
Guide to Multi-Core Systems
 V1.1.0

R4.1 Rev 3

1 of 28 Document ID 631: AUTOSAR_EXP_MultiCoreGuide.doc

- AUTOSAR Confidential -

Document Title Guide to Multi-Core Systems
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 631

Document Classification Auxiliary

Document Version 1.1.0

Document Status Final

Part of Release 4.1

Revision 3

Document Change History
Date Version Changed by Change Description

31.03.2014 1.1.0 AUTOSAR Release
Management

Clarified terms

18.01.2013 1.0.0 AUTOSAR
Administration

Initial release

Guide to Multi-Core Systems
 V1.1.0

R4.1 Rev 3

2 of 28 Document ID 631: AUTOSAR_EXP_MultiCoreGuide.doc

- AUTOSAR Confidential -

Disclaimer

This specification and the material contained in it, as released by AUTOSAR is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only.
For any other purpose, no part of the specification may be utilized or reproduced, in
any form or by any means, without permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR Specification Documents may contain exemplary items (exemplary
reference models, "use cases", and/or references to exemplary technical solutions,
devices, processes or software).

Any such exemplary items are contained in the Specification Documents for
illustration purposes only, and they themselves are not part of the AUTOSAR
Standard. Neither their presence in such Specification Documents, nor any later
documentation of AUTOSAR conformance of products actually implementing such
exemplary items, imply that intellectual property rights covering such exemplary
items are licensed under the same rules as applicable to the AUTOSAR Standard.

Guide to Multi-Core Systems
 V1.1.0

R4.1 Rev 3

3 of 28 Document ID 631: AUTOSAR_EXP_MultiCoreGuide.doc

- AUTOSAR Confidential -

Table of Contents

1 Introduction .. 4
2 Overview ... 5

2.1 Supported Scenarios .. 5

2.2 Performance Use Cases and Hardware Assigned to Different Cores 5
2.3 Technical Overview .. 6

2.3.1 BSW Functional Clusters .. 6
2.3.2 Inter-BSW-partition communication ... 8
2.3.3 Determining the Partition for Service Execution 8

2.3.4 BSW partitions .. 9
3 Parallel Execution of BSW modules .. 10

3.1 Core-Dependent Branching .. 10
3.2 Master/Satellite-approach .. 10
3.3 Using the BSW Scheduler for Inter-Partition-Communication 11
3.4 Using Shared Buffers (in systems without memory protection) 12
3.5 Accessing Hardware/Drivers .. 14

3.6 Concurrency safe implementation of modules ... 15
4 SchM Interfaces for Parallel BSW execution ... 16

5 Configuration of Basic Software in Partitioned Systems 17
5.1 Task Mapping ... 17

5.2 General Configuration of Master and Satellites .. 22

5.3 Configuring the BswM (per Partition) .. 22

5.4 Configuring the EcuM (per Core).. 23
6 Outlook on Upcoming AUTOSAR Versions ... 24

6.1 Known limitations ... 24
6.2 Safety use cases .. 24
6.3 Multiple BSW partitions per core .. 24

6.4 Standardized BSW functional clusters ... 25
7 Glossary .. 26

7.1 Acronyms and abbreviations .. 26
7.2 Technical Terms ... 26

8 References .. 28

Guide to Multi-Core Systems
 V1.1.0

R4.1 Rev 3

4 of 28 Document ID 631: AUTOSAR_EXP_MultiCoreGuide.doc

- AUTOSAR Confidential -

1 Introduction

This document is a general introduction to the development and configuration of
AUTOSAR-compliant software for multi-core systems. As of release 4.1.1, it
addresses the allocation of AUTOSAR BSW modules [1] to partitions on multi-core
systems and their interaction only. The allocation of BSW modules to different BSW
partitions allows for both enhanced functional safety and increased performance.

This document contains the description of multi-core extensions to BSW in
AUTOSAR 4.1.1, which addresses performance use cases and is limited to
backward compatible changes. Moreover chapter 6 of this document contains
information about future work we expect for upcoming, not backward compatible
releases. Information on multi-core aspects that are not specific to the BSW, but also
affect application software, are planned to be contained in future versions of this
guide.

This document is outlined as follows: Chapter 2 gives an introduction and a technical
overview of distributing the BSW across different partitions and cores. Chapter 3
addresses developers of BSW modules and explains how to implement modules that
can be run in multiple partitions. Some specific extensions to the BSW scheduler,
which may have to implement additional methods for the parallel execution of BSW
modules, are presented in chapter 4. Chapter 5 describes the configuration aspects
related to the parallel execution, and chapter 6 provides an outlook to upcoming
concepts for the parallelization of the BSW, which can be expected in future versions
of AUTOSAR that are not backward compatible. A glossary of technical terms and a
list of references to external information are provided in chapters 7 and 8.

Guide to Multi-Core Systems
 V1.1.0

R4.1 Rev 3

5 of 28 Document ID 631: AUTOSAR_EXP_MultiCoreGuide.doc

- AUTOSAR Confidential -

2 Overview

This chapter contains a description of the supported scenarios for distributed
execution of BSW modules on several partitions and cores and a number of use
cases in which a distribution of the BSW can enhance performance. It also
introduces basic synchronization concepts applicable to distributed BSW execution,
and an introduction to inter-partition communication.

2.1 Supported Scenarios

It is possible to assign functional clusters of BSW modules (“"BSW Functional
cluster"), which are used by applications to access buses, non-volatile memory, I/O
channels, and watchdogs, to different BSW partitions for safety or performance
reasons. The clustering of BSW modules is currently not standardized. Parallel
usage of the same type of functional clusters in different partitions ("duplication") is
not generally supported, but it is possible by using a master satellite approach.
Functional clusters to partitions may be assigned such that

 a BSW functional cluster is only available in one partition

 a BSW functional cluster is available on all partitions with all interfaces

 a BSW functional cluster is distributed over multiple partitions, possibly with
partition specific subsets of functionality, to allow a high grade of concurrency.

In either of these scenarios, the following restrictions apply:

 There is currently at most one BSW partition per core. (This may be subject to
change in future AUTOSAR releases, cf. chapter 6.)

 All partitions that contain BSW modules are trusted.

With the aforementioned restrictions, AUTOSAR supports the scenarios listed above.
In doing so, it addresses the following essential features:

 All code for communication between BSW partitions can be generated for
automatic adaptation to different system configurations. The cross partition
communication mechanism can be generated with focus on efficiency, or, in
future releases to help to provide freedom of interference.

 If access to system services (which are not part of a BSW functional cluster) is
required, efficient access from each BSW partition that needs the system
service is supported.

 Efficient access to HW abstraction and drivers is supported in each BSW
partition, if required.

In all scenarios, the communication between different module entities remains
unchanged (in comparison to BSW running in a single partition).

2.2 Performance Use Cases and Hardware Assigned to Different
Cores

The following use cases are examples for how system performance can be improved
by allocation of the BSW to multiple partitions and cores, and how systems where the
access to the peripheral hardware is assigned to multiple cores benefit from the
allocation of the BSW to multiple partitions and cores.

Guide to Multi-Core Systems
 V1.1.0

R4.1 Rev 3

6 of 28 Document ID 631: AUTOSAR_EXP_MultiCoreGuide.doc

- AUTOSAR Confidential -

 To increase system performance and to reduce resource consumption in
systems that are distributed over several cores, it may be necessary to
allocate functional clusters of BSW modules to different cores, e.g.
communication modules on BSW partition "A" and I/O modules on BSW
partition "B", depending on hardware architecture, load balancing and on
distribution of SW-Cs. In particular, if HW resources are accessed exclusively
by one core in a Multi-Core system, the performance is increased by locating
the corresponding BSW users, services and drivers on that core.

 Signal gateway functionality is implemented by allocating a FlexRay cluster on
one core and a CAN cluster on a different core. The two COM modules need
to be synchronized in this case, and there must be some direct cross core
communication between the two COM instances. One of the COM modules
might be the master COM that coordinates the satellite COM on the other
core.

 Two communication clusters are located on different cores, one accessing a
CAN bus and the other one controlling a FlexRay bus. In case the application
SW located above one of the communication clusters on the same core needs
to send on both buses, the core local COM modules can directly communicate
with their counterparts on the other core, to efficiently send the signal over
either CAN or FlexRay. For received messages, COM has no information
about receivers above the RTE. Therefore, COM has to forward the signals on
the receiving side to the RTE, and the RTE is responsible for communication.

2.3 Technical Overview

Below is a short summary of the technical solution as described in the following
sections:

 Define clusters of BSW modules that contain preferably all three layers of a
stack, or, if needed, a subset of modules of a stack (e.g. communication,
memory, I/O stack).

 Module entities can be split into a master and satellites, which are assigned to
different BSW partitions. Masters and satellites can use non-standardized
AUTOSAR interfaces, for internal cross partition communication. The
master/satellite approach is mainly used by distributed system service
modules and for communication between BSW clusters of the same type.

The proposed solution meets the demands on performance and safety while
minimizing the impact on already standardized BSW module interfaces
(RS_BRF_00206, RS_BRF_01160). Most changes are hidden within modules (e.g.
by providing master/satellite implementations) without affecting other modules.
Interfaces between different modules do not change.

2.3.1 BSW Functional Clusters

BSW functional clusters are groups of functionally coherent BSW modules. Each
functional cluster includes a set of BSW modules. It is possible to have several BSW
functional clusters of the same type (e.g. several I/O clusters in different BSW
partitions), each using a different set of modules (e.g. IOHWA + ADC in one partition
and IOHWA + ADC + DIO in the second partition).

Guide to Multi-Core Systems
 V1.1.0

R4.1 Rev 3

7 of 28 Document ID 631: AUTOSAR_EXP_MultiCoreGuide.doc

- AUTOSAR Confidential -

The following types of clusters might be standardized in a later release:

 Communication cluster

 Memory cluster

 I/O cluster

 Watchdog cluster

The allocation of BSW functional clusters to BSW partitions is determined by the
usage of BSW modules by the application software. Functional clusters can be
allocated to different BSW partitions, and functional clusters of the same type can be
available in several BSW partitions. Different functional clusters can be allocated to
the same or to different BSW partitions.

The same functional cluster can only exist at most once per BSW partition.

BSW functional clusters are used by applications or other BSW modules to access
buses, memory, I/O channels and watchdogs, and they are usually required in one or
few BSW partitions only.

The introduction of BSW functional clusters does not change the existing AUTOSAR
R4.0 interfaces between the BSW and the RTE, which are mainly used to implement
AUTOSAR services, i.e. to communicate with the application layer. It may however
change the availability of standardized AUTOSAR interfaces on different partitions.

The internal structure of a BSW functional cluster, including its internal
communication between BSW modules, and the communication with system services
that the BSW functional cluster uses is not necessarily affected by the parallelization
of the BSW, and it does not need to change. It may however be adapted, for example
in order to fulfill special demands on concurrency like the support of different entities
of the same module running in different partitions.

The communication and synchronization between modules in BSW functional
clusters of the same type (e.g. in two communication clusters to support a gateway
functionality) is not standardized. It will be implemented by communication between
entities (e.g. by a master and satellites) of specific modules, which can use non-
standardized interfaces for communication across BSW partition boundaries, see
Figure 1.

Guide to Multi-Core Systems
 V1.1.0

R4.1 Rev 3

8 of 28 Document ID 631: AUTOSAR_EXP_MultiCoreGuide.doc

- AUTOSAR Confidential -

Figure 1: Functional clusters of the same type

Modules that do not belong to BSW functional clusters (some MCAL modules,
system services) will always be accessed within the same BSW partition where the
BSW functional cluster is located. As the interfaces do not change, these modules
must be locally available in each BSW partition, if needed.

2.3.2 Inter-BSW-partition communication

Function calls to tasks that are supposed to be executed in a different BSW
partition/on a different core cannot be implemented as simple C calls to this function,
because these calls would be handled on the local BSW partition.

The BSW Scheduler (SchM) therefore provides functions to invoke masters or
satellites of the same module on different BSW partitions using either client-server or
sender-receiver communication. Details on this API of the SchM are explained in
Section 3.3.

2.3.3 Determining the Partition for Service Execution

The actual BSW partition for the handling of an RTE event is determined by its task
mapping. Basically, if an event is mapped to a task, it is executed within the partition
assigned to this task. If an event is not mapped to a task, it is executed within the
same partition as the task that caused the event. Details on the task mapping are
described in Section 5.1 of this document.

Calls from BSW entities to other BSW entities are not mapped to a partition. They are
executed wherever they are called. Therefore, several calls to a BSW function may
be processed in parallel on different partitions and cores. Consequently such
functions must be designed and implemented carefully w.r.t. parallel execution in
different partitions; if necessary, they shall be reentrant or concurrency safe.

Guide to Multi-Core Systems
 V1.1.0

R4.1 Rev 3

9 of 28 Document ID 631: AUTOSAR_EXP_MultiCoreGuide.doc

- AUTOSAR Confidential -

2.3.4 BSW partitions

Only partitions that have the configuration parameter
EcucPartitionBswModuleExecution set to true can execute BSW modules. Such
partitions are called BSW partitions. BSW partitions may additionally contain
application software components above the RTE.

Guide to Multi-Core Systems
 V1.1.0

R4.1 Rev 3

10 of 28 Document ID 631: AUTOSAR_EXP_MultiCoreGuide.doc

- AUTOSAR Confidential -

3 Parallel Execution of BSW modules

This is the chapter for developers of BSW modules.

3.1 Core-Dependent Branching

Because entities of the same module share the same implementation, even if they
are running on different cores, different behavior cannot be realized by different code.
Instead, the specific behavior shall be determined by runtime information. It is
possible for example to use the core id for this, i.e. branch the control flow depending

on the return value of the OS APIs GetCoreID(), or also GetApplicationID().

As an alternative, the BSW partition specific Service SWCs can invoke different
Runnables in the BSW modules.

3.2 Master/Satellite-approach

Modules that need to be accessed in different BSW partitions can be implemented
using the master/satellite pattern.

The distribution of work between master and satellite is implementation specific. One
extreme is that the satellite only provides the interfaces to the other modules in the
same BSW partition, and that it routes all requests to the master and answers back
to the other modules. At the other extreme, the satellite can provide the full
functionality locally (e.g. local mode management for a complete application which
runs in the same BSW partition) and only synchronizes its internal states with the
master, if necessary. There might even be several masters for different functionality,
e.g. two PduR masters for a distributed PduR gateway.

The master coordinates requests from the satellites and can filter or monitor
incoming satellite requests. The master and one or several satellites are treated like
being one module entity in some respect:

 Master and satellites are always vendor specific solutions, coming from the same
vendor.

 The interfaces of master and satellite to other module entities in general are the
same as specified in AUTOSAR R4.0 for traditional modules. Master and satellite
should provide the same APIs. This means that when migrating to partitioned
systems, existing module entities can be replaced by a master and one or several
satellites, in most cases without changing other modules. Exceptions might be
module internal adaptations to additional delays which are caused by inter-
partition communication.

 Master and satellites may have the same entry points in each BSW partition (i.e.
they start executing the same functions from shared memory) and internally
branch (e.g. by using the "GetApplicationID ()" API) to master or satellite specific
code according to the OS-Application (partition) they run in. Depending on the
build strategy, other implementations might be possible in multi-Core systems if
each core can execute its own code. Also, satellites might share the same code
without further branching.

 Master and satellites may have different entry points with different APIs in each
BSW partition to allow a high degree of concurrency.

Guide to Multi-Core Systems
 V1.1.0

R4.1 Rev 3

11 of 28 Document ID 631: AUTOSAR_EXP_MultiCoreGuide.doc

- AUTOSAR Confidential -

 The communication between master and satellites is not standardized. It is
considered to be module-internal and is not visible to other modules.

 The communication between master and satellite can be initiated in either
direction (i.e. by both the master and the satellites), as well as from one satellite
to another one.

 All interfaces between masters and satellites are only allowed to be connected
within the same distributed module.

 The communication between master and satellites can be implemented within
one BswModuleEntity, or between different BswModuleEntities that belong to the
same BSW module.

 Depending on the application, usage of master/satellite may be appropriate or
not. For example, it may be more efficient to use separate, partition specific
watchdog clusters, which work independently from each other, rather than using
the Watchdog Manager in a master/satellite approach.

 The master is the part of a distributed BSW module that coordinates requests by
satellites and can filter or monitor incoming satellite requests. This may result in
additional fault detection or fault mitigation mechanisms. Generally, all errors
caused by distributed execution of a module should be handled module internally.

The master/satellite implementation is the standard solution for system services in
partitioned systems.

Specific drivers also might have to provide local satellites, if the hardware can only
be accessed from a different core. The standard solution, if possible, is to execute
the same multi-core reentrant function in each partition and to separate the data to
work on into disjoint sets, one for each partition. For example, the COM module may
work on all IPDUs assigned to the bus that the BSW functional cluster of this module
belongs to. Concurrent access to the same hardware or shared data needs to be
protected, e.g. by ExclusiveAreas in this case.

In specific cases, modules within BSW functional clusters also need to be
implemented as master/satellite, if the BSW functional clusters are duplicated and
the entities in different BSW partitions need to be synchronized or need to exchange
data. This might apply to the Watchdog Manager, the NVRAM manager, and to
network and state managers in duplicated communication clusters. COM modules
also might need to have a master and a satellite to implement cross partition gateway
functionality.

3.3 Using the BSW Scheduler for Inter-Partition-Communication

The BSW Scheduler (SchM) provides a number of functions to support
communication between BSW module entities that are executed in parallel. More
precisely, it provides the following methods to handle synchronous and
asynchronous calls (including callbacks) as well as sender-receiver communication.

The functionality is generally similar to that of function calls between SWCs and the
BSW. However, because the RTE may not be available at certain points of time
(especially during startup of an ECU), this functionality must be available within the
BSW itself.

Guide to Multi-Core Systems
 V1.1.0

R4.1 Rev 3

12 of 28 Document ID 631: AUTOSAR_EXP_MultiCoreGuide.doc

- AUTOSAR Confidential -

 Std_ReturnType SchM_Call_<bsnp>[_<vi>_<ai>]_<name>(

 [OUT <typeOfReturnValue> returnValue]
 [IN|IN/OUT\|OUT]<data_1> ... [IN|IN/OUT|OUT] <data_n>)

or
Std_ReturnType SchM_Call_<bsnp>[_<vi>_<ai>]_<name>(

 [IN|IN/OUT\|OUT]<data_1> ... [IN|IN/OUT|OUT] <data_n>)

Invoke a client-server-operation, possibly crossing partition boundaries. The

actual parameters data_1 ... data_n are information that is passed [IN]

and/or re-passed [IN/OUT | OUT] to/from the called service.

The presence of the parameter returnValue and its type
<typeOfReturnValue> depend on the called service. For synchronous
calls, the parameter is present and <typeOfReturnValue> is the type
returned by the called service. For asynchronous client-server-operations and

operations with return type void, the parameter is omitted.

 Std_ReturnType SchM_Result_<bsnp>[_<vi>_<ai>]_<name>(

 [IN|IN/OUT|OUT]<data_1> ... [IN|IN/OUT|OUT] <data_n>)

Callback from an asynchronous client-server-operation, possibly crossing
partition boundaries.

The receiver of a callback is determined by the
AsynchronousServerCallResultPoint of this callback. The
AsynchronousServerCallResultPoint refers to the originating
AsynchronousServerCallPoint, which in turn “knows” the calling module entity.

 Std_ReturnType SchM_Send_<bsnp>[_<vi>_<ai>]_<name>(IN

<data>)

Write data to a sender-receiver link between BSW modules, possibly crossing
partition boundaries.

 Std_ReturnType SchM_Receive_<bsnp>[_<vi>_<ai>]_<name>(OUT

<data>)

Read data from a sender-receiver link between BSW modules, possibly
crossing partition boundaries.

3.4 Using Shared Buffers (in systems without memory protection)

In systems without memory protection between the BSW partitions, system services
and all BswCalledEntities can be called directly in every partition, including the
complete call tree. This requires a reentrant, concurrency safe implementation.

The services and other called entities might work on module internal data, which is
shared between different entities of the same module. All access to such data must
be protected by ExclusiveAreas. Appropriateness of concrete protection mechanisms
depends on the possible kinds of access. For example, concurrent writing generally

Guide to Multi-Core Systems
 V1.1.0

R4.1 Rev 3

13 of 28 Document ID 631: AUTOSAR_EXP_MultiCoreGuide.doc

- AUTOSAR Confidential -

needs to be prohibited, whereas concurrent reading may be acceptable, as long as
only one partition writes at the same time.

BswSchedulableEntities are located on one core only and process the data
periodically or event driven.

Figure 2: Invocation of same service on different cores

Figure 2 shows the example of a service "X", where the same API and the same
code is called directly by the RTE on different cores. This is the default, if the
services (respectively the OperationInvokedEvents) are not mapped to a task.

The code must be reentrant and concurrency safe, which means that all access to
data must be protected against concurrent access by the same or by a different entity
of the same module.

In this example, the same service "X" (BswCalledEntity) writes into a module internal
data buffer accessible from core 0 and from core 1. A "main function"
(BswSchedulableEntity), which is mapped to a task, reads the data from the buffer
for further processing. In order to prevent read/write-conflicts, this “main function”
must be protected from reading the buffer while it is written.

This can be considered a special case of the generic master/satellite approach for
systems without memory protection between the BSW partitions.

The advantage of this approach is that the original, unchanged modules can be used,
as long as they are implemented concurrency safe, which is usually the case for
single core already, if different entities of the same module work on the same data,
as shown in the example for core 0. Compared to the AUTOSAR R4.0 solution,
where all service calls have to be routed to the master core, the performance can be
improved considerably without much effort (assuming there is no need to do cross-
core communication later).

The following must be considered for a concurrency safe, reentrant implementation:

 Access to all shared resources, e.g. buffers, is protected by ExclusiveAreas.

Guide to Multi-Core Systems
 V1.1.0

R4.1 Rev 3

14 of 28 Document ID 631: AUTOSAR_EXP_MultiCoreGuide.doc

- AUTOSAR Confidential -

 Call trees can be made multi-core safe, if either called entities are safe, or calls
are protected by ExclusiveAreas (if lock times stay within a specified limit).

BswCalledEntities that are available to CDDs can also be called directly by the CDD.
The same rules apply as in R4.0.

The SchM must support cross core ExclusiveAreas, implemented by protected
Spinlocks. A protected spinlock is an exclusive area that has "OS_SPINLOCK" as its
value of "RteExclusiveAreaImplMechanism". This kind of exclusive areas is available
for controlled access by BSW modules only. Protected spinlocks are handled by the
Basic Software Scheduler.

3.5 Accessing Hardware/Drivers

BswModuleEntities of the MCAL (drivers) are accessed within the BSW partition
where the caller is located.

If the same driver is required in different BSW partitions, different types of
implementations are possible:

 The same reentrant code can be executed in each BSW partition. The driver can
be accessed with the same API in each BSW partition. The code does not need to
be partition-aware. This is the default solution, which is safe as long as the
hardware objects are exclusively assigned to a single partition.

 The driver is of master/satellite type with internal branching, depending on the
BSW partition it is running in. The masters may call other entities in the same
BSW partition and access the hardware. The satellites may forward the request to
the master in a different BSW partition without accessing any hardware directly.

partition 2partition 1

RTE

module

module

module

module

module

module

module

RTE

module

modulemodule A

CDD

shared hardware

protection
module A

Figure 3: Protected Access to Shared Hardware

Guide to Multi-Core Systems
 V1.1.0

R4.1 Rev 3

15 of 28 Document ID 631: AUTOSAR_EXP_MultiCoreGuide.doc

- AUTOSAR Confidential -

In general, the same hardware should only be accessed from one BSW partition.
However, if concurrent access to the same hardware from different partitions is
unavoidable, this needs to be protected within the MCAL module as shown in Figure
3, e.g. by using ExclusiveAreas. This is particularly important if drivers on different
cores access the same hardware.

3.6 Concurrency safe implementation of modules

Concurrency safety of BSW modules respectively the functions implemented by
these modules may be achieved by different mechanisms.

Generally, the following levels of reentrancy can be distinguished according to
(TPS_BSWMDT_04103). The concrete level of a BswModuleEntity is defined in the
optional attribute “reentrancyLevel”.

 Multi-core reentrant: Unlimited concurrent execution of an interface is
possible, including preemption and parallel execution on multi-core systems.
This level can be either achieved by mutual exclusion when entering critical
regions, or by the absence of such regions, for example if there are no shared
resources (including hardware and memory).

 Single-core reentrant: Pseudo-concurrent execution (i.e. preemption) of an
interface is possible on single core systems. This is the highest level of
reentrancy defined by AUTOSAR 4.0.3. Because it does not explicitly cover
multi-core systems, “concurrency safe” has been introduced additionally. This
level can generally be ensured by the same mechanisms as “concurrency
safe”, but they must be ensured to work across core boundaries.

 Non-reentrant: Concurrent execution of this interface is not possible.

If a module that is not concurrency safe is invoked in different partitions, there is no
warranty that the module will uphold its desired behavior. In this case, correct
behavior shall be ensured by the usage of the module, for example if the caller(s)
prevent parallel execution by using exclusive areas.

Guide to Multi-Core Systems
 V1.1.0

R4.1 Rev 3

16 of 28 Document ID 631: AUTOSAR_EXP_MultiCoreGuide.doc

- AUTOSAR Confidential -

4 SchM Interfaces for Parallel BSW execution

This chapter describes the extensions to the SchM required by the concept
“Enhanced BSW allocation”.

The Basic Software Scheduler (SchM) is responsible for handling the inter-partition
communication between BSW modules. This is conceptually similar to the handling
of inter-partition communication between SW-Cs by the RTE. Because the BSW
modules are arranged below the RTE in the AUTOSAR architecture however, the
communication must be available before the RTE is available. Therefore and for
reasons of performance, BSW modules use the SchM for communication.

For the distribution of BSW modules across several partitions, the SchM shall

implement the methods SchM_Call, SchM_Result, SchM_Send and

SchM_Receive, which are used to handle service calls and callbacks as well as

writing data to and reading data from a sender-receiver connection. For details on the
signatures of these functions, please refer to Section 3.3, which describes the SchM
extensions from a BSW developer's point of view.

The SchM can use IocSend (a direct call to the OS) to send data in inter-partition

communication. Other RTE internal mechanism might not be available during startup.

The Inter-OS-Application Communicator (IOC) shall be configured to provide

IocSend_<Id> functions with a uniquely determined <Id> for all client-server and

sender-receiver connections that cross partition boundaries.

Analogously, the SchM shall use IocReceive to receive data from inter-partition

communication, and the IOC shall provide the corresponding IocReceive_<Id>

functions.

The following frame contains some pseudo code snippets that show how to use the
IOC for inter-partition communication.

void some_BSW_function(){

 char *str = "some text";

 SchM_Send_Data_Src_DstN(str);

}

Std_ReturnType SchM_Send_Data_Src_DstN(char *str){

 IocSend_1(str, 5);

 ActivateTask(TASK1);

}

Std_ReturnType SchM_Receive_Data_Src_DstN(char *str){

 IocReceive_1(str);

}

TASK(TASK1){

 char data[20];

 SchM_Receive_Data_Master_Sat1(data);

 /* do something with data */

}

Guide to Multi-Core Systems
 V1.1.0

R4.1 Rev 3

17 of 28 Document ID 631: AUTOSAR_EXP_MultiCoreGuide.doc

- AUTOSAR Confidential -

5 Configuration of Basic Software in Partitioned Systems

This is the chapter for integrators.

5.1 Task Mapping

The parallelization of BSW modules introduces several new subclasses of BswEvent
to the AUTOSAR metamodel. These classes are shown in Figure 4. Each BswEvent
(including instances of subclasses of BswEvent) is assigned to a
BswSchedulableEntity, which is started upon occurrence of the event.

Guide to Multi-Core Systems
 V1.1.0

R4.1 Rev 3

18 of 28 Document ID 631: AUTOSAR_EXP_MultiCoreGuide.doc

- AUTOSAR Confidential -

Figure 4: Events triggered by the invocation of BSW functions

Guide to Multi-Core Systems
 V1.1.0

R4.1 Rev 3

19 of 28 Document ID 631: AUTOSAR_EXP_MultiCoreGuide.doc

- AUTOSAR Confidential -

A more fine grained description of the partition specific behavior of an entity can be
described by the use of BswDistinguishedPartitions, as shown in Figure 5. A
BswDistinguishedPartition is the abstract representation of a partition, which allows
to the mapping of a specific BswEvent, BswModuleCallPoint or BswVariableAccess
to a set of abstract partitions. The representation of a partition at this point is an
abstract one in the sense that it is part of the BSW module description (according to
the module description template), whereas a concrete partition is determined at ECU
configuration time.

For example, if a module entity running in partition 1 provides data via a
VariableDataPrototype to the same entity running in partitions 2 and 3, the
BswModuleEntity aggregates a dataSendPoint with a contextLimitiation to partition 1
and a dataSendPoint with a contextLimitation to partitions 2 and 3.

Figure 5: Modeling partition specific properties of entities using BswDistinguishedPartitions

Guide to Multi-Core Systems
 V1.1.0

R4.1 Rev 3

20 of 28 Document ID 631: AUTOSAR_EXP_MultiCoreGuide.doc

- AUTOSAR Confidential -

The actual partition for the handling of an event is determined by its task mapping.

Figure 6 shows the corresponding excerpt from the AUTOSAR metamodel.

Guide to Multi-Core Systems
 V1.1.0

R4.1 Rev 3

21 of 28 Document ID 631: AUTOSAR_EXP_MultiCoreGuide.doc

- AUTOSAR Confidential -

Figure 6: Mapping OperationInvokedEvents to tasks

Guide to Multi-Core Systems
 V1.1.0

R4.1 Rev 3

22 of 28 Document ID 631: AUTOSAR_EXP_MultiCoreGuide.doc

- AUTOSAR Confidential -

An RteBswEventToTaskMapping refers to a BswEvent (indirectly via its
RteBswEventRef) and to an OsTask (also indirectly via its
RteBswMappedToTaskRef). The task is in turn mapped to a partition, and the
partition is mapped to a µC core, which is the core responsible for the processing of
the event. Mapping an event to a task is optional; if an event is not mapped to a task,
it is handled in its originating partition. If no special mechanisms apply that prevent
concurrent execution, a prerequisite for a non-mandatory mapping of an event to a
task is:

 if the BSW entity is shared between multiple BSW partitions the entity needs
to be concurrency safe

 in case it is exclusively available only on one BSW partition it needs to be at
least reentrant.

Please note that it is currently not allowed to map RunnableEntities of a SW
component to multiple partitions [SWS_Rte_07347]. For BSW it is possible to map
the same module entities to different tasks and partitions by using different
BSWEvents referring to the same entity

5.2 General Configuration of Master and Satellites

Modules that shall be available in multiple partitions can be implemented as masters
and satellites. In this case, the master and all satellites of the same module share the
same code (which may implement core-dependent behavior however) and the same
configuration. Hence, a master and its satellites are treated as one module entity
w.r.t. their configuration.

The communication between master and satellites is not to be standardized. It is
considered to be module-internal and it is not visible to other modules. However,
since it is recommended to use SchM mechanisms for internal communication, the
non-standardized client-server entries and data accesses in the BSWMD to connect
master and satellite need to be configured.

5.3 Configuring the BswM (per Partition)

On systems with distributed BSW there is one BSW Mode Manager (BswM) per
partition (but one OS and EcuM per core, which is the same as long as we have one
BSW partition per core). Each of these BswMs can be configured independently. A
BswM mainly interacts with the state managers (ECU state manager and bus state
managers, for instance) on the same partition.

The BswM is also responsible for the initialization and shutdown of BSW modules
running in the same partition. Therefore, its configuration depends on the mapping of
BSW modules to partitions.

The configuration of the BswMs is split across the container BswMGeneral, which
contains shared configuration parameters of all BswM entities and BswMConfig
containers, where one BswMConfig is defined for each BswM entity. Consequenty,
the mapping of a BswM to its partition is defined in the corresponding BswMConfig
container, which has a BswMPartitionRef pointing to the respective partition. This
mapping of BswM configurations to partitions ensures that for every partition the
correct configuration of the BswM can be determined.

Guide to Multi-Core Systems
 V1.1.0

R4.1 Rev 3

23 of 28 Document ID 631: AUTOSAR_EXP_MultiCoreGuide.doc

- AUTOSAR Confidential -

Additional extensions to the BswM configurations for the allocation of BSW modules
to multiple partitions are

 A reference BswMRequestRemoteMode in the container
BswMAvailableActions. This action indicates a call to a BswM in a different
partition, which is used to propagate mode requests.

 References BswMBswMModeRequest and
BswMBswMModeSwitchNotification in the container
BswMModeRequestSource. The BswMBswMModeRequest indicates that the
source of a mode request is a BswM running in a different partition
(ECUC_BswM_00980, cf. [5]). BswMBswMModeSwitchNotification indicates
that another BswM has switched a mode.

 All functions listed in an action list that is processed by a BswM entity must be
available in the partition this BswM is running in.

5.4 Configuring the EcuM (per Core)

On systems with distributed BSW there is one EcuM per core (even if there are
multiple BSW partitions on that core). In other words, on every core there shall be
one and only one partition that runs the EcuM. The partition running the EcuM is
determined by the EcuMFlexEcucPartitionRef, which is specified in the container
EcuMFlexUserConfig of the EcuM configuration.

Distributing the BSW is only possible when using the EcuM Flex; the EcuM Fixed
does not support this.

On architectures with a sequential start of cores, there is one designated master core
in which the boot loader starts the master EcuM via EcuM_init. The EcuM in the
master core starts some drivers, determines the Post Build configuration and starts
all remaining cores with all their satellite EcuMs.

On architectures where all cores are started at the same time, core dependent
branching within the EcuM_init function can be used to achieve core-specific
behavior. This can in turn be used to identify the EcuM master (running on the
master core), which is responsible for the EcuM initialization on the slaves.

Guide to Multi-Core Systems
 V1.1.0

R4.1 Rev 3

24 of 28 Document ID 631: AUTOSAR_EXP_MultiCoreGuide.doc

- AUTOSAR Confidential -

6 Outlook on Upcoming AUTOSAR Versions

In this chapter, we list changes to the distribution of BSW that are likely to occur in
the next backward incompatible release of AUTOSAR. Hence, the content of this
chapter is not applicable to AUTOSAR 4.1.1 implementations, but is supposed to
show possible extensions and enhancements for future versions of AUTOSAR in that
respect. Note that all these topics need to be considered in parallel, because
definitions of BSW functional clusters and their standardized interfaces, which will be
named "Standardized AUTOSAR BSW Cluster Interface" then, are needed to
support a safety use case.

6.1 Known limitations

The support for Basic Software Allocation in AUTOSAR is currently limited to
backward compatible changes (w.r.t. AUTOSAR 4.0.3). This, as well as the fact that
it currently focusses on performance use cases, does currently result in the following
restrictions, which may not apply to future releases of AUTOSAR:

 There is (at most) one BSW partition per core.

 BSW modules shall only run in trusted partitions.

 Communication between master and satellites is not standardized.

 BSW functional clusters and their AUTOSAR BSW Cluster Interface are not
standardized.

6.2 Safety use cases

A typical safety use case deals with the integration of independent applications,
possibly with different ASILs, on the same partitioned microcontroller. These
applications all access BSW services (communication, I/O, memory, watchdog, or
systems services).

Depending on the distribution of BSW to trusted or non-trusted partitions and on the
applied mechanisms for spatial and temporal partitioning, upcoming versions of
AUTOSAR will support both performance and safety use cases.

Each set of applications and BSW services could be located in separate, non-trusted
partitions to prevent that faults in one set of application/BSW services do interfere
with the other sets of applications/BSW services or to increase robustness and
availability of the system. Within such a partition, the BSW accesses exclusive
hardware resources assigned to this specific partition. Running BSW in non-trusted
partitions might also allow for partitions that run both application and basic software,
e.g. CDDs.

6.3 Multiple BSW partitions per core

If the BSW can be distributed to multiple partitions per core in upcoming AUTOSAR
releases, BSW modules that do not implement any safety-related functionality or
safety mechanism could be assigned to one non-trusted OS-Application / partition
(e.g. treated as QM software). This enables freedom from interference to other
software of the microcontroller. In this case, different BSW modules, SW-Cs and
CDDs running in separate OS-Applications / partitions (e.g. grouped due to functional
needs) can comply with different safety integrity levels (e.g. ASIL D, ASIL B, QM).

Guide to Multi-Core Systems
 V1.1.0

R4.1 Rev 3

25 of 28 Document ID 631: AUTOSAR_EXP_MultiCoreGuide.doc

- AUTOSAR Confidential -

6.4 Standardized BSW functional clusters

BSW functional clusters are groups of functionally coherent BSW modules. Each
BSW functional cluster includes a set of BSW modules. It is possible to have several
functional clusters of the same type (e.g. several I/O clusters in different partitions),
each using a different set of modules (e.g. IOHWA + ADC in one partition and
IOHWA + ADC + DIO in the second partition). Each functional cluster has a
”AUTOSAR BSW Cluster Interface", which is used to communicate with other
functional clusters

BSW functional clusters can be allocated to different partitions, and functional
clusters of the same type can be available in several partitions. Different functional
clusters can be allocated to the same or to different partitions.

The same functional cluster can only exist at most once in each partition.

But this whole cluster allocation and the resulting real interfaces are not yet
standardized, just the technique is proposed here. Thus:

Upcoming versions of AUTOSAR may standardize one or more of the following:

 Define which modules are assigned to which BSW functional cluster (=>
“Standardized BSW functional cluster”). It is very likely that modules of the
same stack (for instance I/O services, I/O hardware abstraction and I/O
drivers) will be assigned to the same functional cluster.

 Standardize communication between functional clusters of different types via
"Standardized AUTOSAR BSW cluster interfaces”, as shown in Figure 7.

Figure 7: Standardized BSW Functional Clusters

Guide to Multi-Core Systems
 V1.1.0

R4.1 Rev 3

26 of 28 Document ID 631: AUTOSAR_EXP_MultiCoreGuide.doc

- AUTOSAR Confidential -

7 Glossary

All technical terms used throughout this document - except the ones listed here - can
be found in the official AUTOSAR glossary [2] or the Software Component Template
Specification [3].

7.1 Acronyms and abbreviations

Abbreviation Explanation

ASIL Automotive Safety Integrity Level

QM Quality Managed (i.e. not developed according to ASIL
requirements)

IOC Inter OS-Application communicator, part of OS

MCU microcontroller unit, µC

MCAL microcontroller abstraction layer

7.2 Technical Terms

Term Explanation

BSW
functional
cluster

A coherent group of BSW modules. The technique is proposed in
this document, but a real allocation of modules to clusters is
currently not standardized. A BSW functional cluster may be similar
to what usually is called a "stack", but it would also be possible to
combine several stacks into a cluster or to distribute a stack across
several clusters. A BSW functional cluster includes the superset of
modules, which can be part of the functional cluster, but not all
modules need to be available in a specific implementation. In case
the real allocation of BSW modules to BSW functional clusters is
standardized in future, they probably will be named “Standardized
BSW functional clusters”.
BSW functional clusters can be allocated to different partitions, and
clusters of the same type can be available in several partitions
(either on the same or on different cores). Different functional
clusters can be allocated to the same partition.
Note: Contrary to ICC2 clustering, the internal structure and the
interfaces between the modules within the functional cluster are not
affected by the BSW multi-core support in AUTOSAR 4.1.1.

AUTOSAR
BSW Cluster
Interface

Interfaces between BSW functional clusters resulting from a
vendor/project specific definition of BSW functional clusters. The
technique is proposed in this document in a vendor/project specific
way. But the allocation of modules to BSW functional clusters and
thus the resulting interfaces are not standardized yet (if possible at
all). This term may be defined in an upcoming release of AUTOSAR
as “Standardized AUTOSAR BSW Cluster Interface” after
standardization.
Contrary to the standardized AUTOSAR interfaces, AUTOSAR BSW
Cluster Interfaces shall not be connected to SW-Cs or BSW modules
on other MCUs.

Master Part of a distributed BSW module that coordinates requests by

Guide to Multi-Core Systems
 V1.1.0

R4.1 Rev 3

27 of 28 Document ID 631: AUTOSAR_EXP_MultiCoreGuide.doc

- AUTOSAR Confidential -

satellites and can filter or monitor incoming satellite requests. The
master may work properly even if the satellites are not available. In
future versions of AUTOSAR, where case partitioning may be used
to enhance safety, it may be recommended or mandatory to locate
the master in a partition with a high trust level, e.g. in a trusted
partition.

Satellite Part of a distributed BSW module. The distribution of work between
master and satellite is implementation specific. One possibility is that
the satellite only provides the interfaces to the other modules and
routes all requests to the master and answers back to the other
modules. In a different scenario, the satellite can provide the full
functionality locally and only synchronizes its internal states with the
master if necessary. Intermediate forms between these two
scenarios are possible, but the satellites in general cannot work
without the master.

Guide to Multi-Core Systems
 V1.1.0

R4.1 Rev 3

28 of 28 Document ID 631: AUTOSAR_EXP_MultiCoreGuide.doc

- AUTOSAR Confidential -

8 References

[1] Requirements on Basic Software Module Description Template
AUTOSAR_RS_BSWModuleDescriptionTemplate

[2] Glossary
AUTOSAR_TR_Glossary

[3] Software Component Template
 AUTOSAR_TPS_SoftwareComponentTemplate

[4] Concept Enhanced BSW Allocation
 AUTOSAR_CONC_EnhancedBSWAllocation

[5] Specification of Basic Software Mode Manager

 AUTOSAR_SWS_BSWModeManager

	1 Introduction
	2 Overview
	2.1 Supported Scenarios
	2.2 Performance Use Cases and Hardware Assigned to Different Cores
	2.3 Technical Overview
	2.3.1 BSW Functional Clusters
	2.3.2 Inter-BSW-partition communication
	2.3.3 Determining the Partition for Service Execution
	2.3.4 BSW partitions

	3 Parallel Execution of BSW modules
	3.1 Core-Dependent Branching
	3.2 Master/Satellite-approach
	3.3 Using the BSW Scheduler for Inter-Partition-Communication
	3.4 Using Shared Buffers (in systems without memory protection)
	3.5 Accessing Hardware/Drivers
	3.6 Concurrency safe implementation of modules

	4 SchM Interfaces for Parallel BSW execution
	5 Configuration of Basic Software in Partitioned Systems
	5.1 Task Mapping
	5.2 General Configuration of Master and Satellites
	5.3 Configuring the BswM (per Partition)
	5.4 Configuring the EcuM (per Core)

	6 Outlook on Upcoming AUTOSAR Versions
	6.1 Known limitations
	6.2 Safety use cases
	6.3 Multiple BSW partitions per core
	6.4 Standardized BSW functional clusters

	7 Glossary
	7.1 Acronyms and abbreviations
	7.2 Technical Terms

	8 References

