

[SWS_Rte_01329] d The RTE shall handle both require and provide ports that are not
connected. c(SRS_Rte_00139)

The handling of require ports as an error is described in requirement
[SWS_Rte_05099].

[SWS_Rte_06030] d The RTE shall consider a PRPortPrototype as always con-
nected. c(SRS_Rte_00139)

Note: [SWS_Rte_06030] is the consequence of [TPS_SWCT_01573]. This is because
a PRPortPrototype is logically an overlay of require and provide semantics hence
the PRPortPrototype needs no further explicitly defined connection in the form of
an SwConnector or signal mapping.

The API calls for unconnected ports are specified to behave as if the port was con-
nected but the remote communication point took no action.

Unconnected require ports are regarded by the RTE generator as an invalid
configuration (see [SWS_Rte_03019]) if the strict handling has been enabled
(see [SWS_Rte_05099]).

5.2.7.1 Data Elements

5.2.7.1.1 Explicit Communication

[SWS_Rte_01330] d A Rte_Read API for an unconnected require port typed
by a SenderReceiverInterface or NvDataInterface shall return the
RTE_E_UNCONNECTED code and provide the initValue as if a sender was
connected but did not transmit anything. c(SRS_Rte_00094, SRS_Rte_00139,
SRS_Rte_00200)

[SWS_Rte_07663] d A Rte_DRead API for an unconnected require port typed by a
SenderReceiverInterface or NvDataInterface shall return the initValue
as if a sender was connected but did not transmit anything. c(SRS_Rte_00139,
SRS_Rte_00200)

Requirements [SWS_Rte_01330] and [SWS_Rte_07663] apply to elements with
"‘data"’ semantics and therefore "last is best"’ semantics. This means that the initial
value will be returned.

[SWS_Rte_01331] d A blocking or non-blocking Rte_Receive API for an
unconnected require port typed by a SenderReceiverInterface shall re-
turn RTE_E_UNCONNECTED immediately. c(SRS_Rte_00094, SRS_Rte_00107,
SRS_Rte_00110, SRS_Rte_00139, SRS_Rte_00200)

The existence of blocking and non-blocking Rte_Read, Rte_DRead and
Rte_Receive API calls is controlled by the presence of VariableAccesses in the

387 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

dataReceivePointByValue or dataReceivePointByArgument role, DataRe-
ceivedEvents and WaitPoints within the SW-C description [SWS_Rte_01288],
[SWS_Rte_01289] and [SWS_Rte_01290].

[SWS_Rte_01344] d A blocking or non-blocking Rte_Feedback API for a Variable-
DataPrototype of an unconnected provide port shall return RTE_E_UNCONNECTED
immediately. c(SRS_Rte_00094, SRS_Rte_00122, SRS_Rte_00139)

The existence of blocking and non-blocking Rte_Feedback API is controlled by the
presence of VariableAccesses in the dataSendPoint role, DataSendComplet-
edEvents and WaitPoints within the SW-C description for a VariableDataPro-
totype with acknowledgement enabled, see [SWS_Rte_01283], [SWS_Rte_01284],
[SWS_Rte_01285] and [SWS_Rte_01286].

[SWS_Rte_01332] d The Rte_Send or Rte_Write API for an unconnected provide
port typed by a SenderReceiverInterface or NvDataInterface shall discard
the input parameters and return RTE_E_OK. c(SRS_Rte_00139)

The existence of Rte_Send or Rte_Write is controlled by the presence of
VariableAccesses in the dataSendPoint role within the SW/C description
[SWS_Rte_01280] and [SWS_Rte_01281].

[SWS_Rte_03783] d The Rte_Invalidate API for an unconnected provide port
typed by a SenderReceiverInterface shall return RTE_E_OK. c(SRS_Rte_00139)

The existence of Rte_Invalidate is controlled by the presence of VariableAc-
cesses in the dataSendPoint role within the SW/C description for a Variable-
DataPrototype which is marked as invalidatable by an associated Invalidation-
Policy. The handleInvalid attribute of the InvalidationPolicy has to be
set to keep or replace to enable the invalidation support for this dataElement
([SWS_Rte_01282]).

5.2.7.1.2 Implicit Communication

[SWS_Rte_07378] d An Rte_IFeedback API for a VariableDataPrototype
of an unconnected provide port shall return RTE_E_UNCONNECTED immediately.
c(SRS_Rte_00139, SRS_Rte_00185)

The existence of an Rte_IFeedback API is controlled by the presence of Vari-
ableAccesses in the dataWriteAccess role, and DataWriteCompletedEvents
within the SWC description for a VariableDataPrototype with acknowledgement
enabled, see [SWS_Rte_07646], [SWS_Rte_07647].

[SWS_Rte_01346] d An Rte_IRead API for an unconnected require port typed by
a SenderReceiverInterface or NvDataInterface shall return the initial value.
c(SRS_Rte_00139)

The existence of Rte_IRead is controlled by the presence of a VariableAccess in
the dataReadAccess role in the SW-C description [SWS_Rte_01301].

388 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_01347] d An Rte_IWrite API for an unconnected provide port typed by a
SenderReceiverInterface or NvDataInterface shall discard the written data.
c(SRS_Rte_00139)

The existence of Rte_IWrite is controlled by the presence of a VariableAccess in
the dataWriteAccess role in the SW-C description [SWS_Rte_01302].

[SWS_Rte_03784] d An Rte_IInvalidate API for an unconnected provide port
typed by a SenderReceiverInterface shall perform no action. c(SRS_Rte_00139)

The existence of Rte_IInvalidate is controlled by the presence of a VariableAc-
cess in the dataWriteAccess role in the SW-C description for a VariableDat-
aPrototype which is marked as invalidatable by an associated Invalidation-
Policy. The handleInvalid attribute of the InvalidationPolicy has to be
set to keep or replace to enable the invalidation support for this dataElement
([SWS_Rte_03801]).

[SWS_Rte_03785] d An Rte_IStatus API for an unconnected require port
typed by a SenderReceiverInterface shall return RTE_E_UNCONNECTED.
c(SRS_Rte_00094, SRS_Rte_00139, SRS_Rte_00200)

The existence of Rte_IStatus is controlled by the presence of a VariableAc-
cess in the dataReadAccess role in the SW-C description for a VariableDat-
aPrototype with data element outdated notification or data element invalidation
[SWS_Rte_02600].

5.2.7.2 Mode Switch Ports

For the mode user an unconnected mode switch port behaves as if it was connected
to a mode manager that never sends a mode switch notification.

[SWS_Rte_02638] d A Rte_Mode API for an unconnected mode switch port of a mode
user shall return the initial state. c(SRS_Rte_00139)

[SWS_Rte_02639] d Regarding the modes of an unconnected mode switch port of
a mode user, the mode disabling dependencies on the initial mode shall be perma-
nently active and the mode disabling dependencies on all other modes shall be inac-
tive. c(SRS_Rte_00139)

[SWS_Rte_02640] d Regarding the modes of an unconnected mode switch port of a
mode user, RTE will only generate a SwcModeSwitchEvent for entering the initial
mode which occurs directly after startup. c(SRS_Rte_00139)

[SWS_Rte_02641] d The Rte_Switch API for an unconnected mode switch port
of the mode manager shall discard the input parameters and return RTE_E_OK.
c(SRS_Rte_00139)

389 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_02642] d A blocking or non blocking Rte_SwitchAck API for an uncon-
nected mode switch port of the mode manager shall return RTE_E_UNCONNECTED
immediately. c(SRS_Rte_00139)

[SWS_Rte_01375] d A provided mode switch port of a mode manager shall be
considered unconnected only if there are no connections at the composition level and
no ModeAccessPoint exists for the provided mode switch port and no synchro-
nizedModeGroup refers to the provided mode switch port. c(SRS_Rte_00139)

5.2.7.3 Client-Server

[SWS_Rte_01333] d The Rte_Result API for an unconnected asynchronous require
port typed by a ClientServerInterface shall return RTE_E_UNCONNECTED imme-
diately. c(SRS_Rte_00094, SRS_Rte_00139, SRS_Rte_00200)

[SWS_Rte_01334] d The Rte_Call API for an unconnected require port typed
by a ClientServerInterface shall return RTE_E_UNCONNECTED immediately.
c(SRS_Rte_00094, SRS_Rte_00139, SRS_Rte_00200)

5.2.8 Non-identical port interfaces

Two ports are permitted to be connected provided that they are characterized by com-
patible, but not necessarily identical, interfaces. For the full definition of whether two
interfaces are compatible, see the Software Component Template [2].

[SWS_Rte_01368] d The RTE generator shall report an error if the [constr_1036] and
the [constr_1069] are violated so if two connected ports are connected by incompatible
interfaces. c(SRS_Rte_00137)

A significant issue in determining whether two interfaces are compatible is that the
interface characterizing the require port may be a strict subset of the interface char-
acterizing the provide port. This means that there may be provided data elements or
operations for which there is no corresponding element in the require port. This can be
imagined as a multi-strand wire between the two ports (the assembly connector) where
each strand represents the connection between two data elements or operations, and
where some of the strands from the ‘provide’ end are not connected to anything at the
‘require’ end.

Define, for the purposes of this section, an “unconnected element” as a data element
or operation that occurs in the provide interface, but for which no corresponding data
element or operation occurs in a particular R-Port’s interface.

[SWS_Rte_01369] d For each data element or operation within the provide interface,
every connected requirer with an “unconnected element” must be treated as if it were
not connected. c(SRS_Rte_00137)

390 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Note that requirement [SWS_Rte_01369] means that in the case of a 1:n Sender-
Receiver the Rte_Write call may transmit to some but not all receivers.

The extreme is if all connected requirers have an “unconnected element”:

[SWS_Rte_01370] d For a data element or operation in a provide interface which
is an unconnected element in every connected R-Port, the generated Rte_Send,
Rte_Write, Rte_IWrite, or Rte_IWriteRef APIs must act as if the port were
unconnected. c(SRS_Rte_00137)

See Section 5.2.7 for the required behavior in this case.

5.3 RTE Modules

Figure 5.1 defines the relationship between header files and how those files are in-
cluded by modules implementing AUTOSAR software-components and by general,
non-component, code.

Figure 5.1: Relationships between RTE Header Files

The output of an RTE generator can consist of both generated code and configuration
for “library” code that may be supplied as either object code or source code. Both
configured and generated code reference standard definitions that are defined in the
RTE Header File.

The relationship between the RTE header file, Application Header Files, the Lifecycle
Header File and AUTOSAR software-components is illustrated in Figure 5.1.

391 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

In general a RTE can be partitioned in several files. The partitioning depends from
the RTE vendors software design and generation strategy. Nevertheless it shall be
possible to clearly identify code and header files which are part of the RTE module.

[SWS_Rte_07139] d Every file of the RTE beside Rte.h and Rte.c shall be named with
the prefix Rte_. c(SRS_BSW_00300)

5.3.1 RTE Header File

The RTE header file defines fixed elements of the RTE that do not need to be generated
or configured for each ECU.

[SWS_Rte_01157] d For C/C++ AUTOSAR software-components, the name of the
RTE header file shall be Rte.h. c(SRS_BSW_00300)

Typically the contents of the RTE header file are fixed for any particular implementation
and therefore it is not created by the RTE generator. However, customization for each
generated RTE is not forbidden.

[SWS_Rte_01164] d The RTE header file shall include the file Std_Types.h.
c(SRS_Rte_00149, SRS_Rte_00150, SRS_BSW_00353)

The file Std_Types.h is the standard AUTOSAR file [29] that defines basic data types
including platform specific definitions of unsigned and signed integers and provides
access to the compiler abstraction.

The contents of the RTE header file are not restricted to standardized elements that
are defined within this document – it can also contain definitions specific to a particular
implementation.

5.3.2 Lifecycle Header File

[SWS_Rte_08309] d The RTE generator shall provide declarations for RTE and
SchM Lifecycle APIs (see Section 5.8 and 6.7) through the Lifecycle header file.
c(SRS_Rte_00051)

[SWS_Rte_01158] d For C/C++ AUTOSAR software-components, the name of the life-
cycle header file shall be Rte_Main.h. c(SRS_BSW_00300)

[SWS_Rte_01159] d The lifecycle header file shall include the RTE header file.
c(SRS_Rte_00051)

5.3.3 Application Header File

The application header file [SRS_Rte_00087] is central to the definition of the RTE API.
An application header file defines the RTE API and any associated data structures that

392 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

are required by the SW-C to use the RTE implementation. But the application header
file is not allowed to create objects in memory.

[SWS_Rte_01000] d The RTE generator shall create an application header file for each
software-component type (excluding ParameterSwComponentTypes and NvBlock-
SwComponentTypes) defined in the input. c(SRS_Rte_00087, SRS_Rte_00024,
SRS_Rte_00140)

[SWS_Rte_03786] d The application header file shall not contain code that creates
objects in memory. c(SRS_Rte_00087, SRS_BSW_00308)

RTE generation consists of two phases; an initial “RTE Contract” phase and a second
“RTE Generation” phase (see Section 2.3). Object-code components are compiled
after the first phase of RTE generation and therefore the application header file should
conform to the form of definitions defined in Sections 5.4.1 and 5.5.2. In contrast,
source-code components are compiled after the second phase of RTE generation and
therefore the RTE generator produces an optimized application header file based on
knowledge of component instantiation and deployment.

5.3.3.1 File Name

[SWS_Rte_01003] d The name of the Application Header File of an AUTOSAR soft-
ware component shall be Rte_[Byps_]<name>.h. <name> is the AUTOSAR soft-
ware component type name. [Byps_] is an optional infix used when component
wrapper method for bypass support is enabled for the related software component
type (See chapter 4.9.2). c(SRS_BSW_00300)

Example 5.18

The following declaration in the input XML:
<APPLICATION-SW-COMPONENT-TYPE>

<SHORT-NAME>Source</SHORT-NAME>
</APPLICATION-SW-COMPONENT-TYPE>

should result in the application header file Rte_Source.h being generated when the
component wrapper method for bypass support is disabled.

The component type name is used rather than the component instance name for two
reasons; firstly the same component code is used for all component instances and,
secondly, the component instance name is an internal identifier, and should not appear
outside of generated code.

5.3.3.2 Scope

RTE supports two approaches for the scope of the application header file, a SW-C
based, and a runnable based approach.

393 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

1. Always, the application header file provides only the API that is specific for one
atomic SW-C, see [SWS_Rte_01004].

2. The scope of the application header file can be further reduced to one runnable
by using the mechanism described in [SWS_Rte_02751].

Many of the RTE APIs are specific to runnables. The restrictions for the usage of the
generated APIs are defined in the ‘Existence’ parts of each API subsection in 5.6. To
prevent run time errors by the misuse of APIs that are not supported for a runnable, it
is recommended to use the runnable based approach of the application header file.

[SWS_Rte_01004] d The application header file for a component shall contain
only information relevant to that component. c(SRS_Rte_00087, SRS_Rte_00017,
SRS_Rte_00167)

[SWS_Rte_02751] d If the pre-compiler Symbol RTE_RUNNABLEAPI_<rn> is defined
for a runnable with short name <rn> when the application header file is included,
the application header file shall not declare APIs that are not valid to be used by the
runnable rn. c(SRS_Rte_00017)

For example, to restrict the application header file of the SW-C mySwc to the API of the
runnable myRunnable, the following sequence can be used:

1 #define RTE_RUNNABLEAPI_myRunnable
2 #include <Rte_mySwc.h>
3

4 // runnable source code

Note that this mechanism does not support to restrict the application header file to the
super set of two or more runnable APIs. In other words, runnables should be kept in
separate source files, if the runnable based approach is used.

Requirements [SWS_Rte_01004] and [SWS_Rte_02751] mean that compile time
checks ensure that a component (or runnable) that uses the application header file
only accesses the generated data structures and functions to which it has been con-
figured. Any other access, e.g. to fields not defined in the customized data structures
or RTE API, will fail with a compiler error [SRS_Rte_00017].

The definitions of the RTE API contained in the application header file can be opti-
mized during the “RTE Generation” phase when the mapping of software-components
to ECUs and the communication matrix is known. Consequently multiple application
header files must not be included in the same source module to avoid conflicting defi-
nitions of the RTE API definitions that the files contains.

Figure 5.2 illustrates the code structure for the declaration of the entry point of a runn-
able entity that provides the implementation for a ServerPort in component c1. The
RTE generator is responsible for creating the API and tasks used to execute the server
and the symbol name of the entry point is extracted from the attribute symbol of the
runnable entity. The example shows that the first parameter of the entry point function
is the software-component’s instance handle [SWS_Rte_01016].

394 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

1 #include <Rte_c1.h>
2

3 void
4 runnable_entry(Rte_Instance self)
5 {
6 /* ... server code ... */
7 }

Figure 5.2: Skeleton server runnable entity

Figure 5.2 includes the component-specific application header file Rte_c1.h created
by the RTE generator. The RTE generator will also create the supporting data struc-
tures and the task body to which the runnable is mapped.

The RTE is also responsible for preventing conflicting concurrent accesses when the
runnable entity implementing the server operation is triggered as a result of a request
from a client received via the communication service or directly via inter-task commu-
nication.

5.3.3.3 File Contents

Multiple application header file must not be included in the same module
([SWS_Rte_01004]) and therefore the file contents should contain a mechanism to
enforce this requirement.

[SWS_Rte_01006] d An application header file shall include the following mechanism
before any other definitions.

1 #ifdef RTE_APPLICATION_HEADER_FILE
2 #error Multiple application header files included.
3 #endif /* RTE_APPLICATION_HEADER_FILE */
4 #define RTE_APPLICATION_HEADER_FILE

c(SRS_Rte_00087)

[SWS_Rte_07131] d The application header file shall include the Application Types
Header File. c(SRS_Rte_00087)

The name of the Application Types Header File is defined in Section 5.3.6.

[SWS_Rte_07924] d The application header file shall include the RTE Data Handle
Types Header File (see Section 5.3.5). c(SRS_Rte_00087)

[SWS_Rte_01005] d The application header file shall be valid for both C and C++

source. c(SRS_Rte_00126, SRS_Rte_00138)

Requirement [SWS_Rte_01005] is met by ensuring that all definitions within the appli-
cation header file are defined using C linkage if a C++ compiler is used.

[SWS_Rte_03709] d All definitions within in the application header file shall be pre-
ceded by the following fragment;

395 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

1 #ifdef __cplusplus
2 extern "C" {
3 #endif /* __cplusplus */

c(SRS_Rte_00126, SRS_Rte_00138)

[SWS_Rte_03710] d All definitions within the application header file shall be suffixed
by the following fragment;

1 #ifdef __cplusplus
2 } /* extern "C" */
3 #endif /* __cplusplus */

c(SRS_Rte_00126, SRS_Rte_00138)

5.3.3.3.1 Instance Handle

The RTE uses an instance handle to identify different instances of the same component
type. The definition of the instance handle type [SWS_Rte_01148] is unique to each
component type and therefore should be included in the application header file.

[SWS_Rte_01007] d The application header file shall define the type of the instance
handle for the component. c(SRS_Rte_00012)

All runnable entities for a component are passed the same instance handle type (as
the first formal parameter [SWS_Rte_01016]) and can therefore use the same type
definition from the component’s application header file.

5.3.3.3.2 Runnable Entity Prototype

The application header file also includes a prototype for each runnable entity entry
point ([SWS_Rte_01132]) and the API mapping ([SWS_Rte_01274]).

5.3.3.3.3 Initial Values

[SWS_Rte_05078] d The Application Header File shall define the init value of non-
queued VariableDataPrototypes of sender receiver or non volatile data ports and
typed by an ImplementationDataType or ApplicationDataType of category
VALUE.

1 #define Rte_InitValue_<Port>_<DEPType> <initValue><suffix>

where <Port> is the PortPrototype shortName, <DEPType> is the short-
Name of the VariableDataPrototype, and <initValue> is the initValue spec-
ified in the NonqueuedReceiverComSpec respectively NonqueuedSenderCom-
Spec. <suffix> shall be "U" for unsigned data types and empty for signed data
types. c(SRS_Rte_00068, SRS_Rte_00087, SRS_Rte_00108)

396 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Note that the initValue defined may be subject to change due to the fact that for
COM configuration it may be possible to change this value during ECU Configuration
or even post-build time.

5.3.3.3.4 PerInstanceMemory

The Application Header File shall type definitions for PerInstanceMemory’s as defined
in Chapter 5.2.5, [SWS_Rte_07133].

5.3.3.3.5 RTE-Component Interface

The application header file defines the “interface” between a component and the RTE.
The interface consists of the RTE API for the component and the prototypes for runn-
able entities. The definition of the RTE API requires that both relevant data structures
and API calls are defined.

The data structures required to support the API are defined in the Application Header
file (CDS) (see chapter 5.3.3), in the Application Types Header file (see chapter 5.3.6),
in the RTE Types Header file (see chapter 5.3.1) and in the RTE Data Handle Types
Header file (see chapter 5.3.5).

The data structure types are declared in the header files whereas the instances are
defined in the generated RTE. The necessary data structures for object-code software-
components are defined in chapter 5.5.2 and chapter 5.4.2.

The RTE generator is required [SWS_Rte_01004] to limit the contents of the applica-
tion header file to only that information that is relevant to that component type. This
requirement includes the definition of the API mapping. The API mapping is described
in chapter 5.2.6.

[SWS_Rte_01276] d Only RTE API calls that are valid for the particular software-
component type shall be defined within the component’s application header file.
c(SRS_Rte_00051, SRS_Rte_00017, SRS_Rte_00167)

Requirement [SWS_Rte_01276] ensures that attempts to invoke invalid API calls will
be rejected as a compile-time error [SRS_Rte_00017].

5.3.3.3.6 Application Errors

The concept of client server supports application specific error codes. Symbolic
names for Application Errors are defined in the application header file to avoid con-
flicting definitions between several AtomicSwComponentTypes mapped one ECU.
See [SWS_Rte_02575] and [SWS_Rte_02576].

397 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

5.3.4 RTE Types Header File

The RTE Types Header File includes the RTE specific type declarations derived from
the ImplementationDataTypes created from the definitions of AUTOSAR meta-
model classes within the RTE generator’s input. The available meta-model classes
are defined by the AUTOSAR software-component template and include classes for
defining primitive values, structures, arrays and pointers.

The types declared in the RTE Types Header File intend to be used for the implemen-
tation of RTE internal data buffers as well as for RTE API.

[SWS_Rte_01160] d The RTE generator shall create the RTE Types Header File in-
cluding the type declarations corresponding to the ImplementationDataTypes de-
fined in the input configuration as well as the RTE implementation types. c

The RTE Data Types header file should be output for “RTE Contract” and “RTE Gener-
ation” phases.

5.3.4.1 File Contents

[SWS_Rte_02648] d The RTE Types Header File shall include the type declarations
for all the AUTOSAR Data Types according to [SWS_Rte_07104], [SWS_Rte_07110],
[SWS_Rte_06706], [SWS_Rte_06707], [SWS_Rte_06708] [SWS_Rte_07111],
[SWS_Rte_07114], [SWS_Rte_07144], [SWS_Rte_07109] and [SWS_Rte_07148]
depending on the values of attributes typeEmitter and nativeDeclaration but
irrespective of their use by the generated RTE. c

The attribute typeEmitter controls which part of the AUTOSAR toolchain is sup-
posed to provide data type definitions. For legacy reasons the RTE generator is sup-
posed to generate the corresponding data type if the ImplementationDataType
defines no typeEmitter.

[SWS_Rte_06709] d The RTE generator shall generate the corresponding data type
definition if the value of attribute typeEmitter is NOT defined. c

[SWS_Rte_06710] d The RTE generator shall generate the corresponding data type
definition if the value of attribute typeEmitter is set to "RTE". c

[SWS_Rte_06711] d The RTE generator shall reject configurations where the value
of the attribute typeEmitter is set to "RTE" and the ImplementationDataType
references a SwBaseType without defined nativeDeclaration. c

[SWS_Rte_06712] d The RTE generator shall silently not generate the corresponding
data type definition if the value of attribute typeEmitter is set to anything else but
"RTE". c

This requirement ensures the availability of ImplementationDataTypes for the in-
ternal use in AUTOSAR software components.

398 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Nevertheless the RTE Types Header File does not contain any data type belonging
to an ImplementationDataType where typeEmitter is set to anything else but
"RTE" regardless if the ImplementationDataType references SwBaseTypes and if
this SwBaseTypes define nativeDeclarations.

[SWS_Rte_08732] d The RTE generator shall generate the type
Rte_Cs_TransactionHandleType of the transaction handle for inter-ECU
Client-Server communication as a structure:

typedef struct {
[<IntegerTypeClientId> clientId;]
<IntegerTypeSequenceCounter> sequenceCounter;

} Rte_Cs_TransactionHandleType;

where clientId and sequenceCounter contains the client identifier and sequence
counter as speficied in [SWS_Rte_02649].

The IntegerTypeClientId and IntegerTypeSequenceCounter are integer
types as specified in [SWS_Rte_08711] and [SWS_Rte_08712].

The existence of the clientId fields is specified in [SWS_Rte_08713]. c

The types header file may need types in terms of BSW types (from the file
Std_Types.h) or from the implementation specific RTE header file to declare types.
However, since the RTE header file includes the file Std_Types.h already so only the
RTE header file needs direct inclusion within the types header file.

[SWS_Rte_01163] d The RTE Types Header File shall include the RTE Header File.
c(SRS_BSW_00353)

5.3.4.2 Classification of Implementation Data Types

The type model ImplementationDataTypes is able to express following kinds of
data types:

• Primitive Implementation Data Type

• Array Implementation Data Type

• Structure Implementation Data Type

• Union Implementation Data Type

• Redefinition Implementation Data Type

• Pointer Implementation Data Type

A Primitive Implementation Data Type is classified that it directly refers by its Sw-
DataDefProps to a SwBaseType in the role baseType. The category attribute
is set to VALUE.

399 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

An Array Implementation Data Type is classified that it defines Implementation-
DataTypeElements for each dimension of the array. The swArraySize specifies
the number of array elements of the dimension. The category attribute Array Imple-
mentation Data Type is set to ARRAY.

A Structure Implementation Data Type is categorized that it has Implementation-
DataTypeElement’s. The category attribute of the ImplementationDataType
is set to STRUCTURE. Each ImplementationDataTypeElement it self can be one
of the listed kinds again.

A Union Implementation Data Type is categorized that it has Implementation-
DataTypeElement’s. The category attribute of the ImplementationDataType
is set to UNION. Each ImplementationDataTypeElement it self can be one of the
listed kinds again.

A Redefinition Implementation Data Type is classified that it refers to other Imple-
mentationDataTypes. The category attribute of the referring Implementation-
DataType has to be set to TYPE_REFERENCE.

A Pointer Implementation Data Type is classified that its SwDataDefProps has a sw-
PointerTargetProps attribute. The swDataDefProps in the role swPointer-
TargetProps is specifying the target to which the pointer refers. The category
attribute of the ImplementationDataType has to be set to DATA_REFERENCE.

5.3.4.3 Primitive Implementation Data Type

The RTE Types Header File declares C types for all Primitive Implementation
Data Types where the referred BaseType has a nativeDeclaration attribute.

[SWS_Rte_07104] d For each Primitive Implementation Data Type with a
nativeDeclaration attribute, the RTE Types Header File shall include the corre-
sponding type declaration as:

typedef <nativeDeclaration> <name>;

where <nativeDeclaration> is the nativeDeclaration attribute of the re-
ferred BaseType and <name> is the Implementation Data Type symbol of the
Primitive Implementation Data Type. c(SRS_Rte_00055, SRS_Rte_00166,
SRS_Rte_00168, SRS_BSW_00353)

MyUint8 :
ImplementationDataType

category = VALUE

:SwDataDefProps MyUint8Base :SwBaseType

nativeDeclaration = unsigned char

typedef unsigned char
MyUint8OfVendorNil;

+baseType+swDataDefProps

Figure 5.3: Primitive Implementation Data Type

400 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Note: All Primitive Implementation Data Types where the referred Base-
Type has no nativeDeclaration attribute resulting not in a type declaration. This
is intended to prevent the redeclaration of the predefined Standard Types and Platform
Types.

uint8 :
ImplementationDataType

category = VALUE

:SwDataDefProps uint8 :SwBaseType

/* no typedef is generated, implementation use one from Platform_Types.h */

+swDataDefProps +baseType

Figure 5.4: Primitive Implementation Data Type included from Platform_Types.h

[SWS_Rte_07105] d If more than one Primitive Implementation Data Type
with equal shortName and equal nativeDeclaration attribute of the referred
BaseType are defined, the RTE Types Header File shall include only once the cor-
responding type declaration according to [SWS_Rte_07104]. c(SRS_Rte_00165)

Note: This avoids the redeclaration of C types due to the multiple descriptions of equiv-
alent Primitive Implementation Data Types in the ECU extract.

5.3.4.4 Array Implementation Data Type

In addition to the primitive data-types defined in the previous section, it is also neces-
sary for the RTE generator to declare composite data-types: arrays and records.

An array definition following information:

• the array type

• the number of dimensions

• the number of elements for each dimension.

[SWS_Rte_07110] d For each Array Implementation Data Type which leaf
ImplementationDataTypeElement is typed by a BaseType, the RTE Types
Header File shall include the corresponding type declaration as:

typedef <nativeDeclaration> <name>[<size 1>]{[<size 2>]...[<size n>]};

where <nativeDeclaration> is the nativeDeclaration attribute of the referred
BaseType,

<name> is the Implementation Data Type symbol of the Array Implemen-
tation Data Type,

[<size x>] is the arraySize of the Array’s ImplementationDataTypeElement.

For each array dimension defined by one Array’s ImplementationDataTypeEle-
ment one array dimension definition [<size x>] is defined. The array dimension def-

401 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

initions [<size 1>], [<size 2>] ... [<size n>] ordered from the root to the
leaf ImplementationDataTypeElement. c(SRS_Rte_00055, SRS_Rte_00164)

[SWS_Rte_07111] d For each Array Implementation Data Type which leaf
ImplementationDataTypeElement is typed by an ImplementationDataType,
the RTE Types Header File shall include the corresponding type declaration as:

typedef <type> <name>[<size 1>]{[<size 2>]...[<size n>]};

where <type> is the shortName of the referred ImplementationDataType,

<name> is the Implementation Data Type symbol of the Array Implemen-
tation Data Type,

[<size x>] is the arraySize of the Array’s ImplementationDataTypeElement.
For each array dimension defined by one Array’s ImplementationDataTypeEle-
ment one array dimension definition [<size x>] is defined.

The array dimension definitions [<size 1>], [<size 2>] ... [<size n>]
ordered from the root to the leaf ImplementationDataTypeElement.
c(SRS_Rte_00055, SRS_Rte_00164)

[SWS_Rte_06706] d For each Array Implementation Data Type which last
ImplementationDataTypeElement is of category STRUCTURE, the RTE Types
Header File shall include the corresponding type declaration as:

typedef struct { <elements> } <name>[<size 1>]{[<size 2>]...[<size n>]};

where <elements> is the record element specification and

<name> is the Implementation Data Type symbol of the Array Implemen-
tation Data Type.

For each record element defined by one ImplementationDataTypeElement one
record element specification <elements> is defined. The record element specifica-
tions are ordered according the order of the related ImplementationDataTypeEle-
ments in the input configuration.
Sequent record elements are separated with a semicolon.

[<size x>] is the arraySize of the Array’s ImplementationDataTypeElement.
For each array dimension defined by one Array’s ImplementationDataTypeEle-
ment one array dimension definition [<size x>] is defined.

The array dimension definitions [<size 1>], [<size 2>] ... [<size n>] or-
dered from the root to the last ImplementationDataTypeElement belonging to the
array definition. c(SRS_Rte_00055, SRS_Rte_00164)

The definition of the record element specification is defined in section 5.3.4.6.

[SWS_Rte_06707] d For each Array Implementation Data Typewhich last Im-
plementationDataTypeElement is of category UNION, the RTE Types Header File
shall include the corresponding type declaration as:

402 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

typedef union { <elements> } <name>[<size 1>]{[<size 2>]...[<size n>]};

where <elements> is the record element specification and

<name> is the Implementation Data Type symbol of the Array Implemen-
tation Data Type.

For each record element defined by one ImplementationDataTypeElement one
record element specification <elements> is defined. The record element specifica-
tions are ordered according the order of the related ImplementationDataTypeEle-
ments in the input configuration.
Sequent record elements are separated with a semicolon.

[<size x>] is the arraySize of the Array’s ImplementationDataTypeElement.
For each array dimension defined by one Array’s ImplementationDataTypeEle-
ment one array dimension definition [<size x>] is defined.

The array dimension definitions [<size 1>], [<size 2>] ... [<size n>] or-
dered from the root to the last ImplementationDataTypeElement belonging to the
array definition. c(SRS_Rte_00055, SRS_Rte_00164)

The definition of the record element specification is defined in section 5.3.4.6.

[SWS_Rte_06708] d For each Array Implementation Data Typewhich last Im-
plementationDataTypeElement is of category DATA_REFERENCE, the RTE Types
Header File shall include the corresponding type declaration as:

typedef <tqlA> <addtqlA> <type> * <tqlB> <addtqlB> <name>
[<size 1>]{[<size 2>]...[<size n>]};

where <name> is the Implementation Data Type symbol of the Array Im-
plementation Data Type and

[<size x>] is the arraySize of the Array’s ImplementationDataTypeElement.
For each array dimension defined by one Array’s ImplementationDataTypeEle-
ment one array dimension definition [<size x>] is defined. The array dimension
definitions [<size 1>], [<size 2>] ... [<size n>] ordered from the root
to the last ImplementationDataTypeElement belonging to the array definition.
c(SRS_Rte_00055, SRS_Rte_00164)

For the definition of <tqlA> and <tqlB> see [SWS_Rte_07149] and
[SWS_Rte_07166].

For the definition of <addtqlA> and <addtqlB> see [SWS_Rte_07036] and
[SWS_Rte_07037].

[SWS_Rte_07112] d If more than one Array Implementation Data Type with
equal shortName of the ImplementationDataType and equal nativeDeclara-
tion attribute of the referred BaseType are defined, the RTE Types Header File shall
include only once the corresponding type declaration according to [SWS_Rte_07110].
c(SRS_Rte_00165)

403 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_07113] d If more than one Array Implementation Data Type with
equal shortName of the ImplementationDataType and equal shortName of the
referred ImplementationDataType are defined, the RTE Types Header File shall
include only once the corresponding type declaration according to [SWS_Rte_07111].
c(SRS_Rte_00165)

Note: This avoids the redeclaration of C types due to the multiple descriptions of equiv-
alent Array Implementation Data Types in the ECU extract.

ArrA :ImplementationDataType

category = ARRAY

:SwDataDefProps MyUint8Base :SwBaseType

nativeDeclaration = unsigned char

typedef unsigned char ArrA[5];

ArrAElement :
ImplementationDataTypeElement

category = VALUE
arraySize = 5

+baseType

+swDataDefProps

+subElement

Figure 5.5: Example of a single dimension array typed by an BaseType

ArrArrD :
ImplementationDataType

category = ARRAY

FirstDim :
ImplementationDataTypeElement

category = ARRAY
arraySize = 15

SecondDim :
ImplementationDataTypeElement

category = TYPE_REFERENCE
arraySize = 10

typedef uint8 ArrArrD[15][10];

:SwDataDefProps
uint8 :

ImplementationDataType

category = VALUE

+subElement

+implementationDataType

+swDataDefProps

+subElement

Figure 5.6: Example of a two dimension array typed by an ImplementationDataType

ANSI C does not allow a type declaration to have zero elements and therefore we
require that the “number of elements” to be a positive integer.

[constr_9042] Array Implementation Data Types needs at least one ele-
ment d The arraySize defining number of elements in one dimension of an Array
Implementation Data Type shall be an integer that is ≥ 1 for each dimension. c

5.3.4.5 Structure Implementation Data Type and Union Implementation Data
Type

[SWS_Rte_07114] d For each Structure Implementation Data Type, the RTE
Types Header File shall include the corresponding type declaration as:

typedef struct { <elements> } <name>;

where <elements> is the record element specification and <name> is the Implemen-
tation Data Type symbol of the Structure Implementation Data Type.
For each record element defined by one ImplementationDataTypeElement one
record element specification <elements> is defined. The record element specifica-

404 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

tions are ordered according the order of the related ImplementationDataType-
Elements in the input configuration. Sequent record elements are separated with a
semicolon. c(SRS_Rte_00055, SRS_Rte_00164)

5.3.4.6 Union Implementation Data Type

[SWS_Rte_07144] d For each Union Implementation Data Type, the RTE
Types Header File shall include the corresponding type declaration as:

typedef union { <elements> } <name>;

where <elements> is the union element specification and <name> is the Implemen-
tation Data Type symbol of the Union Implementation Data Type. For
each union element defined by one ImplementationDataTypeElement one union
element specification <elements> is defined. The union element specifications are
ordered according the order of the related ImplementationDataTypeElements
in the input configuration. Sequent union elements are separated with a semicolon.
c(SRS_Rte_00055, SRS_Rte_00164)

[SWS_Rte_07115] d Record and Union element specifications <elements> shall be
generated as

<nativeDeclaration> <name>;

if the ImplementationDataTypeElement has the category attribute set to
VALUE and if it refers to an BaseType. The meaning of the fields is identical to
[SWS_Rte_07104] c(SRS_Rte_00055, SRS_Rte_00164)

[SWS_Rte_07116] d Record and Union element specifications <elements> shall be
generated as

<type> <name>;

if the ImplementationDataTypeElement has the category attribute set to
TYPE_REFERENCE and if it refers to an ImplementationDataType. <type>
is the Implementation Data Type symbol of the referred Implementation-
DataType and <name> is the shortName of the ImplementationDataTypeEle-
ment. c(SRS_Rte_00055, SRS_Rte_00164)

[SWS_Rte_07117] d Record and Union element specifications <elements> shall be
generated as

<nativeDeclaration> <name>[<size 1>]{[<size 2>]...[<size n>]};

if the ImplementationDataTypeElement has the category attribute set to ARRAY
and which leaf ImplementationDataTypeElement has the category attribute set
to VALUE and is typed by an BaseType. The meaning and order of the fields is identical
to [SWS_Rte_07110] c(SRS_Rte_00055, SRS_Rte_00164)

405 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_07118] d Record and Union element specifications <elements> shall be
generated as

<type> <name>[<size 1>]{[<size 2>]...[<size n>]};

if the ImplementationDataTypeElement has the category attribute set to ARRAY
and which leaf ImplementationDataTypeElement has the category attribute
set to TYPE_REFERENCE and is typed by an ImplementationDataType. The
meaning and order of the fields is identical to [SWS_Rte_07111] c(SRS_Rte_00055,
SRS_Rte_00164)

[SWS_Rte_07119] d Record and Union element specifications <elements> shall be
generated as

struct { <elements> } <name>;

if the ImplementationDataTypeElement has the category attribute set to
STRUCTURE. The meaning and order of the fields is identical to [SWS_Rte_07114] Se-
quent elements are separated with a semicolon. c(SRS_Rte_00055, SRS_Rte_00164)

[SWS_Rte_07145] d Record and Union element specifications <elements> shall be
generated as

union { <elements> } <name>;

if the ImplementationDataTypeElement has the category attribute set to
UNION. The meaning and order of the fields is identical to [SWS_Rte_07144]. Sequent
elements are separated with a semicolon. c(SRS_Rte_00055, SRS_Rte_00164)

[SWS_Rte_07146] d Pointer element specifications <elements> shall be generated
as

<tqlA> <addtqlA> <type> * <tqlB> <addtqlB> <name>;

if the ImplementationDataTypeElement has the category attribute set to
DATA_REFERENCE where <name> is the shortName of the Implementation-
DataTypeElement. c(SRS_Rte_00055, SRS_Rte_00164)

For the definition of <tqlA> and <tqlB> see [SWS_Rte_07149] and
[SWS_Rte_07166].

For the definition of <addtqlA> and <addtqlB> see [SWS_Rte_07036] and
[SWS_Rte_07037].

For the definition of <type> see [SWS_Rte_07162], [SWS_Rte_07163].

406 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

RecA :ImplementationDataType

category = STRUCTURE

M :ImplementationDataTypeElement

category = TYPE_REFERENCE

N :ImplementationDataTypeElement

category = VALUE

O :ImplementationDataTypeElement

category = TYPE_REFERENCE

MyUint8 :
ImplementationDataType

category = VALUE

uint8 :
ImplementationDataType

category = VALUE

:SwDataDefProps

MyUint16Base :SwBaseType

nativeDeclaration = unsigned short

:SwDataDefProps

:SwDataDefProps

typedef struct
{
 MyUint8 M;
 unsigned short N;
 uint8 O;
} RecA;

+baseType

+swDataDefProps

+swDataDefProps

+implementationDataType

+subElement

+subElement

+subElement

+implementationDataType
+swDataDefProps

Figure 5.7: Example of a structure type

407 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

RecA :
ImplementationDataType

category = STRUCTURE

M :ImplementationDataTypeElement

category = TYPE_REFERENCE

N :ImplementationDataTypeElement

category = VALUE

O :
ImplementationDataTypeElement

category = TYPE_REFERENCE

MyUint8 :
ImplementationDataType

category = VALUE

uint8 :
ImplementationDataType

category = VALUE

:SwDataDefProps

MyUint16Base :SwBaseType

nativeDeclaration = unsigned short

:SwDataDefProps

:SwDataDefProps

typedef struct
{
 MyUint8 M;
 unsigned short N;
 uint8 O;
 struct
 {
 uint8 PA;
 unsigend short PB;
 } P;
} RecA;

P :ImplementationDataTypeElement

category = STRUCTURE

:SwDataDefProps

PA :
ImplementationDataTypeElement

category = TYPE_REFERENCE

PB :
ImplementationDataTypeElement

category = VALUE

:SwDataDefProps

+swDataDefProps

+implementationDataType

+swDataDefProps

+subElement

+subElement

+subElement

+subElement

+subElement

+swDataDefProps

+implementationDataType

+swDataDefProps

+implementationDataType

+swDataDefProps

+baseType

+baseType

+subElement

Figure 5.8: Example of a nested structure type

408 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

UnionFoo :ImplementationDataType

category = UNION

TheWord :
ImplementationDataTypeElement

category = VALUE

TheBytes :
ImplementationDataTypeElement

category = STRUCTURE

FirstByte :
ImplementationDataTypeElement

category = VALUE

SecondByte :
ImplementationDataTypeElement

category = VALUE

MyUint16Base :SwBaseType

nativeDeclaration = unsigned short

MyUint8Base :SwBaseType

nativeDeclaration = unsigned char

typedef union
{
 unsigned short TheWord;
 struct
 {
 unsigned char FirstByte;
 unsigned char SecondByte;
 }TheBytes;
}UnionFoo;

«atpVariation»
:SwDataDefProps

«atpVariation»
:SwDataDefProps

«atpVariation»
:SwDataDefProps

+subElement

+swDataDefProps

+baseType

+baseType

+subElement

+baseType

+subElement

+swDataDefProps

+subElement

+swDataDefProps

Figure 5.9: Example of a union type

[SWS_Rte_07107] d If more than one Structure Implementation Data Type
or Union Implementation Data Type with equal shortName of the Implemen-
tationDataType are defined, the RTE Types Header File shall include only once the
corresponding type declaration according to [SWS_Rte_07114] or [SWS_Rte_07144].
c(SRS_Rte_00165)

Note: This avoids the redeclaration of C types due to the multiple descriptions of equiv-
alent Structure Implementation Data Types and Union Implementation
Data Types in the ECU extract.

ANSI C does not allow a struct to have zero elements and therefore we require that
a record include at least one element.

[constr_9043] Structure Implementation Data Types needs at least one el-
ement d A structure shall include at least one element defined by a Implementa-
tionDataTypeElement. c

A union data type describes a kind of structural overlay. Defining only one sub element
of a union ist therefore not reasonable and indicates an error.

[constr_9044] Union Implementation Data Type shall include at least two ele-
ments d A Union Implementation Data Type shall include at least two elements defined
by ImplementationDataTypeElements. c

409 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

5.3.4.7 Implementation Data Type redefinition

[SWS_Rte_07109] d For each Redefinition Implementation Data Type
which is typed by an ImplementationDataType, the RTE Types Header File shall
include the corresponding type declaration as:

typedef <type> <name>;

where <type> is the Implementation Data Type symbol of the referred
ImplementationDataType and <name> is the Implementation Data Type
symbol of the Primitive Implementation Data Type. c(SRS_Rte_00055,
SRS_Rte_00166)

typedef uint16 EngSpd;

EngSpd :ImplementationDataType

category = TYPE_REFERENCE

uint16 :
ImplementationDataType

:SwDataDefProps+swDataDefProps +implementationDataType

Figure 5.10: Example of an Implementation Data Type redefinition

[SWS_Rte_07167] d If more than one Redefinition Implementation Data
Types with equal shortNames which are referring to compatible Implementation-
DataTypes with identical shortNames are defined, the RTE Types Header File shall
include only once the corresponding type declaration according to [SWS_Rte_07109].
c(SRS_Rte_00165)

Note: This avoids the redeclaration of C types due to the multiple descriptions of equiv-
alent Redefinition Implementation Data Type in the ECU extract.

5.3.4.8 Pointer Implementation Data Type

[SWS_Rte_07148] d For each Pointer Implementation Data Type, the RTE
Types Header File shall include the corresponding type declaration as:

typedef <tqlA> <addtqlA> <type> * <tqlB> <addtqlB> <name>;

where <name> is the Implementation Data Type symbol of the Pointer Im-
plementation Data Type. c(SRS_Rte_00055, SRS_Rte_00166)

[SWS_Rte_07149] d <tqlA> (type qualifier A) of a Pointer Implemen-
tation Data Type ([SWS_Rte_07148]) or Pointer element specifications
([SWS_Rte_07146]) shall be set to const if the swImplPolicy of the sw-
PointerTargetProps is set to const and shall be omitted for all other values of
swImplPolicy. c(SRS_Rte_00055, SRS_Rte_00166)

[SWS_Rte_07166] d <tqlB> (type qualifier B) of a Pointer Implemen-
tation Data Type ([SWS_Rte_07148]) or Pointer element specifications
([SWS_Rte_07146]) shall be set to const if the swImplPolicy of the Sw-

410 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

DataDefProps of the ImplementationDataType respectively Implementa-
tionDataTypeElement is set to const and shall be omitted for all other values of
swImplPolicy. c(SRS_Rte_00055, SRS_Rte_00166)

[SWS_Rte_07036] d <addtqlA> (additional type qualifier A) of a Pointer Im-
plementation Data Type ([SWS_Rte_07148]) or Pointer element specifications
([SWS_Rte_07146]) shall be set to the content of the additionalNativeType-
Qualifier attribute of the swPointerTargetProps if the attribute exists and shall
be omitted if such additionalNativeTypeQualifier attribute dose not exist.
c(SRS_Rte_00055, SRS_Rte_00166)

[SWS_Rte_07037] d <addtqlB> (additional type qualifier B) of a Pointer Im-
plementation Data Type ([SWS_Rte_07148]) or Pointer element specifications
([SWS_Rte_07146]) shall be set to the content of the additionalNativeType-
Qualifier attribute of the SwDataDefProps of the ImplementationDataType
respectively ImplementationDataTypeElement and shall be omitted if such ad-
ditionalNativeTypeQualifier attribute dose not exist. c(SRS_Rte_00055,
SRS_Rte_00166)

[SWS_Rte_07162] d <type> shall be set to the nativeDeclaration attribute of the
referred BaseType if the targetCategory of a Pointer Implementation Data
Type ([SWS_Rte_07148]) or Pointer element specifications ([SWS_Rte_07146]) is set
to VALUE c(SRS_Rte_00055, SRS_Rte_00166)

[SWS_Rte_07163] d <type> shall be the shortName of the referred Implemen-
tationDataType if the targetCategory of a Pointer Implementation Data
Type ([SWS_Rte_07148]) or Pointer element specifications ([SWS_Rte_07146]) is set
to TYPE_REFERENCE c(SRS_Rte_00055, SRS_Rte_00166)

[SWS_Rte_07169] d If more than one Pointer Implementation Data Types
with equal shortNames which are resulting in the same C pointer type declaration
are defined, the RTE Types Header File shall include only once the corresponding type
declaration according to [SWS_Rte_07148]. c(SRS_Rte_00165)

Note: This avoids the redeclaration of C types due to the multiple descriptions of equiv-
alent Pointer Implementation Data Type in the ECU extract.

TheRecAPointer :
ImplementationDataType

category = DATA_REFERENCE

:SwDataDefProps

:SwPointerTargetProps

targetCategory = TYPE_REFERENCE

:SwDataDefProps

swImplPolicy = const

typedef const RecA * TheRecAPointer;

RecA :ImplementationDataType

category = STRUCTURE

+swDataDefProps

+swPointerTargetProps

+swDataDefProps

+implementationDataType

Figure 5.11: Example of a Pointer Implementation Data Type

411 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

5.3.4.9 ImplementationDataTypes with VariationPoints

[SWS_Rte_06539] d

The RTE Generator shall wrap each code related to ImplementationDataType-
Elements which are subject to variability in Structure Implementation Data
Type and Union Implementation Data Type (see 4.22 if the variability shall be
implemented.

1 #if (<condition>)
2

3 <elements>
4

5 #endif

where <condition> are the condition value macro(s) of the VariationPoints ac-
cording table 4.22 and

<elements> is the code according invariant ImplementationDataType-
Elements (see also [SWS_Rte_07115], [SWS_Rte_07116], [SWS_Rte_07117],
[SWS_Rte_07118], [SWS_Rte_07119], [SWS_Rte_07145], [SWS_Rte_07146])

c(SRS_Rte_00201)

[SWS_Rte_06540] d The RTE Generator shall implement the <size x> of an Array
Implementation Data Type for each arraySize which is subject to variability
with the corresponding attribute value macro according table 4.22 if the variability shall
be implemented. c(SRS_Rte_00201)

5.3.4.10 Naming of data types

The Implementation Data Type symbol is defined as follows:

[SWS_Rte_06716] d The Implementation Data Type symbol shall be the
shortName of the ImplementationDataType if no symbol attribute for this Im-
plementationDataTypeis defined. c(SRS_Rte_00167)

Example 5.19

The Primitive Implementation Data Type in example 5.3 results in the type
definition:

1 /* RTE Types Header File */
2 typedef unsigned char MyUint8;

[SWS_Rte_06717] d The Implementation Data Type symbol shall be the value
of the SymbolProps.symbol attribute of the ImplementationDataType if the sym-
bol attribute is defined. c(SRS_Rte_00167)

412 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_06718] d If the RTE Types Header File contains a generated C data type
whose Implementation Data Type symbol differs from the Implementation-
DataType shortName, the Application Type Header Files of each software com-
ponent using the type shall contain a definition which redefines the Implementa-
tion Data Type symbol to the shortName of the ImplementationDataType.
c(SRS_Rte_00167)

MyUint8 :
ImplementationDataType

category = VALUE

:SwDataDefProps MyUint8Base :SwBaseType

nativeDeclaration = unsigned char

typedef unsigned char MyUint8OfVendorNil;

:SymbolProps

symbol = MyUint8OfVendorNil

+baseType+swDataDefProps

+symbolProps

Figure 5.12: Primitive Implementation Data Type with SymbolProps

Example 5.20

If the input configuration contains a two ImplementationDataTypes with same
name but different definition the SymbolProps can be used to avoid the name clash.
The Primitive Implementation Data Type in example 5.12 results in following
definition:

1 /* RTE Types Header File */
2 typedef unsigned char MyUint8OfVendorNil;

The Application Types Header File an using component contain the remapping to the
original name:

1 /* Application Types Header File */
2 define MyUint8 MyUint8OfVendorNil;

[SWS_Rte_06719] d The RTE generator shall reject configurations where Implemen-
tationDataTypes result in the same Implementation Data Type symbol but
whose definition would not resulting in the same type declaration. c(SRS_Rte_00018)

Note: This would result in compiler errors due to incompatible redefinition of C types.

[SWS_Rte_06724] d The RTE generator shall reject configurations where the same
software component uses ImplementationDataTypes with equal shortNames
which would result in the mapping to different Implementation Data Type sym-
bols. c(SRS_Rte_00018)

Note: This would result in compiler errors due to incompatible redefinition of the
mapping from ImplementationDataType.shortName to Implementation Data
Type symbol

413 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

5.3.4.11 C/C++

The following requirements apply to RTEs generated for C and C++.

[SWS_Rte_01161] d The name of the RTE Types Header File shall be Rte_Type.h.
c(SRS_BSW_00300)

[SWS_Rte_01162] d Within the RTE Types Header File, each data type shall be de-
clared using typedef. c(SRS_Rte_00126)

A typedef is used when declaring a new data type instead of a #define even though
C only provides weak type checking since other static analysis tools can then be used
to overlay strong type checking onto the C before it is compiled and thus detect type
errors before the module is even compiled.

5.3.5 RTE Data Handle Types Header File

The RTE Data Handle Types Header File contains the Data Handle type declarations
necessary for the component data structures (see Section 5.4.2). The RTE Data
Handle Types Header File code is not allowed to create objects in memory.

[SWS_Rte_07920] d The RTE generator shall create the RTE Data Handle Types
Header File including the type declarations of Data Element without Sta-
tus ([SWS_Rte_01363], [SWS_Rte_01364], [SWS_Rte_02607]) and Data El-
ement with Status ([SWS_Rte_01365], [SWS_Rte_01366], [SWS_Rte_03734],
[SWS_Rte_02666], [SWS_Rte_02589], [SWS_Rte_02590]). c

[SWS_Rte_07921] d The RTE Data Handle Types Header File shall not contain code
that creates object in memory. c(SRS_BSW_00308)

The RTE Data Handle Types Header File should be an output of the “RTE Contract”
and “RTE Generation” phases.

5.3.5.1 File Name

[SWS_Rte_07922] d The name of the RTE Data Handle Types Header File shall be
Rte_DataHandleType.h. c(SRS_BSW_00300)

5.3.5.2 File Contents

The RTE Data Handle Types Header File contains the type declarations of Data El-
ement without Status and Data Element with Status (see Section 5.4.2).

[SWS_Rte_07923] d The RTE Data Handle Types Header File shall include the follow-
ing mechanism to prevent multiple inclusions.

1 #ifndef RTE_DATA_HANDLE_TYPE_H

414 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

2 #define RTE_DATA_HANDLE_TYPE_H
3

4 /* File contents */
5

6 #endif /* RTE_DATA_HANDLE_TYPE_H */

c(SRS_Rte_00126)

5.3.6 Application Types Header File

The Application Types Header File provides a component local name space for enu-
meration literals and range values. The Application Types Header File is not allowed to
create objects in memory.

The Application Types Header File file should be identical output for “RTE Contract”
and “RTE Generation” phases.

[SWS_Rte_07120] d The RTE generator shall create an Application Types Header
File for each software-component type (excluding ParameterSwComponentTypes
and NvBlockSwComponentTypes) defined in the input. c(SRS_Rte_00024,
SRS_Rte_00140, SRS_BSW_00447)

[SWS_Rte_07121] d The Application Types Header File shall not contain code that
creates objects in memory. c(SRS_BSW_00308)

5.3.6.1 File Name

[SWS_Rte_07122] d The name of the Application Types Header File shall be formed
by prefixing the AUTOSAR software-component type name with Rte_[Byps_] and
appending the result with _Type.h. [Byps_] is an optionnal infix used when compo-
nent wrapper method for bypass support is enabled for the related software component
type (See chapter 4.9.2). c(SRS_BSW_00300, SRS_Rte_00167)

Example 5.21

The following declaration in the input XML:
1 <APPLICATION-SW-COMPONENT-TYPE>
2 <SHORT-NAME>Source</SHORT-NAME>
3 </APPLICATION-SW-COMPONENT-TYPE>

should result in the Application Types Header File Rte_Source_Type.h being gen-
erated when the component wrapper method for bypass support is disabled.

415 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

5.3.6.2 Scope

[SWS_Rte_07123] d The Application Types Header File for a component shall contain
only information relevant for that component. c(SRS_Rte_00167, SRS_Rte_00017)

[SWS_Rte_07124] d The Application Types Header File shall be valid for both C and
C++ source. c(SRS_Rte_00126, SRS_Rte_00138)

Requirement [SWS_Rte_07124] is met by ensuring that all definitions within the Appli-
cation Types Header File are defined using C linkage if a C++ compiler is used.

[SWS_Rte_07125] d All definitions within in the Application Types Header File shall be
preceded by the following fragment;

1 #ifdef __cplusplus
2 extern "C" {
3 #endif /* __cplusplus */

c(SRS_Rte_00126, SRS_Rte_00138)

[SWS_Rte_07126] d All definitions within the application types header file shall be
suffixed by the following fragment;

1 #ifdef __cplusplus
2 } /* extern "C" */
3 #endif /* __cplusplus */

c(SRS_Rte_00126, SRS_Rte_00138)

[SWS_Rte_07678] d The Application Types Header File shall be protected against
multiple inclusions:

1 #ifndef RTE_<SWC>_TYPE_H
2 #define RTE_<SWC>_TYPE_H
3 ...
4 /*
5 * Contents of file
6 */
7 ...
8 #endif /* !RTE_<SWC>_TYPE_H */

Where <SWC> is the AUTOSAR software-component type name.3 c(SRS_Rte_00126)

5.3.6.3 File Contents

In contrast to the Application Header File the Application Types Header File supports
that multiple Application Types Header File’s are included in the same module. This is
necessary if for instance a BSW module uses several AUTOSAR Services.

[SWS_Rte_07127] d The Application Types Header File shall include the RTE Types
Header File. c(SRS_Rte_00087)

3No additional capitalization is applied to the names.

416 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

The name of the RTE Types Header File is defined in Section 5.3.4.

5.3.6.4 RTE Modes

The Application Types Header File shall contain identifiers for the ModeDeclarations
and type definitions for ModeDeclarationGroup’s as defined in Chapter 5.5.3

5.3.6.5 Enumeration Data Types

The Application Types Header File shall contain the enumeration constants as defined
in Chapter 5.5.4

5.3.6.6 Range Data Types

The Application Types Header File shall contain definitions of Range constants as
defined in Chapter 5.5.5

5.3.6.7 Implementation Data Type symbols

The Application Type Header File may contain definitions to redefine the Imple-
mentation Data Type symbol to the shortName of the Implementation-
DataType in order to provide the expected type name to the software component
implementation. See section 5.3.4.10.

5.3.7 VFB Tracing Header File

The VFB Tracing Header File defines the configured VFB Trace events.

[SWS_Rte_01319] d The VFB Tracing Header File shall be created by the RTE Gen-
erator during RTE Generation Phase only. c(SRS_Rte_00045)

The VFB Tracing Header file is included by the generated RTE and by the user in the
module(s) that define the configured hook functions. The header file includes proto-
types for the configured functions to ensure consistency between the invocation by the
RTE and the definition by the user.

5.3.7.1 C/C++

The following requirements apply to RTEs generated for C and C++.

417 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_01250] d The name of the VFB Tracing Header File shall be Rte_Hook.h.
c(SRS_Rte_00045)

5.3.7.2 File Contents

[SWS_Rte_01251] d The VFB Tracing header file shall include the RTE Configuration
Header File (Section 5.3.8). c(SRS_Rte_00045)

[SWS_Rte_01357] d The VFB Tracing header file shall include the RTE Types Header
file (Section 5.3.4). c(SRS_Rte_00003, SRS_Rte_00004)

[SWS_Rte_03607] d The VFB Tracing header file shall include Os.h.
c(SRS_Rte_00005, SRS_Rte_00008)

[SWS_Rte_01320] d The VFB Tracing header file shall contain the following code im-
mediately after the include of the RTE Configuration Header File.

1 #ifndef RTE_VFB_TRACE
2 #define RTE_VFB_TRACE (FALSE)
3 #endif /* RTE_VFB_TRACE */

c(SRS_Rte_00008, SRS_Rte_00005)

Requirement [SWS_Rte_01320] enables VFB tracing to be globally enabled/disabled
within the RTE Configuration Header File and ensures that it defaults to ‘disabled’.

[SWS_Rte_01236] d For each trace event hook function defined in Section 5.11.5, the
RTE generator shall define the following code sequence in the VFB Tracing header file:

1 #if defined(<trace event>) && (RTE_VFB_TRACE == FALSE)
2 #undef <trace event>
3 #endif
4 #if defined(<trace event>)
5 #undef <trace event>
6 extern void <trace event>(<params>);
7 #else
8 #define <trace event>(<params>) ((void)(0))
9 #endif /* <trace event> */

where <trace event> is the name of trace event hook function and <params> is
the list of parameter names of the trace event hook function prototype as defined in
Section 5.11.5. c(SRS_Rte_00008)

The code fragment within [SWS_Rte_01236] benefits from a brief analysis of its struc-
ture. The first #if block ensures that an individually configured trace event in the RTE
Configuration Header File [SWS_Rte_01324] is disabled if tracing is globally disabled
[SWS_Rte_01323]. The second #if block emits the prototype for the hook function
only if enabled in the RTE Configuration file and thus ensures that only configured trace
events are prototyped. The #undef is required to ensure that the trace event function
is invoked as a function by the generated RTE. The #else block comes into effect if the
trace event is disabled, either individually [SWS_Rte_01325] or globally, and ensures

418 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

that it has no run-time effect. Within the #else block the definition to ((void)(0))
enables the hook function to be used within the API Mapping in a comma-expression.

An individual trace event defined in Section 5.11.5 actually defines a class of hook
functions. A member of the class is created for each RTE object created (e.g. for each
API function, for each task) and therefore an individual trace event may give rise to
many hook function definitions in the VFB Tracing header file.

Example 5.22

Consider an API call Rte_Write_p1_a for an instance of SW-C c. This will result in
two trace event hook functions being created by the RTE generator:

1 Rte_WriteHook_c_p1_a_Start

and
1 Rte_WriteHook_c_p1_a_Return

5.3.8 RTE Configuration Header File

The RTE Configuration Header File contains user definitions that affect the behavior of
the generated RTE.

The directory containing the required RTE Configuration Header File should be in-
cluded in the compiler’s include path when using the VFB tracing header file. The RTE
Configuration Header File is generated by the RTE generator.

5.3.8.1 C/C++

The following requirements apply to RTEs generated for C and C++.

[SWS_Rte_01321] d The name of the RTE Configuration Header File shall be
Rte_Cfg.h. c(SRS_Rte_00008, SRS_Rte_00045)

5.3.8.2 File Contents

[SWS_Rte_07641] d The RTE Configuration Header File shall include the file
Std_Types.h. c(SRS_Rte_00149, SRS_Rte_00150, SRS_BSW_00353)

419 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

5.3.8.2.1 VFB tracing configuration

[SWS_Rte_01322] d The RTE generator shall globally enable VFB tracing when
RTE_VFB_TRACE is defined in the RTE Configuration Header File as a vale which
does not evaluate as FALSE. c(SRS_Rte_00008, SRS_Rte_00005)

Note that, as observed in Section 5.11, VFB tracing enables debugging of software
components, not the RTE itself.

[SWS_Rte_01323] d The RTE generator shall globally disable VFB tracing when
RTE_VFB_TRACE is defined in the RTE configuration header file as FALSE.
c(SRS_Rte_00008, SRS_Rte_00005)

As well as globally enabling or disabling VFB tracing, the RTE Configuration header
file also configures those individual VFB tracing events that are enabled.

[SWS_Rte_01324] d The RTE generator shall enable VFB tracing for a given hook
function when there is a #define in the RTE Configuration Header File for the hook
function name and tracing is globally enabled. c(SRS_Rte_00008)

Note that the particular value assigned by the #define, if any, is not significant.

[SWS_Rte_01325] d The RTE generator shall disable VFB tracing for a given hook
function when there is no #define in the RTE Configuration Header File for the hook
function name even if tracing is globally enabled. c(SRS_Rte_00008)

Example 5.23

Consider the trace events from Example 5.22. The trace event for API start is enabled
by the following definition;

1 #define Rte_WriteHook_i1_p1_a_Start

And the trace event for API termination is enabled by the following definition;
1 #define Rte_WriteHook_i1_p1_a_Return

5.3.8.2.2 Condition Value Macros

The Condition Value Macros are generated in the PreBuild Data Set Contract Phase
and PreBuild Data Set Generation Phase. To do this a particular variant out of the
PreBuild Variability of the input configuration has to be chosen by the means
described in by [SWS_Rte_06500].

[SWS_Rte_06514] d If evaluated BooleanValueVariationPoints or Condi-
tionByFormulas are resulting to true the <value> for Condition Value Macros shall
be coded as TRUE and if these are resulting to false the value shall be coded as FALSE.
c(SRS_Rte_00201, SRS_Rte_00203)

420 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_06513] d For each VariationPointProxy which bindingTime = Pre-
CompileTime the RTE Configuration Header File shall contain a definition of a Con-
dition Value Macro in the RTE PreBuild Data Set Contract Phase and RTE PreBuild
Data Set Generation Phase

#define Rte_SysCon_<cts>_<name> <value>

Where <cts> is the component type symbol of the AtomicSwComponentType,

<name> is the shortName of the VariationPointProxy and

<value> is the evaluated value of the AttributeValueVariationPoint or Con-
ditionByFormula. c(SRS_Rte_00203, SRS_Rte_00167)

This requirements makes the SwSystemconst values available to resolve the Pre-
Build Variability in the software components via the Preprocessor. This might
be used to

• read the actual value of the value assigned to a SwSystemconst

• read the setting of an attribute (e.g. array size) dependent from a SwSystem-
const

• check the existence of a conditional existent object, e.g. an code fragment imple-
menting a particular functionality

[SWS_Rte_03854] d For each VariationPointProxy which bindingTime = Pre-
CompileTime the RTE Application Header File shall contain a definition

#define Rte_SysCon_<name> Rte_SysCon_<cts>_<name>

where <cts> is the component type symbol of the AtomicSwComponentType
and

<name> is the shortName of the VariationPointProxy. c(SRS_Rte_00203,
SRS_Rte_00167)

[SWS_Rte_06515] d For each RTE API which is subject to variability and following the
form component port or entity port in table 4.15 the RTE Configuration Header File
shall contain one definition of a Condition Value

#define Rte_VPCon_<cts>_<re>[_<resl>]_<p>_<o>[_<psl>] <value>

where <cts> is the component type symbol of the AtomicSwComponentType,

<re> is the short name of the RunnableEntity,

<resl> is the shortLabel of the RunnableEntity’s VariationPoint containing
the reference element (e.g. a VariableAccess) to the PortInterface element,

<p> is the name of the PortPrototype,

<o> is the short name of the PortInterface element and

421 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

<psl> is the shortLabel of the PortPrototype’s VariationPoint which is re-
ferred by the VariableAccess

If there is no VariationPoint at the RunnableEntity owning the VariableAc-
cess the <resl> with leading underscore is omitted ([_<resl>]).

If there is no VariationPoint at the PortPrototype referred by the VariableAc-
cess the <psl> with leading underscore is omitted ([_<psl>]).

<value> is the evaluated value of the ConditionByFormula of the Varia-
tionPoint vary the existence of the RTE API in table 4.15. c(SRS_Rte_00201,
SRS_Rte_00167)

[SWS_Rte_06518] d For each RTE API which is subject to variability and following the
form component internal in table 4.15 the RTE Configuration Header File shall contain
one definition of a Condition Value

#define Rte_VPCon_<cts>_<ki>_<name>_<sl> <value>

where <cts> is the component type symbol of the AtomicSwComponentType,

<ki> is the kind infix according table 4.15,

<name> is the short name of the element which is subject to variability in table 4.15
and is defining the API name infix,

<sl> is the shortLabel of the elements’ VariationPoint defining the API name
infix.

<value> is the evaluated value of the ConditionByFormula of the Variation-
Point defining the variant existence of the RTE API in table 4.15. c(SRS_Rte_00201,
SRS_Rte_00167)

[SWS_Rte_06519] d For each RTE API which is subject to variability and which vari-
ability shall be implemented and which is following the form entity internal in table 4.15
the RTE Configuration Header File shall contain one definition of a Condition Value

#define Rte_VPCon_<cts>_<re>[_<resl>]_<ki>_<name>_<sl> <value>

where <cts> is the component type symbol of the AtomicSwComponentType,

<re> is the short name of the RunnableEntity,

<resl> is the shortLabel of the RunnableEntity’s VariationPoint containing
the reference element (e.g. a VariableAccess) to the PortInterface element,

<ki> is the kind infix according table 4.15 and

<name> is the short name of the element which is subject to variability in table 4.15
and is defining the API name infix.

<sl> is the shortLabel of the elements’ VariationPoint defining the API name
infix.

422 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

If there is no VariationPoint at the RunnableEntity owning the reference ele-
ment (e.g. a VariableAccess) to the PortInterface element the <resl> with
leading underscore is omitted ([_<resl>]).

<value> is the evaluated value of the ConditionByFormula of the Variation-
Point defining the variant existence of the RTE API in table 4.15. c(SRS_Rte_00201,
SRS_Rte_00167)

[SWS_Rte_06520] d For each PortPrototype which is subject to variability and
which variability shall be implemented the RTE Configuration Header File shall con-
tain one definition of a Condition Value

#define Rte_VPCon_<cts>_<p>_<psl> <value>

where <cts> is the component type symbol of the AtomicSwComponentType,

<p> is the short name of the PortPrototype and

<psl> is the shortLabel of the PortPrototype’s VariationPoint and

<value> is the evaluated value of the ConditionByFormula of the Varia-
tionPoint defining the variant existence of the PortPrototype in table 4.15.
c(SRS_Rte_00201, SRS_Rte_00167)

[SWS_Rte_06530] d For each RunnableEntity which is subject to variability and
which variability shall be implemented the RTE Configuration Header File shall contain
one definition of a Condition Value

#define Rte_VPCon_<cts>_<re>_<resl> <value>

where <cts> is the component type symbol of the AtomicSwComponentType,

<re> is the short name of the RunnableEntity

<resl> is the shortLabel of the RunnableEntity’s VariationPoint containing
the reference element (e.g. a VariableAccess) to the PortInterface element,

<value> is the evaluated value of the ConditionByFormula of the Varia-
tionPoint defining the variant existence of the RunnableEntity in table 4.18.
c(SRS_Rte_00201, SRS_Rte_00167)

[SWS_Rte_06541] d For each arraySize which subject to variability the RTE Con-
figuration Header File shall contain one definition of a Attribute Value

#define Rte_VPVal_<t>_<e 1>[_<e 2> ... _<e n>] <value>

where <t> is the shortName of the ImplementationDataType,

[<e x>] are the shortNames of the Array’s ImplementationDataTypeElements
with a leading underscore ordered from the root to the Array’s Implementation-
DataTypeElement with the arraySize being subject to variability and

<value> is the evaluated value of the AttributeValueVariationPoint of the
arraySize c(SRS_Rte_00201, SRS_Rte_00167)

423 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_06542] d For each Array’s ImplementationDataTypeElement which
subject to variability the RTE Configuration Header File shall contain one definition of
a Condition Value

#define Rte_VPCon_<t>_<e 1>[_<e 2> ... _<e n>] <value>

where <t> is the shortName of the ImplementationDataType,

[<e x>] are the shortNames of the Array’s ImplementationDataTypeElements
with a leading underscore ordered from the root to the Array’s Implementation-
DataTypeElement being subject to variability and

<value> is the evaluated value of the ConditionByFormula of the Variation-
Point defining the conditional existence of the Array’s ImplementationDataType-
Element c(SRS_Rte_00201, SRS_Rte_00167)

[SWS_Rte_06551] d For each DataConstr referenced by a ApplicationPrimi-
tiveDataType where the upperLimit is subject to preCompileTime variability the
RTE Configuration Header File shall contain one definition of a Attribute Value Macro

#define Rte_VPVal_<cts>_<prefix><t>_UpperLimit <upperValue><suffix>

where <cts> is the component type symbol of the AtomicSwComponentType,

<t> is the shortName of the ApplicationPrimitiveDataType,

<prefix> is the optional literalPrefix attribute defined by the Included-
DataTypeSet referring the AutosarDataType to which the DataConstr belongs,

<upperValue> are the upperLimit value of the dataConstr referenced by the Ap-
plicationPrimitiveDataType onto which the corresponding CompuMethod has
been applied (see [SWS_Rte_07038]). The value in the macro definitions shall always
reflect the closed interval, regardless of the interval type specified by the DataConstr.

<suffix> shall be "U" for unsigned data types and empty for signed data types.
c(SRS_Rte_00201, SRS_Rte_00167)

[SWS_Rte_06552] d For each DataConstr referenced by a ApplicationPrimi-
tiveDataType where the lowerLimit is subject to preCompileTime variability the
RTE Configuration Header File shall contain one definition of a Attribute Value Macro

#define Rte_VPVal_<cts>_<prefix><t>_LowerLimit <lowerValue><suffix>

where <cts> is the component type symbol of the AtomicSwComponentType,

<t> is the shortName of the ApplicationPrimitiveDataType,

<prefix> is the optional literalPrefix attribute defined by the Included-
DataTypeSet referring the AutosarDataType to which the DataConstr belongs,

<lowerValue> are the lowerLimit value of the dataConstr referenced by the Ap-
plicationPrimitiveDataType onto which the corresponding CompuMethod has
been applied (see [SWS_Rte_07038]). The value in the macro definitions shall always
reflect the closed interval, regardless of the interval type specified by the DataConstr.

424 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

<suffix> shall be "U" for unsigned data types and empty for signed data types.
c(SRS_Rte_00201, SRS_Rte_00167)

[SWS_Rte_06535] d For each Basic Software Scheduler API which is subject to vari-
ability and following the form module internal in table 4.26 the RTE Configuration
Header File shall contain one definition of a Condition Value

#define SchM_VPCon_<bsnp>[_<vi>_<ai>]_<ki>_<name>_<sl> <value>

where here

<bsnp> is the BSW Scheduler Name Prefix according [SWS_Rte_07593] and
[SWS_Rte_07594],

<vi> is the vendorId of the BSW module,

<ai> is the vendorApiInfix of the BSW module,

<ki> is the kind infix according table 4.26,

<name> is the short name of the element which is subject to variability in table 4.26
defining the Basic Software Scheduler API name infix and

<sl> is the shortLabel of the elements’ VariationPoint defining the API name
infix.

<value> is the evaluated value of the ConditionByFormula of the Variation-
Point defining the variant existence of the Basic Software Scheduler API in table
4.26.

The sub part in squared brackets [_<vi>_<ai>] is omitted if no vendorApiInfix
is defined for the Basic Software Module. See [SWS_Rte_07528]. c(SRS_Rte_00229,
SRS_BSW_00347)

[SWS_Rte_06536] d For each Basic Software Scheduler API which is subject to vari-
ability and which variability shall be implemented and which is following the form mod-
ule external and entity internal in table 4.26 the RTE Configuration Header File shall
contain one definition of a Condition Value

#define SchM_VPCon_<bsnp>[_<vi>_<ai>]_<ki>_
<entity>[_<esl>]_<name>[_<sl>] <value>

where here

<bsnp> is the BSW Scheduler Name Prefix according [SWS_Rte_07593] and
[SWS_Rte_07594],

<vi> is the vendorId of the BSW module,

<ai> is the vendorApiInfix of the BSW module,

<ki> is the kind infix according table 4.26,

entity is the shortName of the BswModuleEntity

425 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

<esl> is the shortLabel of the BswModuleEntity’s VariationPoint containing
the subject to variability,

<name> is the shortName of the element/referenced element which is subject to vari-
ability in table 4.26 defining the Basic Software Scheduler API name infix and

<sl> is the shortLabel of the elements’s VariationPoint defining the API name
infix.

<value> is the evaluated value of the ConditionByFormula of the Variation-
Point defining the variant existence of the Basic Software Scheduler API in table
4.26.

The sub part in squared brackets [_<vi>_<ai>] is omitted if no vendorApiInfix
is defined for the Basic Software Module. See [SWS_Rte_07528].

If there is no VariationPoint at the BswModuleEntity referring to the subject to
variability in table 4.26 the <esl> with leading underscore is omitted ([_<esl>]).

If there is no VariationPoint at the elements defining the Basic Software Sched-
uler API name infix 4.26 the <sl> with leading underscore is omitted ([_<sl>]).
c(SRS_Rte_00229, SRS_BSW_00347)

[SWS_Rte_06532] d For each BswSchedulableEntity which is subject to variability
and which variability shall be implemented the RTE Configuration Header File shall
contain one definition of a Condition Value

#define SchM_VPCon_<bsnp>[_<vi>_<ai>]_<entry>_<esl> <value>

where here

<bsnp> is the BSW Scheduler Name Prefix according [SWS_Rte_07593] and
[SWS_Rte_07594],

<vi> is the vendorId of the BSW module,

<ai> is the vendorApiInfix of the BSW module,

<entry> is the shortName of the implemented (implementedEntry) entry point
and

<esl> is the shortLabel of the BswModuleEntity’s VariationPoint

<value> is the evaluated value of the ConditionByFormula of the Variation-
Point defining the variant existence of the BswSchedulableEntity in table 4.28.

The sub part in squared brackets [_<vi>_<ai>] is omitted if no vendorApiInfix
is defined for the Basic Software Module. See [SWS_Rte_07528]. c(SRS_Rte_00229,
SRS_BSW_00347)

An example about the usage of condition value macros is shown in 5.6.

426 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

5.3.9 Generated RTE

Figure 5.1 defines the relationship between generated and standardized header files.
It is not necessary to standardize the relationship between the C module, Rte.c,
and the header files since when the RTE is generated the application header files are
created anew along with the RTE. This means that details of which header files are
included by Rte.c can be left as an implementation detail.

5.3.9.1 Header File Usage

[SWS_Rte_01257] d In compatibility mode, the Generated RTE module shall include
Os.h. c(SRS_Rte_00145)

[SWS_Rte_03794] d In compatibility mode, the generated RTE module shall include
Com.h. c(SRS_Rte_00145)

[SWS_Rte_01279] d In compatibility mode, the Generated RTE module shall include
Rte.h. c(SRS_Rte_00145)

[SWS_Rte_01326] d In compatibility mode, the Generated RTE module shall include
the VFB Tracing header file. c(SRS_Rte_00045, SRS_Rte_00145)

[SWS_Rte_03788] d Except for the declaration of entry points for components
(see [SWS_Rte_07194]), the RTE shall map its memory objects with the file
Rte_MemMap.h, using the AUTOSAR memory mapping mechanism (see [25]).
c(SRS_Rte_00148)

[SWS_Rte_07692] d The Generated RTE module shall perform Inter Module Checks
to avoid integration of incompatible files. The imported included files shall be checked
by preprocessing directives.

The following version numbers shall be verified:

• <MODULENAME>_AR_RELEASE_MAJOR_VERSION

• <MODULENAME>_AR_RELEASE_MINOR_VERSION

Where <MODULENAME> is the module short name of the other (external) modules which
provide header files included by the Generated RTE module.

If the values are not identical to the expected values, an error shall be reported.
c(SRS_BSW_00004)

Figure 5.13 provides an example of how the RTE header and generated header files
could be used by a generated RTE.

427 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Figure 5.13: Example of header file use by the generated RTE.

In the example in Figure 5.13, the generated RTE C module requires access to the data
structures created for each AUTOSAR software-component and therefore includes
each application header file4. In the example, the generated RTE also includes the
RTE header file and the lifecycle header file in order to obtain access to RTE and
lifecycle related definitions.

Note: Inclusion of Application Header Files of different software components into the
RTE C module needs support in the Application Header Files in order to avoid that
some local definitions of software components are producing name clashes. If the
RTE C module does not include any Application Header File, some type definitions
(e.g. component data structure) might have to be generated twice.

5.3.9.2 C/C++

The following requirements apply to RTEs generated for C and C++.

Note: The <PartitionName>s referred to in requirements [SWS_Rte_02712],
[SWS_Rte_02713] and [SWS_Rte_02740] are implementation-specific identifiers for
the modules. They need not be the same as the CoreId identifiers configured for the
multi core OS. Refer to section 4.3.4 for a discussion of the allocation of ECU execution
logic to partitions and the allocation of partitions to cores.

[SWS_Rte_01169] d The name of the C module containing the generated RTE
code that is shared by all cores of an ECU shall be Rte.c. c(SRS_BSW_00300,
SRS_Rte_00126)

4The requirement that a software module include at most one application header file applies only to
modules that actually implement a software-component and therefore does not apply to the generated
RTE.

428 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_02711] d On a multi core ECU, RTE shall only use global and static vari-
ables in the Rte.c module, if it is used in a single image system that supports shared
memory. In this case, RTE shall guarantee consistency of this memory, e.g. by using
OS mechanisms. c

[SWS_Rte_02712] d On a multi partition ECU, there shall be additional code and
header files named Rte_Partition_<PartitionName> for the core specific code
parts of RTE where <PartitionName> is the shortName of the container Ecuc-
Partition. c

[SWS_Rte_02713] d There shall not be symbol redefinitions between different
Rte_Partition_<PartitionName> files. c

These requirements makes sure, that all Rte modules can be linked in one image. On
a multi core ECU, the RTE may be linked in one image or distributed over separate
images, one per core.

An RTE that includes configured code from an object-code or source-code library may
use additional modules. Further on due to the encapsulation of a component local
name space [SRS_Rte_00167], it might be required to encapsulate part of the gener-
ated RTE code in component specific files as well to avoid name clashes in the RTE’s
implementation.

[SWS_Rte_07140] d The RTE generator is allowed to partition the
generated RTE module in several files additionally to Rte.c and
Rte_Partition_<PartitionName>. c(SRS_Rte_00167)

5.3.9.3 File Contents

By its very nature the contents of the generated RTE is largely vendor specific. It is
therefore only possible to define those common aspects that are visible to the “outside
world” such as the names of generated APIs and the definition of component data
structures that apply any operating mode.

5.3.9.3.1 Component Data Structures

The Component Data Structure (Section 5.4.2) is a per-component data type used to
define instance specific information required by the generated RTE.

[SWS_Rte_03711] d The generated RTE shall contain an instance of the relevant Com-
ponent Data Structure for each software-component instance on the ECU for which the
RTE is generated. c(SRS_Rte_00011)

[SWS_Rte_03712] d The name of a Component Data Structure instantiated by the
RTE generator shall be Rte_Instance_<name> where <name> is an automatically
generated name, created in some manner such that all instance data structure names
are unique. c(SRS_BSW_00307)

429 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

The software component instance name referred to in [SWS_Rte_03712] is never
made visible to the users of the generated RTE. There is therefore no need to specify
the precise form that the unique name takes. The Rte_Instance_ prefix is mandated
in order to ensure that no name clashes occur and also to ensure that the structures
are readily identifiable in map files, debuggers, etc.

5.3.9.3.2 Generated API

[SWS_Rte_01266] d The RTE module shall define the generated functions that
will be invoked when an AUTOSAR software-component makes an RTE API call.
c(SRS_Rte_00051)

The semantics of the generated functions are not defined (since these will obviously
vary depending on the RTE API call that it is implementing) nor are the implementation
details (which are vendor specific). However, the names of the generated functions
defined in Section 5.2.6.1.

The signature of a generated function is the same as the signature of the relevant RTE
API call (see Section 5.6) with the exception that the instance handle can be omitted
since the generated function is applicable to a specific software-component instance.

5.3.9.3.3 Callbacks

In addition to the generated functions for the RTE API, the RTE module includes call-
backs invoked by COM when signal events (receptions, transmission acknowledge-
ment, etc.) occur.

[SWS_Rte_01264] d The RTE module shall define COM callbacks for relevant signals.
c(SRS_Rte_00019)

The required callbacks are defined in Section 5.9.

[SWS_Rte_03795] d The RTE generator shall generate a separate header file contain-
ing the prototypes of the COM callback functions. c(SRS_Rte_00019)

[SWS_Rte_03796] d The name of the header file containing the callback prototypes
shall be Rte_Cbk.h in a C/C++ environment. c(SRS_Rte_00019)

[SWS_Rte_03796] refers to the callbacks defined in section 5.9.

5.3.9.3.4 Task bodies

The RTE module define task bodies for tasks created by the RTE generator only in
compatibility mode.

430 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_01277] d In compatibility mode [SWS_Rte_01257], the RTE module shall
define all task bodies created by the RTE generator. c(SRS_Rte_00145)

Note that in vendor mode it is assumed that greater knowledge of the OS is available
and therefore the above requirement does not apply so that specific optimizations,
such as creating each task in a separate module, can be applied.

5.3.9.3.5 Lifecycle API

[SWS_Rte_01197] d The RTE module shall define the RTE lifecycle API.
c(SRS_Rte_00051)

The RTE lifecycle API is defined in Section 5.8.

5.3.9.4 Reentrancy

All code invoked by generated RTE code that can be subject to concurrent execution
must be reentrant. This requirement for reentrancy can be overridden if the gener-
ated code is not subject to concurrent execution, for example, if protected by a data
consistency mechanism to ensure that access to critical regions is call serialized.

5.3.10 RTE Post Build Variant Sets

[SWS_Rte_06620] d The RTE generator shall generate in the Rte_PBCfg.h file the
SchM_ConfigType type declaration of the predefined post build variants data struc-
ture. This header file must be used by other RTE modules to resolve their runtime
variabilities. c(SRS_Rte_00201)

[SWS_Rte_06638] d The RTE generator must generate a Rte_PBCfg.c file containing
the declarations and initializations of one or more RTE post build variants. Only one of
these variants can be active at runtime. c(SRS_Rte_00201, SRS_BSW_00346)

Within an RTE with post build variants, one active RtePostBuildVariantConfig-
uration will exist. It is a pointer to this structure that shall be passed to SchM_Init.
Also note that the container PredefinedVariant is only a Meta Model construct to
allow the designer to create a validated collection of values assigned to a criterion. It
is up to the implementer of the RTE generator to optimize variant configurations either
for size and/or performance by using different levels of indirection to the PostBuild-
VariantCriterionValues. For the least amount of indirection for example one can
have the criterion values at the level of the Sch_ConfigType. If you use post build
loadable then you may want to reduce memory storage by reusing variant sets if they
remain unchanged across two or more predefined variants.

431 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

The following subsections provide examples for the SchM_ConfigType declaration
and instantiation only for demonstration purposes. No requirement what so ever is
implied.

RtePostBuildVariantConfiguration is a multipleConfigurationCon-
tainer and the RtePostBuildUsedPredefinedVariant reference within the
container is PostBuild configurable. This is required to permit that RtePostBuil-
dUsedPredefinedVariant parameters in different RtePostBuildVariantCon-
figuration containers can refer to different PredefinedVariants. Nevertheless
this PostBuild references result in the generation of different PostBuild Data Sets
whereas the RtePostBuildUsedPredefinedVariant reference itself is not actu-
ally post build configurable inside the RTE.

5.3.10.1 Example 1: File Contents Rte_PBCfg.h

An example of a flat data structure to represent the criterion values defined in the
Rte_PBCfg.h file containing theSchM_ConfigType type which can contain the list of
unique PostBuildVariantCriterion members. This approach immediately en-
forces that only one single criterion assignment can exist. The member names can,
for example, follow the template defined below where <sn> is the PostBuildVari-
antCriterion shortName.

1 struct SchM_ConfigType {
2 /* The PostBuildVariantCriterion shortname */
3 int VarCri_<sn>;
4 .
5 .
6 .
7 };

5.3.10.2 Example 2: File Contents Rte_PBCfg.h

An example showing an additional level of indirection and as such allows for reuse of
variant sets to optimize memory storage acorss for example several predefined vari-
ants is shown below. The RTE generator in this case can reuse some PostBuild-
VariantCriterionValueSets to reduce the memory resource consumption of an
ECU. The RTE generator can declare in the Rte_PBCfg.h file a structure type for each
distinct unique collection of PostBuildVariantCriterionValueSets containing
the PostBuildVariantCriterions as members. This implies that if two Prede-
finedVariants are defined each referring to a named PostBuildVariantCri-
terionValueSet and the list of PostBuildVariantCriterions in each of these
PostBuildVariantCriterionValueSets is identical that only one type is defined
for these two named PostBuildVariantCriterionValueSets. The name of the
type can, for example, follow the pattern below where the <id> is a unique identifier
for that type (e.g. a counter).

1 struct Rte_VarSet_<id>_t {

432 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

2 /* The PostBuildVariantCriterion shortname */
3 int VarCri_<sn>;
4 .
5 .
6 .
7 };

Now the SchM_ConfigType type can bedeclared with pointers to these variant sets. The
member names of this struct can, for example, follow the template below where <id>
is a unique identifier.

1 struct SchM_ConfigType {
2 /* The PostBuildVariantCriterion shortname */
3 Rte_VarSet_<id>_t* VarSet_<id>_Ptr;
4 .
5 .
6 .
7 };

5.3.10.3 Examples: File Contents Rte_PBCfg.c

In correlation with example 1 of the header file the RTE generator can declare and
optionaly initialize a default variant configuration named Rte_VarCfg in the Rte_PBCfg.c
file of the SchM_ConfigType type.

For example (the initializers are the criterion values):
1 const struct SchM_ConfigType Rte_VarCfg = {1,2,3,4,5};

And likewise for the example 2 header file the RTE generator can declare and initial-
ize in the Rte_PBCfg.c file all possible PostBuildVariantCriterionValueSets
and the RtePostBuildVariantConfigurations using references to these variant
sets.

For example:
1 const struct Rte_VarSet_1_t Rte_VarSet_1a = {1,2,3};
2 const struct Rte_VarSet_1_t Rte_VarSet_1b = {1,4,1};
3 const struct Rte_VarSet_2_t Rte_VarSet_2 = {2,5,7,3,2};
4 .
5 .
6 .

1 const struct SchM_ConfigType Rte_VarCfg_1 =
2 {&Rte_VarSet_1a,&Rte_VarSet_2};
3 const struct SchM_ConfigType Rte_VarCfg_2 =
4 {&Rte_VarSet_1b,&Rte_VarSet_2};
5 .
6 .
7 .

When SchM_Init is called, a pointer to the active SchM_ConfigType will be passed
along which shall be assigned to the named Rte_VarCfgPtr which is of type

433 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

SchM_ConfigType*. This pointer shall be used to determine the values for actual used
PostBuildVariantCriterions and for variant validation when the DET is enabled.

Example 1 pseudo code evaluating the criterions
1 switch(Rte_VarCfg->VarCri_1)
2 {
3 case 1:
4 /* DO SOMETHING */
5 break;
6 case 2:
7 /* DO SOMETHING ELSE */
8 }

Example 2 pseudo code evaluating the criterions
1 switch(Rte_VarCfgPtr->VarSet_1_Ptr->VarCri_1)
2 {
3 case 1:
4 /* DO SOMETHING */
5 break;
6 case 2:
7 /* DO SOMETHING ELSE */
8 }

Another type of optimization strategy (besides flattening) that can be applied is
double buffering for frequently used variant criterion values. The additional buffer
can then be used in the conditions to optimize the performance of the RTE (e.g.
BufferedVarCri_1 = Rte_VarCfgPtr->VarSet_1->VarCri_1).

5.4 RTE Data Structures

Object-code software components are compiled against an application header file cre-
ated during the “RTE Contract” phase but are linked against an RTE (and application
header file) created during the “RTE Generation” phase. When generated in com-
patibility mode, an RTE has to work for object-code components compiled against an
application header file created in compatibility mode, even if the application header file
was created by a different RTE generator. It is thus necessary to define the data struc-
tures and naming conventions for the compatibility mode to ensure that the object-code
is compatible with the generated RTE. An RTE generated in vendor mode only has to
work for those object-code components that were compiled against application header
files created in vendor mode by a compatible RTE generator (which in general would
mean an RTE generator supplied by the same vendor).

The use of standardized data structures imposes tight constraints on the RTE imple-
mentation and therefore restricts the freedom of RTE vendors to optimize the solution
of object-code components but has the advantage that RTE generators from different
vendors can be used to compile an object-code software-component and to generate
the RTE. No such restrictions apply for the vendor mode. If an RTE generator operating

434 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

in vendor mode is used for an object-code component in both phases, vendor-specific
optimizations can be used.

Note that with the exception of data structures required for support object-code soft-
ware components in compatibility mode, the data structures used for “RTE Generation”
phase are not defined. This permits vendor specific API mappings and data structures
to be used for a generated RTE without loss of portability.

The following definitions only apply to RTE generators operating in compatibility mode –
in this mode the instance handle and the component data structure have to be defined
even for those (object-code) software components for which multiple instantiation is
forbidden to ensure compatibility.

5.4.1 Instance Handle

The RTE is required to support object-code components as well as multiple instances
of the same AUTOSAR software-component mapped to an ECU [SRS_Rte_00011].
To minimise memory overhead all instances of a component on an ECU share code
[SRS_Rte_00012] and therefore both the RTE and the component instances require a
means to distinguish different instances.

Support for both object-code components and multiple instances requires a level of
indirection so that the correct generated RTE custom function is invoked in response to
a component action. The indirection is supplied by the instance handle in combination
with the API mapping defined in Section 5.2.6.

[SWS_Rte_01012] d The component instance handle shall identify particular instances
of a component. c(SRS_BSW_00312, SRS_Rte_00011)

The instance handle is passed to each runnable entity in a component when it is ac-
tivated by the RTE as the first parameter of the function implementing the runnable
entity [SWS_Rte_01016]. The instance handle is then passed back by the runnable
entity to the RTE, as the first parameter of each direct RTE API call, so that the RTE
can identify the correct component instance making the call. This scheme permits
multiple instances of a component on the same ECU to share code.

The instance handle indirection permits the name of the RTE API call that is used within
the component to be unique within the scope of a component as well as independent
of the component’s instance name. It thus enables object-code AUTOSAR software-
components to be compiled before the final “RTE Generation” phase when the instance
name is fixed.

[SWS_Rte_01013] d For the RTE C/C++ API, any call that can operate on differ-
ent instances of a component that supports multiple instantiation supportsMulti-
pleInstantiation shall have an instance handle as the first formal parameter.
c(SRS_Rte_00011)

435 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_03806] d If a component does not support multiple instantiation, the in-
stance handle parameter shall be omitted in the RTE C/C++ API and in the signature
of the RTE Hook functions. c(SRS_Rte_00011)

If the component does not support multiple instantiation, the name of the instance
handle must be specified, since it is not passed to the API calls and runnable entities
as parameters.

[SWS_Rte_03793] d If a software component does not support multiple instantiation,
the name of the instance handle shall be Rte_Inst_<cts>, where <cts> is the com-
ponent type symbol of the AtomicSwComponentType. c(SRS_Rte_00011)

The data type of the instance handle is defined in Section 5.5.2.

5.4.2 Component Data Structure

Different component instances share many common features - not least of which is
support for shared code. However, each instance is required to invoke different RTE
API functions and therefore the instance handle is used to access the component data
structure that defines all instance specific data.

It is necessary to define the component data structure to ensure compatibility between
the two RTE phases when operating in compatibility mode – for example, a “clever”
compiler and linker may encode type information into a pointer type to ensure type-
safety. In addition, the structure definition cannot be empty since this is an error in
ANSI C.

[SWS_Rte_07132] d The component data structure type shall be defined in the Appli-
cation Header file. c(SRS_Rte_00011, SRS_Rte_00167)

[SWS_Rte_03714] d The type name of the component data structure shall be
Rte_[Byps]_CDS_<cts> where <cts> is the component type symbol of the
AtomicSwComponentType. [Byps_] is an optionnal infix used when component
wrapper method for bypass support is enabled for the related software component
type (See chapter 4.9.2). c(SRS_BSW_00305)

The members of the component data structure include function pointers. It is important
that such members are not subject to run-time modification and therefore the compo-
nent data structure is required to be placed in read-only memory.

[SWS_Rte_03715] d All instances of the component data structure shall be defined as
“const” (i.e. placed in read-only memory). c(SRS_BSW_00007)

The elements of the component data structure are sorted into sections, each of which
defines a logically related section. The sections defined within the component data
structure are:

• [SWS_Rte_03718] d Data Handles section. c(SRS_Rte_00011,
SRS_Rte_00051)

436 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

• [SWS_Rte_03719] d Per-instance Memory Handles section. c(SRS_Rte_00011,
SRS_Rte_00051)

• [SWS_Rte_01349] d Inter-runnable Variable Handles section.
c(SRS_Rte_00011, SRS_Rte_00051)

• [SWS_Rte_03720] d Calibration Parameter Handles section. c(SRS_Rte_00011,
SRS_Rte_00051)

• [SWS_Rte_03721] d Exclusive-area API section. c(SRS_Rte_00011,
SRS_Rte_00051)

• [SWS_Rte_03716] d Port API section. c(SRS_Rte_00011, SRS_Rte_00051)

• [SWS_Rte_03717] d Inter Runnable Variable API section. c(SRS_Rte_00011,
SRS_Rte_00051)

• [SWS_Rte_07225] d Inter Runnable Triggering API section. c(SRS_Rte_00011,
SRS_Rte_00051)

• [SWS_Rte_07837] d Instance Id section. c(SRS_Rte_00011, SRS_Rte_00051,
SRS_Rte_00244)

• [SWS_Rte_03722] d Vendor specific section. c(SRS_Rte_00011)

The order of elements within each section of the component data structure is defined
as follows;

[SWS_Rte_03723] d Section entries shall be sorted alphabetically (ASCII / ISO 8859-1
code in ascending order) unless stated otherwise. c(SRS_Rte_00051)

The sorting of entries is applied to each section in turn.

Note that there is no prefix associated with the name of each entry within a section;
the component data structure as a whole has the prefix and therefore there is no need
for each member to have the same prefix.

ANSI C does not permit empty structure definitions yet an instance handle is required
for the RTE to function. Therefore if there are no API calls then a single dummy entry
is defined for the RTE.

[SWS_Rte_03724] d If all sections of the Component Data Structure are empty
the Component Data Structure shall contain a uint8 with name _dummy.
c(SRS_Rte_00126)

5.4.2.1 Data Handles Section

The data handles section is required to support the Rte_IRead and Rte_IWrite
calls (see Section 5.2.4).

437 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_03733] d Data Handles shall be named <re>_<p>_<o> where <re> is the
runnable entity name that reads (or writes) the data item, <p> the port name, <o> the
data element. c(SRS_BSW_00305, SRS_Rte_00051)

A RunnableEntity can read and write to the same port/data element in case of a
PRPortPrototypes where as PPortPrototypes and RPortPrototypes are in-
herently uni-directional (a provide port can only be written, a require port can only be
read). Please note that for read and write access of a runnable to data in a PRPort-
Prototype only one data handle exist.

[SWS_Rte_02608] d The Data Handle shall be a pointer to a Data Element with
Status if and only if either

• the runnable has read access and either

– data element outdated notification or

– data element invalidation

is activated for this data element, or

• the runnable has write access and acknowledgement is enabled for this data
element.

c(SRS_Rte_00051, SRS_Rte_00185)

[SWS_Rte_02588] d Otherwise, the data type for a Data Handle shall be a pointer to
a Data Element without Status. c(SRS_Rte_00051)

See below for the definitions of these terms.

[SWS_Rte_06529] d The RTE Generator shall wrap each entry of Data Handles Sec-
tion in the component data structure of a variant existent Rte_IRead or Rte_IWrite
API if the variability shall be implemented.

1 #if (<condition>)
2

3 <Data Handles Section Entry>
4

5 #endif

where condition is the condition value macro of the VariationPoint relevant for
the variant existence of the Rte_IRead or Rte_IWrite API (see [SWS_Rte_06515]),
Data Handles Section Entry is the code according an invariant Data Handles
Section Entry (see also [SWS_Rte_03733], [SWS_Rte_02608], [SWS_Rte_02588])
c(SRS_Rte_00201)

[SWS_Rte_08777] d If the software component does not support multiple instantiation,
the data handles section shall be empty. c(SRS_Rte_00051)

438 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

5.4.2.1.1 Data Element without Status

[SWS_Rte_01363] d The data type for a “Data Element without Status” shall be named
Rte_DE_<dt> where <dt> is the data element’s ImplementationDataType name.
c(SRS_Rte_00051)

[SWS_Rte_01364] d A Data Element without Status shall be a structure con-
taining a single member named value. c(SRS_Rte_00051)

[SWS_Rte_02607] d The value member of a Data Element without Status
shall have the same data type as the corresponding DataElement. c(SRS_Rte_00051,
SRS_Rte_00147, SRS_Rte_00078)

Note that requirements [SWS_Rte_01364] and [SWS_Rte_02607] together imply that
creating a variable of data type Rte_DE_<dt> allocates enough memory to store the
data copy.

5.4.2.1.2 Data Element with Status

[SWS_Rte_01365] d The data type for a “Data Element with Status” shall be named
Rte_DES_<dt> where <dt> is the data element’s ImplementationDataType
name. c(SRS_Rte_00051)

[SWS_Rte_01366] d A Data Element with Status shall be a structure containing
two members. c(SRS_Rte_00051)

[SWS_Rte_03734] d The first member of each Data Element with Status shall
be named ’value’ c(SRS_Rte_00051)

[SWS_Rte_02666] d The value member of a Data Element with Status
shall have the type of the corresponding DataElement. c(SRS_Rte_00051,
SRS_Rte_00147, SRS_Rte_00078, SRS_Rte_00185)

[SWS_Rte_02589] d The second member of each Data Element with Status
shall be named ’status’. c(SRS_Rte_00051, SRS_Rte_00147, SRS_Rte_00078,
SRS_Rte_00185)

[SWS_Rte_02590] d The status member of a Data Element with Status
shall be of the Std_ReturnType type. c(SRS_Rte_00147, SRS_Rte_00078,
SRS_Rte_00185)

[SWS_Rte_02609] d In case of read access, the status member of a Data Ele-
ment with Status shall contain the error status corresponding to the value mem-
ber. c(SRS_Rte_00147, SRS_Rte_00078)

[SWS_Rte_03836] d In case of write access, the status member of a Data Element
with Status shall contain the transmission status corresponding to the value mem-
ber. c(SRS_Rte_00185)

439 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

5.4.2.1.3 Usage

[SWS_Rte_07136] d A definition for every required Data Element with Status
and every Data Element without Status must be emitted in the RTE Data Han-
dle Types Header File (see Section 5.3.5). c(SRS_Rte_00051)

Example 5.24

Consider a uint8 data element, a, of port p which is accessed using a VariableAc-
cess in the dataWriteAccess role by runnables re1 and re2 and a VariableAc-
cess in the dataReadAccess role by runnable re2 within component c. data el-
ement outdated is defined for this dataElement.

The required data types within the RTE Data Handle Types Header File would be:
1 typedef struct {
2 uint8 value;
3 } Rte_DE_uint8;
4

5 typedef struct {
6 uint8 value;
7 Std_ReturnType status;
8 } Rte_DES_uint8;

The component data structure for c would also include:
1 Rte_DE_uint8* re1_p_a;
2 Rte_DES_uint8* re2_p_a;

A software-component that is supplied as object-code or is multiple instantiated re-
quires “general purpose” definitions of Rte_IRead, Rte_IWrite, and Rte_IStatus
that use the data handles to access the data copies created within the generated RTE.
For example:

1 #define Rte_IWrite_re1_p_a(s,v) ((s)->re1_p_a->value = (v))
2 #define Rte_IWrite_re2_p_a(s,v) ((s)->re2_p_a->value = (v))
3 #define Rte_IRead_re2_p_a(s,v) ((s)->re2_p_a->value)
4 #define Rte_IStatus_re2_p_a(s) ((s)->re2_p_a->status)

The definitions of Rte_IRead, Rte_IWrite, and Rte_IStatus are type-safe since
an attempt to assign an incorrect type will be detected by the compiler.

For source code component that does not use multiple instantiation the definitions of
Rte_IRead, Rte_IWrite, and Rte_IStatus can remain as above or vendor spe-
cific optimizations can be applied without loss of portability.

The values assigned to data handles within instances of the component data structure
created within the generated RTE depend on the mapping of tasks and runnables –
See Section 5.2.4.

440 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

5.4.2.2 Per-instance Memory Handles Section

The Per-instance Memory Section Handles section enables to access instance specific
memory (sections).

[SWS_Rte_02301] d The CDS shall contain a handle for each Per-instance Memory.
This handle member shall be named Pim_<name> where <name> is the per-instance
memory name. c(SRS_BSW_00305, SRS_Rte_00051, SRS_Rte_00013)

The Per-instance Memory Handles are typed; [SWS_Rte_02302] d The data type
of each Per-instance Memory Handle shall be a pointer to the type of the per in-
stance memory that is defined in the Application Header file. c(SRS_Rte_00051,
SRS_Rte_00013)

The RTE supports the access to the per-instance memories by the Rte_Pim API.

[SWS_Rte_06527] d The RTE Generator shall wrap each entry of Per-instance Mem-
ory Handles Section in the component data structure of a variant existent PerIn-
stanceMemory or arTypedPerInstanceMemory if the variability shall be imple-
mented.

1 #if (<condition>)
2

3 <Per-instance Memory Handles Section Entry>
4

5 #endif

where condition is the condition value macro of the VariationPoint rel-
evant for the variant existence of the Rte_Pim API (see [SWS_Rte_06518]),
Per-instance Memory Handles Section Entry is the code according an in-
variant Per-instance Memory Handles Section Entry (see also [SWS_Rte_02301],
[SWS_Rte_02302]) c(SRS_Rte_00201)

Example 5.25

Referring to the specification items [SWS_Rte_02301], [SWS_Rte_02302], and
[SWS_Rte_07133] Example 5.4 can be extended –

with respect to the software-component header:
1 struct Rte_CDS_c {
2 ...
3 /* per-instance memory handle section */
4 Rte_PimType_c_MyMemType *Pim_mem;
5

6 ...
7 };
8

9 #define Rte_Pim_mem(s) ((s)->Pim_mem)

and in Rte.c:
1 Rte_PimType_c_MyMemType mem1;
2

441 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

3 const struct Rte_CDS_c Rte_Instance_c1 = {
4 ...
5 /* per-instance memory handle section */
6 /* Rte_PimType_c_MyMemType Pim_mem */
7 &mem1
8 ...
9 };

[SWS_Rte_08778] d If the software component does not support multiple instantiation,
the per-instance memory handles section shall be empty. c(SRS_Rte_00051)

5.4.2.3 Inter Runnable Variable Handles Section

Each runnable may require separate handling for the inter runnable variables that it
accesses. The indirection required for explicit access to inter runnable variables is
described in section 5.4.2.7. The inter runnable variable handles section within the
component data structure contains pointers to the (shadow) memory of inter runnable
variables that can be directly accessed with the implicit API macros. The inter runnable
variable handles section does not contain pointers for memory to handle inter runnable
variables that are accessed with explicit API only.

[SWS_Rte_02636] d For each runnable and each inter runnable variable that is ac-
cessed implicitly by the runnable, there shall be exactly one inter runnable handle
member within the component data structure and this inter runnable variable handle
shall point to the (shadow) memory of the inter runnable variable for the runnable.
c(SRS_Rte_00142)

[SWS_Rte_01350] d The name of each inter runnable variable handle member
within the component data structure shall be Irv_<re>_<o> where <o> is the
Inter-Runnable Variable short name and <re> is short name of the runnable name.
c(SRS_Rte_00142)

[SWS_Rte_01351] d The data type of each inter runnable variable handle member
shall be a pointer to the type of the inter runnable variable. c(SRS_Rte_00142)

[SWS_Rte_06528] d The RTE Generator shall wrap each entry of Inter Runnable
Variable Handles Section in the component data structure of a variant existent
Rte_IrvRead or Rte_IrvWrite if the variability shall be implemented.

1 #if (<condition> [|| <condition>])
2

3 <Inter Runnable Variable Handles Section Entry>
4

5 #endif

where condition are the condition value macro(s) of the VariationPoint
relevant for the variant existence of the Rte_IrvRead or Rte_IrvWrite
API accessing the same Inter Runnable Variable (see [SWS_Rte_06519]),
Inter Runnable Variable Handles Section Entry is the code according an

442 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

invariant Inter Runnable Variable Handles Section Entry (see also [SWS_Rte_02636],
[SWS_Rte_01350], [SWS_Rte_01351]) c(SRS_Rte_00201)

[SWS_Rte_08779] d If the software component does not support multiple instantiation,
the inter runnable variable handles section shall be empty. c(SRS_Rte_00051)

5.4.2.4 Exclusive-area API Section

The exclusive-area API section includes exclusive areas that are accessed explicitly,
using the RTE API, by the SW-C. Each entry in the section is a function pointer to the
relevant RTE API function generated for the SW-C instance.

[SWS_Rte_03739] d The name of each Exclusive-area API section entry shall
be <root>_<name> where <root> is either Entry or Exit and <name> is the
Exclusive-area name. c(SRS_Rte_00051, SRS_Rte_00032)

[SWS_Rte_03740] d The data type of each Exclusive-area API section entry shall be
a function pointer that points to the generated RTE API function. c(SRS_Rte_00051,
SRS_Rte_00032)

[SWS_Rte_06521] d The RTE Generator shall wrap each definition of a variant existent
Rte_Enter and Rte_Exit in the Exclusive-area API section according table 4.15 if
the variability shall be implemented.

1 #if (<condition>)
2

3 <Exclusive-area API section entry>
4

5 #endif

where condition is the condition value macro of the VariationPoint rel-
evant for the variant existence of the Rte_Enter and Rte_Exit API (see
[SWS_Rte_06518]), Exclusive-area API section entry is the code ac-
cording an invariant Exclusive-area section entry (see also [SWS_Rte_03739],
[SWS_Rte_03740]) c(SRS_Rte_00201)

[SWS_Rte_03812] d Entries in the Exclusive-area API section shall be sorted alpha-
betically. c(SRS_Rte_00051, SRS_Rte_00032)

Note that two function pointers will be required for each accessed exclusive area; one
for the Entry function and one for the Exit function.

[SWS_Rte_08780] d If the software component does not support multiple instantiation,
the exclusive-area API section shall be empty. c(SRS_Rte_00051)

443 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

5.4.2.5 Port API Section

Port API section comprises zero or more function references within the component
data structure type that defines all API functions that access a port and can be invoked
by the software-component (instance).

[SWS_Rte_02616] d The function table entries for port access shall be grouped by the
port names into port data structures. c(SRS_Rte_00051)

Each entry in the port API section of the component data structure is a “port data
structure”.

[SWS_Rte_02617] d The name of each port data structure in the component data
structure shall be <p> where <p> is the port short-name. c(SRS_Rte_00051)

[SWS_Rte_03799] d The component data structure shall contain a port data structure
for port p only if the component supports multiple instantiation or if the indirectAPI
attribute for p is set to ’true’. c(SRS_Rte_00051)

[SWS_Rte_06522] d The RTE Generator shall wrap each port data structure of a vari-
ant existent PortPrototype if the variability shall be implemented.

1 #if (<condition>)
2

3 <port data structure>
4

5 #endif

where condition is the condition value macro of the VariationPoint rel-
evant for the variant existence of the PortPrototype (see [SWS_Rte_06520],
port data structure is the code according an invariant port data structures (see
also [SWS_Rte_02617], [SWS_Rte_03799]) c(SRS_Rte_00201)

[SWS_Rte_03731] d The data type name for a port data structure shall be
struct Rte_PDS_<cts>_<i>_<P/R>

where <cts> is the component type symbol of the AtomicSwComponentType,

<i> is the port interface name and

‘P’ or ‘R’ are literals to indicate provide or require ports respectively.
c(SRS_BSW_00305, SRS_Rte_00051)

[constr_9080] The shortNames of PortInterfaces shall be unique within a soft-
ware component if it supports multiple instantiation or indirectAPI attribute
is set to ’true’ d The shortNames of PortInterfaces shall be unique within a software
component for each set of PPortPrototypes or RPortPrototypes if the software compo-
nent supports multiple instantiation or if the indirectAPI attribute is set to ’true’ for
at least one require or provide port.

This is required to generate distinguishable Port Data Structure data types. c

444 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_08312] d The RTE generator shall reject a configuration violating the [con-
str_9080]. c(SRS_Rte_00051)

[SWS_Rte_07137] d The port data structure type(s) shall be defined in the Application
Header file. c(SRS_Rte_00051)

A port data structure type is defined for each port interface that types a port. Thus
different ports typed by the same port interface structure share the same port data
structure type.

[SWS_Rte_07138] d The Application Header file shall contain a definition of a port
data structure type for interface i and port type R or P only if the component sup-
ports multiple instantiation or at least one require or provide port exists that has the
indirectAPI attribute set to ’true’. c(SRS_Rte_00051)

[SWS_Rte_06523] d The RTE Generator shall wrap each port data structure type re-
lated to variant existent PortPrototypes if the variability shall be implemented and if
all require PortPrototypes or all provide PortPrototypes are variant.

1 #if (<condition> [|| <condition>])
2

3 <port data structure type>
4

5 #endif

where condition are the condition value macro(s) of the VariationPoints rele-
vant for the variant existence of the PortPrototypes requiring the port data structure
type (see [SWS_Rte_06520]), port data structure type is the code according
an invariant port data structure type (see also [SWS_Rte_03731], [SWS_Rte_07138],
[SWS_Rte_03730] [SWS_Rte_02620]) c(SRS_Rte_00201)

Note: If any invariant PortPrototype requires the port data structure type it shall be
defined unconditional.

[SWS_Rte_07677] d The RTE shall support an indirect API for the port access func-
tions listed in table 5.1. c(SRS_Rte_00051)

[SWS_Rte_03730] d A port data structure shall contain a function table entry for each
API function associated with the port as referenced in table 5.1. Pure API macros,
like Rte_IRead and other implicit API functions, do not have a function table entry.
c(SRS_Rte_00051)

API function reference
Rte_Send_<p>_<o> 5.6.5
Rte_Write_<p>_<o> 5.6.5
Rte_Switch_<p>_<o> 5.6.6
Rte_Invalidate_<p>_<o> 5.6.7
Rte_Feedback_<p>_<o> 5.6.8
Rte_SwitchAck_<p>_<o> 5.6.9
Rte_Read_<p>_<o> 5.6.10

445 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

API function reference
Rte_DRead_<p>_<o> 5.6.10
Rte_Receive_<p>_<o> 5.6.12
Rte_Call_<p>_<o> 5.6.13
Rte_Result_<p>_<o> 5.6.14
Rte_Prm_<p>_<o> 5.6.17
Rte_Mode_<p>_<o> 5.6.29
Rte_Trigger_<p>_<o> 5.6.31
Rte_IsUpdated_<p>_<o> 5.6.34

Table 5.1: Table of API functions that are referenced in the port API section.

[SWS_Rte_02620] d An API function shall only be included in a port data structure, if
it is required at least by one port. c(SRS_Rte_00051)

[SWS_Rte_02621] d If a function table entry is available in a port data structure, the
corresponding function shall be implemented for all ports that use this port data struc-
ture type. API functions related to ports that are not required by the AUTOSAR config-
uration shall behave like those for an unconnected port. c(SRS_Rte_00051)

APIs may be required only for some ports of a software component instance
due to differences in for example the need for transmission acknowledgement.
[SWS_Rte_02621] is necessary for the concept of the indirect API. It allows iteration
over ports.

[SWS_Rte_01055] d The name of each function table entry in a port data structure
shall be <name>_<o> where <name> is the API root (e.g. Call, Write) and <o> the
data element or operation name. c(SRS_BSW_00305, SRS_Rte_00051)

Requirement [SWS_Rte_01055] does not include the port name in the function table
entry name since the port is implicit when using a port handle.

[SWS_Rte_03726] d The data type of each function table entry in a port data
structure shall be a function pointer that points to the generated RTE function.
c(SRS_Rte_00051)

The signature of a generated function, and hence the definition of the function pointer
type, is the same as the signature of the relevant RTE API call (see Section 5.6) with
the exception that the instance handle is omitted.

Example 5.26

This example shows a port data structure for the provide ports of the interface type i2
in an AUTOSAR SW-C c.

i2 is a SenderReceiverInterface which contains a data element prototype of type
uint8 with data semantics.

446 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

If one of the provide ports of c for the interface i2 has a transmission acknowledge-
ment defined and i2 is not used with data element invalidation, the Applica-
tion Header file would include a port data structure type like this:

1 struct Rte_PDS_c_i2_P {
2 Std_ReturnType (*Feedback_a)(uint8);
3 Std_ReturnType (*Write_a)(uint8);
4 }

If the provide port p1 of the AUTOSAR SW-C c is of interface i2, the generated Appli-
cation Header file would include the following macros to provide the direct API functions
Rte_Feedback_p1_a and Rte_Write_p1_a:

1 /*direct API*/
2 #define Rte_Feedback_p1_a(inst,data)
3 ((inst)->p1.Feedback_a)(data)
4 #define Rte_Write_p1_a(inst,data) ((inst)->p1.Write_a)(data)

[SWS_Rte_02618] d The port data structures within a component data structure shall
first be sorted on the port data structure type name and then on the short name of the
port. c(SRS_Rte_00051)

The requirements [SWS_Rte_03731] and [SWS_Rte_02618] guarantee, that all port
data structures within the component data structure are grouped by their interface type
and require/provide-direction.

Example 5.27

This example shows the grouping of port data structures within the component data
structure.

The Application Header file for an AUTOSAR SW-C c with three provide ports p1, p2,
and p3 of interface i2 would include a block of port data structures like this:

1 struct Rte_CDS_c {
2 ...
3 struct Rte_PDS_c_i1_R z;
4

5 /* component data structures *
6 * for provide ports of interface i2 */
7 struct Rte_PDS_c_i2_P p1;
8 struct Rte_PDS_c_i2_P p2;
9 struct Rte_PDS_c_i2_P p3;

10

11 /*further component data structures*/
12 struct Rte_PDS_c_i2_R c;
13 ...
14 }

If inst is a pointer to a component data structure, and ph is defined by
1 struct Rte_PDS_c_i2_P *ph = &(inst->p1);

447 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

ph points to the port data structure p1 of the instance handle inst. Since the three
provide port data structures p1, p2, and p3 of interface i2 are ordered sequentially
in the component data structure, ph can also be interpreted as an array of port data
structures. E.g., ph[2] is equal to inst->p3.

In the following, ph will be called a port handle.

[SWS_Rte_01343] d RTE shall create port handle types for each port data structure
using typedef to a pointer to the appropriate port data structure. c(SRS_Rte_00051)

[SWS_Rte_01342] d The port handle type name shall be
Rte_PortHandle_<i>_<P/R> where <i> is the port interface name and ‘P’ or
‘R’ are literals to indicate provide or receive ports respectively. c(SRS_Rte_00051)

[SWS_Rte_06524] d The RTE Generator shall wrap each port handle type related
to variant existent PortPrototypes if the variability shall be implemented and if all
require PortPrototypes or all provide PortPrototypes are variant.

1 #if (<condition> [|| <condition>])
2

3 <port handle type>
4

5 #endif

where condition are the condition value macro(s) of the VariationPoints rele-
vant for the variant existence of the PortPrototypes requiring the port data structure
type (see [SWS_Rte_06520]), port data structure type is the code according
an invariant port data structure type (see also [SWS_Rte_01343], [SWS_Rte_01342])
c(SRS_Rte_00201)

[SWS_Rte_01053] d The port handle types shall be written to the application header
file. c(SRS_Rte_00051)

RTE provides port handles for access to the arrays of port data structures of the same
interface type and provide/receive direction by the macro Rte_Ports, see section
5.6.1, and to the number of similar ports by the macro Rte_NPorts, see 5.6.1.

Example 5.28

For the provide port i2 of AUTOSAR SW-C c from example 5.26, the following port
handle type will be defined in the Application Header file:

1 typedef struct Rte_PDS_c_i2_P *Rte_PortHandle_i2_P;

The macros to access the port handles for the indirect API might look like this in the
generated Application Header file:

1 /*indirect (port oriented) API*/
2 #define Rte_Ports_i2_P(inst) &((inst)->p1)
3 #define Rte_NPorts_i2_P(inst) 3

So, the port handle ph of the previous example 5.27 could be defined by a user as:

448 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

1 Rte_PortHandle_i2_P ph = Rte_Ports_i2_P(inst);

To write ‘49’ on all ports p1 to p3, the indirect API can be used within the software
component as follows:

1 uint8 p;
2 Rte_PortHandle_i2_P ph = Rte_Ports_i2_P(inst);
3 for(p=0;p<Rte_NPorts_i_P(inst);p++) {
4 ph[p].Write_a(49);
5 }

Software components may also want to set up their own port handle arrays to
iterate over a smaller sub group than all ports with the same interface and direction.
Rte_Port can be used to pick the port handle for one specific port, see 5.6.3.

[SWS_Rte_08781] d If the software component does not support multiple instantiation,
the port API section shall be empty. c(SRS_Rte_00051)

5.4.2.6 Calibration Parameter Handles Section

The RTE is required to support access to calibration parameters derived by per-
instance ParameterDataPrototypes (see 4.2.8.3) using the Rte_CData (see sec-
tion 5.6.16).

[SWS_Rte_03835] d The name of each Calibration parameter handle shall
be CData_<name> where <name> is the ParameterDataPrototype name.
c(SRS_Rte_00051, SRS_Rte_00154, SRS_Rte_00155)

[SWS_Rte_03949] d The type of each calibration parameter handle shall be a
function pointer that points to the generated RTE function. c(SRS_Rte_00051,
SRS_Rte_00154, SRS_Rte_00155)

Note that accesses to ParameterDataPrototypes within ParameterSwCompo-
nentTypes do not result in any handles within this section since the generated
Rte_Prm (see section 5.6.17) API is accessed either directly (single instantiation) or
through handles in the port API section (multiple instantiation). Likewise, access to
shared ParameterDataPrototypes does not result in any handle in the Calibration
Parameter Handles Section since, by definition, no per-instance data is present.

[SWS_Rte_08782] d If the software component does not support multiple instantiation,
the calibration parameter handles section shall be empty. c(SRS_Rte_00051)

5.4.2.7 Inter Runnable Variable API Section

The Inter Runnable Variable API section comprises zero or more function table entries
within the component data structure type that defines all explicit API functions to access

449 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

an inter runnable variable by the software-component (instance). The API for implicit
access of inter runnable variables does not have any function table entries, since the
implicit API uses macro’s to access the inter runnable variables or their shadow mem-
ory directly, see section 5.4.2.3.

Since the entries of this section are only required to access the explicit InterRunnable-
Variable API if a software component supports multiple instantiation, it shall be omitted
for software components which do not support multiple instantiation.

[SWS_Rte_03725] d If the component supports multiple instantiation, the member
name of each function table entry within the component data structure shall be
<name>_<re>_<o> where <name> is the API root (e.g. IrvRead), <re> the runnable
name, and <o> the inter runnable variable name. c(SRS_Rte_00051)

[SWS_Rte_03752] d The data type of each function table entry shall be a function
pointer that points to the generated RTE function. c(SRS_Rte_00051)

The signature of a generated function, and hence the definition of the function pointer
type, is the same as the signature of the relevant RTE API call (see Section 5.6) with
the exception that the instance handle is omitted.

[SWS_Rte_02623] d If the component supports multiple instantiation, the Inter Runn-
able Variable API Section shall contain pointers to the following API functions:

API function reference
Rte_IrvRead_<re>_<o> 5.6.25
Rte_IrvWrite_<re>_<o> 5.6.26

Table 5.2: Table of API functions that are referenced in the inter runnable variable API
section

c(SRS_Rte_00051)

[SWS_Rte_06525] d The RTE Generator shall wrap each entry of Inter Runnable Vari-
able API Section in the component data structure of a variant existent Rte_IrvRead
or Rte_IrvWrite API if the variability shall be implemented.

1 #if (<condition>)
2

3 <Inter Runnable Variable API Section Entry>
4

5 #endif

where condition is the condition value macro of the VariationPoint rele-
vant for the variant existence of the Rte_IrvRead or Rte_IrvWrite API (see
[SWS_Rte_06519]), Inter Runnable Variable API Section Entry is the
code according an invariant Inter Runnable Variable API Section Entry (see also
[SWS_Rte_03725], [SWS_Rte_03752], [SWS_Rte_02623]) c(SRS_Rte_00201)

[SWS_Rte_03791] d If the software component does not support multiple instantiation,
the inter runnable variable API section shall be empty. c(SRS_Rte_00051)

450 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_08783] d If the software component does not support multiple instantiation,
the inter runnable variable API section shall be empty. c(SRS_Rte_00051)

5.4.2.8 Inter Runnable Triggering API Section

The Inter Runnable Triggering API Section includes the Inter Runnable Triggering API
handles. Each entry in the section is a function pointer to the relevant RTE API function
generated for the SW-C instance.

[SWS_Rte_07226] d The name of each Inter Runnable Triggering handle shall be
Rte_IrTrigger_<re>_<name> where <re> is the name of the runnable entity the
API might be used and <name> is the name of the InternalTriggeringPoint.
c(SRS_Rte_00051, SRS_Rte_00163)

[SWS_Rte_07227] d The data type of each Inter Runnable Triggering handle entry
shall be a function pointer that points to the generated RTE API function defined in
5.6.32. c(SRS_Rte_00051, SRS_Rte_00163)

[SWS_Rte_06526] d The RTE Generator shall wrap each entry of Inter Runnable Trig-
gering handle in the component data structure of a variant existent Rte_IrTrigger
API if the variability shall be implemented.

1 #if (<condition>)
2

3 <Inter Runnable Variable API Section Entry>
4

5 #endif

where condition is the condition value macro of the VariationPoint rele-
vant for the variant existence of the Rte_IrTrigger API (see [SWS_Rte_06519],
Inter Runnable Variable API Section Entry is the code according an in-
variant Inter Runnable Variable API Section Entry (see also [SWS_Rte_03725],
[SWS_Rte_03752], [SWS_Rte_02623]) c(SRS_Rte_00201)

[SWS_Rte_07228] d Entries in the Inter Runnable Triggering handles section shall be
sorted alphabetically. c(SRS_Rte_00051, SRS_Rte_00163)

[SWS_Rte_08784] d If the software component does not support multiple instantiation,
the inter runnable triggering API section shall be empty. c(SRS_Rte_00051)

5.4.2.9 Instance Id Section

[SWS_Rte_07838] d If a software component type supports multiple instantiation,
the RTE generator shall add in the Component Data Structure Instance Id Section
an element named Instance_Id of type uint8. c(SRS_Rte_00011, SRS_Rte_00051,
SRS_Rte_00244)

451 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_07839] d For each prototype of a software component type that supports
multiple instantiation, the RTE generator shall set the value of the element Instance_Id
from 0 to N-1 according to the number (N) of software component prototypes and
according to the names of the software component prototypes sorted alphabetically
(ASCII / ISO 8859-1 code in ascending order). c(SRS_Rte_00011, SRS_Rte_00051,
SRS_Rte_00244)

Example: Two prototypes (instances) named A and B of a software component type
exist:

• Instance_Id for instance A takes the value 0.

• Instance_Id for instance B takes the value 1.

Note: The Instance_Id should not be used by the runnable implementation. The In-
stance_Id has been created to support implementation of bypass on software compo-
nent that supports multiple instantiation.

[SWS_Rte_08785] d If the software component does not support multiple instantiation,
the instance id section shall be empty. c(SRS_Rte_00051)

5.4.2.10 Vendor Specific Section

The vendor specific section is used to contain any vendor specific data required to be
supported for each instances. By definition the contents of this section are outside the
scope of this chapter and only available for use by the RTE generator responsible for
the “RTE Generation” phase.

[SWS_Rte_08786] d If the software component does not support multiple instantiation,
the vendor specific section shall be empty. c(SRS_Rte_00051)

5.5 API Data Types

Besides the API functions for accessing RTE services, the API also contains RTE-
specific data types.

5.5.1 Std_ReturnType

The specification in [29] specifies a standard API return type Std_ReturnType. The
Std_ReturnType defines the "‘status"’ and "‘error values"’ returned by API functions.
It is defined as a uint8 type. The value “0” is reserved for “No error occurred”.

452 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

0 1 2 3 4 5 6 7

Im
m

e
d

ia
te

 In
fra

s
tru

c
tu

re

E
rro

r F
la

g

O
v
e

rla
y
e

d
 E

rro
r F

la
g

6
 b

its

a
v
a

ila
b

le
 fo

r

e
rro

r c
o

d
e

s

LSB MSB

Figure 5.14: Bit-Layout of the Std_ReturnType

Figure 5.14 shows the general layout of Std_ReturnType.

The two most significant bits of the Std_ReturnType are reserved flags:

• The most significant bit 7 of Std_ReturnType is the “Immediate Infrastructure
Error Flag” with the following values

– “1” the error code indicates an immediate infrastructure error.

– “0” the error code indicates no immediate infrastructure error.

• The second most significant bit 6 of Std_ReturnType is the Overlayed Error
Flag. The use of this flag depends on the context and will be explained in table
5.4.

In order to avoid explicit access to bit numbers in the code, the RTE provides the three
following macros that enables an application to check the return value of an API:

• [SWS_Rte_07404] d For infrastructure errors, this macro is a boolean expression
that is true if the corresponding bit is set:

1 #define Rte_IsInfrastructureError(status) ((status & 128U) !=
0)

c

• [SWS_Rte_07405] dFor overlayed errors, this macro is a boolean expression that
is true if the corresponding bit is set:

1 #define Rte_HasOverlayedError(status) ((status & 64U) != 0)

c

• [SWS_Rte_07406] dFor reading only the application error code without the even-
tual overlayed error, the following macro returns the lower 6 bits of the error code:

1 #define Rte_ApplicationError(status) (status & 63U)

c

453 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

5.5.1.1 Infrastructure Errors

Infrastructure errors are split into two groups:

• “Immediate Infrastructure Errors” can be associated with the currently available
data set. These Immediate Infrastructure Errors are mutually exclu-
sive. Only one of these errors can be notified to a SW-C with one API call.

[SWS_Rte_02593] d Immediate Infrastructure Errors shall override
any application level error. c(SRS_Rte_00084, SRS_Rte_00123)

Immediate Infrastructure Error codes are used on the receiver side for
errors that result in no reception of application data and application errors.

An Immediate Infrastructure Error is indicated in the
Std_ReturnType by the Immediate Infrastructure Error Flag
being set.

• “Overlayed Errors” are associated with communication events that happened af-
ter the reception of the currently available data set, e.g., data element out-
dated notification, or loss of data elements due to queue overflow.

[SWS_Rte_01318] d Overlayed Error Flags shall be reported using the
unique bit of the Overlayed Error Flag within the Std_ReturnType type.
c(SRS_Rte_00084, SRS_Rte_00094)

An Overlayed Error can be combined with any other application or infrastruc-
ture error code.

5.5.1.2 Application Errors

[SWS_Rte_02573] d RTE shall support application errors with the following format def-
inition: Application errors are coded in the least significant 6 bits of Std_ReturnType
with the Immediate Infrastructure Error Flag set to “0”. The application er-
ror code does not use the Overlayed Error Flag. c(SRS_Rte_00124)

This results in the following value range for application errors:

range minimum value maximum value
application errors 1 63

Table 5.3: application error value range

In client server communication, the server may return any value within the application
error range. The client will then receive one of the following:

• An Immediate Infrastructure Error to indicate that the communication
was not successful, or

454 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

• The server return code, or

• The server return code might be overlayed by the Overlayed Error Flag in
a future release of RTE. In this release, there is no overlayed error defined for
client server communication.

The client can filter the return value, e.g., by using the following code:

Std_ReturnType status;
status = Rte_Call_<p>_<o>(<instance>, <parameters>);
if (Rte_HasOverlayedError(status)) {

/* handle overlayed error flag *
* in this release of the RTE, the flag is reserved *
* but not used for client server communication */

}

if(Rte_IsInfrastructureError(status)) {
/* handle infrastructure error */

}
else {

/* handle application error with error code status */
status = Rte_ApplicationError(status);

}

5.5.1.3 Predefined Error Codes

For client server communication, application error values are defined per client server
interface and shall be passed to the RTE with the interface configuration.

The following standard error and status identifiers are defined:

Symbolic name Value Comments
[SWS_Rte_01058] d RTE_E_OK
c(SRS_BSW_00327)

0 No error occurred.

Standard Application Error Values:
[SWS_Rte_02594]
d RTE_E_INVALID
c(SRS_BSW_00327,
SRS_Rte_00078)

1 Generic application error indicated by
signal invalidation in sender receiver
communication with data semantics
on the receiver side.

To be defined by the corre-
sponding AUTOSAR Service

1 Returned by AUTOSAR Services to indi-
cate a generic application error.

Immediate Infrastructure Error codes

455 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Symbolic name Value Comments
[SWS_Rte_01060] d
RTE_E_COM_STOPPED
c(SRS_BSW_00327)

128 An IPDU group was disabled while the
application was waiting for the transmis-
sion acknowledgment. No value is avail-
able. This is not considered a fault, since
the IPDU group is switched off on pur-
pose.
This semantics are as follows:
• The OUT buffers of a client or of

explicit read APIs are not modified
• no runnable with startOnEvent on

a DataReceivedEvent for this Vari-
ableDataPrototype is triggered.
• the buffers for implicit read access

will keep the previous value.

[SWS_Rte_01064]
d RTE_E_TIMEOUT
c(SRS_BSW_00327,
SRS_Rte_00069)

129 A blocking API call returned due to ex-
piry of a local timeout rather than the in-
tended result. OUT buffers are not mod-
ified. The interpretation of this being an
error depends on the application.

[SWS_Rte_01317]
d RTE_E_LIMIT
c(SRS_BSW_00327)

130 A internal RTE limit has been exceeded.
Request could not be handled. OUT
buffers are not modified.

[SWS_Rte_01061]
d RTE_E_NO_DATA
c(SRS_BSW_00327)

131 An explicit read API call returned no
data. (This is no error.)

[SWS_Rte_01065] d
RTE_E_TRANSMIT_ACK
c(SRS_BSW_00327)

132 Transmission acknowledgement re-
ceived.

[SWS_Rte_07384] d
RTE_E_NEVER_RECEIVED
c(SRS_BSW_00327,
SRS_Rte_00184)

133 No data received for the corresponding
unqueued data element since system
start or partition restart.

[SWS_Rte_07655] d
RTE_E_UNCONNECTED
c(SRS_BSW_00327,
SRS_Rte_00139,
SRS_Rte_00200)

134 The port used for communication is not
connected.

456 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Symbolic name Value Comments
[SWS_Rte_02739] d
RTE_E_IN_EXCLUSIVE_AREA
c(SRS_BSW_00327)

135 The error is returned by a blocking
API and indicates that the runnable
could not enter a wait state, because
one ExecutableEntity of the current
task’s call stack has entered an Exclu-
siveArea.

[SWS_Rte_02757] d
RTE_E_SEG_FAULT
c(SRS_BSW_00327)

136 The error can be returned by an RTE
API, if the parameters contain a direct or
indirect reference to memory that is not
accessible from the callers partition.

[SWS_Rte_08065] d
RTE_E_OUT_OF_RANGE
c(SRS_BSW_00327,
SRS_Rte_00180)

137 The received data is out of range.

[SWS_Rte_08725] d
RTE_E_SERIALIZATION_ERROR
c(SRS_Rte_00091,
SRS_BSW_00327)

138 An error during serialization or deserial-
ization occured.

[SWS_Rte_08726] d
RTE_E_SERIALIZATION_LIMIT
c(SRS_Rte_00091,
SRS_BSW_00327)

139 Buffer for serialization operation could
not be created.

Overlayed Errors
These errors do not refer to the data returned with the API. They can be overlayed
with other Application- or Immediate Infrastructure Errors.
[SWS_Rte_02571] d
RTE_E_LOST_DATA
c(SRS_BSW_00327,
SRS_Rte_00107,
SRS_Rte_00110,
SRS_Rte_00094)

64 An API call for reading received data with
event semantics indicates that some
incoming data has been lost due to an
overflow of the receive queue or due to
an error of the underlying communica-
tion stack.

[SWS_Rte_02702] d
RTE_E_MAX_AGE_EXCEEDED
c(SRS_BSW_00327,
SRS_Rte_00078)

64 An API call for reading received data
with data semantics indicates that
the available data has exceeded the
aliveTimeout limit. A COM signal out-
dated callback will result in this error.

Table 5.4: RTE Error and Status values

457 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

The underlying type for Std_ReturnType is defined as a uint8 for reasons of com-
patibility – it avoids RTEs from different vendors assuming a different size if an enum
was the underlying type. Consequently, #define is used to declare the error values:

1 typedef uint8 Std_ReturnType;
2

3 #define RTE_E_OK 0U

[SWS_Rte_01269] d The standard errors as defined in table 5.4 including RTE_E_OK
shall be defined in the RTE Header File. c(SRS_Rte_00051)

[SWS_Rte_02575] d Application Error Identifiers with exception of RTE_E_INVALID
shall be defined in the Application Header File. c(SRS_Rte_00124, SRS_Rte_00167)

[SWS_Rte_02576] d The application errors shall have a symbolic name defined as
follows:

1 #define RTE_E_<interface>_<error> <error value>U

where <interface> PortInterface and <error> ApplicationError are the
interface and error names from the configuration.5 c(SRS_Rte_00123)

An Std_ReturnType value can be directly compared (for equality) with the above
pre-defined error identifiers.

[SWS_Rte_07143] d The RTE generator shall generate symbolic name for application
errors with equal <interface> name, <error> name and <error value> only
once. c(SRS_Rte_00165)

5.5.2 Rte_Instance

The Rte_Instance data type defines the handle used to access instance specific
information from the component data structure.

[SWS_Rte_01148] d The underlying data type for an instance handle shall be a pointer
to a Component Data Structure. c(SRS_Rte_00011, SRS_Rte_00051)

The component data structure (see Section 5.4.2) is uniquely defined for a component
type and therefore the data type for the instance handle is automatically unique for
each component type.

The instance handle type is defined in the application header file [SWS_Rte_01007].

To avoid long and complex type names within SW-C code the following requirement
imposes a fixed name on the instance handle data type.

[SWS_Rte_01150] d The name of the instance handle type shall be defined, using
typedef as Rte_[Byps_]Instance. [Byps_] is an optionnal infix used when
component wrapper method for bypass support is enabled for the related software
component type (See chapter 4.9.2). c(SRS_BSW_00305)

5No additional capitalization is applied to the names.

458 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_06810] d The instance handle typedef shall use the CONSTP2CONST macro
with memclass AUTOMATIC and ptrclass RTE_CONST. c(SRS_BSW_00007)

Requirement [SWS_Rte_06810] uses memclass AUTOMATIC rather than memclass

TYPEDEF because the instance handle is used as a function parameter and hence
automatic. This means the typedef is guaranteed to be compatible when the RTE
implementation must use a pointer to the component data structure rather than the
instance handle typedef.

5.5.3 RTE Modes

An Rte_ModeType is used to hold the identifiers for the ModeDeclarations of a
ModeDeclarationGroup.

[SWS_Rte_02627] d For each ModeDeclarationGroupPrototype, used in the
SW-C’s ports, the Application Types Header File shall contain a type definition

1 #ifndef RTE_MODETYPE_<prefix><ModeDeclarationGroup>
2 #define RTE_MODETYPE_<prefix><ModeDeclarationGroup>
3 typedef <type> Rte_ModeType_<prefix><ModeDeclarationGroup>;
4 #endif

where <ModeDeclarationGroup> is the shortName of the ModeDeclaration-
Group,

<prefix> is the optional prefix attribute defined by the IncludedModeDeclara-
tionGroupSet referring the ModeDeclarationGroup and

<type> is the shortName of the ImplementationDataType which is mapped to
the ModeDeclarationGroup by a ModeRequestTypeMap. c(SRS_Rte_00144)

Note: ImplementationDataTypes are generated in the RTE Types Header file.

Note: The type definition specified in [SWS_Rte_02627] is deprecated to avoid incom-
patible or duplicate type definitions. It is recommended to not use this type in software
components anymore (see [SWS_Rte_02628]).

[SWS_Rte_02738] guarantees that for each ModeDeclarationGroup, used in the
SW-C’s ports, there is a unique mapping to an ImplementationDataType.

For a ModeDeclarationGroup of category "ALPHABETIC_ORDER", the value <n>U
within the Rte_ModeType_<ModeDeclarationGroup> is reserved to express a
transition between modes, where <n> is the number of modes declared within the
group. For ModeDeclarationGroups of category "EXPLICIT_ORDER", a transition
between modes is represented by the explicitly specified onTransitionValue.

[SWS_Rte_02659] d For each ModeDeclarationGroup of category
"ALPHABETIC_ORDER", used in the SW-C’s ports, the Application Types Header
File shall contain a definition

1 #ifndef RTE_TRANSITION_<prefix><ModeDeclarationGroup>
2 #define RTE_TRANSITION_<prefix><ModeDeclarationGroup> <n>U

459 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

3 #endif

where <ModeDeclarationGroup> is the shortName of the ModeDeclaration-
Group,

<prefix> is the optional prefix attribute defined by the IncludedModeDeclara-
tionGroupSet referring the ModeDeclarationGroup and

<n> is the number of modes declared within the group.6 c(SRS_Rte_00144)

[SWS_Rte_03858] d For each ModeDeclarationGroup of category
"EXPLICIT_ORDER", used in the SW-C’s ports, the Application Types Header
File shall contain a definition

1 #ifndef RTE_TRANSITION_<prefix><ModeDeclarationGroup>
2 #define RTE_TRANSITION_<prefix><ModeDeclarationGroup> \
3 <onTransitionValue>U
4 #endif

where <ModeDeclarationGroup> is the shortName of the ModeDeclaration-
Group,

<prefix> is the optional prefix attribute defined by the IncludedModeDeclara-
tionGroupSet referring the ModeDeclarationGroup and

<onTransitionValue> is the onTransitionValue of the ModeDeclarationGroup.
c(SRS_Rte_00144)

[SWS_Rte_07640] d The RTE Generator shall reject configurations where two Mode-
DeclarationGroups, used in the SW-C’s ports, with the same name but different
ModeDeclarations exists. c(SRS_Rte_00144, SRS_Rte_00018)

The rational for [SWS_Rte_07640] is to protect against conditions which would lead to
[SWS_Rte_02659]and [SWS_Rte_02627] to generate conflicting types or macro defi-
nitions.

[SWS_Rte_02568] d For each mode of a ModeDeclarationGroup of category
"ALPHABETIC_ORDER", used in the SW-C’s ports, the Application Types Header File
shall contain a definition

1 #ifndef RTE_MODE_<prefix><ModeDeclarationGroup>_<ModeDeclaration>
2 #define RTE_MODE_<prefix><ModeDeclarationGroup>_<ModeDeclaration> \
3 <index>U
4 #endif

where <ModeDeclarationGroup> is the short name of the ModeDeclaration-
Group,

<prefix> is the optional prefix attribute defined by the IncludedModeDeclara-
tionGroupSet referring the ModeDeclarationGroup

<ModeDeclaration> is the shortName of a ModeDeclaration, and <index> is
the index of the ModeDeclarations in alphabetic ordering (ASCII / ISO 8859-1 code

6No additional capitalization is applied to the names.

460 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

in ascending order) of the shortNames within the ModeDeclarationGroup7.
The lowest index shall be ‘0’ and therefore the range of assigned values is 0..<n-1>
where <n> is the number of modes declared within the group. c(SRS_Rte_00144)

[SWS_Rte_03859] d For each mode of a ModeDeclarationGroup of category
"EXPLICIT_ORDER", used in the SW-C’s ports, the Application Types Header File shall
contain a definition

1 #ifndef RTE_MODE_<prefix><ModeDeclarationGroup>_<ModeDeclaration>
2 #define RTE_MODE_<prefix><ModeDeclarationGroup>_<ModeDeclaration> \
3 <value>U
4 #endif

where <ModeDeclarationGroup> is the short name of the ModeDeclaration-
Group,

<prefix> is the optional prefix attribute defined by the IncludedModeDeclara-
tionGroupSet referring the ModeDeclarationGroup

<ModeDeclaration> is the shortName of a ModeDeclaration, and <value> is
the value specified at the ModeDeclaration. c(SRS_Rte_00144)

5.5.4 Enumeration Data Types

Enumeration is not a plain primitive ImplementationDataType. Rather a range of
integers can be used as a structural description. The mapping of integers on "labels"
in the enumeration is actually modeled in the SwC-T with the semantics class Com-
puMethod of a SwDataDefProps [2]. Enumeration data types are modeled as Im-
plementationDataTypes having a SwDataDefProps referencing a CompuMethod
that contains only CompuScales with point ranges (i. e. lower and upper limit of a Com-
puScale are identical).

[SWS_Rte_03809] d The Application Types Header File shall include the definitions
of all constants of ImplementationDataTypes and ApplicationDataTypes for
each ImplementationDataType/ApplicationDataTypes used (referenced) by
this software component.

This includes constants for CompuMethods referenced by Implementation-
DataTypeElements of ImplementationDataTypes directly referenced by the soft-
ware component and constants for CompuMethods of ImplementationDataTypes
which are referenced indirectly via ImplementationDataTypes / Implementa-
tionDataTypeElements of category TYPE_REFERENCE. c(SRS_Rte_00167)

[SWS_Rte_03809] is applicable regardless if the AutosarDataType is referenced
by an DataPrototypes in PortInterfaces used for SwComponentTypes Ports,
DataPrototypes defined in the InternalBehavior of the SwComponentType or
AutosarDataTypes which are only referenced by the IncludedDataTypeSet.

7No additional capitalization is applied to the names.

461 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

This requirement ensures the availability of AutosarDataType constants for the in-
ternal use in AUTOSAR software components, for example enumeration constants.

The name of those constants bases on the CompuScale symbolic name as de-
fined in [TPS_SWCT_01569].

[SWS_Rte_03810] d For each CompuScale which has a point range and is
located in the compuInternalToPhys container of a CompuMethod referenced
by an ImplementationDataType or ApplicationPrimitiveDataType according
[SWS_Rte_03809] with category "TEXTTABLE", "SCALE_LINEAR_AND_TEXTTABLE",
"SCALE_RATIONAL_AND_TEXTTABLE", or BITFIELD_TEXTTABLE, the Application
Types Header File file shall contain a definition

1 #ifndef <prefix><EnumLiteral>
2 #define <prefix><EnumLiteral> <value><suffix>
3 #endif /* <prefix><EnumLiteral> */

where the name of the enumeration literal <EnumLiteral> is derived according to the
following rule:

if (attribute symbol of CompuScale is available and not empty) {
<EnumLiteral> := C identifier specified in symbol attribute of CompuScale

} else {
if (string specified in the VT element of the CompuConst of the CompuScale

is a valid C identifier) {
<EnumLiteral> :=

string specified in the VT element of the CompuConst of the CompuScale
} else {

if (attribute shortLabel of CompuScale is available and not empty) {
<EnumLiteral> :=

string specified in shortLabel attribute of CompuScale
}

}
}

<prefix> is the optional literalPrefix attribute defined by the Included-
DataTypeSet referring the AutosarDataType using the CompuMethod.
<value> is the value representing the CompuScale’s point range.
<suffix> shall be "U" for unsigned data types and empty for signed data types.
c(SRS_Rte_00167)

Please note that the prefix can either be defined that the IncludedDataTypeSet
with a literalPrefix attribute references the ApplicationDataType or it refer-
ences the ImplementationDataType.

[SWS_Rte_03810] implies that the RTE does add prefix to the names of the enumer-
ation constants on explicit demand only. This is necessary in order to handle enu-
meration constants supplied by Basic Software modules which all use their own prefix
convention. Such Enumeration constant names have to be unique in the whole AU-
TOSAR system.

462 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_08401] d In the case that the same ImplementationDataType
or ApplicationPrimitiveDataType is referenced via different Included-
DataTypeSets with different literalPrefix attributes, the definition according
to [SWS_Rte_03810] has to be provided once for each different literalPrefix.
c(SRS_Rte_00167)

[SWS_Rte_03851] d If the input of the RTE generator contains a Com-
puMethod with category "TEXTTABLE", "SCALE_LINEAR_AND_TEXTTABLE",
"SCALE_RATIONAL_AND_TEXTTABLE", or BITFIELD_TEXTTABLE that contains a
CompuScale with a point range, and

• neither the attribute symbol of the CompuScale is available and not empty,

• nor the string specified in the VT element of the CompuConst of the CompuScale
is a valid C identifier,

• nor the attribute shortLabel of CompuScale is available and not empty,

the RTE generator shall reject this input as an invalid configuration. c(SRS_Rte_00018)

[SWS_Rte_03813] d The RTE shall reject configurations where the
same software component type uses ImplementationDataTypes and
ApplicationPrimitiveDataTypes referencing two or more Com-
puMethods with category "TEXTTABLE", "SCALE_LINEAR_AND_TEXTTABLE",
"SCALE_RATIONAL_AND_TEXTTABLE", or BITFIELD_TEXTTABLE that both contain
a CompuScale with a different point range and an identical CompuScale symbolic
names as an invalid configuration. The only exception is that the usage of the Imple-
mentationDataTypes and ApplicationPrimitiveDataTypes are defined with
non identical <literalPrefix>es. c(SRS_Rte_00018)

[SWS_Rte_07175] d The RTE generator shall reject configurations violating the [con-
str_1133]. c(SRS_Rte_00018)

This rejects configurations where an ImplementationDataType or
an ApplicationPrimitiveDataType references a CompuMethod
which is of category "TEXTTABLE", "SCALE_LINEAR_AND_TEXTTABLE",
"SCALE_RATIONAL_AND_TEXTTABLE", or BITFIELD_TEXTTABLE and has Com-
puScales with identical CompuScale symbolic names but different CompuS-
cale.lowerLimit or CompuScale.upperLimit.

Note that there might exist additional CompuScales with non-point ranges inside
a CompuMethod of category "TEXTTABLE", "SCALE_LINEAR_AND_TEXTTABLE",
"SCALE_RATIONAL_AND_TEXTTABLE", or BITFIELD_TEXTTABLE , but for those no
enumeration literals are generated by the RTE generator.

The RTE generator does not support the use of C enums for DataPrototypes used
in application software.

[SWS_Rte_03862] d The RTE generator shall reject configurations violating the [con-
str_1244], so where a DataPrototype that is used in an AtomicSwComponentType

463 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

has set the swDataDefProps.additionalNativeTypeQualifier attribute set to
enum. c(SRS_Rte_00018)

5.5.5 Range Data Types

For the ApplicationPrimitiveDataType a Range might be specified by referenc-
ing a data constraint (dataConstr) giving the lowerLimit and the upperLimit.
To allow a Software Component the access to these values two definitions for these
values shall be generated.

[SWS_Rte_05051] d The Application Types Header File shall include the definitions
of all lowerLimit and upperLimit constants of each ApplicationPrimitive-
DataType used by this software component once per ApplicationPrimitive-
DataType if the ApplicationPrimitiveDataType is not referenced via different
IncludedDataTypeSets. c(SRS_Rte_00167)

[SWS_Rte_08402] d The Application Types Header File shall include the definitions
of all lowerLimit and upperLimit constants of each ApplicationPrimitive-
DataType used by this software component for each combination of different lit-
eralPrefix and ApplicationPrimitiveDataType when the same Implemen-
tationDataType or ApplicationPrimitiveDataType is referenced via different
IncludedDataTypeSets. c(SRS_Rte_00167)

[SWS_Rte_05052] d The lowerLimit and upperLimit constants for Application-
PrimitiveDataType referencing a DataConstr shall be generated by RTE generator in
the Application Type Header File as:

1 #define <prefix><DataType>_LowerLimit <lowerValue><suffix>
2 #define <prefix><DataType>_UpperLimit <upperValue><suffix>

where <DataType> is the name of the ApplicationPrimitiveDataType used by
the software component.

<prefix> is the optional literalPrefix attribute defined by the Included-
DataTypeSet referring the AutosarDataType to which the DataConstr belongs.

<lowerValue> and <upperValue> are the values lowerLimit and upperLimit
of the dataConstr referenced by the ApplicationPrimitiveDataType onto which the
corresponding CompuMethod has been applied (see [SWS_Rte_07038]). The values
in the macro definitions shall always reflect the closed interval, regardless of the interval
type specified by the dataConstr.

<suffix> shall be "U" for unsigned data types and empty for signed data types.
c(SRS_Rte_00167)

Please note that [SWS_Rte_07196] is not applicable for [SWS_Rte_05052]. Further
on it’s possible that a DataPrototype using an ApplicationPrimitiveDataType might
reference additional dataConstr (see [SWS_Rte_07196]). In this case the upper-
Limit and lowerLimit definitions according [SWS_Rte_05052] do not reflect the

464 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

real applicable range of the DataPrototype. No macros are generated for Dat-
aPrototype specific data constraints.

Please note that the prefix can either be defined that the IncludedDataTypeSet
with a literalPrefix attribute references the ApplicationDataType or it refer-
ences the ImplementationDataType.

Rationale: ApplicationPrimitiveDataType is taken as the basis for the gener-
ation of limits (as opposed to take the corresponding ImplementationDataType)
because the limits defined on the ImplementationDataType) may be wider than
the limits of the ApplicationPrimitiveDataType ((see subsection "Data Types
for Single Values" in the AUTOSAR SW-C Template [2]).

[SWS_Rte_08403] d For AUTOSAR data types which have an invalidValue speci-
fied, the Application Types header file shall contain the definition

1 #define InvalidValue_<prefix><DataType> <invalidValue><suffix>

where

<prefix> is the optional literalPrefix attribute defined by the Included-DataTypeSet
referring the AutosarDataType

<DataType> is the short name of the data type.

<invalidValue> is the value defined as invalidValue for the data type.

<suffix> shall be "U" for unsigned data types and empty for signed data types. c

[SWS_Rte_08416] d The Application Types Header File shall include the definitions of
all invalidValue constants used by this software component for each combination of
different literalPrefix and ApplicationPrimitiveDataType when the same
ImplementationDataType or ApplicationPrimitiveDataType is referenced
via different IncludedDataTypeSets. c(SRS_Rte_00167)

5.5.6 Data Types with bitfield conversions

AutosarDataTypes associated with a CompuMethod of category
BITFIELD_TEXTTABLE support the concatenation of a value set inside a single
scalar variable. Thereby single bits may get a individual (boolean) meaning or a set of
bits is used carry an enumeration. Please note that those data types are not mapped
to C bit fields rather than to scalars (e.g. uint8). Thereby the RTE Generator provides
a set of definitions for the "Bit Mask", "Bit Start Position" and the "Number of Bits" in
order to support the usage of the AUTOSAR Bit Handling Routines [30] for those kind
of data types. For some operations on a set of bits (the set may contain only 1 bit)
those library requires a single contiguous bit field which means that all bits set to 1
in the in the CompuScale.mask attribute value are adjoining, e.g. 0b00010000 or
0b00111100.

465 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_07410] d For each unique CompuScale.shortLabel / CompuS-
cale.mask value pair for a CompuScale which is located in the compuInternal-
ToPhys container of a CompuMethod referenced by an ImplementationDataType
or ApplicationPrimitiveDataType according [SWS_Rte_03809] with category
BITFIELD_TEXTTABLE the Application Types Header File shall contain a definition
for the bit field mask

1 #ifndef <prefix><BflMaskLabel>_BflMask
2 #define <prefix><BflMaskLabel>_BflMask <mask><suffix>
3 #endif /* <prefix><BflMaskLabel>_BflMask */

where
<BflMaskLabel> is the value of the attribute CompuScale.shortLabel
<mask> is the value of the attribute mask
<prefix> is the optional literalPrefix attribute defined by the Included-
DataTypeSet referring the AutosarDataType using the CompuMethod.
<suffix> shall be "U" for unsigned data types and empty for signed data types.
c(SRS_Rte_00167)

[SWS_Rte_07411] d For each unique CompuScale.shortLabel / CompuS-
cale.mask value pair for a CompuScale with a single contiguous bit field which
is located in the compuInternalToPhys container of a CompuMethod referenced
by an ImplementationDataType or ApplicationPrimitiveDataType accord-
ing [SWS_Rte_03809] with category BITFIELD_TEXTTABLE the Application Types
Header File shall contain a definition for the bit start position

1 #ifndef <prefix><BflStartPnLabel>_BflPn
2 #define <prefix><BflStartPnLabel>_BfltPn <BflStartPnNumber><suffix>
3 #endif /* <prefix><BflStartPnLabel>_BfltPn */

where
<BitStartPnLabel> is the value of the attribute CompuScale.shortLabel
<BflStartPnNumber> is the number of the first bit in the attribute value CompuS-
cale.mask which is set to 1. Thereby the bit counting starts from 0 (LSB) to n (MSB).
<prefix> is the optional literalPrefix attribute defined by the Included-
DataTypeSet referring the AutosarDataType using the CompuMethod.
<suffix> shall be "U" for unsigned data types and empty for signed data types.
c(SRS_Rte_00167)

[SWS_Rte_07412] d For each unique CompuScale.shortLabel / CompuS-
cale.mask value pair for a CompuScale with a single contiguous bit field which
is located in the compuInternalToPhys container of a CompuMethod referenced
by an ImplementationDataType or ApplicationPrimitiveDataType accord-
ing [SWS_Rte_03809] with category BITFIELD_TEXTTABLE the Application Types
Header File shall contain a definition for the bit field length

1 #ifndef <prefix><BflLengthLabel>_BflLn
2 #define <prefix><BflLengthLabel>_BflLn <BflLength><suffix>
3 #endif /* <prefix><BflLengthLabel>_BflLn */

466 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

where
<BflLengthLabel> is the value of the attribute shortLabel <BflLength> is the
number of contiguous bits set to 1 in the attribute value CompuScale.mask. <prefix>
is the optional literalPrefix attribute defined by the IncludedDataTypeSet re-
ferring the AutosarDataType using the CompuMethod.
<suffix> shall be "U" for unsigned data types and empty for signed data types.
c(SRS_Rte_00167)

Please note the example in section F.3.

5.6 API Reference

The functions described in this section are organized by the RTE API mapping name
used by C and C++ AUTOSAR software-components to access the API. The API map-
ping hides from the AUTOSAR software-component programmer any need to be aware
of the steps taken by the RTE generator to ensure that the generated API functions
have unique names.

The instance handle as the first parameter of the API calls is marked as an optional
parameter in this section. If an AUTOSAR software-component supports multiple in-
stantiation, the instance handle shall be passed [SWS_Rte_01013].

Note that [SWS_Rte_03806] requires that the instance handle parameter does not
exist if the AUTOSAR software-component does not support multiple instantiation.

5.6.1 Rte_Ports

Purpose: Provide an array of the ports of a given interface type and a given
provide / require usage that can be accessed by the indirect API.

Signature: [SWS_Rte_02619] d
Rte_PortHandle_<i>_<R/P>
Rte_[Byps_]Ports_<i>_<R/P>([IN Rte_Instance])

Where here <i> is the port interface name and ‘P’ or ‘R’ are literals to
indicate provide or require ports respectively. [Byps_] is an optional
infix used when component wrapper method for bypass support is
enabled for the related software component type (See chapter 4.9.2).
c(SRS_Rte_00051)

Existence: [SWS_Rte_02613] d An Rte_Ports API shall be created for each
interface type and usage by a port in at least one PreCompileTime
variant when the indirectAPI attribute of that port is set to true.
c(SRS_Rte_00051)

Description: The Rte_Ports API provides access to an array of ports for the port
oriented API.

467 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_03602] d Rte_Ports API shall return an array of ports
which contains only those ports for which the indirect API was gener-
ated or it shall return an NULL_PTR if the port interface is not used in
the current PreCompileTime variant. c(SRS_Rte_00051)

Return Value: Array of port data structures of the corresponding interface type and
usage.

Notes: None.

5.6.2 Rte_NPorts

Purpose: Provide the number of ports of a given interface type and provide /
require usage that can be accessed through the indirect API.

Signature: [SWS_Rte_02614] d
uint8
Rte_[Byps_]NPorts_<i>_<R/P>([IN Rte_Instance])

Where here <i> is the port interface name and ‘P’ or ‘R’ are literals to
indicate provide or require ports respectively. [Byps_] is an optional
infix used when component wrapper method for bypass support is
enabled for the related software component type (See chapter 4.9.2).
c(SRS_Rte_00051)

Existence: [SWS_Rte_02615] d An Rte_NPorts API shall be created for each
interface type and usage by a port in at least one PreCompileTime
variant when the indirectAPI attribute of the port is set to true.
c(SRS_Rte_00051)

Description: The Rte_NPorts API supports access to an array of ports for the
port oriented API.

[SWS_Rte_03603] d The Rte_NPorts shall return the number of
ports of a given interface and provide / require usage for which the
indirect API was generated or 0 if the port interface is not used in the
current PreCompileTime variant. c(SRS_Rte_00051)

Return Value: Number of port data structures of the corresponding interface type
and usage.

Notes: None.

5.6.3 Rte_Port

Purpose: Provide access to the port data structure for a single port of a particu-
lar software component instance. This allows a software component

468 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

to extract a sub-group of ports characterized by the same interface in
order to iterate over this sub-group.

Signature: [SWS_Rte_01354] d
Rte_PortHandle_<i>_<R/P>
Rte_[Byps_]Port_<p>([IN Rte_Instance])

where <i> is the port interface name and <p> is the name of the port.
[Byps_] is an optional infix used when component wrapper method
for bypass support is enabled for the related software component type
(See chapter 4.9.2). c(SRS_Rte_00051)

Existence: [SWS_Rte_01355] d An Rte_Port API shall be created for each
port of an AUTOSAR SW-C, for which the indirectAPI attribute is
set to true. c(SRS_Rte_00051)

Description: The Rte_Port API provides a pointer to a single port data structure,
in order to support the indirect API.

Return Value: Pointer to port data structure for the appropriate port.

Notes: None.

5.6.4 Rte_Write

Purpose: Initiate an “explicit” sender-receiver transmission of data elements
with “data” semantic (swImplPolicy different from queued).

Signature: [SWS_Rte_01071] d
Std_ReturnType
Rte_[Byps_]Write_<p>_<o>([IN Rte_Instance <instance>],

IN <data>)

Where <p> is the port name and <o> the VariableDataPro-
totype within the sender-receiver interface categorizing the port.
[Byps_] is an optional infix used when component wrapper method
for bypass support is enabled for the related software component
type (See chapter 4.9.2). c(SRS_BSW_00310, SRS_Rte_00098,
SRS_Rte_00028, SRS_Rte_00131)

Existence: [SWS_Rte_01280] d The presence of a VariableAccess in
the dataSendPoint role for a provided VariableDataProto-
type with data semantics shall result in the generation of
an Rte_Write API for the provided VariableDataPrototype.
c(SRS_Rte_00051)

[constr_9015] Rte_Write API may only be used by the runnable
that describe its usage d The Rte_Write API may only be used
by the runnable that contains the corresponding VariableAccess
in the dataSendPoint role c

469 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Description: The Rte_Write API call initiates a sender-receiver communication
where the transmission occurs at the point the API call is made (cf.
explicit transmission).

The Rte_Write API call includes the IN parameter <data> to pass
the data element to write.

The IN parameter <data> is passed by value or reference accord-
ing to the ImplementationDataType as described in the section
5.2.6.5.

If the IN parameter <data> is passed by reference, the pointer must
remain valid until the API call returns.

The RTE generator shall take into account the kind of connected re-
quire port which might not be just a variable but also a NV data. The
table 4.6 gives an overview of compatibility rules.

Return Value: The return value is used to indicate errors detected by the RTE during
execution of the Rte_Write.

• [SWS_Rte_07820] d RTE_E_OK – data passed to communica-
tion service successfully. c(SRS_Rte_00094)

• [SWS_Rte_07822] d RTE_E_COM_STOPPED – the RTE could
not perform the operation because the COM service is currently
not available (inter ECU communication only). RTE shall return
RTE_E_COM_STOPPED when the corresponding COM service
returns COM_SERVICE_NOT_AVAILABLE. c(SRS_Rte_00094)

• [SWS_Rte_02756] d RTE_E_SEG_FAULT – a segmentation vio-
lation is detected in the handed over parameters to the RTE API
as required in [SWS_Rte_02752] and [SWS_Rte_02753]. No
transmission is executed. c(SRS_Rte_00210)

Notes: The Rte_Write call is used to transmit “data” (swImplPolicy not
queued).

[SWS_Rte_07824] d In case of inter ECU communication, the
Rte_Write shall cause an immediate transmission request.
c(SRS_Rte_00028, SRS_Rte_00131)

Note that depending on the configuration a transmission request may
not result in an actual transmission, for example transmission may be
rate limited (time-based filtering) and thus dependent on other factors
than API calls.

[SWS_Rte_07826] d In case of inter ECU communication, the
Rte_Write API shall return when the signal has been passed to
the communication service for transmission. c(SRS_Rte_00028,
SRS_Rte_00131)

470 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Depending on the communication server the transmission may or
may not have been acknowledged by the receiver at the point the
API call returns.

[SWS_Rte_02635] d In case of intra ECU communication, the
Rte_Write API call shall return after copying the data to RTE local
memory or using IOC buffers. c(SRS_Rte_00028, SRS_Rte_00131)

[SWS_Rte_01080] d If the transmission acknowledgement is en-
abled, the RTE shall notify component when the transmission is ac-
knowledged or a transmission error occurs. c(SRS_Rte_00122)

[SWS_Rte_01082] d If a provide port typed by a sender-receiver in-
terface has multiple require ports connected (i.e. it has multiple re-
ceivers), then the RTE shall ensure that writes to all receivers are
independent. c(SRS_Rte_00028)

Requirement [SWS_Rte_01082] ensures that an error detected by
the RTE when writing to one receiver, e.g. communication is stopped,
does not prevent the transmission of this message to other compo-
nents.

[SWS_Rte_08413] d If a provide port typed by a sender-receiver in-
terface has multiple require ports connected (i.e. it has multiple re-
ceivers), then the RTE shall return RTE_E_OK only if no error at all
occurred. c(SRS_Rte_00028)

[SWS_Rte_08414] d In case of multiple faults during a call of
Rte_Write the resulting return value shall be derived according to
the following priority rules (highest priority first):

1. RTE_E_SEG_FAULT

2. RTE_E_COM_STOPPED

c(SRS_Rte_00028)

5.6.5 Rte_Send

Purpose: Initiate an “explicit” sender-receiver transmission of data elements
with “event” semantic (swImplPolicy equal to queued).

Signature: [SWS_Rte_01072] d
Std_ReturnType
Rte_[Byps_]Send_<p>_<o>([IN Rte_Instance <instance>],

IN <data>,
[IN uint16 <length>])

Where <p> is the port name and <o> the VariableDataPro-
totype within the sender-receiver interface categorizing the port.

471 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[Byps_] is an optional infix used when component wrapper method
for bypass support is enabled for the related software component
type (See chapter 4.9.2). c(SRS_BSW_00310, SRS_Rte_00141,
SRS_Rte_00028, SRS_Rte_00131)

Existence: [SWS_Rte_01281] d The presence of a VariableAccess in
the dataSendPoint role for a provided VariableDataProto-
type with event semantics shall result in the generation of
an Rte_Send API for the provided VariableDataPrototype.
c(SRS_Rte_00051)

[SWS_Rte_07813] d The optional IN parameter <length> of the
Rte_Send API shall be generated if the VariableDataPrototype
is of type dynamic. c(SRS_Rte_00190)

[constr_9016] Rte_Send API may only be used by the runnable
that describes its usage d The Rte_Send API may only be used
by the runnable that contains the corresponding VariableAccess
in the dataSendPoint role c

Description: The Rte_Send API call initiates a sender-receiver communication
where the transmission occurs at the point the API call is made (cf.
explicit transmission).

The Rte_Send API call includes the IN parameter <data> to pass
the data element to send.

The IN parameter <data> is passed by value or reference accord-
ing to the ImplementationDataType as described in the section
5.2.6.5.

If the IN parameter <data> is passed by reference, the pointer must
remain valid until the API call returns.

If the VariableDataPrototype is of type dynamic, the Rte_Send
API call includes the IN parameter <length> to pass the number of
elements in the data element to send.

The RTE generator has to take into account the kind of connected
require port which might not be just a variable but also a NV data.
The table 4.6 gives an overview of compatibility rules.

Return Value: The return value is used to indicate errors detected by the RTE during
execution of the Rte_Send.

• [SWS_Rte_07821] d RTE_E_OK – data passed to communica-
tion service successfully. c(SRS_Rte_00094)

• [SWS_Rte_07823] d RTE_E_COM_STOPPED – the RTE could
not perform the operation because the COM service is currently
not available (inter ECU communication only). RTE shall return

472 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

RTE_E_COM_STOPPED when the corresponding COM service
returns COM_SERVICE_NOT_AVAILABLE. c(SRS_Rte_00094)

• [SWS_Rte_02634] d RTE_E_LIMIT – an ‘event’ has been dis-
carded due to a full queue by one of the ECU local receivers
(intra ECU communication only). c(SRS_Rte_00143)

• [SWS_Rte_02754] d RTE_E_SEG_FAULT – a segmentation vio-
lation is detected in the handed over parameters to the RTE API
as required in [SWS_Rte_02752] and [SWS_Rte_02753]. No
transmission is executed. c(SRS_Rte_00210)

Notes: The Rte_Send call is used to transmit “events” (swImplPolicy =
queued).

[SWS_Rte_07825] d In case of inter ECU communication,
the Rte_Send shall cause an immediate transmission request.
c(SRS_Rte_00028, SRS_Rte_00131)

Note that depending on the configuration a transmission request may
not result in an actual transmission, for example transmission may be
rate limited (time-based filtering) and thus dependent on other factors
than API calls.

[SWS_Rte_07827] d In case of inter ECU communication, the
Rte_Send API shall return when the signal has been passed to
the communication service for transmission. c(SRS_Rte_00028,
SRS_Rte_00131)

Depending on the communication server the transmission may or
may not have been acknowledged by the receiver at the point the
API call returns.

[SWS_Rte_02633] d In case of intra ECU communication, the
Rte_Send API call shall return after attempting to enqueue the
data in the IOC or RTE internal queues. c(SRS_Rte_00028,
SRS_Rte_00131)

If the transmission acknowledgement is enabled, the RTE has to no-
tify component when the transmission is acknowledged or a trans-
mission error occurs. [SWS_Rte_01080]

If a provide port typed by a sender-receiver interface has multi-
ple require ports connected (i.e. it has multiple receivers), then
the RTE shall ensure that writes to all receivers are independent.
[SWS_Rte_01082]

Requirement [SWS_Rte_01082] ensures that an error detected by
the RTE when writing to one receiver, e.g. an overflow in one compo-
nent’s queue, does not prevent the transmission of this message to
other components.

473 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

If a provide port typed by a sender-receiver interface has multi-
ple require ports connected (i.e. it has multiple receivers), then
the RTE shall return RTE_E_OK only if no error at all occurred.
[SWS_Rte_08413]

[SWS_Rte_08415] d In case of multiple faults during a call of
Rte_Send the resulting return value shall be derived according to
the following priority rules (highest priority first):

1. RTE_E_SEG_FAULT

2. RTE_E_LIMIT (only in case of Intra-ECU communication)

3. RTE_E_COM_STOPPED

c(SRS_Rte_00028)

5.6.6 Rte_Switch

Purpose: Initiate a mode switch. The Rte_Switch API call is used for ‘explicit’
sending of a mode switch notification.

Signature: [SWS_Rte_02631] d
Std_ReturnType
Rte_[Byps_]Switch_<p>_<o>([IN Rte_Instance <instance>],

IN <mode>)

Where <p> is the port name and <o> the ModeDeclarationGroup-
Prototype within the ModeSwitchInterface categorizing the port.
[Byps_] is an optional infix used when component wrapper method
for bypass support is enabled for the related software component
type (See chapter 4.9.2). c(SRS_BSW_00310, SRS_Rte_00143,
SRS_Rte_00028, SRS_Rte_00131)

Existence: [SWS_Rte_02632] d The existence of a ModeSwitchPoint shall result
in the generation of a Rte_Switch API. c(SRS_Rte_00051)

[constr_9017] Rte_Switch API may only be used by the runn-
able that describes its usage d The Rte_Switch API may only be
used by the runnable that contains the corresponding ModeSwitch-
Point c

Description: The Rte_Switch triggers a mode switch for all connected require
ModeDeclarationGroupPrototypes.

The Rte_Switch API call includes exactly one IN parameter for the
next mode <mode>. The IN parameter <mode> is passed by value
according to the ImplementationDataType on which the Mode-
DeclarationGroup is mapped. The type name shall be equal to the
shortName of the ImplementationDataType.

474 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Return Value: The return value is used to indicate errors detected by the RTE during
execution of the Rte_Switch call.

• [SWS_Rte_02674] d RTE_E_OK – data passed to service suc-
cessfully. c(SRS_Rte_00094)

• [SWS_Rte_02675] d RTE_E_LIMIT – a mode switch has
been discarded by the receiving partition due to a full queue.
c(SRS_Rte_00143)

Notes: Rte_Switch is restricted to ECU local communication.

If a mode instance is currently involved in a transition then
the Rte_Switch API will attempt to queue the request and re-
turn [SWS_Rte_02667]. However if no transition is in progress
for the mode instance, the mode disablings and the activations
of OnEntry, OnTransition, and OnExit ExecutableEntities for this
mode instance are executed before the Rte_Switch API returns
[SWS_Rte_02665].

Note that the mode switch might be discarded when the queue is full
and a mode transition is in progress, see [SWS_Rte_02675].

5.6.7 Rte_Invalidate

Purpose: Invalidate a data element for an “explicit” sender-receiver transmis-
sion.

Signature: [SWS_Rte_01206] d
Std_ReturnType
Rte_[Byps_]Invalidate_<p>_<o>([IN Rte_Instance <instance>])

Where <p> is the port name and <o> the VariableDataPro-
totype within the sender-receiver interface categorizing the port.
[Byps_] is an optional infix used when component wrapper method
for bypass support is enabled for the related software component type
(See chapter 4.9.2). c(SRS_BSW_00310, SRS_Rte_00078)

Existence: [SWS_Rte_01282] d An Rte_Invalidate API shall be created for
any VariableAccess in the dataSendPoint role that references
a provided VariableDataPrototype which associated Inval-
idationPolicy is set to keep or replace. c(SRS_Rte_00051,
SRS_Rte_00078)

[constr_9018] Rte_Invalidate API may only be used by the
runnable that describe its usage d The Rte_Invalidate API may
only be used by the runnable that contains the corresponding Vari-
ableAccess in the dataSendPoint role c

475 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Description: The Rte_Invalidate API takes no parameters other than the in-
stance handle – the return value is used to indicate the success, or
otherwise, of the API call to the caller.

[SWS_Rte_01231] d When COM is used for communication and
the VariableDataPrototype is primitive the COM API func-
tion Com_InvalidateSignal shall be called for invalidation.
c(SRS_Rte_00019, SRS_Rte_00078)

[SWS_Rte_05063] d When COM is used for communication and
the VariableDataPrototype is composite the COM API func-
tion Com_InvalidateSignalGroup shall be called for invalidation.
c(SRS_Rte_00019, SRS_Rte_00078)

The behavior required when COM is not used for communication is
described in Section 4.3.1.8.

Return Value: The return value is used to indicate the “OK” status or errors detected
by the RTE during execution of the Rte_Invalidate call.

• [SWS_Rte_01207] d RTE_E_OK – No error occurred.
c(SRS_Rte_00094)

• [SWS_Rte_01339] d RTE_E_COM_STOPPED – the RTE could
not perform the operation because the COM service is currently
not available (inter ECU communication only). RTE shall return
RTE_E_COM_STOPPED when the corresponding COM service
returns COM_SERVICE_NOT_AVAILABLE. c(SRS_Rte_00094)

Notes: The API name includes an identifier <p>_<o> that is formed from the
port and operation item names. See Section 5.2.6.4 for details on the
naming convention.

The communication service configuration determines whether the
signal receiver(s) receive an “invalid signal” notification or whether
the invalidated signal is silently replaced by the signal’s initial value.

5.6.8 Rte_Feedback

Purpose: Provide access to acknowledgement notifications for explicit sender-
receiver communication and to pass error notification to senders.

Signature: [SWS_Rte_01083] d
Std_ReturnType
Rte_[Byps_]Feedback_<p>_<o>([IN Rte_Instance <instance>])

Where <p> is the port name and <o> the VariableDataPro-
totype within the sender-receiver interface categorizing the port.
[Byps_] is an optional infix used when component wrapper method

476 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

for bypass support is enabled for the related software component type
(See chapter 4.9.2). c(SRS_BSW_00310, SRS_Rte_00122)

Existence: [SWS_Rte_01283] d Acknowledgement is enabled for a pro-
vided VariableDataPrototype by the existence of a Trans-
missionAcknowledgementRequest in the SenderComSpec.
c(SRS_Rte_00051, SRS_Rte_00122)

[SWS_Rte_01284] d A blocking Rte_Feedback API shall be gener-
ated for a provided VariableDataPrototype if acknowledgement
is enabled and a WaitPoint references a DataSendComplet-
edEvent that in turn references the VariableAccess which in
turn references the VariableDataPrototype. c(SRS_Rte_00051,
SRS_Rte_00122)

[SWS_Rte_07850] d A blocking Rte_Feedback API shall block
when a transmission of the related VariableDataPrototype is
ongoing. c(SRS_Rte_00051, SRS_Rte_00122)

[SWS_Rte_07851] d A blocking Rte_Feedback API shall return:

• if the sender port is not connected or

• if the calling runnable runs in an exclusive area or

• if no transmission of the related VariableDataPrototype is
ongoing or

• when the wait point timeout occurs or

• when the related DataSendCompletedEvent is triggered.

c(SRS_Rte_00051, SRS_Rte_00122)

[SWS_Rte_01285] d A non-blocking Rte_Feedback API shall be
generated for a provided VariableDataPrototype if acknow-
ledgement is enabled and a VariableAccess in the dataSend-
Point role references the VariableDataPrototype but no
WaitPoint references the DataSendCompletedEvent that ref-
erences the VariableAccess which in turn references the Vari-
ableDataPrototype. c(SRS_Rte_00051, SRS_Rte_00122)

Please note that a non-blocking Rte_Feedback API does not
require the existence of a DataSendCompletedEvent. If the
DataSendCompletedEvent exists it can be used to trigger
the execution of a RunnableEntity in which the non-blocking
Rte_Feedback API function may be called.

[SWS_Rte_01286] d If acknowledgement is enabled for a provided
VariableDataPrototype and a DataSendCompletedEvent refer-
ences a runnable entity as well as the VariableAccess which in
turn references the VariableDataPrototype, the runnable entity

477 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

shall be activated when the transmission acknowledgement occurs
or when a timeout was detected by the RTE. [SWS_Rte_01137].
c(SRS_Rte_00051, SRS_Rte_00122)

Requirement [SWS_Rte_01286] merely affects when the runnable is
activated – an API call should still be created, according to require-
ment [SWS_Rte_01285] to actually read the data.

[SWS_Rte_01287] d A DataSendCompletedEvent that references
a RunnableEntity and is referenced by a WaitPoint shall be
an invalid configuration which is rejected by the RTE generator.
c(SRS_Rte_00051, SRS_Rte_00122, SRS_Rte_00018)

[constr_9019] Rte_Feedback API may only be used by the runn-
able that describe its usage d A blocking Rte_Feedback API may
only be used by the runnable that contains the corresponding Wait-
Point c

[SWS_Rte_07634] d A call to Rte_Feedback shall not change the
status returned by Rte_Feedback. c(SRS_Rte_00122)

The Rte_Feedback API return value is only changed when a new
transmission is requested (Rte_Send or Rte_Write) or when the
notification from COM is received.

[SWS_Rte_07635] d After a Rte_Send or Rte_Write transmission
request, only the first notification from COM shall be taken into ac-
count for a given Signal or SignalGroup. c(SRS_Rte_00122)

[SWS_Rte_07635] is needed in case of cyclic transmission which
could result in multiple transmissions with different status.

Description: The Rte_Feedback API takes no parameters other than the in-
stance handle – the return value is used to indicate the acknowledge-
ment status to the caller.

The Rte_Feedback API applies only to explicit sender-receiver
communication.

Return Value: The return value is used to indicate the status of the transmission and
errors detected by the RTE.

• [SWS_Rte_01084] d RTE_E_NO_DATA – No acknowledgments
or error notifications were received from COM when the
Rte_Feedback API was called (non-blocking call) or when the
WaitPoint timeout expired (blocking call). c(SRS_Rte_00094,
SRS_Rte_00122)

• RTE_E_COM_STOPPED – returned in one of these cases:

– [SWS_Rte_07636] d (Inter-ECU communication
only) The last transmission was rejected (when the

478 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Rte_Send or Rte_Write API was called), with an
RTE_E_COM_STOPPED return code. c(SRS_Rte_00094,
SRS_Rte_00122)

– [SWS_Rte_03774] d (Inter-ECU communication only) An
error notification from COM was received before any timeout
notification. c(SRS_Rte_00094, SRS_Rte_00122)

• [SWS_Rte_07637] d RTE_E_TIMEOUT – (Inter-ECU and Inter-
Partition only) A timeout notification was received from COM
or IOC before any error notification. c(SRS_Rte_00094,
SRS_Rte_00122)

• [SWS_Rte_01086] d RTE_E_TRANSMIT_ACK – In case of
inter-ECU communication, a transmission acknowledgment was
received from COM; or in case of intra-ECU communica-
tion, even if a queue overflow occurred. c(SRS_Rte_00094,
SRS_Rte_00122)

• RTE_E_UNCONNECTED – Indicates that the sender port is not
connected [SWS_Rte_01344].

• [SWS_Rte_02740] d RTE_E_IN_EXCLUSIVE_AREA – Used
only for the blocking API. RTE_E_IN_EXCLUSIVE_AREA indi-
cates that the runnable can not enter wait, as one of the Ex-
ecutableEntitys in the call stack of this task is currently in
an exclusive area, see [SWS_Rte_02739]. - In a properly con-
figured system, this error should not occur. The check can be
disabled according to [SWS_Rte_08318]. c(SRS_Rte_00092,
SRS_Rte_00046, SRS_Rte_00032)

• [SWS_Rte_08318] d If RteInExclusiveAreaCheckEn-
abled is set to false the RTE generator shall omit the
check and return of [SWS_Rte_02740]. c(SRS_Rte_00092,
SRS_Rte_00046, SRS_Rte_00032)

The RTE_E_NO_DATA, RTE_E_TRANSMIT_ACK and
RTE_E_UNCONNECTED return values are not considered to be
an error but rather indicates correct operation of the API call.

[SWS_Rte_07652] d The initial return value of the
Rte_Feedback API, before any attempt to write some data shall
be RTE_E_TRANSMIT_ACK. c(SRS_Rte_00094, SRS_Rte_00122,
SRS_Rte_00128, SRS_Rte_00185)

[SWS_Rte_08075] d In case of multiple faults during a call
of Rte_Feedback the resulting return value shall be derived
according to the following priority rules (highest priority first):
(1) RTE_E_UNCONNECTED, (2) RTE_E_IN_EXCLUSIVE_AREA, (3)

479 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

RTE_E_TIMEOUT, (4) RTE_E_COM_STOPPED, (5) RTE_E_NO_DATA,
(6) RTE_E_TRANSMIT_ACK. c(SRS_Rte_00122)

Notes: If multiple transmissions on the same port/element are outstanding
it is not possible to determine which is acknowledged first. If this is
important, transmissions should be call serialized with the next oc-
curring only when the previous transmission has been acknowledged
or has timed out.

A transmission acknowledgment (or error and timeout) notification is
not always provided by COM (the bus or PDU Router may not sup-
port transmission acknowledgment for this PDU, or COM may not be
configured to perform transmission deadline monitoring).

In case of a blocking Rte_Feedback the value of the WaitPoint
timeout depends on the timeout defined at the COM level.

5.6.9 Rte_SwitchAck

Purpose: Provide access to mode switch completed acknowledgements and
error notifications to mode managers.

Signature: [SWS_Rte_02725] d
Std_ReturnType
Rte_[Byps_]SwitchAck_<p>_<o>([IN Rte_Instance <instance>])

Where <p> is the port name and <o> the ModeDeclara-
tionGroupPrototype within the ModeSwitchInterface cate-
gorizing the port. [Byps_] is an optional infix used when compo-
nent wrapper method for bypass support is enabled for the related
software component type (See chapter 4.9.2). c(SRS_BSW_00310,
SRS_Rte_00122)

Existence: [SWS_Rte_02676] d Acknowledgement is enabled for a pro-
vided ModeDeclarationGroupPrototype by the existence of a
ModeSwitchedAckRequest in the ModeSwitchSenderComSpec.
c(SRS_Rte_00051, SRS_Rte_00122)

[SWS_Rte_02677] d A blocking Rte_SwitchAck API shall be gen-
erated for a provided ModeDeclarationGroupPrototype if ack-
nowledgement is enabled and a WaitPoint references a Mod-
eSwitchedAckEvent that in turn references the ModeDeclara-
tionGroupPrototype. c(SRS_Rte_00051, SRS_Rte_00122)

[SWS_Rte_07846] d A blocking Rte_SwitchAck API shall block
when a mode switch in the related mode machine instance is on-
going. c(SRS_Rte_00122, SRS_Rte_00092)

[SWS_Rte_07847] d A blocking Rte_SwitchAck API shall return:

480 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

• if the mode machine instance behaves as unconnected or

• if the calling runnable runs in an exclusive area or

• if no mode switch in the related mode machine instance is on-
going or

• when the wait point timeout occurs or

• when the related ModeSwitchedAckEvent is triggered.

c(SRS_Rte_00122, SRS_Rte_00092, SRS_Rte_00139)

[SWS_Rte_02678] d A non-blocking Rte_SwitchAck API shall
be generated for a provided ModeDeclarationGroupPrototype
if acknowledgement is enabled but no WaitPoint references
a ModeSwitchedAckEvent that references the ModeDeclara-
tionGroupPrototype.

Please note that a non-blocking API does not require the existence
of a ModeSwitchedAckEvent. If the ModeSwitchedAckEvent
exists it can be used to trigger the execution of a RunnableEn-
tity in which the non-blocking API function may be called.
c(SRS_Rte_00051, SRS_Rte_00122)

[constr_9020] The blocking Rte_SwitchAck API may only be
used by the runnable that describes its usage. d A blocking
Rte_SwitchAck API must only be used by the runnable that con-
tains the corresponding WaitPoint c

Description: The Rte_SwitchAck API takes no parameters other than the in-
stance handle – the return value is used to indicate the acknowledge-
ment status to the caller.

Return Value: The return value is used to indicate the status of a mode switch and
errors detected by the RTE.

• [SWS_Rte_02727] d RTE_E_NO_DATA – (non-blocking read)
The mode switch is still in progress. c(SRS_Rte_00094,
SRS_Rte_00122)

• [SWS_Rte_02728] d RTE_E_TIMEOUT – The configured time-
out exceeds before the mode transition was completed.
c(SRS_Rte_00094, SRS_Rte_00210)

• [SWS_Rte_03853] d RTE_E_TIMEOUT – The partition of the
mode users is stopped or restarting or has been restarted
while the mode switch was requested. c(SRS_Rte_00094,
SRS_Rte_00210)

481 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

• [SWS_Rte_02729] d RTE_E_TRANSMIT_ACK – The mode
switch has been completed (see [SWS_Rte_02587]).
c(SRS_Rte_00094, SRS_Rte_00122)

• [SWS_Rte_07659] d RTE_E_UNCONNECTED – Indicates that
the mode provider port is not connected. c(SRS_Rte_00094,
SRS_Rte_00122, SRS_Rte_00139)

• [SWS_Rte_02741] d RTE_E_IN_EXCLUSIVE_AREA – Used
only for the blocking API. RTE_E_IN_EXCLUSIVE_AREA indi-
cates that the runnable can not enter wait, as one of the Ex-
ecutableEntitys in the call stack of this task is currently in
an exclusive area, see [SWS_Rte_02739]. - In a properly con-
figured system, this error should not occur. The check can be
disabled according to [SWS_Rte_08319]. c(SRS_Rte_00092,
SRS_Rte_00046, SRS_Rte_00032)

• [SWS_Rte_08319] d If RteInExclusiveAreaCheckEn-
abled is set to false the RTE generator shall omit the
check and return of [SWS_Rte_02741]. c(SRS_Rte_00092,
SRS_Rte_00046, SRS_Rte_00032)

The RTE_E_TRANSMIT_ACK return value is not considered to be
an error but rather indicates correct operation of the API call.

When RTE_E_NO_DATA occurs, a component is free to re-invoke
Rte_SwitchAck and thus repeat the attempt to read the status of
the mode switch.

[SWS_Rte_07848] d The initial return value of the Rte_SwitchAck
API before any attempt to switch a mode shall be
RTE_E_TRANSMIT_ACK. c(SRS_Rte_00094, SRS_Rte_00122)

[SWS_Rte_07849] d In case of multiple faults during
a call of Rte_SwitchAck the resulting return value
shall be derived according to the following priority rules
(highest priority first): (1) RTE_E_UNCONNECTED, (2)
RTE_E_IN_EXCLUSIVE_AREA, (3) RTE_E_TIMEOUT, (4)
RTE_E_NO_DATA, (5) RTE_E_TRANSMIT_ACK. c(SRS_Rte_00094,
SRS_Rte_00122)

Notes: If multiple mode switches of the same mode machine instance
are outstanding, it is not possible to determine which is acknowl-
edged first. If this is important, switches should be serialized with
the next switch occurring only when the previous switch has been
acknowledged. The queue length should be 1.

482 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

5.6.10 Rte_Read

Purpose: Performs an “explicit” read on a sender-receiver communication data
element with “data” semantics (swImplPolicy != queued). By
compatibility, the port may also have a ParameterInterface or
a NvDataInterface. The Rte_Read API is used for explicit read
by argument.

Signature: [SWS_Rte_01091] d
Std_ReturnType
Rte_[Byps_]Read_<p>_<o>([IN Rte_Instance <instance>],

OUT <data>))

Where <p> is the port name and <o> the VariableDataPro-
totype within the sender-receiver interface categorizing the port.
[Byps_] is an optional infix used when component wrapper method
for bypass support is enabled for the related software component
type (See chapter 4.9.2). c(SRS_BSW_00310, SRS_Rte_00141,
SRS_Rte_00028, SRS_Rte_00131)

Existence: [SWS_Rte_01289] d A non-blocking Rte_Read API shall be gen-
erated if a VariableAccess in the dataReceivePointByArgu-
ment role references a required VariableDataPrototype with
‘data’ semantics. c(SRS_Rte_00051)

[SWS_Rte_07396] d The RTE shall ensure that direct explicit read
accesses will not deliver undefined data item values. In case there
may be an explicit read access before the first data reception an ini-
tial value shall be provided as the result of this explicit read access.
c(SRS_Rte_00051, SRS_Rte_00183)

A WaitPoint cannot reference a DataReceivedEvent that
in turn references a required VariableDataPrototype with
‘data’ semantics shall be considered an invalid configuration (see
[SWS_Rte_03018]). Hence there are no blocking Rte_Read API.

[constr_9021] Rte_Read API may only be used by the runnable
that describe its usage d The Rte_Read API may only be used by
the runnable that contains the corresponding VariableAccess in
the dataReceivePointByArgument role c

[SWS_Rte_01313] d A DataReceivedEvent that references a
runnable entity and is referenced by a WaitPoint shall be an in-
valid configuration. c(SRS_Rte_00051, SRS_Rte_00018)

The RTE generator shall take into account the kind of provide port
which might not be just a variable but also a Parameter (fixed, const
or standard), a standard sender (i.e. a variable) or a NV data. The
table 4.6 gives an overview of compatibility rules.

483 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Description: The Rte_Read API call includes the OUT parameter <data> to pass
back the received data.

The pointer to the OUT parameter <data> must remain valid until
the API call returns.

Return Value: The return value is used to indicate errors detected by the RTE dur-
ing execution of the Rte_Read API call or errors detected by the
communication system.

• [SWS_Rte_01093] d RTE_E_OK – data read successfully.
c(SRS_Rte_00094)

• [SWS_Rte_02626] d RTE_E_INVALID – data element in-
valid. c(SRS_Rte_00078)

• [SWS_Rte_02703] d RTE_E_MAX_AGE_EXCEEDED – data
element outdated. This Overlayed Error can be com-
bined with any of the above error codes. c(SRS_Rte_00147)

• [SWS_Rte_07643] d RTE_E_NEVER_RECEIVED – No
data received since system start or partition restart.
c(SRS_Rte_00184, SRS_Rte_00224)

• [SWS_Rte_01371] d RTE_E_OUT_OF_RANGE – data ele-
ment out of range. c(SRS_Rte_00180)

• RTE_E_UNCONNECTED – Indicates that the receiver port is not
connected [SWS_Rte_01330].

Notes: The API name includes an identifier <p>_<o> that indicates the read
access point name and is formed from the port and operation item
names. See section 5.2.6.4 for details on the naming convention.

5.6.11 Rte_DRead

Purpose: Performs an “explicit” read on a sender-receiver communication data
element with “data” semantics (swImplPolicy != queued). By
compatibility, the port may also have a ParameterInterface or
a NvDataInterface. The Rte_DRead API is used for explicit read
by value.

Signature: [SWS_Rte_07394] d
<return>
Rte_[Byps_]DRead_<p>_<o>([IN Rte_Instance <instance>])

Where <p> is the port name and <o> the VariableDataPro-
totype within the sender-receiver interface categorizing the port.
[Byps_] is an optional infix used when component wrapper method
for bypass support is enabled for the related software component

484 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

type (See chapter 4.9.2). c(SRS_BSW_00310, SRS_Rte_00141,
SRS_Rte_00028, SRS_Rte_00131, SRS_Rte_00183)

Existence: [SWS_Rte_07395] d A non-blocking Rte_DRead API shall be gen-
erated if a VariableAccess in the dataReceivePointByValue
role references a required VariableDataPrototypewith ‘data’ se-
mantics. This requirement is applicable only for primitive data types.
c(SRS_Rte_00051, SRS_Rte_00183)

The RTE shall ensure that direct explicit read accesses will not de-
liver undefined data item values. In case there may be an explicit
read access before the first data reception an initial value has to be
provided as the result of this explicit read access. [SWS_Rte_07396]

A WaitPoint cannot reference a DataReceivedEvent that in turn
references a required VariableDataPrototype with ‘data’ se-
mantics. Such a configuration has to be considered as invalid (see
[SWS_Rte_03018]). Hence there are no blocking Rte_DRead API.

[constr_9022] Rte_DRead API may only be used by the runnable
that describe its usage d The Rte_DRead API may only be used
by the runnable that contains the corresponding VariableAccess
in the dataReceivePointByValue role c

A DataReceivedEvent that references a runnable entity and
is referenced by a WaitPoint shall be an invalid configuration.
[SWS_Rte_01313]

The RTE generator shall take into account the kind of provide port
which might not be just a variable but also a Parameter (fixed, const
or standard), a standard sender (i.e. a variable) or a NV data. The
table 4.6 gives an overview of compatibility rules.

Description: The Rte_DRead API returns the received data as a return value.

Return Value: The Rte_DRead return value provide access to the data value of the
VariableDataPrototype.

The return type of Rte_DRead is dependent on the Implementa-
tionDataType of the VariableDataPrototype. Thus the com-
ponent does not need to use type casting to convert access to the
VariableDataPrototype data.

For details of the <return> value definition see section 5.2.6.6.

Please note that the Rte_DRead API only supports VariableDat-
aPrototypes typed by a Primitive Implementation Data
Type or Redefinition Implementation Data Type redefin-
ing a Primitive Implementation Data Type.

485 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Notes: The API name includes an identifier <p>_<o> that indicates the read
access point name and is formed from the port and operation item
names. See section 5.2.6.4 for details on the naming convention.

5.6.12 Rte_Receive

Purpose: Performs an “explicit” read on a sender-receiver communication data
element with “event” semantics (swImplPolicy = queued).

[SWS_Rte_01092] d
Std_ReturnType
Rte_[Byps_]Receive_<p>_<o>([IN Rte_Instance <instance>],

OUT <data>,
[OUT uint16 <length>])

Where <p> is the port name and <o> the data element within the
sender-receiver interface categorizing the port. [Byps_] is an op-
tional infix used when component wrapper method for bypass sup-
port is enabled for the related software component type (See chap-
ter 4.9.2). c(SRS_BSW_00310, SRS_Rte_00141, SRS_Rte_00028,
SRS_Rte_00131)

Existence: [SWS_Rte_01288] d A non-blocking Rte_Receive API shall be
generated if a VariableAccess in the dataReceivePointB-
yArgument role references a required VariableDataPrototype
with ‘event’ semantics. c(SRS_Rte_00051)

[SWS_Rte_07638] d The RTE Generator shall reject configurations
were a VariableDataPrototype with ‘event’ semantics is refer-
enced by a VariableAccess in the dataReceivePointByValue
role. c(SRS_Rte_00018)

[SWS_Rte_07814] d The optional OUT parameter <length> of the
Rte_Receive API shall be generated if the VariableDataProto-
type is of type dynamic. c(SRS_Rte_00190)

[SWS_Rte_01290] d A blocking Rte_Receive API shall be gener-
ated if a VariableAccess in the dataReceivePointByArgu-
ment role references a required VariableDataPrototype with
‘event’ semantics that is, in turn, referenced by a DataReceivedE-
vent and the DataReceivedEvent is referenced by a WaitPoint.
c(SRS_Rte_00051)

[constr_9023] Rte_Receive API may only be used by the runn-
able that describe its usage d The Rte_Receive API may only be
used by the runnable that contains the corresponding VariableAc-
cess in the dataReceivePointByArgument role c

486 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

A DataReceivedEvent that references a runnable entity and is refer-
enced by a WaitPoint has to be treated as an invalid configuration.
[SWS_Rte_01313]

Description: The Rte_Receive API call includes the OUT parameter <data> to
pass back the received data element.

If the VariableDataPrototype is of type dynamic, the
Rte_Receive API call include the OUT parameter <length> to
pass back the number of elements in the received data element.

The pointers to the OUT parameters must remain valid until the API
call returns.

[SWS_Rte_07673] d In case return value is
RTE_E_NO_DATA, RTE_E_TIMEOUT, RTE_E_UNCONNECTED or
RTE_E_IN_EXCLUSIVE_AREA, the OUT parameters shall remain
unchanged. c(SRS_Rte_00094, SRS_Rte_00141)

Return Value: The return value is used to indicate errors detected by the RTE during
execution of the Rte_Receive API call or errors detected by the
communication system.

• [SWS_Rte_02598] d RTE_E_OK – data read successfully.
c(SRS_Rte_00094)

• [SWS_Rte_01094] d RTE_E_NO_DATA – (explicit non-blocking
read) no events were received and no other error occurred when
the read was attempted. c(SRS_Rte_00094)

• [SWS_Rte_01095] d RTE_E_TIMEOUT – (explicit blocking read)
no events were received and no other error occurred when the
read was attempted. c(SRS_Rte_00094, SRS_Rte_00069)

• [SWS_Rte_02572] d RTE_E_LOST_DATA – Indicates that some
incoming data has been lost due to an overflow of the receive
queue or due to an error of the underlying communication layers.
This is not an error of the data returned in the parameters. This
Overlayed Error can be combined with any of the above.
c(SRS_Rte_00107, SRS_Rte_00110, SRS_Rte_00094)

• RTE_E_UNCONNECTED – Indicates that the receiver port is not
connected [SWS_Rte_01331].

Unlike RTE_E_NO_DATA, there is no need to retry receiving an
event in this case.

• [SWS_Rte_02743] d RTE_E_IN_EXCLUSIVE_AREA – Used
only for the blocking API. RTE_E_IN_EXCLUSIVE_AREA indi-
cates that the runnable can not enter wait, as one of the Ex-
ecutableEntitys in the call stack of this task is currently in
an exclusive area, see [SWS_Rte_02739]. - In a properly con-

487 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

figured system, this error should not occur. The check can be
disabled according to [SWS_Rte_08320]. c(SRS_Rte_00092,
SRS_Rte_00046, SRS_Rte_00032)

• [SWS_Rte_08320] d If RteInExclusiveAreaCheckEn-
abled is set to false the RTE generator shall omit the
check and return of [SWS_Rte_02743]. c(SRS_Rte_00092,
SRS_Rte_00046, SRS_Rte_00032)

The RTE_E_NO_DATA, RTE_E_TIMEOUT and
RTE_E_UNCONNECTED return values are not considered to be
errors but rather indicate correct operation of the API call.

Notes: The API name includes an identifier <p>_<o> that indicates the read
access point name and is formed from the port and operation item
names. See Section 5.2.6.4 for details on the naming convention.

5.6.13 Rte_Call

Purpose: Initiate a client-server communication.

Signature: [SWS_Rte_01102] d
Std_ReturnType
Rte_[Byps_]Call_<p>_<o>([IN Rte_Instance <instance>],

[IN|IN/OUT|OUT] <data_1>...
[IN|IN/OUT|OUT] <data_n>)

Where <p> is the port name and <o> the operation within the client-
server interface categorizing the port. [Byps_] is an optional infix
used when component wrapper method for bypass support is en-
abled for the related software component type (See chapter 4.9.2).
c(SRS_BSW_00310, SRS_Rte_00029)

Existence: [SWS_Rte_01293] d A synchronous Rte_Call API shall be gen-
erated if a SynchronousServerCallPoint references a required
ClientServerOperation. c(SRS_Rte_00051, SRS_Rte_00111)

[SWS_Rte_01294] d An asynchronous Rte_Call API shall
be generated if an AsynchronousServerCallPoint refer-
ences a required ClientServerOperation. c(SRS_Rte_00051,
SRS_Rte_00111)

A configuration that includes both synchronous and asynchronous
ServerCallPoints for a given ClientServerOperation is invalid
([SWS_Rte_03014]).

[constr_9024] Rte_Call API may only be used by the runnable
that describe its usage d The Rte_Call API may only be used by
the runnable that contains the corresponding ServerCallPoint c

488 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Description: Client function to initiate client-server communication. The
Rte_Call API is used for both synchronous and asynchronous calls.

The Rte_Call API includes zero or more IN, IN/OUT and OUT pa-
rameters.

[SWS_Rte_06639] d IN/OUT parameters are passed by value when
they are "Primitive Implementation Data Type"s and the call is asyn-
chronous. c(SRS_Rte_00051, SRS_Rte_00111)

Rational: In case of an asynchronous call, the IN/OUT parameters
are only IN parameters.

The IN, IN/OUT and OUT parameters are passed by value or refer-
ence according to the ImplementationDataType as described in
the section 5.2.6.5.

The pointers to all parameters passed by reference must remain valid
until the API call returns.

Return Value: [SWS_Rte_01103] d The return value shall be used to indi-
cate infrastructure errors detected by the RTE during execution
of the Rte_Call call and, for synchronous communication, in-
frastructure and application errors during execution of the server.
c(SRS_Rte_00094, SRS_Rte_00123, SRS_Rte_00124)

• [SWS_Rte_01104] d RTE_E_OK – The API call completed suc-
cessfully. c(SRS_Rte_00094)

Note: This means that RTE_E_OK is returned when neither an
infrastructure error nor an overlay error occurred at the invoca-
tion of the server runnable and the invoked server runnable was
returning a value equal to E_OK.

• [SWS_Rte_01105] d RTE_E_LIMIT – The client has multi-
ple outstanding asynchronous client-server invocations of the
same operation in the same port. The server invocation shall
be discarded, the buffers of the return parameters shall not
be modified (see also [SWS_Rte_02658]). c(SRS_Rte_00094,
SRS_Rte_00079)

• [SWS_Rte_08727] d RTE_E_SERIALIZATION_LIMIT – The
RTE is not able to allocate the buffer needed to serialize the
data. c(SRS_Rte_00094, SRS_Rte_00091)

• [SWS_Rte_08728] d RTE_E_SERIALIZATION_ERROR – The
return value of the serialization call or the deserialization call
(in case of a synchronous Rte_Call) was not equal to E_OK.
c(SRS_Rte_00094, SRS_Rte_00091)

• [SWS_Rte_01106] d RTE_E_COM_STOPPED – the RTE could
not perform the operation because the COM service is currently

489 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

not available (inter ECU communication only). RTE shall return
RTE_E_COM_STOPPED when the corresponding COM service
returns COM_SERVICE_NOT_AVAILABLE. The buffers of the re-
turn parameters shall not be modified. c(SRS_Rte_00094)

• [SWS_Rte_01107] d RTE_E_TIMEOUT – (synchronous inter-
task and inter-ECU only) No reply was received within the con-
figured timeout. The buffers of the return parameters shall not
be modified. c(SRS_Rte_00094, SRS_Rte_00069)

• RTE_E_UNCONNECTED – Indicates that the client port is not con-
nected [SWS_Rte_01334].

• [SWS_Rte_02744] d RTE_E_IN_EXCLUSIVE_AREA – Used
only for the blocking API. RTE_E_IN_EXCLUSIVE_AREA indi-
cates that the runnable can not enter wait, as one of the Ex-
ecutableEntitys in the call stack of this task is currently in
an exclusive area, see [SWS_Rte_02739]. - In a properly con-
figured system, this error should not occur. The check can be
disabled according to [SWS_Rte_08321]. c(SRS_Rte_00092,
SRS_Rte_00046, SRS_Rte_00032)

• [SWS_Rte_08321] d If RteInExclusiveAreaCheckEn-
abled is set to false the RTE generator shall omit the
check and return of [SWS_Rte_02744]. c(SRS_Rte_00092,
SRS_Rte_00046, SRS_Rte_00032)

• [SWS_Rte_02755] d RTE_E_SEG_FAULT – a segmentation vio-
lation is detected in the handed over parameters to the RTE API
as required in [SWS_Rte_02752] and [SWS_Rte_02753]. No
transmission is executed. c(SRS_Rte_00210)

• [SWS_Rte_02577] d The application error (synchronous client-
server) from a server shall only be returned if none of the
above infrastructure errors (other than RTE_E_OK) have oc-
curred. c(SRS_Rte_00123)

Note that the RTE_E_OK return value indicates that the Rte_Call
API call completed successfully. In case of a synchronous client
server call it also indicates successful processing of the request by
the server.

An asynchronous server invocation is considered to be outstanding
until either the client retrieved the result successfully, a timeout was
detected by the RTE in inter-ECU and inter-partition com-
munication or the server runnable has terminated after a timeout was
detected in intra-ECU communication.

When the RTE_E_TIMEOUT error occurs, RTE shall discard any sub-
sequent responses to that request, (see [SWS_Rte_02657]).

490 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Notes: [SWS_Rte_01109] d The interface operation’s OUT parameters
shall be omitted for an asynchronous call. c(SRS_Rte_00029,
SRS_Rte_00079)

In case of asynchronous communication:

• the Rte_Call only includes IN and IN/OUT parameters.

• the Rte_Result only includes IN/OUT and OUT parameters to
collect the result of the server call.

• the IN/OUT parameters provided during the Rte_Call can be
a different addresse than the IN/OUT parameter passed during
the Rte_Result.

5.6.14 Rte_Result

Purpose: Get the result of an asynchronous client-server call.

Signature: [SWS_Rte_01111] d
Std_ReturnType
Rte_[Byps_]Result_<p>_<o>([IN Rte_Instance <instance>],

[IN/OUT|OUT <param 1>]...
[IN/OUT|OUT <param n>])

Where <p> is the port name and <o> the operation within the client-
server interface categorizing the port. [Byps_] is an optional infix
used when component wrapper method for bypass support is en-
abled for the related software component type (See chapter 4.9.2).
c(SRS_BSW_00310)

The signature can include zero or more IN/OUT and OUT parame-
ters depending on the signature of the operation in the client-server
interface.

Existence: [SWS_Rte_01296] d A non-blocking Rte_Result API shall be gen-
erated if an AsynchronousServerCallResultPoint exists for
the specific RunnableEntity and this AsynchronousServer-
CallResultPoint references an AsynchronousServerCall-
Point which according to [SWS_Rte_01294] leads to the genera-
tion of an asynchronous Rte_Call API but no WaitPoint (of the
RunnableEntity) references an AsynchronousServerCallRe-
turnsEvent that references the AsynchronousServerCallRe-
sultPoint. c(SRS_Rte_00051)

Please note that a non-blocking Rte_Result API does not require
the existence of a AsynchronousServerCallReturnsEvent. If
the AsynchronousServerCallReturnsEvent exists it can be

491 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

used to trigger the execution of a RunnableEntity in which the
non-blocking Rte_Result API function may be called.

[SWS_Rte_01297] d A blocking Rte_Result API shall be gen-
erated if an AsynchronousServerCallResultPoint exists for
the specific RunnableEntity and this AsynchronousServer-
CallResultPoint references an AsynchronousServerCall-
Point which according to [SWS_Rte_01294] leads to the genera-
tion of an asynchronous Rte_Call API and a WaitPoint (of the
RunnableEntity) references an AsynchronousServerCallRe-
turnsEvent that references the AsynchronousServerCallRe-
sultPoint. c(SRS_Rte_00051)

[constr_9025] Blocking Rte_Result API may only be used
by the runnable that describe the WaitPoint d The blocking
Rte_Result API may only be used by the runnable that contains
the corresponding WaitPoint c

[SWS_Rte_01298] d If an AsynchronousServerCallRe-
turnsEvent references a RunnableEntity and a required
ClientServerOperation, the RunnableEntity shall be acti-
vated when the operation’s result is available or when a timeout was
detected by the RTE [SWS_Rte_01133]. c(SRS_Rte_00051)

Requirement [SWS_Rte_01298] merely affects when the runnable is
activated – an API call should still be created to actually read the
reply based on requirement [SWS_Rte_01296].

[SWS_Rte_01312] d An AsynchronousServerCallReturnsEv-
ent that references a runnable entity and is referenced by a Wait-
Point is invalid. c(SRS_Rte_00051)

Description: The Rte_Result API is used by a client to collect the result of an
asynchronous client-server communication.

The Rte_Result API includes zero or more IN/OUT and OUT pa-
rameters to pass back results.

The pointers to all parameters passed by reference must remain valid
until the API call returns.

Return Value: The return value is used to indicate errors from either the
Rte_Result call itself or communication errors detected before the
API call was made.

• [SWS_Rte_01112] d RTE_E_OK – The API call completed suc-
cessfully. c(SRS_Rte_00094)

Note: This means that RTE_E_OK is returned when neither an
infrastructure error nor an overlay error occurred at the invoca-

492 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

tion of the server runnable and the invoked server runnable was
returning a value equal to E_OK.

• [SWS_Rte_08729] d RTE_E_SERIALIZATION_ERROR – The
return value of the deserialization call was not equal to E_OK.
c(SRS_Rte_00094, SRS_Rte_00091)

• [SWS_Rte_01113] d RTE_E_NO_DATA – (non-blocking read)
The server’s result is not available but no other error occurred
within the API call or the server was not called since Rte_Start
or the restart of the Partition. The buffers for the IN/OUT and
OUT parameters shall not be modified. c(SRS_Rte_00094)

• [SWS_Rte_08301] d RTE_E_NO_DATA – (non-
blocking read) The previous Rte_Call returned an
RTE_E_SEG_FAULT, RTE_E_SERIALIZATION_LIMIT or
RTE_E_SERIALIZATION_ERROR. c(SRS_Rte_00094)

• [SWS_Rte_01114] d RTE_E_TIMEOUT – The server’s result is
not available within the specified timeout but no other error oc-
curred within the API call. The buffers for the IN/OUT and
OUT parameters shall not be modified. c(SRS_Rte_00094,
SRS_Rte_00069)

• [SWS_Rte_03606] d RTE_E_COM_STOPPED – the RTE could
not perform the operation because the COM service is currently
not available (inter ECU communication only). RTE shall return
RTE_E_COM_STOPPED when the corresponding COM service
returns COM_SERVICE_NOT_AVAILABLE. The server’s result
has not been successfully retrieved from the communication ser-
vice. The buffers of the return parameters shall not be modified.
c(SRS_Rte_00094)

• RTE_E_UNCONNECTED – Indicates that the client port is not con-
nected [SWS_Rte_01333].

• [SWS_Rte_02745] d RTE_E_IN_EXCLUSIVE_AREA – Used
only for the blocking API. RTE_E_IN_EXCLUSIVE_AREA indi-
cates that the runnable can not enter wait, as one of the Ex-
ecutableEntitys in the call stack of this task is currently in
an exclusive area, see [SWS_Rte_02739]. - In a properly con-
figured system, this error should not occur. The check can be
disabled according to [SWS_Rte_08322]. c(SRS_Rte_00092,
SRS_Rte_00046, SRS_Rte_00032)

• [SWS_Rte_08322] d If RteInExclusiveAreaCheckEn-
abled is set to false the RTE generator shall omit the
check and return of [SWS_Rte_02745]. c(SRS_Rte_00092,
SRS_Rte_00046, SRS_Rte_00032)

493 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_02746] d Rte_Result shall not return
RTE_E_IN_EXCLUSIVE_AREA, if the wait is resolved by a
mapping of the server runnable to a task with higher priority
on the same core. c(SRS_Rte_00092, SRS_Rte_00046,
SRS_Rte_00032)

• [SWS_Rte_08302] d RTE_E_SEG_FAULT – a segmentation vio-
lation is detected in the handed over parameters to the RTE API
as required in [SWS_Rte_02752] and [SWS_Rte_02753]. No
transmission is executed. c(SRS_Rte_00094)

• [SWS_Rte_02578] d Application Errors – The error code of the
server shall only be returned, if none of the above infrastruc-
ture errors or indications have occurred. c(SRS_Rte_00094,
SRS_Rte_00123)

The RTE_E_NO_DATA, RTE_E_TIMEOUT, and
RTE_E_UNCONNECTED return values are not considered to be
errors but rather indicate correct operation of the API call.

When the RTE_E_TIMEOUT error occurs, RTE has to discard any
subsequent responses to that request, (see [SWS_Rte_02657]).

When RTE_E_NO_DATA occurs, a component is free to invoke
Rte_Result again and thus repeat the attempt to read the server’s
result.

Notes: The API name includes an identifier <p>_<o> that indicates the read
access point name and is formed from the port and operation item
names. See Section 5.2.6.4 for details on the naming convention.

If a AsynchronousServerCallPoint exists which is not refer-
enced by a WaitPoint, a non-blocking Rte_Result API shall be
generated. In this case Rte_Result has to return RTE_E_NO_DATA
until the timeout expires and RTE_E_TIMEOUT afterwards.

5.6.15 Rte_Pim

Purpose: Provide access to the defined per-instance memory (section) of a
software component.

Signature: [SWS_Rte_01118] d
<type>/<return reference>
Rte_[Byps_]Pim_<name>([IN Rte_Instance <instance>])

Where <name> is the (short) name of the per-instance name.
[Byps_] is an optional infix used when component wrapper method
for bypass support is enabled for the related software component type
(See chapter 4.9.2). c(SRS_BSW_00310, SRS_Rte_00075)

494 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Existence: [SWS_Rte_01299] d An Rte_Pim API shall be created for
each defined PerInstanceMemory or arTypedPerInstance-
Memory within the AUTOSAR software-component (description).
c(SRS_Rte_00051)

Description: The Rte_Pim API provides access to the per-instance memory
(section) defined in the context of a SwcInternalBehavior of a
software-component description.

Return Value: [SWS_Rte_01119] d The API returns a typed reference (in C a
typed pointer) to the per-instance memory. c(SRS_Rte_00051,
SRS_Rte_00075)

Notes: For a ’C’ typed PerInstanceMemory, the name of the re-
turn type <type> has to be defined in the type attribute of the
PerInstanceMemory. The type itself is defined using the type-
Definition attribute of the PerInstanceMemory. It is as-
sumed that this attribute contains a string that represents a C
type definition (typedef) in valid C syntax (see [SWS_Rte_02304]
and [SWS_Rte_07133]). For an arTypedPerInstanceMemory
the <return reference> is defined by the associated Au-
tosarDataType (see [SWS_Rte_07161]). For details of the
<return reference> definition see section 5.2.6.7.

5.6.16 Rte_CData

Purpose: Provide access to the calibration parameter an AUTOSAR software-
component defined internally. The ParameterDataPrototype in
the role perInstanceParameter or sharedParameter is used to
define software component internal calibration parameters. Internal
because the ParameterDataPrototype cannot be reused outside
the software-component. Access is read-only. It can be configured for
each calibration parameter individually if it is shared by all instances
of an AUTOSAR software-component or if each instance has an own
data value associated with it.

Signature: [SWS_Rte_01252] d
<return>
Rte_[Byps_]CData_<name>([IN Rte_Instance <instance>])

Where <name> is the calibration parameter name. [Byps_] is an
optional infix used when component wrapper method for bypass sup-
port is enabled for the related software component type (See chap-
ter 4.9.2). c(SRS_BSW_00310, SRS_Rte_00155)

Existence: [SWS_Rte_01300] d An Rte_CData API shall be generated if a
ParameterAccess references a ParameterDataPrototype in
the role perInstanceParameter or sharedParameter within

495 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

the SwcInternalBehavior of an AUTOSAR software-component.
c(SRS_Rte_00051, SRS_Rte_00155)

Description: The Rte_CData API provides access to the defined calibration pa-
rameter within a software-component. The actual data values for a
software-component instance may be set after component compila-
tion.

Return Value: The Rte_CData return value provide access to the data value of the
ParameterDataPrototype in the role perInstanceParameter
or sharedParameter.

The return type of Rte_CData is dependent on the Implementa-
tionDataType of the ParameterDataPrototype and can either
be a value or a pointer to the location where the value can be ac-
cessed. Thus the component does not need to use type casting to
convert access to the ParameterDataPrototype data.

For details of the <return> value definition see section 5.2.6.6.

[SWS_Rte_03927] d If a ParameterDataPrototype is aggre-
gated by an SwcInternalBehavior in the role of sharedParam-
eter, the return value of the corresponding Rte_CData API shall
provide access to the calibration parameter value common to all
instances of the AtomicSwComponentType. c(SRS_Rte_00051,
SRS_Rte_00155)

[SWS_Rte_03952] d If a ParameterDataPrototype is aggre-
gated by an SwcInternalBehavior in the role of perInstan-
ceParameter, the return value of the corresponding Rte_CData
API shall provide access to the calibration parameter value specific to
the instance of the AtomicSwComponentType. c(SRS_Rte_00051,
SRS_Rte_00155)

Notes: None.

5.6.17 Rte_Prm

Purpose: Provide access to the parameters defined by an AUTOSAR Param-
eterSwComponentType. Access is read-only.

Signature: [SWS_Rte_03928] d
<return>
Rte_[Byps_]Prm_<p>_<o>([IN Rte_Instance <instance>])

Where <p> is the port name and <o> is the name of the Param-
eterDataPrototype within the ParameterInterface catego-
rizing the port. [Byps_] is an optional infix used when compo-
nent wrapper method for bypass support is enabled for the related

496 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

software component type (See chapter 4.9.2). c(SRS_BSW_00310,
SRS_Rte_00155)

Existence: [SWS_Rte_03929] d A Rte_Prm API shall be generated if a Param-
eterAccess references a ParameterDataPrototype in a require
PortPrototype. c(SRS_BSW_00310, SRS_Rte_00155)

Description: The Rte_Prm API provides access to the defined parameter within a
ParameterSwComponentType.

In the case of a standard parameter (swImplPolicy = stan-
dard), i.e. a calibration, the actual data values for a Parameter-
SwComponentType instance may be set after ParameterSwCom-
ponentType compilation.

In the case of fixed parameter or constant parameter, the value
is set during compilation time.

Return Value: [SWS_Rte_03930] d For primitive data types, the Rte_Prm API shall
return the parameter value. For composite data types, the Rte_Prm
API shall return a reference (in C, a pointer) to the parameter, which
shall be const. With fixed parameters, only primitive data is possi-
ble.

The return type of Rte_Prm is specified by the Implementa-
tionDataType associated to the ParameterDataPrototype.
Thus the component does not need to use type casting to access
the calibration parameter. c(SRS_Rte_00051, SRS_Rte_00155,
SRS_Rte_00171) The Rte_Prm return value provide access to the
data value of the ParameterDataPrototype.

The return type of Rte_Prm is dependent on the Implementation-
DataType of the ParameterDataPrototype and can either be a
value or a pointer to the location where the value can be accessed.
Thus the component does not need to use type casting to convert
access to the ParameterDataPrototype data.

For details of the <return> value definition see section 5.2.6.6.

Notes: The Rte_Prm API should not be used within a pre-compilation direc-
tive, e.g. #if. For such case, the coder should use the Rte_SysCon
definitions which are dedicated to variant handling.

5.6.18 Rte_IRead

Purpose: Provide read access to the VariableDataPrototype referenced
by VariableAccess in the dataReadAccess role.

Signature: [SWS_Rte_03741] d

497 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

<return>
Rte_[Byps_]IRead_<re>_<p>_<o>([IN Rte_Instance])

Where <re> is the runnable entity name, <p> the port name and
<o> the VariableDataPrototype name. [Byps_] is an optional
infix used when component wrapper method for bypass support is
enabled for the related software component type (See chapter 4.9.2).
c(SRS_BSW_00310, SRS_Rte_00128)

Existence: [SWS_Rte_01301] d An Rte_IRead API shall be created for a re-
quired VariableDataPrototype if the RunnableEntity has a
VariableAccess in the dataReadAccess role referring to this
VariableDataPrototype. c(SRS_Rte_00051)

Description: The Rte_IRead API provides access to the VariableDataPro-
totypes declared as accessed by a runnable using VariableAc-
cesses in the dataReadAccess role. As the APIcan also be used
in context of category 1A runnables an implementation has to ensure
finite and constant execution times.

No error information is provided by this API. If required, the error
status can be picked up with a separate API, see 5.6.22

The data value can always be read. To provide the required consis-
tency the API provides access to a copy of the data data element for
which it’s guaranteed that it never changes during the actual execu-
tion of the runnable entity.

Implicit data read access by a SW-C should always return defined
data.

[SWS_Rte_01268] d The RTE shall ensure that implicit
read accesses will not deliver undefined data item values.
c(SRS_Rte_00108, SRS_Rte_00051, SRS_Rte_00128)

In case where there may be an implicit read access before the first
data reception an initial value has to be provided as the result of this
implicit read access.

Return Value: The Rte_IRead return value provide access to the data value of the
VariableDataPrototype.

The return type of Rte_IRead is dependent on the Implementa-
tionDataType of the VariableDataPrototype and can either
be a value or a pointer to the location where the value can be ac-
cessed. Thus the component does not need to use type casting to
convert access to the VariableDataPrototype data.

For details of the <return> value definition see section 5.2.6.6.

Notes: None.

498 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

5.6.19 Rte_IWrite

Purpose: Provide write access to the VariableDataPrototypes referenced
by VariableAccesses in the dataWriteAccess role.

Signature: [SWS_Rte_03744] d
void
Rte_[Byps_]IWrite_<re>_<p>_<o>([IN RTE_Instance],

IN <data>)

Where <re> is the runnable entity name, <p> the port name and
<o> the VariableDataPrototype name. [Byps_] is an optional
infix used when component wrapper method for bypass support is
enabled for the related software component type (See chapter 4.9.2).
c(SRS_BSW_00310, SRS_Rte_00129)

Existence: [SWS_Rte_01302] d An Rte_IWrite API shall be created for a
provided VariableDataPrototype if the RunnableEntity has a
VariableAccess in the dataWriteAccess role referring to this
VariableDataPrototype. c(SRS_Rte_00051)

Description: The Rte_IWrite API provides write access to the VariableDat-
aPrototypes declared as accessed by a runnable using Vari-
ableAccesses in the dataWriteAccess role. The API function
is guaranteed to be have constant execution time and therefore can
also be used within category 1A runnable entities.

No access error information is required for the user – the value can
always be written. To provide the required write-back semantics the
RTE only makes written values available to other entities after the
writing runnable entity has terminated.

[SWS_Rte_03746] d The Rte_IWrite API call includes the
IN parameter <data> to pass the data element to write.
c(SRS_Rte_00051, SRS_Rte_00129)

The IN parameter <data> is passed by value or reference accord-
ing to the ImplementationDataType as described in the section
5.2.6.5.

If the IN parameter <data> is passed by reference, the pointer must
remain valid until the API call returns.

Return Value: None.

Notes: None.

499 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

5.6.20 Rte_IWriteRef

Purpose: Provide a reference to the VariableDataPrototype referenced
by a VariableAccess in the dataWriteAccess role.

Signature: [SWS_Rte_05509] d
<return reference>
Rte_[Byps_]IWriteRef_<re>_<p>_<o>([IN RTE_Instance])

Where <re> is the runnable entity name, <p> the port name and
<o> the VariableDataPrototype name. [Byps_] is an optional
infix used when component wrapper method for bypass support is
enabled for the related software component type (See chapter 4.9.2).
c(SRS_BSW_00310, SRS_Rte_00129)

Existence: [SWS_Rte_05510] d An Rte_IWriteRef API shall be created for a
provided VariableDataPrototype if the RunnableEntity has
a VariableAccess in the dataWriteAccess role referring to this
VariableDataPrototype. c(SRS_Rte_00051)

Description: The Rte_IWriteRef API returns a reference to the VariableDat-
aPrototypes declared as accessed by a runnable using Vari-
ableAccesses in the dataWriteAccess role. The reference
can be used by the runnable to directly update the correspond-
ing data elements. This is especially useful for data elements
of Structure Implementation Data Type or Array Imple-
mentation Data Type. The API function is guaranteed to be have
constant execution time and therefore can also be used within cate-
gory 1A runnable entities.

No error information is required for the user. To provide the required
write-back semantics the RTE only makes written values available to
other entities after the writing runnable entity has terminated.

[constr_9026] Rte_IWriteRef may not return values written in
previous executions d The reference returned by Rte_IWriteRef
shall not be used by the runnables for reading the value previously
written. c

The rationale for [constr_9026] is that Rte_IWriteRef has a write
semantic. Also, in case of an unconnected port, the written data shall
be discarded (similarly to [SWS_Rte_01347]), and implementations
may return a reference to the same buffer for all Rte_IWriteRef of
unconnected provide ports.

Return Value: The Rte_IWriteRef return value provide access to the data write
buffer of the VariableDataPrototype.

[SWS_Rte_05511] d Rte_IWriteRef returns a reference to the cor-
responding VariableDataPrototype. c(SRS_Rte_00051)

500 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

The return reference type of Rte_IWriteRef is dependent on
the ImplementationDataType of the VariableDataProto-
type and is a pointer to the location where the value can be ac-
cessed. Thus the component does not need to use type casting to
convert access to the VariableDataPrototype data.

For details of the <return reference> definition see section
5.2.6.7.

Notes: None.

5.6.21 Rte_IInvalidate

Purpose: Invalidate a VariableDataPrototype referenced by a Vari-
ableAccess in the dataWriteAccess role.

Signature: [SWS_Rte_03800] d
void
Rte_[Byps_]IInvalidate_<re>_<p>_<o>([IN Rte_Instance <instance>])

Where <re> is the runnable entity name, <p> the port name and
<o> the VariableDataPrototype name. [Byps_] is an optional
infix used when component wrapper method for bypass support is
enabled for the related software component type (See chapter 4.9.2).
c(SRS_BSW_00310, SRS_Rte_00078)

Existence: [SWS_Rte_03801] d An Rte_IInvalidate API shall be created
for a provided VariableDataPrototype if the RunnableEntity
has VariableAccesses in the dataWriteAccess role referring
to this VariableDataPrototype and the associated Invalida-
tionPolicy of the VariableDataPrototype is set to keep or
replace. c(SRS_Rte_00051, SRS_Rte_00078)

Description: The Rte_IInvalidate API takes no parameters other than the in-
stance handle – the return value is used to indicate the success, or
otherwise, of the API call to the caller.

[SWS_Rte_03802] d In case of a primitive VariableDataProto-
type the Rte_IInvalidate shall be implemented as a macro that
writes the invalidValue to the buffer. c(SRS_Rte_00078)

[SWS_Rte_05064] d In case of a composite VariableDataProto-
type the Rte_IInvalidate shall be implemented as a macro that
writes the invalidValue of every primitive part of the composition
to the buffer. c(SRS_Rte_00078)

[SWS_Rte_03778] d If Rte_IInvalidate is followed by an
Rte_IWrite call for the same VariableDataPrototype or vice

501 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

versa, the RTE shall use the last value written before the runnable
entity terminates (last-is-best semantics). c(SRS_Rte_00078)

[SWS_Rte_03778] states that an Rte_IWrite overrules an
Rte_IInvalidate call if it occurs after the Rte_IInvalidate,
since Rte_IWrite overwrites the contents of the internal buffer for
the data element prototype before it is made known to other runnable
entities.

Return Value: None.

Notes: The communication service configuration determines whether the
signal receiver(s) receive an “invalid signal” notification or whether
the invalidated signal is silently replaced by the signal’s initial value.

5.6.22 Rte_IStatus

Purpose: Provide the error status of a VariableDataPrototype referenced
by a VariableAccess in the dataReadAccess role.

Signature: [SWS_Rte_02599] d
Std_ReturnType
Rte_[Byps_]IStatus_<re>_<p>_<o>([IN Rte_Instance])

Where <re> is the runnable entity name, <p> the port name and
<o> the VariableDataPrototype name. [Byps_] is an optional
infix used when component wrapper method for bypass support is
enabled for the related software component type (See chapter 4.9.2).
c(SRS_Rte_00147, SRS_Rte_00078)

Existence: [SWS_Rte_02600] d An Rte_IStatus API shall be created for a
required VariableDataPrototype if a RunnableEntity has a
VariableAccess in the dataReadAccess role referring to this
VariableDataPrototype, and

• if at the RPortPrototype or PRPortPrototype a Non-
queuedReceiverComSpec with either

– the attribute aliveTimeout set to a value greater than zero
and/or

– the attribute handleNeverReceived set to TRUE and/or

– the attribute handleOutOfRange not set to none

and/or

• if at the SenderReceiverInterface classifying the RPort-
Prototype or PRPortPrototype an InvalidationPolicy
set to keep

502 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

is specified for this VariableDataPrototype. c(SRS_Rte_00147,
SRS_Rte_00078)

[constr_9027] Rte_IStatus API shall only be used by a
RunnableEntity describing an access to the data or which
is triggered by an error event related to this data d The
Rte_IStatus API shall only be used by a RunnableEntity that
either has a VariableAccess in the dataReadAccess role refer-
ring to the VariableDataPrototype or is triggered by a DataRe-
ceiveErrorEvent referring to the VariableDataPrototype. c

Description: The Rte_IStatus API provides access to the current status of the
data elements declared as accessed by a runnable using a Vari-
ableAccess in the dataReadAccess role. The API function is
guaranteed to be have constant execution time and therefore can
also be used within category 1A runnable entities.

To provide the required consistency access by a runnable is to a copy
of the status together with the data that is guaranteed never to be
modified by the RTE during the lifetime of the runnable entity.

Return Value: The return value is used to indicate errors detected by the communi-
cation system.

• [SWS_Rte_02602] d RTE_E_OK – no errors.
c(SRS_Rte_00094)

• [SWS_Rte_02603] d RTE_E_INVALID – data element in-
valid. c(SRS_Rte_00078)

• [SWS_Rte_02604] d RTE_E_MAX_AGE_EXCEEDED – data
element outdated. This Overlayed Error can be com-
bined with any of the above error codes. c(SRS_Rte_00147)

• [SWS_Rte_07644] d RTE_E_NEVER_RECEIVED – No
data received since system start or partition restart.
c(SRS_Rte_00184, SRS_Rte_00224)

• [SWS_Rte_01372] d RTE_E_OUT_OF_RANGE – data ele-
ment out of range. c(SRS_Rte_00180)

• RTE_E_UNCONNECTED – Indicates that the receiver port is not
connected [SWS_Rte_03785].

Notes: None.

5.6.23 Rte_IrvIRead

Purpose: Provide read access to the InterRunnableVariables with implicit be-
havior of an AUTOSAR SW-C.

503 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Signature: [SWS_Rte_03550] d
<return>
Rte_[Byps_]IrvIRead_<re>_<o>([IN RTE_Instance <instance>])

Where <re> is the name of the runnable entity the API might be
used in, <o> is the name of the VariableDataPrototype in role
implicitInterRunnableVariable. [Byps_] is an optional in-
fix used when component wrapper method for bypass support is en-
abled for the related software component type (See chapter 4.9.2).
c(SRS_BSW_00310, SRS_Rte_00142)

Existence: [SWS_Rte_01303] d An Rte_IrvIRead API shall be created
for each VariableAccess in role readLocalVariable to
an implicitInterRunnableVariable. c(SRS_Rte_00051,
SRS_Rte_00142)

Description: The Rte_IrvIRead API provides read access to the defined Inter-
RunnableVariables with implicit behavior within a component descrip-
tion.

The return value is used to deliver the requested data value. The
return value is not required to pass error information to the user be-
cause no inter-ECU communication is involved and there will always
be a readable value present.

Return Value: The Rte_IrvIRead return value provide access to the data value of
the InterRunnableVariable.

The return type of Rte_IrvIRead is dependent on the Implemen-
tationDataType of the InterRunnableVariable and can either be a
value or a pointer to the location where the value can be accessed.
Thus the component does not need to use type casting to convert
access to the InterRunnableVariable data.

For details of the <return> value definition see section 5.2.6.6.

Notes: The runnable entity name in the signature allows runnable context
specific optimizations.

The concept of InterRunnableVariables is explained in section
4.2.5.6. More details about InterRunnableVariables with implicit be-
havior is explained in section 4.2.5.6.1.

5.6.24 Rte_IrvIWrite

Purpose: Provide write access to the InterRunnableVariables with implicit be-
havior of an AUTOSAR SW-C.

Signature: [SWS_Rte_03553] d

504 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

void
Rte_[Byps_]IrvIWrite_<re>_<o>([IN RTE_Instance <instance>],

IN <data>)

Where <re> is the name of the RunnableEntity the API might
be used in, <o> is the name of the VariableDataPrototype
in the role implicitInterRunnableVariable to access and
<data> is the placeholder for the data the InterRunnableVariable
shall be set to. [Byps_] is an optional infix used when compo-
nent wrapper method for bypass support is enabled for the related
software component type (See chapter 4.9.2). c(SRS_BSW_00310,
SRS_Rte_00142)

Existence: [SWS_Rte_01304] d An Rte_IrvIWrite API shall be created
for each VariableAccess in role writtenLocalVariable
to an implicitInterRunnableVariable. c(SRS_Rte_00142,
SRS_Rte_00051)

Description: The Rte_IrvIWrite API provides write access to the InterRunnabl-
eVariables with implicit behavior within a component description. The
runnable entity name in the signature allows runnable context specific
optimizations.

The data given by Rte_IrvIWrite is dependent on the Inter-
RunnableVariable data type. Thus the component does not need to
use type casting to write the InterRunnableVariable.

The return value is unused. The return value is not required to pass
error information to the user because no inter-ECU communication is
involved and the value can always be written.

The IN parameter <data> is passed by value or reference accord-
ing to the ImplementationDataType as described in the section
5.2.6.5.

Return Value: None.

Notes: The runnable entity name in the signature allows runnable context
specific optimizations.

The concept of InterRunnableVariables is explained in section
4.2.5.6. Further details about InterRunnableVariables with implicit
behavior are explained in Section 4.2.5.6.1.

5.6.25 Rte_IrvRead

Purpose: Provide read access to the InterRunnableVariables with explicit be-
havior of an AUTOSAR SW-C.

Signature: [SWS_Rte_03560] d

505 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

primitive type signature:

<return>
Rte_[Byps_]IrvRead_<re>_<o>([IN RTE_Instance <instance>])

complex type signature:

void
Rte_[Byps_]IrvRead_<re>_<o>([IN RTE_Instance <instance>],

OUT <data>)

Where <re> is the name of the runnable entity the API might be used
in, <o> is the name of the InterRunnableVariables. [Byps_] is an
optional infix used when component wrapper method for bypass sup-
port is enabled for the related software component type (See chap-
ter 4.9.2).

The complex type signature is used, if the Implementation-
DataType of the InterRunnableVariable resolves to Ar-
ray Implementation Data Type or Structure Implemen-
tation Data Type, otherwise the primitive type signature is used.
c(SRS_BSW_00310, SRS_Rte_00142)

Existence: [SWS_Rte_01305] d An Rte_IrvRead API shall be created for each
read InterRunnableVariable using explicit access.

c(SRS_Rte_00142, SRS_Rte_00051)

Description: The Rte_IrvRead API provides read access to the defined Inter-
RunnableVariables with explicit behavior within a component descrip-
tion.

The return value is not required to pass error information to the user
because no inter-ECU communication is involved and there will al-
ways be a readable value present.

For the primitive type signature, the return value is used to deliver
the requested data value. For the complex type signature, the return
value is void.

For the complex type signature, the Rte_IrvRead API call includes
the OUT parameter <data> to pass back the received data. The
OUT parameter <data> is typed as reference (pointer) to the type
of the InterRunnableVariable. The pointer to the OUT parameter
<data> must remain valid until the API call returns.

Return Value: The Rte_IrvRead return value provide access to the data value of
the InterRunnableVariable.

The return type of Rte_IrvRead is dependent on the Implementa-
tionDataType of the InterRunnableVariable. Thus the component

506 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

does not need to use type casting to convert access to the Inter-
RunnableVariable data.

For details of the <return> value definition see section 5.2.6.6.

Please note that the Rte_IrvRead API Signature only has a
return value if the InterRunnableVariable is typed by a Primi-
tive Implementation Data Type or Redefinition Imple-
mentation Data Type redefining a Primitive Implementa-
tion Data Type.

[SWS_Rte_03562] d For the primitive type signature, the
Rte_IrvRead call shall return the value of the accessed Inter-
RunnableVariable. c(SRS_Rte_00142, SRS_Rte_00051)

For complex type signature, the Rte_IrvRead call does not return
any value (void).

Notes: The runnable entity name in the signature allows runnable context
specific optimizations.

The concept of InterRunnableVariables is explained in section
4.2.5.6. Further details about InterRunnableVariables with explicit
behavior are explained in Section 4.2.5.6.2.

5.6.26 Rte_IrvWrite

Purpose: Provide write access to the InterRunnableVariables with explicit be-
havior of an AUTOSAR SW-C.

Signature: [SWS_Rte_03565] d
void
Rte_[Byps_]IrvWrite_<re>_<o>([IN RTE_Instance <instance>],

IN <data>)

Where <re> is the name of the runnable entity the API might be
used in, <o> is the name of the InterRunnableVariable to access
and <data> is the placeholder for the data the InterRunnableVari-
able shall be set to. [Byps_] is an optional infix used when com-
ponent wrapper method for bypass support is enabled for the related
software component type (See chapter 4.9.2). c(SRS_BSW_00310,
SRS_Rte_00142)

Existence: [SWS_Rte_01306] d An Rte_IrvWrite API shall be created
for each written InterRunnableVariable using explicit access.
c(SRS_Rte_00142, SRS_Rte_00051)

Description: The Rte_IrvWrite API provides write access to the InterRunnabl-
eVariables with explicit behavior within a component description.

507 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

The return value is unused. The return value is not required to pass
error information to the user because no inter-ECU communication is
involved and the value can always be written.

[SWS_Rte_03567] d The Rte_IrvWrite API call include the
IN parameter <data> to pass the data element to write.
c(SRS_Rte_00142, SRS_Rte_00051)

The IN parameter <data> is passed by value or reference accord-
ing to the ImplementationDataType as described in the section
5.2.6.5.

If the IN parameter <data> is passed by reference, the pointer must
remain valid until the API call returns.

Return Value: None.

Notes: The runnable entity name in the signature allows runnable context
specific optimizations.

The concept of InterRunnableVariables is explained in section
4.2.5.6. Further details about InterRunnableVariables with explicit
behavior are explained in Section 4.2.5.6.2.

5.6.27 Rte_Enter

Purpose: Enter an exclusive area.

Signature: [SWS_Rte_01120] d
void
Rte_[Byps_]Enter_<name>([IN Rte_Instance <instance>])

Where <name> is the exclusive area name. [Byps_] is an optional
infix used when component wrapper method for bypass support is
enabled for the related software component type (See chapter 4.9.2).
c(SRS_BSW_00310, SRS_Rte_00046, SRS_Rte_00115)

Existence: [SWS_Rte_01307] d An Rte_Enter API shall be created for each
ExclusiveArea that is declared and which has an canEnterExclu-
siveArea association. c(SRS_Rte_00115, SRS_Rte_00051)

Description: The Rte_Enter API call is invoked by an AUTOSAR software-
component to define the start of an exclusive area.

Return Value: None.

Notes: The RTE is not required to support nested invocations of Rte_Enter
for the same exclusive area.

[SWS_Rte_01122] d The RTE shall permit calls to Rte_Enter and
Rte_Exit to be nested as long as different exclusive areas are

508 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

exited in the reverse order they were entered. c(SRS_Rte_00046,
SRS_Rte_00032, SRS_Rte_00115)

[constr_9028] Rte_Enter and Rte_Exit API may only be
used by runnables describing its usage d The Rte_Enter and
Rte_Exit API may only be used by Runnable Entities that contain
a corresponding canEnterExclusiveArea association c

[constr_9029] Nested call of Rte_Enter and Rte_Exit is re-
stricted d The Rte_Enter and Rte_Exit API may only be called
nested if different exclusive areas are invoked; in this case exclusive
areas shall exited in the reverse order they were entered. c

Within the AUTOSAR OS an attempt to lock a resource cannot fail
because the lock is already held. The lock attempt can only fail due
to configuration errors (e.g. caller not declared as accessing the re-
source) or invalid handle. Therefore the return type from this function
is void.

5.6.28 Rte_Exit

Purpose: Leave an exclusive area.

Signature: [SWS_Rte_01123] d
void
Rte_[Byps_]Exit_<name>([IN Rte_Instance <instance>])

Where <name> is the exclusive area name. [Byps_] is an optional
infix used when component wrapper method for bypass support is
enabled for the related software component type (See chapter 4.9.2).
c(SRS_BSW_00310, SRS_Rte_00046, SRS_Rte_00051)

Existence: [SWS_Rte_01308] d An Rte_Exit API shall be created for each
ExclusiveArea that is declared and which has an canEnterExclu-
siveArea association. c(SRS_Rte_00115, SRS_Rte_00051)

Description: The Rte_Exit API call is invoked by an AUTOSAR software-
component to define the end of an exclusive area.

Return Value: None.

Notes: The RTE is not required to support nested invocations of Rte_Exit
for the same exclusive area.

Requirement [SWS_Rte_01122] permits calls to Rte_Enter and
Rte_Exit to be nested as long as different exclusive areas are ex-
ited in the reverse order they were entered.

509 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

5.6.29 Rte_Mode

There exist two versions of the Rte_Mode API. Depending on the attribute enhanced-
ModeApi in the software component description there shall be provided different ver-
sions of this API (see also 5.6.30).

Purpose: Provides the currently active mode of a mode switch port.

Signature: [SWS_Rte_02628] d
<return>
Rte_[Byps_]Mode_<p>_<o>([IN Rte_Instance <instance>])

Where <p> is the port name, and <o> the ModeDeclara-
tionGroupPrototype name within the ModeSwitchInterface
categorizing the port. [Byps_] is an optional infix used when com-
ponent wrapper method for bypass support is enabled for the related
software component type (See chapter 4.9.2). c(SRS_Rte_00144)

Existence: [SWS_Rte_02629] d If a ModeAccessPoint exists and if the at-
tribute enhancedModeApi of the ModeSwitchSenderComSpec
resp. ModeSwitchReceiverComSpec is set to false or does not
exist a Rte_Mode API according to [SWS_Rte_02628] shall be gen-
erated. c(SRS_Rte_00147, SRS_Rte_00078)

[constr_9030] Rte_Mode API may only be used by the runnable
that describe its usage d The Rte_Mode API may only be used by
the runnable that contains the corresponding ModeAccessPoint c

Description: The Rte_Mode API tells the AUTOSAR software-component which
mode of a ModeDeclarationGroup of a given port is currently ac-
tive. This is the information that the RTE uses for the ModeDis-
ablingDependency’s. A new mode will not be indicated immedi-
ately after the reception of a mode switch notification from
a mode manager, see section 4.4.4. During mode transitions, i.e.
during the execution of runnables that are triggered on exiting one
mode or on entering the next mode, overlapping mode disablings
of two modes are active. In this case, the Rte_Mode will return
RTE_TRANSITION_<ModeDeclarationGroup>.

The Rte_Mode will return the same mode for all mode switch
ports that are connected to the same mode switch port of the
mode manager (see [SWS_Rte_02630]).

It is supported to have ModeAccessPoint(s) referring the provide
mode switch ports of the mode manager to provide access for
the mode manager on the information that the RTE uses for the
ModeDisablingDependency’s.

Return Value: The return type of Rte_Mode is dependent on the Implementa-
tionDataType of the ModeDeclarationGroup. It shall return

510 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

the value of the ModeDeclarationGroupPrototype. The type
name shall be equal to the shortName of the Implementation-
DataType.

The return value of the Rte_Mode is used to inform the caller about
the current mode of the mode machine instance. The Rte_Mode
API shall return the following values:

[SWS_Rte_07666] d During a transition of the
mode machine instance, Rte_Mode shall return
RTE_TRANSITION_<ModeDeclarationGroup>, where
<ModeDeclarationGroup> is the short name of the Mode-
DeclarationGroup. c(SRS_Rte_00144)

[SWS_Rte_02660] d When the mode machine in-
stance is in a defined mode, Rte_Mode shall return
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>,
where <ModeDeclarationGroup> is the short name of the Mode-
DeclarationGroup and <ModeDeclaration> is the short name
of the currently active ModeDeclaration. c(SRS_Rte_00144)

[SWS_Rte_06742] d The API Rte_Mode shall return
the value RTE_TRANSITION_<ModeDeclarationGroup>
for a mode machine instance assigned to the RTE
([SWS_Rte_07533]) until the RTE has been initialized and where
<ModeDeclarationGroup> is the short name of the Mode-
DeclarationGroup. c(SRS_Rte_00144)

[SWS_Rte_06781] d If modeManagerErrorBehavior.errorRe-
actionPolicy is set to defaultMode the API Rte_Mode shall re-
turn the value RTE_TRANSITION_<ModeDeclarationGroup> for
a mode machine instance while the partition of the mode users
is stopped or restarting and until the RTE dequeues the next mode
switch notifications.
<ModeDeclarationGroup> is the short name of the Mode-
DeclarationGroup. c(SRS_Rte_00144) This indicates a transition
and therefore the behavior is identical as during the initialization of the
RTE (see [SRS_Rte_00144]).

[SWS_Rte_06782] d If the modeManagerErrorBe-
havior.errorReactionPolicy is set to lastMode,
the API enhanced Rte_Mode shall return the value
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>
of the last mode for a mode machine instance while the partition
of the mode users is stopped or restarting and until the RTE
dequeues the next mode switch notifications.
<ModeDeclarationGroup> is the short name of the Mode-
DeclarationGroup. c(SRS_Rte_00144) This indicates a stable
mode during the re-initialization of the partition until the RTE is

511 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

capable to dequeue the first mode switch notification after
the partition restart.

[SWS_Rte_06743] d The Rte_Mode API shall return the values
according [SWS_Rte_07666] and [SWS_Rte_02660] for a common
mode machine instance already after initialization of the Basic
Software Scheduler. c(SRS_Rte_00144)

In inter partition mode management, RTE on the mode manager
sided partition might not have direct access to the state variables of
the mode machine instance.

[SWS_Rte_02732] d In inter partition mode management, the return
value of the Rte_Mode API to the mode manager shall be con-
sistent with the start of a transition by the Rte_Switch API and
the inter partition communication of the ModeSwitchedAckEvent.
c(SRS_Rte_00144, SRS_Rte_00210)

Notes: The Rte_Mode API may already indicate the next ModeDeclaration,
before the mode manager has picked up the ModeSwitchedAck-
Event with the Rte_SwitchAck. This is not in contradiction to
[SWS_Rte_02732].

[SWS_Rte_06744] d The RTE shall support calls of Rte_Mode after
initialization of the Basic Software Scheduler but before the RTE is
initialized. c(SRS_Rte_00144)

5.6.30 Enhanced Rte_Mode

Purpose: Provides the currently active mode of a mode switch port. If the mode
machine instance is in transition additionally the values of the
previous and the next mode are provided.

Signature: [SWS_Rte_08500] d
<return>
Rte_[Byps_]Mode_<p>_<o>([IN Rte_Instance <instance>,]

OUT <previousmode>,
OUT <nextmode>)

Where <p> is the port name, and <o> the ModeDeclara-
tionGroupPrototype name within the ModeSwitchInterface
categorizing the port. [Byps_] is an optional infix used when com-
ponent wrapper method for bypass support is enabled for the related
software component type (See chapter 4.9.2). c(SRS_Rte_00144)

Existence: [SWS_Rte_08501] d The existence of a ModeAccessPoint given
that the attribute enhancedModeApi of the ModeSwitchSender-
ComSpec resp. ModeSwitchReceiverComSpec is set to true

512 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

shall result in the generation of a Rte_Mode API according to
[SWS_Rte_08500]. c(SRS_Rte_00147, SRS_Rte_00078)

[constr_9031] Rte_Mode API may only be used by the runnable
that describe its usage d The Rte_Mode API may only be used by
the runnable that contains the corresponding ModeAccessPoint c

Description: The Rte_Mode API tells the AUTOSAR software-component which
mode of a ModeDeclarationGroup of a given port is currently ac-
tive. This is the information that the RTE uses for the ModeDis-
ablingDependency’s. A new mode will not be indicated immedi-
ately after the reception of a mode switch notification from
a mode manager, see section 4.4.4. During mode transitions, i.e.
during the execution of runnables that are triggered on exiting one
mode or on entering the next mode, overlapping mode disablings
of two modes are active. In this case, the Rte_Mode will return
RTE_TRANSITION_<ModeDeclarationGroup>. The parameter
<previousmode> than contains the mode currently being left,the
parameter <nextmode> the mode being entered.

The Rte_Mode will return the same mode for all mode switch
ports that are connected to the same mode switch port of the
mode manager (see [SWS_Rte_02630]).

It is supported to have ModeAccessPoint(s) referring the provided
mode switch ports of the mode manager to provide access for
the mode manager on the information that the RTE uses for the
ModeDisablingDependency’s.

Return Value: The return type of Rte_Mode is dependent on the Implementa-
tionDataType of the ModeDeclarationGroup. It shall return
the value of the ModeDeclarationGroupPrototype. The type
name shall be equal to the shortName of the Implementation-
DataType. The return value of the Rte_Mode and the parameters
<previousmode> and <nextmode> are used to inform the caller
about the current mode of the mode machine instance.

[SWS_Rte_08504] d During a transition of a mode machine in-
stance Rte_Mode shall return the following values

• the return value shall be
RTE_TRANSITION_<ModeDeclarationGroup>,

• <previousmode> shall contain the value of the
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>
of the mode being left,

• <nextmode> shall contain the
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>
of the mode being entered,

513 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

where <ModeDeclarationGroup> is the short name of the Mode-
DeclarationGroup and <ModeDeclaration> is the short name
of the ModeDeclaration. c(SRS_Rte_00144, SRS_Rte_00210)

[SWS_Rte_08505] d When the mode machine instance is in a
defined mode, Rte_Mode shall return the following values

• the return value shall contain the value of
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>,

• <previousmode> shall contain the value of the
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>

• <nextmode> shall contain the
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>

where <ModeDeclarationGroup> is the short name of the Mode-
DeclarationGroup and <ModeDeclaration> is the short name
of the currently active ModeDeclaration. c(SRS_Rte_00144)

[SWS_Rte_06745] d The API enhanced Rte_Mode shall return the
following values for a mode machine instance assigned to the
RTE ([SWS_Rte_07533]) until the RTE has been initialized:

• the return value shall be
RTE_TRANSITION_<ModeDeclarationGroup>,

• <previousmode> shall contain the value of the
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>
of the initialMode of the ModeDeclarationGroup

• <nextmode> shall contain the value of the
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>
of the initialMode of the ModeDeclarationGroup

where <ModeDeclarationGroup> is the short name of the Mode-
DeclarationGroup. c(SRS_Rte_00144)

[SWS_Rte_06783] d If modeManagerErrorBehavior.error-
ReactionPolicy is set to defaultMode the API enhanced
Rte_Mode shall return the following values for a mode machine
instance while the partition of the mode users is stopped or restart-
ing and until the RTE dequeues the next mode switch notifica-
tions.

• the return value shall be
RTE_TRANSITION_<ModeDeclarationGroup>,

• <previousmode> shall contain the value of the
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>
of the modeUserErrorBehavior.defaultMode of the Mode-
DeclarationGroup

514 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

• <nextmode> shall contain the value of the
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>
of the modeUserErrorBehavior.defaultMode of the Mode-
DeclarationGroup

where <ModeDeclarationGroup> is the short name of the Mode-
DeclarationGroup. c(SRS_Rte_00144) This indicates a transition
from and to the defaultMode. If the defaultMode is identical to
the initialMode the behavior is identical as during the initialization
of the RTE (see [SRS_Rte_00144]).

[SWS_Rte_06784] d If the modeManagerErrorBehavior.er-
rorReactionPolicy is set to lastMode, the API enhanced
Rte_Mode shall return the following values for a mode machine
instance while the partition of the mode users is stopped or restart-
ing and until the RTE dequeues the next mode switch notifica-
tions.

• the return value shall be
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>
of the last mode,

• <previousmode> shall contain the value of the
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>
of the last mode

• <nextmode> shall contain the value of the
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>
of the last mode

where <ModeDeclarationGroup> is the short name of the Mode-
DeclarationGroup. c(SRS_Rte_00144) This indicates a stable
mode during the re-initialization of the partition until the RTE is ca-
pable to dequeue the first mode switch notification after the
partition restart.

[SWS_Rte_06746] d The enhanced Rte_Mode API shall return the
values according [SWS_Rte_08504] and [SWS_Rte_08505] for a
common mode machine instance already after initialization of
the Basic Software Scheduler. c(SRS_Rte_00144)

In inter partition mode management, RTE on the mode manager
sided partition might not have direct access to the state variables of
the mode machine instance.

[SWS_Rte_08506] d In inter partition mode management, the return
value and the contents of the parameters <previousmode> and
<nextmode> of the Rte_Mode API to the mode manager shall be
consistent with the start of a transition by the Rte_Switch API and

515 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

the inter partition communication of the ModeSwitchedAckEvent.
c(SRS_Rte_00144, SRS_Rte_00210)

Notes: The Rte_Mode API may already indicate the next ModeDec-
laration, before the mode manager has picked up the Mod-
eSwitchedAckEvent with the Rte_SwitchAck. This is not in con-
tradiction to [SWS_Rte_02732].

[SWS_Rte_06747] d The RTE shall support calls of the enhanced
Rte_Mode after initialization of the Basic Software Scheduler but be-
fore the RTE is initialized. c(SRS_Rte_00144)

5.6.31 Rte_Trigger

Purpose: Raise a external trigger of a trigger port.

Signature: [SWS_Rte_07200] d
signature without queuing support:

void
Rte_[Byps_]Trigger_<p>_<o>([IN Rte_Instance <instance>])

signature with queuing support:

Std_ReturnType
Rte_[Byps_]Trigger_<p>_<o>([IN Rte_Instance <instance>])

Where <p> is the port name and <o> the Trigger within the trigger
interface categorizing the port. [Byps_] is an optional infix used
when component wrapper method for bypass support is enabled for
the related software component type (See chapter 4.9.2).

The signature for queuing support shall be generated by the RTE
generator if the swImplPolicy of the associated Trigger is set to
queued. c(SRS_Rte_00162)

Existence: [SWS_Rte_07201] d The existence of a ExternalTriggering-
Point shall result in the generation of a Rte_Trigger API.
c(SRS_Rte_00162)

[constr_9032] Rte_Trigger API may only be used by the runn-
able that describe its usage d The Rte_Trigger API may only be
used by the runnable that contains the corresponding External-
TriggeringPoint. c

Description: The Rte_Trigger API triggers an execution for all runnables whose
ExternalTriggerOccurredEvent is associated to the Trigger.

Return Value: None in case of signature without queuing support.

516 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_06720] d The Rte_Trigger API shall return the follow-
ing values:

• RTE_E_OK if the trigger was successfully queued or if no queue
is configured

• RTE_E_LIMIT if the trigger was not queued because the maxi-
mum queue size is already reached.

in the case of signature with queuing support. c(SRS_Rte_00235)

5.6.32 Rte_IrTrigger

Purpose: Raise a internal trigger to activate Runnable entities of the same soft-
ware component instance.

Signature: [SWS_Rte_07203] d
signature without queuing support:

void
Rte_[Byps_]IrTrigger_<re>_<o>([IN Rte_Instance <instance>])

signature with queuing support:

Std_ReturnType
Rte_[Byps_]IrTrigger_<re>_<o>([IN Rte_Instance <instance>])

Where <re> is the name of the runnable entity the API might be
used in and <o> is the name of the InternalTriggeringPoint.
[Byps_] is an optional infix used when component wrapper method
for bypass support is enabled for the related software component type
(See chapter 4.9.2).

The signature for queuing support shall be generated by the RTE
generator if the swImplPolicy of the associated InternalTrig-
geringPoint is set to queued. c(SRS_Rte_00163)

Existence: [SWS_Rte_07204] d The existence of a InternalTriggering-
Point shall result in the generation of a Rte_IrTrigger API.
c(SRS_Rte_00163)

[constr_9033] Rte_IrTrigger API may only be used by the
runnable that describe its usage d The Rte_IrTrigger API may
only be used by the runnable that contains the corresponding In-
ternalTriggeringPoint. c

Description: The Rte_IrTrigger triggers an execution for all runnables
whose InternalTriggerOccurredEvent is associated to the
InternalTriggeringPoint.

Return Value: None in case of signature without queuing support.

517 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_06721] d The Rte_Trigger API shall return the follow-
ing values:

• RTE_E_OK if the trigger was successfully queued or if no queue
is configured

• RTE_E_LIMIT if the trigger was not queued because the maxi-
mum queue size is already reached.

in the case of signature with queuing support. c(SRS_Rte_00235)

Notes: None.

5.6.33 Rte_IFeedback

Purpose: Provide access to acknowledgement notifications for implicit sender
receiver communication and to pass error notification to senders.

Signature: [SWS_Rte_07367] d
Std_ReturnType
Rte_[Byps_]IFeedback_<re>_<p>_<o> ([IN RTE_Instance <instance>])

Where <re> is the runnable entity name, <p> the port name and <o>
the VariableDataPrototype within the sender-receiver interface
categorizing the port. [Byps_] is an optional infix used when com-
ponent wrapper method for bypass support is enabled for the related
software component type (See chapter 4.9.2). c(SRS_BSW_00310,
SRS_Rte_00122, SRS_Rte_00129, SRS_Rte_00185)

Existence: Note: according to [SWS_Rte_01283], acknowledgment is enabled
for a provided VariableDataPrototype by the existence of a
TransmissionAcknowledgementRequest in the SenderCom-
Spec.

[SWS_Rte_07646] d An Rte_IFeedback API shall be created for
a provided VariableDataPrototype if acknowledgment is en-
abled and the RunnableEntity has a VariableAccess in the
dataWriteAccess role referring to this VariableDataProto-
type. c(SRS_Rte_00122, SRS_Rte_00129, SRS_Rte_00185)

[SWS_Rte_07647] d An Rte_IFeedback API shall be created for a
provided VariableDataPrototype if acknowledgment is enabled
and a DataWriteCompletedEvent references the RunnableEn-
tity as well as the VariableAccess which in turn references the
VariableDataPrototype. c(SRS_Rte_00122, SRS_Rte_00129,
SRS_Rte_00185)

[SWS_Rte_07648] d If acknowledgment is enabled for a provided
VariableDataPrototype and a DataWriteCompletedEvent
references a runnable entity as well as the VariableAccess which

518 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

in turn references the VariableDataPrototype, the runnable en-
tity shall be activated when the transmission acknowledgment occurs
or when a timeout was detected by the RTE. See [SWS_Rte_07379].
c(SRS_Rte_00122, SRS_Rte_00129, SRS_Rte_00185)

[constr_9000] Rte_IFeedback API may only be used
by the RunnableEntitys that describe its usage d The
Rte_IFeedback API shall only be used by a RunnableEntity
that either has a VariableAccess in the dataWriteAccess role
referring to the VariableDataPrototype or is triggered by a
DataWriteCompletedEvent referring to the VariableAccess
which in turn references the VariableDataPrototype. c

Description: The Rte_IFeedback API takes no parameters other than the in-
stance handle – the return value is used to indicate the acknowledg-
ment status to the caller.

The Rte_IFeedback API applies only to implicit sender-receiver
communication.

The Rte_IFeedback API provides access to the transmission feed-
back of the data elements, declared as sent by a runnable using a
VariableAccess in the dataWriteAccess role, and sent after the
previous invocation of the runnable. The API function is guaranteed
to be have constant execution time and therefore can also be used
within category 1A runnable entities.

The required consistency access by a runnable can be provided by
copying of the status before the execution of the runnable so that it
cannot be modified by the RTE during the lifetime of the runnable
entity.

Return Value: The return value is used to indicate the “status” status and errors
detected by the RTE during execution of the Rte_IFeedback call.

• [SWS_Rte_07374] d RTE_E_NO_DATA – No acknowledgments
or error notifications were received from COM when the runn-
able entity was started. c(SRS_Rte_00094, SRS_Rte_00122,
SRS_Rte_00129, SRS_Rte_00185)

• [SWS_Rte_07375] d RTE_E_COM_STOPPED – (Inter-ECU com-
munication only) The last transmission was rejected (when the
local buffer was sent), with an RTE_E_COM_STOPPED return
code or an error notification was received from COM before
any timeout notification. c(SRS_Rte_00094, SRS_Rte_00122,
SRS_Rte_00129, SRS_Rte_00185)

• [SWS_Rte_07650] d RTE_E_TIMEOUT – (Inter-ECU only)
A timeout notification was received from COM before

519 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

any error notification. c(SRS_Rte_00094, SRS_Rte_00122,
SRS_Rte_00129, SRS_Rte_00185)

• [SWS_Rte_07376] d RTE_E_TRANSMIT_ACK – A transmission
acknowledgment was received. This error code is valid for both
inter-ECU and intra-ECU communication. c(SRS_Rte_00094,
SRS_Rte_00122, SRS_Rte_00129, SRS_Rte_00185)

• [SWS_Rte_07660] d RTE_E_UNCONNECTED – Indicates
that the sender port is not connected. c(SRS_Rte_00094,
SRS_Rte_00122, SRS_Rte_00129, SRS_Rte_00185,
SRS_Rte_00139)

The RTE_E_NO_DATA, RTE_E_TRANSMIT_ACK and
RTE_E_UNCONNECTED return values are not considered to be
an error but rather indicates correct operation of the API call.

[SWS_Rte_07651] d The initial return value of the
Rte_IFeedback API, when the runnable entity is executed before
any attempt to write some data shall be RTE_E_TRANSMIT_ACK.
c(SRS_Rte_00094, SRS_Rte_00122, SRS_Rte_00129,
SRS_Rte_00185)

[SWS_Rte_08074] d In case of multiple faults during a call
of Rte_IFeedback the resulting return value shall be derived
according to the following priority rules (highest priority first):
(1) RTE_E_UNCONNECTED, (2) RTE_E_IN_EXCLUSIVE_AREA, (3)
RTE_E_TIMEOUT, (4) RTE_E_COM_STOPPED, (5) RTE_E_NO_DATA,
(6) RTE_E_TRANSMIT_ACK. c(SRS_Rte_00122)

Notes: See the notes for the Rte_Feedback API in section 5.6.8.

5.6.34 Rte_IsUpdated

Purpose: Provide access to the update flag for an explicit receiver.

Signature: [SWS_Rte_07390] d
boolean
Rte_[Byps_]IsUpdated_<p>_<o> ([IN RTE_Instance <instance>])

Where <p> is the port name and <o> the VariableDataPro-
totype within the sender-receiver interface categorizing the port.
[Byps_] is an optional infix used when component wrapper method
for bypass support is enabled for the related software component type
(See chapter 4.9.2). c(SRS_BSW_00310, SRS_Rte_00179)

Existence: [SWS_Rte_07391] d An Rte_IsUpdated API shall be created for
a required VariableDataPrototype if a RunnableEntity has
a VariableAccess in the dataReceivePointByArgument or

520 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

dataReceivePointByValue role referring to the VariableDat-
aPrototype and the enableUpdate attribute is enabled in the
NonqueuedReceiverComSpec of the VariableDataPrototype.
c(SRS_Rte_00179)

[constr_9034] Rte_IsUpdated API may only be used by the
runnable that describe the access to the corresponding data
d The Rte_IsUpdated API may only be used by the runnable
that contains the corresponding VariableAccess in the dataRe-
ceivePointByArgument or dataReceivePointByValue role. c

Description: The Rte_IsUpdated API takes no parameters other than the in-
stance handle – the return value is used to indicate if the Vari-
ableDataPrototype has been updated or not.

The Rte_IsUpdated API applies only to sender-receiver communi-
cation.

Return Value: The return value is used to indicate if the VariableDataProto-
type has been updated or not.

• [SWS_Rte_07392] d TRUE – DataElement updated since last
read. c(SRS_Rte_00094, SRS_Rte_00179)

• [SWS_Rte_07393] d FALSE – DataElement not updated since
last read. c(SRS_Rte_00094, SRS_Rte_00179)

Notes: None.

5.6.35 Rte_PBCon

Purpose: Provide access to the individual post-build artifacts of a Variation-
PointProxy for SWCs of a system containing different variants.

Signature: [SWS_Rte_08066] d
<return>
Rte_[Byps_]PBCon_<vpp> ()

Where <vpp> is the shortName of the VariationPointProxy.
[Byps_] is an optional infix used when component wrapper method
for bypass support is enabled for the related software component type
(See chapter 4.9.2). c(SRS_Rte_00191)

Existence: [SWS_Rte_08067] d A Rte_PBCon API shall be generated, if
a PostBuildVariantCriterion or at least one PostBuild-
VariantCondition is defined for the VariationPointProxy.
c(SRS_Rte_00191)

Description: Depending on the category of the VariationPointProxy (see
Software Component Template [2]), the Rte_PBCon API provides ei-

521 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

ther access to the PostBuildVariantCriterion or to the result
of the evaluation of the PostBuildVariantConditions against
the PostBuildVariantCriterion.

Return Value: [SWS_Rte_08068] d For VariationPointProxys of category
VALUE the return value of Rte_PBCon shall be an integer value
yielding from the VariationPointProxy.postBuildValueAc-
cess.

The return type of Rte_PBCon shall be in this case conform with
the ImplementationDataType defined by VariationPoint-
Proxy.implementationDataType. c(SRS_Rte_00191)

[SWS_Rte_08069] d For VariationPointProxys of category
CONDITION the return value of Rte_PBCon shall be the result
of the evaluated expression PBExp:

∧
PBV arCon(VariationPoint-

Proxy.postBuildValueAccess = PostBuildVariantCondi-
tion.value), where PBVarCon is the set of all postBuildVari-
antConditions of the VariationPointProxy. If a pre-build con-
dition is defined in addition the return value shall be the result of
the evaluated expression PPBExp:VariationPointProxy.con-
ditionAccess

∧
PBExp.

The return type of Rte_PBCon shall be in this case the Platform Type
boolean. c(SRS_Rte_00191)

Notes: [SWS_Rte_08070] d For VariationPointProxys of category
CONDITION that are using both conditionAccess and post-
BuildVariantCondition the RTE shall ensure in Rte_PBCon
that pre-build conditions have precedence over post-build conditions.
c(SRS_Rte_00191)

More details regarding Rte_PBCon API can be found in section 4.7.5.

5.7 Runnable Entity Reference

An AUTOSAR component defines one or more “runnable entities”. A runnable entity
is a piece of code with a single entry point and an associate set of data. A software-
component description provides definitions for each runnable entity within the software-
component.

For components implemented using C or C++ the entry point of a runnable entity is
implemented by a function with global scope defined within a software-component’s
source code. The following sections consider the function signature and prototype.

522 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

5.7.1 Signature

The definition of all runnable entities, whatever the RTEEvent that triggers their exe-
cution, follows the same basic form.

[SWS_Rte_01126] d
<void|Std_ReturnType> [Byps_]<prefix><name>([IN Rte_Instance <instance>],

[IN Rte_ActivatingEvent_<name> <activation>],
[role parameters])

Where <name> 8 is the symbol describing the runnable’s entry point and <prefix> is
the optional SymbolProps.symbol attribute of the AtomicSwComponentType own-
ing the RunnableEntity, i.e. <prefix> will only appear if the attribute Symbol-
Props.symbol exists. The usage of Rte_ActivatingEvent is optional and de-
fined in [SWS_Rte_08051]. The definition of the role parameters is defined in Sec-
tion 5.7.3. [Byps_] is an optionnal infix used when component wrapper method for
bypass support is enabled for the related software component type (See chapter 4.9.2).
c(SRS_Rte_00031, SRS_Rte_00011, SRS_Rte_00238)

Section 5.2.6.4 contains details on a recommended naming conventions for runnable
entities based on the RTEEvent that triggers the runnable entity. The recommended
naming convention makes explicit the functions that implement runnable entities as well
as clearly associating the runnable entity and the applicable data element or operation.

5.7.2 Entry Point Prototype

The RTE determines the required role parameters, and hence the prototype of the
entry point, for a runnable entity based on information in the input information. The
entry point defined in the component source must be compatible with the parameters
passed by the RTE when the runnable entity is triggered by the RTE and therefore the
RTE generator is required to emit a prototype for the function.

[SWS_Rte_01132] d The RTE generator shall emit a prototype for the runnable en-
tity’s entry point in the Application Header File. c(SRS_Rte_00087, SRS_Rte_00051,
SRS_Rte_00031)

The prototype for a function implementing the entry point of a runnable entity is emitted
for both “RTE Contract” and “RTE Generation” phases. The function name for the
prototype is the runnable entity’s entry point. The prototype of the entry point function
includes the runnable entity’s instance handle and its role parameters, see Figure 5.2.

8Runnable entities have two “names” associated with them in the AUTOSAR Software Component
Template; the runnable’s identifier and the entry point’s symbol. The identifier is used to reference
the runnable entity within the input data and the symbol used within code to identify the runnable’s
implementation. In the context of a prototype for a runnable entity, “name” is the runnable entity’s entry
point symbol.

523 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_07194] d The RTE Generator shall wrap each RunnableEntity’s Entry
Point Prototype in the Application Header File with the Memory Mapping and Compiler
Abstraction macros.

1 #define [Byps_]<c>_START_SEC_<sadm>
2 #include "[Byps_]<c>_MemMap.h"
3

4 FUNC(<void|Std_ReturnType>, <c>_<sadm>) [Byps_]<prefix><name> (
5 [IN Rte_Instance <instance>],
6 [IN Rte_ActivatingEvent_<name> <activation>],
7 [role parameters]);
8

9 #define [Byps_]<c>_STOP_SEC_<sadm>
10 #include "[Byps_]<c>_MemMap.h"

where <c> is the shortName of the software component type,

<sadm> is the shortName of the referred swAddrMethod.

<prefix> is the optional SymbolProps.symbol attribute of the AtomicSwCompo-
nentType owning the RunnableEntity, i.e. <prefix> will only appear if the at-
tribute SymbolProps.symbol exists.

<name> is the attribute symbol describing the RunnableEntity’s entry point.

The usage of Rte_ActivatingEvent is optional and defined in [SWS_Rte_08051].
The definition of the role parameters is defined in Section 5.7.3. The Memory Map-
ping macros could wrap several Entry Point Prototype if these are referring to the
same swAddrMethod. If RunnableEntity does not refer a swAddrMethod the
<sadm> is set to default CODE. [Byps_] is an optionnal infix used when compo-
nent wrapper method for bypass support is enabled for the related software compo-
nent type (See chapter 4.9.2). c(SRS_Rte_00148, SRS_Rte_00149, SRS_Rte_00238,
SRS_Rte_00011)

[SWS_Rte_06531] d The RTE Generator shall wrap each Entry Point Prototype in the
Application Header File of a variant existent RunnableEntity if the variability shall
be implemented. c(SRS_Rte_00201)

1 #if (<condition>)
2

3 <Entry Point Prototype>
4

5 #endif

where condition is the Condition Value Macro of the VariationPoint rel-
evant for the variant existence of the RunnableEntity (see table 4.18),
Entry Point Prototype is the code according an invariant Entry Point Pro-
totype (see also [SWS_Rte_01131], [SWS_Rte_07177], [SWS_Rte_02512],
[SWS_Rte_01133], [SWS_Rte_01359], [SWS_Rte_01166], [SWS_Rte_01135],
[SWS_Rte_01137], [SWS_Rte_07207], [SWS_Rte_07208], [SWS_Rte_07379]).

[SWS_Rte_01016] d The function implementing the entry point of a runnable en-
tity shall define an instance handle as the first formal parameter if and only if the

524 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

software component’s supportsMultipleInstantiation attribute is set to TRUE.
c(SRS_Rte_00011, SRS_Rte_00031)

The RTE will ensure that when the runnable entity is triggered the instance handle pa-
rameter indicates the correct component instance. The remaining parameters passed
to the runnable entity depend on the RTEEvent that triggers execution of the runnable
entity.

Due to the global name space of a C Linker Locater symbols of RunnableEntitys
have to be unique in the ECU. When AtomicSwComponentTypes of several vendors
are integrated in the same ECU name clashes might occur if the same symbol is ac-
cidentally used twice. To ease the dissolving of name clashes the RTE supports an
abstraction of the RunnableEntity symbol in the implementation of the software
component.

[SWS_Rte_06713] d The RTE generator shall emit for each RunnableEntity a de-
fine for a symbolic name of the RunnableEntity.

1 #define RTE_RUNNABLE_<name> <prefix><symbol>

where <name> is the shortName of the RunnableEntity,

<prefix> is the optional SymbolProps.symbol attribute of the AtomicSwCompo-
nentType owning the RunnableEntity.

<symbol> is the attribute symbol describing the RunnableEntity’s entry point.

c(SRS_Rte_00087, SRS_Rte_00051, SRS_Rte_00031)

This symbolic name of the RunnableEntity can be used as follows in the software
component implementation.

Example 5.29

For software component "‘HugeSwc"’ with a runnable "‘FOO"’ where the Symbol-
Props.symbol is set to "‘TinySwc"’ the Application Header File contains the definition:

1 /* Application Header File of HugeSwc*/
2 #define RTE_RUNNABLE_FOO TinySwcfoo

This can be used in the software components c file for the definition of the runnable:
1 /* software component c file */
2 RTE_RUNNABLE_FOO()
3 {
4 /* The algorithm of foo */
5 return;
6 }

A change of the SymbolProps.symbol valued would have no effect on the c imple-
mentation of the software component but it would change the contract and the used
labels in a object code delivery.

525 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

In case that the RunnableEntity is mapped to BswModuleEntity the RTE Gener-
ator has to additionally respect the definitions in 6.3.2.3.4.

5.7.3 Role Parameters

The role parameters are optional and their presence and types depend on the RTE-
Event that triggers the execution of the runnable entity. The role parameters that are
necessary for each triggering RTEEvent are defined in Section 5.7.5.

[SWS_Rte_06703] d The RTE Generator shall name role parameters according to the
value of the symbol attribute of RunnableEntityArguments if RunnableEntit-
yArguments are defined for the related RunnableEntity and if no mapping to a
BswModuleEntry is defined. c(SRS_Rte_00087)

[SWS_Rte_06704] d The RTE Generator shall name role parameters according to the
shortName of the SwServiceArgs of the mapped BswModuleEntry if a mapping
of the RunnableEntity to a BswModuleEntry is defined. c(SRS_Rte_00087)

Please note that RunnableEntityArguments defined for a RunnableEntity
which is mapped to a BswModuleEntry are irrelevant.

[SWS_Rte_06705] d The RTE Generator shall generate nameless role parameters if
neither RunnableEntityArguments nor a mapping to a BswModuleEntry is de-
fined for the RunnableEntity. c(SRS_Rte_00087)

Further details about the mapping of RunnableEntitys and BswModuleEntry can
be found section "‘Synchronization with a Corresponding SWC"’ of the document [9]

5.7.4 Return Value

A function in C or C++ is required to have a return type. The RTE only uses the function
return value to return application error codes of a server operation.

[SWS_Rte_01130] d A function implementing a runnable entity entry point shall only
have the return type Std_ReturnType, if the runnable entity represents a server oper-
ation and the AUTOSAR interface description of that client server communication lists
potential application errors. All other functions implementing a runnable entity entry
point shall have a return type of void. c(SRS_Rte_00124, SRS_Rte_00031)

Note: If the potential application errors include RTE_E_OK, this shall also lead to a
return type of Std_ReturnType.

[constr_9045] The upper two bits of the of the server return value are reserved d
Only the least significant six bit of the return value of a server runnable shall be used
by the application to indicate an error. The upper two bit shall be zero. c

See also [SWS_Rte_02573].

526 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

5.7.5 Triggering Events

The RTE is the sole entity that can trigger the execution of a runnable entity. The RTE
triggers runnable entities in response to different RTEEvents.

The most basic RTEEvent that can trigger a runnable entity is the TimingEvent
that causes a runnable entity to be periodically triggered by the RTE. In contrast, the
remaining RTEEvents that can trigger runnable entities all occur as a result of com-
munication activity or as a result of mode switches.

The following subsections describe the conditions that can trigger execution of a runn-
able entity. For each triggering event the signature of the function (the “entry point”)
that implements the runnable entity is defined. The signature definition includes two
classes of parameters for each function;

1. The instance handle – the parameter type is always Rte_Instance.
([SWS_Rte_01016])

2. The role parameters – used to pass information required by the runnable entity
as a consequence of the triggering condition. The presence (and number) of role
parameters depends solely on the triggering condition.

5.7.5.1 TimingEvent

Purpose: Trigger a runnable entity periodically at a rate defined within the
software-component description.

Signature: [SWS_Rte_01131] d
void <name>([IN Rte_Instance <instance>])

c(SRS_Rte_00072)

5.7.5.2 BackgroundEvent

Purpose: A recurring RTEEvent which is used to perform background activi-
ties. It is similar to a TimingEvent but has no fixed time period and
is activated only with low priority.

Signature: [SWS_Rte_07177] d
void <name>([IN Rte_Instance <instance>])

c(SRS_Rte_00072)

527 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

5.7.5.3 SwcModeSwitchEvent

Purpose: Trigger of a runnable entity as a result of a mode switch. See also
sections 4.4.4 and 4.4.7 for reference.

Signature: [SWS_Rte_02512] d
void <name>([IN Rte_Instance <instance>])

c(SRS_Rte_00072, SRS_Rte_00143)

5.7.5.4 AsynchronousServerCallReturnsEvent

Purpose: Triggers a runnable entity used to “collect” the result and status infor-
mation of an asynchronous client-server operation.

Signature: [SWS_Rte_01133] d
void <name>([IN Rte_Instance <instance>])

c(SRS_Rte_00072, SRS_Rte_00029, SRS_Rte_00079)

Notes: The runnable entity triggered by an AsynchronousServerCall-
ReturnsEvent RTEEvent should use the Rte_Result API to ac-
tually receive the result and the status of the server operation.

5.7.5.5 DataReceiveErrorEvent

Purpose: Triggers a runnable entity used to “collect” the error status of a data
element with “data” semantics on the receiver side.

Signature: [SWS_Rte_01359] d
void <name>([IN Rte_Instance <instance>])

c(SRS_Rte_00072, SRS_Rte_00029, SRS_Rte_00079)

Notes: The runnable entity triggered by a DataReceiveErrorEvent RTE-
Event should use the Rte_IStatus API to actually read the status.

5.7.5.6 OperationInvokedEvent

Purpose: An RTEEvent that causes the RTE to trigger a runnable entity whose
entry point provides an implementation for a client-server operation.
This event occurs in response to a received request from a client to
execute the operation.

Signature: [SWS_Rte_01166] d
<void|Std_ReturnType> <name>

([IN Rte_Instance <instance>],

528 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[IN <portDefArg 1>, ...
IN <portDefArg n>],

[IN|INOUT|OUT] <param 1>, ...
[IN|INOUT|OUT] <param n>)

Where <portDefArg 1>, ..., <portDefArg n> represent the
port-defined argument values (see Section 4.3.2.4) and
<param 1>, ... <param n> indicates the operation IN, IN-
OUT and OUT parameters. c(SRS_Rte_00029, SRS_Rte_00079,
SRS_Rte_00072, SRS_Rte_00152)

The data type of each port defined argument is taken from the soft-
ware component template, as defined in valueType.

Note that the port-defined argument values are optional, depending
upon the server’s internal behavior.

[SWS_Rte_07023] d The operation parameters
<param 1>, ... <param n> are the specified ArgumentDat-
aPrototypes of the ClientServerOperation that is associated
with the OperationInvokedEvent. The operation parameters
shall be ordered according to the ClientServerOperation’s
ordered list of the ArgumentDataPrototypes. c(SRS_Rte_00029,
SRS_Rte_00079, SRS_Rte_00072)

[SWS_Rte_07024] d If the ServerArgumentImplPolicy is set
to useArgumentType the data type of the <param> is de-
rived from the ArgumentDataPrototype’s Implementation-
DataType. c(SRS_Rte_00029, SRS_Rte_00079, SRS_Rte_00072)

In case of [SWS_Rte_07024] the RunnableEntitys parameter are
equally typed as the parameter for the Rte_Call API described in
section 5.2.6.5

[SWS_Rte_07025] d If the ServerArgumentImplPolicy is set to
useArrayBaseType the data type of the <param> is derived from
the ArgumentDataPrototype’s ImplementationDataType-
Element specifying the base type of the array. c(SRS_Rte_00029,
SRS_Rte_00079, SRS_Rte_00072)

ServerArgumentImplPolicy is set to useArrayBaseType is
only applicable in case of ArgumentDataPrototype’s which data
type is of category ARRAY.

Please note that [SWS_Rte_07025] results in the same C Data
Type as described in [SWS_Rte_07024] since the Rte API is typed
with the base type of the array as specified in [SWS_Rte_05107],
[SWS_Rte_05108] and [SWS_Rte_05109], in section 5.2.6.5.

529 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_07026] d The RTE-Generator shall reject configura-
tions violating [constr_1297]. c(SRS_Rte_00029, SRS_Rte_00079,
SRS_Rte_00072, SRS_Rte_00018)

[SWS_Rte_07027] d If the ServerArgumentImplPolicy is set
to useVoid the data type of the <param> is set to void *
for any kind of data type. c(SRS_Rte_00029, SRS_Rte_00079,
SRS_Rte_00072)

[SWS_Rte_08800] d It is considered an invalid configuration if
ServerArgumentImplPolicy uses void in case of primitive IN
arguments. See [constr_1286] in Software Component Template
specification. c(SRS_Rte_00079, SRS_Rte_00018)

[SWS_Rte_05193] d If the serverArgumentImplPolicy is set
to useArrayBaseType or useVoid the RTE shall cast the argu-
ments passed by Rte_Call() and Rte_Result() to the data
types defined by the runnable entity prototype. c(SRS_Rte_00029,
SRS_Rte_00079, SRS_Rte_00072)

Return Value: If the AUTOSAR interface description of the client server commu-
nication lists possible error codes, these are returned by the func-
tion using the return type Std_ReturnType. If no error codes
are defined for this interface, the return type shall be void (see
[SWS_Rte_01130]).

This means that even if a runnable entity implementing a server "only"
returns E_OK, application errors have to be defined. Else the return
types do not match.

5.7.5.7 DataReceivedEvent

Purpose: A runnable entity triggered by the RTE to receive and process a signal
received on a sender-receiver interface.

Signature: [SWS_Rte_01135] d
void <name>([IN Rte_Instance <instance>])

c(SRS_Rte_00072, SRS_Rte_00028, SRS_Rte_00131,
SRS_Rte_00107)

Notes: The data or event is not passed as an additional parameter. Instead,
the previously described reception API should be used to access the
data/event. This approach permits the same signature for runnables
that are triggered by time (TimingEvent) or data reception.

Caution: For intra-ECU communication, the DataReceivedEvent
is fired after each completed write operation to the shared data. In
case of implicit access, write operation is considered to be completed

530 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

when the runnable ends. While for inter-ECU communication, the
DataReceivedEvent is fired by the RTE after a callback from COM
due to data reception. Over a physical network, ‘data’ is commonly
transmitted periodically and hence not only will the latency and jitter
of DataReceivedEvents vary depending on whether a configura-
tion uses intra or inter-ECU communication, but also the number and
frequency of these RTEEvents may change significantly. This means
that a TimingEvent should be used to periodically activation of a
runnable rather than relying on the periodic transmission of data.

5.7.5.8 DataSendCompletedEvent

Purpose: A runnable entity triggered by the RTE to receive and process trans-
mit acknowledgment notifications.

Signature: [SWS_Rte_01137] d
void <name>([IN Rte_Instance <instance>])

c(SRS_Rte_00072, SRS_Rte_00122, SRS_Rte_00107)

Notes: The runnable entity triggered by a DataSendCompletedEvent
RTEEvent should use the Rte_Feedback API to actually receive
the status of the acknowledgment.

5.7.5.9 ModeSwitchedAckEvent

Purpose: A runnable entity triggered by the RTE to receive and process mode
switched acknowledgment notifications.

Signature: [SWS_Rte_02758] d
void <name>([IN Rte_Instance <instance>])

c(SRS_Rte_00072, SRS_Rte_00122, SRS_Rte_00107)

Notes: The runnable entity triggered by an ModeSwitchedAckEvent
should use the Rte_SwitchAck API to actually receive the status
of the acknowledgment.

5.7.5.10 SwcModeManagerErrorEvent

Purpose: A runnable entity triggered by the RTE to react on errors occurring
during mode handling.

Signature: [SWS_Rte_06771] d
void <name>([IN Rte_Instance <instance>])

531 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

c(SRS_Rte_00072, SRS_Rte_00122, SRS_Rte_00107)

Notes: –

5.7.5.11 ExternalTriggerOccurredEvent

Purpose: A runnable entity triggered by the RTE at the occurrence of an exter-
nal event.

Signature: [SWS_Rte_07207] d
void <name>([IN Rte_Instance <instance>])

c(SRS_Rte_00162, SRS_Rte_00072)

Notes: –

5.7.5.12 InternalTriggerOccurredEvent

Purpose: A runnable entity triggered by the RTE by an inter runnable trigger.

Signature: [SWS_Rte_07208] d
void <name>([IN Rte_Instance <instance>])

c(SRS_Rte_00163, SRS_Rte_00072)

Notes: –

5.7.5.13 DataWriteCompletedEvent

Purpose: A runnable entity triggered by the RTE to receive and process trans-
mit acknowledgment notifications for implicit communication.

Signature: [SWS_Rte_07379] d
void <name>([IN Rte_Instance <instance>])

c(SRS_Rte_00072, SRS_Rte_00122, SRS_Rte_00185)

Notes: The runnable entity triggered by a DataWriteCompletedEvent
RTEEvent should use the Rte_IFeedback API to actually receive
the status of the acknowledgment.

5.7.5.14 InitEvent

Purpose: A runnable entity triggered by the RTE for initialization.

Signature: [SWS_Rte_06748] d

532 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

void <name>([IN Rte_Instance <instance>])

c(SRS_Rte_00072, SRS_Rte_00240)

Notes: The runnable entity triggered by a InitEvent RTEEvent is sup-
posed to be used for initialization purposes, i.e. for starting and
restarting a partition. It is not guaranteed that all RunnableEn-
titys referenced by this InitEvent are executed before the ’regu-
lar’ RunnableEntitys are executed for the first time.

5.7.6 Reentrancy

A runnable entity is declared within a software-component type. The RTE ensures
that concurrent activation of same instance of a runnable entity is only allowed if the
runnables attribute "canBeInvokedConcurrently" is set to TRUE (see Section 4.2.6).

When a software-component is multiple instantiated each separate instance has its
own instance of the runnable entities in the software-component. Whilst instances of a
software-component are independent, the runnable entities instances share the same
code ([SWS_Rte_03015]).

Example 5.30

Consider a component c1 with runnable entity re1 and entry point ep that is instanti-
ated twice on the same ECU.

The two instances of c1 each has a separate instance of re1. Software-component
instances are scheduled independently and therefore each instance of re1 could be
concurrently executing ep.

The potential for concurrent execution of runnable entities when multiple instances of
a software-component are created means that each entry point should be reentrant.

5.8 RTE Lifecycle API Reference

This section documents the API functions used to start and stop the RTE. RTE Lifecycle
API functions are not invoked from AUTOSAR software-components – instead they are
invoked from other basic software module(s).

5.8.1 Rte_Start

Purpose: Initialize the RTE itself.

Signature: [SWS_Rte_02569] d
Std_ReturnType Rte_Start(void)

533 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

c(SRS_BSW_00310, SRS_Rte_00116)

Existence: [SWS_Rte_01309] d The Rte_Start API is always created.
c(SRS_Rte_00051)

Description: Rte_Start is intended to allocate and initialise system resources
and communication resources used by the RTE.

[constr_9035] Rte_Start shall be called only once d Rte_Start
shall be called only once by the EcuStateManager from trusted OS
context on a core after the basic software modules required by RTE
are initialized. c

These modules include:

• OS

• COM

• memory services

The Rte_Start API shall not be invoked from AUTOSAR software
components.

[constr_9036] Rte_Start API may only be used after call of
SchM_Init d The Rte_Start API may only be used after the
Basic Software Scheduler is initialized (after termination of the
SchM_Init). c

[constr_9037] Rte_Start API shall be called on every core d The
Rte_Start API shall be called on every core that hosts AUTOSAR
software-components of the ECU. c

[SWS_Rte_02585] d Rte_Start shall return within finite execution
time – it must not enter an infinite loop. c(SRS_Rte_00116)

Rte_Start may be implemented as a function or a macro.

Return Value: If the allocation of a resource fails, Rte_Start shall return with an
error.

• [SWS_Rte_01261] d RTE_E_OK – No error occurred.
c(SRS_Rte_00094)

• [SWS_Rte_01262] d RTE_E_LIMIT – An internal limit has been
exceeded. The allocation of a required resource has failed.
c(SRS_Rte_00094)

Notes: Rte_Start is declared in the lifecycle header file Rte_Main.h. The
initialization of AUTOSAR software-components takes place after the
termination of Rte_Start and is triggered by a mode change event
on entering run state.

534 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

5.8.2 Rte_Stop

Purpose: finalize the RTE itself

Signature: [SWS_Rte_02570] d
Std_ReturnType Rte_Stop(void)

c(SRS_Rte_00116)

Existence: [SWS_Rte_01310] d The Rte_Stop API is always created.
c(SRS_Rte_00051)

Description: Rte_Stop is used to finalize the RTE on the core it is called. This
service releases all system and communication resources allocated
by the RTE on that core.

[constr_9038] Rte_Stop shall be called before BSW shutdown d
Rte_Stop shall be called by the EcuStateManager before the basic
software modules required by RTE are shut down. c

These modules include:

• OS

• COM

• memory services

Rte_Stop shall be called from trusted context and not by an AU-
TOSAR software component.

[SWS_Rte_02584] d Rte_Stop shall return within finite execution
time. c(SRS_Rte_00116)

Rte_Stop may be implemented as a function or a macro.

Return Value: • [SWS_Rte_01259] d RTE_E_OK – No error occurred.
c(SRS_Rte_00094)

• [SWS_Rte_01260] d RTE_E_LIMIT – a resource could not be
released. c(SRS_Rte_00094)

Notes: Rte_Stop is declared in the lifecycle header file Rte_Main.h.

5.8.3 Rte_PartitionTerminated

Purpose: Indicate to the RTE that a partition is going to be terminated, and the
communication with the Partition shall be ignored.

Signature: [SWS_Rte_07330] d
void Rte_PartitionTerminated_<PID>(void)

c(SRS_Rte_00223)

535 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Where <PID> is the name of the EcucPartition according to the
ECU Configuration Description [5].

Existence: [SWS_Rte_07331] d An Rte_PartitionTerminated API shall be
created for every Partition. c(SRS_Rte_00223)

Description: Rte_PartitionTerminated is intended to notify the RTE that a
given partition is terminated or is being restarted.

[constr_9039] Rte_PartitionTerminated shall be called only
once d Rte_PartitionTerminated shall be called only once by
the ProtectionHook. c

Rte_PartitionTerminated may be implemented as a function or
a macro.

[SWS_Rte_07334] d The treatments in
Rte_PartitionTerminated shall be restricted to the ones
allowed in the context of a ProtectionHook. c(SRS_Rte_00223)

Since Rte_PartitionTerminated is called from the Protection-
Hook context, it should be as fast as possible. Moreover, it cannot
be assumed any more that partition local data including RTE data
is consistent. Therefore, actions should be limited to setting a flag.
Actual cleanup needs to be deferred to another task.

The notification provided by Rte_PartitionTerminated can be
used later by the RTE to immediately return an error status when SW-
Cs of other partitions tries to communicate with the stopped partition.
See [SWS_Rte_02710] and [SWS_Rte_02709].

[SWS_Rte_07335] d Terminating an already terminated Partition
shall be ignored. c(SRS_Rte_00223)

Return Value: None.

Notes: Rte_PartitionTerminated is declared in the lifecycle header file
Rte_Main.h.

5.8.4 Rte_PartitionRestarting

Purpose: Indicate to the RTE that a Partition is going to be restarted and
that the communication with the Partition shall be ignored.

Signature: [SWS_Rte_07620] d
void Rte_PartitionRestarting_<PID>(void)

Where <PID> is the name of the EcucPartition according to the
ECU Configuration Description [5]. c(SRS_Rte_00223)

536 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Existence: [SWS_Rte_07619] d An Rte_PartitionRestarting API shall be
created for any Partition which can be restarted (i.e. a Parti-
tion whose PartitionCanBeRestarted parameter is enabled).
c(SRS_Rte_00223)

Description: Rte_PartitionRestarting is intended to notify the RTE that a
given partition is being restarted. As Rte_PartitionTerminated,
Rte_PartitionRestarting indicates that the communica-
tion with the partition shall be ignored, but in case of
Rte_PartitionRestarting, the partition may be restarted later
in the ECU lifecycle.

[constr_9040] Rte_PartitionRestarting shall be called only
onc d Rte_PartitionRestarting shall be called only once by the
ProtectionHook. c

Rte_PartitionRestarting may be implemented as a function or
a macro.

[SWS_Rte_07617] d The treatments in
Rte_PartitionRestarting shall be restricted to the ones
allowed in the context of a ProtectionHook. c(SRS_Rte_00223)

Since Rte_PartitionRestarting is called from the Protection-
Hook context, it should be as fast as possible. It should be limited to
setting a flag. Actual cleanup should be deferred to another task.

[SWS_Rte_07622] d Restarting an already terminated Partition
or restarting a Partition during an ongoing restart shall be ig-
nored. c(SRS_Rte_00223)

Return Value: None.

Notes: Rte_PartitionRestarting is declared in the lifecycle header file
Rte_Main.h.

5.8.5 Rte_RestartPartition

Purpose: Initialize the RTE resources allocated for a partition.

Signature: [SWS_Rte_07188] d
Std_ReturnType Rte_RestartPartition_<PID>(void)

Where <PID> is the name of the EcucPartition according to the
ECU Configuration Description [5]. c(SRS_Rte_00224)

Existence: [SWS_Rte_07336] d An Rte_RestartPartition API shall be cre-
ated for any Partition which can be restarted (i.e. a Parti-
tion whose PartitionCanBeRestarted parameter is enabled).
c(SRS_Rte_00224)

537 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Description: Rte_RestartPartition is intended to notify the RTE that a given
partition will be restarted.

[constr_9041] Rte_RestartPartition shall be called from
RestartTask d Rte_RestartPartition shall be called only in
the context of the RestartTask of the given partition. c

[SWS_Rte_07338] d Rte_RestartPartition shall return within
finite execution time – it must not enter an infinite loop.
c(SRS_Rte_00224)

Rte_RestartPartition may be implemented as a function or a
macro.

[SWS_Rte_07339] d The Rte_RestartPartition shall restore an
initial RTE environment for the partition and re-activate communica-
tion with this partition. c(SRS_Rte_00224)

This includes:

• signal initial values,

• modes,

• queued events,

• sequence counters.

[SWS_Rte_07340] d Rte_RestartPartition shall be ig-
nored if the given partition was not stopped before (with
Rte_PartitionTerminated or Rte_PartitionRestarting).
c(SRS_Rte_00224)

Return Value: If the allocation of a resource fails, Rte_RestartPartition shall
return with an error.

• [SWS_Rte_07341] d RTE_E_OK – No error occurred.
c(SRS_Rte_00224)

• [SWS_Rte_07342] d RTE_E_LIMIT – An internal limit has been
exceeded. The allocation of a required resource has failed.
c(SRS_Rte_00224)

Notes: Rte_RestartPartition is declared in the lifecycle header file
Rte_Main.h.

5.8.6 Rte_Init

Purpose: Schedules RunnableEntitys for initialization purpose.

Signature: [SWS_Rte_06749] d
void Rte_Init_<InitContainer>(void)

538 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Where <InitContainer> is the short name of the RteInitial-
izationRunnableBatch container. c(SRS_Rte_00240)

Existence: [SWS_Rte_06750] d An Rte_Init API shall be created
for each RteInitializationRunnableBatch container.
c(SRS_Rte_00240)

Description: Rte_Init is intended schedule RunnableEntitys for initialization
purpose which are mapped to the related RteInitialization-
RunnableBatch container.

[SWS_Rte_06751] d An Rte_Init API shall invoke the
RunnableEntitys which are associated with an RTEEvent
mapped to the related RteInitializationRunnableBatch con-
tainer in the order defined by the RtePositionInTask parameters.
c(SRS_Rte_00240)

[SWS_Rte_06752] d Rte_Init shall return within finite execution
time – it must not enter an infinite loop. c(SRS_Rte_00240)

[SWS_Rte_06753] d Rte_Init shall be implemented as a function.
c(SRS_Rte_00240)

[constr_9060] Rte_Init API may only be used after call of
Rte_Start d The Rte_Init API may only be used after the RTE is
initialized (after termination of the Rte_Start). c

Return Value: none

Notes: Rte_Init is declared in the lifecycle header file Rte_Main.h.

5.8.7 Rte_StartTiming

Purpose: Starts the triggering of recurrent events.

Signature: [SWS_Rte_06754] d
void Rte_StartTiming(void)

c(SRS_Rte_00240)

Existence: [SWS_Rte_06755] d An Rte_StartTiming API shall be created if
any Rte_Init API is created. c(SRS_Rte_00240)

Description: Rte_StartTiming API is intended to release the activation
of RunnableEntitys triggered by TimingEvents and Back-
groundEvents after the last call of a Rte_Init function.

[SWS_Rte_06756] d Rte_StartTiming API shall release the ac-
tivation of RunnableEntitys triggered by TimingEvents and
BackgroundEvents. c(SRS_Rte_00240)

539 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

See as well [SWS_Rte_06759] and [SWS_Rte_06760].

[SWS_Rte_06757] d Rte_StartTiming shall return within finite ex-
ecution time – it must not enter an infinite loop. c(SRS_Rte_00240)

[SWS_Rte_06758] d Rte_StartTiming shall be implemented as a
function. c(SRS_Rte_00240)

[constr_9061] Rte_StartTimingAPI may only be used after call
of Rte_Start d The Rte_StartTiming API may only be used after
the RTE is initialized (after termination of the Rte_Start). c

Return Value: none

Notes: Rte_StartTiming is declared in the lifecycle header file
Rte_Main.h.

5.9 RTE Call-backs Reference

This section documents the call-backs that are generated by the RTE that must be
invoked by other components, such as the communication service, and therefore must
have a well-defined name and semantics.

[SWS_Rte_01165] d A call-back implementation created by the RTE generator is not
permitted to block. c(SRS_Rte_00022)

Requirement [SWS_Rte_01165] serves to constrain RTE implementations so that all
implementations can work with all basic software.

5.9.1 RTE-COM Message Naming Conventions

The COM signals used for communication are defined in the input information provided
by Com.

[SWS_Rte_03007] d The RTE shall initiate an inter-ECU transmission using the COM
API with the handle id of the corresponding COM signal for primitive data element
SenderReceiverToSignalMapping. c(SRS_Rte_00019)

[SWS_Rte_03008] d The RTE shall initiate an inter-ECU transmission using the
COM API with the handle id of the corresponding COM signal group for composite
data elements or operation arguments SenderReceiverToSignalGroupMapping.
c(SRS_Rte_00019)

540 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

5.9.2 Communication Service Call-backs

Purpose: Implement the call-back functions that AutoSAR COM invokes as a
result of inter-ECU communication, where:

• A data item/event is ready for reception by a receiver.

• A transmission acknowledgment shall be routed to a sender.

• An operation shall be invoked by a server.

• The result of an operation is ready for reading by a client.

Signature: [SWS_Rte_03000] d

void <CallbackRoutineName> (void);

c(SRS_Rte_00019)

Where <CallbackRoutineName> is the name of the call-back func-
tion (refer to Section 5.9.1 for details on the naming convention).

Description: Prototypes for the call-back <CallbackRoutineName> provided by
AutoSAR COM.

Return Value: No return value : void

5.9.3 Naming convention of Communication Callbacks

In the following table, the naming convention of <CallBackRoutineName> are de-
fined:

Calling Situation callbackRoutineName Comments
A primitive data
item/event is ready
for reception by a
receiver.

[SWS_Rte_03001]
d Rte_COMCbk_<sn>

c(SRS_Rte_00019)

<sn> is the name of the COM
signal. This callback func-
tion indicates that the signal of
the primitive data item/event is
ready for reception.
Configured in Com:
ComNotification
[ECUC_Com_00498] as part of
ComSignal

541 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Calling Situation callbackRoutineName Comments
A transmission ac-
knowledgment of
a primitive data
item/event shall be
routed to a sender.

[SWS_Rte_03002] d
Rte_COMCbkTAck_<sn>

c(SRS_Rte_00019,
SRS_Rte_00122)

“TAck” is literal text indicating
transmission acknowledgment.
This callback function indicates
that the signal of the primi-
tive data item/event is already
handed over by COM to the PDU
router.
Configured in Com:
ComNotification
[ECUC_Com_00498] as part of
ComSignal

A transmission error
notificatoin of a prim-
itive data item/event
shall be routed to a
sender.

[SWS_Rte_03775] d
Rte_COMCbkTErr_<sn>

c(SRS_Rte_00019,
SRS_Rte_00122)

“TErr” is literal text indicating
transmission error. This call-
back function indicates that an
error occurred when the signal
of the primitive data item/event
was handed over by COM to the
PDU router.
Configured in Com: Com-
ErrorNotification
[ECUC_Com_00499] as part of
ComSignal

A signal invalidation
of a primitive data
item shall be routed
to a receiver.

[SWS_Rte_02612] d
Rte_COMCbkInv_<sn>

c(SRS_Rte_00019,
SRS_Rte_00122)

“Inv” is literal text indicating sig-
nal invalidation. This callback
function indicates that COM has
received a signal and parsed it
as “invalid”.
Configured in Com: Com-
InvalidNotification
[ECUC_COM_00315] as part of
ComSignal

A signal of a primitive
data item is outdated.
No new data is avail-
able.

[SWS_Rte_02610] d
Rte_COMCbkRxTOut_<sn>

c(SRS_Rte_00019,
SRS_Rte_00147)

“RxTOut” is literal text indicat-
ing reception signal time out.
This callback function indicates
that the aliveTimeout after
the last successful reception of
the signal of the primitive data
item/event has expired (data
element outdated).
Configured in Com: Com-
TimeoutNotification
[ECUC_Com_00552] as part of
ComSignal

542 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Calling Situation callbackRoutineName Comments
Transmission has
failed and timed out
for a primitive data
item.

[SWS_Rte_05084] d
Rte_COMCbkTxTOut_<sn>

c(SRS_Rte_00019,
SRS_Rte_00122)

“TxTOut” is literal text indicating
transmission failure and time
out. This callback function
indicates that the timeout
of TransmissionAcknowl-
edgementRequest for sending
the signal of the primitive data
item/event has expired.
Configured in Com: Com-
TimeoutNotification
[ECUC_Com_00552] as part of
ComSignal

A composite data
item/event or the
arguments of an
operation is ready
for reception by a
receiver.

[SWS_Rte_03004]
d Rte_COMCbk_<sg>

c(SRS_Rte_00019)

<sg> is the name of the COM
signal group, which contains all
the signals of the composite
data item/event or an operation.
This callback function indicates
that the signals of the compos-
ite data item/event or the argu-
ments of an operation are ready
for reception.
Configured in Com:
ComNotification
[ECUC_Com_00498] as part of
ComSignalGroup

A transmission ac-
knowledgment of
a composite data
item/event shall be
routed to a sender.

[SWS_Rte_03005] d
Rte_COMCbkTAck_<sg>

c(SRS_Rte_00019,
SRS_Rte_00122)

“TAck” is literal text indicating
transmission acknowledgment.
This callback function indicates
that the signals of the compos-
ite data item/event is already
handed over by COM to the PDU
router.
Configured in Com:
ComNotification
[ECUC_Com_00498] as part of
ComSignalGroup

543 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Calling Situation callbackRoutineName Comments
A transmission er-
ror notificatoin of
a composite data
item/event shall be
routed to a sender.

[SWS_Rte_03776] d
Rte_COMCbkTErr_<sg>

c(SRS_Rte_00019,
SRS_Rte_00122)

“TErr” is literal text indicating
transmission error. This callback
function indicates that an error
occurred when the signal of the
composite data item/event was
handed over by COM to the PDU
router.
Configured in Com: Com-
ErrorNotification
[ECUC_Com_00499] as part of
ComSignalGroup

A signal group inval-
idation of a compos-
ite data item shall be
routed to a receiver.

[SWS_Rte_05065] d
Rte_COMCbkInv_<sg>

c(SRS_Rte_00019,
SRS_Rte_00122)

“Inv” is literal text indicating sig-
nal group invalidation. This
callback function indicates that
COM has received a signal
group and parsed it as “invalid”.
Configured in Com: Com-
InvalidNotification
[ECUC_Com_00315] as part of
ComSignalGroup

A signal group of a
composite data item
is outdated. No new
data is available.

[SWS_Rte_02611] d
Rte_COMCbkRxTOut_<sg>

c(SRS_Rte_00019,
SRS_Rte_00147)

“RxTOut” is literal text indicat-
ing reception signal time out.
This callback function indicates
that the aliveTimeout after
the last successful reception of
the signal group carrying the
composite data item has expired
(data element outdated).
Configured in Com: Com-
TimeoutNotification
[ECUC_Com_00552] as part of
ComSignalGroup

544 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Calling Situation callbackRoutineName Comments
Transmission has
failed and timed out
for a composite data
item.

[SWS_Rte_05085] d
Rte_COMCbkTxTOut_<sg>

c(SRS_Rte_00019,
SRS_Rte_00122)

“TxTOut” is literal text indicating
transmission failure and time
out. This callback function
indicates that the timeout
of TransmissionAcknowl-
edgementRequest for sending
the signal group of the com-
posite data item/event has
expired.
Configured in Com: Com-
TimeoutNotification
[ECUC_Com_00552] as part of
ComSignalGroup

Table 5.5: RTE COM Callback Function Naming Conventions

Where:
• <sn> is a COM signal name.
• <sg> is a COM signal group name.

5.9.4 NVM Service Call-backs

5.9.4.1 Rte_SetMirror

Purpose: Warranty the consistency of the VariableDataPrototypes con-
tained in a NvBlockSwComponentType, when the associated NVM
block is read and copied to the VariableDataPrototypes storage
locations.

Signature: [SWS_Rte_07310] d
Std_ReturnType
Rte_SetMirror__<d> (const void *NVMBuffer)

c(SRS_Rte_00178)

Where is the SwComponentPrototype’s name of the
NvBlockSwComponentType and <d> is the NvBlockDescriptor
name.

Existence: [SWS_Rte_07311] d An Rte_SetMirror API shall be created for
each instance of a NvBlockDescriptor. c(SRS_Rte_00178)

Description: The Rte_SetMirror API copies the values of the VariableDat-
aPrototypes contained in a NvBlockDescriptor from a NVM
internal buffer to their locations in the RTE.

[SWS_Rte_07312] d The Rte_SetMirror API shall copy the
specified buffer to the NvBlockDescriptor’s ramBlock, ac-

545 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

cording to the NvBlockDescriptor’s NvBlockDataMapping.
c(SRS_Rte_00177)

The RTE is responsible for ensuring the data consistency, see sec-
tion 4.2.5 In particular for the NvBlockDescriptor, the Sender-
Receiver ports, the Rte_SetMirror, and Rte_GetMirror may ac-
cess concurrently the same VariableDataPrototypes.

[SWS_Rte_07319] d The Rte_SetMirror API shall be callable be-
fore the Rte is started (with Rte_Start), and can rely on a running
OS. c(SRS_Rte_00178)

Return Value: The NVM module uses the return value of the Rte_SetMirror API
to check if the copy was successful. In case of failure, the NVM may
retry later.

[SWS_Rte_07602] d The Rte_SetMirror API shall return E_OK if
the copy is successful. c(SRS_Rte_00178)

[SWS_Rte_07613] d The Rte_SetMirror API shall return
E_NOT_OK if the copy could not be performed. c(SRS_Rte_00178)

Notes: The NVM shall be configured to use this function when ReadBlock
requests are processed (see NvmWriteRamBlockFromNvm in [21]).

5.9.4.2 Rte_GetMirror

Purpose: Warranty the consistency of the VariableDataPrototypes con-
tained in a NvBlockSwComponentType, when their values are writ-
ten to the NVRAM device by the NVM.

Signature: [SWS_Rte_07315] d
Std_ReturnType
Rte_GetMirror__<d> (void *NVMBuffer)

c(SRS_Rte_00178)

Where is the SwComponentPrototype’s name of the
NvBlockSwComponentType and <d> is the NvBlockDescriptor
name.

Existence: [SWS_Rte_07316] d An Rte_GetMirror API shall be created for
each instance of a NvBlockDescriptor. c(SRS_Rte_00178)

Description: The Rte_GetMirror API copies the values of the VariableDat-
aPrototypes contained in a NvBlockDescriptor to a specified
NVM internal buffer.

[SWS_Rte_07317] d The Rte_GetMirror API shall copy the
NvBlockDescriptor’s ramBlock to the specified buffer, ac-

546 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

cording to the NvBlockDescriptor’s NvBlockDataMapping.
c(SRS_Rte_00177)

The RTE is responsible for ensuring the data consistency, see sec-
tion 4.2.5 In particular for the NvBlockDescriptor, the Sender-
Receiver ports, the Rte_SetMirror, and Rte_GetMirror may ac-
cess concurrently the same VariableDataPrototypes.

[SWS_Rte_07350] d The Rte_GetMirror API shall be callable af-
ter the Rte is stopped (with Rte_Stop), and can rely on a running
OS. c(SRS_Rte_00178)

Return Value: The NVM module uses the return value of the Rte_GetMirror API
to check if the copy was successful. In case of failure, the NVM may
retry later.

[SWS_Rte_07601] d The Rte_GetMirror API shall return E_OK if
the copy is successful. c(SRS_Rte_00178)

[SWS_Rte_07614] d The Rte_GetMirror API shall return
E_NOT_OK if the copy could not be performed. c(SRS_Rte_00178)

Notes: The NVM shall be configured to use this function when WriteBlock
requests are processed (see NvmWriteRamBlockToNvm in [21]).

5.9.4.3 Rte_NvMNotifyJobFinished

Purpose: Forward notifications back to the SW-Cs.

Signature: [SWS_Rte_07623] d
Std_ReturnType
Rte_NvMNotifyJobFinished__<d> (

uint8 ServiceId,
NvM_RequestResultType JobResult)

c(SRS_Rte_00228)

Where is the SwComponentPrototype’s name of the
NvBlockSwComponentType and <d> is the NvBlockDescriptor
name.

Existence: [SWS_Rte_07624] d An Rte_NvMNotifyJobFinished API shall
be created for each instance of a NvBlockDescriptor.
c(SRS_Rte_00228)

Description: The Rte_NvMNotifyJobFinished receives the notification from
the NvM when a job is finished and forward it to the SW-C.

[SWS_Rte_07625] d The Rte_NvMNotifyJobFinished API shall
call the servers referenced by RoleBasedPortAssignment with

547 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

a NvMNotifyJobFinished role which are aggregated to the
NvBlockDescriptor. c(SRS_Rte_00228)

[SWS_Rte_07671] d The Rte_NvMNotifyJobFinished API shall
return without any action when the RTE is not started, when the RTE
is stopped, or when the partition containing the NvBlockSwCompo-
nentType is terminated or restarting. c(SRS_Rte_00228)

Return Value: [SWS_Rte_07626] d The Rte_NvMNotifyJobFinished API shall
return E_OK. c(SRS_Rte_00228)

Notes: The NVM shall be configured to use this function (see
NvmSingleBlockCallback in [21]).

5.9.4.4 Rte_NvMNotifyInitBlock

Purpose: Indicate to the SW-Cs that initialization of the Mirror is requested by
the NvM.

Signature: [SWS_Rte_07627] d
Std_ReturnType
Rte_NvMNotifyInitBlock__<d> (void)

c(SRS_Rte_00228)

Where is the SwComponentPrototype’s name of the
NvBlockSwComponentType and <d> is the NvBlockDescriptor
name.

Existence: [SWS_Rte_07628] d An Rte_NvMNotifyInitBlock API shall
be created for each instance of a NvBlockDescriptor.
c(SRS_Rte_00228)

Description: The Rte_NvMNotifyInitBlock API receives the notification from
the NvM when initialization of the mirror is requested.

[SWS_Rte_07629] d If the NvBlockDescriptor is configured with
a romBlock initValue, this initValue shall be copied into
the NvBlockDescriptor’s mirror before calling any SW-C server.
c(SRS_Rte_00228)

[SWS_Rte_07630] d The Rte_NvMNotifyInitBlock API shall
call the servers referenced by RoleBasedPortAssignment with a
NvMNotifyInitBlock role which are aggregated to the NvBlock-
Descriptor. c(SRS_Rte_00228)

[SWS_Rte_07672] d The Rte_NvMNotifyInitBlock API shall re-
turn without any action when the RTE is not started, when the RTE
is stopped, or when the partition containing the NvBlockSwCompo-
nentType is terminated or restarting. c(SRS_Rte_00228)

548 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Due to [SWS_Rte_07672], a block selected in the NVRAM Man-
ager [21] as read during NvM_ReadAll should not be configured with
its NvmInitBlockCallback set to a Rte_NvMNotifyInitBlock
API.

Return Value: [SWS_Rte_07631] d The Rte_NvMNotifyInitBlock API shall re-
turn E_OK. c(SRS_Rte_00228)

Notes: The NVM shall be configured to use this function (see InitBlock-
CallbackFunction in [21]).

5.10 Expected interfaces

5.10.1 Expected Interfaces from Com

The specification of the RTE requires the usage of the following COM API functions.

Com API function Context
Com_SendSignal to transmit a data element of primitive type us-

ing COM.
Com_SendDynSignal to transmit a data element of primitive dynamic

type uint8[n] using COM.
Com_ReceiveSignal to retrieve the new value of a data element of

primitive type from COM.
Com_ReceiveDynSignal to retrieve the new value of a data element of

primitive dynamic type uint[8] from COM.
Com_UpdateShadowSignal
(deprecated)

to update a primitive element of a data element
of composite type in preparation for sending the
composite type using COM.

Com_SendSignalGroup to initiate sending of a data element of compos-
ite type using COM.

Com_ReceiveSignalGroup to retrieve the new value of a data element of
composite type from COM.

Com_ReceiveShadowSignal
(deprecated)

to retrieve the new value of a primitive element
of a data element of composite type from COM.

Com_InvalidateSignal to invalidate a data element of primitive type us-
ing COM.

Com_InvalidateSignalGroup to invalidate a whole signal group using COM.

Table 5.6: COM API functions used by the RTE

Please note that [SWS_Rte_02761] may require to access COM through the use of
call trusted function in a partitioned system.

549 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

5.10.2 Expected Interfaces from Os

The usage of APIs provided by the Os module [4] is up to the implementation of a spe-
cific RTE Generator, System description and Ecu configuration. In general a RTE may
utilize any standardized API. Therefore no dedicated list of expected APIs is specified
here.

In case of multi-core the RTE may utilize the IOC-Module [4] to implement the inter-
core communication. The IOC-Module is specified to be part of the Os. Therefore no
specific APIs are listed here.

5.10.3 Expected Interfaces for Serialization

Serialization transforms multiple arguments into an opaque byte array, which is trans-
ferred. The receiver of the byte array deserializes it back into the arguments.

The serializer and deserializer functions are not generated by the RTE but called when
needed.

5.10.3.1 Serialization

Purpose: The purpose of the serialize function is to transform multiple argu-
ments into an opaque byte array, which is transferred over the com-
munication system. How this is done is up to the implementation of
the serializer.

Signature: [constr_9065] Signature of Serializer d
Std_ReturnType
<name>(

IN const Rte_Cs_TransactionHandleType *TransactionHandle,
OUT uint8 *buffer,
OUT uint16 *bufferLength,
[IN Std_ReturnType returnValue,]
[IN <data_1>,]...
[IN <data_n>]

)

c

Where here <name> is the shortName of the BswModuleEntry
referred as serializer by RteSerializerBswModuleEntryRef of
RteSerializedSignal.

Existence: [constr_9066] A BswModuleEntry representing a serializer
shall comply to a serializer’s signature d A BswModuleEntry
which is referred by a SerializerBswModuleEntryRef of a

550 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

ClientServerToSignalMapping of a client has to comply with
[constr_9065]. c

[SWS_Rte_08761] RTE shall provide a buffer for serialization d
The RTE shall provide to the serializer a buffer whose size is at least
the size indicated for this buffer in the serializer’s BswModuleEntry
(SwDataDefProps for the buffer argument). c(SRS_Rte_00091)

Note:
The serializer deduces this worst case size it needs by evaluating the
sum of all worst case/maximum sizes of all contained IN-arguments.

Description: The parameters of the API shall have the following format:

• TransactionHandle
according to [SWS_Rte_08732]

• buffer
Buffer allocated by the RTE, where the serialized data has to be
stored by the serializer. Size of the buffer shall equal the value
published by the serializer in the correspnding BswModuleEn-
try (SwDataDefProps for the buffer argument).

• bufferLength
Information about used length of the buffer. The length of the
serialized data shall be calculated by the serialiazer during run-
time and returned in this OUT-parameter. It may be smaller than
the maximum buffer size used by the RTE for buffer allocation.
This information shall be used by the RTE to set the value of the
Length parameter in calls to Com_SendDynSignal. In the case
of non-dynamic signals, these information can be ignored.

• <data_1>...<data_n>
On client side: IN and IN/OUT arguments of the Client Server
Call, in the same order as the arguments of the corresponding
Rte_Call API.
On server side: IN/OUT and OUT arguments of the Client Server
Call, with the same types and order as IN/OUT and OUT argu-
ments of the corresponding server runnable

• returnValue
Serializer on the server side needs to serialize the return value.
This argument is only available for server side serializer.

Return Value: • [constr_9068] Return value for successful serialization d
E_OK – serialization passed successfully. c

• [constr_9069] Return value for a serialization error d
RTE_E_SERIALIZATION_ERROR – A serialization error has
been detected c

551 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Notes: There have to be two serializer functions for each Client-Server oper-
ation: one to serialize the call on the client side and one to serialize
the return values on the server ECU.

5.10.3.2 Deserialization

The signature of the expected APIs is derived from the ClientServerInterface,
which is referred by the SerializerBswModuleEntryRef-Mapping.

[SWS_Rte_08762] Serialization and deserialization in context ob Rte_ComCbk d
The deserializing on client and server side shall be done on the same context as the
Rte_COMCbk_<sn> function. c(SRS_Rte_00091)

Purpose: The purpose of the deserialize function is to transfom a byte array
into multiple arguments. How this is done is up to the implementation
of the deserializer.

Signature: [constr_9071] Signature of Deserializer d
Std_ReturnType

<name>()(
OUT Rte_Cs_TransactionHandleType *TransactionHandle,
IN const uint8 *buffer,
IN uint16 bufferLength,
[OUT Std_ReturnType *returnValue,]
[OUT <data_1>,]...
[OUT <data_n>]

)

c

Where here <name> is the shortName of the BswModuleEntry
referred as deserializer.

Existence: [constr_9072] A BswModuleEntry representing a deserializer
shall comply to a deserializer’s signature d If a BswModuleEn-
try is referred by a SerializerBswModuleEntryRef of a Server
an API according to [constr_9071] has to be provided. c

Description: The parameters of the API shall have the following format:

• TransactionHandle
according to [SWS_Rte_08732]

• buffer
Received buffer containing the data to be deserialized.

• bufferLength
Length of the received buffer.

552 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

• <data_1>...<data_n>
On client side: IN/OUT and IN/OUT arguments of the Client
Server Call, with the same types and order as the arguments
of the corresponding Rte_Result API.
On server side: IN and IN/OUT arguments of the Client Server
Call, with the same types and order as the IN and IN/OUT argu-
ments of the corresponding server runnable.

• returnValue
The returnValue of the call has to be deserialized on the client
side. This argument exists on client side only.
Client side deserializer: The return value equals the return value
of the server runnable

Return Value: • [constr_9073] Return value for successful deserialization d
E_OK – deserialization passed successfully. c

• [constr_9074] Return value for a deserialization error d
RTE_E_SERIALIZATION_ERROR – A deserialization error has
been detected c

Notes: There have to be two deserializer functions for each Client-Server
operation: one to deserialize the call on the server side and one to
deserialize the return values on the client side.

5.11 VFB Tracing Reference

The RTE’s “VFB Tracing” functionality permits the monitoring of AUTOSAR signals as
they are sent and received across the VFB.

The RTE operates in at least two builds (some implementations may provide more than
two builds). The first, production, does not enable VFB tracing whereas the second,
debug, can be configured to trace some or all “interesting events”.

[SWS_Rte_01327] d The RTE generator shall support a build where no VFB events
are traced. c(SRS_Rte_00005)

[SWS_Rte_01328] d The RTE generator shall support a build that traces (configured)
VFB events. c(SRS_Rte_00005)

The RTE generator’s ‘trace’ build is enabled or disabled through definitions in the RTE
Configuration Header File [SWS_Rte_01322] and [SWS_Rte_01323]. Note that this
‘trace’ build is intended to enable debugging of software components and not the RTE
itself.

553 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

5.11.1 Principle of Operation

The “VFB Tracing” mechanism is designed to offer a lightweight means to monitor the
interactions of AUTOSAR software-components with the VFB.

The VFB tracing in ‘debug’ build is implemented by a series of “hook” functions that
are invoked automatically by the generated RTE when “interesting events” occur. Each
hook function corresponds to a single event.

The supported trace events are defined in Section 5.11.5. A mechanism is described in
Section 5.11.6 for configuring which of the many potential trace events are of interest.

5.11.2 Support for multiple clients

The “VFB Tracing” mechanism is designed to support multiple clients for each trace
event.

[SWS_Rte_05093] d For each RteVfbTraceClientPrefix configured in the RTE
Configuration input each Trace Event shall be generated using that client prefix
in the optional <client> position of the API function name. c(SRS_Rte_00005,
SRS_Rte_00008, SRS_Rte_00192)

[SWS_Rte_05091] d The RTE Generator shall provide each Trace Event without a
client prefix. c(SRS_Rte_00005, SRS_Rte_00008, SRS_Rte_00192)

The generation of Trace Events without a client prefix ensures compatibility of the trace
events with previous RTE releases.

[SWS_Rte_05092] d In case of multiple clients for one Trace Event the individual trace
functions shall be called in the following order:

1. The trace function without client prefix.

2. The trace functions with client prefix in alphabetically ascending order of the
RteVfbTraceClientPrefix (ASCII / ISO 8859-1).

c(SRS_Rte_00005, SRS_Rte_00008, SRS_Rte_00192)

The calling order specification ensures a deterministic execution of the multiple clients.

One example of the usage of client prefix is the parallel usage of Debugging [26] and
Diagnostic Log and Trace [31]. In this example two RteVfbTraceClientPrefix
would be specified:

• Dbg

• Dlt

This shall result in the declaration of three trace functions for the one Trace Event
Rte_[<client>_]Task_Activate(TaskType task):

• Rte_Task_Activate(TaskType task)

554 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

• Rte_Dbg_Task_Activate(TaskType task)

• Rte_Dlt_Task_Activate(TaskType task)

These trace functions (if all used in one project) will be called in the following order:

1. Rte_Task_Activate(TaskType task)

2. Rte_Dbg_Task_Activate(TaskType task)

3. Rte_Dlt_Task_Activate(TaskType task)

5.11.3 Support for Multiple Instantiation

[SWS_Rte_06031] d The Component Data Structure type for a multiply instantiatable
SWC type shall be introduced as a forward reference when used within the VFB Tracing
Header File. c(SRS_Rte_00005, SRS_Rte_00011)

The use of a forward reference enables a pointer to the object to be taken (since the
size of the data structure does not need to be known).

5.11.4 Contribution to the Basic Software Module Description

The RTE Generator in Generation Phase shall also update its Basic Software Module
Description ([SWS_Rte_05086]) in order to document the possibly traceable functions
and their signatures.

[SWS_Rte_05106] d For each generated hook function - including multiple trace
clients ([SWS_Rte_05093]) - an entry in the Basic Software Module Description shall
be entered describing the hook function and its signature. The outgoingCall-
back element of BswModuleDescription shall be used to capture the information.
c(SRS_Rte_00005, SRS_Rte_00192)

5.11.5 Trace Events

5.11.5.1 RTE API Trace Events

RTE API trace events occur when an AUTOSAR software-component interacts with the
generated RTE API. For implicit S/R communication, however, tracing is not supported.

5.11.5.1.1 RTE API Start

Description: RTE API Start is invoked by the RTE when an API call is made by a
component.

555 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Signature: [SWS_Rte_01238] d
void Rte_[<client>_]<api>Hook_<cts>_<ap>_Start

([const struct Rte_CDS_<cts>*,]<param>)

Where <api> is the RTE API Name (Write, Call, etc.),

<cts> is the component type symbol of the AtomicSwCompo-
nentType and

<ap> the access point name (e.g. port and data element or operation
name, exclusive area name, etc.).

The parameters of the API are the same as the corresponding
RTE API. As with the API itself, the instance handle is included if
and only if the software component’s supportsMultipleInstan-
tiation attribute is set to true. Note that Rte_Instance can-
not be used directly, as there will be pointers to multiple compo-
nents’ structure types within the single VFB Tracing header file, and
Rte_Instance would therefore be ambiguous. c(SRS_Rte_00045,
SRS_Rte_00003, SRS_Rte_00004)

5.11.5.1.2 RTE API Return

Description: RTE API Return is a trace event that is invoked by the RTE just before
an API call returns control to a component.

Signature: [SWS_Rte_01239] d
void Rte_[<client>_]<api>Hook_<cts>_<ap>_Return

([const struct Rte_CDS_<cts>*,]<param>)

Where <api> is the RTE API Name (Write, Call, etc.),

<cts> is the component type symbol of the AtomicSwCompo-
nentType and

<ap> the access point name (e.g. port and data element or operation
name, exclusive area name, etc.).

The parameters of the API are the same as the corresponding RTE
API and contain the values of OUT and INOUT parameters on exit
from the function. c(SRS_Rte_00045)

As with the API itself, the instance handle is included if and only
if the software component’s supportsMultipleInstantiation
attribute is set to true. Note that Rte_Instance cannot be used
directly, as there will be pointers to multiple components’ structure
types within the single VFB Tracing header file, and Rte_Instance
would therefore be ambiguous.

556 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

5.11.5.2 COM Trace Events

COM trace events occur when the generated RTE interacts with the AUTOSAR com-
munication service.

5.11.5.2.1 Signal Transmission

Description: A trace event indicating a transmission request of an Inter-ECU
signal (or signal in a signal group) by the RTE. Invoked by
the RTE just before Com_SendSignal, Com_SendDynSignal, or
Com_UpdateShadowSignal (deprecated) is invoked.

Signature: [SWS_Rte_01240] d
void Rte_[<client>_]ComHook_<signalName>_SigTx

(<data>[, <length>])

Where <signalName> is the COM signal name, <data> is a pointer
to the signal data to be transmitted, and <length> is the length
of the signal in case of a dynamic signal. c(SRS_Rte_00045,
SRS_Rte_00003, SRS_Rte_00004)

5.11.5.2.2 Signal Reception

Description: A trace event indicating a successful attempt to read an Inter-ECU
signal (or signal in a signal group) by the RTE. Invoked by the RTE af-
ter return from Com_ReceiveSignal, Com_ReceiveDynSignal,
or Com_ReceiveShadowSignal (deprecated).

Signature: [SWS_Rte_01241] d
void Rte_[<client>_]ComHook_<signalName>_SigRx

(<data>[, <length>])

Where <signalName> is the COM signal name, <data> is a pointer
to the signal data received, and <length> is a pointer where the
length of the dynamic signal is copied in case of a dynamic signal.
c(SRS_Rte_00045, SRS_Rte_00003, SRS_Rte_00004)

5.11.5.2.3 Signal Invalidation

Description: A trace event indicating a signal invalidation request of an
Inter-ECU signal (or of a signal in a signal group) by the RTE.
Invoked by the RTE just before Com_InvalidateSignal
(if parameter RteUseComShadowSignalApi is FALSE), or
Com_InvalidateShadowSignal (if parameter RteUseComShad-
owSignalApi is TRUE) is invoked.

557 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Signature: [SWS_Rte_03814] d
void Rte_[<client>_]ComHook_<signalName>_SigIv

(void)

Where <signalName> is the COM signal or a signal group name.
c(SRS_Rte_00045, SRS_Rte_00003, SRS_Rte_00004)

5.11.5.2.4 Signal Group Invalidation

Description: A trace event indicating a signal group invalidation request of an
Inter-ECU signal group by the RTE. Invoked by the RTE just before
Com_InvalidateSignalGroup is invoked.

Signature: [SWS_Rte_07639] d
void Rte_[<client>_]ComHook_<signalGroupName>_SigGroupIv

(void)

Where <signalGroupName> is the name of the signal group.
c(SRS_Rte_00045, SRS_Rte_00003, SRS_Rte_00004)

5.11.5.2.5 COM Callback

Description: A trace event indicating the start of a COM call-back. Invoked by
generated RTE code on entry to the COM call-back.

Signature: [SWS_Rte_01242] d
void Rte_[<client>_]ComHook<Event>_<signalName>

(void)

Where <signalName> is the name of the COM signal or signal
group and <Event> indicates the callback type and can take the val-
ues

• “Rx” for a reception indication callback

• “Inv” for an invalidation callback

• “RxTOut” for a reception timeout callback

• “TxTOut” for a transmission timeout callback

• “TAck” for a transmission acknowledgement callback

• “TErr” for a transmission error callback

c(SRS_Rte_00045, SRS_Rte_00003, SRS_Rte_00004)

558 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

5.11.5.3 OS Trace Events

OS trace events occur when the generated RTE interacts with the AUTOSAR operating
system.

5.11.5.3.1 Task Activate

Description: A trace event that is invoked by the RTE immediately prior to the
activation of a task containing runnable entities.

Signature: [SWS_Rte_01243] d
void Rte_[<client>_]Task_Activate(TaskType task)

Where task is the OS’s handle for the task. c(SRS_Rte_00045)

5.11.5.3.2 Task Dispatch

Description: A trace event that is invoked immediately an RTE generated task
(containing runnable entities) has commenced execution.

Signature: [SWS_Rte_01244] d
void Rte_[<client>_]Task_Dispatch(TaskType task)

Where task is the OS’s handle for the task. c(SRS_Rte_00045)

5.11.5.3.3 Task Termination

Description: A trace event invoked immediately prior to an RTE generated task
(containing runnable entities) terminating execution. The same task
termination VFB event is used whether the RTE generated task ter-
minates by either a TerminateTask or a ChainTask OS Service
call.

Signature: [SWS_Rte_06032] d
void Rte_[<client>_]Task_Terminate(TaskType task)

Where task is the OS’s handle for the task. c(SRS_Rte_00045)

5.11.5.3.4 Set OS Event

Description: A trace event invoked immediately before generated RTE code at-
tempts to set an OS Event.

Signature: [SWS_Rte_01245] d

559 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

void Rte_[<client>_]Task_SetEvent(TaskType task,
EventMaskType ev)

Where task is the OS’s handle for the task for which the event is
being set and ev the OS event mask. c(SRS_Rte_00045)

5.11.5.3.5 Wait OS Event

Description: Invoked immediately before generated RTE code attempts to wait on
an OS Event. This trace event does not indicate that the caller has
suspended execution since the OS call may immediately return if the
event was already set.

Signature: [SWS_Rte_01246] d
void Rte_[<client>_]Task_WaitEvent(TaskType task,

EventMaskType ev)

Where task is the OS’s handle for the task (that is waiting for the
event) and ev the OS event mask. c(SRS_Rte_00045)

5.11.5.3.6 Received OS Event

Description: Invoked immediately after generated RTE code returns from waiting
on an event.

Signature: [SWS_Rte_01247] d
void Rte_[<client>_]Task_WaitEventRet(TaskType task,

EventMaskType ev)

Where task is the OS’s handle for the task (that was waiting for
an event) and ev the event mask indicating the received event.
c(SRS_Rte_00045)

Note that not all of the trace events listed above may be available for a given input
configuration. For example if a task is activated by a schedule table, it is activated by
the OS rather than by the RTE, hence no trace hook function for task activation can be
invoked by the RTE.

5.11.5.4 Runnable Entity Trace Events

Runnable entity trace events occur when a runnable entity is started.

560 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

5.11.5.4.1 Runnable Entity Invocation

Description: Event invoked by the RTE just before execution of runnable entry
starts via its entry point. This trace event occurs after any copies of
data elements are made to support the Rte_IRead API Call.

Signature: [SWS_Rte_01248] d
void Rte_[<client>_]Runnable_<cts>_<reName>_Start

([const RTE_CDS_<cts>*])

Where <cts> is the component type symbol of the Atomic-
SwComponentType

and reName the runnable entity name.

The instance handle is included if and only if the software compo-
nent’s supportsMultipleInstantiation attribute is set to true.
Note that Rte_Instance cannot be used directly, as there will be
pointers to multiple components’ structure types within the single VFB
Tracing header file, and Rte_Instance would therefore be ambigu-
ous. c(SRS_Rte_00045)

5.11.5.4.2 Runnable Entity Termination

purpose: Event invoked by the RTE immediately execution returns to RTE code
from a runnable entity. This trace event occurs before any write-back
of data elements are made to support the Rte_IWrite API Call.

Signature: [SWS_Rte_01249] d
void Rte_[<client>_]Runnable_<cts>_<reName>_Return

([const Rte_CDS_<cts>*])

Where <cts> is the component type symbol of the Atomic-
SwComponentType

and reName the runnable entity name.

The instance handle is included if and only if the software compo-
nent’s supportsMultipleInstantiation attribute is set to true.
Note that Rte_Instance cannot be used directly, as there will be
pointers to multiple components’ structure types within the single VFB
Tracing header file, and Rte_Instance would therefore be ambigu-
ous. c(SRS_Rte_00045)

5.11.6 Configuration

The VFB tracing mechanism works by the RTE invoking the tracepoint hook function
whenever the tracing event occurs.

561 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

The support trace events and their hook function name and signature are defined in
Section 5.11.5. There are many potential trace events and it is likely that only a few will
be of interest at any one time. Therefore The RTE generator supports a mechanism to
configure which trace events are of interest.

In order to minimize RTE Overheads, trace events that are not enabled should have
no run-time effect on the generated system. This is achieved through generated code
within the VFB Tracing Header File (see Section 5.3.7) and the user supplied definitions
from the RTE Configuration Header file (see Section 5.3.8).

The definition of trace event hook functions is contained within user code. If a defini-
tion is encapsulated within a #if block, as follows, the definition will automatically be
omitted when the trace event is disabled.

1 #if !defined(<trace event>)
2 void <trace event>(<params>)
3 {
4 /* Function definition */
5 }
6 #endif

The configuration of which individual trace events are enabled is entirely under the
control of the user via the definitions included in the RTE Configuration header file.

[SWS_Rte_08000] d When RteVfbTrace is set to "true", a user shall be able to en-
able any hook function in the RTE Configuration header file, regardless of whether it
was not enabled in the RTE configuration with a RteVfbTraceFunction parameter.
c(SRS_Rte_00005, SRS_Rte_00008)

5.11.7 Interaction with Object-code Software-Components

VFB tracing is only available during the “RTE Generation” phase [SWS_Rte_01319]
and therefore hook functions never appear in an application header file created dur-
ing “RTE Contract” phase. However, object-code software-components are compiled
against the “RTE Contract” phase header and can therefore only trace events that are
inserted into the generated RTE. In particular they cannot trace events that require in-
vocation of hook functions to be inserted into the API mapping such as the Rte_Pim
API. However, many trace events are applicable to object-code software-components
including trace events related to the explicit communication API, to task activity and for
runnable entity start and stop.

This approach means that the external interactions of the object-code software-
component can be monitored without requiring modification of the delivered object-
code and without revealing the internal activity of the software-component. The ap-
proach is therefore considered to be consistent with the desire for IP protection that
prompts delivery of a software-component as object-code. Finally, tracing can easily
be disabled for a production build without invalidating tests of the object-code software-
component.

562 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

6 Basic Software Scheduler Reference

6.1 Scope

This chapter presents the Basic Software Scheduler API from the perspective of AU-
TOSAR Basic Software Module – these API is not applicable for AUTOSAR software-
components.

Section 6.2 presents basic principles of the API including naming conventions and
supported programming languages. Section 6.3 describes the header files used by
the Basic Software Scheduler and the files created by an RTE generator. The data
types used by the API are described in Section 6.4 and Sections 6.5 and 6.6 provide
a reference to the Basic Software Scheduler API itself including the definition of Basic
Software Module Entities.

6.2 API Principles

6.2.1 Basic Software Scheduler Namespace

The Basic Software Scheduler is interleaved with the scheduling part of the RTE. Fur-
ther on it is generated by the RTE Generator together with the RTE so Basic Software
Scheduler and RTE can not be separated if both are generated. Therefore the Basic
Software Scheduler uses the namespace of the RTE for internal symbols, variables
and functions, see [SWS_Rte_01171].

The only exceptions are defines, data types and functions belonging to the interface of
the Basic Software Scheduler. These are explicitly mentioned in the specification.

[SWS_Rte_07284] d All Basic Software Scheduler symbols (e.g. function names, data
types, etc.) belonging to the Basic Software Schedulers interfaces are required to use
the SchM_ prefix. c(SRS_BSW_00307, SRS_BSW_00300, SRS_Rte_00055)

In case of Basic Software Modules supporting multiple instances of the same Ba-
sic Software Module the name space of the BswSchedulableEntitys and the
Basic Software Scheduler API related to one instance of a Basic Software Mod-
ule is extended by the vendorId and the vendorApiInfix. See document [12]
[SRS_BSW_00347]. In the following chapters this optional part is denoted by usage of
squared brackets [_<vi>_<ai>].

[SWS_Rte_07528] d If the attribute vendorApiInfix exists for a Basic Software
Module, the RTE generator shall insert the vendorId (<vi>) and the vendorApi-
Infix (<ai>) with leading underscores where it is denoted by [_<vi>_<ai>].
c(SRS_BSW_00347)

563 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

6.2.2 BSW Scheduler Name Prefix and Section Name Prefix

Since the Basic Software Module Description supports the description of BSW Module
Clusters one Basic Software Module Description can contain the content of several
BSW Modules. In order to fulfill the Standardized Interfaces with the cluster interface
different ICC3 Module abbreviations [9] inside one cluster can occur. For the Basic
Software Scheduler the Module abbreviation is used as BSW Scheduler Name Prefix
in the SchM API. Nevertheless the shortName of the BswModuleDescription can
as well describe the BSW Scheduler Name Prefix and Section Name Prefix
in order to provide one common prefix in case of ICC3 modules.

In the Meta Model Module abbreviations relevant for the Schedule Manager API are
explicitly expressed with the meta class BswSchedulerNamePrefix. Further infor-
mation can be found in document [9].

564 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Referrable

ImplementationProps

+ symbol :CIdentifier

BswSchedulerNamePrefix

SectionNamePrefix

Identifiable

MemorySection

+ alignment :Al ignmentType [0..1]
+ memClassSymbol :CIdentifier [0..1]
+ option :Identifier [0..*]
+ size :PositiveInteger [0..1]
+ symbol :Identifier [0..1]

Identifiable

ResourceConsumption

BswInternalBehavior BswModuleEntity
ARElement

AtpBlueprint
AtpBlueprintable

BswModuleEntry

Identifiable

ExclusiveArea

AtpPrototype

ModeDeclarationGroupPrototype

AtpStructureElement
Identifiable

Trigger

AtpStructureElement

InternalBehavior

Identifiable

ExecutableEntity

+ minimumStartInterval :TimeValue
+ reentrancyLevel :ReentrancyLevelEnum [0..1]

ARElement

Implementation

BswImplementation

+ arReleaseVersion :RevisionLabelString
+ vendorApiInfix :Identifier [0..1]

«atpVariation»

+accessedModeGroup 0..*

+executableEntity

0..*

+runsInsideExclusiveArea0..*+canEnterExclusiveArea 0..*

+resourceConsumption 1

«atpVariation»

+memorySection

0..*

«atpVariation»

+sectionNamePrefix

0..*

«atpVariation»

+schedulerNamePrefix

0..*

+prefix 0..1

«atpVariation»

+exclusiveArea

0..*

+schedulerNamePrefix 0..1

+implementedEntry

1

«atpVariation»

+managedModeGroup 0..*

«atpVariation»

+issuedTrigger

0..*

«atpVariation»

+calledEntry

0..*

+behavior 1

«atpVariation»

+entity

1..*

Figure 6.1: BswSchedulerNamePrefix and SectionNamePrefix

In several requirements of this specification the Module Prefix is required and deter-
mined as follows:

[SWS_Rte_07593] d The BSW Scheduler Name Prefix <bsnp> of the calling
BSW module shall be derived from the BswModuleDescription shortName if no
BswSchedulerNamePrefix is defined for the BswModuleEntity using the related
Basic Software Scheduler API. c(SRS_Rte_00148, SRS_Rte_00149)

565 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_07594] d The BSW Scheduler Name Prefix <bsnp> shall be the value
of the symbol attribute of the BswSchedulerNamePrefix of the BswModuleEn-
tity if a BswSchedulerNamePrefix is defined for the BswModuleEntity using
the related Basic Software Scheduler API. c(SRS_Rte_00148, SRS_Rte_00149)

Further on the Memory Mapping inside one cluster can either keep or abolish the ICC3
borders. For some cases (e.g. Entry Point Prototype) the RTE has to know the used
prefixes for the Memory Allocation Keywords as well.

In the Meta Model these prefixes are expressed with the meta class Section-
NamePrefix. Further information can be found in document [9].

[SWS_Rte_07595] d The Section Name Prefix <snp> shall be the module ab-
breviation (in uppercase letters) of the BSW module derived from the BswMod-
uleDescription’s shortName if no SectionNamePrefix is defined for the
BswModuleEntity implementing the related BswModuleEntry. c(SRS_Rte_00148,
SRS_Rte_00149)

[SWS_Rte_07596] d The Section Name Prefix <snp> shall be the symbol of the
SectionNamePrefix of the MemorySection associated to the BswModuleEn-
tity implementing the related BswModuleEntry if a SectionNamePrefix is
defined for the BswModuleEntity implementing the related BswModuleEntry.
c(SRS_Rte_00148, SRS_Rte_00149)

For instance the following input configuration

566 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

MEM :BswModuleDescription

category = BSW_CLUSTER

NvM_MainFunction :
BswSchedulableEntity

MemIf_SetMode :
BswCalledEntity

MEM :
BswInternalBehavior

MemIf :
BswSchedulerNamePrefix

symbol = MemIf

NvM :
BswSchedulerNamePrefix

symbol = NvM

NvM_WriteBlock :
BswCalledEntity

NvM_MainFunction :
BswModuleEntry

NvM_WriteBlock :
BswModuleEntry

MemIf_SetMode :
BswModuleEntry

CODE :SwAddrMethod

sectionType = code

MEM :
BswImplementation

MEM :
ResourceConsumption

CODE_MEMIF :
MemorySection

symbol = CODE

CODE_NVM :
MemorySection

symbol = CODE

MEMIF_PART :
SectionNamePrefix

symbol = MEMIF

NVM_PART :
SectionNamePrefix

symbol = NVM

NVM_START_SEC_CODE
NVM_STOP_SEC_CODE

MEMIF_START_SEC_CODE
MEMIF_STOP_SEC_CODE

+swAddrmethod

+entity

+executableEntity

+prefix+sectionNamePrefix

+executableEntity

+entity

+resourceConsumption

+sectionNamePrefix +prefix

+executableEntity

+entity

+providedEntry +implementedEntry

+memorySection

+behavior

+implementedEntry

+implementedEntry+providedEntry

+schedulerNamePrefix
+schedulerNamePrefix

+swAddrMethod

+internalBehavior

+swAddrMethod

+schedulerNamePrefix

+schedulerNamePrefix

+memorySection

+swAddrmethod

+swAddrMethod

+providedEntry

+schedulerNamePrefix

Figure 6.2: Example of ICC2 cluster

would result in the generation of the Entry Point Prototype according
[SWS_Rte_07195] as:

1 #define NVM_START_SEC_CODE
2 #include "MEM_MemMap.h"
3

567 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

4 FUNC(void, NVM_CODE) NvM_MainFunction (void);
5

6 #define NVM_STOP_SEC_CODE
7 #include "MEM_MemMap.h"

6.3 Basic Software Scheduler modules

[SWS_Rte_07288] d Every file of the Basic Software Scheduler shall be named with
the prefix SchM_. c(SRS_BSW_00300)

6.3.1 Module Interlink Types Header

The Module Interlink Types Header defines specific types related to this basic software
module derived either from the input configuration or from the RTE / Basic Software
Scheduler implementation.

[SWS_Rte_07503] d The RTE generator shall create a Module Interlink Types Header
File for each BswSchedulerNamePrefix in the BswInternalBehavior of each
BswImplementation referencing such BswInternalBehavior defined in the in-
put. c(SRS_BSW_00415)

For instance a input configuration with two BswImplementations (typical with dif-
ferent API infix) referencing a BswInternalBehavior with three BswScheduler-
NamePrefixes would result in the generation of six Module Interlink Types Header
Files.

6.3.1.1 File Name

[SWS_Rte_07295] d The name of the Module Interlink Types Header File shall be
formed in the following way:

SchM_<bsnp>_[<vi>_<ai>]Type.h

Where here

<bsnp> is the BSW Scheduler Name Prefix according [SWS_Rte_07593] and
[SWS_Rte_07594],

<vi> is the vendorId of the BSW module and

<ai> is the vendorApiInfix of the BSW module.

568 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

The sub part in squared brackets [<vi>_<ai>] is omitted if no vendorApiInfix is
defined for the Basic Software Module. See [SWS_Rte_07528]. c(SRS_BSW_00415,
SRS_BSW_00300, SRS_BSW_00347)

Example 6.1

The following declaration in the input XML:
<AR-PACKAGE>

<SHORT-NAME>CanDriver</SHORT-NAME>
<ELEMENTS>

<BSW-MODULE-DESCRIPTION>
<SHORT-NAME>Can</SHORT-NAME>
<INTERNAL-BEHAVIORS>

<BSW-INTERNAL-BEHAVIOR>
<SHORT-NAME>YesWeCan</SHORT-NAME>

</BSW-INTERNAL-BEHAVIOR>
</INTERNAL-BEHAVIORS>

</BSW-MODULE-DESCRIPTION>
<BSW-IMPLEMENTATION>

<SHORT-NAME>MyCanDrv</SHORT-NAME>
<VENDOR-ID>25</VENDOR-ID>
<BEHAVIOR-REF DEST="BSW-INTERNAL-BEHAVIOR">/CanDriver/Can/

YesWeCan</BEHAVIOR-REF>
<VENDOR-API-INFIX>Dev0815</VENDOR-API-INFIX>

</BSW-IMPLEMENTATION>
</ELEMENTS>

</AR-PACKAGE>

should result in the Module Interlink Types Header SchM_Can_25_Dev0815Type.h
being generated.

The concatenation of the basic software module prefix (which has to be equally with
the short name of the basic software module description) and the vendor API infix is
required to support the separation of several basic software module instances. In dif-
ference to the multiple instantiation concept of software components, where the same
component code is used for all component instances, basic software modules are mul-
tiple instantiated by creation of own code per instance in a different name space.

6.3.1.2 Scope

[SWS_Rte_07297] d The Module Interlink Types Header shall be valid for both C and
C++ source. c(SRS_Rte_00126, SRS_Rte_00138)

Requirement [SWS_Rte_07297] is met by ensuring that all definitions within the Appli-
cation Types Header File are defined using C linkage if a C++ compiler is used.

[SWS_Rte_07298] d All definitions within in the Module Interlink Types Header File
shall be preceded by the following fragment:

1 #ifdef __cplusplus

569 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

2 extern "C" {
3 #endif /* __cplusplus */

c(SRS_Rte_00126, SRS_Rte_00138)

[SWS_Rte_07299] d All definitions within the Module Interlink Types Header shall be
suffixed by the following fragment:

1 #ifdef __cplusplus
2 } /* extern "C" */
3 #endif /* __cplusplus */

c(SRS_Rte_00126, SRS_Rte_00138)

6.3.1.3 File Contents

[SWS_Rte_07500] d The Module Interlink Types Header shall include the RTE Types
Header File. c(SRS_BSW_00415)

The name of the RTE Types Header File is defined in Section 5.3.4.

6.3.1.4 Basic Software Scheduler Modes

The Module Interlink Types Header File shall contain identifiers for the ModeDeclara-
tions and type definitions for ModeDeclarationGroups as defined in Chapter 6.4.2

6.3.2 Module Interlink Header

The Module Interlink Header defines the Basic Software Scheduler API and any asso-
ciated data structures that are required by the Basic Software Scheduler implementa-
tion. But the Module Interlink Header file is not allowed to create objects in memory.

[SWS_Rte_07501] d The RTE generator shall create a Module Interlink Header
File for each BswSchedulerNamePrefix in the BswInternalBehavior of each
BswImplementation referencing such BswInternalBehavior defined in the
input.c(SRS_BSW_00415)

[constr_9059] Usage of Basic Software Scheduler API prerequisites the include
of the Module Interlink Header File d Each BSW module implementation shall in-
clude its Module Interlink Header File if it uses Basic Software Scheduler API or if it
implements BswSchedulableEntitys. c

[SWS_Rte_07502] d The Module Interlink Header File shall not contain code that cre-
ates objects in memory. c(SRS_BSW_00308)

570 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

6.3.2.1 File Name

[SWS_Rte_07504] d

The name of the Module Interlink Header File shall be formed in the following way:
1 SchM_<bsnp>[_<vi>_<ai>].h

Where here

<bsnp> is the BSW Scheduler Name Prefix according [SWS_Rte_07593] and
[SWS_Rte_07594],

<vi> is the vendorId of the BSW module and

<ai> is the vendorApiInfix of the BSW module.

The sub part in squared brackets [_<vi>_<ai>] is omitted if no vendorApiInfix
is defined for the Basic Software Module. c(SRS_BSW_00415, SRS_BSW_00300,
SRS_BSW_00347)

Example 6.2

The following declaration in the input XML:
<AR-PACKAGE>

<SHORT-NAME>CanDriver</SHORT-NAME>
<ELEMENTS>

<BSW-MODULE-DESCRIPTION>
<SHORT-NAME>Can</SHORT-NAME>
<INTERNAL-BEHAVIORS>

<BSW-INTERNAL-BEHAVIOR>
<SHORT-NAME>YesWeCan</SHORT-NAME>

</BSW-INTERNAL-BEHAVIOR>
</INTERNAL-BEHAVIORS>

</BSW-MODULE-DESCRIPTION>
<BSW-IMPLEMENTATION>

<SHORT-NAME>MyCanDrv</SHORT-NAME>
<VENDOR-ID>25</VENDOR-ID>
<BEHAVIOR-REF DEST="BSW-INTERNAL-BEHAVIOR">/CanDriver/Can/

YesWeCan</BEHAVIOR-REF>
<VENDOR-API-INFIX>Dev0815</VENDOR-API-INFIX>

</BSW-IMPLEMENTATION>
</ELEMENTS>

</AR-PACKAGE>

should result in the Module Interlink Header SchM_Can_25_Dev0815.h being gener-
ated.

The concatenation of the basic software module prefix (which has to be equally with
the short name of the basic software module description) and the vendorApiInfix
is required to support the separation of several basic software module instances. In dif-
ference to the multiple instantiation concept of software components, where the same

571 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

component code is used for all component instances, basic software modules are mul-
tiple instantiated by creation of own code per instance in a different name space.

6.3.2.2 Scope

[SWS_Rte_07505] d The Module Interlink Header for a component shall contain dec-
larations relevant for that instance of a basic software module. c(SRS_BSW_00415)

Requirement [SWS_Rte_07505] means that compile time checks ensure that a Module
Interlink Header File that uses the Module Interlink Header File only accesses the
generated data types to which it has been configured. The use of data types which are
not used by the basic software module, will fail with a compiler error [SRS_Rte_00017].

6.3.2.3 File Contents

[SWS_Rte_07506] d The Module Interlink Header File shall include the Module Inter-
link Types Header File. c(SRS_BSW_00415)

The name of the Module Interlink Types Header File is defined in Section 6.3.1.

[SWS_Rte_07507] d The Module Interlink Header shall be valid for both C and C++

source. c(SRS_Rte_00126, SRS_Rte_00138)

Requirement [SWS_Rte_07507] is met by ensuring that all definitions within the Appli-
cation Types Header File are defined using C linkage if a C++ compiler is used.

[SWS_Rte_07508] d All definitions within in the Module Interlink Header File shall be
preceded by the following fragment:

1 #ifdef __cplusplus
2 extern "C" {
3 #endif /* __cplusplus */

c(SRS_Rte_00126, SRS_Rte_00138)

[SWS_Rte_07509] d All definitions within the Module Interlink Header File shall be
suffixed by the following fragment:

1 #ifdef __cplusplus
2 } /* extern "C" */
3 #endif /* __cplusplus */

c(SRS_Rte_00126, SRS_Rte_00138)

6.3.2.3.1 Entry Point Prototype

The Module Interlink Header File also includes a prototype for each BswSchedula-
bleEntitys entry point ([SWS_Rte_07283]).

572 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

6.3.2.3.2 Basic Software Scheduler - Basic Software Module Interface

The Module Interlink Header File defines the “interface” between a Basic Software
Module and the Basic Software Scheduler. The interface consists of the Basic Software
Scheduler API for the Basic Software Module and the prototypes for BswSchedula-
bleEntitys entry point. The definition of the Basic Software Scheduler API requires
in case of macro implementation that both relevant data structures and API calls are
defined. In case of interfaces implemented as functions, the prototypes for the Basic
Software Scheduler API of the particular Basic Software Module instance is sufficient.
The data structures are dependent from the implementation and configuration of the
Basic Software Scheduler and are not standardized. If data structures are required
these shall be accessible via the Module Interlink Header File as well.

The RTE generator is required [SWS_Rte_07505] to limit the contents of the Module
Interlink Header file to only that information that is relevant to that instance of a basic
software module. This requirement includes the definition of the API.

[SWS_Rte_07510] d Only Basic Software Scheduler API calls that are valid for the
particular instance of a basic software module shall be defined within the modules
Module Interlink Header File. c(SRS_BSW_00415, SRS_Rte_00017)

Requirement [SWS_Rte_07510] ensures that attempts to invoke invalid API calls will
be rejected as a compile-time error [SRS_Rte_00017].

[SWS_Rte_06534] d The RTE Generator shall wrap each Basic Software Scheduler
API definition of a variant existent API according table 4.26 if the variability shall be
implemented.

1 #if (<condition> [||<condition>])
2

3 <Basic Software Scheduler API Definition>
4

5 #endif

where condition are the condition value macro(s) of the Variation-
Points relevant for the conditional existence of the RTE API (see table 4.26),
Basic Software Scheduler API Definition is the code according an
invariant Basic Software Scheduler API definition (see also [SWS_Rte_07510],
[SWS_Rte_07250], [SWS_Rte_07253], [SWS_Rte_07255], [SWS_Rte_07260],
[SWS_Rte_07556], [SWS_Rte_07263], [SWS_Rte_07266]) c(SRS_Rte_00229)

The Basic Software Scheduler API for basic software modules is defined in 6.5

[SWS_Rte_07511] d The Basic Software Scheduler API of the particular Basic Soft-
ware Module instance shall be implemented as functions if the basic software module
is delivered as object code. c(SRS_BSW_00342)

In case of basic software modules delivered as source code the definitions of the Basic
Software Scheduler API contained in the Module Interlink Header File can be optimized
during the “RTE Generation” phase when the mapping of the BswSchedulableEn-
titys to OS Tasks is known.

573 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

6.3.2.3.3 Provide activating Bsw event

The provide activating event feature is enabled if the executable entity has at least one
activationReason defined.

[SWS_Rte_08056] d If the provide activating event feature is enabled, the RTE gen-
erator in contract phase shall generate the executable entity signature according to
[SWS_Rte_07282] and [SWS_Rte_08071]. c(SRS_Rte_00238)

[SWS_Rte_08057] d If the provide activating event feature is en-
abled, the RTE generator in contract phase shall generate the type
SchM_ActivatingEvent_<name> (activation vector), where <name>
is the symbol describing the executable entity’s entry point, to store the activation bits.
Based on the highest value of ExecutableEntityActivationReason.bitPosi-
tion for this executable entity the type shall be either uint8, uint16, or uint32 so
that the highest value of bitPosition fits into the data type. c(SRS_Rte_00238)

Note that it is considered an invalid configuration if ExecutableEntityActiva-
tionReason.bitPosition has a value higher than 31 (see [constr_1226] in soft-
ware component template [2]).

[SWS_Rte_08058] d If the provide activating event feature is enabled, the RTE gen-
erator in contract phase shall generate for each ExecutableEntityActivation-
Reason of one executable entity a definition to provide the specific bit position in the
Rte_ActivatingEvent_<name> data type:

#define SchM_ActivatingEvent_<name>_<activation> xxU

The value of xx is defined by the bitPosition xx = 2∧bitPosition. c(SRS_Rte_00238)

For further details see section 4.2.3.3 Provide activating RTE event.

6.3.2.3.4 RunnableEntity mapped to BswModuleEntity

In the case that a RunnableEntity is mapped to a BswSchedulableEntity the
RTE Generator emits a Entry Point Prototype for the RunnableEntity (5.7.2) as
well as a Entry Point Prototype for the BswSchedulableEntity (6.3.2.3.1). This
requires that both Entry Point Prototypes are compatible. Since RunnableEntity
and BswModuleEntry define a overlapping set of attributes its technically possible to
have redundancy in the AUTOSAR models between the BSW Module Description and
the Software Component Description. In order to support a non redundant M1 model
the RTE Generator has to determined common attributes from the BswModuleEntity
and apply them to the mapped RunnableEntity.

[SWS_Rte_06731] d The RTE Generator shall determine the attribute values of

• RunnableEntity.symbol

• RunnableEntity.minimumStartInterval

574 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

• RunnableEntity.canBeInvokedConcurrently

• RunnableEntity.swAddrMethod

from the mapped BswModuleEntity and its referred BswModuleEntry if an appli-
cable SwcBswRunnableMapping exists for the RunnableEntity. c

Nevertheless if the attribute values are defined at both places for RunnableEntity
and the mapped BswModuleEntity the values have to be consistent.

[SWS_Rte_06732] d The RTE generator shall reject configurations violating the [con-
str_4071]. c(SRS_Rte_00018)

Within the scope of a SwcBswRunnableMapping both RTEEvents and BswEvents
are applicable. Therefore the ExecutableEntityActivationReasons of the
RunnableEntity and the mapped BswModuleEntity have to be overlayed.

[SWS_Rte_08071] d The signature of a RunnableEntity and a BswModuleEn-
tity with a SwcBswRunnableMapping shall contain all ExecutableEntityActi-
vationReasons that are defined for each entity. c(SRS_Rte_00238)

Note: Multiple definition of identical activationReasons with respect to shortName
and bitPosition yields to a valid configuration since both RunnableEntitys and
BswModuleEntitys may provide separate activationReasons.

6.4 API Data Types

Besides the API functions for accessing Basic Software Scheduler services, the API
also contains Basic Software Scheduler specific data types.

6.4.1 Predefined Error Codes for Std_ReturnType

The specification in [29] specifies a standard API return type Std_ReturnType. The
Std_ReturnType defines the "‘status"’ and "‘error values"’ returned by API functions.
It is defined as a uint8 type. The value “0” is reserved for “No error occurred”.

Symbolic name Value Comments
[SWS_Rte_07289]
d SCHM_E_OK
c(SRS_BSW_00327)

0 No error occurred.

[SWS_Rte_07290]
d SCHM_E_LIMIT
c(SRS_BSW_00327)

130 A internal Basic Software Scheduler
limit has been exceeded. Request could
not be handled. OUT buffers are not
modified.
Note: The value has to be identically
with [SWS_Rte_01317]

575 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Symbolic name Value Comments
[SWS_Rte_07562]
d SCHM_E_NO_DATA
c(SRS_BSW_00327)

131 An explicit read API call returned no
data. (This is no error.)
Note: The value has to be identically
with [SWS_Rte_01061]

[SWS_Rte_07563] d
SCHM_E_TRANSMIT_ACK
c(SRS_BSW_00327)

132 Transmission acknowledgement re-
ceived.
Note: The value has to be identically
with [SWS_Rte_01065]

[SWS_Rte_02747] d
SCHM_E_IN_EXCLUSIVE_AREA
c(SRS_BSW_00327)

135 The error is returned by a blocking API
and indicates that the schedulable en-
tity could not enter a wait state, because
one ExecutableEntity of the current
task’s call stack has entered an Exclu-
siveArea.
Note: There are no blocking SchM
APIs and therefore this value can-
not be returned. It is defined here
for future use and for consistency
with [SWS_Rte_02739]. Both error val-
ues have to be identically.

[SWS_Rte_07054]
d SCHM_E_TIMEOUT
c(SRS_BSW_00327)

129 The configured timeout exceeds before
the intended result was ready.
Note: The value has to be identically
with [SWS_Rte_01064]

Table 6.1: Basic Software Scheduler Error and Status values

The underlying type for Std_ReturnType is defined as a uint8 for reasons of com-
patibility. Consequently, #define is used to declare the error values:

1 typedef uint8 Std_ReturnType; /* defined in Std_Types.h */
2

3 #define SCHM_E_OK 0U

[SWS_Rte_07291] d The errors as defined in table 6.1 shall be defined in the RTE
Header File. c(SRS_Rte_00051)

An Std_ReturnType value can be directly compared (for equality) with the above
pre-defined error identifiers.

6.4.2 Basic Software Modes

An Rte_ModeType is used to hold the identifiers for the ModeDeclarations of a
ModeDeclarationGroup.

576 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_07292] d For each ModeDeclarationGroup, the Module Interlink Types
Header File shall contain a type definition

1 #ifndef RTE_MODETYPE_<ModeDeclarationGroup>
2 #define RTE_MODETYPE_<ModeDeclarationGroup>
3 typedef <type> Rte_ModeType_<ModeDeclarationGroup>;
4 #endif

where <ModeDeclarationGroup> is the short name of the ModeDeclaration-
Group and <type> is the shortName of the mapped ImplementationDataType.

c(SRS_Rte_00213)

Note: This requirement is deprecated to avoid incompatible or duplicate type definitions
(see [SWS_Rte_07260]).

Within the Rte_ModeType_<ModeDeclarationGroup>, the
(Rte_ModeType_<ModeDeclarationGroup>)<n> value, where <n> is the number
of modes declared within the group, is reserved to express a transition between
modes.

[SWS_Rte_07293] d For each ModeDeclarationGroup of category
"ALPHABETIC_ORDER", the Module Interlink Types Header File shall contain a
definition

1 #ifndef RTE_TRANSITION_<prefix><ModeDeclarationGroup>
2 #define RTE_TRANSITION_<prefix><ModeDeclarationGroup> \
3 <n>U
4 #endif

where <ModeDeclarationGroup> is the short name of the ModeDeclaration-
Group1,

<prefix> is the optional prefix attribute defined by the IncludedModeDeclara-
tionGroupSet referring the ModeDeclarationGroup and

<n> is the number of modes declared within the group. c(SRS_Rte_00213)

[SWS_Rte_08600] d For each ModeDeclarationGroup of category
"EXPLICIT_ORDER", the Module Interlink Types Header File shall contain a def-
inition

1 #ifndef RTE_TRANSITION_<prefix><ModeDeclarationGroup>
2 #define RTE_TRANSITION_<prefix><ModeDeclarationGroup> \
3 <onTransitionValue>U
4 #endif

where <ModeDeclarationGroup> is the short name of the ModeDeclaration-
Group2,

<prefix> is the optional prefix attribute defined by the IncludedModeDeclara-
tionGroupSet referring the ModeDeclarationGroup and

1No additional capitalization is applied to the names.
2No additional capitalization is applied to the names.

577 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

<onTransitionValue> is the onTransitionValue of the ModeDeclarationGroup.
c(SRS_Rte_00213)

[SWS_Rte_07294] d For each mode of a ModeDeclarationGroup of category
"ALPHABETIC_ORDER", the Module Interlink Types Header File shall contain a defi-
nition

1 #ifndef RTE_MODE_<prefix><ModeDeclarationGroup>_<ModeDeclaration>
2 #define RTE_MODE_<prefix><ModeDeclarationGroup>_<ModeDeclaration> \
3 <index>U
4 #endif

where <ModeDeclarationGroup> is the short name of the ModeDeclaration-
Group,

<prefix> is the optional prefix attribute defined by the IncludedModeDeclara-
tionGroupSet referring the ModeDeclarationGroup

<ModeDeclaration> is the short name of a ModeDeclaration3,

and <index> is the index of the ModeDeclarations in alphabetic ordering (ASCII
/ ISO 8859-1 code in ascending order) of the short names within the Mode-
DeclarationGroup.

The lowest index shall be ‘0’ and therefore the range of assigned values is 0..<n>
where <n> is the number of modes declared within the group c(SRS_Rte_00213)

[SWS_Rte_08601] d For each mode of a ModeDeclarationGroup of category
"EXPLICIT_ORDER", the Module Interlink Types Header File shall contain a definition

1 #ifndef RTE_MODE_<prefix><ModeDeclarationGroup>_<ModeDeclaration>
2 #define RTE_MODE_<prefix><ModeDeclarationGroup>_<ModeDeclaration> \
3 <value>U
4 #endif

where <ModeDeclarationGroup> is the short name of the ModeDeclaration-
Group,

<prefix> is the optional prefix attribute defined by the IncludedModeDeclara-
tionGroupSet referring the ModeDeclarationGroup

<ModeDeclaration> is the short name of a ModeDeclaration4,

and <value> is the value specified at the ModeDeclaration. c(SRS_Rte_00213)

6.5 API Reference

This chapter defines the “interface” between a particular instance of a Basic Software
Module and the Basic Software Scheduler. The wild-card <bsnp> is the BSW Sched-
uler Name Prefix according [SWS_Rte_07593] and [SWS_Rte_07594].

3No additional capitalization is applied to the names.
4No additional capitalization is applied to the names.

578 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

6.5.1 SchM_Enter

Purpose: SchM_Enter function enters an exclusive area of an Basic Software
Module.

Signature: [SWS_Rte_07250] d
void SchM_Enter_<bsnp>[_<vi>_<ai>]_<name>()

Where here

<bsnp> is the BSW Scheduler Name Prefix according
[SWS_Rte_07593] and [SWS_Rte_07594],

<vi> is the vendorId of the calling BSW module,

<ai> vendorApiInfix of the calling BSW module and

<name> name is the exclusive area name.

The sub part in squared brackets [_<vi>_<ai>] is omitted if
no vendorApiInfix is defined for the Basic Software Module.
See [SWS_Rte_07528]. c(SRS_Rte_00222, SRS_BSW_00347,
SRS_Rte_00046)

Existence: [SWS_Rte_07251] d A SchM_Enter API shall be created for each
ExclusiveArea that is declared in the BswInternalBehav-
ior and which has an canEnterExclusiveArea association.
c(SRS_Rte_00222, SRS_Rte_00046)

Description: The SchM_Enter API call is invoked by an AUTOSAR BSW module
to define the start of an exclusive area.

Return Value: None.

Notes: The Basic Software Scheduler is not required to support nested in-
vocations of SchM_Enter for the same exclusive area.

[SWS_Rte_07252] d The Basic Software Scheduler shall permit calls
to SchM_Enter and SchM_Exit to be nested as long as different
exclusive areas are exited in the reverse order they were entered.
c(SRS_Rte_00222, SRS_Rte_00046)

[constr_9046] SchM_Enter and SchM_Exit API may only
be used by BswModuleEntitys describing its usage d The
SchM_Enter and SchM_Exit API may only be used by BswMod-
uleEntitys that contain a corresponding canEnterExclu-
siveArea association c

[constr_9047] Nested call of SchM_Enter and SchM_Exit API
is restricted d The SchM_Enter and SchM_Exit API may only be
called nested if different exclusive areas are invoked; in this case
exclusive areas shall exited in the reverse order they were entered. c

579 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_07578] d The Basic Software Scheduler shall sup-
port calls of SchM_Enter and SchM_Exit after initialization of
the OS but before the Basic Software Scheduler is initialized.
c(SRS_Rte_00222, SRS_Rte_00046)

[SWS_Rte_07579] d The Basic Software Scheduler shall sup-
port calls of SchM_Enter and SchM_Exit in the context of os
tasks, category 1 and category 2 interrupts. c(SRS_Rte_00222,
SRS_Rte_00046)

Note: the possible implementation mechanism for such an exclusive
area is limited in this case to mechanism available for the related
kind of context. For instance SuspendAllInterrupts and Re-
sumeAllInterrupts service of the OS are available for all kind of
context but GetResource and ReleaseResource is only available
for tasks and category 2 interrupts.

Within the AUTOSAR OS an attempt to lock a resource cannot fail
because the lock is already held. The lock attempt can only fail due
to configuration errors (e.g. caller not declared as accessing the re-
source) or invalid handle. Therefore the return type from this function
is void.

Mutual exclusion of tasks requesting the same exclusive area shall
be ensured across partition and core boundaries.

6.5.2 SchM_Exit

Purpose: SchM_Exit function leaves an exclusive area of an Basic Software
Module.

Signature: [SWS_Rte_07253] d
void
SchM_Exit_<bsnp>[_<vi>_<ai>]_<name>()

Where here

<bsnp> is the BSW Scheduler Name Prefix according
[SWS_Rte_07593] and [SWS_Rte_07594],

<vi> is the vendorId of the calling BSW module,

<ai> vendorApiInfix of the calling BSW module and

<name> name is the exclusive area name.

The sub part in squared brackets [_<vi>_<ai>] is omitted if
no vendorApiInfix is defined for the Basic Software Module.
See [SWS_Rte_07528]. c(SRS_Rte_00222, SRS_BSW_00347,
SRS_Rte_00046)

580 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Existence: [SWS_Rte_07254] d A SchM_Exit API shall be created for each
ExclusiveArea that is declared in the BswInternalBehav-
ior and which has an canEnterExclusiveArea association..
c(SRS_Rte_00222, SRS_Rte_00046)

Description: The SchM_Exit API call is invoked by an AUTOSAR BSW module
to define the end of an exclusive area.

Return Value: None.

Notes: The Basic Software Scheduler is not required to support nested in-
vocations of SchM_Exit for the same exclusive area.

Requirement [SWS_Rte_07252] permits calls to SchM_Exit and
SchM_Exit to be nested as long as different exclusive areas are
exited in the reverse order they were entered.

[constr_9048] SchM_Exit API may only be used by BswMod-
uleEntitys that describe its usage d The SchM_Exit API may
only be used by BswModuleEntitys that contain a corresponding
canEnterExclusiveArea association c

6.5.3 SchM_Call

Purpose: Invokes a Client-Server operation between BSW modules, possibly
crossing partition boundaries.

Signature: [SWS_Rte_08733] d
Std_ReturnType SchM_Call_<bsnp>[_<vi>_<ai>]_<name>(

[OUT <typeOfReturnValue> returnValue]
[IN|IN/OUT|OUT]<data_1>...
[IN|IN/OUT|OUT] <data_n>)

where there is a BSW module providing a en-
try which is the base for a generated function
<typeOfReturnValue> <bsnp>[_<vi>_<ai>]_<name>(

<data_1>...<data_n>)

with <typeOfReturnValue> is the returnType of the referenced
BswModuleEntry. If the returnType of the referenced BswMod-
uleEntry is of type void or execution is asynchronous, this part
should be omitted.

<bsnp> is the BSW Scheduler Name Prefix of the BSW mod-
ule providing the entry according to [SWS_Rte_07593] and
[SWS_Rte_07594],

<vi> is the vendorId of the BSW module providing the entry,

581 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

<ai> is the vendorApiInfix of the BSW module providing the en-
try,

<name> is the API name of the provided server entry according to
[SWS_BSW_00148].

The sub part in square brackets [_<vi>_<ai>] is omitted if no
vendorApiInfix is defined for the Basic Software Module. See
[SWS_Rte_07528]. c(SRS_Rte_00243)

Existence: [SWS_Rte_08734] d A synchronous SchM_Call API shall be gen-
erated if a callPoint association to a BswSynchronousServer-
CallPoint exists and the BswSynchronousServerCallPoint
references a BswModuleClientServerEntry as calledEntry
and this BswModuleClientServerEntry is referenced by the
BswModuleDescription as a requiredClientServerEntry.
c(SRS_Rte_00243)

[SWS_Rte_08735] d An asynchronous SchM_Call API shall
be generated if a callPoint association to a BswAsyn-
chronousServerCallPoint exists and the BswAsyn-
chronousServerCallPoint references a BswModule-
ClientServerEntry as calledEntry and this BswModule-
ClientServerEntry is referenced by the BswModuleDescrip-
tion as a requiredClientServerEntry. c(SRS_Rte_00243)

A configuration that includes both synchronous and asynchronous
Call Points is invalid.

[constr_9079] SchM_Call API may only be used by the BswMod-
uleEntity that describe its usage d The SchM_Call API may
only be used within the BswModuleEntity that references the
corresponding BswSynchronousServerCallPoint respectively
BswAsynchronousServerCallPoint using a callPoint asso-
ciation. c

Description: Function to initiate Client-Server communication between BSW mod-
ules. The SchM_Call API is used for both synchronous and asyn-
chronous calls.

When the BswModuleClientServerEntry is called
the SchM shall invoke the referenced BswMod-
uleEntry providing the C-function with the signature
<bpns>[_<vi>_<ai>]_name(<data_1>...(<data_n>) on
the partition of the task assigned to the respective BswOpera-
tionInvokedEvent, or on the local partition if the BswOpera-
tionInvokedEvent is not mapped to a task.

[SWS_Rte_08736] d The OUT parameter shall exist if the re-
turnType of BswModuleEntry is different of void and the at-

582 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

tribute isSynchronous of the BswModuleEntry is set to true.
c(SRS_Rte_00243)

[SWS_Rte_08737] d The datatype of the OUT parameter return-
Value shall be equal to returnType of the called BswModuleEn-
try. c(SRS_Rte_00243)

[SWS_Rte_08738] d The return value of the called BswModuleEn-
try shall be returned inside the OUT parameter returnValue.
c(SRS_Rte_00243)

[SWS_Rte_08739] d The SchM shall ensure that the BswMod-
uleEntity implementing a server operation has completed the pro-
cessing of a request before it begins processing the next request, if
call serialization is required by the server operation, i.e the isReen-
trant attribute of the corresponding BswModuleClientServer-
Entry which is referenced as providedClientServerEntry is
set to false and more than one BswModuleClientServerEntry
in the role requiredClientServerEntry references this server.
If the SchM_Call crosses partition borders, the call is mapped to
IOCSend_<id>(). c(SRS_Rte_00243)

The pointers to all parameters passed by reference must remain valid
until the API call returns.

Return Value: [SWS_Rte_08740] d The return value shall be used to indicate
infrastructure errors detected by the RTE during execution of the
SchM_Call call and, for synchronous communication, infrastructure
and application errors during execution of the BswModuleEntry. c

• [SWS_Rte_08741] d SCHM_E_OK - The API call completed suc-
cessfully. c

• [SWS_Rte_08742] d SCHM_E_LIMIT - There are multiple out-
standing asynchronous calls of the same BswModuleEntry.
The invocation shall be discarded, the buffers of the return pa-
rameters shall not be modified. c

6.5.4 SchM_Result

Purpose: Get the result of an asynchronous call of a BswModuleEntry.

Signature: [SWS_Rte_08743] d
Std_ReturnType
SchM_Result_<bsnp>[_<vi>_<ai>]_<name>(

[IN|IN/OUT|OUT]<data_1> ...
[IN|IN/OUT|OUT] <data_n>)

583 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

where there is a BSW module providing a en-
try which is the base for a generated function
<bsnp>[_<vi>_<ai>]_name(<data_1>...<data_n>)

with <bsnp> is the BSW Scheduler Name Prefix of the BSW
module sending the callback according to [SWS_Rte_07593] and
[SWS_Rte_07594],

<vi> is the vendorId of the BSW module sending the callback,

<ai> is the vendorApiInfix of the BSW module sending the call-
back,

<name> is the API name of the provided server entry according
to [SWS_BSW_00148] (i.e. the same name as in the SchM_Call
method causing this callback).

The sub part in squared brackets [_<vi>_<ai>] is omitted if no
vendorApiInfix is defined for the Basic Software Module. See
[SWS_Rte_07528]. c(SRS_Rte_00243)

Existence: [SWS_Rte_08744] d A blocking SchM_Result API shall be gener-
ated if a callPoint association to a BswAsynchronousServer-
CallResultPoint exists. c(SRS_Rte_00243)

[constr_9076] SchM_Result API may only be used by the
BswModuleEntity that describe its usage d The SchM_Result
API may only be used within the BswModuleEntity that references
the corresponding BswAsynchronousServerCallResultPoint
using a callPoint association. c

Description: The SchM_Result is used to collect the result of
an asynchronous call of a BswModuleEntry in-
voked by SchM_Call_<bsnp>[_<vi>_<ai>]_name(
<data_1>...<data_n>).

Using SchM_Result it is possible get back the result of call.

The SchM_Result API includes zero or more IN/OUT and OUT pa-
rameters to pass back results.

The pointers to all parameters passed by reference must remain valid
until the API call returns.

If the SchM_Result crosses partition borders, the callback is
mapped to IOCSend_<id>().

Return Value: The return value is used to indicate errors from either the
SchM_Result call itself or communication errors detected before the
API call was made.

584 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

• [SWS_Rte_08745] d SCHM_E_OK - The API call completed suc-
cessfully. c

• [SWS_Rte_08746] d SCHM_E_NO_DATA - The BswModuleEn-
try’s result is not available but no other error occurred within
the API call or the BswModuleEntry was not called using
SchM_Call. The buffers for the IN/OUT and OUT parameters
shall not be modified. c

• [SWS_Rte_08759] d SCHM_E_LIMIT - The BswModuleEn-
try’s result could not be transfered because no buffer was avail-
able while transferring the data. The invocation shall be dis-
carded, the buffers of the return parameters shall not be modi-
fied. c

The SCHM_E_NO_DATA return value is not considered to be an er-
ror but rather indicate correct operation of the API call. When
SCHM_E_NO_DATA occurs, a BSW module is free to invoke
SchM_Result again and thus repeat the attempt to read the result.

6.5.5 SchM_Send

Purpose: Initiate an "explicit" sender-receiver transmission of data elements
with "event" semantic (queued) between BSW modules.

Signature: [SWS_Rte_08747] d
Std_ReturnType
SchM_Send_<bsnp>[_<vi>_<ai>]_<name>(IN <data>)

with <bsnp> is the BSW Scheduler Name Prefix of the BSW
module providing the data according to [SWS_Rte_07593] and
[SWS_Rte_07594],

<vi> is the vendorId of the BSW module providing the data,

<ai> is the vendorApiInfix of the BSW module providing the
data,

<name> is the shortName of the VariableDataPrototype of this
sender-receiver connection.

The sub part in square brackets [_<vi>_<ai>] is omitted if no
vendorApiInfix is defined for the Basic Software Module. See
[SWS_Rte_07528]. c(SRS_Rte_00243)

Existence: [SWS_Rte_08748] d The existence of a dataSendPoint associa-
tion to a providedData VariableDataPrototype shall result in
the generation of a SchM_Send API for the provided VariableDat-
aPrototype. c(SRS_Rte_00243)

585 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[constr_9077] SchM_Send API may only be used by the
BswModuleEntity that describes its usage d The SchM_Send API
may only be used within the BswModuleEntity that references the
VariableDataPrototype using a dataSendPoint. c

Description: When a BSW module writes data to a sender-receiver connection on
a system with the BSW running on multiple partitions, it shall invoke
SchM_Send_<bsnp>[_<vi>_<ai>]_<name>(<data>). The
SchM_Send API call initiates a sender-receiver communication
where the transmission occurs at the point the API call is made (cf.
explicit transmission). The SchM_Send API call includes the IN pa-
rameter <data> to pass the data element to write. The IN parameter
<data> is passed by value or reference according to the Imple-
mentationDataType as described in the section 5.2.6.5. If the IN
parameter <data> is passed by reference, the pointer must remain
valid until the API call returns.

Return Value: The return value is used to indicate errors detected by the SchM dur-
ing execution of the SchM_Send.

• [SWS_Rte_08749] d SCHM_E_OK - data passed to communica-
tion service successfully. c

• [SWS_Rte_08750] d SCHM_E_LIMIT - an ’event’ has been dis-
carded due to a full queue by one of the partition local receivers.
c

Notes: The SchM_Send API is used to transmit data with "events" semantics
which means that they are getting queued.

[SWS_Rte_08751] d In case of inter partition communication, the
SchM_Send API call shall cause an immediate transmission request.
c(SRS_Rte_00243)

For inter-partition communication the IOC can be used for transmit-
ting the data to the other partition.

[SWS_Rte_08752] d If the VariableDataPrototype in the pro-
videdData role is connected to multiple VariableDataProto-
types in the role requiredData, then the SchM shall ensure that
writes to all receivers are independent. c(SRS_Rte_00243)

This ensures that an error detected by the SchM when writing to one
receiver does not prevent the transmission of this message to other
BSW modules.

[SWS_Rte_08753] d In case of intra partition communication, the
SchM_Send API call shall return after copying the data to RTE lo-
cal memory or using IOC buffers. c(SRS_Rte_00243)

586 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

6.5.6 SchM_Receive

Purpose: Perfoms an "explicit" sender-receiver reception of data elements with
"event" semantic (queued) between BSW modules.

Signature: [SWS_Rte_08754] d
Std_ReturnType
SchM_Receive_<bsnp>[_<vi>_<ai>]_<name>(OUT <data>)

with <bsnp> is the BSW Scheduler Name Prefix of the BSW
module reading the data according to [SWS_Rte_07593] and
[SWS_Rte_07594],

<vi> is the vendorId of the BSW module reading the data,

<ai> is the vendorApiInfix of the BSW module reading the data,

<name> is the shortName of the VariableDataPrototype of this
sender-receiver connection.

The sub part in square brackets [_<vi>_<ai>] is omitted if no
vendorApiInfix is defined for the Basic Software Module. See
[SWS_Rte_07528]. c(SRS_Rte_00243)

Existence: [SWS_Rte_08755] d The existence of a dataReceivePoint asso-
ciation to a requiredData VariableDataPrototype shall result
in the generation of a SchM_Receive API for the required Vari-
ableDataPrototype. c(SRS_Rte_00243)

[constr_9078] SchM_Receive API may only be used by the
BswModuleEntity that describes its usage d The SchM_Receive
API may only be used within the BswModuleEntity that references
the VariableDataPrototype using a dataReceivePoint. c

Description: When a BSW module handles a BswDataReceivedEvent on a
system with the BSW running on multiple partitions, it shall in-
voke SchM_Receive_<bsnp>[_<vi>_<ai>]_<name>(<data>).
For a sender-receiver connection crossing partition boundaries, the
SchM shall then read the data from a shared buffer, where it has been
put by SchM_Send.

The SchM_Receive API call includes the OUT parameter <data>
to pass back the received data element.

The pointers to the OUT parameters must remain valid until the API
call returns.

Return Value: The return value is used to indicate errors detected by the SchM dur-
ing execution of the SchM_Receive or errors detected by the com-
munication system.

• [SWS_Rte_08757] d SCHM_E_OK - data read successfully. c

587 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

• [SWS_Rte_08758] d SCHM_E_NO_DATA - no "events" (means
queued data) were received and no other error occurred when
the read was attempted. c

[SWS_Rte_08756] d In case return value is SCHM_E_NO_DATA the
OUT parameters shall remain unchanged. c(SRS_Rte_00243)

The SCHM_E_NO_DATA return value is not considered to be an error
but rather indicates correct operation of the API call.

6.5.7 SchM_Switch

Purpose: Initiate a mode switch. The SchM_Switch API call is used for send-
ing of a mode switch notification by a Basic Software Mod-
ule.

Signature: [SWS_Rte_07255] d
Std_ReturnType
SchM_Switch_<bsnp>[_<vi>_<ai>]_<name>(

IN <mode>)

Where here

<bsnp> is the BSW Scheduler Name Prefix according
[SWS_Rte_07593] and [SWS_Rte_07594],

<vi> is the vendorId of the calling BSW module,

<ai> vendorApiInfix of the calling BSW module and

<name> is the provided (providedModeGroup) ModeDeclara-
tionGroupPrototype name.

The sub part in squared brackets [_<vi>_<ai>] is omitted if no
vendorApiInfix is defined for the Basic Software Module. See
[SWS_Rte_07528]. c(SRS_Rte_00215, SRS_BSW_00347)

Existence: [SWS_Rte_07256] d The existence of a managedModeGroup as-
sociation to a providedModeGroup ModeDeclarationGroup-
Prototype shall result in the generation of a SchM_Switch API.
c(SRS_Rte_00215)

[constr_9049] SchM_Switch API may only be used by BswMod-
uleEntitys that describe its usage d The SchM_Switch API may
only be used by BswModuleEntitys that contain a corresponding
managedModeGroup association c

Description: The SchM_Switch triggers a mode switch for all connected required
(requiredModeGroup) ModeDeclarationGroupPrototypes.

588 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

The SchM_Switch API call includes exactly one IN parameter for
the next mode <mode>. The IN parameter <mode> is passed by
value according to the ImplementationDataType on which the
ModeDeclarationGroup is mapped. The type name shall be equal
to the ImplementationDataType symbol.

Return Value: The return value is used to indicate errors detected by the Basic Soft-
ware Scheduler during execution of the SchM_Switch call.

• [SWS_Rte_07258] d SCHM_E_OK – data passed to ser-
vice successfully. c(SRS_Rte_00213, SRS_Rte_00214,
SRS_Rte_00094)

• [SWS_Rte_07259] d SCHM_E_LIMIT – a mode switch has
been discarded due to a full queue. c(SRS_Rte_00213,
SRS_Rte_00214, SRS_Rte_00143)

Notes: SchM_Switch is restricted to ECU local communication.

If a mode instance is currently involved in a transition then the
SchM_Switch API will attempt to queue the request and return
[SWS_Rte_02667]. However if no transition is in progress for the
mode instance, the mode disablings and the activations of OnEntry,
OnTransition, and OnExit runnables for this mode instance are exe-
cuted before the SchM_Switch API returns [SWS_Rte_02665].

Note that the mode switch might be discarded when the queue is full
and a mode transition is in progress, see [SWS_Rte_02675].

[SWS_Rte_07286] d If the mode switched acknowledgment is
enabled, the RTE shall notify the mode manager when the
mode switch is completed. c(SRS_Rte_00213, SRS_Rte_00214,
SRS_Rte_00122)

6.5.8 SchM_Mode

There exist two versions of the SchM_Mode APIs. Depending on the attribute en-
hancedModeApi in the basic software module description there shall be provided dif-
ferent versions of this API (see also 6.5.9).

Purpose: Provides the currently active mode of a (requiredModeGroup or
providedModeGroup) ModeDeclarationGroupPrototype.

Signature: [SWS_Rte_07260] d
<return>
SchM_Mode_<bsnp>[_<vi>_<ai>]_<name>()

Where here

589 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

<bsnp> is the BSW Scheduler Name Prefix according
[SWS_Rte_07593] and [SWS_Rte_07594],

<vi> is the vendorId of the calling BSW module,

<ai> vendorApiInfix of the calling BSW module and

<name> is the (requiredModeGroup or providedModeGroup)
ModeDeclarationGroupPrototype name.

The sub part in squared brackets [_<vi>_<ai>] is omitted if no
vendorApiInfix is defined for the Basic Software Module. See
[SWS_Rte_07528]. c(SRS_Rte_00213, SRS_BSW_00347)

Existence: [SWS_Rte_07261] d If a accessedModeGroup association to
a providedModeGroup or requiredModeGroup ModeDecla-
rationGroupPrototype exists and if the attribute enhanced-
ModeApi of the BswModeSenderPolicy resp. BswModeRe-
ceiverPolicy is set to false a SchM_Mode API according to
[SWS_Rte_07260] shall be generated. c(SRS_Rte_00215)

Note: This ensures the availability of the SchM_Mode API for the
mode manager and mode user

[constr_9050] SchM_Mode API may only be used by BswMod-
uleEntitys that describe its usage d The SchM_Mode API may
only be used by BswModuleEntitys that contain a corresponding
managedModeGroup association or accessedModeGroup associ-
ation c

Description: The SchM_Mode API tells the Basic Software Module which mode
of a required or provided ModeDeclarationGroupPrototype is
currently active. This is the information that the RTE uses for the
ModeDisablingDependencys. A new mode will not be indicated
immediately after the reception of a mode switch notification
from a mode manager, see section 4.4.4.During mode transitions,
i.e. during the execution of runnables that are triggered on exiting
one mode or on entering the next mode, overlapping mode disablings
of two modes are active. In this case, the SchM_Mode API will return
RTE_TRANSITION_<ModeDeclarationGroup>.

The SchM_Mode will return the same mode for all required or pro-
vided ModeDeclarationGroupPrototypes that are connected.
(see [SWS_Rte_02630]).

Return Value: The return type of SchM_Mode is dependent on the Implementa-
tionDataType of the ModeDeclarationGroup. It shall return the
value of the ModeDeclarationGroupPrototype. The type name
shall be equal to the ImplementationDataType symbol.

590 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_07262] d The SchM_Mode API shall return the following
values:

• during mode transitions:
RTE_TRANSITION_<ModeDeclarationGroup>,

where <ModeDeclarationGroup> is the short name of the
ModeDeclarationGroup.

• else:
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>,

where <ModeDeclarationGroup> is the short name of the
ModeDeclarationGroup and <ModeDeclaration> is the
short name of the currently active ModeDeclaration

c(SRS_Rte_00144)

Notes: None.

6.5.9 Enhanced SchM_Mode

Purpose: Provides the currently active mode of a (requiredModeGroup or
providedModeGroup) ModeDeclarationGroupPrototype. If
the corresponding mode machine instance is in transition addi-
tionally the values of the previous and the next mode are provided.

Signature: [SWS_Rte_07694] d
<return>
SchM_Mode_<bsnp>[_<vi>_<ai>]_<name>(

OUT <previousmode>,
OUT <nextmode>)

)

Where here

<bsnp> is the BSW Scheduler Name Prefix according
[SWS_Rte_07593] and [SWS_Rte_07594],

<vi> is the vendorId of the calling BSW module,

<ai> vendorApiInfix of the calling BSW module and

<name> is the (requiredModeGroup or providedModeGroup)
ModeDeclarationGroupPrototype name.

The sub part in squared brackets [_<vi>_<ai>] is omitted if no
vendorApiInfix is defined for the Basic Software Module. See
[SWS_Rte_07528]. c(SRS_Rte_00213, SRS_BSW_00347)

591 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Existence: [SWS_Rte_08507] d The existence of a accessedModeGroup
association to a providedModeGroup or requiredModeGroup
ModeDeclarationGroupPrototype given that the attribute en-
hancedModeApi of the BswModeSenderPolicy resp. BswMod-
eReceiverPolicy is set to true a SchM_Mode API according to
[SWS_Rte_07694] shall be generated. c(SRS_Rte_00215)

Note: This ensures the availability of the SchM_Mode API for the
mode manager and mode user

[constr_9051] SchM_Mode API may only be used by BswMod-
uleEntitys that describe its usage d The SchM_Mode API may
only be used by BswModuleEntitys that contain a corresponding
managedModeGroup association or accessedModeGroup associ-
ation c

Description: The SchM_Mode API tells the Basic Software Module which mode
of a required or provided ModeDeclarationGroupPrototype is
currently active. This is the information that the RTE uses for the
ModeDisablingDependencys. A new mode will not be indicated
immediately after the reception of a mode switch notification
from a mode manager, see section 4.4.4.During mode transitions,
i.e. during the execution of runnables that are triggered on exiting
one mode or on entering the next mode, overlapping mode disablings
of two modes are active. In this case, the SchM_Mode API will re-
turn RTE_TRANSITION_<ModeDeclarationGroup>. The param-
eter <previousmode> then contains the mode currently being left.
The parameter <nextmode> contains the mode being entered.

The SchM_Mode will return the same mode for all required or pro-
vided ModeDeclarationGroupPrototypes that are connected.
(see [SWS_Rte_02630]).

Return Value: The return type of SchM_Mode is dependent on the Implementa-
tionDataType of the ModeDeclarationGroup. It shall return the
value of the ModeDeclarationGroupPrototype. The type name
shall be equal to the ImplementationDataType symbol.

[SWS_Rte_08509] d During transitions SchM_Mode API shall return
the following values:

• the return value shall be
RTE_TRANSITION_<ModeDeclarationGroup>

• <previousmode> shall contain the
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>
of the mode being left,

592 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

• <nextmode> shall contain the
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>
of the mode being entered,

where <ModeDeclarationGroup> is the short name of the Mode-
DeclarationGroup.

c(SRS_Rte_00144)

[SWS_Rte_08510] d If the mode machine instance is in a de-
fined mode SchM_Mode shall return the follwing values:

• the return value shall contain the value of the
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>,

• <previousmode> shall contain the value of the
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>,

• <nextmode> shall contain the the value of
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>,

where <ModeDeclarationGroup> is the short name of the Mode-
DeclarationGroup and <ModeDeclaration> is the short name
of the currently active ModeDeclaration.

c(SRS_Rte_00144)

Notes: None.

6.5.10 SchM_SwitchAck

Purpose: Provide access to acknowledgment notifications for mode communi-
cation.

Signature: [SWS_Rte_07556] d
Std_ReturnType
SchM_SwitchAck_<bsnp>[_<vi>_<ai>]_<name>()

Where here

<bsnp> is the BSW Scheduler Name Prefix according
[SWS_Rte_07593] and [SWS_Rte_07594],

<vi> is the vendorId of the calling BSW module,

<ai> vendorApiInfix of the calling BSW module and

<name> is the required (requiredModeGroup) ModeDeclara-
tionGroupPrototype name.

593 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

The sub part in squared brackets [_<vi>_<ai>] is omitted if no
vendorApiInfix is defined for the Basic Software Module. See
[SWS_Rte_07528]. c(SRS_BSW_00310, SRS_Rte_00213)

Existence: [SWS_Rte_07557] d Acknowledgement is enabled for a provided
(providedModeGroup) ModeDeclarationGroupPrototype by
the presence of an ackRequest attribute of the BswModeSender-
Policy. c(SRS_Rte_00213, SRS_Rte_00122)

[SWS_Rte_07558] d A non-blocking SchM_SwitchAck API shall
be generated for a provided (providedModeGroup) ModeDecla-
rationGroupPrototype if acknowledgement is enabled and a
managedModeGroup association references the providedMode-
Group ModeDeclarationGroupPrototype. c(SRS_Rte_00213,
SRS_Rte_00122)

[constr_9052] SchM_SwitchAck API may only be used
by BswModuleEntitys that describe its usage d The
SchM_SwitchAck API may only be used by BswModuleEntitys
that contain a corresponding managedModeGroup association c

Description: The SchM_SwitchAck API takes no parameters – the return value
is used to indicate the acknowledgement status to the caller.

Return Value: The return value is used to indicate the “status” status and errors
detected by the Basic Software Scheduler during execution of the
Rte_SwitchAck call.

• [SWS_Rte_07560] d SCHM_E_NO_DATA – (non-blocking read)
no error is occurred when the SchM_SwitchAck read was at-
tempted. c(SRS_Rte_00213, SRS_Rte_00122)

• [SWS_Rte_07561] d SCHM_E_TRANSMIT_ACK – For communi-
cation of mode switches, this indicates, that the BswSchedu-
lableEntitys on the transition have been executed and the
mode disablings have been switched to the new mode (see
[SWS_Rte_02587]). c(SRS_Rte_00213, SRS_Rte_00122)

• [SWS_Rte_07055] d SCHM_E_TIMEOUT The configured timeout
exceeds before the mode transition was completed.
OR:
The partition of the mode users is stopped or restarting or
has been restarted while the mode switch was requested.
c(SRS_Rte_00213, SRS_Rte_00122)

The SCHM_E_TRANSMIT_ACK return value is not considered to be
an error but rather indicates correct operation of the API call.

When SCHM_E_NO_DATA occurs, a Basic Software Module is free to
reinvoke SchM_SwitchAck and thus repeat the attempt to read the
mode switch acknowledgment status.

594 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

The SCHM_E_TIMEOUT return value can denote a stopped or restart-
ing partition even for the SchM_SwitchAck API in case of a common
mode machine instance.

Notes: If multiple transmissions on the same provided (providedMode-
Group) ModeDeclarationGroupPrototype are outstanding it is
not possible to determine which is acknowledged first. If this is im-
portant, transmissions should be serialized with the next occurring
only when the previous transmission has been acknowledged or has
timed out.

6.5.11 SchM_Trigger

Purpose: Triggers the activation of connected BswSchedulableEntitys of
the same or other Basic Software Modules.

Signature: [SWS_Rte_07263] d
signature without queuing support:

void
SchM_Trigger_<bsnp>[_<vi>_<ai>]_<name>()

signature with queuing support:

Std_ReturnType
SchM_Trigger_<bsnp>[_<vi>_<ai>]_<name>()

Where here

<bsnp> is the BSW Scheduler Name Prefix according
[SWS_Rte_07593] and [SWS_Rte_07594],

<vi> is the vendorId of the calling BSW module,

<ai> vendorApiInfix of the calling BSW module and

<name> is the released (releasedTrigger) Trigger name.

The sub part in squared brackets [_<vi>_<ai>] is omitted if no
vendorApiInfix is defined for the Basic Software Module. See
[SWS_Rte_07528].

The signature for queuing support shall be generated by the RTE
generator if the swImplPolicy of the Trigger is set to queued.
c(SRS_Rte_00218, SRS_BSW_00347)

Existence: [SWS_Rte_07264] d The existence of a issuedTrigger associa-
tion to the released (releasedTrigger) Trigger shall result in the
generation of a SchM_Trigger API. c(SRS_Rte_00218)

595 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[constr_9053] SchM_Trigger API may only be used by
the BswModuleEntitys that describe its usage d The
SchM_Trigger API may only be used by the BswModuleEn-
tity that contains the corresponding issuedTrigger association.
c

Description: The SchM_Trigger triggers an execution for all BswSchedu-
lableEntitys whose BswExternalTriggerOccurredEvent is
associated to connected required Trigger.

Return Value: None in case of signature without queuing support.

[SWS_Rte_06722] d The SchM_Trigger API shall return the follow-
ing values:

• SCHM_E_OK if the trigger was successfully queued or if no queue
is configured

• SCHM_E_LIMIT if the trigger was not queued because the max-
imum queue size is already reached.

in the case of signature with queuing support. c(SRS_Rte_00235)

Notes: SchM_Trigger is restricted to ECU local communication.

6.5.12 SchM_ActMainFunction

Purpose: Triggers the activation of the BswSchedulableEntity which is as-
sociated with an activationPoint of the same or Basic Software
Module.

Signature: [SWS_Rte_07266] d
signature without queuing support:

void
SchM_ActMainFunction_<bsnp>[_<vi>_<ai>]_<name>()

signature with queuing support:

Std_ReturnType
SchM_ActMainFunction_<bsnp>[_<vi>_<ai>]_<name>()

Where here

<bsnp> is the BSW Scheduler Name Prefix according
[SWS_Rte_07593] and [SWS_Rte_07594],

<vi> is the vendorId of the calling BSW module,

<ai> vendorApiInfix of the calling BSW module and

596 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

<name> is the associated BswInternalTriggeringPoint short
name.

The sub part in squared brackets [_<vi>_<ai>] is omitted if no
vendorApiInfix is defined for the Basic Software Module. See
[SWS_Rte_07528].

The signature for queuing support shall be generated by the RTE
generator if the swImplPolicy of the BswInternalTriggering-
Point is set to queued. c(SRS_Rte_00218, SRS_BSW_00347)

Existence: [SWS_Rte_07267] d The existence of an activationPoint
shall result in the generation of a SchM_ActMainFunction API.
c(SRS_Rte_00218)

[constr_9054] SchM_ActMainFunction API may only be used
by the BswModuleEntitys that describe its usage d The
SchM_ActMainFunction API may only be used by the BswMod-
uleEntity that contains the corresponding activationPoint as-
sociation. c

Description: The SchM_ActMainFunction triggers an execution for all
BswSchedulableEntitys whose BswInternalTriggerOc-
curredEvent is associated by activationPoint.

Return Value: None in case of signature without queuing support.

[SWS_Rte_06723] d The SchM_ActMainFunction API shall return
the following values:

• SCHM_E_OK if the trigger was successfully queued or if no queue
is configured

• SCHM_E_LIMIT if the trigger was not queued because the max-
imum queue size is already reached.

in the case of signature with queuing support. c(SRS_Rte_00235)

Notes: SchM_ActMainFunction is restricted to ECU local communication.

6.5.13 SchM_CData

Purpose: Provide access to the calibration parameter of a Basic Software Mod-
ule defined internally. The ParameterDataPrototype in the role
perInstanceParameter is used to define Basic Software Module
internal calibration parameters. Internal because the Parameter-
DataPrototype cannot be reused outside the Basic Software Mod-
ule. Access is read-only. Each instance has an own data value asso-
ciated with it.

597 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Signature: [SWS_Rte_07093] d
<return> SchM_CData_<bsnp>[_<vi>_<ai>]_<name>()

Where here

<bsnp> is the BSW Scheduler Name Prefix according
[SWS_Rte_07593] and [SWS_Rte_07594],

<vi> is the vendorId of the calling BSW module,

<ai> vendorApiInfix of the calling BSW module and

<name> is the shortName of the ParameterDataPrototype.

The sub part in squared brackets [_<vi>_<ai>] is omitted if no
vendorApiInfix is defined for the Basic Software Module. See
[SWS_Rte_07528]. c(SRS_BSW_00347, SRS_Rte_00155)

Existence: [SWS_Rte_07094] d An SchM_CData API shall be created for each
defined ParameterDataPrototype in the role perInstancePa-
rameter c(SRS_Rte_00155)

Description: The SchM_CData API provides access to the defined calibration pa-
rameter within a Basic Software Module. The actual data values for
a Basic Software Module instance may be set after component com-
pilation.

Return Value: The SchM_CData return value provide access to the data value of the
ParameterDataPrototype in the role perInstanceParameter.

The return type of SchM_CData is dependent on the Implementa-
tionDataType of the ParameterDataPrototype and can either
be a value or a pointer to the location where the value can be ac-
cessed. Thus the component does not need to use type casting to
convert access to the ParameterDataPrototype data.

For details of the <return> value definition see section 5.2.6.6.

[SWS_Rte_07095] d The return value of the corresponding
SchM_CData API shall provide access to the calibration parame-
ter value specific to the instance of the Basic Software Module.
c(SRS_Rte_00155)

Notes: None.

6.6 Bsw Module Entity Reference

An AUTOSAR Basic Software Module defines one or more “BSW module entities”.
A BSW Module Entity is a piece of code with a single entry point and an associate
set of attributes. In contrast to runnable entities which are exclusively scheduled by
the RTE only a subset of the BSW module entities, the BswSchedulableEntitys

598 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

and BswCalledEntitys are called by the Basic Software Scheduler. Others might
implement ’C’ function interfaces which are directly called by other BSW modules or
interrupts which are called by OS / interrupt controller.

A Basic Software Module Description provides definitions for each BswModuleEn-
tity within the BSW Module. The Basic Software Scheduler triggers the execution of
BswSchedulableEntitys and BswCalledEntitys in response to different Bsw-
Events.

The BswCalledEntitys are triggered by BswOperationInvokedEvents, the
BswSchedulableEntitys by BswScheduleEvents.

For BSW modules implemented using C or C++ the entry point of a BswSchedu-
lableEntity is implemented by a function with global scope defined within a BSW
Modules source code. The following sections consider the function signature and pro-
totype.

6.6.1 Signature

The definition of all BswSchedulableEntitys, whatever the BswScheduleEvent
that triggers their execution, follows the same basic form.

Purpose: Trigger a BswSchedulableEntity if the related BswSched-
uleEvent defined within the BswModuleDescription is raised.

Signature: [SWS_Rte_07282] d
FUNC(void, <memclass>) <bsnp>[_<vi>_<ai>]_<name>(
[IN SchM_ActivatingEvent_<name> <activation>])

c(SRS_BSW_00347, SRS_Rte_00211, SRS_Rte_00213,
SRS_Rte_00216, SRS_Rte_00238)

The usage of SchM_ActivatingEvent is optional and defined in
[SWS_Rte_08056].

For BswCalledEntitys the signature contains the parameters and return type. It can
be seen in [SWS_Rte_08765].

Purpose: Trigger a BswCalledEntity if the related BswOperationIn-
vokedEvent defined within the BswModuleDescription is raised.

Signature: [SWS_Rte_08765] d
FUNC(<returnType>, <memclass>) <bsnp>[_<vi>_<ai>]_<name>(
[IN|IN/OUT|OUT] <parameter_1>...
[IN|IN/OUT|OUT] <parameter_n>)

c(SRS_BSW_00347, SRS_Rte_00241, SRS_Rte_00243)

There is currently no possibility to obtain the activating BswOpera-
tionInvokedEvent of a BswCalledEntity.

599 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Where here for both of them

<bsnp> is the BSW Scheduler Name Prefix according [SWS_Rte_07593] and
[SWS_Rte_07594],

<vi> is the vendorId of the BSW module,

<ai> is the vendorApiInfix of the BSW module

<name> is the substring after "<bsnp>_" of the BswModuleEntry shortName re-
ferred as implementedEntry. However if "<bsnp>_" is not the prefix of the related
BswModuleEntry shortName then <name> shall be the BswModuleEntry short-
Name.

<memclass> is the Compiler Abstraction Memory Class according
[SWS_Rte_06739] and [SWS_Rte_06740].

<returnType> is the return type defined in the SwServiceArg in the role re-
turnType of the BswModuleEntry which is referenced by the BswModule-
ClientServerEntry in the role encapsulatedEntry. If no type is defined, the
<returnType> is of type void.

<parameter_x> are the arguments defined in the SwServiceArgs in the role
argument of the BswModuleEntry which is referenced by the BswModule-
ClientServerEntry in the role encapsulatedEntry. For each argument the type
has to be give according to [SWS_Rte_08766].

The sub part in square brackets [_<vi>_<ai>] is omitted if no vendorApiInfix is
defined for the Basic Software Module. See [SWS_Rte_07528].

[SWS_Rte_08766] d The datatype of the argument is depending on SwServiceArgs.

For category of SwServiceArg of type TYPE_REFERENCE:
If the ImplementationDataType in the role implementationDataType of the
SwDataDefProps of the SwServiceArg resolves to a primitive and the direc-
tion of the SwServiceArg is IN, the datatype of the argument is defined by
the ImplementationDataType (possibly referred over a chain of Implementa-
tionDataTypes of category TYPE_REFERENCE) in the role implementation-
DataType of the SwDataDefProps of the SwServiceArg which represents the ar-
gument.

If the ImplementationDataType in the role implementationDataType of the
SwDataDefProps of the SwServiceArg resolves to a pointer type where the final
pointer target is a primitive or composite and the direction of the SwServiceArg
is IN, INOUT or OUT, the datatype of the argument is defined by the SwPointer-
TargetProps element referred by the ImplementationDataType of category
DATA_REFERENCE (possibly referred over a chain of ImplementationDataTypes
of category TYPE_REFERENCE).

For category of SwServiceArg of type DATA_REFERENCE:
If the SwPointerTargetProps in the role swPointerTargetProps of the Sw-
DataDefProps of the SwServiceArg resolves to a primitive or composite and the

600 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

direction of the SwServiceArg is IN, INOUT or OUT, the datatype of the argument
is defined by the SwPointerTargetProps in the SwDataDefProps of the SwSer-
viceArg which represents the argument (which may include resolving a chain of Im-
plementationDataTypes if the target category of the SwPointerTargetProps
is TYPE_REFERENCE).

For category of SwServiceArg of type FUNCTION_REFERENCE:
This case is not supported.

c(SRS_Rte_00243)

[constr_9058] BswSchedulableEntity is not allowed to have service argu-
ments or return value d The Basic Software Scheduler requires that the BswMod-
uleEntry has no service arguments (unless SchM_ActivatingEvent is enabled)
and no return value. c

[SWS_Rte_06739] d <memclass> shall be defined as
<snp>[_<vi>_<ai>]_<memClassSymbol> if a MemorySection.memClassSym-
bol and an associated MemorySection is defined and where

<snp> is the Section Name Prefix according [SWS_Rte_07595] and
[SWS_Rte_07596],

<vi> is the vendorId of the BSW module,

<ai> is the vendorApiInfix of the BSW module, and

<memClassSymbol> is the value of the attribute memClassSymbol the of the Mem-
orySection associated via executableEntity reference to the BswModuleEn-
tity implementing the related BswModuleEntry. c

[SWS_Rte_06740] d <memclass> shall be defined as
<snp>[_<vi>_<ai>]_<sadm> if no MemorySection.memclassSymbol is
applicable (see [SWS_Rte_06739]) and where

<snp> is the Section Name Prefix according [SWS_Rte_07595] and
[SWS_Rte_07596],

<vi> is the vendorId of the BSW module,

<ai> is the vendorApiInfix of the BSW module, and

<sadm> is the shortName of the referred swAddrMethod. c

6.6.2 Entry Point Prototype

The entry point defined in the Basic Software Modules source must be compatible
with the called function when the BswSchedulableEntity or BswCalledEntity is
triggered by the Basic Software Scheduler and therefore the RTE generator is required
to emit a prototype for the function.

601 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_07283] d The RTE generator shall emit an Entry Point Prototype for
each BswSchedulableEntitys implementedEntry and each BswCalledEn-
titys implementedEntry in the Module Interlink Header file. See chapter 6.3.2 ac-
cording [SWS_Rte_07282]. c(SRS_Rte_00211, SRS_Rte_00213, SRS_Rte_00216)

[SWS_Rte_07195] d The RTE Generator shall wrap each BswSchedulableEntity’s
Entry Point Prototype in the Module Interlink Header with the Memory Mapping and
Compiler Abstraction macros.

1 #define <snp>[_<vi>_<ai>]_START_SEC_<sadm>
2 #include "<MemMap_filename.h>"
3

4 FUNC(void, <memclass>) <bsnp>[_<vi>_<ai>]_<name>
5 ([IN SchM_ActivatingEvent_<name> <activation>]);
6

7 #define <snp>[_<vi>_<ai>]_STOP_SEC_<sadm>
8 #include "<MemMap_filename.h>"

The RTE Generator shall wrap each BswCalledEntity’s Entry Point Prototype in the
Module Interlink Header with the Memory Mapping and Compiler Abstraction macros.

1 #define <snp>[_<vi>_<ai>]_START_SEC_<sadm>
2 #include "<MemMap_filename.h>"
3

4 FUNC(<returnType>, <memclass>) <bsnp>[_<vi>_<ai>]_<name>(
5 [IN|IN/OUT|OUT] <parameter_1> ... [IN|IN/OUT|OUT] <parameter_n>);
6

7 #define <snp>[_<vi>_<ai>]_STOP_SEC_<sadm>
8 #include "<MemMap_filename.h>"

Where here for both of them

<bsnp> is the BSW Scheduler Name Prefix according [SWS_Rte_07593] and
[SWS_Rte_07594],

<snp> is the Section Name Prefix according [SWS_Rte_07595] and
[SWS_Rte_07596],

<vi> is the vendorId of the BSW module,

<ai> is the vendorApiInfix of the BSW module,

<name> is the substring after "<bsnp>_" of the BswModuleEntry shortName re-
ferred as implementedEntry. However if "<bsnp>_" is not the prefix of the related
BswModuleEntry shortName then <name> shall be the BswModuleEntry short-
Name, and

<returnType> is the return type defined in the SwServiceArg in the role re-
turnType of the BswModuleEntry which is referenced by the BswModule-
ClientServerEntry in the role encapsulatedEntry. If no type is defined, the
<returnType> is of type void.

<parameter_x> are the arguments defined in the SwServiceArgs in the role
argument of the BswModuleEntry which is referenced by the BswModule-

602 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

ClientServerEntry in the role encapsulatedEntry. For each argument the type
has to be give according to [SWS_Rte_08766].

<sadm> is the shortName of the referred swAddrMethod.

<memclass> is the Compiler Abstraction Memory Class according
[SWS_Rte_06739] and [SWS_Rte_06740]

<MemMap_filename.h> is the Applicable Memory Mapping Header File Name ac-
cording [SWS_Rte_07830], [SWS_Rte_07831] and [SWS_Rte_07832].

The sub part in square brackets [_<vi>_<ai>] is omitted if no vendorApiInfix is
defined for the Basic Software Module. See [SWS_Rte_07528].

The usage of SchM_ActivatingEvent is optional for BswSchedulableEntity
and defined in [SWS_Rte_08056]. It does currently not exist for BswCalledEntitys.

The Memory Mapping macros could wrap several Entry Point Prototype if these
referring the same swAddrMethod. If the BswSchedulableEntity or the
BswCalledEntity does not refer a swAddrMethod the <sadm> is set to CODE.
c(SRS_Rte_00148, SRS_Rte_00149, SRS_Rte_00238)

[SWS_Rte_07830] d The RTE Generator shall emit the Applicable Memory Mapping
Header File Name <MemMap_filename.h> as <Msn>[_<vi>_<ai>]_MemMap.h
if the BswImplementation does not contain a DependencyOnArtifact in the
role requiredArtifact where the DependencyOnArtifact.category is set to
MEMMAP. <Msn> is the shortName (case sensitive) of the BswModuleDescription.
c(SRS_Rte_00148)

[SWS_Rte_07831] d The RTE generator shall emit the Applicable Memory Map-
ping Header File Name <MemMap_filename.h> identical to the attribute value
requiredArtifact.artifactDescriptor.shortLabel if the BswImplemen-
tation does contain exactly one DependencyOnArtifact in the role re-
quiredArtifact where the DependencyOnArtifact.category is set to MEMMAP.
c(SRS_Rte_00148)

[SWS_Rte_07832] d The RTE Generator shall emit the Applicable Memory Map-
ping Header File Name <MemMap_filename.h> identical to the attribute value re-
quiredArtifact.artifactDescriptor.shortLabel of the DependencyOnAr-
tifact in the role requiredArtifact where the DependencyOnArtifact.cat-
egory is set to MEMMAP and which is associated with the SectionNamePrefix
implementedIn of the MemorySection associated to the BswModuleEntity.
c(SRS_Rte_00148)

Please note the example 6.2 of Entry Point Prototype.

[SWS_Rte_06533] d The RTE Generator shall wrap each Entry Point Prototype in
the Module Interlink Header file of a variant existent BswSchedulableEntity or
BswCalledEntity if the variability shall be implemented.

1 #if (<condition>)

603 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

2

3 <Entry Point Prototype>
4

5 #endif

where condition is the Condition Value Macro of the VariationPoint relevant for
the variant existence of the BswSchedulableEntity or BswCalledEntity (see
table 4.28), Entry Point Prototype is the code according an invariant Entry Point
Prototype (see also [SWS_Rte_07282], [SWS_Rte_07283]). c(SRS_Rte_00229)

6.6.3 Reentrancy

The BswSchedulableEntitys and BswCalledEntitys are declared within a BSW
Module. The Basic Software Module Scheduler ensures that concurrent activation of
the same BswSchedulableEntity or BswCalledEntity is only allowed if the im-
plemented entry points attribute "isReentrant" is set to "true" (see Section 4.2.6).

Consistency rule:

[SWS_Rte_07588] d The RTE Generator shall reject configurations where a
BswSchedulableEntity whose referenced BswModuleEntry in the role imple-
mentedEntry has its isReentrant attribute set to false, and this BswSchedu-
lableEntity is mapped to different tasks which can pre-empt each other.
c(SRS_Rte_00018)

6.6.4 Provide activating Bsw event

[SWS_Rte_08059] d If the provide activating Bsw event feature is enabled, the RTE
shall collect the activating Bsw events, which have the activationReasonRepre-
sentation reference defined, in the context of the OS task the executable entity
is mapped to in an activation vector at the corresponding bit position as defined in
[SWS_Rte_08058]. c(SRS_Rte_00238)

[SWS_Rte_08060] d If the provide activating Bsw event feature is enabled, the RTE
shall provide the collected activating Bsw events (activation vector) to the executable
entity API when the executable entity is "started". The activation vector shall be reset
immediately after it has been provided. c(SRS_Rte_00238)

Provision of the activating Bsw event is curerntly not availbale for BswCalledEntitys.

Since it is possible that there is a time gap between the activation and the execution
(start) of a executable entity the subsequent activations are summed up and provided
with the start of the executable entity.

Activations during the execution of a executable entity are collected for the next start of
that runnable entity.

604 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

6.7 Basic Software Scheduler Lifecycle API Reference

6.7.1 SchM_Init

Purpose: Initialize the Basic Software Scheduler part of the RTE.

Signature: [SWS_Rte_07270] d
void SchM_Init([const SchM_ConfigType * ConfigPtr])

c(SRS_BSW_00101, SRS_Rte_00116)

Existence: [SWS_Rte_07271] d The SchM_Init API is always created.
c(SRS_BSW_00101)

Description: SchM_Init is intended to allocate and initialize system resources
used by the Basic Software Scheduler part of the RTE for the core on
which it is called. After initialization the scheduling of BswSchedu-
lableEntitys is enabled.

[constr_9055] SchM_Init shall be called only once d SchM_Init
shall be called only once by the EcuStateManager on each core after
the basic software modules required by the Basic Software Scheduler
part of the RTE are initialized. c

These modules include:

• OS

[SWS_Rte_06544] d The optional parameter configPtr shall
be a pointer to a post build data set which is used to resolve
the PostBuild Variability of the Basic Software Scheduler
and RTE. c(SRS_BSW_00405, SRS_Rte_00229, SRS_Rte_00204,
SRS_Rte_00206, SRS_Rte_00207)

[SWS_Rte_06545] d The parameter configPtr shall only
be provided if the input configuration of the RTE and Ba-
sic Software Scheduler contains PostBuild Variabil-
ity which has to be implemented by the RTE Genera-
tor. c(SRS_BSW_00405, SRS_Rte_00229, SRS_Rte_00204,
SRS_Rte_00206, SRS_Rte_00207)

[constr_9056] SchM_Deinit API may only be used after the was
RTE finalized d The SchM_Deinit API may only be used after the
RTE finalized (after termination of the Rte_Stop) c

[SWS_Rte_07273] d SchM_Init shall return within finite execution
time – it must not enter an infinite loop. c(SRS_BSW_00101)

SchM_Init may be implemented as a function or a macro.

Return Value: None

605 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Notes: SchM_Init is declared in the lifecycle header file Rte_Main.h.

6.7.2 SchM_Deinit

Purpose: Finalize the Basic Software Scheduler part of the RTE on the core it
is called.

Signature: [SWS_Rte_07274] d
void SchM_Deinit(void)

c(SRS_BSW_00336)

Existence: [SWS_Rte_07275] d The SchM_Deinit API is always created.
c(SRS_BSW_00336)

Description: SchM_Deinit is used to finalize Basic Software Scheduler part of
the RTE of the core on which it is called. This service releases all
system resources allocated by the Basic Software Scheduler part on
that core.

[constr_9057] SchM_Deinit shall be called before shut down of
BSW d SchM_Deinit shall be called by the EcuStateManager be-
fore the basic software modules required by Basic Software Sched-
uler part are shut down. c

These modules include:

• OS

[SWS_Rte_07277] d SchM_Deinit shall return within finite execu-
tion time. c(SRS_BSW_00336)

SchM_Deinit may be implemented as a function or a macro.

Return Value: None

Notes: SchM_Deinit is declared in the lifecycle header file Rte_Main.h.

6.7.3 SchM_GetVersionInfo

Purpose: Returns the version information of the Basic Software Scheduler.

Signature: [SWS_Rte_07278] d
void SchM_GetVersionInfo(Std_VersionInfoType * versioninfo)

c(SRS_BSW_00407)

Existence: [SWS_Rte_07279] d The SchM_GetVersionInfo API is
only created if RteSchMVersionInfoApi is set to true.
c(SRS_BSW_00407)

606 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Description: [SWS_Rte_07280] d SchM_GetVersionInfo shall return the ver-
sion information of the RTE module which includes the Basic Soft-
ware Scheduler. The version information includes:

• Module Id

• Vendor Id

• Vendor specific version numbers

c(SRS_BSW_00407)

[SWS_Rte_07281] d The parameter versioninfo of the
SchM_GetVersionInfo shall point to the memory location
holding the version information of the Basic Software Scheduler.
c(SRS_BSW_00407)

SchM_GetVersionInfo may be implemented as a function or a
macro.

Return Value: None

Notes: SchM_GetVersionInfo is declared in the lifecycle header file
Rte_Main.h.

The existence of the API SchM_GetVersionInfo depends on the
parameter RteSchMVersionInfoApi.

Vendor specific version numbers shall represent build version which
depends from the RTE generator version and the input configuration.
It is not in the scope if this specification to standardize the way how
the version numbers are created in detail because these are the ven-
dor specific version numbers.

607 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

7 RTE ECU Configuration

The RTE provides the glue layer between the AUTOSAR software-components and the
Basic Software thus enabling several AUTOSAR software-components to be integrated
on one ECU. The RTE layer is shown in figure 7.1.

Figure 7.1: ECU Architecture RTE

The overall structure of the RTE configuration parameters is shown in figure 7.2. It has
to be distinguished between the configuration parameters for the RTE generator and
the configuration parameters for the generated RTE itself.

Most of the information needed to generate an RTE is already available in the ECU
Extract of the System Description [8]. From this extract also the links to the AUTOSAR
software-component descriptions and ECU Resource description are available. So
only additional information not covered by the three aforementioned formats needs to
be provided by the ECU Configuration description.

To additionally allow the most flexibility and freedom in the implementations of the RTE,
only configuration parameters which are common to all implementations are standard-
ized in the ECU Configuration Parameter definition. Any additional configuration pa-
rameters which might be needed to configure a full functional RTE have to be specified
using the vendor specific parameter definition mechanism described in the ECU Con-
figuration specification document [5].

7.1 Ecu Configuration Variants

The RTE shall supports two Ecu Configuration Variants:

608 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_05103] d VARIANT-PRE-COMPILE Only parameters with "Pre-
compile time" configuration are allowed in this variant. c(SRS_BSW_00345,
SRS_BSW_00397)

[SWS_Rte_05104] d VARIANT-POST-BUILD Parameters with "Pre-compile time",
"Link time" and "Post-build time" are allowed in this variant. c(SRS_BSW_00399,
SRS_BSW_00400, SRS_Rte_00201, SRS_Rte_00204, SRS_Rte_00206,
SRS_Rte_00207, SRS_Rte_00229)

For details on the ECU Configuration approach please refer to the Specification of ECU
Configuration [5].

7.2 RTE Module Configuration

Figure 7.2 shows the module configuration of the Rte and its sub-containers.

609 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Software Component template
Rte :EcucModuleDef

upperMultiplicity = 1
lowerMultiplicity = 0

RteEventToTaskMapping :
EcucParamConfContainerDef

upperMultipl icity = *
lowerMultipl icity = 0

RteGeneration :
EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = 1

RteSwComponentInstance :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

AtpPrototype

SwComponentPrototype

RteExclusiveAreaImplementation :
EcucParamConfContainerDef

upperMultipl icity = *
lowerMultipl icity = 0

RteNvRamAllocation :
EcucParamConfContainerDef

upperMultipl icity = *
lowerMultipl icity = 0

RteSoftwareComponentInstanceRef :
EcucForeignReferenceDef

destinationType = SW-COMPONENT-PROTOTYPE
upperMultipl icity = 1
lowerMultipl icity = 0

RteSwComponentType :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

RteComponentTypeRef :
EcucForeignReferenceDef

destinationType = SW-COMPONENT-TYPE

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

RteOsInteraction :
EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = *

RtePostBuildVariantConfiguration :
EcucParamConfContainerDef

multipleConfigurationContainer = true

RteExternalTriggerConfig :
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = *

RteBypassSupportEnabled :
EcucBooleanParamDef

lowerMultipl icity = 0
upperMultipl icity = 1
defaultValue = false

RteInitial izationRunnableBatch :
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 0

+container
*

«isOfType»

+type 1
{redefines
atpType}

+reference

+container

+subContainer

+container

+subContainer

+container

+container

+reference

+subContainer

+subContainer

+parameter

+container

Figure 7.2: RTE configuration overview

Module Name Rte
Module Description Configuration of the Rte (Runtime Environment) module.
Included Containers
Container Name Multiplicity Scope / Dependency
RteBswGeneral 1 General configuration parameters of the Bsw

Scheduler section.
RteBswModuleInstance 0..* Represents one instance of a Bsw-Module configured

on one ECU.
RteGeneration 1 This container holds the parameters for the

configuration of the RTE Generation.
RteImplicitCommunication 0..* Configuration of the Implicit Communication behavior

to be generated.

610 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Container Name Multiplicity Scope / Dependency
RteInitializationBehavior 1..* Specifies the initialization strategy for variables

allocated by RTE with the purpose to implement
VariableDataPrototypes.

The container defines a set of
RteSectionInitializationPolicys and one
RteInitializationStrategy which is applicable for this set.

RteInitializationRunnable
Batch

0..* This container corresponds to an
Rte_Init_<shortName of this container> function
invoking the mapped RunnableEntities.

RteOsInteraction 1..* Interaction of the Rte with the Os.
RtePostBuildVariant
Configuration

1 Specifies the PostbuildVariantSets for each of the
PostBuild configurations of the RTE.

The shortName of this container defines the name of
the RtePostBuildVariant.

RteSerialized
Communication

0..1 This container collects all serialization functions that
are used by the RTE.

RteSwComponentInstance 0..* Representation of one SwComponentPrototype
located on the to be configured ECU. All subcontainer
configuration aspects are in relation to this
SwComponentPrototype.

The RteSwComponentInstance can be associated
with either a AtomicSwComponentType or
ParameterSwComponentType.

RteSwComponentType 0..* Representation of one SwComponentType for the
base of all configuration parameter which are affecting
the whole type and not a specific instance.

7.2.1 RTE Configuration Version Information

In order to identify the RTE Configuration version a dedicated RTE code has been
generated from the RTE Configuration information may contain one or more DOC-
REVISION elements in the ECUC-MODULE-CONFIGURATION-VALUES element of the
RTE Configuration (see example 7.1).

[SWS_Rte_05184] d The REVISION-LABEL shall be parsed according to the rules
defined in the Generic Structure Template [10] for RevisionLabelString allowing
to parse the three version informations for AUTOSAR:

• major version: first part of the REVISION-LABEL

• minor version: second part of the REVISION-LABEL

• patch version: third part of the REVISION-LABEL

• optional fourth part shall be used for documentation purposes in the Basic Soft-
ware Module Description (see section 3.4.3)

If the parsing fails all three version numbers shall be set to zero. c(SRS_Rte_00233)

611 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_05185] d If there are several DOC-REVISION elements in the input ECUC-
MODULE-CONFIGURATION-VALUES the newest according to the DATE shall be taken
into account.

If the search for the newest DOC-REVISION fails three version numbers shall be set to
zero. c(SRS_Rte_00233)

Example 7.1

<AUTOSAR xmlns="http://autosar.org/4.0.0" xmlns:xsi="http://www.w3.org
/2001/XMLSchema-instance" xsi:schemaLocation="http://autosar.org/4.0.0
AUTOSAR.xsd">

<AR-PACKAGES>
<AR-PACKAGE>

<SHORT-NAME>Rte_Example</SHORT-NAME>
<ELEMENTS>

<ECUC-MODULE-CONFIGURATION-VALUES>
<SHORT-NAME>Rte_Configuration</SHORT-NAME>
<ADMIN-DATA>

<DOC-REVISIONS>
<DOC-REVISION>

<REVISION-LABEL>2.1.34</REVISION-LABEL>
<DATE>2009-05-09T00:00:00.0Z</DATE>

</DOC-REVISION>
<DOC-REVISION>

<REVISION-LABEL>2.1.35</REVISION-LABEL>
<DATE>2009-06-21T09:30:00.0Z</DATE>

</DOC-REVISION>
</DOC-REVISIONS>

</ADMIN-DATA>
<DEFINITION-REF DEST="ECUC-MODULE-DEF">/AUTOSAR/Rte</DEFINITION-

REF>
<CONTAINERS>

<!-- ... -->
</CONTAINERS>

</ECUC-MODULE-CONFIGURATION-VALUES>
</ELEMENTS>

</AR-PACKAGE>
</AR-PACKAGES>

</AUTOSAR>

7.3 RTE Generation Parameters

The parameters in the container RteGeneration are used to configure the RTE gen-
erator. They all need to be defined during pre-compile time.

612 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

RteGenerationMode :
EcucEnumerationParamDef

defaultValue = COMPATIBILITY_MODE

COMPATIBILITY_MODE :
EcucEnumerationLiteralDef

VENDOR_MODE :EcucEnumerationLiteralDef

RteGeneration :
EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = 1

RteVfbTraceEnabled :EcucBooleanParamDef

defaultValue = false

RteVfbTraceFunction :EcucFunctionNameDef

upperMultipl icity = *
lowerMultipl icity = 0

RteMeasurementSupport :
EcucBooleanParamDef

defaultValue = false

RteCalibrationSupport :
EcucEnumerationParamDef

defaultValue = NONE

NONE :EcucEnumerationLiteralDef

SINGLE_POINTERED :EcucEnumerationLiteralDef

DOUBLE_POINTERED :EcucEnumerationLiteralDef

INITIALIZED_RAM :EcucEnumerationLiteralDef

RteOptimizationMode :
EcucEnumerationParamDef

defaultValue = RUNTIME

RUNTIME :EcucEnumerationLiteralDef

MEMORY :EcucEnumerationLiteralDef

RteVfbTraceClientPrefix :
EcucLinkerSymbolDef

upperMultiplicity = *
lowerMultiplicity = 0

RteValueRangeCheckEnabled :
EcucBooleanParamDef

defaultValue = false

RteToolChainSignificantCharacters :
EcucIntegerParamDef

defaultValue = 31
lowerMultiplicity = 0
upperMultiplicity = 1
min = 0
max = 65535

RteDevErrorDetect :EcucBooleanParamDef

defaultValue = false
RteDevErrorDetectUninit :
EcucBooleanParamDef

defaultValue = falseRteCodeVendorId :EcucIntegerParamDef

min = 0
max = 65535

RteIocInteractionReturnValue :
EcucEnumerationParamDef

defaultValue = RTE_IOC

RTE_IOC :EcucEnumerationLiteralDef

RTE_COM :EcucEnumerationLiteralDef

RteBypassSupport :EcucEnumerationParamDef

defaultValue = NONE

COMPONENT_WRAPPER :EcucEnumerationLiteralDef

NONE :EcucEnumerationLiteralDef

RteInExclusiveAreaCheckEnabled :
EcucBooleanParamDef

defaultValue = true

+parameter

+li teral

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+li teral

+parameter

+li teral

+parameter

+parameter

+literal

+l iteral

+li teral

+li teral

+li teral

+li teral

+l iteral

+l iteral

+li teral

+parameter

Figure 7.3: RTE generation parameters

613 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

RteGeneration

SWS Item [ECUC_Rte_09009]
Container Name RteGeneration
Description This container holds the parameters for the configuration of the RTE

Generation.
Configuration Parameters

Name RteBypassSupport {RTE_BYPASS_SUPPORT} [ECUC_Rte_09113]
Description General switch to enable and select the bypass support method.
Multiplicity 1
Type EcucEnumerationParamDef
Range COMPONENT_WRAPPE

R
NONE (default)

Configuration Class Pre-compile time X All Variants
Link time –
Post-build time –

Scope / Dependency scope: local

Name RteCalibrationSupport {RTE_CALIBRATION_SUPPORT}
[ECUC_Rte_09007]

Description The RTE generator shall have the option to switch off support for
calibration for generated RTE code. This option shall influence
complete RTE code at once.

Multiplicity 1
Type EcucEnumerationParamDef
Range DOUBLE_POINTERED

INITIALIZED_RAM
NONE (default)
SINGLE_POINTERED

Configuration Class Pre-compile time X All Variants
Link time –
Post-build time –

Scope / Dependency scope: local

Name RteCodeVendorId {RTE_CODE_VENDOR_ID} [ECUC_Rte_09086]
Description Holds the vendor ID of the generated Rte code.
Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 65535
Default Value
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

614 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Name RteDevErrorDetect {RTE_DEV_ERROR_DETECT}
[ECUC_Rte_09008]

Description The Rte shall log development errors to the Det module.
Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteDevErrorDetectUninit {RTE_DEV_ERROR_DETECT_UNINIT}
[ECUC_Rte_09085]

Description The Rte shall detect if it is started when its APIs are called, and the
BSW Scheduler shall check if it is initialized when its APIs are called.

Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local
dependency: Shall only be used when RteDevErrorDetect equals true.

Name RteGenerationMode {RTE_GENERATION_MODE}
[ECUC_Rte_09010]

Description Switch between the two available generation modes of the RTE
generator.

Multiplicity 1
Type EcucEnumerationParamDef
Range COMPATIBILITY_MODE (default)

VENDOR_MODE
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteInExclusiveAreaCheckEnabled [ECUC_Rte_09126]
Description Enables the check for RTE_E_IN_EXCLUSIVE_AREA (for blocking

APIs).
Multiplicity 1
Type EcucBooleanParamDef
Default Value true
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

615 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Name RteIocInteractionReturnValue {RTE_IOC_INTERACTION_RETURN_V
ALUE} [ECUC_Rte_09094]

Description Defines whether the return value of RTE APIs is based on RTE-IOC
interaction or RTE-COM interaction.

Multiplicity 1
Type EcucEnumerationParamDef
Range RTE_COM

RTE_IOC (default)
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteMeasurementSupport {RTE_MEASUREMENT_SUPPORT}
[ECUC_Rte_09011]

Description The RTE generator shall have the option to switch off support for
measurement for generated RTE code. This option shall influence
complete RTE code at once.

Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteOptimizationMode {RTE_OPTIMIZATION_MODE}
[ECUC_Rte_09012]

Description Switch between the two available optimization modes of the RTE
generator.

Multiplicity 1
Type EcucEnumerationParamDef
Range MEMORY

RUNTIME (default)
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteToolChainSignificantCharacters {RTE_TOOL_CHAIN_SIGNIFICAN
T_CHARACTERS} [ECUC_Rte_09013]

Description If present, the RTE generator shall provide the list of C RTE identifiers
whose name is not unique when only the first
RteToolChainSignificantCharacters characters are considered.

Multiplicity 0..1
Type EcucIntegerParamDef
Range 0 .. 65535
Default Value 31

616 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Configuration Class Pre-compile time X All Variants
Link time –
Post-build time –

Scope / Dependency scope: local

Name RteValueRangeCheckEnabled {RTE_VALUE_RANGE_CHECK_ENAB
LED} [ECUC_Rte_09014]

Description If set to true the RTE generator shall enable the value range checking
for the specified VariableDataPrototypes.

Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteVfbTraceClientPrefix [ECUC_Rte_09016]
Description Defines an additional prefix for all VFB trace functions to be generated.

With this approach it is possible to have debugging and DLT trace
functions at the same time.

Multiplicity 0..*
Type EcucLinkerSymbolDef
Default Value
Regular Expression
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteVfbTraceEnabled {RTE_VFB_TRACE_ENABLED}
[ECUC_Rte_09015]

Description The RTE generator shall globally enable VFB tracing when
RteVfbTrace is set to "true".

Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

617 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Name RteVfbTraceFunction [ECUC_Rte_09017]
Description The RTE generator shall enable VFB tracing for a given hook function

when there is a #define in the RTE configuration header file for the
hook function name and tracing is globally enabled. Example: #define
Rte_WriteHook_i1_p1_a_Start

This also applies to VFB trace functions with a
RteVfbTraceClientPrefix, e.g. Rte_Dbg_WriteHook_I1_P1_a_Start.

Multiplicity 0..*
Type EcucFunctionNameDef
Default Value
Regular Expression
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

No Included Containers

7.4 RTE PreBuild configuration

In order to support PreBuild configuration variation of the Rte input (see also sec-
tion 4.7) the container EcucVariationResolver is providing a set of references to
PredefinedVariant. These define values for SwSystemconst.

Note that the information for the EcucVariationResolver is provided in the EcuC
part of the ECU Configuration, since it does not only influence the Rte but also many
other BSW Modules.

618 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

GenericStructureTemplate

EcuC :EcucModuleDef

upperMultiplicity = 1
lowerMultiplicity = 0

(from EcuC)

EcucVariationResolver :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

ARElement

VariantHandling::
SwSystemconstantValueSet

PredefinedVariantRef :EcucForeignReferenceDef

destinationType = PREDEFINED-VARIANT
lowerMultipl icity = 1
upperMultipl icity = *

ARElement

VariantHandling::
PredefinedVariant

VariantHandling::SwSystemconstValue

«atpVariation»
+ value :Numerical

ARElement
AtpDefinition

SystemConstant::
SwSystemconst

+reference

+swSystemconstantValueSet 0..*

+includedVariant 0..*

+container

+swSystemconst 1

+swSystemconstantValue 0..*

Figure 7.4: RTE PreBuild configuration

EcucVariationResolver

SWS Item [ECUC_EcuC_00009]
Container Name EcucVariationResolver
Description Collection of PredefinedVariant elements containing definition of values

for SwSystemconst which shall be applied when resolving the
variability during ECU Configuration.

Configuration Parameters

Name PredefinedVariantRef [ECUC_EcuC_00010]
Description
Multiplicity 1..*
Type Foreign reference to PREDEFINED-VARIANT
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

No Included Containers

619 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

7.5 RTE PostBuild configuration

In order to support PostBuild configuration variation of the generated Rte (see also
section 4.7) the container RtePostBuildVariantConfiguration is used. Each
instance of this container specifies one PostBuild variant of the generated Rte. The
shortName of the container RtePostBuildVariantConfiguration specifies the
variant name.

The actual values for the PostBuildVariantCriterion are defined in a two step
approach:

1. The reference RtePostBuildUsedPredefinedVariant collects the Prede-
finedVariant elements.

2. Each PredefinedVariant element collects a set of PostBuildVari-
antCriterionValueSet.

3. Each PostBuildVariantCriterionValueSet defines the PostBuild-
VariantCriterionValues for a set of PostBuildVariantCriterion.

The basic idea is that

• the PostBuildVariantCriterionValueSet can be provided by sub-system
engineer,

• the PredefinedVariant can be designed by the Ecu integrator.

GenericStructureTemplate

ARElement
AtpDefinition

VariantHandling::
PostBuildVariantCriterion

RtePostBuildVariantConfiguration :
EcucParamConfContainerDef

multipleConfigurationContainer = true

ARElement

VariantHandling::
PostBuildVariantCriterionValueSet

VariantHandling::
PostBuildVariantCriterionValue

«atpVariation»
+ value :Integer

RtePostBuildUsedPredefinedVariant :
EcucForeignReferenceDef

destinationType = PREDEFINED-VARIANT
lowerMultiplicity = 1
upperMultiplicity = *

ARElement

VariantHandling::PredefinedVariant

+variantCriterion 1

+postBuildVariantCriterionValueSet 0..*

+includedVariant
0..*

+reference

+postBuildVariantCriterionValue 0..*

Figure 7.5: RTE PostBuild configuration

620 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

RtePostBuildVariantConfiguration

SWS Item [ECUC_Rte_09084]
Container Name RtePostBuildVariantConfiguration[Multi Config Container]
Description Specifies the PostbuildVariantSets for each of the PostBuild

configurations of the RTE.

The shortName of this container defines the name of the
RtePostBuildVariant.

Configuration Parameters

Name RtePostBuildUsedPredefinedVariant [ECUC_Rte_09083]
Description Reference to the PredefinedVariant element which defines the values

for PostBuildVariationCriterion elements.
Multiplicity 1..*
Type Foreign reference to PREDEFINED-VARIANT
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time –
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

No Included Containers

621 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

7.6 Handling of Software Component instances

When entities of Software-Components are to be configured there is the need to actu-
ally address the instances of the AtomicSwComponentType. Since the Ecu Extract
of System Description contains a flat view on the Ecu’s Software-Components [8] the
SwComponentPrototypes in the Ecu Extract already represent the instances of the
Software Components.

CompositionSwComponentType

AtpPrototype
Identifiable

RootSwCompositionPrototype

ARElement
AtpStructureElement

System

+ ecuExtractVersion :RevisionLabelString [0..1]
+ pncVectorLength :PositiveInteger [0..1]
+ pncVectorOffset :PositiveInteger [0..1]
+ systemVersion :RevisionLabelString

ServiceSwComponentType

AtomicSwComponentType

AtpPrototype

SwComponentPrototype

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

AtpBlueprintable
AtpPrototype

PortPrototype

AtpStructureElement

SwConnector

ARElement

EcucValueCollection

«atpVariation» Tags:
vh.latestBindingTime =
systemDesignTime

«atpVariation» Tags:
vh.latestBindingTime =
postBuild

«atpVariation» Tags:
vh.latestBindingTime =
preCompileTime

AssemblySwConnector

AbstractProvidedPortPrototype

AbstractRequiredPortPrototype

+connector *

«atpVariation,atpSplitable»

+ecuExtract 1

0..* «instanceRef»

+provider

0..1

0..* «instanceRef»

+requester
0..1

+component

0..*«atpVariation,atpSplitable»

*

«isOfType»

+type 1
{redefines
atpType}

+rootSoftwareComposition 0..1
«atpVariation»

«isOfType»

+softwareComposition

1
{redefines
atpType}

+port 0..*

«atpVariation,atpSplitable»

Figure 7.6: Services in the ECU Configuration

622 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

RteSwComponentInstance

SWS Item [ECUC_Rte_09005]
Container Name RteSwComponentInstance
Description Representation of one SwComponentPrototype located on the to be

configured ECU. All subcontainer configuration aspects are in relation
to this SwComponentPrototype.

The RteSwComponentInstance can be associated with either a
AtomicSwComponentType or ParameterSwComponentType.

Configuration Parameters

Name RteSoftwareComponentInstanceRef [ECUC_Rte_09004]
Description Reference to a SwComponentPrototype.
Multiplicity 0..1
Type Foreign reference to SW-COMPONENT-PROTOTYPE
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Included Containers
Container Name Multiplicity Scope / Depedency
RteEventToTaskMapping 0..* Maps an instance of a RunnableEntity onto one OsTask

based on the activating RTEEvent. In the case of a
RunnableEntity executed via a direct function call this
RteEventToTaskMapping is still specified but no
RteMappedToTask element is included. The
RtePositionInTask parameter is necessary to provide an
ordering of events invoked by the same RTE API.

RteExclusiveArea
Implementation

0..* Specifies the implementation to be used for the data
consistency of this ExclusiveArea.

RteExternalTriggerConfig 0..* Defines the configuration of External Trigger Event
Communication for Software Components

RteInternalTriggerConfig 0..* Defines the configuration of Inter Runnable Triggering
for Software Components

RteNvRamAllocation 0..* Specifies the relationship between the
AtomicSwComponentType’s NVRAMMapping / NVRAM
needs and the NvM module configuration.

The container RteSwComponentInstance collects all the configuration information
related to one specific instance of a AtomicSwComponentType. The individual as-
pects will be described in the next sections.

7.6.1 RTE Event to task mapping

One of the major fragments of the RTE configuration is the mapping of AUTOSAR
Software-Components’ RunnableEntitys to OS Tasks. The parameters defined to
achieve this are shown in figure 7.7.

623 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Software Component template

RteEventToTaskMapping :
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 0

RteEventRef :
EcucForeignReferenceDef

destinationType = RTE-EVENT

AtpStructureElement
ExecutableEntity

RunnableEntity

+ canBeInvokedConcurrently :Boolean
+ symbol :CIdentifier

RtePositionInTask :
EcucIntegerParamDef

upperMultiplicity = 1
lowerMultiplicity = 0
min = 0
max = 65535

OsTask :
EcucParamConfContainerDef

upperMultipl icity = *
lowerMultipl icity = 0

RteMappedToTaskRef :
EcucReferenceDef

upperMultiplicity = 1
lowerMultiplicity = 0

AbstractEvent
AtpStructureElement

RTEEvent

Identifiable

WaitPoint

+ timeout :TimeValue

RteUsedOsEventRef :
EcucReferenceDef

upperMultiplicity = 1
lowerMultiplicity = 0

OsEvent :
EcucParamConfContainerDef

upperMultipl icity = *
lowerMultipl icity = 0

RteActivationOffset :
EcucFloatParamDef

min = 0
max = INF
lowerMultiplicity = 0
upperMultiplicity = 1

RteSwComponentInstance :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

OsScheduleTableExpiryPoint :
EcucParamConfContainerDef

upperMultipl icity = *
lowerMultipl icity = 1

OsAlarm :
EcucParamConfContainerDef

upperMultipl icity = *
lowerMultipl icity = 0

RteVirtuallyMappedToTaskRef :
EcucReferenceDef

upperMultiplicity = 1
lowerMultiplicity = 0

RteUsedOsAlarmRef :
EcucReferenceDef

upperMultiplicity = 1
lowerMultiplicity = 0

RteUsedOsSchTblExpiryPointRef :
EcucReferenceDef

upperMultiplicity = 1
lowerMultiplicity = 0

RteOsSchedulePoint :
EcucEnumerationParamDef

lowerMultiplicity = 0
upperMultiplicity = 1

NONE :
EcucEnumerationLiteralDef

CONDITIONAL :
EcucEnumerationLiteralDef

UNCONDITIONAL :
EcucEnumerationLiteralDef

RteImmediateRestart :
EcucBooleanParamDef

defaultValue = false

RteInitializationRunnableBatch :
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 0

RteUsedInitFnc :EcucReferenceDef

upperMultiplicity = 1
lowerMultiplicity = 0

Os

+reference

+reference

+reference +destination

+literal

+li teral

+parameter

+reference

+destination+reference

+destination

+parameter

+destination

+destination

+literal

+startOnEvent 0..1

+parameter

+waitPoint *

+runnable

*

+trigger

1

+parameter

+reference +destination

+reference

+subContainer

Figure 7.7: RTE Event to task mapping

624 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

The mapping is based on the RTEEvent because it is the source of the activation.
For each RunnableEntity which belongs to an AUTOSAR Software-Component in-
stance mapped on the ECU there needs to be a mapping container specifying how this
RunnableEntity activation shall be handled.

[SWS_Rte_07843] d The RTE Generator shall reject configurations where the same
RTEEvent instance which can start a RunnableEntity is referenced by multiple task
mappings. c

One major constraint is posed by the canBeInvokedConcurrently attribute of each
RunnableEntity because data consistency issues have to be considered.

7.6.1.1 Evaluation and execution order

Another important parameter is the RtePositionInTask which provides an order
of RunnableEntitys within the associated OsTask. When the task is executed pe-
riodically the RtePositionInTask parameter defines the order of execution within
the test. When the task is used to define a context for event activated RunnableEn-
titys the RtePositionInTask parameter defines the order of evaluation which ac-
tual RunnableEntity shall be executed. Thus providing means to define a determin-
istic delay between the beginning of execution of the task and the actual execution of
the RunnableEntity’s code.

In case of triggered runnables, OnEntry ExecutableEntitys, OnTransi-
tion ExecutableEntitys, OnExit ExecutableEntitys, and mode switch
acknowledge ExecutableEntitys the RtePositionInTask parameter defines
the order of evaluation which actual RunnableEntity shall be executed. All other
parameters or references are not required.

7.6.1.2 Direct function call

[SWS_Rte_06798] d If the ExecutableEntity is a server ExecutableEntity,
triggered ExecutableEntity, OnEntry ExecutableEntity, OnTransi-
tion ExecutableEntity, OnExit ExecutableEntity, or a mode switch
acknowledge ExecutableEntity and shall be executed in the context of the caller
(i.e. using a direct function call) then the element RteEventToTaskMapping or
RteBswEventToTaskMapping still shall be provided to indicate that this RTEEvent
/ BswEvent has been considered in the mapping. c

In case of server ExecutableEntitys its not possible that several servers get
invoked by the same API call. Therefore no further parameters in the RteEvent-
ToTaskMapping or RteBswEventToTaskMapping associated to the RTEEvent
/ BswEvent are required to configure the direct function call for server Exe-
cutableEntitys.

625 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_06799] d For directly invoked server ExecutableEntitys no further
parameters or references are required (e.g. RteMappedToTaskRef can be left out).
c

In case of ExecutableEntitys which are not server ExecutableEntitys it is
possible that several ExecutableEntitys get invoked by the same API call when
direct function call configuration is used. Thereby the RteMappedToTaskRef / RteB-
swMappedToTaskRef is omitted. However the order of invocation needs to be config-
ured with the RtePositionInTask and RteBswPositionInTask parameters.

[SWS_Rte_06800] d For directly invoked triggered ExecutableEntity, OnEn-
try ExecutableEntity, OnTransition ExecutableEntity, OnExit Exe-
cutableEntity, or a mode switch acknowledge ExecutableEntity the
RtePositionInTask and RteBswPositionInTask parameter respectively is re-
quired to indicate the order of invocation. c

The invocation context for an ExecutableEntity can be either a task or a function
call. For ExecutableEntitys invoked from an OsTasks then [constr_9082] means
that all mapped ExecutableEntities must have unique values for the task to ensure
predictable generation of the task body. In the case of RTEEvents or BswEvents
invoked by direct invocation from an RTE-generated API function then [constr_9082]
means that all events invoked by the calling function must have unique values to ensure
predictable generation of the calling API.

[constr_9082] RtePositionInTask and RteBswPositionInTask values shall
be unique in a particular context d RtePositionInTask and RteBswPosition-
InTask shall have unique values for any particular task in the case RTEEvents
and BswEvents are mapped to OsTasks and shall have unique values for any par-
ticular scope of direct invocation in the case that the a direct function call is con-
figured. The only exception are RtePositionInTask values for RteEventTo-
TaskMappings mapping the OperationInvokedEvents for several operations
to the same server runnables. c

Concerning the mapping of several operations to the same server runnables
see [SWS_Rte_08001].

Example 7.2

BSW module BswA defines BswModuleEntity BswA_ProcessBigBang triggered
by BswExternalTriggerOccurredEvent Ev_BswA_ProcessBigBang

Software component SwcA defines RunnableEntity SwcA_Run_BigBang triggered
by ExternalTriggerOccurredEvent Ev_SwcA_Run_BigBang

Software component SwcB defines RunnableEntity SwcB_Run_BigBang triggered
by ExternalTriggerOccurredEvent Ev_SwcB_Run_BigBang

All required Triggers are connected to one common synchronized Trigger.

Scenario A

626 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

A configuration:

Ev_BswA_ProcessBigBang is mapped to OsTask T_BIG_BANG with RtePosi-
tionInTask = 1

Ev_SwcA_Run_BigBang is mapped to OsTask T_BIG_BANG with RtePosition-
InTask = 2

Ev_SwcB_Run_BigBang is mapped to OsTask T_BIG_BANG with RtePosition-
InTask = 3

results in Rte code where the ExecutableEntitys are called in the context of the
OsTask T_BIG_BANG in the order:

1. Ev_BswA_ProcessBigBang

2. Ev_SwcA_Run_BigBang

3. Ev_SwcB_Run_BigBang

In addition [constr_9082] is fulfilled even if the RtePositionInTask values 1, 2, 3 are
used for other RteEventToTaskMappings mapping to other OsTask or configuring
a direct function call.

Scenario B

A configuration:

Ev_BswA_ProcessBigBang is not mapped to any OsTask and RtePositionIn-
Task = 1

Ev_SwcA_Run_BigBang is not mapped to any OsTask and RtePositionInTask =
2

Ev_SwcB_Run_BigBang is not mapped to any OsTask and RtePositionInTask =

results in Rte code where the ExecutableEntitys are called in the context of the
issuing Trigger API, e.g SchM_Trigger which invokes the ExecutableEntitys in
the order:

1. Ev_BswA_ProcessBigBang

2. Ev_SwcA_Run_BigBang

3. Ev_SwcB_Run_BigBang

7.6.1.3 Schedule Points

In order to allow explicit calls to the Os scheduler in an non-preemptive scheduling
setup, the configuration element RteOsSchedulePoint shall be used.

627 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_05113] d The RTE Generator shall create an unconditional call to the
Os API Schedule after the execution call of the RunnableEntity if the RteOsS-
chedulePoint configuration parameter is set to UNCONDITIONAL. In the generated
code the call to the Os API Schedule shall always be performed, even when the
RunnableEntity itself has not been executed (called). c

Since the execution of a RunnableEntity may be performed (e.g. due to mode de-
pendent scheduling) the call of the Os API Schedule without any RunnableEntity
execution in between might occur. in order to prohibit such a call chain the CONDI-
TIONAL schedule point is available.

[SWS_Rte_05114] d The RTE Generator shall create a conditional call to the Os API
Schedule after the execution call of the RunnableEntity if the RteOsSchedule-
Point configuration parameter is set to CONDITIONAL. In the generated code the call
to the Os API Schedule shall be omitted when there was already a call to the Os API
Schedule before without any RunnableEntity execution in between. c

[SWS_Rte_07042] d The Os API Schedule according [SWS_Rte_05113] and
[SWS_Rte_05114] shall be called after the data written with implicit write access by
the RunnableEntity are propagated to other RunnableEntitys as specified in
[SWS_Rte_07021], [SWS_Rte_03957], [SWS_Rte_07041] and [SWS_Rte_03584] c

[SWS_Rte_07043] d The Os API Schedule according [SWS_Rte_05113] and
[SWS_Rte_05114] shall be called before the Preemption Area specific buffer used
for a implicit read access of the successor RunnableEntity are filled with actual data
by a copy action according [SWS_Rte_07020]. c

[SWS_Rte_05115] d The RTE Generator shall create no call to the Os API Schedule
after the execution of the RunnableEntity if the RteOsSchedulePoint configura-
tion parameter is not present or is set to NONE. c

[SWS_Rte_01373] d The RTE Generator shall support the independent setting
of RteOsSchedulePoint for RteEventToTaskMappings that map the same
RunnableEntity. c(SRS_Rte_00018)

7.6.1.4 Timeprotection support

[SWS_Rte_07801] d If RteMappedToTaskRef is configured but RteVirtual-
lyMappedToTaskRef is not configured, the RTE shall implement/evaluate the RTE-
Event that activates the RunnableEntity and execute the RunnableEntity in the
OsTask referenced by RteMappedToTaskRef. c

[SWS_Rte_07802] d If both RteMappedToTaskRef and RteVirtuallyMappedTo-
TaskRef are configured, the RTE shall implement/evaluate the RTEEvent that acti-
vates the RunnableEntity in the OsTask referenced by RteVirtuallyMapped-
ToTaskRef but execute the RunnableEntity in the OsTask referenced by
RteMappedToTaskRef. The RTE shall implement this by an activation of the OsTask

628 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

referenced by RteMappedToTaskRef when the RTEEvent is evaluated as "TRUE" in
the OsTask referenced by RteVirtuallyMappedToTaskRef. c(SRS_Rte_00193)

[SWS_Rte_07803] d The RTE shall reject the configuration if RteMappedTo-
TaskRef is not configured but RteVirtuallyMappedToTaskRef is configured.
c(SRS_Rte_00018)

7.6.1.5 Os Interaction

When an OsEvent is used to activate the OsTask the reference RteUsedOsEven-
tRef specifies which OsEvent is used.

When an OsAlarm is used to implement a TimingEvent or a BackgroundEvent
the reference RteUsedOsAlarmRef specifies which OsAlarm is used.

[SWS_Rte_07806] d If RteUsedOsAlarmRef is configured and RteEventRef refer-
ences a TimingEvent the RTE shall implement the TimingEvent with the OsAlarm
referenced by RteUsedOsAlarmRef. c(SRS_Rte_00232)

[SWS_Rte_07179] d If RteUsedOsAlarmRef is configured and RteEventRef ref-
erences a BackgroundEvent the RTE shall implement the BackgroundEvent with
the OsAlarm referenced by RteUsedOsAlarmRef. c

When an OsScheduleTableExpiryPoint is used to implement a TimingEvent or
a BackgroundEvent the reference RteUsedOsSchTblExpiryPointRef specifies
which OsScheduleTableExpiryPoint is used.

[SWS_Rte_07807] d If RteUsedOsSchTblExpiryPointRef is configured
and RteEventRef references a TimingEvent the RTE shall implement the
TimingEvent with the OsScheduleTableExpiryPoint referenced by RteUse-
dOsSchTblExpiryPointRef. c(SRS_Rte_00232)

[SWS_Rte_07180] d If RteUsedOsSchTblExpiryPointRef is configured and
RteEventRef references a BackgroundEvent the RTE shall implement the Back-
groundEvent with the OsScheduleTableExpiryPoint referenced by RteUse-
dOsSchTblExpiryPointRef. c

If neither RteUsedOsSchTblExpiryPointRef nor RteUsedOsAlarmRef are con-
figured and RteEventRef references a TimingEvent the RTE is free to imple-
ment the TimingEvent with the OsAlarm or OsScheduleTableExpiryPoint of
its choice.

[SWS_Rte_07808] d The RTE shall reject the configuration if both RteUsedOsAlarm-
Ref and RteUsedOsSchTblExpiryPointRef are configured. c(SRS_Rte_00018)

[SWS_Rte_07809] d The RTE shall reject the configuration if RteUsedOsAlarmRef or
RteUsedOsSchTblExpiryPointRef is configured and RteEventRef doesn’t ref-
erence a TimingEvent or a BackgroundEvent. c(SRS_Rte_00018)

629 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

7.6.1.6 Background activation

If neither RteUsedOsSchTblExpiryPointRef nor RteUsedOsAlarmRef is con-
figured and RteEventRef references a BackgroundEvent the RteMappedTo-
TaskRef has to reference the OsTask used for Background activation of RunnableEn-
tities and Basic Software Schedulable Entities on the related CPU core where the par-
tition of the software component is mapped.

The OsTask used for BackgroundEvent triggering has to have the lowest priority on
the core. There can only be one ’Background’ OsTask per CPU core.

[SWS_Rte_07181] d The RTE shall reject the configuration if

• RteEventRef references a BackgroundEvent and

• neither RteUsedOsAlarmRef nor RteUsedOsSchTblExpiryPointRef are
configured and

• if RteMappedToTaskRef reference an OsTask which has not the lowest priority
of the core.

c(SRS_Rte_00018)

7.6.1.7 Constraints

There are some constraints which do apply when actually mapping the RunnableEn-
tity to an OsTask:

[SWS_Rte_05082] d The following restrictions apply to RTEEvents which are used
to activate RunnableEntity. OsEvents that are used to wakeUpFromWaitPoint
shall not be included in the mapping. c

When a wakeUpFromWaitPoint is occurring the RunnableEntity resumes its ex-
ecution in the context of the originally activated OsTask.

[SWS_Rte_05083] d The RTE Generator shall reject configurations where a
RunnableEntity has its canBeInvokedConcurrently attribute set to false, and
this RunnableEntity is mapped to different tasks which can preempt each other. c

[SWS_Rte_07229] d To evaluate [SWS_Rte_05083] in case of triggered
runnables which are activated by a direct function call ([SWS_Rte_07214],
[SWS_Rte_07224] and [SWS_Rte_07554]) the OsTask (context of the caller) is
defined by the RunnableEntity’s containing the activating InternalTrigger-
ingPoint or ExternalTriggeringPoint. c(SRS_Rte_00162, SRS_Rte_00163,
SRS_Rte_00230)

[SWS_Rte_07155] d To evaluate [SWS_Rte_05083] in case of OnEntry Ex-
ecutableEntitys, OnTransition ExecutableEntitys, OnExit Exe-
cutableEntitys, and mode switch acknowledge ExecutableEntitys
which are activated by a direct function call the OsTask (context of the caller) is

630 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

defined by the RunnableEntity’s containing the activating ModeSwitchPoint.
c(SRS_Rte_00143, SRS_Rte_00144)

RteEventToTaskMapping

SWS Item [ECUC_Rte_09020]
Container Name RteEventToTaskMapping
Description Maps an instance of a RunnableEntity onto one OsTask based on the

activating RTEEvent. In the case of a RunnableEntity executed via a
direct function call this RteEventToTaskMapping is still specified but no
RteMappedToTask element is included. The RtePositionInTask
parameter is necessary to provide an ordering of events invoked by the
same RTE API.

Configuration Parameters

Name RteActivationOffset [ECUC_Rte_09018]
Description Activation offset in seconds.
Multiplicity 0..1
Type EcucFloatParamDef
Range 0 .. INF
Default Value
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteEventRef [ECUC_Rte_09019]
Description Reference to the description of the RTEEvent which is pointing to the

RunnableEntity being mapped. This allows a fine grained mapping of
RunnableEntites based on the activating RTEEvent.

Multiplicity 1
Type Foreign reference to RTE-EVENT
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteImmediateRestart [ECUC_Rte_09092]
Description When RteImmediateRestart is set to true the RunnableEntitiy shall be

immediately re-started after termination if it was activated by this
RTEEvent while it was already started.

This parameter shall not be set to true when the mapped RTEEvent
refers to a RunnableEntity which minimumStartInterval attribute is > 0.

Multiplicity 1
Type EcucBooleanParamDef
Default Value false

631 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Configuration Class Pre-compile time X All Variants
Link time –
Post-build time –

Scope / Dependency scope: local

Name RteMappedToTaskRef [ECUC_Rte_09021]
Description Reference to the OsTask the RunnableEntity activated by the

RteEventRef is mapped to.

If no reference to the OsTask is specified the RunnableEntity shall be
executed via a direct function call.

The fact that no reference to an OsTask is specified for a
RunnableEntity does not necessarily imply that every RTE generator
has to support the implementation of this RunnableEntity as a direct
function call. The standard set of use cases for direct function calls that
has to be supported by every RTE generator is explicitly stated as
requirements in this document. For further optimization RTE vendors
are free to support additional scenarios of direct function call
implementations that are not explicitly required in this document.

Multiplicity 0..1
Type Reference to OsTask
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteOsSchedulePoint [ECUC_Rte_09022]
Description Introduce a schedule point by explicitly calling Os Schedule service

after the execution of the ExecutableEntity. The Rte generator is
allowed to optimize several consecutive calls to Os schedule into one
single call if the ExecutableEntity executions in between have been
skipped.

The absence of this parameter is interpreted as "NONE".

It shall be considered an invalid configuration if the task is preemptable
and the value of this parameter is not set to "NONE" or the parameter
is absent.

Multiplicity 0..1
Type EcucEnumerationParamDef
Range CONDITIONAL A Schedule Point shall be introduced at

the end of the execution of this
ExecutableEntity. The Schedule Point
can be skipped if several Schedule
Points would be called without any
ExecutableEntity execution in between.

NONE No Schedule Point shall be introduced
at the end of the execution of this
ExecutableEntity.

632 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

UNCONDITIONAL A Schedule Point shall always be
introduced at the end of the execution
of this ExecutableEntity.

Configuration Class Pre-compile time X All Variants
Link time –
Post-build time –

Scope / Dependency scope: local

Name RtePositionInTask [ECUC_Rte_09023]
Description Each RunnableEntity mapped to an OsTask has a specific position

within the task execution. For periodic activation this is the order of
execution. For event driver activation this is the order of evaluation
which actual RunnableEntity has to be executed. In case of direct
function calls this parameter is necessary to provide an ordering of
events when several ExecutableEntities are invoked by the same RTE
API.

Multiplicity 0..1
Type EcucIntegerParamDef
Range 0 .. 65535
Default Value
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteUsedInitFnc [ECUC_Rte_09116]
Description The RunnableEntity is executed during initialization in the context of

the Rte_Init_<InitContainer> function.
Multiplicity 0..1
Type Reference to RteInitializationRunnableBatch
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteUsedOsAlarmRef [ECUC_Rte_09024]
Description If an OsAlarm is used to activate the OsTask this RteEvent is mapped

to it shall be referenced here.
Multiplicity 0..1
Type Reference to OsAlarm
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

633 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Name RteUsedOsEventRef [ECUC_Rte_09025]
Description If an OsEvent is used to activate the OsTask this RteEvent is mapped

to it shall be referenced here.
Multiplicity 0..1
Type Reference to OsEvent
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteUsedOsSchTblExpiryPointRef [ECUC_Rte_09026]
Description If an OsScheduleTableExpiryPoint is used to activate the OsTask this

RteEvent is mapped to it shall be referenced here.
Multiplicity 0..1
Type Reference to OsScheduleTableExpiryPoint
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteVirtuallyMappedToTaskRef [ECUC_Rte_09027]
Description Optional reference to an OsTask where the activation of this RteEvent

shall be evaluated. The actual execution of the Runnable Entity shall
happen in the OsTask referenced by RteMappedToTaskRef.

Multiplicity 0..1
Type Reference to OsTask
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

No Included Containers

7.6.2 Rte Os Interaction

This section contains configuration items which are closely related to the interaction of
the Rte with the Os.

RteOsInteraction :
EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = *

RteUsedOsActivation :
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 0

RteModeToScheduleTableMapping :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

+subContainer

+subContainer

Figure 7.8: Specification of the Rte/Os Interaction

634 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

7.6.2.1 Activation using Os features

This is a collection of possible ways how the Rte might utilize Os to achieve various ac-
tivation scenarios. The used Os objects are referenced in these configuration entities.

RteOsInteraction :
EcucParamConfContainerDef

lowerMultipl icity = 1
upperMultipl icity = *

RteUsedOsActivation :
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 0

RteExpectedActivationOffset :
EcucFloatParamDef

min = 0
max = INF
lowerMultiplicity = 1
upperMultiplicity = 1

RteExpectedTickDuration :
EcucFloatParamDef

min = 0
max = INF
lowerMultipl icity = 1
upperMultipl icity = 1

OsScheduleTable :
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 0

(from OS)

OsAlarm :
EcucParamConfContainerDef

upperMultipl icity = *
lowerMultipl icity = 0

(from OS)

RteActivationOsAlarmRef :
EcucReferenceDef

upperMultipl icity = 1
lowerMultipl icity = 0

RteActivationOsSchTblRef :
EcucReferenceDef

upperMultipl icity = 1
lowerMultipl icity = 0

OsTask :
EcucParamConfContainerDef

upperMultipl icity = *
lowerMultipl icity = 0

(from OS)

RteActivationOsTaskRef :
EcucReferenceDef

upperMultipl icity = 1
lowerMultipl icity = 0

+destination+reference

+parameter

+destination+reference

+destination+reference

+subContainer

+parameter

Figure 7.9: Configuration how activation is implemented

RteUsedOsActivation

SWS Item [ECUC_Rte_09060]
Container Name RteUsedOsActivation
Description Attributes used in the activation of OsTasks and Runnable Entities.
Configuration Parameters

635 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Name RteActivationOsAlarmRef [ECUC_Rte_09045]
Description Reference to an OsAlarm.
Multiplicity 0..1
Type Reference to OsAlarm
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteActivationOsSchTblRef [ECUC_Rte_09046]
Description Reference to an OsScheduleTable.
Multiplicity 0..1
Type Reference to OsScheduleTable
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteActivationOsTaskRef [ECUC_Rte_09047]
Description Reference to an OsTask.
Multiplicity 0..1
Type Reference to OsTask
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteExpectedActivationOffset [ECUC_Rte_09048]
Description Activation offset in seconds.

Important: This is a requirement from the Rte towards the Os/Mcu
setup. The Rte Generator shall assume this activation offset to be
fulfilled.

Multiplicity 1
Type EcucFloatParamDef
Range 0 .. INF
Default Value
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

636 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Name RteExpectedTickDuration [ECUC_Rte_09049]
Description The expected tick duration in seconds which shall be configured to

drive the OsScheduleTables or OsAlarm.

Important: This is a requirement from the Rte towards the Os/Mcu
setup. The Rte Generator shall assume this tick duration to be fulfilled.

Multiplicity 1
Type EcucFloatParamDef
Range 0 .. INF
Default Value
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

No Included Containers

7.6.2.2 Modes and Schedule Tables

Optional configuration of the Rte to support the mapping of modes and Os’ schedule
tables.

[SWS_Rte_05146] d The referenced schedule table of RteModeScheduleTableRef
shall be activated if one of the modes referenced in RteModeSchtblMapModeDec-
larationRef is active in the mode machine instances from the references of

• RteModeSchtblMapSwc or

• RteModeSchtblMapBsw.

c

637 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

SW-Component- and BswModule-Template

RteOsInteraction :
EcucParamConfContainerDef

lowerMultipl icity = 1
upperMultipl icity = *

RteModeToScheduleTableMapping
:EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

OsScheduleTable :
EcucParamConfContainerDef

upperMultipl icity = *
lowerMultipl icity = 0

(from OS)

RteModeScheduleTableRef :
EcucReferenceDef

upperMultiplicity = 1
lowerMultiplicity = 1

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

ModeDeclaration::
ModeDeclarationGroup

AtpStructureElement
Identifiable

ModeDeclaration::
ModeDeclaration

+ value :PositiveInteger [0..1]

AtpPrototype

ModeDeclaration::
ModeDeclarationGroupPrototype

PortInterface::ModeSwitchInterface

AbstractProvidedPortPrototype

Components::PPortPrototype

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

PortInterface::PortInterface

RteModeSchtblMapSwc :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

RteModeSchtblMapSwcPortRef :EcucForeignReferenceDef

destinationType = ABSTRACT-PROVIDED-PORT-PROTOTYPE

RteModeSchtblMapBsw :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

RteModeSchtblMapModeDeclarationRef :
EcucForeignReferenceDef

lowerMultiplicity = 1
upperMultiplicity = *
destinationType = MODE-DECLARATION

RteBswModuleInstance :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

(from RTE)

RteModeSchtblMapSwcInstanceRef :
EcucReferenceDef

RteSwComponentInstance :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

(from RTE)

RteModeSchtblMapBswInstanceRef :
EcucReferenceDef

RteModeSchtblMapBswProvidedModeGroupRef :
EcucForeignReferenceDef

lowerMultiplicity = 1
upperMultiplicity = 1
destinationType = MODE-DECLARATION-GROUP-PROTOTYPE

+subContainer

+reference

+initialMode

1

+modeDeclaration

1..* «atpVariation»

+subContainer

+reference

+pPort

*«isOfType»

+providedInterface

1
{redefines atpType}

+reference

+destination

+reference

+destination

+subContainer

+reference

+modeGroup

1

+interface

1

«isOfType»

+type

1
{redefines
atpType}

+reference

+destination

Figure 7.10: Configuration how modes are interacting with schedule tables

638 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_02759] d RTE shall reject a configuration, if the RteModeSchtblMapSwc-
PortRef : EcucForeignReferenceDef does not reference a PPortPrototype or
PRPortPrototype of the type of an ModeSwitchInterface. c

[SWS_Rte_02760] d RTE shall reject a configuration, if the ModeDeclara-
tionGroupPrototype referenced by a RteModeSchtblMapBswProvidedMode-
GroupRef:EcucForeignReferenceDef is not in the role of a providedMode-
Group. c

RteModeToScheduleTableMapping

SWS Item [ECUC_Rte_09058]
Container Name RteModeToScheduleTableMapping
Description Provides configuration input in which Modes of a

ModeDeclarionGroupPrototype of a Mode Manager a
OsScheudleTable shall be active. The Mode Manager is either
specified as a SwComponentPrototype (RteModeSchtblMapSwc) or as
a BSW-Module (RteModeSchtblMapBsw).

Configuration Parameters

Name RteModeScheduleTableRef [ECUC_Rte_09050]
Description Reference to the OsScheduleTable which shall be active in the

specified RteModeSchblMapModeDeclarationRefs.
Multiplicity 1
Type Reference to OsScheduleTable
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteModeSchtblMapModeDeclarationRef [ECUC_Rte_09054]
Description Reference to the ModeDeclarations.
Multiplicity 1..*
Type Foreign reference to MODE-DECLARATION
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Included Containers
Container Name Multiplicity Scope / Depedency
RteModeSchtblMapBsw 0..1 Specifies an instance of a

ModeDeclarationGroupPrototype of a Bsw-Module.
RteModeSchtblMapSwc 0..1 Specifies an instance of a

ModeDeclarationGroupPrototype of a
SwComponentPrototype.

639 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

RteModeSchtblMapSwc

SWS Item [ECUC_Rte_09055]
Container Name RteModeSchtblMapSwc
Description Specifies an instance of a ModeDeclarationGroupPrototype of a

SwComponentPrototype.
Configuration Parameters

Name RteModeSchtblMapSwcInstanceRef [ECUC_Rte_09056]
Description Reference to an instance specification of a SwComponentPrototype.
Multiplicity 1
Type Reference to RteSwComponentInstance
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteModeSchtblMapSwcPortRef [ECUC_Rte_09057]
Description Reference to the PPortPrototype of a SwComponentPrototype.
Multiplicity 1
Type Foreign reference to ABSTRACT-PROVIDED-PORT-PROTOTYPE
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

No Included Containers

RteModeSchtblMapBsw

SWS Item [ECUC_Rte_09051]
Container Name RteModeSchtblMapBsw
Description Specifies an instance of a ModeDeclarationGroupPrototype of a

Bsw-Module.
Configuration Parameters

Name RteModeSchtblMapBswInstanceRef [ECUC_Rte_09052]
Description Reference to an instance specification of a Bsw-Module.
Multiplicity 1
Type Reference to RteBswModuleInstance
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

640 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Name RteModeSchtblMapBswProvidedModeGroupRef [ECUC_Rte_09053]
Description Reference to an instance of a ModeDeclarationGroupPrototype of a

Bsw-Module.
Multiplicity 1
Type Foreign reference to MODE-DECLARATION-GROUP-PROTOTYPE
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

No Included Containers

7.6.3 Exclusive Area implementation

The RTE Generator can be configured to implement a different data consistency mech-
anism for each ExclusiveArea defined for an AUTOSAR software-component.

In figure 7.11 the configuration of the actually selected data consistency mechanism is
shown.

[constr_3510] Exclude usage of OS_SPINLOCK in RteExclusiveAreaImple-
mentation d The usage of the enumeration literal OS_SPINLOCK for the parame-
ter RteExclusiveAreaImplMechanism shall be excluded if the parameter RteEx-
clusiveAreaImplMechanism is used in the context of the container RteExclu-
siveAreaImplementation. c

641 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Os

Software Component template

RteSwComponentInstance :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

(from RTE)

AtpPrototype

Composition::
SwComponentPrototype

RteExclusiveAreaImplementation :
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 0

Identifiable

InternalBehavior::ExclusiveArea

SwcInternalBehavior::SwcInternalBehavior

+ handleTerminationAndRestart :HandleTerminationAndRestartEnum
+ supportsMultipleInstantiation :Boolean

RteExclusiveAreaImplMechanism :
EcucEnumerationParamDef

ALL_INTERRUPT_BLOCKING :
EcucEnumerationLiteralDef

OS_RESOURCE :EcucEnumerationLiteralDef

COOPERATIVE_RUNNABLE_PLACEMENT :
EcucEnumerationLiteralDef

RteExclusiveAreaRef :
EcucForeignReferenceDef

destinationType = EXCLUSIVE-AREA

OsResource :
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 0

(from OS)

RteExclusiveAreaOsResourceRef :
EcucReferenceDef

lowerMultipl icity = 0
upperMultipl icity = 1

RteSoftwareComponentInstanceRef :
EcucForeignReferenceDef

destinationType = SW-COMPONENT-PROTOTYPE
upperMultiplicity = 1
lowerMultiplicity = 0

(from RTE)

OS_INTERRUPT_BLOCKING :
EcucEnumerationLiteralDef

AtpStructureElement

InternalBehavior::
InternalBehavior

Components::
AtomicSwComponentType

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

Components::
SwComponentType

OS_SPINLOCK :EcucEnumerationLiteralDef

* «isOfType»

+type

1
{redefines atpType}

+subContainer

+li teral

+parameter

+li teral

+reference

+reference

+literal

«atpVariation,atpSplitable»

+internalBehavior 0..1

+li teral

+reference +destination

«atpVariation»

+exclusiveArea

0..*

+li teral

Figure 7.11: Configuration of the ExclusiveArea implementation

642 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

RteExclusiveAreaImplementation

SWS Item [ECUC_Rte_09030]
Container Name RteExclusiveAreaImplementation
Description Specifies the implementation to be used for the data consistency of this

ExclusiveArea.
Configuration Parameters

Name RteExclusiveAreaImplMechanism [ECUC_Rte_09029]
Description To be used implementation mechanism for the specified ExclusiveArea.
Multiplicity 1
Type EcucEnumerationParamDef
Range ALL_INTERRUPT_BLOC

KING
COOPERATIVE_RUNNA
BLE_PLACEMENT
OS_INTERRUPT_BLOCKI
NG
OS_RESOURCE
OS_SPINLOCK

Configuration Class Pre-compile time X All Variants
Link time –
Post-build time –

Scope / Dependency scope: local

Name RteExclusiveAreaOsResourceRef [ECUC_Rte_09031]
Description Optional reference to an OsResource in case

RteExclusiveAreaImplMechanism is configured to OS_RESOURCE for
this ExclusiveArea.

Multiplicity 0..1
Type Reference to OsResource
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteExclusiveAreaRef [ECUC_Rte_09032]
Description Reference to the ExclusiveArea.
Multiplicity 1
Type Foreign reference to EXCLUSIVE-AREA
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

No Included Containers

643 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

7.6.4 NVRam Allocation

The configuration of the NVRam access does involve several templates, because it
closes the gap between the AUTOSAR software-components, the NVRAM Manager
Services and the BSW Modules.

In figure 7.12 the related information from the AUTOSAR Software Component Tem-
plate is shown.

Software Component template

InternalBehavior

SwcInternalBehavior::SwcInternalBehavior

+ handleTerminationAndRestart :HandleTerminationAndRestartEnum
+ supportsMultipleInstantiation :Boolean

AutosarDataPrototype

DataPrototypes::
ParameterDataPrototype

AtpStructureElement
Identifiable

PerInstanceMemory::
PerInstanceMemory

+ initValue :String [0..1]
+ type :CIdentifier
+ typeDefinition :String

ServiceNeeds::NvBlockNeeds

Identifiable

ServiceNeeds::ServiceNeeds

AtpStructureElement
Identifiable

ServiceDependency

ServiceMapping::
SwcServiceDependency

ServiceNeeds::RoleBasedDataAssignment

+ role :Identifier

AutosarDataPrototype

DataPrototypes::
VariableDataPrototype

DataElements::
AutosarVariableRef

DataElements::
AutosarParameterRef

{XOR
role of owning
RoleBasedDataAssignement shall be
ramBlock}

{role of owning
RoleBasedDataAssignement
shall be defaultValue}

AtpPrototype

DataPrototypes::
DataPrototype

«atpVariation,aptSplitable»

+serviceDependency

0..*

+perInstanceMemory *

«atpVariation»

+arTypedPerInstanceMemory *

«atpVariation»

+perInstanceParameter *

«atpVariation,atpSplitable»

«atpVariation»
+assignedData 0..*

+usedParameterElement 0..1

«instanceRef»

+autosarParameter

0..1

+localVariable

0..1

+serviceNeeds

1

+usedDataElement 0..1

+localParameter

0..1

+usedPim

0..1

Figure 7.12: software-component information of NVRam Service needs

In figure 7.13 the ECU Configuration part of the NVRam allocation is shown. It re-
lates the software-components’ SwcServiceDependency and NvBlockNeeds infor-
mation with the NVRam Managers NvMBlockDescriptor and the linker symbols of
the RAM and ROM sections to be used.

644 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Software Component template

RteNvRamAllocation :
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 0

NvMBlockDescriptor :
EcucParamConfContainerDef

upperMultipl icity = 65536
lowerMultipl icity = 1

RteNvmBlockRef :
EcucSymbolicNameReferenceDef

RteSwNvRamMappingRef :EcucForeignReferenceDef

destinationType = SWC-SERVICE-DEPENDENCY

RteNvmRamBlockLocationSymbol :
EcucLinkerSymbolDef

upperMultiplicity = 1
lowerMultiplicity = 0

RteNvmRomBlockLocationSymbol :
EcucLinkerSymbolDef

upperMultipl icity = 1
lowerMultipl icity = 0

NvMRamBlockDataAddress :
EcucStringParamDef

lowerMultipl icity = 0
upperMultipl icity = 1

NvMRomBlockDataAddress :
EcucStringParamDef

lowerMultipl icity = 0
upperMultipl icity = 1

AtpStructureElement
Identifiable

PerInstanceMemory

+ initValue :String [0..1]
+ type :CIdentifier
+ typeDefinition :String

RoleBasedDataAssignment

+ role :Identifier

AtpStructureElement
Identifiable

ServiceDependency

SwcServiceDependency

AutosarDataPrototype

ParameterDataPrototype

AutosarDataPrototype

VariableDataPrototype

NvBlockNeeds

Identifiable

ServiceNeeds

AutosarParameterRef

AutosarVariableRef

{XOR
role of owning
RoleBasedDataAssignement
shall be ramBlock}

{role of owning
RoleBasedDataAssignement shall be
defaultValue}

+reference

+usedDataElement

0..1

+usedPim 0..1

+usedParameterElement

0..1

+parameter

+parameter 0..1

+destination

+reference

+localVariable

0..1

+parameter

+parameter 0..1

«atpVariation»+assignedData 0..*

+serviceNeeds

1

Figure 7.13: ECU Configuration of the NVRam Service

645 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

RteNvRamAllocation

SWS Item [ECUC_Rte_09040]
Container Name RteNvRamAllocation
Description Specifies the relationship between the AtomicSwComponentType’s

NVRAMMapping / NVRAM needs and the NvM module configuration.
Configuration Parameters

Name RteNvmBlockRef [ECUC_Rte_09041]
Description Reference to the used NvM block for storage of the NVRAMMapping

information.
Multiplicity 1
Type Symbolic name reference to NvMBlockDescriptor
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteNvmRamBlockLocationSymbol [ECUC_Rte_09042]
Description This is the name of the linker object name where the NVRam Block will

be mirrored by the Nvm. This symbol will be resolved into the
parameter "NvmRamBlockDataAddress" from the
"NvmBlockDescriptor".

Multiplicity 0..1
Type EcucLinkerSymbolDef
Default Value
Regular Expression
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteNvmRomBlockLocationSymbol [ECUC_Rte_09043]
Description This is the name of the linker object name where the NVRom Block will

be accessed by the Nvm. This symbol will be resolved into the
parameter "NvmRomBlockDataAddress" from the
"NvmBlockDescriptor".

Multiplicity 0..1
Type EcucLinkerSymbolDef
Default Value
Regular Expression
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

646 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Name RteSwNvRamMappingRef [ECUC_Rte_09044]
Description Reference to the SwSeriveDependency which is used to specify the

NvBlockNeeds.
Multiplicity 1
Type Foreign reference to SWC-SERVICE-DEPENDENCY
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

No Included Containers

7.6.5 SWC Trigger queuing

This configuration determine the size of the queue queuing the issued triggers.

The RteExternalTriggerConfig container and RteInternalTriggerConfig
container is defined in the context of the RteSwComponentInstance which already
predefines the context of the Trigger / InternalTriggeringPoint.

[constr_9005] The references RteSwcTriggerSourceRef has to be consis-
tent with the RteSoftwareComponentInstanceRef d The references RteSwc-
TriggerSourceRef has to be consistent with the RteSoftwareComponentIn-
stanceRef. This means the referenced Trigger / InternalTriggeringPoint
has to belong to the AtomicSwComponentType which is referenced by the related
SwComponentPrototype. c

647 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

From SWC-T

RteExternalTriggerConfig :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

RteSwComponentInstance :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

(from RTE)

RteSwcTriggerSourceRef :EcucInstanceReferenceDef

destinationType = TRIGGER
upperMultipl icity = 1
lowerMultipl icity = 1
destinationContext = ABSTRACT-PROVIDED-PORT-PROTOTYPE

AtpBlueprintable
AtpPrototype

Components::PortPrototype

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

Components::SwComponentType

AtpStructureElement
Identifiable

TriggerDeclaration::Trigger

+ swImplPolicy :SwImplPolicyEnum [0..1]

PortInterface::TriggerInterface

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

PortInterface::PortInterface

Components::PPortPrototype

RteTriggerSourceQueueLength :
EcucIntegerParamDef

defaultValue = 0
lowerMultipl icity = 1
upperMultipl icity = 1
min = 0
max = 4294967295

AtpStructureElement
Identifiable

Trigger::InternalTriggeringPoint

+ swImplPolicy :SwImplPolicyEnum [0..1]

RteInternalTriggerConfig :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

RteSwcTriggerSourceRef :EcucForeignReferenceDef

destinationType = INTERNAL-TRIGGERING-POINT
upperMultipl icity = 1
lowerMultipl icity = 1

RteTriggerSourceQueueLength :
EcucIntegerParamDef

defaultValue = 0
lowerMultipl icity = 1
upperMultipl icity = 1
min = 0
max = 4294967295

Components::
AtomicSwComponentType

InternalBehavior

SwcInternalBehavior::
SwcInternalBehavior

AtpStructureElement
ExecutableEntity

SwcInternalBehavior::
RunnableEntity

Components::
AbstractProvidedPortPrototype

+reference

+runnable 1..*

«atpVariation,atpSplitable»

+pPort *

«isOfType»

+providedInterface
1
{redefines atpType}

+subContainer

+internalTriggeringPoint 0..*
«atpVariation»

+parameter

+trigger 1..*

+port

0..* «atpVariation,atpSplitable»

+component

«atpVariation,atpSplitable»

+internalBehavior 0..1

+reference

+parameter

+subContainer

Figure 7.14: Configuration of SWC Trigger queuing

648 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

RteExternalTriggerConfig

SWS Item [ECUC_Rte_09105]
Container Name RteExternalTriggerConfig
Description Defines the configuration of External Trigger Event Communication for

Software Components
Configuration Parameters

Name RteSwcTriggerSourceRef [ECUC_Rte_09106]
Description Reference to a Trigger instance in the pPortPrototype of the related

component instance.

The referenced Trigger instance has to belong to the same software
component instance as the RteSwComponentInstance owning this
parameter configures.

Multiplicity 1
Type Instance reference to TRIGGER context: ABSTRACT-PROVIDED-PO

RT-PROTOTYPE
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteTriggerSourceQueueLength [ECUC_Rte_09095]
Description Length of trigger queue on the trigger source side.

The queue is implemented by the RTE. A value greater or equal to 1
requests an queued behavior. Setting the value of
RteTriggerSourceQueueLength to 0 requests an none queued
implementation of the trigger communication.

If there is no RteTriggerSourceQueueLength configured for a Trigger
Emitter the default value of 0 applies as well.

Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 4294967295
Default Value 0
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

No Included Containers

649 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

RteInternalTriggerConfig

SWS Item [ECUC_Rte_09096]
Container Name RteInternalTriggerConfig
Description Defines the configuration of Inter Runnable Triggering for Software

Components
Configuration Parameters

Name RteSwcTriggerSourceRef [ECUC_Rte_09097]
Description Reference to an InternalTriggeringPoint of the related component

instance.

The referenced InternalTriggeringPoint has to belong to the same
software component instance as the RteSwComponentInstance
owning this parameter configures.

Multiplicity 1
Type Foreign reference to INTERNAL-TRIGGERING-POINT
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteTriggerSourceQueueLength [ECUC_Rte_09098]
Description Length of trigger queue on the trigger source side.

The queue is implemented by the RTE. A value greater or equal to 1
requests an queued behavior. Setting the value of
RteTriggerSourceQueueLength to 0 requests an none queued
implementation of the trigger communication.

If there is no RteTriggerSourceQueueLength configured for a Trigger
Emitter the default value of 0 applies as well.

Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 4294967295
Default Value 0
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

No Included Containers

650 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

7.7 Handling of Software Component types

7.7.1 Selection of Software-Component Implementation

During the system development there is no need to select the actual implementation
which will be later integrated on one ECU. Therefore the ECU Extract of System De-
scription may not specify the SwcImplementation information yet.

For RTE Generation the information about the to be used SwcImplementation
for each SwComponentType needs be provided to the RTE Generator (regardless
whether the information is from the Ecu Extract or the Ecu Configuration.

The mapping of SwcImplementation to SwComponentType is done in the Ecu Con-
figuration of the Rte using the two references RteComponentTypeRef and RteIm-
plementationRef (see figure 7.15). For the mapping in the Ecu Extract please refer
to the Specification of the System Template [8].

SWComponentTemplate

AtomicSwComponentType

InternalBehavior

SwcInternalBehavior

+ handleTerminationAndRestart :HandleTerminationAndRestartEnum
+ supportsMultipleInstantiation :Boolean

RteImplementationRef :
EcucForeignReferenceDef

destinationType = SWC-IMPLEMENTATION
upperMultipl icity = 1
lowerMultipl icity = 0

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

Implementation

SwcImplementation

+ requiredRTEVendor :String [0..1]

RteSwComponentType :
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = *

RteComponentTypeRef :
EcucForeignReferenceDef

destinationType = SW-COMPONENT-TYPE

+reference

*

+behavior 1

«atpVariation,atpSplitable»

+internalBehavior

0..1

+reference

Figure 7.15: Selection of the Implementation for an AtomicSwComponentType

RteSwComponentType

SWS Item [ECUC_Rte_09006]
Container Name RteSwComponentType
Description Representation of one SwComponentType for the base of all

configuration parameter which are affecting the whole type and not a
specific instance.

Configuration Parameters

Name RteBypassSupportEnabled [ECUC_Rte_09114]
Description Individual switch to enable the bypass support for this software

component type.
Multiplicity 0..1
Type EcucBooleanParamDef
Default Value false

651 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Configuration Class Pre-compile time X All Variants
Link time –
Post-build time –

Scope / Dependency scope: local

Name RteComponentTypeRef [ECUC_Rte_09003]
Description Reference to either AtomicSwComponentType or

ParameterSwComponentType.
Multiplicity 1
Type Foreign reference to SW-COMPONENT-TYPE
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteImplementationRef [ECUC_Rte_09028]
Description The Implementation which shall be assigned to the

SwComponentType.
Multiplicity 0..1
Type Foreign reference to SWC-IMPLEMENTATION
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Included Containers
Container Name Multiplicity Scope / Depedency
RteComponentType
Calibration

0..1 Specifies for each ParameterSwComponentType or
AtomicSwComponentType whether calibration is
enabled. If references to SwAddrMethod are provided in
RteCalibrationSwAddrMethodRef only
ParameterDataPrototypes with the referenced
SwAddrMethod shall have software calibration support
enabled.

7.7.2 Component Type Calibration

In the AUTOSAR Software Component Template two places may provide calibration
data: the ParameterSwComponentType and the AtomicSwComponentType (or
more precisely the subclasses of AtomicSwComponentType). Whether the calibra-
tion is enabled for a specific SwComponentType can be configured as shown in fig-
ure 7.16.

652 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Software Component template

RteCalibrationSupportEnabled :
EcucBooleanParamDef

RteComponentTypeCalibration :
EcucParamConfContainerDef

upperMultiplicity = 1
lowerMultiplicity = 0

RteComponentTypeRef :
EcucForeignReferenceDef

destinationType = SW-COMPONENT-TYPE

ParameterSwComponentTypeAtomicSwComponentType

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

RteSwComponentType :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

ARElement
AtpBlueprint

AtpBlueprintable

SwAddrMethod

IsSyscond

«atpVariation»
SwDataDefProps

RteCalibrationSwAddrMethodRef :
EcucForeignReferenceDef

lowerMultipl icity = 0
upperMultipl icity = *
destinationType = SW-ADDR-METHOD

+swAddrMethod 0..1

+reference

+parameter

+reference

+subContainer

Figure 7.16: Configuration of the calibration for the ParameterSwComponentType

The foreign reference RteComponentTypeRef identifies the SwComponentType
(which is limited to ParameterSwComponentType and AtomicSwComponentType).
The boolean parameter RteCalibrationSupportEnabled specifies whether cali-
bration shall be enabled for the specified SwComponentType.

[SWS_Rte_05145] d For a ParameterDataPrototype of the referenced SwCompo-
nentType software calibration support shall be enabled if the parameter RteCali-
brationSupportEnabled is set to true and in the corresponding container Rte-
ComponentTypeCalibration

• not a single RteCalibrationSwAddrMethodRef exists or

• a reference RteCalibrationSwAddrMethodRef to the SwAddrMethod of the
ParameterDataPrototype exists.

c(SRS_Rte_00154, SRS_Rte_00156, SRS_Rte_00158)

653 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

RteComponentTypeCalibration

SWS Item [ECUC_Rte_09039]
Container Name RteComponentTypeCalibration
Description Specifies for each ParameterSwComponentType or

AtomicSwComponentType whether calibration is enabled. If references
to SwAddrMethod are provided in RteCalibrationSwAddrMethodRef
only ParameterDataPrototypes with the referenced SwAddrMethod
shall have software calibration support enabled.

Configuration Parameters

Name RteCalibrationSupportEnabled [ECUC_Rte_09037]
Description Enables calibration support for the specified

ParameterSwComponentType or AtomicSwComponentType.
Multiplicity 1
Type EcucBooleanParamDef
Default Value
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteCalibrationSwAddrMethodRef [ECUC_Rte_09038]
Description Reference to the SwAddrMethod for which software calibration support

shall be enabled.
Multiplicity 0..*
Type Foreign reference to SW-ADDR-METHOD
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

No Included Containers

654 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

7.8 Implicit communication configuration

Software Component template

Components::
AtomicSwComponentType

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

Components::
SwComponentType

AtpStructureElement
ExecutableEntity

SwcInternalBehavior::RunnableEntity

+ canBeInvokedConcurrently :Boolean
+ symbol :CIdentifier

InternalBehavior

SwcInternalBehavior::SwcInternalBehavior

+ handleTerminationAndRestart :HandleTerminationAndRestartEnum
+ supportsMultipleInstantiation :Boolean

RteImplicitCommunication :
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 0

RteVariableReadAccessRef :
EcucForeignReferenceDef

destinationType = VARIABLE-ACCESS
lowerMultiplicity = 0
upperMultiplicity = *

RteVariableWriteAccessRef :
EcucForeignReferenceDef

destinationType = VARIABLE-ACCESS
lowerMultiplicity = 0
upperMultiplicity = *

RteImmediateBufferUpdate :
EcucBooleanParamDef

defaultValue = false

AtpStructureElement
Identifiable

DataElements::VariableAccess

+ scope :VariableAccessScopeEnum [0..1]

Rte :EcucModuleDef

upperMultiplicity = 1
lowerMultiplicity = 0

(from RTE)

RteCoherentAccess :EcucBooleanParamDef

defaultValue = false

RteSoftwareComponentInstanceRef :EcucInstanceReferenceDef

destinationType = SW-COMPONENT-PROTOTYPE
upperMultipl icity = *
lowerMultipl icity = 1
destinationContext = ROOT-SW-COMPOSITION-PROTOTYPE

AtpPrototype

Composition::
SwComponentPrototype

«atpVariation»

+dataReadAccess 0..*

«atpVariation,atpSplitable»

+internalBehavior 0..1

+reference

*
«isOfType»

+type 1
{redefines atpType}

+runnable 1..*

«atpVariation,atpSplitable»

«atpVariation»

+dataWriteAccess 0..*

+parameter

+parameter

+container

+reference

+reference

Figure 7.17: Configuration of the implicit communication

655 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

RteImplicitCommunication

SWS Item [ECUC_Rte_09034]
Container Name RteImplicitCommunication
Description Configuration of the Implicit Communication behavior to be generated.
Configuration Parameters

Name RteCoherentAccess [ECUC_Rte_09091]
Description If set to true the referenced VariableAccess’es of this

RteImplicitCommunication container are in one CoherencyGroup.

Data values for Coherent Implicit Read Access’es are read before the
first reading RunnbaleEntity starts and are stable during the execution
of all the reading RunnableEntitys; except Coherent Implicit Write
Access’es belongs to the same Coherency Group. Data values written
by Coherent Implicit Write Access’es are available for readers not
belonging to the Coherency Group after the last writing RunnableEntity
has terminated.

Please note that a Coherent Implicit Data Access can be defined for
VariableAccess’es to same and different VariableDataElements.
Nevertheless all Coherent Implicit Data Access’es of one Coherency
Group have to be executed in the same task.

Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteImmediateBufferUpdate [ECUC_Rte_09033]
Description If set to true the RTE will perform preemption area specific buffer

update immediately before (for VariableAccess in the role
dataReadAccess) resp. after (for VariableAccess in the role
dataWriteAccess) Runnable execution.

Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

656 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Name RteSoftwareComponentInstanceRef [ECUC_Rte_09090]
Description Reference to a SwComponentPrototype.

This denotes the instances of the VariableAccess belonging to the
RteImplicitCommunication.

Multiplicity 1..*
Type Instance reference to SW-COMPONENT-PROTOTYPE context: ROO

T-SW-COMPOSITION-PROTOTYPE
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteVariableReadAccessRef [ECUC_Rte_09035]
Description Reference to the VariableAccess in the dataReadAccess role.
Multiplicity 0..*
Type Foreign reference to VARIABLE-ACCESS
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteVariableWriteAccessRef [ECUC_Rte_09036]
Description Reference to the VariableAccess in the dataWriteAccess role.
Multiplicity 0..*
Type Foreign reference to VARIABLE-ACCESS
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

No Included Containers

Please note, that RteImplicitCommunication is defined as a container of Rte
EcucModuleDef to support the creation of the ECU Configuration Parameter Values
related to RteImplicitCommunication independent from the other ECU Config-
uration Parameter Values. Typically the need for Coherent Implicit Data Ac-
cesses is known by the vendor of a set of software components. As long as short-
Names of the RootSwCompositionPrototype and the referenced Composition-
SwComponentType - describing the software of a flat ECU Extract - are known the
ECU Configuration Parameter Values related to RteImplicitCommunication can
be prescribed. In this case it is preferable to use relative references to the Vendor
Specific Module Definition (VSMD), to RootSwCompositionPrototype and Com-
positionSwComponentType describing the software of a flat ECU Extract. With
this relative references the ECU Configuration Parameter Values are independent from
ARPackage structure only known by the ECU integrator. Nevertheless the shortName
and location of of the EcucModuleConfigurationValues must be defined upfront.

657 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

7.9 Communication infrastructure

The configuration of the communication infrastructure (interaction of the RTE with the
Com-Stack) is entirely predetermined by the ECU Extract provided as an input. The
required input can be found in the AUTOSAR System Template [8] sections "Data Map-
ping" and "Communication".

In case the RTE does utilize the Com module for intra-ECU communication it is up to
the vendor-specific configuration of the RTE to ensure configuration consistency.

7.10 Configuration of Client-Server Serialization

Bsw Module Template

System Template

Rte :EcucModuleDef

upperMultiplicity = 1
lowerMultiplicity = 0

RteSerializedCommunication :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

RteSerial izedSignal :
EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = *

RteSystemSignalRef :
EcucForeignReferenceDef

destinationType = SYSTEM-SIGNAL

RteSerializerBswModuleEntryRef :
EcucForeignReferenceDef

destinationType = BSW-MODULE-ENTRY

ARElement

SystemSignal

+ dynamicLength :Boolean

ARElement
AtpBlueprint

AtpBlueprintable

BswModuleEntry

+ callType :BswCallType
+ executionContext :BswExecutionContext
+ isReentrant :Boolean
+ isSynchronous :Boolean
+ role :Identifier [0..1]
+ serviceId :PositiveInteger [0..1]
+ swServiceImplPolicy :SwServiceImplPolicyEnum

+reference

+reference

+subContainer

+container

Figure 7.18: Configuration of Client-Server Serialization

RteSerializedCommunication

SWS Item [ECUC_Rte_09108]
Container Name RteSerializedCommunication
Description This container collects all serialization functions that are used by the

RTE.
Configuration Parameters

658 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Included Containers
Container Name Multiplicity Scope / Depedency
RteSerializedSignal 1..* The system description defines which SystemSignal is

used to transport the serialized data and which kind of
serializer has to be used.

This configuration container defines which API
(BswModuleEntry) provided by a Basic Software Module
is called for the serialization/deserialization. The
(de-)Serialization Function has to implement the
serialization method given in the system description.

RteSerializedSignal

SWS Item [ECUC_Rte_09109]
Container Name RteSerializedSignal
Description The system description defines which SystemSignal is used to

transport the serialized data and which kind of serializer has to be
used.

This configuration container defines which API (BswModuleEntry)
provided by a Basic Software Module is called for the
serialization/deserialization. The (de-)Serialization Function has to
implement the serialization method given in the system description.

Configuration Parameters

Name RteSerializerBswModuleEntryRef [ECUC_Rte_09111]
Description Reference to the BswModuleEntry used for serialization.
Multiplicity 1
Type Foreign reference to BSW-MODULE-ENTRY
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteSystemSignalRef [ECUC_Rte_09110]
Description Reference to a SystemSignal in the system description that is used to

transport the serialized data.
Multiplicity 1
Type Foreign reference to SYSTEM-SIGNAL
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

No Included Containers

659 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

7.11 Configuration of the BSW Scheduler

The configuration of the BSW Scheduler part of the RTE is shown in the overview in
figure 7.19.

ECUCDescriptionTemplate
BswModuleTemplateRte :EcucModuleDef

upperMultiplicity = 1
lowerMultiplicity = 0

RteBswModuleInstance :
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = *

Implementation

BswImplementation

RteBswImplementationRef :EcucForeignReferenceDef

lowerMultiplicity = 1
upperMultiplicity = 1
destinationType = BSW-IMPLEMENTATION

ARElement

EcucModuleConfigurationValues

RteBswModuleConfigurationRef :EcucForeignReferenceDef

lowerMultiplicity = 0
upperMultiplicity = 1
destinationType = ECUC-MODULE-CONFIGURATION-VALUES

RteOsInteraction :
EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = *

RteBswRequiredTriggerConnection :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

RteBswRequiredModeGroupConnection :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

RteBswEventToTaskMapping :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

RteBswExclusiveAreaImpl :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

RteBswGeneral :
EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = 1

+reference

+subContainer

+moduleDescription

0..1

+container

+subContainer

+subContainer

+container

+subContainer

+container

+reference

Figure 7.19: Configuration of BSW Scheduler overview

660 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

7.11.1 BSW Scheduler General configuration

Rte :EcucModuleDef

upperMultiplicity = 1
lowerMultiplicity = 0

(from RTE)

RteBswGeneral :
EcucParamConfContainerDef

lowerMultipl icity = 1
upperMultipl icity = 1

RteSchMVersionInfoApi :
EcucBooleanParamDef

lowerMultipl icity = 1
upperMultiplicity = 1

RteUseComShadowSignalApi :
EcucBooleanParamDef

lowerMultipl icity = 1
upperMultiplicity = 1
defaultValue = false

+container

+parameter

+parameter

Figure 7.20: General configuration of BSW Scheduler

RteBswGeneral

SWS Item [ECUC_Rte_09061]
Container Name RteBswGeneral
Description General configuration parameters of the Bsw Scheduler section.
Configuration Parameters

Name RteSchMVersionInfoApi [ECUC_Rte_09062]
Description Enables the generation of the SchM_GetVersionInfo() API.
Multiplicity 1
Type EcucBooleanParamDef
Default Value
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteUseComShadowSignalApi [ECUC_Rte_09107]
Description This parameter defines whether the ComShadowSignalAPIs

((Com_UpdateShadowSignal, Com_InvalidateShadowSignal,
Com_ReceiveShadowSignal) are used or not.

If this parameter is set to true the ShadowSignal APIs and Signal APIs
(Com_SendSignal, Com_InvalidateSignal, Com_ReceiveSignal) are
used. If this parameter is set to false only the Signal APIs
(Com_SendSignal, Com_InvalidateSignal, Com_ReceiveSignal) are
used.

Multiplicity 1
Type EcucBooleanParamDef
Default Value false

661 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Configuration Class Pre-compile time X All Variants
Link time –
Post-build time –

Scope / Dependency scope: local

No Included Containers

7.11.2 BSW Module Instance configuration

RteBswModuleInstance

SWS Item [ECUC_Rte_09002]
Container Name RteBswModuleInstance
Description Represents one instance of a Bsw-Module configured on one ECU.
Configuration Parameters

Name RteBswImplementationRef [ECUC_Rte_09066]
Description Reference to the BswImplementation for which the Rte /SchM is

configured.
Multiplicity 1
Type Foreign reference to BSW-IMPLEMENTATION
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteBswModuleConfigurationRef [ECUC_Rte_09001]
Description Reference to the ECU Configuration Values provided for this

BswImplementation.
Multiplicity 0..1
Type Foreign reference to ECUC-MODULE-CONFIGURATION-VALUES
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Included Containers
Container Name Multiplicity Scope / Depedency

662 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

RteBswEventToTask
Mapping

0..* Maps a BswModuleEntity onto an OsTask based on the
activating BswEvent. A BswModuleEntity can be
activated by more than one BswEvent and thus be
mapped to more than one OsTask. In the case of a
BswSchedulableEntity executed via a direct function call
this RteBswEventToTaskMapping is still specified but no
RteBswMappedToTaskRef element is included. The
RteBswPositionInTask parameter is necessary to
provide an ordering of events invoked by the same RTE
API.

RteBswExclusiveArea
Impl

0..* Represents one ExclusiveArea of one
BswImplementation. Used to specify the implementation
means of this ExclusiveArea.

RteBswExternalTrigger
Config

0..* Defines the configuration of Inter Basic Software Module
Entity Triggering

RteBswInternalTrigger
Config

0..* Defines the configuration of internal Basic Software
Module Entity Triggering

RteBswRequiredClient
ServerConnection

0..* Defines the connection between one
requiredClientServerEntry and one
providedClientServerEntry of a BswModuleDescription.
This container shall be provided on the client side of the
connection.

RteBswRequiredMode
GroupConnection

0..* Defines the connection between one
requiredModeGroup of this BSW Module instance and
one providedModeGroup instance.

RteBswRequiredSender
ReceiverConnection

0..* Defines the connection between one requiredData and
one providedData of a BswModuleDescription. This
container shall be provided on the receiver side of the
connection.

RteBswRequiredTrigger
Connection

0..* Defines the connection between one requiredTrigger of
this BSW Module instance and one releasedTrigger
instance.

663 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

7.11.2.1 BSW ExclusiveArea configuration

Os

BswModuleTemplate

RteBswModuleInstance :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

BswModuleEntity

BswSchedulableEntity

Identifiable

ExclusiveArea

Identifiable

ExecutableEntity

+ minimumStartInterval :TimeValue
+ reentrancyLevel :ReentrancyLevelEnum [0..1]

RteBswExclusiveAreaRef :
EcucForeignReferenceDef

lowerMultipl icity = 1
upperMultiplicity = 1
destinationType = EXCLUSIVE-AREA

RteBswExclusiveAreaImpl :
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = *

RteExclusiveAreaImplMechanism :
EcucEnumerationParamDef

ALL_INTERRUPT_BLOCKING :
EcucEnumerationLiteralDef

OS_RESOURCE :EcucEnumerationLiteralDef

COOPERATIVE_RUNNABLE_PLACEMENT :
EcucEnumerationLiteralDef

OsResource :
EcucParamConfContainerDef

upperMultipl icity = *
lowerMultipl icity = 0

RteBswExclusiveAreaOsResourceRef :
EcucReferenceDef

lowerMultipl icity = 0
upperMultiplicity = 1

OS_INTERRUPT_BLOCKING :
EcucEnumerationLiteralDef

OS_SPINLOCK :EcucEnumerationLiteralDef

OsSpinlock :
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = *

RteBswExclusiveAreaOsSpinlockRef :
EcucReferenceDef

lowerMultipl icity = 0
upperMultiplicity = 1

+destination

+literal

+subContainer

+li teral

+runsInsideExclusiveArea 0..*+canEnterExclusiveArea 0..*

+reference

+destination

+parameter

+li teral

+reference

+literal

+reference

+literal

Figure 7.21: Configuration of BSW ExclusiveArea

664 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

RteBswExclusiveAreaImpl

SWS Item [ECUC_Rte_09072]
Container Name RteBswExclusiveAreaImpl
Description Represents one ExclusiveArea of one BswImplementation. Used to

specify the implementation means of this ExclusiveArea.
Configuration Parameters

Name RteBswExclusiveAreaOsResourceRef [ECUC_Rte_09073]
Description Optional reference to an OsResource in case

RteExclusiveAreaImplMechanism is configured to OS_RESOURCE for
this ExclusiveArea.

Multiplicity 0..1
Type Reference to OsResource
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteBswExclusiveAreaOsSpinlockRef [ECUC_Rte_09112]
Description Optional reference to an OsSpinlock in case

RteExclusiveAreaImplMechanism is configured to OS_SPINLOCK for
this ExclusiveArea.

Multiplicity 0..1
Type Reference to OsSpinlock
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteBswExclusiveAreaRef [ECUC_Rte_09074]
Description Reference to the ExclusiveArea for which the implementation

mechanism shall be specified.
Multiplicity 1
Type Foreign reference to EXCLUSIVE-AREA
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteExclusiveAreaImplMechanism [ECUC_Rte_09029]
Description To be used implementation mechanism for the specified ExclusiveArea.
Multiplicity 1
Type EcucEnumerationParamDef
Range ALL_INTERRUPT_BLOC

KING
COOPERATIVE_RUNNA
BLE_PLACEMENT

665 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

OS_INTERRUPT_BLOCKI
NG
OS_RESOURCE
OS_SPINLOCK

Configuration Class Pre-compile time X All Variants
Link time –
Post-build time –

Scope / Dependency scope: local

No Included Containers

666 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

7.11.2.2 BswEvent to task mapping

Os

BswModuleTemplate

RteBswModuleInstance :
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = *

Rte :EcucModuleDef

upperMultiplicity = 1
lowerMultiplicity = 0

Implementation

BswImplementation

+ arReleaseVersion :RevisionLabelString
+ vendorApiInfix :Identifier [0..1]

InternalBehavior

BswInternalBehavior

AbstractEvent

BswEvent

RteBswEventToTaskMapping :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

RteBswEventRef :
EcucForeignReferenceDef

lowerMultiplicity = 1
upperMultipl icity = 1
destinationType = BSW-EVENT

OsTask :
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 0

RteBswMappedToTaskRef :
EcucReferenceDef

lowerMultiplicity = 0
upperMultipl icity = 1

RteBswPositionInTask :
EcucIntegerParamDef

upperMultipl icity = 1
lowerMultiplicity = 0
min = 0
max = 65535

RteBswActivationOffset :
EcucFloatParamDef

min = 0
max = INF
lowerMultiplicity = 0
upperMultipl icity = 1

RteBswUsedOsEventRef :
EcucReferenceDef

upperMultipl icity = 1
lowerMultiplicity = 0

RteBswUsedOsAlarmRef :
EcucReferenceDef

upperMultipl icity = 1
lowerMultiplicity = 0

RteBswUsedOsSchTblExpiryPointRef :
EcucReferenceDef

upperMultipl icity = 1
lowerMultiplicity = 0

OsEvent :
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 0

OsScheduleTableExpiryPoint :
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 1

OsAlarm :
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 0

RteBswImplementationRef :
EcucForeignReferenceDef

lowerMultiplicity = 1
upperMultiplicity = 1
destinationType = BSW-IMPLEMENTATION

RteOsSchedulePoint :
EcucEnumerationParamDef

lowerMultipl icity = 0
upperMultipl icity = 1

NONE :
EcucEnumerationLiteralDef

CONDITIONAL :
EcucEnumerationLiteralDef

UNCONDITIONAL :
EcucEnumerationLiteralDef

RteBswImmediateRestart :
EcucBooleanParamDef

defaultValue = false

+reference

+reference

+literal

+l iteral

+destination
+reference

+reference +destination

+behavior 1

+parameter

+destination

+subContainer
«atpVariation»

+event 0..*

+reference

+literal
+parameter

+parameter

+reference +destination

+parameter

+container

Figure 7.22: Configuration of BSW Event to Task Mapping

667 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

RteBswEventToTaskMapping

SWS Item [ECUC_Rte_09065]
Container Name RteBswEventToTaskMapping
Description Maps a BswModuleEntity onto an OsTask based on the activating

BswEvent. A BswModuleEntity can be activated by more than one
BswEvent and thus be mapped to more than one OsTask. In the case
of a BswSchedulableEntity executed via a direct function call this
RteBswEventToTaskMapping is still specified but no
RteBswMappedToTaskRef element is included. The
RteBswPositionInTask parameter is necessary to provide an ordering
of events invoked by the same RTE API.

Configuration Parameters

Name RteBswActivationOffset [ECUC_Rte_09063]
Description Activation offset in seconds.
Multiplicity 0..1
Type EcucFloatParamDef
Range 0 .. INF
Default Value
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteBswEventRef [ECUC_Rte_09064]
Description Reference to the BswEvent.
Multiplicity 1
Type Foreign reference to BSW-EVENT
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteBswImmediateRestart [ECUC_Rte_09093]
Description When RteBswImmediateRestart is set to true the

BswSchedulableEntitiy shall be immediately re-started after termination
if it was activated by this BswEvent while it was already started.

This parameter shall not be set to true when the mapped BswEvent
refers to a BswSchedulableEntitiy which minimumStartInterval attribute
is > 0.

Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

668 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Name RteBswMappedToTaskRef [ECUC_Rte_09067]
Description Reference to the OsTask the BswSchedulableEntity activated by the

RteBswEventRef is mapped to. If no reference to the OsTask is
specified the BswSchedulableEntity activated by this BswEvent is
executed in the context of the caller.

Multiplicity 0..1
Type Reference to OsTask
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteBswPositionInTask [ECUC_Rte_09068]
Description Each BswSchedulableEntity activation mapped to an OsTask has a

specific position within the task execution. For periodic activation this is
the order of execution. For event driver activation this is the order of
evaluation which actual BswSchedulableEntity has to be executed. In
case of direct function calls this parameter is necessary to provide an
ordering of events when several ExecutableEntities are invoked by the
same RTE API.

Multiplicity 0..1
Type EcucIntegerParamDef
Range 0 .. 65535
Default Value
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteBswUsedOsAlarmRef [ECUC_Rte_09069]
Description If an OsAlarm is used to activate the OsTask this BswEvent is mapped

to it shall be referenced here.
Multiplicity 0..1
Type Reference to OsAlarm
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteBswUsedOsEventRef [ECUC_Rte_09070]
Description If an OsEvent is used to activate the OsTask this BswEvent is mapped

to it shall be referenced here.
Multiplicity 0..1
Type Reference to OsEvent
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

669 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Name RteBswUsedOsSchTblExpiryPointRef [ECUC_Rte_09071]
Description If an OsScheduleTableExpiryPoint is used to activate the OsTask this

BswEvent is mapped to it shall be referenced here.
Multiplicity 0..1
Type Reference to OsScheduleTableExpiryPoint
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteOsSchedulePoint [ECUC_Rte_09022]
Description Introduce a schedule point by explicitly calling Os Schedule service

after the execution of the ExecutableEntity. The Rte generator is
allowed to optimize several consecutive calls to Os schedule into one
single call if the ExecutableEntity executions in between have been
skipped.

The absence of this parameter is interpreted as "NONE".

It shall be considered an invalid configuration if the task is preemptable
and the value of this parameter is not set to "NONE" or the parameter
is absent.

Multiplicity 0..1
Type EcucEnumerationParamDef
Range CONDITIONAL A Schedule Point shall be introduced at

the end of the execution of this
ExecutableEntity. The Schedule Point
can be skipped if several Schedule
Points would be called without any
ExecutableEntity execution in between.

NONE No Schedule Point shall be introduced
at the end of the execution of this
ExecutableEntity.

UNCONDITIONAL A Schedule Point shall always be
introduced at the end of the execution
of this ExecutableEntity.

Configuration Class Pre-compile time X All Variants
Link time –
Post-build time –

Scope / Dependency scope: local

No Included Containers

670 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

7.11.2.3 BSW Trigger configuration

7.11.2.3.1 BSW Trigger connection

The RteBswRequiredTriggerConnection container is defined in the context of
the RteBswModuleInstance which is the required trigger context. So the reference
to the RteBswRequiredTriggerRef is sufficient to define the required trigger. For
the released trigger the tuple of RteBswReleasedTriggerModInstRef and RteB-
swReleasedTriggerRef is specified.

BswModuleTemplate

AtpStructureElement
Identifiable

Trigger

+ swImplPolicy :SwImplPolicyEnum [0..1]

ARElement
AtpBlueprint

AtpBlueprintable
AtpStructureElement

BswModuleDescription

+ moduleId :PositiveInteger [0..1]

InternalBehavior

BswInternalBehavior
BswTriggerDirectImplementation

+ task :Identifier

RteBswRequiredTriggerConnection :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

RteBswReleasedTriggerRef :
EcucForeignReferenceDef

lowerMultipl icity = 1
upperMultipl icity = 1
destinationType = TRIGGER

RteBswRequiredTriggerRef :
EcucForeignReferenceDef

lowerMultipl icity = 1
upperMultipl icity = 1
destinationType = TRIGGER

RteBswModuleInstance :EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

RteBswReleasedTriggerModInstRef :
EcucReferenceDef

«atpVariation»

+requiredTrigger

0..*

«atpVariation»

+releasedTrigger

0..*

«atpSplitable»
+internalBehavior 0..*

+reference

«atpVariation»

+triggerDirectImplementation

0..*

0..*

+masteredTrigger 1

+subContainer

+reference

+reference

+destination

Figure 7.23: Configuration of BSW Trigger connection

RteBswRequiredTriggerConnection

SWS Item [ECUC_Rte_09077]
Container Name RteBswRequiredTriggerConnection
Description Defines the connection between one requiredTrigger of this BSW

Module instance and one releasedTrigger instance.
Configuration Parameters

671 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Name RteBswReleasedTriggerModInstRef [ECUC_Rte_09075]
Description Reference to the RteBswModuleInstance configuration container which

identifies the instance of the BSW Module. Used with the
RteBswReleasedTriggerRef to unambiguously identify the Trigger
instance.

Multiplicity 1
Type Reference to RteBswModuleInstance
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteBswReleasedTriggerRef [ECUC_Rte_09076]
Description References the releasedTrigger to which this requiredTrigger shall be

connected.
Multiplicity 1
Type Foreign reference to TRIGGER
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteBswRequiredTriggerRef [ECUC_Rte_09078]
Description References one requiredTrigger which shall be connected to the

releasedTrigger.
Multiplicity 1
Type Foreign reference to TRIGGER
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

No Included Containers

7.11.2.3.2 BSW Trigger queuing

This configuration determine the size of the queue queuing the issued triggers.

The RteBswExternalTriggerConfig container and RteBswInternalTrigger-
Config container is defined in the context of the RteBswModuleInstance which
already predefines the context of the provided Trigger / BswInternalTrigger-
ingPoint.

[constr_9006] The references RteBswTriggerSourceRef has to be consis-
tent with the RteBswImplementationRef d The references RteBswTrigger-
SourceRef has to be consistent with the RteBswImplementationRef. This means

672 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

the referenced Trigger / BswInternalTriggeringPoint has to belong to the
BswModuleDescription which is referenced by the related BswImplementation.
c

From BSWMD-T

RteBswExternalTriggerConfig :
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = *

RteBswTriggerSourceRef :EcucForeignReferenceDef

destinationType = TRIGGER
upperMultiplicity = 1
lowerMultiplicity = 1

RteBswTriggerSourceQueueLength :
EcucIntegerParamDef

defaultValue = 0
lowerMultipl icity = 1
upperMultipl icity = 1
min = 0
max = 4294967295

RteBswInternalTriggerConfig :
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = *

RteBswTriggerSourceRef :EcucForeignReferenceDef

destinationType = BSW-INTERNAL-TRIGGERING-POINT
upperMultipl icity = 1
lowerMultipl icity = 1

RteBswTriggerSourceQueueLength :
EcucIntegerParamDef

defaultValue = 0
lowerMultiplicity = 1
upperMultiplicity = 1
min = 0
max = 4294967295

RteBswModuleInstance :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

(from RTE)

AtpStructureElement
Identifiable

TriggerDeclaration::Trigger

+ swImplPolicy :SwImplPolicyEnum [0..1]

ARElement
AtpBlueprint

AtpBlueprintable
AtpStructureElement

BswOverview::BswModuleDescription

+ moduleId :PositiveInteger [0..1]

InternalBehavior

BswBehavior::
BswInternalBehavior

Identifiable

BswBehavior::BswInternalTriggeringPoint

+ swImplPolicy :SwImplPolicyEnum [0..1]

+parameter

+reference

+parameter

«atpVariation»
+internalTriggeringPoint

0..*

+reference

«atpVariation»

+releasedTrigger

0..*

+subContainer

«atpSplitable»

+internalBehavior 0..*

+subContainer

Figure 7.24: Configuration of BSW Trigger queuing

673 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

RteBswExternalTriggerConfig

SWS Item [ECUC_Rte_09099]
Container Name RteBswExternalTriggerConfig
Description Defines the configuration of Inter Basic Software Module Entity

Triggering
Configuration Parameters

Name RteBswTriggerSourceQueueLength [ECUC_Rte_09101]
Description Length of trigger queue on the trigger source side.

The queue is implemented by the RTE. A value greater or equal to 1
requests an queued behavior. Setting the value of
RteTriggerSourceQueueLength to 0 requests an none queued
implementation of the trigger communication.

If there is no RteBswTriggerSourceQueueLength configured for a
Trigger Emitter the default value of 0 applies as well.

Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 4294967295
Default Value 0
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteBswTriggerSourceRef [ECUC_Rte_09100]
Description Reference to a Trigger instance in the role releasedTrigger of the

related BSW Module instance.

The referenced Trigger has to belong to the same BSW Module
instance as the RteBswModuleInstance owning this parameter
configures.

Multiplicity 1
Type Foreign reference to TRIGGER
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

No Included Containers

674 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

RteBswInternalTriggerConfig

SWS Item [ECUC_Rte_09102]
Container Name RteBswInternalTriggerConfig
Description Defines the configuration of internal Basic Software Module Entity

Triggering
Configuration Parameters

Name RteBswTriggerSourceQueueLength [ECUC_Rte_09104]
Description Length of trigger queue on the trigger source side.

The queue is implemented by the RTE. A value greater or equal to 1
requests an queued behavior. Setting the value of
RteTriggerSourceQueueLength to 0 requests an none queued
implementation of the trigger communication.

If there is no RteBswTriggerSourceQueueLength configured for a
Trigger Emitter the default value of 0 applies as well.

Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 4294967295
Default Value 0
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteBswTriggerSourceRef [ECUC_Rte_09103]
Description Reference to a BswInternalTriggeringPoint of the related BSW Module

instance.

The referenced BswInternalTriggeringPoint has to belong to the same
BSW Module instance as the RteBswModuleInstance owning this
parameter configures.

Multiplicity 1
Type Foreign reference to BSW-INTERNAL-TRIGGERING-POINT
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

No Included Containers

7.11.2.4 BSW ModeDeclarationGroup configuration

The RteBswRequiredModeGroupConnection container is defined in the context
of the RteBswModuleInstance which is the required mode group context. So the
reference to the RteBswRequiredModeGroupRef is sufficient to define the required

675 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

mode group. For the provided mode group the tuple of RteBswProvidedModeGrp-
ModInstRef and RteBswProvidedModeGroupRef is specified.

BswModuleTemplate

RteBswRequiredModeGroupConnection :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

RteBswProvidedModeGroupRef :EcucForeignReferenceDef

lowerMultiplicity = 1
upperMultiplicity = 1
destinationType = MODE-DECLARATION-GROUP-PROTOTYPE

RteBswRequiredModeGroupRef :EcucForeignReferenceDef

lowerMultipl icity = 1
upperMultipl icity = 1
destinationType = MODE-DECLARATION-GROUP-PROTOTYPE

ARElement
AtpBlueprint

AtpBlueprintable
AtpStructureElement

BswModuleDescription

+ moduleId :PositiveInteger [0..1]

AtpPrototype

ModeDeclarationGroupPrototype

+ swCalibrationAccess :SwCalibrationAccessEnum [0..1]

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

ModeDeclarationGroup

+ onTransitionValue :PositiveInteger [0..1]

RteBswModuleInstance :EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = *

RteBswProvidedModeGrpModInstRef :
EcucReferenceDef

ARElement
AtpType

ModeDeclarationMappingSet

AtpStructureElement
Identifiable

ModeDeclarationMapping

AtpStructureElement
Identifiable

ModeDeclaration

+ value :PositiveInteger [0..1]

RteModeDeclarationMappingSetRef :EcucForeignReferenceDef

lowerMultiplicity = 0
upperMultiplicity = 1
destinationType = MODE-DECLARATION-MAPPING-SET

+reference

+reference

+reference

+destination

+subContainer

+initialMode

1

«atpVariation»

+providedModeGroup

0..*

«isOfType»

+type
1
{redefines atpType}

+modeDeclarationMapping

1..*

+firstMode 1..* +secondMode 1

+modeDeclaration

1..* «atpVariation»

+reference

«atpVariation»

+requiredModeGroup

0..*

Figure 7.25: Configuration of BSW Scheduler overview

676 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

RteBswRequiredModeGroupConnection

SWS Item [ECUC_Rte_09081]
Container Name RteBswRequiredModeGroupConnection
Description Defines the connection between one requiredModeGroup of this BSW

Module instance and one providedModeGroup instance.
Configuration Parameters

Name RteBswProvidedModeGroupRef [ECUC_Rte_09079]
Description References the providedModeGroupPrototype to which this

requiredModeGroup shall be connected.
Multiplicity 1
Type Foreign reference to MODE-DECLARATION-GROUP-PROTOTYPE
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteBswProvidedModeGrpModInstRef [ECUC_Rte_09080]
Description Reference to the RteBswModuleInstance configuration container which

identifies the instance of the BSW Module. Used with the
RteBswProvidedModeGroupRef to unambiguously identify the
ModeDeclarationGroupPrototype instance.

Multiplicity 1
Type Reference to RteBswModuleInstance
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteBswRequiredModeGroupRef [ECUC_Rte_09082]
Description References requiredModeGroupPrototype which shall be connected to

the providedModeGroupPrototype.
Multiplicity 1
Type Foreign reference to MODE-DECLARATION-GROUP-PROTOTYPE
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

677 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Name RteModeDeclarationMappingSetRef [ECUC_Rte_09125]
Description This defines the effective ModeDeclarationMappingSet in the case that

the provided ModeDeclarationGroupPrototype and the required
ModeDeclarationGroupPrototype are not compatible.

Multiplicity 0..1
Type Foreign reference to MODE-DECLARATION-MAPPING-SET
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

No Included Containers

7.11.2.5 BSW Client Server configuration

The RteBswRequiredClientServerConnection container is defined in the con-
text of the RteBswModuleInstance. So the reference to the RteBswRe-
quiredClientServerEntryRef is sufficient to define the required BswModule-
ClientServerEntry. For the provided BswModuleClientServerEntry the
RteBswProvidedClientServerEntryRef is specified.

RteBswModuleInstance :EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

ARElement
AtpBlueprint

AtpBlueprintable
AtpStructureElement

BswModuleDescription

+ moduleId :PositiveInteger [0..1]

Referrable

BswModuleClientServerEntry

+ isReentrant :Boolean [0..1]
+ isSynchronous :Boolean [0..1]

BswModuleTemplate

RteBswRequiredClientServerConnection :
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = *

RteBswRequiredClientServerEntryRef :EcucForeignReferenceDef

lowerMultipl icity = 1
upperMultipl icity = 1
destinationType = BSW-MODULE-CLIENT-SERVER-ENTRY

RteBswProvidedClientServerEntryRef :EcucForeignReferenceDef

lowerMultiplicity = 1
upperMultiplicity = 1
destinationType = BSW-MODULE-CLIENT-SERVER-ENTRY

RteBswProvidedClientServerEntryModInstRef :EcucReferenceDef

+destination

+reference

+reference

+reference

+subContainer

«atpVariation»

+providedClientServerEntry

0..*

«atpVariation»

+requiredClientServerEntry

0..*

Figure 7.26: Configuration of BSW Client Server Communication

678 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

RteBswRequiredClientServerConnection

SWS Item [ECUC_Rte_09117]
Container Name RteBswRequiredClientServerConnection
Description Defines the connection between one requiredClientServerEntry and

one providedClientServerEntry of a BswModuleDescription. This
container shall be provided on the client side of the connection.

Configuration Parameters

Name RteBswProvidedClientServerEntryModInstRef [ECUC_Rte_09124]
Description Reference to the RteBswModuleInstance configuration container which

identifies the instance of the BSW Module. Used with the
RteBswProvidedClientServerEntryRef to unambiguously identify the
BswModuleClientServerEntry instance.

Multiplicity 1
Type Reference to RteBswModuleInstance
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteBswProvidedClientServerEntryRef [ECUC_Rte_09119]
Description Reference the providedClientServerEntry for this connection.
Multiplicity 1
Type Foreign reference to BSW-MODULE-CLIENT-SERVER-ENTRY
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteBswRequiredClientServerEntryRef [ECUC_Rte_09118]
Description Reference the requiredClientServerEntry for this connection.
Multiplicity 1
Type Foreign reference to BSW-MODULE-CLIENT-SERVER-ENTRY
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

No Included Containers

7.11.2.6 BSW Sender Receiver configuration

The RteBswRequiredSenderReceiverConnection container is defined in the
context of the RteBswModuleInstance. So the reference to the RteBswRequired-
VariableDataPrototypeRef is sufficient to define the required VariableDat-

679 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

aPrototype. For the provided VariableDataPrototype the RteBswProvided-
VariableDataPrototypeRef is specified.

RteBswModuleInstance :EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

ARElement
AtpBlueprint

AtpBlueprintable
AtpStructureElement

BswModuleDescription

+ moduleId :PositiveInteger [0..1]

BswModuleTemplate

AutosarDataPrototype

VariableDataPrototype

RteBswRequiredSenderReceiverConnection :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

RteBswRequiredVariableDataPrototypeRef :
EcucForeignReferenceDef

lowerMultipl icity = 1
upperMultipl icity = 1
destinationType = VARIABLE-DATA-PROTOTYPE

RteBswProvidedVariableDataPrototypeRef :
EcucForeignReferenceDef

lowerMultipl icity = 1
upperMultipl icity = 1
destinationType = VARIABLE-DATA-PROTOTYPE

RteBswProvidedDataModInstRef :EcucReferenceDef

+destination

+reference

+reference

+reference

+subContainer

«atpVariation»

+providedData

0..*

«atpVariation»

+requiredData

0..*

Figure 7.27: Configuration of BSW Sender Receiver Communication

RteBswRequiredSenderReceiverConnection

SWS Item [ECUC_Rte_09120]
Container Name RteBswRequiredSenderReceiverConnection
Description Defines the connection between one requiredData and one

providedData of a BswModuleDescription. This container shall be
provided on the receiver side of the connection.

Configuration Parameters

680 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Name RteBswProvidedDataModInstRef [ECUC_Rte_09123]
Description Reference to the RteBswModuleInstance configuration container which

identifies the instance of the BSW Module. Used with the
RteBswProvidedVariableDataPrototypeRef to unambiguously identify
the VariableDataPrototype instance.

Multiplicity 1
Type Reference to RteBswModuleInstance
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteBswProvidedVariableDataPrototypeRef [ECUC_Rte_09122]
Description Reference the providedData for this connection.
Multiplicity 1
Type Foreign reference to VARIABLE-DATA-PROTOTYPE
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name RteBswRequiredVariableDataPrototypeRef [ECUC_Rte_09121]
Description Reference the requiredData for this connection.
Multiplicity 1
Type Foreign reference to VARIABLE-DATA-PROTOTYPE
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

No Included Containers

7.12 Configuration of Initialization

In order to support different interactions with the start up code of the ECU the RTE
supports different initialization strategies for variables implementing VariableDat-
aPrototypes. Basically the initialization can be done either by start-up code or by the
Rte_Start function. Further on it is possible to avoid any initialization for data which
has to be reset safe or is explicitly initialized by other SW, e.g. the NVRAM Blocks
might be initialized by NVRAM Manager.

681 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Software Component Template and BSW Module Description Template
Rte :EcucModuleDef

upperMultipl icity = 1
lowerMultipl icity = 0

(from RTE)

RteInitializationBehavior :
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 1

RteSectionInitializationPolicy :
EcucStringParamDef

upperMultipl icity = *
lowerMultipl icity = 1

RteInitial izationStrategy :
EcucEnumerationParamDef

upperMultipl icity = 1
lowerMultipl icity = 1

RTE_INITIALIZATION_STRATEGY_AT_DATA_DECLARATION_AND_PARTITION_RESTART :
EcucEnumerationLiteralDef

RTE_INITIALIZATION_STRATEGY_AT_DATA_DECLARATION :EcucEnumerationLiteralDef

RTE_INITIALIZATION_STRATEGY_NONE :EcucEnumerationLiteralDef

«primitive»
PrimitiveTypes::

SectionInitial izationPolicyType

ARElement
AtpBlueprint

AtpBlueprintable

AuxillaryObjects::SwAddrMethod

+ memoryAllocationKeywordPolicy :MemoryAllocationKeywordPolicyType [0..1]
+ option :Identifier [0..*]
+ sectionInitializationPolicy :SectionInitializationPolicyType [0..1]
+ sectionType :MemorySectionType [0..1]

RTE_INITIALIZATION_STRATEGY_AT_RTE_START_AND_PARTITION_RESTART :
EcucEnumerationLiteralDef

+parameter

+parameter

+container

+literal

+l iteral

+l iteral

+l iteral

Figure 7.28: Configuration of initialization strategy

RteInitializationBehavior

SWS Item [ECUC_Rte_09087]
Container Name RteInitializationBehavior
Description Specifies the initialization strategy for variables allocated by RTE with

the purpose to implement VariableDataPrototypes.

The container defines a set of RteSectionInitializationPolicys and one
RteInitializationStrategy which is applicable for this set.

Configuration Parameters

Name RteInitializationStrategy [ECUC_Rte_09089]
Description Definition of the initialization strategy applicable for the

SectionInitializationPolicys selected by RteSectionInitializationPolicy.
Multiplicity 1
Type EcucEnumerationParamDef
Range RTE_INITIALIZATION_ST

RATEGY_AT_DATA_DEC
LARATION

Variables shall be initialized at its
declaration to the value defined by the
related initValue attribute.

RTE_INITIALIZATION_ST
RATEGY_AT_DATA_DEC
LARATION_AND_PARTIT
ION_RESTART

Variables shall be initialized at its
declaration to the value defined by the
related initValue attribute and during
execution of Rte_RestartPartition to
the value defined by the related
initValue attribute.

682 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

RTE_INITIALIZATION_ST
RATEGY_AT_RTE_STAR
T_AND_PARTITION_RES
TART

Variables shall be initialized during
execution of Rte_Start and
Rte_RestartPartition to the value
defined by the related initValue
attribute.

RTE_INITIALIZATION_ST
RATEGY_NONE

Variables shall not be initialized at all.

Configuration Class Pre-compile time X All Variants
Link time –
Post-build time –

Scope / Dependency scope: local

Name RteSectionInitializationPolicy [ECUC_Rte_09088]
Description This parameter describes the SectionInitializationPolicys for which a

particular RTE initialization strategy applies.

The SectionInitializationPolicy describes the intended initialization of
MemorySections.

The following values are standardized in AUTOSAR Methodology:

• NO-INIT: No initialization and no clearing is performed. Such
data elements must not be read before one has written a value
into it.

• INIT: To be used for data that are initialized by every reset to the
specified value (initValue).

• POWER-ON-INIT: To be used for data that are initialized by
"Power On" to the specified value (initValue). Note: there might
be several resets between power on resets.

• CLEARED: To be used for data that are initialized by every reset
to zero.

• POWER-ON-CLEARED: To be used for data that are initialized
by "Power On" to zero. Note: there might be several resets
between power on resets.

Multiplicity 1..*
Type EcucStringParamDef
Default Value
Regular Expression
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

No Included Containers

[SWS_Rte_07075] d The RTE generator shall reject configurations where not all
occurring sectionInitializationPolicy attribute values are configured to an
RteInitializationStrategy. c(SRS_Rte_00018)

683 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

The call of Rte_Start may trigger RunnableEntitys for initialization purpose.
Those RunnableEntitys are either triggered by SwcModeSwitchEvents or
InitEvents. To support the scheduling of such RunnableEntitys in the start up
code of the ECU (e.g. by BswM or EcuM) its possible to map such RTEEvents to
RteInitializationRunnableBatch containers which results in the existence of
Rte_Init APIs.

Rte :EcucModuleDef

upperMultiplicity = 1
lowerMultiplicity = 0

RteEventToTaskMapping :
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 0

RtePositionInTask :
EcucIntegerParamDef

upperMultiplicity = 1
lowerMultipl icity = 0
min = 0
max = 65535

RteInitial izationRunnableBatch :
EcucParamConfContainerDef

upperMultipl icity = *
lowerMultipl icity = 0

RteUsedInitFnc :
EcucReferenceDef

upperMultiplicity = 1
lowerMultiplicity = 0

+destination

+reference

+container

+parameter

Figure 7.29: Configuration of Rte_Init functions

RteInitializationRunnableBatch

SWS Item [ECUC_Rte_09115]
Container Name RteInitializationRunnableBatch
Description This container corresponds to an Rte_Init_<shortName of this

container> function invoking the mapped RunnableEntities.
Configuration Parameters
No Included Containers

Rte_Init API may only schedule RunnableEntitys for initialization purpose ore
which are OnEntry Runnable Entities.

[constr_9063] Restricted kinds of RTEEvents which may mapped to RteIni-
tializationRunnableBatch containers d Only SwcModeSwitchEvents with
activation = onEntry and referring to the initialMode or InitEvents may
be mapped to RteInitializationRunnableBatch containers with the means of
a RteUsedInitFnc reference. c

684 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_06769] d The RTE Generator shall reject configurations violating [con-
str_9063]. c(SRS_Rte_00143, SRS_Rte_00240, SRS_Rte_00018)

[constr_9064] A single RteInitializationRunnableBatch container may not
handle RTEEvents of different partitions d All RTEEvents mapped to a RteIni-
tializationRunnableBatch container may only trigger RunnableEntitys be-
longing to the same partition. c

[SWS_Rte_06770] d The RTE Generator shall reject configurations violating [con-
str_9064]. c(SRS_Rte_00143, SRS_Rte_00240, SRS_Rte_00018)

685 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

A Metamodel Restrictions

This chapter lists all the restrictions to the AUTOSAR meta-model this version of the
AUTOSAR RTE specification document relies on. The RTE generator shall reject con-
figuration where any of the specified restrictions are violated.

A.1 Restrictions concerning WaitPoint

1. [SWS_Rte_01358] d The RTE shall raise an error if [constr_1091] is violated,
so if RunnableEntity has WaitPoint connected to any of the following RTE-
Events:

• OperationInvokedEvent

• SwcModeSwitchEvent

• TimingEvent

• BackgroundEvent

• DataReceiveErrorEvent

• ExternalTriggerOccurredEvent

• InternalTriggerOccurredEvent

• DataWriteCompletedEvent

These events can only start a runnable. c(SRS_Rte_00092, SRS_Rte_00018)
Note: The only events that can unblock a WaitPoint are those listed in [con-
str_1091].

Rationale: For OperationInvokedEvents, SwcModeSwitchEvents,
TimingEvents, BackgroundEvents DataReceiveErrorEvent, Ex-
ternalTriggerOccurredEvent, InternalTriggerOccurredEvent,
and DataWriteCompletedEvent it suffices to allow the activation of a
RunnableEntity.

2. [SWS_Rte_07402] d The RTE generator shall reject a model where two (or
more) different RunnableEntitys in the same internal behavior each have a
WaitPoint referencing the same DataReceivedEvent, and the runnables are
mapped to different tasks. c(SRS_Rte_00092, SRS_Rte_00018)

Rationale: In the same software components, the two runnables will attempt to
read from the same queue, and only the one that accesses the queue first will
actually receive the data.

686 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

A.2 Restrictions concerning RTEEvent

1. [SWS_Rte_03526] d The RTE generator shall reject configurations in which a
RunnableEntity is triggered by multiple OperationInvokedEvents but vi-
olating the constraint [constr_2000] Compatibility of ClientServerOperations trig-
gering the same RunnableEntity as defined in document [2] c(SRS_Rte_00072,
SRS_Rte_00018)

Rationale: The signature of the RunnableEntity is dependent on its
connected RTEEvent. Multiple OperationInvokedEvents are only sup-
ported if all referred ClientServerOperations would result in the same
RunnableEntity prototype for the server runnable (see 5.7.5.6).

2. [SWS_Rte_03010] d One runnable entity shall only be resumed by one sin-
gle RTEEvent on its WaitPoint. The RTE doesn’t support the WaitPoint
of one runnable entity connected to several RTEEvents. c(SRS_Rte_00092,
SRS_Rte_00018)

Rationale: The WaitPoint of the runnable entity is caused by calling of the
RTE API. One runnable entity can only call one RTE API at a time, and so it can
only wait for one RTEEvent.

3. [SWS_Rte_07007] d The RTE generator shall reject configurations where dif-
ferent execution instances of a runnable entity, which use implicit data access,
are mapped to different Preemption Areas. c(SRS_Rte_00018, SRS_Rte_00128,
SRS_Rte_00129, SRS_Rte_00133, SRS_Rte_00142)

Rationale: Buffers used for implicit communication shall be consistent during the
whole task execution. If it is guaranteed that one task does not preempt the other,
direct accesses to the same copy buffer from different tasks are possible.

4. [SWS_Rte_07403] d The RTE generator shall reject a model where in the same
SwcInternalBehavior two (or more) different DataReceivedEvents, that
reference the same VariableDataPrototype with event semantics, trig-
ger different runnable entities mapped to different tasks. c(SRS_Rte_00072,
SRS_Rte_00018)

Rationale: In the same software components, the two runnables will attempt to
read from the same queue, and only the one that accesses the queue first will
actually receive the data.

A.3 Restrictions concerning queued implementation policy

1. [SWS_Rte_03018] d RTE does not support receiving with WaitPoint for Vari-
ableDataPrototypes with their swImplPolicy attribute is not set to queued.
c(SRS_Rte_00109, SRS_Rte_00092, SRS_Rte_00018)

687 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Rationale: unqueued implementation policy indicates that the receiver shall not
wait for the VariableDataPrototype.

2. All the VariableAccesses in the dataSendPoint role referring to one Vari-
ableDataPrototype through one PPortPrototype are considered to have
the same behavior by sending and acknowledgment reception. All DataSend-
CompletedEvents that reference VariableAccesses in the dataSendPoint
role referring to the same VariableDataPrototype are considered equivalent.

Rationale: The API Rte_Send/Rte_Write is dependent on the port name and
the VariableDataPrototype name, not on the VariableAccesses. For
each combination of one VariableDataPrototype and one port only one API
will be generated and implemented for sending or acknowledgement reception.

A.4 Restrictions concerning ServerCallPoint

1. [SWS_Rte_03014] d All the ServerCallPoints referring to one
ClientServerOperation through one RPortPrototype are consid-
ered to have the same behavior by calling service. The RTE generator shall
reject configuration where this is violated. c(SRS_Rte_00051, SRS_Rte_00018)

Rationale: The API Rte_Call is dependent on the port name and the operation
name, not on the ServerCallPoints. For each combination of one operation
and one port only one API will be generated and implemented for calling a ser-
vice. It is e.g. not possible to have different timeout values specified for different
ServerCallPoints of the same ClientServerOperation. It is also not al-
lowed to specify both, a synchronous and an asynchronous server call point for
the same ClientServerOperation instance.

2. [SWS_Rte_03605] d If several require ports of a software component are cate-
gorized by the same client/server interface, all invocations of the same operation
of this client/server interface have to be either synchronous, or all invocations of
the same operation have to be asynchronous. This restriction applies under the
following conditions:

• the usage of the indirect API is specified for at least one of the respective
port prototypes and/or

• the software component supports multiple instantiation, and the RTE gener-
ation shall be performed in compatibility mode.

c(SRS_Rte_00051, SRS_Rte_00018)

Rationale: The signature of Rte_Call and the existence of Rte_Result de-
pend on the kind of invocation.

3. [SWS_Rte_07170] d The RTE generator shall reject the configuration where
[constr_2006] is violated, so where an AsynchronousServerCallPoint shall

688 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

be referenced by exactly one AsynchronousServerCallResultPoint only.
c(SRS_Rte_00051, SRS_Rte_00018)

Rationale: The support of several AsynchronousServerCallResultPoints per
AsynchronousServerCallPoint would potentially support multiple Asyn-
chronousServerCallReturnsEvents as well as multiple WaitPoints for
the same AsynchronousServerCallPoint.

A.5 Restriction concerning multiple instantiation of software
components

1. [SWS_Rte_07101] d The RTE generator shall reject configurations where [con-
str_2024] is violated, so in which a PortAPIOption with enableTakeAddress
= TRUE is defined by a software-component supporting multiple instantiation.
c(SRS_Rte_00018)

Rationale: The main focus of the feature is support for configuration of AU-
TOSAR Services which are limited to single instances.

A.6 Restrictions concerning runnable entity

1. [SWS_Rte_03527] d The RTE does NOT support multiple Runnable Entities that
share the same entry point. c(SRS_Rte_00072, SRS_Rte_00018)

Rationale: The name of the runnable entity entry point is formed by a combi-
nation of SWC symbol prefix and symbol attribute of RunnableEntity. This
means that two runnables in different SWCs can have the same symbol attribute
as long as different SWC prefixes are used.

2. [SWS_Rte_02733] d The RTE Generator shall reject a configuration where a
runnable has the attribute canBeInvokedConcurrently set to true and the
attribute minimumStartInterval set to greater zero. c(SRS_Rte_00018)

Rationale: If a runnable should run concurrently (i.e., have several Exe-
cutableEntity execution-instances), this implies that the minimum in-
terval between the start of the runnables is zero. The configuration to be rejected
is inconsistent.

A.7 Restrictions concerning runnables with dependencies on
modes

1. Operations may not be disabled by a ModeDisablingDependency.

689 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_02706] d RTE shall reject configurations that contain Opera-
tionInvokedEvents with a ModeDisablingDependency. c(SRS_Rte_00143,
SRS_Rte_00018)

Rationale: It is a preferable implementation, if the server responds with an ex-
plicit application error, when the server operation is not supported in a mode.
To implement the disabling of operations would require a high amount of book
keeping even for internal client server communication to prevent that the unique
request response mapping gets lost.

2. Only a category 1 runnable may be triggered by

• a SwcModeSwitchEvent

• an RTEEvent with a mode disabling dependency

[SWS_Rte_02500] d The RTE generator shall reject configurations with cate-
gory 2 runnables connected to SwcModeSwitchEvents and RTEEvents / Bsw-
Events with ModeDisablingDependencys if the mode machine instance is
synchronous. The rejection may be reduced to a warning when the RTE gener-
ator is explicitly set to a non strict mode. c(SRS_Rte_00143, SRS_Rte_00213,
SRS_Rte_00018)

Rationale: The above runnables are executed or terminated on the transitions
between different modes. To execute the mode switch withing finite time, also
these runnables have to be executed within finite execution time.

3. All OnEntry ExecutableEntitys, OnTransition ExecutableEntitys,
and OnExit ExecutableEntitys of the same mode machine instance
should be mapped to the same task in case of synchronous mode switching pro-
cedure.

[SWS_Rte_02662] d The RTE generator shall reject configurations with OnEn-
try, OnTransition, or OnExit ExecutableEntity’s of the same mode machine in-
stance that are mapped to different tasks in case of synchronous mode switch-
ing procedure. c(SRS_Rte_00143, SRS_Rte_00213, SRS_Rte_00018)

In case of asynchronous mode switching procedure, a mapping of all affected
runnables to no task is also possible.

Rationale: This restriction simplifies the implementation of the semantics of a
synchronous mode switch.

4. To guarantee that all mode disabling dependent ExecutableEntitys of
a mode machine instance have terminated before the start of the OnExit
ExecutableEntitys of the transition, the mode disabling dependent
ExecutableEntitys should run with higher or equal priority.

[SWS_Rte_02663] d The RTE generator shall reject configurations with mode
disabling dependent ExecutableEntitys that are mapped to a task
with lower priority than the task that contains the OnEntry ExecutableEn-
titys and OnExit ExecutableEntitys of that mode machine instance

690 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

supporting a synchronous mode switching procedure. c(SRS_Rte_00143,
SRS_Rte_00213, SRS_Rte_00018)

5. [SWS_Rte_02664] d The RTE generator shall reject configurations of a task with

• OnExit ExecutableEntitys mapped after OnEntry ExecutableEn-
titys or

• OnTransition ExecutableEntitys mapped after OnEntry Exe-
cutableEntitys or

• OnExit ExecutableEntitys mapped after OnTransition Exe-
cutableEntitys

of the same mode machine instance supporting a synchronous mode switch-
ing procedure. c(SRS_Rte_00143, SRS_Rte_00213, SRS_Rte_00018)

Rationale: This restriction simplifies the implementation of the semantics of a
synchronous mode switch.

6. [SWS_Rte_07157] d The RTE generator shall reject configurations with

• OnExit ExecutableEntitys mapped after OnEntry ExecutableEn-
titys or

• OnTransition ExecutableEntitys mapped after OnEntry Exe-
cutableEntitys or

• OnExit ExecutableEntitys mapped after OnTransition Exe-
cutableEntitys

of the same software component or Basic Software Module for a mode ma-
chine instance supporting an asynchronous mode switching procedure.
c(SRS_Rte_00143, SRS_Rte_00213, SRS_Rte_00018)

Rationale: This restriction simplifies the implementation of the semantics of an
asynchronous mode switch.

7. If a mode is used to trigger a runnable for entering or leaving the mode, but
this runnable has a ModeDisablingDependency on the same mode, the
ModeDisablingDependency inhibits the activation of the runnable on the tran-
sition (see section 4.4.4).

To prevent such a misleading configuration, it is strongly recommended not to
configure a ModeDisablingDependency for an OnEntry ExecutableEn-
tity or OnExit ExecutableEntity, using the same mode.

8. In case that the mode machine instance is initialized by Rte_Init API the related
OnEntry Runnable Entities for the initialMode have to be executed in
the context of the Rte_Init API. In order to enable the complete transition to
the initialMode it is required that all OnEntry Runnable Entities are
mapped to RteInitializationRunnableBatch containers otherwise a part

691 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

of the OnEntry Runnable Entities wouldn’t be scheduled during the tran-
sition to the initialMode.

[constr_9062] Entire mapping of OnEntry Runnable Entities for ini-
tialMode to RteInitializationRunnableBatch containers d Either all
or none of the OnEntry Runnable Entities of a particular mode machine
instance for the initialMode shall be mapped to RteInitialization-
RunnableBatch containers. c

[SWS_Rte_06768] d The RTE Generator shall reject configurations violating
[constr_9062]. c(SRS_Rte_00143, SRS_Rte_00240, SRS_Rte_00018)

Please note as well [constr_9063] which limits the applicability of the mapping to
RteInitializationRunnableBatch containers.

A.8 Restriction concerning SwcInternalBehavior

1. [SWS_Rte_07686] d The RTE Generator shall reject configurations where
an AtomicSwComponentType does not contain a SwcInternalBehavior.
c(SRS_Rte_00018)

A.9 Restrictions concerning Initial Value

1. [SWS_Rte_07642] d When the external configuration switch
strictInitialValuesCheck is enabled, the RTE Generator shall reject
configurations where a SwAddrMethod has a sectionInitializationPol-
icy set to init but no initValues are specified on the sender or receiver
side. c(SRS_Rte_00068, SRS_Rte_00108, SRS_Rte_00018)

Rationale: The initValue is used to guarantee that the RTE won’t deliver un-
defined values.

2. [SWS_Rte_08311] d When the external configuration switch
strictInitialValuesCheck is enabled, the RTE Generator shall reject
configurations where a SwAddrMethod has a sectionInitializationPol-
icy set to init but no initValue is specified on the inter runnable variable.
c(SRS_Rte_00068, SRS_Rte_00108, SRS_Rte_00018)

Rationale: The initValue is used to guarantee that the RTE won’t deliver un-
defined values.

3. [SWS_Rte_07681] d If strict checking of initial values is enabled
(see [SWS_Rte_07680]), the RTE Generator shall reject configurations
where a ParameterDataPrototype has no initValues. c(SRS_Rte_00108,
SRS_Rte_00018)

692 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Rationale: This allows to provide the values with a calibration without any in-
volvements from the RTE Generator, and still permits to enable a stricter check
on projects where it is required.

A.10 Restriction concerning PerInstanceMemory

1. [SWS_Rte_07045] d The RTE generator shall reject configurations where
the type attribute of a ’C’ typed PerInstanceMemory is equal to the
name of a ImplementationDataType contained in the input configuration.
c(SRS_Rte_00013, SRS_Rte_00077)

Rationale: This would lead to equally named C type definitions.

A.11 Restrictions concerning unconnected r-port

1. [SWS_Rte_03019] d If strict checking has been enabled (see [SWS_Rte_05099])
there shall not be unconnected r-port. The RTE generator shall in this case reject
the configuration with unconnected r-port. c(SRS_Rte_00139, SRS_Rte_00018)

Rationale: Unconnected r-port is considered as wrong configuration of the sys-
tem.

2. [SWS_Rte_02750] d The RTE Generator shall reject configurations where an r-
port typed with a ParameterInterface is not connected and an initValue of
a ParameterRequireComSpec is not provided for each ParameterDataPro-
totypes of this ParameterInterface. c(SRS_Rte_00139, SRS_Rte_00159,
SRS_Rte_00018)

A.12 Restrictions regarding communication of mode switch noti-
fications

1. [SWS_Rte_02670] dRTE shall not support connections with multiple senders
(n:1 communication) of mode switch notifications connected to the
same receiver. The RTE generator shall reject configurations with multiple
senders of mode switch notifications connected to the same receiver.
c(SRS_Rte_00131, SRS_Rte_00018)

Rationale: No use case is known to justify the required complexity.

2. [SWS_Rte_02724] dRTE shall reject configurations where one ModeDecla-
rationGroupPrototype of a provide port is connected to ModeDecla-
rationGroupPrototypes of require ports from more than one partition.
c(SRS_Rte_00131, SRS_Rte_00018)

693 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

RTE does not support a configuration in which the mode user of one mode ma-
chine instance are distributed over several partitions except the mode user
which is part of the mode manager.

3. For each ModeDeclarationGroup, used in the SW-C’s ports, RTE needs a
unique mapping to an ImplementationDataType.

[SWS_Rte_02738] d RTE shall reject a configuration, in which there is
not exactly one ModeRequestTypeMap referencing the ModeDeclaration-
Group used in a ModeDeclarationGroupPrototype of the SW-C’s ports.
c(SRS_Rte_00144, SRS_Rte_00018)

A.13 Restrictions regarding Measurement and Calibration

1. [SWS_Rte_03951] d RTE does not support measurement of queued communi-
cation. c(SRS_Rte_00153, SRS_Rte_00018)

Rationale: Measurement of queued communication is not supported yet. Rea-
sons are:

• A queue can be empty. What’s to measure then? Data interpretation is
ambiguous.

• Which of the queue entries the measurement data has to be taken from
(first pending entry, last entry, an intermediate one, mean value, min. or
max. value)? Needs might differ out of user view? Data interpretation is
ambiguous.

• Compared e.g. to sender-receiver last-is-best approach only inefficient so-
lutions are possible because implementation of queues entails storage of
information dynamically at different memory locations. So always additional
copies are required.

2. [SWS_Rte_03970] d The RTE generator shall reject configurations violating [con-
str_1092] so containing require ports attached to ParameterSwComponent-
Types. c(SRS_Rte_00154, SRS_Rte_00156, SRS_Rte_00018)

Rationale: Require ports on ParameterSwComponentTypes don’t make
sense. ParameterSwComponentTypes only have to provide calibration param-
eters to other SwComponentTypes.

A.14 Restriction concerning ExclusiveAreaImplMechanism

1. Usage of WaitPoints is restricted depending on ExclusiveAreaImplMech-
anism
If an exclusive area’s configuration value for ExclusiveAreaImplMechanism is In-

694 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

terruptBlocking or OsResource, no runnable entity shall contain any WaitPoint
inside this exclusive area.

Please note that a wait point can either be a modelling WaitPoint e. g. a Wait-
Point in the SW-C description caused by the usage of a blocking API (e. g.
Rte_Receive) or an implementation wait point caused by a special implementa-
tion to fulfill the requirements of the ECU configuration, e. g. the runnable-to-task
mapping.

Rationale: The operating system has the limitation that a WaitEvent call is
not allowed with disabled interrupts. Therefore the implementation mechanism
InterruptBlocking cannot be used if the exclusive area contains a WaitPoint.

Further the operating system has the limitation that an OS WaitPoint cannot
be entered with occupied OS Resources. This implies that the implementation
mechanism OsResource cannot be used if the exclusive area contains a Wait-
Point.

A.15 Restrictions concerning AtomicSwComponentTypes

1. [SWS_Rte_07190] d The RTE generator shall reject configurations where multi-
ple SwComponentTypes have the same component type symbol regardless
of the ARPackage hierarchy. c(SRS_Rte_00018)

Rational: This is required to generated unique names for the Application Header
Files and component data structures.

2. [SWS_Rte_07191] d The RTE generator shall reject configurations where a
SwComponentType has PortPrototypes typed by different PortInter-
faces with equal short name but conflicting ApplicationErrors. Applica-
tionErrors are conflicting if ApplicationErrors with same name do have
different errorCodes. c(SRS_Rte_00018)

Rational: This is required to generated unique symbolic names for Applica-
tionErrors. (see also [SWS_Rte_02576])

A.16 Restriction concerning the enableUpdate attribute of Non-
queuedReceiverComSpecs

1. [SWS_Rte_07654] d The RTE Generator shall reject configurations violating
[constr_1103] so where a VariableDataPrototype is referenced by a Non-
queuedReceiverComSpec with the enableUpdate attribute enabled, when
this VariableDataPrototype is referenced by a VariableAccess in the
dataReadAccess role. c(SRS_Rte_00179, SRS_Rte_00018)

Rational: the update flag is restricted to explicit communication currently.

695 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

A.17 Restrictions concerning the large and dynamic data type

1. [SWS_Rte_07810] d The RTE shall reject the configuration if a dataElement
with an ImplementationDataType with subElements with arraySize-
Semantics equal to variableSize resolves to another type than uint8[n].
c(SRS_Rte_00018)

Rationale: COM limits the dynamic signals to the ComSignalType UINT_8DYN
(see the requirement COM569). COM doesn’t support dynamic signals included
into signal groups. See more explanations in chapter 4.3.1.14.

2. [SWS_Rte_07811] d The RTE shall reject the configuration if a dataElement
mapped to a PDU with ComIPduType equal to TP has a swImplPolicy different
from queued. c(SRS_Rte_00018)

Rationale: Otherwise COM might return COM_BUSY. See more explanations in
chapter 4.3.1.15.

3. [SWS_Rte_07812] d The RTE shall reject the configuration if a dataElement
with an ImplementationDataType with subElements with arraySizeSe-
mantics equal to variableSize has a swImplPolicy different from queued.
c(SRS_Rte_00018)

Rationale: Otherwise COM might return COM_BUSY. See more explanations in
chapter 4.3.1.15.

A.18 Restriction concerning REFERENCE types

1. [SWS_Rte_07670] d The RTE shall reject the configuration if an Implementa-
tionDataType with category DATA_REFERENCE is used in a PortInterface
and neither sender nor receiver component is a service, complex device driver or
ECU abstraction. c(SRS_Rte_00018)

Rationale: Only for AUTOSAR services, complex device drivers or ECU abstrac-
tion, the use of references is allowed to prevent the misuse of references for
communication via the referenced memory (intra-partition scope). For example,
such a misuse could occur with application software components communicating
together and mapped to different partitions or ECUs.

A.19 Restriction concerning ModeDeclarationGroup categories
and value attributes

1. [SWS_Rte_06801] d The RTE generator shall reject a configuration if constraint
[constr_1298] is violated. c(SRS_Rte_00018)

696 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_06802] d The RTE generator shall reject a configuration if constraint
[constr_1299] is violated. c(SRS_Rte_00018)

[SWS_Rte_06803] d The RTE generator shall reject a configuration if constraint
[constr_1181] is violated. c(SRS_Rte_00018)

Rationale: In case of category EXPLICIT_ORDER the onTransitionValue
and value attributes are required to generate the according definitions (see
5.5.3 and 6.4.2). Thereby unique numbers are required. In case of ALPHA-
BETIC_ORDER the definition of those values are meaningless and causing the
risk of inconsistency to the numbering according the alphabetical sorting.

A.20 Restrictions concerning C/S Interfaces

1. [SWS_Rte_07845] d The Rte Generator shall reject configurations where
a ClientServerOperation in a PPortPrototype is defined but no
RunnableEntity is triggered by an OperationInvokedEvent that refer-
ences the ClientServerOperation. c(SRS_Rte_00029, SRS_Rte_00018)

Rationale: Otherwise the implementation by a server runnable of the operation
in the C/S interface does not exist.

697 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

B External Requirements

A summary on model constraints is provided in document [32].

698 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

C MISRA C Compliance

In general, all RTE code, whether generated or not, shall conform to the HIS subset
of the MISRA C standard [SWS_Rte_01168] [24]. This chapter lists all the MISRA C
rules of the HIS subset that may be violated by the generated RTE.

The MISRA C standard was defined with having mainly hand-written code in mind. Part
of the MISRA C rules only apply to hand-written code, they do not make much sense
in the context of automatic code generation. Additonally, there are some rules that are
violated because of technical reasons, mainly to reduce RTE overhead.

The rules listed in this chapter are expected to be violated by RTE code. Violations to
the rules listed here do not need to be documented as non-compliant to MISRA C in
the generated code itself.

MISRA rule 11

Description

Identifiers (internal and external) shall not rely on significance of
more than 31 characters. Furthermore the compiler/linker shall be
checked to ensure that 31 character significance and case sensitivity
are supported for external identifiers.

Violations
The defined RTE naming convention may result in identifiers with
more than 31 characters. The compliance to this rule is under user’s
control.

MISRA rule 23
Description All declarations at file scope should be static where possible.

Violations E.g. for the purpose of monitoring during calibration or debugging it
may be necessary to use non-static declarations at file scope.

MISRA rule 42

Description The comma operator shall not be used, except in the control expres-
sion of a for loop.

Violations
Function-like macros may have to use the comma opera-
tor. Function-like macros are required for efficiency reasons
[SRS_BSW_00330].

MISRA rule 45
Description Type casting from any type to or from pointers shall not be used.

Violations
Casting to/from pointer type may be needed for the interface with
COM. Casting from a pointer to a Data Element with Status
to a pointer to a Data Element without Status.

MISRA rule 54

699 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Description A null statement shall only occur on a line by itself, and shall not have
any other text on the same line.

Violations In an optimized RTE, API calls may result in a null statement. There-
fore the compliance to this rule cannot be guaranteed.

700 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

D Referenced Meta Classes

Class ARElement (abstract)
Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::ARPackage
Note An element that can be defined stand-alone, i.e. without being part of another

element (except for packages of course).
Base ARObject,CollectableElement,Identifiable,MultilanguageReferrable,Packageable

Element,Referrable
Attribute Datatype Mul. Kind Note
– – – – –

Table D.1: ARElement

Class ARPackage
Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::ARPackage
Note AUTOSAR package, allowing to create top level packages to structure the contained

ARElements.

ARPackages are open sets. This means that in a file based description system
multiple files can be used to partially describe the contents of a package.

This is an extended version of MSR’s SW-SYSTEM.
Base ARObject,AtpBlueprint,AtpBlueprintable,Collectable

Element,Identifiable,MultilanguageReferrable,Referrable
Attribute Datatype Mul. Kind Note
arPackage ARPackage * aggr This represents a sub package within an

ARPackage, thus allowing for an unlimited
package hierarchy.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variation
Point.shortLabel
vh.latestBindingTime=blueprintDerivationTime
xml.sequenceOffset=30

element PackageableEle
ment

* aggr Elements that are part of this package

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variation
Point.shortLabel
vh.latestBindingTime=systemDesignTime
xml.sequenceOffset=20

referenceB
ase

ReferenceBase * aggr This denotes the reference bases for the package.
This is the basis for all relative references within
the package. The base needs to be selected
according to the base attribute within the
references.

Stereotypes: atpSplitable
Tags: atp.splitkey=shortLabel
xml.sequenceOffset=10

Table D.2: ARPackage

701 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class ApplicationArrayDataType
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes
Note An application data type which is an array, each element is of the same application

data type.

Tags: atp.recommendedPackage=ApplicationDataTypes
Base ARElement,ARObject,ApplicationCompositeDataType,ApplicationDataType,Atp

Blueprint,AtpBlueprintable,AtpClassifier,AtpType,AutosarDataType,Collectable
Element,Identifiable,MultilanguageReferrable,PackageableElement,Referrable

Attribute Datatype Mul. Kind Note
element ApplicationArray

Element
1 aggr This association implements the concept of an

array element. That is, in some cases it is
necessary to be able to identify single array
elements, e.g. as input values for an interpolation
routine.

Table D.3: ApplicationArrayDataType

Class ApplicationArrayElement
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::DataPrototypes
Note Describes the properties of the elements of an application array data type.
Base ARObject,ApplicationCompositeElementDataPrototype,AtpFeature,Atp

Prototype,DataPrototype,Identifiable,MultilanguageReferrable,Referrable
Attribute Datatype Mul. Kind Note
arraySizeS
emantics

ArraySizeSema
nticsEnum

0..1 attr This attribute controls how the information about
the array size shall be interpreted.

maxNumb
erOfEleme
nts

PositiveInteger 1 attr The maximum number of elements that the array
can contain.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

Table D.4: ApplicationArrayElement

Class ApplicationCompositeDataType (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes
Note Abstract base class for all application data types composed of other data types.
Base ARElement,ARObject,ApplicationDataType,AtpBlueprint,AtpBlueprintable,Atp

Classifier,AtpType,AutosarDataType,CollectableElement,Identifiable,Multilanguage
Referrable,PackageableElement,Referrable

Attribute Datatype Mul. Kind Note
– – – – –

Table D.5: ApplicationCompositeDataType

702 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class ApplicationCompositeElementDataPrototype (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::DataPrototypes
Note This class represents a data prototype which is aggregated within a composite

application data type (record or array). It is introduced to provide a better distinction
between target and context in instanceRefs.

Base ARObject,AtpFeature,AtpPrototype,DataPrototype,Identifiable,Multilanguage
Referrable,Referrable

Attribute Datatype Mul. Kind Note
type ApplicationData

Type
1 tref This represents the corresponding data type.

Stereotypes: isOfType

Table D.6: ApplicationCompositeElementDataPrototype

Class ApplicationDataType (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes
Note ApplicationDataType defines a data type from the application point of view. Especially

it should be used whenever something "physical" is at stake.

An ApplicationDataType represents a set of values as seen in the application model,
such as measurement units. It does not consider implementation details such as
bit-size, endianess, etc.

It should be possible to model the application level aspects of a VFB system by using
ApplicationDataTypes only.

Base ARElement,ARObject,AtpBlueprint,AtpBlueprintable,AtpClassifier,AtpType,Autosar
DataType,CollectableElement,Identifiable,MultilanguageReferrable,Packageable
Element,Referrable

Attribute Datatype Mul. Kind Note
– – – – –

Table D.7: ApplicationDataType

Class ApplicationError
Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface
Note This is a user-defined error that is associated with an element of an AUTOSAR

interface. It is specific for the particular functionality or service provided by the
AUTOSAR software component.

Base ARObject,Identifiable,MultilanguageReferrable,Referrable
Attribute Datatype Mul. Kind Note
errorCode Integer 1 attr The RTE generator is forced to assign this value

to the corresponding error symbol. Note that for
error codes certain ranges are predefined (see
RTE specification).

Table D.8: ApplicationError

703 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class ApplicationPrimitiveDataType
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes
Note A primitive data type defines a set of allowed values.

Tags: atp.recommendedPackage=ApplicationDataTypes
Base ARElement,ARObject,ApplicationDataType,AtpBlueprint,AtpBlueprintable,Atp

Classifier,AtpType,AutosarDataType,CollectableElement,Identifiable,Multilanguage
Referrable,PackageableElement,Referrable

Attribute Datatype Mul. Kind Note
– – – – –

Table D.9: ApplicationPrimitiveDataType

Class ApplicationRecordDataType
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes
Note An application data type which can be decomposed into prototypes of other

application data types.

Tags: atp.recommendedPackage=ApplicationDataTypes
Base ARElement,ARObject,ApplicationCompositeDataType,ApplicationDataType,Atp

Blueprint,AtpBlueprintable,AtpClassifier,AtpType,AutosarDataType,Collectable
Element,Identifiable,MultilanguageReferrable,PackageableElement,Referrable

Attribute Datatype Mul. Kind Note
element
(ordered)

ApplicationReco
rdElement

1..* aggr Specifies an element of a record.

The aggregation of ApplicationRecordElement is
subject to variability with the purpose to support
the conditional existence of elements inside a
ApplicationrecordDataType.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

Table D.10: ApplicationRecordDataType

Class ApplicationRecordElement
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::DataPrototypes
Note Describes the properties of one particular element of an application record data type.
Base ARObject,ApplicationCompositeElementDataPrototype,AtpFeature,Atp

Prototype,DataPrototype,Identifiable,MultilanguageReferrable,Referrable
Attribute Datatype Mul. Kind Note
– – – – –

Table D.11: ApplicationRecordElement

704 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class ApplicationRuleBasedValueSpecification
Package M2::AUTOSARTemplates::CommonStructure::Constants
Note This meta-class represents rule based values for DataPrototypes typed by

ApplicationDataTypes (ApplicationArrayDataType or a compound
ApplicationPrimitiveDataType which also boils down to an array-nature).

Base ARObject,AbstractRuleBasedValueSpecification,ValueSpecification
Attribute Datatype Mul. Kind Note
category Identifier 1 ref This represents the category of the

RuleBasedValueSpecification

Tags: xml.sequenceOffset=-20
swAxisCon
t (ordered)

RuleBasedAxis
Cont

* aggr This represents the axis values of a Compound
Primitive Data Type (curve or map).

The first swAxisCont describes the x-axis, the
second swAxisCont describes the y-axis, the third
swAxisCont describes the z-axis. In addition to
this, the axis can be denoted in swAxisIndex.

swValueC
ont

RuleBasedValu
eCont

0..1 aggr This represents the values of an array or
Compound Primitive Data Type.

Table D.12: ApplicationRuleBasedValueSpecification

Class ApplicationSwComponentType
Package M2::AUTOSARTemplates::SWComponentTemplate::Components
Note The ApplicationSwComponentType is used to represent the application software.

Tags: atp.recommendedPackage=SwComponentTypes
Base ARElement,ARObject,AtomicSwComponentType,AtpBlueprint,AtpBlueprintable,Atp

Classifier,AtpType,CollectableElement,Identifiable,Multilanguage
Referrable,PackageableElement,Referrable,SwComponentType

Attribute Datatype Mul. Kind Note
– – – – –

Table D.13: ApplicationSwComponentType

Class ApplicationValueSpecification
Package M2::AUTOSARTemplates::CommonStructure::Constants
Note This meta-class represents values for DataPrototypes typed by ApplicationDataTypes

(this includes in particular compound primitives).

For further details refer to ASAM CDF 2.0. This meta-class corresponds to some
extent with SW-INSTANCE in ASAM CDF 2.0.

Base ARObject,ValueSpecification
Attribute Datatype Mul. Kind Note

705 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
category Identifier 1 ref Specifies to which category of

ApplicationDataType this
ApplicationValueSpecification can be applied (e.g.
as an initial value), thus imposing constraints on
the structure and semantics of the contained
values, see [constr_1006] and [constr_2051].

swAxisCon
t (ordered)

SwAxisCont * aggr This represents the axis values of a Compound
Primitive Data Type (curve or map).

The first swAxisCont describes the x-axis, the
second swAxisCont describes the y-axis, the third
swAxisCont describes the z-axis. In addition to
this, the axis can be denoted in swAxisIndex.

swValueC
ont

SwValueCont 0..1 aggr This represents the values of a Compound
Primitive Data Type.

Table D.14: ApplicationValueSpecification

Class ArgumentDataPrototype
Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface
Note An argument of an operation, much like a data element, but also carries direction

information and is owned by a particular ClientServerOperation.
Base ARObject,AtpFeature,AtpPrototype,AutosarDataPrototype,Data

Prototype,Identifiable,MultilanguageReferrable,Referrable
Attribute Datatype Mul. Kind Note
direction ArgumentDirecti

onEnum
1 attr This attribute specifies the direction of the

argument prototype.
serverArgu
mentImplP
olicy

ServerArgument
ImplPolicyEnum

0..1 attr This defines how the argument type of the servers
RunnableEntity is implemented.

If the attribute is not defined this has the same
semantic as if the attribute is set to
useArgumentType

typeBluepri
nt

AutosarDataTyp
e

0..1 ref This allows to denote the intended type within
blueprints. It shall be replaced by a proper type
when deriving Interfaces from the Blueprint.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=blueprintDerivation
Time

Table D.15: ArgumentDataPrototype

Enumeration ArraySizeSemanticsEnum
Package M2::AUTOSARTemplates::CommonStructure::ImplementationDataTypes
Note This type controls how the information about the number of elements in an

ApplicationArrayDataType is to be interpreted.
Literal Description
fixedSize This means that the ApplicationArrayDataType will always have a fixed number of

elements.

706 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

variableSize This implies that the actual number of elements in the ApplicationArrayDataType
might vary at run-time. The value of arraySize represents the maximum number of
elements in the array.

Table D.16: ArraySizeSemanticsEnum

Class ArrayValueSpecification
Package M2::AUTOSARTemplates::CommonStructure::Constants
Note Specifies the values for an array.
Base ARObject,ValueSpecification
Attribute Datatype Mul. Kind Note
element
(ordered)

ValueSpecificati
on

1..* aggr The value for a single array element. All
ValueSpecifications aggregated by
ArrayValueSpecification shall have the same
structure.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

Table D.17: ArrayValueSpecification

Class AssemblySwConnector
Package M2::AUTOSARTemplates::SWComponentTemplate::Composition
Note AssemblySwConnectors are exclusively used to connect SwComponentPrototypes in

the context of a CompositionSwComponentType.
Base ARObject,AtpClassifier,AtpFeature,AtpStructureElement,Identifiable,Multilanguage

Referrable,Referrable,SwConnector
Attribute Datatype Mul. Kind Note
provider AbstractProvide

dPortPrototype
0..1 iref Instance of providing port.

requester AbstractRequire
dPortPrototype

0..1 iref Instance of requiring port.

Table D.18: AssemblySwConnector

Class AsynchronousServerCallPoint
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::ServerCall
Note An AsynchronousServerCallPoint is used for asynchronous invocation of a

ClientServerOperation. IMPORTANT: a ServerCallPoint cannot be used concurrently.
Once the client RunnableEntity has made the invocation, the ServerCallPoint cannot
be used until the call returns (or an error occurs!) at which point the ServerCallPoint
becomes available again.

Base ARObject,AtpClassifier,AtpFeature,AtpStructureElement,Identifiable,Multilanguage
Referrable,Referrable,ServerCallPoint

Attribute Datatype Mul. Kind Note
– – – – –

Table D.19: AsynchronousServerCallPoint

707 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class AsynchronousServerCallResultPoint
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::ServerCall
Note If a RunnableEntity owns a AsynchronousServerCallResultPoint it is entitled to get

the result of the referenced AsynchronousServerCallPoint. If it is associated with
AsynchronousServerCallReturnsEvent, this RTEEvent notifies the completion of the
required ClientServerOperation or a timeout. The occurrence of this event can either
unblock a WaitPoint or can lead to the invocation of a RunnableEntity.

Base ARObject,AtpClassifier,AtpFeature,AtpStructureElement,Identifiable,Multilanguage
Referrable,Referrable

Attribute Datatype Mul. Kind Note
asynchron
ousServer
CallPoint

AsynchronousS
erverCallPoint

1 ref The referenced Asynchronous Server Call Point
defines the asynchronous server call from which
the results are returned.

Table D.20: AsynchronousServerCallResultPoint

Class AsynchronousServerCallReturnsEvent
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTE

Events
Note This event is raised when an asynchronous server call is finished.
Base ARObject,AbstractEvent,AtpClassifier,AtpFeature,AtpStructure

Element,Identifiable,MultilanguageReferrable,RTEEvent,Referrable
Attribute Datatype Mul. Kind Note
eventSour
ce

AsynchronousS
erverCallResult
Point

1 ref The referenced
AsynchronousServerCallResultPoint which is
raises the RTEEvent in case of returning
asynchronous server call.

Table D.21: AsynchronousServerCallReturnsEvent

Class AtomicSwComponentType (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::Components
Note An atomic software component is atomic in the sense that it cannot be further

decomposed and distributed across multiple ECUs.
Base ARElement,ARObject,AtpBlueprint,AtpBlueprintable,AtpClassifier,Atp

Type,CollectableElement,Identifiable,MultilanguageReferrable,Packageable
Element,Referrable,SwComponentType

Attribute Datatype Mul. Kind Note
internalBe
havior

SwcInternalBeh
avior

0..1 aggr The SwcInternalBehaviors owned by an
AtomicSwComponentType can be located in a
different physical file. Therefore the aggregation is
«atpSplitable».

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=internalBehavior, variation
Point.shortLabel
vh.latestBindingTime=preCompileTime

708 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
symbolPro
ps

SymbolProps 0..1 aggr This represents the SymbolProps for the
AtomicSwComponentType.

Stereotypes: atpSplitable
Tags: atp.Splitkey=shortName

Table D.22: AtomicSwComponentType

Class �atpMixedString� AttributeValueVariationPoint (abstract)
Package M2::AUTOSARTemplates::GenericStructure::VariantHandling::AttributeValueVariation

Points
Note This class represents the ability to derive the value of the Attribute from a system

constant (by SwSystemconstDependentFormula). It also provides a bindingTime.
Base ARObject,FormulaExpression,SwSystemconstDependentFormula
Attribute Datatype Mul. Kind Note
bindingTim
e

BindingTimeEn
um

0..1 attr This is the binding time in which the attribute value
needs to be bound.

If this attribute is missing, the attribute is not a
variation point. In particular this means that It
needs to be a single value according to the type
specified in the pure model. It is an error if it is still
a formula.

Tags: xml.attribute=true
blueprintV
alue

String 0..1 attr This represents a description that documents how
the value shall be defined when deriving objects
from the blueprint.

Tags: xml.attribute=true
sd String 0..1 attr This special data is provided to allow

synchronization of Attribute value variation points
with variant management systems. The usage is
subject of agreement between the involved
parties.

Tags: xml.attribute=true
shortLabel PrimitiveIdentifi

er
0..1 attr This allows to identify the variation point. It is also

intended to allow RTE support for CompileTime
Variation points.

Tags: xml.attribute=true

Table D.23: AttributeValueVariationPoint

709 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class AutosarDataPrototype (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::DataPrototypes
Note Base class for prototypical roles of an AutosarDataType.
Base ARObject,AtpFeature,AtpPrototype,DataPrototype,Identifiable,Multilanguage

Referrable,Referrable
Attribute Datatype Mul. Kind Note
type AutosarDataTyp

e
1 tref This represents the corresponding data type.

Stereotypes: isOfType

Table D.24: AutosarDataPrototype

Class AutosarDataType (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes
Note Abstract base class for user defined AUTOSAR data types for ECU software.
Base ARElement,ARObject,AtpClassifier,AtpType,Collectable

Element,Identifiable,MultilanguageReferrable,PackageableElement,Referrable
Attribute Datatype Mul. Kind Note
swDataDef
Props

SwDataDefProp
s

0..1 aggr The properties of this AutosarDataType.

Table D.25: AutosarDataType

Class BackgroundEvent
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTE

Events
Note This event is used to trigger RunnableEntities that are supposed to be executed in the

background.
Base ARObject,AbstractEvent,AtpClassifier,AtpFeature,AtpStructure

Element,Identifiable,MultilanguageReferrable,RTEEvent,Referrable
Attribute Datatype Mul. Kind Note
– – – – –

Table D.26: BackgroundEvent

Class BaseType (abstract)
Package M2::AUTOSARTemplates::CommonStructure::BaseTypes
Note This abstract meta-class represents the ability to specify a platform dependant base

type.
Base ARElement,ARObject,CollectableElement,Identifiable,Multilanguage

Referrable,PackageableElement,Referrable
Attribute Datatype Mul. Kind Note
baseType
Definition

BaseTypeDefini
tion

1 aggr This is the actual definition of the base type.

Tags: xml.roleElement=false; xml.roleWrapper
Element=false; xml.sequenceOffset=20; xml.type
Element=false; xml.typeWrapperElement=false

Table D.27: BaseType

710 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class BaseTypeDirectDefinition
Package M2::AUTOSARTemplates::CommonStructure::BaseTypes
Note This BaseType is defined directly (as opposite to a derived BaseType)
Base ARObject,BaseTypeDefinition
Attribute Datatype Mul. Kind Note
baseType
Encoding

BaseTypeEnco
dingString

1 attr This specifies, how an object of the current
BaseType is encoded, e.g. in an ECU within a
message sequence.

Tags: xml.sequenceOffset=90
baseType
Size

PositiveInteger 0..1 attr Describes the length of the data type specified in
the container in bits.

Tags: xml.sequenceOffset=70
byteOrder ByteOrderEnum 0..1 attr This attribute specifies the byte order of the base

type.

Tags: xml.sequenceOffset=110
maxBaseT
ypeSize

PositiveInteger 0..1 attr Describes the maximum length of the BaseType in
bits.

Tags: xml.sequenceOffset=80
memAlign
ment

PositiveInteger 0..1 attr This attribute describes the alignment of the
memory object in bits. E.g. "8" specifies, that the
object in question is aligned to a byte while "32"
specifies that it is aligned four byte. If the value is
set to "0" the meaning shall be interpreted as
"unspecified".

Tags: xml.sequenceOffset=100

711 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
nativeDecl
aration

NativeDeclarati
onString

0..1 attr This attribute describes the declaration of such a
base type in the native programming language,
primarily in the Programming language C. This
can then be used by a code generator to include
the necessary declarations into a header file. For
example

BaseType with
shortName: "MyUnsignedInt"

nativeDeclaration: "unsigned short"

Results in
typedef unsigned short MyUnsignedInt;

If the attribute is not defined the referring
ImplementationDataTypes will not be generated
as a typedef by RTE.

If a nativeDeclaration type is given it shall fulfill the
characteristic given by basetypeEncoding and
baseTypeSize.

This is required to ensure the consistent handling
and interpretation by software components, RTE,
COM and MCM systems.

Tags: xml.sequenceOffset=120

Table D.28: BaseTypeDirectDefinition

Enumeration BindingTimeEnum
Package M2::AUTOSARTemplates::GenericStructure::VariantHandling
Note This enumerator specifies the applicable binding times for the pre build variation

points.
Literal Description
codeGenera-
tionTime • Coding by hand, based on requirements document.

• Tool based code generation, e.g. from a model.

• The model may contain variants.

• Only code for the selected variant(s) is actually generated.

linkTime Configure what is included in object code, and what is omitted Based on which
variant(s) are selected E.g. for modules that are delivered as object code (as
opposed to those that are delivered as source code)

712 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

preCompile
Time

This is typically the C-Preprocessor. Exclude parts of the code from the
compilation process, e.g., because they are not required for the selected variant,
because they are incompatible with the selected variant, because they require
resources that are not present in the selected variant. Object code is only
generated for the selected variant(s). The code that is excluded at this stage code
will not be available at later stages.

systemDe-
signTime • Designing the VFB.

• Software Component types (PortInterfaces).

• SWC Prototypes and the Connections between SWCprototypes.

• Designing the Topology

• ECUs and interconnecting Networks

• Designing the Communication Matrix and Data Mapping

Table D.29: BindingTimeEnum

Class �atpMixedString� BooleanValueVariationPoint
Package M2::AUTOSARTemplates::GenericStructure::VariantHandling::AttributeValueVariation

Points
Note This class represents an attribute value variation point for Boolean attributes.

Note that this class might be used in the extended meta-model on
Base ARObject,AttributeValueVariationPoint,FormulaExpression,SwSystemconst

DependentFormula
Attribute Datatype Mul. Kind Note
– – – – –

Table D.30: BooleanValueVariationPoint

Class BswAsynchronousServerCallPoint
Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior
Note Represents an asynchronous procedure call point via the BSW Scheduler.
Base ARObject,BswModuleCallPoint,Referrable
Attribute Datatype Mul. Kind Note
calledEntry BswModuleClie

ntServerEntry
1 ref The entry to be called.

Table D.31: BswAsynchronousServerCallPoint

713 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class BswAsynchronousServerCallResultPoint
Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior
Note The callback point for an BswAsynchronousServerCallPoint i.e. the point at which the

result can be retrieved from the BSW Scheduler.
Base ARObject,BswModuleCallPoint,Referrable
Attribute Datatype Mul. Kind Note
asynchron
ousServer
CallPoint

BswAsynchrono
usServerCallPoi
nt

1 ref The call point invoking the call to which the result
belongs.

Table D.32: BswAsynchronousServerCallResultPoint

Class BswBackgroundEvent
Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior
Note A recurring BswEvent which is used to perform background activities. It is similar to a

BswTimingEvent but has no fixed time period and is activated only with low priority.
Base ARObject,AbstractEvent,BswEvent,BswScheduleEvent,Identifiable,Multilanguage

Referrable,Referrable
Attribute Datatype Mul. Kind Note
– – – – –

Table D.33: BswBackgroundEvent

Class BswCalledEntity
Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior
Note BSW module entity which is designed to be called from another BSW module or

cluster.
Base ARObject,BswModuleEntity,ExecutableEntity,Identifiable,Multilanguage

Referrable,Referrable
Attribute Datatype Mul. Kind Note
– – – – –

Table D.34: BswCalledEntity

Class BswDataReceivedEvent
Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior
Note This event is thrown on reception of the referenced data via

Sender-Receiver-Communication over the BSW Scheduler.
Base ARObject,AbstractEvent,BswEvent,BswScheduleEvent,Identifiable,Multilanguage

Referrable,Referrable
Attribute Datatype Mul. Kind Note
data VariableDataPr

ototype
1 ref The received data.

Table D.35: BswDataReceivedEvent

714 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class BswDataReceptionPolicy (abstract)
Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior
Note Specifies the reception policy for the referred data in sender-receiver communication

over the BSW Scheduler. To be used for inter-partition and/or inter-core
communication.

Base ARObject
Attribute Datatype Mul. Kind Note
receivedD
ata

VariableDataPr
ototype

1 ref The data received over the BSW Scheduler using
this policy.

Table D.36: BswDataReceptionPolicy

Class BswDebugInfo
Package M2::AUTOSARTemplates::BswModuleTemplate::BswImplementation
Note Collects the information on the data provided to the AUTOSAR debug module.
Base ARObject,Identifiable,MultilanguageReferrable,Referrable
Attribute Datatype Mul. Kind Note
localDebug
Data

Implementation
DataTypeEleme
nt

* aggr A data element declared locally to this module,
cluster or library. It shall be used (within
AUTOSAR) only for debugging purposes.

parameter
AccessedF
orDebug

ParameterData
Prototype

* ref Indicates a parameter as to be debugged.

variableAc
cessedFor
Debug

VariableDataPr
ototype

* ref Indicates a variable as to be debugged.

Table D.37: BswDebugInfo

Class BswEvent (abstract)
Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior
Note Base class of various kinds of events which are used to trigger a BswModuleEntity of

this BSW module or cluster. The event is local to the BSW module or cluster. The
short name of the meta-class instance is intended as an input to configure the
required API of the BSW Scheduler.

Base ARObject,AbstractEvent,Identifiable,MultilanguageReferrable,Referrable
Attribute Datatype Mul. Kind Note
contextLim
itation

BswDistinguish
edPartition

* ref The existence of this reference indicates that the
usage of the event is limited to the context of the
referred BswDistinguishedPartitions.

disabledIn
Mode

ModeDeclaratio
n

* iref The modes, in which this event is disabled.

Stereotypes: atpSplitable
Tags: atp.Splitkey=disabledInMode

startsOnEv
ent

BswModuleEntit
y

1 ref The entity which is started by the event.

Table D.38: BswEvent

715 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Enumeration BswExecutionContext
Package M2::AUTOSARTemplates::BswModuleTemplate::BswInterfaces
Note Specifies the execution context required or guaranteed for the call associated with

this service.
Literal Description
hook Context of an OS "hook" routine always
interruptCat1 CAT1 interrupt context always
interruptCat2 CAT2 interrupt context always
task Task context always
unspecified The execution context is not specified by the API

Table D.39: BswExecutionContext

Class BswExternalTriggerOccurredEvent
Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior
Note A BswEvent resulting from a trigger released by another module or cluster.
Base ARObject,AbstractEvent,BswEvent,BswScheduleEvent,Identifiable,Multilanguage

Referrable,Referrable
Attribute Datatype Mul. Kind Note
trigger Trigger 1 ref The trigger associated with this event. The trigger

is external to this module.

Table D.40: BswExternalTriggerOccurredEvent

Class BswImplementation
Package M2::AUTOSARTemplates::BswModuleTemplate::BswImplementation
Note Contains the implementation specific information in addition to the generic

specification (BswModuleDescription and BswBehavior). It is possible to have several
different BswImplementations referring to the same BswBehavior.

Tags: atp.recommendedPackage=BswImplementations
Base ARElement,ARObject,CollectableElement,Identifiable,Implementation,Multilanguage

Referrable,PackageableElement,Referrable
Attribute Datatype Mul. Kind Note
arRelease
Version

RevisionLabelSt
ring

1 attr Version of the AUTOSAR Release on which this
implementation is based. The numbering contains
three levels (major, minor, revision) which are
defined by AUTOSAR.

behavior BswInternalBeh
avior

1 ref The behavior of this implementation.

debugInfo BswDebugInfo 0..1 aggr Collects the debug info for this implementation.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

716 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
preconfigur
edConfigur
ation

EcucModuleCo
nfigurationValue
s

* ref Reference to the set of preconfigured (i.e. fixed)
configuration values for this BswImplementation.

If the BswImplementation represents a cluster of
several modules, more than one
EcucModuleConfigurationValues element can be
referred (at most one per module), otherwise at
most one such element can be referred.

Tags: xml.roleWrapperElement=true
recommen
dedConfig
uration

EcucModuleCo
nfigurationValue
s

* ref Reference to one or more sets of recommended
configuration values for this module or module
cluster.

vendorApiI
nfix

Identifier 0..1 ref In driver modules which can be instantiated
several times on a single ECU, SRS_BSW_00347
requires that the names of files, APIs, published
parameters and memory allocation keywords are
extended by the vendorId and a vendor specific
name. This parameter is used to specify the
vendor specific name. In total, the implementation
specific API name is generated as follows:
<ModuleName>_<vendorId>_
<vendorApiInfix>_<API name from SWS>.

E.g. assuming that the vendorId of the
implementer is 123 and the implementer chose a
vendorApiInfix of "v11r456" an API name
Can_Write defined in the SWS will translate to
Can_123_v11r456_Write.

This attribute is mandatory for all modules with
upper multiplicity > 1. It shall not be used for
modules with upper multiplicity =1.

See also SWS_BSW_00102.
vendorSpe
cificModule
Def

EcucModuleDef * ref Reference to

• the vendor specific EcucModuleDef used in
this BswImplementation if it represents a
single module

• several EcucModuleDefs used in this
BswImplementation if it represents a cluster
of modules

• one or no EcucModuleDefs used in this
BswImplementation if it represents a library

Tags: xml.roleWrapperElement=true

Table D.41: BswImplementation

717 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class BswInternalBehavior
Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior
Note Specifies the behavior of a BSW module or a BSW cluster w.r.t. the code entities

visible by the BSW Scheduler. It is possible to have several different
BswInternalBehaviors referring to the same BswModuleDescription.

Base ARObject,AtpClassifier,AtpFeature,AtpStructureElement,Identifiable,Internal
Behavior,MultilanguageReferrable,Referrable

Attribute Datatype Mul. Kind Note
distinguish
edPartition

BswDistinguish
edPartition

* aggr Indicates an abstract partition context in which the
enclosing BswModuleEntity can be executed.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=60

entity BswModuleEntit
y

1..* aggr A code entity for which the behavior is described

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=5

event BswEvent * aggr An event required by this module behavior.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=10

internalTrig
geringPoin
t

BswInternalTrig
geringPoint

* aggr An internal triggering point.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=2

modeRece
iverPolicy

BswModeRecei
verPolicy

* aggr Implementation policy for the reception of mode
switches.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=25

modeSend
erPolicy

BswModeSende
rPolicy

* aggr Implementation policy for providing a mode group.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=20

718 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
perInstanc
eParamete
r

ParameterData
Prototype

* aggr Describes a read only memory object containing
characteristic value(s) needed by this
BswInternalBehavior. The role name
perInstanceParameter is chosen in analogy to the
similar role in the context of SwcInternalBehavior.

In contrast to constantMemory, this object is not
allocated locally by the module’s code, but by the
BSW Scheduler and it is accessed from the BSW
module via the BSW Scheduler API. The main use
case is the support of software emulation of
calibration data.

The aggregation is subject to variability with the
purpose to support implementation variants.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=45

receptionP
olicy

BswDataRecept
ionPolicy

* aggr Data reception policy for inter-partition and/or
inter-core communication.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=55

scheduler
NamePrefi
x

BswSchedulerN
amePrefix

* aggr Optional definition of one or more prefixes to be
used for the BswScheduler.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=50

serviceDep
endency

BswServiceDep
endency

* aggr Defines the requirements on AUTOSAR Services
for a particular item.

The aggregation is subject to variability with the
purpose to support the conditional existence of
ServiceNeeds.

The aggregation is splitable in order to support
that ServiceNeeds might be provided in later
development steps.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=serviceDependency, variation
Point.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=40

triggerDire
ctImpleme
ntation

BswTriggerDire
ctImplementatio
n

* aggr Specifies a trigger to be directly implemented via
OS calls.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=15

719 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note

Table D.42: BswInternalBehavior

Class BswInternalTriggerOccurredEvent
Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior
Note A BswEvent, which can happen sporadically. The event is activated by explicit calls

from the module to the BSW Scheduler. The main purpose for such an event is to
cause a context switch, e.g. from an ISR context into a task context. Activation and
switching are handled within the same module or cluster only.

Base ARObject,AbstractEvent,BswEvent,BswScheduleEvent,Identifiable,Multilanguage
Referrable,Referrable

Attribute Datatype Mul. Kind Note
eventSour
ce

BswInternalTrig
geringPoint

1 ref The activation point is the source of this event.

Table D.43: BswInternalTriggerOccurredEvent

Class BswInternalTriggeringPoint
Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior
Note Represents the activation point for one or more BswInternalTriggerOccurredEvents.
Base ARObject,Identifiable,MultilanguageReferrable,Referrable
Attribute Datatype Mul. Kind Note
swImplPoli
cy

SwImplPolicyEn
um

0..1 attr This attribute, when set to value queued, specifies
a queued processing of the internal trigger event.

Table D.44: BswInternalTriggeringPoint

Class BswInterruptEntity
Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior
Note BSW module entity, which is designed to be triggered by an interrupt.
Base ARObject,BswModuleEntity,ExecutableEntity,Identifiable,Multilanguage

Referrable,Referrable
Attribute Datatype Mul. Kind Note
interruptCa
tegory

BswInterruptCat
egory

1 attr Category of the interrupt

interruptSo
urce

String 1 attr Allows a textual documentation of the intended
interrupt source.

Table D.45: BswInterruptEntity

Class BswModeReceiverPolicy
Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior
Note Specifies the details for the reception of a mode switch for the referred mode group.
Base ARObject
Attribute Datatype Mul. Kind Note

720 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
enhanced
ModeApi

Boolean 0..1 attr This controls the creation of the enhanced mode
API that returns information about the previous
mode and the next mode. If set to TRUE the
enhanced mode API is supposed to be generated.
For more details please refer to the SWS_RTE.

requiredM
odeGroup

ModeDeclaratio
nGroupPrototyp
e

1 ref The required mode group for which the policy is
specified.

supportsAs
ynchronou
sModeSwit
ch

Boolean 1 attr Specifies whether the module can handle the
reception of an asynchronous mode switch (true)
or not (false).

Table D.46: BswModeReceiverPolicy

Class BswModeSenderPolicy
Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior
Note Specifies the details for the sending of a mode switch for the referred mode group.
Base ARObject
Attribute Datatype Mul. Kind Note
ackReques
t

BswModeSwitc
hAckRequest

0..1 aggr Request for acknowledgement

enhanced
ModeApi

Boolean 0..1 attr

providedM
odeGroup

ModeDeclaratio
nGroupPrototyp
e

1 ref The provided mode group for which the policy is
specified.

queueLeng
th

PositiveInteger 1 attr Length of call queue on the sender side. The
queue is implemented by the RTE
resp.BswScheduler. The value must be greater or
equal to 0. Setting the value of queueLength to 0
implies non-queued communication.

Table D.47: BswModeSenderPolicy

Class BswModeSwitchAckRequest
Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior
Note Requests acknowledgements that a mode switch has been processed successfully
Base ARObject
Attribute Datatype Mul. Kind Note
timeout TimeValue 1 attr Number of seconds before an error is reported.

Table D.48: BswModeSwitchAckRequest

721 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class BswModeSwitchEvent
Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior
Note A BswEvent resulting from a mode switch.
Base ARObject,AbstractEvent,BswEvent,BswScheduleEvent,Identifiable,Multilanguage

Referrable,Referrable
Attribute Datatype Mul. Kind Note
activation ModeActivation

Kind
1 attr Kind of activation w.r.t. to the referred mode.

mode (or-
dered)

ModeDeclaratio
n

1..2 iref Reference to one or two Modes that initiate the
Mode Switch Event.

Table D.49: BswModeSwitchEvent

Class BswModeSwitchedAckEvent
Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior
Note The event is raised after a switch of the referenced mode group has been

acknowledged or an error occurs. The referenced mode group must be provided by
this module.

Base ARObject,AbstractEvent,BswEvent,BswScheduleEvent,Identifiable,Multilanguage
Referrable,Referrable

Attribute Datatype Mul. Kind Note
modeGrou
p

ModeDeclaratio
nGroupPrototyp
e

1 ref A mode group provided by this module. The
acknowledgement of a switch of this group raises
this event.

Table D.50: BswModeSwitchedAckEvent

Class BswModuleCallPoint (abstract)
Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior
Note Represents a point at which a BswModuleEntity handles a procedure call into a

BswModuleEntry, either directly or via the BSW Scheduler.
Base ARObject,Referrable
Attribute Datatype Mul. Kind Note
contextLim
itation

BswDistinguish
edPartition

* ref The existence of this reference indicates that the
call point is used only in the context of the referred
BswDistinguishedPartitions.

Table D.51: BswModuleCallPoint

722 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class BswModuleClientServerEntry
Package M2::AUTOSARTemplates::BswModuleTemplate::BswInterfaces
Note This meta-class represents a single API entry into the BSW module or cluster that

has the ability to be called in client-server fashion via the BSW Scheduler.

In this regard it is more special than BswModuleEntry and can be seen as a wrapper
around the BswModuleEntry to which it refers (property encapsulatedEntry).

Tags: atp.recommendedPackage=BswModuleEntrys
Base ARObject,Referrable
Attribute Datatype Mul. Kind Note
encapsulat
edEntry

BswModuleEntr
y

1 ref The underlying BswModuleEntry.

Tags: xml.sequenceOffset=5
isReentran
t

Boolean 0..1 attr Reentrancy from the viewpoint of clients invoking
the service via the BSW Scheduler:

• True: Enables the service to be invoked
again, before the service has finished.

• False: It is prohibited to invoke the service
again before is has finished.

Tags: xml.sequenceOffset=10
isSynchron
ous

Boolean 0..1 attr Synchronicity from the viewpoint of clients
invoking the service via the BSW Scheduler:

• True: This calls a synchronous service, i.e.
the service is completed when the call
returns.

• False: The service (on semantical level)
may not be complete when the call returns.

Tags: xml.sequenceOffset=15

Table D.52: BswModuleClientServerEntry

Class BswModuleDependency
Package M2::AUTOSARTemplates::BswModuleTemplate::BswInterfaces
Note This class collects the dependencies of a BSW module or cluster on a certain other

BSW module.
Base ARObject,Identifiable,MultilanguageReferrable,Referrable
Attribute Datatype Mul. Kind Note
expectedC
allback

BswModuleEntr
y

* ref Indicates a callback expected to be called from
another module and implemented by this module.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=15

723 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
requiredEn
try

BswModuleEntr
y

* ref Indicates an entry into another modules which is
required by this module.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=10

serviceIte
m

ServiceNeeds * aggr A single item (example: Nv block) for which the
quality of a service is defined.

The aggregation is marked as «atpSplitable» to
allow for extension during the ECU configuration
process.

This association is deprecated since R4.0.3, since
ServiceNeeds shall be associated with the new
element BswServiceDependency within the
BswInternalBehavior.

Stereotypes: atpSplitable
Tags: atp.Splitkey=shortName; atp.
Status=obsolete
xml.sequenceOffset=20

targetMod
uleId

PositiveInteger 0..1 attr AUTOSAR identifier of the target module of which
the dependencies are defined.

This information is optional, because the target
module may also be identified by targetModuleRef.

Tags: xml.sequenceOffset=5
targetMod
uleRef

BswModuleDes
cription

0..1 ref Reference to the target module. It is an
«atpUriDef» because the reference shall be used
to identify the target module without actually
needing the description of that target module.

Stereotypes: atpUriDef; atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=7

Table D.53: BswModuleDependency

Class BswModuleDescription
Package M2::AUTOSARTemplates::BswModuleTemplate::BswOverview
Note Root element for the description of a single BSW module or BSW cluster. In case it

describes a BSW module, the short name of this element equals the name of the
BSW module.

Tags: atp.recommendedPackage=BswModuleDescriptions
Base ARElement,ARObject,AtpBlueprint,AtpBlueprintable,AtpClassifier,AtpFeature,Atp

StructureElement,CollectableElement,Identifiable,Multilanguage
Referrable,PackageableElement,Referrable

Attribute Datatype Mul. Kind Note

724 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
bswModul
eDepende
ncy

BswModuleDep
endency

* aggr Describes the dependency to another BSW
module.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variation
Point.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=20

bswModul
eDocumen
tation

SwComponentD
ocumentation

0..1 aggr This adds a documentation to the BSW module.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=bswModuleDocumentation,
variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=6

internalBe
havior

BswInternalBeh
avior

* aggr The various BswInternalBehaviors associated with
a BswModuleDescription can be distributed over
several physical files. Therefore the aggregation is
«atpSplitable».

Stereotypes: atpSplitable
Tags: atp.Splitkey=shortName
xml.sequenceOffset=65

moduleId PositiveInteger 0..1 attr Refers to the BSW Module Identifier defined by
the AUTOSAR standard. For non-standardized
modules, a proprietary identifier can be optionally
chosen.

Tags: xml.sequenceOffset=5
outgoingC
allback

BswModuleEntr
y

* ref Specifies a callback, which will be called from this
module if required by another module.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=15

providedCli
entServerE
ntry

BswModuleClie
ntServerEntry

* aggr Specifies that this module provides a client server
entry which can be called from another parition or
core.This entry is declared locally to this context
and will be connected to the
requiredClientServerEntry of another or the same
module via the configuration of the BSW
Scheduler.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=45

725 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
providedD
ata

VariableDataPr
ototype

* aggr Specifies a data prototype provided by this module
in order to be read from another partition or
core.The providedData is declared locally to this
context and will be connected to the requiredData
of another or the same module via the
configuration of the BSW Scheduler.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=55

providedE
ntry

BswModuleEntr
y

* ref Specifies an entry provided by this module which
can be called by other modules. This includes
"main" functions and interrupt routines, but not
callbacks (because the signature of a callback is
defined by the caller).

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=10

providedM
odeGroup

ModeDeclaratio
nGroupPrototyp
e

* aggr A set of modes which is owned and provided by
this module or cluster. It can be connected to the
requiredModeGroups of other modules or clusters
via the configuration of the BswScheduler. It can
also be synchronized with modes provided via
ports by an associated
ServiceSwComponentType,
EcuAbstractionSwComponentType or
ComplexDeviceDriverSwComponentType.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=25

releasedTri
gger

Trigger * aggr A Trigger released by this module or cluster. It can
be connected to the requiredTriggers of other
modules or clusters via the configuration of the
BswScheduler. It can also be synchronized with
Triggers provided via ports by an associated
ServiceSwComponentType,
EcuAbstractionSwComponentType or
ComplexDeviceDriverSwComponentType.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=35

726 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
requiredCli
entServerE
ntry

BswModuleClie
ntServerEntry

* aggr Specifies that this module requires a client server
entry which can be implemented on another
parition or core.This entry is declared locally to
this context and will be connected to the
providedClientServerEntry of another or the same
module via the configuration of the BSW
Scheduler.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=50

requiredDa
ta

VariableDataPr
ototype

* aggr Specifies a data prototype required by this module
in oder to be provided from another partition or
core.The requiredData is declared locally to this
context and will be connected to the providedData
of another or the same module via the
configuration of the BswScheduler.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=60

requiredM
odeGroup

ModeDeclaratio
nGroupPrototyp
e

* aggr Specifies that this module or cluster depends on a
certain mode group. The requiredModeGroup is
local to this context and will be connected to the
providedModeGroup of another module or cluster
via the configuration of the BswScheduler.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=30

requiredTri
gger

Trigger * aggr Specifies that this module or cluster reacts upon
an external trigger.This requiredTrigger is declared
locally to this context and will be connected to the
providedTrigger of another module or cluster via
the configuration of the BswScheduler.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=40

Table D.54: BswModuleDescription

Class BswModuleEntity (abstract)
Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior
Note Specifies the smallest code fragment which can be described for a BSW module or

cluster within AUTOSAR.
Base ARObject,ExecutableEntity,Identifiable,MultilanguageReferrable,Referrable
Attribute Datatype Mul. Kind Note

727 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
accessed
ModeGrou
p

ModeDeclaratio
nGroupPrototyp
e

* ref A mode group which is accessed via API call by
this entity. It must be a
ModeDeclarationGroupPrototype required by this
module or cluster.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

activationP
oint

BswInternalTrig
geringPoint

* ref Activation point used by the module entity to
activate one or more internal triggers.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

callPoint BswModuleCall
Point

* aggr A call point used in the code of this entitiy.

The variablity of this association is especially
targeted at debug scenarios: It is possible to have
one variant calling into the AUTOSAR debug
module and another one which doesn’t.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

calledEntry BswModuleEntr
y

* ref The entry of another (or the same) BSW module
which is called by this entry (usually via C function
call). This information allows to set up a model of
call chains.

The variablity of this association is especially
targeted at debug scenarios: It is possible to have
one variant calling into the AUTOSAR debug
module and another one which doesn’t.

Note that this relation has been merked as
obsolete, since the more powerful definition of a
callPoint should be used.

Stereotypes: atpVariation
Tags: atp.Status=obsolete
vh.latestBindingTime=preCompileTime

dataReceiv
ePoint

BswVariableAcc
ess

* aggr The data is received via the BSW Scheduler.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

dataSendP
oint

BswVariableAcc
ess

* aggr The data is sent via the BSW Scheduler.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

implement
edEntry

BswModuleEntr
y

1 ref The entry which is implemented by this module
entity.

728 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
issuedTrig
ger

Trigger * ref A trigger issued by this entity via BSW Scheduler
API call. It must be a BswTrigger released (i.e.
owned) by this module or cluster.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

managedM
odeGroup

ModeDeclaratio
nGroupPrototyp
e

* ref A mode group which is managed by this entity. It
must be a ModeDeclarationGroupPrototype
provided by this module or cluster.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

scheduler
NamePrefi
x

BswSchedulerN
amePrefix

0..1 ref A prefix to be used in generated names for the
BswModuleScheduler in the context of this
BswModuleEntity, for example entry point
prototypes, macros for dealing with exclusive
areas, header file names.

Details are defined in the SWS RTE.

The prefix supersedes default rules for the prefix
of those names.

Table D.55: BswModuleEntity

Class BswModuleEntry
Package M2::AUTOSARTemplates::BswModuleTemplate::BswInterfaces
Note This class represents a single API entry (C-function prototype) into the BSW module

or cluster.

The name of the C-function is equal to the short name of this element with one
exception: In case of multiple instances of a module on the same CPU, special rules
for "infixes" apply, see description of class BswImplementation.

Tags: atp.recommendedPackage=BswModuleEntrys
Base ARElement,ARObject,AtpBlueprint,AtpBlueprintable,Collectable

Element,Identifiable,MultilanguageReferrable,PackageableElement,Referrable
Attribute Datatype Mul. Kind Note
argument
(ordered)

SwServiceArg * aggr An argument belonging to this BswModuleEntry.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=blueprintDerivation
Time
xml.sequenceOffset=45

callType BswCallType 1 attr The type of call associated with this service.

Tags: xml.sequenceOffset=25

729 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
executionC
ontext

BswExecutionC
ontext

1 attr Specifies the execution context which is required
(in case of entries into this module) or guaranteed
(in case of entries called from this module) for this
service.

Tags: xml.sequenceOffset=30
isReentran
t

Boolean 1 attr Reentrancy from the viewpoint of function callers:

• True: Enables the service to be invoked
again, before the service has finished.

• False: It is prohibited to invoke the service
again before is has finished.

Tags: xml.sequenceOffset=15
isSynchron
ous

Boolean 1 attr Synchronicity from the viewpoint of function
callers:

• True: This calls a synchronous service, i.e.
the service is completed when the call
returns.

• False: The service (on semantical level)
may not be complete when the call returns.

Tags: xml.sequenceOffset=20
returnType SwServiceArg 0..1 aggr The return type belonging to this bswModuleEntry.

Tags: xml.sequenceOffset=40
role Identifier 0..1 ref Specifies the role of the entry in the given context.

It shall be equal to the standardized name of the
service call, especially in cases where no
ServiceIdentifier is specified, e.g. for callbacks.
Note that the ShortName is not always sufficient
because it maybe vendor specific (e.g. for
callbacks which can have more than one
instance).

Tags: xml.sequenceOffset=10
serviceId PositiveInteger 0..1 attr Refers to the service identifier of the Standardized

Interfaces of AUTOSAR basic software. For
non-standardized interfaces, it can optionally be
used for proprietary identification.

Tags: xml.sequenceOffset=5
swServiceI
mplPolicy

SwServiceImplP
olicyEnum

1 attr Denotes the implementation policy as a standard
function call, inline function or macro. This has to
be specified on interface level because it
determines the signature of the call.

Tags: xml.sequenceOffset=35

Table D.56: BswModuleEntry

730 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class BswOperationInvokedEvent
Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior
Note This event is thrown on operation invocation in Client-Server-Communication via the

BSW Scheduler. Its "entry" reference provides the BswClientServerEntry that is
called subsequently.

Note this event is not needed in case of direct function calls.
Base ARObject,AbstractEvent,BswEvent,Identifiable,MultilanguageReferrable,Referrable
Attribute Datatype Mul. Kind Note
entry BswModuleClie

ntServerEntry
1 ref The providedClientServerEntry invoked by this

event.

Table D.57: BswOperationInvokedEvent

Class BswQueuedDataReceptionPolicy
Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior
Note Reception policy attributes specific for queued receiving.
Base ARObject,BswDataReceptionPolicy
Attribute Datatype Mul. Kind Note
queueLeng
th

PositiveInteger 1 attr Length of queue for received events.

Table D.58: BswQueuedDataReceptionPolicy

Class BswSchedulableEntity
Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior
Note BSW module entity, which is designed for control by the BSW Scheduler. It may for

example implement a so-called "main" function.
Base ARObject,BswModuleEntity,ExecutableEntity,Identifiable,Multilanguage

Referrable,Referrable
Attribute Datatype Mul. Kind Note
– – – – –

Table D.59: BswSchedulableEntity

Class BswScheduleEvent (abstract)
Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior
Note BswEvent that is able to start a BswSchedulabeEntity.
Base ARObject,AbstractEvent,BswEvent,Identifiable,MultilanguageReferrable,Referrable
Attribute Datatype Mul. Kind Note
– – – – –

Table D.60: BswScheduleEvent

731 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class BswSchedulerNamePrefix
Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior
Note A prefix to be used in names of generated code artifacts which make up the interface

of a BSW module to the BswScheduler.
Base ARObject,ImplementationProps,Referrable
Attribute Datatype Mul. Kind Note
– – – – –

Table D.61: BswSchedulerNamePrefix

Class BswSynchronousServerCallPoint
Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior
Note Represents a synchronous procedure call point via the BSW Scheduler.
Base ARObject,BswModuleCallPoint,Referrable
Attribute Datatype Mul. Kind Note
calledEntry BswModuleClie

ntServerEntry
1 ref The entry to be called.

calledFrom
WithinExcl
usiveArea

ExclusiveAreaN
estingOrder

0..1 ref This indicates that the call point is located at the
deepest level inside one or more ExclusiveAreas
that are nested in the given order.

Table D.62: BswSynchronousServerCallPoint

Class BswTimingEvent
Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior
Note A recurring BswEvent driven by a time period.
Base ARObject,AbstractEvent,BswEvent,BswScheduleEvent,Identifiable,Multilanguage

Referrable,Referrable
Attribute Datatype Mul. Kind Note
period TimeValue 1 attr Requirement for the time period (in seconds) by

which this event is triggered.

Table D.63: BswTimingEvent

Class BswTriggerDirectImplementation
Package M2::AUTOSARTemplates::BswModuleTemplate::BswBehavior
Note Specifies a released trigger to be directly implemented via OS calls, for example in a

Complex Driver module.
Base ARObject
Attribute Datatype Mul. Kind Note
masteredT
rigger

Trigger 1 ref The trigger which is directly mastered by this
module.

There may be several different
BswTriggerDirectImplementations mastering the
same Trigger. This may be required e.g. due to
memory partitioning.

732 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
task Identifier 1 ref The name of the OS task, which is controlled by

the referred trigger. This means, that the module
uses the trigger condition to directly activate an
OS task instead of calling an API of the
BswScheduler. The task name is required by the
RTE generator resp. BswScheduler to raise the
appropriate events in components or modules
receiving the trigger.

Table D.64: BswTriggerDirectImplementation

Class CalibrationParameterValue
Package M2::AUTOSARTemplates::SWComponentTemplate::MeasurementAndCalibration::

CalibrationParameterValues
Note Specifies instance specific calibration parameter values used to initialize the memory

objects implementing calibration parameters in the generated RTE code.

RTE generator will use the implInitValue to override the initial values specified for the
DataPrototypes of a component type.

The applInitValue is used to exchange init values with the component vendor not
publishing the transformation algorithm between ApplicationDataTypes and
ImplementationDataTypes or defining a instance specific initialization of components
which are only defined with ApplicationDataTypes.

Note: If both representations of init values are available these need to represent the
same content.

Note further that in this case an explicit mapping of ValueSpecification is not
implemented because calibration parameters are delivered back after the calibration
phase.

Base ARObject
Attribute Datatype Mul. Kind Note
applInitVal
ue

ValueSpecificati
on

0..1 aggr This is the initial value specification structured
according to the ApplicationDataType

implInitVal
ue

ValueSpecificati
on

0..1 aggr This is the initial value specification structured
according to the ImplementationDataType

initializedP
arameter

FlatInstanceDes
criptor

1 ref This represents the parameter that is initialized by
the CalibrationParameterValue.

Table D.65: CalibrationParameterValue

Class ClientServerApplicationErrorMapping
Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface
Note This meta-class represents the ability to map ApplicationErrors onto each other.
Base ARObject
Attribute Datatype Mul. Kind Note
firstApplica
tionError

ApplicationError 1 ref This represents the first ApplicationError in the
context of the
ClientServerApplicationErrorMapping.

733 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
secondApp
licationErro
r

ApplicationError 1 ref This represents the second ApplicationError in the
context of the
ClientServerApplicationErrorMapping.

Table D.66: ClientServerApplicationErrorMapping

Class ClientServerInterface
Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface
Note A client/server interface declares a number of operations that can be invoked on a

server by a client.

Tags: atp.recommendedPackage=PortInterfaces
Base ARElement,ARObject,AtpBlueprint,AtpBlueprintable,AtpClassifier,Atp

Type,CollectableElement,Identifiable,MultilanguageReferrable,Packageable
Element,PortInterface,Referrable

Attribute Datatype Mul. Kind Note
operation ClientServerOp

eration
1..* aggr ClientServerOperation(s) of this

ClientServerInterface.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=blueprintDerivation
Time

possibleErr
or

ApplicationError * aggr Application errors that are defined as part of this
interface.

Table D.67: ClientServerInterface

Class ClientServerInterfaceMapping
Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface
Note Defines the mapping of ClientServerOperations in context of two different

ClientServerInterfaces.
Base ARObject,AtpBlueprint,AtpBlueprintable,Identifiable,MultilanguageReferrable,Port

InterfaceMapping,Referrable
Attribute Datatype Mul. Kind Note
errorMappi
ng

ClientServerApp
licationErrorMap
ping

* aggr Map two different ApplicationErrors defined in the
context of two different ClientServerInterfaces.

operationM
apping

ClientServerOp
erationMapping

1..* aggr Mapping of two ClientServerOperations in two
different ClientServerInterfaces

Table D.68: ClientServerInterfaceMapping

734 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class ClientServerOperation
Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface
Note An operation declared within the scope of a client/server interface.
Base ARObject,AtpClassifier,AtpFeature,AtpStructureElement,Identifiable,Multilanguage

Referrable,Referrable
Attribute Datatype Mul. Kind Note
argument
(ordered)

ArgumentDataP
rototype

* aggr An argument of this ClientServerOperation

Stereotypes: atpVariation
Tags: vh.latestBindingTime=blueprintDerivation
Time

possibleErr
or

ApplicationError * ref Possible errors that may by raised by the referring
operation.

Table D.69: ClientServerOperation

Class ClientServerToSignalMapping
Package M2::AUTOSARTemplates::SystemTemplate::DataMapping
Note This element maps the ClientServerOperation to call- and return-SystemSignals. The

serialization is defined by the referenced SerializationTechnology.

Tags: atp.Status=draft
Base ARObject,DataMapping
Attribute Datatype Mul. Kind Note
callSignal SystemSignal 1 ref Reference to the callSignal to which the IN and

INOUT ArgumentDataPrototypes are mapped.
clientServe
rOperation

ClientServerOp
eration

1 iref Reference to a ClientServerOperation, which is
mapped to a call SystemSignal and a return
SystemSignal.

lengthClien
tId

PositiveInteger 0..1 attr This attribute defines the length of the used client
identifier in bits. If the attribute does not exist or its
value is set to 0 this means that the client identifier
is not used.

lengthSeq
uenceCou
nter

PositiveInteger 0..1 attr The purpose of a sequence counter is to map a
response to the correct request of a known client.
This attribute describes the length of the used
sequence counter in bits. If the attribute does not
exist or its value is set to 0 this means that the
sequence counter is not used.

returnSign
al

SystemSignal 0..1 ref Reference to the returnSignal to which the OUT
and INOUT ArgumentDataPrototypes are
mapped.

serializer SerializationTec
hnology

1 ref The referenced SerializationTechnology element
contains the necessary information how data shall
be serialized.

Table D.70: ClientServerToSignalMapping

735 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class ComplexDeviceDriverSwComponentType
Package M2::AUTOSARTemplates::SWComponentTemplate::Components
Note The ComplexDeviceDriverSwComponentType is a special AtomicSwComponentType

that has direct access to hardware on an ECU and which is therefore linked to a
specific ECU or specific hardware. The ComplexDeviceDriverSwComponentType
introduces the possibility to link from the software representation to its hardware
description provided by the ECU Resource Template.

Tags: atp.recommendedPackage=SwComponentTypes
Base ARElement,ARObject,AtomicSwComponentType,AtpBlueprint,AtpBlueprintable,Atp

Classifier,AtpType,CollectableElement,Identifiable,Multilanguage
Referrable,PackageableElement,Referrable,SwComponentType

Attribute Datatype Mul. Kind Note
hardwareE
lement

HwDescriptionE
ntity

* ref Reference from the
ComplexDeviceDriverSwComponentType to the
description of the used HwElements.

Table D.71: ComplexDeviceDriverSwComponentType

Class CompositionSwComponentType
Package M2::AUTOSARTemplates::SWComponentTemplate::Composition
Note A CompositionSwComponentType aggregates SwComponentPrototypes (that in turn

are typed by SwComponentTypes) as well as SwConnectors for primarily connecting
SwComponentPrototypes among each others and towards the surface of the
CompositionSwComponentType. By this means hierarchical structures of
software-components can be created.

Tags: atp.recommendedPackage=SwComponentTypes
Base ARElement,ARObject,AtpBlueprint,AtpBlueprintable,AtpClassifier,Atp

Type,CollectableElement,Identifiable,MultilanguageReferrable,Packageable
Element,Referrable,SwComponentType

Attribute Datatype Mul. Kind Note

736 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
component SwComponentP

rototype
* aggr The instantiated components that are part of this

composition. The aggregation of
SwComponentPrototype is subject to variability
with the purpose to support the conditional
existence of a SwComponentPrototype. Please be
aware: if the conditional existence of
SwComponentPrototypes is resolved post-build
the deselected SwComponentPrototypes are still
contained in the ECUs build but the instances are
inactive in in that they are not scheduled by the
RTE.

The aggregation is marked as atpSplitable in order
to allow the addition of service components to the
ECU extract during the ECU integration.

The use case for having 0 components owned by
the CompositionSwComponentType could be to
deliver an empty CompositionSwComponentType
to e.g. a supplier for filling the internal structure.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variation
Point.shortLabel
vh.latestBindingTime=postBuild

connector SwConnector * aggr SwConnectors have the principal ability to
establish a connection among PortPrototypes.
They can have many roles in the context of a
CompositionSwComponentType. Details are
refined by subclasses.

The aggregation of SwConnectors is subject to
variability with the purpose to support variant data
flow.

The aggregation is marked as atpSplitable in order
to allow the extension of the ECU extract with
AssemblySwConnectors between
ApplicationSwComponentTypes and
ServiceSwComponentTypes during the ECU
integration.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variation
Point.shortLabel
vh.latestBindingTime=postBuild

constantVa
lueMappin
g

ConstantSpecifi
cationMappingS
et

* ref Reference to the ConstantSpecificationMapping to
be applied for initValues of PPortComSpecs and
RPortComSpec.

737 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
dataTypeM
apping

DataTypeMappi
ngSet

* ref Reference to the DataTypeMapping to be applied
for the used ApplicationDataTypes in
PortInterfaces.

Background: when developing subsystems it may
happen that ApplicationDataTypes are used on
the surface of CompositionSwComponentTypes.
In this case it would be reasonable to be able to
also provide the intended mapping to the
ImplementationDataTypes. However, this mapping
shall be informal and not technically binding for
the implementers mainly because the RTE
generator is not concerned about the
CompositionSwComponentTypes.

Rationale: if the mapping of ApplicationDataTypes
on the delegated and inner PortPrototype matches
then the mapping to ImplementationDataTypes is
not impacting compatibility.

instantiatio
nRTEEven
tProps

InstantiationRT
EEventProps

* aggr This allows to define instantiation specific
properties for RTE Events, in particular for
instance specific scheduling.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortLabel, variation
Point.shortLabel
vh.latestBindingTime=codeGenerationTime

Table D.72: CompositionSwComponentType

Class CompuConst
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::ComputationMethod
Note This meta-class represents the fact that the value of a computation method scale is

constant.
Base ARObject
Attribute Datatype Mul. Kind Note
compuCon
stContentT
ype

CompuConstCo
ntent

1 aggr This is the actual content of the constant compu
method scale.

Tags: xml.roleElement=false; xml.roleWrapper
Element=false; xml.sequenceOffset=10; xml.type
Element=false; xml.typeWrapperElement=false

Table D.73: CompuConst

738 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class CompuMethod
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::ComputationMethod
Note This meta-class represents the ability to express the relationship between a physical

value and the mathematical representation.

Note that this is still independent of the technical implementation in data types. It only
specifies the formula how the internal value corresponds to its physical pendant.

Tags: atp.recommendedPackage=CompuMethods
Base ARElement,ARObject,AtpBlueprint,AtpBlueprintable,Collectable

Element,Identifiable,MultilanguageReferrable,PackageableElement,Referrable
Attribute Datatype Mul. Kind Note
compuInter
nalToPhys

Compu 0..1 aggr This specifies the computation from internal
values to physical values.

Tags: xml.sequenceOffset=80
compuPhy
sToInternal

Compu 0..1 aggr This represents the computation from physical
values to the internal values.

Tags: xml.sequenceOffset=90
displayFor
mat

DisplayFormatS
tring

0..1 attr This property specifies, how the physical value
shall be displayed e.g. in documents or
measurement and calibration tools.

Tags: xml.sequenceOffset=20
unit Unit 0..1 ref This is the physical unit of the Physical values for

which the CompuMethod applies.

Tags: xml.sequenceOffset=30

Table D.74: CompuMethod

Class CompuNominatorDenominator
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::ComputationMethod
Note This class represents the ability to express a polynomial either as Nominator or as

Denominator.
Base ARObject
Attribute Datatype Mul. Kind Note
v (ordered) Numerical * attr this is the list of polynomial factors. Note that the

first vf represents the power=0. The polynomial is
v[0] * xˆ 0 + v[1] * xˆ 1 ...

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.roleElement=true; xml.roleWrapper
Element=false; xml.sequenceOffset=20; xml.type
Element=false; xml.typeWrapperElement=false

Table D.75: CompuNominatorDenominator

739 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class CompuRationalCoeffs
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::ComputationMethod
Note This meta-class represents the ability to express a rational function by specifying the

coefficients of nominator and denominator.
Base ARObject
Attribute Datatype Mul. Kind Note
compuDen
ominator

CompuNominat
orDenominator

1 aggr This is the denominator of the expression.

Tags: xml.sequenceOffset=30
compuNu
merator

CompuNominat
orDenominator

1 aggr This is the numerator of the rational expression.

Tags: xml.sequenceOffset=20

Table D.76: CompuRationalCoeffs

Class CompuScale
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::ComputationMethod
Note This meta-class represents the ability to specify one segment of a segmented

computation method.
Base ARObject
Attribute Datatype Mul. Kind Note
desc MultiLanguage

OverviewParagr
aph

0..1 aggr <desc> represents a general but brief description
of the object in question.

Tags: xml.sequenceOffset=30
compuInve
rseValue

CompuConst 0..1 aggr This is the inverse value of the constraint. This
supports the case that the scale is not reversible
per se.

Tags: xml.sequenceOffset=60
compuScal
eContents

CompuScaleCo
ntents

0..1 aggr This represents the computation details of the
scale.

Tags: xml.roleElement=false; xml.roleWrapper
Element=false; xml.sequenceOffset=70; xml.type
Element=false; xml.typeWrapperElement=false

lowerLimit Limit 0..1 ref This specifies the lower limit of the scale.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=40

740 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
mask PositiveInteger 0..1 attr In difference to all the other computational

methods every COMPU-SCALE will be applied
including the bit MASK. Therefore it is allowed for
this type of COMPU-METHOD, that
COMPU-SCALES overlap.

To calculate the string reverse to a value, the
string has to be split and the according value for
each substring has to be summed up. The sum is
finally transmitted.

The processing has to be done in order of the
COMPU-SCALE elements.

Tags: xml.sequenceOffset=35
shortLabel Identifier 0..1 ref This element specifies a short name for the

particular scale. The name can for example be
used to derive a programming language identifier.

Tags: xml.sequenceOffset=20
symbol CIdentifier 0..1 ref The symbol, if provided, is used by code

generators to get a C identifier for the
CompuScale. The name will be used as is for the
code generation, therefore it needs to be unique
within the generation context.

Tags: xml.sequenceOffset=25
upperLimit Limit 0..1 ref This specifies the upper limit of a of the scale.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=50

Table D.77: CompuScale

Class CompuScaleConstantContents
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::ComputationMethod
Note This meta-class represents the fact that a particular scale of the computation method

is constant.
Base ARObject,CompuScaleContents
Attribute Datatype Mul. Kind Note
compuCon
st

CompuConst 1 aggr This represents the fact that the scale is a
constant. The use case is mainly a non
interplolated scale. It is a simplification of the fact
that a constant scale can also be expressed as
Rational Function of oder 0.

Tags: xml.sequenceOffset=90

Table D.78: CompuScaleConstantContents

741 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class CompuScales
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::ComputationMethod
Note This meta-class represents the ability to stepwise express a computation method.
Base ARObject,CompuContent
Attribute Datatype Mul. Kind Note
compuScal
e (ordered)

CompuScale * aggr This represents one scale within the compu
method. Note that it contains a Variationpoint in
order to support blueprints of enumerations.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=blueprintDerivation
Time
xml.roleElement=true; xml.roleWrapper
Element=true; xml.sequenceOffset=40; xml.type
Element=false; xml.typeWrapperElement=false

Table D.79: CompuScales

Class �atpMixedString� ConditionByFormula
Package M2::AUTOSARTemplates::GenericStructure::VariantHandling
Note This class represents a condition which is computed based on system constants

according to the specified expression. The expected result is considered as boolean
value.

The result of the expression is interpreted as a condition.

• "0" represents "false";

• a value other than zero is considered "true"

Base ARObject,FormulaExpression,SwSystemconstDependentFormula
Attribute Datatype Mul. Kind Note
bindingTim
e

BindingTimeEn
um

1 attr This attribute specifies the point in time when
condition may be evaluated at earliest. At this
point in time all referenced system constants shall
have a value.

Tags: xml.attribute=true

Table D.80: ConditionByFormula

Class ConsistencyNeeds
Package M2::AUTOSARTemplates::SWComponentTemplate::ImplicitCommunicationBehavior
Note This meta-class represents the ability to define requirements on the implicit

communication behavior.
Base ARObject,AtpBlueprint,AtpBlueprintable,Identifiable,Multilanguage

Referrable,Referrable
Attribute Datatype Mul. Kind Note

742 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
dpgDoesN
otRequire
Coherency

DataPrototypeG
roup

* aggr This group of VariableDataPrototypes does not
require coherency with respect to the implicit
communication behavior.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variation
Point.shortLabel
vh.latestBindingTime=preCompileTime

dpgRequir
esCoheren
cy

DataPrototypeG
roup

* aggr This group of VariableDataPrototypes requires
coherency with respect to the implicit
communication behavior, i.e. all read and write
access to VariableDataPrototypes in the
DataPrototypeGroup by the RunnableEntitys of
the RunnableEntityGroup need to be handled in a
coherent manner.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variation
Point.shortLabel
vh.latestBindingTime=preCompileTime

regDoesN
otRequireS
tability

RunnableEntity
Group

* aggr This group of RunnableEntities does not require
stability with respect to the implicit communication
behavior.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variation
Point.shortLabel
vh.latestBindingTime=preCompileTime

regRequire
sStability

RunnableEntity
Group

* aggr This group of RunnableEntities requires stability
with respect to the implicit communication
behavior, i.e. all read and write access to
VariableDataPrototypes in the
DataPrototypeGroup by the RunnableEntitys of
the RunnableEntityGroup need to be handled in a
stable manner.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variation
Point.shortLabel
vh.latestBindingTime=preCompileTime

Table D.81: ConsistencyNeeds

743 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class ConstantSpecificationMapping
Package M2::AUTOSARTemplates::CommonStructure::Constants
Note This meta-class is used to create an association of two ConstantSpecifications. One

ConstantSpecification is supposed to be defined in the application domain while the
other should be defined in the implementation domain.

Hence the ConstantSpecificationMapping needs to be used where a
ConstantSpecification defined in one domain needs to be associated to a
ConstantSpecification in the other domain.

This information is crucial for the RTE generator.
Base ARObject
Attribute Datatype Mul. Kind Note
applConst
ant

ConstantSpecifi
cation

1 ref A ConstantSpecification defined in the application
domain.

implConsta
nt

ConstantSpecifi
cation

1 ref A ConstantSpecification defined in the
implementation domain.

Table D.82: ConstantSpecificationMapping

Class DataConstr
Package M2::AUTOSARTemplates::CommonStructure::GlobalConstraints
Note This meta-class represents the ability to specify constraints on data.

Tags: atp.recommendedPackage=DataConstrs
Base ARElement,ARObject,AtpBlueprint,AtpBlueprintable,Collectable

Element,Identifiable,MultilanguageReferrable,PackageableElement,Referrable
Attribute Datatype Mul. Kind Note
dataConstr
Rule

DataConstrRule * aggr This is one particular rule within the data
constraints.

Tags: xml.roleElement=true; xml.roleWrapper
Element=true; xml.sequenceOffset=30; xml.type
Element=false; xml.typeWrapperElement=false

Table D.83: DataConstr

Class DataMapping (abstract)
Package M2::AUTOSARTemplates::SystemTemplate::DataMapping
Note Mapping of port elements (data elements and parameters) to frames and signals.
Base ARObject
Attribute Datatype Mul. Kind Note
communic
ationDirecti
on

Communication
DirectionType

0..1 attr This attribute controls the direction into which the
mapped SystemSignal is communicated with
respect to the kind of PortPrototype used as the
context element of the DataMapping.

eventGrou
p

ConsumedEven
tGroup

* ref Via this reference a connection between the VFB
View and the Ethernet EventGroups can be
created.

744 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
eventHand
ler

EventHandler * ref Via this reference a connection between the VFB
View and the Ethernet EventHandlers can be
created.

introductio
n

Documentation
Block

0..1 aggr This represents introductory documentation about
the data mapping.

serviceInst
ance

AbstractServiceI
nstance

* ref Via this reference a connection between the VFB
View and the Ethernet Services can be created.

Table D.84: DataMapping

Class DataPrototype (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::DataPrototypes
Note Base class for prototypical roles of any data type.
Base ARObject,AtpFeature,AtpPrototype,Identifiable,MultilanguageReferrable,Referrable
Attribute Datatype Mul. Kind Note
swDataDef
Props

SwDataDefProp
s

0..1 aggr This property allows to specify data definition
properties which apply on data prototype level.

Table D.85: DataPrototype

Class DataPrototypeGroup
Package M2::AUTOSARTemplates::SWComponentTemplate::ImplicitCommunicationBehavior
Note This meta-class represents the ability to define a collection of DataPrototypes that are

subject to the formal definition of implicit communication behavior. The definition of
the collection can be nested.

Base ARObject,AtpClassifier,AtpFeature,AtpStructureElement,Identifiable,Multilanguage
Referrable,Referrable

Attribute Datatype Mul. Kind Note
dataProtot
ypeGroup

DataPrototypeG
roup

* iref This represents the ability to define nested groups
of VariableDataPrototypes.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

implicitDat
aAccess

VariableDataPr
ototype

* iref This represents a collection of
VariableDataPrototypes that belong to the
enclosing DataPrototypeGroup

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

Table D.86: DataPrototypeGroup

745 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class DataReceiveErrorEvent
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTE

Events
Note This event is raised by the RTE when the Com layer detects and notifies an error

concerning the reception of the referenced data element.
Base ARObject,AbstractEvent,AtpClassifier,AtpFeature,AtpStructure

Element,Identifiable,MultilanguageReferrable,RTEEvent,Referrable
Attribute Datatype Mul. Kind Note
data VariableDataPr

ototype
0..1 iref Data element referenced by event

Table D.87: DataReceiveErrorEvent

Class DataReceivedEvent
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTE

Events
Note The event is raised when the referenced data elements are received.
Base ARObject,AbstractEvent,AtpClassifier,AtpFeature,AtpStructure

Element,Identifiable,MultilanguageReferrable,RTEEvent,Referrable
Attribute Datatype Mul. Kind Note
data VariableDataPr

ototype
0..1 iref Data element referenced by event

Table D.88: DataReceivedEvent

Class DataSendCompletedEvent
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTE

Events
Note The event is raised when the referenced data elements have been sent or an error

occurs.
Base ARObject,AbstractEvent,AtpClassifier,AtpFeature,AtpStructure

Element,Identifiable,MultilanguageReferrable,RTEEvent,Referrable
Attribute Datatype Mul. Kind Note
eventSour
ce

VariableAccess 1 ref The variable access that triggers the event.

Table D.89: DataSendCompletedEvent

Class DataTypeMap
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes
Note This class represents the relationship between ApplicationDataType and its

implementing ImplementationDataType.
Base ARObject
Attribute Datatype Mul. Kind Note
application
DataType

ApplicationData
Type

1 ref This is the corresponding ApplicationDataType

746 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
implement
ationDataT
ype

Implementation
DataType

1 ref This is the corresponding
ImplementationDataType.

Table D.90: DataTypeMap

Class DataTypeMappingSet
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Datatypes
Note This class represents a list of mappings between ApplicationDataTypes and

ImplementationDataTypes. In addition, it can contain mappings between
ImplementationDataTypes and ModeDeclarationGroups.

Tags: atp.recommendedPackage=DataTypeMappingSets
Base ARElement,ARObject,AtpBlueprint,AtpBlueprintable,Collectable

Element,Identifiable,MultilanguageReferrable,PackageableElement,Referrable
Attribute Datatype Mul. Kind Note
dataTypeM
ap

DataTypeMap * aggr This is one particular association between an
ApplicationDataType and its
ImplementationDataType.

modeRequ
estTypeMa
p

ModeRequestT
ypeMap

* aggr This is one particular association between an
ModeDeclarationGroup and its
ImplementationDataType.

Table D.91: DataTypeMappingSet

Enumeration DataTypePolicyEnum
Package M2::AUTOSARTemplates::SystemTemplate::DataMapping
Note This class lists the supported DataTypePolicies.
Literal Description
legacy In case the System Description doesn’t use a complete Software Component

Description (VFB View) this value can be chosen. This supports the inclusion of
legacy signals.

The aggregation of SwDataDefProps shall be used to configure the
"ComSignalDataInvalidValue" and the Data Semantics.

networkRep-
resentation
FromCom
Spec

Ignore any networkRepresentationProps of this ISignal and use the
networkRepresentation from the ComSpec.

Please note that the usage does not imply the existence of the SwDataDefProps in
the role networkRepresentation aggregated by the SenderComSpec or
ReceiverComSpec if an ImplementationDataType is defined.

override If this value is chosen the requirements specified in the ComSpec
(networkRepresentationFromComSpec) are not fullfilled by the aggregated
SwDataDefProps. In this case the networkRepresentation is specified by the
aggregated swDataDefProps.

747 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

portInterface
Definition

This enumeration literal is deprecated and will be removed in future.

Old description: Ignore any networkRepresentationProps of this ISignal and use
the networkRepresentation specified in the VariableDataPrototypes owned by
PortInterface (portInterfaceDefinition).

Tags: atp.Status=obsolete

Table D.92: DataTypePolicyEnum

Class DataWriteCompletedEvent
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTE

Events
Note This event is raised if an implicit write access was successful or an error occurred.
Base ARObject,AbstractEvent,AtpClassifier,AtpFeature,AtpStructure

Element,Identifiable,MultilanguageReferrable,RTEEvent,Referrable
Attribute Datatype Mul. Kind Note
eventSour
ce

VariableAccess 1 ref The variable access that triggers the event.

Table D.93: DataWriteCompletedEvent

Class DelegationSwConnector
Package M2::AUTOSARTemplates::SWComponentTemplate::Composition
Note A delegation connector delegates one inner PortPrototype (a port of a component

that is used inside the composition) to a outer PortPrototype of compatible type that
belongs directly to the composition (a port that is owned by the composition).

Base ARObject,AtpClassifier,AtpFeature,AtpStructureElement,Identifiable,Multilanguage
Referrable,Referrable,SwConnector

Attribute Datatype Mul. Kind Note
innerPort PortPrototype 1 iref The port that belongs to the ComponentPrototype

in the composition

Tags: xml.typeElement=true
outerPort PortPrototype 1 ref The port that is located on the outside of the

CompositionType

Table D.94: DelegationSwConnector

Class DependencyOnArtifact
Package M2::AUTOSARTemplates::CommonStructure::Implementation
Note Dependency on the existence of another artifact, e.g. a library.
Base ARObject,Identifiable,MultilanguageReferrable,Referrable
Attribute Datatype Mul. Kind Note
artifactDes
criptor

AutosarEnginee
ringObject

1 aggr The specified artifact needs to exist.

usage DependencyUs
ageEnum

1..* attr Specification for which process step(s) this
dependency is required.

748 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note

Table D.95: DependencyOnArtifact

Class EcuAbstractionSwComponentType
Package M2::AUTOSARTemplates::SWComponentTemplate::Components
Note The ECUAbstraction is a special AtomicSwComponentType that resides between a

software-component that wants to access ECU periphery and the Microcontroller
Abstraction. The EcuAbstractionSwComponentType introduces the possibility to link
from the software representation to its hardware description provided by the ECU
Resource Template.

Tags: atp.recommendedPackage=SwComponentTypes
Base ARElement,ARObject,AtomicSwComponentType,AtpBlueprint,AtpBlueprintable,Atp

Classifier,AtpType,CollectableElement,Identifiable,Multilanguage
Referrable,PackageableElement,Referrable,SwComponentType

Attribute Datatype Mul. Kind Note
hardwareE
lement

HwDescriptionE
ntity

* ref Reference from the
EcuAbstractionComponentType to the description
of the used HwElements.

Table D.96: EcuAbstractionSwComponentType

Enumeration EcucConfigurationClassEnum
Package M2::AUTOSARTemplates::ECUCParameterDefTemplate
Note Possible configuration classes for the AUTOSAR configuration parameters.
Literal Description
Link Link Time: parts of configuration are delivered from another object code file
PostBuild PostBuildTime: the configuration parameter has to be stored at a known memory

location.
PreCompile PreCompile Time: after compilation a configuration parameter can not be changed

any more.
Published
Information

PublishedInformation is used to specify the fact that certain information is fixed
even before the pre-compile stage.

Table D.97: EcucConfigurationClassEnum

Class EcucForeignReferenceDef
Package M2::AUTOSARTemplates::ECUCParameterDefTemplate
Note Specify a reference to an XML description of an entity described in another

AUTOSAR template.
Base ARObject,AtpDefinition,EcucAbstractReferenceDef,EcucCommonAttributes,Ecuc

DefinitionElement,Identifiable,MultilanguageReferrable,Referrable
Attribute Datatype Mul. Kind Note
destination
Type

String 1 attr The type in the AUTOSAR Metamodel to which
instance this reference is allowed to point to.

Table D.98: EcucForeignReferenceDef

749 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class EcucModuleConfigurationValues
Package M2::AUTOSARTemplates::ECUCDescriptionTemplate
Note Head of the configuration of one Module. A Module can be a BSW module as well as

the RTE and ECU Infrastructure.

As part of the BSW module description, the EcucModuleConfigurationValues element
has two different roles:

The recommendedConfiguration contains parameter values recommended by the
BSW module vendor.

The preconfiguredConfiguration contains values for those parameters which are fixed
by the implementation and cannot be changed.

These two EcucModuleConfigurationValues are used when the base
EcucModuleConfigurationValues (as part of the base ECU configuration) is created to
fill parameters with initial values.

Tags: atp.recommendedPackage=EcucModuleConfigurationValuess
Base ARElement,ARObject,CollectableElement,Identifiable,Multilanguage

Referrable,PackageableElement,Referrable
Attribute Datatype Mul. Kind Note
container EcucContainerV

alue
1..* aggr Aggregates all containers that belong to this

module configuration.

atpVariation: [RS_ECUC_00078]

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=definition, shortName,
variationPoint.shortLabel
vh.latestBindingTime=postBuild
xml.sequenceOffset=10

definition EcucModuleDef 1 ref Reference to the definition of this
EcucModuleConfigurationValues element.
Typically, this is a vendor specific module
configuration.

Tags: xml.sequenceOffset=-10
ecucDefEd
ition

RevisionLabelSt
ring

1 attr This is the version info of the ModuleDef ECUC
Parameter definition to which this values conform
to / are based on.

For the Definition of ModuleDef ECUC Parameters
the AdminData shall be used to express the
semantic changes. The compatibility rules
between the definition and value revision labels is
up to the module’s vendor.

implement
ationConfi
gVariant

EcucConfigurati
onVariantEnum

1 attr Specifies the kind of deliverable this
EcucModuleConfigurationValues element
provides. If this element is not used in a particular
role (e.g. preconfiguredConfiguration or
recommendedConfiguration) then the value must
be one of VariantPreCompile, VariantLinkTime,
VariantPostBuild.

750 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
moduleDe
scription

BswImplementa
tion

0..1 ref Referencing the BSW module description, which
this EcucModuleConfigurationValues element is
configuring. This is optional because the
EcucModuleConfigurationValues element is also
used to configure the ECU infrastructure (memory
map) or Application SW-Cs. However in case the
EcucModuleConfigurationValues are used to
configure the module, the reference is mandatory
in order to fetch module specific "common"
published information.

Table D.99: EcucModuleConfigurationValues

Class EcucModuleDef
Package M2::AUTOSARTemplates::ECUCParameterDefTemplate
Note Used as the top-level element for configuration definition for Software Modules,

including BSW and RTE as well as ECU Infrastructure.

Tags: atp.recommendedPackage=EcucModuleDefs
Base ARElement,ARObject,AtpBlueprint,AtpBlueprintable,AtpDefinition,Collectable

Element,EcucDefinitionElement,Identifiable,MultilanguageReferrable,Packageable
Element,Referrable

Attribute Datatype Mul. Kind Note
apiService
Prefix

CIdentifier 0..1 ref For CDD modules this attribute holds the
apiServicePrefix.

The shortName of the module definition of a
Complex Driver is always "CDD". Therefore for
CDD modules the module apiServicePrefix is
described with this attribute.

container EcucContainerD
ef

1..* aggr Aggregates the top-level container definitions of
this specific module definition.

Tags: xml.sequenceOffset=11
refinedMod
uleDef

EcucModuleDef 0..1 ref Optional reference from the Vendor Specific
Module Definition to the Standardized Module
Definition it refines. In case this EcucModuleDef
has the category
STANDARDIZED_MODULE_DEFINITION this
reference shall not be provided. In case this
EcucModuleDef has the category
VENDOR_SPECIFIC_MODULE_DEFINITION
this reference is mandatory.

Stereotypes: atpUriDef
supported
ConfigVari
ant

EcucConfigurati
onVariantEnum

* attr Specifies which ConfigurationVariants are
supported by this software module. This attribute
is optional if the EcucModuleDef has the category
STANDARDIZED_MODULE_DEFINITION. If the
category attribute of the EcucModuleDef is set to
VENDOR_SPECIFIC_MODULE_DEFINITION
then this attribute is mandatory.

751 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note

Table D.100: EcucModuleDef

Class EcucParamConfContainerDef
Package M2::AUTOSARTemplates::ECUCParameterDefTemplate
Note Used to define configuration containers that can hierarchically contain other

containers and/or parameter definitions.
Base ARObject,AtpDefinition,EcucContainerDef,EcucDefinition

Element,Identifiable,MultilanguageReferrable,Referrable
Attribute Datatype Mul. Kind Note
multipleCo
nfiguration
Container

Boolean 1 attr Specifies whether this container is used to define
multiple configuration sets. Only one container in
the whole EcucModuleDef shall have this enabled.

parameter EcucParameter
Def

* aggr The parameters defined within the
EcucParamConfContainerDef.

reference EcucAbstractRe
ferenceDef

* aggr The references defined within the
EcucParamConfContainerDef.

subContai
ner

EcucContainerD
ef

* aggr The containers defined within the
EcucParamConfContainerDef.

Table D.101: EcucParamConfContainerDef

Class EngineeringObject (abstract)
Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Engineering

Object
Note This class specifies an engineering object. Usually such an object is represented by a

file artifact. The properties of engineering object are such that the artifact can be
found by querying an ASAM catalog file.

The engineering object is uniquely identified by
domain+category+shortLabel+revisionLabel.

Base ARObject
Attribute Datatype Mul. Kind Note
category NameToken 1 attr This denotes the role of the engineering object in

the development cycle. Categories are such as

• SWSRC for source code

• SWOBJ for object code

• SWHDR for a C-header file

Further roles need to be defined via Methodology.

Tags: xml.sequenceOffset=20

752 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
domain NameToken 0..1 attr This denotes the domain in which the engineering

object is stored. This allows to indicate various
segments in the repository keeping the
engineering objects. The domain may segregate
companies, as well as automotive domains.
Details need to be defined by the Methodology.

Attribute is optional to support a default domain.

Tags: xml.sequenceOffset=40
revisionLa
bel

RevisionLabelSt
ring

* attr This is a revision label denoting a particular
version of the engineering object.

Tags: xml.sequenceOffset=30
shortLabel NameToken 1 attr This is the short name of the engineering object.

Note that it is modeled as NameToken and not as
Identifier since in ASAM-CC it is also a
NameToken.

Tags: xml.sequenceOffset=10

Table D.102: EngineeringObject

Class ExclusiveArea
Package M2::AUTOSARTemplates::CommonStructure::InternalBehavior
Note Prevents an executable entity running in the area from being preempted.
Base ARObject,Identifiable,MultilanguageReferrable,Referrable
Attribute Datatype Mul. Kind Note
– – – – –

Table D.103: ExclusiveArea

Class ExecutableEntity (abstract)
Package M2::AUTOSARTemplates::CommonStructure::InternalBehavior
Note Abstraction of executable code.
Base ARObject,Identifiable,MultilanguageReferrable,Referrable
Attribute Datatype Mul. Kind Note
activationR
eason

ExecutableEntit
yActivationReas
on

* aggr If the ExecutableEntity provides at least one
activationReason element the RTE resp. BSW
Scheduler shall provide means to read the
activation vector of this executable entity
execution.

If no activationReason element is provided the
feature of being able to determine the activating
RTEEvent is disabled for this ExecutableEntity.

canEnterE
xclusiveAr
ea

ExclusiveArea * ref This means that the executable entity can
enter/leave the referenced exclusive area through
explicit API calls.

753 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
exclusiveA
reaNesting
Order

ExclusiveAreaN
estingOrder

* ref This represents the set of
ExclusiveAreaNestingOrders recognized by this
ExecutableEntity.

minimumSt
artInterval

TimeValue 1 attr Specifies the time in seconds by which two
consecutive starts of an ExecutableEntity are
guaranteed to be separated.

reentrancy
Level

ReentrancyLeve
lEnum

0..1 attr The reentrancy level of this ExecutableEntity. See
the documentation of the enumeration type
ReentrancyLevelEnum for details.

Please note that nonReentrant interfaces can
have also reentrant or multicoreReentrant
implementations, and reentrant interfaces can also
have multicoreReentrant implementations.

runsInside
ExclusiveA
rea

ExclusiveArea * ref The executable entity runs completely inside the
referenced exclusive area.

swAddrMet
hod

SwAddrMethod 0..1 ref Addressing method related to this code entity. Via
an association to the same SwAddrMethod, it can
be specified that several code entities (even of
different modules or components) shall be located
in the same memory without already specifying
the memory section itself.

Table D.104: ExecutableEntity

Class ExecutableEntityActivationReason
Package M2::AUTOSARTemplates::CommonStructure::InternalBehavior
Note This meta-class represents the ability to define the reason for the activation of the

enclosing ExecutableEntity.
Base ARObject,ImplementationProps,Referrable
Attribute Datatype Mul. Kind Note
bitPosition PositiveInteger 1 attr This attribute allows for defining the position of the

enclosing ExecutableEntityActivationReason in
the activation vector.

Table D.105: ExecutableEntityActivationReason

Class ExternalTriggerOccurredEvent
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTE

Events
Note The event is raised when the referenced trigger have been occurred.
Base ARObject,AbstractEvent,AtpClassifier,AtpFeature,AtpStructure

Element,Identifiable,MultilanguageReferrable,RTEEvent,Referrable
Attribute Datatype Mul. Kind Note
trigger Trigger 0..1 iref Reference to the applicable Trigger.

Table D.106: ExternalTriggerOccurredEvent

754 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class ExternalTriggeringPoint
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::Trigger
Note If a RunnableEntity owns an ExternalTriggeringPoint it is entitled to raise an

ExternalTriggerOccurredEvent.
Base ARObject
Attribute Datatype Mul. Kind Note
ident ExternalTriggeri

ngPointIdent
0..1 aggr The aggregation in the role ident provides the

ability to make the ExternalTriggeringPoint
identifiable.

From the semantical point of view, the
ExternalTriggeringPoint is considered a first-class
Identifiable and therefore the aggregation in the
role ident shall always exist (until it may be
possible to let ModeAccessPoint directly inherit
from Identifiable).

Tags: atp.Status=shallBecomeMandatory
xml.sequenceOffset=-100

trigger Trigger 0..1 iref The trigger taken for the ExternalTriggeringPoint.

Tags: xml.namePlural=TRIGGER-IREF; xml.role
Element=false; xml.roleWrapperElement=true;
xml.typeElement=true; xml.typeWrapper
Element=false

Table D.107: ExternalTriggeringPoint

Class FlatInstanceDescriptor
Package M2::AUTOSARTemplates::CommonStructure::FlatMap
Note Represents exactly one node (e.g. a component instance or data element) of the

instance tree of a software system. The purpose of this element is to map the various
nested representations of this instance to a flat representation and assign a unique
name (shortName) to it.

Use cases:

• Specify unique names of measurable data to be used by MCD tools

• Specify unique names of calibration data to be used by MCD tool

• Specify a unique name for an instance of a component prototype in the ECU
extract of the system description

Note that in addition it is possible to assign alias names via AliasNameAssignment.
Base ARObject,Identifiable,MultilanguageReferrable,Referrable
Attribute Datatype Mul. Kind Note

755 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
ecuExtract
Reference

AtpFeature 0..1 iref Refers to the instance in the ECU extract. This is
valid only, if the FlatMap is used in the context of
an ECU extract.

The reference shall be such that it uniquely
defines the object instance. For example, if a data
prototype is declared as a role within an
SwcInternalBehavior, it is not enough to state the
SwcInternalBehavior as context and the
aggregated data prototype as target. In addition,
the reference shall also include the complete path
identifying instance of the component prototype
and the AtomicSoftwareComponentType, which is
refered by the particular SwcInternalBehavior.

Tags: xml.sequenceOffset=40
role Identifier 0..1 ref The role denotes the particular role of the

downstream memory location described by this
FlatInstanceDescriptor.

It applies to use case where one upstream object
results in multiple downstream objects, e.g.
ModeDeclarationGroupPrototypes which are
measurable. In this case the RTE will provide
locations for current mode, previous mode and
next mode.

swDataDef
Props

SwDataDefProp
s

0..1 aggr The properties of this FlatInstanceDescriptor.

upstreamR
eference

AtpFeature 0..1 iref Refers to the instance in the context of an
"upstream" descriptions, wich could be the system
or system extract description, the basic software
module description or (if a flat map is used in
preliminary context) a description of an atomic
component or composition. This reference is
optional in case the flat map is used in ECU
context.

The reference shall be such that it uniquely
defines the object instance in the given context.
For example, if a data prototype is declared as a
role within an SwcInternalBehavior, it is not
enough to state the SwcInternalBehavior as
context and the aggregated data prototype as
target. In addition, the reference shall also include
the complete path identifying the instance of the
component prototype that contains the particular
instance of SwcInternalBehavior.

Tags: xml.sequenceOffset=20

Table D.108: FlatInstanceDescriptor

756 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class FlatMap
Package M2::AUTOSARTemplates::CommonStructure::FlatMap
Note Contains a flat list of references to software objects. This list is used to identify

instances and to resolve name conflicts. The scope is given by the
RootSwCompositionPrototype for which it is used, i.e. it can be applied to a system,
system extract or ECU-extract.

An instance of FlatMap may also be used in a preliminary context, e.g. in the scope of
a software component before integration into a system. In this case it is not referred
by a RootSwCompositionPrototype.

Tags: atp.recommendedPackage=FlatMaps
Base ARElement,ARObject,AtpBlueprint,AtpBlueprintable,Collectable

Element,Identifiable,MultilanguageReferrable,PackageableElement,Referrable
Attribute Datatype Mul. Kind Note
instance FlatInstanceDes

criptor
1..* aggr A descriptor instance aggregated in the flat map.

The variation point accounts for the fact, that the
system in scope can be subject to variability, and
thus the existence of some instances is variable.

The aggregation has been made splitable
because the content might be contributed by
different stakeholders at different times in the
workflow. Plus, the overall size might be so big
that eventually it becomes more manageable if it is
distributed over several files.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variation
Point.shortLabel
vh.latestBindingTime=postBuild

Table D.109: FlatMap

Enumeration HandleInvalidEnum
Package M2::AUTOSARTemplates::SWComponentTemplate::Communication
Note Strategies of handling the reception of invalidValue.
Literal Description
dontInvali-
date

Invalidation is switched off.

keep The application software is supposed to handle signal invalidation on RTE API level
either by DataReceiveErrorEvent or check of error code on read access.

replace Replace a received invalidValue. The replacement value is specified by the
initValue.

Table D.110: HandleInvalidEnum

Enumeration HandleOutOfRangeEnum
Package M2::AUTOSARTemplates::SWComponentTemplate::Communication

757 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Note A value of this type is taken for controlling the range checking behavior of the
AUTOSAR RTE.

Literal Description
default The RTE will use the initValue if the actual value is out of the specified bounds.
external
Replacement

This indicates that the value replacement is sourced from the
externalReplacement.

ignore The RTE will ignore any attempt to send or receive the corresponding dataElement
if the value is out of the specified range.

invalid The RTE will use the invalidValue if the value is out of the specified bounds.
none A range check is not required.
saturate The RTE will saturate the value of the dataElement such that it is limited to the

applicable upper bound if it is greater than the upper bound. Consequently, it is
limited to the applicable lower bound if the value is less than the lower bound.

Table D.111: HandleOutOfRangeEnum

Enumeration HandleOutOfRangeStatusEnum
Package M2::AUTOSARTemplates::SWComponentTemplate::Communication
Note This enumeration defines how the RTE handles values that are out of range.
Literal Description
indicate The RTE sets the return status to RTE_E_OUT_OF_RANGE if the received value

is out of range and the attribute handleOutOfRange is not set to "none" or "invalid".
silent The RTE sets the return status to RTE_E_OK

Table D.112: HandleOutOfRangeStatusEnum

Class HwElement
Package M2::AUTOSARTemplates::EcuResourceTemplate
Note This represents the ability to describe Hardware Elements on an instance level. The

particular types of hardware are distinguished by the category. This category
determines the applicable attributes. The possible categories and attributes are
defined in HwCategory.

Tags: atp.recommendedPackage=HwElements
Base ARElement,ARObject,CollectableElement,HwDescription

Entity,Identifiable,MultilanguageReferrable,PackageableElement,Referrable
Attribute Datatype Mul. Kind Note
hwElement
Connectio
n

HwElementCon
nector

* aggr This represents one particular connection
between two hardware elements.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=systemDesignTime
xml.sequenceOffset=110

758 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
hwPinGrou
p

HwPinGroup * aggr This aggregation is used to describe the
connection facilities of a hardware element. Note
that hardware element has no pins but only
pingroups.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=systemDesignTime
xml.sequenceOffset=90

nestedEle
ment

HwElement * ref This association is used to establish hierarchies of
hw elements. Note that one particular HwElement
can be target of this association only once. I.e.
multiple instantiation of the same HwElement is
not supported (at any hierarchy level).

Stereotypes: atpVariation
Tags: vh.latestBindingTime=systemDesignTime
xml.sequenceOffset=70

Table D.113: HwElement

Class ISignal
Package M2::AUTOSARTemplates::SystemTemplate::Fibex::FibexCore::CoreCommunication
Note Signal of the Interaction Layer. The RTE supports a "signal fan-out" where the same

System Signal is sent in different SignalIPdus to multiple receivers.

To support the RTE "signal fan-out" each SignalIPdu contains ISignals. If the same
System Signal is to be mapped into several SignalIPdus there is one ISignal needed
for each ISignalToIPduMapping.

ISignals describe the Interface between the Precompile configured RTE and the
potentially Postbuild configured Com Stack (see ECUC Parameter Mapping).

In case of the SystemSignalGroup an ISignal must be created for each SystemSignal
contained in the SystemSignalGroup.

Tags: atp.recommendedPackage=ISignals
Base ARObject,CollectableElement,FibexElement,Identifiable,Multilanguage

Referrable,PackageableElement,Referrable
Attribute Datatype Mul. Kind Note

759 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
dataTypeP
olicy

DataTypePolicy
Enum

1 attr With the aggregation of SwDataDefProps an
ISignal specifies how it is represented on the
network. This representation follows a particular
policy. Note that this causes some redundancy
which is intended and can be used to support
flexible development methodology as well as
subsequent integrity checks.

If the policy
"networkRepresentationFromComSpec" is chosen
the network representation from the ComSpec
that is aggregated by the PortPrototype shall be
used. If the "override" policy is chosen the
requirements specified in the PortInterface and in
the ComSpec are not fulfilled by the
networkRepresentationProps. In case the System
Description doesn’t use a complete Software
Component Description (VFB View) the "legacy"
policy can be chosen.

iSignalPro
ps

ISignalProps 0..1 aggr Additional optional ISignal properties that may be
stored in different files.

Stereotypes: atpSplitable
initValue ValueSpecificati

on
0..1 aggr Optional definition of a ISignal’s initValue in case

the System Description doesn’t use a complete
Software Component Description (VFB View).
This supports the inclusion of legacy system
signals.

This value can be used to configure the Signal’s
"InitValue".

If a full DataMapping exist for the SystemSignal
this information may be available from a
configured SenderComSpec and
ReceiverComSpec. In this case the initvalues in
SenderComSpec and/or ReceiverComSpec
override this optional value specification. Further
restrictions apply from the RTE specification.

length Integer 1 attr Size of the signal in bits. The size needs to be
derived from the mapped VariableDataPrototype
according to the mapping of primitive DataTypes
to BaseTypes as used in the RTE. Indicates
maximum size for dynamic length signals.

The ISignal length of zero bits is allowed.

760 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
networkRe
presentatio
nProps

SwDataDefProp
s

0..1 aggr Specification of the actual network representation.
The usage of SwDataDefProps for this purpose is
restricted to the attributes compuMethod and
baseType. The optional baseType attributes
"memAllignment" and "byteOrder" shall not be
used.

The attribute "dataTypePolicy" in the
SystemTemplate element defines whether this
network representation shall be ignored and the
information shall be taken over from the network
representation of the ComSpec.

If "override" is chosen by the system integrator the
network representation can violate against the
requirements defined in the PortInterface and in
the network representation of the ComSpec.

In case that the System Description doesn’t use a
complete Software Component Description (VFB
View) this element is used to configure
"ComSignalDataInvalidValue" and the Data
Semantics.

systemSig
nal

SystemSignal 1 ref Reference to the System Signal that is supposed
to be transmitted in the ISignal.

Table D.114: ISignal

Class ISignalGroup
Package M2::AUTOSARTemplates::SystemTemplate::Fibex::FibexCore::CoreCommunication
Note SignalGroup of the Interaction Layer. The RTE supports a "signal fan-out" where the

same System Signal Group is sent in different SignalIPdus to multiple receivers.

An ISignalGroup refers to a set of ISignals that shall always be kept together. A
ISignalGroup represents a COM Signal Group.

Therefore it is recommended to put the ISignalGroup in the same Package as
ISignals (see atp.recommendedPackage)

Tags: atp.recommendedPackage=ISignalGroup
Base ARObject,CollectableElement,FibexElement,Identifiable,Multilanguage

Referrable,PackageableElement,Referrable
Attribute Datatype Mul. Kind Note
iSignal ISignal * ref Reference to a set of ISignals that shall always be

kept together.
systemSig
nalGroup

SystemSignalGr
oup

1 ref Reference to the SystemSignalGroup that is
defined on VFB level and that is supposed to be
transmitted in the ISignalGroup.

Table D.115: ISignalGroup

761 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class ISignalProps
Package M2::AUTOSARTemplates::SystemTemplate::Fibex::FibexCore::CoreCommunication
Note Additional ISignal properties that may be stored in different files.
Base ARObject
Attribute Datatype Mul. Kind Note
handleOut
OfRange

HandleOutOfRa
ngeEnum

1 attr This attribute defines the outOfRangeHandling for
received and sent signals.

Table D.116: ISignalProps

Class Identifiable (abstract)
Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Identifiable
Note Instances of this class can be referred to by their identifier (within the namespace

borders). In addition to this, Identifiables are objects which contribute significantly to
the overall structure of an AUTOSAR description. In particular, Identifiables might
contain Identifiables.

Base ARObject,MultilanguageReferrable,Referrable
Attribute Datatype Mul. Kind Note
desc MultiLanguage

OverviewParagr
aph

0..1 aggr This represents a general but brief (one
paragraph) description what the object in question
is about. It is only one paragraph! Desc is
intended to be collected into overview tables. This
property helps a human reader to identify the
object in question.

More elaborate documentation, (in particular how
the object is built or used) should go to
"introduction".

Tags: xml.sequenceOffset=-60
category CategoryString 0..1 attr This element assigns a category to the parent

element. The category is intended to specialize
the usage and/or the content identifiable object.
Such a specialization may also impose particular
semantic constraints on the entire substructure
(not only the identifiable itself).

Tags: xml.sequenceOffset=-50
adminData AdminData 0..1 aggr This represents the administrative data for the

identifiable object.

Tags: xml.sequenceOffset=-40
annotation Annotation * aggr Possibility to provide additional notes while

defining a model element (e.g. the ECU
Configuration Parameter Values). These are not
intended as documentation but are mere design
notes.

Tags: xml.sequenceOffset=-25

762 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
introductio
n

Documentation
Block

0..1 aggr This represents more information about how the
object in question is built or is used. Therefore it is
a DocumentationBlock.

Tags: xml.sequenceOffset=-30
uuid String 0..1 attr The purpose of this attribute is to provide a

globally unique identifier for an instance of a
meta-class. The values of this attribute should be
globally unique strings prefixed by the type of
identifier. For example, to include a DCE UUID as
defined by The Open Group, the UUID would be
preceded by "DCE:". The values of this attribute
may be used to support merging of different
AUTOSAR models. The form of the UUID
(Universally Unique Identifier) is taken from a
standard defined by the Open Group (was Open
Software Foundation). This standard is widely
used, including by Microsoft for COM (GUIDs) and
by many companies for DCE, which is based on
CORBA. The method for generating these 128-bit
IDs is published in the standard and the
effectiveness and uniqueness of the IDs is not in
practice disputed. If the id namespace is omitted,
DCE is assumed. An example is
"DCE:2fac1234-31f8-11b4-a222-08002b34c003".

Tags: xml.attribute=true

Table D.117: Identifiable

Class Implementation (abstract)
Package M2::AUTOSARTemplates::CommonStructure::Implementation
Note Description of an implementation a single software component or module.
Base ARElement,ARObject,CollectableElement,Identifiable,Multilanguage

Referrable,PackageableElement,Referrable
Attribute Datatype Mul. Kind Note
buildAction
Manifest

BuildActionMani
fest

0..1 ref A manifest specifying the intended build actions
for the software delivered with this implementation.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=codeGenerationTime

codeDescri
ptor

Code 1..* aggr Specifies the provided implementation code.

compiler Compiler * aggr Specifies the compiler for which this
implementation has been released

763 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
generated
Artifact

DependencyOn
Artifact

* aggr Relates to an artifact that will be generated during
the integration of this Implementation by an
associated generator tool. Note that this is an
optional information since it might not always be in
the scope of a single module or component to
provide this information.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

hwElement HwElement * ref The hardware elements (e.g. the processor)
required for this implementation.

linker Linker * aggr Specifies the linker for which this implementation
has been released.

mcSupport McSupportData 0..1 aggr The measurement & calibration support data
belonging to this implementation. The aggregtion
is «atpSplitable» because in case of an already
exisiting BSW Implementation model, this
description will be added later in the process,
namely at code generation time.

Stereotypes: atpSplitable
Tags: atp.Splitkey=mcSupport

programmi
ngLanguag
e

Programmingla
nguageEnum

1 attr Programming language the implementation was
created in.

requiredArt
ifact

DependencyOn
Artifact

* aggr Specifies that this Implementation depends on the
existance of another artifact (e.g. a library). This
aggregation of DependencyOnArtifact is subject to
variability with the purpose to support variability in
the implementations. Different algorithms in the
implementation might cause different
dependencies, e.g. the number of used libraries.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

requiredGe
neratorToo
l

DependencyOn
Artifact

* aggr Relates this Implementation to a generator tool in
order to generate additional artifacts during
integration.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

resourceC
onsumptio
n

ResourceConsu
mption

1 aggr All static and dynamic resources for each
implementation are described within the
ResourceConsumption class.

swVersion RevisionLabelSt
ring

1 attr Software version of this implementation. The
numbering contains three levels (like major, minor,
patch), its values are vendor specific.

764 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
swcBswMa
pping

SwcBswMappin
g

0..1 ref This allows a mapping between an SWC and a
BSW behavior to be attached to an
implementation description (for AUTOSAR
Service, ECU Abstraction and Complex Driver
Components). It is up to the methodology to
define whether this reference has to be set for the
Swc- or BswImplementtion or for both.

usedCode
Generator

String 0..1 attr Optional: code generator used.

vendorId PositiveInteger 1 attr Vendor ID of this Implementation according to the
AUTOSAR vendor list

Table D.118: Implementation

Class ImplementationDataType
Package M2::AUTOSARTemplates::CommonStructure::ImplementationDataTypes
Note Describes a reusable data type on the implementation level. This will typically

correspond to a typedef in C-code.

Tags: atp.recommendedPackage=ImplementationDataTypes
Base ARElement,ARObject,AtpBlueprint,AtpBlueprintable,AtpClassifier,AtpType,Autosar

DataType,CollectableElement,Identifiable,MultilanguageReferrable,Packageable
Element,Referrable

Attribute Datatype Mul. Kind Note
subElemen
t (ordered)

Implementation
DataTypeEleme
nt

* aggr Specifies an element of an arrray, struct, or union
data type.

The aggregation of
ImplementionDataTypeElement is subject to
variability with the purpose to support the
conditional existence of elements inside a
ImplementationDataType representing a structure.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

symbolPro
ps

SymbolProps 0..1 aggr This represents the SymbolProps for the
ImplementationDataType.

Stereotypes: atpSplitable
Tags: atp.Splitkey=shortName

typeEmitte
r

NameToken 0..1 attr This attribute is used to control which part of the
AUTOSAR toolchain is supposed to trigger data
type definitions.

Table D.119: ImplementationDataType

765 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class ImplementationDataTypeElement
Package M2::AUTOSARTemplates::CommonStructure::ImplementationDataTypes
Note Declares a data object which is locally aggregated. Such an element can only be

used within the scope where it is aggregated.

This element either consists of further subElements or it is further defined via its
swDataDefProps.

There are several use cases within the system of ImplementationDataTypes fur such
a local declaration:

• It can represent the elements of an array, defining the element type and array
size

• It can represent an element of a struct, defining its type

• It can be the local declaration of a debug element.

Base ARObject,Identifiable,MultilanguageReferrable,Referrable
Attribute Datatype Mul. Kind Note
arraySize PositiveInteger 0..1 attr The existence of this attributes (if bigger than 0)

defines the size of an array and declares that this
ImplementationDataTypeElement represents the
type of each single array element.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

arraySizeS
emantics

ArraySizeSema
nticsEnum

0..1 attr This attribute controls the meaning of the value of
the array size.

subElemen
t

Implementation
DataTypeEleme
nt

* aggr Element of an array, struct, or union in case of a
nested declaration (i.e. without using "typedefs").

The aggregation of
ImplementionDataTypeElement is subject to
variability with the purpose to support the
conditional existence of elements inside a
ImplementationDataType representing a structure.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

swDataDef
Props

SwDataDefProp
s

0..1 aggr The properties of this
ImplementationDataTypeElementt.

Table D.120: ImplementationDataTypeElement

Class ImplementationProps (abstract)
Package M2::AUTOSARTemplates::CommonStructure::Implementation
Note Defines a symbol to be used as (depending on the concrete case) either a complete

replacement or a prefix when generating code artifacts.
Base ARObject,Referrable
Attribute Datatype Mul. Kind Note
symbol CIdentifier 1 ref The symbol to be used as (depending on the

concrete case) either a complete replacement or a
prefix.

766 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note

Table D.121: ImplementationProps

Class IncludedDataTypeSet
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::Included

DataTypes
Note An includedDataTypeSet declares that a set of AutosarDataType is used by the

software component for its implementation and the AutosarDataType becomes part of
the contract.

This information is required if the AutosarDataType is not used for any DataPrototype
owned by this software component or if the enumeration literals, lowerLimit and
upperLimit constants shall be generated with a literalPrefix.

The optional literalPrefix is used to add a common prefix on enumeration literals,
lowerLimit and upperLimit constants created by the RTE.

Base ARObject
Attribute Datatype Mul. Kind Note
dataType AutosarDataTyp

e
1..* ref AutosarDataType belonging to the

includedDataTypeSet
literalPrefix Identifier 0..1 ref LiteralPrefix defines a common prefix for all

AutosarDataTypes of the includedDataTypeSet to
be added on enumeration literals, lowerLimit and
upperLimit constants created by the RTE.

Table D.122: IncludedDataTypeSet

Class IncludedModeDeclarationGroupSet
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::Mode

DeclarationGroup
Note An IncludedModeDeclarationGroupSet declares that a set of ModeDeclarationGroups

used by the software component for its implementation and consequently these
ModeDeclarationGroups become part of the contract.

Base ARObject
Attribute Datatype Mul. Kind Note
modeDecl
arationGro
up

ModeDeclaratio
nGroup

1..* ref This represents the referenced
ModeDeclarationGroup.

prefix Identifier 0..1 ref The prefix shall be used by the RTE generator as
a prefix for the creation of symbols related to the
referenced ModeDeclarationGroups, e.g
RTE_TRANSITION_<ModeDeclarationGroup>.

Table D.123: IncludedModeDeclarationGroupSet

767 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class InitEvent
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTE

Events
Note This RTEEvent is supposed to be used for initialization purposes, i.e. for starting and

restarting a partition. It is not guaranteed that all RunnableEntities referenced by this
InitEvent are executed before the ’regular’ RunnableEntities are executed for the first
time. The execution order depends on the task mapping.

Base ARObject,AbstractEvent,AtpClassifier,AtpFeature,AtpStructure
Element,Identifiable,MultilanguageReferrable,RTEEvent,Referrable

Attribute Datatype Mul. Kind Note
– – – – –

Table D.124: InitEvent

Class InstantiationDataDefProps
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::

InstantiationDataDefProps
Note This is a general class allowing to apply additional SwDataDefProps to particular

instantiations of a DataPrototype.

Typically the accessibility and further information like alias names for a particular data
is modeled on the level of DataPrototypes (especially VariableDataPrototypes,
ParameterDataPrototypes). But due to the recursive structure of the meta-model
concerning data types (a composite (data) type consists out of data prototypes) a part
of the MCD information is described in the data type (in case of
ApplicationCompositeDataType).

This is a strong restriction in the reuse of data typed because the data type should be
re-used for different VariableDataPrototypes and ParameterDataPrototypes to
guarantee type compatibility on C-implementation level (e.g. data of a Port is stored
in PIM or NvRom Block shall be from same data type as NvRAM Block).

This class overcomes such a restriction if applied properly.
Base ARObject
Attribute Datatype Mul. Kind Note
parameterI
nstance

AutosarParamet
erRef

0..1 aggr This is the particular ParameterDataPrototypes on
which the swDataDefProps shall be applied.

swDataDef
Props

SwDataDefProp
s

1 aggr These are the particular data definition properties
which shall be applied

variableIns
tance

AutosarVariable
Ref

0..1 aggr This is the particular VariableDataPrototypes on
which the swDataDefProps shall be applied.

Table D.125: InstantiationDataDefProps

Class InstantiationRTEEventProps (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::Composition
Note This meta class represents the ability to refine the properties of RTEEvents for

particular instances of a software component.
Base ARObject
Attribute Datatype Mul. Kind Note

768 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
refinedEve
nt

RTEEvent 1 iref This instance ref denotes the Timing Event for
which the period shall be refined on an instance
level.

shortLabel Identifier 1 ref The main purpose of the shortLabel is to
contribute to the splitkey of aggregations that are
«atpSplitable».

Table D.126: InstantiationRTEEventProps

Class InternalBehavior (abstract)
Package M2::AUTOSARTemplates::CommonStructure::InternalBehavior
Note Common base class (abstract) for the internal behavior of both software components

and basic software modules/clusters.
Base ARObject,AtpClassifier,AtpFeature,AtpStructureElement,Identifiable,Multilanguage

Referrable,Referrable
Attribute Datatype Mul. Kind Note
constantM
emory

ParameterData
Prototype

* aggr Describes a read only memory object containing
characteristic value(s) implemented by this
InternalBehavior. The shortName of
ParameterElementPrototype has to be equal to
the ”C’ identifier of the described constant. The
characteristic value(s) might be shared between
SwComponentPrototypes of the same
SwComponentType. The aggregation of
constantMemory is subject to variability with the
purpose to support variability in the software
component or module implementations. Typically
different algorithms in the implementation are
requiring different number of memory objects.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

constantVa
lueMappin
g

ConstantSpecifi
cationMappingS
et

* ref Reference to the ConstanSpecificationMapping to
be applied for the particular InternalBehavior

dataTypeM
apping

DataTypeMappi
ngSet

* ref Reference to the DataTypeMapping to be applied
for the particular InternalBehavior

exclusiveA
rea

ExclusiveArea * aggr This specifies an ExclusiveArea for this
InternalBehavior. The exclusiveArea is local to the
component resp. module. The aggregation of
ExclusiveAreas is subject to variability. Note: the
number of ExclusiveAreas might vary due to the
conditional existence of RunnableEntities or
BswModuleEntities.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

769 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
exclusiveA
reaNesting
Order

ExclusiveAreaN
estingOrder

* aggr This represents the set of
ExclusiveAreaNestingOrder owned by the
InternalBehavior.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variation
Point.shortLabel
vh.latestBindingTime=preCompileTime

staticMem
ory

VariableDataPr
ototype

* aggr Describes a read and writeable static memory
object representing measurment variables
implemented by this software component. Static is
used in the meaning of non temporary and does
not necessarily specify a linker encapsulation.
This kind of memory is only supported if
supportsMultipleInstantiation is FALSE. The
shortName of DataElementPrototype has to be
equal with the ”C’ identifier of the described
variable. The aggregation of staticMemory is
subject to variability with the purpose to support
variability in the software components
implementations. Typically different algorithms in
the implementation are requiring different number
of memory objects.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

Table D.127: InternalBehavior

Class InternalTriggerOccurredEvent
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTE

Events
Note The event is raised when the referenced internal trigger have been occurred.
Base ARObject,AbstractEvent,AtpClassifier,AtpFeature,AtpStructure

Element,Identifiable,MultilanguageReferrable,RTEEvent,Referrable
Attribute Datatype Mul. Kind Note
eventSour
ce

InternalTriggerin
gPoint

1 ref Internal Triggering Point that triggers the event.

Table D.128: InternalTriggerOccurredEvent

Class InternalTriggeringPoint
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::Trigger
Note If a RunnableEntity owns a InternalTriggeringPoint it is entitled to trigger the execution

of RunnableEntities of the corresponding software-component.
Base ARObject,AtpClassifier,AtpFeature,AtpStructureElement,Identifiable,Multilanguage

Referrable,Referrable
Attribute Datatype Mul. Kind Note
swImplPoli
cy

SwImplPolicyEn
um

0..1 attr This attribute, when set to value queued, allows
for a queued processing of Triggers.

770 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note

Table D.129: InternalTriggeringPoint

Class InvalidationPolicy
Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface
Note Specifies whether the component can actively invalidate a particular dataElement.

If no invalidationPolicy points to a dataElement this is considered to yield the identical
result as if the handleInvalid attribute was set to dontInvalidate.

Base ARObject
Attribute Datatype Mul. Kind Note
dataEleme
nt

VariableDataPr
ototype

1 ref Reference to the dataElement for which the
InvalidationPolicy applies.

handleInva
lid

HandleInvalidEn
um

0..1 attr This attribute defines the action performed upon a
reception timeout violation.

Table D.130: InvalidationPolicy

Class McDataInstance
Package M2::AUTOSARTemplates::CommonStructure::MeasurementCalibrationSupport
Note Describes the specific properties of one data instance in order to support

measurement and/or calibration of this data instance.

The most important attributes are:

• Its shortName is copied from the ECU Flat map (if applicable) and will be used
as identifier and for display by the MC system.

• The category is copied from the corresponding data type (ApplicationDataType
if defined, otherwise ImplementationDataType) as far as applicable.

• The symbol is the one used in the programming language. It will be used to
find out the actual memory address by the final generation tool with the help of
linker generated information.

It is assumed that in the M1 model this part and all the aggregated and referred
elements (with the exception of the Flat Map and the references from
ImplementationElementInParameterInstanceRef and McAccessDetails) are
completely generated from "upstream" information. This means, that even if an
element like e.g. a CompuMethod is only used via reference here, it will be copied into
the M1 artifact which holds the complete McSupportData for a given Implementation.

Base ARObject,Identifiable,MultilanguageReferrable,Referrable
Attribute Datatype Mul. Kind Note
arraySize PositiveInteger 0..1 attr The existence of this attribute turns the data

instance into an array of data. The attribute
determines the size of the array.

771 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
flatMapEnt
ry

FlatInstanceDes
criptor

0..1 ref Reference to the corresponding entry in the ECU
Flat Map. This allows to trace back to the original
specification of the generated data instance. This
link shall be added by the RTE generator mainly
for documentation purposes.

The reference is optional because

• The McDataInstance may represent an
array or struct in which only the
subElements correspond to FlatMap
entries.

• The McDataInstance may represent a task
local buffer for rapid prototyping access
which is different from the "main instance"
used for measurement access.

instanceIn
Memory

Implementation
ElementInPara
meterInstanceR
ef

0..1 aggr Reference to the corresponding data instance in
the description of calibration data structures
published by the RTE generator. This is used to
support emulation methods inside the ECU, it is
not required for A2L generation.

mcDataAc
cessDetail
s

McDataAccess
Details

0..1 aggr Refers to "upstream" information on how the RTE
uses this data instance. Use Case: Rapid
Prototyping

mcDataAs
signment

RoleBasedMcD
ataAssignment

* aggr An assignment between McDataInstances.

resultingPr
operties

SwDataDefProp
s

0..1 aggr These are the generated properties resulting from
decisions taken by the RTE generator for the
actually implemented data instance. Only those
properties are relevant here, which are needed for
the measurement and calibration system.

role Identifier 0..1 ref An optional attribute to be used for additional
information on the role of this data instance, for
example in the context of rapid prototyping.

subElemen
t

McDataInstance * aggr This relation indicates, that the target element is
part of a "struct" which is given by the source
element. This information will be used by the final
generator to set up the correct addressing
scheme.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

772 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
symbol SymbolString 0..1 ref This String is used to determine the memory

address during final generation of the MC
configuration data (e.g. "A2L" file) . It shall be the
name of the element in the programming language
such that it can be identified in linker generated
information.

In case the McDataInstance is part of composite
data in the programming language, the symbol
String may include parts denoting the element
context, unless the context is given by the symbol
attribute of an enclosing McDataInstance. This
means in particular for the C language that the "."
character shall be used as a separator between
the name of a "struct" variable the name of one of
its elements.

The symbol can differ from the shortName in case
of generated C data declarations.

It is an optional attribute since it may be missing in
case the instance represents an element (e.g. a
single array element) which has no name in the
linker map.

Table D.131: McDataInstance

Class McParameterElementGroup
Package M2::AUTOSARTemplates::CommonStructure::MeasurementCalibrationSupport
Note Denotes a group of calibration parameters which are handled by the RTE as one data

structure.
Base ARObject
Attribute Datatype Mul. Kind Note
ramLocatio
n

VariableDataPr
ototype

1 ref Refers to the RAM location of this parameter
group. To be used for the init-RAM method.

romLocatio
n

ParameterData
Prototype

1 ref Refers to the ROM location of this parameter
group. To be used for the init-RAM method.

shortLabel Identifier 1 ref Assigns a name to this element.

Tags: xml.sequenceOffset=-100

Table D.132: McParameterElementGroup

773 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class McSupportData
Package M2::AUTOSARTemplates::CommonStructure::MeasurementCalibrationSupport
Note Root element for all measurement and calibration support data related to one

Implementation artifact on an ECU. There shall be one such element related to the
RTE implementation (if it owns MC data) and a separate one for each module or
component, which owns private MC data.

Base ARObject
Attribute Datatype Mul. Kind Note
emulationS
upport

McSwEmulation
MethodSupport

* aggr Describes the calibration method used by the
RTE. This information is not needed for A2L
generation, but to setup software emulation in the
ECU.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

mcParame
terInstance

McDataInstance * aggr A data instance to be used for calibration.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variation
Point.shortLabel
vh.latestBindingTime=postBuild

mcVariable
Instance

McDataInstance * aggr A data instance to be used for measurement.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variation
Point.shortLabel
vh.latestBindingTime=postBuild

measurabl
eSystemC
onstantVal
ues

SwSystemconst
antValueSet

* ref Sets of system constant values to be transferred
to the MCD system, because the system
constants have been specified with
"swCalibrationAccess" = readonly.

Table D.133: McSupportData

774 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class McSwEmulationMethodSupport
Package M2::AUTOSARTemplates::CommonStructure::MeasurementCalibrationSupport
Note This denotes the method used by the RTE to handle the calibration data. It is

published by the RTE generator and can be used e.g. to generate the corresponding
emulation method in a Complex Driver.

According to the actual method given by the category attribute, not all attributes are
always needed:

• double pointered method: only baseReference is mandatory

• single pointered method: only referenceTable is mandatory

• initRam method: only elementGroup(s) are mandatory

Note: For single/double pointered method the group locations are implicitly accessed
via the reference table and their location can be found from the initial values in the M1
model of the respective pointers. Therefore, the description of elementGroups is not
needed in these cases. Likewise, for double pointered method the reference table
description can be accessed via the M1 model under baseReference.

Base ARObject
Attribute Datatype Mul. Kind Note
category Identifier 1 ref Identifies the actual method. The possible names

shall correspond to the symbols of the ECU
configuration parameter for the calibration method
of the RTE, and can include vendor specific
methods.

Tags: xml.sequenceOffset=-90
baseRefer
ence

VariableDataPr
ototype

0..1 ref Refers to the base pointer in case of the
double-pointered method.

elementGr
oup

McParameterEl
ementGroup

* aggr Denotes the grouping of calibration parameters in
the actual RTE code. Depending on the category,
this information maybe required to set up the
emulation code.

referenceT
able

VariableDataPr
ototype

0..1 ref Refers to the pointer table in case of the
single-pointered method.

shortLabel Identifier 1 ref Assigns a name to this element.

Tags: xml.sequenceOffset=-100

Table D.134: McSwEmulationMethodSupport

Enumeration MemoryAllocationKeywordPolicyType
Package M2::AUTOSARTemplates::CommonStructure::AuxillaryObjects
Note Enumeration to specify the name pattern of the Memory Allocation Keyword.
Literal Description
addrMethod
ShortName

The MemorySection shortNames of referring MemorySections and therefore the
belonging Memory Allocation Keywords in the code are build with the shortName of
the SwAddrMethod. This is the default value if the attribute does not exist.

775 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

addrMethod
ShortName
AndAlign-
ment

The MemorySection shortNames of referring MemorySections and therefore the
belonging Memory Allocation Keywords in the code are build with the shortName of
the SwAddrMethod and the alignment attribute of the MemorySection. This
requests a separation of objects in memory dependent from the alignment and is
not applicable for SwAddrMethods referred by RunnableEntitys and
BswSchedulableEntitys.

Table D.135: MemoryAllocationKeywordPolicyType

Class MemorySection
Package M2::AUTOSARTemplates::CommonStructure::ResourceConsumption::Memory

SectionUsage
Note Provides a description of an abstract memory section used in the Implementation for

code or data. It shall be declared by the Implementation Description of the module or
component, which actually allocates the memory in its code. This means in case of
data prototypes which are allocated by the RTE, that the generated Implementation
Description of the RTE shall contain the corresponding MemorySections.

The attribute "symbol" (if symbol is missing: "shortName") defines the module or
component specific section name used in the code. For details see the document
"Specification of Memory Mapping". Typically the section name is build according the
pattern:

<SwAddrMethod shortName>[_<further specialization nominator>][_<alignment>]
where

• [<SwAddrMethod shortName>] is the shortName of the referenced
SwAddrMethod

• [_<further specialization nominator>] is an optional infix to indicate the
specialization in the case that several MemorySections for different purpose of
the same Implementation Description referring to the same or equally named
SwAddrMethods.

• [_<alignment>] is the alignment attributes value and is only applicable in the
case that the memoryAllocationKeywordPolicy value of the referenced
SwAddrMethod is set to addrMethodShortNameAndAlignment

MemorySection used to Implement the code of RunnableEntitys and
BswSchedulableEntitys shall have a symbol (if missing: shortName) identical to the
referred SwAddrMethod to conform to the generated RTE header files.

In addition to the section name described above, a prefix is used in the corresponding
macro code in order to define a name space. This prefix is by default given by the
shortName of the BswModuleDescription resp. the SwcComponentType. It can be
superseded by the prefix attribute.

Base ARObject,Identifiable,MultilanguageReferrable,Referrable
Attribute Datatype Mul. Kind Note
alignment AlignmentType 0..1 attr The attribute describes the alignment of objects

within this memory section.

776 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
executable
Entity

ExecutableEntit
y

* ref Reference to the ExecutableEntitites located in
this section. This allows to locate different
ExecutableEntitities in different sections even if
the associated SwAddrmethod is the same.

This is applicable to code sections only.
memClass
Symbol

CIdentifier 0..1 ref Defines a specific symbol in order to generate the
compiler abstraction "memclass" code for this
MemorySection. The existence of this attribute
supersedes the usage of
swAddrmethod.shortName for this purpose.

The complete name of the "memclass"
preprocessor symbol is constructed as
<prefix>_<memClassSymbol> where prefix is
defined in the same way as for the enclosing
MemorySection. See also
AUTOSAR_SWS_CompilerAbstraction
SWS_COMPILER_00040.

option Identifier * ref This attribute introduces the ability to specify
further intended properties of this MemorySection.
The following two values are standardized (to be
used for code sections only and exclusively to
each other):

• INLINE - The code section is declared with
the compiler abstraction macro INLINE.

• LOCAL_INLINE - The code section is
declared with the compiler abstraction
macro LOCAL_INLINE

In both cases (INLINE and LOCAL_INLINE) the
inline expansion depends on the compiler specific
implementation of these macros. Depending on
this, the code section either corresponds to an
actual section in memory or is put into the section
of the caller. See
AUTOSAR_SWS_CompilerAbstraction for more
details.

prefix SectionNamePr
efix

0..1 ref The prefix used to set the memory section’s
namespace in the code. The existence of a prefix
element supersedes rules for a default prefix
(such as the BswModuleDescription’s
shortName). This allows the user to define several
name spaces for memory sections within the
scope of one module, cluster or SWC.

size PositiveInteger 0..1 attr The size in bytes of the section.

777 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
swAddrmet
hod

SwAddrMethod 1 ref This association indicates that this module specific
(abstract) memory section is part of an overall
SwAddrMethod, referred by the upstream
declarations (e.g. calibration parameters, data
element prototypes, code entities) which share a
common addressing strategy. This can be
evaluated for the ECU configuration of the build
support.

This association shall always be declared by the
Implementation description of the module or
component, which allocates the memory in its
code. This means in case of data prototypes
which are allocated by the RTE, that the software
components only declare the grouping of its data
prototypes to SwAddrMethods, and the generated
Implementation Description of the RTE actually
sets up this association.

symbol Identifier 0..1 ref Defines the section name as explained in the main
description. By using this attribute for code
generation (instead of the shortName) it is
possible to define several different
MemorySections having the same name - e.g.
symbol = CODE - but using different
sectionNamePrefixes.

Table D.136: MemorySection

Class ModeAccessPoint
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::Mode

DeclarationGroup
Note A ModeAccessPoint is required by a RunnableEntity owned by a Mode Manager or

Mode User. Its semantics implies the ability to access the current mode (provided by
the RTE) of a ModeDeclarationGroupPrototype’s ModeDeclarationGroup.

Base ARObject
Attribute Datatype Mul. Kind Note
ident ModeAccessPoi

ntIdent
0..1 aggr The aggregation in the role ident provides the

ability to make the ModeAccessPoint identifiable.

From the semantical point of view, the
ModeAccessPoint is considered a first-class
Identifiable and therefore the aggregation in the
role ident shall always exist (until it may be
possible to let ModeAccessPoint directly inherit
from Identifiable).

Tags: atp.Status=shallBecomeMandatory
xml.sequenceOffset=-100

modeGrou
p

ModeDeclaratio
nGroupPrototyp
e

0..1 iref The mode declaration group that is accessed by
this runnable.

Tags: xml.typeElement=true

778 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note

Table D.137: ModeAccessPoint

Enumeration ModeActivationKind
Package M2::AUTOSARTemplates::CommonStructure::ModeDeclaration
Note Kind of mode switch condition used for activation of an event, as further described

for each enumeration field.
Literal Description
onEntry On entering the referred mode.
onExit On exiting the referred mode.
onTransition On transition of the 1st referred mode to the 2nd referred mode.

Table D.138: ModeActivationKind

Class ModeDeclaration
Package M2::AUTOSARTemplates::CommonStructure::ModeDeclaration
Note Declaration of one Mode. The name and semantics of a specific mode is not defined

in the meta-model.
Base ARObject,AtpClassifier,AtpFeature,AtpStructureElement,Identifiable,Multilanguage

Referrable,Referrable
Attribute Datatype Mul. Kind Note
value PositiveInteger 0..1 attr The RTE shall take the value of this attribute for

generating the source code representation of this
ModeDeclaration.

Table D.139: ModeDeclaration

Class ModeDeclarationGroup
Package M2::AUTOSARTemplates::CommonStructure::ModeDeclaration
Note A collection of Mode Declarations. Also, the initial mode is explicitly identified.

Tags: atp.recommendedPackage=ModeDeclarationGroups
Base ARElement,ARObject,AtpBlueprint,AtpBlueprintable,AtpClassifier,Atp

Type,CollectableElement,Identifiable,MultilanguageReferrable,Packageable
Element,Referrable

Attribute Datatype Mul. Kind Note
initialMode ModeDeclaratio

n
1 ref The initial mode of the ModeDeclarationGroup.

This mode is active before any mode switches
occurred.

modeDecl
aration

ModeDeclaratio
n

1..* aggr The ModeDeclarations collected in this
ModeDeclarationGroup.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=blueprintDerivation
Time

779 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
modeMana
gerErrorBe
havior

ModeErrorBeha
vior

0..1 aggr This represents the ability to define the error
behavior expected by the mode manager in case
of errors on the mode user side (e.g. terminated
mode user).

modeTran
sition

ModeTransition * aggr This represents the avaliable ModeTransitions of
the ModeDeclarationGroup

modeUser
ErrorBeha
vior

ModeErrorBeha
vior

0..1 aggr This represents the definition of the error behavior
expected by the mode user in case of errors on
the mode manager side (e.g. terminated mode
manager).

onTransitio
nValue

PositiveInteger 0..1 attr The value of this attribute shall be taken into
account by the RTE generator for
programmatically representing a value used for
the transition between two statuses.

Table D.140: ModeDeclarationGroup

Class ModeDeclarationGroupPrototype
Package M2::AUTOSARTemplates::CommonStructure::ModeDeclaration
Note The ModeDeclarationGroupPrototype specifies a set of Modes

(ModeDeclarationGroup) which is provided or required in the given context.
Base ARObject,AtpFeature,AtpPrototype,Identifiable,MultilanguageReferrable,Referrable
Attribute Datatype Mul. Kind Note
swCalibrati
onAccess

SwCalibrationA
ccessEnum

0..1 attr This allows for specifying whether or not the
enclosing ModeDeclarationGroupPrototype can
be measured at run-time.

type ModeDeclaratio
nGroup

1 tref The "collection of ModeDeclarations" (=
ModeDeclarationGroup) supported by a
component

Stereotypes: isOfType

Table D.141: ModeDeclarationGroupPrototype

Class ModeDeclarationMappingSet
Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface
Note This meta-class implements a container for ModeDeclarationGroupMappings

Tags: atp.recommendedPackage=PortInterfaceMappingSets
Base ARElement,ARObject,AtpClassifier,AtpType,Collectable

Element,Identifiable,MultilanguageReferrable,PackageableElement,Referrable
Attribute Datatype Mul. Kind Note
modeDecl
arationMap
ping

ModeDeclaratio
nMapping

1..* aggr This represents the collection of
ModeDeclarationMappings owned by the
enclosing ModeDeclarationMappingSet.

Table D.142: ModeDeclarationMappingSet

780 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class ModeErrorBehavior
Package M2::AUTOSARTemplates::CommonStructure::ModeDeclaration
Note This represents the ability to define the error behavior in the context of mode handling.
Base ARObject
Attribute Datatype Mul. Kind Note
defaultMod
e

ModeDeclaratio
n

0..1 ref This represents the ModeDeclaration that is
considered the error mode in the context of the
enclosing ModeDeclarationGroup.

errorReacti
onPolicy

ModeErrorReac
tionPolicyEnum

1 attr This represents the ability to define the policy in
terms of which default model shall apply in case
an error occurs.

Table D.143: ModeErrorBehavior

Enumeration ModeErrorReactionPolicyEnum
Package M2::AUTOSARTemplates::CommonStructure::ModeDeclaration
Note This represents the ability to specify the reaction on a mode error.
Literal Description
defaultMode This represents the ability to switch to the defaultMode in case of a mode error.
lastMode This represents the ability to keep the last mode in case of a mode error.

Table D.144: ModeErrorReactionPolicyEnum

Class ModeInterfaceMapping
Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface
Note Defines the mapping of ModeDeclarationGroupPrototypes in context of two different

ModeInterfaces.
Base ARObject,AtpBlueprint,AtpBlueprintable,Identifiable,MultilanguageReferrable,Port

InterfaceMapping,Referrable
Attribute Datatype Mul. Kind Note
modeMapp
ing

ModeDeclaratio
nGroupPrototyp
eMapping

1 aggr Mapping of two ModeDeclarationGroupPrototypes
in two different ModeInterfaces

Table D.145: ModeInterfaceMapping

Class ModeRequestTypeMap
Package M2::AUTOSARTemplates::CommonStructure::ModeDeclaration
Note Specifies a mapping between a ModeDeclarationGroup and an

ImplementationDataType. This ImplementationDataType shall be used to implement
the ModeDeclarationGroup.

Base ARObject
Attribute Datatype Mul. Kind Note
implement
ationDataT
ype

Implementation
DataType

1 ref This is the corresponding
ImplementationDataType. It shall be modeled
along the idea of an "unsigned integer-like" data
type.

781 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
modeGrou
p

ModeDeclaratio
nGroup

1 ref This is the corresponding ModeDeclarationGroup.

Table D.146: ModeRequestTypeMap

Class ModeSwitchInterface
Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface
Note A mode switch interface declares a ModeDeclarationGroupPrototype to be sent and

received.

Tags: atp.recommendedPackage=PortInterfaces
Base ARElement,ARObject,AtpBlueprint,AtpBlueprintable,AtpClassifier,Atp

Type,CollectableElement,Identifiable,MultilanguageReferrable,Packageable
Element,PortInterface,Referrable

Attribute Datatype Mul. Kind Note
modeGrou
p

ModeDeclaratio
nGroupPrototyp
e

1 aggr The ModeDeclarationGroupPrototype of this mode
interface.

Table D.147: ModeSwitchInterface

Class ModeSwitchPoint
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::Mode

DeclarationGroup
Note A ModeSwitchPoint is required by a RunnableEntity owned a Mode Manager. Its

semantics implies the ability to initiate a mode switch.
Base ARObject,AtpClassifier,AtpFeature,AtpStructureElement,Identifiable,Multilanguage

Referrable,Referrable
Attribute Datatype Mul. Kind Note
modeGrou
p

ModeDeclaratio
nGroupPrototyp
e

0..1 iref The mode declaration group that is switched by
this runnable.

Table D.148: ModeSwitchPoint

Class ModeSwitchReceiverComSpec
Package M2::AUTOSARTemplates::SWComponentTemplate::Communication
Note Communication attributes of RPortPrototypes with respect to mode communication
Base ARObject,RPortComSpec
Attribute Datatype Mul. Kind Note
enhanced
ModeApi

Boolean 0..1 attr This controls the creation of the enhanced mode
API that returns information about the previous
mode and the next mode. If set to "true" the
enhanced mode API is supposed to be generated.
For more details please refer to the SWS_RTE.

782 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
modeGrou
p

ModeDeclaratio
nGroupPrototyp
e

0..1 ref ModeDeclarationGroupPrototype (of the same
PortInterface) to which these communication
attributes apply.

Tags: atp.Status=shallBecomeMandatory
supportsAs
ynchronou
sModeSwit
ch

Boolean 1 attr This attribute controls the behavior of the
corresponding RPortPrototype with respect to the
question whether it can deal with asynchronous
mode switch requests, i.e. if set to true, the
RPortPrototype is able to deal with an
asynchronous mode switch request.

Table D.149: ModeSwitchReceiverComSpec

Class ModeSwitchSenderComSpec
Package M2::AUTOSARTemplates::SWComponentTemplate::Communication
Note Communication attributes of PPortPrototypes with respect to mode communication
Base ARObject,PPortComSpec
Attribute Datatype Mul. Kind Note
enhanced
ModeApi

Boolean 0..1 attr This controls the creation of the enhanced mode
API that returns information about the previous
mode and the next mode. If set to "true" the
enhanced mode API is supposed to be generated.
For more details please refer to the SWS_RTE.

modeGrou
p

ModeDeclaratio
nGroupPrototyp
e

1 ref ModeDeclarationGroupPrototype (of the same
PortInterface) to which these communication
attributes apply.

modeSwitc
hedAck

ModeSwitchedA
ckRequest

0..1 aggr If this aggregation exists an acknowledgement for
the successful processing of the mode switch
request is required.

queueLeng
th

PositiveInteger 1 attr Length of call queue on the mode user side. The
queue is implemented by the RTE. The value shall
be greater or equal to 1. Setting the value of
queueLength to 1 implies that incoming requests
are rejected while another request that arrived
earlier is being processed.

Table D.150: ModeSwitchSenderComSpec

Class ModeSwitchedAckEvent
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTE

Events
Note The event is raised when the referenced modes have been received or an error

occurs.
Base ARObject,AbstractEvent,AtpClassifier,AtpFeature,AtpStructure

Element,Identifiable,MultilanguageReferrable,RTEEvent,Referrable
Attribute Datatype Mul. Kind Note
eventSour
ce

ModeSwitchPoi
nt

1 ref Mode switch point that triggers the event.

783 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note

Table D.151: ModeSwitchedAckEvent

Class ModeSwitchedAckRequest
Package M2::AUTOSARTemplates::SWComponentTemplate::Communication
Note Requests acknowledgements that a mode switch has been proceeded successfully
Base ARObject
Attribute Datatype Mul. Kind Note
timeout TimeValue 1 attr Number of seconds before an error is reported or

in case of allowed redundancy, the value is sent
again.

Table D.152: ModeSwitchedAckRequest

Class NonqueuedReceiverComSpec
Package M2::AUTOSARTemplates::SWComponentTemplate::Communication
Note Communication attributes specific to non-queued receiving.
Base ARObject,RPortComSpec,ReceiverComSpec
Attribute Datatype Mul. Kind Note
aliveTimeo
ut

TimeValue 1 attr Specify the amount of time (in seconds) after
which the software component (via the RTE)
needs to be notified if the corresponding data item
have not been received according to the specified
timing description.

If the aliveTimeout attribute is 0 no timeout
monitoring shall be performed.

enableUpd
ate

Boolean 1 attr This attribute controls whether application code is
entitled to check whether the value of the
corresponding VariableDataPrototype has been
updated.

filter DataFilter 0..1 aggr The applicable filter algorithm for filtering the value
of the corresponding dataElement.

handleNev
erReceive
d

Boolean 1 attr This attribute specifies whether for the
corresponding VariableDataPrototype the "never
received" flag is available. If yes, the RTE is
supposed to assume that initially the
VariableDataPrototype has not been received
before. After the first reception of the
corresponding VariableDataPrototype the flag is
cleared.

• If the value of this attribute is set to "true"
the flag is required.

• If set to "false", the RTE shall not support
the "never received" functionality for the
corresponding VariableDataPrototype.

handleTim
eoutType

HandleTimeout
Enum

1 attr This attribute controls the behavior with respect to
the handling of timeouts.

784 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
initValue ValueSpecificati

on
0..1 aggr Initial value to be used in case the sending

component is not yet initialized. If the sender also
specifies an initial value the receiver’s value will be
used.

Table D.153: NonqueuedReceiverComSpec

Class NonqueuedSenderComSpec
Package M2::AUTOSARTemplates::SWComponentTemplate::Communication
Note Communication attributes for non-queued sender/receiver communication (sender

side)
Base ARObject,PPortComSpec,SenderComSpec
Attribute Datatype Mul. Kind Note
initValue ValueSpecificati

on
1 aggr Initial value to be sent if sender component is not

yet fully initialized, but receiver needs data already.

Table D.154: NonqueuedSenderComSpec

Class NumericalRuleBasedValueSpecification
Package M2::AUTOSARTemplates::CommonStructure::Constants
Note This meta-class is used to support a rule-based initialization approach for data types

with an array-nature (ImplementationDataType of category ARRAY).
Base ARObject,AbstractRuleBasedValueSpecification,ValueSpecification
Attribute Datatype Mul. Kind Note
ruleBased
Values

RuleBasedValu
eSpecification

1 aggr This represents the rule based value specification
for the array.

Tags: xml.roleElement=true; xml.roleWrapper
Element=false; xml.typeWrapperElement=false

Table D.155: NumericalRuleBasedValueSpecification

Class NumericalValueSpecification
Package M2::AUTOSARTemplates::CommonStructure::Constants
Note A numerical ValueSpecification which is intended to be assigned to a Primitive data

element. Note that the numerical value is a variant, it can be computed by a formula.
Base ARObject,ValueSpecification
Attribute Datatype Mul. Kind Note
value Numerical 1 attr This is the value itself.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

Table D.156: NumericalValueSpecification

785 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class NvBlockDataMapping
Package M2::AUTOSARTemplates::SWComponentTemplate::NvBlockComponent
Note Defines the mapping between the VariableDataPrototypes in the

NvBlockComponents ports and the VariableDataPrototypes of the RAM Block.

The data types of the referenced VariableDataPrototypes in the ports and the
referenced sub-element (inside a CompositeDataType) of the VariableDataPrototype
representing the RAM Block shall be compatible.

Base ARObject
Attribute Datatype Mul. Kind Note
nvRamBlo
ckElement

AutosarVariable
Ref

1 aggr Reference to a VariableDataPrototype of a Ram
Block.

readNvDat
a

AutosarVariable
Ref

0..1 aggr Reference to a VariableDataPrototype of a pPort
of the NvBlockComponent providing read access
to the NvRam Mirror. If there is no port providing
read access (write-only) the reference can be
omitted.

writtenNvD
ata

AutosarVariable
Ref

0..1 aggr Reference to a VariableDataPrototype of a rPort of
the NvBlockComponent providing write access to
the NvRam Mirror. If there is no port providing
write access (read-only) the reference can be
omitted.

writtenRea
dNvData

AutosarVariable
Ref

0..1 aggr Reference to a VariableDataPrototype of a
PRPortPrototype of the
NvBlockSwComponentType providing write and
read access to the NvRam Mirror.

Table D.157: NvBlockDataMapping

Class NvBlockDescriptor
Package M2::AUTOSARTemplates::SWComponentTemplate::NvBlockComponent
Note Specifies the properties of exactly on NvBlock.
Base ARObject,Identifiable,MultilanguageReferrable,Referrable
Attribute Datatype Mul. Kind Note
clientServe
rPort

RoleBasedPort
Assignment

* aggr The RoleBasedPortAssignement defines which
client server port of the
NvBlockSwComponentType serves for which kind
of service or notification. In case of notifications
one common callback function is provided by the
RTE for each individual kind of notification defined
by the "role".

The aggregation of RoleBasedPortAssignment is
subject to variability with the purpose to support
the conditional existence of ports.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

constantVa
lueMappin
g

ConstantSpecifi
cationMappingS
et

* ref Reference to the ConstanSpecificationMapping to
be applied for the particular NvBlock

786 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
dataTypeM
apping

DataTypeMappi
ngSet

* ref Reference to the DataTypeMapping to be applied
for the particular NvBlock

instantiatio
nDataDefP
rops

InstantiationDat
aDefProps

* aggr The purpose of InstantiationDataDefProps are the
refinement of some data def properties of
individual instantiations within the context of a
NvBlockSwComponentType.

The aggregation of InstantiationDataDefProps is
subject to variability with the purpose to support
the conditional existence of ports, component
internal memory objects and those attributes.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

nvBlockDa
taMapping

NvBlockDataMa
pping

1..* aggr Defines the mapping between the
VariableDataPrototypes in the
NvBlockComponents ports and the
VariableDataPrototypes of the RAM Block.

The aggregation of NvBlockDataMapping is
subject to variability with the purpose to support
the conditional existence of nv data ports.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

nvBlockNe
eds

NvBlockNeeds 1 aggr Specifies the abstract needs on the configuration
of the NvRam Manager for the single NvRam
Block described by this NvBlockDescriptor.

Please note that the attributes nDataSets and
nRomBlocks are not relevant for this aggregation
because the RTE will allocate just one block
anyway. In a different context, however, they do
make sense.

ramBlock VariableDataPr
ototype

1 aggr Defines the RAM Block of the NvBlock provided by
NvBlockSwComponentType.

romBlock ParameterData
Prototype

0..1 aggr Defines the ROM Block of the NvBlock provided
by NvBlockSwComponentType.

Table D.158: NvBlockDescriptor

Class NvBlockNeeds
Package M2::AUTOSARTemplates::CommonStructure::ServiceNeeds
Note Specifies the abstract needs on the configuration of a single Nv block.
Base ARObject,Identifiable,MultilanguageReferrable,Referrable,ServiceNeeds
Attribute Datatype Mul. Kind Note
calcRamBl
ockCrc

Boolean 0..1 attr Defines if CRC (re)calculation for the permanent
RAM block is required.

checkStati
cBlockId

Boolean 0..1 attr Defines if the Static Block Id check shall be
enabled.

787 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
nDataSets PositiveInteger 0..1 attr Number of data sets to be provided by the

NVRAM manager for this block. This is the total
number of ROM blocks and NV Blocks.

nRomBloc
ks

PositiveInteger 0..1 attr Number of ROM blocks to be provided by the
NVRAM manager for this block. Please note that
these multiple ROM Blocks are given in a
contiguous area.

ramBlockS
tatusContr
ol

RamBlockStatu
sControlEnum

0..1 attr This attribute defines how the management of the
ramBlock status is controlled.

readonly Boolean 0..1 attr True: data of this block are write protected for
normal operation (but protection can be disabled)
false: no restriction

reliability NvBlockNeedsR
eliabilityEnum

0..1 attr Reliability against data loss on the non-volatile
medium.

resistantTo
ChangedS
w

Boolean 0..1 attr Defines whether an Nv block shall be treated
resistant to configuration changes (true) or not
(false). For details how to handle initialization in
the latter case, please refer to the NVRAM
specification.

restoreAtSt
art

Boolean 0..1 attr Defines whether the associated RAM mirror block
shall be implicitly restored during startup by the
basic SW or not. Only relevant if a RAM mirror
block is associated with this port (for Software
Components the latter is modeled via
SwcServiceDependency).

storeAtShu
tdown

Boolean 0..1 attr Defines whether or not the associated RAM mirror
block shall be implicitly stored during shutdown by
the basic SW.

This is only relevant if a RAM mirror block is
associated with this port (for software-components
the latter is modeled by means of a
SwcServiceDependency).

writeOnlyO
nce

Boolean 0..1 attr Defines write protection after first write: true: This
block is prevented from being changed/erased or
being replaced with the default ROM data after
first initialization by the software-component. false:
No such restriction.

writeVerific
ation

Boolean 0..1 attr Defines if Write Verification shall be enabled for
this Nv Block.

writingFreq
uency

PositiveInteger 0..1 attr Provides the amount of updates to this block from
the application point of view. It has to be provided
in "number of write access per year".

writingPrior
ity

NvBlockNeeds
WritingPriorityE
num

0..1 attr Requires the priority of writing this block in case of
concurrent requests to write other blocks.

Table D.159: NvBlockNeeds

788 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class NvBlockSwComponentType
Package M2::AUTOSARTemplates::SWComponentTemplate::Components
Note The NvBlockSwComponentType defines non volatile data which data can be shared

between SwComponentPrototypes. The non volatile data of the
NvBlockSwComponentType are accessible via provided and required ports.

Tags: atp.recommendedPackage=SwComponentTypes
Base ARElement,ARObject,AtomicSwComponentType,AtpBlueprint,AtpBlueprintable,Atp

Classifier,AtpType,CollectableElement,Identifiable,Multilanguage
Referrable,PackageableElement,Referrable,SwComponentType

Attribute Datatype Mul. Kind Note
nvBlockDe
scriptor

NvBlockDescrip
tor

* aggr Specification of the properties of exactly one
NvBlock.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variation
Point.shortLabel
vh.latestBindingTime=preCompileTime

Table D.160: NvBlockSwComponentType

Class NvDataInterface
Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface
Note A non volatile data interface declares a number of VariableDataPrototypes to be

exchanged between non volatile block components and atomic software components.

Tags: atp.recommendedPackage=PortInterfaces
Base ARElement,ARObject,AtpBlueprint,AtpBlueprintable,AtpClassifier,Atp

Type,CollectableElement,DataInterface,Identifiable,Multilanguage
Referrable,PackageableElement,PortInterface,Referrable

Attribute Datatype Mul. Kind Note
nvData VariableDataPr

ototype
1..* aggr The VariableDataPrototype of this nv data

interface.

Table D.161: NvDataInterface

Class NvRequireComSpec
Package M2::AUTOSARTemplates::SWComponentTemplate::Communication
Note Communication attributes of RPortPrototypes with respect to Nv data communication

on the required side.
Base ARObject,RPortComSpec
Attribute Datatype Mul. Kind Note
initValue ValueSpecificati

on
0..1 aggr The initial value owned by the NvComSpec

variable VariableDataPr
ototype

1 ref The VariableDataPrototype the ComSpec applies
for.

Table D.162: NvRequireComSpec

789 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class OperationInvokedEvent
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTE

Events
Note The OperationInvokedEvent references the ClientServerOperation invoked by the

client.
Base ARObject,AbstractEvent,AtpClassifier,AtpFeature,AtpStructure

Element,Identifiable,MultilanguageReferrable,RTEEvent,Referrable
Attribute Datatype Mul. Kind Note
operation ClientServerOp

eration
0..1 iref The operation to be executed as the consequence

of the event.

Table D.163: OperationInvokedEvent

Class PPortPrototype
Package M2::AUTOSARTemplates::SWComponentTemplate::Components
Note Component port providing a certain port interface.
Base ARObject,AbstractProvidedPortPrototype,AtpBlueprintable,AtpFeature,Atp

Prototype,Identifiable,MultilanguageReferrable,PortPrototype,Referrable
Attribute Datatype Mul. Kind Note
providedInt
erface

PortInterface 1 tref The interface that this port provides.

Stereotypes: isOfType

Table D.164: PPortPrototype

Class PRPortPrototype
Package M2::AUTOSARTemplates::SWComponentTemplate::Components
Note This kind of PortPrototype can take the role of both a required and a provided

PortPrototype.
Base ARObject,AbstractProvidedPortPrototype,AbstractRequiredPortPrototype,Atp

Blueprintable,AtpFeature,AtpPrototype,Identifiable,MultilanguageReferrable,Port
Prototype,Referrable

Attribute Datatype Mul. Kind Note
providedR
equiredInte
rface

PortInterface 1 tref This represents the PortInterface used to type the
PRPortPrototype

Stereotypes: isOfType

Table D.165: PRPortPrototype

Class ParameterAccess
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::Data

Elements
Note The presence of a ParameterAccess implies that a RunnableEntity needs access to a

ParameterDataPrototype.
Base ARObject,AtpClassifier,AtpFeature,AtpStructureElement,Identifiable,Multilanguage

Referrable,Referrable
Attribute Datatype Mul. Kind Note

790 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
accessedP
arameter

AutosarParamet
erRef

1 aggr Refernce to the accessed calibration parameter.

swDataDef
Props

SwDataDefProp
s

0..1 aggr This allows denote instance and access specific
properties, mainly input values and common axis.

Table D.166: ParameterAccess

Class ParameterDataPrototype
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::DataPrototypes
Note A parameter element used for parameter interface and internal behavior, supporting

signal like parameter and characteristic value communication patterns and parameter
and characteristic value definition.

Base ARObject,AtpFeature,AtpPrototype,AutosarDataPrototype,Data
Prototype,Identifiable,MultilanguageReferrable,Referrable

Attribute Datatype Mul. Kind Note
initValue ValueSpecificati

on
0..1 aggr Specifies initial value(s) of the

ParameterDataPrototype

Table D.167: ParameterDataPrototype

Class ParameterInterface
Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface
Note A parameter interface declares a number of parameter and characteristic values to be

exchanged between parameter components and software components.

Tags: atp.recommendedPackage=PortInterfaces
Base ARElement,ARObject,AtpBlueprint,AtpBlueprintable,AtpClassifier,Atp

Type,CollectableElement,DataInterface,Identifiable,Multilanguage
Referrable,PackageableElement,PortInterface,Referrable

Attribute Datatype Mul. Kind Note
parameter ParameterData

Prototype
1..* aggr The ParameterDataPrototype of this

ParameterInterface.

Table D.168: ParameterInterface

Class ParameterProvideComSpec
Package M2::AUTOSARTemplates::SWComponentTemplate::Communication
Note "Communication" specification that applies to parameters on the provided side of a

connection.
Base ARObject,PPortComSpec
Attribute Datatype Mul. Kind Note
initValue ValueSpecificati

on
0..1 aggr The initial value applicable for the corresponding

ParameterDataPrototype.
parameter ParameterData

Prototype
1 ref The ParameterDataPrototype to which the

ParameterComSpec applies.

Table D.169: ParameterProvideComSpec

791 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class ParameterRequireComSpec
Package M2::AUTOSARTemplates::SWComponentTemplate::Communication
Note "Communication" specification that applies to parameters on the required side of a

connection.
Base ARObject,RPortComSpec
Attribute Datatype Mul. Kind Note
initValue ValueSpecificati

on
0..1 aggr The initial value applicable for the corresponding

ParameterDataPrototype.
parameter ParameterData

Prototype
1 ref The ParameterDataPrototype to which the

ParameterRequireComSpec applies.

Table D.170: ParameterRequireComSpec

Class ParameterSwComponentType
Package M2::AUTOSARTemplates::SWComponentTemplate::Components
Note The ParameterSwComponentType defines parameters and characteristic values

accessible via provided Ports. The provided values are the same for all connected
SwComponentPrototypes

Tags: atp.recommendedPackage=SwComponentTypes
Base ARElement,ARObject,AtpBlueprint,AtpBlueprintable,AtpClassifier,Atp

Type,CollectableElement,Identifiable,MultilanguageReferrable,Packageable
Element,Referrable,SwComponentType

Attribute Datatype Mul. Kind Note
constantM
apping

ConstantSpecifi
cationMappingS
et

* ref Reference to the ConstanSpecificationMapping to
be applied for the particular
ParameterSwComponentType

dataTypeM
apping

DataTypeMappi
ngSet

* ref Reference to the DataTypeMapping to be applied
for the particular ParameterSwComponentType

instantiatio
nDataDefP
rops

InstantiationDat
aDefProps

* aggr The purpose of this is that within the context of a
given SwComponentType some data def
properties of individual instantiations can be
modified.

The aggregation of InstantiationDataDefProps is
subject to variability with the purpose to support
the conditional existence of PortPrototypes

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

Table D.171: ParameterSwComponentType

792 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class PerInstanceMemory
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::Per

InstanceMemory
Note Defines a ’C’ typed memory-block that needs to be available for each instance of the

SW-component. This is typically only useful if supportsMultipleInstantiation is set to
"true" or if the software-component defines NVRAM access via permanent blocks.

Base ARObject,AtpClassifier,AtpFeature,AtpStructureElement,Identifiable,Multilanguage
Referrable,Referrable

Attribute Datatype Mul. Kind Note
initValue String 0..1 attr Specifies initial value(s) of the PerInstanceMemory
swDataDef
Props

SwDataDefProp
s

0..1 aggr This represents the ability to to allocate RAM at
specific memory sections, for example, to support
the RAM block recovery strategy by mapping to
uninitialized RAM.

type CIdentifier 1 ref The name of the "C"-type
typeDefiniti
on

String 1 attr A definition of the type with the syntax of a ’C’
typedef.

Table D.172: PerInstanceMemory

Class PortAPIOption
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::PortAPI

Options
Note Options how to generate the signatures of calls for an AtomicSwComponentType in

order to communicate over a PortPrototype (for calls into a RunnableEntity as well as
for calls from a RunnableEntity to the PortPrototype).

Base ARObject
Attribute Datatype Mul. Kind Note
enableTak
eAddress

Boolean 1 attr If set to true, the software-component is able to
use the API reference for deriving a pointer to an
object.

indirectAPI Boolean 1 attr If set to true this attribute specifies an "indirect
API" to be generated for the associated port which
means that the SWC is able to access the actions
on a port via a pointer to an object representing a
port. This allows e.g. iterating over ports in a loop.
This option has no effect for PPortPrototypes of
client/server interfaces.

port PortPrototype 1 ref The option is valid for generated functions related
to communication over this port

portAr
gValue
(ordered)

PortDefinedArg
umentValue

* aggr An argument value defined by this port.

Table D.173: PortAPIOption

793 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class PortDefinedArgumentValue
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::PortAPI

Options
Note A PortDefinedArgumentValue is passed to a RunnableEntity dealing with the

ClientServerOperations provided by a given PortPrototype. Note that this is restricted
to PPortPrototypes of a ClientServerInterface.

Base ARObject
Attribute Datatype Mul. Kind Note
value ValueSpecificati

on
1 aggr Specifies the actual value.

valueType Implementation
DataType

1 tref The implementation type of this argument value. It
should not be composite type or a pointer.

Stereotypes: isOfType

Table D.174: PortDefinedArgumentValue

Class PortInterface (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface
Note Abstract base class for an interface that is either provided or required by a port of a

software component.
Base ARElement,ARObject,AtpBlueprint,AtpBlueprintable,AtpClassifier,Atp

Type,CollectableElement,Identifiable,MultilanguageReferrable,Packageable
Element,Referrable

Attribute Datatype Mul. Kind Note
isService Boolean 1 attr This flag is set if the PortInterface is to be used for

communication between an

• ApplicationSwComponentType or

• ServiceProxySwComponentType or

• SensorActuatorSwComponentType or

• ComplexDeviceDriverSwComponentType
or

• EcuAbstractionSwComponentType

and a ServiceSwComponentType (namely an
AUTOSAR Service) located on the same ECU.
Otherwise the flag is not set.

serviceKin
d

ServiceProvider
Enum

0..1 attr This attribute provides further details about the
nature of the applied service.

Table D.175: PortInterface

794 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class PortInterfaceMapping (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface
Note Specifies one PortInterfaceMapping to support the connection of Ports typed by two

different PortInterfaces with PortInterface elements having unequal names and/or
unequal semantic (resolution or range).

Base ARObject,AtpBlueprint,AtpBlueprintable,Identifiable,Multilanguage
Referrable,Referrable

Attribute Datatype Mul. Kind Note
– – – – –

Table D.176: PortInterfaceMapping

Class PortPrototype (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::Components
Note Base class for the ports of an AUTOSAR software component.

The aggregation of PortPrototypes is subject to variability with the purpose to support
the conditional existence of ports.

Base ARObject,AtpBlueprintable,AtpFeature,AtpPrototype,Identifiable,Multilanguage
Referrable,Referrable

Attribute Datatype Mul. Kind Note
clientServe
rAnnotatio
n

ClientServerAnn
otation

* aggr Annotation of this PortPrototype with respect to
client/server communication.

delegated
PortAnnota
tion

DelegatedPortA
nnotation

0..1 aggr Annotations on this delegated port.

ioHwAbstr
actionServ
erAnnotati
on

IoHwAbstraction
ServerAnnotatio
n

* aggr Annotations on this IO Hardware Abstraction port.

modePortA
nnotation

ModePortAnnot
ation

* aggr Annotations on this mode port.

nvDataPort
Annotation

NvDataPortAnn
otation

* aggr Annotations on this non voilatile data port.

parameter
PortAnnota
tion

ParameterPortA
nnotation

* aggr Annotations on this parameter port.

senderRec
eiverAnnot
ation

SenderReceiver
Annotation

* aggr Collection of annotations of this ports
sender/receiver communication.

triggerPort
Annotation

TriggerPortAnn
otation

* aggr Annotations on this trigger port.

Table D.177: PortPrototype

795 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class PostBuildVariantCondition
Package M2::AUTOSARTemplates::GenericStructure::VariantHandling
Note This class specifies the value which must be assigned to a particular variant criterion

in order to bind the variation point. If multiple criterion/value pairs are specified, they
shall all match to bind the variation point.

In other words binding can be represented by
(criterion1 == value1) && (condition2 == value2) ...

Base ARObject
Attribute Datatype Mul. Kind Note
matchingC
riterion

PostBuildVarian
tCriterion

1 ref This is the criterion which needs to match the
value in order to make the
PostbuildVariantCondition to be true.

value Integer 1 attr This is the particular value of the post-build variant
criterion.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

Table D.178: PostBuildVariantCondition

Class PostBuildVariantCriterion
Package M2::AUTOSARTemplates::GenericStructure::VariantHandling
Note This class specifies one particular PostBuildVariantSelector.

Tags: atp.recommendedPackage=PostBuildVariantCriterions
Base ARElement,ARObject,AtpDefinition,CollectableElement,Identifiable,Multilanguage

Referrable,PackageableElement,Referrable
Attribute Datatype Mul. Kind Note
compuMet
hod

CompuMethod 1 ref The compuMethod specifies the possible values
for the variant criterion serving as an enumerator.

Table D.179: PostBuildVariantCriterion

Class PostBuildVariantCriterionValue
Package M2::AUTOSARTemplates::GenericStructure::VariantHandling
Note This class specifies a the value which must be assigned to a particular variant

criterion in order to bind the variation point. If multiple criterion/value pairs are
specified, they all must must match to bind the variation point.

Base ARObject
Attribute Datatype Mul. Kind Note
annotation Annotation * aggr This provides the ability to add information why

the value is set like it is.

Tags: xml.sequenceOffset=30

796 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
value Integer 1 attr This is the particular value of the post-build variant

criterion.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=20

variantCrit
erion

PostBuildVarian
tCriterion

1 ref This association selects the variant criterion
whose value is specified.

Tags: xml.sequenceOffset=10

Table D.180: PostBuildVariantCriterionValue

Class PostBuildVariantCriterionValueSet
Package M2::AUTOSARTemplates::GenericStructure::VariantHandling
Note This meta-class represents the ability to denote one set of

postBuildVariantCriterionValues.

Tags: atp.recommendedPackage=PostBuildVariantCriterionValueSets
Base ARElement,ARObject,CollectableElement,Identifiable,Multilanguage

Referrable,PackageableElement,Referrable
Attribute Datatype Mul. Kind Note
postBuildV
ariantCriter
ionValue

PostBuildVarian
tCriterionValue

* aggr This is is one particular postbuild variant
criterion/value pair being part of the
PostBuildVariantSet.

Table D.181: PostBuildVariantCriterionValueSet

Class PredefinedVariant
Package M2::AUTOSARTemplates::GenericStructure::VariantHandling
Note This specifies one predefined variant. It is characterized by the union of all system

constant values and post-build variant criterion values aggregated within all
referenced system constant value sets and post build variant criterion value sets plus
the value sets of the included variants.

Tags: atp.recommendedPackage=PredefinedVariants
Base ARElement,ARObject,CollectableElement,Identifiable,Multilanguage

Referrable,PackageableElement,Referrable
Attribute Datatype Mul. Kind Note
includedVa
riant

PredefinedVaria
nt

* ref The associated variants are considered part of
this PredefinedVariant. This means the settings of
the included variants are included in the settings
of the referencing PredefinedVariant.
Nevertheless the included variants might be
included in several predefined variants.

postBuildV
ariantCriter
ionValueS
et

PostBuildVarian
tCriterionValueS
et

* ref This is the postBuildVariantCriterionValueSet
contributing to the predefinded variant.

797 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
swSystem
constantVa
lueSet

SwSystemconst
antValueSet

* ref This ist the set of Systemconstant Values
contributing to the predefined variant.

Table D.182: PredefinedVariant

Class QueuedReceiverComSpec
Package M2::AUTOSARTemplates::SWComponentTemplate::Communication
Note Communication attributes specific to queued receiving.
Base ARObject,RPortComSpec,ReceiverComSpec
Attribute Datatype Mul. Kind Note
queueLeng
th

PositiveInteger 1 attr Length of queue for received events.

Table D.183: QueuedReceiverComSpec

Class QueuedSenderComSpec
Package M2::AUTOSARTemplates::SWComponentTemplate::Communication
Note Communication attributes specific to distribution of events (PPortPrototype,

SenderReceiverInterface and dataElement carries an "event").
Base ARObject,PPortComSpec,SenderComSpec
Attribute Datatype Mul. Kind Note
– – – – –

Table D.184: QueuedSenderComSpec

Class RPortPrototype
Package M2::AUTOSARTemplates::SWComponentTemplate::Components
Note Component port requiring a certain port interface.
Base ARObject,AbstractRequiredPortPrototype,AtpBlueprintable,AtpFeature,Atp

Prototype,Identifiable,MultilanguageReferrable,PortPrototype,Referrable
Attribute Datatype Mul. Kind Note
requiredInt
erface

PortInterface 1 tref The interface that this port requires, i.e. the port
depends on another port providing the specified
interface.

Stereotypes: isOfType

Table D.185: RPortPrototype

798 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class RTEEvent (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTE

Events
Note Abstract base class for all RTE-related events
Base ARObject,AbstractEvent,AtpClassifier,AtpFeature,AtpStructure

Element,Identifiable,MultilanguageReferrable,Referrable
Attribute Datatype Mul. Kind Note
disabledM
ode

ModeDeclaratio
n

* iref Reference to the Modes that disable the Event.

Stereotypes: atpSplitable
Tags: atp.Splitkey=contextPort, contextMode
DeclarationGroupPrototype, targetMode
Declaration

startOnEve
nt

RunnableEntity 0..1 ref RunnableEntity starts when the corresponding
RTEEvent occurs.

Table D.186: RTEEvent

Class ReceiverComSpec (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::Communication
Note Receiver-specific communication attributes (RPortPrototype typed by

SenderReceiverInterface).
Base ARObject,RPortComSpec
Attribute Datatype Mul. Kind Note
composite
NetworkRe
presentatio
n

CompositeNetw
orkRepresentati
on

* aggr This represents a
CompositeNetworkRepresentation defined in the
context of a ReceiverComSpec. The purpose of
this aggregation is to be able to specify the
network representation of leaf elements of
ApplicationCompositeDataTypes.

dataEleme
nt

VariableDataPr
ototype

1 ref Data element these attributes belong to.

externalRe
placement

AutosarDataPro
totype

0..1 ref This reference is used to reference the
AutosarDataPrototype to be taken for sourcing an
external replacement in the out-of-range handling.

handleOut
OfRange

HandleOutOfRa
ngeEnum

1 attr This attribute controls how values that are out of
the specified range are handled according to the
values of HandleOutOfRangeEnum.

handleOut
OfRangeSt
atus

HandleOutOfRa
ngeStatusEnum

0..1 attr Control the way how return values are created in
case of an out-of-range situation.

799 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
maxDeltaC
ounterInit

PositiveInteger 0..1 attr Initial maximum allowed gap between two counter
values of two consecutively received valid Data,
i.e. how many subsequent lost data is accepted.
For example, if the receiver gets Data with counter
1 and MaxDeltaCounterInit is 1, then at the next
reception the receiver can accept Counters with
values 2 and 3, but not 4.

Note that if the receiver does not receive new Data
at a consecutive read, then the receiver
increments the tolerance by 1.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

maxNoNe
wOrRepea
tedData

PositiveInteger 0..1 attr The maximum amount of missing or repeated
Data which the receiver does not expect to exceed
under normal communication conditions.

networkRe
presentatio
n

SwDataDefProp
s

0..1 aggr A networkRepresentation is used to define how
the dataElement is mapped to a communication
bus.

syncCount
erInit

PositiveInteger 0..1 attr Number of Data required for validating the
consistency of the counter that shall be received
with a valid counter (i.e. counter within the allowed
lock-in range) after the detection of an unexpected
behaviour of a received counter.

usesEndT
oEndProte
ction

Boolean 1 attr This indicates whether the corresponding
dataElement shall be transmitted using end-to-end
protection.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

Table D.187: ReceiverComSpec

Class ReferenceValueSpecification
Package M2::AUTOSARTemplates::CommonStructure::Constants
Note Specifies a reference to a data prototype to be used as an initial value for a pointer in

the software.
Base ARObject,ValueSpecification
Attribute Datatype Mul. Kind Note
referenceV
alue

DataPrototype 1 ref The referenced data prototype.

Table D.188: ReferenceValueSpecification

800 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class Referrable (abstract)
Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Identifiable
Note Instances of this class can be referred to by their identifier (while adhering to

namespace borders).
Base ARObject
Attribute Datatype Mul. Kind Note
shortName Identifier 1 ref This specifies an identifying shortName for the

object. It needs to be unique within its context and
is intended for humans but even more for technical
reference.

Tags: xml.enforceMinMultiplicity=true;
xml.sequenceOffset=-100

Table D.189: Referrable

Primitive RevisionLabelString
Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::Primitive

Types
Note This primitive represents a revision label which identifies an engineering object. It

represents a pattern which

• requires three integers representing from left to right MajorVersion,
MinorVersion, PatchVersion.

• may add an application specific suffix separated by one of ".", "_", ";".

Legal patterns are for example:

4.0.0 4.0.0.1234565 4.0.0_vendor specific;13 4.0.0;12

Tags: xml.xsd.customType=REVISION-LABEL-STRING;
xml.xsd.pattern=[0-9]+\.[0-9]+\.[0-9]+([\._;].*)?; xml.xsd.type=string

Table D.190: RevisionLabelString

Class RoleBasedPortAssignment
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::Service

Mapping
Note This class specifies an assignment of a role to a particular service port

(RPortPrototype or PPortPrototype) of an AtomicSwComponentType. With this
assignment, the role of the service port can be mapped to a specific ServiceNeeds
element, so that a tool is able to create the correct connector.

Base ARObject
Attribute Datatype Mul. Kind Note

801 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
portPrototy
pe

PortPrototype 1 ref Service port used in the assigned role. This port
shall either belong to the same
AtomicSoftwareComponent as the
SwcInternalBehavior which owns the
ServiceDependency or to the same
NvBlockComponentType as the
NvBlockDescriptor.

role Identifier 1 ref This is the role of the assigned Port in the given
context.

The value shall be a shortName of the Blueprint of
a PortInterface as standardized in the Software
Specification of the related AUTOSAR Service.

Table D.191: RoleBasedPortAssignment

Class RootSwCompositionPrototype
Package M2::AUTOSARTemplates::SystemTemplate
Note The RootSwCompositionPrototype represents the top-level-composition of software

components within a given System. According to the use case of the System, this
may for example be the a more or less complete VFB description, the software of a
System Extract or the software of a flat ECU Extract with only atomic SWCs.

Therefore the RootSwComposition will only occasionally contain all atomic software
components that are used in a complete VFB System. The OEM is primarily
interested in the required functionality and the interfaces defining the integration of
the Software Component into the System. The internal structure of such a component
contains often substantial intellectual property of a supplier. Therefore a top-level
software composition will often contain empty compositions which represent
subsystems.

The contained SwComponentPrototypes are fully specified by their
SwComponentTypes (including PortPrototypes, PortInterfaces,
VariableDataPrototypes, SwcInternalBehavior etc.), and their ports are
interconnected using SwConnectorPrototypes.

Base ARObject,AtpFeature,AtpPrototype,Identifiable,MultilanguageReferrable,Referrable
Attribute Datatype Mul. Kind Note
calibration
Parameter
ValueSet

CalibrationPara
meterValueSet

* ref Used CalibrationParameterValueSet for instance
specific initialization of calibration parameters.

Stereotypes: atpSplitable
Tags: atp.Splitkey=calibrationParameterValueSet

flatMap FlatMap 0..1 ref The FlatMap used in the scope of this
RootSwCompositionPrototype.

Stereotypes: atpSplitable
Tags: atp.Splitkey=flatMap

softwareC
omposition

CompositionSw
ComponentTyp
e

1 tref We assume that there is exactly one top-level
composition that includes all Component
instances of the system

Stereotypes: isOfType

802 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note

Table D.192: RootSwCompositionPrototype

Class RuleBasedValueSpecification
Package M2::AUTOSARTemplates::CommonStructure::Constants
Note This meta-class is used to support a rule-based initialization approach for data types

with an array-nature (ApplicationArrayDataType and ImplementationDataType of
category ARRAY) or a compound ApplicationPrimitiveDataType (which also boils
down to an array-nature).

Base ARObject
Attribute Datatype Mul. Kind Note
arguments RuleArguments 1 aggr This represents the arguments for the

RuleBasedValueSpecification.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=30

rule Identifier 1 ref This denotes the name of the rule of the
RuleBasedValueSpecification. The rule
determines the calculation specification according
which the arguments are used to calculated the
values.

Tags: xml.sequenceOffset=20

Table D.193: RuleBasedValueSpecification

Class RunnableEntity
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior
Note A RunnableEntity represents the smallest code-fragment that is provided by an

AtomicSwComponentType and are executed under control of the RTE.
RunnableEntities are for instance set up to respond to data reception or operation
invocation on a server.

Base ARObject,AtpClassifier,AtpFeature,AtpStructureElement,Executable
Entity,Identifiable,MultilanguageReferrable,Referrable

Attribute Datatype Mul. Kind Note
argument
(ordered)

RunnableEntity
Argument

* aggr This represents the formal definition of a an
argument to a RunnableEntity.

asynchron
ousServer
CallResult
Point

AsynchronousS
erverCallResult
Point

* aggr The server call result point admits a runnable to
fetch the result of an asynchronous server call.

The aggregation of
AsynchronousServerCallResultPoint is subject to
variability with the purpose to support the
conditional existence of client server
PortPrototypes and the variant existence of server
call result points in the implementation.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

803 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
canBeInvo
kedConcur
rently

Boolean 1 attr If the value of this attribute is set to "true" the
enclosing RunnableEntity can be invoked
concurrently (even for one instance of the
corresponding AtomicSwComponentType). This
implies that it is the responsibility of the
implementation of the RunnableEntity to take care
of this form of concurrency. Note that the default
value of this attribute is set to "false".

dataReadA
ccess

VariableAccess * aggr RunnableEntity has implicit read access to
dataElement of a sender-receiver PortPrototype or
nv data of a nv data PortPrototype.

The aggregation of dataReadAccess is subject to
variability with the purpose to support the
conditional existence of sender receiver ports or
the variant existence of dataReadAccess in the
implementation.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

dataReceiv
ePointByAr
gument

VariableAccess * aggr RunnableEntity has explicit read access to
dataElement of a sender-receiver PortPrototype or
nv data of a nv data PortPrototype. The result is
passed back to the application by means of an
argument in the function signature.

The aggregation of dataReceivePointByArgument
is subject to variability with the purpose to support
the conditional existence of sender receiver
PortPrototype or the variant existence of data
receive points in the implementation.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

dataReceiv
ePointByV
alue

VariableAccess * aggr RunnableEntity has explicit read access to
dataElement of a sender-receiver PortPrototype or
nv data of a nv data PortPrototype.

The result is passed back to the application by
means of the return value. The aggregation of
dataReceivePointByValue is subject to variability
with the purpose to support the conditional
existence of sender receiver ports or the variant
existence of data receive points in the
implementation.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

804 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
dataSendP
oint

VariableAccess * aggr RunnableEntity has explicit write access to
dataElement of a sender-receiver PortPrototype or
nv data of a nv data PortPrototype.

The aggregation of dataSendPoint is subject to
variability with the purpose to support the
conditional existence of sender receiver
PortPrototype or the variant existence of data
send points in the implementation.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

dataWriteA
ccess

VariableAccess * aggr RunnableEntity has implicit write access to
dataElement of a sender-receiver PortPrototype or
nv data of a nv data PortPrototype.

The aggregation of dataWriteAccess is subject to
variability with the purpose to support the
conditional existence of sender receiver ports or
the variant existence of dataWriteAccess in the
implementation.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

externalTri
ggeringPoi
nt

ExternalTriggeri
ngPoint

* aggr The aggregation of ExternalTriggeringPoint is
subject to variability with the purpose to support
the conditional existence of trigger ports or the
variant existence of external triggering points in
the implementation.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

internalTrig
geringPoin
t

InternalTriggerin
gPoint

* aggr The aggregation of InternalTriggeringPoint is
subject to variability with the purpose to support
the variant existence of internal triggering points in
the implementation.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

modeAcce
ssPoint

ModeAccessPoi
nt

* aggr The runnable has a mode access point. The
aggregation of ModeAccessPoint is subject to
variability with the purpose to support the
conditional existence of mode ports or the variant
existence of mode access points in the
implementation.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

805 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
modeSwitc
hPoint

ModeSwitchPoi
nt

* aggr The runnable has a mode switch point. The
aggregation of ModeSwitchPoint is subject to
variability with the purpose to support the
conditional existence of mode ports or the variant
existence of mode switch points in the
implementation.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

parameter
Access

ParameterAcce
ss

* aggr The presence of a ParameterAccess implies that a
RunnableEntity needs read only access to a
ParameterDataPrototype which may either be
local or within a PortPrototype.

The aggregation of ParameterAccess is subject to
variability with the purpose to support the
conditional existence of parameter ports and
component local parameters as well as the variant
existence of ParameterAccess (points) in the
implementation.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

readLocal
Variable

VariableAccess * aggr The presence of a readLocalVariable implies that
a RunnableEntity needs read access to a
VariableDataPrototype in the role of
implicitInterRunnableVariable or
explicitInterRunnableVariable.

The aggregation of readLocalVariable is subject to
variability with the purpose to support the
conditional existence of
implicitInterRunnableVariable and
explicitInterRunnableVariable or the variant
existence of readLocalVariable (points) in the
implementation.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

serverCall
Point

ServerCallPoint * aggr The RunnableEntity has a ServerCallPoint. The
aggregation of ServerCallPoint is subject to
variability with the purpose to support the
conditional existence of client server
PortPrototypes or the variant existence of server
call points in the implementation.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

symbol CIdentifier 1 ref The symbol describing this RunnableEntity’s entry
point. This is considered the API of the
RunnableEntity and is required during the RTE
contract phase.

waitPoint WaitPoint * aggr The WaitPoint associated with the RunnableEntity.

806 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
writtenLoc
alVariable

VariableAccess * aggr The presence of a writtenLocalVariable implies
that a RunnableEntity needs write access to a
VariableDataPrototype in the role of
implicitInterRunnableVariable or
explicitInterRunnableVariable.

The aggregation of writtenLocalVariable is subject
to variability with the purpose to support the
conditional existence of
implicitInterRunnableVariable and
explicitInterRunnableVariable or the variant
existence of writtenLocalVariable (points) in the
implementation.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

Table D.194: RunnableEntity

Class RunnableEntityArgument
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::Runnable

Entity
Note This meta-class represents the ability to provide specific information regarding the

arguments to a RunnableEntity.
Base ARObject
Attribute Datatype Mul. Kind Note
symbol CIdentifier 1 ref This represents the symbol to be generated into

the actual signature on the level of the C
programming language.

Table D.195: RunnableEntityArgument

Class RunnableEntityGroup
Package M2::AUTOSARTemplates::SWComponentTemplate::ImplicitCommunicationBehavior
Note This meta-class represents the ability to define a collection of RunnableEntities. The

collection can be nested.
Base ARObject,AtpClassifier,AtpFeature,AtpStructureElement,Identifiable,Multilanguage

Referrable,Referrable
Attribute Datatype Mul. Kind Note
runnableE
ntity

RunnableEntity * iref This represents a collection of RunnableEntitys
that belong to the enclosing RunnableEntityGroup.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

runnableE
ntityGroup

RunnableEntity
Group

* iref This represents the ability to define nested groups
of RunnableEntitys.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

Table D.196: RunnableEntityGroup

807 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class Sdg
Package M2::AUTOSARTemplates::GenericStructure::GeneralTemplateClasses::SpecialData
Note Sdg (SpecialDataGroup) is a generic model which can be used to keep arbitrary

information which is not explicitly modeled in the meta-model.

Sdg can have various contents as defined by sdgContentsType. Special Data should
only be used moderately since all elements should be defined in the meta-model.

Thereby SDG should be considered as a temporary solution when no explicit model is
available. If an sdgCaption is available, it is possible to establish a reference to the
sdg structure.

Base ARObject
Attribute Datatype Mul. Kind Note
gid NameToken 1 attr This attributes specifies an identifier. Gid comes

from the SGML/XML-Term "Generic Identifier"
which is the element name in XML. The role of this
attribute is the same as the name of an XML -
element.

Tags: xml.attribute=true
sdgCaptio
n

SdgCaption 0..1 aggr This aggregation allows to assign the properties of
Identifiable to the sdg. By this, a shortName etc.
can be assigned to the Sdg.

Tags: xml.sequenceOffset=20
sdgCaptio
nRef

SdgCaption 0..1 ref This association allows to reuse an already
existing caption.

Tags: xml.name=SDG-CAPTION-REF;
xml.sequenceOffset=25

sdgConten
tsType

SdgContents 0..1 aggr This is the content of the Sdg.

Tags: xml.roleElement=false; xml.roleWrapper
Element=false; xml.sequenceOffset=30; xml.type
Element=false; xml.typeWrapperElement=false

Table D.197: Sdg

Class ScaleConstr
Package M2::AUTOSARTemplates::CommonStructure::GlobalConstraints
Note This meta-class represents the ability to specify constraints as a list of intervals

(called scales).
Base ARObject
Attribute Datatype Mul. Kind Note
desc MultiLanguage

OverviewParagr
aph

0..1 aggr <desc> represents a general but brief description
of the object in question.

Tags: xml.sequenceOffset=30

808 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
lowerLimit Limit 0..1 ref This specifies the lower limit of the scale.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=40

shortLabel Identifier 0..1 ref This element specifies a short name for the
scaleConstr. This can for example be used to
create more specific messages of a constraint
checker. The constraints cannot be associated in
the meta-model, therefore shortLabel is somehow
a substitute for shortName.

Tags: xml.sequenceOffset=20
upperLimit Limit 0..1 ref This specifies the upper limit of a the scale.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=50

validity ScaleConstrVali
dityEnum

0..1 attr Specifies if the values defined by the scales are
considered to be valid. If the attribute is missing
then the default value is "VALID".

Tags: xml.attribute=true

Table D.198: ScaleConstr

Class SectionNamePrefix
Package M2::AUTOSARTemplates::CommonStructure::ResourceConsumption::Memory

SectionUsage
Note A prefix to be used for generated code artifacts defining a memory section name in

the source code of the using module.
Base ARObject,ImplementationProps,Referrable
Attribute Datatype Mul. Kind Note
implement
edIn

DependencyOn
Artifact

0..1 ref Optional reference that allows to Indicate the code
artifact (header file) containing the preprocessor
implementation of memory sections with this
prefix.

The usage of this link supersedes the usage of a
memory mapping header with the default name
(derived from the BswModuleDescription’s
shortName).

Table D.199: SectionNamePrefix

809 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class SenderComSpec (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::Communication
Note Communication attributes for a sender port (PPortPrototype typed by

SenderReceiverInterface).
Base ARObject,PPortComSpec
Attribute Datatype Mul. Kind Note
composite
NetworkRe
presentatio
n

CompositeNetw
orkRepresentati
on

* aggr This represents a
CompositeNetworkRepresentation defined in the
context of a SenderComSpec.

dataEleme
nt

VariableDataPr
ototype

1 ref Data element these quality of service attributes
apply to.

handleOut
OfRange

HandleOutOfRa
ngeEnum

1 attr This attribute controls how out-of-range values
shall be dealt with.

networkRe
presentatio
n

SwDataDefProp
s

0..1 aggr A networkRepresentation is used to define how
the dataElement is mapped to a communication
bus.

transmissi
onAcknowl
edge

TransmissionAc
knowledgement
Request

0..1 aggr Requested transmission acknowledgement for
data element.

usesEndT
oEndProte
ction

Boolean 1 attr This indicates whether the corresponding
dataElement shall be transmitted using end-to-end
protection.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

Table D.200: SenderComSpec

Class SenderReceiverInterface
Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface
Note A sender/receiver interface declares a number of data elements to be sent and

received.

Tags: atp.recommendedPackage=PortInterfaces
Base ARElement,ARObject,AtpBlueprint,AtpBlueprintable,AtpClassifier,Atp

Type,CollectableElement,DataInterface,Identifiable,Multilanguage
Referrable,PackageableElement,PortInterface,Referrable

Attribute Datatype Mul. Kind Note
dataEleme
nt

VariableDataPr
ototype

1..* aggr The data elements of this
SenderReceiverInterface.

invalidation
Policy

InvalidationPolic
y

* aggr InvalidationPolicy for a particular dataElement

Table D.201: SenderReceiverInterface

810 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class SenderReceiverToSignalGroupMapping
Package M2::AUTOSARTemplates::SystemTemplate::DataMapping
Note Mapping of a sender receiver communication data element with a composite datatype

to a signal group.
Base ARObject,DataMapping
Attribute Datatype Mul. Kind Note
dataEleme
nt

VariableDataPr
ototype

1 iref Reference to a data element with a composite
datatype which is mapped to a signal group.

signalGrou
p

SystemSignalGr
oup

1 ref Reference to the signal group, which contain all
primitive datatypes of the composite type

typeMappi
ng

SenderRecCom
positeTypeMap
ping

1 aggr The CompositeTypeMapping maps the the
ApplicationArrayElements and
ApplicationRecordElements to Signals of the
SignalGroup.

Table D.202: SenderReceiverToSignalGroupMapping

Class SenderReceiverToSignalMapping
Package M2::AUTOSARTemplates::SystemTemplate::DataMapping
Note Mapping of a sender receiver communication data element with a primitive datatype

to a signal.
Base ARObject,DataMapping
Attribute Datatype Mul. Kind Note
dataEleme
nt

VariableDataPr
ototype

1 iref Reference to the data element, which ought to be
sent over the Communication bus.

systemSig
nal

SystemSignal 1 ref Reference to the system signal used to carry the
data element.

Table D.203: SenderReceiverToSignalMapping

Class SensorActuatorSwComponentType
Package M2::AUTOSARTemplates::SWComponentTemplate::Components
Note The SensorActuatorSwComponentType introduces the possibility to link from the

software representation of a sensor/actuator to its hardware description provided by
the ECU Resource Template.

Tags: atp.recommendedPackage=SwComponentTypes
Base ARElement,ARObject,AtomicSwComponentType,AtpBlueprint,AtpBlueprintable,Atp

Classifier,AtpType,CollectableElement,Identifiable,Multilanguage
Referrable,PackageableElement,Referrable,SwComponentType

Attribute Datatype Mul. Kind Note
sensorActu
ator

HwDescriptionE
ntity

1 ref Reference from the Sensor Actuator Software
Component Type to the description of the actual
hardware.

Table D.204: SensorActuatorSwComponentType

Enumeration ServerArgumentImplPolicyEnum
Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface

811 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Note This defines how the argument type of the servers RunnableEntity is implemented.
Literal Description
useArgument
Type

The argument type of the RunnableEntity is derived from the AutosarDataType of
the ArgumentPrototype.

useArray
BaseType

The argument type of the RunnableEntity is derived from the AutosarDataType of
the elements of the array that corresponds to the ArgumentPrototype. This
represents the base type of the array in C.

useVoid The argument type of the RunnableEntity is void.

Table D.205: ServerArgumentImplPolicyEnum

Class ServerCallPoint (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::ServerCall
Note If a RunnableEntity owns a ServerCallPoint it is entitled to invoke a particular

ClientServerOperation of a specific RPortPrototype of the corresponding
AtomicSwComponentType

Base ARObject,AtpClassifier,AtpFeature,AtpStructureElement,Identifiable,Multilanguage
Referrable,Referrable

Attribute Datatype Mul. Kind Note
operation ClientServerOp

eration
0..1 iref The operation that is called by this runnable.

timeout TimeValue 1 attr Time in seconds before the server call times out
and returns with an error message. It depends on
the call type (synchronous or asynchronous) how
this is reported.

Table D.206: ServerCallPoint

Class ServerComSpec
Package M2::AUTOSARTemplates::SWComponentTemplate::Communication
Note Communication attributes for a server port (PPortPrototype and

ClientServerInterface).
Base ARObject,PPortComSpec
Attribute Datatype Mul. Kind Note
operation ClientServerOp

eration
1 ref Operation these communication attributes apply

to.
queueLeng
th

PositiveInteger 1 attr Length of call queue on the server side. The
queue is implemented by the RTE. The value shall
be greater or equal to 1. Setting the value of
queueLength to 1 implies that incoming requests
are rejected while another request that arrived
earlier is being processed.

Table D.207: ServerComSpec

812 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class ServiceProxySwComponentType
Package M2::AUTOSARTemplates::SWComponentTemplate::Components
Note This class provides the ability to express a software-component which provides

access to an internal service for remote ECUs. It acts as a proxy for the service
providing access to the service.

An important use case is the request of vehicle mode switches: Such requests can be
communicated via sender-receiver interfaces across ECU boundaries, but the mode
manager being responsible to perform the mode switches is an AUTOSAR Service
which is located in the Basic Software and is not visible in the VFB view. To handle
this situation, a ServiceProxySwComponentType will act as proxy for the mode
manager. It will have R-Ports to be connected with the mode requestors on VFB level
and Service-Ports to be connected with the local mode manager at ECU integration
time.

Apart from the semantics, a ServiceProxySwComponentType has these specific
properties:

• A prototype of it can be mapped to more than one ECUs in the system
description.

• Exactly one additional instance of it will be created in the ECU-Extract per ECU
to which the prototype has been mapped.

• For remote communication, it can have only R-Ports with sender-receiver
interfaces and 1:n semantics.

• There shall be no connectors between two prototypes of any
ServiceProxySwComponentType.

Tags: atp.recommendedPackage=SwComponentTypes
Base ARElement,ARObject,AtomicSwComponentType,AtpBlueprint,AtpBlueprintable,Atp

Classifier,AtpType,CollectableElement,Identifiable,Multilanguage
Referrable,PackageableElement,Referrable,SwComponentType

Attribute Datatype Mul. Kind Note
– – – – –

Table D.208: ServiceProxySwComponentType

Class ServiceSwComponentType
Package M2::AUTOSARTemplates::SWComponentTemplate::Components
Note ServiceSwComponentType is used for configuring services for a given ECU.

Instances of this class are only to be created in ECU Configuration phase for the
specific purpose of the service configuration.

Tags: atp.recommendedPackage=SwComponentTypes
Base ARElement,ARObject,AtomicSwComponentType,AtpBlueprint,AtpBlueprintable,Atp

Classifier,AtpType,CollectableElement,Identifiable,Multilanguage
Referrable,PackageableElement,Referrable,SwComponentType

Attribute Datatype Mul. Kind Note
– – – – –

Table D.209: ServiceSwComponentType

813 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class SubElementMapping
Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface
Note This meta-class allows for the definition of mappings of elements of a composite data

type.
Base ARObject
Attribute Datatype Mul. Kind Note
firstElemen
t

SubElementRef 0..1 aggr This represents the first element referenced in the
scope of the mapping.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

secondEle
ment

SubElementRef 0..1 aggr This represents the second element referenced in
the scope of the mapping.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

textTableM
apping

TextTableMappi
ng

0..2 aggr This allows for the text-table translation of
individual elements of a composite data type.

Table D.210: SubElementMapping

Class SwAddrMethod
Package M2::AUTOSARTemplates::CommonStructure::AuxillaryObjects
Note Used to assign a common addressing method, e.g. common memory section, to data

or code objects. These objects could actually live in different modules or components.

Tags: atp.recommendedPackage=SwAddrMethods
Base ARElement,ARObject,AtpBlueprint,AtpBlueprintable,Collectable

Element,Identifiable,MultilanguageReferrable,PackageableElement,Referrable
Attribute Datatype Mul. Kind Note
memoryAll
ocationKey
wordPolicy

MemoryAllocati
onKeywordPolic
yType

0..1 attr Enumeration to specify the name pattern of the
Memory Allocation Keyword.

option Identifier * ref This attribute introduces the ability to specify
further intended properties of the MemorySection
in with the related objects shall be placed.

These properties are handled as to be selected.
The intended options are mentioned in the list.

In the Memory Mapping configuration, this option
list is used to determine an appropriate
MemMapAddressingModeSet.

814 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
sectionIniti
alizationPo
licy

SectionInitializat
ionPolicyType

0..1 attr Specifies the expected initialization of the
variables (inclusive those which are implementing
VariableDataPrototypes). Therefore this is an
implementation constraint for initialization code of
BSW modules (especially RTE) as well as the
start-up code which initializes the memory
segment to which the AutosarDataPrototypes
referring to the SwAddrMethod’s are later on
mapped.

If the attribute is not defined it has the identical
semantic as the attribute value "INIT"

sectionTyp
e

MemorySection
Type

0..1 attr Defines the type of memory sections which can be
associated with this addresssing method.

Table D.211: SwAddrMethod

Class SwBaseType
Package M2::AUTOSARTemplates::CommonStructure::BaseTypes
Note This meta-class represents a base type used within ECU software.

Tags: atp.recommendedPackage=BaseTypes
Base ARElement,ARObject,AtpBlueprint,AtpBlueprintable,BaseType,Collectable

Element,Identifiable,MultilanguageReferrable,PackageableElement,Referrable
Attribute Datatype Mul. Kind Note
– – – – –

Table D.212: SwBaseType

Enumeration SwCalibrationAccessEnum
Package M2::AUTOSARTemplates::CommonStructure::DataDefProperties
Note Determines the access rights to a data object w.r.t. measurement and calibration.
Literal Description
notAccessi-
ble

The element will not be accessible via MCD tools, i.e. will not appear in the ASAP
file.

readOnly The element will only appear as read-only in an ASAP file.
readWrite The element will appear in the ASAP file with both read and write access.

Table D.213: SwCalibrationAccessEnum

Class SwComponentPrototype
Package M2::AUTOSARTemplates::SWComponentTemplate::Composition
Note Role of a software component within a composition.
Base ARObject,AtpFeature,AtpPrototype,Identifiable,MultilanguageReferrable,Referrable
Attribute Datatype Mul. Kind Note
type SwComponentT

ype
1 tref Type of the instance.

Stereotypes: isOfType

815 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note

Table D.214: SwComponentPrototype

Class SwComponentType (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::Components
Note Base class for AUTOSAR software components.
Base ARElement,ARObject,AtpBlueprint,AtpBlueprintable,AtpClassifier,Atp

Type,CollectableElement,Identifiable,MultilanguageReferrable,Packageable
Element,Referrable

Attribute Datatype Mul. Kind Note
consistenc
yNeeds

ConsistencyNee
ds

* aggr This represents the colelction of
ConsistencyNeeds owned by the enclosing
SwComponentType.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variation
Point.shortLabel
vh.latestBindingTime=preCompileTime

port PortPrototype * aggr The ports through which this component can
communicate. The aggregation of PortPrototype is
subject to variability with the purpose to support
the conditional existence of PortPrototypes.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variation
Point.shortLabel
vh.latestBindingTime=preCompileTime

portGroup PortGroup * aggr A port group being part of this component.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

swCompon
entDocum
entation

SwComponentD
ocumentation

0..1 aggr This adds a documentation to the
SwComponentType.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=swComponentDocumentation,
variationPoint.shortLabel
vh.latestBindingTime=preCompileTime
xml.sequenceOffset=-10

unitGroup UnitGroup * ref This allows for the specification of which
UnitGroups are relevant in the context of
referencing SwComponentType.

Table D.215: SwComponentType

816 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class SwConnector (abstract)
Package M2::AUTOSARTemplates::SWComponentTemplate::Composition
Note The base class for connectors between ports. Connectors have to be identifiable to

allow references from the system constraint template.
Base ARObject,AtpClassifier,AtpFeature,AtpStructureElement,Identifiable,Multilanguage

Referrable,Referrable
Attribute Datatype Mul. Kind Note
mapping PortInterfaceMa

pping
0..1 ref Reference to a PortInterfaceMapping specifying

the mapping of unequal named PortInterface
elements of the two different PortInterfaces typing
the two PortPrototypes which are referenced by
the ConnectorPrototype.

Table D.216: SwConnector

Class �atpVariation� SwDataDefProps
Package M2::AUTOSARTemplates::CommonStructure::DataDefProperties
Note This class is a collection of properties relevant for data objects under various aspects.

One could consider this class as a "pattern of inheritance by aggregation". The
properties can be applied to all objects of all classes in which SwDataDefProps is
aggregated.

Note that not all of the attributes or associated elements are useful all of the time.
Hence, the process definition (e.g. expressed with an OCL or a Document Control
Instance MSR-DCI) has the task of implementing limitations.

SwDataDefProps covers various aspects:

• Structure of the data element for calibration use cases: is it a single value, a
curve, or a map, but also the recordLayouts which specify how such elements
are mapped/converted to the DataTypes in the programming language (or in
AUTOSAR). This is mainly expressed by properties like swRecordLayout and
swCalprmAxisSet

• Implementation aspects, mainly expressed by swImplPolicy,
swVariableAccessImplPolicy, swAddrMethod, swPointerTagetProps, baseType,
implementationDataType and additionalNativeTypeQualifier

• Access policy for the MCD system, mainly expressed by swCalibrationAccess

• Semantics of the data element, mainly expressed by compuMethod and/or
unit, dataConstr, invalidValue

• Code generation policy provided by swRecordLayout

Tags: vh.latestBindingTime=codeGenerationTime
Base ARObject
Attribute Datatype Mul. Kind Note

817 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
additionalN
ativeType
Qualifier

NativeDeclarati
onString

0..1 attr This attribute is used to declare native qualifiers of
the programming language which can neither be
deduced from the baseType (e.g. because the
data object describes a pointer) nor from other
more abstract attributes. Examples are qualifiers
like "volatile", "strict" or "enum" of the C-language.
All such declarations have to be put into one
string.

Tags: xml.sequenceOffset=235
annotation Annotation * aggr This aggregation allows to add annotations (yellow

pads ...) related to the current data object.

Tags: xml.roleElement=true; xml.roleWrapper
Element=true; xml.sequenceOffset=20; xml.type
Element=false; xml.typeWrapperElement=false

baseType SwBaseType 0..1 ref Base type associated with the containing data
object.

Tags: xml.sequenceOffset=50
compuMet
hod

CompuMethod 0..1 ref Computation method associated with the
semantics of this data object.

Tags: xml.sequenceOffset=180
dataConstr DataConstr 0..1 ref Data constraint for this data object.

Tags: xml.sequenceOffset=190
displayFor
mat

DisplayFormatS
tring

0..1 attr This property describes how a number is to be
rendered e.g. in documents or in a measurement
and calibration system.

Tags: xml.sequenceOffset=210

818 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
implement
ationDataT
ype

Implementation
DataType

0..1 ref This association denotes the
ImplementationDataType of a data declaration via
its aggregated SwDataDefProps. It is used
whenever a data declaration is not directly
referring to a base type. Especially

• redefinition of an ImplementationDataType
via a "typedef" to another
ImplementationDatatype

• the target type of a pointer (see
SwPointerTargetProps), if it does not refer
to a base type directly

• the data type of an array or record element
within an ImplementationDataType, if it
does not refer to a base type directly

• the data type of an SwServiceArg, if it does
not refer to a base type directly

Tags: xml.sequenceOffset=215
invalidValu
e

ValueSpecificati
on

0..1 aggr Optional value to express invalidity of the actual
data element.

Tags: xml.sequenceOffset=255
mcFunctio
n

Identifier 0..1 ref Specifies the name of a "Function" (in the sense of
the MC system) to which this data object belongs.
This corresponds to the Function in ASAM MCD
2MC /ASAP2 which defines the characteristic
resp. which provides the measurement as output.

The function name is only used for support of MC
systems. It can be predefined on the level of
software component design. If it is not predefined,
it could be filled out with a reasonable name, e.g.
the component prototype name, from the ECU
extract.

Note: This attribute is deprecated because an
explicit model of MC functions can be set up by
using the meta-class McFunction.

Tags: atp.Status=obsolete
xml.sequenceOffset=257

swAddrMet
hod

SwAddrMethod 0..1 ref Addressing method related to this data object. Via
an association to the same SwAddrMethod it can
be specified that several DataPrototypes shall be
located in the same memory without already
specifying the memory section itself.

Tags: xml.sequenceOffset=30

819 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
swAlignme
nt

AlignmentType 0..1 attr The attribute describes the intended alignment of
the DataPrototype. If the attribute is not defined
the alignment is determined by the swBaseType
size and the memoryAllocationKeywordPolicy of
the referenced SwAddrMethod.

Tags: xml.sequenceOffset=33
swBitRepr
esentation

SwBitRepresent
ation

0..1 aggr Description of the binary representaion in case of
a bit variable.

Tags: xml.sequenceOffset=60
swCalibrati
onAccess

SwCalibrationA
ccessEnum

0..1 attr Specifies the read or write access by MCD tools
for this data object.

Tags: xml.sequenceOffset=70
swCalprm
AxisSet

SwCalprmAxisS
et

0..1 aggr This specifies the properties of the axes in case of
a curve or map etc. This is mainly applicable to
calibration parameters.

Tags: xml.sequenceOffset=90
swCompari
sonVariabl
e

SwVariableRefP
roxy

* aggr Variables used for comparison in an MCD process.

Tags: xml.sequenceOffset=170; xml.type
Element=false

swDataDe
pendency

SwDataDepend
ency

0..1 aggr Describes how the value of the data object has to
be calculated from the value of another data
object (by the MCD system).

Tags: xml.sequenceOffset=200
swHostVar
iable

SwVariableRefP
roxy

0..1 aggr Contains a reference to a variable which serves as
a host-variable for a bit variable. Only applicable
to bit objects.

Tags: xml.sequenceOffset=220; xml.type
Element=false

swImplPoli
cy

SwImplPolicyEn
um

0..1 attr Implementation policy for this data object.

Tags: xml.sequenceOffset=230

820 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
swIntende
dResolutio
n

Numerical 0..1 attr The purpose of this element is to describe the
requested quantization of data objects early on in
the design process.

The resolution ultimately occurs via the conversion
formula present (compuMethod), which specifies
the transition from the physical world to the
standardized world (and vice-versa) (here, "the
slope per bit" is present implicitly in the conversion
formula).

In the case of a development phase without a
fixed conversion formula, a pre-specification can
occur through swIntendedResolution.

The resolution is specified in the physical domain
according to the property "unit".

Tags: xml.sequenceOffset=240
swInterpol
ationMetho
d

Identifier 0..1 ref This is a keyword identifying the mathematical
method to be applied for interpolation. The
keyword needs to be related to the interpolation
routine which needs to be invoked.

Tags: xml.sequenceOffset=250
swIsVirtual Boolean 0..1 attr This element distinguishes virtual objects. Virtual

objects do not appear in the memory, their
derivation is much more dependent on other
objects and hence they shall have a
swDataDependency .

Tags: xml.sequenceOffset=260
swPointerT
argetProps

SwPointerTarge
tProps

0..1 aggr Specifies that the containing data object is a
pointer to another data object.

Tags: xml.sequenceOffset=280
swRecordL
ayout

SwRecordLayo
ut

0..1 ref Record layout for this data object.

Tags: xml.sequenceOffset=290
swRefresh
Timing

Multidimensiona
lTime

0..1 aggr This element specifies the frequency in which the
object involved shall be or is called or calculated.
This timing can be collected from the task in which
write access processes to the variable run. But
this cannot be done by the MCD system.

So this attribute can be used in an early phase to
express the desired refresh timing and later on to
specify the real refresh timing.

Tags: xml.sequenceOffset=300

821 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
swTextPro
ps

SwTextProps 0..1 aggr the specific properties if the data object is a text
object.

Tags: xml.sequenceOffset=120
swValueBl
ockSize

Numerical 0..1 attr This represents the size of a Value Block

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=80

unit Unit 0..1 ref Physical unit associated with the semantics of this
data object. This attribute applies if no
compuMethod is specified. If both units (this as
well as via compuMethod) are specified the units
shall be compatible.

Tags: xml.sequenceOffset=350
valueAxisD
ataType

ApplicationPrimi
tiveDataType

0..1 ref The referenced ApplicationPrimitiveDataType
represents the primitive data type of the value axis
within a compound primitive (e.g. curve, map). It
supersedes CompuMethod, Unit, and BaseType.

Tags: xml.sequenceOffset=355

Table D.217: SwDataDefProps

Enumeration SwImplPolicyEnum
Package M2::AUTOSARTemplates::CommonStructure::DataDefProperties
Note Specifies the implementation strategy with respect to consistency mechanisms of

variables.
Literal Description
const forced implementation such that the running software within the ECU shall not

modify it. For example implemented with the "const" modifier in C. This can be
applied for parameters (not for those in NvRam) as well as argument data
prototypes.

fixed This data element is fixed. In particular this indicates, that it might also be
implemented e.g. as in place data, (#DEFINE).

measurement
Point

The data element is created for measurement purposes only. The data element is
never read directly within the ECU software. In contrast to a "standard" data
element in an unconnected provide port is, this unconnection is guaranteed for
measurementPoint data elements.

queued The content of the data element is queued and the data element has ’event’
semantics, i.e. data elements are stored in a queue and all data elements are
processed in ’first in first out’ order. The queuing is intended to be implemented by
RTE Generator. This value is not applicable for parameters.

standard This is applicable for all kinds of data elements. For variable data prototypes the
’last is best’ semantics applies. For parameter there is no specific implementation
directive.

Table D.218: SwImplPolicyEnum

822 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class SwPointerTargetProps
Package M2::AUTOSARTemplates::CommonStructure::DataDefProperties
Note This element defines, that the data object (which is specified by the aggregating

element) contains a reference to another data object or to a function in the CPU code.
This corresponds to a pointer in the C-language.

The attributes of this element describe the category and the detailed properties of the
target which is either a data description or a function signature.

Base ARObject
Attribute Datatype Mul. Kind Note
functionPoi
nterSignat
ure

BswModuleEntr
y

0..1 ref The referenced BswModuleEntry serves as the
signature of a function pointer definition. Primary
use case: function pointer passed as argument to
other function.

Tags: xml.sequenceOffset=40
swDataDef
Props

SwDataDefProp
s

0..1 aggr The properties of the target data type.

Tags: xml.sequenceOffset=30
targetCate
gory

Identifier 0..1 ref This specifies the category of the target:

• In case of a data pointer, it shall specify the
category of the referenced data.

• In case of a function pointer, it could be
used to denote the category of the
referenced BswModuleEntry. Since
currently no categories for BswModuleEntry
are defined it will be empty.

Tags: xml.sequenceOffset=5

Table D.219: SwPointerTargetProps

Class SwRecordLayout
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::RecordLayout
Note Defines how the data objects (variables, calibration parameters etc.) are to be stored

in the ECU memory. As an example, this definition specifies the sequence of axis
points in the ECU memory. Iterations through axis values are stored within the
sub-elements swRecordLayoutGroup.

Tags: atp.recommendedPackage=SwRecordLayouts
Base ARElement,ARObject,CollectableElement,Identifiable,Multilanguage

Referrable,PackageableElement,Referrable
Attribute Datatype Mul. Kind Note
swRecordL
ayoutGrou
p

SwRecordLayo
utGroup

1 aggr This is the top level record layout group.

Tags: xml.roleElement=true; xml.roleWrapper
Element=false; xml.sequenceOffset=20; xml.type
Element=false; xml.typeWrapperElement=false

Table D.220: SwRecordLayout

823 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class SwServiceArg
Package M2::AUTOSARTemplates::CommonStructure::ServiceProcessTask
Note Specifies the properties of a data object exchanged during the call of an SwService,

e.g. an argument or a return value.
Base ARObject,Identifiable,MultilanguageReferrable,Referrable
Attribute Datatype Mul. Kind Note
direction ArgumentDirecti

onEnum
0..1 attr Specifies the direction of the data transfer. The

direction shall indicate the direction of the actual
information that is being consumed by the caller
and/or the callee, not the direction of formal
arguments in C.

The attribute is optional for backwards
compatibility reasons. For example, if a pointer is
used to pass a memory address for the expected
result, the direction shall be "out". If a pointer is
used to pass a memory address with content to be
read by the callee, its direction shall be "in".

Tags: xml.sequenceOffset=10
swArraysiz
e

ValueList 0..1 aggr This turns the argument of the service to an array.

Tags: xml.sequenceOffset=20
swDataDef
Props

SwDataDefProp
s

0..1 aggr Data properties of this SwServiceArg.

Tags: xml.sequenceOffset=30

Table D.221: SwServiceArg

Class SwSystemconst
Package M2::AUTOSARTemplates::CommonStructure::SystemConstant
Note This element defines a system constant which serves an input to select a particular

variation point. In particular a system constant serves as an operand of the binding
function (swSyscond) in a Variation point.

Note that the binding process can only happen if a value was assigned to to the
referenced system constants.

Tags: atp.recommendedPackage=SwSystemconsts
Base ARElement,ARObject,AtpDefinition,CollectableElement,Identifiable,Multilanguage

Referrable,PackageableElement,Referrable
Attribute Datatype Mul. Kind Note
swDataDef
Props

SwDataDefProp
s

0..1 aggr This denotes the data defintion properties of the
system constant. In particular it is the limits and -
in case the system constant is an enumeration -
the compu method.

Tags: xml.sequenceOffset=40

Table D.222: SwSystemconst

824 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class �atpMixedString� SwSystemconstDependentFormula (abstract)
Package M2::AUTOSARTemplates::GenericStructure::VariantHandling
Note This class represents an expression depending on system constants.
Base ARObject,FormulaExpression
Attribute Datatype Mul. Kind Note
sysc SwSystemconst 1 ref This refers to a system constant. The internal

(coded) value of the system constant shall be
used.

Tags: xml.sequenceOffset=50
syscString SwSystemconst 1 ref syscString indicates that the referenced systm

constant shall be evaluated as a string according
to [TPS_SWCT_01431].

Table D.223: SwSystemconstDependentFormula

Class SwSystemconstValue
Package M2::AUTOSARTemplates::GenericStructure::VariantHandling
Note This meta-class assigns a particular value to a system constant.
Base ARObject
Attribute Datatype Mul. Kind Note
annotation Annotation * aggr This provides the ability to add information why

the value is set like it is.

Tags: xml.sequenceOffset=30
swSystem
const

SwSystemconst 1 ref This is the system constant to which the value
applies.

Tags: xml.sequenceOffset=10
value Numerical 1 attr This is the particular value of a system constant. It

is specified as Numerical. Further restrictions may
apply by the definition of the system constant.

The value attribute defines the internal value of
the SwSystemconst as it is processed in the
Formula Language.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=20

Table D.224: SwSystemconstValue

825 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class SwSystemconstantValueSet
Package M2::AUTOSARTemplates::GenericStructure::VariantHandling
Note This meta-class represents the ability to specify a set of system constant values.

Tags: atp.recommendedPackage=SwSystemconstantValueSets
Base ARElement,ARObject,CollectableElement,Identifiable,Multilanguage

Referrable,PackageableElement,Referrable
Attribute Datatype Mul. Kind Note
swSystem
constantVa
lue

SwSystemconst
Value

* aggr This is one particular value of a system constant.

Table D.225: SwSystemconstantValueSet

Class �atpMixed� SwValues
Package M2::AUTOSARTemplates::CommonStructure::CalibrationValue
Note This meta-class represents a list of values. These values can either be the input

values of a curve (abscissa values) or the associated values (ordinate values).

In case of multidimensional structures, the values are ordered such that the lowest
index runs the fastest. In particular for maps and cuboids etc. the resulting long value
list can be subsectioned using ValueGroup. But the processing needs to be done as if
vg is not there.

Note that numerical values and textual values should not be mixed.
Base ARObject
Attribute Datatype Mul. Kind Note
v Numerical 1 attr This is a non variant Value. It is provided for sake

of Compatibility to ASAM CDF.

Tags: xml.sequenceOffset=40
vf Numerical 1 attr This allows to specify the value as VariationPoint.

It is distinguished to non variant for sake of
compatibility to ASAM CDF 2.0.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=20

vg ValueGroup 1 aggr This allows to have intersections in the values in
order to support specific rendering (eg. using
stylesheets). For tools it is important that the v
values are always processed in the same
(flattened) order and the tool is able to interpret it
without respecting vg.

Tags: xml.sequenceOffset=50

826 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
vt VerbatimString 1 ref This represents the values of textual data

elements (Strings). Note that vt uses the | to
separate the values for the different bitfield masks
in case that the semantics of the related
DataPrototype is described by means of a
BITFIELD_TEXTTABLE in the associated
CompuMethod.

Tags: xml.sequenceOffset=30
vtf NumericalOrTex

t
1 aggr Thias aggregation represents the ability to provide

a value that is either numerical or text which
existence is subject to variability.

From the formal point of view, the aggregation
needs to have the multiplicity 1 because SwValues
is modelled with stereotype «atpMixed».
Nevertheless, the existence of vtf is optional and
subject to constraints.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

Table D.226: SwValues

Class SwcBswMapping
Package M2::AUTOSARTemplates::CommonStructure::SwcBswMapping
Note Maps an SwcInternalBehavior to an BswInternalBehavior. This is required to

coordinate the API generation and the scheduling for AUTOSAR Service
Components, ECU Abstraction Components and Complex Driver Components by the
RTE and the BSW scheduling mechanisms.

Tags: atp.recommendedPackage=SwcBswMappings
Base ARElement,ARObject,AtpClassifier,AtpFeature,AtpStructureElement,Collectable

Element,Identifiable,MultilanguageReferrable,PackageableElement,Referrable
Attribute Datatype Mul. Kind Note
bswBehavi
or

BswInternalBeh
avior

1 ref The mapped BswInternalBehavior

runnableM
apping

SwcBswRunnab
leMapping

* aggr A mapping between a pair of SWC and BSW
runnables.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

swcBehavi
or

SwcInternalBeh
avior

1 ref The mapped SwcInternalBehavior.

synchroniz
edModeGr
oup

SwcBswSynchr
onizedModeGro
upPrototype

* aggr A pair of SWC and BSW mode group prototypes
to be synchronized by the scheduler.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

827 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
synchroniz
edTrigger

SwcBswSynchr
onizedTrigger

* aggr A pair of SWC and BSW Triggers to be
synchronized by the scheduler.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

Table D.227: SwcBswMapping

Class SwcBswRunnableMapping
Package M2::AUTOSARTemplates::CommonStructure::SwcBswMapping
Note Maps a BswModuleEntity to a RunnableEntity if it is implemented as part of a BSW

module (in the case of an AUTOSAR Service, a Complex Driver or an ECU
Abstraction). The mapping can be used by a tool to find relevant information on the
behavior, e.g. whether the bswEntity shall be running in interrupt context.

Base ARObject
Attribute Datatype Mul. Kind Note
bswEntity BswModuleEntit

y
1 ref The mapped BswModuleEntity

swcRunna
ble

RunnableEntity 1 ref The mapped SWC runnable.

Table D.228: SwcBswRunnableMapping

Class SwcBswSynchronizedTrigger
Package M2::AUTOSARTemplates::CommonStructure::SwcBswMapping
Note Synchronizes a Trigger provided by a component via a port with a Trigger provided by

a BSW module or cluster.
Base ARObject
Attribute Datatype Mul. Kind Note
bswTrigger Trigger 1 ref The BSW Trigger.
swcTrigger Trigger 1 iref The SWC Trigger provided by a particular port.

Table D.229: SwcBswSynchronizedTrigger

Class SwcImplementation
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcImplementation
Note This meta-class represents a specialization of the general Implementation meta-class

with respect to the usage in application software.

Tags: atp.recommendedPackage=SwcImplementations
Base ARElement,ARObject,CollectableElement,Identifiable,Implementation,Multilanguage

Referrable,PackageableElement,Referrable
Attribute Datatype Mul. Kind Note
behavior SwcInternalBeh

avior
1 ref The internal behavior implemented by this

Implementation.

828 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
perInstanc
eMemoryS
ize

PerInstanceMe
morySize

* aggr Allows a definition of the size of the per-instance
memory for this implementation. The aggregation
of PerInstanceMemorySize is subject to variability
with the purpose to support variability in the
software components implementations. Typically
different algorithms in the implementation are
requiring different number of memory objects, in
this case PerInstanceMemory.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

requiredRT
EVendor

String 0..1 attr Identify a specific RTE vendor. This information is
potentially important at the time of integrating (in
particular: linking) the application code with the
RTE. The semantics is that (if the association
exists) the corresponding code has been created
to fit to the vendor-mode RTE provided by this
specific vendor. Attempting to integrate the code
with another RTE generated in vendor mode is in
general not possible.

Table D.230: SwcImplementation

Class SwcInternalBehavior
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior
Note The SwcInternalBehavior of an AtomicSwComponentType describes the relevant

aspects of the software-component with respect to the RTE, i.e. the RunnableEntities
and the RTEEvents they respond to.

Base ARObject,AtpClassifier,AtpFeature,AtpStructureElement,Identifiable,Internal
Behavior,MultilanguageReferrable,Referrable

Attribute Datatype Mul. Kind Note
arTypedPe
rInstanceM
emory

VariableDataPr
ototype

* aggr Defines an AUTOSAR typed memory-block that
needs to be available for each instance of the
SW-component. This is typically only useful if
supportsMultipleInstantiation is set to "true" or if
the component defines NVRAM access via
permanent blocks. The aggregation of
arTypedPerInstanceMemory is subject to
variability with the purpose to support variability in
the software components implementations.
Typically different algorithms in the implementation
are requiring different number of memory objects.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

829 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
event RTEEvent * aggr This is a RTEEvent specified for the particular

SwcInternalBehavior.

The aggregation of RTEEvent is subject to
variability with the purpose to support the
conditional existence of RTE events. Note: the
number of RTE events might vary due to the
conditional existence of PortPrototypes using
DataReceivedEvents or due to different
scheduling needs of algorithms.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variation
Point.shortLabel
vh.latestBindingTime=preCompileTime

explicitInte
rRunnable
Variable

VariableDataPr
ototype

* aggr Implement state message semantics for
establishing communication among runnables of
the same component. The aggregation of
explicitInterRunnableVariable is subject to
variability with the purpose to support variability in
the software components implementations.
Typically different algorithms in the implementation
are requiring different number of memory objects.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

handleTer
minationAn
dRestart

HandleTerminat
ionAndRestartE
num

1 attr This attribute controls the behavior with respect to
stopping and restarting. The corresponding
AtomicSwComponentType may either not support
stop and restart, or support only stop, or support
both stop and restart.

implicitInte
rRunnable
Variable

VariableDataPr
ototype

* aggr Implement state message semantics for
establishing communication among runnables of
the same component. The aggregation of
implicitInterRunnableVariable is subject to
variability with the purpose to support variability in
the software components implementations.
Typically different algorithms in the implementation
are requiring different number of memory objects.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

includedDa
taTypeSet

IncludedDataTy
peSet

* aggr The includedDataTypeSet is used by a software
component for its implementation.

includedM
odeDeclar
ationGroup
Set

IncludedModeD
eclarationGroup
Set

* aggr This aggregation represents the included
ModeDeclarationGroups

830 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
instantiatio
nDataDefP
rops

InstantiationDat
aDefProps

* aggr The purpose of this is that within the context of a
given SwComponentType some data def
properties of individual instantiations can be
modified. The aggregation of
InstantiationDataDefProps is subject to variability
with the purpose to support the conditional
existence of PortPrototypes and component local
memories like "perInstanceParameter" or
"arTypedPerInstanceMemory".

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

perInstanc
eMemory

PerInstanceMe
mory

* aggr Defines a per-instance memory object needed by
this software component. The aggregation of
PerInstanceMemory is subject to variability with
the purpose to support variability in the software
components implementations. Typically different
algorithms in the implementation are requiring
different number of memory objects.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

perInstanc
eParamete
r

ParameterData
Prototype

* aggr Defines parameter(s) or characteristic value(s)
that needs to be available for each instance of the
software-component. This is typically only useful if
supportsMultipleInstantiation is set to "true". The
aggregation of perInstanceParameter is subject to
variability with the purpose to support variability in
the software components implementations.
Typically different algorithms in the implementation
are requiring different number of memory objects.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variation
Point.shortLabel
vh.latestBindingTime=preCompileTime

portAPIOpt
ion

PortAPIOption * aggr Options for generating the signature of
port-related calls from a runnable to the RTE and
vice versa. The aggregation of PortPrototypes is
subject to variability with the purpose to support
the conditional existence of ports.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

831 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
runnable RunnableEntity 1..* aggr This is a RunnableEntity specified for the

particular SwcInternalBehavior.

The aggregation of RunnableEntity is subject to
variability with the purpose to support the
conditional existence of RunnableEntities. Note:
the number of RunnableEntities might vary due to
the conditional existence of PortPrototypes using
DataReceivedEvents or due to different
scheduling needs of algorithms.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variation
Point.shortLabel
vh.latestBindingTime=preCompileTime

serviceDep
endency

SwcServiceDep
endency

* aggr Defines the requirements on AUTOSAR Services
for a particular item.

The aggregation of SwcServiceDependency is
subject to variability with the purpose to support
the conditional existence of ports as well as the
conditional existence of ServiceNeeds.

The SwcServiceDependency owned by an
SwcInternalBehavior can be located in a different
physical file in order to support that
SwcServiceDependency might be provided in later
development steps or even by different expert
domain (e.g OBD expert for Obd related Service
Needs) tools. Therefore the aggregation is
«atpSplitable».

Stereotypes: atpVariation
Tags: atp.Splitkey=serviceDependency.short
Name, variationPoint.shortLabel
vh.latestBindingTime=preCompileTime

sharedPar
ameter

ParameterData
Prototype

* aggr Defines parameter(s) or characteristic value(s)
shared between SwComponentPrototypes of the
same SwComponentType The aggregation of
sharedParameter is subject to variability with the
purpose to support variability in the software
components implementations. Typically different
algorithms in the implementation are requiring
different number of memory objects.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=shortName, variation
Point.shortLabel
vh.latestBindingTime=preCompileTime

supportsM
ultipleInsta
ntiation

Boolean 1 attr Indicate whether the corresponding
software-component can be multiply instantiated
on one ECU. In this case the attribute will result in
an appropriate component API on programming
language level (with or without instance handle).

832 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
variationPo
intProxy

VariationPointPr
oxy

* aggr Proxy of a variation points in the C/C++
implementation.

Table D.231: SwcInternalBehavior

Class SwcModeManagerErrorEvent
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTE

Events
Note This represents the ability to react on errors occurring during mode handling.
Base ARObject,AbstractEvent,AtpClassifier,AtpFeature,AtpStructure

Element,Identifiable,MultilanguageReferrable,RTEEvent,Referrable
Attribute Datatype Mul. Kind Note
modeGrou
p

ModeDeclaratio
nGroupPrototyp
e

1 iref This represents the
ModeDeclarationGroupPrototype for which the
error behavior of the mode manager applies.

Table D.232: SwcModeManagerErrorEvent

Class SwcModeSwitchEvent
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTE

Events
Note This event is raised upon a received mode change.
Base ARObject,AbstractEvent,AtpClassifier,AtpFeature,AtpStructure

Element,Identifiable,MultilanguageReferrable,RTEEvent,Referrable
Attribute Datatype Mul. Kind Note
activation ModeActivation

Kind
1 attr Specifies if the event is activated on entering or

exiting the referenced Mode.
mode (or-
dered)

ModeDeclaratio
n

1..2 iref Reference to one or two Modes that initiate the
SwcModeSwitchEvent.

Table D.233: SwcModeSwitchEvent

Class SwcServiceDependency
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::Service

Mapping
Note Specialization of ServiceDependency in the context of an SwcInternalBehavior. It

allows to associate ports, port groups and (in special cases) data defined for an
atomic software component to a given ServiceNeeds element.

Base ARObject,AtpClassifier,AtpFeature,AtpStructureElement,Identifiable,Multilanguage
Referrable,Referrable,ServiceDependency

Attribute Datatype Mul. Kind Note
assignedD
ata

RoleBasedData
Assignment

* aggr Defines the role of an associated data object of
the same component.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

833 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
assignedP
ort

RoleBasedPort
Assignment

* aggr Defines the role of an associated port of the same
component.

Stereotypes: atpSplitable; atpVariation
Tags: atp.Splitkey=assignedPort, variation
Point.shortLabel
vh.latestBindingTime=preCompileTime

represente
dPortGrou
p

PortGroup 0..1 ref This reference specifies an association between
the ServiceNeeeds and a PortGroup, for example
to request a communication mode which applies
for communication via these ports. The referred
PortGroup shall be local to this atomic SWC, but
via the links between the PortGroups, a tool can
evaluate this information such that all the ports
linked via this port group on the same ECU can be
found.

serviceNee
ds

ServiceNeeds 1 aggr The associated ServiceNeeds.

Table D.234: SwcServiceDependency

Class SymbolProps
Package M2::AUTOSARTemplates::SWComponentTemplate::Components
Note This meta-class represents the ability to attach with the symbol attribute a symbolic

name that is conform to C language requirements to another meta-class, e.g.
AtomicSwComponentType, that is a potential subject to a name clash on the level of
RTE source code.

Base ARObject,ImplementationProps,Referrable
Attribute Datatype Mul. Kind Note
– – – – –

Table D.235: SymbolProps

Class SynchronousServerCallPoint
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::ServerCall
Note This means that the RunnableEntity is supposed to perform a blocking wait for a

response from the server.
Base ARObject,AtpClassifier,AtpFeature,AtpStructureElement,Identifiable,Multilanguage

Referrable,Referrable,ServerCallPoint
Attribute Datatype Mul. Kind Note
calledFrom
WithinExcl
usiveArea

ExclusiveAreaN
estingOrder

0..1 ref This indicates that the call point is located at the
deepest level inside one or more ExclusiveAreas
that are nested in the given order.

Table D.236: SynchronousServerCallPoint

834 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class SystemMapping
Package M2::AUTOSARTemplates::SystemTemplate
Note The system mapping aggregates all mapping aspects (mapping of SW components

to ECUs, mapping of data elements to signals, and mapping constraints).
Base ARObject,Identifiable,MultilanguageReferrable,Referrable
Attribute Datatype Mul. Kind Note
dataMappi
ng

DataMapping * aggr The data mappings defined.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=postBuild

ecuResour
ceMapping

ECUMapping * aggr Mapping of hardware related topology elements
onto their counterpart definitions in the ECU
Resource Template.

atpVariation: The ECU Resource type might be
variable.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=systemDesignTime

mappingC
onstraint

MappingConstr
aint

* aggr Constraints that limit the mapping freedom for the
mapping of SW components to ECUs.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=systemDesignTime

pncMappin
g

PncMapping * aggr Stereotypes: atpVariationTags: vh.latestBinding
Time=systemDesignTime

resourceE
stimation

EcuResourceEs
timation

* aggr Resource estimations for this set of mappings,
zero or one per ECU instance. atpVariation: Used
ECUs are variable.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=systemDesignTime

signalPath
Constraint

SignalPathCons
traint

* aggr Constraints that limit the mapping freedom for the
mapping of data elements to signals.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=systemDesignTime

swImplMa
pping

SwcToImplMap
ping

* aggr The mappings of AtomicSoftwareComponent
Instances to Implementations.

atpVariation: Derived, because
SwcToEcuMapping is variable.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime

swMappin
g

SwcToEcuMapp
ing

* aggr The mappings of SW components to ECUs.

atpVariation: SWC shall be mapped to other
ECUs.

Stereotypes: atpVariation
Tags: vh.latestBindingTime=systemDesignTime

Table D.237: SystemMapping

835 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class SystemSignal
Package M2::AUTOSARTemplates::SystemTemplate::Fibex::FibexCore::CoreCommunication
Note The system signal represents the communication system’s view of data exchanged

between SW components which reside on different ECUs. The system signals allow
to represent this communication in a flattened structure, with exactly one system
signal defined for each data element prototype sent and received by connected SW
component instances.

Tags: atp.recommendedPackage=SystemSignals
Base ARElement,ARObject,CollectableElement,Identifiable,Multilanguage

Referrable,PackageableElement,Referrable
Attribute Datatype Mul. Kind Note
dynamicLe
ngth

Boolean 1 attr The length of dynamic length signals is variable in
run-time. Only a maximum length of such a signal
is specified in the configuration (attribute length in
ISignal element).

physicalPr
ops

SwDataDefProp
s

0..1 aggr Specification of the physical representation.

Table D.238: SystemSignal

Class SystemSignalGroup
Package M2::AUTOSARTemplates::SystemTemplate::Fibex::FibexCore::CoreCommunication
Note A signal group refers to a set of signals that must always be kept together. A signal

group is used to guarantee the atomic transfer of AUTOSAR composite data types.

The SystemSignalGroup defines a signal grouping on VFB level. On cluster level the
Signal grouping is described by the ISignalGroup element.

Tags: atp.recommendedPackage=SystemSignalGroups
Base ARElement,ARObject,CollectableElement,Identifiable,Multilanguage

Referrable,PackageableElement,Referrable
Attribute Datatype Mul. Kind Note
systemSig
nal

SystemSignal * ref Reference to a set of SystemSignals that must
always be kept together.

Table D.239: SystemSignalGroup

Class TextTableMapping
Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface
Note Defines the mapping of two DataPrototypes typed by AutosarDataTypes that refer to

CompuMethods of category TEXTTABLE.
Base ARObject
Attribute Datatype Mul. Kind Note
identicalM
apping

Boolean 1 attr If identicalMapping is set == true the values of the
two referenced DataPrototypes do not need any
conversion of the values.

mappingDi
rection

MappingDirectio
nEnum

1 attr Specifies the conversion direction for which the
TextTableMapping is applicable.

836 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
valuePair TextTableValue

Pair
* aggr Defines a pair of values which are translated into

each other.

Table D.240: TextTableMapping

Class TextValueSpecification
Package M2::AUTOSARTemplates::CommonStructure::Constants
Note The purpose of TextValueSpecification is to define the labels that correspond to

enumeration values.
Base ARObject,ValueSpecification
Attribute Datatype Mul. Kind Note
value VerbatimString 1 ref This is the value itself.

Note that vt uses the | operator to separate the
values for the different bitfield masks in case that
the semantics of the related DataPrototype is
described by means of a BITFIELD_TEXTTABLE
in the associated CompuMethod.

Table D.241: TextValueSpecification

Class TimingEvent
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTE

Events
Note TimingEvent references the RunnableEntity that need to be started in response to the

TimingEvent
Base ARObject,AbstractEvent,AtpClassifier,AtpFeature,AtpStructure

Element,Identifiable,MultilanguageReferrable,RTEEvent,Referrable
Attribute Datatype Mul. Kind Note
period TimeValue 1 attr Period of timing event in seconds. The value of

this attribute shall be greater than zero.

Table D.242: TimingEvent

Class TransmissionAcknowledgementRequest
Package M2::AUTOSARTemplates::SWComponentTemplate::Communication
Note Requests transmission acknowledgement that data has been sent successfully.

Success/failure is reported via a SendPoint of a RunnableEntity.
Base ARObject
Attribute Datatype Mul. Kind Note
timeout TimeValue 1 attr Number of seconds before an error is reported or

in case of allowed redundancy, the value is sent
again.

Table D.243: TransmissionAcknowledgementRequest

837 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class Trigger
Package M2::AUTOSARTemplates::CommonStructure::TriggerDeclaration
Note A trigger which is provided (i.e. released) or required (i.e. used to activate something)

in the given context.
Base ARObject,AtpClassifier,AtpFeature,AtpStructureElement,Identifiable,Multilanguage

Referrable,Referrable
Attribute Datatype Mul. Kind Note
swImplPoli
cy

SwImplPolicyEn
um

0..1 attr This attribute, when set to value queued, allows
for a queued processing of Triggers.

triggerPeri
od

Multidimensiona
lTime

0..1 aggr Optional definition of a period in case of a
periodically (time or angle) driven external trigger.

Table D.244: Trigger

Class TriggerInterface
Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface
Note A trigger interface declares a number of triggers that can be sent by an trigger source.

Tags: atp.recommendedPackage=PortInterfaces
Base ARElement,ARObject,AtpBlueprint,AtpBlueprintable,AtpClassifier,Atp

Type,CollectableElement,Identifiable,MultilanguageReferrable,Packageable
Element,PortInterface,Referrable

Attribute Datatype Mul. Kind Note
trigger Trigger 1..* aggr The Trigger of this trigger interface.

Table D.245: TriggerInterface

Class TriggerInterfaceMapping
Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface
Note Defines the mapping of unequal named Triggers in context of two different

TriggerInterfaces.
Base ARObject,AtpBlueprint,AtpBlueprintable,Identifiable,MultilanguageReferrable,Port

InterfaceMapping,Referrable
Attribute Datatype Mul. Kind Note
triggerMap
ping

TriggerMapping 1..* aggr Mapping of two Trigger in two different
TriggerInterface

Table D.246: TriggerInterfaceMapping

838 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class Unit
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::Units
Note This is a physical measurement unit. All units that might be defined should stem from

SI units. In order to convert one unit into another factor and offset are defined. For the
calculation from SI-unit to the defined unit the factor (factorSiToUnit) and the offset
(offsetSiToUnit) are applied:

unit = siUnit * factorSiToUnit + offsetSiToUnit

For the calculation from a unit to SI-unit the reciprocal of the factor (factorSiToUnit)
and the negation of the offset (offsetSiToUnit) are applied:

siUnit = (unit - offsetSiToUnit) / factorSiToUnit

Tags: atp.recommendedPackage=Units
Base ARElement,ARObject,CollectableElement,Identifiable,Multilanguage

Referrable,PackageableElement,Referrable
Attribute Datatype Mul. Kind Note
displayNa
me

SingleLanguage
UnitNames

0..1 aggr This specifies how the unit shall be displayed in
documents or in user interfaces of tools.The
displayName corresponds to the Unit.Display in an
ASAM MCD-2MC file.

Tags: xml.sequenceOffset=20
factorSiTo
Unit

Float 0..1 attr This is the factor for the conversion from and to
siUnits.

Tags: xml.sequenceOffset=30
offsetSiTo
Unit

Float 0..1 attr This is the offset for the conversion from and to
siUnits.

Tags: xml.sequenceOffset=40
physicalDi
mension

PhysicalDimens
ion

0..1 ref This association represents the physical
dimension to which the unit belongs to. Note that
only values with units of the same physical
dimensions might be converted.

Tags: xml.sequenceOffset=50

Table D.247: Unit

Class �atpMixed� ValueList
Package M2::AUTOSARTemplates::CommonStructure::DataDefProperties
Note This is a generic list of numerical values.
Base ARObject
Attribute Datatype Mul. Kind Note
v Numerical 1 attr This is a particular numerical value without

variation.

Tags: xml.sequenceOffset=30

839 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
vf (or-
dered)

Numerical * attr This is one entry in the list of numerical values

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.roleElement=true; xml.roleWrapper
Element=false; xml.typeElement=false; xml.type
WrapperElement=false

Table D.248: ValueList

Class ValueSpecification (abstract)
Package M2::AUTOSARTemplates::CommonStructure::Constants
Note Base class for expressions leading to a value which can be used to initialize a data

object.
Base ARObject
Attribute Datatype Mul. Kind Note
shortLabel Identifier 0..1 ref This can be used to identify particular value

specifications for human readers, for example
elements of a record type.

Table D.249: ValueSpecification

Class VariableAccess
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::Data

Elements
Note The presence of a VariableAccess implies that a RunnableEntity needs access to a

VariableDataPrototype.

The kind of access is specified by the role in which the class is used.
Base ARObject,AtpClassifier,AtpFeature,AtpStructureElement,Identifiable,Multilanguage

Referrable,Referrable
Attribute Datatype Mul. Kind Note
accessedV
ariable

AutosarVariable
Ref

1 aggr This denotes the accessed variable.

scope VariableAccess
ScopeEnum

0..1 attr This attribute allows for constraining the scope of
the corresponding communication. For example, it
possible to express whether the communication is
intended to cross the boundary of an ECU or
whether it is intended not to cross the boundary of
a single partition.

Table D.250: VariableAccess

840 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class VariableAndParameterInterfaceMapping
Package M2::AUTOSARTemplates::SWComponentTemplate::PortInterface
Note Defines the mapping of VariableDataPrototypes or ParameterDataPrototypes in

context of two different SenderReceiverInterfaces, NvDataInterfaces or
ParameterInterfaces.

Base ARObject,AtpBlueprint,AtpBlueprintable,Identifiable,MultilanguageReferrable,Port
InterfaceMapping,Referrable

Attribute Datatype Mul. Kind Note
dataMappi
ng

DataPrototypeM
apping

1..* aggr Defines the mapping of two particular
VariableDataPrototypes or
ParameterDataPrototypes with unequal names
and/or unequal semantic (resolution or range) in
context of two different SenderReceiverInterfaces,
NvDataInterfaces or ParameterInterfaces

Table D.251: VariableAndParameterInterfaceMapping

Class VariableDataPrototype
Package M2::AUTOSARTemplates::SWComponentTemplate::Datatype::DataPrototypes
Note A VariableDataPrototype is used to contain values in an ECU application. This means

that most likely a VariableDataPrototype allocates "static" memory on the ECU. In
some cases optimization strategies might lead to a situation where the memory
allocation can be avoided.

In particular, the value of a VariableDataPrototype is likely to change as the ECU on
which it is used executes.

Base ARObject,AtpFeature,AtpPrototype,AutosarDataPrototype,Data
Prototype,Identifiable,MultilanguageReferrable,Referrable

Attribute Datatype Mul. Kind Note
initValue ValueSpecificati

on
0..1 aggr Specifies initial value(s) of the

VariableDataPrototype

Table D.252: VariableDataPrototype

Class VariationPoint
Package M2::AUTOSARTemplates::GenericStructure::VariantHandling
Note This meta-class represents the ability to express a "structural variation point". The

container of the variation point is part of the selected variant if swSyscond evaluates
to true and each postBuildVariantCriterion is fulfilled.

Base ARObject
Attribute Datatype Mul. Kind Note
desc MultiLanguage

OverviewParagr
aph

0..1 aggr This allows to describe shortly the purpose of the
variation point.

Tags: xml.sequenceOffset=20

841 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
blueprintC
ondition

Documentation
Block

0..1 aggr This represents a description that documents how
the variation point shall be resolved when deriving
objects from the blueprint.

Note that variationPoints are not allowed within a
blueprintCondition.

Tags: xml.sequenceOffset=28
formalBlue
printCondit
ion

BlueprintFormul
a

0..1 aggr This denotes a formal blueprintCondition. This
shall be not in contradiction with
blueprintCondition. It is recommanded only to use
one of the two.

Tags: xml.sequenceOffset=29
postBuildV
ariantCond
ition

PostBuildVarian
tCondition

* aggr This is the set of post build variant conditions
which all shall be fulfilled in order to (postbuild)
bind the variation point.

Tags: xml.sequenceOffset=40
sdg Sdg 0..1 aggr An optional special data group is attached to every

variation point. These data can be used by
external software systems to attach application
specific data. For example, a variant management
system might add an identifier, an URL or a
specific classifier.

Tags: xml.sequenceOffset=50
shortLabel Identifier 0..1 ref This provides a name to the particular variation

point to support the RTE generator. It is necessary
for supporting splitable aggregations and if binding
time is later than codeGenerationTime, as well as
some RTE conditions. It needs to be unique with
in the enclosing Identifiables with the same
ShortName.

Tags: xml.sequenceOffset=10
swSyscon
d

ConditionByFor
mula

0..1 aggr This condition acts as Binding Function for the
VariationPoint. Note that the mulitplicity is 0..1 in
order to support pure postBuild variants.

Tags: xml.sequenceOffset=30

Table D.253: VariationPoint

842 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class VariationPointProxy
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::Variant

Handling
Note The VariationPointProxy represents variation points of the C/C++ implementation. In

case of bindingTime = compileTime the RTE provides defines which can be used for
Pre Processor directives to implement compileTime variability.

Base ARObject,Identifiable,MultilanguageReferrable,Referrable
Attribute Datatype Mul. Kind Note
conditionA
ccess

ConditionByFor
mula

0..1 aggr This condition acts as Binding Function for the
VariationPoint.

implement
ationDataT
ype

Implementation
DataType

0..1 ref This association to ImplementationDataType shall
be taken as an implementation hint by the RTE
generator.

postBuildV
alueAcces
s

PostBuildVarian
tCriterion

0..1 ref This represents the applicable
PostBuildVariantCriterion in the context of a
VariationPointProxy.

Note that the technical details how to access the
particular postBuildValueAccess are still
considered internal to the RTE and are
consequently not standardized.

postBuildV
ariantCond
ition

PostBuildVarian
tCondition

* aggr This represents that applicable
PostBuoldVariantCondition in the context of
aVariationPointProxy.

valueAcce
ss

AttributeValueV
ariationPoint

0..1 aggr This value acts as Binding Function for the
VariationPoint.

Table D.254: VariationPointProxy

Class WaitPoint
Package M2::AUTOSARTemplates::SWComponentTemplate::SwcInternalBehavior::RTE

Events
Note This defines a wait-point for which the RunnableEntity can wait.
Base ARObject,Identifiable,MultilanguageReferrable,Referrable
Attribute Datatype Mul. Kind Note
timeout TimeValue 1 attr Time in seconds before the WaitPoint times out

and the blocking wait call returns with an error
indicating the timeout.

trigger RTEEvent 1 ref This is the RTEEvent this WaitPoint is waiting for.

Table D.255: WaitPoint

843 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Class �atpVariation� SwDataDefProps
Package M2::AUTOSARTemplates::CommonStructure::DataDefProperties
Note This class is a collection of properties relevant for data objects under various aspects.

One could consider this class as a "pattern of inheritance by aggregation". The
properties can be applied to all objects of all classes in which SwDataDefProps is
aggregated.

Note that not all of the attributes or associated elements are useful all of the time.
Hence, the process definition (e.g. expressed with an OCL or a Document Control
Instance MSR-DCI) has the task of implementing limitations.

SwDataDefProps covers various aspects:

• Structure of the data element for calibration use cases: is it a single value, a
curve, or a map, but also the recordLayouts which specify how such elements
are mapped/converted to the DataTypes in the programming language (or in
AUTOSAR). This is mainly expressed by properties like swRecordLayout and
swCalprmAxisSet

• Implementation aspects, mainly expressed by swImplPolicy,
swVariableAccessImplPolicy, swAddrMethod, swPointerTagetProps, baseType,
implementationDataType and additionalNativeTypeQualifier

• Access policy for the MCD system, mainly expressed by swCalibrationAccess

• Semantics of the data element, mainly expressed by compuMethod and/or
unit, dataConstr, invalidValue

• Code generation policy provided by swRecordLayout

Tags: vh.latestBindingTime=codeGenerationTime
Base ARObject
Attribute Datatype Mul. Kind Note
additionalN
ativeType
Qualifier

NativeDeclarati
onString

0..1 attr This attribute is used to declare native qualifiers of
the programming language which can neither be
deduced from the baseType (e.g. because the
data object describes a pointer) nor from other
more abstract attributes. Examples are qualifiers
like "volatile", "strict" or "enum" of the C-language.
All such declarations have to be put into one
string.

Tags: xml.sequenceOffset=235
annotation Annotation * aggr This aggregation allows to add annotations (yellow

pads ...) related to the current data object.

Tags: xml.roleElement=true; xml.roleWrapper
Element=true; xml.sequenceOffset=20; xml.type
Element=false; xml.typeWrapperElement=false

baseType SwBaseType 0..1 ref Base type associated with the containing data
object.

Tags: xml.sequenceOffset=50

844 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
compuMet
hod

CompuMethod 0..1 ref Computation method associated with the
semantics of this data object.

Tags: xml.sequenceOffset=180
dataConstr DataConstr 0..1 ref Data constraint for this data object.

Tags: xml.sequenceOffset=190
displayFor
mat

DisplayFormatS
tring

0..1 attr This property describes how a number is to be
rendered e.g. in documents or in a measurement
and calibration system.

Tags: xml.sequenceOffset=210
implement
ationDataT
ype

Implementation
DataType

0..1 ref This association denotes the
ImplementationDataType of a data declaration via
its aggregated SwDataDefProps. It is used
whenever a data declaration is not directly
referring to a base type. Especially

• redefinition of an ImplementationDataType
via a "typedef" to another
ImplementationDatatype

• the target type of a pointer (see
SwPointerTargetProps), if it does not refer
to a base type directly

• the data type of an array or record element
within an ImplementationDataType, if it
does not refer to a base type directly

• the data type of an SwServiceArg, if it does
not refer to a base type directly

Tags: xml.sequenceOffset=215
invalidValu
e

ValueSpecificati
on

0..1 aggr Optional value to express invalidity of the actual
data element.

Tags: xml.sequenceOffset=255

845 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
mcFunctio
n

Identifier 0..1 ref Specifies the name of a "Function" (in the sense of
the MC system) to which this data object belongs.
This corresponds to the Function in ASAM MCD
2MC /ASAP2 which defines the characteristic
resp. which provides the measurement as output.

The function name is only used for support of MC
systems. It can be predefined on the level of
software component design. If it is not predefined,
it could be filled out with a reasonable name, e.g.
the component prototype name, from the ECU
extract.

Note: This attribute is deprecated because an
explicit model of MC functions can be set up by
using the meta-class McFunction.

Tags: atp.Status=obsolete
xml.sequenceOffset=257

swAddrMet
hod

SwAddrMethod 0..1 ref Addressing method related to this data object. Via
an association to the same SwAddrMethod it can
be specified that several DataPrototypes shall be
located in the same memory without already
specifying the memory section itself.

Tags: xml.sequenceOffset=30
swAlignme
nt

AlignmentType 0..1 attr The attribute describes the intended alignment of
the DataPrototype. If the attribute is not defined
the alignment is determined by the swBaseType
size and the memoryAllocationKeywordPolicy of
the referenced SwAddrMethod.

Tags: xml.sequenceOffset=33
swBitRepr
esentation

SwBitRepresent
ation

0..1 aggr Description of the binary representaion in case of
a bit variable.

Tags: xml.sequenceOffset=60
swCalibrati
onAccess

SwCalibrationA
ccessEnum

0..1 attr Specifies the read or write access by MCD tools
for this data object.

Tags: xml.sequenceOffset=70
swCalprm
AxisSet

SwCalprmAxisS
et

0..1 aggr This specifies the properties of the axes in case of
a curve or map etc. This is mainly applicable to
calibration parameters.

Tags: xml.sequenceOffset=90
swCompari
sonVariabl
e

SwVariableRefP
roxy

* aggr Variables used for comparison in an MCD process.

Tags: xml.sequenceOffset=170; xml.type
Element=false

846 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
swDataDe
pendency

SwDataDepend
ency

0..1 aggr Describes how the value of the data object has to
be calculated from the value of another data
object (by the MCD system).

Tags: xml.sequenceOffset=200
swHostVar
iable

SwVariableRefP
roxy

0..1 aggr Contains a reference to a variable which serves as
a host-variable for a bit variable. Only applicable
to bit objects.

Tags: xml.sequenceOffset=220; xml.type
Element=false

swImplPoli
cy

SwImplPolicyEn
um

0..1 attr Implementation policy for this data object.

Tags: xml.sequenceOffset=230
swIntende
dResolutio
n

Numerical 0..1 attr The purpose of this element is to describe the
requested quantization of data objects early on in
the design process.

The resolution ultimately occurs via the conversion
formula present (compuMethod), which specifies
the transition from the physical world to the
standardized world (and vice-versa) (here, "the
slope per bit" is present implicitly in the conversion
formula).

In the case of a development phase without a
fixed conversion formula, a pre-specification can
occur through swIntendedResolution.

The resolution is specified in the physical domain
according to the property "unit".

Tags: xml.sequenceOffset=240
swInterpol
ationMetho
d

Identifier 0..1 ref This is a keyword identifying the mathematical
method to be applied for interpolation. The
keyword needs to be related to the interpolation
routine which needs to be invoked.

Tags: xml.sequenceOffset=250
swIsVirtual Boolean 0..1 attr This element distinguishes virtual objects. Virtual

objects do not appear in the memory, their
derivation is much more dependent on other
objects and hence they shall have a
swDataDependency .

Tags: xml.sequenceOffset=260
swPointerT
argetProps

SwPointerTarge
tProps

0..1 aggr Specifies that the containing data object is a
pointer to another data object.

Tags: xml.sequenceOffset=280
swRecordL
ayout

SwRecordLayo
ut

0..1 ref Record layout for this data object.

Tags: xml.sequenceOffset=290

847 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Attribute Datatype Mul. Kind Note
swRefresh
Timing

Multidimensiona
lTime

0..1 aggr This element specifies the frequency in which the
object involved shall be or is called or calculated.
This timing can be collected from the task in which
write access processes to the variable run. But
this cannot be done by the MCD system.

So this attribute can be used in an early phase to
express the desired refresh timing and later on to
specify the real refresh timing.

Tags: xml.sequenceOffset=300
swTextPro
ps

SwTextProps 0..1 aggr the specific properties if the data object is a text
object.

Tags: xml.sequenceOffset=120
swValueBl
ockSize

Numerical 0..1 attr This represents the size of a Value Block

Stereotypes: atpVariation
Tags: vh.latestBindingTime=preCompileTime
xml.sequenceOffset=80

unit Unit 0..1 ref Physical unit associated with the semantics of this
data object. This attribute applies if no
compuMethod is specified. If both units (this as
well as via compuMethod) are specified the units
shall be compatible.

Tags: xml.sequenceOffset=350
valueAxisD
ataType

ApplicationPrimi
tiveDataType

0..1 ref The referenced ApplicationPrimitiveDataType
represents the primitive data type of the value axis
within a compound primitive (e.g. curve, map). It
supersedes CompuMethod, Unit, and BaseType.

Tags: xml.sequenceOffset=355

Table D.256: SwDataDefProps

848 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

E Referenced ECUC Configuration Parameters

ComGroupSignal

SWS Item [ECUC_Com_00520]
Container Name ComGroupSignal
Description This container contains the configuration parameters of group signals.

I.e. signals that are included within a signal group.

Attributes:
postBuildChangeable=true

Configuration Parameters

Name ComBitPosition [ECUC_Com_00259]
Description Starting position within the I-PDU. This parameter refers to the position

in the I-PDU and not in the shadow buffer. If the endianness conversion
is configured to Opaque the parameter ComBitPosition shall define the
bit0 of the first byte like in little endian byte order

Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 65535
Default Value
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

Name ComBitSize [ECUC_Com_00158]
Description Size in bits, for integer signal types. For ComSignalType UINT8_N and

UINT8_DYN the size shall be configured by ComSignalLength. For
ComSignalTypes FLOAT32 and FLOAT64 the size is already defined
by the signal type and therefore may be omitted.

Multiplicity 0..1
Type EcucIntegerParamDef
Range 0 .. 64
Default Value
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

849 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Name ComHandleId [ECUC_Com_00165]
Description The numerical value used as the ID.

For signals it is required by the API calls Com_UpdateShadowSignal,
Com_ReceiveShadowSignal and Com_InvalidateShadowSignal. For
signals groups it is required by the Com_SendSignalGroup and
Com_ReceiveSignalGroup calls.

Multiplicity 1
Type EcucIntegerParamDef (Symbolic Name generated for this parameter)
Range 0 .. 65535
Default Value
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Scope / Dependency scope: ECU

Name ComSignalDataInvalidValue [ECUC_Com_00391]
Description Defines the data invalid value of the signal.

In case the ComSignalType is UINT8, UINT16, UINT32, SINT8,
SINT16, SINT32 the string shall be interpreted as defined in the
chapter Integer Type in the AUTOSAR EcuC specification. In case the
ComSignalType is FLOAT32, FLOAT64 the string shall be interpreted
as defined in the chapter Float Type in the AUTOSAR EcuC
specification. In case the ComSignalType is BOOLEAN the string shall
be interpreted as defined in the chapter Boolean Type in the AUTOSAR
EcuC specification. In case the ComSignal is a UINT8_N, UINT8_DYN
the string shall be interpreted as a decimal representation of the
characters separated by blanks, e.g. "97 98 100" means a string "abd",
where the char "a" is in byte 0(lowest address), "b" is in byte 1, and "d"
is in byte 2 and (highest address). For the ComSignalType UINT8_DYN
the dynamic length shall be set to the number of configured characters.
An empty string "" shall be interpretated as 0-sized dynamic signal.

Multiplicity 0..1
Type EcucStringParamDef
Default Value
Regular Expression
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Scope / Dependency scope: local

dependency: In case of UINT8_N the length of
ComSignalDataInvalidValue has to be the same as ComSignalLength.

Name ComSignalEndianness [ECUC_Com_00157]
Description Defines the endianness of the signal’s network representation.
Multiplicity 1
Type EcucEnumerationParamDef
Range BIG_ENDIAN

850 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

LITTLE_ENDIAN
OPAQUE

Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

Name ComSignalInitValue [ECUC_Com_00170]
Description Initial value for this signal. In case of UINT8_N the default value is a

string of length ComSignalLength with all bytes set to 0x00. In case of
UINT8_DYN the initial size shall be 0.

In case the ComSignalType is UINT8, UINT16, UINT32, SINT8,
SINT16, SINT32 the string shall be interpreted as defined in the
chapter Integer Type in the AUTOSAR EcuC specification. In case the
ComSignalType is FLOAT32, FLOAT64 the string shall be interpreted
as defined in the chapter Float Type in the AUTOSAR EcuC
specification. In case the ComSignalType is BOOLEAN the string shall
be interpreted as defined in the chapter Boolean Type in the AUTOSAR
EcuC specification. In case the ComSignal is a UINT8_N, UINT8_DYN
the string shall be interpreted as a decimal representation of the
characters separated by blanks, e.g. "97 98 100" means a string "abd",
where the char "a" is in byte 0(lowest address), "b" is in byte 1, and "d"
is in byte 2 and (highest address). For the ComSignalType UINT8_DYN
the dynamic length shall be set to the number of configured characters.
An empty string "" shall be interpretated as 0-sized dynamic signal.

Multiplicity 0..1
Type EcucStringParamDef
Default Value 0
Regular Expression
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local
dependency: In case of UINT8_N the length of ComSignalInitValue
has to be the same as ComSignalLength.

Name ComSignalLength [ECUC_Com_00437]
Description Description: For ComSignalType UINT8_N this parameter specifies the

length n in bytes. For ComSignalType UINT8_DYN it specifies the
maximum length in bytes. For all other types this parameter shall be
ignored.

Range: 0..8 for normal CAN/ LIN I-PDUs, 0..254 for normal FlexRay
I-PDUs, and 0..4294967295 for I-PDUs with ComIPduType TP.

Multiplicity 0..1
Type EcucIntegerParamDef
Range 0 .. 4294967295
Default Value

851 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD
Post-build time –

Scope / Dependency scope: local

Name ComSignalType [ECUC_Com_00127]
Description The AUTOSAR type of the signal. Whether or not the signal is signed

or unsigned can be found by examining the value of this attribute. This
type could also be used to reserved appropriate storage in AUTOSAR
COM.

Multiplicity 1
Type EcucEnumerationParamDef
Range BOOLEAN

FLOAT32
FLOAT64
SINT16
SINT32
SINT8
UINT16
UINT32
UINT8
UINT8_DYN
UINT8_N

Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD
Post-build time –

Scope / Dependency scope: local

Name ComSystemTemplateSystemSignalRef [ECUC_Com_00002]
Description Reference to the ISignalToIPduMapping that contains a reference to

the ISignal (System Template) which this ComSignal (or
ComGroupSignal) represents.

Multiplicity 0..1
Type Foreign reference to I-SIGNAL-TO-I-PDU-MAPPING
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

852 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Name ComTransferProperty [ECUC_Com_00560]
Description Optionally defines whether this group signal shall contribute to the

TRIGGERED_ON_CHANGE transfer property of the signal group. If at
least one group signal of a signal group has the "ComTransferProperty"
configured all other group signals of that signal group shall have the
attribute configured as well.

Multiplicity 0..1
Type EcucEnumerationParamDef
Range PENDING A change of the value of this group

signal shall not be considered in the
evaluation of the signal groups
ComTransferProperty.

TRIGGERED_ON_CHAN
GE

A change of the value of this group
signal shall be considered in the
evaluation of the signal groups
ComTransferProperty.

Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

Included Containers
Container Name Multiplicity Scope / Depedency
ComFilter 0..1 This container contains the configuration parameters of

the AUTOSAR COM module’s Filters.

Note: On sender side the container is used to specify
the transmission mode conditions.

ComIPdu

SWS Item [ECUC_Com_00340]
Container Name ComIPdu
Description Contains the configuration parameters of the AUTOSAR COM

module’s I-PDUs.

Attributes:
postBuildChangeable=true

Configuration Parameters

Name ComIPduCallout [ECUC_Com_00387]
Description This parameter defines the existence and the name of a callout

function for the corresponding I-PDU. If this parameter is omitted no
I-PDU callout shall take place for the corresponding I-PDU.

Multiplicity 0..1
Type EcucFunctionNameDef
Default Value
Regular Expression

853 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Configuration Class Pre-compile time X All Variants
Link time –
Post-build time –

Scope / Dependency scope: local

Name ComIPduCancellationSupport [ECUC_Com_00709]
Description Defines for I-PDUs with ComIPduType NORMAL: If the underlying

IF-modul supports cancellation of transmit requests.

Defines for I-PDUs with ComIPduType TP: If the underlying TP-module
supports RX and TX cancellation of ongoing requests.

Multiplicity 0..1
Type EcucBooleanParamDef
Default Value false
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time –
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU
dependency: This parameter shall not be set to true if
ComCancellationSupport is set to false

Name ComIPduDirection [ECUC_Com_00493]
Description The direction defines if this I-PDU, and therefore the contributing

signals and signal groups, shall be sent or received.
Multiplicity 1
Type EcucEnumerationParamDef
Range RECEIVE

SEND
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Scope / Dependency scope: local

dependency: If configured to Sent also a ComTxIpdu container shall
be included, see ECUC_Com_00496

Name ComIPduGroupRef [ECUC_Com_00206]
Description Reference to the I-PDU groups this I-PDU belongs to.
Multiplicity 0..*
Type Reference to ComIPduGroup
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

854 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Name ComIPduHandleId [ECUC_Com_00175]
Description The numerical value used as the ID of this I-PDU. The

ComIPduHandleId is required by the API calls Com_RxIndication,
Com_TpRxIndication, Com_StartOfReception and Com_CopyRxData
to receive I-PDUs from the PduR (ComIP-duDirection: Receive), as
well as the PduId passed to an Rx-I-PDU-callout. For Tx-I-PDUs
(ComIPduDirection: Send), this handle Id is used for the APIs calls
Com_TxConfirmation, Com_TriggerTransmit, Com_TriggerIPDUSend,
Com_CopyTxData and Com_TpTxConfirmation to transmit
respectively confirm transmissions of I-PDUs, as well as the PduId
passed to the Tx-I-PDU-callout configured with ComIPduCallout and/or
ComIPduTriggerTransmitCallout.

Multiplicity 0..1
Type EcucIntegerParamDef (Symbolic Name generated for this parameter)
Range 0 .. 65535
Default Value
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Scope / Dependency scope: ECU

Name ComIPduSignalGroupRef [ECUC_Com_00519]
Description References to all signal groups contained in this I-Pdu
Multiplicity 0..*
Type Reference to ComSignalGroup
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

Name ComIPduSignalProcessing [ECUC_Com_00119]
Description For the definition of the two modes Immediate and Deferred.
Multiplicity 1
Type EcucEnumerationParamDef
Range DEFERRED signal indication / confirmations are

deferred for example to a cyclic task
IMMEDIATE the signal indications / confirmations

are performed in Com_RxIndication/
Com_TxConfirmation

Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

855 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Name ComIPduSignalRef [ECUC_Com_00518]
Description References to all signals contained in this I-PDU.
Multiplicity 0..*
Type Reference to ComSignal
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

Name ComIPduTriggerTransmitCallout [ECUC_Com_00765]
Description If there is a trigger transmit callout defined for this I-PDU this parameter

contains the name of the callout function.
Multiplicity 0..1
Type EcucFunctionNameDef
Default Value
Regular Expression
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name ComIPduType [ECUC_Com_00761]
Description Defines if this I-PDU is a normal I-PDU that can be sent unfragmented

or if this is a large I-PDU that shall be sent via the Transport Protocol of
the underlying bus.

Multiplicity 1
Type EcucEnumerationParamDef
Range NORMAL sent or received via normal L-PDU

TP sent or received via TP
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

Name ComPduIdRef [ECUC_Com_00711]
Description Reference to the "global" Pdu structure to allow harmonization of

handle IDs in the COM-Stack.
Multiplicity 1
Type Reference to Pdu
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Scope / Dependency

Included Containers
Container Name Multiplicity Scope / Depedency

856 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

ComIPduCounter 0..1 This optional container contains the configuration
parameters of PDU Counter.

ComIPduReplication 0..1 This optional container contains the information needed
for each I-PDU replicated.

ComTxIPdu 0..1 This container contains additional transmission related
configuration parameters of the AUTOSAR COM
module’s I-PDUs.

ComSignal

SWS Item [ECUC_Com_00344]
Container Name ComSignal
Description Contains the configuration parameters of the AUTOSAR COM

module’s signals.

Attributes:
postBuildChangeable=true

Configuration Parameters

Name ComBitPosition [ECUC_Com_00259]
Description Starting position within the I-PDU. This parameter refers to the position

in the I-PDU and not in the shadow buffer. If the endianness conversion
is configured to Opaque the parameter ComBitPosition shall define the
bit0 of the first byte like in little endian byte order

Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 65535
Default Value
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

Name ComBitSize [ECUC_Com_00158]
Description Size in bits, for integer signal types. For ComSignalType UINT8_N and

UINT8_DYN the size shall be configured by ComSignalLength. For
ComSignalTypes FLOAT32 and FLOAT64 the size is already defined
by the signal type and therefore may be omitted.

Multiplicity 0..1
Type EcucIntegerParamDef
Range 0 .. 64
Default Value
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

857 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Name ComDataInvalidAction [ECUC_Com_00314]
Description This parameter defines the action performed upon reception of an

invalid signal. Relating to signal groups the action in case if one of the
included signals is an invalid signal. If Replace is used the
ComSignalInitValue will be used for the replacement.

Multiplicity 0..1
Type EcucEnumerationParamDef
Range NOTIFY

REPLACE Literal for DataInvalidAction
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Scope / Dependency scope: local

Name ComErrorNotification [ECUC_Com_00499]
Description Only valid on sender side: Name of Com_CbkTxErr callback function

to be called. If this parameter is omitted no error notification shall take
place.

Multiplicity 0..1
Type EcucFunctionNameDef
Default Value
Regular Expression
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Scope / Dependency scope: local

Name ComFirstTimeout [ECUC_Com_00183]
Description Defines the length of the first deadline monitoring timeout period in

seconds. This timeout is used immediately after start (or restart) of the
deadline monitoring service. The timeout period of the successive
periods is configured by ECUC_Com_00263.

Multiplicity 0..1
Type EcucFloatParamDef
Range 0 .. 3600
Default Value
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

858 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Name ComHandleId [ECUC_Com_00165]
Description The numerical value used as the ID.

For signals it is required by the API calls Com_UpdateShadowSignal,
Com_ReceiveShadowSignal and Com_InvalidateShadowSignal. For
signals groups it is required by the Com_SendSignalGroup and
Com_ReceiveSignalGroup calls.

Multiplicity 1
Type EcucIntegerParamDef (Symbolic Name generated for this parameter)
Range 0 .. 65535
Default Value
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Scope / Dependency scope: ECU

Name ComInitialValueOnly [ECUC_Com_00811]
Description This parameter defines that the respective signal’s initial value shall be

put into the respective PDU but there will not be any update of the
value through the RTE. Thus the Com implementation does not need
to expect any API calls for this signal (group).

Multiplicity 0..1
Type EcucBooleanParamDef
Default Value false
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Scope / Dependency scope: local

Name ComInvalidNotification [ECUC_Com_00315]
Description Only valid on receiver side: Name of Com_CbkInv callback function to

be called. Name of the function which notifies the RTE about the
reception of an invalidated signal/ signal group. Only applicable if
ComDataInvalidAction is configured to NOTIFY.

Multiplicity 0..1
Type EcucFunctionNameDef
Default Value
Regular Expression
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Scope / Dependency scope: local

859 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Name ComNotification [ECUC_Com_00498]
Description On sender side: Name of Com_CbkTxAck callback function to be

called. On receiver side: Name of Com_CbkRxAck callback function to
be called.

If this parameter is omitted no notification shall take place.
Multiplicity 0..1
Type EcucFunctionNameDef
Default Value
Regular Expression
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Scope / Dependency scope: local

Name ComRxDataTimeoutAction [ECUC_Com_00412]
Description This parameter defines the action performed upon expiration of the

reception deadline monitoring timer.
Multiplicity 0..1
Type EcucEnumerationParamDef
Range NONE no replacement shall take place

REPLACE signals shall be replaced by their
ComSignalInitValue

Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD
Post-build time –

Scope / Dependency scope: local

Name ComSignalDataInvalidValue [ECUC_Com_00391]
Description Defines the data invalid value of the signal.

In case the ComSignalType is UINT8, UINT16, UINT32, SINT8,
SINT16, SINT32 the string shall be interpreted as defined in the
chapter Integer Type in the AUTOSAR EcuC specification. In case the
ComSignalType is FLOAT32, FLOAT64 the string shall be interpreted
as defined in the chapter Float Type in the AUTOSAR EcuC
specification. In case the ComSignalType is BOOLEAN the string shall
be interpreted as defined in the chapter Boolean Type in the AUTOSAR
EcuC specification. In case the ComSignal is a UINT8_N, UINT8_DYN
the string shall be interpreted as a decimal representation of the
characters separated by blanks, e.g. "97 98 100" means a string "abd",
where the char "a" is in byte 0(lowest address), "b" is in byte 1, and "d"
is in byte 2 and (highest address). For the ComSignalType UINT8_DYN
the dynamic length shall be set to the number of configured characters.
An empty string "" shall be interpretated as 0-sized dynamic signal.

Multiplicity 0..1
Type EcucStringParamDef
Default Value
Regular Expression

860 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD
Post-build time –

Scope / Dependency scope: local
dependency: In case of UINT8_N the length of
ComSignalDataInvalidValue has to be the same as ComSignalLength.

Name ComSignalEndianness [ECUC_Com_00157]
Description Defines the endianness of the signal’s network representation.
Multiplicity 1
Type EcucEnumerationParamDef
Range BIG_ENDIAN

LITTLE_ENDIAN
OPAQUE

Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

Name ComSignalInitValue [ECUC_Com_00170]
Description Initial value for this signal. In case of UINT8_N the default value is a

string of length ComSignalLength with all bytes set to 0x00. In case of
UINT8_DYN the initial size shall be 0.

In case the ComSignalType is UINT8, UINT16, UINT32, SINT8,
SINT16, SINT32 the string shall be interpreted as defined in the
chapter Integer Type in the AUTOSAR EcuC specification. In case the
ComSignalType is FLOAT32, FLOAT64 the string shall be interpreted
as defined in the chapter Float Type in the AUTOSAR EcuC
specification. In case the ComSignalType is BOOLEAN the string shall
be interpreted as defined in the chapter Boolean Type in the AUTOSAR
EcuC specification. In case the ComSignal is a UINT8_N, UINT8_DYN
the string shall be interpreted as a decimal representation of the
characters separated by blanks, e.g. "97 98 100" means a string "abd",
where the char "a" is in byte 0(lowest address), "b" is in byte 1, and "d"
is in byte 2 and (highest address). For the ComSignalType UINT8_DYN
the dynamic length shall be set to the number of configured characters.
An empty string "" shall be interpretated as 0-sized dynamic signal.

Multiplicity 0..1
Type EcucStringParamDef
Default Value 0
Regular Expression
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local
dependency: In case of UINT8_N the length of ComSignalInitValue
has to be the same as ComSignalLength.

861 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Name ComSignalLength [ECUC_Com_00437]
Description Description: For ComSignalType UINT8_N this parameter specifies the

length n in bytes. For ComSignalType UINT8_DYN it specifies the
maximum length in bytes. For all other types this parameter shall be
ignored.

Range: 0..8 for normal CAN/ LIN I-PDUs, 0..254 for normal FlexRay
I-PDUs, and 0..4294967295 for I-PDUs with ComIPduType TP.

Multiplicity 0..1
Type EcucIntegerParamDef
Range 0 .. 4294967295
Default Value
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Scope / Dependency scope: local

Name ComSignalType [ECUC_Com_00127]
Description The AUTOSAR type of the signal. Whether or not the signal is signed

or unsigned can be found by examining the value of this attribute. This
type could also be used to reserved appropriate storage in AUTOSAR
COM.

Multiplicity 1
Type EcucEnumerationParamDef
Range BOOLEAN

FLOAT32
FLOAT64
SINT16
SINT32
SINT8
UINT16
UINT32
UINT8
UINT8_DYN
UINT8_N

Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD
Post-build time –

Scope / Dependency scope: local

862 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Name ComSystemTemplateSystemSignalRef [ECUC_Com_00002]
Description Reference to the ISignalToIPduMapping that contains a reference to

the ISignal (System Template) which this ComSignal (or
ComGroupSignal) represents.

Multiplicity 0..1
Type Foreign reference to I-SIGNAL-TO-I-PDU-MAPPING
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

Name ComTimeout [ECUC_Com_00263]
Description Defines the length of the deadline monitoring timeout period in

seconds. The period for the first timeout period can be configured
separately by ECUC_Com_00183.

Multiplicity 0..1
Type EcucFloatParamDef
Range 0 .. 3600
Default Value
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

Name ComTimeoutNotification [ECUC_Com_00552]
Description On sender side: Name of Com_CbkTxTOut callback function to be

called. On receiver side: Name of Com_CbkRxTOut callback function
to be called.

Multiplicity 0..1
Type EcucFunctionNameDef
Default Value
Regular Expression
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Scope / Dependency scope: local

Name ComTransferProperty [ECUC_Com_00232]
Description Defines if a write access to this signal can trigger the transmission of

the corresponding I-PDU. If the I-PDU is triggered, depends also on
the transmission mode of the corresponding I-PDU.

Multiplicity 0..1
Type EcucEnumerationParamDef
Range PENDING A write access to this signal never

triggers the transmission of the
corresponding I-PDU.

863 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

TRIGGERED Depending on the transmission mode,
a write access to this signal can trigger
the transmission of the corresponding
I-PDU.

TRIGGERED_ON_CHAN
GE

Depending on the transmission mode,
a write access to this signal can trigger
the transmission of the corresponding
I-PDU, but only in case the written
value is different to the locally stored
(last written or init) value.

TRIGGERED_ON_CHAN
GE_WITHOUT_REPETITI
ON

Depending on the transmission mode,
a write access to this signal can trigger
the transmission of the corresponding
I-PDU just once without a repetition,
but only in case the written value is
different to the locally stored (last
written or init) value.

TRIGGERED_WITHOUT_
REPETITION

Depending on the transmission mode,
a write access to this signal can trigger
the transmission of the corresponding
I-PDU just once without a repetition.

Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

Name ComUpdateBitPosition [ECUC_Com_00257]
Description Bit position of update-bit inside I-PDU. If this attribute is omitted then

there is no update-bit. This setting must be consistently on sender and
on receiver side. Range: 0..63 for CAN and LIN 0..2031 for FlexRay

Multiplicity 0..1
Type EcucIntegerParamDef
Range 0 .. 65535
Default Value
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

Included Containers
Container Name Multiplicity Scope / Depedency
ComFilter 0..1 This container contains the configuration parameters of

the AUTOSAR COM module’s Filters.

Note: On sender side the container is used to specify
the transmission mode conditions.

864 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

ComSignalGroup

SWS Item [ECUC_Com_00345]
Container Name ComSignalGroup
Description Contains the configuration parameters of the AUTOSAR COM

module’s signal groups.

Attributes:
postBuildChangeable=true

Configuration Parameters

Name ComDataInvalidAction [ECUC_Com_00314]
Description This parameter defines the action performed upon reception of an

invalid signal. Relating to signal groups the action in case if one of the
included signals is an invalid signal. If Replace is used the
ComSignalInitValue will be used for the replacement.

Multiplicity 0..1
Type EcucEnumerationParamDef
Range NOTIFY

REPLACE Literal for DataInvalidAction
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Scope / Dependency scope: local

Name ComErrorNotification [ECUC_Com_00499]
Description Only valid on sender side: Name of Com_CbkTxErr callback function

to be called. If this parameter is omitted no error notification shall take
place.

Multiplicity 0..1
Type EcucFunctionNameDef
Default Value
Regular Expression
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Scope / Dependency scope: local

Name ComFirstTimeout [ECUC_Com_00183]
Description Defines the length of the first deadline monitoring timeout period in

seconds. This timeout is used immediately after start (or restart) of the
deadline monitoring service. The timeout period of the successive
periods is configured by ECUC_Com_00263.

Multiplicity 0..1
Type EcucFloatParamDef
Range 0 .. 3600
Default Value

865 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

Name ComHandleId [ECUC_Com_00165]
Description The numerical value used as the ID.

For signals it is required by the API calls Com_UpdateShadowSignal,
Com_ReceiveShadowSignal and Com_InvalidateShadowSignal. For
signals groups it is required by the Com_SendSignalGroup and
Com_ReceiveSignalGroup calls.

Multiplicity 1
Type EcucIntegerParamDef (Symbolic Name generated for this parameter)
Range 0 .. 65535
Default Value
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Scope / Dependency scope: ECU

Name ComInitialValueOnly [ECUC_Com_00811]
Description This parameter defines that the respective signal’s initial value shall be

put into the respective PDU but there will not be any update of the
value through the RTE. Thus the Com implementation does not need
to expect any API calls for this signal (group).

Multiplicity 0..1
Type EcucBooleanParamDef
Default Value false
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Scope / Dependency scope: local

Name ComInvalidNotification [ECUC_Com_00315]
Description Only valid on receiver side: Name of Com_CbkInv callback function to

be called. Name of the function which notifies the RTE about the
reception of an invalidated signal/ signal group. Only applicable if
ComDataInvalidAction is configured to NOTIFY.

Multiplicity 0..1
Type EcucFunctionNameDef
Default Value
Regular Expression

866 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD
Post-build time –

Scope / Dependency scope: local

Name ComNotification [ECUC_Com_00498]
Description On sender side: Name of Com_CbkTxAck callback function to be

called. On receiver side: Name of Com_CbkRxAck callback function to
be called.

If this parameter is omitted no notification shall take place.
Multiplicity 0..1
Type EcucFunctionNameDef
Default Value
Regular Expression
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Scope / Dependency scope: local

Name ComRxDataTimeoutAction [ECUC_Com_00412]
Description This parameter defines the action performed upon expiration of the

reception deadline monitoring timer.
Multiplicity 0..1
Type EcucEnumerationParamDef
Range NONE no replacement shall take place

REPLACE signals shall be replaced by their
ComSignalInitValue

Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME,

VARIANT-POST-BUILD
Post-build time –

Scope / Dependency scope: local

Name ComSystemTemplateSignalGroupRef [ECUC_Com_00001]
Description Reference to the ISignalToIPduMapping that contains a reference to

the ISignalGroup (SystemTemplate) which this ComSignalGroup
represents.

Multiplicity 0..1
Type Foreign reference to I-SIGNAL-TO-I-PDU-MAPPING
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

867 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Name ComTimeout [ECUC_Com_00263]
Description Defines the length of the deadline monitoring timeout period in

seconds. The period for the first timeout period can be configured
separately by ECUC_Com_00183.

Multiplicity 0..1
Type EcucFloatParamDef
Range 0 .. 3600
Default Value
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

Name ComTimeoutNotification [ECUC_Com_00552]
Description On sender side: Name of Com_CbkTxTOut callback function to be

called. On receiver side: Name of Com_CbkRxTOut callback function
to be called.

Multiplicity 0..1
Type EcucFunctionNameDef
Default Value
Regular Expression
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time –
Scope / Dependency scope: local

Name ComTransferProperty [ECUC_Com_00232]
Description Defines if a write access to this signal can trigger the transmission of

the corresponding I-PDU. If the I-PDU is triggered, depends also on
the transmission mode of the corresponding I-PDU.

Multiplicity 0..1
Type EcucEnumerationParamDef
Range PENDING A write access to this signal never

triggers the transmission of the
corresponding I-PDU.

TRIGGERED Depending on the transmission mode,
a write access to this signal can trigger
the transmission of the corresponding
I-PDU.

TRIGGERED_ON_CHAN
GE

Depending on the transmission mode,
a write access to this signal can trigger
the transmission of the corresponding
I-PDU, but only in case the written
value is different to the locally stored
(last written or init) value.

868 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

TRIGGERED_ON_CHAN
GE_WITHOUT_REPETITI
ON

Depending on the transmission mode,
a write access to this signal can trigger
the transmission of the corresponding
I-PDU just once without a repetition,
but only in case the written value is
different to the locally stored (last
written or init) value.

TRIGGERED_WITHOUT_
REPETITION

Depending on the transmission mode,
a write access to this signal can trigger
the transmission of the corresponding
I-PDU just once without a repetition.

Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

Name ComUpdateBitPosition [ECUC_Com_00257]
Description Bit position of update-bit inside I-PDU. If this attribute is omitted then

there is no update-bit. This setting must be consistently on sender and
on receiver side. Range: 0..63 for CAN and LIN 0..2031 for FlexRay

Multiplicity 0..1
Type EcucIntegerParamDef
Range 0 .. 65535
Default Value
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

Included Containers
Container Name Multiplicity Scope / Depedency
ComGroupSignal 0..* This container contains the configuration parameters of

group signals. I.e. signals that are included within a
signal group.

EcucPartition

SWS Item [ECUC_EcuC_00005]
Container Name EcucPartition
Description Definition of one Partition on this ECU. One Partition will be

implemented using one Os-Application.

Attributes:
postBuildChangeable=false

Configuration Parameters

869 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Name EcucPartitionBswModuleDistinguishedPartition [ECUC_EcuC_00068]
Description This maps the abstract partition of the Bsw Module to a concrete

Partition existing in the ECU.
Multiplicity 0..*
Type Foreign reference to BSW-DISTINGUISHED-PARTITION
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name EcucPartitionBswModuleExecution [ECUC_EcuC_00037]
Description Denotes that this partition will execute BSW Modules. BSW Modules

can only be executed in such partitions.
Multiplicity 1
Type EcucBooleanParamDef
Default Value
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name EcucPartitionSoftwareComponentInstanceRef [ECUC_EcuC_00036]
Description References the SW Component instances from the Ecu Extract that

shall be executed in this partition.
Multiplicity 0..*
Type Instance reference to SW-COMPONENT-PROTOTYPE context: ROO

T-SW-COMPOSITION-PROTOTYPE
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name PartitionCanBeRestarted [ECUC_EcuC_00006]
Description Specifies the requirement whether the Partition can be restarted. If set

to true all software executing in this partition shall be capable of
handling a restart.

Multiplicity 1
Type EcucBooleanParamDef
Default Value
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

No Included Containers

870 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

NvMBlockDescriptor

SWS Item [ECUC_NvM_00061]
Container Name NvMBlockDescriptor
Description Container for a management structure to configure the composition of

a given NVRAM Block Management Type. Its multiplicity describes the
number of configured NVRAM blocks, one block is required to be
configured. The NVRAM block descriptors are condensed in the
NVRAM block descriptor table.

Configuration Parameters

Name NvMBlockCrcType {NVM_BLOCK_CRC_TYPE} [ECUC_NvM_00476]
Description Defines CRC data width for the NVRAM block. Default: NVM_CRC16,

i.e. CRC16 will be used if NVM_BLOCK_USE_CRC==true
Multiplicity 0..1
Type EcucEnumerationParamDef
Range NVM_CRC16 (Default) CRC16 will be used if

NVM_BLOCK_USE_CRC==true.
NVM_CRC32 CRC32 is selected for this NVRAM

block if
NVM_BLOCK_USE_CRC==true.

NVM_CRC8 CRC8 is selected for this NVRAM block
if NVM_BLOCK_USE_CRC==true.

Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local
dependency: NVM_BLOCK_USE_CRC,
NVM_CALC_RAM_BLOCK_CRC

Name NvMBlockHeaderInclude [ECUC_NvM_00554]
Description Defines the header file where the owner of the NVRAM block has the

declarations of the permanent RAM data block, ROM data block (if
configured) and the callback function prototype for each configured
callback. If no permanent RAM block, ROM block or callback functions
are configured then this configuration parameter shall be ignored.

Multiplicity 0..1
Type EcucStringParamDef
Default Value
Regular Expression
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local

871 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Name NvMBlockJobPriority {NVM_BLOCK_JOB_PRIORITY}
[ECUC_NvM_00477]

Description Defines the job priority for a NVRAM block (0 = Immediate priority).
Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 255
Default Value
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local

Name NvMBlockManagementType {NVM_BLOCK_MANAGEMENT_TYPE}
[ECUC_NvM_00062]

Description Defines the block management type for the NVRAM block.[NVM137]
Multiplicity 1
Type EcucEnumerationParamDef
Range NVM_BLOCK_DATASET NVRAM block is configured to be of

dataset type.
NVM_BLOCK_NATIVE NVRAM block is configured to be of

native type.
NVM_BLOCK_REDUNDA
NT

NVRAM block is configured to be of
redundant type.

Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local

Name NvMBlockUseCrc {NVM_BLOCK_USE_CRC} [ECUC_NvM_00036]
Description Defines CRC usage for the NVRAM block, i.e. memory space for CRC

is reserved in RAM and NV memory.

true: CRC will be used for this NVRAM block. false: CRC will not be
used for this NVRAM block.

Multiplicity 1
Type EcucBooleanParamDef
Default Value
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local

872 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Name NvMBlockUseSetRamBlockStatus [ECUC_NvM_00552]
Description Defines if NvMSetRamBlockStatusApi shall be used for this block or

not.

Note: If NvMSetRamBlockStatusApi is disabled this configuration
parameter shall be ignored.

true: calling of NvMSetRamBlockStatus for this RAM block shall set the
status of the RAM block.

false: calling of NvMSetRamBlockStatus for this RAM block shall be
ignored.

Multiplicity 1
Type EcucBooleanParamDef
Default Value
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local

Name NvMBlockUseSyncMechanism {NVM_BLOCK_USE_SYNC_MECHAN
ISM} [ECUC_NvM_00519]

Description Defines whether an explicit synchronization mechanism with a RAM
mirror and callback routines for transferring data to and from NvM
module’s RAM mirror is used for NV block. true if synchronization
mechanism is used, false otherwise.

Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local

Name NvMBlockWriteProt {NVM_BLOCK_WRITE_PROT}
[ECUC_NvM_00033]

Description Defines an initial write protection of the NV block

true: Initial block write protection is enabled. false: Initial block write
protection is disabled.

Multiplicity 1
Type EcucBooleanParamDef
Default Value
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local

873 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Name NvMBswMBlockStatusInformation {NVM_BSWM_BLOCK_STATUS_I
NFORMATION} [ECUC_NvM_00551]

Description This parameter specifies whether BswM is informed about the current
status of the specified block.

True: Call BswM_NvM_CurrentBlockMode on changes False: Dont
inform BswM at all

Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local

Name NvMCalcRamBlockCrc {NVM_CALC_RAM_BLOCK_CRC}
[ECUC_NvM_00119]

Description Defines CRC (re)calculation for the permanent RAM block or NVRAM
blocks which are configured to use explicit synchronization mechanism.

true: CRC will be (re)calculated for this permanent RAM block. false:
CRC will not be (re)calculated for this permanent RAM block.

Multiplicity 0..1
Type EcucBooleanParamDef
Default Value
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local
dependency: NVM_BLOCK_USE_CRC

Name NvMInitBlockCallback {NVM_INIT_BLOCK_CALLBACK}
[ECUC_NvM_00116]

Description Entry address of a block specific callback routine which shall be called
if no ROM data is available for initialization of the NVRAM block.

If not configured, no specific callback routine shall be called for
initialization of the NVRAM block with default data.

Multiplicity 0..1
Type EcucFunctionNameDef
Default Value
Regular Expression
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local

874 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Name NvMMaxNumOfReadRetries {NVM_MAX_NUM_OF_READ_RETRIE
S} [ECUC_NvM_00533]

Description Defines the maximum number of read retries.
Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 7
Default Value 0
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local

Name NvMMaxNumOfWriteRetries {NVM_MAX_NUM_OF_WRITE_RETRIE
S} [ECUC_NvM_00499]

Description Defines the maximum number of write retries for a NVRAM block with
[ECUC_NvM_00061]. Regardless of configuration a consistency check
(and maybe write retries) are always forced for each block which is
processed by the request NvM_WriteAll and NvM_WriteBlock.

Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 7
Default Value
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local

Name NvMNvBlockBaseNumber {NVM_NV_BLOCK_BASE_NUMBER}
[ECUC_NvM_00478]

Description Configuration parameter to perform the link between the
NVM_NVRAM_BLOCK_IDENTIFIER used by the SW-Cs and the
FEE_BLOCK_NUMBER expected by the memory abstraction modules.
The parameter value equals the FEE_BLOCK_NUMBER or
EA_BLOCK_NUMBER shifted to the right by NvMDatasetSelectionBits
bits. (ref. to chapter 7.1.2.1).

Calculation Formula: value = TargetBlockRefer-
ence.[Ea/Fee]BlockConfiguration.[Ea/Fee]BlockNumber »
NvMDatasetSelectionBits

Multiplicity 1
Type EcucIntegerParamDef
Range 1 .. 65534
Default Value
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local
dependency: FEE_BLOCK_NUMBER, EA_BLOCK_NUMBER

875 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Name NvMNvBlockLength {NVM_NV_BLOCK_LENGTH}
[ECUC_NvM_00479]

Description Defines the NV block data length in bytes.

Note: The implementer can add the attribute ’withAuto’ to the
parameter definition which indicates that the length can be calculated
by the generator automatically (e.g. by using the sizeof operator).
When ’withAuto’ is set to ’true’ for this parameter definition the
’isAutoValue’ can be set to ’true’. If ’isAutoValue’ is set to ’true’ the
actual value will not be considered during ECU Configuration but will
be (re-)calculated by the code generator and stored in the value
attribute afterwards.

Multiplicity 1
Type EcucIntegerParamDef
Range 1 .. 65535
Default Value
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local

Name NvMNvBlockNum {NVM_NV_BLOCK_NUM} [ECUC_NvM_00480]
Description Defines the number of multiple NV blocks in a contiguous area

according to the given block management type.

1-255 For NVRAM blocks to be configured of block management type
NVM_BLOCK_DATASET. The actual range is limited according to
NVM444.

1 For NVRAM blocks to be configured of block management type
NVM_BLOCK_NATIVE

2 For NVRAM blocks to be configured of block management type
NVM_BLOCK_REDUNDANT

Multiplicity 1
Type EcucIntegerParamDef
Range 1 .. 255
Default Value
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local
dependency: NVM_BLOCK_MANAGEMENT_TYPE

876 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Name NvMNvramBlockIdentifier {NVM_NVRAM_BLOCK_IDENTIFIER}
[ECUC_NvM_00481]

Description Identification of a NVRAM block via a unique block identifier.

Implementation Type: NvM_BlockIdType.

min = 1 max = 2ˆ (16- NVM_DATASET_SELECTION_BITS)-1

Reserved NVRAM block IDs: 0 -> to derive multi block request results
via NvM_GetErrorStatus 1 -> redundant NVRAM block which holds the
configuration ID (generation tool should check that this block is
correctly configured from type,CRC and size point of view)

Multiplicity 1
Type EcucIntegerParamDef (Symbolic Name generated for this parameter)
Range 1 .. 65535
Default Value
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local
dependency: NVM_DATASET_SELECTION_BITS

Name NvMNvramDeviceId {NVM_NVRAM_DEVICE_ID}
[ECUC_NvM_00035]

Description Defines the NVRAM device ID where the NVRAM block is located.

Calculation Formula: value = TargetBlockRefer-
ence.[Ea/Fee]BlockConfiguration.[Ea/Fee]DeviceIndex

Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 254
Default Value
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local
dependency: EA_DEVICE_INDEX, FEE_DEVICE_INDEX

Name NvMRamBlockDataAddress {NVM_RAM_BLOCK_DATA_ADDRESS}
[ECUC_NvM_00482]

Description Defines the start address of the RAM block data.

If this is not configured, no permanent RAM data block is available for
the selected block management type.

Multiplicity 0..1
Type EcucStringParamDef
Default Value
Regular Expression

877 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Configuration Class Pre-compile time X VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local

Name NvMReadRamBlockFromNvCallback {NVM_READ_RAM_BLOCK_FR
OM_NVM} [ECUC_NvM_00521]

Description Entry address of a block specific callback routine which shall be called
in order to let the application copy data from the NvM module’s mirror
to RAM block. Implementation type: Std_ReturnType

E_OK: copy was successful E_NOT_OK: copy was not successful,
callback routine to be called again

Multiplicity 0..1
Type EcucFunctionNameDef
Default Value
Regular Expression
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local

Name NvMResistantToChangedSw {NVM_RESISTANT_TO_CHANGED_S
W} [ECUC_NvM_00483]

Description Defines whether a NVRAM block shall be treated resistant to
configuration changes or not. If there is no default data available at
configuration time then the application shall be responsible for
providing the default initialization data. In this case the application has
to use NvM_GetErrorStatus()to be able to distinguish between first
initialization and corrupted data.

true: NVRAM block is resistant to changed software. false: NVRAM
block is not resistant to changed software.

Multiplicity 1
Type EcucBooleanParamDef
Default Value
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local

878 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Name NvMRomBlockDataAddress {NVM_ROM_BLOCK_DATA_ADDRESS}
[ECUC_NvM_00484]

Description Defines the start address of the ROM block data.

If not configured, no ROM block is available for the selected block
management type.

Multiplicity 0..1
Type EcucStringParamDef
Default Value
Regular Expression
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local

Name NvMRomBlockNum {NVM_ROM_BLOCK_NUM} [ECUC_NvM_00485]
Description Defines the number of multiple ROM blocks in a contiguous area

according to the given block management type.

0-255 For NVRAM blocks to be configured of block management type
NVM_BLOCK_DATASET. The actual range is limited according to
NVM444.

0-1 For NVRAM blocks to be configured of block management type
NVM_BLOCK_NATIVE

0-1 For NVRAM blocks to be configured of block management type
NVM_BLOCK_REDUNDANT

Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 255
Default Value
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local
dependency: NVM_BLOCK_MANAGEMENT_TYPE,
NVM_NV_BLOCK_NUM

879 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Name NvMSelectBlockForReadAll {NVM_SELECT_BLOCK_FOR_READAL
L} [ECUC_NvM_00117]

Description Defines whether a NVRAM block shall be processed during
NvM_ReadAll or not. This configuration parameter has only influence
on those NVRAM blocks which are configured to have a permanent
RAM block or which are configured to use explicit synchronization
mechanism.

true: NVRAM block shall be processed by NvM_ReadAll false: NVRAM
block shall not be processed by NvM_ReadAll

Multiplicity 0..1
Type EcucBooleanParamDef
Default Value
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local
dependency: NVM_RAM_BLOCK_DATA_ADDRESS

Name NvMSelectBlockForWriteAll {NVM_SELECT_BLOCK_FOR_WRITEAL
L} [ECUC_NvM_00549]

Description Defines whether a NVRAM block shall be processed during
NvM_WriteAll or not. This configuration parameter has only influence
on those NVRAM blocks which are configured to have a permanent
RAM block or which are configured to use explicit synchronization
mechanism.

true: NVRAM block shall be processed by NvM_WriteAll false: NVRAM
block shall not be processed by NvM_WriteAll

Multiplicity 0..1
Type EcucBooleanParamDef
Default Value
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local
dependency: NVM_RAM_BLOCK_DATA_ADDRESS

Name NvMSingleBlockCallback {NVM_SINGLE_BLOCK_CALLBACK}
[ECUC_NvM_00506]

Description Entry address of the block specific callback routine which shall be
invoked on termination of each asynchronous single block request
[NVM113].

Multiplicity 0..1
Type EcucFunctionNameDef
Default Value
Regular Expression
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local

880 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Name NvMStaticBlockIDCheck {NVM_STATIC_BLOCK_ID_CHECK}
[ECUC_NvM_00532]

Description Defines if the Static Block ID check is enabled.

false: Static Block ID check is disabled. true: Static Block ID check is
enabled.

Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local

Name NvMWriteBlockOnce {NVM_WRITE_BLOCK_ONCE}
[ECUC_NvM_00072]

Description Defines write protection after first write. The NVRAM manager sets the
write protection bit after the NV block was written the first time. This
means that some of the NV blocks in the NVRAM should never be
erased nor be replaced with the default ROM data after first
initialization. [NVM276].

true: Defines write protection after first write is enabled. false: Defines
write protection after first write is disabled.

Multiplicity 1
Type EcucBooleanParamDef
Default Value
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local

Name NvMWriteRamBlockToNvCallback {NVM_WRITE_RAM_BLOCK_TO_
NVM} [ECUC_NvM_00520]

Description Entry address of a block specific callback routine which shall be called
in order to let the application copy data from RAM block to NvM
module’s mirror. Implementation type: Std_ReturnType

E_OK: copy was successful E_NOT_OK: copy was not successful,
callback routine to be called again

Multiplicity 0..1
Type EcucFunctionNameDef
Default Value
Regular Expression
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local

881 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Name NvMWriteVerification {NVM_WRITE_VERIFICATION}
[ECUC_NvM_00534]

Description Defines if Write Verification is enabled.

false: Write verification is disabled. true: Write Verification is enabled.
Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local

Name NvMWriteVerificationDataSize {NVM_WRITE_VERIFICATION_DATA_
SIZE} [ECUC_NvM_00538]

Description Defines the number of bytes to compare in each step when comparing
the content of a RAM Block and a block read back.

Multiplicity 1
Type EcucIntegerParamDef
Range 1 .. 65535
Default Value
Configuration Class Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time –

Scope / Dependency scope: local

Included Containers
Container Name Multiplicity Scope / Depedency
NvMTargetBlock
Reference
[NvMEaRef, NvMFeeRef]

1 This parameter is just a container for the parameters for
EA and FEE

OsAlarm

SWS Item [ECUC_Os_00003]
Container Name OsAlarm {ALARM}
Description An OsAlarm may be used to asynchronously inform or activate a

specific task. It is possible to start alarms automatically at system
start-up depending on the application mode.

Configuration Parameters

882 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Name OsAlarmAccessingApplication {ACCESSING_APPLICATION}
[ECUC_Os_00004]

Description Reference to applications which have an access to this object.
Multiplicity 0..*
Type Reference to OsApplication
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name OsAlarmCounterRef {COUNTER} [ECUC_Os_00005]
Description Reference to the assigned counter for that alarm
Multiplicity 1
Type Reference to OsCounter
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Included Containers
Container Name Multiplicity Scope / Depedency
OsAlarmAction
[OsAlarmActivateTask,
OsAlarmCallback, Os
AlarmIncrementCounter,
OsAlarmSetEvent]

1 This container defines which type of notification is used
when the alarm expires.

OsAlarmAutostart 0..1 If present this container defines if an alarm is started
automatically at system start-up depending on the
application mode.

OsApplication

SWS Item [ECUC_Os_00114]
Container Name OsApplication {APPLICATION}
Description An AUTOSAR OS must be capable of supporting a collection of OS

objects (tasks, interrupts, alarms, hooks etc.) that form a cohesive
functional unit. This collection of objects is termed an OS-Application.

All objects which belong to the same OS-Application have access to
each other. Access means to allow to use these objects within API
services.

Access by other applications can be granted separately.
Configuration Parameters

883 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Name OsAppAlarmRef [ECUC_Os_00231]
Description Specifies the OsAlarms that belong to the OsApplication.
Multiplicity 0..*
Type Reference to OsAlarm
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: ECU
dependency: Required for scalability class 3 and 4

Name OsAppCounterRef [ECUC_Os_00234]
Description References the OsCounters that belong to the OsApplication.
Multiplicity 0..*
Type Reference to OsCounter
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: ECU
dependency: Required for scalability class 3 and 4.

Name OsAppEcucPartitionRef [ECUC_Os_00392]
Description Denotes which "EcucPartition" is implemented by this "OSApplication".
Multiplicity 0..1
Type Reference to EcucPartition
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name OsAppIsrRef [ECUC_Os_00221]
Description references which OsIsrs belong to the OsApplication
Multiplicity 0..*
Type Reference to OsIsr
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: ECU
dependency: Required for scalability class 3 and 4.

Name OsAppScheduleTableRef [ECUC_Os_00230]
Description References the OsScheduleTables that belong to the OsApplication.
Multiplicity 0..*
Type Reference to OsScheduleTable
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: ECU
dependency: Required for scalability class 3 and 4.

884 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Name OsAppTaskRef [ECUC_Os_00116]
Description references which OsTasks belong to the OsApplication
Multiplicity 0..*
Type Reference to OsTask
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: ECU
dependency: Required for scalability class 3 and 4

Name OsApplicationCoreAssignment {CORE} [ECUC_Os_01020] (Obsolete.
Use OsApplicationCoreRef instead.)

Description ID of the core onto which the OsApplication is bound.

Please note that this attribute is deprecated and replaced by the
OsApplicationCoreRef.

Tags:
atp.Status=obsolete
atp.StatusComment=This parameter is replaced by the OsApplication
CoreRef.
atp.StatusRevisionBegin=4.1.1

Multiplicity 0..1
Type EcucIntegerParamDef
Range 0 .. 65534
Default Value
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name OsApplicationCoreRef [ECUC_Os_00393]
Description Reference to the Core Definition in the Ecuc Module where the CoreId

is defined. This reference is used to describe to which Core the
OsApplication is bound.

Multiplicity 0..1
Type Symbolic name reference to EcucCoreDefinition
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

885 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Name OsRestartTask {RESTARTTASK} [ECUC_Os_00120]
Description Optionally one task of an OS-Application may be defined as Restart

Task.

Multiplicity = 1: Restart Task is activated by the Operating System if the
protection hook requests it.

Multiplicity = 0: No task is automatically started after a protection error
happened.

Multiplicity 0..1
Type Reference to OsTask
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: ECU
dependency: Required for scalability class 3 and 4.

Name OsTrusted {TRUSTED} [ECUC_Os_00115]
Description Parameter to specify if an OS-Application is trusted or not.

true: OS-Application is trusted false: OS-Application is not trusted
(default)

Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: ECU
dependency: Required for scalability class 3 and 4.

Included Containers
Container Name Multiplicity Scope / Depedency
OsApplicationHooks 1 Container to structure the OS-Application-specific hooks
OsApplicationTrusted
Function

0..* Container to structure the configuration parameters of
trusted functions

OsCounter

SWS Item [ECUC_Os_00026]
Container Name OsCounter {COUNTER}
Description Configuration information for the counters that belong to the

OsApplication.
Configuration Parameters

886 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Name OsCounterAccessingApplication {ACCESSING_APPLICATION}
[ECUC_Os_00031]

Description Reference to applications which have an access to this object.
Multiplicity 0..*
Type Reference to OsApplication
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name OsCounterMaxAllowedValue {MAXALLOWEDVALUE}
[ECUC_Os_00027]

Description Maximum possible allowed value of the system counter in ticks.
Multiplicity 1
Type EcucIntegerParamDef
Range 1 ..

18446744073709551615
Default Value
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name OsCounterMinCycle {MINCYCLE} [ECUC_Os_00028]
Description The MINCYCLE attribute specifies the minimum allowed number of

counter ticks for a cyclic alarm linked to the counter.
Multiplicity 1
Type EcucIntegerParamDef
Range 1 ..

18446744073709551615
Default Value
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name OsCounterTicksPerBase {TICKSPERBASE} [ECUC_Os_00029]
Description The TICKSPERBASE attribute specifies the number of ticks required to

reach a counterspecific unit. The interpretation is
implementation-specific.

Multiplicity 1
Type EcucIntegerParamDef
Range 1 .. 4294967295
Default Value
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

887 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Name OsCounterType {TYPE} [ECUC_Os_00255]
Description This parameter contains the natural type or unit of the counter.
Multiplicity 1
Type EcucEnumerationParamDef
Range HARDWARE This counter is driven by some

hardware e.g. a hardware timer unit.
SOFTWARE The counter is driven by some software

which calls the IncrementCounter
service.

Configuration Class Pre-compile time X All Variants
Link time –
Post-build time –

Scope / Dependency scope: ECU

Name OsSecondsPerTick [ECUC_Os_00030]
Description Time of one counter tick in seconds.
Multiplicity 0..1
Type EcucFloatParamDef
Range 0 .. INF
Default Value
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: ECU

Included Containers
Container Name Multiplicity Scope / Depedency
OsDriver 0..1 This Container contains the information who will drive

the counter. This configuration is only valid if the counter
has OsCounterType set to HARDWARE.

If the container does not exist (multiplicity=0) the timer is
managed by the OS internally (OSINTERNAL).

If the container exists the OS can use the GPT interface
to manage the timer. The user have to supply the GPT
channel.

If the counter is driven by some other (external to the
OS) source (like a TPU for example) this must be
described as a vendor specific extension.

OsTimeConstant 0..* Allows the user to define constants which can be e.g.
used to compare time values with timer tick values.
A time value will be converted to a timer tick

value during generation and can later on accessed

via the OsConstName. The conversation is done by

rounding time values to the nearest fitting tick

value.

888 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

OsEvent

SWS Item [ECUC_Os_00033]
Container Name OsEvent {EVENT}
Description Representation of OS events in the configuration context. Adopted

from the OSEK OIL specification.
Configuration Parameters

Name OsEventMask {MASK} [ECUC_Os_00034]
Description If event mask would be set to AUTO in OIL, this parameter should be

omitted here.
Multiplicity 0..1
Type EcucIntegerParamDef
Range 0 ..

18446744073709551615
Default Value
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

No Included Containers

OsScheduleTable

SWS Item [ECUC_Os_00141]
Container Name OsScheduleTable {SCHEDULETABLE}
Description An OsScheduleTable addresses the synchronization issue by providing

an encapsulation of a statically defined set of alarms that cannot be
modified at runtime.

Configuration Parameters

Name OsSchTblAccessingApplication {ACCESSING_APPLICATION}
[ECUC_Os_00054]

Description Reference to applications which have an access to this object.
Multiplicity 0..*
Type Reference to OsApplication
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

889 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Name OsScheduleTableCounterRef {COUNTER} [ECUC_Os_00145]
Description This parameter contains a reference to the counter which drives the

schedule table.
Multiplicity 1
Type Reference to OsCounter
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: ECU

Name OsScheduleTableDuration [ECUC_Os_00053]
Description This parameter defines the modulus of the schedule table (in ticks).
Multiplicity 1
Type EcucIntegerParamDef
Range 0 ..

18446744073709551615
Default Value
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name OsScheduleTableRepeating {REPEATING} [ECUC_Os_00144]
Description true: first expiry point on the schedule table shall be processed at final

expiry point delay ticks after the final expiry point is processed.

false: the schedule table processing stops when the final expiry point is
processed.

Multiplicity 1
Type EcucBooleanParamDef
Default Value
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: ECU

Included Containers
Container Name Multiplicity Scope / Depedency
OsScheduleTable
Autostart

0..1 This container specifies if and how the schedule table is
started on startup of the Operating System. The options
to start a schedule table correspond to the API calls to
start schedule tables during runtime.

OsScheduleTableExpiry
Point

1..* The point on a Schedule Table at which the OS activates
tasks and/or sets events

OsScheduleTableSync 0..1 This container specifies the synchronization parameters
of the schedule table.

890 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

OsScheduleTableExpiryPoint

SWS Item [ECUC_Os_00143]
Container Name OsScheduleTableExpiryPoint {ACTION}
Description The point on a Schedule Table at which the OS activates tasks and/or

sets events
Configuration Parameters

Name OsScheduleTblExpPointOffset [ECUC_Os_00062]
Description The offset from zero (in ticks) at which the expiry point is to be

processed.
Multiplicity 1
Type EcucIntegerParamDef
Range 0 ..

18446744073709551615
Default Value
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Included Containers
Container Name Multiplicity Scope / Depedency
OsScheduleTableEvent
Setting

0..* Event that is triggered by that schedule table.

OsScheduleTableTask
Activation

0..* Task that is triggered by that schedule table.

OsScheduleTbl
AdjustableExpPoint

0..1 Adjustable expiry point

OsTask

SWS Item [ECUC_Os_00073]
Container Name OsTask {TASK}
Description This container represents an OSEK task.
Configuration Parameters

Name OsTaskAccessingApplication {ACCESSING_APPLICATION}
[ECUC_Os_00077]

Description Reference to applications which have an access to this object.
Multiplicity 0..*
Type Reference to OsApplication
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

891 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Name OsTaskActivation {ACTIVATION} [ECUC_Os_00074]
Description This attribute defines the maximum number of queued activation

requests for the task. A value equal to "1" means that at any time only
a single activation is permitted for this task. Note that the value must
be a natural number starting at 1.

Multiplicity 1
Type EcucIntegerParamDef
Range 1 .. 4294967295
Default Value
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name OsTaskEventRef {EVENT} [ECUC_Os_00078]
Description This reference defines the list of events the extended task may react

on.
Multiplicity 0..*
Type Reference to OsEvent
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name OsTaskPriority {PRIORITY} [ECUC_Os_00075]
Description The priority of a task is defined by the value of this attribute. This value

has to be understood as a relative value, i.e. the values show only the
relative ordering of the tasks.

OSEK OS defines the lowest priority as zero (0); larger values
correspond to higher priorities.

Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 4294967295
Default Value
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Name OsTaskResourceRef {RESOURCE} [ECUC_Os_00079]
Description This reference defines a list of resources accessed by this task.
Multiplicity 0..*
Type Reference to OsResource
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

892 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

Name OsTaskSchedule {SCHEDULE} [ECUC_Os_00076]
Description The OsTaskSchedule attribute defines the preemptability of the task.

If this attribute is set to NON, no internal resources may be assigned to
this task.

Multiplicity 1
Type EcucEnumerationParamDef
Range FULL Task is preemptable.

NON Task is not preemptable.
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: local

Included Containers
Container Name Multiplicity Scope / Depedency
OsTaskAutostart 0..1 This container determines whether the task is activated

during the system start-up procedure or not for some
specific application modes.

If the task shall be activated during the system start-up,
this container is present and holds the references to the
application modes in which the task is auto-started.

OsTaskTimingProtection 0..1 This container contains all parameters regarding timing
protection of the task.

Module Name EcuC
Module Description Virtual module to collect ECU Configuration specific / global

configuration information.
Included Containers
Container Name Multiplicity Scope / Dependency
EcucConfigSet 0..1 This container contains the configuration parameters

and sub containers of the global PduCollection. This
container is a MultipleConfigurationContainer, i.e. this
container and its sub-containers exist once per
configuration set.

EcucHardware 0..1 Hardware definition of this Ecu.
EcucPartitionCollection 0..1 Collection of Partitions defined for this ECU.
EcucUnitGroupAssignment 0..1 Collection of UnitGroup references to support the

generation of ASAM MCD file.
EcucVariationResolver 0..1 Collection of PredefinedVariant elements containing

definition of values for SwSystemconst which shall be
applied when resolving the variability during ECU
Configuration.

893 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

F Examples

This chapter contains more detailed information for examples which were shown inside
the preceding chapters of the specification.

F.1 ModeDeclarationGroupMapping

The example for Mapping of ModeDeclarations in chapter 4.4.4 is based on the fol-
lowing ARXML:
<?xml version="1.0" encoding="UTF-8"?>
<AUTOSAR xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http:

//autosar.org/schema/r4.0" xsi:schemaLocation="http://autosar.org/schema
/r4.0 AUTOSAR_4-0-4.xsd">

<AR-PACKAGES>
<AR-PACKAGE>

<SHORT-NAME>Demo</SHORT-NAME>
<DESC>

<L-2 L="EN">Example about Connection of Mode Managers and Mode
Users with different number of ModeDeclarations</L-2>

</DESC>
<CATEGORY>EXAMPLE</CATEGORY>
<AR-PACKAGES>

<AR-PACKAGE>
<SHORT-NAME>SwComponentTypes</SHORT-NAME>
<ELEMENTS>

<APPLICATION-SW-COMPONENT-TYPE>
<SHORT-NAME>ModeManager</SHORT-NAME>
<PORTS>

<P-PORT-PROTOTYPE>
<SHORT-NAME>EcuState</SHORT-NAME>
<PROVIDED-COM-SPECS>

<MODE-SWITCH-SENDER-COM-SPEC>
<ENHANCED-MODE-API>true</ENHANCED-MODE-API>
<MODE-GROUP-REF DEST="MODE-DECLARATION-GROUP-

PROTOTYPE">/Demo/PortInterfaces/EcuStatesExtended/
EcuStatesExtended</MODE-GROUP-REF>

<QUEUE-LENGTH>1</QUEUE-LENGTH>
</MODE-SWITCH-SENDER-COM-SPEC>

</PROVIDED-COM-SPECS>
<PROVIDED-INTERFACE-TREF DEST="MODE-SWITCH-INTERFACE">/

Demo/PortInterfaces/EcuStatesExtended</PROVIDED-
INTERFACE-TREF>

</P-PORT-PROTOTYPE>
</PORTS>

</APPLICATION-SW-COMPONENT-TYPE>
<APPLICATION-SW-COMPONENT-TYPE>

<SHORT-NAME>ModeUser</SHORT-NAME>
<PORTS>

<R-PORT-PROTOTYPE>
<SHORT-NAME>EcuState</SHORT-NAME>
<REQUIRED-COM-SPECS>

<MODE-SWITCH-RECEIVER-COM-SPEC>

894 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

<ENHANCED-MODE-API>1</ENHANCED-MODE-API>
<SUPPORTS-ASYNCHRONOUS-MODE-SWITCH>false</SUPPORTS-

ASYNCHRONOUS-MODE-SWITCH>
</MODE-SWITCH-RECEIVER-COM-SPEC>

</REQUIRED-COM-SPECS>
<REQUIRED-INTERFACE-TREF DEST="MODE-SWITCH-INTERFACE">/

Demo/PortInterfaces/EcuStatesBasic</REQUIRED-INTERFACE
-TREF>

</R-PORT-PROTOTYPE>
</PORTS>

</APPLICATION-SW-COMPONENT-TYPE>
<COMPOSITION-SW-COMPONENT-TYPE>

<SHORT-NAME>DemoEcu</SHORT-NAME>
<COMPONENTS>

<SW-COMPONENT-PROTOTYPE>
<SHORT-NAME>ModeManager</SHORT-NAME>
<TYPE-TREF DEST="APPLICATION-SW-COMPONENT-TYPE">/Demo/

SwComponentTypes/ModeManager</TYPE-TREF>
</SW-COMPONENT-PROTOTYPE>
<SW-COMPONENT-PROTOTYPE>

<SHORT-NAME>ModeUser</SHORT-NAME>
<TYPE-TREF DEST="APPLICATION-SW-COMPONENT-TYPE">/Demo/

SwComponentTypes/ModeUser</TYPE-TREF>
</SW-COMPONENT-PROTOTYPE>

</COMPONENTS>
<CONNECTORS>

<ASSEMBLY-SW-CONNECTOR>
<SHORT-NAME>ModeManager_EcuState_ModeUser_EcuState</SHORT

-NAME>
<MAPPING-REF DEST="MODE-INTERFACE-MAPPING">/Demo/

PortInterfaceMappingSets/ModeSwitchInterfaceMapping/
EcuStatesExtended_2_EcuStatesBasic</MAPPING-REF>

<PROVIDER-IREF>
<CONTEXT-COMPONENT-REF DEST="SW-COMPONENT-PROTOTYPE">/

Demo/SwComponentTypes/DemoEcu/ModeManager</CONTEXT-
COMPONENT-REF>

<TARGET-P-PORT-REF DEST="P-PORT-PROTOTYPE">/Demo/
SwComponentTypes/ModeManager/EcuState</TARGET-P-PORT
-REF>

</PROVIDER-IREF>
<REQUESTER-IREF>

<CONTEXT-COMPONENT-REF DEST="SW-COMPONENT-PROTOTYPE">/
Demo/SwComponentTypes/DemoEcu/ModeUser</CONTEXT-
COMPONENT-REF>

<TARGET-R-PORT-REF DEST="R-PORT-PROTOTYPE">/Demo/
SwComponentTypes/ModeUser/EcuState</TARGET-R-PORT-
REF>

</REQUESTER-IREF>
</ASSEMBLY-SW-CONNECTOR>

</CONNECTORS>
</COMPOSITION-SW-COMPONENT-TYPE>

</ELEMENTS>
</AR-PACKAGE>
<AR-PACKAGE>

<SHORT-NAME>PortInterfaces</SHORT-NAME>
<ELEMENTS>

895 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

<MODE-SWITCH-INTERFACE>
<SHORT-NAME>EcuStatesBasic</SHORT-NAME>
<MODE-GROUP>

<SHORT-NAME>EcuStatesBasic</SHORT-NAME>
<SW-CALIBRATION-ACCESS>READ-ONLY</SW-CALIBRATION-ACCESS>
<TYPE-TREF DEST="MODE-DECLARATION-GROUP">/Demo/

ModeDeclarationGroups/EcuStatesBasic</TYPE-TREF>
</MODE-GROUP>

</MODE-SWITCH-INTERFACE>
<MODE-SWITCH-INTERFACE>

<SHORT-NAME>EcuStatesExtended</SHORT-NAME>
<MODE-GROUP>

<SHORT-NAME>EcuStatesExtended</SHORT-NAME>
<SW-CALIBRATION-ACCESS>READ-ONLY</SW-CALIBRATION-ACCESS>
<TYPE-TREF DEST="MODE-DECLARATION-GROUP">/Demo/

ModeDeclarationGroups/EcuStatesExtended</TYPE-TREF>
</MODE-GROUP>

</MODE-SWITCH-INTERFACE>
</ELEMENTS>

</AR-PACKAGE>
<AR-PACKAGE>

<SHORT-NAME>ModeDeclarationGroups</SHORT-NAME>
<ELEMENTS>

<MODE-DECLARATION-GROUP>
<SHORT-NAME>EcuStatesBasic</SHORT-NAME>
<CATEGORY>EXPLICIT_ORDER</CATEGORY>
<INITIAL-MODE-REF DEST="MODE-DECLARATION">/Demo/

ModeDeclarationGroups/EcuStatesBasic/STARTUP</INITIAL-MODE
-REF>

<MODE-DECLARATIONS>
<MODE-DECLARATION>

<SHORT-NAME>STARTUP</SHORT-NAME>
<DESC>

<L-2 L="EN">Startup phase of the Ecu</L-2>
</DESC>
<VALUE>1</VALUE>

</MODE-DECLARATION>
<MODE-DECLARATION>

<SHORT-NAME>RUN</SHORT-NAME>
<DESC>

<L-2 L="EN">Run phase of the Ecu</L-2>
</DESC>
<VALUE>2</VALUE>

</MODE-DECLARATION>
<MODE-DECLARATION>

<SHORT-NAME>POST_RUN</SHORT-NAME>
<DESC>

<L-2 L="EN">post run phase of the Ecu</L-2>
</DESC>
<VALUE>3</VALUE>

</MODE-DECLARATION>
<MODE-DECLARATION>

<SHORT-NAME>SHUTDOWN</SHORT-NAME>
<DESC>

<L-2 L="EN">shutdown phase of the Ecu</L-2>

896 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

</DESC>
<VALUE>4</VALUE>

</MODE-DECLARATION>
</MODE-DECLARATIONS>
<MODE-TRANSITIONS>
<MODE-TRANSITION>

<SHORT-NAME>STARTUP_RUN</SHORT-NAME>
<ENTERED-MODE-REF DEST="MODE-DECLARATION">/Demo/

ModeDeclarationGroups/EcuStatesBasic/RUN</ENTERED-MODE-
REF>

<EXITED-MODE-REF DEST="MODE-DECLARATION">/Demo/
ModeDeclarationGroups/EcuStatesBasic/STARTUP</EXITED-
MODE-REF>

</MODE-TRANSITION>
<MODE-TRANSITION>

<SHORT-NAME>STARTUP_POST_RUN</SHORT-NAME>
<ENTERED-MODE-REF DEST="MODE-DECLARATION">/Demo/

ModeDeclarationGroups/EcuStatesBasic/POST_RUN</ENTERED-
MODE-REF>

<EXITED-MODE-REF DEST="MODE-DECLARATION">/Demo/
ModeDeclarationGroups/EcuStatesBasic/STARTUP</EXITED-
MODE-REF>

</MODE-TRANSITION>
<MODE-TRANSITION>

<SHORT-NAME>RUN_POST_RUN</SHORT-NAME>
<ENTERED-MODE-REF DEST="MODE-DECLARATION">/Demo/

ModeDeclarationGroups/EcuStatesBasic/POST_RUN</ENTERED-
MODE-REF>

<EXITED-MODE-REF DEST="MODE-DECLARATION">/Demo/
ModeDeclarationGroups/EcuStatesBasic/RUN</EXITED-MODE-
REF>

</MODE-TRANSITION>
<MODE-TRANSITION>

<SHORT-NAME>POST_RUN_SHUTDOWN</SHORT-NAME>
<ENTERED-MODE-REF DEST="MODE-DECLARATION">/Demo/

ModeDeclarationGroups/EcuStatesBasic/SHUTDOWN</ENTERED-
MODE-REF>

<EXITED-MODE-REF DEST="MODE-DECLARATION">/Demo/
ModeDeclarationGroups/EcuStatesBasic/POST_RUN</EXITED-
MODE-REF>

</MODE-TRANSITION>
</MODE-TRANSITIONS>
<ON-TRANSITION-VALUE>0</ON-TRANSITION-VALUE>

</MODE-DECLARATION-GROUP>
<MODE-DECLARATION-GROUP>

<SHORT-NAME>EcuStatesExtended</SHORT-NAME>
<CATEGORY>ALPHABETIC_ORDER</CATEGORY>
<INITIAL-MODE-REF DEST="MODE-DECLARATION">/Demo/

ModeDeclarationGroups/EcuStatesExtended/StartUp</INITIAL-
MODE-REF>

<MODE-DECLARATIONS>
<MODE-DECLARATION>

<SHORT-NAME>StartUp</SHORT-NAME>
<DESC>

<L-2 L="EN">Start up phase of the Ecu</L-2>
</DESC>

897 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

</MODE-DECLARATION>
<MODE-DECLARATION>

<SHORT-NAME>Run</SHORT-NAME>
<DESC>

<L-2 L="EN">Run phase of the Ecu</L-2>
</DESC>

</MODE-DECLARATION>
<MODE-DECLARATION>

<SHORT-NAME>PostRun1</SHORT-NAME>
<DESC>

<L-2 L="EN">First post run phase of the Ecu</L-2>
</DESC>

</MODE-DECLARATION>
<MODE-DECLARATION>

<SHORT-NAME>PostRun2</SHORT-NAME>
<DESC>

<L-2 L="EN">Second post run phase of the Ecu</L-2>
</DESC>

</MODE-DECLARATION>
<MODE-DECLARATION>

<SHORT-NAME>ShutDown</SHORT-NAME>
<DESC>

<L-2 L="EN">Shut down phase of the Ecu</L-2>
</DESC>

</MODE-DECLARATION>
<MODE-DECLARATION>

<SHORT-NAME>Sleep</SHORT-NAME>
<DESC>

<L-2 L="EN">Sleep mode of the Ecu with reduced
functionality</L-2>

</DESC>
</MODE-DECLARATION>
<MODE-DECLARATION>

<SHORT-NAME>Hibernate</SHORT-NAME>
<DESC>

<L-2 L="EN">Hibernate mode of the Ecu with extreme
reduced functionality</L-2>

</DESC>
</MODE-DECLARATION>

</MODE-DECLARATIONS>
</MODE-DECLARATION-GROUP>

</ELEMENTS>
</AR-PACKAGE>
<AR-PACKAGE>

<SHORT-NAME>PortInterfaceMappingSets</SHORT-NAME>
<ELEMENTS>

<MODE-DECLARATION-MAPPING-SET>
<SHORT-NAME>EcuStateMapping</SHORT-NAME>
<MODE-DECLARATION-MAPPINGS>

<MODE-DECLARATION-MAPPING>
<SHORT-NAME>StartUp_2_STARTUP_</SHORT-NAME>
<FIRST-MODE-REFS>

<FIRST-MODE-REF DEST="MODE-DECLARATION">/Demo/
ModeDeclarationGroups/EcuStatesExtended/StartUp</
FIRST-MODE-REF>

</FIRST-MODE-REFS>

898 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

<SECOND-MODE-REF DEST="MODE-DECLARATION">/Demo/
ModeDeclarationGroups/EcuStatesBasic/STARTUP</SECOND-
MODE-REF>

</MODE-DECLARATION-MAPPING>
<MODE-DECLARATION-MAPPING>

<SHORT-NAME>Run_2_RUN</SHORT-NAME>
<FIRST-MODE-REFS>

<FIRST-MODE-REF DEST="MODE-DECLARATION">/Demo/
ModeDeclarationGroups/EcuStatesExtended/Run</FIRST-
MODE-REF>

</FIRST-MODE-REFS>
<SECOND-MODE-REF DEST="MODE-DECLARATION">/Demo/

ModeDeclarationGroups/EcuStatesBasic/RUN</SECOND-MODE-
REF>

</MODE-DECLARATION-MAPPING>
<MODE-DECLARATION-MAPPING>

<SHORT-NAME>PostRunX_2_POST_RUN</SHORT-NAME>
<FIRST-MODE-REFS>

<FIRST-MODE-REF DEST="MODE-DECLARATION">/Demo/
ModeDeclarationGroups/EcuStatesExtended/PostRun1</
FIRST-MODE-REF>

<FIRST-MODE-REF DEST="MODE-DECLARATION">/Demo/
ModeDeclarationGroups/EcuStatesExtended/PostRun2</
FIRST-MODE-REF>

</FIRST-MODE-REFS>
<SECOND-MODE-REF DEST="MODE-DECLARATION">/Demo/

ModeDeclarationGroups/EcuStatesBasic/POST_RUN</SECOND-
MODE-REF>

</MODE-DECLARATION-MAPPING>
<MODE-DECLARATION-MAPPING>

<SHORT-NAME>ShutDown_2_SHUTDOWN</SHORT-NAME>
<FIRST-MODE-REFS>

<FIRST-MODE-REF DEST="MODE-DECLARATION">/Demo/
ModeDeclarationGroups/EcuStatesExtended/ShutDown</
FIRST-MODE-REF>

</FIRST-MODE-REFS>
<SECOND-MODE-REF DEST="MODE-DECLARATION">/Demo/

ModeDeclarationGroups/EcuStatesBasic/SHUTDOWN</SECOND-
MODE-REF>

</MODE-DECLARATION-MAPPING>
<MODE-DECLARATION-MAPPING>

<SHORT-NAME>Sleep_Hibernate_2_SHUTDOWN</SHORT-NAME>
<FIRST-MODE-REFS>

<FIRST-MODE-REF DEST="MODE-DECLARATION">/Demo/
ModeDeclarationGroups/EcuStatesExtended/Sleep</FIRST
-MODE-REF>

<FIRST-MODE-REF DEST="MODE-DECLARATION">/Demo/
ModeDeclarationGroups/EcuStatesExtended/Hibernate</
FIRST-MODE-REF>

</FIRST-MODE-REFS>
<SECOND-MODE-REF DEST="MODE-DECLARATION">/Demo/

ModeDeclarationGroups/EcuStatesBasic/SHUTDOWN</SECOND-
MODE-REF>

</MODE-DECLARATION-MAPPING>
</MODE-DECLARATION-MAPPINGS>

</MODE-DECLARATION-MAPPING-SET>

899 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

<PORT-INTERFACE-MAPPING-SET>
<SHORT-NAME>ModeSwitchInterfaceMapping</SHORT-NAME>
<PORT-INTERFACE-MAPPINGS>

<MODE-INTERFACE-MAPPING>
<SHORT-NAME>EcuStatesExtended_2_EcuStatesBasic</SHORT-

NAME>
<MODE-MAPPING>

<FIRST-MODE-GROUP-REF DEST="MODE-DECLARATION-GROUP-
PROTOTYPE">/Demo/PortInterfaces/EcuStatesExtended/
EcuStatesExtended</FIRST-MODE-GROUP-REF>

<MODE-DECLARATION-MAPPING-SET-REF DEST="MODE-
DECLARATION-MAPPING-SET">/Demo/
PortInterfaceMappingSets/EcuStateMapping</MODE-
DECLARATION-MAPPING-SET-REF>

<SECOND-MODE-GROUP-REF DEST="MODE-DECLARATION-GROUP-
PROTOTYPE">/Demo/PortInterfaces/EcuStatesBasic/
EcuStatesBasic</SECOND-MODE-GROUP-REF>

</MODE-MAPPING>
</MODE-INTERFACE-MAPPING>

</PORT-INTERFACE-MAPPINGS>
</PORT-INTERFACE-MAPPING-SET>

</ELEMENTS>
</AR-PACKAGE>

</AR-PACKAGES>
</AR-PACKAGE>

</AR-PACKAGES>
</AUTOSAR>

F.2 Stability need for received data

The example for Stability need for received data in example 4.6 is based on the
following ARXML:
<?xml version="1.0" encoding="UTF-8"?>
<AUTOSAR xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http:

//autosar.org/schema/r4.0" xsi:schemaLocation="http://autosar.org/schema
/r4.0 AUTOSAR_4-0-4.xsd">

<AR-PACKAGES>
<AR-PACKAGE>

<SHORT-NAME>Demo</SHORT-NAME>
<CATEGORY>EXAMPLE</CATEGORY>
<AR-PACKAGES>

<AR-PACKAGE>
<SHORT-NAME>SwComponentTypes</SHORT-NAME>
<ELEMENTS>

<COMPOSITION-SW-COMPONENT-TYPE>
<SHORT-NAME>COMP_1</SHORT-NAME>
<DESC><L-2 L="EN">Stability need for received data (see SWS

RTE)</L-2></DESC>
<CONSISTENCY-NEEDSS>
<CONSISTENCY-NEEDS>

<SHORT-NAME>CN_BC</SHORT-NAME>
<DPG-DOES-NOT-REQUIRE-COHERENCYS>

900 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

<DATA-PROTOTYPE-GROUP>
<SHORT-NAME>CN_BC_DG1</SHORT-NAME>
<IMPLICIT-DATA-ACCESS-IREFS>
<IMPLICIT-DATA-ACCESS-IREF>
<CONTEXT-SW-COMPONENT-PROTOTYPE-REF DEST="SW-COMPONENT-

PROTOTYPE">/Demo/SwComponentTypes/COMP_1/ASWC_B</
CONTEXT-SW-COMPONENT-PROTOTYPE-REF>

<CONTEXT-PORT-PROTOTYPE-REF DEST="R-PORT-PROTOTYPE">/Demo
/SwComponentTypes/ASWC_B/A</CONTEXT-PORT-PROTOTYPE-REF
>

<TARGET-VARIABLE-DATA-PROTOTYPE-REF DEST="VARIABLE-DATA-
PROTOTYPE">/Demo/PortInterfaces/A/A</TARGET-VARIABLE-
DATA-PROTOTYPE-REF>

</IMPLICIT-DATA-ACCESS-IREF>

<IMPLICIT-DATA-ACCESS-IREF>
<CONTEXT-SW-COMPONENT-PROTOTYPE-REF DEST="SW-COMPONENT-

PROTOTYPE">/Demo/SwComponentTypes/COMP_1/ASWC_C</
CONTEXT-SW-COMPONENT-PROTOTYPE-REF>

<CONTEXT-PORT-PROTOTYPE-REF DEST="R-PORT-PROTOTYPE">/Demo
/SwComponentTypes/ASWC_C/A</CONTEXT-PORT-PROTOTYPE-REF
>

<TARGET-VARIABLE-DATA-PROTOTYPE-REF DEST="VARIABLE-DATA-
PROTOTYPE">/Demo/PortInterfaces/A/A</TARGET-VARIABLE-
DATA-PROTOTYPE-REF>

</IMPLICIT-DATA-ACCESS-IREF>

<IMPLICIT-DATA-ACCESS-IREF>
<CONTEXT-SW-COMPONENT-PROTOTYPE-REF DEST="SW-COMPONENT-

PROTOTYPE">/Demo/SwComponentTypes/COMP_1/ASWC_B</
CONTEXT-SW-COMPONENT-PROTOTYPE-REF>

<CONTEXT-PORT-PROTOTYPE-REF DEST="R-PORT-PROTOTYPE">/Demo
/SwComponentTypes/ASWC_B/B</CONTEXT-PORT-PROTOTYPE-REF
>

<TARGET-VARIABLE-DATA-PROTOTYPE-REF DEST="VARIABLE-DATA-
PROTOTYPE">/Demo/PortInterfaces/B/B</TARGET-VARIABLE-
DATA-PROTOTYPE-REF>

</IMPLICIT-DATA-ACCESS-IREF>

<IMPLICIT-DATA-ACCESS-IREF>
<CONTEXT-SW-COMPONENT-PROTOTYPE-REF DEST="SW-COMPONENT-

PROTOTYPE">/Demo/SwComponentTypes/COMP_1/ASWC_C</
CONTEXT-SW-COMPONENT-PROTOTYPE-REF>

<CONTEXT-PORT-PROTOTYPE-REF DEST="R-PORT-PROTOTYPE">/Demo
/SwComponentTypes/ASWC_C/B</CONTEXT-PORT-PROTOTYPE-REF
>

<TARGET-VARIABLE-DATA-PROTOTYPE-REF DEST="VARIABLE-DATA-
PROTOTYPE">/Demo/PortInterfaces/B/B</TARGET-VARIABLE-
DATA-PROTOTYPE-REF>

</IMPLICIT-DATA-ACCESS-IREF>

</IMPLICIT-DATA-ACCESS-IREFS>
</DATA-PROTOTYPE-GROUP>
</DPG-DOES-NOT-REQUIRE-COHERENCYS>
<REG-REQUIRES-STABILITYS>

901 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

<RUNNABLE-ENTITY-GROUP>
<SHORT-NAME>CN_BC_RG1</SHORT-NAME>
<RUNNABLE-ENTITY-IREFS>
<RUNNABLE-ENTITY-IREF>
<CONTEXT-SW-COMPONENT-PROTOTYPE-REF DEST="SW-COMPONENT-

PROTOTYPE">/Demo/SwComponentTypes/COMP_1/ASWC_B</
CONTEXT-SW-COMPONENT-PROTOTYPE-REF>

<TARGET-RUNNABLE-ENTITY-REF DEST="RUNNABLE-ENTITY">/Demo/
SwComponentTypes/ASWC_B/IB_ASWC_B/ASWC_B_RUN1</TARGET-
RUNNABLE-ENTITY-REF>

</RUNNABLE-ENTITY-IREF>
<RUNNABLE-ENTITY-IREF>
<CONTEXT-SW-COMPONENT-PROTOTYPE-REF DEST="SW-COMPONENT-

PROTOTYPE">/Demo/SwComponentTypes/COMP_1/ASWC_C</
CONTEXT-SW-COMPONENT-PROTOTYPE-REF>

<TARGET-RUNNABLE-ENTITY-REF DEST="RUNNABLE-ENTITY">/Demo/
SwComponentTypes/ASWC_C/IB_ASWC_C/ASWC_C_RUN1</TARGET-
RUNNABLE-ENTITY-REF>

</RUNNABLE-ENTITY-IREF>
</RUNNABLE-ENTITY-IREFS>

</RUNNABLE-ENTITY-GROUP>
</REG-REQUIRES-STABILITYS>

</CONSISTENCY-NEEDS>
</CONSISTENCY-NEEDSS>
<COMPONENTS>

<SW-COMPONENT-PROTOTYPE>
<SHORT-NAME>ASWC_A</SHORT-NAME>
<TYPE-TREF DEST="APPLICATION-SW-COMPONENT-TYPE">/Demo/

SwComponentTypes/ASWC_A</TYPE-TREF>
</SW-COMPONENT-PROTOTYPE>
<SW-COMPONENT-PROTOTYPE>

<SHORT-NAME>ASWC_B</SHORT-NAME>
<TYPE-TREF DEST="APPLICATION-SW-COMPONENT-TYPE">/Demo/

SwComponentTypes/ASWC_B</TYPE-TREF>
</SW-COMPONENT-PROTOTYPE>
<SW-COMPONENT-PROTOTYPE>

<SHORT-NAME>ASWC_C</SHORT-NAME>
<TYPE-TREF DEST="APPLICATION-SW-COMPONENT-TYPE">/Demo/

SwComponentTypes/ASWC_C</TYPE-TREF>
</SW-COMPONENT-PROTOTYPE>

</COMPONENTS>
</COMPOSITION-SW-COMPONENT-TYPE>
<APPLICATION-SW-COMPONENT-TYPE>

<SHORT-NAME>ASWC_A</SHORT-NAME>
<PORTS>

<P-PORT-PROTOTYPE>
<SHORT-NAME>A</SHORT-NAME>
<PROVIDED-INTERFACE-TREF DEST="SENDER-RECEIVER-INTERFACE"

>/Demo/PortInterfaces/A</PROVIDED-INTERFACE-TREF>
</P-PORT-PROTOTYPE>
<P-PORT-PROTOTYPE>

<SHORT-NAME>B</SHORT-NAME>
<PROVIDED-INTERFACE-TREF DEST="SENDER-RECEIVER-INTERFACE"

>/Demo/PortInterfaces/B</PROVIDED-INTERFACE-TREF>
</P-PORT-PROTOTYPE>

</PORTS>

902 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

<INTERNAL-BEHAVIORS>
<SWC-INTERNAL-BEHAVIOR>

<SHORT-NAME>IB_ASWC_A</SHORT-NAME>
<RUNNABLES>

<RUNNABLE-ENTITY>
<SHORT-NAME>ASWC_A_RUN1</SHORT-NAME>
<DATA-WRITE-ACCESSS>

<VARIABLE-ACCESS>
<SHORT-NAME>DWP_ASWC_A_RUN1_A_A</SHORT-NAME>
<ACCESSED-VARIABLE>

<AUTOSAR-VARIABLE-IREF>
<PORT-PROTOTYPE-REF DEST="P-PORT-PROTOTYPE">/

Demo/SwComponentTypes/ASWC_A/A</PORT-
PROTOTYPE-REF>

<TARGET-DATA-PROTOTYPE-REF DEST="VARIABLE-
DATA-PROTOTYPE">/Demo/PortInterfaces/A/A</
TARGET-DATA-PROTOTYPE-REF>

</AUTOSAR-VARIABLE-IREF>
</ACCESSED-VARIABLE>

</VARIABLE-ACCESS>
<VARIABLE-ACCESS>

<SHORT-NAME>DWP_ASWC_A_RUN1_B_B</SHORT-NAME>
<ACCESSED-VARIABLE>

<AUTOSAR-VARIABLE-IREF>
<PORT-PROTOTYPE-REF DEST="P-PORT-PROTOTYPE">/

Demo/SwComponentTypes/ASWC_A/B</PORT-
PROTOTYPE-REF>

<TARGET-DATA-PROTOTYPE-REF DEST="VARIABLE-
DATA-PROTOTYPE">/Demo/PortInterfaces/B/B</
TARGET-DATA-PROTOTYPE-REF>

</AUTOSAR-VARIABLE-IREF>
</ACCESSED-VARIABLE>

</VARIABLE-ACCESS>
</DATA-WRITE-ACCESSS>

</RUNNABLE-ENTITY>
</RUNNABLES>

</SWC-INTERNAL-BEHAVIOR>
</INTERNAL-BEHAVIORS>

</APPLICATION-SW-COMPONENT-TYPE>
<APPLICATION-SW-COMPONENT-TYPE>

<SHORT-NAME>ASWC_B</SHORT-NAME>
<PORTS>

<R-PORT-PROTOTYPE>
<SHORT-NAME>A</SHORT-NAME>
<REQUIRED-INTERFACE-TREF DEST="SENDER-RECEIVER-INTERFACE"

>/Demo/PortInterfaces/A</REQUIRED-INTERFACE-TREF>
</R-PORT-PROTOTYPE>
<R-PORT-PROTOTYPE>

<SHORT-NAME>B</SHORT-NAME>
<REQUIRED-INTERFACE-TREF DEST="SENDER-RECEIVER-INTERFACE"

>/Demo/PortInterfaces/B</REQUIRED-INTERFACE-TREF>
</R-PORT-PROTOTYPE>

</PORTS>
<INTERNAL-BEHAVIORS>

<SWC-INTERNAL-BEHAVIOR>
<SHORT-NAME>IB_ASWC_B</SHORT-NAME>

903 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

<RUNNABLES>
<RUNNABLE-ENTITY>

<SHORT-NAME>ASWC_B_RUN1</SHORT-NAME>
<DATA-READ-ACCESSS>

<VARIABLE-ACCESS>
<SHORT-NAME>DWP_ASWC_B_RUN1_A_A</SHORT-NAME>
<ACCESSED-VARIABLE>

<AUTOSAR-VARIABLE-IREF>
<PORT-PROTOTYPE-REF DEST="R-PORT-PROTOTYPE">/

Demo/SwComponentTypes/ASWC_B/A</PORT-
PROTOTYPE-REF>

<TARGET-DATA-PROTOTYPE-REF DEST="VARIABLE-
DATA-PROTOTYPE">/Demo/PortInterfaces/A/A</
TARGET-DATA-PROTOTYPE-REF>

</AUTOSAR-VARIABLE-IREF>
</ACCESSED-VARIABLE>

</VARIABLE-ACCESS>
<VARIABLE-ACCESS>

<SHORT-NAME>DWP_ASWC_B_RUN1_B_B</SHORT-NAME>
<ACCESSED-VARIABLE>

<AUTOSAR-VARIABLE-IREF>
<PORT-PROTOTYPE-REF DEST="R-PORT-PROTOTYPE">/

Demo/SwComponentTypes/ASWC_B/B</PORT-
PROTOTYPE-REF>

<TARGET-DATA-PROTOTYPE-REF DEST="VARIABLE-
DATA-PROTOTYPE">/Demo/PortInterfaces/B/B</
TARGET-DATA-PROTOTYPE-REF>

</AUTOSAR-VARIABLE-IREF>
</ACCESSED-VARIABLE>

</VARIABLE-ACCESS>
</DATA-READ-ACCESSS>

</RUNNABLE-ENTITY>
</RUNNABLES>

</SWC-INTERNAL-BEHAVIOR>
</INTERNAL-BEHAVIORS>

</APPLICATION-SW-COMPONENT-TYPE>
<APPLICATION-SW-COMPONENT-TYPE>

<SHORT-NAME>ASWC_C</SHORT-NAME>
<PORTS>

<R-PORT-PROTOTYPE>
<SHORT-NAME>A</SHORT-NAME>
<REQUIRED-INTERFACE-TREF DEST="SENDER-RECEIVER-INTERFACE"

>/Demo/PortInterfaces/A</REQUIRED-INTERFACE-TREF>
</R-PORT-PROTOTYPE>
<R-PORT-PROTOTYPE>

<SHORT-NAME>B</SHORT-NAME>
<REQUIRED-INTERFACE-TREF DEST="SENDER-RECEIVER-INTERFACE"

>/Demo/PortInterfaces/B</REQUIRED-INTERFACE-TREF>
</R-PORT-PROTOTYPE>

</PORTS>
<INTERNAL-BEHAVIORS>

<SWC-INTERNAL-BEHAVIOR>
<SHORT-NAME>IB_ASWC_C</SHORT-NAME>
<RUNNABLES>

<RUNNABLE-ENTITY>
<SHORT-NAME>ASWC_C_RUN1</SHORT-NAME>

904 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

<DATA-READ-ACCESSS>
<VARIABLE-ACCESS>

<SHORT-NAME>DWP_ASWC_C_RUN1_A_A</SHORT-NAME>
<ACCESSED-VARIABLE>

<AUTOSAR-VARIABLE-IREF>
<PORT-PROTOTYPE-REF DEST="R-PORT-PROTOTYPE">/

Demo/SwComponentTypes/ASWC_C/A</PORT-
PROTOTYPE-REF>

<TARGET-DATA-PROTOTYPE-REF DEST="VARIABLE-
DATA-PROTOTYPE">/Demo/PortInterfaces/A/A</
TARGET-DATA-PROTOTYPE-REF>

</AUTOSAR-VARIABLE-IREF>
</ACCESSED-VARIABLE>

</VARIABLE-ACCESS>
<VARIABLE-ACCESS>

<SHORT-NAME>DWP_ASWC_C_RUN1_B_B</SHORT-NAME>
<ACCESSED-VARIABLE>

<AUTOSAR-VARIABLE-IREF>
<PORT-PROTOTYPE-REF DEST="R-PORT-PROTOTYPE">/

Demo/SwComponentTypes/ASWC_C/B</PORT-
PROTOTYPE-REF>

<TARGET-DATA-PROTOTYPE-REF DEST="VARIABLE-
DATA-PROTOTYPE">/Demo/PortInterfaces/B/B</
TARGET-DATA-PROTOTYPE-REF>

</AUTOSAR-VARIABLE-IREF>
</ACCESSED-VARIABLE>

</VARIABLE-ACCESS>
</DATA-READ-ACCESSS>

</RUNNABLE-ENTITY>
</RUNNABLES>

</SWC-INTERNAL-BEHAVIOR>
</INTERNAL-BEHAVIORS>

</APPLICATION-SW-COMPONENT-TYPE>
</ELEMENTS>

</AR-PACKAGE>
<AR-PACKAGE>

<SHORT-NAME>PortInterfaces</SHORT-NAME>
<ELEMENTS>

<SENDER-RECEIVER-INTERFACE>
<SHORT-NAME>A</SHORT-NAME>
<DATA-ELEMENTS>

<VARIABLE-DATA-PROTOTYPE>
<SHORT-NAME>A</SHORT-NAME>

</VARIABLE-DATA-PROTOTYPE>
</DATA-ELEMENTS>

</SENDER-RECEIVER-INTERFACE>
<SENDER-RECEIVER-INTERFACE>

<SHORT-NAME>B</SHORT-NAME>
<DATA-ELEMENTS>

<VARIABLE-DATA-PROTOTYPE>
<SHORT-NAME>B</SHORT-NAME>

</VARIABLE-DATA-PROTOTYPE>
</DATA-ELEMENTS>

</SENDER-RECEIVER-INTERFACE>
</ELEMENTS>

</AR-PACKAGE>

905 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

</AR-PACKAGES>
</AR-PACKAGE>

</AR-PACKAGES>
</AUTOSAR>

F.3 CompuMethod with bitfield texttable conversion

The following CompuMethod of category BITFIELD_TEXTTABLE

Listing F.1: example for bit field text table CompuMethod

1 <COMPU-METHOD>
2 <SHORT-NAME>Texttable</SHORT-NAME>
3 <CATEGORY>BITFIELD_TEXTTABLE</CATEGORY>
4 <COMPU-INTERNAL-TO-PHYS>
5 <COMPU-SCALES>
6 <!-- problem -->
7 <COMPU-SCALE>
8 <SHORT-LABEL>problem</SHORT-LABEL>
9 <SYMBOL>problem_flat_tire</SYMBOL>

10 <MASK>0b11110000</MASK>
11 <LOWER-LIMIT INTERVAL-TYPE="CLOSED">0b00000000</LOWER-LIMIT>
12 <UPPER-LIMIT INTERVAL-TYPE="CLOSED">0b00000000</UPPER-LIMIT>
13 <COMPU-CONST>
14 <VT>flat tire</VT>
15 </COMPU-CONST>
16 </COMPU-SCALE>
17 <COMPU-SCALE>
18 <SHORT-LABEL>problem</SHORT-LABEL>
19 <SYMBOL>problem_low_pressure</SYMBOL>
20 <MASK>0b11110000</MASK>
21 <LOWER-LIMIT INTERVAL-TYPE="CLOSED">0b00010000</LOWER-LIMIT>
22 <UPPER-LIMIT INTERVAL-TYPE="CLOSED">0b00010000</UPPER-LIMIT>
23 <COMPU-CONST>
24 <VT>low pressure</VT>
25 </COMPU-CONST>
26 </COMPU-SCALE>
27 <COMPU-SCALE>
28 <SHORT-LABEL>problem</SHORT-LABEL>
29 <SYMBOL>problem_unbalanced</SYMBOL>
30 <MASK>0b11110000</MASK>
31 <LOWER-LIMIT INTERVAL-TYPE="CLOSED">0b00100000</LOWER-LIMIT>
32 <UPPER-LIMIT INTERVAL-TYPE="CLOSED">0b00100000</UPPER-LIMIT>
33 <COMPU-CONST>
34 <VT>unbalanced</VT>
35 </COMPU-CONST>
36 </COMPU-SCALE>
37 <COMPU-SCALE>
38 <SHORT-LABEL>problem</SHORT-LABEL>
39 <SYMBOL>problem_unknown</SYMBOL>
40 <MASK>0b11110000</MASK>
41 <LOWER-LIMIT INTERVAL-TYPE="CLOSED">0b00110000</LOWER-LIMIT>
42 <UPPER-LIMIT INTERVAL-TYPE="CLOSED">0b00110000</UPPER-LIMIT>
43 <COMPU-CONST>

906 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

44 <VT>unknown</VT>
45 </COMPU-CONST>
46 </COMPU-SCALE>
47 <COMPU-SCALE>
48 <SHORT-LABEL>problem</SHORT-LABEL>
49 <SYMBOL>problem_invalid</SYMBOL>
50 <MASK>0b11110000</MASK>
51 <LOWER-LIMIT INTERVAL-TYPE="CLOSED">0b11110000</LOWER-LIMIT>
52 <UPPER-LIMIT INTERVAL-TYPE="CLOSED">0b11110000</UPPER-LIMIT>
53 <COMPU-CONST>
54 <VT>invalid</VT>
55 </COMPU-CONST>
56 </COMPU-SCALE>
57 <!-- rear right -->
58 <COMPU-SCALE>
59 <SHORT-LABEL>rearRight</SHORT-LABEL>
60 <SYMBOL>rearRight_no</SYMBOL>
61 <MASK>0b11001000</MASK>
62 <LOWER-LIMIT INTERVAL-TYPE="CLOSED">0b00000000</LOWER-LIMIT>
63 <UPPER-LIMIT INTERVAL-TYPE="CLOSED">0b00000000</UPPER-LIMIT>
64 <COMPU-CONST>
65 <VT>no</VT>
66 </COMPU-CONST>
67 </COMPU-SCALE>
68 <COMPU-SCALE>
69 <SHORT-LABEL>rearRight</SHORT-LABEL>
70 <SYMBOL>rearRight_yes</SYMBOL>
71 <MASK>0b11001000</MASK>
72 <LOWER-LIMIT INTERVAL-TYPE="CLOSED">0b00001000</LOWER-LIMIT>
73 <UPPER-LIMIT INTERVAL-TYPE="CLOSED">0b00001000</UPPER-LIMIT>
74 <COMPU-CONST>
75 <VT>yes</VT>
76 </COMPU-CONST>
77 </COMPU-SCALE>
78 <!-- rear left -->
79 <COMPU-SCALE>
80 <SHORT-LABEL>rearLeft</SHORT-LABEL>
81 <SYMBOL>rearLeft_no</SYMBOL>
82 <MASK>0b11000100</MASK>
83 <LOWER-LIMIT INTERVAL-TYPE="CLOSED">0b00000000</LOWER-LIMIT>
84 <UPPER-LIMIT INTERVAL-TYPE="CLOSED">0b00000000</UPPER-LIMIT>
85 <COMPU-CONST>
86 <VT>no</VT>
87 </COMPU-CONST>
88 </COMPU-SCALE>
89 <COMPU-SCALE>
90 <SHORT-LABEL>rearLeft</SHORT-LABEL>
91 <SYMBOL>rearLeft_yes</SYMBOL>
92 <MASK>0b11000100</MASK>
93 <LOWER-LIMIT INTERVAL-TYPE="CLOSED">0b00000100</LOWER-LIMIT>
94 <UPPER-LIMIT INTERVAL-TYPE="CLOSED">0b00000100</UPPER-LIMIT>
95 <COMPU-CONST>
96 <VT>yes</VT>
97 </COMPU-CONST>
98 </COMPU-SCALE>
99 <!-- front right -->

907 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

100 <COMPU-SCALE>
101 <SHORT-LABEL>frontRight</SHORT-LABEL>
102 <SYMBOL>frontRight_no</SYMBOL>
103 <MASK>0b11000010</MASK>
104 <LOWER-LIMIT INTERVAL-TYPE="CLOSED">0b00000000</LOWER-LIMIT>
105 <UPPER-LIMIT INTERVAL-TYPE="CLOSED">0b00000000</UPPER-LIMIT>
106 <COMPU-CONST>
107 <VT>no</VT>
108 </COMPU-CONST>
109 </COMPU-SCALE>
110 <COMPU-SCALE>
111 <SHORT-LABEL>frontRight</SHORT-LABEL>
112 <SYMBOL>frontRight_yes</SYMBOL>
113 <MASK>0b11000010</MASK>
114 <LOWER-LIMIT INTERVAL-TYPE="CLOSED">0b00000010</LOWER-LIMIT>
115 <UPPER-LIMIT INTERVAL-TYPE="CLOSED">0b00000010</UPPER-LIMIT>
116 <COMPU-CONST>
117 <VT>yes</VT>
118 </COMPU-CONST>
119 </COMPU-SCALE>
120 <!-- front left -->
121 <COMPU-SCALE>
122 <SHORT-LABEL>frontLeft</SHORT-LABEL>
123 <SYMBOL>frontLeft_no</SYMBOL>
124 <MASK>0b11000001</MASK>
125 <LOWER-LIMIT INTERVAL-TYPE="CLOSED">0b00000000</LOWER-LIMIT>
126 <UPPER-LIMIT INTERVAL-TYPE="CLOSED">0b00000000</UPPER-LIMIT>
127 <COMPU-CONST>
128 <VT>no</VT>
129 </COMPU-CONST>
130 </COMPU-SCALE>
131 <COMPU-SCALE>
132 <SHORT-LABEL>frontLeft</SHORT-LABEL>
133 <SYMBOL>frontLeft_yes</SYMBOL>
134 <MASK>0b11000001</MASK>
135 <LOWER-LIMIT INTERVAL-TYPE="CLOSED">0b00000001</LOWER-LIMIT>
136 <UPPER-LIMIT INTERVAL-TYPE="CLOSED">0b00000001</UPPER-LIMIT>
137 <COMPU-CONST>
138 <VT>yes</VT>
139 </COMPU-CONST>
140 </COMPU-SCALE>
141 </COMPU-SCALES>
142 </COMPU-INTERNAL-TO-PHYS>
143 </COMPU-METHOD>

results in this definitions:

Listing F.2: literals for bit field text table CompuMethod

1 /* [SWS_Rte_07410] unique "shortLabel" / "mask" pair "problem" / 0
b11110000 */

2 #ifndef problem_BflMask
3 #define problem_BflMask 240U
4 #endif /* problem_BflMask */
5

908 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

6 /* [SWS_Rte_07411] unique "shortLabel" / "mask" pair "problem" / 0
b11110000 with a single contiguous bit field*/

7 #ifndef problem_BflPn
8 #define problem_BflPn 4U
9 #endif /* problem_BflPn */

10

11 /* [SWS_Rte_07412] unique "shortLabel" / "mask" pair "problem" / 0
b11110000 with a single contiguous bit field*/

12 #ifndef problem_BflLn
13 #define problem_BflLn 4U
14 #endif /* problem_BflLn */
15

16 /* [SWS_Rte_03810] CompuScale with point range "0b00000000", symbol
attribute "problem_flat_tire"*/

17 #ifndef problem_flat_tire
18 #define problem_flat_tire 0U
19 #endif /* problem_flat_tire */
20

21 /* [SWS_Rte_03810] CompuScale with point range "0b00010000", symbol
attribute "problem_low_pressure"*/

22 #ifndef problem_low_pressure
23 #define problem_low_pressure 16U
24 #endif /* problem_low_pressure */
25

26 /* [SWS_Rte_03810] CompuScale with point range "0b00100000", symbol
attribute "problem_unbalanced"*/

27 #ifndef problem_unbalanced
28 #define problem_unbalanced 32U
29 #endif /* problem_unbalanced */
30

31 /* [SWS_Rte_03810] CompuScale with point range "0b00110000", symbol
attribute "problem_unknown"*/

32 #ifndef problem_unknown
33 #define problem_unknown 48U
34 #endif /* problem_unknown */
35

36 /* [SWS_Rte_03810] CompuScale with point range "0b11110000", symbol
attribute "problem_invalid"*/

37 #ifndef problem_invalid
38 #define problem_invalid 240U
39 #endif /* problem_invalid */
40

41 /* [SWS_Rte_07410] unique "shortLabel" / "mask" pair "rearRight" / 0
b11001000 */

42 #ifndef rearRight_BflMask
43 #define rearRight_BflMask 200U
44 #endif /* rearRight_BflMask */
45

46 /* [SWS_Rte_07411] unique "shortLabel" / "mask" pair "rearRight" / 0
b11001000 but not a single contiguous bit field*/

47

48 /* [SWS_Rte_07412] unique "shortLabel" / "mask" pair "rearRight" / 0
b11001000 bot not a single contiguous bit field*/

49

50 /* [SWS_Rte_03810] CompuScale with point range "0b00000000", symbol
attribute "rearRight_no"*/

909 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

51 #ifndef rearRight_no
52 #define rearRight_no 0U
53 #endif /* rearRight_no */
54

55 /* [SWS_Rte_03810] CompuScale with point range "0b00001000", symbol
attribute "rearRight_yes"*/

56 #ifndef rearRight_yes
57 #define rearRight_yes 8U
58 #endif /* rearRight_yes */
59

60 /* [SWS_Rte_07410] unique "shortLabel" / "mask" pair "rearLeft" / 0
b11000100 */

61 #ifndef rearLeft_BflMask
62 #define rearLeft_BflMask 200U
63 #endif /* rearLeft_BflMask */
64

65 /* [SWS_Rte_07411] unique "shortLabel" / "mask" pair "rearLeft" / 0
b11000100 but not a single contiguous bit field*/

66

67 /* [SWS_Rte_07412] unique "shortLabel" / "mask" pair "rearLeft" / 0
b11000100 bot not a single contiguous bit field*/

68

69 /* [SWS_Rte_03810] CompuScale with point range "0b00000000", symbol
attribute "rearLeft_no"*/

70 #ifndef rearLeft_no
71 #define rearLeft_no 0U
72 #endif /* rearLeft_no */
73

74 /* [SWS_Rte_03810] CompuScale with point range "0b00000100", symbol
attribute "rearLeft_yes"*/

75 #ifndef rearLeft_yes
76 #define rearLeft_yes 4U
77 #endif /* rearLeft_yes */
78

79 /* [SWS_Rte_07410] unique "shortLabel" / "mask" pair "frontRight" / 0
b11000010 */

80 #ifndef frontRight_BflMask
81 #define frontRight_BflMask 194U
82 #endif /* frontRight_BflMask */
83

84 /* [SWS_Rte_07411] unique "shortLabel" / "mask" pair "frontRight" / 0
b11000010 but not a single contiguous bit field*/

85

86 /* [SWS_Rte_07412] unique "shortLabel" / "mask" pair "frontRight" / 0
b11000010 bot not a single contiguous bit field*/

87

88 /* [SWS_Rte_03810] CompuScale with point range "0b00000000", symbol
attribute "frontRight_no"*/

89 #ifndef frontRight_no
90 #define frontRight_no 0U
91 #endif /* frontRight_no */
92

93 /* [SWS_Rte_03810] CompuScale with point range "0b00000010", symbol
attribute "frontRight_yes"*/

94 #ifndef frontRight_yes
95 #define frontRight_yes 2U

910 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

96 #endif /* frontRight_yes */
97

98 /* [SWS_Rte_07410] unique "shortLabel" / "mask" pair "frontLeft" / 0
b11000001 */

99 #ifndef frontLeft_BflMask
100 #define frontLeft_BflMask 193U
101 #endif /* frontLeft_BflMask */
102

103 /* [SWS_Rte_07411] unique "shortLabel" / "mask" pair "frontLeft" / 0
b11000001 but not a single contiguous bit field*/

104

105 /* [SWS_Rte_07412] unique "shortLabel" / "mask" pair "frontLeft" / 0
b11000001 bot not a single contiguous bit field*/

106

107 /* [SWS_Rte_03810] CompuScale with point range "0b00000000", symbol
attribute "frontLeft_no"*/

108 #ifndef frontLeft_no
109 #define frontLeft_no 0U
110 #endif /* frontLeft_no */
111

112 /* [SWS_Rte_03810] CompuScale with point range "0b00000001", symbol
attribute "frontLeft_yes"*/

113 #ifndef frontLeft_yes
114 #define frontLeft_yes 1U
115 #endif /* frontLeft_yes */

911 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

G Changes History

G.1 Changes in Rel. 4.0 Rev. 2 compared to Rel. 4.0 Rev. 1

G.1.1 Deleted SWS Items

The following SWS Items were removed in Rel. 4.0 Rev. 2: rte_sws_1254,
rte_sws_3552, rte_sws_3557, rte_sws_3559, rte_sws_3563, rte_sws_3564,
rte_sws_3568, rte_sws_3588, rte_sws_3593, rte_sws_3743, rte_sws_5512.

G.1.2 Changed SWS Items

The following SWS Items were changed in Rel. 4.0 Rev. 2: [SWS_Rte_01086],
[SWS_Rte_01111], [SWS_Rte_01113], [SWS_Rte_01114], [SWS_Rte_01118],
[SWS_Rte_01156], [SWS_Rte_01355], [SWS_Rte_02517], [SWS_Rte_02527],
[SWS_Rte_02528], [SWS_Rte_02613], [SWS_Rte_02615], [SWS_Rte_02679],
[SWS_Rte_02728], [SWS_Rte_02730], [SWS_Rte_02747], [SWS_Rte_02752],
[SWS_Rte_02753], [SWS_Rte_03001], [SWS_Rte_03560], [SWS_Rte_03562],
[SWS_Rte_03567], [SWS_Rte_03598], [SWS_Rte_03599], [SWS_Rte_03774],
[SWS_Rte_03827], [SWS_Rte_03837], [SWS_Rte_03930], [SWS_Rte_03953],
[SWS_Rte_03954], [SWS_Rte_03955], [SWS_Rte_03956], [SWS_Rte_03957],
[SWS_Rte_05021], [SWS_Rte_05156], SWS_Rte_05506, [SWS_Rte_05509],
[SWS_Rte_06010], [SWS_Rte_06633], [SWS_Rte_07020], [SWS_Rte_07021],
[SWS_Rte_07041], [SWS_Rte_07184], [SWS_Rte_07187], [SWS_Rte_07195],
[SWS_Rte_07262], [SWS_Rte_07280], [SWS_Rte_07282], [SWS_Rte_07293],
[SWS_Rte_07294], [SWS_Rte_07375], [SWS_Rte_07376], [SWS_Rte_07409],
[SWS_Rte_07586], [SWS_Rte_07589], [SWS_Rte_07632], [SWS_Rte_07636],
[SWS_Rte_07637], [SWS_Rte_07667], [SWS_Rte_07680], [SWS_Rte_07683],
rte_sws_ext_3811.

G.1.3 Added SWS Items

The following SWS Items were added in Rel. 4.0 Rev. 2: [SWS_Rte_02761],
rte_sws_3850, rte_sws_3851, [SWS_Rte_03852], [SWS_Rte_03853],
[SWS_Rte_07045], [SWS_Rte_07046], [SWS_Rte_07047], [SWS_Rte_07048],
[SWS_Rte_07049], [SWS_Rte_07050], [SWS_Rte_07051], [SWS_Rte_07052],
[SWS_Rte_07053], [SWS_Rte_07054], [SWS_Rte_07055], [SWS_Rte_07056],
[SWS_Rte_07057], [SWS_Rte_07058], [SWS_Rte_07059], [SWS_Rte_07060],
[SWS_Rte_07061], [SWS_Rte_07062], [SWS_Rte_07063], [SWS_Rte_07064],
[SWS_Rte_07065], [SWS_Rte_07066], [SWS_Rte_07067], [SWS_Rte_07068],
[SWS_Rte_07069], [SWS_Rte_07070], [SWS_Rte_07071], [SWS_Rte_07072],
[SWS_Rte_07073], [SWS_Rte_07074], [SWS_Rte_07075], [SWS_Rte_07076],
[SWS_Rte_07077], [SWS_Rte_07078], [SWS_Rte_07079], [SWS_Rte_07080],

912 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_07081], [SWS_Rte_08000], [SWS_Rte_08001], [SWS_Rte_08002],
[SWS_Rte_08300], [SWS_Rte_08301], [SWS_Rte_08302].

G.2 Changes in Rel. 4.0 Rev. 3 compared to Rel. 4.0 Rev. 2

G.2.1 Deleted SWS Items

The following SWS Items were removed in Rel. 4.0 Rev. 3: rte_sws_3838,
rte_sws_3844, rte_sws_3850, rte_sws_5171, rte_sws_7106, rte_sws_7108,
rte_sws_7164, rte_sws_7165, rte_sws_7168, rte_sws_7176, rte_sws_7674.

G.2.2 Changed SWS Items

The following SWS Items were changed in Rel. 4.0 Rev. 3: [SWS_Rte_01018],
[SWS_Rte_01019], [SWS_Rte_01020], [SWS_Rte_01156], [SWS_Rte_01171],
[SWS_Rte_01238], [SWS_Rte_01239], [SWS_Rte_01248], [SWS_Rte_01249],
[SWS_Rte_01300], [SWS_Rte_02500], [SWS_Rte_02568], [SWS_Rte_02576],
[SWS_Rte_02627], [SWS_Rte_02628], [SWS_Rte_02629], [SWS_Rte_02631],
[SWS_Rte_02648], [SWS_Rte_02659], [SWS_Rte_02662], [SWS_Rte_02664],
[SWS_Rte_02675], [SWS_Rte_02732], [SWS_Rte_03526], [SWS_Rte_03714],
[SWS_Rte_03731], [SWS_Rte_03782], [SWS_Rte_03793], [SWS_Rte_03809],
[SWS_Rte_03810], [SWS_Rte_03813], [SWS_Rte_03827], [SWS_Rte_03828],
[SWS_Rte_03829], [SWS_Rte_03831], [SWS_Rte_03832], [SWS_Rte_03833],
[SWS_Rte_03837], [SWS_Rte_03839], [SWS_Rte_03840], [SWS_Rte_03841],
[SWS_Rte_03842], [SWS_Rte_03843], [SWS_Rte_03845], [SWS_Rte_03846],
[SWS_Rte_03847], [SWS_Rte_03848], [SWS_Rte_03849], [SWS_Rte_03851],
[SWS_Rte_03907], [SWS_Rte_03949], [SWS_Rte_04526], [SWS_Rte_05051],
[SWS_Rte_05052], SWS_Rte_05059, [SWS_Rte_05062], [SWS_Rte_05078],
[SWS_Rte_05127], [SWS_Rte_05128], [SWS_Rte_06513], [SWS_Rte_06515],
[SWS_Rte_06518], [SWS_Rte_06519], [SWS_Rte_06520], [SWS_Rte_06530],
[SWS_Rte_06532], [SWS_Rte_06535], [SWS_Rte_06536], [SWS_Rte_07022],
[SWS_Rte_07030], [SWS_Rte_07036], [SWS_Rte_07037], [SWS_Rte_07038],
[SWS_Rte_07047], [SWS_Rte_07048], [SWS_Rte_07069], [SWS_Rte_07104],
[SWS_Rte_07109], [SWS_Rte_07110], [SWS_Rte_07111], [SWS_Rte_07113],
[SWS_Rte_07114], [SWS_Rte_07116], [SWS_Rte_07133], [SWS_Rte_07136],
[SWS_Rte_07144], [SWS_Rte_07148], [SWS_Rte_07149], [SWS_Rte_07157],
[SWS_Rte_07162], [SWS_Rte_07163], [SWS_Rte_07166], [SWS_Rte_07175],
[SWS_Rte_07182], [SWS_Rte_07185], [SWS_Rte_07190], [SWS_Rte_07194],
[SWS_Rte_07195], [SWS_Rte_07200], [SWS_Rte_07203], [SWS_Rte_07214],
[SWS_Rte_07224], [SWS_Rte_07250], [SWS_Rte_07253], [SWS_Rte_07255],
[SWS_Rte_07260], [SWS_Rte_07261], [SWS_Rte_07263], [SWS_Rte_07266],
[SWS_Rte_07282], [SWS_Rte_07292], [SWS_Rte_07293], [SWS_Rte_07294],
[SWS_Rte_07295], [SWS_Rte_07310], [SWS_Rte_07315], [SWS_Rte_07381],

913 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_07382], [SWS_Rte_07383], [SWS_Rte_07501], [SWS_Rte_07503],
[SWS_Rte_07504], [SWS_Rte_07543], [SWS_Rte_07544], [SWS_Rte_07552],
[SWS_Rte_07554], [SWS_Rte_07555], [SWS_Rte_07556], [SWS_Rte_07670],
[SWS_Rte_07682], [SWS_Rte_08300].

G.2.3 Added SWS Items

The following SWS Items were added in Rel. 4.0 Rev. 3: [SWS_Rte_03854],
[SWS_Rte_03855], [SWS_Rte_03856], [SWS_Rte_03857], [SWS_Rte_03858],
[SWS_Rte_03859], [SWS_Rte_03860], [SWS_Rte_03861], [SWS_Rte_06700],
[SWS_Rte_06701], [SWS_Rte_06702], [SWS_Rte_06703], [SWS_Rte_06704],
[SWS_Rte_06705], [SWS_Rte_06706], [SWS_Rte_06707], [SWS_Rte_06708],
[SWS_Rte_06709], [SWS_Rte_06710], [SWS_Rte_06711], [SWS_Rte_06712],
[SWS_Rte_06713], [SWS_Rte_06714], [SWS_Rte_06715], [SWS_Rte_06716],
[SWS_Rte_06717], [SWS_Rte_06718], [SWS_Rte_06719], [SWS_Rte_06720],
[SWS_Rte_06721], [SWS_Rte_06722], [SWS_Rte_06723], [SWS_Rte_06724],
[SWS_Rte_06725], [SWS_Rte_06726], [SWS_Rte_07082], [SWS_Rte_07083],
[SWS_Rte_07084], [SWS_Rte_07085], [SWS_Rte_07086], [SWS_Rte_07087],
[SWS_Rte_07088], [SWS_Rte_07089], [SWS_Rte_07090], [SWS_Rte_07091],
[SWS_Rte_07092], [SWS_Rte_07093], [SWS_Rte_07094], [SWS_Rte_07095],
[SWS_Rte_07096], [SWS_Rte_07097], [SWS_Rte_07099], [SWS_Rte_07593],
[SWS_Rte_07594], [SWS_Rte_07595], [SWS_Rte_07596], [SWS_Rte_07692],
[SWS_Rte_07693], [SWS_Rte_07694], [SWS_Rte_07920], [SWS_Rte_07921],
[SWS_Rte_07922], [SWS_Rte_07923], [SWS_Rte_07924], [SWS_Rte_08004],
[SWS_Rte_08005], [SWS_Rte_08007], [SWS_Rte_08008], [SWS_Rte_08009],
[SWS_Rte_08016], [SWS_Rte_08017], [SWS_Rte_08018], [SWS_Rte_08020],
[SWS_Rte_08021], [SWS_Rte_08022], [SWS_Rte_08023], [SWS_Rte_08024],
[SWS_Rte_08025], [SWS_Rte_08026], [SWS_Rte_08027], [SWS_Rte_08028],
[SWS_Rte_08029], [SWS_Rte_08030], [SWS_Rte_08031], [SWS_Rte_08032],
[SWS_Rte_08033], [SWS_Rte_08034], [SWS_Rte_08035], [SWS_Rte_08036],
[SWS_Rte_08037], [SWS_Rte_08038], [SWS_Rte_08039], [SWS_Rte_08040],
[SWS_Rte_08041], [SWS_Rte_08042], [SWS_Rte_08043], [SWS_Rte_08044],
[SWS_Rte_08045], [SWS_Rte_08303], [SWS_Rte_08304], [SWS_Rte_08305],
[SWS_Rte_08306], [SWS_Rte_08307], [SWS_Rte_08308], [SWS_Rte_08400],
[SWS_Rte_08401], [SWS_Rte_08402], [SWS_Rte_08403], [SWS_Rte_08404],
[SWS_Rte_08500], [SWS_Rte_08501], SWS_Rte_08503, [SWS_Rte_08504],
[SWS_Rte_08505], [SWS_Rte_08506], [SWS_Rte_08507], [SWS_Rte_08509],
[SWS_Rte_08510], rte_sws_ext_7597, rte_sws_ext_7598, rte_sws_ext_8502,
rte_sws_ext_8508.

914 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

G.3 Changes in Rel. 4.1 Rev. 1 compared to Rel. 4.0 Rev. 3

G.3.1 Renamed SWS Items

The external requirements are redefined as AUTOSAR constraints.

rte_sws_ext_3811 [constr_9004] Usage of WaitPoints is restricted depending
on ExclusiveAreaImplMechanism

rte_sws_ext_7598 [constr_9005] The references RteSwcTriggerSourceRef
has to be consistent with the RteSoftware-
ComponentInstanceRef

rte_sws_ext_7597 [constr_9006] The references RteBswTriggerSourceRef
has to be consistent with the RteBswImple-
mentationRef

rte_sws_ext_7547 [constr_9007] issuedTrigger and BswTriggerDirectImplementa-
tion are mutually exclusive

rte_sws_ext_7040 [constr_9008] The same Trigger in a Trigger Sink must not
be connected to multiple Trigger Sources

rte_sws_ext_7550 [constr_9009] Synchronized Trigger shall not be referenced
by more than one type of access method

rte_sws_ext_7521 [constr_9010] Worst case execution time shall be less than the
GCD

rte_sws_ext_7351 [constr_9011] NvMBlockDescriptor related to a RAM
Block of a NvBlockSwComponentType shall
use NvMBlockUseSyncMechanism

rte_sws_ext_7816 [constr_9012] Category 1 interrupts shall not access the RTE
rte_sws_ext_2542 [constr_9013] Exactly one mode or one mode transition shall

be active
rte_sws_ext_7565 [constr_9014] ModeSwitchPoint(s) and managedMode-

Group(s) are mutually exclusive for synchronized
ModeDeclarationGroupPrototypes

rte_sws_ext_7818 [constr_9015] Rte_Write API may only be used by the runn-
able that describe its usage

rte_sws_ext_7819 [constr_9016] Rte_Send API may only be used by the runn-
able that describes its usage

rte_sws_ext_2681 [constr_9017] Rte_Switch API may only be used by the runn-
able that describes its usage

rte_sws_ext_2682 [constr_9018] Rte_Invalidate API may only be used by the
runnable that describe its usage

rte_sws_ext_2687 [constr_9019] Rte_Feedback API may only be used by the
runnable that describe its usage

rte_sws_ext_2726 [constr_9020] Rte_SwitchAck API may only be used by the
runnable that describe its usage

rte_sws_ext_2683 [constr_9021] Rte_Read API may only be used by the runn-
able that describe its usage

rte_sws_ext_7397 [constr_9022] Rte_DRead API may only be used by the runn-
able that describe its usage

rte_sws_ext_2684 [constr_9023] Rte_Receive API may only be used by the
runnable that describe its usage

rte_sws_ext_2685 [constr_9024] Rte_Call API may only be used by the runn-
able that describe its usage

rte_sws_ext_2686 [constr_9025] Blocking Rte_Result API may only be used by
the runnable that describe the WaitPoint

915 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

rte_sws_ext_7679 [constr_9026] Rte_IWriteRef may not return values written
in previous executions

rte_sws_ext_2601 [constr_9027] Rte_IStatus API shall only be used by a
RunnableEntity describing an access to the
data or which is triggered by an error event re-
lated to this data

rte_sws_ext_7171 [constr_9028] Rte_Enter and Rte_Exit API may only be
used by runnables describing its usage

rte_sws_ext_7172 [constr_9029] Nested call of Rte_Enter and Rte_Exit is re-
stricted

rte_sws_ext_7568 [constr_9030] Rte_Mode API may only be used by the runn-
able that describe its usage

rte_sws_ext_8502 [constr_9031] Rte_Mode API may only be used by the runn-
able that describe its usage

rte_sws_ext_7202 [constr_9032] Rte_Trigger API may only be used by the
runnable that describe its usage

rte_sws_ext_7205 [constr_9033] Rte_IrTrigger API may only be used by the
runnable that describe its usage

rte_sws_ext_7603 [constr_9034] Rte_IsUpdated API may only be used by the
runnable that describe the access to the corre-
sponding data

rte_sws_ext_2582 [constr_9035] Rte_Start shall be called only once
rte_sws_ext_7577 [constr_9036] Rte_Start API may only be used after call of

SchM_Init
rte_sws_ext_2714 [constr_9037] Rte_Start API shall be called on every core
rte_sws_ext_2583 [constr_9038] Rte_Stop shall be called before BSW shutdown
rte_sws_ext_7332 [constr_9039] Rte_PartitionTerminated shall be called

only once
rte_sws_ext_7618 [constr_9040] Rte_PartitionRestarting shall be called

only once
rte_sws_ext_7337 [constr_9041] Rte_RestartPartition shall be called from

RestartTask
rte_sws_ext_1190 [constr_9042] Array Implementation Data Types

needs at least one element
rte_sws_ext_1192 [constr_9043] Structure Implementation Data Types

needs at least one element
rte_sws_ext_7147 [constr_9044] Union Implementation Data Type shall include at

least two elements
rte_sws_ext_2704 [constr_9045] The upper two bits of the of the server return

value are reserved
rte_sws_ext_7285 [constr_9046] SchM_Enter and SchM_Exit API may only be

used by BswModuleEntitys describing its us-
age

rte_sws_ext_7529 [constr_9047] Nested call of SchM_Enter and SchM_Exit
API is restricted

rte_sws_ext_7189 [constr_9048] SchM_Exit API may only be used by BswMod-
uleEntitys that describe its usage

rte_sws_ext_7257 [constr_9049] SchM_Switch API may only be used by
BswModuleEntitys that describe its usage

rte_sws_ext_7587 [constr_9050] SchM_Mode API may only be used by BswMod-
uleEntitys that describe its usage

rte_sws_ext_8508 [constr_9051] SchM_Mode API may only be used by BswMod-
uleEntitys that describe its usage

916 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

rte_sws_ext_7567 [constr_9052] SchM_SwitchAck API may only be used by
BswModuleEntitys that describe its usage

rte_sws_ext_7265 [constr_9053] SchM_Trigger API may only be used by the
BswModuleEntitys that describe its usage

rte_sws_ext_7268 [constr_9054] SchM_ActMainFunction API may only be
used by the BswModuleEntitys that describe
its usage

rte_sws_ext_7272 [constr_9055] SchM_Init shall be called only once
rte_sws_ext_7576 [constr_9056] SchM_Deinit API may only be used after the

was RTE finalized
rte_sws_ext_7276 [constr_9057] SchM_Deinit shall be called before shut down

of BSW
rte_sws_ext_7287 [constr_9058] BswSchedulableEntity is not allowed to

have service arguments or return value
rte_sws_ext_7512 [constr_9059] Usage of Basic Software Scheduler API prereq-

uisites the include of the Module Interlink Header
File

Table G.1: external requirements converted to constraints

rte_sws_7649 [constr_9000] Rte_IFeedback API may only be used by the
RunnableEntitys that describe its usage

Table G.2: requirements converted to constraints

G.3.2 Added constraints

The following constraints were added in Rel. 4.1 Rev. 1: [constr_3510],[con-
str_9060],[constr_9061],[constr_9062],[constr_9063],[constr_9064]

G.3.3 Deleted SWS Items

The following SWS items were removed in Rel. 4.1 Rev. 1: SWS_Rte_02652,
SWS_Rte_02731, SWS_Rte_03555, SWS_Rte_03569, SWS_Rte_03581,
SWS_Rte_03747, SWS_Rte_03803, SWS_Rte_05020, SWS_Rte_05033,
SWS_Rte_05054, SWS_Rte_05055, SWS_Rte_05056, SWS_Rte_05057,
SWS_Rte_05058, SWS_Rte_05059, SWS_Rte_05066, SWS_Rte_05067,
SWS_Rte_05110, SWS_Rte_05163, SWS_Rte_06028, SWS_Rte_07296,
SWS_Rte_07649, SWS_Rte_07656, SWS_Rte_07657, SWS_Rte_07658,
SWS_Rte_07665, SWS_Rte_07687, SWS_Rte_07688, SWS_Rte_07690,
SWS_Rte_07691, SWS_Rte_08503.

917 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

G.3.4 Changed SWS Items

The following SWS items were changed in Rel. 4.1 Rev. 1: [SWS_Rte_01003],
[SWS_Rte_01019], [SWS_Rte_01058], [SWS_Rte_01060], [SWS_Rte_01061],
[SWS_Rte_01064], [SWS_Rte_01065], [SWS_Rte_01071], [SWS_Rte_01072],
[SWS_Rte_01083], [SWS_Rte_01091], [SWS_Rte_01092], [SWS_Rte_01102],
[SWS_Rte_01111], [SWS_Rte_01118], [SWS_Rte_01120], [SWS_Rte_01123],
[SWS_Rte_01126], [SWS_Rte_01150], [SWS_Rte_01206], [SWS_Rte_01252],
[SWS_Rte_01284], [SWS_Rte_01285], [SWS_Rte_01286], [SWS_Rte_01317],
[SWS_Rte_01354], [SWS_Rte_01358], [SWS_Rte_01360], [SWS_Rte_01368],
[SWS_Rte_02516], [SWS_Rte_02530], [SWS_Rte_02544], [SWS_Rte_02571],
[SWS_Rte_02579], [SWS_Rte_02594], [SWS_Rte_02599], [SWS_Rte_02600],
[SWS_Rte_02610], [SWS_Rte_02611], [SWS_Rte_02612], [SWS_Rte_02613],
[SWS_Rte_02614], [SWS_Rte_02615], [SWS_Rte_02619], [SWS_Rte_02623],
[SWS_Rte_02628], [SWS_Rte_02631], [SWS_Rte_02649], [SWS_Rte_02651],
[SWS_Rte_02679], [SWS_Rte_02702], [SWS_Rte_02707], [SWS_Rte_02709],
[SWS_Rte_02712], [SWS_Rte_02713], [SWS_Rte_02725], [SWS_Rte_02736],
[SWS_Rte_02739], [SWS_Rte_02747], [SWS_Rte_02757], [SWS_Rte_02759],
[SWS_Rte_02760], [SWS_Rte_03001], [SWS_Rte_03002], [SWS_Rte_03004],
[SWS_Rte_03005], [SWS_Rte_03012], [SWS_Rte_03503], [SWS_Rte_03504],
[SWS_Rte_03526], [SWS_Rte_03527], [SWS_Rte_03550], [SWS_Rte_03553],
[SWS_Rte_03560], [SWS_Rte_03565], [SWS_Rte_03589], [SWS_Rte_03595],
[SWS_Rte_03598], [SWS_Rte_03602], [SWS_Rte_03603], [SWS_Rte_03714],
[SWS_Rte_03741], [SWS_Rte_03744], [SWS_Rte_03755], [SWS_Rte_03760],
[SWS_Rte_03764], [SWS_Rte_03770], [SWS_Rte_03775], [SWS_Rte_03776],
[SWS_Rte_03788], [SWS_Rte_03800], [SWS_Rte_03809], [SWS_Rte_03827],
[SWS_Rte_03828], [SWS_Rte_03843], [SWS_Rte_03849], [SWS_Rte_03857],
[SWS_Rte_03927], [SWS_Rte_03928], [SWS_Rte_03952], [SWS_Rte_03955],
[SWS_Rte_03970], [SWS_Rte_04508], [SWS_Rte_04515], [SWS_Rte_04516],
[SWS_Rte_04518], [SWS_Rte_05021], [SWS_Rte_05026], [SWS_Rte_05048],
[SWS_Rte_05052], [SWS_Rte_05065], [SWS_Rte_05084], [SWS_Rte_05085],
[SWS_Rte_05090], [SWS_Rte_05111], [SWS_Rte_05131], [SWS_Rte_05145],
[SWS_Rte_05146], [SWS_Rte_05147], [SWS_Rte_05164], [SWS_Rte_05189],
SWS_Rte_05506, [SWS_Rte_05509], [SWS_Rte_06532], [SWS_Rte_06533],
[SWS_Rte_06713], [SWS_Rte_06714], [SWS_Rte_06715], [SWS_Rte_06718],
[SWS_Rte_07006], [SWS_Rte_07008], [SWS_Rte_07031], [SWS_Rte_07047],
[SWS_Rte_07048], [SWS_Rte_07054], [SWS_Rte_07056], [SWS_Rte_07059],
[SWS_Rte_07075], [SWS_Rte_07092], [SWS_Rte_07093], [SWS_Rte_07099],
[SWS_Rte_07101], [SWS_Rte_07122], [SWS_Rte_07135], [SWS_Rte_07140],
[SWS_Rte_07152], [SWS_Rte_07170], [SWS_Rte_07175], [SWS_Rte_07178],
[SWS_Rte_07187], [SWS_Rte_07194], [SWS_Rte_07195], [SWS_Rte_07200],
[SWS_Rte_07203], [SWS_Rte_07251], [SWS_Rte_07254], [SWS_Rte_07270],
[SWS_Rte_07282], [SWS_Rte_07283], [SWS_Rte_07289], [SWS_Rte_07290],
[SWS_Rte_07293], [SWS_Rte_07294], [SWS_Rte_07346], [SWS_Rte_07367],
[SWS_Rte_07384], [SWS_Rte_07385], [SWS_Rte_07387], [SWS_Rte_07390],
[SWS_Rte_07394], [SWS_Rte_07396], [SWS_Rte_07530], [SWS_Rte_07559],

918 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_07562], [SWS_Rte_07563], [SWS_Rte_07575], [SWS_Rte_07586],
[SWS_Rte_07590], [SWS_Rte_07621], [SWS_Rte_07647], [SWS_Rte_07648],
[SWS_Rte_07654], [SWS_Rte_07655], [SWS_Rte_07675], [SWS_Rte_07680],
[SWS_Rte_08001], [SWS_Rte_08002], [SWS_Rte_08016], [SWS_Rte_08039],
[SWS_Rte_08301], [SWS_Rte_08500], [SWS_Rte_08505].

G.3.5 Added SWS Items

The following SWS items were added in Rel. 4.1 Rev. 1: [SWS_Rte_03862],
[SWS_Rte_06727], [SWS_Rte_06728], [SWS_Rte_06729], [SWS_Rte_06730],
[SWS_Rte_06731], [SWS_Rte_06732], [SWS_Rte_06733], [SWS_Rte_06734],
[SWS_Rte_06735], [SWS_Rte_06736], [SWS_Rte_06737], [SWS_Rte_06738],
[SWS_Rte_06739], [SWS_Rte_06740], [SWS_Rte_06741], [SWS_Rte_06742],
[SWS_Rte_06743], [SWS_Rte_06744], [SWS_Rte_06745], [SWS_Rte_06746],
[SWS_Rte_06747], [SWS_Rte_06748], [SWS_Rte_06749], [SWS_Rte_06750],
[SWS_Rte_06751], [SWS_Rte_06752], [SWS_Rte_06753], [SWS_Rte_06754],
[SWS_Rte_06755], [SWS_Rte_06756], [SWS_Rte_06757], [SWS_Rte_06758],
[SWS_Rte_06759], [SWS_Rte_06760], [SWS_Rte_06761], [SWS_Rte_06762],
[SWS_Rte_06764], [SWS_Rte_06765], [SWS_Rte_06766], [SWS_Rte_06767],
[SWS_Rte_06768], [SWS_Rte_06769], [SWS_Rte_06770], [SWS_Rte_06771],
[SWS_Rte_06772], [SWS_Rte_06773], [SWS_Rte_06774], [SWS_Rte_06775],
[SWS_Rte_06776], [SWS_Rte_06777], [SWS_Rte_06778], [SWS_Rte_06779],
[SWS_Rte_06780], [SWS_Rte_06781], [SWS_Rte_06782], [SWS_Rte_06783],
[SWS_Rte_06784], [SWS_Rte_06785], [SWS_Rte_06786], [SWS_Rte_06787],
[SWS_Rte_06788], [SWS_Rte_06789], [SWS_Rte_06791], [SWS_Rte_06792],
[SWS_Rte_06793], [SWS_Rte_06794], [SWS_Rte_06795], [SWS_Rte_06796],
[SWS_Rte_06797], [SWS_Rte_07828], [SWS_Rte_07829], [SWS_Rte_07830],
[SWS_Rte_07831], [SWS_Rte_07832], [SWS_Rte_07833], [SWS_Rte_07834],
[SWS_Rte_07835], [SWS_Rte_07836], [SWS_Rte_07837], [SWS_Rte_07838],
[SWS_Rte_07839], [SWS_Rte_07840], [SWS_Rte_07841], [SWS_Rte_07925],
[SWS_Rte_07926], [SWS_Rte_07927], [SWS_Rte_08046], [SWS_Rte_08047],
[SWS_Rte_08048], [SWS_Rte_08049], [SWS_Rte_08050], [SWS_Rte_08051],
[SWS_Rte_08052], [SWS_Rte_08053], [SWS_Rte_08054], [SWS_Rte_08055],
[SWS_Rte_08056], [SWS_Rte_08057], [SWS_Rte_08058], [SWS_Rte_08059],
[SWS_Rte_08060], [SWS_Rte_08061], [SWS_Rte_08062], [SWS_Rte_08063],
[SWS_Rte_08064], [SWS_Rte_08065], [SWS_Rte_08066], [SWS_Rte_08067],
[SWS_Rte_08068], [SWS_Rte_08069], [SWS_Rte_08070], [SWS_Rte_08071],
[SWS_Rte_08072], [SWS_Rte_08073], [SWS_Rte_08309], [SWS_Rte_08310],
[SWS_Rte_08311], [SWS_Rte_08405], [SWS_Rte_08406], [SWS_Rte_08407],
[SWS_Rte_08408], [SWS_Rte_08409], [SWS_Rte_08410], [SWS_Rte_08411],
[SWS_Rte_08412], [SWS_Rte_08511], [SWS_Rte_08512], [SWS_Rte_08513],
[SWS_Rte_08514], [SWS_Rte_08600], [SWS_Rte_08601], [SWS_Rte_08700],
[SWS_Rte_08701], [SWS_Rte_08702], [SWS_Rte_08703], [SWS_Rte_08704],
[SWS_Rte_08705], [SWS_Rte_08706], [SWS_Rte_08707], [SWS_Rte_08708],
[SWS_Rte_08709], [SWS_Rte_08710], [SWS_Rte_08711], [SWS_Rte_08712],

919 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_08713], [SWS_Rte_08725], [SWS_Rte_08726], [SWS_Rte_08727],
[SWS_Rte_08728], [SWS_Rte_08729], [SWS_Rte_08730], [SWS_Rte_08731],
[SWS_Rte_08732], [SWS_Rte_08733], [SWS_Rte_08734], [SWS_Rte_08735],
[SWS_Rte_08736], [SWS_Rte_08737], [SWS_Rte_08738], [SWS_Rte_08739],
[SWS_Rte_08740], [SWS_Rte_08741], [SWS_Rte_08742], [SWS_Rte_08743],
[SWS_Rte_08744], [SWS_Rte_08745], [SWS_Rte_08746], [SWS_Rte_08747],
[SWS_Rte_08748], [SWS_Rte_08749], [SWS_Rte_08750], [SWS_Rte_08751],
[SWS_Rte_08752], [SWS_Rte_08753], [SWS_Rte_08754], [SWS_Rte_08755],
[SWS_Rte_08756], [SWS_Rte_08757], [SWS_Rte_08758], [SWS_Rte_08759],
[SWS_Rte_08761], [SWS_Rte_08762], [SWS_Rte_08763], [SWS_Rte_08764],
[SWS_Rte_08765], [SWS_Rte_08766].

G.4 Changes in Rel. 4.1 Rev. 2 compared to Rel. 4.1 Rev. 1

G.4.1 Added Traceables in 4.1.2

[SWS_Rte_01371] [SWS_Rte_01372] [SWS_Rte_07410] [SWS_Rte_07411]
[SWS_Rte_07412] [SWS_Rte_07842] [SWS_Rte_07843] [SWS_Rte_07844]
[SWS_Rte_07928] [SWS_Rte_08074] [SWS_Rte_08075] [SWS_Rte_08076]
[SWS_Rte_08312] [SWS_Rte_08313] [SWS_Rte_08314] [SWS_Rte_08315]
[SWS_Rte_08316] [SWS_Rte_08317] [SWS_Rte_08413] [SWS_Rte_08414]
[SWS_Rte_08415] [SWS_Rte_08416] [SWS_Rte_08767] [SWS_Rte_08768]
[SWS_Rte_08769] [SWS_Rte_08770] [SWS_Rte_08771] [SWS_Rte_08772]
[SWS_Rte_08773] [SWS_Rte_08774] [SWS_Rte_08775] [SWS_Rte_08776]
[SWS_Rte_08800] [SWS_Rte_08801]

G.4.2 Changed Traceables in 4.1.2

[SWS_Rte_01003] [SWS_Rte_01296] [SWS_Rte_01297] [SWS_Rte_01358]
[SWS_Rte_01360] [SWS_Rte_01368] [SWS_Rte_02549] [SWS_Rte_02600]
[SWS_Rte_02678] [SWS_Rte_03012] [SWS_Rte_03526] [SWS_Rte_03527]
[SWS_Rte_03571] [SWS_Rte_03755] [SWS_Rte_03788] [SWS_Rte_03809]
[SWS_Rte_03810] [SWS_Rte_03813] [SWS_Rte_03832] [SWS_Rte_03843]
[SWS_Rte_03849] [SWS_Rte_03851] [SWS_Rte_03862] [SWS_Rte_03970]
[SWS_Rte_04508] [SWS_Rte_05052] [SWS_Rte_05088] [SWS_Rte_05089]
[SWS_Rte_05090] [SWS_Rte_05097] [SWS_Rte_05129] [SWS_Rte_05147]
[SWS_Rte_05177] [SWS_Rte_05184] [SWS_Rte_05191] [SWS_Rte_05503]
[SWS_Rte_06727] [SWS_Rte_06731] [SWS_Rte_06732] [SWS_Rte_06737]
[SWS_Rte_06738] [SWS_Rte_06780] [SWS_Rte_07006] [SWS_Rte_07027]
[SWS_Rte_07085] [SWS_Rte_07101] [SWS_Rte_07135] [SWS_Rte_07170]
[SWS_Rte_07175] [SWS_Rte_07188] [SWS_Rte_07196] [SWS_Rte_07260]
[SWS_Rte_07261] [SWS_Rte_07385] [SWS_Rte_07538] [SWS_Rte_07620]
[SWS_Rte_07621] [SWS_Rte_07654] [SWS_Rte_07662] [SWS_Rte_07694]

920 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_07831] [SWS_Rte_07832] [SWS_Rte_07927] [SWS_Rte_08017]
[SWS_Rte_08018] [SWS_Rte_08020] [SWS_Rte_08021] [SWS_Rte_08022]
[SWS_Rte_08023] [SWS_Rte_08043] [SWS_Rte_08044] [SWS_Rte_08045]
[SWS_Rte_08064] [SWS_Rte_08072] [SWS_Rte_08403] [SWS_Rte_08404]
[SWS_Rte_08407] [SWS_Rte_08501] [SWS_Rte_08507] [SWS_Rte_08513]
[SWS_Rte_08514] [SWS_Rte_08733] [SWS_Rte_08743]

G.4.3 Deleted Traceables in 4.1.2

[SWS_Rte_02673] [SWS_Rte_05001] [SWS_Rte_05506]

G.4.4 Added Constraints in 4.1.2

Id Heading
[constr_9080] The shortNames of PortInterfaces shall be unique within a software component if it

supports multiple instantiation or indirectAPI attribute is set to ’true’
[constr_9081] Mapping to partition vs the value of VariableAccess.scope

Table G.3: Added Constraints in 4.1.2

G.4.5 Changed Constraints in 4.1.2

Id Heading
[constr_9020] The blocking Rte_SwitchAck API may only be used by the runnable that describes

its usage.

Table G.4: Changed Constraints in 4.1.2

G.4.6 Deleted Constraints in 4.1.2

none

G.5 Changes in Rel. 4.1 Rev. 3 compared to Rel. 4.1 Rev. 2

G.5.1 Added Traceables in 4.1.3

[SWS_Rte_01373] [SWS_Rte_01374] [SWS_Rte_01375] [SWS_Rte_06030]
[SWS_Rte_06031] [SWS_Rte_06032] [SWS_Rte_06551] [SWS_Rte_06552]
[SWS_Rte_06553] [SWS_Rte_06790] [SWS_Rte_06798] [SWS_Rte_06799]
[SWS_Rte_06800] [SWS_Rte_06801] [SWS_Rte_06802] [SWS_Rte_06803]
[SWS_Rte_06804] [SWS_Rte_06805] [SWS_Rte_06806] [SWS_Rte_06807]
[SWS_Rte_06808] [SWS_Rte_06809] [SWS_Rte_06810] [SWS_Rte_07845]
[SWS_Rte_07846] [SWS_Rte_07847] [SWS_Rte_07848] [SWS_Rte_07849]

921 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

[SWS_Rte_07850] [SWS_Rte_07851] [SWS_Rte_08077] [SWS_Rte_08078]
[SWS_Rte_08079] [SWS_Rte_08318] [SWS_Rte_08319] [SWS_Rte_08320]
[SWS_Rte_08321] [SWS_Rte_08322] [SWS_Rte_08777] [SWS_Rte_08778]
[SWS_Rte_08779] [SWS_Rte_08780] [SWS_Rte_08781] [SWS_Rte_08782]
[SWS_Rte_08783] [SWS_Rte_08784] [SWS_Rte_08785] [SWS_Rte_08786]

G.5.2 Changed Traceables in 4.1.3

[SWS_Rte_01071] [SWS_Rte_01072] [SWS_Rte_01083] [SWS_Rte_01091]
[SWS_Rte_01092] [SWS_Rte_01102] [SWS_Rte_01111] [SWS_Rte_01118]
[SWS_Rte_01120] [SWS_Rte_01123] [SWS_Rte_01206] [SWS_Rte_01252]
[SWS_Rte_01354] [SWS_Rte_02568] [SWS_Rte_02599] [SWS_Rte_02614]
[SWS_Rte_02619] [SWS_Rte_02628] [SWS_Rte_02631] [SWS_Rte_02659]
[SWS_Rte_02667] [SWS_Rte_02725] [SWS_Rte_02740] [SWS_Rte_02741]
[SWS_Rte_02743] [SWS_Rte_02744] [SWS_Rte_02745] [SWS_Rte_03527]
[SWS_Rte_03550] [SWS_Rte_03553] [SWS_Rte_03560] [SWS_Rte_03565]
[SWS_Rte_03741] [SWS_Rte_03744] [SWS_Rte_03800] [SWS_Rte_03813]
[SWS_Rte_03832] [SWS_Rte_03858] [SWS_Rte_03859] [SWS_Rte_03928]
[SWS_Rte_05129] [SWS_Rte_05501] [SWS_Rte_05509] [SWS_Rte_06536]
[SWS_Rte_07026] [SWS_Rte_07038] [SWS_Rte_07039] [SWS_Rte_07057]
[SWS_Rte_07195] [SWS_Rte_07200] [SWS_Rte_07203] [SWS_Rte_07214]
[SWS_Rte_07216] [SWS_Rte_07223] [SWS_Rte_07224] [SWS_Rte_07367]
[SWS_Rte_07394] [SWS_Rte_07554] [SWS_Rte_07640] [SWS_Rte_07680]
[SWS_Rte_07928] [SWS_Rte_08066] [SWS_Rte_08314] [SWS_Rte_08315]
[SWS_Rte_08316] [SWS_Rte_08800]

G.5.3 Deleted Traceables in 4.1.3

[SWS_Rte_03012] [SWS_Rte_03790] [SWS_Rte_04525] [SWS_Rte_05116]
[SWS_Rte_05134]

G.5.4 Added Constraints in 4.1.3

Id Heading
[constr_9082] RtePositionInTask and RteBswPositionInTask values shall be unique in a

particular context

Table G.5: Added Constraints in 4.1.3

G.5.5 Changed Constraints in 4.1.3

none

922 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.5.0

R4.1 Rev 3

G.5.6 Deleted Constraints in 4.1.3

Id Heading
[constr_9004] Usage of WaitPoints is restricted depending on ExclusiveAreaImplMechanism

Table G.6: Deleted Constraints in 4.1.3

923 of 923
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

	1 Introduction
	1.1 Scope
	1.2 Dependency to other AUTOSAR specifications
	1.3 Acronyms and Abbreviations
	1.4 Technical Terms
	1.5 Document Conventions
	1.6 Requirements Tracing

	2 RTE Overview
	2.1 The RTE in the Context of AUTOSAR
	2.2 AUTOSAR Concepts
	2.2.1 AUTOSAR Software-components
	2.2.2 Basic Software Modules
	2.2.3 Communication
	2.2.3.1 Communication Paradigms
	2.2.3.2 Communication Modes
	2.2.3.3 Static Communication
	2.2.3.4 Multiplicity

	2.2.4 Concurrency

	2.3 The RTE Generator
	2.4 Design Decisions

	3 RTE Generation Process
	3.1 Contract Phase
	3.1.1 RTE Contract Phase
	3.1.2 Basic Software Scheduler Contract Phase

	3.2 PreBuild Data Set Contract Phase
	3.3 Edit ECU Configuration of the RTE
	3.4 Generation Phase
	3.4.1 Basic Software Scheduler Generation Phase
	3.4.2 RTE Generation Phase
	3.4.3 Basic Software Module Description generation
	3.4.3.1 Bsw Module Description
	3.4.3.2 Bsw Internal Behavior
	3.4.3.3 Bsw Implementation

	3.5 PreBuild Data Set Generation Phase
	3.6 PostBuild Data Set Generation Phase
	3.7 RTE Configuration interaction with other BSW Modules

	4 RTE Functional Specification
	4.1 Architectural concepts
	4.1.1 Scope
	4.1.2 RTE and Data Types
	4.1.3 RTE and AUTOSAR Software-Components
	4.1.3.1 Hierarchical Structure of Software-Components
	4.1.3.2 Ports, Interfaces and Connections
	4.1.3.3 Internal Behavior
	4.1.3.4 Implementation

	4.1.4 Instantiation
	4.1.4.1 Scope and background
	4.1.4.2 Concepts of instantiation
	4.1.4.3 Single instantiation
	4.1.4.4 Multiple instantiation

	4.1.5 RTE and AUTOSAR Services
	4.1.6 RTE and ECU Abstraction
	4.1.7 RTE and Complex Device Driver
	4.1.8 Basic Software Scheduler and Basic Software Modules
	4.1.8.1 Description of a Basic Software Module
	4.1.8.2 Basic Software Interfaces
	4.1.8.3 Basic Software Internal Behavior
	4.1.8.4 Basic Software Implementation
	4.1.8.5 Multiple Instances of Basic Software Modules
	4.1.8.6 AUTOSAR Services / ECU Abstraction / Complex Device Drivers

	4.2 RTE and Basic Software Scheduler Implementation Aspects
	4.2.1 Scope
	4.2.2 OS
	4.2.2.1 OS Objects
	4.2.2.2 Basic Software Schedulable Entities
	4.2.2.3 Runnable Entities
	4.2.2.4 RTE Events
	4.2.2.5 BswEvents
	4.2.2.6 Mapping of Runnable Entities and Basic Software Schedulable Entities to tasks (informative)
	4.2.2.7 Monitoring of runnable execution time
	4.2.2.8 TimingEvent activated runnables
	4.2.2.9 Synchronization of TimingEvent activated runnables
	4.2.2.10 BackgroundEvent activated Runnable Entities and BasicSoftware Scheduleable Entities
	4.2.2.11 InitEvent activated Runnable Entities

	4.2.3 Activation and Start of ExecutableEntitys
	4.2.3.1 Activation by direct function call
	4.2.3.2 Activation Offset for RunnableEntitys and BswSchedulableEntitys
	4.2.3.3 Provide activating RTE event

	4.2.4 Interrupt decoupling and notifications
	4.2.4.1 Basic notification principles
	4.2.4.2 Interrupts
	4.2.4.3 Decoupling interrupts on RTE level
	4.2.4.4 RTE and interrupt categories
	4.2.4.5 RTE and Basic Software Scheduler and BswExecutionContext

	4.2.5 Data Consistency
	4.2.5.1 General
	4.2.5.2 Communication Patterns
	4.2.5.3 Concepts
	4.2.5.4 Mechanisms to guarantee data consistency
	4.2.5.5 Exclusive Areas
	4.2.5.6 InterRunnableVariables

	4.2.6 Multiple trigger of Runnable Entities and Basic Software Schedulable Entities
	4.2.7 Implementation of Parameter and Data elements
	4.2.7.1 General
	4.2.7.2 Compatibility rules
	4.2.7.3 Implementation of an interface element
	4.2.7.4 Initialization of VariableDataPrototypes
	4.2.7.5 Initial value calculation

	4.2.8 Measurement and Calibration
	4.2.8.1 General
	4.2.8.2 Measurement
	4.2.8.3 Calibration
	4.2.8.4 Generation of McSupportData

	4.2.9 Access to NVRAM data
	4.2.9.1 General
	4.2.9.2 Usage of the NvBlockSwComponentType
	4.2.9.3 Interface of the NvBlockSwComponentType
	4.2.9.4 Data Consistency

	4.3 Communication Paradigms
	4.3.1 Sender-Receiver
	4.3.1.1 Introduction
	4.3.1.2 Receive Modes
	4.3.1.3 Multiple Data Elements
	4.3.1.4 Multiple Receivers and Senders
	4.3.1.5 Implicit and Explicit Data Reception and Transmission
	4.3.1.6 Transmission Acknowledgement
	4.3.1.7 Communication Time-out
	4.3.1.8 Data Element Invalidation
	4.3.1.9 Filters
	4.3.1.10 Buffering
	4.3.1.11 Operation
	4.3.1.12 ``Never received status'' for Data Element
	4.3.1.13 ``Update flag'' for Data Element
	4.3.1.14 Dynamic data type
	4.3.1.15 Inter-ECU communication through TP
	4.3.1.16 Inter-ECU communication of arrays of bytes
	4.3.1.17 Handling of acknowledgment events

	4.3.2 Client-Server
	4.3.2.1 Introduction
	4.3.2.2 Multiplicity
	4.3.2.3 Communication Time-out
	4.3.2.4 Port-Defined argument values
	4.3.2.5 Buffering
	4.3.2.6 Inter-ECU and Inter-Partition Response to Request Mapping
	4.3.2.7 Parameter Serialization
	4.3.2.8 Operation

	4.3.3 SWC internal communication
	4.3.3.1 Inter Runnable Variables

	4.3.4 Inter-Partition communication
	4.3.4.1 Inter partition data communication using IOC
	4.3.4.2 Inter partition data communication using Basic Software Scheduler
	4.3.4.3 Accessing COM from slave core in multicore configuration
	4.3.4.4 Signaling and control flow support for inter partition communication
	4.3.4.5 Trusted Functions
	4.3.4.6 Memory Protection and Pointer Type Parameters in RTE API

	4.3.5 PortInterface Element Mapping and Data Conversion
	4.3.5.1 PortInterface Element Mapping
	4.3.5.2 Network Representation
	4.3.5.3 Data Conversion
	4.3.5.4 Range Checks during Runtime

	4.4 Modes
	4.4.1 Mode User
	4.4.2 Mode Manager
	4.4.3 Refinement of the semantics of ModeDeclarations and ModeDeclarationGroups
	4.4.4 Order of actions taken by the RTE / Basic Software Scheduler upon interception of a mode switch notification
	4.4.5 Assignment of mode machine instances to RTE and Basic Software Scheduler
	4.4.6 Initialization of mode machine instances
	4.4.7 Notification of mode switches
	4.4.8 Mode switch acknowledgment
	4.4.9 Mode switch error handling
	4.4.9.1 Mode User gets terminated
	4.4.9.2 Mode Manager gets terminated

	4.5 External and Internal Trigger
	4.5.1 External Trigger Event Communication
	4.5.1.1 Introduction
	4.5.1.2 Trigger Sink
	4.5.1.3 Trigger Source
	4.5.1.4 Multiplicity
	4.5.1.5 Synchronized Trigger

	4.5.2 Inter Runnable Triggering
	4.5.2.1 Multiplicity

	4.5.3 Inter Basic Software Module Entity Triggering
	4.5.4 Intra ECU Trigger Communication
	4.5.5 Queuing of Triggers
	4.5.6 Activation of triggered ExecutableEntities

	4.6 Initialization and Finalization
	4.6.1 Initialization and Finalization of the RTE
	4.6.1.1 Initialization of the Basic Software Scheduler
	4.6.1.2 Initialization of the RTE
	4.6.1.3 Stop and restart of the RTE
	4.6.1.4 Finalization of the RTE
	4.6.1.5 Finalization of the Basic Software Scheduler

	4.6.2 Initialization and Finalization of AUTOSAR Software-Components

	4.7 Variant Handling Support
	4.7.1 Overview
	4.7.2 Choosing a Variant and Binding Variability
	4.7.2.1 General impact of Binding Times on RTE generation
	4.7.2.2 Choosing a particular variant
	4.7.2.3 SystemDesignTime
	4.7.2.4 CodeGenerationTime
	4.7.2.5 PreCompileTime
	4.7.2.6 LinkTime
	4.7.2.7 PostBuild

	4.7.3 Variability affecting the RTE generation
	4.7.3.1 Software Composition
	4.7.3.2 Atomic Software Component and its Internal Behavior
	4.7.3.3 NvBlockComponent and its Internal Behavior
	4.7.3.4 Parameter Component
	4.7.3.5 Data Type
	4.7.3.6 Constants
	4.7.3.7 Basic Software Modules and its Internal Behavior

	4.7.4 Variability affecting the Basic Software Scheduler generation
	4.7.4.1 Basic Software Scheduler API which is subject to variability
	4.7.4.2 Basic Software Entities
	4.7.4.3 API behavior

	4.7.5 Variability affecting SWC implementation

	4.8 Development errors
	4.8.1 DET Report Identifiers
	4.8.2 DET Error Identifiers
	4.8.3 DET Error Classification

	4.9 Bypass Support
	4.9.1 Bypass description
	4.9.2 Component wrapper method
	4.9.3 Direct buffer access method

	5 RTE Reference
	5.1 Scope
	5.1.1 Programming Languages
	5.1.2 Generator Principles
	5.1.2.1 Operating Modes
	5.1.2.2 Optimization Modes
	5.1.2.3 Build support
	5.1.2.4 Debugging support
	5.1.2.5 Software Component Namespace

	5.1.3 Generator external configuration switches

	5.2 API Principles
	5.2.1 RTE Namespace
	5.2.2 Direct API
	5.2.3 Indirect API
	5.2.3.1 Accessing Port Handles

	5.2.4 VariableAccess in the dataReadAccess and dataWriteAccess roles
	5.2.5 Per Instance Memory
	5.2.6 API Mapping
	5.2.6.1 ``RTE Contract'' Phase
	5.2.6.2 ``RTE Generation'' Phase
	5.2.6.3 Function Elision
	5.2.6.4 API Naming Conventions
	5.2.6.5 API Parameters
	5.2.6.6 Return Values
	5.2.6.7 Return References
	5.2.6.8 Error Handling
	5.2.6.9 Success Feedback

	5.2.7 Unconnected Ports
	5.2.7.1 Data Elements
	5.2.7.2 Mode Switch Ports
	5.2.7.3 Client-Server

	5.2.8 Non-identical port interfaces

	5.3 RTE Modules
	5.3.1 RTE Header File
	5.3.2 Lifecycle Header File
	5.3.3 Application Header File
	5.3.3.1 File Name
	5.3.3.2 Scope
	5.3.3.3 File Contents

	5.3.4 RTE Types Header File
	5.3.4.1 File Contents
	5.3.4.2 Classification of Implementation Data Types
	5.3.4.3 Primitive Implementation Data Type
	5.3.4.4 Array Implementation Data Type
	5.3.4.5 Structure Implementation Data Type and Union Implementation Data Type
	5.3.4.6 Union Implementation Data Type
	5.3.4.7 Implementation Data Type redefinition
	5.3.4.8 Pointer Implementation Data Type
	5.3.4.9 ImplementationDataTypes with VariationPoints
	5.3.4.10 Naming of data types
	5.3.4.11 C/C++

	5.3.5 RTE Data Handle Types Header File
	5.3.5.1 File Name
	5.3.5.2 File Contents

	5.3.6 Application Types Header File
	5.3.6.1 File Name
	5.3.6.2 Scope
	5.3.6.3 File Contents
	5.3.6.4 RTE Modes
	5.3.6.5 Enumeration Data Types
	5.3.6.6 Range Data Types
	5.3.6.7 Implementation Data Type symbols

	5.3.7 VFB Tracing Header File
	5.3.7.1 C/C++
	5.3.7.2 File Contents

	5.3.8 RTE Configuration Header File
	5.3.8.1 C/C++
	5.3.8.2 File Contents

	5.3.9 Generated RTE
	5.3.9.1 Header File Usage
	5.3.9.2 C/C++
	5.3.9.3 File Contents
	5.3.9.4 Reentrancy

	5.3.10 RTE Post Build Variant Sets
	5.3.10.1 Example 1: File Contents Rte_PBCfg.h
	5.3.10.2 Example 2: File Contents Rte_PBCfg.h
	5.3.10.3 Examples: File Contents Rte_PBCfg.c

	5.4 RTE Data Structures
	5.4.1 Instance Handle
	5.4.2 Component Data Structure
	5.4.2.1 Data Handles Section
	5.4.2.2 Per-instance Memory Handles Section
	5.4.2.3 Inter Runnable Variable Handles Section
	5.4.2.4 Exclusive-area API Section
	5.4.2.5 Port API Section
	5.4.2.6 Calibration Parameter Handles Section
	5.4.2.7 Inter Runnable Variable API Section
	5.4.2.8 Inter Runnable Triggering API Section
	5.4.2.9 Instance Id Section
	5.4.2.10 Vendor Specific Section

	5.5 API Data Types
	5.5.1 Std_ReturnType
	5.5.1.1 Infrastructure Errors
	5.5.1.2 Application Errors
	5.5.1.3 Predefined Error Codes

	5.5.2 Rte_Instance
	5.5.3 RTE Modes
	5.5.4 Enumeration Data Types
	5.5.5 Range Data Types
	5.5.6 Data Types with bitfield conversions

	5.6 API Reference
	5.6.1 Rte_Ports
	5.6.2 Rte_NPorts
	5.6.3 Rte_Port
	5.6.4 Rte_Write
	5.6.5 Rte_Send
	5.6.6 Rte_Switch
	5.6.7 Rte_Invalidate
	5.6.8 Rte_Feedback
	5.6.9 Rte_SwitchAck
	5.6.10 Rte_Read
	5.6.11 Rte_DRead
	5.6.12 Rte_Receive
	5.6.13 Rte_Call
	5.6.14 Rte_Result
	5.6.15 Rte_Pim
	5.6.16 Rte_CData
	5.6.17 Rte_Prm
	5.6.18 Rte_IRead
	5.6.19 Rte_IWrite
	5.6.20 Rte_IWriteRef
	5.6.21 Rte_IInvalidate
	5.6.22 Rte_IStatus
	5.6.23 Rte_IrvIRead
	5.6.24 Rte_IrvIWrite
	5.6.25 Rte_IrvRead
	5.6.26 Rte_IrvWrite
	5.6.27 Rte_Enter
	5.6.28 Rte_Exit
	5.6.29 Rte_Mode
	5.6.30 Enhanced Rte_Mode
	5.6.31 Rte_Trigger
	5.6.32 Rte_IrTrigger
	5.6.33 Rte_IFeedback
	5.6.34 Rte_IsUpdated
	5.6.35 Rte_PBCon

	5.7 Runnable Entity Reference
	5.7.1 Signature
	5.7.2 Entry Point Prototype
	5.7.3 Role Parameters
	5.7.4 Return Value
	5.7.5 Triggering Events
	5.7.5.1 TimingEvent
	5.7.5.2 BackgroundEvent
	5.7.5.3 SwcModeSwitchEvent
	5.7.5.4 AsynchronousServerCallReturnsEvent
	5.7.5.5 DataReceiveErrorEvent
	5.7.5.6 OperationInvokedEvent
	5.7.5.7 DataReceivedEvent
	5.7.5.8 DataSendCompletedEvent
	5.7.5.9 ModeSwitchedAckEvent
	5.7.5.10 SwcModeManagerErrorEvent
	5.7.5.11 ExternalTriggerOccurredEvent
	5.7.5.12 InternalTriggerOccurredEvent
	5.7.5.13 DataWriteCompletedEvent
	5.7.5.14 InitEvent

	5.7.6 Reentrancy

	5.8 RTE Lifecycle API Reference
	5.8.1 Rte_Start
	5.8.2 Rte_Stop
	5.8.3 Rte_PartitionTerminated
	5.8.4 Rte_PartitionRestarting
	5.8.5 Rte_RestartPartition
	5.8.6 Rte_Init
	5.8.7 Rte_StartTiming

	5.9 RTE Call-backs Reference
	5.9.1 RTE-COM Message Naming Conventions
	5.9.2 Communication Service Call-backs
	5.9.3 Naming convention of Communication Callbacks
	5.9.4 NVM Service Call-backs
	5.9.4.1 Rte_SetMirror
	5.9.4.2 Rte_GetMirror
	5.9.4.3 Rte_NvMNotifyJobFinished
	5.9.4.4 Rte_NvMNotifyInitBlock

	5.10 Expected interfaces
	5.10.1 Expected Interfaces from Com
	5.10.2 Expected Interfaces from Os
	5.10.3 Expected Interfaces for Serialization
	5.10.3.1 Serialization
	5.10.3.2 Deserialization

	5.11 VFB Tracing Reference
	5.11.1 Principle of Operation
	5.11.2 Support for multiple clients
	5.11.3 Support for Multiple Instantiation
	5.11.4 Contribution to the Basic Software Module Description
	5.11.5 Trace Events
	5.11.5.1 RTE API Trace Events
	5.11.5.2 COM Trace Events
	5.11.5.3 OS Trace Events
	5.11.5.4 Runnable Entity Trace Events

	5.11.6 Configuration
	5.11.7 Interaction with Object-code Software-Components

	6 Basic Software Scheduler Reference
	6.1 Scope
	6.2 API Principles
	6.2.1 Basic Software Scheduler Namespace
	6.2.2 BSW Scheduler Name Prefix and Section Name Prefix

	6.3 Basic Software Scheduler modules
	6.3.1 Module Interlink Types Header
	6.3.1.1 File Name
	6.3.1.2 Scope
	6.3.1.3 File Contents
	6.3.1.4 Basic Software Scheduler Modes

	6.3.2 Module Interlink Header
	6.3.2.1 File Name
	6.3.2.2 Scope
	6.3.2.3 File Contents

	6.4 API Data Types
	6.4.1 Predefined Error Codes for Std_ReturnType
	6.4.2 Basic Software Modes

	6.5 API Reference
	6.5.1 SchM_Enter
	6.5.2 SchM_Exit
	6.5.3 SchM_Call
	6.5.4 SchM_Result
	6.5.5 SchM_Send
	6.5.6 SchM_Receive
	6.5.7 SchM_Switch
	6.5.8 SchM_Mode
	6.5.9 Enhanced SchM_Mode
	6.5.10 SchM_SwitchAck
	6.5.11 SchM_Trigger
	6.5.12 SchM_ActMainFunction
	6.5.13 SchM_CData

	6.6 Bsw Module Entity Reference
	6.6.1 Signature
	6.6.2 Entry Point Prototype
	6.6.3 Reentrancy
	6.6.4 Provide activating Bsw event

	6.7 Basic Software Scheduler Lifecycle API Reference
	6.7.1 SchM_Init
	6.7.2 SchM_Deinit
	6.7.3 SchM_GetVersionInfo

	7 RTE ECU Configuration
	7.1 Ecu Configuration Variants
	7.2 RTE Module Configuration
	7.2.1 RTE Configuration Version Information

	7.3 RTE Generation Parameters
	7.4 RTE PreBuild configuration
	7.5 RTE PostBuild configuration
	7.6 Handling of Software Component instances
	7.6.1 RTE Event to task mapping
	7.6.1.1 Evaluation and execution order
	7.6.1.2 Direct function call
	7.6.1.3 Schedule Points
	7.6.1.4 Timeprotection support
	7.6.1.5 Os Interaction
	7.6.1.6 Background activation
	7.6.1.7 Constraints

	7.6.2 Rte Os Interaction
	7.6.2.1 Activation using Os features
	7.6.2.2 Modes and Schedule Tables

	7.6.3 Exclusive Area implementation
	7.6.4 NVRam Allocation
	7.6.5 SWC Trigger queuing

	7.7 Handling of Software Component types
	7.7.1 Selection of Software-Component Implementation
	7.7.2 Component Type Calibration

	7.8 Implicit communication configuration
	7.9 Communication infrastructure
	7.10 Configuration of Client-Server Serialization
	7.11 Configuration of the BSW Scheduler
	7.11.1 BSW Scheduler General configuration
	7.11.2 BSW Module Instance configuration
	7.11.2.1 BSW ExclusiveArea configuration
	7.11.2.2 BswEvent to task mapping
	7.11.2.3 BSW Trigger configuration
	7.11.2.4 BSW ModeDeclarationGroup configuration
	7.11.2.5 BSW Client Server configuration
	7.11.2.6 BSW Sender Receiver configuration

	7.12 Configuration of Initialization

	A Metamodel Restrictions
	A.1 Restrictions concerning WaitPoint
	A.2 Restrictions concerning RTEEvent
	A.3 Restrictions concerning queued implementation policy
	A.4 Restrictions concerning ServerCallPoint
	A.5 Restriction concerning multiple instantiation of software components
	A.6 Restrictions concerning runnable entity
	A.7 Restrictions concerning runnables with dependencies on modes
	A.8 Restriction concerning SwcInternalBehavior
	A.9 Restrictions concerning Initial Value
	A.10 Restriction concerning PerInstanceMemory
	A.11 Restrictions concerning unconnected r-port
	A.12 Restrictions regarding communication of mode switch notifications
	A.13 Restrictions regarding Measurement and Calibration
	A.14 Restriction concerning ExclusiveAreaImplMechanism
	A.15 Restrictions concerning AtomicSwComponentTypes
	A.16 Restriction concerning the enableUpdate attribute of NonqueuedReceiverComSpecs
	A.17 Restrictions concerning the large and dynamic data type
	A.18 Restriction concerning REFERENCE types
	A.19 Restriction concerning ModeDeclarationGroup categories and value attributes
	A.20 Restrictions concerning C/S Interfaces

	B External Requirements
	C MISRA C Compliance
	D Referenced Meta Classes
	E Referenced ECUC Configuration Parameters
	F Examples
	F.1 ModeDeclarationGroupMapping
	F.2 Stability need for received data
	F.3 CompuMethod with bitfield texttable conversion

	G Changes History
	G.1 Changes in Rel. 4.0 Rev. 2 compared to Rel. 4.0 Rev. 1
	G.1.1 Deleted SWS Items
	G.1.2 Changed SWS Items
	G.1.3 Added SWS Items

	G.2 Changes in Rel. 4.0 Rev. 3 compared to Rel. 4.0 Rev. 2
	G.2.1 Deleted SWS Items
	G.2.2 Changed SWS Items
	G.2.3 Added SWS Items

	G.3 Changes in Rel. 4.1 Rev. 1 compared to Rel. 4.0 Rev. 3
	G.3.1 Renamed SWS Items
	G.3.2 Added constraints
	G.3.3 Deleted SWS Items
	G.3.4 Changed SWS Items
	G.3.5 Added SWS Items

	G.4 Changes in Rel. 4.1 Rev. 2 compared to Rel. 4.1 Rev. 1
	G.4.1 Added Traceables in 4.1.2
	G.4.2 Changed Traceables in 4.1.2
	G.4.3 Deleted Traceables in 4.1.2
	G.4.4 Added Constraints in 4.1.2
	G.4.5 Changed Constraints in 4.1.2
	G.4.6 Deleted Constraints in 4.1.2

	G.5 Changes in Rel. 4.1 Rev. 3 compared to Rel. 4.1 Rev. 2
	G.5.1 Added Traceables in 4.1.3
	G.5.2 Changed Traceables in 4.1.3
	G.5.3 Deleted Traceables in 4.1.3
	G.5.4 Added Constraints in 4.1.3
	G.5.5 Changed Constraints in 4.1.3
	G.5.6 Deleted Constraints in 4.1.3

