
Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

1 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

Document Change History
Date Version Changed by Change Description

31.03.2014 3.1.1 AUTOSAR
Release
Management

 Editorial changes

31.10.2013 3.1.0 AUTOSAR
Release
Management

 Timing requirement removed from
module’s main function

 “const” qualifier added to prototype of
function Fee_Write

 New configuration parameter
FeeMainFunctionPeriod

 Editorial changes
 Removed chapter(s) on change

documentation

11.02.2013 3.0.0 AUTOSAR
Administration

 Reworked according to the new
SWS_BSWGeneral

 Scope attribute in tables in chapter 10
added

 Published parameter
FeeMaximumBlockingTime deprecated

 Configuration parameter FeeIndex
deprecated

03.11.2011 2.0.0 AUTOSAR
Administration

 DET errors added / removed
 Handling of internal management

operations detailed
 Module short name changed
 Consistency checking reformulated

Document Title Specification of Flash
EEPROM Emulation

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 286

Document Classification Standard

Document Version 3.1.1

Document Status Final

Part of Release 4.1

Revision 3

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

2 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

Document Change History
Date Version Changed by Change Description

13.10.2010 1.4.0 AUTOSAR
Administration

 Inter-module checks clarified
(SWS_Fee_00013)

 Sequence diagram for Fee_Cancel
replaced for generated one

 Naming in ECUC_Fee_00150 corrected
to NVM_DATASET_SELECTION_BITS

 Sequence diagram for Fee_Init extended
 Handling of internal management

operations refined (SWS_Fee_00022,
SWS_Fee_00025, SWS_Fee_00173,
SWS_Fee_00174, SWS_Fee_00183)

 Inter module checks detailed
(SWS_Fee_00013)

 NvM_Cbk.h added to file include
structure (SWS_Fee_00002)

 Ranges for FeeBlockNumber
(ECUC_Fee_00150) and FeeBlockSize
(ECUC_Fee_00148) adjusted

 Initialization might not be finished within
Fee_Init, state machine adapted
accordingly (SWS_Fee_00120,
SWS_Fee_00168, SWS_Fee_00169)

 Handling of internal management
operations refined (SWS_Fee_00170 ..
SWS_Fee_00182 e.a.)

03.12.2009 1.3.0 AUTOSAR
Administration

 Configuration variants clarified
 Job result handling re-formulated
 Range of configuration parameters

restricted
 Legal disclaimer revised

23.06.2008 1.2.1 AUTOSAR
Administration

Legal disclaimer revised

19.11.2007 1.2.0 AUTOSAR
Administration

 Small reformulations resulting from table
generation

 Tables in chapters 8 and 10 generated
from UML model

 Document meta information extended

 Small layout adaptations made

14.02.2007 1.1.0 AUTOSAR
Administration

 File include structure updated

 API of initialization function adapted

 Range of FEE block numbers adapted

 Various API descriptions enhanced

 Legal disclaimer revised

 Release Notes added

 “Advice for users” revised
“Revision Information” added

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

3 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

Document Change History
Date Version Changed by Change Description

23.03.2006 1.0.0 AUTOSAR
Administration

Initial release

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

4 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

Disclaimer

This specification and the material contained in it, as released by AUTOSAR is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only.
For any other purpose, no part of the specification may be utilized or reproduced, in
any form or by any means, without permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR Specification Documents may contain exemplary items (exemplary
reference models, "use cases", and/or references to exemplary technical solutions,
devices, processes or software).

Any such exemplary items are contained in the Specification Documents for
illustration purposes only, and they themselves are not part of the AUTOSAR
Standard. Neither their presence in such Specification Documents, nor any later
documentation of AUTOSAR conformance of products actually implementing such
exemplary items, imply that intellectual property rights covering such exemplary
items are licensed under the same rules as applicable to the AUTOSAR Standard.

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

5 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

Table of Contents

1 Introduction and functional overview ... 7

2 Acronyms and abbreviations ... 8

3 Related documentation.. 9

3.1 Input documents ... 9
3.2 Related standards and norms .. 9
3.3 Related specification .. 10

4 Constraints and assumptions .. 11

4.1 Limitations .. 11
4.2 Applicability to car domains .. 11

5 Dependencies to other modules .. 12

5.1 Header file structure ... 12

6 Requirements traceability .. 13

7 Functional specification ... 27

7.1 General behavior .. 27

7.1.1 Addressing scheme and segmentation ... 27
7.1.2 Address calculation ... 28

7.1.3 Limitation of erase cycles .. 30
7.1.4 Handling of “immediate” data .. 31

7.1.5 Managing block correctness information ... 31
7.2 Error classification .. 32
7.3 Support for Debugging ... 33

8 API specification .. 34

8.1 Imported Types .. 34
8.2 Type definitions .. 34
8.3 Function definitions .. 34

8.3.1 Fee_Init ... 34

8.3.2 Fee_SetMode .. 35
8.3.3 Fee_Read ... 36
8.3.4 Fee_Write.. 38

8.3.5 Fee_Cancel ... 40
8.3.6 Fee_GetStatus .. 42
8.3.7 Fee_GetJobResult .. 43
8.3.8 Fee_InvalidateBlock .. 44
8.3.9 Fee_GetVersionInfo .. 46

8.3.10 Fee_EraseImmediateBlock ... 46
8.4 Call-back notifications .. 48

8.4.1 Fee_JobEndNotification .. 48

8.4.2 Fee_JobErrorNotification .. 49
8.5 Scheduled functions ... 50

8.5.1 Fee_MainFunction .. 50
8.6 Expected Interfaces .. 51

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

6 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

8.6.1 Mandatory Interfaces .. 51

8.6.2 Optional Interfaces .. 52
8.6.3 Configurable interfaces ... 52

9 Sequence diagrams .. 54

9.1 Fee_Init .. 54
9.2 Fee_SetMode ... 55

9.3 Fee_Write ... 55
9.4 Fee_Cancel .. 57

10 Configuration specification ... 59

10.1 Containers and configuration parameters .. 59
10.1.1 Variants ... 59
10.1.2 Fee .. 59
10.1.3 FeeGeneral ... 59

10.1.4 FeeBlockConfiguration .. 62
10.2 Published Information[.. 64

10.2.1 FeePublishedInformation .. 64

11 Not applicable requirements .. 66

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

7 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

1 Introduction and functional overview

This specification describes the functionality, API and configuration of the Flash
EEPROM Emulation Module (see Figure 1).

id Component Model

Memory Driv ers

Memory Hardware Abstraction

Memory Hardware Abstraction::Memory Abstraction Interface

Memory

Hardware

Abstraction::

Flash EEPROM

Emulation

Memory Driv ers::

Vendor Specific

Library

Memory

Hardware

Abstraction::

EEPROM

Abstraction

NVRAM Manager

Memory Driv ers::

Flash Driv er

Memory Driv ers::

EEPROM Driv er

Figure 1: Module overview of memory hardware abstraction layer

The Flash EEPROM Emulation (FEE) shall abstract from the device specific
addressing scheme and segmentation and provide the upper layers with a virtual
addressing scheme and segmentation as well as a “virtually” unlimited number of
erase cycles.

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

8 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

2 Acronyms and abbreviations

Acronyms and abbreviations which have a local scope and therefore are not
contained in the AUTOSAR glossary must appear in a local glossary.

Abbreviation /
Acronym:

Description:

EA EEPROM Abstraction

EEPROM Electrically Erasable and Programmable ROM (Read Only Memory)

FEE Flash EEPROM Emulation

LSB Least significant bit / byte (depending on context). Here, “bit” is meant.

MemIf Memory Abstraction Interface

MSB Most significant bit / byte (depending on context). Here, “bit” is meant.

NvM NVRAM Manager

NVRAM Non-volatile RAM (Random Access Memory)

NVRAM block Management unit as seen by the NVRAM Manager

(Logical) block Smallest writable / erasable unit as seen by the modules user. Consists of one or
more virtual pages.

Virtual page May consist of one or several physical pages to ease handling of logical blocks and
address calculation.

Internal residue Unused space at the end of the last virtual page if the configured block size isn’t an
integer multiple of the virtual page size (see Figure 3)).

Virtual address Consisting of 16 bit block number and 16 bit offset inside the logical block.

Physical
address

Address information in device specific format (depending on the underlying
EEPROM driver and device) that is used to access a logical block.

Dataset Concept of the NVRAM manager: A user addressable array of blocks of the same
size.
E.g. could be used to provide different configuration settings for the CAN driver
(CAN IDs, filter settings, …) to an ECU which has otherwise identical application
software (e.g. door module).

Redundant copy Concept of the NVRAM manager: Storing the same information twice to enhance
reliability of data storage.

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

9 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

3 Related documentation

3.1 Input documents

[1] List of Basic Software Modules
AUTOSAR_TR_BSWModuleList.pdf

[2] Layered Software Architecture
AUTOSAR_EXP_LayeredSoftwareArchitecture..pdf

[3] General Requirements on Basic Software Modules
AUTOSAR_SRS_BSWGeneral.pdf

[4] General Requirements on SPAL
AUTOSAR_SRS_SPALGeneral.pdf

[5] Requirements on Memory Hardware Abstraction Layer
AUTOSAR_SRS_MemoryHWAbstractionLayer.doc

[6] Specification of Development Error Tracer
AUTOSAR_SWS_DevelopmentErrorTracer.pdf

[7] Specification of ECU Configuration
AUTOSAR_TPS_ECUConfiguration.pdf

[8] Basic Software Module Description Template
AUTOSAR_TPS_BSWModuleDescriptionTemplate.pdf

[9] General Specification of Basic Software Modules

AUTOSAR_SWS_BSWGeneral.pdf

3.2 Related standards and norms

[10] AUTOSAR Specification of NVRAM Manager
AUTOSAR_SWS_NVRAMManager.doc

[11] Specification of Memory Abstraction Interface
AUTOSAR_SWS_MemoryAbstractionInterface.pdf

[12] Specification of EEPROM Abstraction
AUTOSAR_SWS_EEPROMAbstraction.pdf

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

10 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

3.3 Related specification

AUTOSAR provides a General Specification on Basic Software modules [9] (SWS
BSW General), which is also valid for Flash EEPROM Emulation.

Thus, the specification SWS BSW General shall be considered as additional and
required specification for Flash EEPROM Emulation.

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

11 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

4 Constraints and assumptions

4.1 Limitations

No limitations.

4.2 Applicability to car domains

No restrictions.

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

12 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

5 Dependencies to other modules

This module depends on the capabilities of the underlying flash driver as well as the
configuration of the NVRAM manager.

5.1 Header file structure

[SWS_Fee_00002] ⌈ The file include structure shall be as follows:

Figure 2: Flash EEPROM Emulation File Include Structure ⌋(SRS_BSW_00167,

SRS_BSW_00383, SRS_BSW_00346, SRS_BSW_00158, SRS_BSW_00301)

Note: Files which are optional (depending on implementation / configuration) are
shown in grey.

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

13 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

6 Requirements traceability

Requirement Description Satisfied by

- - SWS_Fee_00016

- - SWS_Fee_00022

- - SWS_Fee_00025

- - SWS_Fee_00026

- - SWS_Fee_00034

- - SWS_Fee_00035

- - SWS_Fee_00036

- - SWS_Fee_00037

- - SWS_Fee_00052

- - SWS_Fee_00054

- - SWS_Fee_00055

- - SWS_Fee_00056

- - SWS_Fee_00057

- - SWS_Fee_00066

- - SWS_Fee_00067

- - SWS_Fee_00073

- - SWS_Fee_00074

- - SWS_Fee_00075

- - SWS_Fee_00080

- - SWS_Fee_00081

- - SWS_Fee_00084

- - SWS_Fee_00086

- - SWS_Fee_00090

- - SWS_Fee_00091

- - SWS_Fee_00093

- - SWS_Fee_00095

- - SWS_Fee_00096

- - SWS_Fee_00097

- - SWS_Fee_00098

- - SWS_Fee_00099

- - SWS_Fee_00100

- - SWS_Fee_00104

- - SWS_Fee_00105

- - SWS_Fee_00128

- - SWS_Fee_00129

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

14 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

- - SWS_Fee_00130

- - SWS_Fee_00133

- - SWS_Fee_00134

- - SWS_Fee_00135

- - SWS_Fee_00136

- - SWS_Fee_00137

- - SWS_Fee_00138

- - SWS_Fee_00139

- - SWS_Fee_00140

- - SWS_Fee_00141

- - SWS_Fee_00142

- - SWS_Fee_00143

- - SWS_Fee_00144

- - SWS_Fee_00145

- - SWS_Fee_00146

- - SWS_Fee_00147

- - SWS_Fee_00155

- - SWS_Fee_00156

- - SWS_Fee_00157

- - SWS_Fee_00158

- - SWS_Fee_00159

- - SWS_Fee_00160

- - SWS_Fee_00162

- - SWS_Fee_00163

- - SWS_Fee_00164

- - SWS_Fee_00165

- - SWS_Fee_00166

- - SWS_Fee_00167

- - SWS_Fee_00168

- - SWS_Fee_00169

- - SWS_Fee_00170

- - SWS_Fee_00171

- - SWS_Fee_00172

- - SWS_Fee_00173

- - SWS_Fee_00174

- - SWS_Fee_00175

- - SWS_Fee_00176

- - SWS_Fee_00177

- - SWS_Fee_00178

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

15 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

- - SWS_Fee_00179

- - SWS_Fee_00180

- - SWS_Fee_00181

- - SWS_Fee_00182

- - SWS_Fee_00183

- - SWS_Fee_00184

BWS00300 - SWS_Fee_00999

BWS00302 - SWS_Fee_00999

BWS00304 - SWS_Fee_00999

BWS00306 - SWS_Fee_00999

BWS00307 - SWS_Fee_00999

BWS00308 - SWS_Fee_00999

BWS00309 - SWS_Fee_00999

BWS00312 - SWS_Fee_00999

BWS00314 - SWS_Fee_00999

BWS00321 - SWS_Fee_00999

BWS00323 - SWS_Fee_00999

BWS00324 - SWS_Fee_00999

BWS00326 - SWS_Fee_00999

BWS00328 - SWS_Fee_00999

BWS00330 - SWS_Fee_00999

BWS00333 - SWS_Fee_00999

BWS00334 - SWS_Fee_00999

BWS00336 - SWS_Fee_00999

BWS00339 - SWS_Fee_00999

BWS00341 - SWS_Fee_00999

BWS00342 - SWS_Fee_00999

BWS00344 - SWS_Fee_00999

BWS00347 - SWS_Fee_00999

BWS00348 - SWS_Fee_00999

BWS00353 - SWS_Fee_00999

BWS00355 - SWS_Fee_00999

BWS00359 - SWS_Fee_00999

BWS00360 - SWS_Fee_00999

BWS00361 - SWS_Fee_00999

BWS00371 - SWS_Fee_00999

BWS00375 - SWS_Fee_00999

BWS00378 - SWS_Fee_00999

BWS00380 - SWS_Fee_00999

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

16 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

BWS00398 - SWS_Fee_00999

BWS00399 - SWS_Fee_00999

BWS00400 - SWS_Fee_00999

BWS00401 - SWS_Fee_00999

BWS00404 - SWS_Fee_00999

BWS00405 - SWS_Fee_00999

BWS00412 - SWS_Fee_00999

BWS00415 - SWS_Fee_00999

BWS00416 - SWS_Fee_00999

BWS00417 - SWS_Fee_00999

BWS00420 - SWS_Fee_00999

BWS00421 - SWS_Fee_00999

BWS00422 - SWS_Fee_00999

BWS00423 - SWS_Fee_00999

BWS00424 - SWS_Fee_00999

BWS00425 - SWS_Fee_00999

BWS00426 - SWS_Fee_00999

BWS00427 - SWS_Fee_00999

BWS00428 - SWS_Fee_00999

BWS00429 - SWS_Fee_00999

BWS00431 - SWS_Fee_00999

BWS00432 - SWS_Fee_00999

BWS00433 - SWS_Fee_00999

BWS00434 - SWS_Fee_00999

BWS005 - SWS_Fee_00999

BWS006 - SWS_Fee_00999

BWS007 - SWS_Fee_00999

BWS009 - SWS_Fee_00999

BWS010 - SWS_Fee_00999

BWS12056 - SWS_Fee_00999

BWS12058 - SWS_Fee_00999

BWS12059 - SWS_Fee_00999

BWS12060 - SWS_Fee_00999

BWS12062 - SWS_Fee_00999

BWS12063 - SWS_Fee_00999

BWS12064 - SWS_Fee_00999

BWS12067 - SWS_Fee_00999

BWS12068 - SWS_Fee_00999

BWS12069 - SWS_Fee_00999

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

17 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

BWS12077 - SWS_Fee_00999

BWS12078 - SWS_Fee_00999

BWS12081 - SWS_Fee_00999

BWS12092 - SWS_Fee_00999

BWS12125 - SWS_Fee_00999

BWS12129 - SWS_Fee_00999

BWS12155 - SWS_Fee_00999

BWS12163 - SWS_Fee_00999

BWS12263 - SWS_Fee_00999

BWS12265 - SWS_Fee_00999

BWS12267 - SWS_Fee_00999

BWS12461 - SWS_Fee_00999

BWS12462 - SWS_Fee_00999

BWS12463 - SWS_Fee_00999

BWS14003 - SWS_Fee_00999

BWS14017 - SWS_Fee_00999

BWS157 - SWS_Fee_00999

BWS160 - SWS_Fee_00999

BWS161 - SWS_Fee_00999

BWS164 - SWS_Fee_00999

BWS168 - SWS_Fee_00999

BWS170 - SWS_Fee_00999

BWS171 - SWS_Fee_00999

BWS172 - SWS_Fee_00999

SRS_BSW_00101 The Basic Software Module shall
be able to initialize variables and
hardware in a separate
initialization function

SWS_Fee_00085

SRS_BSW_00158 All modules of the AUTOSAR
Basic Software shall strictly
separate configuration from
implementation

SWS_Fee_00002

SRS_BSW_00167 All AUTOSAR Basic Software
Modules shall provide
configuration rules and
constraints to enable plausibility
checks

SWS_Fee_00002

SRS_BSW_00301 All AUTOSAR Basic Software
Modules shall only import the
necessary information

SWS_Fee_00002

SRS_BSW_00327 Error values naming convention SWS_Fee_00010

SRS_BSW_00331 All Basic Software Modules shall
strictly separate error and status
information

SWS_Fee_00010

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

18 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

SRS_BSW_00337 Classification of development
errors

SWS_Fee_00010

SRS_BSW_00346 All AUTOSAR Basic Software
Modules shall provide at least a
basic set of module files

SWS_Fee_00002

SRS_BSW_00383 The Basic Software Module
specifications shall specify which
other configuration files from
other modules they use at least in
the description

SWS_Fee_00002

SRS_BSW_00386 The BSW shall specify the
configuration for detecting an
error

SWS_Fee_00010

SRS_BSW_00406 A static status variable denoting if
a BSW module is initialized shall
be initialized with value 0 before
any APIs of the BSW module is
called

SWS_Fee_00010, SWS_Fee_00120,
SWS_Fee_00121, SWS_Fee_00122,
SWS_Fee_00123, SWS_Fee_00124,
SWS_Fee_00125, SWS_Fee_00126,
SWS_Fee_00127

SRS_MemHwAb_14001 The FEE and EA modules shall
allow the configuration of the
alignment of the start and end
addresses of logical blocks

SWS_Fee_00005, SWS_Fee_00071,
SWS_Fee_00076

SRS_MemHwAb_14002 The FEE and EA modules shall
allow the configuration of a
required number of write cycles
for each logical block

SWS_Fee_00102, SWS_Fee_00103

SRS_MemHwAb_14005 - SWS_Fee_00076

SRS_MemHwAb_14006 The start address for a block
erase or write operation shall
always be aligned to the virtual
64K boundary

SWS_Fee_00024

SRS_MemHwAb_14007 The start address and length for
reading a block shall not be
limited to a certain alignment

SWS_Fee_00021

SRS_MemHwAb_14008 The FEE and EA modules shall
not check the address offset for a
read operation

SWS_Fee_00021

SRS_MemHwAb_14009 The FEE and EA modules shall
provide a conversion between the
logical linear addresses and the
physical memory addresses

SWS_Fee_00007

SRS_MemHwAb_14010 The FEE and EA modules shall
provide a write service that
operates only on complete
configured logical blocks

SWS_Fee_00088

SRS_MemHwAb_14012 Spreading of write access SWS_Fee_00102, SWS_Fee_00103

SRS_MemHwAb_14013 Writing of immediate data must
not be delayed by internal
management operations nor by
erasing the memory area to be
written to

SWS_Fee_00009

SRS_MemHwAb_14014 The FEE and EA modules shall SWS_Fee_00023, SWS_Fee_00049,

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

19 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

detect possible data
inconsistencies due to aborted /
interrupted write operations

SWS_Fee_00153, SWS_Fee_00154

SRS_MemHwAb_14015 The FEE and EA modules shall
report possible data
inconsistencies

SWS_Fee_00023

SRS_MemHwAb_14016 The FEE and EA modules shall
not return inconsistent data to the
caller

SWS_Fee_00023

SRS_MemHwAb_14026 The block numbers 0x0000 and
0xFFFF shall not be used

SWS_Fee_00006

SRS_MemHwAb_14028 The FEE and EA modules shall
provide a service to invalidate a
logical block

SWS_Fee_00092

SRS_MemHwAb_14029 The FEE and EA modules shall
provide a read service that allows
reading all or part of a logical
block

SWS_Fee_00087

SRS_MemHwAb_14031 The FEE and EA modules shall
provide a service that allows
canceling an ongoing
asynchronous operation

SWS_Fee_00089

SRS_MemHwAb_14032 The FEE and EA modules shall
provide an erase service that
operates only on complete logical
blocks containing immediate data

SWS_Fee_00094

SRS_SPAL_12057 All driver modules shall
implement an interface for
initialization

SWS_Fee_00085

SRS_SPAL_12169 All driver modules that provide
different operation modes shall
provide a service for mode
selection

SWS_Fee_00020

SRS_SPAL_12448 All driver modules shall have a
specific behavior after a
development error detection

SWS_Fee_00068

Document: General Requirements on Basic Software Modules

Requirement Satisfied by
[SRS_BSW_00344] Reference to link-time
configuration

Not applicable
(this module does not provide any post-build
parameters)

[SRS_BSW_00404] Reference to post build time
configuration

Not applicable
(this module does not provide post build time
configuration)

[SRS_BSW_00405] Reference to multiple
configuration sets

Not applicable
(this module does not support multiple
configuration sets)

[SRS_BSW_00345] Pre-compile-time
configuration

FEE039, FEE040

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

20 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

[SRS_BSW_00159] Tool-based configuration FEE039, FEE040

[SRS_BSW_00167] Static configuration checking FEE041

[SRS_BSW_00171] Configurability of optional
functionality

Not applicable
(no optional functionality)

[SRS_BSW_00170] Data for reconfiguration of
AUTOSAR SW-Components

Not applicable
(no reconfiguration supported)

[SRS_BSW_00380] Separate C-File for
configuration parameters

Not applicable
(no link-time or post build time configuration
parameters)

[SRS_BSW_00381] Separate configuration
header file for pre-compile time parameters

SWS_Fee_00002

[SRS_BSW_00412] Separate H-File for
configuration parameters

Not applicable
(no link-time or post build time configuration
parameters)

[SRS_BSW_00383] List dependencies of
configuration files

SWS_Fee_00002

[SRS_BSW_00384] List dependencies to other
modules

Chapter 5

[SRS_BSW_00387] Specify the configuration
class of callback function

Chapter 08.5.1

[SRS_BSW_00388] Introduce containers Chapter 10.1

[SRS_BSW_00389] Containers shall have names Chapter 10.1

[SRS_BSW_00390] Parameter content shall be
unique within the module

Chapter 8, Chapter 10.1

[SRS_BSW_00391] Parameter shall have unique
names

Chapter 8, Chapter 10.1

[SRS_BSW_00392] Parameters shall have a type Chapter 8, Chapter 10.1

[SRS_BSW_00393] Parameters shall have a
range

Chapter 8, Chapter 10.1

[SRS_BSW_00394] Specify the scope of the
parameters

Chapter 8, Chapter 10.1

[SRS_BSW_00395] List the required parameters
(per parameter)

Chapter 8, Chapter 10.1

[SRS_BSW_00396] Configuration classes Chapter 8, Chapter 10.1

[SRS_BSW_00397] Pre-compile-time parameters Chapter 8, Chapter 10.1

[SRS_BSW_00398] Link-time parameters Not applicable
(no link-time configuration parameters)

[SRS_BSW_00399] Loadable Post-build time
parameters

Not applicable
(no post build time configuration parameters)

[SRS_BSW_00400] Selectable Post-build time
parameters

Not applicable
(no post build time configuration parameters)

[SRS_BSW_00402] Published information Chapter 10.2

[SRS_BSW_00375] Notification of wake-up
reason

Not applicable
(this module does not provide wakeup
capabilities)

[SRS_BSW_00101] Initialization interface SWS_Fee_00085

[SRS_BSW_00416] Sequence of Initialization Not applicable
(requirement on system design, not a single
module)

[SRS_BSW_00406] Check module initialization SWS_Fee_00120, SWS_Fee_00121,
SWS_Fee_00122, SWS_Fee_00123,
SWS_Fee_00124, SWS_Fee_00125,
SWS_Fee_00126, SWS_Fee_00127,
SWS_Fee_00010

[SRS_BSW_00168] Diagnostic Interface of SW
components

Not applicable
(this module does not provide special diagnostics
support)

[SRS_BSW_00407] Function to read out
published parameters

Chapter8.3.9, ECUC_Fee_00043

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

21 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

[SRS_BSW_00423] Usage of SW-C template to
describe BSW modules with AUTOSAR Interfaces

Not applicable
(this module does not provide an AUTOSAR
interface)

[SRS_BSW_00424] BSW main processing
function task allocation

Not applicable
(requirement on system design, not on a single
module)

[SRS_BSW_00425] Trigger conditions for
schedulable objects

Not applicable
(requirement on the BSW module description
template)

[SRS_BSW_00426] Exclusive areas in BSW
modules

Not applicable
(no exclusive areas defined in this module)

[SRS_BSW_00427] ISR description for BSW
modules

Not applicable
(this module does not implement any ISRs)

[SRS_BSW_00428] Execution order
dependencies of main processing functions

Not applicable
(only one main processing function in this module)

[SRS_BSW_00429] Restricted BSW OS
functionality access

Not applicable
(this module does not use any OS functionality)

[BSW00431] The BSW Scheduler module
implements task bodies

Not applicable
(requirement on the BSW scheduler)

[SRS_BSW_00432] Modules should have
separate main processing functions for
read/receive and write/transmit data path

Not applicable
(only one main processing function in this module)

[SRS_BSW_00433] Calling of main processing
functions

Not applicable
(requirement on system design, not on a single
module)

[BSW00434] The Schedule Module shall provide
an API for exclusive areas

Not applicable
(requirement on the schedule module - this is not
it)

[SRS_BSW_00336] Shutdown interface Not applicable
(this module does not provide shutdown
capabilities)

[SRS_BSW_00337] Classification of errors SWS_Fee_00010

[SRS_BSW_00338] Detection and Reporting of
development errors

SWS_Fee_00011

[SRS_BSW_00369] Do not return development
error codes via API

SWS_Fee_00045

[SRS_BSW_00339] Reporting of production
relevant error status

Not applicable
(no production relevant errors defined for this
module)

[BSW00421] Reporting of production relevant
error events

Not applicable
(no production relevant errors defined for this
module)

[SRS_BSW_00422] Debouncing of production
relevant error status

Not applicable
(requirement on the DEM, not this module)

[BSW00420] Production relevant error event rate
detection

Not applicable
(requirement on the DEM, not this module)

[SRS_BSW_00417] Reporting of Error Events by
Non-Basic Software

Not applicable
(requirement on non BSW modules)

[SRS_BSW_00323] API parameter checking Not applicable
(no parameter check specified for this module)

[SRS_BSW_00004] Version check SWS_Fee_00013, ECUC_Fee_00043

[SRS_BSW_00409] Header files for production
code error IDs

SWS_Fee_00047

[SRS_BSW_00385] List possible error
notifications

Chapter 8.6

[SRS_BSW_00386] Configuration for detecting an
error

SWS_Fee_00010, SWS_Fee_00011,
SWS_Fee_00045

[SRS_BSW_00161] Microcontroller abstraction Not applicable
(requirement on AUTOSAR architecture, not a

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

22 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

single module)

[SRS_BSW_00162] ECU layout abstraction Not applicable
(requirement on AUTOSAR architecture, not a
single module)

[BSW00324] Do not use HIS I/O Library Not applicable
(architecture decision)

[SRS_BSW_00005] No hard coded horizontal
interfaces within MCAL

Not applicable
(requirement on AUTOSAR architecture, not a
single module)

[SRS_BSW_00415] User dependent include files Not applicable
(only one user for this module)

[SRS_BSW_00164] Implementation of interrupt
service routines

Not applicable
(this module does not implement any ISRs)

[SRS_BSW_00325] Runtime of interrupt service
routines

SWS_Fee_00069

[SRS_BSW_00326] Transition from ISRs to OS
tasks

Not applicable
(requirement on implementation, not on
specification)

[SRS_BSW_00342] Usage of source code and
object code

Not applicable
(requirement on AUTOSAR architecture, not a
single module)

[SRS_BSW_00343] Specification and
configuration of time

FEE070

[SRS_BSW_00160] Human-readable
configuration data

Not applicable
(requirement on documentation, not on
specification)

[SRS_BSW_00007] HIS MISRA C Not applicable
(requirement on implementation, not on
specification)

[SRS_BSW_00300] Module naming convention Not applicable
(requirement on implementation, not on
specification)

[SRS_BSW_00413] Accessing instances of BSW
modules

Requirement can not be implemented in R2.0
timeframe.

[SRS_BSW_00347] Naming separation of
different instances of BSW drivers

Not applicable
(requirement on the implementation, not on the
specification)

[SRS_BSW_00305] Self-defined data types
naming convention

Chapter 8.2

[SRS_BSW_00307] Global variables naming
convention

Not applicable
(requirement on the implementation, not on the
specification)

[SRS_BSW_00310] API naming convention Chapter 8.3

[SRS_BSW_00373] Main processing function
naming convention

Chapter 8.5.1

[SRS_BSW_00327] Error values naming
convention

SWS_Fee_00010

[SRS_BSW_00335] Status values naming
convention

Chapter 8.1

[SRS_BSW_00350] Development error detection
keyword

SWS_Fee_00011, SWS_Fee_00062, FEE039

[SRS_BSW_00408] Configuration parameter
naming convention

Chapter 10.1

[SRS_BSW_00410] Compiler switches shall have
defined values

Chapter 10.1

[SRS_BSW_00411] Get version info keyword Chapter 8.3.9

[SRS_BSW_00346] Basic set of module files SWS_Fee_00002

[SRS_BSW_00158] Separation of configuration
from implementation

SWS_Fee_00002

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

23 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

[SRS_BSW_00314] Separation of interrupt frames
and service routines

Not applicable
(this module does not implement any ISRs)

[SRS_BSW_00370] Separation of callback
interface from API

Chapter 8.4

[SRS_BSW_00348] Standard type header Not applicable
(requirement on the standard header file)

[SRS_BSW_00353] Platform specific type header Not applicable
(requirement on the platform specific header file)

[SRS_BSW_00361] Compiler specific language
extension header

Not applicable
(requirement on the compiler specific header file)

[SRS_BSW_00301] Limit imported information SWS_Fee_00002

[SRS_BSW_00302] Limit exported information Not applicable
(requirement on the implementation, not on the
specification)

[SRS_BSW_00328] Avoid duplication of code Not applicable
(requirement on the implementation, not on the
specification)

[SRS_BSW_00312] Shared code shall be
reentrant

Not applicable
(requirement on the implementation, not on the
specification)

[SRS_BSW_00006] Platform independency Not applicable (this is a module of the
microcontroller abstraction layer)

[SRS_BSW_00357] Standard API return type Chapter 8.3.3, Chapter 8.3.4. Chapter 8.3.7,
Chapter 8.3.10

[SRS_BSW_00377] Module specific API return
types

Chapter8.3.6, Chapter 8.3.7

[SRS_BSW_00304] AUTOSAR integer data types Not applicable
(requirement on implementation, not for
specification)

[SRS_BSW_00355] Do not redefine AUTOSAR
integer data types

Not applicable
(requirement on implementation, not for
specification)

[SRS_BSW_00378] AUTOSAR boolean type Not applicable
(requirement on implementation, not for
specification)

[SRS_BSW_00306] Avoid direct use of compiler
and platform specific keywords

Not applicable
(requirement on implementation, not for
specification)

[SRS_BSW_00308] Definition of global data Not applicable
(requirement on implementation, not for
specification)

[SRS_BSW_00309] Global data with read-only
constraint

Not applicable
(requirement on implementation, not for
specification)

[SRS_BSW_00371] Do not pass function pointers
via API

Not applicable
(no function pointers in this specification)

[SRS_BSW_00358] Return type of init() functions Chapter 8.3.1

[SRS_BSW_00414] Parameter of init function Chapter 8.3.1, FEE072

[SRS_BSW_00376] Return type and parameters
of main processing functions

Chapter 8.5.1

[SRS_BSW_00359] Return type of callback
functions

Not applicable
(this module does not provide any callback
routines)

[SRS_BSW_00360] Parameters of callback
functions

Not applicable
(this module does not provide any callback
routines)

[SRS_BSW_00329] Avoidance of generic
interfaces

Chapter 8.3
(explicit interfaces defined)

[SRS_BSW_00330] Usage of macros / inline Not applicable

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

24 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

functions instead of functions (requirement on implementation, not for
specification)

[SRS_BSW_00331] Separation of error and status
values

SWS_Fee_00010, SWS_Fee_00045

[SRS_BSW_00009] Module User Documentation Not applicable
(requirement on documentation, not on
specification)

[SRS_BSW_00401] Documentation of multiple
instances of configuration parameters

Not applicable
(all configuration parameters are single instance
only)

[SRS_BSW_00172] Compatibility and
documentation of scheduling strategy

Not applicable
(no internal scheduling policy)

[SRS_BSW_00010] Memory resource
documentation

Not applicable
(requirement on documentation, not on
specification)

[SRS_BSW_00333] Documentation of callback
function context

Not applicable
(requirement on documentation, not for
specifciation)

[SRS_BSW_00374] Module vendor identification ECUC_Fee_00043

[SRS_BSW_00379] Module identification ECUC_Fee_00043

[SRS_BSW_00003] Version identification ECUC_Fee_00043

[SRS_BSW_00318] Format of module version
numbers

ECUC_Fee_00043

[SRS_BSW_00321] Enumeration of module
version numbers

Not applicable
(requirement on implementation, not for
specification)

[SRS_BSW_00341] Microcontroller compatibility
documentation

Not applicable
(requirement on documentation, not on
specification)

[SRS_BSW_00334] Provision of XML file Not applicable
(requirement on documentation, not on
specification)

Document: General Requirements on SPAL

Requirement Satisfied by
[SRS_SPAL_12263] Object code compatible
configuration concept

Not applicable
(this module does not provide any post-build
parameters)

[SRS_SPAL_12056] Configuration of notification
mechanisms

Not applicable
(this module does not provide any notification
mechanisms)

[SRS_SPAL_12267] Configuration of wake-up
sources

Not applicable
(this module does not provide any wakeup
capabilities)

[SRS_SPAL_12057] Driver module initialization SWS_Fee_00085

[SRS_SPAL_12125] Initialization of hardware
resources

Not applicable
(this module has no direct hardware access)

[SRS_SPAL_12163] Driver module de-
initialization

Not applicable
(this module does not provide any shutdown
capabilities)

[BSW12058] Individual initialization of overall
registers

Not applicable
(this module has no direct hardware access)

[BSW12059] General initialization of overall
registers

Not applicable
(this module has no direct hardware access)

[BSW12060] Responsibility for initialization of
one-time writable registers

Not applicable
(this module has no direct hardware access)

[SRS_SPAL_12461] Responsibility for register
initialization

Not applicable
(this module has no direct hardware access)

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

25 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

[SRS_SPAL_12462] Provide settings for register
initialization

Not applicable
(this module has no direct hardware access)

[SRS_SPAL_12463] Combine and forward
settings for register initialization

Not applicable
(this module has no direct hardware access)

[BSW12062] Selection of static configuration sets Not applicable
(no selectable of configuration sets)

[SRS_SPAL_12068] MCAL initialization sequence Not applicable
(this module belongs to the ECU abstraction
layer)

[SRS_SPAL_12069] Wake-up notification of ECU
State Manager

Not applicable
(this module does not provide any wakeup
capabilities)

[SRS_SPAL_00157] Notification mechanisms of
drivers and handlers

Not applicable
(this module does not provide any notification
mechanisms)

[BSW12155] Prototypes of callback functions Not applicable
(this module does not implement any callback
routines)

[SRS_SPAL_12169] Control of operation mode SWS_Fee_00020

[SRS_SPAL_12063] Raw value mode Not applicable
(this module does not handle or mishandle any
data)

[SRS_SPAL_12075] Use of application buffers Chapter 8.3.3, Chapter 8.3.4

[SRS_SPAL_12129] Resetting of interrupt flags Not applicable
(this module does not implement any ISRs)

[SRS_SPAL_12064] Change of operation mode
during running operation

Not applicable
(this module has no internal operation mode)

[SRS_SPAL_12448] Behavior after development
error detection

SWS_Fee_00068

[SRS_SPAL_12067] Setting of wake-up
conditions

Not applicable
(this module does not provide any wakeup
capabilities)

[SRS_SPAL_12077] Non-blocking implementation Not applicable
(this module does not implement any schedulable
services)

[SRS_SPAL_12078] Runtime and memory
efficiency

Not applicable
(requirement on implementation, not on
specification)

[SRS_SPAL_12092] Access to drivers Not applicable
(this module is the flash driver’s “manager”)

[SRS_SPAL_12265] Configuration data shall be
kept constant

Not applicable
 (no configuration data passed for initialization)

[SRS_SPAL_12264] Specification of configuration
items

FEE039, FEE040, ECUC_Fee_00043

[BSW12081] Use HIS requirements as input Not applicable (no corresponding HIS
requirements available)

Document: Requirements on Memory Hardware Abstraction Layer

Requirement Satisfied by
SRS_MemHwAb_14001 Configuration of address
alignment

SWS_Fee_00076, SWS_Fee_00005,
SWS_Fee_00071, ECUC_Fee_00116

SRS_MemHwAb_14002 Configuration of number
of required write cycles

SWS_Fee_00102, SWS_Fee_00103,
ECUC_Fee_00110

SRS_MemHwAb_14003 Configuration of
maximum blocking time

Not applicable (any more)
Maximum blocking time has been converted into a
published parameter (see ECUC_Fee_00070)

SRS_MemHwAb_14004 Configuration of
“immediate” data blocks

ECUC_Fee_00151

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

26 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

SRS_MemHwAb_14026 Don’t use certain block
numbers

SWS_Fee_00006

SRS_MemHwAb_14027 Publish overhead for
internal management data per block

ECUC_Fee_00117, ECUC_Fee_00118

SRS_MemHwAb_14005 Virtual linear address
space and segmentation

SWS_Fee_00076

SRS_MemHwAb_14006 Alignment of block erase
/ write addresses

SWS_Fee_00024

SRS_MemHwAb_14007 Alignment of block read
addresses

SWS_Fee_00021 and note below

SRS_MemHwAb_14008 Checking block read
addresses

SWS_Fee_00021 and note below

SRS_MemHwAb_14009 Conversion of logical to
physical addresses

SWS_Fee_00007

SRS_MemHwAb_14010 Block-wise write service SWS_Fee_00088

SRS_MemHwAb_14029 Block-wise read service SWS_Fee_00087

SRS_MemHwAb_14031 Service to cancel an
ongoing asynchronous operation

SWS_Fee_00089

SRS_MemHwAb_14028 Service to invalidate a
memory block

SWS_Fee_00092

SRS_MemHwAb_14012 Spreading of write
access

SWS_Fee_00102, SWS_Fee_00103

SRS_MemHwAb_14013 Writing of “immediate”
data must not be delayed

SWS_Fee_00009

SRS_MemHwAb_14032 Block-wise erase service
for immediate data

SWS_Fee_00094

SRS_MemHwAb_14014 Detection of data
inconsistencies

SWS_Fee_00023, SWS_Fee_00049,
SWS_Fee_00153, SWS_Fee_00154

SRS_MemHwAb_14015 Reporting of data
inconsistencies

SWS_Fee_00023

SRS_MemHwAb_14016 Don’t return inconsistent
data to the caller

Note below SWS_Fee_00023

SRS_MemHwAb_14017 Scope of EEPROM
Abstraction Layer

Not applicable
(this is the FEE modules specification)

SRS_MemHwAb_14018 Scope of Flash
EEPROM Emulation

Chapter 1

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

27 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

7 Functional specification

7.1 General behavior

7.1.1 Addressing scheme and segmentation

The Flash EEPROM Emulation (FEE) module provides upper layers with a 32bit
virtual linear address space and uniform segmentation scheme. This virtual 32bit
addresses shall consist of

 a 16bit block number – allowing a (theoretical) number of 65536 logical blocks

 a 16bit block offset – allowing a (theoretical) block size of 64KByte per block

The 16bit block number represents a configurable (virtual) paging mechanism. The
values for this address alignment can be derived from that of the underlying flash
driver and device. This virtual paging shall be configurable via the parameter

FeeVirtualPageSize.

[SWS_Fee_00076] ⌈ The configuration of the Fee module shall be such that the

virtual page size (defined in FeeVirtualPageSize) is an integer multiple of the

physical page size, i.e. it is not allowed to configure a smaller virtual page than the

actual physical page size. ⌋(SRS_MemHwAb_14001, SRS_MemHwAb_14005)

Note: This specification requirement allows the physical start address of a logical
block to be calculated rather than making a lookup table necessary for the address
mapping.

Example:
The size of a virtual page is configured to be eight bytes, thus the address alignment
is eight bytes. The logical block with block number 1 is placed at physical address x.
The logical block with the block number 2 then would be placed at x+8, block number
3 would be placed at x+16.

[SWS_Fee_00005] ⌈ Each configured logical block shall take up an integer multiple

of the configured virtual page size (see also Chapter 10.1 configuration parameter

FeeVirtualPageSize). ⌋(SRS_MemHwAb_14001)

Example:
The address alignment / virtual paging is configured to be eight bytes by setting the

parameter FeeVirtualPageSize accordingly. The logical block number 1 is

configured to have a size of 32 bytes (seeFigure 3). This logical block would use
exactly 4 virtual pages. The next logical block thus would get the block number 5,
since block numbers 2, 3 and 4 are “blocked” by the first logical block. This second
block is configured to have a size of 100 bytes, taking up 13 virtual pages and

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

28 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

leaving 4 bytes of the last page unused. The next available logical block number thus
would be 17.

Block 1

Block 2

Block 3

32 Bytes

100 Bytes

38 Bytes

Note: Sizes not shown to scale

Virtual address space

Page size: 64 KBytes

Physical address space

Page size: 8 Bytes

100 Bytes

32 Bytes

38 Bytes

16 Bit Block Number

16 Bit Block Offset

Block #1 with 32 byte

uses 4 pages, no

internal residue

Block #5 with 100 byte

uses 13 pages, 4 byte

internal residue

Block #17 with 38 byte

uses 5 pages, 2 byte

internal residue

Figure 3: Virtual vs. physical memory layout

[SWS_Fee_00071] ⌈ Logical blocks must not overlap each other and must not be

contained within one another. ⌋(SRS_MemHwAb_14001)

[SWS_Fee_00006] ⌈ The block numbers 0x0000 and 0xFFFF shall not be

configurable for a logical block. ⌋(SRS_MemHwAb_14026)

7.1.2 Address calculation

[SWS_Fee_00007] ⌈ Depending on the implementation of the FEE module and the

exact address format used, the functions of the FEE module shall combine the 16bit
block number and 16bit address offset to derive the physical flash address needed

for the underlying flash driver. ⌋(SRS_MemHwAb_14009)

Note: The exact address format needed by the underlying flash driver and therefore
the mechanism how to derive the physical flash address from the given 16bit block

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

29 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

number and 16bit address offset depends on the flash device and the implementation
of this module and shall therefore not be standardized.

[SWS_Fee_00100] ⌈ Only those bits of the 16bit block number, that do not denote a

specific dataset or redundant copy shall be used for address calculation. ⌋()

Note: Since this information is needed by the NVRAM manager, the number of bits to
encode this can be configured for the NVRAM manager with the parameter

NVM_DATASET_SELECTION_BITS.

Example:
Dataset information is configured to be encoded in the four LSB’s of the 16bit block
number (allowing for a maximum of 16 datasets per NVRAM block and a total of
4094 NVRAM blocks). An implementer decides to store all datasets of a NVRAM
block directly adjacent and using the length of the block and a pointer to access each
dataset. To calculate the start address of the block (the address of the first dataset)
she/he uses only the 12 MSB’s, to access a specific dataset she/he adds the size of
the block multiplied by the dataset index (the four MSB’s) to this start address (Figure

4).

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

30 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

100 Bytes

Data set 0

Data set 1

Data set 2

Data set 3

NVM_DATASET_SELECTION_BITS configured

to be four (bits), leaving twelve bit for the block

number. Each NVRAM block thus can be

subdivided in up to 16 datasets.

Block

number

Dataset

index

Address conversion

„indexed“

addressing

Figure 4: Block number and dataset index

7.1.3 Limitation of erase cycles

[SWS_Fee_00102] ⌈ The configuration of the FEE module shall define the expected

number of erase/write cycles for each logical block in the configuration parameter

FeeNumberOfWriteCycles. ⌋(SRS_MemHwAb_14002, SRS_MemHwAb_14012)

[SWS_Fee_00103] ⌈ If the underlying flash device or device driver does not provide

at least the configured number of erase/write cycles per physical memory cell, the
FEE module shall provide mechanisms to spread the write access such that the
physical device is not overstressed. This shall also apply to all management data

used internally by the FEE module. ⌋(SRS_MemHwAb_14002,

SRS_MemHwAb_14012)

Example:
The logical block number 1 is configured for an expected 500.000 write cycles, the
underlying flash device and device driver are only specified for 100.000 erase cycles.
In this case, the FEE module has to provide (at least) five separate memory areas
and alternate the access between those areas internally so that each physical
memory location is only erased for a maximum of the specified 100.000 cycles.

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

31 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

7.1.4 Handling of “immediate” data

[SWS_Fee_00009] ⌈ Blocks containing immediate data have to be written

instantaneously, i.e. the FEE module has to ensure that it can write such blocks
without the need to erase the corresponding memory area (e.g. by using pre-erased
memory) and that the write request is not delayed by currently running module

internal management operations. ⌋(SRS_MemHwAb_14013)

Note: An ongoing lower priority read / erase / write or compare job shall be canceled
by the NVRAM manager before immediate data is written. The FEE module has only
to ensure that this write request can be performed immediately.

Note: A running operation on the hardware (e.g. writing one page or erasing one
sector) can usually not be aborted once it has been started. The maximum time of
the longest hardware operation thus has to be accepted as delay even for immediate
data.

Example:
Three blocks with 10 bytes each have been configured for immediate data. The FEE
module / configuration tool reserves these 30 bytes (plus the implementation specific
overhead per block / page if needed) for use by this immediate data only. That is, this
memory area shall not be used for storage of other data blocks.
Now, the NVRAM manager has requested the FEE module to write a data block of
100 bytes. While this block is being written, a situation occurs that one (or several) of
the immediate data blocks need to be written. Therefore the NVRAM manager
cancels the ongoing write request and subsequently issues the write request for the
(first) block containing immediate data. The cancelation of the ongoing write request
is performed synchronously by the FEE module and the underlying flash driver (i.e.
the write request for the immediate data) can be started without any further delay.
However, before the first bytes of immediate data can be written, the FEE module or
rather the underlying flash driver have to wait for the end of an ongoing hardware
access from the previous write request (e.g. writing of a page, erasing of a sector,
transfer via SPI, …).

7.1.5 Managing block correctness information

[SWS_Fee_00049] ⌈ The FEE module shall manage for each block the information,

whether this block is correct (i.e. “not corrupted”) from the point of view of the FEE
module or not. This information shall only concern the internal handling of the block,

not the block’s contents. ⌋(SRS_MemHwAb_14014)

[SWS_Fee_00153] ⌈ When a block write operation is started, the FEE module shall

mark the corresponding block as “corrupted”1. ⌋(SRS_MemHwAb_14014)

1
 This does not necessarily mean a write operation on the physical device, if there are other means to

detect the consistency of a logical block.

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

32 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

[SWS_Fee_00154] ⌈ Upon the successful end of the block write operation, the block

shall be marked as “not corrupted” (again). ⌋(SRS_MemHwAb_14014)

Note: This internal management information should not be mixed up with the validity
information of a block which can be manipulated by using the Fee_InvalidateBlock
service, i.e. the FEE shall be able to distinguish between a corrupted block and a
block that has been deliberately invalidated by the upper layer.

7.2 Error classification

[SWS_Fee_00010] ⌈ The FEE module shall detect the following errors and

exceptions depending on its configuration (development/production):

Type or error Relevance Related error code Value

[hex]
API service called when
module was not initialized

Development FEE_E_UNINIT 0x01

API service called with
invalid block number

Development FEE_E_INVALID_BLOCK_NO 0x02

API service called with
invalid block offset

Development FEE_E_INVALID_BLOCK_OFS 0x03

API service called with
invalid data pointer

Development FEE_E_INVALID_DATA_PTR 0x04

API service called with
invalid length information

Development FEE_E_INVALID_BLOCK_LEN 0x05

API service called while
module is busy processing a
user request

Development FEE_E_BUSY 0x06

API service called while
module is busy doing
internal management
operations.

Development FEE_E_BUSY_INTERNAL 0x07

Fee_Cancel called while no
job was pending.

Development FEE_E_INVALID_CANCEL 0x08

 ⌋(SRS_BSW_00406, SRS_BSW_00337, SRS_BSW_00386, SRS_BSW_00327,

SRS_BSW_00331)

Note: The error FEE_E_BUSY_INTERNAL is not caused by a misbehaviour of the

software but rather by a wrong (or better unlucky) timing of function calls. Therefore it
shall only be a development error, even though this behaviour may also be observed
in a production system.

Note: The error FEE_BUSY_INTERNAL shall only be reported, if the internal

management operation cannot be suspended or aborted (see e.g.
SWS_Fee_00173). Whether an internal management operation can be suspended or
aborted depends first on the underlying hardware (flash technology) and second on
the implementation of the FEE (design decision of the software implementor /
customer).

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

33 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

7.3 Support for Debugging

[SWS_Fee_00130] ⌈The modules status, the job result and the block meta

information (see SWS_Fee_00049) shall be made available for debugging (reading).

⌋ ()

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

34 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

8 API specification

8.1 Imported Types

[SWS_Fee_00084]

⌈

Module Imported Type

Fls Fls_AddressType

Fls_LengthType

MemIf MemIf_JobResultType

MemIf_ModeType

MemIf_StatusType

Std_Types Std_ReturnType

Std_VersionInfoType

 ⌋()

[SWS_Fee_00016] ⌈ The types mentioned in SWS_Fee_00084 shall not be changed

or extended for a specific FEE module or hardware platform. ⌋()

8.2 Type definitions

No local type definitions needed for this module.

8.3 Function definitions

8.3.1 Fee_Init

[SWS_Fee_00085]

⌈

Service name: Fee_Init

Syntax: void Fee_Init(

 void

)

Service ID[hex]: 0x00

Sync/Async: Asynchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

35 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

Parameters (out): None

Return value: None

Description: Service to initialize the FEE module.

 ⌋(SRS_BSW_00101, SRS_SPAL_12057)

[SWS_Fee_00120] ⌈ The function Fee_Init shall set the module state from

MEMIF_UNINIT to MEMIF_BUSY_INTERNAL once it starts the module’s initialization.

⌋(SRS_BSW_00406)

[SWS_Fee_00168] ⌈ If initialization is finished within Fee_Init, the function

Fee_Init shall set the module state from MEMIF_BUSY_INTERNAL to MEMIF_IDLE

once initialization has been successfully finished. ⌋()

Note: The FEE module’s environment shall not call the function Fee_Init during a

running operation of the FEE module.

8.3.2 Fee_SetMode

[SWS_Fee_00086]

⌈

Service name: Fee_SetMode

Syntax: void Fee_SetMode(

 MemIf_ModeType Mode

)

Service ID[hex]: 0x01

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): Mode Desired mode for the underlying flash driver

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: Service to call the Fls_SetMode function of the underlying flash driver.

 ⌋()

[SWS_Fee_00020] ⌈ If the current module status is MEMIF_IDLE and if supported by

the underlying hardware and device driver, the function Fee_SetMode shall call the

function Fls_SetMode of the underlying flash driver with the given “Mode”

parameter. ⌋(SRS_SPAL_12169)

Example: During normal operation of an ECU the FEE module and underlying device
driver shall use as few (runtime) resources as possible, therefore the flash driver is
switched to “slow” mode. During startup and especially during shutdown it might be
desirable to read / write the NV memory blocks as fast as possible, therefore the FEE
and the underlying device driver could be switched into “fast” mode.

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

36 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

[SWS_Fee_00121] ⌈ If development error detection is enabled for the module: the

function Fee_SetMode shall check if the module status is MEMIF_UNINIT. If this is

the case, the function Fee_SetMode shall raise the development error

FEE_E_UNINIT and return to the caller without executing the mode switch.

⌋(SRS_BSW_00406)

[SWS_Fee_00170] ⌈ If development error detection is enabled for the module: the

function Fee_SetMode shall check if the module state is MEMIF_BUSY. If this is the

case, the function Fee_SetMode shall raise the development error FEE_E_BUSY and

return to the caller without executing the mode switch. ⌋()

[SWS_Fee_00171] ⌈ If development error detection is enabled for the module: the

function Fee_SetMode shall check if the module state is MEMIF_BUSY_INTERNAL.

If this is the case, the function Fee_SetMode shall raise the development error

FEE_E_BUSY_INTERNAL and return to the caller without executing the mode switch.

⌋()

8.3.3 Fee_Read

[SWS_Fee_00087]

⌈

Service name: Fee_Read

Syntax: Std_ReturnType Fee_Read(

 uint16 BlockNumber,

 uint16 BlockOffset,

 uint8* DataBufferPtr,

 uint16 Length

)

Service ID[hex]: 0x02

Sync/Async: Asynchronous

Reentrancy: Non Reentrant

Parameters (in):

BlockNumber Number of logical block, also denoting start address of that block
in flash memory.

BlockOffset Read address offset inside the block

Length Number of bytes to read

Parameters
(inout):

None

Parameters (out): DataBufferPtr Pointer to data buffer

Return value:
Std_ReturnType E_OK: The requested job has been accepted by the module.

E_NOT_OK: The requested job has not been accepted by the
module.

Description: Service to initiate a read job.

 ⌋(SRS_MemHwAb_14029)

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

37 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

[SWS_Fee_00021] ⌈ The function Fee_Read shall take the block start address and

offset and calculate the corresponding memory read address.

⌋(SRS_MemHwAb_14007, SRS_MemHwAb_14008)

Note: The address offset and length parameter can take any value within the given
types range. This allows reading of an arbitrary number of bytes from an arbitrary
start address inside a logical block.

[SWS_Fee_00022] ⌈ If the current module status is MEMIF_IDLE or if the current

module status is MEMIF_BUSY INTERNAL and the internal management operation

can be suspended or aborted, the function Fee_Read shall accept the read request,

copy the given / computed parameters to module internal variables, initiate a read

job, set the FEE module status to MEMIF_BUSY, set the job result to

MEMIF_JOB_PENDING and return with E_OK. ⌋()

[SWS_Fee_00172] ⌈ If the current module status is MEMIF_UNINIT or

MEMIF_BUSY or MEMIF_BUSY_INTERNAL and the internal management operation

can’t be suspended or aborted, the function Fee_Read shall reject the job request

and return with E_NOT_OK. ⌋()

[SWS_Fee_00073] ⌈ The FEE module shall execute the read operation

asynchronously within the FEE module’s main function. ⌋()

[SWS_Fee_00122] ⌈ If development error detection is enabled for the module: the

function Fee_Read shall check if the module state is MEMIF_UNINIT. If this is the

case, the function Fee_Read shall reject the read request, raise the development

error FEE_E_UNINIT and return with E_NOT_OK. ⌋(SRS_BSW_00406)

[SWS_Fee_00133] ⌈ If development error detection is enabled for the module: the

function Fee_Read shall check if the module state is MEMIF_BUSY. If this is the case,

the function Fee_Read shall reject the read request, raise the development error

FEE_E_BUSY and return with E_NOT_OK. ⌋()

[SWS_Fee_00173] ⌈ If development error detection is enabled for the module: if the

current module status is MEMIF_BUSY_INTERNAL and if it is not possible to suspend

or abort the internal management operation (because of data consistency / module

implementation / hardware restrictions), the function Fee_Read shall reject the read

request, raise the development error FEE_E_BUSY_INTERNAL and return with

E_NOT_OK. ⌋()

[SWS_Fee_00134] ⌈ If development error detection is enabled for the module: the

function Fee_Read shall check that the given block number is valid (i.e. it has been

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

38 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

configured). If this is not the case, the function Fee_Read shall reject the read

request, raise the development error FEE_E_INVALID_BLOCK_NO and return with

E_NOT_OK. ⌋()

[SWS_Fee_00135] ⌈ If development error detection is enabled for the module: the

function Fee_Read shall check that the given block offset is valid (i.e. that it is less

than the block length configured for this block). If this is not the case, the function

Fee_Read shall reject the read request, raise the development error

FEE_E_INVALID_BLOCK_OFS and return with E_NOT_OK. ⌋()

[SWS_Fee_00136] ⌈ If development error detection is enabled for the module: the

function Fee_Read shall check that the given data pointer is valid (i.e. that it is not

NULL). If this is not the case, the function Fee_Read shall reject the read request,

raise the development error FEE_E_INVALID_DATA_PTR and return with

E_NOT_OK. ⌋()

[SWS_Fee_00137] ⌈ If development error detection is enabled for the module: the

function Fee_Read shall check that the given length information is valid, i.e. that the

requested length information plus the block offset do not exceed the block end
address (block start address plus configured block length). If this is not the case, the

function Fee_Read shall reject the read request, raise the development error

FEE_E_INVALID_BLOCK_LEN and return with E_NOT_OK. ⌋()

[SWS_Fee_00162] ⌈ If a read request is rejected by the function Fee_Read, i.e.

requirements SWS_Fee_00122, SWS_Fee_00133, SWS_Fee_00134,
SWS_Fee_00135, SWS_Fee_00136, SWS_Fee_00137 or SWS_Fee_00173 apply,

the function Fee_Read shall not change the current module status or job result. ⌋()

8.3.4 Fee_Write

[SWS_Fee_00088]

⌈

Service name: Fee_Write

Syntax: Std_ReturnType Fee_Write(

 uint16 BlockNumber,

 const uint8* DataBufferPtr

)

Service ID[hex]: 0x03

Sync/Async: Asynchronous

Reentrancy: Non Reentrant

Parameters (in):
BlockNumber Number of logical block, also denoting start address of that block

in EEPROM.

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

39 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

DataBufferPtr Pointer to data buffer

Parameters
(inout):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: The requested job has been accepted by the module.

E_NOT_OK: The requested job has not been accepted by the
module.

Description: Service to initiate a write job.

 ⌋(SRS_MemHwAb_14010)

[SWS_Fee_00024] ⌈ The function Fee_Write shall take the block start address and

calculate the corresponding memory write address. The block address offset shall be

fixed to zero. ⌋(SRS_MemHwAb_14006)

[SWS_Fee_00025] ⌈ If the current module status is MEMIF_IDLE or if the current

module status is MEMIF_BUSY INTERNAL and the internal management operation

can be suspended or aborted, the function Fee_Write shall accept the write

request, copy the given / computed parameters to module internal variables, initiate a

write job, set the FEE module status to MEMIF_BUSY, set the job result to

MEMIF_JOB_PENDING and return with E_OK. ⌋()

[SWS_Fee_00174] ⌈ If the current module status is MEMIF_UNINIT or

MEMIF_BUSY or MEMIF_BUSY_INTERNAL and the internal management operation

can’t be suspended or aborted, the function Fee_Write shall reject the job request

and return with E_NOT_OK. ⌋()

[SWS_Fee_00183] ⌈ If the write request addresses a block containing immediate

data, the function Fee_Write shall accept the write request, even if the current

module status is MEMIF_BUSY_INTERNAL and the internal management operation

can’t be suspended or aborted. ⌋()

Note: In this case, the internal management operation shall be aborted without the
chance to restart it and with the risk of unrecoverable errors for the “normal” data.

[SWS_Fee_00026] ⌈ The FEE module shall execute the write operation

asynchronously within the FEE module’s main function. ⌋()

[SWS_Fee_00123] ⌈ If development error detection is enabled for the module: the

function Fee_Write shall check if the module state is MEMIF_UNINIT. If this is the

case, the function Fee_Write shall reject the write request, raise the development

error FEE_E_UNINIT and return with E_NOT_OK. ⌋(SRS_BSW_00406)

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

40 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

[SWS_Fee_00144] ⌈ If development error detection is enabled for the module: the

function Fee_Write shall check if the module state is MEMIF_BUSY. If this is the

case, the function Fee_Write shall reject the write request, raise the development

error FEE_E_BUSY and return with E_NOT_OK. ⌋()

[SWS_Fee_00175] ⌈ If development error detection is enabled for the module: if the

current module status is MEMIF_BUSY_INTERNAL and if it is not possible to suspend

or abort the internal management operation (because of data consistency / module

implementation / hardware restrictions), the function Fee_Write shall reject the write

request, raise the development error FEE_E_BUSY_INTERNAL and return with

E_NOT_OK. ⌋()

[SWS_Fee_00138] ⌈ If development error detection is enabled for the module: the

function Fee_Write shall check that the given block number is valid (i.e. it has been

configured). If this is not the case, the function Fee_Write shall reject the write

request, raise the development error FEE_E_INVALID_BLOCK_NO and return with

E_NOT_OK. ⌋()

[SWS_Fee_00139] ⌈ If development error detection is enabled for the module: the

function Fee_Write shall check that the given data pointer is valid (i.e. that it is not

NULL). If this is not the case, the function Fee_Write shall reject the write request,

raise the development error FEE_E_INVALID_DATA_PTR and return with

E_NOT_OK. ⌋()

[SWS_Fee_00163] ⌈ If a write request is rejected by the function Fee_Write, i.e.

requirements SWS_Fee_00123, SWS_Fee_00144, SWS_Fee_00138,

SWS_Fee_00139 or SWS_Fee_00175 apply, the function Fee_Write shall not

change the current module status or job result. ⌋()

8.3.5 Fee_Cancel

[SWS_Fee_00089]

⌈

Service name: Fee_Cancel

Syntax: void Fee_Cancel(

 void

)

Service ID[hex]: 0x04

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

41 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

Parameters (out): None

Return value: None

Description: Service to call the cancel function of the underlying flash driver.

 ⌋(SRS_MemHwAb_14031)

Note: The function Fee_Cancel and the cancel function of the underlying flash

driver are – from their behaviour – synchronous functions but they are asynchronous
w.r.t. an ongoing read, erase or write job in the flash memory. The cancel functions
shall only reset their modules internal variables so that a new job can be accepted by
the modules. They do not cancel an ongoing job in the hardware and they do not wait
for an ongoing job to be finished by the hardware. This might lead to the situation in

which the module’s state is reported as MEMIF_IDLE while there is still an ongoing

job being executed by the hardware. Therefore, the flash driver’s main function shall
check that the hardware is indeed free before starting a new job (see chapter 9.4 for
a detailed sequence diagram).

Note: The function Fee_Cancel should only be used by the NvM to abort a read or

write request for an NV block if higher priority data (i.e. immediate data) has to be
written.

[SWS_Fee_00124] ⌈ If development error detection is enabled for the module: the

function Fee_Cancel shall check if the module state is MEMIF_UNINIT. If this is the

case the function Fee_Cancel shall raise the development error FEE_E_UNINIT and

return to the caller without changing any internal variables. ⌋(SRS_BSW_00406)

[SWS_Fee_00080] ⌈ If the current module status is MEMIF_BUSY (i.e. the request to

cancel a pending job is accepted by the function Fee_Cancel), the function

Fee_Cancel shall call the cancel function of the underlying flash driver. ⌋()

[SWS_Fee_00081] ⌈ If the current module status is MEMIF_BUSY (i.e. the request to

cancel a pending job is accepted by the function Fee_Cancel), the function

Fee_Cancel shall reset the FEE module’s internal variables to make the module

ready for a new job request from the upper layer, i.e. it shall set the module status to

MEMIF_IDLE. ⌋()

[SWS_Fee_00164] ⌈ If the current module status is not MEMIF_BUSY (i.e. the

request to cancel a pending job is rejected by the function Fee_Cancel), the

function Fee_Cancel shall not change the current module status or job result. ⌋()

[SWS_Fee_00184] ⌈ If the current module status is not MEMIF_BUSY (i.e. there is no

job to cancel and therefore the request to cancel a pending job is rejected by the

function Fee_Cancel), the function Fee_Cancel shall raise the development error

FEE_E_INVALID_CANCEL. ⌋()

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

42 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

8.3.6 Fee_GetStatus

[SWS_Fee_00090]

⌈

Service name: Fee_GetStatus

Syntax: MemIf_StatusType Fee_GetStatus(

 void

)

Service ID[hex]: 0x05

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value:

MemIf_StatusType MEMIF_UNINIT: The FEE module has not been initialized.
MEMIF_IDLE: The FEE module is currently idle.
MEMIF_BUSY: The FEE module is currently busy.
MEMIF_BUSY_INTERNAL: The FEE module is busy with
internal management operations.

Description: Service to return the status.

 ⌋()

[SWS_Fee_00034] ⌈ The function Fee_GetStatus shall return MEMIF_UNINIT if

the module has not (yet) been initialized. ⌋()

[SWS_Fee_00128] ⌈ The function Fee_GetStatus shall return MEMIF_IDLE if the

module is neither processing a request from the upper layer nor is it doing an internal

management operation. ⌋()

[SWS_Fee_00129] ⌈ The function Fee_GetStatus shall return MEMIF_BUSY if it is

currently processing a request from the upper layer. ⌋()

[SWS_Fee_00074] ⌈ The function Fee_GetStatus shall return

MEMIF_BUSY_INTERNAL, if an internal management operation is currently ongoing.

⌋()

Note: Internal management operation may e.g. be a re-organization of the used flash
memory (garbage collection). This may imply that the underlying device driver is – at
least temporarily – busy.

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

43 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

8.3.7 Fee_GetJobResult

[SWS_Fee_00091]

⌈

Service name: Fee_GetJobResult

Syntax: MemIf_JobResultType Fee_GetJobResult(

 void

)

Service ID[hex]: 0x06

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value:

MemIf_JobResultType MEMIF_JOB_OK: The last job has been finished
successfully.
MEMIF_JOB_PENDING: The last job is waiting for
execution or currently being executed.
MEMIF_JOB_CANCELED: The last job has been canceled
(which means it failed).
MEMIF_JOB_FAILED: The last job has not been finished
successfully (it failed).
MEMIF_BLOCK_INCONSISTENT: The requested block is
inconsistent, it may contain corrupted data.
MEMIF_BLOCK_INVALID: The requested block has been
invalidated, the requested read operation can not be
performed.

Description: Service to query the result of the last accepted job issued by the upper layer
software.

 ⌋()

[SWS_Fee_00035] ⌈ The function Fee_GetJobResult shall return MEMIF_JOB_OK

if the last job has been finished successfully. ⌋()

[SWS_Fee_00156] ⌈ The function Fee_GetJobResult shall return

MEMIF_JOB_PENDING if the requested job is still waiting for execution or is currently

being executed. ⌋()

[SWS_Fee_00157] ⌈ The function Fee_GetJobResult shall return

MEMIF_JOB_CANCELED if the last job has been canceled by the upper layer. ⌋()

[SWS_Fee_00158] ⌈ The function Fee_GetJobResult shall return

MEMIF_JOB_FAILED if the last job has failed. ⌋()

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

44 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

[SWS_Fee_00159] ⌈ The function Fee_GetJobResult shall return

MEMIF_BLOCK_INCONSISTENT if the requested block is found to be inconsistent

(see chapter 7.1.5 for details). ⌋()

[SWS_Fee_00160] ⌈ The function Fee_GetJobResult shall return

MEMIF_BLOCK_INVALID if the requested block has been invalidated by the upper

layer. ⌋()

[SWS_Fee_00155] ⌈ Only those jobs which have been requested directly by the

upper layer shall have influence on the job result returned by the function

Fee_GetJobResult. I.e. jobs which are issued by the FEE module itself in the

course of internal management operations shall not alter the job result. ⌋()

[SWS_Fee_00125] ⌈ If development error detection is enabled for the module: the

function Fee_GetJobResult shall check if the module state is MEMIF_UNINIT. If

this is the case, the function Fee_GetJobResult shall raise the development error

FEE_E_UNINIT and return with MEMIF_JOB_FAILED. ⌋(SRS_BSW_00406)

8.3.8 Fee_InvalidateBlock

[SWS_Fee_00092]

⌈

Service name: Fee_InvalidateBlock

Syntax: Std_ReturnType Fee_InvalidateBlock(

 uint16 BlockNumber

)

Service ID[hex]: 0x07

Sync/Async: Asynchronous

Reentrancy: Non Reentrant

Parameters (in):
BlockNumber Number of logical block, also denoting start address of that block

in flash memory.

Parameters
(inout):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: The requested job has been accepted by the module.

E_NOT_OK - only if DET is enabled: The requested job has not
been accepted by the module.

Description: Service to invalidate a logical block.

 ⌋(SRS_MemHwAb_14028)

[SWS_Fee_00036] ⌈ The function Fee_InvalidateBlock shall take the block

number and calculate the corresponding memory block address. ⌋()

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

45 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

[SWS_Fee_00037] ⌈ The function Fee_InvalidateBlock shall invalidate the

requested block <BlockNumber> by calling the erase function of the underlying
device driver and / or by changing some module internal management information

accordingly. ⌋()

Note: How exactly the requested block is invalidated depends on the module’s
implementation and will not be further detailed in this specification. The internal
management information has to be stored in NV memory since it has to be resistant
against resets. What this information is and how it is stored will not be further detailed
in this specification.

[SWS_Fee_00176] ⌈ If the current module status is not MEMIF_IDLE, the function

Fee_InvalidateBlock shall reject the invalidation request and return with

E_NOT_OK. ⌋()

[SWS_Fee_00126] ⌈ If development error detection is enabled for the module: the

function Fee_InvalidateBlock shall check if the module status is

MEMIF_UNINIT. If this is the case, the function Fee_InvalidateBlock shall reject

the invalidation request, raise the development error FEE_E_UNINIT and return with

E_NOT_OK. ⌋(SRS_BSW_00406)

[SWS_Fee_00145] ⌈ If development error detection is enabled for the module: the

function Fee_InvalidateBlock shall check if the module status is MEMIF_BUSY. If

this is the case, the function Fee_InvalidateBlock shall reject the request, raise

the development error FEE_E_BUSY and return with E_NOT_OK. ⌋()

[SWS_Fee_00177] ⌈ If development error detection is enabled for the module: if the

current module status is MEMIF_BUSY_INTERNAL and if it is not possible to suspend

or abort the internal management operation (because of data consistency / module

implementation / hardware restrictions), the function Fee_InvalidateBlock shall

reject the invalidation request, raise the development error FEE_E_BUSY_INTERNAL

and return with E_NOT_OK. ⌋()

[SWS_Fee_00140] ⌈ If development error detection is enabled for the module: the

function Fee_InvalidateBlock shall check that the given block number is valid

(i.e. it has been configured). If this is not the case, the function

Fee_InvalidateBlock shall reject the request, raise the development error

FEE_E_INVALID_BLOCK_NO and return with E_NOT_OK. ⌋()

[SWS_Fee_00165] ⌈ If an invalidation request is rejected by the function

Fee_InvalidateBlock, i.e. requirements SWS_Fee_00126, SWS_Fee_00140,

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

46 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

SWS_Fee_00145 or SWS_Fee_00177 apply, the function Fee_InvalidateBlock

shall not change the current module status or job result. ⌋()

8.3.9 Fee_GetVersionInfo

[SWS_Fee_00093]

⌈

Service name: Fee_GetVersionInfo

Syntax: void Fee_GetVersionInfo(

 Std_VersionInfoType* VersionInfoPtr

)

Service ID[hex]: 0x08

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): VersionInfoPtr Pointer to standard version information structure.

Return value: None

Description: Service to return the version information of the FEE module.

 ⌋()

[SWS_Fee_00147] ⌈ If development error detection is enabled for the module: the

function Fee_GetVersionInfo shall check that the given data pointer is valid (i.e.

that it is not NULL). If this is not the case, the function Fee_GetVersionInfo shall

raise the development error FEE_E_INVALID_DATA_PTR. ⌋()

8.3.10 Fee_EraseImmediateBlock

[SWS_Fee_00094]

⌈

Service name: Fee_EraseImmediateBlock

Syntax: Std_ReturnType Fee_EraseImmediateBlock(

 uint16 BlockNumber

)

Service ID[hex]: 0x09

Sync/Async: Asynchronous

Reentrancy: Non Reentrant

Parameters (in):
BlockNumber Number of logical block, also denoting start address of that block

in EEPROM.

Parameters
(inout):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: The requested job has been accepted by the module.

E_NOT_OK - only if DET is enabled: The requested job has not
been accepted by the module.

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

47 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

Description: Service to erase a logical block.

 ⌋(SRS_MemHwAb_14032)

Note: The function Fee_EraseImmediateBlock shall only be called by e.g.

diagnostic or similar system service to pre-erase the area for immediate data if
necessary.

[SWS_Fee_00066] ⌈ The function Fee_EraseImmediateBlock shall take the

block number and calculate the corresponding memory block address. ⌋()

[SWS_Fee_00067] ⌈ The function Fee_EraseImmediateBlock shall ensure that

the FEE module can write immediate data. Whether this involves physically erasing a
memory area and therefore calling the erase function of the underlying driver

depends on the implementation of the module. ⌋()

[SWS_Fee_00127] ⌈ If development error detection is enabled for the module: the

function Fee_EraseImmediateBlock shall check if the module state is

MEMIF_UNINIT. If this is the case, the function Fee_EraseImmediateBlock shall

reject the erase request, raise the development error FEE_E_UNINIT and return with

E_NOT_OK. ⌋(SRS_BSW_00406)

[SWS_Fee_00146] ⌈ If development error detection is enabled for the module: the

function Fee_EraseImmediateBlock shall check if the module state is

MEMIF_BUSY. If this is the case, the function Fee_EraseImmediateBlock shall

reject the erase request, raise the development error FEE_E_BUSY and return with

E_NOT_OK. ⌋()

[SWS_Fee_00178] ⌈ If development error detection is enabled for the module: if the

current module status is MEMIF_BUSY_INTERNAL and if it is not possible to suspend

or abort the internal management operation (because of data consistency / module

implementation / hardware restrictions), the function Fee_EraseImmediateBlock

shall reject the request, raise the development error FEE_E_BUSY_INTERNAL and

return with E_NOT_OK. ⌋()

[SWS_Fee_00068] ⌈ If development error detection is enabled for the module: the

function Fee_EraseImmediateBlock shall check whether the addressed logical

block is configured as containing immediate data (FeeImmediateData == TRUE).

If not, the function Fee_EraseImmediateBlock shall raise the development error

FEE_E_INVALID_BLOCK_NO and return E_NOT_OK without erasing the addressed

logical block. ⌋(SRS_SPAL_12448)

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

48 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

[SWS_Fee_00141] ⌈ If development error detection is enabled for the module: the

function Fee_EraseImmediateBlock shall check that the given block number is

valid (i.e. it has been configured). If this is not the case, the function

Fee_EraseImmediateBlock shall reject the erase request, raise the development

error FEE_E_INVALID_BLOCK_NO and return with E_NOT_OK. ⌋()

[SWS_Fee_00166] ⌈ If a erase request is rejected by the function

Fee_EraseImmediateBlock, i.e. requirements SWS_Fee_00068, SWS_Fee_00127,
SWS_Fee_00141, SWS_Fee_00146 or SWS_Fee_00178 apply, the function

Fee_EraseImmediateBlock shall not change the current module status or job

result. ⌋()

8.4 Call-back notifications

This chapter lists all functions provided by the Fee module to lower layer modules.

Note: Depending on the implementation of the modules making up the NV memory
stack, callback routines provided by the FEE module may be called on interrupt level.
The implementation of the FEE module therefore has to make sure that the runtime
of those routines is reasonably short, i.e. since callbacks may be propagated upward
through several software layers. Whether callback routines are allowable / feasible
on interrupt level depends on the project specific needs (reaction time) and
limitations (runtime in interrupt context). Therefore, system design has to make sure
that the configuration of the involved modules meets those requirements.

8.4.1 Fee_JobEndNotification

[SWS_Fee_00095]

⌈

Service name: Fee_JobEndNotification

Syntax: void Fee_JobEndNotification(

 void

)

Service ID[hex]: 0x10

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: Service to report to this module the successful end of an asynchronous operation.

 ⌋()

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

49 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

The underlying flash driver shall call the function Fee_JobEndNotification to

report the successful end of an asynchronous operation.

[SWS_Fee_00052] ⌈ The function Fee_JobEndNotification shall perform any

necessary block management operations and subsequently call the job end

notification routine of the upper layer module if configured. ⌋()

[SWS_Fee_00142] ⌈ If the job result is currently MEMIF_JOB_PENDING, the function

Fee_JobEndNotification shall set the job result to MEMIF_JOB_OK, else it shall leave

the job result untouched. ⌋()

Note: The function Fee_JobEndNotification shall be callable on interrupt level.

8.4.2 Fee_JobErrorNotification

[SWS_Fee_00096]

⌈

Service name: Fee_JobErrorNotification

Syntax: void Fee_JobErrorNotification(

 void

)

Service ID[hex]: 0x11

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: Service to report to this module the failure of an asynchronous operation.

 ⌋()

The underlying flash driver shall call the function Fee_JobErrorNotification to

report the failure of an asynchronous operation.

[SWS_Fee_00054] ⌈The function Fee_JobErrorNotification shall perform any

necessary block management and error handling operations and subsequently call

the job error notification routine of the upper layer module if configured. ⌋()

[SWS_Fee_00143] ⌈ If the job result is currently MEMIF_JOB_PENDING, the function

Fee_JobErrorNotification shall set the job result to MEMIF_JOB_FAILED, else it shall

leave the job result untouched. ⌋()

Note: The function Fee_JobErrorNotification shall be callable on interrupt

level.

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

50 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

8.5 Scheduled functions

These functions are directly called by the Basic Software Scheduler. The following
functions shall have no return value and no parameter. All functions shall be non re-
entrant.

8.5.1 Fee_MainFunction

[SWS_Fee_00097]

⌈

Service name: Fee_MainFunction

Syntax: void Fee_MainFunction(

 void

)

Service ID[hex]: 0x12

Description: Service to handle the requested read / write / erase jobs and the internal
management operations.

 ⌋()

[SWS_Fee_00169] ⌈ If the module initialization (started in the function Fee_Init) is

completed in the module’s main function, the function Fee_MainFunction shall set

the module status from MEMIF_BUSY_INTERNAL to MEMIF_IDLE once initialization

of the module has been successfully finished. ⌋()

[SWS_Fee_00057] ⌈ The function Fee_MainFunction shall asynchronously handle

the read / write / erase / invalidate jobs requested by the upper layer and internal

management operations. ⌋()

[SWS_Fee_00075] ⌈ The function Fee_MainFunction shall check, whether the

block requested for reading has been invalidated by the upper layer module. If so,

the function Fee_MainFunction shall set the job result to MEMIF_BLOCK_INVALID

and call the error notification routine of the upper layer if configured. ⌋()

[SWS_Fee_00023] ⌈The function Fee_MainFunction shall check the consistency

of the logical block being read before notifying the caller. If an inconsistency of the

read data is detected, the function Fee_MainFunction shall set the job result to

MEMIF_BLOCK_INCONSISTENT and call the error notification routine of the upper

layer if configured. ⌋(SRS_MemHwAb_14014, SRS_MemHwAb_14015,

SRS_MemHwAb_14016)

Note: In this case, the upper layer must not use the contents of the data buffer.

[SWS_Fee_00179] ⌈ If the current module status is MEMIF_BUSY_INTERNAL and if

the internal management operation can be suspended without jeopardizing the data

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

51 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

consistency: the function Fee_MainFunction shall save all information which is

necessary to resume the internal management operation, suspend the internal

management operation and start processing the job requested by the upper layer. ⌋()

[SWS_Fee_00180] ⌈ If the current module status is MEMIF_BUSY_INTERNAL and if

the internal management operation can be aborted without jeopardizing the data

consistency: the function Fee_MainFunction shall save all information which is

necessary to restart the internal management operation, abort the internal

management operation and start processing the job requested by the upper layer. ⌋()

Note: Whether an internal management operation can be suspended or aborted
depends on the type of management operation, the implementation of the FEE
module and the capabilities of the underlying hardware and thus cannot be
determined in this document.

[SWS_Fee_00181] ⌈ If an internal management operation has been suspended

because of a job request from the upper layer, the function Fee_MainFunction

shall resume this internal management operation once the job requested by the

upper layer has been finished. ⌋()

[SWS_Fee_00182] ⌈ If an internal management operation has been aborted because

of a job request from the upper layer, the function Fee_MainFunction shall restart

this internal management operation once the job requested by the upper layer has

been finished. ⌋()

8.6 Expected Interfaces

In this chapter all interfaces required from other modules are listed.

8.6.1 Mandatory Interfaces

This chapter defines all interfaces which are required to fulfill the core functionality of
the module.

[SWS_Fee_00105] ⌈

API function Description

Fls_Cancel Cancels an ongoing job.

Fls_Compare Compares the contents of an area of flash memory with that of an
application data buffer.

Fls_Erase Erases flash sector(s).

Fls_GetJobResult Returns the result of the last job.

Fls_GetStatus Returns the driver state.

Fls_Read Reads from flash memory.

Fls_SetMode Sets the flash driver’s operation mode.

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

52 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

Fls_Write Writes one or more complete flash pages.

 ⌋()

8.6.2 Optional Interfaces

This chapter defines all interfaces which are required to fulfill an optional functionality
of the module.

[SWS_Fee_00104] ⌈

API function Description

Det_ReportError Service to report development errors.

 ⌋()

8.6.3 Configurable interfaces

In this chapter all interfaces are listed where the target function could be configured.
The target function is usually a callback function. The names of this kind of interfaces
are not fixed because they are configurable.

Note: Depending on the implementation of the modules making up the NV memory
stack, callback routines invoked by the FEE module may be called on interrupt level.
The implementor of the module providing these routines therefore has to make sure
that their runtime is reasonably short, i.e. since callbacks may be propagated upward
through several software layers. Whether callback routines are allowable / feasible
on interrupt level depends on the project specific needs (reaction time) and
limitations (runtime in interrupt context). Therefore system design has to make sure
that the configuration of the involved modules meets those requirements.

[SWS_Fee_00098]

⌈

Service name: NvM_JobEndNotification

Syntax: void NvM_JobEndNotification(

 void

)

Sync/Async: true

Reentrancy: Don't care

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: --

 ⌋()

[SWS_Fee_00055] ⌈ The FEE module shall call the function defined in the

configuration parameter FeeNvmJobEndNotification upon successful end of an

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

53 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

asynchronous operation and after performing all necessary internal management
operations:

- Read job finished & OK
- Write job finished & OK & block marked as valid
- Erase job for immediate data finished & OK (see SWS_Fee_00067)

- Invalidation of memory block finished & OK ⌋()

The function defined in the configuration parameter FeeNvmJobEndNotification

shall be callable on interrupt level.

[SWS_Fee_00099]

⌈

Service name: NvM_JobErrorNotification

Syntax: void NvM_JobErrorNotification(

 void

)

Sync/Async: true

Reentrancy: Don't care

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: --

 ⌋()

[SWS_Fee_00056] ⌈The FEE module shall call the function defined in the

configuration parameter FeeNvmJobErrorNotification upon failure of an

asynchronous operation and after performing all necessary internal management and
error handling operations:

- Read job finished & failed (e.g. block invalid or inconsistent)
- Write job finished & failed & block marked as invalid
- Erase job for immediate data finished & failed (see SWS_Fee_00067)

- Invalidation of memory block finished & failed ⌋()

The function defined in the configuration parameter

FeeNvmJobErrorNotification shall be callable on interrupt level.

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

54 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

9 Sequence diagrams

Note: For a vendor specific library, the following sequence diagrams are valid only
insofar as they show the relation to the calling modules (Ecu_StateManager and
memory abstraction interface). The calling relations from a memory abstraction
module to an underlying driver are not relevant / binding for a vendor specific library.

9.1 Fee_Init

The following figure shows the call sequence for the Fee_Init routine. It is different

from that of all other services of this module as it is not called by the NVRAM
manager and not called via the memory abstraction interface.

 Figure 5: Sequence diagram of “Fee_Init” service

«module»

Fee

«module»

EcuM

«module»

SchM

alt

[synchronous initialization]

[asynchronous initialization]

loop

Initialization is finished within

Fee_Init (synchronous),

module status is set to

MEMIF_IDLE

Module initialization is

started within Fee_Init

(asynchronous), module

status set to

MEMIF_BUSY_INTERNAL

Module initialization ongoing,

module status stil l

MEMIF_BUSY_INTERNAL

Module initialization finished,

module status set to

MEMIF_IDLE

Fee_Init()

Fee_Init()

Fee_Init()

Fee_Init()

Fee_MainFunction()

Fee_MainFunction()

Fee_MainFunction()

Fee_MainFunction()

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

55 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

9.2 Fee_SetMode

The following figure shows exemplarily the call sequence for the Fee_SetMode

service. This sequence diagram also applies to the other synchronous services of

this module with exception of the Fee_Init routine (see above).

Figure 6: Sequence diagram of the “Fee_SetMode” service

9.3 Fee_Write

The following figure shows exemplarily the call sequence for the Fee_Write service.

This sequence diagram also applies to the other asynchronous services of this
module.

«module»

Fee

«module»

Fls

«module»

NvM

«module»

MemIf

MemIf_SetMode(MemIf_ModeType)

:Std_ReturnType

Fee_SetMode(MemIf_ModeType)

Fls_SetMode(MemIf_ModeType)

Fls_SetMode()

Fee_SetMode()

MemIf_SetMode()

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

56 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

Figure 7: Sequence diagram “Fee_Write”

«module»

Fee

«module»

Fls

«module»

NvM

«module»

MemIf

BSW Task (OS task

or cyclic call)

loop Fls_MainFunction

MemIf_Write(Std_ReturnType, uint8, uint16,

uint8*)

Fee_Write(Std_ReturnType, uint16,

uint8*)
Fls_Write(Std_ReturnType,

Fls_AddressType, const uint8*,

Fls_LengthType)

Fls_Write()
Fee_Write()

MemIf_Write()

Fls_MainFunction()

Fls_MainFunction()

Fls_MainFunction()

Fee_JobEndNotification()

NvM_JobEndNotification()

NvM_JobEndNotification()

Fee_JobEndNotification()

Fls_MainFunction()

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

57 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

9.4 Fee_Cancel

The following figure shows as an example the call sequence for a canceled

Fee_Write service and a subsequent new Fee_Write request. This sequence

diagram shows that Fee_Cancel is asynchronous w.r.t. the underlying hardware

while itself being synchronous.

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

58 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

Figure 8: Sequence diagram „Fee_Cancel“

«module»

Fee::Fee

«module»

Fls::Fls

«module»

MemIf::MemIf

BSW Task (OS task

or cyclic call)

«module»

NvM::NvM

«Peripheral»

Hardware::Flash

Memory

check if hardware is

free (idle);

if so, issue first write

command

Now the flash hardware

is performing the

requested write

operation

loop Fls_MainFunction

check HW status,

check job status,

if HW is finished and

job is not finished issue

next write command

alt request pending

[no further request until next main function cycle]

[request issued before next main function cycle is due]

no job pending,

Fls_MainFunction does

nothing

check if hardware is

free (idle);

if so, issue first write

command

The last requested

write operation might

sti l l be running in the

hardware

check HW status,

check job status,

if HW is finished and

job is not finished issue

next write command

The last requested

write operation might

sti l l be running in the

hardware

Fls_Cancel resets

module internal job

variables

The last requested

write operation might

sti l l be running in the

hardware

MemIf_Write(uint8, uint16, uint8*) :

Std_ReturnType

Fee_Write(uint16, uint8*) :

Std_ReturnType

Fls_Write(Fls_AddressType, const uint8*,

Fls_LengthType) :Std_ReturnType

Fls_Write()

Fee_Write()

MemIf_Write()

Fls_MainFunction(void)

Fls_MainFunction()

MemIf_Cancel(DeviceIndex)

Fee_Cancel(void)

Fls_Cancel(void)

Fee_JobEndNotification(void)

NvM_JobErrorNotification()

NvM_JobErrorNotification()

Fee_JobEndNotification()

Fls_Cancel()

Fee_Cancel()

MemIf_Cancel()

Fls_MainFunction(void)

Fls_MainFunction()

MemIf_Write(uint8, uint16, uint8*) :

Std_ReturnType

Fee_Write(uint16, uint8*) :

Std_ReturnType,

Fls_Write(Fls_AddressType, const uint8*,

Fls_LengthType) :Std_ReturnType

Fls_Write()

Fee_Write()

MemIf_Write()

Fls_MainFunction(void)

Fls_MainFunction()

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

59 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

10 Configuration specification

10.1 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed
meanings of the parameters describe Chapters 7 and Chapter 8.

10.1.1 Variants

[SWS_Fee_00167] ⌈ The FEE module shall support (only) the following configuration

variants:

 VARIANT-PRE-COMPILE

Only parameters with “Pre-compile time” configuration are allowed in this

variant. ⌋()

10.1.2 Fee

SWS Item ECUC_Fee_00154 :

Module Name Fee

Module Description Configuration of the Fee (Flash EEPROM Emulation) module.

Included Containers

Container Name Multiplicity Scope / Dependency

FeeBlockConfiguration 1..*
Configuration of block specific parameters for the Flash
EEPROM Emulation module.

FeeGeneral 1
Container for general parameters. These parameters are not
specific to a block.

FeePublishedInformation 1

Additional published parameters not covered by
CommonPublishedInformation container.
Note that these parameters do not have any configuration
class setting, since they are published information.

10.1.3 FeeGeneral

SWS Item ECUC_Fee_00039 :

Container Name FeeGeneral{FEE_ModuleConfiguration}

Description
Container for general parameters. These parameters are not specific to a
block.

Configuration Parameters

SWS Item ECUC_Fee_00111 :

Name

FeeDevErrorDetect {FEE_DEV_ERROR_DETECT}

Description Pre-processor switch to enable and disable development error detection.

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

60 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

true: Development error detection enabled. false: Development error
detection disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Fee_00152 : (Obsolete)

Name

FeeIndex

Description This parameter is obsolete and will be removed in future.
Specifies the InstanceId of this module instance. If only one instance is
present it shall have the Id 0.
Tags:
atp.Status=obsolete
atp.StatusRevisionBegin=4.1.1

Multiplicity 0..1

Type EcucIntegerParamDef

Range 0 .. 254

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Fee_00153 :

Name

FeeMainFunctionPeriod {FEE_MAIN_FUNCTION_PERIOD}

Description The period between successive calls to the main function in seconds.

Multiplicity 1

Type EcucFloatParamDef

Range 1E-7 .. INF

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Fee_00112 :

Name

FeeNvmJobEndNotification {FEE_NVM_JOB_END_NOTIFICATION}

Description Mapped to the job end notification routine provided by the upper layer
module (NvM_JobEndNotification).

Multiplicity 0..1

Type EcucFunctionNameDef

Default value --

maxLength --

minLength --

regularExpression --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Fee_00113 :

Name

FeeNvmJobErrorNotification {FEE_NVM_JOB_ERROR_NOTIFICATION}

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

61 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

Description Mapped to the job error notification routine provided by the upper layer
module (NvM_JobErrorNotification).

Multiplicity 0..1

Type EcucFunctionNameDef

Default value --

maxLength --

minLength --

regularExpression --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Fee_00114 :

Name

FeePollingMode {FEE_POLLING_MODE}

Description Pre-processor switch to enable and disable the polling mode for this
module.
true: Polling mode enabled, callback functions (provided to FLS module)
disabled.
false: Polling mode disabled, callback functions (provided to FLS module)
enabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Fee_00119 :

Name

FeeSetModeSupported {FEE_SET_MODE_SUPPORTED}

Description Compiler switch to enable/disable the 'SetMode' functionality of the FEE
module.
TRUE: SetMode functionality supported / code present, FALSE: SetMode
functionality not supported / code not present.
Note: This configuration setting has to be consistent with that of all
underlying flash device drivers (configuration parameter FlsSetModeApi).

Multiplicity 1

Type EcucBooleanParamDef

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Fee_00115 :

Name

FeeVersionInfoApi {FEE_VERSION_INFO_API}

Description Pre-processor switch to enable / disable the API to read out the modules
version information.
true: Version info API enabled. false: Version info API disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

62 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

Scope / Dependency scope: local

SWS Item ECUC_Fee_00116 :

Name

FeeVirtualPageSize {FEE_VIRTUAL_PAGE_SIZE}

Description The size in bytes to which logical blocks shall be aligned.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 65535

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

No Included Containers

10.1.4 FeeBlockConfiguration

SWS Item ECUC_Fee_00040 :

Container Name FeeBlockConfiguration{FEE_BlockConfiguration}

Description
Configuration of block specific parameters for the Flash EEPROM
Emulation module.

Configuration Parameters

SWS Item ECUC_Fee_00150 :

Name

FeeBlockNumber {FEE_BLOCK_NUMBER}

Description Block identifier (handle).
0x0000 and 0xFFFF shall not be used for block numbers (see FEE006).
Range: min = 2^NVM_DATASET_SELECTION_BITS max = 0xFFFF -
2^NVM_DATASET_SELECTION_BITS
Note: Depending on the number of bits set aside for dataset selection
several other block numbers shall also be left out to ease implementation.

Multiplicity 1

Type EcucIntegerParamDef (Symbolic Name generated for this parameter)

Range 1 .. 65534

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Fee_00148 :

Name

FeeBlockSize {FEE_BLOCK_SIZE}

Description Size of a logical block in bytes.

Multiplicity 1

Type EcucIntegerParamDef

Range 1 .. 65535

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Fee_00151 :

Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

63 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation

- AUTOSAR confidential -

Name

FeeImmediateData {FEE_IMMEDIATE_DATA}

Description Marker for high priority data.
true: Block contains immediate data. false: Block does not contain
immediate data.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_Fee_00110 :

Name

FeeNumberOfWriteCycles {FEE_NUMBER_OF_WRITE_CYCLES}

Description Number of write cycles required for this block.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 4294967295

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Fee_00149 :

Name

FeeDeviceIndex {FEE_DEVICE_INDEX}

Description Device index (handle).
Range: 0 .. 254 (0xFF reserved for broadcast call to GetStatus function).

Multiplicity 1

Type Symbolic name reference to [FlsGeneral]

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local
dependency: This information is needed by the NVRAM manager
respectively the Memory Abstraction Interface to address a certain logical
block. It is listed in this specification to give a complete overview over all
block related configuration parameters.

No Included Containers

 Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

64 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation.doc

 - AUTOSAR confidential -

10.2 Published Information[

10.2.1 FeePublishedInformation

SWS Item ECUC_Fee_00043 :

Container Name FeePublishedInformation

Description

Additional published parameters not covered by
CommonPublishedInformation container.
Note that these parameters do not have any configuration class setting,
since they are published information.

Configuration Parameters

SWS Item ECUC_Fee_00117 :

Name

FeeBlockOverhead {FEE_BLOCK_OVERHEAD}

Description Management overhead per logical block in bytes.
Note: If the management overhead depends on the block size or block
location a formula has to be provided that allows the configurator to
calculate the management overhead correctly.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 65535

Default value --

ConfigurationClass Published Information X All Variants

Scope / Dependency scope: local

SWS Item ECUC_Fee_00070 : (Obsolete)

Name

FeeMaximumBlockingTime {FEE_MAXIMUM_BLOCKING_TIME}

Description This parameter is obsolete and will be removed in future.
The maximum time the FEE module's API routines shall be blocked
(delayed) by internal operations.
Note: Internal operations in that case means operations that are not
explicitly invoked from the upper layer module but need to be handled for
proper operation of this module or the underlying memory driver.
Tags:
atp.Status=obsolete
atp.StatusRevisionBegin=4.1.1

Multiplicity 0..1

Type EcucFloatParamDef

Range 0 .. INF

Default value --

ConfigurationClass Published Information X All Variants

Scope / Dependency scope: local

SWS Item ECUC_Fee_00118 :

Name

FeePageOverhead {FEE_PAGE_OVERHEAD}

Description Management overhead per page in bytes.
Note: If the management overhead depends on the block size or block
location a formula has to be provided that allows the configurator to
calculate the management overhead correctly.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 .. 65535

Default value --

 Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

65 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation.doc

 - AUTOSAR confidential -

ConfigurationClass Published Information X All Variants

Scope / Dependency scope: local

No Included Containers

 Specification of Flash EEPROM Emulation
 V3.1.1

R4.1 Rev 3

66 of 66 Document ID 286: AUTOSAR_SWS_FlashEEPROMEmulation.doc

 - AUTOSAR confidential -

11 Not applicable requirements

[SWS_Fee_00999] ⌈ These requirements are not applicable to this specification. ⌋

(BWS00344, BWS00404, BWS00405, BWS171, BWS170, BWS00380, BWS00412,
BWS00398, BWS00399, BWS00400, BWS00375, BWS00416, BWS168,
BWS00423, BWS00424, BWS00425, BWS00426, BWS00427, BWS00428,
BWS00429, BWS00431, BWS00432, BWS00433, BWS00434, BWS00336,
BWS00339, BWS00421, BWS00422, BWS00420, BWS00417, BWS00323,
BWS161, BWS00324, BWS005, BWS00415, BWS164, BWS00326, BWS00342,
BWS160, BWS007, BWS00300, BWS00347, BWS00307, BWS00314, BWS00348,
BWS00353, BWS00361, BWS00302, BWS00328, BWS00312, BWS006,
BWS00304, BWS00355, BWS00378, BWS00306, BWS00308, BWS00309,
BWS00371, BWS00359, BWS00360, BWS00330, BWS009, BWS00401, BWS172,
BWS010, BWS00333, BWS00321, BWS00341, BWS00334, BWS12263,
BWS12056, BWS12267, BWS12125, BWS12163, BWS12058, BWS12059,
BWS12060, BWS12461, BWS12462, BWS12463, BWS12062, BWS12068,
BWS12069, BWS157, BWS12155, BWS12063, BWS12129, BWS12064,
BWS12067, BWS12077, BWS12078, BWS12092, BWS12265, BWS12081,
BWS14003, BWS14017)

	1 Introduction and functional overview
	2 Acronyms and abbreviations
	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms
	3.3 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 Header file structure

	6 Requirements traceability
	7 Functional specification
	7.1 General behavior
	7.1.1 Addressing scheme and segmentation
	7.1.2 Address calculation
	7.1.3 Limitation of erase cycles
	7.1.4 Handling of “immediate” data
	7.1.5 Managing block correctness information

	7.2 Error classification
	7.3 Support for Debugging

	8 API specification
	8.1 Imported Types
	8.2 Type definitions
	8.3 Function definitions
	8.3.1 Fee_Init
	8.3.2 Fee_SetMode
	8.3.3 Fee_Read
	8.3.4 Fee_Write
	8.3.5 Fee_Cancel
	8.3.6 Fee_GetStatus
	8.3.7 Fee_GetJobResult
	8.3.8 Fee_InvalidateBlock
	8.3.9 Fee_GetVersionInfo
	8.3.10 Fee_EraseImmediateBlock

	8.4 Call-back notifications
	8.4.1 Fee_JobEndNotification
	8.4.2 Fee_JobErrorNotification

	8.5 Scheduled functions
	8.5.1 Fee_MainFunction

	8.6 Expected Interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.3 Configurable interfaces

	9 Sequence diagrams
	9.1 Fee_Init
	9.2 Fee_SetMode
	9.3 Fee_Write
	9.4 Fee_Cancel

	10 Configuration specification
	10.1 Containers and configuration parameters
	10.1.1 Variants
	10.1.2 Fee
	10.1.3 FeeGeneral
	10.1.4 FeeBlockConfiguration

	10.2 Published Information[
	10.2.1 FeePublishedInformation

	11 Not applicable requirements

