
Requirements on CAN
 V4.3.0

R4.1 Rev 3

1 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

Document Change History
Date Version Changed by Change Description

31.03.2014 4.3.0 AUTOSAR
Release
Management

 Revised DLC checks depending on
padding configuration

31.10.2013 4.2.0 AUTOSAR
Release
Management

 Corrected requirement for: "Do not
send WUF as First Message on the
Bus after BusOff"

 Editorial changes

06.03.2013 4.1.0 AUTOSAR
Administration

 Support for 29bit Mixed Addressing

 Wakeup by bus callback shall be
synchronous or asynchronous
depending on the hardware

 Advanced transmit buffer handling

28.10.2011 4.0.0 AUTOSAR
Administration

 Added high level requirements for
partial networking

 Added improvement of transmit buffer
handling

 Added full duplex support

22.11.2010 3.1.0 AUTOSAR
Administration

BSW01017 requirement for CAN
polling/interrupt mode removed

02.12.2009 3.0.0 AUTOSAR
Administration

 Additional requirements for transport
layer CAN

 Requirement for remote frame support
added

 Legal disclaimer revised

23.06.2008 2.1.3 AUTOSAR
Administration

 Legal disclaimer revised

24.01.2007 2.1.2 AUTOSAR
Administration

 “Advice for users” revised

 “Revision Information” added

18.12.2006 2.1.1 AUTOSAR
Administration

 PDF file corrections made

Document Title Requirements on CAN
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 001

Document Classification Auxiliary

Document Version 4.3.0

Document Status Final

Part of Release 4.1

Revision 3

Requirements on CAN
 V4.3.0

R4.1 Rev 3

2 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

Document Change History
Date Version Changed by Change Description

04.12.2006 2.1.0 AUTOSAR
Administration

 Architecture design change: CAN
Transceiver Driver is now layered below
CAN Interface

 Extended 11/29 bit Identifier support in
CAN Interface

 Added N_SA in SRS_Can_01069 and
SRS_Can_01074

 Legal disclaimer revised

01.04.2006 2.0.0 AUTOSAR
Administration

CAN Driver, CAN Interface

 Optimized timing behavior for
transmission (multiplexed transmission,
priority based transmission,
transmission cancellation)

 Support of Standard and Extended CAN
Identifiers on one network

CAN Transport Layer

 Multiple connections mechanism,

 Support of ISO-15765-4,

 Support of Connection specific time out
values

 Support of different addressing modes
in parallel

CAN Transceiver Driver

 Requirements for CAN Transceiver
Driver added

31.05.2005 1.0.0 AUTOSAR
Administration

Initial release

Requirements on CAN
 V4.3.0

R4.1 Rev 3

3 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

Disclaimer

This specification and the material contained in it, as released by AUTOSAR, is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only.
For any other purpose, no part of the specification may be utilized or reproduced, in
any form or by any means, without permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR specifications may contain exemplary items (exemplary reference
models, "use cases", and/or references to exemplary technical solutions, devices,
processes or software).

Any such exemplary items are contained in the specifications for illustration purposes
only, and they themselves are not part of the AUTOSAR Standard. Neither their
presence in such specifications, nor any later documentation of AUTOSAR
conformance of products actually implementing such exemplary items, imply that
intellectual property rights covering such exemplary items are licensed under the
same rules as applicable to the AUTOSAR Standard.

Requirements on CAN
 V4.3.0

R4.1 Rev 3

4 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

Table of Contents

1 Scope of document ... 5

2 How to read this document .. 6

2.1 Conventions used... 6
2.2 Requirements structure .. 7

3 Acronyms and abbrevations .. 8

4 Functional Overview .. 9

5 Requirements Specification ... 10

5.1 Remarks to the CAN Bus Transceiver Driver ... 10
5.1.1 Explicitly uncovered CAN Bus Transceiver functionality 10

5.1.2 System Basis Chip and CAN Bus Transceiver Driver 10

5.2 Functional Requirements ... 11
5.2.1 CAN Driver .. 11

5.2.2 CAN Interface (Hardware Abstraction) .. 21
5.2.3 CAN State Manager .. 34

5.2.4 Transport Layer CAN .. 35
5.2.5 CAN Bus Transceiver Driver ... 42

5.3 Non functional requirements .. 51
5.3.1 CAN Driver .. 51
5.3.2 CAN Interface (Hardware Abstraction) .. 52

5.3.3 CAN State Manager .. 52
5.3.4 Transport Layer CAN .. 53

5.3.5 CAN Bus Transceiver Driver ... 54
5.3.6 CAN Driver and Interface together .. 55

6 References .. 57

6.1 Deliverables of AUTOSAR ... 57

6.2 Related standard and norms .. 57
6.2.1 ISO .. 57

6.3 Related Example Transceiver Data Sheets .. 57

Requirements on CAN
 V4.3.0

R4.1 Rev 3

5 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

1 Scope of document

This document specifies the requirements for the following Basic Software Modules
(module names in brackets):

 CAN Driver (Can)

 CAN Interface (CanIf)

 CAN State Manager (CanSM)

 CAN Transport Layer (CanTp)

 CAN Bus Transceiver Driver (CanTrcv)

Requirements on CAN
 V4.3.0

R4.1 Rev 3

6 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

2 How to read this document

Each requirement has its unique identifier starting with the prefix “BSW” (for “Basic
Software”). For any review annotations, remarks or questions, please refer to this
unique ID rather than chapter or page numbers!

2.1 Conventions used

 The representation of requirements in AUTOSAR documents follows the table
specified in [TPS_STDT_00078].

 In requirements, the following specific semantics are used

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted . Note that the requirement level of the document in
which they are used modifies the force of these words.

 MUST: This word, or the terms "REQUIRED" or "SHALL", mean that the
definition is an absolute requirement of the specification.

 MUST NOT: This phrase, or the phrase „SHALL NOT“, means that the
definition is an absolute prohibition of the specification.

 SHOULD: This word, or the adjective "RECOMMENDED", mean that there
may exist valid reasons in particular circumstances to ignore a particular item,
but the full implications must be understood and carefully weighed before
choosing a different course.

 SHOULD NOT: This phrase, or the phrase "NOT RECOMMENDED" mean
that there may exist valid reasons in particular circumstances when the
particular behavior is acceptable or even useful, but the full implications
should be understood and the case carefully weighed before implementing
any behavior described with this label.

 MAY: This word, or the adjective „OPTIONAL“, means that an item is truly
optional. One vendor may choose to include the item because a particular
marketplace requires it or because the vendor feels that it enhances the
product while another vendor may omit the same item. An implementation,
which does not include a particular option, MUST be prepared to interoperate
with another implementation, which does include the option, though perhaps
with reduced functionality. In the same vein an implementation, which does
include a particular option, MUST be prepared to interoperate with another
implementation, which does not include the option (except, of course, for the
feature the option provides.)

Requirements on CAN
 V4.3.0

R4.1 Rev 3

7 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

2.2 Requirements structure

Each module specific chapter contains a short functional description of the Basic
Software Module. Requirements of the same kind within each chapter are grouped
under the following headlines (where applicable):

Functional Requirements:
- Configuration (which elements of the module need to be configurable)
- Initialization
- Normal Operation
- Shutdown Operation
- Fault Operation
- ...

Non-Functional Requirements:
- Timing Requirements
- Resource Usage
- Usability
- Output for other WPs (e.g. Description Templates, Tooling,...)
- ...

Requirements on CAN
 V4.3.0

R4.1 Rev 3

8 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

3 Acronyms and abbrevations

Acronym: Description:

CAN
Communication
Matrix

Describes the complete CAN network:
 Participating nodes
 Definition of all CAN PDUs (Identifier, DLC)
 Source and Sinks for PDUs

Format is defined in other AUTOSAR workpackage

Physical Channel

A physical channel represents an interface to the CAN Network. Different
physical channels of the CAN Hardware Unit may access different networks.

L-PDU CAN (Data Link Layer) Protocol Data Unit. Consists of Identifier, DLC and Data
(L-SDU).

L-SDU CAN (Data Link Layer) Service Data Unit. Data that is transported inside the L-
PDU.

Hardware Object A Hardware Object is defined as message buffer inside the CAN RAM of the
CAN Hardware Unit. Also often called Message Object

Hardware Object
Handle

The hardware object handle (HOH) is defined and provided by the CAN Driver.
Typically each HOH represents a hardware object.
The HOH is used as parameter by the CAN Interface Layer for transmit and read
requests to the CAN Driver.

L-PDU Handle

The L-PDU handle is defined and placed inside the CAN Interface Layer.
Typically each handle represents a L-PDU or a range of L-PDUs, and is a
constant structure with information for Tx/Rx processing.

CAN Controller A CAN controller serves exactly one physical channel. See Figure "Typical CAN
HW Unit" in CAN Interface SWS.

CAN Hardware
Unit

A CAN hardware unit may consist of one or multiple CAN controllers of the same
type and one or multiple CAN RAM areas. The CAN hardware unit is either on-
chip, or an external device. The CAN hardware unit is represented by one CAN
Driver. See Figure "Typical CAN HW Unit" in CAN Interface SWS.

Multiplexed
Transmission

Usage of three TX HW objects, which are represented as one transmit entity
(Hardware Object Handle) to the upper layer. Used for Outer Priority Inversion
avoidance

Inner Priority
Inversion

Transmission of a high-priority L-PDU is prevented by the presence of a pending
low-priority L-PDU in the same physical channel.

Outer Priority
Inversion

Occurs when a time gap is between two consecutive TX L-PDU transmissions.
In this case a lower priority L-PDU from another node can prevent sending the
next L-PDU because the higher priority L-PDU can't participate in the running bus
arbitration because it comes too late.

Bus A bus represents a CAN or LIN network. A bus has a given physical behavior
(e.g. CAN low-speed or high-speed). A bus may support wakeup via bus or is
“always on”.

N-PDU Network Protocol Data Unit of the CAN Transport Layer

N-SDU Service Data Unit of the CAN Transport Layer. Data that is transported inside the
N-PDU.

static configuration Configuration, that is not changeable during runtime. This means that a
configuration is typically done once during startup phase of the ECU.
This concern is independent from the possibilities to introduce the configuration
parameters into the ECU itself: Pre-Compile-Time, Link-Time or Post-Build-Time

STmin Separation Time min

BS Block Size

HTH CAN hardware transmit handle

Requirements on CAN
 V4.3.0

R4.1 Rev 3

9 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

4 Functional Overview

The CAN bus transceiver driver is responsible to handle the CAN transceivers on an
ECU according to the expected state of the bus specific NM in relation to the current
state of the whole ECU.

The transceiver is a hardware device, which mainly transforms the logical on/off
signal values of the µC ports to the bus compliant electrical levels, currents and
timings. Within an automotive environment there are mainly three different CAN
physics used. These physics are ISO11898 for high-speed CAN (up to 1Mbd),
ISO11519 for low-speed CAN (up to 125kBd). Both are regarded in AUTOSAR,
whereas SAE J2411 for single-wire CAN is not.

In addition, the transceivers are often able to detect electrical malfunctions like wiring
issues, ground offsets or transmission of too long dominant signals. Depending on
the interface they flag the detected error summarized by a single port pin or very
detailed via SPI.

Some transceivers also support power supply control and wakeup via the bus. A lot
of different wakeup/sleep and power supply concepts are available on the market
with focus to best-cost optimized solution for a given task.
Latest developments are so called SystemBasisChips (SBC) where not only the CAN
and/or LIN transceivers but also power-supply control and advanced watchdogs are
implemented in one housing and are controlled via one interface (typically an SPI).

A typical CAN transceiver is the TJA1054 for a low-speed CAN bus. The same state
transition model is also used in TJA1041 (high-speed CAN with support for wakeup
via CAN) and could be transferred also to a lot of other products on the market.

Transceiver Wakeup Reason
The transceiver driver is able to store the local view on who has requested the
wakeup: bus or software.
- Bus: The bus has caused the wakeup.
- Internally: The wakeup has been caused by a software request to the driver.
- Sleep: The transceiver is in operation mode sleep and no wakeup has been

occurred.

Requirements on CAN
 V4.3.0

R4.1 Rev 3

10 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

5 Requirements Specification

5.1 Remarks to the CAN Bus Transceiver Driver

CAN bus transceivers are very different in their behavior and supported features. The
range starts with very simple CAN transceivers, which are “always on”, includes
transceivers with support for advanced limp home handling and error detection and
ends with so called system basis chips (SBC) which contain internally multiple CAN
bus transceivers, watchdog, voltage regulators and more.
The size of transceiver data sheets is from few pages to more than 80 pages and the
additional application notes for the devices are nearly countless.

The target of this document is to specify interfaces and behavior, which is applicable
to most current and future CAN bus transceivers on the market for nearly all use
cases. If it could be reached that at least the “user” of the bus transceiver
functionality, typically the AUTOSAR NM and the AUTOSAR Communication
Manager, are bus independent and therefore reusable, will be great.

It will not be possible to cover all possible combinations of bus transceivers with all
conceivable power concepts within one AUTOSAR implementation.

5.1.1 Explicitly uncovered CAN Bus Transceiver functionality

Some CAN bus transceivers offer additional functionality to improve e.g. ECU self
test or enhanced error detection capability for diagnostics.

ECU self test and enhanced error detection are not defined within AUTOSAR and
requiring such functionality in general will lock out most currently used (and cheap)
transceiver devices. Therefore features like “ground shift detection”, “selective
wakeup”, “slope control” and others are not supported within this requirement. A
general and “open” API like IOControl() is not applicable (and accepted) within
AUTOSAR due to portability and reuse.

5.1.2 System Basis Chip and CAN Bus Transceiver Driver

A system basis chip (SBC) contains beside the CAN bus transceivers additional
hardware related to power control and safety (e.g. multiple voltage regulators and a
watchdog) and even more features (e.g. persistent memory).

In the AUTOSAR concept, a separate manager/driver/handler (in AUTOSAR called:
Interface) is responsible for each identified hardware device. Therefore additional
manager/driver/handler covers the functionality inside a SBC beside the bus
transceiver driver (e.g. Watchdog Manager, non-volatile memory manager, power
control driver, …). Due to the shared communication access and the (security-
related) restrictions within this communication, independent handling of each SBC-
sub-functionality will not be possible.

Requirements on CAN
 V4.3.0

R4.1 Rev 3

11 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

This will lead to the situation that either a SBC could not be used within an
AUTOSAR compliant ECU or (the better solution) a specialized
manager/driver/handler for the SBC functionality with all APIs of each single domain
has to be used.

5.2 Functional Requirements

5.2.1 CAN Driver

The CAN Driver offers uniform interfaces for the above user of this layer, the CAN
Interface. The CAN Driver hides the hardware specific properties of the related CAN
Controller as far as possible and reasonable.

For a detailed functional description and interface definition see CAN Driver
Specification [Can].

5.2.1.1 Configuration

5.2.1.1.1 [SRS_Can_01036] The Can Driver shall support Standard Identifier
and Extended Identifier

⌈

Type: valid

Description: The CAN driver shall be able to operate with both standard and extended
CAN Identifiers on one CAN Controller if supported by CAN Hardware.
Each hardware object shall be statically and individually configurable for
one of the both identifier types if supported by CAN Hardware.
All L-PDUs sent and received over that CAN controller shall be conform
this configuration.
The CAN Driver shall support reception and transmission of L-PDUs with
Standard and Extended ID, including both at the same time on one
Hardware Object.
The configuration parameters shall be allowed to be of types Pre-Compile-
Time, Link-Time or Post-Build-Time

Rationale: CAN Standard Coverage

Use Case: CAN Standard allows Standard and Extended Identifier. Different projects
might require the usage of Extended CAN IDs in addition to Standard CAN
IDs due to the lack of remaining StandardCAN IDs.

Dependencies: [SRS_Can_01016]

Supporting Material: --

⌋(RS_BRF_01704)

5.2.1.1.2 [SRS_Can_01037] The CAN driver shall allow the static
configuration of the hardware reception filter

⌈

Type: valid

Description: HW supported filtering of receive L-PDUs shall be configurable. The
configuration shall be done during initialization phase. Reconfiguration
during normal operation shall only be possible in STOPPED mode.
It shall be allowed for the configuration parameters to be of types Pre-

Requirements on CAN
 V4.3.0

R4.1 Rev 3

12 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

Compile, Link-Time or Post-Build

Rationale: Coverage of hardware capabilities

Use Case: CAN controller allow filtering of messages inside hardware. That reduces
the software load caused by messages not relevant for the ECU.

Dependencies: [SRS_Can_01018]

Supporting Material: --

⌋(RS_BRF_01704)

5.2.1.1.3 [SRS_Can_01038] The bit timing of each CAN Controller shall be
configurable

⌈

Type: valid

Description: The bit timing and thus the Baud Rate of each CAN controller served by the
CAN Driver shall be configurable
The following list describes typical attributes:

 Propagation delay
 Tseg1
 Tseg2
 Samples/bit
 SJW

The configuration parameters shall be allowed to be of types Pre-Compile-
Time, Link-Time or Post-Build-Time

Rationale: CAN Standards coverage, coverage of hardware capabilities

Use Case: CAN Standard doesn't specify one baud rate -> baud rate is project
specific. Possible configuration of the timing parameters is hardware
dependent

Dependencies: [SRS_Can_01139]

Supporting Material: --

⌋(RS_BRF_01704)

5.2.1.1.4 [SRS_Can_01039] Hardware Object Handles shall be provided for
the CAN Interface in the static configuration file.

⌈

Type: Valid

Description: All available hardware object handles shall be defined in the ECU
configuration description. The syntax of the public part shall be
standardized, because that is the configuration interface to the CAN
Interface
The configuration parameters shall be allowed to be of types Pre-Compile-
Time, Link-Time or Post-Build-Time

Rationale: Coverage of hardware capabilities, configuration interface to CAN Interface

Use Case: For an optimized co-operation of software and hardware filtering and
optimized usage of underlying hardware the CAN Interface needs to know
the available hardware resources and their configuration.

Dependencies: SRS_Can_01016

Supporting Material: --

⌋(RS_BRF_01704)

Requirements on CAN
 V4.3.0

R4.1 Rev 3

13 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

5.2.1.1.5 [SRS_Can_01040] The CAN driver shall allow the static enabling or
disabling of transmit cancellation

⌈

Type: valid

Description: Hardware transmit cancellation shall be statically enabled or disabled
It shall be made public in the configuration file, whether the hardware
supports transmit cancellation or not.
The configuration parameters shall be allowed to be of type Pre-Compile-
Time only

Rationale: The CAN Driver cancels autonomously if a transmit request with higher
priority comes from the CAN Interface. In this case the CAN Interface is
notified that the pending transmission was cancelled

Use Case: --

Dependencies: [SRS_Can_01016], [SRS_Can_01133]

Supporting Material: --

⌋(RS_BRF_01704, RS_BRF_01640)

5.2.1.1.6 [SRS_Can_01058] It shall be configurable whether Multiplex
Transmission is used

⌈

Type: valid

Description: The Multiplexed Transmission feature shall be Pre-Compile-Time
configurable. This feature shall only be supported if the underlying CAN
Controller supports Multiplexed Transmission

Rationale: --

Use Case: Outer priority inversion can be avoided

Dependencies: [SRS_Can_01134]

Supporting Material: --

⌋(RS_BRF_01704)

5.2.1.1.7 [SRS_Can_01062] Each event for each CAN Controller shall be
configurable to be detected by polling or by an interrupt

⌈

Type: valid

Description: Each possible event of each CAN Controller shall be Pre-Compile-Time
configurable to be in one of the following two modes
Polling:
The CAN Driver represents at least one periodically called task. It polls the
CAN Controller. The appropriate notifications are called based upon the
events that occurred. It is optional for the CAN Driver to support multiple
poll cycles.
The CAN interrupt for the appropriate event is disabled in that mode.

Interrupt driven:
The CAN Controller notifies the CAN Driver of detected HW events by way
of an interrupt.

CAN Hardware Unit implementations may differ in regards to which events

Requirements on CAN
 V4.3.0

R4.1 Rev 3

14 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

may be reported by interrupts or can only be polled -> The configuration for
polling or interrupt shall be done inside the driver

Rationale: Coverage of hardware capabilities

Use Case: Polling mode is required when a deterministic timing behavior (response
time) is needed. For example for motor management systems.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01704)

5.2.1.1.8 [SRS_Can_01135] It shall be possible to configure one or several
TX Hardware Objects

⌈

Type: valid

Description: It shall be possible to configure one or several TX Hardware Objects,
where each Hardware Object is represented by it's own Hardware Object
Handle.
(Not to be mixed-up with multiplexed transmission)

The selection of the TX Hardware Object is done by the caller of the
transmit request service, with a parameter that identifies the Hardware
Object Handle

This requires that the hardware allows configuration of several TX
Hardware Objects.

The configuration shall be allowed to be of types Pre-Compile, Link-Time or
Post-Build

Rationale: Basic functionality

Use Case: Support of typical CAN Controller capabilities: Configuration of several Full-
CAN Transmit Objects and several Basic-CAN Transmit Objects as well as
one Basic-CAN Transmit Object and several Full-CAN Transmit objects
etc.

Dependencies: [SRS_Can_01058], [SRS_Can_01049]

Supporting Material: --

⌋(RS_BRF_01704)

5.2.1.2 Initialization

5.2.1.2.1 [SRS_Can_01041] The CAN Driver shall implement an interface for
initialization

⌈

Type: Valid

Description: The CAN Driver shall implement an interface for initialization.
This service shall initialize all module global variables and all Registers of
the CAN Hardware Unit and its Controller(s).
This function shall only be called once during startup

Rationale: Basic functionality

Use Case: A CAN Hardware Unit has registers that must be set according the static
configuration. Some register values belong to one single CAN controller
some influence the complete unit

Requirements on CAN
 V4.3.0

R4.1 Rev 3

15 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01704, RS_BRF_01136)

5.2.1.2.2 [SRS_Can_01042] The CAN Driver shall support dynamic selection
of configuration sets

⌈

Type: Valid

Description: The CAN Driver shall support the dynamic selection of one static
configuration set out of a list of configuration sets. This shall be done by a
parameter passed via the initialization interface.
Refer to CAN Driver SWS for a detailed view of parameters.
To switch to another configuration set shall only be possible if the CAN
driver's state machine is in STOPPED mode.
Hints: The selection of the appropriate configuration set itself as well as the
way to incorporate the configuration sets into the ECU (Post-Build, Pre-
Compile) are not affected by this requirement

Rationale: Support of different configurations during runtime

Use Case: Use different configuration sets with e.g. different CAN IDs depending on
different mounting positions of the ECU

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01704,RS_BRF_01152)

5.2.1.3 Normal Operation

5.2.1.3.1 [SRS_Can_01043] The CAN Driver shall provide a service to
enable/disable interrupts of the CAN Controller.

⌈

Type: Valid

Description: The CAN Driver shall offer services for enabling and disabling all interrupts
generated by a CAN controller

 Disabling means: Disable all interrupts of the related CAN
Controller

 Enabling means: Re-enable all interrupts which were disabled
before

Rationale: Basic functionality, ensure data consistency

Use Case: Used to disable asynchronous interruptions by a CAN Driver event.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01704)

5.2.1.3.2 [SRS_Can_01059] The CAN Driver shall guarantee data
consistency of received L-PDUs

⌈

Type: Valid

Requirements on CAN
 V4.3.0

R4.1 Rev 3

16 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

Description: The CAN Driver shall guarantee that the data inside a Hardware Object is
not overwritten while it is copied

Rationale: Basic functionality

Use Case: A newly arrived message may overwrite the CAN Hardware buffer during
the data is read out of the CAN Controller. This may lead to inconsistent
data. Therefore the Driver shall ensure that inconsistent data is not copied.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01704, RS_BRF_01632)

5.2.1.3.3 [SRS_Can_01045] The CAN Driver shall offer a reception
indication service.

⌈

Type: Valid

Description: The CAN Driver shall notify the CAN Interface about a successful
reception.
The notification is done by call of a static callback function implemented
inside the CAN Interface.
The Notification includes the following information:

 CAN Identifier

 DLC

 CAN Hardware Object

 Pointer to SDU data

Rationale: Basic functionality, CAN Standards coverage

Use Case: According the CAN Service primitive, the reception of a received CAN
frame shall be indicated to the next upper layer. This Service here is used
by the CAN Interface (on indication it notifies the next upper layer and
copies the received data)

Dependencies: [SRS_Can_01003]

Supporting Material: --

⌋(RS_BRF_01704, RS_BRF_01064,RS_BRF_01544)

5.2.1.3.4 [SRS_Can_01049] The CAN Driver shall provide a dynamic
transmission request service

⌈

Type: Valid

Description: The CAN Driver API shall provide a dynamic transmission request service
(called by CAN Interface). The DLC and ID of the L-PDU are given as
parameter.

The CAN Interface provides following parameters:

 CAN Hardware Object Handle (implies the CAN Controller)

 L-PDU:
o Pointer L-SDU source
o CAN Identifier
o DLC

Rationale: Basic functionality, CAN Standards coverage

Use Case: Basic-CAN transmit hardware objects

Dependencies: [SRS_Can_01008]

Supporting Material: --

Requirements on CAN
 V4.3.0

R4.1 Rev 3

17 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

⌋(RS_BRF_01704, RS_BRF_01544)

5.2.1.3.5 [SRS_Can_01051] The CAN Driver shall provide a transmission
confirmation service

⌈

Type: Valid

Description: The CAN driver shall notify the CAN Interface about a successful
transmission. Successful transmission means in this case, that at least one
receiver acknowledged the CAN frame and it has not been disturbed by an
error.
The notification is done by call of a static call-back function implemented
inside the CAN Interface

Rationale: Basic functionality, CAN Standards coverage

Use Case: According the CAN Service primitive, the transmission of a CAN frame
shall be confirmed.

Dependencies: [SRS_Can_01009]

Supporting Material: ISO11898 Section 6.3.3 'Recovery management

⌋(RS_BRF_01704, RS_BRF_01544)

5.2.1.3.6 [SRS_Can_01053] The CAN Driver shall provide a service to
change the CAN controller mode.

⌈

Type: Valid

Description: The CAN Driver shall provide a service to change the mode of the specified
CAN controller.
The following states shall be supported:

 UNINIT – The CAN controller is not configured, typically the
registers are in reset state

 STOPPED – The CAN controller is configured but does not take
part in the CAN communication

 STARTED – The CAN controller is up and running

 SLEEP – The CAN controller is in sleep mode.

The corresponding CAN Driver SWS describes the possible state
transitions in detail

All necessary HW-initializations for the respective mode transition are done
inside thisservice.

Rationale: Basic functionality

Use Case: The CAN controller may be initialized for low power consumption in sleep
mode. This is done with this service for SLEEP transition.
In case of bus-off, the controller may be set in UNINIT state (typically reset
of controller) and set to running later on.

Dependencies: [SRS_Can_01027]

Supporting Material: --

⌋(RS_BRF_01704)

Requirements on CAN
 V4.3.0

R4.1 Rev 3

18 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

5.2.1.3.7 [SRS_Can_01054] The CAN Driver shall provide a notification for
controller wake-up events

⌈

Type: Valid

Description: The CAN driver module shall notify the Service Layer in case of a wake-up
interrupt of the CAN controller. The notification is done by a call of a static
callback function which is specified by ECU StateManager, but
implemented by Complex Driver or so called "Integration Code".

This functionality shall only be implemented, if CAN Hardware unit supports
sleep mode and a specific wakeup interrupt is available.
Even if the CAN Hardware supports it, this feature shall be Pre-Compile-
Time configurable.

Rationale: Basic functionality

Use Case: Any wakeup source is notified to the ECU StateManager. The ECU
StateManager forwards this notification to the responsible module (typically
the CAN Interface), which checks the wakeup source.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01704, RS_BRF_01664)

5.2.1.3.8 [SRS_Can_01122] The CAN driver shall support the situation
where a wakeup by bus occurs during the same time the transition
to standby/sleep is in progress

⌈

Type: Valid

Description: Wakeup by bus is always asynchronous to the internal transition to sleep.
In worst case, the wakeup occurs during the transition to sleep. This
situation must be covered by the software design and explicitly tested for
each ECU.

Assuming this worst case, the driver shall raise the Wake-up Notification
immediately after the API to enter the standby/sleep mode has finished.

Hint: In case the ECU hardware has the capability to notify one wakeup
reason from different hardware components e.g. Transceiver and
Controller, it's up to the system configuration to select one source

Rationale: Safe wakeup and sleep handling.

Use Case: All busses with a wakeup by bus are affected.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01704, RS_BRF_01664)

5.2.1.3.9 [SRS_Can_01132] The CAN driver shall be able to detect
notification events message object specific by CAN-Interrupt and
polling

⌈

Type: Valid

Requirements on CAN
 V4.3.0

R4.1 Rev 3

19 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

Description: Dependent on configuration the detection of any reception, transmission or
error event shall be done by release a CAN Interrupt and by Polling through
the CAN driver. Both mechanisms shall be configurable for each message
object if supported by CAN Hardware

Rationale: Polling the CAN HW globally leads to the problem, that the polling rate
belongs to the CAN message with the shortest cycle time, which may result
in very high runtimes. Notification by interrupt offers the possibility to react
real time. This is useful especially on messages with very short cycle times.

Use Case: Gateway / CCP / Network Layer <=> Intersystem communication. Time
triggered Complex Drivers, which have strong restrictions to guarantee
fixed reaction times and which shall ensure predictable behavior.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01704)

5.2.1.3.10 [SRS_Can_01133] The CAN driver shall support the HW
Transmit Cancellation

⌈

Type: Valid

Description: The CAN driver shall support the Cancellation of a pending Transmit
Request if HW Transmit Cancellation and Multiplexed Transmission are
supported by hardware

Rationale: The CAN Driver cancels autonomously if a transmit request with higher
priority comes from the CAN Interface. In this case the CAN Interface is
notified that the pending transmission was cancelled

Use Case: This requirement is necessary to enable the CAN stack to guarantee
message latency (GML). This requirement is only useful for
standardization, if there is also a requirement for the entire COM stack, that
the overall network description has to be optimized due to ensure GML.

Dependencies: [SRS_Can_01040], [SRS_Can_01134]

Supporting Material: --

⌋(RS_BRF_01704, RS_BRF_01640)

5.2.1.3.11 [SRS_Can_01134] The CAN Driver shall support multiplexed
transmission

⌈

Type: Valid

Description: The CAN Driver shall support multiplexed transmission if supported by the
underlying CAN Controller

Definition of 'multiplexed transmission': Three TX HW objects are
represented as one Transmit entity (Hardware Object Handle) to the upper
layer. This avoids gaps between consecutive sending of L-PDUs.

This feature option shall only be implemented when the CAN Hardware
fulfills the following requirements:
[The three HW objects are represented as single register set OR
the hardware provides registers that identify a free buffer]
AND
[The L-PDUs are sent out in the order of their priority]

Requirements on CAN
 V4.3.0

R4.1 Rev 3

20 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

Rationale: Outer priority inversion can be avoided

Use Case: Basic-CAN transmit hardware objects

Dependencies: [SRS_Can_01058]

Supporting Material: --

⌋(RS_BRF_01704)

5.2.1.3.12 [SRS_Can_01147] The CAN Driver shall not support remote
frames

⌈

Type: Valid

Description: The CAN driver shall not transmit messages triggered by remote
transmission requests. The CAN driver shall initialize the CAN HW to
ignore any remote transmission requests.

Rationale: Remote transmission requests are not used in automotive area.

Use Case: See rational

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01704)

5.2.1.4 Shutdown Operation

There is no shutdown operation necessary for the CAN Driver. All needed actions are
covered by SRS_Can_01053 already.

5.2.1.5 Fault Operation

5.2.1.5.1 [SRS_Can_01055] The CAN Driver shall provide a notification for
bus-off state

⌈

Type: Valid

Description: The CAN driver shall notify the CAN Interface if the CAN Controller goes in
bus-off state. The notification is done by call of a static callback function
implemented inside the CAN Interface.

Rationale: Basic functionality

Use Case: Any state transition is notified to the CAN Interface. The CAN Interface
forwards this notification to the responsible layer.

Dependencies: [SRS_Can_01029]

Supporting Material: --

⌋(RS_BRF_01704, RS_BRF_01408,RS_BRF_01664)

5.2.1.5.2 [SRS_Can_01060] The CAN driver shall not recover from bus-off
automatically

⌈

Type: Valid

Requirements on CAN
 V4.3.0

R4.1 Rev 3

21 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

Description: The bus-off recovery shall be software driven. If an automatic bus-off
recovery is implemented in the hardware it has to be suppressed by
software e.g. force CAN controller to reset state within the bus off interrupt
service routine

Rationale: Basic functionality

Use Case: A software-controlled recovery allows other nodes to communicate without
the damaged node disturbing the bus for some time period

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01704, RS_BRF_01664)

5.2.2 CAN Interface (Hardware Abstraction)

The CAN Interface provides standardized interfaces to provide the communication
with the CAN bus system of an ECU. The APIs are independent from the specific
CAN Controllers and Transceivers and their access through the responsible Driver
layer. The CAN Interface is able to access one or more CAN Drivers and CAN
Transceiver Drivers via one uniform interface.

For a detailed functional description and interface definition see CAN Interface
Specification [CanIf].

5.2.2.1 Configuration

5.2.2.1.1 [SRS_Can_01015] The CAN Interface configuration shall be able to
import information from CAN communication matrix.

⌈

Type: Valid

Description: The static configuration of the CAN Interface shall be based on information
from the CAN communication matrix. The following information shall be
extracted from the CAN communication matrix:

 Individual RX L-PDUs for each CAN Controller – identified by CAN
ID

 RX L-PDU ranges for each CAN Controller
 All TX L-PDUs for each CAN Controller – identified by CAN ID
 TX L-PDU ranges for each CAN Controller
 Upper layer client for each L-PDU (-range)
 DLC for each L-PDU (-range)

The configuration parameters shall be allowed to be of types Pre-Compile,
Link-Time or Post-Build

Rationale: Common Database for CAN Network

Use Case: The communication matrix is used to describe all messages in a network
and their sender and receiver. This information can be taken to configure
the software filter algorithm, the DLC check and the notifications for the
CAN Interface.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01704)

Requirements on CAN
 V4.3.0

R4.1 Rev 3

22 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

5.2.2.1.2 [SRS_Can_01016] The CAN Interface shall have an interface to the
static configuration information of the CAN Driver

⌈

Type: Valid

Description: The CAN Interface and its code configurator/generator shall be able to read
the CAN Driver configuration inside the ECU configuration description

Rationale: Flexibility and scalability

Use Case: Optimization of software filtering according configured hardware filters

Dependencies: [SRS_Can_01036], [SRS_Can_01039]

Supporting Material: --

⌋(RS_BRF_01704)

5.2.2.1.3 [SRS_Can_01018] The CAN Interface shall allow the configuration
of its software reception filter Pre-Compile-Time as well as Link-
Time and Post-Build-Time

⌈

Type: Valid

Description: All L-PDUs that are not filtered by HW-Filters and are not defined as
receive L-PDUs in the network database need to be rejected by a filter
implemented in software.

Rationale: Basic functionality

Use Case: Messages that shall not be received by the ECU, but could not be filtered
by hardware filters, shall be filtered by software in the CAN Interface.

Dependencies: [SRS_Can_01037], [SRS_Can_01004], [SRS_Can_01039]

Supporting Material: --

⌋(RS_BRF_01704)

5.2.2.1.4 [SRS_Can_01019] It shall be Pre-Compile-Time configurable
whether a DLC check is performed or not

Type: Valid

Description: It shall be Pre-Compile-Time configurable whether the DLC check – global
for each CAN controller – is performed

Rationale: Basic Functionality

Use Case: Turning off the DLC check improves the exchangeability of older ECUs,
where IDs stay the same but SDU length differs

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01704)

5.2.2.1.5 [SRS_Can_01020] The TX-Buffer shall be statically configurable

⌈

Type: Valid

Description: It shall be configurable Pre-Compile-Time, whether one or no buffer per L-
PDU shall be available

Rationale: --

Requirements on CAN
 V4.3.0

R4.1 Rev 3

23 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

Use Case: Different properties are necessary to realize different variants of ECUs

Dependencies: [SRS_Can_01011]

Supporting Material: --

⌋(RS_BRF_01704)

5.2.2.2 Initialization

5.2.2.2.1 [SRS_Can_01021] CAN The CAN Interface shall implement an
interface for initialization

⌈

Type: Valid

Description: The CAN Interface shall implement an interface for initialization.
This service shall initialize all module global variables.

Rationale: Basic functionality.

Use Case: A CAN Interface has static variables that need to be initialized, before the
CAN Interface can be used.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01704, RS_BRF_01136)

5.2.2.2.2 [SRS_Can_01022] The CAN Interface shall support the selection of
configuration sets

⌈

Type: Valid

Description: The CAN Interface shall support the selection of one configuration set out
of a list of different static configuration sets. This shall be done by a
parameter passed via the initialization interface.
This is typically done once during startup

Rationale: Support of different configurations during runtime

Use Case: Another module (independently from CanIf) checks the startup conditions
e.g. depending on the mounting position in the car, selects the appropriate
configuration set. This is then passed to the CanIf

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01704, RS_BRF_01136)

5.2.2.2.3 [SRS_Can_01023] The CAN Interface shall be initialized in a
defined way.

⌈

Type: Valid

Description: The CAN Interface shall be initialized in the following sequence:
1. Initialize global variables
2. Reset flags

This sequence has to be executed in this order, because the CAN Interface
has to be operable before CAN Driver (and thus the communication
started)

Requirements on CAN
 V4.3.0

R4.1 Rev 3

24 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

Rationale: Defined initialization sequence without side effects.

Use Case: Power on reset

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01704, RS_BRF_01136)

5.2.2.3 Normal Operation

5.2.2.3.1 [SRS_Can_01002] The CAN Interface shall be responsible for the
dispatching of the received PDUs

⌈

Type: Valid

Description: The CAN Interface knows which upper layer is the addressee of a
successfully received L-PDU and makes a decision to which layer it
belongs. That's why the CAN Interface can redirect sequential L-PDU to its
destination

Rationale: Basic functionality

Use Case: Provide access to received CAN data by different upper layers

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01704)

5.2.2.3.2 [SRS_Can_01003] The appropriate higher communication stack
shall be notified by the CAN Interface about an occurred reception

⌈

Type: Valid

Description: The CAN driver will indicate each successfully received L-PDU. The
appropriate higher communication stack shall be notified by the CAN
Interface about an occurred reception. This routing of an indication event is
the task of the CAN Interface.
An indication is only a notification, where no data is transferred.
The information which L-PDU has been received shall be part of the
indication

Rationale: Basic functionality, CAN Standards Coverage

Use Case: According the CAN Service primitive, the reception of a received CAN
frame shall be indicated to the next upper layer.

Dependencies: [SRS_Can_01045]

Supporting Material: --

⌋(RS_BRF_01704, RS_BRF_01544)

5.2.2.3.3 [SRS_Can_01114] Data Consistency of L-PDUs to transmit shall be
guaranteed

⌈

Type: Valid

Description: During copying of transmit data it must be prevented that the corresponding
memory area is overwritten by upper layer

Rationale: Data Consistency

Requirements on CAN
 V4.3.0

R4.1 Rev 3

25 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

Use Case: Upper Layer writes to a data area that is at the same read out for a CAN
transmission. This will lead to inconsistent data and therefore has to be
prevented

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01704, RS_BRF_01632)

5.2.2.3.4 [SRS_Can_01004] Software filtering shall be implemented by the
CAN Interface

⌈

Type: Valid

Description: A L-PDU filtering based on the CAN Identifier shall be implemented by the
CAN Interface.
In case the received L-PDU did not pass the software filter, it will not further
be processed. The upper layer will not be notified

Rationale: Basic functionality

Use Case: Messages that shall not be received by the ECU, but could not be filtered
by hardware filters, shall be filtered by software in the CAN Interface.

Dependencies: [SRS_Can_01015], [SRS_Can_01018], [SRS_Can_01037],
[SRS_Can_01039]

Supporting Material: --

⌋(RS_BRF_01704, RS_BRF_01608)

5.2.2.3.5 [SRS_Can_01005] The CAN Interface shall perform a check for
correct DLC of received PDUs

⌈

Type: Valid

Description: The CAN Interface shall check the DLC of received L-PDUs that have
passed the SW filter. The DLC shall be larger or equal to the configured L-
PDU length. In case the received L-PDU did not pass the DLC check, it
shall not be further processed

Rationale: Basic functionality

Use Case: Avoid data inconsistency because of incomplete L-SDU

Dependencies: [SRS_Can_01015]

Supporting Material: --

⌋(RS_BRF_01704)

5.2.2.3.6 [SRS_Can_01006] The CAN Interface shall provide a service to
enable/disable L-PDU reception per CAN Controller

⌈

Type: Valid

Description: The API of the CAN Interface shall provide a service to enable/disable the
reception of all incoming L-PDUs belonging to one CAN Controller, that
normally would cause a receive indication (and data copy).
In case the received L-PDU is disabled, it will not further be processed. The
upper layer will not be notified.
This service is directly tunneled to the appropriate CAN driver

Requirements on CAN
 V4.3.0

R4.1 Rev 3

26 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

Rationale: Basic functionality

Use Case: The COM Manager must be capable to suppress all reception event of the
corresponding CAN network
It is the complementary functionality to switching on/off the transmission
path.

Dependencies: [SRS_Can_01013]

Supporting Material: --

⌋(RS_BRF_01704,RS_BRF_01680)

5.2.2.3.7 [SRS_Can_01007] The CAN Interface shall dispatch the
transmission request by an upper layer module to the desired CAN
controller

⌈

Type: Valid

Description: In case the CAN Hardware Unit consists of more than one CAN controller
the CAN Interface shall dispatch the transmission request by an upper
layer module to the desired CAN controller

Rationale: Basic functionality

Use Case: More than one on-chip CAN Controller on one ECU.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01704, RS_BRF_01544)

5.2.2.3.8 [SRS_Can_01008] The CAN Interface shall provide a transmission
request service

⌈

Type: Valid

Description: The CAN Interface API shall provide a transmission request service.
The L-PDU is either forwarded to the CAN Driver or stored in the TX Buffer

Rationale: Basic functionality, CAN Standards Coverage

Use Case: According the CAN Service primitive, a service for transmission shall be
provided.

Dependencies: [SRS_Can_01011], [SRS_Can_01020]

Supporting Material: --

⌋(RS_BRF_01704, RS_BRF_01544)

5.2.2.3.9 [SRS_Can_01009] The CAN Interface shall provide a transmission
confirmation dispatcher

⌈

Type: Valid

Description: The CAN Interface has to notify the appropriate upper layer modules about
successful transmission. Therefore the CAN Interface has to dispatch the
transmit confirmation after confirmation of the CAN driver.
It shall be statically configurable per PDU if the confirmation shall be
forwarded to upper layer or not

Rationale: Basic functionality, CAN Standards Coverage

Use Case: According the CAN Service primitive, the transmission of a CAN frame

Requirements on CAN
 V4.3.0

R4.1 Rev 3

27 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

shall be confirmed.

Dependencies: [SRS_Can_01051]

Supporting Material: --

⌋(RS_BRF_01704, RS_BRF_01544)

5.2.2.3.10 [SRS_Can_01011] The CAN Interface shall provide a
transmit buffer

⌈

Type: Valid

Description: The CAN Interface shall buffer pending transmit requests only:

 if the CAN driver rejected the preceded transmit request because
of not available hardware resources

 in case that a pending transmit request was cancelled in the CAN
Driver

The transmit buffer shall provide the following functionality:

 each transmit L-PDU shall have exactly one reference to a buffer
container

 the size of buffer container defines the number of L-PDU’s which
can be buffered

 if the buffer size is 0 it means no CanIf buffering will be made

 each Buffer container shall have 1...n references to logical
hardware transmit objects(HTH’s) (which will be used for
transmission)

 one HTH has exactly one reference to a buffer

 the buffer shall be flushed only in case of reaching the “Tx Offline”
state

 the buffer shall have a priority order and shall not store more than
one instance of a L-PDU

 in case of buffer overflow the transmission service shall return “Not
OK”

 During Tx confirmation the L-PDU with the highest priority shall be
forwarded to the CAN driver. The priority is defined by the CAN
Identifier that belongs to the transmit L-PDU. Only the newest
instance of an L-PDU shall be stored in an own buffer and older
ones shall be overwritten

 There shall be a configuration option to define the buffer fixed to 8
Bytes.

It shall be Pre-Compile-Time configurable whether the CanIf provides
transmit buffers or not.

Rationale: Basic functionality, limited resources for Tx-buffering

Use Case: A message might not be sent out immediately because messages with
higher priority are pending.
Buffering of one instance per PDU is needed to ensure minimal delay times
per L-PDU.

Dependencies: [SRS_Can_01020], [SRS_Can_01008]

Supporting Material: --

⌋(RS_BRF_01704, RS_BRF_01544)

5.2.2.3.11 [SRS_Can_01013] The CAN Interface shall provide a Tx-L-
PDU enable/disable service per CAN Controller

⌈

Requirements on CAN
 V4.3.0

R4.1 Rev 3

28 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

Type: Valid

Description: NMs require an additional software service to lock and unlock the
transmission of outgoing L-PDUs belonging to one CAN Controller. This
functionality has to be placed in the CAN Interface. Decision by WP
Architecture.

Rationale: Basic functionality

Use Case: --

Dependencies: [SRS_Can_01006]

Supporting Material: --

⌋(RS_BRF_01704,RS_BRF_01680)

5.2.2.3.12 [SRS_Can_01027] The CAN Interface shall provide a service
to change the CAN Controller mode.

⌈

Type: Valid

Description: The CAN Interface shall provide a service to change the mode of the
specified CAN controller. This service is typically called by the NM with
respect on view of a physical channel. Restriction: a physical channel is
only represented by one CAN controller.
The following modes shall be supported:

 UNINIT

 STARTED

 STOPPED

 BUSOFF (not reachable by software)

 SLEEP

All necessary initializations for the respective mode transition is done inside
the CAN Driver. Possible state transitions are described in the
corresponding CAN Driver SWS

Rationale: Basic functionality

Use Case: This service represents the interface for the CAN Driver Mode Select
service.

Dependencies: [SRS_Can_01053]

Supporting Material: --

⌋(RS_BRF_01704, RS_BRF_01664)

5.2.2.3.13 [SRS_Can_01028] The CAN Interface shall provide a service
to query the CAN controller state

⌈

Type: Valid

Description: The CAN Interface shall provide a service to query the CAN controller
state. Please refer to the CAN Interface SWS document for details of the
possible states.
Hint: With this service the internal state of CAN Interface is polled. The
actual hardware state may differ in some situations for a certain time

Rationale: Basic functionality

Use Case: May be used if CAN Controller doesn't provide interrupt service.

Dependencies: --

Requirements on CAN
 V4.3.0

R4.1 Rev 3

29 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

Supporting Material: --

⌋(RS_BRF_01704, RS_BRF_01664)

5.2.2.3.14 [SRS_Can_01151] The CAN Interface shall provide a service
to check for a CAN Wake-up event.

⌈

Type: Valid

Description: The CAN Interface module shall provide a service to check for a CAN
wake-up source in case of a CAN wake-up event. This service queries the
CAN controllers and CAN transceivers by the Driver modules in order to
find the wake-up source.

Rationale: Basic functionality

Use Case: A wake up by CAN can be recognized by an ECU in different ways: polling,
CAN Controller interrupt, CAN Transceiver interrupt. In each case the ECU
StateManager will need this service to check the CAN interface for the
Wake-up Source that caused the Wake-up. For further details on the use
case see figures 33-35 in document ECU StateManager.

Dependencies: [SRS_Can_01032]

Supporting Material: --

⌋(RS_BRF_01704, RS_BRF_01104,RS_BRF_01680)

5.2.2.3.15 [SRS_Can_01032] The CAN Interface shall report a wake-up
notification to the ECU StateManager

⌈

Type: Valid

Description: After the CAN Interface module checks the CAN controller and the CAN
transceiver for wake-up events, it should notify the ECU StateManager
about the event and source that caused the wake-up.

Rationale: Basic functionality

Use Case: A wake up by CAN can be recognized by an ECU in different ways. In each
case the ECU StateManager will need this notification in order to activate
the correct CAN Controller for Wake-up validation. For further details on the
use case see figures 33-35 in document ECU StateManager.

Dependencies:

Supporting Material: --

⌋(RS_BRF_01704, RS_BRF_01664,RS_BRF_01680)

5.2.2.3.16 [SRS_Can_01061] The CAN Interface shall provide dynamic
TX Handles

⌈

Type: Valid

Description: The CAN Interface shall provide dynamic TX Handles which can be
allocated by the upper layers. It shall be possible to change the ID and DLC
of a Dynamic TX Handle by the upper layers.
It shall be Pre-Compile-Time configured whether to use this feature or not

Rationale: Communication with a blank or invalidL-PDU ID table or direct upper layer

Requirements on CAN
 V4.3.0

R4.1 Rev 3

30 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

control of the CAN identifier.

Use Case: Dynamically calculated TX IDs. Only ranges of IDs are allowed that are
known in the network. Typically used by TP, where the target address is
coded within the CAN Identifier. The target address can't be statically
defined

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01704)

5.2.2.3.17 [SRS_Can_01159] The CAN Interface shall provide dynamic
RX Handles

⌈

Type: Valid

Description: The CAN Interface shall provide dynamic RX handles which can be
allocated by the upper layers. The ID and DLC of a dynamic RX handle will
be provided to the upper layers.
It shall be Pre-Compile-Time configured whether to use this feature or not.

Rationale: Access to the CAN identifier by upper layers.

Use Case: Dynamically evaluated RX IDs. Typically used by TP or J1939, where the
target and/or source addresses are coded within the CAN Identifier.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01704,RS_BRF_01728,RS_BRF_01736)

5.2.2.3.18 [SRS_Can_01130] Receive Status Interface of CAN Interface

⌈

Type: Valid

Description: The CAN Interface shall additionally provide an Interface that the
notification state of messages can be polled by upper layers

Rationale: Flexible integration
Avoid strong coupling and dependencies
Deterministic behavior of upper layers for time triggered behavior

Use Case: The completion of a CAN transmit request command can be signaled not
only by a callback function, now also by a status information, which is
accessible via the module interface.
A fault occurred during the CAN transmit request (bus is blocked, CAN
controller is defective) can be signalized via an error hook.

Dependencies:

Supporting Material: --

⌋(RS_BRF_01704)

5.2.2.3.19 [SRS_Can_01131] The CAN Interface module shall provide
the possibility to have polling and callback notification mechanism
in parallel

⌈

Type: Valid

Requirements on CAN
 V4.3.0

R4.1 Rev 3

31 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

Description: Beside callback notification mechanisms at the same time a "Read
Message Data" and "Read Message Status" API shall be able to be used.

Rationale: It shall be possible, that upper layers can adapt the access to new data and
status of received CAN messages according to their needs and they are
not dependent to the network traffic.

Different CAN Interface clients have different needs for latencies
(notification mechanism provide a small latency time, a polling mechanism
provides a big latency time). Thus it shall be possible, to differentiate the
read data and notification mechanisms between the different CAN
message to be received.

Use Case: Gateway / CCP / Network Layer <=> Intersystem communication. Time
triggered Complex Drivers, which have strong restrictions to guarantee
fixed reaction times and which shall ensure predictable behavior.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01704, RS_BRF_01544)

5.2.2.3.20 [SRS_Can_01136] The CAN Interface module shall provide a
service to check for validation of a CAN wake-up event

⌈

Type: Valid

Description: The CAN Interface module shall provide a service to check for validation of
a CAN wake-up event (see SRS_Can_01032). It notifies the ECU
StateManager about a validated wake-up event, only if a message was
received correctly on the CAN bus where the wake-up event was detected.

Rationale: Reduce power consumption

Use Case: The Wake-up validation service should be called by the ECU Statemanager
after the corresponding CAN Tranceiver was set to normal mode and the
CAN Controller was started. During validation incoming messages must not
be forwarded by the CAN Interface to upper layers, since the
corresponding L-PDU channel groups should still be disabled (offline).

Dependencies: [SRS_Can_01032]

Supporting Material: --

⌋(RS_BRF_01704,RS_BRF_01680,RS_BRF_01664)

5.2.2.3.21 [SRS_Can_01129] The CAN Interface module shall provide a
procedural interface to read out data of single CAN messages by
upper layers (Polling mechanism)

⌈

Type: Valid

Description: After getting information about new received data (by call get status
interface SRS_SPAL_00157) the upper layer must be able to read out
data. Thus the CAN Interface shall provide a corresponding API
('ReadMessageData()') to read out data of received CAN messages.
The described function shall be Pre-Compile-Time selectable

Rationale: Flexibility (The layer above should have the possibility to decide when and
if data should be transferred /(data flow is controlled by upper layer
Avoid strong coupling and dependencies (see Rationale of BSW 157)
There are applications with deterministic behavior inside time triggered
software systems. Deterministic behavior can only be ensured if these
applications aren't interrupted by bus events

Requirements on CAN
 V4.3.0

R4.1 Rev 3

32 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

Use Case: The notification of the completion of a CAN message reception event can
be used to read out the data at point of time the upper layers needs it.
Using the API the data are accessed either from the CAN Hardware buffer
or from the shadow buffer of the CAN driver. This intermediate buffer
needed e.g. data normalization for the 'GetMessageData()' API shall be
configurable for each CAN Rx Identifier.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01704, RS_BRF_01544)

5.2.2.3.22 [SRS_Can_01140] The CAN Interface shall support both
Standard (11bit) and Extended (29bit) Identifiers

⌈

Type: Valid

Description: The CAN Interface shall support Standard and Extended Identifiers. It shall
be configurable per network whether Standard or Extended Identifiers are
supported

Rationale: Standard CAN 2.0b functionality

Use Case:

Dependencies: [SRS_Can_01141]

Supporting Material: --

⌋(RS_BRF_01704)

5.2.2.3.23 [SRS_Can_01141] The CAN Interface shall support both
Standard (11bit) and Extended (29bit) Identifiers at same time on
one network

⌈

Type: Valid

Description: This requirement describes an implementation variant beyond
SRS_Can_01140:
The CAN Interface shall be able to support Standard and Extended
Identifiers at same time on one network (=mixed mode support).
Due to significant consequences on code efficiency and complexity, this
feature shall be optional.
In case of not purchasing this feature, SRS_Can_01140 is still valid.

Rationale: --

Use Case: Usage of cheap Basic CAN Controllers in CAN networks with both Identifier
types

Dependencies: [SRS_Can_01036]

Supporting Material: --

⌋(RS_BRF_01704)

5.2.2.3.24 [SRS_Can_01153] The Tx-Filter shall ensure, that the first
message which is sent on the bus is a Wakeup Frame (WUF) in the
case of partial networking

⌈

Type: Valid

Requirements on CAN
 V4.3.0

R4.1 Rev 3

33 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

Description: If a L-PDU gets activated for transmission the Tx-Filter shall be switched
into blocking mode.
If a Tx-Filter is in blocking mode, then all L-PDUs shall be discarded,
except the Wakeup Frame (WUF).
If a L-PDU is in blocking mode and the Wakeup Frame (WUF) gets
transmitted it shall be forwarded to the lower layer.
If the CAN-Interface receives a transmit notification of the WUF, the Tx-
Filter shall be switched into pass mode.
If the Tx-Filter is in pass mode, then all L-PDUs shall be forwarded to the
lower layer.
The Tx-Filter shall not be activated during Bus-Off mode.

Rationale: If partial networking is used the ECU must secure that the first message on
the bus is the Wakeup Frame (WUF).

Use Case: Starting communication from BusSleep Mode, PrepareBusSleep Mode,
BusOff

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01704, RS_BRF_01680)

5.2.2.3.25 [SRS_Can_01158] The CAN interface shall provide a TX
offline active mode for ECU passive mode

⌈

Type: Valid

Description: The CAN stack shall provide a tx offline active mode to allow ECU Passive
Mode.

Rationale: ECU Passive Mode is used for disabling all Tx Requests by "simulating"
successfull transmit requests towards applications.

Use Case: Diagnostics, switching all transmissions off temporarily

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01704)

5.2.2.4 Shutdown Operation

There is no shutdown operation necessary for the CAN Interface

5.2.2.5 Fault Operation

5.2.2.5.1 [SRS_Can_01029] The CAN Interface shall report bus-off state of a
device to an upper layer

⌈

Type: Valid

Description: When the CAN Interface detects a bus-off state (by CAN Driver state
change notification) a notification call-back function shall be called that is
implemented in CAN State Manager.

Rationale: Basic functionality

Use Case: Any state transition is notified by the CAN Interface. The bus-off notification
is typically handled by the CAN State Manager.

Dependencies: [SRS_Can_01055]

Requirements on CAN
 V4.3.0

R4.1 Rev 3

34 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

Supporting Material: --

⌋(RS_BRF_01704, RS_BRF_01664)

5.2.3 CAN State Manager

5.2.3.1 Configuration

5.2.3.1.1 [SRS_Can_01143] The CAN State Manager shall support a
configurable BusOff recovery time

⌈

Type: Valid

Description: The CAN State Manager shall control the BusOff recovery algorithm. The
time between the CAN Controller detects a BusOff event and the restart of
the communication shall configurable.

Rationale: Basic functionality

Use Case: Delay of communication after BusOff detection to overcome temporay bus
disturbance.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01704, RS_BRF_01664, RS_BRF_01600)

5.2.3.2 Initialization

5.2.3.2.1 [SRS_Can_01144] The CAN State Manager shall support a
configurable BusOff recovery time

⌈

Type: Valid

Description: The CAN State Manager shall provide an interface to initialize the
communication mode at power-on. The communication mode for
initialisation shall be configurable. It shall be possible to start up with full
communication mode, with silent communication mode or with no
communication mode.

Rationale: Basic functionality

Use Case: Different kinds of communication behaviours of ECUs after power-on (listen
only until application needs full communication capability or immediate full
communication capability).

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01704, RS_BRF_01664, RS_BRF_01600)

5.2.3.3 Normal Operation

5.2.3.3.1 [SRS_Can_01145] The CAN State Manager shall control the
assigned CAN Devices

⌈

Requirements on CAN
 V4.3.0

R4.1 Rev 3

35 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

Type: Valid

Description: The CAN State Manager shall start and stop the CAN Devices and shall
prepare them for sleep.

Rationale: Complexity of CAN Interface is reduced

Use Case: Split of data and control flow

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01704)

5.2.3.4 Shutdown Operation

There is no shutdown operation necessary for the CAN State Manager

5.2.3.5 Fault Operation

5.2.3.5.1 [SRS_Can_01146] The CAN State Manager shall contain a CAN
BusOff recovery algorithm for each used CAN Controller

⌈

Type: Valid

Description: The CAN State Manager shall control the CAN BusOff recovery by a
algorithm. It shall report the production error “CAN BusOff” to the
Diagnostic Event Manager. It shall report a specific "CAN BusOff"-
production error for each configured CAN network, if recovery is not
possible within a configurable time.

Rationale: Network controller specific error and bus state management

Use Case: See Rationale

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01704, RS_BRF_01664, RS_BRF_01600)

5.2.4 Transport Layer CAN

This chapter describes the requirements for the CAN Transport Layer [CanTp].

The AUTOSAR CAN Transport Layer generally bases on the ISO 15765-2 and ISO
15765-4 specifications.

5.2.4.1 Configuration

5.2.4.1.1 [SRS_Can_01066] The AUTOSAR CAN Transport Layer shall be
statically configurable to support either single or multiple
connections in an optimizing way

⌈

Type: Valid

Description: The AUTOSAR CAN Transport Layer shall be statically configurable to
support either single or multiple connections in an optimizing way. This
configuration is done Pre-Compile-Time

Requirements on CAN
 V4.3.0

R4.1 Rev 3

36 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

Rationale: When an ECU enables gateway capabilities, it must handle different
message transmissions concurrently across distinct sub-networks. So the
AUTOSAR Transport Layer allows concurrent connections.
But, most ECU's will only need single connection for diagnostic, which has
to be implemented in an optimizing way.

Use Case: The use case is to provide both single and multiple connections in an
optimizing way to save runtime and code size.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01704, RS_BRF_01720)

5.2.4.1.2 [SRS_Can_01068] The CAN Transport Layer shall identify each N-
SDU with a unique identifier.

⌈

Type: Valid

Description: The CAN Transport Layer identifies each N-SDU with a unique identifier.
So the upper layer can address a N-SDU without any assumption on the
addressing mode configuration of the CAN-TP. Furthermore, a symbolic
name may be assigned for each N-SDU identifier value to simplify usage of
the API

Rationale: Independence of upper layer with the CAN-TP configuration.

Use Case: The PDU-Router can manipulate all N-SDUs (FlexRay, CAN and LIN)
regardless addressing mode particularity of its underlying protocols.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01704, RS_BRF_01720)

5.2.4.1.3 [SRS_Can_01069] CAN address information and N-SDU identifier
mapping

⌈

Type: Valid

Description: An N-SDU represents either a specific connection defined by a set of
address information (N_AI, consisting of MType, N_TAtype, N_TA, N_SA,
and N_AE) or a generic connection that represents a dedicated
communication path to or from the upper layer for the possible
combinations of address information excluding MType and N_TAtype,
which are always defined for a connection.
Thus, for a specific connection there exists a 1:1 relation between N-SDU
ID and address information, while a generic connection is just restricted to
certain addressing formats and functional/physical requests, and possibly
to a certain local address.

Rationale: An N-SDU identifier is used to transmit or receive only one kind of
applicative message. N-SDUs are either associated with only one CAN
address information (specific connection) or with a set of address
information (generic connection). On the other hand, CAN address
information is either linked to just one specific connection or to a number of
identical, generic connections.

Use Case:  To transmit or receive an applicative message, the CAN Transport
Layer only needs the data and the N-SDU identifier.

 To receive and transmit diagnostic messages from different testers,

Requirements on CAN
 V4.3.0

R4.1 Rev 3

37 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

the CAN Transport Layer shall handle the CAN ID directly, using
dynamic TX and RX handles of the CAN Interface.

 Partitioning of functions among multiple ECUs, therefore an ECU
can belong to different functional groups.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01704, RS_BRF_01720)

5.2.4.1.4 [SRS_Can_01071] The CAN Transport Layer shall identify each N-
PDU (also called L-SDU) with a unique identifier

⌈

Type: Valid

Description: The CAN Transport Layer identifies each N-PDU with a unique identifier.
Because the CAN-TP uses the CAN Interface for transmission and
reception of N-PDU, these handles shall be unique in both layers. So some
common configuration check is needed.
Furthermore, a symbolic name may be assigned for each identifier value to
simplify the implementation

Rationale: Each CAN identifier correspond to only one N-PDU identifier of the CAN
Transport Layer. So a N-PDU may be completely identified by an identifier.

Use Case: For optimization reasons, the CAN N-PDU identifier may be different to the
CAN identifier.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01704, RS_BRF_01720)

5.2.4.1.5 [SRS_Can_01073] The CAN Transport Layer shall be statically
configured to pad unused bytes of PDU

⌈

Type: Valid

Description: The CAN Transport Layer shall be statically configurable per connection
whether to pad unused bytes or not. This affects the last Consecutive
Frame (CF), Single Frames (SF) and Flow Control (FC). In case of padding
they will always contain 8 bytes (DLC = 8). The DLC check shall run on the
used bytes only. If padding is configured, then the DLC check shall run
over all bytes (DLC = 8)

Rationale: Fulfill requirements of legislated OBD communication (ISO 15765-4) and let
this feature optional for OEM enhanced diagnostics and applicative
communication.

Use Case: For a full compatibility with old ECUs.

Dependencies: [SRS_Can_01005] [SRS_Can_01086]

Supporting Material: --

⌋(RS_BRF_01704, RS_BRF_01720)

5.2.4.1.6 [SRS_Can_01074] The Transport connection properties shall be
statically configured

⌈

Requirements on CAN
 V4.3.0

R4.1 Rev 3

38 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

Type: Valid

Description: The CAN Transport connection configuration shall statically assign
properties of each N-SDU:

- Its unique identifier
- Communication direction: sender or receiver
- Minimum length of the N-SDU
- Associated N-PDU identifier
- Physical (1 to 1 communication) or functional (1 to n

communication) addressing
- Addressing modes: refer to [SRS_Can_01078]
- In case of an extended addressing mode connection: N_TA and

N_SA values

Rationale: At runtime the CAN TP module must have all the needed information to
manage a transport connection.

Use Case: This information can be used at generation time to check the network
configuration with a TP point of view.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01704, RS_BRF_01720)

5.2.4.1.7 [SRS_Can_01117] The CAN Transport Layer shall support half-
duplex communication for TP channels

⌈

Type: Valid

Description: The CAN Transport Layer shall support half-duplex communication for TP
channels. That means the CAN Transport Layer shall be able to manage a
reception and a transmission at same time on different channels but not on
one channel.

Rationale: It should decrease resources and runtime in the CAN Transport Layer, if all
channels are configured to half-duplex.

Use Case: Half-duplex TP communication is needed for diagnostic and OEM specific
applications.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01704, RS_BRF_01720)

5.2.4.1.8 [SRS_Can_01149] The CAN Transport Layer shall support full-
duplex communication for TP channels

⌈

Type: Valid

Description: The CAN Transport Layer shall support full-duplex communication for TP
channels. That means the CAN Transport Layer shall be able to manage a
reception and a transmission at same time on the same channel.

Rationale: Save Can Identifiers.

Use Case: OEM specific non diagnostic applications which do require a full duplex
implementation of the CAN transport protocol.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01704, RS_BRF_01720)

Requirements on CAN
 V4.3.0

R4.1 Rev 3

39 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

5.2.4.1.9 [SRS_Can_01150] The CAN Transport Layer shall support to
configure half or full-duplex communication separate for each
channel

⌈

Type: Valid

Description: The CAN Transport Layer shall support to configure half or full-duplex
communication separate for each channel.

Rationale: .

Use Case: Diagnostic communication is needed with half-duplex other application
could be needed with half or full duplex.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01704, RS_BRF_01720)

5.2.4.2 Initialization

5.2.4.2.1 [SRS_Can_01075] The CAN Transport Layer shall implement an
interface for initialization

⌈

Type: Valid

Description: The CAN Transport Layer implements an interface for initialization.
This service shall initialize all global variables of the module and set all
transport protocol connections in a default state (Idle)

Rationale: Basic functionality.

Use Case: Set Transport Layer software to a defined state

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01704, RS_BRF_01720)

5.2.4.2.2 [SRS_Can_01076] The CAN Transport Layer services shall not be
operational before initializing the module

⌈

Type: Valid

Description: Before using the transmission capabilities of the CAN Transport Layer, it
shall be initialized. If it is not the case, the services have to return an error
and a development error shall be reported

Rationale: Basic functionality.

Use Case: To avoid usage of the module without a complete initialization this could
cause the transmission of corrupted frames.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01704, RS_BRF_01720)

5.2.4.3 Normal Operation

5.2.4.3.1 [SRS_Can_01078] The AUTOSAR CAN Transport Layer shall
support the ISO 15765-2 addressing formats

Requirements on CAN
 V4.3.0

R4.1 Rev 3

40 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

⌈

Type: Valid

Description: The AUTOSAR CAN Transport Layer shall support the normal,
extended, mixed 11 bit, mixed 29 bit and normal fixed addressing formats
of ISO 15765-2.

Rationale: Basic functionality.

Use Case: In addition to the normal and extended addressing format, the mixed
addressing mode is required for remote diagnostics in automotive area.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01704, RS_BRF_01720)

5.2.4.3.2 [SRS_Can_01079] The CAN Transport Layer shall be compliant
with the CAN Interface module notifications

⌈

Type: Valid

Description: The CAN Transport Layer shall only implement the CAN Interface
notification services concerning TP messages:

- Reception notification
- Tx confirmation

Hint: BusOff management is handled by the CAN State Manager

Rationale: In AUTOSAR architecture, the CAN Transport Layer is placed between the
PDU Router and the CAN Interface.

Use Case: The CAN Transport Layer has to support the notification services called by
the CAN Interface.

Dependencies: [SRS_Can_01003], [SRS_Can_01009]

Supporting Material: --

⌋(RS_BRF_01704,RS_BRF_01720)

5.2.4.3.3 [SRS_Can_01081] The value of CAN Transport protocol timeouts
shall be statically configurable for each connection

⌈

Type: Valid

Description: All the defined timeout of the ISO 15765-2 specification are statically
configurable for each connection
The configuration parameters shall be allowed to be of types Pre-Compile-
Time, Link-Time or Post-Build-Time

Rationale: To adapt the timeout value to the ECU application domain.

Use Case: The communication constraints may be totally different between a
diagnostics connection and an applicative one (e.g. display data).

Dependencies: --

Supporting Material: ISO 15765-2 specification

⌋(RS_BRF_01704, RS_BRF_01600,RS_BRF_01720)

5.2.4.3.4 [SRS_Can_01082] Error handling

⌈

Requirements on CAN
 V4.3.0

R4.1 Rev 3

41 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

Type: Valid

Description: If an unexpected N-PDU is received by the CAN Transport Layer, it shall
respect the behavior defined in chapter “unexpected arrival of network
protocol data unit” of the ISO-15765-2 specification. For others errors, the
CAN-TP just aborts the segmentation session

Rationale: To define the layer behavior on error.

Use Case: What happens when receiving the third CF frame instead of the second
one?

Dependencies: --

Supporting Material: ISO 15765-2 specification

⌋(RS_BRF_01704, RS_BRF_02168, RS_BRF_01600,RS_BRF_01720)

5.2.4.3.5 [SRS_Can_01086] Data padding value of unused bytes

⌈

Type: Valid

Description: When the CAN Transport Layer is configured to have fixed data length
(DLC = 8), the PDUs are sent without initializing the unused bytes

Rationale: Setting unused data in the last frame to a specific value will result in
increased runtime and resources needs within the µC.

Use Case: The ISO 15765-4 recommendation for OBD communication explicitly says
that CAN DLC contained in every diagnostic CAN frame shall always be set
to eight and that unused data bytes of a CAN frame are undefined.

Dependencies: --

Supporting Material: ISO 15765-4 §7

⌋(RS_BRF_01720)

5.2.4.3.6 [SRS_Can_01116] The AUTOSAR CAN Transport Layer shall be
able to manage both normal and extended modes in parallel

⌈

Type: Valid

Description: When the CAN Transport Layer is configured to support more than one
connection, it should also be possible to configure if it has to deal with both
normal and extended addressing mode in parallel or only one of the normal
or extended addressing mode

Rationale: Do not constrain communication capabilities when concurrent connection is
allowed. But let it as an OEM specific decision.

Use Case: A CAN sub-network could mix connection with either normal or extended
addressing mode e.g. usage of OBD (normal addressing) and UDS
(extended addressing) in parallel

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01720)

5.2.4.3.7 [SRS_Can_01148] The AUTOSAR CAN Transport Layer shall
provide a service to enable dynamic setting of protocol
parameters

⌈

Requirements on CAN
 V4.3.0

R4.1 Rev 3

42 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

Type: Valid

Description: The AUTOSAR CAN Transport Layer shall provide a service to change BS
and STmin parameters during run-time.This service enable the dynamic
setting of protocol parameters according to ISO 15765-2 specification.

Rationale: Dynamic slow down of communication.

Use Case: Slow down a flash reprogramming process in case high performance ECUs
are connected to networks with less performance gateways.
Modify the parameters in case a CAN stack is not post build configurable.

Dependencies: --

Supporting Material: ISO 15765-2 specification

⌋(RS_BRF_01720)

5.2.5 CAN Bus Transceiver Driver
5.2.5.1 Configuration

5.2.5.1.1 [SRS_Can_01090] The bus transceiver driver package shall offer
configuration parameters that are needed to configure the driver
for a given bus and the supported notifications

⌈

Type: Valid

Description: Typical parameters are:
- Max. supported baudrate of each bus to enable the detection of
configuration errors
- Wakeup by bus
- Transceiver control via SPI or port pin
- Call context of the notification functions (ISR, polling) to enable detection
of necessary data consistency mechanisms during configuration time
Please refer to the corresponding software specification for a more detailed
view

Rationale: Basic functionality for transceiver configuration.

Use Case: --

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01704, RS_BRF_01136)

5.2.5.1.2 [SRS_Can_01091] The CAN bus transceiver driver shall support
the configuration for more than one bus

⌈

Type: Valid

Description: The driver shall be able to support multiple CAN busses on the ECU.
It must be possible to configure the used transceiver type independently for
each bus. This includes also mixed systems with e.g. two CANs using
different bus physics.
Only Pre-Compile-Time configuration shall be possible

Transceiver handling depends strongly on the used device. Therefore each
transceiver may need its own implementation within the driver and only
known and supported devices could be selected.

Requirements on CAN
 V4.3.0

R4.1 Rev 3

43 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

A general solution for the transceiver driver for all use cases might not be
possible.

By default each CAN controller is attached to an own bus and needs
therefore an own bus transceiver.

In some cases more than one CAN controller is attached to the same bus
to increase the number of mailboxes. Two alternatives appear:

a) These CAN controllers share the same bus transceiver
b) Each CAN controller has an own bus transceiver

Case a) is covered within this spec and shall be supported by this
AUTOSAR driver.
Case b) is a very rarely used setup and is therefore not covered by this
driver

Rationale: Basic functionality for transceiver configuration

Use Case: Multi bus systems, e.g. CAN-CAN gateways

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01704)

5.2.5.1.3 [SRS_Can_01092] The bus transceiver driver shall support the
independent configuration of the bus operation mode for each
supported bus.

⌈

Type: Valid

Description: Due to the different startup requirements on a multiple CAN bus ECU, the
CAN transceiver driver shall support the independent pre-selection of the
bus operation mode to which each transceiver is set during the driver
initialization

Rationale: Basic functionality for transceiver configuration

Use Case: Multi bus systems

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01704)

5.2.5.1.4 [SRS_Can_01095] The bus transceiver driver shall support the
compile time configuration of one notification to an upper layer for
change notification for “wakeup by bus” events

⌈

Type: Valid

Description: One wakeup by bus event notification shall be supported to one higher
layer. The upper layer shall be configurable during compile time.

If a transceiver does not support “wakeup by bus”, this notification is never
called for this bus

Rationale: Efficient coupling between bus transceiver driver and upper layers.

Use Case: See SRS_Can_01106

Dependencies: [SRS_Can_01106]

Supporting Material: --

Requirements on CAN
 V4.3.0

R4.1 Rev 3

44 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

⌋(RS_BRF_01704)

5.2.5.1.5 [SRS_Can_01154] The bus transceiver driver package shall offer
configuration parameters that are required to configure the driver
for partial networking

⌈

Type: Valid

Description: Typical parameters are:
- Partial networking support
- CAN ID of the Remote Wake-up Frame (RWUF)
- SPI timeout parameter

Rationale: To support partial networking tranceivers.

Use Case: Partial network configurations are affected.

Dependencies:

Supporting Material: --

⌋(RS_BRF_01184, RS_BRF_01088,RS_BRF_01704)

5.2.5.2 Initialization

5.2.5.2.1 [SRS_Can_01096] The bus transceiver driver shall provide an API
to initialize the driver internally and set then all attached
transceivers in their pre-selected operation modes

⌈

Type: Valid

Description: The driver must be initialized during the power-up/reset sequence of the
ECU.
Depending on the used drivers to control the transceivers (e.g. DIO, SPI),
they must be already available and working when the transceiver driver is
initialized.
The wakeup reason has to be detected and stored during the execution of
the driver initialization, too

Rationale: Set bus transceivers and driver in a pre-defined and known state

Use Case: Basic functionality for transceiver control.

Dependencies: [SRS_Can_01103]
The bus transceiver driver setup information must provide the necessary
configuration data to enable the generation tool to select the appropriate
control mechanism (e.g. SPI, I/O ports) and to guarantee the correct
allocation of the necessary communication resources and initialization
sequences.

Supporting Material: --

⌋(RS_BRF_01704)

5.2.5.2.2 [SRS_Can_01155] The bus transceiver driver shall support the
selection of configuration sets

⌈

Type: Valid

Requirements on CAN
 V4.3.0

R4.1 Rev 3

45 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

Description: The CAN Interface shall support the selection of one configuration set out
of a list of different static configuration sets. This shall be done by a
parameter passed via the initialization interface.
This is typically done once during startup

Rationale: Support of different configurations during runtime

Use Case: Rationale of this request is that at the startup of the ECU some external
condition could determine the ECU configuration, without needing coding
through a tester or an EOL process (e.g. a coded connection plug, which
signals through a digital code were an ECU is connected in a given vehicle,
hence determining the necessary configuration)

Dependencies: [SRS_Can_01096]

Supporting Material: --

⌋(RS_BRF_01704, RS_BRF_01136)

5.2.5.3 Normal Operation

5.2.5.3.1 [SRS_Can_01097] CAN Bus Transceiver driver API shall be
synchronous

⌈

Type: Valid

Description: The bus transceiver driver API shall execute the requested action
immediately and shall deliver the result state immediately to the caller.

This will ease up the implementation of wakeup and sleep concepts within
the AUTOSAR BSW stack.

Some API may require an asynchronous behaviour due to hardware
limitations (SPI).

Rationale: Better usage of transceiver functionality in the complex AUTOSAR BSW
environment.

Use Case: Atomic transition to other operation mode; easier and better abstraction for
upper layers like the ECU state manager or ComManager.
Improved testability compared to asynchronous handling.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01704)

5.2.5.3.2 [SRS_Can_01098] The bus transceiver driver shall support an API
to send the addressed transceiver into its Standby mode

⌈

Type: Valid

Description: Many transceivers support the transition to the Sleep mode only via the
transition to Standby mode. In addition, some power concepts have the
need to set the transceiver to Standby only instead of Sleep mode.

Not all transceivers will support such a state. If this is true for a given
device, the driver shall confirm the state transition with success

Rationale: Implementation of ECU low power modes with wakeup via bus and internal.

Use Case: The upper service layers agreed together with other nodes to set the bus
into the sleep mode. The transceiver shall be switched now to a state
where the wakeup via bus is supported and the power consumption is as

Requirements on CAN
 V4.3.0

R4.1 Rev 3

46 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

low as possible for the current state of the ECU.

Dependencies: [SRS_Can_01099]

Supporting Material: --

⌋(RS_BRF_01704)

5.2.5.3.3 [SRS_Can_01099] The bus transceiver driver shall support an API
to send the addressed transceiver into its Sleep mode

⌈

Type: Valid

Description: The transition to sleep mode will be requested with this API.

Not all transceivers will support such a state. If this is true for a given
device, the drive shall confirm the state transition with success

Rationale: Implementation of ECU low power modes with wakeup via bus and internal.

Use Case: The upper service layers agreed together with other nodes to set the bus
into the sleep mode. The transceiver is already in StandBy and shall be
switched to Sleep with lowest power consumption.
Please note that the state sleep of the transceiver is often similar to the
state “unpowered” of the ECU.

Dependencies: [SRS_Can_01098]

Supporting Material: --

⌋(RS_BRF_01704)

5.2.5.3.4 [SRS_Can_01100] The bus transceiver driver shall support an API
to send the addressed transceiver into its Normal mode

⌈

Type: Valid

Description: All transceivers support this state due to it’s the “working state”

Rationale: Communication!

Use Case: All communication must be enable to communicate.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01704)

5.2.5.3.5 [SRS_Can_01101] The bus transceiver driver shall support an API
to read out the current operation mode of the transceiver of a
specified bus within the ECU

⌈

Type: Valid

Description: The current operation mode of the transceiver will be necessary for upper
layers (e.g. diagnostics). The API shall always return the current state seen
by the transceiver driver (this may be a locally stored state, too)

Rationale: State access to transceiver driver

Use Case: Check for current operational mode during development and via diagnostic
command.

Dependencies: --

Requirements on CAN
 V4.3.0

R4.1 Rev 3

47 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

Supporting Material: --

⌋(RS_BRF_01704)

5.2.5.3.6 [SRS_Can_01103] The bus transceiver driver shall support an API
to read out the reason of the last wakeup of a specified bus within
the ECU

⌈

Type: Valid

Description: The transceiver driver shall be able to store the local view “who has
requested the wakeup: bus or internally”.
- Bus: The bus has caused the wakeup.
- Internally: The wakeup has been caused by software
- Sleep: The transceiver is in operation mode sleep and no wakeup has

been occurred.
- Partial network wake-up: If the transceiver hardware supports a Partial

network wake-up
- Wake pin: An edge on the wake pin of the transceiver (if present) has

caused the wakeup.
The wakeup reason should be “sleep” when the operation mode is not
Normal and no wakeup has been occurred.
When a wakeup has occurred, the API shall always return the first detected
wakeup reason (e.g. if a wakeup by bus occurs and than nearly at the
same time an internal wakeup, the wakeup reason is “bus”.).
After leaving the operation mode Normal, the wakeup reason shall be set to
“sleep” again

Rationale: Detection of wakeup reason during development and via diagnostic
command. May also be used by the NM or ECU state manager.

Use Case: --

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01704)

5.2.5.3.7 [SRS_Can_01106] The bus transceiver driver shall call the
appropriate callback function of EcuM in case a wakeup by bus
event is detected

⌈

Type: Valid

Description: The CAN Bus Transceiver Driver gets a wake up by bus events either
through a notification of a lower layer or through polling lower layers. In
these cases bus transceiver driver will call appropriate API of EcuM to hand
over the event.
It shall be possible to support more than one bus within the ECU with this
notification.
This requirement only applies for transceivers with the appropriate wakeup
capability

Rationale: Efficient coupling between bus transceiver driver and upper layers.

Use Case: The bus transceiver detects a wakeup condition on the bus and shows this
to the µC via e.g. a port pin.
Further handling depends on current ECU state. Assumed the ECU is
halted, the change on the port may terminate the HALT statement and let

Requirements on CAN
 V4.3.0

R4.1 Rev 3

48 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

the processor continue its work. The assigned port interrupt will be
executed and this handler is called. Now, the transceiver driver will store
the wakeup reason and give the call via this notification to e.g. the NM to let
the NM decide how to handle the event.

See ⌋(RS_BRF_01704)

[SRS_Can_01095] for details, too.

Dependencies: Upper layer, i.e. one of (bus specific) NM or ECU state manager.
[SRS_Can_01095], [SRS_Can_01138]

Supporting Material: --

⌋(RS_BRF_01704, RS_BRF_01064, RS_BRF_01680)

5.2.5.3.8 [SRS_Can_01138] The CAN Bus Transceiver Driver shall provide
one callback function for lower layer ICU Driver for wake up by
bus events

⌈

Type: Valid

Description: ICU driver shall call this API in case of wake up by bus events. One
parameter of this function shall refer to the CAN bus which has caused the
wakeup by bus event.

This API shall be compile time configurable and only available if the
corresponding bus transceiver has wakeup capability.
If support of wake up by bus is disabled or wake up by bus events are
polled this functions shall be removed.

This API shall be synchronous or asynchronous depending on the
transceiver communication.

Rationale: Efficient coupling between lower layers and bus transceiver driver.

Use Case: Notification of wake up by bus events by lower layer.

Dependencies: [SRS_Can_01106]

Supporting Material: --

⌋(RS_BRF_01704, RS_BRF_01064, RS_BRF_01680)

5.2.5.3.9 [SRS_Can_01156] The bus transceiver driver shall support wake
up events by a Remote Wake-up Pattern (RWUP) or Remote Wake-up
Frame (RWUF) if partial networking is supported by the tranceiver
hardware

⌈

Type: Valid

Description: If partial networking is supported by bus tranceiver hardware, then the
wake-up reasons Wake-up Pattern (RWUP) or Remote Wake-up Frame
(RWUF) shall be supported by the bus transceiver driver.

Rationale: Additional wake-up reasons for partial networking transceivers

Use Case: Partial network configurations are affected.

Dependencies: [SRS_Can_01106]

Supporting Material: --

⌋(RS_BRF_01704, RS_BRF_01104,RS_BRF_01680,RS_BRF_01664)

Requirements on CAN
 V4.3.0

R4.1 Rev 3

49 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

5.2.5.3.10 [SRS_Can_01107] The CAN Transceiver Driver shall support
the situation where a wakeup by bus occurs during the same time
the transition to standby/sleep is in progress

⌈

Type: Valid

Description: Wakeup by bus is always asynchronous to the internal transition to sleep.
In worst case, the wakeup occurs during the transition to sleep. This
situation must be covered by the software design and explicitly tested for
each ECU.

The driver shall create a wakeup notification by bus immediately after the
API to enter the standby/sleep mode has finished.
The calling/controlling component (NM or ECU state manager) must be
capable to handle the wakeup immediately after requesting the
standby/sleep

Rationale: Safe wakeup and sleep handling.

Use Case: All busses with a wakeup by bus are affected.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01704, RS_BRF_01680,RS_BRF_01664)

5.2.5.3.11 [SRS_Can_01115] The bus transceiver driver shall support an API
to enable and disable the wakeup notification for each bus separately

⌈

Type: Valid

Description: To enable upper layers to command the bus transceiver safe into its
standby and/or sleep state, an additional API to disable and enable the
wakeup notification is necessary.

If the notification is disabled, driver shall not perform the notification but
store the event internally until the notification is enabled again. The
notification shall then be processed immediately.
It shall be possible to clear a pending wakeup event. If no further wakeup
event occurs, no notification shall be performed after enabling the
notification again. If a further wakeup event occurs it shall be notified

Rationale: Safe wakeup and sleep handling.

Use Case: All busses with a wakeup by bus are affected.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01704, RS_BRF_01680,RS_BRF_01664)

5.2.5.4 Shutdown Operation

5.2.5.4.1 [SRS_Can_01108] The bus transceiver driver shall support the
AUTOSAR ECU state manager in a way that a safe system startup
and shutdown is possible

⌈

Requirements on CAN
 V4.3.0

R4.1 Rev 3

50 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

Type: Valid

Description: In general, for startup the bus transceivers shall not be enabled until the
power supply is available and stable to prevent errors on the bus. Also the
communication hardware and driver must not be enabled until the
transceiver is configured into its normal operation mode.

For shutdown, the communication must be stopped according to the
AUTOSAR NM algorithm, the CAN/LIN drivers must be stopped and then
the transceivers may be set to standby/sleep, too. The correct sequence
depends on the used bus and the wakeup sleep concept of AUTOSAR

Rationale: Safe system start up and shut down

Use Case: Systems with support for wakeup by bus.

Dependencies: --

Supporting Material: See joint work group meeting WP CAN/LIN and WP Mode Management on
2005-01-11/12 for results.

⌋(RS_BRF_01704, RS_BRF_01096)

5.2.5.4.2 [SRS_Can_01157] The bus transceiver driver shall provide an API
for clearing the WUF bit in the tranceiver hardware

⌈

Type: Valid

Description: This API is part of the shutdown flow of a CAN communication channel.
The API clears the WUF flag in the transceiver hardware to be able to
signal a following wake-up frame. For CAN transceivers supporting Partial
Networking the detection of wake-up frames is also possible in transceiver
normal mode. This ensures that no wake-up frame is lost during ECU
transition to standby mode, after the WUF flag has been cleared.

Rationale: Safe system start up and shut down

Use Case: Systems with support for partial networking.

Dependencies:

Supporting Material: --

⌋(RS_BRF_01704, RS_BRF_01680,RS_BRF_01664)

5.2.5.5 Fault Operation

5.2.5.5.1 [SRS_Can_01109] The bus transceiver driver shall check the
control communication to the transceiver and the reaction of the
transceiver for correctness

⌈

Type: Valid

Description: Depending on the supported transceiver device, the driver shall check the
correctness of the executed control communication and the operation mode
a transceiver is in.
A separation of errors according to [SRS_BSW_00337] shall be done

Rationale: Diagnostics and trouble shooting

Use Case: 1) Detection of defect or misbehaving transceiver hardware
2) Detection of corrupted SPI communication

The check shall only be applied to errors within the transceiver or the
transceiver control communication (ports or SPI), i.e. errors caused by

Requirements on CAN
 V4.3.0

R4.1 Rev 3

51 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

malfunction of the µC, SW or a defect transceiver device.
“Errors” caused by the “outer world” (e.g. disturbed bus lines or ground
offsets) are not in the scope of this API.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01704, RS_BRF_01544)

5.3 Non functional requirements

5.3.1 CAN Driver

5.3.1.1 [SRS_Can_01033] The CAN Driver shall fulfill the general requirements

for Basic Software Modules as specified in AUTOSAR_SRS_SPAL

⌈

Type: Valid

Description: Based on Requirements in Document AUTOSAR_SRS_SPAL version
2.0.0

Rationale: Re-use of requirements validfor all Drivers

Use Case: CAN Driver is in the same layer as other Drivers (SCI, SPI). Therefore the
CAN driver shall fulfill the general SPAL requirements also.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01704)

5.3.1.2 [SRS_Can_01034] The CAN Driver shall offer a Hardware independent

interface.

⌈

Type: Valid

Description: The Interface between CAN Driver and CAN Interface shall be independent
from underlying hardware.
The implementation of the CAN Driver is hardware dependent and statically
configurable

Rationale: Portability

Use Case: Same CAN Interface implementation can be used for different µCs.

Dependencies: [SRS_Can_01001]

Supporting Material: --

⌋(RS_BRF_01704, RS_BRF_01552)

5.3.1.3 [SRS_Can_01035] The CAN Driver shall support multiple CAN

controllers of the same CAN hardware unit

⌈

Type: Valid

Description: The CAN Driver shall support multiple CAN controllers inside one CAN
Hardware unit.
It shall be possible Pre-Compile-Time to de-select an unused CAN
Controller

Rationale: Coverage of hardware capabilities

Use Case: Devices exist on the market that incorporate several CAN controller in one
device.

Requirements on CAN
 V4.3.0

R4.1 Rev 3

52 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

Dependencies: [SRS_Can_01053]

Supporting Material: --

⌋(RS_BRF_01704)

5.3.2 CAN Interface (Hardware Abstraction)

5.3.2.1 [SRS_Can_01121] CAN Interface shall be the interface layer between

the underlying CAN Driver(s) and CAN transceiver Driver(s) and Upper
Layers

⌈

Type: Valid

Description: The CAN Interface is the single interface for all upper Layers for CAN
operation.
The CAN Interface is the single user of the CAN Driver and the CAN
Transceiver Driver.

Rationale: Interfaces and interaction

Use Case: Different upper layers (as described in AUTOSAR_WP
Architecture_SoftwareArchitecture) may access the same CAN Hardware
Unit. Also more than one CAN Hardware Unit with their corresponding
drivers (internal and external) may exist in one ECU.
Users of the CAN Interface may be the PDU Router, CAN Transport Layer,
Network Management and CAN State Manager

Dependencies: --

Supporting Material: AUTOSAR_WP Architecture_SoftwareArchitecture

⌋(RS_BRF_01000, RS_BRF_01008, RS_BRF_01016)

5.3.2.2 [SRS_Can_01001] The CAN Interface implementation and interface shall

be independent from underlying CAN Controller and CAN Transceiver

⌈

Type: Valid

Description: The implementation may depend on the amount of available resources of
the underlying hardware (i.e. number of CAN Controllers, Hardware Object
Handles, HW cancellation allowed) but the Hardware Abstraction Layer
encapsulates different mechanisms of hardware access.

Rationale: Portability and reusability.

Use Case: Encapsulate implementation details of a specific CAN controller from higher
software layers.

Dependencies: [SRS_Can_01034]

Supporting Material: --

⌋(RS_BRF_01000,RS_BRF_01552)

5.3.3 CAN State Manager

5.3.3.1 [SRS_Can_01142] The CAN State Manager shall offer a network

abstract API to upper layer

⌈

Type: Valid

Description: The interface of CAN State Manager to the upper layer (ComM) shall be a
network abstract interface.

Requirements on CAN
 V4.3.0

R4.1 Rev 3

53 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

The CAN State Manager shall handle the states of peripherals assigned to
a network. It shall perform following actions to control the states of the
peripherals CAN controller(s) and CAN Transceiver(s):

 Init

 Start

 Stop

 WakeUp

 Sleep

 BusOff Recovery

Rationale: Abstraction between Com Manager and networks

Use Case: The bus state manager controls the states of the network specific
peripherals of each network.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01056)

5.3.3.2 [SRS_Can_01014] The CAN State Manager shall offer a network

configuration independent interface for upper layers

⌈

Type: Valid

Description: The interface of the CAN State Manager to upper layers shall be
independent from the network configuration.

Rationale: Layer Concept. Information hiding.

Use Case: Encapsulation of hardware dependencies within CAN Driver and Interface.
Modules accessing the CAN State Manager don't need to be hardware
specific

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01064)

5.3.4 Transport Layer CAN
5.3.4.1 [SRS_Can_01065] The AUTOSAR CAN Transport Layer shall be based

on ISO 15765-2 and 15765-4 specifications

⌈

Type: Valid

Description: If no requirement is explicitly added or excluded, the implementation of the
AUTOSAR CAN Transport Layer shall follow the ISO 15765-2 specification
for OEM enhanced (diagnostics or applicative) communication and ISO
15765-4 for on-board diagnostics (OBD) communication

Rationale: Reuse of existing standards for AUTOSAR BSW.
The ISO 15765-2 and 15765-4 specifications are the most used CAN
Transport Layer in automotive area.

Use Case: Transport protocol on CAN according to ISO 15765-2:
- Segmentation of data in transmit direction
- Collection of data in receive direction
- Control of data flow
- Detection of errors (message loss/doubling/sequence)

The network layer described in ISO 15765-4 specification is in accordance
with ISO 15765-2 with some restrictions/additions.
Refer to the AUTOSAR CAN Transport Protocol software specification for
the appropriate version

Requirements on CAN
 V4.3.0

R4.1 Rev 3

54 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

Dependencies: --

Supporting Material: ISO 15765-2 and ISO 15765-4 specifications

⌋(RS_BRF_01720)

5.3.4.2 [SRS_Can_01111] The CAN Transport Layer shall be the interface layer

between PDU Router and CAN Interface for CAN messages needing
transport protocol functionalities

⌈

Type: Valid

Description: The CAN Transport Layer is used by the PDU Router to transmit and
receive CAN messages coming from the Diagnostic Communication
Manager.
Because the PDU Router communicates through both CAN Transport and
CAN Interface, their two interfaces shall be coherent (i.e. if they provide a
similar primitive, for example Transmit, parameters of those primitives must
be as similar as possible).
To process transmission the CAN Transport module uses services of the
CAN Interface

Rationale: Interfaces and interaction

Use Case: By using coherent API (homogeneity of service parameters and so on) the
readability and maintainability of source code are improved.

Dependencies: BSW01118--

Supporting Material: AUTOSAR_WP Architecture_SoftwareArchitecture

⌋(RS_BRF_01720)

5.3.4.3 [SRS_Can_01112] The CAN Transport Layer interface shall be

independent of its internal communication configuration

⌈

Type: Valid

Description: The CAN Transport Layer shall offer the PDU Router an interface that is
completely independent to its internal communication configuration (N_TA
value, extended or normal addressing mode, functional or physical
addressing, etc.) and implementation.
The interface shall just deal with PDU identifiers and data units (N-SDU)
properties

Rationale: Layered Software Architecture. Information hiding. Common interface for all
applications

Use Case: --

Dependencies: [SRS_Can_01014]

Supporting Material: --

⌋(RS_BRF_01720)

5.3.5 CAN Bus Transceiver Driver

5.3.5.1 Timing Requirements

5.3.5.1.1 [SRS_Can_01110] CAN Bus Transceiver driver shall handle the
transceiver specific timing requirements internally

⌈

Requirements on CAN
 V4.3.0

R4.1 Rev 3

55 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

Type: Valid

Description: The communication between the µC and the transceiver is performed via
ports or SPI or both. If ports are used, applying values in a predefined
sequence and with a given timing to the ports are used to communicate
and change the hardware operation modes. These sequences and timings
must be handled within the bus transceiver driver.

Small times like the 50µs for TJA1054 “reaction time of go-to-sleep
command” may be implemented as a wait loop inside the driver.
Disadvantages are that this time is lost for the other software and the wait
time depends on the used µC and e.g. system clock.
Large wait times (e.g. >200µs) may require an asynchronous API of the
bus transceiver driver. Disadvantage is then that the complete API and
usage will be different for such a hardware device

Rationale: Correct handling of used transceiver

Use Case: E.g. toggling a port pin performs the transition from StandBy to Sleep for
the TJA1054. The port value must be kept for at least 50µs to guarantee
the transceiver has detected and handled the request in hardware.

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01704)

5.3.6 CAN Driver and Interface together
This chapter describes requirements that shall be fulfilled by the CAN Driver and
CAN Interface together.

5.3.6.1 [SRS_Can_01125] The CAN stack shall ensure not to lose messages in

receive direction

⌈

Type: Valid

Description: The CAN stack shall ensure that the HW receive buffer is read out in a time
frame that no message is lost for a bus load of 100% with a payload of 1
byte

Rationale: It shall be possible to work with message bursts without loss of data. This
requirement intentionally uses CAN frames with 1 byte payload. They
produce more overhead to process them than longer ones. 0 byte
messages are seldom used.
Hint: Of course this doesn't imply that the general usage of 0 Byte
messages is forbidden

Use Case: See rationale

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01704)

5.3.6.2 [SRS_Can_01126] The CAN stack shall be able to produce 100% bus

load

⌈

Type: Valid

Description: The CAN stack shall be able to produce 100% bus load (except gaps
resulting due to not using multiplexed HW transmit buffers). This

Requirements on CAN
 V4.3.0

R4.1 Rev 3

56 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

requirement intentionally uses CAN frames with 1 byte payload. They
produce more overhead to process them than longer ones. 0 byte
messages are seldom used.
Hint: Of course this doesn't imply that the general usage of 0 Byte
messages is forbidden

Rationale: Service the maximum speed of the used CAN bus.

Use Case: See rationale

Dependencies: --

Supporting Material: --

⌋(RS_BRF_01704)

5.3.6.3 [SRS_Can_01139] The CAN Interface and Driver shall offer a CAN

Controller specific interface for initialization

⌈

Type: Valid

Description: This service shall initialize the CAN Controller specific configuration like
e.g. parameters concerning Baud Rate (SRS_Can_01038).
This service is typically used for re-initialization after e.g. BusOff, but not
explicitly restricted to that case.
This function call shall only return without error if the CAN driver's state
machine is in STOPPED mode. The selection of one out of several
configuration sets shall be supported by passing a parameter with the API

Rationale: Basic functionality.

Use Case: --

Dependencies: See description

Supporting Material: --

⌋(RS_BRF_01136,RS_BRF_01704)

Requirements on CAN
 V4.3.0

R4.1 Rev 3

57 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

6 References

6.1 Deliverables of AUTOSAR

[Can] Specification of CAN Driver
AUTOSAR_SWS_CANDriver.pdf

[CanIf] Specification of CAN Interface
AUTOSAR_SWS_CANInterface.pdf

[CanSM] Specification of CAN State Manager
AUTOSAR_SWS_CANStateManager.pdf

[CanTp] Specification of CAN Transport Layer
AUTOSAR_SWS_CANTransportLayer.pdf

[CanTrcv] Specification of CAN Transceiver Driver
AUTOSAR_SWS_CANTransceiverDriver.pdf

[SrsSpal] General Requirements on SPAL
AUTOSAR_SRS_SPALGeneral.pdf

[SrsGeneral] General Requirements on Basic Software Modules
AUTOSAR_SRS_BSWGeneral.pdf

[TPS_STDT_0078] Software Standardization Template
AUTOSAR_TPS_StandardizationTemplate.pdf

6.2 Related standard and norms

6.2.1 ISO

ISO 15765-2(2004-10-12), Road vehicles — Diagnostics on Controller Area

Networks (CAN) — Part2: Network layer services

ISO 15765-3(2004-10-06), Road vehicles — Diagnostics on Controller Area

Networks (CAN) — Part3: Implementation of diagnostic services

ISO 15765-4(2005-01-04), Road vehicles — Diagnostics on Controller Area

Networks (CAN) — Part4: Requirements for emissions-related systems

6.3 Related Example Transceiver Data Sheets

Requirements on CAN
 V4.3.0

R4.1 Rev 3

58 of 58 Document ID 001:AUTOSAR_SRS_CAN

- AUTOSAR confidential -

See current data sheets for e.g. ST L9669, Freescale MC33389, Philips TJA1054
(CAN LowSpeed), TJA1041 (CAN HighSpeed)

	1 Scope of document
	2 How to read this document
	2.1 Conventions used
	2.2 Requirements structure

	3 Acronyms and abbrevations
	4 Functional Overview
	5 Requirements Specification
	5.1 Remarks to the CAN Bus Transceiver Driver
	5.1.1 Explicitly uncovered CAN Bus Transceiver functionality
	5.1.2 System Basis Chip and CAN Bus Transceiver Driver

	5.2 Functional Requirements
	5.2.1 CAN Driver
	5.2.1.1 Configuration
	5.2.1.1.1 [SRS_Can_01036] The Can Driver shall support Standard Identifier and Extended Identifier
	5.2.1.1.2 [SRS_Can_01037] The CAN driver shall allow the static configuration of the hardware reception filter
	5.2.1.1.3 [SRS_Can_01038] The bit timing of each CAN Controller shall be configurable
	5.2.1.1.4 [SRS_Can_01039] Hardware Object Handles shall be provided for the CAN Interface in the static configuration file.
	5.2.1.1.5 [SRS_Can_01040] The CAN driver shall allow the static enabling or disabling of transmit cancellation
	5.2.1.1.6 [SRS_Can_01058] It shall be configurable whether Multiplex Transmission is used
	5.2.1.1.7 [SRS_Can_01062] Each event for each CAN Controller shall be configurable to be detected by polling or by an interrupt
	5.2.1.1.8 [SRS_Can_01135] It shall be possible to configure one or several TX Hardware Objects

	5.2.1.2 Initialization
	5.2.1.2.1 [SRS_Can_01041] The CAN Driver shall implement an interface for initialization
	5.2.1.2.2 [SRS_Can_01042] The CAN Driver shall support dynamic selection of configuration sets

	5.2.1.3 Normal Operation
	5.2.1.3.1 [SRS_Can_01043] The CAN Driver shall provide a service to enable/disable interrupts of the CAN Controller.
	5.2.1.3.2 [SRS_Can_01059] The CAN Driver shall guarantee data consistency of received L-PDUs
	5.2.1.3.3 [SRS_Can_01045] The CAN Driver shall offer a reception indication service.
	5.2.1.3.4 [SRS_Can_01049] The CAN Driver shall provide a dynamic transmission request service
	5.2.1.3.5 [SRS_Can_01051] The CAN Driver shall provide a transmission confirmation service
	5.2.1.3.6 [SRS_Can_01053] The CAN Driver shall provide a service to change the CAN controller mode.
	5.2.1.3.7 [SRS_Can_01054] The CAN Driver shall provide a notification for controller wake-up events
	5.2.1.3.8 [SRS_Can_01122] The CAN driver shall support the situation where a wakeup by bus occurs during the same time the transition to standby/sleep is in progress
	5.2.1.3.9 [SRS_Can_01132] The CAN driver shall be able to detect notification events message object specific by CAN-Interrupt and polling
	5.2.1.3.10 [SRS_Can_01133] The CAN driver shall support the HW Transmit Cancellation
	5.2.1.3.11 [SRS_Can_01134] The CAN Driver shall support multiplexed transmission
	5.2.1.3.12 [SRS_Can_01147] The CAN Driver shall not support remote frames

	5.2.1.4 Shutdown Operation
	5.2.1.5 Fault Operation
	5.2.1.5.1 [SRS_Can_01055] The CAN Driver shall provide a notification for bus-off state
	5.2.1.5.2 [SRS_Can_01060] The CAN driver shall not recover from bus-off automatically

	5.2.2 CAN Interface (Hardware Abstraction)
	5.2.2.1 Configuration
	5.2.2.1.1 [SRS_Can_01015] The CAN Interface configuration shall be able to import information from CAN communication matrix.
	5.2.2.1.2 [SRS_Can_01016] The CAN Interface shall have an interface to the static configuration information of the CAN Driver
	5.2.2.1.3 [SRS_Can_01018] The CAN Interface shall allow the configuration of its software reception filter Pre-Compile-Time as well as Link-Time and Post-Build-Time
	5.2.2.1.4 [SRS_Can_01019] It shall be Pre-Compile-Time configurable whether a DLC check is performed or not
	5.2.2.1.5 [SRS_Can_01020] The TX-Buffer shall be statically configurable

	5.2.2.2 Initialization
	5.2.2.2.1 [SRS_Can_01021] CAN The CAN Interface shall implement an interface for initialization
	5.2.2.2.2 [SRS_Can_01022] The CAN Interface shall support the selection of configuration sets
	5.2.2.2.3 [SRS_Can_01023] The CAN Interface shall be initialized in a defined way.

	5.2.2.3 Normal Operation
	5.2.2.3.1 [SRS_Can_01002] The CAN Interface shall be responsible for the dispatching of the received PDUs
	5.2.2.3.2 [SRS_Can_01003] The appropriate higher communication stack shall be notified by the CAN Interface about an occurred reception
	5.2.2.3.3 [SRS_Can_01114] Data Consistency of L-PDUs to transmit shall be guaranteed
	5.2.2.3.4 [SRS_Can_01004] Software filtering shall be implemented by the CAN Interface
	5.2.2.3.5 [SRS_Can_01005] The CAN Interface shall perform a check for correct DLC of received PDUs
	5.2.2.3.6 [SRS_Can_01006] The CAN Interface shall provide a service to enable/disable L-PDU reception per CAN Controller
	5.2.2.3.7 [SRS_Can_01007] The CAN Interface shall dispatch the transmission request by an upper layer module to the desired CAN controller
	5.2.2.3.8 [SRS_Can_01008] The CAN Interface shall provide a transmission request service
	5.2.2.3.9 [SRS_Can_01009] The CAN Interface shall provide a transmission confirmation dispatcher
	5.2.2.3.10 [SRS_Can_01011] The CAN Interface shall provide a transmit buffer
	5.2.2.3.11 [SRS_Can_01013] The CAN Interface shall provide a Tx-L-PDU enable/disable service per CAN Controller
	5.2.2.3.12 [SRS_Can_01027] The CAN Interface shall provide a service to change the CAN Controller mode.
	5.2.2.3.13 [SRS_Can_01028] The CAN Interface shall provide a service to query the CAN controller state
	5.2.2.3.14 [SRS_Can_01151] The CAN Interface shall provide a service to check for a CAN Wake-up event.
	5.2.2.3.15 [SRS_Can_01032] The CAN Interface shall report a wake-up notification to the ECU StateManager
	5.2.2.3.16 [SRS_Can_01061] The CAN Interface shall provide dynamic TX Handles
	5.2.2.3.17 [SRS_Can_01159] The CAN Interface shall provide dynamic RX Handles
	5.2.2.3.18 [SRS_Can_01130] Receive Status Interface of CAN Interface
	5.2.2.3.19 [SRS_Can_01131] The CAN Interface module shall provide the possibility to have polling and callback notification mechanism in parallel
	5.2.2.3.20 [SRS_Can_01136] The CAN Interface module shall provide a service to check for validation of a CAN wake-up event
	5.2.2.3.21 [SRS_Can_01129] The CAN Interface module shall provide a procedural interface to read out data of single CAN messages by upper layers (Polling mechanism)
	5.2.2.3.22 [SRS_Can_01140] The CAN Interface shall support both Standard (11bit) and Extended (29bit) Identifiers
	5.2.2.3.23 [SRS_Can_01141] The CAN Interface shall support both Standard (11bit) and Extended (29bit) Identifiers at same time on one network
	5.2.2.3.24 [SRS_Can_01153] The Tx-Filter shall ensure, that the first message which is sent on the bus is a Wakeup Frame (WUF) in the case of partial networking
	5.2.2.3.25 [SRS_Can_01158] The CAN interface shall provide a TX offline active mode for ECU passive mode

	5.2.2.4 Shutdown Operation
	5.2.2.5 Fault Operation
	5.2.2.5.1 [SRS_Can_01029] The CAN Interface shall report bus-off state of a device to an upper layer

	5.2.3 CAN State Manager
	5.2.3.1 Configuration
	5.2.3.1.1 [SRS_Can_01143] The CAN State Manager shall support a configurable BusOff recovery time

	5.2.3.2 Initialization
	5.2.3.2.1 [SRS_Can_01144] The CAN State Manager shall support a configurable BusOff recovery time

	5.2.3.3 Normal Operation
	5.2.3.3.1 [SRS_Can_01145] The CAN State Manager shall control the assigned CAN Devices

	5.2.3.4 Shutdown Operation
	5.2.3.5 Fault Operation
	5.2.3.5.1 [SRS_Can_01146] The CAN State Manager shall contain a CAN BusOff recovery algorithm for each used CAN Controller

	5.2.4 Transport Layer CAN
	5.2.4.1 Configuration
	5.2.4.1.1 [SRS_Can_01066] The AUTOSAR CAN Transport Layer shall be statically configurable to support either single or multiple connections in an optimizing way
	5.2.4.1.2 [SRS_Can_01068] The CAN Transport Layer shall identify each N-SDU with a unique identifier.
	5.2.4.1.3 [SRS_Can_01069] CAN address information and N-SDU identifier mapping
	5.2.4.1.4 [SRS_Can_01071] The CAN Transport Layer shall identify each N-PDU (also called L-SDU) with a unique identifier
	5.2.4.1.5 [SRS_Can_01073] The CAN Transport Layer shall be statically configured to pad unused bytes of PDU
	5.2.4.1.6 [SRS_Can_01074] The Transport connection properties shall be statically configured
	5.2.4.1.7 [SRS_Can_01117] The CAN Transport Layer shall support half-duplex communication for TP channels
	5.2.4.1.8 [SRS_Can_01149] The CAN Transport Layer shall support full-duplex communication for TP channels
	5.2.4.1.9 [SRS_Can_01150] The CAN Transport Layer shall support to configure half or full-duplex communication separate for each channel

	5.2.4.2 Initialization
	5.2.4.2.1 [SRS_Can_01075] The CAN Transport Layer shall implement an interface for initialization
	5.2.4.2.2 [SRS_Can_01076] The CAN Transport Layer services shall not be operational before initializing the module

	5.2.4.3 Normal Operation
	5.2.4.3.1 [SRS_Can_01078] The AUTOSAR CAN Transport Layer shall support the ISO 15765-2 addressing formats
	5.2.4.3.2 [SRS_Can_01079] The CAN Transport Layer shall be compliant with the CAN Interface module notifications
	5.2.4.3.3 [SRS_Can_01081] The value of CAN Transport protocol timeouts shall be statically configurable for each connection
	5.2.4.3.4 [SRS_Can_01082] Error handling
	5.2.4.3.5 [SRS_Can_01086] Data padding value of unused bytes
	5.2.4.3.6 [SRS_Can_01116] The AUTOSAR CAN Transport Layer shall be able to manage both normal and extended modes in parallel
	5.2.4.3.7 [SRS_Can_01148] The AUTOSAR CAN Transport Layer shall provide a service to enable dynamic setting of protocol parameters

	5.2.5 CAN Bus Transceiver Driver
	5.2.5.1 Configuration
	5.2.5.1.1 [SRS_Can_01090] The bus transceiver driver package shall offer configuration parameters that are needed to configure the driver for a given bus and the supported notifications
	5.2.5.1.2 [SRS_Can_01091] The CAN bus transceiver driver shall support the configuration for more than one bus
	5.2.5.1.3 [SRS_Can_01092] The bus transceiver driver shall support the independent configuration of the bus operation mode for each supported bus.
	5.2.5.1.4 [SRS_Can_01095] The bus transceiver driver shall support the compile time configuration of one notification to an upper layer for change notification for “wakeup by bus” events
	5.2.5.1.5 [SRS_Can_01154] The bus transceiver driver package shall offer configuration parameters that are required to configure the driver for partial networking

	5.2.5.2 Initialization
	5.2.5.2.1 [SRS_Can_01096] The bus transceiver driver shall provide an API to initialize the driver internally and set then all attached transceivers in their pre-selected operation modes
	5.2.5.2.2 [SRS_Can_01155] The bus transceiver driver shall support the selection of configuration sets

	5.2.5.3 Normal Operation
	5.2.5.3.1 [SRS_Can_01097] CAN Bus Transceiver driver API shall be synchronous
	5.2.5.3.2 [SRS_Can_01098] The bus transceiver driver shall support an API to send the addressed transceiver into its Standby mode
	5.2.5.3.3 [SRS_Can_01099] The bus transceiver driver shall support an API to send the addressed transceiver into its Sleep mode
	5.2.5.3.4 [SRS_Can_01100] The bus transceiver driver shall support an API to send the addressed transceiver into its Normal mode
	5.2.5.3.5 [SRS_Can_01101] The bus transceiver driver shall support an API to read out the current operation mode of the transceiver of a specified bus within the ECU
	5.2.5.3.6 [SRS_Can_01103] The bus transceiver driver shall support an API to read out the reason of the last wakeup of a specified bus within the ECU
	5.2.5.3.7 [SRS_Can_01106] The bus transceiver driver shall call the appropriate callback function of EcuM in case a wakeup by bus event is detected
	5.2.5.3.8 [SRS_Can_01138] The CAN Bus Transceiver Driver shall provide one callback function for lower layer ICU Driver for wake up by bus events
	5.2.5.3.9 [SRS_Can_01156] The bus transceiver driver shall support wake up events by a Remote Wake-up Pattern (RWUP) or Remote Wake-up Frame (RWUF) if partial networking is supported by the tranceiver hardware
	5.2.5.3.10 [SRS_Can_01107] The CAN Transceiver Driver shall support the situation where a wakeup by bus occurs during the same time the transition to standby/sleep is in progress
	5.2.5.3.11 [SRS_Can_01115] The bus transceiver driver shall support an API to enable and disable the wakeup notification for each bus separately

	5.2.5.4 Shutdown Operation
	5.2.5.4.1 [SRS_Can_01108] The bus transceiver driver shall support the AUTOSAR ECU state manager in a way that a safe system startup and shutdown is possible
	5.2.5.4.2 [SRS_Can_01157] The bus transceiver driver shall provide an API for clearing the WUF bit in the tranceiver hardware

	5.2.5.5 Fault Operation
	5.2.5.5.1 [SRS_Can_01109] The bus transceiver driver shall check the control communication to the transceiver and the reaction of the transceiver for correctness

	5.3 Non functional requirements
	5.3.1 CAN Driver
	5.3.1.1 [SRS_Can_01033] The CAN Driver shall fulfill the general requirements for Basic Software Modules as specified in AUTOSAR_SRS_SPAL
	5.3.1.2 [SRS_Can_01034] The CAN Driver shall offer a Hardware independent interface.
	5.3.1.3 [SRS_Can_01035] The CAN Driver shall support multiple CAN controllers of the same CAN hardware unit

	5.3.2 CAN Interface (Hardware Abstraction)
	5.3.2.1 [SRS_Can_01121] CAN Interface shall be the interface layer between the underlying CAN Driver(s) and CAN transceiver Driver(s) and Upper Layers
	5.3.2.2 [SRS_Can_01001] The CAN Interface implementation and interface shall be independent from underlying CAN Controller and CAN Transceiver

	5.3.3 CAN State Manager
	5.3.3.1 [SRS_Can_01142] The CAN State Manager shall offer a network abstract API to upper layer
	5.3.3.2 [SRS_Can_01014] The CAN State Manager shall offer a network configuration independent interface for upper layers

	5.3.4 Transport Layer CAN
	5.3.4.1 [SRS_Can_01065] The AUTOSAR CAN Transport Layer shall be based on ISO 15765-2 and 15765-4 specifications
	5.3.4.2 [SRS_Can_01111] The CAN Transport Layer shall be the interface layer between PDU Router and CAN Interface for CAN messages needing transport protocol functionalities
	5.3.4.3 [SRS_Can_01112] The CAN Transport Layer interface shall be independent of its internal communication configuration

	5.3.5 CAN Bus Transceiver Driver
	5.3.5.1 Timing Requirements
	5.3.5.1.1 [SRS_Can_01110] CAN Bus Transceiver driver shall handle the transceiver specific timing requirements internally

	5.3.6 CAN Driver and Interface together
	5.3.6.1 [SRS_Can_01125] The CAN stack shall ensure not to lose messages in receive direction
	5.3.6.2 [SRS_Can_01126] The CAN stack shall be able to produce 100% bus load
	5.3.6.3 [SRS_Can_01139] The CAN Interface and Driver shall offer a CAN Controller specific interface for initialization

	6 References
	6.1 Deliverables of AUTOSAR
	6.2 Related standard and norms
	6.2.1 ISO

	6.3 Related Example Transceiver Data Sheets

