
Specification of Operating System
 V5.0.0

R4.0 Rev 3

Document Title Specification of Operating
System

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 034
Document Classification Standard

Document Version 5.0.0
Document Status Final
Part of Release 4.0
Revision 3

Document Change History
Date Version Changed by Change Description
23.11.2011 5.0.0 AUTOSAR

Administration
 Included MultiCore support from former

“Specification of Multi-Core OS
Architecture”

22.10.2010 4.1.0 AUTOSAR
Administration

 Clarification in 7.8.1 (meaning of "do
nothing") and 7.1.2.1 ("OSEK
declarations")

 Minor changes as typos and rewording
30.11.2009 4.0.0 AUTOSAR

Administration
 Extension of services (Chapter 12)
 States in OS- Applications
 Active termination of other OS-

Applications in possible (Chapter8)
 Legal disclaimer revised
 Chapter 10.4 revised

15.01.2009 3.1.0 AUTOSAR
Administration

 Changes in OS configuration:
- removed "OsAppModeId"

Parameter from
OsAppModeContainer

added optional references from
OsAppModeContainer to OsAlarm,
OsTask and OsScheduleTable

04.08.2008 3.0.2 AUTOSAR
Administration

Legal Disclaimer revised

17.04.2008 3.0.1 AUTOSAR
Administration

 Added “OsScheduleTableDuration”
parameter to configuration specification
chapter

1 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

Document Change History
Date

2 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Version Changed by Change Description
07.12.2007 3.0.0 AUTOSAR

Administration
 Changed methods for timing protection
 Moved configuration from OIL to

AUTOSAR XML
 Clarrified description for

synchronization and schedule tables
 Document meta information extended
 Small layout adaptations made

31.01.2007 2.1.0 AUTOSAR
Administration

 Added support for
SoftwareFreeRunningTimer (SWFRT)
incl. 2 new APIs

 Added API to start a schedule table
synchron

 Misc. Corrections, Clarification and
further explanations

 Legal disclaimer revised

 Release Notes added
 “Advice for users” revised
 “Revision Information” added

28.04.2006 2.0.0 AUTOSAR
Administration

Document structure adapted to common
Release 2.0 SWS Template.

 Major changes in chapter 10
 Structure of document changed

partly
 Other changes see chapter 14

28.06.2005 1.0.0 AUTOSAR
Administration

Initial Release

Specification of Operating System
 V5.0.0

R4.0 Rev 3

Disclaimer

This specification and the material contained in it, as released by AUTOSAR, is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only.
For any other purpose, no part of the specification may be utilized or reproduced, in
any form or by any means, without permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR specifications may contain exemplary items (exemplary reference
models, "use cases", and/or references to exemplary technical solutions, devices,
processes or software).

Any such exemplary items are contained in the specifications for illustration purposes
only, and they themselves are not part of the AUTOSAR Standard. Neither their
presence in such specifications, nor any later documentation of AUTOSAR
conformance of products actually implementing such exemplary items, imply that
intellectual property rights covering such exemplary items are licensed under the
same rules as applicable to the AUTOSAR Standard.

3 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

Table of Content

1 Introduction and functional overview ... 11

2 Acronyms and abbreviations ... 12

2.1 Glossary of Terms.. 12

3 Related documentation.. 17

3.1 Input documents... 17
3.2 Related standards and norms .. 18

3.2.1 OSEK/VDX.. 18
3.2.2 HIS .. 18
3.2.3 ISO/IEC... 19

3.3 Company Reports, Academic Work, etc... 19

4 Constraints and assumptions .. 20

4.1 Existing Standards ... 20
4.2 Terminology ... 20
4.3 Interaction with the RTE ... 20
4.4 Operating System Abstraction Layer (OSAL)... 21
4.5 Multi-Core Hardware assumptions ... 21

4.5.1 CPU Core features.. 21
4.5.2 Memory features ... 22
4.5.3 Multi-Core Limitations ... 22

4.6 Limitations .. 23
4.6.1 Hardware .. 23
4.6.2 Programming Language.. 23
4.6.3 Miscellaneous ... 24

4.7 Applicability to car domains.. 24

5 Dependencies to other modules.. 25

5.1 File structure .. 25
5.1.1 Code file structure ... 25
5.1.2 Header file structure.. 25

6 Requirements Traceability... 27

7 Functional specification ... 37

7.1 Core OS ... 37
7.1.1 Background & Rationale ... 37
7.1.2 Requirements.. 37

7.1.2.1 Restrictions on OSEK OS .. 37
7.1.2.2 Undefined Behaviour in OSEK OS... 38
7.1.2.3 Extensions to OSEK OS .. 39

7.2 Software Free Running Timer .. 40
7.3 Schedule Tables... 41

7.3.1 Background & Rationale ... 41
7.3.2 Requirements.. 41

4 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

7.3.2.1 Structure of a Schedule Table.. 41

Specification of Operating System
 V5.0.0

R4.0 Rev 3

7.3.2.2 Constraints on Expiry Points .. 42
7.3.2.3 Processing Schedule Tables.. 43
7.3.2.4 Repeated Schedule Table Processing... 44
7.3.2.5 Controlling Schedule Table Processing 45

7.4 Schedule Table Synchronization.. 48
7.4.1 Background & Rationale ... 48
7.4.2 Requirements.. 50

7.4.2.1 Implicit Synchronization ... 50
7.4.2.2 Explicit Synchonization .. 51
7.4.2.3 Performing Synchronization ... 55

7.5 Stack Monitoring Facilities.. 57
7.5.1 Background & Rationale ... 57
7.5.2 Requirements.. 58

7.6 OS-Application ... 58
7.6.1 Background & Rationale ... 58
7.6.2 Requirements.. 60

7.7 Protection Facilities .. 62
7.7.1 Memory Protection .. 62

7.7.1.1 Background & Rationale .. 62
7.7.1.2 Requirements... 63

7.7.2 Timing Protection .. 65
7.7.2.1 Background & Rationale .. 65
7.7.2.2 Requirements... 68
7.7.2.3 Implementation Notes .. 70

7.7.3 Service Protection ... 71
7.7.3.1 Invalid Object Parameter or Out of Range Value 71
7.7.3.2 Service Calls Made from Wrong Context 72
7.7.3.3 Services with Undefined Behaviour ... 73
7.7.3.4 Service Restrictions for Non-Trusted OS-Applications................. 75
7.7.3.5 Service Calls on Objects in Different OS-Applications 76

7.7.4 Protecting the Hardware used by the OS.. 77
7.7.4.1 Background & Rationale .. 77
7.7.4.2 Requirements... 77
7.7.4.3 Implementation Notes .. 77

7.7.5 Providing »Trusted Functions«.. 78
7.7.5.1 Background & Rationale .. 78
7.7.5.2 Requirements... 78

7.8 Protection Error Handling ... 78
7.8.1 Background & Rationale ... 79
7.8.2 Requirements.. 80

7.9 Operating System for Multi-Core.. 81
7.9.1 Background & Rationale ... 82

7.9.1.1 Requirements... 82
7.9.2 Scheduling .. 82

7.9.2.1 Requirements... 83
7.9.3 Locatable entities (LE) .. 83

7.9.3.1 Requirements... 83
7.9.4 Multi-Core start-up concept ... 84

7.9.4.1 Requirements... 86

5 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

7.9.5 Cores under control of the AUTOSAR OS .. 87
7.9.5.1 Requirements... 87

7.9.6 Cores which are not controlled by the AUTOSAR OS......................... 88
7.9.6.1 Requirements... 88

7.9.7 Multi-Core shutdown concept.. 88
7.9.7.1 Synchronized shutdown concept ... 88
7.9.7.2 Individual shutdown concept .. 89
7.9.7.3 Shutdown in case of fatal internal errors 89

7.9.8 OS service functionality (overview) ... 90
7.9.9 GetTaskID... 91
7.9.10 Interrupt disabling.. 92

7.9.10.1 Requirements... 92
7.9.11 TASK activation... 92

7.9.11.1 Requirements... 92
7.9.12 TASK Chaining.. 93

7.9.12.1 Requirements... 93
7.9.13 EVENT setting... 93

7.9.13.1 Requirements... 93
7.9.14 Activating additional cores .. 94
7.9.15 Start of the OS .. 94

7.9.15.1 Requirements... 94
7.9.16 TASK termination .. 95

7.9.16.1 Requirements... 95
7.9.17 Termination of OS-Applications... 95

7.9.17.1 Requirements... 95
7.9.18 Shutdown of the OS.. 96

7.9.18.1 Requirements... 96
7.9.19 Waiting for EVENTs .. 96

7.9.19.1 Requirements... 97
7.9.20 Calling trusted functions.. 97

7.9.20.1 Requirements... 97
7.9.21 Invoking reschedule .. 97

7.9.21.1 Requirements... 97
7.9.22 RESOURCE occupation ... 97
7.9.23 The CoreID.. 98

7.9.23.1 Requirements... 98
7.9.24 COUNTERs, background & rationale.. 99
7.9.25 Multi-Core restrictions on COUNTERs.. 99

7.9.25.1 Requirements... 99
7.9.26 Synchronization of COUNTERs .. 100
7.9.27 ALARMs.. 101

7.9.27.1 Requirements... 101
7.9.28 Schedule tables... 102

7.9.28.1 Requirements... 102
7.9.29 The spinlock mechanism... 102

7.9.29.1 Requirements... 104
7.9.30 Offline checks.. 105

7.9.30.1 Requirements... 106
7.9.31 Auto start Objects.. 106

6 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

7.9.31.1 Requirements... 106
7.10 Inter-OS-Application Communicator (IOC) ... 107

7.10.1 Background & Rationale ... 107
7.10.2 IOC - General purpose.. 108
7.10.3 IOC functionality.. 109

7.10.3.1 Communication .. 109
7.10.3.2 Notification ... 109

7.10.4 IOC interface ... 110
7.10.5 IOC internal structure .. 111
7.10.6 IOC configuration and generation ... 111
7.10.7 IOC integration examples.. 112

7.10.7.1 Example 1 - 1:1 sender/receiver communication without notification
 112
7.10.7.2 Example 2 - N:1 client/server communication with receiver
notification by RTE... 114

7.10.8 Future extensions.. 115
7.11 System Scalability .. 115

7.11.1 Background & Rationale ... 115
7.11.2 Requirements.. 117

7.12 Hook Functions .. 118
7.12.1 Background & Rationale ... 118
7.12.2 Requirements.. 118

7.13 Error classification .. 119
7.14 Debug support.. 120

8 API specification.. 121

8.1 Constants ... 121
8.1.1 Error codes of type StatusType... 121

8.2 Macros ... 121
8.3 Type definitions .. 121

8.3.1 ApplicationType (for OS-Applications) .. 121
8.3.2 ApplicationStateType .. 122
8.3.3 ApplicationStateRefType... 122
8.3.4 TrustedFunctionIndexType ... 122
8.3.5 TrustedFunctionParameterRefType .. 122
8.3.6 AccessType... 122
8.3.7 ObjectAccessType .. 122
8.3.8 ObjectTypeType.. 122
8.3.9 MemoryStartAddressType... 123
8.3.10 MemorySizeType .. 123
8.3.11 ISRType .. 123
8.3.12 ScheduleTableType .. 123
8.3.13 ScheduleTableStatusType .. 124
8.3.14 ScheduleTableStatusRefType... 124
8.3.15 CounterType ... 124
8.3.16 ProtectionReturnType ... 124
8.3.17 RestartType... 124
8.3.18 PhysicalTimeType... 125
8.3.19 CoreIDType... 125

7 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

8.3.20 SpinlockIdType.. 125
8.3.21 TryToGetSpinlockType ... 125

8.4 Function definitions .. 125
8.4.1 GetApplicationID ... 125
8.4.2 GetISRID... 126
8.4.3 CallTrustedFunction .. 127
8.4.4 CheckISRMemoryAccess ... 129
8.4.5 CheckTaskMemoryAccess.. 129
8.4.6 CheckObjectAccess .. 130
8.4.7 CheckObjectOwnership .. 131
8.4.8 StartScheduleTableRel ... 132
8.4.9 StartScheduleTableAbs .. 133
8.4.10 StopScheduleTable... 134
8.4.11 NextScheduleTable... 135
8.4.12 StartScheduleTableSynchron.. 137
8.4.13 SyncScheduleTable .. 138
8.4.14 SetScheduleTableAsync ... 139
8.4.15 GetScheduleTableStatus .. 140
8.4.16 IncrementCounter ... 141
8.4.17 GetCounterValue .. 142
8.4.18 GetElapsedValue .. 143
8.4.19 TerminateApplication .. 144
8.4.20 AllowAccess .. 145
8.4.21 GetApplicationState .. 146
8.4.22 GetNumberOfActivatedCores.. 146
8.4.23 GetCoreID... 147
8.4.24 StartCore... 147
8.4.25 StartNonAutosarCore.. 148
8.4.26 GetSpinlock... 149
8.4.27 ReleaseSpinlock ... 150
8.4.28 TryToGetSpinlock ... 151
8.4.29 ShutdownAllCores... 153

8.5 IOC... 153
8.5.1 Imported types .. 153
8.5.2 Type definitions ... 154
8.5.3 Constants .. 154
8.5.4 Function definitions ... 155

8.5.4.1 IocSend/IocWrite.. 155
8.5.4.2 IocSendGroup/IocWriteGroup.. 157
8.5.4.3 IocReceive/IocRead... 160
8.5.4.4 IocReceiveGroup/IocReadGroup ... 162
8.5.4.5 IocEmptyQueue ... 164

8.6 Expected Interfaces.. 164
8.6.1 Mandatory Interfaces .. 164
8.6.2 Optional Interfaces .. 165

8.6.2.1 ReceiverPullCB.. 165
8.7 Hook functions.. 166

8.7.1 Protection Hook... 166
8.7.2 Application specific StartupHook... 166

8 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

8.7.3 Application specific ErrorHook .. 167
8.7.4 Application specific ShutdownHook .. 167

9 Sequence diagrams... 169

9.1 Sequence chart for calling trusted functions... 169
9.2 Sequence chart for usage of ErrorHook ... 170
9.3 Sequence chart for ProtectionHook.. 171
9.4 Sequence chart for StartupHook .. 172
9.5 Sequence chart for ShutdownHook.. 173
9.6 Sequence diagrams of Sender Receiver communication over the IOC.... 173

9.6.1 LastIsBest communication .. 173
9.6.2 Queued communication without pull callback.................................... 174
9.6.3 Queued communication with pull callback .. 176

10 Configuration Specification .. 177

10.1 How to read this chapter .. 177
10.1.1 Configuration and configuration parameters 177
10.1.2 Variants... 177
10.1.3 Containers... 178
10.1.4 Rules for paramters... 178

10.2 Containers and configuration parameters .. 178
10.2.1 Variants... 178
10.2.2 Os ... 178
10.2.3 OsAlarmSetEvent.. 179
10.2.4 OsAlarm .. 180
10.2.5 OsAlarmAction .. 181
10.2.6 OsAlarmActivateTask.. 181
10.2.7 OsAlarmAutostart.. 181
10.2.8 OsAlarmCallback .. 182
10.2.9 OsAlarmIncrementCounter ... 183
10.2.10 OsApplication .. 183
10.2.11 OsApplicationHooks .. 185
10.2.12 OsApplicationTrustedFunction... 186
10.2.13 OsAppMode... 187
10.2.14 OsCounter ... 187
10.2.15 OsEvent... 189
10.2.16 OsHooks.. 190
10.2.17 OsIsr.. 191
10.2.18 OsIsrResourceLock ... 192
10.2.19 OsIsrTimingProtection ... 192
10.2.20 OsOS... 194
10.2.21 OsResource... 196
10.2.22 OsScheduleTable .. 197
10.2.23 OsScheduleTableAutostart.. 198
10.2.24 OsScheduleTableEventSetting.. 199
10.2.25 OsScheduleTableExpiryPoint .. 199
10.2.26 OsScheduleTableTaskActivation... 200
10.2.27 OsScheduleTblAdjustableExpPoint ... 200
10.2.28 OsScheduleTableSync .. 201

9 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

10.2.29 OsSpinlock .. 202

Specification of Operating System
 V5.0.0

R4.0 Rev 3

10.2.30 OsTask .. 203
10.2.31 OsTaskAutostart.. 204
10.2.32 OsTaskResourceLock ... 205
10.2.33 OsTaskTimingProtection ... 205
10.2.34 OsTimeConstant.. 207

10.3 Containers and configuration parameter extensions of the IOC............... 207
10.3.1 OsIoc... 207
10.3.2 OsIocCommunication.. 208
10.3.3 OsIocSenderProperties... 209
10.3.4 OsIocReceiverProperties .. 210
10.3.5 OsIocDataProperties... 211

10.4 Published Information... 212

11 Generation of the OS... 213

11.1 Read in configuration ... 213
11.2 Consistency check ... 213
11.3 Generating operating system ... 215

12 Application Notes... 216

12.1 Hooks ... 216
12.2 Providing Trusted Functions... 216
12.3 Migration hints for OSEKtime OS users ... 218
12.4 Software Components and OS-Applications .. 220
12.5 Global Time Synchronization ... 221
12.6 Working with FlexRay... 221
12.7 Migration from OIL to XML ... 222
12.8 Migrating RES_SCHEDULER in AUTOSAR OS...................................... 222
12.9 Debug support.. 223
12.10 Integration hints for peripheral protection ... 223

13 AUTOSAR Service implemented by the OS .. 225

13.1 Scope of this Chapter... 225
13.1.1 Package .. 225

13.2 Overview .. 225
13.3 Specification of the Ports and Port Interfaces .. 226

13.3.1 Data Types and Port Interface .. 226
13.3.1.1 General Approach.. 226
13.3.1.2 Data Types... 226
13.3.1.3 Port Interface ... 226
13.3.1.4 Ports .. 227

14 Outlook on Memory Protection Configuration .. 228

14.1 Configuration Approach.. 228

15 Changes to Release 3.0/3.1 .. 229

16 Not applicable requirements .. 230

10 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

1 Introduction and functional overview

This document describes the essential requirements on the AUTOSAR Operating
System to satisfy the top-level requirements presented in the AUTOSAR SRS [2].

In general, operating systems can be split up in different groups according to their
characteristics, e.g. statically configured vs. dynamically managed. To classify the
AUTOSAR OS, here are the basic features: the OS

 is configured and scaled statically
 is amenable to reasoning of real-time performance
 provides a priority-based scheduling policy
 provides protective functions (memory, timing etc.) at run-time
 is hostable on low-end controllers and without external resources

This feature set defines the type of OS commonly used in the current generation of
automotive ECUs, with the exception of Telematic/Infotainment systems. It is
assumed that Telematic/Infotainment systems will continue to use proprietary Oss
under the AUTOSAR framework (e.g. Windows CE, VxWorks, QNX, etc.). In the case
where AUTOSAR components are needed to run on these proprietary Oss, the
interfaces defined in this document should be provided as an Operating System
Abstraction Layer (OSAL).

This document uses the industry standard OSEK OS [15] (ISO 17356-3) as the basis
for the AUTOSAR OS. The reader should be familiar with this standard before
reading this document.

This document describes extensions to, and restrictions of, this OSEK OS.

11 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

2 Acronyms and abbreviations

12 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Abbreviation Description
API Application Programming Interface
AR AUTOSAR
BSW Basic Software
BSWMD Basic Software Module Description
CDD Complex Device Driver
COM Communication
ECC Extended Conformance Class
ECU Electronic Control Unit
HIS Hersteller Initiative Software
HW Hardware
ID Identifier
IOC Inter OS-Application communicator
ISR Interrupt Service Routine
LE A locatable entity is a distinct piece of software that has the same effect regardless of

which core it is located.
MC Multi-Core
MCU Microcontroller Unit
ME Mutual exclusion
MPU Memory Protection Unit
NMI Mutual exclusion
OIL OSEK Implementation Language
OS Operating System
OSEK/VDX Offene Systeme und deren Schnittstellen für die Elektronik im Kraftfahrzeug
RTE Run-Time Environment
RTOS Real Time Operating System
SC Single-Core
SLA Software Layered Architecture
SW Software
SWC Software Component
SWFRT Software FreeRunningTimer

2.1 Glossary of Terms

Term: Definition
Access Right An indication that an object (e.g. Task, ISR, hook function) of an OS-Application

has the permission of access or manipulation with respect to memory, OS
services or (set of) OS objects.

Cardinality The number of items in a set.
An operating system object that registers a count in ticks. There are two types of
counters:

Counter

Hardware Counter A counter that is advanced by hardware (e.g. timer).
The count value is maintained by the peripheral “in
hardware”.

Software Counter A counter which is incremented by making the
IncrementCounter() API call (see OS399). The
count value is maintained by the operating system “in
software”.

Deadline The time at which a Task/Category 2 ISR must reach a certain point during its
execution defined by system design relative to the stimulus that triggered
activation. See Figure 2.1

Specification of Operating System
 V5.0.0

R4.0 Rev 3

Delay The number of ticks between two adjacent expiry points on a schedule table.
A pair of expiry points X and Y are said to be adjacent when:

 There is no expiry point Z such that X.Offset < Z.Offset < Y.Offset. In this
case the Delay = Y.Offset-X.Offset

 X and Y are the Final Expiry Point and the Initial Expiry Point
respectively. In this case Delay = (Duration-X.Offset)+Y.Offset

When used in the text, Delay is a relative number of ticks measured from a
specified expiry point. For example: X.Delay is the delay from X to the next expiry
point.

Deviation The minimum number of ticks between the current position on an explicitly
synchronized schedule table and the value of the synchronization count modulo
the duration of the schedule table.

Duration The number of ticks from a notional zero at which a schedule table wraps.
Execution Time Tasks:

The net time a task spends in the RUNNING state without entering the
SUSPENDED or WAITING state excluding all preemptions due to ISRs
which preempt the task. An extended task executing the WaitEvent()
API call to wait on an event which is already set notionally enters the
WAITING state. For multiple activated basic tasks the net time is per
activation of a task.

ISRs:
The net time from the first to the last instruction of the user provided
Category 2 interrupt handler excluding all preemptions due to higher
priority ISRs executing in preference.

Execution time includes the time spent in the error, pretask and posttask hooks
and the time spent making OS service calls.

Execution Budget Maximum permitted execution time for a Task/ISR.

13 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

The offset on a Schedule Table, measured from zero, at which the OS activates
tasks and/or sets events.

Expiry Point

Initial Expiry Point The expiry point with the smallest offset
Final Expiry Point The expiry point with the largest offset
A Hook function is implemented by the user and invoked by the operating system
in the case of certain incidents. In order to react to these on system or application
level, there are two kinds of hook functions

Hook Function

Application-specific Hook functions within the scope of an individual OS-
Application.

System-specific Hook functions within the scope of the complete
system (in general provided by the integrator).

Initial Offset The smallest expiry point offset on a schedule table. This can be zero.

Interarrival Time Basic Tasks
The time between successively entering the READY state from the
SUSPENDED state. Activation of a task always represents a new arrival.
This applies in the case of multiple activations, even if an existing
instance of the task is in the RUNNING or READY state.

Extended Tasks:
The time between successively entering the READY state from the
SUSPENDED or WAITING states. Setting an event for a task in the
WAITING state represents a new arrival if the task is waiting on the
event. Waiting for an event in the RUNNING state which is already set
represents a new arrival.

ISRs:
The time between successive occurrences of an interrupt.

See Figure 2.1.

Specification of Operating System
 V5.0.0

R4.0 Rev 3

Interrupt Lock Time The time for which a Task/ISR executes with Category 1 interrupts
disabled/suspended and/or Category 2 interrupts disabled/suspended .

Interrupt Source
Enable

The switch which enables a specific interrupt source in the hardware.

Interrupt Vector
Table

Conceptually, the interrupt vector table contains the mapping from hardware
interrupt requests to (software) interrupt service routines. The real content of the
Interrupt Vector Table is very hardware specific, e.g. it can contain the start
addresses of the interrupt service routines.

Final Delay The difference between the Final Expiry Point offset and the duration on a
schedule table in ticks. This value defines the delay from the Final Expiry Point to
the logical end of the schedule table for single-shot and “nexted” schedule tables.

Forced OS-
Application
Termination

The operating system frees all system objects, e.g. forcibly terminates Tasks,
disables interrupts, etc., which are associated to the OS-Application. OS-
Application and internal variables are potentially left in an undefined state.

Forced
Termination

The OS terminates the Task/Category 2 ISR and does ”unlock” its held
resources. For details see OS108 and OS109.

Linker File File containing linking settings for the linker. The syntax of the linker file depends
on the specific linker and, consequently, definitions are stored “linker-specific” in
the linker file.

Lock Budget Maximum permitted Interrupt Lock Time or Resource Lock Time.
Master core A master core is a core from which the AUTOSAR system is bootstrapped.
Memory Protection
Unit

A Memory Protection Unit (MPU) enables memory partitioning with individual
protection attributes. This is distinct from a Memory Management Unit (MMU)
that provides a mapping between virtual addresses and physical memory
locations at runtime.
Note that some devices may realise the functionality of an MPU in an MMU.
Describes the permissions available on a processor.
Privileged

14 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

In general, in »privileged mode« unrestricted access is
available to memory as well as the underlying hardware.

Mode

Non-privileged In »non-privileged mode« access is restricted.

Modulus The number of ticks required to complete a full wrap of an OSEK counter. This is
equal to OsCounterMaxAllowedValue +1 ticks of the counter.
A collection of OS objects
Trusted An OS-Application that is executed in privileged mode and has

unrestricted access to the API and hardware resources. Only
trusted applications can provide trusted functions.

OS-Application

Non-trusted An OS-Application that is executed in non-privileged mode has
restricted access to the API and hardware resources.

OS object Object that belongs to a single OS-Application: Task, ISR, Alarm, Event,
Schedule Table, Resource, Trusted Function, Counter, Applicaton-specific hook.

OS Service OS services are the API of the operating system.
Systematic error in the software of an OS-Application.
Memory access
violation

A protection error caused by access to an address in a
manner for which no access right exists.

Protection Error

Timing fault A protection error that violates the timing protection.

Illegal service A protection error that violates the service protection, e.g.
unauthorized call to OS service.

Hardware exception division by zero, illegal instruction etc.

Resource Lock
Time

The time an OSEK resource is held by a Task/ISR (excluding the preemptions of
the Task/ISR by higher prior Tasks/ISRs).

Response Time The time between a Task/ISR being made ready to execute and generating a
specified response. The time includes all preemptions. See Figure 2.1

Restart an OS-
Application

An OS-Application can be restarted after self-termination or being forcibly
terminated because of a protection error. When an OS-Application is restarted,
the OS activates the configured OsRestartTask.

Scalability Class The features of the OS (e.g. Memory Protection or Timing Protection), described

Specification of Operating System
 V5.0.0

R4.0 Rev 3

by this document, can be grouped together to customize the operating system to
the needs of the application. There are 4 defined groups of features which are
named scalability classes. For details see Chapter 7.11

Schedule Table Encapsulation of a statically defined set of expiry points.
Part of an object file in which instructions or data are combined to form a unit
(contiguous address space in memory allocated for data or code). A section in an
object file (object file format) has a name and a size.
From the linker perspective, two different sides can be distinguished:
Input section memory section in an input object file of the linker.

Section

Output section memory section in an output object file of the linker.
Set (of OS objects) This document uses the term set, indicating a collection of the same type of OS

objects, in the strict mathematical sense, i.e.:
- a set contains zero or more OS objects (this means a set can be empty)
- the OS objects in the set are unique (this means there cannot be duplicate OS
objects in the set)

Spinlock A spinlock is a locking mechanism where the TASK waits in a loop ("spins")
repeatedly checking for a shared variable to become a certain value.
The value indicates whether the lock is free or not. In Multi-Core systems the
comparison and changing of the variable typically requires an atomic operation.
As the TASK remains active but is not doing anything useful, a spinlock is a busy
waiting mechanism

Spinlock variable A spinlock variable is a shared variable used by a spinlock to indicate whether a
spinlock is free or occupied.
Address label that can be imported/used by software modules and resolved by
the linker. The precise syntax of the labels is linker-specific. Here, these address
labels are used to identify the start and end of memory sections.

Symbol

Start symbol Tags the start of a memory section
End symbol Tags the end of a memory section

Synchronization of
schedule tables
with a
synchronization
counter

Synchronization with a synchronization counter is achieved, if the expiry points of
the schedule table are processed within an absolute deviation from the
synchronization counter that is smaller than or equal to a precision threshold.

Synchronization
Counter

The “Synchronization Counter”, distinct from an OS counter object, is an external
counter, external to the OS, against which expiry points of a schedule table are
synchronized
A Task is the object which executes (user) code and which is managed by the
OS. E.g. the OS switches between different Tasks (“schedules”). There are 2
types of Tasks; for more details see [15].
Basic Task A Task which can not block by itself. This means that it can not

wait for (OS) event(s).

Task

Extended Task A Task which can block by itself and wait for (OS) event(s).
Time Frame The minmum inter-arrival time for a Task/ISR.
Trusted Function A service provided by a trusted OS-Application that can be used by other OS-

Applications (trusted or non-trusted).
Worst case
execution time
(WCET)

The longest possible execution time.

Write access Storing a value in a register or memory location. All memory accesses that have
the consequence of writing (e.g. reads that have the side effect of writing to a
memory location) are treated as write accesses.

15 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

16 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

12 13 14 152 3 4 5 6 7 8 9 10 110 1

High

LOW’s Inter-arrival time

16 17

LOW’s Deadline

LOW’s Response Time

High High

Low Low Low Low

18 19 20 21 22 23 24

Low

LOW’s Execution Time

Task HIGH and Task
LOW activated

Task LOW terminates
Task LOW activated
again

Figure 2.1: Definition of Timing Terminology

Specification of Operating System
 V5.0.0

R4.0 Rev 3

3 Related documentation

3.1 Input documents

[1] Layered Software Architecture
AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf

[2] Requirements on Operating System
AUTOSAR_SRS_OS.pdf

[3] General Requirements on Basic Software Modules
AUTOSAR_SRS_BSWGeneral.pdf

[4] Specification of the Virtual Functional Bus
AUTOSAR_EXP_VFB.pdf

[5] Requirements on Software FreeRunningTimer
AUTOSAR_SRS_FreeRunningTimer.pdf

[6] Specification of GPT Driver
AUTOSAR_SWS_GPTDriver.pdf

[7] Specification of Standard Types
AUTOSAR_SWS_StandardTypes.pdf

[8] Specification of Memory Mapping
AUTOSAR_SWS_MemoryMapping.pdf

[9] Specification of RTE
AUTOSAR_SWS_RTE.pdf

[10] Specification of ECU Configuration
AUTOSAR_TPS_ECUConfiguration.pdf

[11] Basic Software Module Description Template,
AUTOSAR_TPS_BSWModuleDescriptionTemplate.pdf

[12] Specification of Multi-Core OS Architecture,
AUTOSAR_SWS_MultiCoreOS.pdf

[13] List of Basic Software Modules,
AUTOSAR_TR_BSWModuleList.pdf

[14] Specification of RTE,
AUTOSAR_SWS_RTE.pdf

17 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

3.2 Related standards and norms

3.2.1 OSEK/VDX

The OSEK/VDX specifications are publicly available from www.osek-vdx.org

[15] Operating System

Version 2.2.3
17th February 2005

[16] Time-Triggered Operating System

Version 1.0
24th July 2001

[17] System Generation OIL: OSEK Implementation Language

Version 2.5
1st July 2004

[18] OSEK RunTime Interface (ORTI) Part A: Language Specification

Version 2.2
14th November 2005

[19] OSEK Run Time Interface (ORTI) Part B: OSEK Objects and Attributes
Version 2.2
25th November 2005

[20] Binding Specification

Version 1.4.2
15th July 2004

3.2.2 HIS

The HIS (Hersteller Initiative Software) documents are publicly available from
www.automotive-his.de

[21] Requirements for Protected Applications under OSEK

Version 1
25th September 2002.

[22] OSEK OS Extensions for Protected Applications

Version 1.0
27th July 2003

18 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

http://www.osek-vdx.org/
http://www.automotive-his.de/

Specification of Operating System
 V5.0.0

R4.0 Rev 3

3.2.3 ISO/IEC

[23] ISO/IEC 9899:1990 Programming Language – C

(Remark: The international ISO standard ISO/IEC 9899:1990, also sometimes simply
called »C90«, describes the language C. It was introduced in 1990 and replaced the
ANSI C standard that was introduced only one year before, that’s why it is also called
»C89«. C89 differs from ISO/IEC 9899:1990 essentially only by the copyright note.)

[24] ISO/IEC 9899:1999 Programming Language – C

(Remark: A revised version of the standard was published in 1999. It is officially
ISO/IEC 9899:1999, but is more often referred to as »C99«.)

3.3 Company Reports, Academic Work, etc.

[25] Extensions of OSEK OS for Protected Applications

OSEK Support Project DC058_02
DaimlerChrysler AG

19 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

4 Constraints and assumptions

4.1 Existing Standards

This document makes the following assumptions about the referenced related
standards and norms:

 OSEK OS [15] provides a sufficiently flexible scheduling policy to schedule

AUTOSAR systems.
 OSEK OS [15] is a mature specification and implementations are used in millions

of ECUs worldwide.
 OSEK OS [15] does not provide sufficient support for isolating multi-source

software components at runtime.
 OSEK OS [15] does not provide sufficient runtime support for demonstrating the

absence of some classes of fault propagation in a safety-case.
 OSEKtime OS [16] and the HIS Protected OSEK [22] are immature specifications

that contain concepts necessary for AUTOSAR and satisfy specific application
domains. It is the purpose of this document to identify these needs and to
recommend the use of parts (or all) of these specifications as appropriate.

4.2 Terminology

The specification uses the following operators when requirements specify multiple
terms:

NOT : negation of a single term e.g. NOT Weekend
AND : conjunction of two terms e.g. Weekend AND Saturday
OR : disjunction of two terms e.g. Monday OR Tuesday

A requirement comprising multiple terms is evaluated left to right.

The precedence rules are:

Highest Precedence NOT
Lowest Precedence AND OR

The expression NOT X AND Y means (NOT X) AND (Y)

Where operators of the same precedence are used in the same sentence, commas
are used to disambiguate. The expression X AND Y, OR Z means (X AND Y) OR Z.

4.3 Interaction with the RTE

The configuration of an AUTOSAR system [4] maps the »runnables« of a »software
component« to (one or more) tasks that are scheduled by the operating system. All
runnables in a task share the same protection boundary. In AUTOSAR, a software
component must not include an interrupt handler. A software component is therefore
implemented as runnables executing within the body of a task, or set of tasks, only.
20 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

Runnables get access to hardware-sourced data through the AUTOSAR RTE. The
RTE provides the runtime interface between runnables and the basic software
modules. The basic software modules also comprise a number of tasks and ISRs
that are scheduled by the operating system.

It is assumed that the software component templates and the description of the basic
software modules provide sufficient information about the required runtime behavior
to be able to specify the attributes of tasks required to configure the OS.

4.4 Operating System Abstraction Layer (OSAL)

Systems that do not use the OS defined in AUTOSAR can provide a platform for the
execution of AUTOSAR software components using an Operating System
Abstraction Layer. The interface to the OSAL is exactly that defined for the
AUTOSAR OS.

4.5 Multi-Core Hardware assumptions

There are currently several existing and suggested HW-architectures1 for Multi-Core
microprocessors. There is considerable variation in the features offered by these
architectures. Therefore this section attempts to capture a common set of
architectural features required for Multi-Core.
Hardware assumptions shall remain assumptions and shall not become official
Autosar requirements.

4.5.1 CPU Core features

1. More than one core on the same piece of silicon.

2. The HW offers a method that can be used by the SW to identify a core.

3. The hardware supports atomic read and atomic write operations for a fixed
word length depending on the hardware.

4. The hardware supports some atomic Test-And-Set functionality or similar
functionalities that can be used to built a critical section shared between cores.
Additional atomic operations may exist.

5. The cores may have the same instruction set; at least a common basic
instruction set is available on all cores. Core specific add-ons may exist but
they are not taken into account.

6. The cores have the same data representation. For example, the same size of
integer, same byte and bit order, etc.

21 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

1 In this context “architecture” encompasses: the connections between cores and memory, and to peripherals and how interrupts
work.

Specification of Operating System
 V5.0.0

R4.0 Rev 3

7. If per-core caches exist, AUTOSAR requires support for RAM - cache
coherency in HW or in SW. In software means that the cache-controller can be
programmed by the SW in a way that it invalidates cache lines or excludes
certain memory regions from caching.

8. In case of an exception (such as an illegal memory reference or divide by
zero) the exception occurs on the core that introduced the exception.

9. For notification purposes, it is possible to trigger an interrupt/trap on any core.

4.5.2 Memory features

1. Shared RAM is available to all cores; at least all cores can share a substantial
part of the memory.

2. Flash shall be shared between all cores at least. However, performance can
be improved if Flash/RAM can be partitioned so that there are separate
pathways from cores to Flash.

3. A single address space is assumed, at least in the shared parts of the memory
address space.

4. The AUTOSAR Multi-Core architecture shall be capable to run on systems
that do and do not support memory protection. If memory protection exists, all
cores are covered by a hardware based memory protection.

4.5.3 Multi-Core Limitations

 In AUTOSAR R4.0, it is not supported to activate additional cores under
control of AUTOSAR after the Operating System was started.

 The scheduling algorithm does not assign TASKs dynamically to cores.

 The AUTOSAR OS RESOURCE algorithm is not supported across cores.
RESOURCES can be used locally, between TASKs that are bound to the
same core but not between TASKs/ISRs which are bound to different cores.

22 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

4.6 Limitations

4.6.1 Hardware

The core AUTOSAR operating system assumes free access to hardware resources,
which are managed by the OS itself. This includes, but is not limited to, the following
hardware:

 interrupt control registers
 processor status words
 stack pointer(s)

Specific (extended) features of the core operating system extend the requirements
on hardware resource. The following list outlines the features that have requirements
on the hardware. Systems that do not use these OS features do not have these
hardware requirements.

 Memory Protection: A hardware memory protection unit is required. All memory

accesses that have the consequence of writing (e.g. reads that have the side
effect of writing to a memory location) shall be treated as writes.

 Time Protection: Timer Hardware for monitoring execution times and arrival rates.

 »Privileged« and »non-privileged« modes on the MCU: to protect the OS against

internal corruption caused by writes to OS controlled registers. This mode must
not allow OS-Applications to circumvent protection (e.g. write registers which
govern memory protection, write to processor status word etc.). The privileged
mode must be under full control of the protected OS which uses the mode
internally and to transfer control back and forth from a non-trusted OS-Application
to a trusted OS-Application. The microprocessor must support a controlled means
which moves a processor into this privileged mode.

 Local/Global Time Synchronization: A global time source is needed.

In general hardware failures in the processor are not detected by the operating
system. In the event of hardware failure, correct operation of the OS cannot be
guaranteed.

The resources managed by a specific OS implementation have to be defined within
the appropriate configuration file of the OS.

4.6.2 Programming Language

The API of the operating system is defined as C89 [23] function calls or macros. If
other languages are used they must adapt to the C interface. This is because C99
[24] allows for internal dynamic memory allocation during subroutine calls. Most
automotive applications are static (non-heap based).

23 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

4.6.3 Miscellaneous

The operating system does not provide services for dynamic memory management.

This specification handles only single core MCUs (this means one single thread of
execution at one time). If you need support for multi-core MCUs please see [12].

If you are using a multi processor system and want to use this operating system,
each processor has to run its own operating system. (e.g. a multi-processor system
must use a different OS image for each processor.

4.7 Applicability to car domains

The operating system has the same design constraints regarding size and scalability
under which the OSEK OS was designed. The immediate domain of applicability is
therefore currently body, chassis and power train ECUs. However, there is no reason
that the OS cannot be used to implement ECUs for infotainment applications.

24 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

5 Dependencies to other modules

There are no forced dependencies on other modules, however:

o It is assumed that the operating system may use timer units directly to drive
counters.

o If the user needs to drive scheduling directly from global time, then a global
time interrupt is required.

o If the user needs to synchronize the processing of a schedule table to a global
time, the operating system needs to be told the global time using the
SyncScheduleTable() service.

o The IOC described in this document provides communication between OS-
Applications. The IOC generation is based on configuration information which
is generated by the RTE generator. On the other hand the RTE uses functions
generated by the IOC to transmit data.

5.1 File structure

5.1.1 Code file structure

The code file structure of the Operating system module is not fixed, besides the
requirements in the General SRS.

5.1.2 Header file structure

OS

includes

MemMap.h

Std_Types.h Rte_Os_Typ
e.h

Os_Cfg.h

Os.h

Figure 5:1: Header File Structure for the OS

The figure above contains the defined AUTOSAR header file hierarchy of the
Operating System module.

25 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

The IOC generator generates an additional header file Ioc.h. Users of the Ioc.h shall
include the Ioc.h file. If an implementation of the IOC requires additional header files,
it is free to include them. The header files are self-contained, that means they will
include all other header files, which they require.

[OS546] ⌈OS implementer shall provide a header file structure, so that users of the

Operating System module needs only to include the Os.h file⌋ ()

[OS765] ⌈The module header file Os.h shall include Rte_Os_Type.h to include the
types which are common used by BSW Modules and Software Components. This file
shall only contain types, that are not already defined in Rte_Os_Type.h. ⌋ ()

If an implementation of the Operating System module requires additional header
files, it is free to include them. The header files are self contained, that means they
will include all other header files which are required by them.

[OS552] ⌈The Operating System module shall avoid the integration of incompatible
(c or h) files by the following pre-processor checks:

For included (external) header files:
 <MODULENAME>_AR_RELEASE_MAJOR_VERSION
 <MODULENAME>_AR_RELEASE_MINOR_VERSION

shall be verified.

If the values are not identical to the values expected by the Operating System

module, an error shall be reported. ⌋ ()

26 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

6 Requirements Traceability

This chapter contains references to requirements of other AUTOSAR documents.

Requirement Satisfied by

- OS388

- OS439

- OS274

- OS265

- OS524

- OS457

- OS391

- OS764

- OS422

- OS510

- OS278

- OS276

- OS560

- OS516

- OS264

- OS555

- OS270

- OS564

- OS561

- OS262

- OS475

- OS313

- OS544

- OS280

- OS330

- OS462

- OS533

- OS425

- OS281

- OS344

- OS493

- OS511

- OS258

- OS408

- OS531

27 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

- OS443

- OS436

- OS321

- OS402

- OS499

- OS466

- OS455

- OS267

- OS416

- OS211

- OS179

- OS266

- OS410

- OS506

- OS282

- OS399

- OS172

- OS348

- OS460

- OS279

- OS459

- OS562

- OS085

- OS349

- OS529

- OS209

- OS502

- OS536

- OS543

- OS355

- OS275

- OS320

- OS271

- OS445

- OS505

- OS323

- OS565

- OS273

- OS556

- OS403

28 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

- OS541

- OS450

- OS515

- OS409

- OS440

- OS525

- OS563

- OS347

- OS324

- OS437

- OS549

- OS762

- OS501

- OS454

- OS763

- OS356

- OS539

- OS535

- OS507

- OS449

- OS467

- OS520

- OS269

- OS503

- OS552

- OS446

- OS537

- OS418

- OS514

- OS412

- OS547

- OS362

- OS111

- OS006

- OS532

- OS381

- OS463

- OS500

- OS495

- OS397

29 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

- OS283

- OS396

- OS447

- OS442

- OS017

- OS444

- OS415

- OS268

- OS292

- OS542

- OS236

- OS054

- OS353

- OS376

- OS548

- OS272

- OS314

- OS522

- OS453

- OS518

- OS177

- OS016

- OS058

- OS404

- OS438

- OS293

- OS343

- OS083

- OS060

- OS765

- OS421

- OS194

- OS389

- OS367

- OS198

- OS242

- OS513

- OS423

- OS521

- OS430

30 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

- OS519

- OS504

- OS526

- OS287

- OS494

- OS027

- OS358

- OS546

- OS277

- OS496

- OS458

- OS354

- OS290

- OS308

- OS263

- OS483

- OS050

- OS509

- OS112

- OS328

- OS369

- OS557

- OS414

- OS291

- OS411

- OS538

- OS427

- OS350

- OS419

- OS368

- OS550

- OS071

- OS429

- OS424

- OS452

- OS530

- OS540

- OS484

- OS226

- OS387

31 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

- OS304

- OS559

- OS332

- OS261

- OS237

- OS097

- OS498

- OS551

- OS401

- OS407

- OS009

- OS456

- OS420

- OS566

- OS417

- OS413

- OS527

- OS431

- OS464

- OS364

- OS512

- OS284

- OS508

- OS256

- OS365

- OS435

- OS461

- OS289

- OS351

- OS285

- OS361

- OS534

- OS451

- OS497

- OS554

- OS173

- OS553

- OS545

- OS303

- OS312

32 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

- OS300

- OS528

- OS517

- OS523

- OS476

- OS225

- OS239

- OS448

- OS428

- OS309

- OS100

- OS045

- OS327

- OS311

BSW003 OS767

BSW00301 OS767

BSW00302 OS767

BSW00304 OS767

BSW00305 OS767

BSW00306 OS767

BSW00307 OS767

BSW00308 OS767

BSW00309 OS767

BSW00310 OS767

BSW00312 OS767

BSW00314 OS767

BSW00318 OS767

BSW00321 OS767

BSW00325 OS767

BSW00326 OS767

BSW00327 OS767

BSW00328 OS767

BSW00329 OS767

BSW00330 OS767

BSW00333 OS767

BSW00334 OS767

BSW00335 OS767

BSW00337 OS767

BSW00338 OS767

BSW00339 OS767

33 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

BSW00341 OS767

BSW00342 OS767

BSW00344 OS767

BSW00347 OS767

BSW00350 OS767

BSW00355 OS767

BSW00357 OS767

BSW00358 OS767

BSW00361 OS767

BSW00369 OS767

BSW00370 OS767

BSW00373 OS767

BSW00374 OS767

BSW00375 OS767

BSW00376 OS767

BSW00377 OS767

BSW00378 OS767

BSW00379 OS767

BSW00380 OS767

BSW00381 OS767

BSW00383 OS767

BSW00384 OS767

34 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

BSW00385 OS767

BSW00386 OS767

BSW00401 OS767

BSW00404 OS767

BSW00405 OS767

BSW00406 OS767

BSW00407 OS767

BSW00409 OS767

BSW00410 OS767

BSW00411 OS767

BSW00412 OS767

BSW00413 OS767

BSW00414 OS767

BSW00415 OS767

BSW00417 OS767

BSW00419 OS767

BSW00422 OS767

BSW00423 OS767

Specification of Operating System
 V5.0.0

R4.0 Rev 3

BSW00435 OS767

BSW00436 OS767

BSW00437 OS767

BSW00439 OS767

BSW00440 OS767

BSW00441 OS767

BSW006 OS767

BSW007 OS767

BSW009 OS767

BSW010 OS767

BSW097 OS001

BSW098 OS007, OS002

BSW099 OS191

BSW11000 OS026

BSW11001 OS056

BSW11002 OS199, OS227, OS013, OS201, OS206

BSW11003 OS067, OS068

BSW11005 OS195, OS208, OS207

BSW11006 OS196, OS087, OS086

BSW11007 OS081

BSW11008 OS469, OS048, OS465, OS473, OS474, OS471, OS472, OS470, OS028, OS033,
OS037, OS089, OS064

BSW11009 OS051, OS052, OS088, OS093, OS092, OS069, OS070

BSW11010 OS056

BSW11011 OS096, OS245

BSW11012 OS241, OS240

BSW11013 OS044, OS051, OS056, OS033, OS037, OS088, OS093, OS068, OS064, OS070,
OS246, OS210

BSW11014 OS033, OS037, OS110, OS244, OS243, OS106, OS109, OS107, OS108

BSW11016 OS241, OS240

BSW11018 OS299

BSW11019 OS336

BSW11020 OS286

BSW11021 OS301

BSW161 OS767

BSW162 OS767

BSW168 OS767

BSW170 OS767

BSW172 OS767

BSW4080001 OS600, OS606, OS616, OS628, OS627, OS626, OS568, OS569, OS674, OS673,
OS672, OS675, OS579, OS583, OS596

35 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

BSW4080003 OS571, OS570, OS573

BSW4080005 OS667, OS571, OS570, OS573, OS572

BSW4080006 OS608, OS609, OS607, OS610, OS625, OS668, OS669, OS575, OS574, OS572,
OS670, OS679, OS677, OS678, OS676, OS578, OS579, OS576, OS577, OS681,
OS680, OS683, OS682, OS685, OS684, OS584, OS585, OS580, OS581, OS582

BSW4080007 OS616, OS617, OS621, OS586, OS588, OS716, OS587, OS713, OS715, OS714

BSW4080008 OS567, OS582

BSW4080011 OS583

BSW4080013 OS607, OS618, OS619, OS629, OS623, OS639, OS636, OS635, OS638, OS637,
OS631, OS630, OS645, OS643, OS647, OS646, OS640, OS663, OS664, OS665,
OS569, OS589, OS594, OS595, OS592, OS593, OS590, OS591

BSW4080015 OS600, OS596, OS599, OS598

BSW4080016 OS604, OS605, OS602

BSW4080018 OS632, OS634, OS633, OS644, OS642, OS649, OS648, OS641, OS654, OS653,
OS656, OS655, OS658, OS657, OS659, OS650, OS652, OS661, OS660

BSW4080020 OS611, OS671, OS761, OS760, OS751, OS750, OS756, OS757, OS758, OS759,
OS752, OS753, OS754, OS755, OS740, OS747, OS748, OS745, OS746, OS743,
OS744, OS741, OS742, OS749, OS739, OS738, OS731, OS730, OS733, OS732,
OS735, OS734, OS737, OS736, OS729, OS728, OS727, OS722, OS721, OS720,
OS726, OS725, OS724, OS723, OS719, OS718

BSW4080021 OS612, OS613, OS614, OS615, OS624, OS622, OS620, OS649, OS648, OS654,
OS653, OS656, OS655, OS658, OS657, OS659, OS650, OS651, OS652, OS661,
OS660, OS662, OS666, OS686, OS687, OS688, OS689, OS692, OS691, OS690,
OS696, OS695, OS694, OS693, OS699, OS697, OS698, OS712, OS711, OS710,
OS709, OS708, OS707, OS706, OS705, OS704, OS703, OS702, OS701, OS700

BSW4080026 OS575, OS574, OS679, OS677, OS678, OS676, OS576, OS577, OS681, OS680,
OS683, OS682, OS685, OS684, OS584, OS585

BSW4080027 OS575, OS574, OS679, OS677, OS678, OS676, OS576, OS577, OS681, OS680,
OS683, OS682, OS685, OS684, OS584, OS585

SWFRT00020 OS374

SWFRT00022 OS370

SWFRT00025 OS392, OS383

SWFRT00030 OS384

SWFRT00031 OS384

SWFRT00032 OS767

SWFRT00033 OS377

SWFRT00034 OS382

SWFRT00047 OS393

36 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

7 Functional specification

7.1 Core OS

7.1.1 Background & Rationale

The OSEK/VDX Operating System [15] is widely used in the automotive industry and
has been proven in use in all classes of ECUs found in modern vehicles. The
concepts that OSEK OS has introduced are widely understood and the automotive
industry has many years of collective experience in engineering OSEK OS based
systems.

OSEK OS is an event-triggered operating system. This provides high flexibility in the
design and maintenance of AUTOSAR based systems. Event triggering gives
freedom for the selection of the events to drive scheduling at runtime, for example
angular rotation, local time source, global time source, error occurrence etc.

For these reasons the core functionality of the AUTOSAR OS shall be based upon
the OSEK OS. In particular OSEK OS provides the following features to support
concepts in AUTOSAR:

o fixed priority-based scheduling
o facilities for handling interrupts
o only interrupts with higher priority than tasks
o some protection against incorrect use of OS services
o a startup interface through StartOS() and the StartupHook()
o a shutdown interface through ShutdownOS() and the ShutdownHook()

OSEK OS provides many features in addition to these. Readers should consult the
OSEK specification [15] for details.

Basing AUTOSAR OS on OSEK OS means that legacy applications will be backward
compatible – i.e. applications written for OSEK OS will run on AUTOSAR OS.
However, some of the features introduced by AUTOSAR OS require restrictions on
the use of existing OSEK OS features or extend existing OSEK OS features.

7.1.2 Requirements

[OS001] ⌈The Operating System module shall provide an API that is backward

compatible with the OSEK OS API [15]. ⌋ (BSW097)

7.1.2.1 Restrictions on OSEK OS

It is too inefficient to achieve timing and memory protection for alarm callbacks. They
are therefore not allowed in specific scalability classes (OS242)

37 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

[OS242] ⌈The Operating System module shall only allow Alarm Callbacks in

Scalability Class 1. ⌋ ()

OSEK OS is required to provide functionality to handle inter-task (internal)
communication according to the OSEK COM specification when internal
communication only is required in the system. In AUTOSAR, internal communication
is provided by the AUTOSAR RTE or by AUTOSAR COM at least one of which will
be present for all AUTOSAR ECUs.

AUTOSAR OS, when used in an AUTOSAR system, therefore does not need to
support internal communication.

An OSEK OS must implement internal communication if the symbol
LOCALMESSAGESONLY is defined. AUTOSAR OS can deprecate the need to
implement OSEK COM functionality and maintain compatibility with OSEK suite of
specifications by ensuring that AUTOSAR OS always exists in an environment where
LOCALMESSAGESONLY is undefined.

OSEK OS has one special resource called RES_SCHEDULER. This resource has 2
specific aspects:

1. It is always present in the system, even if it is not configured. This means that
the RES_SCHEDULER is always known by the OS.

2. It has always the highest Task priority. This means a Task which allocates this
resource can not be preempted by other Tasks.

Since special cases are always hard to handle (e.g. in this case with respect to timing
protection) AUTOSAR OS handles RES_SCHEDULER as any other resource. This
means that the RES_SCHEDULER is not automatically created. However, a
configuration attribute allows that a resource in AUTOSAR OS can optionally be
assigned the priority of the highest priority task in the system.

For backwards compatibility with OSEK OS systems, see Chapter 12.8 on how to
configure a standard resource called RES_SCHEDULER in a way that make it
compatible with the resource of the same name which is declared automatically in
OSEK OS.

In OSEK OS users must declare Operating System objects with specific macros (e.g.
DeclareTask(), …) An AUTOSAR OS implementation shall not depend on such
declarations and shall (for backwards compatibility) supply macros without
functionality.

7.1.2.2 Undefined Behaviour in OSEK OS

There are a number of cases where the behaviour of OSEK OS is undefined. These
cases represent a barrier to portability. AUTOSAR OS tightens the OSEK OS
specification by defining the required behaviour.

38 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

[OS304] ⌈If in a call to SetRelAlarm() the parameter “increment” is set to zero, the

service shall return E_OS_VALUE in standard and extended status . ⌋ ()

Specification of Operating System
 V5.0.0

R4.0 Rev 3

[OS424] ⌈The first call to StartOS() (for starting the Operating System) shall not

return. ⌋ ()

[OS425] ⌈If ShutdownOS() is called and ShutdownHook() returns then the

Operating System module shall disable all interrupts and enter an endless loop. ⌋ ()

7.1.2.3 Extensions to OSEK OS

[OS299] ⌈The Operating System module shall provide the services
DisableAllInterrupts(), EnableAllInterrupts(), SuspendAllInterrupts(),
ResumeAllInterrupts() prior to calling StartOS() and after calling

ShutdownOS().⌋ (BSW11018)

It is assumed that the static variables of the functions mentioned in OS299 are
initialized.

[OS301] ⌈The Operating System module shall provide the ability to increment a

software counter as an alternative action on alarm expiry. ⌋ (BSW11021)

The Operating System module provides API service IncrementCounter() (see
OS399) to increment a software counter.

[OS476] ⌈The Operating System module shall allow to automatically start

preconfigured absolute alarms during the start of the Operating System. ⌋ ()

OS476 is an extension to OSEK OS which allows this only for relative alarms.

[OS566] ⌈The Operating System API shall check in extended mode all pointer
arguments for a NULL pointer and return OS_E_PARAM_POINTER if such an

argument is NULL. ⌋ ()

39 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

7.2 Software Free Running Timer

Due to the fact that the number of timers is often very limited, some functionality and
configuration is added to extend the reuse of timers. E.g. this allows timer
measurements. For more details see also [5] (SWFRT).

[OS374] ⌈The Operating System module shall handle all the initialization and
configuration of timers used directly by the Operating System module and not

handled by the GPT driver. ⌋ (SWFRT00020)

The Operating System module provides API service GetCounterValue() (see
OS383) to read the current count value of a counter (returning either the hardware
timer ticks if counter is driven by hardware or the software ticks when user drives
counter).

The Operating System module provides API service GetElapsedValue() (see
OS392) to get the number of ticks between the current tick value and a previously
read tick value.

[OS384] ⌈The Operating System module shall adjust the read out values of hardware
timers (which drive counters) in such that the lowest value is zero and consecutive

reads return an increasing count value until the timer wraps at its modulus. ⌋
(SWFRT00030, SWFRT00031)

40 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

7.3 Schedule Tables

7.3.1 Background & Rationale

It is possible to implement a statically defined task activation mechanism using an
OSEK counter and a series of auto started alarms. In the simple case, this can be
achieved by specifying that the alarms are not modified once started. Run-time
modifications can only be made if relative synchronization between alarms can be
guaranteed. This typically means modifying the alarms while associated counter tick
interrupts are disabled.

Schedule Tables address the synchronization issue by providing an encapsulation of
a statically defined set of expiry points. Each expiry point defines:

 one or more actions that must occur when it is processed where an action is

the activation of a task or the setting of an event.
 An offset in ticks from the start of the schedule table

Each schedule table has a duration in ticks. The duration is measured from zero and
defines the modulus of the schedule table.

At runtime, the Operating System module will iterate over the schedule table,
processing each expiry point in turn. The iteration is driven by an OSEK counter. It
therefore follows that the properties of the counter have an impact on what is
possible to configure on the schedule table.

7.3.2 Requirements

7.3.2.1 Structure of a Schedule Table

Initial Expiry

Point
Final Expiry

Point

41 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Delay=8 Delay=8

Expiry Point 1

Task Activations
TaskA
TaskB

Event Settings
EventP:TaskC
EventP:TaskD

Offset
4 ticks

Expiry Point 2

Task Activations
<none>

Event Settings
EventP:TaskC
EventP:TaskD

Offset
12 ticks

Expiry Point 3

Task Activations
TaskA
TaskE

Event Settings
<none>

Offset
20 ticks

Expiry Point 4

Task Activations
TaskA
TaskE

Event Settings
EventQ:TaskC
EventQ:TaskE

Offset
32 ticks

Expiry Point 5

Task Activations
TaskB
TaskF

Event Settings
EventP:TaskC

Offset
40 ticks

Delay=12 Delay=8

FinalDelay=10

InitialOffset=4

Delay=InitialOffset+FinalDelay=14

0 4 12 20 32 40 0

 Schedule Table Duration = 50 ticks

Figure 7.1: Anatomy of a Schedule Table

Specification of Operating System
 V5.0.0

R4.0 Rev 3

[OS401] ⌈A schedule table shall have at least one expiry point. ⌋ ()

[OS402] ⌈An expiry point shall contain a (possibly empty) set of tasks to activate. ⌋ (
)

[OS403] ⌈An expiry point shall contain a (possibly empty) set of events to set. ⌋ ()

[OS404] ⌈An expiry point shall contain an offset in ticks from the start of the schedule

table. ⌋ ()

7.3.2.2 Constraints on Expiry Points

There is no use case for an empty expiry point, so each one must define at least one
action.

The OS needs to know the order in which expiry points are processed. It is therefore
necessary to ensure that the expiry points on a schedule table can be totally ordered.
This is guaranteed by forcing each expiry point on a schedule table to have a unique
offset.

[OS442] : ⌈Each expiry point on a given schedule table shall have a unique offset. ⌋ (
)

[OS407] ⌈An expiry point shall activate at least one task OR set at least one event. ⌋
()

Iteration over expiry points on a schedule table is driven by an OSEK counter. The
characteristics of the counter – OsCounterMinCycle and
OsCounterMaxAllowedValue – place constraints on expiry point offsets.

[OS443] ⌈The Initial Offset shall be zero OR in the range OsCounterMinCycle ..

OsCounterMaxAllowedValue of the underlying counter. ⌋ ()

Simlarly, constraints apply to the delays between of adjacent expiry points and the
delay to the logical end of the schedule table.

[OS408] ⌈The delay between adjacent expiry points shall be in the range

OsCounterMinCycle .. OsCounterMaxAllowedValue of the underlying counter. ⌋
()

42 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

7.3.2.3 Processing Schedule Tables

[OS002] ⌈The Operating System module shall process each expiry point on a
schedule table from the Initial Expiry Point to the Final Expiry Point in order of
increasing offset. ⌋ (BSW098)

[OS007] ⌈The Operating System module shall permit multiple schedule tables to be

processed concurrently. ⌋ (BSW098)

[OS409] ⌈A schedule table of the Operating System module shall be driven by

exactly one counter. ⌋ ()

[OS410] ⌈The Operating System module shall be able to process at least one

schedule table per counter at any given time. ⌋ ()

[OS411] ⌈The Operating System module shall make use of ticks so that one tick on

the counter corresponds to one tick on the schedule table. ⌋ ()

It is possible to activate a task and set (one or more unique) events for the same task
at the same expiry point. The ordering of task activations and event settings
performed from the expiry point could lead to different implementations exhibiting
different behaviour (for example, activating a suspended task and then setting and
event on the task would succeed but if the ordering was reversed then the event
setting would fail). To prevent such non-determinism, it is necessary to enforce a
strict ordering of actions on the expiry point.

[OS412] ⌈The Operating System module shall process all task activations on an

expiry point first and then set events. ⌋ ()

A schedule table always has a defined state and the following figure illustrates the
different states (for a non-synchronized schedule table) and the transitions between
them.

43 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

Figure 7.2: States of a schedule table

If a schedule table is not active – this means that is not processed by the Operating
System – the state is SCHEDULETABLE_STOPPED. After starting a schedule tables
enters the SCHEDULETABLE_RUNNING state where the OS processes the expiry points.
If the service to switch a schedule table is called a schedule table enters the the
SCHEDULETABLE_NEXT state and waits until the “current” schedule table ends.

7.3.2.4 Repeated Schedule Table Processing

A schedule table may or may not repeat after the final expiry point is processed. This
allows two types of behaviour:

1. single-shot – the schedule table processes each expiry point in sequence and
then stops at the end. This is useful for triggering a phased sequence of
actions in response to some trigger

2. repeating – the schedule table processes each expiry point in turn, After

processing the final expiry point, it loops back to the initial expirt point. This is
useful for building applications that perform repeated processing or system
which need to synchronise processing to a driver source.

A repeating schedule table means that each expiry point is repeated at a period
equal to the schedule table duration.

[OS413] ⌈The schedule table shall be configurable as either single-shot or repeating.
⌋ ()

[OS009] ⌈If the schedule table is single-shot, the Operating System module shall
stop the processing of the schedule table Final Delay ticks after the Final Expiry Point

is processed. ⌋ ()
44 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

[OS427] ⌈If the schedule table is single-shot, the Operating System module shall
allow a Final Delay between 0 .. OsCounterMaxAllowedValue of the underlying

counter. ⌋ ()

[OS444] ⌈For periodic schedule tables the value of Final Delay shall be in the range
OsCounterMinCycle .. OsCounterMaxAllowedValue of the underlying counter.
⌋ ()

[OS194] ⌈After processing the Final Expiry Point, and if the schedule table is
repeating, the Operating System shall process the next Initial Expiry Point, after Final
Delay plus Initial Offset ticks have elapsed. ⌋ ()

7.3.2.5 Controlling Schedule Table Processing

The application is responsible for starting and stopping the processing of a schedule
table.

The Operating System module provides the service StartScheduleTableAbs()
(see OS358) to start the processing of a schedule table at an absolute value “Start”
on the underlying counter. (The Initial Expiry Point has to be processed when the
value of the underlying counter equals Start + InitialOffset).

The Operating System module provides the service StartScheduleTableRel()
(see OS347) to start the processing of a schedule table at “Offset” relative to the
“Now” value on the underlying counter (The Initial Expiry Point shall be processed
when the value of the underlying counter equals Now + Offset + InitialOffset).

The figure below illustrates the two different methods for a schedule table driven by a
counter with a modulus of 65536 (i.e. an OsCounterMaxAllowedValue = 65535).

45 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

46 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

2 3 4 5 6 7 8 90 1

STOPPED RUNNING

StartScheduleTableAbs(Tbl,2);
Process Initial Expiry Point when the Counter = 2 + Initial Offset = 2

EP1 EP2 EP3

2 3 4 5 6 7 8 90 1

EP1 EP2 EP3

2 3 4 5 6 7 8 90 1 2 3 40 1

EP1 EP2 EP3

2 3 4 5 6 7 8 90 1 0

Schedule Table Tbl
Initial Offset = 2
Final Delay = 2
Duration = 10

EP1

65535
65534

65533
65532

65531
65530

12 13 14 15 16 17 18 19 20 2110 11 22 23 24 25 26

2 3 4 5 6 7 8 90 1

STOPPED RUNNING

StartScheduleTableRel(Tbl,2);
Process Initial Expiry Point when the Counter = Now + 2 + Initial Offset = 1

EP1 EP2 EP3

2 3 4 5 6 7 8 90 1

EP1 EP2 EP3

2 3 4 5 6 7 8 90 1

65535
65534

65533
65532

65531
65530

12 13 14 15 16 17 18 19 20 2110 11 22 23 24 25 26

EP1 EP2

2 3 4 5 6 70 1

OS Counter

OS Counter

Figure 7.3: Starting a Schedule Table at an Absolute and a Relative Count

The Operating System module provides the service StopScheduleTable() (see
OS006) to cancel the processing of a schedule table immediately at any point while
the schedule table is running.

[OS428] ⌈If schedule table processing has been cancelled before reaching the Final
Expiry Point and is subsequently restarted then OS358/OS347 means that the re-

start occurs from the start of the schedule table. ⌋ ()

The Operating System module provides the service NextScheduleTable() (see
OS191) to switch the processing from one schedule table to another schedule table.

Specification of Operating System
 V5.0.0

R4.0 Rev 3

[OS414] ⌈When a schedule table switch is requested, the OS shall continue to
process expiry points on the current schedule table. After the Final Expiry Point there
will be a delay equivalent to Final Delay ticks before processing the switched-to

schedule table. The initial expiry point will be processed after initial offset. ⌋ ()

The Operating System module provides the service GetScheduleTableStatus()
(see OS227) to query the state of a schedule table.

Schedule tables can be configured (see chapter 10) to start automatically during start
of the Operating System module (like Tasks and Alarms in OSEK OS). OSEK OS
defines a specific order: Autostart of Tasks is performed before autostart of alarms.
AUTOSAR OS extends this with schedule tables.

[OS510] ⌈The Operating System module shall perform the autostart of schedule

tables during startup after the autostart of Tasks and Alarms. ⌋ ()

47 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

7.4 Schedule Table Synchronization

7.4.1 Background & Rationale

The absolute time at which the Initial Expiry Point on a schedule table is processed is
under user control. However, if the schedule table repeats then it is not guaranteed
that the absolute count value at which the initial expiry point was first processed is
the same count value at which it is subsequently processed. This is because the
duration of the schedule table need not be equal to the counter modulus.

In many cases it may be important that schedule table expiry points are processed at
specific absolute values of the underlying counter. This is called synchronization.
Typical use-cases include:

 Synchronization of expiry points to degrees of angular rotation for motor
management

 Synchronizing the computation to a global (network) time base. Note that in

AUTOSAR, the Operating System does not provide a global (network) time
source because

1. a global time may not be needed in many cases
2. other AUTOSAR modules, most notably FlexRay, provide this

independently to the Operating System
3. if the Operating System is required to synchronize to multiple global

(network) time sources (for example when building a gateway between two
time-triggered networks) the Operating System cannot be the source of a
unique global time.

AUTOSAR OS provides support for synchronization in two ways:

1. implicit synchronization – the counter driving the schedule table is the counter
with which synchronization is required. This is typically how synchronization
with time-triggered networking technologies (e.g. FlexRay, TTP) is achieved –
the underlying hardware manages network time synchronization and simply
presents time as an output/compare timer interface to the Operating System.
The following figure shows the possible states for schedule tables with implicit
synchronization.

48 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

49 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

StopScheduleTable()

SCHEDULETABLE_RUNNING_AND
_SYNCHRONOUS

„previous“ ScheduleTable ends

StopScheduleTable()

StartScheduleTableAbs()

SCHEDULETABLE_STOPPED

NextScheduleTable()

SCHEDULETABLE_NEXT

Figure 7.4: States of an implicit synchronized schedule table

2. explicit synchronization – the schedule table is driven by an Operating System

counter which is not the counter with which synchronization is required. The
Operating System provides additional functionality to keep schedule table
processing driven by the Operating System counter synchronized with the
synchronization counter. This is typically how synchronization with periodically
broadcast global times works. The next figure shows the states of such
schedule tables.

Specification of Operating System
 V5.0.0

R4.0 Rev 3

50 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

StopScheduleTable()
SetScheduleTableAsync() OR

ABS(CounterValue-GlobalValue)>PRECISION

ABS(CounterValue-GlobalValue)<=PRECISION

StartScheduleTableSync()

SyncScheduleTable()

StopScheduleTable()

SCHEDULETABLE_RUNNING_AND
_SYNCHRONOUS

„previous“ ScheduleTable ends

StopScheduleTable()

StartScheduleTableAbs()
StartScheduleTableRel()

StopScheduleTable()

SCHEDULETABLE_STOPPED

NextScheduleTable()

SCHEDULETABLE_NEXT

SCHEDULETABLE_WAITING SCHEDULETABLE_RUNNING

Figure 7.5: States of an explicit synchronized schedule table (not all conditions for transitions
are shown in the picture)

7.4.2 Requirements

[OS013] ⌈The Operating System module shall provide the ability to synchronize the

processing of schedule table to known counter values. ⌋ (BSW11002)

7.4.2.1 Implicit Synchronization

The Operating System module does not need to provide any additional support for
implicit synchronization of schedule tables. However, it is necessary to constrain
configuration and runtime control of the schedule table so that ticks on the configured
schedule table can be aligned with ticks on the counter. This requires the range of
the schedule table to be identical to the range of the counter (the equality of tick
resolution of each is guaranteed by the requirements on the schedule table / counter
interaction):

[OS429] ⌈A schedule table of the Operating System module that is implicitly
synchronized shall have a Duration equal to OsCounterMaxAllowedValue + 1 of its

associated OSEK OS counter. ⌋ ()

To synchronize the processing of the schedule table it must be started at a known
counter value. The implication of this is that a schedule table requiring implicit

Specification of Operating System
 V5.0.0

R4.0 Rev 3

synchronization must only be started at an absolute counter value and cannot be
started at a relative count value.

[OS430] ⌈The Operating System module shall prevent a schedule table that is

implicitly synchronized from being started at a relative count value. ⌋ ()

When the schedule table is started at an absolute counter value each expiry point will
be processed when the counter equals the value specified in the service call plus
expiry point’s offset. The common use-case is to ensure that the offsets specified in
the schedule table configuration correspond to absolute values of the underlying
counter. This is achieved trivially using StartScheduleTable(Tbl,0) as shown
below.

STOPPED RUNNING AND SYNCHRONOUS

51 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

2 3 4 5 6 7 8 90 1

StartScheduleTableAbs(Tbl,0);
Process Initial Expiry Point when the Counter = 0 + Initial Offset = 2

EP1 EP2 EP3

2 3 4 5 6 7 8 90 1

EP1 EP2 EP3

2 3 4 5 6 7 8 90 1 2 3 40

EP1

1

4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 2 3 41

OS Counter

Figure 7.6: Example for implicit synchronized schedule table

7.4.2.2 Explicit Synchonization

An explicitly synchronized schedule table requires additional support from the
Operating System module. The schedule table is driven by an Operating System
module’s counter as normal (termed the “drive counter”) but processing needs to be
synchronized with a different counter (termed the “synchronization counter”) which is
not an Operating System module’s counter object.

The following constraints must be enforced between the schedule table, the
Operating System module’s counter and the synchronization counter:

Constraint1:

[OS431] ⌈A schedule table that is explicitly synchronized shall have a duration

no greater than modulus of the drive counter. ⌋ ()

Constraint2:

Specification of Operating System
 V5.0.0

R4.0 Rev 3

[OS462] ⌈A schedule table that is explicitly synchronized shall have a duration

equal to the modulus of the synchronization counter. ⌋ ()

Constraint3:

[OS463] ⌈The synchronization counter shall have the same resolution as the
drive counter associated with the schedule table. This means that a tick on the
schedule table has the same duration as a tick on the synchronization counter.
⌋ ()

Note that it is in the responsibility of the Operating System module user to verify that
Constraints 2 and 3 are satisfied by their system.

The function of explicit synchronization is for the Operating System module to keep
processing each expiry point at absolute value of the synchronization counter equal
to the expiry point’s offset. This means that explicit synchronization always assumes
that the notional zero of the schedule table has to be synchronized with absolute
value zero on the synchronization counter.

To achieve this, the Operating System module must be told the value of the
synchronization counter by the user. As the modulus of the synchronization counter
and the schedule table are identical, the Operating System module can use this
information to calculate drift. The Operating System module then automatically
adjusts the delay between specially configured expiry points, retarding them or
advancing them as appropriate, to ensure that synchronization is maintained.

7.4.2.2.1 Startup

There are two options for starting an explicitly synchronized schedule table:

1. Asynchronous start: Start the schedule table at an arbitrary value of the
synchronization counter.

2. Synchronous start: Start the schedule table at absolute value zero of the
synchronization counter only after a synchronization count has been provided.
This may mean waiting for first synchronization indefinitely.

Asynchronous start is provided by the existing absolute and relative schedule table
start services. Both of these services set the point at which the initial expiry point is
processed with respect to the driver counter not the synchronization counter. This
allows the schedule table to start running before the value of the synchronization
counter is known.

Synchronous start requires an additional service that starts the schedule table only
after the Operating System module is told the value of the synchronization counter.

The Operating System module provides the service
StartScheduleTableSynchron() (see OS201) to start an explicitly synchronized
52 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

schedule table synchronously. The Initial Expiry Point will be processed after
(Duration – Value) + Initial Offset ticks of the driver counter have elapsed where
Value is the absolute value of the synchronization counter provided to the schedule
table.

[OS435] ⌈If an explicitly synchronized schedule table was started synchronously,
then the Operating System module shall guarantee that it has state “waiting” when

the call of service StartScheduleTableSynchron() returns. ⌋ ()

7.4.2.2.2 Providing a Synchronization Count

The Operating System module must be told the value of the synchronization counter.
Since the schedule table duration is equal to the modulus of the synchronization
counter, the Operating System module can use this to determine the drift between
the current count value on the schedule table time and the synchronization count and
decide whether (or not) any action to achieve synchronization is required.

The Operating System module provides the service SyncScheduleTable() (see
OS199) to provide the schedule table with a synchronization count and start
synchronization.

7.4.2.2.3 Specifying Synchronization Bounds

A schedule table defaults to denying adjustment at all expiry points. Adjustment is
allowed only when explicitly configured. The range of adjustment that the Operating
System module can make at an adjustable expiry point is controlled by specifying:

 OsScheduleTableMaxShorten : the maximum value that can be subtracted
from the expiry offset

 OsScheduleTableMaxLengthen: the maximum value that can be added to the
expiry point offset

The following figure illustrates the behaviour depending on
OsScheduleTableMaxShorten and OsScheduleTableMaxLengthen:

53 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

54 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Delay=14

Expiry Point
Current
Task Activations
...
Event Settings
...
Offset
10 ticks
MaxRetard
...
MaxAdvance
...

Expiry Point
Next
Task Activations
...
Event Settings
...
Offset
24 ticks
MaxRetard
7 ticks
MaxAdvance
2 ticks

Expiry Point
NextNext
Task Activations
...
Event Settings
...
Offset
42 ticks
MaxRetard
...
MaxAdvance
...

Delay=18

Expiry Point
Next
Task Activations
...
Event Settings
...
Offset
24 ticks
MaxRetard
7 ticks
MaxAdvance
2 ticks

Expiry Point
Current
Task Activations
...
Event Settings
...
Offset
10 ticks
MaxRetard
...
MaxAdvance
...

Expiry Point
NextNext
Task Activations
...
Event Settings
...
Offset
42 ticks
MaxRetard
...
MaxAdvance
...

Delay=18Delay=14-7=7

Expiry Point
Next
Task Activations
...
Event Settings
...
Offset
24 ticks
MaxRetard
7 ticks
MaxAdvance
2 ticks

Expiry Point
Current
Task Activations
...
Event Settings
...
Offset
10 ticks
MaxRetard
...
MaxAdvance
...

Delay 18=

Expiry Point
NextNext
Task Activations
...
Event Settings
...
Offset
42 ticks
MaxRetard
...
MaxAdvance
...

Delay=14+2=16

Expected Delays

Maximum Retardation

Maximum Advance

Figure 7.7: Adjustment of Exipry Points

Specification of Operating System
 V5.0.0

R4.0 Rev 3

So called “hard” and “smooth” synchronization from OSEKtime [16] are supported by
this single unified concept in AUTOSAR OS. “Smooth” synchronization may be
emulated by setting the small adjustment values on the final expiry point. “Hard”
synchronization may be emulated by setting large adjustment values on the final
expiry point.

[OS415] ⌈An expiry point shall permit the configuration of a
OsScheduleTableMaxShorten that defines the maximum number of ticks that can

be subtracted from expiry point offset. ⌋ ()

[OS416] ⌈An expiry point shall permit the configuration of a
OsScheduleTableMaxLengthen that defines the maximum number of ticks that can

be added to expiry point offset. ⌋ ()

When performing synchrioniszation it is important that the expiry points on the
schedule table are processed according to the total ordering defined by their offsets.
This means that the range of permitted values for OsScheduleTableMaxShorten
and OsScheduleTableMaxLengthen must ensure that the next expiry point is not
retarded into the past or advanced beyond more than one iteration of the schedule
table.

[OS436] ⌈The value of (Offset – OsScheduleTableMaxShorten) of an expiry point

shall be greater than (Offset + OsCounterMinCycle) of the pervious expiry point. ⌋ ()

[OS559] ⌈The value of OsScheduleTableMaxLengthen shall be smaller than the

duration of the schedule table. ⌋ ()

[OS437] ⌈The value of (OsScheduleTableMaxLengthen +
delay_from_previous_EP) of an expiry point shall be less than the

OsCounterMaxAllowedValue of the underlying counter. ⌋ ()

Explicitly synchronized schedule tables allow the tolerance of some drift between the
schedule table value and the synchronization counter value. This tolerance can be
zero, indicating that the schedule table is not considered synchronized unless the
values are indentical..

[OS438] ⌈A schedule table shall define a precision bound with a value in the range 0

to duration. ⌋ ()

7.4.2.3 Performing Synchronization

55 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

The Operating System module uses the synchronization count to support
(re-)synchronization of a schedule table at each expiry point by calculating an
adjustment to the delay to the next expiry point. This provides faster re-
synchronization of the schedule table than doing the action on the final expiry point.

[OS206] ⌈When a new synchronization count is provided, the Operating System
module shall calculate the current deviation between the explicitly synchronized

scheduled table and the synchronization count. ⌋ (BSW11002)

It is meaningless to try and synchronise an explicitly synchronized schedule table
before a synchronization count is provided.

[OS417] ⌈The Operating System module shall start to synchronise an explicitly
synchronized schedule table after a synchronization count is provided AND shall

continue to adjust expiry points until synchronized. ⌋ ()

[OS418] ⌈The Operating System module shall set the state of an explicitly
synchronized schedule table to “running and synchronous” if the deviation is less
than or equal to the configured OsScheduleTblExplicitPrecision threshold. ⌋ ()

[OS419] ⌈The Operating System module shall set the state of an explicitly
synchronized schedule table to “running” if the deviation is greater than the
configured OsScheduleTblExplicitPrecision threshold. ⌋ ()

[OS420] ⌈IF the deviation is non-zero AND the next expiry point is adjustable AND
the table is behind the sync counter (TableTicksAheadOfSyncCounter <=
TableTicksBehindOfSyncCounter) THEN the OS shall set the next EP to expire delay
- min(MaxShorten, Deviation) ticks from the current expiry. ⌋ ()

[OS421] ⌈IF the deviation is non-zero AND the next expiry point is adjustable AND
the table is ahead of the sync counter (TableTicksAheadOfSyncCounter >
TableTicksBehindOfSyncCounter) THEN the OS shall set the next EP to expire delay
+ min(MaxLengthen, Deviation) ticks from the current expiry. ⌋ ()

Figure 7.8: shows explicit synchronization of a schedule table. It assumes the
following:

 EP1-3 have OsScheduleTableMaxLengthen=2
 EP1-3 have OsScheduleTableMaxShorten =1

56 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

57 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

12 13 14 15 16 17 18 19 20 212 3 4 5 6 7 8 9 10 110 1 22 23

STOPPED

StartScheduleTableSynchron(Tbl);

65535
65534

65533
65532

8

SyncScheduleTable(Tbl,8);
DriveCtr.Match
 = DriveCtr.Now + (Duration-8) + InitialOffset
 = 65535+2+2=3

24 25 26 27

WAITING RUNNING_AND_SYNCHRONOUS

65531

SyncScheduleTable(Tbl,5);
PositionOnTbl
 = NextEP.Offset - (DriveCtr.Match - DriveCtr.Now)
 = 8 - (9-8) = 7
Deviation
 = PositionOnTbl-5 = 2

2

RUNNING_AND_SYNCHRONOUS RUNNING RUNNING_AND_SYNCHRONOUS RUNNING

76 8 9 0 1 4 5 76 303 4 5 76

28 29 30 31

8 9 08?? ? ? 5

EP1 EP2 EP3

2 3 4 5 6 7 8 90 1 0

Drive
Counter

Synchronization
Counter

EP1 EP2 EP3

2 3 4 5 6 7 8 91 0

EP1 EP2 EP3

+2
2 4

-1
5 7

-1
0 1 8 9 0

EP3.Delay = EP3.Delay + Adjustment
 = 4 +
min(MaxLengthen,Deviation)
 = 4 + 2 = 6

EP1.Delay = EP1.Delay - Adjustment
 = 3 - min(MaxShorten,Deviation)
 = 3 - 1 = 2

EP2.Delay = EP2.Delay - Adjustment
 = 3 + min(MaxShorten,Deviation)
 = 3 - 1 = 2

? 9 0 1 2 3 4 5 6 9

SyncScheduleTable(Tbl,3);
PositionOnTbl
 = NextEP.Offset - (DriveCtr.Match - DriveCtr.Now)
 = 2 - (25-24) = 1
Deviation
 = PositionOnTbl-3 = -2

65530

Figure 7.8: Explict Schedule Table Synchronization

The Operating System module provides the service SetScheduleTableAsync()
(see OS422) to cancel synchronization being performed at adjustable expiry points
on a schedule table.

The Operating System module provides the service GetScheduleTableStatus()
(see OS227) to query the state of a schedule table also with respect to
synchronization.

7.5 Stack Monitoring Facilities

7.5.1 Background & Rationale

On processors that do not provide any memory protection hardware it may still be
necessary to provide a “best effort with available resources” scheme for detectable
classes of memory faults. Stack monitoring will identify where a task or ISR has
exceeded a specified stack usage at context switch time. This may mean that there is
considerable time between the system being in error and that fault being detected.
Similarly, the error may have been cleared at the point the fault is notified (the stack
may be less than the specified size when the context switch occurs).

It is not usually sufficient to simply monitor the entire stack space for the system
because it is not necessarily the Task/ISR that was executing that used more than
stack space than required – it could be a lower priority object that was pre-empted.

Specification of Operating System
 V5.0.0

R4.0 Rev 3

Significant debugging time can be saved by letting the Operating System correctly
identify the Task/Category 2 ISR in error.

Note that for systems using a MPU and scalability class 3 or 4 a stack overflow may
cause a memory exception before the stack monitoring is able to detect the fault.

7.5.2 Requirements

[OS067] ⌈The Operating System module shall provide a stack monitoring which

detects possible stack faults of Task(s)/Category 2 ISR(s). ⌋ (BSW11003)

[OS068] ⌈If a stack fault is detected by stack monitoring AND no ProtectionHook()
is configured, the Operating System module shall call the ShutdownOS() service with
the status E_OS_STACKFAULT. ⌋ (BSW11003, BSW11013)

[OS396] ⌈If a stack fault is detected by stack monitoring AND a ProtectionHook()
is configured the Operating System module shall call the ProtectionHook() with the
status E_OS_STACKFAULT. ⌋ ()

7.6 OS-Application

7.6.1 Background & Rationale

An AUTOSAR OS must be capable of supporting a collection of Operating System
objects (Tasks, ISRs, Alarms, Schedule tables, Counters) that form a cohesive
functional unit. This collection of objects is termed an OS-Application.

The Operating System module is responsible for scheduling the available processing
resource between the OS-Applications that share the processor. If OS-Application(s)
are used, all Tasks, ISRs, Counters, Alarms and Schedule tables must belong to an
OS-Application. All objects which belong to the same OS-Application have access to
each other. The right to access objects from other OS-Applications may be granted
during configuration. An event is accessible if the task for which the event can be set
is accessible. Access means that these Operating System objects are allowed as
parameters to API services.

There are two classes of OS-Application:

(1) Trusted OS-Applications are allowed to run with monitoring or protection
features disabled at runtime. They may have unrestricted access to memory,
the Operating System module’s API, and need not have their timing behaviour
enforced at runtime. They are allowed to run in privileged mode when
supported by the processor.

58 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

(2) Non-Trusted OS-Applications are not allowed to run with monitoring or
protection features disabled at runtime. They have restricted access to
memory, restricted access to the Operating System module’s API and have
their timing behaviour enforced at runtime. They are not allowed to run in
privileged mode when supported by the processor.

It is assumed that the Operating System module itself is trusted.

There are services offered by the AUTOSAR OS which give the caller information
about the access rights and the membership of objects. These services are intended
to be used in case of an inter-OS-Application call for checking access rights and
arguments.

Note that Resource obejcts do not belong to any OS-Application, but access to them
must be explicitely granted. (The same principle applies to spinlocks in Multi-Core
systems)

The running OS-Application is defined as the OS-Application to which the currently
running Task or ISR belongs. In case of a hook routine the Task or ISR which caused
the call of the hook routine defines the running OS-Application.

class OS-Application Model

OS-Application

59 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

{XOR}

trusted
OS-Application

constraints
{privi leged mode}

non-trusted
OS-Application

constraints
{non-privi leged mode}

TASK

- EVENTs (of the TASK)
- One optional restart TASK

ISR

TRUSTED_FUNCTION

Hook

ShutdownHook_<Appl>

Hook

StartupHook_<Appl>

Hook

ErrorHook_<Appl>

#itsShutdownHook

SCHEDULETABLE

ALARM

COUNTER

An OS-Application may acces OS
objects of other OS-Application (e.g.
starting an Alarm or setting an Event
to anothers OS-Application Task) if
their configuration allows this.

#itsCounter

* 1

#itsAlarm

* 1

#itsISR

*1

#itsTask

*

1

#itsSchedule

* 1

#itsErrorHook

0..11

#itsStartupHook

0..11

0..11

«realize» «realize»

+itsProvidedServices

10..*

Figure 7.9: UML-model of OS-Application

Specification of Operating System
 V5.0.0

R4.0 Rev 3

OS-Applications have a state which defines the scope of accessability of its
Operating System objects from other OS-Applications. Each OS-Application is
always in one of the following states:
 Active and accessible (APPLICATION_ACCESSIBLE): Operating System objects

may be accessed from other OS-Applications. This is the default state at startup.
 Currently in restart phase (APPLICATION_RESTART). Operating System objects

can not be accessed from other OS-Applications. State is valid until the OS-
Application calls AllowAccess().

 Terminated and not accessible (APPLICATION_TERMINATED): Operating
System objects can not be accessed from other OS-Applications. State will not
change.

The following figure shows the states and the possible transitions:

Figure 7.13: States of OS-Applications

7.6.2 Requirements

[OS445] ⌈The Operating System module shall support OS-Applications which are a
configurable selection of Trusted Functions, Tasks, ISRs, Alarms, Schedule tables,
Counters, hooks (for startup, error and shutdown). ⌋ ()

[OS446] ⌈The Operating System module shall support the notion of trusted and non-

trusted OS-Applications. ⌋ ()
60 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

[OS464] ⌈Trusted OS-Applications may offer services (“trusted services”) to other

(even non-trusted) OS-Applications. ⌋ ()

The Operating System module provides the service GetApplicationID() (see
OS016) to determine the currently running OS-Application (a unique identifier shall
be allocated to each application).

The Operating System module provides the service CheckObjectOwnership() (see
OS017) to determine to which OS-Application a given Task, ISR, Counter, Alarm or
Schedule Table belongs.

The Operating System module provides the service CheckObjectAccess() (see
OS256) to determine which OS-Applications are allowed to use the IDs of a Task,
ISR, Resource, Counter, Alarm or Schedule Table in API calls.

The Operating System module provides the service TerminateApplication() (see
OS258) to terminate the OS-Application to which the calling Task/Category 2
ISR/application specific error hook belongs. (This is an OS-Application level variant
of the TerminateTask() service)

The Operating System provides the service TerminateApplication() (see OS258)
to terminate another OS-Application AND calls to this service shall be ignored if the
caller does not belong to a trusted OS-Application.

[OS447] ⌈If the Operating System module terminates an OS-Application, then it
shall:

 terminate all running, ready and waiting Tasks/ISRs of the OS-Application
AND

 disable all interrupts of the OS-Application AND
 stop all active alarms of the OS-Applications AND

 stop all schedule tables of the OS-Application. ⌋ ()

[OS448] ⌈The Operating System module shall prevent access of OS-Applications,
trusted or non-trusted, to objects not belonging to this OS-Application, except access

rights for such objects are explicitly granted by configuration. ⌋ ()

The Operating System provides the service GetApplicationState() (see OS499)
to request the current state of an OS-Application.

[OS500] ⌈The Operating System module shall set the state of all OS-Applications
after the call of StartOS() and before any StartupHook is called to

APPLICATION_ACCESSIBE. ⌋ ()

61 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

The Operating System module provides the service AllowAccess() (see OS501) to
set the own state of an OS-Application from APPLICATION_RESTARTING to
APPLICATION_ACCESSIBLE.

[OS502] ⌈If an OS-Application is terminated (e.g. through a service call or via
protection hook) and no restart is requested, then the Operating System module shall

set the state of this OS-Application to APPLICATION_TERMINATED. ⌋ ()

[OS503] ⌈If an OS-Application is terminated (e.g. through a service call or via
protection hook) and a restart is requested, then the Operating System module shall

set the state of this OS-Application to APPLICATION_RESTARTING. ⌋ ()

[OS504] ⌈The Operating System module shall deny access to Operating System
objects from other OS-Applications to an OS-Application which is not in state

APPLICATION_ACCESSIBLE. ⌋ ()

[OS509] ⌈If a service call is made on an Operating System object that is owned by
another OS-Application without state APPLICATION_ACCESSIBLE, then the Operating

System module shall return E_OS_ACCESS. ⌋ ()

An example for OS509 is a call to ActivateTask() for a task in an OS-Application that
is restarting.

7.7 Protection Facilities

Protection is only possible for Operating System managed objects. This means that:

 It is not possible to provide protection during runtime of Category 1 ISRs,
because the operating system is not aware of any Category 1 ISRs being
invoked. Therefore, if any protection is required, Category 1 ISRs have to be
avoided. If Category 1 interrupts AND OS-Applications are used together then
all Category 1 ISR must belong to a trusted OS-Application.

 It is not possible to provide protection between functions called from the body

of the same Task/Category 2 ISR.

7.7.1 Memory Protection

7.7.1.1 Background & Rationale

Memory protection will only be possible on processors that provide hardware support
for memory protection.

62 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

The memory protection scheme is based on the (data, code and stack) sections of
the executable program.

Stack: An OS-Application comprises a number of Tasks and ISRs. The stack for
these objects, by definition, belongs only to the owner object and there is therefore
no need to share stack data between objects, even if those objects belong to the
same OS-Application.
Memory protection for the stacks of Tasks and ISRs is useful mainly for two reasons:

(1) Provide a more immediate detection of stack overflow and
underflow for the Task or ISR than can be achieved with stack
monitoring

(2) Provide protection between constituent parts of and OS-Application,
for example to satisfy some safety constraints.

Data: OS-Applications can have private data sections and Tasks/ISRs can have
private data sections. OS-Application’s private data sections are shared by all
Tasks/ISRs belonging to that OS-Application.

Code: Code sections are either private to an OS-Application or can be shared
between all OS-Applications (to use shared libraries). In the case where code
protection is not used, executing incorrect code will eventually result in a memory,
timing or service violation.

7.7.1.2 Requirements

Data Sections and Stack

[OS198] ⌈The Operating System module shall prevent write access to its own data

sections and its own stack from non-trusted OS-Applications. ⌋ ()

Private data of an OS-Application

[OS026] ⌈The Operating System module may prevent read access to an OS-

Application’s data section attempted by other non-trusted OS-Applications. ⌋
(BSW11000)

[OS086] ⌈The Operating System module shall permit an OS-Application read and

write access to that OS-Application’s own private data sections. ⌋ (BSW11006)

[OS207] ⌈The Operating System module shall prevent write access to the OS-

Application’s private data sections from other non-trusted OS-Applications. ⌋
(BSW11005)

Private Stack of Task/ISR

63 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

[OS196] ⌈The Operating System module shall permit a Task/Category 2 ISR read

and write access to that Task’s/Category 2 ISR’s own private stack. ⌋ (BSW11006)

[OS208] ⌈The Operating System module may prevent write access to the private
stack of Tasks/Category 2 ISRs of a non-trusted application from all other

Tasks/ISRs in the same OS-Application. ⌋ (BSW11005)

[OS355] ⌈The Operating System module shall prevent write access to all private
stacks of Tasks/Category 2 ISRs of an OS-Application from other non-trusted OS-
Applications. ⌋ ()

Private data of a Task/ISR

[OS087] ⌈The Operating System module shall permit a Task/Category 2 ISR read

and write access to that Task’s/Category 2 ISR’s own private data sections. ⌋
(BSW11006)

[OS195] ⌈The Operating System module may prevent write access to the private
data sections of a Task/Category 2 ISR of a non-trusted application from all other

Tasks/ISRs in the same OS-Application. ⌋ (BSW11005)

[OS356] ⌈The Operating System module shall prevent write access to all private data
sections of a Task/Category 2 ISR of an OS-Application from other non-trusted OS-

Applications. ⌋ ()

Code Sections

[OS027] ⌈The Operating System module may provide an OS-Application the ability

to protect its code sections against executing by non-trusted OS-Applications. ⌋ ()

[OS081] ⌈The Operating System module shall provide the ability to provide shared

library code in sections that are executable by all OS-Applications. ⌋ (BSW11007)

Peripherals

[OS209] ⌈The Operating System module shall permit trusted OS-Applications read

and write access to peripherals. ⌋ ()

[OS083] ⌈The Operating System module shall allow non-trusted OS-Applications to
write to their assigned peripherals only (incl. reads that have the side effect of writing

to a memory location). ⌋ ()

Memory Access Violation
64 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

[OS044] ⌈If a memory access violation is detected, the Operating System module

shall call the Protection Hook with status code E_OS_PROTECTION_MEMORY. ⌋
(BSW11013)

7.7.2 Timing Protection

7.7.2.1 Background & Rationale

A timing fault in a real-time system occurs when a task or interrupt misses its
deadline at runtime.

AUTOSAR OS does not offer deadline monitoring for timing protection. Deadline
monitoring is insufficient to correctly identify the Task/ISR causing a timing fault in an
AUTOSAR system. When a deadline is violated this may be due to a timing fault
introduced by an unrelated Task/ISR that interferes/blocks for too long. The fault in
this case lies with the unrelated Task/ISR and this will propagate through the system
until a Task/ISR misses its deadline. The Task/ISR that misses a deadline is
therefore not necessarily the Task/ISR that has failed at runtime, it is simply the
earliest point that a timing fault is detected.

If action is taken based on a missed deadline identified with deadline monitoring this
would potentially use false evidence of error to terminate a correct OS-Application in
favour of allowing an incorrect OS-Application to continue running. The problem is
best illustrated by example. Consider a system with the following configuration:

TaskID Priority Execution Time Deadline (=Period)
A High 1 5
B Medium 3 10
C Low 5 15

Assuming that all tasks are ready to run at time zero, the following execution trace
would be expected and all tasks would meet their respective deadlines.

.
65 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

Figure 7.10: Example execution trace

Now consider the case when tasks A and B behave incorrectly. The figure below
shows both task A and task B executing for longer than specified and task B arriving
2 ticks earlier than specified. Both tasks A and B meet their deadlines. Task C
however, behaves correctly but it fails to meet its deadline because of the incorrect
execution of Tasks A and B. This is fault propagation – a fault in an unrelated part of
the system is causing a correctly functioning part of the system to fail.

A A A

66 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

12 13 14 152 3 4 5 6 7 8 9 10 110 1

B

Task A executes for too long
Task A meets its deadline

Task B executes for too long
Task B meets its deadline

C

B

C
Task B arrives too early (at 8 rather than at 10)

Task B executes as expected otherwise
Task B meets its deadline

!

Task C has executed within specification.
Task C misses its deadline 4 ticks into its
execution with 1 tick of execution
remaining

B

C

 16 17

Figure 7.11: Insufficiency of Deadline Monitoring

Whether a task or ISR meets its deadline in a fixed priority preemptive operating
system like AUTOSAR OS is determined by the following factors:

(1) the execution time of Task/ISRs in the system

(2) the blocking time that Task/ISRs suffers from lower priority Tasks/ISRs locking
shared resources or disabling interrupts

(3) the interarrival rate of Task/ISRs in the system

For safe and accurate timing protection it is necessary for the operating system to
control these factors at runtime to ensure that Tasks/ISRs can meet their respective
deadlines.

AUTOSAR OS prevents timing errors from (1) by using execution time protection to
guarantee a statically configured upper bound, called the Execution Budget, on the
execution time of:

 Tasks
 Category 2 ISRs

Specification of Operating System
 V5.0.0

R4.0 Rev 3

AUTOSAR OS prevents timing errors from (2) by using locking time protection to
guarantee a statically configured upper bound, called the Lock Budget, on the time
that:

 Resources are held by Tasks/Category 2 ISRs
 OS interrupts are suspended by Tasks/Category 2 ISRs
 ALL interrupts are suspended/disabled by Tasks/Category 2 ISRs

AUTOSAR OS prevents timing errors from (3) by using inter-arrival time protection to
guarantee a statically configured lower bound, called the Time Frame, on the time
between:

 A task being permitted to transition into the READY state due to:
o Activation (the transition from the SUSPENDED to the READY state)
o Release (the transition from the WAITING to the READY state)

 A Category 2 ISR arriving
An arrival occurs when the Category 2 ISR is recognized by the OS

Inter-arrival time protection for basic tasks controls the time between successive
activations, irrespective of whether activations are queued or not. In the case of
queued activations, activating a basic task which is in the READY or RUNNING state is
a new activation because it represents the activation of a new instance of the task.
Inter-arrival time protection therefore interacts with queued activation to control the
rate at which the queue is filled.

Inter-arrival time protection for extended tasks controls the time between successive
activations and releases. When a task is in the WAITING state and multiple events are
set with a single call to SetEvent() this represents a single release. When a task
waits for one or more events which are already set this represents a notional
Wait/Release/Start transition and therefore is considered as a new release.

The following figure shows how execution time protection and inter-arrival time
protection interact with the task state transition model for AUTOSAR OS.

67 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

 Terminate
OsTaskExecutionBudget reset

68 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Wait
OsTaskExecutionBudget reset

Preempt
OsTaskExecutionBudget stopped

Successful activation of a task already in the RUNNING
state marks the start of a new OsTaskTimeFrame

A task that waits on an event which is already set
notionally transitions into the WAITING state

RUNNING

Start
OsTaskExecutionBudget started

Activate
OsTaskTimeFrame started

SUSPENDED WAITING

Release
OsTaskTimeFrame started

READY

Successful activation of a task already in the READY
imeFramestate marks the start of a new OsTaskT

Figure 7.12: Time protection interaction with the task state transition model

Notes:

1. Inter-arrival time enforcement on Category 2 ISRs can be used to protect an
ECU from a “babbling idiot” source of interrupts (e.g. a CAN controller taking
an interrupt each time a frame is received from another ECU on the network)
and provides the type of protection given by the OSEKtime Interrupt re-enable
schedule event [16].

2. Timing protection only applies to Tasks or Category 2 ISRs. There is no
protection for Category 1 ISRs. If timing protection error occurs during a
category 1 ISR, consistency of the Operating System module can not be
guaranteed. Therefore we discourage timing protection in systems with
category 1 interrupts.

3. Timing protection does not apply before the Operating System module is
started.

4. In the case of trusted OS-Applications it is essential that all timing information
is correct, otherwise the system may fail at run-time. For a non-trusted OS-
Application, timing protection can be used to enforce timing boundaries
between executable objects.

7.7.2.2 Requirements

[OS028] ⌈In a non-trusted OS-Application, the Operating System module shall apply

timing protection to every Task/Category 2 ISR of this non-trusted OS-Application. ⌋
(BSW11008)

Specification of Operating System
 V5.0.0

R4.0 Rev 3

[OS089] ⌈In a trusted OS-Application, the Operating System module shall provide
the ability to apply timing protection to Tasks/Category 2 ISRs of this OS-Application.
⌋ (BSW11008)

[OS397] ⌈If no OS-Application is configured, the Operating System module shall be

able to apply timing protection to Tasks/Category 2 ISRs. ⌋ ()

Timing Protection: Tasks

[OS064] ⌈If a task’s OsTaskExecutionBudget is reached then the Operating System

module shall call the ProtectionHook() with E_OS_PROTECTION_TIME. ⌋ (BSW11008,

BSW11013)

[OS473] ⌈The Operating System module shall reset a task’s

OsTaskExecutionBudget on a transition to the SUSPENDED or WAITING states. ⌋
(BSW11008)

[OS465] ⌈The Operating System module shall limit the inter-arrival time of tasks to

one per OsTaskTimeFrame. ⌋ (BSW11008)

[OS469] ⌈The Operating System module shall start an OsTaskTimeFrame when a

task is activated successfully. ⌋ (BSW11008)

[OS472] ⌈The Operating System module shall start an OsTaskTimeFrame when a

task is released successfully. ⌋ (BSW11008)

[OS466] ⌈If an attempt is made to activate a task before the end of an
OsTaskTimeFrame then the Operating System module shall not perform the

activation AND shall call the ProtectionHook() with E_OS_PROTECTION_ARRIVAL. ⌋
()

[OS467] ⌈If an attempt is made to release a task before the end of an
OsTaskTimeFrame then the Operating System module shall not perform the release
AND shall call the ProtectionHook() with E_OS_PROTECTION_ARRIVAL AND the

event shall be set. ⌋ ()

Timing Protection: ISRs

69 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

[OS210] ⌈If a Category 2 ISR’s OsIsrExecutionBudget is reached then the Operating

System module shall call the ProtectionHook() with E_OS_PROTECTION_TIME. ⌋
(BSW11013)

Specification of Operating System
 V5.0.0

R4.0 Rev 3

[OS474] ⌈The Operating System module shall rest an ISR’s OsIsrExecutionBudget

when the ISR returns control to the Operating terminates. ⌋ (BSW11008)

[OS470] ⌈The Operating System module shall limit the inter-arrival time of Category

2 ISRs to one per OsIsrTimeFrame. ⌋ (BSW11008)

[OS471] ⌈The Operating System module shall measure the start of an
OsIsrTimeFrame from the point at which it recognises the interrupt (i.e. in the

Operating System interrupt wrapper). ⌋ (BSW11008)

[OS048] ⌈If Category 2 interrupt occurs before the end of the OsIsrTimeFrame then
the Operating System module shall not execute the user provided ISR AND shall call

the ProtectionHook() with E_OS_PROTECTION_ARRIVAL. ⌋ (BSW11008)

Timing Protection: Resource Locking and Interrupt Disabling

[OS033] ⌈If a Task/Category 2 ISR holds an OSEK Resource and exceeds the
Os[Task|Isr]ResourceLockBudget, the Operating System module shall call the

ProtectionHook() with E_OS_PROTECTION_LOCKED. ⌋ (BSW11008, BSW11013,

BSW11014)

[OS037] ⌈If a Task/Category 2 ISR disables interrupts (via
Suspend/Disable|All/OS|Interrupts()) and exceeds the configured
Os[Task|Isr][All|OS]InterruptLockBudget, the Operating System module shall call the

ProtectionHook() with E_OS_PROTECTION_LOCKED. ⌋ (BSW11008, BSW11013,

BSW11014)

7.7.2.3 Implementation Notes

Execution time enforcement requires hardware support, e.g. a timing enforcement
interrupt. If an interrupt is used to implement the time enforcement, the priority of this
interrupt has to be high enough to “interrupt” the supervised tasks or ISRs.

Depending on the real hardware support this could mean that DisableAllInterrupts
and SuspendAllInterrupts disable not all interrupts (e.g. all interrupts except of the
interrupt used for timing protection) or that the usage of Category 1 ISRs – which
bypass the Operating System (and also the timing protection) – is limited somehow.

The implementation has to document such implementation specific behaviour (e.g.
the limitations when timing protection is used).

70 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

7.7.3 Service Protection

Background & Rationale

As OS-Applications can interact with the Operating System module through services,
it is essential that the service calls will not corrupt the Operating System module
itself. Service Protection guards against such corruption at runtime.

There are a number of cases to consider with Service Protection: An OS-Application
makes an API call

(1) with an invalid handle or out of range value.

(2) in the wrong context, e.g. calling ActivateTask() in the StartupHook().

(3) or fails to make an API call that results in the OSEK OS being left in an
undefined state, e.g. it terminates without a ReleaseResource() call

(4) that impacts on the behaviour of every other OS-Application in the system,
e.g. ShutdownOS()

(5) to manipulate Operating System objects that belong to another OS-Application
(to which it does not have the necessary permissions), e.g. an OS-Application
tries to execute ActivateTask() on a task it does not own.

The OSEK OS already provides some service protection through the status codes
returned from service calls and this will provide the basis for service protection. This
means that service protection will only apply for the extended status of OSEK OS.

However, OSEK OS does not cover all the cases outlined above. The following
sections describe – besides the mandatory extended status – the additional
protection requirements to be applied in each of these cases.

7.7.3.1 Invalid Object Parameter or Out of Range Value

7.7.3.1.1 Background & Rationale

The current OSEK OS’ service calls already return E_OS_ID on invalid objects (i.e.
objects not defined in the OIL file) and E_OS_VALUE for out of range values (e.g.
setting an alarm cycle time less than OsCounterMinCycle).

7.7.3.1.2 Requirements

[OS051] ⌈If an invalid address (address is not writable by this OS-Application) is
passed as an out-parameter to an Operating System service, the Operating System

module shall return the status code E_OS_ILLEGAL_ADDRESS. ⌋ (BSW11009,

BSW11013)

71 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

7.7.3.2 Service Calls Made from Wrong Context

7.7.3.2.1 Background & Rationale

The current OSEK OS defines the valid calling context for service calls ([15], Fig. 12-
1), however protects against only a small set of these invalid calls, e.g. calling
TerminateTask() from a Category 2 ISR.

P
ro

te
ct

io
n

 H
o

o
k

P
re

T
as

k
H

o
o

k

P
o

st
T

as
k

H
o

o
k

S
ta

rt
u

p
 H

o
o

k

S
h

u
td

o
w

n
 H

o
o

k

A
la

rm
 C

al
lb

ac
k

E
rr

o
r

H
o

o
k

Service T

as
k

C
at

1
IS

R

C
at

2
IS

R

 ActivateTask
 TerminateTask C
 ChainTask C
 Schedule C

72 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

GetTaskID
 GetTaskState
 DisableAllInterrupts
 EnableAllInterrupts
 SuspendAllInterrupts
 ResumeAllInterrupts
 SuspendOSInterrupts
 ResumeOSInterrupts

GetResource
ReleaseResource
SetEvent
ClearEvent C
GetEvent
WaitEvent C
GetAlarmBase
GetAlarm
SetRelAlarm
SetAbsAlarm
CancelAlarm
GetActiveApplicationMode
StartOS
ShutdownOS
GetApplicationID
GetISRID
CallTrustedFunction
CheckISRMemoryAccess
CheckTaskMemoryAccess
CheckObjectAccess
CheckObjectOwnership
StartScheduleTableRel

Specification of Operating System
 V5.0.0

R4.0 Rev 3

P
ro

te
ct

io
n

 H
o

o
k

P
re

T
as

k
H

o
o

k

P
o

st
T

as
k

H
o

o
k

S
ta

rt
u

p
 H

o
o

k

S
h

u
td

o
w

n
 H

o
o

k

A
la

rm
 C

al
lb

ac
k

E
rr

o
r

H
o

o
k

Service T
as

k

C
at

1
IS

R

C
at

2
IS

R

StartScheduleTableAbs
StopScheduleTable
NextScheduleTable
StartScheduleTableSynchron
SyncScheduleTable
GetScheduleTableStatus
SetScheduleTableAsync
IncrementCounter
GetCounterValue
GetElapsedValue
TerminateApplication 2
AllowAccess
GetApplicationState

Tab. 1: Allowed Calling Context for OS Service Calls

In the table above “C” indicates that validity is only “Checked in Extended status by
E_OS_CALLEVEL” (see [12], section 13.1).

7.7.3.2.2 Requirements

[OS088] ⌈If an OS-Application makes a service call from the wrong context AND is
currently not inside a Category 1 ISR the Operating System module shall not perform
the requested action (the service call shall have no effect), and return

E_OS_CALLEVEL (see [12], section 13.1) or the “invalid value” of the service. ⌋
(BSW11009, BSW11013)

7.7.3.3 Services with Undefined Behaviour

7.7.3.3.1 Background & Rationale

There are a number of situations where the behaviour of OSEK OS is undefined in
extended status. This is unacceptable when protection is required as it would allow
the Operating System module to be corrupted through its own service calls. The
implementation of service protection for the Operating System module must therefore
describe and implement a behaviour that does not jeopardise the integrity of the
system or of any OS-Application which did not cause the specific error.

73 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

2 Only in case of self termination.

Specification of Operating System
 V5.0.0

R4.0 Rev 3

7.7.3.3.2 Requirements

Tasks ends without calling a TerminateTask() or ChainTask()

[OS052] ⌈If a task returns from its entry function without making a TerminateTask()
or ChainTask() call, the Operating System module shall terminate the task (and call

the PostTaskHook() if configured). ⌋ (BSW11009)

[OS069] ⌈If a task returns from its entry function without making a TerminateTask()
or ChainTask() call AND the error hook is configured, the Operating System module
shall call the ErrorHook() (this is done regardless of whether the task causes other
errors, e.g. E_OS_RESOURCE) with status E_OS_MISSINGEND before the task leaves

the RUNNING state. ⌋ (BSW11009)

[OS070] ⌈If a task returns from the entry function without making a
TerminateTask() or ChainTask() call and still holds OSEK Resources, the

Operating System module shall release them. ⌋ (BSW11009, BSW11013)

[OS239] ⌈If a task returns from the entry function without making a
TerminateTask() or ChainTask() call and interrupts are still disabled, the

Operating System module shall enable them. ⌋ ()

Category 2 ISR ends with locked interrupts or allocated resources

[OS368] ⌈If a Category 2 ISR calls DisableAllInterupts() /
SuspendAllInterrupts() / SuspendOSInterrupts() and ends (returns) without
calling the corresponding EnableAllInterrupts() / ResumeAllInterrupts() /
ResumeOSInterrupts(), the Operating System module shall perform the missing
service and shall call the ErrorHook() (if configured) with the status

E_OS_DISABLEDINT. ⌋ ()

[OS369] ⌈If a Category 2 ISR calls GetResource() and ends (returns) without
calling the corresponding ReleaseResource(), the Operating System module shall
perform the ReleaseResource() call and shall call the ErrorHook() (if configured)

with the status E_OS_RESOURCE (see [12], section 13.1). ⌋ ()

PostTaskHook called during ShutdownOS()

[OS071] ⌈If the PostTaskHook() is configured, the Operating System module shall

not call the hook if ShutdownOS() is called. ⌋ ()

74 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

Tasks/ISRs calls EnableAllInterrupts/ResumeAllInterrupts/ResumeOSInterrupts
without a corresponding disable

[OS092] ⌈If EnableAllInterrupts() / ResumeAllInterrupts() /
ResumeOSInterrupts() are called and no corresponding DisableAllInterupts()
/ SuspendAllInterrupts() / SuspendOSInterrupts() was done before, the

Operating System module shall not perform this Operating System service. ⌋
(BSW11009)

Tasks/ISRs calling OS services when
DisableAllInterupts/SuspendAllInterrupts/SuspendOSInterrupts called

[OS093] ⌈If interrupts are disabled/suspended by a Task/ISR/Hook and the
Task/ISR/Hook calls any Operating System service (excluding the interrupt services)
then the Operating System module shall ignore the service AND shall return

E_OS_DISABLEDINT if the service returns a StatusType value. ⌋ (BSW11009,

BSW11013)

7.7.3.4 Service Restrictions for Non-Trusted OS-Applications

7.7.3.4.1 Background & Rationale

The Operating System service calls available are restricted according to the calling
context (see Section 7.7.3.2). In a protected system, additional constraints need to
be placed to prevent non-trusted OS-Applications executing API calls that can have a
global effect on the system. Each level of restriction is a proper subset of the
previous level as shown in the figure below.

Figure 7.13: API Restrictions

75 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

There are two defined integrity levels:

Specification of Operating System
 V5.0.0

R4.0 Rev 3

1. Trusted
2. Non-Trusted

that correspond exactly with trusted and non-trusted OS-Applications.

7.7.3.4.2 Requirements

[OS054] ⌈The Operating System module shall ignore calls to ShutdownOS() from

non-trusted OS-Applications. ⌋ ()

7.7.3.5 Service Calls on Objects in Different OS-Applications

7.7.3.5.1 Background

Section 7.7.3.1 stated that E_OS_ID is returned by OSEK OS service calls when the
object is invalid. Under the protection scheme a service call can be invalid because
the caller does not have valid permissions for the object (a new meaning for multi-
OS-Application systems).
This is a similar case to an object not being accessible in OSEK OS (for example,
when a task tries to get a resource which exists in the system but has not been
configured as used by the task).

7.7.3.5.2 Requirements

[OS056] ⌈If an OS-object identifier is the parameter of an Operating System
module’s system service, and no sufficient access rights have been assigned to this
OS-object at configuration time (Parameter Os[...]AccessingApplication) to the
calling Task/Category 2 ISR, the Operating System module’s system service shall
return E_OS_ACCESS. ⌋ (BSW11001, BSW11010, BSW11013)

[OS449] ⌈CheckTaskMemoryAccess and CheckIsrMemoryAccess check the memory
access. Memory access checking is possible for all OS-Applications and from all OS-
Applications and does not need granted rights. ⌋ ()

OS449 is an exception to OS056.

[OS450] ⌈CheckObjectAccess checks the access rights for Operating System
objects. Checking object access is possible for all OS-Applications and from all OS-
Applications and does not need granted rights. ⌋ ()

OS450 is an exception to OS056.

76 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

7.7.4 Protecting the Hardware used by the OS

7.7.4.1 Background & Rationale

Where a processor supports privileged and non-privileged mode it is usually the case
that certain registers, and the instructions to modify those registers, are inaccessible
outside the privileged mode.

On such hardware, executing the Operating System module in privileged mode and
Tasks/ISRs in non-privileged mode protects the registers fundamental to Operating
System module operation from inadvertent corruption by the objects executing in
non-privileged mode. The Operating System module’s services will need to execute
in privileged mode as they will need to modify the registers that are protected outside
this mode.

The Operating System module can use the control registers of the MPU, timer
unit(s), interrupt controller, etc. and therefore it is necessary to protect those registers
against non-trusted OS-Applications.

7.7.4.2 Requirements

[OS058] ⌈If supported by hardware, the Operating System module shall execute

non-trusted OS-Applications in non-privileged mode. ⌋ ()

[OS096] ⌈As far as supported by hardware, the Operating System module shall not
allow non-trusted OS-Applications to access control registers managed by the

Operating System module. ⌋ (BSW11011)

[OS245] ⌈If an instruction exception occurs (e.g. division by zero) the Operating

System module shall call the protection hook with E_OS_PROTECTION_EXCEPTION. ⌋
(BSW11011)

7.7.4.3 Implementation Notes

When the Operating System module is running non-trusted OS-Applications, the
Operating System module’s treatment of interrupt entry and hook routines must be
carefully managed.

Interrupt handling: Where the MCU supports different modes (as discussed in this
section) ISRs will require the Operating System module to do extra work in the ISR()
wrapper. ISRs will typically be entered in privileged mode. If the handler is part of a
non-trusted OS-Application then the ISR() wrapper must make sure that a switch to
non-privileged mode occurs before the handler executes.

77 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

7.7.5 Providing »Trusted Functions«

7.7.5.1 Background & Rationale

An OS-Application can invoke a Trusted Function provided by (another) trusted OS-
Application. That can require a switch from non-privileged to privileged mode. This is
typically achieved by these operations:

(1) Each trusted OS-Application may export services which are callable from
other OS-Applications.

(2) During configuration these trusted services must be configured to be called
from a non-trusted OS-Application.

(3) The call from the non-trusted OS-Application to the trusted service is using a
mechanism (e.g. trap/software interrupt) provided by the Operating System.
The service is passed as an identifier that is used to determine, in the trusted
environment, if the service can be called.

(4) The Operating System offers services to check if a memory region is
write/read/execute accessible from an OS-Application. It also returns
information if the memory region is part of the stack space.

The Operating System software specification does not provide support for »non-
trusted services«.

7.7.5.2 Requirements

[OS451] ⌈The Operating System module shall allow exporting services from trusted

OS-Applications. ⌋ ()

The Operating System module provides the service CallTrustedFunction() (see
OS097) to call a trusted function from a (trusted or non-trusted) OS-Application.

[OS100] ⌈If CallTrustedFunction() is called and the called trusted function is not
configured the Operating System module shall call the ErrorHook with

E_OS_SERVICEID. ⌋ ()

The Operating System module provides the services CheckISRMemoryAccess() and
CheckTaskMemoryAccess() (see OS512 and OS513) for OS-Applications to check if
a memory region is write/read/execute accessible from a Task/Category 2 ISR and
also return information if the memory region is part of the stack space.

7.8 Protection Error Handling

78 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

7.8.1 Background & Rationale

The Operating System can detect protection errors based on statically configured
information on what the constituent parts of an OS-Application can do at runtime.
See Section 7.7.

Unlike monitoring, protection facilities will trap the erroneous state at the point the
error occurs, resulting in the shortest possible time between transition into an
erroneous state and detection of the fault. The different kinds of protection errors are
described in the glossary. If a protection error occurs before the Operating System
module is started the behaviour is not defined. If a protection error happens during
shutdown, e.g. in the application-specific shutdown hook, an endless loop between
the shutdown service and the protection hook may occur.

In the case of a protection error, the Operating System module calls a user provided
Protection Hook for the notification of protection errors at runtime. The Protection
Hook runs in the context of the Operating System module and must therefore be
trusted code.

The Operating System module itself needs only to detect an error and provide the
ability to act. The Protection Hook can select one out of four options the Operating
System module provides, which will be performed after returning from the Protection
Hook, depending on the return value of the Protection Hook. The options are:

1. do nothing
2. forcibly terminate the faulty Task/Category 2 ISR
3. forcibly terminate all tasks and ISRs in the faulty OS-Application

a. without restart of the OS-Application
b. with restart of the OS-Application

4. shutdown the Operating System module.

Requirements OS243 and OS244 define the order of the default reaction if no faulty
Task/Category 2 ISR or OS-Application can be found, e.g. in the system specific
hook routines. Also OS-Applications are only mandatory in Scalability Classes 3 and
4, therefore in other Scalability Classes OS-Applications need not be defined.

Note that forcibly terminating interrupts is handled differently in “forcibly terminate the
faulty ISR” and “forcibly terminate the OS-Application”. If a faulty ISR is forcibly
terminated, the current invocation of the ISR is terminated. A subsequent invocation
is allowed. If the OS-Application is forcibly terminated, then the interrupt source is
also disabled, preventing subsequent interrupts.

The meaning of “do nothing” (protection hook returns PRO_IGNORE) is that the system
ignores the error and continuos operations as if no error happened at all. For
example: a call to ActivateTask() causes an arrival rate violation and afterward the
protection hook returns PRO_IGNORE. Then the actions to activate the task will be
performed by the OS (maybe a rescheduling takes place) and the call returns with
E_OK (if no other error was detected). The feature can be useful e.g. during
development or to reach a higher availability (during development).

79 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

7.8.2 Requirements

[OS211] ⌈The Operating System module shall execute the ProtectionHook() with

the same permissions as the Operating System module. ⌋ ()

[OS107] ⌈If no ProtectionHook() is configured and a protection error occurs, the

Operating System module shall call ShutdownOS().⌋ (BSW11014)

[OS106] ⌈If the ProtectionHook() returns PRO_IGNORE and was called with
E_OS_PROTECTION_ARRIVAL the Operating System module shall return control to the
user application. ⌋ (BSW11014)

[OS553] ⌈If the ProtectionHook() returns PRO_TERMINATETASKISR the Operating
System module shall forcibly terminate the faulty Task/Category 2 ISR. ⌋ ()

[OS554] ⌈If the ProtectionHook() returns PRO_TERMINATEAPPL the Operating
System module shall forcibly terminate the faulty OS-Application. ⌋ ()

[OS555] ⌈If the ProtectionHook() returns PRO_TERMINATEAPPL_RESTART the
Operating System module shall forcibly terminate the faulty OS-Application and
afterwards restart the OS-Application. ⌋ ()

[OS556] ⌈If the ProtectionHook() returns PRO_SHUTDOWN the Operating System
module shall call the ShutdownOS().⌋ ()

[OS506] ⌈If the ProtectionHook() is called with E_OS_PROTECTION_ARRIVAL the
only valid return values are PRO_IGNORE or PRO_SHUTDOWN 3. Returning other values

will result in a call to ShutdownOS().⌋ ()

[OS475] ⌈If the ProtectionHook() returns PRO_IGNORE and the ProtectionHook()
was not called with E_OS_PROTECTION_ARRIVAL then the Operating System module

shall call ShutdownOS().⌋ ()

[OS243] ⌈If the ProtectionHook() returns PRO_TERMINATETASKISR and no Task or
ISR can be associated with the error, the running OS-Application is forcibly
terminated by the Operating System module. If even no OS-Application can be

assigned, ShutdownOS() is called. ⌋ (BSW11014)

80 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

3 The reason for this case is that the Task which is supervised is not necessary active (and can not be e.g. terminated) and it
can be that the caller of the activation is the real problem.

Specification of Operating System
 V5.0.0

R4.0 Rev 3

[OS244] ⌈If the ProtectionHook() returns PRO_TERMINATEAPPL or
PRO_TERMINATEAPPL_RESTART and no OS-Application can be assigned,

ShutdownOS() is called. ⌋ (BSW11014)

[OS557] ⌈If the ProtectionHook() returns PRO_TERMINATEAPPL_RESTART and no
OsRestartTask was configured for the faulty OS-Application, ShutdownOS() is

called. ⌋ ()

[OS108] ⌈If the Operating System module forcibly terminates a task, it terminates the
task, releases all allocated OSEK resources and calls EnableAllInterrupts()/
ResumeOSInterrupts() / ResumeAllInterrupts() if the Task called
DisableAllInterrupts() / SuspendOSInterrupts() /
SuspendAllInterrupts() before without the corresponding
EnableAllInterrupts()/ ResumeOSInterrupts() / ResumeAllInterrupts() call.

⌋ (BSW11014)

[OS109] ⌈If the Operating System module forcibly terminates an interrupt service
routine, it clears the interrupt request, aborts the interrupt service routine (The
interrupt source stays in the current state.) and releases all OSEK resources the
interrupt service routine has allocated and calls EnableAllInterrupts() /
ResumeOSInterrupts() / ResumeAllInterrupts() if the interrupt called
DisableAllInterrupts() / SuspendOSInterrupts() /
SuspendAllInterrupts() before without the corresponding
EnableAllInterrupts()/ ResumeOSInterrupts() / ResumeAllInterrupts() call.

⌋ (BSW11014)

[OS110] ⌈If the Operating System module shall forcibly terminates an OS-
Application, it:shall

o forcibly terminate all Tasks/ISRs of the OS-Application AND
o cancel all alarms of the OS-Application AND
o stop schedule tables of the OS-Application AND

o disable interrupt sources of Category 2 ISRs belonging to the OS-Application⌋
(BSW11014)

[OS111] ⌈When the Operating System module restarts an OS-Application, it shall

activate the configured OsRestartTask. ⌋ ()

7.9 Operating System for Multi-Core

This chapter specifies some extensions that allow to use an AUTOSAR system on
Multi-Core micro-processors. It describes the main philosophy as well as additional
81 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

extensions to the existing OS functionality regarding Multi-Core. The following
chapter contains a specification of a new mechanism within the OS called IOC (Inter
OS-Application Communicator) that supports the communication between OS-
Applications located on the same or on different cores

7.9.1 Background & Rationale

The existing AUTOSAR-OS is based on the OSEK/VDX Operating system which is
widely used in the automotive industry. The AUTOSAR Multi-Core OS is derived from
the existing AUTOSAR OS.
The Multi-Core OS in AUTOSAR is not a virtual ECU concept, instead it shall be
understood as an OS that shares the same configuration and most of the code, but
operates on different data structures for each core.
To reduce the memory footprint all cores should use the same code base.
Sometimes it can be beneficial to spend some more ROM/Flash, e.g. to use a local
ROM, and "double" parts of the code to get faster ROM/Flash access.

7.9.1.1 Requirements

[OS567] ⌈The generated part of the OS is derived from a single configuration that
contains the relevant information for all cores. This implies, that IDs (e.g. TASKID,
RESOURCEID, …) are unique across cores. Every ID shall refer exactly to one entity
independent from the core on which the entity is accessed. This applies also to

objects that cannot be shared between cores. ⌋ (BSW4080008)

7.9.2 Scheduling

The priority of the TASKs drives the scheduling. Since multiple cores run truly
parallel, several TASKs can execute at the same time.

Figure 2: Priorities are assigned to TASKS. The cores schedule independently from each other.
The TASKS T2, T3 and T5 are executed in true parallelism. TASKs with the same priority on the

same core will be executed in order of activation; TASKs with the same priority on different

82 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

cores may not be executed in the order of activation, since the cores schedule independent
from each other.

The OS can be entered on each core in parallel. This optimizes scalability towards
multiple cores. The cores schedule independently. This implies that the schedule on
one core does not consider the scheduling on the other cores4. A low priority TASK
on one core may run in parallel with a high priority TASK on another core.
TASKs and ISRs cannot dynamically change cores by means of the scheduling
algorithm.

7.9.2.1 Requirements

[OS568] ⌈Implementations shall be able to independently execute a TASK or an ISR

on each started AUTOSAR OS core in parallel. ⌋ (BSW4080001)

[OS569] ⌈The scheduling strategy as defined in AUTOSAR OS shall apply for each
individual core in a Multi-Core system, for the TASKs and ISR assigned to the core. ⌋
(BSW4080001, BSW4080013)

7.9.3 Locatable entities (LE)

A locatable entity is an entity that has to be located entirely on one core. The
assignment of LEs to cores is defined at configuration time
(OsApplicationCoreAssignment).

In this release of the AUTOSAR standard OS-Applications shall be the LEs. Because
every TASK has to run on some core, the usage of OS-Applications becomes
obligatory in AUTOSAR R4.0 for Multi-Core systems. BSW modules are not allowed
to ignore OS-Applications, even if they do not use any protection mechanisms. This
is independent from the SC class.

As is stated in the AUTOSAR Specification of the Operating System, if OS-
Applications are used, all Tasks, ISR etc. must belong to an OS-Application. This
implies, that no AUTOSAR software exists outside of an OS-Application in Multi-Core
systems.

On single-core systems OS-Applications are available only for SC3 and SC4
because the mechanism is used to support memory protection and implies the usage
of extended mode. In Multi-core systems OS-Applications are always available
independend of memory protection and on SC1 standard mode shall be possible.

7.9.3.1 Requirements

[OS570] ⌈All TASKs that are assigned to the same OS-Application shall execute on

the same core. ⌋ (BSW4080003, BSW4080005)

83 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

4 This also applies to TASKs with the same priority, bound to different cores. It also means that non-preemptive tasks cannot be
preempted on the core they are running, but tasks on other cores can run in parallel.

Specification of Operating System
 V5.0.0

R4.0 Rev 3

[OS571] ⌈All ISRs that are assigned to the same OS-Application shall execute on the

same core. ⌋ (BSW4080003, BSW4080005)

[OS572] ⌈ISR balancing (if supported by the HW) shall be switched off at boot

time by the OS. ⌋ (BSW4080005, BSW4080006)

[OS764] ⌈The OS module shall support OS-Applications in case of Multi-Core also

for SC1 and SC2. ⌋ ()

[OS763] ⌈In an SC1 system standard mode shall be possible. ⌋ ()

[OS573] ⌈The binding of OS-Applications to cores shall be configured within the OS-

Application container. ⌋ (BSW4080003, BSW4080005)

A new configuration item: OsApplicationCoreAssignment{CORE} within the
OS-Application container shall be used to define the core to which the OS-
Application is bound. The OS generator will map the configuration parameter “CORE”
to a certain core, so that all OS-Applications with the same configuration parameter
reside on the same core.

7.9.4 Multi-Core start-up concept

The way cores are started depends heavily on the hardware. Typically the hardware
only starts one core, referred as the master core, while the other cores (slaves)
remain in halt state until they are activated by the software.

In contrast to such a master-slave system other boot concepts with cores that start
independently from each other are conceivable. However it is possible to emulate
master-slave behavior on such systems by software.

The AUTOSAR Multi-Core OS specification requires a system with master-slave
start-up behavior, either supported directly by the hardware or emulated in software.
The master core is defined to be the core that requires no software activation,
whereas a slave core requires activation by software.

In Multi-Core configurations, each slave core that is used by AUTOSAR must be
activated before StartOS is entered on the core. Depending on the hardware, it may
be possible to only activate a subset of the available cores from the master. The
slave cores might activate additional cores before calling StartOS. All cores that
belong to the AUTOSAR system have to be activated by the designated AUTOSAR
API function. Additionally, the StartOS function has to be called on all these cores.

84 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

If a core is activated it executes some HW and compiler specific operations, before
the "main" function is called. In case the same "main" function is executed on
each core, the cores have to be differentiated by their specific core Id within the
function.

Example:
void main ()
{
 StatusType rv;
 […]
 switch (GetCoreID())
 {
 case OS_CORE_ID_MASTER:
 […]
 StartCore(OS_CORE_ID_0, &rv);
 StartOS(OSDEFAULTAPPMODE);
 break;
 case OS_CORE_ID_0:
 […]
 StartCore(OS_CORE_ID_1, &rv);
 StartOS(DONOTCARE);
 break;
 otherwise:
 StartOS(DONOTCARE);
 }
}

StartOS synchronizes all cores twice. The first synchronization point is located
before the StartupHooks are executed, the second after the OS-Application specific
StartupHooks have finished and before the scheduler is started. The exact point
where the second synchronization occurs depends on the implementation, but it shall
be before the scheduling is started. This release of the AUTOSAR specification does
not support timeouts during the synchronization phase. Cores that are activated with
StartCore but do not call StartOS may cause the system to hang. It is in the
responsibility of the integrator to avoid such behavior.

As shown in Figure 3, the StartUpHook is called on every core right after the first
synchronization. However, there is only one StartUpHook in the system. If, for
example, core-individual functionality must be executed during StartupHook the
GetCoreID function can be used to discriminate the individual cores. After the global
StartUpHook has finished each core performs the StartUpHooks of its OS-
Applications . Since OS-Applications are bound to cores the OS-Application specific
StartUpHooks are executed only on the core to which the corresponding OS-
Application is bound.

85 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

Figure 3: This figure shows an example of an initialization process with 4 cores.

7.9.4.1 Requirements

[OS574] ⌈The master core shall be able to activate cores. ⌋ (BSW4080006,
BSW4080026, BSW4080027)

[OS575] ⌈Any slave core shall be able to activate cores. ⌋ (BSW4080006, BSW4080026,
BSW4080027)

[OS576] ⌈It shall be allowed to use only a subset of the cores available on a µC for

the AUTOSAR system. ⌋ (BSW4080006, BSW4080026, BSW4080027)

[OS577] ⌈The cores shall boot in master-slave mode. If this is not supported by the
hardware, it shall be that the cores boot in parallel and emulate the behavior of a

master-slave system. ⌋ (BSW4080006, BSW4080026, BSW4080027)

[OS578] ⌈In case of an emulation a slave core (CoreS), which is controlled by the
AUTOSAR OS (AUTOSAR core), shall not enter the main function before another

core has activated the slave core by means of StartCore(CoreS). ⌋ (BSW4080006)

[OS579] ⌈All cores that belong to the AUTOSAR system shall be synchronized within
the StartOS function before the scheduling is started and after the global

StartupHook is called. ⌋ (BSW4080001, BSW4080006)

[OS580] ⌈All cores that belong to the AUTOSAR system shall be synchronized within

the StartOS before the global StartupHook is called. ⌋ (BSW4080006)

[OS581] ⌈The global StartupHook shall be called on all cores immediately after the

first synchronisation point. ⌋ (BSW4080006)

86 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

[OS582] ⌈The OS-Application-specific StartupHooks shall be called after the global

StartupHook but only on the cores to which the OS-Application is bound. ⌋
(BSW4080006, BSW4080008)

7.9.5 Cores under control of the AUTOSAR OS

The AUTOSAR OS controls several cores as stated above. It need not control all
cores of a µC, however. The maximum number of controlled cores shall be
configured within the “OsOS” section of the configuration.

The AUTOSAR OS API provides a StartCore function to start the cores under its
control. The StartCore function takes a scalar value parameter of type
CoreIDType, specifying the core that shall be started. StartCore can be called
more than once on the master core and also on slave cores. Each core can only be
started once, however. For example:

StartusType rv1, rv2;

StartCore(OS_CORE_ID_1, &rv1);
StartCore(OS_CORE_ID_2, &rv2);

if (rv1 != E_OK) || (rv2 != E_OK)
 EnterPanicMode();

StartOS(OSDEFAULTAPPMODE);

The StartOS function shall be called on all cores that have been activated by
StartCore. It is not allowed to call StartCore from a core that has already called
StartOS.

Cores that belong to the AUTOSAR system shall be started by the designated
AUTOSAR OS API service StartCore.

7.9.5.1 Requirements

[OS583] ⌈The number of cores that can be controlled by the AUTOSAR OS shall be
configured offline.
A new configuration item (OsNumberOfCores) within the “OsOS” container is used
to specify the maximum number of cores that are controlled by the AUTOSAR OS. If
no value for (OsNumberOfCores) has been specified the number of cores shall be

one. ⌋ (BSW4080001, BSW4080011)

87 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

7.9.6 Cores which are not controlled by the AUTOSAR OS

The function StartNonAutosarCore can be used both before and after StartOS.
It is provided to activate cores that are controlled by another OS or no OS at all,
AUTOSAR functions shall not be called on these cores, otherwise the behavior is
unspecified.

7.9.6.1 Requirements

[OS584] ⌈The AUTOSAR OS shall provide a function called
StartNonAutosarCore that can be used to start cores, which are not controlled by

the AUTOSAR OS. ⌋ (BSW4080006, BSW4080026, BSW4080027)

[OS585] ⌈It shall be possible to activate cores that are not controlled by the

AUTOSAR OS before and after calling StartOS. ⌋ (BSW4080006, BSW4080026,

BSW4080027)

7.9.7 Multi-Core shutdown concept

AUTOSAR supports two shutdown concepts, the synchronized shutdown and the
individual shutdown concept. While the synchronized shutdown is triggered by the
new API function ShutdownAllCores(), the individual shutdown is invoked by the
existing API function ShutdownOS().

7.9.7.1 Synchronized shutdown concept

If a TASK with the proper rights calls “ShutdownAllCores”, a signal is sent to all
other cores to induce the shutdown procedure. Once the shutdown procedure has
started on a core, interrupts and TASKs are not further processed, and no scheduling
will take place, therefore it makes no sense to activate any TASK, however no error
will be generated. It is in the responsibility of the application developer/system
integrator to make sure that any preparations for shutdown on application and basic
software level are completed before calling “ShutdownAllCores”. (e.g. by means of
the ECU state manager).

During the shutdown procedure every core executes its OS-Application specific
ShutdownHook functions, followed by a synchronization point. After all cores have
reached the synchronization point the global ShutdownHook function is executed by
all cores in parallel.

88 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

Figure 4: Example of a shutdown procedure.

[OS586] ⌈During the shutdown, the OS-Application specific ShutdownHook shall be

called on the core on which the corresponding OS-Application is bound. ⌋
(BSW4080007)

[OS587] ⌈Before calling the global ShutdownHook, all cores shall be synchronized.
⌋ (BSW4080007)

[OS588] ⌈The global ShutdownHook shall be called on all cores. ⌋ (BSW4080007)

7.9.7.2 Individual shutdown concept

If a TASK calls ShutdownOS the OS will be shut down on the core on which
ShutdownOS has been called. Every core shall be able to invoke ShutdownOS.
Similar to StartOS this function will shutdown the individual core. To shutdown the
whole ECU ShutdownOS has to be called on every core. The function will not return.
Individual shutdown is not supported in AUTOSAR R4.0 (AUTOSAR mode
management will not use it).

7.9.7.3 Shutdown in case of fatal internal errors
In multicore systems it can happen that a fatal internal OS error is detected only on
one core. In such cases a local shutdown of that core does not make sense.

[OS762] ⌈In cases where the OS detects a fatal internal error all cores shall be shut

down. ⌋ ()

89 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

7.9.8 OS service functionality (overview)

Within this chapter we describe which existing single core AUTOSAR OS
functionality has been extended. The following table gives an overview of all standard
OS API functions. The column “Multi-Core support” contains one of the following
values:

 Extended: The function that has been extended substantially to support
special Multi-Core functionality.

 Adapted: the function required some minor changes but basically remains
unchanged.

 Unchanged: the behavior of the function has not changed.
 New: the function is a new AUTOSAR OS API-function.

90 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Service Multi-Core support Annotation
ActivateTask Extended Cross core use shall be supported.
TerminateTask Adapted Check for unreleased spinlocks
ChainTask Extended Cross core use shall be supported.
Schedule Adapted Check for unreleased spinlocks
GetTaskID Unchanged Works only on the same core
GetTaskState Extended Cross core use shall be supported
DisableAllInterrupts Unchanged Works only on the same core

Works only on the same core EnableAllInterrupts Unchanged
Works only on the same core SuspendAllInterrupts Unchanged
Works only on the same core ResumeAllInterrupts Unchanged
Works only on the same core SuspendOSInterrupts Unchanged
Works only on the same core Unchanged ResumeOSInterrupts

GetResource Adapted Nestable with spinlocks
ReleaseResource Adapted Nestable with spinlocks
SetEvent Extended Cross core use shall be supported.
ClearEvent Unchanged
GetEvent Unchanged
WaitEvent Adapted Check for unreleased spinlocks

Cross core use shall be supported GetAlarmBase Extended
Cross core use shall be supported GetAlarm Extended

Extended SetRelAlarm Cross core use shall be supported
Extended SetAbsAlarm Cross core use shall be supported
Extended CancelAlarm Cross core use shall be supported

GetActiveApplicationMode Unchanged
StartOS Extended Support for MC systems
ShutdownOS Extended Support for MC systems
GetISRID Unchanged
GetApplicationID Unchanged
CallTrustedFunction Adapted Function must be bound to the same

core
CheckISRMemoryAccess Unchanged
CheckTASKMemoryAccess Unchanged
CheckObjectAccess Unchanged
CheckObjectOwnership Unchanged
StartScheduleTableRel Extended Cross core use shall be supported.
StartScheduleTableAbs Extended Cross core use shall be supported.
StopScheduleTable Extended Cross core use shall be supported.
NextScheduleTable Unchanged
StartScheduleTableSynchron Unchanged
SyncScheduleTable Unchanged
GetScheduleTableStatus Extended Cross core use shall be supported.

Specification of Operating System
 V5.0.0

R4.0 Rev 3

SetScheduleTableAsync Unchanged
IncrementCounter Adapted Cross core is not allowed.
GetCounterValue Extended Cross core use shall be supported
GetElapsedCounterValue Extended Cross core use shall be supported.
TerminateApplication Extended Check for unreleased spinlocks. Cross

core use shall be supported.
GetNumberOfActivatedCores New Number of cores activated during

startup.
GetCoreID New ID of the current core
StartCore New Start additional core
StartNonAutosarCore New Start additional core
GetSpinlock New Occupy a spinlock
ReleaseSpinlock New Release a spinlock
TryToGetSpinlock New Try to occupy a spinlock
ShutdownAllCores New Synchronized shutdown.

Tab. 2: gives an overview of changes to the OS Service Calles

E
rr

o
r

H
o

o
k

P
re

T
as

k
H

o
o

k

P
o

st
T

as
k

H
o

o
k

S
ta

rt
u

p
 H

o
o

k

91 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Service
 T

as
k

C
at

1
IS

R

C
at

2
IS

R

S
h

u
td

o
w

n
 H

o
o

k

A
la

rm
 C

al
lb

ac
k

P
ro

te
ct

io
n

 H
o

o
k

GetNumberOfActivatedCores
GetCoreID
StartCore
StartNonAutosarCore
GetSpinlock
ReleaseSpinlock
TryToGetSpinlock
ShutdownAllCores

Tab. 3: Allowed Calling Context for OS Service Calls

[OS589] ⌈All functions that are not allowed to operate cross core shall return
E_OS_CORE in extended status if called with parameters that require a cross core

operation. ⌋ (BSW4080013)

7.9.9 GetTaskID

GetTaskID can be called both from TASK and ISR2 level. When called from an
interrupt routine, on Single-Core systems, GetTaskID returns either the interrupted
TASK or indicates that no TASK is running. On Multi-Core systems it

1. indicates that no TASK is running on the core or,
2. returns the ID of the interrupted TASK on the core.

Specification of Operating System
 V5.0.0

R4.0 Rev 3

7.9.10 Interrupt disabling

Note: All types of interrupts can only be disabled on the local core. This implies that
the interrupt flags on other cores remain in their current state. Scheduling continues
on the other cores. Running ISRs on other cores continue executing.

7.9.10.1 Requirements

[OS590] ⌈The OS service “DisableAllInterrupts” shall only affect the core on

which it is called. ⌋ (BSW4080013)

[OS591] ⌈The OS service “EnableAllInterrupts” shall only affect the core on

which it is called. ⌋ (BSW4080013)

[OS592] ⌈The OS service “SuspendAllInterrupts” shall only affect the core on

which it is called. ⌋ (BSW4080013)

[OS593] ⌈The OS service “ResumeAllInterrupts” shall only affect the core on

which it is called. ⌋ (BSW4080013)

[OS594] ⌈The OS service “SuspendOSInterrupts” shall only affect the core on

which it is called. ⌋ (BSW4080013)

[OS595] ⌈The OS service “ResumeOSInterrupts” shall only affect the core on

which it is called. ⌋ (BSW4080013)

7.9.11 TASK activation

TASK activation shall be extended to work across cores. This document will not
specify any implementation details. This functions timing behavior can be slower
when working across cores. If a TASK has to be activated on another core, a
scheduling decision is necessary on that core. If the core has not been started an
error is generated.

7.9.11.1 Requirements

[OS596] ⌈It shall be possible to activate a TASK that is part of an OS-Application

located on another core, as long as the assigned access rights allow it. ⌋
(BSW4080001, BSW4080015)

[OS598] ⌈The call of ActivateTask across cores shall behave synchronously, i.e.
a call returns after the task has been activated or an error has been detected. It shall
92 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

not be possible to continue execution on the calling core before ActivateTask is

accomplished on the remote core. ⌋ (BSW4080015)

[OS599] ⌈In case of an error when calling ActivateTask across cores, the error

handler shall be called on the core on which ActivateTask was originally called. ⌋
(BSW4080015)

7.9.12 TASK Chaining

TASK chaining shall be extended to work across cores. This document will not
specify any implementation details. This function’s timing behavior can be slower
when working across cores. If a TASK has to be activated on another core, a
scheduling decision is necessary on that core. If the core has not been activated, an
error is generated.

7.9.12.1 Requirements

[OS600] ⌈It shall be possible to chain a TASK that is part of an OS-Application

located on another core, as long as the assigned access rights allow it. ⌋
(BSW4080001, BSW4080015)

7.9.13 EVENT setting

SetEvent shall be extended to work across cores. This document will not specify
any implementation details. This function’s timing behavior can be slower when
working across cores. If the core has not been activated, an error is generated.

7.9.13.1 Requirements

[OS602] ⌈It shall be possible to set an EVENT that is part of an OS-Application

located on another core, as long as the assigned access rights allow it. ⌋
(BSW4080016)

[OS604] ⌈The call of SetEvent across cores shall behave synchronously, i.e. a call
returns after the Event has been set or an error has been detected. It shall not be
possible to continue execution on the calling core before SetEvent is accomplished

on the remote core. ⌋ (BSW4080016)

[OS605] ⌈In case of an error when calling SetEvent across cores, the error handler

shall be called on the core on which SetEvent was originally called. ⌋ (BSW4080016)

93 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

7.9.14 Activating additional cores

The mechanism by which additional cores can be activated as described in section
7.9.5

7.9.15 Start of the OS

It is necessary to extend the functionality of StartOS. This is because StartOS is
called once on each core. The user provides the so called application mode5 to the
Operating System through the call parameter of StartOS(AppMode).The
application mode defines which of the configured (startup) objects (Tasks, Alarms,
ScheduleTables) the OS automatically starts.

On a Multi-Core system all cores shall run in the same application mode. If StartOS
is called with the Appmode DONOTCARE, the AppMode of the other cores is used. At
least one core has to define an AppMode other than DONOTCARE.

If the application mode is the same on all cores, StartOS will proceed its
task. More details can be found in chapter 7.9.4.

7.9.15.1 Requirements

[OS606] ⌈The AUTOSAR specification does not support the activation of AUTOSAR
cores after calling StartOS on that core. If StartCore is called after StartOS it

shall return with E_OS_ACCESS in extended status. ⌋ (BSW4080001)

[OS607] ⌈StartOS shall start the OS on the core on which it is called. ⌋
(BSW4080006, BSW4080013)

[OS608] ⌈If more than one core calls StartOS with an AppMode other than
“DONOTCARE”, the AppModes shall be the same. StartOS shall check this at the first
synchronisation point. In case of violation, StartOS shall not start the scheduling,

shall not call any StartupHooks, and shall enter an endless loop on every core. ⌋
(BSW4080006)

[OS609] ⌈If StartOS is called with the AppMode “DONOTCARE” the application mode

of the other core(s) (differing from “DONOTCARE”) shall be used. ⌋ (BSW4080006)

[OS610] ⌈At least one core shall define an AppMode other than “DONOTCARE”. ⌋
(BSW4080006)

94 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

5 This is the application mode of the Operating System and shall not be confused by other application modes defined in the
AUTOSAR mode management.

Specification of Operating System
 V5.0.0

R4.0 Rev 3

[OS611] ⌈If the IOC is configured, StartOS shall initialize the data structures of the

IOC. ⌋ (BSW4080020)

7.9.16 TASK termination

The termination of TASKs requires an additional check: It is not allowed to terminate
a TASK while a spinlock is occupied. If TerminateTask / ChainTask is called with
an occupied spinlock an error is returned.

7.9.16.1 Requirements

If TerminateTask (or ChainTask) is called while the calling TASK holds a
spinlock, the behavior is undefined in standard status.

[OS612] ⌈In extended status TerminateTask / ChainTask shall return with an

error (E_OS_SPINLOCK), which can be evaluated in the application. ⌋ (BSW4080021)

[OS613] ⌈Spinlocks occupied by TASKS that are terminated in response to a
protection hook shall be automatically released. This applies also to the case in

which an OS-Application is terminated. ⌋ (BSW4080021)

7.9.17 Termination of OS-Applications

Similar to TASKs an OS-Application cannot be terminated while any of its TASKs
occupy a spinlock. In such cases, the lock is automatically released. To avoid an
avalanche of error handling, no calls to the ErrorHook are made.

It might be possible that TerminateApplication(A) is called in parallel from
different cores. The implementation has to support such a call pattern by executing
the first arriving call of TerminateApplication(A)and ignoring any subsequent
calls until the termination is completed.

7.9.17.1 Requirements

[OS614] ⌈TerminateApplication shall check if any of the TASKs in theOS-

Application have occupied a spinlock. If so, the spinlocks shall be released. ⌋
(BSW4080021)

[OS615] ⌈If TerminateApplication(A) is called in parallel from different cores,
the OsApplication “A” is terminated by the first call, any subsequent calls will return
with 'E_OK' in standard and extended status without doing anything, until the

termination is completed. ⌋ (BSW4080021)

95 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

7.9.18 Shutdown of the OS

Every core shall be able to invoke shutdown by using the ShutdownOS function. By
calling ShutdownOS only the calling core will enter the shutdown procedure.
If the user wants to shutdown all cores (more or less in parallel)
ShutdownAllCores shall be used.

ShutdownOS and ShutdownAllCores will not return.

The OS service ShutdownOS is not used by the AUTOSAR mode management in
AUTOSAR R4.0. The function is offered for users that run the OS on cores without
RTE and without mode management.

7.9.18.1 Requirements

[OS616] ⌈ShutdownOS shall be callable from each core running an AUTOSAR OS.
⌋ (BSW4080001, BSW4080007)

[OS617] ⌈ShutdownOS shall shutdown the core on which it was called. ⌋
(BSW4080007)

[OS618] ⌈The OS shall not start TASKs of an OS-Application once the shutdown

procedure has been entered on a particular core. ⌋ (BSW4080013)

[OS619] ⌈The AUTOSAR OS function ShutdownOS shall be callable in parallel on

multiple cores. ⌋ (BSW4080013)

[OS620] ⌈ShutdownOS shall release all spinlocks which are occupied by the

calling core. ⌋ (BSW4080021)

[OS621] ⌈ShutdownAllCores shall be callable from each core running an

AUTOSAR OS. ⌋ (BSW4080007)

7.9.19 Waiting for EVENTs

The EVENT waiting mechanism must be adapted to the new Multi-Core spinlock
functionality:

A TASK might be de-scheduled when calling WaitEvent, in which case it would not
be able to release the spinlock. WaitEvent must therefore check if the calling TASK
holds a spinlock. As with RESOURCES, spinlocks cannot be occupied by TASKs in
wait state.

96 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

7.9.19.1 Requirements

[OS622] ⌈The AUTOSAR Operating System WaitEvent API service shall check if it
has been called while the calling TASK has occupied a spinlock. In extended status
an error E_OS_SPINLOCK shall be returned and the TASK shall not enter the wait

state. ⌋ (BSW4080021)

7.9.20 Calling trusted functions

Functions can be declared as trusted as part of an OS-Application. They can then
only be executed through the CallTrustedFunction API function. Assuming that
the access rights are configured accordingly, a TASK from OS-Application A can call
a trusted function from OS-Application B.

On a Multi-Core system, these trusted function calls from one OS-Application to
another are limited to the same core.

7.9.20.1 Requirements

[OS623] ⌈The OS API function CallTrustedFunction shall return E_OS_ACCESS
in extended status if the target trusted function is part of an OS-Application on

another core. ⌋ (BSW4080013)

7.9.21 Invoking reschedule

The Schedule API service must be adapted to the new Multi-Core spinlock
functionality in the same manner as WaitEvent.

A TASK shall not actively force a de-scheduling while it occupies spinlocks.

7.9.21.1 Requirements

[OS624] ⌈The AUTOSAR Operating System Schedule API service shall check if it
has been called while the calling TASK has occupied a spinlock. In extended status

an error E_OS_SPINLOCK shall be returned and the scheduler shall not be called. ⌋
(BSW4080021)

7.9.22 RESOURCE occupation

The GetResource function allows mutual exclusion between TASKs on the same
core. The OS generator shall check offline that the TASKs are not on different
cores.(see 7.9.30) and the GetResource function will check this requirement online.

97 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

The priority ceiling protocol (used by GetResource) temporarily changes the priority
of a TASK. Such an approach fails on Multi-Core systems as the priorities are local to
each core. Therefore the ceiling protocol is not sufficient to protect a critical section
against access from different cores.

7.9.23 The CoreID

Every HW assigns a unique physical Id to a core. The physical core Id is the only
way to distinguish between cores. The physical core Ids of a µC are not necessarily
consecutive and do not necessarily start with zero.

The SW requires a mechanism to identify a core, e.g. to use core specific variables.
Because the physical core Id usually can not be used as a direct array index for core
specific variables, a logical CoreID is necessary to map physical core Ids to array
indexes. In the SW it is not necessary to know the physical core Id, the logical
CoreID is sufficient.

The mapping of OSApplications and other SW objects to cores is specified in the
configuration files. All such mappings shall be HW independent and therefore shall
not be based on the physical core Id but on the logical CoreID.

The function GetCoreID internally maps the physical core Id to the logical CoreID.
The mapping is implementation specific. GetCoreID can be either a C function or a
macro.

7.9.23.1 Requirements

[OS625] ⌈The AUTOSAR Operating System API function GetCoreID shall be

callable before StartOS. ⌋ (BSW4080006)

[OS626] ⌈An implementation shall offer a function GetNumberOfActivatedCores

that returns the number of cores running the AUTOSAR OS. ⌋ (BSW4080001)

[OS627] ⌈An implementation shall define a set of constants OS_CORE_ID_<No> of

the type CoreIDType with <No> a value from 0 to “OsNumberOfCores -1. ⌋
(BSW4080001)

[OS628] ⌈An implementation shall offer a constant OS_CORE_ID_MASTER of the

type CoreIDType that refers to the master core. ⌋ (BSW4080001)

98 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

7.9.24 COUNTERs, background & rationale

A COUNTER is represented by a COUNTER value, measured in “ticks”, and some
COUNTER-specific constants.

Similarly to Single-Core situation, each operating system (on each core) offers at
least one COUNTER that is derived from a timer. Therefore, it is possible to define
several COUNTERs which belong to different OS-Applications and either resides on
the same or different cores.

Figure 5: Examples of allowed configurations for COUNTERs, ALARMs, Schedule-tables and

ISRs.

7.9.25 Multi-Core restrictions on COUNTERs

The AUTOSAR OS can only increment COUNTERSs on the core on which it resides.
A COUNTER which is assigned to an OS-Application X cannot be incremented by an
OS-Application Y if X and Y are assigned to different cores.

7.9.25.1 Requirements

[OS629] ⌈A COUNTER belonging to an OS-Application shall be incremented by the
core on which the OS-Application resides. The COUNTER shall not be incremented

by other cores. ⌋ (BSW4080013)

[OS630] ⌈It shall not be allowed to drive a schedule table from a COUNTER, which is

assigned to a different core. ⌋ (BSW4080013)

99 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

[OS631] ⌈It shall not be allowed to drive an ALARM from a COUNTER, which is

assigned to a different core. ⌋ (BSW4080013)

There are two different reasons for these restrictions:

1. Race conditions can occur when cross-core modification of COUNTER is
allowed (one core waits for a COUNTER to be modified by another core).

2. The core which is incrementing the COUNTER has to check if ALARMs which
are based on the COUNTER have expired. Handling of expired ALARMs is
more complex when different cores manipulate the same ALARMs, because
mutual exclusion becomes necessary.

Figure 6: Example of disallowed configurations for COUNTERs, ALARMs, Schedule-tables and

Call-backs.

7.9.26 Synchronization of COUNTERs

COUNTERs are used to drive ALARMs and schedule tables. To synchronize
ALARMs and schedule tables that reside on different cores, the corresponding
COUNTERs have to be synchronized.

For example, if the hardware supports this, it is possible that corresponding
free running hardware counters on different cores use the same timer (same
counter value maintained by the periperial) and therefor provide the same
timebase on different cores. Software COUNTERs can then get advanced by alarms
attached to these core local corresponding hardware counters, e.g to drive
synchronized schedule tables on different cores.

The quality of the synchronicity depends on the hardware architecture and on the
system configuration. .

100 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

7.9.27 ALARMs

The ALARM mechanism of the AUTOSAR Operating System provides services to
activate TASKs, set EVENTs, increment COUNTERs, or call an ALARM-call-back.

As stated above, ALARMS can only be bound to a COUNTER which resides on the
same core. TASKs can be activated and EVENTs can be set with an ALARM action
regardless of the core to which the TASK is bound. The access rights defined by OS-
Applications have to be respected, however. Additionaly it shall be allowed to
manipulate ALARMS when they are bound to other cores. The API-services
SetRelAlarm, SetAbsAlarm, and CancelAlarm can be used to manipulate
parameters of ALARMs on other cores.

7.9.27.1 Requirements

[OS632] ⌈If an ALARM expires, it shall be allowed to activate a TASK on a different

core. ⌋ (BSW4080018)

[OS633] ⌈If an ALARM expires, it shall be allowed to set an EVENT on a different

core. ⌋ (BSW4080018)

[OS634] ⌈The AUTOSAR Operating System shall process an ALARM on the core on

which its corresponding OS-Application resides. ⌋ (BSW4080018)

[OS635] ⌈ALARM callbacks shall be executed on the core to which the ALARM is
bound. This is only applicable to SC1 systems, because otherwise Alarm Callback

are not allowed (OS242). ⌋ (BSW4080013)

[OS636] ⌈SetRelAlarm shall also work on an ALARM that is bound to another

core. ⌋ (BSW4080013)

[OS637] ⌈SetAbsAlarm shall also work on an ALARM that is bound to another

core. ⌋ (BSW4080013)

[OS638] ⌈CancelAlarm shall also work on an ALARM that is bound to another

core. ⌋ (BSW4080013)

[OS639] ⌈GetAlarmBase shall also work on an ALARM that is bound to another

core. ⌋ (BSW4080013)

[OS640] ⌈GetAlarm shall also work on an ALARM that is bound to another core. ⌋
(BSW4080013)

101 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

7.9.28 Schedule tables

Similarly to ALARMs, schedule tables can be used to activate TASKs and set
EVENTs. As with ALARMs, a schedule table can only be bound to a COUNTER
which resides on the same core.

To simplify system startup, it should be possible to start schedule tables on other
cores. The system designer is responsible for the correct handling of schedule
tables. For example, schedule tables can be controlled from one core.

7.9.28.1 Requirements

[OS641] ⌈A schedule table shall be able to activate a TASK bound on a core other

than the one upon which the schedule tables resides. ⌋ (BSW4080018)

[OS642] ⌈A schedule table shall be able to set an EVENT on a core other than the

one upon which the schedule tables resides⌋ (BSW4080018)

[OS643] ⌈The AUTOSAR Operating System shall process a schedule table on the

core on which its corresponding OS-Application resides. ⌋ (BSW4080013)

[OS644] ⌈The API call “StartScheduleTableAbs” shall be able to start schedule

tables of OS-Applications residing on other cores. ⌋ (BSW4080018)

[OS645] ⌈The API call “StartScheduleTableRel” shall be able to start schedule

tables of OS-Applications residing on other cores. ⌋ (BSW4080013)

[OS646] ⌈The API call “StopScheduleTable” shall be able to stop schedule tables

of OS-Applications residing on other cores. ⌋ (BSW4080013)

[OS647] ⌈The API service “GetScheduleTableStatus” shall be able to get the
status of a schedule table that is part of an OS-Application residing on a different

core. ⌋ (BSW4080013)

7.9.29 The spinlock mechanism

With the Multi-Core concept, a new mechanism is needed to support mutual
exclusion for TASKS on different cores. This new mechanism shall not be used
between TASKs on the same core because it makes no sense. In such cases the
AUTOSAR Operating System returns an error.

A “SpinlockType”, which is similar to OSEK’s “ResourceType”, shall be used.
Spinlocks are configured offline.

102 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

A spinlock is a busy waiting mechanism that polls a (lock) variable until it becomes
available. Typically, this requires an atomic “test and set” functionality, the details of
which are implementation specific.

Once a lock variable is occupied by a TASK/ISR2, other TASKs/ISR2s on other
cores shall be unable to occupy the lock variable. The spinlock mechanism will not
de-schedule these other TASKs while they poll the lock variable. However it might
happen that a TASK/ISR with a higher priority becomes ready while the lock variable
is being polled. In such cases the spinning TASK will be interfered. This is illustrated
in Figure 7.

Figure 7: A deadlock situation caused by interference, the high priority TASK spins indefinitely

because the low priority TASK has occupied the spinlock. In such cases the second
GetSpinlock call will return with an error

A user can protect a TASK against such a situation by, for example, wrapping the
spinlock with SuspendAllInterrupts, so that it cannot be interfered by other
TASKS. A second deadlock situation can be created by nested spinlocks calls, as
illustrated in Figure 8.

Figure 8: This figure shows a typical deadlock caused by two spinlocks taken in different order

by TASKS on two different cores.

To avoid deadlocks it is not allowed to nest different spinlocks. Optionally if spinlocks
shall be nested, a unique order has to be defined. Spinlocks can only be taken in this
order whereas it is allowed to skip individual spinlocks. Cycles are not allowed within
the defined order. This is illustrated in Figure 9.

103 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

Figure 9: This figure shows an example in which two TASKS have access to a set of spinlocks
S1 -- S6. It is allowed to occupy the spinlocks in the predefined order and it is allowed to skip
spinlocks. If multiple spinlocks are occupied at the same time, locking and unlocking has to

occur in strict LIFO order.

The spinlock mechanism is not deadlock free by itself. The order in which spinlocks
from Tasks/ISRs are requested has to be mentioned in the configuration description.
If a task occupies a spinlock, scheduling shall be restricted.

7.9.29.1 Requirements

[OS648] ⌈The AUTOSAR Operating System shall provide a spinlock mechanism that

works across cores. ⌋ (BSW4080018, BSW4080021)

[OS649] ⌈The AUTOSAR Operating System shall provide a GetSpinlock function
which occupies a spinlock. If the spinlock is already occupied, GetSpinlock shall

keep on trying to occupy the spinlock until it succeeds. ⌋ (BSW4080018, BSW4080021)

[OS650] ⌈GetSpinlock shall be callable from TASK level. ⌋ (BSW4080018,

BSW4080021)

[OS651] ⌈GetSpinlock shall be callable from ISR2 level. ⌋ (BSW4080021)

The behavior of GetSpinlock is undefined if called from a category 1 ISR

[OS652] ⌈The AUTOSAR Operating System shall provide a TryToGetSpinlock
function which occupies a spinlock. If the spinlock is already occupied by a TASK,

TryToGetSpinlock shall return. ⌋ (BSW4080018, BSW4080021)

[OS653] ⌈TryToGetSpinlock shall be callable from TASK level. ⌋ (BSW4080018,

BSW4080021)

[OS654] ⌈ TryToGetSpinlock shall be callable from ISR2 level. ⌋ (BSW4080018,

BSW4080021)

104 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

[OS655] ⌈The AUTOSAR Operating System shall provide a ReleaseSpinlock
function which releases an occupied spinlock. If the spinlock is not occupied an error

shall be returned. ⌋ (BSW4080018, BSW4080021)

[OS656] ⌈ReleaseSpinlock shall be callable from TASK level. ⌋ (BSW4080018,

BSW4080021)

[OS657] ⌈ReleaseSpinlock shall be callable from ISR2 level. ⌋ (BSW4080018,

BSW4080021)

[OS658] ⌈The AUTOSAR Operating System shall generate an error if a TASK tries
to occupy a spinlock that is assigned to a TASK/ISR2 on the same core (including

itself). ⌋ (BSW4080018, BSW4080021)

[OS659] ⌈The AUTOSAR Operating System shall generate an error if an ISR2 tries

to occupy a spinlock that is assigned to a TASK/ISR2 on the same core. ⌋
(BSW4080018, BSW4080021)

[OS660] ⌈A unique order in which multiple spinlocks can be occupied by a
TASK/ISR2 should be configurable in the AUTOSAR Operating System. This might
be realized by the configuration item (OsSpinlockSuccessor{NEXT_SPINLOCK})

where “NEXT_SPINLOCK” refers to the consecutive spinlock. (See chapter 10.2.5) ⌋
(BSW4080018, BSW4080021)

[OS661] ⌈The AUTOSAR Operating System shall generate an error if a TASK/ISR2
that currently holds a spinlock tries to seize another spinlock that has not been
configured as a direct or indirect successor of the latest acquired spinlock (by means
of the OsSpinlockSuccessor configuration parameter) or if no successor is

configured. ⌋ (BSW4080018, BSW4080021)

7.9.30 Offline checks

AUTOSAR RESOURCES cannot be shared between TASKs/ISRs on different cores.
The OS generator has to check if a user tries to assign a RESOURCE to TASKs on
different cores and stop the generation process with an error.

COUNTERS cannot be accessed from OS-Applications on different cores. The OS
generator has to reject configurations that violate this rule.

The linked list of spinlocks must be free of cycles to allow correct nesting of spinlocks
in order to prevent deadlocks.

105 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

The OS generator tool must check that an OSApplication does not get assigned to a
non existing core. Additional checks at configuration time, e.g. by an AUTOSAR
description editor are recommended.

7.9.30.1 Requirements

[OS662] The OS generator tool shall return with an error if it detects a
RESOURCE referred to by any TASKs or ISRs assigned to different cores.

⌋ (BSW4080021)

[OS663] ⌈The OS generator tool shall return with an error if an ALARM is assigned

to a COUNTER on a different core. ⌋ (BSW4080013)

[OS664] ⌈The OS generator tool shall return with an error if a COUNTER on a

different core shall be incremented as an ALARM action. ⌋ (BSW4080013)

[OS665] ⌈The OS generator tool shall return with an error if a schedule table is

assigned to a COUNTER on a different core. ⌋ (BSW4080013)

[OS666] ⌈The OS generator tool shall return with an error if the linked list of

spinlocks is not free of cycles. ⌋ (BSW4080021)

[OS667] ⌈The OS generator tool shall check the assignement of OsApplications
(including the tasks assigned to the OsApplication) to cores and return an error in

case any of these cores does not exist. ⌋ (BSW4080005)

7.9.31 Auto start Objects

Before scheduling starts the AUTOSAR Operating System6 activates all auto-start
objects that are configured. This mechanism shall work similar on a Multi-Core
system. Before scheduling starts, the Multi-Core OS shall activate all configured
auto-start objects on the respective core. Due to the fact that OS-Applications are
defined as the locatable entity no further configuration container is required. Auto-
start objects are already configured as part of an OS-Application.

7.9.31.1 Requirements

[OS668] ⌈The AUTOSAR Operating System shall automatically activate all auto-start
TASKs configured for the current AppMode, with respect to the core, before the initial

start of the scheduling. ⌋ (BSW4080006)

106 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

6 StartOS

Specification of Operating System
 V5.0.0

R4.0 Rev 3

[OS669] ⌈The AUTOSAR Operating System shall automatically activate all auto-start
ALARMs configured for the current AppMode, with respect to the core, before the

initial start of the scheduling. ⌋ (BSW4080006)

[OS670] ⌈The AUTOSAR Operating System shall automatically activate all auto-start
schedule tables configured for the current AppMode, with respect to the core, before

the initial start of the scheduling. ⌋ (BSW4080006)

7.10 Inter-OS-Application Communicator (IOC)

7.10.1 Background & Rationale

IOC stands for Inter OS-Application Communicator.

The "IOC" is responsible for the communication between OS-Applications and in
particular for the communication crossing core or memory protection boundaries. Its
internal functionality is closely connected to the Operating System.

[OS671] ⌈The IOC implementation shall be part of the Operating System

The IOC is a third type of communication, in addition to

 Intra OS-Application communication: Always handled within the RTE
 Inter ECU communication: Already available via well defined interfaces to the

communication stack (COM) ⌋ (BSW4080020)

Memory protection boundaries are a characteristic of OS-Applications and special
communication mechanisms are needed to cross them. Multi-Core systems may also
need additional measures to make communication between cores safe.

All AUTOSAR software, both BSW and software components, must belong to an OS-
Application (s. 7.9.3), but not necessarily to the same one. It is expected that the
BSW will be trusted code, but it shall be defined as one or more OS-Applications.

The IOC provides communication services between OS-Applications and in particular
over core boundaries in Multi-Core systems. Because the cross-core communication
is always an inter-OS-Application communication, the two mechanisms are
combined. An inter OS-Application communication may not necessarily require a
cross core communication, however.

Communication between OS-Applications is expected to be more frequent than inter
ECU communication. This would be the case when existing; closely related Software
107 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

Components and their runnable entities are distributed to two or more cores to
increase system performance. Meeting timing constraints is expected to become
more difficult, when runnables which have been designed to run on a single core are
distributed over several cores.

In systems with only one core, the IOC can be omitted completely, if just one OS-
Application is available, or if no OS-Application uses memory protection
mechanisms.

7.10.2 IOC - General purpose

The IOC provides communication services which can be accessed by clients which
need to communicate across OS-Application boundaries on the same ECU.
The RTE uses IOC services to communicate across such boundaries. All
communication must be routed through the RTE on sender (or client) and on receiver
(or server) side.

Direct access to IOC services by clients other than the RTE is currently not
supported, but possible, if the client (e.g. a CDD) provides a hand written or
generated IOC Configuration Description as specified and specific callback functions
if necessary. Only sender/receiver communication is supported however by the IOC.

Software Components and/or BSW modules located in the same OS-Application
(and hence on the same core) should not communicate by invoking IOC services.
This would be less efficient than communication via RTE only. However, in case of
IOC supported N:1 communication, if not all of the senders and the receiver are in
the same OS-Application the IOC must be used.

To keep the RTE as hardware independent as possible, all inter OS-Application and
inter core communication mechanisms and implementation variants are
encapsulated in the IOC. The IOC internal functionality is dependent on hardware
architecture properties, in particular on the memory architecture.

The IOC has to guarantee data consistency in inter OS-Application and inter core
(Multi-Core systems) communication, this means in particular:

- In queued communication the sequential order of communication
operations shall remain unchanged. In the N:1 communication case, the
order of the messages from the different sources is a property of the
implementation.

- The content of all data sent in one communication operation shall remain
unchanged, i.e. each communication operation shall be treated as atomic
operation.

108 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

7.10.3 IOC functionality

7.10.3.1 Communication

The IOC provides sender-receiver (signal passing) communication only. The RTE (or
adapted BSW modules in a future release of this specification) translates Client-
Server invocations and response transmissions into Sender-Receiver
communication.

Only 1:1 and N:1 communication are supported by the IOC. In the case of 1:N
communication, the RTE generates multiple calls to IOC services.

The IOC allows the transfer of one data item per atomic communication operation. A
data item can either be a value for atomic basic data types or a reference for
complex data structures. The data structure must be implemented as a single
memory block, however. This way the data item can be transmitted in one piece. The
IOC does not need to know the internal data structure. The basic memory address
and length (which can be calculated from the type of the data item) is sufficient. The
IOC does, e.g., not support a conversion of endianness between cores.

Transferring more than one data item in one operation is also supported for 1:1
communication only. In this case several types and memory addresses have to be
used by the IOC function. The advantage compared to sequential IOC calls is that
mechanisms to open memory protection boundaries and to notify the receiver have
to be executed just once. Additionally, all data items are guaranteed to be consistent,
because they are transferred in one atomic operation.

The IOC provides both, unqueued (Last-is-Best, data semantics) or queued (First-In-
First-Out, event semantics) communication operations. If present, the IOC internal
queue has a configurable length.

Each atomic communication operation gets specified individually by its own
description block in a Configuration Description with regard to sender, receiver, data
type(s), notification, and queuing.

7.10.3.2 Notification

The IOC optionally notifies the receiver as soon as the transferred data is available
for access on the receiver side, by calling a configured callback function which gets
provided by the user of the communication.

A possible implementation is to trigger an interrupt (Cat. 2) mechanism to invoke the
callback function from the ISR on receiver side, or to use a microcontroller supplied
trap. The callback function shall be efficient and compact, because it is called from
within the ISR.

109 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

In certain cases, it might not be necessary to trigger an ISR to notify the receiver.
The IOC generator can then select the appropriate IOC internal notification method
based on the hardware architecture and other constraints. This might be more
efficient than an ISR for communication between OsApplications on the same core.

The notification might be handled completely by the client of the IOC, e.g. when the
RTE calls the IOC send function, and then notifies the receiver side RTE that new
data are available from the IOC. In this case, the IOC is not affected at all by the
details of the notification mechanism.

In case such alternative solutions prove to be more efficient, the IOC internal
notification might get removed in future AUTOSAR releases.

7.10.4 IOC interface

The interface between RTE and IOC shall be similar to the interface between
Software Components and the RTE, i.e. by generating specific interfaces for each
communication operation instead of providing a generic API.

This supports optimization methods (like function inlining or replacing function calls
by macros) much better than standardized interfaces. Most of the optimization can be
performed offline at code generation time instead of consuming valuable real-time
resources.

There is a unique set of IOC service APIs (at least to send and receive data) for each
data communication specified in the IOC Configuration Description. Each service API
gets generated and can be identified by a unique Id for each data communication. In
case of N:1 communication, each sender must use its own API.

The same IOC service API and hence the same 1:1 communication can get used by
more than one runnable inside the same SWC both on sender and on receiver side.
However, the IOC functions are not reentrant, because otherwise e.g. spinlock errors
could occur in case the IOC uses spinlocks in Multi-Core systems. The same IOC
API must therefore only be called sequentially. This is no problem, if all runnable
entities are scheduled within the same TASK, otherwise the caller is responsible to
guarantee that the same IOC API is not called again before it returns from a different
invocation.

Software Components may access the IOC only via RTE. Only the RTE decides
which communication services to use to support the communication needs of
Software Components.

Direct access to IOC services by BSW modules is not supported, but allowed for
CDDs and other modules, if unavoidable. The clients have to provides a hand written
or generated IOC Configuration Description as specified. In case of notification of the
receiver, a specific callback function has to be specified and provided by the client.
Only sender/receiver communication is supported however by the IOC.

110 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

7.10.5 IOC internal structure

This section gives some hints on possible IOC implementation options.

The IOC may enter the privileged mode to cross the protection boundaries between
OS-Applications. The IOC therefore has to be part of the OS. Note that functionality
that is placed in the kernel context might be non-interruptible by TASKs or ISR2. The
functionality can be interrupted by Cat1 ISRs, however.

The IOC send service writes data into a buffer located in a memory area which is
shared with the receiving communication partners (This is one possible
implementation example using shared memory). Depending on the hardware
architecture and other constraints, different implementation options might be
available within the IOC. These options shall be transparent to the client (RTE),
however.

The IOC ensures data consistency, i.e. there is a protection against concurrent
access to the same data from all senders and the receiver for protection against
inconsistent behavior and data corruption. The implementation can be hardware
dependent.

In systems with shared memory, there can be a specific communication buffer for
each data item in a memory section which is shared between the sending and
receiving OS-Applications.

If an IOC communication with event semantics (queued) is configured the length of
the queue shall be defined.

7.10.6 IOC configuration and generation

Data element specific interfaces between RTE and IOC require extensive code
generation. Instead of generating the IOC together with the RTE, a sequential code
generation process is used, to separate generic RTE code generation and hardware
dependent IOC code generation as much as possible. The following steps shall be
performed:

- Step 1: Specify all information about the allocation of Software
Components to OS-Applications and cores in the ECU Configuration
Description file.

- Step 2: Generate the RTE. The RTE generator creates data element
specific IOC services calls and the corresponding IOC Configuration
Description blocks (XML format) to specify the communication relations for
each data element.

- Step 3: Generate the IOC code, according to the IOC Configuration
Description (Step 2) while considering the hardware description files.
Additionally, generate a header file (Ioc.h) for inclusion in RTE.c to provide
definitions, function prototypes and macros.

111 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

Each atomic communication has to be specified in the IOC Configuration Description
in a standardized XML format. There is one description block per communication
operation specifying:

- Unique identifier
- Data type(s)
- Sender properties
- Receiver properties
- Name of callback function on receiver side in case of notification.
- Whether communication is queued or unqueued (last is best)
- In case of queued communication: Length of the queue

For details see Chapter 10.3

For each inter-OS-Application communication, the RTE generator creates one or
more calls to an IOC function to send or receive data, and adds a corresponding
description block to the IOC Configuration Description.

There are possibly multiple sources which contribute to the IOC configuration (e.g.,
RTE, CDD). The main input will come from the RTE generator. Other sources for the
IOC Configuration Description (not supported in this specification revision) might be
BSW module configuration tools or non-AUTOSAR components, which are allowed
to use BSW services.

In ECUs with only one OS-Application, the IOC Configuration Description can be
omitted.

7.10.7 IOC integration examples

This section describes two typical use cases that show how the IOC can support
communication between OS-Applications. In both examples the OS-Applications are
located on different cores of a Multi-Core system.

7.10.7.1 Example 1 - 1:1 sender/receiver communication without
notification

One Software Component sends data items in "EVENT" semantics (queued) to
another Software Component located on a different core. A runnable entity on the
receiver side is invoked periodically (e.g. by an ALARM) and receives the data via
RTE (see Figure 10).

Because the communication crosses core boundaries, the RTE invokes the IOC to
transfer the data from core 0 to core 1.

On the sending side, the
 Rte_Send_<port>_<item> (..., <data>)

call is mapped to an
 IocSend_<Id> (<data>)

112 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

call.

113 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

RTERTE

Software Component

Core 1

IOC

RE

Software Component

RE

Core 0

1 2

1

Rte_Receive_...Rte_Receive_...Rte_Send_...Rte_Send_...

2

Io
cR
ec
ei
ve
_<
ID
>

SW-C

Function or
macro

Function call

Buffering
mechanism

Data flow

1 2

IocSend_<ID>

I ocS
end_ <

ID
>

Io
cR

ec
ei

ve
_<

ID
>

2
Part of
Task 2

OS

Buffer

Figure 10: IOC without notification

In this example, the IocSend service writes the data into a buffer, located in a shared
memory area which can get read by the receiver via the IOC.

On the receiving side, the receiving runnable gets invoked periodically. The
 Rte_Receive_<port>_<item> (..., <data>)

call is mapped to an
 IocReceive_<Id> (<data>)

call to read data from the IOC internal queue. An additional queue within the RTE is
not necessary for 1:1 communication.

The IOC generator generates all the send and receive functions. The functions might
be defined as macros for optimization purposes.

This kind of port to port communication without notification is suitable for:

- Sender/receiver communication
- Queued or unqueued communication
- 1:1 communication.

Specification of Operating System
 V5.0.0

R4.0 Rev 3

7.10.7.2 Example 2 - N:1 client/server communication with receiver
notification by RTE

One Software Component invokes a service operation that is provided by another
Software Component located on a different core. A runnable entity on the receiver
side is activated to calculate the result (see Figure 11).

The RTE realizes the service on client side by mapping the client/server call to a
sender/receiver communication. Because the communication crosses core
boundaries, the RTE uses the IOC to transfer the data from Core 0 to Core 1.

On the sending side, the
 Rte_Call_<port>_<op> (..., <data>)

call is mapped to a
 IocSend_<Id> (<data>)

call to transmit the parameters over the IOC to the core hosting the server runnable.

Core 0 Core 1

114 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

RTERTE

Software Component Software Component

OS

RE RE
IocS

end_<ID
>

I
o
c
R
e
c
e
i
v
e
_
<
I
D
>

Rte_Call_...

IOC

SW-C

Function or
macro

Function call

Buffering
mechanism

Data flow

2
Part of
Task 2

1

1

1

Task
aktivation

Notification

2

2

Rte_Call_...
Io

cS
e

n
d

_<
ID

>

Io
c

R
e

ce
iv

e
_<

ID
>

Buffer

Stack

2

RE(...<data>)

Figure 11: IOC with notification by RTE

After writing the data into the IOC internal queue buffer, the Rte_Call function uses
an OS call to notify the receiver by activating the server TASK on the receiving core.
This TASK is provided by the RTE. This TASK body is responsible for reading the
data from the IOC buffer by calling IocReceive function and for forwarding the data to
the server runnable. Depending on the return value of the IOC function, the
IocReceive and server runnable calls might be repeated several times to empty the
IOC internal queued buffer (if specified).

Specification of Operating System
 V5.0.0

R4.0 Rev 3

The result of the service on Core 1 is transferred back to the client on Core 0 in a
similar way. The communication path of the result is not displayed in Figure 11.

This kind of port to port communication with notification by the RTE is suitable for:

- Sender/receiver communication with notification
- Client/server communication. In this case the RTE has to provide services

to map the server call into 1:1 sender/receiver communication for the
server call and another sender/receiver communication to return the result
to the client

- Queued or unqueued communication
- 1:1 communication, if the receiver does not poll for data periodically (In this

case, the solution in example 1 might have been more suitable)
- N:1 communication.

7.10.8 Future extensions

Some features are not supported by the first release of this specification, but might
get added in a later release:

 In the future, the IOC will handle direct and efficient communication among
BSW modules or between BSW modules and Software Components (via the
RTE) located in different OS applications. Additional support of direct access
from BSW modules to IOC services will be added.

 Other notification options (like activation of a specified TASK on receiver side)
might be added later to the IOC.

7.11 System Scalability

7.11.1 Background & Rationale

In order to customize the operating system to the needs of the user and to take full
advantage of the processor features the operating system can be scaled according to
the following scalability classes

115 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

D
es

cr
ib

ed
 in

 S
ec

ti
o

n

S
ca

la
b

ili
ty

 C
la

ss
 1

S
ca

la
b

ili
ty

 C
la

ss
 2

S
ca

la
b

ili
ty

 C
la

ss
 3

S
ca

la
b

ili
ty

 C
la

ss
 4

Hardware requirements Feature
 OSEK OS (all

conformance classes)
7.1

 Counter Interface 8.4.16
 SWFRT Interface 8.4.17,

8.4.18

 Schedule Tables 7.3
 Stack Monitoring 7.5

116 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

ProtectionHook 7.8
Timing Protection 7.7.2 Timer(s) with high priority

interrupt
Global Time
/Synchronization Support

7.4 Global time source

Memory Protection 7.7.1,
7.7.4

 MPU

OS-Applications 7.6, 7.12
Service Protection 7.7.3
CallTrustedFunction 7.7.5 (Non-)privileged Modes

Tab. 4: Scalability classes

Feature S
ca

la
b

ili
ty

 C
la

ss
 1

S
ca

la
b

ili
ty

 C
la

ss
 2

S
ca

la
b

ili
ty

 C
la

ss
 3

S
ca

la
b

ili
ty

 C
la

ss
 4

Minimum number of Schedule
Tables supported

2 8 2 8

Minimum number of OS-
Applications supported

0 0 2 2

Minimum number of software
Counters supported

8 8 8 8

Tab. 5: Minimum requirements of scalability classes

Specification of Operating System
 V5.0.0

R4.0 Rev 3

7.11.2 Requirements

[OS240] ⌈If an implementation of a lower scalability class supports features of higher
classes then the interfaces for the features must comply with this Operating System

software specification. ⌋ (BSW11012, BSW11016)

[OS241] ⌈The Operating System module shall support the features according to the

configured scalability class. (See Tab. 4) ⌋ (BSW11012, BSW11016)

[OS327] ⌈The Operating System module shall always use extended status in
Scalability Class 3 and 4. ⌋ ()

117 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

7.12 Hook Functions

7.12.1 Background & Rationale

Hook routines as defined in OSEK OS run at the level of the Operating System
module and therefore can only belong to the trusted environment. Furthermore, these
hook routines are global to the system (system-specific) and will probably be
supplied by the ECU integrator.

In AUTOSAR however, each OS-Application may have the need to execute
application specific code e.g. initialize some hardware in its own additional
(application-specific) startup hook. These are called application specific hook
routines. In general the application specific hooks have the same properties as the
hook routines described in the OSEK OS specification. Differences are described
below.

7.12.2 Requirements

[OS439] ⌈The Operating System module shall provide the OSEK error macros
(OSError…()) to all configured error hooks AND there shall be two (like in OIL) global

configuration parameters to switch these macros on or off. ⌋ ()

StartupHook

[OS060] ⌈If an application-specific startup hook is configured for an OS-Application
<App>, the Operating System module shall call StartupHook_<App> on startup of the

Operating System module. ⌋ ()

[OS226] ⌈The Operating System module shall execute an application-specific startup

hook with the access rights of the associated OS-Application. ⌋ ()

[OS236] ⌈If both a system-specific and one (or more) application specific startup
hook(s) are configured, the Operating System module shall call the system-specific

startup hook before the application-specific startup hook(s). ⌋ ()

ShutdownHook

[OS112] ⌈If an application-specific shutdown hook is configured for an OS-
Application <App>, the Operating System module shall call ShutdownHook_<App> on

shutdown of the OS. ⌋ ()

[OS225] ⌈The Operating System module shall execute an application-specific

shutdown hook with the access rights of the associated OS-Application. ⌋ ()

118 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

[OS237] ⌈If both a system-specific and one (or more) application specific shutdown
hook(s) are configured, the Operating System module shall call the system-specific

shutdown hook after the application-specific shutdown hook(s). ⌋ ()

Error Hook

[OS246] ⌈When an error occurs AND an application-specific error hook is configured
for the faulty OS-Application <App>, the Operating System module shall call that
application-specific error hook ErrorHook_<App> after the system specific error hook

is called (if configured). ⌋ (BSW11013)

[OS085] ⌈The Operating System module shall execute an application-specific error

hook with the access rights of the associated OS-Application. ⌋ ()

[OS367] ⌈Operating System module’s services which do not return a StatusType

shall not raise the error hook(s). ⌋ ()

7.13 Error classification

Instead of specifying two versions for production and development errors the
AUTOSAR OS provides a finer granularity to adjust the error handling to specific
needs, e.g. Scalability Classes, standard and extended status, switching on/off of
hook routines.

119 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Type or error Relevance Related error code Value

E_OS_SERVICEID Assigned by
implementation

Service can not be called. Production

E_OS_ILLEGAL_ADDRESS Assigned by
implementation

An invalid address is
given as a parameter to a
service.

Production

E_OS_MISSINGEND Assigned by
implementation

Production Tasks terminates without
a TerminateTask() or
ChainTask() call.

E_OS_DISABLEDINT Assigned by
implementation

 A service of the OS is
called inside an interrupt
disable/enable pair.

Production

E_OS_STACKFAULT Assigned by
implementation

A stack fault detected via
stack monitoring by the
OS

Production

E_OS_PROTECTION_MEMORY Assigned by
implementation

A memory access
violation occurred

Production

A Task exceeds its
execution time budget

E_OS_PROTECTION_TIME Assigned by
implementation

Production

A Category 2 ISR
exceeds its execution
time budget

Specification of Operating System
 V5.0.0

R4.0 Rev 3

E_OS_PROTECTION_ARRIVAL Assigned by
implementation

A Task/Category 2 ISR
arrives before its
timeframe has expired

Production

E_OS_PROTECTION_LOCKED Assigned by
implementation

A Task/Category 2 ISR
blocks for too long

Production

E_OS_PROTECTION_EXCEPTION Assigned by
implementation

A trap occurred Production

E_OS_CORE Assigned by
implementation

Core is not available Production

E_OS_SPINLOCK Assigned by
implementation

De-scheduling with
occupied spinlock

Production

E_OS_INTERFERENCE_DEADLOC
K

Assigned by
implementation

Deadlock situation due to
interference

Production

E_OS_NESTING_DEADLOCK Assigned by
implementation

Potential deadlock due to
wrong nesting

Production

7.14 Debug support

In order to support debugging AUTOSAR implementations must publish information
which can be used for debugging purpose.

[OS551] ⌈Each variable that shall be accessible by AUTOSAR Debugging, shall be

defined as global variable. ⌋ ()

[OS550] ⌈All type definitions of variables which shall be debugged, shall be

accessible by the header file Os.h. ⌋ ()

[OS549] ⌈The declaration of variables in the header file shall be such, that it is

possible to calculate the size of the variables by C-"sizeof".⌋ ()

120 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

8 API specification

This chapter contains the APIs offered by the operating system. Note that not all
services are available in all scalability classes, and that the behavior of some
services is extended for specific scalability classes. For example, API to relatively
start a schedule table has an additional check if the schedule table allows implicit
synchronization. This check is only performed in SC2 and SC4 where
synchronization of schedule tables is supported.

8.1 Constants

8.1.1 Error codes of type StatusType

The following constants are available in a multi-core environment.

AppModeType Name:
Enumeration Type:
DONOTCARE -- Range:
AppMode of the core shall be inherited from another core. Description:

TotalNumberOfCores Name:
scalar Type:
1..65535 -- -- Range:
The total number of cores Description:

Additional constants are in section 7.13 and [15].

8.2 Macros

OSMEMORY_IS_READABLE(<AccessType>)
OSMEMORY_IS_WRITEABLE(<AccessType>)
OSMEMORY_IS_EXECUTABLE(<AccessType>)
OSMEMORY_IS_STACKSPACE(<AccessType>)

These macros return a value not equal to zero if the memory is readable / writable /
executable or stack space. The argument of the macros must be of type
AccessType. Typically the return value of the service
Check[Task|ISR]MemoryAccess() is used as argument for these macros.

8.3 Type definitions

8.3.1 ApplicationType (for OS-Applications)

Type: Scalar

121 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

This data type identifies the OS-Application. Description:

INVALID_OSAPPLICATION Constants of this
Type:

8.3.2 ApplicationStateType

Scalar Type:
This data type identifies the state of an OS-Application. Description:

APPLICATION_ACCESSIBLE Constants of this
Type: APPLICATION_RESTARTING

APPLICATION_TERMINATED

8.3.3 ApplicationStateRefType

Pointer Type:
This data type points to location where a ApplicationStateType can be stored. Description:

8.3.4 TrustedFunctionIndexType

Scalar Type:
This data type identifies a trusted function. Description:

8.3.5 TrustedFunctionParameterRefType

Pointer Type:
This data type points to a structure which holds the arguments for a call to a
trusted function.

Description:

8.3.6 AccessType

Integral Type:
This type holds information how a specific memory region can be accessed. Description:

8.3.7 ObjectAccessType

Scalar Type :
This data type identifies if an OS-Application has access to an object. Description:

ACCESS Constants of this
Type: NO_ACCESS

8.3.8 ObjectTypeType

Type : Scalar

122 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

This data type identifies an object. Description :

OBJECT_TASK Constants of this
Type: OBJECT_ISR

OBJECT_ALARM
OBJECT_RESOURCE
OBJECT_COUNTER
OBJECT_SCHEDULETABLE

8.3.9 MemoryStartAddressType

Pointer Type:
This data type is a pointer which is able to point to any location in the MCU
address space.

Description:

8.3.10 MemorySizeType

Scalar Type:
This data type holds the size (in bytes) of a memory region. Description:

8.3.11 ISRType

Scalar Type:
This data type identifies an interrupt service routine (ISR). Description:

INVALID_ISR Constants of this
Type:

8.3.12 ScheduleTableType

Scalar Type:
This data type identifies a schedule table. Description:

123 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

8.3.13 ScheduleTableStatusType

Scalar Type:
This type describes the status of a schedule. The status can be one of the
following:

Description:

o The schedule table is not started (SCHEDULETABLE_STOPPED)
o The schedule table will be started after the end of currently running schedule

table (schedule table was used in NextScheduleTable() service)
(SCHEDULETABLE_NEXT)

o The schedule table uses explicit synchronization, has been started and is
waiting for the global time. (SCHEDULETABLE_WAITING)

o The schedule table is running, but is currently not synchronous to a global
time source (SCHEDULETABLE_RUNNING)

o The schedule table is running and is synchronous to a global time source
(SCHEDULETABLE_RUNNING_AND_SYNCHRONOUS)

SCHEDULETABLE_STOPPED Constants of this
Type: SCHEDULETABLE_NEXT

SCHEDULETABLE_WAITING
SCHEDULETABLE_RUNNING
SCHEDULETABLE_RUNNING_AND_SYNCHRONOUS

8.3.14 ScheduleTableStatusRefType

Pointer Type:
This data type points to a variable of the data type ScheduleTableStatusType. Description:

8.3.15 CounterType

Scalar Type:
This data type identifies a counter. Description:

8.3.16 ProtectionReturnType

Scalar Type:
This data type identifies a value which controls further actions of the OS on return
from the protection hook.

Description:

PRO_IGNORE Constants of this
Type: PRO_TERMINATETASKISR

PRO_TERMINATEAPPL
PRO_TERMINATEAPPL_RESTART
PRO_SHUTDOWN

8.3.17 RestartType

Scalar Type:
This data type defines the use of a Restart Task after terminating an OS-
Application.

Description:

RESTART Constants of this
Type: NO_RESTART

124 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

8.3.18 PhysicalTimeType

Scalar Type:
This data type is used for values returned by the conversion macro (see OS393())
OS_TICKS2<Unit>_<Counter>().

Description:

8.3.19 CoreIDType

CoreIdType Name:
scalar Type:
OS_CORE_ID_MASTER - refers to the master core, may be an

alias for OS_CORE_ID_<x>

125 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

-
Range:

OS_CORE_ID_0..OS_CORE_ID_65533- refers to logical core 0, core 1 etc.
-

Description: CoreIDType is a scalar that allows identifying a single core. The CoreIDType
shall represent the logical CoreID

8.3.20 SpinlockIdType

Name: SpinlockIdType
Type: scalar

INVALID_SPINLOCK-- represents an invalid spinlock instance Range:
1..65535 -- 0x01, 0x02, ...: identifies a spinlock instance
SpinlockIdType identifies a spinlock instance and is used by the API functions:
GetSpinlock, ReleaseSpinlock and TryToGetSpinlock.

Description:

8.3.21 TryToGetSpinlockType

TryToGetSpinlockType Name:

Type: Enumeration
TRYTOGETSPINLOCK_SUCCESS Spinlock successfully occupied Range:
TRYTOGETSPINLOCK_NOSUCCESSUnable to occupy the spinlock

Description: The TryToGetSpinlockType indicates if the spinlock has been occupied or not.

8.4 Function definitions

The availability of the following services is defined in Tab. 4. The use of these
services may be restricted depending on the context they are called from. See
Tab. 1 for details.

8.4.1 GetApplicationID

[OS016] ⌈

Specification of Operating System
 V5.0.0

R4.0 Rev 3

GetApplicationID Service name:
ApplicationType GetApplicationID(
 void
)

Syntax:

Service ID[hex]: 0x00
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): None
Parameters
(inout):

None

None Parameters (out):

Return value:
ApplicationType <identifier of running OS-Application> or

INVALID_OSAPPLICATION
Description: This service determines the currently running OS-Application (a unique identifier

has to be allocated to each application).

⌋ ()
[OS261] ⌈GetApplicationID() shall return the application identifier to which the
executing Task/ISR/hook belongs. ⌋ ()

[OS262] ⌈If no OS-Application is running, GetApplicationID() shall return

INVALID_OSAPPLICATION. ⌋ ()

[OS514] ⌈Availability of GetApplicationID(): Available in Scalability Classes 3 and

4. ⌋ ()

8.4.2 GetISRID

[OS511] ⌈
GetISRID Service name:

Syntax: ISRType GetISRID(
 void
)

Service ID[hex]: 0x01
Sync/Async: Synchronous
Reentrancy: Reentrant

None Parameters (in):
None Parameters

(inout):
None Parameters (out):
ISRType <Identifier of running ISR> or

INVALID_ISR
Return value:

This service returns the identifier of the currently executing ISR. Description:

⌋ ()
[OS263] ⌈If called from category 2 ISR (or Hook routines called inside a category 2
ISR), GetISRID() shall return the identifier of the currently executing ISR. ⌋ ()

[OS264] ⌈If its caller is not a category 2 ISR (or Hook routines called inside a

category 2 ISR), GetISRID() shall return INVALID_ISR. ⌋ ()
126 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

[OS515] ⌈Availability of GetISRID(): Available in all Scalability Classes. ⌋ ()

8.4.3 CallTrustedFunction

[OS097] ⌈
Service name: CallTrustedFunction
Syntax: StatusType CallTrustedFunction(

 TrustedFunctionIndexType FunctionIndex,
 TrustedFunctionParameterRefType FunctionParams
)

Service ID[hex]: 0x02
Sync/Async: Depends on called function. If called function is synchronous then service is

synchronous. May cause rescheduling.
Reentrancy: Reentrant

FunctionIndex Index of the function to be called.
FunctionParams Pointer to the parameters for the function - specified by the

FunctionIndex - to be called. If no parameters are provided, a
NULL pointer has to be passed.

Parameters (in):

None Parameters
(inout):

None Parameters (out):

Return value:
StatusType E_OK: No Error

E_OS_SERVICEID: No function defined for this index
Description: A (trusted or non-trusted) OS-Application uses this service to call a trusted

function

⌋ ()
[OS265] ⌈If <FunctionIndex> is a defined function index,
CallTrustedFunction() shall switch the processor into privileged mode AND
shall call the function <FunctionIndex> out of a list of implementation specific trusted

functions with disabled memory protection AND shall return E_OK after completion. ⌋
()

[OS312] ⌈Caveats of CallTrustedFunction():
 The called trusted function must conform to the following C prototype: void

TRUSTED_<name_of_the_trusted_service>(
TrustedFunctionIndexType,TrustedFunctionParameterRefType);
(The arguments are the same as the arguments of CallTrustedFunction).

 Normally, a user will not directly call this service, but it will be part of some
standard interface, e.g. a standard I/O interface.

 It is the duty of the called trusted function to check rights of passed
parameters, especially if parameters are interpreted as out parameters.

 It should be noted that the CallTrustedFunction() does not disable timing
protection for the task which called the service. This may lead to timing faults
(calls of the ProtectionHook()) even inside of a trusted OS-Application. It is
therefore recommended to use CallTrustedFunction() only for stateless

functions (e.g. functions which do not write or do not have internal states) ⌋ ()

127 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

[OS266] ⌈When CallTrustedFunction() calls the function <FunctionIndex>, that
function shall be executed with the same processor mode and memory protection
boundaries as the OS-Application to which it belongs. It shall however retain the
service protection limitations of the calling Task or ISR, and the notion of "current
application" shall remain that of the calling Task or Category 2 ISR. ⌋ ()

Reaction to timing protection can be defined to terminate the OSApplication. If a task
is inside CallTrustedFunction() and task rescheduling takes place within the
same OSApplication, the newly running higher priority task may cause timing
protection and terminate the OSApplication, thus indirectly aborting the trusted
function. To avoid this, the scheduling of other Tasks which belong to the same OS-
Application as the caller needs to be restricted, as well as the availability of
interrupts of the same OS-Application.

[OS565] ⌈When CallTrustedFunction() is called and the caller of
CallTrustedFunction() is supervised with timing protection, the Operating
System shall delay any timing protection errors until the return of

CallTrustedFunction().⌋ ()

[OS564] ⌈If such a violation is detected inside a nested call sequence of
CallTrustedFunction() of a task, the delay shall last until the return of the last

CallTrustedFunction().⌋ ()

[OS563] ⌈The OperatingSystem shall not schedule any other Tasks which belong to
the same OS-Application as the non-trusted caller of the service. Also interrupts of
Category 2 which belong to the same OS-Application shall be disabled during the

execution of the service. ⌋ ()

[OS364] ⌈If CallTrustedFunction() calls the trusted function from a Category 2
ISR context, that function shall continue to run on the same interrupt priority and be
allowed to call all system services defined for Category 2 ISR (see table in chapter

7.7.3.2). ⌋ ()

[OS365] ⌈If CallTrustedFunction() calls the trusted function from a task context,
that function shall continue to run on the same priority and be allowed to call all

system services defined for tasks (see table in chapter 7.7.3.2). ⌋ ()

[OS292] ⌈If the function index <FunctionIndex> in a call of CallTrustedFunction()

is undefined, CallTrustedFunction() shall return E_OS_SERVICEID. ⌋ ()

[OS516] ⌈Availability of CallTrustedFunction(): Available in Scalability Classes 3

and 4. ⌋ ()

128 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

8.4.4 CheckISRMemoryAccess

[OS512] ⌈
CheckISRMemoryAccess Service name:
AccessType CheckISRMemoryAccess(
 ISRType ISRID,
 MemoryStartAddressType Address,
 MemorySizeType Size
)

Syntax:

0x03 Service ID[hex]:
Synchronous Sync/Async:
Reentrant Reentrancy:
ISRID ISR reference
Address Start of memory area Parameters (in):
Size Size of memory area
None Parameters

(inout):
None Parameters (out):

Return value: AccessType Value which contains the access rights to the memory area.
This service checks if a memory region is write/read/execute accessible and also
returns information if the memory region is part of the stack space.

Description:

⌋ ()
[OS267] ⌈If the ISR reference <ISRID> in a call of CheckISRMemoryAccess() is
valid, CheckISRMemoryAccess() shall return the access rights of the ISR on the

specified memory area. ⌋ ()

[OS313] ⌈If an access right (e.g. “read”) is not valid for the whole memory area
specified in a call of CheckISRMemoryAccess(), CheckISRMemoryAccess() shall

yield no access regarding this right. ⌋ ()

[OS268] ⌈If the ISR reference <ISRID> is not valid, CheckISRMemoryAccess() shall

yield no access rights. ⌋ ()

[OS517] ⌈Availability of CheckISRMemoryAccess(): Available in Scalability Classes

3 and 4. ⌋ ()

8.4.5 CheckTaskMemoryAccess

[OS513] ⌈
Service name: CheckTaskMemoryAccess

AccessType CheckTaskMemoryAccess(
 TaskType TaskID,
 MemoryStartAddressType Address,
 MemorySizeType Size
)

Syntax:

0x04 Service ID[hex]:
Synchronous Sync/Async:

Reentrancy: Reentrant

129 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

TaskID Task reference
Address Start of memory area Parameters (in):
Size Size of memory area
None Parameters

(inout):
None Parameters (out):
AccessType Value which contains the access rights to the memory area. Return value:

Description: This service checks if a memory region is write/read/execute accessible and also
returns information if the memory region is part of the stack space.

⌋ ()
[OS269] ⌈If the Task reference <TaskID> in a call of CheckTaskMemoryAccess()
is valid, CheckTaskMemoryAccess() shall return the access rights of the task on

the specified memory area. ⌋ ()

[OS314] ⌈If an access right (e.g. “read”) is not valid for the whole memory area
specified in a call of CheckTaskMemoryAccess(), CheckTaskMemoryAccess()

shall yield no access regarding this right. ⌋ ()

[OS270] ⌈If the Task reference <TaskID> in a call of CheckTaskMemoryAccess()

is not valid, CheckTaskMemoryAccess() shall yield no access rights. ⌋ ()

[OS518] ⌈Availability of CheckTaskMemoryAccess(): Available in Scalability

Classes 3 and 4⌋ ()

8.4.6 CheckObjectAccess

[OS256] ⌈
Service name: CheckObjectAccess
Syntax: ObjectAccessType CheckObjectAccess(

 ApplicationType ApplID,
 ObjectTypeType ObjectType,
 void ...
)
0x05 Service ID[hex]:
Synchronous Sync/Async:
Reentrant Reentrancy:
ApplID OS-Application identifier

130 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

ObjectType Type of the following parameter Parameters (in):
... The object to be examined
None Parameters

(inout):
None Parameters (out):
ObjectAccessType ACCESS if the ApplID has access to the object

NO_ACCESS otherwise
Return value:

This service determines if the OS-Applications, given by ApplID, is allowed to
use the IDs of a Task, ISR, Resource,
Counter, Alarm or Schedule Table in API calls.

Description:

⌋ ()

Specification of Operating System
 V5.0.0

R4.0 Rev 3

[OS271] ⌈If the OS-Application <ApplID> in a call of CheckObjectAccess() has

access to the queried object, CheckObjectAccess() shall return ACCESS. ⌋ ()

[OS272] ⌈If the OS-Application <ApplID> in a call of CheckObjectAccess() has
no access to the queried object, CheckObjectAccess() shall return NO_ACCESS.
⌋ ()

[OS423] ⌈If in a call of CheckObjectAccess() the object to be examined is not a
valid object OR <ApplID> is invalid OR <ObjectType> is invalid THEN

CheckObjectAccess() shall return NO_ACCESS. ⌋ ()

[OS519] ⌈Availability of CheckObjectAccess(): Available in Scalability Classes 3

and 4. ⌋ ()

8.4.7 CheckObjectOwnership

[OS017] ⌈
Service name: CheckObjectOwnership

ApplicationType CheckObjectOwnership(
 ObjectTypeType ObjectType,
 void ...
)

Syntax:

0x06 Service ID[hex]:
Synchronous Sync/Async:
Reentrant Reentrancy:
ObjectType Type of the following parameter

Parameters (in):
... The object to be examined

Parameters
(inout):

None

Parameters (out): None

Return value:
ApplicationType <OS-Application>: the OS-Application to which the object

ObjectType belongs or
INVALID_OSAPPLICATION if the object does not exists

Description: This service determines to which OS-Application a given Task, ISR, Counter,
Alarm or Schedule Table belongs

⌋ ()
[OS273] ⌈If the object ObjectType specified in a call of CheckObjectOwnership()
exists, CheckObjectOwnership() shall return the identifier of the OS-Application

to which the object belongs. ⌋ ()

[OS274] ⌈If in a call of CheckObjectOwnership() the specified object ObjectType
is invalid OR the argument of the type (the “…”) is invalid OR the object does not
belong to any OS-Application, CheckObjectOwnership() shall return

INVALID_OSAPPLICATION. ⌋ ()

131 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

[OS520] ⌈Availability of CheckObjectOwnership():Available in Scalability

Classes 3 and 4. ⌋ ()

8.4.8 StartScheduleTableRel

[OS347] ⌈
StartScheduleTableRel Service name:
StatusType StartScheduleTableRel(
 ScheduleTableType ScheduleTableID,
 TickType Offset
)

Syntax:

0x07 Service ID[hex]:
Synchronous Sync/Async:
Reentrant Reentrancy:
ScheduleTableID Schedule table to be started

Parameters (in): Offset Number of ticks on the counter before the the schedule table
processing is started

Parameters
(inout):

None

None Parameters (out):

Return value:

StatusType E_OK: No Error
E_OS_ID (only in EXTENDED status): ScheduleTableID not
valid.
E_OS_VALUE (only in EXTENDED status): Offset is greater
than (OsCounterMaxAllowedValue - InitialOffset) or is equal to 0.
E_OS_STATE: Schedule table was already started.

This service starts the processing of a schedule table at "Offset" relative to the
"Now" value on the underlying counter.

Description:

⌋ ()
[OS275] ⌈If the schedule table <ScheduleTableID> in a call of
StartScheduleTableRel() is not valid, StartScheduleTableRel() shall

return E_OS_ID. ⌋ ()

[OS452] ⌈If the schedule table <ScheduleTableID> in a call of
StartScheduleTableRel() is implicitely synchronized
(OsScheduleTblSyncStrategy = IMPLICIT), StartScheduleTableRel()

shall return E_OS_ID. ⌋ ()

[OS332] ⌈If <Offset> in a call of StartScheduleTableRel() is zero

StartScheduleTableRel() shall return E_OS_VALUE. ⌋ ()

[OS276] ⌈If the offset <Offset>) is greater than OsCounterMaxAllowedValue of
the underlying counter minus the Initial Offset, StartScheduleTableRel() shall

return E_OS_VALUE. ⌋ ()

132 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

133 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

[OS277] ⌈If the schedule table <ScheduleTableID> in a call of
StartScheduleTableRel() is not in the state SCHEDULETABLE_STOPPED,

StartScheduleTableRel() shall return E_OS_STATE. ⌋ ()

[OS278] ⌈If the input parameters of StartScheduleTableRel() are valid and the
state of schedule table <ScheduleTableID> is SCHEDULETABLE_STOPPED, then
StartScheduleTableRel() shall start the processing of a schedule table
<ScheduleTableID>. The Initial Expiry Point shall be processed after <Offset> +
Initial Offset ticks have elapsed on the underlying counter. The state of
<ScheduleTableID> is set to SCHEDULETABLE_RUNNING before the service returns

to the caller. ⌋ ()

[OS521] ⌈Availability of StartScheduleTableRel(): Available in all Scalability

Classes. ⌋ ()

8.4.9 StartScheduleTableAbs

[OS358] ⌈
Service name: StartScheduleTableAbs
Syntax: StatusType StartScheduleTableAbs(

 ScheduleTableType ScheduleTableID,
 TickType Start
)

Service ID[hex]: 0x08
Sync/Async: Synchronous
Reentrancy: Reentrant

ScheduleTableID Schedule table to be started
Parameters (in):

Start Absolute counter tick value at which the schedule table is started
Parameters
(inout):

None

Parameters (out): None

Return value:

StatusType E_OK: No Error
E_OS_ID (only in EXTENDED status): ScheduleTableID not
valid
E_OS_VALUE (only in EXTENDED status): "Start" is greater
than OsCounterMaxAllowedValue
E_OS_STATE: Schedule table was already started

Description: This service starts the processing of a schedule table at an absolute value "Start"
on the underlying counter.

⌋ ()
[OS348] ⌈If the schedule table <ScheduleTableID> in a call of
StartScheduleTableAbs() is not valid, StartScheduleTableAbs() shall

return E_OS_ID. ⌋ ()

[OS349] ⌈If the <Start> in a call of StartScheduleTableAbs() is greater than the
OsCounterMaxAllowedValue of the underlying counter,

StartScheduleTableAbs() shall return E_OS_VALUE. ⌋ ()

Specification of Operating System
 V5.0.0

R4.0 Rev 3

[OS350] ⌈If the schedule table <ScheduleTableID> in a call of
StartScheduleTableAbs() is not in the state SCHEDULETABLE_STOPPED,

StartScheduleTableAbs() shall return E_OS_STATE. ⌋ ()

[OS351] ⌈If the input parameters of StartScheduleTableAbs() are valid and
<ScheduleTableID> is in the state SCHEDULETABLE_STOPPED,
StartScheduleTableAbs() shall start the processing of schedule table
<ScheduleTableID> when the underlying counter next equals <Start> and shall set
the state of <ScheduleTableID> to
- SCHEDULETABLE_RUNNING (for a non-synchronized / Explicitly synchronized
schedule table) OR
- SCHEDULETABLE_RUNNING_AND_SYNCHRONOUS (for implicitly synchronized schedule
table)
before returning to the user. (The Initial Expiry Point will be processed when the

underlying counter next equals <Start>+Initial Offset). ⌋ ()

[OS522] ⌈Availability of StartScheduleTableAbs(): Available in all Scalability

Classes. ⌋ ()

8.4.10 StopScheduleTable

[OS006] ⌈
Service name: StopScheduleTable

StatusType StopScheduleTable(
 ScheduleTableType ScheduleTableID
)

Syntax:

0x09 Service ID[hex]:
Synchronous Sync/Async:
Reentrant Reentrancy:

Parameters (in): ScheduleTableID Schedule table to be stopped
Parameters
(inout):

None

Parameters (out): None

Return value:

StatusType E_OK: No Error
E_OS_ID (only in EXTENDED status): ScheduleTableID not
valid.
E_OS_NOFUNC: Schedule table was already stopped

Description: This service cancels the processing of a schedule table immediately at any point
while the schedule table is running.

⌋ ()
[OS279] ⌈If the schedule table identifier <ScheduleTableID> in a call of
StopScheduleTable() is not valid, StopScheduleTable() shall return

E_OS_ID. ⌋ ()

134 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

[OS280] ⌈If the schedule table with identifier <ScheduleTableID> is in state
SCHEDULETABLE_STOPPED when calling StopScheduleTable(),

StopScheduleTable() shall return E_OS_NOFUNC. ⌋ ()

[OS281] ⌈If the input parameters of StopScheduleTable() are valid,
StopScheduleTable()shall set the state of <ScheduleTableID> to
SCHEDULETABLE_STOPPED and (stop the schedule table <ScheduleTableID> from

processing any further expiry points and) shall return E_OK. ⌋ ()

[OS523] ⌈Availability of StopScheduleTable(): Available in all Scalability

Classes. ⌋ ()

8.4.11 NextScheduleTable

[OS191] ⌈
NextScheduleTable Service name:
StatusType NextScheduleTable(
 ScheduleTableType ScheduleTableID_From,
 ScheduleTableType ScheduleTableID_To
)

Syntax:

0x0a Service ID[hex]:
Synchronous Sync/Async:

Reentrancy: Reentrant
ScheduleTableID_FromCurrently processed schedule table

Parameters (in):
ScheduleTableID_To Schedule table that provides its series of expiry points
None Parameters

(inout):
None Parameters (out):
StatusType E_OK: No error

E_OS_ID (only in EXTENDED status):
ScheduleTableID_From or ScheduleTableID_To
not valid
E_OS_NOFUNC: ScheduleTableID_From not started
E_OS_STATE: ScheduleTableID_To is started or next

Return value:

This service switches the processing from one schedule table to another schedule
table.

Description:

⌋ (BSW099)

[OS282] ⌈If the input parameter <ScheduleTableID_From> or
<ScheduleTableID_To> in a call of NextScheduleTable() is not valid,

NextScheduleTable() shall return E_OS_ID. ⌋ ()

[OS330] ⌈If in a call of NextScheduleTable() schedule table
<ScheduleTableID_To> is driven by different counter than schedule table
<ScheduleTableID_From> then NextScheduleTable() shall return an error

E_OS_ID. ⌋ ()

135 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

[OS283] ⌈If the schedule table <ScheduleTableID_From> in a call of
NextScheduleTable() is in state SCHEDULETABLE_STOPPED OR in state
SCHEDULETABLE_NEXT, NextScheduleTable() shall leave the state of
<ScheduleTable_From> and <ScheduleTable_To> unchanged and return

E_OS_NOFUNC. ⌋ ()

[OS309] ⌈If the schedule table <ScheduleTableID_To> in a call of
NextScheduleTable() is not in state SCHEDULETABLE_STOPPED,
NextScheduleTable() shall leave the state of <ScheduleTable_From> and

<ScheduleTable_To> unchanged and return E_OS_STATE. ⌋ ()

[OS484] ⌈If OsScheduleTblSyncStrategy of <ScheduleTableID_To> in a call of
NextScheduleTable() is not equal to the OsScheduleTblSyncStrategy of

<ScheduleTableID_From> then NextScheduleTable() shall return E_OS_ID. ⌋ (
)

[OS284] ⌈If the input parameters of NextScheduleTable() are valid then
NextScheduleTable() shall start the processing of schedule table
<ScheduleTableID_To> <ScheduleTableID_From>.FinalDelay ticks after the Final
Expiry Point on <ScheduleTableID_From> is processed and shall return E_OK.
NextScheduleTable() shall process the Initial Expiry Point on
<ScheduleTableID_To> at <ScheduleTableID_From>.Final Delay +
<ScheduleTable_To>.Initial Offset ticks after the Final Expiry Point on

<ScheduleTableID_From> is processed . ⌋ ()

[OS324] ⌈If the input parameters of NextScheduleTable() are valid AND the
<ScheduleTableID_From> already has a “next” schedule table then
NextScheduleTable()shall replace the previous “next” schedule table with
<ScheduleTableID_To> and shall change the old “next” schedule table state to

SCHEDULETABLE_STOPPED. ⌋ ()

[OS505] ⌈If OsScheduleTblSyncStrategy of the schedule tables
<ScheduleTableID_From> and <ScheduleTableID_To> in a call of
NextScheduleTable() is EXPLICIT and the Operating System module already
synchronizes <ScheduleTableID_From>, NextScheduleTable() shall continue

synchonization after the start of processing <ScheduleTableID_To>.⌋ ()

[OS453] ⌈If the <ScheduleTableID_From> in a call of NextScheduleTable() is
stopped, NextScheduleTable() shall not start the “next” schedule table and

change its state to SCHEDULETABLE_STOPPED. ⌋ ()

[OS524] ⌈Availability of NextScheduleTable(): Available in all Scalability

Classes. ⌋ ()
136 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

8.4.12 StartScheduleTableSynchron

[OS201] ⌈
StartScheduleTableSynchron Service name:
StatusType StartScheduleTableSynchron(
 ScheduleTableType ScheduleTableID
)

Syntax:

0x0b Service ID[hex]:
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): ScheduleTableID Schedule table to be started

None Parameters
(inout):

None Parameters (out):

Return value:

StatusType E_OK: No Error
E_OS_ID (only in EXTENDED status): ScheduleTableID not
valid
E_OS_STATE: Schedule table was already started

This service starts an explicitly synchronized schedule table synchronously. Description:

⌋ (BSW11002)

[OS387] ⌈If in a call of StartScheduleTableSynchron() the schedule table
<ScheduleTableID> is not valid OR the schedule table <ScheduleTableID> is not
explicitly synchronized (OsScheduleTblSyncStrategy != EXPLICIT)

StartScheduleTableSynchron() shall return E_OS_ID. ⌋ ()

[OS388] ⌈If the schedule table <ScheduleTableID> in a call of
StartScheduleTableSynchron()is not in the state SCHEDULETABLE_STOPPED,

StartScheduleTableSynchron() shall return E_OS_STATE. ⌋ ()

[OS389] ⌈If <ScheduleTableID> in a call of StartScheduleTableSynchron() is
valid, StartScheduleTableSynchron() shall set the state of <ScheduleTableID>
to SCHEDULETABLE_WAITING and start the processing of schedule table
<ScheduleTableID> after the synchronization count of the schedule table is set via
SyncScheduleTable(). The Initial Expiry Point shall be processed when
(Duration-SyncValue)+InitialOffset ticks have elapsed on the synchronization counter
where:

 Duration is <ScheduleTableID>.OsScheduleTableDuration
 SyncValue is the <Value> parameter passed to the SyncScheduleTable()

 InitialOffset is the shortest expiry point offset in <ScheduleTableID>⌋ ()

[OS525] ⌈Availability of StartScheduleTableSynchron(): Available in

Scalability Classes 2 and 4. ⌋ ()

137 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

8.4.13 SyncScheduleTable

[OS199] ⌈
SyncScheduleTable Service name:
StatusType SyncScheduleTable(
 ScheduleTableType ScheduleTableID,
 TickType Value
)

Syntax:

0x0c Service ID[hex]:
Synchronous Sync/Async:

Reentrancy: Reentrant
ScheduleTableID Schedule table to be synchronized

Parameters (in):
Value The current value of the synchronization counter

Parameters
(inout):

None

Parameters (out): None

Return value:

StatusType E_OK: No errors
E_OS_ID (only in EXTENDED status): The ScheduleTableID
was not valid or schedule
table can not be synchronized (OsScheduleTblSyncStrategy not
set or
OsScheduleTblSyncStrategy = IMPLICIT)
E_OS_VALUE (only in EXETENDED status): The <Value> is out
of range
E_OS_STATE: The state of schedule table <ScheduleTableID>
is equal to
SCHEDULETABLE_STOPPED

Description: This service provides the schedule table with a synchronization count and start
synchronization.

⌋ (BSW11002)

[OS454] ⌈If the <ScheduleTableID> in a call of SyncScheduleTable() is not valid
OR schedule table can not be explicitely synchronized
(OsScheduleTblSyncStrategy is not equal to EXPLICIT)

SyncScheduleTable() shall return E_OS_ID. ⌋ ()

[OS455] ⌈If the <Value> in a call of SyncScheduleTable() is greater than the
OsScheduleTableDuration, SyncScheduleTable() shall return E_OS_VALUE.
⌋ ()

[OS456] ⌈If the state of the schedule table <ScheduleTableID> in a call of
SyncScheduleTable() is equal to SCHEDULETABLE_STOPPED or

SCHEDULETABLE_NEXT SyncScheduleTable() shall return E_OS_STATE. ⌋ ()

[OS457] ⌈If the parameters in a call of SyncScheduleTable() are valid,
SyncScheduleTable() shall provide the Operating System module with the
current synchronization count for the given schedule table. (It is used to synchronize

the processing of the schedule table to the synchronization counter.) ⌋ ()

138 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

[OS526] ⌈Availability of SyncScheduleTable(): Available in Scalability Classes 2

and 4. ⌋ ()

8.4.14 SetScheduleTableAsync

[OS422] ⌈
SetScheduletableAsync Service name:
StatusType SetScheduletableAsync(
 ScheduleTableType ScheduleTableID
)

Syntax:

0x0d Service ID[hex]:
Synchronous Sync/Async:

Reentrancy: Reentrant
Parameters (in): ScheduleTableID Schedule table for which status is requested

None Parameters
(inout):

None Parameters (out):
StatusType

Return value:
E_OK: No Error
E_OS_ID (only in EXTENDED status): Invalid ScheduleTableID

Description: This service stops synchronization of a schedule table.

⌋ ()
[OS362] ⌈If SetScheduleTableAsync() is called for a running schedule table, the
Operating System module shall stop further synchronization until a

SyncScheduleTable() call is made. ⌋ ()

[OS323] ⌈If SetScheduleTableAsync() is called for a running schedule table the
Operating System module shall continue to process expiry points on the schedule

table. ⌋ ()

[OS458] ⌈If OsScheduleTblSyncStrategy of <ScheduleTableID> in a call of
SetScheduleTableAsync() is not equal to EXPLICIT OR if <ScheduleTableID> is

invalid then SetScheduleTableAsync() shall return E_OS_ID. ⌋ ()

[OS483] ⌈If the current state of the <ScheduleTableID> in a call of
SetScheduleTableAsync() equals to SCHEDULETABLE_STOPPED,
SCHEDULETABLE_NEXT or SCHEDULETABLE_WAITING then

SetScheduleTableAsync() shall return E_OS_STATE. ⌋ ()

[OS300] ⌈If the current state of <ScheduleTableID> in a call of
SetScheduleTableAsync() equals SCHEDULETABLE_RUNNING_AND_SYNCHRONOUS (or
SCHEDULETABLE_RUNNING) then SetScheduleTableAsync() shall set (or keep in
case of SCHEDULETABLE_RUNNING) the status of <ScheduleTableID> to

SCHEDULETABLE_RUNNING. ⌋ ()

139 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

[OS527] ⌈Availability of SetScheduleTableAsync(): Available in Scalability

Classes 2 and 4. ⌋ ()

8.4.15 GetScheduleTableStatus

[OS227] ⌈
GetScheduleTableStatus Service name:
StatusType GetScheduleTableStatus(
 ScheduleTableType ScheduleTableID,
 ScheduleTableStatusRefType ScheduleStatus
)

Syntax:

0x0e Service ID[hex]:
Synchronous Sync/Async:
Reentrant Reentrancy:

Parameters (in): ScheduleTableID Schedule table for which status is requested
Parameters
(inout):

None

Parameters (out): ScheduleStatus Reference to ScheduleTableStatusType

Return value:
StatusType E_OK: No Error

E_OS_ID (only in EXTENDED status): Invalid ScheduleTableID
This service queries the state of a schedule table (also with respect to
synchronization).

Description:

⌋ (BSW11002)
[OS289] ⌈If the schedule table <ScheduleTableID> in a call of
GetScheduleTableStatus() is NOT started, GetScheduleTableStatus()
shall pass back SCHEDULETABLE_STOPPED via the reference parameter
<ScheduleStatus> AND shall return E_OK. ⌋ ()

[OS353] ⌈If the schedule table <ScheduleTableID> in a call of
GetScheduleTableStatus() was used in a NextScheduleTable() call AND
waits for the end of the current schedule table, GetScheduleTableStatus() shall
return SCHEDULETABLE_NEXT via the reference parameter <ScheduleStatus> AND

shall return E_OK. ⌋ ()

[OS354] ⌈If the schedule table <ScheduleTableID> in a call of
GetScheduleTableStatus() is configured with explicit synchronization AND
<ScheduleTableID> was started with StartScheduleTableSynchron()AND no
synchronization count was provided to the Operating System,
GetScheduleTableStatus() shall return SCHEDULETABLE_WAITING via the

reference parameter <ScheduleStatus> AND shall return E_OK. ⌋ ()

140 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

[OS290] ⌈If the schedule table <ScheduleTableID> in a call of
GetScheduleTableStatus() is started AND synchronous,
GetScheduleTableStatus() shall pass back
SCHEDULETABLE_RUNNING_AND_SYNCHRONOUS via the reference parameter

<ScheduleStatus> AND shall return E_OK. ⌋ ()

Specification of Operating System
 V5.0.0

R4.0 Rev 3

[OS291] ⌈If the schedule table <ScheduleTableID> in a call of
GetScheduleTableStatus() is started AND NOT synchronous (deviation is not
within the precision interval OR the schedule table has been set asynchronous),
GetScheduleTableStatus() shall pass back SCHEDULETABLE_RUNNING via the

reference parameter ScheduleStatus AND shall return E_OK. ⌋ ()

[OS293] ⌈If the identifier <ScheduleTableID> in a call of
GetScheduleTableStatus() is NOT valid, GetScheduleTableStatus() shall

return E_OS_ID. ⌋ ()

[OS528] ⌈Availability of GetScheduleTableStatus():Available in all Scalability

Classes. ⌋ ()

8.4.16 IncrementCounter

[OS399] ⌈
IncrementCounter Service name:
StatusType IncrementCounter(
 CounterType CounterID
)

Syntax:

Service ID[hex]: 0x0f
Sync/Async: Synchronous, may cause rescheduling
Reentrancy: Reentrant
Parameters (in): CounterID The Counter to be incremented

None Parameters
(inout):
Parameters (out): None

Return value:

StatusType E_OK: No errors
E_OS_ID (only in EXTENDED status): The CounterID was not valid or
counter is implemented in hardware and can not be incremented by
software

Description: This service increments a software counter.

⌋ ()
[OS285] ⌈If the input parameter <CounterID> in a call of IncrementCounter() is
not valid OR the counter is a hardware counter, IncrementCounter() shall return

E_OS_ID. ⌋ ()

[OS286] ⌈If the input parameter of IncrementCounter() is valid,
IncrementCounter() shall increment the counter <CounterID> by one (if any
alarm connected to this counter expires, the given action, e.g. task activation, is

done) and shall return E_OK. ⌋ (BSW11020)

[OS321] ⌈If in a call of IncrementCounter() an error happens during the execution
of an alarm action, e.g. E_OS_LIMIT caused by a task activation,

141 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

IncrementCounter() shall call the error hook(s), but the IncrementCounter()

service itself shall return E_OK. ⌋ ()

[OS529] ⌈Caveats of IncrementCounter(): If called from a task, rescheduling may

take place. ⌋ ()

[OS530] ⌈Availability of IncrementCounter(): Available in all Scalability Classes. ⌋
()

8.4.17 GetCounterValue

[OS383] ⌈
GetCounterValue Service name:
StatusType GetCounterValue(
 CounterType CounterID,
 TickRefType Value
)

Syntax:

0x10 Service ID[hex]:
Synchronous Sync/Async:
Reentrant Reentrancy:

Parameters (in): CounterID The Counter which tick value should be read
Parameters
(inout):

None

Parameters (out): Value Contains the current tick value of the counter

Return value:
StatusType E_OK: No errors

E_OS_ID (only in EXTENDED status): The <CounterID> was not
valid

This service reads the current count value of a counter (returning either the
hardware timer ticks if counter is driven by hardware or the software ticks when
user drives counter).

Description:

⌋ (SWFRT00025)

[OS376] ⌈If the input parameter <CounterID> in a call of GetCounterValue() is not

valid, GetCounterValue() shall return E_OS_ID. ⌋ ()

[OS377] ⌈If the input parameter <CounterID> in a call of GetCounterValue() is
valid, GetCounterValue() shall return the current tick value of the counter via

<Value> and return E_OK. ⌋ (SWFRT00033)

[OS531] ⌈Caveats of GetCounterValue(): Note that for counters of
OsCounterType = HARDWARE the real timer value (the – possibly adjusted –
hardware value, see OS384) is returned, whereas for counters of OsCounterType

= SOFTWARE the current “software” tick value is returned. ⌋ ()

[OS532] ⌈Availability of GetCounterValue(): Available in all Scalability Classes. ⌋ (
)

142 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

8.4.18 GetElapsedValue

[OS392] ⌈
GetElapsedValue Service name:
StatusType GetElapsedValue(
 CounterType CounterID,
 TickRefType Value,
 TickRefType ElapsedValue
)

Syntax:

0x11 Service ID[hex]:
Synchronous Sync/Async:
Reentrant Reentrancy:

Parameters (in): CounterID The Counter to be read
Parameters
(inout):

Value in: the previously read tick value of the counter
out: the current tick value of the counter

ElapsedValue The difference to the previous read value Parameters (out):
StatusType E_OK: No errors

E_OS_ID (only in EXTENDED status): The CounterID was not
valid
E_OS_VALUE (only in EXTENDED status): The given Value was
not valid

Return value:

This service gets the number of ticks between the current tick value and a
previously read tick value.

Description:

⌋ (SWFRT00025)

[OS381] ⌈If the input parameter <CounterID> in a call of GetElapsedValue() is not

valid GetElapsedValue() shall return E_OS_ID. ⌋ ()

[OS391] ⌈If the <Value> in a call of GetElapsedValue() is larger than the max

allowed value of the <CounterID>, GetElapsedValue() shall return E_OS_VALUE. ⌋
()

[OS382] ⌈If the input parameters in a call of GetElapsedValue() are valid,
GetElapsedValue() shall return the number of elapsed ticks since the given

<Value> value via <ElapsedValue> and shall return E_OK. ⌋ (SWFRT00034)

[OS460] ⌈GetElapsedValue() shall return the current tick value of the counter in

the <Value> parameter. ⌋ ()

[OS533] ⌈Caveats of GetElapsedValue():If the timer already passed the <Value>
value a second (or multiple) time, the result returned is wrong. The reason is that the

service can not detect such a relative overflow. ⌋ ()

[OS534] ⌈Availability of GetElapsedValue(): Available in all Scalability Classes. ⌋ (
)

143 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

8.4.19 TerminateApplication

[OS258] ⌈
TerminateApplication Service name:
StatusType TerminateApplication(
 ApplicationType Application,
 RestartType RestartOption
)

Syntax:

0x12 Service ID[hex]:
Synchronous Sync/Async:
Reentrant Reentrancy:
Application The identifier of the OS-Application to be terminated. If the caller

belongs to <Application> the call results in a self termination.
Parameters (in):

RestartOption Either RESTART for doing a restart of the OS-Application or
NO_RESTART if OS-Application shall not be restarted.

Parameters
(inout):

None

Parameters (out): None

Return value:

StatusType E_OK: No errors
E_OS_ID: <Application> was not valid (only in EXTENDED status)
E_OS_VALUE: <RestartOption> was neither RESTART nor
NO_RESTART (only in EXTENDED status)
E_OS_ACCESS: The caller does not have the right to terminate
<Application> (only in EXTENDED status)
E_OS_STATE: The state of <Application> does not allow
terminating <Application>

Description: This service terminates the OS-Application to which the calling Task/Category 2
ISR/application specific error hook belongs.

⌋ ()
[OS493] ⌈If the input parameter <Application> in a call of
TerminateApplication() is not valid TerminateApplication() shall return

E_OS_ID. ⌋ ()

[OS459] ⌈If the <RestartOption> in a call of TerminateApplication() is invalid,

TerminateApplication() shall return E_OS_VALUE. ⌋ ()

[OS494] ⌈If the input parameter <Application> in a call of
TerminateApplication() is valid AND the caller belongs to a non-trusted OS-
Application AND the caller does not belong to <Application>

TerminateApplication() shall return E_OS_ACCESS. ⌋ ()

[OS507] ⌈If the state of <Application> in a call of TerminateApplication() is

APPLICATION_TERMINATED TerminateApplication() shall return E_OS_STATE. ⌋ (
)

[OS508] ⌈If the state of <Application> in a call of TerminateApplication() is
APPLICATION_RESTARTING and the caller does not belong to the <Application> then

TerminateApplication() shall return E_OS_STATE. ⌋ ()

144 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

[OS548] ⌈If the state of <Application> in a call of TerminateApplication() is
APPLICATION_RESTARTING AND the caller does belong to the <Application> AND the
<RestartOption> is equal RESTART then TerminateApplication() shall return

E_OS_STATE. ⌋ ()

[OS287] ⌈If the parameters in a call of TerminateApplication() are valid and the
above criteria are met TerminateApplication() shall terminate <Application>
(i.e. to kill all tasks, disable the interrupt sources of those ISRs which belong to the
OS-Application and free all other OS resources associated with the application) AND
shall activate the configured OsRestartTask of <Application> if <RestartOption>
equals RESTART. If the <Application> is restarted, its state is set to
APPLICATION_RESTARTING otherwise to APPLICATION_TERMINATED. If the caller
belongs to <Application> TerminateApplication() shall not return, otherwise it

shall return E_OK. ⌋ ()

[OS535] ⌈Caveats of TerminateApplication():

 If no applications are configured the implementation shall make sure that this
service is not available.

 Tasks and interrupts that are owned by a trusted application can terminate any
OS-Application. Tasks and interrupts that are owned by a non-trusted
application can only terminate their owning OS-Application. ⌋ ()

[OS536] ⌈Availability of TerminateApplication(): Available in Scalability Classes

3 and 4. ⌋ ()

8.4.20 AllowAccess

[OS501] ⌈
Service name: AllowAccess
Syntax: StatusType AllowAccess(

 void
)

Service ID[hex]: 0x13
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): None

None Parameters
(inout):
Parameters (out): None

Return value:
StatusType E_OK: No errors

E_OS_STATE:The OS-Application of the caller is in the wrong
state

Description: This service sets the own state of an OS-Application from
APPLICATION_RESTARTING to APPLICATION_ACCESSIBLE.

⌋ ()

145 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

[OS497] ⌈If the state of the OS-Application of the caller of AllowAccess() is not

APPLICATION_RESTARTING AllowAccess() shall return E_OS_STATE. ⌋ ()

[OS498] ⌈If the state of the OS-Application of the caller of AllowAccess() is
APPLICATION_RESTARTING, AllowAccess() shall set the state to
APPLICATION_ACCESSIBLE and allow other OS-Applications to access the

configured objects of the callers OS-Application. ⌋ ()

[OS547] ⌈Availability of AllowAccess(): Available in Scalability Classes 3 and 4. ⌋ (
)

8.4.21 GetApplicationState

[OS499] ⌈
GetApplicationState Service name:
StatusType GetApplicationState(
 ApplicationType Application,
 ApplicationStateRefType Value
)

Syntax:

0x14 Service ID[hex]:
Synchronous Sync/Async:
Reentrant Reentrancy:

Parameters (in): Application The OS-Application from which the state is requested
Parameters
(inout):

None

Value The current state of the application Parameters (out):
StatusType E_OK: No errors

E_OS_ID: <Application> is not valid (only in EXTENDED status)
Return value:

Description: This service returns the current state of an OS-Application.

⌋ ()
[OS495] ⌈If the <Application> in a call of GetApplicationState() is not valid

GetApplicationState() shall return E_OS_ID. ⌋ ()

[OS496] ⌈If the parameters in a call of GetApplicationState() are valid,
GetApplicationState() shall return the state of OS-Application <Application> in

<Value>.⌋ ()

[OS537] ⌈Availability of GetApplicationState(): Available in Scalability Classes

3 and 4. ⌋ ()

8.4.22 GetNumberOfActivatedCores

[OS672] ⌈

146 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Service name: GetNumberOfActivatedCores

Specification of Operating System
 V5.0.0

R4.0 Rev 3

uint32 GetNumberOfActivatedCores(
 void
)

Syntax:

OS_ServiceID_GetNumberOfActivatedCores Service ID[hex]:
Synchronous Sync/Async:
Reentrant Reentrancy:
None Parameters (in):
None Parameters

(inout):
None Parameters (out):
uint32 Number of cores activated by the StartCore function (see below) Return value:

Description: The function returns the number of cores activated by the StartCore function.
This function might be a macro.

⌋ (BSW4080001)
The function GetNumberOfActivatedCores shall be callable from within a TASK
and an ISR cat 2. Otherwise the behavior is unspecified.

[OS673] ⌈The return value of GetNumberOfActivatedCores shall be less or

equal to the configured value of “OsNumberOfCores”. ⌋ (BSW4080001)
8.4.23 GetCoreID

[OS674] ⌈

Service name: GetCoreID
Syntax: CoreIdType GetCoreID(

 void
)
OS_ServiceID_GetCoreID Service ID[hex]:
Synchronous Sync/Async:
Reentrant Reentrancy:
None Parameters (in):
None Parameters

(inout):
None Parameters (out):
CoreIdType The return value is the unique ID of the core. Return value:
The function returns a unique core identifier. Description:

⌋ (BSW4080001)

[OS675] ⌈The function GetCoreID shall return the unique logical CoreID of the core
on which the function is called. The mapping of physical cores to logical CoreIDs is

implementation specific. ⌋ (BSW4080001)

8.4.24 StartCore

[OS676] ⌈

StartCore Service name:
void StartCore(
 CoreIdType CoreID,
 StatusType* Status
)

Syntax:

Service ID[hex]: OS_ServiceID_StartCore
147 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

Synchronous Sync/Async:
Non Reentrant Reentrancy:

Parameters (in): CoreID Core identifier
Parameters
(inout):

None

Status Return value of the function in extended status:
E_OK: No Error
E_OS_ID: Core ID is invalid.
E_OS_ACCESS: The function was called after starting the OS.
E_OS_STATE: The Core is already activated.

Return value of the function in standard status
E_OK: No Error

Parameters (out):

None Return value:
It is not supported to call this function after StartOS(). The function starts the core
specified by the parameter CoreID. The OUT parameter allows the caller to check
whether the operation was successful or not. If a core is started by means of this
function StartOS shall be called on the core.

Description:

⌋ (BSW4080006, BSW4080026, BSW4080027)

[OS677] ⌈The function StartCore shall start one core that shall run under the control

of the AUTOSAR OS. ⌋ (BSW4080006, BSW4080026, BSW4080027)

[OS678] ⌈Calls to the StartCore function after StartOS() shall return

with E_OS_ACCESS and the core shall not be started. ⌋ (BSW4080006, BSW4080026,

BSW4080027)

[OS679] ⌈If the parameter CoreIDs refers to a core that was already started by the
function StartCore the related core is ignored and E_OS_STATE shall be returned.
⌋ (BSW4080006, BSW4080026, BSW4080027)

[OS680] ⌈If the parameter CoreID refers to a core that was already started by the
function StartNonAutosarCore the related core is ignored and E_OS_STATE

shall be returned. ⌋ (BSW4080006, BSW4080026, BSW4080027)

[OS681] ⌈There is no call to the ErrorHook() if an error occurs during

StartCore();⌋ (BSW4080006, BSW4080026, BSW4080027)

8.4.25 StartNonAutosarCore

[OS682] ⌈

StartNonAutosarCore Service name:
Syntax: void StartNonAutosarCore(

 CoreIdType CoreID,
 StatusType* Status
)

Service ID[hex]: OS_ServiceID_StartNonAutosarCore
Sync/Async: Synchronous

148 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

Reentrancy: Non Reentrant
Parameters (in): CoreID Core identifier
Parameters
(inout):

None

Status Return value of the function in standard status:
E_OK: No Error
E_OS_ID: Core ID is invalid.
E_OS_STATE: The Core is already activated.

Return value of the function in extended status
E_OK: No Error

Parameters (out):

None Return value:
The function starts the core specified by the parameter CoreID. It is allowed to call
this function after StartOS().
The OUT parameter allows the caller to check whether the operation was
successful or not. It is not allowed to call StartOS on cores activated by
StartNonAutosarCore. Otherwise the behaviour is unspecified.

Description:

⌋ (BSW4080006, BSW4080026, BSW4080027)

[OS683] ⌈The function StartNonAutosarCore shall start a core that is not

controlled by the AUTOSAR OS. ⌋ (BSW4080006, BSW4080026, BSW4080027)

[OS684] ⌈If the parameter CoreID refers to a core that was already started by the
function StartNonAutosarCore has no effect and sets “Status” to E_OS_STATE.
⌋ (BSW4080006, BSW4080026, BSW4080027)

[OS685] ⌈If the parameter CoreID refers to an unknown core the function

StartNonAutosarCore has no effect and sets “Status to E_OS_ID. ⌋ (BSW4080006,

BSW4080026, BSW4080027)

8.4.26 GetSpinlock

[OS686] ⌈

Service name: GetSpinlock
Syntax: StatusType GetSpinlock(

 SpinlockIdType SpinlockId
)

Service ID[hex]: OS_ServiceID_GetSpinlock
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): SpinlockId The value refers to the spinlock instance that shall be locked.
Parameters
(inout):

None

None Parameters (out):
StatusType

Return value:

E_OK - In standard and extended status : No Error
E_OS_ID - In extended status: The SpinlockId is invalid
E_OS_INTERFERENCE_DEADLOCK - In extended status: A TASK
tries to occupy the spinlock while the lock is already occupied by a
TASK on the same core. This would cause a deadlock.
E_OS_NESTING_DEADLOCK - In extended status: A TASK tries to
occupy the spinlock while holding a different spinlock in a way that
may cause a deadlock.

149 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

E_OS_ACCESS - In extended status: The spinlock cannot be
accessed.

Description: GetSpinlock tries to occupy a spin-lock variable. If the function returns, either the
lock is successfully taken or an error has occurred. The spinlock mechanism is an
active polling mechanism. The function does not cause a de-scheduling.

⌋ (BSW4080021)

[OS687] ⌈The function GetSpinlock shall occupy a spinlock. If the spinlock is

already occupied the function shall busy wait until the spinlock becomes available. ⌋
(BSW4080021)

[OS688] ⌈The function GetSpinlock shall return E_OK if no error was detected.

The spinlock is now occupied by the calling TASK/ISR2 on the calling core. ⌋
(BSW4080021)

[OS689] ⌈The function GetSpinlock shall return E_OS_ID if the parameter

SpinlockID refers to a spinlock that does not exist. ⌋ (BSW4080021)

[OS690] ⌈The function GetSpinlock shall return
E_OS_INTERFERENCE_DEADLOCK if the spinlock referred by the parameter

SpinlockID is already occupied by a TASK/ISR2 on the same core. ⌋ (BSW4080021)

[OS691] ⌈The function GetSpinlock shall return E_OS_NESTING_DEADLOCK if
the sequence by which multiple spinlocks are occupied at the same time do not

comply with the configured order. ⌋ (BSW4080021)

[OS692] ⌈The function GetSpinlock shall return E_OS_ACCESS if the accessing

OS-Application was not listed in the configuration (OsSpinlock). ⌋ (BSW4080021)

[OS693] ⌈It shall be allowed to call the function GetSpinlock while interrupts are

disabled. ⌋ (BSW4080021)

[OS694] ⌈It shall be allowed to call the function GetSpinlock while a RESOURCE

is occupied. ⌋ (BSW4080021)

8.4.27 ReleaseSpinlock

[OS695] ⌈

Service name: ReleaseSpinlock
Syntax: StatusType ReleaseSpinlock(

 SpinlockIdType SpinlockId
)
OS_ServiceID_ReleaseSpinlock Service ID[hex]:
Synchronous Sync/Async:

Reentrancy: Reentrant

150 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

SpinlockId The value refers to the spinlock instance that shall be locked. Parameters (in):
None Parameters

(inout):
None Parameters (out):

Return value:

StatusType E_OK - In standard and extended status: No Error
E_OS_ID - In extended status: The SpinlockId is invalid.
E_OS_STATE - In extended status: The Spinlock is not occupied by
the TASK
E_OS_ACCESS - In extended status: The Spinlock cannot be
accessed.
E_OS_NOFUNC - In extended status: Attempt to release a spinlock
while another spinlock has to be released before.

Description: ReleaseSpinlock releases a spinlock variable that was occupied before. Before
terminating a TASK all spinlock variables that have been occupied with
GetSpinlock() shall be released. Before calling WaitEVENT all Spinlocks shall be
released.

⌋ (BSW4080021)

[OS696] ⌈The function ReleaseSpinlock shall release a spinlock that has been

occupied by the same (calling) TASK. ⌋ (BSW4080021)

[OS697] ⌈The function ReleaseSpinlock shall return E_OK if no error was
detected. The spinlock is now free and can be occupied by the same or other TASKs.
⌋ (BSW4080021)

[OS698] ⌈The function ReleaseSpinlock shall return E_OS_ID if the parameter

SpinlockID refers to a spinlock that does not exist. ⌋ (BSW4080021)

[OS699] ⌈The function ReleaseSpinlock shall return E_OS_STATE if the
parameter SpinlockID refers to a spinlock that is not occupied by the calling TASK.
⌋ (BSW4080021)

[OS700] ⌈The function ReleaseSpinlock shall return E_OS_ACCESS if the TASK

has no access to the spinlock referred by the parameter SpinlockID⌋ (BSW4080021)

[OS701] ⌈The function ReleaseSpinlock shall return E_OS_NOFUNC if the TASK
tries to release a spinlock while another spinlock has to be released before. No

functionality shall be performed. ⌋ (BSW4080021)

[OS702] ⌈Spinlocks and RESOURCEs can only be locked and unlocked in strict

LIFO order. Otherwise E_OS_RESOURCE shall be returned. ⌋ (BSW4080021)

8.4.28 TryToGetSpinlock

[OS703] ⌈

Service name: TryToGetSpinlock

151 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

StatusType TryToGetSpinlock(
 SpinlockIdType SpinlockId,
 TryToGetSpinlockType* Success
)

Syntax:

OS_ServiceID_TryToGetSpinlock Service ID[hex]:
Synchronous Sync/Async:
Reentrant Reentrancy:
SpinlockId The value refers to the spinlock instance that shall be locked. Parameters (in):
None Parameters

(inout):
Parameters (out): Success Returns if the lock has been occupied or not

Return value:

StatusType E_OK - In standard and extended status: No Error
E_OS_ID - In extended status: The SpinlockId is invalid.
E_OS_INTERFERENCE_DEADLOCK - In extended status: A TASK
tries to occupy the spinlock while the lock is already occupied by a
TASK on the same core. This would cause a deadlock.
E_OS_NESTING_DEADLOCK - In extended status: A TASK tries to
occupy a spinlock while holding a different spinlock in a way that may
cause a deadlock.
E_OS_ACCESS - In extended status: The spinlock cannot be
accessed.

Description: TryToGetSpinlock has the same functionality as GetSpinlock with the difference
that if the spinlock is already occupied by a TASK on a different core the function
sets the OUT parameter "Success" and returns with E_OK.

⌋ (BSW4080021)

[OS704] ⌈The function TryToGetSpinlock shall atomically test the availability of

the spinlock and if available occupy it. The result of success is returned. ⌋
(BSW4080021)

[OS705] ⌈The function TryToGetSpinlock shall set the OUT parameter
“Success” to TRYTOGETSPINLOCK_SUCCESS if the spinlock was successfully
occupied, and TRYTOGETSPINLOCK_NOSUCCESS if not. In both cases E_OK shall

be returned. ⌋ (BSW4080021)

[OS706] ⌈If the function TryToGetSpinlock does not return E_OK, the OUT

parameter "Success" shall be undefined. ⌋ (BSW4080021)

[OS707] ⌈The function TryToGetSpinlock shall return E_OS_ID if the parameter

SpinlockID refers to a spinlock that does not exist. ⌋ (BSW4080021)

[OS708] ⌈The function TryToGetSpinlock shall return
E_OS_INTERFERENCE_DEADLOCK if the spinlock referred by the parameter

SpinlockID is already occupied by a TASK on the same core. ⌋ (BSW4080021)

[OS709] ⌈The function TryToGetSpinlock shall return
E_OS_NESTING_DEADLOCK if a TASK tries to occupy a spinlock while holding a

different spinlock in a way that may cause a deadlock. ⌋ (BSW4080021)

152 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

[OS710] ⌈The function TryToGetSpinlock shall return E_OS_ACCESS if the TASK

has no access to the spinlock referred by the parameter SpinlockID⌋ (BSW4080021)

[OS711] ⌈It shall be allowed to call the function TryToGetSpinlock while interrupts

are disabled. ⌋ (BSW4080021)

[OS712] ⌈It shall be allowed to call the function TryToGetSpinlock while a

RESOURCE is occupied. ⌋ (BSW4080021)

8.4.29 ShutdownAllCores

[OS713] ⌈

ShutdownAllCores Service name:
void ShutdownAllCores(
 StatusType Error
)

Syntax:

OS_ServiceID_ShutdownAllCores Service ID[hex]:
Synchronous Sync/Async:

Reentrancy: Reentrant
Parameters (in): Error <Error> needs to be a valid error code supported by the AUTOSAR OS.

None Parameters
(inout):
Parameters (out): None
Return value: None

After this service the OS on all AUTOSAR cores is shut down. Allowed at TASK
level and ISR level and also internally by the OS. The function will never return.
The function will force other cores into a shutdown.

Description:

⌋ (BSW4080007)

[OS714] ⌈A Synchronized shutdown shall be triggered by the API function

ShutdownAllCores. ⌋ (BSW4080007)

[OS715] ⌈ShutdownAllCores shall not return. ⌋ (BSW4080007)

[OS716] ⌈If ShutdownAllCores is called from non trusted code the
call shall be ignored. ⌋ (BSW4080007)

8.5 IOC

8.5.1 Imported types

In this chapter all types included from the following files are listed:

153 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

154 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Module Imported Type
...
<Data1>
<Data2>

GENERIC TYPES

<Data>
Std_Types Std_ReturnType

8.5.2 Type definitions

None

8.5.3 Constants

Name Communic
ation

Type Errorname /
Value

Annotation

IOC_E_OK All,
SND/RCV

Std_ReturnType RTE_E_OK / 0

No error occurred

IOC_E_NOK All Std_ReturnType RTE_E_NOK / 1 Error occurred. Shall be
used to identify error cases
without error specification.

SND/RCV

Std_ReturnType IOC_E_LIMIT RTE_E_LIMIT /
130

Queued In case of “event” (queued)
semantic, the internal buffer
within the IOC
communication service is
full (Case: Receiver slower
than sender). This error
produces additionally an
Overlayed Error on the
receiver side at the next
data reception.

SND

Std_ReturnType Overlayed Error IOC_E_LOST_D
ATA

Queued In case of “event” (queued)
semantic, this Overlayed
Error indicates that the IOC
service refuses an IocSend
request due to internal
buffer overflow.

RCV RTE_E_LOST_DATA
/ 64

IOC_E_NO_DAT
A

Queued
RCV

Std_ReturnType RTE_E_NO_DATA /
131

In case of “event” (queued)
semantic, no data is
available for reception.

Specification of Operating System
 V5.0.0

R4.0 Rev 3

8.5.4 Function definitions

8.5.4.1 IocSend/IocWrite

The IocWrite API call is generated for "data" (unqueued) semantics and the
IocSend API call is generated for "events" (queued) semantics.

[OS718] ⌈

Service name: IocSend_<IocId>[_<SenderId>]
Syntax: Std_ReturnType IocSend_<IocId>[_<SenderId>](

 <Data> IN
)
IOCServiceId_IOC_Send Service ID[hex]:
Asynchronous Sync/Async:
This function is generated individually for each sender. The individual function is
not reentrant (if called from different runnable entities that belong to the same
sender), but different functions can be called in parallel.

Reentrancy:

IN Data value to be sent over a communication identified by the
<IocId>. The parameter will be passed by value for primitive data
elements and by reference for all other types.

Example:
Std_ReturnType IocSend_RTE_25 (const uint32 UI_Value);
Std_ReturnType IocSend_RTE_42 (const TASKParams3
*pStr_Value);

Parameters (in):

None Parameters
(inout):

None Parameters (out):
Std_ReturnType IOC_E_OK: The data has been passed successfully to the

communication service.

IOC_E_LIMIT: IOC internal communication buffer is full (Case:
Receiver is slower than sender). This error produces an
IOC_E_LOST_DATA Overlayed Error on the receiver side at the
next data reception.

Return value:

Performs an "explicit" sender-receiver transmission of data elements with "event"
semantic for a unidirectional 1:1 or N:1 communication between OS-Applications
located on the same or on different cores.

<IocId> is a unique identifier that references a unidirectional 1:1 or N:1
communication.

<SenderId> is used only in N:1 communication. Together with <IocId>, it uniquely
identifies the sender. It is separated from <IocId> with an underscore. In case of
1:1 communication, it shall be omitted.

Description:

IocWrite_<IocId>[_<SenderId>] Service name:
Syntax: Std_ReturnType IocWrite_<IocId>[_<SenderId>](

 <Data> IN
)

155 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

IOCServiceId_IOC_Write Service ID[hex]:
Asynchronous Sync/Async:

Reentrancy: This function is generated individually for each sender. The individual function is
not reentrant (if called from different runnable entities that belong to the same
sender), but different functions can be called in parallel.

Parameters (in):

IN Data value to be sent over a communication identified by the
<IocId>. The parameter will be passed by value for primitive data
elements and by reference for all other types.

Example:
Std_ReturnType IocWrite_RTE_25 (const uint32 UI_Value);
Std_ReturnType IocWrite_RTE_42 (const TASKParams3
*pStr_Value);

None Parameters
(inout):

None Parameters (out):
Std_ReturnType IOC_E_OK: The data has been passed successfully to the

communication service. Return value:

Performs an "explicit" sender-receiver transmission of data elements with "data"
semantic for a unidirectional 1:1 or N:1 communication between OS-Applications
located on the same or on different cores.

<IocId> is a unique identifier that references a unidirectional 1:1 or N:1
communication.

<SenderId> is used only in N:1 communication. Together with <IocId>, it uniquely
identifies the sender. It is separated from <IocId> with an underscore. In case of
1:1 communication, it shall be omitted.

Description:

⌋ (BSW4080020)
General:
[OS719] ⌈IocSend/IocWrite is asynchronous in that way it shall not have to wait
for the reception of the data on the receiving side to return from execution. ⌋
(BSW4080020)

[OS720] ⌈The IocSend/IocWrite function shall not return until the data given in
parameter have been completely physically sent over the communication medium.

For example in case of communication over shared RAM, an IocSend/IocWrite
shall return when all data have been copied in the target shared RAM. ⌋ (BSW4080020)

[OS721] ⌈In case of “event” (queued) semantic, the IocSend function shall
guarantee the order of delivery. In case of senders from different cores, the order in

which messages are received will be determined by the implementation. ⌋
(BSW4080020)

[OS722] ⌈The IocSend/IocWrite function shall support mechanism to guarantee
data-Integrity during transmission.

The IocSend/IocWrite function shall solve the crossing of the protection
boundaries of OS-Applications. It has to be generated in case of intra-core and inter-

core communication. ⌋ (BSW4080020)

156 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

Parameters:

[OS723] ⌈The IN <Data> parameter of the IocSend/IocWrite function shall be

passed by value for primitive data types and by reference for all other types. ⌋
(BSW4080020)

[OS724] ⌈For data passed by reference, the IocSend/IocWrite function shall

guarantee upon return that the parameter reference is safe for re-use. ⌋ (BSW4080020)

Returned values:

[OS725] ⌈The IocSend/IocWrite function shall return IOC_E_OK if the data was

passed successfully to the communication service. ⌋ (BSW4080020)

[OS726] ⌈In case of “event” semantic the IocSend function shall return
IOC_E_LIMIT if an IOC internal transmission buffer became full (Case: Receiver is
slower than sender or/and configured internal IOC buffer size is too small).
If this error occurs the IOC internal buffer could not be filled with the parameter. In
that case this error shall produce an IOC_E_LOST_DATA Overlayed Error on the

receiver side at the next data reception (s. OS745). ⌋ (BSW4080020)

Internal structures:

[OS727] ⌈In case of “event” semantic the IOC shall configure its internal transmission

buffer size with the value of the attribute OsIocBufferLength. ⌋ (BSW4080020)

8.5.4.2 IocSendGroup/IocWriteGroup

The IocWriteGroup API call is generated for "data" (unqueued) semantics and the
IocSendGroup API call is generated for "events" (queued) semantics.

[OS728] ⌈

Service name: IocSendGroup_<IocId>
Syntax: Std_ReturnType IocSendGroup_<IocId>(

 <Data1> IN1,
 <Data2> IN2,
 ...
)

Service ID[hex]: IOCServiceId_IOC_SendGroup
Sync/Async: Asynchronous
Reentrancy: This function is generated individually for each sender. The individual function is

not reentrant (if called from different runnable entities that belong to the same
sender), but different functions can be called in parallel.

Parameters (in):

IN1 List of parameters with data values to be sent over a
communication identified by the <IocId>. The parameters will be
passed by value for simple data elements and by reference for all
other types.

157 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

Example:

Std_ReturnType IocSendGroup_RTE_G1 (const uint32
UI_Value1, const uint16 Value2, const uint8 Value3, const uint16
Value4);

IN2 --
-- --

Parameters
(inout):

None

Parameters (out): None

Return value:

Std_ReturnType IOC_E_OK: The data has been passed successfully to the
communication service.

IOC_E_LIMIT: IOC internal communication buffer is full (Case:
Receiver is slower than sender). This error produces an
IOC_E_LOST_DATA Overlayed Error on the receiver side at the
next data reception.

Description: Performs an "explicit" sender-receiver transmission of data elements with "event"
semantic for a unidirectional 1:1 communication between OS-Applications located
on the same or on different cores.

This API involves a group of data elements which values are specified in
parameter.

<IocId> is a unique identifier that references a unidirectional 1:1 communication
involving many data elements.

Service name: IocWriteGroup_<IocId>
Syntax: Std_ReturnType IocWriteGroup_<IocId>(

 <Data1> IN1,
 <Data2> IN2,
 ...
)
IOCServiceId_IOC_WriteGroup Service ID[hex]:
Asynchronous Sync/Async:
This function is generated individually for each sender. The individual function is
not reentrant (if called from different runnable entities that belong to the same
sender), but different functions can be called in parallel.

Reentrancy:

IN1 List of parameters with data values to be sent over a
communication identified by the <IocId>. The parameters will be
passed by value for simple data elements and by reference for all
other types.

Example:

Std_ReturnType IocWriteGroup_RTE_G1 (const uint32
UI_Value1, const uint16 Value2, const uint8 Value3, const uint16
Value4);

IN2 --

Parameters (in):

-- --
Parameters
(inout):

None

Parameters (out): None

Return value:
Std_ReturnType IOC_E_OK: The data has been passed successfully to the

communication service.
Description: Performs an "explicit" sender-receiver transmission of data elements with "data"

158 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

semantic for a unidirectional 1:1 communication between OS-Applications located
on the same or on different cores.

This API involves a group of data elements which values are specified in
parameter.

<IocId> is a unique identifier that references a unidirectional 1:1 communication
involving many data elements.

⌋ (BSW4080020)
General:
[OS729] ⌈IocSendGroup/IocWriteGroup is asynchronous in that way it shall not
have to wait for the reception of the data on the receiving side to return from
execution. ⌋ (BSW4080020)

[OS730] ⌈The IocSendGroup/IocWriteGroup function shall not return until the
data given in parameter have been completely physically sent over the
communication medium. For example in case of communication over shared RAM,
an IocSendGroup/IocWriteGroup shall return when all data have been copied
in the target shared RAM. ⌋ (BSW4080020)

[OS731] ⌈In case of “event” semantic, the IocSendGroup function shall guarantee

the order of delivery. ⌋ (BSW4080020)

[OS732] ⌈The IocSendGroup/IocWriteGroup function shall support
mechanisms to guarantee data-Integrity during transmission.

The IocSendGroup/IocWriteGroup function shall solve the crossing of the
protection boundaries of OS-Applications. It has to be generated in case of intra-core

and inter-core communication. ⌋ (BSW4080020)

Parameters:

[OS733] ⌈A parameter IN <Data> may be passed by value for simple data elements

and by reference for all other types. ⌋ (BSW4080020)

[OS734] ⌈For data passed by reference, the IocSendGroup/IocWriteGroup
function shall guarantee upon return that the parameter reference is safe for re-use.
⌋ (BSW4080020)

Returned values:

[OS735] ⌈The IocSendGroup/IocWriteGroup function shall return IOC_E_OK if

the data was passed successfully to the communication service. ⌋ (BSW4080020)

[OS736] ⌈In case of “event” semantic the IocSendGroup function shall return
IOC_E_LIMIT if an IOC internal transmission buffer got full (Case: Receiver is
slower than sender or/and configured internal IOC buffer size is too small).

159 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

If this error occurs the IOC Internal buffer could not be filled with the parameter. In
that case this error produces an IOC_E_LOST_DATA Overlayed Error on the

receiver side at the next data reception. ⌋ (BSW4080020)

Internal structures:

[OS737] ⌈In case of “event” semantic the IOC shall configure its internal transmission

buffer size with the value of the attribute OsIocBufferLength. ⌋ (BSW4080020)

8.5.4.3 IocReceive/IocRead

The IocRead API call is generated for "data" and the IocReceive API call is
generated for "events".

[OS738] ⌈

Service name: IocReceive_<IocId>
Syntax: Std_ReturnType IocReceive_<IocId>(

 <Data> OUT
)
IOCServiceId_IOC_Receive Service ID[hex]:
Synchronous Sync/Async:
This function is generated individually for each receiver. The individual function is
not reentrant (if called from different runnable entities that belong to the same
receiver), but different functions can be called in parallel.

Reentrancy:

None Parameters (in):
None Parameters

(inout):
OUT Data reference to be filled with the received data element. Parameters (out):
Std_ReturnType IOC_E_OK: Data was received successfully

IOC_E_NO_DATA: No data is available for reception.

IOC_E_LOST_DATA: This Overlayed Error indicates that the IOC
communication service refused an IOCSend request from sender
due to an internal buffer overflow. There is no error in the data
returned in parameter.

Return value:

Performs an "explicit" sender-receiver reception of data elements with "event"
semantic for a unidirectional communication between OS-Applications located on
the same or on different cores..

<IocId> is a unique identifier that references a unidirectional 1:1 or N:1
communication.

Description:

IocRead_<IocId> Service name:
Std_ReturnType IocRead_<IocId>(
 <Data> OUT
)

Syntax:

IOCServiceId_IOC_Read Service ID[hex]:
Synchronous Sync/Async:

Reentrancy: This function is generated individually for each receiver. The individual function is
not reentrant (if called from different runnable entities that belong to the same
receiver), but different functions can be called in parallel.

160 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

None Parameters (in):
None Parameters

(inout):
OUT

Parameters (out):
Data reference to be filled with the received data
element.

Return value: Std_ReturnType IOC_E_OK: Data was received successfully
Performs an "explicit" sender-receiver reception of data elements with "data"
semantic for a unidirectional communication between OS-Applications located on
the same or on different cores.

<IocId> is a unique identifier that references a unidirectional 1:1 or N:1
communication.

Description:

⌋ (BSW4080020)
General:
[OS739] ⌈A successful call to the IocReceive/IocRead function indicates that
data has been received successfully in the OUT <Data> given in parameter.

The IocReceive/IocRead function has to be generated in case of intra-core and

inter-core communication. ⌋ (BSW4080020)

[OS740] ⌈If the OsIocReceiverPullCB attribute is defined with a callback function
name, the IOC shall call this function on the receiving core for each data

transmission. ⌋ (BSW4080020)

Parameters:
[OS741] ⌈In case of “data” semantic the IocRead function shall always be able to
deliver the last available datum. In case of senders from different cores, the precision
of the order might be limited by the hardware and implementation. ⌋ (BSW4080020)

[OS742] ⌈The IocReceive/IocRead function shall guarantee upon returning from

execution that the reference given in parameter is safe for use. ⌋ (BSW4080020)

Returned values:

[OS743] ⌈The IocReceive/IocRead function shall return IOC_E_OK if the data

was received successfully in the OUT <Data> parameter. ⌋ (BSW4080020)

[OS744] ⌈In case of “event” semantic and if no data is available the function
IocReceive shall return IOC_E_NO_DATA. ⌋ (BSW4080020)

[OS745] ⌈In case of “event” semantic an IOC_E_LOST_DATA Overlayed Error shall
be returned by the IocReceive function if the IOC communication service refused
an IocSend request from sender due to an internal buffer overflow. There is no
error in the data returned in parameter. ⌋ (BSW4080020)

161 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

8.5.4.4 IocReceiveGroup/IocReadGroup

The IocReadGroup API call is generated for "data" and the IocReceiveGroup
API call is generated for "events".

[OS746] ⌈

Service name: IocReceiveGroup_<IocId>
Syntax: Std_ReturnType IocReceiveGroup_<IocId>(

 <Data1> OUT1,
 <Data2> OUT2,
 ...
)

Service ID[hex]: IOCServiceId_IOC_ReceiveGroup
Sync/Async: Synchronous
Reentrancy: This function is generated individually for each receiver. The individual function is

not reentrant (if called from different runnable entities that belong to the same
receiver), but different functions can be called in parallel.
None Parameters (in):

Parameters
(inout):

None

OUT1 List of data references to be filled with the received data
elements. The specified order of the parameter shall match to the
specified order in the corresponding send function.

OUT2 --
Parameters (out):

-- --
Std_ReturnType IOC_E_OK: Data was received successfully

IOC_E_NO_DATA: No data is available for reception.

IOC_E_LOST_DATA: This Overlayed Error indicates that the IOC
communication service refused an IOCSend request from sender
due to an internal buffer overflow. There is no error in the data
returned in parameter.

Return value:

Performs an "explicit" sender-receiver transmission of data elements with "event"
semantic for a unidirectional 1:1 communication between OS-Applications located
on the same or on different cores.

This API involves a group of data elements which values are specified in
parameter.

<IocId> is a unique identifier that references a unidirectional 1:1 communication
involving many data elements.

Description:

IocReadGroup_<IocId> Service name:
Std_ReturnType IocReadGroup_<IocId>(
 <Data1> OUT1,
 <Data2> OUT2,
 ...
)

Syntax:

IOCServiceId_IOC_ReadGroup Service ID[hex]:

Synchronous Sync/Async:

Reentrancy: This function is generated individually for each receiver. The individual function is
not reentrant (if called from different runnable entities that belong to the same

162 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

receiver), but different functions can be called in parallel.

None Parameters (in):

None Parameters
(inout):

OUT1 List of data references to be filled with the received data
elements. The specified order of the parameter shall match to
the specified order in the corresponding send function.

OUT2 --
Parameters (out):

-- --

Std_ReturnType IOC_E_OK: Data was received successfully Return value:

Performs an "explicit" sender-receiver transmission of data elements with a "data"
semantic for a unidirectional 1:1 communication between OS-Applications located
on the same or on different cores.

This API involves a group of data elements which values are specified in
parameter.

<IocId> is a unique identifier that references a unidirectional 1:1 communication
involving many data elements.

Description:

⌋ (BSW4080020)
General:

[OS747] ⌈A successful call to the IocReceiveGroup/IocReadGroup function
indicates that data has been received successfully in the given parameters.

The IocReceiveGroup/IocReadGroup function has to be generated in case of

intra-core and inter-core communication. ⌋ (BSW4080020)

[OS748] ⌈If the OsIocReceiverPullCB attribute is defined with a callback function
name, the IOC shall call this function on the receiving core for each data

transmission. ⌋ (BSW4080020)

Parameters:

[OS749] ⌈In case of “data” semantic the IocReadGroup function shall always be

able to deliver the last available datum. ⌋ (BSW4080020)

[OS750] ⌈The IocReceiveGroup/IocReadGroup function shall guarantee upon

returning from execution that the references given in parameters are safe for use. ⌋
(BSW4080020)

Returned values:

[OS751] ⌈The IocReceiveGroup/IocReadGroup function shall return IOC_E_OK

if the data was received successfully in the list of references given in parameter. ⌋
(BSW4080020)

[OS752] ⌈In case of “event” semantic and if no data is available the function

IocReceiveGroup shall return IOC_E_NO_DATA. ⌋ (BSW4080020)

163 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

[OS753] ⌈In case of “event” semantic an IOC_E_LOST_DATA Overlayed Error shall
be returned by the IocReceiveGroup function if the IOC communication service
refused an IocSendGroup request from sender due to an internal buffer overflow.
There is no error in the data returned in parameter. ⌋ (BSW4080020)

8.5.4.5 IocEmptyQueue

[OS754] ⌈

IocEmptyQueue_<IocId> Service name:
Std_ReturnType IocEmptyQueue_<IocId>(
 void
)

Syntax:

IOCServiceId_IOC_EmptyQueue Service ID[hex]:
Synchronous Sync/Async:
Non reentrant Reentrancy:

Parameters (in): None
Parameters
(inout):

None

Parameters (out): None

Return value:
Std_ReturnType IOC_E_OK: Content of the queue was successfully

deleted
In case of queued communication identified by the <IocId> in the function name,
the content of the IOC internal communication queue shall be deleted.

Description:

⌋ (BSW4080020)
General:

[OS755] ⌈The function IocEmptyQueue_<IocId> shall be present for all IOC

elements with queued semantics. ⌋ (BSW4080020)

[OS756] ⌈The function IocEmptyQueue_<IocId> shall delete all contents from
the associated data queue.

The IocEmptyQueue should be generated in a more efficient way than an iterative

call to an IocReceive function. ⌋ (BSW4080020)

8.6 Expected Interfaces

In this chapter all interfaces required from other modules are listed.

8.6.1 Mandatory Interfaces

There are no mandatory interfaces for the IOC.

164 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

8.6.2 Optional Interfaces

8.6.2.1 ReceiverPullCB

[OS757] ⌈

<ReceiverPullCB> Service name:
void <ReceiverPullCB>(
 void
)

Syntax:

IOCServiceId_IOC_ReceiverPullCB Service ID[hex]:
Synchronous Sync/Async:
Reentrant Reentrancy:
None Parameters (in):
None Parameters

(inout):
None Parameters (out):

Return value: None
Description: This callback function can be configured for the receiver of a communication. If

configured, IOC calls this callback on the receiving core for each data reception.
<ReceiverPullCB> is the callback function name configured by the receiver in the
OsIocReceiverPullCB attribute to be called on data reception."

⌋ (BSW4080020)

[OS758] ⌈The <ReceiverPullCB> function name shall be defined within a
configuration file for each IOC communication in the OsIocReceiverPullCB

attribute. ⌋ (BSW4080020)

[OS759] ⌈The name of the callback shall be unique over the micro controller. For this
purpose the following example can be considered as orientation for the IOC user:

Example: Rte_IocReceiveCB_<IocId>⌋ (BSW4080020)

[OS760] ⌈The <ReceiverPullCB> function on the receiver side shall have the

same calling rights as a category 2 ISR. ⌋ (BSW4080020)

[OS761] ⌈This notification mechanism shall be supported for both queued and

unqueued communication semantic. ⌋ (BSW4080020)

The owner of the <ReceiverPullCB> function shall pay attention that the execution
time of the function shall not last too long. It shall be possible to call this function from
an IOC-ISR.

165 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

8.7 Hook functions

Hook functions are called by the operating system if specific conditions are met. They
are provided by the user. Besides the ProtectionHook below, the hooks from [17]
and/or extensions from 7.12 may be called by the OS.

8.7.1 Protection Hook

[OS538] ⌈
ProtectionHook Service name:
ProtectionReturnType ProtectionHook(
 StatusType Fatalerror
)

Syntax:

0x00 Service ID[hex]:
Synchronous Sync/Async:
Reentrant Reentrancy:
Fatalerror The error which caused the call to the protection hook Parameters (in):
None Parameters

(inout):
None Parameters (out):
ProtectionReturnType PRO_IGNORE

PRO_TERMINATETASKISR
PRO_TERMINATEAPPL
PRO_TERMINATEAPPL_RESTART
PRO_SHUTDOWN
The return value defines the action the OS shall take
after the protection hook.

Return value:

The protection hook is always called if a serious error occurs. E.g. exceeding the
worst case execution time or violating against the memory protection.

Description:

⌋ ()
Depending on the return value the Operating System module will either:

 forcibly terminate the Task/Category 2 ISR which causes the problem OR
 forcibly terminate the OS-Application the Task/Category 2 ISR belong

(optional with restart) OR
 shutdown the system OR
 do nothing

(see 7.8.2)

[OS308] ⌈If ProtectionHook() returns an invalid value, the Operating System

module shall take the same action as if no protection hook is configured. ⌋ ()

[OS542] ⌈Availability of ProtectionHook(): Available in Scalability Classes 2, 3

and 4. ⌋ ()

8.7.2 Application specific StartupHook

[OS539] ⌈

166 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

Service name: StartupHook_<App>
Syntax: void StartupHook_<App>(

 void
)

Service ID[hex]: 0x00
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): None
Parameters
(inout):

None

Parameters (out): None
Return value: None
Description: The application specific startup hook is called during the start of the OS (after the

user has started the OS via StartOS()).

The application specific StartupHook is always called after the standard
StartupHook() (see OS236) . If more than one OS-Application is configured which
use startup hooks, the order of calls to the startup hooks of the different OS-

Applications is not defined. ⌋ ()

[OS543] ⌈Availability of StartupHook_<App>(): Available in Scalability Classes 3

and 4. ⌋ ()

8.7.3 Application specific ErrorHook

[OS540] ⌈
Service name: ErrorHook_<App>
Syntax: void ErrorHook_<App>(

 StatusType Error
)

Service ID[hex]: 0x00
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): Error The error which caused the call to the error hook
Parameters
(inout):

None

Parameters (out): None
Return value: None
Description: The application specific error hook is called whenever a Task or Category 2 ISR

which belongs to the OS-Application causes an error.

If the general ErrorHook() is configured, the general ErrorHook() is called

before the application specific error hook is called (see OS246). ⌋ ()

[OS544] ⌈Availability of ErrorHook_<App>(): Available in Scalability Classes 3

and 4. ⌋ ()

8.7.4 Application specific ShutdownHook

[OS541] ⌈

167 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

Service name: ShutdownHook_<App>
Syntax: void ShutdownHook_<App>(

 StatusType Fatalerror
)

Service ID[hex]: 0x00
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): Fatalerror The error which caused the action to shut down the operating system.
Parameters
(inout):

None

Parameters (out): None
Return value: None

The application specific shutdown hook is called whenever the system starts the
shut down of itself.

Description:

If the general ShutdownHook() is configured, the general ShutdownHook() is
called after all application specific shutdown hook(s) are called (see OS237). If more
OS-Applications with an application specific shutdown hook exist the order of calls to

these application specific shutdown hooks is not defined. ⌋ ()

[OS545] ⌈Availability of ShutdownHook_<App>(): Available in Scalability Classes

3 and 4. ⌋ ()

168 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

9 Sequence diagrams

9.1 Sequence chart for calling trusted functions

sd Interactions

169 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

calling
OS-Appl.

<trusted
function stub>

operating
system

providing
OS-Appl.

<trusted function stub>

CallTrustedFunction(FunID,FunParPtr)

system call
dispatcheralt Check permission

[denied]

[accepted]

E_OS_SERVICEID

<trusted function>

<CheckAccess>

<Access Information>

E_OK

<return value>

Figure 9.1: System Call sequence chart

The above sequence describes a call to the CallTrustedFunction service. It starts
with a user who calls a service which requires itself a call to a trusted function. The
service then packs the argument for the trusted function into a structure and calls
CallTrustedFunction with the ID and the pointer as arguments. Afterwards the OS
checks if the access to the requested service is valid. If no access is granted
E_OS_SERVICEID is returned. Otherwise the trusted service itself is called and the
function checks the arguments for access right, etc.

Specification of Operating System
 V5.0.0

R4.0 Rev 3

9.2 Sequence chart for usage of ErrorHook

sd Interactions

OS-Appl.

170 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

alt

[condition]

<App>
operating
system

condition: <System service> is called outside an Error Hook
AND both the system-/appl,-specific Error Hook are configured

<system service> which returns
a value of type StatusType

alt

[return != E_OK] ErrorHook (<Error>)

ErrorHook_<App> (<Error>)

StatusType value

Figure 9.2: Error Hook sequence chart

The above sequence chart shows the sequence of error hook calls in case a service
does not return with E_OK. Note that in this case the general error hook and the OS-
Application specific error hook are called.

Specification of Operating System
 V5.0.0

R4.0 Rev 3

9.3 Sequence chart for ProtectionHook

sd Interactions

OS-Appl. <App> /
Task / Category 2

ISR

171 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

break

[protection error]

alt return

[PRO_TERMINATETASKISR]

[PRO_TERMINATEAPPL]

[PRO_TERMINATEAPPL_RESTART]

[PRO_IGNORE]

[PRO_SHUTDOWN]

Processor operating system

«Exception»

ProtectionHook(Fatalerror)

«forced termination of Task/ISR»

«forced termination of
OS-Application»

«forced termination of OS-
Application»

ActivateTask(RESTARTTASK)

Ignore Exception

ShutdownOS

Figure 9.3: Protection Hook sequence chart

The sequence shows the flow of control if a protection error occurs. Depending on
the return values of the ProtectionHook, either the faulty Task/ISR is forcibly
terminated or the OS-Application is forcibly terminated or the system is shut down. If
the action is to terminate the faulty OS-Application an option is to start afterwards the
restart task, which can do a cleanup, etc.

Specification of Operating System
 V5.0.0

R4.0 Rev 3

9.4 Sequence chart for StartupHook

sd Interactions

OS-Appl. <App> operating system

172 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Startup

Normal Operation

StartOS(<Mode>)

Initial

alt

[system-/application-specific Startup Hook are configured]

StartupHook

StartupHook_<App>

Figure 9.4: StartupHook sequence chart

The above sequence shows the flow of control during the startup of the OS. Like in
OSEK OS the user calls the StartOS() service to start the OS. During the startup
the startup hooks are called in the above order. The rest of the startup sequence is
identical to the defined behaviour of OSEK OS.

Specification of Operating System
 V5.0.0

R4.0 Rev 3

9.5 Sequence chart for ShutdownHook

The next sequence shows the behaviour in case of a shut down. The flow is the
same as in OSEK OS with the exception that the shut down hooks of the OS-
Applications are called before the general ShutdownHook is called. Note that the
specific shutdown hooks of the application are not allowed to block, they must return
to the caller.

sd Interactions

OS-Appl. <App> operating system

Shutdown

alt

[system-/application-specific Shutdown Hook are configured]

ShutdownHook_<App>(<Error>)

ShutdownHook(<Error>)

TerminateTerminate

Figure 9.5: ShutdownHook sequence chart

9.6 Sequence diagrams of Sender Receiver communication over
the IOC

9.6.1 LastIsBest communication

The figure 11 shows a sequence of successful and failure cases in the interaction
between the IOC and the RTE in case of LastIstBest communication (“data”
semantic).

173 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

sd Ioc LastIsBest

174 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

«module»

SND Core RTE :Rte

Receiver Application
(RCV Core)

Sender Application
(SND Core)

«module»

Ioc::Ioc

«module»

RCV Core RTE :Rte

Rte_Write_<p>_<o>(Std_ReturnType,
Rte_Instance, void)

IocWrite_<IocId>[_<SenderId>](<Data>,
Std_ReturnType)

The RTE buffer is copied
into an IOC internal buffer.

:IOC_E_OK

:RTE_E_OK

Rte_Read_<p>_<o>(Rte_Instance,
void*)

IocRead_<IocId>(<Data>*,
Std_ReturnType)The IOC reception buffer is

copied into the buffer of the
receiver application.

:IOC_E_OK

:RTE_E_OK

Figure 12: IOC - LastIsBest communication

9.6.2 Queued communication without pull callback

The figure 12 shows the interaction between IOC and RTE with a focus on the
congestion control for a queued communication.

The defined communication has no callback functionality for data reception, has an
internal buffer size of 2 data elements, no waitpoints are defined and the implicated
OS-Applications are located on different cores.

Specification of Operating System
 V5.0.0

R4.0 Rev 3

sd Ioc Queued without Callback

175 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Receiver Application
(RCV Core)

«module»

Ioc::Ioc

Sender Application
(SND Core)

«module»

SND Core RTE :Rte

«module»

RCV Core RTE :Rte

Rte_Send_<p>_<o>(Rte_Instance,
void)

IocSend_<IocId>[_<SenderId>](<Data>,
Std_ReturnType)

The RTE buffer is copied into
IOC internal buffer.

:IOC_E_OK
:RTE_E_OK

Compute new buffer
content()

Rte_Send_<p>_<o>(Rte_Instance,
void)

IocSend_<IocId>[_<SenderId>](<Data>,
Std_ReturnType)

:IOC_E_OK
:RTE_E_OK

Compute new buffer
content()

Rte_Send_<p>_<o>(Rte_Instance,
void)

IocSend_<IocId>[_<SenderId>](<Data>,
The IOC internal queue gets
full, last send request is
rejected.

Std_ReturnType)
:IOC_E_LIMIT

:RTE_E_LIMIT

Rte_Receive_<p>_<o>(Rte_Instance,
void*)

IocReceive_<IocId>(<Data>*,
The first queue entry is delivered to
the receiver application. An
overlayed error is delivered on the
receiver side to inform that the
receiver is too slow.

Std_ReturnType)

:IOC_E_OK and IOC_E_LOST_DATA

:RTE_E_OK and RTE_E_LOST_DATA

Rte_Receive_<p>_<o>(Rte_Instance,
void*)

IocReceive_<IocId>(<Data>*,
Std_ReturnType)

:IOC_E_OK

:RTE_E_OK

Rte_Receive_<p>_<o>(Rte_Instance,
void*)IocReceive_<IocId>(<Data>*,

Std_ReturnType)
:IOC_E_NO_DATA

:RTE_E_NO_DATA

Figure 13: IOC - Queued communication without callback

Specification of Operating System
 V5.0.0

R4.0 Rev 3

9.6.3 Queued communication with pull callback

The figure 13 shows the interaction between IOC and RTE in case of a queued
communication with an activated callback functionality. The RTE might handle
notification internally and might therefore not provide any callback functions, but a
similar scenario will occur in case of communication between CDDs on different
cores. The receiving CDD will provide the callback function in this case.

The defined communication has no waitpoints and describes a communication
implicating two OS-Applications located on different cores.

sd Ioc Queued with Callback

176 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Receiver Application
(RCV Core)

«module»

RCV Core RTE :Rte

«module»

SND Core RTE :Rte

Sender Application
(SND Core)

«module»

Ioc :Ioc

Rte_Send_<p>_<o>(Rte_Instance,
void)

IocSend_<IocId>[_<SenderId>](<Data>,

In case of N:1 communication the RTE stores
incoming data from different senders in an
internal buffer (on same or different cores)

It is recommended to empty the IOC internal
queues within the pull callback function.

Std_ReturnType) Inter core notification (e.g. IRQ)

:IOC_E_OK

:RTE_E_OK

RTE_IocPullCB_<IocId>()

IocReceive_<IocId>(<Data>*,
Std_ReturnType)

:IOC_E_OK

IocReceive_<IocId>(<Data>*,
Std_ReturnType)

:IOC_E_NO_DATA

:RTE_E_OK

Rte_Receive_<p>_<o>(Rte_Instance,
void*)

:RTE_E_OK

Figure 14: IOC Queued Communication with callback

Specification of Operating System
 V5.0.0

R4.0 Rev 3

10 Configuration Specification

In general, this chapter defines configuration parameters and their clustering into
containers. In order to support the specification Chapter 10.1 describes
fundamentals. It also specifies a template (table) you shall use for the parameter
specification.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
Os.

Chapter 10.4 specifies published information of the module Os.

10.1 How to read this chapter

In addition to this section, it is highly recommended to read the documents:
- AUTOSAR Layered Software Architecture [1]
- AUTOSAR ECU Configuration Specification [10]

This document describes the AUTOSAR configuration methodology and the
AUTOSAR configuration metamodel in detail.

The following is only a short survey of the topic and it will not replace the ECU
Configuration Specification document.

10.1.1 Configuration and configuration parameters

Configuration parameters define the variability of the generic part(s) of an
implementation of a module. This means that only generic or configurable module
implementation can be adapted to the environment (software/hardware) in use during
system and/or ECU configuration.

The configuration of parameters can be achieved at different times during the
software process: before compile time, before link time or after build time. In the
following, the term “configuration class” (of a parameter) shall be used in order to
refer to a specific configuration point in time.

Note that not all attributes may be available in all scalability class.

Memory protection configuration is not standardized and therefore not part of this
specification.

10.1.2 Variants

Variants describe sets of configuration parameters. E.g., variant 1: only pre-compile
time configuration parameters; variant 2: mix of pre-compile- and post build time-
configuration parameters. In one variant a parameter can only be of one
configuration class.

177 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

10.1.3 Containers

Containers structure the set of configuration parameters. This means:
 all configuration parameters are kept in containers.
 (sub-) containers can reference (sub-) containers. It is possible to assign a

multiplicity to these references. The multiplicity then defines the possible
number of instances of the contained parameters.

10.1.4 Rules for paramters

Some configuration parameters are configured as floating point values and
sometimes these values must be rounded in order to be used. The following rules
define the rounding of specific parameters:

 Execution times (for the timing protection) are “round down”
 Timeframes are “round down”

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters and their containers.
Background information about the detailed meaning of the parameters can be found
in chapters 7 and 8.

For better readability OIL names of the 2.1 OS specification are given in curly braces
in the namefield of configuration parameters.

10.2.1 Variants

[OS558] ⌈The configuration of the AUTOSAR OS allows only pre-compile
(“VARIANT-PRE-COMPILE“) time configuration parameters. ⌋ ()

10.2.2 Os

Module Name Os
Module Description Configuration of the Os (Operating System) module.

Included Containers
Container Name Multiplicity Scope / Dependency

OsAlarm

An OsAlarm may be used to
asynchronously inform or activate a
specific task. It is possible to start alarms
automatically at system start-up depending
on the application mode.

0..*

OsAppMode 1..*

OsAppMode is the object used to define
OSEK OS properties for an OSEK OS
application mode. No standard attributes
are defined for AppMode. In a CPU, at
least one AppMode object has to be
defined. [source: OSEK OIL Spec. 2.5] An
OsAppMode called
OSDEFAULTAPPMODE must always be
there for OSEK compatilbility.

178 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

An AUTOSAR OS must be capable of
supporting a collection of OS objects
(tasks, interrupts, alarms, hooks etc.) that
form a cohesive functional unit. This
collection of objects is termed an OS-
Application. All objects which belong to the
same OS-Application have access to each
other. Access means to allow to use these
objects within API services. Access by
other applications can be granted
separately.

179 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

OsApplication 0..*

Configuration information for the counters
that belong to the OsApplication.

OsCounter 0..*

Representation of OS events in the
configuration context. Adopted from the
OSEK OIL specification.

OsEvent 0..*

Configuration of the IOC (Inter OS
Application Communicator).

OsIoc 0..1

OsIsr 0..*
The OsIsr container represents an OSEK
interrupt service routine.

OsOS 1

OS is the object used to define OSEK OS
properties for an OSEK application. Per
CPU exactly one OS object has to be
defined.

0..*

An OsResource object is used to co-
ordinate the concurrent access by tasks
and ISRs to a shared resource, e.g. the
scheduler, any program sequence,
memory or any hardware area.

OsResource

An OsScheduleTable addresses the
synchronization issue by providing an
encapsulation of a statically defined set of
alarms that cannot be modified at runtime.

OsScheduleTable 0..*

OsSpinlock 0..*

An OsSpinlock object is used to co-
ordinate concurrent access by
TASKs/ISR2s on different cores to a
shared resource.

OsTask 0..* This container represents an OSEK task.

10.2.3 OsAlarmSetEvent

SWS Item OS016_Conf :
OsAlarmSetEvent{SETEVENT} Container Name
This container specifies the parameters to set an event Description

Configuration Parameters

OS017_Conf : SWS Item
OsAlarmSetEventRef {EVENT} Name
Reference to the event that will be set by that alarm action Description
1 Multiplicity
Reference to [OsEvent] Type

X All Variants Pre-compile time
Link time --

ConfigurationClass

-- Post-build time

 Scope / Dependency

Specification of Operating System
 V5.0.0

R4.0 Rev 3

OS018_Conf : SWS Item
OsAlarmSetEventTaskRef {TASK} N ame
Reference to the task that will be activated by that event Description
1 Multiplicity
Reference to [OsTask] Type

X All Variants

180 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Pre-compile time
Link time --

ConfigurationClass

-- Post-build time

 Scope / Dependency

No Included Containers

10.2.4 OsAlarm

OS003_Conf : SWS Item
OsAlarm{ALARM} Container Name
An OsAlarm may be used to asynchronously inform or activate a specific
task. It is possible to start alarms automatically at system start-up
depending on the application mode.

Description

Configuration Parameters

SWS Item OS004_Conf :
N ame OsAlarmAccessingApplication {ACCESSING_APPLICATION}
Description Reference to applications which have an access to this object.
Multiplicity 0..*

Reference to [OsApplication] Type
Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item OS005_Conf :
N ame OsAlarmCounterRef {COUNTER}
Description Reference to the assigned counter for that alarm
Multiplicity 1

Reference to [OsCounter] Type
X Pre-compile time All Variants

Link time --
ConfigurationClass

Post-build time --
Scope / Dependency

Included Containers
Container Name Multiplicity Scope / Dependency

OsAlarmAction 1
This container defines which type of
notification is used when the alarm expires.

OsAlarmAutostart 0..1
If present this container defines if an alarm
is started automatically at system start-up
depending on the application mode.

Specification of Operating System
 V5.0.0

R4.0 Rev 3

10.2.5 OsAlarmAction

SWS Item OS006_Conf :
Choice container Name OsAlarmAction{ACTION}

Description
This container defines which type of notification is used when the alarm
expires.

Container Choices

181 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Container Name Multiplicity Scope / Dependency

OsAlarmActivateTask 0..1
This container specifies the parameters to
activate a task.

OsAlarmCallback 0..1
This container specifies the parameters to
call a callback OS alarm action.
This container specifies the parameters to
increment a counter.

OsAlarmIncrementCounter 0..1

OsAlarmSetEvent 0..1
This container specifies the parameters to
set an event

10.2.6 OsAlarmActivateTask

SWS Item OS007_Conf :
Container Name OsAlarmActivateTask{ACTIVATETASK}
Description This container specifies the parameters to activate a task.
Configuration Parameters

OS008_Conf : SWS Item
OsAlarmActivateTaskRef {TASK} N ame
Reference to the task that will be activated by that alarm action Description
1 Multiplicity
Reference to [OsTask] Type
Pre-compile time X All Variants
Link time --

ConfigurationClass

-- Post-build time

 Scope / Dependency

No Included Containers

10.2.7 OsAlarmAutostart

SWS Item OS009_Conf :
Container Name OsAlarmAutostart{AUTOSTART}

Description
If present this container defines if an alarm is started automatically at
system start-up depending on the application mode.

Configuration Parameters

OS010_Conf : SWS Item
N ame OsAlarmAlarmTime {ALARMTIME}
Description The relative or absolute tick value when the alarm expires for the first

time. Note that for an alarm which is RELATIVE the value must be at
bigger than 0.
1 Multiplicity
EcucIntegerParamDef Type
0 .. 18446744073709551615 Range

Specification of Operating System
 V5.0.0

R4.0 Rev 3

Default value --
Pre-compile time X All Variants
Link time --

ConfigurationClass

-- Post-build time
Scope / Dependency

SWS Item OS011_Conf :
N ame OsAlarmAutostartType

This specifies the type of autostart for the alarm.. Description
1 Multiplicity

Type EcucEnumerationParamDef
ABSOLUTE The alarm is started on startup via

SetAbsAlarm().
Range

RELATIVE The alarm is started on startup via
SetRelAlarm().
X All Variants Pre-compile time

Link time --
ConfigurationClass

Post-build time --
Scope / Dependency

OS012_Conf : SWS Item
N ame OsAlarmCycleTime {CYCLETIME}

Cycle time of a cyclic alarm in ticks. If the value is 0 than the alarm is
not cyclic.

Description

1 Multiplicity
EcucIntegerParamDef Type

Range 0 .. 18446744073709551615
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item OS013_Conf :
N OsAlarmAppModeRef {APPMODE} ame

Reference to the application modes for which the AUTOSTART shall
be performed

Description

1..* Multiplicity
Reference to [OsAppMode] Type

X All Variants

182 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Pre-compile time
Link time --

ConfigurationClass

Post-build time --

 Scope / Dependency

No Included Containers

10.2.8 OsAlarmCallback

SWS Item OS014_Conf :
Container Name OsAlarmCallback{ALARMCALLBACK}

This container specifies the parameters to call a callback OS alarm action. Description
Configuration Parameters

Specification of Operating System
 V5.0.0

R4.0 Rev 3

SWS Item OS087_Conf :
N ame OsAlarmCallbackName {ALARMCALLBACKNAME}
Description Name of the function that is called when this alarm callback is

triggered.
Multiplicity 1

EcucFunctionNameDef Type
Default value --
maxLength --
minLength --
regularExpression --

Pre-compile time X All Variants
-- Link time

ConfigurationClass

Post-build time --
Scope / Dependency

No Included Containers

10.2.9 OsAlarmIncrementCounter

SWS Item OS302_Conf :
OsAlarmIncrementCounter{INCREMENTCOUNTER} Container Name

Description This container specifies the parameters to increment a counter.
Configuration Parameters

SWS Item OS015_Conf :
N ame OsAlarmIncrementCounterRef {COUNTER}
Description Reference to the counter that will be incremented by that alarm action
Multiplicity 1
Type Reference to [OsCounter]

Pre-compile time X All Variants

183 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Link time --
ConfigurationClass

-- Post-build time
scope: ECU Scope / Dependency

No Included Containers

10.2.10 OsApplication

SWS Item OS114_Conf :
Container Name OsApplication{APPLICATION}

An AUTOSAR OS must be capable of supporting a collection of OS
objects (tasks, interrupts, alarms, hooks etc.) that form a cohesive
functional unit. This collection of objects is termed an OS-Application.

Description
All objects which belong to the same OS-Application have access to each
other. Access means to allow to use these objects within API services.
Access by other applications can be granted separately.

Configuration Parameters

SWS Item MCOS1020_Conf :
N ame OsApplicationCoreAssignment {CORE}
Description ID of the core onto which the OsApplication is bound.
Multiplicity 0..1

EcucIntegerParamDef Type
0 .. 65534 Range

Specification of Operating System
 V5.0.0

R4.0 Rev 3

-- Default value
X

184 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Pre-compile time All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: The parameter defines onto which a single OS-Application

instance is bound.

SWS Item OS115_Conf :
N OsTrusted {TRUSTED} ame

Parameter to specify if an OS-Application is trusted or not. true: OS-
Application is trusted false: OS-Application is not trusted (default)

Description

1 Multiplicity
EcucBooleanParamDef Type
false Default value

X All Variants Pre-compile time
-- Link time

ConfigurationClass

-- Post-build time
Scope / Dependency scope: ECU

dependency: Required for scalability class 3 and 4.

OS231_Conf : SWS Item
OsAppAlarmRef N ame
Specifies the OsAlarms that belong to the OsApplication. Description
0..* Multiplicity
Reference to [OsAlarm] Type
Pre-compile time X All Variants
Link time --

ConfigurationClass

-- Post-build time
scope: ECU
dependency: Required for scalability class 3 and 4

Scope / Dependency

SWS Item OS234_Conf :
N ame OsAppCounterRef
Description References the OsCounters that belong to the OsApplication.
Multiplicity 0..*

Reference to [OsCounter] Type
X All Variants Pre-compile time

Link time --
ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

dependency: Required for scalability class 3 and 4.

SWS Item OS392_Conf :
N OsAppEcucPartitionRef ame

Denotes which "EcucPartition" is implemented by this "OSApplication".Description
0..1 Multiplicity

Type Reference to [EcucPartition]
Pre-compile time X All Variants
Link time --

ConfigurationClass

-- Post-build time
Scope / Dependency

SWS Item OS221_Conf :
N OsAppIsrRef ame
Description references which OsIsrs belong to the OsApplication

Specification of Operating System
 V5.0.0

R4.0 Rev 3

Multiplicity 0..*
Type Reference to [OsIsr]

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

dependency: Required for scalability class 3 and 4.

SWS Item OS230_Conf :

OsAppScheduleTableRef N ame
References the OsScheduleTables that belong to the OsApplication. Description

Multiplicity 0..*
Type Reference to [OsScheduleTable]

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

dependency: Required for scalability class 3 and 4.

SWS Item OS116_Conf :

OsAppTaskRef N ame
references which OsTasks belong to the OsApplication Description

Multiplicity 0..*
Type Reference to [OsTask]

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

dependency: Required for scalability class 3 and 4

SWS Item OS120_Conf :

OsRestartTask {RESTARTTASK} N ame
Optionally one task of an OS-Application may be defined as Restart
Task. Multiplicity = 1: Restart Task is activated by the Operating
System if the protection hook requests it. Multiplicity = 0: No task is
automatically started after a protection error happened.

Description

Multiplicity 0..1
Type Reference to [OsTask]

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

dependency: Required for scalability class 3 and 4.

Included Containers
Container Name Multiplicity Scope / Dependency

1
Container to structure the OS-Application-
specific hooks

OsApplicationHooks

OsApplicationTrustedFunction 0..*
Container to structure the configration
parameters of trusted functions

10.2.11 OsApplicationHooks

SWS Item OS020_Conf :
Container Name OsApplicationHooks

185 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

Description Container to structure the OS-Application-specific hooks
Configuration Parameters

SWS Item OS213_Conf :
N ame OsAppErrorHook {ERRORHOOK}
Description Select the OS-Application error hook. true: Hook is called false: Hook

is not called
Multiplicity 1

EcucBooleanParamDef Type
-- Default value

X All Variants Pre-compile time
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

dependency: Required for scalability class 3 and 4.

SWS Item OS125_Conf :

OsAppShutdownHook {SHUTDOWNHOOK} N ame
Description Select the OS-Application specific shutdown hook for the OS-

Application. true: Hook is called false: Hook is not called
1 Multiplicity
EcucBooleanParamDef Type
-- Default value
Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

dependency: Required for scalability class 3 and 4.

SWS Item OS124_Conf :
N OsAppStartupHook {STARTUPHOOK} ame

Select the OS-Application specific startup hook for the OS-Application.
true: Hook is called false: Hook is not called

Description

1 Multiplicity
EcucBooleanParamDef Type

Default value --
Pre-compile time X All Variants

186 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Link time --
ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

dependency: Required for scalability class 3 and 4.

No Included Containers

10.2.12 OsApplicationTrustedFunction

SWS Item OS021_Conf :
OsApplicationTrustedFunction Container Name
Container to structure the configration parameters of trusted functions Description

Configuration Parameters

SWS Item OS254_Conf :
N OsTrustedFunctionName ame
Description Trusted function (as part of a trusted OS-Application) available to other

OS-Applications. This also supersedes the OSEK OIL attribute

Specification of Operating System
 V5.0.0

R4.0 Rev 3

TRUSTED in APPLICATION because the optionality of this parameter
is describing that already.
1 Multiplicity
EcucFunctionNameDef Type
-- Default value
-- maxLength
-- minLength

regularExpression --
Pre-compile time X All Variants

187 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Link time --
ConfigurationClass

-- Post-build time
Scope / Dependency scope: ECU

dependency: Required for scalability class 3 and 4 and in trusted OS-
Applications.

No Included Containers

10.2.13 OsAppMode

SWS Item OS022_Conf :
OsAppMode{APPMODE} Container Name
OsAppMode is the object used to define OSEK OS properties for an
OSEK OS application mode.
No standard attributes are defined for AppMode.
In a CPU, at least one AppMode object has to be defined. Description
[source: OSEK OIL Spec. 2.5]
An OsAppMode called OSDEFAULTAPPMODE must always be there for
OSEK compatilbility.

Configuration Parameters

No Included Containers

10.2.14 OsCounter

OS026_Conf : SWS Item
OsCounter{COUNTER} Container Name

Description
Configuration information for the counters that belong to the
OsApplication.

Configuration Parameters

OS027_Conf : SWS Item
N ame OsCounterMaxAllowedValue {MAXALLOWEDVALUE}
Description Maximum possible allowed value of the system counter in ticks.

1 Multiplicity
Type EcucIntegerParamDef
Range 1 .. 18446744073709551615
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item OS028_Conf :

Specification of Operating System
 V5.0.0

R4.0 Rev 3

N ame OsCounterMinCycle {MINCYCLE}
The MINCYCLE attribute specifies the minimum allowed number of
counter ticks for a cyclic alarm linked to the counter.

Description

1 Multiplicity
Type EcucIntegerParamDef
Range 1 .. 18446744073709551615

-- Default value

188 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Pre-compile time X All Variants
Link time --

ConfigurationClass

-- Post-build time

 Scope / Dependency

SWS Item OS029_Conf :
N ame OsCounterTicksPerBase {TICKSPERBASE}

The TICKSPERBASE attribute specifies the number of ticks required
to reach a counterspecific unit. The interpretation is implementation-
specific.

Description

Multiplicity 1
Type EcucIntegerParamDef

1 .. 4294967295 Range
Default value --

X All Variants Pre-compile time
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item OS255_Conf :
N ame OsCounterType {TYPE}

This parameter contains the natural type or unit of the counter. Description
1 Multiplicity

Type EcucEnumerationParamDef
HARDWARE This counter is driven by some

hardware e.g. a hardware timer unit.
Range

SOFTWARE The counter is driven by some software
which calls the IncrementCounter
service.

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

SWS Item OS030_Conf :
N ame OsSecondsPerTick
Description Time of one counter tick in seconds.
Multiplicity 0..1
Type EcucFloatParamDef
Range 0 .. INF
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

SWS Item OS031_Conf :

Specification of Operating System
 V5.0.0

R4.0 Rev 3

N ame OsCounterAccessingApplication {ACCESSING_APPLICATION}
Description Reference to applications which have an access to this object.
Multiplicity 0..*
Type Reference to [OsApplication]

Pre-compile time X All Variants

189 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Link time --
ConfigurationClass

Post-build time --

 Scope / Dependency

Included Containers
Container Name Multiplicity Scope / Dependency

OsDriver 0..1

This Container contains the information
who will drive the counter. This
configuration is only valid if the counter has
OsCounterType set to HARDWARE. If the
container does not exist (multiplicity=0) the
timer is managed by the OS internally
(OSINTERNAL). If the container exists the
OS can use the GPT interface to manage
the timer. The user have to supply the GPT
channel. If the counter is driven by some
other (external to the OS) source (like a
TPU for example) this must be described
as a vendor specific extension.

OsTimeConstant 0..*

Allows the user to define constants which
can be e.g. used to compare time values
with timer tick values. A time value will be
converted to a timer tick value during
generation and can later on accessed via
the OsConstName. The conversation is
done by rounding time values to the
nearest fitting tick value.

10.2.15 OsEvent

SWS Item OS033_Conf :
Container Name OsEvent{EVENT}

Description
Representation of OS events in the configuration context. Adopted from
the OSEK OIL specification.

Configuration Parameters

SWS Item OS034_Conf :

OsEventMask {MASK} N ame
Description If event mask would be set to AUTO in OIL, this parameter should be

omitted here.
0..1 Multiplicity
EcucIntegerParamDef Type

Range 0 .. 18446744073709551615
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

No Included Containers

Specification of Operating System
 V5.0.0

R4.0 Rev 3

10.2.16 OsHooks

SWS Item OS035_Conf :
Container Name OsHooks
Description Container to structure all hooks belonging to the OS
Configuration Parameters

SWS Item OS036_Conf :
N ame OsErrorHook {ERRORHOOK}

Error hook as defined by OSEK true: Hook is called false: Hook is not
called

Description

Multiplicity 1
Type EcucBooleanParamDef

-- Default value
X All Variants Pre-compile time

Link time --
ConfigurationClass

190 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Post-build time --
Scope / Dependency

SWS Item OS037_Conf :
N ame OsPostTaskHook {POSTTASKHOOK}
Description Post-task hook as defined by OSEK true: Hook is called false: Hook is

not called
Multiplicity 1
Type EcucBooleanParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item OS038_Conf :
N ame OsPreTaskHook {PRETASKHOOK}
Description Pre-task hook as defined by OSEK true: Hook is called false: Hook is

not called
Multiplicity 1
Type EcucBooleanParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item OS214_Conf :

OsProtectionHook {PROTECTIONHOOK} N ame
Description Switch to enable/disable the call to the (user supplied) protection

hook. true: Protection hook is called on protection error false:
Protection hook is not called

Multiplicity 0..1
Type EcucBooleanParamDef
Default value --

X All Variants Pre-compile time ConfigurationClass
Link time --

Specification of Operating System
 V5.0.0

R4.0 Rev 3

Post-build time --
Scope / Dependency scope: ECU

dependency: Required for scalability class 2,3 and 4

SWS Item OS039_Conf :

OsShutdownHook {SHUTDOWNHOOK} N ame
Shutdown hook as defined by OSEK true: Hook is called false: Hook is
not called

Description

1 Multiplicity
EcucBooleanParamDef Type
-- Default value
Pre-compile time X All Variants
Link time --

191 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

ConfigurationClass

Post-build time --

 Scope / Dependency

SWS Item OS040_Conf :

OsStartupHook {STARTUPHOOK} N ame
Startup hook as defined by OSEK true: Hook is called false: Hook is
not called

Description

1 Multiplicity
EcucBooleanParamDef Type
-- Default value
Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --

 Scope / Dependency

No Included Containers

10.2.17 OsIsr

SWS Item OS041_Conf :
OsIsr{ISR} Container Name
The OsIsr container represents an OSEK interrupt service routine. Description

Configuration Parameters

SWS Item OS042_Conf :

OsIsrCategory {CATEGORY} N ame
Description This attribute specifies the category of this ISR.
Multiplicity 1
Type EcucEnumerationParamDef

CATEGORY_1 Interrupt is of category 1 Range
CATEGORY_2 Interrupt is of category 2
Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item OS043_Conf :

OsIsrResourceRef {RESOURCE} N ame
Description This reference defines the resources accessed by this ISR.
Multiplicity 0..*

Specification of Operating System
 V5.0.0

R4.0 Rev 3

Reference to [OsResource] Type
X All Variants Pre-compile time

Link time --
ConfigurationClass

Post-build time --

 Scope / Dependency

Included Containers
Container Name Multiplicity Scope / Dependency

OsIsrTimingProtection 0..1

This container contains all parameters
which are related to timing protection If the
container exists, the timing protection is
used for this interrupt. If the container does
not exist, the interrupt is not supervised
regarding timing violations.

10.2.18 OsIsrResourceLock

SWS Item OS388_Conf :
OsIsrResourceLock{LOCKINGTIME} Container Name

Description This container contains a list of times the interrupt uses resources.
Configuration Parameters

SWS Item OS389_Conf :
N ame OsIsrResourceLockBudget {MAXRESOURCELOCKTIME}
Description This parameter contains the maximum time the interrupt is allowed to

hold the given resource (in seconds).
Multiplicity 1
Type EcucFloatParamDef
Range 0 .. INF
Default value --

Pre-compile time X All Variants
Link time

192 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

--
ConfigurationClass

-- Post-build time
scope: ECU
dependency: Required for scalability class 2 and 4

Scope / Dependency

OS390_Conf : SWS Item
OsIsrResourceLockResourceRef {RESOURCE} N ame
Reference to the resource the locking time is depending on Description

Multiplicity 1
Type Reference to [OsResource]

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

dependency: Required for scalability class 2 and 4

No Included Containers

10.2.19 OsIsrTimingProtection

SWS Item OS326_Conf :
Container Name OsIsrTimingProtection{TIMING_PROTECTION}

Specification of Operating System
 V5.0.0

R4.0 Rev 3

Description

This container contains all parameters which are related to timing protection
If the container exists, the timing protection is used for this interrupt. If the
container does not exist, the interrupt is not supervised regarding timing
violations.

Configuration Parameters

SWS Item OS229_Conf :
N ame OsIsrAllInterruptLockBudget {MAXALLINTERRUPTLOCKTIME}
Description This parameter contains the maximum time for which the ISR is allowed

to lock all interrupts (via SuspendAllInterrupts() or DisableAllInterrupts())
(in seconds).

Multiplicity 0..1
Type EcucFloatParamDef
Range 0 .. INF
Default value --

Pre-compile time X All Variants
Link time

193 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

--
ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

dependency: Required for scalability class 2 and 4

OS222_Conf : SWS Item
N ame OsIsrExecutionBudget {EXECUTIONTIME}

The parameter contains the maximum allowed execution time of the
interrupt (in seconds).

Description

0..1 Multiplicity
EcucFloatParamDef Type

Range 0 .. INF
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

dependency: Required for scalability class 2 and 4

SWS Item OS387_Conf :
N ame OsIsrOsInterruptLockBudget {MAXOSINTERRUPTLOCKTIME}
Description This parameter contains the maximum time for which the ISR is allowed

to lock all Category 2 interrupts (via SuspendOSInterrupts()) (in
seconds).

Multiplicity 0..1
EcucFloatParamDef Type

Range 0 .. INF
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

dependency: Required for scalability class 2 and 4

SWS Item OS223_Conf :
N OsIsrTimeFrame {TIMEFRAME} ame

This parameter contains the minimum inter-arrival time between
successive interrupts (in seconds).

Description

Multiplicity 0..1

Specification of Operating System
 V5.0.0

R4.0 Rev 3

EcucFloatParamDef Type
0 .. INF Range

Default value --

194 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Pre-compile time X All Variants
Link time --

ConfigurationClass

-- Post-build time
Scope / Dependency scope: ECU

dependency: Required for scalability class 2 and 4

Included Containers
Container Name Multiplicity Scope / Dependency

This container contains a list of times the
interrupt uses resources.

OsIsrResourceLock 0..*

10.2.20 OsOS

SWS Item OS044_Conf :
OsOS{OS} Container Name

Description
OS is the object used to define OSEK OS properties for an OSEK
application.
Per CPU exactly one OS object has to be defined.

Configuration Parameters

SWS Item MCOS1019_Conf :
N ame OsNumberOfCores
Description Maximum number of cores that are controlled by the OS. The OS

uses the value internally. It depends on the ECU HW.
0..1 Multiplicity
EcucIntegerParamDef Type
1 .. 65535 Range
-- Default value

X All Variants Pre-compile time
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item OS259_Conf :
N ame OsScalabilityClass {SCALABILITYCLASS}
Description A scalability class for each System Object "OS" has to be selected. In order

to customize the operating system to the needs of the user and to take full
advantage of the processor features the operating system can be scaled
according to the scalability classes. If the scalability class is omitted this
translates to the OIL AUTO mechanism.

Multiplicity 0..1
Type EcucEnumerationParamDef

SC1 --
SC2 --
SC3 --

Range

SC4 --
X All Variants Pre-compile time

Link time --
ConfigurationClass

-- Post-build time
scope: ECU Scope / Dependency

SWS Item OS307_Conf :

Specification of Operating System
 V5.0.0

R4.0 Rev 3

N ame OsStackMonitoring {STACKMONITORING}
Select stack monitoring of Tasks/Category 2 ISRs true: Stacks are
monitored false: Stacks are not monitored

Description

1 Multiplicity
EcucBooleanParamDef Type
-- Default value

X All Variants

195 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Pre-compile time
Link time --

ConfigurationClass

-- Post-build time
Scope / Dependency scope: ECU

SWS Item OS046_Conf :
N ame OsStatus {STATUS}
Description The Status attribute specifies whether a system with standard or extended

status has to be used. Automatic assigment is not supported for this attribute.
Multiplicity 1
Type EcucEnumerationParamDef

EXTENDED -- Range
STANDARD --
Pre-compile time X All Variants
Link time --

ConfigurationClass

-- Post-build time

 Scope / Dependency

SWS Item OS047_Conf :
N ame OsUseGetServiceId {USEGETSERVICEID}
Description As defined by OSEK
Multiplicity 1
Type EcucBooleanParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

-- Post-build time

 Scope / Dependency

SWS Item OS048_Conf :
N ame OsUseParameterAccess {USEPARAMETERACCESS}

As defined by OSEK Description
Multiplicity 1
Type EcucBooleanParamDef

-- Default value
Pre-compile time X All Variants
Link time --

ConfigurationClass

-- Post-build time
Scope / Dependency

SWS Item OS049_Conf :
N ame OsUseResScheduler {USERESSCHEDULER}
Description The OsUseResScheduler attribute defines whether the resource

RES_SCHEDULER is used within the application.
Multiplicity 1

EcucBooleanParamDef Type
true Default value

ConfigurationClass Pre-compile time X All Variants

Specification of Operating System
 V5.0.0

R4.0 Rev 3

-- Link time
-- Post-build time

 Scope / Dependency

Included Containers
Container Name Multiplicity Scope / Dependency

Container to structure all hooks belonging
to the OS

OsHooks 1

10.2.21 OsResource

OS252_Conf : SWS Item
OsResource{RESOURCE} Container Name
An OsResource object is used to co-ordinate the concurrent access by
tasks and ISRs to a shared resource, e.g. the scheduler, any program
sequence, memory or any hardware area.

Description

Configuration Parameters

OS050_Conf : SWS Item
OsResourceProperty {RESOURCEPROPERTY} N ame
This specifies the type of the resource. Description
1 Multiplicity
EcucEnumerationParamDef Type
INTERNAL The resource is an internal resource.

196 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

LINKED The resource is a linked resource (a
second name for a existing
resource).

Range

STANDARD The resource is a standard resource.
X All Variants Pre-compile time

Link time --
ConfigurationClass

-- Post-build time

 Scope / Dependency

OS051_Conf : SWS Item
OsResourceAccessingApplication {ACCESSING_APPLICATION} N ame
Reference to applications which have an access to this object. Description
0..* Multiplicity
Reference to [OsApplication] Type

X All Variants Pre-compile time
Link time --

ConfigurationClass

-- Post-build time

 Scope / Dependency

OS052_Conf : SWS Item
OsResourceLinkedResourceRef {LINKEDRESOURCE} N ame
The link to the resource. Must be valid if OsResourceProperty is
LINKED. If OsResourceProperty is not LINKED the value is ignored.

Description

0..1 Multiplicity
Reference to [OsResource] Type

X All Variants Pre-compile time
Link time --

ConfigurationClass

Post-build time --

 Scope / Dependency

Specification of Operating System
 V5.0.0

R4.0 Rev 3

No Included Containers

10.2.22 OsScheduleTable

SWS Item OS141_Conf :
Container Name OsScheduleTable{SCHEDULETABLE}

Description
An OsScheduleTable addresses the synchronization issue by providing an
encapsulation of a statically defined set of alarms that cannot be modified at
runtime.

Configuration Parameters

SWS Item OS053_Conf :
N ame OsScheduleTableDuration
Description This parameter defines the modulus of the schedule table (in ticks).
Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 18446744073709551615
Default value --

Pre-compile time X All Variants
Link time --

197 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

ConfigurationClass

Post-build time --

 Scope / Dependency

OS144_Conf : SWS Item
OsScheduleTableRepeating {REPEATING} N ame

Description true: first expiry point on the schedule table shall be processed at final
expiry point delay ticks after the final expiry point is processed. false:
the schedule table processing stops when the final expiry point is
processed.
1 Multiplicity
EcucBooleanParamDef Type

Default value --
Pre-compile time X All Variants
Link time --

ConfigurationClass

-- Post-build time
scope: ECU Scope / Dependency

SWS Item OS054_Conf :
N OsSchTblAccessingApplication {ACCESSING_APPLICATION} ame

Reference to applications which have an access to this object. Description
0..* Multiplicity

Type Reference to [OsApplication]
Pre-compile time X All Variants
Link time --

ConfigurationClass

-- Post-build time

 Scope / Dependency

OS145_Conf : SWS Item
OsScheduleTableCounterRef {COUNTER} N ame
This parameter contains a reference to the counter which drives the
schedule table.

Description

1 Multiplicity
Type Reference to [OsCounter]

Specification of Operating System
 V5.0.0

R4.0 Rev 3

198 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Pre-compile time X All Variants
Link time --

ConfigurationClass

-- Post-build time
scope: ECU Scope / Dependency

Included Containers
Container Name Multiplicity Scope / Dependency

OsScheduleTableAutostart 0..1

This container specifies if and how the
schedule table is started on startup of the
Operating System. The options to start a
schedule table correspond to the API calls
to start schedule tables during runtime.

1..*
The point on a Schedule Table at which the
OS activates tasks and/or sets events

OsScheduleTableExpiryPoint

0..1
This container specifies the
synchronization parameters of the
schedule table.

OsScheduleTableSync

10.2.23 OsScheduleTableAutostart

SWS Item OS335_Conf :
Container Name OsScheduleTableAutostart{AUTOSTART}

This container specifies if and how the schedule table is started on startup of
the Operating System. The options to start a schedule table correspond to
the API calls to start schedule tables during runtime.

Description

Configuration Parameters

SWS Item OS056_Conf :
N OsScheduleTableAutostartType ame
Description This specifies the type of the autostart for the schedule table.
Multiplicity 1

EcucEnumerationParamDef Type
ABSOLUTE The schedule table is started during startup

with the StartScheduleTableAbs() service.
RELATIVE The schedule table is started during startup

with the StartScheduleTableRel() service.

Range

SYNCHRON The schedule table is started during startup
with the StartScheduleTableSynchron()
service.

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --

 Scope / Dependency

OS057_Conf : SWS Item

N ame OsScheduleTableStartValue
Description Absolute autostart tick value when the schedule table starts. Only used

if the OsScheduleTableAutostartType is ABSOLUTE. Relative offset in
ticks when the schedule table starts. Only used if the
OsScheduleTableAutostartType is RELATIVE.

Multiplicity 0..1
Type EcucIntegerParamDef
Range 0 .. 18446744073709551615
Default value --

X ConfigurationClass Pre-compile time All Variants

Specification of Operating System
 V5.0.0

R4.0 Rev 3

199 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Link time --
-- Post-build time

Scope / Dependency scope: ECU

SWS Item OS058_Conf :
N OsScheduleTableAppModeRef ame

Reference in which application modes the schedule table should be
started during startup

Description

1..* Multiplicity
Type Reference to [OsAppMode]

X All Variants Pre-compile time
Link time --

ConfigurationClass

Post-build time --
scope: ECU Scope / Dependency

No Included Containers

10.2.24 OsScheduleTableEventSetting

SWS Item OS059_Conf :
OsScheduleTableEventSetting{SETEVENT} Container Name
Event that is triggered by that schedule table. Description

Configuration Parameters

SWS Item OS060_Conf :
N OsScheduleTableSetEventRef {EVENT} ame

Reference to event that will be set by action Description
1 Multiplicity

Type Reference to [OsEvent]
Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item OS061_Conf :
N ame OsScheduleTableSetEventTaskRef
Description --
Multiplicity 1
Type Reference to [OsTask]

Pre-compile time X All Variants
-- Link time

ConfigurationClass

Post-build time --
Scope / Dependency

No Included Containers

10.2.25 OsScheduleTableExpiryPoint

SWS Item OS143_Conf :
OsScheduleTableExpiryPoint{ACTION} Container Name

Description
The point on a Schedule Table at which the OS activates tasks and/or sets
events

Specification of Operating System
 V5.0.0

R4.0 Rev 3

Configuration Parameters

SWS Item OS062_Conf :
N ame OsScheduleTblExpPointOffset
Description The offset from zero (in ticks) at which the expiry point is to be

processed.
Multiplicity 1

EcucIntegerParamDef Type
Range 0 .. 18446744073709551615
Default value --

Pre-compile time X All Variants

200 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Link time --
ConfigurationClass

-- Post-build time
Scope / Dependency

Included Containers
Container Name Multiplicity Scope / Dependency

Event that is triggered by that schedule
table.

OsScheduleTableEventSetting 0..*

OsScheduleTableTaskActivation 0..*
Task that is triggered by that schedule
table.

OsScheduleTblAdjustableExpPoint 0..1 Adjustable expiry point

10.2.26 OsScheduleTableTaskActivation

SWS Item OS066_Conf :
Container Name OsScheduleTableTaskActivation{ACTIVATETASK}

Task that is triggered by that schedule table. Description
Configuration Parameters

OS067_Conf : SWS Item
N ame OsScheduleTableActivateTaskRef {TASK}
Description Reference to task that will be activated by action
Multiplicity 1
Type Reference to [OsTask]

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
scope: ECU Scope / Dependency

No Included Containers

10.2.27 OsScheduleTblAdjustableExpPoint

SWS Item OS068_Conf :
Container Name OsScheduleTblAdjustableExpPoint
Description Adjustable expiry point
Configuration Parameters

SWS Item OS069_Conf :
N ame OsScheduleTableMaxLengthen
Description The maximum positive adjustment that can be made to the expiry point

offset (in ticks).

Specification of Operating System
 V5.0.0

R4.0 Rev 3

1 Multiplicity
Type EcucIntegerParamDef
Range 0 .. 18446744073709551615

-- Default value

201 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Pre-compile time X All Variants
Link time --

ConfigurationClass

-- Post-build time

 Scope / Dependency

SWS Item OS070_Conf :
N ame OsScheduleTableMaxShorten
Description The maximum negative adjustment that can be made to the expiry point

offset (in ticks).
Multiplicity 1

EcucIntegerParamDef Type
0 .. 18446744073709551615 Range
-- Default value
Pre-compile time X All Variants
Link time --

ConfigurationClass

-- Post-build time
Scope / Dependency

No Included Containers

10.2.28 OsScheduleTableSync

SWS Item OS063_Conf :
Container Name OsScheduleTableSync{LOCAL_TO_GLOBAL_TIME_SYNCHRONIZATION}
Description This container specifies the synchronization parameters of the schedule table.
Configuration Parameters

OS064_Conf : SWS Item
N ame OsScheduleTblExplicitPrecision
Description This configuration is only valid if the explicit synchronisation is used.
Multiplicity 0..1
Type EcucIntegerParamDef

0 .. 18446744073709551615 Range
-- Default value
Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: System

SWS Item OS065_Conf :

OsScheduleTblSyncStrategy N ame
Description AUTOSAR OS provides support for synchronisation in two ways: explicit and

implicit.
1 Multiplicity
EcucEnumerationParamDef Type
EXPLICIT Range The schedule table is driven by an OS

counter but processing needs to be
synchronized with a different counter
which is not an OS counter object.

Specification of Operating System
 V5.0.0

R4.0 Rev 3

IMPLICIT The counter driving the schedule table
is the counter with which
synchronisation is required.

NONE No support for synchronisation.
(default)

Pre-compile time X All Variants
Link time

202 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

--
ConfigurationClass

Post-build time --
Scope / Dependency scope: System

No Included Containers

10.2.29 OsSpinlock

SWS Item MCOS0258_Conf :
Container Name OsSpinlock{SPINLOCK}

An OsSpinlock object is used to co-ordinate concurrent access by
TASKs/ISR2s on different cores to a shared resource.

Description

Configuration Parameters

SWS Item MCOS1021_Conf :

OsSpinlockAccessingApplication {ACCESSING_APPLICATION} N ame
Description Reference to OsApplications that have an access to this object.
Multiplicity 1..*
Type Reference to [OsApplication]

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item MCOS1022_Conf :

OsSpinlockSuccessor {NEXT_SPINLOCK} N ame
Description Reference to OsApplications that have an access to this object. To

check whether a spinlock can be occupied (in a nested way) without
any danger of deadlock, a linked list of spinlocks can be defined. A
spinlock can only be occupied in the order of the linked list. It is
allowed to skip a spinlock. If no linked list is specified, spinlocks
cannot be nested.

Multiplicity 0..1
Type Reference to [OsSpinlock]

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

No Included Containers

Specification of Operating System
 V5.0.0

R4.0 Rev 3

10.2.30 OsTask

SWS Item OS073_Conf :
Container Name OsTask{TASK}

This container represents an OSEK task. Description
Configuration Parameters

SWS Item OS074_Conf :
Name OsTaskActivation {ACTIVATION}
Description This attribute defines the maximum number of queued activation

requests for the task. A value equal to "1" means that at any time only
a single activation is permitted for this task. Note that the value must
be a natural number starting at 1.

Multiplicity 1
Type EcucIntegerParamDef

1 .. 4294967295 Range
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

OS075_Conf : SWS Item
OsTaskPriority {PRIORITY} N ame
The priority of a task is defined by the value of this attribute. This
value has to be understood as a relative value, i.e. the values show
only the relative ordering of the tasks. OSEK OS defines the lowest
priority as zero (0); larger values correspond to higher priorities.

Description

1 Multiplicity
EcucIntegerParamDef Type

Range 0 .. 4294967295
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item OS076_Conf :

OsTaskSchedule {SCHEDULE} N ame
The OsTaskSchedule attribute defines the preemptability of the task. If this
attribute is set to NON, no internal resources may be assigned to this task.

Description

Multiplicity 1
Type EcucEnumerationParamDef

FULL Task is preemptable. Range
NON Task is not preemptable.
Pre-compile time X All Variants
Link time

203 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

--
ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item OS077_Conf :

OsTaskAccessingApplication {ACCESSING_APPLICATION} N ame
Reference to applications which have an access to this object. Description

Multiplicity 0..*

Specification of Operating System
 V5.0.0

R4.0 Rev 3

Reference to [OsApplication] Type
X All Variants

204 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Pre-compile time
Link time --

ConfigurationClass

Post-build time --

 Scope / Dependency

SWS Item OS078_Conf :
N ame OsTaskEventRef {EVENT}
Description This reference defines the list of events the extended task may react

on.
0..* Multiplicity

Type Reference to [OsEvent]
X All Variants Pre-compile time

Link time --
ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item OS079_Conf :
N OsTaskResourceRef {RESOURCE} ame

This reference defines a list of resources accessed by this task. Description
0..* Multiplicity

Type Reference to [OsResource]
Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

Included Containers
Container Name Multiplicity Scope / Dependency

OsTaskAutostart 0..1

This container determines whether the task
is activated during the system start-up
procedure or not for some specific
application modes. If the task shall be
activated during the system start-up, this
container is present and holds the
references to the application modes in
which the task is auto-started.

OsTaskTimingProtection 0..1
This container contains all parameters
regarding timing protection of the task.

10.2.31 OsTaskAutostart

SWS Item OS080_Conf :
Container Name OsTaskAutostart{AUTOSTART}

This container determines whether the task is activated during the system
start-up procedure or not for some specific application modes.
If the task shall be activated during the system start-up, this container is
present and holds the references to the application modes in which the
task is auto-started.

Description

Configuration Parameters

SWS Item OS081_Conf :
N OsTaskAppModeRef {APPMODE} ame
Description Reference to application modes in which that task is activated on

Specification of Operating System
 V5.0.0

R4.0 Rev 3

startup of the OS
Multiplicity 1..*

Reference to [OsAppMode] Type
X Pre-compile time All Variants

Link time --
ConfigurationClass

Post-build time --

 Scope / Dependency

No Included Containers

10.2.32 OsTaskResourceLock

SWS Item OS082_Conf :
Container Name OsTaskResourceLock{RESOURCELOCK}

Description
This container contains the worst case time between getting and releasing a
given resource (in seconds).

Configuration Parameters

SWS Item OS083_Conf :
N ame OsTaskResourceLockBudget {RESOURCELOCKTIME}
Description This parameter contains the maximum time the task is allowed to lock

the resource (in seconds)
Multiplicity 1
Type EcucFloatParamDef
Range 0 .. INF
Default value --

X Pre-compile time All Variants
-- Link time

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

dependency: Required for scalability class 2 and 4

SWS Item OS084_Conf :
N OsTaskResourceLockResourceRef {RESOURCE} ame

Reference to the resource used by the task Description
Multiplicity 1
Type Reference to [OsResource]

X Pre-compile time All Variants
-- Link time

ConfigurationClass

-- Post-build time
Scope / Dependency scope: ECU

dependency: Required for scalability class 2 and 4

No Included Containers

10.2.33 OsTaskTimingProtection

SWS Item OS325_Conf :
OsTaskTimingProtection{TIMING_PROTECTION} Container Name
This container contains all parameters regarding timing protection of the task.Description

205 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Configuration Parameters

SWS Item OS085_Conf :

Specification of Operating System
 V5.0.0

R4.0 Rev 3

OsTaskAllInterruptLockBudget {MAXALLINTERRUPTLOCKTIME} N ame
Description This parameter contains the maximum time for which the task is allowed

to lock all interrupts (via SuspendAllInterrupts() or DisableAllInterrupts())
(in seconds).

Multiplicity 0..1
Type EcucFloatParamDef
Range 0 .. INF

-- Default value
Pre-compile time X All Variants
Link time --

206 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

ConfigurationClass

Post-build time --
scope: ECU
dependency: Required for scalability class 2 and 4

Scope / Dependency

OS185_Conf : SWS Item
OsTaskExecutionBudget {EXECUTIONBUDGET} N ame
This parameter contains the maximum allowed execution time of the
task (in seconds).

Description

0..1 Multiplicity
EcucFloatParamDef Type
0 .. INF Range

Default value --
Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

dependency: Required for scalability class 2 and 4

SWS Item OS086_Conf :

OsTaskOsInterruptLockBudget {MAXOSINTERRUPTLOCKTIME} N ame
Description This parameter contains the maximum time for which the task is

allowed to lock all Category 2 interrupts (via SuspendOSInterrupts()) (in
seconds).
0..1 Multiplicity
EcucFloatParamDef Type
0 .. INF Range

Default value --
Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

dependency: Required for scalability class 2 and 4

SWS Item OS391_Conf :
N ame OsTaskTimeFrame {TIMEFRAME}

The minimum inter-arrival time between activations and/or releases of
a task (in seconds).

Description

0..1 Multiplicity
Type EcucFloatParamDef
Range 0 .. INF

-- Default value
Pre-compile time X All Variants
Link time --

ConfigurationClass

-- Post-build time
Scope / Dependency scope: ECU

Specification of Operating System
 V5.0.0

R4.0 Rev 3

dependency: Only available in scalability class 2 and 4

Included Containers
Container Name Multiplicity Scope / Dependency

OsTaskResourceLock 0..*
This container contains the worst case time
between getting and releasing a given
resource (in seconds).

10.2.34 OsTimeConstant

SWS Item OS386_Conf :
Container Name OsTimeConstant{TIMECONSTANTS}

Description

Allows the user to define constants which can be e.g. used to compare time
values with timer tick values.

 A time value will be converted to a timer tick value during
generation and can later on accessed via the OsConstName. The
conversation is done by rounding time values to the nearest fitting tick
value.

Configuration Parameters

OS002_Conf : SWS Item
N ame OsTimeValue

This parameter contains the value of the constant in seconds. Description
1 Multiplicity

Type EcucFloatParamDef
Range 0 .. INF
Default value --

Pre-compile time X All Variants

207 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Link time --
ConfigurationClass

Post-build time --
scope: ECU Scope / Dependency

No Included Containers

10.3 Containers and configuration parameter extensions of the IOC

This section describes the content of the IOC Configuration Description that is
needed for the generation of the IOC API.

10.3.1 OsIoc

MCOS1000_Conf : SWS Item
OsIoc Container Name

Description Configuration of the IOC (Inter OS Application Communicator).
Configuration Parameters

Included Containers
Container Name Multiplicity Scope / Dependency
OsIocCommunication 0..* Representation of a 1:1 or N:1

Specification of Operating System
 V5.0.0

R4.0 Rev 3

communication between software parts
located in different OS-Applications that
are bound to the same or to different cores.
The name shall begin with the name of the
sending software service and be followed
by a unique identifier delivered by the
sending software service. In the case of
RTE as user attention shall be paid on the
fact that uniqueness for identifier names
has to be reached over ports, data
elements, object instances and maybe
additional identification properties (E.g.
Case 1:N mapping to 1:1). Example: -
<NameSpace>_UniqueID

10.3.2 OsIocCommunication

MCOS1003_Conf : SWS Item
OsIocCommunication Container Name
Representation of a 1:1 or N:1 communication between software parts
located in different OS-Applications that are bound to the same or to
different cores.

Description

The name shall begin with the name of the sending software service and
be followed by a unique identifier delivered by the sending software
service. In the case of RTE as user attention shall be paid on the fact that
uniqueness for identifier names has to be reached over ports, data
elements, object instances and maybe additional identification properties
(E.g. Case 1:N mapping to 1:1).
Example: - <NameSpace>_UniqueID

Configuration Parameters

SWS Item MCOS1001_Conf :
N ame OsIocBufferLength
Description This attribute defines the size of the IOC internal queue to be

allocated for a queued communication. This configuration information
shall allow the optimization of the needed memory for communications
requiring buffers within the RTE and within the IOC.
0..1 Multiplicity

Type EcucIntegerParamDef
Range 0 .. 4294967295
Default value --

208 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Pre-compile time X All Variants
Link time --

ConfigurationClass

-- Post-build time
Scope / Dependency

Included Containers
Container Name Multiplicity Scope / Dependency

OsIocDataProperties 1..*
Data properties of the data to be
transferred on the IOC communication
channel.

OsIocReceiverProperties 1 Representation of receiver properties for

Specification of Operating System
 V5.0.0

R4.0 Rev 3

one communication. For each
OsIocCommunication (1:1 or N:1) one
receiver has to be defined. This container
should be instanciated within an
OsIocCommunication.

OsIocSenderProperties

Representation of sender properties for
one communication. For each
OsIocCommunication one (1:1) or many
senders (N:1) have to be defined.
Multiplicity > 1 (N:1 communication) is only
allowed for Multiplicity of
OsIocDataTypeRef = 1. This container
should be instanciated within an
OsIocCommunication.

1..*

10.3.3 OsIocSenderProperties

SWS Item MCOS1015_Conf :
Container Name OsIocSenderProperties

Description

Representation of sender properties for one communication. For each
OsIocCommunication one (1:1) or many senders (N:1) have to be defined.
Multiplicity > 1 (N:1 communication) is only allowed for Multiplicity of
OsIocDataTypeRef = 1.
This container should be instanciated within an OsIocCommunication.

Configuration Parameters

SWS Item MCOS1036_Conf :
N ame OsIocFunctionImplementationKind
Description This parameter is used to select whether this communication is implemented as

a macro or as a function.
Multiplicity 0..1

EcucEnumerationParamDef Type
DO_NOT_CARE It is not defined whether a macro or a

function is used.
(default)

FUNCTION Communication is implemented as a
function

Range

MACRO Communication is implemented as a
macro
X All Variants

209 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Pre-compile time
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item MCOS1016_Conf :
N ame OsIocSenderId

Representation of a sender in a N:1 communication to distinguish between
senders. This parameter does not exist in 1:1 communication.

Description

0..1 Multiplicity
EcucIntegerParamDef Type

Range 0 .. 255
Default value --

X All Variants Pre-compile time
Link time --

ConfigurationClass

-- Post-build time

Specification of Operating System
 V5.0.0

R4.0 Rev 3

scope: This identifier shall be used for the generation of the function name
for the sending of data (See API definition for functions)

Scope / Dependency

SWS Item MCOS1014_Conf :
N ame OsIocSendingOsApplicationRef

This attribute is a reference to the sending OS-Application instance defined
in the configuration file of the OS. This information shall allows the
generator to get additional information necessary for the code generation
like: * The protection properties of the communicating OS-Applications to
find out which protection boundaries have to be crossed. * The core
identifiers to find out if an intra or an inter core communication has to be
realized * Interrupt details in case of cross core notification to realize over
IRQs

Description

Multiplicity 1
Type Reference to [OsApplication]

X Pre-compile time All Variants
-- Link time

ConfigurationClass

-- Post-build time
Scope / Dependency

No Included Containers

10.3.4 OsIocReceiverProperties

SWS Item MCOS1017_Conf :
Container Name OsIocReceiverProperties

Representation of receiver properties for one communication. For each
OsIocCommunication (1:1 or N:1) one receiver has to be defined. This
container should be instanciated within an OsIocCommunication.

Description

Configuration Parameters

SWS Item MCOS1036_Conf :
N ame OsIocFunctionImplementationKind

This parameter is used to select whether this communication is implemented
as a macro or as a function.

Description

0..1 Multiplicity
Type EcucEnumerationParamDef

DO_NOT_CARE It is not defined whether a macro or
a function is used.

210 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

(default)
FUNCTION Communication is implemented as a

function

Range

MACRO Communication is implemented as a
macro
X All Variants Pre-compile time

Link time --
ConfigurationClass

Post-build time --
Scope / Dependency

SWS Item MCOS1010_Conf :
N ame OsIocReceiverPullCB
Description This attribute defines the name of a callback function that the IOC shall

call on the receiving core for each data reception. In case of non
existence of this attribute no ReceiverPullCB notification shall be

Specification of Operating System
 V5.0.0

R4.0 Rev 3

applied by the IOC. The name of the function shall begin with the name
of the receiving module, followed with a callback name and followed by
the IocId. Example: void RTE_ReceiverPullCB_RTE25 (void). If this
attribute does not exist, it means that no ReceiverPullCB shall be
called (No notification from IOC is required). If this attribute exists the
IOC shall call the callback function on the receiving core.
0..1 Multiplicity

Type EcucFunctionNameDef
-- Default value
-- maxLength
-- minLength
-- regularExpression
Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

MCOS1012_Conf : SWS Item
N ame OsIocReceivingOsApplicationRef
Description This attribute is a reference to the receiving OsApplication instance

defined in the configuration file of the OS. This information allows for
the generator to get additional information necessary for the code
generation like: * The protection properties of the communicating
OsApplications to find out which protections have to be crossed * The
core identifiers to find out if an intra or an inter core communication has
to be realized * Interrupt details in case of cross core notification to
realize over IRQs

Multiplicity 1
Reference to [OsApplication] Type
Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

No Included Containers

10.3.5 OsIocDataProperties

MCOS1023_Conf : SWS Item
OsIocDataProperties Container Name
Data properties of the data to be transferred on the IOC communication
channel.

Description

Configuration Parameters

SWS Item MCOS1035_Conf :
N ame OsIocDataPropertyIndex
Description This parameter is used to define in which order the data is send, e.g.

whether IocSendGroup(A,B) or IocSendGroup(B,A) shall be used.
Multiplicity 0..1

EcucIntegerParamDef Type
0 .. 255 Range

Default value --
Pre-compile time X All Variants ConfigurationClass

-- Link time

211 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

Post-build time --
Scope / Dependency

SWS Item MCOS1024_Conf :

OsIocInitValue N ame
Initial Value for the data to be transferred on the IOC communication
channel.

Description

Multiplicity 0..1
Type EcucStringParamDef
Default value --

-- maxLength
-- minLength
-- regularExpression

X All Variants

212 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Pre-compile time
Link time --

ConfigurationClass

Post-build time --

 Scope / Dependency

SWS Item MCOS1005_Conf :
N OsIocDataTypeRef ame
Description This is the type of the data to be transferred on the IOC

communication channel. This attribute is necessary to generate the
parameter type of the Ioc functions. Additionally this information
should be used to compute the data size for necessary data copy
operations within the Ioc module. If more than one attribute is defined,
the IOC generator should generate an IocXxxGroup function (Xxx=
CHOICE [Send, Receive, Write, Read]). N:1 communication
(Multiplicity of OsIocSenderProperties > 1) is only allowed for
multiplicity of OsIocDataRef = 1

Multiplicity 1
Foreign reference to [IMPLEMENTATION-DATA-TYPE] Type

X Pre-compile time All Variants
Link time --

ConfigurationClass

Post-build time --

 Scope / Dependency

No Included Containers

10.4 Published Information

[OS766] ⌈The standardized common published parameters as required by
BSW00402 in the SRS General on Basic Software Modules [3]shall be published
within the header file of this module and need to be provided in the BSW Module
Description. The according module abbreviation can be found in the List of Basic

Software Modules [13]. ⌋ ()

Additional module-specific published parameters are listed below if applicable.

Specification of Operating System
 V5.0.0

R4.0 Rev 3

11 Generation of the OS

213 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Figure 11.1: Generation Activities

11.1 Read in configuration

[OS172] ⌈The generator shall provide the user the ability of reading the information

of a selectable configuration file. ⌋ ()

11.2 Consistency check

The conistency check can issue warnings or errors. Warnings mean that the
generation is completed successfully, only indicating a not advisable configuration.
Errors mean that the generation is not performed.

[OS173] ⌈The generator shall provide the user the ability of performing a consistency

check of the current configuration. ⌋ ()

[OS050] ⌈If service protection is required and OsStatus is not equal to EXTENDED (all
the associated error handling is provided), the consistency check shall issue an error.

⌋ ()

linker
«binary»

object
file

«executable»
executable
program

linker
file

generator

(input-)
section

(output-)
section

«source»
configuration

file

1..*

1

1..*

1

generates

controls

reads

UML 1.4

operating
system

generates/configures

Specification of Operating System
 V5.0.0

R4.0 Rev 3

[OS045] ⌈If timing protection is configured together with OSEK OS Category 1

interrupts, the consistency check shall issue a warning. ⌋ ()

[OS562] ⌈If timing protection is configured together with Pre- or PostTaskHook the
consistency check shall issue a warning. ⌋ ()

[OS320] ⌈If configured attributes do not match the configured scalability class (e.g.
defining an execution time budget in Tasks or Category 2 ISRs and selected

scalability class is 1) the consistency check shall issue a warning. ⌋ ()

[OS311] ⌈If OsScalabilityClass is SC3 or SC4 AND a Task OR Category 2 ISR OR
Counters OR Alarms OR Schedule tables does not belong to exactly one OS-

Application the consistency check shall issue an error. ⌋ ()

[OS361] ⌈If OsScalabilityClass is SC3 or SC4 AND a Category 1 ISR does not
belong to exactly one trusted OS-Application the consistency check shall issue an

error⌋ ()

[OS177] ⌈If OsScalabilityClass is SC3 or SC4 AND an interrupt source that is used
by the OS is assigned to an OS-Application, the consistency check shall issue an

error. ⌋ ()

[OS303] ⌈If OsAlarmIncrementCounter is configured as action on alarm expiry AND
the alarm is driven directly or indirectly (a cyclic chain of alarm actions with
OsAlarmIncrementCounter) by that counter, the consistency check shall issue a
warning.. ⌋ ()

[OS328] ⌈If OsStatus is STANDARD and OsScalabilityClass is SC3 or SC4 the
consistency check shall issue an error. ⌋ ()

[OS343] ⌈If OsScalabilityClass is SC3 or SC4 AND a task is referenced within a
schedule table object AND the OS-Application of the schedule table has no access to

the task, the consistency check shall issue an error. ⌋ ()

[OS344] ⌈If OsScalabilityClass is SC3 or SC4 AND a task is referenced within an
alarm object AND the OS-Application of the alarm has no access to the task, the

consistency check shall issue an error. ⌋ ()

[OS440] ⌈If a schedule table has OsScheduleTblSyncStrategy = IMPLICIT and
the OsCounterMaxAllowedValue+1 of the associated counter is not equal to the

duration of the schedule table then the consitency check shall issue an error. ⌋ ()

214 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

[OS461] ⌈If OsScalabilityClass is SC2, SC3 or SC4 AND Alarm Callbacks are

configured the conistency check shall isuue an error. ⌋ ()

11.3 Generating operating system

[OS179] ⌈If the consistency check of the read-in configuration file has not run free of

errors, the generator shall not generate/configure the operating system. ⌋ ()

[OS336] ⌈The generator shall generate a relocatable memory section containing the

interrupt vector table. ⌋ (BSW11019)

[OS370] ⌈The generator shall print out information about timers used internally by

the OS during generation (e.g. on console, list file). ⌋ (SWFRT00022)

[OS393] ⌈The generator shall create conversation macros to convert counter ticks
(given as argument) into real time. The format of the macro is
OS_TICKS2<Unit>_<Counter>(ticks) whereas <Unit> is one of NS
(nanoseconds), US (microseconds), MS (milliseconds) or SEC (seconds) and

<Counter> is the name of the counter; E.g. OS_TICKS2MS_MyCounter())⌋
(SWFRT00047)

215 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

12 Application Notes

12.1 Hooks

In OSEK OS, PreTask & PostTask Hooks run at the level of the OS with unrestricted
access rights and therefore must be trusted. It is strongly recommended that these
hook routines are only used during debugging and are not used in a final product.

When an OS-Application is killed the shutdown and startup hooks of the OS-
Application are not called. Cleanup of OS-Application specific data can be done in
the restart task.

All application-specific hook functions (startup, shutdown and error) must return
(blocking or endless loops are not acceptable).

12.2 Providing Trusted Functions

Address checking shall be done before data is accessed. Special care must be taken
if parameters passed by reference point to the stack space of a task or interrupt,
because this address space might no longer belong to the task or interrupt when the
address is used.

The following code fragment shows an example how a trusted function is called and
how the checks should be done.

216 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

struct parameter_struct {type1 name1, type2 name2, StatusType
return_value};

/* This service is called by the user and uses a trusted function */

StatusType system_service(
 type1 parameter1,
 type2 parameter2)
{
 /* store parameters in a structure (parameter1 and parameter2) */
 struct parameter_struct local_struct;
 local_struct.name1 = parameter1;
 local_struct.name2 = parameter2;

 /* call CallTrustedFunction with appropriate index and
 * pointer to structure */
 if(CallTrustedFunction(SYSTEM_SERVICE_INDEX, &local_struct) !=
 E_OK)
 return(FUNCTION_DOES_NOT_EXIST);
 return(local_struct.return_value);
}

/* The CallTrustedFunction() service switches to the privileged
* mode. Note that the example is only a fragment! */

StatusType CallTrustedFunction(
 TrustedFunctionIndexType ix,
 TrustedFunctionParameterRefType ref)
{
 /* check for legal service index and return error if necessary */
 if(ix > MAX_SYSTEM_SERVICE)
 return(E_OS_SERVICEID);

 /* some implementation specific magic happens: the processor is
 * set to privileged mode */
 ….

 /* indirectly call target function based on the index */
 (*(system-service_list[ix]))(ix, ref);

 /* some implementation specific magic happens: the processor is
 * set to non-privileged mode */
 ….

 return(E_OK);
}

217 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

/* This part of the system service is called by
 * CallTrustedFunction() */

void TRUSTED_system_service_part2 (TrustedFunctionIndexType a,
parameter_struct *local_struct)
{
 TaskRefType task;
 type1 parameter1;
 type2 parameter2;

 if (GetTaskID(&task) != E_OK)
 task = INVALID_TASK;

 /* get parameters out of the structure (parameter1 and
 * parameter2) */
 parameter1 = local_struct.name1;
 parameter2 = local_struct.name2;

 /* check the parameters if necessary */
 /* example is for parameter1 being an address and parameter2
 * being a size */
 /* example only for system_service called from tasks */
 if(GetISRID()!=INVALID_ISR)
 {
 /* error: not callable from ISR */
 local_struct.return_value = E_OS_ACCESS;
 }
 else if(OSMEMORY_IS_WRITEABLE(CheckTaskMemoryAccess(
 task,parameter1,parameter2)))
 {
 /* system_service_part3() is now the function as it

* would be if directly called in a non-protected
* environment */

 local_struct.return_value =
 system_service_part3(parameter1,parameter2);
 }
 else
 {
 /* error handling */
 local_struct.return_value = E_OS_ACCESS;
 }
}

Note: Since the service of CallTrustedFunction() is very generic, it is needed to
define a stub-interface which does the packing and unpacking of the arguments (as
the example show). Depending on the implementation the stub interface may be
(partly) generated by the generation tool.

12.3 Migration hints for OSEKtime OS users

All important OSEKtime OS features are supported in AUTOSAR OS and it should
be relatively easy to port applications from OSEKtime OS to AUTOSAR OS.
218 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

However, most OSEKtime OS features are implemented slightly differently and
requiring some porting effort. The following steps show how to proceed.

o Dispatcher tables can be implemented by using schedule tables provided by

AUTOSAR OS. Synchronization to a global time base can be done in a similar
way to OSEKtime by using the SyncScheduleTable() API call. A more elegant
synchronization solution is also available by driving the schedule table directly
from the global time source. However, the AUTOSAR OS implements priority
based scheduling rather than the stack based scheduling of OSEKtime.
Therefore, priorities have to be chosen for the tasks.
If a given OSEKtime dispatcher table has to be converted, all tasks can be given
the same priority as long as there are no task preemptions. If this cannot be
guaranteed, in each case where a task could be pre-empted at a dispatch point,
the pre-empting task must be allocated a strictly higher priority than the task it
pre-empts. Usually, there are few preemptions in OSEKtime systems, so the
priorities are easy to calculate – a simple monotonically increasing priority
assignment relative to the tasks position in the schedule table should suffice in
most cases. Caveat: In OSEKtime, it is theoretically possible that task A pre-
empts task B at one point in the dispatcher table and task B pre-empts task A at
another point (however, this is rarely used in practice). Such behaviour is not
directly possible in AUTOSAR OS. It can, however, be emulated if required, either
by constructing a simple state machine in the task bodies, or by adding two tasks
A' and B' using the same code as tasks A and B respectively.
o Deadline monitoring is not supported by AUTOSAR OS - instead, worst-case

execution time enforcement is provided. Schedulability analysis can be used
to calculate whether given deadlines are met in a system of periodic tasks with
given worst-case execution times.

o Reenabling of interrupts defined offline is not supported by AUTOSAR OS.
o Tasks that have precedence over interrupt service routines are not supported

by AUTOSAR OS, however, this behaviour can be easily emulated by
activating a low-priority task from an ISR.

o Smooth synchronization is achieved by adjusting the delay between adjacent
expiry points, generalising OSEKtime OS' approach, where the
synchronization of the local time to the global time is done during several
dispatcher rounds by extending or shortening the last ground state of the
dispatcher round.

The OSEK time specification allows dispatcher rounds to take 3 modes:

1. Synchronous
2. Asynchronous/Hard
3. Asynchronous/Smooth

Users of OSEKtime who are migrating the AUTOSAR OS can define a schedule
table that has the same range/tick resolution as their global time source (with an
accompanying AUTOSAR OS counter that has the same resolution as the global
time) and can synthesise these modes as follows:

219 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

1. Synchronous: Define OsScheduleTblSyncStrategy = IMPLICIT and start
using StartScheduleTableAbs(). Or define
OsScheduleTblSyncStrategy = EXPLICIT and start using
StartScheduleTableSynchron()

2. Asynchronous/Hard: Define OsScheduleTblSyncStrategy = EXPLICIT

and specify that the final expiry point on the schedule table has a
OsScheduleTableMaxShorten = 1 and a OsScheduleTableMaxLengthen
 = OsCounterMaxAllowedValue. Start using StartScheduleTableRel().

3. Asynchronous/Smooth: Define OsScheduleTblSyncStrategy = EXPLICIT

and specify that each expiry point on the schedule table has
OsScheduleTableMaxShorten = 1 and a
OsScheduleTableMaxLengthen < OsCounterMaxAllowedValue. Start
using StartScheduleTableRel().

12.4 Software Components and OS-Applications

Trusted OS-Applications can be permitted access to IO space. As software
components can not be allowed direct access to the hardware, software components
can not be trusted OS-Applications because this would violate this protection feature.
The configuration process must ensure that this is the case.

The AUTOSAR Virtual Function Bus (VFB) specification places no restrictions on
how runnables from software components are mapped to OS tasks. However, the
protection mechanisms in AUTOSAR OS apply only to OS managed objects. This
means that all runnables in a task:

 Are not protected from each other at runtime
 Share the same protection boundary

If runnables need to be protected they must therefore be allocated to different tasks
and those tasks protected accordingly.

A simple rule can suffice:

“When allocating runnables to tasks, only allocate runnables from the same
software component into the same task.”

If multiple software components from the same application are to reside on the same
processor, then, assuming protection is required between applications (or parts
thereof) on the same processor, this rule could be modified to relax the scope of
protection to the application:

“When allocating runnables to tasks, only allocate runnables from the same
application into the same task.”

220 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

If an OS-Application is killed and the restart task is activated it can not assume that
the startup of the OS-Application has finished. Maybe the fault happened in the
application startup hook and no task of the application was started so far.

12.5 Global Time Synchronization

The OS currently assumes that the global time synchronization is done by the user
(unless implicit synchronization is used). This allows maximum flexibility regarding
the time source. For synchronization with e.g. FlexRay some glue code may be
necessary which transfer the information from the time source to the OS.

12.6 Working with FlexRay

Schedule tables in the AUTOSAR OS may be synchronized with a global (network)
time provided by FlexRay in essentially two ways:

1. Using the FlexRay interface’s services for controlling timer interrupts related to
global time to provide a “hardware” counter tick source to drive the processing
of a schedule table (implicit synchronization)

2. Using the FlexRay interface’s service for accessing the current global time and
passing this into the OS through the SyncScheduleTable() OS service call

This section looks at the second option only.

In FlexRay time is presented as a tuple of a Cycle and a MacrotickOffset within the
cycle. Cycle is an 8-bit value and MacrotickOffset is a 16-bit value.
In AUTOSAR OS a schedule table is associated with an underlying counter that has
a notion of ticks. It is therefore possible to synchronize with either the Cycle or the
tuple of Cycle/MacrotickOffset to give the resolution of synchronization required by
the application.
If Cycle only resolution is required then an OS COUNTER object should be
configured to have a OsCounterMaxAllowedValue equal to the maximum number of
Cycles. If Cycle/MacrotickOffset is required then an OS COUNTER object should be
configured with a OsCounterMaxAllowedValue of the maximum number of Cycles
multiplied by the MacrotickOffset. This provides the OS with a time base against
which a ScheduleTable can be synchronized.

Synchronization between the OS and an external global time source is provided by
telling the OS the global time through the SyncScheduleTable() service call. This call
takes a scalar parameter of TickType so to interface this to FlexRay’s representation
of time a small conversion needs to be done. The following example assumes a
Cycle of 255 with 65535 Macroticks per Cycle. TickType is at least 24-bits wide.

#define OSTIME(x) (TickType)(x);
FrIf_GetGlobalTime(Controller, &Cycle, &Macrotick);
SyncScheduleTable(Tbl, ((OSTIME(Cycle) << 16)+(OSTIME(Macrotick))));

221 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

Telling the ScheduleTable that GlobalTime can be done when the application detects
that the FlexRay controller has lost synchronization with the network (by polling the
controller sync status). The following code indicates how this can be used to force an
associated ScheduleTable into the SCHEDULETABLE_RUNNING state from the
SCHEDULETABLE_RUNNING_AND_SYNCHRONOUS state.

Fr_SyncStateType CurrentSyncStatus;
if (FrIf_GetSyncState(Controller, &CurrentSyncStatus) == E_OK) {
 if (CurrentSyncStatus == FR_ASYNC) {
 SetScheduleTableAsync(Table);
 }
}

Of course, other actions are possible here, like stopping the ScheduleTable, as best
fits user requirements.

12.7 Migration from OIL to XML

This version of the AUTOSAR OS specification does not directly support the
configuration via OIL. The support for OIL was dropped in favour of XML because
XML is the standard configuration language in AUTOSAR and is essential if
configuration data has to be imported / exported from / to other AUTOSAR modules
or between different tools during development.

Since OIL and XML are both ASCII formats a tool vendor may offer a possibility to
import (old) OIL files and to store them as (AUTOSAR OS) XML files. Currently all
known vendors support at least the import of existing OIL configurations.

Note that for showing conformance to the OSEK OS specification, each OSEK OS
vendor must support OIL. This means that practically each AUTOSAR OS vendor will
offer some sort of import of OIL configurations – at least to show the OSEK OS
conformance.

12.8 Migrating RES_SCHEDULER in AUTOSAR OS

As stated in 7.1.2.1 AUTOSAR OS treats RES_SCHEDULER as a normal resource. If
you have legacy code which is migrated to AUTOSAR OS please take care of the
following aspects:

 In OSEK OS there is no need to configure the RES_SCHEDULER in the OIL file. If

you migrate to AUTOSAR OS the configuration is done in XML and each
resource must be properly configured. The easiest way to do this is to configure a
resource RES_SCHEDULER in XML (OsResource) and allow any Task in your
system to use this resource7.

 Avoid that ISRs are using the RES_SCHEDULER. In OSEK OS this is also not
possible.

222 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

7 This work can be done automatically by a configuration tool duirng importing an OIL file

Specification of Operating System
 V5.0.0

R4.0 Rev 3

 Make the RES_SCHEDULER a STANDARD resource (at least not an INTERNAL
resource). The symbol RES_SCHEDULER must be present which is not the case if
the resource is an INTERNAL resource.

 If you are using OS-Applications, the RES_SCHEDULER should belong to a trusted
OS-Application. Tasks of other OS-Applications should be configured to have the
right to access the resource.

12.9 Debug support

For the AUTOSAR OS the following information may be useful for users and should
be considert for debug support (and may be published, e.g. in the BSWMD):

 General information about how to retrieve the current (active) Task or ISR and
their (current) priority and (current) stack.

 For ISRs: Information about the name of interrupts, their mapping to the ISR
identifier, the associated hardware and the used stack(s).

 For Tasks: Information about the name of the Task, its identifier, the task
state, the possible priorities, the event mask (if its an extended task), the OS-
Application to whom the Task belongs (if existant) and the used stack.

 For Resources: Information about the name of the Resource, its mapping to
the identifier, its priority and the current owner (the Task/ISR which currently
holds the Resource)

 For Alarms: Information about the name of the Alarm, its mapping to the
identifier, the counter to whom it belong, the action which is executed on
expiry and the current state (running or stopped). In running state the next
expiry in ticks and the possible cycle time shall be also published.

 For Counters: Information about the name of the Counter, its mapping to the
identifier, its associated alarms and the current counter value.

 For Schdule Tables: Information about the name of the Schedule Table, its
mapping to the identifier, its current state and the next expiry point (if the table
is running).

 For OS-Applications: Information about the name of the OS-Application, its
mapping to the identifier, its current state and the memory sections assigned
to it (if memory protection is used).

User documentation should contain information about the implemeted debug
features.

12.10 Integration hints for peripheral protection

Peripheral protection requires configuration on the core level usually conditioned by a
supervisor access. For this reason the task of the peripheral protection is assigned to
the OS module.

Peripheral protection may be implemented in two ways
 - using MPU
 - using dedicated peripheral protection units of the target MCU.

223 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

When using the memory protection unit, it is reasonable if two or more protected
region descriptors are available for peripheral protection mechanism. The region
descriptors shall be programmed to allow access to those peripherals the current
OS-Application shall work with. The defined regions shall cover all memory mapped
configuration registers for the periphiherals to be protected. The advantage of using
the MPU is that the configuration is the same as for memory protection. One of the
disadvantages of this method is that it could be impossilbe to cover all peripheral
control registers with available MPU region descriptors. The number of such
descriptors is typically low.

Beware that using this method may have implication to the linker file of the project
software configuration.

Second method is using a dedicated register protection schema. This method shall
allow to precisely select peripherals for every OS Application. However the number of
peripherals may make the register protection implementation rather bulky. Therefore
it is advisable to reduce the number of protected peripherals to a reasonable value.

For both methods the configuration shall be placed into custom OS Application
properties. The configuration shall be active when a task (or ISR) of a particular OS
Application is running.

224 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

13 AUTOSAR Service implemented by the OS

13.1 Scope of this Chapter

This chapter is an addition to the specification of the Operating System. Whereas the
other parts of the specification define the behavior and the C-interfaces of the OS
module, this chapter formally specifies the corresponding AUTOSAR Service in
terms of the SWC Template. The interfaces described here will be visible on the VFB
and are used by the RTE generator to create the glue code between the application
software (SWC) and the OS.

13.1.1 Package

The following definitions are interpreted to be in
ARPackage AUTOSAR/Services/Os

13.2 Overview

The AUTOSAR Operating System is normally not used directly by SWCs. Even the
other BSW modules which are below the RTE are using the BSW Scheduler to have
access to OS services. The BSW Scheduler of course uses the OS to implement its
features, e.g. critical sections.

Nevertheless there are some cases, where it makes sense to allow SWCs access to
services of the OS:
 Timer services

Since the number of timers in an ECU is limited it make sense to share these
units across several SWCs. The functionality of the timer services of the OS
which are offered to the SWCs are:
 A service to get the current value of a – hardware or software – counter
 A service which calculates the time difference between the current timer value

and a given (previouls read) timer value

 Application modes
An application mode is always used to start the OS. To get the current application
mode the corresponding OS service is avalible to SWCs.

 OS-Application handling
To enable SWCs to start and stop OS-Applications the following services are
available:
 A service to terminate and optionally restart an OS-Application
 A service to get the current state of the OS-Application

225 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

13.3 Specification of the Ports and Port Interfaces

This chapter specifies the ports and port interfaces which are needed in order to
operate the timer services of the OS over the VFB. Note that there are ports on both
sides of the RTE: The SW-C description of the OS service will define the ports below
the RTE. Each SW-Component, which uses the Service, must contain “service ports”
in its own SW-C description which will be connected to the ports of the OS, so that
the RTE can be generated.
13.3.1 Data Types and Port Interface

13.3.1.1 General Approach

It is appropriate to model the requests issued from a client to the services by ports
using the client/server interfaces.

13.3.1.2 Data Types

This chapter describes the data types which will be used in the port interfaces for
service requests. In general the interfaces are using the following types:

 CounterType – This type is the reference to the requested Counter
 TickType – This type holds a timer value
 AppModeType – This type holds the current mode of the OS
 ApplicationType – This type is the reference to a OS-Application
 RestartType – This type holds the restart parameter

ApplicationStateType – This type holds the state of an OS-Application

The APIs of the services have a return type of StatusType. This means that a
successful call returns 0 and a return value not equal 0 represents an error.

13.3.1.3 Port Interface

The operations correspond to the function calls of the OS C-API (notation in pseudo
code; must be transferred into XML).

The notation of possible error codes resulting from server calls follows the approach
in the meta-model. It is a matter of the RTE specification [9], how those error codes
will be passed via the actual API.

[OS560] ⌈
ClientServerInterface OsService {
 PossibleErrors {
 E_OS_ACCESS = 1
 E_OS_ID = 3,
 E_OS_STATE = 7
 E_OS_VALUE = 8

226 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

 };

 // The timer services

 GetCounterValue(IN CounterType CounterID,
 OUT TickType Value
 ERR{E_OS_ID});

 GetElapsedValue(IN CounterType CounterID,
 INOUT TickType PreviousValue,
 OUT TickType Value,
 ERR{E_OS_ID, E_OS_VALUE});

 // Service to access the current AppMode (which was
 // used in StartOS()).

 GetActiveApplicationMode(OUT AppModeType CurrentMode);

 // Services to terminate applications and to access the current
 // application state.

 TerminateApplication(IN ApplicationType Application,

IN RestartType RestartOption,
ERR{E_OS_ID,_E_OS_VALUE,
 E_OS_STATE, E_OS_ACCESS});

 GetApplicationState(IN ApplicationType Application,
 OUT ApplicationStateType Value,

ERR{E_OS_ID}));

};
⌋ ()

13.3.1.4 Ports

We end up with the following structure for the AUTOSAR Interface of the OS:

[OS561] ⌈
Service Os
{
 ProvidePort OsService OsService;
};

It is obvious that the existence of all these port definitions depends on the ECU. ⌋ ()

227 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

14 Outlook on Memory Protection Configuration

As stated before, memory protection configuration is not standardized yet.
Nevertheless it seems helpful to contribute a recommendation in this chapter, how
the configuration might work.

14.1 Configuration Approach

Both, SW-Components and BSW modules, map code and variables to dedicated,
disjoined memory sections (see meta-class»ObjectFileSection« in chapter 7.3 of
»Software Component Template«, Version 2.0.1, and »module specific sections« in
chapter 8.2 of »Specification of Memory Mapping«, Version 1.0.1).

This essential precondition (avoid an inseparable conglomeration of variables in the
default section) can be used to support configuration of memory protection domains:

1. The generator can save for each OS-Application a (processor-specific)
maximum number of output sections for data in a file (to be used in the linker
file).

2. The generator can uniquely identify the address spaces of the data output

sections with symbols using the naming convention (see »memory allocation
keywords« _STOP_SEC_VAR and _START_SEC_VAR for start and stop
symbols) in the specification mentioned above.

The input data sections in the object files of an OS-Application can then be assigned
to the output sections (with potential tool support). Usually, this is one segment for
global data, and one segment for code.

To archieve portability, the user shall group all variables belonging to a private data
section (Task/ISR or OS-Application) in separate files.

228 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

15 Changes to Release 3.0/3.1

- Many small correction (wording, typos, clarifications)
- Added additional services to the service interface for SWCs
- Changes caused by R4.0 concepts (e.g. debugging concept, error handling

concept, multicore concept, …)
o Added states to OS-Applications
o Added 2 new services: GetApplicationState() and AllowAccess()
o Extended API to terminate other OS-Applications

229 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

Specification of Operating System
 V5.0.0

R4.0 Rev 3

230 of 230 Document ID 034: AUTOSAR_SWS_OS

- AUTOSAR confidential -

16 Not applicable requirements

[OS767] ⌈These requirements are not applicable to this specification.⌋ (BSW00344,
BSW00404, BSW00405, BSW170, BSW00380, BSW00419, BSW00381, BSW00412, BSW00383,
BSW00384, BSW00375, BSW00406, BSW168, BSW00407, BSW00423, BSW00337, BSW00338,
BSW00369, BSW00339, BSW00422, BSW00417, BSW00409, BSW00385, BSW00386, BSW00437,
BSW161, BSW162, BSW00415, BSW00325, BSW00326, BSW00342, BSW007, BSW00413,
BSW00347, BSW00441, BSW00305, BSW00307, BSW00310, BSW00373, BSW00327, BSW00335,
BSW00350, BSW00410, BSW00411, BSW00314, BSW00370, BSW00435, BSW00436, BSW00361,
BSW00301, BSW00302, BSW00328, BSW00312, BSW006, BSW00439, BSW00357, BSW00377,
BSW00304, BSW00355, BSW00378, BSW00306, BSW00308, BSW00309, BSW00358, BSW00414,
BSW00376, BSW00440, BSW00329, BSW00330, BSW009, BSW00401, BSW172, BSW010,
BSW00333, BSW00374, BSW00379, BSW003, BSW00318, BSW00321, BSW00341, BSW00334,
SWFRT00032)

	1Introduction and functional overview
	2 Acronyms and abbreviations
	2.1 Glossary of Terms

	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms
	3.2.1 OSEK/VDX
	3.2.2 HIS
	3.2.3 ISO/IEC

	3.3 Company Reports, Academic Work, etc.

	4 Constraints and assumptions
	4.1 Existing Standards
	4.2 Terminology
	4.3 Interaction with the RTE
	4.4 Operating System Abstraction Layer (OSAL)
	4.5 Multi-Core Hardware assumptions
	4.5.1 CPU Core features
	4.5.2 Memory features
	4.5.3 Multi-Core Limitations

	4.6 Limitations
	4.6.1 Hardware
	4.6.2 Programming Language
	4.6.3 Miscellaneous

	4.7 Applicability to car domains

	5 Dependencies to other modules
	5.1 File structure
	5.1.1 Code file structure
	5.1.2 Header file structure

	6 Requirements Traceability
	7 Functional specification
	7.1 Core OS
	7.1.1 Background & Rationale
	7.1.2 Requirements
	7.1.2.2 Undefined Behaviour in OSEK OS
	7.1.2.3 Extensions to OSEK OS

	7.2 Software Free Running Timer
	7.3 Schedule Tables
	7.3.1 Background & Rationale
	7.3.2 Requirements
	7.3.2.1 Structure of a Schedule Table
	7.3.2.2 Constraints on Expiry Points
	7.3.2.3 Processing Schedule Tables
	7.3.2.4 Repeated Schedule Table Processing
	7.3.2.5 Controlling Schedule Table Processing

	7.4 Schedule Table Synchronization
	7.4.1 Background & Rationale
	7.4.2 Requirements
	7.4.2.1 Implicit Synchronization
	7.4.2.2 Explicit Synchonization
	7.4.2.2.1 Startup
	7.4.2.2.2 Providing a Synchronization Count
	7.4.2.2.3 Specifying Synchronization Bounds

	7.4.2.3 Performing Synchronization

	7.5 Stack Monitoring Facilities
	7.5.1 Background & Rationale
	7.5.2 Requirements

	7.6 OS-Application
	7.6.1 Background & Rationale
	7.6.2 Requirements

	7.7 Protection Facilities
	7.7.1 Memory Protection
	7.7.1.1 Background & Rationale
	7.7.1.2 Requirements

	7.7.2 Timing Protection
	7.7.2.1 Background & Rationale
	7.7.2.2 Requirements
	7.7.2.3 Implementation Notes

	7.7.3 Service Protection
	7.7.3.1 Invalid Object Parameter or Out of Range Value
	7.7.3.1.1 Background & Rationale
	7.7.3.1.2 Requirements

	7.7.3.2 Service Calls Made from Wrong Context
	7.7.3.2.1 Background & Rationale
	7.7.3.2.2 Requirements

	7.7.3.3 Services with Undefined Behaviour
	7.7.3.3.1 Background & Rationale
	7.7.3.3.2 Requirements

	7.7.3.4 Service Restrictions for Non-Trusted OS-Applications
	7.7.3.4.1 Background & Rationale
	7.7.3.4.2 Requirements

	7.7.3.5 Service Calls on Objects in Different OS-Applications
	7.7.3.5.1 Background
	7.7.3.5.2 Requirements

	7.7.4 Protecting the Hardware used by the OS
	7.7.4.1 Background & Rationale
	7.7.4.2 Requirements
	7.7.4.3 Implementation Notes

	7.7.5 Providing »Trusted Functions«
	7.7.5.1 Background & Rationale
	7.7.5.2 Requirements

	7.8 Protection Error Handling
	7.8.1 Background & Rationale
	7.8.2 Requirements

	7.9 Operating System for Multi-Core
	7.9.1 Background & Rationale
	7.9.2 Scheduling
	7.9.3 Locatable entities (LE)
	7.9.4 Multi-Core start-up concept
	7.9.5 Cores under control of the AUTOSAR OS
	7.9.6 Cores which are not controlled by the AUTOSAR OS
	7.9.7 Multi-Core shutdown concept
	7.9.7.3 Shutdown in case of fatal internal errors

	7.9.8 OS service functionality (overview)
	7.9.9 GetTaskID
	7.9.10 Interrupt disabling
	7.9.11 TASK activation
	7.9.12 TASK Chaining
	7.9.13 EVENT setting
	7.9.14 Activating additional cores
	7.9.15 Start of the OS
	7.9.16 TASK termination
	7.9.17 Termination of OS-Applications
	7.9.18 Shutdown of the OS
	7.9.19 Waiting for EVENTs
	7.9.20 Calling trusted functions
	7.9.21 Invoking reschedule
	7.9.22 RESOURCE occupation
	7.9.23 The CoreID
	7.9.24 COUNTERs, background & rationale
	7.9.25 Multi-Core restrictions on COUNTERs
	7.9.26 Synchronization of COUNTERs
	7.9.27 ALARMs
	7.9.28 Schedule tables
	7.9.29 The spinlock mechanism
	7.9.30 Offline checks
	7.9.31 Auto start Objects

	7.10 Inter-OS-Application Communicator (IOC)
	7.10.1 Background & Rationale
	7.10.2 IOC - General purpose
	7.10.3 IOC functionality
	7.10.4 IOC interface
	7.10.5 IOC internal structure
	7.10.6 IOC configuration and generation
	7.10.7 IOC integration examples
	7.10.8 Future extensions

	7.11 System Scalability
	7.11.1 Background & Rationale
	7.11.2 Requirements

	7.12 Hook Functions
	7.12.1 Background & Rationale
	7.12.2 Requirements

	7.13 Error classification
	7.14 Debug support

	8 API specification
	8.1 Constants
	8.1.1 Error codes of type StatusType

	8.2 Macros
	8.3 Type definitions
	8.3.1 ApplicationType (for OS-Applications)
	8.3.2 ApplicationStateType
	8.3.3 ApplicationStateRefType
	8.3.4 TrustedFunctionIndexType
	8.3.5 TrustedFunctionParameterRefType
	8.3.6 AccessType
	8.3.7 ObjectAccessType
	8.3.8 ObjectTypeType
	8.3.9 MemoryStartAddressType
	8.3.10 MemorySizeType
	8.3.11 ISRType
	8.3.12 ScheduleTableType
	8.3.13 ScheduleTableStatusType
	8.3.14 ScheduleTableStatusRefType
	8.3.15 CounterType
	8.3.16 ProtectionReturnType
	8.3.17 RestartType
	8.3.18 PhysicalTimeType
	8.3.19 CoreIDType
	8.3.20 SpinlockIdType
	8.3.21 TryToGetSpinlockType

	8.4 Function definitions
	8.4.1 GetApplicationID
	8.4.2 GetISRID
	8.4.3 CallTrustedFunction
	8.4.4 CheckISRMemoryAccess
	8.4.5 CheckTaskMemoryAccess
	8.4.6 CheckObjectAccess
	8.4.7 CheckObjectOwnership
	8.4.8 StartScheduleTableRel
	8.4.9 StartScheduleTableAbs
	8.4.10 StopScheduleTable
	8.4.11 NextScheduleTable
	8.4.12 StartScheduleTableSynchron
	8.4.13 SyncScheduleTable
	8.4.14 SetScheduleTableAsync
	8.4.15 GetScheduleTableStatus
	8.4.16 IncrementCounter
	8.4.17 GetCounterValue
	8.4.18 GetElapsedValue
	8.4.19 TerminateApplication
	8.4.20 AllowAccess
	8.4.21 GetApplicationState
	8.4.22 GetNumberOfActivatedCores
	8.4.23 GetCoreID
	8.4.24 StartCore
	8.4.25 StartNonAutosarCore
	8.4.26 GetSpinlock
	8.4.27 ReleaseSpinlock
	8.4.28 TryToGetSpinlock
	8.4.29 ShutdownAllCores

	8.5 IOC
	8.5.1 Imported types
	8.5.2 Type definitions
	8.5.3 Constants
	8.5.4 Function definitions

	8.6 Expected Interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.2.1 ReceiverPullCB

	8.7 Hook functions
	8.7.1 Protection Hook
	8.7.2 Application specific StartupHook
	8.7.3 Application specific ErrorHook
	8.7.4 Application specific ShutdownHook

	9 Sequence diagrams
	9.1 Sequence chart for calling trusted functions
	9.2 Sequence chart for usage of ErrorHook
	9.3 Sequence chart for ProtectionHook
	9.4 Sequence chart for StartupHook
	9.5 Sequence chart for ShutdownHook
	9.6 Sequence diagrams of Sender Receiver communication over the IOC
	9.6.1 LastIsBest communication
	9.6.2 Queued communication without pull callback
	9.6.3 Queued communication with pull callback

	10 Configuration Specification
	10.1 How to read this chapter
	10.1.1 Configuration and configuration parameters
	10.1.2 Variants
	10.1.3 Containers
	10.1.4 Rules for paramters

	10.2 Containers and configuration parameters
	10.2.1 Variants
	10.2.2Os
	10.2.3OsAlarmSetEvent
	10.2.4 OsAlarm
	10.2.5OsAlarmAction
	10.2.6 OsAlarmActivateTask
	10.2.7 OsAlarmAutostart
	10.2.8 OsAlarmCallback
	10.2.9 OsAlarmIncrementCounter
	10.2.10 OsApplication
	10.2.11OsApplicationHooks
	10.2.12 OsApplicationTrustedFunction
	10.2.13OsAppMode
	10.2.14 OsCounter
	10.2.15 OsEvent
	10.2.16 OsHooks
	10.2.17 OsIsr
	10.2.18 OsIsrResourceLock
	10.2.19 OsIsrTimingProtection
	10.2.20 OsOS
	10.2.21OsResource
	10.2.22 OsScheduleTable
	10.2.23 OsScheduleTableAutostart
	10.2.24 OsScheduleTableEventSetting
	10.2.25 OsScheduleTableExpiryPoint
	10.2.26 OsScheduleTableTaskActivation
	10.2.27 OsScheduleTblAdjustableExpPoint
	10.2.28 OsScheduleTableSync
	10.2.29OsSpinlock
	10.2.30 OsTask
	10.2.31 OsTaskAutostart
	10.2.32 OsTaskResourceLock
	10.2.33 OsTaskTimingProtection
	10.2.34 OsTimeConstant

	10.3 Containers and configuration parameter extensions of the IOC
	10.3.1OsIoc
	10.3.2OsIocCommunication
	10.3.3OsIocSenderProperties
	10.3.4OsIocReceiverProperties
	10.3.5OsIocDataProperties

	10.4 Published Information

	11 Generation of the OS
	11.1 Read in configuration
	11.2 Consistency check
	11.3 Generating operating system

	12 Application Notes
	12.1 Hooks
	12.2 Providing Trusted Functions
	12.3 Migration hints for OSEKtime OS users
	12.4 Software Components and OS-Applications
	12.5 Global Time Synchronization
	12.6 Working with FlexRay
	12.7 Migration from OIL to XML
	12.8 Migrating RES_SCHEDULER in AUTOSAR OS
	12.9 Debug support
	12.10 Integration hints for peripheral protection

	13 AUTOSAR Service implemented by the OS
	13.1 Scope of this Chapter
	13.1.1 Package

	13.2 Overview
	13.3 Specification of the Ports and Port Interfaces
	13.3.1 Data Types and Port Interface
	13.3.1.1 General Approach
	13.3.1.2 Data Types
	13.3.1.3 Port Interface
	13.3.1.4 Ports

	14 Outlook on Memory Protection Configuration
	14.1 Configuration Approach

	15 Changes to Release 3.0/3.1
	16 Not applicable requirements

