
 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

Document Title Specification of Flash Driver
Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 025
Document Classification Standard

Document Version 3.2.0
Document Status Final
Part of Release 4.0
Revision 3

Document Change History
Date Version Changed by Change Description
02.11.2011 3.2.0 AUTOSAR

Administration
 References to HW specific errors

corrected
 Range of configuration parameters

adapted
 Consistency checking reformulated
 Module short name changed

19.10.2010 3.1.0 AUTOSAR
Administration

 Configuration parameter
FlsDefaultMode added

 Container with SPI reference added
 Check for NULL pointer added

30.11.2009 3.0.0 AUTOSAR
Administration

 References to AUTOSAR Standard
Errors added

 Range of configuration parameters
restricted

 Multiplicity of notification routines
corrected

 Several typing and formatting errors
corrected

 Legal disclaimer revised
23.06.2008 2.2.2 AUTOSAR

Administration
Legal disclaimer revised

23.01.2008 2.2.1 AUTOSAR
Administration

Table formatting corrected

1 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

Document Change History
Date Version Changed by Change Description
11.12.2007 2.2.0 AUTOSAR

Administration
 NULL pointer check added to

Fls_Compare
 NULL pointer check detailed (in

general)
 Restriction removed to allow re-

initialization of module
 Tables in chapters 8 and 10

generated from UML model
 Document meta information

extended
 Small layout adaptations made

14.02.2007 2.1.0 AUTOSAR
Administration

 File include structure updated
 Type usage corrected
 Compare Job results adapted
 API towards DEM corrected
 Legal disclaimer revised
 Release Notes added
 “Advice for users” revised
 “Revision Information” added

10.04.2006 2.0.0 AUTOSAR
Administration

Document structure adapted to
common Release 2.0 SWS Template
 new functionality: Read, Compare

and SetMode functions
 scalability: functionality can be

configured (on/off)
 adapted to new MemHwA

architecture
10.07.2004 1.0.0 AUTOSAR

Administration
Initial release

2 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

Disclaimer

This specification and the material contained in it, as released by AUTOSAR is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only.
For any other purpose, no part of the specification may be utilized or reproduced, in
any form or by any means, without permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR Specification Documents may contain exemplary items (exemplary
reference models, “use cases”, and/or references to exemplary technical solutions,
devices, processes or software).

Any such exemplary items are contained in the Specification Documents for
illustration purposes only, and they themselves are not part of the AUTOSAR
Standard. Neither their presence in such Specification Documents, nor any later
documentation of AUTOSAR conformance of products actually implementing such
exemplary items, imply that intellectual property rights covering such exemplary
items are licensed under the same rules as applicable to the AUTOSAR Standard.

3 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

Table of Contents

1 Introduction and functional overview ... 6

2 Acronyms and abbreviations ... 7

3 Related documentation.. 8

3.1 AUTOSAR deliverables.. 8
3.2 Related standards and norms .. 8

4 Constraints and assumptions .. 9

4.1 Limitations .. 9
4.2 Applicability to car domains.. 9

5 Dependencies to other modules.. 10

5.1 File structure .. 10
5.1.1 Code file structure ... 10
5.1.2 Header file structure.. 10

5.2 System clock .. 11
5.3 Communication or I/O drivers... 12

6 Requirements traceability .. 13

7 Functional specification ... 19

7.1 General design rules .. 19
7.2 Error classification .. 20
7.3 Error detection.. 22
7.4 Error notification ... 22
7.5 External flash driver.. 22
7.6 Loading, executing and removing the flash access code 23
7.7 Support for Debugging ... 24
7.8 Consistency checks.. 24

8 API specification.. 25

8.1 Imported types.. 25
8.2 Type definitions .. 25

8.2.1 Fls_ConfigType ... 25
8.2.2 Fls_AddressType .. 25
8.2.3 Fls_LengthType .. 26

8.3 Function definitions .. 26
8.3.1 Fls_Init .. 26
8.3.2 Fls_Erase.. 27
8.3.3 Fls_Write ... 29
8.3.4 Fls_Cancel .. 31
8.3.5 Fls_GetStatus ... 32
8.3.6 Fls_GetJobResult.. 33
8.3.7 Fls_Read... 34
8.3.8 Fls_Compare... 35
8.3.9 Fls_SetMode... 37
8.3.10 Fls_GetVersionInfo ... 38

4 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

8.4 Call-back notifications .. 39
8.5 Scheduled functions ... 39

8.5.1 Fls_MainFunction.. 39
8.6 Expected Interfaces.. 42

8.6.1 Mandatory Interfaces .. 42
8.6.2 Optional Interfaces .. 43
8.6.3 Configurable interfaces ... 43

9 Sequence diagrams .. 45

9.1 Initialization .. 45
9.2 Synchronous functions ... 45
9.3 Asynchronous functions ... 46
9.4 Canceling a running job.. 47

10 Configuration specification... 48

10.1 How to read this chapter .. 48
10.1.1 Configuration and configuration parameters 48
10.1.2 Containers... 48
10.1.3 Specification template for configuration parameters 49

10.2 Containers and configuration parameters .. 50
10.2.1 Variants... 50
10.2.2 Fls ... 51
10.2.3 FlsGeneral... 51
10.2.4 FlsConfigSet.. 54
10.2.5 FlsDemEventParameterRefs... 59
10.2.6 FlsExternalDriver... 60
10.2.7 FlsSectorList ... 61
10.2.8 FlsSector ... 61

10.3 Published Information... 62
10.3.1 FlsPublishedInformation.. 62

11 Changes w.r.t. Release 3.0.. 66

11.1 Deleted SWS Items.. 66
11.2 Replaced SWS Items ... 66
11.3 Changed SWS Items.. 66
11.4 Added SWS Items.. 67

12 Changes w.r.t. Release 4.0.. 68

12.1 Deleted SWS Items.. 68
12.2 Replaced SWS Items ... 68
12.3 Changed SWS Items.. 68
12.4 Added SWS Items.. 68

13 Not applicable requirements .. 69

5 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

1 Introduction and functional overview

This document specifies the functionality, API and the configuration of the AUTOSAR
Basic Software module Flash Driver.

This specification is applicable to drivers for both internal and external flash memory.

The flash driver provides services for reading, writing and erasing flash memory and
a configuration interface for setting / resetting the write / erase protection if supported
by the underlying hardware.

In application mode of the ECU, the flash driver is only to be used by the Flash
EEPROM emulation module for writing data. It is not intended to write program code
to flash memory in application mode. This shall be done in boot mode which is out of
scope of AUTOSAR.

A driver for an internal flash memory accesses the microcontroller hardware directly
and is located in the Microcontroller Abstraction Layer. An external flash memory is
usually connected via the microcontroller’s data / address busses (memory mapped
access), the flash driver then uses the handlers / drivers for those busses to access
the external flash memory device. The driver for an external flash memory device is
located in the ECU Abstraction Layer.

[FLS088] ⌈The functional requirements and the functional scope are the same for

both internal and external drivers. Hence the API is semantically identical.⌋
(BSW12147, BSW12148)

6 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

2 Acronyms and abbreviations

Abbreviation /
Acronym:

Description:

DET Development Error Tracer – module to which development errors are reported.
DEM Diagnostic Event Manager – module to which production relevant errors are

reported.
Fls, FLS Official AUTOSAR abbreviation for the module flash driver

(different writing depending on the context, same meaning).
AC (Flash) access code – abbreviation introduced to keep the names of the

configuration parameters reasonably short.

Further definitions of terms used throughout this document

Term: Definition
Flash sector A flash sector is the smallest amount of flash memory that can be erased in one

pass. The size of the flash sector depends upon the flash technology and is
therefore hardware dependent.

Flash page A flash page is the smallest amount of flash memory that can be programmed in
one pass. The size of the flash page depends upon the flash technology and is
therefore hardware dependent.

Flash access
code

Internal flash driver routines called by the main function (job processing function) to
erase or write the flash hardware.

7 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

3 Related documentation

3.1 AUTOSAR deliverables

[1] List of Basic Software Modules
AUTOSAR_TR_BSWModuleList.pdf

[2] Layered Software Architecture,
AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf

[3] General Requirements on Basic Software Modules,
AUTOSAR_SRS_BSWGeneral.pdf

[4] General Requirements on SPAL,
AUTOSAR_SRS_SPALGeneral.pdf

[5] Requirements on Flash Driver
AUTOSAR_SRS_FlashDriver.pdf

[6] Requirements on Memory Hardware Abstraction Layer
AUTOSAR_SRS_MemoryHWAbstractionLayer.pdf

[7] Specification of ECU Configuration
AUTOSAR_TPS_ECUConfiguration.pdf

[8] Basic Software Module Description Template
AUTOSAR_TPS_BSWModuleDescriptionTemplate.pdf

3.2 Related standards and norms

[9] HIS Flash Driver Specification

HIS flash driver v130.pdf on
http://www.automotive-his.de/download/

8 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

http://www.automotive-his.de/download/

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

4 Constraints and assumptions

4.1 Limitations

 The flash driver only erases or programs complete flash sectors respectively

flash pages, i.e. it does not offer any kind of re-write strategy since it does not
use any internal buffers.

 The flash driver does not provide mechanisms for providing data integrity (e.g.
checksums, redundant storage, etc.).

4.2 Applicability to car domains

No restrictions.

9 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

5 Dependencies to other modules

5.1 File structure

5.1.1 Code file structure

[FLS159] ⌈The code file structure shall not be defined within this specification
completely. At this point it shall be pointed out that the code-file structure shall
include the following files named:

- Fls_Lcfg.c – for link time configurable parameters and
- Fls_PBcfg.c – for post build time configurable parameters.

These files shall contain all link time and post-build time configurable parameters. ⌋
(BSW00380)

[FLS179] ⌈Pre- and post-compile configuration parameters shall be located outside

the source code of the module to allow for automatic (tool based) configuration. ⌋
(BSW159, BSW00380, BSW00419)

5.1.2 Header file structure

[FLS107] ⌈The Fls module shall comply with the following file structure:

10 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

deployment SPAL File include structure

«source»
Compiler.h

«source»
MemIf_Types.h

«source»
Spi.h

«source»
Platform_Types.h

«source»
Std_Types.h

«source»
Fls.h

«source»
Spal_xxx.c

«include»«include» «include»«include»

«source»
Fls_Cfg.h

«include»«include»

«source»
Fls_PBcfg.c

«source»
Fls_Lcfg.c

«source»
Fls_Irq.c

«source»
Dem.h

«source»
Det.h

«source»
Fls_Cbk.h

«source»
Fls.c

«source»
SchM_Fls.h

«source»
MemMap.h

«source»
Fls_Ac.c

«include»

«include»

«include»

optional
«include»

optional
«include»

«include»«include»

«include»

«include» «include»

optional
«include»

optinal
«include»

«include» «include»

«include»

Figure 1: File include structure

Note: The files shown in grey are optional and might not be present for all
implementations and/or configurations of a specific implementation of the Fls module.

⌋ (BSW00381, BSW00412, BSW00409, BSW00346, BSW158, BSW00301)

[FLS308] ⌈Types and definitions common to several flash driver instances shall be

given in the header file MemIf_Types.h. ⌋ ()

[FLS309] ⌈Types and definitions specific for one flash driver shall be given in the

header file Fls.h. ⌋ ()

5.2 System clock

If the hardware of the internal flash memory depends on the system clock, changes
to the system clock (e.g. PLL on  PLL off) may also affect the clock settings of the
flash memory hardware.
11 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

5.3 Communication or I/O drivers

If the flash memory is located in an external device, the access to this device shall be
enacted via the corresponding communication respectively I/O driver.

12 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

6 Requirements traceability

Requirement Satisfied by

- FLS337

- FLS033

- FLS256

- FLS248

- FLS341

- FLS273

- FLS340

- FLS343

- FLS336

- FLS303

- FLS215

- FLS196

- FLS235

- FLS262

- FLS157

- FLS348

- FLS035

- FLS329

- FLS249

- FLS110

- FLS200

- FLS240

- FLS322

- FLS257

- FLS326

- FLS161

- FLS165

- FLS217

- FLS146

- FLS253

- FLS117

- FLS302

- FLS272

- FLS364

- FLS333

- FLS258

- FLS066

- FLS344

13 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

- FLS255

- FLS345

- FLS209

- FLS269

- FLS360

- FLS346

- FLS308

- FLS356

- FLS214

- FLS261

- FLS335

- FLS328

- FLS361

- FLS334

- FLS358

- FLS330

- FLS211

- FLS309

- FLS359

- FLS332

- FLS304

- FLS260

- FLS137

- FLS001

- FLS327

- FLS251

- FLS145

- FLS362

- FLS347

- FLS247

- FLS363

- FLS109

- FLS158

- FLS349

- FLS065

- FLS325

- FLS216

- FLS208

- FLS166

- FLS167

- FLS036

- FLS147

14 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

- FLS339

- FLS331

- FLS320

- FLS357

- FLS263

- FLS099

- FLS252

- FLS250

- FLS259

- FLS338

- FLS342

- FLS254

- FLS321

BSW00300 FLS366

BSW00301 FLS107

BSW00302 FLS366

BSW00304 FLS366

BSW00306 FLS366

BSW00307 FLS366

BSW00308 FLS366

BSW00309 FLS366

BSW00312 FLS366

BSW00314 FLS366

BSW00321 FLS366

BSW00323 FLS026, FLS020, FLS021, FLS027, FLS015, FLS098, FLS097

BSW00324 FLS366

BSW00325 FLS193

BSW00326 FLS366

BSW00327 FLS007, FLS317, FLS318, FLS319, FLS313, FLS314, FLS315, FLS316, FLS310,
FLS311, FLS312

BSW00328 FLS366

BSW00330 FLS366

BSW00331 FLS267, FLS317, FLS318, FLS319, FLS313, FLS314, FLS315, FLS316, FLS310,
FLS311, FLS312

BSW00333 FLS366

BSW00334 FLS366

BSW00336 FLS366

BSW00337 FLS007, FLS317, FLS318, FLS319, FLS313, FLS314, FLS315, FLS316, FLS310,
FLS311, FLS312

BSW00338 FLS077

BSW00339 FLS366

BSW00341 FLS366

BSW00342 FLS366

15 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

BSW00344 FLS366

BSW00346 FLS107

BSW00347 FLS366

BSW00348 FLS366

BSW00350 FLS162, FLS077

BSW00353 FLS366

BSW00355 FLS366

BSW00359 FLS366

BSW00360 FLS366

BSW00361 FLS366

BSW00369 FLS267

BSW00370 FLS366

BSW00371 FLS366

BSW00375 FLS366

BSW00378 FLS366

BSW00380 FLS179, FLS159

BSW00381 FLS107

BSW00385 FLS007, FLS004, FLS317, FLS318, FLS319, FLS313, FLS314, FLS315, FLS316,
FLS310, FLS311, FLS312

BSW00386 FLS163, FLS162, FLS077

BSW00387 FLS366

BSW00398 FLS366

BSW004 FLS205, FLS206

BSW00401 FLS366

BSW00404 FLS014

BSW00405 FLS014

BSW00406 FLS268

BSW00409 FLS160, FLS107

BSW00412 FLS107

BSW00415 FLS366

BSW00416 FLS366

BSW00417 FLS366

BSW00419 FLS179

BSW00420 FLS366

BSW00421 FLS154, FLS006, FLS106, FLS104, FLS105

BSW00422 FLS366

BSW00423 FLS366

BSW00424 FLS366

BSW00426 FLS366

BSW00427 FLS366

BSW00428 FLS366

BSW00429 FLS366

16 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

BSW00431 FLS366

BSW00433 FLS366

BSW00434 FLS366

BSW005 FLS366

BSW006 FLS366

BSW007 FLS366

BSW009 FLS366

BSW010 FLS366

BSW101 FLS014

BSW12057 FLS014

BSW12063 FLS366

BSW12064 FLS366

BSW12067 FLS366

BSW12069 FLS366

BSW12075 FLS003, FLS002

BSW12078 FLS366

BSW12083 FLS366

BSW12107 FLS144

BSW12125 FLS086

BSW12129 FLS233, FLS232, FLS234

BSW12132 FLS048

BSW12134 FLS236, FLS239, FLS238, FLS098, FLS097

BSW12135 FLS026, FLS027, FLS226, FLS225, FLS223

BSW12136 FLS020, FLS021, FLS221, FLS220, FLS218

BSW12137 FLS230, FLS183, FLS229

BSW12138 FLS034, FLS184

BSW12141 FLS056

BSW12143 FLS023, FLS030, FLS268, FLS324, FLS323, FLS100

BSW12144 FLS037, FLS039, FLS038

BSW12145 FLS040

BSW12147 FLS088

BSW12148 FLS088

BSW12149 FLS366

BSW12158 FLS055

BSW12159 FLS026, FLS020, FLS021, FLS027, FLS098, FLS097

BSW12160 FLS022

BSW12163 FLS366

BSW12169 FLS155

BSW12184 FLS040

BSW12193 FLS141, FLS140

BSW12194 FLS212, FLS213

BSW12265 FLS191

17 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

BSW12267 FLS366

BSW12448 FLS026, FLS020, FLS021, FLS027, FLS015, FLS098, FLS097

BSW12461 FLS086

BSW12462 FLS366

BSW12463 FLS366

BSW12468 FLS366

BSW13300 FLS143

BSW13301 FLS150, FLS241, FLS153, FLS152, FLS244, FLS151, FLS243, FLS186

BSW13302 FLS156, FLS155, FLS187

BSW13303 FLS040

BSW13304 FLS040

BSW157 FLS164, FLS006

BSW158 FLS107

BSW159 FLS179

BSW160 FLS366

BSW161 FLS366

BSW162 FLS366

BSW164 FLS193

BSW167 FLS205, FLS206

BSW168 FLS366

BSW170 FLS366

BSW171 FLS183, FLS184, FLS185, FLS186, FLS187

BSW172 FLS366

18 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

7 Functional specification

7.1 General design rules

[FLS001] ⌈The FLS module shall offer asynchronous services for operations on flash

memory (read/erase/write). ⌋ ()

[FLS002] ⌈The FLS module shall not buffer data. The FLS module shall use

application data buffers that are referenced by a pointer passed via the API. ⌋
(BSW12075)

[FLS003] ⌈The FLS module shall not ensure data consistency of the given

application buffer. ⌋ (BSW12075)

It is the responsibility of the FLS module’s environment to ensure consistency of flash
data during a flash read or write operation.

[FLS205] ⌈The FLS module shall check static configuration parameters statically (at

the latest during compile time) for correctness. ⌋ (BSW167, BSW004)

[FLS206] ⌈The FLS module shall validate the version information in the FLS module
header and source files for consistency (e.g. by comparing the version information in

the module header and source files with a pre-processor macro). ⌋ (BSW167, BSW004)

[FLS208] ⌈The FLS module shall combine all available flash memory areas into one
linear address space (denoted by the parameters FlsBaseAddress and

FlsTotalSize). ⌋ ()

[FLS209] ⌈The FLS module shall map the address and length parameters for the
read, write, erase and compare functions as “virtual” addresses to the physical

addresses according to the physical structure of the flash memory areas. ⌋ ()

As long as the restrictions regarding the alignment of those addresses are met it is
allowed that a read, write or erase job crosses the boundaries of a physical flash
memory area.

19 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

7.2 Error classification

[FLS160] ⌈Values for production code Event Ids are assigned externally by the
configuration of the Dem. They are published in the file Dem_IntErrId.h and

included via Dem.h. ⌋ (BSW00409)

[FLS161] ⌈Development error values are of type uint8. ⌋ ()

The FLS module shall be able to detect the following errors and exceptions
depending on its configuration (development/production):

[FLS004] ⌈

Type or error Relevance Related error code Value [hex]
API service called with wrong
parameter

Development FLS_E_PARAM_CONFIG
FLS_E_PARAM_ADDRESS
FLS_E_PARAM_LENGTH
FLS_E_PARAM_DATA

0x01
0x02
0x03
0x04

API service called without module
initialization

Development FLS_E_UNINIT 0x05

API service called while driver still
busy

Development FLS_E_BUSY 0x06

Erase verification (blank check)
failed

Development FLS_E_VERIFY_ERASE_
FAILED

0x07

Write verification (compare) failed Development FLS_E_VERIFY_WRITE_
FAILED

0x08

Timeout exceeded Development FLS_E_TIMEOUT 0x09
API service called with NULL
pointer

Development FLS_E_PARAM_POINTER 0x0a

Flash erase failed (HW) Production FLS_E_ERASE_FAILED Assigned by
DEM

Flash write failed (HW) Production FLS_E_WRITE_FAILED Assigned by
DEM

Flash read failed (HW) Production FLS_E_READ_FAILED Assigned by
DEM

Flash compare failed (HW) Production FLS_E_COMPARE_FAILE
D

Assigned by
DEM

Expected hardware ID not matched
(see FLS144)

Production FLS_E_UNEXPECTED_FL
ASH_ID

Assigned by
DEM

⌋ (BSW00385)

[FLS310] ⌈The following development error codes shall be reported when an API
service is called with a wrong parameter: FLS_E_PARAM_CONFIG,

FLS_E_PARAM_ADDRESS, FLS_E_PARAM_LENGTH, FLS_E_PARAM_DATA. ⌋
(BSW00337, BSW00385, BSW00327, BSW00331)

[FLS311] ⌈The development error code FLS_E_UNINIT shall be reported when an
API service is called prior to module initialization. Exceptions are the functions

Fls_Init and Fls_GetVersionInfo. ⌋ (BSW00337, BSW00385, BSW00327,

BSW00331)

20 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

[FLS312] ⌈The development error code FLS_E_BUSY shall be reported when an API

service is called while the module is still busy. ⌋ (BSW00337, BSW00385, BSW00327,
BSW00331)

[FLS313] ⌈The development error code FLS_E_VERIFY_ERASE_FAILED shall be

reported when the erase verification (blankcheck) failed. ⌋ (BSW00337, BSW00385,
BSW00327, BSW00331)

[FLS314] ⌈The development error code FLS_E_VERIFY_WRITE shall be reported

when the write verification (compare) failed. ⌋ (BSW00337, BSW00385, BSW00327,
BSW00331)

[FLS361] ⌈The development error code FLS_E_TIMEOUT shall be reported when the

timeout supervision of a read, write, erase or compare job failed. ⌋ ()

[FLS315] ⌈The production error code FLS_E_ERASE_FAILED shall be reported

when the flash erase function failed. ⌋ (BSW00337, BSW00385, BSW00327, BSW00331)

[FLS316] ⌈The production error code FLS_E_WRITE_FAILED shall be reported

when the flash write function failed. ⌋ (BSW00337, BSW00385, BSW00327, BSW00331)

[FLS317] ⌈The production error code FLS_E_READ_FAILED shall be reported when

the flash read function failed. ⌋ (BSW00337, BSW00385, BSW00327, BSW00331)

[FLS318] ⌈The production error code FLS_E_COMPARE_FAILED shall be reported

when the flash compare function failed. ⌋ (BSW00337, BSW00385, BSW00327, BSW00331)

[FLS319] ⌈The production error code FLS_E_UNEXPECTED_FLASH_ID shall be

reported when the expected flash ID is not matched (see FLS144). ⌋ (BSW00337,
BSW00385, BSW00327, BSW00331)

Note: FLS313, FLS314 and FLS361 describe development errors although from their
behaviour those errors may also occur in a production system. Since erase
verification (blankcheck, FLS022, FLS055), write verification (FLS056) and timeout
supervision (FLS272, FLS359, FLS360) will have a significant impact on the systems
performance and since data consistency in a production system will most likely be
ensured by other means (like e.g. checksums, signatures, diagnostic timeouts) it was
a design decision from the working group to make these features available only
during the development phase (i.e. when development error detection is enabled).
This way anyone who wants to use these features (and pay the price) can do so also
in a production system by leaving development error detection enabled whilst anyone
who doesn’t want to have the overhead can simply switch those features off.

21 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

7.3 Error detection

[FLS077] ⌈The detection of development errors shall be configurable (on/off) at pre-
compile time. The switch FlsDevErrorDetect (see chapter 10) shall activate or

deactivate the detection of all development errors. ⌋ (BSW00338, BSW00386, BSW00350)

[FLS162] ⌈If the FlsDevErrorDetect switch is enabled, API parameter checking
is enabled. The detailed description of the detected errors can be found in chapter

7.2 and chapter 8.3. ⌋ (BSW00386, BSW00350)

[FLS163] ⌈The detection of production code errors cannot be switched off. ⌋
(BSW00386)

7.4 Error notification

[FLS164] ⌈Detected development errors shall be reported to Det_ReportError
service of the Development Error Tracer (DET) if the pre-processor switch

FlsDevErrorDetect is set (see chapter 10). ⌋ (BSW157)

[FLS006] ⌈Production relevant errors shall be reported to the Diagnostic Event

Manager. ⌋ (BSW157, BSW00421)

[FLS267] ⌈The error codes shall not be used as return values of the called function.

⌋ (BSW00369, BSW00331)

[FLS007] ⌈Additional errors that are detected because of specific implementation
and/or specific hardware properties shall be added in the flash driver’s
implementation documentation. The classification and enumeration shall be

compatible with the errors listed above FLS004. ⌋ (BSW00337, BSW00385, BSW00327)

7.5 External flash driver

[FLS144] ⌈During the initialization of the external flash driver, the FLS module shall
check the hardware ID of the external flash device against the corresponding
published parameter. If a hardware ID mismatch occurs, the FLS module shall report
the error code FLS_E_UNEXPECTED_FLASH_ID to the Diagnostic Event Manager (DEM),

set the FLS module status to FLS_E_UNINIT and shall not initialize itself. ⌋ (BSW12107)

A complete list of required parameters is specified in the SPI Handler/Driver Software
Specification (Chapter “Configuration Specification”, marked as “SPI User”).

22 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

7.6 Loading, executing and removing the flash access code

Technical background information: Flash technology or flash memory segmentation
may require that the routines that access the flash hardware (internal erase and write
routines) are executed from RAM because reading the flash – for instruction fetch
needed for code execution – is not allowed while programming the flash.

[FLS137] ⌈The FLS module’s implementer shall place the code of the flash access

routines into a separate C-module Fls_ac.c. ⌋ ()

[FLS215] ⌈The FLS module’s flash access routines shall only disable interrupts and
wait for the completion of the erase / write command if necessary (that is if it has to
be ensured that no other code is executed in the meantime). ⌋ ()

[FLS211] ⌈The FLS module’s implementer shall keep the execution time for the flash

access code as short as possible. ⌋ ()

[FLS140] ⌈The FLS module’s erase routine shall load the flash access code for
erasing the flash memory to the location in RAM pointed to by the erase function
pointer contained in the flash drivers configuration set if the FLS module is configured

to load the flash access code to RAM on job start. ⌋ (BSW12193)

[FLS141] ⌈The FLS module’s write routine shall load the flash access code for
writing the flash memory to the location in RAM pointed to by the write function
pointer contained in the flash drivers configuration set if the FLS module is configured

to load the flash access code to RAM on job start. ⌋ (BSW12193)

[FLS212] ⌈The FLS module’s main processing routine shall execute the flash access

code routines. ⌋ (BSW12194)

[FLS213] ⌈The FLS module’s main processing routine shall access the flash access
code routines by means of the respective function pointer contained in the FLS
module’s configuration set (post-compile parameters) regardless whether the flash
access code routines have been loaded to RAM or whether they can be executed

directly from (flash) ROM. ⌋ (BSW12194)

[FLS143] ⌈After an erase or write job has been finished or canceled, the FLS
module’s main processing routine shall unload (i.e. overwrite) the flash access code
(internal erase / write routines) from RAM if they have been loaded to RAM by the
flash driver. ⌋ (BSW13300)

[FLS214] ⌈The FLS module shall only load the access code to the RAM if the access
code cannot be executed out of flash ROM. ⌋ ()

23 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

7.7 Support for Debugging

[FLS302] ⌈The module’s status, mode and the job result shall be made available for
debugging (reading). Therefore those variables shall be implemented as global

variables. ⌋ ()

[FLS303] ⌈The type definitions and declarations of all variables which shall be used

for debugging shall be given in the modules header file Fls.h. ⌋ ()

[FLS304] ⌈All variables which shall be used for debugging shall be described in

detail in the modules description file. ⌋ ()

7.8 Consistency checks

[FLS364] ⌈The Fls module shall perform inter module checks to avoid integration of
incompatible files: all included header files shall be checked by pre-processing
directives. The Fls module shall thereby verify that
<MODULENAME>_AR_RELEASE_MAJOR_VERSION and
<MODULENAME>_AR_RELEASE_MINOR_VERSION are identical to the expected
values, where <MODULENAME> is the module abbreviation of the external module,
which provides the included header file. If the values are not identical, an error shall

be raised at compile time. ⌋ ()

Note: The configuration tool shall check all configuration parameters for being within
the expected bounds. Also the dependencies between configuration parameters shall
be checked by the configuration tool during system generation or during the build
process (for details see chapter 10).

24 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

8 API specification

8.1 Imported types

[FLS248] ⌈

Module Imported Type

Dem_EventIdType Dem
Dem_EventStatusType
MemIf_JobResultType
MemIf_ModeType

MemIf

MemIf_StatusType
Std_ReturnType Std_Types
Std_VersionInfoType

⌋ ()
[FLS320] ⌈The following type definitions shall be imported from Std_Types.h:

 Std_ReturnType

 Std_VersionInfoType⌋ ()

[FLS321] ⌈The following type definitions shall be imported from Dem_Types.h:

 Dem_EventIdType⌋ ()

[FLS322] ⌈The following type definitions shall be imported from MemIf_Types.h:
 MemIf_ModeType
 MemIf_StatusType

 MemIf_JobResultType⌋ ()

8.2 Type definitions

8.2.1 Fls_ConfigType

Name: Fls_ConfigType
Type: Structure
Range: Hardware

dependend
structure

Structure to hold the flash driver configuration set. The
contents of the initialisation data structure are specific to the
flash memory hardware.

Description: A pointer to such a structure is provided to the flash driver initialization routine for
configuration of the driver and flash memory hardware.

8.2.2 Fls_AddressType

Name: Fls_AddressType

25 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

Type: uint
Range: 8 / 16 / 32

bits
-- Size depends on target platform and flash device.

Description: Used as address offset from the configured flash base address to access a certain
flash memory area.

[FLS216] ⌈The type Fls_AddressType shall have 0 as lower limit for each flash

device. ⌋ ()

[FLS217] ⌈The FLS module shall add a device specific base address to the address

type Fls_AddressType if necessary. ⌋ ()

8.2.3 Fls_LengthType

Name: Fls_LengthType
Type: uint
Range: Same as

Fls_AddressType
-
-

Shall be the same type as Fls_AddressType because of
arithmetic operations. Size depends on target platform and
flash device.

Description: Specifies the number of bytes to read/write/erase/compare.

8.3 Function definitions

8.3.1 Fls_Init

[FLS249] ⌈

Service name: Fls_Init
Syntax: void Fls_Init(

 const Fls_ConfigType* ConfigPtr
)

Service ID[hex]: 0x00
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): ConfigPtr Pointer to flash driver configuration set.
Parameters
(inout):

None

Parameters (out): None
Return value: None
Description: Initializes the Flash Driver.

⌋ ()
[FLS014] ⌈The function Fls_Init shall initialize the FLS module (software) and all
flash memory relevant registers (hardware) with parameters provided in the given
configuration set. ⌋ (BSW00404, BSW00405, BSW101, BSW12057)

26 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

[FLS191] ⌈The function Fls_Init shall store the pointer to the given configuration
set in a variable in order to allow the FLS module access to the configuration set
contents during runtime. ⌋ (BSW12265)

[FLS086] ⌈The function Fls_Init shall initialize all FLS module global variables
and those controller registers that are needed for controlling the flash device and that
do not influence or depend on other (hardware) modules. Registers that can
influence or depend on other modules shall be initialized by a common system
module. ⌋ (BSW12125, BSW12461)

[FLS015] ⌈If development error detection for the module Fls is enabled: the function
Fls_Init shall check the (hardware specific) contents of the given configuration set
for being within the allowed range. If this is not the case, it shall raise the
development error FLS_E_PARAM_CONFIG. ⌋ (BSW00323, BSW12448)

[FLS323] ⌈The function Fls_Init shall set the FLS module state to MEMIF_IDLE
after having finished the FLS module initialization. ⌋ (BSW12143)

[FLS324] ⌈The function Fls_Init shall set the flash job result to MEMIF_JOB_OK
after having finished the FLS module initialization. ⌋ (BSW12143)

[FLS268] ⌈If development error detection for the module Fls is enabled: the function
Fls_Init shall check that the FLS module is currently not busy (FLS module state
is not MEMIF_BUSY). If this check fails, the function Fls_Init shall raise the
development error FLS_E_BUSY. ⌋ (BSW12143, BSW00406)

[FLS048] ⌈If supported by hardware, the function Fls_Init shall set the flash

memory erase/write protection as provided in the configuration set. ⌋ (BSW12132)

[FLS325] ⌈If variant is VARIANT-PRE-COMPILE, a NULL pointer shall be passed to

the initialization routine. ⌋ ()

[FLS326] ⌈If variant is VARIANT-PRE-COMPILE, the check for the NULL pointer

shall be omitted. ⌋ ()

8.3.2 Fls_Erase

[FLS250] ⌈

Service name: Fls_Erase
Syntax: Std_ReturnType Fls_Erase(

 Fls_AddressType TargetAddress,

27 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

 Fls_LengthType Length
)

Service ID[hex]: 0x01
Sync/Async: Asynchronous
Reentrancy: Non Reentrant

TargetAddress Target address in flash memory. This address offset will be added
to the flash memory base address.
Min.: 0
Max.: FLS_SIZE - 1 Parameters (in):

Length Number of bytes to erase
Min.: 1
Max.: FLS_SIZE - TargetAddress

Parameters
(inout):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: erase command has been accepted

E_NOT_OK: erase command has not been accepted
Description: Erases flash sector(s).

⌋ ()
[FLS218] ⌈The job of the function Fls_Erase shall erase one or more complete
flash sectors. ⌋ (BSW12136)

[FLS327] ⌈The function Fls_Erase shall copy the given parameters to FLS module
internal variables and initiate an erase job. ⌋ ()

[FLS328] ⌈After initiating the erase job, the function Fls_Erase shall set the FLS
module status to MEMIF_BUSY. ⌋ ()

[FLS329] ⌈After initiating the erase job, the function Fls_Erase shall set the job
result to MEMIF_JOB_PENDING. ⌋ ()

[FLS330] ⌈After initiating the erase job, the function Fls_Erase shall return with
E_OK. ⌋ ()

[FLS220] ⌈The FLS module shall execute the job of the function Fls_Erase
asynchronously within the FLS module’s main function. ⌋ (BSW12136)

[FLS221] ⌈The job of the function Fls_Erase shall erase a flash memory block
starting from FlsBaseAddress + TargetAddress of size Length.

Note: Length will be rounded up to the next full sector boundary since only complete
flash sectors can be erased. ⌋ (BSW12136)

[FLS020] ⌈If development error detection for the module Fls is enabled: the function
Fls_Erase shall check that the erase start address (FlsBaseAddress +
TargetAddress) is aligned to a flash sector boundary and that it lies within the
specified lower and upper flash address boundaries. If this check fails, the function
Fls_Erase shall reject the erase request, raise the development error

28 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

FLS_E_PARAM_ADDRESS and return with E_NOT_OK. ⌋ (BSW00323, BSW12448,
BSW12136, BSW12159)

[FLS021] ⌈If development error detection for the module Fls is enabled: the function
Fls_Erase shall check that the erase length is greater than 0 and that the erase
end address (erase start address + length) is aligned to a flash sector boundary and
that it lies within the specified upper flash address boundary. If this check fails, the
function Fls_Erase shall reject the erase request, raise the development error
FLS_E_PARAM_LENGTH and return with E_NOT_OK. ⌋ (BSW00323, BSW12448,
BSW12136, BSW12159)

[FLS065] ⌈If development error detection for the module Fls is enabled: the function
Fls_Erase shall check that the FLS module has been initialized. If this check fails,
the function Fls_Erase shall reject the erase request, raise the development error
FLS_E_UNINIT and return with E_NOT_OK. ⌋ ()

[FLS023] ⌈If development error detection for the module Fls is enabled: the function
Fls_Erase shall check that the FLS module is currently not busy. If this check fails,
the function Fls_Erase shall reject the erase request, raise the development error
FLS_E_BUSY and return with E_NOT_OK. ⌋ (BSW12143)

[FLS145] ⌈If possible, e.g. with interrupt controlled implementations, the FLS module
shall start the first round of the erase job directly within the function Fls_Erase to

reduce overall runtime. ⌋ ()

8.3.3 Fls_Write

[FLS251] ⌈

Service name: Fls_Write
Syntax: Std_ReturnType Fls_Write(

 Fls_AddressType TargetAddress,
 const uint8* SourceAddressPtr,
 Fls_LengthType Length
)

Service ID[hex]: 0x02
Sync/Async: Asynchronous
Reentrancy: Non Reentrant

TargetAddress Target address in flash memory. This address offset will be
added to the flash memory base address.
Min.: 0
Max.: FLS_SIZE - 1

SourceAddressPtrPointer to source data buffer
Parameters (in):

Length Number of bytes to write
Min.: 1
Max.: FLS_SIZE - TargetAddress

Parameters
(inout):

None

Parameters (out): None

29 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

Return value:
Std_ReturnType E_OK: write command has been accepted

E_NOT_OK: write command has not been accepted
Description: Writes one or more complete flash pages.

⌋ ()
[FLS223] ⌈The job of the function Fls_Write shall write one or more complete flash
pages to the flash device. ⌋ (BSW12135)

[FLS331] ⌈The function Fls_Write shall copy the given parameters to Fls module
internal variables and initiate a write job. ⌋ ()

[FLS332] ⌈After initiating the write job, the function Fls_Write shall set the FLS
module status to MEMIF_BUSY. ⌋ ()

[FLS333] ⌈After initiating the write job, the function Fls_Write shall set the job
result to MEMIF_JOB_PENDING. ⌋ ()

[FLS334] ⌈After initiating the write job, the function Fls_Write shall return with
E_OK. ⌋ ()

[FLS225] ⌈The FLS module shall execute the write job of the function Fls_Write
asynchronously within the FLS module’s main function. ⌋ (BSW12135)

[FLS226] ⌈The job of the function Fls_Write shall program a flash memory block
with data provided via SourceAddressPtr starting from FlsBaseAddress +
TargetAddress of size Length. ⌋ (BSW12135)

[FLS026] ⌈If development error detection for the module Fls is enabled: the function
Fls_Write shall check that the write start address (FlsBaseAddress +
TargetAddress) is aligned to a flash page boundary and that it lies within the
specified lower and upper flash address boundaries. If this check fails, the function
Fls_Write shall reject the write request, raise the development error
FLS_E_PARAM_ADDRESS and return with E_NOT_OK. ⌋ (BSW12448, BSW00323,
BSW12135, BSW12159)

[FLS027] ⌈If development error detection for the module Fls is enabled: the function
Fls_Write shall check that the write length is greater than 0, that the write end
address (write start address + length) is aligned to a flash page boundary and that it
lies within the specified upper flash address boundary. If this check fails, the function
Fls_Write shall reject the write request, raise the development error
FLS_E_PARAM_LENGTH and return with E_NOT_OK. ⌋ (BSW12448, BSW00323,
BSW12135, BSW12159)

[FLS066] ⌈If development error detection for the module Fls is enabled: the function
Fls_Write shall check that the FLS module has been initialized. If this check fails,

30 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

the function Fls_Write shall reject the write request, raise the development error
FLS_E_UNINIT and return with E_NOT_OK. ⌋ ()

[FLS030] ⌈If development error detection for the module Fls is enabled: the function
Fls_Write shall check that the FLS module is currently not busy. If this check fails,
the function Fls_Write shall reject the write request, raise the development error
FLS_E_BUSY and return with E_NOT_OK. ⌋ (BSW12143)

[FLS157] ⌈If development error detection for the module Fls is enabled: the function
Fls_Write shall check the given data buffer pointer for not being a null pointer. If
the data buffer pointer is a null pointer, the function Fls_Write shall reject the write
request, raise the development error FLS_E_PARAM_DATA and return with
E_NOT_OK. ⌋ ()

[FLS146] ⌈If possible, e.g. with interrupt controlled implementations, the FLS module
shall start the first round of the write job directly within the function Fls_Write to

reduce overall runtime. ⌋ ()

8.3.4 Fls_Cancel

[FLS252] ⌈

Service name: Fls_Cancel
Syntax: void Fls_Cancel(

 void
)

Service ID[hex]: 0x03
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): None
Parameters
(inout):

None

Parameters (out): None
Return value: None
Description: Cancels an ongoing job.

⌋ ()
[FLS229] ⌈The function Fls_Cancel shall cancel an ongoing flash read, write,
erase or compare job. ⌋ (BSW12137)

[FLS230] ⌈The function Fls_Cancel shall abort a running job synchronously so that
directly after returning from this function a new job can be started. ⌋ (BSW12137)

Note: The function Fls_Cancel is synchronous in its behaviour but at the same time
asynchronous w.r.t. the underlying hardware: The job of the Fls_Cancel function
(i.e. make the module ready for a new job request) is finished when it returns to the
caller (hence it’s synchronous) but on the other hand e.g. an erase job might still be
ongoing in the hardware device (hence it’s asynchronous w.r.t. the hardware).
31 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

[FLS335] ⌈The function Fls_Cancel shall reset the FLS module’s internal job
processing variables (like address, length and data pointer). ⌋ ()

[FLS336] ⌈The function Fls_Cancel shall set the FLS module state to
MEMIF_IDLE. ⌋ ()

[FLS033] ⌈The function Fls_Cancel shall set the job result to
MEMIF_JOB_CANCELED if the job result currently has the value
MEMIF_JOB_PENDING. Otherwise the function Fls_Cancel shall leave the job
result unchanged. ⌋ ()

[FLS147] ⌈If configured, the function Fls_Cancel shall call the error notification

function to inform the caller about the cancellation of a job. ⌋ ()

Note: The content of the affected flash memory cells will be undefined when
canceling an ongoing job with the function Fls_Cancel.

[FLS183] ⌈The function Fls_Cancel shall be pre-compile time configurable

On/Off by the configuration parameter FlsCancelApi. ⌋ (BSW171, BSW12137)

[FLS356] ⌈If development error detection for the module Fls is enabled: the function
Fls_Cancel shall check that the FLS module has been initialized. If this check fails,
the function Fls_Cancel shall raise the development error FLS_E_UNINIT and
return. ⌋ ()

8.3.5 Fls_GetStatus

[FLS253] ⌈

Service name: Fls_GetStatus
Syntax: MemIf_StatusType Fls_GetStatus(

 void
)

Service ID[hex]: 0x04
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): None
Parameters
(inout):

None

Parameters (out): None
Return value: MemIf_StatusType --
Description: Returns the driver state.

⌋ ()

32 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

[FLS034] ⌈The function Fls_GetStatus shall return the FLS module state

synchronously. ⌋ (BSW12138)

[FLS184] ⌈The function Fls_GetStatus shall be pre-compile time configurable

On/Off by the configuration parameter FlsGetStatusApi. ⌋ (BSW12138, BSW171)

[FLS357] ⌈If development error detection for the module Fls is enabled: the function
Fls_GetStatus shall check that the FLS module has been initialized. If this check

fails, the function Fls_GetStatus shall return with MEMIF_UNINIT. ⌋ ()

8.3.6 Fls_GetJobResult

[FLS254] ⌈

Service name: Fls_GetJobResult
Syntax: MemIf_JobResultType Fls_GetJobResult(

 void
)

Service ID[hex]: 0x05
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): None
Parameters
(inout):

None

Parameters (out): None
Return value: MemIf_JobResultType --
Description: Returns the result of the last job.

⌋ ()
[FLS035] ⌈The function Fls_GetJobResult shall return the result of the last job
synchronously⌋ ()

[FLS036] ⌈The erase, write, read and compare functions shall share the same job
result, i.e. only the result of the last job can be queried. The FLS module shall
overwrite the job result with MEMIF_JOB_PENDING if the FLS module has accepted

a new job. ⌋ ()

[FLS185] ⌈The function Fls_GetJobResult shall be pre-compile time configurable

On/Off by the configuration parameter FlsGetJobResultApi. ⌋ (BSW171)

[FLS358] ⌈If development error detection for the module Fls is enabled: the function
Fls_GetJobResult shall check that the FLS module has been initialized. If this
check fails, the function Fls_GetJobResult shall raise the development error

FLS_E_UNINIT and return with MEMIF_JOB_FAILED. ⌋ ()

33 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

8.3.7 Fls_Read

[FLS256] ⌈

Service name: Fls_Read
Syntax: Std_ReturnType Fls_Read(

 Fls_AddressType SourceAddress,
 uint8* TargetAddressPtr,
 Fls_LengthType Length
)

Service ID[hex]: 0x07
Sync/Async: Asynchronous
Reentrancy: Non Reentrant

SourceAddress Source address in flash memory. This address offset will be
added to the flash memory base address.
Min.: 0
Max.: FLS_SIZE - 1 Parameters (in):

Length Number of bytes to read
Min.: 1
Max.: FLS_SIZE - SourceAddress

Parameters
(inout):

None

Parameters (out): TargetAddressPtr Pointer to target data buffer

Return value:
Std_ReturnType E_OK: read command has been accepted

E_NOT_OK: read command has not been accepted
Description: Reads from flash memory.

⌋ ()
[FLS236] ⌈The function Fls_Read shall read from flash memory. ⌋ (BSW12134)

[FLS337] ⌈The function Fls_Read shall copy the given parameters to FLS module
internal variables and initiate a read job. ⌋ ()

[FLS338] ⌈After initiating a read job, the function Fls_Read shall set the FLS
module status to MEMIF_BUSY. ⌋ ()

[FLS339] ⌈After initiating a read job, the function Fls_Read shall set the FLS
module job result to MEMIF_JOB_PENDING. ⌋ ()

[FLS340] ⌈After initiating a read job, the function Fls_Read shall return with E_OK. ⌋
()

[FLS238] ⌈The FLS module shall execute the read job of the function Fls_Read
asynchronously within the FLS module’s main function. ⌋ (BSW12134)

[FLS239] ⌈The read job of the function Fls_Read shall copy a continuous flash
memory block starting from FlsBaseAddress + SourceAddress of size Length
to the buffer pointed to by TargetAddressPtr. ⌋ (BSW12134)

34 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

[FLS097] ⌈If development error detection for the module Fls is enabled: the function
Fls_Read shall check that the read start address (FlsBaseAddress +
SourceAddress) lies within the specified lower and upper flash address
boundaries. If this check fails, the function Fls_Read shall reject the read job, raise
development error FLS_E_PARAM_ADDRESS and return with E_NOT_OK. ⌋
(BSW00323, BSW12448, BSW12134, BSW12159)

[FLS098] ⌈If development error detection for the module Fls is enabled: the function
Fls_Read shall check that the read length is greater than 0 and that the read end
address (read start address + length) lies within the specified upper flash address
boundary. If this check fails, the function Fls_Read shall reject the read job, raise
the development error FLS_E_PARAM_LENGTH and return with E_NOT_OK. ⌋
(BSW00323, BSW12448, BSW12134, BSW12159)

[FLS099] ⌈If development error detection for the module Fls is enabled: the function
Fls_Read shall check that the driver has been initialized. If this check fails, the
function Fls_Read shall reject the read request, raise the development error
FLS_E_UNINIT and return with E_NOT_OK. ⌋ ()

[FLS100] ⌈If development error detection for the module Fls is enabled: the function
Fls_Read shall check that the driver is currently not busy. If this check fails, the
function Fls_Read shall reject the read request, raise the development error
FLS_E_BUSY and return with E_NOT_OK. ⌋ (BSW12143)

[FLS158] ⌈If development error detection for the module Fls is enabled: the function
Fls_Read shall check the given data buffer pointer for not being a null pointer. If the
data buffer pointer is a null pointer, the function Fls_Read shall reject the read
request, raise the development error FLS_E_PARAM_DATA and return with

E_NOT_OK. ⌋ ()

[FLS240] ⌈The FLS module’s environment shall only call the function Fls_Read
after the FLS module has been initialized. ⌋ ()

8.3.8 Fls_Compare

[FLS257] ⌈

Service name: Fls_Compare
Syntax: Std_ReturnType Fls_Compare(

 Fls_AddressType SourceAddress,
 const uint8* TargetAddressPtr,
 Fls_LengthType Length
)

Service ID[hex]: 0x08
Sync/Async: Asynchronous
Reentrancy: Non Reentrant

35 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

SourceAddress Source address in flash memory. This address offset will be
added to the flash memory base address.
Min.: 0
Max.: FLS_SIZE - 1

TargetAddressPtr Pointer to target data buffer
Parameters (in):

Length Number of bytes to compare
Min.: 1
Max.: FLS_SIZE - SourceAddress

Parameters
(inout):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: compare command has been accepted

E_NOT_OK: compare command has not been accepted
Description: Compares the contents of an area of flash memory with that of an application data

buffer.

⌋ ()
[FLS241] ⌈The function Fls_Compare shall compare the contents of an area of
flash memory with that of an application data buffer. ⌋ (BSW13301)

[FLS341] ⌈The function Fls_Compare shall copy the given parameters to Fls
module internal variables and initiate a compare job. ⌋ ()

[FLS342] ⌈After initiating the compare job, the function Fls_Compare shall set the
status to MEMIF_BUSY. ⌋ ()

[FLS343] ⌈After initiating the compare job, the function Fls_Compare shall set the job
result to MEMIF_JOB_PENDING. ⌋ ()

[FLS344] ⌈After initiating the compare job, the function Fls_Compare shall return
with E_OK. ⌋ ()

[FLS243] ⌈The FLS module shall execute the job of the function Fls_Compare
asynchronously within the FLS module’s main function. ⌋ (BSW13301)

[FLS244] ⌈The job of the function Fls_Compare shall compare a continuous flash
memory block starting from FlsBaseAddress + SourceAddress of size Length
with the buffer pointed to by TargetAddressPtr. ⌋ (BSW13301)

[FLS150] ⌈If development error detection for the module Fls is enabled: the function
Fls_Compare shall check that the compare start address (FlsBaseAddress +
SourceAddress) lies within the specified lower and upper flash address
boundaries. If this check fails, the function Fls_Compare shall reject the compare
job, raise the development error FLS_E_PARAM_ADDRESS and return with
E_NOT_OK. ⌋ (BSW13301)

[FLS151] ⌈If If development error detection for the module Fls is enabled: the
function Fls_Compare shall check that the given length is greater than 0 and that
the compare end address (compare start address + length) lies within the specified
36 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

upper flash address boundary. If this check fails, the function Fls_Compare shall
reject the compare job, raise the development error FLS_E_PARAM_LENGTH and
return with E_NOT_OK. ⌋ (BSW13301)

[FLS152] ⌈If development error detection for the module Fls is enabled: the function
Fls_Compare shall check that the driver has been initialized. If this check fails, the
function Fls_Compare shall reject the compare job, raise the development error
FLS_E_UNINIT and return with E_NOT_OK. ⌋ (BSW13301)

[FLS153] ⌈If development error detection for the module Fls is enabled: the function
Fls_Compare shall check that the driver is currently not busy. If this check fails, the
function Fls_Compare shall reject the compare job, raise the development error

FLS_E_BUSY and return with E_NOT_OK. ⌋ (BSW13301)

[FLS273] ⌈If development error detection for the module Fls is enabled: the function
Fls_Compare shall check the given data buffer pointer for not being a null pointer.
If the data buffer pointer is a null pointer, the function Fls_Compare shall reject the
request, raise the development error FLS_E_PARAM_DATA and return with

E_NOT_OK. ⌋ ()

[FLS186] ⌈The function Fls_Compare shall be pre-compile time configurable

On/Off by the configuration parameter FlsCompareApi. ⌋ (BSW171, BSW13301)

8.3.9 Fls_SetMode

[FLS258] ⌈

Service name: Fls_SetMode
Syntax: void Fls_SetMode(

 MemIf_ModeType Mode
)

Service ID[hex]: 0x09
Sync/Async: Synchronous
Reentrancy: Non Reentrant

Parameters (in):
Mode MEMIF_MODE_SLOW: Slow read access / normal SPI access.

MEMIF_MODE_FAST: Fast read access / SPI burst access.
Parameters
(inout):

None

Parameters (out): None
Return value: None
Description: Sets the flash driver’s operation mode.

⌋ ()
[FLS155] ⌈The function Fls_SetMode shall set the FLS module’s operation mode to
the given “Mode” parameter. ⌋ (BSW12169, BSW13302)

37 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

[FLS156] ⌈If development error detection for the module Fls is enabled: the function
Fls_SetMode shall check that the FLS module is currently not busy. If this check
fails, the function Fls_SetMode shall reject the set mode request and raise the

development error code FLS_E_BUSY. ⌋ (BSW13302)

[FLS187] ⌈The function Fls_SetMode shall be pre-compile time configurable

On/Off by the configuration parameter FlsSetModeApi. ⌋ (BSW171, BSW13302)

8.3.10 Fls_GetVersionInfo

[FLS259] ⌈

Service name: Fls_GetVersionInfo
Syntax: void Fls_GetVersionInfo(

 Std_VersionInfoType* VersioninfoPtr
)

Service ID[hex]: 0x10
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): None
Parameters
(inout):

None

Parameters (out): VersioninfoPtr Pointer to where to store the version information of this module.
Return value: None
Description: Returns the version information of this module.

⌋ ()
[FLS165] ⌈The function Fls_GetVersionInfo shall return the version information
of the FLS module. The version information includes:

- Module Id
- Vendor Id
- Vendor specific version numbers (BSW00407). ⌋ ()

[FLS166] ⌈The function Fls_GetVersionInfo shall be pre-compile time
configurable On/Off by the configuration parameter FlsVersionInfoApi. ⌋ ()

[FLS247] ⌈If source code for caller and callee of the function
Fls_GetVersionInfo is available, the FLS module should realize this function as

a macro. The FLS module should define this macro in the module’s header file. ⌋ ()

[FLS363] ⌈If development error detection for the module Fls is enabled: the function
Fls_GetVersionInfo shall raise the development error FLS_E_PARAM_POINTER

if the argument is a NULL pointer and return without any action. ⌋ ()

38 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

8.4 Call-back notifications

This chaper lists all functions provided by the Fls module to lower layer modules.

Note: There are no callback functions to lower layer modules provided by the Flash
Driver since this module is at the lowest (software) layer.

[FLS193] ⌈Depending on implementation, callback routines provided and/or invoked
by the FLS module may be called on interrupt level. The module providing those
routines has therefore to make sure that their runtime is reasonably short, i.e. since

callbacks may be propagated upward through several software layers. ⌋ (BSW164,
BSW00325)

8.5 Scheduled functions

This chapter lists all functions provided by the Fls module and called directly by the
Basic Software Module Scheduler.

[FLS269] ⌈The Fls module shall provide only one scheduled function. Reading from /
writing to flash memory cannot usually be done simultaneously and the overhead for

synchronizing two scheduled functions would outweigh the benefits. ⌋ ()

8.5.1 Fls_MainFunction

[FLS255] ⌈

Service name: Fls_MainFunction
Syntax: void Fls_MainFunction(

 void
)

Service ID[hex]: 0x06
Timing: FIXED_CYCLIC
Description: Performs the processing of jobs.

⌋ ()
[FLS037] ⌈The function Fls_MainFunction shall perform the processing of the
flash read, write, erase and compare jobs. ⌋ (BSW12144)

[FLS038] ⌈When a job has been initiated, the FLS module’s environment shall call
the function Fls_MainFunction cyclically until the job is finished. ⌋ (BSW12144)

Note: The function Fls_MainFunction may also be called cyclically if no job is
currently pending.

39 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

[FLS039] ⌈The function Fls_MainFunction shall return without any action if no job
is pending. ⌋ (BSW12144)

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

[FLS040] ⌈The function Fls_MainFunction shall only process as much data in
one call cycle as statically configured for the current job type (read, write or compare)
and the current FLS module’s operating mode (normal, fast). ⌋ (BSW13303, BSW13304,
BSW12145, BSW12184)

[FLS104] ⌈The function Fls_MainFunction shall set the job result to
MEMIF_JOB_FAILED and report the error code FLS_E_ERASE_FAILED to the DEM
if a flash erase job fails due to a hardware error. ⌋ (BSW00421)

[FLS105] ⌈The function Fls_MainFunction shall set the job result to
MEMIF_JOB_FAILED and report the error code FLS_E_WRITE_FAILED to the DEM
if a flash write job fails due to a hardware error. ⌋ (BSW00421)

[FLS106] ⌈The function Fls_MainFunction shall set the job result to
MEMIF_JOB_FAILED and report the error code FLS_E_READ_FAILED to the DEM if
a flash read job fails due to a hardware error. ⌋ (BSW00421)

[FLS154] ⌈The function Fls_MainFunction shall set the job result to
MEMIF_JOB_FAILED and report the error code FLS_E_COMPARE_FAILED to the
DEM if a flash compare job fails due to a hardware error. ⌋ (BSW00421)

[FLS200] ⌈The function Fls_MainFunction shall set the job result to
MEMIF_BLOCK_INCONSISTENT if the compared data from a flash compare job are
not equal. ⌋ ()

[FLS022] ⌈If development error detection for the module Fls is enabled: After a flash
block has been erased, the function Fls_MainFunction shall compare the
contents of the addressed memory area against the value of an erased flash cell to
check that the block has been completely erased. If this check fails, the function
Fls_MainFunction shall set the FLS module’s job result to MEMIF_JOB_FAILED
and raise development error FLS_E_VERIFY_ERASE_FAILED. ⌋ (BSW12160)

[FLS055] ⌈If development error detection for the module Fls is enabled: Before
writing a flash block, the function Fls_MainFunction shall compare the contents of
the addressed memory area against the value of an erased flash cell to check that
the block has been completely erased. If this check fails, the function
Fls_MainFunction shall set the FLS module’s job result to MEMIF_JOB_FAILED
and raise development error FLS_E_VERIFY_ERASE_FAILED. ⌋ (BSW12158)

[FLS056] ⌈If development error detection for the module Fls is enabled: After writing
a flash block, the function Fls_MainFunction shall compare the contents of the
reprogrammed memory area against the contents of the provided application buffer
to check that the block has been completely reprogrammed. If this check fails, the
function Fls_MainFunction shall set the FLS module’s job result to

40 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

MEMIF_JOB_FAILED and raise the development error
FLS_E_VERIFY_WRITE_FAILED. ⌋ (BSW12141)

[FLS345] ⌈After a read, erase, write or compare job has been finished, the function
Fls_MainFunction shall set the FLS module’s job result to MEMIF_JOB_OK if it is
currently in state MEMIF_JOB_PENDING. Otherwise, it shall leave the result
unchanged. ⌋ ()

[FLS346] ⌈After a read, erase, write or compare job has been finished, the function
Fls_MainFunction shall set the FLS module’s state to MEMIF_IDLE and call the
job end notification function if configured (see FLS307_Conf). ⌋ ()

[FLS232] ⌈The configuration parameter FlsUseInterrupts shall switch between
interrupt and polling controlled job processing if this is supported by the flash memory
hardware. ⌋ (BSW12129)

[FLS233] ⌈The FLS module’s implementer shall locate the interrupt service routine in
Fls_Irq.c. ⌋ (BSW12129)

[FLS234] ⌈If interrupt controlled job processing is supported and enabled with the
configuration parameter FlsUseInterrupts, the interrupt service routine shall
reset the interrupt flag, check for errors reported by the underlying hardware, reload
the hardware finite state machine for the next round of the pending job or call the
appropriate notification routine if the job is finished or aborted. ⌋ (BSW12129)

[FLS235] ⌈The function Fls_MainFunction shall process jobs without hardware
interrupt support (e.g. read jobs). ⌋ ()

[FLS272] ⌈If development error detection for the module Fls is enabled: the function
Fls_MainFunction shall provide a timeout monitoring for the currently running job,
that is it shall supervise the deadline of the read / compare / erase or write job. ⌋ ()

[FLS359] ⌈If development error detection for the module Fls is enabled: the function
Fls_MainFunction shall check, whether the configured maximum erase time (see
FLS298_Conf FlsEraseTime) has been exceeded. If this is the case, the function
Fls_MainFunction shall raise the development error FLS_E_TIMEOUT. ⌋ ()

[FLS360] ⌈If development error detection for the module Fls is enabled: the function
Fls_MainFunction shall check, whether the expected maximum write time (see
note below) has been exceeded. If this is the case, the function Fls_MainFunction
shall raise the development error FLS_E_TIMEOUT. ⌋ ()

Note: The expected maximum write time depends on the current mode of the Fls
module (see FLS258), the configured number of bytes to write in this mode (see
FLS278_Conf and FLS277_Conf respectively), the size of a single flash page (see

41 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

FLS281_Conf) and last the maximum time to write one flash page (see
FLS301_Conf). The number of bytes to write divided by the size of one flash page
yields the number of pages to write in one cycle. This multiplied with the maximum
write time for one flash page gives you the expected maximum write time.

[FLS362] ⌈If development error detection for the module Fls is enabled: the function
Fls_MainFunction shall check, whether the expected maximum read / compare
time (see note below) has been exceeded. If this is the case, the function
Fls_MainFunction shall raise the development error FLS_E_TIMEOUT. ⌋ ()

Note: There are no published timings for read / compare (these would mostly depend
on whether the flash device is internal or external e.g. connected via SPI). The
solution would be similar as for write jobs above: the configured number of bytes to
read (and to compare) is coupled to the expected read / compare times which should
be supervised by the Fls_MainFunction. If this is not detailed enough there are two
possibilities:

- specify expected read / compare times (difficult because of the dependency
mentioned above)

- leave read / compare jobs out of the timeout supervision (change FLS272).

[FLS117] ⌈If development error detection for the module Fls is enabled: the function
Fls_MainFunction shall check that the FLS module has been initialized. If this
check fails, the function Fls_MainFunction shall raise the development error
FLS_E_UNINIT. ⌋ ()

[FLS196] ⌈The function Fls_MainFunction shall at the most issue one sector

erase command (to the hardware) in each cycle. ⌋ ()

Note: The requirement above shall ensure that maximum one sector is erased
sequentially within one cycle of the driver’s main function. If the hardware is capable
of erasing more than one sector in parallel, this shall not be restricted by this
specification.

8.6 Expected Interfaces

This chapter lists all functions the Fls module requires from other modules.

8.6.1 Mandatory Interfaces

This chapter defines all interfaces which are required to fulfill the core functionality of
the module.

[FLS260] ⌈

API function Description
Dem_ReportErrorStatus Queues the reported events from the BSW modules (API is only used by

42 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

BSW modules). The interface has an asynchronous behavior, because
the processing of the event is done within the Dem main function.

⌋ ()
Note: If the flash device is connected via SPI, also the SPI interfaces are required to
fulfill the modules core functionality. Which interfaces are needed exactly shall not be
detailed further in this specification.

8.6.2 Optional Interfaces

This chapter defines all interfaces which are required to fulfill an optional functionality
of the module.

[FLS261] ⌈

API function Description
Det_ReportError Service to report development errors.

⌋ ()

8.6.3 Configurable interfaces

In this chapter, all interfaces are listed for which the target function can be
configured. The target function is usually a call-back function. The names of these
kind of interfaces is not fixed because they are configurable.

[FLS109] ⌈The job processing callback notifications shall be configurable as function

pointers within the initialization data structure (Fls_ConfigType). ⌋ ()

[FLS110] ⌈The callback notifications shall have no parameters and no return value. ⌋
()

[FLS262] ⌈

Service name: Fee_JobEndNotification
Syntax: void Fee_JobEndNotification(

 void
)

Sync/Async: Synchronous
Reentrancy: Don't care
Parameters (in): None
Parameters
(inout):

None

Parameters (out): None
Return value: None
Description: This callback function is called when a job has been completed with a positive

result.

⌋ ()

43 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

[FLS167] ⌈The FLS module shall call the callback function
Fee_JobEndNotification when the module has completed a job with a positive
result:

 Read job finished & OK
 Write job finished & OK
 Erase job finished & OK

 Compare job finished & memory blocks are the same⌋ ()

[FLS263] ⌈

Service name: Fee_JobErrorNotification
Syntax: void Fee_JobErrorNotification(

 void
)

Sync/Async: Synchronous
Reentrancy: Don't care
Parameters (in): None
Parameters
(inout):

None

Parameters (out): None
Return value: None
Description: This callback function is called when a job has been canceled or finished with

negative result.

⌋ ()
[FLS347] ⌈The FLS module shall call the callback function
Fee_JobErrorNotification when the module has finished a job with a negative
result:

 Read job failed
 Write job failed
 Erase job failed

 Compare job failed⌋ ()

[FLS348] ⌈The FLS module shall call the callback function
Fee_JobErrorNotification when the module has canceled an ongoing job:

 Read job aborted
 Write job aborted
 Erase job aborted

 Compare job aborted⌋ ()

[FLS349] ⌈The FLS module shall call the callback function
Fee_JobErrorNotification when the module has finished a compare job and
the memory blocks differ:

 Compare job finished and memory blocks differ⌋ ()

44 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

9 Sequence diagrams

9.1 Initialization

«module»

EcuM

«module»

Fls

Fls_Init(Fls_ConfigType*)

Fls_Init()

Figure 2: Flash driver initialization sequence

9.2 Synchronous functions

The following sequence diagram shows the function Fls_GetJobResult as an
example for the synchronous functions of this module. The same sequence applies
also to the functions Fls_GetStatus and Fls_SetMode.

«module»

NvM

«module»

Fls

«module»

Fee

«module»

MemIf

MemIf_GetJobResult(MemIf_JobResultType, uint8)

Fee_GetJobResult(MemIf_JobResultType)

Fls_GetJobResult(MemIf_JobResultType)

Fls_GetJobResult()

Fee_GetJobResult()

MemIf_GetJobResult()

Figure 3: Fls_GetJobResult

45 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

9.3 Asynchronous functions

The following sequence diagram shows the flash write function (with the
configuration option FlsAcLoadOnJobStart set) as an example for the
asynchronous functions of this module. The same sequence applies to the erase,
read and compare jobs, with the only difference that for the read and compare jobs
no flash access code needs to be loaded to / unloaded from RAM.

BSW Task (OS task
or cyclic call)

«module»

NvM

«module»

Fls

«module»

Fee

«module»

MemIf

MemIf_Write(Std_ReturnType, uint8, uint16, uint8*)

Fee_Write(Std_ReturnType, uint16, uint8*)

Fls_Write(Std_ReturnType, Fls_AddressType, const
uint8*, Fls_LengthType)

Load flash access
code to RAM()

Fls_Write()

Fee_Write()

MemIf_Write() loop Fls_MainFunction

Fls_MainFunction()

Fls_MainFunction()

Fls_MainFunction()

Unload flash
access code from
RAM()

Fee_JobEndNotification()

NvM_JobEndNotification()

NvM_JobEndNotification()

Fee_JobEndNotification()

Fls_MainFunction()

Figure 4: Flash write sequence, flash access code loaded on job start

46 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

9.4 Canceling a running job

«module»

NvM

«module»

MemIf

«module»

Fee

«module»

Fls

MemIf_Cancel(uint8)

Fee_Cancel()

Fls_Cancel()

Fee_JobErrorNotification()

NvM_JobErrorNotification()

NvM_JobErrorNotification()

Fee_JobErrorNotification()

Fls_Cancel()

Fee_Cancel()

MemIf_Cancel()

Figure 5: Canceling a running flash job

Note: The FLS module’s environment shall not call the function Fls_Cancel during
a running Fls_MainFunction invocation.

This can be achieved by one of the following scheduling configurations:

 Possibility 1: The job functions of the NVRAM manager and the flash driver
are synchronized (e.g. called sequentially within one task)

 Possibility 2: The task that calls the Fls_MainFunction function can not be
preempted by another task.

47 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into
containers. In order to support the specification Chapter 10.1 describes
fundamentals. It also specifies a template (table) you shall use for the parameter
specification. We intend to leave Chapter 10.1 in the specification to guarantee
comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
Flash Driver.

Chapter 10.3 specifies published information of the module ”Flash Driver”.

10.1 How to read this chapter

In addition to this section, it is highly recommended to read the documents:
- AUTOSAR Layered Software Architecture [2]
- AUTOSAR ECU Configuration Specification [7]

This document describes the AUTOSAR configuration methodology and the
AUTOSAR configuration metamodel in detail.

The following is only a short survey of the topic and it will not replace the ECU
Configuration Specification document.

10.1.1 Configuration and configuration parameters

Configuration parameters define the variability of the generic part(s) of an
implementation of a module. This means that only generic or configurable module
implementation can be adapted to the environment (software/hardware) in use during
system and/or ECU configuration.

The configuration of parameters can be achieved at different times during the
software process: before compile time, before link time or after build time. In the
following, the term “configuration class” (of a parameter) shall be used in order to
refer to a specific configuration point in time.

10.1.2 Containers

Containers structure the set of configuration parameters. This means:
- all configuration parameters are kept in containers.
- (sub-) containers can reference (sub-) containers. It is possible to assign a

multiplicity to these references. The multiplicity then defines the possible
number of instances of the contained parameters.

48 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

10.1.3 Specification template for configuration parameters

The following tables consist of three sections:

- the general section
- the configuration parameter section
- the section of included/referenced containers

Pre-compile time - specifies whether the configuration parameter shall be

of configuration class Pre-compile time or not

Label Description
x The configuration parameter shall be of configuration class Pre-compile time.
-- The configuration parameter shall never be of configuration class Pre-compile time.

Link time - specifies whether the configuration parameter shall be

of configuration class Link time or not

Label Description
X The configuration parameter shall be of configuration class Link time.
-- The configuration parameter shall never be of configuration class Link time.

Post Build - specifies whether the configuration parameter shall be

of configuration class Post Build or not

Label Description

x
The configuration parameter shall be of configuration class Post Build and no specific
implementation is required.

L
Loadable – the configuration parameter shall be of configuration class Post Build and only
one configuration parameter set resides in the ECU.

M
Multiple – the configuration parameter shall be of configuration class Post Build and is
selected out of a set of multiple parameters by passing a dedicated pointer to the init
function of the module.

-- The configuration parameter shall never be of configuration class Post Build.

49 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed
meanings of the parameters describe Chapters 10.2 and Chapter 10.3.

10.2.1 Variants

[FLS203] ⌈VARIANT-PRE-COMPILE

Only parameters with “Pre-compile time” configuration are allowed in this variant. ⌋ ()

[FLS204] ⌈VARIANT-POST-BUILD
Parameters with “Pre-compile time”, “Link time” and “Post-build time” are

allowed in this variant. ⌋ ()

[FLS350] ⌈The initialization function of the FLS module shall always have a pointer
as a parameter, even though for Variant VARIANT_PRECOMPILE no configuration
set shall be given. Instead a null pointer shall be passed to the initialization function.

⌋ ()

[FLS351] ⌈Only one interface for initialization shall be implemented (in contradiction
to BSW00414) and it shall not depend on the modules configuration which interface

the calling software module shall use. ⌋ ()

50 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

10.2.2 Fls

SWS Item FLS001_Conf :
Module Name Fls

Module Description

Configuration of the Fls (internal or external flash driver)
module.
Its multiplicity describes the number of flash drivers
present, so there will be one container for each flash
driver in the ECUC template. When no flash driver is
present then the multiplicity is 0.

Included Containers
Container Name Multiplicity Scope / Dependency

FlsConfigSet 1
Container for runtime configuration parameters of the flash driver.
Implementation Type: Fls_ConfigType.

FlsGeneral 1
Container for general parameters of the flash driver. These
parameters are always pre-compile.

FlsPublishedInformatio
n

1

Additional published parameters not covered by
CommonPublishedInformation container. Note that these
parameters do not have any configuration class setting, since they
are published information.

[⌈The table above specifies parameters that shall be configured during system
generation. These parameters shall be located in the file Fls_Cfg.h. Further

hardware or implementation specific parameters can be added if necessary. ⌋
(BSW00345, BSW12132)

10.2.3 FlsGeneral

SWS Item FLS172_Conf :
Container Name FlsGeneral{Fls_ModuleConfiguration}

Description
Container for general parameters of the flash driver. These parameters are
always pre-compile.

Configuration Parameters

SWS Item FLS284_Conf :
N ame FlsAcLoadOnJobStart {FLS_AC_LOAD_ON_JOB_START}
Description The flash driver shall load the flash access code to RAM

whenever an erase or write job is started and unload (overwrite) it
after that job has been finished or canceled. true: Flash access
code loaded on job start / unloaded on job end or error. false:
Flash access code not loaded to / unloaded from RAM at all.

Multiplicity 1
Type EcucBooleanParamDef
Default value false

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

SWS Item FLS169_Conf :

51 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

N ame FlsBaseAddress {FLS_BASE_ADDRESS}
Description The flash memory start address (see also FLS208 and

FLS209). FLS169_Conf: This parameter defines the
lower boundary for read / write / erase and compare jobs.

Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 4294967295
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

SWS Item FLS285_Conf :
N ame FlsCancelApi {FLS_CANCEL_API}
Description Compile switch to enable and disable the Fls_Cancel

function. true: API supported / function provided. false:
API not supported / function not provided

Multiplicity 1
Type EcucBooleanParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

SWS Item FLS286_Conf :
N ame FlsCompareApi {FLS_COMPARE_API}
Description Compile switch to enable and disable the Fls_Compare

function. true: API supported / function provided. false:
API not supported / function not provided

Multiplicity 1
Type EcucBooleanParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

SWS Item FLS287_Conf :
N ame FlsDevErrorDetect {FLS_DEV_ERROR_DETECT}
Description Pre-processor switch to enable and disable development error

detection (see FLS077). true: Development error detection
enabled. false: Development error detection disabled.

Multiplicity 1
Type EcucBooleanParamDef

true Default value
Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

SWS Item FLS288_Conf :
N ame FlsDriverIndex
Description Index of the driver, used by FEE.
Multiplicity 1

52 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

Type EcucIntegerParamDef (Symbolic Name generated for
this parameter)

Range 0 .. 254
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

SWS Item FLS289_Conf :
N ame FlsGetJobResultApi {FLS_GET_JOB_RESULT_API}
Description Compile switch to enable and disable the Fls_GetJobResult

function. true: API supported / function provided. false: API not
supported / function not provided

Multiplicity 1
Type EcucBooleanParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

SWS Item FLS290_Conf :
N FlsGetStatusApi {FLS_GET_STATUS_API} ame
Description Compile switch to enable and disable the Fls_GetStatus

function. true: API supported / function provided. false: API
not supported / function not provided

Multiplicity 1
Type EcucBooleanParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

SWS Item FLS291_Conf :
N ame FlsSetModeApi {FLS_SET_MODE_API}
Description Compile switch to enable and disable the Fls_SetMode

function. true: API supported / function provided. false:
API not supported / function not provided

Multiplicity 1
Type EcucBooleanParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

SWS Item FLS170_Conf :
N ame FlsTotalSize {FLS_TOTAL_SIZE}
Description The total amount of flash memory in bytes (see also

FLS208 and FLS209). FLS170_Conf: This parameter in
conjunction with FLS_BASE_ADDRESS defines the
upper boundary for read / write / erase and compare
jobs.

Multiplicity 1

53 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

Type EcucIntegerParamDef
Range 0 .. 4294967295
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

-- Post-build time
scope: module Scope / Dependency

FLS292_Conf : SWS Item
FlsUseInterrupts {FLS_USE_INTERRUPTS} N ame
Job processing triggered by hardware interrupt. true: Job
processing triggered by interrupt (hardware controlled).
false: Job processing not triggered by interrupt (software
controlled)

Description

1 Multiplicity
EcucBooleanParamDef Type
false Default value

X All Variants Pre-compile time
Link time --

ConfigurationClass

-- Post-build time
scope: module
dependency: Only available if supported by underlying
flash hardware

Scope / Dependency

FLS293_Conf : SWS Item
FlsVersionInfoApi {FLS_VERSION_INFO_API} N ame
Pre-processor switch to enable / disable the API to read out
the modules version information. true: Version info API
enabled. false: Version info API disabled.

Description

1 Multiplicity
EcucBooleanParamDef Type
-- Default value

X All Variants Pre-compile time
Link time --

ConfigurationClass

-- Post-build time
scope: module Scope / Dependency

No Included Containers

10.2.4 FlsConfigSet

FLS174_Conf : SWS Item
FlsConfigSet{Fls_ConfigSet} [Multi Config Container] Container Name
Container for runtime configuration parameters of the flash driver.

Description
Implementation Type: Fls_ConfigType.

Configuration Parameters

FLS270_Conf : SWS Item
FlsAcErase {FLS_AC_ERASE} N ame
Address offset in RAM to which the erase flash access
code shall be loaded. Used as function pointer to
access the erase flash access code.

Description

Multiplicity 1

54 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

EcucIntegerParamDef Type
0 ..
4294967295

Range

-- Default value
X VARIANT-PRE-COMPILE ConfigurationClass Pre-compile

time
Link time --
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: module

FLS305_Conf : SWS Item
Name FlsAcWrite {FLS_AC_WRITE}
Description Address offset in RAM to which the write flash access

code shall be loaded. Used as function pointer to
access the write flash access code.

Multiplicity 1
Type EcucIntegerParamDef
Range 0 ..

4294967295

Default value --
ConfigurationClass Pre-compile

time
X VARIANT-PRE-COMPILE

Link time --
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: module

SWS Item FLS306_Conf :
N ame FlsCallCycle {FLS_CALL_CYCLE}
Description Cycle time of calls of the flash driver's main function (in

seconds).
Multiplicity 1
Type EcucFloatParamDef
Range 0 .. 1
Default value --
ConfigurationClass Pre-compile

time
X VARIANT-PRE-COMPILE

Link time --
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: module
dependency: Only relevant if deadline monitoring for
internal functionality has to be done in software (e.g.
erase / write timings)

SWS Item FLS318_Conf :
N ame FlsDefaultMode {FLS_DEFAULT_MODE}
Description This parameter is the default FLS device mode after initialization. Implementation

Type: MemIf_ModeType.
Multiplicity 1
Type EcucEnumerationParamDef
Range MEMIF_MODE_FAST The driver is working in fast

mode (fast read access / SPI
burst access).

MEMIF_MODE_SLOW The driver is working in slow
mode.
(default)

ConfigurationClas
s

Pre-compile time X VARIANT-PRE-COMPILE

55 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

Link time --
Post-build time X VARIANT-POST-BUILD

Scope /
Dependency

scope: module

SWS Item FLS307_Conf :
N ame FlsJobEndNotification

{FLS_JOB_END_NOTIFICATION}
Description Mapped to the job end notification routine provided by

some upper layer module, typically the Fee module.
Multiplicity 0..1
Type EcucFunctionNameDef
Default value --
maxLength --
minLength --
regularExpression --
ConfigurationClass Pre-compile

time
X VARIANT-PRE-COMPILE

Link time --
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: module

SWS Item FLS274_Conf :
N ame FlsJobErrorNotification

{FLS_JOB_ERROR_NOTIFICATION}
Description Mapped to the job error notification routine provided by

some upper layer module, typically the Fee module.
Multiplicity 0..1
Type EcucFunctionNameDef
Default value --
maxLength --
minLength --
regularExpression --
ConfigurationClass Pre-compile

time
X VARIANT-PRE-COMPILE

Link time --
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: module

SWS Item FLS275_Conf :
N ame FlsMaxReadFastMode

{FLS_MAX_READ_FAST_MODE}
Description The maximum number of bytes to read or compare in

one cycle of the flash driver's job processing function in
fast mode.

Multiplicity 1
Type EcucIntegerParamDef
Range 0 ..

4294967295

Default value --
ConfigurationClass Pre-compile

time
X VARIANT-PRE-COMPILE

Link time --
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: module
dependency: The minimum number might depend on
the underlying flash device or communication driver,

56 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

e.g. if the access to an external flash device is done via
SPI and the minimum transfer size on SPI is four bytes.

SWS Item FLS276_Conf :
N ame FlsMaxReadNormalMode

{FLS_MAX_READ_NORMAL_MODE}
Description The maximum number of bytes to read or compare in

one cycle of the flash driver's job processing function in
normal mode.

Multiplicity 1
Type EcucIntegerParamDef
Range 0 ..

4294967295

Default value --
ConfigurationClass Pre-compile

time
X VARIANT-PRE-COMPILE

Link time --
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: module
dependency: The minimum number might depend on
the underlying flash device or communication driver,
e.g. if the access to an external flash device is done via
SPI and the minimum transfer size on SPI is four bytes.

SWS Item FLS277_Conf :
N ame FlsMaxWriteFastMode

{FLS_MAX_WRITE_FAST_MODE}
Description The maximum number of bytes to write in one cycle of

the flash driver's job processing function in fast mode.
Multiplicity 1
Type EcucIntegerParamDef
Range 0 ..

4294967295

Default value --
ConfigurationClass Pre-compile

time
X VARIANT-PRE-COMPILE

Link time --
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: module
dependency: FLS182: This value has to correspond to
the settings in FLS_PAGE_LIST. The minimum number
is defined by the size of one flash page and therefore
depends on the underlying flash device.

SWS Item FLS278_Conf :
N ame FlsMaxWriteNormalMode

{FLS_MAX_WRITE_NORMAL_MODE}
Description The maximum number of bytes to write in one cycle of

the flash driver's job processing function in normal
mode.

Multiplicity 1
Type EcucIntegerParamDef
Range 0 ..

4294967295

Default value --
ConfigurationClass Pre-compile

time
X VARIANT-PRE-COMPILE

57 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

Link time --
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: module
dependency: FLS176: This value has to correspond to
the settings in FLS_PAGE_LIST. The minimum number
is defined by the size of one flash page and therefore
depends on the underlying flash device.

SWS Item FLS279_Conf :
N ame FlsProtection {FLS_PROTECTION}
Description Erase/write protection settings. Only relevant if

supported by hardware.
Multiplicity 1
Type EcucIntegerParamDef
Range 0 ..

4294967295

Default value --
ConfigurationClass Pre-compile

time
X VARIANT-PRE-COMPILE

Link time --
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: module
dependency: Only relevant if supported by hardware.

Included Containers

Container Name Multiplicity
Scope /
Dependency

FlsDemEventParameterRef
s

0..1

Container for the
references to
DemEventParameter
elements which shall be
invoked using the
Dem_ReportErrorStatus
API in case the
corresponding error
occurs. The EventId is
taken from the
referenced
DemEventParameter's
DemEventId value. The
standardized errors are
provided in the
container and can be
extended by vendor
specific error
references.

FlsExternalDriver 0..1

This container is
present for external
Flash drivers only.
Internal Flash drivers
do not use the
parameter listed in this
container, hence its
multiplicity is 0 for
internal drivers.

FlsSectorList 1
List of flashable sectors
and pages.

58 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

[FLS352] ⌈The table above specifies the parameters that shall be located in an

external data structure of type Fls_ConfigType. ⌋ ()

[FLS353] ⌈The organization and location of the data structure Fls_ConfigType

shall be up to the implementer. ⌋ ()

[FLS354] ⌈The type declaration for Fls_ConfigType shall be located in the file

Fls.h. ⌋ ()

[FLS355] ⌈Hardware or implementation specific parameters can be added to

Fls_ConfigType if necessary. ⌋ ()

10.2.5 FlsDemEventParameterRefs

SWS Item FLS310_Conf :
Container Name FlsDemEventParameterRefs

Description

Container for the references to DemEventParameter elements which
shall be invoked using the Dem_ReportErrorStatus API in case the
corresponding error occurs. The EventId is taken from the referenced
DemEventParameter's DemEventId value. The standardized errors are
provided in the container and can be extended by vendor specific error
references.

Configuration Parameters

SWS Item FLS314_Conf :
N ame FLS_E_COMPARE_FAILED
Description Reference to the DemEventParameter which shall be issued

when the error "Flash compare failed (HW)" has occurred.
Multiplicity 0..1
Type Reference to [DemEventParameter]

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency

SWS Item FLS311_Conf :
N ame FLS_E_ERASE_FAILED
Description Reference to the DemEventParameter which shall be

issued when the error "Flash erase failed (HW)" has
occurred.

Multiplicity 0..1
Type Reference to [DemEventParameter]

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency

SWS Item FLS313_Conf :
N ame FLS_E_READ_FAILED
Description Reference to the DemEventParameter which shall be

issued when the error "Flash read failed (HW)" has
59 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

occurred.
Multiplicity 0..1
Type Reference to [DemEventParameter]

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency

SWS Item FLS315_Conf :
N ame FLS_E_UNEXPECTED_FLASH_ID
Description Reference to the DemEventParameter which shall be issued

when the error "Expected hardware ID not matched" has
occurred.

Multiplicity 0..1
Type Reference to [DemEventParameter]

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency

SWS Item FLS312_Conf :
N ame FLS_E_WRITE_FAILED
Description Reference to the DemEventParameter which shall be

issued when the error "Flash write failed (HW)" has
occurred.

Multiplicity 0..1
Type Reference to [DemEventParameter]

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency

No Included Containers

10.2.6 FlsExternalDriver

SWS Item FLS316_Conf :
Container Name FlsExternalDriver

Description
This container is present for external Flash drivers only.
Internal Flash drivers do not use the parameter listed in this
container, hence its multiplicity is 0 for internal drivers.

Configuration Parameters

SWS Item FLS317_Conf :
N ame FlsSpiReference
Description Reference to SPI sequence (required for external

Flash drivers).
Multiplicity 1..*
Type Reference to [SpiSequence]

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --

60 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

Scope / Dependency

No Included Containers

10.2.7 FlsSectorList

SWS Item FLS201_Conf :
Container Name FlsSectorList{Fls_SectorList}
Description List of flashable sectors and pages.
Configuration Parameters

Included Containers
Containe
r Name

Multiplicity Scope / Dependency

FlsSector 1..* Configuration description of a flashable sector

10.2.8 FlsSector

SWS Item FLS202_Conf :
Container Name FlsSector{Fls_Sector}
Description Configuration description of a flashable sector
Configuration Parameters

SWS Item FLS280_Conf :
N ame FlsNumberOfSectors {FLS_NUMBER_OF_SECTORS}
Description Number of continuous sectors with identical values for

FlsSectorSize and FlsPageSize. The parameter
FlsSectorStartAddress denotes the start address of the first
sector.

Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 65535
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

SWS Item FLS281_Conf :
N ame FlsPageSize {FLS_PAGE_SIZE}
Description Size of one page of this sector. Implementation Type:

Fls_LengthType.
Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 4294967295
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

dependency: The sector size has to be an integer
multiple of the page size.

61 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

SWS Item FLS282_Conf :
N ame FlsSectorSize {FLS_SECTOR_SIZE}
Description Size of this sector. Implementation Type:

Fls_LengthType.
Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 4294967295
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

dependency: The sector size has to be an integer
multiple of the page size.

SWS Item FLS283_Conf :
N ame FlsSectorStartaddress {FLS_SECTOR_STARTADDRESS}
Description Start address of this sector. Implementation Type:

Fls_AddressType.
Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 4294967295
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

No Included Containers

10.3 Published Information

[FLS365] ⌈The standardized common published parameters as required by
BSW00402 in the General Requirements on Basic Software Modules [3] shall be
published within the header file of this module and need to be provided in the BSW
Module Description. The according module abbreviation can be found in the List of

Basic Software Modules [1]. ⌋ ()

Additional module-specific published parameters are listed below if applicable.

10.3.1 FlsPublishedInformation

SWS Item FLS178_Conf :
Container Name FlsPublishedInformation

Description

Additional published parameters not covered by
CommonPublishedInformation container.
Note that these parameters do not have any configuration class setting,
since they are published information.

Configuration Parameters

62 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

SWS Item FLS294_Conf :
N ame FlsAcLocationErase {FLS_AC_LOCATION_ERASE}
Description Position in RAM, to which the erase flash access code has to

be loaded. Only relevant if the erase flash access code is not
position independent. If this information is not provided it is
assumed that the erase flash access code is position
independent and that therefore the RAM position can be freely
configured.

Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 4294967295
Default value --
ConfigurationClass Published Information X All Variants
Scope / Dependency scope: module

SWS Item FLS295_Conf :
N ame FlsAcLocationWrite {FLS_AC_LOCATION_WRITE}
Description Position in RAM, to which the write flash access code has to

be loaded. Only relevant if the write flash access code is not
position independent. If this information is not provided it is
assumed that the write flash access code is position
independent and that therefore the RAM position can be freely
configured.

Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 4294967295
Default value --
ConfigurationClass Published Information X All Variants
Scope / Dependency scope: module

SWS Item FLS296_Conf :
N ame FlsAcSizeErase {FLS_AC_SIZE_ERASE}
Description Number of bytes in RAM needed for the erase flash

access code.
Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 4294967295
Default value --
ConfigurationClass Published Information X All Variants
Scope / Dependency scope: module

SWS Item FLS297_Conf :
N ame FlsAcSizeWrite {FLS_AC_SIZE_WRITE}
Description Number of bytes in RAM needed for the write flash

access code.
Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 4294967295
Default value --
ConfigurationClass Published Information X All Variants
Scope / Dependency scope: module

SWS Item FLS298_Conf :
N ame FlsEraseTime {FLS_ERASE_TIME}
Description Maximum time to erase one complete flash sector.

63 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

Multiplicity 1
Type EcucFloatParamDef
Range 0 .. INF
Default value --
ConfigurationClass Published Information X All Variants
Scope / Dependency scope: module

SWS Item FLS299_Conf :
N ame FlsErasedValue {FLS_ERASED_VALUE}
Description The contents of an erased flash memory cell.
Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 4294967295
Default value --
ConfigurationClass Published Information X All Variants
Scope / Dependency scope: module

SWS Item FLS300_Conf :
N ame FlsExpectedHwId {FLS_EXPECTED_HW_ID}
Description Unique identifier of the hardware device that is expected by

this driver (the device for which this driver has been
implemented). Only relevant for external flash drivers.

Multiplicity 1
Type EcucStringParamDef
Default value --
maxLength --
minLength --
regularExpression --
ConfigurationClass Published Information X All Variants
Scope / Dependency scope: module

SWS Item FLS198_Conf :
N ame FlsSpecifiedEraseCycles {FLS_SPECIFIED_ERASE_CYCLES}
Description Number of erase cycles specified for the flash device (usually given

in the device data sheet). FLS198: If the number of specified erase
cycles depends on the operating environment (temperature,
voltage, ...) during reprogramming of the flash device, the minimum
number for which a data retention of at least 15 years over the
temperature range from -40°C .. +125°C can be guaranteed shall
be given. Note: If there are different numbers of specified erase
cycles for different flash sectors of the device this parameter has to
be extended to a parameter list (similar to the sector list above).

Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 4294967295
Default value --
ConfigurationClass Published Information X All Variants
Scope / Dependency scope: module

SWS Item FLS301_Conf :
N ame FlsWriteTime {FLS_WRITE_TIME}
Description Maximum time to program one complete flash page.
Multiplicity 1
Type EcucFloatParamDef
Range 0 .. INF
Default value --

64 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

ConfigurationClass Published Information X All Variants
Scope / Dependency scope: module

No Included Containers

65 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

11 Changes w.r.t. Release 3.0

11.1 Deleted SWS Items

SWS Item Rationale
FLS177 Second occurrence (copy-paste) of requirement deleted.
FLS049 Requirement made into a note (ID deleted).

11.2 Replaced SWS Items

SWS Item replaced by
SWS Item

Rationale

FLS073 FLS308, FLS309 Splitting of requirements
FLS004 FLS310, FLS311,

FLS312, FLS313,
FLS314, FLS315,
FLS316, FLS317,
FLS318, FLS319

Splitting of requirements
(Note: FLS004 cannot be removed since it’s
used as a link for the generated table)

FLS248 FLS320, FLS321,
FLS322

Splitting of requirements
(Note: FLS248 cannot be removed since it’s
used as a link for the generated table)

FLS016 FLS323, FLS324 Splitting of requirements
FLS271 FLS325, FLS326 Splitting of requirements
FLS219 FLS327, FLS328,

FLS329, FLS330
Splitting of requirements

FLS224 FLS331, FLS332,
FLS333, FLS334

Splitting of requirements

FLS032 FLS335, FLS336 Splitting of requirements
FLS237 FLS337, FLS338,

FLS339, FLS340
Splitting of requirements

FLS242 FLS341, FLS342,
FLS343, FLS344

Splitting of requirements

FLS052 FLS345, FLS346 Splitting of requirements
FLS168 FLS347, FLS348,

FLS349
Splitting of requirements

FLS194 FLS350, FLS351 Splitting of requirements
FLS173 FLS352, FLS353,

FLS354, FLS355
Splitting of requirements

11.3 Changed SWS Items

SWS Item Rationale
FLS273 Coloring in chaptzer 12.4 changed (to automatic).
FLS032 Name of module state corrected (leftover from R1.0)

FLS174_Conf
Type of configuration parameter changed
(FLS270_Conf, FLS305_Conf)

FLS203, FLS204 Wording about variants adapted
FLS307_Conf,
FLS274_Conf

Multiplicity of notification functions.

FLS315, FLS316,
FLS317, FLS318.
FLS319

Copy-paste-error with production errors fixed.

FLS357 DET error removed from requirement.

66 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

FLS169_Conf,
FLS170_Conf,
FLS198_Conf,
FLS270_Conf,
FLS275_Conf,
FLS276_Conf,
FLS277_Conf,
FLS278_Conf,
FLS279_Conf,
FLS280_Conf,
FLS281_Conf,
FLS282_Conf,
FLS283_Conf,
FLS294_Conf,
FLS295_Conf,
FLS296_Conf,
FLS297_Conf,
FLS299_Conf,
FLS305_Conf,

Range of configuration parameters restricted to meaningful min. & max.
values.

FLS004 Development error for timeout supervision added.

11.4 Added SWS Items

SWS Item Rationale
FLS356 Added check for initialization to Fls_Cancel.
FLS357 Added check for initialization to Fls_GetStatus.
FLS358 Added check for initialization to Fls_GetJobResult.
FLS359, FLS360,
FLS361, FLS362

Requirements for timeout supervision added

FLS365 Rework of Published Information

67 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

12 Changes w.r.t. Release 4.0

12.1 Deleted SWS Items

SWS Item Rationale
FLS111 Superfluous requirement deleted.

12.2 Replaced SWS Items

SWS Item replaced by
SWS Item

Rationale

12.3 Changed SWS Items

SWS Item Rationale
FLS306_Conf RParameter range adapted
FLS321 Dem_Data_Types.h renamed to Dem_Types.h
FLS040 Erase job removed from requirement.
FLS364
FLS312_Conf
FLS313_Conf
FLS314_Conf
FLS315_Conf

FLS298_Conf
FLS301_Conf

12.4 Added SWS Items

SWS Item Rationale
FLS318_Conf Configuration parameter added.
FLS316_Conf,
FLS317_Conf

Container with SPI reference added

FLS363 DET error if NULL pointer is passed as an argument.
FLS364

68 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

 Specification of Flash Driver
 V3.2.0

R4.0 Rev 3

13 Not applicable requirements

[FLS366] ⌈These requirements are not applicable to this specification.⌋ (BSW00344,
BSW170, BSW00387, BSW00398, BSW00375, BSW00416, BSW168, BSW00423, BSW00424,
BSW00426, BSW00427, BSW00428, BSW00429, BSW00431, BSW00433, BSW00434, BSW00336,
BSW00339, BSW00422, BSW00420, BSW00417, BSW161, BSW162, BSW00324, BSW005,
BSW00415, BSW00326, BSW00342, BSW160, BSW007, BSW00300, BSW00347, BSW00307,
BSW00314, BSW00370, BSW00348, BSW00353, BSW00361, BSW00302, BSW00328, BSW00312,
BSW006, BSW00304, BSW00355, BSW00378, BSW00306, BSW00308, BSW00309, BSW00371,
BSW00359, BSW00360, BSW00330, BSW009, BSW00401, BSW172, BSW010, BSW00333,
BSW00321, BSW00341, BSW00334, BSW12267, BSW12163, BSW12462, BSW12463, BSW12468,
BSW12069, BSW12063, BSW12064, BSW12067, BSW12078, BSW12078, BSW12083, BSW12149)

69 of 69 Document ID 025: AUTOSAR_SWS_FlashDriver
 - AUTOSAR confidential -

	1 Introduction and functional overview
	2 Acronyms and abbreviations
	3 Related documentation
	4 Constraints and assumptions
	5 Dependencies to other modules
	5.1.1 Code file structure
	5.1.2 Header file structure

	6 Requirements traceability
	7 Functional specification
	7.2 Error classification
	7.8 Consistency checks

	8 API specification
	8.2.1 Fls_ConfigType
	8.2.2 Fls_AddressType
	8.2.3 Fls_LengthType
	8.3.1 Fls_Init
	8.3.2 Fls_Erase
	8.3.3 Fls_Write
	8.3.4 Fls_Cancel
	8.3.5 Fls_GetStatus
	8.3.6 Fls_GetJobResult
	8.3.7 Fls_Read
	8.3.8 Fls_Compare
	8.3.9 Fls_SetMode
	8.3.10 Fls_GetVersionInfo
	8.5.1 Fls_MainFunction
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.3 Configurable interfaces

	9 Sequence diagrams
	10 Configuration specification
	10.1 How to read this chapter
	10.1.1 Configuration and configuration parameters
	10.1.2 Containers
	10.1.3 Specification template for configuration parameters

	10.2 Containers and configuration parameters
	10.2.1 Variants
	10.2.2 Fls
	10.2.3
FlsGeneral
	10.2.4
FlsConfigSet
	10.2.5
FlsDemEventParameterRefs
	10.2.6
FlsExternalDriver

	10.3 Published Information
	10.3.1 FlsPublishedInformation

	11 Changes w.r.t. Release 3.0
	12 Changes w.r.t. Release 4.0
	13 Not applicable requirements

