
Specification of RTE
V3.2.0

R4.0 Rev 3

Document Title Specification of RTE
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 084

Document Classification Standard

Document Version 3.2.0

Document Status Final

Part of Release 4.0

Revision 3

Document Change History
Date Version Changed by Change Description

26.10.2011 3.2.0 AUTOSAR
Administra-
tion

• Adapted to new version of meta
model
• Support for mixed compu meth-

ods with categories SCALE_
LINEAR_AND_TEXTTABLE and
SCALE_RATIONAL_AND_
TEXTTABLE added
• Support for compatibility of partial

record types added
• Consolidation of signal invalidation,

data conversion, and out-of-range
handling
• General consolidation and bug

fixes

1 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

29.10.2010 3.1.0 AUTOSAR
Administra-
tion

• Adapted to new version of meta
model
• Backward compatibility to implicit

communication behavior of AU-
TOSAR 2.1/3.0/3.1 added
• Support of inter-runnable variables

extended to composite data types
• Clarification which API calls shall

be implemented as macro ac-
cesses to the component data
structure in compatibility mode (see
rte_sws_1156)
• General consolidation and bug

fixes

18.12.2009 3.0.0 AUTOSAR
Administra-
tion

• Adapted to new version of meta
model
• RTE and Basic Software Scheduler

merged
• Support of multi core architectures

added
• Re-scaling at ports added
• API enhancements added

2 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

04.02.2009 2.1.0 AUTOSAR
Administra-
tion

• updated VFB-Tracing: changes
rte_sws_1327,rte_sws_1328
• unconnected R-Ports are sup-

ported: changed rte_sws_1329,
rte_sws_3019; added
rte_sws_1330, rte_sws_1331,
rte_sws_1333, rte_sws_1334,
rte_sws_1336, rte_sws_1337,
rte_sws_1346, rte_sws_2621,
rte_sws_2638, rte_sws_2639,
rte_sws_2640, rte_sws_3785,
rte_sws_5099, rte_sws_5100,
rte_sws_5101, rte_sws_5102
• incompatible function declara-

tions: changed rte_sws_1018,
rte_sws_1019, rte_sws_1020;
added rte_sws_5107,
rte_sws_5108, rte_sws_5109;
removed rte_sws_6030.
• Insufficient RTE server map-

ping requirement: changed
rte_sws_2204.

15.02.2008 2.0.1 AUTOSAR
Administra-
tion

Layout adaptations

20.12.2007 2.0.0 AUTOSAR
Administra-
tion

• Adapted to new version of meta
model
• "RTE ECU Configuration" added
• Calibration and measurement re-

vised
• Document meta information ex-

tended
• Small layout adaptations made

31.01.2007 1.1.1 AUTOSAR
Administra-
tion

• "Advice for users" revised
• "Revision Information" added

3 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

01.12.2006 1.1.0 AUTOSAR
Administra-
tion

Updated for AUTOSAR Release 2.1.
• Adapted to new version of meta

model
• New feature ’debouncing of runn-

able activation’
• New feature ’runnable activation

offset’
• ’Measurement and Calibration’

added
• Semantics of implicit communica-

tion enhanced
• Legal disclaimer revised

18.07.2006 1.0.1 AUTOSAR
Administra-
tion

Second release. Additional features in-
tegrated, adapted to updated version of
meta-model.

05.05.2006 1.0.0 AUTOSAR
Administra-
tion

Initial release

4 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Disclaimer

This specification and the material contained in it, as released by AUTOSAR, is for the
purpose of information only. AUTOSAR and the companies that have contributed to it
shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types of
Intellectual Property Rights. The commercial exploitation of the material contained in
this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only.
For any other purpose, no part of the specification may be utilized or reproduced, in
any form or by any means, without permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice to users of AUTOSAR Specification Documents

AUTOSAR specifications may contain exemplary items (exemplary reference models,
"use cases", and/or references to exemplary technical solutions, devices, processes or
software).

Any such exemplary items are contained in the specifications for illustration purposes
only, and they themselves are not part of the AUTOSAR Standard. Neither their pres-
ence in such specifications, nor any later documentation of AUTOSAR conformance of
products actually implementing such exemplary items, imply that intellectual property
rights covering such exemplary items are licensed under the same rules as applicable
to the AUTOSAR Standard.

5 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Table of Contents

1 Introduction 20

1.1 Scope . 20
1.2 Dependency to other AUTOSAR specifications 21
1.3 Acronyms and Abbreviations . 22
1.4 Technical Terms . 22
1.5 Document Conventions . 29
1.6 Requirements Traceability . 29

2 RTE Overview 50

2.1 The RTE in the Context of AUTOSAR 50
2.2 AUTOSAR Concepts . 50

2.2.1 AUTOSAR Software-components 50
2.2.2 Basic Software Modules . 51
2.2.3 Communication . 52

2.2.3.1 Communication Paradigms 52
2.2.3.2 Communication Modes 52
2.2.3.3 Static Communication 53
2.2.3.4 Multiplicity . 53

2.2.4 Concurrency . 54
2.3 The RTE Generator . 54
2.4 Design Decisions . 55

3 RTE Generation Process 56

3.1 Contract Phase . 59
3.1.1 RTE Contract Phase . 59
3.1.2 Basic Software Scheduler Contract Phase 61

3.2 PreBuild Data Set Contract Phase . 61
3.3 Edit ECU Configuration of the RTE . 61
3.4 Generation Phase . 63

3.4.1 Basic Software Scheduler Generation Phase 63
3.4.2 RTE Generation Phase . 64
3.4.3 Basic Software Module Description generation 65

3.4.3.1 Bsw Module Description 66
3.4.3.2 Bsw Internal Behavior 67
3.4.3.3 Bsw Implementation . 68

3.5 PreBuild Data Set Generation Phase . 69
3.6 PostBuild Data Set Generation Phase 69
3.7 RTE Configuration interaction with other BSW Modules 70

4 RTE Functional Specification 72

4.1 Architectural concepts . 72
4.1.1 Scope . 72
4.1.2 RTE and Data Types . 73
4.1.3 RTE and AUTOSAR Software-Components 74

6 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4.1.3.1 Hierarchical Structure of Software-Components 75
4.1.3.2 Ports, Interfaces and Connections 75
4.1.3.3 Internal Behavior . 77
4.1.3.4 Implementation . 80

4.1.4 Instantiation . 81
4.1.4.1 Scope and background 81
4.1.4.2 Concepts of instantiation 82
4.1.4.3 Single instantiation . 82
4.1.4.4 Multiple instantiation . 83

4.1.5 RTE and AUTOSAR Services . 84
4.1.6 RTE and ECU Abstraction . 85
4.1.7 RTE and Complex Device Driver 85
4.1.8 Basic Software Scheduler and Basic Software Modules 86

4.1.8.1 Description of a Basic Software Module 86
4.1.8.2 Basic Software Interfaces 86
4.1.8.3 Basic Software Internal Behavior 86
4.1.8.4 Basic Software Implementation 87
4.1.8.5 Multiple Instances of Basic Software Modules 87
4.1.8.6 AUTOSAR Services / ECU Abstraction / Complex De-

vice Drivers . 87
4.2 RTE and Basic Software Scheduler Implementation Aspects 88

4.2.1 Scope . 88
4.2.2 OS . 90

4.2.2.1 OS Objects . 91
4.2.2.2 Basic Software Schedulable Entities 93
4.2.2.3 Runnable Entities . 94
4.2.2.4 RTE Events . 94
4.2.2.5 BswEvents . 95
4.2.2.6 Mapping of Runnable Entities and Basic Software

Schedulable Entities to tasks (informative) 97
4.2.2.7 Monitoring of runnable execution time 104
4.2.2.8 Synchronization of TimingEvent activated runnables . . 110
4.2.2.9 BackgroundEvent activated Runnable Entities and Ba-

sicSoftware Scheduleable Entities 111
4.2.3 Activation and Start of ExecutableEntitys 112

4.2.3.1 Activation by direct function call 120
4.2.3.2 Activation Offset for RunnableEntitys and

BswSchedulableEntitys 121
4.2.4 Interrupt decoupling and notifications 124

4.2.4.1 Basic notification principles 124
4.2.4.2 Interrupts . 124
4.2.4.3 Decoupling interrupts on RTE level 125
4.2.4.4 RTE and interrupt categories 126
4.2.4.5 RTE and Basic Software Scheduler and BswExecu-

tionContext . 126
4.2.5 Data Consistency . 127

7 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4.2.5.1 General . 127
4.2.5.2 Communication Patterns 129
4.2.5.3 Concepts . 129
4.2.5.4 Mechanisms to guarantee data consistency 130
4.2.5.5 Exclusive Areas . 133
4.2.5.6 InterRunnableVariables 136

4.2.6 Multiple trigger of Runnable Entities and Basic Software Schedu-
lable Entities . 139

4.2.7 Implementation of Parameter and Data elements 140
4.2.7.1 General . 140
4.2.7.2 Compatibility rules . 140
4.2.7.3 Implementation of an interface element 141
4.2.7.4 Initialization of VariableDataPrototypes 142

4.2.8 Measurement and Calibration . 143
4.2.8.1 General . 143
4.2.8.2 Measurement . 145
4.2.8.3 Calibration . 152
4.2.8.4 Generation of McSupportData 166

4.2.9 Access to NVRAM data . 181
4.2.9.1 General . 181
4.2.9.2 Usage of the NvBlockSwComponentType 181
4.2.9.3 Interface of the NvBlockSwComponentType 187
4.2.9.4 Data Consistency . 191

4.3 Communication Paradigms . 191
4.3.1 Sender-Receiver . 192

4.3.1.1 Introduction . 192
4.3.1.2 Receive Modes . 192
4.3.1.3 Multiple Data Elements 195
4.3.1.4 Multiple Receivers and Senders 196
4.3.1.5 Implicit and Explicit Data Reception and Transmission . 197
4.3.1.6 Transmission Acknowledgement 204
4.3.1.7 Communication Time-out 206
4.3.1.8 Data Element Invalidation 208
4.3.1.9 Filters . 210
4.3.1.10 Buffering . 211
4.3.1.11 Operation . 213
4.3.1.12 “Never received status” for Data Element 221
4.3.1.13 “Update flag” for Data Element 222
4.3.1.14 Dynamic data type . 222
4.3.1.15 Inter-ECU communication through TP 223
4.3.1.16 Inter-ECU communication of arrays of bytes 224
4.3.1.17 Handling of acknowledgment events 225

4.3.2 Client-Server . 227
4.3.2.1 Introduction . 227
4.3.2.2 Multiplicity . 229
4.3.2.3 Communication Time-out 231

8 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4.3.2.4 Port-Defined argument values 233
4.3.2.5 Buffering . 234
4.3.2.6 Inter-ECU and Inter-Partition Response to Request

Mapping . 235
4.3.2.7 Operation . 237

4.3.3 SWC internal communication . 243
4.3.3.1 Inter Runnable Variables 243

4.3.4 Inter-Partition communication . 245
4.3.4.1 Inter partition data communication using IOC 246
4.3.4.2 Accessing COM from slave core in multicore configura-

tion . 247
4.3.4.3 Signaling and control flow support for inter partition

communication . 251
4.3.4.4 Trusted Functions . 251
4.3.4.5 Memory Protection and Pointer Type Parameters in

RTE API . 252
4.3.5 PortInterface Element Mapping and Data Conversion 253

4.3.5.1 PortInterface Element Mapping 253
4.3.5.2 Network Representation 255
4.3.5.3 Data Conversion . 256
4.3.5.4 Range Checks during Runtime 259

4.4 Modes . 266
4.4.1 Mode User . 267
4.4.2 Mode Manager . 269
4.4.3 Refinement of the semantics of ModeDeclarations and Mode-

DeclarationGroups . 270
4.4.4 Order of actions taken by the RTE / Basic Software Scheduler

upon interception of a mode switch notification 271
4.4.5 Assignment of mode machine instances to RTE and Basic Soft-

ware Scheduler . 277
4.4.6 Initialization of mode machine instances 278
4.4.7 Notification of mode switches . 281
4.4.8 Mode switch acknowledgment 284

4.5 External and Internal Trigger . 285
4.5.1 External Trigger Event Communication 285

4.5.1.1 Introduction . 285
4.5.1.2 Trigger Sink . 286
4.5.1.3 Trigger Source . 287
4.5.1.4 Multiplicity . 289
4.5.1.5 Synchronized Trigger 290

4.5.2 Inter Runnable Triggering . 290
4.5.2.1 Multiplicity . 291

4.5.3 Inter Basic Software Module Entity Triggering 291
4.5.4 Queuing of Triggers . 292
4.5.5 Activation of triggered ExecutableEntities 294

4.6 Initialization and Finalization . 296

9 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4.6.1 Initialization and Finalization of the RTE 296
4.6.1.1 Initialization of the Basic Software Scheduler 296
4.6.1.2 Initialization of the RTE 297
4.6.1.3 Stop and restart of the RTE 298
4.6.1.4 Finalization of the RTE 299
4.6.1.5 Finalization of the Basic Software Scheduler 299

4.6.2 Initialization and Finalization of AUTOSAR Software-Components 299
4.7 Variant Handling Support . 301

4.7.1 Overview . 301
4.7.2 Choosing a Variant and Binding Variability 302

4.7.2.1 General impact of Binding Times on RTE generation . . 302
4.7.2.2 Choosing a particular variant 303
4.7.2.3 SystemDesignTime . 304
4.7.2.4 CodeGenerationTime 304
4.7.2.5 PreCompileTime . 305
4.7.2.6 LinkTime . 305
4.7.2.7 PostBuild . 306

4.7.3 Variability affecting the RTE generation 306
4.7.3.1 Software Composition 307
4.7.3.2 Atomic Software Component and its Internal Behavior . 309
4.7.3.3 NvBlockComponent and its Internal Behavior 312
4.7.3.4 Parameter Component 313
4.7.3.5 Data Type . 313
4.7.3.6 Basic Software Modules and its Internal Behavior . . . 314

4.7.4 Variability affecting the Basic Software Scheduler generation . . 314
4.7.4.1 Basic Software Scheduler API which is subject to vari-

ability . 314
4.7.4.2 Basic Software Entities 315
4.7.4.3 API behavior . 316

4.8 Development errors . 316
4.8.1 DET Report Identifiers . 316
4.8.2 DET Error Identifiers . 317
4.8.3 DET Error Classification . 318

5 RTE Reference 321

5.1 Scope . 321
5.1.1 Programming Languages . 321
5.1.2 Generator Principles . 322

5.1.2.1 Operating Modes . 322
5.1.2.2 Optimization Modes . 324
5.1.2.3 Build support . 324
5.1.2.4 Debugging support . 326
5.1.2.5 Software Component Namespace 327

5.1.3 Generator external configuration switches 327
5.2 API Principles . 328

5.2.1 RTE Namespace . 329

10 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

5.2.2 Direct API . 329
5.2.3 Indirect API . 330

5.2.3.1 Accessing Port Handles 330
5.2.4 VariableAccess in the dataReadAccess and

dataWriteAccess roles . 331
5.2.5 Per Instance Memory . 332
5.2.6 API Mapping . 336

5.2.6.1 “RTE Contract” Phase 337
5.2.6.2 “RTE Generation” Phase 339
5.2.6.3 Function Elision . 340
5.2.6.4 API Naming Conventions 340
5.2.6.5 API Parameters . 341
5.2.6.6 Return Values . 343
5.2.6.7 Return References . 345
5.2.6.8 Error Handling . 347
5.2.6.9 Success Feedback . 347

5.2.7 Unconnected Ports . 348
5.2.7.1 Data Elements . 348
5.2.7.2 Mode Switch Ports . 350
5.2.7.3 Client-Server . 351

5.2.8 Non-identical port interfaces . 351
5.3 RTE Modules . 352

5.3.1 RTE Header File . 352
5.3.2 Lifecycle Header File . 353
5.3.3 Application Header File . 353

5.3.3.1 File Name . 354
5.3.3.2 Scope . 354
5.3.3.3 File Contents . 356

5.3.4 RTE Types Header File . 358
5.3.4.1 File Contents . 359
5.3.4.2 Classification of Implementation Data Types 360
5.3.4.3 Primitive Implementation Data Type 361
5.3.4.4 Array Implementation Data Type 362
5.3.4.5 Structure Implementation Data Type and Union Imple-

mentation Data Type 365
5.3.4.6 Union Implementation Data Type 365
5.3.4.7 Implementation Data Type redefinition 370
5.3.4.8 Pointer Implementation Data Type 370
5.3.4.9 ImplementationDataTypes with Variation-

Points . 371
5.3.4.10 Naming of data types 372
5.3.4.11 C/C++ . 374

5.3.5 RTE Data Handle Types Header File 374
5.3.5.1 File Name . 374
5.3.5.2 File Contents . 374

5.3.6 Application Types Header File . 375

11 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

5.3.6.1 File Name . 375
5.3.6.2 Scope . 376
5.3.6.3 File Contents . 377
5.3.6.4 RTE Modes . 377
5.3.6.5 Enumeration Data Types 377
5.3.6.6 Range Data Types . 377
5.3.6.7 Implementation Data Type symbols 377

5.3.7 VFB Tracing Header File . 377
5.3.7.1 C/C++ . 378
5.3.7.2 File Contents . 378

5.3.8 RTE Configuration Header File 379
5.3.8.1 C/C++ . 379
5.3.8.2 File Contents . 380

5.3.9 Generated RTE . 386
5.3.9.1 Header File Usage . 386
5.3.9.2 C/C++ . 387
5.3.9.3 File Contents . 388
5.3.9.4 Reentrancy . 390

5.3.10 RTE Post Build Variant Sets . 390
5.3.10.1 Example 1: File Contents Rte_PBCfg.h 391
5.3.10.2 Example 2: File Contents Rte_PBCfg.h 391
5.3.10.3 Examples: File Contents Rte_PBCfg.c 392

5.4 RTE Data Structures . 393
5.4.1 Instance Handle . 394
5.4.2 Component Data Structure . 395

5.4.2.1 Data Handles Section 397
5.4.2.2 Per-instance Memory Handles Section 400
5.4.2.3 Inter Runnable Variable Handles Section 401
5.4.2.4 Exclusive-area API Section 402
5.4.2.5 Port API Section . 402
5.4.2.6 Calibration Parameter Handles Section 408
5.4.2.7 Inter Runnable Variable API Section 408
5.4.2.8 Inter Runnable Triggering API Section 409
5.4.2.9 Vendor Specific Section 410

5.5 API Data Types . 410
5.5.1 Std_ReturnType . 410

5.5.1.1 Infrastructure Errors . 412
5.5.1.2 Application Errors . 412
5.5.1.3 Predefined Error Codes 413

5.5.2 Rte_Instance . 416
5.5.3 RTE Modes . 416
5.5.4 Enumeration Data Types . 419
5.5.5 Range Data Types . 421

5.6 API Reference . 422
5.6.1 Rte_Ports . 422
5.6.2 Rte_NPorts . 423

12 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

5.6.3 Rte_Port . 423
5.6.4 Rte_Write . 424
5.6.5 Rte_Send . 426
5.6.6 Rte_Switch . 428
5.6.7 Rte_Invalidate . 429
5.6.8 Rte_Feedback . 430
5.6.9 Rte_SwitchAck . 433
5.6.10 Rte_Read . 435
5.6.11 Rte_DRead . 436
5.6.12 Rte_Receive . 437
5.6.13 Rte_Call . 439
5.6.14 Rte_Result . 442
5.6.15 Rte_Pim . 444
5.6.16 Rte_CData . 445
5.6.17 Rte_Prm . 446
5.6.18 Rte_IRead . 447
5.6.19 Rte_IWrite . 448
5.6.20 Rte_IWriteRef . 449
5.6.21 Rte_IInvalidate . 450
5.6.22 Rte_IStatus . 451
5.6.23 Rte_IrvIRead . 453
5.6.24 Rte_IrvIWrite . 454
5.6.25 Rte_IrvRead . 455
5.6.26 Rte_IrvWrite . 457
5.6.27 Rte_Enter . 458
5.6.28 Rte_Exit . 458
5.6.29 Rte_Mode . 459
5.6.30 Enhanced Rte_Mode . 461
5.6.31 Rte_Trigger . 463
5.6.32 Rte_IrTrigger . 464
5.6.33 Rte_IFeedback . 465
5.6.34 Rte_IsUpdated . 467

5.7 Runnable Entity Reference . 468
5.7.1 Signature . 468
5.7.2 Entry Point Prototype . 469
5.7.3 Role Parameters . 471
5.7.4 Return Value . 472
5.7.5 Triggering Events . 472

5.7.5.1 TimingEvent . 473
5.7.5.2 BackgroundEvent . 473
5.7.5.3 SwcModeSwitchEvent 473
5.7.5.4 AsynchronousServerCallReturnsEvent 473
5.7.5.5 DataReceiveErrorEvent 474
5.7.5.6 OperationInvokedEvent 474
5.7.5.7 DataReceivedEvent . 476
5.7.5.8 DataSendCompletedEvent 476

13 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

5.7.5.9 ModeSwitchedAckEvent 476
5.7.5.10 ExternalTriggerOccurredEvent 477
5.7.5.11 InternalTriggerOccurredEvent 477
5.7.5.12 DataWriteCompletedEvent 477

5.7.6 Reentrancy . 478
5.8 RTE Lifecycle API Reference . 478

5.8.1 Rte_Start . 478
5.8.2 Rte_Stop . 479
5.8.3 Rte_PartitionTerminated . 480
5.8.4 Rte_PartitionRestarting . 481
5.8.5 Rte_RestartPartition . 482

5.9 RTE Call-backs Reference . 483
5.9.1 RTE-COM Message Naming Conventions 483
5.9.2 Communication Service Call-backs 484
5.9.3 Naming convention of Communication Callbacks 484
5.9.4 NVM Service Call-backs . 488

5.9.4.1 Rte_SetMirror . 488
5.9.4.2 Rte_GetMirror . 489
5.9.4.3 Rte_NvMNotifyJobFinished 490
5.9.4.4 Rte_NvMNotifyInitBlock 491

5.10 Expected interfaces . 492
5.10.1 Expected Interfaces from Com 492
5.10.2 Expected Interfaces from Os . 493

5.11 VFB Tracing Reference . 493
5.11.1 Principle of Operation . 493
5.11.2 Support for multiple clients . 494
5.11.3 Contribution to the Basic Software Module Description 495
5.11.4 Trace Events . 495

5.11.4.1 RTE API Trace Events 495
5.11.4.2 COM Trace Events . 496
5.11.4.3 OS Trace Events . 498
5.11.4.4 Runnable Entity Trace Events 500

5.11.5 Configuration . 501
5.11.6 Interaction with Object-code Software-Components 501

6 Basic Software Scheduler Reference 503

6.1 Scope . 503
6.2 API Principles . 503

6.2.1 Basic Software Scheduler Namespace 503
6.2.2 BSW Scheduler Name Prefix and Section Name Prefix 504

6.3 Basic Software Scheduler modules . 508
6.3.1 Module Interlink Types Header 508

6.3.1.1 File Name . 508
6.3.1.2 Scope . 509
6.3.1.3 File Contents . 510
6.3.1.4 Basic Software Scheduler Modes 510

14 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

6.3.2 Module Interlink Header . 510
6.3.2.1 File Name . 511
6.3.2.2 Scope . 512
6.3.2.3 File Contents . 512

6.4 API Data Types . 514
6.4.1 Predefined Error Codes for Std_ReturnType 514
6.4.2 Basic Software Modes . 515

6.5 API Reference . 516
6.5.1 SchM_Enter . 516
6.5.2 SchM_Exit . 518
6.5.3 SchM_Switch . 519
6.5.4 SchM_Mode . 520
6.5.5 Enhanced SchM_Mode . 522
6.5.6 SchM_SwitchAck . 524
6.5.7 SchM_Trigger . 525
6.5.8 SchM_ActMainFunction . 527
6.5.9 SchM_CData . 528

6.6 Bsw Module Entity Reference . 529
6.6.1 Signature . 529
6.6.2 Entry Point Prototype . 530
6.6.3 Reentrancy . 531

6.7 Basic Software Scheduler Lifecycle API Reference 531
6.7.1 SchM_Init . 531
6.7.2 SchM_Deinit . 532
6.7.3 SchM_GetVersionInfo . 533

7 RTE ECU Configuration 535

7.1 Ecu Configuration Variants . 536
7.2 RTE Module Configuration . 536

7.2.1 RTE Configuration Version Information 538
7.3 RTE Generation Parameters . 539
7.4 RTE PreBuild configuration . 544
7.5 RTE PostBuild configuration . 546
7.6 Handling of Software Component instances 548

7.6.1 RTE Event to task mapping . 549
7.6.1.1 Evaluation and execution order 551
7.6.1.2 Direct function call . 551
7.6.1.3 Schedule Points . 551
7.6.1.4 Timeprotection support 552
7.6.1.5 Os Interaction . 553
7.6.1.6 Background activation 553
7.6.1.7 Constraints . 554

7.6.2 Rte Os Interaction . 558
7.6.2.1 Activation using Os features 558
7.6.2.2 Modes and Schedule Tables 561

7.6.3 Exclusive Area implementation 565

15 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

7.6.4 NVRam Allocation . 567
7.6.5 SWC Trigger queuing . 571

7.7 Handling of Software Component types 575
7.7.1 Selection of Software-Component Implementation 575
7.7.2 Component Type Calibration . 575

7.8 Implicit communication configuration . 578
7.9 Communication infrastructure . 581
7.10 Configuration of the BSW Scheduler . 581

7.10.1 BSW Scheduler General configuration 582
7.10.2 BSW Module Instance configuration 583

7.10.2.1 BSW ExclusiveArea configuration 585
7.10.2.2 BswEvent to task mapping 587
7.10.2.3 BSW Trigger configuration 590
7.10.2.4 BSW ModeDeclarationGroup configuration 595

7.11 Configuration of Initialization . 597

A Metamodel Restrictions 601

A.1 Restrictions concerning WaitPoint . 601
A.2 Restrictions concerning RTEEvent . 601
A.3 Restrictions concerning queued implementation policy 602
A.4 Restrictions concerning ServerCallPoint 603
A.5 Restriction concerning multiple instantiation of software components . . 604
A.6 Restrictions concerning runnable entity 604
A.7 Restrictions concerning runnables with dependencies on modes 605
A.8 Restriction concerning SwcInternalBehavior 607
A.9 Restrictions concerning Initial Value . 607
A.10 Restriction concerning PerInstanceMemory 607
A.11 Restrictions concerning unconnected r-port 608
A.12 Restrictions regarding communication of mode switch notifications . . . 608
A.13 Restrictions regarding Measurement and Calibration 609
A.14 Restriction concerning ExclusiveAreaImplMechanism 609
A.15 Restrictions concerning AtomicSwComponentTypes 610
A.16 Restriction concerning the enableUpdate attribute of Nonqueue-

dReceiverComSpecs . 610
A.17 Restrictions concerning the large and dynamic data type 610
A.18 Restriction concerning REFERENCE types 611

B External Requirements 612

C MISRA C Compliance 617

D Changes History 619

D.1 Changes in Rel. 4.0 Rev. 2 compared to Rel. 4.0 Rev. 1 619
D.1.1 Deleted SWS Items . 619
D.1.2 Changed SWS Items . 619
D.1.3 Added SWS Items . 619

D.2 Changes in Rel. 4.0 Rev. 3 compared to Rel. 4.0 Rev. 2 620

16 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

D.2.1 Deleted SWS Items . 620
D.2.2 Changed SWS Items . 620
D.2.3 Added SWS Items . 620

17 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

References

[1] Virtual Functional Bus
AUTOSAR_EXP_VFB.pdf

[2] Software Component Template
AUTOSAR_TPS_SoftwareComponentTemplate.pdf

[3] Specification of Communication
AUTOSAR_SWS_COM.pdf

[4] Specification of Operating System
AUTOSAR_SWS_OS.pdf

[5] Requirements on ECU Configuration
AUTOSAR_RS_ECUConfiguration.pdf

[6] Methodology
AUTOSAR_TR_Methodology.pdf

[7] Specification of ECU State Manager with fixed state machine
AUTOSAR_SWS_ECUStateManagerFixed.pdf

[8] System Template
AUTOSAR_TPS_SystemTemplate.pdf

[9] Basic Software Module Description Template
AUTOSAR_TPS_BSWModuleDescriptionTemplate.pdf

[10] Generic Structure Template
AUTOSAR_TPS_GenericStructureTemplate.pdf

[11] Glossary
AUTOSAR_TR_Glossary.pdf

[12] Specification of Multi-Core OS Architecture
AUTOSAR_SWS_MultiCoreOS.pdf

[13] Specification of Interoperability of AUTOSAR Tools
AUTOSAR_TR_InteroperabilityOfAutosarTools.pdf

[14] Specification of Timing Extensions
AUTOSAR_TPS_TimingExtensions.pdf

[15] Specification of ECU Configuration
AUTOSAR_TPS_ECUConfiguration.pdf

[16] Layered Software Architecture
AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf

[17] Specification of ECU Resource Template
AUTOSAR_TPS_ECUResourceTemplate.pdf

18 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

[18] Specification of I/O Hardware Abstraction
AUTOSAR_SWS_IOHardwareAbstraction.pdf

[19] Requirements on Operating System
AUTOSAR_SRS_OS.pdf

[20] Requirements on Multi-Core OS Architecture
AUTOSAR_SRS_MultiCoreOS.pdf

[21] Requirements on Communication
AUTOSAR_SRS_COM.pdf

[22] ASAM MCD 2MC ASAP2 Interface Specification
http://www.asam.net
ASAP2-V1.51.pdf

[23] Specification of NVRAM Manager
AUTOSAR_SWS_NVRAMManager.pdf

[24] API Specification of Development Error Tracer
AUTOSAR_SWS_DevelopmentErrorTracer.pdf

[25] Gemeinsames Subset der MISRA C Guidelines
HIS_SubSet_MISRA_C_1.0.3.pdf

[26] Specification of Memory Mapping
AUTOSAR_SWS_MemoryMapping.pdf

[27] Specification of Debugging in AUTOSAR
AUTOSAR_SWS_Debugging.pdf

[28] Specification of Compiler Abstraction
AUTOSAR_SWS_CompilerAbstraction.pdf

[29] Specification of Standard Types
AUTOSAR_SWS_StandardTypes.pdf

[30] Specification of Diagnostic Log and Trace
AUTOSAR_SWS_DiagnosticLogAndTrace.pdf

[31] General Requirements on Basic Software Modules
AUTOSAR_SRS_BSWGeneral.pdf

19 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

http://www.asam.net

Specification of RTE
V3.2.0

R4.0 Rev 3

Note on XML examples
This specification includes examples in XML based on the AUTOSAR metamodel avail-
able at the time of writing. These examples are included as illustrations of configura-
tions and their expected outcome but should not be considered part of the specification.

1 Introduction

This document contains the software specification of the AUTOSAR Run-Time Environ-
ment (RTE) and the Basic Software Scheduler. Basically, the RTE together with the
OS, AUTOSAR COM and other Basic Software Modules is the implementation of the
Virtual Functional Bus concepts (VFB, [1]). The RTE implements the AUTOSAR Virtual
Functional Bus interfaces and thereby realizes the communication between AUTOSAR
software-components.

This document describes how these concepts are realized within the RTE. Further-
more, the Application Programming Interface (API) of the RTE and the interaction of
the RTE with other basic software modules is specified.

The Basic Software Scheduler offers concepts and services to integrate Basic Soft-
ware Modules Hence, the Basic Software Scheduler

• embed Basic Software Module implementations into the AUTOSAR OS context

• trigger main processing functions of the Basic Software Modules

• apply data consistency mechanisms for the Basic Software Modules

• to communicate modes between Basic Software Modules

1.1 Scope

This document is intended to be the main reference for developers of an RTE gener-
ator tool or of a concrete RTE implementation respectively. The document is also the
reference for developers of AUTOSAR software-components and basic software mod-
ules that interact with the RTE, since it specifies the application programming interface
of the RTE and therefore the mechanisms for accessing the RTE functionality. Fur-
thermore, this specification should be read by the AUTOSAR working groups that are
closely related to the RTE (see Section 1.2 below), since it describes the interfaces of
the RTE to these modules as well as the behavior / functionality the RTE expects from
them.

This document is structured as follows. After this general introduction, Chapter 2 gives
a more detailed introduction of the concepts of the RTE. Chapter 3 describes how an
RTE is generated in the context of the overall AUTOSAR methodology. Chapter 4 is
the central part of this document. It specifies the RTE functionality in detail. The RTE
API is described in Chapter 5.

20 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

The appendix of this document consists of five parts: Appendix A lists the restrictions to
the AUTOSAR metamodel that this version of the RTE specification relies on. Appendix
B explicitly lists all external requirements, i.e. all requirements that are not about the
RTE itself but specify the assumptions on the environment and the input of an RTE
generator. In Appendix C some HIS MISRA rules are listed that are likely to be violated
by RTE code, and the rationale why these violations may occur.

Note that Chapters 1 and 2, as well as Appendix C do not contain any requirements
and are thus intended for information only.

Chapters 4 and 5 are probably of most interest for developers of an RTE Generator.
Chapters 2, 3, 5 are important for developers of AUTOSAR software-components and
basic software modules. The most important chapters for related AUTOSAR work
packages would be Chapters 4, 5, as well as Appendix B.

The specifications in this document do not define details of the implementation of a
concrete RTE or RTE generator respectively. Furthermore, aspects of the ECU- and
system-generation process (like e.g. the mapping of SW-Cs to ECUs, or schedulability
analysis) are also not in the scope of this specification. Nevertheless, it is specified
what input the RTE generator expects from these configuration phases.

1.2 Dependency to other AUTOSAR specifications

The main documents that served as input for the specification of the RTE are the spec-
ification of the Virtual Functional Bus [1] and the specification of the Software Com-
ponent Template [2]. Also of primary importance are the specifications of those Basic
Software modules that closely interact with the RTE (or vice versa). These are espe-
cially the communication module [3] and the operating system [4]. The main input of
an RTE generator is described (among others) in the ECU Configuration Description.
Therefore, the corresponding specification [5] is also important for the RTE specifica-
tion. Furthermore, as the process of RTE generation is an important part of the overall
AUTOSAR Methodology, the corresponding document [6] is also considered.

The following list shows the specifications that are closely interdependent to the speci-
fication of the RTE:

• Specification of the Virtual Functional Bus [1]

• Specification of the Software Component Template [2]

• Specification of AUTOSAR COM [3]

• Specification of AUTOSAR OS [4]

• Specification of ECU State Manager and Communication Manager [7]

• Specification of ECU Configuration [5]

• Specification of System Description / Generation [8]

21 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

• AUTOSAR Methodology [6]

• Specification of BSW Module Description Template [9]

• AUTOSAR Generic Structure Template [10]

1.3 Acronyms and Abbreviations

All abbreviations used throughout this document – except the ones listed here – can
be found in the official AUTOSAR glossary [11].

1.4 Technical Terms

All technical terms used throughout this document – except the ones listed here – can
be found in the official AUTOSAR glossary [11] or the Software Component Template
Specification [2].

Term Description

mode switch port
The port for receiving (or sending) a mode switch noti-
fication. For this purpose, a mode switch port is typed
by a ModeSwitchInterface.

mode user

An AUTOSAR SW-C or AUTOSAR Basic Soft-
ware Module that depends on modes by ModeDis-
ablingDependency, SwcModeSwitchEvent, BswMod-
eSwitchEvent, or simply by reading the current state
of a mode is called a mode user. A mode user
is defined by having a require mode switch port
or a requiredModeGroup ModeDeclarationGroupPro-
totype. See also section 4.4.1.

mode manager

Entering and leaving modes is initiated by a mode
manager. A mode manager is defined by having
a provide mode switch port or a providedMod-
eGroup ModeDeclarationGroupPrototype. A mode
manager might be either an application mode
manager or a Basic Software Module that provides
a service including mode switches, like the ECU State
Manager. See also section 4.4.2.

application mode man-
ager

An application mode manager is an AUTOSAR
software-component that provides the service of
switching modes. The modes of an application
mode manager do not have to be standardized.

22 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

mode switch notification

The communication of a mode switch from the mode
manager to the mode user using either the Mod-
eSwitchInterface or providedModeGroup and re-
quiredModeGroup ModeDeclarationGroupPrototypes
is called mode switch notification.

mode machine instance

The instances of mode machines or ModeDeclaration-
Groups are defined by the ModeDeclarationGroup-
Prototypes of the mode managers.
Since a mode switch is not executed instantaneously,
The RTE or Basic Software Scheduler has to main-
tain it’s own states. For each mode manager’s Mod-
eDeclarationGroupPrototype, RTE or Basic Software
Scheduler has one state machine. This state ma-
chine is called mode machine instance. For all mode
users of the same mode manager’s ModeDeclara-
tionGroupPrototype, RTE and Basic Software Sched-
uler uses the same mode machine instance. See also
section 4.4.2.

common mode machine
instance

A ‘common mode machine instance’ is a special
‘mode machine instance’ shared by BSW Modules
and SW-Cs:
The RTE Generator creates only one mode ma-
chine instance if a ModeDeclarationGroupProto-
type instantiated in a port of a software-component
is synchronized (synchronizedModeGroup of a SwcB-
swMapping) with a providedModeGroup ModeDecla-
rationGroupPrototype of a Basic Software Module in-
stance. The related mode machine instance is
called common mode machine instance.

ModeDisablingDepen-
dency

An RTEEvent and BswEvent that starts a Runnable
Entity respectively a Basic Software Schedulable En-
tity can contain a disabledInMode association which
references a ModeDeclaration. This association is
called ModeDisablingDependency in this document.

mode disabling dependent
ExecutableEntity

A mode disabling dependent Runnable Entity or
a Basic Software Schedulable Entity is triggered
by an RTEEvent respectively a BswEvent with a
ModeDisablingDependency. RTE and Basic Soft-
ware Scheduler prevent the start of those Runn-
able Entity or Basic Software Schedulable Entity by
the RTEEvent / BswEvent, when the corresponding
mode disabling is active. See also section 4.4.1.

23 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

mode disabling

When a ‘mode disabling’ is active, RTE and Basic
Software Scheduler disables the start of mode dis-
abling dependent ExecutableEntitys. The
‘mode disabling’ is active during the mode that is refer-
enced in the mode disabling dependency and during
the transitions that enter and leave this mode. See
also section 4.4.1.

OnEntry ExecutableEntity

A Runnable Entity or a Basic Software Schedulable
Entity that is triggered by a SwcModeSwitchEvent re-
spectively a BswModeSwitchEvent with ModeActiva-
tionKind ‘entry’ is triggered on entering the mode. It
is called OnEntry ExecutableEntity. See also section
4.4.1.

OnExit ExecutableEntity

A Runnable Entity or a Basic Software Schedulable
Entity that is triggered by a SwcModeSwitchEvent re-
spectively a BswModeSwitchEvent with ModeActiva-
tionKind ‘exit’ is triggered on exiting the mode. It
is called OnExit ExecutableEntity. See also section
4.4.1.

OnTransition Exe-
cutableEntity

A Runnable Entity or a Basic Software Schedulable
Entity that is triggered by a SwcModeSwitchEvent re-
spectively a BswModeSwitchEvent with ModeActiva-
tionKind ‘transition’ is triggered on a transition be-
tween the two specified modes. It is called OnTran-
sition ExecutableEntity. See also section 4.4.1.

mode switch acknowledge
ExecutableEntity

A Runnable Entity or a Basic Software Schedulable
Entity that is triggered by a SwcModeSwitchedAck-
Event respectively a BswModeSwitchedAckEvent
connected to the mode manager’s ModeDeclara-
tionGroupPrototype. It is called mode switch acknowl-
edge ExecutableEntity. See also section 4.4.1.

server runnable

A server that is triggered by an OperationInvokedE-
vent. It has a mixed behavior between a runnable
and a function call. In certain situations, RTE can im-
plement the client server communication as a simple
function call.

runnable activation

The activation of a runnable is linked to the RTEEvent
that leads to the execution of the runnable. It is defined
as the incident that is referred to by the RTEEvent.
E.g., for a timing event, the corresponding runnable is
activated, when the timer expires, and for a data re-
ceived event, the runnable is activated when the data
is received by the RTE.

24 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Basic Software Schedula-
ble Entity activation

The activation of a Basic Software Schedulable Entity
is defined as the activation of the task that contains
the Basic Software Schedulable Entity and eventually
includes setting a flag that tells the glue code in the
task which Basic Software Schedulable Entity is to be
executed.

runnable start A runnable is started by the calling the C-function that
implements the runnable from within a started task.

Basic Software Schedula-
ble Entity start

A Basic Software Schedulable Entity is started by the
calling the C-function that implements the Basic Soft-
ware Schedulable Entity from within a started task.

Trigger Emitter

A Trigger Emitter has the ability to release trig-
gers which in turn are activating triggered Ex-
ecutableEntitys. Trigger Emitter are described
by the meta model with provide trigger ports,
Trigger in role releasedTrigger, Internal-
TriggeringPoints and BswInternalTrigger-
ingPoints.

Trigger Source

A Trigger Source administrate the particular Trigger
and informs the RTE or Basic Software Scheduler if
the Trigger is raised. A Trigger Source has dedicated
provide trigger port(s) or / and releasedTrigger
Trigger (s) to communicate to the Trigger Sink(s).

Trigger Sink

A Trigger Sink relies on the activation of Runnable
Entities or Basic Software Schedulable Entities if a
particular Trigger is raised. A Trigger Sink has
a dedicated require trigger port(s) or / and re-
quiredTrigger Trigger (s) to communicate to the Trig-
ger Source(s).

trigger port A PortPrototype which is typed by an Trigger-
Interface

triggered ExecutableEntity

A Runnable Entity or a Basic Software Schedulable
Entity that is triggered at least by one External-
TriggerOccurredEvent / BswExternalTrigge-
rOccurredEvent or InternalTriggerOccurre-
dEvent / BswInternalTriggerOccurredEvent.
In particular cases, the Trigger Event Communication
or the Inter Runnable Triggering is implemented by
RTE or Basic Software Scheduler as a direct function
call of the triggered ExecutableEntity by the triggering
ExecutableEntity.

25 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

triggered runnable

A Runnable Entity that is triggered at least by one
ExternalTriggerOccurredEvent or Internal-
TriggerOccurredEvent. In particular cases, the
Trigger Event Communication or the Inter Runnable
Triggering is implemented by RTE as a direct function
call of the triggered runnable by the triggering runn-
able.

triggered Basic Software
Schedulable Entity

A Basic Software Schedulable Entity that is trig-
gered at least by one BswExternalTriggerOc-
curredEvent or BswInternalTriggerOccurre-
dEvent. In particular cases, the Trigger Event Com-
munication or the Inter Basic Software Schedulable
Entity Triggering is implemented by Basic Software
Scheduler as a direct function call of the triggered Ex-
ecutableEntity by the triggering ExecutableEntity.

execution-instance

An execution-instance of a ExecutableEntity is
one instance or call context of an ExecutableEn-
tity with respect to concurrent execution, see sec-
tion 4.2.3.

inter-ECU communication
The communication between ECUs, typically using
COM is called inter-ECU communication in this doc-
ument.

inter-partition communica-
tion

The communication within one ECU but between dif-
ferent partitions, represented by different OS appli-
cations, is called inter-partition communication
in this document. It typically involves the use of OS
mechanisms like IOC or trusted function calls. The
partitions can be located on different cores or use dif-
ferent memory sections of the ECU.

intra-partition communica-
tion

The communication within one partition of one ECU
is called intra-partition communication. In this
case, RTE can make use of internal buffers and
queues for communication.

intra-ECU communication

The communication within one ECU is called intra-
ECU communication in this document. It is a super set
of inter-partition communication and intra-
partition communication.

SystemDesignTime Vari-
ability

Variability defined with an VariationPoint or At-
tributeValueVariationPoint with latest bindingTime
SystemDesignTime.

CodeGenerationTime
Variability

Variability defined with an VariationPoint or At-
tributeValueVariationPoint with latest bindingTime
CodeGenerationTime.

26 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

PreCompileTime Variabil-
ity

Variability defined with an VariationPoint or At-
tributeValueVariationPoint with latest bindingTime
PreCompileTime.

LinkTime Variability
Variability defined with an VariationPoint or At-
tributeValueVariationPoint with latest bindingTime
LinkTime.

PreBuild Variability

Variability defined with an VariationPoint or At-
tributeValueVariationPoint with latest bindingTime
SystemDesignTime, CodeGenerationTime,
PreCompileTime or LinkTime.

PostBuild Variability Variability defined with an VariationPoint having
an postBuildVariantCriterion

Preemption Area

A preemption area defines a set of tasks which are
scheduled cooperatively. Therefore tasks of one pre-
emption area are preempting each other only at dedi-
cated schedule points. A schedule point is not allowed
to occur during the execution of a RunnableEntity.

Copy Semantic

Copy semantic means, that the accessing entities are
able to read or write the "copied" data from their exe-
cution context in a non concurrent and non preempting
manner. If all accessing entities are in the same Pre-
emption Area this might not require a real physical
data copy.

Primitive Data Type
Primitive data types are the types implemented by
a boolean, integer (up to 32 bits), floating point, or
opaque type (up to 32 bits).

NvBlockSwComponent NvBlockSwComponent is a ComponentPrototype
typed an NvBlockSwComponentType.

’C’ typed PerInstance-
Memory

’C’ typed PerInstanceMemory is defined with the class
PerInstanceMemory. The type of the memory is
defined with a ’C’ typedef in the attribute typeDefi-
nition.

AutosarDataProto-
type implementation

Definitions and declarations for non automatic1 mem-
ory objects which are allocated by the RTE and imple-
menting AutosarDataPrototypes or their belong-
ing status handling.

Implicit Read Access
VariableAccess aggregated in the role
dataReadAccess to a VariableDataProto-
toype

Implicit Write Access
VariableAccess aggregated in the role
dataWriteAccess to a VariableDataPro-
totoype

1declaration with no static or external specifier defines an automatic variable

27 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Incoherent Implicit Data
Access

An Implicit Read Access or an Implicit
Write Access which does not belong to a Co-
herency Group. Therefore it is NOT referenced
by any RteVariableReadAccessRef or Rte-
VariableWriteAccessRef belonging to a RteIm-
plicitCommunication container which RteCo-
herentAccess parameter is set to true.

Incoherent Implicit Read
Access

An Implicit Read Access which does not be-
long to a Coherency Group. Therefore it is NOT
referenced by any RteVariableReadAccessRef
belonging to a RteImplicitCommunication con-
tainer which RteCoherentAccess parameter is set
to true.

Incoherent Implicit Write
Access

An Implicit Write Access which does not be-
long to a Coherency Group. Therefore it is NOT
referenced by any RteVariableWriteAccessRef
belonging to a RteImplicitCommunication con-
tainer which RteCoherentAccess parameter is set
to true.

Coherency Group

A set of Implicit Read Accesses and Implicit
Write Accesses for which the RTE cares for data
coherency. Please note that in the context of this spec-
ification the definition of coherency includes that
• read data values of different VariableDat-
aPrototypes have to be from the same age,
except the values are changed by Implicit
Write Accesses belonging to the Coherency
Group
• written data values of different VariableDat-
aPrototypes are communicated to readers
NOT belonging to the Coherency Group after
the last Implicit Write Access belonging
to the Coherency Group.

Coherent Implicit Data Ac-
cess

An Implicit Read Access or an Implicit
Write Access which belongs to Coherency
Group. Therefore it is referenced by a RteVari-
ableReadAccessRef or RteVariableWriteAc-
cessRef belonging to a RteImplicitCommu-
nication container which RteCoherentAccess
parameter is set to true.

28 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Coherent Implicit Read
Access

An Implicit Read Access which belongs to
Coherency Group. Therefore it is referenced
by a RteVariableReadAccessRef belonging to
a RteImplicitCommunication container which
RteCoherentAccess parameter is set to true.

Coherent Implicit Write
Access

An Implicit Write Access which belongs to
Coherency Group. Therefore it is referenced
by a RteVariableReadAccessRef or RteVari-
ableWriteAccessRef belonging to a RteIm-
plicitCommunication container which RteCo-
herentAccess parameter is set to true.

1.5 Document Conventions

Requirements in the SRS are referenced using [RTE<n>] where <n> is the require-
ment id. For example, [RTE00098].

Requirements in the SWS are marked with [rte_sws_<n>]d as the first text in a para-
graph. The scope of the requirement is marked with the half brackets. c()

External requirements on the input of the RTE are marked with [rte_sws_ext_<n>].

Technical terms are typeset in monospace font, e.g. Warp Core.

API function calls are also marked with monospace font, like Rte_ejectWarpCore().

1.6 Requirements Traceability

Requirement Satisfied by
[BSW00300] Module
naming convention

rte_sws_1171 rte_sws_1003 rte_sws_7122 rte_sws_7922
rte_sws_7139 rte_sws_1157 rte_sws_1158 rte_sws_1169
rte_sws_1161 rte_sws_7504 rte_sws_7295 rte_sws_7288
rte_sws_7284

[BSW00305] Self-
defined data types
naming convention

rte_sws_1150 rte_sws_3714 rte_sws_3733 rte_sws_2301
rte_sws_3731 rte_sws_1055

[BSW00307] Global
variables naming
convention

rte_sws_1171 rte_sws_3712 rte_sws_7284

[BSW00308] Defini-
tion of global data

rte_sws_3786 rte_sws_7121 rte_sws_7921 rte_sws_7502

29 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

[BSW00310] API
naming convention

rte_sws_1071 rte_sws_1072 rte_sws_2631 rte_sws_1206
rte_sws_1083 rte_sws_2725 rte_sws_1091 rte_sws_7394
rte_sws_1092 rte_sws_1102 rte_sws_1111 rte_sws_1118
rte_sws_1252 rte_sws_3928 rte_sws_3929 rte_sws_3741
rte_sws_3744 rte_sws_5509 rte_sws_3800 rte_sws_3550
rte_sws_3553 rte_sws_3560 rte_sws_3565 rte_sws_1120
rte_sws_1123 rte_sws_7367 rte_sws_7390 rte_sws_2569
rte_sws_7556

[BSW00312] Shared
code shall be reen-
trant

rte_sws_1012

[BSW00326] Transi-
tion from ISRs to OS
tasks

rte_sws_3600 rte_sws_3594 rte_sws_3530 rte_sws_3531
rte_sws_3532

[BSW00327] Er-
ror values naming
convention

rte_sws_1058 rte_sws_1060 rte_sws_1064 rte_sws_1317
rte_sws_1061 rte_sws_1065 rte_sws_7384 rte_sws_7655
rte_sws_2571 rte_sws_7289 rte_sws_7290 rte_sws_7562
rte_sws_7563

[BSW00330] Usage of
macros / inline func-
tions instead of func-
tions

rte_sws_1274

[BSW00336] Shut-
down interface

rte_sws_7274 rte_sws_7275 rte_sws_7277

[BSW00337] Classifi-
cation of errors

rte_sws_6630 rte_sws_7676 rte_sws_6631 rte_sws_6632
rte_sws_6633 rte_sws_6634 rte_sws_7684 rte_sws_6635
rte_sws_6637 rte_sws_7675 rte_sws_7685 rte_sws_7682
rte_sws_7683

[BSW00338] Detec-
tion and Reporting of
development errors

rte_sws_6630 rte_sws_7676 rte_sws_6631 rte_sws_6632
rte_sws_6633 rte_sws_6634 rte_sws_7684 rte_sws_6635
rte_sws_6637 rte_sws_7675 rte_sws_7685 rte_sws_7682
rte_sws_7683

[BSW00342] Usage of
source code and ob-
ject code

rte_sws_7511

[BSW00345] Pre–
compile–time configu-
ration

rte_sws_5103

[BSW00346] Basic
set of module files

rte_sws_6638

[BSW00347] Naming
separation of differ-
ent instances of BSW
drivers

rte_sws_6535 rte_sws_6536 rte_sws_6532 rte_sws_7250
rte_sws_7253 rte_sws_7255 rte_sws_7260 rte_sws_7694
rte_sws_7263 rte_sws_7266 rte_sws_7093 rte_sws_7282
rte_sws_7504 rte_sws_7295 rte_sws_7528

30 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

[BSW00353] Platform
specific type header

rte_sws_7641 rte_sws_1163 rte_sws_7104

[BSW00397] Pre-
compile-time parame-
ters

rte_sws_5103

[BSW00399] Load-
able Post-build time
parameters

rte_sws_5104

[BSW004] Version
check

rte_sws_7692

[BSW00400] Se-
lectable Post-build
time parameters

rte_sws_5104

[BSW00405] Ref-
erence to multiple
configuration sets

rte_sws_6544 rte_sws_6545

[BSW00407] Get ver-
sion info keyword

rte_sws_7278 rte_sws_7279 rte_sws_7280 rte_sws_7281

[BSW00415] User de-
pendent include files

rte_sws_7501 rte_sws_7504 rte_sws_7505 rte_sws_7506
rte_sws_7510 rte_sws_7503 rte_sws_7295 rte_sws_7296
rte_sws_7500

[BSW00447] Stan-
dardizing Include file
structure of BSW
Modules Implement-
ing Autosar Service

rte_sws_7120

[BSW007] HIS MISRA
C

rte_sws_7086 rte_sws_3715 rte_sws_1168 rte_sws_7300

[BSW101] Initializa-
tion interface

rte_sws_7270 rte_sws_7271 rte_sws_7273

[BSW161] Microcon-
troller abstraction

rte_sws_2734

[RTE00003] Tracing of
sender-receiver com-
munication

rte_sws_1357 rte_sws_1238 rte_sws_1240 rte_sws_1241
rte_sws_3814 rte_sws_7639 rte_sws_1242

[RTE00004] Tracing of
client-server commu-
nication

rte_sws_1357 rte_sws_1238 rte_sws_1240 rte_sws_1241
rte_sws_3814 rte_sws_7639 rte_sws_1242

[RTE00005] Support
for ’trace’ build

rte_sws_3607 rte_sws_1320 rte_sws_1322 rte_sws_1323
rte_sws_1327 rte_sws_1328 rte_sws_5093 rte_sws_5091
rte_sws_5092 rte_sws_5106 rte_sws_8000

[RTE00008] VFB trac-
ing configuration

rte_sws_3607 rte_sws_1320 rte_sws_1236 rte_sws_1321
rte_sws_1322 rte_sws_1323 rte_sws_1324 rte_sws_1325
rte_sws_5093 rte_sws_5091 rte_sws_5092 rte_sws_8000

31 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

[RTE00011] Support
for multiple applica-
tion software compo-
nent instances

rte_sws_2001 rte_sws_2008 rte_sws_2009 rte_sws_2002
rte_sws_3015 rte_sws_2015 rte_sws_1148 rte_sws_1012
rte_sws_1013 rte_sws_3806 rte_sws_3793 rte_sws_7132
rte_sws_3718 rte_sws_3719 rte_sws_1349 rte_sws_3720
rte_sws_3721 rte_sws_3716 rte_sws_3717 rte_sws_7225
rte_sws_3722 rte_sws_3711 rte_sws_1016

[RTE00012] Mul-
tiple instantiated
AUTOSAR software-
components delivered
as binary code shall
share code

rte_sws_3015 rte_sws_2015 rte_sws_1007

[RTE00013] Per-
instance memory

rte_sws_3790 rte_sws_7045 rte_sws_7161 rte_sws_2303
rte_sws_2304 rte_sws_7133 rte_sws_3782 rte_sws_7134
rte_sws_7135 rte_sws_2305 rte_sws_7182 rte_sws_8304
rte_sws_7183 rte_sws_7184 rte_sws_5062 rte_sws_2301
rte_sws_2302 rte_sws_8303

[RTE00017] Rejection
of inconsistent compo-
nent implementations

rte_sws_1004 rte_sws_2751 rte_sws_1276 rte_sws_7123
rte_sws_7510

32 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

[RTE00018] Rejection
of invalid configura-
tions

rte_sws_1358 rte_sws_7402 rte_sws_3526 rte_sws_3010
rte_sws_7007 rte_sws_7403 rte_sws_3012 rte_sws_3018
rte_sws_3014 rte_sws_3605 rte_sws_7170 rte_sws_7101
rte_sws_3527 rte_sws_2733 rte_sws_2706 rte_sws_2500
rte_sws_2662 rte_sws_2663 rte_sws_2664 rte_sws_7157
rte_sws_7686 rte_sws_4525 rte_sws_7642 rte_sws_7681
rte_sws_3019 rte_sws_2750 rte_sws_2670 rte_sws_2724
rte_sws_2738 rte_sws_3951 rte_sws_3970 rte_sws_7190
rte_sws_7191 rte_sws_7654 rte_sws_7810 rte_sws_7811
rte_sws_7812 rte_sws_7670 rte_sws_5116 rte_sws_7803
rte_sws_7808 rte_sws_7809 rte_sws_7181 rte_sws_7075
rte_sws_7516 rte_sws_7192 rte_sws_7006 rte_sws_5506
rte_sws_3755 rte_sws_2526 rte_sws_2723 rte_sws_7662
rte_sws_3764 rte_sws_2529 rte_sws_2579 rte_sws_5111
rte_sws_5054 rte_sws_3817 rte_sws_3820 rte_sws_3823
rte_sws_3826 rte_sws_3831 rte_sws_7545 rte_sws_7548
rte_sws_7039 rte_sws_7549 rte_sws_7610 rte_sws_3594
rte_sws_7353 rte_sws_7621 rte_sws_7343 rte_sws_7356
rte_sws_7357 rte_sws_7667 rte_sws_2254 rte_sws_7044
rte_sws_3950 rte_sws_7564 rte_sws_2730 rte_sws_7057
rte_sws_7524 rte_sws_7005 rte_sws_7028 rte_sws_2051
rte_sws_2009 rte_sws_2204 rte_sws_7347 rte_sws_6502
rte_sws_6503 rte_sws_6504 rte_sws_6505 rte_sws_6547
rte_sws_6548 rte_sws_6508 rte_sws_6509 rte_sws_6511
rte_sws_6610 rte_sws_6613 rte_sws_5149 rte_sws_7640
rte_sws_3851 rte_sws_3813 rte_sws_7175 rte_sws_7135
rte_sws_1287 rte_sws_1313 rte_sws_7638 rte_sws_6719
rte_sws_6724 rte_sws_7026 rte_sws_7588

[RTE00019] RTE is
the communication in-
frastructure

rte_sws_6000 rte_sws_6011 rte_sws_5500 rte_sws_4527
rte_sws_6023 rte_sws_4526 rte_sws_6024 rte_sws_3760
rte_sws_3761 rte_sws_3762 rte_sws_4515 rte_sws_4516
rte_sws_7662 rte_sws_4520 rte_sws_4522 rte_sws_8001
rte_sws_8002 rte_sws_2527 rte_sws_2528 rte_sws_3769
rte_sws_1231 rte_sws_5063 rte_sws_3007 rte_sws_3008
rte_sws_3000 rte_sws_3001 rte_sws_3002 rte_sws_3775
rte_sws_2612 rte_sws_2610 rte_sws_5084 rte_sws_3004
rte_sws_3005 rte_sws_3776 rte_sws_5065 rte_sws_2611
rte_sws_5085 rte_sws_1264 rte_sws_3795 rte_sws_3796

[RTE00020] Access to
OS

rte_sws_2250

[RTE00021] Per-ECU
RTE customization

rte_sws_5000 rte_sws_1316

[RTE00022] Interac-
tion with call-backs

rte_sws_1165

33 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

[RTE00023] RTE
Overheads

rte_sws_5053

[RTE00024] Source-
code AUTOSAR
software components

rte_sws_1315 rte_sws_1000 rte_sws_7120 rte_sws_1195

[RTE00025] Static
communication

rte_sws_6026

[RTE00027] VFB to
RTE mapping shall be
semantic preserving

rte_sws_2200 rte_sws_2201 rte_sws_1274

[RTE00028] 1:n
Sender-receiver com-
munication

rte_sws_6023 rte_sws_4526 rte_sws_6024 rte_sws_1071
rte_sws_7824 rte_sws_7826 rte_sws_2635 rte_sws_1082
rte_sws_1072 rte_sws_7825 rte_sws_7827 rte_sws_2633
rte_sws_2631 rte_sws_1091 rte_sws_7394 rte_sws_1092
rte_sws_1135

[RTE00029] n:1
Client-server commu-
nication

rte_sws_5110 rte_sws_5163 rte_sws_6019 rte_sws_4519
rte_sws_4517 rte_sws_3763 rte_sws_3770 rte_sws_3767
rte_sws_3768 rte_sws_2579 rte_sws_3769 rte_sws_1102
rte_sws_1109 rte_sws_1133 rte_sws_1359 rte_sws_1166
rte_sws_7023 rte_sws_7024 rte_sws_7025 rte_sws_7026
rte_sws_7027 rte_sws_5193

[RTE00031] Multiple
Runnable Entities

rte_sws_2202 rte_sws_1126 rte_sws_1132 rte_sws_1016
rte_sws_6713 rte_sws_1130

[RTE00032] Data con-
sistency mechanisms

rte_sws_3514 rte_sws_3500 rte_sws_3504 rte_sws_5164
rte_sws_3595 rte_sws_3503 rte_sws_7005 rte_sws_3516
rte_sws_3517 rte_sws_3519 rte_sws_2740 rte_sws_2741
rte_sws_2743 rte_sws_2744 rte_sws_2745 rte_sws_2746
rte_sws_1122 rte_sws_3739 rte_sws_3740 rte_sws_3812

[RTE00033] Seri-
alized execution of
Server Runnable
Entities

rte_sws_4515 rte_sws_4518 rte_sws_4522 rte_sws_8001
rte_sws_8002 rte_sws_2527 rte_sws_2528 rte_sws_2529
rte_sws_2530 rte_sws_7008

[RTE00036] As-
signment to OS
Applications

rte_sws_7347

[RTE00045] Stan-
dardized VFB tracing
interface

rte_sws_1319 rte_sws_1250 rte_sws_1251 rte_sws_1321
rte_sws_1326 rte_sws_1238 rte_sws_1239 rte_sws_1240
rte_sws_1241 rte_sws_3814 rte_sws_7639 rte_sws_1242
rte_sws_1243 rte_sws_1244 rte_sws_1245 rte_sws_1246
rte_sws_1247 rte_sws_1248 rte_sws_1249

34 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

[RTE00046] Support
for ’Executable Entity
runs inside’ Exclusive
Areas

rte_sws_3500 rte_sws_3515 rte_sws_7522 rte_sws_7523
rte_sws_7524 rte_sws_2740 rte_sws_2741 rte_sws_2743
rte_sws_2744 rte_sws_2745 rte_sws_2746 rte_sws_1120
rte_sws_1122 rte_sws_1123 rte_sws_7250 rte_sws_7251
rte_sws_7252 rte_sws_7578 rte_sws_7579 rte_sws_7253
rte_sws_7254

[RTE00048] RTE
Generator input

rte_sws_5001

[RTE00049] Con-
struction of task
bodies

rte_sws_7516 rte_sws_2251 rte_sws_2254 rte_sws_2204

[RTE00051] RTE API
mapping

rte_sws_3014 rte_sws_3605 rte_sws_7170 rte_sws_2679
rte_sws_2730 rte_sws_1269 rte_sws_1148 rte_sws_1274
rte_sws_3706 rte_sws_3707 rte_sws_3837 rte_sws_1156
rte_sws_1153 rte_sws_1146 rte_sws_2619 rte_sws_2613
rte_sws_3602 rte_sws_2614 rte_sws_2615 rte_sws_3603
rte_sws_1354 rte_sws_1355 rte_sws_1280 rte_sws_1281
rte_sws_2632 rte_sws_1282 rte_sws_1283 rte_sws_1284
rte_sws_1285 rte_sws_1286 rte_sws_1287 rte_sws_2676
rte_sws_2677 rte_sws_2678 rte_sws_1289 rte_sws_7396
rte_sws_1313 rte_sws_7395 rte_sws_1288 rte_sws_1290
rte_sws_1293 rte_sws_1294 rte_sws_6639 rte_sws_1296
rte_sws_1297 rte_sws_1298 rte_sws_1312 rte_sws_1299
rte_sws_1119 rte_sws_1300 rte_sws_3927 rte_sws_3952
rte_sws_3930 rte_sws_1301 rte_sws_1268 rte_sws_1302
rte_sws_3746 rte_sws_3747 rte_sws_5510 rte_sws_5511
rte_sws_3801 rte_sws_1303 rte_sws_1304 rte_sws_3555
rte_sws_1305 rte_sws_3562 rte_sws_1306 rte_sws_3567
rte_sws_1307 rte_sws_1123 rte_sws_1308 rte_sws_1276
rte_sws_3718 rte_sws_3719 rte_sws_1349 rte_sws_3720
rte_sws_3721 rte_sws_3716 rte_sws_3717 rte_sws_7225
rte_sws_3723 rte_sws_3733 rte_sws_2608 rte_sws_2588
rte_sws_1363 rte_sws_1364 rte_sws_2607 rte_sws_1365
rte_sws_1366 rte_sws_3734 rte_sws_2666 rte_sws_2589
rte_sws_7136 rte_sws_2301 rte_sws_2302 rte_sws_3739
rte_sws_3740 rte_sws_3812 rte_sws_2616 rte_sws_2617
rte_sws_3799 rte_sws_3731 rte_sws_7137 rte_sws_7138
rte_sws_7677 rte_sws_3730 rte_sws_2620 rte_sws_2621
rte_sws_1055 rte_sws_3726 rte_sws_2618 rte_sws_1343
rte_sws_1342 rte_sws_1053 rte_sws_3835 rte_sws_3949
rte_sws_3725 rte_sws_3752 rte_sws_2623 rte_sws_3791
rte_sws_7226 rte_sws_7227 rte_sws_7228 rte_sws_1309
rte_sws_1310 rte_sws_1159 rte_sws_1266 rte_sws_1197
rte_sws_1132 rte_sws_6713 rte_sws_7291

35 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

[RTE00052] Initializa-
tion and finalization of
components

rte_sws_7046 rte_sws_3852 rte_sws_2503 rte_sws_2562
rte_sws_2707 rte_sws_2564

[RTE00055] Use of
global namespace

rte_sws_1171 rte_sws_7104 rte_sws_7110 rte_sws_7111
rte_sws_6706 rte_sws_6707 rte_sws_6708 rte_sws_7114
rte_sws_7144 rte_sws_7115 rte_sws_7116 rte_sws_7117
rte_sws_7118 rte_sws_7119 rte_sws_7145 rte_sws_7146
rte_sws_7109 rte_sws_7148 rte_sws_7149 rte_sws_7166
rte_sws_7036 rte_sws_7037 rte_sws_7162 rte_sws_7163
rte_sws_7284

[RTE00059] RTE API
passes ’in’ primitive
data types by value

rte_sws_1017 rte_sws_7661 rte_sws_7083 rte_sws_1020
rte_sws_7084 rte_sws_7069 rte_sws_8300 rte_sws_7070
rte_sws_7071 rte_sws_7072 rte_sws_7073 rte_sws_7074
rte_sws_7076 rte_sws_7077 rte_sws_7078 rte_sws_7079
rte_sws_7080 rte_sws_7081

[RTE00060] RTE API
shall pass ’in’ compos-
ite data types by refer-
ence

rte_sws_1018 rte_sws_5107 rte_sws_7086 rte_sws_7082
rte_sws_5108 rte_sws_7084

[RTE00061] ’in/out’
and ’out’ parameters

rte_sws_1017 rte_sws_1018 rte_sws_5107 rte_sws_7661
rte_sws_1019 rte_sws_7082 rte_sws_5108 rte_sws_7083
rte_sws_1020 rte_sws_5109 rte_sws_7084

[RTE00062] Local ac-
cess to basic software
components

rte_sws_2051

[RTE00064] AU-
TOSAR Methodology

see chapter 3

[RTE00065] Deter-
ministic generation

rte_sws_2514 rte_sws_5150

[RTE00068] Signal
initial values

rte_sws_7642 rte_sws_2517 rte_sws_7668 rte_sws_7046
rte_sws_3852 rte_sws_5078

[RTE00069] Commu-
nication timeouts

rte_sws_6002 rte_sws_6013 rte_sws_3754 rte_sws_3758
rte_sws_3759 rte_sws_3763 rte_sws_3770 rte_sws_3773
rte_sws_3771 rte_sws_3772 rte_sws_3767 rte_sws_3768
rte_sws_7056 rte_sws_7060 rte_sws_7059 rte_sws_1064
rte_sws_1095 rte_sws_1107 rte_sws_1114

[RTE00070] Invoca-
tion order of Runnable
Entities

rte_sws_2207

36 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

[RTE00072] Activation
of Runnable Entities

rte_sws_3526 rte_sws_7403 rte_sws_3527 rte_sws_7515
rte_sws_7575 rte_sws_7178 rte_sws_2697 rte_sws_7061
rte_sws_3530 rte_sws_3531 rte_sws_3532 rte_sws_1292
rte_sws_3523 rte_sws_3520 rte_sws_3524 rte_sws_2203
rte_sws_1131 rte_sws_7177 rte_sws_2512 rte_sws_1133
rte_sws_1359 rte_sws_1166 rte_sws_7023 rte_sws_7024
rte_sws_7025 rte_sws_7026 rte_sws_7027 rte_sws_5193
rte_sws_1135 rte_sws_1137 rte_sws_2758 rte_sws_7207
rte_sws_7208 rte_sws_7379

[RTE00073] Atomic
transport of Data
Elements

rte_sws_4527

[RTE00075] API
for accessing per-
instance memory

rte_sws_1118 rte_sws_1119

[RTE00077] Instanti-
ation of per-instance
memory

rte_sws_3790 rte_sws_7045 rte_sws_7161 rte_sws_2303
rte_sws_2304 rte_sws_7133 rte_sws_3782 rte_sws_2305
rte_sws_7182 rte_sws_8304 rte_sws_7183 rte_sws_7184
rte_sws_5062 rte_sws_8303

[RTE00078] Support
for Data Element Inval-
idation

rte_sws_8004 rte_sws_5024 rte_sws_2594 rte_sws_2702
rte_sws_1206 rte_sws_1282 rte_sws_1231 rte_sws_5063
rte_sws_2626 rte_sws_3800 rte_sws_3801 rte_sws_3802
rte_sws_5064 rte_sws_3778 rte_sws_2599 rte_sws_2600
rte_sws_2603 rte_sws_2629 rte_sws_8501 rte_sws_2607
rte_sws_2666 rte_sws_2589 rte_sws_2590 rte_sws_2609

[RTE00079] Single
asynchronous client-
server interaction

rte_sws_3765 rte_sws_3766 rte_sws_3771 rte_sws_3772
rte_sws_2658 rte_sws_1105 rte_sws_1109 rte_sws_1133
rte_sws_1359 rte_sws_1166 rte_sws_7023 rte_sws_7024
rte_sws_7025 rte_sws_7026 rte_sws_7027 rte_sws_5193

[RTE00080] Multiple
requests of servers

rte_sws_4516 rte_sws_4520

[RTE00082] Stan-
dardized communica-
tion protocol

rte_sws_2649 rte_sws_7346 rte_sws_2651 rte_sws_2652
rte_sws_2653 rte_sws_2579 rte_sws_5066 rte_sws_2654
rte_sws_2655 rte_sws_2656 rte_sws_2657 rte_sws_5067
rte_sws_5054 rte_sws_5055 rte_sws_6028 rte_sws_5056
rte_sws_5057 rte_sws_5058 rte_sws_5059

[RTE00083] Optimiza-
tion for source-code
components

rte_sws_1274 rte_sws_1152

[RTE00084] Support
infrastructural errors

rte_sws_2593 rte_sws_1318

37 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

[RTE00087] Software
Module Header File
generation

rte_sws_1274 rte_sws_1000 rte_sws_3786 rte_sws_1004
rte_sws_1006 rte_sws_7131 rte_sws_7924 rte_sws_5078
rte_sws_7127 rte_sws_1132 rte_sws_6713 rte_sws_6703
rte_sws_6704 rte_sws_6705

[RTE00089] Indepen-
dent access to inter-
face elements

rte_sws_6008

[RTE00091] Inter-
ECU Marshalling

rte_sws_4504 rte_sws_4505 rte_sws_4506 rte_sws_4507
rte_sws_4508 rte_sws_2557 rte_sws_5081 rte_sws_5173
rte_sws_4527

[RTE00092] Imple-
mentation of VFB
model waitpoints

rte_sws_1358 rte_sws_7402 rte_sws_3010 rte_sws_3018
rte_sws_2740 rte_sws_2741 rte_sws_2743 rte_sws_2744
rte_sws_2745 rte_sws_2746

[RTE00094] Commu-
nication and Resource
Errors

rte_sws_2524 rte_sws_2525 rte_sws_2721 rte_sws_1318
rte_sws_2571 rte_sws_1034 rte_sws_7820 rte_sws_7822
rte_sws_7821 rte_sws_7823 rte_sws_2674 rte_sws_1207
rte_sws_1339 rte_sws_1084 rte_sws_7636 rte_sws_3774
rte_sws_7637 rte_sws_1086 rte_sws_7658 rte_sws_7652
rte_sws_2727 rte_sws_2728 rte_sws_3853 rte_sws_2729
rte_sws_7659 rte_sws_1093 rte_sws_7690 rte_sws_7673
rte_sws_2598 rte_sws_1094 rte_sws_1095 rte_sws_2572
rte_sws_7665 rte_sws_1103 rte_sws_1104 rte_sws_1105
rte_sws_1106 rte_sws_1107 rte_sws_7656 rte_sws_1112
rte_sws_1113 rte_sws_8301 rte_sws_1114 rte_sws_3606
rte_sws_7657 rte_sws_8302 rte_sws_2578 rte_sws_3803
rte_sws_2602 rte_sws_7691 rte_sws_7374 rte_sws_7375
rte_sws_7650 rte_sws_7376 rte_sws_7660 rte_sws_7651
rte_sws_7392 rte_sws_7393 rte_sws_1261 rte_sws_1262
rte_sws_1259 rte_sws_1260 rte_sws_7258

[RTE00098] Explicit
Sending

rte_sws_6011 rte_sws_6016 rte_sws_1071

[RTE00099] Decou-
pling of interrupts

rte_sws_3600 rte_sws_3594 rte_sws_3530 rte_sws_3531
rte_sws_3532

[RTE00100] Compiler
independent API

rte_sws_1314

[RTE00107] Sup-
port for INFORMA-
TION_TYPE attribute

rte_sws_6010 rte_sws_4500 rte_sws_2516 rte_sws_2518
rte_sws_2520 rte_sws_2521 rte_sws_2522 rte_sws_2523
rte_sws_2524 rte_sws_2525 rte_sws_2718 rte_sws_2719
rte_sws_2720 rte_sws_2721 rte_sws_2571 rte_sws_2572
rte_sws_7665 rte_sws_1135 rte_sws_1137 rte_sws_2758

[RTE00108] Sup-
port for INIT_VALUE
attribute

rte_sws_4525 rte_sws_7642 rte_sws_7681 rte_sws_6009
rte_sws_4501 rte_sws_4502 rte_sws_2517 rte_sws_7668
rte_sws_1268 rte_sws_5078 rte_sws_7680

38 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

[RTE00109] Support
for RECEIVE_MODE
attribute

rte_sws_3018 rte_sws_6002 rte_sws_6012 rte_sws_2519

[RTE00110] Support
for BUFFERING at-
tribute

rte_sws_2515 rte_sws_2522 rte_sws_2523 rte_sws_2524
rte_sws_2525 rte_sws_2526 rte_sws_2719 rte_sws_2720
rte_sws_2721 rte_sws_2723 rte_sws_2527 rte_sws_2529
rte_sws_2530 rte_sws_7008 rte_sws_2571 rte_sws_2572
rte_sws_7665

[RTE00111] Support
for CLIENT_MODE at-
tribute

rte_sws_1293 rte_sws_1294 rte_sws_6639

[RTE00115] API for
data consistency
mechanism

rte_sws_1120 rte_sws_1307 rte_sws_1122 rte_sws_1308

[RTE00116] RTE Ini-
tialization and finaliza-
tion

rte_sws_2538 rte_sws_2535 rte_sws_2536 rte_sws_7586
rte_sws_7046 rte_sws_3852 rte_sws_2544 rte_sws_2569
rte_sws_2585 rte_sws_2570 rte_sws_2584 rte_sws_7270

[RTE00121] Support
for FILTER attribute

rte_sws_5503 rte_sws_5500 rte_sws_5501

[RTE00122] Support
for Transmission Ack-
nowledgement

rte_sws_5504 rte_sws_3754 rte_sws_3756 rte_sws_3757
rte_sws_3604 rte_sws_3758 rte_sws_8017 rte_sws_8043
rte_sws_8018 rte_sws_8020 rte_sws_8044 rte_sws_8021
rte_sws_8022 rte_sws_8045 rte_sws_8023 rte_sws_1080
rte_sws_2673 rte_sws_1083 rte_sws_1283 rte_sws_1284
rte_sws_1285 rte_sws_1286 rte_sws_1287 rte_sws_7634
rte_sws_7635 rte_sws_1084 rte_sws_7636 rte_sws_3774
rte_sws_7637 rte_sws_1086 rte_sws_7658 rte_sws_7652
rte_sws_2725 rte_sws_2676 rte_sws_2677 rte_sws_2678
rte_sws_2727 rte_sws_2729 rte_sws_7659 rte_sws_7367
rte_sws_7646 rte_sws_7647 rte_sws_7648 rte_sws_7649
rte_sws_7374 rte_sws_7375 rte_sws_7650 rte_sws_7376
rte_sws_7660 rte_sws_7651 rte_sws_3002 rte_sws_3775
rte_sws_2612 rte_sws_5084 rte_sws_3005 rte_sws_3776
rte_sws_5065 rte_sws_5085 rte_sws_1137 rte_sws_2758
rte_sws_7379 rte_sws_7286 rte_sws_7557 rte_sws_7558
rte_sws_7560 rte_sws_7561 rte_sws_7055

[RTE00123] Forward-
ing of application level
server errors

rte_sws_2593 rte_sws_2576 rte_sws_1103 rte_sws_2577
rte_sws_2578

[RTE00124] APIs
for application level
server errors

rte_sws_2573 rte_sws_2575 rte_sws_1103 rte_sws_1130

39 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

[RTE00125] Rejection
of ’1:n’ communication
with the Transmission
Acknowledgment

rte_sws_5506

[RTE00126] C support rte_sws_1005 rte_sws_3709 rte_sws_3710 rte_sws_7124
rte_sws_7125 rte_sws_7126 rte_sws_7678 rte_sws_7923
rte_sws_3724 rte_sws_1169 rte_sws_1167 rte_sws_1162
rte_sws_7507 rte_sws_7508 rte_sws_7509 rte_sws_7297
rte_sws_7298 rte_sws_7299

[RTE00128] Implicit
Reception

rte_sws_7007 rte_sws_3012 rte_sws_6000 rte_sws_6001
rte_sws_6004 rte_sws_6011 rte_sws_3954 rte_sws_3598
rte_sws_3955 rte_sws_3599 rte_sws_7062 rte_sws_3956
rte_sws_7687 rte_sws_7020 rte_sws_7063 rte_sws_7064
rte_sws_7652 rte_sws_3741 rte_sws_1268

[RTE00129] Implicit
Sending

rte_sws_7007 rte_sws_6011 rte_sws_3570 rte_sws_3571
rte_sws_3572 rte_sws_3573 rte_sws_3574 rte_sws_3954
rte_sws_3598 rte_sws_3955 rte_sws_3953 rte_sws_7062
rte_sws_7041 rte_sws_3957 rte_sws_7688 rte_sws_7021
rte_sws_7065 rte_sws_7066 rte_sws_7067 rte_sws_7068
rte_sws_3744 rte_sws_3746 rte_sws_5509 rte_sws_7367
rte_sws_7646 rte_sws_7647 rte_sws_7648 rte_sws_7649
rte_sws_7374 rte_sws_7375 rte_sws_7650 rte_sws_7376
rte_sws_7660 rte_sws_7651

[RTE00131] n:1
Sender-receiver com-
munication

rte_sws_2670 rte_sws_2724 rte_sws_3760 rte_sws_3761
rte_sws_3762 rte_sws_1071 rte_sws_7824 rte_sws_7826
rte_sws_2635 rte_sws_1072 rte_sws_7825 rte_sws_7827
rte_sws_2633 rte_sws_2631 rte_sws_1091 rte_sws_7394
rte_sws_1092 rte_sws_1135

[RTE00133] Con-
current invocation of
Runnable Entities

rte_sws_7007 rte_sws_2697 rte_sws_3523

[RTE00134] Runnable
Entity categories sup-
ported by the RTE

rte_sws_6003 rte_sws_6007 rte_sws_3574 rte_sws_3954
rte_sws_7062

[RTE00137] API for
mismatched ports

rte_sws_1368 rte_sws_1369 rte_sws_1370

[RTE00138] C++ sup-
port

Only partially supported by: rte_sws_1005 rte_sws_3709
rte_sws_3710 rte_sws_7124 rte_sws_7125 rte_sws_7126
rte_sws_1011 rte_sws_7507 rte_sws_7508 rte_sws_7509
rte_sws_7297 rte_sws_7298 rte_sws_7299

40 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

[RTE00139] Support
for unconnected ports

rte_sws_3019 rte_sws_2750 rte_sws_7669 rte_sws_7667
rte_sws_7668 rte_sws_3978 rte_sws_5101 rte_sws_3980
rte_sws_5102 rte_sws_5170 rte_sws_2749 rte_sws_7655
rte_sws_1329 rte_sws_1330 rte_sws_7663 rte_sws_1331
rte_sws_1344 rte_sws_1332 rte_sws_3783 rte_sws_7378
rte_sws_1346 rte_sws_1347 rte_sws_3784 rte_sws_3785
rte_sws_2638 rte_sws_2639 rte_sws_2640 rte_sws_2641
rte_sws_2642 rte_sws_1333 rte_sws_1334 rte_sws_7658
rte_sws_7659 rte_sws_7690 rte_sws_7665 rte_sws_7656
rte_sws_7657 rte_sws_7691 rte_sws_7660 rte_sws_5099

[RTE00140] Binary-
code AUTOSAR
software components

rte_sws_1315 rte_sws_1000 rte_sws_7120 rte_sws_1195

[RTE00141] Explicit
Reception

rte_sws_6011 rte_sws_1072 rte_sws_1091 rte_sws_7394
rte_sws_1092 rte_sws_7673

[RTE00142] Inter-
RunnableVariables

rte_sws_7007 rte_sws_3589 rte_sws_7187 rte_sws_3516
rte_sws_3517 rte_sws_3582 rte_sws_3583 rte_sws_3584
rte_sws_7022 rte_sws_3519 rte_sws_3580 rte_sws_3550
rte_sws_1303 rte_sws_3581 rte_sws_3553 rte_sws_1304
rte_sws_3555 rte_sws_3560 rte_sws_1305 rte_sws_3562
rte_sws_3565 rte_sws_1306 rte_sws_3567 rte_sws_3569
rte_sws_2636 rte_sws_1350 rte_sws_1351

[RTE00143] Mode
switches

rte_sws_2706 rte_sws_2500 rte_sws_2662 rte_sws_2663
rte_sws_2664 rte_sws_7157 rte_sws_7155 rte_sws_2503
rte_sws_2504 rte_sws_7150 rte_sws_7151 rte_sws_7173
rte_sws_2667 rte_sws_2661 rte_sws_7152 rte_sws_2562
rte_sws_7153 rte_sws_2707 rte_sws_2708 rte_sws_2564
rte_sws_7154 rte_sws_2563 rte_sws_2587 rte_sws_2665
rte_sws_2668 rte_sws_2630 rte_sws_2669 rte_sws_7533
rte_sws_7535 rte_sws_7564 rte_sws_2544 rte_sws_2546
rte_sws_2679 rte_sws_7559 rte_sws_2730 rte_sws_7056
rte_sws_7060 rte_sws_7057 rte_sws_7058 rte_sws_7059
rte_sws_2634 rte_sws_2631 rte_sws_2675 rte_sws_2512
rte_sws_7259

[RTE00144] Mode
switch notification via
AUTOSAR interfaces

rte_sws_2738 rte_sws_7155 rte_sws_2544 rte_sws_2549
rte_sws_2508 rte_sws_2566 rte_sws_2624 rte_sws_2567
rte_sws_2546 rte_sws_7540 rte_sws_2627 rte_sws_2659
rte_sws_3858 rte_sws_7640 rte_sws_2568 rte_sws_3859
rte_sws_2628 rte_sws_2731 rte_sws_7666 rte_sws_2660
rte_sws_2732 rte_sws_8500 rte_sws_8503 rte_sws_8504
rte_sws_8505 rte_sws_8506 rte_sws_7262 rte_sws_8509
rte_sws_8510

[RTE00145] Compati-
bility mode

rte_sws_1257 rte_sws_3794 rte_sws_1279 rte_sws_1326
rte_sws_1277 rte_sws_1151 rte_sws_1216 rte_sws_1234

41 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

[RTE00146] Vendor
mode

rte_sws_1234

[RTE00147] Support
for communication
infrastructure time-out
notification

rte_sws_5020 rte_sws_5021 rte_sws_3759 rte_sws_5022
rte_sws_8004 rte_sws_2703 rte_sws_2599 rte_sws_2600
rte_sws_2604 rte_sws_2629 rte_sws_8501 rte_sws_2610
rte_sws_2611 rte_sws_2607 rte_sws_2666 rte_sws_2589
rte_sws_2590 rte_sws_2609

[RTE00148] Support
’Specification of Mem-
ory Mapping’

rte_sws_3788 rte_sws_5088 rte_sws_7589 rte_sws_7047
rte_sws_7048 rte_sws_7049 rte_sws_7050 rte_sws_7051
rte_sws_7052 rte_sws_7053 rte_sws_7592 rte_sws_7590
rte_sws_7591 rte_sws_5089 rte_sws_7194 rte_sws_7195
rte_sws_7593 rte_sws_7594 rte_sws_7595 rte_sws_7596

[RTE00149] Support
’Specification of Com-
piler Abstraction’

rte_sws_3787 rte_sws_7641 rte_sws_7194 rte_sws_7195
rte_sws_7593 rte_sws_7594 rte_sws_7595 rte_sws_7596

[RTE00150] Support
’Specification of Plat-
form Types’

rte_sws_7641

[RTE00151] Support
RTE relevant require-
ments of the ’General
Requirements on Ba-
sic Software Modules’

see [BSW...] entries in this table

[RTE00152] Support
for port-defined argu-
ment values

rte_sws_1360 rte_sws_1166

[RTE00153] Support
for Measurement

rte_sws_3951 rte_sws_3900 rte_sws_3972 rte_sws_3973
rte_sws_3974 rte_sws_7344 rte_sws_3901 rte_sws_3975
rte_sws_3976 rte_sws_3977 rte_sws_7349 rte_sws_6700
rte_sws_6701 rte_sws_3902 rte_sws_7160 rte_sws_7174
rte_sws_7197 rte_sws_7198 rte_sws_3978 rte_sws_5101
rte_sws_3980 rte_sws_5102 rte_sws_5170 rte_sws_3979
rte_sws_3903 rte_sws_3904 rte_sws_3950 rte_sws_3981
rte_sws_3982 rte_sws_5120 rte_sws_5121 rte_sws_5172
rte_sws_6702 rte_sws_5122 rte_sws_5123 rte_sws_5124
rte_sws_5125 rte_sws_5136 rte_sws_5168 rte_sws_5176
rte_sws_5174 rte_sws_5169 rte_sws_5175 rte_sws_6726
rte_sws_5087

42 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

[RTE00154] Support
for Calibration

rte_sws_3970 rte_sws_5145 rte_sws_3958 rte_sws_7186
rte_sws_7029 rte_sws_3959 rte_sws_5112 rte_sws_7096
rte_sws_7185 rte_sws_7030 rte_sws_7033 rte_sws_7034
rte_sws_7035 rte_sws_3905 rte_sws_3906 rte_sws_3907
rte_sws_3971 rte_sws_3909 rte_sws_3942 rte_sws_3910
rte_sws_3943 rte_sws_3911 rte_sws_3912 rte_sws_5194
rte_sws_3968 rte_sws_3913 rte_sws_3947 rte_sws_3936
rte_sws_3914 rte_sws_3948 rte_sws_3915 rte_sws_3935
rte_sws_3916 rte_sws_3908 rte_sws_3922 rte_sws_3960
rte_sws_3932 rte_sws_3933 rte_sws_3934 rte_sws_3961
rte_sws_3962 rte_sws_3963 rte_sws_3964 rte_sws_3965
rte_sws_7693 rte_sws_3835 rte_sws_3949

[RTE00155] API to ac-
cess calibration pa-
rameters

rte_sws_1252 rte_sws_1300 rte_sws_3927 rte_sws_3952
rte_sws_3928 rte_sws_3929 rte_sws_3930 rte_sws_3835
rte_sws_3949 rte_sws_7093 rte_sws_7094 rte_sws_7095

[RTE00156] Support
for different calibration
data emulation meth-
ods

rte_sws_3970 rte_sws_5145 rte_sws_3905 rte_sws_3906
rte_sws_3971 rte_sws_3909 rte_sws_3942 rte_sws_3910
rte_sws_3943 rte_sws_3911 rte_sws_3968 rte_sws_3913
rte_sws_3947 rte_sws_3936 rte_sws_3914 rte_sws_3948
rte_sws_3915 rte_sws_3935 rte_sws_3916 rte_sws_3908
rte_sws_3922 rte_sws_3960 rte_sws_3932 rte_sws_3933
rte_sws_3934 rte_sws_3961 rte_sws_3962 rte_sws_3963
rte_sws_3964 rte_sws_3965

[RTE00157] Support
for calibration parame-
ters in NVRAM

rte_sws_3936

[RTE00158] Support
separation of calibra-
tion parameters

rte_sws_5145 rte_sws_3959 rte_sws_7096 rte_sws_3907
rte_sws_3911 rte_sws_3912 rte_sws_5194 rte_sws_3908

[RTE00159] Shar-
ing of calibration
parameters

rte_sws_2750 rte_sws_3958 rte_sws_7186 rte_sws_5112
rte_sws_2749

[RTE00160] De-
bounced start of
Runnable Entities

rte_sws_2697

[RTE00161] Activation
Offset of Runnable En-
tities

rte_sws_7000

[RTE00162] 1:n Exter-
nal Trigger communi-
cation

rte_sws_7229 rte_sws_7212 rte_sws_7213 rte_sws_7214
rte_sws_7543 rte_sws_7215 rte_sws_7216 rte_sws_7218
rte_sws_7200 rte_sws_7201 rte_sws_7207

[RTE00163] Support
for InterRunnableTrig-
gering

rte_sws_7229 rte_sws_7220 rte_sws_7555 rte_sws_7221
rte_sws_7224 rte_sws_7223 rte_sws_7203 rte_sws_7204
rte_sws_7226 rte_sws_7227 rte_sws_7228 rte_sws_7208

43 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

[RTE00164] Ensure a
unique naming of gen-
erated types visible in
the global namespace

rte_sws_7110 rte_sws_7111 rte_sws_6706 rte_sws_6707
rte_sws_6708 rte_sws_7114 rte_sws_7144 rte_sws_7115
rte_sws_7116 rte_sws_7117 rte_sws_7118 rte_sws_7119
rte_sws_7145 rte_sws_7146

[RTE00165] Suppress
identical ’C’ type re-
definitions

rte_sws_7143 rte_sws_7134 rte_sws_7105 rte_sws_7112
rte_sws_7113 rte_sws_7107 rte_sws_7167 rte_sws_7169

[RTE00166] Use the
AUTOSAR Standard
Types in the global
namespace if the
AUTOSAR data type
is mapped to an
AUTOSAR Standard
Type

rte_sws_7104 rte_sws_7109 rte_sws_7148 rte_sws_7149
rte_sws_7166 rte_sws_7036 rte_sws_7037 rte_sws_7162
rte_sws_7163

[RTE00167] Encap-
sulate a Software
Component local
name space

rte_sws_2575 rte_sws_3809 rte_sws_3810 rte_sws_8401
rte_sws_5051 rte_sws_8402 rte_sws_5052 rte_sws_1004
rte_sws_1276 rte_sws_7122 rte_sws_7123 rte_sws_7132
rte_sws_6513 rte_sws_3854 rte_sws_6515 rte_sws_6518
rte_sws_6519 rte_sws_6520 rte_sws_6530 rte_sws_6541
rte_sws_6542 rte_sws_7140 rte_sws_6716 rte_sws_6717
rte_sws_6718

[RTE00168] Typing of
RTE API

rte_sws_7104

[RTE00169] Map
code and memory
allocated by the RTE
to memory sections

rte_sws_5088 rte_sws_7589 rte_sws_7047 rte_sws_7048
rte_sws_7049 rte_sws_7050 rte_sws_7051 rte_sws_7052
rte_sws_7053 rte_sws_7592 rte_sws_7590 rte_sws_7591
rte_sws_5089

[RTE00170] Provide
used memory sections
description

rte_sws_6725 rte_sws_5086 rte_sws_5089

[RTE00171] Support
for fixed and constant
data

rte_sws_3930

[RTE00176] Sharing
of NVRAM data

rte_sws_7301

[RTE00177] Support
of NvBlockCompo-
nentType

rte_sws_7353 rte_sws_7303 rte_sws_7632 rte_sws_7355
rte_sws_7633 rte_sws_7343 rte_sws_7398 rte_sws_7399
rte_sws_7312 rte_sws_7317

[RTE00178] Data con-
sistency of NvBlock-
ComponentType

rte_sws_7310 rte_sws_7311 rte_sws_7319 rte_sws_7602
rte_sws_7613 rte_sws_7315 rte_sws_7316 rte_sws_7350
rte_sws_7601 rte_sws_7614

44 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

[RTE00179] Support
of Update Flag for
Data Reception

rte_sws_7654 rte_sws_7385 rte_sws_7386 rte_sws_7387
rte_sws_7689 rte_sws_7390 rte_sws_7391 rte_sws_7392
rte_sws_7393

[RTE00180] DataSe-
mantics range check
during runtime

rte_sws_8024 rte_sws_3861 rte_sws_8026 rte_sws_8039
rte_sws_3839 rte_sws_3840 rte_sws_3841 rte_sws_3842
rte_sws_3843 rte_sws_8027 rte_sws_8040 rte_sws_8030
rte_sws_8031 rte_sws_8032 rte_sws_8033 rte_sws_8028
rte_sws_8041 rte_sws_3845 rte_sws_3846 rte_sws_3847
rte_sws_3848 rte_sws_8016 rte_sws_3849 rte_sws_8025
rte_sws_8029 rte_sws_8042 rte_sws_8034 rte_sws_8035
rte_sws_8036 rte_sws_8037 rte_sws_8038 rte_sws_7038

[RTE00181] Conver-
sion between internal
and network data
types

rte_sws_3827 rte_sws_3828

[RTE00182] Self Scal-
ing Signals at Port In-
terfaces

rte_sws_3815 rte_sws_3816 rte_sws_7091 rte_sws_7092
rte_sws_7099 rte_sws_3817 rte_sws_3818 rte_sws_3819
rte_sws_3820 rte_sws_3821 rte_sws_3822 rte_sws_3823
rte_sws_3829 rte_sws_3830 rte_sws_3855 rte_sws_3856
rte_sws_3857 rte_sws_3860 rte_sws_3831 rte_sws_3832
rte_sws_3833 rte_sws_7038

[RTE00183] RTE
Read API returning
the dataElement’s
value

rte_sws_7396 rte_sws_7394 rte_sws_7395

[RTE00184] RTE Sta-
tus ’Never Received’

rte_sws_8008 rte_sws_8009 rte_sws_7381 rte_sws_7382
rte_sws_7383 rte_sws_7645 rte_sws_7384 rte_sws_7643
rte_sws_7644

[RTE00185] RTE API
with Rte_IFeedback

rte_sws_7378 rte_sws_7652 rte_sws_7367 rte_sws_7646
rte_sws_7647 rte_sws_7648 rte_sws_7649 rte_sws_7374
rte_sws_7375 rte_sws_7650 rte_sws_7376 rte_sws_7660
rte_sws_7651 rte_sws_2608 rte_sws_2666 rte_sws_2589
rte_sws_2590 rte_sws_3836 rte_sws_7379

[RTE00189] A2L Gen-
eration Support

rte_sws_5118 rte_sws_5130 rte_sws_5131 rte_sws_5132
rte_sws_5133 rte_sws_5119 rte_sws_5129 rte_sws_5135
rte_sws_5134 rte_sws_5120 rte_sws_5121 rte_sws_6702
rte_sws_5122 rte_sws_5123 rte_sws_5124 rte_sws_5125
rte_sws_5126 rte_sws_5127 rte_sws_5128 rte_sws_7097
rte_sws_5136 rte_sws_5137 rte_sws_5138 rte_sws_5139
rte_sws_5140 rte_sws_5141 rte_sws_5142 rte_sws_5143
rte_sws_5144 rte_sws_5152 rte_sws_5153 rte_sws_5154
rte_sws_5155 rte_sws_5156 rte_sws_5157 rte_sws_5158
rte_sws_5159 rte_sws_5160 rte_sws_5161 rte_sws_5162
rte_sws_6726 rte_sws_5087

45 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

[RTE00190] Support
for variable-length
Data Types

rte_sws_7813 rte_sws_7814

[RTE00191] Support
for Variant Handling

rte_sws_5168 rte_sws_5176 rte_sws_5174 rte_sws_5169
rte_sws_5175 rte_sws_6543 rte_sws_6500 rte_sws_6546
rte_sws_6501 rte_sws_6507 rte_sws_6547 rte_sws_6509
rte_sws_6510 rte_sws_6512 rte_sws_6549 rte_sws_6550
rte_sws_6611 rte_sws_6612

[RTE00192] Support
multiple trace clients

rte_sws_6725 rte_sws_5086 rte_sws_5093 rte_sws_5091
rte_sws_5092 rte_sws_5106

[RTE00193] Support
for Runnable Entity ex-
ecution chaining

rte_sws_7802 rte_sws_7800

[RTE00195] No acti-
vation of Runnable En-
tities in terminated or
restarting partitions

rte_sws_7606 rte_sws_7604

[RTE00196] Inter-
partitions communica-
tion consistency

rte_sws_2761 rte_sws_7610 rte_sws_5147

[RTE00200] Sup-
port of unconnected
R-Ports

rte_sws_7655 rte_sws_1330 rte_sws_7663 rte_sws_1331
rte_sws_3785 rte_sws_1333 rte_sws_1334 rte_sws_7690
rte_sws_7665 rte_sws_7656 rte_sws_7657 rte_sws_7691

[RTE00201] Contract
Phase with Variant
Handling support

rte_sws_5104 rte_sws_6543 rte_sws_6500 rte_sws_6546
rte_sws_6502 rte_sws_6505 rte_sws_6516 rte_sws_6529
rte_sws_6527 rte_sws_6528 rte_sws_6521 rte_sws_6522
rte_sws_6523 rte_sws_6524 rte_sws_6525 rte_sws_6526
rte_sws_6514 rte_sws_6515 rte_sws_6518 rte_sws_6519
rte_sws_6520 rte_sws_6530 rte_sws_6541 rte_sws_6542
rte_sws_6620 rte_sws_6638 rte_sws_6539 rte_sws_6540
rte_sws_6531

[RTE00202] Support
for array size variants

rte_sws_6543 rte_sws_6500 rte_sws_6546 rte_sws_6505

[RTE00203] API to
read system constant

rte_sws_6517 rte_sws_6514 rte_sws_6513 rte_sws_3854

[RTE00204] Support
the selection / dese-
lection of SWC proto-
types

rte_sws_5104 rte_sws_6601 rte_sws_6544 rte_sws_6545

[RTE00206] Support
the selection of a sig-
nal provider

rte_sws_5104 rte_sws_6601 rte_sws_6602 rte_sws_6603
rte_sws_6604 rte_sws_6605 rte_sws_6606 rte_sws_6544
rte_sws_6545

46 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

[RTE00207] Support
N to M communica-
tion patterns while un-
resolved variations are
affecting these com-
munications

rte_sws_5104 rte_sws_6601 rte_sws_6602 rte_sws_6603
rte_sws_6604 rte_sws_6605 rte_sws_6606 rte_sws_6544
rte_sws_6545

[RTE00210] Support
for inter OS application
communication

rte_sws_7606 rte_sws_2752 rte_sws_2753 rte_sws_8400
rte_sws_2756 rte_sws_2754 rte_sws_2728 rte_sws_3853
rte_sws_2755 rte_sws_2731 rte_sws_2732 rte_sws_8503
rte_sws_8504 rte_sws_8506

[RTE00211] Cyclic
time based scheduling
of BSW Schedulable
Entities

rte_sws_7514 rte_sws_7574 rte_sws_7584 rte_sws_2697
rte_sws_7282 rte_sws_7283

[RTE00212] Activa-
tion Offset of BSW
Schedulable Entities

rte_sws_7520

[RTE00213] Mode
Switches for BSW
modules shall be
supported

rte_sws_2500 rte_sws_2662 rte_sws_2663 rte_sws_2664
rte_sws_7157 rte_sws_7514 rte_sws_7530 rte_sws_7531
rte_sws_7150 rte_sws_7151 rte_sws_7173 rte_sws_2667
rte_sws_2661 rte_sws_7152 rte_sws_2562 rte_sws_7153
rte_sws_2707 rte_sws_2708 rte_sws_2564 rte_sws_7154
rte_sws_2563 rte_sws_2587 rte_sws_2665 rte_sws_2668
rte_sws_2630 rte_sws_2669 rte_sws_7534 rte_sws_7535
rte_sws_7564 rte_sws_7532 rte_sws_7538 rte_sws_7539
rte_sws_7541 rte_sws_7540 rte_sws_7559 rte_sws_7292
rte_sws_7293 rte_sws_7294 rte_sws_7258 rte_sws_7259
rte_sws_7286 rte_sws_7260 rte_sws_7694 rte_sws_7556
rte_sws_7557 rte_sws_7558 rte_sws_7560 rte_sws_7561
rte_sws_7055 rte_sws_7282 rte_sws_7283

[RTE00214] Common
Mode handling for Ba-
sic SW and Applica-
tion SW

rte_sws_2697 rte_sws_7535 rte_sws_7582 rte_sws_7583
rte_sws_7564 rte_sws_7258 rte_sws_7259 rte_sws_7286

[RTE00215] API for
Mode switch notifica-
tion to the SchM

rte_sws_7255 rte_sws_7256 rte_sws_7261 rte_sws_8507

[RTE00216] Trig-
gering of BSW
Schedulable Enti-
ties by occurrence of
External Trigger

rte_sws_7514 rte_sws_7542 rte_sws_7213 rte_sws_7214
rte_sws_7544 rte_sws_7545 rte_sws_7548 rte_sws_7546
rte_sws_7216 rte_sws_7218 rte_sws_7549 rte_sws_7282
rte_sws_7283

47 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

[RTE00217] Synchro-
nized activation of
Runnable Entities and
BSW Schedulable
Entities

rte_sws_7218 rte_sws_7549 rte_sws_2697

[RTE00218] API for
Triggering BSW mod-
ules by Triggered
Events

rte_sws_7263 rte_sws_7264 rte_sws_7266 rte_sws_7267

[RTE00219] Support
for interlaced exe-
cution sequences of
Runnable Entities and
BSW Schedulable
Entities

rte_sws_7517 rte_sws_7518 rte_sws_2697

[RTE00220] ECU
life cycle dependent
scheduling

rte_sws_7580 rte_sws_2538

[RTE00221] Support
for ’BSW integration’
builds

rte_sws_7569 rte_sws_7585

[RTE00222] Support
shared exclusive ar-
eas in BSW Service
Modules and the cor-
responding Service
Component

rte_sws_7522 rte_sws_7523 rte_sws_7524 rte_sws_7250
rte_sws_7251 rte_sws_7252 rte_sws_7578 rte_sws_7579
rte_sws_7253 rte_sws_7254

[RTE00223] Callout
for partition termina-
tion notification

rte_sws_7330 rte_sws_7331 rte_sws_7334 rte_sws_7335
rte_sws_7620 rte_sws_7619 rte_sws_7617 rte_sws_7622

[RTE00224] Callout
for partition restart
request

rte_sws_7645 rte_sws_7643 rte_sws_7644 rte_sws_7188
rte_sws_7336 rte_sws_7338 rte_sws_7339 rte_sws_7340
rte_sws_7341 rte_sws_7342

[RTE00228] Fan-out
NvBlock callback
function

rte_sws_7623 rte_sws_7624 rte_sws_7625 rte_sws_7671
rte_sws_7626 rte_sws_7627 rte_sws_7628 rte_sws_7629
rte_sws_7630 rte_sws_7672 rte_sws_7631

[RTE00229] Support
for Variant Handling of
BSW Modules

rte_sws_5104 rte_sws_6543 rte_sws_6500 rte_sws_6546
rte_sws_6503 rte_sws_6504 rte_sws_6507 rte_sws_6548
rte_sws_6508 rte_sws_6537 rte_sws_6535 rte_sws_6536
rte_sws_6532 rte_sws_6544 rte_sws_6545 rte_sws_6533
rte_sws_6534

48 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

[RTE00230] Trigger-
ing of BSW Schedu-
lable Entities by
occurrence of Internal
Trigger

rte_sws_7229 rte_sws_7551 rte_sws_7552 rte_sws_7553
rte_sws_7554

[RTE00231] Support
native interface be-
tween Rte and Com
for Strings and uint8
arrays

rte_sws_7408 rte_sws_7817

[RTE00232] Synchro-
nization of runnable
entities

rte_sws_7806 rte_sws_7807 rte_sws_7804 rte_sws_7805

[RTE00233] Genera-
tion of the Basic Soft-
ware Module Descrip-
tion

rte_sws_5184 rte_sws_5185 rte_sws_6725 rte_sws_5086
rte_sws_8305 rte_sws_5165 rte_sws_8404 rte_sws_5177
rte_sws_5179 rte_sws_5180 rte_sws_7085 rte_sws_5166
rte_sws_5181 rte_sws_5182 rte_sws_5183 rte_sws_5167
rte_sws_5187 rte_sws_5186 rte_sws_5190 rte_sws_5188
rte_sws_5189 rte_sws_5191 rte_sws_5192

[RTE00234] Support
for Record Type sub-
setting

rte_sws_7091 rte_sws_7092 rte_sws_7099

[RTE00235] Support
queued triggers

rte_sws_7087 rte_sws_7088 rte_sws_7089 rte_sws_7090
rte_sws_6720 rte_sws_6721 rte_sws_6722 rte_sws_6723

49 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

2 RTE Overview

2.1 The RTE in the Context of AUTOSAR

The Run-Time Environment (RTE) is at the heart of the AUTOSAR ECU architecture.
The RTE is the realization (for a particular ECU) of the interfaces of the AUTOSAR
Virtual Function Bus (VFB). The RTE provides the infrastructure services that enable
communication to occur between AUTOSAR software-components as well as acting as
the means by which AUTOSAR software-components access basic software modules
including the OS and communication service.

The RTE encompasses both the variable elements of the system infrastructure that
arise from the different mappings of components to ECUs as well as standardized RTE
services.

In principle the RTE can be logically divided into two sub-parts realizing:

• the communication between software components

• the scheduling of the software components

To fully describe the concept of the RTE, the Basic Software Scheduler has to be
considered as well. The Basic Software Scheduler schedules the schedulable entities
of the basic software modules. In some documents the schedulable entities are also
called main processing functions.

Due to the situation that the same OS Task might be used for the scheduling of software
components and basic software modules the scheduling part of the RTE is strongly
linked with the Basic Software Scheduler and can not be clearly separated.

The RTE and the Basic Software Scheduler is generated1 for each ECU to ensure that
the RTE and Basic Software Scheduler is optimal for the ECU [RTE00023].

2.2 AUTOSAR Concepts

This section introduces some important AUTOSAR concepts and how they are imple-
mented within the context of the RTE.

2.2.1 AUTOSAR Software-components

In AUTOSAR, “application” software is conceptually located above the AUTOSAR RTE
and consists of “AUTOSAR application software-components” that are ECU and loca-

1An implementation is free to configure rather than generate the RTE and Basic Software Sched-
uler. The remainder of this specification refers to generation for reasons of simplicity only and these
references should not be interpreted as ruling out either a wholly configured, or partially generated and
partially configured, RTE and Basic Software Scheduler implementation.

50 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

tion independent and “AUTOSAR sensor-actuator components” that are dependent on
ECU hardware and thus not readily relocatable for reasons of performance/efficiency.
This means that, subject to constraints imposed by the system designer, an AUTOSAR
software-component can be deployed to any available ECU during system configura-
tion. The RTE is then responsible for ensuring that components can communicate
and that the system continues to function as expected wherever the components are
deployed. Considering sensor/actuator software components, they may only directly
address the local ECU abstraction. Therefore, access to remote ECU abstraction shall
be done through an intermediate sensor/actuator software component which broad-
casts the information on the remote ECU. Hence, moving the sensor/actuator software
components on different ECUs, may then imply to also move connected devices (sen-
sor/actuator) to the same ECU (provided that efficient access is needed).

An AUTOSAR software-component is defined by a type definition that defines the com-
ponent’s interfaces. A component type is instantiated when the component is deployed
to an ECU. A component type can be instantiated more than once on the same ECU in
which case the component type is said to be “multiple instantiated”. The RTE supports
per-instance memory sections that enable each component instance to have private
states.

The RTE supports both AUTOSAR software-components where the source is avail-
able (“source-code software-components”) [RTE00024] and AUTOSAR software-
components where only the object code (“object-code software components”) is avail-
able [RTE00140].

Details of AUTOSAR software-components in relation to the RTE are presented in
Section 4.1.3.

2.2.2 Basic Software Modules

As well as “AUTOSAR software-components” an AUTOSAR ECU includes basic soft-
ware modules. Basic software modules can access the ECU abstraction layer as well
as other basic software modules directly and are thus neither ECU nor location inde-
pendent 2.

An “AUTOSAR software-component” cannot directly access basic software modules –
all communication is via AUTOSAR interfaces and therefore under the control of the
RTE. The requirement to not have direct access applies to all Basic Software Modules
including the operating system [RTE00020] and the communication service.

2The functionality provided by a basic software module cannot be relocated in another ECU. However,
the source of some basic software modules can be reused on other ECUs.

51 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

2.2.3 Communication

The communication interface of an AUTOSAR software-component consists of several
ports (which are characterized by port-interfaces). An AUTOSAR software-component
can communicate through its interfaces with other AUTOSAR software-components
(whether that component is located on the same ECU or on a different ECU) or
with basic software modules that have ports and runnables (i.e ServiceSwCompo-
nents, EcuAbstractionSwComponents and ComplexDeviceDriverSwCompo-
nents) and are located on the same ECU. This communication can only occur via
the component’s ports. A port can be categorized by either a sender-receiver or client-
server port-interface. A sender-receiver interface provides a message passing facility
whereas a client-server interface provides function invocation.

2.2.3.1 Communication Paradigms

The RTE provides different paradigms for the communication between software-
component instances: sender-receiver (signal passing), client-server (function invo-
cation), mode switch, and NvBlockSwComponentType interaction.

Each communication paradigm can be applied to intra-partition software-component
distribution (which includes both intra-task and inter-task distribution, within the same
Partition), inter-Partition software-component distribution, and inter-ECU software-
component distribution. Intra-task communication occurs between runnable entities
that are mapped to the same OS task whereas inter-task communication occurs be-
tween runnable entities mapped to different tasks of the same Partition and can there-
fore involve a context switch. Inter-Partition communication occurs between runnable
entities in components mapped to different partitions of the same ECU and therefore in-
volve a context switch and crossing a protection boundary (memory protection, timing
protection, isolation on a core). Inter-ECU communication occurs between runnable
entities in components that have been mapped to different ECUs and so is inherently
concurrent and involves potentially unreliable communication.

Details of the communication paradigms that are supported by the RTE are contained
in Section 4.3.

2.2.3.2 Communication Modes

The RTE supports two modes for sender-receiver communication:

• Explicit — A component uses explicit RTE API calls to send and receive data
elements [RTE00098].

• Implicit — The RTE automatically reads a specified set of data elements before
a runnable is invoked and automatically writes (a different) set of data elements
after the runnable entity has terminated [RTE00128] [RTE00129]. The term “im-

52 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

plicit” is used here since the runnable does not actively initiate the reception or
transmission of data.

Implicit and explicit communication is considered in greater detail in Section 4.3.1.5.

2.2.3.3 Static Communication

[rte_sws_6026]d The RTE shall support static communication only. c(RTE00025)

Static communication includes only those communication connections where the
source(s) and destination(s) of all communication is known at the point the RTE is
generated. [RTE00025]. This includes also connections which are subject to variability
because the variant handling concept of AUTOSAR does only support the selection of
connectors from a superset of possible connectors to define a particular variant.
Dynamic reconfiguration of communication is not supported due to the run-time and
code overhead which would therefore limit the range of devices for which the RTE is
suitable.

2.2.3.4 Multiplicity

As well as point to point communication (i.e. “1:1”) the RTE supports communication
connections with multiple providers or requirers:

• When using sender-receiver communication, the RTE supports both “1:n” (sin-
gle sender with multiple receivers) [RTE00028] and “n:1” (multiple senders and
a single receiver) [RTE00131] communication with the restriction that multiple
senders are not allowed for mode switch notifications, see metamodel
restrictions rte_sws_2670.

The execution of the multiple senders or receivers is not coordinated by the RTE.
This means that the actions of different software-components are independent –
the RTE does not ensure that different senders transmit data simultaneously and
does not ensure that all receivers read data or receive events simultaneously.

• When using client-server communication, the RTE supports “n:1” (multiple clients
and a single server) [RTE00029] communication. The RTE does not support “1:n”
(single client with multiple servers) client-server communication.

Irrespective of whether “1:1”, “n:1” or “1:n” communication is used, the RTE is respon-
sible for implementing the communication connections and therefore the AUTOSAR
software-component is unaware of the configuration. This permits an AUTOSAR
software-component to be redeployed in a different configuration without modification.

53 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

2.2.4 Concurrency

AUTOSAR software-components have no direct access to the OS and hence there are
no “tasks” in an AUTOSAR application. Instead, concurrent activity within AUTOSAR
is based around runnable entities within components that are invoked by the RTE.

The AUTOSAR VFB specification [1] defines a runnable entity as a “sequence of in-
structions that can be started by the Run-Time Environment”. A component provides
one3 or more runnable entities [RTE00031] and each runnable entity has exactly one
entry point. An entry point defines the symbol within the software-component’s code
that provides the implementation of a runnable entity.

The RTE is responsible for invoking runnable entities – AUTOSAR software-
components are not able to (dynamically) create private threads of control. Hence,
all activity within an AUTOSAR application is initiated by the triggering of runnable en-
tities by the RTE as a result of RTEEvents.

An RTEEvent encompasses all possible situations that can trigger execution of a runn-
able entity by the RTE. The different classes of RTEEvent are defined in Section 5.7.5.

The RTE supports runnable entities in any component that has an AUTOSAR interface
- this includes AUTOSAR software-components and basic software modules.4

Runnable entities are divided into multiple categories with each category supporting
different facilities. The categories supported by the RTE are described in Section
4.2.2.3.

2.3 The RTE Generator

The RTE generator is one of a set of tools5 that create the realization of the AUTOSAR
virtual function bus for an ECU based on information in the ECU Configuration De-
scription. The RTE Generator is responsible for creating the AUTOSAR software-
component API functions that link AUTOSAR software-components to the OS and
manage communication between AUTOSAR software-components and between AU-
TOSAR software-components and basic software modules.

Additionally the RTE Generator creates both the Basic Software Scheduler and the Ba-
sic Software Scheduler API functions for each particular instance of a Basic Software
Module.

The RTE generation process for SWCs has two main phases:
3The VFB specification does not permit zero runnable entities.
4The OS and COM are basic software modules but present a standardized interface to the RTE and

have no AUTOSAR interface. The OS and COM therefore do not have runnable entities.
5The RTE generator works in conjunction with other tools, for example, the OS and COM generators,

to fully realize the AUTOSAR VFB.

54 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

• RTE Contract phase – a limited set of information about a component, principally
the AUTOSAR interface definitions, is used to create an application header file
for a component type. The application header file defines the “contract” between
component and RTE.

• RTE Generation phase - all relevant information about components, their de-
ployment to ECUs and communication connections is used to generate the RTE
and optionally the Ioc configuration [12]. One RTE is generated for each ECU in
the system.

The two-phase development model ensures that the RTE generated application header
files are available for use for source-code AUTOSAR software-components as well
as object-code AUTOSAR software-components with both types of component having
access to all definitions created as part of the RTE generation process.

The RTE generation process, and the necessary inputs in each phase, are considered
in more detail in chapter 3.

2.4 Design Decisions

This section details decisions that affect both the general direction that has been taken
as well as the actual content of this document.

1. The role of this document is to specify RTE behavior, not RTE implementation.
Implementation details should not be considered to be part of the RTE software
specification unless they are explicitly marked as RTE requirements.

2. An AUTOSAR system consists of multiple ECUs each of which contains an RTE
that may have been generated by different RTE generators. Consequently, the
specification of how RTEs from multiple vendors interoperate is considered to be
within the scope of this document.

3. The RTE does not have sufficient information to be able to derive a mapping from
runnable entity to OS task. The decision was therefore taken to require that the
mapping be specified as part of the RTE input.

4. Support for C++ is provided by making the C RTE API available for C++ com-
ponents rather than specifying a completely separate object-oriented API. This
decision was taken for two reasons; firstly the same interface for the C and C++

simplifies the learning curve and secondly a single interface greatly simplifies
both the specification and any subsequent implementations.

5. There is no support within the specification for Java.

6. The AUTOSAR meta-model is a highly expressive language for defining sys-
tems however for reasons of practicality certain restrictions and constraints have
been placed on the use of the meta-model. The restrictions are described in
Appendix A.

55 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

3 RTE Generation Process

This chapter describes the methodology of the RTE and Basic Software Scheduler
generation. For a detailed description of the overall AUTOSAR methodology refer to
methodology document [6].

[rte_sws_2514]d The RTE generator shall produce the same RTE API, RTE code,
SchM API and SchM code when the input information is the same. c(RTE00065)

The RTE Generator gets involved in the AUTOSAR Methodology several times in dif-
ferent roles. Technically the RTE Generator can be implemented as one tool which
is invoked with options to switch between the different roles. Or the RTE Generator
could be a set of separate tools. In the following section the individual applications of
the RTE Generator are described based on the roles that are take, not necessarily the
actual tools.

The RTE Generator is used in different roles for the following phases:

• RTE Contract Phase

• Basic Software Scheduler Contract Phase

• PreBuild Data Set Contract Phase

• Basic Software Scheduler Generation Phase

• RTE Generation Phase

• PreBuild Data Set Generation Phase

• PostBuild Data Set Generation Phase

RTE Generator for Software-Components

In Figure 3.1 the overall AUTOSAR Methodology wrt. Application SW-Components
and the RTE Generator.

56 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Configure
System.XML.XML

Collection
of

Available
SWC

Implementations

.XML.XML

System
Configuration

Description
:System

Extract
ECU-Specific
Information

Generate
Base ECU

Configuration

.XML.XML

ECU
Extract of
System

Configuration
:System

.XML.XML

ECU
Configuration

Values

Generate
RTE

AUTOSAR
RTE

Generator

Edit ECU
Configuration

AUTOSAR
ECU

Configuration
Editors

.obj.obj

Compiled
RTE

.c.c

RTE
Code

Compile
RTE

.h.h

RTE
Header

.obj.obj

Compiled
BSW

.exe.exe

ECU
Executable

Generate
Executable

.obj.obj

Compiled
SWC

Implementations

Figure 3.1: System Build Methodology

The whole vehicle functionality is described with means of CompositionSwCom-
ponents, SwComponentPrototypes and AtomicSwComponents [2]. In the
CompositionSwComponent descriptions the connections between the software-
components’ ports are also defined. Such a collection of software-components con-
nected to each other, without the mapping on actual ECUs, is called the VFB view.

During the ’Configure System’ step the needed software-components, the available
ECUs and the System Constraints are resolved into a System Configuration Descrip-
tion. Now the SwComponentPrototypes and thus the associated AtomicSwCompo-
nents are mapped on the available ECUs.

Since in the VFB view the communication relationships between the AtomicSwCom-
ponents have been described and the mapping of each SwComponentPrototypes
and AtomicSwComponents to a specific ECU has been fixed, the communication ma-
trix can be generated. In the SwComponentType Description (using the format of
the AUTOSAR Software Component Template [2]) the data that is exchanged through
ports is defined in an abstract way. Now the ’System Configuration Generator’ needs to
define system signals (including the actual signal length and the frames in which they
will be transmitted) to be able to transmit the application data over the network. COM
signals that correspond to the system signals will be later used by the ’RTE Generator’
to actually transmit the application data.

In the next step the ’System Configuration Description’ is split into descriptions for
each individual ECU. During the generation of the Ecu Extract also the hierarchical

57 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

structure of the CompositionSwComponents of the VFB view is flattened and the
SwComponentPrototypes of the ECU Extract represent actual instances. The Ecu
Extract only contains information necessary to configure one ECU individually and it is
fed into the ECU Configuration for each ECU.

[rte_sws_5000]d The RTE is configured and generated for each ECU instance individ-
ually. c(RTE00021)

The ’ECU Configuration Editors’ (see also Section 3.3) are working iteratively on the
’ECU Configuration Values’ until all configuration issues are resolved. There will be
the need for several configuration editors, each specialized on a specific part of ECU
Configuration. So one editor might be configuring the COM stack (not the communica-
tion matrix but the interaction of the individual modules) while another editor is used to
configure the RTE.

Since the configuration of a specific Basic-SW module is not entirely independent from
other modules there is the need to apply the editors several times to the ’ECU Config-
uration Values’ to ensure all configuration parameters are consistent.

Only when the configuration issues are resolved the ’RTE Generator’ will be used to
generate the actual RTE code (see also Section 3.4.2) which will then be compiled and
linked together with the other Basic-SW modules and the software-components code.

The ’RTE Generator’ needs to cope with many sources of information since the nec-
essary information for the RTE Generator is based on the ’ECU Configuration Values’
which might be distributed over several files and itself references to multiple other AU-
TOSAR descriptions.

[rte_sws_5001]d The RTE Generation tools needs to support input according to the
Interoperability of AUTOSAR Authoring Tools document [13]. c(RTE00048)

This is just a rough sketch of the main steps necessary to build an ECU with AUTOSAR
and how the RTE is involved in this methodology. For a more detailed description of
the AUTOSAR Methodology please refer to the methodology document [6]. In the next
sections the steps with RTE interaction are explained in more detail.

RTE Generator for Basic Software Scheduler

In Figure 3.2 the overall AUTOSAR Methodology wrt. Basis Software Scheduler and
the RTE Generator interaction.

58 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

.XML.XML

ECU
Configuration

Values

Edit ECU
Configuration

AUTOSAR
ECU

Configuration
Editors

Generate
SchM

AUTOSAR
RTE

Generator

.c.c

Rte
Code

.h.h

Schm
Bsw

Header

.obj.obj

Compiled
Rte

Compile
SchM

.obj.obj

Compiled
BSW

.exe.exe

ECU
Executable

Generate
Executable

Figure 3.2: Basic Software Scheduler Methodology

The ECU Configuration phase is the start of the Basic Software Scheduler configura-
tion where all the requirements of the different Basic Software Modules are collected.
The Input information is provided in the Basic Software Module Descriptions [9] of the
individual Basic Software Modules.

The Basic Software Scheduler configuration is then generated into the Basic Software
Scheduler code which is compiled and built into the Ecu executable.

3.1 Contract Phase

3.1.1 RTE Contract Phase

To be able to support the AUTOSAR software-component development with RTE-
specific APIs the ’Component API’ (application header file) is generated from the
’software-component Internal Behavior Description’ (see Figure 3.1) by the RTE Gen-
erator in the so called ’RTE Contract Phase’ (see Figure 3.3).

In the software-component Interface description – which is using the AUTOSAR
Software Component Template – at least the AUTOSAR Interfaces of the particular
software-component have to be described. This means the software-component Types
with Ports and their Interfaces. In the software-component Internal Behavior descrip-
tion additionally the Runnable Entities and the RTE Events are defined. From this
information the RTE Generator can generate specific APIs to access the Ports and
send and receive data.

59 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

.h.h

Component
API

Generate
Component

API

.XML.XML

SW-Component
Internal

Behavior
Description

[API
Generation]

:
SwcInternalBehavior

.XML.XML

SW-Component
Type

Description
:

AtomicSwComponentType

Implement
Component

.c.c

SW-Component
Implementation

Compile
Component

.obj.obj

Compiled
SW-Component
Implementation

Measure
Resources

.XML.XML

SW-Component
Implementation

Description
[resource
needs] :

Implementation

.XML.XML

SW-Component
Implementation

Description
[for

Object-Code]
:

Implementation

AUTOSAR
Component

API
Generator

Figure 3.3: RTE Contract Phase

With the generated ’Component API’ (application header file) the Software Compo-
nent developer can provide the Software Component’s source code without being con-
cerned as to whether the communication will later be local or using some network(s).

It has to be considered that the AUTOSAR software-component development process
is iterative and that the AUTOSAR software-component description might be changed
during the development of the AUTOSAR software-component. This requires the ap-
plication header file to be regenerated to reflect the changes done in the software-
component description.

When the software-component has been compiled successfully the ’Component Im-
plementation Description Generation’ tool will analyze the resulting object files and
enhance the software-component description with the information from the specific im-
plementation. This includes information about the actual memory needs for ROM as
well as for RAM and goes into the ’Component Implementation Description’ section of
the AUTOSAR Software Component Template.

Please note that in case of implemented PreCompileTime Variability addition-
ally the PreBuild Data Set Contract Phase is required 3.2 to be able to compile the
software component.

So when a software-component is delivered it will consist of the following parts:

• SW-Component Type Description

• SW-Component Internal Behavior Description

• The actual SW-Component implementation and/or compiled SW-Component

• SW-Component Implementation Description

60 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

The above listed information will be needed to provide enough information for the Sys-
tem Generation steps when the whole system is assembled.

3.1.2 Basic Software Scheduler Contract Phase

To be able to support the Basic Software Module development with Basic Software
Scheduler specific APIs the Module Interlink Header (6.3.2) and Module Interlink
Types Header (6.3.1) containing the definitions and declaration for the Basic Soft-
ware Scheduler API related to the single Basic Software Module instance is generated
by the RTE Generator in the so called ’Basic Software Scheduler Contract Phase’.

The required input is

• Basic Software Module Description and

• Basic Software Module Internal Behavior and

• Basic Software Module Implementation

Please note that in case of implemented PreCompileTime Variability addition-
ally the PreBuild Data Set Contract Phase is required 3.2 to be able to compile the
Basic Software Module.

3.2 PreBuild Data Set Contract Phase

In the RTE PreBuild Data Set Contract Phase are the Condition Value Macros (see
5.3.8.2.2) generated which are required to resolve the implemented PreBuild Vari-
ability of a particular software component or Basic Software Module.

The particular values are defined via PredefinedVariants. These Predefined-
Variant elements containing definition of SwSystemconstValues for SwSystem-
consts which shall be applied when resolving the variability during ECU Configuration.

The output of this phase is the RTE Configuration Header File 5.3.8. This file is re-
quired to compile a particular variant of a software component using PreCompile-
Time Variability. The Condition Value Macros are used for the implementation
of PreCompileTime Variability with preprocessor statements and therefore are
needed to run the C preprocessor resolving the implemented variability.

3.3 Edit ECU Configuration of the RTE

During the configuration of an ECU the RTE also needs to be configured. This is
divided into several steps which have to be performed iteratively: The configuration of
the RTE and the configuration of other modules.

61 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

So first the ’RTE Configuration Editor’ needs to collect all the information needed to
establish an operational RTE. This gathering includes information on the software-
component instances and their communication relationships, the Runnable Entities and
the involved RTE-Events and so on. The main source for all this information is the ’ECU
Configuration Values’, which might provide references to further descriptions like the
software-component description or the System Configuration description.

An additional input source is the Specification of Timing Extensions [14]. This template
can be used to specify the execution order of runnable entities (see section ’Execution
order constraint’). An ’RTE Configuration Editor’ can use the information to create and
check the configuration of the Rte Event to Os task mapping (see section 7.6.1).

The usage of ’ECU Configuration Editors’ covering different parts of the ’ECU Con-
figuration Values’ will – if there are no cyclic dependencies which do not converge –
converge to a stable configuration and then the ECU Configuration process is finished.
A detailed description of the ECU Configuration can be found in [15]. The next phase
is the generation of the actual RTE code.

62 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

3.4 Generation Phase

After the ECU has been entirely configured the generation of the actual RTE inclusive
the Basic Software Scheduler part can be performed. Since all the relationships to
and from the other Basic-SW modules have been already resolved during the ECU
Configuration phase, the generation can be performed in parallel for all modules (see
Figure 3.4).

.obj.obj

Compiled
RTE.c.c

RTE
Code

Compile
RTE

.h.h

RTE
Header

AUTOSAR
RTE

Generator

Generate
RTE

.XML.XML

ECU
Configuration

Values

.XML.XML

BSW-Module
Description :

BswModuleDescription

.XML.XML

MC-Support.XML.XML

IOC-Configuration

Figure 3.4: RTE Generation Phase

The Basic Software Scheduler is a part of the Rte and therefore not explicitly shown in
figure 3.4.

3.4.1 Basic Software Scheduler Generation Phase

Depending on the complexity of the ECU and the cooperation model of the different
software vendors it might be required to integrate the Basic Software stand alone with-
out software components.

Therefore the RTE Generator has to support the generation of the Basic Software
Scheduler without software component related RTE fragments. The Basic Software
Scheduler Generation Phase is only applicable for software builds which are not con-
taining any kind of software components.

[rte_sws_7569]d In the Basic Software Scheduler Generation Phase the RTE Gen-
erator shall generate the Basic Software Scheduler without the RTE functionality.
c(RTE00221)

In this case the RTE Generator generates the API for Basic Software Modules and the
Basic Software Scheduling code only. When the input contains software component
related information this information raises an error.

63 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

For instance:

• Application Header Files are not generated for the software components con-
tained in the ECU extract.

• Mapped RTEEvents are not permitted and the runnable calls are not generated
into the OS task bodies. Nevertheless all OS task bodies related to the Basic
Software Scheduler configuration are generated.

• Mode machine instances mapped to the RTE are not supported.

[rte_sws_7585]d In the Basic Software Scheduler Generation Phase the RTE Gener-
ator shall reject input configuration containing software component related information.
c(RTE00221)

The RTE Generator in the Basic Software Scheduler Generation Phase is also respon-
sible to generate additional artifacts which contribute to the further build, deployment
and calibration of the ECU’s software.

[rte_sws_6725]d The RTE Generator in Basic Software Scheduler Generation Phase
shall provide its Basic Software Module Description in order to capture the generated
RTE’s / Basic Software Scheduler attributes. c(RTE00170, RTE00192, RTE00233)

Details about the Basic Software Module Description generation can can be found in
section 3.4.3.

[rte_sws_6726]d The RTE Generator in Basic Software Scheduler Generation Phase
shall provide an MC-Support (Measurement and Calibration) description as part of the
Basic Software Module Description. c(RTE00153, RTE00189)

Details about the MC-Support can be found in section 4.2.8.4.

For software builds which are containing software components the RTE Generation
Phase 3.4.2 is applicable where the Basic Software Scheduler part of the RTE is gen-
erated as well.

3.4.2 RTE Generation Phase

The actual AUTOSAR software-components and Basic-SW modules code will be linked
together with the RTE and Basic Software Scheduler code to build the entire ECU
software.

Please note that in case of implemented PreCompileTime Variability addition-
ally the PreBuild Data Set Generation Phase is required (see section 3.5) to be able
to compile the ECU software. Further on in case of implemented PostBuild Vari-
ability PostBuild Data Set Generation Phase is required (see section 3.6) to be able
to link the full ECU software.

64 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

The RTE Generator in the Generation Phase is also responsible to generate additional
artifacts which contribute to the further build, deployment and calibration of the ECU’s
software.

[rte_sws_5086]d The RTE Generator in Generation Phase shall provide its Basic
Software Module Description in order to capture the generated RTE’s attributes.
c(RTE00170, RTE00192, RTE00233)

Details about the Basic Software Module Description generation can can be found in
section 3.4.3.

[rte_sws_5087]d The RTE Generator in Generation Phase shall provide an MC-
Support (Measurement and Calibration) description as part of the Basic Software Mod-
ule Description. c(RTE00153, RTE00189)

Details about the MC-Support can be found in section 4.2.8.4.

[rte_sws_5147]d The RTE Generator in Generation Phase shall provide the configu-
ration for the Ioc module [12] if the Ioc module is used. c(RTE00196)

The RTE generates the IOC configurations and uses an implementation specific deter-
ministic generation scheme. This generation scheme can be used by implementations
to reuse these IOC configurations (e.g. if the configuration switch strictConfigu-
rationCheck is used).

[rte_sws_8400]d The RTE Generator in Generation Phase shall generate internal Im-
plementationDataTypes types used for IOC configuration. c(RTE00210)

The corresponding C data types shall be generated into the Rte_Type.h. This
Rte_Type.h header file shall be used by the IOC to get the types for the IOC API.

Changing the RTE generator will require a new IOC configuration generation.

Details about the Ioc module can be found in section 4.3.4.1.

[rte_sws_8305]d The RTE Generator in Generation Phase shall ignore XML-Content
categorized as ICS. c(RTE00233)

3.4.3 Basic Software Module Description generation

The Basic Software Module Description [9] generated by the RTE Generator in gen-
eration phase describes features of the actual RTE code. The following requirements
specify which elements of the Basic Software Module Description are mandatory to be
generated by the RTE Generator.

65 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

3.4.3.1 Bsw Module Description

[rte_sws_5165]d The RTE Generator in Generation Phase shall provide the BswMod-
uleDescription element of the Basic Software Module Description for the gener-
ated RTE. c(RTE00233)

[rte_sws_8404]d The RTE BswModuleDescription shall be provided in ARPack-
age AUTOSAR_Rte according to AUTOSAR Generic Structure Template [10] (chapter
"Identifying M1 elements in packages"). c(RTE00233)

[rte_sws_5177]d The RTE Generator in Generation Phase shall provide the BswMod-
uleEntry and a reference to it from the BswModuleDescription in the role pro-
videdEntry for each Standardized Interface provided by the RTE (see Layered Soft-
ware Architecture [16] page tz76a and page 94ju5). The provided Standardized Inter-
faces are the Rte Lifecycle API (section 5.8) and the SchM Lifecycle API (section 6.7).
c(RTE00233)

[rte_sws_5179]d The RTE Generator in Generation Phase shall provide the BswMod-
uleDependency in the BswModuleDescription with the role bswModuleDepen-
dency for each callback API provided by the RTE and called by the respective Basic
Software Module. The reference from the BswModuleDependency to the BswMod-
uleEntry shall be in the role expectedCallback. The calling Basic Software Mod-
ule is specified in the attribute targetModuleId of the BswModuleDependency.
c(RTE00233)

For all the APIs the RTE code is invoking in other Basic Software Modules the depen-
dencies are described via requirement rte_sws_5180.

[rte_sws_5180]d The RTE Generator in Generation Phase shall provide the BswMod-
uleDependency in the BswModuleDescription with the role bswModuleDepen-
dency for each API called by the RTE in another Basic Software Module. The ref-
erence from the BswModuleDependency to the BswModuleEntry shall be in the
role requiredEntry. The called Basic Software Module is specified in the attribute
targetModuleId of the BswModuleDependency. c(RTE00233)

[rte_sws_7085]d If the Basic Software Module Description for the generated RTE de-
pends from elements in Basic Software Module Descriptions of other Basic Software
Modules the RTE Generator shall use the full qualified path name to this elements ac-
cording the rules in "Identifying M1 elements in packages" of the document AUTOSAR
Generic Structure Template [10]. c(RTE00233)

For instance the description of the the hook function

1 void Rte_Dlt_Task_Activate(TaskType task)

for the Dlt needs the ImplementationDataType "TaskType" from the OS in order to
describe the data type of the SwServiceArg "task" in the description of the related
BswModuleEntry.

In this case the full qualified path name to the ImplementationDataType "Task-
Type" shall be

66 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

1 AUTOSAR_OS/ImplementationDataTypes/TaskType

The full example about the description is given below:
<AR-PACKAGE>

<SHORT-NAME>AUTOSAR_RTE</SHORT-NAME>
<AR-PACKAGES>

<AR-PACKAGE>
<SHORT-NAME>BswModuleEntrys</SHORT-NAME>
<ELEMENTS>

<BSW-MODULE-ENTRY>
<SHORT-NAME>Rte_Dlt_Task_Activate</SHORT-NAME>
<ARGUMENTS>

<SW-SERVICE-ARG>
<SHORT-NAME>task</SHORT-NAME>
<CATEGORY>TYPE_REFERENCE</CATEGORY>
<SW-DATA-DEF-PROPS>

<SW-DATA-DEF-PROPS-VARIANTS>
<SW-DATA-DEF-PROPS-CONDITIONAL>

<IMPLEMENTATION-DATA-TYPE-REF DEST="IMPLEMENTATION-
DATA-TYPE">AUTOSAR_OS/ImplementationDataTypes/
TaskType</IMPLEMENTATION-DATA-TYPE-REF>

</SW-DATA-DEF-PROPS-CONDITIONAL>
</SW-DATA-DEF-PROPS-VARIANTS>

</SW-DATA-DEF-PROPS>
</SW-SERVICE-ARG>

</ARGUMENTS>
</BSW-MODULE-ENTRY>

</ELEMENTS>
</AR-PACKAGE>

3.4.3.2 Bsw Internal Behavior

[rte_sws_5166]d The RTE Generator in Generation Phase shall provide the BswIn-
ternalBehavior element in the BswModuleDescription of the Basic Software
Module Description for the generated RTE. c(RTE00233)

[rte_sws_5181]d The RTE Generator in Generation Phase shall provide the
BswCalledEntity element in the BswInternalBehavior for each C-function im-
plementing the lifecycle APIs (section 5.8) and the SchM Lifecycle API (section 6.7).
The BswCalledEntity shall have a reference to the respective BswModuleEntry
(rte_sws_5177) in the role implementedEntry. c(RTE00233)

[rte_sws_5182]d The RTE Generator in Generation Phase shall provide the Vari-
ableDataPrototype element in the BswInternalBehavior in the role stat-
icMemory for each variable memory object the RTE allocates. c(RTE00233)

[rte_sws_5183]d The RTE Generator in Generation Phase shall provide the Parame-
terDataPrototype element in the BswInternalBehavior in the role constant-
Memory for each constant memory object the RTE allocates. c(RTE00233)

67 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

3.4.3.3 Bsw Implementation

[rte_sws_5167]d The RTE Generator in Generation Phase shall provide the BswIm-
plementation element and a reference to the BswInternalBehavior of the Basic
Software Module Description in the role behavior. c(RTE00233)

[rte_sws_5187]d The RTE Generator in Generation Phase shall provide the pro-
grammingLanguage element in the BswImplementation element according to the
actual RTE implementation. c(RTE00233)

[rte_sws_5186]d The RTE Generator in Generation Phase shall provide the swVer-
sion element in the BswImplementation element according to the input information
from the RTE Ecu configuration (rte_sws_5184, rte_sws_5185). c(RTE00233)

[rte_sws_5190]d The RTE Generator in Generation Phase shall provide the ar-
ReleaseVersion element in the BswImplementation element according to AU-
TOSAR release version the RTE Generator is based on. c(RTE00233)

[rte_sws_5188]d The RTE Generator in Generation Phase shall provide the used-
CodeGenerator element in the BswImplementation element according to the ac-
tual RTE implementation. c(RTE00233)

[rte_sws_5189]d The RTE Generator in Generation Phase shall provide the ven-
dorId element in the BswImplementation element according to the input informa-
tion from the RTE Ecu configuration (RteCodeVedorId). c(RTE00233)

The RteCodeVedorId specifies the vendor id of the actual user of the RTE Generator,
not the id of the RTE Vendor itself.

[rte_sws_5191]d If the generated RTE code is hardware specific (due to vendor spe-
cific optimizations of the RTE Generator) then the reference to the applicable HwEle-
ments from the ECU Resource Description [17] shall be provided in the BswImple-
mentation element with the role hwElement. c(RTE00233)

[rte_sws_5192]d The RTE Generator in Generation Phase shall provide the De-
pendencyOnArtifact element in the BswImplementation with the role gen-
eratedArtifact for all c- and header-files which are required to compile the Rte
code. This does not include other Basic Software modules or Application Software.
c(RTE00233)

Note: The use case is the support of the build-environment (automatic or manual).

Attributes shall be used in this context as follow:

• category shall be used as defined in Generic Structure Template [10] (e.g.
SWSRC, SWOBJ, SWHDR)

• domain is optional and can be chosen freely

• revisionLabel shall contain the revision label out of RTE Configuration

• shortLabel is the name of artifact

68 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Details on the description of DependencyOnArtifact can be found in the Generic
Structure Template [10].

Additional elements of the Basic Software Module Description shall be exported are
specified in later requirements e.g. in section 4.2.8.4 and section 5.1.2.4.

3.5 PreBuild Data Set Generation Phase

During the PreBuild Data Set Generation Phase are the Condition Value Macros (see
5.3.8.2.2) generated which are required to resolve the implemented PreBuild Vari-
ability of the software components, generated RTE and Basic Software Scheduler.

The particular values are defined via the EcucVariationResolver configuration
selecting PredefinedVariants. These PredefinedVariant elements containing
definition of SwSystemconstValues for SwSystemconsts which shall be applied
when resolving the variability during ECU Configuration.

The values of the Condition Value Macros are the results of evaluated Condition-
ByFormulas of the related VariationPoints. These ConditionByFormulas ref-
erencing SwSystemconsts in the formula expressions. It is supported that the as-
signed SwSystemconstValue might contain again a formula expressions referenc-
ing SwSystemconsts. Therefore the input might be a tree of formula expressions
and SwSystemconstValues but the leaf SwSystemconstValues are required to
be values which are not dependent from other SwSystemconsts to ensure that the
evaluation of the tree results in a unique number.

[rte_sws_6610]d The RTE generator shall validate the resolved pre-build variants and
check the integrity with regards to the meta model. Any meta model violation shall
result in the rejection of the input configuration. c(RTE00018)

The output of this phase is the RTE Configuration Header File 5.3.8.This file is required
to compile a particular variant of ECU software including software component code and
RTE code using PreCompileTime Variability. The Condition Value Macros are
used for the implementation of PreCompileTime Variability with preprocessor
statements and therefore are needed to run the C preprocessor resolving the imple-
mented variability.

3.6 PostBuild Data Set Generation Phase

In the PostBuild Data Set Generation Phase the PredefinedVariant values are
generated which are required to resolve the implemented PostBuild Variability
of the software components and generated RTE.

69 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

The output of this phase are the RTE Post Build Variant Sets 5.3.10. This file is required
to link the ECU software and to select a particular PostBuild variant in the generated
RTE code during start up when the Basic Software Scheduler is initialized.

[rte_sws_6611]d If the DET is enabled then the RTE shall generate validation code
which at runtime (i.e. during initialization) validates the resolved post-build variants and
check the integrity with regards to the active variants. If a violation is detected the RTE
shall report a development error to the DET. To execute this validation RTE initialization
will get a pointer to the RtePostBuildVariantConfiguration instance to allow it
to validate the selected variant. c(RTE00191)

[rte_sws_6612]d The RTE generator shall create an RTE Post Build Data Set config-
uration (i.e. Rte_PBCfg.c) representing the collection of PredefinedVariant defini-
tions (typically for each subsystem and/or system configuration) providing and defining
the post build variants of the RTE. c(RTE00191)

Note that the Rte_PBCfg.h is generated during the Rte Generation phase. An
Rte_PBCfg.c may also have to be generated at that time to reserve memory (with
default values).

Additional details about these configuration files are described in section 5.3.10.

An RTE variant can consist of a collection of PredefinedVariants. Each Pre-
definedVariant contains a collection of PostBuildVariantCriterionValues
which assigns a value to a specific PostBuildVariantCriterion which in turn is
used to resolve the variability at runtime by evaluating a PostBuildVariantCon-
dition. Different PredefinedVariants could assign different values to the same
PostBuildVariantCriterion and as such create conflicts for a specific Post-
BuildVariantSet. It is allowed to have different assignments if these assignment
assign the same value.

[rte_sws_6613]d The RTE Generator shall reject configurations where different Pre-
definedVariants assign different values to the same PostBuildVariantCrite-
rion for the same RtePostBuildVariantConfiguration. c(RTE00018)

3.7 RTE Configuration interaction with other BSW Modules

The generated RTE interacts heavily with other AUTOSAR Basic Software Modules
like Com and Os. The configuration values for the different BSW Modules are stored
in individual structures of ECU Configuration it is however essential that the common
used values are synchronized between the different BSW Module’s configurations. AU-
TOSAR does not provide a standardized way how the individual configurations can be
synchronized, it is assumed that during the generation of the BSW Modules the input
information provided to the individual BSW Module is in sync with the input information
provided to other (dependent) BSW Modules.

The AUTOSAR BSW Module code-generation methodology is heavily relying on the
logical distinction between Configuration editors and configuration generators. These

70 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

tools do not necessarily have to be implemented as two separate tools, it just shall
be possible to distinguish the different roles the tools take during a certain step in the
methodology.

For the RTE it is assumed that tool support for the resolution of interactions between
the Rte and other BSW Modules is needed to allow an efficient configuration of the Rte.
It is however not specified how and in which tools this support shall be implemented.

The RTE Generator in Generation Phase needs information about other BSW Module’s
configurations based on the configuration input of the Rte itself (there are references in
the configuration of the Rte which point to configuration values of other BSW Modules).
If during RTE Generation Phase the provided input information is inconsistent wrt. the
Rte input the Rte Generator will have to consider the input as invalid configuration.

[rte_sws_5149]d The RTE Generator in Generation Phase shall consider errors in the
Rte configuration input information as invalid configuration. c(RTE00018)

Due to implementation freedom of the RTE Generator it should be possible to correct /
update provided input configurations of other BSW Modules based on the RTE config-
uration requirements. But to allow a stable build process it shall be possible to disallow
such an update behavior.

[rte_sws_5150]d If the external configuration switch strictConfigurationCheck
is set to true the Rte Generator shall not create or modify any configuration input.
c(RTE00065)

If the external configuration switch strictConfigurationCheck
(see rte_sws_5148) is set to false the Rte Generator may update the input con-
figuration information of the Rte and other BSW Modules.

Example: If the Rte configuration is referencing an OsTask which is not configured in
the provided Os configuration, the RTE Generator would behave like:

• In case rte_sws_5150 applies: Only show an error message.

• Otherwise: Possible behavior: Show a warning message and modify the Os con-
figuration to contain the OsTask which is referred to by the Rte configuration (Of
course the Os configuration of this new OsTask needs to be refined afterwards).

71 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4 RTE Functional Specification

4.1 Architectural concepts

4.1.1 Scope

In this section the concept of an AUTOSAR software-component and its usage within
the RTE is introduced.

The AUTOSAR Software Component Template [2] defines the kinds of software-
components within the AUTOSAR context. These are shown in Figure 4.1. The ab-
stract SwComponentType can not be instantiated, so there can only be either a Com-
positionSwComponentType, a ParameterSwComponentType, or a specialized
class ApplicationSwComponentType, ServiceProxySwComponentType, Sen-
sorActuatorSwComponentType, NvBlockSwComponentType, ServiceSwCom-
ponentType, ComplexDeviceDriverSwComponentType, or EcuAbstraction-
SwComponentType of the abstract class AtomicSwComponentType.

In the following document the term AtomicSwComponentType is used as collective
term for all the mentioned non-abstract derived meta-classes.

The SwComponentType is defining the type of an AUTOSAR software-component
which is independent of any usage and can be potentially re-used several times in
different scenarios. In a composition the types are occurring in specific roles which are
called SwComponentPrototypes. The prototype is the utilization of a type within a
certain scenario. In AUTOSAR any SwComponentType can be used as a type for a
prototype.

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

AtomicSwComponentType CompositionSwComponentType

AtpPrototype

SwComponentPrototype

SensorActuatorSwComponentType

ParameterSwComponentType

ApplicationSwComponentType

EcuAbstractionSwComponentType

ComplexDeviceDriverSwComponentTypeNvBlockSwComponentType

ServiceProxySwComponentType

ServiceSwComponentType

+component 0..*

«atpVariation,atpSplitable»

*«isOfType»

+type

1
{redefines
atpType}

Figure 4.1: AUTOSAR software-component classification

The AUTOSAR software-components shown in Figure 4.1 are located above and below
the RTE in the architectural Figure 4.2.

72 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Below the RTE there are also software entities that have an AUTOSAR Interface.
These are the AUTOSAR services, the ECU Abstraction and the Complex Device
Drivers. For these software not only the AUTOSAR Interface will be described but
also information about their internal structure will be available in the Basic Software
Module Description.

Figure 4.2: AUTOSAR ECU architecture diagram

In the next sections the different AUTOSAR software-components kinds will be de-
scribed in detail with respect to their influence on the RTE.

4.1.2 RTE and Data Types

The AUTOSAR Meta Model defines ApplicationDataTypes and Implementa-
tionDataTypes. A AutosarDataPrototype can be typed by an Application-
DataType or an ImplementationDataType. But the RTE Generator only imple-
ments ImplementationDataTypes as C data types and uses these C data types
to type the RTE API which is related to DataPrototypes. Therefore it is required
in the input configuration that every ApplicationDataType used for the typing of a

73 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

DataPrototype which is relevant for RTE generation is mapped to an Implementa-
tionDataType with a DataTypeMapping. Which DataTypeMapping is applicable
for an particular software component respectively Basic Software Module is de-
fined by the DataTypeMappingSets referenced by the InternalBehavior.

[rte_sws_7028]d The RTE Generator shall reject input configurations containing a
AutosarDataPrototype which influences the generated RTE and which is typed
by an ApplicationDataType not mapped to an ImplementationDataType.
c(RTE00018)

Nevertheless a subset of the attributes given by the ApplicationDataTypes are
relevant for the RTE generator for instance

• to create the McSupportData (see section 4.2.8.4) information

• to calculate the conversion formula in case of Data Conversion (see section 4.3.5
and 4.3.5.3)

• to calculate numerical representation of values required for the RTE code but
defined in the physical representation (e.g. initialValues and invalid-
Values).

[rte_sws_7038]d The RTE Generator shall calculate the numerical representation of
values provided in the physical representation and required for the RTE code ac-
cording the conversion defined by an compuMethod for instances of Variable-
DataPrototypes, ArgumentDataPrototypes and ParameterDataPrototypes
typed by an ApplicationDataType of category VALUE, VAL_BLK, STRUCTURE, AR-
RAY, BOOLEAN. If there is no CompuMethod provided the conversion is treated like an
CompuMethod of category IDENTICAL. c(RTE00180, RTE00182)

4.1.3 RTE and AUTOSAR Software-Components

The description of an AUTOSAR software-component is divided into the sections

• hierarchical structure

• ports and interfaces

• internal behavior

• implementation

which will be addressed separately in the following sections.

[rte_sws_7196]d The RTE Generator shall respect the precedence of data properties
defined via SwDataDefProps as defined in the Software Component Template [2].
c()

Requirement rte_sws_7196 means that:

74 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

1. SwDataDefProps defined on ApplicationDataType which may be overwrit-
ten by

2. SwDataDefProps defined on ImplementationDataType which may be over-
written by

3. SwDataDefProps defined on AutosarDataPrototype which may be over-
written by

4. SwDataDefProps defined on InstantiationDataDefProps which may be
overwritten by

5. SwDataDefProps defined on AccessPoint respectively Argument which may
be overwritten by

6. SwDataDefProps defined on FlatInstanceDescriptor which may be over-
written by

7. SwDataDefProps defined on McDataInstance

The SwDataDefProps defined on McDataInstance are not relevant for the RTE
generation but rather the documentation of the generated RTE.

Especially the attributes swAddrMethod, swCalibrationAccess, swImplPolicy
and DataConstr do have an impact on the generated RTE. In the following document
only the attribute names are mentioned with the semantic that this refers to the most
significant one.

4.1.3.1 Hierarchical Structure of Software-Components

In AUTOSAR the structure of an E/E-system is described using the AUTOSAR Soft-
ware Component Template and especially the mechanism of compositions. Such a
Top Level Composition assembles subsystems and connects their ports.

Of course such a composition utilizes a lot of hierarchical levels where compositions
instantiate other composition types and so on. But at some low hierarchical level each
composition only consists of AtomicSwComponentType instances. And those in-
stances of AtomicSwComponentTypes are what the RTE is going to be working with.

4.1.3.2 Ports, Interfaces and Connections

Each AUTOSAR software-component (SwComponentType) can have ports
(PortPrototype). An AUTOSAR software-component has provide ports
(PPortPrototype) and/or has require ports (RPortPrototype) to communicate
with other AUTOSAR software-components. The requiredInterface or pro-
videdInterface (PortInterface) determines if the port is a sender/receiver or
a client/server port. The attribute isService is used with AUTOSAR Services (see
section 4.1.5).

75 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

AtpBlueprintable
AtpPrototype

PortPrototype

RPortPrototype PPortPrototype

«atpVariation» Tags:
Vh.latestBindingTime
= PreCompileTime

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

PortInterface

+ isService: Boolean
+ serviceKind: ServiceProviderEnum [0..1]

+pPort *

«isOfType»

+providedInterface

1
{redefines
atpType}

+rPort *

«isOfType»

+requiredInterface

1
{redefines
atpType}

+port

0..*«atpVariation,atpSplitable»

+component

Figure 4.3: Software-Components and Ports

When compositions are built of instances the ports can be connected either within the
composition or made accessible to the outside of the composition. For the connections
inside a composition the AssemblySwConnector is used, while the Delegation-
SwConnector is used to connect ports from the inside of a composition to the outside.
Ports not connected will be handled according to the requirement [RTE00139].

The next step is to map the SW-C instances on ECUs and to establish the communi-
cation relationships. From this step the actual communication is derived, so it is now
fixed if a connection between two instance’s ports is going to be over a communication
bus or locally within one ECU.

[rte_sws_2200]d The RTE shall implement the communication paths specified by the
ECU Configuration description. c(RTE00027)

[rte_sws_2201]d The RTE shall implement the semantic of the communication at-
tributes given by the AUTOSAR software-component description. The semantic of the
given communication mechanism shall not change regardless of whether the commu-
nication partner is located on the same partition, on another partition of the same ECU
or on a remote ECU, or whether the communication is done by the RTE itself or by the
RTE calling COM or IOC. c(RTE00027)

E.g., according to rte_sws_2200 and rte_sws_2201 the RTE is not permitted to change
the semantic of an asynchronous client to synchronous because both client and server
are mapped to the very same ECU.

76 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4.1.3.3 Internal Behavior

Only for AtomicSwComponentTypes the internal structure is exposed in the SwcIn-
ternalBehavior description. Here the definition of the RunnableEntitys and
used RTEEvents is done (see Figure 4.4).

The AUTOSAR MetaModel enforces that there is at most one SwcInternalBehav-
ior per AtomicSwComponentType

SwcInternalBehavior

AtpStructureElement
ExecutableEntity

RunnableEntity

AtpStructureElement
Identifiable

RTEEvent

Identifiable

ExclusiveArea

AtpStructureElement
Identifiable

PerInstanceMemory

PortAPIOption

AutosarDataPrototype

ParameterDataPrototype

AutosarDataPrototype

VariableDataPrototype

AtpStructureElement

InternalBehavior

«atpVariation» Tags:
Vh.latestBindingTime
= PreCompileTime

«atpVariation» Tags:
Vh.latestBindingTime
= PreCompileTime

«atpVariation» Tags:
Vh.latestBindingTime
= PreCompileTime

«atpVariation» Tags:
Vh.latestBindingTime
= PreCompileTime

«atpVariation»

+constantMemory

0..*

+explicitInterRunnableVariable

* «atpVariation»

+portAPIOption 0..*

«atpVariation»

+perInstanceParameter *

«atpVariation,atpSplitable»

+event *

«atpVariation,atpSplitable»

+sharedParameter *

«atpVariation,atpSplitable»

+implicitInterRunnableVariable

* «atpVariation»

+perInstanceMemory *

«atpVariation»

+arTypedPerInstanceMemory

* «atpVariation»

+runnable 1..*

«atpVariation,atpSplitable»

«atpVariation»

+staticMemory

0..*

«atpVariation»

+exclusiveArea

0..*

Figure 4.4: Software-component internal behavior

RunnableEntitys (also abbreviated simply as Runnable) are the smallest code frag-
ments that are provided by AUTOSAR software-components and those basic software
modules that implement AUTOSAR Interfaces. They are represented by the meta-class
RunnableEntity, see Figure 4.5.

In general, software components are composed of multiple RunnableEntitys in or-
der to accomplish servers, receivers, feedback, etc.

[rte_sws_2202]d The RTE shall support multiple RunnableEntitys in AUTOSAR
software-components. c(RTE00031)

RunnableEntitys are executed in the context of an OS task, their execution is
triggered by RTEEvents. Section 4.2.2.3 gives a more detailed description of the
concept of RunnableEntitys, Section 4.2.2.6 discusses the problem of mapping

77 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

RunnableEntitys to OS tasks. RTEEvents and the activation of RunnableEn-
titys by RTEEvents is treated in Section 4.2.2.4.

[rte_sws_2203]d The RTE shall trigger the execution of RunnableEntitys in accor-
dance with the connected RTEEvent. c(RTE00072)

[rte_sws_2204]d The RTE Generator shall reject configurations where an RTEEvent
instance which can start a RunnableEntity is not mapped to an OS task. The
only exceptions are RunnableEntitys that are invoked by a direct function call.
c(RTE00049, RTE00018)

[rte_sws_7347]d The RTE Generator shall reject configurations where RunnableEn-
titys of a SW-C are mapped to tasks of different partitions. c(RTE00036, RTE00018)

[rte_sws_2207]d The RTE shall respect the configured execution order of
RunnableEntitys within one OS task. c(RTE00070)

78 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

AtpStructureElement
ExecutableEntity

RunnableEntity

+ canBeInvokedConcurrently: Boolean
+ symbol: CIdentifier

Identifiable

ServerCallPoint

+ timeout: TimeValue

Identifiable

WaitPoint

+ timeout: TimeValue

InternalBehavior

SwcInternalBehavior

+ handleTerminationAndRestart: HandleTerminationAndRestartEnum
+ supportsMultipleInstantiation: Boolean

Identifiable

VariableAccess

+ scope: VariableAccessScopeEnum [0..1]

Identifiable

ParameterAccess

Identifiable

AsynchronousServerCallResultPoint

AutosarParameterRef

«atpVariation» Tags:
Vh.latestBindingTime
= PreCompileTime

«atpVariation» Tags:
Vh.latestBindingTime
= PreCompileTime

«atpVariation» Tags:
Vh.latestBindingTime =
PreCompileTime

«enumeration»
VariableAccessScopeEnum

 communicationInterEcu
 communicationIntraParti tion
 interParti tionIntraEcu

ExternalTriggeringPoint

Identifiable

InternalTriggeringPoint

+ swImplPolicy: SwImplPolicyEnum [0..1]

«atpVariation»

+writtenLocalVariable

0..*

«atpVariation»

+dataReceivePointByValue

0..*

«atpVariation»

+readLocalVariable

0..*

«atpVariation»

+dataReceivePointByArgument

0..*

«atpVariation»

+dataWriteAccess

0..*

«atpVariation»

+dataReadAccess

0..*

«atpVariation»

+dataSendPoint

0..*

+runnable 1..*

«atpVariation,atpSplitable»

+waitPoint

*

+runnable

+serverCallPoint

*«atpVariation»

+runnable

+asynchronousServerCallResultPoint

0..*
«atpVariation»+runnable

+externalTriggeringPoint

0..*
«atpVariation»

+runnable

+internalTriggeringPoint

0..*«atpVariation»

+accessedParameter 1

«atpVariation»

+parameterAccess

0..*

79 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Figure 4.5: Software-component runnable entity

With the information from SwcInternalBehavior a part of the setup of the AU-
TOSAR software-component within the RTE and the OS can already be configured.
Furthermore, the information (description) of the structure (ports, interfaces) and the
internal behavior of an AUTOSAR software component are sufficient for the RTE Con-
tract Phase.

However, some detailed information is still missing and this is part of the Implementa-
tion description.

4.1.3.4 Implementation

In the Implementation description an actual implementation of an AUTOSAR software-
component is described including the memory consumption (see Figure 4.6).

ARElement

Implementation

Identifiable

ExecutionTime

Identifiable

ResourceConsumption

Identifiable

StackUsage A

Identifiable

HeapUsage

Identifiable

MemorySection

Identifiable

ExecutableEntity

«atpVariation» Tags:
Vh.latestBindingTime
= PreCompileTime

«atpVariation»

+memorySection 0..* +heapUsage 0..*

«atpVariation»

+stackUsage 0..*

«atpVariation»

+executionTime 0..*

«atpVariation»

+resourceConsumption 1

+executableEntity

0..1

+executableEntity

0..1

+executableEntity

0..*

Figure 4.6: Software-component resource consumption

Note that the information from the Implementation part are only required for the RTE
Generation Phase, if at all.

80 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4.1.4 Instantiation

4.1.4.1 Scope and background

Generally spoken, the term instantiation refers to the process of deriving specific in-
stances from a model or template. But, this process can be accomplished on different
levels of abstraction. Therefore, the instance of the one level can be the model for the
next.

With respect to AUTOSAR four modeling levels are distinguished. They are referred to
as the levels M3 to M0.

The level M3 describes the concepts used to derive an AUTOSAR meta model of level
M2. This meta model at level M2 defines a language in order to be able to describe
specific attributes of a model at level M1, e.g., to be able to describe an specific type
of an AUTOSAR software component. E.g., one part of the AUTOSAR meta model
is called Software Component Template or SW-C-T for short and specified in [2]. It is
discussed more detailed in section 4.1.3.

At level M1 engineers will use the defined language in order to design components or
interfaces or compositions, say to describe an specific type of a LightManager. Hereby,
e.g., the descriptions of the (atomic) software components will also contain an internal
behavior as well as an implementation part as mentioned in section 4.1.3.

Those descriptions are input for the RTE Generator in the so-called ’Contract Phase’
(see section 3.1.1). Out of this information specific APIs (in a programming language)
to access ports and interfaces will be generated.

Software components generally consist of a set of Runnable Entities. They can now
specifically be described in a programming language which can be refered to as “im-
plementation”. As one can see in section 4.1.3 this “implementation” then corresponds
exactly to one implementation description as well as to one internal behavior descrip-
tion.

M0 refers to a specific running instance on a specific car.

Objects derived from those specified component types can only be executed in a spe-
cific run time environment (on a specific target). The objects embody the real and
running implementation and shall therefore be referred to as software component in-
stances (on modeling level M0). E.g., there could be two component instances derived
from the same component type LightManager on a specific light controller ECU each
responsible for different lights. Making instances means that it should be possible to
distinguish them even though the objects are descended from the same model.

With respect to this more narrative description the RTE as the run time environment
shall enable the process of instantiation. Thereby the term instantiation throughout
the document shall refer to the process of deriving and providing explicit particular
descriptions of all occuring instances of all types. Therefore, this section will address
the problems which can arise out of the instantiation process and will specify the needs
for AUTOSAR components and the AUTOSAR RTE respectively.

81 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4.1.4.2 Concepts of instantiation

Regardless of the fact that the (aforementioned) instantiation of AUTOSAR software
components can be generally achieved on a per-system basis, the RTE Generator
restricts its view to a per-ECU customization (see rte_sws_5000).

Generally, there are two different kinds of instantiations possible:

• single instantiation – which refers to the case where only one object or AUTOSAR
software component instance will be derived out of the AUTOSAR software com-
ponent description

• multiple instantiation – which refers to the case where multiple objects or AU-
TOSAR software component instances will be derived out of the AUTOSAR soft-
ware component description

[rte_sws_2001]d The RTE Generator shall be able to instantiate one or more AU-
TOSAR software component instances out of a single AUTOSAR software component
description. c(RTE00011)

[rte_sws_2008]d The RTE Generator shall evaluate the attribute supportsMultipleIn-
stantiation of the SwcInternalBehavior of an AUTOSAR software component descrip-
tion. c(RTE00011)

[rte_sws_2009]d The RTE Generator shall reject configurations where multiple instan-
tiation is required, but the value of the attribute supportsMultipleInstantiation of the
SwcInternalBehavior of an AUTOSAR software component description is set to FALSE.
c(RTE00011, RTE00018)

4.1.4.3 Single instantiation

Single instantiation refers to the easiest case of instantiation.

To be instantiated merely means that the code and the corresponding data of a partic-
ular RunnableEntity are embedded in a runtime context. In general, this is achieved by
the context of an OS task (see example 4.1).

Example 4.1

Runnable entity R1 called out of a task context:

1 TASK(Task1){
2 ...
3 R1();
4 ...
5 }

Since the single instance of the software component is unambigous per se no addi-
tional concepts have to be added.

82 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4.1.4.4 Multiple instantiation

[rte_sws_2002]d Multiple objects instantiated from a single AUTOSAR software com-
ponent (type) shall be identifiable without ambiguity. c(RTE00011)

There are two principle ways to achieve this goal –

• by code duplication (of runnable entities)

• by code sharing (of reentrant runnable entities)

For now it was decided to solely concentrate on code sharing and not to support code
duplication.

[rte_sws_3015]d The RTE only supports multiple objects instantiated from a single
AUTOSAR software component by code sharing, the RTE doesn’t support code dupli-
cation. c(RTE00011, RTE00012)

Multiple instances can share the same code, if the code is reentrant. For a multi core
controller, the possibility to share code between the cores depends on the hardware.

Example 4.2 is similar to the example 4.1, but for a software-component that sup-
port multiple instantiations, and where two instances have their R1 RunnableEntity
mapped to the same task.

Example 4.2

Runnable entity R1 called for two instances out of the same task context:

1 TASK(Task1){
2 ...
3 R1(instance1);
4 R1(instance2);
5 ...
6 }

The same code for R1 is shared by the different instances.

4.1.4.4.1 Reentrant code

In general, side effects can appear if the same code entity is invoked by different
threads of execution running, namely tasks. This holds particularly true, if the invoked
code entity inherits a state or memory by the means of static variables which are vis-
ible to all instances. That would mean that all instances are coupled by those static
variables.

Thus, they affect each other. This would lead to data consistency problems on one
hand. On the other – and that is even more important – it would introduce a new

83 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

communication mechanism to AUTOSAR and this is forbidden. AUTOSAR software
components can only communicate via ports.

To be complete, it shall be noted that a calling code entity also inherits the reentrancy
problems of its callee. This holds especially true in case of recursive calls.

4.1.4.4.2 Unambiguous object identification

[rte_sws_2015]d The instantiated AUTOSAR software component objects shall be un-
ambiguously identifiable by an instance handle, if multiple instantiation by sharing code
is required. c(RTE00011, RTE00012)

4.1.4.4.3 Multiple instantiation and Per-instance memory

An AUTOSAR SW-C can define internal memory only accessible by a SW-C instance
itself. This concept is called PerInstanceMemory. The memory can only be accessed
by the runnable entities of this particular instance. That means in turn, other instances
don’t have the possibility to access this memory.

PerInstanceMemory API principles are explained in Section 5.2.5.

The API for PerInstanceMemory is specified in Section 5.6.15.

4.1.5 RTE and AUTOSAR Services

According to the AUTOSAR glossary [11] “an AUTOSAR service is a logical entity of the
Basic Software offering general functionality to be used by various AUTOSAR software
components. The functionality is accessed via standardized AUTOSAR interfaces”.

Therefore, AUTOSAR services provide standardized AUTOSAR Interfaces: ports typed
by standardized PortInterfaces.

When connecting AUTOSAR service ports to ports of AUTOSAR software components
the RTE maps standard RTE API calls to the symbols defined in the RTE input (i.e.
XML) for the AUTOSAR service runnables of the BSW. The key technique to distin-
guish ECU dependent identifiers for the AUTOSAR services is called “port-defined
argument values”, which is described in Section 4.3.2.4. Currently “port-defined argu-
ment values” are only supported for client-server communication. It is not possible to
use a pre-defined symbol for sending or receiving data.

The RTE does not pass an instance handle to the C-based API of AUTOSAR services
since the latter are single-instantiatable (see rte_sws_3806).

As displayed on figure 4.2, there can be direct interactions between the RTE and some
Basic Software Modules. This is the case of the Operating System, the AUTOSAR
Communication, and the NVRAM Manager.

84 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4.1.6 RTE and ECU Abstraction

The ECU Abstraction provides an interface to physical values for AUTOSAR software
components. It abstracts the physical origin of signals (their pathes to the ECU hard-
ware ports) and normalizes the signals with respect to their physical appearance (like
specific values of current or voltage).

See the AUTOSAR ECU architecture in figure 4.2. From an architectural point of view
the ECU Abstraction is part of the Basic Software layer and offers AUTOSAR interfaces
to AUTOSAR software components.

Seen from the perspective of an RTE, regular AUTOSAR ports are connected. With-
out any restrictions all communication paradigms specified by the AUTOSAR Virtual
Functional Bus (VFB) shall be applicable to the ports, interfaces and connections –
sender-receiver just as well as client-server mechanisms.

However, ports of the ECU Abstraction shall always only be connected to ports of
specific AUTOSAR software components: sensor or actuator software components. In
this sense they are tightly coupled to a particular ECU Abstraction.

Furthermore, it must not be possible (by an RTE) to connect AUTOSAR ports of the
ECU Abstraction to AUTOSAR ports of any AUTOSAR component located on a remote
ECU (see rte_sws_2051 and [RTE00136]).

This means, e.g., that sensor-related signals coming from the ECU Abstraction are
always received by an AUTOSAR sensor component located on the same ECU. The
AUTOSAR sensor component will then process the received signal and deploy it to
other AUTOSAR components regardless of whether they are located on the same or
any remote ECU. This applies to actuator-related signals accordingly, however, the
opposite way around.

[rte_sws_2050]d The RTE Generator shall generate a communication path between
connected ports of AUTOSAR sensor or actuator software components and the ECU
Abstraction in the exact same manner like for connected ports of AUTOSAR software
components. c()

[rte_sws_2051]d The RTE Generator shall reject configurations which require a com-
munication path from a AUTOSAR software component to an ECU Abstraction located
on a remote ECU. c(RTE00062, RTE00018)

Further information about the ECU Abstraction can be found in the corresponding spec-
ification document [18].

4.1.7 RTE and Complex Device Driver

A Complex Device Driver has an AUTOSAR Interface, therefore the RTE can deal with
the communication on the Complex Device Drivers ports. The Complex Device Driver
is allowed to have code entities that are not under control of the RTE but yet still may
use the RTE API (e.g. ISR2, BSW main processing functions).

85 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4.1.8 Basic Software Scheduler and Basic Software Modules

4.1.8.1 Description of a Basic Software Module

The description of a Basic Software Module is divided into the sections

• interfaces

• internal behavior

• implementation

For further details see document [9].

4.1.8.2 Basic Software Interfaces

The interface of a Basic Software Module is described with Basic Software Module
Entries (BswModuleEntry). For the functionality of the Basic Software Scheduler only
BswModuleEntrys from BswCallType SCHEDULED are relevant. Nevertheless for op-
timization purpose the analysis of the full call tree might be required which requires the
consideration of all BswModuleEntry ’s

4.1.8.3 Basic Software Internal Behavior

The Basic Software Internal Behavior specifies the behavior of a BSW module or a
BSW cluster w.r.t. the code entities visible by the BSW Scheduler. For the Basic Soft-
ware Scheduler mainly Basic Software Schedulable Entities (BswSchedulableEntity ’s)
are relevant. These are Basic Software Module Entities, which are designed for control
by the Basic Software Scheduler. Basic Software Schedulable Entities are implement-
ing main processing functions. Furthermore all Basic Software Schedulable Entities

86 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

are allowed to use exclusive areas and for call tree analysis all Basic Software Module
Entities are relevant.

[rte_sws_7514]d The Basic Software Scheduler shall support multiple Basic Soft-
ware Module Entities in AUTOSAR Basic Software Modules. c(RTE00211, RTE00213,
RTE00216)

[rte_sws_7515]d The Basic Software Scheduler shall trigger the execution of Schedu-
lable Entity ’s in accordance with the connected BswEvent. c(RTE00072)

[rte_sws_7516]d The RTE Generator shall reject configurations where an BswEvent
which can start a Schedulable Entity is not mapped to an OS task. The exceptions are
BswEvent that are implemented by a direct function call. c(RTE00049, RTE00018)

[rte_sws_7517]d The RTE Generator shall respect the configured execution order of
Schedulable Entities within one OS task. c(RTE00219)

[rte_sws_7518]d The RTE shall support the execution sequences of Runnable Entities
and Schedulable Entities within the same OS task in an arbitrarily configurable order.
c(RTE00219)

4.1.8.4 Basic Software Implementation

The implementation defines further details of the implantation of the Basic Software
Module. The vendorApiInfix attribute is of particular interest, because it defines the
name space extension for multiple instances of the same basic software module. Fur-
ther on the category of the codeDescriptor specifies if the Basic Software Module
is delivered as source code or as object.

4.1.8.5 Multiple Instances of Basic Software Modules

In difference to the multiple instantiation concept of software components, where the
same component code is used for all component instances, basic software modules are
multiple instantiated by creation of own code per instance in a different name space.
The attribute vendorApiInfix allows to define name expansions required for global sym-
bols.

4.1.8.6 AUTOSAR Services / ECU Abstraction / Complex Device Drivers

AUTOSAR Services, ECU Abstraction and Complex Device Drivers are hybrid of AU-
TOSAR software-component and Basic Software Module. These kinds of modules
might use AUTOSAR Interfaces to communicate via RTE as well as C-API to directly
access other Basic Software Modules. Caused by the structure of the AUTOSAR Meta
Model some entities of the ’C’ implementation have to be described twice; on the one
hand by the means of the Software Component Template [2] and on the other hand by

87 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

the means of the Basic Software Module Description Template [9]. Further on the du-
alism of port based communication between software component and non-port based
communication between Basic Software Modules requires in some cases the coordi-
nation and synchronization between both principles. The information about elements
belonging together is provided by the so called SwcBswMapping.

4.1.8.6.1 RunnableEntity / BswModuleEntity mapping

A Runnable Entity which is mapped to a Basic Software Module Entity has to be treated
as one common entity. This means it describes an entity which can use the features of
a Runnable Entity and a Basic Software Module Entity as well. For instance it supports
to use the port based API as well as Basic Software Scheduler API in one C function.

4.1.8.6.2 Synchronized ModeDeclarationGroupPrototype

Two synchronized ModeDeclarationGroupPrototype are resulting in the implementation
of one common mode machine instance. Consequently the call of the belonging
Rte_Switch API and the SchM_Switch API are having the same effect. For optimiza-
tion purpose the Rte_Switch API might just refer to the SchM_Switch API.

4.1.8.6.3 Synchronized Trigger

Two synchronized Trigger are behaving like one common Trigger. Consequently the
call of the belonging Rte_Trigger API and the SchM_Trigger API are having the
same effect. For optimization purpose the Rte_Trigger API might just refer to the
SchM_Trigger API.

4.2 RTE and Basic Software Scheduler Implementation Aspects

4.2.1 Scope

This section describes some specific implementation aspects of an AUTOSAR RTE
and the Basic Software Scheduler. It will mainly address

• the mapping of logical concepts (e.g., Runnable Entities, BSW Schedulable Enti-
ties) to technical architectures (namely, the AUTOSAR OS)

• the decoupling of pending interrupts (in the Basic Software) and the notification
of AUTOSAR software components

• data consistency problems to be solved by the RTE

88 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Therefore this section will also refer to aspects of the interaction of the AUTOSAR RTE
and Basic Software Scheduler and the two modules of the AUTOSAR Basic Software
with standardized interfaces (see Figure 4.7):

• the module AUTOSAR Operating System [19, 4, 20, 12]

• the module AUTOSAR COM [21, 3]

Figure 4.7: Scope of the section on Basic Software modules

Having a standardized interface means first that the modules do not provide or request
services for/of the AUTOSAR software components located above the RTE. They do
not have ports and therefore cannot be connected to the aforementioned AUTOSAR
software components. AUTOSAR OS as well as AUTOSAR COM are simply invisible
for them.

Secondly AUTOSAR OS and AUTOSAR COM are used by the RTE in order to achieve
the functionality requested by the AUTOSAR software components. The AUTOSAR
COM module is used by the RTE to route a signal over ECU boundaries, but this
mechanism is hidden to the sending as well as to the receiving AUTOSAR software
component. The AUTOSAR OS module is used for two main purposes. First, OS is
used by the RTE to route a signal over core and partition boundaries. Secondly, the
AUTOSAR OS module is used by the RTE in order to properly schedule the single
Runnables in the sense that the RTE Generator generates Task-bodies which contain
then the calls to appropriate Runnables.

89 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

In this sense the RTE shall also use the available means to convert interrupts to notifi-
cations in a task context or to guarantee data consistency.

With respect to this view, the RTE is thirdly not a generic abstraction layer for AU-
TOSAR OS and AUTOSAR COM. It is generated for a specific ECU and offers the
same interface to the AUTOSAR Software Components as the VFB. It implements the
functionality of the VFB using modules of the Basic Software, including a specific im-
plementation of AUTOSAR OS and AUTOSAR COM.

The Basic Software Scheduler offers services to integrate Basic Software Modules for
all modules of all layers. Hence, the Basic Software Scheduler provides the following
functions:

• embed Basic Software Modules implementations into the AUTOSAR OS context

• trigger BswSchedulableEntitys of the Basic Software Modules

• apply data consistency mechanisms for the Basic Software Modules

The integrator’s task is to apply given means (of the AUTOSAR OS) in order to assem-
ble BSW modules in a well-defined and efficient manner in a project specific context.

This also means that the BSW Scheduler only uses the AUTOSAR OS. It is not in the
least a competing entity for the AUTOSAR OS scheduler.

[rte_sws_2250]d The RTE shall only use the AUTOSAR OS and AUTOSAR COM in
order to provide the RTE functionality to the AUTOSAR components. c(RTE00020)

[rte_sws_7519]d The Basic Software Scheduler shall only use the AUTOSAR OS in
order to provide the Basic Software Scheduler functionality to the Basic Software Mod-
ules. c()

[rte_sws_2251]d The RTE Generator shall construct task bodies for those tasks which
contain RunnableEntitys and Basic Software Schedulable Entities. c(RTE00049)

The information for the construction of task bodies has to be given by the ECU Con-
figuration description. The mapping of Runnable Entities to tasks is given as an input
by the ECU Configuration description. The RTE Generator does not decide on the
mapping of RunnableEntitys to tasks.

[rte_sws_2254]d The RTE Generator shall reject configurations where input informa-
tion is missing regarding the mapping of Runnable Entities and Basic Software Schedu-
lable Entities to OS tasks or the construction of tasks bodies. c(RTE00049, RTE00018)

4.2.2 OS

This section describes the interaction between the RTE + Basic Software Scheduler
and the AUTOSAR OS. The interaction is realized via the standardized interface of the
OS - the AUTOSAR OS API. See Figure 4.7.

90 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

The OS is statically configured by the ECU Configuration. The RTE generator however
may be allowed to create tasks and other OS objects, which are necessary for the run-
time environment (see rte_sws_5150). The mapping of RunnableEntitys and BSW
Schedulable Entities to OS tasks is not the job of the RTE generator. This mapping has
to be done in a configuration step before, in the RTE-Configuration phase. The RTE
generator is responsible for the generation of OS task bodies, which contain the calls
for the RunnableEntitys and BSW Schedulable Entities. The RunnableEntitys
and BSW Schedulable Entities themselves are OS independent and are not allowed
to use OS service calls. The RTE and Basic Software Scheduler have to encapsulate
such calls via the standardized RTE API respectively Basic Software Scheduler API.

4.2.2.1 OS Objects

Tasks

• The RTE generator has to create the task bodies, which contain the calls of the
RunnableEntitys and BswSchedulableEntitys. Note that the term task
body is used here to describe a piece of code, while the term task describes a
configuration object of the OS.

• The RTE and Basic Software Scheduler controls the task activation/resumption
either directly by calling OS services like SetEvent() or ActivateTask() or
indirectly by initializing OS alarms or starting Schedule-Tables for time-based ac-
tivation of RunnableEntitys. If the task terminates, the generated taskbody
also contains the calls of TerminateTask() or ChainTask().

• The RTE generator does not create tasks. The mapping of RunnableEntitys
and BswSchedulableEntitys to tasks is the input to the RTE generator and
is therefore part of the RTE Configuration.

• The RTE configurator has to allocate the necessary tasks in the OS configuration.

OS applications

• AUTOSAR OS has in R4.0 a new feature called Inter-OS-Application Commu-
nication (IOC). IOC is generated by the OS based on the configuration partially
generated by the RTE. The appropriate objects (OS-Applications) are generated
by the OS, and are used by RTE to for task/runnable mapping.

Events

• The RTE and Basic Software Scheduler may use OS Events for the implementa-
tion of the abstract RTEEvents and BswEvents.

• The RTE and Basic Software Scheduler therefore may call the OS service func-
tions SetEvent(), WaitEvent(), GetEvent() and ClearEvent().

• The used OS Events are part of the input information of the RTE generator.

91 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

• The RTE configurator has to allocate the necessary events in the OS configura-
tion.

Resources

• The RTE and Basic Software Scheduler may use OS Resources (standard or
internal) e.g. to implement data consistency mechanisms.

• The RTE and Basic Software Scheduler may call the OS services
GetResource() and ReleaseResource().

• The used Resources are part of the input information of the RTE generator.

• The RTE configurator has to allocate the necessary resources (all types of re-
sources) in the OS configuration.

Interrupt Processing

• An alternative mechanism to get consistent data access is disabling/enabling of
interrupts. The AUTOSAR OS provides different service functions to handle in-
terrupt enabling/disabling. The RTE may use these functions and must not use
compiler/processor dependent functions for the same purpose.

Alarms

• The RTE may use Alarms for timeout monitoring of asynchronous client/server
calls. The RTE is responsible for Timeout handling.

• The RTE and Basic Software Scheduler may setup cyclic alarms for pe-
riodic triggering of RunnableEntitys and BswSchedulableEntitys
(RunnableEntity activation via RTEEvent TimingEvent respectively
BswSchedulableEntity activation via BswEvent BswTimingEvent)

• The RTE and Basic Software Scheduler therefore may call the OS service func-
tions GetAlarmBase(), GetAlarm(), SetRelAlarm(), SetAbsAlarm()
and CancelAlarm().

• The used Alarms are part of the input information of the RTE generator.

• The RTE configurator has to allocate the necessary alarms in the OS configura-
tion.

Schedule Tables

• The RTE and Basic Software Scheduler may setup schedule tables for cyclic task
activation (e.g. RunnableEntity activation via RTEEvent TimingEvent)

• The used schedule tables are part of the input information of the RTE generator.

• The RTE configurator has to allocate the necessary schedule tables in the OS
configuration.

Common OS features

92 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Depending on the global scheduling strategy of the OS, the RTE can make decisions
about the necessary data consistency mechanisms. E.g. in an ECU, where all tasks
are non-preemptive - and as the result also the global scheduling strategy of the com-
plete ECU is non-preemptive - the RTE may optimize the generated code regarding
the mechanisms for data consistency.

Hook functions

The AUTOSAR OS Specification defines hook functions as follows:

A Hook function is implemented by the user and invoked by the operating system in
the case of certain incidents. In order to react to these on system or application level,
there are two kinds of hook functions.

• application-specific: Hook functions within the scope of an individual OS Appli-
cation.

• system-specific: Hook functions within the scope of the complete ECU (in gen-
eral provided by the integrator).

If no memory protection is used (scalability classes SCC1 and SCC2) only the system-
specific hook functions are available.

In the SRS the requirements to implement the system-specific hook functions were
rejected [RTE00001], [RTE00101], [RTE00102] and [RTE00105], as well as the
application-specific hook functions [RTE00198]. The reason for the rejection is the
system (ECU) global scope of those functions. The RTE is not the only user of those
functions. Other BSW modules might have requirements to use hook functions as well.
This is the reason why the RTE is not able to generate these functions without the
necessary information of the BSW configuration.

It is intended that the implementation of the hook functions is done by the system
integrator and NOT by the RTE generator.

4.2.2.2 Basic Software Schedulable Entities

BswSchedulableEntitys are Basic Software Module Entities, which are designed
for control by the BSW Scheduler. BswSchedulableEntitys are implementing main
processing functions. The configuration of the Basic Software Scheduler allows map-
ping of BswSchedulableEntitys to both types; basic tasks and extended tasks.

BswSchedulableEntitys not mapped to a RunnableEntity are not allowed
to enter a wait state. Therefore such BswSchedulableEntitys are compara-
ble to RunnableEntitys of category 1. BswSchedulableEntitys mapped to
a RunnableEntity can enter wait states by usage of the RTE API and such
BswSchedulableEntitys have to be treated according the classification of the
mapped RunnableEntity. The mapping of BswSchedulableEntitys to a
RunnableEntitys is typically used for AUTOSAR Services, ECU Abstraction and
Complex Device Drivers. See sections 4.1.8.6.

93 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4.2.2.3 Runnable Entities

The following section describes the RunnableEntitys, their categories and their
task-mapping aspects. The prototypes of the functions implementing RunnableEn-
titys are described in section 5.7

Runnable entities are the schedulable parts of SW-Cs. With the exception of reentrant
server runnables that are invoked via direct function calls, they have to be mapped to
tasks. The mapping must be described in the ECU Configuration Description. This
configuration - or just the RTE relevant parts of it - is the input of the RTE generator.

All RunnableEntitys are activated by the RTE as a result of an RTEEvent. Pos-
sible activation events are described in the meta-model by using RTEEvents (see
section 4.2.2.4). If no RTEEvent is specified in the role startOnEvent for the
RunnableEntity, the RunnableEntity is never activated by the RTE.

The categories of RunnableEntitys are described in [2].

RunnableEntities and SchedulableEntities are generalized by Exe-
cutableEntities.

4.2.2.4 RTE Events

The meta model describes the following RTE events:

Abbreviation Name
T TimingEvent
BG BackgroundEvent
DR DataReceivedEvent (S/R Communication only)
DRE DataReceiveErrorEvent (S/R Communication only)
DSC DataSendCompletedEvent (explicit S/R Communication only)
DWC DataWriteCompletedEvent (implicit S/R Communication only)
OI OperationInvokedEvent (C/S Communication only)
ASCR AsynchronousServerCallReturnsEvent (C/S communication only)
MS SwcModeSwitchEvent
MSA ModeSwitchedAckEvent
ETO ExternalTriggerOccurredEvent
ITO InternalTriggerOccurredEvent

According to the meta model each kind of RTEEvent can either

ACT activate a RunnableEntity, or

WUP wakeup a RunnableEntity at its WaitPoints

The meta model makes no restrictions which kind of RTEEvents are referred by Wait-
Points. As a consequence RTE API functions would be necessary to set up the
WaitPoints for each kind of RTEEvent.

94 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Nevertheless in some cases it seems to make no sense to implement all possible com-
binations of the general meta model. E.g. setting up a WaitPoint, which should be
resolved by a cyclic TimingEvent. Therefore the RTE SWS defines some restrictions,
which are also described in section A.

The meta model also allows, that the same RunnableEntity can be triggered by
several RTEEvents. For the current approach of the RTE and restrictions see sec-
tion 4.2.6.

T BG DR DRE DSC DWC OI ASCR MS MSA ETO ITO
ACT x x x x x x x x x x x x

WUP x x x x

The table shows, that activation of RunnableEntity is possible for each kind of RTE-
Event. For RunnableEntity activation, no explicit RTE API in the to be activated
RunnableEntity is necessary. The RTE itself is responsible for the activation of the
RunnableEntity depending on the configuration in the SW-C Description.

If the RunnableEntity contains a WaitPoint, it can be resolved by the assigned
RTEEvent(s). Entering the WaitPoint requires an explicit call of a RTE API function.
The RTE (together with the OS) has to implement the WaitPoint inside this RTE API.

The following list shows which RTE API function has to be called to set up Wait-
Points.

• DataReceivedEvent: Rte_Receive()

• DataSendCompletedEvent: Rte_Feedback()

• ModeSwitchedAckEvent: Rte_SwitchAck()

• AsynchronousServerCallReturnsEvent: Rte_Result()

[rte_sws_1292]dWhen a DataReceivedEvent references a RunnableEntity and
a required VariableDataPrototype and no WaitPoint references the DataRe-
ceivedEvent, the RunnableEntity shall be activated when the data is received.
rte_sws_1135. c(RTE00072)

Requirement rte_sws_1292 merely affects when the runnable is activated – an API
call should still be created, according to requirement rte_sws_1288, rte_sws_1289,
and rte_sws_7395 as appropriate, to actually read the data.

4.2.2.5 BswEvents

The meta model describes the following BswEvents.

95 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Identifiable

BswEvent

BswTimingEvent

+ period: TimeValue

BswInternalTriggerOccurredEvent

BswSchedulableEntity

BswModeSwitchEvent

+ activation:
ModeActivationKind

BswExternalTriggerOccurredEvent

ExecutableEntity

BswModuleEntity

InternalBehavior

BswInternalBehavior

BswModeSwitchedAckEvent

BswBackgroundEvent

+startsOnEvent 1

«atpVariation»

+entity

1..*

«atpVariation»

+event

0..*

Figure 4.8: Different kinds of BswEvents

Similar to RTEEvents the activation of Basic Software Schedulable Entities is possi-
ble for each kind of BswEvent. For of BswSchedulableEntitys activation, no ex-
plicit Basic Software Scheduler API in the to be activated BswSchedulableEntity
is necessary. The Basic Software Scheduler itself is responsible for the activation of
the BswSchedulableEntity depending on the configuration in the Basic Software
Module Description. In difference to RTEEvents, none of the BswEvents support
WaitPoints. For more details see document [9].

96 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4.2.2.6 Mapping of Runnable Entities and Basic Software Schedulable Entities
to tasks (informative)

One of the main requirements of the RTE generator is "Construction of task bodies"
[RTE00049]. The necessary input information e.g. the mapping of RunnableEntitys
and BswSchedulableEntity to tasks must be provided by the ECU configuration
description.

The ECU configuration description (or an extract of it) is the input for the RTE Generator
(see Figure 3.4). It is also the purpose of this document to define the necessary input
information. Therefore the following scenarios may help to derive requirements for the
ECU Configuration Template as well as for the RTE-generator itself.
Note: The scenarios do not cover all possible combinations.

The RTE-Configurator uses parts of the ECU Configuration of other BSW Modules,
e.g. the mapping of RunnableEntitys to OsTasks. In this configuration process the
RTE-Configurator expects OS objects (e.g. Tasks, Events, Alarms...) which are used
in the generated RTE and Basic Software Scheduler.

Some figures for better understanding use the following conventions:

Figure 4.9: Element description

Note: The following examples are only showing RunnableEntitys. But taking the
categorization of BswSchedulableEntitys defined in section 4.2.2.2 into account,
the scenarios are applicable for BswSchedulableEntitys as well.

4.2.2.6.1 Scenario for mapping of RunnableEntitys to tasks

The different properties of RunnableEntitys with respect to data access and termi-
nation have to be taken into account when discussing possible scenarios of mapping
RunnableEntitys to tasks.

• RunnableEntitys using VariableAccesses in the dataReadAccess or
dataWriteAccess roles (implicit read and send) have to terminate.

• RunnableEntitys of category 1 can be mapped either to basic or extended
tasks. (see next subsection).

97 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

• RunnableEntitys using at least one WaitPoint are of category 2.

• RunnableEntitys of category 2 that contain WaitPoints will be typically
mapped to extended tasks.

• RunnableEntitys that contain a SynchronousServerCallPoint generally
have to be mapped to extended tasks.

• RunnableEntitys that contain a SynchronousServerCallPoint can be
mapped to basic tasks if no timeout monitoring is required and the server runn-
able is on the same partition.

• RunnableEntitys that contain a SynchronousServerCallPoint can be
mapped to basic tasks if the server runnable is invoked directly and is itself of
category 1.

Note that the runnable to task mapping scenarios supported by a particular RTE im-
plementation might be restricted.

4.2.2.6.1.1 Scenario 1

Runnable entity category 1A: "runnable1"

• Ports: only S/R with VariableAccesses in the dataReadAccess or
dataWriteAccess role

• RTEEvents: TimingEvent

• no sequence of RunnableEntitys specified

• no VariableAccess in the dataSendPoint role

• no WaitPoint

Possible mappings of "runnable1" to tasks:

Basic Task
If only one of those kinds of RunnableEntitys is mapped to a task (task contains only
one RunnableEntity), or if multiple RunnableEntitys with the same activation
period are mapped to the same task, a basic task can be used. In this case, the
execution order of the RunnableEntitys within the task is necessary. In case the
RunnableEntitys have different activation periods, the RTE has to provide the glue-
code to guarantee the correct call cycle of each RunnableEntity.

The ECU Configuration-Template has to provide the sequence of RunnableEntitys
mapped to the same task, see PositionInTask.

Figure 4.10 shows the possible mappings of RunnableEntitys into a basic task. If
and only if a sequence order is specified, more than one RunnableEntity can be
mapped into a basic task.

98 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Figure 4.10: Mapping of Category 1 RunnableEntitys to Basic Tasks

Extended Task

If more than one RunnableEntity is mapped to the same task and the special con-
dition (same activation period) does not fit, an extended task is used.

If an extended task is used, the entry points to the different RunnableEntitys might
be distinguished by evaluation of different OS events. In the scenario above, the differ-
ent activation periods may be provided by different OS alarms. The corresponding OS
events have to be handled inside the task body. Therefore the RTE-generator needs
for each task the number of assigned OS Events and their names.

The ECU Configuration has to provide the OS events assigned to the RTEEvents
triggering the RunnableEntitys that are mapped to an extended task, see UsedO-
sEventRef.

Figure 4.11 shows the possible mapping of the multiple RunnableEntitys of cate-
gory 1 into an Extended Task. Note: The Task does not terminate.

99 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Figure 4.11: Mapping of Category 1 RunnableEntitys to Extended Tasks

For both, basic tasks and extended tasks, the ECU Configuration must provide the
name of the task.

The ECU Configuration has to provide the name of the task, see OsTask.

The ECU Configuration has to provide the task type (BASIC or EXTENDED), which
can be determined from the presence or absence of OS Events associated with that
task, see OsTask.

4.2.2.6.1.2 Scenario 2

Runnable entity category 1B: "runnable2"

• Ports: S/R with VariableAccesses in the dataSendPoint role.

• RTEEvents: TimingEvent

• no WaitPoint

Possible mappings of "runnable2" to tasks:

The following figure shows the different mappings:

• One category 1B runnable

• More than one category 1B runnable mapped to the same basic task with a spec-
ified sequence order

• More than one category 1B runnable mapped into an extended task

The gluecode to realize the VariableAccessin the dataReadAccess and
dataWriteAccess roles respectively before entering the runnable and after exiting
is not necessary.

100 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Figure 4.12: Mapping of Category 1 RunnableEntitys using no VariableAccesses in
the dataReadAccess or dataWriteAccess role

4.2.2.6.1.3 Scenario 3

Runnable entity category 1A: "runnable3"

• Ports: S/R with VariableAccesses in the dataReadAccess or
dataWriteAccess role

• RTEEvents: Runnable is activated by a DataReceivedEvent

• no VariableAccess in the dataSendPoint role

• no WaitPoint

There is no difference between Scenario 1 and 3. Only the RTEEvent that activates
the RunnableEntity is different.

4.2.2.6.1.4 Scenario 4

Runnable entity category 2: "runnable4"

• Ports: S/R with VariableAccesses in the dataReceivePointByValue or
dataReceivePointByArgument role and WaitPoint (blocking read)

• RTEEvents: WaitPoint referencing a DataReceivedEvent

Runnable is activated by an arbitrary RTEEvent (e.g. by a TimingEvent). When
the RunnableEntity has entered the WaitPoint and the DataReceivedEvent
occurs, the RunnableEntity resumes execution.

The runnable has to be mapped to an extended task. Normally each category 2 runn-
able has to be mapped to its own task. Nevertheless it is not forbidden to map multiple
category 2 RunnableEntitys to the same task, though this might be restricted by an
RTE generator. Mapping multiple category 2 RunnableEntitys to the same task can
lead to big delay times if e.g. a WaitPoint is resolved by the incoming RTEEvent,
but the task is still waiting at a different WaitPoint.

101 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Figure 4.13: Mapping of Category 2 RunnableEntitys to Extended Tasks

4.2.2.6.1.5 Scenario 5

There are two RunnableEntitys implementing a client (category 2) and a server for
synchronous C/S communication and the timeout attribute of the ServerCallPoint is 0.

On a single core, there are two ways to invoke a server synchronously:

• Simple function call for intra-partition C/S communication if the canBeInvoked-
Concurrently attribute of the server runnable is set and if the server runnable
is of category 1. In that case the server runnable is executed in the same task
context (same stack) as the client runnable that has invoked the server. The client
runnable can be mapped to a basic task.

• The server runnable is mapped to its own task. If the canBeInvokedConcur-
rently attribute is not set, the server runnable must be mapped to a task.

If the implementation of the synchronous server invocation does not use OS
events, the client runnable can be mapped to a basic task and the task of the
server runnable must have higher priority than the task of the client runnable.
Furthermore, the task to which the client runnable is mapped must be preempt-
able. This has to be checked by the RTE generator. Activation of the server
runnable can be done by ActivateTask() for a basic task or by SetEvent() for an
extended task. In both cases, the task to be activated must have higher priority
than the task of the client runnable to enforce a task switch (necessary, because
the server invocation is synchronous).

4.2.2.6.1.6 Scenario 6

There are two RunnableEntitys implementing a client (category 2) and a server
for synchronous C/S communication and the timeout attribute of the ServerCallPoint is
greater than 0.

There are again two ways to invoke a server synchronously:

• Simple function call for intra-partition C/S communication if the canBeInvoked-
Concurrently attribute of the server runnable is set and the server is of cat-
egory 1. In that case the server runnable is executed in the same task context

102 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

(same stack) as the client runnable that has invoked the server and no timeout
monitoring is performed (see rte_sws_3768). In this case the client runnable can
be mapped to a basic task.

• The server runnable is mapped to its own task. If the canBeInvokedConcur-
rently attribute is not set, the server runnable must be mapped to a task.

If the implementation of the timeout monitoring uses OS events, the task of the
server runnable must have lower priority than the task of the client runnable and
the client runnable must be mapped to an extended task. Furthermore, both
tasks must be preemptable1. This has to be checked by the RTE generator. The
notification that a timeout occurred is then notified to the client runnable by using
an OS Event. In order for the client runnable to immediately react to the timeout,
a task switch to the client task must be possible when the timeout occurs.

4.2.2.6.1.7 Scenario 7

Runnable entity category 2: "runnable7"

• Ports: only C/S with AsynchronousServerCallPoint and WaitPoint

• RTEEvents: AsynchronousServerCallReturnsEvent (C/S communication only)

The mapping scenario for "runnable7", the client runnable that collects the result of the
asynchronous server invocation, is similar to Scenario 4.

1Strictly speaking, this restriction is not necessary for the task to which the client runnable is mapped.
If OS events are used to implement the timeout monitoring and the notification that the server is finished,
the RTE API implementation generally uses the OS service WaitEvent, which is a point of rescheduling.

103 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4.2.2.7 Monitoring of runnable execution time

This section describes how the monitoring of RunnableEntity execution time can
be done.

The RTE doesn’t directly support monitoring of RunnableEntities execution time
but the AUTOSAR OS support for monitoring of OsTasks execution time can be used
for this purpose.

If execution time monitoring of a RunnableEntity is required a possible solution is
to map the RunnableEntity alone to an OsTask and to configure the OS to monitor
the execution time of the OsTask.

This solution can lead to dispatch to individual OsTasks RunnableEntities that
should be initially mapped to the same OsTask because of for example:

• requirements on execution order of the RunnableEntities and/or

• requirements on evaluation order of the RTEEvents that activate the
RunnableEntities and

• constraints to have no preemption between the RunnableEntities

In order to keep the control on the execution order of the RunnableEnti-
ties, the evaluation order of the RTEEvents and the non-preemption between the
RunnableEntities when then RunnableEntities are individually mapped to sev-
eral OsTasks for the purpose of monitoring, a possible solution is to replace the calls
to the C-functions of the RunnableEntities by activations of the OsTasks to which
the monitored RunnableEntities are mapped.

Figure 4.14: Inter task activation and mapping of runnable to individual task for monitor-
ing purpose

This behavior of the RTE can be configured with the attributes RteVirtual-
lyMappedToTaskRef of the RteRunnableEventToTaskMapping. RteVirtu-
allyMappedToTaskRef references the OsTask in which the execution order of

104 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

the RunnableEntities and/or the evaluation order of the RTEEvents are con-
trolled. RteMappedToTaskRef references the individual OsTasks to which the
RunnableEntities are mapped for the purpose of monitoring.

[rte_sws_7800]d The RTE Generator shall respect the configured virtual runn-
able to task mapping (RteVirtuallyMappedToTaskRef) in the RTE configuration.
c(RTE00193)

Of course this solution requires that the task priorities and scheduling properties are
well configured in the OS to allow immediate preemption by the OsTasks to which the
monitored RunnableEntities are mapped. A possible solution is:

• Priority of the OsTask to which the RunnableEntity is mapped is higher than
the priority of the OsTask to which the RunnableEntity is virtually mapped
and

• the OsTask to which the RunnableEntity is virtually mapped have a full pre-
emptive scheduling or

• the RTE call the OS service Schedule() just after activation of the OsTask to
which the RunnableEntity is mapped

Example 1: Without OsEvent

Description of the example:
RunnableEntity RE1 is activated by TimingEvent 100ms T1.
RunnableEntity RE2 is activated by TimingEvent 100ms T2.
RunnableEntity RE3 is activated by TimingEvent 100ms T3.
Execution order of the RunnableEntities shall be R1, R2 then R3.
RE2 shall be monitored.

Possible RTE configuration:
RE1/T1 is mapped to OsTask TaskA with RtePositionInTask equal to 1.
RE2/T2 is mapped to OsTask TaskB but virtually mapped to TaskA with RtePosi-
tionInTask equal to 2.
RE3/T3 is mapped to OsTask TaskA with RtePositionInTask equal to 3.

Possible RTE implementation:
RTE starts cyclic OsAlarm with 100ms period.
This OsAlarm is configured to activate TaskA.
Non preemptive scheduling is configured for Task A.
TaskB priority = TaskA priority + 1

1 void TaskA(void)
2 {
3 RE1();
4 ActivateTask(TaskB);
5 Schedule();
6 RE3();
7 TerminateTask();
8 }

105 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

9

10 void TaskB(void)
11 {
12 RE2();
13 TerminateTask();
14 }

Example 2: With OsEvent

Description of the example:
RunnableEntity RE1 is activated by DataReceivedEvent DR1.
RunnableEntity RE2 is activated by DataReceivedEvent DR2.
RunnableEntity RE3 is activated by DataReceivedEvent DR3.
Evaluation order of the RTEEvents shall be DR1, DR2 then DR3.
All the runnables shall be monitored.

Possible RTE configuration:
RE1 is mapped to OsTask TaskB but virtually mapped to TaskA with a reference to
OsEvent EvtA and RtePositionInTask equal to 1.
RE2 is mapped to OsTask TaskC but virtually mapped to TaskA with a reference to
OsEvent EvtB and RtePositionInTask equal to 2.
RE3 is mapped to OsTask TaskD but virtually mapped to TaskA with a reference to
OsEvent EvtC and RtePositionInTask equal to 3.

Possible RTE implementation:
RTE set EvtA, EvtB and EvtC according to the callbacks from COM.
Full preemptive scheduling is configured for Task A.
TaskB priority = TaskC priority = TaskD priority = TaskA priority + 1

1 void TaskA(void)
2 {
3 EventMaskType Event;
4

5 while(1)
6 {
7 WaitEvent(EvtA | EvtB | EvtC);
8 GetEvent(TaskA, &Event);
9 if (Event & EvtA)

10 {
11 ClearEvent(EvtA);
12 ActivateTask(TaskB);
13 }
14 else if (Event & EvtB)
15 {
16 ClearEvent(EvtB);
17 ActivateTask(TaskC);
18 }
19 else if (Event & EvtC)
20 {
21 ClearEvent(EvtC);

106 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

22 ActivateTask(TaskD);
23 }
24 }
25 }
26

27 void TaskB(void)
28 {
29 RE1();
30 TerminateTask();
31 }
32

33 void TaskC(void)
34 {
35 RE2();
36 TerminateTask();
37 }
38

39 void TaskD(void)
40 {
41 RE3();
42 TerminateTask();
43 }

It is also possible to configure the RTE for the monitoring of group of runnable = moni-
toring of the sum of the runnable execution times.

Example 3: Monitoring of group of runnables

Description of the example:
RunnableEntity RE1 is activated by TimingEvent 100ms T1.
RunnableEntity RE2 is activated by TimingEvent 100ms T2.
RunnableEntity RE3 is activated by TimingEvent 100ms T3.
RunnableEntity RE4 is activated by DataReceivedEvent DR1.
RunnableEntity RE5 is activated by DataReceivedEvent DR2.
RunnableEntity RE6 is activated by DataReceivedEvent DR3.
RunnableEntity RE7 is activated by DataReceivedEvent DR4.
DataReceivedEvent DR2, DR3 and DR4 references the same DataElement. Eval-
uation order of the RTEEvents shall be T1, T2, T3, DR1, DR2, DR3 then DR4.
RE2 and RE3 shall be monitored as a group.
RE6 and RE7 shall be monitored as a group.

Possible RTE configuration:
RE1 is mapped to OsTask TaskA with a reference to OsEvent EvtA and RtePosi-
tionInTask equal to 1.
RE2 is mapped to OsTask TaskB but virtually mapped to TaskA with a reference to
OsEvent EvtA and RtePositionInTask equal to 2.
RE3 is mapped to OsTask TaskB but virtually mapped to TaskA with a reference to
OsEvent EvtA and RtePositionInTask equal to 3.
RE4 is mapped to OsTask TaskA with a reference to OsEvent EvtB and RtePosi-

107 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

tionInTask equal to 4.
RE5 is mapped to OsTask TaskA with a reference to OsEvent EvtC and RtePosi-
tionInTask equal to 5.
RE6 is mapped to OsTask TaskC but virtually mapped to TaskA with a reference to
OsEvent EvtC and RtePositionInTask equal to 6.
RE7 is mapped to OsTask TaskC but virtually mapped to TaskA with a reference to
OsEvent EvtC and RtePositionInTask equal to 7.

Possible RTE implementation:
RTE starts cyclic OsAlarm with 100ms period.
This OsAlarm is configured to set EvtA.
RTE set EvtB and EvtC according to the callbacks from COM.
Full preemptive scheduling is configured for Task A.
TaskB priority = TaskC priority = TaskA priority + 1

1 void TaskA(void)
2 {
3 EventMaskType Event;
4

5 while(1)
6 {
7 WaitEvent(EvtA | EvtB | EvtC);
8 GetEvent(TaskA, &Event);
9 if (Event & EvtA)

10 {
11 ClearEvent(EvtA);
12 RE1();
13 ActivateTask(TaskB);
14 }
15 else if (Event & EvtB)
16 {
17 ClearEvent(EvtB);
18 RE4();
19 }
20 else if (Event & EvtC)
21 {
22 ClearEvent(EvtC);
23 RE5();
24 ActivateTask(TaskC);
25 }
26 }
27 }
28

29 void TaskB(void)
30 {
31 RE2();
32 RE3();
33 TerminateTask();
34 }

108 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

35

36 void TaskC(void)
37 {
38 RE6();
39 RE7():
40 TerminateTask();
41 }

109 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4.2.2.8 Synchronization of TimingEvent activated runnables

This section describes how the synchronization of TimingEvent activated
RunnableEntities can be done.

The following cases have to be distinguished:

• the RunnableEntities are mapped to the same OsTask

• the RunnableEntities are mapped to different OsTasks in the same OsAp-
plication

• the RunnableEntities are mapped to different OsTasks in different OsAp-
plications on the same core

• the RunnableEntities are mapped to different OsTasks in different OsAp-
plications on different cores on the same microcontroler

• the RunnableEntities are mapped to different OsTasks in different OsAp-
plications on different microcontrolers within the same ECU

• the RunnableEntities are mapped to different OsTasks in different OsAp-
plications on different microcontrolers within different ECUs

As OsAlarms and OsScheduleTableExpiryPoints are used to implement
TimingEvents the following different possible solutions exist to synchronize the
RunnableEntities according to the different cases:

• use the same OsAlarm or OsScheduleTableExpiryPoint to implement all
the TimingEvents

• use different OsAlarms or OsScheduleTableExpiryPoints in different OsS-
cheduleTables based on the same OsCounter and start them with absolute
start offset to control the synchronization between them

• use different OsScheduleTableExpiryPoints in different explicitely synchro-
nized OsScheduleTables based on different OsCounters but with same period
and max value

The choice of the OsAlarms or OsScheduleTableExpiryPoints used to imple-
ment the TimingEvents can be configured in the RTE with RteUsedOsAlarmRef or
RteUsedOsSchTblExpiryPointRef in the RteEventToTaskMapping.

[rte_sws_7804]d The RTE Generator shall respect the configured Os-
Alarms (RteUsedOsAlarmRef) and OsScheduleTableExpiryPoints
(RteUsedOsSchTblExpiryPointRef) for the implementation of the
TimingEvents. c(RTE00232)

110 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

The choice of the absolute start offset of the OsAlarms and OsScheduleTables can
be configured in the RTE with RteExpectedActivationOffset in the RteUse-
dOsActivation.

[rte_sws_7805]d The RTE Generator shall respect the configured absolute start off-
set (RteExpectedActivationOffset) when it starts the OsAlarms and OsSched-
uleTables used for the implementation of the TimingEvents. c(RTE00232)

The RTE / Basic Software Scheduler is not responsible to synchronize/desynchronize
the explicitly synchronized OsScheduleTables. The RTE / Basic Software Scheduler
is only responsible to start the explicitly synchronized OsScheduleTables. In this
case no RteExpectedActivationOffset has to be configured.

4.2.2.9 BackgroundEvent activated Runnable Entities and BasicSoftware
Scheduleable Entities

A BackgroundEvent is a recurring RTEEvent / BswEvent which is used to perform
background activities in RunnableEntities or BswSchedulableEntitys. It is similar
to a TimingEvent but has no fixed time period and is typically activated only with
lowest priority.

A BackgroundEvent triggering can be implemented in two principle ways by the RTE
Generator. Either the background activation is done by a real background OS task;
or the BackgroundEvents are activated like TimingEvents on a fixed recurrence
which is defined by the ECU integrator (see rte_sws_7179 and rte_sws_7180). The
second way might be required to overcome the limitation of a single real background
OS task if BackgroundEvents are used in several partitions.

If the background activation is done by a real background OS task, the OS Task has to
have the lowest priority on the CPU core (see rte_sws_7181). If a implementation is
used where the OS Task terminates (BasicTask) the background OS Task is immedi-
ately reactivated after its termination, e.g. by usage of ChainTask call of the OS.

111 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4.2.3 Activation and Start of ExecutableEntitys

This section defines the activation of ExecutableEntity execution-instances
by using a state machine (Fig. 4.15).

sm state machine for an ExecutableEntity execution-instance

ExecutableEntity execution-instance is schedulable

- activations: int = 0

continuously increasing timer

- debounceTimer: float = minimumStartInterval

Main Activation

started

suspended

debounce

activ ation

running

waiting

preempted activated

not

activated

to be started

corresponds to task state "ready"

/debounceTimer =

minimumStartInterval

[Activation in

state activated]

[debounceTimer >=

minimumStartInterval]

wait

preempt

release

resume

terminate

start

/activations -= 1;

debounceTimer = 0

activate

/activations +=

(activations <=

queue length) 1:0
start

[RTE / SchM of the partition is stopped]

[RTE / SchM of the partition is running]

[activations == 0]

activate

/activations = 1

[activations > 0]

activate

/activations += (activations <= queue length) 1:0

Figure 4.15: General state machine of an ExecutableEntity execution-instance.

An ExecutableEntity execution-instance is one execution-instance of an Ex-
ecutableEntity (RunnableEntity or BswSchedulableEntity) with respect to
concurrent execution.

For a RunnableEntity with canBeInvokedConcurrently = false or for a
BswSchedulableEntity whose referenced BswModuleEntry in the role im-
plementedEntry has a isReentrant attribute set to false, there is only one
execution-instance. For a RunnableEntity with canBeInvokedConcurrently =
true or for a BswSchedulableEntity whose referenced BswModuleEntry in the
role implementedEntry has its isReentrant attribute set to true, there is a well
defined number of execution-instances.

E.g., for a server runnable that is executed as direct function call, each Server-
CallPoint relates to exactly one ExecutableEntity execution-instance.

The main principles for the activation of runnables are:

• RunnableEntitys are activated by RTEEvents

112 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

• BswSchedulableEntitys are activated by BswEvents

• only server runnables (RunnableEntitys activated by an OperationIn-
vokedEvent) are queued. All other ExecutableEntities are unqueued.

If a RunnableEntity is activated due to several DataReceivedEvents of
dataElements with swImplPolicy = queued, it is the responsibility of the
RunnableEntity to dequeue all queued data.

• A minimumStartInterval will delay the activation of RunnableEntitys
and BswSchedulableEntitys to prevent that a RunnableEntity or a
BswSchedulableEntity is started more than once within the minimum-
StartInterval.

Each ExecutableEntity execution-instance has its own state machine. The
full state machine is shown in Fig. 4.15.

Note on Figure 4.15: the debounce timer debounceTimer is an increasing timer. It
is local to the ExecutableEntity execution-instance. The activation counter
activations is a local integer to count the pending activations. The runnable de-
bounce timer and the activation counter are like the whole state machine just concepts
for the specification of the behavior, not for the implementation.

113 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

The pending activations are only counted for server runnables when RTE imple-
ments a serialization of their invocation. In all other cases, RTE does not queue acti-
vations and the state machine for the activation of ExecutableEntity execution-
instances simplifies as shown in Figure 4.16.

sm state machine for an EcexutableEntity execution-instance w ith unqueued activation

ExecutableEntity execution-instance is schedulable

continuously increasing timer

- debounceTimer: float = minimumStartInterval

constraints

{queue length == 0}

Main Activ ation

started

suspended

debounce

activ ation

running

waiting

preempted activated

not

activated

to be started

corresponds to task state "ready"

[Activation in

state activated]

[debounceTimer >=

minimumStartInterval]

wait

preempt

terminate

resume

start

/debounceTimer = 0

activate

/debounceTimer =

minimumStartInterval

start

[RTE / SchM of the partition is stopped]

[RTE / SchM of the partition is running]

release

Figure 4.16: Statemachine of an unqueued execution-instance (not a server runnable)

If RTE implements an ExecutableEntity execution-instance by direct func-
tion call, as described in section 4.2.3.1, the simplified state machine is shown in Fig-
ure 4.19.

The state machine of an ExecutableEntity execution-instance is not identical
to that of the task containing the ExecutableEntity execution-instance, but
there are dependencies between them. E.g., the ExecutableEntity execution-
instance can only be ‘running’ when the corresponding task is ‘running’.

Table 4.1 describes all ExecutableEntity execution-instance states in de-
tail. The ExecutableEntity execution-instance state machine is split in
two threads. The Main states describe the real state of the ExecutableEntity
execution-instance and the transitions between a suspended and a running Ex-
ecutableEntity execution-instance, while the supporting Activation states de-
scribe the state of the pending activations by RTEEvents or BswEvents.

ExecutableEntity
execution-instance state

description

114 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

ExecutableEntity
execution-instance is
schedulable

This super state describes the life time of the state
machine. Only when RTE or the SchM that runs the
ExecutableEntity execution-instance is started in
the corresponding partition, this state machine is ac-
tive.

ExecutableEntity execution-instance Main states
suspended The ExecutableEntity execution-instance is not

started and there is no pending request to start the
ExecutableEntity execution-instance.

to be started The ExecutableEntity execution-instance is acti-
vated but not yet started. Entering the to be started
state, usually implies the activation of a task that starts
the ExecutableEntity execution-instance. The
ExecutableEntity execution-instance stays in the
‘to be started’ state, when the task is already running
until the gluecode of the task actually calls the function
implementing the ExecutableEntity.

running The function, implementing the ExecutableEntity
code is being executed. The task that contains the
ExecutableEntity execution-instance is running.

waiting A task containing the ExecutableEntity execution-
instance is waiting at a WaitPoint within the Exe-
cutableEntity.

preempted A task containing the ExecutableEntity execution-
instance is preempted from executing the function that
implements the ExecutableEntity.

started ‘started’ is the super state of ‘running’, ‘waiting’ and
‘preempted’ between start and termination of the Ex-
ecutableEntity execution-instance.

ExecutableEntity execution-instance Activation states
not activated No RTEEvent / BswEvent requires the activation of

the ExecutableEntity execution-instance.
debounce activation One or more RTEEvents with a startOnEvent re-

lation to the ExecutableEntity execution-instance
have occurred 2, but the debounce timer has not yet
exceeded the minimumStartInterval. The activa-
tion will automatically advance to activated, when the
debounce timer reaches the minimumStartInter-
val.

2Note that, e.g., the same OperationInvokedEvent may lead to the activation of different Exe-
cutableEntity execution-instances, depending on the client that caused the event.

115 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

activated One or more RTEEvents or BswEvents with a star-
tOnEvent relation to the ExecutableEntity have
occurred, and the debounce timer has exceeded the
minimumStartInterval. While the activated state
is active, the Main state of the ExecutableEntity
execution-instance automatically advances from the
suspended to the ’to be started’ state.
For a server runnable where RTE implements
a serialization of server calls, an activation counter
counts the number of activations.
When the ExecutableEntity execution-instance
starts, the activation counter will be decremented.
When there is still a pending activation, the Activation
state will turn to debounce activation and otherwise to
no activation.

Table 4.1: States defined for each ExecutableEntity execution-instance.

Note: For tasks, the equivalent state machine does not distinguish between preempted
and to be started. They are subsumed as ‘ready’.

ExecutableEntity
execution-instance tran-
sition

description of event and actions

initial transition to ‘Exe-
cutableEntity execution-
instance is schedulable’

RTE or the SchM that runs the ExecutableEntity
execution-instance is being started in the correspond-
ing partition.

termination transition
from ‘ExecutableEntity
execution-instance is
schedulable’

RTE or the SchM that runs the ExecutableEntity
execution-instance gets stopped in the corresponding
partition.

transitions to ExecutableEntity execution-instance Main states
initial transition to sus-
pended

the suspended state is the initial state of the Exe-
cutableEntity execution-instance Main states.

from started to suspended The ExecutableEntity execution-instance has run
to completion.

from suspended to ‘to be
started’

This transition is automatically executed, while the Ac-
tivation state is ’activated’.

from ‘to be started’ to run-
ning

The function implementing the ExecutableEntity
is called from the context of this execution-instance.

from preempted to running A task that is preempted from executing the Exe-
cutableEntity execution-instance changes state
from preempted to running.

from running to waiting The runnable enters a WaitPoint.

116 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

from waiting to preempted The task that contains a runnable waiting at a wait
point changes from waiting to preempted.

from running to preempted A task containing the ExecutableEntity execution-
instance gets preempted from executing the function
that implements the ExecutableEntity.

transitions to ExecutableEntity execution-instance Activation states
initial transition to ‘not acti-
vated’

The ‘not activated’ state is the initial state of the
ExecutableEntity execution-instance Activation
states.
The debounce timer is set to the minimumStartIn-
terval value, to prevent a delay for the first activation
of the ExecutableEntity execution-instance.

from activated to ‘not acti-
vated’

The function implementing the ExecutableEntity
is called from the context of this execution-instance
and no further activations are pending.
The debounce timer is reset to 0.

from ‘not activated’ to ‘de-
bounce activation’

The occurrence of an RTEEvent or BswEvent re-
quires the activation of the ExecutableEntity
execution-instance.
A local activation counter is set to 1. If no mini-
mumStartInterval is configured, or the debounce
timer has already exceeded the minimumStartIn-
terval, the ‘debounce activation’ state will be omit-
ted and the transition leads directly to the activated
state.

from activated to ‘de-
bounce activation’

The function implementing the ExecutableEntity
is called from the context of this execution-instance
(start), and another activation is pending (only for
server runnable).
The activation counter is decremented and the de-
bounce timer reset to 0.
If no minimumStartInterval is configured, the ‘de-
bounce activation’ state will be omitted and the transi-
tion returns directly at the activated state.

from ‘debounce activation’
to ‘debounce activation’

If RTE implements server call serialization for a
server runnable, and an OperationInvokedE-
vent occurs for the server runnable.
The activation counter is incremented (at most to the
queue length).

from ’debounce activation’
to activated

The debounce timer is expired,
debounce timer > minimumStartInterval.

117 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

from activated to activated If RTE implements server call serialization for a
server runnable, and an OperationInvokedE-
vent occurs for the server runnable.
The activation counter is incremented (at most to the
queue length).

Table 4.2: States defined for each ExecutableEntity execution-instance.

[rte_sws_2697]d The activation of ExecutableEntity execution-instances
shall behave as described by the state machine in Fig. 4.15, Table 4.1, and Table 4.2.
c(RTE00072, RTE00160, RTE00133, RTE00211, RTE00214, RTE00217, RTE00219)

The RTE will not activate, start or release ExecutableEntity execution-
instances of a terminated or restarting partition (see rte_sws_7604), or when RTE
is stopped in that partition (see rte_sws_2538).

The following examples in Fig. 4.17 and Fig. 4.18 show the different timing situations
of the ExecutableEntity execution-instances with or without a minimum-
StartInterval. The minimumStartInterval can reduce the number of activa-
tions by collecting more activating RTEEvents / BswEvents within that interval. No
activation will be lost. The activations are just delayed and combined to keep the min-
imumStartInterval. The started state of the ExecutableEntity execution-
instance Main states and the activated state of the Activation states are shown in the
figures. Each flash indicates the occurrence of an RTEEvent or BswEvent.

Figure 4.17: Activation of a ExecutableEntity execution-instance without minimum-
StartInterval

Figure 4.17 illustrates the activation of an ExecutableEntity execution-
instance without minimumStartInterval. The execution-instance can only
be activated once (does not apply for server runnables). The activation is not
queued. The execution-instance can already be activated again when it is still
started (see Figure 4.15).

118 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

With configuration of the RteEventToTaskMapping such activation can even be
used for an immediately restart of the ExecutableEntity before other Exe-
cutableEntitys which are mapped subsequently in the task are getting started.

[rte_sws_7061]d When the parameter RteImmediateRestart / RteBswImmedi-
ateRestart is TRUE the RTE shall immediately restart the ExecutableEntity after
termination if the ExecutableEntity was activated by this RTEEvent / BswEvent
while it was already started. c(RTE00072)

This can be utilized to spread a long-lasting calculation in several smaller slices with
the aim to reduce the maximum blocking time of Tasks in a Cooperative Environment.
Typically between each iteration one Schedule Point has to be placed and the number
of iteration might depend on operating conditions of the ECU. Further on in a calcu-
lation chain the long-lasting calculation shall be completed before consecutive Exe-
cutableEntitys are called.

Example 4.3

Example of RunnableEntity code:

1 LongLastingRunnable()
2 {
3 /* the very long calculation */
4 if(!finished)
5 {
6 /* further call is required to complete the calculation*/
7 Rte_IrTrigger_LongLastingCalculation_ProceedCalculation();
8 }
9 }

Therefore the ExecutableEntity with a long lasting calculation issues a trigger as
long as the calculation is not finished. These trigger activates the ExecutableEntity
again. The first activation of the ExecutableEntity might be triggered by another
RTEEvent / BswEvent.

Figure 4.18: Activation of an ExecutableEntity with a minimumStartInterval

Figure 4.18 illustrates the activation of an ExecutableEntity with a minimum-
StartInterval. (Here no execution-instances have to be distinguished, there

119 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

is only one.) The red arrows in this figure indicate the minimumStartInterval af-
ter each start of the ExecutableEntity. An RTEEvent or BswEventwithin this
minimumStartInterval leads to the debounce activation state. When the min-
imumStartInterval ends, the debounce activation state changes to the activated
state.

When a data received event activates a runnable when it is still running, it might be
that the data is already dequeued during the current execution of the runnable. Still,
the runnable will be started again. So, it is possible that a runnable that is activated by
a data received event finds an empty receive queue.

4.2.3.1 Activation by direct function call

In many cases, ExecutableEntity execution-instances can be implemented
by RTE by a direct function call if allowed by the canBeInvokedConcurrently.
In these cases, the activation and start of the ExecutableEntity execution-
instance collapse to one event. The states ‘to be started’, ‘debounce activation’,
and ‘activated’ are passed immediately.

Obviously, debounce activation is not possible (see meta model restriction
rte_sws_2733).

There is one ExecutableEntity execution-instance per call point, trigger
point, mode switch point, etc.. The state chart simplifies as shown in Figure 4.19.

A triggered ExecutableEntity is activated at least by one ExternalTrig-
gerOccurredEvent or InternalTriggerOccurredEvent. In some cases, the
Trigger Event Communication or the Inter Runnable Triggering is implemented by RTE
generator as a direct function call of the triggered ExecutableEntity by the trig-
gering ExecutableEntity.

An OnEntry ExecutableEntity, OnTransition ExecutableEntity, OnExit
ExecutableEntity or a mode switch acknowledge ExecutableEntity
might be executed in the context of the Rte_Switch API if an asynchronous mode
switch procedure is implemented.

A server runnable is exclusively activated by OperationInvokedEvents and
implements the server in client server communication. In some cases, the client server
communication is implemented by RTE as a direct function call of the server by the
client.

120 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

sm statemachine for direct function calls of an ExecutableEntity execution-instance

ExecutableEntity execution-instance is schedulable

constraints

{queue length == 0}

{debounceTimer == 0}

{canBeInvocecConcurrently == true}

{runnable not mapped to task}

Main

started

suspended

running

waiting

preempted

corresponds to task state "ready"

activate

[RTE / SchM of the partition is running]

[RTE / SchM of the partition is stopped]

resume

release

preempt

wait

terminate

Figure 4.19: State machine of an ExecutableEntity execution-instance that is imple-
mented by direct function calls.

4.2.3.2 Activation Offset for RunnableEntitys and BswSchedulableEntitys

In order to allow optimizations (smooth cpu load, mapping of RunnableEntitys and
BswSchedulableEntitys with different periods in the same task to avoid data shar-
ing, etc.), the RTE has to handle the activation offset information from a task shared
reference point only for time trigger RunnableEntitys and BswSchedulableEn-
titys. The maximum period of a task can be calculated automatically as the great-
est common divisor (GCD) of all runnables period and offset.It is assumed that the
runnables worst case execution is less than the GCD. In case of the worst case execu-
tion is greater than the GCD, the behavior becomes undefined.

[rte_sws_7000]d The RTE shall respect the configured activation offset of
RunnableEntitys mapped within one OS task. c(RTE00161)

[rte_sws_7520]d The Basic Software Scheduler shall respect the configured activation
offset of BswSchedulableEntitys mapped within one OS task. c(RTE00212)

[rte_sws_ext_7521] The RunnableEntitys or BswSchedulableEntitys worst
case execution time shall be less than the GCD of all BswSchedulableEntitys and
RunnableEntitys period and offset in activation offset context for RunnableEn-
titys and BswSchedulableEntitys.

121 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Note: The following examples are showing RunnableEntitys only. Nevertheless it
is applicable for BswSchedulableEntitys or a mixture of RunnableEntitys and
BswSchedulableEntitys as well.

Example 1:
This example describes 3 runnables mapped in one task with an activation offset de-
fined for each runnables.

Runnable Period Activation Offset
R1 100ms 20ms
R2 100ms 60ms
R3 100ms 100ms

Table 4.3: Runnables timings

The runnables R1, R2 and R3 are mapped in the task T1 at 20 ms which is the GCD
of all runnables period and activation offset.

122 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Figure 4.20: Example of activation offset for runnables

Example 2:
This example describes 4 runnables mapped in one task with an activation offset and
position in task defined for each runnables.

Runnable Period Position in task Activation Offset
R1 50ms 1 0ms
R2 100ms 2 0ms
R3 100ms 3 70ms
R4 50ms 4 20ms

Table 4.4: Runnables timings with position in task

The runnables R1, R2, R3 and R4 are mapped in the task T1 at 10 ms which is the
GCD of all runnables period and activation offset.

Figure 4.21: Example of activation offset for runnables with position in task

123 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4.2.4 Interrupt decoupling and notifications

4.2.4.1 Basic notification principles

Several BSW modules exist which contain functionality which is not directly activated,
triggered or called by AUTOSAR software-components but by other circumstances, like
digital input port level changes, complex driver actions, CAN signal reception, etc. In
most cases interrupts are a result of those circumstances. For a definition of interrupts,
see the VFB [1].

Several of these BSW functionalities create situations, signalled by an interrupt, when
AUTOSAR SW-Cs have to be involved. To inform AUTOSAR software components of
those situations, runnables in AUTOSAR software components are activated by no-
tifications. So interrupts that occur in the basic software have to be transformed into
notifications of the AUTOSAR software components. Such a transformation has to take
place at RTE level at the latest! Which interrupt is connected to which notification is
decided either during system configuration/generation time or as part of the design of
Complex Device Drivers or the Microcontroller Abstraction Layer.

This means that runnables in AUTOSAR SW-Cs have to be activated or "waiting" cat2
runnables in extended tasks have to be set to "ready to run" again. In addition some
event specific data may have to be passed.

There are two different mechanisms to implement these notifications, depending on
the kind of BSW interfaces.

1. BSW with Standardized interface. Used with COM and OS.
Basic-SW modules with Standardized interfaces cannot create RTEEvents. So
another mechanism must be chosen: "callbacks"
The typical callback realization in a C/C++ environment is a function call.

2. BSW with AUTOSAR interface: Used in all the other BSW modules.
Basic-SW modules with AUTOSAR-Interfaces have their interface specified in an
AUTOSAR BSW description XML file which contains signal specifications accord-
ing to the AUTOSAR specification. The BSW modules can employ RTE API calls
like Rte_Send – see 5.6.5). RTEEvents may be connected with the RTE API
calls, so realizing AUTOSAR SW-C activation.

Note that an AUTOSAR software component can send a notification to another AU-
TOSAR software component or a BSW module only via an AUTOSAR interface.

4.2.4.2 Interrupts

The AUTOSAR concept as stated in the VFB specification [1] does not allow AUTOSAR
software components to run in interrupt context. Only the Microcontroller Abstraction
Layer, Complex Device Drivers and the OS are allowed to directly interact with in-
terrupts and implement interrupt service routines (see Requirement BSW164). This
ensures hardware independence and determinism.

124 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

If AUTOSAR software components were allowed to run in interrupt context, one AU-
TOSAR software component could block the entire system schedule for an unaccept-
ably long period of time. But the main reason is that AUTOSAR software components
are supposed to be independent of the underlying hardware so that exchangeability
between ECUs can be ensured. The schedule of an ECU is more predictable and bet-
ter testable if the timing effects of interrupts are restricted to the basic software of that
ECU.

Furthermore, AUTOSAR software components are not allowed to explicitly block inter-
rupts as a means to ensure data consistency. They have to use RTE functions for this
purpose instead, see Section 4.2.5.

4.2.4.3 Decoupling interrupts on RTE level

Runnables in AUTOSAR SW-Cs may be running as a consequence of an interrupt but
not in interrupt context, which means not within an interrupt service routine! Between
the interrupt service routine and an AUTOSAR SW-C activation there must always be
a decoupling instance. AUTOSAR SW-C runnables are only executed in the context of
tasks.

The decoupling instance is latest in the RTE. For the RTE there are several options to
realize the decoupling of interrupts. Which option is the best depends on the configu-
ration and implementation of the RTE, so only examples are given here.

Example 1:

Situation:

• An interrupt routine calls an RTE callback function

Intention:

• Start a runnable

RTE job:

• RTE starts a task containing the runnable activation code by using the "Activate-
Task()" OS service call.

• Other more sophisticated solutions are possible, e.g. if the task containing the
runnable is activated periodically.

Example 2:

Situation:

• An interrupt routine calls an RTE callback function

Intention:

• Make a runnable wake up from a wait point

125 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

RTE job:

• RTE sets an OS event

These scenarios described in the examples above not only hold for RTE callback func-
tions but for other RTE API functions as well.

[rte_sws_3600]d The RTE shall prevent runnable entities of AUTOSAR software-
components to run in interrupt context. c(RTE00099, BSW00326)

4.2.4.4 RTE and interrupt categories

Since category 1 interrupts are not under OS control the RTE has absolutely no pos-
sibility to influence their execution behavior. So no category 1 interrupt is allowed to
reach RTE. This is different for interrupt of category 2.

[rte_sws_3594]d The RTE Generator shall reject the configuration if a SwcB-
swRunnableMapping associates a BswInterruptEntity with a RunnableEn-
tity and the attribute interruptCategory of the BswInterruptEntity is equal
to cat 1. c(RTE00099, BSW00326, RTE00018)

[rte_sws_ext_7816] Category 1 interrupts shall not access the RTE.

4.2.4.5 RTE and Basic Software Scheduler and BswExecutionContext

The RTE and Basic Software Scheduler do support the invocation triggered Exe-
cutableEntity via direct function call in some special cases. Nevertheless it shall
be prevented that an ExecutableEntity from a particular execution context calls a
triggered ExecutableEntity wich requires an execution context with more per-
missions. The table 4.5 lists the supported combinations.

caller’s BswExe-
cutionContext3

callee’s BswExecutionContext3

task interruptCat2 interruptCat1 hook unspecified
task supported supported supported supported
interruptCat2 supported supported supported
interruptCat1 supported supported
hook
unspecified supported supported

Table 4.5: Possible invocation of ExecutableEntitys by direct function call dependent
from BswExecutionContext

For example (fourth column), the invocation of an ExecutableEntity with an in-
terruptCat1 BswExecutionContext can be implemented with a direct function

3The execution context of a RunnableEntity is considered as task

126 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

call if the BswExecutionContext of the caller BswModuleEntry is set to task,
interruptCat2, or interruptCat1.

This applies to the invocation of a triggered ExecutableEntity by the
SchM_Trigger, SchM_ActMain or Rte_Trigger APIs, or to the invocation of an OnEn-
try ExecutableEntity, OnTransition ExecutableEntity, OnExit Exe-
cutableEntity or mode switch acknowledge ExecutableEntity by the
SchM_Switch or Rte_Switch APIs.

4.2.4.5.1 Interrupt decoupling for COM

COM callbacks are used to inform the RTE about something that happened indepen-
dently of any RTE action. This is often interrupt driven, e.g. when a data item has been
received from another ECU or when a S/R transmission is completed.
It is the RTE’s job e.g. to create RTEEvents from the interrupt.

[rte_sws_3530]d The RTE shall provide callback functions to allow COM to signal
COM events to the RTE. c(RTE00072, RTE00099, BSW00326)

[rte_sws_3531]d The RTE shall support runnable activation by COM callbacks.
c(RTE00072, RTE00099, BSW00326)

[rte_sws_3532]d The RTE shall support category 2 runnables to wake up from a wait
point as a result of COM callbacks. c(RTE00072, RTE00099, BSW00326)

See RTE callback API in chapter 5.9.

4.2.5 Data Consistency

4.2.5.1 General

Concurrent accesses to shared data memory can cause data inconsistencies. In gen-
eral this must be taken into account when several code entities accessing the same
data memory are running in different contexts - in other words when systems using
parallel (multicore) or concurrent (singlecore) execution of code are designed. More
general: Whenever task context-switches occur and data is shared between tasks,
data consistency is an issue.

AUTOSAR systems use operating systems according to the AUTOSAR-OS specifica-
tion which is derived from the OSEK-OS specification. The Autosar OS specification
defines a priority based scheduling to allow event driven systems. This means that
tasks with higher priority levels are able to interrupt (preempt) tasks with lower priority
level.

127 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

The "lost update" example in Figure 4.22 illustrates the problem for concurrent
read-modify-write accesses:

Task B

Task A

Data X

X

1) X*=5
2) X*++ => X*=6

3) X = X* => X=6

Time

1) Get X‘=5

2) X‘+=2

3) X = X‘

1) X*=5

5 5 5 5 5 5 5 5 5 7 7 7 7 7 6 6 6 6 6 6 6 6

Figure 4.22: Data inconsistency example - lost update

There are two tasks. Task A has higher priority than task B. A increments the commonly
accessed counter X by 2, B increments X by 1. So in both tasks there is a read
(step1) – modify (step2) – write (step3) sequence. If there are no atomic accesses (fully
completed read-modify-write accesses without interruption) the following can happen:

1. Assume X=5.

2. B makes read (step1) access to X and stores value 5 in an intermediate store
(e.g. on stack or in a CPU register).

3. B cannot continue because it is preempted by A.

4. A does its read (step1) – modify (step2) – write (step3) sequence, which means
that A reads the actual value of X, which is 5, increments it by 2 and writes the
new value for X, which is 7. (X=5+2)

5. A is suspended again.

6. B continues where it has been preempted: with its modify (step2) and write
(step3) job. This means that it takes the value 5 form its internal store, incre-
ments it by one to 6 and writes the value 6 to X (X=5+1).

7. B is suspended again.

The correct result after both Tasks A and B are completed should be X=8, but the
update of X performed by task A has been lost.

128 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4.2.5.2 Communication Patterns

In AUTOSAR systems the RTE has to take care that a lot of the communication is not
corrupted by data consistency problems. RTE Generator has to apply suitable means
if required.

The following communication mechanisms can be distinguished:

• Communication within one atomic AUTOSAR SW-C:
Communication between Runnables of one atomic AUTOSAR SW-C running in
different task contexts where communication between these Runnables takes
place via commonly accessed data. If the need to support data consistency by
the RTE exists, it must be specified by using the concepts of "ExclusiveAreas" or
"InterRunnableVariables" only.

• Intra-partition communication between AUTOSAR SW-Cs:
Sender/Receiver (S/R) communication between Runnables of different AU-
TOSAR SW-Cs using implicit or explicit data exchange can be realized by the
RTE through commonly accessed RAM memory areas. Data consistency in
Client/Server (C/S) communication can be put down to the same concepts as
S/R communication. Data access collisions must be avoided. The RTE is re-
sponsible for guaranteeing data consistency.

• Inter-Partition communication
The RTE has to guarantee data consistency. The different possibilities pro-
vided to the RTE for the communication between partitions are discussed in sec-
tion 4.3.4.

• Intra-ECU communication between AUTOSAR SW-Cs and BSW modules with
AUTOSAR interfaces:
This is a special case of the above two.

• Inter ECU communication
COM has to guarantee data consistency for communication between ECUs on
complete path between the COM modules of different ECUs. The RTE on each
ECU has to guarantee that no data inconsistency might occur when it invokes
COM send respectively receive calls supplying respectively receiving data items
which are concurrently accessed by application via RTE API call, especially when
queueing is used since the queues are provided by the RTE and not by COM.

[rte_sws_3514]d The RTE has to guarantee data consistency for communication via
AUTOSAR interfaces. c(RTE00032)

4.2.5.3 Concepts

In the AUTOSAR SW-C Template [2] chapter "Interaction between runnables within
one component", the concepts of

1. ExclusiveAreas (see section 4.2.5.5 below)

129 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

2. InterRunnableVariables (see section 4.2.5.6 below)

are introduced to allow the user (SW-Designer) to specify where the RTE shall guar-
antee data consistency for AUTOSAR SW-C internal communication and execution
circumstances. This is discussed in more detail in next sections.

Additionally exclusive areas are also available for Basic Software Modules to protect
access to module internal data. See [9]. The exclusive areas for Basic Software Mod-
ules are handled by the Basic Software Scheduler.

The AUTOSAR SW-C template specification [2] also states that AUTOSAR SW-Cs may
define PerInstanceMemory or arTypedPerInstanceMemory, allowing reserva-
tion of static (permanent) need of global RAM for the SW-C. Nothing is specified about
the way Runnables might access this memory. RTE only provides a reference to this
memory (see section 5.6) but doesn’t guarantee data consistency for it.

The implementer of an AUTOSAR SW-C has to take care by himself that accesses
to RAM reserved as PerInstanceMemory out of Runnables running in different task
contexts don’t cause data inconsistencies. On the other hand this provides more
freedom in using the memory.

4.2.5.4 Mechanisms to guarantee data consistency

ExclusiveAreas and InterRunnableVariables are only mentioned in association with
AUTOSAR SW-C internal communication. Nevertheless the data consistency mecha-
nisms behind can be applied to communication between AUTOSAR SW-Cs or between
AUTOSAR SW-Cs and BSW modules too. Everywhere where the RTE has to guaran-
tee data consistency.

The data consistency guaranteeing mechanisms listed here are derived from AU-
TOSAR SW-C Template and from further discussions. There might be more (see sec-
tion 4.3.4 for the mechanisms involved for inter-partition communication).
The RTE has the responsibility to apply such mechanisms if required. The details how
to apply the mechanisms are left open to the RTE supplier.

Mechanisms:

• Sequential scheduling strategy
The activation code of Runnables is sequentially placed in one task so that no
interference between them is possible because one Runnable is only activated
after the termination of the other. Data consistency is guaranteed.

• Interrupt blocking strategy
Interrupt blocking can be an appropriate means if collision avoidance is required
for a very short amount of time. This might be done by disabling respectively
suspending all interrupts, Os interrupts only or - if hardware supports it - only
of some interrupt levels. In general this mechanism must be applied with care

130 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

because it might influence SW in tasks with higher priority too and the timing of
the complete system.

• Usage of OS resources
Usage of OS resources. Advantage in comparison to Interrupt blocking strategy
is that less SW parts with higher priority are blocked. Disadvantage is that im-
plementation might consume more resources (code, runtime) due to the more
sophisticated mechanism.

• Task blocking strategy
Mutual task preemption is prohibited. This might be reached e.g. by assign-
ing same priorities to affected tasks, by assigning same internal OS resource to
affected tasks or by configuring the tasks to be non-preemptive.

• Cooperative Runnable placement strategy
The principle is that tasks containing Runnables to be protected by "Cooperative
Runnable placement strategy" are not allowed to preempt other tasks also con-
taining Runnables to be protected by "Cooperative Runnable placement strategy"
when one of the Runnables to protect is active - but are allowed between Runn-
able executions. The RTE’s job is to create appropriate task bodies and use OS
services or other mechanisms to achieve the required behavior.

To point out the difference to "Task blocking strategy":
In "Task blocking strategy" no task containing Runnables with access to the Ex-
clusiveArea at all is allowed to preempt another task containing Runnables with
access to same ExclusiveArea. In "Cooperative Runnable placement strategy"
this task blocking mechanism is limited to tasks defined to be within same coop-
erative context.

Example to explain the cooperative mechanism:

– Runnables R2 and R3a are marked to be protected by cooperative mecha-
nism.

– Runnables R1, R3b and R4 have no cooperative marking.

– R1 is activated in Task T1, R2 is activated in Task T2, R3a is activated in
Task T3a, R3b is activated in Task T3b, R4 is activated in Task T4.

– Task priorities are: T4 > T3a > T2 > T1, T3b has same priority as T3a

This setup results in this behavior:

– T4 can always preempt all other tasks (Higher prio than all others).

– T3b can preempt T2 (higher prio of T3b, no cooperative restriction)

– T3a cannot preempt T2 (Higher prio of T3a but same cooperative context).
So data access of Runnable R2 to common data cannot interfere with data
access by Runnable R3a. Nevertheless if both tasks T3a and T2 are ready
to run, it’s guaranteed that T3a is running first.

131 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

– T1 can never preempt one of the other tasks because of lowest assigned
prio.

• Copy strategy
Idea: The RTE creates copies of data items so that concurrent accesses in dif-
ferent task contexts cannot collide because some of the accesses are redirected
to the copies.

How it can work:

– Application for read conflicts:
For all readers with lower priority than the writer a read copy is provided.

Example:
There exist Runnable R1, Runnable R2, data item X and a copy data
item X*. When Runnable R1 is running in higher priority task context than
R2, and R1 is the only one writing X and R2 is reading X it is possible to
guarantee data consistency by making a copy of data item X to variable X*
before activation of R2 and redirecting write access from X to X* or the read
access from X to X* for R2.

– Application for write conflicts:
If one or more data item receiver with a higher priority than the sender exist,
a write copy for the sender is provided.

Example:
There exist Runnable R1, Runnable R2, data item X and copy data item X*.
When Runnable R1 (running in lower priority task context than R2) is
writing X and R2 is reading X, it is possible to guarantee data consistency
by making a copy of data item X to data item X* before activation of R1
together with redirecting the write access from X to X* for R1 or the read
access from X to X* for R2.

Usage of this copy mechanism may make sense if one or more of the following
conditions hold:

– This copy mechanism can handle those cases when only one instance does
the data write access.

– R2 is accessing X several times.

– More than one Runnable R2 has read (resp. write) access to X.

– To save runtime is more important than to save code and RAM.

– Additional RAM requirements to hold the copies is acceptable.

Further issues to be taken into account:

132 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

– AUTOSAR SW-Cs provided as source code and AUTOSAR SW-Cs pro-
vided as object code may or have to be handled in different ways. The
redirecting mechanism for source code could use macros for C and C++
very efficiently whereas object-code AUTOSAR SW-Cs most likely are
forced to use references.

Note that the copy strategy is used to guarantee data consistency for implicit
sender-receiver communication (VariableAccesses in the dataReadAccess
or dataWriteAccess role) and for AUTOSAR SW-C internal communication
using InterRunnableVariables with implicit behavior.

4.2.5.5 Exclusive Areas

The concept of ExclusiveArea is more a working model. It’s not a concrete imple-
mentation approach, although concrete possible mechanisms are listed in AUTOSAR
SW-C template specification [2].

Focus of the ExclusiveArea concept is to block potential concurrent accesses
to get data consistency. ExclusiveAreas implement critical section

ExclusiveAreas are associated with RunnableEntitys. The RTE is forced to guar-
antee data consistency when the RunnableEntity runs in an ExclusiveArea. A
RunnableEntity can run inside one or several ExclusiveAreas completely or can
enter one or several ExclusiveAreas during their execution for one or several times
.

• If an AUTOSAR SW-C requests the RTE to look for data consistency for it’s inter-
nally used data (for a part of it or the complete one) using the ExclusiveArea
concept, the SW designer can use the API calls "Rte_Enter()" in 5.6.27 and
"Rte_Exit()" in 5.6.28 to specify where he wants to have the protection by RTE
applied.
"Rte_Enter()" defines the begin and "Rte_Exit()" defines the end of the code se-
quence containing data accesses the RTE has to guarantee data consistency
for.

• If the SW designer wants to have the mutual exclusion for complete
RunnableEntitys he can specify this by using the ExclusiveArea in the role
"runsInsideExclusiveArea" in the AUTOSAR SW-C description.

In principle the ExclusiveArea concept can handle the access to single data items
as well as the access to several data items realized by a group of instructions. It
also doesn’t matter if one Runnable is completely running in an ExclusiveArea and

133 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

another Runnable only temporarily enters the same ExclusiveArea. The RTE has
to guarantee data consistency.

[rte_sws_3500]d The RTE has to guarantee data consistency for arbitrary accesses
to data items accessed by Runnables marked with the same ExclusiveArea.
c(RTE00032, RTE00046)

[rte_sws_3515]d RTE has to provide an API enabling the SW-Cs to access and leave
ExclusiveAreas. c(RTE00046)

If Runnables accessing same ExclusiveArea are assigned to be executing in different
task contexts, the RTE can apply suitable mechanisms, e.g. task blocking, to guarantee
data consistency for data accesses in the common ExclusiveArea. However, specials
attributes can be set that require certain data consistency mechanisms in which case
the RTE generator is forced to apply the selected mechanism.

The Basic Software Scheduler provides ExclusiveAreas for the Basic Software
Modules. Basic Software Modules have to use the API calls SchM_Enter()" in 6.5.1
and SchM_Exit()" in 6.5.2 to specify where the protection by Basic Software Scheduler
has to be applied.

[rte_sws_7522]d The Basic Software Scheduler has to guarantee data consistency
for arbitrary accesses to data items accessed by BswModuleEntitys marked with
the same ExclusiveArea. c(RTE00222, RTE00046)

[rte_sws_7523]d Basic Software Scheduler has to provide an API enabling the Basic
Software Module to access and leave ExclusiveAreas. c(RTE00222, RTE00046)

It is not supported, that a BswModuleEntity which is not a BswSchedulableEn-
tity uses an ExclusiveArea in the role runsInsideExclusiveArea This is not
possible, because such BswSchedulableEntity might be called directly by other
Basic Software Modules and therefore the Basic Software Scheduler is not able to
enter and exit the ExclusiveArea automatically.

[rte_sws_7524]d The RTE generator shall reject a configuration where a BswMod-
uleEntity which is not a BswSchedulableEntity uses an ExclusiveArea in
the role runsInsideExclusiveArea. c(RTE00222, RTE00046, RTE00018)

4.2.5.5.1 Assignment of data consistency mechanisms

The data consistency mechanism that has to be applied to anExclusiveArea might
be domain, ECU or even project specific. The decision which mechanism has to be ap-
plied by RTE / Basic Software Scheduler is taken during ECU integration by setting the
ExclusiveArea configuration parameter ExclusiveAreaImplMechanism. This
parameter is an input for RTE generator.

As stated in section 4.2.5.4 there might be more mechanisms to realize ExclusiveAreas
as mentioned in this specification. So RTE implementations might provide other mech-
anisms in plus by a vendor specific solutions. This allows further optimizations.

134 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Actually following values for configuration parameter ExclusiveAreaImplMecha-
nism must be supported:

• AllInterruptBlocking
This value requests enabling and disabling of all Interrupts and is based on the
Interrupt blocking strategy.

• OsInterruptBlocking
This value requests enabling and disabling of Os Interrupts and is based on the
Interrupt blocking strategy.

• OSResources
This value requests to apply the Usage of OS resources mechanism.

• CooperativeRunnablePlacement
This value requires to apply the Cooperative Runnable Placement Strategy.

The strategies / mechanisms are described in general in section 4.2.5.4.

[rte_sws_3504]d If the configuration parameter ExclusiveAreaImplMechanism of
an ExclusiveArea is set to value ALL_INTERRUPT_BLOCKING the RTE generator
shall use the mechanism of Interrupt blocking (blocking all interrupts) to guarantee data
consistency if data inconsistency could occur. c(RTE00032)

[rte_sws_5164]d If the configuration parameter ExclusiveAreaImplMechanism of
an ExclusiveArea is set to value OS_INTERRUPT_BLOCKING the RTE generator
shall use the mechanism of Interrupt blocking (blocking Os interrupts only) to guarantee
data consistency if data inconsistency could occur. c(RTE00032)

[rte_sws_3595]d If the configuration parameter ExclusiveAreaImplMechanism of
an ExclusiveArea is set to value OS_RESOURCE the RTE generator shall use OS re-
sources to guarantee data consistency if data inconsistency could occur. c(RTE00032)

The requirements above have the limitation "if data inconsistency could occur"
because it makes no sense to apply a data consistency mechanism if no potential
data inconsistency can occur. This can be relevant if e.g. the "Sequential scheduling
strategy" (described in section 4.2.5.4) still has solved the item by the ECU integrator
defining an appropriate runnable-to-task mapping.

[rte_sws_3503]d If the configuration parameter ExclusiveAreaImplMechanism of
an ExclusiveArea is set to value COOPERATIVE_RUNNABLE_PLACEMENT the RTE
generator shall generate code according the Cooperative Runnable Placement Strat-
egy to guarantee data consistency. c(RTE00032)

Since the decision to select the Cooperative Runnable Placement Strategy to prohibit
data access conflicts affects the behavior of several tasks and potentially many Ex-
clusiveAreas the RTE generator is not allowed to override the decision.

In a SWC code, it is not allowed to use WaitPoints inside an ExclusiveArea:
The RTE generator might use OSEK services to implement ExclusiveAreas and

135 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

waiting for an OS event is not allowed when an OSEK resource has been taken for
example. For RunnableEntityEntersExclusiveArea, the RTE generator cannot check
if WaitPoints are inside an ExclusiveArea. Therefore, it is the responsibility of the
SWC Code writer to ensure that no WaitPoints are used inside an exclusive area.
But for RunnableEntitys running inside a ExclusiveArea, the RTE generator is
able to do the following check.

[rte_sws_7005]d The RTE generator shall reject a configuration with a WaitPoint
applied to a RunnableEntity which is using the ExclusiveArea in the role run-
sInsideExclusiveArea c(RTE00032, RTE00018)

4.2.5.6 InterRunnableVariables

A non-composite AUTOSAR SW-C can reserve InterRunnableVariables which can be
accessed by the Runnables of this one AUTOSAR SW-C (also see section 4.3.3.1).
Read and write accesses are possible. There is a separate set of those variables per
AUTOSAR SW-C instance.

Again the RTE has to guarantee data consistency. Appropriate means will depend on
Runnable placement decisions which are taken during ECU configuration.

[rte_sws_3516]d The RTE has to guarantee data consistency for communication be-
tween Runnables of one AUTOSAR software-component instance using the same In-
terRunnableVariable. c(RTE00142, RTE00032)

Next the two kinds of InterRunnableVariables are treated:

1. InterRunnableVariables with implicit behavior

(implicitInterRunnableVariable)

2. InterRunnableVariables with explicit behavior

(explicitInterRunnableVariable)

4.2.5.6.1 InterRunnableVariables with implicit behavior

In applications with very high SW-C communication needs and much real time con-
straints (like in powertrain domain) the usage of a copy mechanism to get data con-
sistency might be a good choice because during RunnableEntity execution no data
consistency overhead in form of concurrent access blocking code and runtime during
its execution exists - independent of the number of data item accesses.
Costs are code overhead in the RunnableEntity prologue and epilogue which is
often be minimal compared to other solutions. Additional RAM need for the copies
comes in plus.

136 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

When InterRunnableVariables with implicit behavior are used the RTE is required to
make the data available to the Runnable using the semantics of a copy operation
but is not necessarily required to use a unique copy for each RunnableEntity.

Focus of InterRunnableVariable with implicit behavior is to avoid concurrent ac-
cesses by redirecting second, third, .. accesses to data item copies.

[rte_sws_3517]d The RTE shall guarantee data consistency for InterRunnableVari-
ables with implicit behavior by avoiding concurrent accesses to data items specified
by implicitInterRunnableVariable using one or more copies and redirecting
accesses to the copies.
c(RTE00142, RTE00032)

Compared with Sender/Receiver communication

• Like with VariableAccesses in the dataReadAccess and dataWriteAc-
cess roles, the Runnable IN data is stable during Runnable execution, which
means that during an Runnable execution several read accesses to an implic-
itInterRunnableVariable always deliver the same data item value.

• Like with VariableAccesses in the dataReadAccess and dataWriteAc-
cess roles, the Runnable OUT data is forwarded to other Runnables not before
Runnable execution has terminated, which means that during an Runnable ex-
ecution write accesses to implicitInterRunnableVariable are not visible
to other Runnables.

This behavior requires that Runnable execution terminates.

[rte_sws_3582]d The value of several read accesses to implicitInterRunnabl-
eVariable during a RunnableEntity execution shall only change for write ac-
cesses performed within this RunnableEntity to the implicitInterRunnabl-
eVariable c(RTE00142)

[rte_sws_3583]d Several write accesses to implicitInterRunnableVariable
during a RunnableEntity execution shall result in only one update of the implic-
itInterRunnableVariable content visible to other RunnableEntitys with the
last written value.
c(RTE00142)

[rte_sws_3584]d The update of implicitInterRunnableVariable done during
a RunnableEntity execution shall be made available to other RunnableEntitys
after the RunnableEntity execution has terminated.
c(RTE00142)

[rte_sws_7022]d If a RunnableEntity has both read and write access to an im-
plicitInterRunnableVariable the result of the write access shall be imme-
diately visible to subsequent read accesses from within the same runnable entity.
c(RTE00142)

The usage of implicitInterRunnableVariables is permitted for all categories of
runnable entities. For runnable entities of category 2, the behavior is guaranteed only

137 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

if it has a finite execution time. A category 2 runnable that runs forever will not have its
data updated.

For API of implicitInterRunnableVariable see sections 5.6.23 and 5.6.24.

For more details how this mechanism could work see "Copy strategy" in section 4.2.5.4.

4.2.5.6.2 InterRunnableVariables with explicit behavior

In many applications saving RAM is more important than saving runtime. Also some
application require to have access to the newest data item value without any delay,
even several times during execution of a Runnable.

Both requirements can be fulfilled when RTE supports data consistency by blocking
second/third/.. concurrent accesses to a signal buffer if data consistency is jeopar-
dized. (Most likely RTE has nothing to do if SW is running on a 16bit machine and
making an access to an 16bit value when a 16bit data bus is present.)

Focus of InterRunnableVariables with explicit behavior is to block potential con-
current accesses to get data consistency.

The mechanism behind is the same as in the ExclusiveArea concept (see section
4.2.5.5). But although ExclusiveAreas can handle single data item accesses too, their
API is made to make the RTE to apply data consistency means for a group of in-
structions accessing several data items as well. So when using an ExclusiveArea to
protect accesses to one single common used data item each time two RTE API calls
grouped around are needed. This is very inconvenient and might lead to faults if the
calls grouped around might be forgotten.
The solution is to support InterRunnableVariables with explicit behavior.

[rte_sws_3519]d The RTE shall guarantee data consistency for InterRunnableVari-
ables with explicit behavior by blocking concurrent accesses to data items specified by
explicitInterRunnableVariable.
c(RTE00142, RTE00032)

The RTE generator is not free to select on it’s own if implicit or explicit behavior shall
be applied. Behavior must be known at AUTOSAR SW-C design time because in case
of InterRunnableVariables with implicit behavior the AUTOSAR SW-C designer might
rely on the fact that several read accesses always deliver same data item value.

[rte_sws_3580]d The RTE shall supply different APIs for InterRunnableVariables with
implicit behavior and InterRunnableVariables with explicit behavior.
c(RTE00142)

For API of InterRunnableVariables with explicit behavior see sections 5.6.25 and
5.6.26.

138 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4.2.6 Multiple trigger of Runnable Entities and Basic Software Schedulable En-
tities

Concurrent activation

The AUTOSAR SW-C template specification [2] states that runnable entities (further
called "runnables") might be invoked concurrently several times if the Runnables at-
tribute canBeInvokedConcurrently is set. It’s then in the responsibility of the AU-
TOSAR SW-C designer that no data might be corrupted when the Runnable is activated
several times in parallel.

If a SW-C has multiple instances, they have distinct runnables. Two runnables that
use the same RunnableEntity description of the same SwcInternalBehavior
description but are instantiated with two different SW-C instances are treated as two
distinct runnables in the following. This kind of concurrency is always allowed between
SW-Cs, even if the runnables have their canBeInvokedConcurrently attribute set
to false.

[rte_sws_3523]d The RTE shall support concurrent activation of the same instance
of a runnable entity if the associative attribute canBeInvokedConcurrently is set
to TRUE. This includes concurrent activation in several tasks. If the attribute is not
set resp. set to FALSE, concurrent activation of the runnable entity is forbidden. (see
requirement rte_sws_5083) c(RTE00072, RTE00133)

The Basic Software Module Description Template [9] specifies the possible concurrent
activation of BswModuleEntitys by the attribute isReentrant.

[rte_sws_7525]d The Basic Software Scheduler shall support concurrent activation
of the same instance of a BswSchedulableEntity if the attribute isReentrant
of the referenced BswModuleEntry in the role implementedEntry is set to true.
This includes concurrent activation in several tasks. If the attribute is set to false
concurrent activation of the BswSchedulableEntity is forbidden. (see requirement
rte_sws_7588) c()

Concurrent activation of the same instance of a ExecutableEntity results in mul-
tiple ExecutableEntity execution-instances. One for each context of activa-
tion.

Activation by several RTEEvents and BswEvents

Nevertheless a Runnable whose attribute canBeInvokedConcurrently is NOT set
might be still activated by several RTEEvents if activation configuration guarantees
that concurrent activation can never occur and the minimumStartInterval condi-
tion is kept. This includes activation in different tasks. In this case, the runnable is
still considered to have only one ExecutableEntity execution-instances. A
standard use case is the activation of same instance of a runnable in different modes.

[rte_sws_3520]d The RTE shall support activation of same instance of a runnable
entity by multiple RTEEvents. c(RTE00072)

139 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

RTEEvents are triggering runnable activation and may supply 0..several role param-
eters, see section 5.7.3. Role parameters are not visible in the runnables signature
- except in those triggered by an OperationInvokedEvent. With the exception of the
RTEEvent OperationInvokedEvent all role parameters can be accessed by user
with implicit or explicit Receiver API.

[rte_sws_3524]d The RTE shall support activation of same instance of a runnable
entity by RTEEvents of different kinds. c(RTE00072)

The RTE does NOT support a runnable entity triggered by an RTEEvent Opera-
tionInvokedEvent to be triggered by any other RTEEvent except for other Opera-
tionInvokedEvents of compatible operations. This limitation is stated in appendix
in section A.2 (rte_sws_3526).

The similar configuration as mentioned for the RunnableEntitys might be used for
BswSchedulableEntitys. Therefore even a BswSchedulableEntity whose ref-
erenced BswModuleEntry in the role implementedEntry has its isReentrant
attribute set to false can be activated by several BswEvents.

[rte_sws_7526]d The Basic Software Scheduler shall support activation of same in-
stance of a BswSchedulableEntity by multiple BswEvents. c()

[rte_sws_7527]d The Basic Software Scheduler shall support activation of same in-
stance of a BswSchedulableEntity by BswEvents of different kinds. c()

4.2.7 Implementation of Parameter and Data elements

4.2.7.1 General

A SWC communicates with other SWCs through ports. A port is characterized by a
PortInterface and there are several kinds of PortInterfaces. In this section,
we focus on the ParameterInterface, the SenderReceiverInterface, and the
NvDataInterface. These three kinds of PortInterfaces aggregate some specific
interface elements. For example, a ParameterInterface aggregates 0..* Parame-
terDataPrototypes.

4.2.7.2 Compatibility rules

A receiver port can only be connected to a compatible provider port. The compatibility
rules are explained in the AUTOSAR Software Component Template [2]. The compat-
ibility mainly depends on the attribute swImplPolicy attached to the element of the
interface. The table 4.6 below gives an overview of compatibility rules.

For examples, a Require Port that expects a fixed parameter - i.e produced by a macro
#define - can only be connected to a Port that provides a fixed Parameter. This is be-
cause this fixed data may be used in a compilation directive like #IF and only macro
#define (fixed data) can be compiled in this case. On the other hand, this provided fixed

140 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Provide Port Require Port
Port Interface Prm S/R NvD

Interface Element PDP VDP VDP
swImplPolicy fixed const standard standard queued standard

fixed yes yes yes yes no yes
Prm PDP const no yes yes yes no yes

standard no no yes yes no yes
standard no no no yes no yes

S/R VDP
queued no no no no yes no

NvD VDP standard no no no yes no yes

Table 4.6: Overview of compatibility of ParameterDataPrototype and VariableDataProto-
types

Interface Element
PDP : ParameterDataPrototype
VDP : VariableDataPrototype

Port Interface
Prm : ParameterInterface
S/R : SenderReceiverInterface
NvD : NvDataInterface

Table 4.7: Key to table 4.6

parameter can be connected to almost every require port, except a queued Sender/re-
ceiver interface.

The RTE doesn’t have to check the compatibility between ports since this task is per-
formed at the VFB level. But it shall provide the right implementation of interface el-
ement and API according the attribute swImplPolicy attached to the interface ele-
ment.

4.2.7.3 Implementation of an interface element

The implementation of an interface element depends on the attribute swImplPolicy.
The attribute swCalibrationAccess determines how the interface element can be
accessed by e.g. an external calibration tool. The table 4.8 defines the supported
combinations of swImplPolicy and swCalibrationAccess attribute setting and
gives the corresponding implementation by the RTE.

4calibration parameter have to be allocated in RAM if data emulation with SW support is required,
see 4.2.8.3.5

141 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

swImplPolicy SwCalibrationAccess
not Acces-
sible

readOnly readWrite Implementation

fixed yes not sup-
ported

not supported macro defini-
tion or c const
declaration
dependent
from RTE
optimization

const yes yes not supported c const decla-
ration

standard yes yes yes standard
implemen-
tation i.e. a
variable for
VariableDat-
aPrototype
in RAM or
a calibration
parameter in
ROM 4

queued yes not sup-
ported

not supported FIFO Queue

measurement
Point

not sup-
ported

yes not supported Variable

Table 4.8: Data implementation according swImplPolicy

4.2.7.4 Initialization of VariableDataPrototypes

Basically the need for initialization of any VariableDataPrototypes is specified by
the Software Component Descriptions defining the VariableDataPrototypes. This
information is basically defined by the existence of an initValue, the sectionIni-
tializationPolicy of the related SwAddrMethod. As described in section 7.11
additionally the initialization strategy can be adjusted by the integrator of the RTE to
adjust the behavior to the start-up code.

[rte_sws_7046]d Variables implementing VariableDataPrototypes shall be initial-
ized if

• an initValue is defined

AND

• no SwAddrMethod is defined for VariableDataPrototype.

142 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

c(RTE00052, RTE00068, RTE00116)

[rte_sws_3852]d Variables implementing VariableDataPrototypes shall be initial-
ized if

• an initValue is defined

AND

• a SwAddrMethod is defined for VariableDataPrototype

AND

• the RteInitializationStrategy for the sectionInitializa-
tionPolicy of the related SwAddrMethod is NOT configured to
RTE_INITIALIZATION_STRATEGY_NONE.

c(RTE00052, RTE00068, RTE00116)

4.2.8 Measurement and Calibration

4.2.8.1 General

Calibration is the process of adjusting an ECU SW to fulfill its tasks to control physical
processes respectively to fit it to special project needs or environments. To do this two
different mechanisms are required and have to be distinguished:

1. Measurement
Measure what’s going on in the ECU e.g. by monitoring communication data
(Inter-ECU, Inter-Partition, Intra-partition, Intra-SWC). There are several ways to
get the monitor data out of the ECU onto external visualization and interpretation
tools.

2. Calibration
Based on the measurement data the ECU behavior is modified by changing
parameters like runtime SW switches, process controlling data of primitive or
composite data type, interpolation curves or interpolation fields. In the following
for such parameters the term calibration parameter is used.

With AUTOSAR, a calibration parameter is instantiated with a ParameterDataPro-
totype class that aggregates a SwDataDefProps with properties swCalibra-
tionAccess = readWrite and swImplPolicy = standard.

Nevertheless it is supported, that VariableDataPrototype is instantiated that
aggregates a SwDataDefProps with properties swCalibrationAccess = read-
Write and swImplPolicy = standard. But in this case the implementation of such
VariableDataPrototype is treated identical to swCalibrationAccess = read-
Only and the RTE Generator has not to implement further measures (for instance
"Data emulation with SW support" 4.2.8.3.5).

143 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

It’s possible that different SwDataDefProps settings are specified for a Variable-
DataPrototype and its referenced AutosarDataType. In this case the rules spec-
ified in the SWC-T shall be applied. See as well rte_sws_7196.

SwDataDefProps contain more information how measurement values or characteris-
tics are to be interpreted and presented by external calibration tools. This information
is needed for the ASAM2 respectively A2L file generation. Afterwards the A2L file is
used by ECU-external measurement and calibration tools so that these tools know e.g.
how to interpret raw data received from ECU and how to get them.

4.2.8.1.1 Definition of Calibration Parameters

Calibration parameters can be defined in AUTOSAR SW as well as in Basic-SW. In
the AUTOSAR Architecture there are two possibilities to define calibration parameters.
Which one to choose is not in the focus of this RTE specification.

1. RTE provides the calibration parameter access if they are specified via a Para-
materSwComponentType. A ParamaterSwComponentType can be defined
in order to provide ParameterDataPrototypes (via ports) to other Software
Components.

2. Calibration parameter access invisible for RTE
Since multiple instantiation with code sharing is not allowed for Basic-SW and
multiple instantiation is not always required for software components it’s possi-
ble for these software to define own methods how calibration parameters are
allocated. Nevertheless these calibration parameters shall be described in the
belonging Basic Software Module Description respectively Software Component
Description. In case data emulation with SW-support is used, the whole software
and tool chain for calibration and measurement, e.g. Basic-SW (respectively XCP
driver) which handles emulation details and data exchange with external calibra-
tion tools then has to deal with several emulation methods at once: The one
the RTE uses and the other ones each Basic-SW or SWC using local calibration
parameters practices.

4.2.8.1.2 Online and offline calibration

The way how measurement and calibration is performed is company, domain and
project specific. Nevertheless two different basic situations can be distinguished and
are important for understanding:

1. Offline calibration
Measure when ECU is running, change calibration data when ECU is off.
Process might look like this:

(a) Flash the ECU with current program file

(b) PowerUp ECU in target (actual or emulated) environment

144 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

(c) Measure running ECU behavior - log or monitor via external tooling

(d) Switch off ECU

(e) Change calibration parameters and create a new flashable program file (hex-
file) e.g. by performing a new SW make run

(f) Back to (a).

Do loop as long as a need for calibration parameter change exists or the Flash
survives.

2. Online calibration

Do measurement and calibration in parallel.
In this case in principle all steps mentioned in "Offline calibration" above have
to be performed in parallel. So other mechanisms are introduced avoiding ECU
flashing when modifying ECU parameters. ECU works temporarily with changed
data and when the calibration process is over the result is an updated set of
calibration data. In next step this new data set might be merged into the existing
program file or the new data set might be an input for a new SW make run. In
both cases the output is a new program file to flash into the ECU.

Process might look like this:

(a) Flash the ECU with current program file

(b) PowerUp ECU in target environment

(c) Measure running ECU behavior and temporarily modify calibration parame-
ters. Store set of updated calibration parameters (not on the ECU but on the
calibration tool computer). Actions in step c) may be done iteratively.

(d) Switch off ECU

(e) Create a new flashable program file (hex-file) containing the new calibration
parameters

Procedure over

4.2.8.2 Measurement

4.2.8.2.1 What can be measured

The AUTOSAR SW-C template specification [2] explains to which AUTOSAR proto-
types a measurement pattern can be applied.

RTE provides measurement support for

1. communication between Ports
Measurable are

145 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

• VariableDataPrototypes of a SenderReceiverInterface used in
a PortPrototype (of a SwComponentPrototype) to capture sender-
receiver communication or between SwComponentPrototypes

• VariableDataPrototypes of a NvDataInterface used in a PortPro-
totype (of a SwComponentPrototype) to capture non volatile data com-
munication or between SwComponentPrototypes

• ArgumentDataPrototypes of an ClientServerOperation in a
ClientServerInterface to capture client-server communication be-
tween SwComponentPrototypes

2. communication inside of AUTOSAR SW-Cs
Measurable are implicitInterRunnableVariable, explicitInter-
RunnableVariable or arTypedPerInstanceMemory

3. data structures inside a AUTOSAR NvBlockSwComponent
Measurable are ramBlocks and romBlocks of a NvBlockSwComponent’s
NvBlock

Further on AUTOSAR SW-Cs and Basic Software Modules can define measurables
which are not instantiated by RTE. These are described by VariableDataProto-
types in the role staticMemory. Hence those kind of measurables are not described
in the generated McSupportData of the RTE (see 4.2.8.4).

4.2.8.2.2 RTE support for Measurement

The way how measurement data is read out of the ECU is not focus of the RTE spec-
ification. But the RTE structure and behavior must be specified in that way that mea-
surement values can be provided by RTE during ECU program execution.

To avoid synchronization effort it shall be possible to read out measurement data asyn-
chronously to RTE code execution. For this the measurement data must be stable. As
a consequence this might forbid direct reuse of RAM locations for implementation of
several AUTOSAR communications which are independent of each other but occurring
sequentially in time (e.g. usage of same RAM cell to store uint8 data sender receiver
communication data between Runnables at positions 3 and 7 and later the same RAM
cell for the communication between Runnables at positions 9 and 14 of same periodi-
cally triggered task). So applying measurable elements might lead to less optimizations
in the generated RTE’s code and to increased RAM need.

There are circumstances when RTE will store same communication data in different
RAM locations, e.g. when realizing implicit sender receiver communication or Inter
Runnable Variables with implicit behavior. In these cases there is only the need to
have the content of one of these stores made accessible from outside.

The information that measurement shall be supported by RTE is defined in applied
SwDataDefProps:

146 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

The value readOnly or readWrite of the property swCalibrationAccess defines
that measurement shall be supported, any other value of the property swCalibra-
tionAccess is to be ignored for measurement.

Please note that the definition of rte_sws_3900 and rte_sws_3902 do not have further
conditions when the location in memory has to be provided to support the usage of
VariableDataPrototype with the swImplPolicy = measurementPoint. In
case that the MCD system is permitted to access such a VariableDataPrototype
the RTE is not allowed to do optimization which would prevent such measurement
even if there is no consuming software component in the input configuration.

The memory locations containing measurement values are initialized according to
rte_sws_7046 and rte_sws_3852.

[rte_sws_7044]d The RTE generator shall reject input configurations in which a
RunnableEntity defines a read access (VariableAccess in the role readLocal-
Variable, dataReadAccess, dataReceivePointByValue or dataReceive-
PointByArgument) to an VariableDataPrototype with a swImplPolicy set to
measurementPoint. c(RTE00018)

For sender-receiver resp. client-server communication same or compatible interfaces
are used to specified connected ports. So very often measurement will be demanded
two times for same or compatible VariableDataPrototype on provide and require
side of a 1:1 communication resp. multiple times in case of 1:N or M:1 communication.
In that case providing more than one measurement value for a VariableDataPro-
totype doesn’t make sense and would increase ECU resources need excessively.
Instead only one measurement value shall be provided.

Sender-receiver communication

[rte_sws_3900]d If the swCalibrationAccess of a VariableDataPrototype
used in an interface of a sender-receiver port of a SwComponentPrototype is set to
readOnly or readWrite the RTE generator has to provide one reference to a location
in memory where the actual content of the instance specific data of the corresponding
VariableDataPrototype of the communication can be accessed. c(RTE00153)

To prohibit multiple measurement values for same communication:
(Note that affected VariableDataPrototypes might be specified in same or com-
patible port interfaces.)

[rte_sws_3972]d For 1:1 and 1:N sender-receiver communication the RTE shall pro-
vide measurement values taken from sender side if measurement is demanded in pro-
vide and require port. c(RTE00153)

[rte_sws_3973]d For N:1 intra-ECU sender-receiver communication the RTE shall pro-
vide measurement values taken from receiver side if measurement is demanded in
provide and require ports. c(RTE00153)

147 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Note:
See further below for support of queued communication.

[rte_sws_3974]d For a VariableDataPrototype with measurement demand asso-
ciated with received data of inter-ECU sender-receiver communication the RTE shall
provide only one measurement store reference containing the actual received data
even if several receiver ports demand measurement. c(RTE00153)

[rte_sws_7344]d For a VariableDataPrototype with measurement demand as-
sociated with received data of inter-Partition sender-receiver communication the RTE
shall provide only one measurement store reference per partition containing the ac-
tual received data even if several receiver ports demand measurement in the Partition.
c(RTE00153)

Client-Server communication

[rte_sws_3901]d If the swCalibrationAccess of an ArgumentDataPrototype
used in an interface of a client-server port of a SwComponentPrototype is set to
readOnly the RTE generator has to provide one reference to a location in memory
where the actual content of the instance specific argument data of the communication
can be read. c(RTE00153)

To prohibit multiple measurement values for same communication:
(Note that affected ArgumentDataPrototypes might be specified in same or com-
patible port interfaces.)

[rte_sws_3975]d For intra-ECU client-server communication the RTE shall provide
measurement values taken from client side if measurement of an ArgumentDataPro-
totypes is demanded by provide and require ports. c(RTE00153)

[rte_sws_3976]d For inter-ECU client-server communication with the client being
present on same ECU as the RTE, the RTE shall provide measurement values taken
from client side. c(RTE00153)

[rte_sws_3977]d For inter-ECU client-server communication with the server being
present on same ECU as the RTE, the RTE shall provide measurement values taken
from server if no client present on same ECU as the server is connected with that
server too. c(RTE00153)

[rte_sws_7349]d For inter-Partition client-server communication with the server being
present on the same ECU as the RTE, the RTE shall provide measurement values
taken from server if no client present on the same Partition as the server is connected
with that server too. c(RTE00153)

Note:
When a measurement is applied to a client-server call additional copy code might be
produced so that a zero overhead direct server invocation is no longer possible for this
call.

148 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Mode Switch Communication

[rte_sws_6700]d If the swCalibrationAccess of a ModeDeclarationGroup-
Prototype used in an interface of a mode switch port of a SwComponentPro-
totype is set to readOnly the RTE generator has to provide three references to
locations in memory where the current mode, the previous mode and the next mode of
the related mode machine instance can be accessed. c(RTE00153)

The affected ModeDeclarationGroupPrototypes might be used at different ports
with the same or compatible port interfaces. rte_sws_6701 prohibits the occurrence of
multiple measurement values for the same communication:

[rte_sws_6701]d For 1:1 and 1:N mode switch communication the RTE shall provide
measurement values taken from mode manager side if measurement is demanded in
provide and require port. c(RTE00153)

Inter Runnable Variables

[rte_sws_3902]d If the swCalibrationAccess of a VariableDataPrototype in
the role implicitInterRunnableVariable or explicitInterRunnableVari-
able is set to readOnly or readWrite the RTE generator has to provide one refer-
ence to a location in memory where the actual content of the Inter Runnable Variable
can be accessed for a specific instantiation of the AUTOSAR SWC.
c(RTE00153)

PerInstanceMemory

[rte_sws_7160]d If the swCalibrationAccess of a VariableDataPrototype in
the role arTypedPerInstanceMemory is set to readOnly or readWrite the RTE
generator has to provide one reference to a location in memory where the actual con-
tent of the arTypedPerInstanceMemory can be accessed for a specific instantiation
of the AUTOSAR SWC.
c(RTE00153)

Nv RAM Block

[rte_sws_7174]d If the swCalibrationAccess of a VariableDataPrototype in
the role ramBlock of a NvBlockSwComponentType’s NvBlockDescriptor is set
to readOnly or readWrite the RTE generator has to provide one reference to a
location in memory where the actual content of the Nv RAM Block can be accessed
for a specific instantiation of the AUTOSAR NvBlockSwComponentType.
c(RTE00153)

Non Volatile Data communication

[rte_sws_7197]d If the swCalibrationAccess of a VariableDataPrototype
used in an NvDataInterface of a non volatile data port of a SwComponentPro-
totype is set to readOnly or readWrite the RTE generator has to provide one
reference to a location in memory where the actual content of the instance specific
data of the corresponding VariableDataPrototype of the communication can be
accessed. c(RTE00153)

149 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

To prohibit multiple measurement values for same communication:
(Note that affected VariableDataPrototypes might be specified in same or com-
patible port interfaces.)

[rte_sws_7198]d For 1:1 and 1:N non volatile data communication the RTE shall pro-
vide measurement values taken from ramBlock if measurement is demanded ei-
ther in provide port, any require port (rte_sws_7197 or ramBlock (rte_sws_7174).
c(RTE00153)

Unconnected ports or compatible interfaces

As stated in section 5.2.7 RTE supports handling of unconnected ports.

Measurement support for unconnected sender-receiver provide ports makes sense
since a port might be intentionally added for monitoring purposes only.

Measurement support for unconnected sender-receiver require ports makes sense
since the measurement is specified on the type level of the Software Component and
therefore independent of the individual usage of the Software Component. In case
of unconnected sender-receiver require ports the measurement shall return the initial
value.

Support for unconnected client-server provide port does not make sense since the
server cannot be called and with this no data can be passed there.

Support for unconnected client-server require port makes sense since the measure-
ment is specified on the type level of the Software Component and therefore inde-
pendent of the individual usage of the Software Component. In case of unconnected
client-server require ports the measurement shall return the actually provided and re-
turned values.

[rte_sws_3978]d For sender-receiver communication the RTE generator shall re-
spect measurement demands enclosed in unconnected provide ports. c(RTE00139,
RTE00153)

[rte_sws_5101]d For sender-receiver communication the RTE generator shall respect
measurement demands enclosed in unconnected require ports and deliver the initial
value. c(RTE00139, RTE00153)

[rte_sws_3980]d For client-server communication the RTE generator shall ignore mea-
surement demands enclosed in unconnected provide ports. c(RTE00139, RTE00153)

[rte_sws_5102]d For client-server communication the RTE generator shall respect
measurement demands enclosed in unconnected require ports. The behavior shall
be similar as if the require port would be connected and the server does not respond.
c(RTE00139, RTE00153)

[rte_sws_5170]d For client-server communication the RTE generator shall ignore mea-
surement requests for queued client-server communication. c(RTE00139, RTE00153)

In case the measurement of client-server communication is not possible due to require-
ment rte_sws_5170 the McSupportData need to reflect this (see rte_sws_5172).

150 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

In principle the same thoughts as above are applied to unused VariableDataProto-
types for sender-receiver communication where ports with compatible but not same
interfaces are connected. It’s no issue for client-server due to compatibility rules for
client-server interfaces since in compatible client-server interfaces all ClientServer-
Operations have to be present in provide and require port (see AUTOSAR SW-C
Template [2]).

[rte_sws_3979]d For sender-receiver communication the RTE generator shall respect
measurement demands of those VariableDataPrototypes in connected ports
when provide and require port interfaces are not the same (but only compatible) even
when a VariableDataPrototype in the provide port has no assigned Variable-
DataPrototype in the require port.
c(RTE00153)

General measurement disabling switch

To support saving of ECU resources for projects where measurement isn’t required at
all whereas enclosed AUTOSAR SW-Cs contain SwDataDefProps requiring it, it shall
be possible to switch off support for measurement. This shall not influence support for
calibration (see 4.2.8.3).

[rte_sws_3903]d The RTE generator shall have the option to switch off support for
measurement for generated RTE code. This option shall influence complete RTE code
at once. c(RTE00153)

There also might be projects in which monitoring of ECU internal behavior is required
but calibration is not.

[rte_sws_3904]d The enabling of RTE support for measurement shall be independent
of the enabling of the RTE support for calibration. c(RTE00153)

Queued communication

Measurement of queued communication is not supported yet. Reasons are:

• A queue can be empty. What’s to measure then?

• Which of the queue entries is the one to take the data from might differ out of user
view?

• Only quite inefficient solutions possible because implementation of queues en-
tails storage of information dynamically at different memory locations. So always
additional copies are required.

[rte_sws_3950]d RTE generator shall reject configurations where measurement for
queued sender-receiver communication is configured. c(RTE00153, RTE00018)

151 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4.2.8.3 Calibration

The RTE and Basic Software Scheduler has to support the allocation of calibration
parameters and the access to them for SW using them. As seen later on for some
calibration methods the RTE and Basic Software Scheduler must contain support SW
too (see 4.2.8.3.5). But in general the RTE and Basic Software Scheduler is not re-
sponsible for the exchange of the calibration data values or the transportation of them
between the ECU and external calibration tools.

The following sections are mentioning only the RTE but this has to be understood in
the context that the support for Calibration is a functionality which affects the Basic
Software Scheduler part of the RTE as well. In case of the Basic Software Scheduler
Generation Phase (see 3.4.1) this functionality might even be provided with out any
other software component related RTE functionality.

With AUTOSAR, a calibration parameter (which the AUTOSAR SW-C template spec-
ification [2] calls ParameterSwComponentType) is instantiated with a Parameter-
DataPrototype that aggregates a SwDataDefProps with properties swCalibra-
tionAccess = readWrite and swImplPolicy = standard. This chapter applies
to this kind of ParameterSwComponentTypes. For other combinations of these prop-
erties, consult the section 4.2.7

4.2.8.3.1 Calibration parameters

Calibration parameters can be defined in ParameterSwComponentTypes, in AU-
TOSAR SW-Cs, NvBlockSwComponentTypes and in Basic Software Modules.

1. ParameterSwComponentTypes don’t have an internal behavior but contain
ParameterDataPrototypes and serve to provide calibration parameters used
commonly by several AUTOSAR SW-Cs. The use case that one or several of the
user SW-Cs are instantiated on different ECUs is supported by instantiation of
the ParameterSwComponentType on the affected ECUs too.
Of course several AUTOSAR SW-Cs allocated on one ECU can commonly ac-
cess the calibration parameters of ParameterSwComponentTypes too. Also
several instances of an AUTOSAR SW-Cs can share the same calibration pa-
rameters of a ParameterSwComponentType.

2. Calibration parameters defined in AUTOSAR SW-Cs can only be used inside
the SW-C and are not visible to other SW-Cs. Instance individual and common
calibration parameters accessible by all instances of an AUTOSAR SW-C are
possible.

3. For NvBlockSwComponentTypes it is supported to provide calibration access
to the ParameterDataPrototype defining the romBlock. These values can
not be directly accessed by AUTOSAR SW-Cs but are used to serve as ROM
Block default values for the Nv Block.

152 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4. Calibration parameters defined in Basic Software Modules can only be used in-
side the defining Basic Software Module and are not visible to other Basic Soft-
ware Modules. In contrast to AUTOSAR SW-Cs, Basic Software Modules can
only define instance specific calibration parameters.

[rte_sws_3958]d Several AUTOSAR SW-Cs (and also several instances of AUTOSAR
SW-Cs) shall be able to share same calibration parameters defined in Parameter-
SwComponentTypes. c(RTE00154, RTE00159)

[rte_sws_7186]d The generated RTE shall initialize the memory objects implementing
ParameterDataPrototypes in p-ports of ParameterSwComponentTypes accord-
ing the ValueSpecification of the ParameterProvideComSpec referring the
ParameterDataPrototype in the p-port,

• if such ParameterProvideComSpec exists and

• if no CalibrationParameterValue refers to the FlatInstanceDescrip-
tor associated to the ParameterDataPrototype

This is also applicable if the swImplPolicy = fixed and if the related Parameter-
DataPrototype is implemented as preprocessor define which does not immediately
allocate a memory object. c(RTE00154, RTE00159)

[rte_sws_7029]d The generated RTE shall initialize the memory objects implement-
ing ParameterDataPrototypes in p-ports of ParameterSwComponentTypes ac-
cording the ValueSpecification in the role implInitValue of the Calibra-
tionParameterValue referring the FlatInstanceDescriptor associated to the
ParameterDataPrototype if such CalibrationParameterValue is defined.
c(RTE00154)

Note: the initialization according rte_sws_7029 and rte_sws_7030 precedes the initial-
ization values defined in the context of an component type and used in rte_sws_7185
and rte_sws_7186. This enables to provide initial values for calibration parameter in-
stances to:

• predefine start values for the calibration process

• utilizes the result of the calibration process

• take calibration parameter values from previous projects

[rte_sws_3959]d If the SwcInternalBehavior aggregates an ParameterDat-
aPrototype in the role perInstanceParameter the RTE shall support the ac-
cess to instance specific calibration parameters of the AUTOSAR SW-C. c(RTE00154,
RTE00158)

[rte_sws_5112]d If the SwcInternalBehavior aggregates an ParameterDat-
aPrototype in the role sharedParameter the RTE shall create a common access
to the shared calibration parameter. c(RTE00154, RTE00159)

[rte_sws_7096]d If the BswInternalBehavior aggregates an ParameterDat-
aPrototype in the role perInstanceParameter the Basic Software Scheduler

153 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

shall support the access to instance specific calibration parameters of the Basic Soft-
ware Module. c(RTE00154, RTE00158)

[rte_sws_7185]d The generated RTE and Basic Software Scheduler shall initialize the
memory objects implementing ParameterDataPrototype in the role perInstan-
ceParameter or sharedParameter

• if it has a ValueSpecification in the role initValue according to this Val-
ueSpecification and

• if no CalibrationParameterValue refer to the FlatInstanceDescriptor
associated to the ParameterDataPrototype

This is also applicable if the swImplPolicy = fixed and if the related Parameter-
DataPrototype is implemented as preprocessor define which does not immediately
allocate a memory object. c(RTE00154)

[rte_sws_7030]d The generated RTE and Basic Software Scheduler shall initialize
the memory objects implementing ParameterDataPrototypes in the role perIn-
stanceParameter or sharedParameter according the ValueSpecification in
the role the implInitValue of the CalibrationParameterValue referring the
FlatInstanceDescriptor associated to the ParameterDataPrototype if such
CalibrationParameterValue is defined. c(RTE00154)

It might be project specific or even project phase specific which calibration parameters
have to be calibrated and which are assumed to be stable. So it shall be selectable
on ParameterSwComponentTypes and AUTOSAR SW-C granularity level for which
calibration parameters RTE shall support calibration.

If an r-port contains a ParameterDataPrototype, the following requirements spec-
ify its behavior if the port is unconnected.

[rte_sws_2749]d In case of an unconnected parameter r-port, the RTE shall set the
values of the ParameterDataPrototypes of the r-port according to the initValue
of the r-port’s ParameterRequireComSpec referring to the ParameterDataPro-
totype. c(RTE00139, RTE00159)

If the port is unconnected, RTE expects an init value, see rte_sws_2750.

ParameterDataPrototypes in role romBlock

[rte_sws_7033]d If the swCalibrationAccess of a ParameterDataPrototype
in the role romBlock is set to readWrite the RTE generator has to provide one
reference to a location in memory where the actual content of the romBlock can be
accessed. c(RTE00154)

[rte_sws_7034]d The generated RTE shall initialize any ParameterDataPrototype
in the role romBlock

• if it has a ValueSpecification in the role initValue according to this Val-
ueSpecification and

154 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

• if no CalibrationParameterValue refer to the FlatInstanceDescriptor
associated to the ParameterDataPrototype

c(RTE00154)

[rte_sws_7035]d The generated RTE shall initialize the memory objects implement-
ing ParameterDataPrototypes in the role romBlock according the ValueSpec-
ification in the role the implInitValue of the CalibrationParameterValue
referring the FlatInstanceDescriptor associated to the ParameterDataPro-
totype if such CalibrationParameterValue is defined. c(RTE00154)

ParameterDataPrototype used as romBlock are instantiated according to
rte_sws_7693.

Configuration of calibration support

[rte_sws_3905]d It shall be configurable for each ParameterSwComponentType if
RTE calibration support for the enclosed ParameterDataPrototypes is enabled or
not. c(RTE00154, RTE00156)

[rte_sws_3906]d It shall be configurable for each AUTOSAR SW-C if RTE cali-
bration support for the enclosed ParameterDataPrototypes is enabled or not.
c(RTE00154, RTE00156)

RTE calibration support means the creation of SW as specified in section 4.2.8.3.5
"Data emulation with SW support".

Require ports on ParameterSwComponentTypes don’t make sense. Parameter-
SwComponentTypes only have to provide calibration parameters to other Component
types. So the RTE generator shall reject configurations containing require ports at-
tached to ParameterSwComponentTypes. (see section A.13)

4.2.8.3.1.1 Separation of calibration parameters

Sometimes it is required that one or more calibration parameters out of the mass of cal-
ibration parameters of an ParameterSwComponentType respectively an AUTOSAR
SW-C shall be placed in another memory location than the other parameters of the Pa-
rameterSwComponentType respectively the AUTOSAR SW-C. This might be due to
security reasons (separate normal operation from monitoring calibration data in mem-
ory) or the possibility to change calibration data during a diagnosis session (which the
calibration parameter located in NVRAM).

[rte_sws_3907]d The RTE generator shall support separation of calibration param-
eters from ParameterSwComponentTypes, AUTOSAR SW-Cs and Basic Software
Modules depending on the ParameterDataPrototype property swAddrMethod.
c(RTE00154, RTE00158)

155 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4.2.8.3.2 Support for offline calibration

As described in section 4.2.8.1 when using an offline calibration process measure-
ment is decoupled from providing new calibration parameters to the ECUs SW. During
measurement phase information is collected needed to define to which values the cal-
ibration parameters are to be set best. Afterwards the new calibration parameter set is
brought into the ECU e.g. by using a bootloader.

[rte_sws_3971]d The RTE generator shall have the option to switch off all data emu-
lation support for generated RTE code. This option shall influence complete RTE code
at once. c(RTE00154, RTE00156)

The term data emulation is related to mechanisms described in section 4.2.8.3.3.

Out of view of RTE the situation is same as when data emulation without SW support
(described in section 4.2.8.3.4) is used:
The RTE is only responsible to provide access to the calibration parameters via the
RTE API as specified in section 5.6. Exchange of ParameterDataPrototype con-
tent is done invisibly for ECU program flow and with this for RTE too.

When no data emulation support is required calibration parameter accesses to param-
eters stored in FLASH could be performed by direct memory read accesses without
any indirection for those cases when accesses are coming out of single instantiated
AUTOSAR SW-Cs or from Basic Software Modules. Nevertheless it’s not goal of this
specification to require direct accesses since this touches implementation. It might be
ECU HW dependent or even be project dependent if other accesses are more efficient
or provide other significant advantages or not.

4.2.8.3.3 Support for online calibration: Data emulation

To allow online calibration it must be possible to provide alternative calibration param-
eters invisible for application. The mechanisms behind are described here. We talk of
data emulation.

In the following several calibration methods are described:

1. Data emulation without SW support and

2. several methods of data emulation with SW-support.

The term data emulation is used because the change of calibration parameters is
emulated for the ECU SW which uses the calibration data. This change is invisible for
the user-SW in the ECU.

RTE is significantly involved when SW support is required and has to create calibration
method specific SW. Different calibration methods means different support in Basic
SW which typically is ECU integrator specific. So it does not make sense to support
DIFFERENT data emulation with SW support methods in ANY one RTE build. But

156 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

it makes sense that the RTE supports direct access (see section 4.2.8.3.4) for some
AUTOSAR SW-Cs resp. ParameterSwComponentTypes resp. Basic Software Mod-
ules and one of the data emulation with SW support methods (see section 4.2.8.3.5)
for all the other AUTOSAR SW-Cs resp. ParameterSwComponentTypes resp. Basic
Software Modules at the same time.

[rte_sws_3909]d The RTE shall support only one of the data emulation with SW sup-
port methods at once. c(RTE00154, RTE00156)

4.2.8.3.4 Data emulation without SW support (direct access)

For "online calibration" (see section 4.2.8.1) the ECU is provided with additional
hardware which consists of control logic and memory to store modified calibration
parameters in. During ECU execution the brought in control logic redirects memory
accesses to new bought in memory whose content is modified by external tooling
without disturbing normal ECU program flow. Some microcontrollers contain features
supporting this. A lot of smaller microcontrollers don’t. So this methods is highly HW
dependent.

To support these cases the RTE doesn’t have to provide e.g. a reference table like
described in section 4.2.8.3.5. Exchange of ParameterDataPrototype content is
done invisibly for program flow and for RTE too.

[rte_sws_3942]d The RTE generator shall have the option to switch off data emulation
with SW support for generated RTE code. This option shall influence complete RTE
code at once. c(RTE00154, RTE00156)

4.2.8.3.5 Data emulation with SW support

In case "online calibration" (see section 4.2.8.1) is required, quite often data emulation
without support by special SW constructs isn’t possible. Several methods exist, all
have the consequence that additional need of ECU resources like RAM, ROM/FLASH
and runtime is required.

Data emulation with SW support is possible in different manners. During calibration
process in each of these methods modified calibration data values are kept typically in
RAM. Modification is controlled by ECU external tooling and supported by ECU internal
SW located in AUTOSAR basic SW or in complex driver.

If calibration process isn’t active the accessed calibration data is originated in
ROM/FLASH respectively in NVRAM in special circumstances (as seen later on).

Since multiple instantiation is to be supported several instances of the same
ParameterDataPrototypes have to be allocated. Because the RTE is the only
one SW in an AUTOSAR ECU able to handle the different instances the access to these

157 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

calibration parameters can only be handled by the RTE. So the RTE has to provide
additional SW constructs required for data emulation with SW support for calibration.

However the RTE doesn’t know which of the ECU functionality shall be calibrated dur-
ing a calibration session. To allow expensive RAM to be reused to calibrate different
ECU functionalities in one or several online calibration sessions (see 4.2.8.1) in case of
the single and double pointered methods for data emulation with SW support described
below the RTE has only to provide the access to ParameterDataPrototypes dur-
ing runtime but allowing other SW (a BSW module or a complex driver) to redirect the
access to alternative calibration parameter values (e.g. located in RAM) invisibly for
application.
The RTE is neither the instance to supply the alternative values for ParameterDat-
aPrototypes nor in case of the pointered methods for data emulation with SW sup-
port to do the redirection to the alternative values.

[rte_sws_3910]d The RTE shall support data emulation with SW support for calibra-
tion. c(RTE00154, RTE00156)

[rte_sws_3943]d The RTE shall support these data emulation methods with SW sup-
port:

• Single pointered calibration parameter access
further called "single pointered method"

• Double pointered calibration parameter access further called "double pointered
method"

• Initialized RAM parameters further called "initRAM parameter method"

c(RTE00154, RTE00156)

Please note that the support data emulation methods is applicable for calibration pa-
rameters provided for software components as well as calibration parameters provided
for basic software modules.

ParameterElementGroup

To save RAM/ROM/FLASH resources in single pointered method and double point-
ered method ParameterDataPrototype allocation is done in groups. One entry
of the calibration reference table references the begin of a group of Parameter-
DataPrototypes. For better understanding of the following, this group is called
ParameterElementGroup (which is no term out of the AUTOSAR SW-C template
specification [2]). One ParameterElementGroup can contain one or several
ParameterDataPrototypes.

[rte_sws_3911]d If data emulation with SW support is enabled, the RTE generator
shall allocate all ParameterDataPrototypes marked with same property swAd-
drMethod of one instance of a ParameterSwComponentType consecutively. To-

158 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

gether they build a separate ParameterElementGroup. c(RTE00154, RTE00156,
RTE00158)

[rte_sws_3912]d If data emulation with SW support is enabled, the RTE shall guar-
antee that all non-shared ParameterDataPrototypes marked with same property
swAddrMethod of an AUTOSAR SWC instance are allocated consecutively. Together
they build a separate ParameterElementGroup. c(RTE00154, RTE00158)

[rte_sws_5194]d If data emulation with SW support is enabled, the RTE shall guaran-
tee that all shared ParameterDataPrototypes marked with same property swAd-
drMethod of an AUTOSAR SWC type are allocated consecutively. Together they build
a separate ParameterElementGroup. c(RTE00154, RTE00158)

It is not possible to access same calibration parameter inside of a ParameterSwCom-
ponentType via several ports. This is a consequence of the need to support the
use case that a ParameterSwComponentType shall be able to contain several cali-
bration parameters derived from one ParameterDataPrototype which is contained
in one interface applied to several ports of the ParameterSwComponentType. Us-
ing only the ParameterDataPrototype names for the names of the elements of a
ParameterElementGroup would lead to a name clash since then several elements
with same name would have to created. So port prototype and ParameterDataPro-
totype name are concatenated to specify the ParameterElementGroup member
names.
This use case cannot be applied to AUTOSAR SW-C internal calibration parameters
since they cannot be accessed via AUTOSAR ports.

[rte_sws_3968]d The names of the elements of a ParameterElementGroup derived
from a ParameterSwComponentType shall be <port>_<element> where <port>
is the short-name of the provided AUTOSAR port prototype and <element> the short-
name of the ParameterDataPrototype within the ParameterInterface catego-
rizing the PPort. c(RTE00154, RTE00156)

4.2.8.3.5.1 Single pointered method

There is one calibration reference table in RAM with references to one or several
ParameterElementGroups. Accesses to calibration parameters are indirectly per-
formed via this reference table.

Action during calibration procedure e.g. calibration parameter value exchange is not
focus of this specification. Nevertheless an example is given for better understanding.

Example how the exchange of calibration parameters could be done for single point-
ered method:

1. Fill a RAM buffer with the modified calibration parameter values for complete
ParameterElementGroup

2. Modify the corresponding entry in the calibration reference table so that a redi-
rection to new ParameterElementGroup is setup

159 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Now calibration parameter accesses deliver the modified values.

Figure 4.23 illustrates the method.

Figure 4.23: ParameterElementGroup in single pointered method context

[rte_sws_3913]d If data emulation with SW support with single pointered method
is enabled, the RTE generator shall create a table located in RAM with references
to ParameterElementGroups. The type of the table is an array of void pointers.
c(RTE00154, RTE00156)

One reason why in this approach the calibration reference table is realized as an array
is to make ECU internal reference allocation traceable for external tooling. Another is to
allow a Basic-SW respectively a complex driver to emulate other calibration parameters
which requires the standardization of the calibration reference table too.

[rte_sws_3947]d If data emulation with SW support with single method is enabled the
name (the label) of the calibration reference table shall be <RteParameterRefTab>.
c(RTE00154, RTE00156)

Calibration parameters located in NVRAM are handled same way (also see section
4.2.8.3.6).

[rte_sws_3936]d If data emulation with SW support with single or double pointered
method is enabled and calibration parameter respectively a ParameterElement-
Groups is located in NVRAM the corresponding calibration reference table entry shall
reference the PerInstanceMemory working as the NVRAM RAM buffer. c(RTE00154,
RTE00156, RTE00157)

4.2.8.3.5.2 Double pointered method

There is one calibration reference table in ROM respectively Flash with references
to one or several ParameterElementGroups. Accesses to calibration parameters
are performed through a double indirection access. During system startup the base

160 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

reference is initially filled with a reference to the calibration reference table.

Action during calibration procedure e.g. calibration parameter value exchange is not
focus of this specification. Nevertheless an example is given for better understanding.

Example how the exchange of calibration parameters could be done for double point-
ered method:

1. Copy the calibration reference table into RAM

2. Fill a RAM buffer with modified calibration parameter values for complete Param-
eterElementGroup

3. Modify the corresponding entry in the RAM copy of the reference table so that a
redirection to new ParameterElementGroup is setup

4. Change the content of the base reference so that it references the calibration
reference table copy in RAM.

Now calibration parameter accesses deliver the modified values.

Figure 4.24: ParameterElementGroup in double pointered method context

[rte_sws_3914]d If data emulation with SW support with double pointered method is
enabled, the RTE generator shall create a table located in ROM respectively FLASH
with references to ParameterElementGroups. The type of the table is an array of
void pointers. c(RTE00154, RTE00156)

Figure 4.24 illustrates the method.

To allow a Basic-SW respectively a complex driver to emulate other calibration param-
eters the standardization of the base reference is required.

[rte_sws_3948]d If data emulation with SW support with double method is enabled the
name (the label) of the calibration base reference shall be <RteParameterBase>.
This label and the base reference type shall be exported and made available to other
SW on same ECU.
c(RTE00154, RTE00156)

161 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Calibration parameters located in NVRAM are handled same way (also see section
4.2.8.3.6).

For handling of calibration parameters located in NVRAM with single or double point-
ered method see rte_sws_3936 in section 4.2.8.3.5.1. General information is found in
section 4.2.8.3.6).

4.2.8.3.5.3 InitRam parameter method

For each instance of a ParameterDataPrototype the RTE generator creates a cali-
bration parameter in RAM and a corresponding value in ROM/FLASH. During startup of
RTE the calibration parameter values of ROM/FLASH are copied into RAM. Accesses
to calibration parameters are performed through a direct access to RAM without any
indirection.

Action during calibration procedure e.g. calibration parameter value exchange is not
focus of this specification. Nevertheless an example is given for better understanding:
An implementation simply would have to exchange the content of the RAM cells during
runtime.

[rte_sws_3915]d If data emulation with SW support with initRam parameter method is
enabled, the RTE generator shall create code guaranteeing that

1. calibration parameters are allocated in ROM/Flash and

2. a copy of them is allocated in RAM made available latest during RTE startup

for those ParameterDataPrototypes for which calibration support is enabled.
c(RTE00154, RTE00156)

RTE access

Copy

Parameter in

ROM / FLASH

...

Copied parameter in

RAM

...

Figure 4.25: initRam Parameter method setup

Figure 4.25 illustrates the method.

162 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

A special case is the access of ParameterDataPrototypes instantiated in NVRAM
(also see section 4.2.8.3.6). In this no extra RAM copy is required because a RAM
location containing the calibration parameter value still exists.

[rte_sws_3935]d If data emulation with SW support with initRam parameter method
is enabled, the RTE generator shall create direct accesses to the PerInstanceMem-
ory working as RAM buffer for the calibration parameters defined to be in NVRAM.
c(RTE00154, RTE00156)

4.2.8.3.5.4 Arrangement of a ParameterElementGroup for pointered methods

For data emulation with SW support with single or double pointered methods the RTE
has to guarantee access to each single member of a ParameterElementGroup for
source code and object code delivery independent if the member is a primitive or a
composite data type. For this the creation of a record type for a ParameterElement-
Group was chosen.

[rte_sws_3916]d One ParameterElementGroup shall be realized as one record
type. c(RTE00154, RTE00156)

The sequence order of ParameterDataPrototype in a ParameterElementGroup
and the order of ParameterElementGroups in the reference table will be docu-
mented by the RTE Generator by the means of the RteSwEmulationMethodSup-
port, see 4.2.8.4.4.

4.2.8.3.5.5 Further definitions for pointered methods

As stated in section 4.2.8.3.1.1, dependent of the value of property swAddrMethod
calibration parameters shall be separated in different memory locations.

[rte_sws_3908]d If data emulation with SW support with single or double point-
ered method is enabled the RTE shall create a separate instance specific Parame-
terElementGroup for all those ParameterDataPrototypes with a common value
of the appended property swAddrMethod. Those ParameterDataPrototypes
which have no property swAddrMethod appended, shall be grouped together too.
c(RTE00154, RTE00156, RTE00158)

To allow traceability for external tooling the sequence order of ParameterDataPro-
totype in a ParameterElementGroup and the order of ParameterElement-
Groups in the reference table will be documented by the RTE Generator by the means
of the RteSwEmulationMethodSupport, see 4.2.8.4.4.

163 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4.2.8.3.5.6 Calibration parameter access

Calibration parameters are derived from ParameterDataPrototypes. The RTE has
to provide access to each calibration parameter via a separate API call.

API is specified in 5.6.

[rte_sws_3922]d If data emulation with SW support and single or double pointered
method is enabled the RTE generator shall export the label of the calibration reference
table. c(RTE00154, RTE00156)

[rte_sws_3960]d If data emulation with SW support and double pointered method is
enabled the RTE generator shall export the label and the type of the calibration base
reference. c(RTE00154, RTE00156)

[rte_sws_3932]d If data emulation with SW support with single pointered method is
enabled the RTE generator shall create API calls using single indirect access via the
calibration reference table for those ParameterDataPrototypes which are in a Pa-
rameterElementGroup for which calibration is enabled. c(RTE00154, RTE00156)

[rte_sws_3933]d If data emulation with SW support with double pointered method is
enabled the RTE generator shall create API calls using double indirection access via
the calibration base reference and the calibration reference table for those Parame-
terDataPrototypes which are in a ParameterElementGroup for which calibra-
tion is enabled. c(RTE00154, RTE00156)

[rte_sws_3934]d If data emulation with SW support with double pointered method
is enabled, the calibration base reference shall be located in RAM. c(RTE00154,
RTE00156)

4.2.8.3.5.7 Calibration parameter allocation

Since only the RTE knows which instances of AUTOSAR SW-Cs, ParameterSwCom-
ponentTypes and Basic Software Modules are present on the ECU the RTE has
to allocate the calibration parameters and reserve memory for them. This approach
is also covering multiple instantiated object code integration needs. So memory for
instantiated ParameterDataPrototypes is neither provided by ParameterSwCom-
ponentTypes nor by AUTOSAR SW-C.

Nevertheless AUTOSAR SW-Cs and Basic Software Modules can define calibration
parameters which are not instantiated by RTE. These are described by Parameter-
DataPrototypes in the role constantMemory. Further on the RTE can not imple-
ment any software support for data emulation for such calibration parameters. Hence
those kind of calibration parameters are not described in the generated McSupportData
of the RTE (see 4.2.8.4).

[rte_sws_3961]d The RTE shall allocate the memory for calibration parameters.
c(RTE00154, RTE00156)

164 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

A ParameterDataPrototype can be defined to be instance specific or can be
shared over all instances of an AUTOSAR SW-C or a ParameterSwComponent-
Type. The input for the RTE generator contains the values the RTE shall apply to the
calibration parameters.

To support online and offline calibration (see section 4.2.8.1) all parameter values for
all instances have to be provided.
Background:

• For online calibration often initially the same default values for calibration param-
eters can be applied. Variation is then handled later by post link tools. Initial
ECU startup is not jeopardized. This allows the usage of a default value e.g. by
AUTOSAR SW-C or ParameterSwComponentType supplier for all instances of
a ParameterDataPrototype.

• On the other hand applying separate default values for the different instances of
a ParameterDataPrototype will be required often for online calibration too, to
make a vehicle run initially. This requires additional configuration work e.g. for
integrator.

• Offline calibration based on new SW build including new RTE build and com-
pilation process requires all calibration parameter values for all instances to be
available for RTE.

Shared ParameterDataPrototypes

[rte_sws_3962]d For accesses to a shared ParameterDataPrototype the RTE API
shall deliver the same one value independent of the instance the calibration parameter
is assigned to. c(RTE00154, RTE00156)

[rte_sws_3963]d The calibration parameter of a shared ParameterDataPrototype
shall be stored in one memory location only. c(RTE00154, RTE00156)

Requirements rte_sws_3962 and rte_sws_3963 are to guarantee that only one
physical location in memory has to be modified for a change of a shared Parameter-
DataPrototype. Otherwise this could lead to unforeseeable confusion.
Multiple locations are possible for calibration parameters stored in NVRAM. But there
a shared ParameterDataPrototype is allowed to have only one logical data too.

Instance specific ParameterDataPrototypes

[rte_sws_3964]d For accesses to an instance specific ParameterDataPrototype
the RTE API shall deliver a separate calibration parameter value for each instance of a
ParameterDataPrototype. c(RTE00154, RTE00156)

[rte_sws_3965]d For an instance specific ParameterDataPrototype the calibration
parameter value of each instance of the ParameterDataPrototype shall be stored
in a separate memory location. c(RTE00154, RTE00156)

Usage of swAddrMethod

165 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

SwDataDefProps contain the optional property swAddrMethod. It contains meta
information about the memory section in which a measurement data store resp. a
calibration parameter shall be allocated in. This abstraction is needed to support the
reuse of unmodified AUTOSAR SW-Cs resp. ParameterSwComponentTypes in
different projects but allowing allocation of measurement data stores resp. calibration
parameters in different sections.
Section usage typically depends on availability of HW resources. In one project the
micro controller might have less internal RAM than in another project, requiring that
most measurement data have to be placed in external RAM. In another project one
addressing method (e.g. indexed addressing) might be more efficient for most of the
measurement data - but not for all. Or some calibration parameters are accessed
less often than others and could be - depending on project specific FLASH availability
- placed in FLASH with slower access speed, others in FLASH with higher access
speed.

[rte_sws_3981]d The memory section used to store measurement values in shall
be the memory sections associated with the swAddrMethod enclosed in the Sw-
DataDefProps of a measurement definition. c(RTE00153)

Since it’s measurement data obviously this must be in RAM.

[rte_sws_3982]d The memory section used to store calibration parameters in shall
be the memory sections associated with the swAddrMethod enclosed in the Sw-
DataDefProps of a calibration parameter definition. c(RTE00153)

4.2.8.3.6 Calibration parameters in NVRAM

Calibration parameters can be located in NVRAM too. One use case for this is to have
the possibility to modify calibration parameters via a diagnosis service without need for
special calibration tool.

To allow NVRAM calibration parameters to be accessed, NVRAM with statically allo-
cated RAM buffer in form of PIM memory for the calibration parameters has to be de-
fined or the ramBlock of a NvBlockSwComponentType defines readWrite access
for the MCD system. Please see as well rte_sws_7174 and rte_sws_7160.

Note:

As the NVRAM Manager might not be able to access the PerInstanceMemory
across core boundaries in a multi core environment, the support of Calibration pa-
rameters in NVRAM for multi core controllers is limited. See also note in 4.2.9.1.

4.2.8.4 Generation of McSupportData

The RTE Generator supports the definition, allocation and access to measurement
and calibration data for Software Components as well as for Basic Software. The

166 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

specific support of measurement and calibration tools however is neither in the focus
of the RTE Generator nor AUTOSAR. This would require the generation of an "A2L"-
file (like specified in [22]) which is the standard in this domain – but out of the focus of
AUTOSAR.

The RTE Generator however shall support an intermediate exchange format called
McSupportData which is building the bridge between the ECU software and the fi-
nal "A2L"-file needed by the measurement and calibration tools. The details about
the McSupportData format and the involved methodology are described in the Basic
Software Module Description Template document [9].

In this section the requirements on the RTE Generator are collected which elements
shall be provided in the McSupportData element.

4.2.8.4.1 Export of the McSupportData

Figure 4.26 shows the structure of the McSupportData element. The McSupport-
Data element and its sub-content is part of the Implementation element. In case
of the RTE this is the BswImplementation element which is generated / updated by
the RTE Generator in the Generation Phase (see rte_sws_5086 in chapter 3.4.2).

[rte_sws_5118]d The RTE Generator in Generation Phase shall create the McSup-
portData element as part of the BswImplementation description of the generated
RTE. c(RTE00189)

167 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

ARElement

Implementation

McSupportData

Identifiable

McDataInstance

+ arraySize: PositiveInteger [0..1]
+ symbol: CIdentifier [0..1]

«atpVariation»
SwDataDefProps

Identifiable

FlatInstanceDescriptor

+ role: Identifier [0..1]

ARElement
AtpBlueprint

AtpBlueprintable

FlatMap

AtpPrototype
Identifiable

RootSwCompositionPrototype

ARElement

EcucValueCollection

ARElement
AtpStructureElement

System

ARElement

EcucModuleConfigurationValues

BswImplementation

McSwEmulationMethodSupport

+ category: Identifier
+ shortLabel: Identifier

ARElement

SwSystemconstantValueSet

«atpVariation» Tags:
Vh.latestBindingTime
= PreCompileTime

«atpVariation»

+mcParameterInstance

0..*

«atpVariation»+ecucValue

1..*

+moduleDescription
0..1

«atpSplitable»

+mcSupport 0..1

«atpVariation»

+emulationSupport 0..*

«atpVariation»

+subElement
0..* {ordered}

+measurableSystemConstantValues 0..*

+swDataDefProps 0..1

+resultingProperties

0..1

+flatMapEntry 0..1

«atpVariation,atpSplitable»

+instance 1..*

+flatMap 0..1

+ecuExtract 1

+rootSoftwareComposition 0..1

«atpVariation»

«atpVariation»

+mcVariableInstance
0..*

Figure 4.26: Overview of the McSupportData element

The individual measurable and calibratable data is described using the element Mc-
DataInstance. This is aggregated from McSupportData in the role mcVariable-
Instance (for measurement) or mcParameterInstance (for calibration).

Usage of the FlatMap

The FlatMap is part of the Ecu Extract of System Description and contains a collection
of FlatInstanceDescriptor elements. The details of the FlatMap are described
in the Specification of the System Template [8].

Common attributes of McDataInstance

168 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

The element MsDataInstance specifies one element of the McSupportData. The
following requirement specify common attributes which shall to be filled in a harmo-
nized way.

[rte_sws_5130]d The RTE Generator shall use the shortName of the FlatIn-
stanceDescriptor as the shortName of the McDataInstance. c(RTE00189)

[rte_sws_5131]d If the input element (e.g. ApplicationDataType or Implemen-
tationDataType) has a Category specified the Category value shall be copied to
the McDataInstance element. c(RTE00189)

[rte_sws_5132]d If the input element (e.g. ApplicationDataType or Implemen-
tationDataType) specifies an array, the attribute arraySize of McDataInstance
shall be set to the size of the array. c(RTE00189)

[rte_sws_5133]d If the input element (e.g. ApplicationDataType or Implemen-
tationDataType) specifies a record, the McDataInstance shall aggregate the
record element’s parts as subElements of type McDataInstance. c(RTE00189)

[rte_sws_5119]d The McSupportData element and its sub-structure shall be self-
contained in the sense that there is no need to deliver the whole upstream descriptions
of the ECU (including the ECU Extract, Software Component descriptions, Basic Soft-
ware Module descriptions, ECU Configuration Values descriptions, Flat Map, etc.) in
order to later generate the final "A2L"-file. This means that the RTE Generator has
to copy the required information from the upstream descriptions into the McSupport-
Data element. c(RTE00189)

[rte_sws_5129]d The RTE Generator in Generation Phase shall export the effec-
tive SwDataDefProps (including all of the referenced and aggregated sub-elements
like e.g. CompuMethod or SwRecordLayout) in the role resultingProperties
for each McDataInstance after resolving the precedence rules defined in the SW-
Component Template [2] chapter Properties of Data Definitions. c(RTE00189)

[rte_sws_5135]d If a ParameterDataPrototype is associated with a Parameter-
Access the corresponding SwDataDefProps and their sub-structure shall be ex-
ported. c(RTE00189)

[rte_sws_5134]d For the export of the effective SwDataDefProps (rte_sws_5129)
the information from the ApplicationDataType specification takes precedence over
information from the ImplementationDataType. c(RTE00189)

4.2.8.4.2 Export of Measurement information

Sender-Receiver communication

[rte_sws_5120]d If the swCalibrationAccess of a VariableDataPrototype
used in an interface of a sender-receiver port of a SwComponentPrototype is set
to readOnly or readWrite and RteMeasurementSupport is set to true the RTE
Generator shall create a McDataInstance element with

169 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

• symbol set to the C-symbol name used for the allocation (see also
rte_sws_3900)

• flatMapEntry referencing to the corresponding FlatInstanceDescriptor
element of the VariableDataPrototype

c(RTE00153, RTE00189)

Client-Server communication

[rte_sws_5121]d If the swCalibrationAccess of an ArgumentDataPrototype
used in an interface of a client-server port of a SwComponentPrototype is set to
readOnly and RteMeasurementSupport is set to true the RTE Generator shall
create a McDataInstance element with

• symbol set to the C-symbol name used for the allocation (see also
rte_sws_3901)

• flatMapEntry referencing to the corresponding FlatInstanceDescriptor
element of the ArgumentDataPrototype

c(RTE00153, RTE00189)

[rte_sws_5172]d If the measurement of client-server communication is ignored due to
requirement rte_sws_5170 the corresponding McDataInstance in the McSupport-
Data shall have a resultingProperties swCalibrationAccess set to notAc-
cessible. c(RTE00153)

Mode Switch Communication

[rte_sws_6702]d If the swCalibrationAccess of a ModeDeclarationGroup-
Prototype used in an interface of a mode switch port of a SwComponentPro-
totype is set to readOnly and RteMeasurementSupport is set to true the RTE
Generator shall create three McDataInstance elements with

• symbol set to the C-symbol name used for the allocation (see also
rte_sws_6700)

• flatMapEntry referencing to the corresponding FlatInstanceDescriptor
element of the ModeDeclarationGroupPrototype

Thereby the McDataInstance element corresponding to the

• current mode has to reference the FlatInstanceDescriptor which role at-
tribute is set to CURRENT_MODE,

• previous mode has to reference the FlatInstanceDescriptor which role
attribute is set to PREVIOUS_MODE and

• next mode has to reference the FlatInstanceDescriptor which role at-
tribute is set to NEXT_MODE

c(RTE00153, RTE00189)

170 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

InterRunnableVariable

[rte_sws_5122]d If the swCalibrationAccess of a VariableDataPrototype in
the role implicitInterRunnableVariable or explicitInterRunnableVari-
able is set to readOnly or readWrite and RteMeasurementSupport is set to
true the RTE Generator shall create a McDataInstance element with

• symbol set to the C-symbol name used for the allocation (see also
rte_sws_3902)

• flatMapEntry referencing to the corresponding FlatInstanceDescriptor
element of the VariableDataPrototype

c(RTE00153, RTE00189)

PerInstanceMemory

[rte_sws_5123]d If the swCalibrationAccess of a VariableDataPrototype in
the role arTypedPerInstanceMemory is set to readOnly or readWrite and Rte-
MeasurementSupport is set to true the RTE Generator shall create a McDataIn-
stance element with

• symbol set to the C-symbol name used for the allocation (see also
rte_sws_7160)

• flatMapEntry referencing to the corresponding FlatInstanceDescriptor
element of the VariableDataPrototype

c(RTE00153, RTE00189)

Nv RAM Block

[rte_sws_5124]d If the swCalibrationAccess of a VariableDataPrototype in
the role ramBlock of a NvBlockSwComponentType’s NvBlockDescriptor is set
to readOnly or readWrite and RteMeasurementSupport is set to true the RTE
Generator shall create a McDataInstance element with

• symbol set to the C-symbol name used for the allocation (see also
rte_sws_7174)

• flatMapEntry referencing to the corresponding FlatInstanceDescriptor
element of the NvBlockSwComponentType

c(RTE00153, RTE00189)

Non Volatile Data communication

[rte_sws_5125]d If the swCalibrationAccess of a VariableDataPrototype
used in an NvDataInterface of a non volatile data port of a SwComponentPro-
totype is set to readOnly or readWrite and RteMeasurementSupport is set to
true the RTE Generator shall create a McDataInstance element with

• symbol set to the C-symbol name used for the allocation (see also
rte_sws_7197)

171 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

• flatMapEntry referencing to the corresponding FlatInstanceDescriptor
element of the VariableDataPrototype

c(RTE00153, RTE00189)

4.2.8.4.3 Export Calibration information

Calibration can be either actively supported by the RTE using the pre-defined cali-
bration mechanisms of section 4.2.8.3.5 or calibration can be transparent to the RTE.
In both cases the location and attributes of the calibratable data has to be provided
by the RTE Generator in the Generation Phase in order to support the setup of the
measurement and calibration tools.

ParameterDataPrototypes of ParameterSwComponentType

[rte_sws_5126]d For each ParameterDataPrototype in a PortPrototype of a
ParameterSwComponentType with the swCalibrationAccess set to readOnly
or readWrite an entry in the McSupportData with the role mcParameterIn-
stance shall be created with the following attributes:

• symbol set to the C-symbol name used for the allocation

• flatMapEntry referencing to the corresponding FlatInstanceDescriptor
element of the ParameterDataPrototype

c(RTE00189)

Shared ParameterDataPrototypes

[rte_sws_5127]d For each ParameterDataPrototype of a AtomicSwComponent-
Type’s SwcInternalBehavior aggregated in the role sharedParameter with the
swCalibrationAccess set to readOnly or readWrite an entry in the McSup-
portData with the role mcParameterInstance shall be created with the following
attributes:

• symbol set to the C-symbol name used for the allocation

• flatMapEntry referencing to the corresponding FlatInstanceDescriptor
element of the ParameterDataPrototype

c(RTE00189)

Instance specific ParameterDataPrototypes

[rte_sws_5128]d For each ParameterDataPrototype of a AtomicSwComponent-
Type’s SwcInternalBehavior aggregated in the role perInstanceParameter
with the swCalibrationAccess set to readOnly or readWrite an entry in the
McSupportData with the role mcParameterInstance shall be created with the fol-
lowing attributes:

• symbol set to the C-symbol name used for the allocation

172 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

• flatMapEntry referencing to the corresponding FlatInstanceDescriptor
element of the ParameterDataPrototype

c(RTE00189)

[rte_sws_7097]d For each ParameterDataPrototype of a BswModuleDescrip-
tion’s BswInternalBehavior aggregated in the role perInstanceParameter
with the swCalibrationAccess set to readOnly or readWrite an entry in the
McSupportData with the role mcParameterInstance shall be created with the fol-
lowing attributes:

• symbol set to the C-symbol name used for the allocation

• flatMapEntry referencing to the corresponding FlatInstanceDescriptor
element of the ParameterDataPrototype

c(RTE00189)

NvRom Block

[rte_sws_5136]d If the swCalibrationAccess of a ParameterDataPrototype in
the role romBlock is set to readOnly or readWrite an entry in the McSupportData
with the role mcParameterInstance shall be created with the following attributes:

• symbol set to the C-symbol name used for the allocation in rte_sws_7033

• flatMapEntry referencing to the corresponding FlatInstanceDescriptor
element of the ParameterDataPrototype

c(RTE00153, RTE00189)

4.2.8.4.4 Export of the Calibration Method

The RTE does provide several Software Emulation Methods which can be selected in
the Ecu Configuration of the RTE (see section 7.3).

Which Software Emulation Method has been used for a particular RTE Generation shall
be documented in the McSupportData in order to allow measurement and calibration
tools to support the RTE’s Software Emulation Methods. Additionally it is also possible
for an RTE Vendor to add custom Software Emulation Methods which needs to be
documented as well. The structure of the McSwEmulationMethodSupport is shown
in figure 4.27.

173 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

McSupportData

McSwEmulationMethodSupport

+ category: Identifier
+ shortLabel: Identifier

McParameterElementGroup

+ shortLabel: Identifier

AutosarDataPrototype

VariableDataPrototype

AutosarDataPrototype

ParameterDataPrototype

AtpStructureElement

InternalBehavior

RteCalibrationSupport :
EcucEnumerationParamDef

defaultValue = NONE

ARElement

Implementation

Provides the possible
names for the category.
This could include vendor
specific methods.

+romLocation

1

«atpVariation»

+constantMemory

0..*

«atpVariation»

+staticMemory 0..*

+referenceTable

0..1

+baseReference

0..1

+ramLocation

1

+elementGroup 0..*

«atpVariation»
+emulationSupport 0..*

«atpSplitable»

+mcSupport 0..1

Figure 4.27: Structure of the McSwEmulationMethodSupport element

[rte_sws_5137]d The RTE Generator in Generation Phase shall create the McSwEm-
ulationMethodSupport element as part of the McSupportData description of the
generated RTE. c(RTE00189)

[rte_sws_5138]d The RTE Generator in Generation Phase shall set the value of the
category attribute of McSwEmulationMethodSupport element according to the
implemented Software Emulation Method based on the Ecu configuration parameter
RteCalibrationSupport:

• NONE

• SINGLE_POINTERED

• DOUBLE_POINTERED

• INITIALIZED_RAM

• custom category name: vendor specific Software Emulation Method

c(RTE00189)

The description of the generated structures is using the existing mechanisms already
available in the Basic Software Module Description Template [9].

Description of ParameterElementGroup

174 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

For the description of the ParameterElementGroup an Implementation-
DataType representing a structure of the group is created (rte_sws_5139).

[rte_sws_5139]d For each generated ParameterElementGroup an Implemen-
tationDataType shall be created. The contained ParameterDataPrototypes
are aggregated with the role subElement as ImplementationDataTypeElement.
c(RTE00189)

In the example figure 4.28 the ImplementationDataTypes are called RteMcSup-
portGroupType1 and RteMcSupportGroupType2.

McSupport description of the InitRam parameter method

For the description of the InitRam parameter method the specific Parame-
terElementGroups allocated in ram and rom are specified (rte_sws_5140 and
rte_sws_5141). Then the collection and correspondence of these groups is specified
(in rte_sws_5142).

[rte_sws_5140]d If the RTE Generator is configured to support the
(INITIALIZED_RAM) method the RTE Generator in generation phase shall gen-
erate for each ParameterElementGroup a ParameterDataPrototype with the
role constantMemory in the InternalBehavior of the RTE’s Basic Software
Module Description. The ParameterDataPrototype shall have a reference to the
corresponding ImplementationDataType from rte_sws_5139 with the role type.
c(RTE00189)

[rte_sws_5141]d If the RTE Generator is configured to support the
(INITIALIZED_RAM) method the RTE Generator in generation phase shall gen-
erate for each ParameterElementGroup a VariableDataPrototype with
the role staticMemory in the InternalBehavior of the RTE’s Basic Software
Module Description. The VariableDataPrototype shall have a reference to the
corresponding ImplementationDataType from rte_sws_5139 with the role type.
c(RTE00189)

[rte_sws_5142]d If the RTE Generator is configured to support the
(INITIALIZED_RAM) method the RTE Generator in generation phase shall gen-
erate for each ParameterElementGroup a McParameterElementGroup with
the role elementGroup in the McSwEmulationMethodSupport rte_sws_5137
element.

• The McParameterElementGroup shall have a reference to the corresponding
ParameterDataPrototype from rte_sws_5140 with the role romLocation.

• The McParameterElementGroup shall have a reference to the corresponding
VariableDataPrototype from rte_sws_5141 with the role ramLocation.

c(RTE00189)

McSupport description of the Single pointered method

For the description of the Single pointered method the specific ParameterElement-
Groups allocated in rom are specified (rte_sws_5143). Then an array data type is

175 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

specified which contains as many number of elements (void pointers) as there are Pa-
rameterElementGroups (rte_sws_5144). Then the instance of this array is specified
in ram (rte_sws_5152) and referenced from the McSwEmulationMethodSupport
(rte_sws_5153). The actual values for each array element are specified as references
to the ParameterElementGroup prototypes (rte_sws_5154).

[rte_sws_5143]d If the RTE Generator is configured to support the
(SINGLE_POINTERED) method the RTE Generator in generation phase shall
generate for each ParameterElementGroup a ParameterDataPrototype with
the role constantMemory in the InternalBehavior of the RTE’s Basic Software
Module Description. The ParameterDataPrototype shall have a reference to the
corresponding ImplementationDataType from rte_sws_5139 with the role type.
c(RTE00189)

[rte_sws_5144]d If the RTE Generator is configured to support the
(SINGLE_POINTERED) method the RTE Generator in generation phase shall generate
an ImplementationDataType with one ImplementationDataTypeElement in
the role subElement.

• The ImplementationDataTypeElement shall have the attribute arraySize
set to the number of ParameterElementGroups from rte_sws_5139.

• The ImplementationDataTypeElement shall have a SwDataDefProps el-
ement with a reference to an ImplementationDataType representing a void
pointer, in the role implementationDataType.

c(RTE00189)

[rte_sws_5152]d If the RTE Generator is configured to support the
(SINGLE_POINTERED) method the RTE Generator in generation phase shall
generate a VariableDataPrototype with the role staticMemory in the In-
ternalBehavior of the RTE’s Basic Software Module Description. The Vari-
ableDataPrototype shall have a reference to the ImplementationDataType
from rte_sws_5144 with the role type. c(RTE00189)

[rte_sws_5153]d If the RTE Generator is configured to support the
(SINGLE_POINTERED) method the RTE Generator in generation phase shall
generate a reference from the McSwEmulationMethodSupport rte_sws_5137 ele-
ment to the VariableDataPrototype rte_sws_5152 in the role referenceTable.
c(RTE00189)

[rte_sws_5154]d If the RTE Generator is configured to support the
(SINGLE_POINTERED) method the RTE Generator in generation phase shall generate
an ArrayValueSpecification as the initValue of the array rte_sws_5152
and for each ParameterElementGroup a ReferenceValueSpecification
element in the ArrayValueSpecification defining the references to the individual
ParameterElementGroup prototypes rte_sws_5143. c(RTE00189)

McSupport description of the Double pointered method

176 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

The description of the Double pointered method is quite similar to the Single point-
ered method, but the allocation to ram and rom is different and it allocates the addi-
tional pointer parameter. The specific ParameterElementGroups allocated in rom
are specified (rte_sws_5155). Then an array data type is specified which contains as
many number of elements (void pointers) as there are ParameterElementGroups
(rte_sws_5156). Then the instance of this array is specified in rom (rte_sws_5157)
and referenced from the McSwEmulationMethodSupport (rte_sws_5158). The ac-
tual values for each array element are specified as references to the ParameterEle-
mentGroup prototypes (rte_sws_5159). Then the type of the base pointer is then
created (rte_sws_5160) and an instance is allocated in ram (rte_sws_5161). The
reference is initialized to the array in rom (rte_sws_5162).

[rte_sws_5155]d If the RTE Generator is configured to support the
(DOUBLE_POINTERED) method the RTE Generator in generation phase shall
generate for each ParameterElementGroup a ParameterDataPrototype with
the role constantMemory in the InternalBehavior of the RTE’s Basic Software
Module Description. The ParameterDataPrototype shall have a reference to the
corresponding ImplementationDataType from rte_sws_5139 with the role type.
c(RTE00189)

In the example figure 4.28 the ParameterDataPrototypes are called RteMcSup-
portParamGroup1 and RteMcSupportParamGroup1.

[rte_sws_5156]d If the RTE Generator is configured to support the
(DOUBLE_POINTERED) method the RTE Generator in generation phase shall generate
an ImplementationDataType with one ImplementationDataTypeElement in
the role subElement.

• The ImplementationDataTypeElement shall be of category ARRAY with the
attribute arraySize set to the number of ParameterElementGroups from
rte_sws_5139.

• The ImplementationDataTypeElement shall have a SwDataDefProps el-
ement with a reference to an ImplementationDataType representing a void
pointer, in the role implementationDataType.

c(RTE00189)

In the example figure 4.28 the ImplementationDataType is called RteMcSup-
portPointerTableType.

[rte_sws_5157]d If the RTE Generator is configured to support the
(DOUBLE_POINTERED) method the RTE Generator in generation phase shall
generate a ParameterDataPrototype with the role constantMemory in the
InternalBehavior of the RTE’s Basic Software Module Description. The Param-
eterDataPrototype shall have a reference to the ImplementationDataType
from rte_sws_5156 with the role type. c(RTE00189)

177 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

In the example figure 4.28 the ParameterDataPrototype is called RteMcSup-
portPointerTable.

[rte_sws_5158]d If the RTE Generator is configured to support the
(DOUBLE_POINTERED) method the RTE Generator in generation phase shall generate
a reference from the McSwEmulationMethodSupport rte_sws_5137 element
to the ParameterDataPrototype rte_sws_5157 in the role referenceTable.
c(RTE00189)

[rte_sws_5159]d If the RTE Generator is configured to support the
(DOUBLE_POINTERED) method the RTE Generator in generation phase shall generate
an ArrayValueSpecification as the initValue of the array rte_sws_5157
and for each ParameterElementGroup a ReferenceValueSpecification
element in the ArrayValueSpecification defining the references to the individual
ParameterElementGroup prototypes rte_sws_5155. c(RTE00189)

In the example figure 4.28 the ArrayValueSpecification is called RteMc-
SupportPointerTableInit. The ReferenceValueSpecifications are called
RteMcSupportParamGroup1Ref and RteMcSupportParamGroup2Ref.

[rte_sws_5160]d If the RTE Generator is configured to support the
(DOUBLE_POINTERED) method the RTE Generator in generation phase shall generate
an ImplementationDataType with one ImplementationDataTypeElement
being a reference to the array type from rte_sws_5156. c(RTE00189)

In the example figure 4.28 the ImplementationDataType is called RteMcSup-
portBasePointerType.

[rte_sws_5161]d If the RTE Generator is configured to support the
(DOUBLE_POINTERED) method the RTE Generator in generation phase shall
generate a VariableDataPrototype with the role staticMemory in the In-
ternalBehavior of the RTE’s Basic Software Module Description. The Vari-
ableDataPrototype shall have a reference to the ImplementationDataType
from rte_sws_5160 with the role type. c(RTE00189)

In the example figure 4.28 the VariableDataPrototype is called RteMcSupport-
BasePointer.

[rte_sws_5162]d If the RTE Generator is configured to support the
(DOUBLE_POINTERED) method the RTE Generator in generation phase shall
generate a ReferenceValueSpecification to the array from rte_sws_5157 as
the initValue of the reference rte_sws_5161. c(RTE00189)

In the example figure 4.28 the ReferenceValueSpecification is called RteMc-
SupportBasePointerInit.

178 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

RteInternalBehavior :
BswInternalBehavior

RteMcSupportGroupType1 :
ImplementationDataType

MyCalParam111 :
ImplementationDataTypeElement

RteMcSupportGroupType2 :
ImplementationDataType

MyCalParam22 :
ImplementationDataTypeElement

MyCalParam13 :
ImplementationDataTypeElement

RteMcSupportParamGroup1 :
ParameterDataPrototype

RteMcSupportParamGroup2 :
ParameterDataPrototype

RteMcSupportPointerTableType :
ImplementationDataType

RteMcSupportPointerTableElement :
ImplementationDataTypeElement

arraySize = 2

RteMcSupportPointerTable :
ParameterDataPrototype

RteMcSupportPointerTableInit :
ArrayValueSpecification

RteMcSupportParamGroup1Ref :
ReferenceValueSpecification

RteMcSupportParamGroup2Ref :
ReferenceValueSpecification

RteMcSupportBasePointerType :
ImplementationDataType

RteMcSupportBasePointer :
VariableDataPrototype

RteMcSupportBasePointerInit :
ReferenceValueSpecification

«atpVariation»
RteMcSupportBaseTypePointerDDP :

SwDataDefProps

RteMcSupportBaseTypePointerTargetP :
SwPointerTargetProps

«atpVariation»
RteMcSupportBaseTypePointerTargetDDP :

SwDataDefProps

+constantMemory

+referenceValue

+element+element

+type

+swDataDefProps
+initValue

+swPointerTargetProps

+swDataDefProps

+staticMemory

+initValue

+constantMemory

+type

+type

+subElement

+subElement

+subElement

+type

+referenceValue

+referenceValue

+implementationDataType

+subElement

+constantMemory

179 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Figure 4.28: Example of the structure for Double Pointered Method

4.2.8.4.5 Export of Variant Handling

The Rte Generator shall provide information on values of system constants. The values
are part of the input information and need to be collected and copied into a dedicated
artifact to be delivered with the McSupportData.

[rte_sws_5168]d The Rte Generator in generation phase shall create an elements
of type SwSystemconstantValueSet and create copies of all system constant val-
ues found in the input information of type SwSystemconstValue where the refer-
enced SwSystemconst element has the swCalibrationAccess set to readOnly.
c(RTE00153, RTE00191)

In case the SwSystemconstValue is subject to variability and the variability can be
resolved during Rte generation phase

[rte_sws_5176]d If a SwSystemconst with swCalibrationAccess set to read-
Only has an assigned SwSystemconstValue which is subject to variability with
the latest binding time SystemDesignTime or CodeGenerationTime the related
SwSystemconstValue copy in the SwSystemconstantValueSet according to
rte_sws_5168 shall contain the resolved value. c(RTE00153, RTE00191)

[rte_sws_5174]d If a SwSystemconst with swCalibrationAccess set to read-
Only has an assigned SwSystemconstValue which is subject to variability with
the latest binding time PreCompileTime the related SwSystemconstValue copy
in the SwSystemconstantValueSet according to rte_sws_5168 shall have an At-
tributeValueVariationPoint. The PreBuild conditions of the AttributeVal-
ueVariationPoint shall correspond to the PreBuild conditions of the input SwSys-
temconstValue’s conditions. c(RTE00153, RTE00191)

[rte_sws_5169]d The Rte Generator in generation phase shall create a reference from
the McSupportData element (rte_sws_5118) to the SwSystemconstantValueSet
element (rte_sws_5168). c(RTE00153, RTE00191)

In case the RTE Generator implements variability on a element which is accessible by
a MCD system the related existence condition has to be documented in the McSup-
portData structure as well.

[rte_sws_5175]d If an element in the McSupportData is related to an element in the
input configuration which is subject to variability with the latest binding time PreCom-
pileTime or PostBuild the RTE Generator shall add a VariationPoint for such
element. The PreBuild and PostBuild conditions of the VariationPoint shall cor-
respond to the PreBuild and PostBuild conditions of the input element’s conditions.
c(RTE00153, RTE00191)

180 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4.2.9 Access to NVRAM data

4.2.9.1 General

There are different methods available for AUTOSAR SW-Cs to access data stored in
NVRAM:

• “Calibration data” – Calibrations can be stored in NVRAM, but are not modified
during a "normal" execution of the ECU. Calibrations are usually directly read from
their memory location, but can also be read from a RAM buffer when the access
time needs to be optimized (e.g. for interpolation tables). They are described in
section 4.2.8.

• “Access to NVM blocks” – This method uses PerInstanceMemory as a RAM
mirror for the NVRAM blocks. While this method is efficient, its use is restricted.

The NVRAM Manager [23] is a BSW module which provides services for SW-C
to access NVRAM blocks during runtime. The NVM block data is not accessed
directly, but through a RAM mirror, which can be a PerInstanceMemory instan-
tiated by the RTE, or a SW-C internal buffer. When this method is used, the RTE
does not provide any data consistency mechanisms (i.e. different runnables from
the SW-C and the NVM can access the RAM mirror concurrently without being
protected by the RTE).

Note:

This mechanism permits efficient usage of NVRAM data, but requires the SW-C
designer to take care that accesses to the PerInstanceMemory from different
task contexts don’t cause data inconsistencies. The “Access to NVM blocks”
should not be used in multi core environments. In AUTOSAR release 4.0, it can
not be expected that the NVRAM Manager can access the PerInstanceMem-
ory of another core. The presence of a shared memory section is not required by
AUTOSAR. Only in the case of arTypedPerInstanceMemory, a SwDataDef-
Props item is available to assign the PerInstanceMemory to a shared memory
section.

• “Access to NVRAM data with a NvBlockSwComponentType – The data is ac-
cessed through a NvDataInterface connected to a NvBlockSwComponent-
Types. This access is modeled at the VFB level, and, when necessary, protected
by the RTE against concurrent accesses. It will be described further in this sec-
tion.

4.2.9.2 Usage of the NvBlockSwComponentType

The code of NvBlock SwComponentPrototypes is implemented by the RTE Gener-
ator. NvBlockSwComponentTypes provide a port interface for the access and man-
agement of data stored in NVRAM.

181 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

SW-C SW-C SW-C

RTE

NvBlockComponentType

NvBlockDescriptor NvBlockDescriptor

NVM

blockId

NvM_WriteBlock
NvM_ReadBlock
...

Rte_SetMirror
Rte_GetMirror
Rte_NvMNotifyJobFinished
Rte_NvMNotifyInitBlock

Figure 4.29: Connection to the NvBlockSwComponentType

Figure 4.29 illustrates the usage of a NvBlockSwComponentType.

[rte_sws_7301]d Several AUTOSAR SW-Cs (and also several instances of a AU-
TOSAR SW-C) shall be able to read the same VariableDataPrototypes of a
NvBlockSwComponentType. c(RTE00176)

182 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

AtomicSwComponentType

NvBlockSwComponentType

Identifiable

NvBlockDescriptor

ServiceNeeds

NvBlockNeeds

+ calcRamBlockCrc: Boolean [0..1]
+ checkStaticBlockId: Boolean [0..1]
+ nDataSets: PositiveInteger [0..1]
+ nRomBlocks: PositiveInteger [0..1]
+ readonly: Boolean [0..1]
+ reliabili ty: NvBlockNeedsReliabil ityEnum [0..1]
+ resistantToChangedSw: Boolean [0..1]
+ restoreAtStart: Boolean [0..1]
+ storeAtShutdown: Boolean [0..1]
+ writeOnlyOnce: Boolean [0..1]
+ writeVerification: Boolean [0..1]
+ writingFrequency: PositiveInteger [0..1]
+ writingPriority: NvBlockNeedsWritingPriorityEnum [0..1]

«enumeration»
NvBlockNeedsReliabili tyEnum

 noProtection
 errorDetection
 errorCorrection

ValueSpecification

+ shortLabel: Identifier [0..1]

AutosarDataPrototype

ParameterDataPrototype

AutosarDataPrototype

VariableDataPrototype

«atpVariation» Tags:
Vh.latestBindingTime
= PreCompileTime

+initValue 0..1 +initValue 0..1

+ramBlock 1 +romBlock 0..1

«atpVariation,atpSplitable»

+nvBlockDescriptor 0..*

+nvBlockNeeds 1

Figure 4.30: NvBlockSwComponentType and NvBlockDescriptor

A NvBlockSwComponentType contains multiple NvBlockDescriptors. Each of
these NvBlockDescriptor is associated to exactly one NVM block.

183 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

A NvBlockDescriptor contains a VariableDataPrototype which acts as a RAM
mirror for the NVM block, and possibly a ParameterDataPrototype to act as the
default ROM value for the NVM block.

[rte_sws_7353]d The RTE Generator shall reject configurations where a NvBlockDe-
scriptor of a NvBlockSwComponentType contains a romBlock whose data type
is not compatible with the type of the ramBlock. c(RTE00177, RTE00018)

[rte_sws_7303]d The RTE shall allocate memory for the ramBlock VariableDat-
aPrototype of the NvBlockDescriptor instances. c(RTE00177)

[rte_sws_7632]d The variables allocated for the ramBlocks shall be initialized if the
general initialization conditions in rte_sws_7046 are fulfilled. The initialization as to
be applied during Rte_Start and Rte_RestartPartition depending from the con-
figured RteInitializationStrategy. c(RTE00177)

Note: When blocks are configured to be read by NvM_ReadAll, the initialization may
erase the value read by the NVM. These blocks should not have an initValue.

[rte_sws_7355]d For each NvBlockDescriptor with a romBlock ParameterDat-
aPrototype, the RTE shall allocate a constant ROM block. c(RTE00177)

[rte_sws_7633]d The constants allocated for the romBlocks shall be initialized to the
value of the initValue, if they have an initValue. c(RTE00177)

184 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

AtomicSwComponentType

NvBlockSwComponentType

DataInterface

NvDataInterface

Identifiable

NvBlockDescriptor

NvBlockDataMapping

InstantiationDataDefProps

AutosarDataPrototype

VariableDataPrototype

AutosarVariableRef

«atpVariation» Tags:
Vh.latestBindingTime
= PreCompileTime

«atpVariation» Tags:
Vh.latestBindingTime
= PreCompileTime

+variableInstance

0..1

+localVariable 0..1

+readNvData

0..1

+nvRamBlockElement

1

+writtenNvData

0..1

+nvBlockDataMapping1..*

«atpVariation»

«atpVariation,atpSplitable»

+nvBlockDescriptor 0..*

+ramBlock

1

+instantiationDataDefProps 0..*

«atpVariation»

+nvData 1..*

Figure 4.31: NvBlockDataMapping

For each element stored in the NvM block of a NvBlockDescriptor, there should
be one NvBlockDataMapping to associate the VariableDataPrototypes of the
ports used for read and write access and the VariableDataPrototype defining the
location of the element in the ramBlock.

[rte_sws_7621]d The RTE Generator shall reject configurations where a NvBlock-
DataMapping references a VariableDataPrototype of the provide port
(writtenNvData), a VariableDataPrototype of the require port (readNvData),

185 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

and a VariableDataPrototype defining the storage in the ramBlock which are
not of compatible DataTypes. c(RTE00018)

[rte_sws_7343]d The RTE Generator shall reject configurations where a Variable-
DataPrototype instance in the role ramBlock is accessed by SW-C instances of
different partitions. c(RTE00177, RTE00018)

The rational for rte_sws_7343 is to allow the implementation of cleanup activities in
case of termination or restart of a partition. These cleanup activities may require to
invalidate the RAM mirror or reload data from the NVRAM device, which would impact
other partitions if a the ramBlock is shared by SW-Cs of different partitions.

A NvBlockSwComponentType can be used to reduce the quantity of NVRAM blocks
needed on an ECU:

• the same block can be used to store different flags or other small DataElements;

• the same DataElement can be used by different SW-Cs or different instances of
a SW-C.

It also permits to simplify processes and algorithms when it must be guaranteed that
two SW-Cs of an ECU use the same NVRAM data.

Note: this feature can increase the RAM usage of the ECU because it forces the
NVRAM Manager to instantiate an additional RAM buffer. However, when the same
DataElements have to be shared between SW-Cs, it reduces the number of RAM mir-
rors needed to be instantiated by the RTE, and can reduce the overall RAM usage of
the ECU.

[rte_sws_7356]d The RTE Generator shall reject configurations where a Variable-
DataPrototype referenced by a NvDataInterface has a queued swImplPolicy.
c(RTE00018)

[rte_sws_7357]d The RTE Generator shall reject configurations where a DataRe-
ceivedEvent is referenced by a WaitPoint and references a VariableDataPro-
totype referenced by a NvDataInterface. c(RTE00018)

[rte_sws_ext_7351] The NVM block associated to the NvBlockDescriptors of a
NvBlockSwComponentType shall be configured with the NvmBlockUseSyncMech-
anism feature enabled, and the NvmWriteRamBlockToNvm and NvmReadRam-
BlockFromNvm parameters set to the Rte_GetMirror and Rte_SetMirror API of
the NvBlockDescriptor.

An NvBlockSwComponentType may have unconnected p-ports or r-ports (see
rte_sws_1329).

[rte_sws_7669]d An NvBlockSwComponentType with an unconnected r-port shall
behave as if no updated data were received for VariableDataPrototypes this un-
connected r-port. c(RTE00139)

186 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4.2.9.3 Interface of the NvBlockSwComponentType

4.2.9.3.1 Access to the NVRAM data

The NvBlockSwComponentType provides PPortPrototypes and RPortProto-
types with an NvDataInterface data Sender-Receiver semantic to read the value
of the NVRAM data or write the new value.

Like the SenderReceiverInterfaces, each of these NvDataInterfaces can pro-
vide access to multiple VariableDataPrototypes.

The same Rte_Read, Rte_IRead, Rte_DRead, Rte_Write, Rte_IWrite,
Rte_IWriteRef APIs are used to access these VariableDataPrototypes as
for SenderReceiverInterfaces.

[rte_sws_7667]d The RTE Generator shall reject configurations where an r-port typed
with an NvDataInterface is not connected and no NvRequireComSpec with a
initValue are provided for each VariableDataPrototype of this NvDataInter-
face. This requirement does not apply if the r-port belongs to a NvBlockSwCompo-
nentType. c(RTE00018, RTE00139)

rte_sws_7667 is required to avoid unconnected r-port without a defined initValue.
Please note that for NvBlockSwComponent unconnected r-ports without init values
are not a fault because the init values are defined in the NvBlockDescriptors ram-
Block (see as well rte_sws_7632, rte_sws_7669)

[rte_sws_7668]d The RTE shall initialize the VariableDataPrototypes of an r-
port according to the initValue of the r-port’s NvRequireComSpec referring to the
VariableDataPrototype. c(RTE00139, RTE00108, RTE00068)

4.2.9.3.2 NVM interfaces

The NvBlockSwComponentType can also have ports used for NV data management
and typed by Client-Server interfaces compatible to the NVRAM Manager [23] stan-
dardized one. Note that these ports shall always have a PortInterface with the
attribute isService set to FALSE.

The standardized NvM Client-Server interfaces are composed as follows:

• NvMService

This interface is used to send commands to the NVM. The NvBlockSwCompo-
nentType provides a server port intended to be used by the SW-C users of this
NvBlockSwComponentType.

• NvMNotifyJobFinished

This interface is used by the NVM to notify the end of job. The NvBlockSwCom-
ponentType provides a server port intended to be used by the NVM, and client

187 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

ports intended to be connected to the SW-C users of this NvBlockSwCompo-
nentType.

• NvMNotifyInitBlock

This interface is used by the NVM to request users to provide the default values
in the RAM mirror. The NvBlockSwComponentType provides a server port in-
tended to be used by the NVM, and client ports intended to be connected to the
SW-C users of this NvBlockSwComponentType.

• NvMAdmin

This interface is used to order some administrative operations to the NVM. The
NvBlockSwComponentType provides a server port intended to be used by the
SW-C users of this NvBlockSwComponentType.

Note: no restrictions have been added to the NVM interfaces. However, some op-
erations of the NVM might require cooperation between the different users of the
NvBlockSwComponentType. For example, a ReadBlock operation will erase the
RAM mirror, which might affect multiple SW-Cs.

188 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

NvBlockSwComponentType

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

AtpBlueprintable
AtpPrototype

PortPrototype

PPortPrototype RPortPrototype

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

PortInterface

+ isService: Boolean
+ serviceKind: ServiceProviderEnum [0..1]

RoleBasedPortAssignment

+ role: Identifier

Identifiable

NvBlockDescriptor

ClientServerInterface

AtpStructureElement
Identifiable

ClientServerOperation

InternalBehavior

SwcInternalBehavior

AtpStructureElement
ExecutableEntity

RunnableEntity

OperationInvokedEvent

AtpStructureElement
Identifiable

RTEEvent

AtomicSwComponentType

PortDefinedArgumentValue

PortAPIOption

«atpVariation» Tags:
Vh.latestBindingTime
= PreCompileTime

«atpVariation» Tags:
Vh.latestBindingTime
= PreCompileTime

«atpVariation» Tags:
Vh.latestBindingTime
= PreCompileTime

+clientServerPort 0..*

«atpVariation»

+port

0..*«atpVariation,atpSplitable»

+component

+portPrototype

1

0..1

+port 1

+rPort *

«isOfType»

+requiredInterface

1
{redefines
atpType}

+pPort *
«isOfType»

+providedInterface

1
{redefines
atpType}

+portArgValue 0..*
{ordered}

«atpVariation,atpSplitable»
+nvBlockDescriptor 0..*

+operation 1..*
«atpVariation»

+interface 1

+event
«instanceRef»

+operation

+runnable 1..*

«atpVariation,atpSplitable»

+portAPIOption

0..*«atpVariation»

«atpVariation,atpSplitable»

+internalBehavior 0..1

+event

*«atpVariation,atpSplitable»

+startOnEvent0..1

Figure 4.32: SwcInternalBehavior of NvBlockSwComponentTypes

189 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

NvBlockSwComponentType

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

AtpBlueprintable
AtpPrototype

PortPrototype

PPortPrototype RPortPrototype

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

PortInterface

+ isService: Boolean
+ serviceKind: ServiceProviderEnum [0..1]

RoleBasedPortAssignment

+ role: Identifier

Identifiable

NvBlockDescriptor

ClientServerInterface

AtpStructureElement
Identifiable

ClientServerOperation

«atpVariation» Tags:
Vh.latestBindingTime
= PreCompileTime

AtomicSwComponentType

«atpVariation» Tags:
Vh.latestBindingTime
= PreCompileTime

+operation 1..*
«atpVariation»

+clientServerPort 0..*
«atpVariation»

«atpVariation,atpSplitable»
+nvBlockDescriptor 0..*

«isOfType»

+providedInterface

1
{redefines
atpType}

«isOfType»

+requiredInterface

1
{redefines
atpType}

+portPrototype 1

+port

0..*«atpVariation,atpSplitable»

+component

Figure 4.33: NVM notifications

The requests received from the SW-C side are forwarded by the NvBlockSwCompo-
nentType’s runnables to the NVM module, using the NVM C API indicated by the
RoleBasedPortAssignment. See figure 4.32.

190 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Notifications received from the NVM are forwarded to all the SW-C connected to the
notification interfaces of the NvBlockSwComponentTypewith a RoleBasedPortAs-
signment of the corresponding type. See figure 4.33.

[rte_sws_7398]d The RTE Generator shall implement runnables for each connected
server port of a NvBlockSwComponentType. c(RTE00177)

[rte_sws_7399]d The NvBlockSwComponentType’s runnables used as servers con-
nected to the SW-C shall forward the request to the NVM by calling the associated
NVM API. c(RTE00177)

Note: A BlockId PortDefinedArgumentValue is also provided to runnables and
used as a first argument in the NVM APIs.

4.2.9.4 Data Consistency

A VariableDataPrototype contained in a NvBlockSwComponentType is ac-
cessed when SW-Cs read the value or write a new value. It is also accessed by the
NVM when read or write requests are processed by the NVM for the associated block.

The NVM does not access directly the VariableDataPrototypes, but shall use the
Rte_GetMirror, and Rte_SetMirror APIs specified in section 5.9.4

The RTE has to ensure the data consistency of the VariableDataPrototypes, with
any of the data consistency mechanisms defined in section 4.2.5. Depending on the
user’s input, an efficient scheduling with the use of implicit APIs should permit a low
resources (OS resources, RAM, and code) implementation.

4.3 Communication Paradigms

AUTOSAR supports two basic communication paradigms: Client-Server and Sender-
Receiver. AUTOSAR software-components communicate through well defined ports
and the behavior is statically defined by attributes. Some attributes are defined on
the modeling level and others are closely related to the network topology and must be
defined on the implementation level.

The RTE provides the implementation of these communication paradigms. For inter-
ECU communication the RTE uses the functionalities provided by COM. For inter-
Partition communication (within the same ECU) the RTE uses functionalities provided
by the IOC module. For intra-Partition the RTE provides the functionality on its own.

With Sender-Receiver communication there are two main principles: Data Distribu-
tion and Event Distribution. When data is distributed, the last received value is of
interest (last-is-best semantics). When events are distributed the whole history of re-
ceived events is of interest, hence they must be queued on receiver side. Therefore
the software implementation policy can be queued or non queued. This is stated in the
swImplPolicy attribute of the SwDataDefProps, which can have the value ’queued’

191 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

(corresponding to event distribution with a queue) or ’standard’ (corresponding to last-
is-best data distribution). If a data element has event semantics, the swImplPolicy
is set to ’queued’. The other possible values of this attribute correspond to data se-
mantics.

[rte_sws_7192]d The RTE generator shall reject the configuration when an r-port
is connected to an r-port or a p-port is connected to a p-port with an Assem-
blySwConnectorc(RTE00018)

For example, a require port (r-port) of a component typed by an AUTOSAR sender-
receiver interface can read data elements of this interface. A provide port (p-port) of
a component typed by an AUTOSAR sender-receiver interface can write data elements
of this interface.

[rte_sws_7006]d The RTE generator shall reject the configuration when an r-port is
connected to a p-port or a p-port is connected to an r-port with a Delegation-
SwConnector. c(RTE00018)

4.3.1 Sender-Receiver

4.3.1.1 Introduction

Sender-receiver communication involves the transmission and reception of signals con-
sisting of atomic data elements that are sent by one component and received by one
or more components. A sender-receiver interface can contain multiple data elements.
Sender-receiver communication is one-way - any reply sent by the receiver is sent as
a separate sender-receiver communication.

A require port (r-port) of a component typed by an AUTOSAR sender-receiver interface
can read data elements of this interface. A provide port (p-port) of a component typed
by an AUTOSAR sender-receiver interface can write data elements of this interface.

4.3.1.2 Receive Modes

The RTE supports multiple receive modes for passing data to receivers. The four
possible receive modes are:

• “Implicit data read access” – when the receiver’s runnable executes it shall
have access to a “copy” of the data that remains unchanged during the execution
of the runnable.

[rte_sws_6000]d For data elements specified with implicit data read access, the
RTE shall make the receive data available to the runnable through the seman-
tics of a copy. c(RTE00128, RTE00019)

[rte_sws_6001]d For data elements specified with implicit data read access the
receive data shall not change during execution of the runnable. c(RTE00128)

192 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

When “implicit data read access” is used the RTE is required to make the data
available as a “copy”. It is not necessarily required to use a unique copy for each
runnable. Thus the RTE may use a unique copy of the data for each runnable
entity or may, if several runnables (even from different components) need the
same data, share the same copy between runnables. Runnable entities can only
share a copy of the same data when the scheduling structure can make sure the
contents of the data is protected from modification by any other party.

[rte_sws_6004]d The RTE shall read the data elements specified with implicit
data read access before the associated runnable entity is invoked. c(RTE00128)

Composite data types shall be handled in the same way as primitive data types,
i.e. RTE shall make a “copy” available for the RunnableEntity.

[rte_sws_6003]d The “implicit data read access” receive mode shall be valid for
all categories of runnable entity (i.e. 1A, 1B and 2). c(RTE00134)

• “Explicit data read access” – the RTE generator creates a non-blocking API
call to enable a receiver to poll (and read) data. This receive mode is an “explicit”
mode since an explicit API call is invoked by the receiver.

The explicit “data read access” receive mode is only valid for category 1B or 2
runnable entities [RTE00134].

• “wake up of wait point” – the RTE generator creates a blocking API call that the
receiver invokes to read data.

[rte_sws_6002]d The “wake up of wait point” receive mode shall support a time-
out to prevent infinite blocking if no data is available. c(RTE00109, RTE00069)

The “wake up of wait point” receive mode is inherently only valid for a category 2
runnable entity.

A category 2 runnable entity is required since the implementation may need to
suspend execution of the caller if no data is available.

• “activation of runnable entity” – the receiving runnable entity is invoked auto-
matically by the RTE whenever new data is available. To access the new data,
the runnable entity either has to use “implicit data read access” or “explicit data
read access”, i.e. invoke an Rte_IRead, Rte_Read, Rte_DRead or Rte_Receive
call, depending on the input configuration. This receive mode differs from “im-
plicit data read access” since the receiver is invoked by the RTE in response to a
DataReceivedEvent.

[rte_sws_6007]d The “activation of runnable entity” receive mode shall be valid
for category 1A, 1B and 2 runnable entities. c(RTE00134)

The validity of receive modes in conjunction with different categories of runnable entity
is summarized in Table 4.9.

Receive Mode Cat 1A Cat 1B Cat 2
Implicit Data Read Access Yes Yes Yes

193 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Explicit Data Read Access No Yes Yes
Wake up of wait point No No Yes
Activation of runnable entity Yes Yes Yes

Table 4.9: Receive mode validity

The category of a runnable entity is not an inherent property but is instead determined
by the features of the runnable. Thus the presence of explicit API calls makes the
runnable at least category 1B and the presence of a WaitPoint forces the runnable
to be category 2.

4.3.1.2.1 Applicability

The different receive modes are not just used for receivers in sender-receiver commu-
nication. The same semantics are also applied in the following situations:

• Success feedback – The mechanism used to return transmission acknowledg-
ments to a component. See Section 5.2.6.9.

• Asynchronous client-server result – The mechanism used to return the result
of an asynchronous client-server call to a component. See Section 5.7.5.4.

4.3.1.2.2 Representation in the Software Component Template

The following list serves as a reference for how the RTE Generator determines the
Receive Mode from its input [RTE00109]. Note that references to “the VariableDat-
aPrototype” within this sub-section will implicitly mean “the VariableDataProto-
type for which the API is being generated”.

• “wake up of wait point” – A VariableAccess in the dataReceivePointBy-
Value or dataReceivePointByArgument role references a VariableDat-
aPrototype and a WaitPoint references a DataReceivedEvent which in
turn references the same VariableDataPrototype.

• “activation of runnable entity” – a DataReceivedEvent references the Vari-
ableDataPrototype and a runnable entity to start when the data is received.

• “explicit data read access” – A VariableAccess in the dataReceive-
PointByValue or dataReceivePointByArgument role references the
VariableDataPrototype.

• “implicit data read access” – A VariableAccess in the dataReadAccess
role references the VariableDataPrototype.

It is possible to combine certain access methods; for example ‘activation of runnable
entity’ can be combined with ‘explicit’ or ‘implicit’ data read access (indeed, one of these

194 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

pairings is necessary to cause API generation to actually read the datum) but it is an
input error if ‘activation of runnable entity’ and ‘wakeup of wait point’ are combined (i.e.
a WaitPoint references a DataReceivedEvent that references a runnable entity).
It is also possible to specify both implicit and explicit data read access simultaneously.

For details of the semantics of “implicit data read access” and “explicit data read ac-
cess” see Section 4.3.1.5.

4.3.1.3 Multiple Data Elements

A sender-receiver interface can contain one or more data elements. The transmission
and reception of elements is independent – each data element, e.g. AUTOSAR signal,
can be considered to form a separate logical data channel between the “provide” port
and a “require” port.

[rte_sws_6008]d Each data element in a sender-receiver interface shall be sent sepa-
rately. c(RTE00089)

Example 4.4

Consider an interface that has two data elements, speed and freq and that a compo-
nent template defines a provide port that is typed by the interface. The RTE generator
will then create two API calls; one to transmit speed and another to transmit freq.

Where it is important that multiple data elements are sent simultaneously they should
be combined into a composite data structure (Section 4.3.1.11.1). The sender then
creates an instance of the data structure which is filled with the required data before
the RTE is invoked to transmit the data.

4.3.1.3.1 Initial Values

[rte_sws_6009]d For each data element in an interface specified with data semantics,
the RTE shall support the initValue attribute. c(RTE00108)

The initValue attribute is used to ensure that AUTOSAR software-components al-
ways access valid data even if no value has yet been received. This information is re-
quired for inter-ECU, inter-Partition, and intra-Partition communication. For inter-ECU
communication initial values can be handled by COM but for intra-ECU communication
RTE has to guarantee that initValue is handled.

In general, the specification of an initValue is mandatory for each data element
prototype with data semantics, see rte_sws_7642. If all senders and receivers are
located in the same partition, this restriction is relaxed, see rte_sws_4501.

[rte_sws_6010]d The RTE shall use any specified initial value to prevent the receiver
performing calculations based on invalid (i.e. uninitialized) values when the swIm-

195 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

plPolicy is not queued and if the general initialization conditions in rte_sws_7046
are fulfilled. c(RTE00107)

The above requirement ensures that RTE API calls return the initialized value until a
“real” value has been received, possibly via the communication service. The require-
ment does not apply when “event” semantics are used since the implied state change
when the event data is received will mean that the receiver will not start to process
invalid data and would therefore never see the initialized value.

[rte_sws_4500]d An initial value cannot be specified when the implementation policy
is set to ’queued’ attribute is specified as true. c(RTE00107)

For senders, an initial value is not used directly by the RTE (since an AUTOSAR SW-C
must supply a value using Rte_Send) however it may be needed to configure the com-
munication service - for example, an un-initialised signal can be transmitted if multiple
signals are mapped to a single frame and the communication service transmits the
whole frame when any contained signal is sent by the application. Note that it is not
the responsibility of the RTE generator to configure the communication service.

It is permitted for an initial value to be specified for either the sender or receiver. In this
case the same value is used for both sides of the communication.

[rte_sws_4501]d If in context of one partition a sender specifies an initial value and
the receiver does not (or vice versa) the same initial value is used for both sides of the
communication. c(RTE00108)

It is also permitted for both sender and receiver to specify an initial value. In this case
it is defined that the receiver’s initial value is used by the RTE generator for both sides
of the communication.

[rte_sws_4502]d If in context of one partition both receiver and sender specify an initial
value the specification for the receiver takes priority. c(RTE00108)

4.3.1.4 Multiple Receivers and Senders

Sender-receiver communication is not restricted to communication connections be-
tween a single sender and a single receiver. Instead, sender receiver communica-
tion connection can have multiple senders (’n:1’ communication) or multiple receivers
(’1:m’ communication) with the restrictions that multiple senders are not allowed for
mode switch notifications, see metamodel restriction rte_sws_2670.

The RTE does not impose any co-ordination on senders – the behavior of senders is
independent of the behavior of other senders. For example, consider two senders A
and B that both transmit data to the same receiver (i.e. ’n:1’ communication). Trans-
missions by either sender can be made at any time and there is no requirement that
the senders co-ordinate their transmission. However, while the RTE does not impose
any co-ordination on the senders it does ensure that simultaneous transmissions do
not conflict.

196 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

In the same way that the RTE does not impose any co-ordination on senders there is no
co-ordination imposed on receivers. For example, consider two receivers P and Q that
both receive the same data transmitted by a single sender (i.e. ’1:m’ communication).
The RTE does not guarantee that multiple receivers see the data simultaneously even
when all receivers are on the same ECU.

4.3.1.5 Implicit and Explicit Data Reception and Transmission

[rte_sws_6011]d The RTE shall support ’explicit’ and ’implicit’ data reception and
transmission. c(RTE00019, RTE00098, RTE00129, RTE00128, RTE00141)

Implicit data access transmission means that a runnable does not actively initiate the
reception or transmission of data. Instead, the required data is received automatically
when the runnable starts and is made available for other runnables at the earliest when
it terminates.

Explicit data reception and transmission means that a runnable employs an explicit
API call to send or receive certain data elements. Depending on the category of the
runnable and on the configuration of the according ports, these API calls can be either
blocking or non-blocking.

4.3.1.5.1 Implicit

Implicit Read

For the implicit reading of data, VariableAccesses aggregated with a dataReadAc-
cess role [RTE00128], the data is made available when the runnable starts using the
semantics of a copy operation and the RTE ensures that the ’copy’ will not be
modified until after the runnable terminates.

When a runnable R is started, the RTE reads all VariableDataPrototypes refer-
enced by a VariableAccess in the dataReadAccess role, if the data elements may
be changed by other runnables a copy is created that will be available to runnable R.
The runnable R can read the data element by using the RTE APIs for implicit read
(see the API description in Section 5.6.18). That way, the data is guaranteed not to
change (e.g. by write operations of other runnables) during the entire lifetime of R. If
several runnables (even from different components) need the data, they can share the
same buffer. This is only applicable when the scheduling structure can make sure the
contents of the data is protected from modification by any other party.

Note that this concept implies that the runnable does in fact terminate. Therefore, while
implicit read is allowed for category 1A and 1B runnable entities as well as category 2
only the former are guaranteed to have a finite execution time. A category 2 runnable
that runs forever will not see any updated data.

VariableAccess in the dataReadAccess role is only allowed for VariableDat-
aPrototypes with their swImplPolicy different from ’queued’ (rte_sws_3012).

197 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Implicit Write

Implicit writing, VariableAccesses aggregated with a dataWriteAccess role
[RTE00129], is the opposite concept. VariableDataPrototypes referenced by a
VariableAccess in the dataWriteAccess role are sent by the RTE after the runn-
able terminates. The runnable can write the data element by using the RTE APIs for
implicit write (see the API description in Sect. 5.6.19 and 5.6.20). The sending is inde-
pendent from the position in the execution flow in which the Rte_IWrite is performed
inside the Runnable. When performing several write accesses during runnable execu-
tion to the same data element, only the last one will be recognized. Here we have a
last-is-best semantics.

Note:
If a VariableDataPrototype is referenced by a VariableAccess in the
dataWriteAccess role, but no RTE API for implicit write of this VariableDataPro-
totype is called during an execution of the runnable, an undefined value is written
back when the runnable terminates.

[rte_sws_3570]d For VariableAccesses in the dataWriteAccess role the RTE
shall make the sent data available to others (other runnables, other AUTOSAR SWCs,
Basic SW, ..) with the semantics of a copy. c(RTE00129)

[rte_sws_3571]d For VariableAccesses in the dataWriteAccess role the RTE
shall make the sent data available to others (other runnables, other AUTOSAR SWCs,
Basic SW, ..) at the earliest when the runnable returns (exits the ’Running’ state).
c(RTE00129)

[rte_sws_3572]d For VariableAccesses in the dataWriteAccess role several ac-
cesses to the same VariableDataPrototype performed inside a runnable during
one runnable execution shall lead to only one transmission of the VariableDataPro-
totype. c(RTE00129)

[rte_sws_3573]d If several VariableAccesses in the dataWriteAccess role refer-
encing the same VariableDataPrototype are performed inside a runnable during
the runnable execution, the RTE shall use the last value written. (last-is-best seman-
tics) c(RTE00129)

A VariableAccess in the dataWriteAccess role is only sensible for runnable enti-
ties that are guaranteed to terminate, i.e. category 1A and 1B. If it is used for a category
2 runnable which does not terminate then no data write-back will occur.

[rte_sws_3574]d VariableAccess in the dataWriteAccess role shall be valid for
all categories of runnable entity. c(RTE00129, RTE00134)

To get common behavior in RTEs from different suppliers further requirements
defining the semantic of implicit communication exist:

Please note that the behavior of Implicit Communication can be adjusted with ECU
Configuration. For further information see section 7.8.

198 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Implicit Communication Behavior in case of Incoherent Implicit Data Access

[rte_sws_3954]d The RTE generator shall use exactly one buffer to contain data
copies of the same VariableDataPrototype per Preemption Area for the im-
plementation of the copy semantic of Incoherent Implicit Data Access.
c(RTE00128, RTE00129, RTE00134)

Requirement rte_sws_3954 means that all runnable entities mapped to tasks of a
Preemption Area with a Incoherent Implicit Read Access or Incoherent
Implicit Write Access access the same buffers.

[rte_sws_3598]d For implicit communication, a single shared read/write buffer shall be
used when no runnable entity mapped to tasks of the Preemption Area has Inco-
herent Implicit Read Access and Incoherent Implicit Write Access
referencing the same VariableDataPrototype. c(RTE00128, RTE00129)

If either the sender or the receiver uses a Data Element with Status and the
other uses a Data Element without Status, a Data Element with Status
can be implemented and casted in the component data structure when a pointer to a
Data Element without Status is needed.

[rte_sws_3955]d For implicit communication, separate read and write buffers shall
be used when at least one runnable entity mapped to tasks of the Preemption
Area has Implicit Read Access and Implicit Write Access referencing the
same VariableDataPrototype. c(RTE00128, RTE00129)

Please note that the content of the write buffers are copied into the read buffer of the
Preemption Area after the RunnableEntity with the write access terminates (see
rte_sws_7041). Therefore the write buffer might be implemented as temporary buffer.

[rte_sws_3599]d For implicit communication with Incoherent Implicit Data
Access all readers within a Preemption Area shall access the same buffer.
c(RTE00128)

[rte_sws_3953]d For implicit communication with Incoherent Implicit Data
Access all writers within a Preemption Area shall access the same buffer.
c(RTE00129)

The content of a shared buffer (see rte_sws_3598) is not guaranteed to stay constant
during the whole task since a writer will change the shared copy and hence readers
mapped in the task after the writer will access the updated copy. When buffers are
shared, written data is visible to other RunnableEntitys within the same execution
of the task. However since no runnable within the task will both read and write the same
buffer (rte_sws_3598 and rte_sws_3955) consistency within a runnable is ensured.

When separate buffers used for implicit communication (see rte_sws_3955) any data
written by a runnable is not visible (to either other RunnableEntitys or to the writing
runnable) until the data is written back after the runnable has terminated.

199 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Implicit Communication Behavior in case of Coherent Implicit Data Access

[rte_sws_7062]d The RTE generator shall use exactly one buffer to contain data
copies of the same VariableDataPrototype per Coherency Group for the
implementation of the copy semantic of Coherent Implicit Data Access.
c(RTE00128, RTE00129, RTE00134)

Requirement rte_sws_7062 means that all runnable entities with Coherent Im-
plicit Data Accesses access the same buffers. Please note that it is only sup-
ported to group Implicit Read Accesses or Implicit Write Accesses of
RunnableEntitys executed in the same OS Task. Therefore a Coherent Im-
plicit Data Access results in a task local buffer as it was specified in previous
AUTOSAR releases. With this means a backward compatible bahavior of the RTE can
be ensured.

Please note that rte_sws_3955 applies as well for Coherent Implicit Data Access.
rte_sws_7062 includes already that a single shared read/write buffer shall be used
when no runnable entity has Coherent Implicit Read Access and Coherent
Implicit Write Access belonging to the same Coherency Group.

Implicit Communication buffer handling

[rte_sws_3956]d The content of a Preemption Area specific buffer used for an In-
coherent Implicit Read Access to a VariableDataElement shall be filled
with actual data by a copy action between the beginning of the task and the execution
of the first RunnableEntity with access to this VariableDataElement in the task.
c(RTE00128)

[rte_sws_7687]d There should not be more update of the Preemption Area specific
buffer within one task than required. c(RTE00128)

[rte_sws_7020]d If the RteImmediateBufferUpdate = TRUE is configured for a
Incoherent Implicit Read Access to a VariableDataElement the content
of a Preemption Area specific buffer used for that VariableAccess shall be filled
with actual data by a copy action immediately before the RunnableEntity with the
related implicit read access to the VariableDataElement starts. c(RTE00128)

[rte_sws_7041]d The content of a separate write buffer (see rte_sws_3955) modi-
fied by a Incoherent Implicit Write Access of a RunnableEntity shall be
made available to RunnableEntitys using a Implicit Read Access allocated in
the same Preemption Area immediately after the execution of the RunnableEn-
tity with the related Implicit Write Access to the VariableDataElement.
c(RTE00129)

[rte_sws_3957]d The content of a Preemption Area specific buffer modified by
a Incoherent Implicit Write Access in one task shall be made available to
RunnableEntitys using an Implicit Read Access allocated in other Preemp-

200 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

tion Areas at latest after the execution of the last RunnableEntity mapped to the
task. c(RTE00129)

[rte_sws_7688]d The Preemption Area specific buffer should not be made available
more often than required. c(RTE00129)

[rte_sws_7021]d If the RteImmediateBufferUpdate = TRUE is configured for a
Incoherent Implicit Write Access the content of a Preemption Area spe-
cific buffer shall be made available to RunnableEntitys using a Implicit Read
Access allocated in other Preemption Areas immediately after the execution of
the RunnableEntitywith the related Implicit Write Access to the Variable-
DataElement. c(RTE00129)

Note:
It’s the semantic of implicit communication that a VariableAccess in the
dataWriteAccess role is interpreted as writing the whole dataElement.

Explicit Schedule Points defined by RteOsSchedulePoints are placed between
RunnableEntities after the data written with implicit write access by the
RunnableEntity are propagated to other RunnableEntitys and before the Pre-
emption Area specific buffer used for a implicit read access of the successor
RunnableEntity are filled with actual data by a copy action according rte_sws_7020.
This ensures that the data produced by one RunnableEntity is propagated before
RunnableEntitys assigned to other Os Tasks are activated due to Task scheduling
caused by the explicit Schedule Point. See as well rte_sws_7042 and rte_sws_7043.

Implicit Communication buffer handling for Coherent Implicit Data Access

[rte_sws_7063]d The content of a Coherency Group specific buffer used for an Co-
herent Implicit Read Access to one or more VariableDataElements shall
be filled with actual data by a copy action between the beginning of the task and the ex-
ecution of the first RunnableEntity in the task with a Coherent Implicit Read
Access belonging to the Coherency Group. c(RTE00128)

[rte_sws_7064]d If the RteImmediateBufferUpdate = TRUE is configured for Co-
herent Implicit Read Accesses the content of a Coherency Group specific
buffer used for these VariableAccesses shall be filled with actual data by a copy
action immediately before the first RunnableEntity in the task with a Coherent
Implicit Read Access belonging to the Coherency Group starts. c(RTE00128)

[rte_sws_7065]d The content of a separate write buffer (see rte_sws_3955) modi-
fied by a Coherent Implicit Write Access of a RunnableEntity shall be
made available to RunnableEntitys using a Coherent Implicit Read Ac-
cess belonging to the same Coherency Group immediately after the execution
of the RunnableEntity with the related Coherent Implicit Write Access.
c(RTE00129)

[rte_sws_7066]d The content of a Coherency Group specific buffer modified by
Coherent Implicit Write Accesses in one task shall be made available to
other RunnableEntitys at earliest after the execution of the last RunnableEntity

201 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

with a Coherent Implicit Write Access belonging to this Coherency Group.
c(RTE00129)

[rte_sws_7067]d The content of a Coherency Group specific buffer modified by Co-
herent Implicit Write Accesses in one task shall be made available to other
RunnableEntitys at latest after the execution of the last RunnableEntity mapped
to the task. c(RTE00129)

[rte_sws_7068]d If the RteImmediateBufferUpdate = TRUE is configured for a
Coherent Implicit Write Accesses the content of a Coherency Group spe-
cific buffer modified by Coherent Implicit Write Accesses in one task shall be
made available to other readers not belonging to this Coherency Group immediately
after the execution of the last RunnableEntity with a Coherent Implicit Write
Access belonging to this Coherency Group c(RTE00129)

4.3.1.5.2 Explicit

The behavior of explicit reception depends on the category of the runnable and on the
configuration of the according ports.

An explicit API call can be either non-blocking or blocking. If the call is non-blocking
(i.e. there is a VariableAccess in the dataReceivePointByValue or dataRe-
ceivePointByArgument role referencing the VariableDataPrototype for which
the API is being generated, but no WaitPoint referencing a DataReceivedEvent
which references the VariableDataPrototype for which the API is being gener-
ated), the API call immediately returns the next value to be read and, if the communi-
cation is queued (event reception), it removes the data from the receiver-side queue,
see Section 4.3.1.10

[rte_sws_6012]d A non-blocking RTE API “read” call shall indicate if no data is avail-
able. c(RTE00109)

In contrast, a blocking call (i.e. the VariableDataPrototype, referenced by a
VariableAccess in the role dataReceivePointByArgument, and for which the
API is being generated, is referenced by a DataReceivedEvent which is itself refer-
enced by a WaitPoint) will suspend execution of the caller until new data arrives (or
a timeout occurs) at the according port. When new data is received, the RTE resumes
the execution of the waiting runnable. (RTE00092)

To prevent infinite waiting, a blocking RTE API call can have a timeout applied. The RTE
monitors the timeout and if it expires without data being received returns a particular
error status.

[rte_sws_6013]d A blocking RTE API “read” call shall indicate the expiry of a timeout.
c(RTE00069)

The “timeout expired” indication also indicates that no data was received before the
timeout expired.

202 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Blocking reception of data (“wake up of wait point” receive mode as described in Sec-
tion 4.3.1.2) is only applicable for category 2 runnables whereas non-blocking reception
(“explicit data read access” receive mode) can be employed by runnables of category
2 or 1B. Neither blocking nor non-blocking explicit reception is applicable for category
1A runnable because they must not invoke functions with unknown execution time (see
table 4.9).

[rte_sws_6016]d The RTE API call for explicit sending (VariableAccessin the
dataSendPoint role, [RTE00098]) shall be non-blocking. c(RTE00098)

Using this API call, the runnable can explicitly send new values of the VariableDat-
aPrototype.

Explicit writing is valid for runnables of category 1b and 2 only. Explicit writing is not al-
lowed for a category 1A runnable since these require API calls with constant execution
time (i.e. macros).

Although the API call for explicit sending is non-blocking, it is possible for a category
2 runnable to block waiting for a notification whether the (explicit) send operation was
successful. This is specified by the AcknowledgementRequest attribute and occurs by
a separate API call Rte_Feedback. If the feedback method is ’wake_up_of_wait_point’,
the runnable will block and be resumed by the RTE either when a positive or negative
acknowledgment arrives or when the timeout associated with the WaitPoint expires.

4.3.1.5.3 Concepts of data access

Tables 4.10 and 4.11 summarize the characteristics of implicit versus explicit data re-
ception and transmission.

203 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Implicit Read Explicit Read
Receiving of data element val-
ues is performed only once
when runnable starts

Runnable decides when and
how often a data element value
is received

Values of data elements do not
change while runnable is run-
ning.

Runnable can always decide to
receive the latest value

Several API calls to the same
signal always yield the same
data element value

Several API calls to the same
signal may yield different data
element values

Runnable must terminate (all
categories)

Runnable is of cat. 1B or 2

Table 4.10: Implicit vs. explicit read

Implicit Write Explicit Write
Sending of data element values
is only done once after runnable
returns

Runnable can decide when
sending of data element values
is done via the API call

Several usages of the API call
inside the runnable cause only
one data element transmission

Several usages of the API call
inside the runnable cause sev-
eral transmissions of the data el-
ement content. (Depending on
the behavior of COM, the num-
ber of API calls and the number
of transmissions are not neces-
sarily equal.)

Runnable must terminate (all
categories)

Runnable is cat. 1B or 2

Table 4.11: Implicit vs. explicit write

4.3.1.6 Transmission Acknowledgement

When TransmissionAcknowledgementRequest is specified, the RTE will inform
the sending component if the signal has been sent correctly or not. Note that there is
no insurance that the signal has actually been received correctly by the corresponding

204 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

receiver AUTOSAR software-component. Thus, only the RTE on the sender side is
involved in supporting TransmissionAcknowledgementRequest.

[rte_sws_5504]d The RTE shall support the use of TransmissionAcknowl-
edgementRequest independently for each data item of an AUTOSAR software-
component’s AUTOSAR interface. c(RTE00122)

[rte_sws_5506]d The RTE generator shall reject specification of the Transmission-
AcknowledgementRequest attribute for transmission acknowledgment for 1:n com-
munication.Restriction: In some cases, when more than one receiver is connected
via one physical bus, this can not be discovered by the RTE generator. c(RTE00125,
RTE00018)

The result of the feedback can be collected using “wake up of wait point”, “explicit data
read access”, “implicit data read access” or “activation of runnable entity”.

The TransmissionAcknowledgementRequest allows to specify a timeout.

[rte_sws_3754]d If TransmissionAcknowledgementRequest is specified, the
RTE shall ensure that timeout monitoring is performed, regardless of the receive mode
of the acknowledgment. c(RTE00069, RTE00122)

For inter-ECU communication, AUTOSAR COM provides the necessary functionality,
for intra-ECU communication, the RTE has to implement the timeout monitoring.

If a WaitPoint is specified to collect the acknowledgment, two timeout values have
to be specified, one for the TransmissionAcknowledgementRequest and one for
the WaitPoint.

[rte_sws_3755]d If different timeout values are specified for the TransmissionAc-
knowledgementRequest for a VariableDataPrototype and for the WaitPoint
associated with the DataSendCompletedEvent for the VariableAccess in the
dataSendPoint role for that VariableDataPrototype, the configuration shall be
rejected by the RTE generator. c(RTE00018)

The DataSendCompletedEvent associated with the VariableAccess in the
dataSendPoint role for a VariableDataPrototype shall indicate that the trans-
mission was successful or that the transmission was not successful. The status infor-
mation about the success of the transmission shall be available as the return value of
the generated RTE API call.

[rte_sws_3756]d For each transmission of a VariableDataPrototype only one ac-
knowledgment shall be passed to the sending component by the RTE. The acknowl-

205 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

edgment indicates either that the transmission was successful or that the transmission
was not successful. c(RTE00122)

[rte_sws_3757]d The status information about the success or failure of the transmis-
sion shall be available as the return value of the RTE API call to retrieve the acknowl-
edgment. c(RTE00122)

[rte_sws_3604]d The status information about the success or failure of the transmis-
sion shall be buffered with last-is-best semantics. When a data item is sent, the status
information is reset. c(RTE00122)

rte_sws_3604 implies that once the DataSendCompletedEvent has occurred, re-
peated API calls to retrieve the acknowledgment shall always return the same result
until the next data item is sent.

[rte_sws_3758]d If the timeout value of the TransmissionAcknowledgementRe-
quest is 0, no timeout monitoring shall be performed. c(RTE00069, RTE00122)

4.3.1.7 Communication Time-out

When sender-receiver communication is performed using some physical network there
is a chance this communication may fail and the receiver does not get an update of
data (in time or at all). To allow the receiver of a data element to react appropriately
to such a condition the SW-C template allows the specification of a time-out which the
infrastructure shall monitor and indicate to the interested software components.

A “data element” is the actual information exchanged in case of sender-receiver com-
munication. In the COM specification this is represented by a ComSignal. In the
SW-C template a data element is represented by the instance of a VariableDat-
aPrototype.

[rte_sws_5020]dWhen present, the aliveTimeout attribute5 enables the monitoring
of the timely reception of the data element with data semantics transmitted over the
network. c(RTE00147)

The monitoring functionality is provided by the COM module, the RTE transports the
event of reception time-outs to software components as “data element outdated”. The
software components can either subscribe to that event (activation of runnable entity)
or get that situation passed by the implicit and explicit status information (using API
calls).

[rte_sws_5021]d If communication is local to the partition, time-out monitor will be
disabled and no notification of the software components will occur, independently of
presence of aliveTimeout. c(RTE00147)

5This attribute is called “LIVELIHOOD” in the VFB specification

206 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Therefore the Software Component shall not rely in its functionality on the time-out
notification, because for local communication the notification will never occur. Time-out
notification is intended as pure error reporting.

[rte_sws_2710]d If aliveTimeout is present, and the communication is between dif-
ferent partitions of the same ECU, time-out monitoring is disabled. Instead, a timeout
notification of the receiver will occur immediately, when the partition of the sender is
stopped and the last correctly received value shall be provided to the software compo-
nents. c()

Therefore the Software Component shall not rely in its functionality on the time-out
notification, because for local communication the notification will never occur. Time-out
notification is intended as pure error reporting.

[rte_sws_3759]d If the aliveTimeout attribute is 0, no timeout monitoring shall be
performed. c(RTE00069, RTE00147)

[rte_sws_5022]d If a time-out has been detected in inter ECU communication, the
value provided from COM shall be provided to the software components. c(RTE00147)

[rte_sws_8004]d If a signal is received, even if the signal is marked as invalid, the
time-out for the same signal shall be restarted. c(RTE00078, RTE00147)

Note: time-out detection may already be implemented by COM. Nevertheless this is
the expected behavior towards the software components.

The time-out support (called “deadline monitoring” in COM) provided by COM has
some restrictions which have to be respected when using this mechanism. Since the
COM module is configured based on the System Description the restrictions mainly
arise from the data element to I-PDU mapping. This already has to be considered
when developing the System Description and the RTE Generator can only provide
warnings when inconsistencies are detected. Therefore the RTE Generator needs to
have access to the configuration information of COM.

In case time-out is enabled on a data element with update bit, there shall be a
separate time-out monitoring for each data element with an update bit [COM292].

There shall be an I-PDU based time-out for data elements without an update bit
[COM290]. For all data elements without update bits within the same I-PDU, the small-
est configured time-out of the associated data elements is chosen as time-out for the
I-PDU[COM291]. The notification from COM to RTE is performed per data element.

In case one data element coming from COM needs to be distributed to several AU-
TOSAR software-components the AUTOSAR Software Component Template allows to
specify different aliveTimeout values at each Port. But COM does only support one
aliveTimeout value per data element, therefore the smallest aliveTimeout
value shall be used for the notification of the time-out to several software-components.

207 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4.3.1.8 Data Element Invalidation

The Software Component template allows to specify whether a data element, de-
fined in an AUTOSAR Interface, can be invalidated by the sender. The communication
infrastructure shall provide means to set a data element to invalid and also indicate an
invalid data element to the receiving software components. This functionality is called
“data element invalidation”. For an overview see figure 4.43.

[rte_sws_5024]d If the handleInvalid attribute of the InvalidationPolicy
(when present) is set to keep or replace the invalidation support for this dataEle-
ment is enabled on sender side. The actual value used to represent the invalid data
element shall be specified in the Data Semantics part of the data element definition
defined in invalidValue6. c(RTE00078)

[rte_sws_5032]d On receiver side the handleInvalid attribute of the associated
InvalidationPolicy specifies how to handle the reception of the invalid value. c()

[rte_sws_5033]d Data element invalidation is only supported for data ele-
ments with a swImplPolicy different from ’queued’. c()

The API to set a dataElement to invalid shall be provided to the RunnableEntitys
on data element level.

In case an invalidated data element is received a software component can be notified
using the activation of runnable entity. If an invalidated data element is read by the
SW-C the invalid status shall be indicated in the status code of the API.

[rte_sws_8005]d If the initValue of an unqueued data element equals the in-
validValue and handleInvalid is set to keep and the handleNeverReceived
is set to FALSE, the RTE APIs Rte_Read() and Rte_IStatus() shall return
RTE_E_INVALID until first reception of data element. In this case the APIs
Rte_Read() and Rte_IRead() shall provide the invalidValue. c()

[rte_sws_8008]d If the initValue of an unqueued data element equals the in-
validValue and handleInvalid is set to keep and the handleNeverReceived
is not defined, the RTE APIs Rte_Read() and Rte_IStatus() shall return
RTE_E_INVALID until first reception of data element. In this case the APIs
Rte_Read() and Rte_IRead() shall provide the invalidValue. c(RTE00184)

[rte_sws_8009]d If the initValue of an unqueued data element equals the in-
validValue and handleInvalid is set to keep and the handleNeverReceived
is set to TRUE, the RTE APIs Rte_Read() and Rte_IStatus() shall return
RTE_E_NEVER_RECEIVED until first reception of data element. In this case the APIs
Rte_Read() and Rte_IRead() shall provide the initValue. c(RTE00184)

[rte_sws_8007]d The RTE Generator shall reject configurations in which the init-
Value of an unqueued data element equals the invalidValue and handleIn-
valid is set to replace. c()

6When InvalidationPolicy is set to keep or replace but there is no invalidValue specified
it is considered as an invalid configuration.

208 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4.3.1.8.1 Data Element Invalidation in case of Inter-ECU communication

Sender:

If data element invalidation is enabled and the communication is Inter-ECU:

• explicit data transmission: data element invalidation will be performed by COM
(COM needs to be configured properly).

• implicit data transmission: data element invalidation will be performed by RTE.

Receiver:

If data element invalidation is enabled and the communication is Inter-ECU
and:

• if all receiving software components requesting the same value for handleIn-
valid attribute of the InvalidationPolicy associated to one dataElement:
data element invalidation will be performed by COM (COM needs to be configured
properly), see rte_sws_5026, rte_sws_5048.

• if the receiving software components requesting different values for handleIn-
valid attribute of the InvalidationPolicy associated to one dataEle-
ment: data element invalidation will be performed by RTE , see rte_sws_7031,
rte_sws_7032. This can occur in case of 1:n communication where for one
connector a VariableAndParameterInterfaceMapping is applied to two
SenderReceiverInterfaces with different InvalidationPolicys for the
mapped VariableDataPrototype.

[rte_sws_5026]d If a data element has been received invalidated in case of Inter-
ECU communication and the attribute handleInvalid is set to keep for all receiving
software components – the query of the value shall return the value provided by COM
together with an indication of the invalid case. Then the reception of the invalid value
will be handled as an error and the activation of runnable entities can be performed
using the DataReceiveErrorEvent. c()

[rte_sws_5048]d If a data element has been received invalidated in case of Inter-ECU
communication and the attribute handleInvalid is set to replace for all receiving
software components – COM shall be configured to perform the “invalid value substitu-
tion” (ComDataInvalidAction is REPLACE [COM314]) with the initValue. Then
the reception will be handled as if a valid value would have been received (activation
of runnable entities using the DataReceivedEvent). c()

[rte_sws_7031]d If a data element has been invalidated in case of Inter-ECU com-
munication where receiving software components requesting different values for han-
dleInvalid and the attribute handleInvalid is set to keep for an particular r-
port – the query of the value shall return for the r-port the same value as if COM
would have handled the invalidation (copy COM behavior). Then the reception of the

209 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

invalid value will be handled as an error and the activation of runnable entities can be
performed using the DataReceiveErrorEvent. c()

[rte_sws_7032]d If a data element has been received invalidated in case of Inter-ECU
communication where receiving software components requesting different values for
handleInvalid and the attribute handleInvalid is set to replace for an partic-
ular r-port – RTE shall perform the “invalid value substitution” with the initValue
for the r-port. Then the reception will be handled as if a valid value would have been
received (activation of runnable entities using the DataReceivedEvent). c()

4.3.1.8.2 Data Element Invalidation in case of Intra-ECU communication

Sender:

[rte_sws_5025]d If data element invalidation is enabled, and the communica-
tion is Intra-ECU, data element invalidation can be implemented by the RTEc()

In case of implicit data transmission the RTE shall always implement the data element
invalidation and therefore provide an API to set the data element’s value to the invalid
value. The actual invalid value is specified in the SW-C template invalidValue.

Receiver:

[rte_sws_5030]d If a data element has been invalidated in case of Intra-ECU com-
munication and the attribute handleInvalid is set to keep – the query of the value
shall return the same value as if COM would have handled the invalidation (copy COM
behavior). Then the reception of the invalid value will be handled as an error and the ac-
tivation of runnable entities can be performed using the DataReceiveErrorEvent.
c()

[rte_sws_5049]d If a data element has been received invalidated in case of Intra-ECU
communication and the attribute handleInvalid is set to replace – RTE shall perform
the “invalid value substitution” with the initValue. Then the reception will be handled
as if a valid value would have been received (activation of runnable entities using the
DataReceivedEvent). c()

4.3.1.9 Filters

By means of the filter attribute [RTE00121] an additional filter layer can be added
on the receiver side of unqueued S/R-Communication. Value-based filters can be
defined, i.e. only signal values fulfilling certain conditions are made available for the
receiving component. The possible filter algorithms are taken from OSEK COM version
3.0.2. They are listed in the meta model (see [2]. According to the SW-C template [2],
filters are only allowed for signals that are compatible to C language unsigned integer
types (i.e. characters, unsigned integers and enumerations). Thus, filters cannot be

210 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

applied to composite data types like for instance ApplicationRecordDataType or
ApplicationArrayDataType.

[rte_sws_5503]d The RTE shall provide value-based filters on the receiver-side of un-
queued S/R-Communication as specified in the SW-C template [2]. c(RTE00121)

[rte_sws_5500]d For inter-ECU communication, the RTE shall use the filter implemen-
tation of the COM layer [RTE00121]. For intra-ECU and inter-Partition communication,
the RTE can use the filter implementation of COM, but may also implement the filters
itself for efficiency reasons, without using COM. c(RTE00019, RTE00121)

[rte_sws_5501]d The RTE shall support a different filter specification for each data
element in a component’s AUTOSAR interface. c(RTE00121)

4.3.1.10 Buffering

[rte_sws_2515]d The buffering of sender-receiver communication shall be done on the
receiver side. This does not imply that COM does no buffering on the sender side. On
the receiver side, two different approaches are taken for the buffering of ‘data’ and of
‘events’, depending on the value of the software implementation policy. c(RTE00110)

4.3.1.10.1 Last-is-Best-Semantics for ‘data’ Reception

[rte_sws_2516]d On the receiver side, the buffering of ‘data’ (swImplPolicy not
’queued’) shall be realized by the RTE by a single data set for each data element
instance. c(RTE00107)

The use of a single data set provides the required semantics of a single element queue
with overwrite semantics (new data replaces old). Since the RTE is required to ensure
data consistency, the generated RTE should ensure that non-atomic reads and writes
of the data set (e.g. for composite data types) are protected from conflicting concurrent
access. RTE may use lower layers like COM to implement the buffer.

[rte_sws_2517]d The RTE shall initialize this data set rte_sws_2516 with a startup
value depending on the ports attributes and if the general initialization conditions in
rte_sws_7046 are fulfilled. c(RTE00068, RTE00108)

[rte_sws_2518]d Implicit or explicit read access shall always return the last received
data. c(RTE00107)

211 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Requirement rte_sws_2518 applies whether or not there is a DataReceivedEvent
referencing the VariableDataPrototype for which the API is being generated.

[rte_sws_2519]d Explicit read access shall be non blocking in the sense that it does
not wait for new data to arrive. The RTE shall provide mutual exclusion of read and
write accesses to this data, e.g., by ExclusiveAreas. c(RTE00109)

[rte_sws_2520]d When new data is received, the RTE shall silently discard the previ-
ous value of the data, regardless of whether it was read or not. c(RTE00107)

4.3.1.10.2 Queueing for ‘event’ Reception

The application of event semantics implies a state change. Events usually have to be
handled. In many cases, a loss of events can not be tolerated. Hence the swIm-
plPolicy is set to ’queued’ to indicate that the received ‘events’ have to be buffered
in a queue.

[rte_sws_2521]d The RTE shall implement a receive queue for each event-like data
element (swImplPolicy =queued) of a receive port. c(RTE00107)

The queueLength attribute of the QueuedReceiverComSpec referencing the event
assigns a constant length to the receive queue.

[rte_sws_2522]d The events shall be written to the end of the queue and read (con-
suming) from the front of the queue (i.e. the queue is first-in-first-out). c(RTE00107,
RTE00110)

[rte_sws_2523]d If a new event is received when the queue is already filled, the RTE
shall discard the received event and set an error flag. c(RTE00107, RTE00110)

[rte_sws_2524]d The error flag described in rte_sws_2523 shall be reset dur-
ing the next explicit read access on the queue. In this case, the status value
RTE_E_LOST_DATA shall be presented to the application together with the data.
c(RTE00107, RTE00110, RTE00094)

[rte_sws_2525]d If an empty queue is polled, the RTE shall return with a status
RTE_E_NO_DATA to the polling function, (see chap. 5.5.1). c(RTE00107, RTE00110,
RTE00094)

The minimum size of the queue is 1.

[rte_sws_2526]d The RTE generator shall reject a queueLength attribute of an
QueuedReceiverComSpec with a queue length ≤ 0. c(RTE00110, RTE00018)

212 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4.3.1.10.3 Queueing of mode switches

The communication of mode switch notifications is typically event driven. Ac-
cordingly, RTE offers a similar queueing mechanism as for the ’queued’ sender receiver
communication, described above.

[rte_sws_2718]d The RTE shall implement a receive queue for the mode switch
notifications of each mode machine instance. c(RTE00107)

The queueLength attribute of the ModeSwitchSenderComSpec referencing the
mode machine instance, assigns a constant length to the receive queue. In con-
trast to the event communication, for mode switch communication, the length is asso-
ciated with the sender side, the mode manager, because it is unique for the mode
machine instance.

[rte_sws_2719]d The mode switch notification shall be written to the end of
the queue and read (consuming) from the front of the queue (i.e. the queue is first-in-
first-out). c(RTE00107, RTE00110)

[rte_sws_2720]d If a new mode switch notification is received when the
queue is already filled, the RTE shall discard the received notification. c(RTE00107,
RTE00110) In this case, Rte_Switch will return an error, see rte_sws_2675.

[rte_sws_2721]d RTE shall dequeue a mode switch notification, when the
mode switch is completed. c(RTE00107, RTE00110, RTE00094)

The minimum size of the queue is 1.

[rte_sws_2723]d The RTE generator shall reject a queueLength attribute of an Mod-
eSwitchSenderComSpec with a queue length ≤ 0. c(RTE00110, RTE00018)

In case of a queue length of 1, RTE will reject new mode switch notifications during the
mode transition.

4.3.1.11 Operation

4.3.1.11.1 Inter-ECU Mapping

This section describes the mapping from VariableDataPrototypes to COM signals
or COM signal groups for sender-receiver communication. The mapping is described in
the input of the RTE generator, in the DataMapping section of the System Template [8].

If a VariableDataPrototype is mapped to a COM signal or COM signal group but
the communication is local, the RTE generator can use the COM signal/COM signal
group for the transmission or it can use its own direct implementation of the communi-
cation for the transmission.

213 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4.3.1.11.1.1 Primitive Data Types

[rte_sws_4504]d If a data element is a primitive type and the communication is inter-
ECU, the DataMappings element shall contain a mapping of the data element to at least
one COM signal, else the missing data mapping shall be interpreted as an unconnected
port. c(RTE00091)

The mapping defines all aspects of the signal necessary to configure the communica-
tion service, for example, the network signal endianess and the communication bus.
The RTE generator only requires the COM signal handle id since this is necessary for
invoking the COM API.

[rte_sws_4505]d The RTE shall use the ComHandleId of the corresponding Com-
Signal when invoking the COM API for signal. c(RTE00091)

The actual COM handle id has to be gathered from the ECU configuration of the COM
module. The input information ComSignalHandleId is used to establish the link
between the ComSignal of the COM module’s configuration and the corresponding
ISignal of the System Template.

4.3.1.11.1.2 Composite Data Types

When a data element is a composed type the RTE is required to perform more complex
actions to marshall the data [RTE00091] than is the case for primitive data types.

The DataMappings element of the ECU configuration contains (or reference) sufficient
information to allow the data item or operation parameters to be transmitted. The
mapping indicates the COM signals or signal groups to be used when transmitting
a given data item of a given port of a given software component instance within the
composition.

[rte_sws_4506]d If a data element is a composite data type and the communication is
inter-ECU, the DataMappings element shall contain a mapping of the data element to
COM signals such that each element of the composite data type that is a primitive data
type is mapped to a separate COM signal(s), else the missing data mapping shall be
interpreted as an unconnected port. c(RTE00091)

[rte_sws_4507]d If a data element is typed by a composite data type and the commu-
nication is inter-ECU, the DataMappings element shall contain a mapping of the data
element to COM signals such that each element of the composite data type that is itself
a composite data type shall be recursively mapped to a primitive type and hence to a
separate COM signal(s). c(RTE00091)

The above requirements have two key features; firstly, COM is responsible for endian-
ness conversion (if any is required) of primitive types and, secondly, differing structure
member alignment between sender and receiver is irrelevant since the COM signals
are packed into I-PDUs by the COM configuration.

214 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

The DataMappings shall contain sufficient COM signals to map each primitive element7

of the AUTOSAR signal.

[rte_sws_4508]d If a data element is a composite data type and the communication is
inter-ECU, the DataMappings element shall contain at least one COM signal for each
primitive element of the AUTOSAR signal. c(RTE00091)

[rte_sws_2557]d

1. Each signal that is mapped to an element of the same composite data item shall
be mapped to the same signal group.

2. If two signals are not mapped to an element of the same composite data item,
they shall not be mapped to the same signal group.

3. If a signal is not mapped to an element of a composite data item, it shall not be
mapped to a signal group.

c(RTE00091)

[rte_sws_5081]d The RTE shall use the ComHandleId of the corresponding Com-
SignalGroup when invoking the COM API for signal groups. c(RTE00091)

[rte_sws_5173]d The RTE shall use the ComHandleId of the corresponding Com-
GroupSignal when invoking the COM API for shadow signals. c(RTE00091)

The actual COM handle id has to be gathered from the ECU configuration of the COM
module. The input information ComHandleId is used to establish the link between the
ComSignalGroup of the COM module’s configuration and the corresponding ISig-
nalGroup of the System Template.

The input information ComHandleId of shadow signals is used to establish the link be-
tween the ComGroupSignal of the COM module’s configuration and the correspond-
ing ISignal of the System Template.

4.3.1.11.2 Atomicity

[rte_sws_4527]d The RTE is required to treat AUTOSAR signals transmitted using
sender-receiver communication atomically [RTE00073]. To achieve this the “signal
group” mechanisms provided by COM shall be utilized. See rte_sws_2557 for the
mapping. c(RTE00019, RTE00073, RTE00091)

The RTE decomposes the composite data type into single signals as described above
and passes them to the COM module by using the COM API call Com_SendSignal (if
parameter RteUseComShadowSignalApi is FALSE) or Com_UpdateShadowSignal
(if parameter RteUseComShadowSignalApi is TRUE). As this set of single signals
has to be treated as atomic, it is placed in a “signal group”. A signal group has to be
placed always in a single I-PDU. Thus, atomicity is established. When all signals have

7An AUTOSAR signal that is a primitive data type contains exactly one one primitive element whereas
a signal that is a composite data type one or more primitive elements.

215 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

been updated, the RTE initiates transmission of the signal group by using the COM
API call Com_SendSignalGroup.

As would be expected, the receiver side is the exact reverse of the transmission side:
the RTE must first call Com_ReceiveSignalGroup precisely once for the signal group
and then call Com_ReceiveSignal (if parameter RteUseComShadowSignalApi is
FALSE) or Com_ReceiveShadowSignal (if parameter RteUseComShadowSignalApi
is TRUE) to extract the value of each signal within the signal group.

A signal group has the additional property that COM guarantees to inform the receiver
by invoking a call-back about its arrival only after all signals belonging to the signal
group have been unpacked into a shadow buffer.

4.3.1.11.3 Fan-out

Fan-out can be divided into two scenarios; PDU fanout where the same I-PDU is sent
to multiple destinations and signal fan-out where the same signal, i.e. data element is
sent in different I-PDUs to multiple receivers.

For Inter-ECU communication, the RTE does not perform PDU fan-out. Instead, the
RTE invokes Com_SendSignal once for a primitive data element and expects the fan-
out to multiple PDU destinations to occur lower down in the AUTOSAR communication
stack. However, it is necessary for the RTE to support signal fan-out since this cannot
be performed by any lower level layer of the AUTOSAR communication stack.

The data mapping in the System Template[8] is based on the SystemSignal and
SystemSignalGroup. The COM module however uses the ISignal and ISignal-
Group counterparts (ComSignal, ComSignalGroup, ComGroupSignal) to define
the COM API. The RTE Generator needs to identify whether there are several ISig-
nal or ISignalGroup elements defined for the SystemSignal or SystemSignal-
Group and implement the fan-out accordingly. Then the corresponding elements in
the COM ecu configuration (ComSignal, ComSignalGroup, ComGroupSignal) are
required to establish the interaction between Rte and COM.

[rte_sws_6023]d For inter-ECU transmission of a primitive data type, the RTE shall
invoke Com_SendSignal for each ISignal to which the primitive data element is
mapped. c(RTE00019, RTE00028)

For the invocation the ComHandleId from the ComSignal of COM’s ecu configuration
shall be used (see rte_sws_4505).

If the data element is typed by a composite data type, RTE invokes Com_SendSignal (if
parameter RteUseComShadowSignalApi is FALSE) or Com_UpdateShadowSignal
(if parameter RteUseComShadowSignalApi is TRUE) for each primitive element
(ISignal) in the composite data type and each COM signal to which that primitive

216 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

element is mapped, and Com_SendSignalGroup for each ISignalGroup to which
the data element is mapped.

[rte_sws_4526]d For inter-ECU transmission of composite data type, the RTE shall
invoke Com_SendSignal (if parameter RteUseComShadowSignalApi is FALSE) or
Com_UpdateShadowSignal (if parameter RteUseComShadowSignalApi is TRUE)
for each ISignal to which an element in the composite data type is mapped and
Com_SendSignalGroup for each ISignalGroup to which the composite data element
is mapped. c(RTE00019, RTE00028)

For the invocation the ComHandleId from the ComGroupSignal and ComSig-
nalGroup of COM’s ecu configuration shall be used (see rte_sws_5173 and
rte_sws_5081).

For intra-ECU transmission of data elements, the situation is slightly different; the RTE
handles the communication (the lower layers of the AUTOSAR communication stack
are not used) and therefore must ensure that the data elements are routed to all re-
ceivers. For inter-partition communication, RTE may use the IOC.

[rte_sws_6024]d For inter-partition transmission of data elements, the RTE
shall perform the fan-out to each receiver. c(RTE00019, RTE00028)

When the fan-out is performed at the PDU level by the PDU Router, no transmission
acknowledgment are routed to the upper layers. In order to rely on the Rte_Feedback

return values in case of fan-out, the fan-out performed by the RTE at the signal level
should be used.

4.3.1.11.4 Fan-in

When receiving data from multiple senders in inter-ECU communication, either the
RTE on the receiver side has to collect data received in different COM signals or COM
signal groups and pass it to one receiver or the RTE on the sender side has to pro-
vide shared access to a COM signal or COM signal group to multiple senders. The
receiver RTE, which has to handle multiple COM signals or signal groups, is notified
about incoming data for each COM signal or COM signal group separately but has
to ensure data consistency when passing the data to the receiver. The sender RTE,
which has to handle multiple senders sharing COM signals or signal groups, has to
ensure consistent access to the COM API, since COM API calls for the same signal
are not reentrant.

[rte_sws_3760]d If multiple senders use different COM signals or signal groups for
inter-ECU transmission of a data element prototype with swImplPolicy different from
’queued’ to a receiver, the RTE on the receiver side has to pass the last received value
to the receiver component while ensuring data consistency. c(RTE00019, RTE00131)

[rte_sws_3761]d If multiple senders use different COM signals or signal groups for
inter-ECU transmission of a data element prototype with event semantics to a receiver,

217 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

the RTE on the receiver side has to queue all incoming values while ensuring data
consistency. c(RTE00019, RTE00131)

[rte_sws_3762]d If multiple senders share COM signals or signal groups for inter-ECU
transmission of a data element prototype to a receiver, the RTE on the sender side shall
ensure that the COM API for those signals is not invoked concurrently. c(RTE00019,
RTE00131)

218 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4.3.1.11.5 Sequence diagrams of Sender Receiver communication

Figure 4.34 shows a sequence diagram of how Sender Receiver communication for
data transmission and non-blocking reception may be implemented by RTE. The se-
quence diagram also shows the Rte_Read API behavior if an initValue is specified.

Sender

Application

Sender's RTE Sender's COM

Network

Receiver's COM

Receiver's RTE Receiver

application

(3) init value is

stored in the

receiver's OUT

parameter.

(7) The last

received data item

a is stored in the

receiver's OUT

parameter

Inter-ECU communication

Explicit Sender-Receiver communication:

Port name = p

Data element name = a

VariableDataPrototype with a standard swImplPolicy (Data distribution)

The sender VariableDataPrototype is referenced by a VariableAccess in

role dataSendPoint

The receiver VariableDataPrototype is referenced by a VariableAccess

in role dataReceivePointByArgument

(5) RTE receives the data item a from

COM and replace the previous value in

the RTE buffer for data item a.

Note! The callback must block the

RTERead_p_a call.

(1) The initValue is

stored in the RTE

buffer allocated for

data item a.

(4) The received data item is

copied to the COM buffer for

data item a and the notification

callback provided by RTE is

invoked.

(2) The buffer for data

item a is copied to the

receiver's OUT

parameter.

(6) The buffer for data

item a is copied to the

receiver's OUT

parameter.

Rte_Read_p_a

RTE_E_OK

Rte_Write_p_a

Com_SendSignal

E_OK

RTE_E_OK

Rte_COMCbk_<sn>

Com_ReceiveSignal

E_OK

Rte_Read_p_a

RTE_E_OK

Figure 4.34: Sender Receiver communication with data semantics and dataReceive-
PointByArgument as reception mechanism

219 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Figure 4.35 shows a sequence diagram of how Sender Receiver communication for
event transmission and non-blocking reception may be implemented by RTE. The se-
quence diagram shows the Rte_Receive API behavior when the queue is empty.

Sender

Application

Sender's RTE Sender's COM

Netwok

Receiver's COM

Receiver's RTE Receiver

application

(2) The RTE - queue for event

p_e is empty =>

RTE_E_NO_DATA is returned

to Receiver application.

Inter-ECU communication

Explicit Sender-Receiver communication:

Port name = p

Data element name = e

VariableDataPrototype with a queued swImplPolicy (Event distribution)

The sender VariableDataPrototype is referenced by a VariableAccess in role dataSendPoint

The receiver VariableDataPrototype is referenced by a VariableAccess in role dataReceivePointByArgument

No WaitPoint is referencing the DataReceivedEvent that references the VariableDataPrototype (non-blocking

reception)

(6) The received

event item a is

stored in the

receiver's OUT

parameter

(1) The RTE -

queue for event

p_e is initialized

(flushed).

(4) RTE receives the

event item e from COM

and puts it into the RTE -

queue for event e.

(3) The receiver's COM

invokes the callback

function provided by RTE.

(5) RTE fetches an event

from the event e queue

and copies it to the

Receiver's OUT

parameter.

Rte_Receive_p_e

RTE_E_NO_DATA

Rte_Send_p_e

Com_SendSignal

E_OK

RTE_E_OK

Rte_COMCbk_<sn>

Com_ReceiveSignal

E_OK

Rte_Receive_p_e

RTE_E_OK

Figure 4.35: Sender Receiver communication with event semantics and dataReceive-
PointByArgument as reception mechanism

220 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Figure 4.36 shows a sequence diagram of how Sender Receiver communication for
event transmission and activation of runnable entity on the receiver side may be imple-
mented by RTE.

Sender

Application

Sender's RTE Sender's COM

Netwok

Receiver's COM

Receiver's RTE Receiver

runnable

(4) RTE fetches an event

from the event e queue

and calls the receiver's

runnable. (5) The task is

completed

(3) The AUTOSAR

OS task that wil l

execute the receiver's

runnable is started.

(1) The receiver's COM

invokes the callback

function provided by RTE.

Inter-ECU communication

Port name = p

Data element name = e

VariableDataPrototype with a queued swImplPolicy (Event distribution)

The sender VariableDataPrototype is referenced by a VariableAccess in

role dataSendPoint

The receiver VariableDataPrototype is referenced by a

DataReceivedEvent which in turn references the receiver

RunnableEntity.

(2) RTE receives the

event item e from COM

and puts it into the RTE

- queue for event e.

Rte_Send_p_e

Com_SendSignal

E_OK

RTE_E_OK

Rte_COMCbk_<sn>

Com_ReceiveSignal

E_OK

Activate an OSEK Task

ReceiversRunnable

Figure 4.36: Sender Receiver communication with event semantics and activation of
runnable entity as reception mechanism

4.3.1.12 “Never received status” for Data Element

The Software Component template allows specifying whether an unqueued data, de-
fined in an AUTOSAR Interface, has been updated since system start (or partition

221 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

restart) or not. This additional optional status establishes the possibility to check
whether a data element has been changed since system start (or partition restart).

[rte_sws_7381]d On receiver side the handleNeverReceived attribute of the Non-
queuedReceiverComSpec shall specify the handling of the never received status.
c(RTE00184)

[rte_sws_7382]d The initial status of the data elements with the attribute handleN-
everReceived set to TRUE shall be RTE_E_NEVER_RECEIVED. c(RTE00184)

[rte_sws_7383]d The initial status of the data elements with the attribute han-
dleNeverReceived set to TRUE shall be cleared when the first reception occurs.
c(RTE00184)

[rte_sws_7645]d The status of data elements shall be reset on the receiver side to
RTE_E_NEVER_RECEIVED when the receiver’s partition is restarted. c(RTE00184,
RTE00224)

4.3.1.13 “Update flag” for Data Element

The Software Component template allows specifying whether an unqueued data, de-
fined in an AUTOSAR Interface, has been updated since last read or not. This addi-
tional optional status establishes the possibility to check, whether a data element has
been updated since last read.

[rte_sws_7385]d On receiver side the “enableUpdate” attribute of the Nonqueue-
dReceiverComSpec shall activate the handling of the update flag. c(RTE00179)

[rte_sws_7386]d The update flag of the data elements configured with the
“enableUpdate” attribute shall be set by receiving new data from COM or from a
local software-conponent. c(RTE00179)

[rte_sws_7387]d The update flag shall be cleared after each read by Rte_Read or
Rte_DRead of the data element. c(RTE00179)

[rte_sws_7689]d The update flag shall be cleared when the RTE is started or when
the partition of the software-component is restarted. c(RTE00179)

The update flag can be queried by the Rte_IsUpdated API, see 5.6.34.

4.3.1.14 Dynamic data type

Dynamic data are data whose length varies at runtime.

This includes:

• arrays with variable number of elements

• structures including arrays with variable number of elements

222 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

This excludes:

• structures including variable number of elements

The length of the dynamic data is accessed thanks to the optional parameter
<length> of the RTE APIs for communication. See chapter 5 for more information.

In case of inter-ECU communication, dynamic data are mapped to dynamic signals
and received/transmitted through the TP by the COM stack.

With the current release of SWS_COM, COM limits the dynamic signals to the Com-
SignalType UINT_8DYN (see the requirement COM569).

In order to respect the VFB concept the capability of inter-ECU and intra-ECU commu-
nication should be equal. So it has been decided to extend these limitation from COM
also to the intra-ECU communication. As a consequence the only one dynamic data
type supported by the RTE is the type uint8[n] whatever the communication is intra or
inter-ECU. See rte_sws_7810.

4.3.1.15 Inter-ECU communication through TP

Inter-ECU communication can be configured in COM to be supported by the TP. This
is especially necessary if:

• Size of the signal exceed the size of the L-PDU (large signals)

• Size of the signal group exceed the size of the L-PDU

• Size of the signal varies at runtime (dynamic signals)

In the current release of SWS_COM, COM APIs to access signal values might return
the error code COM_BUSY for the signals mapped to N-PDU. This error code indicates
that the access to the signal value has failed (internally rejected by COM) and should
be retried later. This situation might only be possible when the transmission or the
reception of the corresponding PDU is in progress in COM at the time the access to
the signal value is requested.

This is a problem for the handling of data with data semantic (last is best behavior)
because:

• "COM_BUSY like" errors are not compatible with real time systems that should
have predictable response time.

• Forwarding this error code to the application implies that every applications
should handle it (implement a retry) even if it will never comes (data is not be
mapped to N-PDU).

• Error code can not be forwarded to the application in case of direct read or implicit
write.

223 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

This is not a problem for the handling of data with event semantic (last is best behavior)
because:

• The COM_BUSY error should not be possible during the execution of COM call-
backs (Rx indication and Tx confirmation) that can be used by the RTE to handle
the queue.

• Data are queued internally by RTE and accessible at any time by the application.

Note: First point is especially true if the ComIPduSignalProcessing is configured
as IMMEDIATE. But if the ComIPduSignalProcessing is configured as DEFFERED
and 2 events are closely received, it is possible that at the time the RTE tries to access
the corresponding COM signal the second event reception has already started. In this
case the RTE will received COM_BUSY and the event will be lost but it is more a
problem of configuration than a limitation from COM.

As a consequence it has been decided to limit the data mapped to N-PDU to the event
semantic (queued behavior). See rte_sws_7811.

Note: As the data mapping is not mandatory for the RTE contract phase, it is possible
that a configuration is accepted at contract phase but rejected at generation phase
when the data mapping is known.

Dynamic data are always mapped to N-PDU in case of inter-ECU communication. So
in order to avoid such situation (late rejection at generation phase) and in order to
respect the VFB concept (intra and inter-ECU should be equal) it has been decided
to extend this limitation to every dynamic data whatever the communication is intra or
inter-ECU. See rte_sws_7812.

4.3.1.16 Inter-ECU communication of arrays of bytes

Generally the communication of arrays in the case of inter-ECU communication must
make use of the signal group mechanisms to send an array to COM. This implies
sending each array element to a shadow buffer in COM (with Com_SendSignal() API, if
parameter RteUseComShadowSignalApi is FALSE or Com_UpdateShadowSignal()
API, if parameter RteUseComShadowSignalApi is TRUE), and in the end send the
signal group (with Com_SendSignalGroup() API).

An exception to this general rule is for arrays of bytes. In this case, the RTE shall use
the native COM interface to send directly the data.

[rte_sws_7408]d The RTE shall use the Com_SendSignal or Com_ReceiveSignal

APIs to send or receive fixed-length arrays of bytes. c(RTE00231)

[rte_sws_7817]d The RTE shall use the Com_SendDynSignal or
Com_ReceiveDynSignal APIs to send or receive variable-length arrays of bytes.
c(RTE00231)

224 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4.3.1.17 Handling of acknowledgment events

As a general rule, the acknowledgment events DataWriteCompletedEvent and
DataSendCompletedEvent shall be raised immediately after the sending to all re-
ceivers has been performed and in case of Inter-ECU communication all acknowledg-
ments from COM have been received. As part of the implementation detailed rules for
the following communication scenarios have to be considered:

Intra-Partition communication

[rte_sws_8017]d For intra-partition communication with implicit dataWriteAccess
the DataWriteCompletedEvent shall be fired if and only if a task terminates and
the write-back copy actions to the global RTE-buffer are completed. c(RTE00122)

[rte_sws_8043]d For intra-partition communication with incoherent implicit
dataWriteAccess no write-back copy actions to a global RTE-buffer will be
performed, if the involved runnables are all running in one preemption area. In this
case the DataWriteCompletedEvent shall be fired after the termination of the last
sending runnable in the sending task. c(RTE00122)

[rte_sws_8018]d For intra-partition communication with explicit dataSendPoint the
DataSendCompletedEvent shall be fired if and only if the sending to all receivers
has been performed. c(RTE00122)

Inter-Partition communication

[rte_sws_8020]d For inter-partition communication with implicit dataWriteAccess
the DataWriteCompletedEvent shall be fired if and only if a task terminates and
the write-back copy actions to the global RTE-buffer are completed. In addition the
execution of the data write operations at the data receiver partitions must have taken
place. Thereby the return status of the IOC for the different write operations can be
neglected. c(RTE00122)

[rte_sws_8044]d For inter-partition communication with incoherent implicit
dataWriteAccess no write-back copy actions to a global RTE-buffer will be
performed, if the involved runnables are all running in one preemption area. In this
case the DataWriteCompletedEvent shall be fired after the termination of the
last sending runnable in the sending task and after the execution of the data write
operations at the data receiver partitions have taken place. Thereby the return status
of the IOC for the different write operations can be neglected. c(RTE00122)

[rte_sws_8021]d For inter-partition communication with explicit dataSendPoint the
DataSendCompletedEvent shall be fired if and only if the sending to all receivers
has been performed and the execution of the data write operations at the data receiver
partitions have taken place. Thereby the return status of the IOC for the different write
operations can be neglected. c(RTE00122)

Inter-ECU communication

[rte_sws_8022]d For inter-ECU communication with implicit dataWriteAccess the
DataWriteCompletedEvent shall be fired if and only if a task terminates and the

225 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

write-back copy actions to the global RTE-buffer are completed. In addition the trans-
mission acknowledgment from COM must be complete, i.e. the acknowledgment has
been received and in case of RTE-fanout all acknowledgments have been received.
c(RTE00122)

[rte_sws_8045]d For inter-ECU communication with incoherent implicit
dataWriteAccess no write-back copy actions to a global RTE-buffer will be
performed, if the involved runnables are all running in one preemption area. In this
case the DataWriteCompletedEvent shall be fired after the termination of the last
sending runnable in the sending task and after the transmission acknowledgment
from COM is complete, i.e. the acknowledgment has been received and in case of
RTE-fanout all acknowledgments have been received. c(RTE00122)

[rte_sws_8023]d For inter-ECU communication with explicit dataSendPoint the
DataSendCompletedEvent shall be fired if and only if the sending to all receivers
has been performed and the transmission acknowledgment from COM is complete,
i.e. the acknowledgment has been received and in case of RTE-fanout all acknowledg-
ments have been received. c(RTE00122)

226 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4.3.2 Client-Server

4.3.2.1 Introduction

Client-server communication involves two entities, the client which is the requirer (or
user) of a service and the server that provides the service.

[rte_sws_5110]d A client is defined as one ClientServerOperation in one
RPortPrototype of one Software Component instance. c(RTE00029)

For the definition of the client in rte_sws_5110 neither the number of ServerCall-
Points nor RunnableEntity accesses to the ServerCallPoint are relevant. A
Software Component instance can appear as several clients to the same server if it
defines ServerCallPoints for several PortPrototypes of the same PortInter-
face’s ClientServerOperation.

[rte_sws_5163]d A server is defined as one RunnableEntity which is the target of
an OperationInvokedEvent. Serialization is on activation of RunnableEntity.
c(RTE00029)

The client initiates the communication, requesting that the server performs a service,
transferring a parameter set if necessary. The server, in the form of the RTE, waits for
incoming communication requests from a client, performs the requested service and
dispatches a response to the client’s request. So, the direction of initiation is used to
categorize whether a AUTOSAR software-component is a client or a server.

A single component can be both a client and a server depending on the software
realization.

The invocation of a server is performed by the RTE itself when a request is made by
a client. The invocation occurs synchronously with respect to the RTE (typically via a
function call) however the client’s invocation can be either synchronous (wait for server
to complete) or asynchronous with respect to the server.

Note: servers which have an asynchronous operation (i.e. they accept a request an
another provide a feedback by invoking a server of the caller) should be avoided as
the RTE does not know the link between these 2 client-server communications. In
particular, the server should have no OUT (or INOUT) parameters because the RTE
cannot perform the copy of the result in the caller’s environment when the request was
processed.

[rte_sws_6019]d The only mechanism through which a server can be invoked is
through a client-server invocation request from a client. c(RTE00029)

The above requirement means that direct invocation of the function implementing the
server outside the scope of the RTE is not permitted.

A server has a dedicated provide port and a client has a dedicated require port. To
be able to connect a client and a server, both ports must be categorized by the same
interface.

227 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

The client can be blocked (synchronous communication) respectively non-blocked
(asynchronous communication) after the service request is initiated until the response
of the server is received.

A server implemented by a RunnableEntity with attribute canBeInvokedConcurrently
set to FALSE is not allowed to be invoked concurrently and since a server can have
one or more clients the server may have to handle concurrent service calls (n:1 com-
munication) the RTE must ensure that concurrent calls do not interfere.

[rte_sws_4515]d It is the responsibility of the RTE to ensure that serialization8 of
the operation is enforced when the server runnable attribute canBeInvokedConcur-
rently is FALSE. c(RTE00019, RTE00033)

Note that the same server may be called using both synchronous and asynchronous
communication.

Note also that even when canBeInvokedConcurrently is FALSE, an Atomic-
SwComponentType might be instantiated multiple times. In this case, the implemen-
tation of the RunnableEntity can still be invoked concurrently from several tasks.
However, there will be no concurrent invocations of the implementation with the same
instance handle.

[rte_sws_4516]d The RTE’s implementation of the client-server communication has to
ensure that a service result is dispatched to the correct client if more than one client
uses a service. c(RTE00019, RTE00080)

The result of the client/server operation can be collected using “wake up of wait point”,
“explicit data read access” or “activation of runnable entity”.

[rte_sws_7409]d The RTE generator shall support the optimization of a client-server
call to a direct function call without interaction with the RTE or the communication
services, at least when the following conditions are true:

• the server runnable’s property canBeInvokedConcurrently is set to TRUE

• the client and server execute in the same partition, i.e. intra-partition
Client-Server communication

• the ServerCallPoint is Synchronous

• the OperationInvokedEvent is not mapped to an OsTask

c()
8Serialization ensures at most one thread of control is executing an instance of a runnable entity at

any one time. An AUTOSAR software-component can have multiple instances (and therefore a runnable
entity can also have multiple instances). Each instance represents a different server and can be exe-
cuted in parallel by different threads of control thus serialization only applies to an individual instance of
a runnable entity – multiple runnable entities within the same component instance may also be executed
in parallel.

228 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Note: In case the conditions in rte_sws_4522 are fulfilled the RTE Generator may im-
plement a client-server call with a direct function call, even when the server runnable’s
property canBeInvokedConcurrently is set to FALSE.

Since the communication occurs conceptually via the RTE (it is initiated via an RTE API
call) the optimization does not violate the requirement that servers are only invoked via
client-server requests (see Sect. 5.6.13).

[rte_sws_7662]d The RTE Generator shall reject configurations where an
ClientServerOperation has an ArgumentDataPrototype whose Implemen-
tationDataType is of category DATA_REFERENCE and whose direction is OUT
or INOUT. c(RTE00018, RTE00019)

4.3.2.2 Multiplicity

Client-server interfaces contain two dimensions of multiplicity; multiple clients invoking
a single server and multiple operations within a client-server interface.

4.3.2.2.1 Multiple Clients Single Server

Client-server communication involves an AUTOSAR software-component invoking a
defined “server” operation in another AUTOSAR software-component which may or
may not return a reply.

[rte_sws_4519]d The RTE shall support multiple clients invoking the same server op-
eration (’n:1’ communication where n ≥ 1). c(RTE00029)

4.3.2.2.2 Multiple operations

A client-server interface contains one or more operations. A port of a AUTOSAR
software-component that requires an AUTOSAR client-server interface to the com-
ponent can independently invoke any of the operations defined in the interface
[RTE00089].

[rte_sws_4517]d The RTE API shall support independent access to operations in a
client-server interface. c(RTE00029)

Example 4.5

Consider a client-server interface that has two operations, op1 and op2 and that an
AUTOSAR software-component definition requires a port typed by the interface. As
a result, the RTE generator will create two API calls; one to invoke op1 and another
to invoke op2. The calls can invoke the server operations either synchronously or
asynchronously depending on the configuration.

229 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Recall that each data element in a sender-receiver interface is transmitted indepen-
dently (see Section 4.3.1.3) and that the coherent transmission of multiple data items
is achieved through combining multiple items into a single composite data type. The
transmission of the parameters of an operation in a client-server interface is simi-
lar to a record since the RTE guarantees that all parameters are handled atomically
[RTE00073].

[rte_sws_4518]d The RTE shall treat the parameters (and results) of a client-server
operation atomically. c(RTE00033)

However, unlike a sender-receiver interface, there is no facility to combine multiple
client-server operations so that they are invoked as a group.

4.3.2.2.3 Single Client Multiple Server

The RTE is not required to support multiple server operations invoked by a single client
component request (’1:n’ communication where n > 1).

4.3.2.2.4 Serialization

Each client can invoke the server simultaneously and therefore the RTE is required to
support multiple requests of servers. If the server requires serialization, the RTE has
to ensure it.

[rte_sws_4520]d The RTE shall support simultaneous invocation requests of a server
operation. c(RTE00019, RTE00080)

[rte_sws_4522]d The RTE shall ensure that the RunnableEntity implementing a
server operation has completed the processing of a request before it begins process-
ing the next request, if serialization is required by the server operation, i.e canBeIn-
vokedConcurrently attribute of the server is set to FALSE and client RunnableEn-
titys to OsTask mapping (RteEventToTaskMapping) may lead to concurrent in-
vocations of the server. c(RTE00019, RTE00033)

When this requirement is met the operation is said to be “serialized”. A serialized
server only accepts and processes requests atomically and thus avoids the potential
for conflicting concurrent access.

Client requests that cannot be serviced immediately due to a server operation being
“busy” are required to be queued pending processing. The presence and depth of the
queue is configurable.

If the RunnableEntity implementing the server operation is reentrant , i.e. can-
BeInvokedConcurrently attribute set to TRUE, no serialization is necessary. This
allows to implement invocations of reentrant server operations as direct function calls
without involving the RTE.

230 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

But even when the canBeInvokedConcurrently attribute is set to FALSE the
RTE Generator still can utilize a direct function call, if the mapping of client the
RunnableEntitys to OsTasks will not imply a concurrent execution of the server.

[rte_sws_8001]d If two operations are mapped to the same RunnableEntity, and
rte_sws_4522 requires a serialization, then the operation invoked events shall be
mapped to same task and they shall have the same position in task. Otherwise the
RTE Generator shall reject configuration. c(RTE00019, RTE00033)

[rte_sws_8002]d If two operations are mapped to the same RunnableEntity, and
rte_sws_4522 requires a serialization, then a single queue is implemented for invoca-
tions coming from any of the operations. c(RTE00019, RTE00033)

4.3.2.3 Communication Time-out

The ServerCallPoint allows to specify a timeout so that the client can be notified that
the server is not responding and can react accordingly. If the client invokes the server
synchronously, the RTE API call to invoke the server reports the timeout. If the client
invokes the server asynchronously, the timeout notification is passed to the client by
the RTE as a return value of the API call that collects the result of the server operation.

[rte_sws_3763]d The RTE shall ensure that timeout monitoring is performed for client-
server communication, regardless of the receive mode for the result. c(RTE00069,
RTE00029)

If the server is invoked asynchronously and a WaitPoint is specified to collect the
result, two timeout values have to be specified, one for the ServerCallPoint and one for
the WaitPoint.

[rte_sws_3764]d If different timeout values are specified for the Asyn-
chronousServerCallPoint and for the WaitPoint associated with the Asyn-
chronousServerCallReturnsEvent for this AsynchronousServerCallPoint,
the configuration shall be rejected by the RTE generator. c(RTE00018)

In asynchronous client-server communication the AsynchronousServerCall-
ReturnsEvent associated with the AsynchronousServerCallPoint for an
ClientServerOperation shall indicate that the server communication is finished
or that a timeout occurred. The status information about the success of the server op-
eration shall be available as the return value of the RTE API call generated to collect
the result.

[rte_sws_3765]d For each asynchronous invocation of an operation prototype only
one AsynchronousServerCallReturnsEvent shall be passed to the client com-
ponent by the RTE. The AsynchronousServerCallReturnsEvent shall indicate

231 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

either that the transmission was successful or that the transmission was not success-
ful. c(RTE00079)

[rte_sws_3766]d The status information about the success or failure of the asyn-
chronous server invocation shall be available as the return value of the RTE API call to
retrieve the result. c(RTE00079)

After a timeout was detected, no result shall be passed to the client.

[rte_sws_3770]d If a timeout was detected by the RTE, no result shall be passed back
to the client. c(RTE00069, RTE00029)

Since an asynchronous client can have only one outstanding server invocation at a
time, the RTE has to monitor when the server can be safely invoked again. In normal
operation, the server can be invoked again when the result of the previous invocation
was collected by the client.

[rte_sws_3773]d If a server is invoked asynchronously and no timeout occurred, the
RTE shall ensure that the server can be invoked again by the same client, after the
result was successfully passed to the client. c(RTE00069)

In intra-partition client-server communication, the RTE can determine whether the
server runnable is still running or not.

[rte_sws_3771]d If a timeout was detected in asynchronous intra-partition client-server
communication, the RTE shall ensure that the server is not invoked again by the same
client until the server runnable has terminated. c(RTE00069, RTE00079)

In inter-ECU communication, the client RTE has no knowledge about the actual status
of the server. The response of the server could have been lost because of a commu-
nication error or because the server itself did not respond. Since the client-side RTE
cannot distinguish the two cases, the client must be able to invoke the server again
after a timeout expired. As partitions in one ECU are decoupled in a similar way like
separate ECUs, and can be restarted separately, client server communication should
behave similar for inter-ECU and intra-partition communication.

[rte_sws_3772]d If a timeout was detected in asynchronous inter-ECU or inter-
partition client-server communication, the RTE shall ensure that the server can be
invoked again by the same client after the timeout notification was passed to the client.
c(RTE00069, RTE00079)

232 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Note that this might lead to client and server running out of sync, i.e. the response of
the server belongs to the previous, timed-out invocation of the client. The application
has to handle the synchronization of client and server after a timeout occurred.

[rte_sws_3767]d If the timeout value of the ServerCallPoint is 0, no timeout monitoring
shall be performed. c(RTE00069, RTE00029)

[rte_sws_3768]d If the canBeInvokedConcurrently attribute of the server runnable is
set to TRUE, no timeout monitoring shall be performed if the RTE API call to invoke the
server is implemented as a direct function call. c(RTE00069, RTE00029)

[rte_sws_2709]d In case of inter partition communication, if the partition of the server
is stopped or restarting at the invocation time of the server call or during the operation
of the server call, the client shall immediately receive a timeout. c()

Note: In case of inter-ECU or interpartition client-server communication it is recom-
mended to always specify a timeout>0. Otherwise in case of a full server queue the
client would wait for the server response infinitely.

4.3.2.4 Port-Defined argument values

Port-defined argument values exist in order to support interaction between Application
Software Components and Basic Software Modules.

Several Basic Software Modules use an integer identifier to represent an object that
should be acted upon. For instance, the NVRAM Manager uses an integer identifier
to represent the NVRAM block to access. This identifier is not known to the client,
as the client must be location independent, and the NVRAM block to access for a
given application software component cannot be identified until components have been
mapped onto ECUs.

There is therefore a mismatch between the information available to the client and that
required by the server. Port-defined argument values bridge that gap.

The required port-defined arguments (the fact that they are required, their data type
and their values) are specified within the input to the RTE generator.

[rte_sws_1360]d When invoking the runnable entity specified for an OperationIn-
vokedEvent, the RTE must include the port-defined argument values between the in-
stance handle (if it is included) and the operation-specific parameters, in the order they
are given in the template. c(RTE00152)

Requirement rte_sws_1360 means that a client will make a request for an operation
on a require (Client-Server) port including only its instance handle (if required) and the
explicit operation parameters, yet the server will be passed the implicit parameters as
it requires.

233 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Note that the values of implicit parameters are constant for a particular server runnable
entity; it is therefore expected that using port-defined argument values imposes no
RAM overhead (beyond any extra stack required to store the additional parameters).

4.3.2.5 Buffering

Client-Server-Communication is a two-way-communication. A request is sent from the
client to the server and a response is sent back.

Unless a server call is implemented as direct function call, the RTE shall store or buffer
the communication on the corresponding receiving sides, requests on server side and
responses on client side, respectively:

• [rte_sws_2527]d Unless a server call is implemented as a direct function call,
the RTE shall buffer a request on the server side in a first-in-first-out queue as
described in chapter 4.3.1.10.2 for queued data elements.

Note: The data that shall be buffered is implementation specific but at least RTE
should store the IN parameters, the IN/OUT parameters and a client identifer.
c(RTE00019, RTE00033, RTE00110)

• [rte_sws_2528]d Unless a server call is implemented as a direct function call,
RTE shall keep the response on the client side in a queue with queue length 1.

Note: The data that shall be buffered is implementation specific but at least RTE
should store the IN/OUT parameters, the OUT parameters and the error code.
c(RTE00019, RTE00033)

For the server side, the ServerComSpec.queueLength attribute specifies the length
of the queue.

[rte_sws_2529]d The RTE generator shall reject a queueLength attribute of a
ServerComSpec with a queue length ≤ 0. c(RTE00033, RTE00110, RTE00018)

[rte_sws_2530]dThe RTE shall use the queue of requests to serialise access to a
server. c(RTE00033, RTE00110)

A buffer overflow of the server is not reported to the client. The client will receive a time
out.

[rte_sws_7008]d If a server call is implemented by direct function call the RTE shall
not create any copies for parameters passed by reference. Therefore, it is the respon-
sibility of the application to provide consistency mechanisms for referenced parameters
if necessary. c(RTE00033, RTE00110)

234 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4.3.2.6 Inter-ECU and Inter-Partition Response to Request Mapping

RTE is responsible to map a response to the corresponding request. With this map-
ping, RTE can activate or resume the corresponding runnable and provide the re-
sponse to the correct client. The following situations can be distinguished:

• Mapping of a response to the correct request within one ECU. In general, this is
solved already by the call stack. The details are implementation specific and will
not be discussed in this document.

• Mapping of a response coming from a different partition or a different ECU.

The problem of request to response mapping in inter-ECU and inter-Partition commu-
nication can be split into:

• Mapping of a response to the correct client. This is discussed in 4.3.2.6.1.

• Mapping of a response to the correct request within of one client. This is dis-
cussed in 4.3.2.6.2.

The general approach for the inter-ECU and inter-Partition request response mapping
is to use transaction handles.

[rte_sws_2649]d In case of inter-ECU client-server communication, the transaction
handle shall contain two optional parts of unsigned integer type with configurable size,

• the client identifier

• and a sequence counter.

c(RTE00082)

The presence of an part of the transaction handle is an input to the RTE Generator and
up to the system design.

[rte_sws_7346]d In case of inter-Partition client-server communication, no response
shall be communicated by the RTE to the client if the client is part of a partition that
was restarted since the request was sent. c(RTE00082)

rte_sws_7346 could be implemented with a transaction handle that contains a se-
quence counter.

[rte_sws_2651]d In case of inter-ECU client-server communication, the optional trans-
action handle shall be used for the identification of client server transactions communi-
cated via COM. c(RTE00082)

[rte_sws_2652]d If configured: in case of inter-ECU client-server communication, the
transaction handle shall be bundled with the parameters of a request or response in
the same SystemSignalGroup. c(RTE00082)

[rte_sws_2653]d The RTE on the server side shall return the transaction handle of the
request without modification together with the response. c(RTE00082)

235 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Since there is always at most one open request per client (see rte_sws_2658), the
transaction handle can be kept within the RTE and does not have to be exposed to the
SW-C.

4.3.2.6.1 Client Identifier

In case of a server on one ECU with clients on other ECUs, the inter-ECU client-
server communication shall use different unique SystemSignals and SystemSig-
nalGroups for each client-ECU to allow the identification of the client-ECU associated
with each client call.

[rte_sws_2579]d The RTE Generator shall reject configurations where there is inter-
ECU client-server communication from several client-ECUs using the same System-
Signals and/or SystemSignalGroups. c(RTE00029, RTE00082, RTE00018)

With this mechanism, the server-side RTE must handle the fan-in. This is done in the
same way as for sender-receiver communication.

However it is allowed to have several clients in one client-ECU communicating using
inter-ECU client-server communication with a server on a different ECU, if the client
identifier is used to distinguish the different clients.

[rte_sws_5111]d The RTE Generator shall reject configurations where there is inter-
ECU client-server communication from several clients on the same client-ECU and no
client identifiers are configured for all of these inter-ECU client-server communications.
c(RTE00018)

[rte_sws_3769]d If multiple clients have access to one server, the RTE on the server
side has to queue all incoming server invocations while ensuring data consistency.
c(RTE00019, RTE00029)

[rte_sws_5066]d The data type used to hold the client identifier shall be derived from
the system template’s [8] length attribute of the corresponding SystemSignal ref-
erenced by the ClientIdMapping. c(RTE00082)

The structure is shown in figure 4.37.

4.3.2.6.2 SequenceCounter

The purpose of sequence counters is to map a response to the correct request of a
known client.

[rte_sws_2658]d In case of inter-ECU and inter-Partition communication, RTE shall
allow only one request per client and server operation at any time. c(RTE00079)

rte_sws_2658 does not apply to intra-partition communication because there can be
several execution-instances.

236 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

rte_sws_2658 implies under normal operation that a response can be mapped to the
previous request. But, when a request or response is lost or delayed, this order can get
out of phase. To allow a recovery from lost or delayed signals, a sequence counter is
used. The sequence counter can also be used to detect stale responses after a restart
of the client side RTE and SW-C.

[rte_sws_2654]d RTE shall support a sequence counter for the inter ECU client server
connection where configured in the input information. c(RTE00082)

[rte_sws_2655]d RTE shall initialize all sequence counters with zero during
Rte_Start. c(RTE00082)

[rte_sws_2656]d RTE shall increase each sequence counter in a cyclic manner after
a client server operation has finished successfully or with a timeout. c(RTE00082)

[rte_sws_2657]d RTE shall ignore incoming responses that do not match the se-
quence counter. c(RTE00082)

[rte_sws_5067]d The data type used to hold the sequence counter shall be derived
from the system template’s [8] length attribute of the corresponding SystemSignal
referenced by the SequenceCounterMapping. c(RTE00082)

The structure is shown in figure 4.37.

4.3.2.7 Operation

4.3.2.7.1 Inter-ECU Mapping

The client server protocol defines how a client call and the server response are mapped
onto the communication infrastructure of AUTOSAR is case of inter-ECU communica-
tion. This allows RTE implementations from different vendors to interpret the client
server communication in the same way.

The AUTOSAR System Template [8] does specify a protocol for the client server com-
munication in AUTOSAR. A short overview of the major elements is provided in this
section.

The structure in figure 4.37 describes the client server protocol as defined in the AU-
TOSAR System Template [8].

237 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

DataMapping

ClientServerToSignalGroupMapping

ARElement

CoreCommunication::
SystemSignalGroup

ClientServerPrimitiveTypeMapping

ARElement

CoreCommunication::SystemSignal

+ dynamicLength: Boolean

ClientServerCompositeTypeMapping

ClientIdMapping

SequenceCounterMapping

ApplicationErrorMapping

EmptySignalMapping

+systemSignal 1+systemSignal 1 +systemSignal 1+systemSignal 1+systemSignal * +systemSignal 1

+responseGroup 1 +requestGroup 0..1 +emptySignal 0..1

+applicationError 0..1

+sequenceCounter 0..1

+clientID 0..1

+compositeTypeMapping *

+primitiveTypeMapping *

Figure 4.37: Standardized client server protocol

For each ClientServerOperation defined at a PortPrototype of one Software
Component instance one ClientServerToSignalGroupMapping object has to be
defined representing the server call and the response (with references to the request
and response SystemSignalGroups) of this specific client.

[rte_sws_5054]d The RTE Generator shall reject an input configuration where for any
configured inter-ECU client-server communication (comprised of the ClientServer-
Operation of a PortPrototype of one Software Component instance) there is not
one and only one ClientServerToSignalGroupMapping defined. c(RTE00082,
RTE00018)

[rte_sws_5055]d The RTE Generator shall use the ClientServerToSignal-
GroupMapping information to establish the configuration with the lower layers of AU-
TOSAR (e.g. COM). c(RTE00082)

[rte_sws_6028]d The arguments, application errors, client identifier, and sequence
counter of an operation shall be mapped to two dedicated composite data items; one
for the request and one for the response. c(RTE00082)

Each ClientServerToSignalGroupMapping references a unique SystemSig-
nalGroup which holds all the signals related to the call or response.

238 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

For each ArgumentDataPrototype either a ClientServerPrimitiveTypeMap-
ping or a ClientServerCompositeTypeMapping is defined which maps the op-
eration arguments to SystemSignal elements.

[rte_sws_5056]d If a ClientIdMapping element is configured it references the Sys-
temSignal which holds the client identifier (see section 4.3.2.6.1). The RTE Genera-
tor shall utilize this SystemSignal as the client identifier. c(RTE00082)

[rte_sws_5057]d If a SequenceCounterMapping element is configured it refer-
ences the SystemSignal which holds the Sequence Counter (see section 4.3.2.6.2).
The RTE Generator shall utilize this SystemSignal as the SequenceCounter.
c(RTE00082)

[rte_sws_5058]d If an ApplicationErrorMapping element is configured it refer-
ences the SystemSignal which holds the ApplicationErrors (see section 5.2.6.8).
The RTE Generator shall utilize this SystemSignal to transmit the ApplicationErrors.
c(RTE00082)

There might be configuration where no actual data is transferred between the client
and the server (or vice versa). In this case a SystemSignalGroup shall be used with
an update bit defined in System Description. In this case at least one SystemSignal
is required to be present in the SystemSignalGroup.

[rte_sws_5059]d If no actual data is configured for a client server communication
i.e. the applicable ClientServerToSignalGroupMapping owns only an emp-
tySignal, the RTE shall send the SignalGroup to initiate the communication.
c(RTE00082)

4.3.2.7.2 Atomicity

The requirements for atomicity from Section 4.3.1.11.2 also apply for the composite
data types described in Section 4.3.2.7.1.

4.3.2.7.3 Fault detection and reporting

Client Server communication may encounter interruption like:

• Buffer overflow at the server side.

• Communication interruption.

• Server might be inaccessible for some reason.

The client specifies a timeout that will expire in case the server or communication fails
to complete within the specified time. The reporting method of an expired timeout
depends on the communication attributes:

239 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

• If the C/S communication is synchronous the RTE returns RTE_E_TIMEOUT on the
Rte_Call function (see chapter 5.6.13).

• If the C/S communication is asynchronous the RTE returns RTE_E_TIMEOUT on the
Rte_Result function (see chapter 5.6.14).

In the case that RTE detects that the COM service is not available when forwarding
signals to COM, the RTE returns RTE_E_COM_STOPPED on the Rte_Call (see chapter
5.6.13).

If the client still has an outstanding server invocation when the server is invoked again,
the RTE returns RTE_E_LIMIT on the Rte_Call (see chapter 5.6.13).

In the absence of structural errors, application errors will be reported if present.

240 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4.3.2.7.4 Asynchronous Client Server communication

Figure 4.38 shows a sequence diagram of how asynchronous client server communi-
cation may be implemented by RTE.

Client's COM
Netwok Server's

COM

Server's RTE ServerClient Application Client's RTE

(1) RTE calls Com_SendSignal
for each IN parameter of the
operation and the client-ID and
invokes Com_SendSignalGroup
to force the atomic sending
provided by the client's COM

(2) The Server's COM
invokes RTE callback
when all data elements
have been received.

(3) RTE fetches the IN
parameters from the COM
and the Client ID and puts
them into RTE queue. The
Server Task is activated.

Inter-ECU communication
Asynchronous Client-Server communication
Port name = p
Operation name = o

The ClientResponseRunnable is referencing an
AsynchronousServerCallReturnsEvent.
The client runnable that invokes the server call is referencing an
AsynchronousServerCallPoint
The server runnable is refered by an OperationInvokedEvent
ServerComSpec attribute queueLength = number of possible queued
server calls

(7) RTE receives all OUT parameters and activates the
Client's response runnable.

loop

[All IN, INOUT and Client ID]

(4) RTE fetches the
server parameter from
its queue and calls the
Server runnable.

(5) RTE sends the
respons to the Client.

loop

[All INOUT and OUT]

loop

[All IN, INOUT and Client ID]

loop

[All INOUT and OUT]

(6) The Client's
COM invokes RTE
callback when all
data elements have
been received.

Rte_Call_p_o()

Com_SendSignal()

E_OK()

Com_SendSignalGroup()

E_OK()

RTE_E_OK()

Rte_COMCbk_<sg>()

Com_ReceiveSignalGroup()

E_OK()

Com_ReceiveSignal()

E_OK()

Activate Server's Task()

ServerRunnable()

Com_SendSignal()

E_OK()

Com_SendSignalGroup()

E_OK()

Rte_COMCbk_<sg>()

Act ivate Client's response task()

Com_ReceiveSignalGroup()

E_OK()

Com_ReceiveSignal()

E_OK()

ClientResponseRunnable()

Figure 4.38: Client Server asynchronous

241 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4.3.2.7.5 Synchronous Client Server communication

Figure 4.39 shows a sequence diagram of how synchronous client server communica-
tion may be implemented by RTE.

Client's RTE Client's COM
Netwok Server's

COM

Server's RTE ServerClient Application

(1) RTE calls Com_SendSignal for
each PrimitiveType element of
each IN parameter of the operation
and invokes
Com_SendSignalGroup to force
the atomic sending provided by the
client's COM

(2) The Server's COM
invokes RTE callback
when all data elements
have been received.

(3) RTE fetches all elements
of the the IN parameters
from the COM and the Client
ID and puts them into RTE
queue. The Server Task is
activated.

Inter-ECU communication
Synchronous Client-Server communication
Port name = p
Operation name = o

The client runnable that invokes the server call is
referencing an SynchronousServerCallPoint
The server runnable is refered by an
OperationInvokedEvent
ServerComSpec attribute queueLength = number of
possible queued server calls

(6) RTE receives all OUT
parameters and return
execution control to the
Client Application.

loop

[All IN, INOUT and Client ID]

loop

[All IN, INOUT and Client ID]

loop

[All OUT and INOUT]

(5) RTE sends the
respons to the Client.

loop

[All OUT and INOUT]

Client Application is
blocked. Client task is

set waiting

Client task is
started

Client Application
continues

Client task is
released

(4) RTE fetches the server
parameter from its queue and
calls the Server runnable.

Rte_Call_p_o()

Com_SendSignal()

E_OK()

Com_SendSignalGroup()

E_OK()

WaitEvent (EventXY)

Rte_COMCbk_<sg>()

Com_ReceiveSignalGroup()

E_OK()

Com_ReceiveSignal()

E_OK()

Activate Server's task()

ServerRunnable()

Com_SendSignal()

E_OK()

Com_SendSignalGroup()

E_OK()

Rte_COMCbk_<sg>()

SendEvent (EventXY)

Com_ReceiveSignalGroup()

E_OK()

Com_ReceiveSignal()

E_OK()

RTE_E_OK()

Figure 4.39: Client Server synchronous

242 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4.3.3 SWC internal communication

4.3.3.1 Inter Runnable Variables

Sender/Receiver and Client/Server communication through AUTOSAR ports are the
model for communication between AUTOSAR SW-Cs.

For communication between Runnables inside of an AUTOSAR SW-C the AU-
TOSAR SW-C Template [2] establishes a separate mechanism. Non-composite AU-
TOSAR SW-C can reserve InterRunnableVariables which can only be accessed by the
Runnables of this one AUTOSAR SW-C. The Runnables might be running in the same
or in different task contexts. Read and write accesses are possible.

[rte_sws_3589]d The RTE has to support Inter Runnable Variables for single and mul-
tiple instances of AUTOSAR SW-Cs. c(RTE00142)

[rte_sws_7187]d The generated RTE shall initialize a defined implicitInter-
RunnableVariable and explicitInterRunnableVariable according the Val-
ueSpecification of the VariableDataPrototype defining the implicitIn-
terRunnableVariable respectively explicitInterRunnableVariable if the
general initialization conditions in rte_sws_7046 are fulfilled. c(RTE00142)

InterRunnableVariables have a behavior corresponding to Sender/Receiver commu-
nication between AUTOSAR SW-Cs (or rather between Runnables of different AU-
TOSAR SW-Cs).

But why not use Sender/Receiver communication directly instead? Purpose is data
encapsulation / data hiding. Access to InterRunnableVariables of an AUTOSAR SW-C
from other AUTOSAR SWCs is not possible and not supported by RTE. InterRunnabl-
eVariable content stays SW-C internal and so no other SW-C can use. Especially not
misuse it without understanding how the data behaves.

Like in Sender/Receiver (S/R) communication between AUTOSAR SW-Cs two different
behaviors exist:

1. Inter Runnable Variables with implicit behavior
(implicitInterRunnableVariable)
This behavior corresponds with VariableAccesses in the dataReadAc-
cess and dataWriteAccess roles of Sender/Receiver communication and is
supported by implicit S/R API in this specification.

Note:
If a VariableAccess in the writtenLocalVariable role referring to a
VariableDataPrototype in the implicitInterRunnableVariable role
is specified for a certain interrunnable variable, but no RTE API for implicit write
of this interrunnable variable is called during an execution of the runnable, an
undefined value is written back when the runnable terminates.

For more details see section 4.2.5.6.1.
For APIs see sections 5.6.23 and 5.6.24.

243 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Note 2:
As for the Implicit Sender/Receiver communication, the implicit concept for Inter-
RunnableVariables implies that the runnable does terminate. For runnable enti-
ties of category 2, the behavior is guaranteed only if it has a finite execution time.
A category 2 runnable that runs forever will not have its data updated.

2. Inter Runnable Variables with explicit behavior
(explicitInterRunnableVariable)
This behavior corresponds with VariableAccesses in the dataSendPoint,
dataReceivePointByValue, or dataReceivePointByArgument roles of
Sender/Receiver communication and is supported by explicit S/R API in this
specification.

For more details see section 4.2.5.6.2
For APIs see sections 5.6.25 and 5.6.26.

244 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4.3.4 Inter-Partition communication

Partitions are used to decompose an ECU into functional units. Partitions can
contain both SW-Cs and BSW modules. The partitioning is done to protect the software
contained in the partitions against each other or to increase the performance by running
the partitions on different cores of a multi core controller.

Since the partitions may be separated by core boundaries or memory boundaries and
since the partitions can be stopped and restarted independently, the observable be-
havior to the SW-Cs for the communication between different partitions is rather similar
to the inter ECU communication than to the intra partition communication. The RTE
needs to use special mechanisms to communicate from one partition to another.

Like for the inter ECU communication, inter partition communication uses the connec-
tionless communication paradigm. This means, that a send operation is successful for
the sender, even if the receiving partition is stopped. A receiver will only, by means of
a timeout, be notified if the partition of the sender is stopped.

Unlike most basic software, the RTE does not have a main processing function. The
execution logic of the RTE is contained in the generated task bodies, the wrapper code
around the runnables whose execution RTE manages.

As the tasks that contain the SW-Cs runnables are uniquely assigned to partitions (see
page 11EER of [16]), the execution logic of the RTE is split among the partitions. It
can not be expected that the RTE generated wrapper code running in one partition can
directly access the memory objects assigned to the RTE part of another partition.

In this sense, there is one RTE per partition, that contains runnable entities.

Still, RTE is responsible to support the communication between SW-Cs allocated to the
different partitions. According to the AUTOSAR software layered architecture [], RTE
shall be independent of the micro controller architecture. AUTOSAR supports a wide
variety of multi core and memory protection architectures.

[rte_sws_2734]d The RTE generator shall support a mode in which the generated
code is independent of the micro controller. c(BSW161)

It can not be generally assumed that a cache coherent, shared memory is available
for the communication between partitions. Direct memory access and function calls
across partition boundaries are generally not possible. In the extreme case, communi-
cation might even be limited to a message passing interface.

To allow memory protection and multi core support in spite of rte_sws_2734, the AU-
TOSAR OS provides a list of mechanisms, that can be used for the communication
across cores (see [12]). Especially, the IOC has been designed to support the commu-
nication needs of RTE in a way that should not introduce additional run time overhead.

The following sections describe the use of some OS mechanisms that are designed for
inter partition communication.

245 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4.3.4.1 Inter partition data communication using IOC

The general idea to allow the data communication between partitions in a most efficient
way and still be independent of the micro controller implementation is to take the buffers
and queues from the intra partition communication case and replace them with so
called IOC communication objects in the inter partition communication case.

In the ideal case, the access macros to the IOC communication object resolve to a
direct access to shared memory.

The IOC (Inter OS-Application Communication) is a feature of the AUTOSAR OS, which
provides a data oriented communication mechanism between partitions. The IOC pro-
vides communication buffers, queues, and protected access functions/macros to these
buffers that can be used from any pre-configured partitions concurrently.

The IOC offers communication of data to another core or between memory protected
partitions with guarantee of data consistency.

All data communications including the passing of parameters and return values in client
server communication, can be implemented by using the IOC. The basic principle for
using the IOC is to replace the RTE internal communication buffers by IOC buffers.

The IOC supports 1:1 and N:1 communication. For 1:N communication, N IOC com-
munication objects have to be used. The IOC is configured and provides generated
APIs for each IOC communication object. In case of N:1 communication, each sender
has a separate API.

The IOC API is not reentrant.

[rte_sws_2737]d RTE shall prevent concurrent access to the same IOC API from dif-
ferent ExecutableEntity execution-instances. c()

The IOC will use the appropriate mechanism to communicate between the partitions,
whether it requires communicating with another core, communicating with a partition
with a different level of trust, or communicating with another memory partition.

The IOC channels are configured in the OS Configuration. Their configurations shall
be provided as inputs for the RTE generator when the external configuration switch
strictConfigurationCheck rte_sws_5148 is set to true, and can be provided by
the RTE Generator or RTE Configuration Editor when strictConfigurationCheck
is set to false (see rte_sws_5150).

The IOC APIs use:

1. types declared by user on input to RTE (sender-receiver communication across
OsApplication boudaries).

2. types created by RTE to collect client-server operation arguments into single data
structure.

For the second item, RTE uses internal types that have to be described as Implemen-
tationDataTypes (see rte_sws_8400).

246 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

The signaling between partitions is not covered by the IOC. The callbacks of IOC are
in interrupt context and are mainly intended for direct use by BSW. For the signaling
between partitions, RTE can use the activation of tasks or setting of events, see section
4.3.4.3.

[rte_sws_2736]d The RTE shall not execute ExecutableEntities in the context of IOC
callbacks. c()

This is necessary to ensure that ExecutableEntities will not be executed in interrupt
context or when a partition is terminated or restarted.

4.3.4.2 Accessing COM from slave core in multicore configuration

In case of a multi core configuration, if a software component on the slave core wants
to send data to a software component on another ECU, the RTE has to send data
from the slave core through the IOC to the master core which in turn calls the send
API of COM. The same behavior is required for receive case where the master core is
responsible for forwarding received COM data to slave core through IOC.

[rte_sws_8306]d It is the RTEs responsibility to interact with COM whenever it is
needed. c()

This requires some special handling by the RTE since it implies, at least in the send
case, the need of a scheduable entity to do the actual call of COM send API.

[rte_sws_8307]d The RTE shall generate two (BswSchedulableEntity ’s):

• Rte_ComSendSignalProxyPeriodic.

• Rte_ComSendSignalProxyImmediate.

Rte_ComSendSignalProxyPeriodic shall handle the sending of periodic signals and
Rte_ComSendSignalProxyImmediate shall handle the sending of immediate signals.
c()

[rte_sws_8308]d It shall be a possible to configure whether the return value of RTE
APIs is based on RTE-IOC interaction or RTE-COM interaction using the configuration
parameter RteIocInteractionReturnValue. A warning should preferably be is-
sued in case RTE-COM interaction return value is chosen since that will cause major
performance decrease. c()

247 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4.3.4.2.1 Example sequence diagrams of accessing COM from Slave core

Figure 4.40 shows a sequence diagram of how receive data through COM from slave
core may be implemented by RTE.

Master Core Slave Core

SWC RTE IOC COM

Com_cbk(x)
IocSend_<id>(x)

IocReceive_<id>(&x)

RTE

Rte_Read()

Figure 4.40: Receive data through COM from slave core

248 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Figure 4.41 shows a sequence diagram of how send from COM to slave core may be
implemented by RTE.

Master Core Slave Core

SWC RTE

RTE_Write(x)

IOC

WaitEvent(returnInfo.event)

push(buffer_<id>,x)

Sw_Interrupt

COM

IocReceive_<id>(&x)

ComSendSignal(x) r

IocSend_<id>(returnInfo)

SetEvent(returnInfo.event>)
IocReceive_<id>(&r)

r

push(buffer_<id>,returnInfo)

(*returnInfo.IocSendReturn)(r)

IocSend_<id>(x)

ComSendSignal
ProxyImmediate

(*IocReceive[returnInfo])(x)

Figure 4.41: Send data through COM from slave core

249 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Figure 4.42 shows a sequence diagram of how send from COM to slave core using
return value based on RTE-IOC interaction may be implemented by RTE.

Master Core Slave Core

SWC RTE

RTE_Write(x)

IOC

Sw_Interrupt

ComSendSignal
ProxyImmediate COM

IocReceive_<id>(&signal_id)

ComSendSignal(x)

r

IocSend_<id>(signal_id)
push(buffer_<id>, signal_id)

IocSend_<id>(x) push(buffer_<id>,x)

(*IocReceive[signal_id])(x)

r

Figure 4.42: Send data through COM from slave core using return value based on RTE-
IOC interaction

250 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4.3.4.3 Signaling and control flow support for inter partition communication

The OS representation of a partition is an OS Application.

This is a (non-exhaustive) summary of OS features that can be used for signaling and
control flow across partition boundaries:

• activation of tasks

• start and stop of schedule tables

• event signaling

• alarms

• spin locks (for inter core synchronization)

The following are not available for inter core signaling:

• OS Resource

• DisableAllInterrupts

For inter core synchronization, spin locks are provided. But, for efficiency reasons they
should be used with care.

4.3.4.4 Trusted Functions

The call-trusted-function mechanism of AUTOSAR OS can be used in a memory pro-
tected controller to implement a function call from an untrusted to a trusted partition.

This Trusted Partition is a partition that has full access to the OS objects of other
partitions on the same core. The Basic Software is assumed to reside in a trusted
partition. It is assumed that the trusted partition cannot be terminated or restarted.

The typical use case for the call-trusted-function mechanism are AUTOSAR services
which are usually provided by a client/server interface where the service side resides
together with the basic software in the trusted partition.

Beware that this mechanism can not be used between two untrusted partitions or be-
tween cores.

The trusted functions are configured in the OS Configuration. Their configurations shall
be provided as inputs for the RTE generator when the external configuration switch
strictConfigurationCheck rte_sws_5148 is set to true, and can be provided by
the RTE Generator or RTE Configuration Editor when strictConfigurationCheck
is set to false (see rte_sws_5150).

[rte_sws_7606]d Direct start of an ExecutableEntity execution-instance by the mean of
a trusted function shall only be used for the start of an ExecutableEntity in the Trusted
Partition. c(RTE00195, RTE00210)

251 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

The OS ensures that the partition of the caller is not terminated or restarted when a
trusted function is executed. If needed, the termination or restart of the caller’s partition
is delayed after the trusted function returns.

RTE has to ensure, that the OS does not kill an RTE-generated task due to stopping
or restarting a partition while this task is executing a function call to BSW or to the
software component of another partition when this call is not a pure function.

For this purpose, RTE can use either the OS mechanism of trusted function call, or it
can allocate the server to a different task than the client.

[rte_sws_2761]d In a partitioned system that supports stop or restart of partitions, the
RTE shall not use a direct function call (without use of OS call trusted function) from a
task of an untrusted partition to BSW or to the SW-C of another partition unless this is
a pure function. c(RTE00196)

Please note that rte_sws_2761 might require the use of OS call trusted function for a
partitioned system even without memory protection.

4.3.4.5 Memory Protection and Pointer Type Parameters in RTE API

In a memory protected ECU, a SW-C from an untrusted partition might misuse the
transition to the trusted context to modify memory in another partition. This can occur
when a pointer to a different memory partition is passed from the untrusted partition to
the trusted context. The RTE shall avoid this misuse by at least checking the validity
of the address of the pointer, and, where possible, also checking the integrity of the
associated memory object.

[rte_sws_2752]d When a SW-C in an untrusted partition receives (OUT parameter)
or provides (IN parameter with composite data type) an ArgumentDataPrototype or
VariableDataPrototype, it hands over a pointer to a memory object to an RTE API. The
RTE shall only forward this pointer to a trusted SW-C after it has checked that the whole
memory object is owned by the caller’s partition. c(RTE00210)

[rte_sws_2753]dWhen a SW-C in an untrusted partition passes an ArgumentDataPro-
totype or VariableDataPrototype, as a reference type to a SW-C in a trusted partition
(DATA_REFERENCE as an IN parameter), the RTE shall only check that the caller’s
partition owns the start address of the referenced memory. c(RTE00210)

Note to rte_sws_2753: The RTE only checks whether the start address referenced
directly by the DataPrototypes belongs to the calling partition. Because the RTE is not
aware of the semantic of the pointed reference, it cannot check if the referenced object
is completely contained in the calling partition (e.g. the RTE does not know the size
and does not know if the referenced object also contains references to other objects).
The BSW is responsible to make sure that the referenced memory object does not
cross memory section boundaries.

The OS API CheckTaskMemoryAccess can be used to fulfill rte_sws_2752 and
rte_sws_2753.

252 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4.3.5 PortInterface Element Mapping and Data Conversion

AUTOSAR supports the connection of an R-port to a P-port with an interface that is not
compatible in the sense of the AUTOSAR compatibility rules. In addition, for sender-
receiver communication it is possible to specify how data elements are represented
given that the communication requires the usage of a dedicated communication bus.
In these cases the generated RTE has to support the conversion and re-scaling of
data.

4.3.5.1 PortInterface Element Mapping

Per default the shortNames of PortInterface elements are used to identify the
matching element pairs of connected ports. In case of non fitting names — might
be caused due to distributed development, off-the-shelf development, or re-use of soft-
ware components — it is required to explicitly specify which PortInterface elements
shall correlate. This is modelled with PortInterfaceMappings. A connection of two
ports can be associated with a set of PortInterfaceMappings. If two ports are
connected and a PortInterfaceMapping for the pair of interfaces of the two ports
is associated with the connection, the interface elements are mapped and converted
as specified in the PortInterfaceMapping. If no PortInterfaceMapping for the
respective pair of interfaces is associated with the connection, the ordinary interface
compatibility rules are applied.

The general approach is to perform the data conversion in the RTE of the ECU imple-
menting the R-port. The reason for this design decision is that in case of 1:n sender-
receiver communication it is inefficient to perform all the data conversions for the mul-
tiple receivers on the sender side and then send multiple sets of the same data just in
different representations over the communication bus.

[rte_sws_3815]d The RTE shall support the mapping of sender-receiver interfaces,
parameter interfaces and non-volatile data interface elements. c(RTE00182)

[rte_sws_3816]d If a P-port specified by a SenderReceiverInterface or Nv-
DataInterface is connected to an R-port with an incompatible interface and a
VariableAndParameterInterfaceMapping for both interfaces is associated with
the connection, the RTE of the ECU implementing the R-port shall map and convert the
data elements of the sender’s interface to the data elements of the receiver’s interface.
c(RTE00182)

[rte_sws_7091]d The RTE shall support the Mapping of elements of composite data
types in the context of a mapping of SenderReceiverInterface, NvDataInter-
face or ParameterInterface elements. c(RTE00182, RTE00234)

[rte_sws_7092]d The RTE of the ECU implementing the R-port shall map and convert
the composite data type elements of DataPrototoypes of the sender’s interface to
the composite data type elements of DataPrototoypes of the receiver’s interface ac-
cording the SubElementMapping

253 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

if a P-port specified by a SenderReceiverInterface, NvDataInterface or Pa-
rameterInterface is connected to an R-port with an incompatible interface and
a VariableAndParameterInterfaceMapping exists for both interfaces and is as-
sociated with the connection and
the SubElementMapping maps composite data type elements of the provided in-
terface to composite data type elements of the required interface. c(RTE00182,
RTE00234)

[rte_sws_7099]d The RTE of the ECU implementing the R-port shall map and con-
vert the composite data type elements of DataPrototoype of the sender’s interface
to the primitive DataPrototoype of the receiver’s interface according the SubEle-
mentMapping
if a P-port specified by a SenderReceiverInterface, NvDataInterface or Pa-
rameterInterface is connected to a R-port with an incompatible interface and
a VariableAndParameterInterfaceMapping exists for both interfaces and is as-
sociated with the connection and the SubElementMapping exclusively maps one
composite data type element of the provided interface c(RTE00182, RTE00234)

Please note that the DataPrototoypes of the provide port and DataPrototoypes
of the require port might use exclusively ApplicationDataTypes, exclusively Im-
plementationDataTypes or both kinds of AutosarDataTypes in a mixed manner.

[rte_sws_3817]d If a P-port specified by a SenderReceiverInterface or Nv-
DataInterface is connected to an R-port with an incompatible interface and no
VariableAndParameterInterfaceMapping for this pair of interfaces is associ-
ated with the connection, the RTE generator shall reject the input as an invalid config-
uration. c(RTE00182, RTE00018)

[rte_sws_3818]d The RTE shall support the mapping of client-server interface ele-
ments. c(RTE00182)

[rte_sws_3819]d If a P-port specified by a ClientServerInterface is connected to
an R-port with an incompatible interface and a ClientServerInterfaceMapping
for both interfaces is associated with the connection, the RTE of the ECU implementing
the R-port, i. e. the client, shall map the operation and map and convert the operation
arguments of the client’s interface to the operation arguments of the server’s interface.
c(RTE00182)

[rte_sws_3820]d If a P-port specified by a ClientServerInterface is connected to
an R-port with an incompatible interface and no ClientServerInterfaceMapping
for this pair of interfaces is associated with the connection, the RTE generator shall
reject the input as an invalid configuration. c(RTE00182, RTE00018)

[rte_sws_3821]d The RTE shall support the mapping of ModeSwitchInterface el-
ements. c(RTE00182)

[rte_sws_3822]d If a P-port specified by a ModeSwitchInterface is connected to
an R-port with an incompatible interface and a ModeInterfaceMapping for both
interfaces is associated with the connection, the RTE of the ECU implementing the

254 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

R-port shall map and convert the mode elements of the sender’s interface to the mode
elements of the receiver’s interface. c(RTE00182)

[rte_sws_3823]d If a P-port specified by a ModeSwitchInterface is connected to
an R-port with an incompatible interface and no ModeInterfaceMapping for this pair
of interfaces is associated with the connection, the RTE generator shall reject the input
as an invalid configuration. c(RTE00182, RTE00018)

[rte_sws_3824]d The RTE shall support the mapping of trigger interface elements. c()

[rte_sws_3825]d If a P-port specified by a TriggerInterface is connected to an
R-port with an incompatible interface and a TriggerInterfaceMapping for both
interfaces is associated with the connection, the RTE of the ECU implementing the
R-port shall map the trigger of the sender’s interface to the trigger of the receiver’s
interface. c()

[rte_sws_3826]d If a P-port specified by a TriggerInterface is connected to an
R-port with an incompatible interface and no TriggerInterfaceMapping for this
pair of interfaces is associated with the connection, the RTE generator shall reject the
input as an invalid configuration. c(RTE00018)

In order to generate the RTE for the ECU implementing the R-ports, the RTE generator
has to know the interfaces of the P-ports that are connected over the bus. This infor-
mation is provided in the ECU extract via the networkRepresentationProps (see
section 4.3.5.2) specified at the ISignal representing the data element.

4.3.5.2 Network Representation

For sender-receiver communication it is possible to specify how data elements are
represented given that the communication requires the usage of a dedicated commu-
nication bus. For this purpose networkRepresentationProps can be specified at
the ISignal, describing the representation of the data element on the communication
bus via the attributes compuMethod and baseType.

[rte_sws_3827]d If a network representation is specified for a data element of a
sender-receiver P-port, the RTE of the transmitting ECU shall perform the conversion
of the data element that has to be sent over a communication bus to the represen-
tation specified by the baseType and compuMethod of the networkRepresenta-
tionProps of the respective ISignal. The converted data shall be passed to COM.
c(RTE00181)

[rte_sws_3828]d If a network representation is specified for a data element of a
sender-receiver R-port, the RTE of the receiving ECU shall perform the conversion
of the data element that is received over a communication bus from the representation
specified by the baseType and compuMethod of the networkRepresentation-
Props of the respective ISignal to the data element’s application data type. In this
case rte_sws_3816 shall not be applied. c(RTE00181)

255 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4.3.5.3 Data Conversion

[rte_sws_3829]d The RTE shall support the conversion of an identical or linear scaled
data representation to another identical or linear scaled data representation. In this
context, the term "linear scaled data representation" also includes floating-point data
representations. c(RTE00182)

[rte_sws_3830]d The RTE shall support the conversion of a texttable data representa-
tion (enumeration) to another texttable data representation. c(RTE00182)

[rte_sws_3855]d The RTE shall support the conversion of a mixed linear scaled and
texttable data representation to another mixed linear scaled and texttable data repre-
sentation. c(RTE00182)

[rte_sws_3856]d The RTE shall support the conversion between a texttable data rep-
resentation (enumeration) and a mixed linear scaled and texttable data representation.
In this case only the enumeration part of the data representation shall be converted,
the linear scaled part shall be handled as out of range data. c(RTE00182)

[rte_sws_3857]d The RTE shall support the conversion between an identical or linear
scaled data representation and a mixed linear scaled and texttable data representation.
A scale with a COMPU-CONST shall be handled as out of range data if the mapping to
a value is not defined by a TextTableMapping. c(RTE00182)

[rte_sws_3860]d The RTE shall support the conversion of composite data repre-
sentations. In this case, the respective requirements rte_sws_3829, rte_sws_3830,
rte_sws_3855, rte_sws_3856, rte_sws_3857, rte_sws_3831, rte_sws_3832, and
rte_sws_3833 are applicable to the individual composite elements. c(RTE00182)

[rte_sws_3831]d The RTE generator shall reject any input that requires a conver-
sion which is not supported according to rte_sws_3829, rte_sws_3830, rte_sws_3855,
rte_sws_3856, or rte_sws_3860 as an invalid configuration. c(RTE00182, RTE00018)

[rte_sws_3832]d For the conversion between two data representations with linear scal-
ing described either by an ApplicationDataType or a combination of BaseType
and CompuMethod (used for the specification of the network representation at the
ComSpec respectively the ISignal) the RTE generator shall derive the data conver-
sion code automatically from the referred CompuMethods of the two representations.
In this context the scaling of a data representation is linear if the referred CompuMethod
is of category IDENTICAL, LINEAR, or SCALE_LINEAR_AND_TEXTTABLE. In case of
a CompuMethod of category SCALE_LINEAR_AND_TEXTTABLE this requirement ap-
plies to the linear scaled part only. The conversion shall only be performed if both
CompuMethods either refer to compatible Units or to Units referring to identical def-
initions of PhysicalDimension (i. e. all PhysicalDimension attributes are identi-
cal). c(RTE00182)

256 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

For a linear conversion the linear conversion factor can be calculated out of the fac-
torSiToUnit and offsetSiToUnit attributes of the referred Units and the Compu-
RationalCoeffs of a compuInternalToPhys of the referred CompuMethods.

Example 4.6

A software component SwcA on an ECU EcuA sends a data element u of an uint16
type t_VoltageAtSender via its port SenderPort. The referenced CompuMethod
is cm_VoltageAtSender, describing a fixpoint representation with offset 0 and LSB
1
4
= 2−2. The port SenderPort is connected to the port ReceiverPort of a soft-

ware component SwcB that is deployed on a different ECU EcuB. The sent data ele-
ment u is mapped to a data element u of an uint16 type t_VoltageAtReceiver on
the receiving side that references a CompuMethod named cm_VoltageAtReceiver.
cm_VoltageAtReceiver describes a fixpoint representation with offset 16

8
= 2 and

LSB 1
8
= 2−3. For transportation over the bus a networkRepresentation that refer-

ences an uint8 type t_VoltageOnNetwork is specified, using a fixpoint representation
described by the CompuMethod cm_VoltageOnNetwork with offset 1

2
= 0.5 and LSB

1
2
= 2−1.

Definition of the CompuMethods in XML:

1 <COMPU-METHOD>
2 <SHORT-NAME>cm_VoltageAtSender</SHORT-NAME>
3 <CATEGORY>LINEAR</CATEGORY>
4 <COMPU-INTERNAL-TO-PHYS>
5 <COMPU-SCALES>
6 <COMPU-SCALE>
7 <COMPU-RATIONAL-COEFFS>
8 <COMPU-NUMERATOR><V>0</V><V>1</V></COMPU-NUMERATOR>
9 <COMPU-DENOMINATOR><V>4</V></COMPU-DENOMINATOR>

10 </COMPU-RATIONAL-COEFFS>
11 </COMPU-SCALE>
12 </COMPU-SCALES>
13 </COMPU-INTERNAL-TO-PHYS>
14 </COMPU-METHOD>
15

16 <COMPU-METHOD>
17 <SHORT-NAME>cm_VoltageAtReceiver</SHORT-NAME>
18 <CATEGORY>LINEAR</CATEGORY>
19 <COMPU-INTERNAL-TO-PHYS>
20 <COMPU-SCALES>
21 <COMPU-SCALE>
22 <COMPU-RATIONAL-COEFFS>
23 <COMPU-NUMERATOR><V>16</V><V>1</V></COMPU-NUMERATOR>
24 <COMPU-DENOMINATOR><V>8</V></COMPU-DENOMINATOR>
25 </COMPU-RATIONAL-COEFFS>
26 </COMPU-SCALE>
27 </COMPU-SCALES>
28 </COMPU-INTERNAL-TO-PHYS>

257 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

29 </COMPU-METHOD>
30

31 <COMPU-METHOD>
32 <SHORT-NAME>cm_VoltageOnNetwork</SHORT-NAME>
33 <CATEGORY>LINEAR</CATEGORY>
34 <COMPU-INTERNAL-TO-PHYS>
35 <COMPU-SCALES>
36 <COMPU-SCALE>
37 <COMPU-RATIONAL-COEFFS>
38 <COMPU-NUMERATOR><V>1</V><V>1</V></COMPU-NUMERATOR>
39 <COMPU-DENOMINATOR><V>2</V></COMPU-DENOMINATOR>
40 </COMPU-RATIONAL-COEFFS>
41 </COMPU-SCALE>
42 </COMPU-SCALES>
43 </COMPU-INTERNAL-TO-PHYS>
44 </COMPU-METHOD>

Implementation of Rte_Send on the sending ECU EcuA:

1 Std_ReturnType
2 Rte_Send_SwcA_SenderPort_u(t_voltageAtSender u)
3 {
4 ...
5 /*
6 u_NetworkRepresentation
7 = ((u * LSB_sender + off_sender) - off_network) / LSB_network
8 = ((u / 4 + 0) - 0.5) * 2
9 = (u / 2) - 1

10 */
11 u_NetworkRepresentation = (uint8) ((u >> 1) - 1);
12 ...
13 }

Implementation of Rte_Receive on the receiving ECU EcuB:

1 Std_ReturnType
2 Rte_Receive_SwcB_ReceiverPort_u(t_voltageAtReceiver * u)
3 {
4 ...
5 /*
6 *u
7 *u = ((u_NetworkRepresentation * LSB_network + off_network)
8 - off_receiver) / LSB_receiver
9 = ((u_NetworkRepresentation / 2 + 0.5)

10 - 2) * 8
11 = (u_NetworkRepresentation * 4 + 4)
12 - 16
13 = u_NetworkRepresentation * 4 - 12
14 */
15 *u = (uint16) ((u_NetworkRepresentation << 2) - 12);

258 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

16 ...
17 }

The intention of this specification is not to describe any mechanism that supports the
generation of identical conversion code for each implementation of an RTE generator.
Even if the generated C code for the conversion would be the same, the numerical
result of the conversion still depends on the microcontroller target and the compiler.

Strategies how to handle the conversion of values that are out of range of the target
representation are described in section 4.3.5.4.

[rte_sws_3833]d For the conversion between two texttable data representations (enu-
merations) described either by an ApplicationDataType or an Implementation-
DataType (used for the specification of the network representation) the RTE generator
shall generate the data conversion code according to the TextTableMapping. This
requirement also applies to the texttable part of a mixed linear scaled and texttable
data representation. c(RTE00182)

4.3.5.4 Range Checks during Runtime

A software component might try to send a value that is outside the range that is spec-
ified at a dataElement or ISignal. In case of different ranges the result of a data
conversion might also be a value that is out of range of the target representation. For a
safe handling of these use cases the RTE provides range checks during runtime. For
an overview see figure 4.43.

[rte_sws_8024]d Range checks during runtime shall occur after data invalidation, i.e.
first the handleNeverReceived check, then the invalidation check and lastly the range
check shall be effected. c(RTE00180)

[rte_sws_3861]d The range check is intended to be performed according to the fol-
lowing rule: If a upper/lower limit is specified at the DataConstr, this value shall be
taken for the range check. If it is not specified at the DataConstr, the highest/lowest
representable value of the datatype shall be used. c(RTE00180)

Whether a range check is required is specified in case of intra ECU communication at
the handleOutOfRange attribute of the respective SenderComSpec or Receiver-
ComSpec and in case of inter ECU communication at the handleOutOfRange at-
tribute of ISignalProps of the sending or receiving ISignal.

259 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Range checks at sender’s side

Range checks during runtime for intra ECU communication at the sender’s side are
described in the following requirements:

[rte_sws_8026]d The RTE shall implement a range check of sent data in the sending
path of a particular component if the handleOutOfRange is defined at the Sender-
ComSpec and has any value other than none. In this case all receivers receive the
value after the range check was applied. c(RTE00180)

[rte_sws_8039]d The RTE shall use the preceding limits (rte_sws_7196) from the
DataPrototype in the pPort for the range check of sent data in the sending path of
a particular component if the handleOutOfRange is defined at the SenderComSpec.
c(RTE00180)

[rte_sws_3839]d If for a dataElement to be sent a SenderComSpec with handle-
OutOfRange=ignore is provided, a range check shall be implemented in the sending
component. If the value is out of bounds, the sending of the dataElement shall not
be propagated. This means for a non-queued communication that the last valid value
will be propagated and for a queued communication that no value will be enqueued.

In case of a composite datatype the sending of the whole dataElement shall not be
propagated, if any of the composite elements is out of bounds. c(RTE00180)

[rte_sws_3840]d If for a dataElement to be sent a SenderComSpec with handle-
OutOfRange=saturate is provided, a range check shall be implemented in the send-
ing component. If the value is out of bounds, the value actually sent shall be set to the
lower respectively the upper limit.

In case of a composite datatype each composite element whose actual value is out of
bounds shall be saturated. c(RTE00180)

[rte_sws_3841]d If for a dataElement to be sent a NonqueuedSenderComSpec
with handleOutOfRange=default is provided, a range check shall be implemented
in the sending component. If the value is out of bounds and the initValue is not
equal to the invalidValue, the value actually sent shall be set to the initValue.

In case of a composite datatype each composite element whose actual value is out of
bounds shall be set to the initValue. c(RTE00180)

[rte_sws_3842]d If for a dataElement to be sent a NonqueuedSenderComSpec
with handleOutOfRange=invalid is provided, a range check shall be implemented
in the sending component. If the value is out of bounds, the value actually sent shall
be set to the invalidValue.

In case of a composite datatype each composite element whose actual value is out of
bounds shall be set to the invalidValue. c(RTE00180)

[rte_sws_3843]d If for a dataElement to be sent a QueuedSenderComSpec with
handleOutOfRange set to default or invalid is provided, the RTE generator
shall reject the input as an invalid configuration, since for a QueuedSenderComSpec

260 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

the attribute initValue is not defined (see SW-C Template [2]) and data invalidation
is not supported (see rte_sws_5033). c(RTE00180)

Range checks during runtime for inter ECU communication at the sender’s side are
described in the following requirements:

[rte_sws_8027]d The RTE shall implement a range check of sent data in the sending
path of a particular signal if the handleOutOfRange is defined at the ISignalProps
and has any value other than none. In this case only receivers of the specific ISignal
receive the value after the range check was applied. c(RTE00180)

[rte_sws_8040]d The RTE shall use the limits from the ISignal for the range check
of sent data in the sending path of a particular signal if the handleOutOfRange is
defined at the ISignalProps. c(RTE00180)

[rte_sws_8030]d If for an ISignal to be sent an ISignalProps with handleOut-
OfRange=ignore is provided, a range check shall be implemented in the sending
signal. If the value is out of bounds, the sending of the ISignal shall not be propa-
gated. In this case the RTE shall behave as if no sending occurred. c(RTE00180)

[rte_sws_8031]d If for an ISignal to be sent an ISignalProps with handleOut-
OfRange=saturate is provided, a range check shall be implemented in the sending
signal. If the value is out of bounds, the value actually sent shall be set to the lower
respectively the upper limit. c(RTE00180)

[rte_sws_8032]d If for an ISignal to be sent an ISignalProps with handleOut-
OfRange=default is provided, a range check shall be implemented in the sending
signal. If the value is out of bounds and the initValue is not equal to the invalid-
Value, the value actually sent shall be set to the initValue. c(RTE00180)

[rte_sws_8033]d If for an ISignal to be sent an ISignalProps with handleOut-
OfRange=invalid is provided, a range check shall be implemented in the sending
signal. If the value is out of bounds, the value actually sent shall be set to the in-
validValue. c(RTE00180)

Range checks at receiver’s side

Range checks during runtime for intra ECU communication at the receiver’s side are
described in the following requirements:

[rte_sws_8028]d The RTE shall implement a range check in the receiving path of a
particular component if the handleOutOfRange is defined at the ReceiverComSpec
and has any value other than none. In this case the range check applies only for data
received by the particular component. c(RTE00180)

[rte_sws_8041]d The RTE shall use the preceding limits (rte_sws_7196) from the
DataPrototype in the rPort for the range check of received data in the receiv-

261 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

ing path of a particular component if the handleOutOfRange is defined at the Re-
ceiverComSpec. c(RTE00180)

[rte_sws_3845]d If for a dataElement to be received a ReceiverComSpec with
handleOutOfRange=ignore is provided, a range check shall be implemented in the
receiving component. If the value is out of bounds, the reception of the dataElement
shall not be propagated. This means for a non-queued communication that the last
valid value will be propagated and for a queued communication that no value will be
enqueued.

If the value of the received dataElement is out of bounds and a Nonqueue-
dReceiverComSpec with handleOutOfRangeStatus=indicate is provided, the
return value of the RTE shall be RTE_E_OUT_OF_RANGE.

In case of a composite datatype the reception of the whole dataElement shall not
be propagated, if any of the composite elements is out of bounds. If the handleOut-
OfRangeStatus attribute is set to indicate, the return value of the RTE shall be
RTE_E_OUT_OF_RANGE. c(RTE00180)

[rte_sws_3846]d If for a dataElement to be received a ReceiverComSpec with
handleOutOfRange=saturate is provided, a range check shall be implemented in
the receiving component. If the value is out of bounds, the value actually received shall
be set to the lower respectively the upper limit.

If the value of the received dataElement is out of bounds and a Nonqueue-
dReceiverComSpec with handleOutOfRangeStatus=indicate is provided, the
return value of the RTE shall be RTE_E_OUT_OF_RANGE.

In case of a composite datatype each composite element whose actual value is out
of bounds shall be saturated. If the handleOutOfRangeStatus attribute is set to
indicate, the return value of the RTE shall be RTE_E_OUT_OF_RANGE, if any of the
composite elements is out of bounds. c(RTE00180)

[rte_sws_3847]d If for a dataElement to be received a NonqueuedReceiverCom-
Spec with handleOutOfRange=default is provided, a range check shall be imple-
mented in the receiving component. If the value is out of bounds and the initValue
is not equal to the invalidValue, the value actually received shall be set to the
initValue.

If the value of the received dataElement is out of bounds and a Nonqueue-
dReceiverComSpec with handleOutOfRangeStatus=indicate is provided, the
return value of the RTE shall be RTE_E_OUT_OF_RANGE.

In case of a composite datatype each composite element whose actual value is out of
bounds shall be set to the initValue. If the handleOutOfRangeStatus attribute
is set to indicate, the return value of the RTE shall be RTE_E_OUT_OF_RANGE, if
any of the composite elements is out of bounds. c(RTE00180)

[rte_sws_3848]d If for a dataElement to be received a NonqueuedReceiverCom-
Spec with handleOutOfRange=invalid is provided, a range check shall be imple-

262 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

mented in the receiving component. If the value is out of bounds, the value actually
received shall be set to the invalidValue.

If the value of the received dataElement is out of bounds and a ReceiverComSpec
with handleOutOfRangeStatus=indicate is provided, the return value of the RTE
shall be RTE_E_INVALID.

In case of a composite datatype each composite element whose actual value is out
of bounds shall be set to the invalidValue. If the handleOutOfRangeStatus
attribute is set to indicate, the return value of the RTE shall be RTE_E_INVALID, if
any of the composite elements is out of bounds. c(RTE00180)

[rte_sws_8016]d If for a dataElement to be received a ReceiverComSpec with
handleOutOfRange=externalReplacement is provided, a range check shall be
implemented in the receiving component. If the value is out of bounds, the value
actually received shall be replaced by the value sourced from the ReceiverCom-
Spec.externalReplacement (e.g. constant, NVRAM parameter).

If the value of the received dataElement is out of bounds and a Nonqueue-
dReceiverComSpec with handleOutOfRangeStatus=indicate is provided, the
return value of the RTE shall be RTE_E_OUT_OF_RANGE.

In case of a composite datatype the value actually received shall be completely re-
placed by the external value, if any of the composite elements is out of bounds. If the
handleOutOfRangeStatus attribute is set to indicate, the return value of the RTE
shall be RTE_E_OUT_OF_RANGE. c(RTE00180)

[rte_sws_3849]d If for a dataElement to be received a QueuedReceiverComSpec
with handleOutOfRange set to default or invalid is provided, the RTE gener-
ator shall reject the input as an invalid configuration, since for a QueuedReceiver-
ComSpec the attribute initValue is not defined (see SW-C Template [2]) and data
invalidation is not supported (see rte_sws_5033). c(RTE00180)

[rte_sws_8025]d If for a dataElement to be received a QueuedReceiverComSpec
is provided and the handleOutOfRangeStatus attribute is set to indicate, the
RTE generator shall reject the input as an invalid configuration. c(RTE00180)

Range checks during runtime for inter ECU communication at the receiver’s side are
described in the following requirements:

[rte_sws_8029]d The RTE shall implement a range check in the receiving path of a
particular signal if the handleOutOfRange is defined at the ISignalProps and has
any value other than none. In this case all receivers of the specific ISignal on that
ECU receive the value after the range check was applied. c(RTE00180)

[rte_sws_8042]d The RTE shall use the limits from the ISignal for the range check
of received data in the receiving path of a particular signal if the handleOutOfRange
is defined at the ISignalProps. c(RTE00180)

[rte_sws_8034]d If for an ISignal to be received an ISignalProps with handle-
OutOfRange=ignore is provided, a range check shall be implemented in the receiv-

263 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

ing signal. If the value is out of bounds, the reception of the ISignal shall not be prop-
agated. In this case the RTE shall behave as if no reception occurred. c(RTE00180)

[rte_sws_8035]d If for an ISignal to be received an ISignalProps with handle-
OutOfRange=saturate is provided, a range check shall be implemented in the re-
ceiving signal. If the value is out of bounds, the value actually received shall be set to
the lower respectively the upper limit. c(RTE00180)

[rte_sws_8036]d If for an ISignal to be received an ISignalProps with handle-
OutOfRange=default is provided, a range check shall be implemented in the receiv-
ing signal. If the value is out of bounds and the initValue is not equal to the in-
validValue, the value actually received shall be set to the initValue. c(RTE00180)

[rte_sws_8037]d If for an ISignal to be received an ISignalProps with handle-
OutOfRange=invalid is provided, a range check shall be implemented in the receiv-
ing signal. If the value is out of bounds, the value actually received shall be set to the
invalidValue. c(RTE00180)

[rte_sws_8038]d If for an ISignal to be received an ISignalProps with han-
dleOutOfRange=externalReplacement is provided, a range check shall be im-
plemented in the receiving signal. If the value is out of bounds, the value ac-
tually received shall be replaced by the value sourced from the ReceiverCom-
Spec.externalReplacement (e.g. constant, NVRAM parameter). c(RTE00180)

264 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

before
first reception?

no

yes

receiver

Configuration
handleInvalid

RTE status

DE propagation

init != invalid init == invalid

keep RTE_E_OK RTE_E_INVALID init value

replace RTE_E_OK REJECT init value

dontInvalidate RTE_E_OK RTE_E_OK init value

Configuration
handleInvalid

RTE status

DE propagation

init != invalid init == invalid

keep
RTE_E_

NEVER_RECEIVED
RTE_E_

NEVER_RECEIVED
init value

replace
RTE_E_

NEVER_RECEIVED
REJECT init value

dontInvalidate
RTE_E_

NEVER_RECEIVED
RTE_E_

NEVER_RECEIVED
init value

handle
NeverReceived?

yes

no

DE producer

yes
invalid?

no

receiver

Configuration
handleInvalid

RTE status

DE propagation

init != invalid init == invalid

keep RTE_E_INVALID RTE_E_INVALID last valid value1

replace RTE_E_OK REJECT init value

dontInvalidate RTE_E_OK RTE_E_OK value

yesout of
bounds?

Configuration
handleOutOfRange

RTE status

DE propagation
handleOutOfRange

Status == silent5
handleOutOfRange
Status == indicate4,5

none RTE_E_OK RTE_E_OK value

ignore RTE_E_OK
RTE_E_

OUT_OF_RANGE
last valid value2

saturate RTE_E_OK
RTE_E_

OUT_OF_RANGE
lower/upper limit

default4 RTE_E_OK
RTE_E_

OUT_OF_RANGE
init value3

invalid4 RTE_E_INVALID RTE_E_INVALID invalid value

external
Replacement5 RTE_E_OK

RTE_E_
OUT_OF_RANGE

external replacement
value

no

1. If no valid value was received previously then the init value shall be propagated
2. In case of queued communication the RTE behaves as if no value was enqueued
3. Init value shall not be equal to invalid value
4. Applicable only in combination with a non-queued COMSPEC
5. Applicable only in combination with a receiver COMSPECRTE status

DE
propagation

RTE_E_OK value

Figure 4.43: Overview for data invalidation and range checks

265 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4.4 Modes

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

ModeDeclarationGroup

+ onTransitionValue: PositiveInteger [0..1]

AtpStructureElement
Identifiable

ModeDeclaration

+ value: PositiveInteger [0..1]

AtpPrototype

ModeDeclarationGroupPrototype

+ swCalibrationAccess: SwCalibrationAccessEnum [0..1]

«enumeration»
ModeActivationKind

 onEntry
 onExit
 onTransition

Identifiable

BswEvent
BswModeSwitchEvent

+ activation: ModeActivationKind

AtpStructureElement
Identifiable

RTEEvent

SwcModeSwitchEvent

+ activation: ModeActivationKind

AtpStructureElement
ExecutableEntity

RunnableEntity

+ canBeInvokedConcurrently: Boolean
+ symbol: CIdentifier

BswSchedulableEntity

ExecutableEntity

BswModuleEntity

Identifiable

ModeSwitchPoint

«atpVariation»

+accessedModeGroup
0..*

+modeDeclaration

1..*

«instanceRef»

+disabledInMode 0..*

+initialMode

1

«instanceRef»

+mode 1..2
{ordered}

«instanceRef»

+disabledMode 0..*

«isOfType»
+type

1
{redefines
atpType}

0..*

«instanceRef»

+modeGroup 1

«atpVariation»

+managedModeGroup 0..*

+modeSwitchPoint *

«atpVariation»

+runnable

+startOnEvent

0..1

+startsOnEvent

1

0..*

«instanceRef»

+mode 1..2
{ordered}

Figure 4.44: Summary of the use of ModeDeclarations by an AUTOSAR software-
components and Basic Software Modules as defined in the Software Component Tem-
plate Specification [2] and Specification of BSW Module Description Template [9].

The purpose of modes is to start Runnable Entities and Basic Software Schedulable
Entities on the transition between modes and to disable (/enable) specified triggers of
Runnable Entities and Basic Software Schedulable Entities in certain modes. Here, we
use the specification of modes from the Software Component Template Specification
[2]. Further on the document Specification of BSW Module Description Template [9]
describes how modes are described for Basic Software Modules.

The first subsection 4.4.1 describes how modes can be used by an AUTOSAR
software-component or Basic Software Module mode user(). The role of the mode
manager who initiates mode switches is described in section 4.4.2. How ModeDec-
larations are connected to a state machine is described in subsection 4.4.3. The be-
haviour of the RTE and Basic Software Scheduler regarding mode switches is detailed
in subsection 4.4.4.

One usecase of modes is described in section 4.6.2 for the initialization and finalization
of AUTOSAR software-components. Modes can be used for handling of communica-

266 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

tion states as well as for specific application purposes. The specific definition of modes
and their use is not in the scope of this document.

The status of the modes will be notified to the AUTOSAR software-component mode
user by mode communication - mode switch notifications - as described in
the subsection 4.4.7. The port for receiving (or sending) a mode switch notifi-
cation is called mode switch port.

A Basic Software Module mode users and the Basic Software Module mode man-
ager are not necessarily using ports. Basic Software Modules without AUTOSAR
Interfaces are connected via the configuration of the Basic Software Scheduler.

4.4.1 Mode User

To use modes, an AUTOSAR software-component (mode user) has to reference
a ModeDeclarationGroup by a ModeDeclarationGroupPrototype of a require mode
switch port, see section 4.4.7. The ModeDeclarationGroup contains the required
modes.

An Basic Software Module (mode user) has to define a requiredModeGroup Mod-
eDeclarationGroupPrototype.The ModeDeclarationGroup referred by these ModeDec-
larationGroupPrototype contains the required modes.

The ModeDeclarations can be used in two ways by the mode user (see also figure
4.44):

1. Modes can be used to trigger runnables: The SwcInternalBehavior of the
AUTOSAR SW-C or the BswInternalBehavior of the BSW module can de-
fine a SwcModeSwitchEvent respectively a BswModeSwitchEvent referenc-
ing the required ModeDeclaration. This SwcModeSwitchEvent or BswMod-
eSwitchEvent can then be used as trigger for a Runnable Entity / Ba-
sic Software Schedulable Entity. Both SwcModeSwitchEvent and BswMod-
eSwitchEvent carry an attribute ModeActivationKind which can be ‘exit’,
‘entry’, or ‘transition’.

A Runnable Entity or Basic Software Schedulable Entity that is triggered by
a SwcModeSwitchEvent or a BswModeSwitchEvent with ModeActiva-
tionKind ‘exit’ is triggered on exiting the mode. For simplicity it will be
called OnExit ExecutableEntity. Correspondingly, an OnTransition
ExecutableEntity is triggered by a SwcModeSwitchEvent or a BswMod-
eSwitchEvent with ModeActivationKind ‘transition’ and will be executed
during the transition between two modes, and an OnEntry ExecutableEn-
tity is triggered by a SwcModeSwitchEvent or a BswModeSwitchEvent with
ModeActivationKind ‘entry’ and will be executed when the mode is entered.

Since a Runnable Entity as well as a Basic Software Schedulable Entity can
be triggered by multiple RTEEvents respectively BswEvents, both can be an
OnExit-, OnTransition and OnEntry ExecutableEntity at the same time.

267 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

RTE does not support a WaitPoint for a SwcModeSwitchEvent (see
rte_sws_1358).

2. An RTEEvent and BswEvent that starts a Runnable Entity respectively a Ba-
sic Software Schedulable Entity can contain a disabledInMode association which
references a ModeDeclaration. This association is called ModeDisablingDe-
pendency in this document.

[rte_sws_2503]d If a Runnable Entity r is referenced with startOnEvent by an
RTEEvent e that has a ModeDisablingDependency on a mode m, then RTE
shall not activate runnable r on any occurrence of e while the mode m is
active. c(RTE00143, RTE00052)

[rte_sws_7530]d If a Basic Software Schedulable Entity r is referenced with
startOnEvent by an BswEvent e that has a ModeDisablingDependency on
a mode m, then Basic Software Scheduler shall not activate Basic Soft-
ware Schedulable Entitys r on any occurrence of e while the mode m is
active. c(RTE00213)

Note: As a consequence of rte_sws_2503 and rte_sws_7530 in combination with
rte_sws_2661, RTE or Basic Software Scheduler will not start runnable or
BswSchedulableEntity r on any occurrence of e while the mode m is active.

The mode disabling is active during the transition to a mode, during the mode
itself and during the transition for exiting the mode. For a precise definition see
section 4.4.4.

The existence of a ModeDisablingDependency prevents the RTE to start
the mode disabling dependent ExecutableEntity by the disabled RTE-
Event / BswEvent during the mode, referenced by the ModeDisablingDepen-
dency, and during the transitions from and to that mode. ModeDisablingDe-
pendencys override any activation of a Runnable Entity and Basic Software
Schedulable Entity by the disabled RTEEvents / BswEvents. This is also true
for the SwcModeSwitchEvent and BswModeSwitchEvent.

A Runnable Entity as well as a Basic Software Schedulable Entity can not be
‘enabled’ explicitly. Runnable Entities are Basic Software Schedulable Entities
are only ‘enabled’ by the absence of any active ModeDisablingDependencys.

Note that ModeDisablingDependencys do not prevent the wake up from a
WaitPoint by the ‘disabled’ RTEEvent. This allows the wake-uped Runnable
Entity to run until completion if a transition occurred during the Runnable En-
tity’s execution.

[rte_sws_2504]d The existence of a ModeDisablingDependency shall not in-
struct the RTE to kill a running runnable at a mode switch. c(RTE00143)

[rte_sws_7531]d The existence of a ModeDisablingDependency shall not in-
struct the Basic Software Scheduler to kill a running Basic Software Schedulable
Entity at a mode switch. c(RTE00213)

268 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

The RTE and the Basic Software Scheduler can be configured to switch schedule
tables to implement mode disabling dependencies for cyclic triggers of Runnable
Entities or Basic Software Schedulable Entities. Sets of mutual exclusive modes
can be mapped to different schedule tables. The RTE shall implement the switch
between schedule tables according to the mapping of modes to schedule tables
in RteModeScheduleTableRef, see rte_sws_5146.

The mode user can specify in the ModeSwitchReceiverComSpec (software compo-
nents) or BswModeReceiverPolicy (BSW modules) that it is able to deal with asyn-
chronous mode switch behavior (supportsAsynchronousModeSwitch == TRUE).
If all mode users connected to the same ModeDeclarationGroupPrototype of the
mode manager support the asynchronous mode switch behavior, the related mode
machine instance can be implemented with the asynchronous mode switching pro-
cedure. Otherwise, the synchronous mode switching procedure has to be applied (see
rte_sws_7150).

4.4.2 Mode Manager

Entering and leaving modes is initiated by a mode manager. A mode manager might
be a basic software module, for example the Basic Software Mode Manager (BswM),
the communication manager (ComM), or the ECU state manager (EcuM). The mode
manager may also be an AUTOSAR SW-C. In this case, it is called an application
mode manager.

The mode manager contains the master state machine to represent the modes.

To provide modes, an AUTOSAR software-component (mode manager) has to ref-
erence a ModeDeclarationGroup by a ModeDeclarationGroupPrototype of a provide
mode switch port, see section 4.4.7. The ModeDeclarationGroup contains the
provided modes.

An Basic Software Module (mode manager) has to define a providedModeGroup
ModeDeclarationGroupPrototype. The ModeDeclarationGroup referred by these Mod-
eDeclarationGroupPrototype contains the provided modes.

The RTE / Basic Software Scheduler will take the actions necessary to switch between
the modes. This includes the termination and execution of several ExecutableEntities
from all mode users that are connected to the same ModeDeclarationGroupProto-
type of the mode manager. To do so, the RTE / Basic Software Scheduler needs a
state machine to keep track of the currently active modes and transitions initiated by
the mode manager. The RTE’s / Basic Software Scheduler ’s mode machine is called
mode machine instance. There is exactly one mode machine instance for
each ModeDeclarationGroupPrototype of a mode manager’s provide mode switch
port respectively providedModeGroup ModeDeclarationGroupPrototype.

It is the responsibility of the mode manager to advance the RTE’s / Basic Soft-
ware Scheduler ’s mode machine instance by sending mode switch notifi-
cations to the mode users. The mode switch notifications are imple-

269 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

mented by a non blocking API (see 5.6.6 / 6.5.3). So, the mode switch notifi-
cations alone provide only a loose coupling between the state machine of the mode
manager and the mode machine instance of the RTE / Basic Software Scheduler.
To prevent, that the mode machine instance lags behind and the states of the
mode manager and the RTE / Basic Software Scheduler get out of phase, the mode
manager can use acknowledgment feedback for the mode switch notification.
RTE / Basic Software Scheduler can be configured to send an acknowledgment of the
mode switch notification to the mode manager when the requested transition
is completed.

At the mode manager, the acknowledgment results in an ModeSwitchedAckEvent.
As with DataSendCompletedEvents, this event can be picked up with the polling or
blocking Rte_SwitchAck API. And the event can be used to trigger a mode switch
acknowledge ExecutableEntity to pick up the status. Note: The Basic Software
Scheduler do not support WaitPoints. Therefore the SchM_SwitchAck never blocks.

Some possible usage patterns for the acknowledgement are:

• The most straight forward method is to use a sequence of Rte_Switch and a
blocking Rte_SwitchAck to send the mode switch notification and wait
for the completion. This requires the use of an extended task.

• Another possibility is to have a cyclic Runnable Entity / Basic Software
Schedulable Entity (maybe the same that switches the modes via Rte_Switch

/ SchM_Switch) to poll for the acknowledgement using Rte_SwitchAck /
SchM_SwitchAck.

• The acknowledgement can also be polled from a Runnable Entity or Basic Soft-
ware Schedulable Entity that is started by the ModeSwitchedAckEvent.

The mode manager can also use the Rte_Mode / SchM_Mode API to read the currently
active mode from the RTE’s / Basic Software Scheduler ’s perspective.

4.4.3 Refinement of the semantics of ModeDeclarations and ModeDeclaration-
Groups

To implement the logic of mode switches, the RTE / Basic Software Scheduler needs
some basic information about the available modes. For this reason, RTE / Basic Soft-
ware Scheduler will make the following additional assumptions about the modes of one
ModeDeclarationGroup:

1. [rte_sws_ext_2542] Whenever any Runnable Entity or Basic Software Schedu-
lable Entity is running, there shall always be exactly one mode or one mode
transition active of each ModeDeclarationGroupPrototype.

2. Immediately after initialization of a mode machine instance, RTE / Basic
Software Scheduler will execute a transition to the initial mode of each Mod-
eDeclarationGroupPrototype (see rte_sws_2544).

270 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

RTE / Basic Software Scheduler will enforce the mode disablings of the initial
modes and trigger the OnEntry ExecutableEntitys (if any defined) of the
initial modes of every ModeDeclarationGroupPrototype immediately after
initialization of the RTE / Basic Software Scheduler.

In other words, RTE / Basic Software Scheduler assumes, that the modes of one
ModeDeclarationGroupPrototype belong to exactly one state machine without
nested states. The state machines cover the whole lifetime of the atomic AUTOSAR
SW-Cs9 and mode dependent AUTOSAR Basic Software Modules 10.

4.4.4 Order of actions taken by the RTE / Basic Software Scheduler upon inter-
ception of a mode switch notification

This section describes what the ‘communication’ of a mode switch to a mode user
actually does. What does the RTE Basic Software Scheduler do to switch a mode and
especially in which order.

Mode switch procedures

Depending on the needs of mode users for synchronicity, the mode machine instance
can be implemented with two different realizations.

• synchronous mode switching procedure

• asynchronous mode switching procedure

The differences between these two realizations are the omitted waiting conditions in
case of asynchronous mode switching procedure. For instance with asynchronous
behavior a software component can not rely that all mode disabling dependent
ExecutableEntitys of the previous mode are terminated before OnEntry Exe-
cutableEntitys and OnExit ExecutableEntitys are started. On one hand
this might put some effort to the software component designer to enable the compo-
nents implementation to support this kind of scheduling but on the other hand it enables
fast and lean mode switching.

[rte_sws_7150]d The RTE generator shall use the synchronous mode switching pro-
cedure if at least one mode user of the mode machine instance does not support
the asynchronous mode switch behavior. c(RTE00143, RTE00213)

[rte_sws_7151]d The RTE generator shall apply the asynchronous mode switch be-
havior, if all mode users support the asynchronous mode switch behavior and if it is
configured for the related mode machine instance. c(RTE00143, RTE00213)

Typical usage of modes to protect resources
9The lifetime of an atomic AUTOSAR SW-C is considered to be the time span in which the SW-C’s

runnables are being executed.
10The lifetime of an mode dependent AUTOSAR Basic Software Module is considered to be the time

span in which the Basic Software Schedulable Entities are being executed.

271 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

RTE / Basic Software Scheduler can start and prevent the execution of Runnable En-
tities and BswSchedulableEntity. In the context of mode switches,

• RTE / Basic Software Scheduler starts OnExit ExecutableEntitys for leav-
ing the previous mode. This is typically used by ‘clean up ExecutableEntities’ to
free resources that were used during the previous mode.

• RTE / Basic Software Scheduler starts OnEntry ExecutableEntitys for en-
tering the next mode. This is typically used by ‘initialization ExecutableEntities’ to
allocate resources that are used in the next mode.

• And RTE / Basic Software Scheduler can prevent the execution of mode dis-
abling dependent ExecutableEntitys within a mode. This is typically
used with time triggered ‘work ExecutableEntity’ that use a resource which is not
available in a certain mode.

According to this use case, during the execution of ‘clean up ExecutableEntity’ and ‘ini-
tialization ExecutableEntity’ the ‘work ExecutableEntity’ should be disabled to protect
the resource. Also, if the same resource is used (by different SW-C’s) in two successive
modes, the ‘clean up ExecutableEntity’ should be safely terminated before the ‘initial-
ization ExecutableEntity’ of the next mode are executed (synchronous mode switching
procedure). In summary, this would lead to the following sequence of actions by the
RTE / Basic Software Scheduler upon reception of the mode switch notifica-
tion:

1. activate mode disablings for the next mode

2. wait for the newly disabled ExecutableEntities to terminate in case of synchronous
mode switching procedure

3. execute ‘clean up ExecutableEntities’

4. wait for the ‘clean up ExecutableEntities’ to terminate in case of synchronous
mode switching procedure

5. execute ‘initialization ExecutableEntities’

6. wait for the ‘initialization ExecutableEntities’ to terminate in case of synchronous
mode switching procedure

7. deactivate mode disablings for the previous modes and enable Exe-
cutableEntities that have been disabled in the previous mode.

RTE / Basic Software Scheduler can also start OnTransition ExecutableEnti-
tys on a transition between two modes which is not shown in this use case example.

Often, only a fraction of the SW-Cs, Runnable Entities, Basic Software modules and
Basic Software Schedulable Entities of one ECU depends on the modes that are
switched. Consequently, it should be possible to design the system in a way, that
the mode switch does not influence the performance of the remaining software.

272 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Figure 4.45: This figure shall illustrate what kind of ExecutableEntities will run in what or-
der during a synchronous mode transition. The boxes indicate activated ExecutableEn-
tities. Mode disabling dependant ExecutableEntities are printed in blue (old mode) and
pink (new mode). OnExit, OnTransition, and OnEntry ExecutableEntity are printed in red,
yellow, and green.

Figure 4.46: This figure shall illustrate what kind of ExecutableEntity will run in what
order during an asynchronous mode transition where the ExecutableEntities are trig-
gered on a mode change are mapped to a higher priority task than the Mode Dependent
ExecutableEntity. The boxes indicate activated ExecutableEntity. Mode disabling de-
pendant ExecutableEntity are printed in blue (old mode) and pink (new mode). OnExit,
OnTransition, and OnEntry ExecutableEntity are printed in red, yellow, and green.

The remainder of this section lists the requirements that guarantee the behavior de-
scribed above.

273 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

All runnables with dependencies on modes have to be executed or terminated during
mode transitions. Restriction rte_sws_2500 requires these runnables to be of category
1 to guarantee finite execution time.

For simplicity of the implementation to guarantee the order of runnable executions, the
following restriction is made:

All OnEntry ExecutableEntitys, OnTransition ExecutableEntitys, and
OnExit ExecutableEntitys of the same mode machine instance should be
mapped to the same task in the execution order following OnExit, OnTransition, OnEn-
try (see rte_sws_2662).

A mode machine instance implementing an asynchronous mode switch proce-
dure might be fully implemented inside the Rte_Switch or SchM_Switch API. In
this case the OnEntry ExecutableEntitys, OnTransition ExecutableEn-
titys, OnExit ExecutableEntitys and mode switch acknowledge Exe-
cutableEntitys are not mapped to tasks as described in chapter 7.6.1.

[rte_sws_7173]d The RTE generator shall support invocation of OnEntry Ex-
ecutableEntitys, OnTransition ExecutableEntitys, OnExit Exe-
cutableEntitys and mode switch acknowledge ExecutableEntitys via
direct function call, if all following conditions are fulfilled:

• if the asynchronous mode switch behavior is configured (see rte_sws_7151)

• the OnEntry ExecutableEntitys, OnTransition ExecutableEnti-
tys, OnExit ExecutableEntitys and mode switch acknowledge Ex-
ecutableEntitys do not define a ’minimum start distance’

• the mode manager and mode user are in the same Partition

• if the preconditions of table 4.5 are fulfilled

c(RTE00143, RTE00213)

Further on the requirements rte_sws_5083, rte_sws_7155 and rte_sws_7157 has to
be considered.

[rte_sws_2667]d Within the mode manager’s Rte_Switch / SchM_Switch API call to
indicate a mode switch, one of the following shall be done:

1. If the corresponding mode machine instance is in a transition, and the queue
for mode switch notifications is full, Rte_Switch / SchM_Switch shall re-
turn an error immediately.

2. If the corresponding mode machine instance is in a transition, and the queue
for mode switch notifications is not full, the mode switch notifica-
tion shall be queued.

3. If the mode machine instance is not in a transition, Rte_Switch /
SchM_Switch shall activate the mode disablings (see rte_sws_2661) of

274 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

the next mode, and initiate the transition as described by the sequence in
rte_sws_2665.

c(RTE00143, RTE00213)

The following list holds the requirements for the steps of a mode transition.

• [rte_sws_2661]d At the beginning of a transition of a mode machine in-
stance, the RTE / Basic Software Scheduler shall activate the mode dis-
ablings of the next mode (see also rte_sws_2503), if any ModeDisablingDe-
pendencys for that mode are defined. c(RTE00143, RTE00213)

• [rte_sws_7152]d If any ModeDisablingDependencys for the next mode are
defined (as specified by rte_sws_2661), the RTE / Basic Software Scheduler
shall wait until the newly disabled Runnable Entities and Basic Software Schedu-
lable Entities are terminated, in case of synchronous mode switching procedure.
c(RTE00143, RTE00213)

Note: To guarantee in case of synchronous mode switching all activated mode
disabling dependent ExecutableEntitys of this mode machine in-
stance have terminated before the start of the OnExit ExecutableEnti-
tys of the transition, RTE generator can exploit the restriction rte_sws_2663
that mode disabling dependent ExecutableEntitys run with higher or
equal priority than the OnExit ExecutableEntitys and the OnEntry Exe-
cutableEntitys.

• [rte_sws_2562]d RTE / Basic Software Scheduler shall execute the OnExit
ExecutableEntitys of the previous mode. c(RTE00143, RTE00052,
RTE00213)

• [rte_sws_7153]d If any OnExit ExecutableEntity is configured the RTE /
Basic Software Scheduler shall wait after its execution (rte_sws_2562) until all
OnExit ExecutableEntitys are terminated in case of synchronous mode
switching procedure. c(RTE00143, RTE00213)

• [rte_sws_2707]d RTE / Basic Software Scheduler shall execute the OnTran-
sition ExecutableEntitys of the next mode. c(RTE00143, RTE00052,
RTE00213)

• [rte_sws_2708]d If any OnTransition ExecutableEntity is configured,
the RTE / Basic Software Scheduler shall wait after its execution (rte_sws_2707)
until all OnTransition ExecutableEntitys are terminated in case of syn-
chronous mode switching procedure. c(RTE00143, RTE00213)

• [rte_sws_2564]d RTE / Basic Software Scheduler shall execute the OnEntry
ExecutableEntitys of the next mode. c(RTE00143, RTE00052, RTE00213)

• [rte_sws_7154]d If any OnEntry ExecutableEntity is configured the RTE
shall wait after its execution (rte_sws_2564) until all OnEntry ExecutableEn-
titys are terminated in case of synchronous mode switching procedure.
c(RTE00143, RTE00213)

275 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

• [rte_sws_2563]d The RTE / Basic Software Scheduler shall deactivate the pre-
vious mode disablings and only keep the mode disablings of the next
mode. c(RTE00143, RTE00213)

With this, the transition is completed.

• [rte_sws_2587]d At the end of the transition, RTE / Basic Software Scheduler
shall trigger the ModeSwitchedAckEvents connected to the mode manager’s
ModeDeclarationGroupPrototype. c(RTE00143, RTE00213)

This will result in an acknowledgment on the mode manager’s side which allows
the mode manager to wait for the completion of the mode switch.

The dequeuing of the mode switch notification shall also be done at the end of
the transition, see rte_sws_2721.

[rte_sws_2665]d During a transition of a mode machine instance each applicable
of the steps

1. rte_sws_2661 (The transition is entered in parallel with this step),

2. rte_sws_7152,

3. rte_sws_2562,

4. rte_sws_7153,

5. rte_sws_2707,

6. rte_sws_2708,

7. rte_sws_2564,

8. rte_sws_7154,

9. rte_sws_2563 (The transition is completed with this step), and

10. immediately followed by rte_sws_2587

shall be executed in the order as listed. If a step is not applicable, the order of the
remaining steps shall be unchanged. c(RTE00143, RTE00213)

[rte_sws_2668]d Immediately after the execution of a transition as described in
rte_sws_2665, RTE / Basic Software Scheduler shall check the queue for pend-
ing mode switch notifications of this mode machine instance. If a mode
switch notification can be dequeued, the mode machine instance shall en-
ter the corresponding transition directly as described by the sequence in rte_sws_2665.
c(RTE00143, RTE00213)

276 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

In the case of a fast sequence of two mode switches, the Rte_Mode or SchM_Mode API
will not indicate an intermediate mode, if a mode switch notification to the next
mode is indicated before the transition to the intermediate mode is completed.

[rte_sws_2630]d In case of synchronous mode switch procedure, the RTE shall exe-
cute all steps of a mode switch (see rte_sws_2665) synchronously for the whole mode
machine instance. c(RTE00143, RTE00213)

I.e., the mode transitions will be executed synchronously for all mode users that are
connected to the same mode manager’s ModeDeclarationGroupPrototype.

[rte_sws_2669]d If the next mode and the previous mode of a transition are the same,
the transition shall still be executed. c(RTE00143, RTE00213)

4.4.5 Assignment of mode machine instances to RTE and Basic Software
Scheduler

[rte_sws_7533]d A mode machine instance shall be assigned to the RTE if the
correlating ModeDeclarationGroupPrototype is instantiated in a port of a software-
component and if the ModeDeclarationGroupPrototype is not synchronized (synchro-
nizedModeGroup of a SwcBswMapping) with a providedModeGroup ModeDeclara-
tionGroupPrototype of a Basic Software Module instance. c(RTE00143)

[rte_sws_7534]d A mode machine instance shall be assigned to the Basic Soft-
ware Scheduler if the correlating ModeDeclarationGroupPrototype is a provided-
ModeGroup ModeDeclarationGroupPrototype of a Basic Software Module instance.
c(RTE00213)

[rte_sws_7535]d The RTE Generator shall create only one mode machine in-
stance if a ModeDeclarationGroupPrototype instantiated in a port of a software-
component is synchronized (synchronizedModeGroup of a SwcBswMapping) with a
providedModeGroup ModeDeclarationGroupPrototype of a Basic Software Module in-
stance. The related common mode machine instance shall be assigned to the
Basic Software Scheduler. c(RTE00143, RTE00213, RTE00214)

In case of synchronized ModeDeclarationGroupPrototypes the correlating common
mode machine instance is initialized during the execution of the SchM_Init. At
this point of time the scheduling of Runnable Entities is not enabled due to the uninitial-
ized RTE. Therefore situation occurs, that the Runnable Entities being OnEntry Exe-
cutableEntitys are not called if the mode machine instance is initialized. Fur-
ther on the current mode of such mode machine instance might be still switched

277 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

until the RTE gets initialized. Nevertheless the OnEntry Runnables of the current active
mode are executed.

[rte_sws_7582]d For common mode machine instances the OnEntry Runnable
Entities of the current active mode are executed during the initialization of the RTE if
the common mode machine instance is not in transition. c(RTE00214)

[rte_sws_7583]d A common mode machine instances is not allowed to enter
transition phase during the RTE initialization if the common mode machine in-
stances has OnEntry Runnable Entities, OnTransition Runnable Entities or OnExit
Runnable Entities c(RTE00214)

Note: rte_sws_7582 and rte_sws_7583 shall ensure a deterministic behavior that the
software components receiving a Mode Switch Request from a common mode ma-
chine instances are receiving the current active mode during RTE initialization.

[rte_sws_7564]d The RTE generator shall reject configurations where ModeSwitch-
Point(s) referencing a ModeDeclarationGroupPrototype in a mode switch port
and a managedModeGroup association(s) to a providedModeGroup ModeDeclara-
tionGroupPrototype are not defined mutual exclusively to one of two synchronized
ModeDeclarationGroupPrototypes. c(RTE00143, RTE00213, RTE00214, RTE00018)

[rte_sws_ext_7565] Only one of two synchronized ModeDeclarationGroupPrototypes
shall mutual exclusively be referenced by ModeSwitchPoint(s) or managedModeGroup
association(s).

Note: rte_sws_ext_7565 shall ensure in the combination with the existence condi-
tions of the Rte_Switch, Rte_Mode, Rte_SwitchAck, SchM_Switch, SchM_Mode and
SchM_SwitchAck that either the port based RTE API or the Basic Software Sched-
uler API (rte_sws_7201 and rte_sws_7264) offered to the implementation of the mode
manager.

4.4.6 Initialization of mode machine instances

[rte_sws_2544]d RTE shall initiate the transition to the initial modes of each mode
machine instance belonging to the RTE during Rte_Start. During the transition to
the initial modes, the steps defined in the following requirements have to be omitted as
no previous mode is defined:

• rte_sws_2562,

• rte_sws_7153,

• rte_sws_2707,

• rte_sws_2708,

• rte_sws_2563,

• rte_sws_2587

278 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

If applicable, the steps described by the following requirements still have to be executed
for entering the initial mode:

• rte_sws_2661,

• rte_sws_2564

c(RTE00143, RTE00144, RTE00116)

[rte_sws_7532]d Basic Software Scheduler shall initiate the transition to the initial
modes of each mode machine instance belonging to the Basic Software Sched-
uler during SchM_Init. During the transition to the initial modes, the steps defined in
the following requirements have to be omitted as no previous mode is defined:

• rte_sws_2562,

• rte_sws_7153,

• rte_sws_2707,

• rte_sws_2708,

• rte_sws_2563,

• rte_sws_2587

If applicable, the steps described by the following requirements still have to be executed
for entering the initial mode:

• rte_sws_2661,

• rte_sws_2564

c(RTE00213)

279 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

280 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4.4.7 Notification of mode switches

ARElement
AtpBlueprint

AtpBlueprintable
AtpStructureElement

BswModuleDescription

+ moduleId: PositiveInteger

AtpPrototype

ModeDeclarationGroupPrototype

+ swCalibrationAccess: SwCalibrationAccessEnum [0..1]

«atpVariation» Tags:
Vh.latestBindingTime = PreCompileTime

ModeSwitchInterface

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

PortInterface

+ isService: Boolean
+ serviceKind: ServiceProviderEnum [0..1]

PPortPrototypeRPortPrototype

AtpBlueprintable
AtpPrototype

PortPrototype

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

ModeDeclarationGroup

+ onTransitionValue: PositiveInteger [0..1]

AtpStructureElement
Identifiable

ModeDeclaration

+ value: PositiveInteger [0..1]

«atpVariation» Tags:
Vh.latestBindingTime
= PreCompileTime

ARElement
AtpStructureElement

SwcBswMapping

SwcBswSynchronizedModeGroupPrototype

AtomicSwComponentType

+bswModeGroup

1

+port

0..*«atpVariation,atpSplitable»

+component

+modeDeclaration 1..*

«isOfType»

+type
1
{redefines
atpType}

+initialMode 1

«atpVariation»

+requiredModeGroup

0..*

«atpVariation»

+providedModeGroup

0..*

«atpVariation»

+synchronizedModeGroup 0..*

+modeGroup 1

+interface 1

+pPort *

«isOfType»

+providedInterface
1
{redefines
atpType}

+rPort *

«isOfType»

+requiredInterface
1
{redefines
atpType}

«instanceRef»

+swcModeGroup

1

281 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Figure 4.47: Definition of a ModeSwitchInterface.

• [rte_sws_2549]d Mode switches shall be communicated via RTE by ModeDec-
larationGroupPrototypes of a ModeSwitchInterface as defined in [2],
see Fig. 4.47. c(RTE00144)

The mode switch ports of the mode manager and the mode user are of
the type of a ModeSwitchInterface.

• [rte_sws_7538]d Mode switches shall be communicated via Basic Software
Scheduler via providedModeGroup and requiredModeGroup ModeDeclara-
tionGroupPrototypes as defined in [9], see Fig. 4.47. Which ModeDeclara-
tionGroupPrototypes are connected to each other is defined by the configuration
of the Basic Software Scheduler. c(RTE00213)

• RTE / Basic Software Scheduler only requires the notification of switches be-
tween modes.

• AUTOSAR does not support inter ECU communication of mode switch notifica-
tions.

RTE does not support a configuration in which the mode users of one mode
machine instance are distributed over several partitions, see rte_sws_2724.

Rationale: Mode switch communication requires high synchronization effort.
Such a high coupling should be avoided between ECUs and between partitions.
This does not prevent distributed mode management.

For the distributed mode management mode requests can be distributed via
ServiceProxySwComponents and the BswM of each target ECU to the mode
users of the BswMs.

• [rte_sws_2508]d A mode switch shall be notified asynchronously as indicated by
the use of a ModeSwitchInterface. c(RTE00144)

Rationale: This simplifies the communication. Due to rte_sws_ext_2724 the com-
munication is local and no handshake is required to guarantee reliable transmis-
sion.

RTE offers the Rte_Switch API to the mode manager for this notification, see
5.6.6.

Basic Software Scheduler offers the SchM_Switch API to the mode manager for
this notification, see 6.5.3.

• The mode manager might still require a feedback to keep it’s internal state
machine synchronized with the RTE / Basic Software Scheduler view of active
modes.

282 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

The RTE generator shall support an AcknowledgementRequest from the mode
switch port / providedModeGroup ModeDeclarationGroupPrototype of a
mode manager, see rte_sws_2587, to notify the mode manager of the com-
pletion of a mode switch.

• [rte_sws_2566]d A ModeSwitchInterface shall support 1:n communication.
c(RTE00144)

Rationale: This simplifies the configuration and the communication. One mode
switch can be notified to all receivers simultaneously.

A ModeSwitchInterface does not support n:1 communication, see
rte_sws_2670.

• [rte_sws_7539]d The connection of providedModeGroup and requiredMod-
eGroup ModeDeclarationGroupPrototype shall support 1:n communication.
c(RTE00213)

• [rte_sws_2624]d A mode switch shall be notified with event semantics, i.e., the
mode switch notifications shall be buffered by RTE or Basic Software Scheduler
to which the mode machine instance is assigned. c(RTE00144)

The queueing of mode switches (and SwcModeSwitchEvents) depends like
that of DataReceivedEvents on the settings for the receiving port, see section
4.3.1.10.2.

• [rte_sws_2567]d A ModeSwitchInterface shall only indicate the next mode
of the transition. c(RTE00144)

• [rte_sws_7541]d A providedModeGroup ModeDeclarationGroupPrototype shall
only indicate the next mode of the transition. c(RTE00213)

The API takes a single parameter (plus, optionally, the instance handle) that in-
dicates the requested ’next mode’. For this purpose, RTE and Basic Software
Scheduler will use identifiers of the modes as defined in rte_sws_2568 and
rte_sws_7294.

• [rte_sws_2546]d The RTE shall keep track of the active modes of a mode man-
ager’s ModeDeclarationGroupPrototypes (mode machine instances)
which is assigned to the RTE. c(RTE00143, RTE00144)

• [rte_sws_7540]d The Basic Software Scheduler shall keep track of the active
modes of a mode manager’s ModeDeclarationGroupPrototypes (mode
machine instances) which is assigned to the Basic Software Scheduler.
c(RTE00213, RTE00144)

Rationale: This allows the RTE / Basic Software Scheduler to guarantee con-
sistency between the timing for firing of SwcModeSwitchEvents / BswMod-
eSwitchEvents and disabling the start of ExecutableEntities by ModeDis-
ablingDependency without adding additional interfaces to a mode manager
with fine grained substates on the transitions.

283 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

• The RTE offers an Rte_Mode API to the SW-C to get information about the active
mode, see section 5.6.29.

• The Basic Software Scheduler offers an SchM_Mode API to the Basic Software
Module to get information about the active mode, see section 6.5.4.

• In addition to the mode switch ports, the mode manager may offer an AU-
TOSAR interface for requesting and releasing modes as a means to keep modes
alive like for ComM and EcuM.

4.4.8 Mode switch acknowledgment

In case of mode switch communication, the mode manager may specify a Mod-
eSwitchedAckEvent or BswModeSwitchedAckEvent to receive a notification from
the RTE that the mode transition has been completed, see rte_sws_2679 and
rte_sws_7559.

[rte_sws_2679]d If acknowledgement is enabled for a provided ModeDec-
larationGroupPrototype and a ModeSwitchedAckEvent references a
RunnableEntity as well as the ModeDeclarationGroupPrototype, the
RunnableEntity shall be activated when the mode switch acknowledgment occurs
or when the RTE detects that the partition to which the mode users are mapped was
stopped or restarted. c(RTE00051, RTE00143)

Note the constraint that all mode users are in the same partition (rte_sws_2724).

The related Entry Point Prototype is defined in rte_sws_2512.

[rte_sws_7559]d If acknowledgement is enabled for a provided
(providedModeGroup) ModeDeclarationGroupPrototype and a BswMod-
eSwitchedAckEvent references a BswSchedulableEntity as well as the
ModeDeclarationGroupPrototype, the BswSchedulableEntity shall be
activated when the mode switch acknowledgment occurs or when a timeout was
detected by the Basic Software Scheduler. rte_sws_2587. c(RTE00213, RTE00143)

The related Entry Point Prototype is defined in rte_sws_7283.

Requirement rte_sws_2679 and rte_sws_7559 merely affects when the runnable is
activated. The Rte_SwitchAck and SchM_SwitchAck shall still be created, according
to requirement rte_sws_2678 and rte_sws_7558 to actually read the acknowledgment.

[rte_sws_2730]d A ModeSwitchedAckEvent that references a RunnableEntity
and is referenced by a WaitPoint shall be an invalid configuration which is rejected
by the RTE generator. c(RTE00051, RTE00018, RTE00143)

The attributes ModeSwitchedAckRequest and BswModeSwitchedAckRequest al-
low to specify a timeout.

[rte_sws_7056]d If ModeSwitchedAckRequest or BswModeSwitchedAckRe-
quest with a timeout greater than zero is specified, the RTE shall ensure that time-

284 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

out monitoring is performed, regardless of the receive mode of the acknowledgment.
c(RTE00069, RTE00143)

[rte_sws_7060]d Regardless of an occurred timeout during a mode transition the
RTE shall complete the transition of a mode machine instance as defined in
rte_sws_2665. c(RTE00069, RTE00143)

If a WaitPoint is specified to collect the acknowledgment, two timeout values have to
be specified, one for the ModeSwitchedAckRequest and one for the WaitPoint.

[rte_sws_7057]d If different timeout values are specified for the ModeSwitchedAck-
Request for a ModeDeclarationGroupPrototype and for the WaitPoint asso-
ciated with the ModeSwitchedAckEvent for the ModeSwitchPointreferring to that
ModeDeclarationGroupPrototype, the configuration shall be rejected by the RTE
generator. c(RTE00018, RTE00143)

[rte_sws_7058]d The status information about the success or failure of the mode tran-
sition shall be buffered with last-is-best semantics. When a new mode switch noti-
fication is sent or when the mode switch notification was completed after a timeout,
the status information is overwritten. c(RTE00143)

rte_sws_7058 implies that once the ModeSwitchedAckEvent or BswMod-
eSwitchedAckEvent has occurred, repeated API calls (Rte_SwitchAck or
SchM_SwitchAck to retrieve the acknowledgment can return different values.

[rte_sws_7059]d If the timeout value of the ModeSwitchedAckRequest or
BswModeSwitchedAckRequest is 0, no timeout monitoring shall be performed.
c(RTE00069, RTE00143)

4.5 External and Internal Trigger

4.5.1 External Trigger Event Communication

4.5.1.1 Introduction

With the mechanism of the trigger event communication a software component or a
Basic Software Module acting as a Trigger Source is able to request the activation
of Runnable Entities respectively Basic Software Schedulable Entities of connected
Trigger Sinks. Typically but not necessarily these Runnable Entities and Basic
Software Schedulable Entities are executed in a sequential order.

285 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

AtpBlueprintable
AtpPrototype

Components::PortPrototype

Components::
RPortPrototype

Components::AtomicSwComponentType

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

Components::SwComponentType

AtpStructureElement
Identifiable

TriggerDeclaration::Trigger

+ swImplPolicy: SwImplPolicyEnum [0..1]

PortInterface::TriggerInterface

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

PortInterface::PortInterface

+ isService: Boolean
+ serviceKind: ServiceProviderEnum [0..1]

«atpVariation» Tags:
Vh.latestBindingTime
= PreCompileTime

ARElement
AtpBlueprint

AtpBlueprintable
AtpStructureElement

BswOverview::BswModuleDescription

+ moduleId: PositiveInteger

InternalBehavior

BswBehavior::
BswInternalBehavior

BswBehavior::
BswTriggerDirectImplementation

+ task: Identifier

Components::
PPortPrototype

«atpVariation» Tags:
Vh.latestBindingTime
= PreCompileTime

«atpVariation» Tags:
Vh.latestBindingTime
= PreCompileTime

«atpVariation» Tags:
Vh.latestBindingTime
= PreCompileTime

SwcBswMapping::
SwcBswSynchronizedTrigger

ARElement
AtpStructureElement

SwcBswMapping::SwcBswMapping

+trigger 1..*

+port

0..*«atpVariation,atpSplitable»

+component

«atpVariation»

+releasedTrigger

0..*

0..*

+masteredTrigger 1

+bswTrigger

1

«atpVariation»

+requiredTrigger

0..*

«atpVariation»

+synchronizedTrigger

0..*

+rPort

* «isOfType»

+requiredInterface

1
{redefines
atpType}

+pPort

* «isOfType»

+providedInterface

1
{redefines
atpType}

«atpSplitable»
+internalBehavior 0..*

«atpVariation»

+triggerDirectImplementation

0..*

«instanceRef»
+swcTrigger

1

Figure 4.48: Summary of the use of Trigger by an AUTOSAR software-components and
Basic Software Modules as defined in the Software Component Template Specification
[2] and Specification of BSW Module Description Template [9].

[rte_sws_7212]d The RTE shall support External Trigger Event Communication.
c(RTE00162)

[rte_sws_7542]d The Basic Software Scheduler shall support the activation of Basic
Software Schedulable Entities occurrence of External Trigger Events. c(RTE00216)

4.5.1.2 Trigger Sink

A AUTOSAR software-component Trigger Sink has a dedicated require trigger
port. The trigger port is typed by an TriggerInterface declaring one or more Trig-
ger. See figure 4.48. The Runnable Entities of the of the software component are
activated at the occurrence of the external event by the means of a ExternalTrig-
gerOccurredEvent.

286 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

An Basic Software Module Trigger Sink has to define a requiredTrigger Trigger.
The Basic Software Schedulable Entities of the of the Basic Software Module are acti-
vated at the occurrence of the external event by the means of a BswExternalTrig-
gerOccurredEvent. See figure 4.48.

Basically there are two approaches to implement the activation of triggered Exe-
cutableEntitys. In one case the triggered ExecutableEntitys of the Trig-
ger Sinks triggered by one Trigger of the Trigger Source are mapped in one
or more tasks. In this case the event communication can be implemented by the means
of activating an Operating System Task.

[rte_sws_7213]d The RTE generator shall support invocation of triggered Exe-
cutableEntitys via OS Task. c(RTE00162, RTE00216)

In the other case the Event Communication is mapped to a function call which means
that the triggered ExecutableEntitys of the Trigger Sinks are executed in
the Rte_Trigger API respectively SchM_Trigger API used to raise the trigger event
in the Trigger Sinks.

[rte_sws_7214]d The RTE generator shall support invocation of triggered Exe-
cutableEntitys via direct function call, if all of the follwing conditions are fulfilled:

• the triggered ExecutableEntitys do not define a ’minimum start distance’

• the Trigger Sink and Trigger Source are in the same Partition

• if no BswTriggerDirectImplementation is defined.

• if the preconditions of table 4.5 are fulfilled

• no queuing for the Trigger Source is configured

c(RTE00162, RTE00216)

4.5.1.3 Trigger Source

An AUTOSAR software-component Trigger Source has a dedicated provide trig-
ger port. The trigger port is typed by an TriggerInterface declaring one or more
Trigger. See figure 4.48. To be able to connect a provide trigger port and a re-
quire trigger port, both ports must be categorized by the same or by compatible
TriggerInterface(s).

An Basic Software Module Trigger Source has to define a releasedTrigger Trigger.
See figure 4.48. The connection of releasedTrigger and requiredTrigger Trigger is
defined by the ECU configuration of the Basic Software Scheduler.

To inform the RTE about an occurrence of the external trigger event the RTE provides
the Rte_Trigger to an AUTOSAR software-component Trigger Source.

[rte_sws_7543]d The call of the Rte_Trigger API shall activate all Runnable Entities
that are activated by ExternalTriggerOccurredEvents associated to a connected Trig-

287 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

ger of the Trigger Source if either no queuing for the Trigger is configured or if
queuing for the Trigger is configured and the trigger queue is empty. c(RTE00162)

For Basic Software Module Trigger Source are two options defined to interfaces
with Basic Software Scheduler.

The first option is that the Basic Software Module Trigger Source inform the Basic
Software Scheduler about an occurrence of the external trigger event by the call of the
SchM_Trigger API.

[rte_sws_7544]d The call of the SchM_Trigger API shall activate all ExecutableEn-
titys that are activated by ExternalTriggerOccurredEvents associated to a connected
Trigger of the Trigger Source if either no queuing for the Trigger is configured or
if queuing for the Trigger is configured and the trigger queue is empty. c(RTE00216)

The second option is that the Basic Software Module Trigger Source directly takes
care about the activation of the particular OS task to which the ExternalTriggerOc-
curredEvents of the triggered ExecutableEntitys are mapped. In this case
the Trigger Source has to define a BswTriggerDirectImplementation. The name
of the used OS tasks is annotated by the task attribute. If an BswTriggerDirectImple-
mentation is defined no SchM_Trigger API is generated by the RTE generator. see
rte_sws_7548 and rte_sws_7264.

[rte_sws_7545]d The RTE generator shall reject configurations where a BswTrig-
gerDirectImplementation is specified and an ExecutableEntity that is activated by
an ExternalTriggerOccurredEvent associated to a connected Trigger of the Trigger
Source is mapped to an OS task different from the one defined by the task attribute of
the BswTriggerDirectImplementation. c(RTE00216, RTE00018)

[rte_sws_7548]d The RTE generator shall reject configurations where a issuedTrig-
ger association and a BswTriggerDirectImplementation is defined for the same re-
leasedTrigger Trigger. c(RTE00216, RTE00018)

[rte_sws_ext_7547] A releasedTrigger Trigger shall not be referenced by both a is-
suedTrigger and a BswTriggerDirectImplementation.

Note: This shall ensure in the combination with the existence conditions
(rte_sws_7264) of the SchM_Trigger that either the Trigger API or the direct task acti-
vation is offered to the implementation of the Trigger Source.

Note also that several OS tasks might be used to implement a Trigger (several
BswTriggerDirectImplementation can be defined for a releasedTrigger).

If the BswTriggerDirectImplementation is defined for a releasedTrigger which
swImplPolicy attribute is set to queued it is part of the Trigger Source to imple-
ment the queue or to use the means of the OS (OsTaskActivation > 1) to queue the
number of raised triggers. (OsTaskActivation > 1). Further details about queuing of
triggers is described in 4.5.4.

288 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4.5.1.4 Multiplicity

4.5.1.4.1 Multiple Trigger

A trigger interface contains one or more Trigger. A port of an AUTOSAR software-
component that provides an AUTOSAR trigger interface to the component can inde-
pendently raise events related to each Trigger defined in the interface .

[rte_sws_7215]d The RTE API shall support independent event raising for each Trig-
ger in a trigger interface. c(RTE00162)

Further on a Basic Software Module Trigger Source can define several re-
leasedTrigger Trigger which can be independently raised.

[rte_sws_7546]d The Basic Software Scheduler API shall support independent event
raising for each releasedTrigger Trigger. c(RTE00216)

4.5.1.4.2 Multiple Trigger Sinks Single Trigger Source

The concept of external event communication supports, that a Trigger Source ac-
tivates one or more triggered ExecutableEntitys in one or more Trigger
Sinks.

[rte_sws_7216]d The RTE generator shall support triggered ExecutableEnti-
tys triggered by the same Trigger of a Trigger Source (’1:n’ communication
where n ≥ 1). c(RTE00162, RTE00216)

The execution order of the triggered ExecutableEntitys in the trigger sinks
depends from the RteEventToTaskMapping described in chapter 7.6.1 and the
configured priorities of the operating system.

4.5.1.4.3 Multiple Trigger Sources Single Trigger Sink

The RTE generator does support multiple Trigger Sources communicating events
to the same Trigger in a Trigger Sink (’n:1’ communication where n ≥ 1).

[rte_sws_7039]d The RTE generator shall reject configurations where multiple Trig-
ger Sources communicating events to the same Trigger in a Trigger Sink (’n:1’
communication where n ≥ 1). c(RTE00018)

[rte_sws_ext_7040] The same Trigger in a Trigger Sink must not be connected to
multiple Trigger Sources.

289 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4.5.1.5 Synchronized Trigger

If two Triggers are synchronized by the definition of a SwcBswSynchronizedTrigger
then the Trigger in the referenced provide trigger port and the referenced re-
leasedTrigger Trigger are treated as one common Trigger. This means that all Ex-
ecutableEntitys activated by an ExternalTriggerOccurredEvent associated to one
of the connected Triggers are activated together.

[rte_sws_7218]d The RTE and Basic Software Scheduler shall activate together all
ExecutableEntitys that are activated by ExternalTriggerOccurredEvents associ-
ated to a synchronized connected Trigger. c(RTE00162, RTE00216, RTE00217)

[rte_sws_7549]d The RTE generator shall reject configurations where a synchronized
Trigger is referenced by more than one type of access method, where the type is one
of the following:

1. ExternalTriggeringPoint

2. issuedTrigger

3. BswTriggerDirectImplementation

c(RTE00216, RTE00217, RTE00018)

[rte_sws_ext_7550] A synchronized Trigger shall only be referenced by either Ex-
ternalTriggeringPoints, issuedTriggers or BswTriggerDirectImplementations.

Note: This shall ensure in the combination with the existence conditions of the
Rte_Trigger and SchM_Trigger that only one kind of Trigger API (rte_sws_7201
and rte_sws_7264) or the direct task activation is offered to the implementation of the
Trigger Source.

4.5.2 Inter Runnable Triggering

With the mechanism of Inter Runnable Triggering one Runnable Entity is able to re-
quest the activation of Runnable Entities of the same software-component instance.

[rte_sws_7220]d The RTE shall support Inter Runnable Triggering. c(RTE00163)

Similar to External Trigger Event Communication (described in chapter 4.5.1) the acti-
vation of triggered runnables can be implemented by means of activating an Operating
System Task or by direct function call.

[rte_sws_7555]d The call of the Rte_IrTrigger API shall activate all triggered
runnables which InternalTriggerOccurredEvents are associated with the related In-
ternalTriggeringPoint of the same software-component instance if either no queuing

290 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

for the InternalTriggeringPoint is configured or if queuing for the Internal-
TriggeringPoint is configured and the trigger queue is empty. c(RTE00163)

[rte_sws_7221]d The RTE shall support for Inter Runnable Triggering that triggered
runnables entities are invoked via OS Task activation. c(RTE00163)

[rte_sws_7224]d The RTE shall support for Inter Runnable Triggering that triggered
runnables are invoked via direct function call if all of the following conditions are
fulfilled:

• none of the triggered Basic Software Schedulable Entitys acti-
vated by this InternalTriggeringPoint define a ’minimum start distance’

• no queuing for the InternalTriggeringPointis configured

c(RTE00163)

4.5.2.1 Multiplicity

A InternalTriggeringPoint might be referenced by more than one Internal-
TriggerOccurredEvent. Therefore one RunnableEntity is able to request the
activation of several RunnableEntity’s with the mechanism of Inter Runnable Trig-
gering contemporaneously.

[rte_sws_7223]d The RTE shall support multiple RunnableEntity’s triggered by the
same InternalTriggeringPoint (’1:n’ Inter Runnable Triggering where n ≥ 1).
c(RTE00163)

The execution order of the runnable entities in the trigger sinks depends from the Runn-
able Entity to task mapping described in chapter 7.6.1 and the configured priorities of
the operating system.

4.5.3 Inter Basic Software Module Entity Triggering

The Inter Basic Software Module Entity Triggering is similar to the mechanism of Inter
Runnable Triggering (see chapter 4.5.2) with the exception that it is used inside a
Basic Software Module. It can be used to request the activation of a Basic Software
Schedulable Entity by a Basic Software Entity of the same a Basic Software Module
instance.

[rte_sws_7551]d The Basic Software Scheduler shall support Inter Basic Software
Module Entity Triggering. c(RTE00230)

291 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Similar to External Trigger Event Communication (described in chapter 4.5.1) the acti-
vation of triggered Basic Software Schedulable Entity can be implemented by means
of activating an Operating System Task or by direct function call.

[rte_sws_7552]d The call of the SchM_ActMainFunction API shall activate all
triggered Basic Software Schedulable Entitys which BswInternalTrigge-
rOccurredEvents are associated by the related activationPoint of the same a Basic
Software Module instance if either no queuing for the BswInternalTriggering-
Point is configured or if queuing for the BswInternalTriggeringPoint is config-
ured and the trigger queue is empty.. c(RTE00230)

[rte_sws_7553]d The Basic Software Scheduler shall support for Inter Basic Soft-
ware Module Entity Triggering that triggered Basic Software Schedulable
Entitys are invoked via OS Task activation. c(RTE00230)

[rte_sws_7554]d The Basic Software Scheduler shall support for Inter Basic Soft-
ware Module Entity Triggering that triggered Basic Software Schedulable
Entitys are invoked via direct function call if

• the triggered Basic Software Schedulable Entitys do not define a
’minimum start distance’

• if the preconditions of table 4.5 are fulfilled

• no queuing for the BswInternalTriggeringPointis configured

c(RTE00230)

Note: Typically the feature of Inter Basic Software Module Entity Triggering is used
to decouple the execution context of Basic Software Entities. But if this decoupling
is really required depends from the particular scheduling concept and microcontroller
performance.

4.5.4 Queuing of Triggers

The queuing of triggers ensures that the number of executions of triggered Exe-
cutableEntitys is equal to the number of released triggers. Further on it ensures
that the number of activations of triggered ExecutableEntitys is equal for all
associated triggered ExecutableEntitys of a Trigger Emitter if the as-
sociated triggered ExecutableEntitys are not activated by other RTEEvents.
Therefore the trigger queue is rather a counter than a real queue.

[rte_sws_7087]d The RTE shall support the queuing of triggers for

• External Trigger Event Communication

• Inter Runnable Triggering

• Inter Basic Software Module Entity Triggering

292 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

if the RteTriggerSourceQueueLength / RteBswTriggerSourceQueueLength
is configured > 0. c(RTE00235)

The attribute swImplPolicy specifies a queued or non queued processing of the
Trigger Emitter. Since the setup of a queue might have other side effects on
the dynamic behavior of the ECU its still an design decision of the ECU integrator to
configure a trigger queue.
Therefore it is possible to configure a trigger queue regardless on the value of the
attribute swImplPolicy of the Trigger Emitter.

[rte_sws_7088]d The RTE shall enqueue a trigger when the RTE gets in-
formed about the occurrence of a trigger by the call of the related API
(Rte_IrTrigger, Rte_Trigger, SchM_Trigger, SchM_ActMainFunction) if queu-
ing for this Trigger Emitter is configured and if the maximum queue length
(RteTriggerSourceQueueLength / RteBswTriggerSourceQueueLength) is
not exceeded. c(RTE00235)

[rte_sws_7089]d The RTE shall dequeue a trigger when the Trigger Emitter is
informed about the end of execution of all triggered ExecutableEntitys which
are triggered by this Trigger Emitter. c(RTE00235)

[rte_sws_7090]d The RTE shall activate all triggered ExecutableEntitys as-
sociated to a Trigger Emitter when it has successfully dequeued a trigger from
the trigger queue of the Trigger Emitter except for the last dequeued trigger.
c(RTE00235)

Figure 4.49: Queued activation of ExecutableEntitys

The figure 4.49 illustrates the basic behavior of a trigger queue.

• At "‘A"’ the RTE gets informed by the call of the API about the occurrence of
a Trigger. Since no trigger is in the queue all associated triggered Exe-
cutableEntitys are activated (rte_sws_7544, rte_sws_7555, rte_sws_7552)
and the trigger is enqueued (rte_sws_7088).

293 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

• At "‘B"’ all triggered ExecutableEntitys which are triggered by this Trig-
ger Emitter have terminated. The RTE dequeues the trigger but since it is the
last dequeued trigger the associated triggered ExecutableEntitys are
not activated again.

• At "‘C"’ the RTE gets informed by the call of the API about the occurrence of a
Trigger. Enqueuing of triggers and activating of triggered ExecutableEn-
titys is done as in "‘A"’

• At "‘D"’ the RTE gets informed again by occurrence of a trigger. Since a trigger
is already in the queue the associated triggered ExecutableEntitys are
not activated (rte_sws_7544, rte_sws_7555, rte_sws_7552). Nevertheless the
trigger is enqueued (rte_sws_7088).

• At "‘E"’ all triggered ExecutableEntitys which are triggered by this
Trigger Emitter have terminated. The RTE dequeues the trigger
(rte_sws_7089) and activates all associated triggered ExecutableEnti-
tys (rte_sws_7090).

• At "‘E"’ all triggered ExecutableEntitys which are triggered by this Trig-
ger Emitter have terminated. Dequeuing of triggers is done as in "‘B"’

Implementation hint:
One possible solution to implement the queue for the number of released triggers is
to use the means of the operation systems which already can queue the activation
requests for a OS task (OsTaskActivation > 1). This for sure is only possible
if all ExternalTriggerOccurredEvents, InternalTriggerOccurredEvents,
BswExternalTriggerOccurredEvent and BswInternalTriggerOccurredE-
vent connected to the same Trigger Emitter with configured queuing are mapped
exclusively to one OS task.

4.5.5 Activation of triggered ExecutableEntities

The activation of triggered ExecutableEntitys is done like described in chapter
4.2.3. See also Fig. 4.15.

If the triggered ExecutableEntitys are activated synchronous or asynchronous
depends how the RTEEvents and BswEvents are mapped to OS tasks.

If all ExternalTriggerOccurredEvents of the Trigger Sinks which are associated to
connected Trigger of the Trigger Source

• either are mapped to OS task(s) with higher priority as the OS task where the
Executable Entity calling the Rte_Trigger respectively the SchM_Trigger API
is mapped

• or are activated by direct function call

294 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

the triggering behaves synchronous. This means that all "triggered" Executable Entities
of the Trigger Sinks are executed before the Rte_Trigger or SchM_Trigger API
returns.

If any ExternalTriggerOccurredEvent of the Trigger Sinks which are associated to
connected Trigger of the Trigger Source

are mapped to an OS task with lower priority as the OS task where the Executable En-
tity calling the Rte_Trigger respectively the SchM_Trigger API is mapped the trigger-
ing behaves asynchronous. This means that not all triggered ExecutableEnti-
tys of the Trigger Sinks are executed before the Rte_Trigger or SchM_Trigger
API returns.

295 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4.6 Initialization and Finalization

4.6.1 Initialization and Finalization of the RTE

RTE and Basic Software Scheduler have a nested life cycle. It is only permitted to
initialize the RTE if the Basic Software Scheduler is initialized (rte_sws_ext_7577).
Further on it is only supported to finalize the Basic Software Scheduler after the RTE
is finalized (rte_sws_ext_7576).

Basic Software Scheduler initialized

RTE initial ized

EcuM RTEBasic Software
Scheduler

alt Rte initialization

SchM_Init()

Rte_Start()

Rte_Stop()

SchM_Deinit()

Figure 4.50: Nested life cycle of RTE and Basic Software Scheduler

4.6.1.1 Initialization of the Basic Software Scheduler

Before the Basic Software Scheduler is initialized only the API calls SchM_Enter and
SchM_Exit are available (rte_sws_7578).

The ECU state manager calls the startup routine SchM_Init of the Basic Software
Scheduler before any Basic Software Module needs to be scheduled.

The initialization routine of the Basic Software Scheduler will return within finite execu-
tion time (see rte_sws_7273).

The Basic Software Scheduler will initialize the mode machine instances
(rte_sws_2544)assigned to the Basic Software Scheduler. This will activate the mode
disablings of all initial modes during SchM_Init and trigger the execution of the

296 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

OnEntry ExecutableEntitys of the initial modes. After initialization of the Basic
Software Scheduler internal data structure and mode machine instances the acti-
vation of Basic Software Schedulable Entities triggered by BswTimingEvents starts.

[rte_sws_7574]d The call of SchM_Init shall start the activation of BswSchedula-
bleEntitys triggered by BswTimingEvents. c(RTE00211)

[rte_sws_7584]d The call of SchM_Init shall start the activation of BswSchedula-
bleEntitys triggered by BswBackgroundEvents. c(RTE00211)

Note: In case of OS task where BswEvents and RTEEvents are mapped to the RTE
Generator has to ensure, that RunnableEntitys are not activated before the RTE is
initialized or after the RTE is finalized. See rte_sws_7580 and rte_sws_2538.

[rte_sws_7580]d The Basic Software Scheduler has to prevent the activation of
RunnableEntitys before the RTE is initialized. c(RTE00220)

4.6.1.2 Initialization of the RTE

The ECU state manager calls the startup routine Rte_Start of the RTE at the end of
startup phase II when the OS is available and all basic software modules are initialized.

The initialization routine of the RTE will return within finite execution time (see
rte_sws_2585).

Before the RTE is initialized completely, there is only a limited capability of RTE to
handle incoming data from COM:

The RTE will initialize the mode machine instances (rte_sws_2544) assigned
to the RTE. This will activate the mode disablings of all initial modes during
Rte_Start and trigger the execution of the OnEntry ExecutableEntitys of the ini-
tial modes. Further on for common mode machine instances the OnEntry Runn-
able Entities of the current active mode are executed during the initialization of the
RTE (rte_sws_7582). common mode machine instances can not enter the transi-
tion phase during RTE initialization (rte_sws_7583).

[rte_sws_7575]d The call of Rte_Start shall start the activation of RunnableEn-
titys triggered by TimingEvents. c(RTE00072)

[rte_sws_7178]d The call of Rte_Start shall start the activation of RunnableEn-
titys triggered by BackgroundEvents. c(RTE00072)

[rte_sws_7615]d The call of Rte_Start shall be executed on every core indepen-
dently. c()

[rte_sws_7616]d The Rte_Start includes the partition specific startup activities of
RTE for all partitions that are mapped to the core, from which the Rte_Start is called.
c()

297 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4.6.1.3 Stop and restart of the RTE

Partitions of the ECU can be stopped and restarted. In a stopped or restarting parti-
tion, the OS has killed all running tasks. RTE has to react to stopping and restarting
partitions.

The RTE does not execute ExecutableEntities of a terminated or restarting partition.

[rte_sws_7604]d The RTE shall not activate, start or release ExecutableEntity
execution-instances of a terminated or restarting partition. c(RTE00195)

The RTE is notified of the termination (respectively, the beginning of restart) of a par-
tition by the Rte_PartitionTerminated (respectively, Rte_PartitionRestarting)
API. At this point in time, the tasks containing the runnables of this partition are already
killed by the OS. In case of restart, RTE is notified by the Rte_RestartPartition API
when the communication can be re-initialized and re-enabled.

rte_sws_7604 also applies to ExecutableEntities whose execution started before the
notification to the RTE. RTE can rely on the OS functionality to stop or restart an OS
application and all related OS objects.

When a partition is restarted, the RTE will restore an initial environment for its SW-Cs.

[rte_sws_2735]d When the Rte_RestartPartition API for a partition is called, the
RTE shall restore an initial environment for its SW-Cs on this partition. c()

The SW-Cs themselves are responsible to restore their internal initial environment and
should not rely on any initialization performed by the compiler. This should be done in
initialization runnables.

[rte_sws_7610]d The RTE Generator shall reject configurations where
the handleTerminationAndRestart attribute of a SW-C is not set to
canBeTerminatedAndRestarted and this SW-C is mapped on a Partition
with the PartitionCanBeRestarted parameter set to TRUE. c(RTE00018,
RTE00196)

When a partition is terminated or is being restarted, it is important that the runnable
entities of this partition are not activated before the partition returns to the ACTIVE
state.

In case of partition restart or termination, event sent to this partition or activation of
tasks of this partition are discarded. The RTE can use these mechanism to ensure that
ExecutableEntities are not activated.

298 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4.6.1.4 Finalization of the RTE

The finalization routine Rte_Stop of the RTE is called by the ECU state manager at the
beginning of shutdown phase I when the OS is still available. (For details of the ECU
state manager, see [7]. For details of Rte_Start and Rte_Stop see section 5.8.)

[rte_sws_2538]d The RTE shall not activate, start or release RunnableEntitys on
a core after Rte_Stop has been called on this core. c(RTE00116, RTE00220)

Note: RTE does not kill the tasks during the ‘running’ state of the runnables.

[rte_sws_2535]d RTE shall ignore incoming client server communication requests, be-
fore RTE is initialized completely and when it is stopped. c(RTE00116)

[rte_sws_2536]d Incoming data and events from sender receiver communication shall
be ignored, before RTE is initialized completely and when it is stopped. c(RTE00116)

4.6.1.5 Finalization of the Basic Software Scheduler

The ECU state manager calls the finalization routine SchM_Deinit of the Basic Soft-
ware Scheduler if the scheduling of Basic Software Modules has to be stopped.

[rte_sws_7586]d The BSW Scheduler shall neither activate nor start Schedula-
bleEntitys on a core after SchM_Deinit has been called on this core. c(RTE00116)

Note: The BSW Scheduler does not kill the tasks during the ‘running’ state of the
SchedulableEntitys.

4.6.2 Initialization and Finalization of AUTOSAR Software-Components

For the initialization and finalization of AUTOSAR software components, RTE provides
the mechanism of mode switches. A SwcModeSwitchEvent of an appropriate Mod-
eDeclaration can be used to trigger a corresponding initialization or finalization
runnable (see rte_sws_2562). Runnables that shall not run during initialization or fi-
nalization can be disabled in the corresponding modes with a ModeDisablingDe-
pendency (see rte_sws_2503).

Since category 2 runnables have no predictable execution time and can not be ter-
minated using ModeDisablingDependencies, it is the responsibility of the imple-
menter to set meaningful termination criteria for the cat 2 runnables. These criteria
could include mode information. At latest, all runnables will be terminated by RTE
during the shutdown of RTE, see rte_sws_2538.

It is appropriate to use user defined modes that will be handled in a proprietary ap-
plication mode manager.

All runnables that are triggered by entering an initial mode, are activated immediately
after the initialization of RTE. They can be used for initialization. In many cases it might

299 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

be preferable to have a multi step initialization supported by a sequence of different
initialization modes.

300 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4.7 Variant Handling Support

4.7.1 Overview

The AUTOSAR Templates support the creation of Variants in a subset of its model
elements. The Variant Handling support in the in AUTOSAR Templates is driven by
the purpose to describe variability in a AUTOSAR System on several aspects, e.g.

• Virtual Functional Bus

• Component SwcInternalBehavior and SwcImplementation

• Deployment of the software components to ECUs

• Communication Matrix

• Basic Software Modules

This approach requires that the RTE Generator is able to process the described Vari-
ability in input configurations and partially to implement described variability in the gen-
erated RTE and Basic Software Scheduler code.

In the meta-model all locations that may exhibit variability are marked with the stereo-
type atpVariation. This allows the definition of possible variation points. Tagged
Values are used to specify additional information.

There are four types of locations in the meta-model which may exhibit variability:

• Aggregations

• Associations

• Attribute Values

• Classes providing property sets

More details about the AUTOSAR Variant Handling Concept can be found in the AU-
TOSAR Generic Structure Template [10].

[rte_sws_6543]d The RTE generator shall support the VariationPoints defined in
the AUTOSAR Meta Model c(RTE00201, RTE00202, RTE00229, RTE00191)

The list of VariationPoints shall provide an overview about the most prominent
ones which impacting the generated RTE code. Further on tables will show which
implementation of variability is standardized due to the relevance for contract phase.
(see tables 4.13, 4.15, 4.16, 4.17, 4.18, 4.19, 4.21, 4.22, 4.24 and 4.25. But please
note that these tables are not listing all possible variation of the input configuration. For
that the related Template Specifications are relevant.

301 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4.7.2 Choosing a Variant and Binding Variability

To understand the later definition it is required to clarify the difference between Choos-
ing a Variant and Resolving Variability.

A particular PreBuild Variant in a variant rich input configuration is chosen by assigning
particular values to the SwSystemconsts with the means of PredefinedVariants
and associated SwSystemconstantValueSets. With this information SwSystem-
constDependentFormulas can be evaluated which determines PreBuild conditions
of VariationPoints and attribute values. Nevertheless the input configuration con-
tains still the information of all potential variants.

A particular PostBuild Variant in a variant rich input configuration is chosen by as-
signing particular values to the PostBuildVariantCriterion with the means
of PredefinedVariants and associated PostBuildVariantCriterionValue-
Sets. With this information PostBuildVariantConditions can be evaluated for
instance to check the consistency of chosen PostBuild Variant. Nevertheless the input
configuration contains still the information of all potential variants.

From an RTE perspective this information is manly used to generate the RTE Post
Build Variant Sets which are used to bind the PostBuild Variability during ini-
tialization of the RTE (call of SchM_Init).

The variability of an input configuration is bound if information related to other variants
is removed and only the information of the bound variant is kept. Binding respectively
resolving variability in the scope of this specification means that the generated code
only implements the particular variant which results out of the chosen variant of the
input configuration.

If the variability can not be resolved in a particular phase of the RTE Generation Pro-
cess (see chapter 3) the generated RTE files have to be able to support the potential
variants by implementing all potential variants.

If the variability is relevant for the software components contract the RTE Generator
uses standardized Condition Value Macros to implement the PreBuild Variabil-
ity. These Condition Value Macros are set in the RTE PreBuild Data Set Contract
Phase and RTE PreBuild Data Set Generation Phase to the resulting value of the eval-
uated ConditionByFormula of the related VariationPoint.

For further definition see sections 4.7.2.3, 4.7.2.4, 4.7.2.5, 4.7.2.6 and 4.7.2.7.

4.7.2.1 General impact of Binding Times on RTE generation

Each VariationPoint has an attribute bindingTime, which defines the latest bind-
ing time for this variation point. This controls the capability of the software implementa-
tion to bind the variant at latest at a certain point of time. Even if the variability is chosen
earlier for instance by assigning SwSystemconstValues to the SwSystemconsts
used by the VariationPoints condition the RTE generator has to respect potential

302 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

latest binding for VariationPoints supporting the latest binding time. Please note
variability with the latest binding time PreCompileTime and PostBuild have a par-
ticular semantic for the RTE generation and impacts the generated output. For instance
a conditional existence RTE API which is bound at PreCompileTime requires that the
RTE generator inserts specific pre processor statements.

RTE Phase System De-
signe Time

Code Gen-
eration Time

Pre Compile
Time

Link Time Post Build

RTE Contract Phase R R I n/a n/a
Basic Software
Scheduler Contract
Phase

R R I n/a n/a

RTE PreBuild Data
Set Contract Phase

n/a n/a RV n/a n/a

Basic Software
Scheduler Gener-
ation Phase

R R I n/a I

RTE Generation
Phase

R R I n/a I

RTE PreBuild Data
Set Generation Phase

n/a n/a RV n/a n/a

RTE PostBuild Data
Set Generation Phase

n/a n/a n/a n/a RV

Table 4.12: Overview impact of Binding Times on RTE generation

R resolve variability, a particular variant is the output
I implement variability, all possible variants in the output
RV provide values to resolve implemented variability PreBuild or PostBuild
n/a not applicable

4.7.2.2 Choosing a particular variant

A particular variant of the variant rich input configuration is chosen via the ECU con-
figuration For that purpose a set of PredefinedVariants is configured to chosen
a variant in the input configuration and to later on bind the variability in subsequent
phases of the RTE Generation Process 3. For further information see document [10].

[rte_sws_6500]d For each PreBuild Variability in the input configuration the
RTE Generator shall choose a particular variant according to the Predefined-
Variants selected by the parameter EcucVariationResolver. c(RTE00201,
RTE00202, RTE00229, RTE00191)

[rte_sws_6546]d For each PostBuild Variability in the input configuration the
RTE Generator shall choose a particular variant according to the Predefined-
Variants selected by the parameter RtePostBuildVariantConfiguration.
c(RTE00201, RTE00202, RTE00229, RTE00191)

303 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Having variants chosen the RTE generator can apply further consistency checks on
the particular variants.

4.7.2.3 SystemDesignTime

Variability with latest binding time SystemDesignTime (called SystemDesignTime
Variability) has to be bound before the RTE Contract Phase respectively Basic
Software Scheduler Contract Phase. Such variability is resolved by RTE generator in
all generation phases. Due to that such kind of variability results always in a particular
variant and needs no special code generation rules for RTE generator.

[rte_sws_6501]d The RTE generator shall bind SystemDesignTime Variability
in the RTE Contract Phase, Basic Software Scheduler Contract Phase, RTE Genera-
tion Phase and Basic Software Scheduler Generation Phase (3). c(RTE00191)

[rte_sws_6502]d The RTE Generator shall reject input configurations during the RTE
Contract Phase where not a particular variant is chosen for each SystemDesignTime
Variability affecting the software components contract. c(RTE00201, RTE00018)

[rte_sws_6503]d The RTE Generator shall reject input configurations during the Ba-
sic Software Scheduler Contract Phase where not a particular variant is chosen for
each SystemDesignTime Variability affecting the Basic Software Scheduler
contract. c(RTE00229, RTE00018)

[rte_sws_6504]d The RTE Generator shall reject input configurations during the Ba-
sic Software Scheduler Generation Phase where not a particular variant is chosen
for each SystemDesignTime Variability affecting the Basic Software Scheduler
generation. c(RTE00229, RTE00018)

[rte_sws_6505]d The RTE Generator shall reject input configurations during the RTE
Generation Phase where not a particular variant is chosen for each SystemDe-
signTime Variability affecting the RTE generation. c(RTE00201, RTE00202,
RTE00018)

4.7.2.4 CodeGenerationTime

During RTE Contract Phase, RTE Generation Phase and Basic Software Scheduler
Generation Phase the variability with latest binding time CodeGenerationTime (called
CodeGenerationTime Variability) has to be bound and the RTE generator re-
solves the variability. This denotes that the code is generated for a particular variant. To
do this it is required that a particular variant for each CodeGenerationTime Vari-
ability has to be chosen.

[rte_sws_6507]d The RTE generator shall bind CodeGenerationTime Variabil-
ity in the RTE Contract Phase, Basic Software Scheduler Contract Phase, RTE Gen-

304 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

eration Phase and Basic Software Scheduler Generation Phase (see sections 3.1.1,
3.1.2, 3.4.1 and 3.4.2). c(RTE00229, RTE00191)

[rte_sws_6547]d The RTE Generator shall reject input configurations during the RTE
Contract Phase where not a particular variant is chosen for each CodeGenera-
tionTime Variability affecting the software components contract. c(RTE00191,
RTE00018)

[rte_sws_6548]d The RTE Generator shall reject input configurations during the Ba-
sic Software Scheduler Contract Phase where not a particular variant is chosen for
each CodeGenerationTime Variability affecting the Basic Software Scheduler
contract. c(RTE00229, RTE00018)

[rte_sws_6508]d The RTE Generator shall reject input configurations during the Basic
Software Scheduler Generation Phase where not a particular variant is chosen for
each CodeGenerationTime Variability affecting the Basic Software Scheduler
generation. c(RTE00229, RTE00018)

[rte_sws_6509]d The RTE Generator shall reject input configurations during the RTE
Generation Phase where not a particular variant is chosen for each CodeGenera-
tionTime Variability affecting the RTE generation. c(RTE00191, RTE00018)

4.7.2.5 PreCompileTime

Variability with latest binding time PreCompileTime (called PreCompileTime Vari-
ability) is relevant for the RTE Contract Phase and Basic Software Scheduler Con-
tract Phase as well as for the RTE Generation Phase and Basic Software Scheduler
Generation Phase. The Application Header File, Application Types Header File, Mod-
ule Interlink Header and Module Interlink Types Header and the generated RTE / Basic
Software Scheduler has to support the potential variability of the software components
and Basic Software Modules. The variability is resolved during the execution of the pre
processor of the C-Complier.

[rte_sws_6510]d The RTE generator shall implement PreCompileTime Variabil-
ity in the RTE Contract Phase, Basic Software Scheduler Contract Phase, RTE
Generation Phase, Basic Software Scheduler Generation Phase via pre processor
statements in the generated RTE code (see sections 3.1.1, 3.1.2, 3.4.1 and 3.4.2).
c(RTE00191)

4.7.2.6 LinkTime

The latest Binding Time LinkTime will not be supported for VariationPoints relevant for
the RTE Generator.

[rte_sws_6511]d The RTE generator shall reject configuration which defines RTE or
Basic Software Scheduler relevant LinkTime Variability. c(RTE00018)

305 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4.7.2.7 PostBuild

Variability with latest binding time PostBuild (called PostBuild Variability) might
be bound / rebound after the generated RTE is compiled and has been linked to the
executable. The generated RTE binary code has to contain all variants. Which variant
is executed during ECU runtime is decided by variant selectors.

[rte_sws_6512]d The RTE generator shall implement PostBuild Variability in
the RTE Generation Phase and Basic Software Scheduler Generation Phase via C
statements in the generated RTE code (see 3.4.1 and 3.4.2). c(RTE00191)

Combining PreBuild and PostBuild Variability

According document [10] it is supported that a VariationPoint defines a Pre-
Build Variability in conjunction with PostBuild Variability. If the Pre-
Build condition is false, it is not expected that the element which is subject to variability
including the code evaluating the PostBuild condition gets implemented at all.

[rte_sws_6549]d In cases where a VariationPoint defines a SystemDesignTime
Variability or CodeGenerationTime Variability in conjunction with Post-
Build Variability the PostBuild Variability shall only be implemented by
the RTE Generator in the generated RTE code if the condition of the PreBuild Vari-
ability evaluates to true. c(RTE00191)

[rte_sws_6550]d In cases where a VariationPoint defines a PreCompile-
Time Variability in conjunction with PostBuild Variability the PostBuild
Variability shall only be effective in the RTE executable if the condition of the Pre-
CompileTime Variability evaluates to true. c(RTE00191)

In this case the PostBuild Variability implemented according rte_sws_6512
depends from the PreCompileTime Variability implemented according
rte_sws_6510.

4.7.3 Variability affecting the RTE generation

306 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4.7.3.1 Software Composition

This section describes the affects of the existence of variation points with regards to
compositions. Though the application software compositions have been flattened and
effectively eliminated after allocation to an ECU there is still one composition to con-
sider for the RTE (i.e. the RootSwCompositionPrototype). The RootSwCompo-
sitionPrototype contains the atomic software components allocated to the respec-
tive ECU, its assembly connections,its delegation connections and the connections of
the delegation ports to system signals. Once the variability is resolved for a varia-
tion point it must adhere to the constraints and limitations that apply to a model that
does not have any variations. For example dangling connectors are not allowed and
as such their existence will lead to undefined behavior if such configurations still exist
after resolving post-build variation points.

Also within this specification section the wording "‘a variant is enabled or disabled"’
refers to the variation point’s SwSystemconstDependentFormula and/or PostBuildVari-
antCondition evaluating to "‘true or false"’ respectively.

4.7.3.1.1 Variant existence of SwComponentPrototypes

[rte_sws_6601]d If a variant is disabled for the aggregation of a SwComponent-
Prototype in a CompositionSwComponentType then all RTEEvents destined for
Runnables in the respective SwComponentPrototype shall be blocked;No RTEEvent
is allowed to reach any Runnable that is contained in a "‘disabled"’ SwComponentPro-
totype. c(RTE00206, RTE00207, RTE00204)

Potential misconfigurations of connectors connecting to ports of "‘disabled"’ SWC’s
will result in undefined behavior; It is the responsibility of the person considering the
variability of the SwComponentPrototype to make the connections also variable and
valid when a variant selection results in the elimination of a SwComponentPrototype
from a composition. It is recommended to use predefined variants to ensure proper
configurations are established.

4.7.3.1.2 Variant existence of SwConnectors

[rte_sws_6602]d If a variant is disabled for a SwConnector (i.e. AssemblySwCon-
nector or DelegationSwConnector) aggregated in a CompositionSwComponent-
Type then the PortPrototypes at each end of the connector shall behave as an
unconnected port (see section 5.2.7 for the defined RTE behavior) if no other variant
enables a SwConnector between these ports. c(RTE00206, RTE00207)

307 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4.7.3.1.3 COM related Variant existence

This section describes the impact on the RTE interaction with the COM layer
as a result of variability of DataMappings (i.e. SenderReceiverToSignalMap-
ping,SenderReceiverToSignalGroupMapping and ClientServerToSignalGroupMapping
in the SystemMapping) as well as the existence of variants for ISignals The Meta Model
allows for mapping the same data to different SystemSignals as well as associating a
SystemSignal with 1 or more ISignals.

[rte_sws_6603]d If a variant is enabled for a SystemMapping aggregating a DataMap-
ping then the RTE shall call the appropriate API’s for the applicable mapping type.
c(RTE00206, RTE00207)

[rte_sws_6604]d The appropriate API shall be determined based on the existence
of variants of ISignals to which a SystemSignal is associated to. For each enabled
ISignal the RTE shall call the proper COM API to send and receive data SystemSignals
c(RTE00206, RTE00207)

For example for an instance mapping from a VariableDataPrototype to a SystemSignal
the RTE shall call the corresponding COM_SendSignal with the proper SignalId and
SignalDataPtr based on the selected variant DataMapping.

[rte_sws_6605]d Delegation ports on a RootSwCompositionPrototype for which
no DataMapping exists (i.e. no variant DataMapping is enabled) shall be considered
unconnected because no path exists to a designated SystemSignal. Since this is a
delegation port all enabled delegation connectors linking SWC R-ports to the respec-
tive delegation port must be considered unconnected (see section 5.2.7). P-Ports shall
behave as documented in section 4.7.3.1.2. c(RTE00206, RTE00207)

4.7.3.1.4 Variant existence of PortPrototypes

[rte_sws_6606]d If no variant is enabled for a delegation port on a RootSwComposi-
tionPrototype then all connected R-Ports using a DelegationSwConnector to
this delegation port shall be considered unconnected (see section 5.2.7). The behavior
of the P-ports shall be as defined in section 4.7.3.1.2. c(RTE00206, RTE00207)

Note on variant disabling criteria: In a proper variant configuration the following should
be followed: when a PortPrototype is eliminated from any SwComponentType then any
associated SwConnector should also have a variation point removing the connection
since the connection is illegal.

308 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4.7.3.2 Atomic Software Component and its Internal Behavior

4.7.3.2.1 RTE API which is subject to variability

Following VariationPoints in the Meta Model do control the variant existence of
RTE API for a software component. If a RTE API is variant existent, the API mapping
and the related entries in the component data structure are ’variant’ as well. This
means, if a RTE API does not exist the API mapping does not exist as well. A part
of the component data structure entries are related to the existences of the port. In
these cases the component data structure entry depends from the existence of the
PortPrototype.

Variation Point RTE API which is
subject to variability

form kind infix

Condition Value Macro
ExclusiveArea Rte_Enter,

Rte_Exit
component
internal

ExAr

rte_sws_6518
VariableDataPrototype in the role arTyped-
PerInstanceMemory

Rte_Pim component
internal

PIM

rte_sws_6518
PerInstanceMemory Rte_Pim component

internal
PIM

rte_sws_6518
ParameterDataPrototype in the role perIn-
stanceParameter

Rte_CData component
internal

Prm

rte_sws_6518
ParameterDataPrototype in the role shared-
Parameter

Rte_CData component
internal

Prm

rte_sws_6518
ServerCallPoint Rte_Call component

port
rte_sws_6515
AsynchronousServerCallResultPoint Rte_Result component

port
rte_sws_6515
InternalTriggeringPoint Rte_IrTrigger entity

internal
IRT

rte_sws_6519
ExternalTriggeringPoint Rte_Trigger component

port
rte_sws_6515
ModeSwitchPoint Rte_Switch,

Rte_SwitchAck
component
port

rte_sws_6515
ModeAccessPoint Rte_Mode component

port
rte_sws_6515
VariableAccess in the role dataReadAccess Rte_IRead ,

Rte_IStatus,
Rte_IsUpdated

entity port

309 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

rte_sws_6515
VariableAccess in the role dataWriteAccess Rte_IWrite,

Rte_IWriteRef,
Rte_IInvalidate,
Rte_IFeedback

entity port

rte_sws_6515
VariableAccess in the role dataSendPoint Rte_Write,

Rte_Invalidate,
Rte_Feedback

component
port

rte_sws_6515
VariableAccess in the role dataReceive-
PointByArgument

Rte_Read component
port

rte_sws_6515
VariableAccess in the role dataReceive-
PointByValue

Rte_DRead component
port

rte_sws_6515
VariableAccess in the role readLocalVari-
able referring an explicitInterRunnable-
Variable

Rte_IrvRead component
internal

IRV

rte_sws_6518
VariableAccess in the role writtenLo-
calVariable referring an explicitInter-
RunnableVariable

Rte_IrvWrite component
internal

IRV

rte_sws_6518
VariableAccess in the role readLocalVari-
able referring an implicitInterRunnable-
Variable

Rte_IrvIRead entity
internal

IRV

rte_sws_6519
VariableAccess in the role writtenLo-
calVariable referring an implicitInter-
RunnableVariable

Rte_IrvIWrite entity
internal

IRV

rte_sws_6519
PortPrototype referring a ParameterInter-
face

Rte_Prm component
port

rte_sws_6515
PortAPIOption with attribute indirectAPI Rte_Ports,

Rte_NPorts,
Rte_Port

component
port

rte_sws_6515

Table 4.13: variant existence of RTE API

column description
kind infix The column kind infix defines infix strings to differentiate con-

dition value macros belonging to variation points of different
API sets

form The column form specifies which names for the macro of the
condition value are concatenated to ensure a unique name
space of the macro.

form description

310 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

component port The related API is provide for the whole software component
and belongs to a software components port

entity port The related API is provide for a particular RunnableEntity
and belongs to a software components port

component internal The related API is provide for the whole software component
and belongs to a software component internal functionality

entity internal The related API is provide per RunnableEntity and belongs
to a software component internal functionality

Table 4.14: Key to table 4.13

[rte_sws_6517]d The RTE generator shall treat RTE API as variant RTE API only if all
elements (e.g. VariableAccess) in the input configuration controlling the existence
of the same RTE API are subject to variability. c(RTE00203)

4.7.3.2.2 Conditional API options

Following variation points in the Meta Model do control the variant properties of RTE
API or allocated Memory.

Variation Point Subject to variability
Condition Value Macro
PortAPIOption with attribute portArgValue PortDefinedArgumentValue

is passed to a RunnableEn-
tity

not standardized

Table 4.15: Conditional API options

4.7.3.2.3 Runnable Entity’s and RTEEvents

Following variation points in the Meta Model do control the variant existence and acti-
vation of RunnableEntitys.

Variation Point Subject to variability
Condition Value Macro
RunnableEntity Existence of the RunnableEn-

tity prototype
rte_sws_6530
RTEEvent Activation of the RunnableEn-

tity
not standardized

Table 4.16: variation on Runnable Entity’s and RTEEvents

311 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4.7.3.2.4 Conditional Memory Allocation

Following variation points in the Meta Model do control the variant existence of RTE
memory allocation for the software component instance.

Variation Point Subject to variability
Condition Value Macro
implicitInterRunnableVariable variable definition implementing

the implicitInterRunnabl-
eVariable

not standardized
explicitInterRunnableVariable variable definition implementing

the explicitInterRunnabl-
eVariable

not standardized
arTypedPerInstanceMemory variable definition implementing

the arTypedPerInstance-
Memory

not standardized
PerInstanceMemory variable definition implementing

the PerInstanceMemory
not standardized
perInstanceParameter constant definition implementing

the perInstanceParameter
not standardized
sharedParameter variable definition implementing

the sharedParameter
not standardized
InstantiationDataDefProps, SwDataDefProps Allocation of the memory

objects described via swAd-
drMethod, accessibility for
MCD systems described via
swCalibrationAccess,
displayFormat, mcFunc-
tion

not standardized

Table 4.17: Conditional Memory Allocation

4.7.3.3 NvBlockComponent and its Internal Behavior

Variation Point Subject to variability
Condition Value Macro
PortPrototype of a NvBlockSwComponentType typed by Nv-
DataInterface

Existence of the ability to access
the memory objects of the ram-
Block

not standardized
NvBlockDataMapping of a NvBlockDescriptor Existence of the ability to access

the memory objects of the ram-
Block

not standardized

312 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

provide PortPrototype of a NvBlockSwComponentType typed
by ClientServerInterface, RunnableEntity and referring
OperationInvokedEvent

Existence of the Block Manage-
ment port and the ability to
access the Block Management
API of the NvRAM Manager

not standardized
require PortPrototype of a NvBlockSwComponentType typed
by ClientServerInterface, RoleBasedPortAssignment
and referring the PortPrototype

Existence of the callback notifi-
cation port

not standardized
NumericalValueSpecification or TextValueSpecifica-
tion of the ramBlock or romBlocks initValue ValueSpec-
ification (aggregated or referred one)

initialization values of the mem-
ory objects implementing the
ramBlock or romBlock

not standardized
InstantiationDataDefProps Allocation of the memory objects

implementing the ramBlock
or romBlock described via
swAddrMethod, accessibility
for MCD systems described
via swCalibrationAccess,
displayFormat, mcFunc-
tion

not standardized

Table 4.18: variation in NvBlockSwComponentTypes

4.7.3.4 Parameter Component

Variation Point Subject to variability
Condition Value Macro
PortPrototype of a ParameterSwComponentType Existence of the memory objects

/ definitions related to the Pa-
rameterDataPrototypes in
the PortInterface referred
by the PortPrototype

not standardized
NumericalValueSpecification or TextValueSpecifica-
tion of the ParameterProvideComSpecs initValue Value-
Specification (aggregated or referred one)

initialization values of the mem-
ory objects / definitions related
to the ParameterDataProto-
types

not standardized

Table 4.19: variation in ParameterSwComponentTypes

4.7.3.5 Data Type

Following variation points in the Meta Model do control the variant generation of data
types.

Variation Point Subject to variability
Condition Value Macro
ImplementationDataTypeElement Existence of the structure or

union element

313 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

rte_sws_6542
arraySize Number of elements in the array
rte_sws_6541

Table 4.20: variation in ImplementationDataTypes

4.7.3.6 Basic Software Modules and its Internal Behavior

4.7.3.6.1 Basic Software Interfaces

Variation Point Subject to variability
Condition Value Macro
providedEntry Existence of the provided

BswModuleEntry
not standardized
outgoingCallback Existence of the expected

BswModuleEntry
not standardized
ModeDeclarationGroupPrototype in role providedMode-
Group

Existence of the provided
ModeDeclarationGroup-
Prototype

not standardized
ModeDeclarationGroupPrototype in role requiredMode-
Group

Existence of the required
ModeDeclarationGroup-
Prototype

not standardized
Trigger in role releasedTrigger Existence of the released

Trigger
not standardized
Trigger in role requiredTrigger Existence of the required Trig-

ger
not standardized

Table 4.21: variability affecting Basic Software Interfaces

4.7.4 Variability affecting the Basic Software Scheduler generation

4.7.4.1 Basic Software Scheduler API which is subject to variability

The VariationPoints listed in table 4.22 in the input configuration are controlling
the variant existence of Basic Software Scheduler API.

Variation Point Subject to variability form kind infix
Condition Value Macro
ExclusiveArea SchM_Enter,

SchM_Exit
module
internal

ExAr

rte_sws_6535
managedModeGroup association to
providedModeGroup ModeDeclara-
tionGroupPrototype

SchM_Switch,
SchM_SwitchAck

module
external

MMod

314 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

rte_sws_6536
accessedModeGroup association to pro-
videdModeGroup or requiredModeGroup
ModeDeclarationGroupPrototype

SchM_Mode module
external

AMod

rte_sws_6536
issuedTrigger association to re-
leasedTrigger Trigger

SchM_Trigger module
external

Tr

rte_sws_6536
BswInternalTriggeringPoint SchM_ActMainFunction entity

internal
ITr

rte_sws_6536

Table 4.22: variant existence of Basic Software Scheduler API

column description
kind infix The column kind infix defines infix strings to differentiate con-

dition value macros belonging to variation points of different
API sets

form The column form specifies which names for the macro of the
condition value are concatenated to ensure a unique name
space of the macro.

form description
module external The related API is provide for the whole module and belongs

to a module interface
module internal The related API is provide for the whole module and belongs

to a module internal functionality
entity internal The related API is provide per ExecutableEntity and be-

longs to a module internal functionality

Table 4.23: Key to table 4.22

[rte_sws_6537]d The RTE generator shall treat the existence of Basic Software Sched-
uler API as subject to variability only if all elements (e.g. managedModeGroup asso-
ciation) in the input configuration controlling the existence of the same Basic Software
Scheduler API are subject to variability. c(RTE00229)

4.7.4.2 Basic Software Entities

The VariationPoints listed in table 4.24 in the input configuration are controlling the
variant existence of BswModuleEntitys and the variant activation of BswSchedula-
bleEntitys.

Variation Point Subject to variability
Condition Value Macro
BswSchedulableEntity Existence of the BswSchedu-

lableEntity prototype

315 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

rte_sws_6532
BswEvent Activation of the BswSchedu-

lableEntity
not standardized

Table 4.24: variability affecting BswSchedulableEntitys

4.7.4.3 API behavior

The VariationPoints listed in table 4.25 in the input configuration are controlling
the variant behavior of Basic Software Scheduler API.

Variation Point Subject to variability
Condition Value Macro
BswModeSenderPolicy Queue length in the mode ma-

chine instance dependent
from the attribute queue-
Length

not standardized
BswModeReceiverPolicy attribute supportsAsyn-

chronousModeSwitch has to
be considered according the
bound variant

not standardized

Table 4.25: variant existence of BswSchedulableEntity

4.8 Development errors

Errors which can occur at runtime in the RTE are classified as development errors. The
RTE uses a BSW module report these types of errors to the DET [24] (Development
Error Tracer).

4.8.1 DET Report Identifiers

[rte_sws_6630]d The RTE shall report development errors to the DET and use its as-
signed module identifier (i.e. 2) to identify itself to the DET. c(BSW00337, BSW00338)

[rte_sws_7676]d Development errors shall be reported to the DET if and only if Rt-
eDevErrorDetect is enabled. c(BSW00337, BSW00338)

[rte_sws_6631]d The RTE shall use the OS Application Identifier as the Instance Id
to enable the developer to identify in which runtime section of the RTE the error oc-

316 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

curs. This Instance ID is even unique across multi cores and so implicitly allows the
development error to be traced to a specific core. c(BSW00337, BSW00338)

[rte_sws_6632]d The RTE shall use the Service Id as identified in the table 4.27. Each
RTE API template, RTE callback template and RTE API will have an Identifier. This ID
Service ID must be used when running code in the context of the respective RTE call.
c(BSW00337, BSW00338)

4.8.2 DET Error Identifiers

Only a limited set of development identifiers are currently recognized. Each of these
need to be detected either at runtime or during initialization of the RTE. To report these
errors extra development code must be generated by the RTE generator.

[rte_sws_6633]d An RTE_E_DET_ILLEGAL_SIGNAL_ID (0x01) shall be reported
at runtime by the RTE when it receives a COM callback for a signal name (e.g.
Rte_COMCbk_<sn>, Rte_COMCbkTAck_<sn>) which was not expected within the
context of the currently-selected postBuild variant. See section 5.9.2 for the list of
possible COM callback template API. c(BSW00337, BSW00338)

[rte_sws_6634]d An RTE_E_DET_ILLEGAL_VARIANT_CRITERION_VALUE (0x02)
shall be reported by the RTE when it determines that a value is assigned to a variant
criterion which is not in the list of possible values for that criterion. This error shall be
detected during the RTE initialization phase. c(BSW00337, BSW00338)

[rte_sws_7684]d An RTE_E_DET_ILLEGAL_VARIANT_CRITERION_VALUE (0x02)
shall be reported by the Basic Software Scheduler when the SchM_Init API is called
with a NULL parameter. c(BSW00337, BSW00338)

[rte_sws_6635]d An RTE_E_DET_ILLEGAL_INVOCATION (0x03) shall be reported
by the RTE when it determines that an RTE API is called by a Runnable which should
not call that RTE API. The RTE can identify the active Runnable when it dispatches
the RTE Event and if it subsequently receives a call from that Runnable to an API that
is not part of its contract then this particular error ID must me logged. c(BSW00337,
BSW00338)

[rte_sws_6637]d An RTE_E_DET_WAIT_IN_EXCLUSIVE_AREA (0x04) shall be re-
ported by the RTE when an application has called an Rte_Enter API and subsequently
asks the RTE to enter a wait state. This is illegal because it would lock the ECU.
c(BSW00337, BSW00338)

[rte_sws_7675]d An RTE_E_DET_ILLEGAL_NESTED_EXCLUSIVE_AREA (0x05)
shall be reported by the RTE when an application violates rte_sws_ext_7172.
c(BSW00337, BSW00338)

[rte_sws_7685]d An RTE_E_DET_SEG_FAULT (0x06) shall be reported by the RTE
when the parameters of an RTE API call contain a direct or indirect reference to mem-

317 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

ory that is not accessible from the callers partition as defined in rte_sws_2752 and
rte_sws_2753. c(BSW00337, BSW00338)

[rte_sws_7682]d If RteDevErrorDetectUninit is enabled, an
RTE_E_DET_UNINIT (0x07) shall be reported by the RTE when one of the APIs :

• Specified in 5.6.

• Rte_NvMNotifyInitBlock.

• Rte_PartitionTerminated.

• Rte_PartitionRestarting.

• Rte_RestartPartition.

is called before Rte_Start, after Rte_Stop or After the partition to witch the API be-
longs is terminated. c(BSW00337, BSW00338)

Note:

• In production mode, No checks are performed.

• In development mode, if an error is detected the API behaviour is undefined and
it is left to the Rte implementer.

Rational: The introduction of this developpement check should not introduce big
changes to production mode configuration.

[rte_sws_7683]d If RteDevErrorDetectUninit is enabled, an
RTE_E_DET_UNINIT (0x07) shall be reported by the Basic Software Scheduler / RTE
when one of the APIs SchM_Switch, SchM_Mode, SchM_SwitchAck, SchM_Trigger,
SchM_ActMainFunction, or Rte_Start is called before SchM_Init. c(BSW00337,
BSW00338)

4.8.3 DET Error Classification

The following abbreviations are used to identify the DET error in table 4.27.

Abbreviation RTE DET Error
ISI RTE_E_DET_ILLEGAL_SIGNAL_ID

IVCV RTE_E_DET_ILLEGAL_VARIANT_CRITERION_VALUE

II RTE_E_DET_ILLEGAL_INVOCATION

INEA RTE_E_DET_ILLEGAL_NESTED_EXCLUSIVE_AREA

WIEA RTE_E_DET_WAIT_IN_EXCLUSIVE_AREA

UNINIT RTE_E_DET_UNINIT

Table 4.26: Abbreviations of RTE DET Errors to APIs

318 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

The following table 4.27 indicates which DET errors are relevant for the various RTE
APIs, and the service ID associated with the RTE APIs (see rte_sws_6632):

API name Service ID I
S
I

I
V
C
V

I
I

I
N
E
A

W
I
E
A

U
N
I
N
I
T

Rte_Ports APIs 0x10 X
Rte_NPorts APIs 0x11 X
Rte_Port APIs 0x12 X
Rte_Send APIs 0x13 X
Rte_Write APIs 0x14 X
Rte_Switch APIs 0x15 X
Rte_Invalidate APIs 0x16 X
Rte_Feedback APIs 0x17 X X
Rte_SwitchAck APIs 0x18 X X
Rte_Read APIs 0x19 X
Rte_DRead APIs 0x1A X
Rte_Receive APIs 0x1B X X
Rte_Call APIs 0x1C X X
Rte_Result APIs 0x1D X X
Rte_Pim APIs 0x1E X
Rte_CData APIs 0x1F X
Rte_Prm APIs 0x20 X
Rte_IRead APIs 0x21 X
Rte_IWrite APIs 0x22 X
Rte_IWriteRef APIs 0x23 X
Rte_IInvalidate APIs 0x24 X
Rte_IStatus APIs 0x25 X
Rte_IrvIRead APIs 0x26 X
Rte_IrvIWrite APIs 0x27 X
Rte_IrvRead APIs 0x28 X
Rte_IrvWrite APIs 0x29 X
Rte_Enter APIs 0x2A X
Rte_Exit APIs 0x2B X X
Rte_Mode APIs 0x2C X
Rte_Trigger APIs 0x2D X
Rte_IrTrigger APIs 0x2E X
Rte_IFeedback APIs 0x2F X
Rte_IsUpdated APIs 0x30 X
trigger by TimingEvent 0x50 X
trigger by BackgroundEvent 0x51 X
trigger by SwcModeSwitchEvent 0x52 X

319 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

trigger by AsynchronousServerCall-
ReturnsEvent

0x53 X

trigger by DataReceiveErrorEvent 0x54 X
trigger by OperationInvokedEvent 0x55 X
trigger by DataReceivedEvent 0x56 X
trigger by DataSendCompletedEvent 0x57 X
trigger by ExternalTriggerOccurredEvent 0x58 X
trigger by InternalTriggerOccurredEvent 0x59 X
trigger by DataWriteCompletedEvent 0x5A X
Rte_Start API 0x70 X
Rte_Stop API 0x71
Rte_PartitionTerminated APIs 0x72
Rte_PartitionRestarting APIs 0x73
Rte_RestartPartition APIs 0x74
Rte_COMCbkTAck_<sn> callbacks 0x90 X
Rte_COMCbkTErr_<sn> callbacks 0x91 X
Rte_COMCbkInv_<sn> callbacks 0x92 X
Rte_COMCbkRxTOut_<sn> callbacks 0x93 X
Rte_COMCbkTxTOut_<sn> callbacks 0x94 X
Rte_COMCbk_<sg> callbacks 0x95 X
Rte_COMCbkTAck_<sg> callbacks 0x96 X
Rte_COMCbkTErr_<sg> callbacks 0x97 X
Rte_COMCbkInv_<sg> callbacks 0x98 X
Rte_COMCbkRxTOut_<sg> callbacks 0x99 X
Rte_COMCbkTxTOut_<sg> callbacks 0x9A X
Rte_SetMirror callbacks 0x9B
Rte_GetMirror callbacks 0x9C
Rte_NvMNotifyJobFinished callbacks 0x9D
Rte_NvMNotifyInitBlock callbacks 0x9E X
SchM_Init API 0x00 X
SchM_Deinit API 0x01
SchM_GetVersionInfo API 0x02
SchM_Enter APIs 0x03 X
SchM_Exit APIs 0x04 X X
SchM_ActMainFunction APIs 0x05 X
SchM_Switch APIs 0x06 X
SchM_Mode APIs 0x07 X
SchM_SwitchAck APIs 0x08 X
SchM_Trigger APIs 0x09 X

Table 4.27: Applicability of RTE DET Errors to APIs

320 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

5 RTE Reference

“Everything should be as simple as possible, but no simpler.”
– Albert Einstein

5.1 Scope

This chapter presents the RTE API from the perspective of AUTOSAR applications
and basic software – the same API applies to all software whether they are AUTOSAR
software-components or basic software.

Section 5.2 presents basic principles of the API including naming conventions and
supported programming languages. Section 5.3 describes the header files used by the
RTE and the files created by an RTE generator. The data types used by the API are
described in Section 5.5 and Sections 5.6 and 5.7 provide a reference to the RTE API
itself including the definition of runnable entities. Section 5.11 defines the events that
can be monitored during VFB tracing.

5.1.1 Programming Languages

The RTE is required to support components written using the C and C++ programming
languages [RTE00126] as well as legacy software modules [RTE_IN016]. The ability
for multiple languages to use the same generated RTE is an important step in reducing
the complexity of RTE generation and therefore the scope for errors.

[rte_sws_1167]d The RTE shall be generated in C. c(RTE00126)

[rte_sws_1168]d All RTE code, whether generated or not, shall conform to the HIS
subset of the MISRA C standard [25]. In technically reasonable, exceptional cases
MISRA violations are permissible. Except for MISRA rule #11, such violations shall be
clearly identified and documented. c(BSW007)

Specified MISRA violations are defined in Appendix C.

In realistic use cases, the RTE will generate C identifiers (functions, types, variables,
etc) whose name will be longer than the maximum size supported by the MISRA C
standard (rule #11). Users should configure the RTE to indicate the maximum C iden-
tifiers’ size supported by their tool chain to make sure that no issues will be caused by
these MISRA violation.

[rte_sws_7300]d If a RteToolChainSignificantCharacters limit has been configured,
the RTE generator shall provide the list of C RTE identifiers whose name is not
unique when only the first RteToolChainSignificantCharacters characters are consid-
ered. c(BSW007)

321 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

The RTE API presented in Section 5.6 is described using C. The API is also directly
accessible from an AUTOSAR software-component written using C++ provided all API
functions and instances of data structures are imported with C linkage.

[rte_sws_1011]d The RTE generator shall ensure that, for a component written in C++,
all imported RTE symbols are declared using C linkage. c(RTE00138)

For the RTE API for C and C++ components the import of symbols occurs within the
application header file (Section 5.3.3).

5.1.2 Generator Principles

5.1.2.1 Operating Modes

An object-code component is compiled against an application header file that is cre-
ated during the first “RTE Contract” phase of RTE generation. The object code is then
linked against an RTE created during the second “RTE Generation” phase. To ensure
that the object-code component and the RTE code are compatible the RTE generator
supports compatibility mode that uses well-defined data structures and types for the
component data structure. In addition, an RTE generator may support a vendor oper-
ating mode that removes compatibility between RTE generators from different vendors
but permits implementation specific, and hence potentially more efficient, data struc-
tures and types.

[rte_sws_1195]d All RTE operating modes shall be source-code compatible at the
SW-C level. c(RTE00024, RTE00140)

Requirement rte_sws_1195 ensures that a SW-C can be used in any operating mode
as long as the source is available. The converse is not true – for example, an object-
code SW-C compiled after the “RTE Contract” phase must be linked against an RTE
created by an RTE generator operating in the same operating mode. If the vendor
mode is used in the “RTE Contract” phase, an RTE generator from the same vendor
(or one compatible to the vendor-mode features of the RTE generator used in the “RTE
Contract” phase) has to be used for the “RTE Generation” phase.

5.1.2.1.1 Compatibility Mode

Compatibility mode is the default operating mode for an RTE generator and guarantees
compatibility even between RTE generators from different vendors through the use of
well-defined, “standardized”, data structures. The data structures that are used by the
generated RTE in the compatibility mode are defined in Section 5.4.

322 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Support for compatibility mode is required and therefore is guaranteed to be imple-
mented by all RTE generators.

[rte_sws_1151]d The compatibility mode shall be the default operating mode and shall
be supported by all RTE generators, whether they are for the “RTE Contract” or “RTE
Generation” phases. c(RTE00145)

The compatibility mode uses custom (generated) functions with standardized names
and data structures that are defined during the “RTE Contract” phase and used when
compiling object-code components.

[rte_sws_1216]d SW-Cs that are compiled against an “RTE Contract” phase appli-
cation header file (i.e. object-code SW-Cs) generated in compatibility mode shall be
compatible with an RTE that was generated in compatibility mode. c(RTE00145)

The use of well-defined data structures imposes tight constraints on the RTE imple-
mentation and therefore restricts the freedom of RTE vendors to optimize the solution
of object-code components but have the advantage that RTE generators from different
vendors can be used to compile a binary-component and to generate the RTE.

Note that even when an RTE generator is operating in compatibility mode the data
structures used for source-code components are not defined thus permitting vendor-
specific optimizations to be applied.

5.1.2.1.2 Vendor Mode

Vendor mode is an optional operating mode where the data structures defined in the
“RTE Contract” phase and used in the “RTE Generation” phase are implementation
specific rather than “standardized”.

[rte_sws_1152]d An RTE generator may optionally support vendor mode.
c(RTE00083)

The data structures defined and declared when an RTE generator operates in vendor
mode are implementation specific and therefore not described in this document. This
omission is deliberate and permits vendor-specific optimizations to be implemented for
object-code components. It also means that RTE generators from different vendors are
unlikely to be compatible when run in the vendor mode.

[rte_sws_1234]d An AUTOSAR software-component shall be assumed to be operat-
ing in “compatibility” mode unless “vendor mode” is explicitly requested. c(RTE00145,
RTE00146)

The potential for more efficient implementations of object-code components offered by
the vendor mode comes at the expense of requiring high cohesion between object-
code components (compiled after the “RTE Contract” phase) and the generated RTE.
However, this is not as restrictive as it may seem at first sight since the tight coupling
is also reflected in many other aspects or the AUTOSAR methodology, not least of

323 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

which is the requirement that the same compiler (and compatible options) is used when
compiling both the object-code component and the RTE.

5.1.2.2 Optimization Modes

The actual RTE code is generated – based on the input information – for each ECU
individually. To allow optimization during the RTE generation one of the two general op-
timization directions can be specified: MEMORY consumption or execution RUNTIME.

[rte_sws_5053]d The RTE Generator shall optimize the generated RTE code either for
memory consumption or execution runtime depending on the provided input informa-
tion RteOptimizationMode. c(RTE00023)

5.1.2.3 Build support

The generated RTE code has to respect several rules in order to be integrated with
other AUTOSAR software in the build process.

[rte_sws_5088]d All memory1 allocated by the RTE shall be wrapped in the segment
declarations defined in the Specification of Memory Mapping [26] using RTE as the
<MSN> (Module Short Name). c(RTE00148, RTE00169)

Due to the structure of the AUTOSAR Meta Model the input configuration might contain
several DataPrototypes which are resulting only in one memory object. In this case
it is required to define rules which SwAddrMethod is used to allocate the memory and
to decide about its initialization. Therefore precedence rules for SwAddrMethods are
defined by rte_sws_7590 and rte_sws_7591.

[rte_sws_7589]d For AutosarDataPrototype implementations the
<SEGMENT> infix for the Memory Allocation Keyword shall be set to the short-
Name of the preceding SwAddrMethod if there is one defined and if rte_sws_7592 is
not applicable. c(RTE00148, RTE00169)

[rte_sws_7047]d If the memoryAllocationKeywordPolicy of the preceding
SwAddrMethod is set to AddrMethodShortName the <ALIGNMENT> suffix with lead-
ing underscore of the Memory Allocation Keyword used by the AutosarDat-
aPrototype implementations and PerInstanceMemory implementations
shall be omitted. c(RTE00148, RTE00169)

[rte_sws_7048]d If the memoryAllocationKeywordPolicy of the preced-
ing SwAddrMethod is set to AddrMethodShortNameAndAlignment the
<ALIGNMENT> suffix with leading underscore of the Memory Allocation Keyword
used by the AutosarDataPrototype implementations and PerInstance-
Memory implementations shall be set to the resulting alignment as defined in

1memory refers to all elements in the generated RTE which will later occupy space in the ECU’s
memory and is directly associated with the RTE. This includes code, static data, parameters, etc.

324 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

rte_sws_7049, rte_sws_7050, rte_sws_7051, rte_sws_7052 and rte_sws_7053.
c(RTE00148, RTE00169)

[rte_sws_8303]d The alignment of a PerInstanceMemory shall be set to UNSPEC-
IFIED. c(RTE00013, RTE00077)

[rte_sws_7049]d The alignment defined by the preceding (see rte_sws_7196)
swAlignment attribute of a AutosarDataPrototype precedes the alignment
defined by the ImplementationDataType related to the AutosarDataProto-
type as defined in rte_sws_7050, rte_sws_7051, rte_sws_7052 and rte_sws_7053.
c(RTE00148, RTE00169)

[rte_sws_7050]d The alignment of a AutosarDataPrototype related to a Prim-
itive Implementation Data Type or Array Implementation Data Type
shall be set to the baseTypeSize of the referred SwBaseType. c(RTE00148,
RTE00169)

[rte_sws_7051]d The alignment of a AutosarDataPrototype related to a Struc-
ture Implementation Data Type or Union Implementation Data Type
shall be set to to biggest baseTypeSize of the SwBaseTypes used by the elements.
c(RTE00148, RTE00169)

Note: According rte_sws_7051 structures and unions are aligned according the size of
the biggest primitive element in the structure.

[rte_sws_7052]d The alignment of a AutosarDataPrototype related to a Redefi-
nition Implementation Data Type shall be determined from the redefined Im-
plementationDataType. c(RTE00148, RTE00169)

[rte_sws_7053]d The alignment of a AutosarDataPrototype related to a Pointer
Implementation Data Type shall be set to UNSPECIFIED. c(RTE00148,
RTE00169)

Note: If the RTE generator does not implement the memory objects related to Vari-
ableDataPrototypes and ParameterDataPrototypes for instance due to com-
munication via IOC the assigned SwAddrMethods might have no effect on the gener-
ated RTE code.

[rte_sws_7592]d If the RTE Generator requires several non automatic memory ob-
jects per AutosarDataPrototypes (e.g. due to partitioning) the RTE Generator is
permitted to select the <SEGMENT> infix for the auxiliary memory objects. c(RTE00148,
RTE00169)

Note: For definitions and declarations for memory objects allocated by the RTE and
implementing AutosarDataPrototypes without an assigned SwAddrMethod the

325 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

RTE Generator is permitted to select the <SEGMENT> infix but still has to follow
rte_sws_5088.

[rte_sws_7590]d The SwAddrMethod of a AutosarDataPrototype in the pPort
precedes the assigned SwAddrMethod(s) of the AutosarDataPrototype in the
rPort. c(RTE00148, RTE00169)

[rte_sws_7591]d The SwAddrMethod of the ramBlocks has always higher prece-
dence as the assigned SwAddrMethods of the VariableDataPrototypes in the
PortPrototypes. c(RTE00148, RTE00169)

[rte_sws_5089]d The RTE Generator shall provide information on the used memory
segments and their attributes from rte_sws_5088 in the generated Basic Software
Module Description(see rte_sws_5086). The information shall be provided in the Mem-
orySection elements of the Basic Software Module Description [9]. c(RTE00148,
RTE00169, RTE00170)

[rte_sws_5090]d The RTE Generator shall provide information about the generated
artifacts which are produced during the RTE generation, using the generated Basic
Software Module Description(see rte_sws_5086). The information shall be provided in
the Implementation::generatedArtifact elements of the Basic Software Mod-
ule Description [9]. c()

5.1.2.4 Debugging support

For the support of the AUTOSAR Debugging (see [27]) several requirements have to
be respected.

[rte_sws_5094]d Each variable that shall be accessible by AUTOSAR Debugging, shall
be defined as global variable. c()

[rte_sws_5095]d All type definitions of variables which shall be debugged, shall be
accessible by the Rte types header file Rte_Type.h. c()

[rte_sws_5096]d The declaration of variables in the header file shall be such, that it is
possible to calculate the size of the variables by C-’sizeof()’. c()

[rte_sws_5097]d Variables available for debugging shall be described in the respec-
tive Basic Software Module Description (see rte_sws_5086, [9]) using the elements
BswDebugInfo. c()

[rte_sws_5098]d If the state of a Runnable Entity is kept in a variable in the generated
RTE, it shall be possible to debug the state of this Runnable Entity (rte_sws_2697). c()

[rte_sws_5105]d If the Mode Machine Instance is kept in a variable in the generated
RTE, it shall be possible to debug the state of this Mode Machine Instance, c()

326 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

5.1.2.5 Software Component Namespace

The concept of RTE requires that objects and definitions which are related to one soft-
ware component are generated in a global name space. Nevertheless in this global
name space labels have to be unique for instance to support a correct linkage by
C Linker Locater. To ensure unique labels such objects and definitions related to a
specific software component are typically prefixed or infixed with the component type
symbol.
When AtomicSoftwareComponentTypes of several vendors are integrated in the
same ECU name clashes might occur if the identical component type name is acci-
dentally used twice. To ease the dissolving of name clashes the RTE supports the su-
perseding of the AtomicSoftwareComponentType.shortName with the Symbol-
Props.symbol attribute.

The resulting name related to an AtomicSoftwareComponentType is called com-
ponent type symbol in this document.

[rte_sws_6714]d The component type symbol shall be the value of the Symbol-
Props.symbol attribute of the AtomicSoftwareComponentType if the symbol at-
tribute is defined. c()

[rte_sws_6715]d The component type symbol shall be the shortName of the
AtomicSoftwareComponentType if no symbol attribute for this AtomicSoft-
wareComponentTypeis defined. c()

Please note that the component type symbol is not applied for file names, e.g
Application Header File or includes of Memory Mapping Header files. Its expected that
a build environment can handle two equally named files.

5.1.3 Generator external configuration switches

There are use-cases where there is need to influence the behavior of the RTE Gen-
erator without changing the RTE Configuration description. In order to support such
use-cases this section collects the external configuration switches.

Note: it is not specified how these switches shall be implemented in the actual RTE
Generator implementation.

Unconnected R-Port check

[rte_sws_5099]d The RTE Generator shall support the external configuration switch
strictUnconnectedRPortCheck which, when enabled, forces the RTE Generator
to consider unconnected R-Ports as an error. c(RTE00139)

Missing input configuration check

[rte_sws_5148]d The RTE Generator shall support the external configuration switch
strictConfigurationCheck which, when enabled, forces the RTE Generator to
consider missing input configuration information as an error. If the external configura-

327 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

tion switch strictConfigurationCheck is not provided the value shall be consid-
ered as true. c()

For Details on the use-cases please refer to section 3.7.

Missing initialization values

[rte_sws_7680]d The RTE Generator shall support the external configuration switch
strictInitialValuesCheck. This swich, when enabled, forces the RTE Genera-
tor to check initial values against constraints defined in rte_sws_4525, rte_sws_7642
and rte_sws_7681. Not fullfilled constraints shall be considered as errors by the RTE
Generator. c(RTE00108)

5.2 API Principles

[rte_sws_1316]d The RTE shall be configured and/or generated for each ECU.
c(RTE00021)

Part of the process is the customization (i.e. configuration or generation) of the RTE
API for each AUTOSAR software-component on the ECU. The customization of the
API implementation for each AUTOSAR software-component, whether by generation
anew or configuration of library code, permits improved run-time efficiency and reduces
memory overheads.

The design of the RTE API has been guided by the following core principles:

• The API should be orthogonal – there should be only one way of performing a
task.

• [rte_sws_1314]d The API shall be compiler independent. c(RTE00100)

• [rte_sws_3787]d The RTE implementation shall use the compiler abstraction.
c(RTE00149)

• [rte_sws_1315]d The API shall support components where the source-code
is available [RTE00024] and where only object-code is available [RTE00140].
c(RTE00024, RTE00140)

• The API shall support the multiple instantiation of AUTOSAR software-
components [RTE00011] that share code [RTE00012].

Two forms of the RTE API are available to software-components; direct and indirect.
The direct API has been designed with regard to efficient invocation and includes an
API mapping that can be used by an RTE generator to optimize a component’s API, for
example, to permit the direct invocation of the generated API functions or even eliding
the generated RTE completely. The indirect API cannot be optimized using the API
mapping but has the advantage that the handle used to access the API can be stored
in memory and accessed, via an iterator, to apply the same API to multiple ports.

328 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

5.2.1 RTE Namespace

All RTE symbols (e.g. function names, global variables, etc.) visible within the global
namespace are required to use the “Rte” prefix.

[rte_sws_1171]d All externally visible symbols created by the RTE generator shall use
the prefix Rte_.

This rule shall not be applied for the following symbols:

• type names representing AUTOSAR Data Types (specified in rte_sws_7104,
rte_sws_7109, rte_sws_7110, rte_sws_7111, rte_sws_7114, rte_sws_7144,
rte_sws_7148)

• enumeration literals of implementation data types (specified in rte_sws_3810)

• range limits of ApplicationDataTypes (specified in rte_sws_5052)

This rule shall be applied for RTE internal types to avoid name clashes with other
modules and SWCs. c(BSW00307, BSW00300, RTE00055)

In order to maintain control over the RTE namespace the creation of symbols in the
global namespace using the prefix Rte_ is reserved for the RTE generator.

The generated RTE is required to work with components written in several source lan-
guages and therefore should not use language specific features, such as C++ names-
paces, to ensure symbol name uniqueness.

5.2.2 Direct API

The direct invocation form is the form used to present the RTE API in Section 5.6. The
RTE direct API mapping is designed to be optimizable so that the instance handle is
elided (and therefore imposes zero run-time overhead) when the RTE generator can
determine that exactly one instance of a component is mapped to an ECU.

All runnable entities for a AUTOSAR software-component type are passed the same
instance handle type (as the first formal parameter) and can therefore use the same
type definition from the component’s application header file.

The direct API can also be further optimized for source code components via the API
mapping.

The direct API is typically implemented as macros that are modified by the RTE gen-
erator depending on configuration. This technique places certain restrictions on how
the API can be used within a program, for example, it is not possible in C to take the
address of a macro and therefore direct API functions cannot be placed within a func-
tion table or array. If it is required by the implementation of a software-component to
derive a pointer to an object for the port API the PortAPIOption enableTakeAd-
dress can be used. For instance in an implementation of an AUTOSAR Service this
feature might be used to setup a constant function pointer table storing the configura-

329 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

tion of callback functions per ID. Additionally the indirect API provides support for API
addresses and iteration over ports.

[rte_sws_7100]d If a PortPrototype is referenced by PortAPIOption with en-
ableTakeAddress = TRUE the RTE generator has to provide "C" functions and non
function like macro for the API related to this port. c()

The PortAPIOption enableTakeAddress = TRUE is not supported for software-
components supporting multiple instantiation.

5.2.3 Indirect API

The indirect API is an optional form of API invocation that uses indirection through a
port handle to invoke RTE API functions rather than direct invocation. This form is less
efficient (the indirection cannot be optimized away) but supports a different program-
ming style that may be more convenient. For example, when using the indirect API,
an array of port handles of the same interface and provide/require direction is provided
by RTE and the same RTE API can be invoked for multiple ports by iterating over the
array.

Both direct and indirect forms of API call are equivalent and result in the same gener-
ated RTE function being invoked.

Whether the indirect API is generated or not can be specified for each software com-
ponent and for each port prototype of the software component separately with the
indirectAPI attribute.

The semantics of the port handle must be the same in both the “RTE Contract” and
“RTE Generation” phases since the port handle accesses the standardized data struc-
tures of the RTE.

It is possible to mix the indirect and direct APIs within the same SW-C, if the indirect
API is present for the SW-C.

The indirect API uses port handles during the invocation of RTE API calls. The type
of the port handle is determined by the port interface that types the port which means
that if a component declares multiple ports typed by the same port interface the port
handle points to an array of port data structures and the same API invoked for each
element.

The port handle type is defined in Section 5.4.2.5.

5.2.3.1 Accessing Port Handles

An AUTOSAR SW-C needs to obtain port handles using the instance handle before the
indirect API can be used. The definition of the instance handle in Section 5.4.2 defines

330 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

the “Port API” section of the component data structure and these entries can be used
to access the port handles in either object-code or source-code components.

The API Rte_Ports and Rte_NPorts provides port data handles of a given interface.
Example 5.1 shows how the indirect API can be used to apply the same operation to
multiple ports in a component within a loop.

Example 5.1

The port handle points to an array that can be used within a loop to apply the same
operation to each port. The following example sends the same data to each receiver:

1 void TT1(Rte_Instance self)
2 {
3 Rte_PortHandle_interface1_P my_array;
4 my_array=Rte_Ports_interface1_P(self);
5 int s;
6 for(s = 0; s < Rte_NPorts_interface1_P(self); s++) {
7 my_array[s].Send_a(23);
8 }
9 }

Note that if csInterface1 is a client/server interface with an operation op, the
mechanism sketched in Example5.1 only works if op is invoked either by all clients
synchronously or by all clients asynchronously, since the signature of Rte_Call

and the existence of Rte_Result depend on the kind of invocation (see restriction
rte_sws_3605.

5.2.4 VariableAccess in the dataReadAccess and dataWriteAccess roles

The RTE is required to support access to data with implicit semantics. The required
semantics are subject to two constraints:

• For VariableAccess in the dataReadAccess role, the data accessed by a
runnable entity must not change during the lifetime of the runnable entity.

• For VariableAccess in the dataWriteAccess role, the data written by a
runnable entity is only visible to other runnable entities after the accessing runn-
able entity has terminated.

The generated RTE satisfies both requirements through data copies that are created
when the RTE is generated based on the known task and runnable mapping.

Example 5.2

Consider a data element, a, of port p which is accessed using a VariableAc-
cess in the dataReadAccess role by runnable re1 and a VariableAccess in the

331 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

dataWriteAccess role by runnable re2. Furthermore, consider that re1 and re2
are mapped to different tasks and that execution of re1 can pre-empt re2.

In this example, the RTE will create two different copies to contain a to prevent updates
from re2 ‘corrupting’ the value access by re1 since the latter must remain unchanged
during the lifetime of re1.

The RTE API includes three API calls to support VariableAccesses in
the dataReadAccess and dataWriteAccess roles for a software-component;
Rte_IRead (see Section 5.6.18), Rte_IWrite, and Rte_IWriteRef (see Section
5.6.19 and 5.6.20). The API calls Rte_IRead and Rte_IWrite access the data copies
(for read and write access respectively). The API call Rte_IWriteRef returns a ref-
erence to the data copy, thus enabling the runnable to write the data directly. This
is especially useful for Structure Implementation Data Type and Array Im-
plementation Data Type. The use of an API call for reading and writing enables
the definition to be changed based on the task and runnable mapping without affecting
the software-component code.

Example 5.3

Consider a data element, a, of port p which is declared as being accessed using
VariableAccesses in the dataWriteAccess role by runnables re1 and re2 within
component c. The RTE API for component c will then contain four API functions to
write the data element;

1 void Rte_IWrite_re1_p_a(Rte_Instance self, <type> val);
2 void Rte_IWrite_re2_p_a(Rte_Instance self, <type> val);
3 <type> Rte_IWriteRef_re1_p_a(Rte_Instance self);
4 <type> Rte_IWriteRef_re2_p_a(Rte_Instance self);

The API calls are used by re1 and re2 as required. The definitions of the API depend
on where the data copies are defined. If both re1 and re2 are mapped to the same
task then each can access the same copy. However, if re1 and re2 are mapped to
different (pre-emptable) tasks then the RTE will ensure that each API access a different
copy.

The Rte_IRead and Rte_IWrite use the “data handles” defined in the component data
structure (see Section 5.4.2).

5.2.5 Per Instance Memory

The RTE is required to support Per Instance Memory [RTE00013].

The component’s instance handle defines a particular instance of a component and is
therefore used when accessing the Per Instance Memory using the Rte_Pim API.

332 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

The Rte_Pim API does not impose the RTE to apply a data consistency mechanism
for the access to Per Instance Memory. An application is responsible for consistency
of accessed data by itself. This design decision permits efficient (zero overhead) ac-
cess when required. If a component possesses multiple runnable entities that require
concurrent access to the same Per Instance Memory, an exclusive area can be used
to ensure data consistency, either through explicit Rte_Enter and Rte_Exit API calls
or by declaring that, implicitly, the runnable entities run inside an exclusive area.

Thus, the Per Instance Memory is exclusively used by a particular software-component
instance and needs to be declared and allocated (statically).

In general there are two different kinds of Per Instance Memory available which are
varying in the typing mechanisms. ’C’ typed PerInstanceMemory is typed by
the description of a ’C’ typedef whereas arTypedPerInstanceMemory (AUTOSAR
Typed Per Instance Memory) is typed by the means of an AutosarDataType. Nev-
ertheless both kinds of Per Instance Memory are accessed via the Rte_Pim API.

[rte_sws_7161]d The generated RTE shall declare arTypedPerInstanceMemory in
accordance to the associated ImplementationDataType of a particular arTyped-
PerInstanceMemory. c(RTE00013, RTE00077)

Note: The related AUTOSAR data type will generated in the RTE Types Header File
(see chapter 5.3.6).

[rte_sws_2303]d The generated RTE shall declare ’C’ typed PerInstanceMemory in
accordance to the attribute type of a particular PerInstanceMemory. c(RTE00013,
RTE00077)

In addition, the attribute type needs to be defined in the corresponding software-
component header. Therefore, the attribute typeDefinition of the PerInstance-
Memory contains its definition as plain text string. It is assumed that this text is valid
’C’ syntax, because it will be included verbatim in the application header file.

[rte_sws_2304]d The generated RTE shall define the type of a ’C’ typed PerIn-
stanceMemory by interpreting the text string of the attribute typeDefinition of
a particular PerInstanceMemory as the ’C’ definition. This type shall be named ac-
cording to the attribute type of the PerInstanceMemory. c(RTE00013, RTE00077)

[rte_sws_7133]d The type of a ’C’ typed PerInstanceMemory shall be defined in the
RTE Types Header File as

typedef <typedefinition> Rte_PimType_<cts>_<type>;

where <typedefinition> is the content of the typeDefinition attribute of the
PerInstanceMemory,
<type> is the type name defined in the type attribute of the the PerInstanceMem-
ory and

333 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

<cts> the component type symbol of the AtomicSwComponentType to which
the PerInstanceMemory belongs.. c(RTE00013, RTE00077)

[rte_sws_3782]d The type of a ’C’ typed PerInstanceMemory shall be defined in the
Application Header File as

typedef Rte_PimType_<cts>_<type> <type>;

where <cts> is the component type symbol of the AtomicSwComponentType
to which the PerInstanceMemory belongs and
<type> is the type name defined in the type attribute of the PerInstanceMemory.
c(RTE00013, RTE00077)

[rte_sws_7134]d The RTE generator shall generate type definitions for ’C’ typed
PerInstanceMemory (see rte_sws_7133 and rte_sws_3782) only once for all ’C’
typed PerInstanceMemorys of same Software Component Type defining identical
couples of type and typeDefinition attributes. c(RTE00013, RTE00165)

Note: This shall support, that a Software Component Type can define several PerIn-
stanceMemory’s using the identical ’C’ type.

[rte_sws_7135]d The RTE generator shall reject configurations where ’C’ typed
PerInstanceMemorys with identical type attributes but different typeDefini-
tion attributes in the same Software Component Type are defined. c(RTE00013,
RTE00018)

Note: This would lead to an compiler error due to incompatible redefinition of a ’C’ type.

[rte_sws_2305]d The generated RTE shall instantiate (or allocate) declared PerIn-
stanceMemory. c(RTE00013, RTE00077)

[rte_sws_7182]d The generated RTE shall initialize declared PerInstanceMemory
according the initValue attribute if

• an initValue is defined

AND

• no SwAddrMethod is defined for PerInstanceMemory.

c(RTE00013, RTE00077)

[rte_sws_8304]d Variables implementing PerInstanceMemory shall be initialized by
RTE if

• an initValue is defined

AND

• a SwAddrMethod is defined for PerInstanceMemory

AND

334 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

• the RteInitializationStrategy for the sectionInitializa-
tionPolicy of the related SwAddrMethod is NOT configured to
RTE_INITIALIZATION_STRATEGY_NONE.

c(RTE00013, RTE00077)

[rte_sws_7183]d The generated RTE shall instantiate (or allocate) declared arType-
dPerInstanceMemory. c(RTE00013, RTE00077)

[rte_sws_7184]d The generated RTE shall initialize declared arTypedPerIn-
stanceMemory according the ValueSpecification of the VariableDataPro-
totype defining the arTypedPerInstanceMemory if the general initialization con-
ditions in rte_sws_7046 are fulfilled. c(RTE00013, RTE00077)

[rte_sws_5062]d In case the PerInstanceMemory or arTypedPerInstanceMem-
ory is used as a permanent ram mirror for the NvRam manager the name for the
instantiated PerInstanceMemory or arTypedPerInstanceMemory shall be taken
from the input information RteNvmRamBlockLocationSymbol. Otherwise the RTE
generator is free to choose an arbitrary name. c(RTE00013, RTE00077)

Note that, in cases where a PerInstanceMemory is not initialized due to rte_sws_7182
or rte_sws_7184, the memory allocated for a PerInstanceMemory is not initialized by
the generated RTE, but by the corresponding software-component instances.

[rte_sws_7693]d In case a ParameterDataPrototype in the role perInstan-
ceParameter is used as a romBlock for the NVRam Manager, then the name for
the instantiated ParameterDataPrototype shall be taken from the input information
RteNvmRomBlockLocationSymbol. Otherwise the RTE generator is free to choose
an arbitrary name. c(RTE00154)

Example 5.4

This description of a software component
<AR-PACKAGE>

<SHORT-NAME>SWC</SHORT-NAME>
<ELEMENTS>

<APPLICATION-SW-COMPONENT-TYPE>
<SHORT-NAME>TheSwc</SHORT-NAME>
<INTERNAL-BEHAVIORS>

<SWC-INTERNAL-BEHAVIOR>
<SHORT-NAME>TheSwcInternalBehavior</SHORT-NAME>
<PER-INSTANCE-MEMORYS>

<PER-INSTANCE-MEMORY>
<SHORT-NAME>MyPIM</SHORT-NAME>
<TYPE>MyMemType</TYPE>
<TYPE-DEFINITION>struct {uint16 val1; uint8 * val2;}</

TYPE-DEFINITION>
</PER-INSTANCE-MEMORY>

</PER-INSTANCE-MEMORYS>
</SWC-INTERNAL-BEHAVIOR>

</INTERNAL-BEHAVIORS>
</APPLICATION-SW-COMPONENT-TYPE>

</ELEMENTS>

335 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

</AR-PACKAGE>

will e. g. result in the following code:

In the RTE Types Header File:

1 /* typedef to ensure unique typename */
2 /* according to the attributes */
3 /* ’type’ and ’typeDefinition’ */
4 typedef struct{
5 uint16 val1;
6 uint8 * val2;
7 } Rte_PimType_TheSwc_MyMemType;

In the respective Application Header File:

1 /* typedef visible within the scope */
2 /* of the component according to the attributes */
3 /* ’type’ and ’typeDefinition’ */
4 typedef Rte_PimType_TheSwc_MyMemType MyMemType;

In Rte.c:

1 /* declare and instantiate mem1 */
2 /* "mem1" name may be taken from RteNvmRamBlockLocationSymbol */
3 Rte_PimType_TheSwc_MyMemType mem1;

Note that the name used for the definition of the PerInstanceMemory may be used
outside of the RTE. One use-case is to support the definition of the link between the
NvRam Manager’s permanent blocks and the software-components. The name in
RteNvmRamBlockLocationSymbol is used to configure the location at which the
NvRam Manager shall store and retrieve the permanent block content. For a detailed
description please refer to the AUTOSAR Software Component Template [2].

5.2.6 API Mapping

The RTE API is implemented by macros and generated API functions that are created
(or configured, depending on the implementation) by the RTE generator during the
“RTE Generation” phase. Typically one customized macro or function is created for
each “end” of a communication though the RTE generator may elide or combine custom
functions to improve run-time efficiency or memory overheads.

[rte_sws_1274]d The API mapping shall be implemented in the application header file.
c(BSW00330, RTE00027, RTE00051, RTE00083, RTE00087)

The RTE generator is required to provide a mapping from the RTE API name to the
generated function [RTE00051]. The API mapping provides a level of indirection neces-
sary to support binary components and multiple component instances. The indirection
is necessary for two reasons. Firstly, some information may not be known when the

336 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

component is created, for example, the component’s instance name, but are necessary
to ensure that the names of the generated functions are unique. Secondly, the names
of the generated API functions should be unique (so that the ECU image can link cor-
rectly) and the steps taken to ensure this may make the names not “user-friendly”.
Therefore, the primary rationale for the API mapping is to provide the required abstrac-
tion that means that a component does not need to concern itself with the preceding
problems.

The requirements on the API mapping depend on the phase in which an RTE generator
is operating. The requirements on the API mapping are only binding for RTE generators
operating in compatibility mode.

5.2.6.1 “RTE Contract” Phase

Within the “RTE Contract” phase the API mapping is required to convert from the
source API call (as defined in Section 5.6) to the runnable entity provided by a software-
component or the implementation of the API function created by the RTE generator.

When compiled against a “RTE Contract” phase header file a software-component that
can be multiple instantiated is required to use a general API mapping that uses the
instance handle to access the function table defined in the component data structure.

[rte_sws_3706]d If a software-component supportsMultipleInstantiation, the
“RTE Contract” phase API mapping shall access the generated RTE functions using
the instance handle to indirect through the generated function table in the component
data structure. c(RTE00051)

Example 5.5

For a require client-server port ‘p1’ with operation ‘a’ with a single argument, the gen-
eral form of the API mapping would be:

1 #define Rte_Call_p1_a(s,v) ((s)->p1.Call_a(v))

Where s is the instance handle.

[rte_sws_6516]d The RTE Generator shall wrap each API mapping and API function
definition of a variant existent API according table 4.13 if the variability shall be imple-
mented.

1 #if (<condition> [||<condition>])
2

3 <API Mapping>
4

5 #endif

where condition are the condition value macro(s) of the VariationPoints rele-
vant for the conditional existence of the RTE API (see table 4.13), API Mapping is

337 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

the code according an invariant API Mapping (see also rte_sws_1274, rte_sws_3707,
rte_sws_3837, rte_sws_1156) c(RTE00201)

Note: In case of explicit communication any existent access points in the meta model
might result in the related API which results in a or condition for the pre processor.

Example 5.6

For a require client-server port ‘p1’ with operation ‘a’ with a single argument of the
component ‘c1’ defining a ServerCallPoint which is subject of variability in runn-
able ‘run1’, the general form of the conditional API mapping would be:

1

2 #if (Rte_VPCon_c1_run1_p1_a)
3

4 #define Rte_Call_p1_a(s,v) ((s)->p1.Call_a(v))
5

6 #endif
7

[rte_sws_3707]d If a software-component does not supportsMultipleInstanti-
ation, the “RTE Contract” phase API mapping shall access the generated RTE func-
tions directly. c(RTE00051)

When accessed directly, the names of the generated functions are formed according
to the following rule:

[rte_sws_3837]d The function generated for API calls
Rte_<name>_<api_extension> that are intended to be called by the software
component shall be

Rte_<name>_<cts>_<api_extension>,

where <name> is the API root (e.g. Receive),
<cts> the component type symbol of the AtomicSwComponentType,
and <api_extension> is the extension of the API dependent on <name> (e.g.
<re>_<p>_<o>). c(RTE00051)

[rte_sws_1156]d In compatibility mode, the following API calls shall be implemented
as macros:

• Rte_Pim

• Rte_IRead

• Rte_IWrite

• Rte_IWriteRef

• Rte_IStatus

• Rte_IrvIRead

338 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

• Rte_IrvIWrite

The generated macros for these API calls shall map to the relevant fields of the com-
ponent data structure. c(RTE00051)

Note that the rule described in rte_sws_3837 does not apply for the life cycle
APIs, nor for the callback APIs, nor for the APIs that are implemented as macros
(see rte_sws_1156).

The functions generated that are the destination of the API mapping, which is created
during the “RTE Contract” phase, are created by the RTE generator during the second
“RTE Generation” phase.

[rte_sws_1153]d The generated function (or runnable) shall take the same parame-
ters, in the same order, as the API mapping. c(RTE00051)

Example 5.7

For a require client-server port ‘p1’ with operation ‘a’ with a single argument for compo-
nent type ‘c1’ for which multiple instantiation is forbidden, the following mapping would
be generated:

1 #define Rte_Call_p1_a Rte_Call_c1_p1_a

5.2.6.2 “RTE Generation” Phase

There are no requirements on the form that the API mapping created during the “RTE
Generation” phase should take. This is because the application header files defined
during this phase are used by source-code components and therefore compatibility
between the generated RTE and source-code components is automatic.

The RTE generator is required to produce the component data structure instances re-
quired by object-code components and multiple instantiated source-code components.

If multiple instantiation of a software-component is forbidden, then the API mapping
specified for the “RTE Contract” phase (Section 5.2.6.1) defines the names of the gen-
erated functions. If multiple instantiation is possible, there are no corresponding re-
quirements that define the name of the generated function since all accesses to the
generated functions are performed via the component data structure which contains
well-defined entries (Sections 5.4.2.5 and 5.4.2.5).

339 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

5.2.6.3 Function Elision

Using the “RTE Generation” phase API mapping, it is possible for the RTE generator
to elide the use of generated RTE functions.

[rte_sws_1146]d If the API mapping elides an RTE function the “RTE Generation”
phase API mapping mechanism shall ensure that the invoking component still receives
a “return value” so that no changes to the AUTOSAR software-component are neces-
sary. c(RTE00051)

In C, the elision of API calls can be achieved using a comma expression2

Example 5.8

As an example, consider the following component code:

1 Std_ReturnType s;
2 s = Rte_Send_p1_a(self,23);

Furthermore, assume that the communication attributes are specified such that the
sender-receiver communication can be performed as a direct assignment and there-
fore no RTE API call needs to be generated. However, the component source cannot
be modified and expects to receive an Std_ReturnType as the return. The “RTE
Generation” phase API mapping could then be rewritten as:

1 #define Rte_Send_p1_a(s,a) (<var> = (a), RTE_E_OK)

Where <var> is the implementation dependent name for an RTE created cache be-
tween sender and receiver.

5.2.6.4 API Naming Conventions

An AUTOSAR software-component communicates with other components (including
basic software) through ports and therefore the names that constitute the RTE API are
formed from the combination of the API call’s functionality (e.g. Call, Send) that defines
the API root name and the access point through which the API operates.

For any API that operates through a port, the API’s access point includes the port
name.

A SenderReceiverInterface can support multiple data items and a
ClientServerInterface can support multiple operations, any of which can
be invoked through the requiring port by a client. The RTE API therefore needs a
mechanism to indicate which data item/operation on the port to access and this is
implemented by including the data item/operation name in the API’s access point.

2This is contrary to MISRA Rule 42 “comma expression shall not be used except in the control
expression of a for loop”. However, a comma expression is valid, legal, C and the elision cannot be
achieved without a comma expression and therefore the rule must be relaxed.

340 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

As described above, the RTE API mapping is responsible for mapping the RTE API
name to the correct generated RTE function. The API mapping permits an RTE gener-
ator to include targeted optimization as well as removing the need to implement func-
tions that act as routing functions from generic API calls to particular functions within
the generated RTE.

For C and C++ the RTE API names introduce symbols into global scope and therefore
the names are required to be prefixed with Rte_ rte_sws_1171.

5.2.6.5 API Parameters

All API parameters fall into one of two classes; parameters that are strictly read-only
(“In” parameters) and parameters whose value may be modified by the API function
(“In/Out” and “Out” parameters).

The type of these parameters is taken from the data element prototype or operation
prototype in the interface that characterizes the port for which the API is being gener-
ated.

• “In” Parameters

[rte_sws_1017]d All input parameters that are a Primitive Implementa-
tion Data Type shall be passed by value. c(RTE00059, RTE00061)

[rte_sws_1018]d All input parameters that are of type Structure Imple-
mentation Data Type or Union Implementation Data Type shall be
passed by reference. c(RTE00060, RTE00061)

[rte_sws_5107]d All input parameters that are an Array Implementation
Data Type shall be passed as an array expression (that is a pointer to the array
base type). c(RTE00060, RTE00061)

[rte_sws_7661]d All input parameters that are a data type of category
DATA_REFERENCE shall be passed as a pointer to the data type specified by
the SwPointerTargetProps. c(RTE00059, RTE00061)

[rte_sws_7086]d All input parameters that are passed by reference
(rte_sws_1018) or passed as an array expression (rte_sws_5107) shall be de-
clared as pointer to const with the means of the P2CONST macro. c(RTE00060,
BSW007)

Please note that the description of the P2CONST macro can be found in [28].

341 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

• “Out” Parameters

[rte_sws_1019]d All output parameters that of type Primitive Implementa-
tion Data Type shall be passed by reference. c(RTE00061)

[rte_sws_7082]d All output parameters that are of type Structure Imple-
mentation Data Type or Union Implementation Data Type shall be
passed by reference. c(RTE00060, RTE00061)

[rte_sws_5108]d All output parameters that are an Array Implementation
Data Type shall be passed as an array expression (that is a pointer to the array
base type). c(RTE00060, RTE00061)

[rte_sws_7083]d All output parameters that are of type Pointer Implemen-
tation Data Type shall be passed as a pointer to the Pointer Implemen-
tation Data Type. c(RTE00059, RTE00061)

• “In/Out” Parameters

[rte_sws_1020]d All bi-directional parameters (i.e. both input and output) that
are of type Primitive Implementation Data Type or Structure Im-
plementation Data Type or Union Implementation Data Type shall
be passed by reference. c(RTE00059, RTE00061)

[rte_sws_5109]d All bi-directional parameters (i.e. both input and output) that are
an Array Implementation Data Type shall be passed as an array expres-
sion (that is a pointer to the array base type). c(RTE00061)

[rte_sws_7084]d All input, output and bi-directional parameters which related
DataPrototype is typed or mapped to an Redefinition Implementa-
tion Data Type shall be treated according the kind of data type redefined
by the Redefinition Implementation Data Type. The possible kinds of
data types supported by RTE are listed in 5.3.4.2. c(RTE00059, RTE00060,
RTE00061)

In order to indicate the direction of the individual API parameters, the descriptions
of the API signatures in this API reference chapter use the direction qualifiers ”IN”,
”OUT”, and ”INOUT”. These direction qualifiers are not part of the actual API proto-
types. Especially, the user cannot expect that these direction qualifiers are available
for the application.

Example 5.9

Consider an RTE API call taking an array as an “out” parameter for a singly instantiated
SW-C. The signature of the API will be:

1 FUNC(Std_ReturnType, RTE_CODE) Rte_Write_<p>_<o>_(VAR(longArray_8,
2 AUTOMATIC) value)

And the function could be invoked as follows:

342 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

1 longArray_8 myArray;
2 Rte_Write_p1_d1(myArray);

5.2.6.6 Return Values

A subset of the RTE API’s returning the values instead of using OUT Parameters. In
the API section these API signatures defining a <return> value. In addition to the
following rules some of the APIs might specify additionally const qualifiers.

[rte_sws_7069]d The RTE Generator shall determine the <return> type according
the applicable ImplementationDataType of the DataPrototype for which the API
provides access. c(RTE00059)

[rte_sws_8300]d A pointer return value of an RTE API shall be declared as pointer to
const with the means of the FUNC_P2CONST macro or P2CONST if the pointer is not
used to modify the addressed object. c(RTE00059)

Please note that the FUNC_P2CONSTmacro is applicable if the RTE API is implemented
as an real function and the P2CONST might be used if the RTE API is implemented as
a macro.

Requirement rte_sws_8300 applies for instance for the RTE APIs Rte_Prm,
Rte_CData, Rte_IrvRead, Rte_IrvIRead in the cases where the API grants access
to composite data (arrays, structures, unions).

Please note, that the the implementation of the C data types are specified in section
5.3.4 "RTE Types Header File".

[rte_sws_7070]d If the DataPrototype is associated to a Primitive Implemen-
tation Data Type the RTE API shall return the value of the DataPrototype for
which the API provides access. The type name shall be equal to the shortName of
these ImplementationDataType. c(RTE00059)

Example 5.10

Consider an RTE API call return a primitive as defined in the example 5.3 for a singly
instantiated SW-C. The signature of the API will be:

1 MyUint8 Rte_IRead_<re>_<p>_<o>(void);

Please note that the usage of Compiler Abstraction is not shown in the example.

[rte_sws_7071]d If the DataPrototype is associated to a Structure Implemen-
tation Data Type or Union Implementation Data Type, the RTE API shall
return a pointer to a variable holding the DataPrototype value provided by the

343 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

API. The type name shall be equal to the shortName of these Implementation-
DataType. c(RTE00059)

Example 5.11

Consider an RTE API call return a structure as defined in the example 5.7 for a singly
instantiated SW-C. The signature of the API will be:

1

2 FUNC_P2CONST(RecA, RTE_VAR_FAST_INIT, RTE_CODE)
3 Rte_IRead_<re>_<p>_<o>(void);
4

Please note that the usage of Compiler Abstraction assumes that the SwAddrMethod
of the accessed VariableDataPrototype is named "‘VAR_FAST_INIT"’. Further
on the example does not respect the principles of API mapping.

[rte_sws_7072]d If the DataPrototype is associated to an Array Implementa-
tion Data Type the RTE API shall return an array expression (that is a pointer to
the array base type) pointing to variable holding the value of the DataPrototype for
which the API provides access. If the leaf ImplementationDataTypeElement is
typed by a SwBaseType the array type name shall be equal to the nativeDecla-
ration attribute of the SwBaseType. If the leaf ImplementationDataTypeEle-
ment is typed by an ImplementationDataType the type name shall be equal to the
shortName of these ImplementationDataType. c(RTE00059)

Example 5.12

Consider an RTE API call return an array as defined in the example 5.5 for a singly
instantiated SW-C. The signature of the API will be:

1 FUNC_P2CONST(unsigned char, RTE_VAR_POWER_ON_INIT, RTE_CODE)
2 Rte_IRead_<re>_<p>_<o>(void);

Please note that the usage of Compiler Abstraction assumes that the SwAddrMethod
of the accessed VariableDataPrototype is named "‘VAR_POWER_ON_INIT"’.
Further on the example does not respect the principles of API mapping.

Example 5.13

Consider an RTE API call return an array as defined in the example 5.6 for a singly
instantiated SW-C. The signature of the API will be:

1 FUNC_P2CONST(uint8, RTE_VAR_NO_INIT, RTE_CODE)
2 Rte_IRead_<re>_<p>_<o>(void);

Please note that the usage of Compiler Abstraction assumes that the SwAddrMethod
of the accessed VariableDataPrototype is named "‘VAR_NO_INIT"’. Further on
the example does not respect the principles of API mapping.

344 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

[rte_sws_7073]d If the DataPrototype is associated to a Pointer Implemen-
tation Data Type the RTE API shall return the value of the DataPrototype for
which the API provides access. The type name shall be equal to the shortName
of these ImplementationDataType. c(RTE00059) Please not that in this case the
value is a pointer.

[rte_sws_7074]d If the DataPrototype is associated to a Redefinition Imple-
mentation Data Type the RTE Generator shall determine the API return value be-
haviour as described in rte_sws_7070, rte_sws_7071, rte_sws_7072, rte_sws_7073,
rte_sws_7074 according the referenced ImplementationDataType. Nevertheless
except for Array Implementation Data Type the type name shall be equal to
the shortName of these ImplementationDataType. c(RTE00059)

Please note that Redefinition Implementation Data Type might redefine an
other Redefinition Implementation Data Type again.

5.2.6.7 Return References

A subset of the RTE API’s returning a reference to the memory location where the data
can be accessed instead of using IN/OUT Parameters. In the API section these API
signatures defining a <return reference> value.

[rte_sws_7076]d The RTE Generator shall determine the <return reference>
type according the applicable ImplementationDataType of the DataPrototype
for which the API provides access. c(RTE00059)

Please note, that the the implementation of the C data types are specified in section
5.3.4 "RTE Types Header File".

[rte_sws_7077]d If the DataPrototype is associated to a Primitive Implemen-
tation Data Type the RTE API shall return a pointer to variable holding the data of
the value of the DataPrototype for which the API provides access. The type name
shall be equal to the shortName of these ImplementationDataType. c(RTE00059)

Example 5.14

Consider an RTE API call return a reference to a primitive as defined in the example
5.3 for a singly instantiated SW-C. The signature of the API will be:

1 MyUint8 * Rte_IWriteRef_<re>_<p>_<o>(void);

Please note that the usage of Compiler Abstraction is not shown in the example.

[rte_sws_7078]d If the DataPrototype is associated to a Structure Implemen-
tation Data Type or Union Implementation Data Type the RTE API shall
return a pointer to variable holding the value of the DataPrototype for which the API

345 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

provides access. The type name shall be equal to the shortName of these Imple-
mentationDataType. c(RTE00059)

Example 5.15

Consider an RTE API call return a reference to a structure as defined in the example
5.7 for a singly instantiated SW-C. The signature of the API will be:

1 RecA * Rte_IWriteRef_<re>_<p>_<o>(void);

Please note that the usage of Compiler Abstraction is not shown in the example.

[rte_sws_7079]d If the DataPrototype is associated to an Array Implementa-
tion Data Type the RTE API shall return an array expression (that is a pointer to
the array base type) pointing to variable holding the value of the DataPrototype for
which the API provides access. If the leaf ImplementationDataTypeElement is
typed by a SwBaseType the array type name shall be equal to the nativeDecla-
ration attribute of the SwBaseType. If the leaf ImplementationDataTypeEle-
ment is typed by an ImplementationDataType the type name shall be equal to the
shortName of these ImplementationDataType. c(RTE00059)

Example 5.16

Consider an RTE API call return a reference to an array as defined in the example 5.5
for a singly instantiated SW-C. The signature of the API will be:

1 unsigned char * Rte_IWriteRef_<re>_<p>_<o>(void);

Example 5.17

Consider an RTE API call return a reference to an array as defined in the example 5.6
for a singly instantiated SW-C. The signature of the API will be:

1 uint8 * Rte_IWriteRef_<re>_<p>_<o>(void);

Please note that the usage of Compiler Abstraction is not shown in the examples.

[rte_sws_7080]d If the DataPrototype is associated to a Pointer Implemen-
tation Data Type the RTE API shall return a pointer pointing to variable holding
the value of the DataPrototype for which the API provides access. The type name
shall be equal to the shortName of these ImplementationDataType. c(RTE00059)
Please not that in this case the value is a pointer again.

[rte_sws_7081]d If the DataPrototype is associated to a Redefinition Imple-
mentation Data Type the RTE Generator shall determine the API return value be-
haviour as described in rte_sws_7077, rte_sws_7078, rte_sws_7079, rte_sws_7080,
rte_sws_7081 according the referenced ImplementationDataType. Nevertheless
except for Array Implementation Data Type the type name shall be equal to
the shortName of these ImplementationDataType. c(RTE00059)

346 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Please note that Redefinition Implementation Data Type might redefine an
other Redefinition Implementation Data Type again.

5.2.6.8 Error Handling

In RTE, error and status information is defined with the data type Std_ReturnType,
see Section 5.5.1.

It is possible to distinguish between infrastructure errors and application errors. Infras-
tructure errors are caused by a resource failure or an invalid input parameter. Infras-
tructure errors usually occur in the basic software or hardware along the communica-
tion path of a data element. Application errors are reported by a SW-C or by AUTOSAR
services. RTE has the capability to treat application errors that are forwarded

• by return value in client server communication or

• by signal invalidation in sender receiver communication with data semantics.

Errors that are detected during an RTE API call are notified to the caller using the API’s
return value.

[rte_sws_1034]d Error states (including ’no error’) shall only be passed as return value
of the RTE API to the AUTOSAR SW-C. c(RTE00094)

Requirement rte_sws_1034 ensures that, irrespective of whether the API is blocking or
non-blocking, the error is collected at the same time the data is made available to the
caller thus ensuring that both items are accessed consistently.

Certain RTE API calls operate asynchronously from the underlying communication
mechanism. In this case, the return value from the API indicates only errors detected
during that API call. Errors detected after the API has terminated are returned using
a different mechanism rte_sws_1111. RTE also provides an ’implicit’ API for direct ac-
cess to virtually shared memory. This API does not return any errors. The underlying
communication is decoupled. Instead, an API is provided to pick up the current status
of the corresponding data element.

5.2.6.9 Success Feedback

The RTE supports the notification of results of transmission attempts to an AUTOSAR
software-component.

The Rte_Feedback API rte_sws_1083 or the Rte_IFeedback API rte_sws_7367 can
be configured to return the transmission result as either a blocking or non-blocking API
or via activation of a runnable entity.

347 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

5.2.7 Unconnected Ports

[rte_sws_1329]d The RTE shall handle both require and provide ports that are not
connected. c(RTE00139)

The handling of require ports as an error is described in requirement rte_sws_5099.

The API calls for unconnected ports are specified to behave as if the port was con-
nected but the remote communication point took no action.

Unconnected require ports are regarded by the RTE generator as an invalid configura-
tion (see rte_sws_3019) if the strict handling has been enabled (see rte_sws_5099).

5.2.7.1 Data Elements

5.2.7.1.1 Explicit Communication

[rte_sws_1330]d A Rte_Read API for an unconnected require port typed by a Sender-
ReceiverInterface or NvDataInterface shall return the RTE_E_UNCONNECTED
code and provide the initValue as if a sender was connected but did not transmit
anything. c(RTE00139, RTE00200)

[rte_sws_7663]d A Rte_DRead API for an unconnected require port typed by a
SenderReceiverInterface or NvDataInterface shall return the initValue as
if a sender was connected but did not transmit anything. c(RTE00139, RTE00200)

Requirements rte_sws_1330 and rte_sws_7663 apply to elements with "‘data"’ seman-
tics and therefore "last is best"’ semantics. This means that the initial value will be
returned.

[rte_sws_1331]d A blocking or non-blocking Rte_Receive API for an un-
connected require port typed by a SenderReceiverInterface shall return
RTE_E_UNCONNECTED immediately. c(RTE00139, RTE00200)

The existence of blocking and non-blocking Rte_Read, Rte_DRead and Rte_Receive

API calls is controlled by the presence of VariableAccesses in the dataReceive-
PointByValue or dataReceivePointByArgument role, DataReceivedEvents
and WaitPoints within the SW-C description rte_sws_1288, rte_sws_1289 and
rte_sws_1290.

[rte_sws_1344]d A blocking or non-blocking Rte_Feedback API for a VariableDat-
aPrototype of an unconnected provide port shall return RTE_E_UNCONNECTED im-
mediately. c(RTE00139)

The existence of blocking and non-blocking Rte_Feedback API is controlled by
the presence of VariableAccesses in the dataSendPoint role, DataSendCom-
pletedEvents and WaitPoints within the SW-C description for a Variable-

348 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

DataPrototype with acknowledgement enabled, see rte_sws_1283, rte_sws_1284,
rte_sws_1285 and rte_sws_1286.

[rte_sws_1332]d The Rte_Send or Rte_Write API for an unconnected provide port
typed by a SenderReceiverInterface or NvDataInterface shall discard the
input parameters and return RTE_E_OK. c(RTE00139)

The existence of Rte_Send or Rte_Write is controlled by the presence of
VariableAccesses in the dataSendPoint role within the SW/C description
rte_sws_1280 and rte_sws_1281.

[rte_sws_3783]d The Rte_Invalidate API for an unconnected provide port typed by
a SenderReceiverInterface shall return RTE_E_OK. c(RTE00139)

The existence of Rte_Invalidate is controlled by the presence of VariableAc-
cesses in the dataSendPoint role within the SW/C description for a Variable-
DataPrototype which is marked as invalidatable by an associated Invalidation-
Policy. The handleInvalid attribute of the InvalidationPolicy has to be
set to keep or replace to enable the invalidation support for this dataElement
(rte_sws_1282).

5.2.7.1.2 Implicit Communication

[rte_sws_7378]d An Rte_IFeedback API for a VariableDataPrototype of an un-
connected provide port shall return RTE_E_UNCONNECTED immediately. c(RTE00139,
RTE00185)

The existence of an Rte_IFeedback API is controlled by the presence of Vari-
ableAccesses in the dataWriteAccess role, and DataWriteCompletedEvents
within the SWC description for a VariableDataPrototype with acknowledgement
enabled, see rte_sws_7646, rte_sws_7647.

[rte_sws_1346]d An Rte_IRead API for an unconnected require port typed by a
SenderReceiverInterface or NvDataInterface shall return the initial value.
c(RTE00139)

The existence of Rte_IRead is controlled by the presence of a VariableAccess in
the dataReadAccess role in the SW-C description rte_sws_1301.

[rte_sws_1347]d An Rte_IWrite API for an unconnected provide port typed by a
SenderReceiverInterface or NvDataInterface shall discard the written data.
c(RTE00139)

The existence of Rte_IWrite is controlled by the presence of a VariableAccess in
the dataWriteAccess role in the SW-C description rte_sws_1302.

[rte_sws_3784]d An Rte_IInvalidate API for an unconnected provide port typed by
a SenderReceiverInterface shall perform no action. c(RTE00139)

349 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

The existence of Rte_IInvalidate is controlled by the presence of a VariableAc-
cess in the dataWriteAccess role in the SW-C description for a VariableDat-
aPrototype which is marked as invalidatable by an associated Invalidation-
Policy. The handleInvalid attribute of the InvalidationPolicy has to be
set to keep or replace to enable the invalidation support for this dataElement
(rte_sws_3801).

[rte_sws_3785]d An Rte_IStatus API for an unconnected require port typed by
a SenderReceiverInterface shall return RTE_E_UNCONNECTED. c(RTE00139,
RTE00200)

The existence of Rte_IStatus is controlled by the presence of a VariableAccess in
the dataReadAccess role in the SW-C description for a VariableDataPrototype
with data element outdated notification or data element invalidation rte_sws_2600.

5.2.7.2 Mode Switch Ports

For the mode user an unconnected mode switch port behaves as if it was connected
to a mode manager that never sends a mode switch notification.

[rte_sws_2638]d A Rte_Mode API for an unconnected mode switch port of a mode
user shall return the initial state. c(RTE00139)

[rte_sws_2639]d Regarding the modes of an unconnected mode switch port of a
mode user, the mode disabling dependencies on the initial mode shall be perma-
nently active and the mode disabling dependencies on all other modes shall be inactive.
c(RTE00139)

[rte_sws_2640]d Regarding the modes of an unconnected mode switch port of a mode
user, RTE will only generate a SwcModeSwitchEvent for entering the initial mode
which occurs directly after startup. c(RTE00139)

[rte_sws_2641]d The Rte_Switch API for an unconnected mode switch port of the
mode manager shall discard the input parameters and return RTE_E_OK. c(RTE00139)

[rte_sws_2642]d A blocking or non blocking Rte_SwitchAck API for an unconnected
mode switch port of the mode manager shall return RTE_E_UNCONNECTED immedi-
ately. c(RTE00139)

350 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

5.2.7.3 Client-Server

[rte_sws_1333]d The Rte_Result API for an unconnected asynchronous require port
typed by a ClientServerInterface shall return RTE_E_UNCONNECTED immedi-
ately. c(RTE00139, RTE00200)

[rte_sws_1334]d The Rte_Call API for an unconnected require port typed
by a ClientServerInterface shall return RTE_E_UNCONNECTED immediately.
c(RTE00139, RTE00200)

5.2.8 Non-identical port interfaces

Two ports are permitted to be connected provided that they are characterized by com-
patible, but not necessarily identical, interfaces. For the full definition of whether two
interfaces are compatible, see the Software Component Template [2].

[rte_sws_1368]d The RTE generator must report an error if two connected ports are
connected by incompatible interfaces. c(RTE00137)

A significant issue in determining whether two interfaces are compatible is that the
interface characterizing the require port may be a strict subset of the interface char-
acterizing the provide port. This means that there may be provided data elements or
operations for which there is no corresponding element in the require port. This can be
imagined as a multi-strand wire between the two ports (the assembly connector) where
each strand represents the connection between two data elements or operations, and
where some of the strands from the ‘provide’ end are not connected to anything at the
‘require’ end.

Define, for the purposes of this section, an “unconnected element” as a data element
or operation that occurs in the provide interface, but for which no corresponding data
element or operation occurs in a particular R-Port’s interface.

[rte_sws_1369]d For each data element or operation within the provide interface, every
connected requirer with an “unconnected element” must be treated as if it were not
connected. c(RTE00137)

Note that requirement rte_sws_1369 means that in the case of a 1:n Sender-Receiver
the Rte_Write call may transmit to some but not all receivers.

The extreme is if all connected requirers have an “unconnected element”:

[rte_sws_1370]d For a data element or operation in a provide interface which is an un-
connected element in every connected R-Port, the generated Rte_Send, Rte_Write,
Rte_IWrite, or Rte_IWriteRef APIs must act as if the port were unconnected.
c(RTE00137)

See Section 5.2.7 for the required behavior in this case.

351 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

5.3 RTE Modules

Figure 5.1 defines the relationship between header files and how those files are in-
cluded by modules implementing AUTOSAR software-components and by general,
non-component, code.

Figure 5.1: Relationships between RTE Header Files

The output of an RTE generator can consist of both generated code and configuration
for “library” code that may be supplied as either object code or source code. Both
configured and generated code reference standard definitions that are defined in the
RTE Header File.

The relationship between the RTE header file, Application Header Files, the Lifecycle
Header File and AUTOSAR software-components is illustrated in Figure 5.1.

In general a RTE can be partitioned in several files. The partitioning depends from
the RTE vendors software design and generation strategy. Nevertheless it shall be
possible to clearly identify code and header files which are part of the RTE module.

[rte_sws_7139]d Every file of the RTE beside Rte.h and Rte.c shall be named with the
prefix Rte_. c(BSW00300)

5.3.1 RTE Header File

The RTE header file defines fixed elements of the RTE that do not need to be generated
or configured for each ECU.

[rte_sws_1157]d For C/C++ AUTOSAR software-components, the name of the RTE
header file shall be Rte.h. c(BSW00300)

352 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Typically the contents of the RTE header file are fixed for any particular implementation
and therefore it is not created by the RTE generator. However, customization for each
generated RTE is not forbidden.

[rte_sws_1164]d The RTE header file shall include the file Std_Types.h.
c(RTE00149, RTE00150, BSW00353)

The file Std_Types.h is the standard AUTOSAR file [29] that defines basic data types
including platform specific definitions of unsigned and signed integers and provides
access to the compiler abstraction.

The contents of the RTE header file are not restricted to standardized elements that
are defined within this document – it can also contain definitions specific to a particular
implementation.

5.3.2 Lifecycle Header File

The Lifecycle header file defines the two RTE Lifecycle API calls Rte_Start and
Rte_Stop (see Section 5.8).

[rte_sws_1158]d For C/C++ AUTOSAR software-components, the name of the lifecy-
cle header file shall be Rte_Main.h. c(BSW00300)

[rte_sws_1159]d The lifecycle header file shall include the RTE header file.
c(RTE00051)

5.3.3 Application Header File

The application header file [RTE00087] is central to the definition of the RTE API. An
application header file defines the RTE API and any associated data structures that
are required by the SW-C to use the RTE implementation. But the application header
file is not allowed to create objects in memory.

[rte_sws_1000]d The RTE generator shall create an application header file for each
software-component type (excluding ParameterSwComponentTypes and NvBlock-
SwComponentTypes) defined in the input. c(RTE00087, RTE00024, RTE00140)

[rte_sws_3786]d The application header file shall not contain code that creates objects
in memory. c(RTE00087, BSW00308)

RTE generation consists of two phases; an initial “RTE Contract” phase and a second
“RTE Generation” phase (see Section 2.3). Object-code components are compiled
after the first phase of RTE generation and therefore the application header file should
conform to the form of definitions defined in Sections 5.4.1 and 5.5.2. In contrast,
source-code components are compiled after the second phase of RTE generation and
therefore the RTE generator produces an optimized application header file based on
knowledge of component instantiation and deployment.

353 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

5.3.3.1 File Name

[rte_sws_1003]d The name of the application header file shall be formed by prefixing
the AUTOSAR software-component type name with Rte_ and appending the result
with .h. c(BSW00300)

Example 5.18

The following declaration in the input XML:

1 <APPLICATION-SOFTWARE-COMPONENT-TYPE>
2 <SHORT-NAME>Source</SHORT-NAME>
3 </APPLICATION-SOFTWARE-COMPONENT-TYPE>

should result in the application header file Rte_Source.h being generated.

The component type name is used rather than the component instance name for two
reasons; firstly the same component code is used for all component instances and,
secondly, the component instance name is an internal identifier, and should not appear
outside of generated code.

5.3.3.2 Scope

RTE supports two approaches for the scope of the application header file, a SW-C
based, and a runnable based approach.

1. Always, the application header file provides only the API that is specific for one
atomic SW-C, see rte_sws_1004.

2. The scope of the application header file can be further reduced to one runnable
by using the mechanism described in rte_sws_2751.

Many of the RTE APIs are specific to runnables. The restrictions for the usage of the
generated APIs are defined in the ‘Existence’ parts of each API subsection in 5.6. To
prevent run time errors by the misuse of APIs that are not supported for a runnable, it
is recommended to use the runnable based approach of the application header file.

[rte_sws_1004]d The application header file for a component shall contain only infor-
mation relevant to that component. c(RTE00087, RTE00017, RTE00167)

[rte_sws_2751]d If the pre-compiler Symbol RTE_RUNNABLEAPI_<rn> is defined for
a runnable with short name <rn> when the application header file is included, the ap-
plication header file shall not declare APIs that are not valid to be used by the runnable
rn. c(RTE00017)

For example, to restrict the application header file of the SW-C mySwc to the API of the
runnable myRunnable, the following sequence can be used:

354 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

1 #include <Rte_c1.h>
2

3 void
4 runnable_entry(Rte_Instance self)
5 {
6 /* ... server code ... */
7 }

Figure 5.2: Skeleton server runnable entity

1 #define RTE_RUNNABLEAPI_myRunnable
2 #include <Rte_mySwc.h>
3

4 // runnable source code
5

Note that this mechanism does not support to restrict the application header file to the
super set of two or more runnable APIs. In other words, runnables should be kept in
separate source files, if the runnable based approach is used.

Requirements rte_sws_1004 and rte_sws_2751 mean that compile time checks ensure
that a component (or runnable) that uses the application header file only accesses the
generated data structures and functions to which it has been configured. Any other
access, e.g. to fields not defined in the customized data structures or RTE API, will fail
with a compiler error [RTE00017].

The definitions of the RTE API contained in the application header file can be opti-
mized during the “RTE Generation” phase when the mapping of software-components
to ECUs and the communication matrix is known. Consequently multiple application
header files must not be included in the same source module to avoid conflicting defi-
nitions of the RTE API definitions that the files contains.

Figure 5.2 illustrates the code structure for the declaration of the entry point of a runn-
able entity that provides the implementation for a ServerPort in component c1. The
RTE generator is responsible for creating the API and tasks used to execute the server
and the symbol name of the entry point is extracted from the attribute symbol of the
runnable entity. The example shows that the first parameter of the entry point function
is the software-component’s instance handle rte_sws_1016.

Figure 5.2 includes the component-specific application header file Rte_c1.h created
by the RTE generator. The RTE generator will also create the supporting data struc-
tures and the task body to which the runnable is mapped.

The RTE is also responsible for preventing conflicting concurrent accesses when the
runnable entity implementing the server operation is triggered as a result of a request
from a client received via the communication service or directly via inter-task commu-
nication.

355 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

5.3.3.3 File Contents

Multiple application header file must not be included in the same module
(rte_sws_1004) and therefore the file contents should contain a mechanism to enforce
this requirement.

[rte_sws_1006]d An application header file shall include the following mechanism be-
fore any other definitions.

1 #ifdef RTE_APPLICATION_HEADER_FILE
2 #error Multiple application header files included.
3 #endif /* RTE_APPLICATION_HEADER_FILE */
4 #define RTE_APPLICATION_HEADER_FILE

c(RTE00087)

[rte_sws_7131]d The application header file shall include the Application Types
Header File. c(RTE00087)

The name of the Application Types Header File is defined in Section 5.3.6.

[rte_sws_7924]d The application header file shall include the RTE Data Handle Types
Header File (see Section 5.3.5). c(RTE00087)

[rte_sws_1005]d The application header file shall be valid for both C and C++ source.
c(RTE00126, RTE00138)

Requirement rte_sws_1005 is met by ensuring that all definitions within the application
header file are defined using C linkage if a C++ compiler is used.

[rte_sws_3709]d All definitions within in the application header file shall be preceded
by the following fragment;

1 #ifdef __cplusplus
2 extern "C" {
3 #endif /* __cplusplus */

c(RTE00126, RTE00138)

[rte_sws_3710]d All definitions within the application header file shall be suffixed by
the following fragment;

1 #ifdef __cplusplus
2 } /* extern "C" */
3 #endif /* __cplusplus */

c(RTE00126, RTE00138)

356 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

5.3.3.3.1 Instance Handle

The RTE uses an instance handle to identify different instances of the same compo-
nent type. The definition of the instance handle type rte_sws_1148 is unique to each
component type and therefore should be included in the application header file.

[rte_sws_1007]d The application header file shall define the type of the instance han-
dle for the component. c(RTE00012)

All runnable entities for a component are passed the same instance handle type (as the
first formal parameter rte_sws_1016) and can therefore use the same type definition
from the component’s application header file.

5.3.3.3.2 Runnable Entity Prototype

The application header file also includes a prototype for each runnable entity entry
point (rte_sws_1132) and the API mapping (rte_sws_1274).

5.3.3.3.3 Initial Values

[rte_sws_5078]d The Application Header File shall define the init value of non-queued
VariableDataPrototypes of sender receiver or non volatile data ports and typed
by an ImplementationDataType or ApplicationDataType of category VALUE.

1 #define Rte_InitValue_<Port>_<DEPType> <initValue><suffix>

where <Port> is the PortPrototype shortName, <DEPType> is the short-
Name of the VariableDataPrototype, and <initValue> is the initValue spec-
ified in the NonqueuedReceiverComSpec respectively NonqueuedSenderCom-
Spec. <suffix> shall be "U" for unsigned data types and empty for signed data
types. c(RTE00068, RTE00087, RTE00108)

Note that the initValue defined may be subject to change due to the fact that for
COM configuration it may be possible to change this value during ECU Configuration
or even post-build time.

5.3.3.3.4 PerInstanceMemory

The Application Header File shall type definitions for PerInstanceMemory’s as defined
in Chapter 5.2.5, rte_sws_7133.

357 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

5.3.3.3.5 RTE-Component Interface

The application header file defines the “interface” between a component and the RTE.
The interface consists of the RTE API for the component and the prototypes for runn-
able entities. The definition of the RTE API requires that both relevant data structures
and API calls are defined.

The data structures required to support the API are defined in the Application Header
file (CDS) (see chapter 5.3.3), in the Application Types Header file (see chapter 5.3.6),
in the RTE Types Header file (see chapter 5.3.1) and in the RTE Data Handle Types
Header file (see chapter 5.3.5).

The data structure types are declared in the header files whereas the instances are
defined in the generated RTE. The necessary data structures for object-code software-
components are defined in chapter 5.5.2 and chapter 5.4.2.

The RTE generator is required rte_sws_1004 to limit the contents of the application
header file to only that information that is relevant to that component type. This re-
quirement includes the definition of the API mapping. The API mapping is described in
chapter 5.2.6.

[rte_sws_1276]d Only RTE API calls that are valid for the particular software-
component type shall be defined within the component’s application header file.
c(RTE00051, RTE00017, RTE00167)

Requirement rte_sws_1276 ensures that attempts to invoke invalid API calls will be
rejected as a compile-time error [RTE00017].

5.3.3.3.6 Application Errors

The concept of client server supports application specific error codes. Symbolic names
for Application Errors are defined in the application header file to avoid conflicting defi-
nitions between several AtomicSoftwareComponentTypes mapped one ECU. See
rte_sws_2575 and rte_sws_2576.

5.3.4 RTE Types Header File

The RTE Types Header File includes the RTE specific type declarations derived from
the ImplementationDataTypes created from the definitions of AUTOSAR meta-
model classes within the RTE generator’s input. The available meta-model classes
are defined by the AUTOSAR software-component template and include classes for
defining primitive values, structures, arrays and pointers.

358 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

The types declared in the RTE Types Header File intend to be used for the implemen-
tation of RTE internal data buffers as well as for RTE API.

[rte_sws_1160]d The RTE generator shall create the RTE Types Header File including
the type declarations corresponding to the ImplementationDataTypes defined in
the input configuration as well as the RTE implementation types. c()

The RTE Data Types header file should be output for “RTE Contract” and “RTE Gener-
ation” phases.

5.3.4.1 File Contents

[rte_sws_2648]d The RTE Types Header File shall include the type declarations
for all the AUTOSAR Data Types according to rte_sws_7104, rte_sws_7110,
rte_sws_6706, rte_sws_6707, rte_sws_6708 rte_sws_7111, rte_sws_7114,
rte_sws_7144, rte_sws_7109 and rte_sws_7148 depending on the values of at-
tributes typeEmitter and nativeDeclaration but irrespective of their use by the
generated RTE. c()

The attribute typeEmitter controls which part of the AUTOSAR toolchain is sup-
posed to provide data type definitions. For legacy reasons the RTE generator is sup-
posed to generate the corresponding data type if the ImplementationDataType
defines no typeEmitter.

[rte_sws_6709]d The RTE generator shall generate the corresponding data type defi-
nition if the value of attribute typeEmitter is NOT defined. c()

[rte_sws_6710]d The RTE generator shall generate the corresponding data type defi-
nition if the value of attribute typeEmitter is set to "RTE". c()

[rte_sws_6711]d The RTE generator shall reject configurations where the value of the
attribute typeEmitter is set to "RTE" and the ImplementationDataType refer-
ences a SwBaseType without defined nativeDeclaration. c()

[rte_sws_6712]d The RTE generator shall silently not generate the corresponding data
type definition if the value of attribute typeEmitter is set to anything else but "RTE".
c()

This requirement ensures the availability of ImplementationDataTypes for the in-
ternal use in AUTOSAR software components.

Nevertheless the RTE Types Header File does not contain any data type belonging
to an ImplementationDataType where typeEmitter is set to anything else but
"RTE" regardless if the ImplementationDataType references SwBaseTypes and if
this SwBaseTypes define nativeDeclarations.

The types header file may need types in terms of BSW types (from the file
Std_Types.h) or from the implementation specific RTE header file to declare types.

359 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

However, since the RTE header file includes the file Std_Types.h already so only the
RTE header file needs direct inclusion within the types header file.

[rte_sws_1163]d The RTE Types Header File shall include the RTE Header File.
c(BSW00353)

5.3.4.2 Classification of Implementation Data Types

The type model ImplementationDataTypes is able to express following kinds of
data types:

• Primitive Implementation Data Type

• Array Implementation Data Type

• Structure Implementation Data Type

• Union Implementation Data Type

• Redefinition Implementation Data Type

• Pointer Implementation Data Type

A Primitive Implementation Data Type is classified that it directly refers by its sw-
DataDefProps to a SwBaseType in the role baseType. The category attribute
is set to VALUE.

An Array Implementation Data Type is classified that it defines Implementation-
DataTypeElements for each dimension of the array. The swArraySize specifies
the number of array elements of the dimension. The category attribute Array Imple-
mentation Data Type is set to ARRAY.

A Structure Implementation Data Type is categorized that it has Implementation-
DataTypeElement’s. The category attribute of the ImplementationDataType
is set to STRUCTURE. Each ImplementationDataTypeElement it self can be one
of the listed kinds again.

A Union Implementation Data Type is categorized that it has Implementation-
DataTypeElement’s. The category attribute of the ImplementationDataType
is set to UNION. Each ImplementationDataTypeElement it self can be one of the
listed kinds again.

A Redefinition Implementation Data Type is classified that it refers to other Imple-
mentationDataTypes. The category attribute of the referring Implementation-
DataType has to be set to TYPE_REFERENCE.

A Pointer Implementation Data Type is classified that its swDataDefProps has a sw-
PointerTargetProps attribute. The swDataDefProps in the role swPointer-
TargetProps specifying the target to which the pointer refers. The category at-
tribute of the ImplementationDataType has to be set to DATA_REFERENCE.

360 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

5.3.4.3 Primitive Implementation Data Type

The RTE Types Header File declares C types for all Primitive Implementation
Data Types where the referred BaseType has a nativeDeclaration attribute.

[rte_sws_7104]d For each Primitive Implementation Data Type with a na-
tiveDeclaration attribute, the RTE Types Header File shall include the correspond-
ing type declaration as:

typedef <nativeDeclaration> <name>;

where <nativeDeclaration> is the nativeDeclaration attribute of the re-
ferred BaseType and <name> is the Implementation Data Type symbol of the
Primitive Implementation Data Type. c(RTE00055, RTE00166, RTE00168,
BSW00353)

MyUint8 :
ImplementationDataType

category = VALUE

:SwDataDefProps MyUint8Base :SwBaseType

nativeDeclaration = unsigned char

typedef unsigned char
MyUint8OfVendorNil;

+baseType+swDataDefProps

Figure 5.3: Primitive Implementation Data Type

Note: All Primitive Implementation Data Types where the referred Base-
Type has no nativeDeclaration attribute resulting not in a type declaration. This
is intended to prevent the redeclaration of the predefined Standard Types and Platform
Types.

uint8 :
ImplementationDataType

category = VALUE

:SwDataDefProps uint8Base :SwBaseType

/* no typedef is generated, implementation use one from Platform_Types.h */

+baseType+swDataDefProps

Figure 5.4: Primitive Implementation Data Type included from Platform_Types.h

[rte_sws_7105]d If more than one Primitive Implementation Data Type with
equal shortName and equal nativeDeclaration attribute of the referred Base-
Type are defined, the RTE Types Header File shall include only once the correspond-
ing type declaration according to rte_sws_7104. c(RTE00165)

Note: This avoids the redeclaration of C types due to the multiple descriptions of equiv-
alent Primitive Implementation Data Types in the ECU extract.

361 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

5.3.4.4 Array Implementation Data Type

In addition to the primitive data-types defined in the previous section, it is also neces-
sary for the RTE generator to declare composite data-types: arrays and records.

An array definition following information:

• the array type

• the number of dimensions

• the number of elements for each dimension.

[rte_sws_7110]d For each Array Implementation Data Type which leaf Im-
plementationDataTypeElement is typed by a BaseType, the RTE Types Header
File shall include the corresponding type declaration as:

typedef <nativeDeclaration> <name>[<size 1>]{[<size 2>]...[<size n>]};

where <nativeDeclaration> is the nativeDeclaration attribute of the referred
BaseType,

<name> is the Implementation Data Type symbol of the Array Implemen-
tation Data Type,

[<size x>] is the arraySize of the Array’s ImplementationDataTypeElement.

For each array dimension defined by one Array’s ImplementationDataTypeEle-
ment one array dimension definition [<size x>] is defined. The array dimension
definitions [<size 1>], [<size 2>] ... [<size n>] ordered from the root to
the leaf ImplementationDataTypeElement. c(RTE00055, RTE00164)

[rte_sws_7111]d For each Array Implementation Data Type which leaf Im-
plementationDataTypeElement is typed by an ImplementationDataType, the
RTE Types Header File shall include the corresponding type declaration as:

typedef <type> <name>[<size 1>]{[<size 2>]...[<size n>]};

where <type> is the shortName of the referred ImplementationDataType,

<name> is the Implementation Data Type symbol of the Array Implemen-
tation Data Type,

[<size x>] is the arraySize of the Array’s ImplementationDataTypeElement.
For each array dimension defined by one Array’s ImplementationDataTypeEle-
ment one array dimension definition [<size x>] is defined.

The array dimension definitions [<size 1>], [<size 2>] ... [<size n>] or-
dered from the root to the leaf ImplementationDataTypeElement. c(RTE00055,
RTE00164)

[rte_sws_6706]d For each Array Implementation Data Type which last Im-
plementationDataTypeElement is of category STRUCTURE, the RTE Types
Header File shall include the corresponding type declaration as:

362 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

typedef struct { <elements> } <name>[<size 1>]{[<size 2>]...[<size n>]};

where <elements> is the record element specification and

<name> is the Implementation Data Type symbol of the Array Implemen-
tation Data Type.

For each record element defined by one ImplementationDataTypeElement one
record element specification <elements> is defined. The record element specifica-
tions are ordered according the order of the related ImplementationDataTypeEle-
ments in the input configuration.
Sequent record elements are separated with a semicolon.

[<size x>] is the arraySize of the Array’s ImplementationDataTypeElement.
For each array dimension defined by one Array’s ImplementationDataTypeEle-
ment one array dimension definition [<size x>] is defined.

The array dimension definitions [<size 1>], [<size 2>] ... [<size n>] or-
dered from the root to the last ImplementationDataTypeElement belonging to the
array definition. c(RTE00055, RTE00164)

The definition of the record element specification is defined in section 5.3.4.6.

[rte_sws_6707]d For each Array Implementation Data Type which last Im-
plementationDataTypeElement is of category UNION, the RTE Types Header File
shall include the corresponding type declaration as:

typedef union { <elements> } <name>[<size 1>]{[<size 2>]...[<size n>]};

where <elements> is the record element specification and

<name> is the Implementation Data Type symbol of the Array Implemen-
tation Data Type.

For each record element defined by one ImplementationDataTypeElement one
record element specification <elements> is defined. The record element specifica-
tions are ordered according the order of the related ImplementationDataTypeEle-
ments in the input configuration.
Sequent record elements are separated with a semicolon.

[<size x>] is the arraySize of the Array’s ImplementationDataTypeElement.
For each array dimension defined by one Array’s ImplementationDataTypeEle-
ment one array dimension definition [<size x>] is defined.

The array dimension definitions [<size 1>], [<size 2>] ... [<size n>] or-
dered from the root to the last ImplementationDataTypeElement belonging to the
array definition. c(RTE00055, RTE00164)

The definition of the record element specification is defined in section 5.3.4.6.

[rte_sws_6708]d For each Array Implementation Data Type which last Im-
plementationDataTypeElement is of category DATA_REFERENCE, the RTE Types
Header File shall include the corresponding type declaration as:

363 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

typedef <tqlA> <addtqlA> <type> * <tqlB> <addtqlB> <name>
[<size 1>]{[<size 2>]...[<size n>]};

where <name> is the Implementation Data Type symbol of the Array Im-
plementation Data Type and

[<size x>] is the arraySize of the Array’s ImplementationDataTypeElement.
For each array dimension defined by one Array’s ImplementationDataTypeEle-
ment one array dimension definition [<size x>] is defined. The array dimension
definitions [<size 1>], [<size 2>] ... [<size n>] ordered from the root
to the last ImplementationDataTypeElement belonging to the array definition.
c(RTE00055, RTE00164)

For the definition of <tqlA> and <tqlB> see rte_sws_7149 and rte_sws_7166.

For the definition of <addtqlA> and <addtqlB> see rte_sws_7036 and
rte_sws_7037.

[rte_sws_7112]d If more than one Array Implementation Data Type with equal
shortName of the ImplementationDataType and equal nativeDeclaration
attribute of the referred BaseType are defined, the RTE Types Header File shall
include only once the corresponding type declaration according to rte_sws_7110.
c(RTE00165)

[rte_sws_7113]d If more than one Array Implementation Data Type with equal
shortName of the ImplementationDataType and equal shortName of the re-
ferred ImplementationDataType are defined, the RTE Types Header File shall
include only once the corresponding type declaration according to rte_sws_7111.
c(RTE00165)

Note: This avoids the redeclaration of C types due to the multiple descriptions of equiv-
alent Array Implementation Data Types in the ECU extract.

ArrA :ImplementationDataType

category = ARRAY

:SwDataDefProps MyUint8Base :SwBaseType

nativeDeclaration = unsigned char

typedef unsigned char ArrA[5];

ArrAElement :
ImplementationDataTypeElement

category = VALUE
arraySize = 5

+swDataDefProps

+baseType

+subElement

Figure 5.5: Example of a single dimension array typed by an BaseType

ArrArrD :
ImplementationDataType

category = ARRAY

FirstDim :
ImplementationDataTypeElement

category = ARRAY
arraySize = 15

SecondDim :
ImplementationDataTypeElement

category = TYPE_REFERENCE
arraySize = 10

typedef uint8 ArrArrD[15][10];

:SwDataDefProps uint8 :
ImplementationDataType

category = VALUE

+swDataDefProps

+subElement+subElement

+implementationDataType

364 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Figure 5.6: Example of a two dimension array typed by an ImplementationDataType

ANSI C does not allow a type declaration to have zero elements and therefore we
require that the “number of elements” to be a positive integer.

[rte_sws_ext_1190] The arraySize defining number of elements in one dimension
of an Array Implementation Data Type shall be an integer that is ≥ 1 for each dimen-
sion.

5.3.4.5 Structure Implementation Data Type and Union Implementation Data
Type

[rte_sws_7114]d For each Structure Implementation Data Type, the RTE
Types Header File shall include the corresponding type declaration as:

typedef struct { <elements> } <name>;

where <elements> is the record element specification and <name> is the Implemen-
tation Data Type symbol of the Structure Implementation Data Type.
For each record element defined by one ImplementationDataTypeElement one
record element specification <elements> is defined. The record element specifica-
tions are ordered according the order of the related ImplementationDataType-
Elements in the input configuration. Sequent record elements are separated with a
semicolon. c(RTE00055, RTE00164)

5.3.4.6 Union Implementation Data Type

[rte_sws_7144]d For each Union Implementation Data Type, the RTE Types
Header File shall include the corresponding type declaration as:

typedef union { <elements> } <name>;

where <elements> is the union element specification and <name> is the Implemen-
tation Data Type symbol of the Union Implementation Data Type. For
each union element defined by one ImplementationDataTypeElement one union
element specification <elements> is defined. The union element specifications are
ordered according the order of the related ImplementationDataTypeElements
in the input configuration. Sequent union elements are separated with a semicolon.
c(RTE00055, RTE00164)

[rte_sws_7115]d Record and Union element specifications <elements> shall be gen-
erated as

<nativeDeclaration> <name>;

365 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

if the ImplementationDataTypeElement has the category attribute set to VALUE
and if it refers to an BaseType. The meaning of the fields is identical to rte_sws_7104
c(RTE00055, RTE00164)

[rte_sws_7116]d Record and Union element specifications <elements> shall be gen-
erated as

<type> <name>;

if the ImplementationDataTypeElement has the category attribute set to
TYPE_REFERENCE and if it refers to an ImplementationDataType. <type>
is the Implementation Data Type symbol of the referred Implementation-
DataType and <name> is the shortName of the ImplementationDataTypeEle-
ment. c(RTE00055, RTE00164)

[rte_sws_7117]d Record and Union element specifications <elements> shall be gen-
erated as

<nativeDeclaration> <name>[<size 1>]{[<size 2>]...[<size n>]};

if the ImplementationDataTypeElement has the category attribute set to ARRAY
and which leaf ImplementationDataTypeElement has the category attribute set
to VALUE and is typed by an BaseType. The meaning and order of the fields is identical
to rte_sws_7110 c(RTE00055, RTE00164)

[rte_sws_7118]d Record and Union element specifications <elements> shall be gen-
erated as

<type> <name>[<size 1>]{[<size 2>]...[<size n>]};

if the ImplementationDataTypeElement has the category attribute set to ARRAY
and which leaf ImplementationDataTypeElement has the category attribute set
to TYPE_REFERENCE and is typed by an ImplementationDataType. The meaning
and order of the fields is identical to rte_sws_7111 c(RTE00055, RTE00164)

[rte_sws_7119]d Record and Union element specifications <elements> shall be gen-
erated as

struct { <elements> } <name>;

if the ImplementationDataTypeElement has the category attribute set to
STRUCTURE. The meaning and order of the fields is identical to rte_sws_7114 Se-
quent elements are separated with a semicolon. c(RTE00055, RTE00164)

[rte_sws_7145]d Record and Union element specifications <elements> shall be gen-
erated as

union { <elements> } <name>;

366 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

if the ImplementationDataTypeElement has the category attribute set to
UNION. The meaning and order of the fields is identical to rte_sws_7144. Sequent
elements are separated with a semicolon. c(RTE00055, RTE00164)

[rte_sws_7146]d Pointer element specifications <elements> shall be generated as

<tqlA> <addtqlA> <type> * <tqlB> <addtqlB> <name>;

if the ImplementationDataTypeElement has the category attribute set to
DATA_REFERENCE where <name> is the shortName of the Implementation-
DataTypeElement. c(RTE00055, RTE00164)

For the definition of <tqlA> and <tqlB> see rte_sws_7149 and rte_sws_7166.

For the definition of <addtqlA> and <addtqlB> see rte_sws_7036 and
rte_sws_7037.

For the definition of <type> see rte_sws_7162, rte_sws_7163.

RecA :ImplementationDataType

category = STRUCTURE

M :ImplementationDataTypeElement

category = TYPE_REFERENCE

N :ImplementationDataTypeElement

category = VALUE

O :ImplementationDataTypeElement

category = TYPE_REFERENCE

MyUint8 :
ImplementationDataType

category = VALUE

uint8 :
ImplementationDataType

category = VALUE

:SwDataDefProps

MyUint16Base :SwBaseType

nativeDeclaration = unsigned short
:SwDataDefProps

:SwDataDefProps

typedef struct
{
 MyUint8 M;
 unsigned short N;
 uint8 O;
} RecA;

+implementationDataType

+implementationDataType

+swDataDefProps

+swDataDefProps

+swDataDefProps

+subElement

+subElement

+subElement

+baseType

Figure 5.7: Example of a structure type

367 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

RecA :
ImplementationDataType

category = STRUCTURE

M :
ImplementationDataTypeElement

category = TYPE_REFERENCE

N :ImplementationDataTypeElement

category = VALUE

O :
ImplementationDataTypeElement

category = TYPE_REFERENCE

MyUint8 :
ImplementationDataType

category = VALUE

uint8 :
ImplementationDataType

category = VALUE

:SwDataDefProps

MyUint16Base :SwBaseType

nativeDeclaration = unsigned short
:SwDataDefProps

:SwDataDefProps

typedef struct
{
 MyUint8 M;
 unsigned short N;
 uint8 O;
 struct
 {
 uint8 PA;
 unsigend short PB;
 } P;
} RecA;

P :ImplementationDataTypeElement

category = STRUCTURE

:SwDataDefProps

PA :
ImplementationDataTypeElement

category = TYPE_REFERENCE

PB :
ImplementationDataTypeElement

category = VALUE

:SwDataDefProps

+implementationDataType

+subElement

+subElement

+subElement

+swDataDefProps

+swDataDefProps

+subElement

+implementationDataType

+swDataDefProps

+implementationDataType

+baseType

+baseType

+subElement

+subElement

+swDataDefProps

+swDataDefProps

Figure 5.8: Example of a nested structure type

368 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

UnionFoo :ImplementationDataType

category = UNION

TheWord :
ImplementationDataTypeElement

category = VALUE

TheBytes :
ImplementationDataTypeElement

category = STRUCTURE

FirstByte :
ImplementationDataTypeElement

category = VALUE

SecondByte :
ImplementationDataTypeElement

category = VALUE

MyUint16Base :SwBaseType

nativeDeclaration = unsigned short

MyUint8Base :SwBaseType

nativeDeclaration = unsigned char

typedef union
{
 unsigned short TheWord;
 struct
 {
 unsigned char FirstByte;
 unsigned char SecondByte;
 }TheBytes;
}UnionFoo;

«atpVariation»
:SwDataDefProps

«atpVariation»
:SwDataDefProps

«atpVariation»
:SwDataDefProps

+swDataDefProps

+swDataDefProps

+swDataDefProps

+baseType+baseType

+baseType

+subElement

+subElement

+subElement

+subElement

Figure 5.9: Example of a union type

[rte_sws_7107]d If more than one Structure Implementation Data Type or
Union Implementation Data Type with equal shortName of the Implemen-
tationDataType are defined, the RTE Types Header File shall include only once
the corresponding type declaration according to rte_sws_7114 or rte_sws_7144.
c(RTE00165)

Note: This avoids the redeclaration of C types due to the multiple descriptions of equiv-
alent Structure Implementation Data Types and Union Implementation
Data Types in the ECU extract.

ANSI C does not allow a struct to have zero elements and therefore we require that
a record include at least one element.

[rte_sws_ext_1192] A structure shall include at least one element defined by a Im-
plementationDataTypeElement.

A union data type describes a kind of structural overlay. Defining only one sub element
of a union ist therefore not reasonable and indicates an error.

[rte_sws_ext_7147] A Union Implementation Data Type shall include at least two ele-
ments defined by ImplementationDataTypeElements.

369 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

5.3.4.7 Implementation Data Type redefinition

[rte_sws_7109]d For each Redefinition Implementation Data Type which is
typed by an ImplementationDataType, the RTE Types Header File shall include the
corresponding type declaration as:

typedef <type> <name>;

where <type> is the Implementation Data Type symbol of the referred Im-
plementationDataType and <name> is the Implementation Data Type sym-
bol of the Primitive Implementation Data Type. c(RTE00055, RTE00166)

typedef uint16 EngSpd;

EngSpd :ImplementationDataType

category = TYPE_REFERENCE

uint16 :
ImplementationDataType

:SwDataDefProps +implementationDataType+swDataDefProps

Figure 5.10: Example of an Implementation Data Type redefinition

[rte_sws_7167]d If more than one Redefinition Implementation Data Types
with equal shortNames which are referring to compatible Implementation-
DataTypes with identical shortNames are defined, the RTE Types Header File shall
include only once the corresponding type declaration according to rte_sws_7109.
c(RTE00165)

Note: This avoids the redeclaration of C types due to the multiple descriptions of equiv-
alent Redefinition Implementation Data Type in the ECU extract.

5.3.4.8 Pointer Implementation Data Type

[rte_sws_7148]d For each Pointer Implementation Data Type, the RTE
Types Header File shall include the corresponding type declaration as:

typedef <tqlA> <addtqlA> <type> * <tqlB> <addtqlB> <name>;

where <name> is the Implementation Data Type symbol of the Pointer Im-
plementation Data Type. c(RTE00055, RTE00166)

[rte_sws_7149]d <tqlA> (type qualifier A) of a Pointer Implementation Data
Type (rte_sws_7148) or Pointer element specifications (rte_sws_7146) shall be set
to const if the swImplPolicy of the swPointerTargetProps is set to const and
shall be omitted for all other values of swImplPolicy. c(RTE00055, RTE00166)

[rte_sws_7166]d <tqlB> (type qualifier B) of a Pointer Implementation Data
Type (rte_sws_7148) or Pointer element specifications (rte_sws_7146) shall be set
to const if the swImplPolicy of the SwDataDefProps of the Implementation-

370 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

DataType respectively ImplementationDataTypeElement is set to const and
shall be omitted for all other values of swImplPolicy. c(RTE00055, RTE00166)

[rte_sws_7036]d <addtqlA> (additional type qualifier A) of a Pointer Im-
plementation Data Type (rte_sws_7148) or Pointer element specifications
(rte_sws_7146) shall be set to the content of the additionalNativeTypeQual-
ifier attribute of the swPointerTargetProps if the attribute exists and shall
be omitted if such additionalNativeTypeQualifier attribute dose not exist.
c(RTE00055, RTE00166)

[rte_sws_7037]d <addtqlB> (additional type qualifier B) of a Pointer Im-
plementation Data Type (rte_sws_7148) or Pointer element specifications
(rte_sws_7146) shall be set to the content of the additionalNativeTypeQuali-
fier attribute of the SwDataDefProps of the ImplementationDataType respec-
tively ImplementationDataTypeElement and shall be omitted if such addition-
alNativeTypeQualifier attribute dose not exist. c(RTE00055, RTE00166)

[rte_sws_7162]d <type> shall be set to the nativeDeclaration attribute of the
referred BaseType if the targetCategory of a Pointer Implementation Data
Type (rte_sws_7148) or Pointer element specifications (rte_sws_7146) is set to VALUE
c(RTE00055, RTE00166)

[rte_sws_7163]d <type> shall be the shortName of the referred Implementa-
tionDataType if the targetCategory of a Pointer Implementation Data
Type (rte_sws_7148) or Pointer element specifications (rte_sws_7146) is set to
TYPE_REFERENCE c(RTE00055, RTE00166)

[rte_sws_7169]d If more than one Pointer Implementation Data Types with
equal shortNames which are resulting in the same C pointer type declaration are
defined, the RTE Types Header File shall include only once the corresponding type
declaration according to rte_sws_7148. c(RTE00165)

Note: This avoids the redeclaration of C types due to the multiple descriptions of equiv-
alent Pointer Implementation Data Type in the ECU extract.

TheRecAPointer :
ImplementationDataType

category = DATA_REFERENCE

:SwDataDefProps

:SwPointerTargetProps

targetCategory = TYPE_REFERENCE

:SwDataDefProps

swImplPolicy = const

typedef const RecA * TheRecAPointer;

RecA :ImplementationDataType

category = STRUCTURE

+implementationDataType

+swDataDefProps

+swDataDefProps

+swPointerTargetProps

Figure 5.11: Example of a Pointer Implementation Data Type

5.3.4.9 ImplementationDataTypes with VariationPoints

[rte_sws_6539]d

371 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

The RTE Generator shall wrap each code related to ImplementationDataType-
Elements which are subject to variability in Structure Implementation Data
Type and Union Implementation Data Type (see 4.20 if the variability shall be
implemented.

1 #if (<condition>)
2

3 <elements>
4

5 #endif

where <condition> are the condition value macro(s) of the VariationPoints ac-
cording table 4.20 and

<elements> is the code according invariant ImplementationDataTypeElements
(see also rte_sws_7115, rte_sws_7116, rte_sws_7117, rte_sws_7118, rte_sws_7119,
rte_sws_7145, rte_sws_7146)

c(RTE00201)

[rte_sws_6540]d The RTE Generator shall implement the <size x> of an Array
Implementation Data Type for each arraySize which is subject to variability
with the corresponding attribute value macro according table 4.20 if the variability shall
be implemented. c(RTE00201)

5.3.4.10 Naming of data types

[rte_sws_6716]d The Implementation Data Type symbol shall be the short-
Name of the ImplementationDataType if no symbol attribute for this Implemen-
tationDataTypeis defined. c(RTE00167)

Example 5.19

The Primitive Implementation Data Type in example 5.3 results in the type
definition:

1 /* RTE Types Header File */
2 typedef unsigned char MyUint8;

[rte_sws_6717]d The Implementation Data Type symbol shall be the value of
the SymbolProps.symbol attribute of the ImplementationDataType if the sym-
bol attribute is defined. c(RTE00167)

[rte_sws_6718]d If the RTE Types Header File contains generated a C data type
which Implementation Data Type symbol differs from the Implementation-
DataType shortName the Application Type Header Files of each software component
using the type shall contain a definition which redefines the Implementation Data
Type symbol to the shortName of the ImplementationDataType. c(RTE00167)

372 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

MyUint8 :
ImplementationDataType

category = VALUE

:SwDataDefProps MyUint8Base :SwBaseType

nativeDeclaration = unsigned char

typedef unsigned char MyUint8OfVendorNil;

:SymbolProps

symbol = MyUint8OfVendorNil

+symbolProps

+baseType+swDataDefProps

Figure 5.12: Primitive Implementation Data Type with SymbolProps

Example 5.20

If the input configuration contains a two ImplementationDataTypes with same
name but different definition the SymbolProps can be used to avoid the name clash.
The Primitive Implementation Data Type in example 5.12 results in following
definition:

1 /* RTE Types Header File */
2 typedef unsigned char MyUint8OfVendorNil;

The Application Types Header File an using component contain the remapping to the
original name:

1 /* Application Types Header File */
2 define MyUint8 MyUint8OfVendorNil;

[rte_sws_6719]d The RTE generator shall reject configurations where Implemen-
tationDataTypes result in the same Implementation Data Type symbol but
whose definition would not resulting in the same type declaration. c(RTE00018)

Note: This would result in compiler errors due to incompatible redefinition of C types.

[rte_sws_6724]d The RTE generator shall reject configurations where the same soft-
ware component uses ImplementationDataTypes with equal shortNames which
would result in the mapping to different Implementation Data Type symbols.
c(RTE00018)

Note: This would result in compiler errors due to incompatible redefinition of the
mapping from ImplementationDataType.shortName to Implementation Data
Type symbol

373 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

5.3.4.11 C/C++

The following requirements apply to RTEs generated for C and C++.

[rte_sws_1161]d The name of the RTE Types Header File shall be Rte_Type.h.
c(BSW00300)

[rte_sws_1162]d Within the RTE Types Header File, each data type shall be declared
using typedef. c(RTE00126)

A typedef is used when declaring a new data type instead of a #define even though
C only provides weak type checking since other static analysis tools can then be used
to overlay strong type checking onto the C before it is compiled and thus detect type
errors before the module is even compiled.

5.3.5 RTE Data Handle Types Header File

The RTE Data Handle Types Header File contains the Data Handle type declarations
necessary for the component data structures (see Section 5.4.2). The RTE Data
Handle Types Header File code is not allowed to create objects in memory.

[rte_sws_7920]d The RTE generator shall create the RTE Data Handle Types
Header File including the type declarations of Data Element without Sta-
tus (rte_sws_1363, rte_sws_1364, rte_sws_2607) and Data Element with Sta-
tus (rte_sws_1365, rte_sws_1366, rte_sws_3734, rte_sws_2666, rte_sws_2589,
rte_sws_2590). c()

[rte_sws_7921]d The RTE Data Handle Types Header File shall not contain code that
creates object in memory. c(BSW00308)

The RTE Data Handle Types Header File should be an output of the “RTE Contract”
and “RTE Generation” phases.

5.3.5.1 File Name

[rte_sws_7922]d The name of the RTE Data Handle Types Header File shall be
Rte_DataHandleType.h. c(BSW00300)

5.3.5.2 File Contents

The RTE Data Handle Types Header File contains the type declarations of Data El-
ement without Status and Data Element with Status (see Section 5.4.2).

[rte_sws_7923]d The RTE Data Handle Types Header File shall include the following
mechanism to prevent multiple inclusions.

374 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

1 #ifndef RTE_DATA_HANDLE_TYPE_H
2 #define RTE_DATA_HANDLE_TYPE_H
3

4 /* File contents */
5

6 #endif /* RTE_DATA_HANDLE_TYPE_H */

c(RTE00126)

5.3.6 Application Types Header File

The Application Types Header File provides a component local name space for enu-
meration literals and range values. The Application Types Header File is not allowed to
create objects in memory.

The Application Types Header File file should be identical output for “RTE Contract”
and “RTE Generation” phases.

[rte_sws_7120]d The RTE generator shall create an Application Types Header
File for each software-component type (excluding ParameterSwComponentTypes
and NvBlockSwComponentTypes) defined in the input. c(RTE00024, RTE00140,
BSW00447)

[rte_sws_7121]d The Application Types Header File shall not contain code that creates
objects in memory. c(BSW00308)

5.3.6.1 File Name

[rte_sws_7122]d The name of the Application Types Header File shall be formed by
prefixing the AUTOSAR software-component type name with Rte_ and appending the
result with _Type.h. c(BSW00300, RTE00167)

Example 5.21

The following declaration in the input XML:

1 <APPLICATION-SOFTWARE-COMPONENT-TYPE>
2 <SHORT-NAME>Source</SHORT-NAME>
3 </APPLICATION-SOFTWARE-COMPONENT-TYPE>

should result in the Application Types Header File Rte_Source_Type.h being gen-
erated.

375 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

5.3.6.2 Scope

[rte_sws_7123]d The Application Types Header File for a component shall contain only
information relevant for that component. c(RTE00167, RTE00017)

[rte_sws_7124]d The Application Types Header File shall be valid for both C and C++

source. c(RTE00126, RTE00138)

Requirement rte_sws_7124 is met by ensuring that all definitions within the Application
Types Header File are defined using C linkage if a C++ compiler is used.

[rte_sws_7125]d All definitions within in the Application Types Header File shall be
preceded by the following fragment;

1 #ifdef __cplusplus
2 extern "C" {
3 #endif /* __cplusplus */

c(RTE00126, RTE00138)

[rte_sws_7126]d All definitions within the application types header file shall be suffixed
by the following fragment;

1 #ifdef __cplusplus
2 } /* extern "C" */
3 #endif /* __cplusplus */

c(RTE00126, RTE00138)

[rte_sws_7678]d The Application Types Header File shall be protected against multiple
inclusions:

1 #ifndef RTE_<SWC>_TYPE_H
2 #define RTE_<SWC>_TYPE_H
3 ...
4 /*
5 * Contents of file
6 */
7 ...
8 #endif /* !RTE_<SWC>_TYPE_H */

Where <SWC> is the AUTOSAR software-component type name.3 c(RTE00126)

3No additional capitalization is applied to the names.

376 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

5.3.6.3 File Contents

In contrast to the Application Header File the Application Types Header File supports
that multiple Application Types Header File’s are included in the same module. This is
necessary if for instance a BSW module uses several AUTOSAR Services.

[rte_sws_7127]d The Application Types Header File shall include the RTE Types
Header File. c(RTE00087)

The name of the RTE Types Header File is defined in Section 5.3.4.

5.3.6.4 RTE Modes

The Application Types Header File shall contain identifiers for the ModeDeclarations
and type definitions for ModeDeclarationGroup’s as defined in Chapter 5.5.3

5.3.6.5 Enumeration Data Types

The Application Types Header File shall contain the enumeration constants as defined
in Chapter 5.5.4

5.3.6.6 Range Data Types

The Application Types Header File shall contain definitions of Range constants as
defined in Chapter 5.5.5

5.3.6.7 Implementation Data Type symbols

The Application Type Header File may contain definitions to redefine the Imple-
mentation Data Type symbol to the shortName of the Implementation-
DataType in order to provide the expected type name to the software component
implementation. See section 5.3.4.10.

5.3.7 VFB Tracing Header File

The VFB Tracing Header File defines the configured VFB Trace events.

[rte_sws_1319]d The VFB Tracing Header File shall be created by the RTE Generator
during RTE Generation Phase only. c(RTE00045)

The VFB Tracing Header file is included by the generated RTE and by the user in the
module(s) that define the configured hook functions. The header file includes proto-

377 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

types for the configured functions to ensure consistency between the invocation by the
RTE and the definition by the user.

5.3.7.1 C/C++

The following requirements apply to RTEs generated for C and C++.

[rte_sws_1250]d The name of the VFB Tracing Header File shall be Rte_Hook.h.
c(RTE00045)

5.3.7.2 File Contents

[rte_sws_1251]d The VFB Tracing header file shall include the RTE Configuration
Header File (Section 5.3.8). c(RTE00045)

[rte_sws_1357]d The VFB Tracing header file shall include the RTE Types Header file
(Section 5.3.4). c(RTE00003, RTE00004)

[rte_sws_3607]d The VFB Tracing header file shall include Os.h. c(RTE00005,
RTE00008)

[rte_sws_1320]d The VFB Tracing header file shall contain the following code imme-
diately after the include of the RTE Configuration Header File.

1 #ifndef RTE_VFB_TRACE
2 #define RTE_VFB_TRACE (FALSE)
3 #endif /* RTE_VFB_TRACE */

c(RTE00008, RTE00005)

Requirement rte_sws_1320 enables VFB tracing to be globally enabled/disabled within
the RTE Configuration Header File and ensures that it defaults to ‘disabled’.

[rte_sws_1236]d For each trace event hook function defined in Section 5.11.4, the
RTE generator shall define the following code sequence in the VFB Tracing header file:

1 #if defined(<trace event>) && (RTE_VFB_TRACE == FALSE)
2 #undef <trace event>
3 #endif
4 #if defined(<trace event>)
5 #undef <trace event>
6 extern void <trace event>(<params>);
7 #else
8 #define <trace event>(<params>) ((void)(0))
9 #endif /* <trace event> */

where <trace event> is the name of trace event hook function and <params> is
the list of parameter names of the trace event hook function prototype as defined in
Section 5.11.4. c(RTE00008)

378 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

The code fragment within rte_sws_1236 benefits from a brief analysis of its struc-
ture. The first #if block ensures that an individually configured trace event in the
RTE Configuration Header File rte_sws_1324 is disabled if tracing is globally disabled
rte_sws_1323. The second #if block emits the prototype for the hook function only
if enabled in the RTE Configuration file and thus ensures that only configured trace
events are prototyped. The #undef is required to ensure that the trace event function
is invoked as a function by the generated RTE. The #else block comes into effect if
the trace event is disabled, either individually rte_sws_1325 or globally, and ensures
that it has no run-time effect. Within the #else block the definition to ((void)(0))
enables the hook function to be used within the API Mapping in a comma-expression.

An individual trace event defined in Section 5.11.4 actually defines a class of hook
functions. A member of the class is created for each RTE object created (e.g. for each
API function, for each task) and therefore an individual trace event may give rise to
many hook function definitions in the VFB Tracing header file.

Example 5.22

Consider an API call Rte_Write_p1_a for an instance of SW-C c. This will result in
two trace event hook functions being created by the RTE generator:

1 Rte_WriteHook_c_p1_a_Start

and

1 Rte_WriteHook_c_p1_a_Return

5.3.8 RTE Configuration Header File

The RTE Configuration Header File contains user definitions that affect the behavior of
the generated RTE.

The directory containing the required RTE Configuration Header File should be in-
cluded in the compiler’s include path when using the VFB tracing header file. The RTE
Configuration Header File is generated by the RTE generator.

5.3.8.1 C/C++

The following requirements apply to RTEs generated for C and C++.

[rte_sws_1321]d The name of the RTE Configuration Header File shall be
Rte_Cfg.h. c(RTE00008, RTE00045)

379 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

5.3.8.2 File Contents

[rte_sws_7641]d The RTE Configuration Header File shall include the file
Std_Types.h. c(RTE00149, RTE00150, BSW00353)

5.3.8.2.1 VFB tracing configuration

[rte_sws_1322]d The RTE generator shall globally enable VFB tracing when
RTE_VFB_TRACE is defined in the RTE Configuration Header File as a vale which
does not evaluate as FALSE. c(RTE00008, RTE00005)

Note that, as observed in Section 5.11, VFB tracing enables debugging of software
components, not the RTE itself.

[rte_sws_1323]d The RTE generator shall globally disable VFB tracing when
RTE_VFB_TRACE is defined in the RTE configuration header file as FALSE.
c(RTE00008, RTE00005)

As well as globally enabling or disabling VFB tracing, the RTE Configuration header
file also configures those individual VFB tracing events that are enabled.

[rte_sws_1324]d The RTE generator shall enable VFB tracing for a given hook function
when there is a #define in the RTE Configuration Header File for the hook function
name and tracing is globally enabled. c(RTE00008)

Note that the particular value assigned by the #define, if any, is not significant.

[rte_sws_1325]d The RTE generator shall disable VFB tracing for a given hook func-
tion when there is no #define in the RTE Configuration Header File for the hook
function name even if tracing is globally enabled. c(RTE00008)

Example 5.23

Consider the trace events from Example 5.22. The trace event for API start is enabled
by the following definition;

1 #define Rte_WriteHook_i1_p1_a_Start

And the trace event for API termination is enabled by the following definition;

1 #define Rte_WriteHook_i1_p1_a_Return

5.3.8.2.2 Condition Value Macros

The Condition Value Macros are generated in the PreBuild Data Set Contract Phase
and PreBuild Data Set Generation Phase. To do this a particular variant out of the

380 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

PreBuild Variability of the input configuration has to be chosen by the means
described in by rte_sws_6500.

[rte_sws_6514]d If evaluated BooleanValueVariationPoints or ConditionBy-
Formulas are resulting to true the <value> for Condition Value Macros shall be
coded as TRUE and if these are resulting to false the value shall be coded as FALSE.
c(RTE00201, RTE00203)

[rte_sws_6513]d For each VariationPointProxy which bindingTime = Pre-
CompileTime the RTE Configuration Header File shall contain a definition of a Con-
dition Value Macro in the RTE PreBuild Data Set Contract Phase and RTE PreBuild
Data Set Generation Phase

#define Rte_SysCon_<cts>_<name> <value>

Where <cts> is the component type symbol of the AtomicSwComponentType,

<name> is the shortName of the VariationPointProxy and

<value> is the evaluated value of the AttributeValueVariationPoint or Con-
ditionByFormula. c(RTE00203, RTE00167)

This requirements makes the SwSystemconst values available to resolve the Pre-
Build Variability in the software components via the Preprocessor. This might
be used to

• read the actual value of the value assigned to a SwSystemconst

• read the setting of an attribute (e.g. array size) dependent from a SwSystem-
const

• check the existence of a conditional existent object, e.g. an code fragment imple-
menting a particular functionality

[rte_sws_3854]d For each VariationPointProxy which bindingTime = Pre-
CompileTime the RTE Application Header File shall contain a definition

#define Rte_SysCon_<name> Rte_SysCon_<cts>_<name>

where <cts> is the component type symbol of the AtomicSwComponentType
and

<name> is the shortName of the VariationPointProxy. c(RTE00203, RTE00167)

[rte_sws_6515]d For each RTE API which is subject to variability and following the
form component port or entity port in table 4.13 the RTE Configuration Header File
shall contain one definition of a Condition Value

#define Rte_VPCon_<cts>_<re>[_<resl>]_<p>_<o>[_<psl>] <value>

where <cts> is the component type symbol of the AtomicSwComponentType,

<re> is the short name of the RunnableEntity,

381 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

<resl> is the shortLabel of the RunnableEntity’s VariationPoint containing
the reference element (e.g. a VariableAccess) to the PortInterface element,

<p> is the name of the PortPrototype,

<o> is the short name of the PortInterface element and

<psl> is the shortLabel of the PortPrototype’s VariationPoint which is re-
ferred by the VariableAccess

If there is no VariationPoint at the RunnableEntity owning the VariableAc-
cess the <resl> with leading underscore is omitted ([_<resl>]).

If there is no VariationPoint at the PortPrototype referred by the VariableAc-
cess the <psl> with leading underscore is omitted ([_<psl>]).

<value> is the evaluated value of the ConditionByFormula of the Variation-
Point vary the existence of the RTE API in table 4.13. c(RTE00201, RTE00167)

[rte_sws_6518]d For each RTE API which is subject to variability and following the
form component internal in table 4.13 the RTE Configuration Header File shall contain
one definition of a Condition Value

#define Rte_VPCon_<cts>_<ki>_<name>_<sl> <value>

where <cts> is the component type symbol of the AtomicSwComponentType,

<ki> is the kind infix according table 4.13,

<name> is the short name of the element which is subject to variability in table 4.13
and is defining the API name infix,

<sl> is the shortLabel of the elements’ VariationPoint defining the API name
infix.

<value> is the evaluated value of the ConditionByFormula of the Variation-
Point defining the variant existence of the RTE API in table 4.13. c(RTE00201,
RTE00167)

[rte_sws_6519]d For each RTE API which is subject to variability and which variability
shall be implemented and which is following the form entity internal in table 4.13 the
RTE Configuration Header File shall contain one definition of a Condition Value

#define Rte_VPCon_<cts>_<re>[_<resl>]_<ki>_<name>_<sl> <value>

where <cts> is the component type symbol of the AtomicSwComponentType,

<re> is the short name of the RunnableEntity,

<resl> is the shortLabel of the RunnableEntity’s VariationPoint containing
the reference element (e.g. a VariableAccess) to the PortInterface element,

<ki> is the kind infix according table 4.13 and

382 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

<name> is the short name of the element which is subject to variability in table 4.13
and is defining the API name infix.

<sl> is the shortLabel of the elements’ VariationPoint defining the API name
infix.

If there is no VariationPoint at the RunnableEntity owning the reference ele-
ment (e.g. a VariableAccess) to the PortInterface element the <resl> with
leading underscore is omitted ([_<resl>]).

<value> is the evaluated value of the ConditionByFormula of the Variation-
Point defining the variant existence of the RTE API in table 4.13. c(RTE00201,
RTE00167)

[rte_sws_6520]d For each PortPrototype which is subject to variability and which
variability shall be implemented the RTE Configuration Header File shall contain one
definition of a Condition Value

#define Rte_VPCon_<cts>_<p>_<psl> <value>

where <cts> is the component type symbol of the AtomicSwComponentType,

<p> is the short name of the PortPrototype and

<psl> is the shortLabel of the PortPrototype’s VariationPoint and

<value> is the evaluated value of the ConditionByFormula of the Varia-
tionPoint defining the variant existence of the PortPrototype in table 4.13.
c(RTE00201, RTE00167)

[rte_sws_6530]d For each RunnableEntity which is subject to variability and which
variability shall be implemented the RTE Configuration Header File shall contain one
definition of a Condition Value

#define Rte_VPCon_<cts>_<re>_<resl> <value>

where <cts> is the component type symbol of the AtomicSwComponentType,

<re> is the short name of the RunnableEntity

<resl> is the shortLabel of the RunnableEntity’s VariationPoint containing
the reference element (e.g. a VariableAccess) to the PortInterface element,

<value> is the evaluated value of the ConditionByFormula of the Varia-
tionPoint defining the variant existence of the RunnableEntity in table 4.16.
c(RTE00201, RTE00167)

[rte_sws_6541]d For each arraySize which subject to variability the RTE Configura-
tion Header File shall contain one definition of a Attribute Value

#define Rte_VPVal_<t>_<e 1>[_<e 2> ... _<e n>] <value>

where <t> is the shortName of the ImplementationDataType,

383 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

[<e x>] are the shortNames of the Array’s ImplementationDataTypeElements
with a leading underscore ordered from the root to the Array’s Implementation-
DataTypeElement with the arraySize being subject to variability and

<value> is the evaluated value of the AttributeValueVariationPoint of the
arraySize c(RTE00201, RTE00167)

[rte_sws_6542]d For each Array’s ImplementationDataTypeElement which sub-
ject to variability the RTE Configuration Header File shall contain one definition of a
Condition Value

#define Rte_VPCon_<t>_<e 1>[_<e 2> ... _<e n>] <value>

where <t> is the shortName of the ImplementationDataType,

[<e x>] are the shortNames of the Array’s ImplementationDataTypeElements
with a leading underscore ordered from the root to the Array’s Implementation-
DataTypeElement being subject to variability and

<value> is the evaluated value of the ConditionByFormula of the Variation-
Point defining the conditional existence of the Array’s ImplementationDataType-
Element c(RTE00201, RTE00167)

[rte_sws_6535]d For each Basic Software Scheduler API which is subject to variability
and following the form module internal in table 4.22 the RTE Configuration Header File
shall contain one definition of a Condition Value

#define SchM_VPCon_<bsnp>[_<vi>_<ai>]_<ki>_<name>_<sl> <value>

where here

<bsnp> is the BSW Scheduler Name Prefix according rte_sws_7593 and
rte_sws_7594,

<vi> is the vendorId of the BSW module,

<ai> is the vendorApiInfix of the BSW module,

<ki> is the kind infix according table 4.22,

<name> is the short name of the element which is subject to variability in table 4.22
defining the Basic Software Scheduler API name infix and

<sl> is the shortLabel of the elements’ VariationPoint defining the API name
infix.

<value> is the evaluated value of the ConditionByFormula of the Variation-
Point defining the variant existence of the Basic Software Scheduler API in table
4.22.

384 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

The sub part in squared brackets [_<vi>_<ai>] is omitted if no vendorApiInfix is
defined for the Basic Software Module. See rte_sws_7528. c(RTE00229, BSW00347)

[rte_sws_6536]d For each Basic Software Scheduler API which is subject to variability
and which variability shall be implemented and which is following the form module ex-
ternal and entity internal in table 4.22 the RTE Configuration Header File shall contain
one definition of a Condition Value

#define SchM_VPCon_<bsnp>[_<vi>_<ai>]_<ki>_
<entity>[_<esl>]_<name>[_<sl>] <value>

where here

<bsnp> is the BSW Scheduler Name Prefix according rte_sws_7593 and
rte_sws_7594,

<vi> is the vendorId of the BSW module,

<ai> is the vendorApiInfix of the BSW module,

<ki> is the kind infix according table 4.22,

entity is the short name of the BswModuleEntity

<esl> is the shortLabel of the BswModuleEntity’s VariationPoint containing
the subject to variability,

<name> is the short name of the element which is subject to variability in table 4.22
defining the Basic Software Scheduler API name infix and

<sl> is the shortLabel of the elements’s VariationPoint defining the API name
infix.

<value> is the evaluated value of the ConditionByFormula of the Variation-
Point defining the variant existence of the Basic Software Scheduler API in table
4.22.

The sub part in squared brackets [_<vi>_<ai>] is omitted if no vendorApiInfix
is defined for the Basic Software Module. See rte_sws_7528.

If there is no VariationPoint at the BswModuleEntity referring to the subject to
variability in table 4.22 the <esl> with leading underscore is omitted ([_<esl>]).

If there is no VariationPoint at the elements defining the Basic Software Sched-
uler API name infix 4.22 the <sl> with leading underscore is omitted ([_<sl>]).
c(RTE00229, BSW00347)

[rte_sws_6532]d For each BswSchedulableEntity which is subject to variability
and which variability shall be implemented the RTE Configuration Header File shall
contain one definition of a Condition Value

#define SchM_VPCon_<bsnp>[_<vi>_<ai>]_<entry>_<esl> <value>

where here

385 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

<bsnp> is the BSW Scheduler Name Prefix according rte_sws_7593 and
rte_sws_7594,

<vi> is the vendorId of the BSW module,

<ai> is the vendorApiInfix of the BSW module,

<entry> is the short name of the implemented (implementedEntry) entry point and

<esl> is the shortLabel of the BswModuleEntity’s VariationPoint

<value> is the evaluated value of the ConditionByFormula of the Variation-
Point defining the variant existence of the BswSchedulableEntity in table 4.24.

The sub part in squared brackets [_<vi>_<ai>] is omitted if no vendorApiInfix is
defined for the Basic Software Module. See rte_sws_7528. c(RTE00229, BSW00347)

5.3.9 Generated RTE

Figure 5.1 defines the relationship between generated and standardized header files.
It is not necessary to standardize the relationship between the C module, Rte.c,
and the header files since when the RTE is generated the application header files are
created anew along with the RTE. This means that details of which header files are
included by Rte.c can be left as an implementation detail.

5.3.9.1 Header File Usage

[rte_sws_1257]d In compatibility mode, the Generated RTE module shall include
Os.h. c(RTE00145)

[rte_sws_3794]d In compatibility mode, the generated RTE module shall include
Com.h. c(RTE00145)

[rte_sws_1279]d In compatibility mode, the Generated RTE module shall include
Rte.h. c(RTE00145)

[rte_sws_1326]d In compatibility mode, the Generated RTE module shall include the
VFB Tracing header file. c(RTE00045, RTE00145)

[rte_sws_3788]d Except for the declaration of entry points for components (see
rte_sws_7194), the RTE shall map its memory objects with the file MemMap.h, using
the AUTOSAR memory mapping mechanism (see [26]). c(RTE00148)

[rte_sws_7692]d The Generated RTE module shall perform Inter Module Checks to
avoid integration of incompatible files. The imported included files shall be checked by
preprocessing directives.

The following version numbers shall be verified:

• <MODULENAME>_AR_RELEASE_MAJOR_VERSION

386 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

• <MODULENAME>_AR_RELEASE_MINOR_VERSION

Where <MODULENAME> is the module short name of the other (external) modules which
provide header files included by the Generated RTE module.

If the values are not identical to the expected values, an error shall be reported.
c(BSW004)

Figure 5.13 provides an example of how the RTE header and generated header files
could be used by a generated RTE.

Figure 5.13: Example of header file use by the generated RTE.

In the example in Figure 5.13, the generated RTE C module requires access to the data
structures created for each AUTOSAR software-component and therefore includes
each application header file4. In the example, the generated RTE also includes the
RTE header file and the lifecycle header file in order to obtain access to RTE and
lifecycle related definitions.

Note: Inclusion of Application Header Files of different software components into the
RTE C module needs support in the Application Header Files in order to avoid that
some local definitions of software components are producing name clashes. If the
RTE C module does not include any Application Header File, some type definitions
(e.g. component data structure) might have to be generated twice.

5.3.9.2 C/C++

The following requirements apply to RTEs generated for C and C++.
4The requirement that a software module include at most one application header file applies only to

modules that actually implement a software-component and therefore does not apply to the generated
RTE.

387 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Note: The <CoreID>s referred to in requirements rte_sws_2712, rte_sws_2713 and
rte_sws_2740 are implementation-specific identifiers for the modules. They need not
be the same as the CoreId identifiers configured for the multi core OS. Refer to section
4.3.4 for a discussion of the allocation of ECU execution logic to partitions and the
allocation of partitions to cores.

[rte_sws_1169]d The name of the C module containing the generated RTE code that
is shared by all cores of an ECU shall be Rte.c. c(BSW00300, RTE00126)

[rte_sws_2711]d On a multi core ECU, RTE shall only use global and static variables
in the Rte.c module, if it is used in a single image system that supports shared mem-
ory. In this case, RTE shall guarantee consistency of this memory, e.g. by using OS
mechanisms. c()

[rte_sws_2712]d On a multi core ECU, there shall be additional modules named
Rte_Core<CoreID> for the core specific code parts of RTE. c()

[rte_sws_2713]d There shall not be symbol redefinitions between different
Rte_Core<CoreID>.c modules. c()

These requirements makes sure, that all Rte modules can be linked in one image. On
a multi core ECU, the RTE may be linked in one image or distributed over separate
images, one per core.

An RTE that includes configured code from an object-code or source-code library may
use additional modules. Further on due to the encapsulation of a component local
name space RTE00167, it might be required to encapsulate part of the generated RTE
code in component specific files as well to avoid name clashes in the RTE’s implemen-
tation.

[rte_sws_7140]d The RTE generator is allowed to partition the generated RTE module
in several files additionally to Rte.c and Rte_Core<CoreID>.c. c(RTE00167)

5.3.9.3 File Contents

By its very nature the contents of the generated RTE is largely vendor specific. It is
therefore only possible to define those common aspects that are visible to the “outside
world” such as the names of generated APIs and the definition of component data
structures that apply any operating mode.

388 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

5.3.9.3.1 Component Data Structures

The Component Data Structure (Section 5.4.2) is a per-component data type used to
define instance specific information required by the generated RTE.

[rte_sws_3711]d The generated RTE shall contain an instance of the relevant Compo-
nent Data Structure for each software-component instance on the ECU for which the
RTE is generated. c(RTE00011)

[rte_sws_3712]d The name of a Component Data Structure instantiated by the RTE
generator shall be Rte_Instance_<name> where <name> is an automatically gen-
erated name, created in some manner such that all instance data structure names are
unique. c(BSW00307)

The software component instance name referred to in rte_sws_3712 is never made
visible to the users of the generated RTE. There is therefore no need to specify the
precise form that the unique name takes. The Rte_Instance_ prefix is mandated in
order to ensure that no name clashes occur and also to ensure that the structures are
readily identifiable in map files, debuggers, etc.

5.3.9.3.2 Generated API

[rte_sws_1266]d The RTE module shall define the generated functions that will be in-
voked when an AUTOSAR software-component makes an RTE API call. c(RTE00051)

The semantics of the generated functions are not defined (since these will obviously
vary depending on the RTE API call that it is implementing) nor are the implementation
details (which are vendor specific). However, the names of the generated functions
defined in Section 5.2.6.1.

The signature of a generated function is the same as the signature of the relevant RTE
API call (see Section 5.6) with the exception that the instance handle can be omitted
since the generated function is applicable to a specific software-component instance.

5.3.9.3.3 Callbacks

In addition to the generated functions for the RTE API, the RTE module includes call-
backs invoked by COM when signal events (receptions, transmission acknowledge-
ment, etc.) occur.

[rte_sws_1264]d The RTE module shall define COM callbacks for relevant signals.
c(RTE00019)

389 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

The required callbacks are defined in Section 5.9.

[rte_sws_3795]d The RTE generator shall generate a separate header file containing
the prototypes of the COM callback functions. c(RTE00019)

[rte_sws_3796]d The name of the header file containing the callback prototypes shall
be Rte_Cbk.h in a C/C++environment. c(RTE00019)

rte_sws_3796 refers to the callbacks defined in section 5.9.

5.3.9.3.4 Task bodies

The RTE module define task bodies for tasks created by the RTE generator only in
compatibility mode.

[rte_sws_1277]d In compatibility mode rte_sws_1257, the RTE module shall define all
task bodies created by the RTE generator. c(RTE00145)

Note that in vendor mode it is assumed that greater knowledge of the OS is available
and therefore the above requirement does not apply so that specific optimizations,
such as creating each task in a separate module, can be applied.

5.3.9.3.5 Lifecycle API

[rte_sws_1197]d The RTE module shall define the RTE lifecycle API. c(RTE00051)

The RTE lifecycle API is defined in Section 5.8.

5.3.9.4 Reentrancy

All code invoked by generated RTE code that can be subject to concurrent execution
must be reentrant. This requirement for reentrancy can be overridden if the gener-
ated code is not subject to concurrent execution, for example, if protected by a data
consistency mechanism to ensure that access to critical regions is serialized.

5.3.10 RTE Post Build Variant Sets

[rte_sws_6620]d The RTE generator shall generate in the Rte_PBCfg.h file the
SchM_ConfigType type declaration of the predefined post build variants data struc-
ture. This header file must be used by other RTE modules to resolve their runtime
variabilities. c(RTE00201)

[rte_sws_6638]d The RTE generator must generate a Rte_PBCfg.c file containing the
declarations and initializations of one or more RTE post build variants. Only one of
these variants can be active at runtime. c(RTE00201, BSW00346)

390 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Within an RTE with post build variants, one active RtePostBuildVariantConfig-
uration will exist. It is a pointer to this structure that shall be passed to SchM_Init.
Also note that the container PredefinedVariant is only a Meta Model construct to
allow the designer to create a validated collection of values assigned to a criterion. It
is up to the implementer of the RTE generator to optimize variant configurations either
for size and/or performance by using different levels of indirection to the PostBuild-
VariantCriterionValues. For the least amount of indirection for example one can
have the criterion values at the level of the Sch_ConfigType. If you use post build
loadable then you may want to reduce memory storage by reusing variant sets if they
remain unchanged across two or more predefined variants.

The following subsections provide examples for the SchM_ConfigType declaration
and instantiation only for demonstration purposes. No requirement what so ever is
implied.

5.3.10.1 Example 1: File Contents Rte_PBCfg.h

An example of a flat data structure to represent the criterion values defined in the
Rte_PBCfg.h file containing theSchM_ConfigType type which can contain the list of
unique PostBuildVariantCriterion members. This approach immediately en-
forces that only one single criterion assignment can exist. The member names can,
for example, follow the template defined below where <sn> is the PostBuildVari-
antCriterion shortName.

1 struct SchM_ConfigType {
2 /* The PostBuildVariantCriterion shortname */
3 int VarCri_<sn>;
4 .
5 .
6 .
7 };

5.3.10.2 Example 2: File Contents Rte_PBCfg.h

An example showing an additional level of indirection and as such allows for reuse of
variant sets to optimize memory storage acorss for example several predefined variants
is shown below. The RTE generator in this case can reuse some PostBuildVari-
antSets to reduce the memory resource consumption of an ECU. The RTE generator
can declare in the Rte_PBCfg.h file a structure type for each distinct unique collec-
tion of PostBuildVariantSets containing the PostBuildVariantCriterions
as members. This implies that if two PredefinedVariants are defined each refer-
ring to a named PostBuildVariantSet and the list of PostBuildVariantCri-
terions in each of these PostBuildVariantSets is identical that only one type is
defined for these two named PostBuildVariantSets. The name of the type can,

391 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

for example, follow the pattern below where the <id> is a unique identifier for that type
(e.g. a counter).

1 struct Rte_VarSet_<id>_t {
2 /* The PostBuildVariantCriterion shortname */
3 int VarCri_<sn>;
4 .
5 .
6 .
7 };

Now the SchM_ConfigType type can bedeclared with pointers to these variant sets. The
member names of this struct can, for example, follow the template below where <id>
is a unique identifier.

1 struct SchM_ConfigType {
2 /* The PostBuildVariantCriterion shortname */
3 Rte_VarSet_<id>_t* VarSet_<id>_Ptr;
4 .
5 .
6 .
7 };

5.3.10.3 Examples: File Contents Rte_PBCfg.c

In correlation with example 1 of the header file the RTE generator can declare and
optionaly initialize a default variant configuration named Rte_VarCfg in the Rte_PBCfg.c
file of the SchM_ConfigType type.

For example (the initializers are the criterion values):

1 const struct SchM_ConfigType Rte_VarCfg = {1,2,3,4,5};

And likewise for the example 2 header file the RTE generator can declare and initial-
ize in the Rte_PBCfg.c file all possible PostBuildVariantSets and the RtePost-
BuildVariantConfigurations using references to these variant sets.

For example:

1 const struct Rte_VarSet_1_t Rte_VarSet_1a = {1,2,3};
2 const struct Rte_VarSet_1_t Rte_VarSet_1b = {1,4,1};
3 const struct Rte_VarSet_2_t Rte_VarSet_2 = {2,5,7,3,2};
4 .
5 .
6 .

1 const struct SchM_ConfigType Rte_VarCfg_1 =
2 {&Rte_VarSet_1a,&Rte_VarSet_2};
3 const struct SchM_ConfigType Rte_VarCfg_2 =
4 {&Rte_VarSet_1b,&Rte_VarSet_2};
5 .

392 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

6 .
7 .

When SchM_Init is called, a pointer to the active SchM_ConfigType will be passed
along which shall be assigned to the named Rte_VarCfgPtr which is of type
SchM_ConfigType*. This pointer shall be used to determine the values for actual used
PostBuildVariantCriterions and for variant validation when the DET is enabled.

Example 1 pseudo code evaluating the criterions

1 switch(Rte_VarCfg->VarCri_1)
2 {
3 case 1:
4 /* DO SOMETHING */
5 break;
6 case 2:
7 /* DO SOMETHING ELSE */
8 }

Example 2 pseudo code evaluating the criterions

1 switch(Rte_VarCfgPtr->VarSet_1_Ptr->VarCri_1)
2 {
3 case 1:
4 /* DO SOMETHING */
5 break;
6 case 2:
7 /* DO SOMETHING ELSE */
8 }

Another type of optimization strategy (besides flattening) that can be applied is
double buffering for frequently used variant criterion values. The additional buffer
can then be used in the conditions to optimize the performance of the RTE (e.g.
BufferedVarCri_1 = Rte_VarCfgPtr->VarSet_1->VarCri_1).

5.4 RTE Data Structures

Object-code software components are compiled against an application header file cre-
ated during the “RTE Contract” phase but are linked against an RTE (and application
header file) created during the “RTE Generation” phase. When generated in com-
patibility mode, an RTE has to work for object-code components compiled against an
application header file created in compatibility mode, even if the application header file
was created by a different RTE generator. It is thus necessary to define the data struc-
tures and naming conventions for the compatibility mode to ensure that the object-code
is compatible with the generated RTE. An RTE generated in vendor mode only has to
work for those object-code components that were compiled against application header
files created in vendor mode by a compatible RTE generator (which in general would
mean an RTE generator supplied by the same vendor).

393 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

The use of standardized data structures imposes tight constraints on the RTE imple-
mentation and therefore restricts the freedom of RTE vendors to optimize the solution
of object-code components but has the advantage that RTE generators from different
vendors can be used to compile an object-code software-component and to generate
the RTE. No such restrictions apply for the vendor mode. If an RTE generator operating
in vendor mode is used for an object-code component in both phases, vendor-specific
optimizations can be used.

Note that with the exception of data structures required for support object-code soft-
ware components in compatibility mode, the data structures used for “RTE Generation”
phase are not defined. This permits vendor specific API mappings and data structures
to be used for a generated RTE without loss of portability.

The following definitions only apply to RTE generators operating in compatibility mode –
in this mode the instance handle and the component data structure have to be defined
even for those (object-code) software components for which multiple instantiation is
forbidden to ensure compatibility.

5.4.1 Instance Handle

The RTE is required to support object-code components as well as multiple instances
of the same AUTOSAR software-component mapped to an ECU [RTE00011]. To
minimise memory overhead all instances of a component on an ECU share code
[RTE00012] and therefore both the RTE and the component instances require a means
to distinguish different instances.

Support for both object-code components and multiple instances requires a level of
indirection so that the correct generated RTE custom function is invoked in response to
a component action. The indirection is supplied by the instance handle in combination
with the API mapping defined in Section 5.2.6.

[rte_sws_1012]d The component instance handle shall identify particular instances of
a component. c(BSW00312, RTE00011)

The instance handle is passed to each runnable entity in a component when it is ac-
tivated by the RTE as the first parameter of the function implementing the runnable
entity rte_sws_1016. The instance handle is then passed back by the runnable entity
to the RTE, as the first parameter of each direct RTE API call, so that the RTE can
identify the correct component instance making the call. This scheme permits multiple
instances of a component on the same ECU to share code.

The instance handle indirection permits the name of the RTE API call that is used within
the component to be unique within the scope of a component as well as independent
of the component’s instance name. It thus enables object-code AUTOSAR software-

394 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

components to be compiled before the final “RTE Generation” phase when the instance
name is fixed.

[rte_sws_1013]d For the RTE C/C++ API, any call that can operate on different
instances of a component that supports multiple instantiation supportsMulti-
pleInstantiation shall have an instance handle as the first formal parameter.
c(RTE00011)

[rte_sws_3806]d If a component does not support multiple instantiation, the instance
handle parameter shall be omitted in the RTE C/C++ API and in the signature of the
RTE Hook functions. c(RTE00011)

If the component does not support multiple instantiation, the name of the instance
handle must be specified, since it is not passed to the API calls and runnable entities
as parameters.

[rte_sws_3793]d If a software component does not support multiple instantiation, the
name of the instance handle shall be Rte_Inst_<cts>, where <cts> is the compo-
nent type symbol of the AtomicSwComponentType. c(RTE00011)

The data type of the instance handle is defined in Section 5.5.2.

5.4.2 Component Data Structure

Different component instances share many common features - not least of which is
support for shared code. However, each instance is required to invoke different RTE
API functions and therefore the instance handle is used to access the component data
structure that defines all instance specific data.

It is necessary to define the component data structure to ensure compatibility between
the two RTE phases when operating in compatibility mode – for example, a “clever”
compiler and linker may encode type information into a pointer type to ensure type-
safety. In addition, the structure definition cannot be empty since this is an error in
ANSI C.

[rte_sws_7132]d The component data structure type shall be defined in the Application
Header file. c(RTE00011, RTE00167)

[rte_sws_3714]d The type name of the component data structure shall be
Rte_CDS_<cts> where <cts> is the component type symbol of the Atomic-
SwComponentType. c(BSW00305)

The members of the component data structure include function pointers. It is important
that such members are not subject to run-time modification and therefore the compo-
nent data structure is required to be placed in read-only memory.

[rte_sws_3715]d All instances of the component data structure shall be defined as
“const” (i.e. placed in read-only memory). c(BSW007)

395 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

The elements of the component data structure are sorted into sections, each of which
defines a logically related section. The sections defined within the component data
structure are:

• [rte_sws_3718]d Data Handles section. c(RTE00011, RTE00051)

• [rte_sws_3719]d Per-instance Memory Handles section. c(RTE00011,
RTE00051)

• [rte_sws_1349]d Inter-runnable Variable Handles section. c(RTE00011,
RTE00051)

• [rte_sws_3720]d Calibration Parameter Handles section. c(RTE00011,
RTE00051)

• [rte_sws_3721]d Exclusive-area API section. c(RTE00011, RTE00051)

• [rte_sws_3716]d Port API section. c(RTE00011, RTE00051)

• [rte_sws_3717]d Inter Runnable Variable API section. c(RTE00011, RTE00051)

• [rte_sws_7225]d Inter Runnable Triggering API section. c(RTE00011,
RTE00051)

• [rte_sws_3722]d Vendor specific section. c(RTE00011)

The order of elements within each section of the component data structure is defined
as follows;

[rte_sws_3723]d Section entries shall be sorted alphabetically (ASCII / ISO 8859-1
code in ascending order) unless stated otherwise. c(RTE00051)

The sorting of entries is applied to each section in turn.

Note that there is no prefix associated with the name of each entry within a section;
the component data structure as a whole has the prefix and therefore there is no need
for each member to have the same prefix.

ANSI C does not permit empty structure definitions yet an instance handle is required
for the RTE to function. Therefore if there are no API calls then a single dummy entry
is defined for the RTE.

[rte_sws_3724]d If all sections of the Component Data Structure are empty the Com-
ponent Data Structure shall contain a uint8 with name _dummy. c(RTE00126)

396 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

5.4.2.1 Data Handles Section

The data handles section is required to support the Rte_IRead and Rte_IWrite calls
(see Section 5.2.4).

[rte_sws_3733]d Data Handles shall be named <re>_<p>_<o> where <re> is the
runnable entity name that reads (or writes) the data item, <p> the port name, <o> the
data element. c(BSW00305, RTE00051)

A runnable cannot read and write to the same port/data element since the port is
inherently uni-directional (a provide port can only be written, a require port can only be
read).

[rte_sws_2608]d The Data Handle shall be a pointer to a Data Element with
Status if and only if either

• the runnable has read access and either

– data element outdated notification or

– data element invalidation

is activated for this data element, or

• the runnable has write access and acknowledgement is enabled for this data
element.

c(RTE00051, RTE00185)

[rte_sws_2588]d Otherwise, the data type for a Data Handle shall be a pointer to a
Data Element without Status. c(RTE00051)

See below for the definitions of these terms.

[rte_sws_6529]d The RTE Generator shall wrap each entry of Data Handles Section
in the component data structure of a variant existent Rte_IRead or Rte_IWrite API if
the variability shall be implemented.

1 #if (<condition>)
2

3 <Data Handles Section Entry>
4

5 #endif

where condition is the condition value macro of the VariationPoint relevant
for the variant existence of the Rte_IRead or Rte_IWrite API (see rte_sws_6515),
Data Handles Section Entry is the code according an invariant Data Handles
Section Entry (see also rte_sws_3733, rte_sws_2608, rte_sws_2588) c(RTE00201)

397 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

5.4.2.1.1 Data Element without Status

[rte_sws_1363]d The data type for a “Data Element without Status” shall be named
Rte_DE_<dt> where <dt> is the data element’s ImplementationDataType name.
c(RTE00051)

[rte_sws_1364]d A Data Element without Status shall be a structure contain-
ing a single member named value. c(RTE00051)

[rte_sws_2607]d The value member of a Data Element without Status shall
have the same data type as the corresponding DataElement. c(RTE00051, RTE00147,
RTE00078)

Note that requirements rte_sws_1364 and rte_sws_2607 together imply that creating a
variable of data type Rte_DE_<dt> allocates enough memory to store the data copy.

5.4.2.1.2 Data Element with Status

[rte_sws_1365]d The data type for a “Data Element with Status” shall be named
Rte_DES_<dt> where <dt> is the data element’s ImplementationDataType
name. c(RTE00051)

[rte_sws_1366]d A Data Element with Status shall be a structure containing
two members. c(RTE00051)

[rte_sws_3734]d The first member of each Data Element with Status shall be
named ’value’ c(RTE00051)

[rte_sws_2666]d The value member of a Data Element with Status shall have
the type of the corresponding DataElement. c(RTE00051, RTE00147, RTE00078,
RTE00185)

[rte_sws_2589]d The second member of each Data Element with Status shall
be named ’status’. c(RTE00051, RTE00147, RTE00078, RTE00185)

[rte_sws_2590]d The status member of a Data Element with Status shall be of
the Std_ReturnType type. c(RTE00147, RTE00078, RTE00185)

[rte_sws_2609]d In case of read access, the status member of a Data Element
with Status shall contain the error status corresponding to the value member.
c(RTE00147, RTE00078)

[rte_sws_3836]d In case of write access, the status member of a Data Element
with Status shall contain the transmission status corresponding to the value mem-
ber. c(RTE00185)

398 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

5.4.2.1.3 Usage

[rte_sws_7136]d A definition for every required Data Element with Status and
every Data Element without Status must be emitted in the RTE Data Handle
Types Header File (see Section 5.3.5). c(RTE00051)

Example 5.24

Consider a uint8 data element, a, of port p which is accessed using a VariableAc-
cess in the dataWriteAccess role by runnables re1 and re2 and a VariableAc-
cess in the dataReadAccess role by runnable re2 within component c. data el-
ement outdated is defined for this dataElement.

The required data types within the RTE Data Handle Types Header File would be:

1 typedef struct {
2 uint8 value;
3 } Rte_DE_uint8;
4

5 typedef struct {
6 uint8 value;
7 Std_ReturnType status;
8 } Rte_DES_uint8;

The component data structure for c would also include:

1 Rte_DE_uint8* re1_p_a;
2 Rte_DES_uint8* re2_p_a;

A software-component that is supplied as object-code or is multiple instantiated re-
quires “general purpose” definitions of Rte_IRead, Rte_IWrite, and Rte_IStatus

that use the data handles to access the data copies created within the generated RTE.
For example:

1 #define Rte_IWrite_re1_p_a(s,v) ((s)->re1_p_a->value = (v))
2 #define Rte_IWrite_re2_p_a(s,v) ((s)->re2_p_a->value = (v))
3 #define Rte_IRead_re2_p_a(s,v) ((s)->re2_p_a->value)
4 #define Rte_IStatus_re2_p_a(s) ((s)->re2_p_a->status)

The definitions of Rte_IRead, Rte_IWrite, and Rte_IStatus are type-safe since an
attempt to assign an incorrect type will be detected by the compiler.

For source code component that does not use multiple instantiation the definitions of
Rte_IRead, Rte_IWrite, and Rte_IStatus can remain as above or vendor specific
optimizations can be applied without loss of portability.

The values assigned to data handles within instances of the component data structure
created within the generated RTE depend on the mapping of tasks and runnables –
See Section 5.2.4.

399 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

5.4.2.2 Per-instance Memory Handles Section

The Per-instance Memory Section Handles section enables to access instance specific
memory (sections).

[rte_sws_2301]d The CDS shall contain a handle for each Per-instance Memory. This
handle member shall be named Pim_<name> where <name> is the per-instance mem-
ory name. c(BSW00305, RTE00051, RTE00013)

The Per-instance Memory Handles are typed; [rte_sws_2302]d The data type of each
Per-instance Memory Handle shall be a pointer to the type of the per instance memory
that is defined in the Application Header file. c(RTE00051, RTE00013)

The RTE supports the access to the per-instance memories by the Rte_Pim API.

[rte_sws_6527]d The RTE Generator shall wrap each entry of Per-instance Memory
Handles Section in the component data structure of a variant existent PerInstance-
Memory or arTypedPerInstanceMemory if the variability shall be implemented.

1 #if (<condition>)
2

3 <Per-instance Memory Handles Section Entry>
4

5 #endif

where condition is the condition value macro of the VariationPoint
relevant for the variant existence of the Rte_Pim API (see rte_sws_6518),
Per-instance Memory Handles Section Entry is the code according an
invariant Per-instance Memory Handles Section Entry (see also rte_sws_2301,
rte_sws_2302) c(RTE00201)

Example 5.25

Referring to the specification items rte_sws_2301, rte_sws_2302, and rte_sws_7133
Example 5.4 can be extended –

with respect to the software-component header:

1 struct Rte_CDS_c {
2 ...
3 /* per-instance memory handle section */
4 Rte_PimType_c_MyMemType *Pim_mem;
5

6 ...
7 };
8

9 #define Rte_Pim_mem(s) ((s)->Pim_mem)

and in Rte.c:

1 Rte_PimType_c_MyMemType mem1;
2

400 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

3 const struct Rte_CDS_c Rte_Instance_c1 = {
4 ...
5 /* per-instance memory handle section */
6 /* Rte_PimType_c_MyMemType Pim_mem */
7 &mem1
8 ...
9 };

5.4.2.3 Inter Runnable Variable Handles Section

Each runnable may require separate handling for the inter runnable variables that it
accesses. The indirection required for explicit access to inter runnable variables is
described in section 5.4.2.7. The inter runnable variable handles section within the
component data structure contains pointers to the (shadow) memory of inter runnable
variables that can be directly accessed with the implicit API macros. The inter runnable
variable handles section does not contain pointers for memory to handle inter runnable
variables that are accessed with explicit API only.

[rte_sws_2636]d For each runnable and each inter runnable variable that is accessed
implicitly by the runnable, there shall be exactly one inter runnable handle member
within the component data structure and this inter runnable variable handle shall point
to the (shadow) memory of the inter runnable variable for the runnable. c(RTE00142)

[rte_sws_1350]d The name of each inter runnable variable handle member within the
component data structure shall be Irv_<re>_<o> where <o> is the Inter-Runnable
Variable short name and <re> is short name of the runnable name. c(RTE00142)

[rte_sws_1351]d The data type of each inter runnable variable handle member shall
be a pointer to the type of the inter runnable variable. c(RTE00142)

[rte_sws_6528]d The RTE Generator shall wrap each entry of Inter Runnable Variable
Handles Section in the component data structure of a variant existent Rte_IrvRead or
Rte_IrvWrite if the variability shall be implemented.

1 #if (<condition> [|| <condition>])
2

3 <Inter Runnable Variable Handles Section Entry>
4

5 #endif

where condition are the condition value macro(s) of the Variation-
Point relevant for the variant existence of the Rte_IrvRead or Rte_IrvWrite

API accessing the same Inter Runnable Variable (see rte_sws_6519),
Inter Runnable Variable Handles Section Entry is the code according
an invariant Inter Runnable Variable Handles Section Entry (see also rte_sws_2636,
rte_sws_1350, rte_sws_1351) c(RTE00201)

401 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

5.4.2.4 Exclusive-area API Section

The exclusive-area API section includes exclusive areas that are accessed explicitly,
using the RTE API, by the SW-C. Each entry in the section is a function pointer to the
relevant RTE API function generated for the SW-C instance.

[rte_sws_3739]d The name of each Exclusive-area API section entry shall be
<root>_<name> where <root> is either Entry or Exit and <name> is the
Exclusive-area name. c(RTE00051, RTE00032)

[rte_sws_3740]d The data type of each Exclusive-area API section entry shall be
a function pointer that points to the generated RTE API function. c(RTE00051,
RTE00032)

[rte_sws_6521]d The RTE Generator shall wrap each definition of a variant existent
Rte_Enter and Rte_Exit in the Exclusive-area API section according table 4.13 if the
variability shall be implemented.

1 #if (<condition>)
2

3 <Exclusive-area API section entry>
4

5 #endif

where condition is the condition value macro of the VariationPoint rel-
evant for the variant existence of the Rte_Enter and Rte_Exit API (see
rte_sws_6518), Exclusive-area API section entry is the code according
an invariant Exclusive-area section entry (see also rte_sws_3739, rte_sws_3740)
c(RTE00201)

[rte_sws_3812]d Entries in the Exclusive-area API section shall be sorted alphabeti-
cally. c(RTE00051, RTE00032)

Note that two function pointers will be required for each accessed exclusive area; one
for the Entry function and one for the Exit function.

5.4.2.5 Port API Section

Port API section comprises zero or more function references within the component
data structure type that defines all API functions that access a port and can be invoked
by the software-component (instance).

[rte_sws_2616]d The function table entries for port access shall be grouped by the
port names into port data structures. c(RTE00051)

402 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Each entry in the port API section of the component data structure is a “port data
structure”.

[rte_sws_2617]d The name of each port data structure in the component data struc-
ture shall be <p> where <p> is the port short-name. c(RTE00051)

[rte_sws_3799]d The component data structure shall contain a port data structure for
port p only if the component supports multiple instantiation or if the indirectAPI
attribute for p is set to ’true’. c(RTE00051)

[rte_sws_6522]d The RTE Generator shall wrap each port data structure of a variant
existent PortPrototype if the variability shall be implemented.

1 #if (<condition>)
2

3 <port data structure>
4

5 #endif

where condition is the condition value macro of the VariationPoint rel-
evant for the variant existence of the PortPrototype (see rte_sws_6520,
port data structure is the code according an invariant port data structures (see
also rte_sws_2617, rte_sws_3799) c(RTE00201)

[rte_sws_3731]d The data type name for a port data structure shall be
struct Rte_PDS_<cts>_<i>_<P/R>

where <cts> is the component type symbol of the AtomicSwComponentType,

<i> is the port interface name and

‘P’ or ‘R’ are literals to indicate provide or require ports respectively. c(BSW00305,
RTE00051)

[rte_sws_7137]d The port data structure type(s) shall be defined in the Application
Header file. c(RTE00051)

A port data structure type is defined for each port interface that types a port. Thus
different ports typed by the same port interface structure share the same port data
structure type.

[rte_sws_7138]d The Application Header file shall contain a definition of a port data
structure type for interface i and port type R or P only if the component supports
multiple instantiation or at least one require or provide port exists that has the indi-
rectAPI attribute set to ’true’. c(RTE00051)

[rte_sws_6523]d The RTE Generator shall wrap each port data structure type related
to variant existent PortPrototypes if the variability shall be implemented and if all
require PortPrototypes or all provide PortPrototypes are variant.

1 #if (<condition> [|| <condition>])
2

3 <port data structure type>

403 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4

5 #endif

where condition are the condition value macro(s) of the VariationPoints rele-
vant for the variant existence of the PortPrototypes requiring the port data structure
type (see rte_sws_6520), port data structure type is the code according an in-
variant port data structure type (see also rte_sws_3731, rte_sws_7138, rte_sws_3730
rte_sws_2620) c(RTE00201)

Note: If any invariant PortPrototype requires the port data structure type it shall be
defined unconditional.

[rte_sws_7677]d The RTE shall support an indirect API for the port access functions
listed in table 5.1. c(RTE00051)

[rte_sws_3730]d A port data structure shall contain a function table entry for each
API function associated with the port as referenced in table 5.1. Pure API macros,
like Rte_IRead and other implicit API functions, do not have a function table entry.
c(RTE00051)

API function reference
Rte_Send_<p>_<o> 5.6.5
Rte_Write_<p>_<o> 5.6.5
Rte_Switch_<p>_<o> 5.6.6
Rte_Invalidate_<p>_<o> 5.6.7
Rte_Feedback_<p>_<o> 5.6.8
Rte_SwitchAck_<p>_<o> 5.6.9
Rte_Read_<p>_<o> 5.6.10
Rte_DRead_<p>_<o> 5.6.10
Rte_Receive_<p>_<o> 5.6.12
Rte_Call_<p>_<o> 5.6.13
Rte_Result_<p>_<o> 5.6.14
Rte_Prm_<p>_<o> 5.6.17
Rte_Mode_<p>_<o> 5.6.29
Rte_Trigger_<p>_<o> 5.6.31
Rte_IsUpdated_<p>_<o> 5.6.34

Table 5.1: Table of API functions that are referenced in the port API section.

[rte_sws_2620]d An API function shall only be included in a port data structure, if it is
required at least by one port. c(RTE00051)

[rte_sws_2621]d If a function table entry is available in a port data structure, the cor-
responding function shall be implemented for all ports that use this port data structure
type. API functions related to ports that are not required by the AUTOSAR configuration
shall behave like those for an unconnected port. c(RTE00051)

404 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

APIs may be required only for some ports of a software component instance due to
differences in for example the need for transmission acknowledgement. rte_sws_2621
is necessary for the concept of the indirect API. It allows iteration over ports.

[rte_sws_1055]d The name of each function table entry in a port data structure shall
be <name>_<o> where <name> is the API root (e.g. Call, Write) and <o> the data
element or operation name. c(BSW00305, RTE00051)

Requirement rte_sws_1055 does not include the port name in the function table entry
name since the port is implicit when using a port handle.

[rte_sws_3726]d The data type of each function table entry in a port data structure
shall be a function pointer that points to the generated RTE function. c(RTE00051)

The signature of a generated function, and hence the definition of the function pointer
type, is the same as the signature of the relevant RTE API call (see Section 5.6) with
the exception that the instance handle is omitted.

Example 5.26

This example shows a port data structure for the provide ports of the interface type i2
in an AUTOSAR SW-C c.

i2 is a SenderReceiverInterface which contains a data element prototype of type
uint8 with data semantics.

If one of the provide ports of c for the interface i2 has a transmission acknowledge-
ment defined and i2 is not used with data element invalidation, the Applica-
tion Header file would include a port data structure type like this:

1 struct Rte_PDS_c_i2_P {
2 Std_ReturnType (*Feedback_a)(uint8);
3 Std_ReturnType (*Write_a)(uint8);
4 }

If the provide port p1 of the AUTOSAR SW-C c is of interface i2, the generated Appli-
cation Header file would include the following macros to provide the direct API functions
Rte_Feedback_p1_a and Rte_Write_p1_a:

1 /*direct API*/
2 #define Rte_Feedback_p1_a(inst,data)
3 ((inst)->p1.Feedback_a)(data)
4 #define Rte_Write_p1_a(inst,data) ((inst)->p1.Write_a)(data)

[rte_sws_2618]d The port data structures within a component data structure shall first
be sorted on the port data structure type name and then on the short name of the port.
c(RTE00051)

405 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

The requirements rte_sws_3731 and rte_sws_2618 guarantee, that all port data struc-
tures within the component data structure are grouped by their interface type and
require/provide-direction.

Example 5.27

This example shows the grouping of port data structures within the component data
structure.

The Application Header file for an AUTOSAR SW-C c with three provide ports p1, p2,
and p3 of interface i2 would include a block of port data structures like this:

1 struct Rte_CDS_c {
2 ...
3 struct Rte_PDS_c_i1_R z;
4

5 /* component data structures *
6 * for provide ports of interface i2 */
7 struct Rte_PDS_c_i2_P p1;
8 struct Rte_PDS_c_i2_P p2;
9 struct Rte_PDS_c_i2_P p3;

10

11 /*further component data structures*/
12 struct Rte_PDS_c_i2_R c;
13 ...
14 }
15

If inst is a pointer to a component data structure, and ph is defined by

1 struct Rte_PDS_c_i2_P *ph = &(inst->p1);

ph points to the port data structure p1 of the instance handle inst. Since the three
provide port data structures p1, p2, and p3 of interface i2 are ordered sequentially
in the component data structure, ph can also be interpreted as an array of port data
structures. E.g., ph[2] is equal to inst->p3.

In the following, ph will be called a port handle.

[rte_sws_1343]d RTE shall create port handle types for each port data structure using
typedef to a pointer to the appropriate port data structure. c(RTE00051)

[rte_sws_1342]d The port handle type name shall be Rte_PortHandle_<i>_<P/R>
where <i> is the port interface name and ‘P’ or ‘R’ are literals to indicate provide or
receive ports respectively. c(RTE00051)

[rte_sws_6524]d The RTE Generator shall wrap each port handle type related to vari-
ant existent PortPrototypes if the variability shall be implemented and if all require
PortPrototypes or all provide PortPrototypes are variant.

406 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

1 #if (<condition> [|| <condition>])
2

3 <port handle type>
4

5 #endif

where condition are the condition value macro(s) of the VariationPoints rele-
vant for the variant existence of the PortPrototypes requiring the port data structure
type (see rte_sws_6520), port data structure type is the code according an in-
variant port data structure type (see also rte_sws_1343, rte_sws_1342) c(RTE00201)

[rte_sws_1053]d The port handle types shall be written to the application header file.
c(RTE00051)

RTE provides port handles for access to the arrays of port data structures of the same
interface type and provide/receive direction by the macro Rte_Ports, see section 5.6.1,
and to the number of similar ports by the macro Rte_NPorts, see 5.6.1.

Example 5.28

For the provide port i2 of AUTOSAR SW-C c from example 5.26, the following port
handle type will be defined in the Application Header file:

1 typedef struct Rte_PDS_c_i2_P *Rte_PortHandle_i2_P;

The macros to access the port handles for the indirect API might look like this in the
generated Application Header file:

1 /*indirect (port oriented) API*/
2 #define Rte_Ports_i2_P(inst) &((inst)->p1)
3 #define Rte_NPorts_i2_P(inst) 3

So, the port handle ph of the previous example 5.27 could be defined by a user as:

1 Rte_PortHandle_i2_P ph = Rte_Ports_i2_P(inst);

To write ‘49’ on all ports p1 to p3, the indirect API can be used within the software
component as follows:

1 uint8 p;
2 Rte_PortHandle_i2_P ph = Rte_Ports_i2_P(inst);
3 for(p=0;p<Rte_NPorts_i_P(inst);p++) {
4 ph[p].Write_a(49);
5 }

Software components may also want to set up their own port handle arrays to iterate
over a smaller sub group than all ports with the same interface and direction. Rte_Port
can be used to pick the port handle for one specific port, see 5.6.3.

407 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

5.4.2.6 Calibration Parameter Handles Section

The RTE is required to support access to calibration parameters derived by per-
instance ParameterDataPrototypes (see 4.2.8.3) using the Rte_CData (see sec-
tion 5.6.16).

[rte_sws_3835]d The name of each Calibration parameter handle shall be
CData_<name> where <name> is the ParameterDataPrototype name.
c(RTE00051, RTE00154, RTE00155)

[rte_sws_3949]d The type of each calibration parameter handle shall be a func-
tion pointer that points to the generated RTE function. c(RTE00051, RTE00154,
RTE00155)

Note that accesses to ParameterDataPrototypes within ParameterSwCompo-
nentTypes do not require handles within this section since the generated Rte_Prm

(see section 5.6.17) API is accessed either directly (single instantiation) or through
handles in the port API section (multiple instantiation). Likewise, access to shared
ParameterDataPrototypes does not require a handle since, by definition, no per-
instance data is present.

5.4.2.7 Inter Runnable Variable API Section

The Inter Runnable Variable API section comprises zero or more function table entries
within the component data structure type that defines all explicit API functions to access
an inter runnable variable by the software-component (instance). The API for implicit
access of inter runnable variables does not have any function table entries, since the
implicit API uses macro’s to access the inter runnable variables or their shadow mem-
ory directly, see section 5.4.2.3.

Since the entries of this section are only required to access the explicit InterRunnable-
Variable API if a software component supports multiple instantiation, it shall be omitted
for software components which do not support multiple instantiation.

[rte_sws_3725]d If the component supports multiple instantiation, the member
name of each function table entry within the component data structure shall be
<name>_<re>_<o> where <name> is the API root (e.g. IrvRead), <re> the runnable
name, and <o> the inter runnable variable name. c(RTE00051)

[rte_sws_3752]d The data type of each function table entry shall be a function pointer
that points to the generated RTE function. c(RTE00051)

The signature of a generated function, and hence the definition of the function pointer
type, is the same as the signature of the relevant RTE API call (see Section 5.6) with
the exception that the instance handle is omitted.

[rte_sws_2623]d If the component supports multiple instantiation, the Inter Runnable
Variable API Section shall contain pointers to the following API functions:

408 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

API function reference
Rte_IrvRead_<re>_<o> 5.6.25
Rte_IrvWrite_<re>_<o> 5.6.26

Table 5.2: Table of API functions that are referenced in the inter runnable variable API
section

c(RTE00051)

[rte_sws_6525]d The RTE Generator shall wrap each entry of Inter Runnable Variable
API Section in the component data structure of a variant existent Rte_IrvRead or
Rte_IrvWrite API if the variability shall be implemented.

1 #if (<condition>)
2

3 <Inter Runnable Variable API Section Entry>
4

5 #endif

where condition is the condition value macro of the VariationPoint relevant for
the variant existence of the Rte_IrvRead or Rte_IrvWrite API (see rte_sws_6519),
Inter Runnable Variable API Section Entry is the code according an
invariant Inter Runnable Variable API Section Entry (see also rte_sws_3725,
rte_sws_3752, rte_sws_2623) c(RTE00201)

[rte_sws_3791]d If the software component does not support multiple instantiation, the
inter runnable variable API section shall be empty. c(RTE00051)

5.4.2.8 Inter Runnable Triggering API Section

The Inter Runnable Triggering API Section includes the Inter Runnable Triggering API
handles. Each entry in the section is a function pointer to the relevant RTE API function
generated for the SW-C instance.

[rte_sws_7226]d The name of each Inter Runnable Triggering handle shall be
Rte_IrTrigger_<re>_<name> where <re> is the name of the runnable entity the
API might be used and <name> is the name of the InternalTriggeringPoint.
c(RTE00051, RTE00163)

[rte_sws_7227]d The data type of each Inter Runnable Triggering handle entry shall
be a function pointer that points to the generated RTE API function defined in 5.6.32.
c(RTE00051, RTE00163)

[rte_sws_6526]d The RTE Generator shall wrap each entry of Inter Runnable Trigger-
ing handle in the component data structure of a variant existent Rte_IrTrigger API if
the variability shall be implemented.

1 #if (<condition>)
2

409 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

3 <Inter Runnable Variable API Section Entry>
4

5 #endif

where condition is the condition value macro of the VariationPoint rel-
evant for the variant existence of the Rte_IrTrigger API (see rte_sws_6519,
Inter Runnable Variable API Section Entry is the code according an
invariant Inter Runnable Variable API Section Entry (see also rte_sws_3725,
rte_sws_3752, rte_sws_2623) c(RTE00201)

[rte_sws_7228]d Entries in the Inter Runnable Triggering handles section shall be
sorted alphabetically. c(RTE00051, RTE00163)

5.4.2.9 Vendor Specific Section

The vendor specific section is used to contain any vendor specific data required to be
supported for each instances. By definition the contents of this section are outside the
scope of this chapter and only available for use by the RTE generator responsible for
the “RTE Generation” phase.

5.5 API Data Types

Besides the API functions for accessing RTE services, the API also contains RTE-
specific data types.

5.5.1 Std_ReturnType

The specification in [29] specifies a standard API return type Std_ReturnType. The
Std_ReturnType defines the "‘status"’ and "‘error values"’ returned by API functions.
It is defined as a uint8 type. The value “0” is reserved for “No error occurred”.

0 1 2 3 4 5 6 7

Im
m

e
d

ia
te

 In
fra

s
tru

c
tu

re

E
rro

r F
la

g

O
v
e

rla
y
e

d
 E

rro
r F

la
g

6
 b

its

a
v
a

ila
b

le
 fo

r

e
rro

r c
o

d
e

s

LSB MSB

Figure 5.14: Bit-Layout of the Std_ReturnType

410 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Figure 5.14 shows the general layout of Std_ReturnType.

The two most significant bits of the Std_ReturnType are reserved flags:

• The most significant bit 7 of Std_ReturnType is the “Immediate Infrastructure
Error Flag” with the following values

– “1” the error code indicates an immediate infrastructure error.

– “0” the error code indicates no immediate infrastructure error.

• The second most significant bit 6 of Std_ReturnType is the Overlayed Error
Flag. The use of this flag depends on the context and will be explained in table
5.4.

In order to avoid explicit access to bit numbers in the code, the RTE provides the three
following macros that enables an application to check the return value of an API:

• [rte_sws_7404]d For infrastructure errors, this macro is a boolean expression
that is true if the corresponding bit is set:

1 #define Rte_IsInfrastructureError(status) ((status & 128U) != 0)

c()

• [rte_sws_7405]dFor overlayed errors, this macro is a boolean expression that is
true if the corresponding bit is set:

1 #define Rte_HasOverlayedError(status) ((status & 64U) != 0)

c()

• [rte_sws_7406]dFor reading only the application error code without the eventual
overlayed error, the following macro returns the lower 6 bits of the error code:

1 #define Rte_ApplicationError(status) (status & 63U)

c()

411 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

5.5.1.1 Infrastructure Errors

Infrastructure errors are split into two groups:

• “Immediate Infrastructure Errors” can be associated with the currently available
data set. These Immediate Infrastructure Errors are mutually exclu-
sive. Only one of these errors can be notified to a SW-C with one API call.

[rte_sws_2593]d Immediate Infrastructure Errors shall override any
application level error. c(RTE00084, RTE00123)

Immediate Infrastructure Error codes are used on the receiver side for
errors that result in no reception of application data and application errors.

An Immediate Infrastructure Error is indicated in the
Std_ReturnType by the Immediate Infrastructure Error Flag
being set.

• “Overlayed Errors” are associated with communication events that happened af-
ter the reception of the currently available data set, e.g., data element out-
dated notification, or loss of data elements due to queue overflow.

[rte_sws_1318]d Overlayed Error Flags shall be reported using the
unique bit of the Overlayed Error Flag within the Std_ReturnType type.
c(RTE00084, RTE00094)

An Overlayed Error can be combined with any other application or infrastruc-
ture error code.

5.5.1.2 Application Errors

[rte_sws_2573]d RTE shall support application errors with the following format defini-
tion: Application errors are coded in the least significant 6 bits of Std_ReturnType
with the Immediate Infrastructure Error Flag set to “0”. The application er-
ror code does not use the Overlayed Error Flag. c(RTE00124)

This results in the following value range for application errors:

range minimum value maximum value
application errors 1 63

Table 5.3: application error value range

In client server communication, the server may return any value within the application
error range. The client will then receive one of the following:

• An Immediate Infrastructure Error to indicate that the communication
was not successful, or

412 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

• The server return code, or

• The server return code might be overlayed by the Overlayed Error Flag in
a future release of RTE. In this release, there is no overlayed error defined for
client server communication.

The client can filter the return value, e.g., by using the following code:

Std_ReturnType status;
status = Rte_Call_<p>_<o>(<instance>, <parameters>);
if (Rte_HasOverlayedError(status)) {

/* handle overlayed error flag *
* in this release of the RTE, the flag is reserved *
* but not used for client server communication */

}

if(Rte_IsInfrastructureError(status)) {
/* handle infrastructure error */

}
else {

/* handle application error with error code status */
status = Rte_ApplicationError(status);

}

5.5.1.3 Predefined Error Codes

For client server communication, application error values are defined per client server
interface and shall be passed to the RTE with the interface configuration.

The following standard error and status identifiers are defined:

Symbolic name Value Comments
[rte_sws_1058] RTE_E_OK 0 No error occurred.

Standard Application Error Values:
[rte_sws_2594]
RTE_E_INVALID

1 Generic application error indicated by
signal invalidation in sender receiver
communication with data semantics on
the receiver side.

To be defined by the corre-
sponding AUTOSAR Service

1 Returned by AUTOSAR Services to indi-
cate a generic application error.

Immediate Infrastructure Error codes

413 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Symbolic name Value Comments
[rte_sws_1060]
RTE_E_COM_STOPPED

128 An IPDU group was disabled while the
application was waiting for the transmis-
sion acknowledgment. No value is avail-
able. This is not considered a fault, since
the IPDU group is switched off on pur-
pose.
This semantics are as follows:
• The OUT buffers of a client or of

explicit read APIs are not modified
• no runnable with startOnEvent on

a DataReceivedEvent for this Vari-
ableDataPrototype is triggered.
• the buffers for implicit read access

will keep the previous value.

[rte_sws_1064]
RTE_E_TIMEOUT

129 A blocking API call returned due to ex-
piry of a local timeout rather than the in-
tended result. OUT buffers are not mod-
ified. The interpretation of this being an
error depends on the application.

[rte_sws_1317] RTE_E_LIMIT 130 A internal RTE limit has been exceeded.
Request could not be handled. OUT
buffers are not modified.

[rte_sws_1061]
RTE_E_NO_DATA

131 An explicit read API call returned no
data. (This is no error.)

[rte_sws_1065]
RTE_E_TRANSMIT_ACK

132 Transmission acknowledgement re-
ceived.

[rte_sws_7384]
RTE_E_NEVER_RECEIVED

133 No data received for the corresponding
unqueued data element since system
start or partition restart.

[rte_sws_7655]
RTE_E_UNCONNECTED

134 The port used for communication is not
connected.

414 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Symbolic name Value Comments
[rte_sws_2739]
RTE_E_IN_EXCLUSIVE_AREA

135 The error is returned by a blocking API
and indicates that the runnable could not
enter a wait state, because one Exe-
cutableEntity of the current task’s
call stack has entered or is running in an
ExclusiveArea.

[rte_sws_2757]
RTE_E_SEG_FAULT

136 The error can be returned by an RTE
API, if the parameters contain a direct or
indirect reference to memory that is not
accessible from the callers partition.

Overlayed Errors
These errors do not refer to the data returned with the API. They can be overlayed
with other Application- or Immediate Infrastructure Errors.
[rte_sws_2571]
RTE_E_LOST_DATA

64 An API call for reading received data with
event semantics indicates that some in-
coming data has been lost due to an
overflow of the receive queue or due to
an error of the underlying communica-
tion stack.

[rte_sws_2702]
RTE_E_MAX_AGE_EXCEEDED

64 An API call for reading received data with
data semantics indicates that the avail-
able data has exceeded the aliveTime-
out limit. A COM signal outdated call-
back will result in this error.

Table 5.4: RTE Error and Status values

The underlying type for Std_ReturnType is defined as a uint8 for reasons of com-
patibility – it avoids RTEs from different vendors assuming a different size if an enum
was the underlying type. Consequently, #define is used to declare the error values:

1 typedef uint8 Std_ReturnType;
2

3 #define RTE_E_OK 0U

415 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

[rte_sws_1269]d The standard errors as defined in table 5.4 including RTE_E_OK shall
be defined in the RTE Header File. c(RTE00051)

[rte_sws_2575]d Application Error Identifiers with exception of RTE_E_INVALID shall
be defined in the Application Header File. c(RTE00124, RTE00167)

[rte_sws_2576]d The application errors shall have a symbolic name defined as follows:

1 #define RTE_E_<interface>_<error> <error value>U

where <interface> PortInterface and <error> ApplicationError are the
interface and error names from the configuration.5 c(RTE00123)

An Std_ReturnType value can be directly compared (for equality) with the above
pre-defined error identifiers.

[rte_sws_7143]d The RTE generator shall generate symbolic name for application er-
rors with equal <interface> name, <error> name and <error value> only once.
c(RTE00165)

5.5.2 Rte_Instance

The Rte_Instance data type defines the handle used to access instance specific in-
formation from the component data structure.

[rte_sws_1148]d The underlying data type for an instance handle shall be a pointer to
a Component Data Structure. c(RTE00011, RTE00051)

The component data structure (see Section 5.4.2) is uniquely defined for a component
type and therefore the data type for the instance handle is automatically unique for
each component type.

The instance handle type is defined in the application header file rte_sws_1007.

To avoid long and complex type names within SW-C code the following requirement
imposes a fixed name on the instance handle data type.

[rte_sws_1150]d The name of the instance handle type shall be defined, using
typedef as Rte_Instance. c(BSW00305)

5.5.3 RTE Modes

An Rte_ModeType is used to hold the identifiers for the ModeDeclarations of a Mode-
DeclarationGroup.

[rte_sws_2627]d For each ModeDeclarationGroupPrototype, used in the SW-
C’s ports, the Application Types Header File shall contain a type definition

5No additional capitalization is applied to the names.

416 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

1 #ifndef RTE_MODETYPE_<prefix><ModeDeclarationGroup>
2 #define RTE_MODETYPE_<prefix><ModeDeclarationGroup>
3 typedef <type> Rte_ModeType_<prefix><ModeDeclarationGroup>;
4 #endif

where <ModeDeclarationGroup> is the shortName of the ModeDeclaration-
Group,

<prefix> is the optional prefix attribute defined by the IncludedModeDeclara-
tionGroupSet referring the ModeDeclarationGroup and

<type> is the shortName of the ImplementationDataType which is mapped to
the ModeDeclarationGroup by a ModeRequestTypeMap. c(RTE00144)

Note: ImplementationDataTypes are generated in the RTE Types Header file.

Note: The type definition specified in rte_sws_2627 is deprecated to avoid incompat-
ible or duplicate type definitions. It is recommended to not use this type in software
components anymore (see rte_sws_2628).

rte_sws_2738 guarantees that for each ModeDeclarationGroup, used in the SW-
C’s ports, there is a unique mapping to an ImplementationDataType.

For a ModeDecarationGroup of category "ALPHABETIC_ORDER", the value <n>U
within the Rte_ModeType_<ModeDeclarationGroup> is reserved to express a transi-
tion between modes, where <n> is the number of modes declared within the group. For
ModeDecarationGroups of category "EXPLICIT_ORDER", a transition between modes
is represented by the explicitly specified onTransitionValue.

[rte_sws_2659]d For each ModeDeclarationGroup of category
"ALPHABETIC_ORDER", the Application Types Header File shall contain a defini-
tion

1 #ifndef RTE_TRANSITION_<prefix><ModeDeclarationGroup>
2 #define RTE_TRANSITION_<prefix><ModeDeclarationGroup> <n>U
3 #endif

where <ModeDeclarationGroup> is the shortName of the ModeDeclarationGroup,

<prefix> is the optional prefix attribute defined by the IncludedModeDeclara-
tionGroupSet referring the ModeDeclarationGroup and

<n> is the number of modes declared within the group.6 c(RTE00144)

[rte_sws_3858]d For each ModeDeclarationGroup of category "EXPLICIT_ORDER",
the Application Types Header File shall contain a definition

1 #ifndef RTE_TRANSITION_<prefix><ModeDeclarationGroup>
2 #define RTE_TRANSITION_<prefix><ModeDeclarationGroup> \
3 <onTransitionValue>U
4 #endif

6No additional capitalization is applied to the names.

417 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

where <ModeDeclarationGroup> is the shortName of the ModeDeclarationGroup,

<prefix> is the optional prefix attribute defined by the IncludedModeDeclara-
tionGroupSet referring the ModeDeclarationGroup and

<onTransitionValue> is the onTransitionValue of the ModeDeclarationGroup.
c(RTE00144)

[rte_sws_7640]d The RTE Generator shall reject configurations where a SW-C uses
two ModeDeclarationGroups with the same name but different ModeDeclara-
tions. c(RTE00144, RTE00018)

The rational for rte_sws_7640 is to protect against conditions which would lead to
rte_sws_2659and rte_sws_2627 to generate conflicting types or macro definitions.

[rte_sws_2568]d For each mode of a ModeDeclarationGroup of category
"ALPHABETIC_ORDER", the Application Types Header File shall contain a definition

1 #ifndef RTE_MODE_<prefix><ModeDeclarationGroup>_<ModeDeclaration>
2 #define RTE_MODE_<prefix><ModeDeclarationGroup>_<ModeDeclaration> \
3 <index>U
4 #endif

where <ModeDeclarationGroup> is the short name of the ModeDeclarationGroup,

<prefix> is the optional prefix attribute defined by the IncludedModeDeclara-
tionGroupSet referring the ModeDeclarationGroup

<ModeDeclaration> is the shortName of a ModeDeclaration, and <index> is the
index of the ModeDeclarations in alphabetic ordering (ASCII / ISO 8859-1 code in
ascending order) of the shortNames within the ModeDeclarationGroup7.
The lowest index shall be ‘0’ and therefore the range of assigned values is 0..<n-1>
where <n> is the number of modes declared within the group. c(RTE00144)

[rte_sws_3859]d For each mode of a ModeDeclarationGroup of category
"EXPLICIT_ORDER", the Application Types Header File shall contain a definition

1 #ifndef RTE_MODE_<prefix><ModeDeclarationGroup>_<ModeDeclaration>
2 #define RTE_MODE_<prefix><ModeDeclarationGroup>_<ModeDeclaration> \
3 <value>U
4 #endif

where <ModeDeclarationGroup> is the short name of the ModeDeclarationGroup,

<prefix> is the optional prefix attribute defined by the IncludedModeDeclara-
tionGroupSet referring the ModeDeclarationGroup

<ModeDeclaration> is the shortName of a ModeDeclaration, and <value> is the
value specified at the ModeDeclaration. c(RTE00144)

7No additional capitalization is applied to the names.

418 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

5.5.4 Enumeration Data Types

Enumeration is not a plain primitive ImplementationDataType. Rather a range of inte-
gers can be used as a structural description. The mapping of integers on "labels" in the
enumeration is actually modelled in the SwC-T with the semantics class CompuMethod
of a SwDataDefProps [2]. Enumeration data types are modeled as Implementation-
DataTypes having a SwDataDefProps referencing a CompuMethod that contains only
CompuScales with point ranges (i. e. lower and upper limit of a CompuScale are iden-
tical).

[rte_sws_3809]d The Application Types Header File shall include the definitions of
all enumeration constants of ImplementationDataTypes and ApplicationDataTypes for
each ImplementationDataType/ApplicationDataTypes used (referenced) by this soft-
ware component. c(RTE00167)

This requirement ensures the availability of ImplementationDataType enumeration con-
stants for the internal use in AUTOSAR software components.

[rte_sws_3810]d For each CompuScale which has a point range and is lo-
cated in the compuInternalToPhys container of a CompuMethod referenced
by an ImplementationDataType or ApplicationPrimitiveDataType according
rte_sws_3809 with category "TEXTTABLE", "SCALE_LINEAR_AND_TEXTTABLE",
or "SCALE_RATIONAL_AND_TEXTTABLE", the Application Types Header File file shall
contain a definition

1 #ifndef <prefix><EnumLiteral>
2 #define <prefix><EnumLiteral> <value><suffix>
3 #endif /* <prefix><EnumLiteral> */

where the name of the enumeration literal <EnumLiteral> is derived according to the
following rule:

if (attribute symbol of CompuScale is available and not empty) {
<EnumLiteral> := C identifier specified in symbol attribute of CompuScale

} else {
if (string specified in the VT element of the CompuConst of the CompuScale

is a valid C identifier) {
<EnumLiteral> :=

string specified in the VT element of the CompuConst of the CompuScale
} else {

if (attribute shortLabel of CompuScale is available and not empty) {
<EnumLiteral> :=

string specified in shortLabel attribute of CompuScale
}

}
}

<prefix> is the optional literalPrefix attribute defined by the IncludedDataTypeSet
referring the AutosarDataType using the CompuMethod. <value> is the value repre-

419 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

senting the CompuScale’s point range. <suffix> shall be "U" for unsigned data types
and empty for signed data types. c(RTE00167)

Please note that the prefix can either be defined that the IncludedDataTypeSet with
a literalPrefix attribute references the ApplicationDataType or it references the Imple-
mentationDataType.

rte_sws_3810 implies that the RTE does add prefix to the names of the enumeration
constants on explicit demand only. This is necessary in order to handle enumeration
constants supplied by Basic Software modules which all use their own prefix conven-
tion. Such Enumeration constant names have to be unique in the whole AUTOSAR
system.

[rte_sws_8401]d In the case that the same ImplementationDataType or Appli-
cationPrimitiveDataType is referenced via different IncludedDataTypeSets
with different literalPrefix attributes, the definition according to rte_sws_3810 has
to be provided once for each different literalPrefix. c(RTE00167)

[rte_sws_3851]d If the input of the RTE generator contains a Com-
puMethod with category "TEXTTABLE", "SCALE_LINEAR_AND_TEXTTABLE", or
"SCALE_RATIONAL_AND_TEXTTABLE" that contains a CompuScale with a point
range, and

• neither the attribute symbol of the CompuScale is available and not empty,

• nor the string specified in the VT element of the CompuConst of the CompuScale
is a valid C identifier,

• nor the attribute shortLabel of CompuScale is available and not empty,

the RTE generator shall reject this input as an invalid configuration. c(RTE00018)

[rte_sws_3813]d The RTE shall reject configurations where the same software com-
ponent type uses ImplementationDataTypes and ApplicationPrimitive-
DataTypes referencing two or more CompuMethods with category "TEXTTABLE",
"SCALE_LINEAR_AND_TEXTTABLE", or "SCALE_RATIONAL_AND_TEXTTABLE" that
both contain a CompuScale with a different point range and an identical enumeration
literal name as an invalid configuration. The only exception is that the usage of the
ImplementationDataTypes are defined with non identical <literalPrefix>es.
c(RTE00018)

[rte_sws_7175]d The RTE shall reject configurations where an Implemen-
tationDataType or an ApplicationPrimitiveDataTypereferences a Com-
puMethod which is of category "TEXTTABLE", "SCALE_LINEAR_AND_TEXTTABLE",
or "SCALE_RATIONAL_AND_TEXTTABLE" and has CompuScales with identical enu-
meration literal names. c(RTE00018)

Note that there might exist additional CompuScales with non-point ranges inside
a CompuMethod of category "TEXTTABLE", "SCALE_LINEAR_AND_TEXTTABLE", or
"SCALE_RATIONAL_AND_TEXTTABLE" , but for those no enumeration literals are gen-
erated by the RTE generator.

420 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

5.5.5 Range Data Types

For the ApplicationPrimitiveDataType a Range might be specified by referenc-
ing a data constraint (dataConstr) giving the lowerLimit and the upperLimit.
To allow a Software Component the access to these values two definitions for these
values shall be generated.

[rte_sws_5051]d The Application Types Header File shall include the definitions of
all lowerLimit and upperLimit constants of each ApplicationPrimitive-
DataType used by this software component once per ApplicationPrimitive-
DataType if the ApplicationPrimitiveDataType is not referenced via different
IncludedDataTypeSets. c(RTE00167)

[rte_sws_8402]d The Application Types Header File shall include the definitions of
all lowerLimit and upperLimit constants of each ApplicationPrimitive-
DataType used by this software component for each combination of different lit-
eralPrefix and ApplicationPrimitiveDataType when the same Implemen-
tationDataType or ApplicationPrimitiveDataType is referenced via different
IncludedDataTypeSets. c(RTE00167)

[rte_sws_5052]d The lowerLimit and upperLimit constants for ApplicationPrim-
itiveDataType referencing an dataConstr shall be generated by RTE generator in the
Application Type Header File as:

1 #define <prefix><DataType>_LowerLimit <lowerValue><suffix>
2 #define <prefix><DataType>_UpperLimit <upperValue><suffix>

where <DataType> is the name of the ApplicationPrimitiveDataType used by
the software component.

<ImplType> is the name of the ImplementationDataType on which the Appli-
cationPrimitiveDataType is mapped.

<prefix> is the optional literalPrefix attribute defined by the Included-
DataTypeSet referring the AutosarDataType to which the the dataConstr belongs.

<lowerValue> and <upperValue> are the values lowerLimit and upperLimit
of the dataConstr referenced by the ApplicationPrimitiveDataType. The values in the
macro definitions shall always reflect the closed interval, regardless of the interval type
specified by the dataConstr.

<suffix> shall be "U" for unsigned data types and empty for signed data types.
c(RTE00167)

Please note that rte_sws_7196 is not applicable for rte_sws_5052. Further on it’s
possible that a DataPrototype using an ApplicationPrimitiveDataType might refer-
ence additional dataConstr (see rte_sws_7196). In this case the upperLimit and low-
erLimit definitions according rte_sws_5052 do not reflect the real applicable range of
the DataPrototype. No macros are generated for DataPrototype specific data
constraints.

421 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Please note that the prefix can either be defined that the IncludedDataTypeSet
with a literalPrefix attribute references the ApplicationDataType or it refer-
ences the ImplementationDataType.

[rte_sws_8403]d For AUTOSAR data types which have an invalidValue specified,
the AUTOSAR Types header file shall contain a definition

1 #define InvalidValue_<DataType> <invalidValue><suffix>

where <DataType> is the short name of the data type.

<invalidValue> is the value defined as invalidValue for the data type.

<suffix> shall be "U" for unsigned data types and empty for signed data types. c()

5.6 API Reference

The functions described in this section are organized by the RTE API mapping name
used by C and C++ AUTOSAR software-components to access the API. The API map-
ping hides from the AUTOSAR software-component programmer any need to be aware
of the steps taken by the RTE generator to ensure that the generated API functions
have unique names.

The instance handle as the first parameter of the API calls is marked as an optional
parameter in this section. If an AUTOSAR software-component supports multiple in-
stantiation, the instance handle shall be passed rte_sws_1013.

Note that rte_sws_3806 requires that the instance handle parameter does not exist if
the AUTOSAR software-component does not support multiple instantiation.

5.6.1 Rte_Ports

Purpose: Provide an array of the ports of a given interface type and a given
provide / require usage that can be accessed by the indirect API.

Signature: [rte_sws_2619]d
Rte_PortHandle_<i>_<R/P>
Rte_Ports_<i>_<R/P>([IN Rte_Instance])

Where here <i> is the port interface name and ‘P’ or ‘R’ are literals
to indicate provide or require ports respectively. c(RTE00051)

Existence: [rte_sws_2613]d An Rte_Ports API shall be created for each inter-
face type and usage by a port when the indirectAPI attribute of
that port is set to true. c(RTE00051)

422 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Description: The Rte_Ports API provides access to an array of ports for the port
oriented API.

[rte_sws_3602]dOnly those ports for which the indirect API was gen-
erated shall be contained in the array of ports. c(RTE00051)

Return Value: Array of port data structures of the corresponding interface type and
usage.

Notes: None.

5.6.2 Rte_NPorts

Purpose: Provide the number of ports of a given interface type and provide /
require usage that can be accessed through the indirect API.

Signature: [rte_sws_2614]d
uint8
Rte_NPorts_<i>_<R/P>([IN Rte_Instance])

Where here <i> is the port interface name and ‘P’ or ‘R’ are literals
to indicate provide or require ports respectively. c(RTE00051)

Existence: [rte_sws_2615]d An Rte_NPorts API shall be created for each inter-
face type and usage by a port when the indirectAPI attribute of
the port is set to true. c(RTE00051)

Description: The Rte_NPorts API supports access to an array of ports for the port
oriented API.

[rte_sws_3603]d The Rte_NPorts shall return only the number of
ports of a given interface and provide / require usage for which the
indirect API was generated. c(RTE00051)

Return Value: Number of port data structures of the corresponding interface type
and usage.

Notes: None.

5.6.3 Rte_Port

Purpose: Provide access to the port data structure for a single port of a particu-
lar software component instance. This allows a software component
to extract a sub-group of ports characterized by the same interface in
order to iterate over this sub-group.

Signature: [rte_sws_1354]d
Rte_PortHandle_<i>_<R/P>
Rte_Port_<p>([IN Rte_Instance])

423 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

where <i> is the port interface name and <p> is the name of the
port. c(RTE00051)

Existence: [rte_sws_1355]d An Rte_Port API shall be created for each port of
an AUTOSAR SW-C, for which the indirectAPI attribute is set to
true. c(RTE00051)

Description: The Rte_Port API provides a pointer to a single port data structure,
in order to support the indirect API.

Return Value: Pointer to port data structure for the appropriate port.

Notes: None.

5.6.4 Rte_Write

Purpose: Initiate an “explicit” sender-receiver transmission of data elements
with “data” semantic (swImplPolicy different from ’queued’).

Signature: [rte_sws_1071]d
Std_ReturnType
Rte_Write_<p>_<o>([IN Rte_Instance <instance>],

IN <data>)

Where <p> is the port name and <o> the VariableDataPro-
totype within the sender-receiver interface categorizing the port.
c(BSW00310, RTE00098, RTE00028, RTE00131)

Existence: [rte_sws_1280]d The presence of a VariableAccess in the
dataSendPoint role for a provided VariableDataPrototype
with data semantics shall result in the generation of an Rte_Write

API for the provided VariableDataPrototype. c(RTE00051)

[rte_sws_ext_7818] The Rte_Write APIs may only be used by the
runnable that contains the corresponding VariableAccess in the
dataSendPoint role

Description: The Rte_Write API call initiates a sender-receiver communication
where the transmission occurs at the point the API call is made (cf.
explicit transmission).

The Rte_Write API call includes the IN parameter <data> to pass
the data element to write.

The IN parameter <data> is passed by value or reference accord-
ing to the ImplementationDataType as described in the section
5.2.6.5.

If the IN parameter <data> is passed by reference, the pointer must
remain valid until the API call returns.

424 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

The RTE generator shall take into account the kind of connected re-
quire port which might not be just a variable but also a NV data. The
table 4.6 gives an overview of compatibility rules.

Return Value: The return value is used to indicate errors detected by the RTE during
execution of the Rte_Write.

• [rte_sws_7820]d RTE_E_OK – data passed to communication
service successfully. c(RTE00094)

• [rte_sws_7822]d RTE_E_COM_STOPPED – the RTE could not
perform the operation because the COM service is currently
not available (inter ECU communication only). RTE shall return
RTE_E_COM_STOPPED when the corresponding COM service
returns COM_SERVICE_NOT_AVAILABLE. c(RTE00094)

• [rte_sws_2756]d RTE_E_SEG_FAULT – a segmentation viola-
tion is detected in the handed over parameters to the RTE API
as required in rte_sws_2752 and rte_sws_2753. No transmis-
sion is executed. c(RTE00210)

Notes: The Rte_Write call is used to transmit “data” (swImplPolicy not
queued).

[rte_sws_7824]d In case of inter ECU communication, the
Rte_Write shall cause an immediate transmission request.
c(RTE00028, RTE00131)

Note that depending on the configuration a transmission request may
not result in an actual transmission, for example transmission may be
rate limited (time-based filtering) and thus dependent on other factors
than API calls.

[rte_sws_7826]d In case of inter ECU communication, the
Rte_Write API shall return when the signal has been passed to the
communication service for transmission. c(RTE00028, RTE00131)

Depending on the communication server the transmission may or
may not have been acknowledged by the receiver at the point the
API call returns.

[rte_sws_2635]d In case of intra ECU communication, the
Rte_Write API call shall return after copying the data to RTE local
memory or using IOC buffers. c(RTE00028, RTE00131)

[rte_sws_1080]d If the transmission acknowledgement is enabled,
the RTE shall notify component when the transmission is acknowl-
edged or a transmission error occurs. c(RTE00122)

[rte_sws_1082]d If a provide port typed by a sender-receiver in-
terface has multiple require ports connected (i.e. it has multiple re-

425 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

ceivers), then the RTE shall ensure that writes to all receivers are
independent. c(RTE00028)

Requirement rte_sws_1082 ensures that an error detected by the
RTE when writing to one receiver, e.g. communication is stopped,
does not prevent the transmission of this message to other compo-
nents.

5.6.5 Rte_Send

Purpose: Initiate an “explicit” sender-receiver transmission of data elements
with “event” semantic (swImplPolicy equal to ’queued’).

Signature: [rte_sws_1072]d
Std_ReturnType
Rte_Send_<p>_<o>([IN Rte_Instance <instance>],

IN <data>,
[IN uint16 <length>])

Where <p> is the port name and <o> the VariableDataPro-
totype within the sender-receiver interface categorizing the port.
c(BSW00310, RTE00141, RTE00028, RTE00131)

Existence: [rte_sws_1281]d The presence of a VariableAccess in the
dataSendPoint role for a provided VariableDataPrototype
with event semantics shall result in the generation of an Rte_Send

API for the provided VariableDataPrototype. c(RTE00051)

[rte_sws_7813]d The optional IN parameter <length> of the
Rte_Send API shall be generated if the VariableDataPrototype
is of type dynamic. c(RTE00190)

[rte_sws_ext_7819] The Rte_Send APIs may only be used by the
runnable that contains the corresponding VariableAccess in the
dataSendPoint role

Description: The Rte_Send API call initiates a sender-receiver communication
where the transmission occurs at the point the API call is made (cf.
explicit transmission).

The Rte_Send API call includes the IN parameter <data> to pass
the data element to send.

The IN parameter <data> is passed by value or reference accord-
ing to the ImplementationDataType as described in the section
5.2.6.5.

If the IN parameter <data> is passed by reference, the pointer must
remain valid until the API call returns.

426 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

If the VariableDataPrototype is of type dynamic, the Rte_Send

API call includes the IN parameter <length> to pass the number of
elements in the data element to send.

The RTE generator shall take into account the kind of connected re-
quire port which might not be just a variable but also a NV data. The
table 4.6 gives an overview of compatibility rules.

Return Value: The return value is used to indicate errors detected by the RTE during
execution of the Rte_Send.

• [rte_sws_7821]d RTE_E_OK – data passed to communication
service successfully. c(RTE00094)

• [rte_sws_7823]d RTE_E_COM_STOPPED – the RTE could not
perform the operation because the COM service is currently
not available (inter ECU communication only). RTE shall return
RTE_E_COM_STOPPED when the corresponding COM service
returns COM_SERVICE_NOT_AVAILABLE. c(RTE00094)

• [rte_sws_2634]d RTE_E_LIMIT – an ‘event’ has been dis-
carded due to a full queue by one of the ECU local receivers
(intra ECU communication only). c(RTE00143)

• [rte_sws_2754]d RTE_E_SEG_FAULT – a segmentation viola-
tion is detected in the handed over parameters to the RTE API
as required in rte_sws_2752 and rte_sws_2753. No transmis-
sion is executed. c(RTE00210)

Notes: The Rte_Send call is used to transmit “events” (swImplPolicy =
queued).

[rte_sws_7825]d In case of inter ECU communication, the Rte_Send

shall cause an immediate transmission request. c(RTE00028,
RTE00131)

Note that depending on the configuration a transmission request may
not result in an actual transmission, for example transmission may be
rate limited (time-based filtering) and thus dependent on other factors
than API calls.

[rte_sws_7827]d In case of inter ECU communication, the Rte_Send

API shall return when the signal has been passed to the communica-
tion service for transmission. c(RTE00028, RTE00131)

Depending on the communication server the transmission may or
may not have been acknowledged by the receiver at the point the
API call returns.

[rte_sws_2633]d In case of intra ECU communication, the Rte_Send

API call shall return after attempting to enqueue the data in the IOC
or RTE internal queues. c(RTE00028, RTE00131)

427 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

If the transmission acknowledgement is enabled, the RTE shall notify
component when the transmission is acknowledged or a transmission
error occurs. rte_sws_1080

If a provide port typed by a sender-receiver interface has multi-
ple require ports connected (i.e. it has multiple receivers), then
the RTE shall ensure that writes to all receivers are independent.
rte_sws_1082

Requirement rte_sws_1082 ensures that an error detected by the
RTE when writing to one receiver, e.g. an overflow in one compo-
nent’s queue, does not prevent the transmission of this message to
other components.

5.6.6 Rte_Switch

Purpose: Initiate a mode switch. The Rte_Switch API call is used for ‘explicit’
sending of a mode switch notification.

Signature: [rte_sws_2631]d
Std_ReturnType
Rte_Switch_<p>_<o>([IN Rte_Instance <instance>],

IN <mode>)

Where <p> is the port name and <o> the ModeDeclarationGroup-
Prototype within the ModeSwitchInterface categorizing the port.
c(BSW00310, RTE00143, RTE00028, RTE00131)

Existence: [rte_sws_2632]d The existence of a ModeSwitchPoint shall result in
the generation of a Rte_Switch API. c(RTE00051)

[rte_sws_ext_2681] The Rte_Switch API may only be used by the
runnable that contains the corresponding ModeSwitchPoint

Description: The Rte_Switch triggers a mode switch for all connected require
ModeDeclarationGroupPrototypes.

The Rte_Switch API call includes exactly one IN parameter for the
next mode <mode>. The IN parameter <mode> is passed by value
according to the ImplementationDataType on which the Mode-
DeclarationGroup is mapped. The type name shall be equal to the
shortName of the ImplementationDataType.

Return Value: The return value is used to indicate errors detected by the RTE during
execution of the Rte_Switch call.

• [rte_sws_2674]d RTE_E_OK – data passed to service success-
fully. c(RTE00094)

428 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

• [rte_sws_2675]d RTE_E_LIMIT – a mode switch has been
discarded by the receiving partition due to a full queue.
c(RTE00143)

Notes: Rte_Switch is restricted to ECU local communication.

If a mode instance is currently involved in a transition then the
Rte_Switch API will attempt to queue the request and return
rte_sws_2667. However if no transition is in progress for the mode
instance, the mode disablings and the activations of OnEntry, On-
Transition, and OnExit ExecutableEntities for this mode instance are
executed before the Rte_Switch API returns rte_sws_2665.

Note that the mode switch might be discarded when the queue is full
and a mode transition is in progress, see rte_sws_2675.

[rte_sws_2673]d If the mode switched acknowledgment is enabled,
the RTE shall notify the mode manager when the latest mode switch
is completed in all receiving partitions. c(RTE00122)

5.6.7 Rte_Invalidate

Purpose: Invalidate a data element for an “explicit” sender-receiver transmis-
sion.

Signature: [rte_sws_1206]d
Std_ReturnType
Rte_Invalidate_<p>_<o>([IN Rte_Instance <instance>])

Where <p> is the port name and <o> the VariableDataPro-
totype within the sender-receiver interface categorizing the port.
c(BSW00310, RTE00078)

Existence: [rte_sws_1282]d An Rte_Invalidate API shall be created for any
VariableAccess in the dataSendPoint role that references a
provided VariableDataPrototype which associated Invalida-
tionPolicy is set to keep or replace. c(RTE00051, RTE00078)

[rte_sws_ext_2682] The Rte_Invalidate API may only be used by
the runnable that contains the corresponding VariableAccess in
the dataSendPoint role

Description: The Rte_Invalidate API takes no parameters other than the in-
stance handle – the return value is used to indicate the success, or
otherwise, of the API call to the caller.

[rte_sws_1231]d When COM is used for communication and the
VariableDataPrototype is primitive the COM API function Com_-

429 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

InvalidateSignal shall be called for invalidation. c(RTE00019,
RTE00078)

[rte_sws_5063]d When COM is used for communication and the
VariableDataPrototype is composite the COM API function
Com_InvalidateSignalGroup shall be called for invalidation.
c(RTE00019, RTE00078)

The behavior required when COM is not used for communication is
described in Section 4.3.1.8.

Return Value: The return value is used to indicate the “OK” status or errors detected
by the RTE during execution of the Rte_Invalidate call.

• [rte_sws_1207]d RTE_E_OK – No error occurred. c(RTE00094)

• [rte_sws_1339]d RTE_E_COM_STOPPED – the RTE could not
perform the operation because the COM service is currently
not available (inter ECU communication only). RTE shall return
RTE_E_COM_STOPPED when the corresponding COM service
returns COM_SERVICE_NOT_AVAILABLE. c(RTE00094)

Notes: The API name includes an identifier <p>_<o> that is formed from the
port and operation item names. See Section 5.2.6.4 for details on the
naming convention.

The communication service configuration determines whether the
signal receiver(s) receive an “invalid signal” notification or whether
the invalidated signal is silently replaced by the signal’s initial value.

5.6.8 Rte_Feedback

Purpose: Provide access to acknowledgement notifications for explicit sender-
receiver communication and to pass error notification to senders.

Signature: [rte_sws_1083]d
Std_ReturnType
Rte_Feedback_<p>_<o>([IN Rte_Instance <instance>])

Where <p> is the port name and <o> the VariableDataPro-
totype within the sender-receiver interface categorizing the port.
c(BSW00310, RTE00122)

Existence: [rte_sws_1283]d Acknowledgement is enabled for a provided Vari-
ableDataPrototype by the existence of a TransmissionAc-
knowledgementRequest in the SenderComSpec. c(RTE00051,
RTE00122)

[rte_sws_1284]d A blocking Rte_Feedback API shall be gener-
ated for a provided VariableDataPrototype if acknowledgement

430 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

is enabled and a WaitPoint references a DataSendComplet-
edEvent that in turn references the VariableDataPrototype.
c(RTE00051, RTE00122)

[rte_sws_1285]d A non-blocking Rte_Feedback API shall be gener-
ated for a provided VariableDataPrototype if acknowledgement
is enabled and a VariableAccess in the dataSendPoint role ref-
erences the VariableDataPrototype but no WaitPoint refer-
ences the DataSendCompletedEvent that references the Vari-
ableDataPrototype. c(RTE00051, RTE00122)

[rte_sws_1286]d If acknowledgement is enabled for a provided
VariableDataPrototype and a DataSendCompletedEvent refer-
ences a runnable entity as well as the VariableDataPrototype,
the runnable entity shall be activated when the transmission ack-
nowledgement occurs or when a timeout was detected by the RTE.
rte_sws_1137. c(RTE00051, RTE00122)

Requirement rte_sws_1286 merely affects when the runnable is acti-
vated – an API call should still be created, according to requirement
rte_sws_1285 to actually read the data.

[rte_sws_1287]d A DataSendCompletedEvent that references a
RunnableEntity and is referenced by a WaitPoint shall be
an invalid configuration which is rejected by the RTE generator.
c(RTE00051, RTE00122, RTE00018)

[rte_sws_ext_2687] A blocking Rte_Feedback API may only be
used by the runnable that contains the corresponding WaitPoint

[rte_sws_7634]d A call to Rte_Feedback shall not change the status
returned by Rte_Feedback. c(RTE00122)

The Rte_Feedback API return value is only changed when a new
transmission is requested (Rte_Send or Rte_Write) or when the no-
tification from COM is received.

[rte_sws_7635]d After a Rte_Send or Rte_Write transmission re-
quest, only the first notification from COM shall be taken into account
for a given Signal or SignalGroup. c(RTE00122)

rte_sws_7635 is needed in case of cyclic transmission which could
result in multiple transmissions with different status.

Description: The Rte_Feedback API takes no parameters other than the instance
handle – the return value is used to indicate the acknowledgement
status to the caller.

The Rte_Feedback API applies only to explicit sender-receiver com-
munication.

431 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Return Value: The return value is used to indicate the status of the transmission and
errors detected by the RTE.

• [rte_sws_1084]d RTE_E_NO_DATA – No acknowledgments
or error notifications were received from COM when the
Rte_Feedback API was called (non-blocking call) or when
the WaitPoint timeout expired (blocking call). c(RTE00094,
RTE00122)

• RTE_E_COM_STOPPED – returned in one of these cases:

– [rte_sws_7636]d (Inter-ECU communication only) The
last transmission was rejected (when the Rte_Send or
Rte_Write API was called), with an RTE_E_COM_STOPPED
return code. c(RTE00094, RTE00122)

– [rte_sws_3774]d (Inter-ECU communication only) An error
notification from COM was received before any timeout no-
tification. c(RTE00094, RTE00122)

• [rte_sws_7637]d RTE_E_TIMEOUT – (Inter-ECU and Inter-
Partition only) A timeout notification was received from COM or
IOC before any error notification. c(RTE00094, RTE00122)

• [rte_sws_1086]d RTE_E_TRANSMIT_ACK – In case of inter-
ECU communication, a transmission acknowledgment was re-
ceived from COM; or in case of intra-ECU communication, even
if a queue overflow occurred. c(RTE00094, RTE00122)

• [rte_sws_7658]d RTE_E_UNCONNECTED – Indicates that the
sender port is not connected. c(RTE00094, RTE00122,
RTE00139)

• [rte_sws_2740]d RTE_E_IN_EXCLUSIVE_AREA – Used only
for the blocking API. RTE_E_IN_EXCLUSIVE_AREA indicates
that the runnable can not enter wait, as one of the Exe-
cutableEntitys in the call stack of this task is currently in
an exclusive area, see rte_sws_2739. - In a properly configured
system, this error should not occur. c(RTE00092, RTE00046,
RTE00032)

The RTE_E_TRANSMIT_ACK and RTE_E_UNCONNECTED return val-
ues are not considered to be an error but rather indicates correct
operation of the API call.

[rte_sws_7652]d The initial return value of the Rte_Feedback API,
before any attempt to write some data shall be
RTE_E_TRANSMIT_ACK. c(RTE00094, RTE00122, RTE00128,
RTE00185)

432 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Notes: If multiple transmissions on the same port/element are outstanding
it is not possible to determine which is acknowledged first. If this is
important, transmissions should be serialized with the next occurring
only when the previous transmission has been acknowledged or has
timed out.

A transmission acknowledgment (or error and timeout) notification is
not always provided by COM (the bus or PDU Router may not sup-
port transmission acknowledgment for this PDU, or COM may not be
configured to perform transmission deadline monitoring).

In case of a blocking Rte_Feedback, the WaitPoint timeout should
be compatible with the timeout defined at the COM level.

Note that transmission acknowledgement is not supported in case of
1:n communication (see rte_sws_5506).

5.6.9 Rte_SwitchAck

Purpose: Provide access to mode switch completed acknowledgements and
error notifications to mode managers.

Signature: [rte_sws_2725]d
Std_ReturnType
Rte_SwitchAck_<p>_<o>([IN Rte_Instance <instance>])

Where <p> is the port name and <o> the ModeDeclara-
tionGroupPrototype within the ModeSwitchInterface cate-
gorizing the port. c(BSW00310, RTE00122)

Existence: [rte_sws_2676]d Acknowledgement is enabled for a provided Mod-
eDeclarationGroupPrototype by the existence of a Mod-
eSwitchedAckRequest in the ModeSwitchSenderComSpec.
c(RTE00051, RTE00122)

[rte_sws_2677]d A blocking Rte_SwitchAck API shall be gener-
ated for a provided ModeDeclarationGroupPrototype if ack-
nowledgement is enabled and a WaitPoint references a Mod-
eSwitchedAckEvent that in turn references the ModeDeclara-
tionGroupPrototype. c(RTE00051, RTE00122)

[rte_sws_2678]d A non-blocking Rte_SwitchAck API shall be
generated for a provided ModeDeclarationGroupPrototype
if acknowledgement is enabled and a ModeSwitchPoint ref-
erences the ModeDeclarationGroupPrototype but no Mod-

433 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

eSwitchedAckEvent references the ModeDeclarationGroup-
Prototype. c(RTE00051, RTE00122)

[rte_sws_ext_2726] A blocking Rte_SwitchAck API may only be
used by the runnable that contains the corresponding WaitPoint

Description: The Rte_SwitchAck API takes no parameters other than the instance
handle – the return value is used to indicate the acknowledgement
status to the caller.

Return Value: The return value is used to indicate the status of a mode switch and
errors detected by the RTE.

• [rte_sws_2727]d RTE_E_NO_DATA – (non-blocking read) The
mode switch is still in progress. c(RTE00094, RTE00122)

• [rte_sws_2728]d RTE_E_TIMEOUT – The configured time-
out exceeds before the mode transition was completed.
c(RTE00094, RTE00210)

• [rte_sws_3853]d RTE_E_TIMEOUT – The partition of the mode
users is stopped or restarting or has been restarted while the
mode switch was requested. c(RTE00094, RTE00210)

• [rte_sws_2729]d RTE_E_TRANSMIT_ACK – The mode switch
has been completed (see rte_sws_2587). c(RTE00094,
RTE00122)

• [rte_sws_7659]d RTE_E_UNCONNECTED – Indicates that the
mode provider port is not connected. c(RTE00094, RTE00122,
RTE00139)

• [rte_sws_2741]d RTE_E_IN_EXCLUSIVE_AREA – Used only
for the blocking API. RTE_E_IN_EXCLUSIVE_AREA indicates
that the runnable can not enter wait, as one of the Exe-
cutableEntitys in the call stack of this task is currently in
an exclusive area, see rte_sws_2739. - In a properly configured
system, this error should not occur. c(RTE00092, RTE00046,
RTE00032)

The RTE_E_TRANSMIT_ACK return value is not considered to be
an error but rather indicates correct operation of the API call.

When RTE_E_NO_DATA occurs, a component is free to reinvoke
Rte_SwitchAck and thus repeat the attempt to read the feedback
status.

Notes: If multiple mode switches of the same mode machine instance
are outstanding, it is not possible to determine which is acknowl-
edged first. If this is important, switches should be serialized with
the next switch occurring only when the previous switch has been
acknowledged. The queue length should be 1.

434 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

5.6.10 Rte_Read

Purpose: Performs an “explicit” read on a sender-receiver communication data
element with “data” semantics (swImplPolicy != queued). By com-
patibility, the port may also have a ParameterInterface or a Nv-
DataInterface. The Rte_Read API is used for explicit read by
argument.

Signature: [rte_sws_1091]d
Std_ReturnType
Rte_Read_<p>_<o>([IN Rte_Instance <instance>],

OUT <data>))

Where <p> is the port name and <o> the VariableDataPro-
totype within the sender-receiver interface categorizing the port.
c(BSW00310, RTE00141, RTE00028, RTE00131)

Existence: [rte_sws_1289]d A non-blocking Rte_Read API shall be generated if
a VariableAccess in the dataReceivePointByArgument role
references a required VariableDataPrototype with ‘data’ se-
mantics. c(RTE00051)

[rte_sws_7396]d The RTE shall ensure that direct explicit read ac-
cesses will not deliver undefined data item values. In case there may
be an explicit read access before the first data reception an initial
value has to be provided as the result of this explicit read access.
c(RTE00051, RTE00183)

A WaitPoint cannot reference a DataReceivedEvent that
in turn references a required VariableDataPrototype with
‘data’ semantics shall be considered an invalid configuration (see
rte_sws_3018). Hence there are no blocking Rte_Read API.

[rte_sws_ext_2683] The Rte_Read API may only be used by the
runnable that contains the corresponding VariableAccess in the
dataReceivePointByArgument role

[rte_sws_1313]d A DataReceivedEvent that references a runn-
able entity and is referenced by a WaitPoint shall be an invalid
configuration. c(RTE00051, RTE00018)

The RTE generator shall take into account the kind of provide port
which might not be just a variable but also a Parameter (fixed, const
or standard), a standard sender (i.e. a variable) or a NV data. The
table 4.6 gives an overview of compatibility rules.

Description: The Rte_Read API call includes the OUT parameter <data> to pass
back the received data.

The pointer to the OUT parameter <data> must remain valid until
the API call returns.

435 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Return Value: The return value is used to indicate errors detected by the RTE during
execution of the Rte_Read API call or errors detected by the commu-
nication system.

• [rte_sws_1093]d RTE_E_OK – data read successfully.
c(RTE00094)

• [rte_sws_2626]d RTE_E_INVALID – data element in-
valid. c(RTE00078)

• [rte_sws_2703]d RTE_E_MAX_AGE_EXCEEDED – data ele-
ment outdated. This Overlayed Error can be combined
with any of the above error codes. c(RTE00147)

• [rte_sws_7643]d RTE_E_NEVER_RECEIVED – No data re-
ceived since system start or partition restart. c(RTE00184,
RTE00224)

[rte_sws_7690]d RTE_E_UNCONNECTED – Indicates that the
receiver port is not connected. c(RTE00094, RTE00139,
RTE00200)

Notes: The API name includes an identifier <p>_<o> that indicates the read
access point name and is formed from the port and operation item
names. See section 5.2.6.4 for details on the naming convention.

5.6.11 Rte_DRead

Purpose: Performs an “explicit” read on a sender-receiver communication data
element with “data” semantics (swImplPolicy != queued). By com-
patibility, the port may also have a ParameterInterface or a Nv-
DataInterface. The Rte_DRead API is used for explicit read by
value.

Signature: [rte_sws_7394]d
<return>
Rte_DRead_<p>_<o>([IN Rte_Instance <instance>])

Where <p> is the port name and <o> the VariableDataPro-
totype within the sender-receiver interface categorizing the port.
c(BSW00310, RTE00141, RTE00028, RTE00131, RTE00183)

Existence: [rte_sws_7395]d A non-blocking Rte_DRead API shall be generated
if a VariableAccess in the dataReceivePointByValue role ref-
erences a required VariableDataPrototype with ‘data’ seman-
tics. This requirement is applicable only for primitive data types.
c(RTE00051, RTE00183)

The RTE shall ensure that direct explicit read accesses will not de-
liver undefined data item values. In case there may be an explicit

436 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

read access before the first data reception an initial value has to be
provided as the result of this explicit read access. rte_sws_7396

A WaitPoint cannot reference a DataReceivedEvent that
in turn references a required VariableDataPrototype with
‘data’ semantics shall be considered an invalid configuration (see
rte_sws_3018). Hence there are no blocking Rte_DRead API.

[rte_sws_ext_7397] The Rte_DRead API may only be used by the
runnable that contains the corresponding VariableAccess in the
dataReceivePointByValue role

A DataReceivedEvent that references a runnable entity and
is referenced by a WaitPoint shall be an invalid configuration.
rte_sws_1313

The RTE generator shall take into account the kind of provide port
which might not be just a variable but also a Parameter (fixed, const
or standard), a standard sender (i.e. a variable) or a NV data. The
table 4.6 gives an overview of compatibility rules.

Description: The Rte_DRead API returns the received data as a return value.

Return Value: The Rte_DRead return value provide access to the data value of the
VariableDataPrototype.

The return type of Rte_DRead is dependent on the Implementa-
tionDataType of the VariableDataPrototype. Thus the com-
ponent does not need to use type casting to convert access to the
VariableDataPrototype data.

For details of the <return> value definition see section 5.2.6.6.

Please note that the Rte_DRead API only supports VariableDat-
aPrototypes typed by a Primitive Implementation Data
Type or Redefinition Implementation Data Type redefin-
ing a Primitive Implementation Data Type.

Notes: The API name includes an identifier <p>_<o> that indicates the read
access point name and is formed from the port and operation item
names. See section 5.2.6.4 for details on the naming convention.

5.6.12 Rte_Receive

Purpose: Performs an “explicit” read on a sender-receiver communication data
element with “event” semantics (swImplPolicy=queued).

[rte_sws_1092]d
Std_ReturnType
Rte_Receive_<p>_<o>([IN Rte_Instance <instance>],

437 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

OUT <data>,
[OUT uint16 <length>])

Where <p> is the port name and <o> the data element within
the sender-receiver interface categorizing the port. c(BSW00310,
RTE00141, RTE00028, RTE00131)

Existence: [rte_sws_1288]d A non-blocking Rte_Receive API shall be gener-
ated if a VariableAccess in the dataReceivePointByArgu-
ment role references a required VariableDataPrototype with
‘event’ semantics. c(RTE00051)

[rte_sws_7638]d The RTE Generator shall reject configurations were
a VariableDataPrototype with ‘event’ semantics is referenced
by a VariableAccess in the dataReceivePointByValue role.
c(RTE00018)

[rte_sws_7814]d The optional OUT parameter <length> of the
Rte_Receive API shall be generated if the VariableDataProto-
type is of type dynamic. c(RTE00190)

[rte_sws_1290]d A blocking Rte_Receive API shall be generated if
a VariableAccess in the dataReceivePointByArgument role
references a required VariableDataPrototype with ‘event’ se-
mantics that is, in turn, referenced by a DataReceivedEvent
and the DataReceivedEvent is referenced by a WaitPoint.
c(RTE00051)

[rte_sws_ext_2684] The Rte_Receive API may only be used by the
runnable that contains the corresponding VariableAccess in the
dataReceivePointByArgument role

A DataReceivedEvent that references a runnable entity and is
referenced by a WaitPoint shall be an invalid configuration.
rte_sws_1313

Description: The Rte_Receive API call includes the OUT parameter <data> to
pass back the received data element.

If the VariableDataPrototype is of type dynamic, the
Rte_Receive API call include the OUT parameter <length> to pass
back the number of elements in the received data element.

The pointers to the OUT parameters must remain valid until the API
call returns.

[rte_sws_7673]d In case return value is RTE_E_NO_DATA,
RTE_E_TIMEOUT, RTE_E_UNCONNECTED or
RTE_E_IN_EXCLUSIVE_AREA, the OUT parameters shall remain
unchanged. c(RTE00094, RTE00141)

438 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Return Value: The return value is used to indicate errors detected by the RTE dur-
ing execution of the Rte_Receive API call or errors detected by the
communication system.

• [rte_sws_2598]d RTE_E_OK – data read successfully.
c(RTE00094)

• [rte_sws_1094]d RTE_E_NO_DATA – (explicit non-blocking
read) no events were received and no other error occurred when
the read was attempted. c(RTE00094)

• [rte_sws_1095]d RTE_E_TIMEOUT – (explicit blocking read) no
events were received and no other error occurred when the read
was attempted. c(RTE00094, RTE00069)

• [rte_sws_2572]d RTE_E_LOST_DATA – Indicates that some in-
coming data has been lost due to an overflow of the receive
queue or due to an error of the underlying communication lay-
ers. This is not an error of the data returned in the parame-
ters. This Overlayed Error can be combined with any of the
above. c(RTE00107, RTE00110, RTE00094)

• [rte_sws_7665]d RTE_E_UNCONNECTED – Indicates that the
receiver port is not connected. c(RTE00107, RTE00110,
RTE00094, RTE00139, RTE00200)

Unlike RTE_E_NO_DATA, there is no need to retry receiving an
event in this case.

• [rte_sws_2743]d RTE_E_IN_EXCLUSIVE_AREA – Used only
for the blocking API. RTE_E_IN_EXCLUSIVE_AREA indicates
that the runnable can not enter wait, as one of the Exe-
cutableEntitys in the call stack of this task is currently in
an exclusive area, see rte_sws_2739. - In a properly configured
system, this error should not occur. c(RTE00092, RTE00046,
RTE00032)

The RTE_E_NO_DATA, RTE_E_TIMEOUT and
RTE_E_UNCONNECTED return values are not considered to be
errors but rather indicate correct operation of the API call.

Notes: The API name includes an identifier <p>_<o> that indicates the read
access point name and is formed from the port and operation item
names. See Section 5.2.6.4 for details on the naming convention.

5.6.13 Rte_Call

Purpose: Initiate a client-server communication.

439 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Signature: [rte_sws_1102]d
Std_ReturnType
Rte_Call_<p>_<o>([IN Rte_Instance <instance>],

[IN|IN/OUT|OUT] <data_1>...
[IN|IN/OUT|OUT] <data_n>)

Where <p> is the port name and <o> the operation within the client-
server interface categorizing the port. c(BSW00310, RTE00029)

Existence: [rte_sws_1293]d A synchronous Rte_Call API shall be gener-
ated if a SynchronousServerCallPoint references a required
ClientServerOperation. c(RTE00051, RTE00111)

[rte_sws_1294]d An asynchronous Rte_Call API shall be gener-
ated if an AsynchronousServerCallPoint references a required
ClientServerOperation. c(RTE00051, RTE00111)

A configuration that includes both synchronous and asynchronous
ServerCallPoints for a given ClientServerOperation is invalid
(rte_sws_3014).

[rte_sws_ext_2685] The Rte_Call API may only be used by the
runnable that contains the corresponding ServerCallPoint

Description: Client function to initiate client-server communication. The Rte_Call

API is used for both synchronous and asynchronous calls.

The Rte_Call API includes zero or more IN, IN/OUT and OUT pa-
rameters.

[rte_sws_6639]d IN/OUT parameters are passed by value when
they are "Primitive Implementation Data Type"s and the call is asyn-
chronous. c(RTE00051, RTE00111)

Rational: In case of an asynchronous call, the IN/OUT parameters
are only IN parameters.

The IN, IN/OUT and OUT parameters are passed by value or refer-
ence according to the ImplementationDataType as described in
the section 5.2.6.5.

The pointers to all parameters passed by reference must remain valid
until the API call returns.

Return Value: [rte_sws_1103]d The return value shall be used to indicate infras-
tructure errors detected by the RTE during execution of the Rte_Call

call and, for synchronous communication, infrastructure and applica-
tion errors during execution of the server. c(RTE00094, RTE00123,
RTE00124)

• [rte_sws_1104]d RTE_E_OK – The API call completed success-
fully. c(RTE00094)

440 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

• [rte_sws_1105]d RTE_E_LIMIT – The client has multiple out-
standing asynchronous client-server invocations of the same op-
eration in the same port. The server invocation shall be dis-
carded, the buffers of the return parameters shall not be modi-
fied (see also rte_sws_2658). c(RTE00094, RTE00079)

• [rte_sws_1106]d RTE_E_COM_STOPPED – the RTE could not
perform the operation because the COM service is currently
not available (inter ECU communication only). RTE shall re-
turn RTE_E_COM_STOPPED when the corresponding COM ser-
vice returns COM_SERVICE_NOT_AVAILABLE. The buffers of
the return parameters shall not be modified. c(RTE00094)

• [rte_sws_1107]d RTE_E_TIMEOUT – (synchronous inter-task
and inter-ECU only) No reply was received within the config-
ured timeout. The buffers of the return parameters shall not be
modified. c(RTE00094, RTE00069)

• [rte_sws_7656]d RTE_E_UNCONNECTED – Indicates that the
client port is not connected. c(RTE00094, RTE00139,
RTE00200)

• [rte_sws_2744]d RTE_E_IN_EXCLUSIVE_AREA – Used only
for the synchronous call to a remote server on a remote core or
remote ECU. RTE_E_IN_EXCLUSIVE_AREA indicates that the
runnable can not enter wait, as one of the ExecutableEn-
titys in the call stack of this task is currently in an exclusive
area, see rte_sws_2739. - In a properly configured system, this
error should not occur. c(RTE00092, RTE00046, RTE00032)

• [rte_sws_2755]d RTE_E_SEG_FAULT – a segmentation viola-
tion is detected in the handed over parameters to the RTE API
as required in rte_sws_2752 and rte_sws_2753. No transmis-
sion is executed. c(RTE00210)

• [rte_sws_2577]d The application error (synchronous client-
server) from a server shall only be returned if none of the
above infrastructure errors (other than RTE_E_OK) have oc-
curred. c(RTE00123)

Note that the RTE_E_OK return value indicates that the Rte_Call

API call completed successfully. In case of a synchronous client
server call it also indicates successful processing of the request by
the server.

An asynchronous server invocation is considered to be outstanding
until either the client retrieved the result successfully, a timeout was
detected by the RTE in inter-ECU and inter-partition com-
munication or the server runnable has terminated after a timeout was
detected in intra-ECU communication.

441 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

When the RTE_E_TIMEOUT error occurs, RTE shall discard any sub-
sequent responses to that request, (see rte_sws_2657).

Notes: [rte_sws_1109]d The interface operation’s OUT parameters shall be
omitted for an asynchronous call. c(RTE00029, RTE00079)

In case of asynchronous communication:

• the Rte_Call only includes IN and IN/OUT parameters.

• the Rte_Result only includes IN/OUT and OUT parameters to
collect the result of the server call.

• the IN/OUT parameters provided during the Rte_Call can be
a different addresse than the IN/OUT parameter passed during
the Rte_Result.

5.6.14 Rte_Result

Purpose: Get the result of an asynchronous client-server call.

Signature: [rte_sws_1111]d
Std_ReturnType
Rte_Result_<p>_<o>([IN Rte_Instance <instance>],

[IN/OUT|OUT <param 1>]...
[IN/OUT|OUT <param n>])

Where <p> is the port name and <o> the operation within the client-
server interface categorizing the port. c(BSW00310)

The signature can include zero or more IN/OUT and OUT parame-
ters depending on the signature of the operation in the client-server
interface.

Existence: [rte_sws_1296]d A non-blocking Rte_Result API shall be generated
if an AsynchronousServerCallReturnsEvent references a re-
quired ClientServerOperation and no WaitPoint references
the AsynchronousServerCallReturnsEvent. c(RTE00051)

[rte_sws_1297]d A blocking Rte_Result API shall be generated
if an AsynchronousServerCallReturnsEvent references a re-
quired ClientServerOperation and a WaitPoint references
the AsynchronousServerCallReturnsEvent. c(RTE00051)

[rte_sws_ext_2686] The blocking Rte_Result API may only be
used by the runnable that contains the corresponding WaitPoint

[rte_sws_1298]d If an AsynchronousServerCallReturn-
sEvent references a RunnableEntity and a required
ClientServerOperation, the RunnableEntity shall be

442 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

activated when the operation’s result is available or when a timeout
was detected by the RTE rte_sws_1133. c(RTE00051)

Requirement rte_sws_1298 merely affects when the runnable is ac-
tivated – an API call should still be created to actually read the reply
based on requirement rte_sws_1296.

[rte_sws_1312]d An AsynchronousServerCallReturnsEvent
that references a runnable entity and is referenced by a WaitPoint
is invalid. c(RTE00051)

Description: The Rte_Result API is used by a client to collect the result of an
asynchronous client-server communication.

The Rte_Result API includes zero or more IN/OUT and OUT param-
eters to pass back results.

The pointers to all parameters passed by reference must remain valid
until the API call returns.

Return Value: The return value is used to indicate errors from either the Rte_Result

call itself or communication errors detected before the API call was
made.

• [rte_sws_1112]d RTE_E_OK – The API call completed success-
fully. c(RTE00094)

• [rte_sws_1113]d RTE_E_NO_DATA – (non-blocking read) The
server’s result is not available but no other error occurred within
the API call or the server was not called since Rte_Start or
the restart of the Partition. The buffers for the IN/OUT and OUT
parameters shall not be modified. c(RTE00094)

• [rte_sws_8301]d RTE_E_NO_DATA – (non-blocking read)
The previous Rte_Call returned an RTE_E_SEG_FAULT.
c(RTE00094)

• [rte_sws_1114]d RTE_E_TIMEOUT – The server’s result is not
available within the specified timeout but no other error occurred
within the API call. The buffers for the IN/OUT and OUT param-
eters shall not be modified. c(RTE00094, RTE00069)

• [rte_sws_3606]d RTE_E_COM_STOPPED – the RTE could not
perform the operation because the COM service is currently
not available (inter ECU communication only). RTE shall return
RTE_E_COM_STOPPED when the corresponding COM service
returns COM_SERVICE_NOT_AVAILABLE. The server’s result
has not been successfully retrieved from the communication ser-
vice. The buffers of the return parameters shall not be modified.
c(RTE00094)

443 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

• [rte_sws_7657]d RTE_E_UNCONNECTED – Indicates that the
client port is not connected. c(RTE00094, RTE00139,
RTE00200)

• [rte_sws_2745]d RTE_E_IN_EXCLUSIVE_AREA – Used only
for the blocking API. RTE_E_IN_EXCLUSIVE_AREA indicates
that the runnable can not enter wait, as one of the Exe-
cutableEntitys in the call stack of this task is currently in
an exclusive area, see rte_sws_2739. - In a properly configured
system, this error should not occur. c(RTE00092, RTE00046,
RTE00032)

[rte_sws_2746]d Rte_Result shall not return
RTE_E_IN_EXCLUSIVE_AREA, if the wait is resolved by a
mapping of the server runnable to a task with higher priority on
the same core. c(RTE00092, RTE00046, RTE00032)

• [rte_sws_8302]d RTE_E_SEG_FAULT – a segmentation viola-
tion is detected in the handed over parameters to the RTE API
as required in rte_sws_2752 and rte_sws_2753. No transmis-
sion is executed. c(RTE00094)

• [rte_sws_2578]d Application Errors – The error code of the
server shall only be returned, if none of the above infrastructure
errors or indications have occurred. c(RTE00094, RTE00123)

The RTE_E_NO_DATA, RTE_E_TIMEOUT, and
RTE_E_UNCONNECTED return values are not considered to be
errors but rather indicate correct operation of the API call.

When the RTE_E_TIMEOUT error occurs, RTE shall discard any sub-
sequent responses to that request, (see rte_sws_2657).

When RTE_E_NO_DATA occurs, a component is free to invoke
Rte_Result again and thus repeat the attempt to read the server’s
result.

Notes: The API name includes an identifier <p>_<o> that indicates the read
access point name and is formed from the port and operation item
names. See Section 5.2.6.4 for details on the naming convention.

5.6.15 Rte_Pim

Purpose: Provide access to the defined per-instance memory (section) of a
software component.

Signature: [rte_sws_1118]d
<type>/<return reference>
Rte_Pim_<name>([IN Rte_Instance <instance>])

444 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Where <name> is the (short) name of the per-instance name.
c(BSW00310, RTE00075)

Existence: [rte_sws_1299]d An Rte_Pim API shall be created for each defined
PerInstanceMemory or arTypedPerInstanceMemory within
the AUTOSAR software-component (description). c(RTE00051)

Description: The Rte_Pim API provides access to the per-instance memory
(section) defined in the context of a SwcInternalBehavior of a
software-component description.

Return Value: [rte_sws_1119]d The API returns a typed reference (in C a typed
pointer) to the per-instance memory. c(RTE00051, RTE00075)

Notes: For a ’C’ typed PerInstanceMemory, the name of the return
type <type> shall be defined in the type attribute of the PerIn-
stanceMemory. The type itself is defined using the typeDefini-
tion attribute of the PerInstanceMemory. It is assumed that this
attribute contains a string that represents a C type definition (type-
def) in valid C syntax (see rte_sws_2304 and rte_sws_7133). For an
arTypedPerInstanceMemory the <return reference> is de-
fined by the associated AutosarDataType (see rte_sws_7161). For
details of the <return reference> definition see section 5.2.6.7.

5.6.16 Rte_CData

Purpose: Provide access to the calibration parameter an AUTOSAR software-
component defined internally. The ParameterDataPrototype in
the role perInstanceParameter or sharedParameter is used to
define software component internal calibration parameters. Internal
because the ParameterDataPrototype cannot be reused outside
the software-component. Access is read-only. It can be configured for
each calibration parameter individually if it is shared by all instances
of an AUTOSAR software-component or if each instance has an own
data value associated with it.

Signature: [rte_sws_1252]d
<return>
Rte_CData_<name>([IN Rte_Instance <instance>])

Where <name> is the calibration parameter name. c(BSW00310,
RTE00155)

Existence: [rte_sws_1300]d An Rte_CData API shall be generated if a Pa-
rameterAccess references a ParameterDataPrototype in the
role perInstanceParameter or sharedParameter within the
SwcInternalBehavior of an AUTOSAR software-component.
c(RTE00051, RTE00155)

445 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Description: The Rte_CData API provides access to the defined calibration pa-
rameter within a software-component. The actual data values for a
software-component instance may be set after component compila-
tion.

Return Value: The Rte_CData return value provide access to the data value of the
ParameterDataPrototype in the role perInstanceParameter
or sharedParameter.

The return type of Rte_CData is dependent on the Implementa-
tionDataType of the ParameterDataPrototype and can either
be a value or a pointer to the location where the value can be ac-
cessed. Thus the component does not need to use type casting to
convert access to the ParameterDataPrototype data.

For details of the <return> value definition see section 5.2.6.6.

[rte_sws_3927]d If a ParameterElementPrototype is aggre-
gated by an SwcInternalBehavior in the role of sharedPa-
rameter, the return value of the corresponding Rte_CData API
shall provide access to the calibration parameter value common
to all instances of the AtomicSwComponentType. c(RTE00051,
RTE00155)

[rte_sws_3952]d If a ParameterElementPrototype is aggre-
gated by an SwcInternalBehavior in the role of perInstan-
ceParameter, the return value of the corresponding Rte_CData

API shall provide access to the calibration parameter value specific
to the instance of the AtomicSwComponentType. c(RTE00051,
RTE00155)

Notes: None.

5.6.17 Rte_Prm

Purpose: Provide access to the parameters defined by an AUTOSAR Param-
eterSwComponentType. Access is read-only.

Signature: [rte_sws_3928]d
<return>
Rte_Prm_<p>_<o>([IN Rte_Instance <instance>])

Where <p> is the port name and <o> is the name of the Parame-
terDataPrototype within the ParameterInterface categoriz-
ing the port. c(BSW00310, RTE00155)

Existence: [rte_sws_3929]d A Rte_Prm API shall be generated if a Parame-
terAccess references a ParameterDataPrototype in a require
PortPrototype. c(BSW00310, RTE00155)

446 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Description: The Rte_Prm API provides access to the defined parameter within a
ParameterSwComponentType.

In the case of a standard parameter (swImplPolicy = stan-
dard), i.e. a calibration, the actual data values for a Parameter-
SwComponentType instance may be set after ParameterSwCom-
ponentType compilation.

In the case of fixed parameter or constant parameter, the value
is set during compilation time.

Return Value: [rte_sws_3930]d For primitive data types, the Rte_Prm API shall re-
turn the parameter value. For composite data types, the Rte_Prm API
shall return a reference (in C, a pointer) to the parameter, which shall
be const. With fixed parameters, only primitive data is possible.

The return type of Rte_Prm is specified by the Implementation-
DataType associated to the ParameterDataPrototype. Thus
the component does not need to use type casting to access the
calibration parameter. c(RTE00051, RTE00155, RTE00171) The
Rte_Prm return value provide access to the data value of the Pa-
rameterDataPrototype.

The return type of Rte_Prm is dependent on the Implementation-
DataType of the ParameterDataPrototype and can either be a
value or a pointer to the location where the value can be accessed.
Thus the component does not need to use type casting to convert
access to the ParameterDataPrototype data.

For details of the <return> value definition see section 5.2.6.6.

Notes: The Rte_Prm API shall not be used within a pre-compilation direc-
tive, e.g. #if. For such case, the coder shall use the Rte_SysCon

definitions which are dedicated to variant handling.

5.6.18 Rte_IRead

Purpose: Provide read access to the VariableDataPrototype referenced
by VariableAccess in the dataReadAccess role.

Signature: [rte_sws_3741]d
<return>
Rte_IRead_<re>_<p>_<o>([IN Rte_Instance])

Where <re> is the runnable entity name, <p> the port name and <o>
the VariableDataPrototype name. c(BSW00310, RTE00128)

Existence: [rte_sws_1301]d An Rte_IRead API shall be created for a required
VariableDataPrototype if the RunnableEntity has a Vari-

447 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

ableAccess in the dataReadAccess role referring to this Vari-
ableDataPrototype. c(RTE00051)

Description: The Rte_IRead API provides access to the VariableDataPro-
totypes declared as accessed by a runnable using VariableAc-
cesses in the dataReadAccess role. The API function is guaran-
teed to be have constant execution time and therefore can also be
used within category 1A runnable entities.

No error information is provided by this API. If required, the error
status can be picked up with a separate API, see 5.6.22

The data value can always be read. To provide the required consis-
tency the API provides access to a copy of the data data element for
which it’s guaranteed that it never changes during the actual execu-
tion of the runnable entity.

Implicit data read access by a SW-C should always return defined
data.

[rte_sws_1268]d The RTE shall ensure that implicit read accesses
will not deliver undefined data item values. c(RTE00108, RTE00051,
RTE00128)

In case where there may be an implicit read access before the first
data reception an initial value has to be provided as the result of this
implicit read access.

Return Value: The Rte_IRead return value provide access to the data value of the
VariableDataPrototype.

The return type of Rte_IRead is dependent on the Implementa-
tionDataType of the VariableDataPrototype and can either
be a value or a pointer to the location where the value can be ac-
cessed. Thus the component does not need to use type casting to
convert access to the VariableDataPrototype data.

For details of the <return> value definition see section 5.2.6.6.

Notes: None.

5.6.19 Rte_IWrite

Purpose: Provide write access to the VariableDataPrototypes referenced
by VariableAccesses in the dataWriteAccess role.

Signature: [rte_sws_3744]d
void
Rte_IWrite_<re>_<p>_<o>([IN RTE_Instance],

IN <data>)

448 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Where <re> is the runnable entity name, <p> the port name and <o>
the VariableDataPrototype name. c(BSW00310, RTE00129)

Existence: [rte_sws_1302]d An Rte_IWrite API shall be created for a provided
VariableDataPrototype if the RunnableEntity has a Vari-
ableAccess in the dataWriteAccess role referring to this Vari-
ableDataPrototype. c(RTE00051)

Description: The Rte_IWrite API provides write access to the VariableDat-
aPrototypes declared as accessed by a runnable using Vari-
ableAccesses in the dataWriteAccess role. The API function
is guaranteed to be have constant execution time and therefore can
also be used within category 1A runnable entities.

No access error information is required for the user – the value can
always be written. To provide the required write-back semantics the
RTE only makes written values available to other entities after the
writing runnable entity has terminated.

[rte_sws_3746]d The Rte_IWrite API call includes the IN parameter
<data> to pass the data element to write. c(RTE00051, RTE00129)

The IN parameter <data> is passed by value or reference accord-
ing to the ImplementationDataType as described in the section
5.2.6.5.

If the IN parameter <data> is passed by reference, the pointer must
remain valid until the API call returns.

Return Value: [rte_sws_3747]d Rte_IWrite has no return value. c(RTE00051)

For C/C++ rte_sws_3747 means using a return type of void.

Notes: None.

5.6.20 Rte_IWriteRef

Purpose: Provide a reference to the VariableDataPrototype referenced
by a VariableAccess in the dataWriteAccess role.

Signature: [rte_sws_5509]d
<return reference>
Rte_IWriteRef_<re>_<p>_<o>([IN RTE_Instance])

Where <re> is the runnable entity name, <p> the port name and <o>
the VariableDataPrototype name. c(BSW00310, RTE00129)

Existence: [rte_sws_5510]d An Rte_IWriteRef API shall be created for a
provided VariableDataPrototype if the RunnableEntity has a

449 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

VariableAccess in the dataWriteAccess role referring to this
VariableDataPrototype. c(RTE00051)

Description: The Rte_IWriteRef API returns a reference to the VariableDat-
aPrototypes declared as accessed by a runnable using Vari-
ableAccesses in the dataWriteAccess role. The reference
can be used by the runnable to directly update the correspond-
ing data elements. This is especially useful for data elements
of Structure Implementation Data Type or Array Imple-
mentation Data Type. The API function is guaranteed to be have
constant execution time and therefore can also be used within cate-
gory 1A runnable entities.

No error information is required for the user. To provide the required
write-back semantics the RTE only makes written values available to
other entities after the writing runnable entity has terminated.

[rte_sws_ext_7679] The reference returned by Rte_IWriteRef

shall not be used by the runnables for reading the value previously
written.

The rationale for rte_sws_ext_7679 is that Rte_IWriteRef has a
write semantic. Also, in case of an unconnected port, the written data
shall be discarded (similarly to rte_sws_1347), and implementations
may return a reference to the same buffer for all Rte_IWriteRef of
unconnected provide ports.

Return Value: The Rte_IWriteRef return value provide access to the data write
buffer of the VariableDataPrototype.

[rte_sws_5511]d Rte_IWriteRef returns a reference to the corre-
sponding VariableDataPrototype. c(RTE00051)

The return reference type of Rte_IWriteRef is dependent on
the ImplementationDataType of the VariableDataProto-
type and is a pointer to the location where the value can be ac-
cessed. Thus the component does not need to use type casting to
convert access to the VariableDataPrototype data.

For details of the <return reference> definition see section
5.2.6.7.

Notes: None.

5.6.21 Rte_IInvalidate

Purpose: Invalidate a VariableDataPrototype referenced by a Vari-
ableAccess in the dataWriteAccess role.

450 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Signature: [rte_sws_3800]d
void
Rte_IInvalidate_<re>_<p>_<o>([IN Rte_Instance <instance>])

Where <re> is the runnable entity name, <p> the port name and <o>
the VariableDataPrototype name. c(BSW00310, RTE00078)

Existence: [rte_sws_3801]d An Rte_IInvalidate API shall be created for a
provided VariableDataPrototype if the RunnableEntity has
VariableAccesses in the dataWriteAccess role referring to this
VariableDataPrototype and the associated Invalidation-
Policy of the VariableDataPrototype is set to keep or re-
place. c(RTE00051, RTE00078)

Description: The Rte_IInvalidate API takes no parameters other than the in-
stance handle – the return value is used to indicate the success, or
otherwise, of the API call to the caller.

[rte_sws_3802]d In case of a primitive VariableDataPrototype
the Rte_IInvalidate shall be implemented as a macro that writes
the invalidValue to the buffer. c(RTE00078)

[rte_sws_5064]d In case of a composite VariableDataProto-
type the Rte_IInvalidate shall be implemented as a macro that
writes the invalidValue of every primitive part of the composition
to the buffer. c(RTE00078)

[rte_sws_3778]d If Rte_IInvalidate is followed by an Rte_IWrite

call for the same VariableDataPrototype or vice versa, the RTE
shall use the last value written before the runnable entity terminates
(last-is-best semantics). c(RTE00078)

rte_sws_3778 states that an Rte_IWrite overrules an Rte_-

IInvalidate call if it occurs after the Rte_IInvalidate, since
Rte_IWrite overwrites the contents of the internal buffer for the data
element prototype before it is made known to other runnable entities.

Return Value: [rte_sws_3803]d Rte_IInvalidate has no return value.
c(RTE00094)

For C/C++ rte_sws_3803 means using a return type of void.

Notes: The communication service configuration determines whether the
signal receiver(s) receive an “invalid signal” notification or whether
the invalidated signal is silently replaced by the signal’s initial value.

5.6.22 Rte_IStatus

Purpose: Provide the error status of a VariableDataPrototype referenced
by a VariableAccess in the dataReadAccess role.

451 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Signature: [rte_sws_2599]d
Std_ReturnType
Rte_IStatus_<re>_<p>_<o>([IN Rte_Instance])

Where <re> is the runnable entity name, <p> the port name and <o>
the VariableDataPrototype name. c(RTE00147, RTE00078)

Existence: [rte_sws_2600]d An Rte_IStatus API shall be created for a re-
quired VariableDataPrototype if a RunnableEntity has a Vari-
ableAccess in the dataReadAccess role referring to this Vari-
ableDataPrototype, and

• if at the RPortPrototype an NonqueuedReceiverComSpec
with either

– the attribute AliveTimeout set to a value greater than zero
and/or

– the attribute handleNeverReceived set to TRUE

and/or

• if at the SenderReceiverInterface classifying the RPort-
Prototype an InvalidationPolicy set to keep

is specified for this VariableDataPrototype. c(RTE00147,
RTE00078)

[rte_sws_ext_2601] The Rte_IStatus API shall only be used
by a RunnableEntity that either has a VariableAccess in the
dataReadAccess role referring to the VariableDataPrototype
or is triggered by a DataReceiveErrorEvent referring to the Vari-
ableDataPrototype.

Description: The Rte_IStatus API provides access to the current status of the
data elements declared as accessed by a runnable using a Vari-
ableAccess in the dataReadAccess role. The API function is
guaranteed to be have constant execution time and therefore can
also be used within category 1A runnable entities.

To provide the required consistency access by a runnable is to a copy
of the status together with the data that is guaranteed never to be
modified by the RTE during the lifetime of the runnable entity.

Return Value: The return value is used to indicate errors detected by the communi-
cation system.

• [rte_sws_2602]d RTE_E_OK – no errors. c(RTE00094)

• [rte_sws_2603]d RTE_E_INVALID – data element in-
valid. c(RTE00078)

452 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

• [rte_sws_2604]d RTE_E_MAX_AGE_EXCEEDED – data ele-
ment outdated. This Overlayed Error can be combined
with any of the above error codes. c(RTE00147)

• [rte_sws_7644]d RTE_E_NEVER_RECEIVED – No data re-
ceived since system start or partition restart. c(RTE00184,
RTE00224)

[rte_sws_7691]d RTE_E_UNCONNECTED – Indicates that the
receiver port is not connected. c(RTE00094, RTE00139,
RTE00200)

Notes: None.

5.6.23 Rte_IrvIRead

Purpose: Provide read access to the InterRunnableVariables with implicit be-
havior of an AUTOSAR SW-C.

Signature: [rte_sws_3550]d
<return>
Rte_IrvIRead_<re>_<o>([IN RTE_Instance <instance>])

Where <re> is the name of the runnable entity the API might be
used in, <o> is the name of the VariableDataPrototype in role
implicitInterRunnableVariable. c(BSW00310, RTE00142)

Existence: [rte_sws_1303]d An Rte_IrvIRead API shall be created for each
VariableAccess in role readLocalVariable to an implicit-
InterRunnableVariable. c(RTE00051, RTE00142)

Description: The Rte_IrvIRead API provides read access to the defined Inter-
RunnableVariables with implicit behavior within a component descrip-
tion.

The return value is used to deliver the requested data value. The
return value is not required to pass error information to the user be-
cause no inter-ECU communication is involved and there will always
be a readable value present.

Requirement rte_sws_3581 is valid for InterRunnableVariables with
implicit and InterRunnableVariables with explicit behavior:

[rte_sws_3581]d The RTE has to ensure that read accesses to an
InterRunnableVariables won’t deliver undefined data item values. In
case write access before read access cannot be guaranteed by con-
figuration an initial values for the InterRunnableVariable has to be
written to it. c(RTE00142)

453 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

This initial value has to be an input for the RTE generator and might
be initially defined in the AUTOSAR SW-C description.

Return Value: The Rte_IrvIRead return value provide access to the data value of
the InterRunnableVariable.

The return type of Rte_IrvIRead is dependent on the Implemen-
tationDataType of the InterRunnableVariable and can either be a
value or a pointer to the location where the value can be accessed.
Thus the component does not need to use type casting to convert
access to the InterRunnableVariable data.

For details of the <return> value definition see section 5.2.6.6.

Notes: The runnable entity name in the signature allows runnable context
specific optimizations.

The concept of InterRunnableVariables is explained in section
4.2.5.6. More details about InterRunnableVariables with implicit be-
havior is explained in section 4.2.5.6.1.

5.6.24 Rte_IrvIWrite

Purpose: Provide write access to the InterRunnableVariables with implicit be-
havior of an AUTOSAR SW-C.

Signature: [rte_sws_3553]d
void
Rte_IrvIWrite_<re>_<o>([IN RTE_Instance <instance>],

IN <data>)

Where <re> is the name of the RunnableEntity the API might be
used in, <o> is the name of the VariableDataPrototype in the
role implicitInterRunnableVariable to access and <data>
is the placeholder for the data the InterRunnableVariable shall be set
to. c(BSW00310, RTE00142)

Existence: [rte_sws_1304]d An Rte_IrvIWrite API shall be created for each
VariableAccess in role writtenLocalVariable to an im-
plicitInterRunnableVariable. c(RTE00142, RTE00051)

Description: The Rte_IrvIWrite API provides write access to the InterRunnable-
Variables with implicit behavior within a component description. The
runnable entity name in the signature allows runnable context specific
optimizations.

The data given by Rte_IrvIWrite is dependent on the InterRunnabl-
eVariable data type. Thus the component does not need to use type
casting to write the InterRunnableVariable.

454 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

The return value is unused. The return value is not required to pass
error information to the user because no inter-ECU communication is
involved and the value can always be written.

The IN parameter <data> is passed by value or reference accord-
ing to the ImplementationDataType as described in the section
5.2.6.5.

Return Value: [rte_sws_3555]d Rte_IrvIWrite shall have no return value.
c(RTE00142, RTE00051)

For C/C++, requirement rte_sws_3555 means using a return type of
void.

Notes: The runnable entity name in the signature allows runnable context
specific optimizations.

The concept of InterRunnableVariables is explained in section
4.2.5.6. Further details about InterRunnableVariables with implicit
behavior are explained in Section 4.2.5.6.1.

5.6.25 Rte_IrvRead

Purpose: Provide read access to the InterRunnableVariables with explicit be-
havior of an AUTOSAR SW-C.

Signature: [rte_sws_3560]d
primitive type signature:

<return>
Rte_IrvRead_<re>_<o>([IN RTE_Instance <instance>])

complex type signature:

void
Rte_IrvRead_<re>_<o>([IN RTE_Instance <instance>], OUT <data>)

Where <re> is the name of the runnable entity the API might be used
in, <o> is the name of the InterRunnableVariables.

The complex type signature is used, if the Implementation-
DataType of the InterRunnableVariable resolves to Ar-
ray Implementation Data Type or Structure Implemen-
tation Data Type, otherwise the primitive type signature is used.
c(BSW00310, RTE00142)

Existence: [rte_sws_1305]d An Rte_IrvRead API shall be created for each read
InterRunnableVariable using explicit access.

c(RTE00142, RTE00051)

455 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Description: The Rte_IrvRead API provides read access to the defined Inter-
RunnableVariables with explicit behavior within a component descrip-
tion.

The return value is not required to pass error information to the user
because no inter-ECU communication is involved and there will al-
ways be a readable value present.

For the primitive type signature, the return value is used to deliver
the requested data value. For the complex type signature, the return
value is void.

For the complex type signature, the Rte_IrvRead API call includes
the OUT parameter <data> to pass back the received data. The
OUT parameter <data> is typed as reference (pointer) to the type
of the InterRunnableVariable. The pointer to the OUT parameter
<data> must remain valid until the API call returns.

Return Value: The Rte_IrvRead return value provide access to the data value of
the InterRunnableVariable.

The return type of Rte_IrvRead is dependent on the Implementa-
tionDataType of the InterRunnableVariable. Thus the component
does not need to use type casting to convert access to the Inter-
RunnableVariable data.

For details of the <return> value definition see section 5.2.6.6.

Please note that the Rte_IrvRead API Signature only has a re-
turn value if the InterRunnableVariable is typed by a Primi-
tive Implementation Data Type or Redefinition Imple-
mentation Data Type redefining a Primitive Implementa-
tion Data Type.

[rte_sws_3562]d For the primitive type signature, the Rte_IrvRead

call shall return the value of the accessed InterRunnableVariable.
c(RTE00142, RTE00051)

For complex type signature, the Rte_IrvRead call does not return
any value (void).

Notes: The runnable entity name in the signature allows runnable context
specific optimizations.

The concept of InterRunnableVariables is explained in section
4.2.5.6. Further details about InterRunnableVariables with explicit
behavior are explained in Section 4.2.5.6.2.

456 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

5.6.26 Rte_IrvWrite

Purpose: Provide write access to the InterRunnableVariables with explicit be-
havior of an AUTOSAR SW-C.

Signature: [rte_sws_3565]d
void
Rte_IrvWrite_<re>_<o>([IN RTE_Instance <instance>],

IN <data>)

Where <re> is the name of the runnable entity the API might be
used in, <o> is the name of the InterRunnableVariable to access
and <data> is the placeholder for the data the InterRunnableVari-
able shall be set to. c(BSW00310, RTE00142)

Existence: [rte_sws_1306]d An Rte_IrvWrite API shall be created for each
written InterRunnableVariable using explicit access. c(RTE00142,
RTE00051)

Description: The Rte_IrvWrite API provides write access to the InterRunnable-
Variables with explicit behavior within a component description.

The return value is unused. The return value is not required to pass
error information to the user because no inter-ECU communication is
involved and the value can always be written.

[rte_sws_3567]d The Rte_IrvWrite API call include the IN pa-
rameter <data> to pass the data element to write. c(RTE00142,
RTE00051)

The IN parameter <data> is passed by value or reference accord-
ing to the ImplementationDataType as described in the section
5.2.6.5.

If the IN parameter <data> is passed by reference, the pointer must
remain valid until the API call returns.

Return Value: [rte_sws_3569]d Rte_IrvWrite shall have no return value.
c(RTE00142)

For C/C++, requirement rte_sws_3569 means using a return type of
void.

Notes: The runnable entity name in the signature allows runnable context
specific optimizations.

The concept of InterRunnableVariables is explained in section
4.2.5.6. Further details about InterRunnableVariables with explicit
behavior are explained in Section 4.2.5.6.2.

457 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

5.6.27 Rte_Enter

Purpose: Enter an exclusive area.

Signature: [rte_sws_1120]d
void
Rte_Enter_<name>([IN Rte_Instance <instance>])

Where <name> is the exclusive area name. c(BSW00310,
RTE00046, RTE00115)

Existence: [rte_sws_1307]d An Rte_Enter API shall be created for each Exclu-
siveArea that is declared and which has an canEnterExclusiveArea
association. c(RTE00115, RTE00051)

Description: The Rte_Enter API call is invoked by an AUTOSAR software-
component to define the start of an exclusive area.

Return Value: None.

Notes: The RTE is not required to support nested invocations of Rte_Enter
for the same exclusive area.

[rte_sws_1122]d The RTE shall permit calls to Rte_Enter and
Rte_Exit to be nested as long as different exclusive areas are ex-
ited in the reverse order they were entered. c(RTE00046, RTE00032,
RTE00115)

[rte_sws_ext_7171] The Rte_Enter and Rte_Exit API may only be
used by Runnable Entities that contain a corresponding canEnterEx-
clusiveArea association

[rte_sws_ext_7172] The Rte_Enter and Rte_Exit API may only
be called nested if different exclusive areas are invoked; in this case
exclusive areas shall exited in the reverse order they were entered.

Within the AUTOSAR OS an attempt to lock a resource cannot fail
because the lock is already held. The lock attempt can only fail due
to configuration errors (e.g. caller not declared as accessing the re-
source) or invalid handle. Therefore the return type from this function
is void.

5.6.28 Rte_Exit

Purpose: Leave an exclusive area.

Signature: [rte_sws_1123]d
void
Rte_Exit_<name>([IN Rte_Instance <instance>])

458 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Where <name> is the exclusive area name. c(BSW00310,
RTE00046, RTE00051)

Existence: [rte_sws_1308]d An Rte_Exit API shall be created for each Exclu-
siveArea that is declared and which has an canEnterExclusiveArea
association. c(RTE00115, RTE00051)

Description: The Rte_Exit API call is invoked by an AUTOSAR software-
component to define the end of an exclusive area.

Return Value: None.

Notes: The RTE is not required to support nested invocations of Rte_Exit
for the same exclusive area.

Requirement rte_sws_1122 permits calls to Rte_Enter and
Rte_Exit to be nested as long as different exclusive areas are exited
in the reverse order they were entered.

5.6.29 Rte_Mode

There exist two versions of the Rte_Mode API. Depending on the attribute enhanced-
ModeApi in the software component description there shall be provided different ver-
sions of this API (see also 5.6.30).

Purpose: Provides the currently active mode of a mode switch port.

Signature: [rte_sws_2628]d
<return>
Rte_Mode_<p>_<o>([IN Rte_Instance <instance>])

Where <p> is the port name, and <o> the ModeDeclarationGroup-
Prototype name within the ModeSwitchInterface categorizing the
port. c(RTE00144)

Existence: [rte_sws_2629]d If a ModeAccessPoint exists and if the attribute en-
hancedModeApi of the ModeSwitchSenderComSpec resp. Mod-
eSwitchReceiverComSpec is set to false or does not exist
a Rte_Mode API according to rte_sws_2628 shall be generated.
c(RTE00147, RTE00078)

[rte_sws_ext_7568] The Rte_Mode API may only be used by the
runnable that contains the corresponding ModeAccessPoint

Description: The Rte_Mode API tells the AUTOSAR software-component which
mode of a ModeDeclarationGroup of a given port is currently ac-
tive. This is the information that the RTE uses for the ModeDis-
ablingDependency’s. A new mode will not be indicated immedi-
ately after the reception of a mode switch notification from
a mode manager, see section 4.4.4. During mode transitions, i.e.

459 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

during the execution of runnables that are triggered on exiting one
mode or on entering the next mode, overlapping mode disablings
of two modes are active. In this case, the Rte_Mode will return
RTE_TRANSITION_<ModeDeclarationGroup>.

The Rte_Mode will return the same mode for all mode switch
ports that are connected to the same mode switch port of the
mode manager (see rte_sws_2630).

It is supported to have ModeAccessPoint(s) referring the provide
mode switch ports of the mode manager to provide access for
the mode manager on the information that the RTE uses for the
ModeDisablingDependency’s.

Return Value: The return type of Rte_Mode is dependent on the Implementa-
tionDataType of the ModeDeclarationGroup. It shall return the
value of the ModeDeclarationGroupPrototype. The type name shall
be equal to the shortName of the ImplementationDataType.

The return value of the Rte_Mode is used to inform the caller about
the current mode of the mode machine instance. The Rte_Mode

API shall return the following values:

• [rte_sws_2731]dIf the mode users of a mode machine in-
stance are in a partition that is stopped or restarting, Rte_Mode
shall return RTE_TRANSITION_<ModeDeclarationGroup>,
where <ModeDeclarationGroup> is the short name of the
ModeDeclarationGroup. c(RTE00144, RTE00210)

Note, that this can only occur as the return value to the mode
manager and only, if the mode manager is in another, running
partition.

• [rte_sws_7666]dDuring a transition of the mode
machine instance, Rte_Mode shall return
RTE_TRANSITION_<ModeDeclarationGroup>, where
<ModeDeclarationGroup> is the short name of the Mode-
DeclarationGroup. c(RTE00144)

• [rte_sws_2660]dWhen the mode machine in-
stance is in a defined mode, Rte_Mode shall return
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>,
where <ModeDeclarationGroup> is the short name of the
ModeDeclarationGroup and <ModeDeclaration> is the short
name of the currently active ModeDeclaration. c(RTE00144)

460 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

In inter partition mode management, RTE on the mode manager
sided partition might not have direct access to the state variables of
the mode machine instance.

[rte_sws_2732]d In inter partition mode management, the return
value of the Rte_Mode API to the mode manager shall be consistent
with the start of a transition by the Rte_Switch API and the inter par-
tition communication of the ModeSwitchedAckEvent. c(RTE00144,
RTE00210)RTE00144

Notes: The Rte_Mode API may already indicate the next ModeDeclaration,
before the mode manager has picked up the ModeSwitchedAck-
Event with the Rte_SwitchAck. This is not in contradiction to
rte_sws_2732.

5.6.30 Enhanced Rte_Mode

Purpose: Provides the currently active mode of a mode switch port. If the mode
machine instance is in transition additionally the values of the
previous and the next mode are provided.

Signature: [rte_sws_8500]d
<return>
Rte_Mode_<p>_<o>([IN Rte_Instance <instance>,]

OUT <previousmode>,
OUT <nextmode>)

Where <p> is the port name, and <o> the ModeDeclarationGroup-
Prototype name within the ModeSwitchInterface categorizing the
port. c(RTE00144)

Existence: [rte_sws_8501]d The existence of a ModeAccessPoint given that
the attribute enhancedModeApi of the ModeSwitchReceiverCom-
Spec resp. ModeSwitchReceiverComSpec is set to true shall re-
sult in the generation of a Rte_Mode API according to rte_sws_8500.
c(RTE00147, RTE00078)

[rte_sws_ext_8502] The Rte_Mode API may only be used by the
runnable that contains the corresponding ModeAccessPoint

Description: The Rte_Mode API tells the AUTOSAR software-component which
mode of a ModeDeclarationGroup of a given port is currently ac-
tive. This is the information that the RTE uses for the ModeDis-
ablingDependency’s. A new mode will not be indicated immedi-
ately after the reception of a mode switch notification from
a mode manager, see section 4.4.4. During mode transitions, i.e.
during the execution of runnables that are triggered on exiting one
mode or on entering the next mode, overlapping mode disablings

461 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

of two modes are active. In this case, the Rte_Mode will return
RTE_TRANSITION_<ModeDeclarationGroup>. The parameter
<previousmode> than contains the mode currently being left,the
parameter <nextmode> the mode being entered.

The Rte_Mode will return the same mode for all mode switch
ports that are connected to the same mode switch port of the
mode manager (see rte_sws_2630).

It is supported to have ModeAccessPoint(s) referring the provided
mode switch ports of the mode manager to provide access for
the mode manager on the information that the RTE uses for the
ModeDisablingDependency’s.

Return Value: The return type of Rte_Mode is dependent on the Implementa-
tionDataType of the ModeDeclarationGroup. It shall return the
value of the ModeDeclarationGroupPrototype. The type name shall
be equal to the shortName of the ImplementationDataType. The
return value of the Rte_Mode and the parameters <previousmode>
and <nextmode> are used to inform the caller about the current
mode of the mode machine instance.

[rte_sws_8503]dIf the mode users of a mode machine in-
stance are in a partition that is stopped or restarting, Rte_Mode shall
return the following values

• the return value shall be
RTE_TRANSITION_<ModeDeclarationGroup>,

• <previousmode> shall contain the value of the
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>
of the initialMode of the ModeDeclarationGroup

• <nextmode> shall contain the value of the
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>
of the initialMode of the ModeDeclarationGroup

where <ModeDeclarationGroup> is the short name of the Mode-
DeclarationGroup. c(RTE00144, RTE00210)

[rte_sws_8504]d During a transition of a mode machine in-
stance Rte_Mode shall return the following values

• the return value shall be
RTE_TRANSITION_<ModeDeclarationGroup>,

• <previousmode> shall contain the value of the
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>
of the mode being left,

462 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

• <nextmode> shall contain the
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>
of the mode being entered,

where <ModeDeclarationGroup> is the short name of the Mode-
DeclarationGroup and <ModeDeclaration> is the short name of
the ModeDeclaration. c(RTE00144, RTE00210)

[rte_sws_8505]dWhen the mode machine instance is in a de-
fined mode, Rte_Mode shall return the follwoing values

• the return value shall contain the value of
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>,

• <previousmode> shall contain the value of the
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>

• <nextmode> shall contain the
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>

where <ModeDeclarationGroup> is the short name of the Mode-
DeclarationGroup and <ModeDeclaration> is the short name of
the currently active ModeDeclaration.c(RTE00144)

In inter partition mode management, RTE on the mode manager
sided partition might not have direct access to the state variables of
the mode machine instance.

[rte_sws_8506]d In inter partition mode management, the return
value and the contents of the parameters <previousmode> and
<nextmode> of the Rte_Mode API to the mode manager shall be
consistent with the start of a transition by the Rte_Switch API and
the inter partition communication of the ModeSwitchedAckEvent.
c(RTE00144, RTE00210)

Notes: The Rte_Mode API may already indicate the next ModeDeclaration,
before the mode manager has picked up the ModeSwitchedAck-
Event with the Rte_SwitchAck. This is not in contradiction to
rte_sws_2732.

5.6.31 Rte_Trigger

Purpose: Raise a external trigger of a trigger port.

Signature: [rte_sws_7200]d
signature without queuing support:

void
Rte_Trigger_<p>_<o>([IN Rte_Instance <instance>])

463 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

signature with queuing support:

Std_ReturnType
Rte_Trigger_<p>_<o>([IN Rte_Instance <instance>])

Where <p> is the port name and <o> the Trigger within the trigger
interface categorizing the port.

The signature for queuing support shall be generated by the RTE
generator if the swImplPolicy of the associated Trigger is set to
queued. c(RTE00162)

Existence: [rte_sws_7201]d The existence of a ExternalTriggeringPoint
shall result in the generation of a Rte_Trigger API. c(RTE00162)

[rte_sws_ext_7202] The Rte_Trigger API may only be used by the
runnable that contains the corresponding ExternalTriggering-
Point.

Description: The Rte_Trigger API triggers an execution for all runnables whose
ExternalTriggerOccurredEvent is associated to the Trigger.

Return Value: None in case of signature without queuing support.

[rte_sws_6720]d The Rte_Trigger API shall return the following val-
ues:

• RTE_E_OK if the trigger was successfully queued or if no queue
is configured

• RTE_E_LIMIT if the trigger was not queued because the maxi-
mum queue size is already reached.

in the case of signature with queuing support. c(RTE00235)

Notes: Rte_Trigger is restricted to ECU local communication.

5.6.32 Rte_IrTrigger

Purpose: Raise a internal trigger to activate Runnable entities of the same soft-
ware component instance.

Signature: [rte_sws_7203]d
signature without queuing support:

void
Rte_IrTrigger_<re>_<o>([IN Rte_Instance <instance>])

signature with queuing support:

Std_ReturnType
Rte_IrTrigger_<re>_<o>([IN Rte_Instance <instance>])

464 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Where <re> is the name of the runnable entity the API might be used
in and <o> is the name of the InternalTriggeringPoint.

The signature for queuing support shall be generated by the RTE
generator if the swImplPolicy of the associated InternalTrig-
geringPoint is set to queued. c(RTE00163)

Existence: [rte_sws_7204]d The existence of a InternalTriggeringPoint
shall result in the generation of a Rte_IrTrigger API. c(RTE00163)

[rte_sws_ext_7205] The Rte_IrTrigger API may only be used by
the runnable that contains the corresponding InternalTrigger-
ingPoint.

Description: The Rte_IrTrigger triggers an execution for all runnables
whose InternalTriggerOccurredEvent is associated to the
InternalTriggeringPoint.

Return Value: None in case of signature without queuing support.

[rte_sws_6721]d The Rte_Trigger API shall return the following val-
ues:

• RTE_E_OK if the trigger was successfully queued or if no queue
is configured

• RTE_E_LIMIT if the trigger was not queued because the maxi-
mum queue size is already reached.

in the case of signature with queuing support. c(RTE00235)

Notes: None.

5.6.33 Rte_IFeedback

Purpose: Provide access to acknowledgement notifications for implicit sender
receiver communication and to pass error notification to senders.

Signature: [rte_sws_7367]d
Std_ReturnType
Rte_IFeedback_<re>_<p>_<o> ([IN RTE_Instance <instance>])

Where <re> is the runnable entity name, <p> the port name and
<o> the VariableDataPrototype within the sender-receiver in-
terface categorizing the port. c(BSW00310, RTE00122, RTE00129,
RTE00185)

465 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Existence: Note: according to rte_sws_1283, acknowledgment is enabled for a
provided VariableDataPrototype by the existence of a Trans-
missionAcknowledgementRequest in the SenderComSpec.

[rte_sws_7646]d An Rte_IFeedback API shall be created for
a provided VariableDataPrototype if acknowledgment is en-
abled and the RunnableEntity has a VariableAccess in the
dataWriteAccess role referring to this VariableDataProto-
type. c(RTE00122, RTE00129, RTE00185)

[rte_sws_7647]d An Rte_IFeedback API shall be created for a
provided VariableDataPrototype if acknowledgment is enabled
and a DataWriteCompletedEvent references the RunnableEn-
tity as well as the VariableDataPrototype. c(RTE00122,
RTE00129, RTE00185)

[rte_sws_7648]d If acknowledgment is enabled for a provided Vari-
ableDataPrototype and a DataWriteCompletedEvent refer-
ences a runnable entity as well as the VariableDataPrototype,
the runnable entity shall be activated when the transmission acknowl-
edgment occurs or when a timeout was detected by the RTE. See
rte_sws_7379. c(RTE00122, RTE00129, RTE00185)

[rte_sws_7649]d The Rte_IFeedback API shall only be used by
by a RunnableEntity that either has a VariableAccess in
the dataWriteAccess role referring to the VariableDataPro-
totype or is triggered by a DataWriteCompletedEvent refer-
ring to the VariableDataPrototype. c(RTE00122, RTE00129,
RTE00185)

Description: The Rte_IFeedback API takes no parameters other than the instance
handle – the return value is used to indicate the acknowledgment
status to the caller.

The Rte_IFeedback API applies only to implicit sender-receiver com-
munication.

The Rte_IFeedback API provides access to the transmission feed-
back of the data elements, declared as sent by a runnable using a
VariableAccess in the dataWriteAccess role, and sent after the
previous invocation of the runnable. The API function is guaranteed
to be have constant execution time and therefore can also be used
within category 1A runnable entities.

The required consistency access by a runnable can be provided by
copying of the status before the execution of the runnable so that it
cannot be modified by the RTE during the lifetime of the runnable
entity.

466 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Return Value: The return value is used to indicate the “status” status and errors
detected by the RTE during execution of the Rte_IFeedback call.

• [rte_sws_7374]d RTE_E_NO_DATA – No acknowledgments or
error notifications were received from COM when the runn-
able entity was started. c(RTE00094, RTE00122, RTE00129,
RTE00185)

• [rte_sws_7375]d RTE_E_COM_STOPPED – (Inter-ECU commu-
nication only) The last transmission was rejected (when the local
buffer was sent), with an RTE_E_COM_STOPPED return code or
an error notification was received from COM before any timeout
notification. c(RTE00094, RTE00122, RTE00129, RTE00185)

• [rte_sws_7650]d RTE_E_TIMEOUT – (Inter-ECU only) A time-
out notification was received from COM before any error notifi-
cation. c(RTE00094, RTE00122, RTE00129, RTE00185)

• [rte_sws_7376]d RTE_E_TRANSMIT_ACK – A transmission ac-
knowledgment was received. This error code is valid for
both inter-ECU and intra-ECU communication. c(RTE00094,
RTE00122, RTE00129, RTE00185)

• [rte_sws_7660]d RTE_E_UNCONNECTED – Indicates that the
sender port is not connected. c(RTE00094, RTE00122,
RTE00129, RTE00185, RTE00139)

The RTE_E_TRANSMIT_ACK and RTE_E_UNCONNECTED return val-
ues are not considered to be an error but rather indicates correct
operation of the API call.

[rte_sws_7651]d The initial return value of the Rte_IFeedback API,
when the runnable entity is executed before any attempt to
write some data shall be RTE_E_TRANSMIT_ACK. c(RTE00094,
RTE00122, RTE00129, RTE00185)

Notes: See the notes in for the Rte_Feedback API in section 5.6.8.

5.6.34 Rte_IsUpdated

Purpose: Provide access to the update flag for an explicit receiver.

Signature: [rte_sws_7390]d
boolean
Rte_IsUpdated_<p>_<o> ([IN RTE_Instance <instance>])

Where <p> is the port name and <o> the VariableDataPro-
totype within the sender-receiver interface categorizing the port.
c(BSW00310, RTE00179)

467 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Existence: [rte_sws_7391]d An Rte_IsUpdated API shall be created for a
required VariableDataPrototype if a RunnableEntity has
a VariableAccess in the dataReceivePointByArgument or
dataReceivePointByValue role referring to the VariableDat-
aPrototype and the enableUpdate attribute is enabled in the
NonqueuedReceiverComSpec of the VariableDataPrototype.
c(RTE00179)

[rte_sws_ext_7603] The Rte_IsUpdated API may only be used by
the runnable that contains the corresponding VariableAccess in
the dataReceivePointByArgument or dataReceivePointBy-
Value role.

Description: The Rte_IsUpdated API takes no parameters other than the instance
handle – the return value is used to indicate if the VariableDat-
aPrototype has been updated or not.

The Rte_IsUpdated API applies only to sender-receiver communi-
cation.

Return Value: The return value is used to indicate if the VariableDataProto-
type has been updated or not.

• [rte_sws_7392]d TRUE – DataElement updated since last read.
c(RTE00094, RTE00179)

• [rte_sws_7393]d FALSE – DataElement not updated since last
read. c(RTE00094, RTE00179)

Notes: None.

5.7 Runnable Entity Reference

An AUTOSAR component defines one or more “runnable entities”. A runnable entity
is a piece of code with a single entry point and an associate set of data. A software-
component description provides definitions for each runnable entity within the software-
component.

For components implemented using C or C++ the entry point of a runnable entity is
implemented by a function with global scope defined within a software-component’s
source code. The following sections consider the function signature and prototype.

5.7.1 Signature

The definition of all runnable entities, whatever the RTEEvent that triggers their exe-
cution, follows the same basic form.

[rte_sws_1126]d

468 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

<void|Std_ReturnType> <name>([IN Rte_Instance <instance>],
[role parameters])

Where <name> 8 is the symbol describing the runnable’s entry point (symbol). The
definition of the role parameters is defined in Section 5.7.3. c(RTE00031)

Section 5.2.6.4 contains details on a recommended naming conventions for runnable
entities based on the RTEEvent that triggers the runnable entity. The recommended
naming convention makes explicit the functions that implement runnable entities as well
as clearly associating the runnable entity and the applicable data element or operation.

5.7.2 Entry Point Prototype

The RTE determines the required role parameters, and hence the prototype of the
entry point, for a runnable entity based on information in the input information. The
entry point defined in the component source must be compatible with the parameters
passed by the RTE when the runnable entity is triggered by the RTE and therefore the
RTE generator is required to emit a prototype for the function.

[rte_sws_1132]d The RTE generator shall emit a prototype for the runnable entity’s
entry point in the Application Header File. c(RTE00087, RTE00051, RTE00031)

The prototype for a function implementing the entry point of a runnable entity is emitted
for both “RTE Contract” and “RTE Generation” phases. The function name for the
prototype is the runnable entity’s entry point. The prototype of the entry point function
includes the runnable entity’s instance handle and its role parameters, see Figure 5.2.

[rte_sws_7194]d The RTE Generator shall wrap each RunnableEntity’s Entry Point
Prototype in the Application Header File with the Memory Mapping and Compiler Ab-
straction macros.

1 #define <c>_START_SEC_<sadm>
2 #include "<c>_MemMap.h"
3

4 FUNC(<void|Std_ReturnType>, <c>_<sadm>) <prefix><name> (
5 [IN Rte_Instance <instance>],
6 [role parameters]);
7

8 #define <c>_STOP_SEC_<sadm>
9 #include "<c>_MemMap.h"

where <c> is the shortName of the software component type,

<sadm> is the shortName of the referred swAddrMethod.
8Runnable entities have two “names” associated with them in the AUTOSAR Software Component

Template; the runnable’s identifier and the entry point’s symbol. The identifier is used to reference
the runnable entity within the input data and the symbol used within code to identify the runnable’s
implementation. In the context of a prototype for a runnable entity, “name” is the runnable entity’s entry
point symbol.

469 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

<prefix> is the optional SymbolProps.symbol attribute of the AtomicSoftware-
ComponentType owning the RunnableEntity.

<name> is the attribute symbol describing the RunnableEntity’s entry point.

The definition of the role parameters is defined in Section 5.7.3. The Memory Mapping
macros could wrap several Entry Point Prototype if these are referring to the same
swAddrMethod. If RunnableEntity does not refer a swAddrMethod the <sadm>
is set to default CODE. c(RTE00148, RTE00149)

[rte_sws_6531]d The RTE Generator shall wrap each Entry Point Prototype in the
Application Header File of a variant existent RunnableEntity if the variability shall
be implemented. c(RTE00201)

1 #if (<condition>)
2

3 <Entry Point Prototype>
4

5 #endif

where condition is the Condition Value Macro of the VariationPoint rel-
evant for the variant existence of the RunnableEntity (see table 4.16),
Entry Point Prototype is the code according an invariant Entry Point Pro-
totype (see also rte_sws_1131, rte_sws_7177, rte_sws_2512, rte_sws_1133,
rte_sws_1359, rte_sws_1166, rte_sws_1135, rte_sws_1137, rte_sws_7207,
rte_sws_7208, rte_sws_7379).

[rte_sws_1016]d The function implementing the entry point of a runnable entity shall
define an instance handle as the first formal parameter if and only if the software com-
ponent’s supportsMultipleInstantiation attribute is set to TRUE. c(RTE00011,
RTE00031)

The RTE will ensure that when the runnable entity is triggered the instance handle pa-
rameter indicates the correct component instance. The remaining parameters passed
to the runnable entity depend on the RTEEvent that triggers execution of the runnable
entity.

Due to the global name space of a C Linker Locater symbols of RunnableEntitys
have to be unique in the ECU. When AtomicSoftwareComponentTypes of several
vendors are integrated in the same ECU name clashes might occur if the same symbol
is accidentally used twice. To ease the dissolving of name clashes the RTE supports
an abstraction of the RunnableEntity symbol in the implementation of the software
component.

[rte_sws_6713]d The RTE generator shall emit for each RunnableEntity a define
for a symbolic name of the RunnableEntity.

1 #define RTE_RUNNABLE_<name> <prefix><symbol>

where <name> is the shortName of the RunnableEntity,

470 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

<prefix> is the optional SymbolProps.symbol attribute of the AtomicSoftware-
ComponentType owning the RunnableEntity.

<symbol> is the attribute symbol describing the RunnableEntity’s entry point.

c(RTE00087, RTE00051, RTE00031)

This symbolic name of the RunnableEntity can be used as follows in the software
component implementation.

Example 5.29

For software component "‘HugeSwc"’ with a runnable "‘FOO"’ where the Symbol-
Props.symbol is set to "‘TinySwc"’ the Application Header File contains the definition:

1 /* Application Header File of HugeSwc*/
2 #define RTE_RUNNABLE_FOO TinySwcfoo

This can be used in the software components c file for the definition of the runnable:

1 /* software component c file */
2 RTE_RUNNABLE_FOO()
3 {
4 /* The algorithm of foo */
5 return;
6 }

A change of the SymbolProps.symbol valued would have no effect on the c imple-
mentation of the software component but it would change the contract and the used
labels in a object code delivery.

5.7.3 Role Parameters

The role parameters are optional and their presence and types depend on the
RTEEvent that triggers the execution of the runnable entity. The role parameters that
are necessary for each triggering RTEEvent are defined in Section 5.7.5.

[rte_sws_6703]d The RTE Generator shall name role parameters according to the
value of the symbol attribute of RunnableEntityArguments if RunnableEntit-
yArguments are defined for the related RunnableEntity and if no mapping to a
BswModuleEntry is defined. c(RTE00087)

[rte_sws_6704]d The RTE Generator shall name role parameters according to the
shortName of the SwServiceArgs of the mapped BswModuleEntry if a mapping
of the RunnableEntity to a BswModuleEntry is defined. c(RTE00087)

471 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Please note that RunnableEntityArguments defined for a RunnableEntity
which is mapped to a BswModuleEntry are irrelevant.

[rte_sws_6705]d The RTE Generator shall generate nameless role parameters if nei-
ther RunnableEntityArguments nor a mapping to a BswModuleEntry is defined
for the RunnableEntity. c(RTE00087)

Further details about the mapping of RunnableEntitys and BswModuleEntry can
be found section "‘Synchronization with a Corresponding SWC"’ of the document [9]

5.7.4 Return Value

A function in C or C++ is required to have a return type. The RTE only uses the function
return value to return application error codes of a server operation.

[rte_sws_1130]d A function implementing a runnable entity entry point shall only have
the return type Std_ReturnType, if the runnable entity represents a server operation
and the AUTOSAR interface description of that client server communication lists po-
tential application errors. All other functions implementing a runnable entity entry point
shall have a return type of void. c(RTE00124, RTE00031)

[rte_sws_ext_2704] Only the least significant six bit of the return value of a server
runnable shall be used by the application to indicate an error. The upper two bit shall
be zero. See also rte_sws_2573.

5.7.5 Triggering Events

The RTE is the sole entity that can trigger the execution of a runnable entity. The RTE
triggers runnable entities in response to different RTEEvents.

The most basic RTEEvent that can trigger a runnable entity is the TimingEvent
that causes a runnable entity to be periodically triggered by the RTE. In contrast, the
remaining RTEEvents that can trigger runnable entities all occur as a result of com-
munication activity or as a result of mode switches.

The following subsections describe the conditions that can trigger execution of a runn-
able entity. For each triggering event the signature of the function (the “entry point”)
that implements the runnable entity is defined. The signature definition includes two
classes of parameters for each function;

1. The instance handle – the parameter type is always Rte_Instance.
(rte_sws_1016)

2. The role parameters – used to pass information required by the runnable entity
as a consequence of the triggering condition. The presence (and number) of role
parameters depends solely on the triggering condition.

472 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

5.7.5.1 TimingEvent

Purpose: Trigger a runnable entity periodically at a rate defined within the
software-component description.

Signature: [rte_sws_1131]d
void <name>([IN Rte_Instance <instance>])

c(RTE00072)

5.7.5.2 BackgroundEvent

Purpose: A recurring RTEEvent which is used to perform background activi-
ties. It is similar to a TimingEvent but has no fixed time period and is
activated only with low priority.

Signature: [rte_sws_7177]d
void <name>([IN Rte_Instance <instance>])

c(RTE00072)

5.7.5.3 SwcModeSwitchEvent

Purpose: Trigger of a runnable entity as a result of a mode switch. See also
sections 4.4.4 and 4.4.7 for reference.

Signature: [rte_sws_2512]d
void <name>([IN Rte_Instance <instance>])

c(RTE00072, RTE00143)

5.7.5.4 AsynchronousServerCallReturnsEvent

Purpose: Triggers a runnable entity used to “collect” the result and status infor-
mation of an asynchronous client-server operation.

Signature: [rte_sws_1133]d
void <name>([IN Rte_Instance <instance>])

c(RTE00072, RTE00029, RTE00079)

Notes: The runnable entity triggered by an AsynchronousServerCallReturn-
sEvent RTEEvent should use the Rte_Result API to actually receive
the result and the status of the server operation.

473 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

5.7.5.5 DataReceiveErrorEvent

Purpose: Triggers a runnable entity used to “collect” the error status of a data
element with “data” semantics on the receiver side.

Signature: [rte_sws_1359]d
void <name>([IN Rte_Instance <instance>])

c(RTE00072, RTE00029, RTE00079)

Notes: The runnable entity triggered by a DataReceiveErrorEvent
RTEEvent should use the Rte_IStatus API to actually read
the status.

5.7.5.6 OperationInvokedEvent

Purpose: An RTEEvent that causes the RTE to trigger a runnable entity whose
entry point provides an implementation for a client-server operation.
This event occurs in response to a received request from a client to
execute the operation.

Signature: [rte_sws_1166]d
<void|Std_ReturnType> <name>

([IN Rte_Instance <instance>],
[IN <portDefArg 1>, ...
IN <portDefArg n>],

[IN|INOUT|OUT] <param 1>, ...
[IN|INOUT|OUT] <param n>)

Where <portDefArg 1>, ..., <portDefArg n> represent the
port-defined argument values (see Section 4.3.2.4) and
<param 1>, ... <param n> indicates the operation IN, IN-
OUT and OUT parameters. c(RTE00029, RTE00079, RTE00072,
RTE00152)

The data type of each port defined argument is taken from the soft-
ware component template, as defined in valueType.

Note that the port-defined argument values are optional, depending
upon the server’s internal behavior.

[rte_sws_7023]d The operation parameters
<param 1>, ... <param n> are the specified ArgumentDat-
aPrototypes of the ClientServerOperation that is associated
with the OperationInvokedEvent. The operation parameters
shall be ordered according to the ClientServerOperation’s

474 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

ordered list of the ArgumentDataPrototypes. c(RTE00029,
RTE00079, RTE00072)

[rte_sws_7024]d If the ServerArgumentImplPolicy is set
to useArgumentType the data type of the <param> is de-
rived from the ArgumentDataPrototype’s Implementation-
DataType. c(RTE00029, RTE00079, RTE00072)

In case of rte_sws_7024 the RunnableEntitys parameter are
equally typed as the parameter for the Rte_Call API described in
section 5.2.6.5

[rte_sws_7025]d If the ServerArgumentImplPolicy is set to
useArrayBaseType the data type of the <param> is derived from
the ArgumentDataPrototype’s ImplementationDataType-
Element specifying the base type of the array. c(RTE00029,
RTE00079, RTE00072)

ServerArgumentImplPolicy is set to useArrayBaseType is
only applicable in case of ArgumentDataPrototype’s which data
type is of category ARRAY.

[rte_sws_7026]d The RTE generator shall reject configuration where
the ServerArgumentImplPolicy is set to useArrayBaseType
for ArgumentDataPrototype’s which data type is not of category
ARRAY. c(RTE00029, RTE00079, RTE00072, RTE00018)

[rte_sws_7027]d If the ServerArgumentImplPolicy is set to
useVoid the data type of the <param> is set to void in case of ar-
guments typed by primitive data types and set to void * in case of
arguments typed by composite data types. c(RTE00029, RTE00079,
RTE00072)

[rte_sws_5193]d If the serverArgumentImplPolicy is set to
useArrayBaseType or useVoid the RTE shall cast the arguments
passed by Rte_Call() and Rte_Result() to the data types de-
fined by the runnable entity prototype. c(RTE00029, RTE00079,
RTE00072)

Return Value: If the AUTOSAR interface description of the client server communica-
tion lists possible error codes, these are returned by the function us-
ing the return type Std_ReturnType. If no error codes are defined
for this interface, the return type shall be void (see rte_sws_1130).

This means that even if a runnable entity implementing a server "only"
returns E_OK, application errors have to be defined. Else the return
types do not match.

475 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

5.7.5.7 DataReceivedEvent

Purpose: A runnable entity triggered by the RTE to receive and process a signal
received on a sender-receiver interface.

Signature: [rte_sws_1135]d
void <name>([IN Rte_Instance <instance>])

c(RTE00072, RTE00028, RTE00131, RTE00107)

Notes: The data or event is not passed as an additional parameter. Instead,
the previously described reception API should be used to access the
data/event. This approach permits the same signature for runnables
that are triggered by time (TimingEvent) or data reception.

Caution: For intra-ECU communication, the DataReceivedEvent is
fired after each completed write operation to the shared data. In
case of implicit access, write operation is considered to be completed
when the runnable ends. While for inter-ECU communication, the
DataReceivedEvent is fired by the RTE after a callback from COM
due to data reception. Over a physical network, ‘data’ is commonly
transmitted periodically and hence not only will the latency and jitter
of DataReceivedEvents vary depending on whether a configuration
uses intra or inter-ECU communication, but also the number and fre-
quency of these RTEEvents may change significantly. This means
that a TimingEvent should be used to periodically activation of a runn-
able rather than relying on the periodic transmission of data.

5.7.5.8 DataSendCompletedEvent

Purpose: A runnable entity triggered by the RTE to receive and process trans-
mit acknowledgment notifications.

Signature: [rte_sws_1137]d
void <name>([IN Rte_Instance <instance>])

c(RTE00072, RTE00122, RTE00107)

Notes: The runnable entity triggered by a DataSendCompletedEvent
RTEEvent should use the Rte_Feedback API to actually receive the
status of the acknowledgement.

5.7.5.9 ModeSwitchedAckEvent

Purpose: A runnable entity triggered by the RTE to receive and process mode
switched acknowledgement notifications.

476 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Signature: [rte_sws_2758]d
void <name>([IN Rte_Instance <instance>])

c(RTE00072, RTE00122, RTE00107)

Notes: The runnable entity triggered by an ModeSwitchedAckEvent
should use the Rte_ModeSwitchAck API to actually receive the sta-
tus of the acknowledgement.

5.7.5.10 ExternalTriggerOccurredEvent

Purpose: A runnable entity triggered by the RTE at the occurrence of an exter-
nal event.

Signature: [rte_sws_7207]d
void <name>([IN Rte_Instance <instance>])

c(RTE00162, RTE00072)

5.7.5.11 InternalTriggerOccurredEvent

Purpose: A runnable entity triggered by the RTE by an inter runnable trigger.

Signature: [rte_sws_7208]d
void <name>([IN Rte_Instance <instance>])

c(RTE00163, RTE00072)

5.7.5.12 DataWriteCompletedEvent

Purpose: A runnable entity triggered by the RTE to receive and process trans-
mit acknowledgment notifications for implicit communication.

Signature: [rte_sws_7379]d
void <name>([IN Rte_Instance <instance>])

c(RTE00072, RTE00122, RTE00185)

Notes: The runnable entity triggered by a DataWriteCompletedEvent
RTEEvent should use the Rte_IFeedback API to actually receive
the status of the acknowledgement.

477 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

5.7.6 Reentrancy

A runnable entity is declared within a software-component type. The RTE ensures
that concurrent activation of same instance of a runnable entity is only allowed if the
runnables attribute "canBeInvokedConcurrently" is set to TRUE (see Section 4.2.6).

When a software-component is multiple instantiated each separate instance has its
own instance of the runnable entities in the software-component. Whilst instances of a
software-component are independent, the runnable entities instances share the same
code (rte_sws_3015).

Example 5.30

Consider a component c1 with runnable entity re1 and entry point ep that is instanti-
ated twice on the same ECU.

The two instances of c1 each has a separate instance of re1. Software-component
instances are scheduled independently and therefore each instance of re1 could be
concurrently executing ep.

The potential for concurrent execution of runnable entities when multiple instances of
a software-component are created means that each entry point should be reentrant.

5.8 RTE Lifecycle API Reference

This section documents the API functions used to start and stop the RTE. RTE Lifecycle
API functions are not invoked from AUTOSAR software-components – instead they are
invoked from other basic software module(s).

5.8.1 Rte_Start

Purpose: Initialize the RTE itself.

Signature: [rte_sws_2569]d
Std_ReturnType Rte_Start(void)

c(BSW00310, RTE00116)

Existence: [rte_sws_1309]d The Rte_Start API is always created.
c(RTE00051)

Description: Rte_Start is intended to allocate and initialise system resources and
communication resources used by the RTE.

[rte_sws_ext_2582] Rte_Start shall be called only once by the
EcuStateManager from trusted OS context on a core after the basic
software modules required by RTE are initialized.

478 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

These modules include:

• OS

• COM

• memory services

The Rte_Start API shall not be invoked from AUTOSAR software
components.

[rte_sws_ext_7577] The Rte_Start API may only be used after
the Basic Software Scheduler is initialized (after termination of the
SchM_Init).

[rte_sws_ext_2714] The Rte_Start API shall be called on every
core that hosts AUTOSAR software-components of the ECU.

[rte_sws_2585]d Rte_Start shall return within finite execution time
– it must not enter an infinite loop. c(RTE00116)

Rte_Start may be implemented as a function or a macro.

Return Value: If the allocation of a resource fails, Rte_Start shall return with an
error.

• [rte_sws_1261]d RTE_E_OK – No error occurred. c(RTE00094)

• [rte_sws_1262]d RTE_E_LIMIT – An internal limit has been
exceeded. The allocation of a required resource has failed.
c(RTE00094)

Notes: Rte_Start is declared in the lifecycle header file Rte_Main.h. The
initialization of AUTOSAR software-components takes place after the
termination of Rte_Start and is triggered by a mode change event
on entering run state.

5.8.2 Rte_Stop

Purpose: finalize the RTE itself

Signature: [rte_sws_2570]d
Std_ReturnType Rte_Stop(void)

c(RTE00116)

Existence: [rte_sws_1310]d The Rte_Stop API is always created. c(RTE00051)

479 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Description: Rte_Stop is used to finalize the RTE on the core it is called. This
service releases all system and communication resources allocated
by the RTE on that core.

[rte_sws_ext_2583] Rte_Stop shall be called by the EcuStateMan-
ager before the basic software modules required by RTE are shut
down. These modules include:

• OS

• COM

• memory services

Rte_Stop shall be called from trusted context and not by an AU-
TOSAR software component.

[rte_sws_2584]d Rte_Stop shall return within finite execution time.
c(RTE00116)

Rte_Stop may be implemented as a function or a macro.

Return Value: • [rte_sws_1259]d RTE_E_OK – No error occurred. c(RTE00094)

• [rte_sws_1260]d RTE_E_LIMIT – a resource could not be re-
leased. c(RTE00094)

Notes: Rte_Stop is declared in the lifecycle header file Rte_Main.h.

5.8.3 Rte_PartitionTerminated

Purpose: Indicate to the RTE that a partition is going to be terminated, and the
communication with the Partition shall be ignored.

Signature: [rte_sws_7330]d
void Rte_PartitionTerminated_<PID>(void)

c(RTE00223)

Where <PID> is the name of the EcucPartition according to the
ECU Configuration Description [15].

Existence: [rte_sws_7331]d An Rte_PartitionTerminated API shall be cre-
ated for every Partition. c(RTE00223)

Description: Rte_PartitionTerminated is intended to notify the RTE that a
given partition is terminated or is being restarted.

[rte_sws_ext_7332] Rte_PartitionTerminated shall be called
only once by the ProtectionHook.

480 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Rte_PartitionTerminated may be implemented as a function or a
macro.

[rte_sws_7334]d The treatments in Rte_PartitionTerminated

shall be restricted to the ones allowed in the context of a Protec-
tionHook. c(RTE00223)

Since Rte_PartitionTerminated is called from the ProtectionHook
context, it should be as fast as possible. It should be limited to setting
a flag. Actual cleanup should be deferred to another task.

The notification provided by Rte_PartitionTerminated can be
used later by the RTE to immediately return an error status when
SW-Cs of other partitions tries to communicate with the stopped par-
tition. See rte_sws_2710 and rte_sws_2709.

[rte_sws_7335]d Terminating an already terminated Partition shall
be ignored. c(RTE00223)

Return Value: None.

Notes: Rte_PartitionTerminated is declared in the lifecycle header file
Rte_Main.h.

5.8.4 Rte_PartitionRestarting

Purpose: Indicate to the RTE that a Partition is going to be restarted and
that the communication with the Partition shall be ignored.

Signature: [rte_sws_7620]d
void Rte_PartitionRestarting_<PID>(void)

Where <PID> is the name of the EcucPartition according to the
ECU Configuration Description [15]. c(RTE00223)

Existence: [rte_sws_7619]d An Rte_PartitionRestarting API shall be cre-
ated for any Partition which can be restarted (i.e. a Parti-
tion whose PartitionCanBeRestarted parameter is enabled).
c(RTE00223)

Description: Rte_PartitionRestarting is intended to notify the RTE that a
given partition is being restarted. As Rte_PartitionTerminated,
Rte_PartitionRestarting indicates that the communi-
cation with the partition shall be ignored, but in case of
Rte_PartitionRestarting, the partition may be restarted later in
the ECU lifecycle.

[rte_sws_ext_7618] Rte_PartitionRestarting shall be called
only once by the ProtectionHook.

481 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Rte_PartitionRestarting may be implemented as a function or a
macro.

[rte_sws_7617]d The treatments in Rte_PartitionRestarting

shall be restricted to the ones allowed in the context of a Protec-
tionHook. c(RTE00223)

Since Rte_PartitionRestarting is called from the ProtectionHook
context, it should be as fast as possible. It should be limited to setting
a flag. Actual cleanup should be deferred to another task.

[rte_sws_7622]d Restarting an already terminated Partition or
restarting a Partition during an ongoing restart shall be ignored.
c(RTE00223)

Return Value: None.

Notes: Rte_PartitionRestarting is declared in the lifecycle header file
Rte_Main.h.

5.8.5 Rte_RestartPartition

Purpose: Initialize the RTE resources allocated for a partition.

Signature: [rte_sws_7188]d
Std_ReturnType Rte_RestartPartition_<PID>(void)

Where <PID> is the name of the EcucPartition according to the
ECU Configuration Description [15]. c(RTE00224)

Existence: [rte_sws_7336]d An Rte_RestartPartition API shall be created
for any Partition which can be restarted (i.e. a Partition whose
PartitionCanBeRestarted parameter is enabled). c(RTE00224)

Description: Rte_RestartPartition is intended to notify the RTE that a given
partition will be restarted.

[rte_sws_ext_7337] Rte_RestartPartition shall be called only in
the context of the RestartTask of the given partition.

[rte_sws_7338]d Rte_RestartPartition shall return within finite
execution time – it must not enter an infinite loop. c(RTE00224)

Rte_RestartPartition may be implemented as a function or a
macro.

[rte_sws_7339]d The Rte_RestartPartition shall restore an initial
RTE environment for the partition and re-activate communication with
this partition. c(RTE00224)

This includes:

482 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

• signal inital values,

• modes,

• queued events,

• sequence counters.

[rte_sws_7340]d Rte_RestartPartition shall be ig-
nored if the given partition was not stopped before (with
Rte_PartitionTerminated or Rte_PartitionRestarting).
c(RTE00224)

Return Value: If the allocation of a resource fails, Rte_RestartPartition shall re-
turn with an error.

• [rte_sws_7341]d RTE_E_OK – No error occurred. c(RTE00224)

• [rte_sws_7342]d RTE_E_LIMIT – An internal limit has been
exceeded. The allocation of a required resource has failed.
c(RTE00224)

Notes: Rte_RestartPartition is declared in the lifecycle header file
Rte_Main.h.

5.9 RTE Call-backs Reference

This section documents the call-backs that are generated by the RTE that must be
invoked by other components, such as the communication service, and therefore must
have a well-defined name and semantics.

[rte_sws_1165]d A call-back implementation created by the RTE generator is not per-
mitted to block. c(RTE00022)

Requirement rte_sws_1165 serves to constrain RTE implementations so that all imple-
mentations can work with all basic software.

5.9.1 RTE-COM Message Naming Conventions

The COM signals used for communication are defined in the input information provided
by Com.

[rte_sws_3007]d The RTE shall initiate an inter-ECU transmission using the COM API
with the handle id of the corresponding COM signal for primitive data element Sender-
ReceiverToSignalMapping. c(RTE00019)

[rte_sws_3008]d The RTE shall initiate an inter-ECU transmission using the COM API
with the handle id of the corresponding COM signal group for composite data elements
or operation arguments SenderReceiverToSignalGroupMapping. c(RTE00019)

483 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

5.9.2 Communication Service Call-backs

Purpose: Implement the call-back functions that AutoSAR COM invokes as a
result of inter-ECU communication, where:

• A data item/event is ready for reception by a receiver.

• A transmission acknowledgment shall be routed to a sender.

• An operation shall be invoked by a server.

• The result of an operation is ready for reading by a client.

Signature: [rte_sws_3000]d

void <CallbackRoutineName> (void);

c(RTE00019)

Where <CallbackRoutineName> is the name of the call-back func-
tion (refer to Section 5.9.1 for details on the naming convention).

Description: Prototypes for the call-back <CallbackRoutineName> provided by
AutoSAR COM.

Return Value: No return value : void

5.9.3 Naming convention of Communication Callbacks

In the following table, the naming convention of <CallBackRoutineName> are de-
fined:

Calling Situation callbackRoutineName Comments
A primitive data
item/event is ready
for reception by a
receiver.

[rte_sws_3001]
Rte_COMCbk_<sn>

<sn> is the name of the COM
signal. This callback func-
tion indicates that the signal of
the primitive data item/event is
ready for reception.
Configured in Com: ComNoti-
fication [COM498_Conf] as
part of ComSignal

484 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Calling Situation callbackRoutineName Comments
A transmission ac-
knowledgment of
a primitive data
item/event shall be
routed to a sender.

[rte_sws_3002]
Rte_COMCbkTAck_<sn>

“TAck” is literal text indicating
transmission acknowledgment.
This callback function indicates
that the signal of the primi-
tive data item/event is already
handed over by COM to the PDU
router.
Configured in Com: ComNoti-
fication [COM498_Conf] as
part of ComSignal

A transmission error
notificatoin of a prim-
itive data item/event
shall be routed to a
sender.

[rte_sws_3775]
Rte_COMCbkTErr_<sn>

“TErr” is literal text indicating
transmission error. This call-
back function indicates that an
error occurred when the signal
of the primitive data item/event
was handed over by COM to the
PDU router.
Configured in Com: Com-
ErrorNotification
[COM499_Conf] as part of
ComSignal

A signal invalidation
of a primitive data
item shall be routed
to a receiver.

[rte_sws_2612]
Rte_COMCbkInv_<sn>

“Inv” is literal text indicating sig-
nal invalidation. This callback
function indicates that COM has
received a signal and parsed it
as “invalid”.
Configured in Com: Com-
InvalidNotification
[COM315_Conf] as part of
ComSignal

A signal of a primitive
data item is outdated.
No new data is avail-
able.

[rte_sws_2610]
Rte_COMCbkRxTOut_<sn>

“RxTOut” is literal text indicat-
ing reception signal time out.
This callback function indicates
that the aliveTimeout after
the last successful reception of
the signal of the primitive data
item/event has expired (data
element outdated).
Configured in Com: Com-
TimeoutNotification
[COM552_Conf] as part of
ComSignal

485 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Calling Situation callbackRoutineName Comments
Transmission has
failed and timed out
for a primitive data
item.

[rte_sws_5084]
Rte_COMCbkTxTOut_<sn>

“TxTOut” is literal text indicating
transmission failure and time
out. This callback function
indicates that the timeout
of TransmissionAcknowl-
edgementRequest for sending
the signal of the primitive data
item/event has expired.
Configured in Com: Com-
TimeoutNotification
[COM552_Conf] as part of
ComSignal

A composite data
item/event or the
arguments of an
operation is ready
for reception by a
receiver.

[rte_sws_3004]
Rte_COMCbk_<sg>

<sg> is the name of the COM
signal group, which contains all
the signals of the composite
data item/event or an operation.
This callback function indicates
that the signals of the compos-
ite data item/event or the argu-
ments of an operation are ready
for reception.
Configured in Com: ComNoti-
fication [COM498_Conf] as
part of ComSignalGroup

A transmission ac-
knowledgment of
a composite data
item/event shall be
routed to a sender.

[rte_sws_3005]
Rte_COMCbkTAck_<sg>

“TAck” is literal text indicating
transmission acknowledgment.
This callback function indicates
that the signals of the compos-
ite data item/event is already
handed over by COM to the PDU
router.
Configured in Com: ComNoti-
fication [COM498_Conf] as
part of ComSignalGroup

486 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Calling Situation callbackRoutineName Comments
A transmission er-
ror notificatoin of
a composite data
item/event shall be
routed to a sender.

[rte_sws_3776]
Rte_COMCbkTErr_<sg>

“TErr” is literal text indicating
transmission error. This callback
function indicates that an error
occurred when the signal of the
composite data item/event was
handed over by COM to the PDU
router.
Configured in Com: Com-
ErrorNotification
[COM499_Conf] as part of
ComSignalGroup

A signal group inval-
idation of a compos-
ite data item shall be
routed to a receiver.

[rte_sws_5065]
Rte_COMCbkInv_<sg>

“Inv” is literal text indicating sig-
nal group invalidation. This
callback function indicates that
COM has received a signal
group and parsed it as “invalid”.
Configured in Com: Com-
InvalidNotification
[COM315_Conf] as part of
ComSignalGroup

A signal group of a
composite data item
is outdated. No new
data is available.

[rte_sws_2611]
Rte_COMCbkRxTOut_<sg>

“RxTOut” is literal text indicat-
ing reception signal time out.
This callback function indicates
that the aliveTimeout after
the last successful reception of
the signal group carrying the
composite data item has expired
(data element outdated).
Configured in Com: Com-
TimeoutNotification
[COM552_Conf] as part of
ComSignalGroup

487 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Calling Situation callbackRoutineName Comments
Transmission has
failed and timed out
for a composite data
item.

[rte_sws_5085]
Rte_COMCbkTxTOut_<sg>

“TxTOut” is literal text indicating
transmission failure and time
out. This callback function
indicates that the timeout
of TransmissionAcknowl-
edgementRequest for sending
the signal group of the com-
posite data item/event has
expired.
Configured in Com: Com-
TimeoutNotification
[COM552_Conf] as part of
ComSignalGroup

Table 5.5: RTE COM Callback Function Naming Conventions

Where:
• <sn> is a COM signal name.
• <sg> is a COM signal group name.

5.9.4 NVM Service Call-backs

5.9.4.1 Rte_SetMirror

Purpose: Warranty the consistency of the VariableDataPrototypes con-
tained in a NvBlockSwComponentType, when the associated NVM
block is read and copied to the VariableDataPrototypes storage
locations.

Signature: [rte_sws_7310]d
Std_ReturnType
Rte_SetMirror__<d> (const void *NVMBuffer)

c(RTE00178)

Where is the SwComponentPrototype’s name of the
NvBlockSwComponentType and <d> is the NvBlockDescriptor
name.

Existence: [rte_sws_7311]d An Rte_SetMirror API shall be created for each
instance of a NvBlockDescriptor. c(RTE00178)

488 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Description: The Rte_SetMirror API copies the values of the VariableDat-
aPrototypes contained in a NvBlockDescriptor from a NVM
internal buffer to their locations in the RTE.

[rte_sws_7312]d The Rte_SetMirror API shall copy the specified
buffer to the NvBlockDescriptor’s ramBlock, according to the
NvBlockDescriptor’s NvBlockDataMapping. c(RTE00177)

The RTE is responsible for ensuring the data consistency, see sec-
tion 4.2.5 In particular for the NvBlockDescriptor, the Sender-
Receiver ports, the Rte_SetMirror, and Rte_GetMirror may ac-
cess concurrently the same VariableDataPrototypes.

[rte_sws_7319]d The Rte_SetMirror API shall be callable before
the Rte is started (with Rte_Start), and can rely on a running OS.
c(RTE00178)

Return Value: The NVM module uses the return value of the Rte_SetMirror API
to check if the copy was successful. In case of failure, the NVM may
retry later.

[rte_sws_7602]d The Rte_SetMirror API shall return E_OK if the
copy is successful. c(RTE00178)

[rte_sws_7613]d The Rte_SetMirror API shall return E_NOT_OK if
the copy could not be performed. c(RTE00178)

Notes: The NVM shall be configured to use this function when ReadBlock
requests are processed (see NvmWriteRamBlockFromNvm in [23]).

5.9.4.2 Rte_GetMirror

Purpose: Warranty the consistency of the VariableDataPrototypes con-
tained in a NvBlockSwComponentType, when their values are writ-
ten to the NVRAM device by the NVM.

Signature: [rte_sws_7315]d
Std_ReturnType
Rte_GetMirror__<d> (void *NVMBuffer)

c(RTE00178)

Where is the SwComponentPrototype’s name of the
NvBlockSwComponentType and <d> is the NvBlockDescriptor
name.

Existence: [rte_sws_7316]d An Rte_GetMirror API shall be created for each
instance of a NvBlockDescriptor. c(RTE00178)

489 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Description: The Rte_GetMirror API copies the values of the VariableDat-
aPrototypes contained in a NvBlockDescriptor to a specified
NVM internal buffer.

[rte_sws_7317]d The Rte_GetMirror API shall copy the NvBlock-
Descriptor’s ramBlock to the specified buffer, according to the
NvBlockDescriptor’s NvBlockDataMapping. c(RTE00177)

The RTE is responsible for ensuring the data consistency, see sec-
tion 4.2.5 In particular for the NvBlockDescriptor, the Sender-
Receiver ports, the Rte_SetMirror, and Rte_GetMirror may ac-
cess concurrently the same VariableDataPrototypes.

[rte_sws_7350]d The Rte_GetMirror API shall be callable after the
Rte is stopped (with Rte_Stop), and can rely on a running OS.
c(RTE00178)

Return Value: The NVM module uses the return value of the Rte_GetMirror API
to check if the copy was successful. In case of failure, the NVM may
retry later.

[rte_sws_7601]d The Rte_GetMirror API shall return E_OK if the
copy is successful. c(RTE00178)

[rte_sws_7614]d The Rte_GetMirror API shall return E_NOT_OK if
the copy could not be performed. c(RTE00178)

Notes: The NVM shall be configured to use this function when WriteBlock
requests are processed (see NvmWriteRamBlockToNvm in [23]).

5.9.4.3 Rte_NvMNotifyJobFinished

Purpose: Forward notifications back to the SW-Cs.

Signature: [rte_sws_7623]d
Std_ReturnType
Rte_NvMNotifyJobFinished__<d> (

uint8 ServiceId,
NvM_RequestResultType JobResult)

c(RTE00228)

Where is the SwComponentPrototype’s name of the
NvBlockSwComponentType and <d> is the NvBlockDescriptor
name.

Existence: [rte_sws_7624]d An Rte_NvMNotifyJobFinished API shall be cre-
ated for each instance of a NvBlockDescriptor. c(RTE00228)

490 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Description: The Rte_NvMNotifyJobFinished receives the notification from the
NvM when a job is finished and forward it to the SW-C.

[rte_sws_7625]d The Rte_NvMNotifyJobFinished API shall call
the servers referenced by RoleBasedPortAssignment with
a NvMNotifyJobFinished role which are aggregated to the
NvBlockDescriptor. c(RTE00228)

[rte_sws_7671]d The Rte_NvMNotifyJobFinished API shall return
without any action when the RTE is not started, when the RTE is
stopped, or when the partition containing the NvBlockSwCompo-
nentType is terminated or restarting. c(RTE00228)

Return Value: [rte_sws_7626]d The Rte_NvMNotifyJobFinished API shall return
E_OK. c(RTE00228)

Notes: The NVM shall be configured to use this function (see
NvmSingleBlockCallback in [23]).

5.9.4.4 Rte_NvMNotifyInitBlock

Purpose: Indicate to the SW-Cs that initialization of the Mirror is requested by
the NvM.

Signature: [rte_sws_7627]d
Std_ReturnType
Rte_NvMNotifyInitBlock__<d> (void)

c(RTE00228)

Where is the SwComponentPrototype’s name of the
NvBlockSwComponentType and <d> is the NvBlockDescriptor
name.

Existence: [rte_sws_7628]d An Rte_NvMNotifyInitBlock API shall be cre-
ated for each instance of a NvBlockDescriptor. c(RTE00228)

Description: The Rte_NvMNotifyInitBlock API receives the notification from the
NvM when initialization of the mirror is requested.

[rte_sws_7629]d If the NvBlockDescriptor is configured with
a romBlock initValue, this initValue shall be copied into
the NvBlockDescriptor’s mirror before calling any SW-C server.
c(RTE00228)

[rte_sws_7630]d The Rte_NvMNotifyInitBlock API shall call
the servers referenced by RoleBasedPortAssignment with a

491 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

NvMNotifyInitBlock role which are aggregated to the NvBlock-
Descriptor. c(RTE00228)

[rte_sws_7672]d The Rte_NvMNotifyInitBlock API shall return
without any action when the RTE is not started, when the RTE is
stopped, or when the partition containing the NvBlockSwCompo-
nentType is terminated or restarting. c(RTE00228)

Due to rte_sws_7672, a block selected in the NVRAM Manager [23]
as read during NvM_ReadAll should not be configured with its
NvmInitBlockCallback set to a Rte_NvMNotifyInitBlock API.

Return Value: [rte_sws_7631]d The Rte_NvMNotifyInitBlock API shall return
E_OK. c(RTE00228)

Notes: The NVM shall be configured to use this function (see
NvmInitBlockCallback in [23]).

5.10 Expected interfaces

5.10.1 Expected Interfaces from Com

The specification of the RTE requires the usage of the following COM API functions.

Com API function Context
Com_SendSignal to transmit a data element of primitive type us-

ing COM.
Com_SendDynSignal to transmit a data element of primitive dynamic

type uint8[n] using COM.
Com_ReceiveSignal to retrieve the new value of a data element of

primitive type from COM.
Com_ReceiveDynSignal to retrieve the new value of a data element of

primitive dynamic type uint[8] from COM.
Com_UpdateShadowSignal
(deprecated)

to update a primitive element of a data element
of composite type in preparation for sending the
composite type using COM.

Com_SendSignalGroup to initiate sending of a data element of compos-
ite type using COM.

Com_ReceiveSignalGroup to retrieve the new value of a data element of
composite type from COM.

Com_ReceiveShadowSignal
(deprecated)

to retrieve the new value of a primitive element
of a data element of composite type from COM.

Com_InvalidateSignal to invalidate a data element of primitive type us-
ing COM.

Com_InvalidateSignalGroup to invalidate a whole signal group using COM.

492 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Com API function Context

Table 5.6: COM API functions used by the RTE

Please note that rte_sws_2761 may require to access COM through the use of call
trusted function in a partitioned system.

5.10.2 Expected Interfaces from Os

The usage of APIs provided by the Os module [4] is up to the implementation of a spe-
cific RTE Generator, System description and Ecu configuration. In general a RTE may
utilize any standardized API. Therefore no dedicated list of expected APIs is specified
here.

In case of multi-core the RTE may utilize the IOC-Module [12] to implement the inter-
core communication. The IOC-Module is specified to be part of the Os. Therefore no
specific APIs are listed here.

5.11 VFB Tracing Reference

The RTE’s “VFB Tracing” functionality permits the monitoring of AUTOSAR signals as
they are sent and received across the VFB.

The RTE operates in at least two builds (some implementations may provide more than
two builds). The first, production, does not enable VFB tracing whereas the second,
debug, can be configured to trace some or all “interesting events”.

[rte_sws_1327]d The RTE generator shall support a build where no VFB events are
traced. c(RTE00005)

[rte_sws_1328]d The RTE generator shall support a build that traces (configured) VFB
events. c(RTE00005)

The RTE generator’s ‘trace’ build is enabled or disabled through definitions in the RTE
Configuration Header File rte_sws_1322 and rte_sws_1323. Note that this ‘trace’ build
is intended to enable debugging of software components and not the RTE itself.

5.11.1 Principle of Operation

The “VFB Tracing” mechanism is designed to offer a lightweight means to monitor the
interactions of AUTOSAR software-components with the VFB.

The VFB tracing in ‘debug’ build is implemented by a series of “hook” functions that
are invoked automatically by the generated RTE when “interesting events” occur. Each
hook function corresponds to a single event.

493 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

The supported trace events are defined in Section 5.11.4. A mechanism is described in
Section 5.11.5 for configuring which of the many potential trace events are of interest.

5.11.2 Support for multiple clients

The “VFB Tracing” mechanism is designed to support multiple clients for each trace
event.

[rte_sws_5093]d For each RteVfbTraceClientPrefix configured in the RTE Con-
figuration input each Trace Event shall be generated using that client prefix in the
optional <client> position of the API function name. c(RTE00005, RTE00008,
RTE00192)

[rte_sws_5091]d The RTE Generator shall provide each Trace Event without a client
prefix. c(RTE00005, RTE00008, RTE00192)

The generation of Trace Events without a client prefix ensures compatibility of the trace
events with previous RTE releases.

[rte_sws_5092]d In case of multiple clients for one Trace Event the individual trace
functions shall be called in the following order:

1. The trace function without client prefix.

2. The trace functions with client prefix in alphabetically ascending order of the
RteVfbTraceClientPrefix (ASCII / ISO 8859-1).

c(RTE00005, RTE00008, RTE00192)

The calling order specification ensures a deterministic execution of the multiple clients.

One example of the usage of client prefix is the parallel usage of Debugging [27] and
Diagnostic Log and Trace [30]. In this example two RteVfbTraceClientPrefix
would be specified:

• Dbg

• Dlt

This shall result in the declaration of three trace functions for the one Trace Event
Rte_[<client>_]Task_Activate(TaskType task):

• Rte_Task_Activate(TaskType task)

• Rte_Dbg_Task_Activate(TaskType task)

• Rte_Dlt_Task_Activate(TaskType task)

These trace functions (if all used in one project) will be called in the following order:

1. Rte_Task_Activate(TaskType task)

2. Rte_Dbg_Task_Activate(TaskType task)

494 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

3. Rte_Dlt_Task_Activate(TaskType task)

5.11.3 Contribution to the Basic Software Module Description

The RTE Generator in Generation Phase shall also update its Basic Software Module
Description (rte_sws_5086) in order to document the possibly traceable functions and
their signatures.

[rte_sws_5106]d For each generated hook function - including multiple trace clients
(rte_sws_5093) - an entry in the Basic Software Module Description shall be entered
describing the hook function and its signature. The outgoingCallback element
of BswModuleDescription shall be used to capture the information. c(RTE00005,
RTE00192)

5.11.4 Trace Events

5.11.4.1 RTE API Trace Events

RTE API trace events occur when an AUTOSAR software-component interacts with the
generated RTE API. For implicit S/R communication, however, tracing is not supported.

5.11.4.1.1 RTE API Start

Description: RTE API Start is invoked by the RTE when an API call is made by a
component.

Signature: [rte_sws_1238]d
void Rte_[<client>_]<api>Hook_<cts>_<ap>_Start

([const Rte_CDS_<cts>*,]<param>)

Where <api> is the RTE API Name (Write, Call, etc.),

<cts> is the component type symbol of the AtomicSwCompo-
nentType and

<ap> the access point name (e.g. port and data element or operation
name, exclusive area name, etc.).

The parameters of the API are the same as the corresponding RTE
API. As with the API itself, the instance handle is included if and only
if the software component’s supportsMultipleInstantiation
attribute is set to true. Note that Rte_Instance cannot be used
directly, as there will be pointers to multiple components’ structure
types within the single VFB Tracing header file, and Rte_Instance
would therefore be ambiguous. c(RTE00045, RTE00003, RTE00004)

495 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

5.11.4.1.2 RTE API Return

Description: RTE API Return is a trace event that is invoked by the RTE just before
an API call returns control to a component.

Signature: [rte_sws_1239]d
void Rte_[<client>_]<api>Hook_<cts>_<ap>_Return

([const Rte_CDS_<cts>*,]<param>)

Where <api> is the RTE API Name (Write, Call, etc.),

<cts> is the component type symbol of the AtomicSwCompo-
nentType and

<ap> the access point name (e.g. port and data element or operation
name, exclusive area name, etc.).

The parameters of the API are the same as the corresponding RTE
API and contain the values of OUT and INOUT parameters on exit
from the function. c(RTE00045)

As with the API itself, the instance handle is included if and only
if the software component’s supportsMultipleInstantiation
attribute is set to true. Note that Rte_Instance cannot be used
directly, as there will be pointers to multiple components’ structure
types within the single VFB Tracing header file, and Rte_Instance
would therefore be ambiguous.

5.11.4.2 COM Trace Events

COM trace events occur when the generated RTE interacts with the AUTOSAR com-
munication service.

5.11.4.2.1 Signal Transmission

Description: A trace event indicating a transmission request of an Inter-ECU
signal (or signal in a signal group) by the RTE. Invoked by
the RTE just before Com_SendSignal, Com_SendDynSignal, or
Com_UpdateShadowSignal (deprecated) is invoked.

Signature: [rte_sws_1240]d
void Rte_[<client>_]ComHook_<signalName>_SigTx

(<data>[, <length>])

Where <signalName> is the COM signal name, <data> is a pointer
to the signal data to be transmitted, and <length> is the length
of the signal in case of a dynamic signal. c(RTE00045, RTE00003,
RTE00004)

496 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

5.11.4.2.2 Signal Reception

Description: A trace event indicating a successful attempt to read an Inter-ECU
signal (or signal in a signal group) by the RTE. Invoked by the RTE
after return from Com_ReceiveSignal, Com_ReceiveDynSignal, or
Com_ReceiveShadowSignal (deprecated).

Signature: [rte_sws_1241]d
void Rte_[<client>_]ComHook_<signalName>_SigRx

(<data>[, <length>])

Where <signalName> is the COM signal name, <data> is a pointer
to the signal data received, and <length> is a pointer where the
length of the dynamic signal is copied in case of a dynamic signal.
c(RTE00045, RTE00003, RTE00004)

5.11.4.2.3 Signal Invalidation

Description: A trace event indicating a signal invalidation request of an
Inter-ECU signal (or of a signal in a signal group) by the
RTE. Invoked by the RTE just before Com_InvalidateSignal

(if parameter RteUseComShadowSignalApi is FALSE), or
Com_InvalidateShadowSignal (if parameter RteUseComShad-
owSignalApi is TRUE) is invoked.

Signature: [rte_sws_3814]d
void Rte_[<client>_]ComHook_<signalName>_SigIv

(void)

Where <signalName> is the COM signal or a signal group name.
c(RTE00045, RTE00003, RTE00004)

5.11.4.2.4 Signal Group Invalidation

Description: A trace event indicating a signal group invalidation request of an
Inter-ECU signal group by the RTE. Invoked by the RTE just before
Com_InvalidateSignalGroup is invoked.

Signature: [rte_sws_7639]d
void Rte_[<client>_]ComHook_<signalGroupName>_SigGroupIv

(void)

Where <signalGroupName> is the name of the signal group.
c(RTE00045, RTE00003, RTE00004)

497 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

5.11.4.2.5 COM Callback

Description: A trace event indicating the start of a COM call-back. Invoked by
generated RTE code on entry to the COM call-back.

Signature: [rte_sws_1242]d
void Rte_[<client>_]ComHook<Event>_<signalName>

(void)

Where <signalName> is the name of the COM signal or signal
group and <Event> indicates the callback type and can take the val-
ues

• “Rx” for a reception indication callback

• “Inv” for an invalidation callback

• “RxTOut” for a reception timeout callback

• “TxTOut” for a transmission timeout callback

• “TAck” for a transmission acknowledgement callback

• “TErr” for a transmission error callback

c(RTE00045, RTE00003, RTE00004)

5.11.4.3 OS Trace Events

OS trace events occur when the generated RTE interacts with the AUTOSAR operating
system.

5.11.4.3.1 Task Activate

Description: A trace event that is invoked by the RTE immediately prior to the
activation of a task containing runnable entities.

Signature: [rte_sws_1243]d
void Rte_[<client>_]Task_Activate(TaskType task)

Where task is the OS’s handle for the task. c(RTE00045)

5.11.4.3.2 Task Dispatch

Description: A trace event that is invoked immediately an RTE generated task
(containing runnable entities) has commenced execution.

Signature: [rte_sws_1244]d

498 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

void Rte_[<client>_]Task_Dispatch(TaskType task)

Where task is the OS’s handle for the task. c(RTE00045)

5.11.4.3.3 Set OS Event

Description: A trace event invoked immediately before generated RTE code at-
tempts to set an OS Event.

Signature: [rte_sws_1245]d
void Rte_[<client>_]Task_SetEvent(TaskType task,

EventMaskType ev)

Where task is the OS’s handle for the task for which the event is
being set and ev the OS event mask. c(RTE00045)

5.11.4.3.4 Wait OS Event

Description: Invoked immediately before generated RTE code attempts to wait on
an OS Event. This trace event does not indicate that the caller has
suspended execution since the OS call may immediately return if the
event was already set.

Signature: [rte_sws_1246]d
void Rte_[<client>_]Task_WaitEvent(TaskType task,

EventMaskType ev)

Where task is the OS’s handle for the task (that is waiting for the
event) and ev the OS event mask. c(RTE00045)

5.11.4.3.5 Received OS Event

Description: Invoked immediately after generated RTE code returns from waiting
on an event.

Signature: [rte_sws_1247]d
void Rte_[<client>_]Task_WaitEventRet(TaskType task,

EventMaskType ev)

Where task is the OS’s handle for the task (that was waiting for
an event) and ev the event mask indicating the received event.
c(RTE00045)

Note that not all of the trace events listed above may be available for a given input
configuration. For example if a task is activated by a schedule table, it is activated by

499 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

the OS rather than by the RTE, hence no trace hook function for task activation can be
invoked by the RTE.

5.11.4.4 Runnable Entity Trace Events

Runnable entity trace events occur when a runnable entity is started.

5.11.4.4.1 Runnable Entity Invocation

Description: Event invoked by the RTE just before execution of runnable entry
starts via its entry point. This trace event occurs after any copies of
data elements are made to support the Rte_IRead API Call.

Signature: [rte_sws_1248]d
void Rte_[<client>_]Runnable_<cts>_<reName>_Start

([const RTE_CDS_<cts>*])

Where <cts> is the component type symbol of the Atomic-
SwComponentType

and reName the runnable entity name.

The instance handle is included if and only if the software compo-
nent’s supportsMultipleInstantiation attribute is set to true.
Note that Rte_Instance cannot be used directly, as there will be
pointers to multiple components’ structure types within the single VFB
Tracing header file, and Rte_Instance would therefore be ambigu-
ous. c(RTE00045)

5.11.4.4.2 Runnable Entity Termination

purpose: Event invoked by the RTE immediately execution returns to RTE code
from a runnable entity. This trace event occurs before any write-back
of data elements are made to support the Rte_IWrite API Call.

Signature: [rte_sws_1249]d
void Rte_[<client>_]Runnable_<cts>_<reName>_Return

([const Rte_CDS_<cts>*])

Where <cts> is the component type symbol of the Atomic-
SwComponentType

and reName the runnable entity name.

The instance handle is included if and only if the software compo-
nent’s supportsMultipleInstantiation attribute is set to true.

500 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Note that Rte_Instance cannot be used directly, as there will be
pointers to multiple components’ structure types within the single VFB
Tracing header file, and Rte_Instance would therefore be ambigu-
ous. c(RTE00045)

5.11.5 Configuration

The VFB tracing mechanism works by the RTE invoking the tracepoint hook function
whenever the tracing event occurs.

The support trace events and their hook function name and signature are defined in
Section 5.11.4. There are many potential trace events and it is likely that only a few will
be of interest at any one time. Therefore The RTE generator supports a mechanism to
configure which trace events are of interest.

In order to minimize RTE Overheads, trace events that are not enabled should have
no run-time effect on the generated system. This is achieved through generated code
within the VFB Tracing Header File (see Section 5.3.7) and the user supplied definitions
from the RTE Configuration Header file (see Section 5.3.8).

The definition of trace event hook functions is contained within user code. If a defini-
tion is encapsulated within a #if block, as follows, the definition will automatically be
omitted when the trace event is disabled.

1 #if !defined(<trace event>)
2 void <trace event>(<params>)
3 {
4 /* Function definition */
5 }
6 #endif

The configuration of which individual trace events are enabled is entirely under the
control of the user via the definitions included in the RTE Configuration header file.

[rte_sws_8000]d When RteVfbTrace is set to "true", a user shall be able to enable
any hook function in the RTE Configuration header file, regardless of whether it was
not enabled in the RTE configuration with a RteVfbTraceFunction parameter.
c(RTE00005, RTE00008)

5.11.6 Interaction with Object-code Software-Components

VFB tracing is only available during the “RTE Generation” phase rte_sws_1319 and
therefore hook functions never appear in an application header file created during “RTE
Contract” phase. However, object-code software-components are compiled against
the “RTE Contract” phase header and can therefore only trace events that are inserted
into the generated RTE. In particular they cannot trace events that require invocation of
hook functions to be inserted into the API mapping such as the Rte_Pim API. However,

501 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

many trace events are applicable to object-code software-components including trace
events related to the explicit communication API, to task activity and for runnable entity
start and stop.

This approach means that the external interactions of the object-code software-
component can be monitored without requiring modification of the delivered object-
code and without revealing the internal activity of the software-component. The ap-
proach is therefore considered to be consistent with the desire for IP protection that
prompts delivery of a software-component as object-code. Finally, tracing can easily
be disabled for a production build without invalidating tests of the object-code software-
component.

502 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

6 Basic Software Scheduler Reference

6.1 Scope

This chapter presents the Basic Software Scheduler API from the perspective of AU-
TOSAR Basic Software Module – these API is not applicable for AUTOSAR software-
components.

Section 6.2 presents basic principles of the API including naming conventions and
supported programming languages. Section 6.3 describes the header files used by
the Basic Software Scheduler and the files created by an RTE generator. The data
types used by the API are described in Section 6.4 and Sections 6.5 and 6.6 provide
a reference to the Basic Software Scheduler API itself including the definition of Basic
Software Module Entities.

6.2 API Principles

6.2.1 Basic Software Scheduler Namespace

The Basic Software Scheduler is interleaved with the scheduling part of the RTE. Fur-
ther on it is generated by the RTE Generator together with the RTE so Basic Software
Scheduler and RTE can not be separated if both are generated. Therefore the Basic
Software Scheduler uses the namespace of the RTE for internal symbols, variables
and functions, see rte_sws_1171.

The only exceptions are defines, data types and functions belonging to the interface of
the Basic Software Scheduler. These are explicitly mentioned in the specification.

[rte_sws_7284]d All Basic Software Scheduler symbols (e.g. function names, data
types, etc.) belonging to the Basic Software Schedulers interfaces are required to use
the SchM_ prefix. c(BSW00307, BSW00300, RTE00055)

In case of Basic Software Modules supporting multiple instances of the same Ba-
sic Software Module the name space of the BswSchedulableEntitys and the
Basic Software Scheduler API related to one instance of a Basic Software Mod-
ule is extended by the vendorId and the vendorApiInfix. See document [31]
[BSW00347]. In the following chapters this optional part is denoted by usage of
squared brackets [_<vi>_<ai>].

[rte_sws_7528]d If the attribute vendorApiInfix exists for a Basic Software Mod-
ule, the RTE generator shall insert the vendorId (<vi>) and the vendorApi-
Infix (<ai>) with leading underscores where it is denoted by [_<vi>_<ai>].
c(BSW00347)

503 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

6.2.2 BSW Scheduler Name Prefix and Section Name Prefix

Since the Basic Software Module Description supports the description of BSW Module
Clusters one Basic Software Module Description can contain the content of several
BSW Modules. In order to fulfill the Standardized Interfaces with the cluster interface
different ICC3 Module abbreviations [9] inside one cluster can occur. For the Basic
Software Scheduler the Module abbreviation is used as BSW Scheduler Name Prefix
in the SchM API. Nevertheless the shortName of the BswModuleDescription can
as well describe the BSW Scheduler Name Prefix and Section Name Prefix in order to
provide one common prefix in case of ICC3 modules.

In the Meta Model Module abbreviations relevant for the Schedule Manager API are
explicitly expressed with the meta class BswSchedulerNamePrefix. Further infor-
mation can be found in document [9].

504 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Referrable

ImplementationProps

+ symbol: CIdentifier

BswSchedulerNamePrefix

SectionNamePrefix

Identifiable

MemorySection

+ alignment: AlignmentType [0..1]
+ option: Identifier [0..*]
+ size: PositiveInteger [0..1]
+ symbol: Identifier [0..1]

Identifiable

ResourceConsumption

BswInternalBehavior BswModuleEntity
ARElement

AtpBlueprint
AtpBlueprintable

BswModuleEntry

Identifiable

ExclusiveArea

AtpPrototype

ModeDeclarationGroupPrototype

AtpStructureElement
Identifiable

Trigger

AtpStructureElement

InternalBehavior

Identifiable

ExecutableEntity

+ minimumStartInterval: TimeValue

ARElement

Implementation

BswImplementation

+ arReleaseVersion: RevisionLabelString
+ vendorApiInfix: Identifier [0..1]

«atpVariation»

+exclusiveArea

0..*

«atpVariation»

+schedulerNamePrefix

0..*

+schedulerNamePrefix 0..1

«atpVariation»

+sectionNamePrefix

0..*

+prefix 0..1

«atpVariation»

+memorySection

0..*

+behavior 1

«atpVariation»

+entity

1..*

+implementedEntry

1

+executableEntity

0..*

+canEnterExclusiveArea 0..* +runsInsideExclusiveArea0..*

«atpVariation»

+accessedModeGroup 0..*

«atpVariation»

+managedModeGroup 0..*

+resourceConsumption 1

«atpVariation»

+issuedTrigger

0..*

«atpVariation»

+calledEntry

0..*

Figure 6.1: BswSchedulerNamePrefix and SectionNamePrefix

In several requirements of this specification the Module Prefix is required and deter-
mined as follows:

[rte_sws_7593]d The BSW Scheduler Name Prefix <bsnp> of the calling BSW mod-
ule shall be derived from the BswModuleDescription shortName if no BswSched-

505 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

ulerNamePrefix is defined for the BswModuleEntity using the related Basic Soft-
ware Scheduler API. c(RTE00148, RTE00149)

[rte_sws_7594]d The BSW Scheduler Name Prefix <bsnp> shall be the value of the
symbol attribute of the BswSchedulerNamePrefix of the BswModuleEntity if a
BswSchedulerNamePrefix is defined for the BswModuleEntity using the related
Basic Software Scheduler API. c(RTE00148, RTE00149)

Further on the Memory Mapping inside one cluster can either keep or abolish the ICC3
borders. For some cases (e.g. Entry Point Prototype) the RTE has to know the used
prefixes for the Memory Allocation Keywords as well.

In the Meta Model these prefixes are expressed with the meta class Section-
NamePrefix. Further information can be found in document [9].

[rte_sws_7595]d The Section Name Prefix <snp> shall be the module abbreviation (in
uppercase letters) of the BSW module derived from the BswModuleDescription’s
shortName if no SectionNamePrefix is defined for the BswModuleEntity imple-
menting the related BswModuleEntry. c(RTE00148, RTE00149)

[rte_sws_7596]d The Section Name Prefix <snp> shall be the symbol of the Sec-
tionNamePrefix of the MemorySection associated to the BswModuleEntity im-
plementing the related BswModuleEntry if a SectionNamePrefix is defined for
the BswModuleEntity implementing the related BswModuleEntry. c(RTE00148,
RTE00149)

For instance the following input configuration

506 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

MEM :BswModuleDescription

category = BSW_CLUSTER

NvM_MainFunction :
BswSchedulableEntity

MemIf_SetMode :
BswCalledEntity

MEM :
BswInternalBehavior

MemIf :
BswSchedulerNamePrefix

symbol = MemIf

NvM :
BswSchedulerNamePrefix

symbol = NvM

NvM_WriteBlock :
BswCalledEntity

NvM_MainFunction :
BswModuleEntry

NvM_WriteBlock :
BswModuleEntry

MemIf_SetMode :
BswModuleEntry

CODE :SwAddrMethod

sectionType = code

MEM :
BswImplementation

MEM :
ResourceConsumption

CODE_MEMIF :
MemorySection

symbol = CODE

CODE_NVM :
MemorySection

symbol = CODE

MEMIF_PART :
SectionNamePrefix

symbol = MEMIF

NVM_PART :
SectionNamePrefix

symbol = NVM

NVM_START_SEC_CODE
NVM_STOP_SEC_CODE

MEMIF_START_SEC_CODE
MEMIF_STOP_SEC_CODE

+executableEntity

+prefix+sectionNamePrefix

+sectionNamePrefix +prefix

+executableEntity

+entity

+entity

+executableEntity

+internalBehavior

+behavior

+schedulerNamePrefix

+schedulerNamePrefix

+schedulerNamePrefix

+memorySection

+implementedEntry

+resourceConsumption

+swAddrMethod

+swAddrmethod

+swAddrMethod

+swAddrmethod

+schedulerNamePrefix

+providedEntry

+schedulerNamePrefix

+providedEntry +implementedEntry

+implementedEntry+providedEntry

+entity

+memorySection

+swAddrMethod

Figure 6.2: Example of ICC2 cluster

would result in the generation of the Entry Point Prototype according rte_sws_7195 as:

1 #define NVM_START_SEC_CODE
2 #include "MemMap.h"
3

507 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

4 FUNC(void, NVM_CODE) NvM_MainFunction (void);
5

6 #define NVM_STOP_SEC_CODE
7 #include "MemMap.h"

6.3 Basic Software Scheduler modules

[rte_sws_7288]d Every file of the Basic Software Scheduler shall be named with the
prefix SchM_. c(BSW00300)

6.3.1 Module Interlink Types Header

The Module Interlink Types Header defines specific types related to this basic software
module derived either from the input configuration or from the RTE / Basic Software
Scheduler implementation.

[rte_sws_7503]d The RTE generator shall create a Module Interlink Types Header
File for each BswSchedulerNamePrefix in the BswInternalBehavior of each
BswImplementation referencing such BswInternalBehavior defined in the in-
put. c(BSW00415)

For instance a input configuration with two BswImplementations (typical with dif-
ferent API infix) referencing a BswInternalBehavior with three BswScheduler-
NamePrefixes would result in the generation of six Module Interlink Types Header
Files.

6.3.1.1 File Name

[rte_sws_7295]d The name of the Module Interlink Types Header File shall be formed
in the following way:

SchM_<bsnp>_[<vi>_<ai>]Type.h

Where here

<bsnp> is the BSW Scheduler Name Prefix according rte_sws_7593 and
rte_sws_7594,

<vi> is the vendorId of the BSW module and

<ai> is the vendorApiInfix of the BSW module.

508 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

The sub part in squared brackets [<vi>_<ai>] is omitted if no vendorApiInfix is
defined for the Basic Software Module. See rte_sws_7528. c(BSW00415, BSW00300,
BSW00347)

Example 6.1

The following declaration in the input XML:
<AR-PACKAGE>

<SHORT-NAME>CanDriver</SHORT-NAME>
<ELEMENTS>

<BSW-MODULE-DESCRIPTION>
<SHORT-NAME>Can</SHORT-NAME>
<INTERNAL-BEHAVIORS>

<BSW-INTERNAL-BEHAVIOR>
<SHORT-NAME>YesWeCan</SHORT-NAME>

</BSW-INTERNAL-BEHAVIOR>
</INTERNAL-BEHAVIORS>

</BSW-MODULE-DESCRIPTION>
<BSW-IMPLEMENTATION>

<SHORT-NAME>MyCanDrv</SHORT-NAME>
<VENDOR-ID>25</VENDOR-ID>
<BEHAVIOR-REF DEST="BSW-INTERNAL-BEHAVIOR">/CanDriver/Can/

YesWeCan</BEHAVIOR-REF>
<VENDOR-API-INFIX>Dev0815</VENDOR-API-INFIX>

</BSW-IMPLEMENTATION>
</ELEMENTS>

</AR-PACKAGE>

should result in the Module Interlink Types Header SchM_Can_25_Dev0815Type.h
being generated.

The concatenation of the basic software module prefix (which has to be equally with
the short name of the basic software module description) and the vendor API infix is
required to support the separation of several basic software module instances. In dif-
ference to the multiple instantiation concept of software components, where the same
component code is used for all component instances, basic software modules are mul-
tiple instantiated by creation of own code per instance in a different name space.

6.3.1.2 Scope

[rte_sws_7296]d The Module Interlink Types Header for a module shall contain only
data types relevant for that instance of a basic software module. c(BSW00415)

Requirement rte_sws_7296 means that compile time checks ensure that a Module
Interlink Header File that uses the Module Interlink Types Header File only accesses

509 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

the generated data types to which it has been configured. The use of data types which
are not used by the basic software module, will fail with a compiler error [RTE00017].

[rte_sws_7297]d The Module Interlink Types Header shall be valid for both C and C++

source. c(RTE00126, RTE00138)

Requirement rte_sws_7297 is met by ensuring that all definitions within the Application
Types Header File are defined using C linkage if a C++ compiler is used.

[rte_sws_7298]d All definitions within in the Module Interlink Types Header File shall
be preceded by the following fragment:

1 #ifdef __cplusplus
2 extern "C" {
3 #endif /* __cplusplus */

c(RTE00126, RTE00138)

[rte_sws_7299]d All definitions within the Module Interlink Types Header shall be suf-
fixed by the following fragment:

1 #ifdef __cplusplus
2 } /* extern "C" */
3 #endif /* __cplusplus */

c(RTE00126, RTE00138)

6.3.1.3 File Contents

[rte_sws_7500]d The Module Interlink Types Header shall include the RTE Types
Header File. c(BSW00415)

The name of the RTE Types Header File is defined in Section 5.3.4.

6.3.1.4 Basic Software Scheduler Modes

The Module Interlink Types Header File shall contain identifiers for the ModeDeclara-
tions and type definitions for ModeDeclarationGroups as defined in Chapter 6.4.2

6.3.2 Module Interlink Header

The Module Interlink Header defines the Basic Software Scheduler API and any asso-
ciated data structures that are required by the Basic Software Scheduler implementa-
tion. But the Module Interlink Header file is not allowed to create objects in memory.

[rte_sws_7501]d The RTE generator shall create a Module Interlink Header File
for each BswSchedulerNamePrefix in the BswInternalBehavior of each

510 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

BswImplementation referencing such BswInternalBehavior defined in the
input.c(BSW00415)

[rte_sws_ext_7512] Each BSW module implementation shall include its Module In-
terlink Header File if it uses Basic Software Scheduler API or if it implements
BswSchedulableEntitys.

[rte_sws_7502]d The Module Interlink Header File shall not contain code that creates
objects in memory. c(BSW00308)

6.3.2.1 File Name

[rte_sws_7504]d

The name of the Module Interlink Header File shall be formed in the following way:

1 SchM_<bsnp>[_<vi>_<ai>].h

Where here

<bsnp> is the BSW Scheduler Name Prefix according rte_sws_7593 and
rte_sws_7594,

<vi> is the vendorId of the BSW module and

<ai> is the vendorApiInfix of the BSW module.

The sub part in squared brackets [_<vi>_<ai>] is omitted if no vendorApiInfix
is defined for the Basic Software Module. c(BSW00415, BSW00300, BSW00347)

Example 6.2

The following declaration in the input XML:
<AR-PACKAGE>

<SHORT-NAME>CanDriver</SHORT-NAME>
<ELEMENTS>

<BSW-MODULE-DESCRIPTION>
<SHORT-NAME>Can</SHORT-NAME>
<INTERNAL-BEHAVIORS>

<BSW-INTERNAL-BEHAVIOR>
<SHORT-NAME>YesWeCan</SHORT-NAME>

</BSW-INTERNAL-BEHAVIOR>
</INTERNAL-BEHAVIORS>

</BSW-MODULE-DESCRIPTION>
<BSW-IMPLEMENTATION>

<SHORT-NAME>MyCanDrv</SHORT-NAME>
<VENDOR-ID>25</VENDOR-ID>
<BEHAVIOR-REF DEST="BSW-INTERNAL-BEHAVIOR">/CanDriver/Can/

YesWeCan</BEHAVIOR-REF>
<VENDOR-API-INFIX>Dev0815</VENDOR-API-INFIX>

</BSW-IMPLEMENTATION>
</ELEMENTS>

</AR-PACKAGE>

511 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

should result in the Module Interlink Header SchM_Can_25_Dev0815.h being gener-
ated.

The concatenation of the basic software module prefix (which has to be equally with
the short name of the basic software module description) and the vendorApiInfix
is required to support the separation of several basic software module instances. In dif-
ference to the multiple instantiation concept of software components, where the same
component code is used for all component instances, basic software modules are mul-
tiple instantiated by creation of own code per instance in a different name space.

6.3.2.2 Scope

[rte_sws_7505]d The Module Interlink Header for a component shall contain declara-
tions relevant for that instance of a basic software module. c(BSW00415)

Requirement rte_sws_7505 means that compile time checks ensure that a Module
Interlink Header File that uses the Module Interlink Header File only accesses the
generated data types to which it has been configured. The use of data types which are
not used by the basic software module, will fail with a compiler error [RTE00017].

6.3.2.3 File Contents

[rte_sws_7506]d The Module Interlink Header File shall include the Module Interlink
Types Header File. c(BSW00415)

The name of the Module Interlink Types Header File is defined in Section 6.3.1.

[rte_sws_7507]d The Module Interlink Header shall be valid for both C and C++

source. c(RTE00126, RTE00138)

Requirement rte_sws_7507 is met by ensuring that all definitions within the Application
Types Header File are defined using C linkage if a C++ compiler is used.

[rte_sws_7508]d All definitions within in the Module Interlink Header File shall be pre-
ceded by the following fragment:

1 #ifdef __cplusplus
2 extern "C" {
3 #endif /* __cplusplus */

c(RTE00126, RTE00138)

[rte_sws_7509]d All definitions within the Module Interlink Header File shall be suffixed
by the following fragment:

1 #ifdef __cplusplus
2 } /* extern "C" */
3 #endif /* __cplusplus */

512 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

c(RTE00126, RTE00138)

6.3.2.3.1 Entry Point Prototype

The Module Interlink Header File also includes a prototype for each BswSchedula-
bleEntitys entry point (rte_sws_7283).

6.3.2.3.2 Basic Software Scheduler - Basic Software Module Interface

The Module Interlink Header File defines the “interface” between a Basic Software
Module and the Basic Software Scheduler. The interface consists of the Basic Software
Scheduler API for the Basic Software Module and the prototypes for BswSchedula-
bleEntitys entry point. The definition of the Basic Software Scheduler API requires
in case of macro implementation that both relevant data structures and API calls are
defined. In case of interfaces implemented as functions, the prototypes for the Basic
Software Scheduler API of the particular Basic Software Module instance is sufficient.
The data structures are dependent from the implementation and configuration of the
Basic Software Scheduler and are not standardized. If data structures are required
these shall be accessible via the Module Interlink Header File as well.

The RTE generator is required rte_sws_7505 to limit the contents of the Module In-
terlink Header file to only that information that is relevant to that instance of a basic
software module. This requirement includes the definition of the API.

[rte_sws_7510]d Only Basic Software Scheduler API calls that are valid for the partic-
ular instance of a basic software module shall be defined within the modules Module
Interlink Header File. c(BSW00415, RTE00017)

Requirement rte_sws_7510 ensures that attempts to invoke invalid API calls will be
rejected as a compile-time error [RTE00017].

[rte_sws_6534]d The RTE Generator shall wrap each Basic Software Scheduler API
definition of a variant existent API according table 4.22 if the variability shall be imple-
mented.

1 #if (<condition> [||<condition>])
2

3 <Basic Software Scheduler API Definition>
4

5 #endif

where condition are the condition value macro(s) of the Variation-
Points relevant for the conditional existence of the RTE API (see table 4.22),
Basic Software Scheduler API Definition is the code according an invari-
ant Basic Software Scheduler API definition (see also rte_sws_7510, rte_sws_7250,
rte_sws_7253, rte_sws_7255, rte_sws_7260, rte_sws_7556, rte_sws_7263,
rte_sws_7266) c(RTE00229)

513 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

The Basic Software Scheduler API for basic software modules is defined in 6.5

[rte_sws_7511]d The Basic Software Scheduler API of the particular Basic Software
Module instance shall be implemented as functions if the basic software module is
delivered as object code. c(BSW00342)

In case of basic software modules delivered as source code the definitions of the Basic
Software Scheduler API contained in the Module Interlink Header File can be optimized
during the “RTE Generation” phase when the mapping of the BswSchedulableEn-
titys to OS Tasks is known.

6.4 API Data Types

Besides the API functions for accessing Basic Software Scheduler services, the API
also contains Basic Software Scheduler specific data types.

6.4.1 Predefined Error Codes for Std_ReturnType

The specification in [29] specifies a standard API return type Std_ReturnType. The
Std_ReturnType defines the "‘status"’ and "‘error values"’ returned by API functions.
It is defined as a uint8 type. The value “0” is reserved for “No error occurred”.

Symbolic name Value Comments
[rte_sws_7289] SCHM_E_OK 0 No error occurred.
[rte_sws_7290]
SCHM_E_LIMIT

130 A internal Basic Software Scheduler
limit has been exceeded. Request could
not be handled. OUT buffers are not
modified.
Note: The value has to be identically
with rte_sws_1317

[rte_sws_7562]
SCHM_E_NO_DATA

131 An explicit read API call returned no
data. (This is no error.)
Note: The value has to be identically
with rte_sws_1061

[rte_sws_7563]
SCHM_E_TRANSMIT_ACK

132 Transmission acknowledgement re-
ceived.
Note: The value has to be identically
with rte_sws_1065

514 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Symbolic name Value Comments
[rte_sws_2747]
SCHM_E_IN_EXCLUSIVE_AREA

135 The error is returned by a blocking API
and indicates that the schedulable en-
tity could not enter a wait state, because
one ExecutableEntity of the current
task’s call stack has entered or is running
in an ExclusiveArea.
Note: The value has to be identically
with rte_sws_2739

[rte_sws_7054]
SCHM_E_TIMEOUT

129 The configured timeout exceeds before
the intended result was ready.
Note: The value has to be identically
with rte_sws_1064

Table 6.1: Basic Software Scheduler Error and Status values

The underlying type for Std_ReturnType is defined as a uint8 for reasons of com-
patibility. Consequently, #define is used to declare the error values:

1 typedef uint8 Std_ReturnType; /* defined in Std_Types.h */
2

3 #define SCHM_E_OK 0U

[rte_sws_7291]d The errors as defined in table 6.1 shall be defined in the RTE Header
File. c(RTE00051)

An Std_ReturnType value can be directly compared (for equality) with the above
pre-defined error identifiers.

6.4.2 Basic Software Modes

An Rte_ModeType is used to hold the identifiers for the ModeDeclarations of a
ModeDeclarationGroup.

[rte_sws_7292]d For each ModeDeclarationGroup, the Module Interlink Types
Header File shall contain a type definition

1 #ifndef RTE_MODETYPE_<ModeDeclarationGroup>
2 #define RTE_MODETYPE_<ModeDeclarationGroup>
3 typedef <type> Rte_ModeType_<ModeDeclarationGroup>;
4 #endif

where <ModeDeclarationGroup> is the short name of the ModeDeclaration-
Group and <type> is the shortName of the mapped ImplementationDataType.

c(RTE00213)

Note: This requirement is deprecated to avoid incompatible or duplicate type definitions
(see rte_sws_7260).

515 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Within the Rte_ModeType_<ModeDeclarationGroup>, the
(Rte_ModeType_<ModeDeclarationGroup>)<n> value, where <n> is the num-
ber of modes declared within the group, is reserved to express a transition between
modes.

[rte_sws_7293]d For each ModeDeclarationGroup, the Module Interlink Types
Header File shall contain a definition

1 #ifndef RTE_TRANSITION_<ModeDeclarationGroup>
2 #define RTE_TRANSITION_<ModeDeclarationGroup> \
3 <n>U
4 #endif

where <ModeDeclarationGroup> is the short name of the ModeDeclaration-
Group1 and <n> is the number of modes declared within the group. c(RTE00213)

[rte_sws_7294]d For each mode of a mode declaration, the Module Interlink Types
Header File shall contain a definition

1 #ifndef RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>
2 #define RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration> \
3 <index>U
4 #endif

where <ModeDeclarationGroup> is the short name of the ModeDeclaration-
Group, <ModeDeclaration> is the short name of a ModeDeclaration2, and
<index> is the index of the ModeDeclarations in alphabetic ordering (ASCII / ISO
8859-1 code in ascending order) of the short names within the ModeDeclaration-
Group. The lowest index shall be ‘0’ and therefore the range of assigned values is
0..<n> where <n> is the number of modes declared within the group c(RTE00213)

6.5 API Reference

This chapter defines the “interface” between a particular instance of a Basic Software
Module and the Basic Software Scheduler. The wild-card <bsnp> is the BSW Sched-
uler Name Prefix according rte_sws_7593 and rte_sws_7594.

6.5.1 SchM_Enter

Purpose: SchM_Enter function enters an exclusive area of an Basic Software
Module.

Signature: [rte_sws_7250]d
void SchM_Enter_<bsnp>[_<vi>_<ai>]_<name>()

1No additional capitalization is applied to the names.
2No additional capitalization is applied to the names.

516 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Where here

<bsnp> is the BSW Scheduler Name Prefix according rte_sws_7593
and rte_sws_7594,

<vi> is the vendorId of the calling BSW module,

<ai> vendorApiInfix of the calling BSW module and

<name> name is the exclusive area name.

The sub part in squared brackets [_<vi>_<ai>] is omitted if no
vendorApiInfix is defined for the Basic Software Module. See
rte_sws_7528. c(RTE00222, BSW00347, RTE00046)

Existence: [rte_sws_7251]d A SchM_Enter API shall be created for each Ex-
clusiveArea that is declared in the BswBehavior and which
has an canEnterExclusiveArea association. c(RTE00222,
RTE00046)

Description: The SchM_Enter API call is invoked by an AUTOSAR BSW module
to define the start of an exclusive area.

Return Value: None.

Notes: The Basic Software Scheduler is not required to support nested in-
vocations of SchM_Enter for the same exclusive area.

[rte_sws_7252]d The Basic Software Scheduler shall permit calls
to SchM_Enter and SchM_Exit to be nested as long as different
exclusive areas are exited in the reverse order they were entered.
c(RTE00222, RTE00046)

[rte_sws_ext_7285] The SchM_Enter and SchM_Exit API may only
be used by BswModuleEntitys that contain a corresponding ca-
nEnterExclusiveArea association

[rte_sws_ext_7529] The SchM_Enter and SchM_Exit API may only
be called nested if different exclusive areas are invoked; in this case
exclusive areas shall exited in the reverse order they were entered.

[rte_sws_7578]d The Basic Software Scheduler shall support calls
of SchM_Enter and SchM_Exit after initialization of the OS but before
the Basic Software Scheduler is initialized. c(RTE00222, RTE00046)

[rte_sws_7579]d The Basic Software Scheduler shall support calls
of SchM_Enter and SchM_Exit in the context of os tasks, category 1
and category 2 interrupts. c(RTE00222, RTE00046)

Note: the possible implementation mechanism for such an exclusive
area is limited in this case to mechanism available for the related kind
of context. For instance SuspendAllInterrupts and ResumeAllInter-
rupts service of the OS are available for all kind of context but GetRe-

517 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

source and ReleaseResource is only available for tasks and category
2 interrupts.

Within the AUTOSAR OS an attempt to lock a resource cannot fail
because the lock is already held. The lock attempt can only fail due
to configuration errors (e.g. caller not declared as accessing the re-
source) or invalid handle. Therefore the return type from this function
is void.

6.5.2 SchM_Exit

Purpose: SchM_Exit function leaves an exclusive area of an Basic Software
Module.

Signature: [rte_sws_7253]d
void
SchM_Exit_<bsnp>[_<vi>_<ai>]_<name>()

Where here

<bsnp> is the BSW Scheduler Name Prefix according rte_sws_7593
and rte_sws_7594,

<vi> is the vendorId of the calling BSW module,

<ai> vendorApiInfix of the calling BSW module and

<name> name is the exclusive area name.

The sub part in squared brackets [_<vi>_<ai>] is omitted if no
vendorApiInfix is defined for the Basic Software Module. See
rte_sws_7528. c(RTE00222, BSW00347, RTE00046)

Existence: [rte_sws_7254]d A SchM_Exit API shall be created for each Exclu-
siveArea that is declared in the BswBehavior and which has an
canEnterExclusiveArea association.. c(RTE00222, RTE00046)

Description: The SchM_Exit API call is invoked by an AUTOSAR BSW module to
define the end of an exclusive area.

Return Value: None.

Notes: The Basic Software Scheduler is not required to support nested in-
vocations of SchM_Exit for the same exclusive area.

518 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Requirement rte_sws_7252 permits calls to SchM_Exit and
SchM_Exit to be nested as long as different exclusive areas are ex-
ited in the reverse order they were entered.

[rte_sws_ext_7189] The SchM_Exit API may only be used by
BswModuleEntitys that contain a corresponding canEnterEx-
clusiveArea association

6.5.3 SchM_Switch

Purpose: Initiate a mode switch. The SchM_Switch API call is used for sending
of a mode switch notification by a Basic Software Module.

Signature: [rte_sws_7255]d
Std_ReturnType
SchM_Switch_<bsnp>[_<vi>_<ai>]_<name>(

IN <mode>)

Where here

<bsnp> is the BSW Scheduler Name Prefix according rte_sws_7593
and rte_sws_7594,

<vi> is the vendorId of the calling BSW module,

<ai> vendorApiInfix of the calling BSW module and

<name> is the provided (providedModeGroup) ModeDeclara-
tionGroupPrototype name.

The sub part in squared brackets [_<vi>_<ai>] is omitted if no
vendorApiInfix is defined for the Basic Software Module. See
rte_sws_7528. c(RTE00215, BSW00347)

Existence: [rte_sws_7256]d The existence of a managedModeGroup associ-
ation to a providedModeGroup ModeDeclarationGroupPro-
totype shall result in the generation of a SchM_Switch API.
c(RTE00215)

[rte_sws_ext_7257] The SchM_Switch API may only be used by
BswModuleEntitys that contain a corresponding managedMode-
Group association

Description: The SchM_Switch triggers a mode switch for all connected required
(requiredModeGroup) ModeDeclarationGroupPrototypes.

The SchM_Switch API call includes exactly one IN parameter for the
next mode <mode> of type Rte_ModeType_<M> where <M> is the
ModeDeclarationGroup short name.

519 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Return Value: The return value is used to indicate errors detected by the Basic Soft-
ware Scheduler during execution of the SchM_Switch call.

• [rte_sws_7258]d SCHM_E_OK – data passed to service suc-
cessfully. c(RTE00213, RTE00214, RTE00094)

• [rte_sws_7259]d SCHM_E_LIMIT – a mode switch has been
discarded due to a full queue. c(RTE00213, RTE00214,
RTE00143)

Notes: SchM_Switch is restricted to ECU local communication.

If a mode instance is currently involved in a transition then the
SchM_Switch API will attempt to queue the request and return
rte_sws_2667. However if no transition is in progress for the mode
instance, the mode disablings and the activations of OnEntry, On-
Transition, and OnExit runnables for this mode instance are executed
before the SchM_Switch API returns rte_sws_2665.

Note that the mode switch might be discarded when the queue is full
and a mode transition is in progress, see rte_sws_2675.

[rte_sws_7286]d If the mode switched acknowledgment is enabled,
the RTE shall notify the mode manager when the mode switch is
completed. c(RTE00213, RTE00214, RTE00122)

6.5.4 SchM_Mode

There exist two versions of the SchM_Mode APIs. Depending on the attribute enhanced-
ModeApi in the basic ssoftware module description there shall be provided different
versions of this API (see also 6.5.5).

Purpose: Provides the currently active mode of a required
(requiredModeGroup) ModeDeclarationGroupPrototype.

Signature: [rte_sws_7260]d
<return>
SchM_Mode_<bsnp>[_<vi>_<ai>]_<name>()

Where here

<bsnp> is the BSW Scheduler Name Prefix according rte_sws_7593
and rte_sws_7594,

<vi> is the vendorId of the calling BSW module,

<ai> vendorApiInfix of the calling BSW module and

<name> is the required (requiredModeGroup) ModeDeclara-
tionGroupPrototype name.

520 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

The sub part in squared brackets [_<vi>_<ai>] is omitted if no
vendorApiInfix is defined for the Basic Software Module. See
rte_sws_7528. c(RTE00213, BSW00347)

Existence: [rte_sws_7261]d If a accessedModeGroup association to a
providedModeGroup or requiredModeGroup ModeDeclara-
tionGroupPrototype exists and if the attribute enhancedMod-
eApi of the BswModeSenderPolicy resp. BswModeReceiver-
Policy is set to false a SchM_Mode API according to rte_sws_7261.
c(RTE00215)

Note: This ensures the availability of the SchM_Mode API for the mode
manager and mode user

[rte_sws_ext_7587] The SchM_Mode API may only be used by
BswModuleEntitys that contain a corresponding managedMode-
Group association or accessedModeGroup association

Description: The SchM_Mode API tells the Basic Software Module which mode
of a required or provided ModeDeclarationGroupPrototype is
currently active. This is the information that the RTE uses for the
ModeDisablingDependencys. A new mode will not be indicated
immediately after the reception of a mode switch notification
from a mode manager, see section 4.4.4.During mode transitions,
i.e. during the execution of runnables that are triggered on exiting
one mode or on entering the next mode, overlapping mode disablings
of two modes are active. In this case, the SchM_Mode API will return
RTE_TRANSITION_<ModeDeclarationGroup>.

The SchM_Mode will return the same mode for all required or provided
ModeDeclarationGroupPrototypes that are connected. (see
rte_sws_2630).

Return Value: The type is Rte_ModeType_<M> where <M> is the ModeDeclaration-
Group short name.

[rte_sws_7262]d The SchM_Mode API shall return the following val-
ues:

• during mode transitions:
RTE_TRANSITION_<ModeDeclarationGroup>,

where <ModeDeclarationGroup> is the short name of the
ModeDeclarationGroup.

• else:
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>,

where <ModeDeclarationGroup> is the short name of the
ModeDeclarationGroup and <ModeDeclaration> is the short
name of the currently active ModeDeclaration

521 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

c(RTE00144)

Notes: None.

6.5.5 Enhanced SchM_Mode

Purpose: Provides the currently active mode of a required
(requiredModeGroup) ModeDeclarationGroupPrototype.
If the corresponding mode machine instance is in transition
additionally the values of the previous and the next mode are
provided.

Signature: [rte_sws_7694]d
<return>
SchM_Mode_<bsnp>[_<vi>_<ai>]_<name>(

OUT <previousmode>,
OUT <nextmode>)

)

Where here

<bsnp> is the BSW Scheduler Name Prefix according rte_sws_7593
and rte_sws_7594,

<vi> is the vendorId of the calling BSW module,

<ai> vendorApiInfix of the calling BSW module and

<name> is the required (requiredModeGroup) ModeDeclara-
tionGroupPrototype name.

The sub part in squared brackets [_<vi>_<ai>] is omitted if no
vendorApiInfix is defined for the Basic Software Module. See
rte_sws_7528. c(RTE00213, BSW00347)

Existence: [rte_sws_8507]d The existence of a accessedModeGroup as-
sociation to a providedModeGroup or requiredModeGroup
ModeDeclarationGroupPrototype given that the attribute en-
hancedModeApi of the BswModeSenderPolicy resp. BswMod-
eReceiverPolicy is set to true shall result in the generation of
a SchM_Mode API according to rte_sws_8506. c(RTE00215)

Note: This ensures the availability of the SchM_Mode API for the mode
manager and mode user

[rte_sws_ext_8508] The SchM_Mode API may only be used by
BswModuleEntitys that contain a corresponding managedMode-
Group association or accessedModeGroup association

522 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Description: The SchM_Mode API tells the Basic Software Module which mode
of a required or provided ModeDeclarationGroupPrototype is
currently active. This is the information that the RTE uses for the
ModeDisablingDependencys. A new mode will not be indicated
immediately after the reception of a mode switch notification
from a mode manager, see section 4.4.4.During mode transitions,
i.e. during the execution of runnables that are triggered on exiting
one mode or on entering the next mode, overlapping mode disablings
of two modes are active. In this case, the SchM_Mode API will re-
turn RTE_TRANSITION_<ModeDeclarationGroup>. The param-
eter <previousmode> then contains the mode currently being left.
The parameter <nextmode> contains the mode being entered.

The SchM_Mode will return the same mode for all required or provided
ModeDeclarationGroupPrototypes that are connected. (see
rte_sws_2630).

Return Value: The type is Rte_ModeType_<M> where <M> is the ModeDeclaration-
Group short name.

[rte_sws_8509]d During transitions SchM_Mode API shall return the
following values:

• the return value shall be
RTE_TRANSITION_<ModeDeclarationGroup>

• <previousmode> shall contain the
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>
of the mode being left,

• <nextmode> shall contain the
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>
of the mode being entered,

where <ModeDeclarationGroup> is the short name of the Mode-
DeclarationGroup.

c(RTE00144)

[rte_sws_8510]d If the mode machine instance is in a defined
mode SchM_Mode shall return the follwing values:

• the return value shall contain the value of the
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>,

• <previousmode> shall contain the value of the
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>,

• <nextmode> shall contain the the value of
RTE_MODE_<ModeDeclarationGroup>_<ModeDeclaration>,

523 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

where <ModeDeclarationGroup> is the short name of the Mode-
DeclarationGroup and <ModeDeclaration> is the short name of
the currently active ModeDeclaration.

c(RTE00144)

Notes: None.

6.5.6 SchM_SwitchAck

Purpose: Provide access to acknowledgment notifications for mode communi-
cation.

Signature: [rte_sws_7556]d
Std_ReturnType
SchM_SwitchAck_<bsnp>[_<vi>_<ai>]_<name>()

Where here

<bsnp> is the BSW Scheduler Name Prefix according rte_sws_7593
and rte_sws_7594,

<vi> is the vendorId of the calling BSW module,

<ai> vendorApiInfix of the calling BSW module and

<name> is the required (requiredModeGroup) ModeDeclara-
tionGroupPrototype name.

The sub part in squared brackets [_<vi>_<ai>] is omitted if no
vendorApiInfix is defined for the Basic Software Module. See
rte_sws_7528. c(BSW00310, RTE00213)

Existence: [rte_sws_7557]d Acknowledgement is enabled for a provided
(providedModeGroup) ModeDeclarationGroupPrototype by
the presence of an ackRequest attribute of the BswModeSender-
Policy. c(RTE00213, RTE00122)

[rte_sws_7558]d A non-blocking SchM_SwitchAck API shall be
generated for a provided (providedModeGroup) ModeDeclara-
tionGroupPrototype if acknowledgement is enabled and a man-
agedModeGroup association references the providedModeGroup
ModeDeclarationGroupPrototype. c(RTE00213, RTE00122)

[rte_sws_ext_7567] The SchM_SwitchAck API may only be used by
BswModuleEntitys that contain a corresponding managedMode-
Group association

Description: The SchM_SwitchAck API takes no parameters – the return value is
used to indicate the acknowledgement status to the caller.

524 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Return Value: The return value is used to indicate the “status” status and errors
detected by the Basic Software Scheduler during execution of the
Rte_SwitchAck call.

• [rte_sws_7560]d SCHM_E_NO_DATA – (non-blocking read) no
error is occurred when the SchM_SwitchAck read was at-
tempted. c(RTE00213, RTE00122)

• [rte_sws_7561]d SCHM_E_TRANSMIT_ACK – For communica-
tion of mode switches, this indicates, that the BswSchedu-
lableEntitys on the transition have been executed and the
mode disablings have been switched to the new mode (see
rte_sws_2587). c(RTE00213, RTE00122)

• [rte_sws_7055]d SCHM_E_TIMEOUT The configured timeout
exceeds before the mode transition was completed.
OR:
The partition of the mode users is stopped or restarting or
has been restarted while the mode switch was requested.
c(RTE00213, RTE00122)

The SCHM_E_TRANSMIT_ACK return value is not considered to be
an error but rather indicates correct operation of the API call.

When SCHM_E_NO_DATA occurs, a Basic Software Module is free to
reinvoke SchM_SwitchAck and thus repeat the attempt to read the
mode switch acknowledgment status.

The SCHM_E_TIMEOUT return value can denote a stopped or restart-
ing partition even for the SchM_SwitchAck API in case of a common
mode machine instance.

Notes: If multiple transmissions on the same provided
(providedModeGroup) ModeDeclarationGroupPrototype
are outstanding it is not possible to determine which is acknowl-
edged first. If this is important, transmissions should be serialized
with the next occurring only when the previous transmission has
been acknowledged or has timed out.

6.5.7 SchM_Trigger

Purpose: Triggers the activation of connected BswSchedulableEntitys of
the same or other Basic Software Modules.

Signature: [rte_sws_7263]d
signature without queuing support:

void
SchM_Trigger_<bsnp>[_<vi>_<ai>]_<name>()

525 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

signature with queuing support:

Std_ReturnType
SchM_Trigger_<bsnp>[_<vi>_<ai>]_<name>()

Where here

<bsnp> is the BSW Scheduler Name Prefix according rte_sws_7593
and rte_sws_7594,

<vi> is the vendorId of the calling BSW module,

<ai> vendorApiInfix of the calling BSW module and

<name> is the released (releasedTrigger) Trigger name.

The sub part in squared brackets [_<vi>_<ai>] is omitted if no
vendorApiInfix is defined for the Basic Software Module. See
rte_sws_7528.

The signature for queuing support shall be generated by the RTE
generator if the swImplPolicy of the Trigger is set to queued.
c(RTE00218, BSW00347)

Existence: [rte_sws_7264]d The existence of a issuedTrigger association to
the released (releasedTrigger) Trigger shall result in the gen-
eration of a SchM_Trigger API. c(RTE00218)

[rte_sws_ext_7265] The SchM_Trigger API may only be used
by the BswModuleEntity that contains the corresponding is-
suedTrigger association.

Description: The SchM_Trigger triggers an execution for all BswSchedula-
bleEntitys whose BswExternalTriggerOccurredEvent is
associated to connected required Trigger.

Return Value: None in case of signature without queuing support.

[rte_sws_6722]d The SchM_Trigger API shall return the following
values:

• SCHM_E_OK if the trigger was successfully queued or if no queue
is configured

• SCHM_E_LIMIT if the trigger was not queued because the max-
imum queue size is already reached.

in the case of signature with queuing support. c(RTE00235)

Notes: SchM_Trigger is restricted to ECU local communication.

526 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

6.5.8 SchM_ActMainFunction

Purpose: Triggers the activation of the BswSchedulableEntity which is as-
sociated with an activationPoint of the same or Basic Software
Module.

Signature: [rte_sws_7266]d
signature without queuing support:

void
SchM_ActMainFunction_<bsnp>[_<vi>_<ai>]_<name>()

signature with queuing support:

Std_ReturnType
SchM_ActMainFunction_<bsnp>[_<vi>_<ai>]_<name>()

Where here

<bsnp> is the BSW Scheduler Name Prefix according rte_sws_7593
and rte_sws_7594,

<vi> is the vendorId of the calling BSW module,

<ai> vendorApiInfix of the calling BSW module and

<name> is the associated BswInternalTriggeringPoint short
name.

The sub part in squared brackets [_<vi>_<ai>] is omitted if no
vendorApiInfix is defined for the Basic Software Module. See
rte_sws_7528.

The signature for queuing support shall be generated by the RTE
generator if the swImplPolicy of the BswInternalTriggering-
Point is set to queued. c(RTE00218, BSW00347)

Existence: [rte_sws_7267]d The existence of an activationPoint shall re-
sult in the generation of a SchM_ActMainFunction API. c(RTE00218)

[rte_sws_ext_7268] The SchM_ActMainFunction API may only be
used by the BswModuleEntity that contains the corresponding ac-
tivationPoint association.

Description: The SchM_ActMainFunction triggers an execution for all
BswSchedulableEntitys whose BswInternalTriggerOc-
curredEvent is associated by activationPoint.

Return Value: None in case of signature without queuing support.

[rte_sws_6723]d The SchM_ActMainFunction API shall return the
following values:

527 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

• SCHM_E_OK if the trigger was successfully queued or if no queue
is configured

• SCHM_E_LIMIT if the trigger was not queued because the max-
imum queue size is already reached.

in the case of signature with queuing support. c(RTE00235)

Notes: SchM_ActMainFunction is restricted to ECU local communication.

6.5.9 SchM_CData

Purpose: Provide access to the calibration parameter of a Basic Software Mod-
ule defined internally. The ParameterDataPrototype in the role
perInstanceParameter is used to define Basic Software Module
internal calibration parameters. Internal because the Parameter-
DataPrototype cannot be reused outside the Basic Software Mod-
ule. Access is read-only. Each instance has an own data value asso-
ciated with it.

Signature: [rte_sws_7093]d
void
SchM_CData_<bsnp>[_<vi>_<ai>]_<name>()

Where here

<bsnp> is the BSW Scheduler Name Prefix according rte_sws_7593
and rte_sws_7594,

<vi> is the vendorId of the calling BSW module,

<ai> vendorApiInfix of the calling BSW module and

<name> is the shortName of the ParameterDataPrototype.

The sub part in squared brackets [_<vi>_<ai>] is omitted if no
vendorApiInfix is defined for the Basic Software Module. See
rte_sws_7528. c(BSW00347, RTE00155)

Existence: [rte_sws_7094]d An SchM_CData API shall be created for each de-
fined ParameterDataPrototype in the role perInstancePa-
rameter c(RTE00155)

Description: The SchM_CData API provides access to the defined calibration pa-
rameter within a Basic Software Module. The actual data values for
a Basic Software Module instance may be set after component com-
pilation.

Return Value: The SchM_CData return value provide access to the data value of the
ParameterDataPrototype in the role perInstanceParameter.

528 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

The return type of SchM_CData is dependent on the Implementa-
tionDataType of the ParameterDataPrototype and can either
be a value or a pointer to the location where the value can be ac-
cessed. Thus the component does not need to use type casting to
convert access to the ParameterDataPrototype data.

For details of the <return> value definition see section 5.2.6.6.

[rte_sws_7095]d The return value of the corresponding SchM_CData

API shall provide access to the calibration parameter value specific
to the instance of the Basic Software Module. c(RTE00155)

Notes: None.

6.6 Bsw Module Entity Reference

An AUTOSAR Basic Software Module defines one or more “BSW module entities”. A
BSW Module entity is a piece of code with a single entry point and an associate set of
attributes. In contrast to runnable entities which are exclusively scheduled by the RTE
only a subset of the BSW module entities, the BswSchedulableEntitys are called
by the Basic Software Scheduler. Others might implement ’C’ function interfaces which
are directly called by other BSW modules or interrupts which are called by OS / interrupt
controller.

A Basic Software Module Description provides definitions for each BswModuleEn-
tity within the BSW Module. The Basic Software Scheduler triggers the execution of
BswSchedulableEntitys in response to different BswEvents.

For BSW modules implemented using C or C++ the entry point of a BswSchedu-
lableEntity is implemented by a function with global scope defined within a BSW
Modules source code. The following sections consider the function signature and pro-
totype.

6.6.1 Signature

The definition of all BswSchedulableEntitys, whatever the BswEvent that triggers
their execution, follows the same basic form.

Purpose: Trigger a BswSchedulableEntity if the related BswEvent defined
within the BswModuleDescription is raised.

Signature: [rte_sws_7282]d
void <bsnp>[_<vi>_<ai>]_<name>(void)

Where here

<bsnp> is the BSW Scheduler Name Prefix according rte_sws_7593
and rte_sws_7594,

529 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

<vi> is the vendorId of the BSW module,

<ai> is the vendorApiInfix of the BSW module, and

<name> is the second part behind the <bsnp>_ of the BswMod-
uleEntry shortName referred as implementedEntry.

The sub part in square brackets [_<vi>_<ai>] is omitted if no
vendorApiInfix is defined for the Basic Software Module. See
rte_sws_7528. c(BSW00347, RTE00211, RTE00213, RTE00216)

[rte_sws_ext_7287] The Basic Software Scheduler requires that the BswModuleEn-
try has no service arguments and no return value.

6.6.2 Entry Point Prototype

The entry point defined in the Basic Software Modules source must be compatible
with the called function when the BswSchedulableEntity is triggered by the Basic
Software Scheduler and therefore the RTE generator is required to emit a prototype
for the function.

[rte_sws_7283]d The RTE generator shall emit a Entry Point Prototype for each
BswSchedulableEntitys implementedEntry in the Module Interlink Header file
See (6.3.2) according rte_sws_7282. c(RTE00211, RTE00213, RTE00216)

[rte_sws_7195]d The RTE Generator shall wrap each BswSchedulableEntity’s
Entry Point Prototype in the Module Interlink Header with the Memory Mapping and
Compiler Abstraction macros.

1 #define <snp>[_<vi>_<ai>]_START_SEC_<sadm>
2 #include "MemMap.h"
3

4 FUNC(void, <snp>[_<vi>_<ai>]_<sadm>)
5 <bsnp>[_<vi>_<ai>]_<name> (void);
6

7 #define <snp>[_<vi>_<ai>]_STOP_SEC_<sadm>
8 #include "MemMap.h"

Where here

<bsnp> is the BSW Scheduler Name Prefix according rte_sws_7593 and
rte_sws_7594,

<snp> is the Section Name Prefix according rte_sws_7595 and rte_sws_7596,

<vi> is the vendorId of the BSW module,

<ai> is the vendorApiInfix of the BSW module,

<name> is the second part behind the first underscore of the BswModuleEntry
shortName referred as implementedEntry and

530 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

<sadm> is the shortName of the referred swAddrMethod.

The sub part in square brackets [_<vi>_<ai>] is omitted if no vendorApiInfix is
defined for the Basic Software Module. See rte_sws_7528.

The Memory Mapping macros could wrap several Entry Point Prototype if these refer-
ring the same swAddrMethod. If RunnableEntity does not refer a swAddrMethod
the <sadm> is set to CODE. c(RTE00148, RTE00149)

Please note the example 6.2 of Entry Point Prototype.

[rte_sws_6533]d The RTE Generator shall wrap each Entry Point Prototype in the
Module Interlink Header file of a variant existent BswSchedulableEntity if the vari-
ability shall be implemented.

1 #if (<condition>)
2

3 <Entry Point Prototype>
4

5 #endif

where condition is the Condition Value Macro of the VariationPoint rele-
vant for the variant existence of the BswSchedulableEntity (see table 4.24),
Entry Point Prototype is the code according an invariant Entry Point Prototype
(see also rte_sws_7282, rte_sws_7283). c(RTE00229)

6.6.3 Reentrancy

A BswSchedulableEntity is declared within a BSW Module. The Basic Software
Module Scheduler ensures that concurrent activation of same BswSchedulableEn-
tity is only allowed if the implemented entry points attribute "isReentrant" is set to
"true" (see Section 4.2.6).

Consistency rule:

[rte_sws_7588]d The RTE Generator shall reject configurations where a BswSchedu-
lableEntity whose referenced BswModuleEntry in the role implementedEntry
has its isReentrant attribute set to false, and this BswSchedulableEntity is
mapped to different tasks which can pre-empt each other. c(RTE00018)

6.7 Basic Software Scheduler Lifecycle API Reference

6.7.1 SchM_Init

Purpose: Initialize the Basic Software Scheduler part of the RTE.

Signature: [rte_sws_7270]d
void SchM_Init([SchM_ConfigType * ConfigPtr])

531 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

c(BSW101, RTE00116)

Existence: [rte_sws_7271]d The SchM_Init API is always created. c(BSW101)

Description: SchM_Init is intended to allocate and initialize system resources
used by the Basic Software Scheduler part of the RTE for the core on
which it is called. After initialization the scheduling of BswSchedu-
lableEntitys is enabled.

[rte_sws_ext_7272] SchM_Init shall be called only once by the
EcuStateManager on each core after the basic software modules
required by the Basic Software Scheduler part of the RTE are ini-
tialized. These modules include:

• OS

[rte_sws_6544]d The optional parameter configPtr shall be a
pointer to a post build data set which is used to resolve the Post-
Build Variability of the Basic Software Scheduler and RTE.
c(BSW00405, RTE00229, RTE00204, RTE00206, RTE00207)

[rte_sws_6545]d The parameter configPtr shall only be pro-
vided if the input configuration of the RTE and Basic Software
Scheduler contains PostBuild Variability which has to be
implemented by the RTE Generator. c(BSW00405, RTE00229,
RTE00204, RTE00206, RTE00207)

[rte_sws_ext_7576] The SchM_Deinit API may only be used after
the RTE finalized (after termination of the Rte_Stop)

[rte_sws_7273]d SchM_Init shall return within finite execution time
– it must not enter an infinite loop. c(BSW101)

SchM_Init may be implemented as a function or a macro.

Return Value: None

Notes: SchM_Init is declared in the lifecycle header file Rte_Main.h.

6.7.2 SchM_Deinit

Purpose: Finalize the Basic Software Scheduler part of the RTE on the core it
is called.

Signature: [rte_sws_7274]d
void SchM_Deinit(void)

c(BSW00336)

Existence: [rte_sws_7275]d The SchM_Deinit API is always created.
c(BSW00336)

532 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Description: SchM_Deinit is used to finalize Basic Software Scheduler part of
the RTE of the core on which it is called. This service releases all
system resources allocated by the Basic Software Scheduler part on
that core.

[rte_sws_ext_7276] SchM_Deinit shall be called by the EcuState-
Manager before the basic software modules required by Basic Soft-
ware Scheduler part are shut down. These modules include:

• OS

[rte_sws_7277]d SchM_Deinit shall return within finite execution
time. c(BSW00336)

SchM_Deinit may be implemented as a function or a macro.

Return Value: None

Notes: SchM_Deinit is declared in the lifecycle header file Rte_Main.h.

6.7.3 SchM_GetVersionInfo

Purpose: Returns the version information of the Basic Software Scheduler.

Signature: [rte_sws_7278]d
void SchM_GetVersionInfo(Std_VersionInfoType * versioninfo)

c(BSW00407)

Existence: [rte_sws_7279]d The SchM_GetVersionInfo API is only created if
RteSchMVersionInfoApi is set to true. c(BSW00407)

Description: [rte_sws_7280]d SchM_GetVersionInfo shall return the version in-
formation of the RTE module which includes the Basic Software
Scheduler. The version information includes:

• Module Id

• Vendor Id

• Vendor specific version numbers

c(BSW00407)

[rte_sws_7281]d The parameter versioninfo of the
SchM_GetVersionInfo shall point to the memory location hold-
ing the version information of the Basic Software Scheduler.
c(BSW00407)

SchM_GetVersionInfo may be implemented as a function or a
macro.

Return Value: None

533 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Notes: SchM_GetVersionInfo is declared in the lifecycle header file
Rte_Main.h.

The existence of the API SchM_GetVersionInfo depends on the pa-
rameter RteSchMVersionInfoApi.

Vendor specific version numbers shall represent build version which
depends from the RTE generator version and the input configuration.
It is not in the scope if this specification to standardize the way how
the version numbers are created in detail because these are the ven-
dor specific version numbers.

534 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

7 RTE ECU Configuration

The RTE provides the glue layer between the AUTOSAR software-components and the
Basic Software thus enabling several AUTOSAR software-components to be integrated
on one ECU. The RTE layer is shown in figure 7.1.

Figure 7.1: ECU Architecture RTE

The overall structure of the RTE configuration parameters is shown in figure 7.2. It has
to be distinguished between the configuration parameters for the RTE generator and
the configuration parameters for the generated RTE itself.

Most of the information needed to generate an RTE is already available in the ECU
Extract of the System Description [8]. From this extract also the links to the AUTOSAR
software-component descriptions and ECU Resource description are available. So
only additional information not covered by the three aforementioned formats needs to
be provided by the ECU Configuration description.

To additionally allow the most flexibility and freedom in the implementations of the RTE,
only configuration parameters which are common to all implementations are standard-
ized in the ECU Configuration Parameter definition. Any additional configuration pa-
rameters which might be needed to configure a full functional RTE have to be specified
using the vendor specific parameter definition mechanism described in the ECU Con-
figuration specification document [15].

535 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

7.1 Ecu Configuration Variants

The RTE shall supports two Ecu Configuration Variants:

[rte_sws_5103]d VARIANT-PRE-COMPILE Only parameters with "Pre-compile time"
configuration are allowed in this variant. c(BSW00345, BSW00397)

[rte_sws_5104]d VARIANT-POST-BUILD Parameters with "Pre-compile time", "Link
time" and "Post-build time" are allowed in this variant. c(BSW00399, BSW00400,
RTE00201, RTE00204, RTE00206, RTE00207, RTE00229)

For details on the ECU Configuration approach please refer to the Specification of ECU
Configuration [15].

7.2 RTE Module Configuration

Figure 7.2 shows the module configuration of the Rte and its sub-containers.

536 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Software Component template

Rte :EcucModuleDef

upperMultiplicity = 1
lowerMultiplicity = 0

RteEventToTaskMapping :
EcucParamConfContainerDef

upperMultipl icity = *
lowerMultipl icity = 0

RteGeneration :
EcucParamConfContainerDef

lowerMultipl icity = 1
upperMultipl icity = 1

AUTOSARParameterDefinition :
EcucDefinitionCollection

RteSwComponentInstance :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

AtpPrototype

SwComponentPrototype

RteExclusiveAreaImplementation :
EcucParamConfContainerDef

upperMultipl icity = *
lowerMultipl icity = 0

RteNvRamAllocation :
EcucParamConfContainerDef

upperMultipl icity = *
lowerMultipl icity = 0

RteSoftwareComponentInstanceRef :
EcucForeignReferenceDef

destinationType = SW-COMPONENT-PROTOTYPE
upperMultipl icity = 1
lowerMultipl icity = 0

RteSwComponentType :
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = *

RteComponentTypeRef :
EcucForeignReferenceDef

destinationType = SW-COMPONENT-TYPE

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

RteOsInteraction :
EcucParamConfContainerDef

lowerMultipl icity = 1
upperMultipl icity = *

RtePostBuildVariantConfiguration :
EcucParamConfContainerDef

multipleConfigurationContainer = true

RteExternalTriggerConfig :
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = *

+subContainer

+container

+container

+container

+container

+module

+container

*

«isOfType»

+type 1
{redefines
atpType}

+reference

+subContainer

+reference

+subContainer

+subContainer

Figure 7.2: RTE configuration overview

Module Name Rte
Module Description Configuration of the Rte (Runtime Environment) module.
Included Containers
Container Name Multiplicity Scope / Dependency
RteBswGeneral 1 General configuration parameters of the Bsw

Scheduler section.
RteBswModuleInstance 0..* Represents one instance of a Bsw-Module configured

on one ECU.
RteGeneration 1 This container holds the parameters for the

configuration of the RTE Generation.
RteImplicitCommunication 0..* Configuration of the Implicit Communication behavior

to be generated.

537 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Container Name Multiplicity Scope / Dependency
RteInitializationBehavior 1..* Specifies the initialization strategy for variables

allocated by RTE with the purpose to implement
VariableDataPrototypes.

The container defines a set of
RteSectionInitializationPolicys and one
RteInitializationStrategy which is applicable for this set.

RteOsInteraction 1..* Interaction of the Rte with the Os.
RtePostBuildVariant
Configuration

1 Specifies the PostbuildVariantSets for each of the
PostBuild configurations of the RTE.

The shortName of this container defines the name of
the RtePostBuildVariant.

RteSwComponentInstance 0..* Representation of one SwComponentPrototype
located on the to be configured ECU. All subcontainer
configuration aspects are in relation to this
SwComponentPrototype.

The RteSwComponentInstance can be associated
with either a AtomicSwComponentType or
ParameterSwComponentType.

RteSwComponentType 0..* Representation of one SwComponentType for the
base of all configuration parameter which are affecting
the whole type and not a specific instance.

7.2.1 RTE Configuration Version Information

In order to identify the RTE Configuration version a dedicated RTE code has been
generated from the RTE Configuration information may contain one or more DOC-
REVISION elements in the ECUC-MODULE-CONFIGURATION-VALUES element of the
RTE Configuration (see example 7.1).

[rte_sws_5184]d The REVISION-LABEL shall be parsed according to the rules de-
fined in the Generic Structure Template [10] for RevisionLabelString allowing to
parse the three version informations for AUTOSAR:

• major version: first part of the REVISION-LABEL

• minor version: second part of the REVISION-LABEL

• patch version: third part of the REVISION-LABEL

• optional fourth part shall be used for documentation purposes in the Basic Soft-
ware Module Description (see section 3.4.3)

If the parsing fails all three version numbers shall be set to zero. c(RTE00233)

[rte_sws_5185]d If there are several DOC-REVISION elements in the input ECUC-
MODULE-CONFIGURATION-VALUES the newest according to the DATE shall be taken
into account.

538 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

If the search for the newest DOC-REVISION fails three version numbers shall be set to
zero. c(RTE00233)

Example 7.1

<AUTOSAR xmlns="http://autosar.org/4.0.0" xmlns:xsi="http://www.w3.org
/2001/XMLSchema-instance" xsi:schemaLocation="http://autosar.org/4.0.0
AUTOSAR.xsd">

<AR-PACKAGES>
<AR-PACKAGE>

<SHORT-NAME>Rte_Example</SHORT-NAME>
<ELEMENTS>

<ECUC-MODULE-CONFIGURATION-VALUES>
<SHORT-NAME>Rte_Configuration</SHORT-NAME>
<ADMIN-DATA>

<DOC-REVISIONS>
<DOC-REVISION>

<REVISION-LABEL>2.1.34</REVISION-LABEL>
<DATE>2009-05-09T00:00:00.0Z</DATE>

</DOC-REVISION>
<DOC-REVISION>

<REVISION-LABEL>2.1.35</REVISION-LABEL>
<DATE>2009-06-21T09:30:00.0Z</DATE>

</DOC-REVISION>
</DOC-REVISIONS>

</ADMIN-DATA>
<DEFINITION-REF DEST="ECUC-MODULE-DEF">/AUTOSAR/Rte</DEFINITION-

REF>
<CONTAINERS>

<!-- ... -->
</CONTAINERS>

</ECUC-MODULE-CONFIGURATION-VALUES>
</ELEMENTS>

</AR-PACKAGE>
</AR-PACKAGES>

</AUTOSAR>

7.3 RTE Generation Parameters

The parameters in the container RteGeneration are used to configure the RTE gen-
erator. They all need to be defined during pre-compile time.

539 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Rte :EcucModuleDef

upperMultipl icity = 1
lowerMultipl icity = 0

(from RTE)

RteGenerationMode :
EcucEnumerationParamDef

defaultValue = COMPATIBILITY_MODE

COMPATIBILITY_MODE :
EcucEnumerationLiteralDef

VENDOR_MODE :
EcucEnumerationLiteralDef

RteGeneration :
EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = 1

RteVfbTraceEnabled :
EcucBooleanParamDef

defaultValue = false

RteVfbTraceFunction :
EcucFunctionNameDef

upperMultipl icity = *
lowerMultipl icity = 0

RteMeasurementSupport :
EcucBooleanParamDef

defaultValue = false

RteCalibrationSupport :
EcucEnumerationParamDef

defaultValue = NONE

NONE :
EcucEnumerationLiteralDef

SINGLE_POINTERED :
EcucEnumerationLiteralDef

DOUBLE_POINTERED :
EcucEnumerationLiteralDef

INITIALIZED_RAM :
EcucEnumerationLiteralDef

RteOptimizationMode :
EcucEnumerationParamDef

defaultValue = RUNTIME

RUNTIME :
EcucEnumerationLiteralDef

MEMORY :
EcucEnumerationLiteralDef

RteVfbTraceClientPrefix :
EcucLinkerSymbolDef

upperMultipl icity = *
lowerMultipl icity = 0

RteValueRangeCheckEnabled :
EcucBooleanParamDef

defaultValue = false

RteToolChainSignificantCharacters :
EcucIntegerParamDef

defaultValue = 31
lowerMultiplicity = 0
upperMultiplicity = 1
min = 0
max = 65535

RteDevErrorDetect :
EcucBooleanParamDef

defaultValue = false RteDevErrorDetectUninit :
EcucBooleanParamDef

defaultValue = false
RteCodeVendorId :

EcucIntegerParamDef

min = 0
max = 65535

RteIocInteractionReturnValue :
EcucEnumerationParamDef

defaultValue = RTE_IOC

RTE_IOC :
EcucEnumerationLiteralDef

RTE_COM :
EcucEnumerationLiteralDef

+parameter

+literal

+l iteral

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+container

+parameter

+literal

+parameter

+parameter

+parameter

+literal

+l iteral

+l iteral

+l iteral

+li teral

+li teral

+l iteral

+parameter

Figure 7.3: RTE generation parameters

540 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

RteGeneration

SWS Item [rte_sws_9009_Conf]
Container Name RteGeneration
Description This container holds the parameters for the configuration of the RTE

Generation.
Configuration Parameters

Name RteCalibrationSupport {RTE_CALIBRATION_SUPPORT}
[rte_sws_9007_Conf]

Description The RTE generator shall have the option to switch off support for
calibration for generated RTE code. This option shall influence
complete RTE code at once.

Multiplicity 1
Type EcucEnumerationParamDef
Range DOUBLE_POINTERED

INITIALIZED_RAM
NONE (default)
SINGLE_POINTERED

Configuration Class Pre-compile time X All Variants
Link time –
Post-build time –

Scope / Dependency

Name RteCodeVendorId {RTE_CODE_VENDOR_ID} [rte_sws_9086_Conf]
Description Holds the vendor ID of the generated Rte code.
Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 65535
Default Value
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name RteDevErrorDetect {RTE_DEV_ERROR_DETECT}
[rte_sws_9008_Conf]

Description The Rte shall log development errors to the Det module.
Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

541 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Name RteDevErrorDetectUninit {RTE_DEV_ERROR_DETECT_UNINIT}
[rte_sws_9085_Conf]

Description The Rte shall detect if it is started when its APIs are called, and the
BSW Scheduler shall check if it is initialized when its APIs are called.

Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency dependency: Shall only be used when RteDevErrorDetect equals true.

Name RteGenerationMode {RTE_GENERATION_MODE}
[rte_sws_9010_Conf]

Description Switch between the two available generation modes of the RTE
generator.

Multiplicity 1
Type EcucEnumerationParamDef
Range COMPATIBILITY_MODE (default)

VENDOR_MODE
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name RteIocInteractionReturnValue {RTE_IOC_INTERACTION_RETURN_V
ALUE} [rte_sws_9094_Conf]

Description Defines whether the return value of RTE APIs is based on RTE-IOC
interaction or RTE-COM interaction.

Multiplicity 1
Type EcucEnumerationParamDef
Range RTE_COM

RTE_IOC (default)
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name RteMeasurementSupport {RTE_MEASUREMENT_SUPPORT}
[rte_sws_9011_Conf]

Description The RTE generator shall have the option to switch off support for
measurement for generated RTE code. This option shall influence
complete RTE code at once.

Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

542 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Name RteOptimizationMode {RTE_OPTIMIZATION_MODE}
[rte_sws_9012_Conf]

Description Switch between the two available optimization modes of the RTE
generator.

Multiplicity 1
Type EcucEnumerationParamDef
Range MEMORY

RUNTIME (default)
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name RteToolChainSignificantCharacters {RTE_TOOL_CHAIN_SIGNIFICAN
T_CHARACTERS} [rte_sws_9013_Conf]

Description If present, the RTE generator shall provide the list of C RTE identifiers
whose name is not unique when only the first
RteToolChainSignificantCharacters characters are considered.

Multiplicity 0..1
Type EcucIntegerParamDef
Range 0 .. 65535
Default Value 31
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name RteValueRangeCheckEnabled {RTE_VALUE_RANGE_CHECK_ENAB
LED} [rte_sws_9014_Conf]

Description If set to true the RTE generator shall enable the value range checking
for the specified VariableDataPrototypes.

Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name RteVfbTraceClientPrefix [rte_sws_9016_Conf]
Description Defines an additional prefix for all VFB trace functions to be generated.

With this approach it is possible to have debugging and DLT trace
functions at the same time.

Multiplicity 0..*
Type EcucLinkerSymbolDef
Default Value
Regular Expression
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

543 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Name RteVfbTraceEnabled {RTE_VFB_TRACE_ENABLED}
[rte_sws_9015_Conf]

Description The RTE generator shall globally enable VFB tracing when
RteVfbTrace is set to "true".

Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name RteVfbTraceFunction [rte_sws_9017_Conf]
Description The RTE generator shall enable VFB tracing for a given hook function

when there is a #define in the RTE configuration header file for the
hook function name and tracing is globally enabled.
Example: #define Rte_WriteHook_i1_p1_a_Start

This also applies to VFB trace functions with a
RteVfbTraceClientPrefix, e.g. Rte_Dbg_WriteHook_I1_P1_a_Start.

Multiplicity 0..*
Type EcucFunctionNameDef
Default Value
Regular Expression
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency
No Included Containers

7.4 RTE PreBuild configuration

In order to support PreBuild configuration variation of the Rte input (see also sec-
tion 4.7) the container EcucVariationResolver is providing a set of references to
PredefinedVariant. These define values for SwSystemconst.

Note that the information for the EcucVariationResolver is provided in the EcuC
part of the ECU Configuration, since it does not only influence the Rte but also many
other BSW Modules.

544 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

GenericStructureTemplate

EcuC :EcucModuleDef

upperMultiplicity = 1
lowerMultiplicity = 0

(from EcuC)

EcucVariationResolver :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

ARElement

VariantHandling::
SwSystemconstantValueSet

PredefinedVariantRef :EcucForeignReferenceDef

destinationType = PREDEFINED-VARIANT
lowerMultiplicity = 1
upperMultiplicity = *

ARElement

VariantHandling::
PredefinedVariant

VariantHandling::SwSystemconstValue

«atpVariation»
+ value: Numerical

ARElement

SystemConstant::
SwSystemconst

+swSystemconst 1

+includedVariant 0..*

+swSystemconstantValueSet 0..*

+reference

+container

+swSystemconstantValue 0..*

Figure 7.4: RTE PreBuild configuration

EcucVariationResolver

SWS Item [EcuC009_Conf]
Container Name EcucVariationResolver
Description Collection of PredefinedVariant elements containing definition of values

for SwSystemconst which shall be applied when resolving the
variability during ECU Configuration.

Configuration Parameters

Name PredefinedVariantRef [EcuC010_Conf]
Description
Multiplicity 1..*
Type Foreign reference to PREDEFINED-VARIANT
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency
No Included Containers

545 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

7.5 RTE PostBuild configuration

In order to support PostBuild configuration variation of the generated Rte (see also
section 4.7) the container RtePostBuildVariantConfiguration is used. Each
instance of this container specifies one PostBuild variant of the generated Rte. The
shortName of the container RtePostBuildVariantConfiguration specifies the
variant name.

The actual values for the PostBuildVariantCriterion are defined in a two step
approach:

1. The reference RtePostBuildUsedPredefinedVariant collects the Prede-
finedVariant elements.

2. Each PredefinedVariant element collects a set of PostBuildVariantSet.

3. Each PostBuildVariantSet defines the PostBuildVariantCriterion-
Values for a set of PostBuildVariantCriterion.

The basic idea is that

• the PostBuildVariantSet can be provided by sub-system engineer,

• the PredefinedVariant can be designed by the Ecu integrator.

GenericStructureTemplate

ARElement

VariantHandling::
PostBuildVariantCriterion

RtePostBuildVariantConfiguration :
EcucParamConfContainerDef

multipleConfigurationContainer = true

ARElement

VariantHandling::
PostBuildVariantCriterionValueSet

VariantHandling::
PostBuildVariantCriterionValue

«atpVariation»
+ value: Integer

RtePostBuildUsedPredefinedVariant :
EcucForeignReferenceDef

destinationType = PREDEFINED-VARIANT
lowerMultiplicity = 1
upperMultiplicity = *

ARElement

VariantHandling::PredefinedVariant

+includedVariant
0..*

+postBuildVariantCriterionValue 0..*

+postBuildVariantCriterionValueSet 0..*

+reference

+variantCriterion 1

Figure 7.5: RTE PostBuild configuration

546 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

RtePostBuildVariantConfiguration

SWS Item [rte_sws_9084_Conf]
Container Name RtePostBuildVariantConfiguration[Multi Config Container]
Description Specifies the PostbuildVariantSets for each of the PostBuild

configurations of the RTE.

The shortName of this container defines the name of the
RtePostBuildVariant.

Configuration Parameters

Name RtePostBuildUsedPredefinedVariant [rte_sws_9083_Conf]
Description Reference to the PredefinedVariant element which defines the values

for PostBuildVariationCriterion elements.
Multiplicity 1..*
Type Foreign reference to PREDEFINED-VARIANT
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency
No Included Containers

547 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

7.6 Handling of Software Component instances

When entities of Software-Components are to be configured there is the need to actu-
ally address the instances of the AtomicSwComponentType. Since the Ecu Extract
of System Description contains a flat view on the Ecu’s Software-Components [8] the
SwComponentPrototypes in the Ecu Extract already represent the instances of the
Software Components.

CompositionSwComponentType

AtpPrototype
Identifiable

RootSwCompositionPrototype

ARElement
AtpStructureElement

System

+ ecuExtractVersion: RevisionLabelString [0..1]
+ pncVectorLength: PositiveInteger [0..1]
+ pncVectorOffset: PositiveInteger [0..1]
+ systemVersion: RevisionLabelString

ServiceSwComponentType

AtomicSwComponentType

AtpPrototype

SwComponentPrototype

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

AtpBlueprintable
AtpPrototype

PortPrototype

AtpStructureElement

SwConnector

ARElement

EcucValueCollection

«atpVariation» Tags:
Vh.latestBindingTime
= SystemDesignTime

«atpVariation» Tags:
Vh.latestBindingTime
= PostBuild

«atpVariation» Tags:
Vh.latestBindingTime
= PreCompileTime

AssemblySwConnector

PPortPrototype

RPortPrototype

0..* «instanceRef»

+requester
1

0..* «instanceRef»

+provider

1

+connector *

«atpVariation,atpSplitable»

«isOfType»

+softwareComposition

1
{redefines
atpType}

+component

0..*«atpVariation,atpSplitable»

+rootSoftwareComposition 0..1
«atpVariation»

+ecuExtract 1

+port 0..*

«atpVariation,atpSplitable»

*

«isOfType»

+type 1
{redefines
atpType}

Figure 7.6: Services in the ECU Configuration

548 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

RteSwComponentInstance

SWS Item [rte_sws_9005_Conf]
Container Name RteSwComponentInstance
Description Representation of one SwComponentPrototype located on the to be

configured ECU. All subcontainer configuration aspects are in relation
to this SwComponentPrototype.

The RteSwComponentInstance can be associated with either a
AtomicSwComponentType or ParameterSwComponentType.

Configuration Parameters

Name RteSoftwareComponentInstanceRef [rte_sws_9004_Conf]
Description Reference to a SwComponentPrototype.
Multiplicity 0..1
Type Foreign reference to SW-COMPONENT-PROTOTYPE
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency
Included Containers
Container Name Multiplicity Scope / Depedency
RteEventToTaskMapping 0..* Maps a RunnableEntity onto one OsTask based on the

activating RTEEvent.
Even if a RunnableEntity shall be executed via a direct
function call this RteEventToTaskMapping shall be
specified, but no RteMappedToTask and
RtePositionInTask elements given.

RteExclusiveArea
Implementation

0..* Specifies the implementation to be used for the data
consistency of this ExclusiveArea.

RteExternalTriggerConfig 0..* Defines the configuration of External Trigger Event
Communication for Software Components

RteInternalTriggerConfig 0..* Defines the configuration of Inter Runnable Triggering
for Software Components

RteNvRamAllocation 0..* Specifies the relationship between the
AtomicSwComponentType’s NVRAMMapping / NVRAM
needs and the NvM module configuration.

The container SwComponentInstance collects all the configuration information re-
lated to one specific instance of a AtomicSwComponentType. The individual aspects
will be described in the next sections.

7.6.1 RTE Event to task mapping

One of the major fragments of the RTE configuration is the mapping of AUTOSAR
Software-Components’ RunnableEntitys to OS Tasks. The parameters defined to
achieve this are shown in figure 7.7.

549 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Software Component template

RteEventToTaskMapping :
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 0

RteEventRef :
EcucForeignReferenceDef

destinationType = RTE-EVENT

AtpStructureElement
ExecutableEntity

RunnableEntity

+ canBeInvokedConcurrently: Boolean
+ symbol: CIdentifier

RtePositionInTask :
EcucIntegerParamDef

upperMultiplicity = 1
lowerMultiplicity = 0
min = 0
max = 65535

OsTask :
EcucParamConfContainerDef

upperMultipl icity = *
lowerMultipl icity = 0

RteMappedToTaskRef :
EcucReferenceDef

upperMultiplicity = 1
lowerMultiplicity = 0

AtpStructureElement
Identifiable

RTEEvent

Identifiable

WaitPoint

+ timeout: TimeValue

RteUsedOsEventRef :
EcucReferenceDef

upperMultiplicity = 1
lowerMultiplicity = 0

OsEvent :
EcucParamConfContainerDef

upperMultipl icity = *
lowerMultipl icity = 0

RteActivationOffset :
EcucFloatParamDef

min = 0
max = INF
lowerMultiplicity = 0
upperMultiplicity = 1

RteSwComponentInstance :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

OsScheduleTableExpiryPoint :
EcucParamConfContainerDef

upperMultipl icity = *
lowerMultipl icity = 1

OsAlarm :
EcucParamConfContainerDef

upperMultipl icity = *
lowerMultipl icity = 0

RteVirtuallyMappedToTaskRef :
EcucReferenceDef

upperMultiplicity = 1
lowerMultiplicity = 0

RteUsedOsAlarmRef :
EcucReferenceDef

upperMultiplicity = 1
lowerMultiplicity = 0

RteUsedOsSchTblExpiryPointRef :
EcucReferenceDef

upperMultiplicity = 1
lowerMultiplicity = 0

RteOsSchedulePoint :
EcucEnumerationParamDef

lowerMultiplicity = 0
upperMultiplicity = 1

NONE :
EcucEnumerationLiteralDef

CONDITIONAL :
EcucEnumerationLiteralDef

UNCONDITIONAL :
EcucEnumerationLiteralDef

RteImmediateRestart :
EcucBooleanParamDef

defaultValue = false

+parameter

+literal

+l iteral

+subContainer

+parameter

+reference

+parameter

+reference

+reference

+reference

+literal

+reference

+parameter

+destination

*

+trigger

1

+destination

+destination

+waitPoint *

+runnable
+startOnEvent 0..1

+destination

+destination

+reference

Figure 7.7: RTE Event to task mapping

The mapping is based on the RTEEvent because it is the source of the activation.
For each RunnableEntity which belongs to an AUTOSAR Software-Component in-
stance mapped on the ECU there needs to be a mapping container specifying how this
RunnableEntity activation shall be handled.

550 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

One major constraint is posed by the canBeInvokedConcurrently attribute of each
RunnableEntity because data consistency issues have to be considered.

7.6.1.1 Evaluation and execution order

Another important parameter is the PositionInTask which provides an order of
RunnableEntitys within the associated OsTask. When the task is executed pe-
riodically the PositionInTask parameter defines the order of execution within the
test. When the task is used to define a context for event activated RunnableEn-
titys the PositionInTask parameter defines the order of evaluation which actual
RunnableEntity shall be executed. Thus providing means to define a deterministic
delay between the beginning of execution of the task and the actual execution of the
RunnableEntity’s code.

In case of triggered runnables, OnEntry ExecutableEntitys, OnTransi-
tion ExecutableEntitys, OnExit ExecutableEntitys, and mode switch
acknowledge ExecutableEntitys the PositionInTask parameter defines the
order of evaluation which actual RunnableEntity shall be executed. All other pa-
rameters or references are not required.

7.6.1.2 Direct function call

If the RunnableEntity is a server runnable, triggered runnable, OnEn-
try ExecutableEntity, OnTransition ExecutableEntity, OnExit Exe-
cutableEntity, or a mode switch acknowledge ExecutableEntity and
shall be executed in the context of the caller (i.e. using a direct function call) the ele-
ment RunnableEntityMapping still shall be provided to indicate that this RTEEvent
has been considered in the mapping. In case of server runnables no further pa-
rameters or references are required (e.g. MappedToTaskRef can be left out).

7.6.1.3 Schedule Points

In order to allow explicit calls to the Os scheduler in an non-preemptive scheduling
setup, the configuration element RteOsSchedulePoint shall be used.

[rte_sws_5113]d The RTE Generator shall create an unconditional call to the Os API
Schedule after the execution call of the RunnableEntity if the RteOsSchedule-
Point configuration parameter is set to UNCONDITIONAL. In the generated code the
call to the Os API Schedule shall always be performed, even when the RunnableEn-
tity itself has not been executed (called). c()

Since the execution of a RunnableEntity may be performed (e.g. due to mode de-
pendent scheduling) the call of the Os API Schedule without any RunnableEntity

551 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

execution in between might occur. in order to prohibit such a call chain the CONDI-
TIONAL schedule point is available.

[rte_sws_5114]d The RTE Generator shall create a conditional call to the Os API
Schedule after the execution call of the RunnableEntity if the RteOsSchedule-
Point configuration parameter is set to CONDITIONAL. In the generated code the call
to the Os API Schedule shall be omitted when there was already a call to the Os API
Schedule before without any RunnableEntity execution in between. c()

[rte_sws_7042]d The Os API Schedule according rte_sws_5113 and rte_sws_5114
shall be called after the data written with implicit write access by the RunnableEn-
tity are propagated to other RunnableEntitys as specified in rte_sws_7021,
rte_sws_3957, rte_sws_7041 and rte_sws_3584 c()

[rte_sws_7043]d The Os API Schedule according rte_sws_5113 and rte_sws_5114
shall be called before the Preemption Area specific buffer used for a implicit read
access of the successor RunnableEntity are filled with actual data by a copy action
according rte_sws_7020. c()

[rte_sws_5115]d The RTE Generator shall create no call to the Os API Schedule after
the execution of the RunnableEntity if the RteOsSchedulePoint configuration
parameter is not present or is set to NONE. c()

[rte_sws_5116]d The RTE Generator shall reject configurations where not all
RteEventToTaskMappings which map the same RunnableEntity, have different
RteOsSchedulePoint settings. c(RTE00018)

7.6.1.4 Timeprotection support

[rte_sws_7801]d If RteMappedToTaskRef is configured but RteVirtual-
lyMappedToTaskRef is not configured, the RTE shall implement/evaluate the RTE-
Event that activates the RunnableEntity and execute the RunnableEntity in the
OsTask referenced by RteMappedToTaskRef. c()

[rte_sws_7802]d If both RteMappedToTaskRef and RteVirtuallyMappedTo-
TaskRef are configured, the RTE shall implement/evaluate the RTEEvent that ac-
tivates the RunnableEntity in the OsTask referenced by RteVirtuallyMapped-
ToTaskRef but execute the RunnableEntity in the OsTask referenced by
RteMappedToTaskRef. The RTE shall implement this by an activation of the OsTask
referenced by RteMappedToTaskRef when the RTEEvent is evaluated as "TRUE" in
the OsTask referenced by RteVirtuallyMappedToTaskRef. c(RTE00193)

[rte_sws_7803]d The RTE shall reject the configuration if RteMappedToTaskRef is
not configured but RteVirtuallyMappedToTaskRef is configured. c(RTE00018)

552 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

7.6.1.5 Os Interaction

When an OsEvent is used to activate the OsTask the reference UsedOsEventRef
specifies which OsEvent is used.

When an OsAlarm is used to implement a TimingEvent or a BackgroundEvent
the reference RteUsedOsAlarmRef specifies which OsAlarm is used.

[rte_sws_7806]d If RteUsedOsAlarmRef is configured and RteEventRef refer-
ences a TimingEvent the RTE shall implement the TimingEvent with the OsAlarm
referenced by RteUsedOsAlarmRef. c(RTE00232)

[rte_sws_7179]d If RteUsedOsAlarmRef is configured and RteEventRef refer-
ences a BackgroundEvent the RTE shall implement the BackgroundEvent with
the OsAlarm referenced by RteUsedOsAlarmRef. c()

When an OsScheduleTableExpiryPoint is used to implement a TimingEvent or
a BackgroundEvent the reference RteUsedOsSchTblExpiryPointRef specifies
which OsScheduleTableExpiryPoint is used.

[rte_sws_7807]d If RteUsedOsSchTblExpiryPointRef is configured and
RteEventRef references a TimingEvent the RTE shall implement the
TimingEvent with the OsScheduleTableExpiryPoint referenced by RteUse-
dOsSchTblExpiryPointRef. c(RTE00232)

[rte_sws_7180]d If RteUsedOsSchTblExpiryPointRef is configured and
RteEventRef references a BackgroundEvent the RTE shall implement the
BackgroundEvent with the OsScheduleTableExpiryPoint referenced by
RteUsedOsSchTblExpiryPointRef. c()

If neither RteUsedOsSchTblExpiryPointRef nor RteUsedOsAlarmRef are con-
figured and RteEventRef references a TimingEvent the RTE is free to imple-
ment the TimingEvent with the OsAlarm or OsScheduleTableExpiryPoint of
its choice.

[rte_sws_7808]d The RTE shall reject the configuration if both RteUsedOsAlarmRef
and RteUsedOsSchTblExpiryPointRef are configured. c(RTE00018)

[rte_sws_7809]d The RTE shall reject the configuration if RteUsedOsAlarmRef or
RteUsedOsSchTblExpiryPointRef is configured and RteEventRef doesn’t ref-
erence a TimingEvent or a BackgroundEvent. c(RTE00018)

7.6.1.6 Background activation

If neither RteUsedOsSchTblExpiryPointRef nor RteUsedOsAlarmRef is con-
figured and RteEventRef references a BackgroundEvent the RteMappedTo-
TaskRef has to reference the OsTask used for Background activation of RunnableEn-
tities and Basic Software Schedulable Entities on the related CPU core where the par-
tition of the software component is mapped.

553 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

The OsTask used for BackgroundEvent triggering has to have the lowest priority on
the core. There can only be one ’Background’ OsTask per CPU core.

[rte_sws_7181]d The RTE shall reject the configuration if

• RteEventRef references a BackgroundEvent and

• neither RteUsedOsAlarmRef nor RteUsedOsSchTblExpiryPointRef are
configured and

• if RteMappedToTaskRef reference an OsTask which has not the lowest priority
of the core.

c(RTE00018)

7.6.1.7 Constraints

There are some constraints which do apply when actually mapping the RunnableEn-
tity to an OsTask:

[rte_sws_5082]d The following restrictions apply to RTEEvents which are used to ac-
tivate RunnableEntity. OsEvents that are used to wakeUpFromWaitPoint shall
not be included in the mapping. c()

When a wakeUpFromWaitPoint is occurring the RunnableEntity resumes its ex-
ecution in the context of the originally activated OsTask.

[rte_sws_5083]d The RTE Generator shall reject configurations where a
RunnableEntity has its canBeInvokedConcurrently attribute set to false,
and this RunnableEntity is mapped to different tasks which can preempt each
other. c()

[rte_sws_7229]d To evaluate rte_sws_5083 in case of triggered runnables
which are activated by a direct function call (rte_sws_7214, rte_sws_7224 and
rte_sws_7554) the OsTask (context of the caller) is defined by the RunnableEntity’s
containing the activating InternalTriggeringPoint or ExternalTriggering-
Point. c(RTE00162, RTE00163, RTE00230)

[rte_sws_7155]d To evaluate rte_sws_5083 in case of OnEntry ExecutableEnti-
tys, OnTransition ExecutableEntitys, OnExit ExecutableEntitys, and
mode switch acknowledge ExecutableEntitys which are activated by a direct
function call the OsTask (context of the caller) is defined by the RunnableEntity’s
containing the activating ModeSwitchPoint. c(RTE00143, RTE00144)

554 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

RteEventToTaskMapping

SWS Item [rte_sws_9020_Conf]
Container Name RteEventToTaskMapping
Description Maps a RunnableEntity onto one OsTask based on the activating

RTEEvent.
Even if a RunnableEntity shall be executed via a direct function call this
RteEventToTaskMapping shall be specified, but no RteMappedToTask
and RtePositionInTask elements given.

Configuration Parameters

Name RteActivationOffset [rte_sws_9018_Conf]
Description Activation offset in seconds.
Multiplicity 0..1
Type EcucFloatParamDef
Range 0 .. INF
Default Value
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name RteEventRef [rte_sws_9019_Conf]
Description Reference to the description of the RTEEvent which is pointing to the

RunnableEntity being mapped. This allows a fine grained mapping of
RunnableEntites based on the activating RTEEvent.

Multiplicity 1
Type Foreign reference to RTE-EVENT
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name RteImmediateRestart [rte_sws_9092_Conf]
Description When RteImmediateRestart is set to true the RunnableEntitiy shall be

immediately re-started after termination if it was activated by this
RTEEvent while it was already started.

This parameter shall not be set to true when the mapped RTEEvent
refers to a RunnableEntity which minimumStartInterval attribute is > 0.

Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

555 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Name RteMappedToTaskRef [rte_sws_9021_Conf]
Description Reference to the OsTask the RunnableEntity activated by the

RteEventRef is mapped to.
If no reference to the OsTask is specified the RunnableEntity shall be
executed via a direct function call.

Multiplicity 0..1
Type Reference to OsTask
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name RteOsSchedulePoint [rte_sws_9022_Conf]
Description Introduce a schedule point by explicitly calling Os Schedule service

after the execution of the ExecutableEntity. The Rte generator is
allowed to optimize several consecutive calls to Os schedule into one
single call if the ExecutableEntity executions in between have been
skipped.

The absence of this parameter is interpreted as "NONE".

It shall be considered an invalid configuration if the task is preemptable
and the value of this parameter is not set to "NONE" or the parameter
is absent.

Multiplicity 0..1
Type EcucEnumerationParamDef
Range CONDITIONAL A Schedule Point shall be introduced at

the end of the execution of this
ExecutableEntity. The Schedule Point
can be skipped if several Schedule
Points would be called without any
ExecutableEntity execution in between.

NONE No Schedule Point shall be introduced
at the end of the execution of this
ExecutableEntity.

UNCONDITIONAL A Schedule Point shall always be
introduced at the end of the execution
of this ExecutableEntity.

Configuration Class Pre-compile time X All Variants
Link time –
Post-build time –

Scope / Dependency

556 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Name RtePositionInTask [rte_sws_9023_Conf]
Description Each RunnableEntity mapped to an OsTask has a specific position

within the task execution.
For periodic activation this is the order of execution.
For event driver activation this is the order of evaluation which actual
RunnableEntity has to be executed.

Multiplicity 0..1
Type EcucIntegerParamDef
Range 0 .. 65535
Default Value
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name RteUsedOsAlarmRef [rte_sws_9024_Conf]
Description If an OsAlarm is used to activate the OsTask this RteEvent is mapped

to it shall be referenced here.
Multiplicity 0..1
Type Reference to OsAlarm
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name RteUsedOsEventRef [rte_sws_9025_Conf]
Description If an OsEvent is used to activate the OsTask this RteEvent is mapped

to it shall be referenced here.
Multiplicity 0..1
Type Reference to OsEvent
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name RteUsedOsSchTblExpiryPointRef [rte_sws_9026_Conf]
Description If an OsScheduleTableExpiryPoint is used to activate the OsTask this

RteEvent is mapped to it shall be referenced here.
Multiplicity 0..1
Type Reference to OsScheduleTableExpiryPoint
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

557 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Name RteVirtuallyMappedToTaskRef [rte_sws_9027_Conf]
Description Optional reference to an OsTask where the activation of this RteEvent

shall be evaluated. The actual execution of the Runnable Entity shall
happen in the OsTask referenced by RteMappedToTaskRef.

Multiplicity 0..1
Type Reference to OsTask
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency
No Included Containers

7.6.2 Rte Os Interaction

This section contains configuration items which are closely related to the interaction of
the Rte with the Os.

RteOsInteraction :
EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = *

RteUsedOsActivation :
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 0

RteModeToScheduleTableMapping :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

+subContainer

+subContainer

Figure 7.8: Specification of the Rte/Os Interaction

7.6.2.1 Activation using Os features

This is a collection of possible ways how the Rte might utilize Os to achieve various ac-
tivation scenarios. The used Os objects are referenced in these configuration entities.

558 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

RteOsInteraction :
EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = *

RteUsedOsActivation :
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 0

RteExpectedActivationOffset :
EcucFloatParamDef

min = 0
max = INF
lowerMultiplicity = 1
upperMultiplicity = 1

RteExpectedTickDuration :
EcucFloatParamDef

min = 0
max = INF
lowerMultiplicity = 1
upperMultiplicity = 1

OsScheduleTable :
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 0

(from OS)

OsAlarm :
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 0

(from OS)

RteActivationOsAlarmRef :
EcucReferenceDef

upperMultiplicity = 1
lowerMultiplicity = 0

RteActivationOsSchTblRef :
EcucReferenceDef

upperMultiplicity = 1
lowerMultiplicity = 0

OsTask :
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 0

(from OS)

RteActivationOsTaskRef :
EcucReferenceDef

upperMultiplicity = 1
lowerMultiplicity = 0

+destination

+destination

+destination

+parameter

+reference

+parameter

+reference

+reference

+subContainer

Figure 7.9: Configuration how activation is implemented

RteUsedOsActivation

SWS Item [rte_sws_9060_Conf]
Container Name RteUsedOsActivation
Description Attributes used in the activation of OsTasks and Runnable Entities.
Configuration Parameters

Name RteActivationOsAlarmRef [rte_sws_9045_Conf]
Description Reference to an OsAlarm.
Multiplicity 0..1
Type Reference to OsAlarm
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

559 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Name RteActivationOsSchTblRef [rte_sws_9046_Conf]
Description Reference to an OsScheduleTable.
Multiplicity 0..1
Type Reference to OsScheduleTable
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name RteActivationOsTaskRef [rte_sws_9047_Conf]
Description Reference to an OsTask.
Multiplicity 0..1
Type Reference to OsTask
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name RteExpectedActivationOffset [rte_sws_9048_Conf]
Description Activation offset in seconds.

Important: This is a requirement from the Rte towards the Os/Mcu
setup. The Rte Generator shall assume this activation offset to be
fulfilled.

Multiplicity 1
Type EcucFloatParamDef
Range 0 .. INF
Default Value
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name RteExpectedTickDuration [rte_sws_9049_Conf]
Description The expected tick duration in seconds which shall be configured to

drive the OsScheduleTables or OsAlarm.

Important: This is a requirement from the Rte towards the Os/Mcu
setup. The Rte Generator shall assume this tick duration to be fulfilled.

Multiplicity 1
Type EcucFloatParamDef
Range 0 .. INF
Default Value
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency
No Included Containers

560 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

7.6.2.2 Modes and Schedule Tables

Optional configuration of the Rte to support the mapping of modes and Os’ schedule
tables.

[rte_sws_5146]d The referenced schedule table of RteModeScheduleTableRef
shall be activated if one of the modes referenced in RteModeSchblMapModeDec-
larationRef is active in the mode machine instances from the references of

• RteModeSchtblMapSwc or

• RteModeSchtblMapBsw.

c()

561 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

SW-Component- and BswModule-Template

RteOsInteraction :
EcucParamConfContainerDef

lowerMultipl icity = 1
upperMultipl icity = *

RteModeToScheduleTableMapping :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

OsScheduleTable :
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 0

(from OS)

RteModeScheduleTableRef :
EcucReferenceDef

upperMultiplicity = 1
lowerMultiplicity = 1

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

ModeDeclaration::
ModeDeclarationGroup

AtpStructureElement
Identifiable

ModeDeclaration::
ModeDeclaration

+ value: PositiveInteger [0..1]

AtpPrototype

ModeDeclaration::
ModeDeclarationGroupPrototype

PortInterface::ModeSwitchInterface

PortPrototype

Components::
PPortPrototype

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

PortInterface::PortInterface

RteModeSchtblMapSwc :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

RteModeSchtblMapSwcPortRef :
EcucForeignReferenceDef

destinationType = P-PORT-PROTOTYPE

RteModeSchtblMapBsw :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = 1

RteModeSchtblMapModeDeclarationRef :
EcucForeignReferenceDef

lowerMultiplicity = 1
upperMultiplicity = *
destinationType = MODE-DECLARATION

RteBswModuleInstance :
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = *

(from RTE)

RteModeSchtblMapSwcInstanceRef :
EcucReferenceDef

RteSwComponentInstance :
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = *

(from RTE)

RteModeSchtblMapBswInstanceRef :
EcucReferenceDef

RteModeSchtblMapBswProvidedModeGroupRef :
EcucForeignReferenceDef

lowerMultipl icity = 1
upperMultipl icity = 1
destinationType = MODE-DECLARATION-GROUP-PROTOTYPE

+reference

+subContainer

+subContainer

+reference

+destination

+modeDeclaration

1..*

«isOfType»

+type

1
{redefines
atpType}

+subContainer

+initialMode

1

+destination

+modeGroup

1

+interface

1

+reference

+reference

+pPort

*«isOfType»

+providedInterface

1
{redefines atpType}

+reference

+reference

+destination

Figure 7.10: Configuration how modes are interacting with schedule tables

562 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

[rte_sws_2759]d RTE shall reject a configuration, if the RteModeSchblMapSwc-
PortRef : EcucForeignReferenceDef does not reference a pPort of the type
of an ModeSwitchInterface. c()

[rte_sws_2760]d RTE shall reject a configuration, if the ModeDeclara-
tionGroupPrototype referenced by a RteModeScgblMapBswProvided-
ModeGroupRef:EcucForeignReferenceDef is not in the role of a provided-
ModeGroup. c()

RteModeToScheduleTableMapping

SWS Item [rte_sws_9058_Conf]
Container Name RteModeToScheduleTableMapping
Description Provides configuration input in which Modes of a

ModeDeclarionGroupPrototype of a Mode Manager a
OsScheudleTable shall be active.
The Mode Manager is either specified as a SwComponentPrototype
(RteModeSchtblMapSwc) or as a BSW-Module
(RteModeSchtblMapBsw).

Configuration Parameters

Name RteModeScheduleTableRef [rte_sws_9050_Conf]
Description Reference to the OsScheduleTable which shall be active in the

specified RteModeSchblMapModeDeclarationRefs.
Multiplicity 1
Type Reference to OsScheduleTable
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name RteModeSchtblMapModeDeclarationRef [rte_sws_9054_Conf]
Description Reference to the ModeDeclarations.
Multiplicity 1..*
Type Foreign reference to MODE-DECLARATION
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency
Included Containers
Container Name Multiplicity Scope / Depedency
RteModeSchtblMapBsw 0..1 Specifies an instance of a

ModeDeclarationGroupPrototype of a Bsw-Module.
RteModeSchtblMapSwc 0..1 Specifies an instance of a

ModeDeclarationGroupPrototype of a
SwComponentPrototype.

563 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

RteModeSchtblMapSwc

SWS Item [rte_sws_9055_Conf]
Container Name RteModeSchtblMapSwc
Description Specifies an instance of a ModeDeclarationGroupPrototype of a

SwComponentPrototype.
Configuration Parameters

Name RteModeSchtblMapSwcInstanceRef [rte_sws_9056_Conf]
Description Reference to an instance specification of a SwComponentPrototype.
Multiplicity 1
Type Reference to RteSwComponentInstance
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name RteModeSchtblMapSwcPortRef [rte_sws_9057_Conf]
Description Reference to the PPortPrototype of a SwComponentPrototype.
Multiplicity 1
Type Foreign reference to P-PORT-PROTOTYPE
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency
No Included Containers

RteModeSchtblMapBsw

SWS Item [rte_sws_9051_Conf]
Container Name RteModeSchtblMapBsw
Description Specifies an instance of a ModeDeclarationGroupPrototype of a

Bsw-Module.
Configuration Parameters

Name RteModeSchtblMapBswInstanceRef [rte_sws_9052_Conf]
Description Reference to an instance specification of a Bsw-Module.
Multiplicity 1
Type Reference to RteBswModuleInstance
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

564 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Name RteModeSchtblMapBswProvidedModeGroupRef [rte_sws_9053_Conf]
Description Reference to an instance of a ModeDeclarationGroupPrototype of a

Bsw-Module.
Multiplicity 1
Type Foreign reference to MODE-DECLARATION-GROUP-PROTOTYPE
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency
No Included Containers

7.6.3 Exclusive Area implementation

The RTE Generator can be configured to implement a different data consistency mech-
anism for each ExclusiveArea defined for an AUTOSAR software-component.

In figure 7.11 the configuration of the actually selected data consistency mechanism is
shown.

565 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Os

Software Component template

RteSwComponentInstance :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

(from RTE)

AtpPrototype

Composition::
SwComponentPrototype

RteExclusiveAreaImplementation :
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 0

Identifiable

InternalBehavior::ExclusiveArea

SwcInternalBehavior::SwcInternalBehavior

+ handleTerminationAndRestart: HandleTerminationAndRestartEnum
+ supportsMultipleInstantiation: Boolean

RteExclusiveAreaImplMechanism :
EcucEnumerationParamDef

ALL_INTERRUPT_BLOCKING :
EcucEnumerationLiteralDef

OS_RESOURCE :EcucEnumerationLiteralDef

COOPERATIVE_RUNNABLE_PLACEMENT :
EcucEnumerationLiteralDef

RteExclusiveAreaRef :
EcucForeignReferenceDef

destinationType = EXCLUSIVE-AREA

OsResource :
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 0

(from OS)

RteExclusiveAreaOsResourceRef :
EcucReferenceDef

lowerMultipl icity = 0
upperMultipl icity = 1

RteSoftwareComponentInstanceRef :
EcucForeignReferenceDef

destinationType = SW-COMPONENT-PROTOTYPE
upperMultiplicity = 1
lowerMultiplicity = 0

(from RTE)

OS_INTERRUPT_BLOCKING :
EcucEnumerationLiteralDef

AtpStructureElement

InternalBehavior::
InternalBehavior

Components::
AtomicSwComponentType

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

Components::
SwComponentType

+literal

+parameter

+reference

+reference

«atpVariation»

+exclusiveArea

0..*

«atpVariation,atpSplitable»

+internalBehavior 0..1

+li teral

+li teral

+subContainer

+reference

+destination

* «isOfType»

+type

1
{redefines atpType}

+li teral

Figure 7.11: Configuration of the ExclusiveArea implementation

RteExclusiveAreaImplementation

SWS Item [rte_sws_9030_Conf]
Container Name RteExclusiveAreaImplementation
Description Specifies the implementation to be used for the data consistency of this

ExclusiveArea.
Configuration Parameters

566 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Name RteExclusiveAreaImplMechanism [rte_sws_9029_Conf]
Description To be used implementation mechanism for the specified ExclusiveArea.
Multiplicity 1
Type EcucEnumerationParamDef
Range ALL_INTERRUPT_BLOC

KING
COOPERATIVE_RUNNA
BLE_PLACEMENT
OS_INTERRUPT_BLOCKI
NG
OS_RESOURCE

Configuration Class Pre-compile time X All Variants
Link time –
Post-build time –

Scope / Dependency

Name RteExclusiveAreaOsResourceRef [rte_sws_9031_Conf]
Description Optional reference to an OsResource in case

RteExclusiveAreaImplMechanism is configured to OS_RESOURCE for
this ExclusiveArea.

Multiplicity 0..1
Type Reference to OsResource
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name RteExclusiveAreaRef [rte_sws_9032_Conf]
Description Reference to the ExclusiveArea.
Multiplicity 1
Type Foreign reference to EXCLUSIVE-AREA
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency
No Included Containers

7.6.4 NVRam Allocation

The configuration of the NVRam access does involve several templates, because it
closes the gap between the AUTOSAR software-components, the NVRAM Manager
Services and the BSW Modules.

In figure 7.12 the related information from the AUTOSAR Software Component Tem-
plate is shown.

567 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Software Component template

InternalBehavior

SwcInternalBehavior::SwcInternalBehavior

+ handleTerminationAndRestart: HandleTerminationAndRestartEnum
+ supportsMultipleInstantiation: Boolean

AutosarDataPrototype

DataPrototypes::
ParameterDataPrototype

AtpStructureElement
Identifiable

PerInstanceMemory::
PerInstanceMemory

+ initValue: String [0..1]
+ type: String
+ typeDefinition: String

ServiceNeeds::NvBlockNeeds

Identifiable

ServiceNeeds::ServiceNeeds

AtpStructureElement
Identifiable

ServiceDependency

ServiceMapping::
SwcServiceDependency

ServiceNeeds::RoleBasedDataAssignment

+ role: Identifier

AutosarDataPrototype

DataPrototypes::
VariableDataPrototype

DataElements::
AutosarVariableRef

DataElements::
AutosarParameterRef

{XOR
role of owning
RoleBasedDataAssignement shall be
ramBlock}

{role of owning
RoleBasedDataAssignement
shall be defaultValue}

+usedParameterElement 0..1

+usedDataElement 0..1

+serviceNeeds

1

+localVariable

0..1

+assignedData 0..*

+usedPim

0..1

«atpVariation,aptSplitable»

+serviceDependency

0..*

+arTypedPerInstanceMemory *

«atpVariation»

+perInstanceMemory *

«atpVariation»

+perInstanceParameter *

«atpVariation,atpSplitable»

Figure 7.12: software-component information of NVRam Service needs

In figure 7.13 the ECU Configuration part of the NVRam allocation is shown. It re-
lates the software-components’ SwcServiceDependency and NvBlockNeeds infor-
mation with the NVRam Managers NvmBlockDescriptor and the linker symbols of
the RAM and ROM sections to be used.

568 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Software Component template

RteNvRamAllocation :
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 0

NvMBlockDescriptor :
EcucParamConfContainerDef

upperMultipl icity = 65536
lowerMultipl icity = 1

RteNvmBlockRef :
EcucSymbolicNameReferenceDef

RteSwNvRamMappingRef :EcucForeignReferenceDef

destinationType = SWC-SERVICE-DEPENDENCY

RteNvmRamBlockLocationSymbol :
EcucLinkerSymbolDef

upperMultiplicity = 1
lowerMultiplicity = 0

RteNvmRomBlockLocationSymbol :
EcucLinkerSymbolDef

upperMultipl icity = 1
lowerMultipl icity = 0

NvMRamBlockDataAddress :
EcucStringParamDef

lowerMultipl icity = 0
upperMultipl icity = 1

NvMRomBlockDataAddress :
EcucStringParamDef

lowerMultipl icity = 0
upperMultipl icity = 1

AtpStructureElement
Identifiable

PerInstanceMemory

+ initValue: String [0..1]
+ type: String
+ typeDefinition: String

RoleBasedDataAssignment

+ role: Identifier

AtpStructureElement
Identifiable

ServiceDependency

SwcServiceDependency

AutosarDataPrototype

ParameterDataPrototype

AutosarDataPrototype

VariableDataPrototype

NvBlockNeeds

Identifiable

ServiceNeeds

AutosarParameterRef

AutosarVariableRef

{XOR
role of owning
RoleBasedDataAssignement
shall be ramBlock}

{role of owning
RoleBasedDataAssignement shall be
defaultValue}

+destination

+parameter 0..1

+parameter 0..1

+parameter

+reference

+usedPim 0..1

+parameter

+usedDataElement

0..1

+assignedData 0..*

+localVariable

0..1

+usedParameterElement

0..1

+serviceNeeds

1

+reference

Figure 7.13: ECU Configuration of the NVRam Service

RteNvRamAllocation

SWS Item [rte_sws_9040_Conf]
Container Name RteNvRamAllocation
Description Specifies the relationship between the AtomicSwComponentType’s

NVRAMMapping / NVRAM needs and the NvM module configuration.
Configuration Parameters

569 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Name RteNvmBlockRef [rte_sws_9041_Conf]
Description Reference to the used NvM block for storage of the NVRAMMapping

information.
Multiplicity 1
Type Symbolic name reference to NvMBlockDescriptor
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name RteNvmRamBlockLocationSymbol [rte_sws_9042_Conf]
Description This is the name of the linker object name where the NVRam Block will

be mirrored by the Nvm.
This symbol will be resolved into the parameter
"NvmRamBlockDataAddress" from the "NvmBlockDescriptor".

Multiplicity 0..1
Type EcucLinkerSymbolDef
Default Value
Regular Expression
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name RteNvmRomBlockLocationSymbol [rte_sws_9043_Conf]
Description This is the name of the linker object name where the NVRom Block will

be accessed by the Nvm.
This symbol will be resolved into the parameter
"NvmRomBlockDataAddress" from the "NvmBlockDescriptor".

Multiplicity 0..1
Type EcucLinkerSymbolDef
Default Value
Regular Expression
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name RteSwNvRamMappingRef [rte_sws_9044_Conf]
Description Reference to the SwSeriveDependency which is used to specify the

NvBlockNeeds.
Multiplicity 1
Type Foreign reference to SWC-SERVICE-DEPENDENCY
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency
No Included Containers

570 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

7.6.5 SWC Trigger queuing

This configuration determine the size of the queue queuing the issued triggers.

The RteExternalTriggerConfig container and RteInternalTriggerConfig
container is defined in the context of the RteSwComponentInstance which already
predefines the context of the Trigger / InternalTriggeringPoint.

[rte_sws_ext_7598] The references RteSwcTriggerSourceRef has to be consis-
tent with the RteSoftwareComponentInstanceRef. This means the referenced
Trigger / InternalTriggeringPoint has to belong to the AtomicSwCompo-
nentType which is referenced by the related SwComponentPrototype.

571 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

From SWC-T

RteExternalTriggerConfig :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

RteSwComponentInstance :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

(from RTE)

RteSwcTriggerSourceRef :EcucInstanceReferenceDef

destinationType = TRIGGER
upperMultipl icity = 1
lowerMultipl icity = 1
destinationContext = P-PORT-PROTOTYPE

AtpBlueprintable
AtpPrototype

Components::PortPrototype

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

Components::SwComponentType

AtpStructureElement
Identifiable

TriggerDeclaration::Trigger

+ swImplPolicy: SwImplPolicyEnum [0..1]

PortInterface::TriggerInterface

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

PortInterface::PortInterface

Components::
PPortPrototype

RteTriggerSourceQueueLength :
EcucIntegerParamDef

defaultValue = 0
lowerMultipl icity = 1
upperMultipl icity = 1
min = 0
max = 4294967295

Identifiable

Trigger::InternalTriggeringPoint

+ swImplPolicy: SwImplPolicyEnum [0..1]

RteInternalTriggerConfig :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

RteSwcTriggerSourceRef :EcucForeignReferenceDef

destinationType = INTERNAL-TRIGGERING-POINT
upperMultipl icity = 1
lowerMultipl icity = 1

RteTriggerSourceQueueLength :
EcucIntegerParamDef

defaultValue = 0
lowerMultipl icity = 1
upperMultipl icity = 1
min = 0
max = 4294967295

Components::
AtomicSwComponentType

InternalBehavior

SwcInternalBehavior::
SwcInternalBehavior

AtpStructureElement
ExecutableEntity

SwcInternalBehavior::
RunnableEntity

+parameter

+reference

+port

0..* «atpVariation,atpSplitable»

+component

+trigger 1..*

+subContainer

+pPort *

«isOfType»

+providedInterface
1
{redefines atpType}

+internalTriggeringPoint 0..*
«atpVariation»

+subContainer

+reference

+parameter

«atpVariation,atpSplitable»
+internalBehavior 0..1

+runnable 1..*
«atpVariation,atpSplitable»

Figure 7.14: Configuration of SWC Trigger queuing

572 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

RteExternalTriggerConfig

SWS Item [rte_sws_9105_Conf]
Container Name RteExternalTriggerConfig
Description Defines the configuration of External Trigger Event Communication for

Software Components
Configuration Parameters

Name RteSwcTriggerSourceRef [rte_sws_9106_Conf]
Description Reference to a Trigger instance in the pPortPrototype of the related

component instance.

The referenced Trigger instance has to belong to the same software
component instance as the RteSwComponentInstance owning this
parameter configures.

Multiplicity 1
Type Instance reference to TRIGGER context: P-PORT-PROTOTYPE
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name RteTriggerSourceQueueLength [rte_sws_9095_Conf]
Description Length of trigger queue on the trigger source side.

The queue is implemented by the RTE. A value greater or equal to 1
requests an queued behavior.
Setting the value of RteTriggerSourceQueueLength to 0 requests an
none queued implementation of the trigger communication.

If there is no RteTriggerSourceQueueLength configured for a Trigger
Emitter the default value of 0 applies as well.

Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 4294967295
Default Value 0
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency
No Included Containers

RteInternalTriggerConfig

SWS Item [rte_sws_9096_Conf]
Container Name RteInternalTriggerConfig
Description Defines the configuration of Inter Runnable Triggering for Software

Components
Configuration Parameters

573 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Name RteSwcTriggerSourceRef [rte_sws_9097_Conf]
Description Reference to an InternalTriggeringPoint of the related component

instance.

The referenced InternalTriggeringPoint has to belong to the same
software component instance as the RteSwComponentInstance
owning this parameter configures.

Multiplicity 1
Type Foreign reference to INTERNAL-TRIGGERING-POINT
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name RteTriggerSourceQueueLength [rte_sws_9098_Conf]
Description Length of trigger queue on the trigger source side.

The queue is implemented by the RTE. A value greater or equal to 1
requests an queued behavior.
Setting the value of RteTriggerSourceQueueLength to 0 requests an
none queued implementation of the trigger communication.

If there is no RteTriggerSourceQueueLength configured for a Trigger
Emitter the default value of 0 applies as well.

Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 4294967295
Default Value 0
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency
No Included Containers

574 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

7.7 Handling of Software Component types

7.7.1 Selection of Software-Component Implementation

During the system development there is no need to select the actual implementation
which will be later integrated on one ECU. Therefore the ECU Extract of System De-
scription may not specify the SwcImplementation information yet.

For RTE Generation the information about the to be used SwcImplementation
for each SwComponentType needs be provided to the RTE Generator (regardless
whether the information is from the Ecu Extract or the Ecu Configuration.

The mapping of SwcImplementation to SwComponentType is done in the Ecu Con-
figuration of the Rte using the two references RteComponentTypeRef and RteIm-
plementationRef (see figure 7.15). For the mapping in the Ecu Extract please refer
to the Specification of the System Template [8].

SWComponentTemplate

AtomicSwComponentType

InternalBehavior

SwcInternalBehavior

+ handleTerminationAndRestart: HandleTerminationAndRestartEnum
+ supportsMultipleInstantiation: Boolean

RteImplementationRef :
EcucForeignReferenceDef

destinationType = SWC-IMPLEMENTATION
upperMultipl icity = 1
lowerMultipl icity = 0

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

Implementation

SwcImplementation

+ requiredRTEVendor: String [0..1]

RteSwComponentType :
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = *

RteComponentTypeRef :
EcucForeignReferenceDef

destinationType = SW-COMPONENT-TYPE

+reference+reference

«atpVariation,atpSplitable»

+internalBehavior

0..1

*

+behavior 1

Figure 7.15: Selection of the Implementation for an AtomicSwComponentType

7.7.2 Component Type Calibration

In the AUTOSAR Software Component Template two places may provide calibration
data: the ParameterSwComponentType and the AtomicSwComponentType (or
more precisely the subclasses of AtomicSwComponentType). Whether the calibra-
tion is enabled for a specific SwComponentType can be configured as shown in fig-
ure 7.16.

575 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Software Component template

RteCalibrationSupportEnabled :
EcucBooleanParamDef

RteComponentTypeCalibration :
EcucParamConfContainerDef

upperMultiplicity = 1
lowerMultiplicity = 0

RteComponentTypeRef :
EcucForeignReferenceDef

destinationType = SW-COMPONENT-TYPE

ParameterSwComponentTypeAtomicSwComponentType

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

SwComponentType

RteSwComponentType :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

ARElement

SwAddrMethod

IsSyscond

«atpVariation»
SwDataDefProps

RteCalibrationSwAddrMethodRef :
EcucForeignReferenceDef

lowerMultipl icity = 0
upperMultipl icity = *
destinationType = SW-ADDR-METHOD

+swAddrMethod 0..1

+reference

+subContainer

+reference

+parameter

Figure 7.16: Configuration of the calibration for the ParameterSwComponentType

The foreign reference ComponentTypeRef identifies the SwComponentType (which
is limited to ParameterSwComponentType and AtomicSwComponentType). The
boolean parameter CalibrationSupportEnabled specifies whether calibration
shall be enabled for the specified SwComponentType.

[rte_sws_5145]d For a ParameterDataPrototype of the referenced Component-
TypeRef software calibration support shall be enabled if the parameter Calibra-
tionSupportEnabled is set to true and in the corresponding container RteCompo-
nentTypeCalibration

• not a single RteCalibrationSwAddrMethodRef exists or

• a reference RteCalibrationSwAddrMethodRef to the SwAddrMethod of the
ParameterDataPrototype exists.

c(RTE00154, RTE00156, RTE00158)

576 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

RteComponentTypeCalibration

SWS Item [rte_sws_9039_Conf]
Container Name RteComponentTypeCalibration
Description Specifies for each ParameterSwComponentType or

AtomicSwComponentType whether calibration is enabled.
If references to SwAddrMethod are provided in
RteCalibrationSwAddrMethodRef only ParameterDataPrototypes with
the referenced SwAddrMethod shall have software calibration support
enabled.

Configuration Parameters

Name RteCalibrationSupportEnabled [rte_sws_9037_Conf]
Description Enables calibration support for the specified

ParameterSwComponentType or AtomicSwComponentType.
Multiplicity 1
Type EcucBooleanParamDef
Default Value
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name RteCalibrationSwAddrMethodRef [rte_sws_9038_Conf]
Description Reference to the SwAddrMethod for which software calibration support

shall be enabled.
Multiplicity 0..*
Type Foreign reference to SW-ADDR-METHOD
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency
No Included Containers

577 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

7.8 Implicit communication configuration

Software Component template

Components::
AtomicSwComponentType

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

Components::
SwComponentType

AtpStructureElement
ExecutableEntity

SwcInternalBehavior::RunnableEntity

+ canBeInvokedConcurrently: Boolean
+ symbol: CIdentifier

InternalBehavior

SwcInternalBehavior::SwcInternalBehavior

+ handleTerminationAndRestart: HandleTerminationAndRestartEnum
+ supportsMultipleInstantiation: Boolean

RteImplicitCommunication :
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 0

RteVariableReadAccessRef :
EcucForeignReferenceDef

destinationType = VARIABLE-ACCESS
lowerMultipl icity = 0
upperMultipl icity = *

RteVariableWriteAccessRef :
EcucForeignReferenceDef

destinationType = VARIABLE-ACCESS
lowerMultipl icity = 0
upperMultipl icity = *

RteImmediateBufferUpdate :
EcucBooleanParamDef

defaultValue = false

Identifiable

DataElements::VariableAccess

+ scope: VariableAccessScopeEnum [0..1]

Rte :EcucModuleDef

upperMultiplicity = 1
lowerMultiplicity = 0

(from RTE)

RteCoherentAccess :EcucBooleanParamDef

defaultValue = false

RteSoftwareComponentInstanceRef :EcucInstanceReferenceDef

destinationType = SW-COMPONENT-PROTOTYPE
upperMultiplicity = *
lowerMultiplicity = 1
destinationContext = ROOT-SW-COMPOSITION-PROTOTYPE

AtpPrototype

Composition::
SwComponentPrototype

«atpVariation»

+dataWriteAccess 0..*

«atpVariation,atpSplitable»

+internalBehavior 0..1

+runnable 1..*

«atpVariation,atpSplitable»

+reference

+reference

+parameter

+reference

*
«isOfType»

+type 1
{redefines atpType}

«atpVariation»

+dataReadAccess 0..*

+parameter

+container

Figure 7.17: Configuration of the implicit communication

578 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

RteImplicitCommunication

SWS Item [rte_sws_9034_Conf]
Container Name RteImplicitCommunication
Description Configuration of the Implicit Communication behavior to be generated.
Configuration Parameters

Name RteCoherentAccess [rte_sws_9091_Conf]
Description If set to true the referenced VariableAccess’es of this

RteImplicitCommunication container are in one CoherencyGroup.

Data values for Coherent Implicit Read Access’es are read before the
first reading RunnbaleEntity starts and are stable during the execution
of all the reading RunnableEntitys; except Coherent Implicit Write
Access’es belongs to the same Coherency Group.
Data values written by Coherent Implicit Write Access’es are available
for readers not belonging to the Coherency Group after the last writing
RunnableEntity has terminated.

Please note that a Coherent Implicit Data Access can be defined for
VariableAccess’es to same and different VariableDataElements.
Nevertheless all Coherent Implicit Data Access’es of one Coherency
Group have to be executed in the same task.

Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name RteImmediateBufferUpdate [rte_sws_9033_Conf]
Description If set to true the RTE will perform preemption area specific buffer

update immediately before (for VariableAccess in the role
dataReadAccess) resp. after (for VariableAccess in the role
dataWriteAccess) Runnable execution.

Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

579 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Name RteSoftwareComponentInstanceRef [rte_sws_9090_Conf]
Description Reference to a SwComponentPrototype.

This denotes the instances of the VariableAccess belonging to the
RteImplicitCommunication.

Multiplicity 1..*
Type Instance reference to SW-COMPONENT-PROTOTYPE context: ROO

T-SW-COMPOSITION-PROTOTYPE
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name RteVariableReadAccessRef [rte_sws_9035_Conf]
Description Reference to the VariableAccess in the dataReadAccess role.
Multiplicity 0..*
Type Foreign reference to VARIABLE-ACCESS
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name RteVariableWriteAccessRef [rte_sws_9036_Conf]
Description Reference to the VariableAccess in the dataWriteAccess role.
Multiplicity 0..*
Type Foreign reference to VARIABLE-ACCESS
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency
No Included Containers

Please note, that RteImplicitCommunication is defined as a container of Rte
EcucModuleDef to support the creation of the ECU Configuration Parameter Values
related to RteImplicitCommunication independent from the other ECU Config-
uration Parameter Values. Typically the need for Coherent Implicit Data Ac-
cesses is known by the vendor of a set of software components. As long as short-
Names of the RootSwCompositionPrototype and the referenced Composition-
SwComponentType - describing the software of a flat ECU Extract - are known the
ECU Configuration Parameter Values related to RteImplicitCommunication can
be prescribed. In this case it is preferable to use relative references to the Vendor
Specific Module Definition (VSMD), to RootSwCompositionPrototype and Com-
positionSwComponentType describing the software of a flat ECU Extract. With
this relative references the ECU Configuration Parameter Values are independent from
ARPackage structure only known by the ECU integrator. Nevertheless the shortName
and location of of the EcucModuleConfigurationValues must be defined upfront.

580 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

7.9 Communication infrastructure

The configuration of the communication infrastructure (interaction of the RTE with the
Com-Stack) is entirely predetermined by the ECU Extract provided as an input. The
required input can be found in the AUTOSAR System Template [8] sections "Data Map-
ping" and "Communication".

In case the RTE does utilize the Com module for intra-ECU communication it is up to
the vendor-specific configuration of the RTE to ensure configuration consistency.

7.10 Configuration of the BSW Scheduler

The configuration of the BSW Scheduler part of the RTE is shown in the overview in
figure 7.18.

ECUCDescriptionTemplate
BswModuleTemplateRte :EcucModuleDef

upperMultiplicity = 1
lowerMultiplicity = 0

RteBswModuleInstance :
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = *

Implementation

BswImplementation

RteBswImplementationRef :
EcucForeignReferenceDef

lowerMultiplicity = 1
upperMultiplicity = 1
destinationType = BSW-IMPLEMENTATION

ARElement

EcucModuleConfigurationValues

RteBswModuleConfigurationRef :
EcucForeignReferenceDef

lowerMultiplicity = 0
upperMultiplicity = 1
destinationType = MODULE-CONFIGURATION

RteOsInteraction :
EcucParamConfContainerDef

lowerMultipl icity = 1
upperMultipl icity = *

RteBswRequiredTriggerConnection :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

RteBswRequiredModeGroupConnection :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

RteBswEventToTaskMapping :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

RteBswExclusiveAreaImpl :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

RteBswGeneral :
EcucParamConfContainerDef

lowerMultipl icity = 1
upperMultipl icity = 1

+subContainer

+subContainer

+reference

+subContainer

+reference

+subContainer

+container

+container

+container

+moduleDescription

0..1

Figure 7.18: Configuration of BSW Scheduler overview

581 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

7.10.1 BSW Scheduler General configuration

Rte :EcucModuleDef

upperMultiplicity = 1
lowerMultiplicity = 0

(from RTE)

RteBswGeneral :
EcucParamConfContainerDef

lowerMultipl icity = 1
upperMultipl icity = 1

RteSchMVersionInfoApi :
EcucBooleanParamDef

lowerMultiplicity = 1
upperMultiplicity = 1

RteUseComShadowSignalApi :
EcucBooleanParamDef

lowerMultipl icity = 1
upperMultipl icity = 1
defaultValue = false

+container

+parameter

+parameter

Figure 7.19: General configuration of BSW Scheduler

RteBswGeneral

SWS Item [rte_sws_9061_Conf]
Container Name RteBswGeneral
Description General configuration parameters of the Bsw Scheduler section.
Configuration Parameters

Name RteSchMVersionInfoApi [rte_sws_9062_Conf]
Description Enables the generation of the SchM_GetVersionInfo() API.
Multiplicity 1
Type EcucBooleanParamDef
Default Value
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

582 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Name RteUseComShadowSignalApi [rte_sws_9107_Conf]
Description This parameter defines whether the ComShadowSignalAPIs

((Com_UpdateShadowSignal, Com_InvalidateShadowSignal,
Com_ReceiveShadowSignal) are used or not.

If this parameter is set to true the ShadowSignal APIs and Signal APIs
(Com_SendSignal, Com_InvalidateSignal, Com_ReceiveSignal) are
used.
If this parameter is set to false only the Signal APIs (Com_SendSignal,
Com_InvalidateSignal, Com_ReceiveSignal) are used.

Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency
No Included Containers

7.10.2 BSW Module Instance configuration

RteBswModuleInstance

SWS Item [rte_sws_9002_Conf]
Container Name RteBswModuleInstance
Description Represents one instance of a Bsw-Module configured on one ECU.
Configuration Parameters

Name RteBswImplementationRef [rte_sws_9066_Conf]
Description Reference to the BswImplementation for which the Rte /SchM is

configured.
Multiplicity 1
Type Foreign reference to BSW-IMPLEMENTATION
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name RteBswModuleConfigurationRef [rte_sws_9001_Conf]
Description Reference to the ECU Configuration Values provided for this

BswImplementation.
Multiplicity 0..1
Type Foreign reference to MODULE-CONFIGURATION
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

583 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Included Containers
Container Name Multiplicity Scope / Depedency
RteBswEventToTask
Mapping

0..* Maps a BswSchedulableEntity onto one OsTask based
on the activating BswEvent.

RteBswExclusiveArea
Impl

0..* Represents one ExclusiveArea of one
BswImplementation. Used to specify the implementation
means of this ExclusiveArea.

RteBswExternalTrigger
Config

0..* Defines the configuration of Inter Basic Software Module
Entity Triggering

RteBswInternalTrigger
Config

0..* Defines the configuration of internal Basic Software
Module Entity Triggering

RteBswRequiredMode
GroupConnection

0..* Defines the connection between one
requiredModeGroup of this BSW Module instance and
one providedModeGroup instance.

RteBswRequiredTrigger
Connection

0..* Defines the connection between one requiredTrigger of
this BSW Module instance and one releasedTrigger
instance.

584 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

7.10.2.1 BSW ExclusiveArea configuration

Os

BswModuleTemplate

RteBswModuleInstance :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

BswModuleEntity

BswSchedulableEntity

Identifiable

ExclusiveArea

Identifiable

ExecutableEntity

+ minimumStartInterval: TimeValue

RteBswExclusiveAreaRef :
EcucForeignReferenceDef

lowerMultipl icity = 1
upperMultipl icity = 1
destinationType = EXCLUSIVE-AREA

RteBswExclusiveAreaImpl :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

RteExclusiveAreaImplMechanism :
EcucEnumerationParamDef

ALL_INTERRUPT_BLOCKING :
EcucEnumerationLiteralDef

OS_RESOURCE :EcucEnumerationLiteralDef

COOPERATIVE_RUNNABLE_PLACEMENT :
EcucEnumerationLiteralDef

OsResource :
EcucParamConfContainerDef

upperMultipl icity = *
lowerMultipl icity = 0

RteBswExclusiveAreaOsResourceRef :
EcucReferenceDef

lowerMultipl icity = 0
upperMultipl icity = 1

OS_INTERRUPT_BLOCKING :
EcucEnumerationLiteralDef

+literal

+l iteral

+l iteral

+l iteral

+reference

+reference

+parameter

+runsInsideExclusiveArea 0..*+canEnterExclusiveArea 0..*

+destination

+subContainer

Figure 7.20: Configuration of BSW ExclusiveArea

RteBswExclusiveAreaImpl

SWS Item [rte_sws_9072_Conf]
Container Name RteBswExclusiveAreaImpl
Description Represents one ExclusiveArea of one BswImplementation. Used to

specify the implementation means of this ExclusiveArea.
Configuration Parameters

585 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Name RteBswExclusiveAreaOsResourceRef [rte_sws_9073_Conf]
Description Optional reference to an OsResource in case

RteExclusiveAreaImplMechanism is configured to OS_RESOURCE for
this ExclusiveArea.

Multiplicity 0..1
Type Reference to OsResource
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name RteBswExclusiveAreaRef [rte_sws_9074_Conf]
Description Reference to the ExclusiveArea for which the implementation

mechanism shall be specified.
Multiplicity 1
Type Foreign reference to EXCLUSIVE-AREA
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name RteExclusiveAreaImplMechanism [rte_sws_9029_Conf]
Description To be used implementation mechanism for the specified ExclusiveArea.
Multiplicity 1
Type EcucEnumerationParamDef
Range ALL_INTERRUPT_BLOC

KING
COOPERATIVE_RUNNA
BLE_PLACEMENT
OS_INTERRUPT_BLOCKI
NG
OS_RESOURCE

Configuration Class Pre-compile time X All Variants
Link time –
Post-build time –

Scope / Dependency
No Included Containers

586 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

7.10.2.2 BswEvent to task mapping

Os

BswModuleTemplate

RteBswModuleInstance :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

Rte :EcucModuleDef

upperMultiplicity = 1
lowerMultiplicity = 0

Implementation

BswImplementation

+ arReleaseVersion: RevisionLabelString
+ vendorApiInfix: Identifier [0..1]

InternalBehavior

BswInternalBehavior

Identifiable

BswEvent
RteBswEventToTaskMapping :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

RteBswEventRef :
EcucForeignReferenceDef

lowerMultiplicity = 1
upperMultipl icity = 1
destinationType = BSW-EVENT

OsTask :
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 0

RteBswMappedToTaskRef :
EcucReferenceDef

lowerMultiplicity = 0
upperMultipl icity = 1

RteBswPositionInTask :
EcucIntegerParamDef

upperMultipl icity = 1
lowerMultiplicity = 0
min = 0
max = 65535

RteBswActivationOffset :
EcucFloatParamDef

min = 0
max = INF
lowerMultipl icity = 0
upperMultipl icity = 1

RteBswUsedOsEventRef :
EcucReferenceDef

upperMultipl icity = 1
lowerMultiplicity = 0

RteBswUsedOsAlarmRef :
EcucReferenceDef

upperMultipl icity = 1
lowerMultiplicity = 0

RteBswUsedOsSchTblExpiryPointRef :
EcucReferenceDef

upperMultipl icity = 1
lowerMultiplicity = 0

OsEvent :
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 0

OsScheduleTableExpiryPoint :
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 1

OsAlarm :
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 0

RteBswImplementationRef :
EcucForeignReferenceDef

lowerMultiplicity = 1
upperMultiplicity = 1
destinationType = BSW-IMPLEMENTATION

RteOsSchedulePoint :
EcucEnumerationParamDef

lowerMultipl icity = 0
upperMultipl icity = 1

NONE :
EcucEnumerationLiteralDef

CONDITIONAL :
EcucEnumerationLiteralDef

UNCONDITIONAL :
EcucEnumerationLiteralDef

RteBswImmediateRestart :
EcucBooleanParamDef

defaultValue = false

«atpVariation»

+event 0..*

+destination

+destination

+literal

+l iteral

+l iteral

+subContainer

+reference

+container

+destination

+parameter

+reference

+parameter

+reference

+reference

+parameter

+reference

+parameter

+reference

+destination

+behavior 1

Figure 7.21: Configuration of BSW Event to Task Mapping

587 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

RteBswEventToTaskMapping

SWS Item [rte_sws_9065_Conf]
Container Name RteBswEventToTaskMapping
Description Maps a BswSchedulableEntity onto one OsTask based on the

activating BswEvent.
Configuration Parameters

Name RteBswActivationOffset [rte_sws_9063_Conf]
Description Activation offset in seconds.
Multiplicity 0..1
Type EcucFloatParamDef
Range 0 .. INF
Default Value
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name RteBswEventRef [rte_sws_9064_Conf]
Description Reference to the BswEvent which is pointing to the

BswSchedulableEntity being mapped. This allows a fine grained
mapping of BswSchedulableEntites based on the activating BswEvent.

Multiplicity 1
Type Foreign reference to BSW-EVENT
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name RteBswImmediateRestart [rte_sws_9093_Conf]
Description When RteBswImmediateRestart is set to true the

BswSchedulableEntitiy shall be immediately re-started after termination
if it was activated by this BswEvent while it was already started.

This parameter shall not be set to true when the mapped BswEvent
refers to a BswSchedulableEntitiy which minimumStartInterval attribute
is > 0.

Multiplicity 1
Type EcucBooleanParamDef
Default Value false
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

588 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Name RteBswMappedToTaskRef [rte_sws_9067_Conf]
Description Reference to the OsTask the BswSchedulableEntity activated by the

RteBswEventRef is mapped to.
If no reference to the OsTask is specified the BswSchedulableEntity
activated by this BswEvent is executed in the context of the caller.

Multiplicity 0..1
Type Reference to OsTask
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name RteBswPositionInTask [rte_sws_9068_Conf]
Description Each BswSchedulableEntity activation mapped to an OsTask has a

specific position within the task execution.
For periodic activation this is the order of execution.
For event driver activation this is the order of evaluation which actual
BswSchedulableEntity has to be executed.

Multiplicity 0..1
Type EcucIntegerParamDef
Range 0 .. 65535
Default Value
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name RteBswUsedOsAlarmRef [rte_sws_9069_Conf]
Description If an OsAlarm is used to activate the OsTask this BswEvent is mapped

to it shall be referenced here.
Multiplicity 0..1
Type Reference to OsAlarm
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name RteBswUsedOsEventRef [rte_sws_9070_Conf]
Description If an OsEvent is used to activate the OsTask this BswEvent is mapped

to it shall be referenced here.
Multiplicity 0..1
Type Reference to OsEvent
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

589 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Name RteBswUsedOsSchTblExpiryPointRef [rte_sws_9071_Conf]
Description If an OsScheduleTableExpiryPoint is used to activate the OsTask this

BswEvent is mapped to it shall be referenced here.
Multiplicity 0..1
Type Reference to OsScheduleTableExpiryPoint
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name RteOsSchedulePoint [rte_sws_9022_Conf]
Description Introduce a schedule point by explicitly calling Os Schedule service

after the execution of the ExecutableEntity. The Rte generator is
allowed to optimize several consecutive calls to Os schedule into one
single call if the ExecutableEntity executions in between have been
skipped.

The absence of this parameter is interpreted as "NONE".

It shall be considered an invalid configuration if the task is preemptable
and the value of this parameter is not set to "NONE" or the parameter
is absent.

Multiplicity 0..1
Type EcucEnumerationParamDef
Range CONDITIONAL A Schedule Point shall be introduced at

the end of the execution of this
ExecutableEntity. The Schedule Point
can be skipped if several Schedule
Points would be called without any
ExecutableEntity execution in between.

NONE No Schedule Point shall be introduced
at the end of the execution of this
ExecutableEntity.

UNCONDITIONAL A Schedule Point shall always be
introduced at the end of the execution
of this ExecutableEntity.

Configuration Class Pre-compile time X All Variants
Link time –
Post-build time –

Scope / Dependency
No Included Containers

7.10.2.3 BSW Trigger configuration

7.10.2.3.1 BSW Trigger connection

The RteBswRequiredTriggerConnection container is defined in the context of
the RteBswModuleInstance which is the required trigger context. So the reference
to the RteBswRequiredTriggerRef is sufficient to define the required trigger. For

590 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

the released trigger the tuple of RteBswReleasedTriggerModInstRef and RteB-
swReleasedTriggerRef is specified.

BswModuleTemplate

AtpStructureElement
Identifiable

Trigger

+ swImplPolicy: SwImplPolicyEnum [0..1]

ARElement
AtpBlueprint

AtpBlueprintable
AtpStructureElement

BswModuleDescription

+ moduleId: PositiveInteger

InternalBehavior

BswInternalBehavior
BswTriggerDirectImplementation

+ task: Identifier

RteBswRequiredTriggerConnection :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

RteBswReleasedTriggerRef :
EcucForeignReferenceDef

lowerMultiplicity = 1
upperMultiplicity = 1
destinationType = TRIGGER

RteBswRequiredTriggerRef :
EcucForeignReferenceDef

lowerMultiplicity = 1
upperMultiplicity = 1
destinationType = TRIGGER

RteBswModuleInstance :EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

RteBswReleasedTriggerModInstRef :
EcucReferenceDef

+subContainer

+destination

+reference

+reference

+reference

«atpVariation»

+triggerDirectImplementation

0..*

«atpSplitable»
+internalBehavior 0..* 0..*

+masteredTrigger 1

«atpVariation»

+requiredTrigger

0..*

«atpVariation»

+releasedTrigger

0..*

Figure 7.22: Configuration of BSW Trigger connection

RteBswRequiredTriggerConnection

SWS Item [rte_sws_9077_Conf]
Container Name RteBswRequiredTriggerConnection
Description Defines the connection between one requiredTrigger of this BSW

Module instance and one releasedTrigger instance.
Configuration Parameters

591 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Name RteBswReleasedTriggerModInstRef [rte_sws_9075_Conf]
Description Reference to the RteBswModuleInstance configuration container which

identifies the instance of the BSW Module.
Used with the RteBswReleasedTriggerRef to unambiguously identify
the Trigger instance.

Multiplicity 1
Type Reference to RteBswModuleInstance
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name RteBswReleasedTriggerRef [rte_sws_9076_Conf]
Description References the releasedTrigger to which this requiredTrigger shall be

connected.
Multiplicity 1
Type Foreign reference to TRIGGER
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name RteBswRequiredTriggerRef [rte_sws_9078_Conf]
Description References one requiredTrigger which shall be connected to the

releasedTrigger.
Multiplicity 1
Type Foreign reference to TRIGGER
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency
No Included Containers

7.10.2.3.2 BSW Trigger queuing

This configuration determine the size of the queue queuing the issued triggers.

The RteBswExternalTriggerConfig container and RteBswInternalTrigger-
Config container is defined in the context of the RteBswModuleInstance which
already predefines the context of the provided Trigger / BswInternalTrigger-
ingPoint.

[rte_sws_ext_7597] The references RteBswTriggerSourceRef has to be consis-
tent with the RteBswImplementationRef. This means the referenced Trigger
/ BswInternalTriggeringPoint has to belong to the BswModuleDescription
which is referenced by the related BswImplementation.

592 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

From BSWMD-T

RteBswExternalTriggerConfig :
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = *

RteBswTriggerSourceRef :EcucForeignReferenceDef

destinationType = TRIGGER
upperMultiplicity = 1
lowerMultiplicity = 1

RteBswTriggerSourceQueueLength :
EcucIntegerParamDef

defaultValue = 0
lowerMultipl icity = 1
upperMultipl icity = 1
min = 0
max = 4294967295

RteBswInternalTriggerConfig :
EcucParamConfContainerDef

lowerMultipl icity = 0
upperMultipl icity = *

RteBswTriggerSourceRef :EcucForeignReferenceDef

destinationType = BSW-INTERNAL-TRIGGERING-POINT
upperMultipl icity = 1
lowerMultipl icity = 1

RteBswTriggerSourceQueueLength :
EcucIntegerParamDef

defaultValue = 0
lowerMultiplicity = 1
upperMultiplicity = 1
min = 0
max = 4294967295

RteBswModuleInstance :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

(from RTE)

AtpStructureElement
Identifiable

TriggerDeclaration::Trigger

+ swImplPolicy: SwImplPolicyEnum [0..1]

ARElement
AtpBlueprint

AtpBlueprintable
AtpStructureElement

BswOverview::
BswModuleDescription

+ moduleId: PositiveInteger

InternalBehavior

BswBehavior::
BswInternalBehavior

Identifiable

BswBehavior::BswInternalTriggeringPoint

+ swImplPolicy: SwImplPolicyEnum [0..1]«atpVariation»
+internalTriggeringPoint

0..*

«atpSplitable»

+internalBehavior 0..*

«atpVariation»

+releasedTrigger

0..*

+parameter

+reference

+subContainer

+parameter

+reference

+subContainer

Figure 7.23: Configuration of BSW Trigger queuing

RteBswExternalTriggerConfig

SWS Item [rte_sws_9099_Conf]
Container Name RteBswExternalTriggerConfig
Description Defines the configuration of Inter Basic Software Module Entity

Triggering
Configuration Parameters

593 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Name RteBswTriggerSourceQueueLength [rte_sws_9101_Conf]
Description Length of trigger queue on the trigger source side.

The queue is implemented by the RTE. A value greater or equal to 1
requests an queued behavior.
Setting the value of RteTriggerSourceQueueLength to 0 requests an
none queued implementation of the trigger communication.

If there is no RteBswTriggerSourceQueueLength configured for a
Trigger Emitter the default value of 0 applies as well.

Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 4294967295
Default Value 0
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name RteBswTriggerSourceRef [rte_sws_9100_Conf]
Description Reference to a Trigger instance in the role releasedTrigger of the

related BSW Module instance.

The referenced Trigger has to belong to the same BSW Module
instance as the RteBswModuleInstance owning this parameter
configures.

Multiplicity 1
Type Foreign reference to TRIGGER
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency
No Included Containers

RteBswInternalTriggerConfig

SWS Item [rte_sws_9102_Conf]
Container Name RteBswInternalTriggerConfig
Description Defines the configuration of internal Basic Software Module Entity

Triggering
Configuration Parameters

594 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Name RteBswTriggerSourceQueueLength [rte_sws_9104_Conf]
Description Length of trigger queue on the trigger source side.

The queue is implemented by the RTE. A value greater or equal to 1
requests an queued behavior.
Setting the value of RteTriggerSourceQueueLength to 0 requests an
none queued implementation of the trigger communication.

If there is no RteBswTriggerSourceQueueLength configured for a
Trigger Emitter the default value of 0 applies as well.

Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 4294967295
Default Value 0
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name RteBswTriggerSourceRef [rte_sws_9103_Conf]
Description Reference to a BswInternalTriggeringPoint of the related BSW Module

instance.

The referenced BswInternalTriggeringPoint has to belong to the same
BSW Module instance as the RteBswModuleInstance owning this
parameter configures.

Multiplicity 1
Type Foreign reference to BSW-INTERNAL-TRIGGERING-POINT
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency
No Included Containers

7.10.2.4 BSW ModeDeclarationGroup configuration

The RteBswRequiredModeGroupConnection container is defined in the context
of the RteBswModuleInstance which is the required mode group context. So the
reference to the RteBswRequiredModeGroupRef is sufficient to define the required
mode group. For the provided mode group the tuple of RteBswProvidedModeGrp-
ModInstRef and RteBswProvidedModeGroupRef is specified.

595 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

BswModuleTemplate

RteBswRequiredModeGroupConnection :
EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

RteBswProvidedModeGroupRef :EcucForeignReferenceDef

lowerMultipl icity = 1
upperMultipl icity = 1
destinationType = MODE-DECLARATION-GROUP-PROTOTYPE

RteBswRequiredModeGroupRef :EcucForeignReferenceDef

lowerMultipl icity = 1
upperMultipl icity = 1
destinationType = MODE-DECLARATION-GROUP-PROTOTYPE

ARElement
AtpBlueprint

AtpBlueprintable
AtpStructureElement

BswModuleDescription

+ moduleId: PositiveInteger

AtpPrototype

ModeDeclarationGroupPrototype

+ swCalibrationAccess: SwCalibrationAccessEnum [0..1]

ARElement
AtpBlueprint

AtpBlueprintable
AtpType

ModeDeclarationGroup

+ onTransitionValue: PositiveInteger [0..1]

RteBswModuleInstance :EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

RteBswProvidedModeGrpModInstRef :
EcucReferenceDef

+subContainer

+destination

«isOfType»

+type
1
{redefines atpType}

«atpVariation»

+requiredModeGroup

0..*

«atpVariation»

+providedModeGroup

0..*

+reference

+reference

+reference

Figure 7.24: Configuration of BSW Scheduler overview

RteBswRequiredModeGroupConnection

SWS Item [rte_sws_9081_Conf]
Container Name RteBswRequiredModeGroupConnection
Description Defines the connection between one requiredModeGroup of this BSW

Module instance and one providedModeGroup instance.
Configuration Parameters

Name RteBswProvidedModeGroupRef [rte_sws_9079_Conf]
Description References the providedModeGroupPrototype to which this

requiredModeGroup shall be connected.
Multiplicity 1
Type Foreign reference to MODE-DECLARATION-GROUP-PROTOTYPE
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

596 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Name RteBswProvidedModeGrpModInstRef [rte_sws_9080_Conf]
Description Reference to the RteBswModuleInstance configuration container which

identifies the instance of the BSW Module.
Used with the RteBswProvidedModeGroupRef to unambiguously
identify the ModeDeclarationGroupPrototype instance.

Multiplicity 1
Type Reference to RteBswModuleInstance
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency

Name RteBswRequiredModeGroupRef [rte_sws_9082_Conf]
Description References requiredModeGroupPrototype which shall be connected to

the providedModeGroupPrototype.
Multiplicity 1
Type Foreign reference to MODE-DECLARATION-GROUP-PROTOTYPE
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency
No Included Containers

7.11 Configuration of Initialization

In order to support different interactions with the start up code of the ECU the RTE
supports different initialization strategies for variables implementing VariableDat-
aPrototypes. Basically the initialization can be done either by start-up code or by the
Rte_Start function. Further on it is possible to avoid any initialization for data which
has to be reset safe or is explicitly initialized by other SW, e.g. the NVRAM Blocks
might be initialized by NVRAM Manager.

597 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Software Component Template and BSW Module Description Template
Rte :EcucModuleDef

upperMultipl icity = 1
lowerMultipl icity = 0

(from RTE)

RteInitializationBehavior :
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 1

RteSectionInitializationPolicy :
EcucStringParamDef

upperMultipl icity = *
lowerMultipl icity = 1

RteInitial izationStrategy :
EcucEnumerationParamDef

upperMultipl icity = 1
lowerMultipl icity = 1

RTE_INITIALIZATION_STRATEGY_AT_DATA_DECLARATION_AND_PARTITION_RESTART :
EcucEnumerationLiteralDef

RTE_INITIALIZATION_STRATEGY_AT_DATA_DECLARATION :EcucEnumerationLiteralDef

RTE_INITIALIZATION_STRATEGY_NONE :EcucEnumerationLiteralDef

«primitive»
PrimitiveTypes::

SectionInitial izationPolicyType

ARElement

AuxillaryObjects::SwAddrMethod

+ memoryAllocationKeywordPolicy: MemoryAllocationKeywordPolicyType [0..1]
+ option: Identifier [0..*]
+ sectionInitializationPolicy: SectionInitializationPolicyType [0..1]
+ sectionType: MemorySectionType [0..1]

RTE_INITIALIZATION_STRATEGY_AT_RTE_START_AND_PARTITION_RESTART :
EcucEnumerationLiteralDef

+literal

+l iteral

+l iteral

+l iteral

+parameter

+parameter

+container

Figure 7.25: Configuration of initialization strategy

RteInitializationBehavior

SWS Item [rte_sws_9087_Conf]
Container Name RteInitializationBehavior
Description Specifies the initialization strategy for variables allocated by RTE with

the purpose to implement VariableDataPrototypes.

The container defines a set of RteSectionInitializationPolicys and one
RteInitializationStrategy which is applicable for this set.

Configuration Parameters

598 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Name RteInitializationStrategy [rte_sws_9089_Conf]
Description Definition of the initialization strategy applicable for the

SectionInitializationPolicys selected by RteSectionInitializationPolicy.
Multiplicity 1
Type EcucEnumerationParamDef
Range RTE_INITIALIZATION_ST

RATEGY_AT_DATA_DEC
LARATION

Variables shall be initialized at its
declaration to the value defined by the
related initValue attribute.

RTE_INITIALIZATION_ST
RATEGY_AT_DATA_DEC
LARATION_AND_PARTIT
ION_RESTART

Variables shall be initialized at its
declaration to the value defined by the
related initValue attribute and during
execution of Rte_RestartPartition to
the value defined by the related
initValue attribute.

RTE_INITIALIZATION_ST
RATEGY_AT_RTE_STAR
T_AND_PARTITION_RES
TART

Variables shall be initialized during
execution of Rte_Start and
Rte_RestartPartition to the value
defined by the related initValue
attribute.

RTE_INITIALIZATION_ST
RATEGY_NONE

Variables shall not be initialized at all.

Configuration Class Pre-compile time X All Variants
Link time –
Post-build time –

Scope / Dependency scope: ECU

599 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Name RteSectionInitializationPolicy [rte_sws_9088_Conf]
Description This parameter describes the SectionInitializationPolicys for which a

particular RTE initialization strategy applies.

The SectionInitializationPolicy describes the intended initialization of
MemorySections.

The following values are standardized in AUTOSAR Methodology:

* ”’NO-INIT”’: No initialization and no clearing is performed. Such data
elements must not be read before one has written a value into it.
* ”’INIT”’: To be used for data that are initialized by every reset to the
specified value (initValue).
* ”’POWER-ON-INIT”’: To be used for data that are initialized by "Power
On" to the specified value (initValue). Note: there might be several
resets between power on resets.
* ”’CLEARED”’: To be used for data that are initialized by every reset to
zero.
* ”’POWER-ON-CLEARED”’: To be used for data that are initialized by
"Power On" to zero. Note: there might be several resets between
power on resets.

Multiplicity 1..*
Type EcucStringParamDef
Default Value
Regular Expression
Configuration Class Pre-compile time X All Variants

Link time –
Post-build time –

Scope / Dependency scope: ECU
No Included Containers

[rte_sws_7075]d The RTE generator shall reject configurations where not all occurring
SectionInitializationPolicy attribute values are configured to an RteIni-
tializationStrategy. c(RTE00018)

600 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

A Metamodel Restrictions

This chapter lists all the restrictions to the AUTOSAR meta-model this version of the
AUTOSAR RTE specification document relies on. The RTE generator shall reject con-
figuration where any of the specified restrictions are violated.

A.1 Restrictions concerning WaitPoint

1. [rte_sws_1358]d An error shall be raised if RunnableEntity has WaitPoint
connected to any of the following RTEEvents:

• OperationInvokedEvent

• SwcModeSwitchEvent

• TimingEvent

• BackgroundEvent

• DataReceiveErrorEvent

• ExternalTriggerOccurredEvent

• InternalTriggerOccurredEvent

• DataWriteCompletedEvent

The runnable can only be started with these events. c(RTE00092, RTE00018)

Rationale: For OperationInvokedEvents, SwcModeSwitchEvents,
TimingEvents, BackgroundEvents DataReceiveErrorEvent, Ex-
ternalTriggerOccurredEvent, InternalTriggerOccurredEvent,
and DataWriteCompletedEvent it suffices to allow the activation of a
RunnableEntity.

2. [rte_sws_7402]d The RTE generator shall reject a model where two (or more)
different RunnableEntitys in the same internal behavior each have a Wait-
Point referencing the same DataReceivedEvent, and the runnables are
mapped to different tasks. c(RTE00092, RTE00018)

Rationale: In the same software components, the two runnables will attempt to
read from the same queue, and only the one that accesses the queue first will
actually receive the data.

A.2 Restrictions concerning RTEEvent

1. [rte_sws_3526]d The RTE generator shall reject configurations in which a
RunnableEntity is triggered by multiple OperationInvokedEvents but vio-

601 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

lating the constraint [2000] Compatibility of ClientServerOperations triggering the
same RunnableEntity as defined in document [2] c(RTE00072, RTE00018)

Rationale: The signature of the RunnableEntity is dependent on its con-
nected RTEEvent. Multiple OperationInvokedEvents are only supported if
all referred Operations would result in the same RunnableEntity prototype
for the server runnable (see 5.7.5.6).

2. [rte_sws_3010]d One runnable entity shall only be resumed by one single RTE-
Event on its WaitPoint. The RTE doesn’t support the WaitPoint of one runnable
entity connected to several RTEEvents. c(RTE00092, RTE00018)

Rationale: The WaitPoint of the runnable entity is caused by calling of the
RTE API. One runnable entity can only call one RTE API at a time, and so it can
only wait for one RTEEvent.

3. [rte_sws_7007]d The RTE generator shall reject configurations where different
execution instances of a runnable entity, which use implicit data access, are
mapped to different Preemption Areas. c(RTE00018, RTE00128, RTE00129,
RTE00133, RTE00142)

Rationale: Buffers used for implicit communication shall be consistent during the
whole task execution. If it is guaranteed that one task does not preempt the other,
direct accesses to the same copy buffer from different tasks are possible.

4. [rte_sws_7403]d The RTE generator shall reject a model where in the same
SwcInternalBehavior two (or more) different DataReceivedEvents, that
reference the same VariableDataPrototype with event semantics, trigger
different runnable entities mapped to different tasks. c(RTE00072, RTE00018)

Rationale: In the same software components, the two runnables will attempt to
read from the same queue, and only the one that accesses the queue first will
actually receive the data.

A.3 Restrictions concerning queued implementation policy

1. [rte_sws_3012]d Access with VariableAccesses in the dataReadAccess
role is only allowed for VariableDataPrototypes whose swImplPolicy at-
tribute is not set to queued. c(RTE00128, RTE00018)

Rationale: By access with VariableAccess in the dataReadAccess role al-
ways the last value of the VariableDataPrototype will be read in the runn-
able. There is no meaning to provide a queue of values for the dataReadAccess
role.

2. [rte_sws_3018]d RTE does not support receiving with WaitPoint for Vari-
ableDataPrototypes with their swImplPolicy attribute is not set to queued.
c(RTE00109, RTE00092, RTE00018)

602 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Rationale: unqueued implementation policy indicates that the receiver shall not
wait for the VariableDataPrototype.

3. All the VariableAccesses in the dataSendPoint role referring to one Vari-
ableDataPrototype through one PPortPrototype are considered to have the
same behavior by sending and acknowledgment reception. All DataSendCom-
pletedEvents that reference VariableAccesses in the dataSendPoint
role referring to the same VariableDataPrototype are considered equiva-
lent.

Rationale: The API Rte_Send/Rte_Write is dependent on the port name and the
VariableDataPrototype name, not on the VariableAccesses. For each
combination of one VariableDataPrototype and one port only one API will
be generated and implemented for sending or acknowledgement reception.

A.4 Restrictions concerning ServerCallPoint

1. [rte_sws_3014]d All the ServerCallPoints referring to one ClientServerOp-
eration through one RPortPrototype are considered to have the same behavior
by calling service. The RTE generator shall reject configuration where this is
violated. c(RTE00051, RTE00018)

Rationale: The API Rte_Call is dependent on the port name and the opera-
tion name, not on the ServerCallPoints. For each combination of one operation
and one port only one API will be generated and implemented for calling a ser-
vice. It is e.g. not possible to have different timeout values specified for different
ServerCallPoints of the same ClientServerOperation. It is also not allowed
to specify both, a synchronous and an asynchronous server call point for the
same ClientServerOperation instance.

2. [rte_sws_3605]d If several require ports of a software component are catego-
rized by the same client/server interface, all invocations of the same operation
of this client/server interface have to be either synchronous, or all invocations of
the same operation have to be asynchronous. This restriction applies under the
following conditions:

• the usage of the indirect API is specified for at least one of the respective
port prototypes and/or

• the software component supports multiple instantiation, and the RTE gener-
ation shall be performed in compatibility mode.

c(RTE00051, RTE00018)

Rationale: The signature of Rte_Call and the existence of Rte_Result depend
on the kind of invocation.

603 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

3. [rte_sws_7170]d An AsynchronousServerCallPoint shall be referenced by one
AsynchronousServerCallResultPoints only. The RTE generator shall reject con-
figuration where this is violated. c(RTE00051, RTE00018)

Rationale: The support of several AsynchronousServerCallResultPoints per
AsynchronousServerCallPoint would potentially support multiple Asyn-
chronousServerCallReturnsEvents as well as multiple WaitPoints for the same
AsynchronousServerCallPoint.

A.5 Restriction concerning multiple instantiation of software
components

1. [rte_sws_7101]d The RTE does not support configurations in which a PortA-
PIOption with enableTakeAddress = TRUE is defined by a software-component
supporting multiple instantiation. c(RTE00018)

Rationale: The main focus of the feature is support for configuration of AU-
TOSAR Services which are limited to single instances.

A.6 Restrictions concerning runnable entity

1. [rte_sws_3527]d The RTE does NOT support multiple Runnable Entities shar-
ing the same entry point (symbol attribute of RunnableEntity). c(RTE00072,
RTE00018)

Rationale: The handle to data shared by VariableAccesses in the
dataReadAccess and dataWriteAccess roles has to be coded in the runn-
able code. An alternative would be an additional parameter to the runnable (a
runnable handle) to provide this indirection information.

2. [rte_sws_2733]d The RTE Generator shall reject a configuration where a runn-
able has the attribute canBeInvokedConcurrently set to true and the at-
tribute minimumStartInterval set to greater zero. c(RTE00018)

Rationale: If a runnable should run concurrently (i.e., have several Exe-
cutableEntity execution-instances), this implies that the minimum in-
terval between the start of the runnables is zero. The configuration to be rejected
is inconsistent.

604 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

A.7 Restrictions concerning runnables with dependencies on
modes

1. Operations may not be disabled by a ModeDisablingDependency.

[rte_sws_2706]d RTE shall reject configurations that contain OperationIn-
vokedEvents with a ModeDisablingDependency. c(RTE00143, RTE00018)

Rationale: It is a preferable implementation, if the server responds with an ex-
plicit application error, when the server operation is not supported in a mode.
To implement the disabling of operations would require a high amount of book
keeping even for internal client server communication to prevent that the unique
request response mapping gets lost.

2. Only a category 1 runnable may be triggered by

• a SwcModeSwitchEvent

• an RteEvent with a mode disabling dependency

[rte_sws_2500]d The RTE generator shall reject configurations with category
2 runnables connected to SwcModeSwitchEvents and RTEEvents / Bsw-
Events with ModeDisablingDependencys if the mode machine instance is
synchronous. The rejection may be reduced to a warning when the RTE genera-
tor is explicitly set to a non strict mode. c(RTE00143, RTE00213, RTE00018)

Rationale: The above runnables are executed or terminated on the transitions
between different modes. To execute the mode switch withing finite time, also
these runnables have to be executed within finite execution time.

3. All OnEntry ExecutableEntitys, OnTransition ExecutableEntitys,
and OnExit ExecutableEntitys of the same mode machine instance
should be mapped to the same task in case of synchronous mode switching pro-
cedure.

[rte_sws_2662]d The RTE generator shall reject configurations with OnEntry,
OnTransition, or OnExit ExecutableEntity’s of the same mode machine in-
stance that are mapped to different tasks in case of synchronous mode switch-
ing procedure. c(RTE00143, RTE00213, RTE00018)

In case of asynchronous mode switching procedure, a mapping of all affected
runnables to no task is also possible.

Rationale: This restriction simplifies the implementation of the semantics of a
synchronous mode switch.

4. To guarantee that all mode disabling dependent ExecutableEntitys of
a mode machine instance have terminated before the start of the OnExit

605 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

ExecutableEntitys of the transition, the mode disabling dependent
ExecutableEntitys should run with higher or equal priority.

[rte_sws_2663]d The RTE generator shall reject configurations with mode dis-
abling dependent ExecutableEntitys that are mapped to a task with
lower priority than the task that contains the OnEntry ExecutableEntitys
and OnExit ExecutableEntitys of that mode machine instance sup-
porting a synchronous mode switching procedure. c(RTE00143, RTE00213,
RTE00018)

5. [rte_sws_2664]d The RTE generator shall reject configurations of a task with

• OnExit ExecutableEntitys mapped after OnEntry ExecutableEn-
titys or

• OnTransition ExecutableEntitys mapped after OnEntry Exe-
cutableEntitys or

• OnExit ExecutableEntitys mapped after OnTransition Exe-
cutableEntitys

of the same mode machine instance supporting a synchronous mode switch-
ing procedure. c(RTE00143, RTE00213, RTE00018)

Rationale: This restriction simplifies the implementation of the semantics of a
synchronous mode switch.

6. [rte_sws_7157]d The RTE generator shall reject configurations with

• OnExit ExecutableEntitys mapped after OnEntry ExecutableEn-
titys or

• OnTransition ExecutableEntitys mapped after OnEntry Exe-
cutableEntitys or

• OnExit ExecutableEntitys mapped after OnTransition Exe-
cutableEntitys

of the same software component or Basic Software Module for a mode ma-
chine instance supporting an asynchronous mode switching procedure.
c(RTE00143, RTE00213, RTE00018)

Rationale: This restriction simplifies the implementation of the semantics of an
asynchronous mode switch.

7. If a mode is used to trigger a runnable for entering or leaving the mode, but
this runnable has a ModeDisablingDependency on the same mode, the
ModeDisablingDependency inhibits the activation of the runnable on the tran-
sition (see section 4.4.4).

To prevent such a misleading configuration, it is strongly recommended not to
configure a ModeDisablingDependency for an OnEntry ExecutableEn-
tity or OnExit ExecutableEntity, using the same mode.

606 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

A.8 Restriction concerning SwcInternalBehavior

1. [rte_sws_7686]d The RTE Generator shall reject configurations where an
AtomicSwComponentType does not contain a SwcInternalBehavior.
c(RTE00018)

A.9 Restrictions concerning Initial Value

1. [rte_sws_4525]d All VariableDataPrototype that are connected to the same
sender, or connected to the same receiver, or mapped to the same SystemSignal,
must have identical init values. c(RTE00108, RTE00018)

Rationale: In the meta model init values are specified in the data receiver or
sender com spec. Since a separate data receiver com spec exists for each port
that categorizes a specific interface, it would be (theoretically) possible to define
a different init value for a certain data element in each port. But COM allows only
one init value per signal.

2. [rte_sws_7642]d When the external configuration switch
strictInitialValuesCheck is enabled, the RTE Generator shall reject
configurations where a SwAddrMethod has a sectionInitializationPol-
icy set to init but no initValues are specified on the sender or receiver
side. c(RTE00068, RTE00108, RTE00018)

Rationale: The initValue is used to guarantee that the RTE won’t deliver un-
defined values.

3. [rte_sws_7681]d If strict checking of initial values is enabled (see rte_sws_7680),
the RTE Generator shall reject configurations where a ParameterDataProto-
type has no initValues. c(RTE00108, RTE00018)

Rationale: This allows to provide the values with a calibration without any in-
volvements from the RTE Generator, and still permits to enable a stricter check
on projects where it is required.

A.10 Restriction concerning PerInstanceMemory

1. [rte_sws_3790]d The <typeDefinition> attribute of a PerInstanceMemory is
not allowed to contain a function pointer. c(RTE00013, RTE00077)

Rationale: Using the type definition typedef <typedefinition> <typename>
does not work for function pointers.

2. [rte_sws_7045]d The RTE generator shall reject configurations where the type
attribute of a ’C’ typed PerInstanceMemory is equal to the name of a Im-

607 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

plementationDataType contained in the input configuration. c(RTE00013,
RTE00077)

Rationale: This would lead to equally named C type definitions.

A.11 Restrictions concerning unconnected r-port

1. [rte_sws_3019]d If strict checking has been enabled (see rte_sws_5099) there
shall not be unconnected r-port. The RTE generator shall in this case reject the
configuration with unconnected r-port. c(RTE00139, RTE00018)

Rationale: Unconnected r-port is considered as wrong configuration of the sys-
tem.

2. [rte_sws_2750]d The RTE Generator shall reject configurations where an r-port
typed with a ParameterInterface is not connected and an initValue of a
ParameterRequireComSpec is not provided for each ParameterDataPro-
totypes of this ParameterInterface. c(RTE00139, RTE00159, RTE00018)

A.12 Restrictions regarding communication of mode switch noti-
fications

1. [rte_sws_2670]dRTE shall not support connections with multiple senders (n:1
communication) of mode switch notifications connected to the same re-
ceiver. The RTE generator shall reject configurations with multiple senders of
mode switch notifications connected to the same receiver. c(RTE00131,
RTE00018)

Rationale: No use case is known to justify the required complexity.

2. [rte_sws_2724]dRTE shall reject configurations where one ModeDeclara-
tionGroupPrototype of a provide port is connected to ModeDecla-
rationGroupPrototypes of require ports from more than one partition.
c(RTE00131, RTE00018)

RTE does not support a configuration in which the mode users of one mode
machine instance are distributed over several partitions.

Note that the mode manager does not have to be in the same partition as the
mode users.

3. For each ModeDeclarationGroup, used in the SW-C’s ports, RTE needs a
unique mapping to an ImplementationDataType.

[rte_sws_2738]d RTE shall reject a configuration, in which there is not exactly
one ModeRequestTypeMap referencing the ModeDeclarationGroup used

608 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

in a ModeDeclarationGroupPrototype of the SW-C’s ports. c(RTE00144,
RTE00018)

A.13 Restrictions regarding Measurement and Calibration

1. [rte_sws_3951]d RTE does not support measurement of queued communica-
tion. c(RTE00153, RTE00018)

Rationale: Measurement of queued communication is not supported yet. Rea-
sons are:

• A queue can be empty. What’s to measure then? Data interpretation is
ambiguous.

• Which of the queue entries the measurement data has to be taken from
(first pending entry, last entry, an intermediate one, mean value, min. or
max. value)? Needs might differ out of user view? Data interpretation is
ambiguous.

• Compared e.g. to sender-receiver last-is-best approach only inefficient so-
lutions are possible because implementation of queues entails storage of
information dynamically at different memory locations. So always additional
copies are required.

2. [rte_sws_3970]d The RTE generator shall reject configurations containing
require ports attached to ParameterSwComponentTypes. c(RTE00154,
RTE00156, RTE00018)

Rationale: Require ports on ParameterSwComponentTypes don’t make
sense. ParameterSwComponentTypes only have to provide calibration param-
eters to other SwComponentTypes.

A.14 Restriction concerning ExclusiveAreaImplMechanism

1. [rte_sws_ext_3811] If an exclusive area’s configuration value for Exclu-
siveAreaImplMechanism is InterruptBlocking or OsResource, no runnable entity
shall contain any WaitPoint inside this exclusive area.

Please note that a wait point can either be a modelling WaitPoint e. g. a Wait-
Point in the SW-C description caused by the usage of a blocking API (e. g.
Rte_Receive) or an implementation wait point caused by a special implementa-
tion to fulfill the requirements of the ECU configuration, e. g. the runnable-to-task
mapping.

Rationale: The operating system has the limitation that a WaitEvent call is not
allowed with disabled interrupts. Therefore the implementation mechanism Inter-
ruptBlocking cannot be used if the exclusive area contains a waitpoint.

609 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Further the operating system has the limitation that an OS waitpoint cannot be en-
tered with occupied OS Resources. This implies that the implementation mecha-
nism OsResource cannot be used if the exclusive area contains a waitpoint.

A.15 Restrictions concerning AtomicSwComponentTypes

1. [rte_sws_7190]d The RTE generator shall reject configurations where multiple
SwComponentTypes have the same component type symbol regardless of
the ARPackage hierarchy. c(RTE00018)

Rational: This is required to generated unique names for the Application Header
Files and component data structures.

2. [rte_sws_7191]d The RTE generator shall reject configurations where a SwCom-
ponentType has PortPrototypes typed by different PortInterfaces with
equal short name but conflicting ApplicationErrors. ApplicationErrors
are conflicting if ApplicationErrors with same name do have different er-
rorCodes. c(RTE00018)

Rational: This is required to generated unique symbolic names for Applica-
tionErrors. (see also rte_sws_2576)

A.16 Restriction concerning the enableUpdate attribute of Non-
queuedReceiverComSpecs

1. [rte_sws_7654]d The RTE Generator shall reject configurations where a Vari-
ableDataPrototype is referenced by an NonqueuedReceiverComSpec with
the enableUpdate attribute enabled, when this VariableDataPrototype is
referenced by a VariableAccess in the dataReadAccess role. c(RTE00179,
RTE00018)

Rational: the update flag is restricted to explicit communication currently.

A.17 Restrictions concerning the large and dynamic data type

1. [rte_sws_7810]d The RTE shall reject the configuration if a dataElement
with an ImplementationDataType with subElements with arraySize-
Semantics equal to variableSize resolves to another type than uint8[n].
c(RTE00018)

Rationale: COM limits the dynamic signals to the ComSignalType UINT_8DYN
(see the requirement COM569). COM doesn’t support dynamic signals included
into signal groups. See more explanations in chapter 4.3.1.14.

610 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

2. [rte_sws_7811]d The RTE shall reject the configuration if a dataElement
mapped to a PDU with ComIPduType equal to TP has a swImplPolicy dif-
ferent from queued. c(RTE00018)

Rationale: Otherwise COM might return COM_BUSY. See more explanations in
chapter 4.3.1.15.

3. [rte_sws_7812]d The RTE shall reject the configuration if a dataElement with
an ImplementationDataType with subElements with arraySizeSeman-
tics equal to variableSize has a swImplPolicy different from queued.
c(RTE00018)

Rationale: Otherwise COM might return COM_BUSY. See more explanations in
chapter 4.3.1.15.

A.18 Restriction concerning REFERENCE types

1. [rte_sws_7670]d The RTE shall reject the configuration if an Implementation-
DataType with category DATA_REFERENCE is used in a PortInterface and
neither sender nor receiver component is a service, complex device driver or ECU
abstraction. c(RTE00018)

Rationale: Only for AUTOSAR services, complex device drivers or ECU abstrac-
tion, the use of references is allowed to prevent the misuse of references for
communication via the referenced memory (intra-partition scope). For example,
such a misuse could occur with application software components communicating
together and mapped to different partitions or ECUs.

611 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

B External Requirements
[rte_sws_ext_7521] The RunnableEntitys or BswSchedulableEntitys worst
case execution time shall be less than the GCD of all BswSchedulableEntitys and
RunnableEntitys period and offset in activation offset context for RunnableEn-
titys and BswSchedulableEntitys.

[rte_sws_ext_7816] Category 1 interrupts shall not access the RTE.

[rte_sws_ext_7351] The NVM block associated to the NvBlockDescriptors
of a NvBlockSwComponentType shall be configured with the NvmBlockUs-
eSyncMechanism feature enabled, and the NvmWriteRamBlockToNvm and Nvm-
ReadRamBlockFromNvm parameters set to the Rte_GetMirror and Rte_SetMirror

API of the NvBlockDescriptor.

[rte_sws_ext_2542] Whenever any Runnable Entity or Basic Software Schedu-
lable Entity is running, there shall always be exactly one mode or one mode transition
active of each ModeDeclarationGroupPrototype.

[rte_sws_ext_7565] Only one of two synchronized ModeDeclarationGroupPrototypes
shall mutual exclusively be referenced by ModeSwitchPoint(s) or managedModeGroup
association(s).

[rte_sws_ext_7547] A releasedTrigger Trigger shall not be referenced by both
a issuedTrigger and a BswTriggerDirectImplementation.

[rte_sws_ext_7040] The same Trigger in a Trigger Sink must not be con-
nected to multiple Trigger Sources.

[rte_sws_ext_7550] A synchronized Trigger shall only be referenced by either
ExternalTriggeringPoints, issuedTriggers or BswTriggerDirectImplementations.

[rte_sws_ext_1190] The arraySize defining number of elements in one di-
mension of an Array Implementation Data Type shall be an integer that is ≥ 1 for each
dimension.

[rte_sws_ext_1192] A structure shall include at least one element defined by a
ImplementationDataTypeElement.

[rte_sws_ext_7147] A Union Implementation Data Type shall include at least
two elements defined by ImplementationDataTypeElements.

[rte_sws_ext_7818] The Rte_Write APIs may only be used by the runnable
that contains the corresponding VariableAccess in the dataSendPoint role

[rte_sws_ext_7819] The Rte_Send APIs may only be used by the runnable

612 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

that contains the corresponding VariableAccess in the dataSendPoint role

[rte_sws_ext_2681] The Rte_Switch API may only be used by the runnable
that contains the corresponding ModeSwitchPoint

[rte_sws_ext_2682] The Rte_Invalidate API may only be used by the runn-
able that contains the corresponding VariableAccess in the dataSendPoint role

[rte_sws_ext_2687] A blocking Rte_Feedback API may only be used by the
runnable that contains the corresponding WaitPoint

[rte_sws_ext_2726] A blocking Rte_SwitchAck API may only be used by the
runnable that contains the corresponding WaitPoint

[rte_sws_ext_2683] The Rte_Read API may only be used by the runnable that
contains the corresponding VariableAccess in the dataReceivePointByArgu-
ment role

[rte_sws_ext_7397] The Rte_DRead API may only be used by the runnable that
contains the corresponding VariableAccess in the dataReceivePointByValue
role

[rte_sws_ext_2684] The Rte_Receive API may only be used by the runnable
that contains the corresponding VariableAccess in the dataReceivePointB-
yArgument role

[rte_sws_ext_2685] The Rte_Call API may only be used by the runnable that
contains the corresponding ServerCallPoint

[rte_sws_ext_2686] The blocking Rte_Result API may only be used by the
runnable that contains the corresponding WaitPoint

[rte_sws_ext_7679] The reference returned by Rte_IWriteRef shall not be
used by the runnables for reading the value previously written.

[rte_sws_ext_2601] The Rte_IStatus API shall only be used by a RunnableEntity
that either has a VariableAccess in the dataReadAccess role referring to the
VariableDataPrototype or is triggered by a DataReceiveErrorEvent referring to
the VariableDataPrototype.

[rte_sws_ext_7171] The Rte_Enter and Rte_Exit API may only be used by
Runnable Entities that contain a corresponding canEnterExclusiveArea association

[rte_sws_ext_7172] The Rte_Enter and Rte_Exit API may only be called nested if
different exclusive areas are invoked; in this case exclusive areas shall exited in the
reverse order they were entered.

613 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

[rte_sws_ext_7568] The Rte_Mode API may only be used by the runnable that
contains the corresponding ModeAccessPoint

[rte_sws_ext_8502] The Rte_Mode API may only be used by the runnable that
contains the corresponding ModeAccessPoint

[rte_sws_ext_7202] The Rte_Trigger API may only be used by the runnable
that contains the corresponding ExternalTriggeringPoint.

[rte_sws_ext_7205] The Rte_IrTrigger API may only be used by the runn-
able that contains the corresponding InternalTriggeringPoint.

[rte_sws_ext_7603] The Rte_IsUpdated API may only be used by the runnable that
contains the corresponding VariableAccess in the dataReceivePointByArgu-
ment or dataReceivePointByValue role.

[rte_sws_ext_2704] Only the least significant six bit of the return value of a
server runnable shall be used by the application to indicate an error. The upper two bit
shall be zero.

[rte_sws_ext_2582] Rte_Start shall be called only once by the EcuStateMan-
ager from trusted OS context on a core after the basic software modules required by
RTE are initialized.

[rte_sws_ext_7577] The Rte_Start API may only be used after the Basic Soft-
ware Scheduler is initialized (after termination of the SchM_Init).

[rte_sws_ext_2714] The Rte_Start API shall be called on every core that hosts
AUTOSAR software-components of the ECU.

[rte_sws_ext_2583] Rte_Stop shall be called by the EcuStateManager before
the basic software modules required by RTE are shut down.

[rte_sws_ext_7332] Rte_PartitionTerminated shall be called only once by
the ProtectionHook.

[rte_sws_ext_7618] Rte_PartitionRestarting shall be called only once by
the ProtectionHook.

[rte_sws_ext_7337] Rte_RestartPartition shall be called only in the context
of the RestartTask of the given partition.

[rte_sws_ext_7512] Each BSW module implementation shall include its Module
Interlink Header File if it uses Basic Software Scheduler API or if it implements
BswSchedulableEntitys.

614 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

[rte_sws_ext_7285] The SchM_Enter and SchM_Exit API may only be used by
BswModuleEntitys that contain a corresponding canEnterExclusiveArea
association

[rte_sws_ext_7529] The SchM_Enter and SchM_Exit API may only be called
nested if different exclusive areas are invoked; in this case exclusive areas shall exited
in the reverse order they were entered.

[rte_sws_ext_7189] The SchM_Exit API may only be used by BswModuleEn-
titys that contain a corresponding canEnterExclusiveArea association

[rte_sws_ext_7257] The SchM_Switch API may only be used by BswModuleEn-
titys that contain a corresponding managedModeGroup association

[rte_sws_ext_7587] The SchM_Mode API may only be used by BswModuleEntitys
that contain a corresponding managedModeGroup association or accessedMode-
Group association

[rte_sws_ext_8508] The SchM_Mode API may only be used by BswModuleEntitys
that contain a corresponding managedModeGroup association or accessedMode-
Group association

[rte_sws_ext_7567] The SchM_SwitchAck API may only be used by BswMod-
uleEntitys that contain a corresponding managedModeGroup association

[rte_sws_ext_7265] The SchM_Trigger API may only be used by the BswMod-
uleEntity that contains the corresponding issuedTrigger association.

[rte_sws_ext_7268] The SchM_ActMainFunction API may only be used by the
BswModuleEntity that contains the corresponding activationPoint association.

[rte_sws_ext_7287] The Basic Software Scheduler requires that the BswMod-
uleEntry has no service arguments and no return value.

[rte_sws_ext_7272] SchM_Init shall be called only once by the EcuStateMan-
ager on each core after the basic software modules required by the Basic Software
Scheduler part of the RTE are initialized.

[rte_sws_ext_7576] The SchM_Deinit API may only be used after the RTE fi-
nalized (after termination of the Rte_Stop)

[rte_sws_ext_7276] SchM_Deinit shall be called by the EcuStateManager be-
fore the basic software modules required by Basic Software Scheduler part are shut
down.

615 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

[rte_sws_ext_7598] The references RteSwcTriggerSourceRef has to be consis-
tent with the RteSoftwareComponentInstanceRef. This means the referenced
Trigger / InternalTriggeringPoint has to belong to the AtomicSwCompo-
nentType which is referenced by the related SwComponentPrototype.

[rte_sws_ext_7597] The references RteBswTriggerSourceRef has to be consis-
tent with the RteBswImplementationRef. This means the referenced Trigger /
BswInternalTriggeringPoint has to belong to the BswModuleDescription
which is referenced by the related BswImplementation.

[rte_sws_ext_3811] If an exclusive area’s configuration value for ExclusiveAreaIm-
plMechanism is InterruptBlocking or OsResource, no runnable entity shall contain any
WaitPoint inside this exclusive area.

616 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

C MISRA C Compliance

In general, all RTE code, whether generated or not, shall conform to the HIS subset of
the MISRA C standard rte_sws_1168 [25]. This chapter lists all the MISRA C rules of
the HIS subset that may be violated by the generated RTE.

The MISRA C standard was defined with having mainly hand-written code in mind. Part
of the MISRA C rules only apply to hand-written code, they do not make much sense
in the context of automatic code generation. Additonally, there are some rules that are
violated because of technical reasons, mainly to reduce RTE overhead.

The rules listed in this chapter are expected to be violated by RTE code. Violations to
the rules listed here do not need to be documented as non-compliant to MISRA C in
the generated code itself.

MISRA rule 11

Description

Identifiers (internal and external) shall not rely on significance of
more than 31 characters. Furthermore the compiler/linker shall be
checked to ensure that 31 character significance and case sensitivity
are supported for external identifiers.

Violations
The defined RTE naming convention may result in identifiers with
more than 31 characters. The compliance to this rule is under user’s
control.

MISRA rule 23
Description All declarations at file scope should be static where possible.

Violations E.g. for the purpose of monitoring during calibration or debugging it
may be necessary to use non-static declarations at file scope.

MISRA rule 42

Description The comma operator shall not be used, except in the control expres-
sion of a for loop.

Violations
Function-like macros may have to use the comma opera-
tor. Function-like macros are required for efficiency reasons
[BSW00330].

MISRA rule 45
Description Type casting from any type to or from pointers shall not be used.

Violations
Casting to/from pointer type may be needed for the interface with
COM. Casting from a pointer to a Data Element with Status
to a pointer to a Data Element without Status.

MISRA rule 54

617 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

Description A null statement shall only occur on a line by itself, and shall not have
any other text on the same line.

Violations In an optimized RTE, API calls may result in a null statement. There-
fore the compliance to this rule cannot be guaranteed.

618 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

D Changes History

D.1 Changes in Rel. 4.0 Rev. 2 compared to Rel. 4.0 Rev. 1

D.1.1 Deleted SWS Items

The following SWS Items were removed in Rel. 4.0 Rev. 2: rte_sws_1254,
rte_sws_3552, rte_sws_3557, rte_sws_3559, rte_sws_3563, rte_sws_3564,
rte_sws_3568, rte_sws_3588, rte_sws_3593, rte_sws_3743, rte_sws_5512.

D.1.2 Changed SWS Items

The following SWS Items were changed in Rel. 4.0 Rev. 2: rte_sws_1086,
rte_sws_1111, rte_sws_1113, rte_sws_1114, rte_sws_1118, rte_sws_1156,
rte_sws_1355, rte_sws_2517, rte_sws_2527, rte_sws_2528, rte_sws_2613,
rte_sws_2615, rte_sws_2679, rte_sws_2728, rte_sws_2730, rte_sws_2747,
rte_sws_2752, rte_sws_2753, rte_sws_3001, rte_sws_3560, rte_sws_3562,
rte_sws_3567, rte_sws_3598, rte_sws_3599, rte_sws_3774, rte_sws_3827,
rte_sws_3837, rte_sws_3930, rte_sws_3953, rte_sws_3954, rte_sws_3955,
rte_sws_3956, rte_sws_3957, rte_sws_5021, rte_sws_5156, rte_sws_5506,
rte_sws_5509, rte_sws_6010, rte_sws_6633, rte_sws_7020, rte_sws_7021,
rte_sws_7041, rte_sws_7184, rte_sws_7187, rte_sws_7195, rte_sws_7262,
rte_sws_7280, rte_sws_7282, rte_sws_7293, rte_sws_7294, rte_sws_7375,
rte_sws_7376, rte_sws_7409, rte_sws_7586, rte_sws_7589, rte_sws_7632,
rte_sws_7636, rte_sws_7637, rte_sws_7667, rte_sws_7680, rte_sws_7683,
rte_sws_ext_3811.

D.1.3 Added SWS Items

The following SWS Items were added in Rel. 4.0 Rev. 2: rte_sws_2761, rte_sws_3850,
rte_sws_3851, rte_sws_3852, rte_sws_3853, rte_sws_7045, rte_sws_7046,
rte_sws_7047, rte_sws_7048, rte_sws_7049, rte_sws_7050, rte_sws_7051,
rte_sws_7052, rte_sws_7053, rte_sws_7054, rte_sws_7055, rte_sws_7056,
rte_sws_7057, rte_sws_7058, rte_sws_7059, rte_sws_7060, rte_sws_7061,
rte_sws_7062, rte_sws_7063, rte_sws_7064, rte_sws_7065, rte_sws_7066,
rte_sws_7067, rte_sws_7068, rte_sws_7069, rte_sws_7070, rte_sws_7071,
rte_sws_7072, rte_sws_7073, rte_sws_7074, rte_sws_7075, rte_sws_7076,
rte_sws_7077, rte_sws_7078, rte_sws_7079, rte_sws_7080, rte_sws_7081,
rte_sws_8000, rte_sws_8001, rte_sws_8002, rte_sws_8300, rte_sws_8301,
rte_sws_8302.

619 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

D.2 Changes in Rel. 4.0 Rev. 3 compared to Rel. 4.0 Rev. 2

D.2.1 Deleted SWS Items

The following SWS Items were removed in Rel. 4.0 Rev. 3: rte_sws_3838,
rte_sws_3844, rte_sws_3850, rte_sws_5171, rte_sws_7106, rte_sws_7108,
rte_sws_7164, rte_sws_7165, rte_sws_7168, rte_sws_7176, rte_sws_7674.

D.2.2 Changed SWS Items

The following SWS Items were changed in Rel. 4.0 Rev. 3: rte_sws_1018,
rte_sws_1019, rte_sws_1020, rte_sws_1156, rte_sws_1171, rte_sws_1238,
rte_sws_1239, rte_sws_1248, rte_sws_1249, rte_sws_1300, rte_sws_2500,
rte_sws_2568, rte_sws_2576, rte_sws_2627, rte_sws_2628, rte_sws_2629,
rte_sws_2631, rte_sws_2648, rte_sws_2659, rte_sws_2662, rte_sws_2664,
rte_sws_2675, rte_sws_2732, rte_sws_3526, rte_sws_3714, rte_sws_3731,
rte_sws_3782, rte_sws_3793, rte_sws_3809, rte_sws_3810, rte_sws_3813,
rte_sws_3827, rte_sws_3828, rte_sws_3829, rte_sws_3831, rte_sws_3832,
rte_sws_3833, rte_sws_3837, rte_sws_3839, rte_sws_3840, rte_sws_3841,
rte_sws_3842, rte_sws_3843, rte_sws_3845, rte_sws_3846, rte_sws_3847,
rte_sws_3848, rte_sws_3849, rte_sws_3851, rte_sws_3907, rte_sws_3949,
rte_sws_4526, rte_sws_5051, rte_sws_5052, rte_sws_5059, rte_sws_5062,
rte_sws_5078, rte_sws_5127, rte_sws_5128, rte_sws_6513, rte_sws_6515,
rte_sws_6518, rte_sws_6519, rte_sws_6520, rte_sws_6530, rte_sws_6532,
rte_sws_6535, rte_sws_6536, rte_sws_7022, rte_sws_7030, rte_sws_7036,
rte_sws_7037, rte_sws_7038, rte_sws_7047, rte_sws_7048, rte_sws_7069,
rte_sws_7104, rte_sws_7109, rte_sws_7110, rte_sws_7111, rte_sws_7113,
rte_sws_7114, rte_sws_7116, rte_sws_7133, rte_sws_7136, rte_sws_7144,
rte_sws_7148, rte_sws_7149, rte_sws_7157, rte_sws_7162, rte_sws_7163,
rte_sws_7166, rte_sws_7175, rte_sws_7182, rte_sws_7185, rte_sws_7190,
rte_sws_7194, rte_sws_7195, rte_sws_7200, rte_sws_7203, rte_sws_7214,
rte_sws_7224, rte_sws_7250, rte_sws_7253, rte_sws_7255, rte_sws_7260,
rte_sws_7261, rte_sws_7263, rte_sws_7266, rte_sws_7282, rte_sws_7292,
rte_sws_7293, rte_sws_7294, rte_sws_7295, rte_sws_7310, rte_sws_7315,
rte_sws_7381, rte_sws_7382, rte_sws_7383, rte_sws_7501, rte_sws_7503,
rte_sws_7504, rte_sws_7543, rte_sws_7544, rte_sws_7552, rte_sws_7554,
rte_sws_7555, rte_sws_7556, rte_sws_7670, rte_sws_7682, rte_sws_8300.

D.2.3 Added SWS Items

The following SWS Items were added in Rel. 4.0 Rev. 3: rte_sws_3854, rte_sws_3855,
rte_sws_3856, rte_sws_3857, rte_sws_3858, rte_sws_3859, rte_sws_3860,
rte_sws_3861, rte_sws_6700, rte_sws_6701, rte_sws_6702, rte_sws_6703,
rte_sws_6704, rte_sws_6705, rte_sws_6706, rte_sws_6707, rte_sws_6708,

620 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

Specification of RTE
V3.2.0

R4.0 Rev 3

rte_sws_6709, rte_sws_6710, rte_sws_6711, rte_sws_6712, rte_sws_6713,
rte_sws_6714, rte_sws_6715, rte_sws_6716, rte_sws_6717, rte_sws_6718,
rte_sws_6719, rte_sws_6720, rte_sws_6721, rte_sws_6722, rte_sws_6723,
rte_sws_6724, rte_sws_6725, rte_sws_6726, rte_sws_7082, rte_sws_7083,
rte_sws_7084, rte_sws_7085, rte_sws_7086, rte_sws_7087, rte_sws_7088,
rte_sws_7089, rte_sws_7090, rte_sws_7091, rte_sws_7092, rte_sws_7093,
rte_sws_7094, rte_sws_7095, rte_sws_7096, rte_sws_7097, rte_sws_7099,
rte_sws_7593, rte_sws_7594, rte_sws_7595, rte_sws_7596, rte_sws_7692,
rte_sws_7693, rte_sws_7694, rte_sws_7920, rte_sws_7921, rte_sws_7922,
rte_sws_7923, rte_sws_7924, rte_sws_8004, rte_sws_8005, rte_sws_8007,
rte_sws_8008, rte_sws_8009, rte_sws_8016, rte_sws_8017, rte_sws_8018,
rte_sws_8020, rte_sws_8021, rte_sws_8022, rte_sws_8023, rte_sws_8024,
rte_sws_8025, rte_sws_8026, rte_sws_8027, rte_sws_8028, rte_sws_8029,
rte_sws_8030, rte_sws_8031, rte_sws_8032, rte_sws_8033, rte_sws_8034,
rte_sws_8035, rte_sws_8036, rte_sws_8037, rte_sws_8038, rte_sws_8039,
rte_sws_8040, rte_sws_8041, rte_sws_8042, rte_sws_8043, rte_sws_8044,
rte_sws_8045, rte_sws_8303, rte_sws_8304, rte_sws_8305, rte_sws_8306,
rte_sws_8307, rte_sws_8308, rte_sws_8400, rte_sws_8401, rte_sws_8402,
rte_sws_8403, rte_sws_8404, rte_sws_8500, rte_sws_8501, rte_sws_8503,
rte_sws_8504, rte_sws_8505, rte_sws_8506, rte_sws_8507, rte_sws_8509,
rte_sws_8510, rte_sws_ext_7597, rte_sws_ext_7598, rte_sws_ext_8502,
rte_sws_ext_8508.

621 of 621
— AUTOSAR CONFIDENTIAL —

Document ID 084: AUTOSAR_SWS_RTE

	1 Introduction
	1.1 Scope
	1.2 Dependency to other AUTOSAR specifications
	1.3 Acronyms and Abbreviations
	1.4 Technical Terms
	1.5 Document Conventions
	1.6 Requirements Traceability

	2 RTE Overview
	2.1 The RTE in the Context of AUTOSAR
	2.2 AUTOSAR Concepts
	2.2.1 AUTOSAR Software-components
	2.2.2 Basic Software Modules
	2.2.3 Communication
	2.2.3.1 Communication Paradigms
	2.2.3.2 Communication Modes
	2.2.3.3 Static Communication
	2.2.3.4 Multiplicity

	2.2.4 Concurrency

	2.3 The RTE Generator
	2.4 Design Decisions

	3 RTE Generation Process
	3.1 Contract Phase
	3.1.1 RTE Contract Phase
	3.1.2 Basic Software Scheduler Contract Phase

	3.2 PreBuild Data Set Contract Phase
	3.3 Edit ECU Configuration of the RTE
	3.4 Generation Phase
	3.4.1 Basic Software Scheduler Generation Phase
	3.4.2 RTE Generation Phase
	3.4.3 Basic Software Module Description generation
	3.4.3.1 Bsw Module Description
	3.4.3.2 Bsw Internal Behavior
	3.4.3.3 Bsw Implementation

	3.5 PreBuild Data Set Generation Phase
	3.6 PostBuild Data Set Generation Phase
	3.7 RTE Configuration interaction with other BSW Modules

	4 RTE Functional Specification
	4.1 Architectural concepts
	4.1.1 Scope
	4.1.2 RTE and Data Types
	4.1.3 RTE and AUTOSAR Software-Components
	4.1.3.1 Hierarchical Structure of Software-Components
	4.1.3.2 Ports, Interfaces and Connections
	4.1.3.3 Internal Behavior
	4.1.3.4 Implementation

	4.1.4 Instantiation
	4.1.4.1 Scope and background
	4.1.4.2 Concepts of instantiation
	4.1.4.3 Single instantiation
	4.1.4.4 Multiple instantiation

	4.1.5 RTE and AUTOSAR Services
	4.1.6 RTE and ECU Abstraction
	4.1.7 RTE and Complex Device Driver
	4.1.8 Basic Software Scheduler and Basic Software Modules
	4.1.8.1 Description of a Basic Software Module
	4.1.8.2 Basic Software Interfaces
	4.1.8.3 Basic Software Internal Behavior
	4.1.8.4 Basic Software Implementation
	4.1.8.5 Multiple Instances of Basic Software Modules
	4.1.8.6 AUTOSAR Services / ECU Abstraction / Complex Device Drivers

	4.2 RTE and Basic Software Scheduler Implementation Aspects
	4.2.1 Scope
	4.2.2 OS
	4.2.2.1 OS Objects
	4.2.2.2 Basic Software Schedulable Entities
	4.2.2.3 Runnable Entities
	4.2.2.4 RTE Events
	4.2.2.5 BswEvents
	4.2.2.6 Mapping of Runnable Entities and Basic Software Schedulable Entities to tasks (informative)
	4.2.2.7 Monitoring of runnable execution time
	4.2.2.8 Synchronization of TimingEvent activated runnables
	4.2.2.9 BackgroundEvent activated Runnable Entities and BasicSoftware Scheduleable Entities

	4.2.3 Activation and Start of ExecutableEntitys
	4.2.3.1 Activation by direct function call
	4.2.3.2 Activation Offset for RunnableEntitys and BswSchedulableEntitys

	4.2.4 Interrupt decoupling and notifications
	4.2.4.1 Basic notification principles
	4.2.4.2 Interrupts
	4.2.4.3 Decoupling interrupts on RTE level
	4.2.4.4 RTE and interrupt categories
	4.2.4.5 RTE and Basic Software Scheduler and BswExecutionContext

	4.2.5 Data Consistency
	4.2.5.1 General
	4.2.5.2 Communication Patterns
	4.2.5.3 Concepts
	4.2.5.4 Mechanisms to guarantee data consistency
	4.2.5.5 Exclusive Areas
	4.2.5.6 InterRunnableVariables

	4.2.6 Multiple trigger of Runnable Entities and Basic Software Schedulable Entities
	4.2.7 Implementation of Parameter and Data elements
	4.2.7.1 General
	4.2.7.2 Compatibility rules
	4.2.7.3 Implementation of an interface element
	4.2.7.4 Initialization of VariableDataPrototypes

	4.2.8 Measurement and Calibration
	4.2.8.1 General
	4.2.8.2 Measurement
	4.2.8.3 Calibration
	4.2.8.4 Generation of McSupportData

	4.2.9 Access to NVRAM data
	4.2.9.1 General
	4.2.9.2 Usage of the NvBlockSwComponentType
	4.2.9.3 Interface of the NvBlockSwComponentType
	4.2.9.4 Data Consistency

	4.3 Communication Paradigms
	4.3.1 Sender-Receiver
	4.3.1.1 Introduction
	4.3.1.2 Receive Modes
	4.3.1.3 Multiple Data Elements
	4.3.1.4 Multiple Receivers and Senders
	4.3.1.5 Implicit and Explicit Data Reception and Transmission
	4.3.1.6 Transmission Acknowledgement
	4.3.1.7 Communication Time-out
	4.3.1.8 Data Element Invalidation
	4.3.1.9 Filters
	4.3.1.10 Buffering
	4.3.1.11 Operation
	4.3.1.12 ``Never received status'' for Data Element
	4.3.1.13 ``Update flag'' for Data Element
	4.3.1.14 Dynamic data type
	4.3.1.15 Inter-ECU communication through TP
	4.3.1.16 Inter-ECU communication of arrays of bytes
	4.3.1.17 Handling of acknowledgment events

	4.3.2 Client-Server
	4.3.2.1 Introduction
	4.3.2.2 Multiplicity
	4.3.2.3 Communication Time-out
	4.3.2.4 Port-Defined argument values
	4.3.2.5 Buffering
	4.3.2.6 Inter-ECU and Inter-Partition Response to Request Mapping
	4.3.2.7 Operation

	4.3.3 SWC internal communication
	4.3.3.1 Inter Runnable Variables

	4.3.4 Inter-Partition communication
	4.3.4.1 Inter partition data communication using IOC
	4.3.4.2 Accessing COM from slave core in multicore configuration
	4.3.4.3 Signaling and control flow support for inter partition communication
	4.3.4.4 Trusted Functions
	4.3.4.5 Memory Protection and Pointer Type Parameters in RTE API

	4.3.5 PortInterface Element Mapping and Data Conversion
	4.3.5.1 PortInterface Element Mapping
	4.3.5.2 Network Representation
	4.3.5.3 Data Conversion
	4.3.5.4 Range Checks during Runtime

	4.4 Modes
	4.4.1 Mode User
	4.4.2 Mode Manager
	4.4.3 Refinement of the semantics of ModeDeclarations and ModeDeclarationGroups
	4.4.4 Order of actions taken by the RTE / Basic Software Scheduler upon interception of a mode switch notification
	4.4.5 Assignment of mode machine instances to RTE and Basic Software Scheduler
	4.4.6 Initialization of mode machine instances
	4.4.7 Notification of mode switches
	4.4.8 Mode switch acknowledgment

	4.5 External and Internal Trigger
	4.5.1 External Trigger Event Communication
	4.5.1.1 Introduction
	4.5.1.2 Trigger Sink
	4.5.1.3 Trigger Source
	4.5.1.4 Multiplicity
	4.5.1.5 Synchronized Trigger

	4.5.2 Inter Runnable Triggering
	4.5.2.1 Multiplicity

	4.5.3 Inter Basic Software Module Entity Triggering
	4.5.4 Queuing of Triggers
	4.5.5 Activation of triggered ExecutableEntities

	4.6 Initialization and Finalization
	4.6.1 Initialization and Finalization of the RTE
	4.6.1.1 Initialization of the Basic Software Scheduler
	4.6.1.2 Initialization of the RTE
	4.6.1.3 Stop and restart of the RTE
	4.6.1.4 Finalization of the RTE
	4.6.1.5 Finalization of the Basic Software Scheduler

	4.6.2 Initialization and Finalization of AUTOSAR Software-Components

	4.7 Variant Handling Support
	4.7.1 Overview
	4.7.2 Choosing a Variant and Binding Variability
	4.7.2.1 General impact of Binding Times on RTE generation
	4.7.2.2 Choosing a particular variant
	4.7.2.3 SystemDesignTime
	4.7.2.4 CodeGenerationTime
	4.7.2.5 PreCompileTime
	4.7.2.6 LinkTime
	4.7.2.7 PostBuild

	4.7.3 Variability affecting the RTE generation
	4.7.3.1 Software Composition
	4.7.3.2 Atomic Software Component and its Internal Behavior
	4.7.3.3 NvBlockComponent and its Internal Behavior
	4.7.3.4 Parameter Component
	4.7.3.5 Data Type
	4.7.3.6 Basic Software Modules and its Internal Behavior

	4.7.4 Variability affecting the Basic Software Scheduler generation
	4.7.4.1 Basic Software Scheduler API which is subject to variability
	4.7.4.2 Basic Software Entities
	4.7.4.3 API behavior

	4.8 Development errors
	4.8.1 DET Report Identifiers
	4.8.2 DET Error Identifiers
	4.8.3 DET Error Classification

	5 RTE Reference
	5.1 Scope
	5.1.1 Programming Languages
	5.1.2 Generator Principles
	5.1.2.1 Operating Modes
	5.1.2.2 Optimization Modes
	5.1.2.3 Build support
	5.1.2.4 Debugging support
	5.1.2.5 Software Component Namespace

	5.1.3 Generator external configuration switches

	5.2 API Principles
	5.2.1 RTE Namespace
	5.2.2 Direct API
	5.2.3 Indirect API
	5.2.3.1 Accessing Port Handles

	5.2.4 VariableAccess in the dataReadAccess and dataWriteAccess roles
	5.2.5 Per Instance Memory
	5.2.6 API Mapping
	5.2.6.1 ``RTE Contract'' Phase
	5.2.6.2 ``RTE Generation'' Phase
	5.2.6.3 Function Elision
	5.2.6.4 API Naming Conventions
	5.2.6.5 API Parameters
	5.2.6.6 Return Values
	5.2.6.7 Return References
	5.2.6.8 Error Handling
	5.2.6.9 Success Feedback

	5.2.7 Unconnected Ports
	5.2.7.1 Data Elements
	5.2.7.2 Mode Switch Ports
	5.2.7.3 Client-Server

	5.2.8 Non-identical port interfaces

	5.3 RTE Modules
	5.3.1 RTE Header File
	5.3.2 Lifecycle Header File
	5.3.3 Application Header File
	5.3.3.1 File Name
	5.3.3.2 Scope
	5.3.3.3 File Contents

	5.3.4 RTE Types Header File
	5.3.4.1 File Contents
	5.3.4.2 Classification of Implementation Data Types
	5.3.4.3 Primitive Implementation Data Type
	5.3.4.4 Array Implementation Data Type
	5.3.4.5 Structure Implementation Data Type and Union Implementation Data Type
	5.3.4.6 Union Implementation Data Type
	5.3.4.7 Implementation Data Type redefinition
	5.3.4.8 Pointer Implementation Data Type
	5.3.4.9 ImplementationDataTypes with VariationPoints
	5.3.4.10 Naming of data types
	5.3.4.11 C/C++

	5.3.5 RTE Data Handle Types Header File
	5.3.5.1 File Name
	5.3.5.2 File Contents

	5.3.6 Application Types Header File
	5.3.6.1 File Name
	5.3.6.2 Scope
	5.3.6.3 File Contents
	5.3.6.4 RTE Modes
	5.3.6.5 Enumeration Data Types
	5.3.6.6 Range Data Types
	5.3.6.7 Implementation Data Type symbols

	5.3.7 VFB Tracing Header File
	5.3.7.1 C/C++
	5.3.7.2 File Contents

	5.3.8 RTE Configuration Header File
	5.3.8.1 C/C++
	5.3.8.2 File Contents

	5.3.9 Generated RTE
	5.3.9.1 Header File Usage
	5.3.9.2 C/C++
	5.3.9.3 File Contents
	5.3.9.4 Reentrancy

	5.3.10 RTE Post Build Variant Sets
	5.3.10.1 Example 1: File Contents Rte_PBCfg.h
	5.3.10.2 Example 2: File Contents Rte_PBCfg.h
	5.3.10.3 Examples: File Contents Rte_PBCfg.c

	5.4 RTE Data Structures
	5.4.1 Instance Handle
	5.4.2 Component Data Structure
	5.4.2.1 Data Handles Section
	5.4.2.2 Per-instance Memory Handles Section
	5.4.2.3 Inter Runnable Variable Handles Section
	5.4.2.4 Exclusive-area API Section
	5.4.2.5 Port API Section
	5.4.2.6 Calibration Parameter Handles Section
	5.4.2.7 Inter Runnable Variable API Section
	5.4.2.8 Inter Runnable Triggering API Section
	5.4.2.9 Vendor Specific Section

	5.5 API Data Types
	5.5.1 Std_ReturnType
	5.5.1.1 Infrastructure Errors
	5.5.1.2 Application Errors
	5.5.1.3 Predefined Error Codes

	5.5.2 Rte_Instance
	5.5.3 RTE Modes
	5.5.4 Enumeration Data Types
	5.5.5 Range Data Types

	5.6 API Reference
	5.6.1 Rte_Ports
	5.6.2 Rte_NPorts
	5.6.3 Rte_Port
	5.6.4 Rte_Write
	5.6.5 Rte_Send
	5.6.6 Rte_Switch
	5.6.7 Rte_Invalidate
	5.6.8 Rte_Feedback
	5.6.9 Rte_SwitchAck
	5.6.10 Rte_Read
	5.6.11 Rte_DRead
	5.6.12 Rte_Receive
	5.6.13 Rte_Call
	5.6.14 Rte_Result
	5.6.15 Rte_Pim
	5.6.16 Rte_CData
	5.6.17 Rte_Prm
	5.6.18 Rte_IRead
	5.6.19 Rte_IWrite
	5.6.20 Rte_IWriteRef
	5.6.21 Rte_IInvalidate
	5.6.22 Rte_IStatus
	5.6.23 Rte_IrvIRead
	5.6.24 Rte_IrvIWrite
	5.6.25 Rte_IrvRead
	5.6.26 Rte_IrvWrite
	5.6.27 Rte_Enter
	5.6.28 Rte_Exit
	5.6.29 Rte_Mode
	5.6.30 Enhanced Rte_Mode
	5.6.31 Rte_Trigger
	5.6.32 Rte_IrTrigger
	5.6.33 Rte_IFeedback
	5.6.34 Rte_IsUpdated

	5.7 Runnable Entity Reference
	5.7.1 Signature
	5.7.2 Entry Point Prototype
	5.7.3 Role Parameters
	5.7.4 Return Value
	5.7.5 Triggering Events
	5.7.5.1 TimingEvent
	5.7.5.2 BackgroundEvent
	5.7.5.3 SwcModeSwitchEvent
	5.7.5.4 AsynchronousServerCallReturnsEvent
	5.7.5.5 DataReceiveErrorEvent
	5.7.5.6 OperationInvokedEvent
	5.7.5.7 DataReceivedEvent
	5.7.5.8 DataSendCompletedEvent
	5.7.5.9 ModeSwitchedAckEvent
	5.7.5.10 ExternalTriggerOccurredEvent
	5.7.5.11 InternalTriggerOccurredEvent
	5.7.5.12 DataWriteCompletedEvent

	5.7.6 Reentrancy

	5.8 RTE Lifecycle API Reference
	5.8.1 Rte_Start
	5.8.2 Rte_Stop
	5.8.3 Rte_PartitionTerminated
	5.8.4 Rte_PartitionRestarting
	5.8.5 Rte_RestartPartition

	5.9 RTE Call-backs Reference
	5.9.1 RTE-COM Message Naming Conventions
	5.9.2 Communication Service Call-backs
	5.9.3 Naming convention of Communication Callbacks
	5.9.4 NVM Service Call-backs
	5.9.4.1 Rte_SetMirror
	5.9.4.2 Rte_GetMirror
	5.9.4.3 Rte_NvMNotifyJobFinished
	5.9.4.4 Rte_NvMNotifyInitBlock

	5.10 Expected interfaces
	5.10.1 Expected Interfaces from Com
	5.10.2 Expected Interfaces from Os

	5.11 VFB Tracing Reference
	5.11.1 Principle of Operation
	5.11.2 Support for multiple clients
	5.11.3 Contribution to the Basic Software Module Description
	5.11.4 Trace Events
	5.11.4.1 RTE API Trace Events
	5.11.4.2 COM Trace Events
	5.11.4.3 OS Trace Events
	5.11.4.4 Runnable Entity Trace Events

	5.11.5 Configuration
	5.11.6 Interaction with Object-code Software-Components

	6 Basic Software Scheduler Reference
	6.1 Scope
	6.2 API Principles
	6.2.1 Basic Software Scheduler Namespace
	6.2.2 BSW Scheduler Name Prefix and Section Name Prefix

	6.3 Basic Software Scheduler modules
	6.3.1 Module Interlink Types Header
	6.3.1.1 File Name
	6.3.1.2 Scope
	6.3.1.3 File Contents
	6.3.1.4 Basic Software Scheduler Modes

	6.3.2 Module Interlink Header
	6.3.2.1 File Name
	6.3.2.2 Scope
	6.3.2.3 File Contents

	6.4 API Data Types
	6.4.1 Predefined Error Codes for Std_ReturnType
	6.4.2 Basic Software Modes

	6.5 API Reference
	6.5.1 SchM_Enter
	6.5.2 SchM_Exit
	6.5.3 SchM_Switch
	6.5.4 SchM_Mode
	6.5.5 Enhanced SchM_Mode
	6.5.6 SchM_SwitchAck
	6.5.7 SchM_Trigger
	6.5.8 SchM_ActMainFunction
	6.5.9 SchM_CData

	6.6 Bsw Module Entity Reference
	6.6.1 Signature
	6.6.2 Entry Point Prototype
	6.6.3 Reentrancy

	6.7 Basic Software Scheduler Lifecycle API Reference
	6.7.1 SchM_Init
	6.7.2 SchM_Deinit
	6.7.3 SchM_GetVersionInfo

	7 RTE ECU Configuration
	7.1 Ecu Configuration Variants
	7.2 RTE Module Configuration
	7.2.1 RTE Configuration Version Information

	7.3 RTE Generation Parameters
	7.4 RTE PreBuild configuration
	7.5 RTE PostBuild configuration
	7.6 Handling of Software Component instances
	7.6.1 RTE Event to task mapping
	7.6.1.1 Evaluation and execution order
	7.6.1.2 Direct function call
	7.6.1.3 Schedule Points
	7.6.1.4 Timeprotection support
	7.6.1.5 Os Interaction
	7.6.1.6 Background activation
	7.6.1.7 Constraints

	7.6.2 Rte Os Interaction
	7.6.2.1 Activation using Os features
	7.6.2.2 Modes and Schedule Tables

	7.6.3 Exclusive Area implementation
	7.6.4 NVRam Allocation
	7.6.5 SWC Trigger queuing

	7.7 Handling of Software Component types
	7.7.1 Selection of Software-Component Implementation
	7.7.2 Component Type Calibration

	7.8 Implicit communication configuration
	7.9 Communication infrastructure
	7.10 Configuration of the BSW Scheduler
	7.10.1 BSW Scheduler General configuration
	7.10.2 BSW Module Instance configuration
	7.10.2.1 BSW ExclusiveArea configuration
	7.10.2.2 BswEvent to task mapping
	7.10.2.3 BSW Trigger configuration
	7.10.2.4 BSW ModeDeclarationGroup configuration

	7.11 Configuration of Initialization

	A Metamodel Restrictions
	A.1 Restrictions concerning WaitPoint
	A.2 Restrictions concerning RTEEvent
	A.3 Restrictions concerning queued implementation policy
	A.4 Restrictions concerning ServerCallPoint
	A.5 Restriction concerning multiple instantiation of software components
	A.6 Restrictions concerning runnable entity
	A.7 Restrictions concerning runnables with dependencies on modes
	A.8 Restriction concerning SwcInternalBehavior
	A.9 Restrictions concerning Initial Value
	A.10 Restriction concerning PerInstanceMemory
	A.11 Restrictions concerning unconnected r-port
	A.12 Restrictions regarding communication of mode switch notifications
	A.13 Restrictions regarding Measurement and Calibration
	A.14 Restriction concerning ExclusiveAreaImplMechanism
	A.15 Restrictions concerning AtomicSwComponentTypes
	A.16 Restriction concerning the enableUpdate attribute of NonqueuedReceiverComSpecs
	A.17 Restrictions concerning the large and dynamic data type
	A.18 Restriction concerning REFERENCE types

	B External Requirements
	C MISRA C Compliance
	D Changes History
	D.1 Changes in Rel. 4.0 Rev. 2 compared to Rel. 4.0 Rev. 1
	D.1.1 Deleted SWS Items
	D.1.2 Changed SWS Items
	D.1.3 Added SWS Items

	D.2 Changes in Rel. 4.0 Rev. 3 compared to Rel. 4.0 Rev. 2
	D.2.1 Deleted SWS Items
	D.2.2 Changed SWS Items
	D.2.3 Added SWS Items

