
 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

1 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

Document Change History
Date Version Changed by Change Description

31.03.2014 2.2.0 AUTOSAR
Release
Management

 Removed SWS_Lin_00243.

 Modified SWS_Lin_00237,
SWS_Lin_00058, SWS_Lin_00266,
SWS_Lin_00255, SWS_Lin_00256,
SWS_Lin_00258, SWS_Lin_00259,
SWS_Lin_00260.

 Updated Figure 7-1.

 Removed references to
SWS_Lin_00073 and SWS_Lin_00034
from chapter 6.

05.09.2013 2.1.0 AUTOSAR
Release
Management

 Removed outdated SWS_Lin_00109,
SWS_Lin_00136 and
SWS_Lin_00132.

 Import of SWS_Lin_184 from R3.2.2

 Wake-up LIN Functionality updated

 New API Lin_WakeupInternal added.
See chapter 8.3.2.5

 Added the following type definition
(with SWS item ID) to chapter 8:
- Lin_FrameCsModelType
- Lin_FrameDlType
- Lin_FramePidType
- Lin_FrameResponseType
- Lin_PduType
- Lin_StatusType

 Editorial changes

 Removed chapter(s) on change
documentation

Document Title Specification of LIN Driver
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 072

Document Classification Standard

Document Version 2.2.0

Document Status Final

Part of Release 4.1

Revision 3

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

2 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

Document Change History
Date Version Changed by Change Description

14.02.2013 2.0.0 AUTOSAR
Administration

 Specified LIN_E_TIMEOUT as
production error

 Shifted all types used by other modules
to Lin_GeneralTypes.h

 Revised configuration container
LinDemEventParamterRefs

 Some minor updates

28.10.2011 1.5.0 AUTOSAR
Administration

 Changed error reporting

 Improved wake-up handling

 Corrected call of Lin_Init

12.10.2010 1.4.0 AUTOSAR
Administration

 Introduce Lin_GeneralTypes.h

 Add missing DET error code (NULL
pointer error)

 Remove instance ID from
Lin_GetVersionInfo API

 Correct naming of “WakeUp” to
“Wakeup”

 Further maintenance for R4.0.2: see
chapter 12

03.12.2009 1.3.0 AUTOSAR
Administration

 Support of advanced LIN controllers
(combination of Lin_SendHeader and
Lin_SendResponse to Lin_SendFrame)

 Integrating LIN channel initialization in
LIN module initialization

 Further maintenance for R4.0: see
chapter 11

 Legal disclaimer revised

23.06.2008 1.2.1 AUTOSAR
Administration

Legal disclaimer revised

11.12.2007 1.2.0 AUTOSAR
Administration

 Editorial Changes

 Tables generated in Chapter 8 and 10

 Document meta information extended

 Small layout adaptations made

30.01.2007 1.1.0 AUTOSAR
Administration

 Lin Transceiver Wake Up validation
function added

 Incorporate Feedback from Validator2

 Updated Chapter 10.2 according to the
Specification of ECU Configuration
Parameters

 Legal disclaimer revised

 Release Notes added

 “Advice for users” revised

 “Revision Information” added

11.05.2006 1.0.0 AUTOSAR
Administration

Initial release

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

3 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

Disclaimer

This specification and the material contained in it, as released by AUTOSAR is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only.
For any other purpose, no part of the specification may be utilized or reproduced, in
any form or by any means, without permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR Specification Documents may contain exemplary items (exemplary
reference models, "use cases", and/or references to exemplary technical solutions,
devices, processes or software).

Any such exemplary items are contained in the Specification Documents for
illustration purposes only, and they themselves are not part of the AUTOSAR
Standard. Neither their presence in such Specification Documents, nor any later
documentation of AUTOSAR conformance of products actually implementing such
exemplary items, imply that intellectual property rights covering such exemplary
items are licensed under the same rules as applicable to the AUTOSAR Standard.

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

4 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

Table of Contents

1 Introduction and functional overview ... 6

1.1 Scope .. 6
1.2 Architectural overview ... 6

2 Acronyms, abbreviations and glossary .. 8

2.1 Acronyms and abbreviations ... 8
2.2 Glossary .. 8
2.3 LIN hardware unit classification ... 9

3 Related documentation.. 10

3.1 Input documents .. 10
3.2 Related standards and norms ... 11
3.3 Related specification ... 11

4 Constraints and assumptions .. 12

4.1 Limitations ... 12
4.2 Applicability to car domains ... 12

5 Dependencies to other modules .. 13

5.1 File structure .. 13

5.1.1 Code file structure ... 13
5.1.2 Header file structure .. 14

6 Requirements traceability .. 16

7 Functional specification ... 24

7.1 General Requirements .. 24

7.2 Version Check ... 25

7.2.1 Requirements.. 25
7.3 LIN driver and Channel Initialization .. 25

7.3.1 Background & Rationale ... 25
7.3.2 Requirements.. 25

7.3.3 State diagrams .. 26
7.4 Frame processing .. 29

7.4.1 Background & Rationale ... 29

7.4.2 Requirements.. 29
7.4.3 Data Consistency .. 30
7.4.4 Data byte mapping .. 31

7.5 Sleep and wake-up functionality .. 31
7.5.1 Background & Rationale ... 31

7.5.2 Requirements.. 32
7.6 Error classification ... 32
7.7 Production Errors... 34

7.7.1 LIN_E_TIMEOUT[_LIN_E_TIMEOUT] .. 34

7.8 Error detection ... 34
7.9 Error notification .. 35
7.10 Debugging .. 35

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

5 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

8 API specification .. 36

8.1 Imported types ... 36
8.2 Type definitions ... 36

8.2.1 Lin_ConfigType ... 36
8.2.2 Lin_FramePidType .. 37
8.2.3 Lin_FrameCsModelType ... 37

8.2.4 Lin_FrameResponseType ... 37
8.2.5 Lin_FrameDlType ... 38
8.2.6 Lin_PduType ... 38
8.2.7 Lin_StatusType ... 38

8.3 Function definitions.. 39

8.3.1 Services affecting the complete LIN hardware unit 39
8.3.1.1 Lin_Init .. 39

8.3.1.2 Lin_CheckWakeup ... 40
8.3.1.3 Lin_GetVersionInfo ... 41

8.3.2 Services affecting a single LIN channel .. 42
8.3.2.1 Lin_SendFrame .. 42

8.3.2.2 Lin_GoToSleep .. 44
8.3.2.3 Lin_GoToSleepInternal... 45

8.3.2.4 Lin_Wakeup ... 46
8.3.2.5 LIN_WakeupInternal ... 47
8.3.2.6 Lin_GetStatus ... 48

8.4 Call-back notifications .. 50

8.5 Scheduled functions .. 50
8.6 Expected Interfaces ... 50

8.6.1 Mandatory Interfaces .. 50
8.6.2 Optional Interfaces .. 50
8.6.3 Configurable interfaces ... 51

9 Sequence diagrams .. 52

9.1 Receiving a LIN Frame .. 52

10 Configuration specification ... 53

10.1 How to read this chapter .. 53
10.2 Containers and configuration parameters .. 53

10.2.1 Variants ... 54
10.2.2 Lin .. 55
10.2.3 LinGeneral ... 55
10.2.4 LinChannel .. 56
10.2.5 LinGlobalConfig ... 57

10.2.6 LinDemEventParameterRefs ... 58
10.3 Published Information... 58

11 Not applicable requirements .. 59

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

6 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

1 Introduction and functional overview

This specification specifies the functionality, API and the configuration of the
AUTOSAR Basic Software module LIN driver.

1.1 Scope

The base for this document is the LIN 2.1 specification [17]. It is assumed that the
reader is familiar with this specification. This document will not describe LIN 2.1
functionality again, but it will try to follow the same order as the LIN 2.1 specification.

The LIN driver applies to LIN 2.1 master nodes only. Operating as a slave node is out
of scope. The LIN master in AUTOSAR deviates from the LIN 2.1 specification as
described in this specification of LIN driver, but there will be no change in the
behavior on the LIN bus. It is the intention to be able to reuse all existing LIN slaves
together with the AUTOSAR LIN master (i.e. the LIN driver).

[SWS_Lin_00063] ⌈It is intended to support the complete range of LIN hardware

from a simple SCI/UART to a complex LIN hardware controller. Using a SW-UART
implementation is out of the scope. For a closer description of the LIN hardware unit,

see chapter 2.3.⌋(SRS_Lin_01547)

1.2 Architectural overview

The LIN driver is part of the microcontroller abstraction layer (MCAL), performs the
hardware access and offers a hardware independent API to the upper layer. The only
upper layer, which has access to the LIN driver, is the LIN Interface.

A LIN driver can support more than one channel. This means that the LIN driver can
handle one or more LIN channels as long as they are belonging to the same LIN
hardware unit.

In the example below three different LIN drivers are connected to the LIN interface.
However, one LIN driver is the most common configuration.

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

7 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

Figure 10-1: Overview LIN Software Architecture Layering

µC

LIN HW Unit
Type A

LIN Hardware Unit
Type C

LIN HW Unit
Type B

LIN HW Unit
Type B

I/O drivers

LIN driver

Vendor A

LIN driver

Vendor B

LIN driver

Vendor C

Communication Hardware Abstraction

LIN interface

(„LIN Master Communication Stack“)

LIN TP

 LIN

Scheduler

Frame
Processing

Frame
Processing

Frame
Processing

Transceiver

IC

(e.g.: Enhanced
LIN-SCI/UART)

Transceiver

IC

(e.g.: Enhanced
LIN-SCI/UART)

Transceiver

IC

(e.g.: Standard
SCI/UART)

Transceiver

IC

Transceiver

IC

(e.g.: Multi-channel
LIN Controller)

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

8 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

2 Acronyms, abbreviations and glossary

2.1 Acronyms and abbreviations

Acronyms, abbreviations and definitions that have a local scope for the LIN driver
and therefore are not contained in the AUTOSAR glossary must appear here.

Acronym: Description:

AUTOSAR Automotive Open System Architecture

COM Communication

ECU Electronic Control Unit

EcuM ECU Manager

DEM Diagnostic Event Manager

DET Development Error Tracer

ISR Interrupt Service Routine

LIN Local Interconnect Network (as defined by [17])

MCAL MicroController Abstraction Layer

MCU Micro Controller Unit

OS Operating System

PDU Protocol Data Unit. Consists of Identifier, data length and Data (SDU)

PID Protected ID (as defined by [17])

PLL Phase-Locked Loop

RAM Random Access Memory

RX Reception

SCI Serial Communication Interface

SDU Service Data Unit. Data that is transported inside the PDU

SFR Special Function Register

SPAL Standard Peripheral Abstraction Layer

SRS Software Requirement Specification

SW Software

SWS Software Specification

TP Transport Layer

TX Transmission

UART Universal Asynchronous Receiver Transmitter

XML Extensible Markup Language

Abbreviation Description:

Id Identifier

2.2 Glossary

Besides AUTOSAR terminology this document also uses terms defined in the LIN 2.1
specification [17], e.g. LIN frame, header and message.

Glossary: Description:

enumeration This can be in “C” programming language an enum or a #define.

LIN channel The LIN channel entity interlinks the ECUs of a LIN cluster physically: An ECU is
part of a LIN cluster if it contains one LIN controller that is connected to one LIN
channel of the LIN cluster. An ECU is allowed to connect to a particular LIN cluster
through one channel only.

LIN cluster As defined by [17]: “A cluster is the LIN bus wire plus all the nodes.”

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

9 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

LIN controller A dedicated LIN hardware with a build Frame processing state machine. A
hardware which is capable to connect to several LIN clusters is treated as several
LIN controllers.

LIN frame As defined by [17]: “All information is sent packed as frames; a frame consist of the
header and a response.”

LIN frame
processor

Frame processing implies the complete LIN frame handling. Implementation could
be achieved as software emulated solution or with a dedicated LIN controller.

LIN hardware
unit

A LIN hardware unit may drive one or multiple LIN channels to control one or
multiple LIN clusters.

LIN header As defined by [17]: “A header is the first part of a frame; it is always sent by the
master.”

LIN node As defined by [17]: “Loosely speaking, a node is an ECU. However, a single ECU
may be connected to multiple LIN clusters.”

LIN response As defined by [17]: “A LIN frame consists of a header and a response. Also called a
Frame response.”

2.3 LIN hardware unit classification

The on-chip LIN hardware unit combines one or several LIN channels.

The following figure shows a classification of different LIN hardware types connected
to multiple LIN physical channels:

Figure 2-1: LIN hardware unit classification

... ...

µCtr

LIN Hardware Unit A

LIN Controller 1

LIN Controller 0

...

LIN Controller n

LIN Hardware Unit C

Enhanced SCI/UART 0

Enhanced SCI/UART 1

LIN Hardware Unit B

SCI/UART 0

SCI/UART 1

RxD 1

TxD 1 Transceiver
IC B

LIN cluster
B

RxD 1

TxD1 Transceiver
IC N+4

LIN cluster
N+4

RxD 0

TxD 0 Transceiver
IC N+3

LIN cluster
N+3

RxD 1

TxD 1 Transceiver
IC N+2

LIN cluster
N+2

RxD 0

TxD 0 Transceiver
IC N+1

LIN cluster
N+1

RxD n

TxD n Transceiver
IC N

LIN cluster
N

RxD 0

TxD 0 Transceiver
IC A

LIN cluster
A

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

10 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

3 Related documentation

3.1 Input documents

[1] List of Basic Software Modules
AUTOSAR_TR_BSWModuleList.pdf

[2] Layered Software Architecture
AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf

[3] General Requirements on Basic Software Modules
AUTOSAR_SRS_BSWGeneral.pdf

[4] Specification of Standard Types
AUTOSAR_SWS_StandardTypes.pdf

[5] Specification of Development Error Tracer
AUTOSAR_SWS_DevelopmentErrorTracer.pdf

[6] General Requirements on SPAL
AUTOSAR_SRS_SPALGeneral.pdf

[7] Requirements on LIN
AUTOSAR_SRS_LIN.pdf

[8] Specification of LIN Interface
AUTOSAR_SWS_LINInterface.pdf

[9] Specification of ECU Configuration
AUTOSAR_TPS_ECUConfiguration.pdf

[10] Specification of MCU driver
AUTOSAR_SWS_MCUDriver.pdf

[11] Specification of Diagnostic Event Manager
AUTOSAR_SWS_DiagnosticEventManager.pdf

[12] Specification of C Implementation Rules
AUTOSAR_TR_CImplementationRules.pdf

[13] Specification of ECU State Manager
AUTOSAR_SWS_ECUStateManager.pdf

[14] Basic Software Module Description Template,
AUTOSAR_TPS_BSWModuleDescriptionTemplate.pdf

[15] Specification of LIN Transceiver Driver,
AUTOSAR_SWS_LINTransceiverDriver.pdf

[16] General Specification of Basic Software Modules

AUTOSAR_SWS_BSWGeneral.pdf

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

11 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

3.2 Related standards and norms

[17] LIN Specification Package Revision 2.1, November 24, 2006
http://www.lin-subbus.org/

3.3 Related specification

AUTOSAR provides a General Specification on Basic Software modules [16] (SWS
BSW General), which is also valid for LIN Driver.

Thus, the specification SWS BSW General shall be considered as additional and
required specification for LIN Driver.

http://www.lin-subbus.org/

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

12 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

4 Constraints and assumptions

4.1 Limitations

Only one LIN channel of an ECU is allowed to connect to a particular LIN cluster.
Unless there are unused (not connected) channels in the ECU, the number of LIN
channels is equal to the number of LIN clusters.

Driver scope

[SWS_Lin_00045] ⌈One LIN driver provides access to one LIN hardware unit type

(simple UART or dedicated LIN hardware) that may consist of several LIN channels.

⌋(SRS_BSW_00347)

[SWS_Lin_00201] ⌈For different LIN hardware units a separate LIN driver needs to

be implemented. It is up to the implementer to adapt the driver to the different

instances of similar LIN channels.⌋()

[SWS_Lin_00177] ⌈In case several LIN driver instances (of same or different

vendor) are implemented in one ECU the file names, API names, and published
parameters must be modified such that no two definitions with the same name are
generated. The name shall be extended according to SRS_BSW_00347 with a
Vendor Id (needed to distinguish LIN drivers from different vendors) and a Vendor
specific name (needed to distinguish different hardware units implemented by one

Vendor): <Module abbreviation>_<Vendor Id>_<Vendor specific name>.⌋()

The LIN Interface is responsible for calling the correct function. The necessary
information shall be given in an XML file during configuration. See [8] for description
how the LIN Interface handles several LIN drivers.

4.2 Applicability to car domains

This specification is applicable to all car domains, where LIN is used.

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

13 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

5 Dependencies to other modules

Module MCU [10]
The hardware of the internal LIN hardware unit depends on the system clock,
prescaler(s) and PLL. Hence, the length of the LIN bit timing depends on the clock
settings made in module MCU.

The LIN driver module will not take care of setting the registers that configure the
clock, prescaler(s) and PLL (e.g. switching on/off the PLL) in its init functions. The
MCU module must do this.

Module Port
The Port driver configures the port pins used for the LIN driver as input or output.
Hence, the Port driver has to be initialized prior to the use of LIN functions.
Otherwise, LIN driver functions will exhibit undefined behavior.

Module DET (Development Error Tracer) [5]
In development mode, the Lin module reports development error through the
Det_ReportError function of module DET. (see SWS_Lin_00052)

Module DEM (Diagnostic Event Manager) [11]
The Lin module reports production errors to the Diagnostic Event Manager. (see
SWS_Lin_00058)

OS (Operating System)
The LIN driver uses interrupts and therefore there is a dependency on the OS, which
configures the interrupt sources.

LIN driver Users
The LIN Interface (specified by [8]) is the only user of the LIN driver services.

5.1 File structure

5.1.1 Code file structure

[SWS_Lin_00064] ⌈The code file structure shall not be defined within this

specification completely. At this point it shall be pointed out that the code-file
structure shall include the following files named:

 Lin_Lcfg.c – for link time configurable parameters and
 Lin_PBcfg.c – for post build time configurable parameters.

These files shall contain all link time and post-build time configurable

parameters.⌋(SRS_BSW_00380, SRS_BSW_00419)

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

14 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

5.1.2 Header file structure

[SWS_Lin_00075] ⌈The include file structure shall be as follows:

Figure 5-1: Header File structure for the LIN driver⌋()

[SWS_Lin_00205] ⌈Lin.h shall include ComStack_Types.h.⌋()

[SWS_Lin_00241] ⌈Lin.h shall include Lin_GeneralTypes.h. for the include of

general LIN type declarations.⌋()

[SWS_Lin_00042] ⌈The header file EcuM_Cbk.h contains the declarations of the

callback functions imported by the modules calling the callbacks. ⌋

(SRS_BSW_00370)

[SWS_Lin_00206] ⌈The LIN driver itself does not provide callback functions (no

Lin_Cbk.h)⌋()

ComStack_Types.h

Lin.h Lin_Irq.c Lin_Cfg.h

Lin_PBcfg.c

Det.h EcuM_Cbk.h Dem.h

Dem_IntErrId.h

includes

includes

includes

includes includes

includes includes includes

includes

Lin_MemMap.h includes

<optional>

Lin_GeneralTypes.h

includes

Lin.c

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

15 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

[SWS_Lin_00054] ⌈The file Lin.h only contains external declarations of constants,

global data, type definitions and services that are specified in the LIN driver SWS. ⌋

(SRS_BSW_00302)

[SWS_Lin_00207] ⌈Constants, global data types and functions that are only used by

LIN driver internally, are declared in Lin.c.⌋()

[SWS_Lin_00242] ⌈The types Lin_PduType and Lin_StatusType used by LIN

driver shall be declared in Lin_GeneralTypes.h . ⌋()

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

16 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

6 Requirements traceability

Document: AUTOSAR requirements on Basic Software, general [3]

Requirement Satisfied by

[SRS_BSW_00003] Version identification
Software Documentation
Requirements are not covered in the
LIN driver SWS

[SRS_BSW_00300] Module naming convention
Fulfilled by the function name
definitions in Chapter 8.3

[SRS_BSW_00301] Limit imported information See Chapter 5.1.2

[SRS_BSW_00302] Limit exported information SWS_Lin_00054

[SRS_BSW_00304] AUTOSAR integer data types
SWS_Lin_00047, Chapter 8.2 and
Chapter 10.3

[SRS_BSW_00305] Self-defined data types naming
convention

Fulfilled by the function name
definitions in Chapter 8.2

[SRS_BSW_00306] Avoid direct use of compiler and platform
specific keywords

SWS_Lin_00055

[SRS_BSW_00307] Global variables naming convention
Not applicable
(requirement on implementation)

[SRS_BSW_00308] Definition of global data SWS_Lin_00055

[SRS_BSW_00309] Global data with read-only constraint SWS_Lin_00055

[SRS_BSW_00310] API naming convention See Chapter 5.1.2

[SRS_BSW_00312] Shared code shall be reentrant Not applicable

[SRS_BSW_00314] Separation of interrupt frames and
service routines

SWS_Lin_00023

[SRS_BSW_00318] Format of module version numbers See chapter 10.3

[SRS_BSW_00321] Enumeration of module version numbers See chapter 10.3

[SRS_BSW_00323] API parameter checking SWS_Lin_00048, SWS_Lin_00049

[SRS_BSW_00325] Runtime of interrupt service routines
Not applicable
(requirement on implementation)

[SRS_BSW_00326] Transition from ISRs to OS tasks
Not applicable
(requirement on implementation)

[SRS_BSW_00327] Error values naming convention SWS_Lin_00048

[SRS_BSW_00328] Avoid duplication of code

Not applicable
(requirement on implementation,
fulfilled e.g. by defining a LIN driver
that controls multiple channels)

[SRS_BSW_00329] Avoidance of generic interfaces
Not applicable
(no generic interfaces specified within
this SWS)

[SRS_BSW_00330] Usage of macros / inline functions
instead of functions

Not applicable
(requirement on implementation)

[SRS_BSW_00331] Separation of error and status values Not applicable

[SRS_BSW_00333] Documentation of callback function
context

Software Documentation
Requirements are not covered in the
LIN driver SWS

[SRS_BSW_00334] Provision of XML file
Software Documentation
Requirements are not covered in the
LIN driver SWS

[SRS_BSW_00335] Status values naming convention
Fulfilled by the state diagram
description in chapter 7.3.3

[SRS_BSW_00336] Shutdown interface Not applicable

[SRS_BSW_00337] Classification of errors SWS_Lin_00048

[SRS_BSW_00338] Detection and Reporting of development
errors

SWS_Lin_00049, SWS_Lin_00052

[SRS_BSW_00339] Reporting of production relevant error Not applicable

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

17 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

status

[SRS_BSW_00341] Microcontroller compatibility
documentation

Software Documentation
Requirements are not covered in the
LIN driver SWS

[SRS_BSW_00342] Usage of source code and object code
Not applicable
(requirement on implementation)

[SRS_BSW_00343] Specification and configuration of time Not applicable

[SRS_BSW_00344] Reference to link-time configuration SWS_Lin_00013

[SRS_BSW_00345] Pre-compile-time configuration See Chapter10

[SRS_BSW_00346] Basic set of module files See Chapter 5.1.2

[SRS_BSW_00347] Naming separation of different instances
of BSW drivers

SWS_Lin_00045

[SRS_BSW_00348] Standard type header See Chapter 5.1.2

[SRS_BSW_00350] Development error detection keyword ECUC_Lin_00066

[SRS_BSW_00353] Platform specific type header
Not applicable
(automatically included with standard
types)

[SRS_BSW_00355] Do not redefine AUTOSAR integer data
types

no redefined integer types in Chapter
8.2 and Chapter 10.3

[SRS_BSW_00357] Standard API return type
Not applicable
(this type is not used within this SWS)

[SRS_BSW_00358] Return type of init() functions fulfilled by 8.3.1.1

[SRS_BSW_00359] Return type of callback functions
Not applicable
(no callback function specified)

[SRS_BSW_00360] Parameters of callback functions
Not applicable
(no callback function specified)

[SRS_BSW_00361] Compiler specific language extension
header

Not applicable
(automatically included with standard
types)

[SRS_BSW_00369] Do not return development error codes
via API

See chapter 8

[SRS_BSW_00370] Separation of callback interface from API SWS_Lin_00042

[SRS_BSW_00371] Do not pass function pointers via API
Fulfilled by the function definitions in
Chapter 8.3

[SRS_BSW_00373] Main processing function naming
convention

Not applicable
(no main processing function
specified)

[SRS_BSW_00374] Module vendor identification See chapter 10.3

[SRS_BSW_00375] Notification of wake-up reason SWS_Lin_00098

[SRS_BSW_00376] Return type and parameters of main
processing functions

Not applicable
(no main processing function
specified)

[SRS_BSW_00377] Module specific API return types See chapter 8

[SRS_BSW_00378] AUTOSAR boolean type Not applicable (not used)

[SRS_BSW_00379] Module identification See chapter 10.3

[SRS_BSW_00380] Separate C-File for configuration
parameters

SWS_Lin_00064

[SRS_BSW_00381] Separate configuration header file for
pre-compile time parameters

See Chapter 5.1.2

[SRS_BSW_00383] List dependencies of configuration files Not applicable
(implementation specific
documentation)

[SRS_BSW_00384] List dependencies to other modules See Chapter 5

[SRS_BSW_00385] List possible error notificatons SWS_Lin_00048

[SRS_BSW_00386] Configuration for detecting an error See Chapter 7.6

[SRS_BSW_00387] Specify the configuration class of
callback function

Chapter 8.6.3

[SRS_BSW_00388] Introduce containers See Chapter 10.2

[SRS_BSW_00389] Containers shall have names See Chapter 10.2

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

18 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

[SRS_BSW_00390] Parameter content shall be unique within
the module

See Chapter 8

[SRS_BSW_00391] Parameter shall have unique names fulfilled by parameter definitions in
Chapter 10.2

[SRS_BSW_00392] Parameters shall have a type fulfilled by parameter definitions in
Chapter 10.2

[SRS_BSW_00393] Parameters shall have a range fulfilled by parameter definitions in
Chapter 10.2

[SRS_BSW_00394] Specify the scope of the parameters fulfilled by parameter definitions in
Chapter 10.2

[SRS_BSW_00395] List the required parameters (per
parameter)

Not applicable
(parameters are defined in a way that
their values are independent from
other settings. The dependency is in
the code generation (implementation)
not in the configuration description ->
hardware abstraction)

[SRS_BSW_00396] Configuration classes fulfilled by parameter definitions in
Chapter 10.2

[SRS_BSW_00397] Pre-compile-time parameters Not applicable
(this is not a requirement, but a
definition of a technical term)

[SRS_BSW_00398] Link-time parameters Not applicable
(this is not a requirement, but a
definition of a technical term)

[SRS_BSW_00399] Loadable Post-build time parameters Not applicable
(this is not a requirement, but a
definition of a technical term)

[SRS_BSW_00004] Version check SWS_Lin_00062

[SRS_BSW_00400] Selectable Post-build time parameters Not applicable
(this is not a requirement, but a
definition of a technical term)

[SRS_BSW_00401] Documentation of multiple instances of
configuration parameters

Software Documentation
Requirements are not covered in the
LIN driver SWS

[SRS_BSW_00402] Published information See chapter 10.3

[SRS_BSW_00404] Reference to post build time configuration SWS_Lin_00013

[SRS_BSW_00405] Reference to multiple configuration sets SWS_Lin_00011, SWS_Lin_00013

[SRS_BSW_00406] Check module initialization SWS_Lin_00006

[SRS_BSW_00407] Function to read out published
parameters

SWS_Lin_00001

[SRS_BSW_00408] Configuration parameter naming
convention

fulfilled by Chapter 10.2

[SRS_BSW_00409] Header files for production code error IDs SWS_Lin_00065, SWS_Lin_00046

[SRS_BSW_00410] Compiler switches shall have specified
values

fulfilled by Chapter 10.2

[SRS_BSW_00411] Get version info keyword ECUC_Lin_00066 and 8.3.1.3

[SRS_BSW_00412] Separate H-File for configuration
parameters

See Chapter 5.1.2

[SRS_BSW_00413] Accessing instances of BSW modules Not applicable
(this requirement has to fulfilled by the
LIN Interface

[SRS_BSW_00414] Parameter of init function fulfilled by 8.3.1.1

[SRS_BSW_00415] User dependent include files
Not applicable
(only one user for this module)

[SRS_BSW_00416] Sequence of Initialization Not applicable
(this is a general software integration
requirement)

[SRS_BSW_00417] Reporting of Error Events by Non-Basic Not applicable

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

19 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

Software (LIN driver is a Basic Software
Module)

[SRS_BSW_00419] Separate C-Files for pre-compile time
configuration parameters

SWS_Lin_00064

[BSW00420] Production relevant error event rate detection Not applicable
(requirement on the DEM)

[BSW00421] Reporting of production relevant error events SWS_Lin_00058

[SRS_BSW_00422] Debouncing of production relevant error
status

Not applicable
(requirement on the DEM)

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

20 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

[SRS_BSW_00423] Usage of SW-C template to describe
BSW modules with AUTOSAR Interfaces

Not applicable
(this module does not provide an
AUTOSAR interface)

[SRS_BSW_00424] BSW main processing function task
allocation

Not applicable
(requirement on system design, not on
a single module)

[SRS_BSW_00425] Trigger conditions for schedulable objects Not applicable
(trigger conditions are system
configuration specific)

[SRS_BSW_00426] Exclusive areas in BSW modules Not applicable

[SRS_BSW_00427] ISR description for BSW modules Not applicable
(no ISR defined for this module, usage
of interrupts are implementation
specific)

[SRS_BSW_00428] Execution order dependencies of main
processing functions

Not applicable
(LIN driver does not contain any main
processing functions)

[SRS_BSW_00429] Restricted BSW OS functionality access Not applicable
(implementation requirement, not for
the specification)

[BSW00431] The BSW Scheduler module implements task
bodies

Not applicable
(applies only to BSW scheduler
module)

[SRS_BSW_00432] Modules should have separate main
processing functions for read/receive and write/transmit data
path

Not applicable
(no main processing function
specified)

[SRS_BSW_00433] Calling of main processing functions Not applicable
(requirement on system design, not on
a single module)

[BSW00434] The Schedule Module shall provide an API for
exclusive areas

Not applicable
(applies only to BSW scheduler
module)

[SRS_BSW_00005] No hard coded horizontal interfaces
within MCAL

Not applicable
(fulfilled by the AUTOSAR
architectural concept)

[SRS_BSW_00006] Platform independency LIN003

[SRS_BSW_00007] HIS MISRA C
Not applicable
(requirement on implementation)

[SRS_BSW_00009] Module User Documentation
Software Documentation
Requirements are not covered in the
LIN driver SWS

[SRS_BSW_00010] Memory resource documentation
Software Documentation
Requirements are not covered in the
LIN driver SWS

[SRS_BSW_00101] Initialization interface SWS_Lin_00006

[SRS_BSW_00158] Separation of configuration from
implementation

See Chapter 5.1.2

[SRS_BSW_00159] Tool-based configuration SWS_Lin_00029

[SRS_BSW_00160] Human-readable configuration data SWS_Lin_00031

[SRS_BSW_00161] Microcontroller abstraction LIN003

[SRS_BSW_00162] ECU layout abstraction
Not applicable
(fulfilled by the AUTOSAR
architectural concept)

[SRS_BSW_00164] Implementation of interrupt service
routines

SWS_Lin_00155

[SRS_BSW_00167] Static configuration checking SWS_Lin_00039

[SRS_BSW_00168] Diagnostic Interface of SW components Not applicable
(LIN driver doesn’t offer a diagnostic
interface)

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

21 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

[SRS_BSW_00170] Data for reconfiguration of AUTOSAR
SW-Components

See Chapter10

[SRS_BSW_00171] Configurability of optional functionality ECUC_Lin_00066, ECUC_Lin_00067

[SRS_BSW_00172] Compatibility and documentation of
scheduling strategy

Software Documentation
Requirements are not covered in the
LIN driver SWS

Document: AUTOSAR requirements on Basic Software, Cluster: SPAL general [6]

Requirement Satisfied by
[SRS_SPAL_12263] Object code compatible configuration
concept

SWS_Lin_00013

[SRS_SPAL_12056] Configuration of notification mechanisms Not applicable

[SRS_SPAL_12267] Configuration of wake-up sources Not applicable

[SRS_SPAL_12057] driver module initialization SWS_Lin_00006

[SRS_SPAL_12125] Initialization of hardware resources SWS_Lin_00006, SWS_Lin_00190

[SRS_SPAL_12163] driver module deinitialization not applicable
(decision in Joint Meeting: no de-
initialization for drivers that don't need
to store non volatile information)

[SRS_SPAL_12461] Responsibility for register initialization SWS_Lin_00008

[SRS_SPAL_12462] Provide settings for register initialization See Chapter 10.3

[SRS_SPAL_12463] Combine and forward settings for
register initialization

Not applicable
(applies only for configurator)

[SRS_SPAL_12068] MCAL initialization sequence Not applicable

[SRS_SPAL_12069] Wake-up notification of ECU State
Manager

SWS_Lin_00098

[SRS_SPAL_00157] Notification mechanisms of drivers and
handlers

SWS_Lin_00022, SWS_Lin_00052,
SWS_Lin_00053

[SRS_SPAL_12169] Control of operation mode SWS_Lin_00032

[SRS_SPAL_12063] Raw value mode SWS_Lin_00016, SWS_Lin_00025

[SRS_SPAL_12075] Use of application buffers Not applicable
(LIN driver does not feature random
streaming capability)

[SRS_SPAL_12129] Resetting of interrupt flags SWS_Lin_00157

[SRS_SPAL_12064] Change of operation mode during
running operation

SWS_Lin_00032

[SRS_SPAL_12448] Behavior after development error
detection

SWS_Lin_00052, SWS_Lin_00237

[SRS_SPAL_12067] Setting of wake-up conditions SWS_Lin_00032

[SRS_SPAL_12077] Non-blocking implementation SWS_Lin_00027, SWS_Lin_00028.

[SRS_SPAL_12078] Runtime and memory efficiency
Not applicable because this is a non-
functional requirement

[SRS_SPAL_12092] Access to drivers
Not applicable because this is a non-
functional requirement

[SRS_SPAL_12265] Configuration data shall be kept constant
SWS_Lin_00013 (stored in ROM, i.e.
implicitly constant)

[SRS_SPAL_12264] Specification of configuration items See Chapter10

Document: AUTOSAR requirements on Basic Software, Cluster: LIN [7]

Requirement Satisfied by
[SRS_Lin_01576] Usage of LIN specification 2.1 SWS_Lin_00005

[SRS_Lin_01504] Usage of AUTOSAR architecture only in
LIN master nodes

SWS_Lin_00005

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

22 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

[SRS_Lin_01522] Consistent data transfer SWS_Lin_00025, SWS_Lin_00053,
SWS_Lin_00060

[SRS_Lin_01560] Support for wake-up during transition to
sleep-mode

SWS_Lin_00033, SWS_Lin_00035

[SRS_Lin_01551] Multiple LIN channel support for interface Not applicable for the LIN driver

[SRS_Lin_01568] Hardware independence Not applicable for the LIN driver

[SRS_Lin_01569] LIN Interface initialization Not applicable for the LIN driver

[SRS_Lin_01570] Selection of static configuration sets Not applicable for the LIN driver

[SRS_Lin_01564] Schedule Table Manager Not applicable for the LIN driver

[SRS_Lin_01546] Schedule Table Handler Not applicable for the LIN driver

[SRS_Lin_01561] Main function Not applicable for the LIN driver

[SRS_Lin_01549] Timer service for Scheduling Not applicable for the LIN driver

[SRS_Lin_01571] Transmission request service Not applicable for the LIN driver

[SRS_Lin_01514] Wake-up notification support Not applicable for the LIN driver

[SRS_Lin_01515] API to wake-up by upper layer to LIN
Interface

Not applicable for the LIN driver

[SRS_Lin_01502] RX indication and TX confirmation call-
backs

Not applicable for the LIN driver

[SRS_Lin_01558] Check successful communication Not applicable for the LIN driver

[BSW01527] Notification for missing or erroneous receive
LIN-PDU

Not applicable for the LIN driver

[SRS_Lin_01523] API to send the LIN to sleep-mode Not applicable for the LIN driver

[SRS_Lin_01553] Basic Software SPAL General
Requirements

See table above

[SRS_Lin_01552] Hardware abstraction LIN See chapter 10.3

[SRS_Lin_01503] Frame based API for send and received
data

SWS_Lin_00024, SWS_Lin_00025

[SRS_Lin_01555] LIN Interface shall poll the LIN driver for
transmit/receive notifications

SWS_Lin_00024

[SRS_Lin_01547] Support of standard UART and LIN
optimized HW

SWS_Lin_00063

[SRS_Lin_01572] LIN driver initialization SWS_Lin_00011

[SRS_Lin_01573] Selection of static configuration sets SWS_Lin_00011

[SRS_Lin_01563] Wake-up Notification SWS_Lin_00098

[SRS_Lin_01556] Multiple LIN channel support for driver SWS_Lin_00008, SWS_Lin_00190

[SRS_Lin_01566] Transition to sleep-mode SWS_Lin_00033, SWS_Lin_00035

[SRS_Lin_01524] Support of reduced power operation mode SWS_Lin_00032

[SRS_Lin_01526] Error notification SWS_Lin_00052, SWS_Lin_00053

[SRS_Lin_01540] LIN Transport Layer Initialization Not applicable for the LIN driver

[SRS_Lin_01545] LIN Transport Layer Availability Not applicable for the LIN driver

[SRS_Lin_01534] Concurrent connection configuration Not applicable for the LIN driver

[SRS_Lin_01574] Multiple Transport Layer instances Not applicable for the LIN driver

[SRS_Lin_01539] Transport connection properties Not applicable for the LIN driver

[SRS_Lin_01544] Error handling Not applicable for the LIN driver

[SRS_Lin_01590] Usage of schedule tables for node
configuration

Not applicable for the LIN driver

[SRS_Lin_01577] Compatibility to LIN 2.1 protocol
specification

SWS_Lin_00005

[SRS_Lin_01578] Compatibility to LIN protocol specification SWS_Lin_00017

[SRS_Lin_01579] Compatibility to TP of LIN specification LIN TP requirement

[SRS_Lin_01591] Diagnostic transmission handler LIN Interface requirement

[SRS_Lin_01580] Configuration Data for LIN Transceiver
Driver.

LIN Transceiver Driver requirement

[SRS_Lin_01581] Support for more than one LIN transceiver LIN Transceiver Driver requirement

[SRS_Lin_01583] API to initialize the LIN Transceiver Driver LIN Transceiver Driver requirement

[SRS_Lin_01582] LIN Transceiver Driver API shall be
synchroneous

LIN Transceiver Driver requirement

[SRS_Lin_01584] API to request operation mode “standby” LIN Transceiver Driver requirement

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

23 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

[SRS_Lin_01585] API to request operation mode “sleep” LIN Transceiver Driver requirement

[SRS_Lin_01586] API to request operation mode “normal” LIN Transceiver Driver requirement

[SRS_Lin_01587] API to read out current operation mode LIN Transceiver Driver requirement

[SRS_Lin_01588] API to read out wakeup reason LIN Transceiver Driver requirement

[SRS_Lin_01589] API to enable/disable/clear wakeup Event LIN Transceiver Driver requirement

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

24 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

7 Functional specification

The LIN driver module is required to manage the hardware dependent aspects of
communication via any LIN cluster attached to the node the driver resides in.

This includes accepting header data for transmission onto the bus, response frame
data to transmit, the retrieval of header information and of response frame data
intended for the node.

The need for sleep mode management of both the node and of the cluster exists.
This implies the ability to detect and generate a ‘wake-up’ pulse as defined in the LIN
2.1 specification. If the underlying hardware supports a low-power mode then
entering and exiting from that state is included.

7.1 General Requirements

The Lin module is a Basic Software Module that has direct access to hardware
resources.

[SWS_Lin_00005] ⌈The Lin module shall conform to the LIN 2.1 Protocol

Specification as specified in [17]. This applies to LIN 2.1 Master nodes only. ⌋

(SRS_Lin_01576, SRS_Lin_01504, SRS_Lin_01577)

Operating as a slave node is out of scope for this AUTOSAR LIN driver specification.

[SWS_Lin_00055] ⌈The Lin module shall fulfill all design and implementation

guidelines as described in [12].⌋(SRS_BSW_00306, SRS_BSW_00308,

SRS_BSW_00309)

[SWS_Lin_00155] ⌈The Lin module shall implement the ISRs for all LIN hardware

unit interrupts that are needed. ⌋(SRS_BSW_00164)

[SWS_Lin_00156] ⌈The Lin module shall ensure that all unused interrupts are

disabled. ⌋()

[SWS_Lin_00157] ⌈The Lin module shall reset the interrupt flag at the end of the ISR

(if not done automatically by hardware). ⌋(SRS_SPAL_12129)

The Lin module shall not configure the interrupt (i.e. priority) nor set the vector table
entry.

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

25 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

7.2 Version Check

7.2.1 Requirements

 For details refer to the chapter 5.1.8 “Version Check” in SWS_BSWGeneral.

7.3 LIN driver and Channel Initialization

7.3.1 Background & Rationale

Before communication can be started on a LIN bus, both the LIN driver and the
relevant LIN channel must be initialized.

The driver initialization (see Lin_Init) handles all aspects of initialization that are of
relevance to all channels present in the LIN hardware unit. This may include any
static variables or hardware register settings common to all LIN channels that are
available. Additionally each channel must also be initialized according to the
configuration supplied. This will for example include (but is not limited to) the baud
rate over the bus.

[SWS_Lin_00225] ⌈There must be at least one statically defined configuration set

available for the LIN driver. When the EcuM invokes the initialization function, it has

to provide a specific pointer to the configuration that it wishes to use.⌋()

7.3.2 Requirements

The Lin module shall not initialize or configure LIN channels, which are not used.
The Lin module shall allow the environment to select between different static
configuration data at runtime.

[SWS_Lin_00011] ⌈The Lin module’s configuration shall include a data

communication rate set as defined by static configuration data.⌋(SRS_BSW_00405,

SRS_Lin_01572, SRS_Lin_01573)

[SWS_Lin_00013] ⌈The Lin module’s configuration data, intended for hardware

registers, shall be stored as hardware specific data structures in ROM (see

Lin_ConfigType).⌋(SRS_BSW_00345, SRS_BSW_00404, SRS_BSW_00405,

SRS_SPAL_12263, SRS_SPAL_12265)

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

26 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

[SWS_Lin_00014] ⌈Each LIN PID shall be associated with a checksum model (either

‘enhanced’ where the PID is included in the checksum, or ‘classic’ where only the

response data is check-summed) (see Lin_PduType).⌋()

[SWS_Lin_00015] ⌈Each LIN PID shall be associated with a response data length in

bytes (see Lin_PduType).⌋()

7.3.3 State diagrams

⌈The LIN driver has a state machine that is shown in Figure 7-1.

Figure 7-1: LIN driver states⌋()

Module State Meaning / Activities in the state

LIN_UNINIT The state LIN_UNINIT means that the Lin module has not been
initialized yet and cannot be used.

LIN_INIT The LIN_INIT state indicates that the LIN driver has been initialized,

making each available channel ready for service.

Channel State Meaning / Activities in the state

LIN_CH_OPERATIONAL The individual channel has been initialized (using at least one
statically configured data set) and is able to participate in the LIN
cluster.

LIN_CH_SLEEP The detection of a ‘wake-up’ pulse is enabled. The LIN hardware is
into a low power mode if such a mode is provided by the hardware.

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

27 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

[SWS_Lin_00145] ⌈Reset -> LIN_UNINIT: After reset, the Lin module shall set its

state to LIN_UNINIT.⌋()

[SWS_Lin_00146] ⌈LIN_UNINIT -> LIN_INIT: The Lin module shall transition from

LIN_UNINIT to LIN_INIT when the function Lin_Init is called.⌋()

The LIN module’s environment shall call the function Lin_Init only once during
runtime.

[SWS_Lin_00171] ⌈On entering the state LIN_INIT, the Lin module shall set each

channel into state LIN_CH_OPERATIONAL.⌋()

[SWS_Lin_00263] ⌈ LIN_CH_OPERATIONAL -> LIN_CH_SLEEP_PENDING

through Lin_GoToSleep: If a go to sleep is requested by the LIN interface, the Lin
module shall ensure that the rest of the LIN cluster goes to sleep also. This is
achieved by issuing a go-to-sleep-command on the bus before entering the

LIN_CH_SLEEP_PENDING state.⌋()

[SWS_Lin_00264] ⌈ LIN_CH_SLEEP_PENDING -> LIN_CH_SLEEP: When

Lin_GetStatus is called, the LIN driver shall directly enter the LIN_CH_SLEEP state,

even if the go-to-sleep-command has not yet been sent. ⌋()

[SWS_Lin_00265] ⌈ LIN_CH_OPERATIONAL -> LIN_CH_SLEEP through

Lin_GoToSleepInternal: If an internal go to sleep is requested by the LIN interface,

the LIN driver shall directly enter the LIN_CH_SLEEP state.⌋()

[SWS_Lin_00174] ⌈ LIN_CH_SLEEP -> LIN_CH_OPERATIONAL through

Lin_Wakeup: If a LIN channel is in the state LIN_CH_SLEEP, the function

Lin_Wakeup shall put the LIN channel into the state LIN_CH_OPERATIONAL. ⌋()

[SWS_Lin_00261][⌈ LIN_CH_SLEEP -> LIN_CH_OPERATIONAL through

Lin_WakeupInternal: If a LIN channel is in the state LIN_CH_SLEEP, the function
Lin_WakeupInternal shall put the LIN channel into the state

LIN_CH_OPERATIONAL. ⌋()

[SWS_Lin_00209] ⌈Lin_Wakeup: During the state transition from LIN_CH_SLEEP to

LIN_CH_OPERATIONAL the LIN Driver shall ensure that the rest of the cluster is
awake. This is achieved by issuing a wake-up request, forcing the bus to the

dominant state for 250 μs to 5 ms.⌋()

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

28 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

[SWS_Lin_00184] ⌈A mode switch request to the current mode is allowed and shall

not lead to an error, even if DET is enabled.⌋()

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

29 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

7.4 Frame processing

7.4.1 Background & Rationale

From the point of view of the LIN driver module, transmissions are composed of two
actions; the transmission of the LIN header, and the transmission of the response.
Only the LIN master node transmits the LIN header, but either the master or one of
the slaves may transmit the response [17].

The driver must also be able to access data concerning the checksum model and
data length for each LIN PID. LIN 2.1 has a different checksum model compared to
LIN1.3, but the LIN 2.1 master must be able to communicate with both LIN1.3 and
LIN 2.1 slaves.

The checksum is a part of the response, and may or may not include the PID
depending upon the checksum model for the PID in question. The LIN ID’s 60 (0x3c)
to 63 (0x3f) must always use the classic (response data only) checksum model [17].

The LIN driver module works with LIN frames as its basic building block. This means
that the LIN interface layer requests a particular frame to be sent during one of its
scheduler time-slots. Any response from the frame should be available latest before
the next frame will be sent.

In the case that the master is also responsible for sending the frame response, an
indication (PduInfoPtr->Drc=LIN_MASTER_RESPONSE) will be given at the same
time as the request to send the header. The transmission of the response itself has
to be triggered subsequently by another function call.

The LIN driver module must be able to retrieve data from the response and make it
available to the LIN interface module. It must retrieve all data from the response
without blocking.

7.4.2 Requirements

[SWS_Lin_00016] ⌈The LIN driver shall interpret the supplied identifier as PID. The

identifier is then transmitted as-supplied within the LIN header (see Lin_SendFrame).

⌋(SRS_SPAL_12063)

[SWS_Lin_00017] ⌈The LIN driver shall be able to send a LIN header. This is

composed of the break field, synch byte field, and protected identifier byte field as

detailed in [17] (see Lin_SendFrame).⌋(SRS_Lin_01578)

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

30 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

[SWS_Lin_00018] ⌈The LIN driver shall be able to send a LIN header and response.

⌋()

[SWS_Lin_00019] ⌈The LIN driver shall be able to calculate either a ‘classic’ or an

‘enhanced’ checksum depending upon the checksum model for the current LIN PDU.

⌋()

[SWS_Lin_00021] ⌈The LIN driver shall abort the current frame transmission if a

new frame transmission is requested by the LIN interface (see Lin_SendFrame), also

if an ongoing transmission may be still in progress or unsuccessfully completed.⌋()

[SWS_Lin_00022] ⌈The function Lin_GetStatus shall return the status of the current

frame transmission request for the channel.⌋(SRS_SPAL_00157)

[SWS_Lin_00024] ⌈The LIN driver shall make received data available to the LIN

interface module. After successful reception of a whole LIN frame, the received data

shall be prepared for function call of the LIN interface (see Lin_GetStatus).⌋

(SRS_Lin_01555, SRS_Lin_01503)

[SWS_Lin_00025] ⌈The LIN driver shall send response data as provided by the LIN

interface module (see Lin_SendFrame).⌋(SRS_SPAL_12063, SRS_Lin_01522,

SRS_Lin_01503)

[SWS_Lin_00026] ⌈If the LIN hardware unit cannot queue the bytes for transmission

or reception (e.g. simple UART implementation), the LIN driver shall provide a

temporary communication buffer.⌋()

[SWS_Lin_00027] ⌈The LIN driver shall initiate transmission without blocking,

including the check of the next byte transmission only upon successful reception of

the previous one (receive-back).⌋(SRS_SPAL_12077)

[SWS_Lin_00028] ⌈The LIN driver shall receive data without blocking.⌋

(SRS_SPAL_12077)

7.4.3 Data Consistency

Transmit Data Consistency:

[SWS_Lin_00053] ⌈The LIN driver shall directly copy the data from the upper layer

buffers. ⌋(SRS_SPAL_00157, SRS_Lin_01522, SRS_Lin_01526)

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

31 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

[SWS_Lin_00210] ⌈The upper layer of the LIN Driver has to keep the buffer data

consistent until return of function call.⌋()

Receive Data Consistency:

[SWS_Lin_00060] ⌈The complete LIN frame receive processing (including copying

to destination layer) can be implemented in an ISR. The received data shall be
consistent until either next LIN frame has been received successfully or LIN channel

state has changed.⌋(SRS_Lin_01522)

[SWS_Lin_00211] ⌈The complete LIN frame receive processing (including copying

to destination layer) can be implemented in the Lin_GetStatus function. The received
data shall be consistent until either next LIN frame has been received successfully or

LIN channel state has changed.⌋()

As long as it is guaranteed that neither the ISRs nor Lin_GetStatus can be
interrupted by itself, the LIN hardware (or shadow) buffer is always consistent,
because it is written and read in sequence in exactly one function that is never
interrupted by itself.

For the LIN response reception the bytes of the SDU buffer shall be allocated in
increasingly consecutive address order. The LIN frame data length information
defines the minimum SDU buffer length.

7.4.4 Data byte mapping

[SWS_Lin_00096] ⌈Data mapping between memory and the LIN frame is defined in

a way that the array element 0 is containing the LSB (the data byte to send/receive
first) and the array element (n-1) is containing the MSB (the data byte to send/receive

last).⌋()

7.5 Sleep and wake-up functionality

7.5.1 Background & Rationale

The master node can be awakened either by a wake-up signal generated by one of
the slaves, or by a request from the higher layer (LIN interface) (see
SWS_Lin_00209). The LIN interface controls the message schedule table and so
must be able to instruct the LIN driver to put the hardware unit to sleep, or to wake it
up (see SWS_LinIf_00296, SWS_LinIf_00488).

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

32 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

For this purpose, the LIN driver provides functions to put the LIN channel into its
LIN_CH_SLEEP state (see Lin_GoToSleep/Lin_GoToSleepInternal).

Upon sleep or wake-up the master must communicate the status change with the
rest of the network.

7.5.2 Requirements

[SWS_Lin_00032] ⌈When the LIN channel enters sleep mode, it shall perform the

transition to low-power mode of the LIN hardware unit (if available) (see

Lin_GoToSleep/Lin_GoToSleepInternal).⌋(SRS_SPAL_12169, SRS_SPAL_12064,

SRS_SPAL_12067, SRS_Lin_01524)

[SWS_Lin_00033] ⌈Each LIN channel shall be able to accept a sleep request

independently of the other channel states (see

Lin_GoToSleep/Lin_GoToSleepInternal).⌋(SRS_Lin_01560, SRS_Lin_01566)

[SWS_Lin_00037] ⌈When a LIN channel is in LIN_CH_SLEEP state and wake-up

detection is supported by configuration parameter LinChannelWakeupSupport, the

LIN hardware unit shall monitor the bus for a wake-up request on that channel. ⌋()

[SWS_Lin_00043] ⌈Lin_Wakeup: If the LIN driver receives a wake-up request from

the LIN interface, the requested channel shall send a wake-up pulse to the LIN bus.

(see Lin_Wakeup) ⌋()

[SWS_Lin_00262] ⌈Lin_WakeupInternal: If the LIN driver receives an internal wake-

up request from the LIN interface, the requested channel shall send no wake-up

pulse to the LIN bus. (see Lin_WakeupInternal) ⌋()

The function Lin_GetStatus returns the current state of a given LIN channel.

7.6 Error classification

The error classification depends on the time of error occurrence according to product
life cycle:

 Development Errors

Those errors shall be detected and fixed during development phase. In most
cases, those errors are software errors. The detection of errors that shall only
occur during development can be switched off for production code (by static
configuration namely pre-processor switches).

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

33 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

 Production Errors
Those errors are hardware errors and software exceptions that cannot be avoided
and are also expected to occur in production code.

[SWS_Lin_00048] ⌈The following errors and exceptions shall be detectable by the

LIN driver depending on its build version (development/production mode) ⌋

(SRS_BSW_00323, SRS_BSW_00327, SRS_BSW_00337, SRS_BSW_00385)

Type or error Relevance Related error code Value [hex]

API service used without
module initialization

Development LIN_E_UNINIT 0x00

API service used with an
invalid or inactive channel
parameter

Development LIN_E_INVALID_CHANNEL 0x02

API service called with invalid
configuration pointer

Development LIN_E_INVALID_POINTER 0x03

Invalid state transition for the
current state

Development LIN_E_STATE_TRANSITION 0x04

API service called with a NULL
pointer

Development LIN_E_PARAM_POINTER 0x05

Timeout caused by hardware
error

Production /
Development

LIN_E_TIMEOUT Assigned by
DEM

[SWS_Lin_00213] ⌈ The LIN Driver module shall report the development error

"LIN_E_STATE_TRANSITION (0x04)", when Invalid state transition occurs from the

current state.⌋()

[SWS_Lin_00214] ⌈The LIN Driver module shall report the development error

"LIN_E_UNINIT (0x00)", when the API Service is used without module initialization.⌋

()

[SWS_Lin_00215] ⌈ The LIN Driver module shall report the development error

"LIN_E_INVALID_CHANNEL (0x02)", when API Service used with an invalid or

inactive channel parameter.⌋()

[SWS_Lin_00216] ⌈ The LIN Driver module shall report the development error

"LIN_E_INVALID_POINTER (0x03)", when API Service is called with invalid

configuration pointer.⌋()

[SWS_Lin_00249] ⌈The LIN Driver module shall report the development error

"LIN_E_PARAM_POINTER (0x05)", when API Service is called with a NULL pointer.
In case of this error, the API service shall return immediately without any further

action, beside reporting this development error.⌋()

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

34 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

[SWS_Lin_00218] ⌈ The LIN Driver module shall report the production or

development error "LIN_E_TIMEOUT (value assigned by DEM)", when Timeout

caused by hardware error.⌋()

[SWS_Lin_00237] ⌈If the LIN module detects an error and calls the Development

Error Tracer, the LIN module’s function that raised the development error shall return

immediately.⌋(SRS_SPAL_12448)

7.7 Production Errors

7.7.1 LIN_E_TIMEOUT[_LIN_E_TIMEOUT]

Error Name: LIN_E_TIMEOUT[_Lin_E_Timeout]

Short Description: This error is reported when time out caused by hardware error occurs.

Long Description: If a change to the LIN hardware control registers results in the need to
wait for a status change, this shall be protected by a configurable time
out mechanism. If such a time out is detected the LIN_E_TIMEOUT
error shall be raised. This situation should only arise in the event of a
LIN hardware unit fault and should be communicated to the rest of the
system.

Recommended DTC: -

Detection Criteria: Fail A LIN hardware control register has changed and the
configured time (see LinTimeoutDuration) has elapsed
without a status change of the LIN Hardware.

Pass A LIN hardware control register has changed and the status
change is done within the configured time (see
LinTimeoutDuration).

Secondary Parameters: The LIN_E_TIMEOUT is only used (Fail/Pass detection is active) if a
change in the LIN hardware control registers does not immediately
result in a status change, but it needs some time and time is
measureable. For such hardware, it means, the timeout mechanism is
started whenever the LIN hardware register is changed. The timeout
mechanism is stopped and reset, when the status change is
successfully done (Pass detection) or the configured time (see
LinTimeoutDuration) has elapsed (Fail detection).

Time Required: 1s

Monitor Frequency: once-per-trip

MIL illumniation: -

7.8 Error detection

[SWS_Lin_00097] ⌈If a change to the LIN hardware control registers results in the

need to wait for a status change, this shall be protected by a configurable time out
mechanism (LinTimeoutDuration). If such a time out is detected the
LIN_E_TIMEOUT error shall be raised to the DET or DEM. This situation should only
arise in the event of a LIN hardware unit fault, and should be communicated to the

rest of the system.⌋()

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

35 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

A LIN_E_TIMEOUT will affect the complete LIN stack in a way that the LIN driver
must be re-initialized or the LIN functionality must be switched off.

7.9 Error notification

[SWS_Lin_00058] ⌈ The only production error that can be reported by the LIN driver

is the LIN_E_TIMEOUT error. ⌋(BSW00421)

7.10 Debugging

For details refer to the chapter 7.1.17 “Debugging support” in SWS_BSWGeneral.

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

36 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

8 API specification

8.1 Imported types

In this chapter all types included from other modules are listed:

[SWS_Lin_00226] ⌈

Module Imported Type

Dem Dem_EventIdType

Dem_EventStatusType

EcuM EcuM_WakeupSourceType

Icu Icu_ChannelType

Lin_GeneralTypes Lin_PduType

Lin_StatusType

Std_Types Std_ReturnType

Std_VersionInfoType

⌋()

8.2 Type definitions

[SWS_Lin_00245] ⌈The content of Lin_GeneralTypes.h shall be protected by a

LIN_GENERAL_TYPES define.⌋()

[SWS_Lin_00246] ⌈If different LIN drivers are used, only one instance of this file has

to be included in the source tree. For implementation all Lin_GeneralTypes.h

related types in the documents mentioned before shall be considered.⌋()

8.2.1 Lin_ConfigType

[SWS_Lin_00247] ⌈Lin_ConfigType shall be provided by the headerfile Lin.h.⌋()

[SWS_Lin_00227] ⌈

Name: Lin_ConfigType

Type: Structure

Range: Hardware and

Implementation

dependent

structure

The contents of the initialization data structure are LIN
hardware specific

Description: This is the type of the external data structure containing the overall initialization
data for the LIN driver and the SFR settings affecting the LIN channels. A pointer
to such a structure is provided to the LIN driver initialization routine for
configuration of the driver, LIN hardware unit and LIN hardware channels.

⌋()

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

37 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

8.2.2 Lin_FramePidType

[SWS_Lin_00228] ⌈

Name: Lin_FramePidType

Type: uint8

Range: 0...0xFE -- The LIN identifier (0…0x3F) together with its two parity
bits.

Description: Represents all valid protected identifier used by Lin_SendFrame().

 ⌋()

Note: Lin_FramePidType shall be provided by the headerfile Lin_GeneralTypes.h.()

8.2.3 Lin_FrameCsModelType

[SWS_Lin_00229] ⌈

Name: Lin_FrameCsModelType

Type: Enumeration

Range: LIN_ENHANCED_CS Enhanced checksum model

LIN_CLASSIC_CS Classic checksum model

Description: This type is used to specify the Checksum model to be used for the LIN Frame.

⌋()

Note: Lin_FrameCsModelType shall be provided by the headerfile
Lin_GeneralTypes.h.()

8.2.4 Lin_FrameResponseType

[SWS_Lin_00230] ⌈

Name: Lin_FrameResponseType

Type: Enumeration

Range: LIN_MASTER_RESPONSE Response is generated from this (master) node

LIN_SLAVE_RESPONSE Response is generated from a remote slave node

LIN_SLAVE_TO_SLAVE Response is generated from one slave to another slave,
for the master the response will be anonymous, it does not
have to receive the response.

Description: This type is used to specify whether the frame processor is required to transmit the
response part of the LIN frame.

⌋()

Note: Lin_FrameResponseType shall be provided by the headerfile

Lin_GeneralTypes.h.()

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

38 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

8.2.5 Lin_FrameDlType

[SWS_Lin_00231] ⌈

Name: Lin_FrameDlType

Type: uint8

Range: 1...8 -- Data length of a LIN Frame

Description: This type is used to specify the number of SDU data bytes to copy.

⌋()

Note: Lin_FrameDlType shall be provided by the headerfile Lin_GeneralTypes.h.()

8.2.6 Lin_PduType

[SWS_Lin_00232] ⌈

Name: Lin_PduType

Type: Structure

Element: Lin_FramePidType Pid --

Lin_FrameCsModelType Cs --

Lin_FrameResponseType Drc --

Lin_FrameDlType Dl --

uint8* SduPtr --

Description: This Type is used to provide PID, checksum model, data length and SDU pointer
from the LIN Interface to the LIN driver.

⌋()

Note: Lin_PduType shall be provided by the headerfile Lin_GeneralTypes.h.()

Description for each element of Lin_PduType is given in:

- Section 8.2.2 for Lin_FramePidType
- Section 8.2.3 for Lin_FrameCsModelType
- Section 8.2.4 for Lin_FrameResponseType
- Section 8.2.5 for Lin_FrameDIType

8.2.7 Lin_StatusType

[SWS_Lin_00233] ⌈

Name: Lin_StatusType

Type: Enumeration

Range: LIN_NOT_OK LIN frame operation return value.
Development or production error occurred

LIN_TX_OK LIN frame operation return value.
Successful transmission.

LIN_TX_BUSY LIN frame operation return value.
Ongoing transmission (Header or Response).

LIN_TX_HEADER_ERROR LIN frame operation return value.
Erroneous header transmission such as:
- Mismatch between sent and read back data

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

39 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

- Identifier parity error or
- Physical bus error

LIN_TX_ERROR LIN frame operation return value.
Erroneous response transmission such as:
- Mismatch between sent and read back data
- Physical bus error

LIN_RX_OK LIN frame operation return value.
Reception of correct response.

LIN_RX_BUSY LIN frame operation return value. Ongoing reception: at
least one response byte has been received, but the
checksum byte has not been received.

LIN_RX_ERROR LIN frame operation return value.
Erroneous response reception such as:
- Framing error
- Overrun error
- Checksum error or
- Short response

LIN_RX_NO_RESPONSE LIN frame operation return value.
No response byte has been received so far.

LIN_OPERATIONAL LIN channel state return value.
Normal operation; the related LIN channel is ready to
transmit next header. No data from previous frame
available (e.g. after initialization)

LIN_CH_SLEEP LIN channel state return value.
Sleep state operation; in this state wake-up detection from
slave nodes is enabled.

Description: LIN operation states for a LIN channel or frame, as returned by the API service
Lin_GetStatus().

⌋()

Note: Lin_StatusType shall be provided by the headerfile Lin_GeneralTypes.h.()

8.3 Function definitions

This is a list of functions provided for upper layer modules.

8.3.1 Services affecting the complete LIN hardware unit

8.3.1.1 Lin_Init

[SWS_Lin_00006] ⌈

Service name: Lin_Init

Syntax: void Lin_Init(

 const Lin_ConfigType* Config

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): Config Pointer to LIN driver configuration set.

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

40 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: Initializes the LIN module.

⌋(SRS_BSW_00406, SRS_BSW_00101, SRS_SPAL_12057, SRS_SPAL_12125)

[SWS_Lin_00084] ⌈The function Lin_Init shall initialize the Lin module (i.e. static

variables, including flags and LIN HW Unit global hardware settings), as well as the

LIN channels. ⌋()

Different sets of static configuration may have been configured.

[SWS_Lin_00150] ⌈The function Lin_Init shall initialize the module according to the

configuration set pointed to by the parameter Config.⌋()

[SWS_Lin_00008] ⌈The function Lin_Init shall invoke initializations for relevant

hardware register settings common to all channels available on the LIN hardware

unit.⌋(SRS_SPAL_12461, SRS_Lin_01556)

[SWS_Lin_00190] ⌈The function Lin_Init shall also invoke initializations for LIN

channel specific settings.⌋(SRS_SPAL_12125, SRS_Lin_01556)

[SWS_Lin_00106] ⌈The Lin module’s environment shall not call any function of the

Lin module before having called Lin_Init except Lin_GetVersionInfo.⌋()

[SWS_Lin_00099] ⌈If development error detection for the Lin module is enabled: the

function Lin_Init shall check the parameter Config for being within the allowed range.
If Config is not in the allowed range, the function Lin_Init shall raise the development

error LIN_E_INVALID_POINTER.⌋()

[SWS_Lin_00105] ⌈If development error detection for the Lin module is enabled: the

function Lin_Init shall check the Lin driver for being in the state LIN_UNINIT. If the Lin
driver is not in the state LIN_UNINIT, the function Lin_Init shall raise the development

error LIN_E_STATE_TRANSITION.⌋()

8.3.1.2 Lin_CheckWakeup

[SWS_Lin_00160] ⌈

Service name: Lin_CheckWakeup

Syntax: Std_ReturnType Lin_CheckWakeup(

 uint8 Channel

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

41 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

)

Service ID[hex]: 0x0a

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): Channel LIN channel to be addressed

Parameters
(inout):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: No error has occurred during execution of the API

E_NOT_OK: An error has occurred during execution of the API

Description: This function checks if a wakeup has occurred on the addressed LIN channel.

⌋()

There are two methods in which wake up detection shall happen, one is from LIN
controller hardware [Micro peripheral device] and/or another from LinTranceiver.

After a wake up caused by LIN bus Transceiver the function Lin_CheckWakeup will
be called by the LIN Interface module to identify the corresponding LIN channel (e.g.
in case of multiple transceivers are physically connected to one MCU wake up pin)
(see SWS_LinIf_00503). In this case, LIN Driver only plays a role on validation of this
wake up signal.

[SWS_Lin_00098] ⌈The function Lin_CheckWakeup shall evaluate the wakeup on

the addressed LIN channel. When a wake-up event on the addressed LIN channel
(e.g. RxD pin has constant low level) is detected, the function Lin_CheckWakeup
shall notify the ECU State Manager module immediately via the
EcuM_SetWakeupEvent and the Lin Interface module via LinIf_WakeupConfirmation

callback function.⌋(SRS_BSW_00375, SRS_Lin_01563)

[SWS_Lin_00251] ⌈If development error detection for the LIN module is enabled: if

the channel parameter is invalid, the function Lin_CheckWakeup shall raise the

development error LIN_E_INVALID_CHANNEL and return with E_NOT_OK.⌋()

[SWS_Lin_00107] ⌈If development error detection for the LIN module is enabled: if

the function Lin_CheckWakeup is called before the LIN module was initialized, the

function Lin_CheckWakeup shall raise the development error LIN_E_UNINIT.⌋()

8.3.1.3 Lin_GetVersionInfo

[SWS_Lin_00161] ⌈

Service name: Lin_GetVersionInfo

Syntax: void Lin_GetVersionInfo(

 Std_VersionInfoType* versioninfo

)

Service ID[hex]: 0x01

Sync/Async: Synchronous

Reentrancy: Reentrant

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

42 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

Parameters (in): None

Parameters
(inout):

None

Parameters (out): versioninfo Pointer to where is stored the version information of this module.

Return value: None

Description: Returns the version information of this module.

⌋()

[SWS_Lin_00001] ⌈The function Lin_GetVersionInfo shall return the version

information of the LIN module. The version information includes:
 Two bytes for the vendor ID
 Two byte for the module ID
 Three bytes version number The numbering shall be vendor specific; it

consists of:
- The major, the minor and the patch version number of the

module.
- The AUTOSAR specification version number shall not be

included. The AUTOSAR specification version number is
checked during compile time and therefore not required in this

API.⌋(SRS_BSW_00407)

[SWS_Lin_00248] ⌈If development error detection for the LIN module is enabled: If

the parameter versioninfo is a NULL pointer, the function Lin_GetVersionInfo shall

raise the error LIN_E_PARAM_POINTER.⌋()

8.3.2 Services affecting a single LIN channel

8.3.2.1 Lin_SendFrame

[SWS_Lin_00191] ⌈

Service name: Lin_SendFrame

Syntax: Std_ReturnType Lin_SendFrame(

 uint8 Channel,

 Lin_PduType* PduInfoPtr

)

Service ID[hex]: 0x04

Sync/Async: Asynchronous

Reentrancy: Non Reentrant

Parameters (in):

Channel LIN channel to be addressed

PduInfoPtr Pointer to PDU containing the PID, checksum model,
response type, Dl and SDU data pointer

Parameters
(inout):

None

Parameters (out): None

Return value: Std_ReturnType E_OK: Send command has been accepted.

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

43 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

E_NOT_OK: Send command has not been accepted,
development or production error occurred.

Description: Sends a LIN header and a LIN response, if necessary. The direction of the frame
response (master response, slave response, slave-to-slave communication) is
provided by the PduInfoPtr.

⌋()

[SWS_Lin_00192] ⌈The function Lin_SendFrame shall send the header part (Break

Field, Synch Byte Field and PID Field) and, depending on the direction of the frame
response, a complete LIN response part of a LIN frame on the addressed LIN

channel.⌋()

[SWS_Lin_00193] ⌈In case of receiving data the LIN Interface has to wait for the

corresponding response part of the LIN frame by polling with the function

Lin_GetStatus() after using the function Lin_SendFrame().⌋()

[SWS_Lin_00194] ⌈The Lin module’s environment shall only call Lin_SendFrame on

a channel which is in state LIN_CH_OPERATIONAL or in one of the sub-states of

LIN_CH_OPERATIONAL.⌋()

[SWS_Lin_00239] ⌈In case of errors during header transmission, it is up to the

implementer how to handle these errors (stop/continue transmission) and to decide if

the corresponding response is valid or not. ⌋()

[SWS_Lin_00240] ⌈In case of response transmission errors, the LIN 2.1

specification describes within the frame processor state machine how to handle such
errors. It is stated that a mismatch between sent and readback data shall be detected
not later than after the completion of the byte field containing the mismatch.

Furthermore, LIN 2.1 specifies that the transmission shall be aborted.⌋()

[SWS_Lin_00195] ⌈If development error detection for the LIN module is enabled: if

the function Lin_SendFrame is called before the LIN module was initialized, the
function Lin_SendFrame shall raise the development error LIN_E_UNINIT and return

with E_NOT_OK.⌋()

[SWS_Lin_00197] ⌈If development error detection for the LIN module is enabled: if

the channel parameter is invalid, the function Lin_SendFrame shall raise the

development error LIN_E_INVALID_CHANNEL and return with E_NOT_OK.⌋()

[SWS_Lin_00198] ⌈If development error detection for the LIN module is enabled: the

function Lin_SendFrame shall check the parameter PduInfoPtr for not being a NULL

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

44 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

pointer. If PduInfoPtr is a NULL pointer, the function Lin_SendFrame shall raise the

development error LIN_E_PARAM_POINTER and return with E_NOT_OK.⌋()

[SWS_Lin_00199] ⌈If development error detection for the LIN module is enabled: if

the LIN channel state-machine is in the state LIN_CH_SLEEP, the function
Lin_SendFrame shall raise the development error LIN_E_STATE_TRANSITION and

return with E_NOT_OK.⌋()

8.3.2.2 Lin_GoToSleep

[SWS_Lin_00166] ⌈

Service name: Lin_GoToSleep

Syntax: Std_ReturnType Lin_GoToSleep(

 uint8 Channel

)

Service ID[hex]: 0x06

Sync/Async: Asynchronous

Reentrancy: Non Reentrant

Parameters (in): Channel LIN channel to be addressed

Parameters
(inout):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: Sleep command has been accepted

E_NOT_OK: Sleep command has not been accepted,
development or production error occurred

Description: The service instructs the driver to transmit a go-to-sleep-command on the
addressed LIN channel.

⌋()

[SWS_Lin_00089] ⌈The function Lin_GoToSleep shall send a go-to-sleep-command

on the addressed LIN channel as defined in LIN Specification 2.1.⌋()

[SWS_Lin_00266]⌈ The function Lin_GoToSleep shall set the channel state to

LIN_CH_SLEEP_PENDING, even in case of an erroneous transmission of the go-to-

sleep-command.⌋(SRS_Lin_01566)

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

45 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

[SWS_Lin_00220] ⌈If wake-up detection is supported by configuration parameter

LinChannelWakeupSupport , then the function Lin_GoToSleep shall enable the
wake-up detection, even in case of an erroneous transmission of the go-to-sleep-

command.⌋()

[SWS_Lin_00221] ⌈The function Lin_GoToSleep shall optionally set the LIN

hardware unit to reduced power operation mode (if supported by HW), even in case

of an erroneous transmission of the go-to-sleep-command.⌋()

[SWS_Lin_00255]⌈ The LIN channel shall enter the state LIN_CH_SLEEP the next

time Lin_GetStatus is called, independent of the success of the transmission of the

goto-sleep-command on the bus.⌋()

[SWS_Lin_00074] ⌈The function Lin_GoToSleep shall terminate ongoing frame

transmission of prior transmission requests, even if the transmission is

unsuccessfully completed.⌋()

[SWS_Lin_00129] ⌈If development error detection for the LIN module is enabled: if

the function Lin_GoToSleep is called before the LIN module was initialized, the

function Lin_GoToSleep shall raise the development error LIN_E_UNINIT.⌋()

[SWS_Lin_00131] ⌈If development error detection for the LIN module is enabled: the

function Lin_GoToSleep shall raise the development error

LIN_E_INVALID_CHANNEL if the channel parameter is invalid.⌋()

8.3.2.3 Lin_GoToSleepInternal

[SWS_Lin_00167] ⌈

Service name: Lin_GoToSleepInternal

Syntax: Std_ReturnType Lin_GoToSleepInternal(

 uint8 Channel

)

Service ID[hex]: 0x09

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): Channel LIN channel to be addressed

Parameters
(inout):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: Command has been accepted

E_NOT_OK: Command has not been accepted,
development or production error occurred

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

46 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

Description: Sets the channel state to LIN_CH_SLEEP, enables the wake-up detection and
optionally sets the LIN hardware unit to reduced power operation mode (if
supported by HW).

⌋()

[SWS_Lin_00095] ⌈The function Lin_GoToSleepInternal shall set the channel state

to LIN_CH_SLEEP.⌋()

[SWS_Lin_00222] ⌈The function Lin_GoToSleepInternal shall enable the wake-up.⌋

()

[SWS_Lin_00223] ⌈The function Lin_GoToSleepInternal shall optionally set the LIN

hardware unit to reduced power operation mode (if supported by HW).⌋()

[SWS_Lin_00133] ⌈If development error detection for the LIN module is enabled: if

the function Lin_GoToSleepInternal is called before the LIN module was initialized,
the function Lin_GoToSleepInternal shall raise the development error

LIN_E_UNINIT.⌋()

[SWS_Lin_00135] ⌈If development error detection for the LIN module is enabled: the

function Lin_GoToSleepInternal shall raise the development error

LIN_E_INVALID_CHANNEL if the channel parameter is invalid.⌋()

8.3.2.4 Lin_Wakeup

[SWS_Lin_00169] ⌈

Service name: Lin_Wakeup

Syntax: Std_ReturnType Lin_Wakeup(

 uint8 Channel

)

Service ID[hex]: 0x07

Sync/Async: Asynchronous

Reentrancy: Non Reentrant

Parameters (in): Channel LIN channel to be addressed

Parameters
(inout):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: Wake-up request has been accepted

E_NOT_OK: Wake-up request has not been accepted,
development or production error occurred

Description: Generates a wake up pulse and sets the channel state to
LIN_CH_OPERATIONAL.

⌋()

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

47 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

[SWS_Lin_00137] ⌈If development error detection for the LIN module is enabled: if

the function Lin_Wakeup is called before the LIN module was initialized, the function

Lin_Wakeup shall raise the development error LIN_E_UNINIT.⌋()

[SWS_Lin_00139] ⌈If development error detection for the LIN module is enabled: the

function Lin_Wakeup shall raise the development error LIN_E_INVALID_CHANNEL

if the channel parameter is invalid or the channel is inactive.⌋()

[SWS_Lin_00140] ⌈If development error detection for the LIN module is enabled: the

function Lin_Wakeup shall raise the development error LIN_E_STATE_TRANSITION

if the LIN channel state-machine is not in the state LIN_CH_SLEEP. ⌋()

Note: The Lin driver’s environment shall only call Lin_Wakeup when the LIN channel

is in state LIN_CH_SLEEP.

8.3.2.5 LIN_WakeupInternal

[SWS_Lin_00256] ⌈

Service name: Lin_WakeupInternal

Syntax: Std_ReturnType Lin_WakeupInternal(

 uint8 Channel

)

Service ID[hex]: 0x0b

Sync/Async: Asynchronous

Reentrancy: Non Reentrant

Parameters (in): Channel LIN channel to be addressed

Parameters
(inout):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: Wake-up request has been accepted

E_NOT_OK: Wake-up request has not been accepted,
development or production error occurred

Description: Sets the channel state to LIN_CH_OPERATIONAL without generating a wake up
pulse.

⌋()

[SWS_Lin_00257] ⌈The function Lin_WakeupInternal sets the addressed LIN
channel to state LIN_CH_OPERATIONAL without generating a wake up pulse.⌋()

[SWS_Lin_00258] ⌈If development error detection for the LIN module is enabled: if

the function Lin_WakeupInternal is called before the LIN module was initialized, the

function Lin_WakeupInternal shall raise the development error LIN_E_UNINIT.⌋()

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

48 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

[SWS_Lin_00259] ⌈If development error detection for the LIN module is enabled: the

function Lin_WakeupInternal shall raise the development error
LIN_E_INVALID_CHANNEL if the channel parameter is invalid or the channel is

inactive.⌋()

[SWS_Lin_00260] ⌈If development error detection for the LIN module is enabled: the

function Lin_WakeupInternal shall raise the development error
LIN_E_STATE_TRANSITION if the LIN channel state-machine is not in the state

LIN_CH_SLEEP. ⌋()

Note: The Lin driver’s environment shall only call Lin_WakeupInternal when the LIN
channel is in state LIN_CH_SLEEP.

8.3.2.6 Lin_GetStatus

[SWS_Lin_00168] ⌈

Service name: Lin_GetStatus

Syntax: Lin_StatusType Lin_GetStatus(

 uint8 Channel,

 uint8** Lin_SduPtr

)

Service ID[hex]: 0x08

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): Channel LIN channel to be checked

Parameters
(inout):

None

Parameters (out):
Lin_SduPtr Pointer to pointer to a shadow buffer or memory mapped LIN

Hardware receive buffer where the current SDU is stored.

Return value:

Lin_StatusType LIN_NOT_OK: Development or production error occurred

LIN_TX_OK: Successful transmission

LIN_TX_BUSY: Ongoing transmission (Header or Response)

LIN_TX_HEADER_ERROR: Erroneous header transmission such
as:
- Mismatch between sent and read back data
- Identifier parity error or Physical bus error

LIN_TX_ERROR: Erroneous response transmission such as:
- Mismatch between sent and read back data
- Physical bus error

LIN_RX_OK: Reception of correct response

LIN_RX_BUSY: Ongoing reception: at least one response byte
has been received, but the checksum byte has not been received

LIN_RX_ERROR: Erroneous response reception such as:
- Framing error

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

49 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

- Overrun error
- Checksum error or Short response

LIN_RX_NO_RESPONSE: No response byte has been received
so far

LIN_OPERATIONAL: Normal operation; the related LIN channel is
just initialized or waked up from the LIN_CH_SLEEP and no data
has been sent.

LIN_CH_SLEEP: Sleep state operation; in this state wake-up
detection from slave nodes is enabled.

Description: Gets the status of the LIN driver.

⌋()

[SWS_Lin_00091] ⌈The function Lin_GetStatus shall return the current transmission,

reception or operation status of the LIN driver.⌋()

[SWS_Lin_00200] ⌈The return states LIN_TX_OK, LIN_TX_BUSY,

LIN_TX_HEADER_ERROR, LIN_TX_ERROR, LIN_RX_OK, LIN_RX_BUSY,
LIN_RX_ERROR , LIN_RX_NO_RESPONSE and LIN_OPERATIONAL are sub-

states of the channel state LIN_CH_OPERATIONAL.⌋()

[SWS_Lin_00092] ⌈If a SDU has been successfully received, the function

Lin_GetStatus shall store the SDU in a shadow buffer or memory mapped LIN
Hardware receive buffer referenced by Lin_SduPtr. The buffer will only be valid and

must be read until the next Lin_SendFrame function call.⌋()

[SWS_Lin_00238] ⌈The function Lin_GetStatus shall return LIN_TX_OK, when

- A Master Response Type frame is send and LIN header as well as LIN
response of the frame are transmitted successfully or

- A Slave to Slave Response Type frame is send and the LIN header of the frame

is transmitted successfully.⌋()

[SWS_Lin_00141] ⌈If development error detection for the LIN module is enabled: if

the function Lin_GetStatus is called before the LIN module was initialized, the
function Lin_GetStatus shall raise the development error LIN_E_UNINIT and return

LIN_NOT_OK.⌋()

[SWS_Lin_00143] ⌈If development error detection for the LIN module is enabled: if

the channel parameter is invalid or the channel is inactive, the function Lin_GetStatus
shall raise the development error LIN_E_INVALID_CHANNEL and return

LIN_NOT_OK. ⌋()

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

50 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

[SWS_Lin_00144] ⌈If development error detection for the LIN module is enabled: the

function Lin_GetStatus shall check the parameter Lin_SduPtr for not being a NULL
pointer. If Lin_SduPtr is a NULL pointer, the function Lin_GetStatus shall raise the

development error LIN_E_PARAM_POINTER and return LIN_NOT_OK.⌋()

8.4 Call-back notifications

There are no callback functions within the LIN driver.

8.5 Scheduled functions

There are no scheduled functions within the LIN driver

8.6 Expected Interfaces

In this chapter all interfaces required from other modules are listed.

8.6.1 Mandatory Interfaces

This chapter defines all interfaces which are required to fulfill the core functionality of
the module.

[SWS_Lin_00234] ⌈

API function Description

Dem_ReportErrorStatus Queues the reported events from the BSW modules (API is only used
by BSW modules). The interface has an asynchronous behavior,
because the processing of the event is done within the Dem main
function.
OBD Events Suppression shall be ignored for this computation.

EcuM_SetWakeupEvent Sets the wakeup event.

LinIf_WakeupConfirmation The LIN Driver or LIN Transceiver Driver will call this function to report
the wake up source after the successful wakeup detection during
CheckWakeup or after power on by bus.

⌋()

8.6.2 Optional Interfaces

This chapter defines all interfaces which are required to fulfill an optional functionality
of the module.

[SWS_Lin_00235] ⌈

API function Description

Det_ReportError Service to report development errors.

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

51 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

EcuM_CheckWakeup This callout is called by the EcuM to poll a wakeup source. It shall also
be called by the ISR of a wakeup source to set up the PLL and check
other wakeup sources that may be connected to the same interrupt.

Icu_DisableNotification This function disables the notification of a channel.

Icu_EnableNotification This function enables the notification on the given channel.

⌋()

[SWS_Lin_00176] ⌈The Lin module shall invoke the callback function

EcuM_CheckWakeup from within the wake-up ISR of the corresponding LIN channel

when a valid LIN wake-up pulse has been detected.⌋()

Restrictions:
A wake-up ISR can only be raised if supported by the LIN hardware. Therefore,
EcuM_CheckWakeup is supported if at least for one channel wake-up is supported
(see configuration parameter LinChannelWakeUpSupport).

8.6.3 Configurable interfaces

There is no configurable target for the LIN driver. The LIN driver always reports to
LIN interface.

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

52 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

9 Sequence diagrams

Complete sequence diagrams for transmission, reception and error handling can be
found in the LIN Interface Specification [8].

9.1 Receiving a LIN Frame

«Peripheral»

LinController/UART

«module»

Lin

User

alt Hardware support

[Hardware LIN Controller]

[Simple UART]

loop Per received byte

Lin_GetStatus(Lin_StatusType, uint8, uint8**)

[If HW Buffer is not accessible from

COM]:Copy Data from Hardware to

frame buffer in RAM()

Lin_GetStatus()

Interrupt()

Copy byte from UART

Hardware to buffer()

[Complete frame for this ECU

has been received]:Set flag()

Interrupt()

Lin_GetStatus(Lin_StatusType, uint8, uint8**)

Check

Flag()

Lin_GetStatus()

Figure 9-1: LIN Frame Receiving Sequence Chart

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

53 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into
containers. In order to support the specification Chapter 10.1 describes
fundamentals.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
LIN driver.

Chapter 10.3 specifies published information of the module LIN driver.

10.1 How to read this chapter

 For details refer to the chapter 10.1 “Introduction to configuration specification” in
SWS_BSWGeneral.

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters.
The described parameters are input for the LIN driver configurator.

[SWS_Lin_00029] ⌈The code configurator of the LIN driver is LIN hardware Unit

specific.⌋(SRS_BSW_00159)

[SWS_Lin_00039] ⌈ Values that can be configured are hardware dependent.

Therefore, the rules and constraints cannot be given in the standard. ⌋

(SRS_BSW_00167)

[SWS_Lin_00224] ⌈The configuration tool is responsible to do a static configuration

checking, also regarding dependencies between modules (e.g. Port driver, MCU

driver etc.)⌋()

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

54 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

Lin :EcucModuleDef

upperMultiplicity = *

lowerMultiplicity = 0

LinGeneral :EcucParamConfContainerDef

LinDevErrorDetect :

EcucBooleanParamDef

LinVersionInfoApi :

EcucBooleanParamDef

LinChannel :EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

LinChannelId :

EcucIntegerParamDef

symbolicNameValue = true

min = 0

max = 65535

LinChannelBaudRate :

EcucIntegerParamDef

max = 20000

min = 1000

LinChannelWakeupSupport :

EcucBooleanParamDef

LinGlobalConfig :EcucParamConfContainerDef

multipleConfigurationContainer = true

LinTimeoutDuration :

EcucIntegerParamDef

min = 0

max = 65535

McuClockReferencePoint :

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

(from MCU)

LinClockRef :EcucReferenceDef

LinIndex :

EcucIntegerParamDef

min = 0

max = 255

LinChannelEcuMWakeupSource :

EcucSymbolicNameReferenceDef

upperMultiplicity = 1

lowerMultiplicity = 0

EcuMWakeupSource :

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

(from EcuM)

DemEventParameter :

EcucParamConfContainerDef

upperMultiplicity = 65535

lowerMultiplicity = 1

(from Dem)

LinDemEventParameterRefs :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = 1

LIN_E_TIMEOUT :

EcucSymbolicNameReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

+destination

+reference

+parameter

+parameter
+parameter

+parameter

+parameter

+reference

+parameter

+reference

+destination

+container
+container

+container

+subContainer

+destination

+parameter

Figure 10-1: Configuration structure for the LIN driver

10.2.1 Variants

Two configuration variants are defined for the LIN driver:

[SWS_Lin_00103] ⌈VARIANT-PRE-COMPILE: Only parameters with "Pre-compile

time" configuration are allowed in this variant.⌋()

[SWS_Lin_00104] ⌈VARIANT-POST-BUILD: Parameters with "Pre-compile time",

"Link time" and "Post-build time" are allowed in this variant.⌋()

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

55 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

10.2.2 Lin

Module Name Lin

Module Description Configuration of the Lin (LIN driver) module.

Included Containers

Container Name Multiplicity Scope / Dependency

LinDemEventParameterRefs 0..1

Container for the references to DemEventParameter elements
which shall be invoked using the API Dem_ReportErrorStatus
API in case the corresponding error occurs. The EventId is
taken from the referenced DemEventParameter's DemEventId
value. The standardized errors are provided in the container
and can be extended by vendor specific error references.

LinGeneral 1
This container contains the parameters related to each LIN
Driver Unit.

LinGlobalConfig 1

This container contains the global configuration parameter of
the Lin driver. This container is a
MultipleConfigurationContainer, i.e. this container and its sub-
containers exit once per configuration set.

10.2.3 LinGeneral

SWS Item ECUC_Lin_00183 :

Container Name LinGeneral

Description This container contains the parameters related to each LIN Driver Unit.

Configuration Parameters

SWS Item ECUC_Lin_00066 :

Name

LinDevErrorDetect {LIN_DEV_ERROR_DETECT}

Description Switches the Development Error Detection and Notification ON or OFF.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Lin_00179 :

Name

LinIndex {LIN_INDEX}

Description Specifies the InstanceId of this module instance. If only one instance is
present it shall have the Id 0.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 255

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Lin_00093 :

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

56 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

Name

LinTimeoutDuration {LIN_TIMEOUT_DURATION}

Description Specifies the maximum number of loops for blocking function until a
timeout is raised in short term wait loops

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 65535

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Lin_00067 :

Name

LinVersionInfoApi {LIN_VERSION_INFO_API}

Description Switches the Lin_GetVersionInfo function ON or OFF.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

No Included Containers

10.2.4 LinChannel

SWS Item ECUC_Lin_00069 :

Container Name LinChannel

Description
This container contains the configuration (parameters) of the LIN
Controller(s).

Configuration Parameters

SWS Item ECUC_Lin_00180 :

Name

LinChannelBaudRate {LIN_CHANNEL_BAUD_RATE}

Description Specifies the baud rate of the LIN channel

Multiplicity 1

Type EcucIntegerParamDef

Range 1000 .. 20000

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_Lin_00181 :

Name

LinChannelId

Description Identifies the LIN channel. Replaces LIN_CHANNEL_INDEX_NAME from
the LIN SWS.

Multiplicity 1

Type EcucIntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 65535

Default value --

ConfigurationClass Pre-compile time X All Variants

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

57 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Lin_00182 :

Name

LinChannelWakeupSupport {LIN_CHANNEL_WAKE_UP_SUPPORT}

Description Specifies if the LIN hardware channel supports wake up functionality

Multiplicity 1

Type EcucBooleanParamDef

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Lin_00185 :

Name

LinChannelEcuMWakeupSource

Description This parameter contains a reference to the Wakeup Source for this
controller as defined in the ECU State Manager.

Multiplicity 0..1

Type Symbolic name reference to [EcuMWakeupSource]

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local
dependency: ECU State Manager Wakeup Sources

SWS Item ECUC_Lin_00094 :

Name

LinClockRef {LIN_CLOCK_SRC_REFERENCE}

Description Reference to the LIN clock source configuration, which is set in the MCU
driver configuration.

Multiplicity 1

Type Reference to [McuClockReferencePoint]

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local
dependency: LIN clock source configuration in MCU Driver

No Included Containers

The configuration parameter LinChannelWakeupSupport can be ignored during validation of wakeup
signal.

10.2.5 LinGlobalConfig

SWS Item ECUC_Lin_00184 :

Container Name LinGlobalConfig [Multi Config Container]

Description
This container contains the global configuration parameter of the Lin driver.
This container is a MultipleConfigurationContainer, i.e. this container and
its sub-containers exit once per configuration set.

Configuration Parameters

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

58 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

Included Containers

Container Name Multiplicity Scope / Dependency

LinChannel 1..*
This container contains the configuration (parameters) of the
LIN Controller(s).

10.2.6 LinDemEventParameterRefs

SWS Item ECUC_Lin_00188 :

Container Name LinDemEventParameterRefs

Description

Container for the references to DemEventParameter elements which shall
be invoked using the API Dem_ReportErrorStatus API in case the
corresponding error occurs. The EventId is taken from the referenced
DemEventParameter's DemEventId value. The standardized errors are
provided in the container and can be extended by vendor specific error
references.

Configuration Parameters

SWS Item ECUC_Lin_00189 :

Name

LIN_E_TIMEOUT

Description Reference to the DemEventParameter which shall be issued when the
error "Timeout caused by hardware error" has occurred. If the reference is
not configured the error shall be reported as DET error.

Multiplicity 0..1

Type Symbolic name reference to [DemEventParameter]

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

No Included Containers

10.3 Published Information

 For details refer to the chapter 10.3 “Published Information” in SWS_BSWGeneral.

 Specification of LIN Driver
 V2.2.0

R4.1 Rev 3

59 of 59 Document ID 072: AUTOSAR_SWS_LINDriver

 - AUTOSAR confidential -

11 Not applicable requirements

[SWS_Lin_00999] ⌈ These requirements are not applicable to this specification. ⌋

(SRS_BSW_00307, SRS_BSW_00312, SRS_BSW_00325, SRS_BSW_00326,
SRS_BSW_00328, SRS_BSW_00329, SRS_BSW_00330, SRS_BSW_00331,
SRS_BSW_00336, SRS_BSW_00339, SRS_BSW_00342, SRS_BSW_00343,
SRS_BSW_00353, SRS_BSW_00357, SRS_BSW_00359, SRS_BSW_00360,
SRS_BSW_00361, SRS_BSW_00373, SRS_BSW_00376, SRS_BSW_00378,
SRS_BSW_00383, SRS_BSW_00395, SRS_BSW_00397, SRS_BSW_00398,
SRS_BSW_00399, SRS_BSW_00400, SRS_BSW_00413, SRS_BSW_00415,
SRS_BSW_00416, SRS_BSW_00417, BSW00420, SRS_BSW_00422,
SRS_BSW_00423, SRS_BSW_00424, SRS_BSW_00425, SRS_BSW_00426,
SRS_BSW_00427, SRS_BSW_00428, SRS_BSW_00429, BSW00431,
SRS_BSW_00432, SRS_BSW_00433, BSW00434, SRS_BSW_00005,
SRS_BSW_00007, SRS_BSW_00162, SRS_BSW_00168, SRS_SPAL_12056,
SRS_SPAL_12267, SRS_SPAL_12163, SRS_SPAL_12463, SRS_SPAL_12075,
SRS_SPAL_12078, SRS_SPAL_12092, SRS_Lin_01551, SRS_Lin_01568,
SRS_Lin_01569, SRS_Lin_01570, SRS_Lin_01564, SRS_Lin_01546,
SRS_Lin_01561, SRS_Lin_01549, SRS_Lin_01571, SRS_Lin_01514,
SRS_Lin_01515, SRS_Lin_01502, SRS_Lin_01558, BSW01527, SRS_Lin_01523,
SRS_Lin_01540, SRS_Lin_01545, SRS_Lin_01534, SRS_Lin_01574,
SRS_Lin_01539, SRS_Lin_01544, SRS_Lin_01590)

	1 Introduction and functional overview
	1.1 Scope
	1.2 Architectural overview

	2 Acronyms, abbreviations and glossary
	2.1 Acronyms and abbreviations
	2.2 Glossary
	2.3 LIN hardware unit classification

	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms
	3.3 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 File structure
	5.1.1 Code file structure
	5.1.2 Header file structure

	6 Requirements traceability
	7 Functional specification
	7.1 General Requirements
	7.2 Version Check
	7.2.1 Requirements

	7.3 LIN driver and Channel Initialization
	7.3.1 Background & Rationale
	7.3.2 Requirements
	7.3.3 State diagrams

	7.4 Frame processing
	7.4.1 Background & Rationale
	7.4.2 Requirements
	7.4.3 Data Consistency
	7.4.4 Data byte mapping

	7.5 Sleep and wake-up functionality
	7.5.1 Background & Rationale
	7.5.2 Requirements

	7.6 Error classification
	7.7 Production Errors
	7.7.1 LIN_E_TIMEOUT[_LIN_E_TIMEOUT]

	7.8 Error detection
	7.9 Error notification
	7.10 Debugging

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 Lin_ConfigType
	8.2.2 Lin_FramePidType
	8.2.3 Lin_FrameCsModelType
	8.2.4 Lin_FrameResponseType
	8.2.5 Lin_FrameDlType
	8.2.6 Lin_PduType
	8.2.7 Lin_StatusType

	8.3 Function definitions
	8.3.1 Services affecting the complete LIN hardware unit
	8.3.1.1 Lin_Init
	8.3.1.2 Lin_CheckWakeup
	8.3.1.3 Lin_GetVersionInfo

	8.3.2 Services affecting a single LIN channel
	8.3.2.1 Lin_SendFrame
	8.3.2.2 Lin_GoToSleep
	8.3.2.3 Lin_GoToSleepInternal
	8.3.2.4 Lin_Wakeup
	8.3.2.5 LIN_WakeupInternal
	8.3.2.6 Lin_GetStatus

	8.4 Call-back notifications
	8.5 Scheduled functions
	8.6 Expected Interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.3 Configurable interfaces

	9 Sequence diagrams
	9.1 Receiving a LIN Frame

	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.2.1 Variants
	10.2.2 Lin
	10.2.3 LinGeneral
	10.2.4 LinChannel
	10.2.5 LinGlobalConfig
	10.2.6 LinDemEventParameterRefs

	10.3 Published Information

	11 Not applicable requirements

