
Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

1 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

Document Change History
Date Version Changed by Change Description

31.03.2014 5.1.1 AUTOSAR
Release
Management

 “Common” Published Information
corrected

 ARXML adaptations

31.10.2013 5.1.0 AUTOSAR
Release
Management

 Editorial changes

 Removed chapter(s) on change
documentation

28.02.2013 5.0.0 AUTOSAR
Administration

 API and configuration parameter added
to support ECU degradation concept

 Common Published Information removed

 BSW General rework

24.11.2011 4.2.0 AUTOSAR
Administration

 Requirement of ADC group status to be
available for debugging removed

18.10.2010 4.1.0 AUTOSAR
Administration

 ADC444 add Adc_ResultAlignmentType

 SWS_Adc_00124 version number check
correction

 SWS_Adc_00337 reformulation

 Limitation of ranges for AdcPrescale and
AdcChannelId

 InstanceId removed

 ADC324 removed,

 SWS_Adc_00458 introduced , DET for
Adc_GetVersionInfo

Document Title Specification of ADC Driver
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 010

Document Classification Standard

Document Version 5.1.1

Document Status Final

Part of Release 4.1

Revision 3

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

2 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

Document Change History
Date Version Changed by Change Description

07.12.2009 4.0.0 AUTOSAR
Administration

 Limit checking support included; new
config parameters added
AdcEnableLimitCheck,
AdcChannelLimitCheck,
AdcChannelLowLimit,
AdcChannelHighLimit and
AdcChannelRangeSelect introduced.

 ADC debug support added.

 ADC configurable ADC data buffer
alignment added.

 Min/max values for AdcGroupId,
AdcStreamingNumSamples,
AdcMaxChannelResolution and
AdcChannelResolution added.

 Legal disclaimer revised

23.06.2008 3.0.2 AUTOSAR
Administration

Legal disclaimer revised

22.01.2008 3.0.1 AUTOSAR
Administration

 Correction of: Table of Content

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

3 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

Document Change History
Date Version Changed by Change Description

13.12.2007 3.0.0 AUTOSAR
Administration

 New API Adc_ReadGroup introduced
 Removed API Adc_ValueReadGroup
 Modified API Adc_GetStreamLastPointer
 New configuration parameter added
*AdcGroupReplacement
*AdcPriorityImplementation
*AdcResultBufferPointer
*AdcEnableQueuing
*AdcReadGroupApi
 Cconfiguration parameter removed
*ADC_GRP_PRIORITY_IMP_LEVEL
*ADC_STREAMING_BUFFER_POINTER
 Priority mechanism improved
 Type definitions modified and extended
 State diagrams added
 New state transitions defined
 New state ADC_STREAM_COMPLETED
added

 State based requirements added
 Sequence charts modified and extended
 ADC buffer access mode example added
 New DET's defined
*new DET
ADC_E_ALREADY_INITIALIZED
*new DET ADC_E_PARAM_CONFIG
*new DET ADC_E_BUFFER_UNINIT
 Part of existing requirments reformulated
 Added new requirement ID's
SWS_Adc_00321-SWS_Adc_00432

 Document meta information extended
 Small layout adaptations made

24.01.2007 2.1.1 AUTOSAR
Administration

 “Advice for users” revised

 “Revision Information” added

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

4 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

Document Change History
Date Version Changed by Change Description

23.11.2006 2.1.0 AUTOSAR
Administration

 Removed the "On Demand" functionality.
Related services not available anymore.

 Removed the "Gated Continuous”
conversion mode. Related services not
available anymore.

 Removed the distinction between internal
and external hardware trigger.

 Introduced a priority mechanism for
channel groups for allowing channel
groups with higher priority to interrupt
ongoing conversions (can cover also the
“On demand” functionality).

 Reworked the “Streaming Access Mode”.
A dedicated data structure for the
returned values of a conversion is now
clearly defined.

 Conversion values access now allowed
only through channel groups (no single
channel value available. Related service
not available anymore).

27.03.2006 2.0.0 AUTOSAR
Administration

Document structure adapted to common
Release 2.0 SWS Template.

30.06.2005 1.0.0 AUTOSAR
Administration

Initial Release.

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

5 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

Disclaimer

This specification and the material contained in it, as released by AUTOSAR is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only.
For any other purpose, no part of the specification may be utilized or reproduced, in
any form or by any means, without permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR Specification Documents may contain exemplary items (exemplary
reference models, "use cases", and/or references to exemplary technical solutions,
devices, processes or software).

Any such exemplary items are contained in the Specification Documents for
illustration purposes only, and they themselves are not part of the AUTOSAR
Standard. Neither their presence in such Specification Documents, nor any later
documentation of AUTOSAR conformance of products actually implementing such
exemplary items, imply that intellectual property rights covering such exemplary
items are licensed under the same rules as applicable to the AUTOSAR Standard.

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

6 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

Table of Contents

1 Introduction and functional overview ... 9

2 Acronyms and abbreviations ... 10

3 Related documentation ... 11

3.1 Input documents .. 11
3.2 Related specification ... 11

4 Constraints and assumptions .. 13

4.1 Limitations ... 13
4.2 Applicability to car domains ... 13

5 Dependencies to other modules .. 14

5.1 File structure ... 14
5.1.1 Header file structure .. 14

6 Requirements traceability .. 16

7 Functional specification ... 29

7.1 General behavior ... 29

7.1.1 Background & Rationale ... 29
7.1.2 Requirements .. 29

7.1.3 ADC Buffer Access Mode Example ... 37
7.1.3.1 Example: Configuration ... 38

7.1.3.2 Example: Initialization ... 38
7.1.3.3 Example: Adc_GetStreamLastPointer Usage ... 39
7.1.3.4 Example: Adc_ReadGroup Usage .. 39

7.2 Conversion processing and interaction ... 40
7.2.1 Background & Rationale ... 40

7.2.2 Requirements .. 41
7.3 State Diagrams ... 42
7.3.1 ADC State Diagram for One-Shot/Continuous Group Conversion Mode 42
7.3.2 ADC State Diagram for HW/SW Trigger in One-Shot Group

Conversion Mode .. 43
7.3.3 ADC State Diagram for SW Trigger in Continuous Conversion Mode 44

7.3.4 ADC State Diagram for One-Shot Conversion Mode, Software Trigger
Source, Single Access Mode .. 45

7.3.5 ADC State Diagram for One-Shot Conversion, Hardware Trigger
Source, Single Access Mode .. 46

7.3.6 ADC State Diagram for One-Shot Conversion Mode, Hardware Trigger
Source, Linear and Circular Streaming Access Mode 47

7.3.7 ADC State Diagram for Continuous Conversion Mode, Software
Trigger Source, Single Access Mode .. 48

7.3.8 ADC State Diagram for Continuous Conversion Mode, Software
Trigger Source, Linear and Circular Streaming Access Mode..................... 49

7.4 Support and management of HW low power states 50
7.4.1 Background ... 50

7.4.2 Requirements .. 50

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

7 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

7.5 Version check .. 52

7.5.1 Background & Rationale ... 52
7.6 Error detection ... 55

8 API specification .. 58

8.1 Imported types .. 58
8.2 Type definitions ... 58

8.2.1 Adc_ConfigType .. 58
8.2.2 Adc_ChannelType ... 58
8.2.3 Adc_GroupType .. 58
8.2.4 Adc_ValueGroupType ... 59

8.2.5 Adc_PrescaleType .. 59
8.2.6 Adc_ConversionTimeType .. 60
8.2.7 Adc_SamplingTimeType ... 60

8.2.8 Adc_ResolutionType ... 60
8.2.9 Adc_StatusType .. 60
8.2.10 Adc_TriggerSourceType ... 61
8.2.11 Adc_GroupConvModeType ... 61

8.2.12 Adc_GroupPriorityType ... 61
8.2.13 Adc_GroupDefType .. 62

8.2.14 Adc_StreamNumSampleType ... 62
8.2.15 Adc_StreamBufferModeType .. 62
8.2.16 Adc_GroupAccessModeType .. 62

8.2.17 Adc_HwTriggerSignalType .. 63

8.2.18 Adc_HwTriggerTimerType .. 63
8.2.19 Adc_PriorityImplementationType .. 63
8.2.20 Adc_GroupReplacementType ... 63
8.2.21 Adc_ChannelRangeSelectType .. 64
8.2.22 Adc_ResultAlignmentType .. 64
8.2.23 Adc_PowerStateType ... 65

8.2.24 Adc_PowerStateRequestResultType .. 65
8.3 Function definitions ... 65

8.3.1 Adc_Init ... 65
8.3.2 Adc_SetupResultBuffer ... 67
8.3.3 Adc_DeInit ... 68

8.3.4 Adc_StartGroupConversion .. 69
8.3.5 Adc_StopGroupConversion... 72
8.3.6 Adc_ReadGroup ... 74
8.3.7 Adc_EnableHardwareTrigger .. 76

8.3.8 Adc_DisableHardwareTrigger ... 78
8.3.9 Adc_EnableGroupNotification ... 80
8.3.10 Adc_DisableGroupNotification .. 81
8.3.11 Adc_GetGroupStatus .. 82
8.3.12 Adc_GetStreamLastPointer... 85

8.3.13 Adc_GetVersionInfo .. 87
8.3.14 Adc_SetPowerState .. 88
8.3.15 Adc_GetCurrentPowerState .. 90

8.3.16 Adc_GetTargetPowerState ... 90
8.3.17 Adc_PreparePowerState ... 91
8.4 Call-back Notifications ... 93

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

8 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

8.5 Scheduled functions .. 93

8.5.1 Adc_Main_PowerTransitionManager .. 93
8.6 Expected Interfaces .. 95
8.6.1 Mandatory Interfaces .. 95
8.6.2 Optional Interfaces .. 95
8.6.3 Configurable interfaces ... 95

8.6.3.1 IoHwAb_Adc_Notification<#groupID> ... 95
8.6.3.2 IoHwAb_Adc_NotifyReadyForPowerState<#Mode> 96

9 Sequence diagrams .. 98

9.1 Initialization of the ADC Driver .. 98

9.2 De-Initialization of the ADC Driver ... 98
9.3 Software triggered One-Shot conversion without notification 98
9.4 Software triggered continuous conversion with notification 100

9.5 Hardware triggered One-Shot conversion with notification 101
9.6 HW Trigger - One-Shot conversion - Linear Streaming 102
9.7 No Priority Mechanism – No Queuing ... 103
9.8 No Priority Mechanism – SW Queuing .. 104

9.9 HW_SW Priority Mechanism – SW Queuing ... 105
9.10 HW Priority Mechanism – HW Queuing .. 106

9.11 HW_SW Priority Mechanism – HW/SW Queuing 107

10 Configuration specification .. 109

10.1 How to read this chapter ... 109
10.2 Configuration and configuration parameters ... 109

10.2.1 Variants ... 109
10.2.2 Adc .. 109
10.2.3 AdcGeneral ... 110
10.2.4 AdcPowerStateConfig ... 113
10.2.5 AdcConfigSet .. 114
10.2.6 AdcChannel ... 115

10.2.7 AdcGroup .. 118
10.2.8 AdcHwUnit .. 122

10.3 Published information .. 124
10.3.1 AdcPublishedInformation .. 124

10.4 Configuration of symbolic names .. 125

11 Not applicable requirements .. 126

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

9 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

1 Introduction and functional overview

This specification describes the functionality, API and the configuration of the
AUTOSAR Basic Software module ADC Driver.

The ADC module initializes and controls the internal Analogue Digital Converter
Unit(s) of the microcontroller. It provides services to start and stop a conversion
respectively to enable and disable the trigger source for a conversion. Furthermore it
provides services to enable and disable a notification mechanism and routines to
query the status and result of a conversion.

The ADC module works on so called ADC Channel Groups, which are build from so
called ADC Channels. An ADC Channel Group combines an analogue input pin
(ADC Channel), the needed ADC circuitry itself and conversion result register into an
entity that can be individually controlled and accessed via the ADC module.

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

10 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

2 Acronyms and abbreviations

Abbreviation /
Acronym:

Description:

DEM Diagnostic Event Manager

DET Development Error Tracer

ADC Analogue Digital Converter

MCU Microcontroller Unit

API Application Programming Interface

HW Hardware

SW Software

ADC HW Unit Represents a microcontroller input electronic device that includes all parts
necessary to perform an “analogue to digital conversion”.

ADC Module ADC Basic Software module ADC Driver, abbreviated also with ADC Driver

ADC Channel Represents a logical ADC entity bound to one port pin. Multiple ADC entities can
be mapped to the same port pin.

ADC Channel
Group

A group of ADC channels linked to the same ADC hardware unit (e.g. one
Sample&Hold and one A/D converter).

The conversion of the whole group is triggered by one trigger source.

ADC Result Buffer
(ADC Streaming
Buffer, ADC
Stream Buffer)

The user of the ADC Driver has to provide a buffer for every group. This buffer
can hold multiple samples of the same group channel if streaming access mode
is selected. If single access mode is selected one sample of each group channel
is held in the buffer.

Software Trigger Software API call that starts the conversion of one ADC channel group or a
continuous series of ADC channel group conversions.

Hardware Trigger ADC internal trigger signal that starts one conversion of an ADC channel group.
ADC hardware trigger are generated internally in the ADC hardware, e.g. based
on an ADC timer or a trigger edge signal. The trigger hardware is tightly coupled
or integrated in the ADC hardware. No software is required to start the ADC
channel group conversion after the hardware trigger is detected.

Note: If the ADC hardware does not support hardware trigger, a similar behavior
can be realized with software trigger in combination with the GPT/ICU driver. E.g.
in a GPT timer notification function a software triggered ADC channel group
conversion can be started.

Conversion Mode One-Shot:
The conversion of an ADC channel group is performed once after a trigger and
the results are written to the assigned result buffer.

A trigger can be a software API call or a hardware event.

Continuous:

The conversions of an ADC channel group are performed continuously after a
software API call (start) and the results are written to the assigned result buffer.
The conversions themselves are running automatically (hardware/interrupt
controlled). The Continuous conversions can be stopped by a software API call
(stop).

Sampling Time,

Sample Time

Time during which the analogue value is sampled (e.g. loading the capacitor, …)

Conversion Time Time during which the sampled analogue value is converted into digital
representation.

Acquisition Time Sample Time + Conversion Time.

Table 1: Acronyms and abbreviations used in this document

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

11 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

3 Related documentation

3.1 Input documents

[1] General Requirements on Basic Software Modules,

AUTOSAR_SRS_BSWGeneral.pdf

[2] General Requirements on SPAL,

AUTOSAR_SRS_SPALGeneral.pdf

[3] Specification of Standard Types,
AUTOSAR_SWS_StandardTypes.pdf

[4] List of Basic Software Modules,
AUTOSAR_TR_BSWModuleList.pdf

[5] Specification of Diagnostic Event Manager,
AUTOSAR_SWS_DiagnosticEventManager.pdf

[6] Specification of Development Error Tracer,
AUTOSAR_SWS_DevelopmentErrorTracer.pdf

[7] Requirements on ADC Driver,
AUTOSAR_SRS_ADCDriver.pdf

[8] Specification of ECU Configuration,
AUTOSAR_TPS_ECUConfiguration.pdf

[9] Layered Software Architecture,
AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf

[10] Specification of ECU State Manager,
AUTOSAR_SWS_ECUStateManager.pdf

[11] Specification of I/O Hardware Abstraction,
AUTOSAR_SWS_IOHardwareAbstraction.pdf

[12] Basic Software Module Description Template,

AUTOSAR_TPS_BSWModuleDescriptionTemplate.pdf

[13] General Specification of Basic Software Modules

AUTOSAR_SWS_BSWGeneral.pdf

3.2 Related specification

AUTOSAR provides a General Specification on Basic Software modules [13] (SWS
BSW General), which is also valid for ADC Driver.

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

12 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

Thus, the specification SWS BSW General shall be considered as additional and
required specification for ADC Driver.

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

13 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

4 Constraints and assumptions

4.1 Limitations

Power State Control APIs are implementable only if the MCAL driver owns the
complete underlying HW peripheral i.e. the HW peripheral is not accessed by
other MCAL modules.

4.2 Applicability to car domains

No restrictions.

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

14 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

5 Dependencies to other modules

Module MCU Driver
The Microcontroller Unit Driver (MCU Driver) is primarily responsible for initializing
and controlling the chip’s internal clock sources and clock prescalers. The clock
frequency may affect:

 Trigger frequency

 Conversion time

 Sampling time

Module PORT driver
The PORT module shall configure the port pins used by the ADC module. Both
analogue input pins and external trigger pins have to be considered.

5.1 File structure

5.1.1 Header file structure

[SWS_Adc_00267] ⌈The file include structure shall be as follows.

Figure 1: ADC Driver file include structure

⌋ (SRS_BSW_00381, SRS_BSW_00412, SRS_BSW_00383, SRS_BSW_00415,
SRS_BSW_00300, SRS_BSW_00346, SRS_BSW_00158, SRS_BSW_00314,
SRS_BSW_00370, SRS_BSW_00348, SRS_BSW_00353, SRS_BSW_00361,
SRS_BSW_00435, SRS_BSW_00436)

Note:

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

15 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

By this inclusion the APIs to report errors as well as the required Event Id symbols
are included. This specification defines the name of the Event Id symbols which are
provided by XML to the DEM configuration tool. The DEM configuration tool assigns
ECU dependent values to the Event Id symbols and publishes the symbols in
Dem_IntErrId.h.

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

16 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

6 Requirements traceability

Requirement Description Satisfied by

- - SWS_Adc_00075

- - SWS_Adc_00138

- - SWS_Adc_00296

- - SWS_Adc_00304

- - SWS_Adc_00305

- - SWS_Adc_00307

- - SWS_Adc_00311

- - SWS_Adc_00312

- - SWS_Adc_00315

- - SWS_Adc_00321

- - SWS_Adc_00332

- - SWS_Adc_00333

- - SWS_Adc_00335

- - SWS_Adc_00336

- - SWS_Adc_00337

- - SWS_Adc_00338

- - SWS_Adc_00339

- - SWS_Adc_00343

- - SWS_Adc_00344

- - SWS_Adc_00345

- - SWS_Adc_00346

- - SWS_Adc_00348

- - SWS_Adc_00349

- - SWS_Adc_00351

- - SWS_Adc_00353

- - SWS_Adc_00358

- - SWS_Adc_00359

- - SWS_Adc_00360

- - SWS_Adc_00361

- - SWS_Adc_00363

- - SWS_Adc_00364

- - SWS_Adc_00365

- - SWS_Adc_00366

- - SWS_Adc_00367

- - SWS_Adc_00368

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

17 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

- - SWS_Adc_00369

- - SWS_Adc_00370

- - SWS_Adc_00371

- - SWS_Adc_00372

- - SWS_Adc_00373

- - SWS_Adc_00374

- - SWS_Adc_00375

- - SWS_Adc_00376

- - SWS_Adc_00377

- - SWS_Adc_00380

- - SWS_Adc_00381

- - SWS_Adc_00384

- - SWS_Adc_00387

- - SWS_Adc_00388

- - SWS_Adc_00413

- - SWS_Adc_00414

- - SWS_Adc_00415

- - SWS_Adc_00416

- - SWS_Adc_00417

- - SWS_Adc_00418

- - SWS_Adc_00419

- - SWS_Adc_00420

- - SWS_Adc_00421

- - SWS_Adc_00422

- - SWS_Adc_00423

- - SWS_Adc_00424

- - SWS_Adc_00425

- - SWS_Adc_00426

- - SWS_Adc_00427

- - SWS_Adc_00428

- - SWS_Adc_00429

- - SWS_Adc_00430

- - SWS_Adc_00431

- - SWS_Adc_00432

- - SWS_Adc_00433

- - SWS_Adc_00434

- - SWS_Adc_00436

- - SWS_Adc_00437

- - SWS_Adc_00438

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

18 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

- - SWS_Adc_00445

- - SWS_Adc_00446

- - SWS_Adc_00447

- - SWS_Adc_00448

- - SWS_Adc_00449

- - SWS_Adc_00450

- - SWS_Adc_00451

- - SWS_Adc_00457

- - SWS_Adc_00458

- - SWS_Adc_00475

- - SWS_Adc_00476

- - SWS_Adc_00477

- - SWS_Adc_00478

- - SWS_Adc_00479

- - SWS_Adc_00480

- - SWS_Adc_00482

- - SWS_Adc_00483

- - SWS_Adc_00484

- - SWS_Adc_00485

- - SWS_Adc_00486

- - SWS_Adc_00487

- - SWS_Adc_00488

- - SWS_Adc_00489

- - SWS_Adc_00490

- - SWS_Adc_00491

- - SWS_Adc_00492

- - SWS_Adc_00493

- - SWS_Adc_00494

- - SWS_Adc_00495

- - SWS_Adc_00496

- - SWS_Adc_00497

- - SWS_Adc_00498

- - SWS_Adc_00499

- - SWS_Adc_00500

- - SWS_Adc_00501

- - SWS_Adc_00502

- - SWS_Adc_00503

- - SWS_Adc_00505

- - SWS_Adc_00506

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

19 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

- - SWS_Adc_00507

- - SWS_Adc_00508

- - SWS_Adc_00509

- - SWS_Adc_00510

- - SWS_Adc_00511

- - SWS_Adc_00512

- - SWS_Adc_00513

- - SWS_Adc_00514

- - SWS_Adc_00515

- - SWS_Adc_00516

- - SWS_Adc_00517

- - SWS_Adc_00518

- - SWS_Adc_00519

- - SWS_Adc_00520

- - SWS_Adc_00521

- - SWS_Adc_00522

- - SWS_Adc_00523

- - SWS_Adc_00524

- - SWS_Adc_00525

- - SWS_Adc_00526

- - SWS_Adc_00527

- - SWS_Adc_00528

BSW00431 - SWS_Adc_00460

BSW00434 - SWS_Adc_00460

SRS_Adc_12280 The ADC Driver shall allow a
specific result access modes
for each ADC Channel
Group

SWS_Adc_00140, SWS_Adc_00382,
SWS_Adc_00383

SRS_Adc_12283 The ADC driver shall mask
out information bits from the
conversion result not
belonging to the ADC value

SWS_Adc_00122

SRS_Adc_12291 The ADC Driver shall provide
a service for querying the
status of an ADC Channel
Group

SWS_Adc_00219, SWS_Adc_00220,
SWS_Adc_00221, SWS_Adc_00222,
SWS_Adc_00224, SWS_Adc_00226,
SWS_Adc_00325, SWS_Adc_00326,
SWS_Adc_00327, SWS_Adc_00328,
SWS_Adc_00329, SWS_Adc_00330,
SWS_Adc_00331

SRS_Adc_12292 If the ADC provides signed
values, the ADC driver shall
put the sign bit into the MSB
of the return value

SWS_Adc_00113, SWS_Adc_00214

SRS_Adc_12307 The ADC Driver shall support SWS_Adc_00099

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

20 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

a specific basic static
configurations per channel

SRS_Adc_12317 The ADC Driver shall provide
notification functions to
inform the caller about the
end of a conversion for a
Channel Group

SWS_Adc_00104, SWS_Adc_00155,
SWS_Adc_00156, SWS_Adc_00157

SRS_Adc_12318 The ADC driver shall provide
a service to enable and
disable each notification
function separately

SWS_Adc_00057, SWS_Adc_00058,
SWS_Adc_00077, SWS_Adc_00156,
SWS_Adc_00157

SRS_Adc_12364 The ADC driver shall provide
services to start and stop the
conversion of an ADC
Channel Group for all
conversion modes

SWS_Adc_00060, SWS_Adc_00061,
SWS_Adc_00145, SWS_Adc_00146,
SWS_Adc_00157, SWS_Adc_00356,
SWS_Adc_00357, SWS_Adc_00385,
SWS_Adc_00386

SRS_Adc_12447 The ADC Driver shall allow
to group ADC channels that
belong to the same ADC HW
unit

SWS_Adc_00090, SWS_Adc_00091,
SWS_Adc_00098, SWS_Adc_00099,
SWS_Adc_00100, SWS_Adc_00101,
SWS_Adc_00104, SWS_Adc_00277,
SWS_Adc_00280

SRS_Adc_12802 The ADC driver shall provide
(for streaming access mode)
a service to identify most
recent sample and number of
available samples of a
channel group

SWS_Adc_00214, SWS_Adc_00215,
SWS_Adc_00216, SWS_Adc_00219

SRS_Adc_12817 The ADC Driver shall allow
for each ADC channel group
the static configuration of
exactly one trigger source

SWS_Adc_00146, SWS_Adc_00279,
SWS_Adc_00283, SWS_Adc_00356,
SWS_Adc_00357

SRS_Adc_12818 The ADC Driver shall allow
assigning one ADC channel
to more than one ADC
Channel Group

SWS_Adc_00092

SRS_Adc_12819 The ADC Driver shall provide
a synchronous service for
reading the last valid
conversion results of the
selected channel group

SWS_Adc_00113, SWS_Adc_00122,
SWS_Adc_00318

SRS_Adc_12820 The ADC driver shall allow
the configuration of a priority
level for each channel group

SWS_Adc_00288, SWS_Adc_00289,
SWS_Adc_00310, SWS_Adc_00340,
SWS_Adc_00341

SRS_Adc_12822 The structure containing the
results of a channel group
conversion shall be
generated with a uniform
dimension

SWS_Adc_00320

SRS_Adc_12823 The ADC driver shall provide
services to enable and
disable HW triggers for each
channel group

SWS_Adc_00114, SWS_Adc_00116,
SWS_Adc_00144, SWS_Adc_00273,
SWS_Adc_00281, SWS_Adc_00282

SRS_Adc_12824 The result alignment shall be SWS_Adc_00113

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

21 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

configurable between right-
alignment and left-alignment

SRS_Adc_12825 The results of the conversion
of a channel group
configured in streaming
access mode shall be
returned into a buffer with a
fixed number of elements

SWS_Adc_00319

SRS_BSW_00005 Modules of the æC
Abstraction Layer (MCAL)
may not have hard coded
horizontal interfaces

SWS_Adc_00460

SRS_BSW_00006 The source code of software
modules above the æC
Abstraction Layer (MCAL)
shall not be processor and
compiler dependent.

SWS_Adc_00460

SRS_BSW_00007 All Basic SW Modules written
in C language shall conform
to the MISRA C 2004
Standard.

SWS_Adc_00460

SRS_BSW_00009 All Basic SW Modules shall
be documented according to
a common standard.

SWS_Adc_00460

SRS_BSW_00010 The memory consumption of
all Basic SW Modules shall
be documented for a defined
configuration for all
supported platforms.

SWS_Adc_00460

SRS_BSW_00101 The Basic Software Module
shall be able to initialize
variables and hardware in a
separate initialization
function

SWS_Adc_00054

SRS_BSW_00158 All modules of the
AUTOSAR Basic Software
shall strictly separate
configuration from
implementation

SWS_Adc_00267

SRS_BSW_00160 Configuration files of
AUTOSAR Basic SW module
shall be readable for human
beings

SWS_Adc_00460

SRS_BSW_00161 The AUTOSAR Basic
Software shall provide a
microcontroller abstraction
layer which provides a
standardized interface to
higher software layers

SWS_Adc_00460

SRS_BSW_00162 The AUTOSAR Basic
Software shall provide a
hardware abstraction layer

SWS_Adc_00460

SRS_BSW_00164 The Implementation of SWS_Adc_00460

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

22 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

interrupt service routines
shall be done by the
Operating System, complex
drivers or modules

SRS_BSW_00167 All AUTOSAR Basic
Software Modules shall
provide configuration rules
and constraints to enable
plausibility checks

SWS_Adc_00460

SRS_BSW_00168 SW components shall be
tested by a function defined
in a common API in the
Basis-SW

SWS_Adc_00460

SRS_BSW_00170 The AUTOSAR SW
Components shall provide
information about their
dependency from faults,
signal qualities, driver
demands

SWS_Adc_00460

SRS_BSW_00171 Optional functionality of a
Basic-SW component that is
not required in the ECU shall
be configurable at pre-
compile-time

SWS_Adc_00120, SWS_Adc_00121,
SWS_Adc_00228, SWS_Adc_00259,
SWS_Adc_00260, SWS_Adc_00265,
SWS_Adc_00266

SRS_BSW_00300 All AUTOSAR Basic
Software Modules shall be
identified by an unambiguous
name

SWS_Adc_00267

SRS_BSW_00301 All AUTOSAR Basic
Software Modules shall only
import the necessary
information

SWS_Adc_00460

SRS_BSW_00302 All AUTOSAR Basic
Software Modules shall only
export information needed by
other modules

SWS_Adc_00460

SRS_BSW_00306 AUTOSAR Basic Software
Modules shall be compiler
and platform independent

SWS_Adc_00460

SRS_BSW_00307 Global variables naming
convention

SWS_Adc_00460

SRS_BSW_00308 AUTOSAR Basic Software
Modules shall not define
global data in their header
files, but in the C file

SWS_Adc_00460

SRS_BSW_00312 Shared code shall be
reentrant

SWS_Adc_00460

SRS_BSW_00314 All internal driver modules
shall separate the interrupt
frame definition from the
service routine

SWS_Adc_00267

SRS_BSW_00323 All AUTOSAR Basic SWS_Adc_00125, SWS_Adc_00126,

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

23 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

Software Modules shall
check passed API
parameters for validity

SWS_Adc_00128, SWS_Adc_00129,
SWS_Adc_00130, SWS_Adc_00131,
SWS_Adc_00152, SWS_Adc_00225,
SWS_Adc_00241

SRS_BSW_00325 The runtime of interrupt
service routines and
functions that are running in
interrupt context shall be
kept short

SWS_Adc_00460

SRS_BSW_00326 - SWS_Adc_00460

SRS_BSW_00328 All AUTOSAR Basic
Software Modules shall avoid
the duplication of code

SWS_Adc_00460

SRS_BSW_00329 - SWS_Adc_00460

SRS_BSW_00330 It shall be allowed to use
macros instead of functions
where source code is used
and runtime is critical

SWS_Adc_00460

SRS_BSW_00334 All Basic Software Modules
shall provide an XML file that
contains the meta data

SWS_Adc_00460

SRS_BSW_00335 Status values naming
convention

SWS_Adc_00221, SWS_Adc_00222,
SWS_Adc_00224

SRS_BSW_00336 Basic SW module shall be
able to shutdown

SWS_Adc_00111

SRS_BSW_00341 Module documentation shall
contains all needed
informations

SWS_Adc_00460

SRS_BSW_00342 It shall be possible to create
an AUTOSAR ECU out of
modules provided as source
code and modules provided
as object code, even mixed

SWS_Adc_00460

SRS_BSW_00343 The unit of time for
specification and
configuration of Basic SW
modules shall be preferably
in physical time unit

SWS_Adc_00460

SRS_BSW_00344 BSW Modules shall support
link-time configuration

SWS_Adc_00460

SRS_BSW_00345 BSW Modules shall support
pre-compile configuration

SWS_Adc_00342

SRS_BSW_00346 All AUTOSAR Basic
Software Modules shall
provide at least a basic set of
module files

SWS_Adc_00267

SRS_BSW_00347 A Naming seperation of
different instances of BSW
drivers shall be in place

SWS_Adc_00460

SRS_BSW_00348 All AUTOSAR standard SWS_Adc_00267

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

24 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

types and constants shall be
placed and organized in a
standard type header file

SRS_BSW_00353 All integer type definitions of
target and compiler specific
scope shall be placed and
organized in a single type
header

SWS_Adc_00267

SRS_BSW_00355 - SWS_Adc_00460

SRS_BSW_00357 For success/failure of an API
call a standard return type
shall be defined

SWS_Adc_00460

SRS_BSW_00359 All AUTOSAR Basic
Software Modules callback
functions shall avoid return
types other than void if
possible

SWS_Adc_00082

SRS_BSW_00360 AUTOSAR Basic Software
Modules callback functions
are allowed to have
parameters

SWS_Adc_00082

SRS_BSW_00361 All mappings of not
standardized keywords of
compiler specific scope shall
be placed and organized in a
compiler specific type and
keyword header

SWS_Adc_00267

SRS_BSW_00370 - SWS_Adc_00267

SRS_BSW_00371 The passing of function
pointers as API parameter is
forbidden for all AUTOSAR
Basic Software Modules

SWS_Adc_00460

SRS_BSW_00373 The main processing
function of each AUTOSAR
Basic Software Module shall
be named according the
defined convention

SWS_Adc_00460

SRS_BSW_00375 Basic Software Modules
shall report wake-up reasons

SWS_Adc_00460

SRS_BSW_00376 - SWS_Adc_00460

SRS_BSW_00381 The pre-compile time
parameters shall be placed
into a separate configuration
header file

SWS_Adc_00267

SRS_BSW_00383 The Basic Software Module
specifications shall specify
which other configuration
files from other modules they
use at least in the description

SWS_Adc_00267

SRS_BSW_00386 The BSW shall specify the
configuration for detecting an

SWS_Adc_00107, SWS_Adc_00112,
SWS_Adc_00125, SWS_Adc_00126,

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

25 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

error SWS_Adc_00128, SWS_Adc_00129,
SWS_Adc_00130, SWS_Adc_00131,
SWS_Adc_00133, SWS_Adc_00136,
SWS_Adc_00137, SWS_Adc_00152,
SWS_Adc_00154, SWS_Adc_00164,
SWS_Adc_00165, SWS_Adc_00166,
SWS_Adc_00218, SWS_Adc_00225,
SWS_Adc_00241

SRS_BSW_00387 The Basic Software Module
specifications shall specify
how the callback function is
to be implemented

SWS_Adc_00460

SRS_BSW_00398 The link-time configuration is
achieved on object code
basis in the stage after
compiling and before linking

SWS_Adc_00460

SRS_BSW_00405 BSW Modules shall support
multiple configuration sets

SWS_Adc_00054

SRS_BSW_00406 A static status variable
denoting if a BSW module is
initialized shall be initialized
with value 0 before any APIs
of the BSW module is called

SWS_Adc_00107, SWS_Adc_00154,
SWS_Adc_00294, SWS_Adc_00295,
SWS_Adc_00297, SWS_Adc_00298,
SWS_Adc_00299, SWS_Adc_00300,
SWS_Adc_00301, SWS_Adc_00302

SRS_BSW_00412 References to c-
configuration parameters
shall be placed into a
separate h-file

SWS_Adc_00267

SRS_BSW_00413 An index-based accessing of
the instances of BSW
modules shall be done

SWS_Adc_00460

SRS_BSW_00414 The init function may have
parameters

SWS_Adc_00054, SWS_Adc_00342

SRS_BSW_00415 Interfaces which are
provided exclusively for one
module shall be separated
into a dedicated header file

SWS_Adc_00267

SRS_BSW_00416 The sequence of modules to
be initialized shall be
configurable

SWS_Adc_00460

SRS_BSW_00417 Software which is not part of
the SW-C shall report error
events only after the DEM is
fully operational.

SWS_Adc_00460

SRS_BSW_00423 BSW modules with
AUTOSAR interfaces shall
be describable with the
means of the SW-C
Template

SWS_Adc_00460

SRS_BSW_00424 BSW module main
processing functions shall
not be allowed to enter a wait
state

SWS_Adc_00460

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

26 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

SRS_BSW_00425 The BSW module description
template shall provide means
to model the defined trigger
conditions of schedulable
objects

SWS_Adc_00460

SRS_BSW_00426 BSW Modules shall ensure
data consistency of data
which is shared between
BSW modules

SWS_Adc_00460

SRS_BSW_00427 ISR functions shall be
defined and documented in
the BSW module description
template

SWS_Adc_00460

SRS_BSW_00428 A BSW module shall state if
its main processing
function(s) has to be
executed in a specific order
or sequence

SWS_Adc_00460

SRS_BSW_00429 BSW modules shall be only
allowed to use OS objects
and/or related OS services

SWS_Adc_00460

SRS_BSW_00432 Modules should have
separate main processing
functions for read/receive
and write/transmit data path

SWS_Adc_00460

SRS_BSW_00433 Main processing functions
are only allowed to be called
from task bodies provided by
the BSW Scheduler

SWS_Adc_00460

SRS_BSW_00435 - SWS_Adc_00267

SRS_BSW_00436 - SWS_Adc_00267

SRS_SPAL_00157 All drivers and handlers of
the AUTOSAR Basic
Software shall implement
notification mechanisms of
drivers and handlers

SWS_Adc_00057, SWS_Adc_00058,
SWS_Adc_00082, SWS_Adc_00083,
SWS_Adc_00104

SRS_SPAL_12056 All driver modules shall allow
the static configuration of
notification mechanism

SWS_Adc_00080, SWS_Adc_00084,
SWS_Adc_00085

SRS_SPAL_12057 All driver modules shall
implement an interface for
initialization

SWS_Adc_00054

SRS_SPAL_12063 All driver modules shall only
support raw value mode

SWS_Adc_00113

SRS_SPAL_12064 All driver modules shall raise
an error if the change of the
operation mode leads to
degradation of running
operations

SWS_Adc_00460

SRS_SPAL_12067 All driver modules shall set
their wake-up conditions

SWS_Adc_00460

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

27 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

depending on the selected
operation mode

SRS_SPAL_12068 The modules of the MCAL
shall be initialized in a
defined sequence

SWS_Adc_00460

SRS_SPAL_12069 All drivers of the SPAL that
wake up from a wake-up
interrupt shall report the
wake-up reason

SWS_Adc_00460

SRS_SPAL_12077 All drivers shall provide a
non blocking implementation

SWS_Adc_00460

SRS_SPAL_12078 The drivers shall be coded in
a way that is most efficient in
terms of memory and
runtime resources

SWS_Adc_00460

SRS_SPAL_12092 The driver's API shall be
accessed by its handler or
manager

SWS_Adc_00460

SRS_SPAL_12125 All driver modules shall only
initialize the configured
resources

SWS_Adc_00056

SRS_SPAL_12129 The ISRs shall be
responsible for resetting the
interrupt flags and calling the
according notification
function

SWS_Adc_00078

SRS_SPAL_12163 All driver modules shall
implement an interface for
de-initialization

SWS_Adc_00110, SWS_Adc_00111

SRS_SPAL_12169 All driver modules that
provide different operation
modes shall provide a
service for mode selection

SWS_Adc_00460

SRS_SPAL_12265 Configuration data shall be
kept constant

SWS_Adc_00460

SRS_SPAL_12267 Wakeup sources shall be
initialized by MCAL drivers
and/or the MCU driver

SWS_Adc_00460

SRS_SPAL_12448 All driver modules shall have
a specific behavior after a
development error detection

SWS_Adc_00107, SWS_Adc_00112,
SWS_Adc_00125, SWS_Adc_00126,
SWS_Adc_00128, SWS_Adc_00129,
SWS_Adc_00130, SWS_Adc_00131,
SWS_Adc_00133, SWS_Adc_00136,
SWS_Adc_00137, SWS_Adc_00152,
SWS_Adc_00154, SWS_Adc_00164,
SWS_Adc_00165, SWS_Adc_00166,
SWS_Adc_00225, SWS_Adc_00241

SRS_SPAL_12461 Specific rules regarding
initialization of controller
registers shall apply to all
driver implementations

SWS_Adc_00054, SWS_Adc_00246,
SWS_Adc_00247, SWS_Adc_00248,
SWS_Adc_00249, SWS_Adc_00250

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

28 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

SRS_SPAL_12463 The register initialization
settings shall be combined
and forwarded

SWS_Adc_00460

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

29 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

7 Functional specification

7.1 General behavior

7.1.1 Background & Rationale

The table below shows a list of possible desired functionalities of an ADC user and in
which way they are provided by the ADC module. Furthermore the table also depicts
a possible realization and the mapping of these functionalities to the capabilities of a
commercial microcontroller (C16x).

Desired Functionality ADC Driver Function Example: C16x
Derivate Wording

Just one conversion result of
a single channel.

Software triggered one-shot conversion
where the converted group consists of
exactly one channel.

Fixed channel, single
conversion, software
trigger.

Cyclic conversion of a single
channel.

Hardware triggered one-shot conversion
where the converted group consists of
exactly one channel.

Fixed channel, single
conversion, hardware
trigger.

Repeated conversion of a
single channel.

Continuous conversion where the
converted group consists of exactly one
channel.

Fixed channel,
continuous conversion.

Just one conversion result of
each channel within a group.

Software triggered one-shot conversion
where the converted group consists of
more than one channel.

Auto scan, single
conversion, software
trigger.

Cyclic conversion of each
channel within a group.

Hardware triggered one-shot conversion
where the converted group consists of
more than one channel.

Auto scan, single
conversion, hardware
trigger.

Repeated conversion of
each channel within a group.

Continuous conversion where the
converted group consists of more than
one channel.

Auto scan, continuous
conversion.

Table 2: Different possibilities of One-shot and Continuous conversions

7.1.2 Requirements

[SWS_Adc_00090] ⌈The ADC module shall allow grouping of one or more ADC

channels into so called ADC Channel groups.⌋ (SRS_Adc_12447)

[SWS_Adc_00091] ⌈The ADC module’s configuration shall be such that an ADC

Channel group contains at least one ADC Channel.⌋ (SRS_Adc_12447)

[SWS_Adc_00451] ⌈The ADC module's configuration shall be such that an ADC
Channel group contains exactly one ADC Channel if the global limit checking feature

is enabled and the channel specific limit checking is enabled for the ADC Channel.⌋
()

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

30 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

[SWS_Adc_00092] ⌈The ADC module shall allow the assignment of an ADC

channel to more than one group.⌋ (SRS_Adc_12818)

[SWS_Adc_00277] ⌈The ADC module’s configuration shall be such that all channels

contained in one ADC Channel group shall belong to the same ADC HW Unit.⌋
(SRS_Adc_12447)

The ADC module supports the following conversion modes:

 [SWS_Adc_00380] ⌈The ADC module shall support the conversion mode
“One-shot Conversion” for all ADC Channel groups. One-shot conversion
means that exactly one conversion is executed for each channel configured

for the group being converted.⌋ ()

 [SWS_Adc_00381] ⌈The ADC module shall support the conversion mode
“Continuous Conversion1” for all ADC Channel groups with trigger source
software. “Continuous Conversion” means that after the conversion has been
completed, the conversion of the whole group is repeated. The conversions of
the individual ADC channels within the group as well as the repetition of the
whole group don’t need any additional trigger events to be executed.
Converting the individual channels within the group can be done sequentially

or in parallel depending on hardware and/or software capabilities.⌋ ()

The ADC module supports the following start conditions or trigger sources:

 [SWS_Adc_00356] ⌈The ADC module shall support the start condition
“Software API Call” for all conversion modes. The trigger source “Software
API Call” means that the conversion of an ADC Channel group is

started/stopped with a service provided by the ADC module.⌋
(SRS_Adc_12817, SRS_Adc_12364)

 [SWS_Adc_00357] ⌈The ADC module shall support the start condition
“Hardware Event” for groups configured in One-Shot conversion mode. The
trigger source “Hardware Event” means that the conversion of an ADC
Channel group can be started by a hardware event, e.g. an expired timer or an

edge detected on an input line.⌋ (SRS_Adc_12817, SRS_Adc_12364)

[SWS_Adc_00279] ⌈The ADC module shall allow configuring exactly one trigger

source for each ADC Channel group.⌋ (SRS_Adc_12817)

The ADC module supports the following result access modes:

 [SWS_Adc_00382] ⌈The ADC module shall support result access using the
API function Adc_GetStreamLastPointer. Calling Adc_GetStreamLastPointer
informs the user about the position of the group conversion results of the latest
conversion round in the result buffer and about the number of valid conversion

1
 On some microcontroller also called „auto-scan mode“.

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

31 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

results in the result buffer. The result buffer is an external buffer provided from

the application.⌋ (SRS_Adc_12280)
Note: The function is used for both types of groups, configured in Streaming
Access Mode and in Single Access Mode (Single Access Mode is handled
equal to Streaming Access Mode with Streaming Counter equal to 1).

 [SWS_Adc_00383] ⌈The ADC module shall support result access using the
API function Adc_ReadGroup, if the generation of this API function is statically
configured. Calling Adc_ReadGroup copies the group conversion results of
the latest conversion round to an application buffer which start address is

specified as API parameter of Adc_ReadGroup.⌋ (SRS_Adc_12280)
Note: The function is used for both types of groups, configured in Streaming
Access Mode and in Single Access Mode.

[SWS_Adc_00140] ⌈The ADC module shall guarantee the consistency of the

returned result value for each completed conversion.⌋ (SRS_Adc_12280)

Note:
The consistency of the group channel results can be obtained with the following
methods on the application side:
 Using group notification mechanism
 Polling via API function Adc_GetGroupStatus
In any case, new result data must be read out from the result buffer (e.g. via
Adc_ReadGroup) before they are overwritten. If the function Adc_GetGroupStatus
reports state ADC_STREAM_COMPLETED and conversions for the same group are
still ongoing (continuous conversion or hardware triggered conversion), the user is
responsible to access the results in the result buffer, before the ADC driver
overwrites the group result buffer.

[SWS_Adc_00384] ⌈The ADC module’s environment shall ensure that a conversion
has been completed for the requested group before requesting the conversion

result.⌋ ()

Note: If no conversion has been completed for the requested channel group (e.g.
because the conversion of the ADC Channel group has been stopped by the user)
the value returned by the ADC module will be arbitrary (Adc_GetStreamLastPointer
will return 0 and read NULL_PTR; Adc_ReadGroup will return E_NOT_OK).

[SWS_Adc_00288] ⌈The ADC module shall allow the configuration of a priority level

for each channel group.⌋ (SRS_Adc_12820)

Note: This implies a prioritization mechanism, implemented in SW, or where
available, supported by the HW. Groups with trigger source HW are prioritized
always with the HW prioritization mechanism.

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

32 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

[SWS_Adc_00310] ⌈The ADC module’s priority mechanism shall allow aborting and

restarting of channel group conversions.⌋ (SRS_Adc_12820)

[SWS_Adc_00345] ⌈The ADC module’s priority mechanism shall allow suspending

and resuming of channel group conversions.⌋ ()

[SWS_Adc_00430] ⌈The ADC module shall allow a group specific configuration
whether the abort/restart or suspend/resume mechanism is used for interrupted

channel groups.⌋ ()

Note: In contrast to the software controlled abort/restart or suspend/resume
mechanism on channel group level, the ADC hardware can support abort/restart and
suspend/resume mechanism on ADC channel level. It is up to the implementation
which of both mechanisms is implemented on channel level.

[SWS_Adc_00311] ⌈The ADC module’s priority mechanism shall allow the queuing

of requests for different groups.⌋ ()

Note: Higher priority groups can abort or suspend lower priority groups. In this case
the priority handler should put the interrupted channel group conversion in the queue
and this channel group conversion will be restarted or resumed later, transparently to
the user.

[SWS_Adc_00312] ⌈In the ADC module’s priority mechanism the lowest priority is

0.⌋ ()

[SWS_Adc_00289] ⌈The ADC module’s priority mechanism shall allow the

configuration of 256 priority levels (0...255).⌋ (SRS_Adc_12820)

[SWS_Adc_00315] ⌈The ADC module shall support the static configuration option to

disable the priority mechanism.⌋ ()

[SWS_Adc_00340] ⌈The ADC module shall support the static configuration option to
enable the priority mechanism ADC_PRIORITY_HW_SW, using both hardware and
software prioritization mechanism. If the hardware does not provide the hardware
prioritization mechanism a pure software prioritization mechanism shall be

implemented.⌋ (SRS_Adc_12820)

[SWS_Adc_00341] ⌈If the priority mechanism is supported by the hardware: The
ADC module shall support the static configuration option ADC_PRIORITY_HW to

enable the priority mechanism using only the hardware priority mechanism.⌋
(SRS_Adc_12820)

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

33 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

Note: If hardware priority mechanism is selected, also groups with software trigger
source are prioritized from the hardware prioritization mechanism.

[SWS_Adc_00339] ⌈If hardware priority mechanism is supported and selected: The
ADC module shall allow the mapping of the configured priority levels (0-255) to the

available hardware priority levels.⌋ ()

Note: The specific implementation of the ADC module describes restrictions
concerning the available hardware priority levels and the possible mapping of the
available hardware priorities to the priorities of the ADC channel groups.

[SWS_Adc_00332] ⌈If the priority mechanism is active, the ADC module shall
support a queuing of conversion requests. The conversion requsts shall be queued
when, if channel group with higher priority is requested for conversion while lower
priority channel group conversion is ongoing (here lower priority group shall be
queued) OR channel group conversion requests can not immediately be handled,

because a higher priority channel group conversion is ongoing.⌋ ()

[SWS_Adc_00417] ⌈If the priority mechanism is active, the ADC module shall
handle channel group conversion requests for groups with the same priority level, in

a ‘first come first served’ order.⌋ ()

[SWS_Adc_00333] ⌈If the priority mechanism is not active and if the static
configuration parameter AdcEnableQueuing is set to ON, the ADC module shall
support a queuing of conversion requests and shall service the software groups in a

‘first come first served’ order.⌋ ()

Note: Software conversion requests storage shall be supported in a software
implemented queue or by the hardware.

[SWS_Adc_00335] ⌈If the queuing mechanism is active (priority mechanism active
or queuing explicitly activated), the ADC module shall store each software conversion

request per channel group at most one time in the software queue.⌋ ()

Note: The ADC module shall only store one conversion request per channel group,
not multiple requests, which may occur if a high priority long-term conversion blocks
the hardware.

[SWS_Adc_00336] ⌈ ‘Enable hardware trigger requests’, generated with API

function Adc_EnableHardwareTrigger, shall not be stored in any queue.⌋ ()

[SWS_Adc_00337] ⌈The hardware prioritization mechanism shall be used in case of

hardware triggered conversion requests.⌋ ()

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

34 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

[SWS_Adc_00338] ⌈The ADC module shall not store additional software conversion

requests for the same group, whose group status is not equal to ADC_IDLE.⌋ ()

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

35 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

[SWS_Adc_00060] ⌈The ADC module shall call the group notification function,
whenever a conversion of all channels of the requested group is completed and if the

notification is configured and enabled.⌋ (SRS_Adc_12364)

[SWS_Adc_00413] ⌈The ADC module functions shall be reentrant, if the functions
are called for different channel groups. This requirement shall be applicable for all
API functions, except Adc_Init, Adc_DeInit, Adc_GetVersionInfo,
Adc_SetPowerState, Adc_GetTargetPowerState, Adc_GetCurrentPowerState and

Adc_PreparePowerState.⌋ ()

Note: The reentrancy of the API functions applies only if the caller takes care that
there is no simultaneous usage of the same group.

[SWS_Adc_00503] ⌈Simple read calls, as implemented in Adc_ReadGroup and
Adc_GetGroupStatus, shall always be reentrant even if the functions are called for
same channel groups. It is up to the implementation to use adequate protection

mechanisms (e.g. disabling/enabling interrupts.⌋ ()

Note: Calling Adc_ReadGroup can implicitely change the group status.

[SWS_Adc_00414] ⌈The ADC module's environment shall check the integrity (see
Note SWS_Adc_00413) if several calls for the same ADC group are used during

runtime in different tasks or ISR's.⌋ ()

[SWS_Adc_00415] ⌈The ADC module shall not check the integrity (see Note
SWS_Adc_00413) if several calls for the same ADC group are used during runtime in

different tasks or ISRs.⌋ ()

[SWS_Adc_00445] ⌈The ADC module shall allow configuring limit checking for ADC

Channels. ⌋ ()

[SWS_Adc_00446] ⌈If limit checking is active for an ADC Channel, only ADC
conversion results, which are in the configured range, are taken into account for

updating the user specified ADC result buffer.⌋ ()

 [SWS_Adc_00447] ⌈If limit checking is active for an ADC Channel, only ADC
conversion results, which are in the configured range, are taken into account for

triggering state transitions of the ADC group status.⌋ ()

[SWS_Adc_00448] ⌈If continuous conversion mode with SW trigger source is
selected: if limit checking is active for an ADC Channel, ADC conversion results,
which are not in the configured range, are neglected from the ADC driver, and the

conversion is reiterated.⌋ ()

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

36 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

 [SWS_Adc_00449] ⌈If one-shot conversion mode with SW trigger source is
selected: if limit checking is active for an ADC Channel, an ADC conversion result,
which is not in the configured range, is neglected from the ADC driver, and the ADC

group, containing the ADC channel, will stay in state ADC_BUSY.⌋ ()

Note: Before a new SW triggered one-shot conversion can be reissued, it is required
to set the ADC group status to ADC_IDLE, using the API
Adc_StopGroupConversion().

[SWS_Adc_00450] ⌈If one-shot conversion mode with HW trigger source is
selected: if limit checking is active for an ADC Channel, ADC conversion results,
which are not in the configured range, are neglected from the ADC driver, and the

conversion is reissued, triggered by the next HW trigger.⌋ ()

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

37 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

7.1.3 ADC Buffer Access Mode Example

Figure 2: Example for Group and Result Buffer configuration – Result pointer initialization and
calling Adc_GetStreamLastPointer for accessing results of latest conversion round in the

Result Buffer

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

38 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

Figure 3: Example for calling Adc_ReadGroup which copies results from Result Buffer to
optional Read Buffer

7.1.3.1 Example: Configuration

The example configuration consists of three ADC groups. Group 1 consists of 2
channels, group 2 and group 3 consist of one channel each. For group 1 and 2 the
group access mode ADC_ACCESS_MODE_STREAMING is configured. The group
access mode of group 3 is ADC_ACCESS_MODE_SINGLE. The ADC driver will
store the conversion results of group 1-3 in three application buffers, accessed with
three configured ADC_RESULT_POINTER :
G1_ResultPtr, G2_ResultPtr and G3_ResultPtr.

7.1.3.2 Example: Initialization

The user has to provide application result buffers for the ADC group results. One
buffer is required for each group. The buffer size depends on the number of group
channels, the group access mode and from the number of streaming samples, if
streaming access mode is selected. Before starting a group conversion, the user has
to initialize the group result pointer using API function Adc_SetupResultBuffer which
initializes the group result pointer to point to the specified application result buffer.

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

39 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

7.1.3.3 Example: Adc_GetStreamLastPointer Usage

The ADC driver stores the conversion results of group G1, G2 and G3 in the
according result buffer G1_ResultBuffer[], G2_ResultBuffer[] and G3_ResultBuffer[].
A direct access from the ADC API functions to the ADC hardware result register is
not supported from the ADC driver.

The user provides three pointers G1_SamplePtr, G2_SamplePtr and G3_SamplePtr
which will point to the ADC application result buffer after calling
Adc_GetStreamLastPointer. Precisely pointer G1_SamplePtr points, after calling
Adc_GetStreamLastPointer, to the latest G1_CH0 result of the latest completed
conversion round (G1_CH0 is the first channel in G1 group definition).The application
result buffer layout is shown in Figure 2. The application result buffer of group 1 holds
three times the streaming results of G1_CH0 and then three times the streaming
results of G1_CH1. Knowing the application result buffer layout, the user is able to
access all group channel results of the latest conversion round. G2_SamplePtr and
G3_SamplePtr are also aligned, after calling Adc_GetStreamLastPointer, to point to
the latest result of the first group channel of the according group. Both groups have
only one channel. G2_SamplePtr points to one of the G2_CH2 results (the latest
result). Because group 3 is configured in single access mode, G3_SamplePtr points
always to G3_CH3.

Adc_GetStreamLastPointer returns the number of valid samples per channel, stored
in the application result buffer (number of complete group conversion rounds). If the
return value is equal to the configured parameter ‘number of streaming samples’, all
conversion results in the streaming buffer are valid. If the return value is 0, no
conversion results are available in the streaming buffer (the sample pointer will be
aligned to NULL).

To enable Adc_GetStreamLastPointer to align the sample pointer (G1_SamplePtr,
G2_SamplePtr and G3_SamplePtr) to point to the latest channel result, the API is
defined to pass a pointer to the result pointer instead the result pointer itself.

7.1.3.4 Example: Adc_ReadGroup Usage

If the optional API function Adc_ReadGroup is enabled, the user has to provide
additional buffers for the selected groups, which can hold the results of one group
conversion round. Calling Adc_ReadGroup copies the latest results from the
application result buffer to the application read group buffer. In the example, one
application read buffer (G2_G3_ReadBuffer) is used for group G2 and G3.

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

40 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

7.2 Conversion processing and interaction

7.2.1 Background & Rationale

The following examples specify the order of channel conversion depending on group
and conversion type:

 Example 1: Channel group containing channels [CH0, CH1, CH2, CH3, and
CH4] is configured in Continuous conversion mode. After finishing each scan,
the notification (if enabled) is called. Then a new scan is started automatically.

 Example 2: Channel group containing channels [CH0, CH1, CH2, CH3, and
CH4] is configured in One-Shot conversion mode. After finishing the scan the
notification (if enabled) is called.

 Example 3: Channel group containing channel [CH3] is configured in
Continuous conversion mode. After finishing each scan the notification (if
enabled) is called. Then a new scan is started automatically.

 Example 4: Channel group containing channel [CH4] is configured in One-
Shot conversion mode. After finishing the scan the notification (if enabled) is
called.

Figure 4: Conversion Mode behavior examples

Channel Type
Conversion

Type
Process

Single Channel

Group

Multi-channel

Group

Multi-channel

Group

Single Channel

Group

Continuous

One-Shot

Continuous

One-Shot

CH0 CH1 CH2 CH3 CH4

CH3CH3 CH3 CH3CH3 CH3

CH2CH0 CH1 CH2 CH3 CH4CH0 CH1 CH2 CH3 CH4 CH0 CH1

CH4

ADC Channel

being converted
CH4

Start of conversions

(hardware or

sofware trigger)

Notification

(if enabled)
Channels or groups

continue to be converted
CH2

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

41 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

7.2.2 Requirements

[SWS_Adc_00280] ⌈The ADC module shall convert only one ADC Channel group
per ADC HW Unit at a time. The ADC module shall not support the concurrent
conversion of different (even exclusive) ADC Channel groups on the same ADC HW

Unit.⌋ (SRS_Adc_12447)

Note: Concurrent conversion of ADC Channel groups on different ADC HW Units
may be possible, depending on the capabilities of the hardware. Also concurrent
conversion of individual channels within one channel group may be possible if
supported by the hardware.

Note: If a channel shall be used in different conversion modes (e.g. continuous
conversion mode during normal operation and one-shot conversion mode for a
special conversion at a dedicated point in time), this channel shall be assigned to
different groups configured with the respective conversion modes.

Note: In order to request the conversion of a channel shared between two groups,
the ADC user has to stop the conversion of the first group containing the specified
channel and then start the conversion of the second group containing the specified
channel.

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

42 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

7.3 State Diagrams

The ADC module has a state machine that is shown in the following figures. The
states are group specific and not module specific. The diagrams show all possible
configuration options for ADC groups. The state transitions depend on the ADC
group configuration.

7.3.1 ADC State Diagram for One-Shot/Continuous Group Conversion Mode

Figure 5: ADC State Diagram for One-Shot/Continuous Group Conversion Mode

ADC_UNINIT

ADC_INIT

[ONE_SHOT]

[CONTINUOUS]

Reset

ONE-SHOT

CONTINUOUS

The 'concurrent states' ONE-SHOT and CONTINUOUS are configuration options for

ADC groups. One ADC group can be only in one of the two states.

Adc_DeInit

Adc_Init

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

43 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

7.3.2 ADC State Diagram for HW/SW Trigger in One-Shot Group Conversion
Mode

Figure 6: State Diagram HW/SW Trigger in One-Shot Group Conversion Mode

ONE-SHOT

[SW-TRIGGER]

[HW-TRIGGER]

HW-TRIGGER

[SINGLE-ACCESS]

[STREAMING-ACCESS]

SW-TRIGGER

SINGLE-ACCESS

SINGLE-ACCESS

STREAMING-ACCESS

The 'concurrent states' SW-TRIGGER and HW-TRIGGER are configuration options for

ADC groups. One ADC group can be only in one of the two states.

The 'concurrent states' SINGLE-ACCESS and STREAMING-ACCESS are configuration options for

ADC groups. One ADC group can be only in one of the two states.

Initial

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

44 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

7.3.3 ADC State Diagram for SW Trigger in Continuous Conversion Mode

Figure 7: State Diagram SW Trigger in Continuous Conversion Mode

CONTINUOUS

SW-TRIGGER

[SINGLE-ACCESS]

[STREAMING-ACCESS]

SINGLE-ACCESS

STREAMING-ACCESS

The 'concurrent states' SINGLE-ACCESS and STREAMING-ACCESS are configuration options for

ADC groups. One ADC group can be only in one of the two states.

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

45 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

7.3.4 ADC State Diagram for One-Shot Conversion Mode, Software Trigger

Source, Single Access Mode

Figure 8: State Diagram On-Shot, SW Trigger, Single Access

ADC_IDLE

ADC_BUSY

ADC_STREAM_COMPLETED

ADC group configuration:

- one-shot conversion

- software trigger source

- single access

Adc_StartGroupConversion

Adc_StopGroupConversion

Adc_ReadGroup,

Adc_GetStreamLastPointer

conversion of all group

channels completed

Adc_ReadGroup,

Adc_GetStreamLastPointer

Adc_StopGroupConversion
Adc_StartGroupConversion

Adc_ReadGroup,

Adc_GetStreamLastPointer

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

46 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

7.3.5 ADC State Diagram for One-Shot Conversion, Hardware Trigger Source,

Single Access Mode

Figure 9: State Diagram One-Shot, HW Trigger, Single Access

ADC_IDLE

ADC_BUSY

ADC_STREAM_COMPLETED

ADC group configuration:

- one-shot conversion

- hardware trigger source

- single access

Adc_GetStreamLastPointer,

Adc_ReadGroup

Adc_DisableHardwareTrigger

conversion of all group

channels completed

Adc_ReadGroup,

Adc_GetStreamLastPointer

Adc_DisableHardwareTriggerAdc_EnableHardwareTrigger

Adc_ReadGroup,

Adc_GetStreamLastPointer

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

47 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

7.3.6 ADC State Diagram for One-Shot Conversion Mode, Hardware Trigger

Source, Linear and Circular Streaming Access Mode

Figure 10: State Diagram One-Shot, HW Trigger, Streaming Access

ADC_IDLE

ADC_BUSY ADC_COMPLETED

ADC_STREAM_COMPLETED

ADC group configuration:

- one-shot conversion

- hardware trigger source

- streaming access linear and circular

Adc_EnableHardwareTrigger

[linear streaming buffer]

Adc_ReadGroup,

Adc_GetStreamLastPointer

[circular streaming buffer]

Adc_ReadGroup,

Adc_GetStreamLastPointer

[l inear streaming buffer]

Adc_DisableHardwareTrigger

streaming buffer

fi l led completely

Adc_ReadGroup,

Adc_GetStreamLastPointer

Adc_DisableHardwareTrigger

streaming buffer

fi l led completely

conversion of all group channels completed [remaining nr of streaming samples >= 1]
Adr_ReadGroup,

Adc_GetStreamLastPointer

Adc_DisableHardwareTrigger

Adc_EnableHardwareTrigger

Adc_ReadGroup,

Adc_GetStreamLastPointer

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

48 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

7.3.7 ADC State Diagram for Continuous Conversion Mode, Software Trigger

Source, Single Access Mode

Figure 11: State Diagram Continuous, SW Trigger, Single Access

ADC_IDLE

ADC_BUSY

ADC_STREAM_COMPLETED

ADC group configuration:

- continuous conversion

- software trigger source

- single access

Adc_GetStreamLastPointer,

Adc_ReadGroup

Adc_StopGroupConversion

conversion of all group channels

completed

Adc_ReadGroup,

Adc_GetStreamLastPointer

Adc_StopGroupConversionAdc_StartGroupConversion

Adc_ReadGroup,

Adc_GetStreamLastPointer

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

49 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

7.3.8 ADC State Diagram for Continuous Conversion Mode, Software Trigger

Source, Linear and Circular Streaming Access Mode

Figure 12: State Diagram Conversion, SW Trigger, Streaming Access

ADC_IDLE

ADC_BUSY

ADC_STREAM_COMPLETED

ADC_COMPLETED

ADC group configuration:

- continuous conversion

- software trigger source

- streaming access linear and circular

streaming buffer

fi l led completely

Adc_ReadGroup,

Adc_GetStreamLastPointer

Adc_StopGroupConversion

Adc_StartGroupConversion

[linear streaming buffer]

Adc_ReadGroup,

Adc_GetStreamLastPointer

[circular streaming buffer]

Adc_ReadGroup,

Adc_GetStreamLastPointer

[l inear streaming buffer]

Adc_StopGroupConversion

conversion of all group channels completed

[remaining nr of streaming samples >= 1]

streaming buffer

fi l led completely

Adc_ReadGroup,

Adc_GetStreamLastPointer

Adc_StopGroupConversionAdc_StartGroupConversion

Adc_ReadGroup,

Adc_GetStreamLastPointer

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

50 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

7.4 Support and management of HW low power states

Some ADC HW Module allow to be set in some operation modes which reduce the
power consumption, eventually at the cost of a slower reaction time, a lower
performance or eventually complete unavailability. Each ADC module could support
one or more low power operation modes, considering the Full Power Mode as always
present and set per default at startup.

7.4.1 Background

The ADC Driver offers power state control APIs and a background elaboration
mechanism to handle asynchronous power state change processes (i.e. power state
changes which are not immediately complete as the they are requested, but need
some longer operations).

It is assumed that all constraints deriving from ECU and SW architecture are
already satisfied by the upper layers (Application, Mode Management in the service
layer, IoHwAbstraction components dealing with peripheral control), thus the scope
of control is limited to the ADC HW peripheral.

A check on the operation sequence is executed by the ADC Driver in order to
avoid requesting a different power state before the previous request is still being
processed or activating a power state when no preparation for the same has been
requested.

The ADC module shall support power control capabilities as an optional
function. This module neither mandates to use only power control enabled MCUs nor
to configure the same. Rather it proposes a way to handle power states if this is
supported by the suppliers.

7.4.2 Requirements

SWS_Adc_00462 The ADCDriver shall support power state changes and its APIs

when the corresponding configuration parameter AdcLowPowerStatesSupport is

set to TRUE.

SWS_Adc_00463 If the parameter AdcLowPowerStatesSupport is enabled then

the APIs Adc_PreparePowerState, Adc_SetPowerState,

Adc_GetCurrentPowerState, Adc_GetTargetPowerState shall be

generated and shall be used to manage and get informations on power state
transitions.

SWS_Adc_00464 The APIs Adc_GetTargetPowerState and

Adc_GetCurrentPowerState shall be respectively used to gather information on

the requested and the target ADC power states.

SWS_Adc_00465 The API Adc_PreparePowerState shall be used to start a

power state transition.
SWS_Adc_00466 After preparation for a power state is achieved by API

Adc_PreparePowertState then the API Adc_SetPowerState shall be used to

achieve the requested power state of the ADC module.

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

51 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

In order to avoid incoherent power state conditions, some APIs

(Adc_SetPowerState, Adc_PreparePowerState) have to be called in a given

sequence, otherwise an error (if DET tracing is enabled) is stored and the action is
interrupted. The ADC Driver keeps track of the call sequence.

SWS_Adc_00467 ADC Driver shall keep track of the call order of the APIs

Adc_SetPowerState and Adc_PreparePowerState. In case the first

one is called before the second one is called, a DET entry shall be

stored and the action shall not be executed.

SWS_Adc_00469 The Adc Module shall keep track of the current and of the target

powerstate if the parameter AdcLowPowerStatesSupport is set to TRUE.

SWS_Adc_00470 After the Initiliazation the power state of the module shall be

always FULL POWER if the AdcLowPowerStatesSupport is set to TRUE.

SWS_Adc_00471 The ADC Driver shall support synchronuous and asynchronous
power state transitions, depending on the value of the configuration parameter

AdcPowerStateAsynchTransitionMode.

SWS_Adc_00472 In case the configuration parameter
AdcPowerStateAsynchTransitionMode is set to FALSE, the preparation process and
the setting process shall be considered concluded as soon as the respective APIs
return.

SWS_Adc_00473 In case the configuration parameter
AdcPowerStateAsynchTransitionMode is set to TRUE, the preparation process shall
continue in background after the relative API returns and its completion shall be
notified by means of the configured callback.

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

52 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

7.5 Version check

7.5.1 Background & Rationale

The integration of incompatible files is to be avoided. Minimum implementation is the
version check of the header file inside the .c file (version numbers of .c and .h files
must be identical).

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

53 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

Type of error Relevance Related error code Value [hex]

Adc_Init has not been called prior
to another function call (see
SWS_Adc_00154,
SWS_Adc_00294,
SWS_Adc_00295,
SWS_Adc_00296,
SWS_Adc_00297,
SWS_Adc_00298,
SWS_Adc_00299,
SWS_Adc_00300,
SWS_Adc_00301,
SWS_Adc_00302,
SWS_Adc_00486,
SWS_Adc_00491,
SWS_Adc_00493,
SWS_Adc_00496,.

Development ADC_E_UNINIT 0x0A

Adc_StartGroupConversion was
called while another conversion is
already running or a HW trigger is
already enabled or a request is
already stored in the queue (see
SWS_Adc_00346,
SWS_Adc_00348, ADC350,
SWS_Adc_00351, ADC352).

Adc_EnableHardwareTrigger
was called while a conversion is
ongoing or a HW trigger is already
enabled or the maximum number of
HW triggers is already enabled
(see SWS_Adc_00321,
SWS_Adc_00349,
SWS_Adc_00353

Adc_DeInit was called while a
conversion is still ongoing (see
SWS_Adc_00112).

Development ADC_E_BUSY 0x0B

Adc_StopGroupConversion was
called while no conversion was
running (see SWS_Adc_00241).
Adc_DisableHardwareTrigger was
called while group is not enabled
(see SWS_Adc_00304)

Development ADC_E_IDLE 0x0C

Adc_Init has been called while ADC
is already initialized (see
SWS_Adc_00107)

Development ADC_E_ALREADY_INITIAL

IZED

0x0D

Adc_Init has been called with
incorrect configuration parameter
(configuration pointer is NULL_PTR
for post-build configuration
SWS_Adc_00343 or configuration
pointer is not equal NULL_PTR for
pre-compile
configurationSWS_Adc_00344)

Development ADC_E_PARAM_CONFIG 0x0E

Adc_SetupResultBuffer or
Adc_GetVersionInfo called with

Development ADC_E_PARAM_POINTER 0x14

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

54 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

invalid data buffer pointer,
NULL_PTR passed

SWS_Adc_00269,
SWS_Adc_00458

Invalid group ID requested
(see SWS_Adc_00125,
SWS_Adc_00126,
SWS_Adc_00152,
SWS_Adc_00128,
SWS_Adc_00129,
SWS_Adc_00130,
SWS_Adc_00131,
SWS_Adc_00225,
SWS_Adc_00218).

Development ADC_E_PARAM_GROUP 0x15

Adc_EnableHardwareTrigger or
Adc_DisableHardwareTrigger
called on a group with conversion
mode configured as continuous
(see SWS_Adc_00281,
SWS_Adc_00282).

Development ADC_E_WRONG_CONV_MODE 0x16

Adc_StartGroupConversion or
Adc_StopGroupConversion called
on a group with trigger source
configured as hardware
(see SWS_Adc_00133,
SWS_Adc_00164).

Adc_EnableHardwareTrigger or
Adc_DisableHardwareTrigger
called on a group with trigger
source configured as software API
(see SWS_Adc_00136,
SWS_Adc_00137).

Development ADC_E_WRONG_TRIGG_SRC 0x17

Enable/disable notification function
for a group whose configuration set
has no notification available (see
SWS_Adc_00165,
SWS_Adc_00166).

Development ADC_E_NOTIF_CAPABILIT

Y

0x18

Conversion started and result
buffer pointer is not initialized
(see SWS_Adc_00424,
SWS_Adc_00425).

Development ADC_E_BUFFER_UNINIT 0x19

One or more ADC group/channel
not in IDLE state
SWS_Adc_00486

Development ADC_E_NOT_DISENGAGED 0x1A

Unsupported power state request
SWS_Adc_00488,
SWS_Adc_00497

Development ADC_E_POWER_STATE_NOT

_SUPPORTED

0x1B

Requested power state can not be
reached directly
SWS_Adc_00489

Development ADC_E_TRANSITION_NOT_

POSSIBLE

0x1C

ADC not prepared for target power
state
SWS_Adc_00490

Development ADC_E_PERIPHERAL_NOT_

PREPARED

0x1D

-- Production -- Assigned by

DEM

Table 3: Error classification

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

55 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

7.6 Error detection

Function Criteria of detection Related error code

Adc_Init ADC driver and hardware
already initialized.

ADC initialization API called with
incorrect configuration pointer

ADC_E_ALREADY_INITIALIZED

ADC_E_PARAM_CONFIG

Adc_DeInit Function called prior to
initialization.

Function called while conversion
is running.

ADC_E_UNINIT

ADC_E_BUSY

Adc_StartGroupConversion Function called prior to
initialization.

Function called while any group
is not in state ADC_IDLE.

Function called while conversion
request already stored in queue.

Function called while conversion
of same group is already
running.

Function called with non existing
group.

Function called for a group
configured for hardware trigger
source.

Function called while result
buffer pointer is not initialized

ADC_E_UNINIT

ADC_E_BUSY

ADC_E_PARAM_GROUP

ADC_E_WRONG_TRIGG_SRC

ADC_E_BUFFER_UNINIT

Adc_StopGroupConversion

Function called prior to
initialization.

Function called while group is in
state ADC_IDLE.

Function called with non existing
group.

Function called for a group
configured for hardware trigger
source.

ADC_E_UNINIT

ADC_E_IDLE

ADC_E_PARAM_GROUP

ADC_E_WRONG_TRIGG_SRC

Adc_GetGroupStatus

Function called prior to
initialization.

Function called with non existing
group.

ADC_E_UNINIT

ADC_E_PARAM_GROUP

Adc_ReadGroup Function called prior to
initialization.

Function called with non existing
group.

ADC_E_UNINIT

ADC_E_PARAM_GROUP

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

56 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

Function called while group
status is ADC_IDLE

ADC_E_IDLE

Adc_EnableHardwareTrigger Function called prior to initialization.

Function called with non existing
group.

Function called for a group configured
for software API trigger source.

Function called for a group configured
for Continuous conversion mode.

Function called while any group is not
in state ADC_IDLE.

Function called while HW trigger for
the group is already enabled.

Function called while maximum
number of available hardware triggers
is already enabled.

Function called while result buffer
pointer is not initialized

ADC_E_UNINIT

ADC_E_PARAM_GROUP

ADC_E_WRONG_TRIGG_SRC

ADC_E_WRONG_CONV_MODE

ADC_E_BUSY

ADC_E_BUFFER_UNINIT

Adc_DisableHardwareTrigger Function called prior to initialization.

Function called with non existing
group.

Function called for a group configured
for software API trigger source.

Function called for a group configured
for Continuous conversion mode.

Function called for a non enabled
group.

ADC_E_UNINIT

ADC_E_PARAM_GROUP

ADC_E_WRONG_TRIGG_SRC

ADC_E_WRONG_CONV_MODE

ADC_E_IDLE

Adc_EnableGroupNotification

Function called prior to initialization.

Function called with non existing
group.

Function called and notification
function pointer is NULL.

ADC_E_UNINIT

ADC_E_PARAM_GROUP

ADC_E_NOTIF_CAPABILIT

Y

Adc_DisableGroupNotification

Function called prior to initialization.

Function called with non existing
group.

Function called and notification
function pointer is NULL.

ADC_E_UNINIT

ADC_E_PARAM_GROUP

ADC_E_NOTIF_CAPABILIT

Y

Adc_SetupResultBuffer Function called prior to initialization.

Function called with non existing
group.

Function called while any group is not
in state ADC_IDLE.

ADC_E_UNINIT

ADC_E_PARAM_GROUP

ADC_E_BUSY

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

57 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

Function called and DataBufferPtr is
NULL_PTR.

ADC_E_PARAM_POINTER

Adc_GetStreamLastPointer Function called prior to initialization.

Function called with non existing
group.

Function called while group status is
ADC_IDLE

ADC_E_UNINIT

ADC_E_PARAM_GROUP

ADC_E_IDLE

Adc_GetVersionInfo Function called with NULL pointer. ADC_E_PARAM_POINTER

Adc_SetPowerState Function called prior to initialization.

One or more ADC group/channel not
in IDLE state

Unsupported power state request

Requested power state can not be
reached directly

ADC not prepared for target power
state

ADC_E_UNINIT

ADC_E_NOT_DISENGAGED

ADC_E_POWER_STATE_NOT

_SUPPORTED

ADC_E_TRANSITION_NOT_

POSSIBLE

ADC_E_PERIPHERAL_NOT_

PREPARED

Adc_GetCurrentPowerState Function called prior to initialization.

ADC_E_UNINIT

Adc_GetTargetPowerState Function called prior to initialization.

ADC_E_UNINIT

Adc_PreparePowerState Function called prior to initialization.

Unsupported power state request

Requested power state can not be
reached directly

ADC_E_UNINIT

ADC_E_POWER_STATE_NOT

_SUPPORTED

ADC_E_TRANSITION_NOT_

POSSIBLE

Table 4: Error detection

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

58 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

8 API specification

8.1 Imported types

In this chapter all types included from the following files are listed:

[SWS_Adc_00364] ⌈

Module Imported Type

Dem Dem_EventIdType

Dem_EventStatusType

Std_Types Std_ReturnType

Std_VersionInfoType

⌋ ()

8.2 Type definitions

8.2.1 Adc_ConfigType

[SWS_Adc_00505]⌈

Name: Adc_ConfigType

Type: Structure

Range: -- Implementation specific configuration data structure.

Description: Data structure containing the set of configuration parameters required for
initializing the ADC Driver and ADC HW Unit(s).

⌋()

8.2.2 Adc_ChannelType

[SWS_Adc_00506]⌈

Name: Adc_ChannelType

Type: uint

Range: -- -- The range of this type is µC specific and has to be
described by the supplier.

Description: Numeric ID of an ADC channel.

⌋()

8.2.3 Adc_GroupType

[SWS_Adc_00507]⌈

Name: Adc_GroupType

Type: uint

Range: -- -- The range of this type is µC specific and has to be
described by the supplier.

Description: Numeric ID of an ADC channel group.

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

59 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

⌋()

8.2.4 Adc_ValueGroupType

[SWS_Adc_00508]⌈

Name: Adc_ValueGroupType

Type: int

Range: -- -- Implementation specific.

Description: Type for reading the converted values of a channel group (raw, without further
scaling, alignment according precompile switch ADC_RESULT_ALIGNMENT).

⌋()

The result values shall be stored in an integer buffer, i.e. an array of integers.

The following rules shall apply to the driver implementation:

 [SWS_Adc_00318] ⌈In single value access mode the result buffer shall have as
many elements as channels belonging to the group. In this way each buffer
element corresponds to a channel, in the order the channels are defined in the

group.⌋ (SRS_Adc_12819)

 [SWS_Adc_00319] ⌈In streaming access mode the result buffer shall have m*n

elements, where n is the number of channels belonging to the group, m the

number of samples acquired per channel. In this way the first m elements belong to

the first channel in the group, the second m elements to the second channel and

so on.⌋ (SRS_Adc_12825)

 [SWS_Adc_00320] ⌈The dimension (in number of bits) of each buffer element (of
type integer) shall be uniform, tailored on the largest (in number of bits) channel

belonging to any group.⌋ (SRS_Adc_12822)

Note: Only if all ADC channels of all ADC groups have 8 bit resolution,
Adc_ValueGroupType can be configured as 8 bit data type.

Note: The information about number of channels belonging to the group and number
of samples acquired per channel can be derived from the group configuration data.

8.2.5 Adc_PrescaleType

[SWS_Adc_00509]⌈

Name: Adc_PrescaleType

Type: uint

Range: -- -- The range of this type is µC specific and has to be
described by the supplier.

Description: Type of clock prescaler factor.
(This is not an API type).

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

60 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

⌋()

8.2.6 Adc_ConversionTimeType

[SWS_Adc_00510]⌈

Name: Adc_ConversionTimeType

Type: uint

Range: -- -- The range of this type is µC specific and has to be
described by the supplier.

Description: Type of conversion time, i.e. the time during which the sampled analogue value is
converted into digital representation.
(This is not an API type).

⌋()

8.2.7 Adc_SamplingTimeType

[SWS_Adc_00511]⌈

Name: Adc_SamplingTimeType

Type: uint

Range: -- -- The range of this type is µC specific and has to be
described by the supplier.

Description: Type of sampling time, i.e. the time during which the value is sampled, (in clock-
cycles).
(This is not an API type).

⌋()

8.2.8 Adc_ResolutionType

[SWS_Adc_00512]⌈

Name: Adc_ResolutionType

Type: uint8

Range: -- -- The range of this type is µC specific and has to be
described by the supplier.

Description: Type of channel resolution in number of bits.
(This is not an API type).

⌋()

8.2.9 Adc_StatusType

[SWS_Adc_00513]⌈

Name: Adc_StatusType

Type: Enumeration

Range: ADC_IDLE - The conversion of the specified group has not been
started.
- No result is available.

ADC_BUSY - The conversion of the specified group has been started
and is still going on.
- So far no result is available.

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

61 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

ADC_COMPLETED - A conversion round (which is not the final one) of the
specified group has been finished.
- A result is available for all channels of the group.

ADC_STREAM_COMPLETED - The result buffer is completely filled
- For each channel of the selected group the number of
samples to be acquired is available

Description: Current status of the conversion of the requested ADC Channel group.

⌋()

8.2.10 Adc_TriggerSourceType

[SWS_Adc_00514]⌈

Name: Adc_TriggerSourceType

Type: Enumeration

Range: ADC_TRIGG_SRC_SW Group is triggered by a software API call.

ADC_TRIGG_SRC_HW Group is triggered by a hardware event.

Description: Type for configuring the trigger source for an ADC Channel group.

⌋()

8.2.11 Adc_GroupConvModeType

[SWS_Adc_00515]⌈

Name: Adc_GroupConvModeType

Type: Enumeration

Range: ADC_CONV_MODE_ONESHOT Exactly one conversion of each channel in an ADC
channel group is performed after the configured
trigger event.
In case of ‘group trigger source software’, a started
One-Shot conversion can be stopped by a software
API call.
In case of ‘group trigger source hardware’, a started
One-Shot conversion can be stopped by disabling
the trigger event (if supported by hardware).

ADC_CONV_MODE_CONTINUOUS Repeated conversions of each ADC channel in an
ADC channel group are performed.
‘Continuous conversion mode’ is only available for
‘group trigger source software’.
A started ‘Continuous conversion’ can be stopped
by a software API call.

Description: Type for configuring the conversion mode of an ADC Channel group.

⌋()

8.2.12 Adc_GroupPriorityType

[SWS_Adc_00516]⌈

Name: Adc_GroupPriorityType

Type: uint8

Range: 0..255 -- --

Description: Priority level of the channel. Lowest priority is 0.

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

62 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

⌋()

8.2.13 Adc_GroupDefType

[SWS_Adc_00517]⌈

Name: Adc_GroupDefType

Type: --

Description: Type for assignment of channels to a channel group (this is not an API type).

⌋()

8.2.14 Adc_StreamNumSampleType

[SWS_Adc_00518]⌈

Name: Adc_StreamNumSampleType

Type: uint

Range: -- -- The range of this type is µC specific and has to be
described by the supplier.

Description: Type for configuring the number of group conversions in streaming access mode
(in single access mode, parameter is 1).

⌋()

8.2.15 Adc_StreamBufferModeType

[SWS_Adc_00519]⌈

Name: Adc_StreamBufferModeType

Type: Enumeration

Range: ADC_STREAM_BUFFER_LINEAR The ADC Driver stops the conversion as soon
as the stream buffer is full (number of samples
reached).

ADC_STREAM_BUFFER_CIRCULAR The ADC Driver continues the conversion even
if the stream buffer is full (number of samples
reached) by wrapping around the stream buffer
itself.

Description: Type for configuring the streaming access mode buffer type.

⌋()

8.2.16 Adc_GroupAccessModeType

[SWS_Adc_00528]⌈

Name: Adc_GroupAccessModeType

Type: Enumeration

Range: ADC_ACCESS_MODE_SINGLE Single value access mode.

ADC_ACCESS_MODE_STREAMING Streaming access mode.

Description: Type for configuring the access mode to group conversion results.

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

63 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

⌋()

8.2.17 Adc_HwTriggerSignalType

[SWS_Adc_00520]⌈

Name: Adc_HwTriggerSignalType

Type: Enumeration

Range: ADC_HW_TRIG_RISING_EDGE React on the rising edge of the hardware trigger
signal (only if supported by the ADC hardware).

ADC_HW_TRIG_FALLING_EDGE React on the falling edge of the hardware trigger
signal (only if supported by the ADC hardware).

ADC_HW_TRIG_BOTH_EDGES React on both edges of the hardware trigger signal
(only if supported by the ADC hardware).

Description: Type for configuring on which edge of the hardware trigger signal the driver should
react, i.e. start the conversion (only if supported by the ADC hardware).

⌋()

8.2.18 Adc_HwTriggerTimerType

[SWS_Adc_00521]⌈

Name: Adc_HwTriggerTimerType

Type: uint

Range: -- -- The range of this type is µC specific and has to be
described by the supplier.

Description: Type for the reload value of the ADC module embedded timer (only if supported
by the ADC hardware).

⌋()

8.2.19 Adc_PriorityImplementationType

[SWS_Adc_00522]⌈

Name: Adc_PriorityImplementationType

Type: Enumeration

Range: ADC_PRIORITY_NONE priority mechanism is not available

ADC_PRIORITY_HW Hardware priority mechanism is available only

ADC_PRIORITY_HW_SW Hardware and software priority mechanism is available

Description: Type for configuring the prioritization mechanism.

⌋()

8.2.20 Adc_GroupReplacementType

[SWS_Adc_00523]⌈

Name: Adc_GroupReplacementType

Type: Enumeration

Range: ADC_GROUP_REPL_ABORT_RESTART Abort/Restart mechanism is used on group
level, if a group is interrupted by a higher
priority group. The complete conversion
round of the interrupted group (all group

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

64 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

channels)is restarted after the higher
priority group conversion is finished. If the
group is configured in streaming access
mode, only the results of the interrupted
conversion round are discarded. Results of
previous conversion rounds which are
already written to the result buffer are not
affected.

ADC_GROUP_REPL_SUSPEND_RESUME Suspend/Resume mechanism is used on
group level, if a group is interrupted by a
higher priority group. The conversion round
of the interrupted group is completed after
the higher priority group conversion is
finished. Results of previous conversion
rounds which are already written to the
result buffer are not affected.

Description: Replacement mechanism, which is used on ADC group level, if a group conversion
is interrupted by a group which has a higher priority.

⌋()

8.2.21 Adc_ChannelRangeSelectType

[SWS_Adc_00524]⌈

Name: Adc_ChannelRangeSelectType

Type: Enumeration

Range: ADC_RANGE_UNDER_LOW Range below low limit - low limit value included

ADC_RANGE_BETWEEN Range between low limit and high limit - high limit
value included

ADC_RANGE_OVER_HIGH Range above high limit

ADC_RANGE_ALWAYS Complete range - independent from channel limit
settings

ADC_RANGE_NOT_UNDER_LOW Range above low limit

ADC_RANGE_NOT_BETWEEN Range above high limit or below low limit - low limit
value included

ADC_RANGE_NOT_OVER_HIGH Range below high limit - high limit value included

Description: In case of active limit checking: defines which conversion values are taken into
account related to the boardes defineed with AdcChannelLowLimit and
AdcChannelHighLimit.

⌋()

8.2.22 Adc_ResultAlignmentType

[SWS_Adc_00525]⌈

Name: Adc_ResultAlignmentType

Type: Enumeration

Range: ADC_ALIGN_LEFT left alignment

ADC_ALIGN_RIGHT right alignment

Description: Type for alignment of ADC raw results in ADC result buffer (left/right alignment).

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

65 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

⌋()

8.2.23 Adc_PowerStateType

[SWS_Adc_00526]⌈

Name: Adc_PowerStateType

Type: Enumeration

Range: ADC_FULL_POWER Full Power (0)

1..255 power modes with decreasing power consumptions.

Description: Power state currently active or set as target power state.

⌋()

8.2.24 Adc_PowerStateRequestResultType

[SWS_Adc_00527]⌈

Name: Adc_PowerStateRequestResultType

Type: Enumeration

Range: ADC_SERVICE_ACCEPTED Power state change executed.

ADC_NOT_INIT ADC Module not initialized.

ADC_SEQUENCE_ERROR Wrong API call sequence.

ADC_HW_FAILURE The HW module has a failure which prevents it to
enter the required power state.

ADC_POWER_STATE_NOT_SUPP ADC Module does not support the requested power
state.

ADC_TRANS_NOT_POSSIBLE ADC Module cannot transition directly from the
current power state to the requested power state or
the HW peripheral is still busy.

Description: Result of the requests related to power state transitions.

⌋()

8.3 Function definitions

8.3.1 Adc_Init

[SWS_Adc_00365] ⌈

Service name: Adc_Init

Syntax: void Adc_Init(

 const Adc_ConfigType* ConfigPtr

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in):
ConfigPtr Pointer to configuration set in Variant PB

(Variant PC requires a NULL_PTR).

Parameters
(inout):

None

Parameters (out): None

Return value: None

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

66 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

Description: Initializes the ADC hardware units and driver.

⌋ ()

[SWS_Adc_00054] ⌈In case of Variant PB: The function Adc_Init shall initialize the
ADC hardware units and driver according to the configuration set referenced by

ConfigPtr.⌋ (SRS_BSW_00405, SRS_BSW_00101, SRS_BSW_00414,
SRS_SPAL_12057, SRS_SPAL_12461)

[SWS_Adc_00342] ⌈In case of Variant PC: The function Adc_Init shall initialize the
ADC hardware units and driver according to the pre-compile configuration set. The
configuration pointer which is passed to Adc_Init shall be a NULL pointer. The pointer

is only evaluated, if development error detection is enabled (see SWS_Adc_00344).⌋
(SRS_BSW_00345, SRS_BSW_00414)

[SWS_Adc_00056] ⌈ The function Adc_Init shall only initialize the configured
resources. Resources that are not contained in the configuration file shall not be

touched.⌋ (SRS_SPAL_12125)

The following rules regarding initialization of controller registers apply to this driver
implementation:

 [SWS_Adc_00246] ⌈If the hardware allows for only one usage of the register, the
driver module implementing that functionality is responsible for initializing the

register.⌋ (SRS_SPAL_12461)

 [SWS_Adc_00247] ⌈If the register can affect several hardware modules and if it

is an I/O register, it shall be initialized by the PORT driver.⌋ (SRS_SPAL_12461)

 [SWS_Adc_00248] ⌈If the register can affect several hardware modules and if it

is not an I/O register, it shall be initialized by the MCU driver.⌋
(SRS_SPAL_12461)

 [SWS_Adc_00249] ⌈One-time writable registers that require initialization directly

after reset shall be initialized by the startup code.⌋ (SRS_SPAL_12461)

 [SWS_Adc_00250] ⌈All other registers shall be initialized by the startup code.⌋
(SRS_SPAL_12461)

[SWS_Adc_00077] ⌈The function Adc_Init shall disable the notifications and

hardware trigger capability (if statically configured as active).⌋ (SRS_Adc_12318)

[SWS_Adc_00307] ⌈The function Adc_Init shall set all groups to ADC_IDLE state. ⌋

()

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

67 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

[SWS_Adc_00343] ⌈In case of Variant PB and if development error detection for the
ADC module is enabled: if called with a NULL_PTR as configuration parameter, the
function Adc_Init shall raise development error ADC_E_PARAM_CONFIG and return

without any action. ⌋ ()

[SWS_Adc_00344] ⌈In case of Variant PC and if development error detection for the
ADC module is enabled: if called without a NULL_PTR as configuration parameter,
the function Adc_Init shall raise development error ADC_E_PARAM_CONFIG and

return without any action. ⌋ ()

[SWS_Adc_00107] ⌈If development error detection for the ADC module is enabled: if
called when the ADC driver and hardware are already initialized, the function
Adc_Init shall raise development error ADC_E_ALREADY_INITIALIZED and return

without any action.⌋ (SRS_BSW_00406, SRS_BSW_00386, SRS_SPAL_12448)

8.3.2 Adc_SetupResultBuffer

[SWS_Adc_00419] ⌈

Service name: Adc_SetupResultBuffer

Syntax: Std_ReturnType Adc_SetupResultBuffer(

 Adc_GroupType Group,

 Adc_ValueGroupType* DataBufferPtr

)

Service ID[hex]: 0x0c

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in):
Group Numeric ID of requested ADC channel group.

DataBufferPtr pointer to result data buffer

Parameters
(inout):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: result buffer pointer initialized correctly

E_NOT_OK: operation failed or development error
occured

Description: Initializes ADC driver with the group specific result buffer start address where the
conversion results will be stored. The application has to ensure that the application
buffer, where DataBufferPtr points to, can hold all the conversion results of the
specified group. The initialization with Adc_SetupResultBuffer is required after
reset, before a group conversion can be started.

⌋ ()

[SWS_Adc_00420] ⌈The function Adc_SetupResultBuffer shall initialize the result

buffer pointer of the selected group with the address value passed as parameter.⌋ ()

[SWS_Adc_00421] ⌈The ADC module’s environment shall ensure that no group
conversions are started without prior initialization of the according result buffer

pointer to point to a valid result buffer.⌋ ()

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

68 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

[SWS_Adc_00422] ⌈The ADC module’s environment shall ensure that the
application buffer, which address is passed as parameter in Adc_SetupResultBuffer,
has the according size to hold all group channel conversion results and if streaming
access is selected, hold these results multiple times as specified with streaming

sample parameter (see ADC292).⌋ ()

[SWS_Adc_00423] ⌈If development error detection for the ADC module is enabled: if
the channel group ID is non-existing, the function Adc_SetupResultBuffer shall raise

development error ADC_E_PARAM_GROUP and return without any action.⌋ ()

[SWS_Adc_00433] ⌈If development error detection for the ADC module is enabled:
if called while group is not in state ADC_IDLE, function Adc_SetupResultBuffer shall

raise development error ADC_E_BUSY and return without any action.⌋ ()

[SWS_Adc_00434] ⌈If development error detection for the ADC module is enabled:
when called prior to initializing the driver, the function Adc_SetupResultBuffer shall

raise development error ADC_E_UNINIT.⌋ ()

[SWS_Adc_00457] ⌈If development error detection for the ADC module is enabled:
when called with a NULL_PTR as DataBufferPtr, the function Adc_SetupResultBuffer

shall raise development error ADC_E_PARAM_POINTER.⌋ ()

8.3.3 Adc_DeInit

[SWS_Adc_00366] ⌈

Service name: Adc_DeInit

Syntax: void Adc_DeInit(

 void

)

Service ID[hex]: 0x01

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: Returns all ADC HW Units to a state comparable to their power on reset state.

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

69 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

⌋ ()

[SWS_Adc_00110] ⌈The function Adc_DeInit shall return all ADC HW Units to a
state comparable to their power on reset state. Values of registers which are not
writeable are excluded. It’s the responsibility of the hardware design that this state

does not lead to undefined activities in the µC.⌋ (SRS_SPAL_12163)

[SWS_Adc_00111] ⌈The function Adc_DeInit shall disable all used interrupts and

notifications. ⌋ (SRS_BSW_00336, SRS_SPAL_12163)

[SWS_Adc_00358] ⌈The ADC module’s environment shall not call the function

Adc_DeInit while any group is not in state ADC_IDLE.⌋ ()

[SWS_Adc_00228] ⌈The function Adc_DeInit shall be pre compile time configurable

On/Off by the configuration parameter: AdcDeInitApi.⌋ (SRS_BSW_00171)

[SWS_Adc_00112] ⌈If development error detection for the ADC module is enabled: if
called
while not all groups are either in state ADC_IDLE or state
ADC_STREAM_COMPLETED, while no conversion is ongoing (ADC groups which
are implicitly stopped), the function Adc_DeInit shall raise development error

ADC_E_BUSY and return without any action.⌋ (SRS_BSW_00386,
SRS_SPAL_12448)

[SWS_Adc_00154] ⌈If development error detection for the ADC module is enabled: if
called before the module has been initialized, the function Adc_DeInit shall raise

development error ADC_E_UNINIT and return without any action.⌋
(SRS_BSW_00406, SRS_BSW_00386, SRS_SPAL_12448)

8.3.4 Adc_StartGroupConversion

[SWS_Adc_00367] ⌈

Service name: Adc_StartGroupConversion

Syntax: void Adc_StartGroupConversion(

 Adc_GroupType Group

)

Service ID[hex]: 0x02

Sync/Async: Asynchronous

Reentrancy: Reentrant

Parameters (in): Group Numeric ID of requested ADC Channel group.

Parameters
(inout):

None

Parameters (out): None

Return value: None

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

70 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

Description: Starts the conversion of all channels of the requested ADC Channel group.

⌋ ()

[SWS_Adc_00061] ⌈The function Adc_StartGroupConversion shall start the
conversion of all channels of the requested ADC Channel group. Depending on the

group configuration, one-shot or continuous conversion is started.⌋
(SRS_Adc_12364)

[SWS_Adc_00431] ⌈The function Adc_StartGroupConversion shall reset the internal
result buffer pointer, that conversion result storage always starts, after calling
Adc_StartGroupConversion, at the result buffer base address which was configured

with Adc_SetupResultBuffer.⌋ ()

[SWS_Adc_00156] ⌈The function Adc_StartGroupConversion shall NOT
automatically enable the notification mechanism for that group (this has to be done

by a separate API call).⌋ (SRS_Adc_12317, SRS_Adc_12318)

[SWS_Adc_00146] ⌈The ADC module’s environment shall only call

Adc_StartGroupConversion for groups configured with software trigger source.⌋
(SRS_Adc_12817, SRS_Adc_12364)

[SWS_Adc_00259] ⌈The function Adc_StartGroupConversion shall be pre-compile
time configurable On/Off by the configuration parameter

AdcEnableStartStopGroupApi.⌋ (SRS_BSW_00171)

[SWS_Adc_00125] ⌈If development error detection for the ADC module is enabled:
when called with a non-existing channel group ID, function
Adc_StartGroupConversion shall raise development error ADC_E_PARAM_GROUP

and return without any action.⌋ (SRS_BSW_00323, SRS_BSW_00386,

SRS_SPAL_12448)

[SWS_Adc_00133] ⌈If development error detection for the ADC module is enabled:
when called on a group with trigger source configured as hardware, function
Adc_StartGroupConversion shall raise development error

ADC_E_WRONG_TRIGG_SRC and return without any action.⌋ (SRS_BSW_00386,
SRS_SPAL_12448)

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

71 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

[SWS_Adc_00346] ⌈If development error detection for the ADC module is enabled
and the priority mechanism is disabled and the queuing is disabled : when called
while any of the groups, which can not be implicitly stopped, is not in state
ADC_IDLE , the function Adc_StartGroupConversion shall raise development error

ADC_E_BUSY and return without any action.⌋ ()

Note: The condition that any group is not in state ADC_IDLE means in this context:

 Any conversion is ongoing
or

 Any HW trigger is enabled

[SWS_Adc_00426] ⌈If development error detection for the ADC module is enabled
and the priority mechanism is disabled and the queuing is disabled: when called
while any of the groups, which can be implicitly stopped, is not in state ADC_IDLE
and not in state ADC_STREAM_COMPLETED, the function
Adc_StartGroupConversion shall raise development error ADC_E_BUSY and return

without any action.⌋ ()

Note: Groups which can be implicitly stopped are:

 Software triggered groups configured in one-shot, single-access mode

 Software triggered groups configured in continuous, linear streaming access
mode

 Hardware triggered groups configured in one-shot, linear streaming access
mode

[SWS_Adc_00348] ⌈If development error detection for the ADC module is enabled
and the priority mechanism is enabled: when called while a group, which can not be
implicitly stopped, is not in state ADC_IDLE, the function Adc_StartGroupConversion

shall raise development error ADC_E_BUSY and return without any action.⌋ ()

Note: The condition that the group is not in state ADC_IDLE means in this context:

 The conversion of the same group is currently ongoing
or

 A conversion request for the same group is already stored one time in the
queue

[SWS_Adc_00427] ⌈If development error detection for the ADC module is enabled
and the priority mechanism is enabled: when called while a group, which can be
implicitly stopped, is not in state ADC_IDLE and not in state
ADC_STREAM_COMPLETED, the function Adc_StartGroupConversion shall raise

development error ADC_E_BUSY and return without any action.⌋ ()

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

72 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

[SWS_Adc_00351] ⌈If development error detection for the ADC module is enabled
and the priority mechanism is disabled and the queuing is enabled: when called while
a group, which can not be implicitly stopped, is not in state ADC_IDLE, the function
Adc_StartGroupConversion shall raise development error ADC_E_BUSY and return

without any action.⌋ ()

[SWS_Adc_00428] ⌈If development error detection for the ADC module is enabled
and the priority mechanism is disabled and the queuing is enabled: when called while
a group, which can be implicitly stopped, is not in state ADC_IDLE and not in state
ADC_STREAM_COMPLETED, the function Adc_StartGroupConversion shall raise

development error ADC_E_BUSY and return without any action.⌋ ()

[SWS_Adc_00294] ⌈If development error detection for the ADC module is enabled:
when called prior to initializing the driver, the function Adc_StartGroupConversion

shall raise development error ADC_E_UNINIT.⌋ (SRS_BSW_00406)

[SWS_Adc_00424] ⌈If development error detection for the ADC module is enabled:
when called prior to initializing the result buffer pointer with function
Adc_SetupResultBuffer, the function Adc_StartGroupConversion shall raise

development error ADC_E_BUFFER_UNINIT.⌋ ()

8.3.5 Adc_StopGroupConversion

[SWS_Adc_00368] ⌈

Service name: Adc_StopGroupConversion

Syntax: void Adc_StopGroupConversion(

 Adc_GroupType Group

)

Service ID[hex]: 0x03

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): Group Numeric ID of requested ADC Channel group.

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: Stops the conversion of the requested ADC Channel group.

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

73 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

⌋ ()

[SWS_Adc_00385] ⌈When the ADC Channel Group is in one-shot and software-
trigger mode, the function Adc_StopGroupConversion shall stop an ongoing

conversion of the group.⌋ (SRS_Adc_12364)

[SWS_Adc_00437] ⌈When the ADC Channel Group is in one-shot and software-
trigger mode, the function Adc_StopGroupConversion shall remove a start/restart
request of the group from the queue, if queuing is enabled and a start/restart request

is stored in the queue.⌋ ()

[SWS_Adc_00386] ⌈When the ADC Channel Group is in continuous-conversion and
software-trigger mode, the function Adc_StopGroupConversion shall stop an ongoing

conversion of the group.⌋ (SRS_Adc_12364)

[SWS_Adc_00438] ⌈When the ADC Channel Group is in continuous-conversion and
software-trigger mode, the function Adc_StopGroupConversion shall remove a
start/restart request of the group from the queue, if queuing is enabled and a

start/restart request is stored in the queue.⌋ ()

[SWS_Adc_00155] ⌈The function Adc_StopGroupConversion shall automatically

disable group notification for the requested group.⌋ (SRS_Adc_12317)

Note:
Groups which are implicitly stopped shall not disable the group notification until
Adc_StopGroupConversion is called.

[SWS_Adc_00360] ⌈The function Adc_StopGroupConversion shall set the group

status to state ADC_IDLE.⌋ ()

[SWS_Adc_00283] ⌈The ADC module’s environment shall only call the function

Adc_StopGroupConversion for groups configured with trigger source software.⌋
(SRS_Adc_12817)

[SWS_Adc_00260] ⌈The function Adc_StopGroupConversion shall be pre compile
time configurable On/Off by the configuration parameter

AdcEnableStartStopGroupApi.⌋ (SRS_BSW_00171)

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

74 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

[SWS_Adc_00126] ⌈If development error detection for the ADC module is enabled: if
the group ID is non-existing, the function Adc_StopGroupConversion shall raise

development error ADC_E_PARAM_GROUP and return without any action.⌋
(SRS_BSW_00323, SRS_BSW_00386, SRS_SPAL_12448)

[SWS_Adc_00164] ⌈If development error detection for the ADC module is enabled:
if the group has a trigger source configured as hardware, function
Adc_StopGroupConversion shall raise development error

ADC_E_WRONG_TRIGG_SRC and return without any action.⌋ (SRS_BSW_00386,
SRS_SPAL_12448)

[SWS_Adc_00241] ⌈If development error detection for the ADC module is enabled:
when called while the group is in state ADC_IDLE, the function
Adc_StopGroupConversion shall raise development error ADC_E_IDLE and return

without any action.⌋ (SRS_BSW_00323, SRS_BSW_00386, SRS_SPAL_12448)

Note: For groups which are implicitly stopped (groups with conversion mode one-shot
or groups with linear streaming buffer mode), state is ADC_STREAM_COMPLETED
until results are accessed with Adc_ReadGroup or Adc_GetStreamLastPointer API
functions or until group is explicitly stopped by Adc_StopGroupConversion API.

[SWS_Adc_00295] ⌈If development error detection for the ADC module is enabled: if
called prior to initializing the module, function Adc_StopGroupConversion shall raise

development error ADC_E_UNINIT and return without any action.⌋
(SRS_BSW_00406)

Note:
All groups which are started with Adc_StartGroupConversion should also be stopped
with Adc_StopGroupConversion, before they are started again to reset the group
status to ADC_IDLE. Exceptions to this rule are groups which are implicitly stopped
because of the selected conversion mode (linear buffer with streaming access mode
or one-shot conversion mode with single access). These groups can also be
restarted while the group is in state ADC_STREAM_COMPLETED.

8.3.6 Adc_ReadGroup

[SWS_Adc_00369] ⌈

Service name: Adc_ReadGroup

Syntax: Std_ReturnType Adc_ReadGroup(

 Adc_GroupType Group,

 Adc_ValueGroupType* DataBufferPtr

)

Service ID[hex]: 0x04

Sync/Async: Synchronous

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

75 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

Reentrancy: Reentrant

Parameters (in):

Group Numeric ID of requested ADC channel group.

DataBufferPtr ADC results of all channels of the selected group are stored
in the data buffer addressed with the pointer.

Parameters
(inout):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: results are available and written to the data buffer

E_NOT_OK: no results are available or development error
occured

Description: Reads the group conversion result of the last completed conversion round of the
requested group and stores the channel values starting at the DataBufferPtr
address. The group channel values are stored in ascending channel number order
(in contrast to the storage layout of the result buffer if streaming access is
configured).

⌋ ()

[SWS_Adc_00075] ⌈The function Adc_ReadGroup shall read the latest available

conversion results of the requested group.⌋ ()

[SWS_Adc_00113] ⌈The function Adc_ReadGroup shall read the raw converted
values without further scaling. The read values shall be aligned according the

configuration parameter setting of ADC_RESULT_ALIGNMENT.⌋
(SRS_SPAL_12063, SRS_Adc_12819, SRS_Adc_12292, SRS_Adc_12824)

[SWS_Adc_00122] ⌈If applicable, the function Adc_ReadGroup shall mask out all
information or diagnostic bits provided by the conversion but not belonging to the

conversion results themselves.⌋ (SRS_Adc_12283, SRS_Adc_12819)

[SWS_Adc_00329] ⌈Calling function Adc_ReadGroup while group status is
ADC_STREAM_COMPLETED shall trigger a state transition to ADC_BUSY for
continuous conversion modes (single access mode or circular streaming buffer
mode) and hardware triggered groups in single access mode or circular streaming

access mode.⌋ (SRS_Adc_12291)

[SWS_Adc_00330] ⌈Calling function Adc_ReadGroup while group status is
ADC_STREAM_COMPLETED shall trigger a state transition to ADC_IDLE for
software triggered conversion modes which automatically stop the conversion
(streaming buffer with linear access mode or one-shot conversion mode with single
access) and for the hardware triggered conversion mode in combination with linear

streaming access mode.⌋ (SRS_Adc_12291)

[SWS_Adc_00331] ⌈Calling function Adc_ReadGroup while group status is

ADC_COMPLETED shall trigger a state transition to ADC_BUSY.⌋
(SRS_Adc_12291)

[SWS_Adc_00359] ⌈The function Adc_ReadGroup shall be pre-compile configurable

On/Off by the configuration parameter AdcReadGroupApi.⌋ ()

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

76 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

[SWS_Adc_00388] ⌈If development error detection for the ADC module is enabled:
when called while the group status is ADC_IDLE and the group conversion was not
started (no results are available from previous conversions), the function
Adc_ReadGroup shall raise development error ADC_E_IDLE, return E_NOT_OK and

return without any action.⌋ ()

[SWS_Adc_00152] ⌈If development error detection for the ADC module is enabled: if
the group ID is non-existing, the function Adc_ReadGroup shall raise development

error ADC_E_PARAM_GROUP and return E_NOT_OK.⌋ (SRS_BSW_00323,
SRS_BSW_00386, SRS_SPAL_12448)

[SWS_Adc_00296] ⌈If development error detection for the ADC module is enabled:
when called prior to initializing the driver, the function Adc_ReadGroup shall raise

development error ADC_E_UNINIT and return E_NOT_OK.⌋ ()

8.3.7 Adc_EnableHardwareTrigger

[SWS_Adc_00370] ⌈

Service name: Adc_EnableHardwareTrigger

Syntax: void Adc_EnableHardwareTrigger(

 Adc_GroupType Group

)

Service ID[hex]: 0x05

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): Group Numeric ID of requested ADC Channel group.

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: Enables the hardware trigger for the requested ADC Channel group.

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

77 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

⌋ ()

[SWS_Adc_00114] ⌈The function Adc_EnableHardwareTrigger shall enable the

hardware trigger for the requested ADC Channel group.⌋ (SRS_Adc_12823)

Note: Adc_EnableHardwareTrigger can only be used for ADC internal trigger sources
controlled from the ADC hardware.

[SWS_Adc_00144] ⌈A group with trigger source hardware, whose trigger was
enabled with Adc_EnableHardwareTrigger, shall execute the group channel

conversions, whenever a trigger event occurs.⌋ (SRS_Adc_12823)

[SWS_Adc_00432] ⌈The function Adc_EnableHardwareTrigger shall reset the
internal group result buffer pointer, that conversion result storage always starts, after
calling Adc_EnableHardwareTrigger, at the result buffer base address which was

configured with Adc_SetupResultBuffer.⌋ ()

[SWS_Adc_00273] ⌈The ADC module’s environment shall guarantee that no
concurrent conversions take place on the same HW Unit (happening of different

hardware triggers at the same time).⌋ (SRS_Adc_12823)

Note: The reason for SWS_Adc_00273 is that the ADC module can only handle one
group conversion request per HW Unit at the same time. In case of concurrent HW
conversion requests, the HW prioritization mechanism controls the conversion order.

[SWS_Adc_00120] ⌈The ADC module’s environment shall only call the function
Adc_EnableHardwareTrigger for groups configured in hardware trigger mode (see

AdcGroupTriggSrc).⌋ (SRS_BSW_00171)

[SWS_Adc_00265] ⌈The function Adc_EnableHardwareTrigger shall be pre-compile

time configurable On/Off by the configuration parameter AdcHwTriggerApi.⌋
(SRS_BSW_00171)

[SWS_Adc_00321] ⌈If development error detection is enabled for the ADC driver
and if the priority mechanism is disabled and queuing disabled: when called while
any group with trigger source SW is not in state ADC_IDLE, the function
Adc_EnableHardwareTrigger shall raise development error ADC_E_BUSY and

return without any action.⌋ ()

[SWS_Adc_00349] ⌈If development error detection for the ADC module is enabled: if
the HW trigger for the group is already enabled, the function
Adc_EnableHardwareTrigger shall raise development error ADC_E_BUSY and

return without any action.⌋ ()

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

78 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

[SWS_Adc_00353] ⌈If development error detection for the ADC module is enabled: if
the maximum number of available hardware triggers is already enabled (device and
implementation specific), the function Adc_EnableHardwareTrigger shall raise

development error ADC_E_BUSY and return without any action.⌋ ()

[SWS_Adc_00128] ⌈If development error detection for the ADC module is enabled: if
the channel group ID is invalid, the function Adc_EnableHardwareTrigger shall raise

development error ADC_E_PARAM_GROUP and return without any action.⌋
(SRS_BSW_00323, SRS_BSW_00386, SRS_SPAL_12448)

[SWS_Adc_00136] ⌈If development error detection for the ADC module is enabled: if
the group is configured for software API trigger mode, the function
Adc_EnableHardwareTrigger shall raise development error

ADC_E_WRONG_TRIGG_SRC and return without any action.⌋ (SRS_BSW_00386,
SRS_SPAL_12448)

[SWS_Adc_00281] ⌈If development error detection for the ADC module is enabled: if
a HW group is erroneously configured for continuous conversion mode, the function
Adc_EnableHardwareTrigger shall raise development error

ADC_E_WRONG_CONV_MODE and return without any action.⌋ (SRS_Adc_12823)

Note: SW groups configured in continuous conversion mode shall raise development
error ADC_E_WRONG_TRIGG_SRC instead.

[SWS_Adc_00297] ⌈If development error detection for the ADC module is enabled: if
called prior to initializing the driver, the function Adc_EnableHardwareTrigger shall

raise development error ADC_E_UNINIT and return without any action. ⌋
(SRS_BSW_00406)

[SWS_Adc_00425] ⌈If development error detection for the ADC module is enabled:
when called prior to initializing the result buffer pointer with function
Adc_SetupResultBuffer, the function Adc_EnableHardwareTrigger shall raise

development error ADC_E_BUFFER_UNINIT.⌋ ()

8.3.8 Adc_DisableHardwareTrigger

[SWS_Adc_00371] ⌈

Service name: Adc_DisableHardwareTrigger

Syntax: void Adc_DisableHardwareTrigger(

 Adc_GroupType Group

)

Service ID[hex]: 0x06

Sync/Async: Synchronous

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

79 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

Reentrancy: Reentrant

Parameters (in): Group Numeric ID of requested ADC Channel group.

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: Disables the hardware trigger for the requested ADC Channel group.

⌋ ()

[SWS_Adc_00116] ⌈The function Adc_DisableHardwareTrigger shall disable the

hardware trigger for the requested ADC Channel group.⌋ (SRS_Adc_12823)

[SWS_Adc_00429] ⌈The function Adc_DisableHardwareTrigger shall remove any
queued start/restart request for the requested ADC Channel group if queuing is

enabled.⌋ ()

[SWS_Adc_00145] ⌈The function Adc_DisableHardwareTrigger shall abort an

ongoing conversion, if applicable (supported by the hardware).⌋ (SRS_Adc_12364)

[SWS_Adc_00157] ⌈If enabled, the function Adc_DisableHardwareTrigger shall

disable the notification mechanism for the requested group.⌋ (SRS_Adc_12317,
SRS_Adc_12318, SRS_Adc_12364)

[SWS_Adc_00361] ⌈The function Adc_DisableHardwareTrigger shall set the group

status to state ADC_IDLE.⌋ ()

[SWS_Adc_00121] ⌈The ADC module’s environment shall only call the function
Adc_DisableHardwareTrigger for groups configured in hardware trigger mode (see

AdcGroupTriggSrc).⌋ (SRS_BSW_00171)

[SWS_Adc_00266] ⌈The function Adc_DisableHardwareTrigger shall be pre-compile

time configurable On/Off by the configuration parameter AdcHwTriggerApi.⌋
(SRS_BSW_00171)

[SWS_Adc_00129] ⌈If development error detection for the ADC module is enabled: if
the channel group ID is non-existing, the function Adc_DisableHardwareTrigger shall

raise development error ADC_E_PARAM_GROUP and return without any action.⌋
(SRS_BSW_00323, SRS_BSW_00386, SRS_SPAL_12448)

[SWS_Adc_00137] ⌈If development error detection for the ADC module is enabled: if
the group is configured for software API trigger mode, the function
Adc_DisableHardwareTrigger shall raise development error

ADC_E_WRONG_TRIGG_SRC and return without any action.⌋ (SRS_BSW_00386,
SRS_SPAL_12448)

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

80 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

[SWS_Adc_00282] ⌈If development error detection for the ADC module is enabled: if
a HW group is erroneously configured for continuous conversion mode, the function
Adc_DisableHardwareTrigger shall raise development error

ADC_E_WRONG_CONV_MODE and return without any action.⌋ (SRS_Adc_12823)

Note: SW groups configured in continuous conversion mode shall raise development
error ADC_E_WRONG_TRIGG_SRC instead.

[SWS_Adc_00304] ⌈If development error detection for the ADC module is enabled: if
the group is not enabled (with a previous call of Adc_EnableHardwareTrigger), the
function Adc_DisableHardwareTrigger shall raise development error ADC_E_IDLE

and return without any action.⌋ ()

[SWS_Adc_00298] ⌈If development error detection for the ADC module is enabled: if
called prior to initializing the ADC module, Adc_DisableHardwareTrigger shall raise

development error ADC_E_UNINIT and return without any action.⌋
(SRS_BSW_00406)

Note:
All groups which are enabled with Adc_EnableHardwareTrigger should also be
disabled with Adc_DisableHardwareTrigger, before they are enabled again, even if
they are implicitly stopped because of the selected conversion mode (streaming
buffer with linear access mode).

8.3.9 Adc_EnableGroupNotification

[SWS_Adc_00372] ⌈

Service name: Adc_EnableGroupNotification

Syntax: void Adc_EnableGroupNotification(

 Adc_GroupType Group

)

Service ID[hex]: 0x07

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): Group Numeric ID of requested ADC Channel group.

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: Enables the notification mechanism for the requested ADC Channel group.

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

81 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

⌋ ()

[SWS_Adc_00057] ⌈The function Adc_EnableGroupNotification shall enable the

notification mechanism for the requested ADC Channel group.⌋ (SRS_SPAL_00157,
SRS_Adc_12318)

[SWS_Adc_00100] ⌈The function Adc_EnableGroupNotification shall be pre-compile

time configurable On/Off by the configuration parameter AdcGrpNotifCapability.⌋
(SRS_Adc_12447)

[SWS_Adc_00130] ⌈If development error detection for the ADC module is enabled: if
the channel group ID is non-existing, the function Adc_EnableGroupNotification shall

raise development error ADC_E_PARAM_GROUP and return without any action.⌋
(SRS_BSW_00323, SRS_BSW_00386, SRS_SPAL_12448,)

[SWS_Adc_00165] ⌈If development error detection for the ADC module is enabled: if
the group notification function pointer is NULL, the function
Adc_EnableGroupNotification shall raise development error

ADC_E_NOTIF_CAPABILITY and return without any action.⌋ (SRS_BSW_00386,
SRS_SPAL_12448)

[SWS_Adc_00299] ⌈If development error detection for the ADC module is enabled: if
called prior to initializing the ADC module, Adc_EnableGroupNotification shall raise

development error ADC_E_UNINIT and return without any action.⌋
(SRS_BSW_00406)

8.3.10 Adc_DisableGroupNotification

[SWS_Adc_00373] ⌈

Service name: Adc_DisableGroupNotification

Syntax: void Adc_DisableGroupNotification(

 Adc_GroupType Group

)

Service ID[hex]: 0x08

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): Group Numeric ID of requested ADC Channel group.

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: Disables the notification mechanism for the requested ADC Channel group.

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

82 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

⌋ ()

[SWS_Adc_00058] ⌈The function Adc_DisableGroupNotification shall disable the

notification mechanism for the requested ADC Channel group.⌋ (SRS_SPAL_00157,
SRS_Adc_12318)

[SWS_Adc_00101] ⌈The function Adc_DisableGroupNotification shall be pre-
compile time configurable On/Off by the configuration parameter

AdcGrpNotifCapability⌋ (SRS_Adc_12447)

[SWS_Adc_00131] ⌈If development error detection for the ADC module is enabled: if
the channel group ID is non-existing, the function Adc_DisableGroupNotification shall

raise development error ADC_E_PARAM_GROUP and return without any action.⌋
(SRS_BSW_00323, SRS_BSW_00386, SRS_SPAL_12448)

[SWS_Adc_00166] ⌈If development error detection for the ADC module is enabled:
if the group notification function pointer is NULL, the function
Adc_DisableGroupNotification shall raise development error

ADC_E_NOTIF_CAPABILITY and return without any action.⌋ (SRS_BSW_00386,
SRS_SPAL_12448)

[SWS_Adc_00300] ⌈If development error detection for the ADC module is enabled: if
called prior to initializing the ADC module, Adc_DisableGroupNotification shall raise

development error ADC_E_UNINIT and return without any action.⌋
(SRS_BSW_00406)

8.3.11 Adc_GetGroupStatus

[SWS_Adc_00374] ⌈

Service name: Adc_GetGroupStatus

Syntax: Adc_StatusType Adc_GetGroupStatus(

 Adc_GroupType Group

)

Service ID[hex]: 0x09

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): Group Numeric ID of requested ADC Channel group.

Parameters
(inout):

None

Parameters (out): None

Return value: Adc_StatusType Conversion status for the requested group.

Description: Returns the conversion status of the requested ADC Channel group.

⌋ ()

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

83 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

[SWS_Adc_00220] ⌈The function Adc_GetGroupStatus shall return the conversion

status of the requested ADC Channel group.⌋ (SRS_Adc_12291)

[SWS_Adc_00221] ⌈The function Adc_GetGroupStatus shall return ADC_IDLE:
 If Adc_GetGroupStatus is called before the conversion of the requested group

has been started
 For groups with trigger source software: If Adc_GetGroupStatus is called after the

conversion was stopped with Adc_StopGroupConversion
 In continuous group conversion mode with linear streaming access mode: If

Adc_GetGroupStatus is called after calling Adc_GetStreamLastPointer (group
was in state ADC_STREAM_COMPLETED while calling
Adc_GetStreamLastPointer).

 In continuous group conversion mode with linear streaming access mode: If
Adc_GetGroupStatus is called after calling Adc_ReadGroup (group was in state
ADC_STREAM_COMPLETED while calling Adc_ReadGroup).

 In one-shot SW conversion mode: If Adc_GetGroupStatus is called after calling
Adc_GetStreamLastPointer.

 In one-shot SW conversion mode: If Adc_GetGroupStatus is called after calling
Adc_ReadGroup.

 For groups with trigger source hardware: If Adc_GetGroupStatus is called after
calling Adc_DisableHardwareTrigger

 For groups with trigger source hardware and linear streaming access mode: If
Adc_GetGroupStatus is called after calling Adc_GetStreamLastPointer (group
was in state ADC_STREAM_COMPLETED while calling
Adc_GetStreamLastPointer).

 For groups with trigger source hardware and linear streaming access mode: If
Adc_GetGroupStatus is called after calling Adc_ReadGroup (group was in state

ADC_STREAM_COMPLETED while calling Adc_ReadGroup). ⌋

(SRS_BSW_00335, SRS_Adc_12291)

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

84 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

[SWS_Adc_00222] ⌈The function Adc_GetGroupStatus shall return ADC_BUSY:
 If it is called while the first conversion round of the requested group is still ongoing

(continuous conversion mode).
 Once trigger is enabled for group with HW trigger source.
 Once Adc_StartGroupConversion is called for group with SW trigger source.
 In continuous group conversion mode with single access mode: If

Adc_GetGroupStatus is called after calling Adc_GetStreamLastPointer
 In continuous group conversion mode with single access mode: If

Adc_GetGroupStatus is called after calling Adc_ReadGroup.
 In continuous group conversion mode with circular streaming access mode: If

Adc_GetGroupStatus is called after calling Adc_GetStreamLastPointer
 In continuous group conversion mode with circular streaming access mode If

Adc_GetGroupStatus is called after calling Adc_ReadGroup.
 In continuous group conversion mode with linear streaming access mode: If

Adc_GetGroupStatus is called after calling Adc_GetStreamLastPointer (group
was in state ADC_COMPLETED while calling Adc_GetStreamLastPointer).

 In continuous group conversion mode with linear streaming access mode: If
Adc_GetGroupStatus is called after calling Adc_ReadGroup (group was in state
ADC_COMPLETED while calling Adc_ReadGroup).

 In one-shot HW conversion mode and single access mode:
If Adc_GetGroupStatus is called after calling Adc_GetStreamLastPointer.

 In one-shot HW conversion mode and single access mode:
If Adc_GetGroupStatus is called after calling Adc_ReadGroup.

 In one-shot HW conversion mode and circular streaming access mode:
If Adc_GetGroupStatus is called after calling Adc_GetStreamLastPointer.

 In one-shot HW conversion mode and circular streaming access mode:
 If Adc_GetGroupStatus is called after calling Adc_ReadGroup.
 In one-shot HW conversion mode and linear streaming access mode:

If Adc_GetGroupStatus is called after calling Adc_GetStreamLastPointer
(group was in state ADC_COMPLETED while calling
Adc_GetStreamLastPointer).

 In one-shot HW conversion mode and linear streaming access mode:
 If Adc_GetGroupStatus is called after calling Adc_ReadGroup

 (group was in state ADC_COMPLETED while calling Adc_ReadGroup).⌋

(SRS_BSW_00335, SRS_Adc_12291)

[SWS_Adc_00224] ⌈The function Adc_GetGroupStatus shall return
ADC_COMPLETED:
 If it is called after a conversion round (not the final one) of the requested group

has been finished.⌋ (SRS_BSW_00335, SRS_Adc_12291)

[SWS_Adc_00325] ⌈The function Adc_GetGroupStatus shall return
ADC_STREAM_COMPLETED:
 If it is called in single access mode after one conversion round is completed.
 If it is called in streaming access mode after the number of conversion rounds of

the requested group have been finished, to fill the streaming buffer completely.

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

85 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

⌋ (SRS_Adc_12291)

[SWS_Adc_00226] ⌈The function Adc_GetGroupStatus shall provide atomic access

to the status data by the use of atomic instructions.⌋ (SRS_Adc_12291)

[SWS_Adc_00305] ⌈To guarantee consistent returned values, it is assumed that
ADC group conversion is always started (or enabled in case of HW group)

successfully by SW before status polling begins.⌋ ()

[SWS_Adc_00225] ⌈If development error detection for the ADC module is enabled: if
the channel group ID is non-existing, the function Adc_GetGroupStatus shall raise
development error ADC_E_PARAM_GROUP and return ADC_IDLE without any

action.⌋ (SRS_BSW_00323, SRS_BSW_00386, SRS_SPAL_12448)
.

[SWS_Adc_00301] ⌈If development error detection for the ADC module is enabled: if
called prior to initializing the ADC module, Adc_GetGroupStatus shall raise

development error ADC_E_UNINIT and return ADC_IDLE without any action.⌋
(SRS_BSW_00406)

[SWS_Adc_00436] ⌈In case of an aborted/suspended group, the state of the queued

group remains the same as it was before the group was aborted/suspended.⌋ ()

8.3.12 Adc_GetStreamLastPointer

[SWS_Adc_00375] ⌈

Service name: Adc_GetStreamLastPointer

Syntax: Adc_StreamNumSampleType Adc_GetStreamLastPointer(

 Adc_GroupType Group,

 Adc_ValueGroupType** PtrToSamplePtr

)

Service ID[hex]: 0x0b

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in):
Group Numeric ID of requested ADC Channel

group.

Parameters
(inout):

None

Parameters (out): PtrToSamplePtr Pointer to result buffer pointer.

Return value: Adc_StreamNumSampleType Number of valid samples per channel.

Description: Returns the number of valid samples per channel, stored in the result buffer.
Reads a pointer, pointing to a position in the group result buffer. With the pointer
position, the results of all group channels of the last completed conversion round
can be accessed.
With the pointer and the return value, all valid group conversion results can be
accessed (the user has to take the layout of the result buffer into account).

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

86 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

⌋ ()

[SWS_Adc_00214] ⌈The function Adc_GetStreamLastPointer shall set the pointer,
passed as parameter (PtrToSamplePtr) to point in the ADC result buffer to the latest

result of the first group channel of the last completed conversion round.⌋
(SRS_Adc_12292, SRS_Adc_12802)

[SWS_Adc_00418] ⌈All values which the ADC driver stores in the ADC result buffer,
are left without further scaling and shall be aligned according the configuration

parameter setting of ADC_RESULT_ALIGNMENT.⌋ ()

[SWS_Adc_00387] ⌈The function Adc_GetStreamLastPointer shall return the

number of valid samples per channel, stored in the ADC result buffer. ⌋ ()

Note: Valid samples are in the ADC result buffer when the group is in state
ADC_COMPLETED or ADC_STREAM_COMPLETED. In state ADC_BUSY or
ADC_IDLE the value 0 is returned.

Note: The return value is 1 for groups with single access mode configuration, if valid
samples are stored in the ADC result buffer.

[SWS_Adc_00216] ⌈When called while the group status is ADC_BUSY (a
conversion of the group is in progress), the function Adc_GetStreamLastPointer shall

set the pointer, passed as parameter (PtrToSamplePtr), to NULL and return 0.⌋
(SRS_Adc_12802)

[SWS_Adc_00219] ⌈The ADC module’s environment shall guarantee the
consistency of the data that has been read by checking the return value of

Adc_GetGroupStatus.⌋ (SRS_Adc_12291, SRS_Adc_12802)

Note: See also SWS_Adc_00140.

[SWS_Adc_00326] ⌈Calling function Adc_GetStreamLastPointer while group status
is ADC_STREAM_COMPLETED shall trigger a state transition to ADC_BUSY for
continuous conversion modes (single access mode or circular streaming buffer
mode) and hardware triggered groups in single access mode or circular streaming

access mode.⌋ (SRS_Adc_12291)

[SWS_Adc_00327] ⌈Calling function Adc_GetStreamLastPointer while group status
is ADC_STREAM_COMPLETED shall trigger a state transition to ADC_IDLE for
software conversion modes which automatically stop the conversion (streaming
buffer with linear access mode or one-shot conversion mode with single access) and
for the hardware triggered conversion mode in combination with linear streaming

access mode.⌋ (SRS_Adc_12291)

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

87 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

[SWS_Adc_00328] ⌈Calling function Adc_GetStreamLastPointer while group status

is ADC_COMPLETED shall trigger a state transition to ADC_BUSY.⌋
(SRS_Adc_12291)

[SWS_Adc_00215] ⌈If development error detection for the ADC module is enabled:
when called while the group status is ADC_IDLE and the group conversion was not
started (no results are available from previous conversions) , the function
Adc_GetStreamLastPointer shall raise development error ADC_E_IDLE, set the

pointer, passed as parameter (PtrToSamplePtr), to NULL and return 0.⌋
(SRS_Adc_12802)

[SWS_Adc_00218] ⌈If development error detection for the ADC module is enabled: if
the group ID is non-existent, the function Adc_GetStreamLastPointer shall raise
development error ADC_E_PARAM_GROUP, set the pointer, passed as parameter

(PtrToSamplePtr), to NULL and return 0 without any further action.⌋

(SRS_BSW_00386)

[SWS_Adc_00302] ⌈If development error detection for the ADC module is enabled: if
called prior to initializing the driver, the function Adc_GetStreamLastPointer shall
raise development error ADC_E_UNINIT, set the pointer, passed as parameter

(PtrToSamplePtr), to NULL and return 0 without any further action.⌋
(SRS_BSW_00406)

8.3.13 Adc_GetVersionInfo

[SWS_Adc_00376] ⌈

Service name: Adc_GetVersionInfo

Syntax: void Adc_GetVersionInfo(

 Std_VersionInfoType* versioninfo

)

Service ID[hex]: 0x0a

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): versioninfo Pointer to where to store the version information of this module.

Return value: None

Description: Returns the version information of this module.

⌋ ()

[SWS_Adc_00458] ⌈If development error detection for the ADC module is enabled:
The
function Adc_GetVersionInfo shall check the parameter versioninfo for not being
NULL and shall raise the development error ADC_E_PARAM_POINTER if the check

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

88 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

fails. ⌋ ()

8.3.14 Adc_SetPowerState

[SWS_Adc_00475] ⌈

Service name: Adc_SetPowerState

Syntax: Std_ReturnType Adc_SetPowerState(

 Adc_PowerStateRequestResultType* Result

)

Service ID[hex]: 0x10

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out):

Result If the API returns E_OK:
ADC_SERVICE_ACCEPTED: Power state change executed.

If the API returns E_NOT_OK:
ADC_NOT_INIT: ADC Module not initialized.
ADC_SEQUENCE_ERROR: wrong API call sequence.
ADC_HW_FAILURE: the HW module has a failure which
prevents it to enter the required power state.

Return value:
Std_ReturnType E_OK: Power Mode changed

E_NOT_OK: request rejected

Description: This API configures the Adc module so that it enters the already prepared power
state, chosen between a predefined set of configured ones.

⌋ ()

[SWS_Adc_00481]

⌈The API configures the HW in order to enter the previously prepared Power State.

All preliminary actions to enable this transition (e.g. setting all channels in IDLE
status, de-registering of all notifications and so on) must already have been taken by
the responsible SWCs (e.g. IoHwAbs).

The API shall not execute preliminary, implicit power state changes (i.e. if a
requested power state is not reachable starting from the current one, no intermediate
power state change shall be executed and the request shall be rejected)

[SWS_Adc_00482]

⌈In case the target power state is the same as the current one, no action is executed

and the API returns immediately with an E_OK result.

⌋()

[SWS_Adc_00483]

⌈In case the normal Power State is requested, the API shall refer to the necessary

parameters contained in the same containers used by Adc_Init.

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

89 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

⌋()

No separate container or hard coded data shall be used for the normal (i.e. full)
power mode, in order to avoid misalignments between initialization parameters used
during the init phase and during a power state change.

[SWS_Adc_00484]

⌈For the other power states, only power state transition specific reconfigurations shall

be executed in the context of this API (i.e. the API cannot be used to apply a
completely new configuration to the Adc module). Any other re-configuration not

strictly related to the power state transition shall not take place.⌋()

[SWS_Adc_00485]

⌈The API shall refer to the configuration container related to the required Power State

in order to derive some specific features of the state (e.g support of Power States).⌋()

[SWS_Adc_00486]

⌈ In case development error reporting is activated:

The API shall report the DET error ADC_E_UNINIT in case this API is called before
having initialized the HW unit.

⌋()

[SWS_Adc_00487]

 ⌈In case development error reporting is activated:

The API shall report the DET error ADC_E_NOT_DISENGAGED in case this API is
called when one or more HW channels (where applicable) are in a state different
then IDLE (or similar non-operational states) and/or there are still notification
registered for the HW module channels.

⌋()

[SWS_Adc_00488]

⌈In case development error reporting is activated:

The API shall report the DET error ADC_E_POWER_STATE_NOT_SUPPORTED in
case this API is called with an unsupported power state or the peripheral does not
support low power states at all.

⌋()

[SWS_Adc_00489]

⌈In case development error reporting is activated:

The API shall report the DET error ADC_E_TRANSITION_NOT POSSIBLE in case
the requested power state cannot be directly reached from the current power state.

⌋()

[SWS_Adc_00490]

⌈In case development error reporting is activated:

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

90 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

The API shall report the DET error ADC_E_PERIPHERAL_NOT_PREPARED in
case the HW unit has not been previously prepared for the target power state by use
of the API Adc_PreparePowerState().

⌋()

8.3.15 Adc_GetCurrentPowerState

[SWS_Adc_00476] ⌈

Service name: Adc_GetCurrentPowerState

Syntax: Std_ReturnType Adc_GetCurrentPowerState(

 Adc_PowerStateType* CurrentPowerState,

 Adc_PowerStateRequestResultType* Result

)

Service ID[hex]: 0x11

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out):

CurrentPowerState The current power mode of the ADC HW Unit is returned in
this parameter

Result If the API returns E_OK:
ADC_SERVICE_ACCEPTED: Current power mode was
returned.

If the API returns E_NOT_OK:
ADC_NOT_INIT: ADC Module not initialized.

Return value:
Std_ReturnType E_OK: Mode could be read

E_NOT_OK: Service is rejected

Description: This API returns the current power state of the ADC HW unit.

⌋ ()

[SWS_Adc_00491]

⌈In case development error reporting is activated:

The API shall report the DET error ADC_E_UNINIT in case this API is called before
having initialized the HW unit.

⌋()

8.3.16 Adc_GetTargetPowerState

[SWS_Adc_00477] ⌈

Service name: Adc_GetTargetPowerState

Syntax: Std_ReturnType Adc_GetTargetPowerState(

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

91 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

 Adc_PowerStateType* TargetPowerState,

 Adc_PowerStateRequestResultType* Result

)

Service ID[hex]: 0x12

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out):

TargetPowerState The Target power mode of the ADC HW Unit is returned in this
parameter

Result If the API returns E_OK:
ADC_SERVICE_ACCEPTED:Target power mode was returned.

If the API returns E_NOT_OK:
ADC_NOT_INIT: ADC Module not initialized.

Return value:
Std_ReturnType E_OK: Mode could be read

E_NOT_OK: Service is rejected

Description: This API returns the Target power state of the ADC HW unit.

⌋ ()

[SWS_Adc_00492]

⌈The API returns the requested power state of the HW unit. This shall coincide with

the current power state if no transition is ongoing.

The API is considered to always succeed except in case of HW failures.

⌋()

[SWS_Adc_00493]

⌈In case development error reporting is activated:

The API shall report the DET error ADC_E_UNINIT in case this API is called before
having initialized the HW unit.

⌋()

8.3.17 Adc_PreparePowerState

[SWS_Adc_00478] ⌈

Service name: Adc_PreparePowerState

Syntax: Std_ReturnType Adc_PreparePowerState(

 Adc_PowerStateType PowerState,

 Adc_PowerStateRequestResultType* Result

)

Service ID[hex]: 0x13

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): PowerState The target power state intended to be attained

Parameters None

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

92 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

(inout):

Parameters (out):

Result If the API returns E_OK:
ADC_SERVICE_ACCEPTED: ADC Module power state
preparation was started.

If the API returns E_NOT_OK:
ADC_NOT_INIT: ADC Module not initialized.
ADC_SEQUENCE_ERROR: wrong API call sequence (Current
Power State = Target Power State).
ADC_POWER_STATE_NOT_SUPP: ADC Module does not
support the requested power state.
ADC_TRANS_NOT_POSSIBLE: ADC Module cannot transition
directly from the current power state to the requested power state
or the HW peripheral is still busy.

Return value:
Std_ReturnType E_OK: Preparation process started

E_NOT_OK: Service is rejected

Description: This API starts the needed process to allow the ADC HW module to enter the
requested power state.

⌋ ()

[SWS_Adc_00494]

⌈This API initiates all actions needed to enable a HW module to enter the target

power state.

The possibility to operate the periphery depends on the power state and the HW
features. These properties should be known to the integrator and the decision
whether to use the periphery or not is in his responsibility.

⌋()

[SWS_Adc_00495]

⌈In case the target power state is the same as the current one, no action is executed

and the API returns immediately with an E_OK result.

The responsibility of the preconditions is left to the environment.

⌋()

[SWS_Adc_00496]

 ⌈In case development error reporting is activated:

The API shall report the DET error ADC_E_UNINIT in case this API is called before
having initialized the HW unit.

⌋()

[SWS_Adc_00497]

⌈In case development error reporting is activated:

The API shall report the DET error ADC_E_POWER_MODE_NOT_SUPPORTED in
case this API is called with an unsupported power state is requested or the peripheral
does not support low power states at all.

⌋()

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

93 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

[SWS_Adc_00498]

⌈In case development error reporting is activated:

The API shall report the DET error ADC_E_TRANSITION_NOT POSSIBLE in case
the requested power state cannot be directly reached from the current power state.

All asynchronous operation needed to reach the target power state can be executed
in background in the context of Adc_Main_PowerTransitionManager.

⌋()

8.4 Call-back Notifications

Since the ADC Driver is a module on the lowest architectural layer it doesn’t provide
any call-back functions for lower layer modules.

8.5 Scheduled functions

8.5.1 Adc_Main_PowerTransitionManager

[SWS_Adc_00479] ⌈

Service name: Adc_Main_PowerTransitionManager

Syntax: void Adc_Main_PowerTransitionManager(

 void

)

Service ID[hex]: 0x14

Description: This API is cyclically called and supervises the power state transitions, checking
for the readiness of the module and issuing the callbacks
IoHwAb_Adc_NotifyReadyForPowerState<Mode> (see
AdcPowerStateReadyCbkRef configuration parameter).

⌋ ()

[SWS_Adc_00499]

⌈This API executes any non-immediate action needed to finalize a power state

transition requested by Adc_PreparePowerState().

⌋()

[SWS_Adc_00500]

⌈The rate of scheduling shall be defined by Adc MainSchedulePeriod and shall be

variable, as the function only needs to be called if a transition has been requested

⌋()

[SWS_Adc_00501]

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

94 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

]⌈This API shall also issue callback notifications to the eventually registered users

(IoHwAbs) as configured, only in case the asynch mode is chosen.⌋()

[SWS_Adc_00502]

⌈In case the ADC module is not initialized, this function shall simply return without

any further elaboration. This is needed to avoid to elaborate uninitialized variables.
No DET error shall be entered, because this condition can easily be verified during
the startup phase (tasks started before the initialization is complete).

Rationale: during the startup phase it can happen that the OS already schedules
tasks, which call main functions, while some modules are not initialised yet. This is
no real error condition, although need handling, i.e. returning without execution.

Although the transition state monitoring functionality is mandatory, the
implementation of this API is optional, meaning that if the HW allows for other ways
to deliver notification and watch the transition state the implementation of this
function can be skipped.

⌋()

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

95 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

8.6 Expected Interfaces

In this chapter all interfaces required from other modules are listed.

8.6.1 Mandatory Interfaces

This chapter defines all interfaces which are required to fulfill a core functionality of
the module.

8.6.2 Optional Interfaces

This chapter defines all interfaces which are required to fulfill an optional functionality
of the module.

[SWS_Adc_00377] ⌈

API function Description

Dem_ReportErrorStatus Queues the reported events from the BSW modules (API is only used
by BSW modules). The interface has an asynchronous behavior,
because the processing of the event is done within the Dem main
function.
OBD Events Suppression shall be ignored for this computation.

Det_ReportError Service to report development errors.

⌋ ()

8.6.3 Configurable interfaces

In this chapter all interfaces are listed where the target function could be configured.
The target function is usually a call-back function. The names of this kind of
interfaces are not fixed because they are configurable.

[SWS_Adc_00078]

⌈The ADC module’s ISR´s, providing the “conversion completed events”, shall be
responsible for resetting the interrupt flags (if needed by hardware) and calling the

associated notification function.⌋ (SRS_SPAL_12129)

Note: The notification functions IoHwAb_Adc_Notification_<GroupID> run in interrupt
context. It’s the responsibility of the user to keep the code of these functions
reasonably short. The names of the group notification functions are configurable
(see ADC402).

8.6.3.1 IoHwAb_Adc_Notification<#groupID>

[SWS_Adc_00082] ⌈

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

96 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

Service name: IoHwAb_AdcNotification<#groupID>

Syntax: void IoHwAb_AdcNotification<#groupID>(

 void

)

Service ID[hex]: 0x20

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: Will be called by the ADC Driver when a group conversion is completed for group
<#groupID>.

⌋ (SRS_BSW_00359, SRS_BSW_00360, SRS_SPAL_00157)

[SWS_Adc_00104]

⌈The ADC Driver shall support an individual notification per ADC Channel group (if
capability is configured) that is called whenever the conversion for all channels of that

group is completed.⌋ (SRS_SPAL_00157, SRS_Adc_12447, SRS_Adc_12317)

[SWS_Adc_00083]

⌈When the notification mechanism is disabled, the ADC module shall send no

notification.⌋ (SRS_SPAL_00157)

[SWS_Adc_00416]

⌈When the notifications are re-enabled, the ADC module shall not send notifications

for events that occurred while notifications have been disabled. ⌋ ()

[SWS_Adc_00084]

⌈For every group, a particular notification call-back has to be configured. This can be

a function pointer or a NULL pointer.⌋ (SRS_SPAL_12056)

[SWS_Adc_00080]

⌈If for a notification call-back the NULL pointer is configured, no call-back shall be

executed.⌋ (SRS_SPAL_12056)

[SWS_Adc_00085]

⌈The call-back notifications shall be configurable as pointers to user defined
functions within the configuration structure. For all available channel groups, call-
back functions have to be declared during the configuration phase of the module.

⌋ (SRS_SPAL_12056)

8.6.3.2 IoHwAb_Adc_NotifyReadyForPowerState<#Mode>

[SWS_Adc_00480] ⌈

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

97 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

Service name: IoHwAb_Adc_NotifyReadyForPowerState<#Mode>

Syntax: void IoHwAb_Adc_NotifyReadyForPowerState<#Mode>(

 void

)

Service ID[hex]: 0x70

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: The API shall be invoked by the ADC Driver when the requested power state
preparation for mode <#Mode> is completed.

⌋ ()

This interface provided by CDD or IoHwAbs controlling the peripheral is needed if at
least one MCAL driver is configured for providing power mode control APIs.

There shall be one such a callback for each power mode in which the ADC has to
change power state. It is possible to have the same power state for different power
modes, but only one power state for a given power mode.

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

98 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

9 Sequence diagrams

9.1 Initialization of the ADC Driver

Figure 13: Initialization of the ADC Driver

9.2 De-Initialization of the ADC Driver

Figure 14: De-Initialization of the ADC Driver

9.3 Software triggered One-Shot conversion without notification

«module»

EcuM::EcuM

«module»

Adc::Adc

Status: proposed by TO as per SWS Adc 2.0.1

Description: ADC hardware and driver initialization

Comments:

Adc_Init(const

Adc_ConfigType*)

Adc_Init()

«module»

EcuM::EcuM

«module»

Adc::Adc

Status: Proposed by TO as per SWS ADC 2.0.1

Description: ADC driver and hardware deinitialization.

Comments:

It's the responsabil ity of the HW design that this state doesn't lead to undifined

activities in the uC

a) all notifications are disabled

b) all used interrupts are disabled

Adc_DeInit()

Adc_DeInit()

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

99 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

Figure 15: Software triggered one-shot conversion without notification

«module»

Adc::Adc

«Peripheral»

Hardware::ADC

Conversion Unit

Generic

Elements::Adc User

Status: proposed by S.Barnikol for SWS ADC 3.0.0

Description: Software triggered One-Shot Conversion without Notification

Configuration: - Group 1: Channel 1, Channel 2

 - One Shot Conversion Mode

 - Single Access Mode

loop Adc_GetGroupStatus

[Adc_GetGroupStatus = ADC_BUSY]

Adc_StartGroupConversion(Adc_GroupType)

start conversion(Group1)

Adc_StartGroupConversion()

Adc_GetGroupStatus(Adc_StatusType,

Adc_GroupType) :Adc_StatusType
Adc_GetGroupStatus =

ADC_BUSY()

conversion completed(Group1)

Adc_GetGroupStatus(Adc_StatusType,

Adc_GroupType) :Adc_StatusType
Adc_GetGroupStatus = ADC_STREAM_COMPLETED()

Adc_ReadGroup(Std_ReturnType ,

Adc_GroupType, Adc_ValueGroupType *) :

Std_ReturnType Adc_ReadGroup()

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

100 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

9.4 Software triggered continuous conversion with notification

Figure 16: Software triggered continuous conversion with notification

Generic

Elements::Adc User

«module»

Adc::Adc

«Peripheral»

Hardware::ADC

Conversion Unit

Status: proposed by S. Barnikol as per SWS ADC 3.0.0

Description: Software triggered continuous conversion with notification

conversion

Group1

ongoing

conversion

Group1

ongoing

conversion

Group1

ongoing

Adc_EnableGroupNotification(Group1)

Adc_EnableGroupNotification()

Adc_StartGroupConversion(Adc_GroupType)

start conversion(Group1)Adc_StartGroupConversion()

conversion completed(Group1)
Adc_Notification_Group_1()

Adc_ReadGroup(Adc_GroupType*,

Adc_GroupType,Adc_ValueGroupType *) :

Std_ReturnType
Adc_ReadGroup()

Adc_Notification_Group_1()

conversion completed(Group1)
Adc_Notification_Group_1()

Adc_ReadGroup(Adc_GroupType,

Adc_ValueGroupType*) :Std_ReturnType
Adc_ReadGroup()

Adc_Notification_Group_1()

conversion completed(Group1)

Adc_Notification_Group_1()

Adc_Notification_Group_1()

Adc_StopGroupConversion(Adc_GroupType)

Adc_StopGroupConversion()
stop conversion(Group1)

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

101 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

9.5 Hardware triggered One-Shot conversion with notification

Figure 17: Hardware triggered one-shot conversion with notification

«Peripheral»

Hardware::HW

Trigger Source

«module»

Adc::Adc

«Peripheral»

Hardware::ADC

Conversion Unit

Generic

Elements::Adc

User

Status: proposed by S. Barnikol for SWS ADC 3.0.0

Description: Hardware triggered One-Shot Conversion with Notification enabled/disabled

loop HW Trigger Ev ent - Notification Enabled

loop HW Trigger Ev ent - Notification Disabled

Adc_EnableGroupNotification(Adc_GroupType)

Adc_EnableGroupNotification()

Adc_EnableHardwareTrigger(Adc_GroupType)

enable hardware trigger(Group1)

Adc_EnableHardwareTrigger()

start

conversion()
conversion

completed()Adc_Notification_Group_1()

Adc_ReadGroup(Std_ReturnType,

Adc_GroupType,Adc_ValueGroupType *) :

Std_ReturnType
Adc_ReadGroup()

Adc_Notification_Group_1()

Adc_DisableGroupNotification(Adc_GroupType)

Adc_DisableGroupNotification()

start

conversion()

conversion

completed()

Adc_DisableHardwareTrigger(Adc_GroupType)

disable hardware trigger source(Group1)
Adc_DisableHardwareTrigger()

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

102 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

9.6 HW Trigger - One-Shot conversion - Linear Streaming

Figure 18: Hardware triggered one-shot conversion – linear streaming

Generic

Elements::Adc

User

«module»

Adc::Adc

«Peripheral»

Hardware::ADC

Conversion Unit

«Peripheral»

Hardware::HW

Trigger Source

streaming buffer fi l led with

results of first conversion round

streaming buffer fi l led completely;

HW trigger disabled automatically;

notifications are sti l l enabled

Status: proposed by S.Barnikol for SWS ADC 3.0.0

Configuration: HW trigger, one-shot, l inear streaming

Linear streaming buffer : m=2 (2 group results stored in buffer)

Adc_EnableGroupNotification(Adc_GroupType)

Adc_EnableGroupNotification()

Adc_EnableHardwareTrigger(Adc_GroupType)

enable hardware trigger(Group1)
Adc_EnableHardwareTrigger()

trigger(Group1)

conversion completed

()

Adc_Notification_Group_1()

Adc_GetGroupStatus(Group1)

Adc_GetGroupStatus =

ADC_COMPLETED()

Adc_Notification_Group_1()

trigger(Group1)

conversion

completed()

disable hardware trigger(Group1)

Adc_Notification_Group_1()

Adc_GetGroupStatus(Adc_GroupType)

Adc_GetGroupStatus=ADC_STREAM_COMPLETED()

Adc_DisableGroupNotification(Adc_GroupType)

Adc_DisableGroupNotification()

Adc_Notification_Group_1()

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

103 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

9.7 No Priority Mechanism – No Queuing

Figure 19: No priority mechanism – no queuing

Generic

Elements::Adc

User

«Peripheral»

Hardware::HW

Trigger Source

«Peripheral»

Hardware::ADC

Conversion Unit

«module»

Adc::Adc

«module»

Det::Det

Status: proposed by S.Barnikol for SWS ADC 3.0.0

Description: DET for ADC_StartGroupConversion, priority mechanism NONE, queueing OFF

Configuration: - priority mechanism : NONE

 - queuing : OFF

 - SW conversion requests

 - HW enable requests

 - development error detection: ON

conversion

Group1

ongoing

enable group

notification

for Group 1,2,3,4

Adc_EnableGroupNotification(Group_x)

Adc_EnableGroupNotification()

Adc_StartGroupConversion(Adc_GroupType)
start conversion(Group1)

Adc_StartGroupConversion()

Adc_StartGroupConversion(Adc_GroupType)

Det_ReportError(ADC_E_BUSY)
Adc_StartGroupConversion()

Adc_EnableHardwareTrigger(Adc_GroupType)

Det_ReportError(ADC_E_BUSY)
Adc_EnableHardwareTrigger()

conversion completed(Group1)

Adc_Notification_Group_1()

Adc_Notification_Group_1()

Adc_EnableHardwareTrigger(Adc_GroupType)

enable hardware trigger(Group3)

Adc_EnableHardwareTrigger()

Adc_EnableHardwareTrigger(Adc_GroupType)

Det_ReportError(ADC_E_BUSY)

Adc_EnableHardwareTrigger()

Adc_StartGroupConversion(Adc_GroupType)

Det_ReportError(ADC_E_BUSY)

Adc_StartGroupConversion()

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

104 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

9.8 No Priority Mechanism – SW Queuing

Figure 20: No priority mechanism – software queuing

Generic

Elements::Adc

User

«Peripheral»

Hardware::ADC

Conversion Unit

«module»

Adc::Adc

Status: proposed by S.Barnikol per SWS Adc 3.0.0

Description: SW queue, priority mechanism NONE, queuing ON

Configuration: - priority mechanism : NONE

 - queuing : ON

 - SW conversion requests

 - queuing in SW queue

conversion

Group1

ongoing

conversion

Group2

ongoing

conversion

Group1

ongoing

enable group

notification

for Group 1, 2

Adc_EnableGroupNotification(Group_x)

Adc_EnableGroupNotification()

Adc_StartGroupConversion(Group1)

start conversion (Group1)
Adc_StartGroupConversion()

Adc_StartGroupConversion(Group2)

store conversion request(Group2)

Adc_StartGroupConversion()

conversion completed (Group1)

start conversion(Group2)

Adc_Notification_Group_1()

Adc_Notification_Group_1()

Adc_StartGroupConversion(Group1)

store conversion request(Group1)

Adc_StartGroupConversion()

conversion completed (Group2)

start conversion(Group1)

Adc_Notification_Group_2()

Adc_Notification_Group_2()

conversion completed (Group1)

Adc_Notification_Group_1()

Adc_Notification_Group_1()

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

105 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

9.9 HW_SW Priority Mechanism – SW Queuing

Figure 20: Hardware/software priority mechanism – SW queuing

Generic

Elements::Adc

User

«Peripheral»

Hardware::ADC

Conversion Unit

«module»

Adc::Adc

Status: proposed by S.Barnikol for ADC SWS V3.0.0

Description: SW queue, priority mechanism HW_SW

Configuration: - priority mechanism : HW_SW

 - SW conversion requests

 - priorities: Group1 > Group2

 - queuing in SW queue

 - one-shot conversion mode

conversion

Group1

ongoing

conversion

Group2

ongoing

converstion

Group1

ongoing

conversion

Group2

ongoing

Adc_EnableGroupNotification(Group1)

Adc_EnableGroupNotification()

Adc_EnableGroupNotification(Group2)

Adc_EnableGroupNotification()

Adc_StartGroupConversion(Adc_GroupType)

start conversion(Group1)
Adc_StartGroupConversion()

Adc_StartGroupConversion(Group2)
store conversion request(Group2)

Adc_StartGroupConversion()

conversion completed(Group1)

start conversion(Group2)

Adc_Notification_Group_1()

Adc_Notification_Group_1()

Adc_StartGroupConversion(Group1)

abort/suspend(Group2)

start conversion(Group1)

store conversion request(Group2)

Adc_StartGroupConversion()

conversion completed(Group1)

restart/resume conversion(Group2)

Adc_Notification_Group_1()

Adc_Notification_Group_1()

conversion completed(Group2)

Adc_Notification_Group_2()

Adc_Notification_Group_2()

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

106 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

9.10 HW Priority Mechanism – HW Queuing

Figure 22: Hardware priority mechanism – HW queuing

Generic

Elements::Adc

User

«Peripheral»

Hardware::HW

Trigger Source

«Peripheral»

Hardware::ADC

Conversion Unit

«module»

Adc::Adc

Status: proposed by S.Barnikol for SWS ADC 3.0.0

Description: HW queuing of aborted SW conversion

Configuration: - priority mechanism : HW

 - priorities: Group1 > Group2

 - queuing in HW queue

 - SW Group2 conversion aborted / suspended from HW Group1 conversion

 - SW Group2 conversion restarted / resumed after HW Group1 conversion completed

conversion

Group2

ongoing

Adc_EnableGroupNotification(Group1)

Adc_EnableGroupNotification()

Adc_EnableGroupNotification(Group2)

Adc_EnableGroupNotification()

Adc_EnableHardwareTrigger(Adc_GroupType)

enable HW trigger(Group1)
Adc_EnableHardwareTrigger()

Adc_StartGroupConversion(Adc_GroupType)

start conversion(Group2)

Adc_StartGroupConversion()

trigger(Group1)

abort/supend (Group2)

start conversion(Group1)

conversion completed(Group1) restart/resume conversion (Group2)

Adc_Notification_Group_1()

Adc_Notification_Group_1()

conversion completed(Group2)
Adc_Notification_Group_2()

Adc_Notification_Group_2()

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

107 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

9.11 HW_SW Priority Mechanism – HW/SW Queuing

Figure 23: Hardware/software priority mechanism – hardware/software queuing

Generic

Elements::Adc

User

«Peripheral»

Hardware::HW

Trigger Source

«Peripheral»

Hardware::ADC

Conversion Unit

«module»

Adc::Adc

Status: proposed by S.Barnikol for SWS ADC 3.0.0

Description: HW/SW queuing, HW_SW priority mechanism

Configuration: - priority mechanism : HW_SW

 - queuing: HW/SW

 - priorities : Group1 (high) , Group2, Group4, Group3 (low)

 Group1 and Group2 are prioritized via HW; Group3 and Group4 are prioritized via SW

 - queuing in HW and SW queue

conversion

Group2

ongoing

enable group

notification

for Group 1,2,3,4

Adc_EnableGroupNotification(Group_x)

Adc_EnableGroupNotification()

Adc_EnableHardwareTrigger(Adc_GroupType)

enable HW trigger(Group1)
Adc_EnableHardwareTrigger()

Adc_StartGroupConversion(Adc_GroupType)

start conversion(Group2)
Adc_StartGroupConversion()

Adc_StartGroupConversion(Adc_GroupType)

store conversion request(Group3)

Adc_StartGroupConversion()

trigger(Group1)

abort/suspend(Group2)

start conversion(Group1)

Adc_StartGroupConversion(Adc_GroupType)

store conversion request(Group4)

Adc_StartGroupConversion()

conversion completed(Group1)

restart/resume(Group2)

Adc_Notification_Group_1()

Adc_Notification_Group_1()

conversion completed(Group2)

start conversion((Group4))
Adc_Notification_Group_2()

Adc_Notification_Group_2()

conversion completed(Group4)

start conversion(Group3)

Adc_Notification_Group_4()

Adc_Notification_Group_4()

conversion completed(Group3)

Adc_Notification_Group_3()

Adc_Notification_Group_3()

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

108 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

109 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into
containers. In order to support the specification Chapter 10.1 describes
fundamentals. It also specifies a template (table) you shall use for the parameter
specification. We intend to leave Chapter 10.1 in the specification to guarantee
comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
ADC Driver.

Chapter 10.2.3 specifies published information of the module ADC Driver.

10.1 How to read this chapter

For details refer to the chapter 10.1 “Introduction to configuration specification” in
SWS_BSWGeneral.

10.2 Configuration and configuration parameters

The following chapters summarize all configuration parameters. The detailed
meanings of the parameters describe Chapter 7 and Chapter 8.

10.2.1 Variants

[SWS_Adc_00363]

⌈VARIANT-POST-BUILD: Parameters with “Pre-compile time”, “Link time” and

“Post-build time” are allowed in this variant. ⌋ ()

10.2.2 Adc

Module Name Adc

Module Description Configuration of the Adc (Analog Digital Conversion) module.

Included Containers

Container Name Multiplicity Scope / Dependency

AdcConfigSet 1
This is the base container that contains the post-build
selectable configuration parameters

AdcGeneral 1
General configuration (parameters) of the ADC Driver software
module.

AdcPublishedInformation 1
Additional published parameters not covered by "Common"
Published Information. Note that these parameters have

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

110 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

"PUBLISHED-INFORMATION" configuration class setting,
since they are published information.

10.2.3 AdcGeneral

SWS Item ECUC_Adc_00027 :

Container Name AdcGeneral{AdcDriverGeneralConfiguration}

Description General configuration (parameters) of the ADC Driver software module.

Configuration Parameters

SWS Item ECUC_Adc_00404 :

Name

AdcDeInitApi {ADC_DEINIT_API}

Description Adds / removes the service Adc_DeInit() from the code.
true: Adc_DeInit() can be used. false: Adc_DeInit() can not be used.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Adc_00405 :

Name

AdcDevErrorDetect {ADC_DEV_ERROR_DETECT}

Description Switches the Development Error Detection and Notification ON or OFF.
true: Enabled. false: Disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Adc_00452 :

Name

AdcEnableLimitCheck {ADC_ENABLE_LIMIT_CHECK}

Description Enables or disables limit checking feature in the ADC driver.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Adc_00391 :

Name

AdcEnableQueuing {ADC_ENABLE_QUEUING}

Description Determines, if the queuing mechanism is active in case of priority
mechanism disabled.
Note: If priority mechanism is enabled, queuing mechanism is always
active and the parameter ADC_ENABLE_QUEUING is not evaluated. true:
Enabled. false: Disabled.

Multiplicity 1

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

111 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

Type EcucBooleanParamDef

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local
dependency: AdcPriorityImplementation: parameter is only evaluated for
priority implementation ADC_PRIORITY_NONE.

SWS Item ECUC_Adc_00406 :

Name

AdcEnableStartStopGroupApi
{ADC_ENABLE_START_STOP_GROUP_API}

Description Adds / removes the services Adc_StartGroupConversion() and
Adc_StopGroupConversion() from the code.
true: Adc_StartGroupConversion() and Adc_StopGroupConversion() can
be used. false: Adc_StartGroupConversion() and
Adc_StopGroupConversion() can not be used.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Adc_00105 :

Name

AdcGrpNotifCapability {ADC_GRP_NOTIF_CAPABILITY}

Description Determines, if the group notification mechanism (the functions to enable
and disable the notifications) is available at runtime.
true: Enabled. false: Disabled.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Adc_00408 :

Name

AdcHwTriggerApi {ADC_HW_TRIGGER_API}

Description Adds / removes the services Adc_EnableHardwareTrigger() and
Adc_DisableHardwareTrigger() from the code.
true: Adc_EnableHardwareTrigger() and Adc_DisableHardwareTrigger()
can be used. false: Adc_EnableHardwareTrigger() and
Adc_DisableHardwareTrigger() can not be used.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Adc_00457 :

Name

AdcLowPowerStatesSupport {ADC_LOW_PWR_STATES_SUPPORT}

Description Adds / removes all power state management related APIs

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

112 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

(ADC_SetPowerState, ADC_GetCurrentPowerState,
ADC_GetTargetPowerState, ADC_PreparePowerState,
ADC_Main_PowerTransitionManager), indicating if the HW offers low
power state management.

Multiplicity 0..1

Type EcucBooleanParamDef

Default value false

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Adc_00458 :

Name

AdcPowerStateAsynchTransitionMode
{ADC_ASYNCH_PWR_STATE_TRANS}

Description Enables / disables support of the ADCDriver to the asynchronous power
state transition.

Multiplicity 0..1

Type EcucBooleanParamDef

Default value false

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local
dependency: This parameter shall only be configured if the parameter
AdcLowPowerStatesSupport is set to true.

SWS Item ECUC_Adc_00393 :

Name

AdcPriorityImplementation {ADC_PRIORITY_IMPLEMENTATION}

Description Determines whether a priority mechanism is available for prioritization of the
conversion requests and if available, the type of prioritization mechanism. The
selection applies for groups with trigger source software and trigger source
hardware. Two
types of prioritization mechanism can be selected. The hardware prioritization
mechanism (AdcPriorityHw) uses the ADC hardware features for prioritization of
the software conversion requests and hardware trigger signals for groups with
trigger source hardware. The mixed hardware and software prioritization
mechanism (AdcPriorityHwSw) uses the ADC hardware features for prioritization
of ADC hardware trigger for groups with trigger source hardware and a software
implemented prioritization mechanism for groups with trigger source software.
The group priorities for software triggered groups are typically configured with
lower priority levels than the group priorities for hardware triggered groups.
ImplementationType: Adc_PriorityImplementationType

Multiplicity 1

Type EcucEnumerationParamDef

Range ADC_PRIORITY_HW Hardware priority mechanism is
available only

ADC_PRIORITY_HW_SW Hardware and software priority
mechanism is available

ADC_PRIORITY_NONE priority mechanism is not available

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Adc_00394 :

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

113 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

Name

AdcReadGroupApi {ADC_READ_GROUP_API}

Description Adds / removes the service Adc_ReadGroup() and from the code.
true: Adc_ReadGroup() can be used. false: Adc_ReadGroup() can not be
used.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Adc_00444 :

Name

AdcResultAlignment {ADC_RESULT_ALIGNMENT}

Description Alignment of ADC raw results in ADC result buffer (left/right alignment).
Implementation Type: Adc_ResultAlignmentType

Multiplicity 1

Type EcucEnumerationParamDef

Range ADC_ALIGN_LEFT left alignment

ADC_ALIGN_RIGHT right alignment

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

SWS Item ECUC_Adc_00409 :

Name

AdcVersionInfoApi {ADC_VERSION_INFO_API}

Description Adds / removes the service Adc_GetVersionInfo() from the code.
true: Adc_GetVersionInfo() can be used. false: Adc_GetVersionInfor() can
not be used.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local

Included Containers

Container Name Multiplicity Scope / Dependency

AdcPowerStateConfig 0..*
Each instance of this parameter defines a power state and the
callback to be called when this power state is reached.

10.2.4 AdcPowerStateConfig

SWS Item ECUC_Adc_00459 :

Container Name AdcPowerStateConfig{ADC_PWR_STATE_CONFIG}

Description
Each instance of this parameter defines a power state and the callback to
be called when this power state is reached.

Configuration Parameters

SWS Item ECUC_Adc_00461 :

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

114 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

Name

AdcPowerState {ADC_PWR_STATE}

Description Each instance of this parameter describes a different power state
supported by the ADC HW. It should be defined by the HW supplier and
used by the ADCDriver to reference specific HW configurations which set
the ADC HW module in the referenced power state.
At least the power mode corresponding to full power state shall be always
configured.

Multiplicity 1

Type EcucIntegerParamDef (Symbolic Name generated for this parameter)

Range 0 ..
18446744073709551615

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local
dependency: This parameter shall only be configured if the parameter
AdcLowPowerStatesSupport is set to true.

SWS Item ECUC_Adc_00460 :

Name

AdcPowerStateReadyCbkRef {ADC_PWR_STATE_READY_CBK_REF}

Description Each instance of this parameter contains a reference to a power mode
callback defined in a CDD or IoHwAbs component.

Multiplicity 1

Type EcucFunctionNameDef

Default value --

maxLength --

minLength --

regularExpression --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local
dependency: This parameter shall only be configured if the parameter
AdcLowPowerStatesSupport is set to true.

No Included Containers

10.2.5 AdcConfigSet

SWS Item ECUC_Adc_00390 :

Container Name AdcConfigSet [Multi Config Container]

Description
This is the base container that contains the post-build selectable
configuration parameters

Configuration Parameters

Included Containers

Container Name Multiplicity Scope / Dependency

AdcHwUnit 1..*

This container contains the Driver configuration (parameters)
depending on grouping of channels
This container could contain HW specific parameters which
are not defined in the Standardized Module Definition. They
must be added in the Vendor Specific Module Definition.

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

115 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

10.2.6 AdcChannel

SWS Item ECUC_Adc_00268 :

Container Name AdcChannel{AdcChannelConfiguration}

Description

This container contains the channel configuration (parameters) depending
on the hardware capability. The organization of this data structure could
contain dependencies to the microcontroller so this is left up to the
implementer and its location is left up to the configuration. Note: Since a
AdcChannel can be part of several AdcGroups, this container is not
realized as a subcontainer of AdcGroup but instead as a subcontainer of
AdcHwUnit.

Configuration Parameters

SWS Item ECUC_Adc_00011 :

Name

AdcChannelConvTime {ADC_CHANNEL_CONV_TIME}

Description Configuration of conversion time, i.e. the time during which the analogue
value is converted into digital representation, (in clock cycles) for each
channel, if supported by hardware.
ImplementationType: Adc_ConversionTimeType

Multiplicity 0..1

Type EcucIntegerParamDef

Range 0 ..
18446744073709551615

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_Adc_00455 :

Name

AdcChannelHighLimit {ADC_CHANNEL_HIGH_LIMIT}

Description High limit - used for limit checking.

Multiplicity 0..1

Type EcucIntegerParamDef

Range 0 ..
18446744073709551615

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local
dependency: AdcEnableLimitCheck: not available if limit checking is not
globally enabled.
AdcChannelLimitCheck: not available if channel specific limit check is not
enabled.
AdcChannelLowLimit: has to be greater or equal than
AdcChannelLowLimit.

SWS Item ECUC_Adc_00392 :

Name

AdcChannelId

Description This parameter defines the assignment of the channel to the physical ADC
hardware channel.
ImplementationType: Adc_ChannelType

Multiplicity 1

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

116 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

Type EcucIntegerParamDef

Range 0 .. 1024

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_Adc_00453 :

Name

AdcChannelLimitCheck {ADC_CHANNEL_LIMIT_CHECK}

Description Enables or disables limit checking for an ADC channel.

Multiplicity 0..1

Type EcucBooleanParamDef

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local
dependency: AdcEnableLimitCheck: not available if limit checking is not
globaly enabled.
AdcGroupDefinition: ADC channels with limit checking feature enabled
have to be assigned to ADC groups which consist exactly of one limit
checking enabled ADC channel.

SWS Item ECUC_Adc_00454 :

Name

AdcChannelLowLimit {ADC_CHANNEL_LOW_LIMIT}

Description Low limit - used for limit checking.

Multiplicity 0..1

Type EcucIntegerParamDef

Range 0 ..
18446744073709551615

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local
dependency: AdcEnableLimitCheck: not available if limit checking is not
globally enabled.
AdcChannelLimitCheck: not available if channel specific limit check is not
enabled.
AdcChannelHighLimit: has to be less or equal than AdcChannelHighLimit.

SWS Item ECUC_Adc_00456 :

Name

AdcChannelRangeSelect {ADC_CHANNEL_RANGE_SELECT}

Description In case of active limit checking: defines which conversion values are taken into
account related to the boarders defined with AdcChannelLowLimit and
AdcChannelHighLimit.
Implementation Type: Adc_ChannelRangeSelectType

Multiplicity 0..1

Type EcucEnumerationParamDef

Range ADC_RANGE_ALWAYS Complete range - independent
from channel limit settings.

ADC_RANGE_BETWEEN Range between low limit and
high limit - high limit value
included.

ADC_RANGE_NOT_BETWEEN Range above high limit or below

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

117 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

low limit - low limit value
included.

ADC_RANGE_NOT_OVER_HIGH Range below high limit - high
limit value included.

ADC_RANGE_NOT_UNDER_LOW Range above low limit.

ADC_RANGE_OVER_HIGH Range above high limit.

ADC_RANGE_UNDER_LOW Range below limit - low limit
value included.

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: local
dependency: AdcEnableLimitCheck: not available if limit checking is not globally
enabled.
AdcChannelLimitCheck: not available if channel specific limit check is not
enabled.

SWS Item ECUC_Adc_00089 :

Name

AdcChannelRefVoltsrcHigh {ADC_CHANNEL_REF_VOLTSRC_HIGH}

Description Upper reference voltage source for each channel.
Enumeration literals are defined vendor specific.

Multiplicity 0..1

Type EcucEnumerationParamDef

Range --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_Adc_00023 :

Name

AdcChannelRefVoltsrcLow {ADC_CHANNEL_REF_VOLTSRC_LOW}

Description Lower reference voltage source for each channel.
Enumeration literals are defined vendor specific.

Multiplicity 0..1

Type EcucEnumerationParamDef

Range --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_Adc_00019 :

Name

AdcChannelResolution {ADC_CHANNEL_RESOLUTION}

Description Channel resolution in bits.
ImplementationType: Adc_ResolutionType

Multiplicity 0..1

Type EcucIntegerParamDef

Range 1 .. 63

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local
dependency: AdcMaxChannelResolution: The actual resolution has to be
less or equal than the maximum resolution.

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

118 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

SWS Item ECUC_Adc_00290 :

Name

AdcChannelSampTime {ADC_CHANNEL_SAMP_TIME}

Description Configuration of sampling time, i.e. the time during which the value is
sampled, (in clock cycles) for each channel, if supported by hardware.
ImplementationType: Adc_SamplingTimeType

Multiplicity 0..1

Type EcucIntegerParamDef

Range 0 ..
18446744073709551615

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

No Included Containers

10.2.7 AdcGroup

SWS Item ECUC_Adc_00028 :

Container Name AdcGroup{AdcGroupConfiguration}

Description This container contains the Group configuration (parameters).

Configuration Parameters

SWS Item ECUC_Adc_00317 :

Name

AdcGroupAccessMode {ADC_GROUP_ACCESS_MODE}

Description Type of access mode to group conversion results.
ImplementationType: Adc_GroupAccessModeType

Multiplicity 1

Type EcucEnumerationParamDef

Range ADC_ACCESS_MODE_SINGLE Single value access mode

ADC_ACCESS_MODE_STREAMING Streaming access mode

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local
dependency: AdcGroupTriggSrc / AdcGroupConvMode: streaming access mode
is not available for one-shot conversion mode with software trigger source.

SWS Item ECUC_Adc_00397 :

Name

AdcGroupConversionMode {ADC_GROUP_CONV_MODE}

Description Type of conversion mode supported by the driver.
ImplementationType: Adc_GroupConvModeType

Multiplicity 1

Type EcucEnumerationParamDef

Range ADC_CONV_MODE_CONTINUOUS Conversions of an ADC channel
group are performed
continuously after a software
API call (start). The conversions
itself are running automatically
(no additional software or
hardware trigger needed).

ADC_CONV_MODE_ONESHOT The conversion of an ADC
channel group is performed
once after a trigger.

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

119 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local
dependency: AdcGroupTriggSrc: Continuous conversion mode only available for
software triggered groups.

SWS Item ECUC_Adc_00398 :

Name

AdcGroupId {ADC_GROUP_ID}

Description Numeric ID of the group. This parameter is the symbolic name to be used
on the API. This symbolic name allows accessing Channel Group data.
This value will be assigned to the symbolic name derived of the AdcGroup
container shortName.
ImplementationType: Adc_GroupType

Multiplicity 1

Type EcucIntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 1023

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_Adc_00287 :

Name

AdcGroupPriority {ADC_GROUP_PRIORITY}

Description Priority level of the AdcGroup.
ImplementationType: Adc_GroupPriorityType

Multiplicity 0..1

Type EcucIntegerParamDef

Range 0 .. 255

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local
dependency: ADC_PRIORITY_IMPLEMENTATION

SWS Item ECUC_Adc_00435 :

Name

AdcGroupReplacement {ADC_GROUP_REPLACEMENT}

Description Replacement mechanism, which is used on ADC group level, if a group
conversion is interrupted by a group which has a higher priority.
ImplementationType: Adc_GroupReplacementType

Multiplicity 0..1

Type EcucEnumerationParamDef

Range ADC_GROUP_REPL_ABORT_RESTART Abort/Restart mechanism is
used on group level, if a group
is interrupted by a higher
priority group. The complete
conversion round of the
interrupted group (all group
channels) is restarted after
the higher priority group
conversion is finished. If the
group is configured in
streaming access mode, only
the results of the interrupted
conversion round are

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

120 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

discarded. Results of previous
conversion rounds which are
already written to the result
buffer are not affected.

ADC_GROUP_REPL_SUSPEND_RESUME Suspend/Resume mechanism
is used on group level, if a
group is interrupted by a
higher priority group. The
converions round (conversion
of all group channels) of the
interrupted group is
completed after the higher
priority group conversion is
finished. If the group is
configured in streaming
access mode, only the results
of the interrupted conversion
round are discarded. Results
of previous conversion rounds
which are already written to
the result buffer are not
affected.

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_Adc_00399 :

Name

AdcGroupTriggSrc {ADC_GROUP_TRIGG_SRC}

Description Type of source event that starts a group conversion.
ImplementationType: Adc_TriggerSourceType

Multiplicity 1

Type EcucEnumerationParamDef

Range ADC_TRIGG_SRC_HW Group is triggered by a hardware
event.

ADC_TRIGG_SRC_SW Group is triggered by a software API
call.

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local
dependency: AdcGroupConvMode: Trigger source HW is not available for
continuous conversion mode.

SWS Item ECUC_Adc_00400 :

Name

AdcHwTrigSignal {ADC_HW_TRIG_SIGNAL}

Description Configures on which edge of the hardware trigger signal the driver should react,
i.e. start the conversion (only if supported by the ADC hardware).
ImplementationType: Adc_HwTriggerSignalType

Multiplicity 0..1

Type EcucEnumerationParamDef

Range ADC_HW_TRIG_BOTH_EDGES React on both edges of the
hardware trigger signal (only if
supported by the ADC
hardware).

ADC_HW_TRIG_FALLING_EDGE React on the falling edge of the
hardware trigger signal (only if

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

121 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

supported by the ADC
hardware).

ADC_HW_TRIG_RISING_EDGE React on the rising edge of the
hardware trigger signal (only if
supported by the ADC
hardware).

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local
dependency: AdcTriggSrcHw: Valid only if the group is configured to be triggered
by a hardware event.

SWS Item ECUC_Adc_00401 :

Name

AdcHwTrigTimer {ADC_HW_TRIG_TIMER}

Description Reload value of the ADC module embedded timer (only if supported by
ADC hardware).
ImplementationType: Adc_HwTriggerTimerType

Multiplicity 0..1

Type EcucIntegerParamDef

Range 0 ..
18446744073709551615

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local
dependency: AdcTriggSrcHw: Valid only if the group is configured to be
triggered by a hardware event.

SWS Item ECUC_Adc_00402 :

Name

AdcNotification {ADC_NOTIFICATION}

Description Callback function for each group

Multiplicity 0..1

Type EcucFunctionNameDef

Default value --

maxLength --

minLength --

regularExpression --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local
dependency: This parameter is only available, if notification capability is
configured available by AdcGrpNotifCapability

SWS Item ECUC_Adc_00316 :

Name

AdcStreamingBufferMode {ADC_STREAMING_BUFFER_MODE}

Description Configure streaming buffer as "linear buffer" (i.e. the ADC Driver stops the
conversion as soon as the stream buffer is full) or as "ring buffer" (wraps around
if the end of the stream buffer is reached).
ImplementationType: Adc_StreamBufferModeType

Multiplicity 1

Type EcucEnumerationParamDef

Range ADC_STREAM_BUFFER_CIRCULAR The ADC Driver continues the
conversion even if the stream

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

122 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

buffer is full (number of
samples reached) by wrapping
around the stream buffer itself.

ADC_STREAM_BUFFER_LINEAR The ADC Driver stops the
conversion as soon as sthe
stream buffer is full (number of
samples reached).

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local
dependency: AdcGroupAccessMode: Valid only for streaming access mode.

SWS Item ECUC_Adc_00292 :

Name

AdcStreamingNumSamples {ADC_STREAMING_NUM_SAMPLES}

Description Number of ADC values to be acquired per channel in streaming access
mode.
Note: in single access mode this parameter assumes value 1, since only
one sample per channel is processed.
ImplementationType: Adc_StreamNumSampleType

Multiplicity 1

Type EcucIntegerParamDef

Range 1 .. 255

Default value 1

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local
dependency: AdcGroupAccessMode: Valid only for streaming access
mode. In single access mode this parameter assumes value 1, since only
one sample per channel is processed.

SWS Item ECUC_Adc_00014 :

Name

AdcGroupDefinition {ADC_GROUP_DEFINITION}

Description Assignment of AdcChannels to a AdcGroups.
ImplementationType: Adc_GroupDefType

Multiplicity 1..*

Type Reference to [AdcChannel]

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

No Included Containers

[SWS_Adc_00098] ⌈ (refers to ADC396): All channels of a group share the same

group configuration (channel can have different channel specific configurations).⌋
(SRS_Adc_12447)

10.2.8 AdcHwUnit

SWS Item ECUC_Adc_00242 :

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

123 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

Container Name AdcHwUnit{AdcHWUnitConfiguration}

Description

This container contains the Driver configuration (parameters) depending
on grouping of channels This container could contain HW specific
parameters which are not defined in the Standardized Module Definition.
They must be added in the Vendor Specific Module Definition.

Configuration Parameters

SWS Item ECUC_Adc_00087 :

Name

AdcClockSource {ADC_CLK_SRC}

Description The ADC module specific clock input for the conversion unit can
statically be configured to select different clock sources if provided by
hardware. Enumeration literals are defined vendor specific.

Multiplicity 0..1

Type EcucEnumerationParamDef

Range --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_Adc_00389 :

Name

AdcHwUnitId {ADC_HWUNIT_ID}

Description Description: Numeric ID of the HW Unit. This symbolic name allows
accessing Hw Unit data. Enumeration literals are defined vendor specific.

Multiplicity 1

Type EcucEnumerationParamDef

Range --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

SWS Item ECUC_Adc_00088 :

Name

AdcPrescale {ADC_PRESCALE}

Description Optional ADC module specific clock prescale factor, if supported by
hardware.
ImplementationType: Adc_PrescaleType

Multiplicity 0..1

Type EcucIntegerParamDef

Range 0 .. 65535

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: local

Included Containers

Container Name Multiplicity Scope / Dependency

AdcChannel 1..*

This container contains the channel configuration (parameters)
depending on the hardware capability.
The organization of this data structure could contain
dependencies to the microcontroller so this is left up to the
implementer and its location is left up to the configuration.
Note: Since a AdcChannel can be part of several AdcGroups,
this container is not realized as a subcontainer of AdcGroup
but instead as a subcontainer of AdcHwUnit.

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

124 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

AdcGroup 1..* This container contains the Group configuration (parameters).

[SWS_Adc_00138] ⌈ (refers to ADC242): The ADC Driver shall support one or
several ADC HW Units of the same type. The selection of ADC HW Unit shall be

done by the configuration container AdcHwUnit. ⌋ ()

10.3 Published information

For details refer to the chapter 10.3 “Published Information” in SWS_BSWGeneral.

10.3.1 AdcPublishedInformation

SWS Item ECUC_Adc_00030 :

Container Name AdcPublishedInformation

Description

Additional published parameters not covered by "Common" Published
Information. Note that these parameters have "PUBLISHED-
INFORMATION" configuration class setting, since they are published
information.

Configuration Parameters

SWS Item ECUC_Adc_00410 :

Name

AdcChannelValueSigned {ADC_CHANNEL_VALUESIGNED}

Description Information whether the result value of the ADC driver has sign information
(true) or not (false). If the result shall be interpreted as signed value it shall
apply to C-language rules.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

ConfigurationClass Published Information X All Variants

Scope / Dependency scope: local

SWS Item ECUC_Adc_00411 :

Name

AdcGroupFirstChannelFixed {ADC_GROUP_FIRST_CHANNEL_FIXED}

Description Information whether the first channel of an ADC Channel group can be
configured (false) or is fixed (true) to a value determined by the ADC HW
Unit.

Multiplicity 1

Type EcucBooleanParamDef

Default value --

ConfigurationClass Published Information X All Variants

Scope / Dependency scope: local

SWS Item ECUC_Adc_00412 :

Name

AdcMaxChannelResolution {ADC_MAX_CHANNEL_RESOLUTION}

Description Maximum Channel resolution in bits (does not specify accuracy).

Multiplicity 1

Type EcucIntegerParamDef

Range 1 .. 63

Default value --

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

125 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

ConfigurationClass Published Information X All Variants

Scope / Dependency scope: local

No Included Containers

10.4 Configuration of symbolic names

[SWS_Adc_00099] ⌈The symbolic names of ADC channels and ADC channel
groups for use by the upper layer shall be defined by the configurator. They are to be

defined in the modules configuration header file.⌋ (SRS_Adc_12307,
SRS_Adc_12447)

Specification of ADC Driver
 V5.1.1

R4.1 Rev 3

126 of 126 Document ID 010: AUTOSAR_SWS_ADCDriver

 - AUTOSAR confidential -

11 Not applicable requirements

[SWS_Adc_00460] ⌈ These requirements are not applicable to this specification.⌋
(SRS_BSW_00344, SRS_BSW_00167, SRS_BSW_00170, SRS_BSW_00387,
SRS_BSW_00398, SRS_BSW_00375, SRS_BSW_00416, SRS_BSW_00168,
SRS_BSW_00423, SRS_BSW_00424, SRS_BSW_00425, SRS_BSW_00426,
SRS_BSW_00427, SRS_BSW_00428, SRS_BSW_00429, BSW00431,
SRS_BSW_00432, SRS_BSW_00433, BSW00434, SRS_BSW_00417,
SRS_BSW_00161, SRS_BSW_00162, SRS_BSW_00005, SRS_BSW_00164,
SRS_BSW_00325, SRS_BSW_00326, SRS_BSW_00342, SRS_BSW_00343,
SRS_BSW_00160, SRS_BSW_00007, SRS_BSW_00413, SRS_BSW_00347,
SRS_BSW_00307, SRS_BSW_00373, SRS_BSW_00301, SRS_BSW_00302,
SRS_BSW_00328, SRS_BSW_00312, SRS_BSW_00006, SRS_BSW_00357,
SRS_BSW_00355, SRS_BSW_00306, SRS_BSW_00308, SRS_BSW_00371,
SRS_BSW_00376, SRS_BSW_00329, SRS_BSW_00330, SRS_BSW_00009,
SRS_BSW_00010, SRS_BSW_00341, SRS_BSW_00334, SRS_SPAL_12267,
SRS_SPAL_12463, SRS_SPAL_12068, SRS_SPAL_12069, SRS_SPAL_12169,
SRS_SPAL_12064, SRS_SPAL_12067, SRS_SPAL_12077, SRS_SPAL_12078,
SRS_SPAL_12092, SRS_SPAL_12265)

	1 Introduction and functional overview
	2 Acronyms and abbreviations
	3 Related documentation
	3.1 Input documents
	3.2 Related specification

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 File structure
	5.1.1 Header file structure

	6 Requirements traceability
	7 Functional specification
	7.1 General behavior
	7.1.1 Background & Rationale
	7.1.2 Requirements
	7.1.3 ADC Buffer Access Mode Example
	7.1.3.1 Example: Configuration
	7.1.3.2 Example: Initialization
	7.1.3.3 Example: Adc_GetStreamLastPointer Usage
	7.1.3.4 Example: Adc_ReadGroup Usage

	7.2 Conversion processing and interaction
	7.2.1 Background & Rationale
	7.2.2 Requirements

	7.3 State Diagrams
	7.3.1 ADC State Diagram for One-Shot/Continuous Group Conversion Mode
	7.3.2 ADC State Diagram for HW/SW Trigger in One-Shot Group Conversion Mode
	7.3.3 ADC State Diagram for SW Trigger in Continuous Conversion Mode
	7.3.4 ADC State Diagram for One-Shot Conversion Mode, Software Trigger Source, Single Access Mode
	7.3.5 ADC State Diagram for One-Shot Conversion, Hardware Trigger Source, Single Access Mode
	7.3.6 ADC State Diagram for One-Shot Conversion Mode, Hardware Trigger Source, Linear and Circular Streaming Access Mode
	7.3.7 ADC State Diagram for Continuous Conversion Mode, Software Trigger Source, Single Access Mode
	7.3.8 ADC State Diagram for Continuous Conversion Mode, Software Trigger Source, Linear and Circular Streaming Access Mode

	7.4 Support and management of HW low power states
	7.4.1 Background
	7.4.2 Requirements

	7.5 Version check
	7.5.1 Background & Rationale

	7.6 Error detection

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 Adc_ConfigType
	8.2.2 Adc_ChannelType
	8.2.3 Adc_GroupType
	8.2.4 Adc_ValueGroupType
	8.2.5 Adc_PrescaleType
	8.2.6 Adc_ConversionTimeType
	8.2.7 Adc_SamplingTimeType
	8.2.8 Adc_ResolutionType
	8.2.9 Adc_StatusType
	8.2.10 Adc_TriggerSourceType
	8.2.11 Adc_GroupConvModeType
	8.2.12 Adc_GroupPriorityType
	8.2.13 Adc_GroupDefType
	8.2.14 Adc_StreamNumSampleType
	8.2.15 Adc_StreamBufferModeType
	8.2.16 Adc_GroupAccessModeType
	8.2.17 Adc_HwTriggerSignalType
	8.2.18 Adc_HwTriggerTimerType
	8.2.19 Adc_PriorityImplementationType
	8.2.20 Adc_GroupReplacementType
	8.2.21 Adc_ChannelRangeSelectType
	8.2.22 Adc_ResultAlignmentType
	8.2.23 Adc_PowerStateType
	8.2.24 Adc_PowerStateRequestResultType

	8.3 Function definitions
	8.3.1 Adc_Init
	8.3.2 Adc_SetupResultBuffer
	8.3.3 Adc_DeInit
	8.3.4 Adc_StartGroupConversion
	8.3.5 Adc_StopGroupConversion
	8.3.6 Adc_ReadGroup
	8.3.7 Adc_EnableHardwareTrigger
	8.3.8 Adc_DisableHardwareTrigger
	8.3.9 Adc_EnableGroupNotification
	8.3.10 Adc_DisableGroupNotification
	8.3.11 Adc_GetGroupStatus
	8.3.12 Adc_GetStreamLastPointer
	8.3.13 Adc_GetVersionInfo
	8.3.14 Adc_SetPowerState
	8.3.15 Adc_GetCurrentPowerState
	8.3.16 Adc_GetTargetPowerState
	8.3.17 Adc_PreparePowerState

	8.4 Call-back Notifications
	8.5 Scheduled functions
	8.5.1 Adc_Main_PowerTransitionManager

	8.6 Expected Interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.3 Configurable interfaces
	8.6.3.1 IoHwAb_Adc_Notification<#groupID>
	8.6.3.2 IoHwAb_Adc_NotifyReadyForPowerState<#Mode>

	9 Sequence diagrams
	9.1 Initialization of the ADC Driver
	9.2 De-Initialization of the ADC Driver
	9.3 Software triggered One-Shot conversion without notification
	9.4 Software triggered continuous conversion with notification
	9.5 Hardware triggered One-Shot conversion with notification
	9.6 HW Trigger - One-Shot conversion - Linear Streaming
	9.7 No Priority Mechanism – No Queuing
	9.8 No Priority Mechanism – SW Queuing
	9.9 HW_SW Priority Mechanism – SW Queuing
	9.10 HW Priority Mechanism – HW Queuing
	9.11 HW_SW Priority Mechanism – HW/SW Queuing

	10 Configuration specification
	10.1 How to read this chapter
	10.2 Configuration and configuration parameters
	10.2.1 Variants
	10.2.2 Adc
	10.2.3 AdcGeneral
	10.2.4 AdcPowerStateConfig
	10.2.5 AdcConfigSet
	10.2.6 AdcChannel
	10.2.7 AdcGroup
	10.2.8 AdcHwUnit

	10.3 Published information
	10.3.1 AdcPublishedInformation

	10.4 Configuration of symbolic names

	11 Not applicable requirements

