
- AUTOSAR Confidential -

Layered Software Architecture

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 2

Document Title Layered Software Architecture

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 053

Document Classification Auxiliary

Document Version 3.4.0

Document Status Final

Part of Release 4.1

Revision 3

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 3

Document Change History

Date Version Changed by Change Description

31.03.2014 3.4.0 AUTOSAR
Release
Management

 editorial changes

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 4

Document Change History

Date Version Changed by Change Description

19.01.2013 3.3.0 AUTOSAR
Administration

 clarification of partial network support for CAN/LIN slave.

 new ethernet stack extensions

 added Crypto Service Manager to System Services

 revised presentation of J1939 and added new J1939 modules

 added new energy management concepts: “Pretended Networking”, “ECU Degradation”

 added new modules: “Output Compare Unit Driver” and “Time Service”

 Changed handling of Production Errors

 fixed various typography and layout issues

06.10.2011 3.2.0 AUTOSAR
Administration

 added a note for the R3-compatibility FlexRay Transport Layer FrArTp on slide "ki890".

 added an overview chapter for energy management and partial networking

 corrected examples regarding DEM symbol generation

 fixed minor typography issues

 clarification of term AUTOSAR-ECU on slide "94jt1"

 corrected CDD access description for EcuM on slide "11123“

24.11.2010 3.1.0 AUTOSAR
Administration

 added a note regarding support for System Basis Chips on slide "94juq“

 clarification of DBG and DLT text on slide "3edfg"

 corrected DBG description on slide "11231"

30.11.2009 3.0.0 AUTOSAR
Administration

 The document has been newly structured. There are now 3 main parts:

 Architecture

 Configuration

 Integration and Runtime Aspects

 The whole content has been updated to reflect the content of the R 4.0 specifications.

 Topics which have bee newly introduced or heavily extended in release 4.0 have been
added. E.g.,. Multi-Core Systems, Partitioning, Mode Management, Error Handling,
Reporting and Diagnostic, Debugging, Measurement and Calibration, Functional Safety etc

 Legal disclaimer revised

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 5

Document Change History

Date Version Changed by Change Description

23.06.2008 2.2.1 AUTOSAR
Administration

 Legal disclaimer revised

15.11.2007 2.2.0 AUTOSAR
Administration

 Updates based on new wakeup/startup concepts

 Detailed explanation for post-build time configuration

 "Slimming" of LIN stack description

 ICC2 figure

 Document meta information extended

 Small layout adaptations made

06.02.2007 2.1.0 AUTOSAR
Administration

 ICC clustering added.

 Document contents harmonized

 Legal disclaimer revised

 Release Notes added

 “Advice for users” revised

 “Revision Information” added

21.03.2006 2.0.0 AUTOSAR
Administration

Rework Of:

 Error Handling

 Scheduling Mechanisms

 More updates according to architectural decisions in R2.0

31.05.2005 1.0.1 AUTOSAR
Administration

 Correct version released

09.05.2005 1.0.0 AUTOSAR
Administration

 Initial release

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 6

Disclaimer

Disclaimer

This specification and the material contained in it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the

companies that have contributed to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types of Intellectual Property Rights. The commercial

exploitation of the material contained in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form or by any means, for informational purposes only.

For any other purpose, no part of the specification may be utilized or reproduced, in any form or by any means, without permission in

writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only. They have neither been developed, nor tested for

non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR specifications may contain exemplary items (exemplary reference models, "use cases", and/or references to exemplary

technical solutions, devices, processes or software).

Any such exemplary items are contained in the specifications for illustration purposes only, and they themselves are not part of the

AUTOSAR Standard. Neither their presence in such specifications, nor any later documentation of AUTOSAR conformance of products

actually implementing such exemplary items, imply that intellectual property rights covering such exemplary items are licensed under

the same rules as applicable to the AUTOSAR Standard.

- AUTOSAR Confidential -

Table of contents

1. Architecture

1. Overview of Software Layers

2. Content of Software Layers

3. Content of Software Layers in Multi-Core Systems

4. Overview of Modules

5. Interfaces

1. General

2. Interaction of Layers (Examples)

2. Configuration

3. Integration and Runtime Aspects

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 17

p
a
g
e
 i
d

:
9
4
jt
4

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 18

Introduction

Purpose and Inputs

Purpose of this document

The Layered Software Architecture describes the software architecture of AUTOSAR:

 it describes in an top-down approach the hierarchical structure of AUTOSAR software and

 maps the Basic Software Modules to software layers and

 shows their relationship.

This document does not contain requirements and is informative only. The examples given are

not meant to be complete in all respects.

This document focuses on static views of a conceptual layered software architecture:

 it does not specify a structural software architecture (design) with detailed static and dynamic

interface descriptions,

 these information are included in the specifications of the basic software modules

themselves.

Inputs

This document is based on specification and requirement documents of AUTOSAR.

p
a
g
e
 i
d

:
9
4
jt
2

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 19

Introduction

Scope and Extensibility

Application scope of AUTOSAR

AUTOSAR is dedicated for Automotive ECUs. Such ECUs have the following properties:

 strong interaction with hardware (sensors and actuators),

 connection to vehicle networks like CAN, LIN, FlexRay or Ethernet,

 microcontrollers (typically 16 or 32 bit) with limited resources of computing power and memory (compared

with enterprise solutions),

 Real Time System and

 program execution from internal or external flash memory.

NOTE: In the AUTOSAR sense an ECU means one microcontroller plus peripherals and the according

software/configuration. The mechanical design is not in the scope of AUTOSAR. This means that if more than

one microcontroller in arranged in a housing, then each microcontroller requires its own description of an

AUTOSAR-ECU instance.

AUTOSAR extensibility

The AUTOSAR Software Architecture is a generic approach:

 standard modules can be extended in functionality, while still being compliant,

 still, their configuration has to be considered in the automatic Basic SW configuration process!

 non-standard modules can be integrated into AUTOSAR-based systems as Complex Drivers and

 further layers cannot be added.

p
a
g
e
 i
d

:
9
4
jt
1

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 20

Architecture – Overview of Software Layers

Top view

Microcontroller

Application Layer

Runtime Environment (RTE)

p
a
g
e
 i
d

:
9
4
q
u
9

Basic Software (BSW)

The AUTOSAR Architecture distinguishes on the highest abstraction level between three

software layers: Application, Runtime Environment and Basic Software which run on a

Microcontroller.

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 21

Architecture – Overview of Software Layers

Coarse view

Complex

Drivers

Microcontroller

Microcontroller Abstraction Layer

 Services Layer

Application Layer

Runtime Environment

ECU Abstraction Layer

p
a
g
e
 i
d

:
9
4
ju

3

The AUTOSAR Basic Software is further divided in the layers: Services, ECU Abstraction,

Microcontroller Abstraction and Complex Drivers.

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 22

Architecture – Overview of Software Layers

Detailed view

Complex

Drivers

Microcontroller

Runtime Environment

Microcontroller Drivers Memory Drivers I/O Drivers

I/O Hardware Abstraction

Memory Hardware

Abstraction

Memory Services System Services

Onboard Device

Abstraction

Communication Drivers

Communication

Hardware Abstraction

Communication Services

Application Layer

p
a
g
e
 i
d

:
9
4
ju

4

The Basic Software Layers are further divided into functional groups. Examples of Services

are System, Memory and Communication Services.

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 23

Architecture – Overview of Software Layers

Microcontroller Abstraction Layer

The Microcontroller Abstraction Layer is the

lowest software layer of the Basic Software.

It contains internal drivers, which are software

modules with direct access to the µC and

internal peripherals.

Task

Make higher software layers independent of µC

Properties

Implementation: µC dependent

Upper Interface: standardized and µC

independent

Co

mpl

ex

Driv

ers

Microcontroller

Microcontroller Abstraction Layer

Application Layer

RTE

ECU Abstraction Layer

p
a
g
e
 i
d

:
9
4
ju

6

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 24

Architecture – Overview of Software Layers

ECU Abstraction Layer

The ECU Abstraction Layer interfaces the

drivers of the Microcontroller Abstraction

Layer. It also contains drivers for external

devices.

It offers an API for access to peripherals and

devices regardless of their location (µC

internal/external) and their connection to the

µC (port pins, type of interface)

Task

Make higher software layers independent of

ECU hardware layout

Properties

Implementation: µC independent, ECU hardware

dependent

Upper Interface: µC and ECU hardware

independent

Co

mpl

ex

Driv

ers

Microcontroller

Microcontroller Abstraction Layer

Application Layer

RTE

ECU Abstraction Layer ECU Abstraction Layer

p
a
g
e
 i
d

:
9
4
ju

7

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 25

Architecture – Overview of Software Layers

Complex Drivers

The Complex Drivers Layer spans from the

hardware to the RTE.

Task

Provide the possibility to integrate special purpose

functionality, e.g. drivers for devices:

 which are not specified within AUTOSAR,

 with very high timing constrains or

 for migration purposes etc.

Properties

Implementation: might be application, µC and ECU

hardware dependent

Upper Interface: might be application, µC and ECU

hardware dependent

Microcontroller

Microcontroller Abstraction Layer

Application Layer

RTE

ECU Abstraction Layer

Services Layer

ECU Abstraction Layer

p
a
g
e
 i
d

:
9
4
jw

e

C
o

m
p

le
x

D
riv

e
rs

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 26

Architecture – Overview of Software Layers

Services Layer

The Services Layer is the highest layer of the Basic
Software which also applies for its relevance for
the application software: while access to I/O
signals is covered by the ECU Abstraction Layer,
the Services Layer offers:

 Operating system functionality

 Vehicle network communication and management
services

 Memory services (NVRAM management)

 Diagnostic Services (including UDS communication, error
memory and fault treatment)

 ECU state management, mode management

 Logical and temporal program flow monitoring (Wdg
manager)

 Cryptographic Services (Crypto Service Manager)

Task

Provide basic services for applications and basic
software modules.

Properties

Implementation: mostly µC and ECU hardware
independent

Upper Interface: µC and ECU hardware independent

C
o

m
p

le
x

D
riv

e
rs

Microcontroller

Microcontroller Abstraction Layer

Application Layer

RTE

ECU Abstraction Layer

Services Layer

ECU Abstraction Layer

p
a
g
e
 i
d
:
9
4
ju

8

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 27

Architecture – Overview of Software Layers

AUTOSAR Runtime Environment (RTE)

The RTE is a layer providing communication services

to the application software (AUTOSAR Software

Components and/or AUTOSAR Sensor/Actuator

components).

Above the RTE the software architecture style

changes from “layered“ to “component style“.

The AUTOSAR Software Components communicate

with other components (inter and/or intra ECU)

and/or services via the RTE.

Task

Make AUTOSAR Software Components independent

from the mapping to a specific ECU.

Properties

Implementation: ECU and application specific

(generated individually for each ECU)

Upper Interface: completely ECU independent

Microcontroller

Microcontroller Abstraction Layer

Application Layer

AUTOSAR Runtime Environment (RTE)

ECU Abstraction Layer

Services Layer

ECU Abstraction Layer

p
a
g
e
 i
d

:
9
4
ju

9

C
o

m
p

le
x

D
riv

e
rs

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 28

Architecture – Overview of Software Layers

Introduction to types of services

The Basic Software can be subdivided into the following types of services:

 Input/Output (I/O)

 Standardized access to sensors, actuators and ECU onboard peripherals

 Memory

 Standardized access to internal/external memory (non volatile memory)

 Communication

 Standardized access to: vehicle network systems, ECU onboard communication systems and

ECU internal SW

 System

 Provision of standardizeable (operating system, timers, error memory) and ECU specific

(ECU state management, watchdog manager) services and library functions

p
a
g
e
 i
d

:
9
4
j3

3

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 29

Architecture – Introduction to Basic Software Module Types

Driver (internal)

A driver contains the functionality to control and access an internal or an external device.

Internal devices are located inside the microcontroller. Examples for internal devices are:

 Internal EEPROM

 Internal CAN controller

 Internal ADC

A driver for an internal device is called internal driver and is located in the Microcontroller

Abstraction Layer.

p
a
g
e
 i
d

:
9
4
ju

i

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 30

Architecture – Introduction to Basic Software Module Types

Driver (external)

External devices are located on the ECU hardware outside the microcontroller. Examples for

external devices are:

 External EEPROM

 External watchdog

 External flash

A driver for an external device is called external driver and is located in the ECU Abstraction

Layer. It accesses the external device via drivers of the Microcontroller Abstraction Layer.

This way also components integrated in System Basis Chips (SBCs) like transceivers and

watchdogs are supported by AUTOSAR.

 Example: a driver for an external EEPROM with SPI interface accesses the external

EEPROM via the handler/driver for the SPI bus.

Exception:

The drivers for memory mapped external devices (e.g. external flash memory) may access the

microcontroller directly. Those external drivers are located in the Microcontroller Abstraction

Layer because they are microcontroller dependent.

p
a
g
e
 i
d

:
9
4
ju

q

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 31

Architecture – Introduction to Basic Software Module Types

Interface

An Interface (interface module) contains the functionality to abstract from modules which are

architecturally placed below them. E.g., an interface module which abstracts from the

hardware realization of a specific device. It provides a generic API to access a specific type of

device independent on the number of existing devices of that type and independent on the

hardware realization of the different devices.

The interface does not change the content of the data.

In general, interfaces are located in the ECU Abstraction Layer.

Example: an interface for a CAN communication system provides a generic API to access CAN

communication networks independent on the number of CAN Controllers within an ECU and

independent of the hardware realization (on chip, off chip).

p
a
g
e
 i
d

:9
4
jw

x

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 32

Architecture – Introduction to Basic Software Module Types

Handler

A handler is a specific interface which controls the concurrent, multiple and asynchronous

access of one or multiple clients to one or more drivers. I.e. it performs buffering, queuing,

arbitration, multiplexing.

The handler does not change the content of the data.

Handler functionality is often incorporated in the driver or interface (e.g. SPIHandlerDriver, ADC

Driver).

p
a
g
e
 i
d

:
9
4
jw

w

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 33

Architecture – Introduction to Basic Software Module Types

Manager

A manager offers specific services for multiple clients. It is needed in all cases where pure

handler functionality is not enough to abstract from multiple clients.

Besides handler functionality, a manager can evaluate and change or adapt the content of the

data.

In general, managers are located in the Services Layer

Example: The NVRAM manager manages the concurrent access to internal and/or external

memory devices like flash and EEPROM memory. It also performs distributed and reliable

data storage, data checking, provision of default values etc.

p
a
g
e
 i
d

:
9
4
j2

2

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 34

Architecture – Overview of Software Layers

Introduction to Libraries

Libraries are a collection of functions for

related purposes

Libraries:

 can be called by BSW modules (that

including the RTE), SW-Cs, libraries

or integration code

 run in the context of the caller in the

same protection environment

 can only call libraries

 are re-entrant

 do not have internal states

 do not require any initialization

 are synchronous, i.e. they do not have

wait points

p
a
g
e
 i
d

:
9
9
j2

2

A
U

T
O

S
A

R
 L

ib
ra

ri
e

s

Basic Software

Runtime Environment (RTE)

Application Layer

ECU Hardware

The following libraries are

specified within AUTOSAR:

 Fixed point mathematical,

 Floating point mathematical,

 Interpolation for fixed point data,

 Interpolation for floating point data,

 Bit handling,

 E2E communication,

 CRC calculation,

 Extended functions (e.g. 64bits

calculation, filtering, etc.) and

 Crypto

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 35

Table of contents

1. Architecture

1. Overview of Software Layers

2. Content of Software Layers

3. Content of Software Layers in Multi-Core Systems

4. Overview of Modules

5. Interfaces

1. General

2. Interaction of Layers (Examples)

2. Configuration

3. Integration and Runtime Aspects

p
a
g
e
 i
d

:
9
5
jt
4

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 36

Architecture – Content of Software Layers

Microcontroller Abstraction Layer

The µC Abstraction Layer consists of the following module groups:

 Communication Drivers
Drivers for ECU onboard (e.g. SPI) and vehicle communication (e.g. CAN).
OSI-Layer: Part of Data Link Layer

 I/O Drivers
Drivers for analog and digital I/O (e.g. ADC, PWM, DIO)

 Memory Drivers
Drivers for on-chip memory devices (e.g. internal Flash, internal EEPROM) and memory mapped external memory devices
(e.g. external Flash)

 Microcontroller Drivers
Drivers for internal peripherals (e.g. Watchdog, General Purpose Timer)
Functions with direct µC access (e.g. Core test)

 Microcontroller

A
D

C

C
C

U

I/O Drivers

A
D

C
 D

riv
e
r

D
IO

 D
riv

e
r

O
C

U
 D

riv
e
r

P
W

M
 D

riv
e
r

IC
U

 D
riv

e
r

P
W

M

L
IN

 o
r

S
C

I

C
A

N

S
P

I

E
E

P
R

O
M

F
L

A
S

H

W
D

T

G
P

T

Microcontroller Drivers Communication Drivers Memory Drivers

R
A

M
 T

e
s
t

in
te

rn
a
l E

E
P

R
O

M
 D

riv
e
r

in
te

rn
a
l F

la
s
h
 D

riv
e
r

W
a
tc

h
d
o
g
 D

riv
e
r

M
C

U
 D

riv
e
r

C
o
re

 T
e

s
t

G
P

T
 D

riv
e
r

Software

module

internal

peripheral

device

Group of

Software

modules of

similar type

M
C

U

P
o
w

e
r &

C
lo

c
k
 U

n
it

C
o
m

p
le

x
 D

ri
v
e
rs

Microcontroller (µC)

Micro-

controller

Drivers

Memory

Drivers

Memory

HW Abstr.

RTE

Onboard

Dev. Abstr.

Memory

Services System Services

Communi-

cation

Drivers

Communi-

cation

Services

COM HW

Abstr.

I/O

Drivers

I/O HW

Abstraction

Application Layer

p
a
g
e
 i
d
:
o
iu

4
2

C
A

N
 D

riv
e
r

L
IN

 D
riv

e
r

F
le

x
R

a
y
 D

riv
e
r

S
P

I H
a
n
d
le

r D
riv

e
r

E
th

e
rn

e
t D

riv
e
r

F
la

s
h
 T

e
s
t

P
O

R
T

 D
riv

e
r

D
IO

O
C

U

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 37

Architecture – Content of Software Layers

 Microcontroller Abstraction Layer: SPIHandlerDriver

The SPIHandlerDriver allows concurrent

access of several clients to one or more SPI

busses.

To abstract all features of a SPI microcontroller

pins dedicated to Chip Select, those shall

directly be handled by the SPIHandlerDriver.

That means those pins shall not be available

in DIO Driver.

Example:

C
o
m

p
le

x
 D

ri
v
e
rs

Microcontroller (µC)

Micro-

controller

Drivers

Memory

Drivers

Memory

HW Abstr.

RTE

Onboard

Dev. Abstr.

Memory

Services System Services

Communi-

cation

Drivers

Communi-

cation

Services

COM HW

Abstr.

I/O

Drivers

I/O HW

Abstraction

Application Layer

Memory Hardware

Abstraction

I/O Hardware Abstraction

 µC SPI

Communication Drivers

SPIHandlerDriver

Driver for ext.

I/O ASIC

Driver for ext.

ADC ASIC

Onboard Device

Abstraction

External

Watchdog Driver

External

EEPROM

Driver

p
a
g
e
 i
d

:
s
w

r4
2

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 38

Architecture – Content of Software Layers

Complex Drivers

A Complex Driver is a module which implements non-
standardized functionality within the basic software
stack.

An example is to implement complex sensor
evaluation and actuator control with direct access
to the µC using specific interrupts and/or complex
µC peripherals (like PCP, TPU), e.g.

 Injection control

 Electric valve control

 Incremental position detection

Task:

Fulfill the special functional and timing requirements
for handling complex sensors and actuators

Properties:

Implementation: highly µC, ECU and application
dependent

Upper Interface to SW-Cs: specified and implemented
according to AUTOSAR (AUTOSAR interface)

Lower interface: restricted access to Standardized
Interfaces

Complex Drivers

E
le

c
tric

 V
a
lv

e
 C

o
n
tro

l

In
je

c
tio

n
 C

o
n
tro

l

In
c
re

m
e
n
ta

l P
o
s
itio

n
 D

e
te

c
tio

n

C
o
m

p
le

x
 D

riv
e
r X

Y

µC

e
.g

. C
C

U

e
.g

. P
C

P

e
.g

. T
P

U

Example:

C
o
m

p
le

x
 D

ri
v
e
rs

Microcontroller (µC)

Micro-

controller

Drivers

Memory

Drivers

Memory

HW Abstr.

RTE

Onboard

Dev. Abstr.

Memory

Services System Services

Communi-

cation

Drivers

Communi-

cation

Services

COM HW

Abstr.

I/O

Drivers

I/O HW

Abstraction

Application Layer

p
a
g
e
 i
d
:
2
1
1
1
2

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 39

Architecture – Content of Software Layers

ECU Abstraction: I/O Hardware Abstraction

The I/O Hardware Abstraction is a group of modules
which abstracts from the location of peripheral I/O
devices (on-chip or on-board) and the ECU
hardware layout (e.g. µC pin connections and
signal level inversions). The I/O Hardware
Abstraction does not abstract from the
sensors/actuators!

The different I/O devices might be accessed via an I/O
signal interface.

Task:

Represent I/O signals as they are connected to the
ECU hardware (e.g. current, voltage, frequency).

Hide ECU hardware and layout properties from higher
software layers.

Properties:

Implementation: µC independent, ECU hardware
dependent

Upper Interface: µC and ECU hardware independent,
dependent on signal type specified and
implemented according to AUTOSAR (AUTOSAR
interface)

Example:

C
o
m

p
le

x
 D

ri
v
e
rs

Microcontroller (µC)

Micro-

controller

Drivers

Memory

Drivers

Memory

HW Abstr.

RTE

Onboard

Dev. Abstr.

Memory

Services System Services

Communi-

cation

Drivers

Communi-

cation

Services

COM HW

Abstr.

I/O

Drivers

I/O HW

Abstraction

Application Layer

COM Drivers

I/O Hardware Abstraction

I/O Signal Interface

Driver for ext.

I/O ASIC

µC

I/O Drivers

D
IO

 D
riv

e
r

S
P

IH
a
n
d
le

r

D
riv

e
r

S
P

I

D
IO

Driver for ext.

ADC ASIC

A
D

C
 D

riv
e
r

A
D

C

p
a
g
e
 i
d

:
d
d
e
a
q

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 40

Architecture – Content of Software Layers

ECU Abstraction: Communication Hardware Abstraction

The Communication Hardware Abstraction is a

group of modules which abstracts from the

location of communication controllers and the ECU

hardware layout. For all communication systems a

specific Communication Hardware Abstraction is

required (e.g. for LIN, CAN, FlexRay).

Example: An ECU has a microcontroller with 2 internal

CAN channels and an additional on-board ASIC

with 4 CAN controllers. The CAN-ASIC is

connected to the microcontroller via SPI.

The communication drivers are accessed via bus

specific interfaces (e.g. CAN Interface).

Task:

Provide equal mechanisms to access a bus channel

regardless of it‘s location (on-chip / on-board)

Properties:

Implementation: µC independent, ECU hardware

dependent and external device dependent

Upper Interface: bus dependent, µC and ECU

hardware independent

Example:

C
o
m

p
le

x
 D

ri
v
e
rs

Microcontroller (µC)

Micro-

controller

Drivers

Memory

Drivers

Memory

HW Abstr.

RTE

Onboard

Dev. Abstr.

Memory

Services System Services

Communi-

cation

Drivers

Communi-

cation

Services

COM HW

Abstr.

I/O

Drivers

I/O HW

Abstraction

Application Layer

Communication Hardware Abstraction

Driver for ext.

CAN ASIC

µC

C
A

N

S
P

I

Communication Drivers

C
A

N
 D

riv
e
r

S
P

IH
a
n
d
le

r

D
riv

e
r

I/O Drivers

D
IO

 D
riv

e
r

D
IO

CAN

Trans-

ceiver

Driver

p
a
g
e
 i
d

:
z
z
tt

z

CAN Interface

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 41

Architecture – Content of Software Layers

Scope: Memory Hardware Abstraction

The Memory Hardware Abstraction is a group of
modules which abstracts from the location of
peripheral memory devices (on-chip or on-board)
and the ECU hardware layout.

Example: on-chip EEPROM and external EEPROM
devices are accessible via the same
mechanism.

The memory drivers are accessed via memory specific
abstraction/emulation modules (e.g. EEPROM
Abstraction).

By emulating an EEPROM abstraction on top of Flash
hardware units a common access via Memory
Abstraction Interface to both types of hardware is
enabled.

Task:

Provide equal mechanisms to access internal (on-chip)
and external (on-board)
memory devices and type of memory hardware
(EEPROM, Flash).

Properties:

Implementation: µC independent, external device
dependent

Upper Interface: µC, ECU hardware and memory
device independent

Example:

C
o
m

p
le

x
 D

ri
v
e
rs

Microcontroller (µC)

Micro-

controller

Drivers

Memory

Drivers

Memory

HW Abstr.

RTE

Onboard

Dev. Abstr.

Memory

Services System Services

Communi-

cation

Drivers

Communi-

cation

Services

COM HW

Abstr.

I/O

Drivers

I/O HW

Abstraction

Application Layer

COM Drivers

Memory Hardware Abstraction

µC

Memory Drivers

E
E

P
R

O
M

D
riv

e
r

S
P

IH
a
n
d
le

r

D
riv

e
r

S
P

I

E
E

P
R

O
M

F
la

s
h

In
te

rn
a
l

F
la

s
h
 D

riv
e
r

Memory Abstraction Interface

External

EEPROM Driver

p
a
g
e
 i
d

:
w

w
w

a
a

EEPROM Abstraction

External

Flash Driver

Flash EEPROM

Emulation

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 42

Architecture – Content of Software Layers

Onboard Device Abstraction

The Onboard Device Abstraction contains

drivers for ECU onboard devices which

cannot be seen as sensors or actuators like

internal or external watchdogs. Those

drivers access the ECU onboard devices via

the µC Abstraction Layer.

Task:

Abstract from ECU specific onboard devices.

Properties:

Implementation: µC independent, external

device dependent

Upper Interface: µC independent, partly ECU

hardware dependent

Example:

C
o
m

p
le

x
 D

ri
v
e
rs

Microcontroller (µC)

Micro-

controller

Drivers

Memory

Drivers

Memory

HW Abstr.

RTE

Onboard

Dev. Abstr.

Memory

Services System Services

Communi-

cation

Drivers

Communi-

cation

Services

COM HW

Abstr.

I/O

Drivers

I/O HW

Abstraction

Application Layer

COM Drivers

Onboard Device Abstraction

µC

Microcontroller

Drivers

S
P

IH
a
n
d
le

r

D
riv

e
r

S
P

I

in
te

rn
a
l

w
a
tc

h
d
o
g

d
riv

e
r

W
d
g

External

Watchdog Driver

Watchdog Interface

p
a
g
e
 i
d

:
x
x
d
x
x

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 43

Architecture – Content of Software Layers

Communication Services – General

The Communication Services are a group of
modules for vehicle network communication (CAN,
LIN and FlexRay). They interface with the
communication drivers via the communication
hardware abstraction.

Task:

 Provide a uniform interface to the vehicle network for
communication.

 Provide uniform services for network management

 Provide uniform interface to the vehicle network for
diagnostic communication

 Hide protocol and message properties from the
application.

Properties:

Implementation: µC and ECU HW independent, partly
dependent on bus type

Upper Interface: µC, ECU hardware and bus type
independent

The communication services will be detailed for each
relevant vehicle network system on the following
pages.

Example:

C
o
m

p
le

x
 D

ri
v
e
rs

Microcontroller (µC)

Micro-

controller

Drivers

Memory

Drivers

Memory

HW Abstr.

RTE

Onboard

Dev. Abstr.

Memory

Services System Services

Communi-

cation

Drivers

Communi-

cation

Services

COM HW

Abstr.

I/O

Drivers

I/O HW

Abstraction

Application Layer

Communication Services

<Bus specific>

Transport Protocol

DCM

Diagnostic

Com.

Manager

AUTOSAR

COM

<Bus

specific>

 NM IPDU

Multiplexer

Generic NM

Interface

<Bus

specific>

 State

Manager

p
a
g
e
 i
d

:
y
y
x
y
y

PDU

Router

Debugging

Bus specific modules

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 44

Architecture – Content of Software Layers

Communication Stack – CAN

The CAN Communication Services are a group of

modules for vehicle network communication with the

communication system CAN.

Task:

 Provide a uniform interface to the CAN network.

Hide protocol and message properties from the

application.

Example:

C
o
m

p
le

x
 D

ri
v
e
rs

Microcontroller (µC)

Micro-

controller

Drivers

Memory

Drivers

Memory

HW Abstr.

RTE

Onboard

Dev. Abstr.

Memory

Services System Services

Communi-

cation

Drivers

Communi-

cation

Services

COM HW

Abstr.

I/O

Drivers

I/O HW

Abstraction

Application Layer

I/O Drivers

Communication Services

Communication Drivers

Communication Hardware Abstraction

CAN Driver

Driver for ext.

CAN ASIC

SPIHandler

Driver

D
ia

g
n
o
s
tic

C
o
m

.

M
a
n
a
g
e
r

AUTOSAR

COM

CAN NM

 µC SPI CAN

External

CAN Controller

CAN Transceiver

Driver

DIO Driver

Generic NM

Interface

CAN

State

Manager

p
a
g
e
 i
d
:
p
p
o
p
p

CAN Interface

D
e
b
u
g
g
in

g

IP
D

U

M
u
ltip

le
x
e
r CAN Transport

Protocol

PDU Router

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 45

Architecture – Content of Software Layers

Communication Stack – CAN

Properties:

 Implementation: µC and ECU HW independent, partly
dependent on CAN.

 AUTOSAR COM, Generic NM (Network Management)
Interface and Diagnostic Communication Manager are the
same for all vehicle network systems and exist as one
instance per ECU.

 Generic NM Interface contains only a dispatcher. No
further functionality is included. In case of gateway ECUs it
can also include the NM coordinator functionality which
allows to synchronize multiple different networks (of the
same or different types) to synchronously wake them up or
shut them down.

 CAN Generic NM is specific for CAN networks and will be
instantiated per CAN vehicle network system. CAN
Generic NM interfaces with CAN via underlying network
adapter (CAN NM).

 The communication system specific Can State Manager
handles the communication system dependent Start-up
and Shutdown features. Furthermore it controls the
different options of COM to send PDUs and to monitor
signal timeouts.

C
o
m

p
le

x
 D

ri
v
e
rs

Microcontroller (µC)

Micro-

controller

Drivers

Memory

Drivers

Memory

HW Abstr.

RTE

Onboard

Dev. Abstr.

Memory

Services System Services

Communi-

cation

Drivers

Communi-

cation

Services

COM HW

Abstr.

I/O

Drivers

I/O HW

Abstraction

Application Layer

p
a
g
e
 i
d

:
b
b
n
n
h

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 46

Architecture – Content of Software Layers

Communication Stack Extension – TTCAN

The TTCAN Communication Services are the

optional extensions of the plain CAN Interface and

CAN Driver module for vehicle network communi-

cation with the communication system TTCAN.

Task:

 Provide a uniform interface to the TTCAN network.

Hide protocol and message properties from the

application.

Please Note:

 The CAN Interface with TTCAN can serve both a

plain CAN Driver and a CAN Driver TTCAN.

Example:

C
o
m

p
le

x
 D

ri
v
e
rs

Microcontroller (µC)

Micro-

controller

Drivers

Memory

Drivers

Memory

HW Abstr.

RTE

Onboard

Dev. Abstr.

Memory

Services System Services

Communi-

cation

Drivers

Communi-

cation

Services

COM HW

Abstr.

I/O

Drivers

I/O HW

Abstraction

Application Layer

I/O Drivers

Communication Services

Communication Drivers

Communication Hardware Abstraction

CAN Driver

Driver for ext.

CAN ASIC

SPIHandler

Driver

CAN Transport

Protocol

CAN NM

 µC SPI TTCAN

External

TTCAN Controller

CAN Transceiver

Driver

DIO Driver

Generic NM

Interface

CAN

State

Manager

p
a
g
e
 i
d

:
q
w

w
w

e

CAN Interface

D
ia

g
n
o
s
tic

C
o
m

.

M
a
n
a
g
e
r

AUTOSAR

COM

PDU Router

D
e
b
u
g
g
in

g

IP
D

U

M
u
ltip

le
x
e
r

TTCAN

TTCAN

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 47

Architecture – Content of Software Layers

Communication Stack Extension – TTCAN

Properties:

 TTCAN is an absolute superset to CAN, i.e. a CAN stack

which supports TTCAN can serve both a CAN and a

TTCAN bus.

 CanIf and CanDrv are the only modules which need

extensions to serve TTCAN communication.

 The properties of the communication stack CAN are also

true for CAN with TTCAN functionality.

C
o
m

p
le

x
 D

ri
v
e
rs

Microcontroller (µC)

Micro-

controller

Drivers

Memory

Drivers

Memory

HW Abstr.

RTE

Onboard

Dev. Abstr.

Memory

Services System Services

Communi-

cation

Drivers

Communi-

cation

Services

COM HW

Abstr.

I/O

Drivers

I/O HW

Abstraction

Application Layer

p
a
g
e
 i
d

:
g
g
g
h
h

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 48

Architecture – Content of Software Layers

Communication Stack Extension – J1939

The J1939 Communication Services extend the plain CAN

communication stack for vehicle network communication in

heavy duty vehicles.

Task:

 Provide the protocol services required by J1939. Hide

protocol and message properties from the application where

not required.

Please Note:

 There are two transport protocol modules in the CAN stack

(CanTp and J1939Tp) which can be used alternatively or in

parallel on different channels:. They are used as follows:

 CanTp: ISO Diagnostics (DCM), large PDU transport

on standard CAN bus

 J1939Tp: J1939 Diagnostics, large PDU transport on

J1939 driven CAN bus

Example:

C
o
m

p
le

x
 D

ri
v
e
rs

Microcontroller (µC)

Micro-

controller

Drivers

Memory

Drivers

Memory

HW Abstr.

RTE

Onboard

Dev. Abstr.

Memory

Services System Services

Communi-

cation

Drivers

Communi-

cation

Services

COM HW

Abstr.

I/O

Drivers

I/O HW

Abstraction

Application Layer

I/O Drivers

Communication Services

Communication Drivers

Communication Hardware Abstraction

CAN Driver

Driver for ext.

CAN ASIC

SPIHandler

Driver

D
ia

g
n
o
s
tic

C
o
m

. M
a
n
a
g
e
r

J
1
9
3
9
 N

M

 µC SPI CAN

External

CAN Controller

CAN Transceiver

Driver

DIO Driver

Generic

NM

Interface

C
A

N

S
ta

te
 M

a
n
a
g
e
r

p
a
g
e
 i
d
:
p
p
jf
b

CAN Interface

J
1
9
3
9

D
ia

g
n
o
s
tic

C
o
m

. M
a
n
a
g
e
r

IP
D

U

M
u
ltip

le
x
e
r

CAN

Transport

Protocol

PDU Router

J
1
9
3
9

R
e
q
u
e
s
t M

a
n
a
g
e
r

A
U

T
O

S
A

R

C
O

M

D
e
b
u
g
g
in

g

J1939

Transport

Protocol

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 49

Architecture – Content of Software Layers

Communication Stack Extension – J1939

Properties:

 Implementation: µC and ECU HW independent, based on
CAN.

 AUTOSAR COM, Generic NM (Network Management)
Interface and Diagnostic Communication Manager are the
same for all vehicle network systems and exist as one
instance per ECU.

 Supports dynamic frame identifiers that are not known at
configuration time.

 J1939 network management handles assignment of unique
addresses to each ECU but does not support
sleep/wakeup handling and related concepts like partial
networking.

 Provides J1939 diagnostics and request handling.

C
o
m

p
le

x
 D

ri
v
e
rs

Microcontroller (µC)

Micro-

controller

Drivers

Memory

Drivers

Memory

HW Abstr.

RTE

Onboard

Dev. Abstr.

Memory

Services System Services

Communi-

cation

Drivers

Communi-

cation

Services

COM HW

Abstr.

I/O

Drivers

I/O HW

Abstraction

Application Layer

p
a
g
e
 i
d
:
b
b
jf
b

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 50

Architecture – Content of Software Layers

Communication Stack – LIN (LIN Master)

The LIN Communication Services are a group of modules for vehicle
network communication with the communication system LIN.

Task:

Provide a uniform interface to the LIN network. Hide protocol and
message properties from the application.

Properties:

The LIN Communication Services contain:

 A LIN 2.1 compliant communication stack with

 Schedule table manager for transmitting LIN frames and to
handle requests to switch to other schedule tables.

 Transport protocol, used for diagnostics

 A WakeUp and Sleep Interface

 An underlying LIN Driver:

 implementing the LIN protocol and adaptation the specific
hardware

 Supporting both simple UART and complex frame based LIN
hardware

Example:

C
o
m

p
le

x
 D

ri
v
e
rs

Microcontroller (µC)

Micro-

controller

Drivers

Memory

Drivers

Memory

HW Abstr.

RTE

Onboard

Dev. Abstr.

Memory

Services System Services

Communi-

cation

Drivers

Communi-

cation

Services

COM HW

Abstr.

I/O

Drivers

I/O HW

Abstraction

Application Layer

Communication Hardware Abstraction

Communication Drivers

µC SCI

LIN Driver

Communication Services

PDU Router

AUTOSAR

COM

LIN State

Manager

p
a
g
e
 i
d

:
8
7
z
6
6

D
ia

g
n
o
s
tic

C
o
m

.

M
a
n
a
g
e
r

Driver for ext.

LIN ASIC

LIN Transceiver

Driver

LIN Interface

LIN NM

Generic

NM

Interface

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 51

Architecture – Content of Software Layers

Communication Stack – LIN

Note: Integration of LIN into AUTOSAR:

 Lin Interface controls the WakeUp/Sleep API

and allows the slaves to keep the bus awake

(decentralized approach).

 The communication system specific LIN State

Manager handles the communication

dependent Start-up and Shutdown features.

Furthermore it controls the communication

mode requests from the Communication

Manager. The LIN state manager also

controls the I-PDU groups by interfacing

COM.

 When sending a LIN frame, the LIN Interface

requests the data for the frame (I-PDU) from

the PDU Router at the point in time when it

requires the data (i.e. right before sending

the LIN frame).

C
o
m

p
le

x
 D

ri
v
e
rs

Microcontroller (µC)

Micro-

controller

Drivers

Memory

Drivers

Memory

HW Abstr.

RTE

Onboard

Dev. Abstr.

Memory

Services System Services

Communi-

cation

Drivers

Communi-

cation

Services

COM HW

Abstr.

I/O

Drivers

I/O HW

Abstraction

Application Layer

p
a
g
e
 i
d

:
6
6
7
6
6

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 52

Architecture – Content of Software Layers

Communication Services – LIN Slave

LIN Slaves usually are „intelligent“ actuators and

slaves that are seen as black boxes. As they

provide very little hardware capabilities and

resources, it is not intended to shift AUTOSAR SW-

Components onto such systems. Therefore it is not

necessary to have an AUTOSAR system on LIN

Slaves.

LIN Slave ECUs can be integrated into the AUTOSAR

VFB using their Node Capability Descriptions. They

are seen as non-AUTOSAR ECUs. Please refer to

the VFB specification.

That means: LIN Slaves can be connected as

complete ECUs. But they are not forced to use the

AUTOSAR SW Architecture. Perhaps they can use

some standard AUTOSAR modules (like EEPROM,

DIO).

Reason: LIN slaves usually have very limited memory

resources or are ASICs with „hard-coded“ logic.

Note: LIN slaves cannot fulfill the requirements to a

Debugging Host, since LIN is not a multi-master

bus.

Example:

C
o
m

p
le

x
 D

ri
v
e
rs

Microcontroller (µC)

Micro-

controller

Drivers

Memory

Drivers

Memory

HW Abstr.

RTE

Onboard

Dev. Abstr.

Memory

Services System Services

Communi-

cation

Drivers

Communi-

cation

Services

COM HW

Abstr.

I/O

Drivers

I/O HW

Abstraction

Application Layer

LIN Slave Application

 Communication Drivers

LIN Communication

Stack

µC SCI

p
a
g
e
 i
d

:
1
1
2
2
d

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 53

Architecture – Content of Software Layers

Communication Stack – FlexRay

The FlexRay Communication Services are a group

of modules for vehicle network communication with

the communication system FlexRay.

Task:

 Provide a uniform interface to the FlexRay network.

Hide protocol and message properties from the

application.

Please Note:

 There are two transport protocol modules in the

FlexRay stack which can be used alternatively

 FrTp: FlexRay ISO Transport Layer

 FrArTp: FlexRay AUTOSAR Transport Layer,

provides bus compatibility to AUTOSAR R3.x

Example:

C
o
m

p
le

x
 D

ri
v
e
rs

Microcontroller (µC)

Micro-

controller

Drivers

Memory

Drivers

Memory

HW Abstr.

RTE

Onboard

Dev. Abstr.

Memory

Services System Services

Communi-

cation

Drivers

Communi-

cation

Services

COM HW

Abstr.

I/O

Drivers

I/O HW

Abstraction

Application Layer

I/O Drivers

Communication Services

Communication Hardware Abstraction

 Communication Drivers

FlexRay

NM

FlexRay Transport

Protocol

Host µC Internal FlexRay Controller

Data lines
External

FlexRay Controller

(e.g. MFR 4200)

External

FlexRay Transceiver

(e.g. TJA 1080)

Driver for internal

FlexRay Controller

Driver for external

FlexRay Controller

Driver for FlexRay

Transceiver

SPIHandlerDriver DIO Driver

Generic

NM

Interface

FlexRay

State

Manager

p
a
g
e
 i
d

:
k
i8

9
0

FlexRay Interface

Control/status lines

D
ia

g
n
o
s
tic

C
o
m

.

M
a
n
a
g
e
r

AUTOSAR

COM

PDU Router

D
e
b
u
g
g
in

g

IP
D

U

m
u
ltip

le
x
e
r

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 54

Architecture – Content of Software Layers

Communication Stack – FlexRay

Properties:

 Implementation: µC and ECU HW independent,

partly dependent on FlexRay.

 AUTOSAR COM, Generic NM Interface and

Diagnostic Communication Manager are the same

for all vehicle network systems and exist as one

instance per ECU.

 Generic NM Interface contains only a dispatcher.

No further functionality is included. In case of

gateway ECUs, it is replaced by the NM

Coordinator which in addition provides the

functionality to synchronize multiple different

networks (of the same or different types) to

synchronously wake them up or shut them down.

 FlexRay NM is specific for FlexRay networks and is

instantiated per FlexRay vehicle network system.

 The communication system specific FlexRay State

Manager handles the communication system

dependent Start-up and Shutdown features.

Furthermore it controls the different options of COM

to send PDUs and to monitor signal timeouts.

C
o
m

p
le

x
 D

ri
v
e
rs

Microcontroller (µC)

Micro-

controller

Drivers

Memory

Drivers

Memory

HW Abstr.

RTE

Onboard

Dev. Abstr.

Memory

Services System Services

Communi-

cation

Drivers

Communi-

cation

Services

COM HW

Abstr.

I/O

Drivers

I/O HW

Abstraction

Application Layer

p
a
g
e
 i
d

:
4
2
4
3
2

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 55 55

Architecture – Content of Software Layers

Communication Stack – TCP/IP

The TCP/IP Communication Services are a

group of modules for vehicle network

communication with the communication

system TCP/IP.

Task:

 Provide a uniform interface to the TCP/IP

network. Hide protocol and message

properties from the application.

C
o
m

p
le

x
 D

ri
v
e
rs

Microcontroller (µC)

Micro-

controller

Drivers

Memory

Drivers

Memory

HW Abstr.

RTE

Onboard

Dev. Abstr.

Memory

Services System Services

Communi-

cation

Drivers

Communi-

cation

Services

COM HW

Abstr.

I/O

Drivers

I/O HW

Abstraction

Application Layer

p
a
g
e
 i
d
:
4
4
5
6
6

Example:

I/O Drivers

Communication Services

Communication Drivers

Communication Hardware Abstraction

Ethernet Driver

TCP/IP Communication Services

Socket Adaptor

Handler / Driver

UDP NM

 µC MII Ethernet

External

Ethernet Controller

Ethernet Transceiver Driver

DIO Driver

Generic NM

Interface

Ethernet

State

Manager

Ethernet Interface

D
ia

g
n
o
s
tic

C
o
m

.

M
a
n
a
g
e
r

AUTOSAR

COM

PDU Router

D
e
b
u
g
g
in

g

IP
D

U

m
u
ltip

le
x
e
r

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 56 56

Architecture – Content of Software Layers

Communication Stack – TCP/IP

Properties:

 The TcpIp module implements the main

protocols of the TCP/IP protocol family

(TCP, UDP, IPv4, IPv6, ARP, ICMP, DHCP)

and provides dynamic, socket based

communication via Ethernet.

 The Socket Adaptor module (SoAd) is the

sole upper layer module of the TcpIp

module.

C
o
m

p
le

x
 D

ri
v
e
rs

Microcontroller (µC)

Micro-

controller

Drivers

Memory

Drivers

Memory

HW Abstr.

RTE

Onboard

Dev. Abstr.

Memory

Services System Services

Communi-

cation

Drivers

Communi-

cation

Services

COM HW

Abstr.

I/O

Drivers

I/O HW

Abstraction

Application Layer

p
a
g
e
 i
d
:
q
q
e
e
t

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 57

Architecture – Content of Software Layers

Communication Stack – General

General communication stack properties:

 A signal gateway is part of AUTOSAR COM to route

signals.

 PDU based Gateway is part of PDU router.

 IPDU multiplexing provides the possibility to add

information to enable the multiplexing of I-PDUs (different

contents but same IDs on the bus).

 Upper Interface: µC, ECU hardware and network type

independent.

 For refinement of GW architecture please refer to

“Example Communication”

C
o
m

p
le

x
 D

ri
v
e
rs

Microcontroller (µC)

Micro-

controller

Drivers

Memory

Drivers

Memory

HW Abstr.

RTE

Onboard

Dev. Abstr.

Memory

Services System Services

Communi-

cation

Drivers

Communi-

cation

Services

COM HW

Abstr.

I/O

Drivers

I/O HW

Abstraction

Application Layer

p
a
g
e
 i
d

:
b
b
n
n
q

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 58

Architecture – Content of Software Layers

Services: Memory Services

The Memory Services consist of one module,

the NVRAM Manager. It is responsible for

the management of non volatile data

(read/write from different memory drivers).

Task: Provide non volatile data to the

application in a uniform way. Abstract from

memory locations and properties. Provide

mechanisms for non volatile data

management like saving, loading, checksum

protection and verification, reliable storage

etc.

Properties:

Implementation: µC and ECU hardware

independent, highly configurable

Upper Interface: µC and ECU hardware

independent specified and implemented

according to AUTOSAR

(AUTOSAR interface)

Example:

C
o
m

p
le

x
 D

ri
v
e
rs

Microcontroller (µC)

Micro-

controller

Drivers

Memory

Drivers

Memory

HW Abstr.

RTE

Onboard

Dev. Abstr.

Memory

Services System Services

Communi-

cation

Drivers

Communi-

cation

Services

COM HW

Abstr.

I/O

Drivers

I/O HW

Abstraction

Application Layer

Memory Services

NVRAM Manager

p
a
g
e
 i
d

:
9
d
d
ff

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 59

Architecture – Content of Software Layers

Services: System Services

The System Services are a group of modules

and functions which can be used by modules

of all layers. Examples are Real Time

Operating System (which includes timer

services) and Error Manager.

Some of these services are:

 µC dependent (like OS), and may support special

µC capabilities (like Crypto Service Manager),

 partly ECU hardware and application dependent

(like ECU State Manager) or

 hardware and µC independent.

Task:

Provide basic services for application and

basic software modules.

Properties:

Implementation: partly µC, ECU hardware and

application specific

Upper Interface: µC and ECU hardware

independent

Example:

C
o
m

p
le

x
 D

ri
v
e
rs

Microcontroller (µC)

Micro-

controller

Drivers

Memory

Drivers

Memory

HW Abstr.

RTE

Onboard

Dev. Abstr.

Memory

Services System Services

Communi-

cation

Drivers

Communi-

cation

Services

COM HW

Abstr.

I/O

Drivers

I/O HW

Abstraction

Application Layer

System Services

F
u

n
c
tio

n
 In

h
ib

itio
n

M
a
n
a
g
e
r (F

iM
)

W
a
tc

h
d
o
g
 M

a
n
a
g
e
r

(W
d
g
M

)

D
e
v
e
lo

p
m

e
n
t E

rro
r

T
ra

c
e
r (D

e
t)

D
ia

g
n
o
s
tic

 E
v
e
n
t

M
a
n
a
g
e
r (D

e
m

)

C
o
m

m
u
n
ic

a
tio

n

M
a
n
a
g
e
r (C

o
m

M
)

A
U

T
O

S
A

R
 O

S

B
a
s
ic

 S
o
ftw

a
re

 M
o
d
e

M
a
n
a
g
e
r (B

s
w

M
)

T
im

e
 S

e
rv

ic
e

(T
m

)

p
a
g
e
 i
d
:
q
w

e
h
g

S
y
n
c
h
ro

n
iz

e
d
 T

im
e

-

b
a
s
e
 M

a
n
a
g
e
r (S

tb
M

)

D
ia

g
n
o
s
tic

 L
o
g
 a

n
d

T
ra

c
e
 (D

lt)

C
ry

p
to

 S
e
rv

ic
e

M
a
n
a
g
e
r (C

s
m

)

E
C

U
 S

ta
te

 M
a
n
a
g
e
r

(E
c
u
M

)

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 60

Architecture – Content of Software Layers

Error Handling, Reporting and Diagnostic

p
a
g
e
 i
d

:
3
e
d
fg

There are dedicated modules for different aspects

of error handling in AUTOSAR. E.g.:

 The Debugging module supports debugging of

the AUTOSAR BSW. It interfaces to ECU

internal modules and to an external host system

via communication .

 The Diagnostic Event Manager is responsible

for processing and storing diagnostic events

(errors) and associated FreezeFrame data.

 The module Diagnostic Log and Trace

supports logging and tracing of applications. It

collects user defined log messages and converts

them into a standardized format.

C
o
m

p
le

x
 D

ri
v
e
rs

Microcontroller (µC)

Micro-

controller

Drivers

Memory

Drivers

Memory

HW Abstr.

RTE

Onboard

Dev. Abstr.

Memory

Services System Services

Communi-

cation

Drivers

Communi-

cation

Services

COM HW

Abstr.

I/O

Drivers

I/O HW

Abstraction

Application Layer

S
y
s
te

m
 S

e
rv

ic
e
s

Microcontroller

AUTOSAR Runtime Environment (RTE)

Microcontroller Drivers

Onboard Device

Abstraction

Communication

Drivers

Communication

Hardware

Abstraction

Communication

Services

Application Layer

Function Inhibition

Manager

Watchdog Manager

Development Error

Tracer

Diagnostic Event

Manager

Watchdog Interface

Watchdog Driver

Diagnostic Communi-

cation Manager

Debugging
Diagnostic Log

and Trace
XCP

 All detected development errors in the Basic Software are reported to Development Error Tracer.

 The Diagnostic Communication Manager provides a common API for diagnostic services

 etc.

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 61

Architecture – Content of Software Layers

Application Layer: Sensor/Actuator Software Components

The Sensor/Actuator AUTOSAR Software
Component is a specific type of AUTOSAR
Software Component for sensor evaluation
and actuator control. Though not belonging
to the AUTOSAR Basic Software, it is
described here due to its strong relationship
to local signals. It has been decided to locate
the Sensor/Actuator SW Components above
the RTE for integration reasons
(standardized interface implementation and
interface description). Because of their
strong interaction with raw local signals,
relocatability is restricted.

Task:

Provide an abstraction from the specific
physical properties of hardware sensors and
actuators, which are connected to an ECU.

Properties:

Implementation: µC and ECU HW independent,
sensor and actuator dependent

Example:

C
o
m

p
le

x
 D

ri
v
e
rs

Microcontroller (µC)

Micro-

controller

Drivers

Memory

Drivers

Memory

HW Abstr.

RTE

Onboard

Dev. Abstr.

Memory

Services System Services

Communi-

cation

Drivers

Communi-

cation

Services

COM HW

Abstr.

I/O

Drivers

I/O HW

Abstraction

Application Layer

Application Layer

Actuator
Software

Component

Sensor
Software

Component

RTE

Basic Software

Interfaces to (e.g.)

• I/O HW Abstraction (access to I/O signals)

• Memory Services (access to calibration data)

• System Services (access to Error Manager)

p
a
g
e
 i
d

:
x
s
ji8

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 62

Table of contents

1. Architecture

1. Overview of Software Layers

2. Content of Software Layers

3. Content of Software Layers in Multi-Core Systems

4. Overview of Modules

5. Interfaces

1. General

2. Interaction of Layers (Examples)

2. Configuration

3. Integration and Runtime Aspects

p
a
g
e
 i
d

:
9
6
jt
4

- AUTOSAR Confidential -

ECU

core 1: core 0:

partition 0: partition 1:

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 63

Architecture – Content of Software Layers

Example of a Layered Software Architecture for Multi-Core Microcontroller

Microcontroller (µC)

p
a
g
e
 i
d
:
w

1
1
1
b

E
x

a
m

p
le

: a
n

 E
C

U
 w

ith
 a

 tw
o

 c
o

re
 m

ic
ro

c
o

n
tro

lle
r

Micro-

controller

Drivers

Memory

Drivers

Memory HW

Abstraction

Onboard Dev.

Abstraction

Memory

Services

System Services

C
o
m

p
le

x
 D

riv
e
rs

Core Test

Application Layer

RTE

Operating

System

ECU State

Manager

C
o
m

p
le

x
 D

riv
e
rs

Communi-

cation Drivers

Communi-

cation

Services

(Master)

COM HW

Abstraction

I/O

Drivers

I/O HW

Abstraction

Communi-

cation

Services

(Satellite)

I/O

Drivers

I/O HW

Abstraction

BSW Mode

Manager

- AUTOSAR Confidential -

ECU

core 1: core 0:

partition 0: partition 1:

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 64

Architecture – Content of Software Layers

Detailed View of Distributed BSW Modules

p
a
g
e
 i
d
:
w

1
1
1
e

E
x

a
m

p
le

: a
n

 E
C

U
 w

ith
 a

 tw
o

 c
o

re
 m

ic
ro

c
o

n
tro

lle
r

 BSW modules can be distributed across

several partitions and cores. All partitions

share the same code.

 Modules can either be completely identical on

each partition, as shown for the I/O stack in the

figure.

 As an alternative, they can use core-

dependent branching to realize different

behavior. The Com service in core 1 uses

master-satellite communication for processing

a call to the service on core 0.

 The communication between master and

satellite is not standardized. For example,

it can be based on functions provided by

the BSW scheduler or on shared memory.

 The arrows indicate which components are

involved in the handling of a service call,

depending on the approach to distribution and

on the origin of the call.

 Microcontroller (µC)

RTE

Communi-

cation Drivers

Communi-

cation

Services

(Master)

COM HW

Abstraction

I/O

Drivers

I/O HW

Abstraction

Communi-

cation

Services

(Satellite)

I/O

Drivers

I/O HW

Abstraction

Application Layer

- AUTOSAR Confidential -

Architecture – Content of Software Layers

Overview of BSW Modules, OS, BswM and EcuM on Multiple Partitions

65

ECU

core 1: core 0:

Microcontroller (µC)

partition 0: partition 1: partition 2: partition 3: partition 4:

Application Layer

RTE

OS

EcuM

BswM BswM BswM BswM

OS

EcuM

BswM

 Basic Software Mode Manager (BswM) in every partition that runs BSW modules

 all these partitions are trusted

 One EcuM per core (each in a trusted partition)

 EcuM on that core that gets started via the boot-loader is the master EcuM

 Master EcuM starts all Satellite EcuMs

Other

BSW

modules

Other

BSW

modules

Other

BSW

modules

Other

BSW

modules

Other

BSW

modules

p
a
g
e
 i
d
:
w

1
1
1
f

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 66

Microcontroller

Architecture – Content of Software Layers

Scope: Multi-Core System Services

core 0:

C
o
m

p
le

x
 D

ri
v
e
rs

Microcontroller (µC)

Micro-

controller

Drivers

Memory

Drivers

Memory

HW Abstr.

RTE

Onboard

Dev. Abstr.

Memory

Services System Services

Communi-

cation

Drivers

Communi-

cation

Services

COM HW

Abstr.

I/O

Drivers

I/O HW

Abstraction

Application Layer

System Services

F
u

n
c
tio

n
 In

h
ib

itio
n

M
a
n
a
g
e
r

…

D
e
v
e
lo

p
m

e
n
t E

rro
r

T
ra

c
e
r

D
ia

g
n
o
s
tic

 E
v
e
n
t

M
a
n
a
g
e
r

C
o
m

m
u
n
ic

a
tio

n

M
a
n
a
g
e
r

E
C

U
 S

ta
te

 M
a
n
a
g
e
r

C
o
re

 0

core 1:

System Services

A
U

T
O

S
A

R
 O

S

E
C

U
 s

ta
te

m
a
n
a
g
e
m

e
n
t C

o
re

 1

A
U

T
O

S
A

R
 O

S

iO
C

In
te

r O
s
A

p
p
lic

a
tio

n

c
o
m

m
u

n
ic

a
tio

n

iO
C

In
te

r O
s
A

p
p
lic

a
tio

n

c
o
m

m
u

n
ic

a
tio

n

 The IOC, as shown in the figure, provides communication
services which can be accessed by clients which need
to communicate across OS-Application boundaries on
the same ECU. The IOC is part of the OS.

 BSW modules can be executable on several cores, such
as the ComM in the figure. The core responsible for executing
a service is determined at runtime.

 Every core runs a kind of ECU state management.

p
a
g
e
 i
d
:
w

1
1
1
c

B
a
s
ic

 S
o
ftw

a
re

 M
o
d
e

M
a
n
a
g
e
r

E
x

a
m

p
le

: a
n

 E
C

U
 w

ith
 a

 tw
o

 c
o

re
 m

ic
ro

c
o

n
tro

lle
r

C
o
m

m
u
n
ic

a
tio

n

M
a
n
a
g
e
r

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 67

Table of contents

1. Architecture

1. Overview of Software Layers

2. Content of Software Layers

3. Content of Software Layers in Multi-Core Systems

4. Overview of Modules

5. Interfaces

1. General

2. Interaction of Layers (Examples)

2. Configuration

3. Integration and Runtime Aspects

p
a
g
e
 i
d

:
9
7
jt
4

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 68

Not all modules are shown here

Architecture

Overview of Modules – Implementation Conformance Class 3 - ICC3

p
a
g
e
 i
d
:
9
d
fc

8

Complex

Drivers

Microcontroller

AUTOSAR Runtime Environment (RTE)

Microcontroller Drivers Memory Drivers I/O Drivers

I/O Hardware Abstraction

Memory Hardware

Abstraction

Memory Services System Services

Onboard Device

Abstraction

Communication Drivers

Communication

Hardware Abstraction

Communication Services

Application Layer
P

o
rt

A
d
c

D
io

P
w

m

Ic
u

R
a
m

T
s
t

C
a
n

F
ls

W
d
g

L
in

M
c
u

F
r

G
p
t

S
p
i

MemIf

Driver for

ext.

I/O ASIC

Driver for

ext.

ADC ASIC

WdgIf

Tp

C
o
m

Nm

Ip
d
u
M

Nm

If

 ext. Drv Trcv.

NvM

A
U

T
O

S
A

R
 O

S

PduR

This figure shows the mapping of basic software modules to AUTOSAR layers

I/O Signal Interface

Ea Fee

E
c
u
M

E
e
p

E
th

D
c
m

D
b
g

X
C

P

xxx Interface

F
ls

T
s
t

C
o
rT

s
t

S
M

O
c
u

F
iM

W
d
g
M

D
e
t

D
e
m

C
o
m

M

D
lt

S
tb

M

B
s
w

M

C
s
m

T
m

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 69

Architecture

Overview of Modules – Implementation Conformance Classes – ICC2

p
a
g
e
 i
d

:
9
2
jc

9

AUTOSAR Runtime Environment

Application Layer

CAN

Com

Services

… …
O

S

*

ECU Hardware

CAN Driver

COM

CAN Interface

..
CAN

 TP

CAN

NM

…

CAN St Mgr …

PDU Router

… ICC3 module ICC2 clusters

The clustering shown in this document is the one defined by the project so far. AUTOSAR is currently not restricting the clustering
on ICC2 level to dedicated clusters as many different constraint and optimization criteria might lead to different ICC2
clusterings. There might be different AUTOSAR ICC2 clusterings against which compliancy can be stated based on a to be
defined approach for ICC2 compliance.

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 70

Architecture

Overview of Modules – Implementation Conformance Classes – ICC1

p
a
g
e
 i
d

:
9
4
t2

1

Proprietary software

AUTOSAR Runtime Environment

Application Layer

ECU Hardware

In a basic software which is compliant to ICC1 no modules or clusters are required.

The inner structure of this proprietary basic software is not specified.

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 71

Architecture

Overview of Modules – Implementation Conformance Classes – behavior to the outside

p
a
g
e
 i
d
:
9
4
p
2
1

Basic Software

AUTOSAR Runtime Environment

Application Layer

ECU Hardware

Basic software (including the RTE) which is AUTOSAR compliant (ICC1-3) has to behave to the outside as specified by the ICC3
module specification.

For example the behavior towards:

 buses,

 boot loaders and

 Applications

Additionally, the ICC1/2 configuration shall be compatible regarding the system description as in ICC3.

ICC 3 compliant

behavior

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 72

Table of contents

1. Architecture

1. Overview of Software Layers

2. Content of Software Layers

3. Content of Software Layers in Multi-Core Systems

4. Overview of Modules

5. Interfaces

1. General

2. Interaction of Layers (Examples)

2. Configuration

3. Integration and Runtime Aspects

p
a
g
e
 i
d

:
9
8
jt
4

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 73

Interfaces

Type of Interfaces in AUTOSAR

AUTOSAR Interface

An "AUTOSAR Interface" defines the information exchanged between

software components and/or BSW modules. This description is

independent of a specific programming language, ECU or network

technology. AUTOSAR Interfaces are used in defining the ports of

software-components and/or BSW modules. Through these ports

software-components and/or BSW modules can communicate with each

other (send or receive information or invoke services). AUTOSAR makes

it possible to implement this communication between Software-

Components and/or BSW modules either locally or via a network.

Standardized AUTOSAR

Interface

A "Standardized AUTOSAR Interface" is an "AUTOSAR Interface" whose

syntax and semantics are standardized in AUTOSAR. The "Standardized

AUTOSAR Interfaces" are typically used to define AUTOSAR Services,

which are standardized services provided by the AUTOSAR Basic

Software to the application Software-Components.

Standardized Interface

A "Standardized Interface" is an API which is standardized within

AUTOSAR without using the "AUTOSAR Interface" technique. These

"Standardized Interfaces" are typically defined for a specific programming

language (like "C"). Because of this, "standardized interfaces" are

typically used between software-modules which are always on the same

ECU. When software modules communicate through a "standardized

interface", it is NOT possible any more to route the communication

between the software-modules through a network.

p
a
g
e
 i
d

:
tz

7
6
a

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 74

Interfaces

Components and interfaces view (simplified)

ECU-Hardware

AUTOSAR Runtime Environment (RTE)

Actuator
Software

Component

AUTOSAR
Interface

Application
Software

Component

Sensor
Software

Component

Application
Software

Component

..............

AUTOSAR
Software

Basic Software

Standardized
Interface

AUTOSAR
Interface

AUTOSAR
Interface

AUTOSAR
Interface

Microcontroller
Abstraction

AUTOSAR
Software

Component

Standard
Software

Standardized
AUTOSAR
Interface

Services

Standardized
Interface

ECU
Abstraction

AUTOSAR
Interface

Standardized
Interface

Complex
Drivers

AUTOSAR
Interface

 VFB & RTE
relevant

Standardized
Interface

Communication

Standardized
Interface

Standardized
Interface

Operating
System

 RTE
relevant

 BSW
relevant

S
ta

n
d

a
rd

iz
e

d

In
te

rfa
c

e

Possible interfaces
inside

Basic Software
(which are

not specified
within AUTOSAR)

Note: This figure is incomplete with respect to the possible interactions between the layers.

p
a
g
e
 i
d

:
9
4
ju

5

Interfaces:

Interface

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 75

Interfaces: General Rules

General Interfacing Rules

Horizontal Interfaces

Services Layer: horizontal interfaces are allowed

Example: Error Manager saves fault data using the

NVRAM manager

ECU Abstraction Layer: horizontal interfaces are

allowed

A complex driver may use selected other BSW

modules

µC Abstraction Layer: horizontal interfaces are not

allowed. Exception: configurable notifications are

allowed due to performance reasons.

Microcontroller (µC)

Vertical Interfaces

One Layer may access all interfaces of the SW layer

below

Bypassing of one software layer should be avoided

Bypassing of two or more software layers is not

allowed

Bypassing of the µC Abstraction Layer is not allowed

A module may access a lower layer module of

another layer group (e.g. SPI for external hardware)

All layers may interact with system services.

AUTOSAR

SW Comp

1

AUTOSAR

SW Comp

3

AUTOSAR

SW Comp

4

AUTOSAR

SW Comp

5

p
a
g
e
 i
d
:
a
6
z
tr

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 76

S
y
s
te

m
 S

e
rv

ic
e
s

M
e
m

o
ry

 S
e
rv

ic
e
s

C
o
m

m
u
n
ic

a
ti
o
n
 S

e
rv

ic
e
s

C
o
m

p
le

x
 D

ri
v
e
rs

I/
O

 H
a
rd

w
a
re

 A
b
s
tr

a
c
ti
o
n

O
n
b
o
a
rd

 D
e
v
ic

e
 A

b
s
tr

a
c
ti
o
n

M
e
m

o
ry

 H
a
rd

w
a
re

 A
b
s
tr

a
c
ti
o
n

C
o
m

m
u
n
ic

a
ti
o
n
 H

a
rd

w
a
re

 A
b
s
tr

a
c
ti
o
n

M
ic

ro
c
o
n
tr

o
lle

r
D

ri
v
e
rs

M
e
m

o
ry

 D
ri
v
e
rs

C
o
m

m
u
n
ic

a
ti
o
n
 D

ri
v
e
rs

I/
O

 D
ri
v
e
rs

AUTOSAR SW Components / RTE

System Services

Memory Services

Communication Services

Complex Drivers restricted access -> see the following two slides

I/O Hardware Abstraction

Onboard Device Abstraction

Memory Hardware Abstraction

Communication Hardware Abstraction

Microcontroller Drivers

Memory Drivers

Communication Drivers

I/O Drivers

Interfaces: General Rules

Layer Interaction Matrix

 “is allowed to use”
 ”is not allowed to use”
 “restricted use
 (callback only)”

The matrix is read row-
wise:

Example: “I/O Drivers
are allowed

to use System Services
and

Hardware, but no other
layers”.

(gray background indicates “non-

Basic Software” layers)

uses

p
a
g
e
 i
d

:
1
x
d
fr

This matrix shows the possible interactions between

AUTOSAR Basic Software layers

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 77

Interfaces

Interfacing with Complex Drivers (1)

Complex Drivers may need to interface to other modules

in the layered software architecture, or modules in

the layered software architecture may need to interface

to a Complex Driver. If this is the case,

the following rules apply:

1. Interfacing from modules of the layered software architecture to Complex Drivers

This is only allowed if the Complex Driver offers an interface which can be generically configured by the accessing

AUTOSAR module.

A typical example is the PDU Router: a Complex Driver may implement the interface module of a new bus system.

This is already taken care of within the configuration of the PDU Router.

2. Interfacing from a Complex Driver to modules of the layered software architecture

Again, this is only allowed if the respective modules of the layered software architecture offer the interfaces, and are

prepared to be accessed by a Complex Driver. Usually this means that

 The respective interfaces are defined to be re-entrant.

 If call back routines are used, the names are configurable

 No upper module exists which does a management of states of the module (parallel access would change states

without being noticed by the upper module)

C
o
m

p
le

x
 D

ri
v
e
rs

Microcontroller (µC)

Micro-

controller

Drivers

Memory

Drivers

Memory

HW Abstr.

RTE

Onboard

Dev. Abstr.

Memory

Services System Services

Communi-

cation

Drivers

Communi-

cation

Services

COM HW

Abstr.

I/O

Drivers

I/O HW

Abstraction

Application Layer

p
a
g
e
 i
d
:
1
1
1
2
2

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 78

Interfaces

Interfacing with Complex Drivers (2)

In general, it is possible to access the following modules:

 The SPI driver

 The GPT driver

 The I/O drivers with the restriction that re-entrancy often only exists for
separate groups/channels/etc. Parallel access to the same
group/channel/etc. is mostly not allowed. This has to be taken care of during configuration.

 The NVRAM Manager as exclusive access point to the memory stack

 The Watchdog Manager as exclusive access point to the watchdog stack

 The PDU Router as exclusive bus and protocol independent access point to the communication stack

 The bus specific interface modules as exclusive bus specific access point to the communication stack

 The NM Interface Module as exclusive access point to the network management stack

 The Communication Manager (only from upper layer) and the Basic Software Mode Manager
as exclusive access points to state management

 Det, Dem and Dlt

 The OS as long as the used OS objects are not used by a module of the layered software architecture

Still, for each module it is necessary to check if the respective function is marked as being re-entrant. For example,
‘init’ functions are usually not re-entrant and should only be called by the ECU State Manager.

C
o
m

p
le

x
 D

ri
v
e
rs

Microcontroller (µC)

Micro-

controller

Drivers

Memory

Drivers

Memory

HW Abstr.

RTE

Onboard

Dev. Abstr.

Memory

Services System Services

Communi-

cation

Drivers

Communi-

cation

Services

COM HW

Abstr.

I/O

Drivers

I/O HW

Abstraction

Application Layer

p
a
g
e
 i
d

:
1
1
1
2
3

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 79

Interfaces

Interfacing with Complex Drivers (3)

In case of multi-core architectures, there are additional rules:

 The BSW can be distributed across several cores. The core
responsible for executing a call to a BSW service is determined
by the task mapping of its BswOperationInvokedEvent.

 Crossing partition and core boundaries is permitted for module
internal communication only, using a master/satellite implementation.

 Consequently, if the CDD needs to access standardized interfaces of the BSW, it needs to reside on the same
core.

 In case a CDD resides on a different core, it can use the normal port mechanism to access AUTOSAR interfaces
and standardized AUTOSAR interfaces. This invokes the RTE, which uses the IOC mechanism of the operating
system to transfer requests to the other core.

 However, if the CDD needs to access standardized interfaces of the BSW and does not reside on the same core,

 either a satellite providing the standardized interface can run on the core where the CDD resides and forward
the call to the other core

 or a stub part of the CDD needs to be implemented on the other core, and communication needs to be
organized CDD-local using the IOC mechanism of the operating system similar to what the RTE does.

 Additionally, in the latter case the initialization part of the CDD also needs to reside in the stub part on the
different core.

C
o
m

p
le

x
 D

ri
v
e
rs

Microcontroller (µC)

Micro-

controller

Drivers

Memory

Drivers

Memory

HW Abstr.

RTE

Onboard

Dev. Abstr.

Memory

Services System Services

Communi-

cation

Drivers

Communi-

cation

Services

COM HW

Abstr.

I/O

Drivers

I/O HW

Abstraction

Application Layer

p
a
g
e
 i
d
:
q
1
1
2
3

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 80

Table of contents

1. Architecture

1. Overview of Software Layers

2. Content of Software Layers

3. Content of Software Layers in Multi-Core Systems

4. Overview of Modules

5. Interfaces

1. General

2. Interaction of Layers (Examples)

2. Configuration

3. Integration and Runtime Aspects

p
a
g
e
 i
d

:
9
9
jt
4

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 81

Interfaces: Interaction of Layers – Example “Memory”

Introduction

The following pages explain using the example „memory“:

 How do the software layers interact?

 How do the software interfaces look like?

 What is inside the ECU Abstraction Layer?

 How can abstraction layers be implemented efficiently?

p
a
g
e
 i
d

:
2
w

fr
5

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 82

Interfaces: Interaction of Layers – Example “Memory”

Example and First Look

This example shows how the NVRAM Manager and the
Watchdog Manager interact with drivers on an assumed
hardware configuration:

The ECU hardware includes an external EEPROM and an
external watchdog connected to the microcontroller via the
same SPI.

The SPIHandlerDriver controls the concurrent access to the
SPI hardware and has to give the watchdog access a
higher priority than the EEPROM access.

The microcontroller includes also an internal flash which is
used in parallel to the external EEPROM. The EEPROM
Abstraction and the Flash EEPROM Emulation have an
API that is semantically identical.

The Memory Abstraction Interface can be realized in the
following ways:

 routing during runtime based on device index (int/ext)

 routing during runtime based on the block index (e.g. >
0x01FF = external EEPROM)

 routing during configuration time via ROM tables with
function pointers inside the NVRAM Manager (in this case
the Memory Abstraction Interface only exists „virtually“)

Memory Hardware Abstraction

Memory Abstraction Interface

COM Drivers

µC

SPIHandlerDriver

SPI

External

EEPROM Driver

Memory Services

NVRAM

Manager

External

EEPROM

External

Watchdog

Onboard Device

Abstraction

SPI SPI CS CS

External

Watchdog Driver

System Services

Watchdog

Manager

Wdg_Trigger()

Spi_ReadIB()

Spi_WriteIB()

MemIf_Read()

MemIf_Write()

EEPROM

Abstraction

Memory Drivers

Internal

Flash Driver

Flash

Fls_Read()

Fls_Write()

Flash EEPROM

Emulation

Fee_Read()

Fee_Write()

Watchdog Interface

WdgIf_Trigger()

p
a
g
e
 i
d

:
9
9
8
7
6

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 83

Interfaces: Interaction of Layers – Example “Memory”

Closer Look at Memory Hardware Abstraction

Architecture Description

The NVRAM Manager accesses drivers via the
Memory Abstraction Interface. It addresses
different memory devices using a device index.

Interface Description

The Memory Abstraction Interface could have the
following interface (e.g. for the write function):

Std_ReturnType MemIf_Write

(

 uint8 DeviceIndex,

 uint16 BlockNumber,

 uint8 *DataBufferPtr

)

The EEPROM Abstraction as well as the Flash
EEPROM Emulation could have the following
interface (e.g. for the write function):

Std_ReturnType Ea_Write

(

 uint16 BlockNumber,

 uint8 *DataBufferPtr

)

Memory Hardware Abstraction

Memory Abstraction Interface

Flash

EEPROM Emulation
EEPROM Abstaction

Memory Services

NVRAM

Manager

MemIf_Write(

 DeviceIndex,

 BlockNumber,

 DataBufferPtr)

Fee_Write(

 BlockNumber,

 DataBufferPtr)

Ea_Write(

 BlockNumber,

 DataBufferPtr)

Nvm_Write(BlockIndex)

p
a
g
e
 i
d

:
1
a
s
e
4

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 84

Interfaces: Interaction of Layers – Example “Memory”

Implementation of Memory Abstraction Interface

Situation 1: only one NV device type used

This is the usual use case. In this situation, the Memory Abstraction can, in case of source code availability, be

implemented as a simple macro which neglects the DeviceIndex parameter. The following example shows

the write function only:

File MemIf.h:

#include “Ea.h“ /* for providing access to the EEPROM Abstraction */

...

#define MemIf_Write(DeviceIndex, BlockNumber, DataBufferPtr) \

 Ea_Write(BlockNumber, DataBufferPtr)

File MemIf.c:

Does not exist

Result:

No additional code at runtime, the NVRAM Manager virtually accesses the EEPROM Abstraction or the Flash

Emulation directly.

p
a
g
e
 i
d

:
w

fg
z
7

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 85

Interfaces: Interaction of Layers – Example “Memory”

Implementation of Memory Abstraction Interface

Situation 2: two or more different types of NV devices used

In this case the DeviceIndex has to be used for selecting the correct NV device. The implementation can also
be very efficient by using an array of pointers to function. The following example shows the write function
only:

File MemIf.h:

extern const WriteFctPtrType WriteFctPtr[2];

#define MemIf_Write(DeviceIndex, BlockNumber, DataBufferPtr) \

WriteFctPtr[DeviceIndex](BlockNumber, DataBufferPtr)

File MemIf.c:
#include “Ea.h“ /* for getting the API function addresses */

#include “Fee.h“ /* for getting the API function addresses */

#include “MemIf.h“ /* for getting the WriteFctPtrType */

const WriteFctPtrType WriteFctPtr[2] = {Ea_Write, Fee_Write};

Result:

The same code and runtime is needed as if the function pointer tables would be inside the NVRAM Manager.

The Memory Abstraction Interface causes no overhead.

p
a
g
e
 i
d

:
1
2
3
4
5

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 86

Interfaces: Interaction of Layers – Example “Memory”

Conclusion

Conclusions:

 Abstraction Layers can be implemented very efficiently

 Abstraction Layers can be scaled

 The Memory Abstraction Interface eases the access of the NVRAM Manager to one or more

EEPROM and Flash devices

p
a
g
e
 i
d

:
w

w
w

e
e

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 87

Interfaces: Interaction of Layers – Example “Communication”

PDU Flow through the Layered Architecture

 Explanation of terms:

 SDU

 SDU is the abbreviation of “Service Data Unit”. It
is the data passed by an upper layer, with the
request to transmit the data. It is as well the data
which is extracted after reception by the lower
layer and passed to the upper layer.

 A SDU is part of a PDU.

 PCI

 PCI is the abbreviation of “Protocol Control
Information”. This Information is needed to pass a
SDU from one instance of a specific protocol layer
to another instance. E.g. it contains source and
target information.

 The PCI is added by a protocol layer on the
transmission side and is removed again on the
receiving side.

 PDU

 PDU is the abbreviation of “Protocol Data Unit”.
The PDU contains SDU and PCI.

 On the transmission side the PDU is passed from
the upper layer to the lower layer, which interprets
this PDU as its SDU.

Layer N-1

Layer N+1

TP

Layer N

data structure PDU

data structure SDU PCI

LayerN_Tx(*PDU);

void LayerN_Tx(*SDU);

LayerN+1_Tx(*PDU);

void LayerN+1_Tx(*SDU);

CAN IF

data structure SDU PCI

data structure PCI PDU

data structure PCI

data structure SDU PCI

data structure PCI PDU

p
a
g
e
 i
d

:
1
0
z
o
w

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 88

Interfaces: Interaction of Layers

Example “Communication” (1)

C
o
m

p
le

x
 D

ri
v
e
rs

Microcontroller (µC)

Micro-

controller

Drivers

Memory

Drivers

Memory

HW Abstr.

RTE

Onboard

Dev. Abstr.

Memory

Services System Services

Communi-

cation

Drivers

Communi-

cation

Services

COM HW

Abstr.

I/O

Drivers

I/O HW

Abstraction

Application Layer

SDU and PDU Naming Conventions

The naming of PDUs and SDUs respects the following rules:

For PDU: <bus prefix> <layer prefix> - PDU

For SDU: <bus prefix> <layer prefix> - SDU

The bus prefix and layer prefix are described in the following table:

SF:

Single Frame

FF:

First Frame

CF:

Consecutive

Frame

FC:

Flow Control

For details on the frame types, please refer to the

AUTOSAR Transport Protocol specifications for CAN,TTCAN, LIN and FlexRay.

Examples:

I-PDU or I-SDU

CAN FF N-PDU or FR CF N-SDU

LIN L-PDU or FR L-SDU

p
a
g
e
 i
d

:
9
4
j4

2

ISO Layer Layer

Prefix

AUTOSAR

Modules

PDU Name CAN /

TTCAN

prefix

LIN prefix FlexRay

prefix

Layer 6:

Presentation

(Interaction)

I COM, DCM I-PDU N/A

I PDU router, PDU

multiplexer

I-PDU N/A

Layer 3:

Network Layer

N TP Layer N-PDU CAN SF

CAN FF

CAN CF

CAN FC

LIN SF

LIN FF

LIN CF

LIN FC

FR SF

FR FF

FR CF

FR FC

Layer 2:

Data Link Layer

L Driver, Interface L-PDU CAN LIN FR

- AUTOSAR Confidential -

Interfaces: Interaction of Layers

Example “Communication” (2)

Components

 PDU Router:

 Provides routing of PDUs between different abstract communication controllers and upper layers

 Scale of the Router is ECU specific (down to no size if e.g. only one communication controller exists)

 Provides TP routing on-the-fly. Transfer of TP data is started before full TP data is buffered

 COM:

 Provides routing of individual signals or groups of signals between different I-PDUs

 NM Coordinator:

 Synchronization of Network States of different communication channels connected to an ECU via the

network managements handled by the NM Coordinator

 Communication State Managers:

 Start and Shutdown the hardware units of the communication systems via the interfaces

 Control PDU groups

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 89

p
a
g
e
 i
d
:
5
u
d
w

1

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 90

Interfaces: Interaction of Layers

Example “Communication” (3)

AUTOSAR

COM

Communication

HW

Abstraction Eth Interface FlexRay Interface

PDU Router

RTE

N-PDU

Communication

Manager
Signals

Communication Drivers

Eth Driver FlexRay Driver

FlexRay Tp

I-PDU

Diagnostic

Communi-

cation

Manager

I-PDU1 I-PDU I-PDU

I-PDU

L-PDU L-PDU

IPDU

multi-

plexer

I-PDU

NM

Coordinator

Generic

NM interface

Eth State

Manager

NM

Module

FlexRay

State

Manager

LIN State

Manager

NM

Module
NM

Module

1 The Interface between PduR and Tp differs significantly compared to the interface between PduR and the Ifs.

In case of TP involvement a handshake mechanism is implemented allowing the transmission of I-Pdus > Frame size.
2 CanIf with TTCAN serves both CanDrv with or without TTCAN. CanIf without TTCAN cannot serve CanDrv with TTCAN.

TTCAN

State

Manager

CAN State

Manager

CAN Interface2
LIN Interface

(incl. LIN TP)

CAN Driver2 LIN Low Level Driver

L-PDU L-PDU

NM

Module

I-PDU1

N-PDU

I-PDU

Ethernet Protocol

See description

on next slide

p
a
g
e
 i
d
:
3
h
d
8
w

Debugging

I-PDU

X
C

P

J1939Tp

I-PDU1

N-PDU

CAN Tp

Note: This image is not complete with

respect to all internal communication

paths.

- AUTOSAR Confidential -

Interfaces: Interaction of Layers

Example “Communication” (4) – Ethernet Protocol

Communication HW

Abstraction Eth Interface

PDU Router

Communication Drivers

Eth Driver

Eth. Frame

p
a
g
e
 i
d
:
e
e
d
8
w

Socket Adaptor

UDP TCP

IPv4/v6

DHCP

ARP/ND ICMP

Messages Streams

Segment Packet

UDP NM

T
C

P
/I

P
 C

o
m

m
u

n
ic

a
ti
o

n

S
e

rv
ic

e
s

 This figure shows the interaction

of and inside the Ethernet

protocol stack.

Datagram

I-PDUs

DoIP

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 91

Sd

BswM

I-PDUs I-PDUs

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 92

Table of contents

1. Architecture

1. Overview of Software Layers

2. Content of Software Layers

3. Content of Software Layers in Multi-Core Systems

4. Overview of Modules

5. Interfaces

1. General

2. Interaction of Layers (Examples)

2. Configuration

3. Integration and Runtime Aspects

p
a
g
e
 i
d

:
9
4
k
t4

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 93

Configuration

Overview

The AUTOSAR Basic Software supports the following configuration classes:

1. Pre-compile time

 Preprocessor instructions

 Code generation (selection or synthetization)

2. Link time

 Constant data outside the module; the data can be configured after the module has been
compiled

3. Post-build time

 Loadable constant data outside the module. Very similar to [2], but the data is located in
a specific memory segment that allows reloading (e.g. reflashing in ECU production line)

 Single or multiple configuration sets can be provided. In case that multiple configuration
sets are provided, the actually used configuration set is to be specified at runtime.

In many cases, the configuration parameters of one module will be of different configuration
classes.

Example: a module providing Post-build time configuration parameters will still have some
parameters that are Pre-compile time configurable.

p
a
g
e
 i
d

:
9
0
0
0
a

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 94

Configuration

Pre-compile time (1)

Use cases

Pre-compile time configuration would be chosen for

 Enabling/disabling optional functionality

This allows to exclude parts of the source code that are not needed

 Optimization of performance and code size
Using #defines results in most cases in more efficient code than

access to constants or even access to constants via pointers.

Generated code avoids code and runtime overhead.

Restrictions

 The module must be available as source code

 The configuration is static. To change the configuration, the module

has to be recompiled

Required implementation

Pre-compile time configuration shall be done via the module‘s two
configuration files (*_Cfg.h, *_Cfg.c) and/or by code generation:

 *_Cfg.h stores e.g. macros and/or #defines

 *_Cfg.c stores e.g. constants

p
a
g
e
 i
d

:
9
0
0
0
b

Nm.c

Nm_Cfg.h

includes

Nm_Cfg.c

uses

(optional)

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 95

Configuration

Pre-compile time (2)

Example 1: Enabling/disabling functionality

File Spi_Cfg.h:
#define SPI_DEV_ERROR_DETECT ON

File Spi_Cfg.c:
const uint8 myconstant = 1U;

File Spi.c (available as source code):
#include "Spi_Cfg.h" /* for importing the configuration parameters */

extern const uint8 myconstant;

#if (SPI_DEV_ERROR_DETECT == ON)

Det_ReportError(Spi_ModuleId, 0U, 3U, SPI_E_PARAM_LENGTH); /* only one instance available */

#endif

Note: The Compiler Abstraction and Memory Abstraction (as specified by AUTOSAR) are not used to keep the example simple.

p
a
g
e
 i
d

:
9
0
0
0
c

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 96

Configuration

Pre-compile time (3)

Example 2: Event IDs reported to the Dem

XML configuration file of the NVRAM Manager:
Specifies that it needs the event symbol NVM_E_REQ_FAILED for production error reporting.

File Dem_Cfg.h (generated by Dem configuration tool):
typedef uint8 Dem_EventIdType; /* total number of events = 46 => uint8 sufficient */

#define DemConf_DemEventParameter_FLS_E_ERASE_FAILED_0 1U

#define DemConf_DemEventParameter_FLS_E_ERASE_FAILED_1 2U

#define DemConf_DemEventParameter_FLS_E_WRITE_FAILED_0 3U

#define DemConf_DemEventParameter_FLS_E_WRITE_FAILED_1 4U

#define DemConf_DemEventParameter_NVM_E_REQ_FAILED 5U

#define DemConf_DemEventParameter_CANSM_E_BUS_OFF 6U

...

File Dem.h:
#include "Dem_Cfg.h" /* for providing access to event symbols */

File NvM.c (available as source code):
#include "Dem.h" /* for reporting production errors */

Dem_ReportErrorStatus(DemConf_DemEventParameter_NVM_E_REQ_FAILED, DEM_EVENT_STATUS_PASSED);

p
a
g
e
 i
d

:
9
0
0
0
d

Example for a multiple

instance driver (e.g. internal

and external flash module)

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 97

Configuration

Link time (1)

Use cases

Link time configuration would be chosen for

 Configuration of modules that are only available as object code

(e.g. IP protection or warranty reasons)

 Selection of configuration set after compilation but before linking.

Required implementation

1. One configuration set, no runtime selection

Configuration data shall be captured in external constants. These external constants are

located in a separate file. The module has direct access to these external constants.

p
a
g
e
 i
d

:
9
0
0
0
e

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 98

Configuration

Link time (2)

Example 1: Event IDs reported to the Dem by a multiple instantiated module (Flash Driver) only available as object code

XML configuration file of the Flash Driver:
Specifies that it needs the event symbol FLS_E_WRITE_FAILED for production error reporting.

File Dem_Cfg.h (generated by Dem configuration tool):
typedef uint16 Dem_EventIdType; /* total number of events = 380 => uint16 required */

#define DemConf_DemEventParameter_FLS_E_ERASE_FAILED_0 1U

#define DemConf_DemEventParameter_FLS_E_ERASE_FAILED_1 2U

#define DemConf_DemEventParameter_FLS_E_WRITE_FAILED_0 3U

#define DemConf_DemEventParameter_FLS_E_WRITE_FAILED_1 4U

#define DemConf_DemEventParameter_NVM_E_REQ_FAILED 5U

#define DemConf_DemEventParameter_CANSM_E_BUS_OFF 6U

...

File Fls_Lcfg.c:
#include "Dem_Cfg.h" /* for providing access to event symbols */

const Dem_EventIdType Fls_WriteFailed[2] = {DemConf_DemEventParameter_FLS_E_WRITE_FAILED_1,

DemConf_DemEventParameter_FLS_E_WRITE_FAILED_2};

File Fls.c (available as object code):
#include "Dem.h" /* for reporting production errors */

extern const Dem_EventIdType Fls_WriteFailed[];

Dem_ReportErrorStatus(Fls_WriteFailed[instance], DEM_EVENT_STATUS_FAILED);

Note: the complete include file structure with all forward declarations is not shown here to keep the example simple.

p
a
g
e
 i
d

:
9
0
0
0
f

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 99

Configuration

Link time (3)

Example 2: Event IDs reported to the Dem by a module (Flash Driver) that is available as object code only

Problem
Dem_EventIdType is also generated depending of the total number of event IDs on this ECU. In this example it is represented

as uint16. The Flash Driver uses this type, but is only available as object code.

Solution
In the contract phase of the ECU development, a bunch of variable types (including Dem_EventIdType) have to be fixed and

distributed for each ECU. The object code suppliers have to use those types for their compilation and deliver the object code

using the correct types.

p
a
g
e
 i
d

:
y
0
0
0
g

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 100

Configuration

Post-build time (1)

Use cases

Post-build time configuration would be chosen for

 Configuration of data where only the structure is defined but the contents not known during ECU-build time

 Configuration of data that is likely to change or has to be adapted after ECU-build time
(e.g. end of line, during test & calibration)

 Reusability of ECUs across different product lines (same code, different configuration data)

Restrictions

 Implementation requires dereferencing which has impact on performance, code and data size

Required implementation

1. One configuration set, no runtime selection (loadable)

Configuration data shall be captured in external constant structs. These external structs are located in a separate memory

segment that can be individually reloaded.

2. 1..n configuration sets, runtime selection possible (selectable)

Configuration data shall be captured within external constant structs. These configuration structures are located in one

separate file. The module gets a pointer to one of those structs at initialization time. The struct can be selected at each

initialization.

p
a
g
e
 i
d

:
y
0
0
0
h

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 101

Configuration

Post-build time (2)

Example 1 (Post-build time loadable)

If the configuration data is fix in memory size and position, the module has direct access to these external structs.

p
a
g
e
 i
d

:
y
0
0
0
i

PduR.c

PduR_PBcfg.c

Linker Compiler PduR.o

PduR_PBcfg.o

Direct access

(via reference as given by

the pointer parameter of

PduR’s initialization function)

Linker Compiler

Linker control file

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 102

Configuration

Post-build time (3)

Required implementation 2: Configuration of CAN Driver that is available as object code only; multiple configuration

sets can be selected during initialization time.

p
a
g
e
 i
d

:
y
0
0
0
k

Compiler

File Can_PBcfg.c:
#include “Can.h” /* for getting Can_ConfigType */

const Can_ConfigType MySimpleCanConfig [2] =

{

 {

 Can_BitTiming = 0xDF,

 Can_AcceptanceMask1 = 0xFFFFFFFF,

 Can_AcceptanceMask2 = 0xFFFFFFFF,

 Can_AcceptanceMask3 = 0x00034DFF,

 Can_AcceptanceMask4 = 0x00FF0000

 },

{ … }

};

File EcuM.c:
#include “Can.h“ /* for initializing the CAN Driver */

Can_Init(&MySimpleCanConfig[0]);

File Can.c (available as object code):
#include “Can.h“ /* for getting Can_ConfigType */

void Can_Init(Can_ConfigType* Config)

{

 /* write the init data to the CAN HW */

};

Linker

Binary file

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 103

Configuration

Variants

Different use cases require different kinds of configurability. Therefore the following configuration variants are

provided:

 VARIANT-PRE-COMPILE

Only parameters with "Pre-compile time" configuration are allowed in this variant.

 VARIANT-LINK-TIME

Only parameters with "Pre-compile time" and "Link time" are allowed in this variant.

 VARIANT-POST-BUILD

Parameters with "Pre-compile time", "Link time" and "Post-build time" are allowed in this variant.

Example use cases:
 Reprogrammable PDU routing tables in gateway (Post-build time configurable PDU Router required)

 Statically configured PDU routing with no overhead (Pre-compile time configuration of PDU Router
required)

To allow the implementation of such different use cases in each BSW module, up to 3 variants can be

specified:

 A variant is a dedicated assignment of the configuration parameters of a module to configuration
classes

 Within a variant a configuration parameter can be assigned to only ONE configuration class

 Within a variant a configuration class for different configuration parameters can be different (e.g. Pre-
Compile for development error detection and post-build for reprogrammable PDU routing tables

 It is possible and intended that specific configuration parameters are assigned to the same
configuration class for all variants (e.g. development error detection is in general Pre-compile time
configurable).

p
a
g
e
 i
d

:
y
0
0
0
m

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 104

Configuration

Memory Layout Example: Postbuild Loadable (PBL)

p
a
g
e
 i
d

:
y
0
0
0
n

0x4710 &the_real_xx_configuration

0x4710 lower = 2

0x4712 upper =7

0x4714 more_data

…

0x4720 &the_real_yy_configuration

0x4720 Xx_data1=0815

0x4722 Yy_data2=4711

0x4724 more_data

…

0x8000 &index (=0x8000)

0x8000 &xx_configuration = 0x4710

0x8002 &yy_configuration = 0x4720

0x8004 &zz_configuration = 0x4730

…

EcuM defines the index:

Xx defines the modules configuration data:

Yy defines the modules configuration data:

Description where to find what is an overall agreement:

1. EcuM needs to know all addresses including index

2. The modules (xx, yy, zz) need to know their own

start address: in this case: 0x4710, 0x4720 …

3. The start addresses might be dynamic i.e. changes

with new configuration

4. When initializing a module (e.g. xx, yy, zz), EcuM

passes the base address of the configuration data (e.g.
0x4710, 0x4720, 0x4730) to the module to allow for

variable sizes of the configuration data.

The module data is agreed locally (in the module) only

1. The module (xx, yy) knows its own start address

(to enable the implementer to allocate data section)

2. Only the module (xx, yy) knows the internals of

its own configuration

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 105

Configuration

Memory Layout Example: Postbuild Multiple Selectable (PBM)

p
a
g
e
 i
d

:
a
x
c
v
b

0x8000 &index[] (=0x8000)

0x8000 &xx_configuration = 0x4710

0x8002 &yy_configuration = 0x4720

0x8004 &zz_configuration = 0x4730

…

0x8008 &xx_configuration = 0x5000

0x800a &yy_configuration = 0x5400

0x800c &zz_configuration = 0x5200

…

0x8010 &xx_configuration = …

0x8012 &yy_configuration = …

0x8014 &zz_configuration = …

…

FL

FR

RL

As before, the description where to find what is an

overall agreement

1. The index contains more than one description (FL,

FR,..) in an array

(here the size of an array element is agreed to be

8)

2. There is an agreed variable containing the position

of one description

selector = CheckPinCombination()

3. Instead of passing the pointer directly there is one

indirection:

(struct EcuM_ConfigType *) &index[selector];

4. Everything else works as in PBL

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 106

Table of contents

1. Architecture

2. Configuration

3. Integration and Runtime Aspects

1. Mapping of Runnables

2. Partitioning

3. Scheduling

4. Mode Management

5. Error Handling, Reporting and Diagnostic

6. Debugging

7. Measurement and Calibration

8. Functional Safety

9. Energy Management

p
a
g
e
 i
d

:
9
4
m

t4

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 107

Integration and Runtime Aspects

Mapping of Runnables

 Runnables are the

active parts of

Software Components

 They can be executed

concurrently, by

mapping them to

different Tasks.

 The figure shows

further entities like OS-

applications, Partitions,

µC-Cores and BSW-

Resources which have

to be considered for

this mapping.

p
a
g
e
 i
d

:
1
1
e
e
r

SW-C

BSW-Ressource
(E.g., NV-block)

Partition

Task

OS-Application

Runnable

µC-Core

V
F

B
-

v
ie

w

Im
p
le

m
e
n
ta

tio
n
/E

C
U

-v
ie

w

1 0..*

0..*

1

0..*

1

0..*

1

0..*

1

0..*

1

1 1

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 108

Table of contents

1. Architecture

2. Configuration

3. Integration and Runtime Aspects

1. Mapping of Runnables

2. Partitioning

3. Scheduling

4. Mode Management

5. Error Handling, Reporting and Diagnostic

6. Debugging

7. Measurement and Calibration

8. Functional Safety

9. Energy Management

p
a
g
e
 i
d

:
9
4
lt
4

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 109

Integration and Runtime Aspects - Partitioning

Introduction

 Partitions are used as error containment regions:

 Permit logical grouping of SW-Cs and resources

 Recovery policies defined individually for each partition

 Partition consistency is ensured by the system/platform, for instance for:

 Memory access violation

 Time budget violation

 Partitions can be terminated or restarted during run-time as a result of a detected error:

 Further actions required: see example on following slides

 All BSW modules are placed in privileged partitions

 These partitions should not be restarted or terminated

 Partitions are configured in the ECU-C:

 A partition is implemented by an OS-Application within the OS

 SW-Cs are mapped to partitions (Consequence: restricts runnable to task mapping)

 A partition can be configured as restartable or not

 Communication across partitions is realized by the IOC

p
a
g
e
 i
d
:
w

w
e
e
v

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 110

Integration and Runtime Aspects - Partitioning

Example of restarting partition

p
a
g
e
 i
d

:
w

w
e
e
u

SW-C SW-C

SW-C

SW-C SW-C

SW-C

SW-C SW-C

SW-C

RTE

SW-C SW-C

SW-C

SW-C SW-C

SW-C

SW-C SW-C

SW-C

RTE

SW-C SW-C

SW-C

SW-C SW-C

SW-C

SW-C SW-C

SW-C

RTE

SW-C SW-C

SW-C

SW-C SW-C

SW-C

SW-C SW-C

SW-C

RTE

A violation (error) has occurred in the system (e.g., memory or

timing violation)

Decision (by integrator code) to restart the partition

Other partitions remain unaffected

The partition is terminated by the OS, cleanup possible

Communication to the partition is stopped

Communication from the partition is stopped (e.g., default values

for ports used)

The partition is restarting (integrator code), initial environment for

partition setup (init runnables, port values etc)

Communication to the partition is stopped

Communication from the partition is stopped

The partition is restarted and up and running

Communication is restored

Partition internally handles state consistency

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 111

Integration and Runtime Aspects - Partitioning

Involved components

 Protection Hook

 Executed on protection violation (memory or timing)

 Decides what the action is (Terminate, Restart, Shutdown, Nothing)

 Provided by integrator

 OS acts on decision by inspecting return value

 OsRestartTask

 Started by OS in case Protection Hook returns Restart

 Provided by integrator

 Runs in the partition’s context and initiates necessary cleanup and restart activities, such as:

 Stopping communication (ComM)

 Updating NvM

 Informing Watchdog, CDDs etc.

 RTE

 Functions for performing cleanup and restart of RTE in partition

 Triggers init runnables for restarted partition

 Handles communication consistency for restarting/terminated partitions

 Operating System

 OS acts on OS-Applications, which are containers for partitions

 OS-Applications have states (APPLICATION_ACCESSIBLE, APPLICATION_RESTART,

APPLICATION_TERMINATED)

 OS provides API to terminate other OS-Applications (for other errors than memory/timing)

p
a
g
e
 i
d

:
w

w
e
e
t

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 112

Integration and Runtime Aspects - Partitioning

restart example

p
a
g
e
 i
d

:
w

w
e
e
s

sd TerminateRestartPartition

RTEProtectionHookOS OSRestartTask BSW modules

APPLICATION_ACTIVE

APPLICATION_RESTARTING

APPLICATION_ACTIVE

Os-Application

state for the

considered

Partition.

ProtectionHook
inform the RTE

ActivateTask

Trigger cleanup in the BSW partition

Poll ing end of asynchronous cleanups

request a restart of the partition to the RTE

AllowAccess

TerminateTask

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 113

Integration and Runtime Aspects - Partitioning

Other examples

 Termination

 A partition can be terminated directly

 Also for termination, some cleanup may be needed, and this shall be performed in the

same way as when restarting a partition

 No restart is possible without a complete ECU restart

 Error detection in applications

 Application-level SW-Cs may detect errors (i.e., not memory/timing)

 A termination/restart can be triggered from a SW-C using the OS service

TerminateApplication()

 Example: a distributed application requires restart on multiple ECUs

p
a
g
e
 i
d

:
w

w
e
e
r

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 114

Table of contents

1. Architecture

2. Configuration

3. Integration and Runtime Aspects

1. Mapping of Runnables

2. Partitioning

3. Scheduling

4. Mode Management

5. Error Handling, Reporting and Diagnostic

6. Debugging

7. Measurement and Calibration

8. Functional Safety

9. Energy Management

p
a
g
e
 i
d

:
9
4
n
t4

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 115

Integration and Runtime Aspects - Scheduling

General Architectural Aspects

 Basic Software Scheduler and the RTE are generated together.

 This enables

 that the same OS Task schedules BSW Main Functions and Runnable Entities of

Software Components

 to optimize the resource consumption

 to configure interlaced execution sequences of Runnable Entities and BSW Main functions.

 a coordinated switching of a Mode affecting BSW Modules and Application Software

Components

 the synchronized triggering of both, Runnable Entities and BSW Main Functions by the

same External Trigger Occurred Event.

p
a
g
e
 i
d

:
y
3
3
1
a

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 116

Integration and Runtime Aspects - Scheduling

Basic Scheduling Concepts of the BSW

BSW Scheduling shall

 Assure correct timing behavior of the BSW, i.e., correct interaction of all BSW modules with respect to time

Data consistency mechanisms

 Applied data consistency mechanisms shall be configured by the ECU/BSW integrator dependent from the configured
scheduling.

Single BSW modules do not know about

 ECU wide timing dependencies

 Scheduling implications

 Most efficient way to implement data consistency

Centralize the BSW schedule in the BSW Scheduler configured by the ECU/BSW integrator and generated by the RTE
generator together with the RTE

 Eases the integration task

 Enables applying different scheduling strategies to schedulable objects

 Preemptive, non-preemptive, ...

 Enables applying different data consistency mechanisms

 Enables reducing resources (e.g., minimize the number of tasks)

 Enables interlaced execution sequences of Runnable Entities and BSW Main functions

Restrict the usage of OS functionality

 Only the BSW Scheduler and the RTE shall use OS objects or OS services
(exceptions: EcuM, Complex Drivers and services: GetCounterValue and GetElapsedCounterValue of OS; MCAL

modules may enable/disable interrupts)
 Rationale:

 Scheduling of the BSW shall be transparent to the system (integrator)

 Enables reducing the usage of OS resources (Tasks, Resources,...)

 Enables re-using modules in different environments

p
a
g
e
 i
d

:
y
3
3
1
b

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 117

Integration and Runtime Aspects - Scheduling

Scheduling Objects, Triggers and Mode Disabling Dependencies

BSW Scheduling objects

 Main functions

 n per module

 located in all layers

BSW Events

 BswTimingEvent

 BswBackgroundEvent

 BswModeSwitchEvent

 BswModeSwitchedAckEvent

 BswInternalTriggerOccuredEvent

 BswExternalTriggerOccuredEvent

 BswOperationInvokedEvent

Triggers

 Main functions can be triggered in all layers by

the listed BSW Events

Mode Disabling Dependencies

 The scheduling of Main functions can be

disabled in particular modes.

p
a
g
e
 i
d
:
y
3
3
1
c

Yyy_MainFunction_Aaa

RTE

Microcontroller

Xxx_Isr_Yyy

Zzz_MainFunction_Aaa

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 118

Integration and Runtime Aspects - Scheduling

Transformation Process

p
a
g
e
 i
d

:
y
3
3
1
d

Logical Architecture (Model) Technical Architecture (Implementation)

 Ideal concurrency

 Unrestricted resources

 Only real data dependencies

 Restricted concurrency

 Restricted resources

 Real data dependencies

 Dependencies given by restrictions

 Mapping of scheduling objects to OS Tasks

 Specification of sequences of scheduling objects within tasks

 Specification of task sequences

 Specification of a scheduling strategy

 ...

 Scheduling objects

 Trigger

 BSW Events

 Sequences of scheduling objects

 Scheduling Conditions

 ...

 OS objects

 Tasks

 ISRs

 Alarms

 Resources

 OS services

 Sequences of scheduling objects within tasks

 Sequences of tasks

 ...

Transformation

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 119

Integration and Runtime Aspects - Scheduling

Transformation Process – Example 1

p
a
g
e
 i
d

:
y
q
q
q
1

Logical Architecture (Model) Technical Architecture (Schedule Module)

 Mapping of scheduling objects to OS Tasks

 Specification of sequences of scheduling objects within tasks

Transformation

Yyy_MainFunction_Aaa();

Xxx_MainFunction_Aaa();

Zzz_MainFunction_Bbb();

Task1 {

 ...

 }

Yyy_MainFunction_Aaa();

Xxx_MainFunction_Aaa();

Zzz_MainFunction_Bbb();

glue code

glue code

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 120

Integration and Runtime Aspects - Scheduling

Transformation Process – Example 2

p
a
g
e
 i
d

:
y
q
q
q
2

Logical Architecture (Model) Technical Architecture (Schedule Module)

 Mapping of scheduling objects to OS Tasks

Transformation

Xxx_MainFunction_Bbb();

Yyy_MainFunction_Bbb();

Task2 {

 ...

 ...

}

Xxx_MainFunction_Bbb();

Task3 {

 ...

 ...

}

Yyy_MainFunction_Bbb();

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 121

Integration and Runtime Aspects - Scheduling

Data Consistency – Motivation

p
a
g
e
 i
d

:
y
q
q
q
3

Logical Architecture (Model) Technical Architecture (Schedule Module)

Data consistency strategy to be used:

 Sequence, Interrupt blocking, Cooperative Behavior,

Semaphores (OSEK Resources), Copies of ...

Transformation

 Access to resources by different and concurrent entities of the implemented technical architecture
(e.g., main functions and/or other functions of the same module out of different task contexts)

Xxx_Module

Yyy_Module

Xxx_MainFunction();

Yyy_MainFunction();

XYZ resource

Yyy_ AccessResource(); ?

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 122

Integration and Runtime Aspects - Scheduling

Data Consistency – Example 1 – “Critical Sections” Approach

p
a
g
e
 i
d

:
y
q
q
q
4

Logical Architecture (Model)/

Technical Architecture (Schedule Module)

Implementation of Schedule Module

Data consistency is ensured by:

 Interrupt blocking

Transformation

Xxx_MainFunction();

Yyy_MainFunction();

XYZ resource

Yyy_ AccessResource();

Xxx_Module

Task2

Task1

#define SchM_Enter_<mod>_<name> \

 DisableAllInterrupts

#define SchM_Exit_<mod>_<name> \

 EnableAllInterrupts

Yyy_AccessResource() {

 ...

 SchM_Enter_Xxx_XYZ();

 <access_to_shared_resource>

 SchM_Exit_Xxx_XYZ();

 ...

}

Yyy_MainFunction() {

 ...

 SchM_Enter_Yyy_XYZ();

 <access_to_shared_resource>

 SchM_Exit_Yyy_XYZ();

 ...

}

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 123

Integration and Runtime Aspects - Scheduling

Data Consistency – Example 1 – “Critical Sections” Approach

p
a
g
e
 i
d

:
y
q
q
q
5

Logical Architecture (Model)/

Technical Architecture (Schedule Module)

Implementation of Schedule Module

Data consistency is ensured by:

 Sequence

Transformation

Xxx_MainFunction();

Yyy_MainFunction();

XYZ resource

Yyy_ AccessResource();

Xxx_Module

Task2

Task1

#define SchM_Enter_<mod>_<name> \

 /* nothing required */

#define SchM_Exit_<mod>_<name> \

 /* nothing required */

Yyy_AccessResource() {

 ...

 SchM_Enter_Xxx_XYZ();

 <access_to_shared_resource>

 SchM_Exit_Xxx_XYZ();

 ...

}

Yyy_MainFunction() {

 ...

 SchM_Enter_Yyy_XYZ();

 <access_to_shared_resource>

 SchM_Exit_Yyy_XYZ();

 ...

}

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 124

Integration and Runtime Aspects

Mode Communication / Mode Dependent Scheduling

 The mode dependent scheduling of BSW Modules is identical to the mode dependent

scheduling of runnables of software components.

 A mode manager defines a Provide ModeDeclarationGroupPrototype in its Basic

Software Module Description, and the BSW Scheduler provides an API to communicate mode

switch requests to the BSW Scheduler

 A mode user defines a Required ModeDeclarationGroupPrototype in its Basic Software

Module Description. On demand the BSW Scheduler provides an API to read the current

active mode

 If the Basic Software Module Description defines Mode Disabling Dependencies, the BSW

Scheduler suppresses the scheduling of BSW Main functions in particular modes.

p
a
g
e
 i
d

:
y
3
3
1
e

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 125

Table of contents

1. Architecture

2. Configuration

3. Integration and Runtime Aspects

1. Mapping of Runnables

2. Partitioning

3. Scheduling

4. Mode Management

5. Error Handling, Reporting and Diagnostic

6. Debugging

7. Measurement and Calibration

8. Functional Safety

9. Energy Management

p
a
g
e
 i
d

:
9
4
o
t4

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 126

Integration and Runtime Aspects

Vehicle and application mode management (1)

Relation of Modes:

 Every system contains Modes at

different levels of granularity. As shown

in the figure, there are vehicle modes

and several applications with modes and

ECUs with local BSW modes.

 Modes at all this levels influence each

other.

p
a
g
e
 i
d

:
q
2
2
2
b

1 2

3

1 2

3

1 2

3
1 2

3

1 2

3

1 2

3
1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3
1 2

3

1 2

3

1 2

3
1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

BSW

Modes

Vehicle

Modes

Application

Modes

Influence each other

Influence each other
Influence each other

Therefore:

 Depending on vehicle modes, applications may be active or inactive and thus be in different

application modes.

 Vice versa, the operational state of certain applications may cause vehicle mode changes.

 Depending on vehicle and application modes, the BSW modes may change, e.g. the

communication needs of an application may cause a change in the BSW mode of a

communication network.

 Vice versa, BSW modes may influence the modes of applications and even the whole

vehicle, e.g. when a communication network is unavailable, applications that depend on it

may change into a limp-home mode.

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 127

Integration and Runtime Aspects

Vehicle and application mode management (2)

Processing of Mode Requests

The basic idea of vehicle mode management is to distribute and arbitrate mode requests and to

control the BSW locally based on the results.

This implies that in each BSW partition, there has to be a mode manager that switches the modes

for its local mode users and controls the BSW. Of course there can also be multiple mode

managers that switch different Modes.

The mode request is a “normal” sender/receiver communication (system wide) while the mode

switch always a local service.

p
a
g
e
 i
d
:
q
2
2
2
e

Mode

Requester

Mode

Manager
Mode

User

Mode

Request

Mode

Switch

Mode

Manager
Mode

User

Mode

Switch

Mode

Requester

Mode

Requester

Mode

Manager

Mode

Manager
Mode

User

Mode

User

Mode

Request

Mode

Switch

Mode

Manager

Mode

Manager
Mode

User

Mode

User

Mode

Switch

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 128

Integration and Runtime Aspects

Vehicle and application mode management (3)

 The distribution of mode requests is performed by the RTE and the RTE also implements
the handling of mode switches.

 E.g. for vehicle modes, a mode request originates from one central mode requestor SW-C
and has to be received by the BswMs in many ECUs. This is an exception of the rule that
SW-Cs may only communicate to local BSW.

 BswMs running in different partitions can propagate mode requests by Sender-Receiver
communication (SchMWrite, SchMRead).

C
o
m

p
le

x
 D

ri
v
e
rs

Microcontroller (µC)

Micro-

controller

Drivers

Memory

Drivers

Memory

HW Abstr.

RTE

Onboard

Dev. Abstr.

Memory

Services System Services

Communi-

cation

Drivers

Communi-

cation

Services

COM HW

Abstr.

I/O

Drivers

I/O HW

Abstraction

Application Layer

p
a
g
e
 i
d
:
q
2
2
2
c

BswM

Mode Control

Mode Arbitration SW-C

RTE

Mode Arbitration

App

BSW

Layer Functionality per module

Mode Request Distribution + Mode Handling
 The major part of the needed functionality is

placed in the Basic Software Mode Manager

(BswM for short). Since the BswM is located

in the BSW, it is present in every partition and

local to the mode users as well as the

controlled BSW modules.

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 129

Integration and Runtime Aspects

Vehicle and application mode management (4)

p
a
g
e
 i
d

:
q
2
2
2
d

BswM
Mode

Control

Applications

RTE

Mode

Arbitration

Mode requesting

SW-C

Mode using

SW-C

Mode request

distribution

Mode arbitration

overrides the

request for mode

A with mode A´.

3: switch

mode A´ 1: request

mode A

2: execute

associated

action list

Action list

Action 1

Action 2

…

RteSwitch(mode A´)

Local mode

handling

Mode Processing Cycle

 The mode requester SW-C requests
mode A through its sender port. The RTE
distributes the request and the BswM
receives it through its receiver port.

 The BswM evaluates its rules and if a
rule triggers, it executes the
corresponding action list.

 When executing the action list, the BswM
may issue a (configurable optional) RTE
call to the mode switch API as a last
action to inform the mode users about the
arbitration result, e.g. the resulting mode
A’.

 Any SW-C, especially the mode
requester can register to receive the
mode switch indication.

 The mode requests can originate from
local and remote ECUs or partitions.

 Note that the mode requestor can only
receive the mode switch indications from
the local BswM, even if the requests are
sent out to multiple partitions.

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 130

Table of contents

1. Architecture

2. Configuration

3. Integration and Runtime Aspects

1. Mapping of Runnables

2. Partitioning

3. Scheduling

4. Mode Management

5. Error Handling, Reporting and Diagnostic

6. Debugging

7. Measurement and Calibration

8. Functional Safety

9. Energy Management

p
a
g
e
 i
d

:
9
4
p
t4

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 131

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic

Error Classification (1)

Types of errors

Hardware errors / failures

 Root cause: Damage, failure or ‚value out of range‘, detected by software

 Example 1: EEPROM cell is not writable any more

 Example 2: Output voltage of sensor out of specified range

Software errors

 Root cause: Wrong software or system design, because software itself can never fail.

 Example 1: wrong API parameter (EEPROM target address out of range)

 Example 2: Using not initialized data

System errors

 Example 1: CAN receive buffer overflow

 Example 2: time-out for receive messages

p
a
g
e
 i
d
:
0
9
o
p
0

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 132

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic

Error Classification (2)

Time of error occurrence according to product life cycle

Development

Those errors shall be detected and fixed during development phase. In most cases, those errors are
software errors. The detection of errors that shall only occur during development can be switched off
for production code (by static configuration namely preprocessor switches).

Production / series

Those errors are hardware errors and software exceptions that cannot be avoided and are also expected
to occur in production code.

Influence of error on system

Severity of error (impact on the system)

 No influence

 Functional degradation

 Loss of functionality

Failure mode in terms of time

 Permanent errors

 Transient / sporadic errors

p
a
g
e
 i
d

:
n
ji9

8

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 133

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic

Error Reporting – Alternatives

Each basic software module distinguishes between two types of errors:

1. Development Errors

The detection and reporting can be statically switched on/off

2. Production relevant errors and exceptions

If the reporting of a specific Production relevant error is configured,
this detection is ‚hard coded‘ and always active

If the reporting of a specific Production relevant error is NOT configured,
this detection may still be required due to other functional requirements

There are several alternatives to report an error (detailed on the following slides):

Via API

Inform the caller about success/failure of an operation.

Via statically definable callback function (notification)

Inform the caller about failure of an operation

Via central Error Hook (Development Error Tracer)

For logging and tracing errors during product development. Can be switched off for production code.

Via central Error Function (AUTOSAR Diagnostic Event Manager)

For error reaction and logging in series (production code)

Each application software component (SW-C) can report errors to the Dlt.

p
a
g
e
 i
d
:
g
7
z
re

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 134

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic

Mechanism in relation to AUTOSAR layers and system life time

p
a
g
e
 i
d

:
te

g
z
7

Basic Software

AUTOSAR Runtime Environment (RTE)

Application Layer

ECU Hardware

Life cycle: development production After production

Debug-

ging

(Dbg)

Develop-

ment Error

Tracer

(Det)

Diagnostic

Log

and Trace

(Dlt)

End to End

Communication

(E2E)

Diagnostic Event

Manger (Dem)

and Function

Inhibition

Manager (FiM)

Watchdog

(Wdg)

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 135

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic

Error Reporting via API

Error reporting via API

Informs the caller about failure of an operation by returning an error status.

Basic return type

Success: E_OK (value: 0)

Failure: E_NOT_OK (value: 1)

Specific return type

If different errors have to be distinguished for production code, own return types have to be

defined. Different errors shall only be used if the caller can really handle these. Specific

development errors shall not be returned via the API. They can be reported to the

Development Error Tracer (see 04-014).

Example: services of EEPROM driver

Success: EEP_E_OK

General failure (service not accepted): EEP_E_NOT_OK

Write Operation to EEPROM was not successful: EEP_E_WRITE_FAILED

p
a
g
e
 i
d

:
y
a
q
1
2

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 136

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic

Error Reporting – Introduction

Error reporting via Diagnostic Event Manager (Dem)

For reporting production / series errors.

Those errors have a defined reaction depending on the configuration of this ECU, e.g.:

 Writing to error memory

 Disabling of ECU functions (e.g. via Function Inhibition Manager)

 Notification of SW-Cs

The Diagnostic Event Manager is a standard AUTOSAR module which is always available in production code
and whose functionality is specified within AUTOSAR.

Error reporting via Development Error Tracer (Det)

For reporting development errors.

The Development Error Tracer is mainly intended for tracing and logging errors during development. Within the
Development Error Tracer many mechanisms are possible, e.g.:

 Count errors

 Write error information to ring buffer in RAM

 Send error information via serial interface to external logger

 Infinite Loop, Breakpoint

The Development Error Tracer is just a help for SW development and integration and is not necessarily
contained in the production code. The API is specified within AUTOSAR, but the functionality can be
chosen/implemented by the developer according to his specific needs.

The detection and reporting of development errors to the Development Error Tracer can be statically switched
on/off per module (preprocessor switch or two different object code builds of the module).

p
a
g
e
 i
d

:
o
iu

z
t

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 137

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic

Error Reporting – Diagnostic Event Manager

API

The Diagnostic Event Manager has semantically the following API:

Dem_ReportErrorStatus(EventId, EventStatus)

Problem: the error IDs passed with this API have to be ECU wide defined, have to be statically defined and have to occupy a
compact range of values for efficiency reasons. Reason: The Diagnostic Event Manager uses this ID as index for accessing
ROM arrays.

Error numbering concept: XML based error number generation

Properties:

 Source and object code compatible

 Single name space for all production relevant errors

 Tool support required

 Consecutive error numbers Error manager can easily access ROM arrays where handling and reaction of errors is
defined

Process:

 Each BSW Module declares all production code relevant error variables it needs as “extern”

 Each BSW Module stores all error variables that it needs in the ECU configuration description (e.g. CANSM_E_BUS_OFF)

 The configuration tool of the Diagnostic Event Manager parses the ECU configuration description and generates a single
file with global constant variables that are expected by the SW modules (e.g.
const Dem_EventIdType DemConf_DemEventParameter_CANSM_E_BUS_OFF=7U; or

#define DemConf_DemEventParameter_CANSM_E_BUS_OFF ((Dem_EventIdType)7))

 The reaction to the errors is also defined in the Error Manager configuration tool. This configuration is project specific.

p
a
g
e
 i
d

:
fg

h
jk

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 138

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic

Error Reporting – Development Error Tracer

API

The Development Error Tracer has syntactically the following API:

Det_ReportError(uint16 ModuleId, uint8 InstanceId, uint8 ApiId, uint8 ErrorId)

Error numbering concept
ModuleId (uint16)

The Module ID contains the AUTOSAR module ID from the Basic Software Module List.

As the range is 16 Bit, future extensions for development error reporting of application SW-C are possible. The Basic SW
uses only the range from 0..255.

InstanceId (uint8)

The Instance ID represents the identifier of an indexed based module starting from 0. If the module is a single instance
module it shall pass 0 as an instance ID.

ApiId (uint8)

The API-IDs are specified within the software specifications of the BSW modules. They can be #defines or constants
defined in the module starting with 0.

ErrorId (uint8)

The Error IDs are specified within the software specifications of the BSW modules. They can be #defines defined in the
module‘s header file.

If there are more errors detected by a particular software module which are not specified within the AUTOSAR module
software specification, they have to be documented in the module documentation.

All Error-IDs have to be specified in the BSW description.

p
a
g
e
 i
d

:
k
i8

7
z

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 139

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic

Error Reporting – Diagnostic Log and Trace (1)

The module Diagnostic Log and Trace (Dlt) collects log messages and converts them into a
standardized format. The Dlt forwards the data to the Dcm or a CDD which uses a serial
interface for example.

Therefore the Dlt provides the following functionalities:

 Logging

 logging of errors, warnings and info messages from AUTOSAR SW-Cs, providing a
standardized AUTOSAR interface,

 gathering all log and trace messages from all AUTOSAR SW-Cs in a centralized
AUTOSAR service component (Dlt) in the BSW,

 logging of messages from Det and

 logging of messages from Dem.

 Tracing

 of RTE activities

 Control

 individual log and trace messages can be enabled/disabled and

 Log levels can be controlled individually by back channel.

 Generic

 Dlt is available during development and production phase,

 access over standard diagnosis or platform specific test interface is possible and

 security mechanisms to prevent misuse in production phase are provided.

p
a
g
e
 i
d

:
y
e
c
v
b

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 140

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic

Error Reporting – Diagnostic Log and Trace (2)

The Dlt communication module is

enabled by an external client.

The external client has to set up a

diagnostic session in a defined

security level and sending control

message to Dlt for enabling the Dlt

communication module.

A SW-C is generating a log message.

The log message is sent to Dlt by

calling the API provided by Dlt.

Dlt sends the log message

to the implemented Dlt

communication module

interface.

At the end, the log message

is stored on an external

client and can be

analyzed later on.

p
a
g
e
 i
d

:d
x
c
v
b

SW-C

Dlt

Dlt comunication

module

Dcm

CAN / Flexray /

Ethernt / Serial

Rte

1

2

3

4

SW-C sends a log message via

Dlt_SendLogMessage()

Dlt collects

messages

Log message is

send over network

external client

collects stores log

messages

1

Over UDS an External Client

enables the Dlt

communication module

(WriteDataByIdendifer)

Dcnm Call

Dlt_WriteData()

2

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 141

Integration and Runtime Aspects - Error Handling, Reporting and Diagnostic

Error Reporting – Diagnostic Log and Trace (3)

API

The Diagnostic Log and Trace has syntactically the following API:
Dlt_SendLogMessage(Dlt_SessionIDType session_id, Dlt_MessageLogInfoType log_info, uint8
*log_data,
uint16 log_data_length)

Log message identification :

session_id
Session ID is the identification number of a log or trace session. A session is the logical entity of the source of log or
trace messages. If a SW-C is instantiated several times or opens several ports to Dlt, a new session with a new Session
ID for every instance is used. A SW-C additionally can have several log or trace sessions if it has several ports opened
to Dlt.

log_info contains:

Application ID / Context ID
Application ID is a short name of the SW-C. It identifies the SW-C in the log and trace message. Context ID is a user
defined ID to group log and trace messages produced by a SW-C to distinguish functionality. Each Application ID can
own several Context IDs. Context ID’s are grouped by Application ID’s. Both are composed by four 8 bit ASCII
characters.

Message ID
Messaged ID is the ID to characterize the information, which is transported by the message itself. It can be used for
identifying the source (in source code) of a message and shall be used for characterizing the payload of a message. A
message ID is statically fixed at development or configuration time.

log_data
Contain the log or trace data it self. The content and the structure of this provided buffer is specified by the Dlt
transmission protocol.

Description File
Normally the log_data contains only contents of not fixed variables or information (e.g. no static strings are transmitted).
Additionally a description file shall be provided. Within this file the same information for a log messages associated with the
Message ID are posted. These are information how to interpret the log_data buffer and what fixed entries belonging to a log
message.

p
a
g
e
 i
d

:
k
3
8
7
z

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 142

Table of contents

1. Architecture

2. Configuration

3. Integration and Runtime Aspects

1. Mapping of Runnables

2. Partitioning

3. Scheduling

4. Mode Management

5. Error Handling, Reporting and Diagnostic

6. Debugging

7. Measurement and Calibration

8. Functional Safety

9. Energy Management

p
a
g
e
 i
d

:
9
4
q
t4

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 143

The goal of the Debugging Module is to support a user (system integrator or BSW developer)

during development, in case the basic software does not behave as expected. To do so, it

collects as much information as possible about the runtime behavior of the systems without

halting the processor. This data is transmitted to an external host system via communication,

to enable the user to identify the source of a problem. An internal buffer is provided to

decouple data collection from data transmission.

Main tasks of the Debugging Module are to

 Collect and store data for tracing purposes

 Collect and immediately transmit data to host

 Modify data in target memory on host request

 Transmit stored data to host

 Accept commands to change the behavior of the Debugging Module

p
a
g
e
 i
d

:
1
1
2
3
1

Integration and Runtime Aspects - Debugging

Debugging Module - functional overview

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 144

The Debugging Module can:

 interface to ECU internal modules and to an external host system via communication.

With respect to the host system:

 the Debugging Module is also described as being ‘target’.

Internally, the Debugging Module consists of:

 a core part, which handles data sampling, and

 a communication part, which is responsible for transmission and reception of data.

The Debugging Module is designed to be:

 hardware independent and

 interfaces to the PDU router.

It can be used by:

 the BSW and

 RTE.

There is no interface to software components.

p
a
g
e
 i
d

:
1
1
2
3
a

Integration and Runtime Aspects - Debugging

Debugging Module - architectural overview

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 145

Integration and Runtime Aspects - Debugging

External architectural view - Data flow host target

p
a
g
e
 i
d

:
1
1
2
3
b

Debugging Com Module Host Debugging Core Module

host command

confirmation

call debug core command

processing of host

commands

BSW

collection of data

Example:

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 146

Integration and Runtime Aspects - Debugging

External architectural view - Data flow target host

p
a
g
e
 i
d

:
1
1
2
3
c

Debugging Com Module Host Debugging Core Module

message fragment 1

TX request

debugging communication

module contains

implementation of simplified

TP

BSW

collection of data

message fragment 2

message fragment n

Example:

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 147

Table of contents

1. Architecture

2. Configuration

3. Integration and Runtime Aspects

1. Mapping of Runnables

2. Partitioning

3. Scheduling

4. Mode Management

5. Error Handling, Reporting and Diagnostic

6. Debugging

7. Measurement and Calibration

8. Functional Safety

9. Energy Management

p
a
g
e
 i
d

:
9
4
rt

4

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 148

Integration and Runtime Aspects - Measurement and Calibration

XCP

XCP is an ASAM standard for calibration purpose of an ECU.

p
a
g
e
 i
d

:
y
0
0
9
9

AUTOSAR

COM

Communication HW Abstraction

Bus Interface(s)

(or Socket Adaptor on ethernet)

PDU Router

RTE

N-PDU

Signals

Communication Drivers

Bus Driver(s)

AUTOSAR Tp

I-PDU

Diagnostic

Communi-

cation

Manager

I-PDU1

I-
P

D
U

I-PDU

L-PDU

IPDU

multi-

plexer

I-PDU

NM

Module

Debugging

I-PDU XCP Protocol

XCPonFr /

XCPonCAN /

XCPonTCP/IP /

Interfaces

XCP within AUTOSAR provides

the following basic features:

 Synchronous data acquisition

 Synchronous data stimulation

 Online memory calibration (read / write

access)

 Calibration data page initialization and

switching

 Flash Programming for ECU

development purposes
N-PDU

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 149

Table of contents

1. Architecture

2. Configuration

3. Integration and Runtime Aspects

1. Mapping of Runnables

2. Partitioning

3. Scheduling

4. Mode Management

5. Error Handling, Reporting and Diagnostic

6. Debugging

7. Measurement and Calibration

8. Functional Safety

9. Energy Management

p
a
g
e
 i
d

:
9
4
s
t4

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 150

Libraries

150

Integration and Runtime Aspects – Safety End to End (E2E) Communication Protection

Overview

p
a
g
e
 i
d
:
y
x
c
v
b

CDD

Microcontroller 1 / ECU 1

 RTE

Microcontroller

Drivers

Memory Drivers I/O Drivers

I/O Hardware

Abstraction

Memory Hardware

Abstraction

Memory Services System Services

Onboard Device

Abstraction

Communication

Drivers

Communication

Hardware Abstraction

Communication

Services

 OS-Application 1

Sender

Receiver

2

IOC

 OS-Application 2

Receiver 1

 Microcontroller 2

/ ECU 2

S1

E2E protection

wrapper

E2E protection

wrapper

RTE int. wrapper

E
2
E

L
ib

Direct function call

Direct function call

Typical sources of interferences,

causing errors detected by E2E

protection:

SW-related sources:

S1. Error in mostly generated RTE,

S2. Error in partially generated and

partially hand-coded COM

S3. Error in network stack

S4. Error in generated IOC or OS

HW-related sources:

H1. Failure of HW network

H2. Network electromagnetic

interference

H3. Microcontroller failure during

context switch (partition) or on the

communication between cores

S2

S3

H1

H3

S4

H2

Direct function call

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 151 151

Integration and Runtime Aspects – Safety End to End (E2E) Communication Protection

Logic

p
a
g
e
 i
d
:
y
x
3
v
b

Libraries

AUTOSAR Runtime Environment (RTE)

 OS-Application 1

Sender 1

 OS-Application 2

Receiver 1

E2E protection

wrapper

E2E protection

wrapper

E
2
E

L
ib

1. Produce safe data elements

2. Invoke safe transmission

request -
E2EWRP_Write_<p>_<o>()

3. Call E2E protect on array – E2E_P0x_Protect()

4. Invoke RTE - RTE_Write_<p>_<o>() to

transmit the data element

5. RTE communication (intra or inter ECU), either through COM, IOC,

or local in RTE

Application logic Application logic

7. Invoke RTE read - RTE_Read_<p>_<o>() to get

the data element

9. Consume safe data elements

6. Invoke safe read do get the

data element -
E2EWRP_Read_<p>_<o>()

8. Call E2E check on array
- E2E_P0xCheck()

Notes:

 For each RTE Write or Read function that transmits safety-related data (like Rte_Write_<p>_<o>()), there is the

corresponding E2E protection wrapper function.

 The wrapper function invokes AUTOSAR E2E Library.

 The wrapper function is a part of Software Component and is preferably generated.

 The wrapper function has the same signature as the corresponding RTE function, just instead of Rte_ there is E2EPW_.

 The E2EPW_ function is called by Application logic of SW-Cs, and the wrapper does the protection/checks and calls

internally the RTE function.

 For inter-ECU communication, the data elements sent through E2E Protection wrapper are be byte arrays. The byte

arrays are put without any alterations in COM I-PDUs.

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 152

Table of contents

1. Architecture

2. Configuration

3. Integration and Runtime Aspects

1. Mapping of Runnables

2. Partitioning

3. Scheduling

4. Mode Management

5. Error Handling, Reporting and Diagnostic

6. Debugging

7. Measurement and Calibration

8. Functional Safety

9. Energy Management

p
a
g
e
 i
d

:
9
4
tt

4

- AUTOSAR Confidential -

Energy Management

Introduction

The goal of efficient energy management in AUTOSAR is to provide mechanisms for power

saving, especially while bus communication is active (e.g. charging or clamp 15 active).

AUTOSAR R3.2 and R4.0.3 support only Partial Networking.

Partial Networking

 Allows for turning off network communication across multiple ECUs in case their provided

functions are not required under certain conditions. Other ECUs can continue to

communicate on the same bus channel.

 Uses NM messages to communicate the request/release information of a partial network

cluster between the participating ECUs.

Pretended Networking (currently only for CAN)

 Allows turning off an ECU in an existing network while communication is on the bus. The ECU

can reduce runtime power consumption by increasing the idle time of the MCU.

 Uses an ECU local approach (node can decide by itself to switch into a power saving mode)

and therefore allows for easy integration into existing networks.

ECU Degradation

 Allows to switch of peripherals.

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 153

p
a
g
e
 i
d
:
e
e
p
2
q

- AUTOSAR Confidential -

Energy Management – Partial Networking

Example scenario of a partial network going to sleep

Initial situation:

 ECUs “A” and “B” are members of Partial Network Cluster (PNC) 1.

ECUs “B”, “C” and “D” are members of PNC 2.

 All functions of the ECUs are organized either in PNC 1 or PNC 2.

 Both PNCs are active.

 PNC 2 is only requested by ECU “C”.

 The function requiring PNC 2 on ECU “C” is terminated, therefore

ECU “C” can release PNC 2.

This is what happens:

 ECU “C” stops requesting PNC 2 to be active.

 ECUs “C” and “D” are no longer participating in any PNC and can

be shutdown.

 ECU “B” ceases transmission and reception of all signals

associated with PNC 2.

 ECU “B” still participates in PNC 1. That means it remains awake

and continues to transmit and receive all signals associated with

PNC 1.

 ECU “A” is not affected at all.

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 154

Physical CAN Bus

Partial Network Cluster 1

Partial Network Cluster 2

ECU A

ECU B

ECU C

ECU D

1

2

2

1

p
a
g
e
 i
d

:
e
e
p
3
e

2

- AUTOSAR Confidential -

Energy Management – Partial Networking

Conceptual terms

 A significant part of energy management is about mode handling. For the terms

 Vehicle Mode,

 Application Mode and

 Basic Software Mode

 see chapter 3.4 of this document.

 Virtual Function Cluster (VFC): groups the communication on port level between SW-

components that are required to realize one or more vehicle functions.

This is the logical view and allows for a reusable bus/ECU independent design.

 VFC-Controller: Special SW-component that decides if the functions of a VFC are required at

a given time and requests or releases communication accordingly.

 Partial Network Cluster (PNC): is a group of system signals necessary to support one or

more vehicle functions that are distributed across multiple ECUs in the vehicle network.

This represents the system view of mapping a group of buses to one ore more VFCs.

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 155

p
a
g
e
 i
d

:
e
e
p
3
c

- AUTOSAR Confidential -

Energy Management – Partial Networking

Restrictions

 Partial Networking (PN) is currently supported on CAN and FlexRay buses.

 LIN and CAN slave buses (i.e. CAN buses without network management) can be activated*
using PN but no wake-up or communication of PN information are supported on those buses

 To wake-up a PN ECU, a special transceiver HW is required as specified in ISO 11898-5.

 The standard wake-up without special transceiver HW known from previous AUTOSAR
releases is still supported.

 A VFC can be mapped to any number of PNCs (including zero)

 The concept of PN considers a VFC with only ECU-internal communication by mapping it
to the internal channel type in ComM as there is no bus communication and no physical
PNC

 Restrictions for CAN

 J1939 and PN exclude each other, due to address claiming and J1939 start-up behaviour

 J1939 need to register first their address in the network before they are allowed to start
communication after a wake-up.

 A J1939 bus not using address claiming can however be activated using PN as a CAN
slave bus as described above

 Restrictions on FlexRay

 FlexRay is only supported for requesting and releasing PNCs.

 FlexRay nodes cannot be shut down since there is no HW available which supports PN.

* All nodes connected to the slave buses are always activated. It is not possible only to activate a subset of the nodes.

p
a
g
e
 i
d
:
e
e
p
3
r

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 156

- AUTOSAR Confidential -

Energy Management – Partial Networking

Mapping of Virtual Function Cluster to Partial Network Cluster

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 157

SW-C

6

SW-C

7

SW-C

4

SW-C

3

SW-C

2

SW-C

5

SW-C

1

SW-Component of VFC1

SW-Component of VFC2

ECU Hardware

RTE

Basic Software

ECU Hardware

RTE

Basic Software

ECU Hardware

RTE

Basic Software

SW-C

2

SW-C

4

SW-C

3

SW-C

5

SW-C

6

SW-C

7

SW-C

1

ECU A ECU B ECU C

SW-Component of VFC3

CAN Bus

VFC1 VFC2 VFC3

PNC1 PNC2

Mapping of

VFC on PNC

PNC1 PNC2

CAN

• Here both Partial Networks

map to one CAN bus.

• One Partial Network can also

span more than one bus.

p
a
g
e
 i
d

:
e
e
p
3
m

PNC1 PNC2

Communication Port
CompositionType

- AUTOSAR Confidential -

Application Layer

Communication Hardware Abstraction

System Services

Communication Services

Energy Management – Partial Networking

Involved modules – Solution for CAN

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 158

p
a
g
e
 i
d

:
e
e
p
3
b

SW-C SW-C

CanIf

CanTrcv

 RTE
ComM_User

Request

ComM BswM

NmIf COM

CanNm CanSM PduR

Network

Request Request

ComMode

ComM_UserRequest

PNC states

Trigger Transmit

I-PDU GroupSwitch
PNC request/release

information

Mode

request

• VFC to PNC to channel

translation

• PNC management (request /

release of PNCs)

• Indication of PN states

• Coordination of I-PDU

group switching

• Start / stop I-PDU-groups

• Exchange PNC request / release

information between NM and

ComM via NM user data

• Enable / disable I-PDU-groups

• Filter incoming NM messages

• Collect internal and external PNC requests

• Send out PNC request infocmation in NM user data

• Spontaneous sending of NM messages on PNC

startup

or

- AUTOSAR Confidential -

Application Layer

Communication Hardware Abstraction

System Services

Communication Services

Energy Management – Pretended Networking

Involved modules – Solution for CAN

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 159

p
a
g
e
 i
d
:
e
e
p
4
b

SW-C SW-C

CanIf CanTrcv

 RTE

ComM BswM

COM

CanSM

Activate or

deactivate ICOM

ComM_UserRequest

I-PDU GroupSwitch

Mode

request

Activate or deactivate ICOM

Communication Drivers

Can

Activate or deactivate ICOM

• Enable, disable interrupts and

message buffers

- AUTOSAR Confidential -

Energy Management – Pretended Networking

Restrictions

 Pretended Networking is currently supported on CAN buses only. Future releases will also

support FlexRay.

 Pretended Networking in gateway ECUs is not supported.

 For level 1, the functionality of the BSW is reduced while the MCU is in Pretended

Networking mode. This increases the idle time of the software, which increases the time the

MCU can be put in an energy efficient state. Only when the payload of received message has

to be filtered for wakeup reasons, or messages have to be sent, the software needs to be

active.

 Level 1 can, therefore, reuse existing communication controllers. It does, however, require a

hardware timer to issue a cyclic wakeup, even when the MCU is paused.

 For level 2, a new type of Intelligent Communication Controllers (ICOMs) will be required.

ICOMs are able to send, receive and filter frames, even if the MCU is not running. Dedicated

hardware will be necessary especially for high-speed busses such as FlexRay, because the

activation time for the software based approach would decrease the saving potential of

Pretended Networking due to the much higher data rate. In Release 4.1 only Level 1 is

available.

p
a
g
e
 i
d
:
e
e
p
4
r

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 160

- AUTOSAR Confidential -

Complex

Drivers

Application Layer

I/O Hardware Abstraction

System Services

Energy Management – ECU Degradation

Involved modules – Solution for I/O Drivers

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 161

p
a
g
e
 i
d
:
e
e
p
5
b

SW-C SW-C

IOHwA

 RTE

BswM OS
Control core HALT

Mode

request

I/O Drivers

Pwm

Switch power state

Adc

Prepare / Enter power state Notify power state ready

- AUTOSAR Confidential -

Energy Management – ECU Degradation

Restrictions

 ECU Degradation is currently supported only on MCAL drivers Pwm and Adc.

 Core HALT and ECU sleep are considered mutually exclusive modes.

 Clock modifications as a means of reducing power consumption are not in the scope of the

concept (but still remain available as specific MCU driver configurations).

p
a
g
e
 i
d
:
e
e
p
5
r

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture 162

