
 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

1 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Document Title Specification of ECU State
Manager with fixed state
machine

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 444

Document Classification Standard

Document Version 1.5.0

Document Status Final

Part of Release 4.1

Revision 3

Document Change History
Date Version Changed by Change Description

31.03.2014 1.5.0 AUTOSAR
Release
Management

 Changed error handling in EcuM

 Starting and stopping of WakeupSources
on CAN now involves CanSM

 Editorial changes

31.10.2013 1.4.0 AUTOSAR
Release
Management

 Changed behavior of
EcuM_KillAllRUNRequests

 Added API to kill POST_RUN requests

 Reworked error classification

 Editorial changes

 Removed chapter(s) on change
documentationf

28.02.2013 1.3.0 AUTOSAR
Administration

 Reworked according to the new
SWS_BSWGeneral

 Reworked Production Errors

 Fixed wakeup indication to ComM
channels if several pending events
undergoing

 Extended and fixed configuration classes
and -variants

 Added service interface blueprints

06.12.2011 1.2.0 AUTOSAR
Administration

 Re-integrated EcuM_GetState

 EcuM_KillAllRUNRequests does no
longer clear requests POST_RUN

 EcuM_RequestPOST_RUN now accepts
new requests during shutdown

 Fixed include structure (Don’t include
Rte.h but Rte_EcuM.h)

 EcuMEnableDefBehaviour is deprecated
for EcuM fixed

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

2 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Document Change History
Date Version Changed by Change Description

28.10.2010 1.1.0 AUTOSAR
Administration

Bugfixing:

 Removed obsolete interfaces (e.g.
CanSM_EcuM)

 Deleted interface to WdgM
(SWS_EcuM_00861)

 Added DET errors
(EcuM_GetVersionInfo,
EcuM_GetBootTarget,
EcuM_GetShutdownTarget)

 Changed polling mechanism in SLEEP
SEQUENCE II state

 Fixed transition from GOSLEEP state to
WAKEUP Il state

 Defined binding character of the
Standardized AUTOSAR Interfaces
(EcuM_StateRequest, EcuM_CurrentMode,
EcuM_ShutdownTarget,
EcuM_BootTarget)

Clarification:

 Clarification under which circumstances
the error hook will be called

 Added note for EcuM_SelectBootTarget /
EcuM_GetBootTarget because of the
default boot target

 Added Appendix A (help the application
software programmer to understand when
to request which mode)

Added note for exit from GO SLEEP state

07.12.2009 1.0.0 AUTOSAR
Administration

Initial Release

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

3 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Disclaimer

This specification and the material contained in it, as released by AUTOSAR, is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only.
For any other purpose, no part of the specification may be utilized or reproduced, in
any form or by any means, without permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR specifications may contain exemplary items (exemplary reference
models, "use cases", and/or references to exemplary technical solutions, devices,
processes or software).

Any such exemplary items are contained in the specifications for illustration purposes
only, and they themselves are not part of the AUTOSAR Standard. Neither their
presence in such specifications, nor any later documentation of AUTOSAR
conformance of products actually implementing such exemplary items, imply that
intellectual property rights covering such exemplary items are licensed under the
same rules as applicable to the AUTOSAR Standard.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

4 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Table of Contents

1 Introduction .. 7

1.1 Functional Overview ... 7
1.2 Conventions Used in this Specification .. 9

2 Definitions and Acronyms .. 10

3 Related documentation.. 12

3.1 Input documents ... 12
3.2 Related standards and norms .. 12

3.3 Related AUTOSAR Software Specifications .. 12

4 Constraints and Assumptions .. 14

4.1 Limitations .. 14
4.2 Hardware Requirements .. 14

4.3 Applicability to car domains .. 14

5 Dependencies to other Modules .. 15

5.1 Mode Management Modules .. 15
5.2 SPAL Modules ... 16

5.3 Peripherals with Wake-up Capability .. 16
5.4 Operating System ... 17

5.5 Runtime Environment (RTE) .. 17
5.6 BSW Scheduler .. 17

5.7 NVRAM Manager ... 17
5.8 Diagnostic Event Manager ... 18
5.9 Network Management .. 18

5.10 Other Basic Software Modules ... 18
5.11 Software Components .. 18

5.12 File Structure .. 19

6 Requirements traceability .. 21

7 Functional Specification... 27

7.1 Main States of the ECU State Manager ... 27

7.2 Structural Description of the ECU State Manager 30
7.3 STARTUP State ... 34
7.4 RUN State .. 43

7.5 SHUTDOWN State ... 50
7.6 SLEEP State .. 59
7.7 WAKEUP State .. 64
7.8 Wake-up Validation Protocol .. 71
7.9 Time Triggered Increased Inoperation ... 77

7.10 Advanced Topics .. 78
7.11 Runtime Errors ... 80
7.12 Debug Support ... 81

8 API specification .. 82

8.1 Imported Types .. 82
8.2 Service Interfaces ... 83

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

5 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

8.3 Type definitions .. 97
8.4 Function Definitions .. 101
8.5 Scheduled Functions .. 116
8.6 Callback Definitions .. 117
8.7 Callout Definitions .. 120

8.8 Expected Interfaces .. 134

9 Sequence Charts ... 138

9.1 State Sequences .. 138
9.2 Wake-up Sequences .. 139

10 Configuration specification ... 161

10.1 Containers and configuration parameters .. 161
10.2 Variants. ... 161
10.3 Published Information ... 161

10.4 Configurable Parameters ... 161
10.5 Checking Configuration Consistency .. 187

List of Tables

Table 1 - Initialization Activities ... 36

Table 2 - Driver Initialization Details, Sample Configuration 42
Table 3 - Shutdown Activities ... 52
Table 4 – Wake-up Activities .. 66

Table 5 - Runtime Errors .. 80
Table 6 - Mandatory interfaces ... 135

Table 7 - Optional Interfaces .. 137

List of Figures

Figure 1 – Header file structure .. 20

Figure 2 – ECU Main States (top level diagram) .. 27

Figure 3 – Module Relationship (top level diagram) ... 32

Figure 4 – Startup Sequence (high level diagram) ... 34

Figure 5 – Init Sequence I (STARTUP I) .. 37

Figure 6 – Init Sequence II (STARTUP II)... 39

Figure 7 – RUN State Breakdown .. 43

Figure 8 – RUN State Sequence (high level diagram) .. 44

Figure 9 – RUN II State Sequence ... 46

Figure 10 – RUN III State Sequence .. 48

Figure 11 – Fine Structure of SHUTDOWN .. 50

Figure 12 – Shutdown Sequence (high level diagram) ... 51

Figure 13 – Deinitialization Sequence I (PREP SHUTDOWN) 53

Figure 14 – Deinitialization Sequence IIa (GOSLEEP) ... 56

Figure 15 – Deinitialization Sequence IIb (GO OFF I) .. 57

Figure 16 – Deinitialization Sequence III (GO OFF II) .. 58

Figure 17 – Sleep Sequence (high level diagram) .. 59

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

6 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Figure 18 – Sleep Sequence I .. 61

Figure 19 – Sleep Sequence II ... 63

Figure 20 – Wake-up Sequence (high level diagram) ... 65

Figure 21 – WAKEUP State Breakdown ... 65

Figure 22 – Wake-up Sequence I ... 67

Figure 23 – Wake-up Validation Sequence .. 68

Figure 24 – Activity Diagram of WAKEUP REACTION ... 69

Figure 25 – Wake-up Sequence II .. 70

Figure 26 – Wake up Validation Protocol ... 75

Figure 27 – Activity Diagram of TTII ... 78

Figure 28 – Selection of Boot Targets .. 78

Figure 29 – Activity chart for SW-C .. 86

Figure 30 – Mapping of Declared Modes to states of ECU State Manager Fixed
module ... 88

Figure 31 – GPT wake up by interrupt .. 141

Figure 32 – GPT wake up by polling ... 143

Figure 33 – ICU wake up by interrupt ... 145

Figure 34 – CAN transceiver wake up by interrupt ... 148

Figure 35 – CAN controller wake up by interrupt .. 148

Figure 36 – CAN controller or transceiver wake up by polling 149

Figure 37 – CAN wake up validation .. 152

Figure 38 – LIN transceiver wake up by interrupt ... 154

Figure 39 – LIN Controller wake up by Interrupt ... 155

Figure 40 – LIN controller or transceiver wake up by polling 156

Figure 41 – FlexRay transceiver wake up by interrupt .. 158

Figure 42 – FlexRay transceiver wake up by polling .. 159

Figure 43 – EcuM Fixed Containers ... 162

Figure 44 – EcuM Fixed Module Configuration ... 164

Figure 45 – Container EcuMGeneral .. 165

Figure 46 – Container EcuMFixedGeneral ... 167

Figure 47 – Container EcuMFixedConfiguration ... 170

Figure 48 – EcuM Default Shutdown Target ... 174

Figure 49 – EcuM Driver Init Item ... 178

Figure 50 – EcuM Fixed Init Lists ... 179

Figure 51 – EcuM Sleep Mode ... 181

Figure 52 – EcuM Wakeup Source ... 184

Figure 53 – EcuM Fixed User Config .. 185

Figure 54 – EcuM TTII .. 186

Figure 55 – BSW Configuration Steps .. 187

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

7 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

1 Introduction

There are actually two variants of AUTOSAR ECU management: flexible and fixed.
Fixed ECU management continues ECU management in the form of previous
AUTOSAR releases. Flexible ECU management extends the previous versions of the
ECU Manager.

The ECU State Manager module for flexible ECU State Management is specified in
[24]. This document specifies the ECU State Manager module for fixed ECU State
Management.

1.1 Functional Overview

The ECU State Manager is a basic software module (see [1]). It manages all aspects
of the ECU related to the OFF, RUN, and SLEEP states of that ECU and the
transitions (transient states) between these states like STARTUP and SHUTDOWN.
In detail, the ECU State Manager Fixed module

 is responsible for the initialization and de-initialization of all basic software
modules including OS and RTE,

 cooperates with the Communication Manager, and hence indirectly with
network management, to shut down the ECU when needed,

 manages all wake up events and configures the ECU for SLEEP when
requested.

In order to fulfill all these tasks, the ECU State Manager Fixed module provides some
important protocols:

 the RUN request protocol, which is needed to coordinate whether the ECU
must be kept alive or is ready to shut down,

 the wake up validation protocol to distinguish ‘real’ wake up events from
‘erratic’ ones,

 the time triggered increased inoperation protocol (TTII), which allows to put
the ECU into an increasingly energy saving sleep state over time.

These protocols were specified with the following underlying constraints:

 standardization at the API side, to allow applicability to all kinds of ECUs and
portability of AUTOSAR applications

 high degree of flexibility to the low side interface, mainly reached by a set of
callouts

 quick startup times

 consistent programming paradigm across all mode managing modules (rubber
band model1)

1
 As long as some entity requests run, the rubber band is stretched to the RUN state, and it snaps

back when it is released. Since there is only one state (namely the RUN state) to which the rubber
band applies, this term is not used any further in this specification. However, it is important to
understand that, if applied to resource managers, the result is a powerful and consistent concept for
enhancing state machines. The Communication Manager is a module which picks up the idea of the
resource manager and of the rubber band model and henceforce fits well into landscape spawn by the
ECU State Manager.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

8 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Summarizing all this, the ECU State Manager Fixed module will be one of the
principal state machines of an AUTOSAR compliant ECU, namely that one around
states with the highest priority: RUN, SLEEP, and OFF. However, it does not and
shall not in future contain functionality which might be related to terms like ‘vehicle
modes’, ‘error modes’, or any other kind of application related kind of states or
modes. These topics shall be addressed by other state machines (application mode
managers).

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

9 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

1.2 Conventions Used in this Specification

1.2.1 Font Faces

SWS_EcuM_00023 Requirements are tagged with an ID in bold font.

References to other documents or to other chapters within this document are printed
in italic.

Source code is printed in a Courier font.

Configuration Parameters are printed in Courier Italic.

STATE names are written in capital letters.

1.2.2 Figures

Figure X - Title (diagram type)

Figures are typically drawn in UML. To capture the hierarchical organization of the
UML diagrams, some diagrams are classified in the title (diagram type). The following
types are used:

 Top level
An entry diagram to the structural or behavioral domain

 High level
First degree of break down below the top level

 SUB-STATE
The diagram describes the behavior of the given sub-state, the diagram type
is the name of the sub-state

 no class
All other diagrams, typically detail information

In the present version of this documentation, there is only one top level diagram: The
main state machine, see Figure 2 – ECU Main States (top level diagram).
The next level is covered by high level diagrams. There are five high level sequence
diagrams:

Figure 4 – Startup Sequence (high level diagram)
Figure 8 – RUN State Sequence (high level diagram)
Figure 12 – Shutdown Sequence (high level diagram)
Figure 17 – Sleep Sequence (high level diagram)
Figure 20 – Wake-up Sequence (high level diagram)

These high level diagrams give an overview of the major activities in the main state
and explain how the state transitions occur. High level sequence diagrams always
start with a diagram reference to the preceding sequence and end with a diagram
reference to the following sequence.
High level diagrams are typically broken down into SUB-STATE diagrams. They
show details which are irrelevant at the high level.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

10 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

2 Definitions and Acronyms

Term Description

Inoperation An artificial word to describe the ECU when it is not operational, i.e. not
running. Comprises all meanings of off, sleeping, frozen, etc. Using this
definition is beneficial since it has no predefined meaning.

Shutdown Target The shutdown of an ECU may end up in different states, depending on
what application requires or desires for the next shutdown. By selecting a
shutdown target, the application can communicate its wishes to the ECU
State Manager. SLEEP, OFF, and RESET are shutdown targets.

Callout Within this document, the term ‘callout’ is used for function stubs which
can be filled by the system designer, usually at configuration time, with
the purpose to add functionality to the ECU State Manager. Callouts are
separated into two classes, where one class is optional to be filled. The
other class is mandatory and serves as a hardware abstraction layer.

Passive Wake up A wake up caused from an attached bus rather than an internal event
like a timer or sensor activity.

Post run Post run is the period from when the application detects a reason to start
the shutdown until the shutdown actually occurs. Typically this period
starts when all network communication is put to sleep and lasts until the
ECU is put to sleep.

Vital Data Any kind of data (RAM or NVRAM) that must stay consistent to ensure
correct operation of the ECU. E.g. stacks, important state variables, etc.

Wake up Event A physical event which causes a wake up. A CAN message or a toggling
IO line can be wake up events.
Similarly, the internal SW representation, e.g. an interrupt, may also be
called a wake up event.

Wake up Reason The wake up reason is the wakeup event being the actual cause of the
last wake up.

Wake up Source The peripheral or ECU component which deals with wake up events is
called a wake up source.

Mode A mode is a certain set of states of the various state machines that are
running in the vehicle that are relevant to a particular entity, an
application or the whole vehicle.

The EcuM Mode is visible to the application.
The EcuM Mode offers exactly the following options

 STARTUP

 RUN

 SLEEP

 WAKE_SLEEP

 POST_RUN

 SHUTDOWN

State States are not visible to the application but are used by the EcuM-
internal state machine that handels the Modes.

The EcuM defines also sub-states, which are also not visible to the
application (e.g. GO SLEEP, PREP SHUTDOWN, ...).

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

11 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Acronym Description

TTII Time-Triggered Increased Inoperation

BswM Basic Software Mode Manager

DEM Diagnostic Event Manager

DET Development Error Tracer

EcuM ECU Manager

GPT General Purpose Timer

ICU Input Capture Unit

MCU Microcontroller Unit

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

12 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

3 Related documentation

3.1 Input documents

[1] List of Basic Software Modules

AUTOSAR_TR_BSWModuleList.pdf

[2] Layered Software Architecture

AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf

[3] General Requirements on Basic Software Modules

AUTOSAR_SRS_BSWGeneral.pdf

[4] Requirements on Mode Management

AUTOSAR_SRS_ModeManagement.pdf

[5] General Specification of Basic Software Modules
AUTOSAR_SWS_BSWGeneral.pdf

3.2 Related standards and norms

None

3.3 Related AUTOSAR Software Specifications

[6] Glossary

AUTOSAR_TR_Glossary.pdf

[7] Specification of Communication Manager

AUTOSAR_SWS_ComManager.pdf

[8] Specification of Watchdog Manager

AUTOSAR_SWS_WatchdogManager.pdf

[9] Specification of CAN Interface

AUTOSAR_SWS_CANInterface.pdf

[10] Specification of LIN Interface

AUTOSAR_SWS_LINInterface.pdf

[11] Specification of FlexRay Interface

AUTOSAR_SWS_FlexRayInterface.pdf

[12] Specification of NVRAM Manager

AUTOSAR_SWS_NVRAMManager.pdf

[13] Specification of MCU Driver

AUTOSAR_SWS_MCUDriver.pdf

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

13 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

[14] Specification of SPI Handler/Driver

AUTOSAR_SWS_SPIHandlerDriver.pdf

[15] Specification of EEPROM Abstraction

AUTOSAR_SWS_EEPROMAbstraction.pdf

[16] Specification of Flash Driver

AUTOSAR_SWS_FlashDriver.pdf

[17] Specification of Operating System

AUTOSAR_SWS_OS.pdf

[18] Specification of RTE

AUTOSAR_SWS_RTE.pdf

[19] Specification of Diagnostic Event Manager

AUTOSAR_SWS_DiagnosticEventManager.pdf

[20] Specification of Development Error Tracer

AUTOSAR_SWS_DevelopmentErrorTracer.pdf

[21] Specification of CAN Transceiver Driver

AUTOSAR_SWS_CANTransceiverDriver.pdf

[22] Specification of C Implementation Rules

AUTOSAR_TR_CImplementationRules.pdf

[23] Basic Software Module Description Template,
AUTOSAR_TPS_BSWModuleDescriptionTemplate.pdf

[24] Specification of ECU Manager
AUTOSAR_SWS_ECUStateManager.pdf

[25] Specification of LIN Driver

AUTOSAR_SWS_LINDriver.pdf

[26] Specification of ECU Configuration

AUTOSAR_TPS_ECUConfiguration.pdf

AUTOSAR provides a General Specification on Basic Software modules [5] (SWS
BSW General), which is also valid for ECU State Manager Fixed.

Thus, the specification SWS BSW General shall be considered as additional and
required specification for ECU State Manager Fixed.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

14 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

4 Constraints and Assumptions

4.1 Limitations

Requirement: Applications (SW-C’s) shall not assume that it is actually possible to
switch off ECUs (i.e. power consumption is zero).
Rationale: The shutdown target OFF requires special hardware on the ECU so that it
can actually be reached (e.g. a power hold circuit). If this hardware is not available,
this specification proposes to issue a reset instead but other default behaviors can be
defined.

Requirement: This specification of the ECU State Manager Fixed module does not
support Multicore.

4.2 Hardware Requirements

Requirement: ECU RAM shall keep contents of vital data while ECU clock is
switched off.
Rationale: This requirement is needed to implement sleep states as required in 7.6
SLEEP State.

Requirement: ECU RAM shall provide a no-init area which keeps contents over a
reset cycle.

Requirement: The no-init area in ECU RAM shall only be initialized on a power on
event (clamp 30).

Requirement: The system designer is responsible for establishing an initialization
strategy for the no-init area in ECU RAM.

4.3 Applicability to car domains

The ECU State Manager Fixed module is applicable to all car domains.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

15 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

5 Dependencies to other Modules

The following sections outline the important relationships to other modules. They also
contain some requirements that these modules have to fulfill to collaborate correctly
with ECU State Manager.

5.1 Mode Management Modules

5.1.1 Communication Manager

The Communication Manager is a so-called ‘Resource Manager’2 and thus requests
RUN state. Resource Managers are described in chapter 7.2.3 Resource Managers.

The Communication Manager requests RUN state when it is leaving the ‘no
communication’ state and it releases RUN when it is returning to this state.

5.1.2 Watchdog Manager

The Watchdog Manager is initialized by the ECU State Manager.

The ECU State Manager Fixed module does not set any Watchdog Manager Mode;
this is considered to be handled via the BSW Mode Manager.

The ECU State Manager Fixed module is one of the Supervised Entities of the
Watchdog Manager.

5.1.3 Basic Software Mode Manager

[SWS_EcuMf_00013] ⌈The ECU State Manager Fixed module shall run in parallel to

the Basic Software Mode Manager.⌋()

[SWS_EcuMf_00014] ⌈The ECU State Manager Fixed module shall indicate the

current ECU Operation Mode to the BswM (BswM_EcuM_CurrentState).⌋()

[SWS_EcuMf_00015] ⌈The ECU State Manager Fixed module shall indicate the

current state of a wake up source to the BswM (BswM_EcuM_CurrentWakeup).⌋()

[SWS_EcuMf_00016] ⌈The ECU State Manager Fixed module shall initialize the

BswM (BswM_Init)

⌋()

[SWS_EcuMf_00017] ⌈The ECU State Manager Fixed module shall de-initialize the

BswM (BswM_Deinit).

2
 'Resource Manager' is invented in this specification to classify BSW modules which interact with Ecu

State Manager.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

16 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

⌋()

5.2 SPAL Modules

5.2.1 MCU Driver

The MCU Driver is the first basic software module initialized by the ECU State

Manager. However, returning MCU_Init, the MCU and the MCU driver are not

necessarily fully initialized. Additional, MCU specific steps may be needed. The ECU
State Manager Fixed module provides callouts where this additional code can be
placed, see chapter 8.7.2. For details on how this code should look like refer to [13].

5.2.2 Driver Dependencies and Initialization Order

BSW drivers may depend on each other. A typical example is the watchdog driver
which needs the SPI driver to access an external watchdog. This means on the one
hand, that drivers may be stacked (not relevant to the ECU State Manager Fixed
module) but on the other hand that the underlying driver needs to be initialized first.

The system designer is responsible for defining the initialization order of the BSW
drivers at configuration time.

5.3 Peripherals with Wake-up Capability

Wake up sources have to be handled and encapsulated by drivers. The
implementation must follow the protocols and requirements presented in this
document to ensure a seamless integration into AUTOSAR BSW.
To support the wake up and validation protocol, the driver has to fulfill the following
requirements:

The driver has to notify ECU State Manager Fixed module by invoking the
EcuM_SetWakeupEvent service once when a wake up event is detected. The same
service should also be invoked during initialization of the driver if a pending wake up
event is detected during the initialization.

The driver shall provide an explicit service to put the wake up source to sleep. This
service shall put the wake up source into an energy saving and inert operation mode
and re-arm the wake up notification mechanism.

If the wake up source is capable of generating faulty events3 then the driver or the
software stack consuming the driver or another appropriate BSW module shall either
provide a validation callout for the wake up event under validation or directly call the
wake up validation service of the ECU State Manager. If validation is not necessary,
then this requirement is not applicable for the according wake up source.

3
 Faulty wakeup events may result from EMV spikes, bouncing effects on wakeup lines etc.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

17 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

5.4 Operating System

 ECU State Manager Fixed module starts and shuts down the AUTOSAR OS. It also
defines the protocol how control is handed over to the OS after its startup and how
control is handed back to the ECU State Manager Fixed module when the OS is shut
down.

5.5 Runtime Environment (RTE)

Requirement: The initialization and de-initialization functions of the RTE are assumed
to return.

The ECU State Manager Fixed module shall use the mode port feature of the RTE to
notify about mode changes. See chapter 8.2 Service Interfaces for more information.

5.6 BSW Scheduler

The ECU State Manager Fixed module has a twofold relation with the BSW
Scheduler. It initializes the BSW Scheduler and it also contains scheduled functions.
EcuM_MainFunction is scheduled to periodically evaluate run requests.

5.7 NVRAM Manager

The following operations of the NVRAM Manager [12] are executed by the ECU State
Manager Fixed module .

 Initialization of NVRAM Manager after a power up or reset of the ECU

 Read-back of non-volatile data from NVRAM to ECU RAM during the
initialization of the ECU

 In case of SLEEP state, storing of non-volatile data to NVRAM may
prematurely be terminated upon wakeup events to ensure a quick restart of
the ECU.

The ECU State Manager Fixed module does not read NVRAM during the wake up
sequence since RAM contents is assumed to be still valid from the previous cycle. To
verify this, the ECU State Manager Fixed module offers services to check RAM
integrity4. The ECU State Manager Fixed module does only read NVRAM during the
STARTUP phase.

The NVRAM Manager shall call the callbacks defined in chapter 8.6.1 Callbacks from
NVRAM Manager to notify the ECU State Manager Fixed module about job status.

4
 See 8.7.4.6 EcuM_GenerateRamHash and 8.7.5.1 EcuM_CheckRamHash for details.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

18 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

5.8 Diagnostic Event Manager

The DEM module requires the NVRAM Manager module to be operational. The DEM
module is aware if the NVRAM Manager module is operational or provides limited
functionality. These differences are handled within the DEM module.

5.9 Network Management
[SWS_EcuMf_00022] ⌈The initialization process has to guarantee that NM is
initialized, so the ECU is not set into sleep mode if AUTOSAR CAN Generic NM is
not initialized.

⌋()

[SWS_EcuMf_00023] ⌈Initialization of NM is only allowed after the initialization of the

respective bus interface. ⌋()

Implementation hint: The integrator may call Nm_Init inside the callout

EcuM_AL_DriverInitThree.

5.10 Other Basic Software Modules

[SWS_EcuMf_00028] ⌈The integrator shall place initialization code for Basic
Software Modules not already mentioned in this specification in the callouts
EcuM_AL_DriverInitZero, EcuM_AL_DriverInitOne, EcuM_AL_DriverInitTwo, or
EcuM_AL_DriverInitThree

⌋()

5.11 Software Components

The ECU State Manager Fixed module handles two ECU-wide settings/variables:

 OS application modes5

 Setting of shutdown targets

It is assumed in this specification that these properties are set by the application
(through AUTOSAR ports, represented by service interfaces), typically by some ECU
specific part of the application. The ECU State Manager Fixed module does not
prohibit an application overriding settings of other applications. The policy must be
defined at a higher level.

The following two requirements formulate an attempt to resolve this issue.

The SW-C Template may specify a field whether the SW-C sets the shutdown target.

5
 In this context, ‘application mode’ is a technical term which is defined by the AUTOSAR OS

specification.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

19 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

The generation tool may only allow configuration that have only one SW-C accessing
shutdown target.

5.12 File Structure

5.12.1 Code file structure

[SWS_EcuM_02990] ⌈The implementation of the ECU State Manager Fixed module

shall provide one file EcuM_Callout_Stubs.c containing the stubs of the defined

callouts. ⌋()

Whether this file EcuM_Callout_Stubs.c has to be modified directly or includes

other generated files is specific to the implementation.

5.12.2 Header file structure

[SWS_EcuM_00991] ⌈The implementation of the ECU State Manager Fixed module

shall provide one file EcuM.h containing fix type declarations, forward declaration to

generated types, and function prototypes. ⌋()

[SWS_EcuM_02992] ⌈The implementation of the ECU State Manager Fixed module

shall provide one file EcuM_Generated_Types.h containing generated types and

fulfilling the forward declarations from EcuM.h. ⌋()

[SWS_EcuM_02677] ⌈It shall only be necessary to include EcuM_Cbk.h to interact

with the callbacks and callouts of the ECU State Manager. ⌋()

[SWS_EcuM_00676] ⌈It shall only be necessary to include EcuM.h to use all

services of the ECU State Manager. ⌋()

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

20 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Figure 1 – Header file structure

[SWS_EcuM_02875] ⌈The ECU State Manager Fixed module shall include the

Dem.h file. By this inclusion the APIs to report errors as well as the required Event Id

symbols are included. This specification defines the name of the Event Id symbols
which are provided by XML to the DEM configuration tool. The DEM configuration
tool assigns ECU dependent values to the Event Id symbols and publishes the

symbols in Dem_IntErrId.h. ⌋()

Also refer to chapter 8.8 Expected Interfaces for dependencies to other modules.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

21 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

6 Requirements traceability

Document: General Requirements on Basic Software Modules [3]

Requirement Satisfied by

[SRS_BSW_00344] Reference to link-time
configuration

10.2 Variants

EcuM does not define configuration sets but
references the init configuration, e.g. for driver
initialization

[SRS_BSW_00404] Reference to post build time
configuration

[SRS_BSW_00405] Reference to multiple
configuration sets

[SRS_BSW_00345] Pre-compile-time
configuration

10.4 Configurable Parameters

5.12 File Structure

[SRS_BSW_00159] Tool-based configuration not applicable
(EcuM does not specify the configuration tool)

[SRS_BSW_00167] Static configuration checking 10.4 Configurable Parameters

[SRS_BSW_00171] Configurability of optional
functionality

10.4 Configurable Parameters

[SRS_BSW_00380] Separate C-files for
configuration parameters

5.12 File Structure

[SRS_BSW_00419] Separate C-files for pre-
compile-time configuration
parameters

[SRS_BSW_00381] Separate configuration
header files for pre-compile-
time parameters

[SRS_BSW_00412] Separate H-file for
configuration parameters

[SRS_BSW_00383] List dependencies to other
configuration files

10.4 Configurable Parameters

[SRS_BSW_00384] List dependencies to other
modules

5 Dependencies to other Modules

8.8Expected Interfaces

[SRS_BSW_00387] Specify the configuration
class of a callback function

8.6 Callback Definitions

[SRS_BSW_00388]
-
[SRS_BSW_00400]

 10.4 Configurable Parameters

[SRS_BSW_00402] Published information 10.4 Configurable Parameters

[SRS_BSW_00375] Notification of wake up
reason

8.4.4 Wake up

[SRS_BSW_00101] Initialization interface 8.4.2.1 EcuM_Init
[SRS_BSW_00416] Sequence of initialization SWS_EcuM_02559

[SRS_BSW_00406] Check module initialization not applicable
(EcuM initializes the BSW, hence EcuM is
always initialized from the point of view of any
other BSW module.)

[SRS_BSW_00435] Header File Structure for the
Basic Software Scheduler

SWS_EcuM_00862

[SRS_BSW_00436] Module Header File Structure
for the Basic Software
Memory Mapping

SWS_EcuM_00862

[SRS_BSW_00168] Diagnostic Interface of SW
components

not applicable
(EcuM has no testing requirements)

[SRS_BSW_00407] Function to read out
published parameters

8.4.1.1 EcuM_GetVersionInfo

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

22 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

[SRS_BSW_00423] Usage of SW-C template to
describe BSW modules with
AUTOSAR interfaces

8.2 Service Interfaces

[SRS_BSW_00424] BSW main processing
function task allocation

Implementation of EcuM_MainFunction

according to this specification does not require
extended task mechanisms.

[SRS_BSW_00425] Trigger conditions for
schedulable objects

8.5.1 EcuM_MainFunction

[SRS_BSW_00426] Exclusive areas in BSW
modules

not applicable
(EcuM does not specify directly accessible global
data.)

[SRS_BSW_00427] ISR description for BSW
modules

not applicable
(EcuM does not specify ISRs.)

[SRS_BSW_00428] Execution order
dependencies of main
processing functions

There are no requirements of this sort.

[SRS_BSW_00429] Restricted BSW OS
functionality access

EcuM does not use any other than the allowed
OS services.

[BSW00431] The BSW Scheduler module
implements task bodies

EcuM does not define any task body.

[SRS_BSW_00432] Modules should have
separated main processing
functions for a read/receive
and write/transmit data path

not applicable
(EcuM does not specify RxTx functionality.)

[SRS_BSW_00433] Calling of main processing
functions

EcuM does not call any main processing
function.

[BSW00434] The Schedule Module shall
provide an API for exclusive
areas

not applicable
(This is not an EcuM requirement)

[SRS_BSW_00336] Shutdown interface 8.4.2.3 EcuM_Shutdown

Fault Operation and Error Detection

[SRS_BSW_00337] Classification of errors Table 5 - Error Classification

[SRS_BSW_00338] Detection and reporting of
development errors

Table 5 - Error Classification

[SRS_BSW_00369] Do not return development
error codes via API

8 API specification

[SRS_BSW_00339] Reporting of production
relevant error statuses

SWS_EcuM_02759

[SRS_BSW_00417] Reporting of Error Events by
Non-Basic Software

not applicable

[SRS_BSW_00323] API parameter checking 18.9 API Parameter Checking

[SRS_BSW_00409] Header files for production
code error IDs

5.12 File Structure

[SRS_BSW_00385] List possible error
notifications

Table 5 - Error Classification

[SRS_BSW_00386] Configuration for detecting
errors

7.11 Error Classification

[SRS_BSW_00161] Microcontroller abstraction not applicable
(Requirements related to layered software
architecture are reflected by the EcuM SRS)

[SRS_BSW_00162] ECU layout abstraction

[SRS_BSW_00005] No hard coded horizontal
interfaces within MCAL

[SRS_BSW_00415] User dependent include files not applicable
(EcuM does not define user specific functionality)

[SRS_BSW_00164] Implementation of ISRs not applicable
(EcuM does not specify ISRs.) [SRS_BSW_00325] Runtime of ISRs

[SRS_BSW_00326] Transition from ISRs to OS
task

[SRS_BSW_00342] Usage of source code and 5.12 File Structure

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

23 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

object code.

[SRS_BSW_00343] Specification and
configuration of time

10.4 Configurable Parameters

[SRS_BSW_00160] Human-readable
configuration data

not applicable
(This specification does not define the
configuration file)

[SRS_BSW_00007] HIS MISRA C The API definition complies with MISRA C.

8 API specification

[SRS_BSW_00300] Module naming conventions. 5.12 File Structure

[SRS_BSW_00413] Accessing instances of BSW
modules

not applicable
(EcuM defines only one instance.)

[SRS_BSW_00347] Naming separation of
different instances of BSW
drivers

[SRS_BSW_00305] Self-defined data types
naming conventions

8.3 Type definitions

[SRS_BSW_00307] Global variables naming
convention

not applicable
(EcuM does not specify global variables.)

[SRS_BSW_00310] API naming conventions 8 API specification

[SRS_BSW_00373] Main processing function
naming convention

8.5.1 EcuM_MainFunction

[SRS_BSW_00327] Error values naming
convention

Table 5 - Error Classification

[SRS_BSW_00335] Status values naming
convention

8.3 Type definitions

[SRS_BSW_00350] Development error detection
keyword

10.4 Configurable Parameters

[SRS_BSW_00408] Configuration parameter
naming convention

10.4 Configurable Parameters

[SRS_BSW_00410] Compiler switches shall have
defined values

not applicable
(This specification does not define compiler
switchers)

[SRS_BSW_00411] Get version info keyword 10.4 Configurable Parameters

[SRS_BSW_00346] Basic set of module files 5.12 File Structure

[SRS_BSW_00158] Separation of configuration
from implementation

5.12 File Structure

[SRS_BSW_00314] Separation of interrupt frames
from service routines

not applicable
(EcuM does not specify ISRs.)

[SRS_BSW_00370] Separation of callback
interface from API

8 API specification

[SRS_BSW_00450] Main function processing for
uninitialized module

8.5.1 EcuM_MainFunction

Standard Header Files

[SRS_BSW_00348] Standard header type not applicable
(EcuM does not define standard types)

[SRS_BSW_00353] Platform specific type header not applicable
(EcuM is specified platform independent)

[SRS_BSW_00361] Compiler specific language
extension header

not applicable
(EcuM does not define language extensions)

[SRS_BSW_00301] Limited import information 8.1 Imported Types

[SRS_BSW_00302] Limited export information 8 API specification

[SRS_BSW_00328] Avoid duplication of code Not applicable
(Requirement to implementation)

[SRS_BSW_00312] Shared code shall be re-
entrant

8 API specification

[SRS_BSW_00006] Platform independency 8 API specification

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

24 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

[SRS_BSW_00357] Standard API return type 8 API specification

[SRS_BSW_00377] Module specific API return
types

8 API specification

[SRS_BSW_00304] AUTOSAR integer data types 8 API specification

[SRS_BSW_00355] Do not redefine AUTOSAR
integer data types

8 API specification

[SRS_BSW_00378] AUTOSAR boolean type 8 API specification

[SRS_BSW_00306] Avoid direct use of compiler
and platform specific
keywords

8 API specification

[SRS_BSW_00308] Defintion of global data Not applicable
(EcuM does not specify global data.) [SRS_BSW_00309] Global data with read-only

constraints

[SRS_BSW_00371] Do not pass function pointers
via API

8 API specification

[SRS_BSW_00358] Return type of init() functions SWS_EcuM_02811

[SRS_BSW_00414] Parameter of init function

[SRS_BSW_00376] Return type and parameters
of main processing functions

8.5.1 EcuM_MainFunction

[SRS_BSW_00359] Return type of callback
functions

8.6 Callback Definitions

[SRS_BSW_00360] Parameters of callback
functions

8.6 Callback Definitions

[SRS_BSW_00329] Avoidance of generic
interfaces

8 API specification

[SRS_BSW_00330] Usage of macros/inline
functions instead of functions

not applicable
(Requirement to implementation)

[SRS_BSW_00331] Separation of error and status
values

8.3 Type definitions

[SRS_BSW_00009] Module user documentation Fulfilled by usage of template/formal review

[SRS_BSW_00401] Documentation of multiple
instances of configuration
parameters

10.4 Configurable Parameters

[SRS_BSW_00172] Compatibility and
documentation of scheduling
strategy

SWS_EcuM_02836

[SRS_BSW_00010] Memory resource
documentation

not applicable
(requirement to implementation)

[SRS_BSW_00333] Documentation of callback
function context

8.6 Callback Definitions

[SRS_BSW_00374] Module vendor identification 10.4 Configurable Parameters

[SRS_BSW_00379] Module identification 10.4 Configurable Parameters

[SRS_BSW_00003] Version identification 10.4 Configurable Parameters

[SRS_BSW_00318] Format of module version
numbers

10.4 Configurable Parameters

[SRS_BSW_00321] Enumeration of module
version numbers

10.4 Configurable Parameters

[SRS_BSW_00341] Microcontroller compatibility
documentation

not applicable
(requirement to implementation)

[SRS_BSW_00334] Provision of XML file not applicable
(provided by system team)

[SRS_BSW_00447] Standardizing Include file
structure of BSW Modules
Implementing Autosar
Service

5.12.2 Header file structure

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

25 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Document: Requirements on Mode Management [4]

Requirement Satisfied by
[SRS_ModeMgm_09120] Configuration of initialization

process of basic software
SWS_EcuM_02559, SWS_EcuM_00520,

8.7.2 Callouts from STARTUP

[SRS_ModeMgm_09147] Configuration of de-
initialization process of
basic software

[SRS_ModeMgm_09122] Configuration of users of the
ECU State Manager

SWS_EcuM_00487

10.4 Configurable Parameters

[SRS_ModeMgm_09100] Selection of wake up
sources shall be
configurable

SWS_EcuM_02389

10.4 Configurable Parameters

[SRS_ModeMgm_09146] Configuration of time
triggered increased
inoperation

SWS_EcuM_00654, SWS_EcuM_00223,

10.4 Configurable Parameters

[SRS_ModeMgm_09001] Standardization of state
relations

SWS_EcuM_02664

[SRS_ModeMgm_09116] Requesting and releasing
the RUN state

SWS_EcuM_00814, SWS_EcuM_00815

[SRS_ModeMgm_09114] Starting/invoking the
shutdown process

SWS_EcuM_00311

[SRS_ModeMgm_09104] ECU State Manager Fixed
module shall take over
control after OS shutdown

SWS_EcuM_00328

[SRS_ModeMgm_09113] Initialization of Basic
Software modules

Table 1 - Initialization Activities

[SRS_ModeMgm_09127] De-initialization of BSW Table 3 - Shutdown Activities

[SRS_ModeMgm_09128] Support of several
shutdown targets

7.6.2.1 Shutdown Targets

[SRS_ModeMgm_09119] Support of several sleep
modes

7.4.3.4RUN III
7.5SHUTDOWN State

[SRS_ModeMgm_09102] API for selecting the sleep
mode

SWS_EcuM_02822

[SRS_ModeMgm_09072] Force ECU shutdown SWS_EcuM_00821

[SRS_ModeMgm_09009] Activation of software when
entering/leaving ECU states

8.7 Callout Definitions

[SRS_ModeMgm_09017] Provide ECU state
information

8.7 Callout Definitions

[BSW09138] Selection of application
modes of OS

7.10.1 OS Application Modes

[SRS_ModeMgm_09136] Centralized Wake-up
Management

7.8 Wake-up Validation Protocol

[SRS_ModeMgm_09098] Registration of wake up
reasons

8.4.4 Wake up

[SRS_ModeMgm_09097] Validation of physical
channel wake up

7.8 Wake-up Validation Protocol

[SRS_ModeMgm_09118] Time Triggered Increased
Inoperation

7.9 Time Triggered Increased
Inoperation

[SRS_ModeMgm_09145] Support of wake-sleep
operation

7.10.5 Configuration Alternative for
Providing Wake-Sleep Operation

[SRS_ModeMgm_09126] Provide an API for querying
of wake up reason

8.4.4 Wake up

[SRS_ModeMgm_09145] Evaluate condition to stay in
the RUN state

SWS_EcuM_00311

[SRS_ModeMgm_09164] Shutdown synchronization 7.4.3.4 RUN

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

26 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

support for SW-
Components

[SRS_ModeMgm_09165] Requesting and releasing
the POST RUN state

SWS_EcuM_00819, SWS_EcuM_00820

[SRS_ModeMgm_09166] Evaludate condition to stay
in POST_RUN state

SWS_EcuM_00761

[BSW09170] Triggering Watchdog
Manager during Startup /
Shutdown and Sleep

Integration code

[SRS_ModeMgm_09173] Minimum duration of Run
State

SWS_EcuM_00310

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

27 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

7 Functional Specification

7.1 Main States of the ECU State Manager

OFF

SLEEP

RUN

OFF

WAKEUP

SHUTDOWN

STARTUP

Wakeup by wakeup source

with integrated power

control
Normal startup

other

SLEEP ==

true ?

/TTII

Wakeup

event

Wakeup

event

other

Power off

Reset

All applications

have shut down

Power

on

Figure 2 – ECU Main States (top level diagram)

Figure 2 – ECU Main States (top level diagram) shows the main state machine
provided by the ECU State Manager Fixed module . This state machine manages the

‘life cycle’ of an ECU from OFF through STARTUP and RUN to SLEEP or OFF.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

28 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Please refer to the following chapters and to 8.3.2 EcuM_StateType for the relevant
substates.

7.1.1 STARTUP State

The purpose of the STARTUP state is to initialize the basic software modules. The

STARTUP state is divided into two parts, the first being the part before OS startup, the

second part after OS startup (and therefore with a running OS). More details about
the initialization are given in chapter 7.3 STARTUP State.

7.1.2 RUN State

The RUN State is entered by the ECU State Manager Fixed module after all modules

of basic software including OS and RTE have been initialized by the ECU State
Manager Fixed module .

The RUN State indicates to the SW-C’s above RTE that BSW has initialized and

applications start operating. Further, the RUN state provides a mechanism for
synchronized shutdown of application software.

RUN state must be requested by the application explicitly or implicitly6 whenever it is

needed to keep the ECU awake. Otherwise, the ECU State Manager Fixed module

will commence shutdown. In other words: a SW-C has to request the RUN state from

the ECU State Manager Fixed module when the ECU needs to stay awake.

The RUN State falls into two sub-states: The regular RUN state and a POST_RUN

state. The POST_RUN state can be requested by SW-C’s to indicate that the need to

execute cleanup or saving activities before the ECU goes to sleep. The POST_RUN

state can be requested independently from the RUN state with a separate API or via

System Services accordingly7.
SW-C’s shall react on state changes by interfacing with the mode port of the ECU
State Manager Fixed module.
If the SW-C’s primary intent is to communicate with other SW-C’s, the SW-C has to
request a communication state from the Communication Manager module instead.

7.1.3 SHUTDOWN State

The SHUTDOWN state handles the controlled shutdown of basic software modules and

finally results in the selected shutdown target for the ECU: SLEEP, OFF, or Reset. An

important activity in this state is to write non-volatile data back to NVRAM.

6
 RUN state is requested implicitly if a non-idle state is requested from a Resource Manager. E.g.

requesting any state but ‘no communication’ from the Communication Manager will have the
Communication Manager requesting RUN state from the ECU State Manager in turn. This is a request
for communication which implicitly results in a request for RUN state. See also [6].
7
 In this specification RUN and POST RUN sub-states are called RUN II and RUN III.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

29 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

7.1.4 SLEEP State

The SLEEP state is an energy saving state. Typically, no code is executed but power

is still supplied, and if configured accordingly, the ECU is wakeable in this state8. The

SLEEP state provides a configurable set of sleep modes which typically are a trade

off between power consumption and time to restart the ECU. In terms of the API, the
sleep modes are referred to as shutdown targets.

7.1.5 WAKEUP State

The WAKEUP State is entered when the ECU comes out of the SLEEP state, due to

intended or unintended wake up.

The WAKEUP State provides a protocol to support validation of wake up events. This

is necessary to differentiate between intended und unintended wake-ups. The
validation itself is a cooperative process between the driver which handles the wake
up source and the ECU State Manager Fixed module (see 7.8 Wake-up Validation
Protocol).

7.1.6 OFF State

The OFF state describes the unpowered ECU. Wakeability may be required in this

state but only for wake up sources with integrated power control. In any case the
ECU must be startable (e.g. by reset events).

8
 Some ECU designs actually do require code execution to implement a SLEEP state (and the wakeup

capability). For these ECUs, the clock speed is typically dramatically reduced. These could be
implemented with a small loop inside the SLEEP state.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

30 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

7.2 Structural Description of the ECU State Manager

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

31 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

«module»

EcuM

Det_ReportError

Det_Init

Mcu_Init

Mcu_GetResetReason

Mcu_SetMode

Mcu_PerformReset

SchM_Init

Gpt_Init

ComM_EcuM

WdgM_EcuM

NvM_Init

NvM_ReadAll

NvM_WriteAll

NvM_CancelWriteAll

Dem_Shutdown

Dem_ReportErrorStatus

Rte_EcuM

«module»

ComM::ComM

«module»

WdgM::WdgM

WdgM_SupervisedEntity

«module»

NvM::NvM

«module»

Dem::Dem

«module»

Det::Det

«module»

FiM::FiM
FiM_Init

EcuM_Cbk

«module»

Mcu::Mcu

«module»

SchM::SchM

«module»

Rte::Rte

SchM_EcuM

«module»

Os::Os StartOS

GetResource

ReleaseResource

ShutdownOS

Ea_Init

Fee_Init

CanIf_Init

CanTrcv_Init

FrIf_Init

LinTp_Init

LinIf_Init

IoHwAb_Init

CanSM_Init

Com_Init

Dcm_Init

FrSm_Init

FrTp_Init

Wdg_Init

Spi_Init

Lin_Init

Can_Init

Fr_Init

Icu_Init

Pwm_Init

Adc_Init

Port_Init

IpduM_Init

LinSM_Init

Nm_Init

FrNm_Init

NvM

EcuM_Fls_optional

PduR_Init

«module»

BswM::BswMBswM_Init

BswM_Deinit

BswM_EcuM_CurrentState

BswM_EcuM_CurrentWakeup

CanTp_Init

CanNm_Init

Dio_Init

Dlt_Init

Eep_Init

EthIf_Init

EthTrcv_Init

J1939Tp_Init

UdpNm_Init

Xcp_InitEth_Init

SoAd_Init_Shutdown

Ocu_Init

FrArTp_Init

CanSM_EcuMWakeUpValidation

«optional»

«mandatory»

«mandatory»

«realize»

«mandatory»

«optional»

«optional»

«optional»

«mandatory»

«mandatory»

«mandatory»

«optional»

«optional»

«optional»

«optional»

«optional»

«optional»

«optional»

«optional»

«optional»

«mandatory»

«mandatory»

«mandatory»

«optional»

«optional»

«mandatory»

«realize»

«optional»

«realize»

«mandatory»

«realize»

«realize»

«realize»

«realize»

«realize»

«realize»

«realize»

initialize/read

all/write all
«use»

«realize»

«realize»

«realize»

«realize»

«realize»

«realize»

«optional»

«realize»

«realize»

«optional»

«optional»

«optional»

«optional»

«optional»

«optional»

«optional»«optional»

«optional»

«optional»

«optional»

«mandatory»

«mandatory»

«optional»

«realize»

«realize»

«realize»

«realize»

«realize»

«realize»

«realize»

«realize»

«realize»

«realize»

«realize»

«optional»

«optional»

«optional»

«optional»

«optional»

«optional»

«optional»

«optional»

«optional»

«optional»

«optional»

«optional»

«optional»

«optional»

«optional»

«optional» «optional»

«optional»«optional»

«optional»

«mandatory»

«optional»

«mandatory»

«optional»

«mandatory»

«mandatory»

«mandatory»

«mandatory»

«optional»

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

32 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Figure 3 – Module Relationship (top level diagram)

Figure 3 shows how the ECU State Manager Fixed module is related to other
modules. In most cases, the ECU State Manager Fixed module is simply responsible
for initialization9. There are however some modules that have a functional
relationship with the ECU State Manager Fixed module which are explained in the
following paragraphs.

7.2.1 Standardized AUTOSAR Software Modules

Basic Software modules are initialized and shut down by the ECU State Manager.
The RTE is initialized and shut down by the ECU State Manager.

The OS is initialized and shut down by the ECU State Manager.

After the OS initialization, additional initialization steps are undertaken by the ECU
State Manager Fixed module before the RUN state is reached. Execution control is
handed over to the ECU State Manager Fixed module after OS shutdown. Details are
provided in the chapters 7.3 STARTUP State and 7.5 SHUTDOWN State.

7.2.2 Software Components

SW Components contain the application code of an AUTOSAR ECU. Software
Components shall request the RUN state from the ECU State Manager Fixed module
when they have the need to keep the ECU alive.
If the intent of the SW-C is primarily to communicate then it should request a
communication state from the Communication Manager (see [6]). This will implicitly
keep the ECU alive. A SW-C should clearly separate between the need to
communicate and the need to keep an ECU alive. Mixing up these two ideas may
result in an instable shutdown algorithm.
A SW-C interacts with the ECU State Manager Fixed module using AUTOSAR ports
which are mapped to system Services of the ECU State Manager Fixed.

7.2.3 Resource Managers

The concept of resource managers allows adding new state machines to the BSW
(as a part of new BSW modules) which behave like sub-state machines of the RUN
state.

In order to collaborate correctly with the ECU State Manager Fixed module only very
few requirements must be met:

A Resource Manager has to define exactly one idle state that signifies the state
where the Resource Manager isn’t doing anything but waiting.

9
 To be precise, “initialization” could also mean de-initialization.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

33 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

A Resource Manager has to transit into its idle state after initialization. It shall request
the RUN state from the ECU State Manager Fixed module whenever it leaves its idle
state and it shall release the RUN state when it returns back to its idle state.

The Communication Manager module is one such resource manager.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

34 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

7.3 STARTUP State

See 7.1.1 STARTUP State for an overview description.

7.3.1 High Level Sequence Diagram

«module»

Os

C Init Code «module»

EcuM

BSW Task (OS task

or cyclic call)

Boot Menu

ref
Init Sequence I

ref
Init Sequence II

Corresponds to STARTUP I

Corresponds to STARTUP II

alt Wakeup reason

[Wakeup by source with integrated voltage control]

[Any other kind of reset]

ref
Run Sequence

ref
Wakeup Sequence

ResetReset

Reset

Vector()

Jump()

Set up

stack()

EcuM_Init()

call()

StartOS()

StartupHook()

ActivateTask()

EcuM_StartupTwo()

call()

continue

with()

continue

with()

Figure 4 – Startup Sequence (high level diagram)

To see adjacent diagrams refer to

Figure 8 – RUN State Sequence
Figure 2 – ECU Main States (top level diagram)

The startup sequence in Figure 4 shows the startup behavior of the ECU. With the
invocation of EcuM_Init the ECU State Manager Fixed module takes control of the
startup procedure. The startup of the ECU falls into two parts.

The first part, init sequence I or STARTUP I is finished when the AUTOSAR OS is
started.

The second part, init sequence II or STARTUP II is finished when RTE is started.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

35 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

To distinguish services that are called before the OS is started from those that are
called afterwards and to have a cleaner visualization, the ECU State Manager Fixed
module is split into two parts: The initialization of the ECU State Manager Fixed
module (started with a call to EcuM_Init(), which runs without OS, and the EcuM.

7.3.2 Activities before EcuM_Init

The ECU State Manager Fixed module assumes that before EcuM_Init is called a
minimal initialization of the MCU has taken place, so that a stack is set up and code
can be executed.

7.3.3 STARTUP Activity Overview

[SWS_EcuMf_00007:]⌈Initialization dependencies (as defined in the BSWMDs) have

to be respected.

⌋()

Example (to show when ComM_CommunicationAllowed shall be called):
ComM_Init()
CanXX_Init()
ComM_CommunicationAllowed(<CAN channel>, true)
And reverse for DeInit

[SWS_EcuM_02411] ⌈The following table shows the Startup activities and the order
in which they shall be executed.
Sub-state
 Initialization Activity10 Comment Opt.11
STARTUP I

 Callout
EcuM_AL_DriverInitZero

Init block 0
This callout may only initialize BSW modules that do
not use post-build configuration parameters. The
callout may not only contain driver initialization but
any kind of pre-OS, low level initialization code.
See 7.3.5 Driver Initialization

yes

 Callout
EcuM_DeterminePbConfigura
tion

This callout is expected to return a pointer to a fully
initialized EcuM_ConfigType structure containing the
post-build configuration data for EcuM and all other
BSW modules.

no

 Check consistency of
configuration data

If check fails the EcuM_ErrorHook is called. See 10.5
Checking Configuration Consistency for details on the
consistency check.

No

 Callout
EcuM_AL_DriverInitOne

Init block I
The callout may not only contain driver initialization
but any kind of pre-OS, low level initialization code.
See 7.3.5 Driver Initialization

Yes

 Get reset reason The reset reason is derived from a call to No

10

 Activities marked with × are conditional.
11

 Optional activities can be switched on or off by configuration. See chapter 10.3 Published for
details.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

36 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Sub-state
 Initialization Activity10 Comment Opt.11

Mcu_GetResetReason and the mapping defined via

the EcuMWakeupSource configuration containers.

See 8.6.2.2 EcuM_SetWakeupEvent and 8.4.4.3
EcuM_GetValidatedWakeupEvents.

 Select default shutdown
target

See SWS_EcuM_02181 No

 Start OS Start the AUTOSAR OS, see SWS_EcuM_02603 No

STARTUP II

 Init BSW Scheduler Initialize the semaphores for critical sections used by
BSW modules

No

 Callout
EcuM_AL_DriverInitTwo

Init block II
The callout may only initialize BSW modules that need
OS support but don’t need access to private NvRam
data (other that post-build configuration data in their
<Module>_ConfigType) or manage that data on their
own.
See 7.3.5 Driver Initialization

Yes

 Callout EcuM_OnRTEStartup No

 Start RTE From now on SW-Cs are running. RTE will signal the
(initial) mode STARTUP during start.

No

 Callout
EcuM_AL_DriverInitThree

Init block III
The callout may initialize BSW modules that need OS
support and rely on their private NvRam data (other
that post-build configuration data in their

<Module>_ConfigType) to be restored.

See 7.3.5 Driver Initialization

Yes

 Indicate mode change to RTE Indicated mode is SLEEP if next state is WAKEUP

VALIDATION, indicated mode is RUN if next state is

RUN.

No

Table 1 - Initialization Activities

⌋()

[SWS_EcuM_02623] ⌈The ECU State Manager shall remember the wake up source
resulting from the reset reason translation (see Table 1 - Initialization Activities).

⌋()

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

37 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

7.3.4 Sub-State Descriptions

7.3.4.1 STARTUP I

The STARTUP I state is entered with a call of the API function EcuM_Init.

«module»

Os

«module»

Mcu

«module»

EcuM

Integration Code

Init Block I

opt Configuration data inconsistent

Init Block 0

This call never returns!

loop until all cores done

EcuM_AL_DriverInitZero()

EcuM_DeterminePbConfiguration(EcuM_ConfigType*)

Check consistency of configuration

data()

EcuM_ErrorHook(ECUM_E_CONFIGURATION_DATA_INCONSISTENT)

EcuM_AL_DriverInitOne(const

EcuM_ConfigType*)

Mcu_GetResetReason(Mcu_ResetType)

Mcu_GetResetReason()

Map reset reason to wakeup

source()

EcuM_SelectShutdownTarget(Std_ReturnType,

EcuM_StateType, uint8)

WaitEvent(mask)

StartOS(DEFAULT_APP_MODE)

Figure 5 – Init Sequence I (STARTUP I)

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

38 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

STARTUP I is intended for preparing the ECU to initialize the OS. The phase should
be kept as short as possible. This also applies to the callouts. Initialization of drivers
should be done in STARTUP II whenever possible. Interrupts should not be used in
this phase. If interrupts have to be used, only category I interrupts are allowed in
STARTUP phase 112.
Initialization of drivers and hardware abstraction modules is not strictly defined by the
ECU State Manager. Two callouts EcuM_AL_DriverInitZero and
EcuM_AL_DriverInitOne are provided to define the init blocks 0 and I. These blocks
are initialization activities during STARTUP I, where initialization can take place.
Modules needing OS support can be placed into init blocks II or III (see 7.3.4.2
STARTUP II).

MCU_Init does not provide complete MCU initialization. Additionally, hardware

dependent steps have to be executed and must be defined at system design time.
These steps are supposed to be taken within the EcuM_AL_DriverInitZero or
EcuM_AL_DriverInitOne callouts. Details can be found in [13].

[SWS_EcuM_02181] ⌈ECU State Manager Fixed module must call
EcuM_SelectShutdownTarget with the configured default shutdown target (see
7.6.2.1 Shutdown Targets, 7.9 Time Triggered Increased Inoperation and 10.4

Configurable Parameters. ⌋()

[SWS_EcuM_02603] ⌈At the end of the STARTUP I state, the ECU State Manager
starts the OS. All basic software modules which are needed by the OS shall be
initialized by this time. Modules left out so far may be initialized later in STARTUP II.

⌋()

Note: If a Watchdog Manager is configured and initialized in any of the Init Blocks,
the integration code shall call the Watchdog Manager often enough to ensure correct
operation of the ECU during the transient states.

For the handling of the functionalities during SLEEP see [8] Chapter 7.4.

12

 Category II interrupts require a running OS while category I interrupts do not. AUTOSAR OS
requires each interrupt vector to be exclusively put into one category.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

39 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

7.3.4.2 STARTUP II

STARTUP II is carried out by the EcuM_StartupTwo API function.

«module»

SchM

Integration Code «module»

Rte

«module»

EcuM

«module»

NvM

alt Next state

[RUN and NvM]

Init Block II

opt NvM

This will signal the (initial) mode STARTUP to SW-Cs!

opt NvM

alt

Init Block III

SchM_Init(const

SchM_ConfigType*)

EcuM_AL_DriverInitTwo(const

EcuM_ConfigType*)

NvM_Init()

NvM_ReadAll()

Start

timer()

EcuM_OnRTEStartup()

Rte_Start(Std_ReturnType)

Timeout()

EcuM_AL_DriverInitThree(const

EcuM_ConfigType*)

Rte_Switch_currentMode_currentMode(RTE_MODE_EcuM_Mode_RUN)

Figure 6 – Init Sequence II (STARTUP II)

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

40 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

The callout EcuM_AL_DriverInitTwo is provided, where initialization of those basic
software modules should take place, which need OS support and need no access to
NvRam data or manage the NvRam data on their own.

The callout EcuM_AL_DriverInitThree is provided, where initialization of those basic
software modules should take place, which need OS support and need NvRam data
to be completely restored.

[SWS_EcuM_00632] ⌈If one of the wake up sources listed in 7.8.7 Wake up Sources
and Reset Reason is set, then exection shall continue with RUN state. In all other

cases, execution shall continue with WAKEUP VALIDATION state. ⌋()

7.3.5 Driver Initialization

This chapter applies to drivers of the AUTOSAR Basic Software that are not handled
directly by the ECU State Manager Fixed module.
A driver’s location in the initialization process depends strongly on its implementation
and the target hardware design. Drivers can be initialized from the driver init blocks I
and II during STARTUP I and II respectively.

[SWS_EcuM_02559] ⌈The order inside of the blocks shall be generated from
configuration information (see 10.4 Configurable Parameters

EcuMDriverInitListZero, EcuMDriverInitListOne,

EcuMDriverInitListTwo, EcuMDriverInitListThree, and

EcuMDriverRestartList). ⌋()

[SWS_EcuM_02730] ⌈For each driver, its init function with the configured init
configuration shall be called. The init parameter for the init function shall be derived
from driver’s configuration (see 10.4 Configurable Parameters

EcuMFixedModuleConfigurationRef). ⌋()

Some drivers may need re-initialization when the ECU is woken up. This is especially
true for drivers with wake up sources. For re-initialization, a restart block is defined.

The restart block is part of the WAKEUP state.

[SWS_EcuM_02561] ⌈The restart list will typically only contain a subset of drivers.
But drivers shall appear in the same order as in the combined list of init block I and

init block II (see 10.4 Configurable Parameters, EcuMDriverRestartList). ⌋()

[SWS_EcuM_02562] ⌈Drivers which serve as wake up sources may need to be re-
initialized in the restart block. The driver restart shall re-arm the trigger mechanism of

the ‘wake up detected’ callback (see 7.7.4.1 WAKEUP I). ⌋()

[SWS_EcuM_02563] ⌈If hardware is put into a sleep mode during SHUTDOWN then

this hardware must be restarted by its driver.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

41 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

The restart list will be invoked in state WAKEUP I (see 7.1.5 WAKEUP State). ⌋()

The following table shows one possible (and recommended) sequence of activities
for the Init Blocks 0, I, II, and III. Depending on hardware and software configuration,
BSW modules may be added or left out and other sequences may also be possible.
Recommended Init Block
 Init Activity Comment

Init Block 0
13

 Development Error Tracer This always needs to be the first module to be initialized, so that

other modules can report development errors.
 Any drivers needed to

access post-build
configuration data

These drivers may themselves not need post-build configuration or
OS features.

Init Block I

14

 MCU Driver
 PORT
 DIO
 Diagnostic Event Manager Pre-Initialization
 General Purpose Timer
 Watchdog Driver Internal watchdogs only, external ones may need SPI
 Watchdog Manager
 SchM
 BswM
 ADC Driver
 ICU Driver
 PWM Driver
 OCU Driver

Init Block II

15

 SPI Driver
 EEPROM Driver
 Flash Driver
 NVRAM Manager Initialization and start NvM_ReadAll job
 CAN Transceiver
 CAN Driver
 CAN Interface
 CAN State Manager
 CAN TP
 LIN Driver
 LIN Interface
 LIN State Manager
 LIN TP
 FlexRay Transceiver
 FlexRay Driver
 FlexRay Interface
 FlexRay State Manager
 FlexRay TP
 PDU Router
 CAN NM
 FlexRay NM
 NM Interface
 I-PDU Multiplexer

13

 Drivers in Init Block 0 are listed in the EcuMDriverInitListZero configuration container.
14

 Drivers in Init Block I are listed in the EcuMDriverInitListOne configuration container.
15

 Drivers in Init Block II are listed in the EcuMDriverInitListTwo configuration container.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

42 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Recommended Init Block
 Init Activity Comment

 COM
 Diagnostic Communication

Manager

Init Block III

16

 Communication Manager
 Diagnostic Event Manager Full initialization
 Function Inhibition Manager

Table 2 - Driver Initialization Details, Sample Configuration

[SWS_EcuMf_00037] ⌈Depending on the post-build tooling approach described in
the TPS_EcuConfiguration document, a BSW module shall be configured either
using EcuMFixedModuleConfigurationRef or EcuMFixedPostBuildVariationCriterion.

⌋()

[SWS_EcuM_02719] ⌈A configuration tool shall fill the callout
EcuM_AL_DriverRestart with initialization calls to the listed drivers in the order in

which they occur in the list. ⌋()

[SWS_EcuM_02720] ⌈Entries in this list must appear in the same order as in the
combined list of EcuM_DriverInitListOne and EcuM_DriverInitListTwo. This list may
be a real subset though. In all other cases, the generation tool shall report an error.

⌋()

7.3.6 DET Initialization

The Development Error Tracer is a software module for debugging purposes.

[SWS_EcuM_02783] ⌈DET shall be initialized early during STARTUP I by the ECU

State Manager. ⌋()

[SWS_EcuM_02634] ⌈DET is not started by default but the system designer has to
configure the point where DET is started, preferably into one of the callouts
EcuM_AL_DriverInitOne or EcuM_AL_DriverInitTwo. The best point for starting DET

depends on its implementation and behavior. DET is started by invoking Det_Start.

⌋()

16

 Drivers in Init Block III are listed in the EcuMDriverInitListThree configuration container.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

43 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

7.4 RUN State

See 7.1.2 RUN State for an overview description.
All activities in the RUN state described in this chapter are carried out in the
EcuM_MainFunction service.

7.4.1 State Breakdown Structure

RUN II

Initial

RUN III

Final
RUN requested

/notify

all POST RUN

requests released

all RUN requests

released /notify

Figure 7 – RUN State Breakdown

7.4.2 High Level Sequence Diagram

«module»

EcuM

loop While RUN requests pending

alt Entry of RUN

[from STARTUP]

[from WAKEUP]

ref
Wakeup Sequence

ref
Power Up Sequence

ref
Shutdown Sequence

ref
Run Sequence II

ref
Run Sequence III

Corresponds to

RUN II

Corresponds to

RUN III

call()

call()

continue

with()

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

44 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Figure 8 – RUN State Sequence (high level diagram)

To see adjacent diagrams refer to
Figure 4 – Startup Sequence (high level diagram)
Figure 20 – Wake-up Sequence (high level diagram)
Figure 12 – Shutdown Sequence (high level diagram)
Figure 2 – ECU Main States (top level diagram)

7.4.3 Sub-State Description

7.4.3.1 RUN II

RUN II is the state in which SW-C’s should execute their regular tasks.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

45 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

BSW Task (OS task

or cyclic call)

«Peripheral»

Wakeup Source

ECU Firmware«module»

EcuM

«module»

ComM

«module»

Rte

Integration Code

alt No pending RUN requests AND no pending ComM requests AND timer expired

loop WHILE in RUN II state

loop FOR all channels

loop FOR all channels

loop FOR all channels
It's only allowed to leave RUN II state if for

all channels ComM returns

ComM_GetState with COMM_NO_COM

EcuM_OnEnterRun()

ComM_CommunicationAllowed(channel,

TRUE)

Schedule timer for minimum

duration to stay in RUN state()

EcuM_MainFunction()

EcuM_GetPendingWakeupEvents(EcuM_WakeupSourceType)

EcuM_StartWakeupSources(wakeupSource)

EcuM_CheckValidation(wakeupSource)

<Module>_CheckValidation()

EcuM_ValidateWakeupEvent(EcuM_WakeupSourceType)

EcuM_StopWakeupSource(wakeupSource)

Evaluate RUN requests and timer()

ComM_GetState(channel,

&state)

ComM_CommunicationAllowed(channel,

FALSE)

EcuM_OnExitRun()

Rte_Switch_currentMode_currentMode(RTE_MODE_EcuM_Mode_POSTRUN)

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

46 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Figure 9 – RUN II State Sequence

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

47 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

7.4.3.2 Entering RUN II State

On entering RUN II state, the steps as shown in Figure 9 must be performed.

[SWS_EcuM_00308] ⌈When entering RUN II state, the callout EcuM_OnEnterRun

shall be invoked and RUN mode shall be indicated. ⌋()

[SWS_EcuMf_00008] ⌈The ECU State Manager Fixed module shall call

ComM_CommunicationAllowed when it becomes possible to communicate on that

channel (parameter TRUE) and when it becomes impossible to communciate

(parameter FALSE).

Exception is LIN communication in "sleep mode"⌋()

[SWS_EcuMf_00018] ⌈The call to ComM_CommunicationAllowed shall be

configurable (It must be possible to define within the configuration for which ComM
channels the ECU State Manager Fixed module should call

ComM_CommunicationAllowed.)⌋()

[SWS_EcuMf_00019] ⌈For all channels for which this is defined, the ECU State

Manager Fixed module must call ComM_CommunicationAllowed(channel,

TRUE) immediately after entering RUN mode.⌋()

[SWS_EcuMf_00020] ⌈For all channels for which this is defined, the ECU State

Manager Fixed module must call ComM_CommunicationAllowed(channel,

FALSE) immediately before leaving RUN mode.⌋()

[SWS_EcuM_00310] ⌈The ECU State Manager Fixed module shall remain in RUN

state for a configurable minimum duration (see 10.4 Configurable Parameters

parameter EcuMRunMinimumDuration). ⌋()

The minimum duration of RUN state is needed to give the SW-Cs a chance to

request RUN. Otherwise the ECU State Manager Fixed module will immediately leave

RUN again.

[SWS_EcuMf_00027] ⌈ECU in RUN state shall also perform wake up validation of

sleeping busses

⌋()

7.4.3.3 Leaving RUN II State

[SWS_EcuM_00311] ⌈When the last RUN request has been released, ECU State
Manager Fixed module shall advance to the RUN III state. The evaluation is done

with the next cyclic invocation of EcuM_MainFunction. ⌋()

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

48 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

[SWS_EcuM_00865] ⌈When leaving RUN II state, the callout EcuM_OnExitRun shall

be invoked and POST_RUN mode shall be indicated. ⌋()

If a SW-C needs post run activity during RUN III (e.g. shutdown preparation), then it
must request POST_RUN before releasing the RUN request. Otherwise it is not
guaranteed that this SW-C will get a chance to run its POST_RUN code.

The Communication Manager will not release RUN unless the no communication

state is reached.

7.4.3.4 RUN III

RUN III state provides a post run phase for SW-C’s and allows them to save
important data or switch off peripherals before the ECU State Manager Fixed module
continues with the shutdown process.

BSW Task (OS task

or cyclic call)

Integration Code«module»

EcuM

«module»

ComM

loop WHILE in RUN III state

alt No pending POST RUN requests, no COM channel has requested communication

loop FOR all channels that have requested RUN

While being in the POST_RUN mode, the

EcuM must poll the ComM using the API

ComM_GetState and compare to state

COMM_NO_COM_REQUEST_PENDING. In

case at least one channel has requested

communication, the EcuM must return into

RUN mode.

EcuM_MainFunction()

evaluate POST RUN requests()

ComM_CommunicationAllowed(channel,

FALSE)

EcuM_OnExitPostRun()

Figure 10 – RUN III State Sequence

7.4.3.5 Leaving RUN III State

[SWS_EcuM_00761] ⌈When the last POST_RUN request has been released and no
RUN request has been issued, the ECU State Manager Fixed module shall advance
to the SHUTDOWN state and shall invoke the callout EcuM_OnExitPostRun. The

evaluation is done with the next cyclic invocation of EcuM_MainFunction. ⌋()

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

49 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

[SWS_EcuM_00866] ⌈While in RUN III state, if a RUN request is received, the ECU

State Manager Fixed module shall immediately enter RUN II state again. ⌋()

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

50 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

7.5 SHUTDOWN State

Refer to 7.1.3 SHUTDOWN State for an overview description.

[SWS_EcuM_02188] ⌈When SHUTDOWN state is entered and shutdown target is

SLEEP, no wake up event shall be missed. If a valid wake up event occurs while the

ECU is in transition to SLEEP the ECU shall as quickly as possible proceed to the

WAKEUP state and shall not enter the SLEEP state. ⌋()

[SWS_EcuM_02756] ⌈When a wake up event occurs during the shutdown phase and

the shutdown target is OFF or RESET, then the shutdown shall complete but the ECU

shall restart immediately thereafter. ⌋()

7.5.1 State Breakdown Structure

When the SHUTDOWN state is entered, applications have de-initialized and the

communication stack has been put into the no communication state17. Please refer to
7.4.3.3 Leaving RUN II State for details.

Perform PREP SHUTDOWN

Perform GO SLEEP

Deinit Sequence I

From RUN

From WAKEUP

for wakeup reactions

- TTII

- unvalidated wakeup

- other unknown wakeup reason

Deinit Sequence IIa

Shutdown Target?

To SLEEP

To GO OFF II

Wakeup Event detected?

To WAKEUPThis decision is also shown

in 'Deinit Sequence IIa'.

Perform GO OFF I

Deinit Sequence IIb

[else]

[Sleep Mode]

[Shutdown]

[Sleep Mode]

Figure 11 – Fine Structure of SHUTDOWN

17

 This statement is only true for SW-Cs which are registered users of the ECU State or
Communication Manager. All other SW-C may be terminated by the system without warning.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

51 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

7.5.2 High Level Sequence Diagram

«module»

Os

«module»

EcuM

Integration Code

alt Shutdown Target

[Sleep Mode]

[Shutdown]

alt Shutdown Reason

[RUN released]

[No wakeup reason]

ref
Deinit Sequence I

ref
Deinit Sequence IIa

ref
Deinit Sequence IIb

ref
Wakeup Sequence

ref
Run Sequence

ref
Wakeup Sequence

Corresponds to PREP SHUTDOWN

Corresponds to GOSLEEP

Corresponds to GO OFF I

ref
Deinit Sequence III Corresponds to GO OFF II

During this call, the ECU will be

powered off or reset, according to the

selected shutdown target.

ref
Sleep Sequence

alt Pending wakeup events?

[No]

[Yes]

call()

call()

continue

with()

continue

with()

call()

ShutdownOS()

ShutdownHook()

EcuM_Shutdown()

call()

Figure 12 – Shutdown Sequence (high level diagram)

To see adjacent diagrams refer to

Figure 8 – RUN State Sequence (high level diagram)
Figure 20 – Wake-up Sequence (high level diagram)
Figure 17 – Sleep Sequence (high level diagram)
Figure 2 – ECU Main States (top level diagram)

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

52 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

7.5.3 SHUTDOWN Activity Overview

Sub-state18
 Shutdown Activity Comment Optional

19

PREP SHUTDOWN
 Callout EcuM_OnPrepShutdown

 Shutdown Diagnostic Event Manager yes
 Indicate mode change to RTE Indicated mode is SLEEP if next

state is GO SLEEP,

indicated mode is SHUTDOWN if next

state is GO OFF I.

GO SLEEP
 Callout EcuM_OnGoSleep
 Save persistent data to NVRAM An incoming wake up event will

cancel an ongoing write job
yes

 Check for pending wake up events Purpose is to detect wake up
events that occurred while
interrupts were disabled

 Callout EcuM_EnableWakeupSources See EcuM_EnableWakeupSources
 Lock Scheduler Prevent other tasks from running in

SLEEP state.

GO OFF I
 Callout EcuM_OnGoOffOne

 Stop RTE
 Deinit Communication Manager yes
 Save persistent data to NVRAM yes
 Check for pending wake up events Purpose is to detect wake up

events that occurred during
shutdownd

 Set RESET as shutdown target This action shall only be carried out
when pending wake up events were
detected

yes

 ShutdownOS Last operation in this OS task
GO OFF II
 Callout EcuM_OnGoOffTwo

 Call Mcu_PerformReset or Callout
EcuM_AL_SwitchOff

Depends on the selected shutdown
target (RESET or OFF)

The following modules need not to be shut down:
 NVRAM Manager

All other modules are not shutdown automatically.
The following basic software modules must not be shut down at all.
 None

Table 3 - Shutdown Activities

18

 Rows marked with × are conditional.
19

 Optional activities can be switched on or off by configuration. It shall be the system designer’s
choice if a module is compiled in or not for an ECU design. See chapter 10.3 Published for details.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

53 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

7.5.4 Sub-State Descriptions

7.5.4.1 PREP SHUTDOWN

PREP SHUTDOWN is a state common for all shutdown targets, i.e. SLEEP, OFF,

reset, etc. During this state, handlers and managers of the basic software are shut
down.

[SWS_EcuM_00288] ⌈If the shutdown target is not any of the sleep modes, then
control has to be handed over to GO OFF I (see 7.5.4.3 GO OFF I) after activities of

this state have finished. ⌋()

«module»

Dem

«module»

EcuM

«module»

Rte

Integration Code

opt Dem

alt Next state

[GO OFF I]

[GO SLEEP]

EcuM_ClearWakeupEvent(EcuM_WakeupSourceType)

EcuM_OnPrepShutdown()

Dem_Shutdown()

Dem_Shutdown()

Rte_Switch_currentMode_currentMode(RTE_MODE_EcuM_Mode_SHUTDOWN)

Rte_Switch_currentMode_CurrentMode(RTE_MODE_EcuM_Mode_SLEEP)

Figure 13 – Deinitialization Sequence I (PREP SHUTDOWN)

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

54 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

7.5.4.2 GO SLEEP

Purpose of GO SLEEP is to configure hardware for the following sleep phase and to
setup the ECU for the next wake up event.

[SWS_EcuM_02389] ⌈To set up the wake up sources for the next sleep mode, the
ECU State Manager Fixed module shall execute the callout
EcuM_EnableWakeupSources for each wake up source that is configured in the

target sleep mode. ⌋()

In contrast to shutdown, the OS is not shut down when entering the sleep state. The
sleep mode shall be transparent to the OS.

Note:

In case of pending wake up events, after calling NvM_CancelWriteAll() the

transition shall go to WAKEUP VALIDATION as for the "Power On Sequence" (see
also Figure 30).

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

55 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

«module»

NvM

«module»

EcuM

«module»

Os

Integration Code

alt Pending wakeup events?

[Yes]

[No]

opt NvM

alt NvM

[Yes]

[No]

par EcuM is asynchronously notified of the end of the Nvm_WriteAll job

loop WHILE no notification from NvM AND timer has not expired AND no pending wakeup event

loop FOR all wakeup sources enabled in the target sleep mode

EcuM_OnGoSleep()

NvM_WriteAll()

Start timer for shutdown

timeout()

EcuM_GetPendingWakeupEvents(EcuM_WakeupSourceType)

EcuM_CB_NfyNvMJobEnd(uint8,

NvM_RequestResultType)

EcuM_GetPendingWakeupEvents(EcuM_WakeupSourceType)

NvM_CancelWriteAll()

EcuM_EnableWakeupSources(EcuM_WakeupSourceType)

GetResource(RES_AUTOSAR_ECUM)

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

56 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Figure 14 – Deinitialization Sequence IIa (GOSLEEP)

7.5.4.3 GO OFF I

GO OFF I is carried out under OS control and is implemented by the
EcuM_MainFunction service.

[SWS_EcuM_00328] ⌈As its last activity, the ShutdownOS service shall be called.

This service will end up in the shutdown hook. The shutdown hook in turn shall call
EcuM_Shutdown to terminate the shutdown process. EcuM_Shutdown will not return

but switch off the ECU or issue a reset. ⌋()

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

57 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

«module»

Rte

«module»

ComM

«module»

EcuM

«module»

NvM

Integration Code «module»

Os

«module»

SchM

«module»

BswM

opt NvM

EcuM_MainFunction() may return

and be re-invoked within this block.

opt Pending wakeup events?

opt ComM

alt

EcuM_OnGoOffOne()

Rte_Stop(Std_ReturnType)

:

Std_ReturnType

ComM_DeInit()

NvM_WriteAll()

Start

timer()

Timeout()

EcuM_CB_NfyNvMJobEnd(uint8,

NvM_RequestResultType)

Stop

timer()

BswM_Deinit()

SchM_Deinit()

EcuM_GetPendingWakeupEvents(EcuM_WakeupSourceType)

EcuM_SelectShutdownTarget(Std_ReturnType,

EcuM_StateType, uint8)

ShutdownOS()

Figure 15 – Deinitialization Sequence IIb (GO OFF I)

7.5.4.4 GO OFF II

This state implements the final steps to reach the shutdown target after the OS has
been shut down.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

58 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Integration Code «module»

Mcu

«module»

EcuM

alt Shutdown Target

[Reset]

[Off]

The ECU cycle continues always with the power up sequence when this

fragment is left (e.g. reset)

EcuM_OnGoOffTwo()

Mcu_PerformReset()

EcuM_AL_SwitchOff()

Figure 16 – Deinitialization Sequence III (GO OFF II)

The shutdown target RESET is reached by invoking the Mcu_PerformReset

service of the MCU driver (see [13]).
The shutdown target OFF is implemented by the EcuM_AL_SwitchOff callout which
must be filled at configuration time. See 8.7.4.7 EcuM_AL_SwitchOff for details.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

59 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

7.6 SLEEP State

Refer To chapter 7.1.4 SLEEP State for an overview description.

[SWS_EcuMf_00025] ⌈The ECU State Manager Fixed module shall not put the ECU

into SLEEP state before all run requests are released.⌋()

[SWS_EcuMf_00026] ⌈The ECU State Manager Fixed module shall put all
communication interfaces to standby state and shall arm the wake up source before

the ECU State Manager Fixed module may put the ECU into SLEEP state.

⌋()

7.6.1 High Level Sequence Diagram

«module»

EcuM

ref
Shutdown Sequence

alt MCU suspended in sleep mode?

[Yes]

[No]

ref

Sleep Sequence I

ref

Wakeup Sequence

ref

Sleep Sequence II

call()

call()

continue

with()

Figure 17 – Sleep Sequence (high level diagram)

To see adjacent diagrams refer to

Figure 12 – Shutdown Sequence (high level diagram)
Figure 20 – Wake-up Sequence (high level diagram)
Figure 2 – ECU Main States (top level diagram)

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

60 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

7.6.2 Sub-State Descriptions

7.6.2.1 Shutdown Targets

Shutdown Targets is a descriptive term for all states and their modes or sub-states
where no code is executed. They are called shutdown targets because it is the final
state where the state machine will drive to when RUN state is left. The following
states are shutdown targets:

 OFF
20

 SLEEP

 Reset
is only a transient a state, but also can be selected as shutdown target.

[SWS_EcuM_00232] ⌈The default shutdown target shall be defined by configuration.

This shutdown target shall be overridden by calling EcuM_SelectShutdownTarget. ⌋()

The SLEEP state can define a configurable set of sleep modes, where each mode
itself is a shutdown target (the bullet list above is a simplification). These sleep
modes are hardware dependent and differ typically in clock settings or other low
power features provided by the hardware. These different features are accessible
through the MCU driver as so called MCU modes (see [13]). The ECU State
Manager Fixed module allows to map these MCU modes to ECU sleep modes and
hence they are addressable as shutdown targets. Further the configuration allows
defining aliases for shutdown targets to simplify portability of code across different
ECUs. See 10.4 Configurable Parameters container EcuMSleepMode for details.

20

 The OFF state requires the capability of the ECU to switch off itself. This is not granted for all
hardware designs.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

61 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

7.6.2.2 Sleep Sequence I

Sleep Sequence I is executed in sleep modes that halt the microcontroller. In these
sleep modes no code is executed.

Integration Code «module»

Wakeup Source

«module»

EcuM

«module»

Mcu

«Peripheral»

Wakeup Source

«module»

Os

HALT

opt RAM check failed

This call never returns!

DisableAllInterrupts()

EcuM_GenerateRamHash()

Mcu_SetMode(Mcu_ModeType)

Interrupt()

EcuM_CheckWakeup(EcuM_WakeupSourceType)

Activate

PLL()

<Module>_CheckWakeup()

EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

Return from

interrupt()

Mcu_SetMode()

EnableAllInterrupts()

EcuM_CheckRamHash(uint8)

EcuM_ErrorHook(uint16)

Figure 18 – Sleep Sequence I

A callout is invoked where the system designer can place a RAM integrity check. See
also EcuM_GenerateRamHash and EcuM_CheckRamHash.

[SWS_EcuM_02863] ⌈The ECU Manager module shall invoke the callout
EcuM_GenerateRamHash (see SWS_EcuM_02919) before halting the
microcontroller and the callout EcuM_CheckRamHash (see SWS_EcuM_02921)

after the processor returns from halt. ⌋()

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

62 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Rationale for SWS_EcuM_02863: RAM memory may become corrupted when an
ECU is held in SLEEP mode for a long time. The RAM memory’s integrity should
therefore be checked to prevent unforeseen behavior. The system designer may
choose an adequate checksum algorithm to perform the check.

7.6.2.3 Sleep Sequence II

[SWS_EcuM_02962] ⌈The ECU State Manager Fixed module shall execute the Poll
Sequence in sleep modes that reduce the power consumption of the microcontroller

but still execute code. ⌋()

[SWS_EcuM_03020] ⌈In the Poll sequence the ECU State Manager Fixed module

shall call the callouts EcuM_SleepActivity() and EcuM_CheckWakeup() in a

blocking loop until a pending wake up event is reported. ⌋()

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

63 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

«module»

EcuM

«module»

Wakeup Source

«module»

Mcu

Integration Code

loop WHILE no pending wakeup events

loop FOR all wakeup sources that need polling

opt Wakeup detected

Mcu_SetMode(Mcu_ModeType)

EcuM_SleepActivity()

EcuM_CheckWakeup(EcuM_WakeupSourceType)

<Module>_CheckWakeup()

EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

EcuM_GetPendingWakeupEvents(EcuM_WakeupSourceType)

Figure 19 – Sleep Sequence II

7.6.3 Leaving SLEEP State

Regular exits of the SLEEP state are a result of a wake up event (toggling a wake up

line, communication on a CAN bus etc.). An ISR may be invoked to handle the event,

but this is specific to hardware and driver implementation. Finally, the MCU_SetMode

service of the MCU driver will return and the ECU State Manager Fixed module will

regain control. Execution then continues with the WAKEUP state.

Irregular events are a hardware reset or a power cycle. In this case, the ECU will

restart from the STARTUP state.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

64 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

7.7 WAKEUP State

7.7.1 High Level Sequence Diagram

«module»

EcuM

alt Entry reason

[Wakeup during SHUTDOWN]

[Wakeup during SLEEP]

[Wakeup by wakeup source with integrated power supply]

opt Wakeup Reaction

[NOT Full Startup]

[Full Startup]

ref
Run Sequence

ref
Wakeup Sequence II

ref
Shutdown Sequence

ref
Shutdown Sequence

opt Wakeup Reaction

[Time-Triggered Increased Inoperation]

Corresponds to WAKEUP II

ref
Power Up Sequence This case only occurrs, if a wakeup source (e.g. a CAN transceiver)

implements the wakeup by controll ing the power supply with a voltage

regulator. This means that SLEEP is actually implemented by an OFF state

and STARTUP is needed also in case of a wakeup.

ref
Wakeup Validation

ref
Sleep Sequence

ref
Wakeup Sequence I

call()

call()

WAKEUP

REACTION()

Invoke

TTII()

continue

with()

call()

continue

with()

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

65 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Figure 20 – Wake-up Sequence (high level diagram)

To see adjacent diagrams, refer to
Figure 12 – Shutdown Sequence (high level diagram)
Figure 8 – RUN State Sequence (high level diagram)
Figure 2 – ECU Main States (top level diagram)

7.7.2 State Breakdown Structure

Perform WAKEUP I

Perform WAKEUP

VALIDATION

Perform WAKEUP

REACTION

Time Triggered Increased

Inoperation

WKACT == ECUM_WKACT_RUN ?

Validation

Successful?

from SLEEP

WKACT == ECUM_WKACT_TTII

?

return

SleepFlag

Caution:

This activity may issue an ECU reset.

Perform WAKEUP II

SleepFlag := TRUE

SleepFlag := FALSE

from GOSLEEP

[yes]

[no]

[no]

[yes]

[yes]

[no]

Figure 21 – WAKEUP State Breakdown

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

66 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

7.7.3 WAKEUP Activity Overview

Sub-state21
 Wake-up Activity Comment Opt.

WAKEUP I
 Restore MCU normal mode Selected MCU mode is configured in

parameter EcuMNormalMcuModeRef

 Get the pending wake up sources
 Callout EcuM_DisableWakeupSources Disable currently pending wake up source but

leave the others armed so that later wake-ups
are possible.

 Callout EcuM_AL_DriverRestart Initialize drivers that need restarting
 Unlock Scheduler From this point on, all other tasks may run

again

WAKEUP VALIDATION see chapter 7.7.4.2 WAKEUP VALIDATION

WAKEUP REACTION
 Compute wake up reaction see chapter 7.7.4.3 unterhalb
 Callout EcuM_OnWakeupReaction if the wakeup reaction is

ECUM_WKACT_SHUTDOWN

× Indicate mode change to RTE
× Invoke TTII protocol see chapter 7.9 unterhalb

WAKEUP II
 Initialize Diagnostic Event Manager Conditional:

a) If the System comes out of SLEEP, the
Dem shall be initialized
b) If this is not the case the EcuM shall wait
for EcuM_CB_NfyNvMJobEnd() and

then execute EcuMDriverInitListThree

yes

× Indicate mode change to RTE

Table 4 – Wake-up Activities

7.7.4 Sub-State Descriptions

7.7.4.1 WAKEUP I

The EcuM_AL_DriverRestart callout is invoked. This callout is intended for re-
initializing drivers. Re-initialization is typically required for drivers with wake up
sources, at least. For more details on driver initialization refer to 7.3.5 Driver
Initialization.

[SWS_EcuM_02539] ⌈During re-initialization, a driver must check if one of its
assigned wake up sources was the reason for the previous wake up. If this test is
true, it must invoke its ‘wake up detected’ callback (see [21] for an example), which in
turn has to call the EcuM_SetWakeupEvent service. As a result, when WAKEUP I
has finished, the ECU State Manager Fixed module has a list of wake up source

21

 Rows marked with × are conditional.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

67 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

candidates. These wake up source candidates still may need validation. See also 7.8

Wake-up Validation Protocol for more information. ⌋()

«module»

Mcu

«module»

Os

«module»

EcuM

Integration Code

Mcu_SetMode(Mcu_ModeType)

EcuM_GetPendingWakeupEvents(EcuM_WakeupSourceType)

EcuM_DisableWakeupSources(EcuM_WakeupSourceType)

EcuM_AL_DriverRestart(const

EcuM_ConfigType*)

ReleaseResource(RES_AUTOSAR_ECUM)

Figure 22 – Wake-up Sequence I

[SWS_EcuM_00545] ⌈The driver should be implemented in a way that it only invokes
the wake up callback once and then requires a dedicated service call to re-arm this

mechanism. The driver then needs to be re-armed to fire the callback again. ⌋()

7.7.4.2 WAKEUP VALIDATION

Because wake up events can be generated unintended (e.g. EVM spike on CAN
line), it is necessary to validate wake-ups before the ECU takes up its full operation.
The validation mechanism is the same for all wake up sources. When a wake up
event occurs, the ECU is woken up from its SLEEP state and execution resumes

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

68 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

within the MCU_SetMode service of the MCU driver22. When WAKEUP I is left, the

ECU State Manager Fixed module will have a list of pending wake up events which
need to be validated.

«module»

EcuM

«module»

Wakeup Source

Integration Code

loop WHILE no wakeup event has been validated AND timeout not expired

opt Wakeup validated

opt No wakeup event was validated

EcuM_GetPendingWakeupEvents(EcuM_WakeupSourceType)

EcuM_StartWakeupSources(EcuM_WakeupSourceType)

Start validation

timeout()

EcuM_CheckValidation(EcuM_WakeupSourceType)

<Module>_CheckValidation()

EcuM_ValidateWakeupEvent(EcuM_WakeupSourceType)

EcuM_StopWakeupSources(EcuM_WakeupSourceType)

Figure 23 – Wake-up Validation Sequence

22

 Actually, the first code to be executed may be an ISR, e.g. a wakeup ISR. However, this is specific
to hardware and/or driver implementation.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

69 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

[SWS_EcuM_02566] ⌈Wake up validation shall apply only to those wake up sources
where it is required by configuration. If the validation protocol is not configured, then
a call to EcuM_SetWakeupEvent shall also imply a call to

EcuM_ValidateWakeupEvent. ⌋()

[SWS_EcuM_02565] ⌈For each pending wake up event, for which validation is
required, a validation timeout shall be started. The timeout is event specific and can
be defined by configuration. Strictly spoken, it is sufficient for an implementation to
provide only one timer, which is prolonged to the largest timeout when new wake up

events are reported. ⌋()

[SWS_EcuM_00567] ⌈If the last timeout expires without validation then the wake up

validation is considered to have failed. ⌋()

[SWS_EcuM_00568] ⌈If at least one of the pending events is validated then the
entire validation has passed.
Pending events are validated with a call to EcuM_ValidateWakeupEvent. This call
must be placed in the driver or the consuming stack on top of the driver (e.g. the
handler). The best place to put this depends on hardware and software design. See

also 7.8.5 Requirements for drivers with wake up sources. ⌋()

7.7.4.3 WAKEUP REACTION

ECUM_WKACT_SHUTDOWN

ECU_WKACT_TTII

ECUM_WKACT_RUN

Is ECUM_TTII_TIMER

the only wakeup event?

No EVENT ?

from WAKEUP

EcuM_GetValidatedWakeupEvent

(EcuM::EcuM_GetValidatedWakeupEvents)

event source

EcuM_OnWakeupReaction

(EcuM_Callouts::)

in WKACT out WKACT

[Yes]

[No]

[No]

[Yes]

Figure 24 – Activity Diagram of WAKEUP REACTION

The WAKEUP REACTION state determines the appropriate wake up reaction (see
8.3.6 EcuM_WakeupReactionType) according to the wake up source (see 8.3.4
EcuM_WakeupSourceType).
As can be seen from, Figure 24 – Activity Diagram of WAKEUP REACTION there are
the following wake up reactions:

 Execution of the TTII protocol (see 7.9 Time Triggered Increased Inoperation)

 Proceed to RUN state (full startup)

 Shutdown
If none of the above cases is chosen, the ECU will be shut down again by
default. The exact behavior depends on the selected shutdown target.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

70 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

The callout of this state may be used to override the wake up reaction and provide an
ECU specific algorithm.
In case of an ECU Reset, the ECU State Manager Fixed module will perform a full
initialization.

After a failed wake up validation the EcuM shall put the ECU into the same state as
before the wake up event which failed, i.e. into "SLEEP" or "OFF". The state before
the wake up event can be determined by calling
"EcuM_GetLastShutdownTarget()".

7.7.4.4 WAKEUP II

«module»

Dem

«module»

EcuM

«module»

Rte

«module»

NvM

Integration Code

alt previous state

[SLEEP]

[STARTUP]

opt DEM

opt NVM

Dem_Init(const Dem_ConfigType*)

EcuM_CB_NfyNvMJobEnd(uint8, NvM_RequestResultType)

stop Timer()

EcuM_AL_DriverInitThree(const

EcuM_ConfigType*)

Rte_Switch_currentMode_currentMode(RTE_MODE_EcuM_Mode_RUN)

Figure 25 – Wake-up Sequence II

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

71 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

7.8 Wake-up Validation Protocol

7.8.1 Wake-up of Communication Channels

Communication channels have their own state machines including run and also sleep
states. This is necessary since an ECU may have interfaces to several
communication busses and busses can go to sleep independently from the ECU.
Consider the following example:

An ECU may have two bus interfaces A and B. The ECU may be awake, bus A is in full
communication state, but bus B is sleeping.

The state machines of the communication channels are completely provided by the
Communication Manager, see [6] for details.
According to the specification, the Communication Manager autonomously can fulfill
the following tasks:

 Drive a channel from full communication in no communication mode in
collaboration with Network Management.

 Put the bus transceiver into standby mode by using the Bus State Manager
according to the bus interface type. This will configure the bus transceiver to
generate wake up events when bus traffic occurs.

The Communication Manager however will not drive the wake up process since wake
up events will be directed to the ECU State Manager Fixed module which in turn will
notify the Communication Manager if and only if appropriate.

[SWS_EcuM_00478] ⌈If a wake up occurs on a communication channel, the
according bus transceiver driver shall notify the ECU State Manager Fixed module by
invoking the EcuM_SetWakeupEvent service. Requirements for this notification are

described in 5.3 Peripherals with Wake-up Capability. ⌋()

[SWS_EcuM_02479] ⌈The ECU State Manager Fixed module shall execute the wake
up validation protocol according to 7.8.3 Interaction of wake up Sources and the

later in this chapter. ⌋()

[SWS_EcuM_00480] ⌈If validation is successful, the ECU State Manager Fixed
module shall inform the Communication Manager about the wake up event by

invoking the Communication Manager’s ComM_EcuM_WakeUpIndication service

with the according channel as parameter. In turn, the Communication Manager will

use this event to bring the channel into full communication mode. ⌋()

[SWS_EcuMf_00044] ⌈If at least one valid wake up is detected the ECU shall

perform a startup as fast as possible.⌋()

[SWS_EcuMf_00045] ⌈If in addition to a validated wake up an "invalid" wake up
occurs as well, it is tolerable to indicate it too. This does not contradict

SRS_ModeMgm_09097, since the ECU has to start anyway. ⌋()

⌋()

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

72 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

7.8.2 Wake-up of the Entire ECU

Before the ECU State Manager Fixed module can put the ECU into SLEEP state, the

Communication Manager must have released all run requests23, see
[SWS_EcuMf_00025. This will only happen, if all communication state machines are
in ‘no communication’ mode.
But this, taking into account the previous paragraphs, implies that all communication
interfaces (i.e. all bus transceivers) must have been put to standby state and the
wake up source must have been armed. Thus, when a wake up occurs, all
communication channels are in no communication state and there are no RUN
requests.
The wake up procedure is identical to the previous chapter.

7.8.3 Interaction of wake up Sources and the ECU State Manager Fixed
module

All wake up sources must be treated in the same way. The procedure shall be as
follows:

Upon occurrence of a wake up event, the responsible driver shall invoke an
indication to notify the ECU State Manager Fixed module about the wake up.

This step can happen in several scenarios. The most likely are:

 After exiting the SLEEP state. In this scenario, the ECU State Manager Fixed

module would issue a re-initialization of the relevant drivers which in turn get a
chance to scan their hardware e.g. for pending wake up interrupts.

 If the wake up source is actually in sleep mode, then the driver shall scan
autonomously for wake up events. The driver may do this interrupt driven or in
polling mode, whichever is the preferred way for implementing it.

[SWS_EcuM_00494] ⌈If wake up validation is required for this event, then the

validation protocol applies. Otherwise the event is valid immediately. ⌋()

[SWS_EcuM_00495] ⌈If the valid event is a wake up event from a communication

interface then it is propagated to the Communication Manager. ⌋()

[SWS_EcuM_02975] ⌈If a wake up event requires validation then the ECU Manager

module shall invoke the validation protocol. ⌋()

[SWS_EcuM_02976] ⌈If a wake up event does not require validation, the ECU
Manager module shall issue a mode switch request to set the event's mode to

ECUM_WKSTATUS_VALIDATED. ⌋()

23

 This statement can be extended to any resource manager which may be added in future versions of
the AUTOSAR Basic Software.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

73 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

[SWS_EcuM_02496] ⌈If the wake up event is validated (either immediately or by the
wake up validation protocol), it is labelled as a wake up source and this information is

made available by the EcuM_GetValidatedWakeupEvents service. ⌋()

7.8.4 Wake up validation timeout

It is the implementer’s choice whether he wants to provide a single wake up
validation timeout timer or one timer per wake up source. The following requirements
apply:

[SWS_EcuM_02709] ⌈The timer shall be started when the service

EcuM_SetWakeupEvent is called. ⌋()

[SWS_EcuM_02710] ⌈The timer shall be stopped and the validation is set to

“passed” when the service EcuM_ValidateWakeupEvent is called. ⌋()

[SWS_EcuM_00711] ⌈When the timer expires, validation is set to “failed”. ⌋()

[SWS_EcuM_02712] ⌈Subsequent calls to EcuM_SetWakeupEvent for the same

wake up source shall not prolong the timeout. ⌋()

If only one timer is used, the following approach is proposed:

[SWS_EcuM_00714] ⌈If EcuM_SetWakeupEvent is called for a wake up source
which did not fire yet during the same wake up cycle then the timeout should be
prolonged for the validation timeout of that wake up source.
Wake up timeouts are defined by configuration in chapter 10.4 Configurable

Parameters. ⌋()

7.8.5 Requirements for drivers with wake up sources

The driver shall invoke the EcuM_SetWakeupEvent service with a configurable
parameter identifying the source of the wake up once when the wake up event is
detected.

[SWS_EcuM_02572] ⌈Wake-ups which occurred prior to driver initialization shall be

detectable. This applies to initialization from SLEEP or from OFF state. ⌋()

The driver shall provide an API to configure the wake up source for the SLEEP state,

to enable or disable the wake up source, and to put the related peripherals to sleep.
This requirement only applies if hardware provides these capabilities.

The callback invocation shall be enabled by calling the driver initialization service.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

74 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

7.8.6 Requirements for Wake-up Validation

If the wake up source requires validation, this may be done by any but only by one
appropriate module of the basic software. This may be a driver, an interface, a
handler, or a manager.

Validation is done by calling the EcuM_ValidateWakeupEvent service.

7.8.7 Wake up Sources and Reset Reason

The API of the ECU State Manager Fixed module API only provides one type
(EcuM_WakeupSourceType) which can describe all reasons why the ECU starts or
wakes up.

[SWS_EcuM_02625] ⌈The following wake up sources shall not require validation
under no circumstances:

 ECUM_WKSOURCE_POWER

 ECUM_WKSOURCE_RESET

 ECUM_WKSOURCE_INTERNAL_RESET

 ECUM_WKSOURCE_INTERNAL_WDG

 ECUM_WKSOURCE_EXTERNAL_WDG

⌋()

7.8.8 Wake up Sources with Integrated Power Control

This section applies if the sleep state is realized by a system chip which controls the
MCU’s power supply. Typical examples are CAN transceivers with integrated power
supplies. These transceivers switch off power upon application request and switch on
power upon CAN activity.

As a consequence, the sleep state looks like the OFF state for the ECU State

Manager. This distinction is rather philosophical and not of practical importance. The
practical impact is that a passive wake up on CAN will look like a power on reset to
the ECU. Hence, the ECU will continue with the startup sequence after a wake up
event. Nevertheless, wake up validation is required. In order to make this work, the
system designer has to consider the following topics:

 The CAN transceiver is initialized during one of the driver initialization blocks
(Init Block II by default). This is configured or generated code, i.e. code which
is under control of the system designer.

 The CAN transceiver driver API provides services to find out if it was the CAN
transceiver, due to a passive wake up, which started the ECU. It is the system
designer’s responsibility to check the CAN transceiver for wake up reasons
and give this information to the ECU State Manager Fixed module by using
the EcuM_SetWakeupEvent and EcuM_ClearWakeupEvent services.

 If the system designer sets the CAN transceiver as the wake up source, then
the ECU State Manager Fixed module will not continue with the RUN state
when STARTUP II is finished. Instead it will continue with the WAKEUP
VALIDATION state.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

75 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

This behavior can be applied to all kinds of wake up sources. The CAN transceiver
only serves as an example here.

Waking up from a sleep state which is implemented by unpowering the MCU is not
fully transparent to the SW-Cs. First of all the BSW modules are brought back into
their default states after initialization. Second, when starting RTE the SW-Cs will be

initialized and STARTUP state is signaled for a very short time. When the MCU is

unpowered, it is inevitable that the ECU State Manager Fixed module carries out the

STARTUP state. The ECU State Manager Fixed module offers support by detecting

this case and then branching into wake up validation and from there (if validation is

successful) into RUN state. If wake up validation is not successful, the ECU State

Manager Fixed module supports branching into SHUTDOWN state. During wake up

validation the ECU State Manager Fixed module will signal SLEEP state to the SW-

Cs so that afterwards it appears as if they were woken up from a normal SLEEP

state.

7.8.9 Activity Diagram

D
ri
v
e

r
o

r
o

th
e

r
c
o

m
p

o
n

e
n

t
D

ri
v
e

r

E
C

U
 S

ta
te

 M
a

n
a

g
e

r

E
c
u

M
_

V
a

lid
a

te
W

a
k
e

u
p

E
v
e

n
t

E
c
u

M
_

S
e

tW
a

k
e

u
p

E
v
e

n
t

Validating Component

Store

Wakeup

Event

State?

Driver Initialization

Test for wakeup event in

the past

Event occurred?
Continue initialization and

re-arm wakeup trigger

Driver Initialization

Is validation required?

Start

validation

timeout

Is wakeup source a COM channel?

Store

Validated

Wakeup

Event

Validation

Timed

Out

Clear

Wakeup

Event

Stop

Validation

Timeout

Invoke

callback

'wakeup

detected'

Validation

Timeout Timer

Most l ikely, one timer is

needed per wakeup

source.

Implementation detail.

Invoke

ComM_EcuM_WakeUpIndication

Return

Return

Return

Driver ISR

Wakeup event occurred?

Wakeup trigger armed?

Disarm

wakeup

trigger

Return from

ISR

Driver ISR

Validating Component

Timeout

[yes]

[yes]

[no]

[no]

[no]

[yes]

[yes]

[no]

[WAKEUP]

[RUN]

[yes]

Figure 26 – Wake up Validation Protocol

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

76 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

77 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

7.9 Time Triggered Increased Inoperation

[SWS_EcuM_00653] ⌈TTII shall manage a list of all sleep modes (shutdown targets).
These sleep modes can be defined at configuration time. Typically the sleep modes
are ordered to deepen the sleep phase of the ECU (decreased power consumption).

⌋()

[SWS_EcuM_00654] ⌈An entry of the sleep mode list shall contain the following
properties:

 A description of the ECU sleep mode

 A reference to the successor sleep mode

 A divisor counter which tells how often the ECU must be woken up before the
successor sleep mode is selected.

These properties shall be defined at configuration time (see 10.4 Configurable

Parameters container EcuMFixedTTII). ⌋()

The TTII protocol is executed during the WAKEUP REACTION sub-state. Refer to
chapter 7.7.4.3 WAKEUP REACTION and Figure 24 – Activity Diagram of WAKEUP
REACTION.

[SWS_EcuM_00223] ⌈The entire TTII feature can be completely disabled by setting

the ECUM_TTII_ENABLED configuration parameter to false. All further described

activities are only applicable if TTII is enabled. ⌋()

[SWS_EcuM_00222] ⌈A wake up source must be selected by configuration

(ECUM_TTII_WKSOURCE configurable parameter) for use by the TTII protocol.

Typically, the wake up source will be a timer, which serves as a timebase for TTII.
Whenever the ECU is woken up by this configured wake up source, then the TTII

protocol shall be executed. ⌋()

«configuration data»

ECUM_TTII_DIVISOR_LIST

«configuration data»

ECUM_TTII_SUCCESSOR_LIST
from WAKEUP

Decrement Divisor

Counter

Divisor Counter <= 1 ?

ActivityFinal

Get succeeding sleep

mode

Preload divisor counter for

new sleep mode

Divisor Counter

static variable

[no]

[yes]

sleep mode names

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

78 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Figure 27 – Activity Diagram of TTII

[SWS_EcuM_02785] ⌈Whenever RUN mode is reached, the TTII protocol shall be
reset to use the wakeup source referenced by this parameter. This configuration
parameter is a human readable name for a TTII wakeup source which is only needed
by the configuration tool. For imlementation on the ECU, this parameter may be

dropped and replaced by a generated list index of EcuM_TTII. ⌋()

7.10 Advanced Topics

7.10.1 OS Application Modes

OS Application Modes is a feature of the OS which allows defining different
configurations, e.g. sets of tasks which will be started initially. The application mode

is an in parameter of the StartOS service [6]. Since the ECU State Manager Fixed

module is responsible for starting the OS, it has also responsibility for managing the
application mode.

[SWS_EcuMf_00010] ⌈Since AUTOSAR RTE does not use application modes, the
ECU State Manager Fixed module always has to start the OS with the value

DEFAULT_APP_MODE (defined by the operating system). ⌋()

[SWS_EcuM_00243] ⌈The default application mode is set in the STARTUP I state in

case of unintended restarts24, see chapter 7.3.4.1 STARTUP I. ⌋()

7.10.2 Relation to Bootloader

The Bootloader is not part of AUTOSAR. Still, the application needs an interface to
activate the bootloader. For this purpose, two functions are provided:
EcuM_SelectBootTarget and EcuM_GetBootTarget.

Figure 28 – Selection of Boot Targets

24

 e.g. like watchdog reset

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

79 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Bootloader and application are two separated programs which in many cases even
can be flashed separately. The only way to get from one image to another is through
reset. The boot menu will branch into the one or other image depending on the
selected boot target.

7.10.3 Relation to Complex Drivers

If the complex driver handles a wake up source, it must obey all rules of this
specification which are related to handling wake up events.

A complex driver may issue RUN requests.

7.10.4 Handling Errors during Startup and Shutdown

The ECU State Manager Fixed module will ignore all types of errors that occur during
initialization, e.g. as return values of init functions. Initialization is a configuration
issue and henceforth cannot be standardized.
If errors occur during the initialization of a BSW module and this error is worthwhile
being reported, then it is in the responsibility of that BSW module to report this error
directly to DEM or DET and not the responsibility of the ECU State Manager.
If special error reactions are necessary, then also this is in the responsibility of the
BSW module.

7.10.5 Configuration Alternative for Providing Wake-Sleep Operation

In rare use cases, an ECU has to wake up cyclically (e.g. each second), execute a
very simple task (like blinking an LED) and go back to sleep. For most operations,
the normal WAKEUP/SHUTDOWN behavior as defined by the ECU State Manager
Fixed module will be sufficient. Sometimes, however, the software has to be written
very specific to maximize energy savings. Because the use case is so rare, there is
no built-in feature in the ECU State Manager. However, the system designer can
achieve this by using the ECU State Manager Fixed module in the following way:

 Define a wake up source to be used for the wake-sleep-operation (typically a
timer)

 Check the wake up source in the EcuM_AL_DriverInitOne callout and, if it was
the reason, execute the necessary task

 Finally, put the ECU back to sleep or perform a startup
The code needed for this behavior is custom code which is located below the RTE.

7.10.6 Selecting Scheduling Schemes for Startup and Shutdown

On some ECU designs, it will be necessary to change the scheduling tables for
startup and shutdown of the ECU, e.g. to improve speed for reading or writing non-
volatile data. Unless other mechanisms are provided by basic software, the

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

80 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

notification to switch the schedule table shall preferably be done from the
EcuM_OnEnterRun and EcuM_OnExitRun callouts.

7.11 Runtime Errors

AUTOSAR BSW modules normaly report their errors to Det (development errors) or
Dem (production errors). The EcuM handles errors differently and does not report its
errors to Dem/Det. If a reporting of errors to Dem/Det is needed the user can perform
these actions in the EcuM_ErrorHook().
The following table contains all error codes which might be reported from the EcuM
(besides those individual error codes defined integrator)

Type or error Related error code Value [hex]

The RAM check during wake
up failed

ECUM_E_RAM_CHECK_FAILED Assigned by
Implementation

Configuration data is
inconsistent

ECUM_E_CONFIGURATION_DATA_INCONSISTENT Assigned by
Implementation

Table 5 - Runtime Errors

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

81 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

7.12 Debug Support

In order to support debugging AUTOSAR implementations must publish information
which can be used for debugging purpose. As start-up and shut-down are crucial
system phases, sufficient information to track the current state of the ECU State
Manager Fixed module needs to be provided by implementations.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

82 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

8 API specification

8.1 Imported Types

In this chapter all types included from the following files are listed:

[SWS_EcuM_02810] ⌈
Module Imported Type

Adc Adc_ConfigType

BswM BswM_ConfigType

Can Can_ConfigType

CanIf CanIf_ConfigType

CanNm CanNm_ConfigType

CanSM CanSM_ConfigType

CanTp CanTp_ConfigType

CanTrcv CanTrcv_ConfigType

Com Com_ConfigType

ComM ComM_StateType

ComM_ConfigType

ComStack_Types NetworkHandleType

Dcm Dcm_ConfigType

Dem Dem_EventIdType

Dem_EventStatusType

Dem_ConfigType

Dio Dio_ConfigType

Dlt Dlt_ConfigType

Eep Eep_ConfigType

EthIf EthIf_ConfigType

Eth_GeneralTypes EthTrcv_ConfigType

Eth_ConfigType

FiM FiM_ConfigType

Fls Fls_ConfigType

Fr Fr_ConfigType

FrArTp FrArTp_ConfigType

FrIf FrIf_ConfigType

FrNm FrNm_ConfigType

FrSm FrSM_ConfigType

FrTp FrTp_ConfigType

Gpt Gpt_ConfigType

Icu Icu_ConfigType

IpduM IpduM_ConfigType

J1939Tp J1939Tp_ConfigType

Lin Lin_ConfigType

LinIf LinIf_ConfigType

LinTp_ConfigType

LinSM LinSM_ConfigType

Mcu Mcu_ModeType

Mcu_ResetType

Mcu_ConfigType

NvM NvM_RequestResultType

Ocu Ocu_ConfigType

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

83 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Os AppModeType

PduR PduR_PBConfigType

Port Port_ConfigType

Pwm Pwm_ConfigType

Rte Rte_ModeType_EcuM_Mode

SchM SchM_ConfigType

SoAd SoAd_ConfigType

Spi Spi_ConfigType

Std_Types Std_ReturnType

Std_VersionInfoType

UdpNm UdpNm_ConfigType

Wdg Wdg_ConfigType

WdgM WdgM_ConfigType

Xcp Xcp_ConfigType

⌋()

8.2 Service Interfaces

8.2.1 Use Cases for System Services

[SWS_EcuM_00762] ⌈The ECU State Manager Fixed module shall provide System
Services for the following functionalities:

 requesting RUN

 releasing RUN

 requesting POST_RUN

 releasing POST_RUN

⌋()

[SWS_EcuM_02763] ⌈The ECU State Manager Fixed module shall provide also
System Services for the following functionality:

 selecting and getting shutdown target

 selecting and getting boot targets

⌋()

8.2.2 Port Interface for Interface EcuM_StateRequest

A SW-C which needs to keep the ECU alive or needs to execute any operations
before the ECU is shut down shall require the client-server interface

EcuM_StateRequest.

This interface uses port-defined argument values to identify the user that requests
modes. See [SWS_Rte_1360] in [18] for a description of port-defined argument
values.

8.2.2.1 Data Types

No data types are needed for this interface

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

84 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

8.2.2.2 EcuM_StateRequest

[SWS_EcuMf_00030] ⌈

Name EcuM_StateRequest

Comment Interface to request a specific ECU state

IsService true

Variation --

Possible Errors
0 E_OK

1 E_NOT_OK

Operations

ReleasePOSTRUN

Comments --

Variation --

Possible
Errors

E_OK The request was accepted by EcuM

E_NOT_OK
The request was not accepted by EcuM, a detailed error condition was sent

to DET

ReleaseRUN

Comments --

Variation --

Possible
Errors

E_OK The request was accepted by EcuM

E_NOT_OK
The request was not accepted by EcuM, a detailed error condition was sent

to DET

RequestPOSTRUN

Comments --

Variation --

Possible
Errors

E_OK The request was accepted by EcuM

E_NOT_OK
The request was not accepted by EcuM, a detailed error condition was sent

to DET

RequestRUN

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

85 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Comments --

Variation --

Possible
Errors

E_OK The request was accepted by EcuM

E_NOT_OK
The request was not accepted by EcuM, a detailed error condition was sent

to DET

⌋()

The ECU State Manager Fixed module provides additional calls which would typically
be made by one management instance on the ECU as they have a global impact.

The function “EcuM_KillAllRUNRequests()” unconditionally undoes all requests

to RUN. Because of this, calling EcuM_RequestRUN does not necessarily guarantee

that the ECU will stay awake until calling EcuM_ReleaseRUN (e.g. a

KillAllRUNRequests-call can override the wish of individual users for the ECU to

stay awake). The function “EcuM_KillAllRUNRequests()” is not accessible over

the RTE and thus can not be used by SW-Cs.

The following activity chart is not normative and shall help the application software
programmer to understand when to request which state via EcuM_StateRequest.

 RequestRUN is actually prohibiting shutdown.

 RequestPOSTRUN is actually requesting the opportunity to de-initialize.

 The application software components shall only listen to the EcuM state over
the mode switch port.

 RUN state can be requested (RequestRUN) and released (ReleaseRUN)
arbitrarily often during operation.

The EcuM is the mode manager, but does not have a requestmode (RTE
ModeGroup) interface.

When all RUN requests are released, the ECU shuts down, so the active Software
Components have to request RUN (RequestRUN) right after their initialization,
otherwise the ECU may shut down immediately.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

86 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Figure 29 – Activity chart for SW-C

8.2.2.3 Port Interface for Interface EcuM_CurrentMode

[SWS_EcuM_00749] ⌈The mode port of the ECU State Manager Fixed module shall
declare the following modes:

 STARTUP

 RUN

 POST_RUN

 SLEEP

 WAKE_SLEEP

 SHUTDOWN

⌋()

This definition is a simplified view of ECU Modes that applications do need to know. It
does not restrict or limit in any way how application modes could be defined.
Applications modes are completely handled by the application itself.

Store current
state request

State request active?

No

Yes

Need to keep
ECU alive?

Yes No Need to
communicate?

Need to perform
activity
during shutdown?

Yes No

Request
Communication

Mode from ComM
if not already

requested.

RequestRUN
from EcuM

if not already
requested.

RequestPOSTRUN
from EcuM

if not already
requested.

Don ‘ t request
any other state.

Yes No

Release stored state
if not equal

to last recently
requested state

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

87 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

[SWS_EcuM_00750] ⌈Mode changes shall be notified to SW-Cs through the RTE
mode ports when the mode change occurs. The ECU State Manager Fixed module

shall not wait until the RTE has performed the mode switch completely. ⌋()

This specification assumes that the port name is currentMode and that the direct API
of RTE will be used. Under these conditions mode changes signaled by invoking

Rte_StatusType Rte_Switch_currentMode_currentMode(

Rte_ModeType_EcuM_Mode mode)

where mode is the new mode to be notified. The value range is specified by the

previous requirement. The return value shall be ignored.

A SW-C which wants to be notified of mode changes should require the mode switch

interface EcuM_CurrentMode.

The following figure shows how the defined modes are mapped to the states of the
ECU State Manager Fixed module and when the notifications shall occur.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

88 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Mapping of States to Mode Declarations

Mode Declaration Model

EcuM_Mode :

ModeDeclarationGroup

SHUTDOWN :

ModeDeclaration

RUN :

ModeDeclaration

POST_RUN :

ModeDeclaration

SLEEP :

ModeDeclaration

WAKEUP

(from Main State Machine)

SLEEP

(from Main State

Machine)

SHUTDOWN

(from Main State Machine)

Perform GO SLEEP

(from Main State

Machine)

Perform PREP

SHUTDOWN

(from Main State

Machine)

Perform GO OFF I

(from Main State

Machine)

RUN

(from Main State Machine)

RUN II

(from Main State

Machine)

RUN III

(from Main State

Machine)

Mode Post Run

WAKE_SLEEP :

ModeDeclaration

Mode WakeSleep

Time Triggered

Increased Inoperation

(from Main State

Machine)

STARTUP :

ModeDeclaration

STARTUP II

(from Main State

Machine)

Mode Startup

Mode Run

Mode Sleep

Mode Shutdown

all RUN requests

released /notify

all applications have shut down

Wakeup event

+initialMode

+modeDeclarations

trough OFF or RESET

[other] /notify

[Reset or Off requested] /notify

+modeDeclarations+modeDeclarations +modeDeclarations
+modeDeclarations

immediate

normal startup

/notify

No Wakeup Event

RUN requested

/notify

else

/notify

immediate

/notify

Wakeup Event

+modeDeclarations

wakeup source with integrated power control

/notify

TTII

/notify

Figure 30 – Mapping of Declared Modes to states of ECU State Manager Fixed module

[SWS_EcuM_00752] ⌈The ECU State Manager Fixed module shall notify WakeSleep

mode and Sleep mode when transiting from WAKEUP to SHUTDOWN, but only if the

selected shutdown target is SLEEP.

This allows the system designer to trigger runnables for TTII. ⌋()

8.2.2.4 Data Types

The mode declaration group EcuM_Mode represents the modes of the ECU State

Manager Fixed module that will be notified to the SW-Cs.

[SWS_EcuMf_00104]⌈

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

89 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Name EcuM_Mode

Kind ModeDeclarationGroup

Initial mode STARTUP

Modes

STARTUP

RUN

POST_RUN

SLEEP

WAKE_SLEEP

SHUTDOWN

Description --

⌋()

8.2.2.5 EcuM_CurrentMode

[SWS_EcuMf_00031] ⌈

Name EcuM_CurrentMode

Comment Interface to read the current ECU mode

IsService true

Variation --

ModeGroup currentMode EcuM_Mode

⌋()

8.2.3 Ports and Port Interface for Interface EcuM_ShutdownTarget

A SW-C which wants to select a shutdown target should require the client-server

interface EcuM_ShutdownTarget.

8.2.3.1 Data Types

This data type represents the states of the ECU State Manager Fixed module and
thus includes the shutdown targets.

[SWS_EcuMf_00105]⌈

Name EcuM_StateType

Kind Type

Derived from uint8

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

90 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Description ECU State Manager states.

Range

ECUM_SUBSTATE_MASK 0x0f --

ECUM_STATE_STARTUP 0x10 --

ECUM_STATE_STARTUP_ONE 0x11 --

ECUM_STATE_STARTUP_TWO 0x12 --

ECUM_STATE_WAKEUP 0x20 --

ECUM_STATE_WAKEUP_ONE 0x21 --

ECUM_STATE_WAKEUP_VALIDATION 0x22 --

ECUM_STATE_WAKEUP_REACTION 0x23 --

ECUM_STATE_WAKEUP_TWO 0x24 --

ECUM_STATE_WAKEUP_WAKESLEEP 0x25 --

ECUM_STATE_WAKEUP_TTII 0x26 --

ECUM_STATE_RUN 0x30 --

ECUM_STATE_APP_RUN 0x32 --

ECUM_STATE_APP_POST_RUN 0x33 --

ECUM_STATE_SHUTDOWN 0x40 --

ECUM_STATE_PREP_SHUTDOWN 0x44 --

ECUM_STATE_GO_SLEEP 0x49 --

ECUM_STATE_GO_OFF_ONE 0x4d --

ECUM_STATE_GO_OFF_TWO 0x4e --

ECUM_STATE_SLEEP 0x50 --

ECUM_STATE_OFF 0x80 --

ECUM_STATE_RESET 0x90 --

Variation --

⌋()

8.2.3.2 EcuM_ShutdownTarget

[SWS_EcuMf_00032] ⌈

Name EcuM_ShutdownTarget

Comment Interfaces to manage the shutdown target

IsService true

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

91 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Variation --

Possible Errors
0 E_OK

1 E_NOT_OK

Operations

GetLastShutdownTarget

Comments GetLastShutdownTarget returns the shutdown target of the previous shutdown process.

Variation --

Parameters

shutdownTarget

Comment --

Type EcuM_StateType

Variation --

Direction OUT

sleepMode

Comment --

Type EcuM_SleepModeType

Variation --

Direction OUT

Possible
Errors

E_OK Operation successful

E_NOT_OK --

GetShutdownTarget

Comments
GetShutdownTarget returns the currently selected shutdown target as set by

SelectShutdownTarget

Variation --

Parameters

shutdownTarget

Comment --

Type EcuM_StateType

Variation --

Direction OUT

sleepMode

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

92 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Comment --

Type EcuM_SleepModeType

Variation --

Direction OUT

Possible
Errors

E_OK Operation successful

E_NOT_OK --

SelectShutdownTarget

Comments Select a new shutdown target

Variation --

Parameters

shutdownTarget

Comment --

Type EcuM_StateType

Variation --

Direction IN

sleepMode

Comment --

Type EcuM_SleepModeType

Variation --

Direction IN

Possible
Errors

E_OK The new shutdown target was set.

E_NOT_OK The new shutdown target was not set

⌋()

The parameter mode determines the concrete sleep mode. This parameter shall only
be used if the target parameter equals to ECUM_STATE_SLEEP, otherwise it will be
ignored.

8.2.4 Port Interface for Interface EcuM_BootTarget

A SW-C which wants to select a boot target shall require the client-server interface

EcuM_BootTarget.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

93 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

8.2.4.1 Data Types

This data type represents the boot targets the ECU State Manager Fixed module can
be configured with.

[SWS_EcuMf_00106]⌈

Name EcuM_BootTargetType

Kind Type

Derived
from

uint8

Description
This type represents the boot targets the ECU Manager module can be configured with. The

default boot target is ECUM_BOOT_TARGET_OEM_BOOTLOADER.

Range

ECUM_BOOT_TARGET_APP 0
The ECU will boot into the
application

ECUM_BOOT_TARGET_OEM_BOOTLOADER 1
The ECU will boot into the
OEM bootloader

ECUM_BOOT_TARGET_SYS_BOOTLOADER 2
The ECU will boot into the
system supplier bootloader

Variation --

⌋()

8.2.4.2 EcuM_BootTarget

[SWS_EcuMf_00033] ⌈

Name EcuM_BootTarget

Comment Interfaces to manage the boot target

IsService true

Variation --

Possible Errors
0 E_OK

1 E_NOT_OK

Operations

GetBootTarget

Comments Read the current boot target

Variation --

Parameters target

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

94 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Comment --

Type EcuM_BootTargetType

Variation --

Direction OUT

Possible Errors
E_OK Operation successful (the service always succeeds)

E_NOT_OK --

SelectBootTarget

Comments Select a new boot target

Variation --

Parameters

target

Comment --

Type EcuM_BootTargetType

Variation --

Direction IN

Possible Errors
E_OK The new boot target was accepted by EcuM

E_NOT_OK The new boot target was not accepted by EcuM

⌋()

8.2.5 Definition of the Service ECU State Manager

This section provides guidance on the definition of the ECU State Manager service.
Note that these definitions can only be completed during ECU configuration (because
it depends on certain configuration parameters of the ECU State Manager Fixed
module which determine the number of ports provided by the ECU State Manager
service). Also note that the implementation of a SW-C does not depend on these
definitions.
There are ports on both sides of the RTE: This description of the ECU State Manager
service defines the ports below the RTE. Each SW-Component, which uses the
service, must contain “service ports” in its own SW-C description which will be
connected to the ports of the ECU State Manager, so that the RTE can be generated.

[SWS_EcuMf_00112]⌈

Name BootTarget_{UserName}

Kind ProvidedPort Interface EcuM_BootTarget

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

95 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Description
Provides an interface to SW-Cs to select a new boot target and query the current boot target.

The port uses port-defined argument values to identify the user.

Variation
UserName = {ecuc(EcuM/EcuMConfiguration/EcuMFixedConfiguration/
EcuMFixedUserConfig/EcuMFixedUser.SHORT-NAME)}

 ⌋()

[SWS_EcuMf_00113]⌈

Name currentMode

Kind ProvidedPort Interface EcuM_CurrentMode

Description Provides an interface to SW-Cs to get notified about state changes of the ECU.

Variation --

 ⌋()

[SWS_EcuMf_00114]⌈

Name ShutdownTarget_{UserName}

Kind ProvidedPort Interface EcuM_ShutdownTarget

Description

Provides an interface to SW-Cs to select a new shutdown target and query the current shutdown

target.

The port uses port-defined argument values to identify the user.

Variation
UserName = {ecuc(EcuM/EcuMConfiguration/EcuMFixedConfiguration/
EcuMFixedUserConfig/EcuMFixedUser.SHORT-NAME)}

 ⌋()

[SWS_EcuMf_00115]⌈

Name StateRequest_{UserName}

Kind ProvidedPort Interface EcuM_StateRequest

Description
Provides an interface to SW-Cs to request state changes of the ECU state.

The port uses port-defined argument values to identify the user.

Variation
UserName = {ecuc(EcuM/EcuMFixedConfiguration/EcuMFixedUserConfig/
EcuMFixedUser.SHORT-NAME)}

⌋()

8.2.6 Runnables and Entry points

8.2.6.1 Internal behavior

This is the inside description of the ECU State Manager. This detailed description is
only needed for the configuration of the local RTE.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

96 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

InternalBehavior EcuStateManager {

 // Runnable entities of the EcuStateManager

 RunnableEntity RequestRUN

 symbol “EcuM_RequestRUN”

 canbeInvokedConcurrently = TRUE

RunnableEntity ReleaseRUN

 symbol “EcuM_ReleaseRUN”

 canbeInvokedConcurrently = TRUE

RunnableEntity RequestPOSTRUN

 symbol “EcuM_RequestPOST_RUN”

 canbeInvokedConcurrently = TRUE

RunnableEntity ReleasePOSTRUN

 symbol “EcuM_ReleasePOST_RUN”

 canbeInvokedConcurrently = TRUE

RunnableEntity SelectShutdownTarget

 symbol “EcuM_SelectShutdownTarget”

 canbeInvokedConcurrently = TRUE

RunnableEntity GetShutdownTarget

 symbol “EcuM_GetShutdownTarget”

 canbeInvokedConcurrently = TRUE

RunnableEntity GetLastShutdownTarget

 symbol “EcuM_GetLastShutdownTarget”

 canbeInvokedConcurrently = TRUE

RunnableEntity SelectBootTarget

 symbol “EcuM_SelectBootTarget”

 canbeInvokedConcurrently = TRUE

RunnableEntity GetBootTarget

 symbol “EcuM_GetBootTarget”

 canbeInvokedConcurrently = TRUE

// Port present for each user. There are NU users

SR000.RequestRUN -> RequestRUN

SR000.ReleaseRUN -> ReleaseRUN

SR000.RequestPOSTRUN -> RequestPOSTRUN

SR000.ReleasePOSTRUN -> RequestPOSTRUN

PortArgument {port=SR000, value.type=EcuM_UserType,

value.value=EcuM_User[0].User}

(...)

SRnnn.RequestRUN -> RequestRUN

SRnnn.ReleaseRUN -> ReleaseRUN

SRnnn.RequestPOSTRUN -> RequestPOSTRUN

SRnnn.ReleasePOSTRUN -> RequestPOSTRUN

PortArgument {port=SRnnn, value.type=EcuM_UserType,

value.value=EcuM_User[nnn].User}

shutDownTarget.SelectShutdownTarget -> SelectShutdownTarget

shutDownTarget.GetShutdownTarget -> GetShutdownTarget

shutDownTarget.GetLastShutdownTarget -> GetLastShutdownTarget

bootTarget.SelectBootTarget -> SelectBootTarget

bootTarget.GetBootTarget -> GetBootTarget

};

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

97 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

8.3 Type definitions

8.3.1 EcuM_ConfigType

[SWS_EcuMf_00046] ⌈
Name: EcuM_ConfigType

Type: Structure

Range: - The content of this structure depends on the post-build
configuration of EcuM.

Description: A pointer to such a structure shall be provided to the ECU State Manager
initialization routine for configuration.

⌋()

[SWS_EcuM_02801] ⌈This structure shall hold the post-build configuration
parameters for the ECU State Manager Fixed module as well as pointers to all

ConfigType structures of modules that are initialized by the ECU State Manager.

⌋()

[SWS_EcuM_00793] ⌈The ECU State Manager Configuration Tool shall specifically
generate this structure for a given set of basic software modules that comprise the
ECU configuration. The set of basic software modules is derived from the

corresponding EcuMFixedModuleConfiguration parameters. ⌋()

[SWS_EcuM_02794] ⌈This structure shall contain an additional post-build
configuration variant identifier (uint8/uint16/uint32 depending on algorithm to
compute the identifier). See also chapter 10.5 Checking Configuration Consistency.

⌋()

[SWS_EcuM_02795] ⌈This structure shall contain an additional hash code with is
tested against the configuration parameter EcuMConfigConsistencyHash for
checking consistency of the configuration data. See also chapter 10.5 Checking

Configuration Consistency. ⌋()

[SWS_EcuM_00800] ⌈The ECU State Manager Configuration Tool shall also
generate for each given ECU configuration an instance of this structure that is filled
with the post-build configuration parameters of the ECU State Manager Fixed module
as well as pointers to instances of configuration structures for the modules mentioned
in SWS_EcuM_00793. The pointers are derived from the corresponding

EcuMFixedModuleConfiguration parameters. ⌋()

8.3.2 EcuM_StateType

[SWS_EcuMf_00047]:

Name: EcuM_StateType

Type: uint8

Range: ECUM_SUBSTATE_MASK 0x0f --

ECUM_STATE_STARTUP 0x10 --

ECUM_STATE_STARTUP_ONE 0x11 --

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

98 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

ECUM_STATE_STARTUP_TWO 0x12 --

ECUM_STATE_WAKEUP 0x20 --

ECUM_STATE_WAKEUP_ONE 0x21 --

ECUM_STATE_WAKEUP_VALIDATION 0x22 --

ECUM_STATE_WAKEUP_REACTION 0x23 --

ECUM_STATE_WAKEUP_TWO 0x24 --

ECUM_STATE_WAKEUP_WAKESLEEP 0x25 --

ECUM_STATE_WAKEUP_TTII 0x26 --

ECUM_STATE_RUN 0x30 --

ECUM_STATE_APP_RUN 0x32 --

ECUM_STATE_APP_POST_RUN 0x33 --

ECUM_STATE_SHUTDOWN 0x40 --

ECUM_STATE_PREP_SHUTDOWN 0x44 --

ECUM_STATE_GO_SLEEP 0x49 --

ECUM_STATE_GO_OFF_ONE 0x4d --

ECUM_STATE_GO_OFF_TWO 0x4e --

ECUM_STATE_SLEEP 0x50 --

ECUM_STATE_OFF 0x80 --

ECUM_STATE_RESET 0x90 --

Description: ECU State Manager states.

⌋()

[SWS_EcuM_00507] ⌈Encodes states and sub-states of the ECU State Manager.
States are encoded in the high-nibble, sub-state in the low-nibble. The sub-state can

be determined by ANDing the state value with ECUM_SUBSTATE_MASK. ⌋()

[SWS_EcuM_02664] ⌈The ECU State Manager Fixed module shall define all states

as listed in the EcuM_StateType. ⌋()

8.3.3 EcuM_UserType

[SWS_EcuMf_00048] ⌈
Name: EcuM_UserType

Type: uint8

Description: Unique value for each user.

⌋()

[SWS_EcuM_00487] ⌈For each user, a unique value must be defined at system

generation time, please refer to 10.4 Configurable Parameters. ⌋()

8.3.4 EcuM_WakeupSourceType

[SWS_EcuMf_00049] ⌈
Name: EcuM_WakeupSourceType

Type: uint32

Range: ECUM_WKSOURCE_POWER -- Power cycle (bit 0)

ECUM_WKSOURCE_RESET

(default)

-- Hardware reset (bit 1).
If hardware cannot distinguish between a
power cycle and a reset reason, then this
shall be the default wakeup source.

ECUM_WKSOURCE_INTERNAL_RESET -- Internal reset of µC (bit 2)

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

99 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

The internal reset typically only resets the
µC core but not peripherals or memory
controllers. The exact behavior is
hardware specific.
This source may also indicate an
unhandled exception.

ECUM_WKSOURCE_INTERNAL_WDG -- Reset by internal watchdog (bit 3)

ECUM_WKSOURCE_EXTERNAL_WDG -- Reset by external watchdog (bit 4), if
detection supported by hardware

Description: EcuM_WakeupSourceType defines a bitfield with 5 pre-defined positions (see
Range). The bitfield provides one bit for each wakeup source.
In WAKEUP, all bits cleared indicates that no wakeup source is known.
In STARTUP, all bits cleared indicates that no reason for restart or reset is known.
In this case, ECUM_WKSOURCE_RESET shall be assumed.

⌋()

[SWS_EcuM_02165] ⌈The list can be extended by configuration⌋()

[SWS_EcuM_02166] ⌈Extension values (see chapter 10.4 Configurable Parameters)
must define single additional bits. The bit assignment shall be done by the

configuration tool. ⌋()

[SWS_EcuMf_00002] ⌈The following rule applies for extension values of type
EcuM_WakeupSourceType:

EcuMWakeupSourceId defines the bit position of the corresponding wake up source

in EcuM_WakeupSourceType.

Values 0 to 4 are not allowed for EcuMWakeupSourceId (pre-defined values in

EcuM_WakeupSourceType)

Values 5 up to 31 in EcuMWakeupSourceId implies 0x00000020 up to

0x8000000000 in EcuM_WakeupSourceType (i.e. bit 5 up to bit 31).⌋()

[SWS_EcuM_02601] ⌈If hardware cannot detect a specific wake up source, then the

ECU State Manager Fixed module shall report ECUM_WKSOURCE_RESET instead. ⌋()

8.3.5 EcuM_WakeupStatusType

[SWS_EcuMf_00050] ⌈

Name: EcuM_WakeupStatusType

Type: uint8

Range: ECUM_WKSTATUS_NONE 0 No pending wakeup event was detected

ECUM_WKSTATUS_PENDING 1 The wakeup event was detected but not yet
validated

ECUM_WKSTATUS_VALIDATED 2 The wakeup event is valid

ECUM_WKSTATUS_EXPIRED 3 The wakeup event has not been validated and has
expired therefore

ECUM_WKSTATUS_ENABLED 6 The wakeup source is enabled (armed) and is
ready to call EcuM_SetWakeupEvent().

Description: The type describes the possible states of a wakeup source.

⌋()

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

100 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

See also 8.4.4.5 EcuM_GetStatusOfWakeupSource.

8.3.6 EcuM_WakeupReactionType

[SWS_EcuMf_00051] ⌈

Name: EcuM_WakeupReactionType

Type: uint8

Range: ECUM_WKACT_RUN 0 Initialization into RUN state

ECUM_WKACT_TTII 2 Execute time triggered increased inoperation protocol
and shutdown

ECUM_WKACT_SHUTDOWN 3 Immediate shutdown

Description: The type describes the possible outcomes of the WAKEUP REACTION state.

⌋()

8.3.7 EcuM_BootTargetType

[SWS_EcuMf_00036] ⌈

Name: EcuM_BootTargetType

Type: uint8

Range: ECUM_BOOT_TARGET_APP 0 The ECU will boot into the
application

ECUM_BOOT_TARGET_OEM_BOOTLOADER 1 The ECU will boot into the OEM
bootloader

ECUM_BOOT_TARGET_SYS_BOOTLOADER 2 The ECU will boot into the system
supplier bootloader

Description: This type represents the boot targets the ECU Manager module can be
configured with. The default boot target is
ECUM_BOOT_TARGET_OEM_BOOTLOADER.

⌋()

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

101 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

8.4 Function Definitions

8.4.1 General

8.4.1.1 EcuM_GetVersionInfo

[SWS_EcuM_02813] ⌈EcuM_GetVersionInfo

Service name: EcuM_GetVersionInfo

Syntax: void EcuM_GetVersionInfo(

 Std_VersionInfoType* versioninfo

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): versioninfo Pointer to where to store the version information of this module.

Return value: None

Description: Returns the version information of this module.

⌋()

[SWS_EcuMf_00034] ⌈Parameter versioninfo of the function

EcuM_GetVersionInfo: An implementation shall cope with NULL pointers by

returning immediately without any further action. ⌋()

Hint:
If source code for caller and callee of this function is available this function should be
realized as a macro. The macro should be defined in the modules header file.

8.4.2 Initialization and Shutdown

8.4.2.1 EcuM_Init

[SWS_EcuM_02811] ⌈
Service name: EcuM_Init

Syntax: void EcuM_Init(

 void

)

Service ID[hex]: 0x01

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: Initializes the ECU state manager and carries out the startup procedure. The

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

102 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

function will never return (it calls StartOS)

⌋()

8.4.2.2 EcuM_StartupTwo

[SWS_EcuM_02838] ⌈
Service name: EcuM_StartupTwo

Syntax: void EcuM_StartupTwo(

 void

)

Service ID[hex]: 0x1a

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: This function implements the STARTUP II state.

⌋()

[SWS_EcuM_02806] ⌈This function must be called from a task which is started
directly as a consequence of StartOS. I.e. either it must be called from an autostart

task or it must be called from a task which is explicitely started. ⌋()

8.4.2.3 EcuM_Shutdown

[SWS_EcuM_02812] ⌈
Service name: EcuM_Shutdown

Syntax: void EcuM_Shutdown(

 void

)

Service ID[hex]: 0x02

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: Typically called from the shutdown hook, this function takes over execution control
and will carry out GO OFF II activities.

⌋()

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

103 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

8.4.3 State Management

8.4.3.1 EcuM_RequestRUN

[SWS_EcuM_00814] ⌈
Service name: EcuM_RequestRUN

Syntax: Std_ReturnType EcuM_RequestRUN(

 EcuM_UserType user

)

Service ID[hex]: 0x03

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): user ID of the entity requesting the RUN state.

Parameters
(inout):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: The request was accepted by EcuM.

E_NOT_OK: The request was not accepted by EcuM, a detailed
error condition was sent to DET (see Error Codes below).

Description: Places a request for the RUN state. Requests can be placed by every user made
known to the state manager at configuration time.

⌋()

[SWS_EcuM_00143] ⌈Requests of EcuM_RequestRUN cannot be nested, i.e. one

user can only place one request but not more. ⌋()

[SWS_EcuM_00144] ⌈An implementation must track requests for each user known

on the ECU. Run requests are specific to the user. ⌋()

[SWS_EcuM_00668] ⌈RUN requests shall be ignored after EcuM_KillAllRUNRequests

has been executed until the shutdown has completed. ⌋()

Configuration of EcuM_RequestRUN: Refer to 8.3.3 EcuM_UserType for more

information about user IDs and their generation.

Error Codes of EcuM_RequestRUN: ECUM_E_MULTIPLE_RUN_REQUESTS: On

multiple requests by the same user ID

8.4.3.2 EcuM_ReleaseRUN

[SWS_EcuM_00815] ⌈
Service name: EcuM_ReleaseRUN

Syntax: Std_ReturnType EcuM_ReleaseRUN(

 EcuM_UserType user

)

Service ID[hex]: 0x04

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): user ID of the entity releasing the RUN state.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

104 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Parameters
(inout):

None

Parameters (out): None

Return value:

Std_ReturnType E_OK: The release request was accepted by EcuM
E_NOT_OK: The release request was not accepted by EcuM, a
detailed error condition was sent to DET (see Error Codes
below).

Description: Releases a RUN request previously done with a call to EcuM_RequestRUN. The
service is intended for implementing AUTOSAR ports.

⌋()

Configuration of EcuM_ReleaseRUN: Refer to 8.3.3 EcuM_UserType for more

information about user IDs and their generation.

Error Codes of EcuM_ReleaseRUN: ECUM_E_MISMATCHED_RUN_RELEASE: On

releasing without a matching request.

8.4.3.3 EcuM_RequestPOST_RUN

[SWS_EcuM_00819] ⌈
Service name: EcuM_RequestPOST_RUN

Syntax: Std_ReturnType EcuM_RequestPOST_RUN(

 EcuM_UserType user

)

Service ID[hex]: 0x0a

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): user ID of the entity requesting the POST RUN state.

Parameters
(inout):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: The request was accepted by EcuM

E_NOT_OK: The request was not accepted by EcuM, a detailed
error condition was sent to DET (see Error Codes below).

Description: Places a request for the POST RUN state. Requests can be placed by every user
made known to the state manager at configuration time.
Requests for RUN and POST RUN must be tracked independently (in other
words: two independent variables).
The service is intended for implementing AUTOSAR ports.

⌋()

All requirements of 8.4.3.1 EcuM_RequestRUN apply accordingly to the function
EcuM_RequestPOST_RUN.

Configuration of EcuM_RequestPOST_RUN: Refer to 8.3.3 EcuM_UserType for more

information about user IDs and their generation.

Error Codes of EcuM_RequestPOST_RUN: ECUM_E_MULTIPLE_RUN_REQUESTS:

On multiple requests by the same user ID.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

105 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

8.4.3.4 EcuM_ReleasePOST_RUN

[SWS_EcuM_00820] ⌈
Service name: EcuM_ReleasePOST_RUN

Syntax: Std_ReturnType EcuM_ReleasePOST_RUN(

 EcuM_UserType user

)

Service ID[hex]: 0x0b

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): user ID of the entity releasing the POST RUN state.

Parameters
(inout):

None

Parameters (out): None

Return value:

Std_ReturnType E_OK: The release request was accepted by EcuM
E_NOT_OK: The release request was not accepted by EcuM, a
detailed error condition was sent to DET (see Error Codes
below).

Description: Releases a POST RUN request previously done with a call to
EcuM_RequestPOST_RUN. The service is intended for implementing AUTOSAR
ports.

⌋()

Configuration of EcuM_ReleasePOST_RUN: Refer to 8.3.3 EcuM_UserType for more

information about user IDs and their generation.

Error Codes of EcuM_ReleasePOST_RUN: ECUM_E_MISMATCHED_RUN_RELEASE:

On releasing without a matching request.

8.4.3.5 EcuM_KillAllRUNRequests

[SWS_EcuM_00821

Service name: EcuM_KillAllRUNRequests

Syntax: void EcuM_KillAllRUNRequests(

 void

)

Service ID[hex]: 0x05

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: The benefit of this function over an ECU reset is that the shutdown sequence is
executed, which e.g. takes care of writing back NV memory contents.

⌋()

[SWS_EcuM_00872] ⌈The function unconditionally clears all requests to RUN.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

106 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Note: As an effect the ECU State Manager switches to RUN III state (see also

SWS_EcuM_00311), which allows for a controlled shutdown. ⌋()

[SWS_EcuM_00600] ⌈As a consequence EcuM_RequestRUN must not accept any new

requests unless the resulting shutdown has been completed. ⌋()

Caveat of EcuM_KillAllRUNRequests: Use this function with care. Side effects

may occur in the application. If an implementation contains synchronization for more
graceful shutdown a timeout must be provided to ensure that the shutdown process
is initiated.

Error Codes of EcuM_KillAllRUNRequests:

ECUM_E_ALL_RUN_REQUESTS_KILLED: On each invocation.

8.4.3.6 EcuM_KillAllPostRUNRequests

[SWS_EcuMf_00101] ⌈

Service name: EcuM_KillAllPostRUNRequests

Syntax: void EcuM_KillAllPostRUNRequests(

 void

)

Service ID[hex]: 0x2a

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: This function unconditionally releases all pending requests to PostRUN.

⌋()

[SWS_EcuMf_00102] ⌈ The function EcuM_KillAllPostRUNRequests

unconditionally releases all pending requests to PostRUN. ⌋()

[SWS_EcuMf_00103] ⌈ As a consequence EcuM_RequestRUN must not accept

any new requests unless the resulting shutdown has been completed. ⌋()

8.4.3.7 EcuM_SelectShutdownTarget

[SWS_EcuM_02822] ⌈
Service name: EcuM_SelectShutdownTarget

Syntax: Std_ReturnType EcuM_SelectShutdownTarget(

 EcuM_StateType target,

 uint8 mode

)

Service ID[hex]: 0x06

Sync/Async: Synchronous

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

107 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Reentrancy: Reentrant

Parameters (in):

target The selected shutdown target.

mode The identfier of a sleep mode (if target is ECUM_STATE_SLEEP)
or a reset mechanism (if target is ECUM_STATE_RESET) as
defined by configuration.

Parameters
(inout):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: The new shutdown target was set

E_NOT_OK: The new shutdown target was not set

Description: EcuM_SelectShutdownTarget selects the shutdown target.
EcuM_SelectShutdownTarget is part of the ECU Manager Module port interface.

⌋()

[SWS_EcuM_00624] ⌈Parameter mode of the function
EcuM_SelectShutdownTarget: The selected shutdown target. Only the following
subset of the EcuM_StateType value range is accepted:

 ECUM_STATE_SLEEP

 ECUM_STATE_RESET

 ECUM_STATE_OFF

All other values will be rejected. ⌋()

[SWS_EcuM_02185] ⌈The parameter mode of the function

EcuM_SelectShutdownTarget shall be the identifier of a sleep mode. The mode

parameter shall only be used if the target parameter equals ECUM_STATE_SLEEP. In

all other cases, it shall be ignored. Only sleep modes that are defined at configuration

time and are stored in the EcuMSleepMode container are allowed as parameters. ⌋()

[SWS_EcuM_02585] ⌈An implementation of this service should not initiate any setup

activities but only store the value for later use in the SHUTDOWN state. ⌋()

[SWS_EcuM_00228] ⌈The TTII-algorithm shall set the TTII divisor counter variable
with the preload value defined in ECUM_TTII_DIVISOR_LIST.

The service is intended for implementing AUTOSAR ports. ⌋()

Caveat of EcuM_SelectShutdownTarget: The ECU State Manager Fixed module
does not define any mechanism to resolve issues arising from requests from different
sources. Always the last set values will be used as shutdown target. It is assumed
that there will be one piece of application which is specific to the ECU and handles
these kinds of issues.

8.4.3.8 EcuM_GetShutdownTarget

[SWS_EcuM_02824] ⌈
Service name: EcuM_GetShutdownTarget

Syntax: Std_ReturnType EcuM_GetShutdownTarget(

 EcuM_StateType* shutdownTarget,

 uint8* sleepMode

)

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

108 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Service ID[hex]: 0x09

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out):

shutdownTarget One of these values is returned:
• ECUM_STATE_SLEEP
• ECUM_STATE_RESET
• ECUM_STATE_OFF

sleepMode If the out parameter "shutdownTarget" is ECUM_STATE_SLEEP,
sleepMode tells which of the configured sleep modes was
actually chosen. If "shutdownTarget" is ECUM_STATE_RESET,
sleepMode tells which of the configured reset modes was actually
chosen.

Return value:
Std_ReturnType E_OK: The service has succeeded

E_NOT_OK: The service has failed, e.g. due to NULL pointer
being passed

Description: EcuM_GetShutdownTarget returns the currently selected shutdown target as set
by EcuM_SelectShutdownTarget.
EcuM_GetShutdownTarget is part of the ECU Manager Module port interface.

⌋()

[SWS_EcuM_02788] ⌈Parameter sleepMode and shutdownTarget of the function

EcuM_GetShutdownTarget: An implementation shall cope with NULL pointers by

simply ignoring the out parameter in all cases. ⌋()

8.4.3.9 EcuM_GetLastShutdownTarget

[SWS_EcuM_02825] ⌈
Service name: EcuM_GetLastShutdownTarget

Syntax: Std_ReturnType EcuM_GetLastShutdownTarget(

 EcuM_StateType* shutdownTarget,

 uint8* sleepMode

)

Service ID[hex]: 0x08

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out):

shutdownTarget One of these values is returned:
• ECUM_STATE_SLEEP
• ECUM_STATE_RESET
• ECUM_STATE_OFF

sleepMode If the out parameter "shutdownTarget" is ECUM_STATE_SLEEP,
sleepMode tells which of the configured sleep modes was
actually chosen. If "shutdownTarget" is ECUM_STATE_RESET,
sleepMode tells which of the configured reset modes was actually
chosen.

Return value:
Std_ReturnType E_OK: The service has succeeded

E_NOT_OK: The service has failed, e.g. due to NULL pointer
being passed

Description: EcuM_GetLastShutdownTarget returns the shutdown target of the previous

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

109 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

shutdown process.
EcuM_GetLastShutdownTarget is part of the ECU Manager Module port interface.

⌋()

[SWS_EcuM_02336] ⌈Parameter sleepMode of the function

EcuM_GetLastShutdownTarget: If the return parameter is ECUM_STATE_SLEEP,

this out parameter tells which of the configured sleep modes was actually chosen. ⌋()

[SWS_EcuM_02337] ⌈Parameters sleepMode and shutdownTarget of the

function EcuM_GetLastShutdownTarget: An implementation shall cope with

NULL pointers by simply ignoring the out parameter in all cases. ⌋()

[SWS_EcuM_02156] ⌈The return value describes the ECU state from which the last
wake up or power up occurred. This function shall return always the same value until

the next shutdown. ⌋()

[SWS_EcuM_02157] ⌈This function is intended for primary use in STARTUP or RUN

state. Reasonable use cases exist there. To simplify implementation, it is acceptable
if the value is set in late shutdown phase for use during the next startup. If so,

implementation specific limitations must be clearly documented. ⌋()

8.4.3.10 EcuM_GetState

[SWS_EcuM_00823] ⌈
Service name: EcuM_GetState

Syntax: Std_ReturnType EcuM_GetState(

 EcuM_StateType* state

)

Service ID[hex]: 0x07

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): state The value of the internal state variable.

Return value:
Std_ReturnType E_OK: The out parameter was set successfully.

E_NOT_OK: The out parameter was not set.

Description: Gets a state.

 ⌋()

[SWS_EcuM_00423] ⌈The service must be accessible from an OS and an OS-free

context as well as from an interrupt context. ⌋()

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

110 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

8.4.4 Wake up Handling

8.4.4.1 EcuM_GetPendingWakeupEvents

[SWS_EcuM_02827] ⌈
Service name: EcuM_GetPendingWakeupEvents

Syntax: EcuM_WakeupSourceType EcuM_GetPendingWakeupEvents(

 void

)

Service ID[hex]: 0x0d

Sync/Async: Synchronous

Reentrancy: Non-Reentrant, Non-Interruptible

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: EcuM_WakeupSourceType All wakeup events

Description: Gets pending wakeup events.

⌋()

[SWS_EcuM_01156] ⌈Return code of the function

EcuM_GetPendingWakeupEvents: Returns wake up events which have been set

but not yet validated. ⌋()

[SWS_EcuM_02172] ⌈The service EcuM_GetPendingWakeupEvents must be

callable from interrupt context, from OS context and an OS-free context. ⌋()

Caveat of EcuM_GetPendingWakeupEvents: The wake up events returned by this

service are only pending

8.4.4.2 EcuM_ClearWakeupEvent

[SWS_EcuM_02828] ⌈
Service name: EcuM_ClearWakeupEvent

Syntax: void EcuM_ClearWakeupEvent(

 EcuM_WakeupSourceType sources

)

Service ID[hex]: 0x16

Sync/Async: Synchronous

Reentrancy: Non-Reentrant, Non-Interruptible

Parameters (in): sources Events to be cleared

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: Clears wakeup events.

⌋()

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

111 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

[SWS_EcuM_02683] ⌈EcuM_ClearWakeupEvent shall clear all wake up events like

pending, validated and expired events. ⌋()

[SWS_EcuM_02807] ⌈The function must be callable from interrupt context, from OS

context and an OS-free context. ⌋()

8.4.4.3 EcuM_GetValidatedWakeupEvents

[SWS_EcuM_02830] ⌈
Service name: EcuM_GetValidatedWakeupEvents

Syntax: EcuM_WakeupSourceType EcuM_GetValidatedWakeupEvents(

 void

)

Service ID[hex]: 0x15

Sync/Async: Synchronous

Reentrancy: Non-Reentrant, Non-Interruptible

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: EcuM_WakeupSourceType All wakeup events

Description: Gets validated wakeup events.

⌋()

[SWS_EcuM_02533] ⌈Return code of EcuM_GetValidatedWakeupEvents:

Returns the value from the internal variable. ⌋()

[SWS_EcuM_02532] ⌈The service must be callable from interrupt context, from OS

context and an OS-free context. ⌋()

8.4.4.4 EcuM_GetExpiredWakeupEvents

[SWS_EcuM_02831] ⌈
Service name: EcuM_GetExpiredWakeupEvents

Syntax: EcuM_WakeupSourceType EcuM_GetExpiredWakeupEvents(

 void

)

Service ID[hex]: 0x19

Sync/Async: Synchronous

Reentrancy: Non-Reentrant, Non-Interruptible

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value:
EcuM_WakeupSourceType All wakeup events: Returns all events that have been

set and for which validation has failed. Events which
do not need validation must never be reported by this

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

112 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

function.

Description: Gets expired wakeup events.

⌋()

[SWS_EcuM_02589] ⌈The service EcuM_GetExpiredWakeupEvents must be

callable from interrupt context, from OS context and an OS-free context. ⌋()

8.4.4.5 EcuM_GetStatusOfWakeupSource

[SWS_EcuM_00832] ⌈
Service name: EcuM_GetStatusOfWakeupSource

Syntax: EcuM_WakeupStatusType EcuM_GetStatusOfWakeupSource(

 EcuM_WakeupSourceType sources

)

Service ID[hex]: 0x17

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): sources The sources for which the status is returned

Parameters
(inout):

None

Parameters (out): None

Return value:
EcuM_WakeupStatusType Sum status of all wakeup sources passed in the in

parameter.

Description: The sum status shall be computed according to the following algorithm:
If (EcuM_GetValidatedWakeupEvents() AND sources) is not 0 then return
ECUM_WKSTATUS_VALIDATED.
If (EcuM_GetPendingWakeupEvents() AND sources) is not 0 then return
ECUM_WKSTATUS_PENDING.
If (EcuM_GetExpiredWakeupEvents() AND sources) is not 0 then return
ECUM_WKSTATUS_EXPIRED.
Otherwise, return ECUM_WKSTATUS_NONE.

⌋()

[SWS_EcuM_00754] ⌈When the EcuM_GetStatusOfWakeupSource service is

called and parameter “sources” equals 0, then this service shall return

ECUM_WKSTATUS_NONE. If parameter “sources” equals

ECUM_WKSOURCE_ALL_SOURCES, then this service shall return the sum status of all

configured wake up sources. ⌋()

8.4.4.6 EcuM_ StartCheckWakeup

[SWS_EcuMf_00040] ⌈
Service name: EcuM_StartCheckWakeup

Syntax: void EcuM_StartCheckWakeup(

 EcuM_WakeupSourceType WakeupSource

)

Service ID[hex]: 0x28

Sync/Async: Synchronous

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

113 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Reentrancy: Non Reentrant

Parameters (in):
WakeupSource For this wakeup source the corresponding CheckWakeupTimer

shall be started.

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: This API is called by the ECU Firmware to start the CheckWakeupTimer for the
corresponding WakeupSource.
If EcuMCheckWakeupTimeout > 0 the CheckWakeupTimer for the WakeupSource
is started.
If EcuMCheckWakeupTimeout ≤ 0 the API call is ignored by the EcuM.

⌋()

[SWS_EcuMf_00042] ⌈The function EcuM_ StartCheckWakeup must be callable

from interrupt context, and from OS context.⌋()

8.4.4.7 EcuM_ EndCheckWakeup

[SWS_EcuMf_00041] ⌈
Service name: EcuM_EndCheckWakeup

Syntax: void EcuM_EndCheckWakeup(

 EcuM_WakeupSourceType WakeupSource

)

Service ID[hex]: 0x29

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in):
WakeupSource For this wakeup source the corresponding

CheckWakeupTimer shall be canceled.

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: This API is called by any SW Module whose wakeup source is checked
asynchronously (e.g. asynchronous Can Trcv Driver) and the Check of the
Wakeup returns a negative Result (no Wakeup by this Source).
The API cancels the CheckWakeupTimer for the WakeupSource.
If the correponding CheckWakeupTimer is canceled the check of this wakeup
source is finished.

⌋()

[SWS_EcuMf_00043] ⌈The function EcuM_ EndCheckWakeup must be callable from

interrupt context, and from OS context.⌋()

8.4.5 Miscellaneous

8.4.5.1 EcuM_SelectBootTarget

[SWS_EcuM_02835] ⌈

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

114 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Service name: EcuM_SelectBootTarget

Syntax: Std_ReturnType EcuM_SelectBootTarget(

 EcuM_BootTargetType target

)

Service ID[hex]: 0x12

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): target The selected boot target.

Parameters
(inout):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: The new boot target was accepted by EcuM

E_NOT_OK: The new boot target was not accepted by EcuM

Description: EcuM_SelectBootTarget selects a boot target.
EcuM_SelectBootTarget is part of the ECU Manager Module port interface.

⌋()

[SWS_EcuM_02247] ⌈The service must store the selected target in a way which is
compatible with the boot loader. This may mean format AND location. The service is

intended for implementing AUTOSAR ports. ⌋()

Caveat of the function EcuM_SelectBootTarget: This service may be dependent on
the available hardware and the boot loader used.

The implementation of this service will not be prescribed by AUTOSAR. The

implementer of the service EcuM_SelectBootTarget has to ensure to place the boot
target information at a safe location, which then shall be evaluated by the boot
manager after a reset.

This service is only intended for use by SW-C’s related to diagnostics (boot
management).

Note: In the definition of EcuM_BootTargetType a default boot target is defined. So even
in case of E_NOT_OK, a valid boot targed is defined.

8.4.5.2 EcuM_GetBootTarget

[SWS_EcuM_02836] ⌈
Service name: EcuM_GetBootTarget

Syntax: Std_ReturnType EcuM_GetBootTarget(

 EcuM_BootTargetType * target

)

Service ID[hex]: 0x13

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): target The currently selected boot target.

Return value: Std_ReturnType E_OK: The service always succeeds.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

115 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Description: EcuM_GetBootTarget returns the current boot target - see
EcuM_SelectBootTarget.
EcuM_GetBootTarget is part of the ECU Manager Module port interface.

⌋()

Since the information of the boot target shall also be evaluated by the boot loader,
the service EcuM_GetBootTarget must be available without the context of the RTE,
the OS, or even the C language! If this is not implementable, the implementer has to
offer and document another API which then is available for the boot loader.

[SWS_EcuMf_00035] ⌈Parameter target of the function EcuM_GetBootTarget:

An implementation shall cope with NULL pointers by simply ignoring the out

parameter in all cases. ⌋()

Note: In the definition of EcuM_BootTargetType a default boot target is defined. So even
if EcuM_SelectBootTarget was not called beforehand, a valid boot targed is defined.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

116 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

8.5 Scheduled Functions

These functions are directly called by Basic Software Scheduler. The following
functions shall have no return value and no parameter. All functions shall be non
reentrant.

8.5.1 EcuM_MainFunction

[SWS_EcuM_02837] ⌈
Service name: EcuM_MainFunction

Syntax: void EcuM_MainFunction(

 void

)

Service ID[hex]: 0x18

Description: The purpose of this service is to implement all activities of the ECU State Manager
while the OS is up and running.

⌋()

[SWS_EcuM_00594] ⌈This service must be called on a periodic basis from an
adequate BSW task (i.e. a task under control of the BSW scheduler).
To determine the period, the system designer should consider the following timings:

 The period directly results in a possible latency for testing RUN requests. The
largest acceptable reaction time will therefore limit the maximum period for
invocation.

 The service will also carry out the wake up validation protocol (see 7.8 Wake-up

Validation Protocol). The smallest validation timeout typically should limit the
period.

 As a rule of thumb, the period of this service should be in the order of half as
long as the shortest time constant mentioned in the topics above.

⌋()

[SWS_EcuM_00656] ⌈The service shall not be called from tasks which may invoke

runnable entities. ⌋()

[SWS_EcuMf_00029] ⌈If the EcuM_MainFunction is called without having called

EcuM_Init in advance (so the EcuM is un-initialized) the EcuM_MainFunction

shall return immediately without performing any functionality and without raising any
errors.

⌋()

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

117 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

8.6 Callback Definitions

8.6.1 Callbacks from NVRAM Manager

8.6.1.1 EcuM_CB_NfyNvMJobEnd

[SWS_EcuM_00839] ⌈
Service name: EcuM_CB_NfyNvMJobEnd

Syntax: void EcuM_CB_NfyNvMJobEnd(

 uint8 ServiceId,

 NvM_RequestResultType JobResult

)

Service ID[hex]: 0x65

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in):
ServiceId Unique Service ID of NVRAM manager service.

JobResult Covers the job result of the previous processed multi block job.

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: Used to notify about the end of NVRAM jobs initiated by EcuM
The callback must be callable from normal and interrupt execution contexts.

⌋()

Configuration of EcuM_CB_NfyNvMJobEnd: NVRAM manager must be configured to

call this callback as a multiple block job end notification. See [12] for details.

8.6.2 Callbacks from Wake up Sources

8.6.2.1 EcuM_CheckWakeup

See 8.7.6.28.7.6.2 EcuM_CheckWakeupEcuM_CheckWakeup for a description of
the service.

This service is a Callout of the ECU State Manager Fixed module as well as a
Callback that wake up sources invoke when they process wake up interrupts.

8.6.2.2 EcuM_SetWakeupEvent

[SWS_EcuM_00826] ⌈
Service name: EcuM_SetWakeupEvent

Syntax: void EcuM_SetWakeupEvent(

 EcuM_WakeupSourceType sources

)

Service ID[hex]: 0x0c

Sync/Async: Synchronous

Reentrancy: Non-Reentrant, Non-Interruptible

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

118 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Parameters (in): sources Value to be set

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: Sets the wakeup event.

⌋()

[SWS_EcuM_01117] ⌈Takes the value and stores it in an internal variable (OR-

operation). ⌋()

[SWS_EcuM_02707] ⌈The service must start the wake up validation timeout timer

according to chapter 7.8.4 Wake up validation timeout. ⌋()

[SWS_EcuM_02171] ⌈The function must be callable from interrupt context, from OS

context and an OS-free context. ⌋()

[SWS_EcuMf_00038] ⌈If EcuM_SetWakeupEvent is called for the corresponding
wakeup source the corresponding CheckWakeupTimer is cancelled.

⌋()

[SWS_EcuMf_00039] ⌈If the corresponding CheckWakeupTimer expires before
EcuM_EndCheckWakeup or EcuM_SetWakeupEvent is called, the check of the this
wakeup source is finished.

⌋()

8.6.2.3 EcuM_ValidateWakeupEvent

[SWS_EcuM_02829] ⌈
Service name: EcuM_ValidateWakeupEvent

Syntax: void EcuM_ValidateWakeupEvent(

 EcuM_WakeupSourceType sources

)

Service ID[hex]: 0x14

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): sources Events that have been validated

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: After wakeup, the ECU State Manager will stop the process during the WAKEUP
VALIDATION state/sequence to wait for validation of the wakeup event.This API
service is used to indicate to the ECU Manager module that the wakeup events
indicated in the sources parameter have been validated.

⌋()

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

119 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

[SWS_EcuM_00344] ⌈The validation shall be valid when ANDing the parameter

events with the internal variable of pending wake up events results in a value other

than null. ⌋()

[SWS_EcuM_02645] ⌈The service shall invoke ComM_EcuM_WakeUpIndication of

the Communication Manager for each wake up event if the EcuMComMChannelRef
parameter in the EcuMWakeupSource configuration container for the corresponding

wake up source is configured. ⌋()

[SWS_EcuM_02345] ⌈The function must be callable from interrupt context, from OS

context, and an OS-free context. ⌋()

[SWS_EcuM_02790] ⌈The service shall return without effect for all sources except
communication channels when called while ECU State Manager Fixed module is
NOT in one of the states: SHUTDOWN, SLEEP, WAKEUP I, WAKEUP

VALIDATION, and STARTUP. ⌋()

[SWS_EcuM_02791] ⌈The service shall have full effect in any state other than
ECUM_STATE_APP_RUN for those sources which correspond to a communication

channel (see SWS_EcuM_02645). ⌋()

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

120 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

8.7 Callout Definitions

Callouts are pieces of code that have to be added to the ECU State Manager Fixed
module during ECU integration. The content of most callouts is hand-written code, for
some callouts the ECU State Manager Fixed module configuration tool shall generate
a default implementation that is manually edited by the integrator. Conceptually,
these callouts belong to the ECU State Manager Fixed module .

Since callouts are no services of the ECU State Manager Fixed module they do not
have an assigned Service ID.

8.7.1 Generic Callouts

8.7.1.1 EcuM_ErrorHook

[SWS_EcuM_02904] ⌈
Service name: EcuM_ErrorHook

Syntax: void EcuM_ErrorHook(

 uint16 reason

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): reason Reason for calling the error hook

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: The ECU State Manager will call the error hook if the error codes
"ECUM_E_RAM_CHECK_FAILED" or
"ECUM_E_CONFIGURATION_DATA_INCONSISTENT" occur. In this situation it
is not possible to continue processing and the ECU must be
stopped. The integrator may choose the modality how the ECU is stopped, i.e.
reset, halt, restart, safe state etc.

⌋()

Invocation of EcuM_ErrorHook: in all states

Class of EcuM_ErrorHook: Mandatory

EcuM_ErrorHook is integration code and the integrator is free to define additional

individual error codes to be passed as the reason parameter. These error codes

shall not conflict with the standard error codes i.e. E_OK, E_NOT_OK, etc.

8.7.2 Callouts from STARTUP

8.7.2.1 EcuM_AL_DriverInitZero

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

121 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

[SWS_EcuM_02905] ⌈
Service name: EcuM_AL_DriverInitZero

Syntax: void EcuM_AL_DriverInitZero(

 void

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: This callout shall provide driver initialization and other hardware-related startup
activities for loading the post-build configuration data. Beware: Here only pre-
compile and link-time configurable modules may be used.

⌋()

Invocation of EcuM_AL_DriverInitZero: Early in STARTUP I

The ECU State Manager Fixed module configuration tool shall generate a default
implementation of the EcuM_AL_DriverInitZero callout from the sequence of modules
defined in the EcuMDriverInitListZero configuration container. See
SWS_EcuM_02559 and SWS_EcuM_02730.

8.7.2.2 EcuM_DeterminePbConfiguration

[SWS_EcuM_02906] ⌈
Service name: EcuM_DeterminePbConfiguration

Syntax: EcuM_ConfigType* EcuM_DeterminePbConfiguration(

 void

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value:
EcuM_ConfigType* Pointer to the EcuM post-build configuration which

contains pointers to all other BSW module post-build
configurations.

Description: This callout should evaluate some condition, like port pin or NVRAM value, to
determine which post-build configuration shall be used in the remainder of the
startup process. It shall load this configuration data into a piece of memory that is
accessible by all BSW modules and shall return a pointer to the EcuM post-build
configuration as a base for all BSW module post-build configrations.

⌋()

Invocation of EcuM_DeterminePbConfiguration: Early in STARTUP I

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

122 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Content is manually written.

8.7.2.3 EcuM_AL_DriverInitOne

[SWS_EcuM_02907] ⌈
Service name: EcuM_AL_DriverInitOne

Syntax: void EcuM_AL_DriverInitOne(

 const EcuM_ConfigType* ConfigPtr

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in):
ConfigPtr Pointer to the EcuM post-build configuration which contains pointers to

all other BSW module post-build configurations.

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: This callout shall provide driver initialization and other hardware-related startup
activities in case of a power on reset.

⌋()

Invocation of EcuM_AL_DriverInitOne: In STARTUP I

The ECU State Manager Fixed module configuration tool shall generate a default

implementation of the EcuM_AL_DriverInitOne callout from the sequence of

modules defined in the EcuMDriverInitListOne configuration container. See

SWS_EcuM_02559 and SWS_EcuM_02730.

Besides driver initialization, the following initialization sequences should be
considered in this block: MCU initialization according to
AUTOSAR_SWS_Mcu_Driver chapter 9.1.

8.7.2.4 EcuM_AL_DriverInitTwo

[SWS_EcuM_00908] ⌈
Service name: EcuM_AL_DriverInitTwo

Syntax: void EcuM_AL_DriverInitTwo(

 const EcuM_ConfigType* ConfigPtr

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in):
ConfigPtr Pointer to the EcuM post-build configuration which contains pointers to

all other BSW module post-build configurations.

Parameters
(inout):

None

Parameters (out): None

Return value: None

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

123 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Description: This callout shall provide driver initialization of drivers which need OS and do not
need to wait for the NvM_ReadAll job to finish.

⌋()

Invocation of EcuM_AL_DriverInitTwo: In STARTUP II

The ECU State Manager Fixed module configuration tool shall generate a default

implementation of the EcuM_AL_DriverInitTwo callout from the sequence of

modules defined in the EcuMDriverInitListTwo configuration container. See

SWS_EcuM_02559 and SWS_EcuM_02730.

8.7.2.5 EcuM_AL_DriverInitThree

[SWS_EcuM_00909] ⌈
Service name: EcuM_AL_DriverInitThree

Syntax: void EcuM_AL_DriverInitThree(

 const EcuM_ConfigType* ConfigPtr

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in):
ConfigPtr Pointer to the EcuM post-build configuration which contains pointers to

all other BSW module post-build configurations.

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: This callout shall provide driver initialization of drivers which need OS and need to
wait for the NvM_ReadAll job to finish.

⌋()

Invocation of EcuM_AL_DriverInitThree: In STARTUP II

The ECU State Manager Fixed module configuration tool shall generate a default

implementation of the EcuM_AL_DriverInitThree callout from the sequence of

modules defined in the EcuMDriverInitListThree configuration container. See

SWS_EcuM_02559 and SWS_EcuM_02730.

8.7.2.6 EcuM_OnRTEStartup

[SWS_EcuM_00910] ⌈
Service name: EcuM_OnRTEStartup

Syntax: void EcuM_OnRTEStartup(

 void

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

124 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: --

⌋()

Invocation of EcuM_OnRTEStartup: Just before calling RTE_Start

8.7.3 Callouts from RUN State

8.7.3.1 EcuM_OnEnterRun

[SWS_EcuM_00911] ⌈

Service name: EcuM_OnEnterRun

Syntax: void EcuM_OnEnterRun(

 void

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: On entry of RUN state is very similar to “just after startup”. This call allows the
system designer to notify that RUN state has been reached.

⌋()

Invocation of EcuM_OnEnterRun: On entry of RUN state.

8.7.3.2 EcuM_OnExitRun

[SWS_EcuM_00912] ⌈
Service name: EcuM_OnExitRun

Syntax: void EcuM_OnExitRun(

 void

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: This call allows the system designer to notify that the APP RUN state is about to
be left.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

125 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

⌋()

Invocation of EcuM_OnExitRun: By ECU State Manager Module upon detection that

the last run request has been released.

8.7.3.3 EcuM_OnExitPostRun

[SWS_EcuM_00913] ⌈
Service name: EcuM_OnExitPostRun

Syntax: void EcuM_OnExitPostRun(

 void

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: This call allows the system designer to notify that the APP POST RUN state is
about to be left.

⌋()

Invocation of EcuM_OnExitPostRun: ECU State Manager Module upon detection

that the last POST_RUN request has been released.

8.7.4 Callouts from SHUTDOWN

8.7.4.1 EcuM_OnPrepShutdown

[SWS_EcuM_00914] ⌈
Service name: EcuM_OnPrepShutdown

Syntax: void EcuM_OnPrepShutdown(

 void

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: This call allows the system designer to notify that the PREP SHUTDOWN state is
about to be entered.

⌋()

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

126 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Invocation of EcuM_OnPrepShutdown: On entry of PREP SHUTDOWN

8.7.4.2 EcuM_OnGoSleep

[SWS_EcuM_00915] ⌈
Service name: EcuM_OnGoSleep

Syntax: void EcuM_OnGoSleep(

 void

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: This call allows the system designer to notify that the GO SLEEP state is about to
be entered.

⌋()

Invocation of EcuM_OnGoSleep: On entry of GO SLEEP

8.7.4.3 EcuM_OnGoOffOne

[SWS_EcuM_02916] ⌈
Service name: EcuM_OnGoOffOne

Syntax: void EcuM_OnGoOffOne(

 void

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: This call allows the system designer to notify that the GO OFF I state is about to
be entered.

⌋()

Invocation of EcuM_OnGoOffOne: On entry of GO OFF I

8.7.4.4 EcuM_OnGoOffTwo

[SWS_EcuM_02917] ⌈
Service name: EcuM_OnGoOffTwo

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

127 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Syntax: void EcuM_OnGoOffTwo(

 void

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: This call allows the system designer to notify that the GO OFF II state is about to
be entered.

⌋()

Invocation of EcuM_OnGoOffTwo: On entry of GO OFF II

8.7.4.5 EcuM_EnableWakeupSources

[SWS_EcuM_02918]⌈
Service name: EcuM_EnableWakeupSources

Syntax: void EcuM_EnableWakeupSources(

 EcuM_WakeupSourceType wakeupSource

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): wakeupSource --

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: The ECU Manager Module calls EcuM_EnableWakeupSource to allow the system
designer to notify wakeup sources defined in the wakeupSource bitfield that
SLEEP will be entered and to adjust their source accordingly.

⌋()

[SWS_EcuM_02546] ⌈The ECU State Manager Fixed module needs to derive the

wake up sources to be enabled for the from configuration information. ⌋()

Invocation of EcuM_EnableWakeupSources: From GOSLEEP II

8.7.4.6 EcuM_GenerateRamHash

[SWS_EcuM_02919] ⌈
Service name: EcuM_GenerateRamHash

Syntax: void EcuM_GenerateRamHash(

 void

)

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

128 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: see EcuM_CheckRamHash

⌋()

8.7.4.7 EcuM_AL_SwitchOff

[SWS_EcuM_02920] ⌈
Service name: EcuM_AL_SwitchOff

Syntax: void EcuM_AL_SwitchOff(

 void

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: This callout shall take the code for shutting off the power supply of the ECU. If the
ECU cannot unpower itself, a reset may be an adequate reaction.

⌋()

Invocation of EcuM_AL_SwitchOff: Last activity in SHUTDOWN II

Note: In some cases of HW/SW concurrency, it may happen that during the power

down in EcuM_AL_SwitchOff (endless loop) some hardware (e.g. a CAN

transceiver) switches on the ECU again. In this case the ECU may be in a deadlock
until the hardware watchdog resets the ECU. To reduce the time until the hardware

watchdog fixes this deadlock, the integrator code in EcuM_AL_SwitchOff as last

action can limit the endless loop and after a sufficient long time reset the ECU using

Mcu_PerformReset().

8.7.5 Callouts from WAKEUP

8.7.5.1 EcuM_CheckRamHash

[SWS_EcuM_02921] ⌈
Service name: EcuM_CheckRamHash

Syntax: uint8 EcuM_CheckRamHash(

 void

)

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

129 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value:
uint8 0: RAM integrity test failed

else: RAM integrity test passed

Description: This callout is intended to provide a RAM integrity test. The goal of this test is to
ensure that after a long SLEEP duration, RAM contents is still consistent. The
check does not need to be exhaustive since this would consume quite some
processing time during wakeups. A well designed check will execute quickly and
detect RAM integrity defects with a sufficient probability.
This specification does not make any assumption about the algorithm chosen for a
particular ECU.
The areas of RAM which will be checked have to be chosen carefully. It depends
on the check algorithm itself and the task structure. Stack contents of the task
executing the RAM check e.g. very likely cannot be checked. It is good practice to
have the hash generation and checking in the same task and that this task is not
preemptible and that there is only little activity between hash generation and hash
check.
The RAM check itself is provided by the system designer.
In case of applied multi core and existence of Satellite-EcuM(s): this API will be
called by the Master-EcuM only.

⌋()

8.7.5.2 EcuM_DisableWakeupSources

[SWS_EcuM_02922] ⌈
Service name: EcuM_DisableWakeupSources

Syntax: void EcuM_DisableWakeupSources(

 EcuM_WakeupSourceType wakeupSource

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): wakeupSource --

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: The ECU Manager Module calls EcuM_DisableWakeupSources to set the wakeup
source(s) defined in the wakeupSource bitfield so that they are not able to wake
the ECU up.

⌋()

Invocation of EcuM_DisableWakeupSources: In WAKEUP I

8.7.5.3 EcuM_AL_DriverRestart

[SWS_EcuM_02923] ⌈

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

130 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Service name: EcuM_AL_DriverRestart

Syntax: void EcuM_AL_DriverRestart(

 const EcuM_ConfigType* ConfigPtr

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in):
ConfigPtr Pointer to the EcuM post-build configuration which contains pointers to

all other BSW module post-build configurations.

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: This callout shall provide driver initialization and other hardware-related startup
activities in the wakeup case.

⌋()

Invocation of EcuM_AL_DriverRestart: In WAKEUP I

The ECU State Manager Fixed module configuration tool shall generate a default

implementation of the EcuM_AL_DriverRestart callout from the sequence of

modules defined in the EcuMDriverRestartList configuration container. See

SWS_EcuM_02561, SWS_EcuM_02559 and SWS_EcuM_02730.

8.7.5.4 EcuM_StartWakeupSources

[SWS_EcuM_02924] ⌈
Service name: EcuM_StartWakeupSources

Syntax: void EcuM_StartWakeupSources(

 EcuM_WakeupSourceType wakeupSource

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): wakeupSource --

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: The callout shall start the given wakeup source(s) so that they are ready to
perform wakeup validation.

⌋()

Invocation of EcuM_StartWakeupSources: In WAKEUP VALIDATION

8.7.5.5 EcuM_CheckValidation

[SWS_EcuM_02925] ⌈
Service name: EcuM_CheckValidation

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

131 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Syntax: void EcuM_CheckValidation(

 EcuM_WakeupSourceType wakeupSource

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): wakeupSource --

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: This callout is called by the EcuM to validate a wakeup source. If a valid wakeup
has been detected, it shall be reported to EcuM via
EcuM_ValidateWakeupEvent().

⌋()

Invocation of EcuM_CheckValidation: In WAKEUP VALIDATION

8.7.5.6 EcuM_StopWakeupSources

[SWS_EcuM_02926] ⌈
Service name: EcuM_StopWakeupSources

Syntax: void EcuM_StopWakeupSources(

 EcuM_WakeupSourceType wakeupSource

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): wakeupSource --

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: The callout shall stop the given wakeup source(s) after unsuccessful wakeup
validation.

⌋()

Invocation of EcuM_StopWakeupSources: In WAKEUP VALIDATION

8.7.5.7 EcuM_OnWakeupReaction

[SWS_EcuM_00927] ⌈
Service name: EcuM_OnWakeupReaction

Syntax: EcuM_WakeupReactionType EcuM_OnWakeupReaction(

 EcuM_WakeupReactionType wact

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

132 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Parameters (in):
wact The wakeup reaction computed by ECU

State Manager

Parameters
(inout):

None

Parameters (out): None

Return value: EcuM_WakeupReactionType All values: The desired wakeup reaction.

Description: This callout gives the system designer the chance to intercept the automatic boot
behavior and to override the wakeup reaction computed from wakeup source.

⌋()

Invocation of EcuM_OnWakeupReaction: In WAKEUP REACTION after default

computation of wake up reaction.

8.7.6 Callouts from SLEEP State

8.7.6.1 EcuM_SleepActivity

[SWS_EcuM_02928] ⌈
Service name: EcuM_SleepActivity

Syntax: void EcuM_SleepActivity(

 void

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: This callout is invoked periodically in all reduced clock sleep modes.
It is explicitely allowed to poll wakeup sources from this callout and to call wakeup
notification functions to indicate the end of the sleep state to the ECU State
Manager.

⌋()

Invocation of EcuM_SleepActivity: Periodically in SLEEP state if the MCU is not

halted (i.e. clock is reduced)

Note: If called from the poll sequence the EcuM calls this callout functions in a
blocking loop at maximum frequency. The callout implementation must ensure by
other means if callout code shall be executed with a lower period. The integrator may
choose any method to control this, e.g. with the help of OS counters, OS alarms,
or Gpt timers.

8.7.6.2 EcuM_CheckWakeup

[SWS_EcuM_02929] ⌈

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

133 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Service name: EcuM_CheckWakeup

Syntax: void EcuM_CheckWakeup(

 EcuM_WakeupSourceType wakeupSource

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): wakeupSource --

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: This callout is called by the EcuM to poll a wakeup source. It shall also be called
by the ISR of a wakeup source to set up the PLL and check other wakeup sources
that may be connected to the same interrupt.

⌋()

Invocation of EcuM_CheckWakeup: Periodically in SLEEP state if the MCU is not

halted, or when handling a wake up interrupt

Note: If called from the poll sequence the EcuM calls this callout functions in a
blocking loop at maximum frequency. The callout implementation must ensure by
other means if callout code shall be executed with a lower period. The integrator may
choose any method to control this, e.g. with the help of OS counters, OS alarms,
or Gpt timers.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

134 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

8.8 Expected Interfaces

In this chapter all interfaces required from other modules are listed.

8.8.1 Mandatory Interfaces

This chapter defines all interfaces which are required to fulfill the core functionality of
the module.

[SWS_EcuM_02858] ⌈
API function Description

BswM_Deinit Deinitializes the BSW Mode Manager.

BswM_EcuM_CurrentState Function called by EcuM to indicate the current ECU Operation
Mode.

BswM_EcuM_CurrentWakeup Function called by EcuM to indicate the current state of a
wakeup source.

BswM_Init Initializes the BSW Mode Manager.

CanSM_StartWakeupSource This function shall be called by EcuM when a wakeup source
shall be started.

CanSM_StopWakeupSource This function shall be called by EcuM when a wakeup source
shall be stopped.

ComM_CommunicationAllowed EcuM or BswM shall indicate to ComM when communication is
allowed.
If EcuM/Fixed is used: EcuM/Fixed.
If EcuM/Flex is used: BswM

ComM_DeInit This API de-initializes the AUTOSAR Communication Manager.

ComM_EcuM_WakeUpIndication Notification of a wake up on the corresponding channel.

ComM_GetState Return current state, including sub-state, of the ComM channel
state machine.

Usage of function only valid if EcuM/Fixed is used:
To leave RUN: state/sub-state need to be
COMM_NO_COM_NO_PENDING_REQUEST (No
communication and no pending request to start communication)
In POST RUN to return to RUN: state/sub-state need to be in
COMM_NO_COM_REQUEST_PENDING (No communication,
but a pending request to start communication)

If EcuM/Flex and BswM is used, BswM instead use received
mode indications from ComM
(BswM_ComM_RequestedMode(..)).

ComM_Init Initializes the AUTOSAR Communication Manager and restarts
the internal state machines.

Dem_Init Initializes or reinitializes this module.

Dem_PreInit Initializes the internal states necessary to process events
reported by BSW-modules.

Dem_ReportErrorStatus Queues the reported events from the BSW modules (API is
only used by BSW modules). The interface has an
asynchronous behavior, because the processing of the event is
done within the Dem main function.
OBD Events Suppression shall be ignored for this computation.

Dem_Shutdown Shuts down this module.

DisableAllInterrupts --

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

135 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

EnableAllInterrupts --

GetResource --

Mcu_GetResetReason The service reads the reset type from the hardware, if
supported.

Mcu_Init This service initializes the MCU driver.

Mcu_PerformReset The service performs a microcontroller reset.

Mcu_SetMode This service activates the MCU power modes.

ReleaseResource --

Rte_Start Initialize the RTE itself.

Rte_Stop Finalize the RTE itself.

Rte_Switch_currentMode_currentMode --

SchM_Init Initialize the Basic Software Scheduler part of the RTE.

ShutdownOS --

StartOS --

Table 6 - Mandatory interfaces

⌋()

Remark: The OS service GetResource needs a resource name. Therefore the ECU

State Manager Fixed module has to define one OS resource name. The name of this
OS resource is up to the implementation of the ECU State Manager, nevertheless

this document assumes the name “RES_AUTOSAR_ECUM”, which will be used in all

figures in this document.

8.8.2 Optional Interfaces

This chapter defines all interfaces which are required to fulfill an optional functionality
of the module.

[SWS_EcuM_02859] ⌈
API function Description

Adc_Init Initializes the ADC hardware units and driver.

CanIf_Init This service Initializes internal and external interfaces of the CAN
Interface for the further processing.

CanNm_Init Initialize the CanNm module.

CanSM_Init This service initializes the CanSM module

CanTp_Init This function initializes the CanTp module.

CanTrcv_Init Initializes the CanTrcv module.

Can_Init This function initializes the module.

Com_Init This service initializes internal and external interfaces and variables of
the AUTOSAR COM module layer for the further processing.
After calling this function the inter-ECU communication is still disabled.

Dcm_Init Service for basic initialization of DCM module.

Det_Init Service to initialize the Development Error Tracer.

Det_ReportError Service to report development errors.

Det_Start Service to initialize the Development Error Tracer.

Dio_Init Initializes the module.

Dlt_Init Dlt is using the NVRamManager and is to be initialized very late in the
ECU
startup phase. The Dlt_Init() function should be called after the
NVRamManager

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

136 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

is initialed."

Ea_Init Initializes the EEPROM abstraction module.

Eep_Init Service for EEPROM initialization.

EthIf_Init Initializes the Ethernet Interface

EthTrcv_Init Initializes the Ethernet Transceiver Driver

Eth_Init Initializes the Ethernet Driver

Fee_Init Service to initialize the FEE module.

FiM_Init This service initializes the FIM.

Fls_Init Initializes the Flash Driver.

FrArTp_Init This service initializes all global variables of the FlexRay AUTOSAR
Transport Layer and sets all states to idle.

FrIf_Init Initializes the FlexRay Interface.

FrNm_Init Initializes the FlexRay NM and its internal state machine.

FrSM_Init Initializes the FlexRay State Manager.

FrTp_Init This service initializes all global variables of a FlexRay Transport Layer
instance and set it in the idle state. It has no return value because
software errors in initialisation data shall be detected during
configuration time (e.g. by configuration tool).

Fr_Init Initalizes the Fr.

Gpt_Init Initializes the GPT driver.

Icu_Init This function initializes the driver.

IoHwAb_Init<Init_Id> Initializes either all the IO Hardware Abstraction software or is a part of
the IO Hardware Abstraction.

IpduM_Init Initializes the I-PDU Multiplexer.

J1939Tp_Init This function initializes the J1939Tp module.

LinIf_Init Initializes the LIN Interface.

LinSM_Init This function initializes the LinSM.

LinTp_Init Initializes the LIN Transport Layer.

Lin_Init Initializes the LIN module.

Nm_Init Initializes the NM Interface.

NvM_CancelWriteAll Service to cancel a running NvM_WriteAll request.

NvM_Init Service for resetting all internal variables.

NvM_ReadAll Initiates a multi block read request.

NvM_WriteAll Initiates a multi block write request.

Ocu_Init Service for OCU initialization.

PduR_Init Initializes the PDU Router

Port_Init Initializes the Port Driver module.

Pwm_Init Service for PWM initialization.

SchM_Enter_EcuM --

SchM_Exit_EcuM --

SoAd_Init Description:
This service initializes all global variables of a Socket Adaptor instance
and puts it into the idle state. It has no return value because software
errors in initialization data shall be detected during configuration time
(e.g. by configuration tool). Furthermore, if a hardware error occurs it
shall be reported via the error manager modules.

Caveats:
The call of this service is mandatory before using the SoAd instance for
further processing.
The API has to be called during initialization.

Spi_Init Service for SPI initialization.

UdpNm_Init Initialize the complete UdpNm module, i.e. all channels which are
activated at configuration time are initialized.
A UDP socket shall be set up with the TCP/IP stack.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

137 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Caveats:
This function has to be called after initialization of the TCP/IP stack.

Configuration:
Mandatory

WdgM_DeInit De-initializes the Watchdog Manager.

WdgM_Init Initializes the Watchdog Manager.

Wdg_Init Initializes the module.

Xcp_Init This service initializes interfaces and variables of the AUTOSAR XCP
layer.

Table 7 - Optional Interfaces

⌋()

8.8.3 Configurable interfaces

There are no configurable interfaces.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

138 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

9 Sequence Charts

9.1 State Sequences

Sequence charts showing the behavior of the ECU State Manager Fixed module in
various states are contained in the flow of the specification text. The following list
shows all sequence charts presented in this specification.

 Figure 4 – Startup Sequence (high level diagram)

 Figure 5 – Init Sequence I (STARTUP I)

 Figure 6 – Init Sequence II (STARTUP II)

 Figure 8 – RUN State Sequence (high level diagram)

 Figure 9 – RUN II State Sequence

 Figure 10 – RUN III State Sequence

 Figure 12 – Shutdown Sequence (high level diagram)

 Figure 13 – Deinitialization Sequence I (PREP SHUTDOWN)

 Figure 14 – Deinitialization Sequence IIa (GOSLEEP

 Figure 15 – Deinitialization Sequence IIb (GO OFF I)

 Figure 16 – Deinitialization Sequence III (GO OFF II)

 Figure 17 – Sleep Sequence (high level diagram)

 Figure 18 – Sleep Sequence I

 Figure 19 – Sleep Sequence II

 Figure 20 – Wake-up Sequence (high level diagram)

 Figure 22 – Wake-up Sequence I

 Figure 23 – Wake-up Validation Sequence

 Figure 25 – Wake-up Sequence II

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

139 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

9.2 Wake-up Sequences

The Wake-up Sequences show how a number of modules cooperate to put the ECU
into a sleep state to be able to wake up and startup the ECU when a wake up event
has occurred.

9.2.1 GPT Wake-up Sequences

The General Purpose Timer (GPT) is one of the possible wake up sources. Usually
the GPT is started before the ECU is put to sleep and the hardware timer causes an
interrupt when it expires. The interrupt wakes the microcontroller, and executes the
interrupt handler in the GPT module. It informs the ECU State Manager Fixed module
that a GPT wake up has occurred. In order to distinguish different GPT channels that
caused the wake up, the integrator can assign a different wake up source identifier to
each GPT channel. Figure 31 shows the corresponding sequence of calls.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

140 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Integration Code «Peripheral»

GPT Hardware

«module»

Mcu

«module»

EcuM

«module»

Os

«module»

Gpt

If the Scheduler will not be acquired as resource it is not assured that the program flow continues

after HALT instruction because re-scheduling takes place after occurrence of an ISR Cat 2.

GOSLEEP

HALT

Execution continues after HALT instruction.

WAKEUP I

SLEEP

Release Scheduler resource to allow other tasks to run.

EcuM_EnableWakeupSources(EcuM_WakeupSourceType)

Gpt_EnableWakeup(Gpt_ChannelType)

Gpt_EnableWakeup()

Gpt_StartTimer(Gpt_ChannelType,

Gpt_ValueType)

Gpt_SetMode(Gpt_ModeType)

EcuM_EnableWakeupSources()

GetResource(RES_AUTOSAR_ECUM_<core#>)

GetResource()

DisableAllInterrupts()

Mcu_SetMode(Mcu_ModeType)

Wakeup

interrupt()

EcuM_CheckWakeup(EcuM_WakeupSourceType)

Gpt_CheckWakeup(EcuM_WakeupSourceType)

EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

EcuM_SetWakeupEvent()

Gpt_CheckWakeup()

EcuM_CheckWakeup()

Return from

interrupt()

Mcu_SetMode()

EnableAllInterrupts()

DisableAllInterrupts()

Mcu_SetMode(Mcu_ModeType)

Mcu_SetMode()

EnableAllInterrupts()

EcuM_DisableWakeupSources(EcuM_WakeupSourceType)

Gpt_DisableWakeup(Gpt_ChannelType)

Gpt_DisableWakeup()

Gpt_SetMode(Gpt_ModeType)

EcuM_DisableWakeupSources()

ReleaseResource(RES_AUTOSAR_ECUM_<core#>)

ReleaseResource()

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

141 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Figure 31 – GPT wake up by interrupt

If the GPT hardware is capable of latching timer overruns, it is also possible to poll
the GPT for wake-ups as shown in Figure 32.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

142 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

«module»

EcuM

Integration Code «module»

Os

«module»

Mcu

«module»

Gpt

loop WHILE no pending wakeup events

opt Wakeup detected

GOSLEEP

Acquire the Scheduler to prevent other tasks

from running.

SLEEP

WAKEUP I

Mcu_SetMode() puts the microcontroller

in some power saving mode. In this

mode software execution continues, but

with reduced clock speed.

Release Scheduler resource to allow

other tasks to run.

EcuM_EnableWakeupSources(EcuM_WakeupSourceType)

Gpt_EnableWakeup(Gpt_ChannelType)

Gpt_EnableWakeup()

Gpt_StartTimer(Gpt_ChannelType,

Gpt_ValueType)

Gpt_SetMode(Gpt_ModeType)

EcuM_EnableWakeupSources()

GetResource(RES_AUTOSAR_ECUM_<core#>)

GetResource()

DisableAllInterrupts()

Mcu_SetMode(Mcu_ModeType)

Mcu_SetMode()

EnableAllInterrupts()

EcuM_SleepActivity()

EcuM_SleepActivity()

EcuM_CheckWakeup(EcuM_WakeupSourceType)

Gpt_CheckWakeup(EcuM_WakeupSourceType)

EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

EcuM_SetWakeupEvent()

Gpt_CheckWakeup()

EcuM_CheckWakeup()

DisableAllInterrupts()

Mcu_SetMode(Mcu_ModeType)

Mcu_SetMode()

EnableAllInterrupts()

EcuM_DisableWakeupSources(EcuM_WakeupSourceType)

Gpt_DisableWakeup(Gpt_ChannelType)

Gpt_DisableWakeup()

Gpt_SetMode(Gpt_ModeType)

EcuM_DisableWakeupSources()

ReleaseResource(RES_AUTOSAR_ECUM_<core#>)

ReleaseResource()

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

143 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Figure 32 – GPT wake up by polling

9.2.2 ICU Wake-up Sequences

The Input Capture Unit (ICU) is another wake up source. In contrast to GPT, the ICU
driver is not itself the wake up source. It is just the module that processes the wake
up interrupt. Therefore, only the driver of the wake up source can tell if it was

responsible for that wake up. This makes it necessary for EcuM_CheckWakeup to

ask the module that is the actual wake up source. In order to know which module to
ask, the ICU has to pass the identifier of the wake up source to

EcuM_CheckWakeup.

For shared interrupts the Integration code may have to check multiple wake up

sources within EcuM_CheckWakeup. To this end, the ICU has to pass the identifiers

of all wake up sources that may have caused this interrupt to EcuM_CheckWakeup.

Note that, EcuM_WakeupSourceType contains one bit for each wake up source, so

that multiple wake up sources can be passed in one call.

Figure 33 shows the resulting sequence of calls.

Since the ICU is only responsible for processing the wake up interrupt, polling the
ICU is not sensible. For polling the wake up sources have to be checked directly as
shown in Figure 19 – Sleep Sequence II.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

144 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

«module»

EcuM

Integration Code «module»

Wakeup Source

«module»

Os

«module»

Mcu

«module»

Icu

«Peripheral»

ICU Hardware

HALT

GOSLEEP

SLEEP

WAKEUP I

Release Scheduler resource to allow other tasks to run.

Execution continues after HALT instruction.

If the Scheduler wil l not be acquired as resource it is not assured that the program flow continues

after HALT instruction because re-scheduling takes place after occurrence of an ISR Cat 2.

EcuM_EnableWakeupSources(EcuM_WakeupSourceType)

Icu_EnableWakeup(Icu_ChannelType)

Icu_EnableWakeup()

EcuM_EnableWakeupSources()

GetResource(RES_AUTOSAR_ECUM_<core#>)

GetResource()

DisableAllInterrupts()

Mcu_SetMode(Mcu_ModeType)

Wakeup

interrupt()

EcuM_CheckWakeup(EcuM_WakeupSourceType)

activate

PLL()

<Module>_CheckWakeup(EcuM_WakeupSourceType)

EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

EcuM_SetWakeupEvent()

<Module>_CheckWakeup()

EcuM_CheckWakeup()

Return from

interrupt()

Mcu_SetMode()

EnableAllInterrupts()

DisableAllInterrupts()

Mcu_SetMode(Mcu_ModeType)

Mcu_SetMode()

EnableAllInterrupts()

EcuM_DisableWakeupSources(EcuM_WakeupSourceType)

Icu_DisableWakeup(Icu_ChannelType)

Icu_DisableWakeup()

EcuM_DisableWakeupSources()

ReleaseResource(RES_AUTOSAR_ECUM_<core#>)

ReleaseResource()

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

145 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Figure 33 – ICU wake up by interrupt

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

146 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

9.2.3 CAN Wake-up Sequences

On CAN a wake up can be detected by the transceiver or the communication
controller using either an interrupt or polling. Wake up source identifiers should be
shared between transceiver and controller as the ECU State Manager Fixed module
only needs to know the network that has woken up and passes that on to the
Communication Manager module.

In interrupt case or in shared interrupt case it is not clear which specific wake up
source (CAN controller, CAN transceiver, LIN controller etc.) detected the wake up.
Therefore the integrator has to assign the derived wakeupSource of
EcuM_CheckWakeup(wakeupSource), which could stand for a shared interrupt or
just for a interrupt channel, to specific wake up sources which are passed to
CanIf_CheckWakeup(WakeupSource). So here the parameters wakeupSource from
EcuM_CheckWakeup() could be different to WakeupSource of CanIf_CheckWakeup
or they could equal. It depends on the hardware topology and the implementation in
the integrator code of EcuM_CheckWakeup().

During CanIf_CheckWakeup(WakeupSource) the CAN Interface module (CanIf) will
check if any device (CAN communication controller or transceiver) is configured with
the value of “WakeupSource”. If this is the case, the device is checked for wake up
via the corresponding device driver module. If the device detected a wake up, the
device driver informs EcuM via EcuM_SetWakeupEvent(sources). The parameter
“sources” is set to the configured value at the device. Thus it is set to the value
CanIf_CheckWakeup() was called with.

Multiple devices might be configured with the same wake up source value. But if
devices are connected to different bus medium and they are wake-able, it makes
sense to configure them with different wake up sources.

The following CAN Wake-up Sequences are partly optional, because there is no
specification for the “Integration Code”. Thus it is implementation specific if e.g.
during EcuM_CheckWakeup() the CanIf is called to check the wake up source.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

147 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

«Peripheral»

CAN Transceiver

Hardware

«Peripheral»

CanController

«module»

CanTrcv

«module»

Can

«module»

CanIf

«module»

Icu

«module»

Mcu

Integration Code«module»

EcuM

«module»

Os

Release Scheduler resource to allow other tasks to run.

If the Scheduler will not be acquired as resource it is not assured that the program flow continues

after HALT instruction because re-scheduling takes place after occurrence of an ISR Cat 2.

HALT

Execution continues after HALT instruction.

CanSM will have called CanIf_SetControllerMode and CanIf_SetTransceiverMode when going to sleep.

GOSLEEP

SLEEP

WAKEUP I

WAKEUP

VALIDATION

EcuM_EnableWakeupSources(EcuM_WakeupSourceType)

CanIf_SetTrcvWakeupMode(uint8,

CanTrcv_TrcvWakeupModeType)
CanTrcv_SetWakeupMode(uint8,

CanTrcv_TrcvWakeupModeType)

Icu_EnableWakeup(Icu_ChannelType)

GetResource(uint8)

DisableAllInterrupts()

Mcu_SetMode(Mcu_ModeType)

Wakeup

interrupt()
EcuM_CheckWakeup(EcuM_WakeupSourceType)

activate

PLL()

CanIf_CheckWakeup(EcuM_WakeupSourceType)

:Std_ReturnType
CanTrcv_CheckWakeup(uint8) :

Std_ReturnType

EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

Return from

interrupt()

Mcu_SetMode()

EnableAllInterrupts()

DisableAllInterrupts()

Mcu_SetMode(Mcu_ModeType)

EnableAllInterrupts()

EcuM_DisableWakeupSources(EcuM_WakeupSourceType)

Icu_DisableWakeup(Icu_ChannelType)

CanIf_SetTrcvWakeupMode(uint8,

CanTrcv_TrcvWakeupModeType)
CanTrcv_SetWakeupMode(uint8,

CanTrcv_TrcvWakeupModeType)

ReleaseResource(uint8)

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

148 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Figure 34 – CAN transceiver wake up by interrupt

Figure 34 shows the CAN transceiver wake up via interrupt. The interrupt is usually
handled by the ICU Driver as described in Chapter 9.2.2.

A CAN controller wake up by interrupt works similar to the GPT wake up. Here the
interrupt handler and the CheckWakeup functionality are both encapsulated in the
CAN Driver module, as shown in Figure 35.

«Peripheral»

CanController

«module»

CanTrcv

«module»

Icu

Integration Code «module»

CanIf

«module»

Can

«module»

Mcu

«module»

EcuM

«module»

Os

«Peripheral»

CAN Transceiver

Hardware

HALT

Execution continues after HALT instruction.

GOSLEEP

CanSM will have called CanIf_SetControllerMode and CanIf_SetTransceiverMode when going to sleep.

SLEEP

If the Scheduler will not be acquired as resource it is not assured that the program flow continues

after HALT instruction because re-scheduling takes place after occurrence of an ISR Cat 2.

WAKEUP I

WAKEUP

VALIDATION

Release Scheduler resource to allow other tasks to run.

EcuM_EnableWakeupSources(EcuM_WakeupSourceType)

GetResource(uint8)

DisableAllInterrupts()

Mcu_SetMode(Mcu_ModeType)

Wakeup

interrupt()

EcuM_CheckWakeup(EcuM_WakeupSourceType)

Activate

PLL()

CanIf_CheckWakeup(EcuM_WakeupSourceType)

:Std_ReturnType
Can_CheckWakeup(uint8) :

Can_ReturnType

EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

Return from

interrupt()

Mcu_SetMode()

EnableAllInterrupts()

DisableAllInterrupts()

Mcu_SetMode(Mcu_ModeType)

EcuM_DisableWakeupSources(EcuM_WakeupSourceType)

ReleaseResource(uint8)

Figure 35 – CAN controller wake up by interrupt

Wake up by polling is possible both for CAN transceiver and CAN controller. The
ECU State Manager Fixed module will regularly check the CAN Interface module,

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

149 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

which in turn asks either the CAN Driver module or the CAN Transceiver Driver
module depending on the wake up source parameter passed to the CAN Interface
module, as shown in Figure 36.

«Peripheral»

CAN Transceiver

Hardware

«Peripheral»

CanController

«module»

CanTrcv

«module»

Can

«module»

CanIf

«module»

Icu

«module»

Mcu

Integration Code«module»

EcuM

«module»

Os

loop WHILE no pending wakeup events

alt WakeupSource parameter of CanIf_CheckWakeup()

[CAN Controller]

[CAN Transceiver]

opt Wakeup Detected

GOSLEEP

CanSM will have called CanIf_SetControllerMode and CanIf_SetTransceiverMode when going to sleep.

Acquire the Scheduler to prevent other tasks from running.

Mcu_SetMode() puts the microcontroller

in some power saving mode. In this

mode software execution continues, but

with reduced clock speed.

SLEEP

Release Scheduler resource to allow other tasks to run.

WAKEUP I

WAKEUP

VALIDATION

opt Wakeup Detected

EcuM_EnableWakeupSources(EcuM_WakeupSourceType)

GetResource(uint8)

DisableAllInterrupts()

Mcu_SetMode(Mcu_ModeType)

EnableAllInterrupts()

EcuM_SleepActivity()

EcuM_CheckWakeup(EcuM_WakeupSourceType)

CanIf_CheckWakeup(EcuM_WakeupSourceType)

:Std_ReturnType

Can_CheckWakeup(uint8) :

Can_ReturnType

EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

CanTrcv_CheckWakeup(uint8) :

Std_ReturnType

EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

DisableAllInterrupts()

Mcu_SetMode(Mcu_ModeType)

Mcu_SetMode()

EnableAllInterrupts()

EcuM_DisableWakeupSources(EcuM_WakeupSourceType)

ReleaseResource(uint8)

Figure 36 – CAN controller or transceiver wake up by polling

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

150 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

After the detection of a wake up event from the CAN transceiver or CAN controller by
either interrupt or polling, the wake up event can be validated. This is done by
switching on the corresponding CAN transceiver and CAN controller in

EcuM_StartWakeupSources. It depends on the used CAN transceivers and

controllers, which function calls in Integrator Code EcuM_StartWakeupSource are
necessary. In Figure 37 e.g. the needed function calls to start and stop the wake up
sources from CAN state manager module are mentioned.
Note that, although controller and transceiver are switched on, no CAN message will
be forwarded by the CAN Interface module to any upper layer module.
Only when the corresponding PDU channel modes of the CAN Interface module are
set to “Online”, it will forward CAN messages.
The CAN Interface module recognizes the successful reception of at least one
message and records it as a successful validation. During validation the ECU State
Manager Fixed module regularly checks the CAN Interface module in Integrator

Code EcuM_CheckValidation.

The ECU State Manager Fixed module will, after successful validation, continue the
normal startup of the CAN network via the Communication Manager module.
Otherwise, it will shutdown the CAN controller and CAN transceiver in

EcuM_StopWakeupSources and go back to sleep. The resulting sequence is

shown in Figure 37.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

151 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

«module»

EcuM

Integration Code «module»

Mcu

«module»

Icu

«module»

CanIf

«module»

CanSM

loop Validate Wakeup Event

alt Check Validation Result

[SUCCESSFUL VALIDATION]

[NO VALIDATION YET]

[VALIDATION TIMEOUT]

On CAN successful validation is indicated

by a correctly received message.

WAKEUP

VALIDATION

GOSLEEP

EcuM_StartWakeupSources(EcuM_WakeupSourceType)

CanSM_StartWakeupSource(Std_ReturnType,

NetworkHandleType)

Start validation

timeout()

EcuM_CheckValidation(EcuM_WakeupSourceType)

CanIf_CheckValidation(EcuM_WakeupSourceType)

EcuM_ValidateWakeupEvent(EcuM_WakeupSourceType)

Stop validation

timeout()

Detect validation

timeout()

EcuM_StopWakeupSources(EcuM_WakeupSourceType)

CanSM_StopWakeupSource(Std_ReturnType,

NetworkHandleType)

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

152 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Figure 37 – CAN wake up validation

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

153 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

9.2.4 LIN Wake-up Sequences

Figure 38 shows the LIN transceiver wake up via interrupt. The interrupt is usually
handled by the ICU Driver as described in Chapter 9.2.2.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

154 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

«Peripheral»

Lin Transceiver

Hardware

«module»

LinIf

«module»

Lin

«module»

Icu

«module»

Mcu

Integration Code«module»

EcuM

«module»

Os

«module»

LinTrcv

HALT

Execution continues after HALT instruction.

GOSLEEP

LinSM will already have called LinIf_GotoSleep when changing to NO_COM state.

In Sleep state the LIN Controller is wakeable or not by configuration.

SLEEP

If the Scheduler will not be acquired as resource it is not assured that the program flow continues

after HALT instruction because re-scheduling takes place after occurrence of an ISR Cat 2.

Release Scheduler resource to allow other tasks to run.

WAKEUP I

EcuM_EnableWakeupSources(EcuM_WakeupSourceType)

Icu_EnableWakeup(Icu_ChannelType)

GetResource(uint8)

DisableAllInterrupts()

Mcu_SetMode(Mcu_ModeType)

Wakeup

interrupt()

EcuM_CheckWakeup(EcuM_WakeupSourceType)

Activate

PLL()

LinIf_CheckWakeup(EcuM_WakeupSourceType)

LinTrcv_CheckWakeup(uint8)

EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

Return from

interrupt()

Mcu_SetMode()

EnableAllInterrupts()

DisableAllInterrupts()

Mcu_SetMode(Mcu_ModeType)

EnableAllInterrupts()

EcuM_DisableWakeupSources(EcuM_WakeupSourceType)

Icu_DisableWakeup(Icu_ChannelType)

ReleaseResource(uint8)

Figure 38 – LIN transceiver wake up by interrupt

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

155 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

As shown in Figure 39, the LIN controller wake up by interrupt works similar to the
CAN controller wake up by interrupt. In both cases the Driver module encapsulates
the interrupt handler.

«module»

LinIf

«module»

Lin

«module»

Icu

«module»

Mcu

Integration Code«module»

EcuM

«module»

Os

«module»

LinTrcv

«Peripheral»

LinController/UART

Release Scheduler resource to allow other tasks to run.

HALT

LinSM will already have called LinIf_GotoSleep when changing to NO_COM state.

In Sleep state the LIN Controller is wakeable or not by configuration.

Nothing to be done in this callout.

EcuM will later inform ComM about the wakeup which in turn will

inform LinSM, which will then call LinIf_Wakeup.

GOSLEEP

If the Scheduler will not be acquired as resource it is not assured that the program flow continues

after HALT instruction because re-scheduling takes place after occurrence of an ISR Cat 2.

SLEEP

Execution continues after HALT instruction.

WAKEUP I

EcuM_EnableWakeupSources(EcuM_WakeupSourceType)

GetResource(RES_AUTOSAR_ECUM_<core#>)

DisableAllInterrupts()

Mcu_SetMode(Mcu_ModeType)

Wakeup

interrupt()

EcuM_CheckWakeup(EcuM_WakeupSourceType)

Activate

PLL()

LinIf_CheckWakeup(EcuM_WakeupSourceType)

Lin_CheckWakeup(uint8)

EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

Return from

interrupt()

Mcu_SetMode()

EnableAllInterrupts()

DisableAllInterrupts()

Mcu_SetMode(Mcu_ModeType)

EnableAllInterrupts()

EcuM_DisableWakeupSources(EcuM_WakeupSourceType)

ReleaseResource(RES_AUTOSAR_ECUM_<core#>)

Figure 39 – LIN Controller wake up by Interrupt

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

156 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Wake up by polling is possible for LIN transceiver and LIN controller. The ECU State
Manager Fixed module will regularly check the LIN Interface module, which in turn
asks either the LIN Driver module or the LIN Transceiver Driver module, as shown in
Figure 40.

«Peripheral»

Lin Transceiver

Hardware

«module»

LinIf

«module»

Lin

«module»

Icu

«module»

Mcu

Integration Code«module»

EcuM

«module»

Os

«module»

LinTrcv

loop WHILE no pendings wakeup events

alt WakeupSource parameter of LinIf_CheckWakeup()

LinSM will already have called LinIf_GotoSleep when changing to NO_COM state.

In Sleep state the LIN Controller is wakeable or not by configuration.

Nothing to be done in this callout.

Acquire the Scheduler to prevent other tasks from running.

GOSLEEP

SLEEP

Mcu_SetMode() puts the microcontroller

in some power saving mode. In this

mode software execution continues, but

with reduced clock speed.

WAKEUP I

Release Scheduler resource to allow other tasks to run.

EcuM_EnableWakeupSources(EcuM_WakeupSourceType)

GetResource(uint8)

Mcu_SetMode(Mcu_ModeType)

EcuM_CheckWakeup(EcuM_WakeupSourceType)

LinIf_CheckWakeup(EcuM_WakeupSourceType)

Lin_CheckWakeup(uint8)

EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

LinTrcv_CheckWakeup(uint8)

EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

*

Mcu_SetMode(Mcu_ModeType)

EcuM_DisableWakeupSources(EcuM_WakeupSourceType)

ReleaseResource(uint8)

Figure 40 – LIN controller or transceiver wake up by polling

Note that LIN does not require wake up validation.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

157 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

9.2.5 FlexRay Wake-up Sequences

For FlexRay a wake up is only possible via the FlexRay transceivers. There are two
transceivers for the two different channels in a FlexRay cluster. They are treated as
belonging to one network and thus, there should be only one wake up source
identifier configured for both channels.

Figure 41 shows the FlexRay transceiver wake up via interrupt. The interrupt is
usually handled by the ICU Driver module as described in Chapter 9.2.2.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

158 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

«Peripheral»

FlexRay

Transceiver

Hardware

«module»

Os

«module»

EcuM

Integration Code «module»

Mcu

«module»

Icu

«module»

FrIf

«module»

Fr

«module»

FrTrcv

«Peripheral»

FlexRay Controller

HALT

GOSLEEP

SLEEP

If the Scheduler will not be acquired as resource it is not assured that the program flow continues

after HALT instruction because re-scheduling takes place after occurrence of an ISR Cat 2.

Execution continues after HALT instruction.

WAKEUP I

Release Scheduler resource to allow other tasks to run.

This call has to be repeated for both FlexRay channels

on the same network (i.e. FlexRay cluster)!

opt Wakeup detected

EcuM_EnableWakeupSources(EcuM_WakeupSourceType)

Icu_EnableWakeup(Icu_ChannelType)

Icu_EnableWakeup()

EcuM_EnableWakeupSources()

GetResource(RES_AUTOSAR_ECUM_<core#>)

GetResource()

DisableAllInterrupts()

Mcu_SetMode(Mcu_ModeType)

Wakeup

interrupt()
EcuM_CheckWakeup(EcuM_WakeupSourceType)

activate

PLL()

FrIf_CheckWakeupByTransceiver(uint8,

Fr_ChannelType)

FrTrcv_CheckWakeupByTransceiver(uint8)

EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

EcuM_SetWakeupEvent()

FrTrcv_CheckWakeupByTransceiver()

FrIf_CheckWakeupByTransceiver()

EcuM_CheckWakeup()

Return from

interrupt()

Mcu_SetMode()

EnableAllInterrupts()

DisableAllInterrupts()

Mcu_SetMode(Mcu_ModeType)

Mcu_SetMode()

EnableAllInterrupts()

EcuM_DisableWakeupSources(EcuM_WakeupSourceType)

Icu_DisableWakeup(Icu_ChannelType)

Icu_DisableWakeup()

EcuM_DisableWakeupSources()

ReleaseResource(RES_AUTOSAR_ECUM_<core#>)

ReleaseResource()

Figure 41 – FlexRay transceiver wake up by interrupt

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

159 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Note that in EcuM_CheckWakeup there need to be two separate calls to

FrIf_CheckWakeupByTransceiver, one for each FlexRay channel.

«Peripheral»

FlexRay

Transceiver

Hardware

«Peripheral»

FlexRay Controller

«module»

FrTrcv

«module»

Fr

«module»

FrIf

«module»

Icu

«module»

Mcu

Integration Code«module»

EcuM

«module»

Os

loop WHILE no pending wakeup events

GOSLEEP

Acquire the Scheduler to prevent other tasks from running.

Mcu_SetMode() puts the microcontroller

in some power saving mode. In this

mode software execution continues, but

with reduced clock speed.

SLEEP

opt Wakeup detected

WAKEUP I

Release Scheduler resource to allow other tasks to run.

This call has to be repeated for both FlexRay channels on

the same network (i.e. FlexRay cluster)!

EcuM_EnableWakeupSources(EcuM_WakeupSourceType)

GetResource(RES_AUTOSAR_ECUM_<core#>)

GetResource()

DisableAllInterrupts()

Mcu_SetMode(Mcu_ModeType)

Mcu_SetMode()

EnableAllInterrupts()

EcuM_SleepActivity()

EcuM_CheckWakeup(EcuM_WakeupSourceType)

FrIf_CheckWakeupByTransceiver(uint8,

Fr_ChannelType)

FrTrcv_CheckWakeupByTransceiver(uint8)

EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

EcuM_SetWakeupEvent()

FrTrcv_CheckWakeupByTransceiver()

FrIf_CheckWakeupByTransceiver()

EcuM_CheckWakeupEvent()

DisableAllInterrupts()

Mcu_SetMode(Mcu_ModeType)

Mcu_SetMode()

EnableAllInterrupts()

EcuM_DisableWakeupSources(EcuM_WakeupSourceType)

ReleaseResource(RES_AUTOSAR_ECUM_<core#>)

ReleaseResource()

Figure 42 – FlexRay transceiver wake up by polling

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

160 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

9.2.6 TCP/IP Wake-up Sequences

With TCP/IP there can be no wake up from the bus. There is a wake up line
connected to the ICU. All TCP/IP wake ups are therefore handled as normal ICU
wake ups. Refer to section 9.2.1 GPT Wake-up Sequences for details.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

161 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

10 Configuration specification

10.1 Containers and configuration parameters

For details refer to the chapter 10.1.1 “Configuration and configuration parameters” in
SWS_BSWGeneral.

10.2 Variants.

There following variants are available in AUTOSAR modules:

 VARIANT-PRE-COMPILE: Only parameters with "Pre-compile time"
configuration are allowed in this variant,

 VARIANT-LINK-TIME: Only parameters with "Pre-compile time" and "Link time"
are allowed in this variant, and

 VARIANT-POST-BUILD: Parameters with "Pre-compile time", "Link time" and
"Post-build time" are allowed in this variant.

[SWS_EcuMf_00003] ⌈The ECU State Manager shall have only one configuration

variant.

⌋()

10.3 Published Information

For details refer to the chapter 10.3 “Published Information” in SWS_BSWGeneral.

10.4 Configurable Parameters

[SWS_EcuM_00809] ⌈The following containers contain various references to
initialization structures of BSW modules. NULL shall be a valid reference meaning
‘no configuration data available’ but only if the implementation of the initialized BSW

module supports this. ⌋()

10.4.1 EcuM

Module Name EcuM

Module Description Configuration of the EcuM (ECU State Manager) module.

Included Containers

Container Name Multiplicity Scope / Dependency

EcuMConfiguration 1
This container contains the configuration (parameters) of the
ECU State Manager.

EcuMFixedGeneral 0..1
This container holds the general, pre-compile configuration
parameters for the EcuMFixed.
Only applicable if EcuMFixed is implemented.

EcuMFlexGeneral 0..1
This container holds the general, pre-compile configuration
parameters for the EcuMFlex.
Only applicable if EcuMFlex is implemented.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

162 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

EcuMGeneral 1
This container holds the general, pre-compile configuration
parameters.

EcuM :EcucModuleDef

upperMultiplicity = 1

lowerMultiplicity = 0

EcuMConfiguration :

EcucParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 1

multipleConfigurationContainer = true

EcuMGeneral :

EcucParamConfContainerDef

EcuMCommonConfiguration :

EcucParamConfContainerDef

lowerMultiplicity = 1

upperMultiplicity = 1

EcuMFixedConfiguration :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = 1

EcuMFixedGeneral :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = 1

+container

+container

+container

+subContainer

+subContainer

Figure 43 – EcuM Fixed Containers

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

163 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

EcuMFixedModuleConfigurationRef :

EcucChoiceReferenceDef

upperMultiplicity = 1

lowerMultiplicity = 1

EcuMConfiguration :

EcucParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 1

multipleConfigurationContainer = true

(from EcuM)

McuModuleConfiguration :

EcucParamConfContainerDef

lowerMultiplicity = 1

upperMultiplicity = 1

multipleConfigurationContainer = true

(from MCU)

GptChannelConfigSet :

EcucParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 1

multipleConfigurationContainer = true

(from GPT)

WdgMConfigSet :

EcucParamConfContainerDef

multipleConfigurationContainer = true

(from WdgManager)

AdcConfigSet :EcucParamConfContainerDef

multipleConfigurationContainer = true

(from ADC) CanConfigSet :EcucParamConfContainerDef

multipleConfigurationContainer = true

(from CanDrv)CanIfInitCfg :EcucParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 1

multipleConfigurationContainer = true

(from CanIf)
CanNmGlobalConfig :

EcucParamConfContainerDef

multipleConfigurationContainer = true

(from CanNm)

CanSMConfiguration :

EcucParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 1

multipleConfigurationContainer = true

(from CanSM)

ComConfig :EcucParamConfContainerDef

multipleConfigurationContainer = true

(from Com)

DemConfigSet :

EcucParamConfContainerDef

multipleConfigurationContainer = true

(from Dem)

FlsConfigSet :EcucParamConfContainerDef

multipleConfigurationContainer = true

(from Flash)

FrIfConfig :EcucParamConfContainerDef

multipleConfigurationContainer = true

(from FrIf)

FrMultipleConfiguration :

EcucParamConfContainerDef

multipleConfigurationContainer = true

(from Fr)

FrNmChannelConfig :

EcucParamConfContainerDef

multipleConfigurationContainer = true

(from FrNmChannelConfig)

FrTpMultipleConfig :

EcucParamConfContainerDef

multipleConfigurationContainer = true

lowerMultiplicity = 1

upperMultiplicity = 1

(from FrTp)

IcuConfigSet :EcucParamConfContainerDef

multipleConfigurationContainer = true

(from ICU)

IpduMConfig :EcucParamConfContainerDef

multipleConfigurationContainer = true

(from IpduMplex)

LinGlobalConfig :

EcucParamConfContainerDef

multipleConfigurationContainer = true

(from Lin)

LinIfGlobalConfig :

EcucParamConfContainerDef

multipleConfigurationContainer = true

(from LinIf)

LinTpGlobalConfig :

EcucParamConfContainerDef

multipleConfigurationContainer = true

(from LinTp)

PortConfigSet :EcucParamConfContainerDef

multipleConfigurationContainer = true

(from PORT)

PwmChannelConfigSet :

EcucParamConfContainerDef

multipleConfigurationContainer = true

(from PWM)

SpiDriver :EcucParamConfContainerDef

multipleConfigurationContainer = true

lowerMultiplicity = 1

upperMultiplicity = 1

(from SPI)

WdgSettingsConfig :

EcucParamConfContainerDef

multipleConfigurationContainer = true

(from WdgDriver)

RtePostBuildVariantConfiguration :

EcucParamConfContainerDef

multipleConfigurationContainer = true

(from RtePostBuildConfig)

FrSMConfig :EcucParamConfContainerDef

multipleConfigurationContainer = true

(from FrSM)

PduRRoutingTables :

EcucParamConfContainerDef

multipleConfigurationContainer = true

(from PduR)

EcuMFixedConfiguration :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = 1

CanTpConfig :EcucParamConfContainerDef

multipleConfigurationContainer = true

(from CanTp)

DbgMultipleConfigurationContainer :

EcucParamConfContainerDef

multipleConfigurationContainer = true

(from Dbg)

DcmConfigSet :

EcucParamConfContainerDef

multipleConfigurationContainer = true

(from Dcm)

DioConfig :EcucParamConfContainerDef

multipleConfigurationContainer = true

(from DIO)

DltMultipleConfigurationContainer :

EcucParamConfContainerDef

multipleConfigurationContainer = true

(from Dlt)

EepInitConfiguration :

EcucParamConfContainerDef

multipleConfigurationContainer = true

(from EEPROM)

EthConfigSet :EcucParamConfContainerDef

multipleConfigurationContainer = true

(from Eth)

EthIfConfigSet :

EcucParamConfContainerDef

multipleConfigurationContainer = true

(from EthIf)

EthTrcvConfigSet :

EcucParamConfContainerDef

multipleConfigurationContainer = true

(from EthTrcv)

FiMConfigSet :EcucParamConfContainerDef

multipleConfigurationContainer = true

(from FiM)

J1939TpConfiguration :

EcucParamConfContainerDef

multipleConfigurationContainer = true

(from J1939Tp)

UdpNmGlobalConfig :

EcucParamConfContainerDef

multipleConfigurationContainer = true

(from UdpNm)
XcpConfig :EcucParamConfContainerDef

multipleConfigurationContainer = true

(from Xcp)

LinSMConfigSet :

EcucParamConfContainerDef

multipleConfigurationContainer = true

(from LinSM)

FrArTpMultipleConfig :

EcucParamConfContainerDef

multipleConfigurationContainer = true

(from FrArTp)

CanTrcvConfigSet :

EcucParamConfContainerDef

multipleConfigurationContainer = true

(from CanTrcv)ComMConfigSet :

EcucParamConfContainerDef

multipleConfigurationContainer = true

(from ComM) FlsTstConfigSet :

EcucParamConfContainerDef

multipleConfigurationContainer = true

(from FlsTst)

SoAdConfig :EcucParamConfContainerDef

multipleConfigurationContainer = true

(from SoAd)

OcuConfigSet :EcucParamConfContainerDef

multipleConfigurationContainer = true

(from Ocu)

CddConfigSet :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = 1

multipleConfigurationContainer = true

(from Cdd)

EcuMFixedModuleConfiguration :

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

TcpIpConfig :EcucParamConfContainerDef

multipleConfigurationContainer = true

(from TcpIp)

+subContainer

+destination

+destination

+destination

+destination

+destination

+destination

+destination

+destination

+destination

+destination

+destination

+destination

+destination

+destination

+destination

+destination

+destination

+destination

+destination

+destination

+destination

+destination

+destination

+destination

+destination

+destination

+reference

+destination

+destination

+destination

+destination

+destination

+destination

+destination

+destination

+destination

+destination

+destination

+destination

+destination

+destination

+destination

+destination

+destination

+destination

+destination

+destination

+destination

+subContainer

+destination

+destination

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

164 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Figure 44 – EcuM Fixed Module Configuration

10.4.2 EcuMGeneral
SWS Item ECUC_EcuM_00116 :

Container Name EcuMGeneral

Description This container holds the general, pre-compile configuration parameters.

Configuration Parameters

SWS Item ECUC_EcuM_00108 :

Name

EcuMDevErrorDetect {ECUM_DEV_ERROR_DETECT}

Description If false, no debug artifacts (e.g. calls to DET) shall remain in the
executable object. Initialization of DET, however is controlled by
configuration of optional BSW modules.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

ConfigurationClass Pre-compile time X VARIANT-POST-BUILD

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_EcuM_00117 : (Obsolete)

Name

EcuMIncludeDem {ECUM_INCLUDE_DEM}

Description This parameter is deprecated and will be removed in a future release.
If enabled, the according BSW module will be included to the ECU State
Manager.
Tags:
atp.Status=obsolete
atp.StatusRevisionBegin=4.1.1

Multiplicity 0..1

Type EcucBooleanParamDef

Default value --

ConfigurationClass Pre-compile time X VARIANT-POST-BUILD

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_EcuM_00118 :

Name

EcuMIncludeDet {ECUM_INCLUDE_DET}

Description If defined, the according BSW module will be initialized by the ECU State
Manager

Multiplicity 1

Type EcucBooleanParamDef

Default value --

ConfigurationClass Pre-compile time X VARIANT-POST-BUILD

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_EcuM_00121 :

Name

EcuMMainFunctionPeriod {ECUM_MAIN_FUNCTION_PERIOD}

Description This parameter defines the schedule period of EcuM_MainFunction.
Unit: [s]

Multiplicity 1

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

165 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Type EcucFloatParamDef

Range 0 .. INF

Default value --

ConfigurationClass Pre-compile time X VARIANT-POST-BUILD

Link time --

Post-build time --

Scope / Dependency scope: ECU
dependency: Dependency is applicable for EcuMFixed:
SWS_EcuM_00594.

No Dependency for EcuMFlex.

SWS Item ECUC_EcuM_00149 :

Name

EcuMVersionInfoApi

Description Switches the version info API on or off

Multiplicity 1

Type EcucBooleanParamDef

Default value --

ConfigurationClass Pre-compile time X VARIANT-POST-BUILD

Link time --

Post-build time --

Scope / Dependency scope: local

No Included Containers

EcuMDevErrorDetect :

EcucBooleanParamDef

EcuMIncludeDem :

EcucBooleanParamDef

lowerMultiplicity = 0

upperMultiplicity = 1

EcuMIncludeDet :

EcucBooleanParamDef

EcuMVersionInfoApi :

EcucBooleanParamDef

EcuMGeneral :

EcucParamConfContainerDef
EcuMMainFunctionPeriod :

EcucFloatParamDef

min = 0

max = INF

+parameter

+parameter

+parameter

+parameter

+parameter

Figure 45 – Container EcuMGeneral

10.4.3 EcuMFixedGeneral
SWS Item ECUC_EcuM_00166 :

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

166 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Container Name EcuMFixedGeneral

Description
This container holds the general, pre-compile configuration parameters for
the EcuMFixed.
Only applicable if EcuMFixed is implemented.

Configuration Parameters

SWS Item ECUC_EcuM_00189 :

Name

EcuMIncludeComM {ECUM_INCLUDE_COMM}

Description This configuration parameter defines whether the communication manager
is supported by EcuM. This feature is presented for development purpose
to compile out the communication manager in the early debugging phase.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

ConfigurationClass Pre-compile time X VARIANT-POST-BUILD

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_EcuM_00190 : (Obsolete)

Name

EcuMIncludeNvM {ECUM_INCLUDE_NVM}

Description This configuration parameter defines whether the non volatile memory
manager is supported by EcuM. This feature is presented for development
purpose to compile out the volatile memory manager in the early
debugging phase.
Tags:
atp.Status=obsolete
atp.StatusComment=This element is marked as obsolete and will be
removed in a future revision.
atp.StatusRevisionBegin=4.1.1

Multiplicity 1

Type EcucBooleanParamDef

Default value --

ConfigurationClass Pre-compile time X VARIANT-POST-BUILD

Link time --

Post-build time --

Scope / Dependency scope: local
dependency: If NVRAM manager is enabled but both flash and EEPROM
driver are missing, then an error shall be flagged by the configuration tool.

SWS Item ECUC_EcuM_00119 : (Obsolete)

Name

EcuMIncludeNvramMgr {ECUM_INCLUDE_NVRAM_MGR}

Description This configuration parameter defines whether the non volatile memory
manager is supported by EcuM. This feature is presented for development
purpose to compile out the volatile memory manager in the early
debugging phase.
Tags:
atp.Status=obsolete
atp.StatusComment=This element is marked as obsolete and will be
removed in a future revision.
atp.StatusRevisionBegin=4.1.1

Multiplicity 1

Type EcucBooleanParamDef

Default value --

ConfigurationClass Pre-compile time X VARIANT-POST-BUILD

Link time --

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

167 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Post-build time --

Scope / Dependency scope: local
dependency: If NVRAM manager is enabled but both flash and EEPROM
driver are missing, then an error shall be flagged by the configuration tool.

SWS Item ECUC_EcuM_00144 :

Name

EcuMTTIIEnabled {ECUM_TTII_ENABLED}

Description Boolean switch to enable / disable TTII

Multiplicity 1

Type EcucBooleanParamDef

Default value --

ConfigurationClass Pre-compile time X VARIANT-POST-BUILD

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_EcuM_00145 :

Name

EcuMTTIIWakeupSourceRef {ECUM_TTII_WKSOURCE}

Description This configuration parameter references the initial sleep mode to be used
by TTII when TTII is activated after a RUN mode.

Multiplicity 1

Type Symbolic name reference to [EcuMWakeupSource]

ConfigurationClass Pre-compile time X VARIANT-POST-BUILD

Link time --

Post-build time --

Scope / Dependency scope: local

No Included Containers

EcuMTTIIEnabled :

EcucBooleanParamDef

EcuMFixedGeneral :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = 1

EcuMIncludeNvramMgr :

EcucBooleanParamDef

EcuMIncludeNvM :

EcucBooleanParamDef

EcuMIncludeComM :

EcucBooleanParamDef

EcuMWakeupSource :

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

(from EcuM)

EcuMTTIIWakeupSourceRef :

EcucSymbolicNameReferenceDef

+destination

+parameter

+parameter

+parameter

+parameter

+reference

Figure 46 – Container EcuMFixedGeneral

10.4.4 EcuMFixedConfiguration

SWS Item ECUC_EcuM_00165 :

Container Name EcuMFixedConfiguration

Description This container contains the configuration (parameters) of the EcuMFixed.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

168 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Only applicable if EcuMFixed is implemented.
In order to initialize the PostBuild BSW modules, either the
EcuMFixedModuleConfigurationRef or
EcuMFixedPostBuildVariationCriterion shall be used. Which one of these
two shall be used depends on the chosen PostBuild approach
(MultipleConfigurationContaineror or VariantHandling) as explained in the
TPS_EcuConfiguration document.

Configuration Parameters

SWS Item ECUC_EcuM_00126 :

Name

EcuMNvramReadallTimeout

Description Period given in seconds for which the ECU State Manager will wait until it
considers a ReadAll job of the NVRAM Manager as failed.

Multiplicity 1

Type EcucFloatParamDef

Range 0 .. INF

Default value --

ConfigurationClass Pre-compile time --

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_EcuM_00127 :

Name

EcuMNvramWriteallTimeout {ECUM_NVRAM_WRITEALL_TIMEOUT}

Description Period given in seconds for which the ECU State Manager will wait until it
considers a WriteAll job of the NVRAM Manager as failed.

Multiplicity 1

Type EcucFloatParamDef

Range 0 .. INF

Default value --

ConfigurationClass Pre-compile time --

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_EcuM_00129 :

Name

EcuMRunMinimumDuration {ECUM_RUN_SELF_REQUEST_PERIOD}

Description Duration given in seconds for which the ECU State Manager will
stay in RUN state even when no one requests RUN. This duration should
be long at least as long as a SW-Cs needs to request RUN.

Multiplicity 1

Type EcucFloatParamDef

Range 0 .. INF

Default value --

ConfigurationClass Pre-compile time --

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_EcuM_00191 :

Name

EcuMComMCommunicationAllowedList

Description These parameters contain references to the ComMChannels for which
EcuM has to call ComM_CommunicationAllowed.

Multiplicity 0..*

Type Symbolic name reference to [ComMChannel]

ConfigurationClass Pre-compile time X VARIANT-POST-BUILD

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

169 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_EcuM_00125 :

Name

EcuMNormalMcuModeRef

Description This parameter is a reference to the normal MCU mode to be restored
after a sleep.

Multiplicity 1

Type Symbolic name reference to [McuModeSettingConf]

ConfigurationClass Pre-compile time X VARIANT-POST-BUILD

Link time --

Post-build time --

Scope / Dependency scope: local

Included Containers

Container Name Multiplicity Scope / Dependency

EcuMDriverInitListThree 0..1

Container for Init Block III.
This container holds a list of module IDs that will be
initialized. Each module in the list will be called for
initialization in the list order.
All modules in this list are initialized after the OS is
started and so these modules may use OS support.
These modules may also rely on the Nvram ReadAll
job to have provided all data.

EcuMDriverInitListTwo 0..1

Container for Init Block II.
This container holds a list of module IDs that will be
initialized. Each module in the list will be called for
initialization in the list order.
All modules in this list are initialized after the OS is
started and so these modules may use OS support.
These modules may not rely on the Nvram ReadAll
job to have provided all data.

EcuMFixedModuleConfiguration 0..*
Collection of references to multiple configuration
containers of BSW Modules.

EcuMFixedPostBuildVariationCriterio
n

0..*

The container contains the necessary information to
initialize the BSW module using VariantHandling
approach explained in the TPS_EcuConfiguration
document.

EcuMFixedUserConfig 1..*

These containers describe the identifiers that are
needed to refer to a software component or another
appropriate entity in the system which is designated to
request the RUN state. Application requestors refer to
entities above RTE, system requestors to entities
below RTE (e.g. Communication Manager).

EcuMTTII 0..*

These containers describe the structures and the
following configuration items describe its elements.
These structures are concatenated to build a list as
indicated by Figure 27 - Configuration Container
Diagram.
The list must contain at least one element when
ECUM_TTII_ENABLED is set to true.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

170 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

EcuMFixedConfiguration :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = 1

EcuMRunMinimumDuration :

EcucFloatParamDef

min = 0

max = INF

EcuMConfiguration :

EcucParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 1

multipleConfigurationContainer = true

(from EcuM)

EcuMDriverInitListTwo :

EcucParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 0

EcuMDriverInitListThree :

EcucParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 0

EcuMTTII :EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

EcuMDriverInitItem :

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

(from EcuM)

EcuMNvramWriteallTimeout :

EcucFloatParamDef

min = 0

max = INF

EcuMNvramReadallTimeout :

EcucFloatParamDef

min = 0

max = INF

EcuMFixedModuleConfigurationRef :

EcucChoiceReferenceDef

upperMultiplicity = 1

lowerMultiplicity = 1

EcuMNormalMcuModeRef :

EcucSymbolicNameReferenceDef

McuModeSettingConf :

EcucParamConfContainerDef

lowerMultiplicity = 1

upperMultiplicity = *

(from MCU)

ComMChannel :

EcucParamConfContainerDef

lowerMultiplicity = 1

upperMultiplicity = *

(from ComM)

EcuMComMCommunicationAllowedList :

EcucSymbolicNameReferenceDef

lowerMultiplicity = 0

upperMultiplicity = *

EcuMFixedUserConfig :

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

EcuMFixedUser :

EcucIntegerParamDef

min = 0

max = 255

symbolicNameValue = true

EcuMFixedPostBuildVariationCriterion :

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0
EcuMFixedPostBuildVariantValue :

EcucIntegerParamDef

EcuMFixedPostBuildVariationCriterionRef :

EcucForeignReferenceDef

destinationType = POST-BUILD-VARIANT-CRITERION

ARElement

AtpDefinition

VariantHandling::

PostBuildVariantCriterion

EcuMFixedModuleConfiguration :

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

+subContainer

+parameter

+subContainer

+reference

+subContainer

+parameter

+subContainer

+parameter

+subContainer

+subContainer

+parameter

+reference

+reference

+subContainer

+destination

+subContainer

+destination

+parameter

+reference

+subContainer

Figure 47 – Container EcuMFixedConfiguration

10.4.5 EcuMFixedModuleConfiguration

SWS Item ECUC_EcuM_00219 :

Container Name EcuMFixedModuleConfiguration

Description Collection of references to multiple configuration containers of BSW

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

171 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Modules.

Configuration Parameters

SWS Item ECUC_EcuM_00122 :

Name

EcuMFixedModuleConfigurationRef {InitConfiguration}

Description This parameter contains one reference to the init structure of the
corresponding BSW module.

Multiplicity 1

Type Choice reference to [AdcConfigSet , CanConfigSet , CanIfInitCfg ,
CanNmGlobalConfig , CanSMConfiguration , CanTpConfig ,
CanTrcvConfigSet , CddConfigSet , ComConfig , ComMConfigSet ,
DbgMultipleConfigurationContainer , DcmConfigSet , DemConfigSet ,
DioConfig , DltMultipleConfigurationContainer , EepInitConfiguration ,
EthConfigSet , EthIfConfigSet , EthTrcvConfigSet , FiMConfigSet ,
FlsConfigSet , FlsTstConfigSet , FrArTpMultipleConfig , FrIfConfig ,
FrMultipleConfiguration , FrNmChannelConfig , FrSMConfig ,
FrTpMultipleConfig , GptChannelConfigSet , IcuConfigSet , IpduMConfig ,
J1939TpConfiguration , LinGlobalConfig , LinIfGlobalConfig ,
LinSMConfigSet , LinTpGlobalConfig , McuModuleConfiguration ,
OcuConfigSet , PduRRoutingTables , PortConfigSet ,
PwmChannelConfigSet , RtePostBuildVariantConfiguration , SoAdConfig ,
SpiDriver , TcpIpConfig , UdpNmGlobalConfig , WdgMConfigSet ,
WdgSettingsConfig , XcpConfig]

ConfigurationClass Pre-compile time --

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

No Included Containers

10.4.6 EcuMFixedPostBuildVariationCriterion
SWS Item ECUC_EcuM_00214 :

Container Name EcuMFixedPostBuildVariationCriterion

Description
The container contains the necessary information to initialize the BSW
module using VariantHandling approach explained in the
TPS_EcuConfiguration document.

Configuration Parameters

SWS Item ECUC_EcuM_00215 :

Name

EcuMFixedPostBuildVariantValue

Description The value identifying the post-build variant.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 ..
18446744073709551615

Default value --

ConfigurationClass Pre-compile time --

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_EcuM_00216 :

Name

EcuMFixedPostBuildVariationCriterionRef

Description Reference to the PostBuildVariantCriterion which is used to have a

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

172 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

common selecting element for the PostBuild variants.

Multiplicity 1

Type Foreign reference to [POST-BUILD-VARIANT-CRITERION]

ConfigurationClass Pre-compile time --

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

No Included Containers

10.4.7 EcuMCommonConfiguration
SWS Item ECUC_EcuM_00181 :

Container Name EcuMCommonConfiguration

Description
This container contains the common configuration (parameters) of the
ECU State Manager.

Configuration Parameters

SWS Item ECUC_EcuM_00102 :

Name

EcuMConfigConsistencyHash {ECUM_CONFIGCONSISTENCY_HASH}

Description A hash value generated across all pre-compile and link-time parameters of
all BSW modules. This hash value is compared against a field in the
EcuM_ConfigType and hence allows checking the consistency of the entire
configuration.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 ..
18446744073709551615

Default value --

ConfigurationClass Pre-compile time --

Link time X VARIANT-POST-BUILD

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_EcuM_00104 :

Name

EcuMDefaultAppMode {ECUM_DEFAULT_APP_MODE}

Description The default application mode loaded when the ECU comes out of reset.

Multiplicity 1

Type Reference to [OsAppMode]

ConfigurationClass Pre-compile time --

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_EcuM_00183 :

Name

EcuMOSResource

Description This parameter is a reference to a OS resource which is used to bring the
ECU into sleep mode.
In case of multi core each core shall have an own OsResource.

Multiplicity 1..*

Type Reference to [OsResource]

ConfigurationClass Pre-compile time X VARIANT-POST-BUILD

Link time --

Post-build time --

Scope / Dependency scope: local

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

173 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Included Containers

Container Name Multiplicity Scope / Dependency

EcuMDefaultShutdownTarget 1
This container describes the default shutdown target to be
selected by EcuM. The actual shutdown target may be
overridden by the EcuM_SelectShutdownTarget service.

EcuMDemEventParameterRef
s

0..1

This container is deprecated and will be removed in a future
release.
Container for the references to DemEventParameter
elements which shall be invoked using the API
Dem_ReportErrorStatus in case the corresponding error
occurs. The EventId is taken from the referenced
DemEventParameter's DemEventId value.
The standardized errors are provided in this container and
can be extended by vendor specific error references.

EcuMDriverInitListOne 0..1

Container for Init Block I.
This container holds a list of module IDs that will be
initialized. Each module in the list will be called for
initialization in the list order.
All modules in this list are initialized before the OS is started
and so these modules require no OS support.

EcuMDriverInitListZero 0..1

Container for Init Block 0.
This container holds a list of module IDs that will be
initialized. Each module in the list will be called for
initialization in the list order.
All modules in this list are initialized before the post-build
configuration has been loaded and the OS is initialized.
Therefore, these modules may not use post-build
configuration.

EcuMDriverRestartList 0..1 List of module IDs.

EcuMSleepMode 1..*
These containers describe the configured sleep modes.
The names of these containers specify the symbolic names
of the different sleep modes.

EcuMWakeupSource 1..* These containers describe the configured wakeup sources.

10.4.8 EcuMDefaultShutdownTarget
SWS Item ECUC_EcuM_00105 :

Container Name EcuMDefaultShutdownTarget{ECUM_DEFAULT_SHUTDOWN_TARGET}

Description
This container describes the default shutdown target to be selected by
EcuM. The actual shutdown target may be overridden by the
EcuM_SelectShutdownTarget service.

Configuration Parameters

SWS Item ECUC_EcuM_00107 :

Name

EcuMDefaultState {ECUM_DEFAULT_SHUTDOWN_TARGET}

Description This parameter describes the state part of the default shutdown target selected
when the ECU comes out of reset. If EcuMStateSleep is selected, the parameter
EcuMDefaultSleepModeRef selects the specific sleep mode.

Multiplicity 1

Type EcucEnumerationParamDef

Range EcuMStateOff Corresponds to ECUM_STATE_OFF in
EcuM_StateType.

EcuMStateReset Corresponds to ECUM_STATE_RESET
in EcuM_StateType. This literal is only
be applicable for EcuMFlex.

EcuMStateSleep Corresponds to ECUM_STATE_SLEEP

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

174 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

in EcuM_StateType.

ConfigurationClass Pre-compile time --

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_EcuM_00205 :

Name

EcuMDefaultResetModeRef

Description If EcuMDefaultShutdownTarget is EcuMStateReset, this parameter selects
the default reset mode. Otherwise this parameter may be ignored.

Multiplicity 0..1

Type Symbolic name reference to [EcuMResetMode]

ConfigurationClass Pre-compile time --

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_EcuM_00106 :

Name

EcuMDefaultSleepModeRef

Description If EcuMDefaultShutdownTarget is EcuMStateSleep, this parameter selects
the default sleep mode. Otherwise this parameter may be ignored.

Multiplicity 0..1

Type Symbolic name reference to [EcuMSleepMode]

ConfigurationClass Pre-compile time --

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

No Included Containers

EcuMDefaultState :

EcucEnumerationParamDef

EcuMDefaultSleepModeRef :

EcucSymbolicNameReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

EcuMSleepMode :

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

EcuMDefaultShutdownTarget :

EcucParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 1

EcuMStateSleep :

EcucEnumerationLiteralDef

EcuMStateOff :

EcucEnumerationLiteralDef

EcuMStateReset :

EcucEnumerationLiteralDef

EcuMDefaultResetModeRef :

EcucSymbolicNameReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

EcuMResetMode :

EcucParamConfContainerDef

lowerMultiplicity = 1

upperMultiplicity = *

(from EcuMFlex)

+reference

+parameter

+reference

+literal

+literal

+literal

+destination

+destination

Figure 48 – EcuM Default Shutdown Target

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

175 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

10.4.9 EcuMDemEventParameterRefs
SWS Item ECUC_EcuM_00160 :

Container Name EcuMDemEventParameterRefs

Description

This container is deprecated and will be removed in a future release.
Container for the references to DemEventParameter elements which shall
be invoked using the API Dem_ReportErrorStatus in case the
corresponding error occurs. The EventId is taken from the referenced
DemEventParameter's DemEventId value.
The standardized errors are provided in this container and can be
extended by vendor specific error references.

Configuration Parameters

SWS Item ECUC_EcuM_00162 : (Obsolete)

Name

ECUM_E_ALL_RUN_REQUESTS_KILLED

Description This reference is deprecated and will be removed in a future release.
Reference to the DemEventParameter which shall be issued when the
error "ECUM_E_ALL_RUN_REQUESTS_KILLED" has occurred.
Only applicable if EcuMFixed is implemented.
Tags:
atp.Status=obsolete
atp.StatusComment=This reference is deprecated and will be removed in a
future release.
atp.StatusRevisionBegin=4.1.3

Multiplicity 0..1

Type Symbolic name reference to [DemEventParameter]

ConfigurationClass Pre-compile time X VARIANT-POST-BUILD

Link time --

Post-build time --

Scope / Dependency scope: local
dependency: Only applicable if EcuMFixed is implemented.

SWS Item ECUC_EcuM_00163 : (Obsolete)

Name

ECUM_E_CONFIGURATION_DATA_INCONSISTENT

Description This reference is deprecated and will be removed in a future release.
Reference to the DemEventParameter which shall be issued when the
error "ECUM_E_CONFIGURATION_DATA_INCONSISTENT" has
occurred.
Tags:
atp.Status=obsolete
atp.StatusComment=This reference is deprecated and will be removed in a
future release.
atp.StatusRevisionBegin=4.1.3

Multiplicity 0..1

Type Symbolic name reference to [DemEventParameter]

ConfigurationClass Pre-compile time X VARIANT-POST-BUILD

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_EcuM_00209 : (Obsolete)

Name

ECUM_E_IMPROPER_CALLER

Description This reference is deprecated and will be removed in a future release.
Reference to the DemEventParameter which shall be issued when the
error "ECUM_E_IMPROPER_CALLER" has occurred.
Only applicable if EcuMFlex is implemented.
Tags:
atp.Status=obsolete

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

176 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

atp.StatusComment=This reference is deprecated and will be removed in a
future release.
atp.StatusRevisionBegin=4.1.3

Multiplicity 0..1

Type Symbolic name reference to [DemEventParameter]

ConfigurationClass Pre-compile time X VARIANT-POST-BUILD

Link time --

Post-build time --

Scope / Dependency scope: local
dependency: Only applicable if EcuMFlex is implemented.

SWS Item ECUC_EcuM_00161 : (Obsolete)

Name

ECUM_E_RAM_CHECK_FAILED

Description This reference is deprecated and will be removed in a future release.
Reference to the DemEventParameter which shall be issued when the
error "ECUM_E_RAM_CHECK_FAILED" has occurred.
Tags:
atp.Status=obsolete
atp.StatusComment=This reference is deprecated and will be removed in a
future release.
atp.StatusRevisionBegin=4.1.3

Multiplicity 0..1

Type Symbolic name reference to [DemEventParameter]

ConfigurationClass Pre-compile time X VARIANT-POST-BUILD

Link time --

Post-build time --

Scope / Dependency scope: local

No Included Containers

10.4.10 EcuMDriverInitItem
SWS Item ECUC_EcuM_00110 :

Container Name EcuMDriverInitItem

Description These containers describe the entries in a driver init list.

Configuration Parameters

SWS Item ECUC_EcuM_00123 :

Name

EcuMModuleID {ModuleID}

Description Short name of the module to be initialized, e.g. Mcu, Gpt etc.
In case EcuMModuleConfigRef is used the EcuMModuleID is optional (in
case it is given it shall have the same value as the referenced
EcuMModuleConfiguration).

Multiplicity 0..1

Type EcucStringParamDef

Default value --

maxLength --

minLength --

regularExpression --

ConfigurationClass Pre-compile time X VARIANT-POST-BUILD

Link time --

Post-build time --

Scope / Dependency scope: local

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

177 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

SWS Item ECUC_EcuM_00124 :

Name

EcuMModuleService

Description The service to be called to initialize that module, e.g. Init, PreInit, Start etc.
If the service is Init and the parameter EcuMFlexModuleConfigurationRef /
EcuMFixedModuleConfigurationRef has been set for that module, the
corresponding pointer to the init structure (<Module>_ConfigType).

Multiplicity 1

Type EcucStringParamDef

Default value --

maxLength --

minLength --

regularExpression --

ConfigurationClass Pre-compile time X VARIANT-POST-BUILD

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_EcuM_00220 :

Name

EcuMModuleConfigRef

Description In case a BSWM Module is configured with several instances in this ECU
Configuration there shall be a reference which determines the to be used
multipleConfigurationContainer for this BSW Module instance.

Multiplicity 0..1

Type Choice reference to [EcuMFixedModuleConfiguration ,
EcuMFlexModuleConfiguration]

ConfigurationClass Pre-compile time --

Link time --

Post-build time --

Scope / Dependency

No Included Containers

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

178 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

EcuMDriverInitItem :

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

EcuMModuleID :

EcucStringParamDef

lowerMultiplicity = 0

upperMultiplicity = 1

EcuMModuleService :

EcucStringParamDef

EcuMModuleConfigRef :

EcucChoiceReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

EcuMFlexModuleConfigurationRef :

EcucChoiceReferenceDef

upperMultiplicity = 1

lowerMultiplicity = 1

(from EcuMFlex)

EcuMFlexModuleConfiguration :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

(from EcuMFlex)

EcuMFixedModuleConfigurationRef :

EcucChoiceReferenceDef

upperMultiplicity = 1

lowerMultiplicity = 1

(from EcuMFixed)

EcuMFixedModuleConfiguration :

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

(from EcuMFixed)

+reference+destination

+reference+destination

+reference

+parameter

+parameter

Figure 49 – EcuM Driver Init Item

10.4.11 EcuMDriverInitListZero

SWS Item ECUC_EcuM_00114 :

Container Name EcuMDriverInitListZero

Description

Container for Init Block 0.
This container holds a list of module IDs that will be initialized. Each
module in the list will be called for initialization in the list order.
All modules in this list are initialized before the post-build configuration has
been loaded and the OS is initialized. Therefore, these modules may not
use post-build configuration.

Configuration Parameters

Included Containers

Container Name Multiplicity Scope / Dependency

EcuMDriverInitItem 1..* These containers describe the entries in a driver init list.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

179 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

EcuMDriverInitListOne :

EcucParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 0

(from EcuM)

EcuMDriverInitListTwo :

EcucParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 0

EcuMDriverRestartList :

EcucParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 0

(from EcuM)

EcuMDriverInitItem :

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

(from EcuM)

EcuMDriverInitListZero :

EcucParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 0

(from EcuM)

EcuMDriverInitListThree :

EcucParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 0

EcuMCommonConfiguration :

EcucParamConfContainerDef

lowerMultiplicity = 1

upperMultiplicity = 1

(from EcuM)

EcuMFixedConfiguration :

EcucParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = 1

+subContainer

+subContainer

+subContainer

+subContainer

+subContainer

+subContainer

+subContainer

+subContainer

+subContainer

+subContainer

Figure 50 – EcuM Fixed Init Lists

10.4.12 EcuMDriverInitListOne

SWS Item ECUC_EcuM_00111 :

Container Name EcuMDriverInitListOne

Description

Container for Init Block I.
This container holds a list of module IDs that will be initialized. Each
module in the list will be called for initialization in the list order.
All modules in this list are initialized before the OS is started and so these
modules require no OS support.

Configuration Parameters

Included Containers

Container Name Multiplicity Scope / Dependency

EcuMDriverInitItem 1..* These containers describe the entries in a driver init list.

10.4.13 EcuMDriverInitListTwo
SWS Item ECUC_EcuM_00113 :

Container Name EcuMDriverInitListTwo

Description

Container for Init Block II.
This container holds a list of module IDs that will be initialized. Each
module in the list will be called for initialization in the list order.
All modules in this list are initialized after the OS is started and so these
modules may use OS support. These modules may not rely on the Nvram
ReadAll job to have provided all data.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

180 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Configuration Parameters

Included Containers

Container Name Multiplicity Scope / Dependency

EcuMDriverInitItem 1..* These containers describe the entries in a driver init list.

10.4.14 EcuMDriverInitListThree
SWS Item ECUC_EcuM_00112 :

Container Name EcuMDriverInitListThree

Description

Container for Init Block III.
This container holds a list of module IDs that will be initialized. Each
module in the list will be called for initialization in the list order.
All modules in this list are initialized after the OS is started and so these
modules may use OS support. These modules may also rely on the Nvram
ReadAll job to have provided all data.

Configuration Parameters

Included Containers

Container Name Multiplicity Scope / Dependency

EcuMDriverInitItem 1..* These containers describe the entries in a driver init list.

10.4.15 EcuMSleepMode
SWS Item ECUC_EcuM_00131 :

Container Name EcuMSleepMode

Description
These containers describe the configured sleep modes.
The names of these containers specify the symbolic names of the different
sleep modes.

Configuration Parameters

SWS Item ECUC_EcuM_00132 :

Name

EcuMSleepModeId

Description This ID identifies this sleep mode in services like
EcuM_SelectShutdownTarget.

Multiplicity 1

Type EcucIntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 255

Default value --

ConfigurationClass Pre-compile time X VARIANT-POST-BUILD

Link time --

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_EcuM_00136 :

Name

EcuMSleepModeSuspend

Description Flag, which is set true, if the CPU is suspended, halted, or powered off in
the sleep mode. If the CPU keeps running in this sleep mode, then this flag
must be set to false.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

ConfigurationClass Pre-compile time X VARIANT-POST-BUILD

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

181 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_EcuM_00133 :

Name

EcuMSleepModeMcuModeRef {SleepModeConfiguration}

Description This parameter is a reference to the corresponding MCU mode for this
sleep mode.

Multiplicity 1

Type Symbolic name reference to [McuModeSettingConf]

ConfigurationClass Pre-compile time X VARIANT-POST-BUILD

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_EcuM_00152 :

Name

EcuMWakeupSourceMask

Description These parameters are references to the wakeup sources that shall be
enabled for this sleep mode.

Multiplicity 1..*

Type Symbolic name reference to [EcuMWakeupSource]

ConfigurationClass Pre-compile time X VARIANT-POST-BUILD

Link time --

Post-build time --

Scope / Dependency scope: local

No Included Containers

EcuMSleepMode :

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

EcuMSleepModeMcuModeRef :

EcucSymbolicNameReferenceDef

EcuMWakeupSourceMask :

EcucSymbolicNameReferenceDef

upperMultiplicity = *

lowerMultiplicity = 1

McuModeSettingConf :

EcucParamConfContainerDef

lowerMultiplicity = 1

upperMultiplicity = *

(from MCU)

EcuMWakeupSource :

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

EcuMSleepModeSuspend :

EcucBooleanParamDef

EcuMSleepModeId :

EcucIntegerParamDef

max = 255

min = 0

symbolicNameValue = true

+destination

+destination

+parameter

+parameter

+reference

+reference

Figure 51 – EcuM Sleep Mode

10.4.16 EcuMWakeupSource

SWS Item ECUC_EcuM_00150 :

Container Name EcuMWakeupSource{EcuM_WakupSource}

Description These containers describe the configured wakeup sources.

Configuration Parameters

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

182 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

SWS Item ECUC_EcuM_00208 :

Name

EcuMCheckWakeupTimeout

Description This Parameter is the initial Value for the Time of the EcuM to delay shut
down of the ECU if the check of the Wakeup Source is done
asynchronously (CheckWakeupTimer).
The unit is in seconds.

Multiplicity 0..1

Type EcucFloatParamDef

Range 0 .. 10

Default value 0

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_EcuM_00148 :

Name

EcuMValidationTimeout {ValidationTimeout}

Description The validation timeout (period for which the ECU State Manager will wait
for the validation of a wakeup event) can be defined for each wakeup
source independently. The timeout is specified in seconds.
When the timeout is not instantiated, there is no validation routine and the
ECU Manager shall not validate the wakeup source.

Multiplicity 0..1

Type EcucFloatParamDef

Range 0 .. INF

Default value --

ConfigurationClass Pre-compile time X VARIANT-POST-BUILD

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_EcuM_00151 :

Name

EcuMWakeupSourceId {WakeupSourceName}

Description This parameter defines the identifier of this wakeup source.

Multiplicity 1

Type EcucIntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 31

Default value --

ConfigurationClass Pre-compile time X VARIANT-POST-BUILD

Link time --

Post-build time --

Scope / Dependency scope: ECU

SWS Item ECUC_EcuM_00153 :

Name

EcuMWakeupSourcePolling

Description This parameter describes if the wakeup source needs polling.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

ConfigurationClass Pre-compile time X VARIANT-POST-BUILD

Link time --

Post-build time --

Scope / Dependency scope: local

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

183 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

SWS Item ECUC_EcuM_00101 :

Name

EcuMComMChannelRef {ComChannel}

Description This parameter is a reference to a Network (channel) defined in the
Communication Manager. No reference indicates that the wakeup source
is not a communication channel.

Multiplicity 0..1

Type Symbolic name reference to [ComMChannel]

ConfigurationClass Pre-compile time X VARIANT-POST-BUILD

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_EcuM_00128 :

Name

EcuMResetReasonRef {ResetReason}

Description This parameter describes the mapping of reset reasons detected by the
MCU driver into wakeup sources.

Multiplicity 0..*

Type Symbolic name reference to [McuResetReasonConf]

ConfigurationClass Pre-compile time X VARIANT-POST-BUILD

Link time --

Post-build time --

Scope / Dependency scope: local

No Included Containers

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

184 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

EcuMWakeupSource :

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

EcuMValidationTimeout :

EcucFloatParamDef

min = 0

max = INF

lowerMultiplicity = 0

upperMultiplicity = 1

EcuMResetReasonRef :

EcucSymbolicNameReferenceDef

lowerMultiplicity = 0

upperMultiplicity = *

EcuMWakeupSourceId :

EcucIntegerParamDef

symbolicNameValue = true

min = 0

max = 31

ComMChannel :

EcucParamConfContainerDef

lowerMultiplicity = 1

upperMultiplicity = *

(from ComM)

EcuMComMChannelRef :

EcucSymbolicNameReferenceDef

upperMultiplicity = 1

lowerMultiplicity = 0

EcuMWakeupSourcePolling :

EcucBooleanParamDef

McuResetReasonConf :

EcucParamConfContainerDef

lowerMultiplicity = 1

upperMultiplicity = *

(from MCU)

EcuMCheckWakeupTimeout :

EcucFloatParamDef

min = 0.0

max = 10.0

lowerMultiplicity = 0

upperMultiplicity = 1

defaultValue = 0.0

+destination

+destination

+parameter

+reference

+parameter

+reference

+parameter

+parameter

Figure 52 – EcuM Wakeup Source

10.4.17 EcuMFixedUserConfig

SWS Item ECUC_EcuM_00147 :

Container Name EcuMFixedUserConfig{EcuM_Fixed_User}

Description

These containers describe the identifiers that are needed to refer to a
software component or another appropriate entity in the system which is
designated to request the RUN state. Application requestors refer to
entities above RTE, system requestors to entities below RTE (e.g.
Communication Manager).

Configuration Parameters

SWS Item ECUC_EcuM_00202 :

Name

EcuMFixedUser {User}

Description Parameter used to identify one user.

Multiplicity 1

Type EcucIntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 255

Default value --

ConfigurationClass Pre-compile time X VARIANT-POST-BUILD

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

185 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Link time --

Post-build time --

Scope / Dependency scope: local

No Included Containers

EcuMFixedUserConfig :

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

EcuMFixedUser :

EcucIntegerParamDef

min = 0

max = 255

symbolicNameValue = true

+parameter

Figure 53 – EcuM Fixed User Config

10.4.18 EcuMDriverRestartList
SWS Item ECUC_EcuM_00115 :

Container Name EcuMDriverRestartList

Description List of module IDs.

Configuration Parameters

Included Containers

Container Name Multiplicity Scope / Dependency

EcuMDriverInitItem 1..* These containers describe the entries in a driver init list.

10.4.19 EcuMTTII
SWS Item ECUC_EcuM_00143 :

Container Name EcuMTTII

Description

These containers describe the structures and the following configuration
items describe its elements. These structures are concatenated to build a
list as indicated by Figure 27 - Configuration Container Diagram. The list
must contain at least one element when ECUM_TTII_ENABLED is set to
true.

Configuration Parameters

SWS Item ECUC_EcuM_00109 :

Name

EcuMDivisor {Divisor}

Description This parameter defines the divisor preload value.

Multiplicity 1

Type EcucIntegerParamDef

Range 0 ..
18446744073709551615

Default value --

ConfigurationClass Pre-compile time X VARIANT-POST-BUILD

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_EcuM_00135 :

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

186 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Name

EcuMSleepModeRef

Description This configuration parameter is a reference to a configured sleep mode
that is used for TTII.

Multiplicity 1

Type Symbolic name reference to [EcuMSleepMode]

ConfigurationClass Pre-compile time X VARIANT-POST-BUILD

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_EcuM_00141 :

Name

EcuMSuccessorRef {Successor}

Description This parameter is a reference to the next sleep mode in the TTII protocol.

Multiplicity 0..1

Type Symbolic name reference to [EcuMSleepMode]

ConfigurationClass Pre-compile time X VARIANT-POST-BUILD

Link time --

Post-build time --

Scope / Dependency scope: local

No Included Containers

EcuMSuccessorRef :

EcucSymbolicNameReferenceDef

lowerMultiplicity = 0

upperMultiplicity = 1

EcuMDivisor :

EcucIntegerParamDef

EcuMSleepModeRef :

EcucSymbolicNameReferenceDef

EcuMTTII :

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

EcuMSleepMode :

EcucParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

(from EcuM)

+parameter

+reference

+reference

+destination

+destination

Figure 54 – EcuM TTII

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

187 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

10.5 Checking Configuration Consistency

10.5.1 The Necessity for Checking Configuration Consistency

In an AUTOSAR ECU several configuration parameters are set and put into the ECU
at different times. Pre-compile parameters are set, put into the generated source
code and compiled into object code. When the source code has been compiled, link-
time parameters are set, compiled, and linked with the previously configured object
code into an image that is put into the ECU. Finally, post-build parameters are set,
compiled, linked, and put into the ECU at a different time. All these parameters must
match to obtain a stable ECU.

Per BSW Module

Pre-Compile and Link-Time Part

Post-Build Part

.XML.XML

ECU

Configuration

Description

.obj.obj

Compiled

BSW Code

.c.c

BSW

Code

.h.h

BSW

Header

.XML.XML

BSW Pre-

Compile

Parameters

Generate BSW

Configuration

.XML.XML

BSW Link-

Time

Parameters

.XML.XML

BSW Post-

Build

Parameters

.h.h

BSW

Configuration

Header

.h.h

BSW Pre-

Compile

Parameters

.c.c

BSW Link-

Time

Parameters

Compile BSW Code

Compile BSW Post-Build

Configuration

.c.c

BSW Post-

Build

Parameters

Compile BSW Link-Time

Configuration

.obj.obj

Compiled

BSW Link-

Time

Configuration

.obj.obj

Compiled

BSW Post-

Build

Configuration

Link BSW Modules, RTE,

and SWCs

.exe.exe

ECU Code

Image

Link Post-Build

Configuration

.exe.exe

ECU Post-

Build Data

Image

.obj.obj

Compiled

RTE Code

.obj.obj

Compiled

SWC Code

Figure 55 – BSW Configuration Steps

Checking consistency of parameters at configuration time can be done within the
configuration tool itself. At compilation time, parameter errors may be detected by the
compiler and at link time, the linker may find additional errors. Unfortunately, finding
configuration errors in post-build parameters is very difficult. This can only be
achieved at run-time by checking that

 the pre-compile and link-time parameter settings used when compiling the
code

are exactly the same as

 the pre-compile and link-time parameter settings used when configuring and
compiling the post-build parameters.

This can only be done at run-time.

[SWS_EcuM_02796] ⌈To avoid multiple checks scattered over the different BSW
modules, the ECU State Manager Fixed module shall check the consistency once
before initializing the first BSW module. This also implies that the ECU State

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

188 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

Manager Fixed module must not only check the consistency of its own parameters

but of all post-build configurable BSW modules. ⌋()

The ECU configuration tool shall compute a hash value over all pre-compile and link-
time configuration parameters of all BSW modules and put that into the link-time
configuration parameter ECUM_CONFIGCONSISTENCY_HASH. The hash value is
necessary for two reasons. First, the pre-compile and link-time parameters are not
accessible anymore at run-time. Second, the check must be very efficient at run-time.
Comparing hundreds of parameters would cause an unacceptable delay in the ECU
startup process.

[SWS_EcuM_02798] ⌈The ECU State Manager Fixed module configuration tool shall
put the current value of the configuration parameter
ECUM_CONFIGCONSISTENCY_HASH into a field in the EcuM_ConfigType
structure, which contains the root of all post-build configuration parameters. The ECU
State Manager Fixed module shall check in EcuM_Init that the field in the structure is

equal to the value of ECUM_CONFIGCONSISTENCY_HASH. ⌋()

By computing both hash values at configuration time and comparing them at run-time
the code of the ECU State Manager Fixed module becomes very efficient and
independent of a certain hash computation algorithm. This allows for the use of
complex hash computation algorithms, e.g. cryptographically strong hash functions.

Note that the same hash algorithm can be used to produce the value for the post-
build configuration identifier in the EcuM_ConfigType structure. Then the hash
algorithm is applied to the post-build parameters instead of the pre-compile and link-
time parameters.

The used hash computation algorithm shall always produce the same hash value for
the same set of configuration data, regardless of the order of configuration
parameters in the XML files.

 Specification of ECU State Manager with
fixed state machine

 V1.5.0
R4.1 Rev 3

189 of 189 Document ID 444: AUTOSAR_SWS_ECUStateManagerFixed

- AUTOSAR confidential -

10.5.2 Example Hash Computation Algorithm

Note: This chapter is non-normative. It describes one possible way of computing
hash values.

A simple CRC over the values of configuration parameters will not serve as a good
hash algorithm. It only detects global changes, e.g. one parameter has changed from
1 to 2. But if another parameter changed from 2 to 1, the CRC might stay the same.

Additionally, not only the values of the configuration parameters but also their names
must be taken into account in the hash algorithm. One possibility is to build a text file
that contains the names of the configuration parameters and containers, separate
them from the values using a delimiter, e.g. a colon, and putting each parameter as a
line into a text file. For the above Watchdog Manager example only one parameter
will be included because only this one is pre-compile configured. The text file would
then contain the line:

/WdgMConfiguration/WdgM_Trigger/WDGM_NUMBER_OF_WATCHDOG_INSTANCES:2

If there are multiple containers of the same type, each container name can be
appended with a number, e.g. “_0”, “_1” and so on.

To make the hash value independent of the order in which the parameters are written
into the text file, the lines in the file must now be sorted lexicographically.

Finally, a cryptographically strong hash function, e.g. MD5, can be run on the text file
to produce the hash value. These hash functions produce completely different hash
values for slightly changed input files.

	1 Introduction
	1.1 Functional Overview
	1.2 Conventions Used in this Specification
	1.2.1 Font Faces
	1.2.2 Figures

	2 Definitions and Acronyms
	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms
	3.3 Related AUTOSAR Software Specifications

	4 Constraints and Assumptions
	4.1 Limitations
	4.2 Hardware Requirements
	4.3 Applicability to car domains

	5 Dependencies to other Modules
	5.1 Mode Management Modules
	5.1.1 Communication Manager
	5.1.2 Watchdog Manager
	5.1.3 Basic Software Mode Manager

	5.2 SPAL Modules
	5.2.1 MCU Driver
	5.2.2 Driver Dependencies and Initialization Order

	5.3 Peripherals with Wake-up Capability
	5.4 Operating System
	5.5 Runtime Environment (RTE)
	5.6 BSW Scheduler
	5.7 NVRAM Manager
	5.8 Diagnostic Event Manager
	5.9 Network Management
	5.10 Other Basic Software Modules
	5.11 Software Components
	5.12 File Structure
	5.12.1 Code file structure
	5.12.2 Header file structure

	6 Requirements traceability
	7 Functional Specification
	7.1 Main States of the ECU State Manager
	7.1.1 STARTUP State
	7.1.2 RUN State
	7.1.3 SHUTDOWN State
	7.1.4 SLEEP State
	7.1.5 WAKEUP State
	7.1.6 OFF State

	7.2 Structural Description of the ECU State Manager
	7.2.1 Standardized AUTOSAR Software Modules
	7.2.2 Software Components
	7.2.3 Resource Managers

	7.3 STARTUP State
	7.3.1 High Level Sequence Diagram
	7.3.2 Activities before EcuM_Init
	7.3.3 STARTUP Activity Overview
	7.3.4 Sub-State Descriptions
	7.3.4.1 STARTUP I
	7.3.4.2 STARTUP II

	7.3.5 Driver Initialization
	7.3.6 DET Initialization

	7.4 RUN State
	7.4.1 State Breakdown Structure
	7.4.2 High Level Sequence Diagram
	7.4.3 Sub-State Description
	7.4.3.1 RUN II
	7.4.3.2 Entering RUN II State
	7.4.3.3 Leaving RUN II State
	7.4.3.4 RUN III
	7.4.3.5 Leaving RUN III State

	7.5 SHUTDOWN State
	7.5.1 State Breakdown Structure
	7.5.2 High Level Sequence Diagram
	7.5.3 SHUTDOWN Activity Overview
	7.5.4 Sub-State Descriptions
	7.5.4.1 PREP SHUTDOWN
	7.5.4.2 GO SLEEP
	7.5.4.3 GO OFF I
	7.5.4.4 GO OFF II

	7.6 SLEEP State
	7.6.1 High Level Sequence Diagram
	7.6.2 Sub-State Descriptions
	7.6.2.1 Shutdown Targets
	7.6.2.2 Sleep Sequence I
	7.6.2.3 Sleep Sequence II

	7.6.3 Leaving SLEEP State

	7.7 WAKEUP State
	7.7.1 High Level Sequence Diagram
	7.7.2 State Breakdown Structure
	7.7.3 WAKEUP Activity Overview
	7.7.4 Sub-State Descriptions
	7.7.4.1 WAKEUP I
	7.7.4.2 WAKEUP VALIDATION
	7.7.4.3 WAKEUP REACTION
	7.7.4.4 WAKEUP II

	7.8 Wake-up Validation Protocol
	7.8.1 Wake-up of Communication Channels
	7.8.2 Wake-up of the Entire ECU
	7.8.3 Interaction of wake up Sources and the ECU State Manager Fixed module
	7.8.4 Wake up validation timeout
	7.8.5 Requirements for drivers with wake up sources
	7.8.6 Requirements for Wake-up Validation
	7.8.7 Wake up Sources and Reset Reason
	7.8.8 Wake up Sources with Integrated Power Control
	7.8.9 Activity Diagram

	7.9 Time Triggered Increased Inoperation
	7.10 Advanced Topics
	7.10.1 OS Application Modes
	7.10.2 Relation to Bootloader
	7.10.3 Relation to Complex Drivers
	7.10.4 Handling Errors during Startup and Shutdown
	7.10.5 Configuration Alternative for Providing Wake-Sleep Operation
	7.10.6 Selecting Scheduling Schemes for Startup and Shutdown

	7.11 Runtime Errors
	7.12 Debug Support

	8 API specification
	8.1 Imported Types
	8.2 Service Interfaces
	8.2.1 Use Cases for System Services
	8.2.2 Port Interface for Interface EcuM_StateRequest
	8.2.2.1 Data Types
	8.2.2.2 EcuM_StateRequest
	8.2.2.3 Port Interface for Interface EcuM_CurrentMode
	8.2.2.4 Data Types
	8.2.2.5 EcuM_CurrentMode

	8.2.3 Ports and Port Interface for Interface EcuM_ShutdownTarget
	8.2.3.1 Data Types
	8.2.3.2 EcuM_ShutdownTarget

	8.2.4 Port Interface for Interface EcuM_BootTarget
	8.2.4.1 Data Types
	8.2.4.2 EcuM_BootTarget

	8.2.5 Definition of the Service ECU State Manager
	8.2.6 Runnables and Entry points
	8.2.6.1 Internal behavior

	8.3 Type definitions
	8.3.1 EcuM_ConfigType
	8.3.2 EcuM_StateType
	8.3.3 EcuM_UserType
	8.3.4 EcuM_WakeupSourceType
	8.3.5 EcuM_WakeupStatusType
	8.3.6 EcuM_WakeupReactionType
	8.3.7 EcuM_BootTargetType

	8.4 Function Definitions
	8.4.1 General
	8.4.1.1 EcuM_GetVersionInfo

	8.4.2 Initialization and Shutdown
	8.4.2.1 EcuM_Init
	8.4.2.2 EcuM_StartupTwo
	8.4.2.3 EcuM_Shutdown

	8.4.3 State Management
	8.4.3.1 EcuM_RequestRUN
	8.4.3.2 EcuM_ReleaseRUN
	8.4.3.3 EcuM_RequestPOST_RUN
	8.4.3.4 EcuM_ReleasePOST_RUN
	8.4.3.5 EcuM_KillAllRUNRequests
	8.4.3.6 EcuM_KillAllPostRUNRequests
	8.4.3.7 EcuM_SelectShutdownTarget
	8.4.3.8 EcuM_GetShutdownTarget
	8.4.3.9 EcuM_GetLastShutdownTarget
	8.4.3.10 EcuM_GetState

	8.4.4 Wake up Handling
	8.4.4.1 EcuM_GetPendingWakeupEvents
	8.4.4.2 EcuM_ClearWakeupEvent
	8.4.4.3 EcuM_GetValidatedWakeupEvents
	8.4.4.4 EcuM_GetExpiredWakeupEvents
	8.4.4.5 EcuM_GetStatusOfWakeupSource
	8.4.4.6 EcuM_ StartCheckWakeup
	8.4.4.7 EcuM_ EndCheckWakeup

	8.4.5 Miscellaneous
	8.4.5.1 EcuM_SelectBootTarget
	8.4.5.2 EcuM_GetBootTarget

	8.5 Scheduled Functions
	8.5.1 EcuM_MainFunction

	8.6 Callback Definitions
	8.6.1 Callbacks from NVRAM Manager
	8.6.1.1 EcuM_CB_NfyNvMJobEnd

	8.6.2 Callbacks from Wake up Sources
	8.6.2.1 EcuM_CheckWakeup
	8.6.2.2 EcuM_SetWakeupEvent
	8.6.2.3 EcuM_ValidateWakeupEvent

	8.7 Callout Definitions
	8.7.1 Generic Callouts
	8.7.1.1 EcuM_ErrorHook

	8.7.2 Callouts from STARTUP
	8.7.2.1 EcuM_AL_DriverInitZero
	8.7.2.2 EcuM_DeterminePbConfiguration
	8.7.2.3 EcuM_AL_DriverInitOne
	8.7.2.4 EcuM_AL_DriverInitTwo
	8.7.2.5 EcuM_AL_DriverInitThree
	8.7.2.6 EcuM_OnRTEStartup

	8.7.3 Callouts from RUN State
	8.7.3.1 EcuM_OnEnterRun
	8.7.3.2 EcuM_OnExitRun
	8.7.3.3 EcuM_OnExitPostRun

	8.7.4 Callouts from SHUTDOWN
	8.7.4.1 EcuM_OnPrepShutdown
	8.7.4.2 EcuM_OnGoSleep
	8.7.4.3 EcuM_OnGoOffOne
	8.7.4.4 EcuM_OnGoOffTwo
	8.7.4.5 EcuM_EnableWakeupSources
	8.7.4.6 EcuM_GenerateRamHash
	8.7.4.7 EcuM_AL_SwitchOff

	8.7.5 Callouts from WAKEUP
	8.7.5.1 EcuM_CheckRamHash
	8.7.5.2 EcuM_DisableWakeupSources
	8.7.5.3 EcuM_AL_DriverRestart
	8.7.5.4 EcuM_StartWakeupSources
	8.7.5.5 EcuM_CheckValidation
	8.7.5.6 EcuM_StopWakeupSources
	8.7.5.7 EcuM_OnWakeupReaction

	8.7.6 Callouts from SLEEP State
	8.7.6.1 EcuM_SleepActivity
	8.7.6.2 EcuM_CheckWakeup

	8.8 Expected Interfaces
	8.8.1 Mandatory Interfaces
	8.8.2 Optional Interfaces
	8.8.3 Configurable interfaces

	9 Sequence Charts
	9.1 State Sequences
	9.2 Wake-up Sequences
	9.2.1 GPT Wake-up Sequences
	9.2.2 ICU Wake-up Sequences
	9.2.3 CAN Wake-up Sequences
	9.2.4 LIN Wake-up Sequences
	9.2.5 FlexRay Wake-up Sequences
	9.2.6 TCP/IP Wake-up Sequences

	10 Configuration specification
	10.1 Containers and configuration parameters
	10.2 Variants.
	10.3 Published Information
	10.4 Configurable Parameters
	10.4.1 EcuM
	10.4.2 EcuMGeneral
	10.4.3 EcuMFixedGeneral
	10.4.4 EcuMFixedConfiguration
	10.4.5 EcuMFixedModuleConfiguration
	10.4.6 EcuMFixedPostBuildVariationCriterion
	10.4.7 EcuMCommonConfiguration
	10.4.8 EcuMDefaultShutdownTarget
	10.4.9 EcuMDemEventParameterRefs
	10.4.10 EcuMDriverInitItem
	10.4.11 EcuMDriverInitListZero
	10.4.12 EcuMDriverInitListOne
	10.4.13 EcuMDriverInitListTwo
	10.4.14 EcuMDriverInitListThree
	10.4.15 EcuMSleepMode
	10.4.16 EcuMWakeupSource
	10.4.17 EcuMFixedUserConfig
	10.4.18 EcuMDriverRestartList
	10.4.19 EcuMTTII

	10.5 Checking Configuration Consistency
	10.5.1 The Necessity for Checking Configuration Consistency
	10.5.2 Example Hash Computation Algorithm

