
Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

1 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

 
 
 

Document Change History 
Date Version Changed by Change Description 

31.03.2014 3.2.0 AUTOSAR 
Release 
Management 

 Introduction of McuClockReferencePoint 

 Editorial changes 

31.10.2013 3.1.0 AUTOSAR 
Release 
Management 

 Updated requirements related to 
PwmPowerStateAsynchTransitionMode  

 Updated Scheduled Functions chapter 

 Editorial changes 

 Removed chapter(s) on change 
documentation 

21.02.2013 3.0.0 AUTOSAR  
Administration 

 Added ECU degradation concept  

 Adapted to new SWS BSW General  
Split memory map header 

04.10.2011 2.5.0 AUTOSAR  
Administration 

 Re-formulated SWS_Pwm_00045 

29.10.2010 2.4.0 AUTOSAR  
Administration 

 New Error symbol: 
PWM_E_PARAM_POINTER, shall be 
reported if API Pwm_GetVersionInfo 
service is called with a NULL parameter 

 Updated the chapter Version Check 

 Maintenance in phrasing and explaining 

07.12.2009 2.3.0 AUTOSAR  
Administration 

 The behavior of the function 
Pwm_SetPeriodAndDuty is explained in 
case of an input value of zero period. 

 Added the chapter Debug Support 

 Splitted some requirements so each ID 
is unique. 

 Legal disclaimer revised 

23.06.2008 
 

2.2.1 AUTOSAR  
Administration 

 Legal disclaimer revised 

Document Title Specification of PWM Driver 
Document Owner AUTOSAR 

Document Responsibility AUTOSAR 

Document Identification No 037 

Document Classification Standard 

  

Document Version 3.2.0 

Document Status Final 

Part of Release 4.1 

Revision 3 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

2 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

Document Change History 
Date Version Changed by Change Description 

20.12.2007 2.2.0 AUTOSAR  
Administration 

 Tables generated from UML-models and 
UML-diagrams linked to UML-model 

 General improvements of requirements 
in preparation of CT-development 

 Reactivation concept for IDLE PWM 
channels adapted 

 Development error in case of already 
initialized module added 

 Document meta information extended  

 Small layout adaptations made 

30.01.2007 2.1.0 AUTOSAR 
Administration 

 Updated file include structure  

 Added configuration macros ON/OFF 
for PWM APIs  

 Renamed configuration parameter 
PWM_PERIOD_UPDATED_ENDPERIO
D  to PwmPeriodUpdatedEndperiod  

 Updated PWM signal description figure  

 Legal disclaimer revised 

 “Advice for users” revised 

 “Revision Information” added 

25.04.2006 2.0.0 AUTOSAR 
Administration 

Document structure adapted to common 
Release 2.0 SWS Template. 

 Modify  abstraction level of PWM 
channel  

 Notifications are configurable  

 Update the configuration of the module  

23.06.2005 1.0.0 AUTOSAR 
Administration 

Initial Release 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

3 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

Disclaimer 
 
This specification and the material contained in it, as released by AUTOSAR is for 
the purpose of information only. AUTOSAR and the companies that have contributed 
to it shall not be liable for any use of the specification. 
 
The material contained in this specification is protected by copyright and other types 
of Intellectual Property Rights. The commercial exploitation of the material contained 
in this specification requires a license to such Intellectual Property Rights.  
 
This specification may be utilized or reproduced without any modification, in any form 
or by any means, for informational purposes only.  
For any other purpose, no part of the specification may be utilized or reproduced, in 
any form or by any means, without permission in writing from the publisher.  
 
The AUTOSAR specifications have been developed for automotive applications only. 
They have neither been developed, nor tested for non-automotive applications. 
 
The word AUTOSAR and the AUTOSAR logo are registered trademarks. 
 
 
 
Advice for users  
 
AUTOSAR Specification Documents may contain exemplary items (exemplary 
reference models, "use cases", and/or references to exemplary technical solutions, 
devices, processes or software).  
 
Any such exemplary items are contained in the Specification Documents for 
illustration purposes only, and they themselves are not part of the AUTOSAR 
Standard. Neither their presence in such Specification Documents, nor any later 
documentation of AUTOSAR conformance of products actually implementing such 
exemplary items, imply that intellectual property rights covering such exemplary 
items are licensed under the same rules as applicable to the AUTOSAR Standard. 
 
 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

4 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

Table of Contents 
 

1 Introduction and functional overview ................................................................... 6 

2 Acronyms and abbreviations ............................................................................... 7 

3 Related documentation........................................................................................ 8 

3.1 Input documents ............................................................................................ 8 
3.2 Related specification ..................................................................................... 8 

4 Constraints and assumptions .............................................................................. 9 

4.1 Limitations ..................................................................................................... 9 
4.2 Applicability to car domains ........................................................................... 9 

5 Dependencies to other modules ........................................................................ 10 

5.1 File structure ................................................................................................ 10 
5.1.1 Code file structure ................................................................................. 10 

5.1.2 Header file structure .............................................................................. 10 

6 Requirements traceability .................................................................................. 12 

7 Functional specification ..................................................................................... 23 

7.1 General behavior ......................................................................................... 23 

7.2 Time Unit Ticks ............................................................................................ 23 

7.2.1 Background & Rationale ....................................................................... 23 
7.2.2 Requirements........................................................................................ 23 

7.3 Support and management of HW low power states..................................... 23 

7.3.1 Background ........................................................................................... 23 
7.3.2 Requirements........................................................................................ 24 

7.4 Error classification ....................................................................................... 25 
7.5 Error Detection ............................................................................................ 27 

7.6 Error Notification .......................................................................................... 27 
7.7 Duty Cycle Resolution and scaling .............................................................. 27 
7.8 Version check .............................................................................................. 28 

7.9 Debug Support ............................................................................................ 28 

8 API specification ................................................................................................ 29 

8.1 Imported types ............................................................................................. 29 
8.2 Type definitions ........................................................................................... 29 

8.2.1 Pwm_ChannelType ............................................................................... 29 
8.2.2 Pwm_PeriodType .................................................................................. 29 
8.2.3 Pwm_OutputStateType ......................................................................... 29 
8.2.4 Pwm_EdgeNotificationType .................................................................. 30 
8.2.5 Pwm_ChannelClassType ...................................................................... 30 

8.2.6 Pwm_ConfigType .................................................................................. 30 
8.2.7 Pwm_PowerStateRequestResultType .................................................. 31 

8.2.8 Pwm_PowerStateType ......................................................................... 31 
8.3 Function definitions...................................................................................... 32 

8.3.1 Pwm_Init ............................................................................................... 32 
8.3.2 Pwm_DeInit........................................................................................... 34 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

5 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

8.3.3 Pwm_SetDutyCycle .............................................................................. 34 

8.3.4 Pwm_SetPeriodAndDuty ...................................................................... 36 
8.3.5 Pwm_SetOutputToIdle .......................................................................... 37 
8.3.6 Pwm_GetOutputState ........................................................................... 38 
8.3.7 Pwm_DisableNotification ...................................................................... 39 
8.3.8 Pwm_EnableNotification ....................................................................... 39 

8.3.9 Pwm_SetPowerState ............................................................................ 40 
8.3.10 Pwm_GetCurrentPowerState ............................................................ 42 
8.3.11 Pwm_GetTargetPowerState .............................................................. 43 
8.3.12 Pwm_PreparePowerState ................................................................. 44 
8.3.13 Pwm_GetVersionInfo ......................................................................... 45 

8.4 Callback notifications ................................................................................... 46 
8.5 Scheduled functions .................................................................................... 46 

8.5.1 Pwm_Main_PowerTransitionManager .................................................. 46 
8.6 Expected Interfaces ..................................................................................... 47 

8.6.1 Mandatory Interfaces ............................................................................ 47 
8.6.2 Optional Interfaces ................................................................................ 47 

8.6.3 Configurable interfaces ......................................................................... 48 
8.7 API parameter checking .............................................................................. 49 

9 Sequence diagrams .......................................................................................... 51 

9.1 Initialization .................................................................................................. 51 
9.2 De-initialization ............................................................................................ 52 

9.3 Setting the duty cycle .................................................................................. 53 

9.4 Setting the period and the duty .................................................................... 54 
9.5 Setting the PWM output to idle .................................................................... 55 
9.6 Getting the PWM Output state ..................................................................... 56 
9.7 Using the PWM notifications ........................................................................ 57 

10 Configuration specification ............................................................................. 58 

10.1 How to read this chapter .......................................................................... 58 

10.2 Containers and configuration parameters ................................................ 58 
10.2.1 Variants ............................................................................................. 58 

10.2.2 Pwm ................................................................................................... 58 
10.2.3 PwmGeneral ...................................................................................... 59 

10.2.4 PwmPowerStateConfig ...................................................................... 60 
10.2.5 PwmChannel ..................................................................................... 61 
10.2.6 PwmChannelConfigSet ...................................................................... 63 
10.2.7 PwmConfigurationOfOptApiServices ................................................. 64 

10.3 Published Information............................................................................... 66 

11 Not applicable requirements .......................................................................... 67 

 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

6 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

1 Introduction and functional overview 
 
This specification specifies the functionality, API and the configuration of the 
AUTOSAR Basic Software module PWM driver. 
 
Each PWM channel is linked to a hardware PWM which belongs to the 
microcontroller. The type of the PWM signal (for example center Align, left Align, Etc.. 
) is not defined within this specification and is left up to the implementation. 
 
The driver provides functions for initialization and control of the microcontroller 
internal PWM stage (pulse width modulation). The PWM module generates pulses 
with variable pulse width. It allows the selection of the duty cycle and the signal 
period time. 

 

  

Figure 1: PWM signal description 

 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

7 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

2 Acronyms and abbreviations 
 
Acronyms and abbreviations that have a local scope are not contained in the 
AUTOSAR glossary. These must appear in a local glossary. 
 

Acronym: Description: 

PWM Channel Numeric identifier linked to a hardware PWM. 

PWM Output 
State 

Defines the output state for a PWM signal. It could be: 
 High. 
 Low. 

PWM Idle State The idle state represents the output state of the PWM channel after the call of 
Pwm_SetOutputToIdle or Pwm_DeInit 

PWM Polarity Defines the starting output state of each PWM channel 

PWM Duty cycle Defines a percentage of the starting level (could be high or low) related to the 
period. 

PWM period Defines the period of the PWM signal. 

 
 

Abbreviation: Description: 

PWM Pulse Width Modulation. 

DEM Diagnostic Event Manager. 

DET Development Error Tracer. 

MCU Microcontroller Unit. 

PLL Phase Locked Loop. 

ISR Interrupt Service Routine. 

 
 
 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

8 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

3 Related documentation 
 

3.1 Input documents  
 
[1]  Layered Software Architecture 

AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf 
 

[2] General Requirements on SPAL 
AUTOSAR_SRS_SPALGeneral.pdf 
 

[3] General Requirements on Basic Software Modules 
AUTOSAR_SRS_BSWGeneral.pdf 
 

[4] Specification of Development Error Tracer  
AUTOSAR_SWS_DevelopmentErrorTracer.pdf 
 

[5] Specification of MCU Driver 
AUTOSAR_SWS_MCUDriver.pdf 
 

[6] Specification of ECU Configuration, 
AUTOSAR_TPS_ECUConfiguration.pdf 
 

[7] Basic Software Module Description Template, 
AUTOSAR_TPS_BSWModuleDescriptionTemplate.pdf 
 

[8] List of Basic Software Modules 
AUTOSAR_TR_BSWModuleList 
 

[9] General Specification of Basic Software Modules 
AUTOSAR_SWS_BSWGeneral.pdf 

 

3.2 Related specification 
 
AUTOSAR provides a General Specification on Basic Software modules [9] (SWS 
BSW General), which is also valid for PWM Driver. 
 
Thus, the specification SWS BSW General shall be considered as additional and 
required specification for PWM Driver. 
 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

9 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

4 Constraints and assumptions 
 

4.1 Limitations 
 

[SWS_Pwm_00001] ⌈The Pwm SWS does not cover PWM emulation on general 

purpose I/O.⌋ (SRS_Pwm_12386) 
 

 Power State Control APIs are implementable only if the MCAL driver owns the 
complete underlying HW peripheral i.e. the HW peripheral is not accessed by 
other MCAL modules. 

 

4.2 Applicability to car domains 
 
No restrictions. 
 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

10 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

5 Dependencies to other modules 
 
The PWM depends on the system clock. Thus, changes of the system clock (e.g. 
PLL on  PLL off) also affect the clock settings of the PWM hardware. 
 
The PWM Driver depends on the following modules: 

 PORT Driver: To set the port pin functionality. PWM141 
 MCU Driver: To set prescaler, system clock and PLL. PWM142 
 DET: Development Error Tracer in Development mode. PWM143 

 
The document 087_AUTOSAR_ECU_Configuration contains a chapter 4.6 - 
Clock Tree Configuration, which details the mechanism to deliver reference clock 
signals to peripherals.  
 

5.1 File structure 
 
5.1.1 Code file structure 
 

[SWS_Pwm_00065] ⌈The Pwm SWS shall not define the code file structure.⌋ 

(SRS_BSW_00380, SRS_BSW_00346, SRS_BSW_00158, SRS_BSW_00314, SRS_BSW_00370) 
 
 
5.1.2 Header file structure 
 

[SWS_Pwm_10075] ⌈Pwm.h shall include Pwm_Cfg.h.⌋ () 

[SWS_Pwm_40075] ⌈Pwm_Lcfg.c shall include Pwm.h and Pwm_Memmap.h.⌋ () 

[SWS_Pwm_50075] ⌈Pwm.c shall include Pwm.h, Pwm_MemMap.h, Det.h and 

SchM_Pwm.h.⌋ () 

[SWS_Pwm_60075] ⌈Pwm_PBcfg.c shall include Pwm_MemMap.h and Pwm.h.⌋ () 

[SWS_Pwm_70075] ⌈Pwm_Irq.c shall include Pwm_MemMap.h and Pwm.h.⌋ () 
 
 
 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

11 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

 

Figure 2: Header file structure 

 
 
 
 
 
 
 

 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

12 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

6 Requirements traceability 
 
 

Requirement Description Satisfied by 

- - SWS_Pwm_00014 

- - SWS_Pwm_00016 

- - SWS_Pwm_00018 

- - SWS_Pwm_00020 

- - SWS_Pwm_00061 

- - SWS_Pwm_00076 

- - SWS_Pwm_00077 

- - SWS_Pwm_00079 

- - SWS_Pwm_00081 

- - SWS_Pwm_00088 

- - SWS_Pwm_00089 

- - SWS_Pwm_00093 

- - SWS_Pwm_00094 

- - SWS_Pwm_00095 

- - SWS_Pwm_00096 

- - SWS_Pwm_00097 

- - SWS_Pwm_00098 

- - SWS_Pwm_00099 

- - SWS_Pwm_00100 

- - SWS_Pwm_00101 

- - SWS_Pwm_00102 

- - SWS_Pwm_00104 

- - SWS_Pwm_00105 

- - SWS_Pwm_00106 

- - SWS_Pwm_00107 

- - SWS_Pwm_00108 

- - SWS_Pwm_00109 

- - SWS_Pwm_00110 

- - SWS_Pwm_00111 

- - SWS_Pwm_00116 

- - SWS_Pwm_00118 

- - SWS_Pwm_00119 

- - SWS_Pwm_00121 

- - SWS_Pwm_00150 

- - SWS_Pwm_00151 

- - SWS_Pwm_00154 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

13 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

- - SWS_Pwm_00155 

- - SWS_Pwm_00156 

- - SWS_Pwm_00157 

- - SWS_Pwm_00158 

- - SWS_Pwm_00159 

- - SWS_Pwm_00160 

- - SWS_Pwm_00161 

- - SWS_Pwm_00162 

- - SWS_Pwm_00163 

- - SWS_Pwm_00164 

- - SWS_Pwm_00165 

- - SWS_Pwm_00166 

- - SWS_Pwm_00167 

- - SWS_Pwm_00168 

- - SWS_Pwm_00169 

- - SWS_Pwm_00170 

- - SWS_Pwm_00171 

- - SWS_Pwm_00172 

- - SWS_Pwm_00173 

- - SWS_Pwm_00174 

- - SWS_Pwm_00175 

- - SWS_Pwm_00176 

- - SWS_Pwm_00177 

- - SWS_Pwm_00178 

- - SWS_Pwm_00179 

- - SWS_Pwm_00180 

- - SWS_Pwm_00181 

- - SWS_Pwm_00182 

- - SWS_Pwm_00183 

- - SWS_Pwm_00184 

- - SWS_Pwm_00185 

- - SWS_Pwm_00186 

- - SWS_Pwm_00187 

- - SWS_Pwm_00188 

- - SWS_Pwm_00189 

- - SWS_Pwm_00190 

- - SWS_Pwm_00191 

- - SWS_Pwm_00192 

- - SWS_Pwm_00193 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

14 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

- - SWS_Pwm_00194 

- - SWS_Pwm_00195 

- - SWS_Pwm_00196 

- - SWS_Pwm_00198 

- - SWS_Pwm_00199 

- - SWS_Pwm_00200 

- - SWS_Pwm_10075 

- - SWS_Pwm_10086 

- - SWS_Pwm_10112 

- - SWS_Pwm_10113 

- - SWS_Pwm_10115 

- - SWS_Pwm_10120 

- - SWS_Pwm_20086 

- - SWS_Pwm_20112 

- - SWS_Pwm_20113 

- - SWS_Pwm_20115 

- - SWS_Pwm_20120 

- - SWS_Pwm_30115 

- - SWS_Pwm_40075 

- - SWS_Pwm_50075 

- - SWS_Pwm_60075 

- - SWS_Pwm_70075 

BSW00431 - SWS_Pwm_00153 

BSW00434 - SWS_Pwm_00153 

SRS_BSW_00003 All software modules shall 
provide version and identification 
information 

SWS_Pwm_00153 

SRS_BSW_00005 Modules of the æC Abstraction 
Layer (MCAL) may not have hard 
coded horizontal interfaces 

SWS_Pwm_00153 

SRS_BSW_00006 The source code of software 
modules above the æC 
Abstraction Layer (MCAL) shall 
not be processor and compiler 
dependent.  

SWS_Pwm_00153 

SRS_BSW_00007 All Basic SW Modules written in 
C language shall conform to the 
MISRA C 2004 Standard. 

SWS_Pwm_00153 

SRS_BSW_00009 All Basic SW Modules shall be 
documented according to a 
common standard. 

SWS_Pwm_00153 

SRS_BSW_00010 The memory consumption of all 
Basic SW Modules shall be 
documented for a defined 
configuration for all supported 

SWS_Pwm_00153 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

15 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

platforms. 

SRS_BSW_00101 The Basic Software Module shall 
be able to initialize variables and 
hardware in a separate 
initialization function 

SWS_Pwm_00007 

SRS_BSW_00158 All modules of the AUTOSAR 
Basic Software shall strictly 
separate configuration from 
implementation  

SWS_Pwm_00065 

SRS_BSW_00159 All modules of the AUTOSAR 
Basic Software shall support a 
tool based configuration 

SWS_Pwm_00153 

SRS_BSW_00160 Configuration files of AUTOSAR 
Basic SW module shall be 
readable for human beings 

SWS_Pwm_00153 

SRS_BSW_00161 The AUTOSAR Basic Software 
shall provide a microcontroller 
abstraction layer which provides 
a standardized interface to higher 
software layers 

SWS_Pwm_00153 

SRS_BSW_00162 The AUTOSAR Basic Software 
shall provide a hardware 
abstraction layer  

SWS_Pwm_00153 

SRS_BSW_00164 The Implementation of interrupt 
service routines shall be done by 
the Operating System, complex 
drivers or modules 

SWS_Pwm_00153 

SRS_BSW_00167 All AUTOSAR Basic Software 
Modules shall provide 
configuration rules and 
constraints to enable plausibility 
checks 

SWS_Pwm_00153 

SRS_BSW_00168 SW components shall be tested 
by a function defined in a 
common API in the Basis-SW 

SWS_Pwm_00153 

SRS_BSW_00170 The AUTOSAR SW Components 
shall provide information about 
their dependency from faults, 
signal qualities, driver demands 

SWS_Pwm_00153 

SRS_BSW_00171 Optional functionality of a Basic-
SW component that is not 
required in the ECU shall be 
configurable at pre-compile-time 

SWS_Pwm_10080, SWS_Pwm_10082, 
SWS_Pwm_10083, SWS_Pwm_10084, 
SWS_Pwm_10085, SWS_Pwm_20080, 
SWS_Pwm_20082, SWS_Pwm_20083, 
SWS_Pwm_20084, SWS_Pwm_20085 

SRS_BSW_00172 The scheduling strategy that is 
built inside the Basic Software 
Modules shall be compatible with 
the strategy used in the system 

SWS_Pwm_00153 

SRS_BSW_00300 All AUTOSAR Basic Software 
Modules shall be identified by an 
unambiguous name 

SWS_Pwm_00153 

SRS_BSW_00301 All AUTOSAR Basic Software SWS_Pwm_00153 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

16 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

Modules shall only import the 
necessary information 

SRS_BSW_00302 All AUTOSAR Basic Software 
Modules shall only export 
information needed by other 
modules  

SWS_Pwm_00153 

SRS_BSW_00304 - SWS_Pwm_00153 

SRS_BSW_00305 Data types naming convention SWS_Pwm_00153 

SRS_BSW_00306 AUTOSAR Basic Software 
Modules shall be compiler and 
platform independent  

SWS_Pwm_00153 

SRS_BSW_00307 Global variables naming 
convention 

SWS_Pwm_00153 

SRS_BSW_00308 AUTOSAR Basic Software 
Modules shall not define global 
data in their header files, but in 
the C file 

SWS_Pwm_00153 

SRS_BSW_00309 All AUTOSAR Basic Software 
Modules shall indicate all global 
data with read-only purposes by 
explicitly assigning the const 
keyword 

SWS_Pwm_00153 

SRS_BSW_00310 API naming convention SWS_Pwm_00153 

SRS_BSW_00312 Shared code shall be reentrant  SWS_Pwm_00153 

SRS_BSW_00314 All internal driver modules shall 
separate the interrupt frame 
definition from the service routine  

SWS_Pwm_00065 

SRS_BSW_00323 All AUTOSAR Basic Software 
Modules shall check passed API 
parameters for validity 

SWS_Pwm_00045, SWS_Pwm_00046, 
SWS_Pwm_00047, SWS_Pwm_00117, 
SWS_Pwm_10051, SWS_Pwm_20051, 
SWS_Pwm_30051 

SRS_BSW_00325 The runtime of interrupt service 
routines and functions that are 
running in interrupt context shall 
be kept short  

SWS_Pwm_00153 

SRS_BSW_00326 - SWS_Pwm_00153 

SRS_BSW_00327 Error values naming convention SWS_Pwm_00153 

SRS_BSW_00328 All AUTOSAR Basic Software 
Modules shall avoid the 
duplication of code 

SWS_Pwm_00153 

SRS_BSW_00329 - SWS_Pwm_00153 

SRS_BSW_00330 It shall be allowed to use macros 
instead of functions where source 
code is used and runtime is 
critical 

SWS_Pwm_00153 

SRS_BSW_00331 All Basic Software Modules shall 
strictly separate error and status 
information 

SWS_Pwm_00153 

SRS_BSW_00333 For each callback function it shall 
be specified if it is called from 

SWS_Pwm_00153 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

17 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

interrupt context or not 

SRS_BSW_00334 All Basic Software Modules shall 
provide an XML file that contains 
the meta data 

SWS_Pwm_00153 

SRS_BSW_00335 Status values naming convention SWS_Pwm_00153 

SRS_BSW_00336 Basic SW module shall be able to 
shutdown 

SWS_Pwm_00010 

SRS_BSW_00337 Classification of development 
errors 

SWS_Pwm_10002, SWS_Pwm_20002, 
SWS_Pwm_30002, SWS_Pwm_40002, 
SWS_Pwm_50002 

SRS_BSW_00341 Module documentation shall 
contains all needed informations 

SWS_Pwm_00153 

SRS_BSW_00342 It shall be possible to create an 
AUTOSAR ECU out of modules 
provided as source code and 
modules provided as object code, 
even mixed 

SWS_Pwm_00153 

SRS_BSW_00343 The unit of time for specification 
and configuration of Basic SW 
modules shall be preferably in 
physical time unit  

SWS_Pwm_00070 

SRS_BSW_00346 All AUTOSAR Basic Software 
Modules shall provide at least a 
basic set of module files 

SWS_Pwm_00065 

SRS_BSW_00347 A Naming seperation of different 
instances of BSW drivers shall be 
in place 

SWS_Pwm_00153 

SRS_BSW_00348 All AUTOSAR standard types 
and constants shall be placed 
and organized in a standard type 
header file 

SWS_Pwm_00153 

SRS_BSW_00350 All AUTOSAR Basic Software 
Modules shall apply a specific 
naming rule for enabling/disabling 
the detection and reporting of 
development errors 

SWS_Pwm_00153 

SRS_BSW_00353 All integer type definitions of 
target and compiler specific 
scope shall be placed and 
organized in a single type header  

SWS_Pwm_00153 

SRS_BSW_00355 - SWS_Pwm_00153 

SRS_BSW_00357 For success/failure of an API call 
a standard return type shall be 
defined 

SWS_Pwm_00153 

SRS_BSW_00358 The return type of init() functions 
implemented by AUTOSAR Basic 
Software Modules shall be void 

SWS_Pwm_00153 

SRS_BSW_00359 All AUTOSAR Basic Software 
Modules callback functions shall 
avoid return types other than void 
if possible 

SWS_Pwm_00153 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

18 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

SRS_BSW_00360 AUTOSAR Basic Software 
Modules callback functions are 
allowed to have parameters 

SWS_Pwm_00153 

SRS_BSW_00361 All mappings of not standardized 
keywords of compiler specific 
scope shall be placed and 
organized in a compiler specific 
type and keyword header  

SWS_Pwm_00153 

SRS_BSW_00370 - SWS_Pwm_00065 

SRS_BSW_00371 The passing of function pointers 
as API parameter is forbidden for 
all AUTOSAR Basic Software 
Modules 

SWS_Pwm_00153 

SRS_BSW_00373 The main processing function of 
each AUTOSAR Basic Software 
Module shall be named according 
the defined convention 

SWS_Pwm_00153 

SRS_BSW_00375 Basic Software Modules shall 
report wake-up reasons  

SWS_Pwm_00153 

SRS_BSW_00376 - SWS_Pwm_00153 

SRS_BSW_00377 A Basic Software Module can 
return a module specific types  

SWS_Pwm_00153 

SRS_BSW_00378 AUTOSAR shall provide a 
boolean type 

SWS_Pwm_00153 

SRS_BSW_00380 Configuration parameters being 
stored in memory shall be placed 
into separate c-files 

SWS_Pwm_00065 

SRS_BSW_00383 The Basic Software Module 
specifications shall specify which 
other configuration files from 
other modules they use at least in 
the description 

SWS_Pwm_00153 

SRS_BSW_00385 List possible error notifications SWS_Pwm_10002, SWS_Pwm_20002, 
SWS_Pwm_30002, SWS_Pwm_40002, 
SWS_Pwm_50002 

SRS_BSW_00386 The BSW shall specify the 
configuration for detecting an 
error 

SWS_Pwm_00045, SWS_Pwm_00046, 
SWS_Pwm_00047, SWS_Pwm_00117, 
SWS_Pwm_10002, SWS_Pwm_10051, 
SWS_Pwm_20002, SWS_Pwm_20051, 
SWS_Pwm_30002, SWS_Pwm_30051, 
SWS_Pwm_40002, SWS_Pwm_50002 

SRS_BSW_00401 Documentation of multiple 
instances of configuration 
parameters shall be available 

SWS_Pwm_00153 

SRS_BSW_00406 A static status variable denoting if 
a BSW module is initialized shall 
be initialized with value 0 before 
any APIs of the BSW module is 
called 

SWS_Pwm_00117 

SRS_BSW_00407 Each BSW module shall provide 
a function to read out the version 
information of a dedicated 

SWS_Pwm_20069 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

19 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

module implementation 

SRS_BSW_00408 All AUTOSAR Basic Software 
Modules configuration 
parameters shall be named 
according to a specific naming 
rule 

SWS_Pwm_00153 

SRS_BSW_00410 Compiler switches shall have 
defined values  

SWS_Pwm_00153 

SRS_BSW_00413 An index-based accessing of the 
instances of BSW modules shall 
be done  

SWS_Pwm_00153 

SRS_BSW_00414 The init function may have 
parameters 

SWS_Pwm_00153 

SRS_BSW_00415 Interfaces which are provided 
exclusively for one module shall 
be separated into a dedicated 
header file 

SWS_Pwm_00153 

SRS_BSW_00416 The sequence of modules to be 
initialized shall be configurable 

SWS_Pwm_00153 

SRS_BSW_00417 Software which is not part of the 
SW-C shall report error events 
only after the DEM is fully 
operational. 

SWS_Pwm_00153 

SRS_BSW_00419 If a pre-compile time 
configuration parameter is 
implemented as "const" it should 
be placed into a separate c-file 

SWS_Pwm_00153 

SRS_BSW_00423 BSW modules with AUTOSAR 
interfaces shall be describable 
with the means of the SW-C 
Template 

SWS_Pwm_00153 

SRS_BSW_00424 BSW module main processing 
functions shall not be allowed to 
enter a wait state  

SWS_Pwm_00153 

SRS_BSW_00425 The BSW module description 
template shall provide means to 
model the defined trigger 
conditions of schedulable objects 

SWS_Pwm_00153 

SRS_BSW_00426 BSW Modules shall ensure data 
consistency of data which is 
shared between BSW modules 

SWS_Pwm_00153 

SRS_BSW_00427 ISR functions shall be defined 
and documented in the BSW 
module description template 

SWS_Pwm_00153 

SRS_BSW_00428 A BSW module shall state if its 
main processing function(s) has 
to be executed in a specific order 
or sequence  

SWS_Pwm_00153 

SRS_BSW_00429 BSW modules shall be only 
allowed to use OS objects and/or 
related OS services  

SWS_Pwm_00153 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

20 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

SRS_BSW_00432 Modules should have separate 
main processing functions for 
read/receive and write/transmit 
data path 

SWS_Pwm_00153 

SRS_BSW_00433 Main processing functions are 
only allowed to be called from 
task bodies provided by the BSW 
Scheduler 

SWS_Pwm_00153 

SRS_Pwm_12293 The PWM driver shall allow the 
static configuration of PWM 
channel properties 

SWS_Pwm_00197 

SRS_Pwm_12295 The PWM driver shall provide a 
service for setting the duty cycle 
of a selected channel 

SWS_Pwm_00013 

SRS_Pwm_12297 The PWM driver shall provide a 
service for setting the period of a 
selected channel 

SWS_Pwm_00019 

SRS_Pwm_12299 The PWM driver shall allow to 
enable/disable the PWM edges 
notification during runtime 

SWS_Pwm_00023, SWS_Pwm_00024 

SRS_Pwm_12358 The PWM driver shall be capable 
to set the output of selected 
channel to a given state 
immediately 

SWS_Pwm_00021 

SRS_Pwm_12378 The PWM driver shall be able to 
assign notification to each edges 
of the PWM-signal 

SWS_Pwm_00023, SWS_Pwm_00024, 
SWS_Pwm_00197 

SRS_Pwm_12379 All PWM Channels which work 
with the same MCU Timer shall 
have either the same frequency 
or independent frequencies 

SWS_Pwm_00153 

SRS_Pwm_12381 By de-initializing the PWM driver, 
all PWM-channels shall be stop 

SWS_Pwm_00010 

SRS_Pwm_12382 The PWM Driver shall wait to the 
end of the signal period to update 
the duty cycle of a PWM signal 

SWS_Pwm_00017 

SRS_Pwm_12383 The PWM driver shall provide a 
16 bit interface to set the duty 
cycle 

SWS_Pwm_00058 

SRS_Pwm_12385 The PWM driver shall provide a 
service to get the state of a PWM 
channel output 

SWS_Pwm_00022 

SRS_Pwm_12386 The PWM driver shall not cover a 
PWM emulation on general 
purpose I/O 

SWS_Pwm_00001 

SRS_Pwm_12389 The PWM driver shall allow only 
static configuration of the 
frequency for some PWM 
channels 

SWS_Pwm_00041 

SRS_Pwm_12459 The PWM Driver shall provide a 
scaling scheme for duty cycle 

SWS_Pwm_00059 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

21 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

SRS_SPAL_00157 All drivers and handlers of the 
AUTOSAR Basic Software shall 
implement notification 
mechanisms of drivers and 
handlers 

SWS_Pwm_00025 

SRS_SPAL_12057 All driver modules shall 
implement an interface for 
initialization  

SWS_Pwm_00007, SWS_Pwm_00052, 
SWS_Pwm_00062, SWS_Pwm_10009, 
SWS_Pwm_20009, SWS_Pwm_30009 

SRS_SPAL_12064 All driver modules shall raise an 
error if the change of the 
operation mode leads to 
degradation of running operations  

SWS_Pwm_00153 

SRS_SPAL_12067 All driver modules shall set their 
wake-up conditions depending on 
the selected operation mode  

SWS_Pwm_00153 

SRS_SPAL_12068 The modules of the MCAL shall 
be initialized in a defined 
sequence 

SWS_Pwm_00153 

SRS_SPAL_12069 All drivers of the SPAL that wake 
up from a wake-up interrupt shall 
report the wake-up reason  

SWS_Pwm_00153 

SRS_SPAL_12075 All drivers with random streaming 
capabilities shall use application 
buffers  

SWS_Pwm_00153 

SRS_SPAL_12077 All drivers shall provide a non 
blocking implementation  

SWS_Pwm_00153 

SRS_SPAL_12078 The drivers shall be coded in a 
way that is most efficient in terms 
of memory and runtime resources  

SWS_Pwm_00153 

SRS_SPAL_12092 The driver's API shall be 
accessed by its handler or 
manager 

SWS_Pwm_00153 

SRS_SPAL_12125 All driver modules shall only 
initialize the configured resources  

SWS_Pwm_00062 

SRS_SPAL_12129 The ISRs shall be responsible for 
resetting the interrupt flags and 
calling the according notification 
function  

SWS_Pwm_00026 

SRS_SPAL_12163 All driver modules shall 
implement an interface for de-
initialization  

SWS_Pwm_00010, SWS_Pwm_00011, 
SWS_Pwm_00012 

SRS_SPAL_12169 All driver modules that provide 
different operation modes shall 
provide a service for mode 
selection  

SWS_Pwm_00153 

SRS_SPAL_12265 Configuration data shall be kept 
constant 

SWS_Pwm_00153 

SRS_SPAL_12267 Wakeup sources shall be 
initialized by MCAL drivers and/or 
the MCU driver  

SWS_Pwm_00153 

SRS_SPAL_12461 Specific rules regarding SWS_Pwm_00153 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

22 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

initialization of controller registers 
shall apply to all driver 
implementations  

SRS_SPAL_12462 The register initialization settings 
shall be published 

SWS_Pwm_00153 

SRS_SPAL_12463 The register initialization settings 
shall be combined and forwarded 

SWS_Pwm_00153 

 
 
 
 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

23 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

7 Functional specification 
 

7.1 General behavior 
 

[SWS_Pwm_00088] ⌈All functions from the PWM module except Pwm_Init, 

Pwm_DeInit and Pwm_GetVersionInfo shall be re-entrant for different PWM 

channel numbers. 
 
In order to keep a simple module implementation, no check of SWS_Pwm_00088 

must be performed by the module. ⌋ () 
 

[SWS_Pwm_00089] ⌈The Pwm module’s user shall ensure the integrity if several 

function calls are made during run time in different tasks or ISRs for the same PWM 

channel.⌋()  

 
 

7.2 Time Unit Ticks 
 
7.2.1 Background & Rationale 
 
To get times out of register values it is necessary to know the oscillator frequency, 
prescalers and so on. Since these settings are made in MCU and/or in other modules 
it is not possible to calculate such times. 
Hence the conversions between time and ticks shall be part of an upper layer. 
 
 
7.2.2 Requirements 
 

[SWS_Pwm_00070]  ⌈All time units used within the API services of the PWM module 

shall be of the unit ticks.  ⌋(SRS_BSW_00343) 

 

7.3 Support and management of HW low power states 
 
 
Some PWM HW Module allow to be set in some operation modes which reduce the 
power consumption, eventually at the cost of a slower reaction time, a lower 
performance or eventually complete unavailability. Each PWM module could support 
one or more low power operation modes, considering the Full Power Mode as always 
present and set per default at startup. 
 
7.3.1 Background 

The PWM Driver offers power state control APIs and a background elaboration 
mechanism to handle asynchronous power state change processes (i.e. power state 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

24 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

changes which are not immediately complete as the they are requested, but need 
some longer operations). 

It is assumed that all constraints deriving from ECU and SW architecture are 
already satisfied by the upper layers (Application, Mode Management in the service 
layer, IoHwAbstraction components dealing with peripheral control), thus the scope 
of control is limited to the PWM HW peripheral. 

A check on the operation sequence is executed by the PWM Driver in order to 
avoid requesting a different power state before the previous request is still being 
processed or activating a power state when no preparation for the same has been 
requested.  

The PWM module shall support power control capabilities as an optional 
function. This module neither mandates to use only power control enabled MCUs nor 
to configure the same. Rather it proposes a way to handle power states if this is 
supported by the suppliers. 
 
7.3.2 Requirements 

[SWS_Pwm_00154]  ⌈The PwmDriver shall support power state changes and its 

APIs when the corresponding configuration parameter 

PwmLowPowerStatesSupport is set to TRUE.⌋() 

 

[SWS_Pwm_00155] ⌈If the parameter PwmLowPowerStatesSupport is enabled 

then the APIs Pwm_PreparePowerState, Pwm_SetPowerState, 

Pwm_GetCurrentPowerState, Pwm_GetTargetPowerState shall be 

generated and shall be used to manage and get informations on power state 

transitions.⌋() 

 

[SWS_Pwm_00156] ⌈The APIs Pwm_GetTargetPowerState and 

Pwm_GetCurrentPowerState shall be respectively used to gather information on 

the requested and the target Pwm power states.⌋()  

 

[SWS_Pwm_00157] ⌈The API Pwm_PreparePowerState shall be used to start a 

power state transition. ⌋() 

 

[SWS_Pwm_00158] ⌈After preparation for a power state is achieved by 

([SWS_Pwm_00157]) then the API Pwm_SetPowerState  shall be  used to achieve 

the requested power state of the Pwm module. 
 
In order to avoid incoherent power state conditions, some APIs 

(Pwm_SetPowerState, Pwm_PreparePowerState) have to be called in a given 

sequence, otherwise an error (if DET tracing is enabled) is stored and the action is 

interrupted. The Pwm Driver keeps track of the call sequence.⌋() 

 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

25 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

[SWS_Pwm_00159] ⌈The Pwm Driver shall keep track of the call order of the APIs 

Pwm_SetPowerState and Pwm_PreparePowerState. In case the first 

one is called before the second one is called, a DET entry shall be 

stored and the action shall not be executed.⌋() 

 

[SWS_Pwm_00160] ⌈The Pwm Module shall keep track of the current and of the 

target  powerstate if the parameter PwmLowPowerStatesSupport  is set to 

TRUE⌋(). 

 

[SWS_Pwm_00161]  ⌈After the Initiliazation the power state of the module shall be 

always FULL POWER if the PwmLowPowerStatesSupport is set to TRUE.⌋() 

 
 

[SWS_Pwm_00162]  ⌈The Pwm Driver shall support synchronuous and 

asynchronous power state transitions, depending on the value of the configuration 

parameter PwmPowerStateAsynchTransitionMode. ⌋() 

 

[SWS_Pwm_00163] ⌈In case the configuration parameter 

PwmPowerStateAsynchTransitionMode is set to FALSE, the preparation process and 
the setting process shall be considered concluded as soon as the respective APIs 

return. ⌋() 

 

[SWS_Pwm_00164] ⌈In case the configuration parameter 

PwmPowerStateAsynchTransitionMode is set to TRUE, the preparation process shall 
continue in background after the relative API returns and its completion shall be 

notified by means of the configured callback.⌋() 

 
 
 

7.4 Error classification 
 

[SWS_Pwm_10002] ⌈The PWM Driver module shall report the development error 
"PWM_E_PARAM_CONFIG (0x10)", when API Pwm_Init service is called with wrong 

parameter. ⌋ (SRS_BSW_00337, SRS_BSW_00385, SRS_BSW_00386) 

[SWS_Pwm_20002] ⌈The PWM Driver module shall report the development error 

"PWM_E_UNINIT (0x11)", when API service is used without module initialization. ⌋ 

(SRS_BSW_00337, SRS_BSW_00385, SRS_BSW_00386) 

[SWS_Pwm_30002] ⌈The PWM Driver module shall report the development error 
"PWM_E_PARAM_CHANNEL (0x12)", when API service is used with an invalid 

channel Identifier. ⌋ (SRS_BSW_00337, SRS_BSW_00385, SRS_BSW_00386) 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

26 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

[SWS_Pwm_40002] ⌈The PWM Driver module shall report the development error 
"PWM_E_PERIOD_UNCHANGEABLE (0x13)", on usage of unauthorized PWM 

service on PWM channel configured a fixed period. ⌋ (SRS_BSW_00337, 

SRS_BSW_00385, SRS_BSW_00386) 

[SWS_Pwm_50002] ⌈The PWM Driver module shall report the development error 
"PWM_E_ALREADY_INITIALIZED(0x14)", when API Pwm_Init service is called while 

the PWM driver has already been initialized. ⌋ (SRS_BSW_00337, SRS_BSW_00385, 

SRS_BSW_00386) 
 

[SWS_Pwm_00151] ⌈The PWM Driver module shall report the development error 
"PWM_E_PARAM_POINTER (0x15)", when API Pwm_GetVersionInfo service is 

called with a NULL parameter. ⌋ () 
 
 
 
Type or error Relevance Related error code Value 

[hex] 
API Pwm_Init service called with 
wrong parameter 

Development PWM_E_PARAM_CONFIG 0x10 

API service used without module 
initialization 

Development PWM_E_UNINIT 0x11 

 

API service used with an invalid 
channel Identifier 

Development PWM_E_PARAM_CHANNEL 0x12 

 

Usage of unauthorized PWM service 
on PWM channel configured a fixed 
period  

Development PWM_E_PERIOD_UNCHANGEABLE 0x13 

API Pwm_Init service called while the 
PWM driver has already been 
initialised 

Development PWM_E_ALREADY_INITIALIZED 0x14 

API Pwm_GetVersionInfo is  
called with a NULL parameter. 

Development PWM_E_PARAM_POINTER 

 

0x15 

API Pwm_SetPowerState is called 
while the PWM module is still in use. 

Development PWM_E_NOT_DISENGAG
ED 

0x16 

The requested power state is not 
supported by the PWM module. 

Development PWM_E_POWER_STATE_
NOT_SUPPORTED 

0x17 

The requested power state is not 
reachable from the current one. 

Development PWM_E_TRANSITION_NO
T POSSIBLE 

0x18 

API Pwm_SetPowerState has been 
called without having called the API 
Pwm_PreparePowerState before. 

Development PWM_E_PERIPHERAL_NO
T_PREPARED 

0x19 

-- Production -- Assigned 

externall

y 

 
 
[[SWS_Pwm_00200]] 

⌈The API shall report the DET error PWM_E_NOT_DISENGAGED in case this API is 

called when one or more HW channels (where applicable) are in a state different 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

27 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

than IDLE (or similar non-operational states) and/or there are still notification 

registered for the HW module channels.⌋() 

 
[SWS_Pwm_00174] 

⌈The API shall report the DET error PWM_E_POWER_STATE_NOT_SUPPORTED 

in case this API is called with an unsupported power state or the peripheral does not 

support low power states at all.⌋() 

 
[SWS_Pwm_00175] 

⌈The API shall report the DET error PWM_E_TRANSITION_NOT POSSIBLE in case 

the requested power state cannot be directly reached from the current power state.⌋() 

 
[[SWS_Pwm_00176]] 

⌈The API shall report the DET error PWM_E_PERIPHERAL_NOT_PREPARED in 

case the HW unit has not been previously prepared for the target power state by use 

of the API Pwm_PreparePowerState(). ⌋() 

 
 
To get more details concerning error detection, refer to chapter API parameter 
checking. 
 
 

7.5 Error Detection 
 
 For details refer to the chapters 7.2 “Error classification” & 7.3 “Error Detection” in 
SWS_BSWGeneral. 
 
 
 
 

7.6 Error Notification 
 
 For details refer to the chapters 7.2 “Error classification” & 7.3 “Error Detection” in 
SWS_BSWGeneral. 
 
 
 

7.7 Duty Cycle Resolution and scaling 
 

[SWS_Pwm_00058] ⌈The width of the duty cycle parameter is 16 Bits. 

⌋(SRS_Pwm_12383) 

 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

28 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

[SWS_Pwm_00059] ⌈The Pwm module shall comply with the following scaling 

scheme for the duty cycle: 

 0x0000 means 0%. 

 0x8000 means 100%. 0x8000 gives the highest resolution while allowing 100% 
duty cycle to be represented with a 16 bit value. 

 
As an implementation guide, the following source code example is given: 
AbsoluteDutyCycle =  

((uint32)AbsolutePeriodTime * RelativeDutyCycle) >> 15;  

⌋(SRS_Pwm_12459) 

 

7.8 Version check 
 For details refer to the chapter 5.1.8 “Version Check” in SWS_BSWGeneral. 
 
 
 

7.9 Debug Support 
 
For details refer to the chapter 7.1.17 “Debugging support” in SWS_BSWGeneral. 
 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

29 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

8 API specification 
 

8.1 Imported types 
 
This chapter lists all types included from other modules. 
 
[SWS_Pwm_00094] 

⌈ 

Module Imported Type 

Dem Dem_EventIdType 

Dem_EventStatusType 

Std_Types Std_ReturnType 

Std_VersionInfoType 

⌋() 

 

8.2 Type definitions 
 
8.2.1 Pwm_ChannelType 
 
[SWS_Pwm_00106] 

⌈ 

Name: Pwm_ChannelType 

Type: uint 

Range: 8..32 bit -- This is implementation specific but not all values may be 
valid within the type. This type shall be chosen in order to 
have the most efficient implementation on a specific 
microcontroller platform. 

Description: Numeric identifier of a PWM channel. 

⌋() 

 
8.2.2 Pwm_PeriodType 
 
[SWS_Pwm_00107] 

⌈ 

Name: Pwm_PeriodType 

Type: uint 

Range: 8..32 bit -- Implementation specific. This type shall be chosen in order 
to have the most efficient implementation on a specific 
microcontroller platform. 

Description: Definition of the period of a PWM channel. 

⌋() 

 
8.2.3 Pwm_OutputStateType 
 
[SWS_Pwm_00108] 
 

⌈ 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

30 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

Name: Pwm_OutputStateType 

Type: Enumeration 

Range: PWM_HIGH The PWM channel is in high state. 
 

PWM_LOW The PWM channel is in low state. 
 

Description: Output state of a PWM channel. 

⌋() 

 
8.2.4 Pwm_EdgeNotificationType 
 
[SWS_Pwm_00109] 
 

⌈ 

Name: Pwm_EdgeNotificationType 

Type: Enumeration 

Range: PWM_RISING_EDGE Notification will be called when a rising edge occurs on the 
PWM output signal.  

PWM_FALLING_EDGE Notification will be called when a falling edge occurs on the 
PWM output signal.  

PWM_BOTH_EDGES Notification will be called when either a rising edge or falling 
edge occur on the PWM output signal.  

Description: Definition of the type of edge notification of a PWM channel. 

⌋() 

 
8.2.5 Pwm_ChannelClassType 
 
[SWS_Pwm_00110] 
 

⌈ 

Name: Pwm_ChannelClassType 

Type: Enumeration 

Range: PWM_VARIABLE_PERIOD The PWM channel has a variable period. The duty 
cycle and the period can be changed.  

PWM_FIXED_PERIOD The PWM channel has a fixed period. Only the duty 
cycle can be changed.  

PWM_FIXED_PERIOD_SHIFTED The PWM channel has a fixed shifted period. 
Impossible to change it ( only if supported by 
hardware) 

 

Description: Defines the class of a PWM channel 

⌋() 

 
8.2.6 Pwm_ConfigType 
 
[SWS_Pwm_00111] 
 

⌈ 

Name: Pwm_ConfigType 

Type: Structure 

Range: Hardware 

dependent 

The contents of the initialization data structure are hardware 
specific. 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

31 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

structure. 

Description: This is the type of data structure containing the initialization data for the PWM 
driver. 

⌋() 

 

[SWS_Pwm_00061] ⌈Pwm_ConfigType is a type of data structure containing the 

initialization data for the PWM driver.⌋() 

 
8.2.7 Pwm_PowerStateRequestResultType 

[SWS_Pwm_00165] 
 

⌈ 

Name: Pwm_PowerStateRequestResultType 

Type: Enumeration 

Range: PWM_SERVICE_ACCEPTED Power state change executed. 
 

PWM_NOT_INIT PWM Module not initialized. 
 

PWM_SEQUENCE_ERROR Wrong API call sequence. 
 

PWM_HW_FAILURE The HW module has a failure which prevents it to 
enter the required power state.  

PWM_POWER_STATE_NOT_SUPP PWM Module does not support the requested 
power state.  

PWM_TRANS_NOT_POSSIBLE PWM Module cannot transition directly from the 
current power state to the requested power state or 
the HW peripheral is still busy. 

 

Description: Result of the requests related to power state transitions. 

⌋() 

 
8.2.8 Pwm_PowerStateType 

[SWS_Pwm_00197] 
 

⌈ 

Name: Pwm_PowerStateType 

Type: Enumeration 

Range: PWM_FULL_POWER Full Power (0) 
 

1..255 power modes with decreasing power consumptions. 
 

Description: Power state currently active or set as target power state. 

 
 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

32 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

Mandatory parameters: 

 Assigned HW channel 

 Default value for period 

 Default value for duty cycle 

 Polarity ( high or low ) 

 Idle state high or low 

 Channel class: 
- Fixed period 
- Fixed period, shifted (if supported by hardware) 
- Variable period 

 
Optional parameters (if supported by hardware): 

 Channel phase shift 

 Reference channel for phase shift 

 Microcontroller specific channel properties 

⌋(SRS_Pwm_12293, SRS_Pwm_12378) 

 

8.3 Function definitions 
 
8.3.1 Pwm_Init 
 
[SWS_Pwm_00095] 
 

⌈ 

Service name: Pwm_Init 

Syntax: void Pwm_Init( 

    const Pwm_ConfigType* ConfigPtr 

) 

Service ID[hex]: 0x00 

Sync/Async: Synchronous 

Reentrancy: Non Reentrant 

Parameters (in): ConfigPtr Pointer to configuration set 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: Service for PWM initialization. 

⌋() 

 

[SWS_Pwm_00007] ⌈The function Pwm_Init shall initialize all internals variables and 

the used PWM structure of the microcontroller according to the parameters specified 

in ConfigPtr.⌋( SRS_BSW_00101, SRS_SPAL_12057) 

 

[SWS_Pwm_00062] ⌈The function Pwm_Init shall only initialize the configured 

resources and shall not touch resources that are not configured in the configuration 

file. ⌋ (SRS_SPAL_12057, SRS_SPAL_12125) 

 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

33 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

[SWS_Pwm_10009]  ⌈The function Pwm_Init shall start all PWM channels with the 

configured default values. ⌋ (SRS_SPAL_12057) 
If the duty cycle parameter equals: 

 [SWS_Pwm_20009] ⌈0% or 100%  : Then the PWM output signal shall be in 

the state according to the configured polarity parameter⌋ (SRS_SPAL_12057) 

 [SWS_Pwm_30009] ⌈>0% and <100%: Then the PWM output signal shall be 
modulated according to parameters period, duty cycle and configured polarity. 

⌋ (SRS_SPAL_12057) 
 

[SWS_Pwm_00052] ⌈The function Pwm_Init shall disable all notifications. ⌋ 

(SRS_SPAL_12057) 
 
The reason is that the users of these notifications may not be ready.  They can call 
Pwm_EnableNotification to start notifications.  
 

[SWS_Pwm_00093] ⌈The users of the Pwm module shall not call the function 

Pwm_Init during a running operation. ⌋ () 
 

[SWS_Pwm_00046] ⌈If development error detection is enabled for the Pwm module, 

the function Pwm_Init shall raise development error PWM_E_PARAM_CONFIG if 

ConfigPtr is a null pointer.  

 
Regarding error detection, the requirement SWS_Pwm_10051, SWS_Pwm_20051 

and SWS_Pwm_30051 is applicable to the function Pwm_Init. ⌋ (SRS_BSW_00323, 

SRS_BSW_00386) 
 

[SWS_Pwm_00116] ⌈The Pwm module’s environment shall not call any function of 

the Pwm module before having called Pwm_Init. .⌋ () 
 

[SWS_Pwm_00118] ⌈If development error detection is enabled, calling the routine 
Pwm_Init while the PWM driver and hardware are already initialized will cause a 
development error PWM_E_ALREADY_INITIALIZED. The desired functionality shall 

be left without any action. ⌋ () 
 

[SWS_Pwm_10120] ⌈For pre-compile and link time configuration variants, a NULL 

pointer shall be passed to the initialization routine. ⌋ () 

[SWS_Pwm_20120] ⌈In this case the check for this NULL pointer has to be omitted. 

⌋ () 
 

[SWS_Pwm_00121] ⌈A re-initialization of the Pwm driver by executing the 

Pwm_Init() function requires a de-initialization before by executing a Pwm_DeInit().⌋ 

() 
 
 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

34 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

8.3.2 Pwm_DeInit 
 
[SWS_Pwm_00096]  

⌈ 

Service name: Pwm_DeInit 

Syntax: void Pwm_DeInit( 

    void 

) 

Service ID[hex]: 0x01 

Sync/Async: Synchronous 

Reentrancy: Non Reentrant 

Parameters (in): None 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: Service for PWM De-Initialization. 

⌋() 

 

[SWS_Pwm_00010] ⌈The function Pwm_DeInit shall de-initialize the PWM module. ⌋ 

(SRS_BSW_00336, SRS_SPAL_12163, SRS_Pwm_12381) 
 

[SWS_Pwm_00011] ⌈The function Pwm_DeInit shall set the state of the PWM output 

signals to the idle state. ⌋ (SRS_SPAL_12163) 
 

[SWS_Pwm_00012] ⌈The function Pwm_DeInit shall disable PWM interrupts and 

PWM signal edge notifications. ⌋ (SRS_SPAL_12163) 
 

[SWS_Pwm_10080] ⌈The function Pwm_DeInit shall be pre compile time 

configurable On/Off by the configuration parameter: PwmDeInitApi. ⌋ 

(SRS_BSW_00171) 

[SWS_Pwm_20080] ⌈The function Pwm_DeInit shall be configurable On/Off by the 
configuration parameter PwmDeInitApi {PWM_DE_INIT_API}. 
 
Regarding error detection, the requirements SWS_Pwm_00117, SWS_Pwm_10051, 
SWS_Pwm_20051 and SWS_Pwm_30051 are applicable to the function 

Pwm_DeInit. ⌋ (SRS_BSW_00171) 
 
 
8.3.3 Pwm_SetDutyCycle 
 

[SWS_Pwm_00097] ⌈ 
 

Service name: Pwm_SetDutyCycle 

Syntax: void Pwm_SetDutyCycle( 

    Pwm_ChannelType ChannelNumber, 

    uint16 DutyCycle 

) 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

35 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

Service ID[hex]: 0x02 

Sync/Async: Synchronous 

Reentrancy: Reentrant for different channel numbers 

Parameters (in): 
ChannelNumber Numeric identifier of the PWM 

DutyCycle Min=0x0000 Max=0x8000 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: Service sets the duty cycle of the PWM channel. 

⌋ () 

[SWS_Pwm_00013] ⌈The function Pwm_SetDutyCycle shall set the duty cycle of the 

PWM channel. ⌋ (SRS_Pwm_12295) 
 

[SWS_Pwm_00014]  ⌈When the requested duty cycle is either 0% or 100%, the 
function  
Pwm_SetDutyCycle shall set the PWM output state to either PWM_HIGH or 
PWM_LOW, with regard to both the configured polarity parameter and the requested 
duty cycle. 
Thus for 0% requested Duty Cycle the output will be the inverse of the configured 
polarity parameter, and for 100% Duty Cycle the output will be equal to the 

configured polarity parameter. ⌋ () 
 
 

[SWS_Pwm_00016] ⌈The function Pwm_SetDutyCycle shall modulate the PWM 
output signal according to parameters period, duty cycle and configured polarity, 

when the duty cycle > 0 % and < 100%.⌋ () 
 

[SWS_Pwm_00017] ⌈The function Pwm_SetDutyCycle shall update the duty cycle 
always at the end of the period if supported by the implementation and configured 

with PwmDutycycleUpdatedEndperiod. ⌋ (SRS_Pwm_12382) 
 
Regarding format definition of duty cycle parameter, the requirement 
SWS_Pwm_00058 is applicable to the function Pwm_SetDutyCycle. 
 
Regarding scaling definition of duty cycle parameter, the requirement 
SWS_Pwm_00059 is applicable to the function Pwm_SetDutyCycle.  
 

[SWS_Pwm_00018] ⌈The driver shall forbid the spike on the PWM output signal. ⌋ () 
 
Regarding error detection, the requirements SWS_Pwm_00117, SWS_Pwm_00047, 
SWS_Pwm_10051, SWS_Pwm_20051 and SWS_Pwm_30051 are applicable to the 
function Pwm_SetDutyCycle. 
 

[SWS_Pwm_10082] ⌈The function Pwm_SetDutyCycle shall be pre compile time 

configurable On/Off by the configuration parameter: PwmSetDutyCycle. .⌋ 

(SRS_BSW_00171) 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

36 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

[SWS_Pwm_20082] ⌈The function Pwm_SetDutyCycle shall be configurable On/Off 
by the configuration parameter: PwmSetDutyCycle 

{PWM_SET_DUTY_CYCLE_API}.⌋ (SRS_BSW_00171) 
 
8.3.4 Pwm_SetPeriodAndDuty 
 

[SWS_Pwm_00098] ⌈ 
 

Service name: Pwm_SetPeriodAndDuty 

Syntax: void Pwm_SetPeriodAndDuty( 

    Pwm_ChannelType ChannelNumber, 

    Pwm_PeriodType Period, 

    uint16 DutyCycle 

) 

Service ID[hex]: 0x03 

Sync/Async: Synchronous 

Reentrancy: Reentrant for different channel numbers 

Parameters (in): 

ChannelNumber Numeric identifier of the PWM 

Period Period of the PWM signal 

DutyCycle Min=0x0000 Max=0x8000 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: Service sets the period and the duty cycle of a PWM channel 

⌋ () 
 

[SWS_Pwm_00019] ⌈The function Pwm_SetPeriodAndDuty shall set the period and 

the duty cycle of a PWM channel. ⌋ (SRS_Pwm_12297) 
 

[SWS_Pwm_00076] ⌈The function Pwm_SetPeriodAndDuty shall update the period 
always at the end of the current period if supported by the implementation and 

configured with PwmPeriodUpdatedEndperiod. ⌋ () 
 

[SWS_Pwm_00020] ⌈When updating the PWM period and duty, the driver shall 

repress any spikes on the PWM output signal. ⌋ () 
 
The PWM duty cycle parameter is necessary to maintain the consistency between 
frequency and duty cycle. Refer to SWS_Pwm_00058 and SWS_Pwm_00059 to 
know the scaling and format definition of duty cycle parameter 
 
Regarding error detection, the requirements SWS_Pwm_00117, SWS_Pwm_00045, 
SWS_Pwm_00047, SWS_Pwm_10051, SWS_Pwm_20051 and SWS_Pwm_30051 
are applicable to the function Pwm_SetPeriodAndDuty. 
 

[SWS_Pwm_00041] ⌈The function Pwm_SetPeriodAndDuty shall allow changing the 

period only for the PWM channel declared as variable period type. ⌋ 

(SRS_Pwm_12389) 
 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

37 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

[SWS_Pwm_10083] ⌈The function Pwm_SetPeriodAndDuty shall be pre compile 

time configurable On/Off by the configuration parameter: PwmSetPeriodAndDuty. ⌋ 

(SRS_BSW_00171) 

[SWS_Pwm_20083]  ⌈The function Pwm_SetPeriodAndDuty shall be configurable 
On/Off by the configuration parameter: PwmSetPeriodAndDuty 

{PWM_SET_PERIOD_AND_DUTY_API}.⌋ (SRS_BSW_00171) 
 

[SWS_Pwm_00150] ⌈If the period is set to zero the setting of the duty-cycle is not 

relevant. In this case the output shall be zero (zero percent duty-cycle). ⌋ () 
 
8.3.5 Pwm_SetOutputToIdle 
 

[SWS_Pwm_00099] ⌈ 
 

Service name: Pwm_SetOutputToIdle 

Syntax: void Pwm_SetOutputToIdle( 

    Pwm_ChannelType ChannelNumber 

) 

Service ID[hex]: 0x04 

Sync/Async: Synchronous 

Reentrancy: Reentrant for different channel numbers 

Parameters (in): ChannelNumber Numeric identifier of the PWM 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: Service sets the PWM output to the configured Idle state. 

⌋ () 
 

[SWS_Pwm_00021] ⌈The function Pwm_SetOutputToIdle shall set immediately the 

PWM output to the configured Idle state. ⌋ (SRS_Pwm_12358) 
 
Regarding error detection, the requirements SWS_Pwm_00117, SWS_Pwm_00047, 
SWS_Pwm_10051, SWS_Pwm_20051 and SWS_Pwm_30051 are applicable to the 
function Pwm_SetOutputToIdle. 
 

[SWS_Pwm_10084] ⌈The function Pwm_SetOutputToIdle shall be pre compile time 

configurable On/Off by the configuration parameter: PwmSetOutputToIdle. ⌋ 

(SRS_BSW_00171) 

[SWS_Pwm_20084]  ⌈The function Pwm_SetOutputToIdle shall be configurable 
On/Off by the configuration parameter: PwmSetOutputToIdle 

{PWM_SET_OUTPUT_TO_IDLE_API}.⌋ (SRS_BSW_00171) 
 

[SWS_Pwm_10086] ⌈After the call of the function Pwm_SetOutputToIdle, variable 
period type channels shall be reactivated using the Api Pwm_SetPeriodAndDuty( ) to 

activate the PWM channel with the new passed period. ⌋ () 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

38 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

 

[[SWS_Pwm_20086] ] ⌈After the call of the function Pwm_SetOutputToIdle, 

channels shall be reactivated using the Api Pwm_SetDutyCycle( ) to activate the 

PWM channel with the old period.⌋()  

 

[[SWS_Pwm_00119] ] ⌈After the call of the function Pwm_SetOutputToIdle, fixed 

period type channels shall be reactivated using only the API Pwm_SetDutyCycle() to 

activate the PWM channel with the old period. ⌋() 

 
 
8.3.6 Pwm_GetOutputState 
 

[SWS_Pwm_00100] ⌈ 
 

Service name: Pwm_GetOutputState 

Syntax: Pwm_OutputStateType Pwm_GetOutputState( 

    Pwm_ChannelType ChannelNumber 

) 

Service ID[hex]: 0x05 

Sync/Async: Synchronous 

Reentrancy: Reentrant for different channel numbers 

Parameters (in): ChannelNumber Numeric identifier of the PWM 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: 
Pwm_OutputStateType PWM_HIGH The PWM output state is high 

PWM_LOW The PWM output state is low 

Description: Service to read the internal state of the PWM output signal. 

⌋ () 
 

[SWS_Pwm_00022] ⌈The function Pwm_GetOutputState shall read the internal state 
of the PWM output signal and return it as defined in the diagram below  
 

Microcontroller

PWM Unit Port Logic

Value to read PWM Port pin

 
Regarding error detection, the requirements SWS_Pwm_00117, SWS_Pwm_00047, 
SWS_Pwm_10051, SWS_Pwm_20051 and SWS_Pwm_30051 are applicable to the 

function Pwm_GetOutputState. ⌋ (SRS_Pwm_12385) 
 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

39 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

[SWS_Pwm_10085] ⌈The function Pwm_GetOutputState shall be pre compile time 

configurable On/Off using the configuration parameter: PwmGetOutputState. ⌋ 

(SRS_BSW_00171) 

[SWS_Pwm_20085] ⌈The function Pwm_GetOutputState shall be configurable 
On/Off by the configuration parameter: PwmGetOutputState 
{PWM_GET_OUTPUT_STATE_API}. 
 
Due to real time constraint and setting of the PWM channel (project dependant), the 

output state can be modified just after the call of the service Pwm_GetOutputState. ⌋ 

(SRS_BSW_00171) 
 
 
8.3.7 Pwm_DisableNotification 
 

[SWS_Pwm_00101] ⌈ 
 

Service name: Pwm_DisableNotification 

Syntax: void Pwm_DisableNotification( 

    Pwm_ChannelType ChannelNumber 

) 

Service ID[hex]: 0x06 

Sync/Async: Synchronous 

Reentrancy: Reentrant for different channel numbers 

Parameters (in): ChannelNumber Numeric identifier of the PWM 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: Service to disable the PWM signal edge notification. 

⌋ () 
 

[SWS_Pwm_00023] ⌈The function Pwm_DisableNotification shall disable the PWM 

signal edge notification. ⌋ (SRS_Pwm_12378, SRS_Pwm_12299) 
 

[SWS_Pwm_10112] ⌈The function Pwm_DisableNotification shall be pre compile 
time configurable On/Off using the configuration parameter: 

PwmNotificationSupported. ⌋ () 

[SWS_Pwm_20112] ⌈The function Pwm_DisableNotification shall be configurable 
On/Off by the configuration parameter: PwmNotificationSupported 
{PWM_NOTIFICATION_SUPPORTED}. 
 
Regarding error detection, the requirements SWS_Pwm_00117, SWS_Pwm_00047, 
SWS_Pwm_10051, SWS_Pwm_20051 and SWS_Pwm_30051 are applicable to the 

function Pwm_DisableNotification. ⌋ () 
 
 
8.3.8 Pwm_EnableNotification 
 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

40 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

[SWS_Pwm_00102] ⌈ 
 

Service name: Pwm_EnableNotification 

Syntax: void Pwm_EnableNotification( 

    Pwm_ChannelType ChannelNumber, 

    Pwm_EdgeNotificationType Notification 

) 

Service ID[hex]: 0x07 

Sync/Async: Synchronous 

Reentrancy: Reentrant for different channel numbers 

Parameters (in): 

ChannelNumber Numeric identifier of the PWM 

Notification Type of notification 
PWM_RISING_EDGE or 
PWM_FALLING_EDGE or 
PWM_BOTH_EDGES 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: Service to enable the PWM signal edge notification according to notification 
parameter. 

⌋ () 
 

[SWS_Pwm_00024] ⌈The function Pwm_EnableNotification shall enable the PWM 

signal edge notification according to notification parameter. ⌋ (SRS_Pwm_12378, 

SRS_Pwm_12299) 
 

[SWS_Pwm_00081] ⌈The function Pwm_EnableNotification shall cancel pending 

interrupts. ⌋ () 
 

[SWS_Pwm_10113] ⌈The function Pwm_EnableNotification shall be pre compile 
time configurable On/Off using the configuration parameter: 

PwmNotificationSupported. ⌋ () 
 

[SWS_Pwm_20113] ⌈The function Pwm_EnableNotification shall be configurable 
On/Off by the configuration parameter: PwmNotificationSupported 
{PWM_NOTIFICATION_SUPPORTED}. 
 
Regarding error detection, the requirements SWS_Pwm_00117, SWS_Pwm_00047, 
SWS_Pwm_10051, SWS_Pwm_20051 and SWS_Pwm_30051 are applicable to the 

function Pwm_EnableNotification. ⌋ () 
 
8.3.9 Pwm_SetPowerState 

[[SWS_Pwm_00166]] 

⌈ 

Service name: Pwm_SetPowerState 

Syntax: Std_ReturnType Pwm_SetPowerState( 

    Pwm_PowerStateRequestResultType* Result 

) 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

41 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

Service ID[hex]: 0x09 

Sync/Async: Synchronous 

Reentrancy: Non Reentrant 

Parameters (in): None 

Parameters 
(inout): 

None 

Parameters (out): 

Result If the API returns E_OK: 
PWM_SERVICE_ACCEPTED:Power state change executed. 
 
If the API returns E_NOT_OK: 
PWM_NOT_INIT: PWM Module not initialized. 
PWM_SEQUENCE_ERROR: wrong API call sequence. 
PWM_HW_FAILURE: the HW module has a failure which 
prevents it to enter the required power state. 

Return value: 
Std_ReturnType E_OK: Power Mode changed 

E_NOT_OK: request rejected 

Description: This API configures the Pwm module so that it enters the already prepared power 
state, chosen between a predefined set of configured ones. 

⌋() 

 
[[SWS_Pwm_00167] 

⌈The API configures the HW in order to enter the given Power State. All preliminary 

actions to enable this transition (e.g. setting all channels in IDLE status, de-
registering of all notifications and so on) must already have been taken by the 
responsible SWCs (e.g. IoHwAbs).  
 
The API shall not execute preliminary, implicit power state changes (i.e. if a 
requested power state is not reachable starting from the current one, no intermediate 

power state change shall be executed and the request shall be rejected)⌋() 

 
[SWS_Pwm_00168] 

⌈In case the target power state is the same as the current one, no action is executed 

and the API returns immediately with an E_OK result.⌋() 

 
[SWS_Pwm_00169] 

⌈In case the normal Power State is requested, the API shall refer to the necessary 

parameters contained in the same containers used by Pwm_Init.  
 
No separate container or hard coded data shall be used for the normal (i.e. full) 
power mode, in order to avoid misalignments between initialization parameters used 

during the init phase and during a power state change.⌋() 

 
[SWS_Pwm_00170] 

⌈For the other power states, only power state transition specific reconfigurations shall 

be executed in the context of this API (i.e. the API cannot be used to apply a 
completely new configuration to the Pwm module). Any other re-configuration not 

strictly related to the power state transition shall not take place.⌋() 

 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

42 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

[SWS_Pwm_00171] 

⌈The API shall refer to the configuration container related to the required Power State 

in order to derive some specific features of the state (e.g support of Power States).⌋() 

 
In case development error reporting is activated: 
 
[SWS_Pwm_00172] 

⌈The API shall report the DET error PWM_E_UNINIT in case this API is called before 

having initialized the HW unit.⌋() 

 
[SWS_Pwm_00173] 

⌈The API shall report the DET error PWM_E_NOT_DISENGAGED in case this API is 

called when one or more HW channels (where applicable) are in a state different 
than IDLE (or similar non-operational states) and/or there are still notification 

registered for the HW module channels.⌋() 

 
[SWS_Pwm_00194] 

⌈The API shall report the DET error PWM_E_POWER_STATE_NOT_SUPPORTED 

in case this API is called with an unsupported power state or the peripheral does not 
support low power states at all. 

⌋() 

[SWS_Pwm_00195] 

⌈The API shall report the DET error PWM_E_TRANSITION_NOT POSSIBLE in case 

the requested power state cannot be directly reached from the current power state.⌋() 

 
[SWS_Pwm_00196] 

⌈The API shall report the DET error PWM_E_PERIPHERAL_NOT_PREPARED in 

case the HW unit has not been previously prepared for the target power state by use 

of the API Pwm_PreparePowerState(). ⌋() 

 
8.3.10 Pwm_GetCurrentPowerState 

[[SWS_Pwm_00177] 

]⌈ 

Service name: Pwm_GetCurrentPowerState 

Syntax: Std_ReturnType Pwm_GetCurrentPowerState( 

    Pwm_PowerStateType* CurrentPowerState, 

    Pwm_PowerStateRequestResultType* Result 

) 

Service ID[hex]: 0x0a 

Sync/Async: Synchronous 

Reentrancy: Non Reentrant 

Parameters (in): None 

Parameters 
(inout): 

None 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

43 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

Parameters (out): 

CurrentPowerState The current power mode of the PWM HW Unit is returned in 
this parameter 

Result If the API returns E_OK: 
PWM_SERVICE_ACCEPTED: Current power mode was 
returned. 
 
If the API returns E_NOT_OK: 
PWM_NOT_INIT: PWM Module not initialized. 

Return value: 
Std_ReturnType E_OK: Mode could be read 

E_NOT_OK: Service is rejected 

Description: This API returns the current power state of the PWM HW unit. 

⌋() 

 
[[SWS_Pwm_00178] 

⌈The API returns the power state of the HW unit.  

 

In case development error reporting is activated:⌋() 

 
[[SWS_Pwm_00179] 

⌈The API shall report the DET error PWM_E_UNINIT in case this API is called before 

having initialized the HW unit.⌋() 

 
8.3.11 Pwm_GetTargetPowerState 

[[SWS_Pwm_00180] 

⌈] 

Service name: Pwm_GetTargetPowerState 

Syntax: Std_ReturnType Pwm_GetTargetPowerState( 

    Pwm_PowerStateType* TargetPowerState, 

    Pwm_PowerStateRequestResultType* Result 

) 

Service ID[hex]: 0x0b 

Sync/Async: Synchronous 

Reentrancy: Non Reentrant 

Parameters (in): None 

Parameters 
(inout): 

None 

Parameters (out): 

TargetPowerState The Target power mode of the PWM HW Unit is returned in this 
parameter 

Result If the API returns E_OK: 
PWM_SERVICE_ACCEPTED:Target power mode was 
returned. 
 
If the API returns E_NOT_OK: 
PWM_NOT_INIT: PWM Module not initialized. 

Return value: 
Std_ReturnType E_OK: Mode could be read 

E_NOT_OK: Service is rejected 

Description: This API returns the Target power state of the PWM HW unit. 

⌋() 

 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

44 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

 
[[SWS_Pwm_00181] 

⌈The API returns the requested power state of the HW unit. This shall coincide with 

the current power state if no transition is ongoing. 
 
The API is considered to always succeed except in case of HW failures. 
 

In case development error reporting is activated:⌋() 

 
[[SWS_Pwm_00182] 

⌈The API shall report the DET error PWM_E_UNINIT in case this API is called before 

having initialized the HW unit.⌋() 

 
8.3.12 Pwm_PreparePowerState 

[[SWS_Pwm_00183] 
 

⌈ 

Service name: Pwm_PreparePowerState 

Syntax: Std_ReturnType Pwm_PreparePowerState( 

    Pwm_PowerStateType PowerState, 

    Pwm_PowerStateRequestResultType* Result 

) 

Service ID[hex]: 0x0c 

Sync/Async: Synchronous 

Reentrancy: Non Reentrant 

Parameters (in): PowerState The target power state intended to be attained 

Parameters 
(inout): 

None 

Parameters (out): 

Result If the API returns E_OK: 
PWM_SERVICE_ACCEPTED: PWM Module power state 
preparation was started. 
 
If the API returns E_NOT_OK: 
PWM_NOT_INIT: PWM Module not initialized. 
PWM_SEQUENCE_ERROR: wrong API call sequence (Current 
Power State = Target Power State). 
PWM_POWER_STATE_NOT_SUPP: PWM Module does not 
support the requested power state. 
PWM_TRANS_NOT_POSSIBLE: PWM Module cannot transition 
directly from the current power state to the requested power state 
or the HW peripheral is still busy. 

Return value: 
Std_ReturnType E_OK: Preparation process started 

E_NOT_OK: Service is rejected 

Description: This API starts the needed process to allow the PWM HW module to enter the 
requested power state. 

 

⌋() 

 
[[SWS_Pwm_00184] 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

45 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

⌈This API initiates all actions needed to enable a HW module to enter the target 

power state.  
 
The possibility to operate the periphery depends on the power state and the HW 
features. These properties should be known to the integrator and the decision 

whether to use the periphery or not is in his responsibility.⌋() 

 
[[SWS_Pwm_00185] 

⌈In case the target power state is the same as the current one, no action is executed 

and the API returns immediately with an E_OK result. 
 
The responsibility of the preconditions is left to the environment.  
 

In case development error reporting is activated.⌋() 

 
[[SWS_Pwm_00186] 

⌈The API shall report the DET error PWM_E_UNINIT in case this API is called before 

having initialized the HW unit.⌋() 

 
[[SWS_Pwm_00187] 

⌈The API shall report the DET error PWM_E_POWER_STATE_NOT_SUPPORTED 

in case this API is called with an unsupported power state is requested or the 

peripheral does not support low power states at all.⌋() 

 
[[SWS_Pwm_00188] 

⌈The API shall report the DET error PWM_E_TRANSITION_NOT POSSIBLE in case 

the requested power state cannot be directly reached from the current power state.  
 
All asynchronous operation needed to reach the target power state can be executed 

in background in the context of Pwm_Main_PowerTransitionManager.⌋() 

 
8.3.13 Pwm_GetVersionInfo 
 
[SWS_Pwm_00103]  
Service name: Pwm_GetVersionInfo 

Syntax: void Pwm_GetVersionInfo( 

    Std_VersionInfoType* versioninfo 

) 

Service ID[hex]: 0x08 

Sync/Async: Synchronous 

Reentrancy: Reentrant 

Parameters (in): None 

Parameters 
(inout): 

None 

Parameters (out): versioninfo Pointer to where to store the version information of this module. 

Return value: None 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

46 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

Description: Service returns the version information of this module. 

⌋ () 
 
 

[SWS_Pwm_20069] ⌈The function Pwm_GetVersionInfo shall be configurable 
On/Off by the configuration parameter: PwmVersionInfoApi 

{PWM_VERSION_INFO_API}.⌋ (SRS_BSW_00407) 
 

 

8.4 Callback notifications 
 
Since the PWM Driver is a module on the lowest architectural layer it doesn’t provide 
any call-back functions for lower layer modules. 
 
 

8.5 Scheduled functions 
 
All services offered by the PWM Driver are of synchronous nature, with the exception 
of the asynchronous power transition management, if so configured. 
In case the synchronous power transition management is configured, no scheduled 
API is generated. 
 
8.5.1 Pwm_Main_PowerTransitionManager 

[[SWS_Pwm_00189] 

⌈] 

Service name: Pwm_Main_PowerTransitionManager 

Syntax: void Pwm_Main_PowerTransitionManager( 

    void 

) 

Service ID[hex]: 0x0d 

Description: This API is cyclically called and supervises the power state transitions, checking 
for the readiness of the module and issuing the callbacks 
IoHwAb_Pwm_NotifyReadyForPowerState<Mode> (see 
PwmPowerStateReadyCbkRef configuration parameter). 

⌋() 

 
[[SWS_Pwm_00190] 

⌈This API executes any non-immediate action needed to finalize a power state 

transition requested by Pwm_PreparePowerState().⌋() 

 
[[SWS_Pwm_00191] 

⌈The rate of scheduling shall be defined by Pwm MainSchedulePeriod and shall be 

variable, as the function only needs to be called if a transition has been requested.⌋() 

 
[[SWS_Pwm_00192] 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

47 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

⌈This API shall also issue callback notifications to the eventually registered users 

(IoHwAbs) as configured, only in case the asynch mode is chosen.⌋()  

 
[[SWS_Pwm_00193] 

⌈In case the PWM module  is not initialized, this function shall simply return without 

any further elaboration. This is needed to avoid to elaborate uninitialized variables. 
No DET error shall be entered, because this condition can easily be verified during 
the startup phase (tasks started before the initialization is complete). 
 
Rationale: during the startup phase it can happen that the OS already schedules 
tasks, which call main functions, while some modules are not initialised yet. This is 
no real error condition, although need handling, i.e. returning without execution. 
 
Although the transition state monitoring functionality is mandatory, the 
implementation of this API is optional, meaning that if the HW allows for other ways 
to deliver notification and watch the transition state the implementation of this 

function can be skipped.⌋() 

 

8.6 Expected Interfaces 
 
In this chapter all interfaces required from other modules are listed.  
 
8.6.1 Mandatory Interfaces 
 
This chapter defines all interfaces which are required to fulfill the core functionality of 
the module. 
 
As this module is part of the MCAL layer, it access directly to the microcontroller 
registers and therefore doesn’t need any lower interfaces. 
 
 
8.6.2 Optional Interfaces 
 
This chapter defines all interfaces which are required to fulfill an optional functionality 
of the module. 
 

[SWS_Pwm_00104] ⌈ 
 

API function Description 

Dem_ReportErrorStatus Queues the reported events from the BSW modules (API is only used 
by BSW modules). The interface has an asynchronous behavior, 
because the processing of the event is done within the Dem main 
function. 
OBD Events Suppression shall be ignored for this computation. 

Det_ReportError Service to report development errors. 

⌋ () 
 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

48 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

8.6.3 Configurable interfaces 
 
In this chapter all interfaces are listed where the target function could be configured. 
The target function is usually a call-back function. The names of these kinds of 
interfaces are not fixed because they are configurable. 
 

[SWS_Pwm_00105] ⌈ 
 

Service name: Pwm_Notification_<#Channel> 

Syntax: void Pwm_Notification_<#Channel>( 

    void 

) 

Sync/Async: Synchronous 

Reentrancy: PWM user implementation dependant 

Parameters (in): None 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: The Pwm module shall call the function Pwm_Notification_<#Channel> 
accordingly to the last call of Pwm_EnableNotification for channel <#Channel>. 

⌋ () 
 

[SWS_Pwm_00025] ⌈The Pwm module shall call the function 
Pwm_Notification_<#Channel> accordingly to the last call of Pwm_EnableNotification 

and Pwm_DisableNotification for channel <#Channel>.⌋ (SRS_SPAL_00157) 
 

[SWS_Pwm_00026] ⌈The Pwm module shall reset the interrupt flag associated to 

the notification Pwm_Notification_<#Channel>⌋ (SRS_SPAL_12129) 
 

[SWS_Pwm_10115] ⌈The Pwm module shall provide the functionality of 
Pwm_EnableNotification only when the configuration parameter 

PwmNotificationSupported is ON. ⌋ () 
 

[SWS_Pwm_20115] ⌈The Pwm module shall provide the functionality of 
Pwm_DisableNotification only when the configuration parameter 

PwmNotificationSupported is ON. ⌋ () 
 

[SWS_Pwm_30115] ⌈The Pwm module shall reset the interrupt flag associated to 
the notification only when the configuration parameter PwmNotificationSupported is 

ON. ⌋ () 
 
[[SWS_Pwm_00198] 

]⌈ 

Service name: IoHwAb_Pwm_NotifyReadyForPowerState<#Mode> 

Syntax: void IoHwAb_Pwm_NotifyReadyForPowerState<#Mode>( 

    void 

) 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

49 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

Service ID[hex]: 0x60 

Sync/Async: Synchronous 

Reentrancy: Non Reentrant 

Parameters (in): None 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: The API shall be invoked by the PWM Driver when the requested power state 
preparation for mode <#Mode> is completed. 

 

⌋() 

 
[[SWS_Pwm_00199]] 

⌈In case the PWM Driver is configured to support power state management with 

asynchronous transitions, this API shall be called to signal completion of the power 
transition preparation phase to the IoHwAbs module. 
 

This is a callback, this API is to be implemented in the IoHwAbs component.⌋() 

8.7 API parameter checking 
 

[SWS_Pwm_10051] ⌈If development error detection for the Pwm module is enabled, 
and a development error occurs, then the corresponding PWM function shall report 

the error to the Development Error Tracer. ⌋ (SRS_BSW_00323, SRS_BSW_00386) 
 

[SWS_Pwm_20051] ⌈If development error detection for the Pwm module is enabled, 
and a development error occurs, then the corresponding PWM function shall skip the 
desired functionality in order to avoid any corruptions of data or hardware registers 

leaving the function without any actions. ⌋ (SRS_BSW_00323, SRS_BSW_00386) 
 

[SWS_Pwm_30051] ⌈If development error detection for the Pwm module is enabled, 
and a development error occurs, then the corresponding PWM function shall return 

PWM_LOW for the function Pwm_GetOutputState. ⌋ (SRS_BSW_00323, 

SRS_BSW_00386) 
 

[SWS_Pwm_00117] ⌈If development error detection for the Pwm module is enabled: 
if any function (except Pwm_Init) is called before Pwm_Init has been called, the 

called function shall raise development error PWM_E_UNINIT. ⌋ (SRS_BSW_00406, 

SRS_BSW_00323, SRS_BSW_00386) 
 

[SWS_Pwm_00045]  ⌈If development error detection for the Pwm module is 
enabled: The API 

Pwm_SetPeriodAndDuty() shall check if the given PWM channel is of the channel 

class type PWM_VARIABLE_PERIOD. If this is not the case the development error 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

50 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

PWM_E_PERIOD_UNCHANGEABLE shall be called. ⌋ (SRS_BSW_00323, 

SRS_BSW_00386) 
 

[SWS_Pwm_00047] ⌈If development error detection for the Pwm module is enabled: 

the PWM functions shall check the parameter ChannelNumber and raise 

development error PWM_E_PARAM_CHANNEL if the parameter ChannelNumber is 

invalid. ⌋ (SRS_BSW_00323, SRS_BSW_00386) 
 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

51 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

9 Sequence diagrams 
 

9.1 Initialization 

«module»

Pwm

Pwm User

Status: proposed by DB as per SWS Pwm Driver 1.0.9

Description:

PWM Driver Initialization

The PWM output signals are either in low state, in high state or in modulation state depending on the 

configuration parameters.

If configured, no notification occurs until the first call of Pwm_EnableNotification

Comments:

Pwm_Init(const

Pwm_ConfigType*)

Pwm_Init()

 

Figure 3: Pwm initialization 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

52 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

9.2 De-initialization 

«module»

Pwm

Pwm User

Status: proposed by DB as per SWS Pwm Driver 1.0.9

Description:

PWM Driver De-Initialization

The PWM output channels are in the state defined by configuration.

Comments:

Pwm_DeInit()

Pwm_DeInit()

 

Figure 4: Pwm de-initialization 

 
 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

53 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

9.3 Setting the duty cycle 
 

«module»

Pwm

Pwm User

Status: proposed by DB as per SWS Pwm Driver 1.0.9

Description:

Set PWM Driver Set Duty Cycle

The PWM duty cycle will be changed either at the end of the current period if 

supported or directly if not supported by the implementation.

Comments:

Pwm_SetDutyCycle(Pwm_ChannelType, uint16)

Pwm_SetDutyCycle()

 
 

Figure 5: Setting the duty cycle 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

54 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

 
 

9.4 Setting the period and the duty 
 

«module»

Pwm

Pwm User

Status: proposed by DB as per SWS Pwm Driver 1.0.9

Description:

Set PWM signal period

The PWM period is changed at the end of the current period if configured.

Comments:

Pwm_SetPeriodAndDuty(Pwm_ChannelType, Pwm_PeriodType, uint16)

Pwm_SetPeriodAndDuty()

 

Figure 6: Setting period and duty cycle 

 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

55 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

9.5 Setting the PWM output to idle 
 

«module»

Pwm

Pwm User

Status: proposed by DB as per SWS Pwm Driver 1.0.9

Description:

Set PWM signal

Comments:

Description:

The PWM output signal 

state is settled according to 

the given parameter

Description:

If the PWM signal needs to be 

activated again, then the user of the 

PWM Driver can call 

Pwm_SetPeriodAndDuty if necessary 

to have a defined period

Pwm_SetOutputToIdle(Pwm_ChannelType)

Pwm_SetOutputToIdle()

Pwm_SetPeriodAndDuty(Pwm_ChannelType, Pwm_PeriodType, uint16)

Pwm_SetPeriodAndDuty()

 

Figure 7: Setting Pwm output to idle 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

56 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

9.6 Getting the PWM Output state 
 
 

«module»

Pwm

Pwm User

Status: proposed by DB  as per SWS Pwm Driver 1.0.9

Description:

Getting the PWM Output State

The PWM channel state is read.

Comments:

Pwm_GetOutputState(Pwm_OutputStateType,

Pwm_ChannelType) :Pwm_OutputStateType

Pwm_GetOutputState=PWM_HIGH or PWM_LOW()

 

Figure 8: Getting Pwm output state 

 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

57 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

9.7 Using the PWM notifications 
 

«module»

Pwm

Pwm User

Status: proposed by DB as per SWS Pwm Driver 1.0.9

Description:

Using PWM Enable/Disable notification

The PWM channel is autostarted (Modulation starts during the call of Pwm_Init() ).

No notifications occur until the first call of Pwm_EnableNotification(...). Pwm_Notification<#Channel> 

represents the configured callback function for a channel.

Comments:

Pwm_Init(const

Pwm_ConfigType*)

Pwm_Init()

Pwm_EnableNotification(Pwm_ChannelType, Pwm_EdgeNotificationType)

Pwm_EnableNotification()

Pwm_Notification_<#Channel>()
Falling Edge notification

Pwm_Notification_<#Channel>()
Rising Edge notification

Pwm_DisableNotification(Pwm_ChannelType)

Pwm_DisableNotification()
No notifications will occur

 

Figure 9: Using Pwm notifications 

 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

58 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

10 Configuration specification 
 
In general, this chapter defines configuration parameters and their clustering into 
containers. In order to support the specification Chapter 10.1 describes 
fundamentals. It also specifies a template (table) you shall use for the parameter 
specification. We intend to leave Chapter 10.1 in the specification to guarantee 
comprehension. 
 
Chapter 10.2 specifies the structure (containers) and the parameters of the module 
PWM Driver.  
 
Chapter 10.3 specifies published information of the module PWM Driver. 
 
 

10.1 How to read this chapter 
 
For details refer to the chapter 10.1 “Introduction to configuration specification” in 
SWS_BSWGeneral. 
 
 

10.2 Containers and configuration parameters 
 
The following chapters summarize all configuration parameters. The detailed 
meanings of the parameters describe Chapters Functional specification and Chapter 
API specification. 
 
 
10.2.1 Variants 
 

[SWS_Pwm_00079] ⌈VARIANT-PRE-COMPILE (Pre Compile) is limited to pre-

compile configuration parameters only. ⌋ () 

 

[SWS_Pwm_00077] ⌈VARIANT-POST-BUILD includes a mix of pre-compile, link 

time and post build configuration parameters. ⌋ () 
 
 
 
 
 

10.2.2 Pwm 
Module Name  Pwm  

Module Description  Configuration of Pwm (Pulse Width Modulation) module. 

   

Included Containers  

Container Name  Multiplicity  Scope / Dependency  

PwmChannelConfigSet  1  Multiple Configuration Set Container 

PwmConfigurationOfOptApiService
s  

1  --  

PwmGeneral  1  --  

   



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

59 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

10.2.3 PwmGeneral 
SWS Item  ECUC_Pwm_00004 :  

Container Name  PwmGeneral{PwmModuleConfiguration}  

Description  -- 

Configuration Parameters  

   

SWS Item  ECUC_Pwm_00131 :  

Name  
 

PwmDevErrorDetect {PWM_DEV_ERROR_DETECT}  

Description  Switch for enabling the development error detection. 

Multiplicity  1  

Type  EcucBooleanParamDef  

Default value  --  

ConfigurationClass  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  

   

SWS Item  ECUC_Pwm_00132 :  

Name  
 

PwmDutycycleUpdatedEndperiod 
{PWM_DUTYCYCLE_UPDATED_ENDPERIOD}  

Description  Switch for enabling the update of the duty cycle parameter at the end of 
the current period. 
TRUE: update of duty cycle is done at the end of period of currently 
generated waveform (current waveform is finished). FALSE: update of duty 
cycle is done immediately (just after service call, current waveform is cut). 

Multiplicity  1  

Type  EcucBooleanParamDef  

Default value  --  

ConfigurationClass  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  

   

SWS Item  ECUC_Pwm_00139 :  

Name  
 

PwmIndex  

Description  Specifies the InstanceId of this module instance. If only one instance is 
present it shall have the Id 0. 

Multiplicity  1  

Type  EcucIntegerParamDef  

Range  0 .. 4294967295    

Default value  --  

ConfigurationClass  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  

   

SWS Item  ECUC_Pwm_00142 :  

Name  
 

PwmLowPowerStatesSupport {PWM_LOW_PWR_STATES_SUPPORT}  

Description  Adds / removes all power state management related APIs 
(PWM_SetPowerState, PWM_GetCurrentPowerState, 
PWM_GetTargetPowerState, PWM_PreparePowerState, 
PWM_Main_PowerTransitionManager), indicating if the HW offers low 
power state management. 

Multiplicity  0..1  

Type  EcucBooleanParamDef  

Default value  false  



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

60 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

ConfigurationClass  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  

   

SWS Item  ECUC_Pwm_00133 :  

Name  
 

PwmNotificationSupported {PWM_NOTIFICATION_SUPPORTED}  

Description  Switch to indicate that the notifications are supported 

Multiplicity  1  

Type  EcucBooleanParamDef  

Default value  --  

ConfigurationClass  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  

   

SWS Item  ECUC_Pwm_00134 :  

Name  
 

PwmPeriodUpdatedEndperiod 
{PWM_DUTY_PERIOD_UPDATED_ENDPERIOD}  

Description  Switch for enabling the update of the period parameter at the end of the 
current period. 
TRUE: update of period/duty cycle is done at the end of period of currently 
generated waveform (current waveform is finished). FALSE: update of 
period/duty cycle is done immediately (just after service call, current 
waveform is cut). 

Multiplicity  1  

Type  EcucBooleanParamDef  

Default value  --  

ConfigurationClass  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  

   

SWS Item  ECUC_Pwm_00143 :  

Name  
 

PwmPowerStateAsynchTransitionMode 
{PWM_ASYNCH_PWR_STATE_TRANS}  

Description  Enables / disables support of the PWM Driver to the asynchronous power 
state transition. 

Multiplicity  0..1  

Type  EcucBooleanParamDef  

Default value  false  

ConfigurationClass  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  
dependency: This parameter shall only be configured if the parameter 
PwmLowPowerStatesSupport is set to true.  

   

Included Containers  

Container Name  Multiplicity  Scope / Dependency  

PwmPowerStateConfig  0..*  
Each instance of this parameter defines a power state and the 
callback to be called when this power state is reached. 

   

 
10.2.4 PwmPowerStateConfig 
SWS Item  ECUC_Pwm_00144 :  



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

61 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

Container Name  PwmPowerStateConfig{PWM_PWR_STATE_CONFIG}  

Description  
Each instance of this parameter defines a power state and the callback to 
be called when this power state is reached. 

Configuration Parameters  

   

SWS Item  ECUC_Pwm_00146 :  

Name  
 

PwmPowerState {PWM_PWR_STATE}  

Description  Each instance of this parameter describes a different power state 
supported by the PWM HW. It should be defined by the HW supplier and 
used by the PWMDriver to reference specific HW configurations which set 
the PWM HW module in the referenced power state. 
At least the power mode corresponding to full power state shall be always 
configured. 

Multiplicity  1  

Type  EcucIntegerParamDef (Symbolic Name generated for this parameter)  

Range  0 .. 
18446744073709551615  

  

Default value  --  

ConfigurationClass  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  
dependency: This parameter shall only be configured if the parameter 
PwmLowPowerStatesSupport is set to true.  

   

SWS Item  ECUC_Pwm_00145 :  

Name  
 

PwmPowerStateReadyCbkRef {PWM_PWR_STATE_READY_CBK_REF}  

Description  Each instance of this parameter contains a reference to a power mode 
callback defined in a CDD or IoHwAbs component. 

Multiplicity  1  

Type  EcucFunctionNameDef  

Default value  --  

maxLength  --  

minLength  --  

regularExpression  --  

ConfigurationClass  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  
dependency: This parameter shall only be configured if the parameter 
PwmLowPowerStatesSupport is set to true.  

   

No Included Containers  

   

 
10.2.5 PwmChannel 
SWS Item  ECUC_Pwm_00027 :  

Container Name  PwmChannel{PwmChannelConfiguration}  

Description  Configuration of an individual PWM channel. 

Configuration Parameters  

   

SWS Item  ECUC_Pwm_00136 :  

Name  
 

PwmChannelClass {PWM_CHANNEL_CLASS}  

Description  Class of PWM Channel. 
ImplementationType: Pwm_ChannelClassType 

Multiplicity  0..1  



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

62 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

Type  EcucEnumerationParamDef  

Range  PWM_FIXED_PERIOD  Only the duty cycle can be 
changed. 

PWM_FIXED_PERIOD_SHIFTED  Only the duty cycle can be 
changed. The period is shifted 
(only if supported by hardware) 

PWM_VARIABLE_PERIOD  Duty Cycle and period can be 
changed. 

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  --     

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_Pwm_00137 :  

Name  
 

PwmChannelId  

Description  Channel Id of the PWM channel. This value will be assigned to the 
symbolic name derived of the PwmChannel container short name. 

Multiplicity  1  

Type  EcucIntegerParamDef (Symbolic Name generated for this parameter)  

Range  0 .. 4294967295    

Default value  --  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  

   

SWS Item  ECUC_Pwm_00138 :  

Name  
 

PwmDutycycleDefault {PWM_DUTYCYLE_DEFAULT}  

Description  Value of duty cycle used for Initialization 
0, represents 0% 0x8000 represents 100% 

Multiplicity  1  

Type  EcucIntegerParamDef  

Range  0 .. 32768    

Default value  --  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  --     

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_Pwm_00122 :  

Name  
 

PwmIdleState {PWM_IDLE_STATE}  

Description  The parameter PWM_IDLE_STATE represents the output state of the PWM 
after the signal is stopped (e.g. call of Pwm_SetOutputToIdle). 

Multiplicity  1  

Type  EcucEnumerationParamDef  

Range  PWM_HIGH  The PWM channel output will be set to 
high ( 3 or 5 V ) in idle state. 

PWM_LOW  The PWM channel output will be set to 
low ( 0 V ) in idle state. 

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  --     

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_Pwm_00123 :  

Name  
 

PwmNotification {Pwm_Notification}  



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

63 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

Description  Definition of the Callback function. 

Multiplicity  0..1  

Type  EcucFunctionNameDef  

Default value  "NULL"  

maxLength  --  

minLength  --  

regularExpression  --  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  --     

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_Pwm_00124 :  

Name  
 

PwmPeriodDefault {PWM_PERIOD_DEFAULT}  

Description  Value of period used for Initialization.(in seconds). 

Multiplicity  1  

Type  EcucFloatParamDef  

Range  0 .. INF    

Default value  --  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  --     

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_Pwm_00125 :  

Name  
 

PwmPolarity {PWM_POLARITY}  

Description  Defines the starting polarity of each PWM channel. 

Multiplicity  1  

Type  EcucEnumerationParamDef  

Range  PWM_HIGH  The PWM channel output is high at the 
beginning of the cycle and then goes 
low when the duty count is reached. 

PWM_LOW  The PWM channel output is low at the 
beginning of the cycle and then goes 
high when the duty count is reached. 

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  --     

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: local  

   

SWS Item  ECUC_Pwm_00147 :  

Name  
 

PwmMcuClockReferencePoint  

Description  This parameter contains reference to the McuClockReferencePoint 

Multiplicity  1  

Type  Reference to [ McuClockReferencePoint ]  

ConfigurationClass  Pre-compile time  X  VARIANT-PRE-COMPILE  

Link time  --     

Post-build time  X  VARIANT-POST-BUILD  

Scope / Dependency  scope: ECU  

   

No Included Containers  

   

10.2.6 PwmChannelConfigSet 
SWS Item  ECUC_Pwm_00140 :  

Container Name  PwmChannelConfigSet [Multi Config Container]  

Description  Multiple Configuration Set Container 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

64 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

Configuration Parameters  

   

Included Containers  

Container Name  Multiplicity  Scope / Dependency  

PwmChannel  1..*  Configuration of an individual PWM channel. 

   

10.2.7 PwmConfigurationOfOptApiServices 
SWS Item  ECUC_Pwm_00126 :  

Container Name  PwmConfigurationOfOptApiServices  

Description  -- 

Configuration Parameters  

   

SWS Item  ECUC_Pwm_00141 :  

Name  
 

PwmDeInitApi {PWM_DE_INIT_API}  

Description  Adds / removes the service Pwm_DeInit() from the code. 

Multiplicity  1  

Type  EcucBooleanParamDef  

Default value  --  

ConfigurationClass  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  

   

SWS Item  ECUC_Pwm_00127 :  

Name  
 

PwmGetOutputState {PWM_GET_OUTPUT_STATE_API}  

Description  -- 

Multiplicity  1  

Type  EcucBooleanParamDef  

Default value  --  

ConfigurationClass  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  

   

SWS Item  ECUC_Pwm_00128 :  

Name  
 

PwmSetDutyCycle {PWM_SET_DUTY_CYCLE_API}  

Description  -- 

Multiplicity  1  

Type  EcucBooleanParamDef  

Default value  --  

ConfigurationClass  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  

   

SWS Item  ECUC_Pwm_00129 :  

Name  
 

PwmSetOutputToIdle {PWM_SET_OUTPUT_TO_IDLE_API}  

Description  -- 

Multiplicity  1  

Type  EcucBooleanParamDef  

Default value  --  

ConfigurationClass  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

65 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

   

SWS Item  ECUC_Pwm_00130 :  

Name  
 

PwmSetPeriodAndDuty {PWM_SET_PERIOD_AND_DUTY_API}  

Description  -- 

Multiplicity  1  

Type  EcucBooleanParamDef  

Default value  --  

ConfigurationClass  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  

   

SWS Item  ECUC_Pwm_00135 :  

Name  
 

PwmVersionInfoApi {PWM_VERSION_INFO_API}  

Description  Switch to indicate that the Pwm_ GetVersionInfo is supported 

Multiplicity  1  

Type  EcucBooleanParamDef  

Default value  --  

ConfigurationClass  Pre-compile time  X  All Variants  

Link time  --     

Post-build time  --     

Scope / Dependency  scope: local  

   

No Included Containers  

   

 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

66 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

10.3 Published Information 
 
For details refer to the chapter 10.3 “Published Information” in SWS_BSWGeneral. 



Specification of PWM Driver 
 V3.2.0 

R4.1 Rev 3 

67 of 67 Document ID 037: AUTOSAR_SWS_PWMDriver  

- AUTOSAR confidential - 

11 Not applicable requirements 

[SWS_Pwm_00153] ⌈These requirements are not applicable to this specification.⌋ 

(SRS_BSW_00159, SRS_BSW_00167, SRS_BSW_00170, SRS_BSW_00419, SRS_BSW_00383, 

SRS_BSW_00375, SRS_BSW_00416, SRS_BSW_00168, SRS_BSW_00423, SRS_BSW_00424, 
SRS_BSW_00425, SRS_BSW_00426, SRS_BSW_00427, SRS_BSW_00428, SRS_BSW_00429, 
BSW00431, SRS_BSW_00432, SRS_BSW_00433, BSW00434, SRS_BSW_00417, 
SRS_BSW_00161, SRS_BSW_00162, SRS_BSW_00005, SRS_BSW_00415, SRS_BSW_00164, 
SRS_BSW_00325, SRS_BSW_00326, SRS_BSW_00342, SRS_BSW_00160, SRS_BSW_00007, 
SRS_BSW_00300, SRS_BSW_00413, SRS_BSW_00347, SRS_BSW_00305, SRS_BSW_00307, 
SRS_BSW_00310, SRS_BSW_00373, SRS_BSW_00327, SRS_BSW_00335, SRS_BSW_00350, 
SRS_BSW_00408, SRS_BSW_00410, SRS_BSW_00348, SRS_BSW_00353, SRS_BSW_00361, 
SRS_BSW_00301, SRS_BSW_00302, SRS_BSW_00328, SRS_BSW_00312, SRS_BSW_00006, 
SRS_BSW_00357, SRS_BSW_00377, SRS_BSW_00304, SRS_BSW_00355, SRS_BSW_00378, 
SRS_BSW_00306, SRS_BSW_00308, SRS_BSW_00309, SRS_BSW_00371, SRS_BSW_00358, 
SRS_BSW_00414, SRS_BSW_00376, SRS_BSW_00359, SRS_BSW_00360, SRS_BSW_00329, 
SRS_BSW_00330, SRS_BSW_00331, SRS_BSW_00009, SRS_BSW_00401, SRS_BSW_00172, 
SRS_BSW_00010, SRS_BSW_00333, SRS_BSW_00003, SRS_BSW_00341, SRS_BSW_00334, 
SRS_SPAL_12267, SRS_SPAL_12461, SRS_SPAL_12462, SRS_SPAL_12463, SRS_SPAL_12068, 
SRS_SPAL_12069, SRS_SPAL_12169, SRS_SPAL_12075, SRS_SPAL_12064, SRS_SPAL_12067, 

SRS_SPAL_12077, SRS_SPAL_12078, SRS_SPAL_12092, SRS_SPAL_12265, SRS_Pwm_12379) 
 


	1 Introduction and functional overview
	2 Acronyms and abbreviations
	3 Related documentation
	3.1 Input documents
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 File structure
	5.1.1 Code file structure
	5.1.2 Header file structure


	6 Requirements traceability
	7 Functional specification
	7.1 General behavior
	7.2 Time Unit Ticks
	7.2.1 Background & Rationale
	7.2.2 Requirements

	7.3 Support and management of HW low power states
	7.3.1 Background
	7.3.2 Requirements

	7.4 Error classification
	7.5 Error Detection
	7.6 Error Notification
	7.7 Duty Cycle Resolution and scaling
	7.8 Version check
	7.9 Debug Support

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 Pwm_ChannelType
	8.2.2 Pwm_PeriodType
	8.2.3 Pwm_OutputStateType
	8.2.4 Pwm_EdgeNotificationType
	8.2.5 Pwm_ChannelClassType
	8.2.6 Pwm_ConfigType
	8.2.7 Pwm_PowerStateRequestResultType
	8.2.8 Pwm_PowerStateType

	8.3 Function definitions
	8.3.1 Pwm_Init
	8.3.2 Pwm_DeInit
	8.3.3 Pwm_SetDutyCycle
	8.3.4 Pwm_SetPeriodAndDuty
	8.3.5 Pwm_SetOutputToIdle
	8.3.6 Pwm_GetOutputState
	8.3.7 Pwm_DisableNotification
	8.3.8 Pwm_EnableNotification
	8.3.9 Pwm_SetPowerState
	8.3.10 Pwm_GetCurrentPowerState
	8.3.11 Pwm_GetTargetPowerState
	8.3.12 Pwm_PreparePowerState
	8.3.13 Pwm_GetVersionInfo

	8.4 Callback notifications
	8.5 Scheduled functions
	8.5.1 Pwm_Main_PowerTransitionManager

	8.6 Expected Interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.3 Configurable interfaces

	8.7 API parameter checking

	9 Sequence diagrams
	9.1 Initialization
	9.2 De-initialization
	9.3 Setting the duty cycle
	9.4 Setting the period and the duty
	9.5 Setting the PWM output to idle
	9.6 Getting the PWM Output state
	9.7 Using the PWM notifications

	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.2.1 Variants
	10.2.2 Pwm
	10.2.3 PwmGeneral
	10.2.4 PwmPowerStateConfig
	10.2.5 PwmChannel
	10.2.6 PwmChannelConfigSet
	10.2.7 PwmConfigurationOfOptApiServices

	10.3  Published Information

	11 Not applicable requirements

