
Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

Document Title Specification of EEPROM
Driver

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 021
Document Classification Standard

Document Version 3.2.0
Document Status Final
Part of Release 4.0
Revision 3

Document Change History
Date Version Changed by Change Description
02.11.2011 3.2.0 AUTOSAR

Administration
 Min max values of FloatParamDef

parameters added for EEP178 &
EEP185

 Replaced Module short name by module
abbreviation

15.10.2010 3.1.0 AUTOSAR
Administration

 Added DET errors
EEP_E_PARAM_POINTER,
EEP_E_TIMEOUT

 Version check section (section 7.10)
modified

30.11.2009 3.0.0 AUTOSAR
Administration

 Made hidden text visible in EEP003,
EEP030, EEP128

 Clarified optional callback notifications
 Reworked external SPI EEPROM

configuration example
 Support VARIANT-POST-BUILD instead

of VARIANT-LINK-TIME
 Clarified synchronous behavior of

Eep_Cancel()
 Added support for debugging
 Added DEM error codes for HW failure,

removed SPI error
 Changed job result to

MEMIF_BLOCK_INCONSISTENT for
differing data compare job

 Replaced Gpt_Init() with Eep_Init()
 Made Dem_ReportErrorStatus()a

mandatory interface
 Legal disclaimer revised

23.06.2008 2.2.1 AUTOSAR
Administration

Legal disclaimer revised

1 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

12.12.2007 2.2.0 AUTOSAR

Administration
 Minor rewording of requirement

(EEP005).
 Introduction of new requirements

(EEP161 and EEP162) for NULL_PTR
check.

 Updates to EEP028 and Figure 4 to
correct spelling of
MEMIF_JOB_CANCELLED

 Document meta information extended
 Small layout adaptations made

31.01.2007 2.1.0 AUTOSAR
Administration

 Constant name correction
 Limitation of erase cycles
 Link-time configuration versus config

pointer check
 Job result for compare jobs is not

specified

 Legal disclaimer revised
 Release Notes added
 “Advice for users” revised
 “Revision Information” added

25.04.2006 2.0.0 AUTOSAR
Administration

Document structure adapted to common
Release 2.0 SWS Template.
 adaptation to the new memory

abstraction architecture
 cancel function now asynchronous
deletion of two specifications elements that
could lead to a misinterpretation of the
described "write-cycle-reduction"
functionality

30.06.2005 1.0.0 AUTOSAR
Administration

Initial Release

2 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

Disclaimer

This specification and the material contained in it, as released by AUTOSAR is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only.
For any other purpose, no part of the specification may be utilized or reproduced, in
any form or by any means, without permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR Specification Documents may contain exemplary items (exemplary
reference models, "use cases", and/or references to exemplary technical solutions,
devices, processes or software).

Any such exemplary items are contained in the Specification Documents for
illustration purposes only, and they themselves are not part of the AUTOSAR
Standard. Neither their presence in such Specification Documents, nor any later
documentation of AUTOSAR conformance of products actually implementing such
exemplary items, imply that intellectual property rights covering such exemplary
items are licensed under the same rules as applicable to the AUTOSAR Standard.

3 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

Table of Contents

1 Introduction and functional overview ... 6

2 Acronyms and abbreviations ... 7

3 Related documentation.. 8

3.1 Input documents... 8
3.2 Related standards and norms .. 8

4 Constraints and assumptions .. 9

4.1 Limitations .. 9
4.2 Applicability to car domains.. 9
4.3 Applicability to safety related environments ... 9

5 Dependencies to other modules.. 10

5.1 File structure .. 10

6 Requirements traceability .. 13

7 Functional specification ... 18

7.1 General behavior.. 18
7.2 Error classification .. 18
7.3 Error detection.. 19

7.3.1 API parameter checking.. 19
7.3.2 EEPROM state checking... 20
7.3.3 EEPROM job encounters Hardware Failure.. 20
7.3.4 Timeout Supervision ... 20

7.4 Error notification ... 21
7.5 Processing of jobs – general requirements .. 21
7.6 Processing of read jobs.. 22
7.7 Processing of write jobs ... 23
7.8 Processing of erase jobs .. 25
7.9 Processing of compare jobs ... 25
7.10 Version check... 26
7.11 Support for Debugging ... 26

8 API specification.. 28

8.1 Imported types.. 28
8.2 Type definitions .. 28

8.2.1 Eep_ConfigType ... 28
8.2.2 Eep_AddressType... 28
8.2.3 Eep_LengthType... 29

8.3 Function definitions .. 29
8.3.1 Eep_Init ... 29
8.3.2 Eep_SetMode ... 30
8.3.3 Eep_Read ... 31
8.3.4 Eep_Write ... 32
8.3.5 Eep_Erase .. 33
8.3.6 Eep_Compare ... 34
8.3.7 Eep_Cancel... 35

4 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

8.3.8 Eep_GetStatus.. 36
8.3.9 Eep_GetJobResult .. 36
8.3.10 Eep_GetVersionInfo.. 37

8.4 Callback notifications.. 38
8.5 Scheduled functions ... 38

8.5.1 Eep_MainFunction .. 38
8.6 Expected Interfaces.. 40

8.6.1 Mandatory Interfaces .. 40
8.6.2 Optional Interfaces .. 40
8.6.3 Configurable interfaces ... 41

8.6.3.1 End Job Notification ... 41
8.6.3.2 Error Job Notification ... 42

9 Sequence diagrams .. 43

9.1 Initialization .. 43
9.2 Read/write/erase/compare ... 43
9.3 Cancelation of a running job... 45

10 Configuration specification... 46

10.1 How to read this chapter .. 46
10.1.1 Configuration and configuration parameters 46
10.1.2 Containers... 46
10.1.3 Specification template for configuration parameters 46

10.2 Containers and configuration parameters .. 48
10.2.1 Variants... 48
10.2.2 Eep.. 48
10.2.3 EepGeneral ... 48
10.2.4 EepInitConfiguration.. 50
10.2.5 EepDemEventParameterRefs ... 53
10.2.6 EepExternalDriver ... 54
10.2.7 SPI specific extension ... 55

10.3 Published parameters .. 55
10.3.1 Basic subset.. 55
10.3.2 SPI specific extension ... 55
10.3.3 EepPublishedInformation .. 55

10.4 Configuration example—external SPI EEPROM device............................. 58
10.4.1 External SPI EEPROM device usage scenario 58
10.4.2 Configuration of SPI parameters ... 59
10.4.3 Generation of SPI configuration data .. 60
10.4.4 SPI API usage... 61

11 Changes in Release 4.0... 62

11.1 Deleted SWS Items.. 62
11.2 Replaced SWS Items ... 62
11.3 Changed SWS Items.. 62
11.4 Added SWS Items.. 62

12 Not applicable requirements .. 64

5 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

1 Introduction and functional overview

This specification describes the functionality and API for an EEPROM driver. This
specification is applicable to drivers for both internal and external EEPROMs.

The EEPROM driver provides services for reading, writing, erasing to/from an
EEPROM. It also provides a service for comparing a data block in the EEPROM with
a data block in the memory (e.g. RAM).

The behaviour of those services is asynchronous.

A driver for an internal EEPROM accesses the microcontroller hardware directly and
is located in the Microcontroller Abstraction Layer. A driver for an external EEPROM
uses handlers (SPI in most cases) or drivers to access the external EEPROM device.
It is located in the ECU Abstraction Layer.

The functional requirements and the functional scope are the same for both types of
drivers. Hence the API is semantically identical.

6 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

2 Acronyms and abbreviations

Acronyms and abbreviations which have a local scope and therefore are not
contained in the AUTOSAR glossary must appear in a local glossary.

Acronym: Description:
Data block A data block may contain 1..n bytes and is used within the API of the EEPROM

driver.
Data blocks are passed with

 Address offset in EEPROM
 Pointer to memory location
 Length

to the EEPROM driver.
Data unit The smallest data entity in EEPROM. The entities may differ for read/write/erase

operation.

Example 1: Motorola STAR12
Read: 1 byte
Write: 2 bytes
Erase: 4 bytes

Example 2: external SPI EEPROM device
Read/Write/Erase: 1 byte

Normal mode
Burst mode

Some external SPI EEPROM devices provide the possibility of different access
modes:

 Normal mode:
The data exchange with the EEPROM device via SPI is performed byte
wise. This allows for cooperative SPI usage together with other SPI devices
like I/O ASICs, external watchdogs etc.

 Burst mode:
The data exchange with the EEPROM device via SPI is performed block
wise. The block size depends on the EEPROM properties, an example is 64
bytes. Because large blocks are transferred, the SPI is blocked by the
EEPROM access in burst mode. This mode is used during ECU start-up
and shut-down phases where fast reading/writing of data is required.

EEPROM cell Smallest physical unit of an EEPROM device that holds the data. Usually 1 byte.

Abbreviation: Description:
EEPROM Electrically Erasable and Programmable Read Only Memory
NVRAM Non Volatile Random Access Memory
NvM Module name of NVRAM Manager
EcuM Module name of ECU State Manager
DEM Module name of Diagnostic Event Manager
DET Module name of Development Error Tracer

7 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

3 Related documentation

3.1 Input documents

[1] Layered Software Architecture
AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf

[2] General Requirements on Basic Software Modules
AUTOSAR_SRS_BSWGeneral.pdf

[3] Specification of Memory Abstraction Interface
AUTOSAR_SWS_MemoryAbstractionInterface.pdf

[4] Specification of SPI Handler/Driver
AUTOSAR_SWS_SPIHandlerDriver.pdf

[5] Specification of ECU Configuration
AUTOSAR_TPS_ECUConfiguration.pdf

[6] Requirements on EEPROM Driver
AUTOSAR_SRS_EEPROMDriver.pdf

[7] Specification of Development Error Tracer
AUTOSAR_SWS_DevelopmentErrorTracer.pdf

[8] Specification of Diagnostics Event Manager
AUTOSAR_SWS_DiagnosticEventManager.pdf

[9] AUTOSAR Glossary
AUTOSAR_TR_Glossary.pdf

[10] Specification of MCU Driver
AUTOSAR_SWS_MCUDriver.pdf

[11] Basic Software Module Description Template
 AUTOSAR_TPS_BSWModuleDescriptionTemplate.pdf

[12] List of Basic Software Modules
AUTOSAR_TR_BSWModuleList.pdf

3.2 Related standards and norms

[13] HIS Specification I/O Drivers, V2.1.3

8 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

4 Constraints and assumptions

4.1 Limitations

The EEPROM driver does not provide mechanisms for providing data integrity (e.g.
checksums, redundant storage, etc.).
The setting of the EEPROM write protection is not provided.

4.2 Applicability to car domains

No restrictions.

4.3 Applicability to safety related environments

This module can be used within safety relevant systems if the upper layer software
provides following mechanisms for safety related data:

 Checksum protection
 Checking integrity before using data
 Redundant storage
 Verification of data after it has been written to EEPROM. For this, the compare

function of the EEPROM driver can be used

9 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

5 Dependencies to other modules

There are two classes of EEPROM drivers:

1. EEPROM drivers for onchip EEPROM.
 These are part of the Microcontroller Abstraction Layer.
2. EEPROM drivers for external EEPROM devices.
 These are part of the ECU Abstraction Layer.

[EEP082] ⌈The source code of external EEPROM drivers shall be independent of the

microcontroller platform.⌋ ()

The internal EEPROM may depend on the system clock, prescaler(s) and PLL. Thus,
changes of the system clock (e.g. PLL on  PLL off) may also affect the clock
settings of the EEPROM hardware. Module EEPROM Driver do not take care of
setting the registers which configure the clock, prescaler(s) and PLL in its init
function. This has to be done by the MCU module [10].

A driver for an external EEPROM depends on the API and capabilities of the used
onboard communication handler (e.g. SPI Handler/Driver).

EEPROM driver is part of Memory Abstraction Architecture and for this reason some
types depend on Memory Interface (MemIf) module.

5.1 File structure

[EEP159] ⌈The module Eep shall provide a file Eep_Lcfg.c containing all link time

configurable parameters.⌋ ()

[EEP160] ⌈The module Eep shall provide a file Eep_PBcfg.c containing all post

build time configurable parameters.⌋ ()

[EEP228] ⌈If the module implementation uses custom interrupt processing, the inter-

rupt service routines shall be placed in Eep_Irq.c⌋ ()

[EEP083] ⌈The module Eep shall adhere to the following include file structure:

10 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

«header»
MemIf_Types.h

«header»
Spi.h

«header»
Platform_Types.h

«header»
Compiler.h

«header»
Eep.h

«header»
Std_Types.h

«header»
MemMap.h

«includes» «optional,includes» «includes» «includes»

«header»
Eep_Cfg.h

«includes» «includes»

«source»
Eep_Irq.c

«source»
Eep_PBcfg.c

«source»
Eep.c

«source»
Eep_Lcfg.c

«header»
Eep_Cbk.h

«header»
Dem.h

«header»
Det.h

«header»
SchM_Eep.h

«optional,includes»

«includes»

«includes»

«includes»

«optional,includes»

«includes»

«includes»

«includes»
«includes»

«includes»

«optional,includes»

«includes»

«optional,includes»

«includes»

Figure 1

⌋ (BSW00412, BSW00415)

[EEP102] ⌈The Eep module shall include Eep.h, MemMap.h, Dem.h and
SchM_Eep.h. It shall optionally include Det.h and Eep_Cbk.h

By inclusion of Dem.h the APIs to report errors as well as the required Event Id
symbols are included. This specification defines the name of the Event Id symbols
which are provided by XML to the DEM configuration tool. The DEM configuration
tool assigns ECU dependent values to the Event Id symbols and publishes the

symbols in Dem_IntErrId.h. ⌋ (BSW00384)

[EEP229] ⌈Eep.h shall include Eep_Cfg.h and Std_Types.h⌋ ()

[EEP230] ⌈In case of a driver for an external SPI EEPROM, Eep.h shall include

Spi.h⌋ ()

[EEP231] ⌈If present, Eep_Irq.c shall include Eep.h and MemMap.h⌋ ()
11 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver

- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

[EEP232] ⌈If present, Eep_Lcfg.c shall include Eep.h and MemMap.h. It shall

optionally include Eep_Cbk.h⌋ ()

[EEP233] ⌈If present, Eep_PBcfg.c shall include Eep.h and MemMap.h. It shall

optionally include Eep_Cbk.h⌋ ()

12 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

6 Requirements traceability

Requirement Satisfied by

- EEP059

- EEP235

- EEP234

- EEP119

- EEP145

- EEP147

- EEP128

- EEP153

- EEP236

- EEP146

- EEP206

- EEP151

- EEP133

- EEP143

- EEP228

- EEP106

- EEP154

- EEP220

- EEP148

- EEP219

- EEP120

- EEP122

- EEP136

- EEP044

- EEP117

- EEP031

- EEP160

- EEP225

- EEP129

- EEP152

- EEP137

- EEP207

- EEP158

- EEP162

- EEP134

- EEP226

- EEP144

- EEP205

13 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

- EEP135

- EEP233

- EEP161

- EEP229

- EEP056

- EEP115

- EEP058

- EEP150

- EEP221

- EEP124

- EEP082

- EEP217

- EEP098

- EEP222

- EEP157

- EEP116

- EEP159

- EEP204

- EEP237

- EEP126

- EEP084

- EEP149

- EEP100

- EEP231

- EEP224

- EEP121

- EEP127

- EEP155

- EEP239

- EEP227

- EEP104

- EEP068

- EEP230

- EEP238

- EEP232

- EEP075

- EEP118

- EEP097

- EEP113

- EEP223

- EEP123

BSW00301 EEP241
14 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver

- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

BSW00302 EEP241

BSW00306 EEP241

BSW00307 EEP241

BSW00308 EEP241

BSW00309 EEP241

BSW00312 EEP241

BSW00323 EEP016, EEP017, EEP018, EEP005

BSW00324 EEP241

BSW00325 EEP241

BSW00326 EEP241

BSW00328 EEP241

BSW00330 EEP241

BSW00331 EEP241

BSW00334 EEP241

BSW00335 EEP138

BSW00336 EEP241

BSW00337 EEP003, EEP000, EEP201, EEP200, EEP203, EEP202

BSW00338 EEP218, EEP001

BSW00339 EEP002

BSW00341 EEP241

BSW00342 EEP241

BSW00343 EEP241

BSW00347 EEP241

BSW00350 EEP218, EEP001

BSW00355 EEP241

BSW00357 EEP138

BSW00369 EEP218, EEP001, EEP033

BSW00375 EEP241

BSW00377 EEP138

BSW00378 EEP241

BSW00384 EEP102

BSW00385 EEP003, EEP000

BSW00386 EEP218, EEP001

BSW00399 EEP241

BSW004 EEP091

BSW00400 EEP241

BSW00401 EEP241

BSW00406 EEP006, EEP033

BSW00407 EEP108, EEP107

BSW00409 EEP103

BSW00411 EEP108

BSW00412 EEP083
15 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver

- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

BSW00413 EEP241

BSW00415 EEP083

BSW00416 EEP241

BSW00417 EEP241

BSW00420 EEP241

BSW00421 EEP002

BSW00422 EEP241

BSW00423 EEP241

BSW00424 EEP241

BSW00426 EEP241

BSW00427 EEP241

BSW00428 EEP241

BSW00429 EEP241

BSW00431 EEP241

BSW00432 EEP241

BSW00433 EEP241

BSW00434 EEP241

BSW00442 EEP210, EEP212, EEP211, EEP214, EEP213, EEP209, EEP208

BSW005 EEP241

BSW006 EEP241

BSW007 EEP241

BSW009 EEP241

BSW010 EEP241

BSW087 EEP013, EEP009

BSW088 EEP063, EEP014, EEP015, EEP090

BSW089 EEP070, EEP072, EEP019, EEP020

BSW090 EEP216, EEP021, EEP215, EEP028, EEP027

BSW091 EEP029

BSW092 EEP060, EEP064

BSW094 EEP063, EEP070, EEP072, EEP090

BSW095 EEP033, EEP036

BSW101 EEP004

BSW12047 EEP032, EEP030

BSW12050 EEP057, EEP051, EEP054, EEP069

BSW12051 EEP088

BSW12056 EEP047, EEP049

BSW12057 EEP004

BSW12062 EEP004

BSW12063 EEP241

BSW12064 EEP033

BSW12067 EEP241

BSW12068 EEP241
16 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver

- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

BSW12069 EEP241

BSW12072 EEP055, EEP054, EEP073

BSW12075 EEP037

BSW12077 EEP241

BSW12078 EEP241

BSW12091 EEP026, EEP025

BSW12092 EEP241

BSW12124 EEP055, EEP052, EEP053, EEP073

BSW12129 EEP241

BSW12156 EEP132, EEP042, EEP130

BSW12157 EEP051, EEP052, EEP053

BSW12163 EEP241

BSW12265 EEP241

BSW12267 EEP241

BSW12448 EEP016, EEP017, EEP018, EEP218, EEP001, EEP005, EEP033

BSW157 EEP045, EEP047, EEP046, EEP029, EEP024

BSW161 EEP241

BSW162 EEP241

BSW164 EEP241

BSW168 EEP241

BSW170 EEP241

BSW172 EEP241

17 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

7 Functional specification

7.1 General behavior

[EEP088] ⌈The Eep SWS shall be valid both for internal and external EEPROMs.

The Eep SWS defines asynchronous services for EEPROM operations

(read/write/erase/compare). ⌋ (BSW12051)

[EEP036] ⌈The Eep module shall not buffer jobs. The Eep module shall accept only

one job at a time. During job processing, the Eep module shall accept no other job. ⌋
(BSW095)

Note: when running in production mode it is assumed that the Eep user will never
issue jobs concurrently; therefore error handling for this requirement is restricted to
development, see EEP033.

[EEP037] ⌈The Eep module shall not buffer data to be read or written. The Eep
module shall use application data buffers that are referenced by a pointer passed via

the API. ⌋ (BSW12075)

7.2 Error classification

[EEP104] ⌈Development error values are of type uint8. ⌋ ()

[EEP103] ⌈The Eep module shall take the values for production code Event Ids out
of the file Dem_IntErrId.h. The Eep module shall include the file Dem.h (which in its

turn includes Dem_IntErrId.h). ⌋ (BSW00409)

[EEP000] ⌈The Eep module shall detect the following errors depending on its build
options (development/production mode):
Type or error Relevance Related error code Value [hex]

API service called with
wrong parameter

Development EEP_E_PARAM_CONFIG
EEP_E_PARAM_ADDRESS
EEP_E_PARAM_DATA
EEP_E_PARAM_LENGTH

0x10
0x11
0x12
0x13

API service called with a
NULL pointer

Development EEP_E_PARAM_POINTER 0x23

API service called without
module initialization

Development EEP_E_UNINIT 0x20

API service called while
driver still busy

Development EEP_E_BUSY 0x21

Timeout exceeded Development EEP_E_TIMEOUT 0x22

EEPROM erase failed (HW) Production EEP_E_ERASE_FAILED Assigned by
DEM

18 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

EEPROM write failed (HW) Production EEP_E_WRITE_FAILED Assigned by

DEM
EEPROM read failed (HW) Production EEP_E_READ_FAILED

Assigned by
DEM

EEPROM compare failed
(HW)

Production EEP_E_COMPARE_FAILED Assigned by
DEM

⌋ (BSW00337, BSW00385)

[EEP003] ⌈The Eep module shall add additional errors that are detected because of
specific implementation and/or specific hardware properties to the EEPROM device
specific implementation specification. The Eep module shall define the classification
and enumeration of these additional error so that they are compatible to the errors

defined in EEP000. ⌋ (BSW00337, BSW00385)

7.3 Error detection

[EEP001] ⌈The detection of development errors is configurable (ON / OFF) at pre-
compile time. The switch EepDevErrorDetect (see chapter 10) shall activate or

deactivate the detection of all development errors. ⌋ (BSW00338, BSW00369, BSW00386,
BSW00350, BSW12448)

[EEP218] ⌈If the EepDevErrorDetect switch is enabled, API parameter checking
is enabled. The detailed description of the detected errors can be found in chapter

7.2, chapter 7.3.1 and chapter 8. ⌋ (BSW00338, BSW00369, BSW00386, BSW00350,
BSW12448)

[EEP106] ⌈The detection of production code errors cannot be switched off. ⌋ ()

7.3.1 API parameter checking

[EEP016] ⌈If development error detection for the module Eep is enabled: the
functions Eep_Read(), Eep_Write(), Eep_Compare() and Eep_Erase()
shall check that DataBufferPtr is not NULL. If DataBufferPtr is NULL, they

shall raise development error EEP_E_PARAM_DATA and return with E_NOT_OK. ⌋
(BSW00323, BSW12448)

[EEP017] ⌈If development error detection for the module Eep is enabled: the
functions Eep_Read(), Eep_Write(), Eep_Compare() and Eep_Erase()
shall check that EepromAddress is valid. If EepromAddress is not within the valid
EEPROM address range they shall raise development error

EEP_E_PARAM_ADDRESS and return with E_NOT_OK. ⌋ (BSW00323, BSW12448)

19 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

[EEP018] ⌈If development error detection for the module Eep is enabled: the
functions Eep_Read(), Eep_Write(), Eep_Compare() and Eep_Erase()
shall check that the parameter Length is within the specified minimum and
maximum values:

 Min.: 1

 Max.: EepSize – EepromAddress
If the parameter Length is not within the specified minimum and maximum values,
they shall raise development error EEP_E_PARAM_LENGTH and return with

E_NOT_OK. ⌋ (BSW00323, BSW12448)

7.3.2 EEPROM state checking

[EEP033] ⌈If development error detection for the module Eep is enabled: the
functions Eep_SetMode(), Eep_Read(), Eep_Write(), Eep_Compare()
and Eep_Erase() shall check the EEPROM state for being MEMIF_IDLE. If the
EEPROM state is not MEMIF_IDLE , the called function shall

 raise development error EEP_E_BUSY or EEP_E_UNINIT according to the
EEPROM state

 reject the service with E_NOT_OK (except Eep_SetMode()because this

service has no return value) ⌋ (BSW00406, BSW00369, BSW12064, BSW12448,
BSW095)

7.3.3 EEPROM job encounters Hardware Failure

[EEP200] ⌈The production error code EEP_E_ERASE_FAILED shall be reported

when the EEPROM erase function failed. ⌋ (BSW00337)

[EEP201] ⌈The production error code EEP_E_WRITE_FAILED shall be reported

when the EEPROM write function failed. ⌋ (BSW00337)

[EEP202] ⌈The production error code EEP_E_READ_FAILED shall be reported when

the EEPROM read function failed. ⌋ (BSW00337)

[EEP203] ⌈The production error code EEP_E_COMPARE_FAILED shall be reported

when the EEPROM compare function failed. ⌋ (BSW00337)

7.3.4 Timeout Supervision

[EEP234] ⌈The development error code EEP_E_TIMEOUT shall be reported when the
timeout supervision of a read, write, erase or compare job failed. ⌋ ()

20 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

7.4 Error notification

[EEP002] ⌈The Eep module shall report production errors to the Diagnostic Event

Manager. ⌋ (BSW00339, BSW00421)

[EEP100] ⌈The Eep module shall report detected development errors to the
Det_ReportError service of the Development Error Tracer (DET) if the pre-

processor switch EepDevErrorDetect is set (see EEP188_Conf). ⌋ ()

7.5 Processing of jobs – general requirements

[EEP128] ⌈The Eep module shall allow to be configured for interrupt or polling
controlled job processing (if this is supported by the EEPROM hardware) through the

configuration parameter EepUseInterrupts (see EEP163_Conf). ⌋ ()

[EEP129] ⌈If interrupt controlled job processing is supported and enabled, the
external interrupt service routine located in Eep_Irq.c shall call an additional job

processing function. ⌋ ()

Hint:
The function Eep_MainFunction is still required for processing of jobs without
hardware interrupt support (e.g. for read and compare jobs) and for timeout
supervision.

Additional general requirements only applicable for SPI EEPROM drivers:

[EEP056] ⌈For an Eep module driving an external EEPROM through SPI: If the SPI

access fails, the Eep module shall behave as specified in EEP068. ⌋ ()

[EEP052] ⌈For an Eep module driving an external EEPROM through SPI: In normal
EEPROM mode, the Eep module shall access the external EEPROM by usage of

SPI channels that are configured for normal access to the SPI EEPROM. ⌋
(BSW12157, BSW12124)

[EEP053] ⌈For an Eep module driving an external EEPROM through SPI: The Eep’s
configuration shall be such that the value of the configuration parameter
EepNormalReadBlockSize fits to the number of bytes that are readable in normal

SPI mode. ⌋ (BSW12157, BSW12124)

[EEP055] ⌈For an Eep module driving an external EEPROM through SPI: In fast
EEPROM mode, the Eep module shall access the external EEPROM by usage of

21 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

SPI channels that are configured for burst access to the SPI EEPROM. ⌋ (BSW12072,
BSW12124)

[EEP073] ⌈For an Eep module driving an external EEPROM through SPI: The Eep’s
configuration shall be such that the value of the configuration parameter
EepFastReadBlockSize fits to the number of bytes that are readable in burst SPI

mode. ⌋ (BSW12072, BSW12124)

7.6 Processing of read jobs

[EEP130] ⌈The Eep module shall provide two different read modes:
 normal mode

 fast mode⌋ (BSW12156)

[EEP132] ⌈For an Eep module driving an external EEPROM: in case the external
EEPROM does not support the burst mode, the Eep module shall accept a selection
of fast read mode, but shall behave the same as in normal mode (don’t care of mode

parameter). ⌋ (BSW12156)

[EEP051] ⌈In normal EEPROM mode, the Eep module shall read within one job
processing cycle a number of bytes specified by the parameter

EepNormalReadBlockSize. ⌋ (BSW12157, BSW12050)

Example:

 EepNormalReadBlockSize = 4
 Number of bytes to read: 21
 Required number of job processing cycles: 6
 Resulting read pattern: 4-4-4-4-4-1

[EEP054] ⌈In fast EEPROM mode, the Eep module shall read within one job
processing cycle a number of bytes specified by the parameter

EepFastReadBlockSize. ⌋ (BSW12072, BSW12050)

Example:

 EepFastReadBlockSize = 32
 Number of bytes to read: 110
 Required number of job processing cycles: 4
 Resulting read pattern: 32-32-32-14

[EEP058] ⌈When a read job is finished successfully, the Eep module shall set the
EEPROM state to MEMIF_IDLE and shall set the job result to MEMIF_JOB_OK. If
configured, the Eep module shall call the notification defined in the configuration

parameter EepJobEndNotification. ⌋ ()
22 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver

- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

[EEP068] ⌈When an error is detected during read job processing, the Eep module
shall abort the job, shall set the EEPROM state to MEMIF_IDLE and shall set the job
result to MEMIF_JOB_FAILED. If configured, the Eep module shall call the

notification defined in the configuration parameter EepJobErrorNotification. ⌋
()

7.7 Processing of write jobs

[EEP057] ⌈The Eep module shall only write (and erase) as many bytes to the
EEPROM as supported by the EEPROM hardware within one job processing cycle.

For internal EEPROMs, usually 1 data word can be written per time. Some external
EEPROMs provide a RAM buffer (e.g. page buffer) that allows writing many bytes in

one step. ⌋ (BSW12050)

[EEP133] ⌈The Eep module shall provide two different write modes:
 normal mode

 fast mode⌋ ()

[EEP134] ⌈For the case of an Eep module driving an external EEPROM: if the
external EEPROMs does not provide burst mode, the Eep module shall accept a
selection of fast mode, but shall behave the same as in normal mode (don’t care of

mode parameter). ⌋ ()

[EEP097] ⌈In normal EEPROM mode, the Eep module shall write (and erase) within
one job processing cycle a number of bytes specified by the parameter

EepNormalWriteBlockSize. ⌋ ()

Example:

 EepNormalWriteBlockSize = 1
 Number of bytes to write: 4
 Required number of job processing cycles: 4
 Resulting write pattern: 1-1-1-1

[EEP098] ⌈In fast EEPROM mode, the Eep module shall write (and erase) within one
job processing cycle a number of bytes specified by the parameter

EepFastWriteBlockSize. ⌋ ()

Example:

 EepFastWriteBlockSize = 16
 Number of bytes to write: 55
 Required number of job processing cycles: 4

23 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

 Resulting write pattern: 16-16-16-7

[EEP060] ⌈If the value to be written to an EEPROM cell is already contained in the
EEPROM cell, the Eep module should1 skip the programming of that cell if it is

configured to do so through the configuration parameter EepWriteCycleReduction. ⌋
(BSW092)

[EEP059] ⌈The Eep module shall erase an EEPROM cell before writing to it if this is

not done automatically by the EEPROM hardware. ⌋ ()

[EEP063] ⌈The Eep module shall preserve data of affected EEPROM cells by
performing read – modify – write operations, if the number of bytes to be written are

smaller than the erasable and/or writeable data units. ⌋ (BSW088, BSW094)

[EEP090] ⌈The Eep module shall preserve data of affected EEPROM cells by
performing read – modify – write operations, if the given parameters

(EepromAddress and Length) do not align with the erasable/writeable data units. ⌋
(BSW088, BSW094)

[EEP064] ⌈The Eep module shall keep the number of read – modify – write

operations during writing a data block as small as possible. ⌋ (BSW092)

[EEP219] ⌈When a write job is finished successfully, the Eep module shall set the
EEPROM state to MEMIF_IDLE and shall set the job result to MEMIF_JOB_OK. If
configured, the Eep module shall call the notification defined in the configuration

parameter EepJobEndNotification. ⌋ ()

[EEP222] ⌈When an error is detected during write job processing, the Eep module
shall abort the job, shall set the EEPROM state to MEMIF_IDLE and shall set the job
result to MEMIF_JOB_FAILED. If configured, the Eep module shall call the

notification defined in the configuration parameter EepJobErrorNotification. ⌋
()

Note: The verification of data written to EEPROM is not done within the write job
processing function. If this is required for a data block, the compare function has to
be called after the write job has been finished. This optimizes write speed, because
data verification (read back and comparing data after writing) is only done where
required.

24 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

1 This feature is not mandatory but it depends on the EEPROM hardware manufacturer specification

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

7.8 Processing of erase jobs

[EEP069] ⌈The Eep module shall erase only as many bytes to the EEPROM as

supported by the EEPROM hardware within one job processing cycle. ⌋ (BSW12050)

[EEP070] ⌈The Eep module shall use block erase commands if supported by the
EEPROM hardware and if the given parameters (EepromAddress and Length) are

aligned to erasable blocks. ⌋ (BSW089, BSW094)

[EEP072] ⌈The Eep module shall preserve the contents of affected EEPROM cells
by using read – modify – write operations, if the given erase parameters

(EepromAddress and Length) do not align with the erasable data units. ⌋ (BSW089,

BSW094)

[EEP220] ⌈When an erase job is finished successfully, the Eep module shall set the
EEPROM state to MEMIF_IDLE and shall set the job result to MEMIF_JOB_OK. If
configured, the Eep module shall call the notification defined in the configuration

parameter EepJobEndNotification. ⌋ ()

[EEP223] ⌈When an error is detected during erase job processing, the Eep module
shall abort the job, shall set the EEPROM state to MEMIF_IDLE and shall set the job
result to MEMIF_JOB_FAILED. If configured, the Eep module shall call the

notification defined in the configuration parameter EepJobErrorNotification. ⌋
()

7.9 Processing of compare jobs

For processing of compare jobs, the following EEPROM mode related requirements
are applicable: EEP130, EEP132, EEP051, EEP054.

[EEP221] ⌈When a compare job is finished successfully, the Eep module shall set
the EEPROM state to MEMIF_IDLE and shall set the job result to MEMIF_JOB_OK. If
configured, the Eep module shall call the notification defined in the configuration

parameter EepJobEndNotification. ⌋ ()

[EEP224] ⌈When an error is detected during compare job processing, the Eep
module shall abort the job, shall set the EEPROM state to MEMIF_IDLE and shall set
the job result to MEMIF_JOB_FAILED. If configured, the Eep module shall call the

notification defined in the configuration parameter EepJobErrorNotification. ⌋
()

25 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

[EEP075] ⌈When it is detected during compare job processing that the compared
data areas are not equal, the EEPROM driver shall abort the job, set the EEPROM
state to MEMIF_IDLE and the job result to MEMIF_BLOCK_INCONSISTENT. If

configured, the callback function Eep_JobErrorNotification shall be called. ⌋ ()

Requirements only applicable for SPI EEPROM drivers:
For processing of compare jobs, the following read job requirements are applicable:
EEP052, EEP053, EEP055, EEP073.

7.10 Version check

[EEP091] ⌈The Eep module shall perform Inter Module Checks to avoid integration
of incompatible files.
The imported included files shall be checked by preprocessing directives.

The following version numbers shall be verified:
- <MODULENAME>_AR_RELEASE_MAJOR_VERSION
- <MODULENAME>_AR_RELEASE_MINOR_VERSION
Where <MODULENAME> is the module abbreviation of the other (external) modules
which provide header files included by the Eep module.

If the values are not identical to the expected values, an error shall be reported. ⌋
(BSW004)

7.11 Support for Debugging

[EEP208] ⌈Each variable that shall be accessible by AUTOSAR Debugging shall be

defined as global variable. ⌋ (BSW00442)

[EEP209] ⌈All type definitions of variables which shall be debugged shall be

accessible by the header file Eep.h. ⌋ (BSW00442)

[EEP210] ⌈The declaration of variables in the header file shall be such that it is

possible to calculate the size of the variables by C-“sizeof”. ⌋ (BSW00442)

[EEP211] ⌈Variables available for debugging shall be described in the respective

Basic Software Module Description. ⌋ (BSW00442)

[EEP212] ⌈The EEPROM module state shall be available for debugging. ⌋
(BSW00442)

[EEP213] ⌈The job result shall be available for debugging. ⌋ (BSW00442)

26 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

[EEP214] ⌈The EEPROM operation mode shall be available for debugging. ⌋
(BSW00442)

27 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

8 API specification

8.1 Imported types

In this chapter all types included from the following files are listed:

[EEP138] ⌈

Module Imported Type

Dem_EventIdType Dem
Dem_EventStatusType
MemIf_JobResultType
MemIf_ModeType

MemIf

MemIf_StatusType
Std_ReturnType Std_Types
Std_VersionInfoType

⌋ (BSW00335, BSW00357, BSW00377)

8.2 Type definitions

8.2.1 Eep_ConfigType

[EEP225] ⌈

Name: Eep_ConfigType
Type: Structure
Range: Implementation

Specific
The contents of the initialisation data structure are EEPROM
specific.

Description: This is the type of the external data structure containing the initialization data for
the EEPROM driver.

⌋ ()

8.2.2 Eep_AddressType

[EEP226] ⌈

Name: Eep_AddressType
Type: uint
Range: 8 / 16 / 32

bits
-- Size depends on target platform and EEPROM device.

Description: Used as address offset from the configured EEPROM base address to access a
certain EEPROM memory area.

⌋ ()

[EEP113] ⌈The type Eep_AddressType shall have 0 as lower limit for each EEPROM

device. ⌋ ()

28 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

[EEP217] ⌈The EEPROM module shall add a device specific base address to the

address type Eep_AddressType if necessary. ⌋ ()

8.2.3 Eep_LengthType

[EEP227] ⌈

Name: Eep_LengthType
Type: uint
Range: Same as

Eep_AddressType
-
-

Is the same type as Eep_AddressType because of
arithmetic operations. Size depends on target platform and
EEPROM device.

Description: Specifies the number of bytes to read/write/erase/compare.

⌋ ()

8.3 Function definitions

8.3.1 Eep_Init

[EEP143] ⌈

Service name: Eep_Init
Syntax: void Eep_Init(

 const Eep_ConfigType* ConfigPtr
)

Service ID[hex]: 0x00
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): ConfigPtr Pointer to configuration set.
Parameters
(inout):

None

Parameters (out): None
Return value: None
Description: Service for EEPROM initialization.

⌋ ()

[EEP004] ⌈The function Eep_Init shall initialize all EEPROM relevant registers with
the values of the structure referenced by the parameter ConfigPtr. ⌋ (BSW101,
BSW12057, BSW12062)

[EEP005] ⌈If development error detection for the module Eep is enabled; if the
function Eep_Init is called with a NULL configPtr and if a variant containing postbuild
multiple selectable configuration parameters is used (VariantPB), the function
Eep_Init shall raise the development error EEP_E_PARAM_CONFIG and return
without any action. ⌋ (BSW00323, BSW12448)

29 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

[EEP161] ⌈For variants with no postbuild multiple selectable configuration
parameters (Variant PC), the EEP module’s environment shall pass a NULL pointer

to the function Eep_Init().⌋ ()

[EEP162] ⌈The initialization function of this module shall always have a pointer as a
parameter, even though for Variant PC no configuration set shall be given. Instead a

NULL pointer shall be passed to the initialization function. ⌋ ()

[EEP006] ⌈After having finished the module initialization, the function Eep_Init shall
set the EEPROM state to MEMIF_IDLE and shall set the job result to
MEMIF_JOB_OK. ⌋ (BSW00406)

[EEP044] ⌈The function Eep_Init shall set the EEPROM mode to the configured

default mode⌋ ()

[EEP115] ⌈The Eep’s user shall not call the function Eep_Init during a running

operation. ⌋ ()

8.3.2 Eep_SetMode

[EEP144] ⌈

Service name: Eep_SetMode
Syntax: void Eep_SetMode(

 MemIf_ModeType Mode
)

Service ID[hex]: 0x01
Sync/Async: Synchronous
Reentrancy: Non Reentrant

Parameters (in):
Mode MEMIF_MODE_SLOW: Slow read access / normal SPI access.

MEMIF_MODE_FAST: Fast read access / SPI burst access.
Parameters
(inout):

None

Parameters (out): None
Return value: None
Description: Sets the mode.

⌋ ()

[EEP042] ⌈The function Eep_SetMode shall set the EEPROM operation mode to the
given mode parameter.

The function Eep_SetMode checks the EEPROM state according to requirement

EEP033. ⌋ (BSW12156)

[EEP116] ⌈The Eep’s user shall not call the function Eep_SetMode during a running

operation. ⌋ ()
30 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver

- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

8.3.3 Eep_Read

[EEP145] ⌈

Service name: Eep_Read
Syntax: Std_ReturnType Eep_Read(

 Eep_AddressType EepromAddress,
 uint8* DataBufferPtr,
 Eep_LengthType Length
)

Service ID[hex]: 0x02
Sync/Async: Asynchronous
Reentrancy: Non Reentrant

EepromAddress Address offset in EEPROM (will be added to the EEPROM base
address).
Min.: 0
Max.: EEP_SIZE - 1 Parameters (in):

Length Number of bytes to read
Min.: 1
Max.: EEP_SIZE - EepromAddress

Parameters
(inout):

None

Parameters (out): DataBufferPtr Pointer to destination data buffer in RAM

Return value:
Std_ReturnType E_OK: read command has been accepted

E_NOT_OK: read command has not been accepted
Description: Reads from EEPROM.

⌋ ()

[EEP009] ⌈The function Eep_Read shall copy the given parameters, initiate a read
job, set the EEPROM status to MEMIF_BUSY, set the job result to
MEMIF_JOB_PENDING and return. ⌋ (BSW087)

[EEP013] ⌈The Eep module shall execute the read job asynchronously within the
Eep module’s job processing function. During job processing the Eep module shall
read a data block of size Length from EepromAddress + EEPROM base address
to *DataBufferPtr.

The function Eep_Read checks the API parameters according to requirements
EEP016, EEP017, EEP018.

The function Eep_Read checks the EEPROM state according to requirement

EEP033. ⌋ (BSW087)

[EEP117] ⌈The Eep’s user shall only call Eep_Read after the Eep module has been
been initialized. ⌋ ()

[EEP118] ⌈The Eep’s user shall not call the function Eep_Read during a running Eep

module job (read/write/erase/compare). ⌋ ()

31 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

8.3.4 Eep_Write

[EEP146] ⌈

Service name: Eep_Write
Syntax: Std_ReturnType Eep_Write(

 Eep_AddressType EepromAddress,
 const uint8* DataBufferPtr,
 Eep_LengthType Length
)

Service ID[hex]: 0x03
Sync/Async: Asynchronous
Reentrancy: Non Reentrant

EepromAddress Address offset in EEPROM (will be added to the EEPROM base
address).
Min.: 0
Max.: EEP_SIZE - 1

This target address will be added to the EEPROM base address.

DataBufferPtr Pointer to source data

Parameters (in):

Length Number of bytes to write
Min.: 1
Max.: EEP_SIZE - EepromAddress

Parameters
(inout):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: write command has been accepted

E_NOT_OK: write command has not been accepted
Description: Writes to EEPROM.

⌋ ()

[EEP014] ⌈The function Eep_Write shall copy the given parameters, initiate a write
job, set the EEPROM status to MEMIF_BUSY, set the job result to
MEMIF_JOB_PENDING and return. ⌋ (BSW088)

[EEP015] ⌈The Eep module shall execute the write job asynchronously within the
Eep module’s job processing function. During job processing the Eep module shall
write a data block of size Length from *DataBufferPtr to EepromAddress + EEPROM
base address.

The function Eep_Write checks the API parameters according to requirements
EEP016, EEP017, EEP018.

The function Eep_Write checks the EEPROM state according to requirement

EEP033. ⌋ (BSW088)

[EEP119] ⌈The Eep module’s user shall only call the function Eep_Write after the
Eep module has been initialized. ⌋ ()

[EEP120] ⌈The Eep module’s user shall not call the function Eep_Write during a

running Eep module job (read/write/erase/compare). ⌋ ()

32 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

8.3.5 Eep_Erase

[EEP147] ⌈

Service name: Eep_Erase
Syntax: Std_ReturnType Eep_Erase(

 Eep_AddressType EepromAddress,
 Eep_LengthType Length
)

Service ID[hex]: 0x04
Sync/Async: Asynchronous
Reentrancy: Non Reentrant

EepromAddress Start address in EEPROM
Min.: 0
Max.: EEP_SIZE - 1

This address will be added to the EEPROM base address. Parameters (in):

Length Number of bytes to erase
Min.: 1
Max.: EEP_SIZE - EepromAddress

Parameters
(inout):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: erase command has been accepted

E_NOT_OK: erase command has not been accepted
Description: Service for erasing EEPROM sections.

⌋ ()

[EEP019] ⌈The function Eep_Erase shall copy the given parameters, initiate an
erase job, set the EEPROM status to MEMIF_BUSY, set the job result to
MEMIF_JOB_PENDING and return. ⌋ (BSW089)

[EEP020] ⌈The Eep module shall execute the erase job asynchronously within the
Eep module’s job processing function. The Eep module shall erase an EEPROM
block starting from EepromAddress + EEPROM base address of size Length.

The function Eep_Erase checks the API parameters according to requirements
EEP016, EEP017, EEP018.

The function Eep_Erase checks the EEPROM state according to requirement

EEP033. ⌋ (BSW089)

[EEP121] ⌈The Eep module’s user shall only call the function Eep_Erase after the
Eep module has been initialized. ⌋ ()

[EEP122] ⌈The Eep module’s user shall not call the function Eep_Erase during a

running Eep job (read/write/erase/compare). ⌋ ()

33 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

8.3.6 Eep_Compare

[EEP148] ⌈

Service name: Eep_Compare
Syntax: Std_ReturnType Eep_Compare(

 Eep_AddressType EepromAddress,
 const uint8* DataBufferPtr,
 Eep_LengthType Length
)

Service ID[hex]: 0x05
Sync/Async: Asynchronous
Reentrancy: Non Reentrant

EepromAddress Address offset in EEPROM (will be added to the EEPROM base
address).
Min.: 0
Max.: EEP_SIZE - 1

This target address will be added to the EEPROM base address.

DataBufferPtr Pointer to data buffer (compare data)

Parameters (in):

Length Number of bytes to compare
Min.: 1
Max.: EEP_SIZE - EepromAddress

Parameters
(inout):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: compare command has been accepted

E_NOT_OK: compare command has not been accepted
Description: Compares a data block in EEPROM with an EEPROM block in the memory.

⌋ ()

[EEP025] ⌈The function Eep_Compare shall copy the given parameters, initiate a
compare job, set the EEPROM status to MEMIF_BUSY, set the job result to
MEMIF_JOB_PENDING and return. ⌋ (BSW12091)

[EEP026] ⌈The Eep module shall execute the compare job asynchronously within the
Eep module’s job processing function. During job processing the Eep module shall
compare the EEPROM data block at EepromAddress + EEPROM base address of
size Length with the data block at *DataBufferPtr of the same length.

The service Eep_Compare checks the API parameters according to requirements
EEP016, EEP017, EEP018.

The service Eep_Compare checks the EEPROM state according to requirement

EEP033. ⌋ (BSW12091)

[EEP123] ⌈The Eep module’s user shall only call the function Eep_Compare after the
Eep module has been initialized. ⌋ ()

[EEP124] ⌈The Eep module’s user shall not call the function Eep_Compare during a

running Eep job (read/write/erase/compare). ⌋ ()

34 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

8.3.7 Eep_Cancel

[EEP149] ⌈

Service name: Eep_Cancel
Syntax: void Eep_Cancel(

 void
)

Service ID[hex]: 0x06
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): None
Parameters
(inout):

None

Parameters (out): None
Return value: None
Description: Cancels a running job.

⌋ ()

[EEP215] ⌈The function Eep_Cancel shall cancel an ongoing EEPROM read, write,

erase or compare job. ⌋ (BSW090)

[EEP021] ⌈The function Eep_Cancel shall abort a running job synchronously so that
directly after returning from this function a new job can be requested by the upper
layer. ⌋ (BSW090)

Note: The function Eep_Cancel is synchronous in its behavior but at the same time
asynchronous w.r.t. the underlying hardware. The job of the Eep_Cancel function
(i.e. make the module ready for a new job request) is finished when it returns to the
caller (hence it is synchronous), but on the other hand e.g. an erase job might still be
ongoing in the hardware device (hence it is asynchronous w.r.t. the hardware).

[EEP027] ⌈The function Eep_Cancel shall set the EEP module state to
MEMIF_IDLE. ⌋ (BSW090)

[EEP216] ⌈If configured, Eep_Cancel shall call the error notification function defined
in EepJobErrorNotification in order to inform the caller about the cancelation
of a job. ⌋ (BSW090)

[EEP028] ⌈The function Eep_Cancel shall set the job result to
MEMIF_JOB_CANCELED if the job result currently has the value

MEMIF_JOB_PENDING. Otherwise it shall leave the job result unchanged. ⌋ (BSW090)

[EEP136] ⌈The Eep module’s user shall not call the Eep_Cancel() function during
a running Eep_MainFunction() function.

EEP136 can be achieved by one of the following scheduling configurations:

35 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

 Possibility 1: the job functions of the NVRAM manager and the EEPROM

driver are synchronized (e.g. called sequentially within one task)
 Possibility 2: the task that calls the Eep_MainFunction function cannot be

preempted by another task. ⌋ ()

Note: The states and data of the affected EEPROM cells will be undefined when
canceling an ongoing write or erase job with the function Eep_Cancel.

Only the NVRAM Manager is authorized to use the function Eep_Cancel.

Canceling any job on-going with the service Eep_Cancel in an external EEPROM
device might set this one in a blocking state.

8.3.8 Eep_GetStatus

[EEP150] ⌈

Service name: Eep_GetStatus
Syntax: MemIf_StatusType Eep_GetStatus(

 void
)

Service ID[hex]: 0x07
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): None
Parameters
(inout):

None

Parameters (out): None
Return value: MemIf_StatusType See document [3]
Description: Returns the EEPROM status.

⌋ ()

[EEP029] ⌈The function Eep_GetStatus shall return the EEPROM status

synchronously. ⌋ (BSW157, BSW091)

8.3.9 Eep_GetJobResult

[EEP151] ⌈

Service name: Eep_GetJobResult
Syntax: MemIf_JobResultType Eep_GetJobResult(

 void
)

Service ID[hex]: 0x08
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): None
Parameters
(inout):

None

Parameters (out): None

36 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

Return value: MemIf_JobResultType See document [3]
Description: This service returns the result of the last job.

⌋ ()

[EEP024] ⌈The function Eep_GetJobResult shall synchronously return the result of

the last job that has been accepted by the Eep module. ⌋ (BSW157)

The services read/write/compare/erase share the same job status. Only the result of
the last accepted job can be queried. Every new job that has been accepted by the
EEPROM driver overwrites the job result with MEMIF_JOB_PENDING.

8.3.10 Eep_GetVersionInfo

[EEP152] ⌈

Service name: Eep_GetVersionInfo
Syntax: void Eep_GetVersionInfo(

 Std_VersionInfoType* versioninfo
)

Service ID[hex]: 0x0a
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): None
Parameters
(inout):

None

Parameters (out): versioninfo Pointer to where to store the version information of this module.
Return value: None
Description: Service to get the version information of this module.

⌋ ()

[EEP239] ⌈If development error detection for the module Eep is enabled, and if the
function Eep_GetVersionInfo is called with a NULL Pointer, the function
Eep_GetVersionInfo shall raise the development error EEP_E_PARAM_POINTER and

return without any action. ⌋ ()

[EEP107] ⌈The function Eep_GetVersionInfo shall return the version information of
this module. The version information includes:

- Module Id
- Vendor Id
- Vendor specific version numbers (BSW00407). ⌋ (BSW00407)

[EEP135] ⌈If source code for caller and callee of the function Eep_GetVersionInfo is
available, the Eep module should realize this function as a macro. The Eep module

should define this macro in the module’s header file. ⌋ ()

37 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

[EEP108] ⌈The function Eep_GetVersionInfo shall be pre compile time configurable

On/Off by the configuration parameter: EepVersionInfoApi. ⌋ (BSW00407,

BSW00411)

8.4 Callback notifications

This chapter lists all functions provided by the Eep module to lower layer modules.

The EEPROM Driver is specified for either an internal microcontroller peripheral or
an SPI external device. In the first case, the module belongs to the lowest layer of
AUTOSAR Software Architecture hence this module specification has not identified
any callback functions. In the second case, the module belongs to the ECU
abstraction layer of AUTOSAR Software Architecture hence this module should
provide callback notifications according to the SPI Handler/Driver specification
requirements but those can not be specified here because they depend on module
detailed design. That means, they depend on number of SPI Jobs and SPI
Sequences that will be used.

[EEP137] ⌈In case the Eep module support an SPI external device, the Eep module
shall provide additional callback notifications according to the SPI Handler/Driver

specification requirements ⌋ ()

8.5 Scheduled functions

This chapter lists all functions provided by the Eep module and called directly by the
Basic Software Module Scheduler.

8.5.1 Eep_MainFunction

[EEP153] ⌈

Service name: Eep_MainFunction
Syntax: void Eep_MainFunction(

 void
)

Service ID[hex]: 0x09
Timing: FIXED_CYCLIC
Description: Service to perform the processing of the EEPROM jobs

(read/write/erase/compare) .

⌋ ()

[EEP030] ⌈The function Eep_MainFunction shall perform the processing of the
EEPROM read, write, erase and compare jobs. ⌋ (BSW12047)

[EEP031] ⌈When a job has been initiated, the Eep’s user shall call the function
Eep_MainFunction cyclically until the job is finished. ⌋ ()

38 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver

- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

Note: The function Eep_MainFunction may also be called cyclically if no job is
currently pending.

[EEP084] ⌈The configuration parameter EepJobCallCycle (see EEP170_Conf)
shall be used for internal timing of the EEPROM driver (deadline monitoring, write
and erase timing etc.) if needed by the implementation and/or the underlying

hardware. ⌋ ()

[EEP032] ⌈The function Eep_MainFunction shall return without action if no job is

pending. ⌋ (BSW12047)

[EEP204] ⌈The function Eep_MainFunction shall set the job result to
MEMIF_JOB_FAILED and report the error code EEP_E_ERASE_FAILED to the DEM
if an EEPROM erase job fails due to a hardware error. ⌋ ()

[EEP205] ⌈The function Eep_MainFunction shall set the job result to
MEMIF_JOB_FAILED and report the error code EEP_E_WRITE_FAILED to the DEM
if an EEPROM write job fails due to a hardware error. ⌋ ()

[EEP206] ⌈The function Eep_MainFunction shall set the job result to
MEMIF_JOB_FAILED and report the error code EEP_E_READ_FAILED to the DEM if
an EEPROM read job fails due to a hardware error. ⌋ ()

[EEP207] ⌈The function Eep_MainFunction shall set the job result to
MEMIF_JOB_FAILED and report the error code EEP_E_COMPARE_FAILED to the
DEM if an EEPROM compare job fails due to a hardware error. ⌋ ()

[EEP235] ⌈If development error detection for the module Eep is enabled, the function
Eep_MainFunction shall provide a timeout monitoring for the currently running job.
That is it shall supervise the deadline of the read / compare / erase or write job. ⌋ ()

[EEP236] ⌈If development error detection for the module Eep is enabled, the function
Eep_MainFunction shall check whether the configured maximum erase time (see
EEP178_Conf EepEraseTime) has been exceeded. If this is the case, the function
Eep_MainFunction shall raise the development error EEP_E_TIMEOUT. ⌋ ()

[EEP237] ⌈If development error detection for the module Eep is enabled, the function
Eep_MainFunction shall check whether the expected maximum write time (see
note below) has been exceeded. If this is the case, the function Eep_MainFunction
shall raise the development error EEP_E_TIMEOUT. ⌋ ()

Note: The expected maximum write time depends on the current mode of the Eep
module (see EEP144), the configured number of bytes to write in this mode (see
EEP174_Conf and EEP169_Conf respectively), the size of a EEPROM write data
unit (see EEP186_Conf) and last the maximum time to write one data unit (see
EEP185_Conf). The number of bytes to write divided by the size of one EEPROM

39 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

data unit yields the number of data units to write in one cycle. This multiplied with the
maximum write time for one EEPROM data unit gives the expected maximum write
time.

[EEP238] ⌈If development error detection for the module Eep is enabled, the function
Eep_MainFunction shall check whether the expected maximum read / compare
time (see note below) has been exceeded. If this is the case, the function

Eep_MainFunction shall raise the development error EEP_E_TIMEOUT. ⌋ ()

Note: There are currently no published parameters standardized for read / compare
timings; these are difficult to standardize as they mostly depend on whether the
EEPROM device is internal or external e.g. connected via SPI. Depending on the
exact configuration being used, the implementation may use vendor-specific
parameters similar as described for write jobs above. The configured number of bytes
to read (and to compare) is coupled to the expected read / compare times which
should be supervised by the Eep_MainFunction.

8.6 Expected Interfaces

This chapter lists all functions the Eep module requires from other modules.

8.6.1 Mandatory Interfaces

This chapter defines all interfaces which are required to fulfill the core functionality of
the module.

[EEP154] ⌈

API function Description
Dem_ReportErrorStatus Queues the reported events from the BSW modules (API is only used by

BSW modules). The interface has an asynchronous behavior, because
the processing of the event is done within the Dem main function.

⌋ ()

8.6.2 Optional Interfaces

This chapter defines all interfaces which are required to fulfill an optional functionality
of EEPROM Driver module.

[EEP155] ⌈

API function Description
Det_ReportError Service to report development errors.

⌋ ()

40 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

8.6.3 Configurable interfaces

In this chapter all interfaces are listed where the target function could be configured.
The target function is usually a call-back function. The name of these interfaces is not
fixed because they are configurable.

[EEP047] ⌈If a callback function is being configured at post build time, the
initialization data structure Eep_ConfigType shall contain a corresponding function

pointer. ⌋ (BSW12056, BSW157)

[EEP049] ⌈Notification callback functions are configurable through their
corresponding configuration parameters. If no callback function is configured, there

shall be no asynchronous notification. ⌋ (BSW12056)

Note: The EEP implementation needs to be able to cope with the use case that post
build configuration does not specify a callback, in case no notification is required.
This may internally be realized by setting the callback function pointer in the
initialization data structure to null.

8.6.3.1 End Job Notification

[EEP045] ⌈The Eep module shall call the callback function defined in the
configuration parameter EepJobEndNotification when a job has been completed with
a positive result:

 Read finished & OK
 Write finished & OK
 Erase finished & OK

 Compare finished & data blocks are equal⌋ (BSW157)

[EEP157] ⌈

Service name: Eep_JobEndNotification
Syntax: void Eep_JobEndNotification(

 void
)

Sync/Async: Synchronous
Reentrancy: Don't care
Parameters (in): None
Parameters
(inout):

None

Parameters (out): None
Return value: None
Description: This callback function provided by the module user is called when a job has been

completed with a positive result.

⌋ ()

41 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

[EEP126] ⌈The callback function defined in the configuration parameter

EepJobEndNotification shall be callable on interrupt level. ⌋ ()

8.6.3.2 Error Job Notification

[EEP046] ⌈The Eep module shall call the callback function defined in the
configuration parameter EepJobErrorNotification when a job has been canceled or
aborted with negative result:

 Read aborted
 Write aborted or failed
 Erase aborted or failed

 Compare aborted or data blocks are not equal. ⌋ (BSW157)

[EEP158] ⌈

Service name: Eep_JobErrorNotification
Syntax: void Eep_JobErrorNotification(

 void
)

Sync/Async: Synchronous
Reentrancy: Don't care
Parameters (in): None
Parameters
(inout):

None

Parameters (out): None
Return value: None
Description: This callback function provided by the module user is called when a job has been

canceled or finished with negative result.

⌋ ()

[EEP127] ⌈The callback function defined in the configuration parameter

EepJobErrorNotification shall be callable on interrupt level. ⌋ ()

42 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

9 Sequence diagrams

9.1 Initialization

«module»

EcuM

«module»

Eep

Eep_Init(const
Eep_ConfigType*)

Eep_Init()

Figure 2

9.2 Read/write/erase/compare

The following sequence diagram shows the write function as an example. The
sequence for read, compare and erase is the same, only the processed block sizes
may vary.

43 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

«module»

NvM

«module»

Eep

BSW Task (OS task
or cyclic call)

«module»

Ea

Description:

Check and store job data.
Set EEPROM state to
MEMIF_BUSY.
Set job result to
MEMIF_JOB_PENDING

Ea_Write(Std_ReturnType, uint16,
uint8*)

Eep_Write(Std_ReturnType,
Eep_AddressType, const uint8*,
Eep_LengthType)

Eep_Write()
Ea_Write()

Eep_MainFunction()

Description:

Job processing (writing to
EEPROM) is done
asynchronously.

Data unit by data unit is
written to EEPROM (e.g. 1
byte every 10 ms, both
depending on EEPROM
hardware).

Eep_MainFunction()

Eep_MainFunction()

Eep_MainFunction()

Eep_MainFunction()

Eep_MainFunction()

Eep_MainFunction()

Description:

Writing of data unit n
completed.
Set EEPROM state to
MEMIF_IDLE.
Set job result to
MEMIF_JOB_OK
Call Job End Notification (if
configured)

Ea_JobEndNotification()

NvM_JobEndNotification()

NvM_JobEndNotification()

Ea_JobEndNotification()

Eep_MainFunction()

Figure 3

44 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

9.3 Cancelation of a running job

«module»

NvM

«module»

Eep

«module»

Ea

Description:

A read/write/erase/compare job is running
EEPROM state = MEMIF_BUSY
Job result = MEMIF_JOB_PENDING

Ea_Cancel()

Eep_Cancel()
Description:

The running job is canceled.
The canceling is performed synchronously.
EEPROM state = MEMIF_IDLE
Job result = MEMIF_JOB_CANCELED

Eep_Cancel()

Ea_Cancel()

Ea_Write(Std_ReturnType, uint16, Eep_Write(Std_ReturnType,
uint8*) Eep_AddressType, const uint8*,

Eep_LengthType)

Description:

On return from Eep_Cancel(), a new job (e.g.
writing crash data) can be started

Eep_Write()

Ea_Write()

Figure 4

45 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

10 Configuration specification

10.1 How to read this chapter

In addition to this section, it is highly recommended to read the documents:

- AUTOSAR Layered Software Architecture [1]
- AUTOSAR ECU Configuration Specification [5]

This document describes the AUTOSAR configuration methodology and the
AUTOSAR configuration metamodel in detail.

The following is only a short survey of the topic and it will not replace the ECU
Configuration Specification document.

10.1.1 Configuration and configuration parameters

Configuration parameters define the variability of the generic part(s) of an
implementation of a module. This means that only generic or configurable module
implementation can be adapted to the environment (software/hardware) in use during
system and/or ECU configuration.

The configuration of parameters can be achieved at different times during the
software process: before compile time, before link time or after build time. In the
following, the term “configuration class” (of a parameter) is used in order to refer to a
specific configuration point in time.

10.1.2 Containers

Containers structure the set of configuration parameters. This means:
- all configuration parameters are kept in containers.
- (sub-) containers can reference (sub-) containers. It is possible to assign a

multiplicity to these references. The multiplicity then defines the possible
number of instances of the contained parameters.

10.1.3 Specification template for configuration parameters

The following tables consist of three sections:
- the general section
- the configuration parameter section
- the section of included/referenced containers

Pre-compile time - specifies whether the configuration parameter is of

configuration class Pre-compile time or not

Label Description
x The configuration parameter is of configuration class Pre-compile time.
-- The configuration parameter is never of configuration class Pre-compile time.

46 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

Link time - specifies whether the configuration parameter is of

configuration class Link time or not

Label Description
x The configuration parameter is of configuration class Link time.
-- The configuration parameter is never of configuration class Link time.

Post Build - specifies whether the configuration parameter is of

configuration class Post Build or not

Label Description

x
The configuration parameter is of configuration class Post Build and no specific
implementation is required.

L
Loadable - the configuration parameter is of configuration class Post Build and only one
configuration parameter set resides in the ECU.

M
Multiple - the configuration parameter is of configuration class Post Build and is selected
out of a set of multiple parameters by passing a dedicated pointer to the init function of the
module.

-- The configuration parameter is never of configuration class Post Build.

47 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed
meanings of the parameters are described in Chapter 7 and Chapter 8. Further
hardware / implementation specific parameters can be added if necessary.

10.2.1 Variants

[EEP109] ⌈VARIANT-PRE-COMPILE
Only parameters with “Pre-compile time” configuration are allowed in this

variant. ⌋ (BSW00396, BSW00397)

[EEP110] ⌈VARIANT-POST-BUILD
Parameters with “Pre-compile time”, “Link time” and “Post-build time” are

allowed in this variant. ⌋ (BSW00404, BSW00396, BSW00398)

10.2.2 Eep

Module Name Eep

Module Description

Configuration of the Eep (internal or external
EEPROM driver) module.
Its multiplicity describes the number of EEPROM
drivers present, so there will be one container for each
EEPROM driver in the ECUC template. When no
EEPROM driver is present then the multiplicity is 0.

Included Containers
Container Name Multiplicity Scope / Dependency

EepGeneral 1
Container for general configuration parameters of the EEPROM
driver. These parameters are always pre-compile.

EepInitConfiguration 1
Container for runtime configuration parameters of the EEPROM
driver. Implementation Type: Eep_ConfigType.

EepPublishedInformatio
n

1

Additional published parameters not covered by
CommonPublishedInformation container. Note that these
parameters do not have any configuration class setting, since they
are published information.

10.2.3 EepGeneral

SWS Item EEP085_Conf :
Container Name EepGeneral{EepGeneralConfiguration}

Description
Container for general configuration parameters of the EEPROM driver. These
parameters are always pre-compile.

Configuration Parameters

SWS Item EEP188_Conf :
N ame EepDevErrorDetect {EEP_DEV_ERROR_DETECT}

48 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

Description Pre-processor switch to enable and disable development error

detection. true: Development error detection enabled. false:
Development error detection disabled.

Multiplicity 1
Type EcucBooleanParamDef
Default value true

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

SWS Item EEP189_Conf :
N ame EepDriverIndex
Description Index of the driver, used by EA.
Multiplicity 1
Type EcucIntegerParamDef (Symbolic Name generated for

this parameter)
Range 0 .. 254
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

SWS Item EEP163_Conf :
N ame EepUseInterrupts {EEP_USE_INTERRUPTS}
Description Switches to activate or deactivate interrupt controlled job

processing. true: Interrupt controlled job processing
enabled. false: Interrupt controlled job processing disabled.

Multiplicity 1
Type EcucBooleanParamDef
Default value false

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

dependency: Usually, this is only supported by some
internal EEPROM peripherals.

SWS Item EEP164_Conf :
N ame EepVersionInfoApi {EEP_VERSION_INFO_API}
Description Pre-processor switch to enable / disable the API to read out

the modules version information. true: Version info API
enabled. false: Version info API disabled.

Multiplicity 1
Type EcucBooleanParamDef
Default value false

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

SWS Item EEP165_Conf :
N ame EepWriteCycleReduction {EEP_WRITE_CYCLE_REDUCTION}
Description Switches to activate or deactivate write cycle reduction (EEPROM

value is read and compared before being overwritten). true: Write
49 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver

- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

cycle reduction enabled. false: Write cycle reduction disabled.

Multiplicity 1
Type EcucBooleanParamDef
Default value false

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

No Included Containers

10.2.4 EepInitConfiguration

SWS Item EEP039_Conf :
Container Name EepInitConfiguration{EepInitConfiguration} [Multi Config Container]

Description
Container for runtime configuration parameters of the EEPROM driver.
Implementation Type: Eep_ConfigType.

Configuration Parameters

SWS Item EEP166_Conf :
N ame EepBaseAddress {EEP_BASE_ADDRESS}
Description This parameter is the EEPROM device base address.

Implementation Type: Eep_AddressType.
Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 4294967295

-- Default value
Pre-compile time X VARIANT-PRE-

COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
scope: module Scope / Dependency

SWS Item EEP167_Conf :
N EepDefaultMode {EEP_DEFAULT_MODE} ame

This parameter is the default EEPROM device mode after
initialization. Implementation Type: MemIf_ModeType.

Description

Multiplicity 1
EcucEnumerationParamDef Type
MEMIF_MODE_FAST The driver is working

in fast mode (fast read
access / SPI burst
access).

Range

MEMIF_MODE_SLOW The driver is working
in slow mode.
(default)

Pre-compile time X VARIANT-PRE-
COMPILE

Link time --

ConfigurationClass

Post-build time X VARIANT-POST-
BUILD

Scope / Dependency scope: module

50 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver

- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

SWS Item EEP168_Conf :
N ame EepFastReadBlockSize {EEP_FAST_READ_BLOCK_SIZE}
Description Number of bytes read within one job processing cycle in fast

mode. If the hardware does not support burst mode this
parameter shall be set to the same value as
EepNormalReadBlockSize. Implementation Type:
Eep_LengthType.

Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 4294967295
Default value --

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: module

SWS Item EEP169_Conf :
N ame EepFastWriteBlockSize {EEP_FAST_WRITE_BLOCK_SIZE}
Description Number of bytes written within one job processing cycle in fast

mode. If the hardware does not support burst mode this parameter
shall be set to the same value as EepNormalWriteBlockSize.
Implementation Type: Eep_LengthType.

Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 4294967295
Default value --

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: module

dependency: This parameter is optional and only available if the
hardware allows writing several bytes in one step (e.g. external
EEPROMs with burst mode capability).

SWS Item EEP170_Conf :

EepJobCallCycle {EEP_JOB_CALL_CYCLE} N ame
Description Call cycle time of the EEPROM driver's main function. Unit:

[s]
0..1 Multiplicity

Type EcucFloatParamDef
Range 0 .. INF

-- Default value
Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: module

SWS Item EEP171_Conf :
Name EepJobEndNotification {EEP_JOB_END_NOTIFICATION}
Description This parameter is a reference to a callback function for positive

job result (see EEP045).
Multiplicity 0..1
Type EcucFunctionNameDef
Default value --

-- maxLength
minLength --

51 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

-- regularExpression

X VARIANT-PRE-COMPILE Pre-compile time
Link time --

ConfigurationClass

X VARIANT-POST-BUILD Post-build time
scope: module Scope / Dependency

EEP172_Conf : SWS Item
EepJobErrorNotification {EEP_JOB_ERROR_NOTIFICATION} N ame
This parameter is a reference to a callback function for negative job
result (see EEP046).

Description

0..1 Multiplicity
EcucFunctionNameDef Type
-- Default value
-- maxLength
-- minLength
-- regularExpression

X VARIANT-PRE-COMPILE Pre-compile time
Link time --

ConfigurationClass

X VARIANT-POST-BUILD Post-build time
scope: module Scope / Dependency

EEP173_Conf : SWS Item
EepNormalReadBlockSize {EEP_NORMAL_READ_BLOCK_SIZE} N ame
Number of bytes read within one job processing cycle in normal
mode. Implementation Type: Eep_LengthType.

Description

1 Multiplicity
EcucIntegerParamDef Type
0 .. 4294967295 Range
-- Default value

X VARIANT-PRE-COMPILE Pre-compile time
Link time --

ConfigurationClass

X VARIANT-POST-BUILD Post-build time
scope: module Scope / Dependency

EEP174_Conf : SWS Item
EepNormalWriteBlockSize {EEP_NORMAL_WRITE_BLOCK_SIZE} N ame
Number of bytes written within one job processing cycle in normal
mode. Implementation Type: Eep_LengthType.

Description

1 Multiplicity
EcucIntegerParamDef Type
0 .. 4294967295 Range
-- Default value

X VARIANT-PRE-COMPILE Pre-compile time
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
scope: module
dependency: This parameter is optional and only available if the
hardware allows configuration.

Scope / Dependency

SWS Item EEP175_Conf :
N EepSize {EEP_SIZE} ame

This parameter is the used size of EEPROM device in
bytes. Implementation Type: Eep_LengthType.

Description

1 Multiplicity
Type EcucIntegerParamDef

52 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

0 .. 4294967295 Range
-- Default value

X VARIANT-PRE-
COMPILE

Pre-compile time

-- Link time

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: module

Included Containers
Container Name MultiplicityScope / Dependency

EepDemEventParameterRef
s

0..1

Container for the references to DemEventParameter elements
which shall be invoked using the API Dem_ReportErrorStatus
API in case the corresponding error occurs. The EventId is
taken from the referenced DemEventParameter's DemEventId
value. The standardized errors are provided in the container
and can be extended by vendor specific error references.

EepExternalDriver 0..1
This container is present for external EEPROM drivers only.
Internal EEPROM drivers do not use the parameter listed in
this container, hence its multiplicity is 0 for internal drivers.

10.2.5 EepDemEventParameterRefs

SWS Item EEP200_Conf :
Container Name EepDemEventParameterRefs

Description

Container for the references to DemEventParameter elements which shall
be invoked using the API Dem_ReportErrorStatus API in case the
corresponding error occurs. The EventId is taken from the referenced
DemEventParameter's DemEventId value. The standardized errors are
provided in the container and can be extended by vendor specific error
references.

Configuration Parameters

SWS Item EEP204_Conf :
N ame EEP_E_COMPARE_FAILED
Description Reference to the DemEventParameter which shall be issued

when the error "EEPROM compare failed (HW)" has
occurred.

Multiplicity 0..1
Type Reference to [DemEventParameter]

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency

SWS Item EEP201_Conf :
N ame EEP_E_ERASE_FAILED
Description Reference to the DemEventParameter which shall be

issued when the error "EEPROM erase failed (HW)" has
occurred.

Multiplicity 0..1
Type Reference to [DemEventParameter]

Pre-compile time X VARIANT-PRE-COMPILE ConfigurationClass
Link time --

53 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

Post-build time X VARIANT-POST-BUILD

Scope / Dependency

SWS Item EEP203_Conf :
N ame EEP_E_READ_FAILED
Description Reference to the DemEventParameter which shall be

issued when the error "EEPROM read failed (HW)" has
occurred.

Multiplicity 0..1
Type Reference to [DemEventParameter]

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency

SWS Item EEP202_Conf :
N ame EEP_E_WRITE_FAILED
Description Reference to the DemEventParameter which shall be

issued when the error "EEPROM write failed (HW)" has
occurred.

Multiplicity 0..1
Type Reference to [DemEventParameter]

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency

No Included Containers

10.2.6 EepExternalDriver

SWS Item EEP190_Conf :
Container Name EepExternalDriver

Description
This container is present for external EEPROM drivers only.
Internal EEPROM drivers do not use the parameter listed in
this container, hence its multiplicity is 0 for internal drivers.

Configuration Parameters

SWS Item EEP176_Conf :
N ame EepSpiReference
Description Reference to SPI sequence (required for external

EEPROM drivers).
Multiplicity 1..*
Type Reference to [SpiSequence]

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency

No Included Containers

54 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

10.2.7 SPI specific extension

[EEP094] ⌈In case of an external SPI EEPROM device, the following parameters
shall also be located or referenced (according to the configuration methodology) in
the external data structure of type Eep_ConfigType (see EEP039_Conf). They shall
be used as API parameters for accessing the SPI Handler/Driver API services. The
symbolic names for those parameters are published in the module’s description file
(see EEP095).

 All required SPI channels
 All required SPI sequences

 All required SPI jobs ⌋ (BSW00390, BSW00391, BSW00398)

10.3 Published parameters

10.3.1 Basic subset

[EEP240] ⌈The standardized common published parameters as required by
BSW00402 in the General Requirements on Basic Software Modules [2] shall be
published within the header file of this module and need to be provided in the BSW
Module Description. The according module abbreviation can be found in the List of

Basic Software Modules [1]. ⌋ ()

Additional module-specific published parameters are listed below if applicable.

10.3.2 SPI specific extension

[EEP095] ⌈In case of an external SPI EEPROM device, the following parameters
shall be published additionally in the module’s description file (see EEP038):

 All SPI channels that are required for EEPROM access (read, write, erase)
 Those channels shall be linked to construct SPI jobs that are linked with chip

selected handling. This depends on the specific EEPROM device.
 Those jobs shall be assigned to SPI sequences to be scheduled for SPI

transfer

A complete list of required parameters is specified in the SPI Handler/Driver Software

Specification. ⌋ (BSW00390, BSW00391, BSW00402)

10.3.3 EepPublishedInformation

SWS Item EEP111_Conf :
Container Name EepPublishedInformation

Description
Additional published parameters not covered by
CommonPublishedInformation container.
Note that these parameters do not have any configuration class setting,

55 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

since they are published information.

Configuration Parameters

SWS Item EEP177_Conf :
N ame EepAllowedWriteCycles {EEP_ALLOWED_WRITE_CYCLES}
Description Specified maximum number of write cycles under worst case

conditions of specific EEPROM hardware (e.g. +90°C)
Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 4294967295
Default value --
ConfigurationClass Published Information X All Variants
Scope / Dependency scope: module

SWS Item EEP178_Conf :
N ame EepEraseTime {EEP_ERASE_TIME}
Description Maximum time for erasing one EEPROM data unit.
Multiplicity 1
Type EcucFloatParamDef
Range 0 .. INF
Default value --
ConfigurationClass Published Information X All Variants
Scope / Dependency scope: module

SWS Item EEP179_Conf :
N ame EepEraseUnitSize {EEP_ERASE_UNIT_SIZE}
Description Size of smallest erasable EEPROM data unit in bytes.
Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 4294967295
Default value --
ConfigurationClass Published Information X All Variants
Scope / Dependency scope: module

SWS Item EEP180_Conf :
N ame EepEraseValue {EEP_ERASE_VALUE}
Description Value of an erased EEPROM cell.
Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 255
Default value --
ConfigurationClass Published Information X All Variants
Scope / Dependency scope: module

SWS Item EEP181_Conf :
N ame EepMinimumAddressType {EEP_MINIMUM_ADDRESS_TYPE}
Description Minimum expected size of Eep_AddressType.
Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 4294967295
Default value --
ConfigurationClass Published Information X All Variants
Scope / Dependency scope: module

SWS Item EEP182_Conf :

56 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

N ame EepMinimumLengthType {EEP_MINIMUM_LENGTH_TYPE}
Description Minimum expected size of Eep_LengthType.
Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 4294967295
Default value --
ConfigurationClass Published Information X All Variants
Scope / Dependency scope: module

SWS Item EEP183_Conf :
N ame EepReadUnitSize {EEP_READ_UNIT_SIZE}
Description Size of smallest readable EEPROM data unit in bytes.
Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 4294967295
Default value --
ConfigurationClass Published Information X All Variants
Scope / Dependency scope: module

SWS Item EEP187_Conf :
N ame EepSpecifiedEraseCycles {EEP_SPECIFIED_ERASE_CYCLES}
Description Number of erase cycles specified for the EEP device (usually given

in the device data sheet).
Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 4294967295
Default value --
ConfigurationClass Published Information X All Variants
Scope / Dependency scope: module

SWS Item EEP184_Conf :
N ame EepTotalSize {EEP_TOTAL_SIZE}
Description Total size of EEPROM in bytes. Implementation Type:

Eep_LengthType.
Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 4294967295
Default value --
ConfigurationClass Published Information X All Variants
Scope / Dependency scope: module

SWS Item EEP185_Conf :
N ame EepWriteTime {EEP_WRITE_TIME}
Description Maximum time for writing one EEPROM data unit.
Multiplicity 1
Type EcucFloatParamDef
Range 0 .. INF
Default value --
ConfigurationClass Published Information X All Variants
Scope / Dependency scope: module

SWS Item EEP186_Conf :
N ame EepWriteUnitSize {EEP_WRITE_UNIT_SIZE}
Description Size of smallest writeable EEPROM data unit in bytes.
Multiplicity 1

57 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

Type EcucIntegerParamDef
Range 0 .. 4294967295
Default value --
ConfigurationClass Published Information X All Variants
Scope / Dependency scope: module

No Included Containers

10.4 Configuration example—external SPI EEPROM device

The following chapter shall provide a better understanding of how and where
configuration parameters are defined and used. For the following use case a detailed
implementation and configuration example is given:

Use case

 Implement and configure a driver for operating an external EEPROM device
accessed over SPI.

 Use the AUTOSAR SPI Handler/Driver, utilizing internal buffers (IB) for
command communication and external buffers (EB) for data.

 Configure and perform an SPI read command.

The example assumes a certain fixed format and order of SPI commands to read
from the external EEPROM device. The SPI API functions have been chosen for
operating this exemplary device in order to demonstrate the basic principles of SPI
bus interaction. When implementing a driver for a real-life device, the sequence of
operation will most likely differ. The detailed selection of SPI API functions and
parameters to be used and configured needs to be derived from studying the
device’s data sheet in combination with the SPI handler/driver specification.[4]

Be aware that the use of the SPI API functions is exemplary; their exact signatures
and configuration may change. The valid reference is always the current SPI SWS.

10.4.1 External SPI EEPROM device usage scenario

The following scenario is assumed in this example:

The external EEPROM device is an SPI slave device, the EEPROM driver to be
implemented uses the SPI handler/driver module for the SPI master. The external
device is addressed by a dedicated Chip Select line which will be asserted by the SPI
master whenever a job operating on the device is being executed.

The external EEPROM uses serial op-code processing: After the device is selected
with its Chip Select line going low, the first byte will be transmitted over the device’s
SI line. This byte contains an 8-bit Read-operation op-code (0x03), immediately
followed by an 8-bit address byte. Upon completion, any data on the SI line will be
ignored. The data (D7-D0) at the specified address is then shifted out onto the SO
line. If only one byte is to be read, the CS line shall be driven high after the data

58 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

comes out, otherwise the read sequence will be continued, with the address being
automatically incremented and data shifted out on consecutive data.

Whenever the EEPROM driver’s user wants to read data, the EEPROM driver
forwards the read request to the SPI handler/driver via a number of selected SPI API
calls. In order to follow the request/response behavior described above, the SPI
needs to be configured exactly to fit the expected communication protocol. Therefore,
an important development task consists in correctly configuring the SPI driver for
communication with the external EEPROM device. Based on this configuration, the
actual implementation of the EEPROM driver uses the SPI API functions in
combination with the configured handle IDs for assigning jobs to the SPI
handler/driver:

The EEPROM driver implementation may use a combination of external and internal
SPI buffers for achieving the communication with the SPI handler:

Upon reception of an Eep_Read() request, the EEPROM driver writes the EEPROM
source address in an SPI-channel internal buffer using Spi_WriteIB(). Next, it sets up
an SPI external buffer specifying the requested number of bytes to be read using
Spi_SetupEB(). It then calls Spi_AsyncTransmit() in order to initiate an SPI sequence
EepReadSequence configured to match exactly the hardware access protocol
outlined above.

Once the SPI read sequence has finished, the SPI handler/driver notifies the
EEPROM driver by calling Spi_ SeqEndNotification. The driver can now safely
access the EEPROM data through the assigned external buffer and in turn finish the
EEPROM read job.

10.4.2 Configuration of SPI parameters

In order to use the SPI handler/driver, the EEPROM driver implementer needs to
create an SPI configuration, containing a complete set of SPI configuration
containers such that the required functionality is configured.

Following a top-down view, an SpiSequence EepReadSequence configuration
container handles one complete read sequence. EepReadSequence in turn uses an
SpiJob EepReadJob for handling the details of a read job. This includes a reference
to an SpiExternalDevice representing the EEPROM device with its specified Chip
Select line as well as logic level characteristics like e.g. Baud Rate, Polarity or
DataShiftEdge.

EepReadJob is further broken down into an ordered list of SpiChannels which when
executed in order will perform the required SPI bus communication with the external
device:

1) EepChCommand is used for sending the ReadCommand byte, using a default
data constant for the read op-code.

2) EepChAddress is used for sending the device read address utilizing an
internal buffer.

59 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

3) EepChReadData is used for reading the requested EEPROM data into an

externally (to SPI) provided buffer.

Roughly, the work flow of configuring the SPI module for an EEPROM read
command contains the following steps:

1. In the EcuConfiguration for Spi, create a container EepDriver of type SpiDriver

representing the external EEPROM driver. It will hold sub containers of type
SpiExternalDevice, SpiChannel, SpiJob and SpiSequence to be created in the
steps below.

2. Look up the external device’s SPI characteristics in its data sheet and set up a
container EepDevice of type SpiExternalDevice accordingly. Specify the Chip
Select line to be used in EepDevice.

3. Look up the details of the SPI read command sequence in the device’s data
sheet.

4. Within EepDriver, define one SpiChannel each for transmitting the Read
command opcode, the EEPROM source address and for receiving the data
transmitted by the device in response to the request, e.g.

a. EepChCommand
b. EepChAddress
c. EepChReadData

5. Define SPI Channel attributes for each channel based on the communication
sequence described in the device data sheet. In particular, configure buffers, i.e
EepChAddress to use an internal buffer and EepChReadData to use an external
buffer. For the fixed read-command opcode, SpiDefaultData can be used.

6. Define the SpiJob EepReadJob and set it up to work on EepDevice. Specify the
ordered list of SpiJobs to be executed for performing the read job. In this
example, the job consists of the channel list EepChCommand, EepChAddress,
EepChReadData.

7. Define the SpiSequence EepReadSequence containing the list of SpiJobs
required to perform the desired functionality. In this example, EepReadSequence
contains only one job, EepReadJob. Fill in the callback function symbols to be
provided by the EEPROM driver, e.g. Eep_ReadSequenceEndNotification.

8. Publish all defined attributes for SPI usage in the EEPROM driver as an XML
description file according to SPI SWS.

10.4.3 Generation of SPI configuration data

As part of the SPI configuration described above, each SpiSequence, SpiJob and
SpiChannel has been assigned a handle ID. Based on the XML file, an SPI include
file will be generated which publishes this information. The EEPROM driver is given
access to these parameters by the means of C-defines contained in the configuration
header file Spi_cfg.h:

#define Spi_EepReadSequence 10
#define Spi_EepReadJob 20
#define Spi_EepChCommand 31
#define Spi_EepChAddress 32
#define Spi_EepChReadData 33

60 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

The EEPROM driver should not directly include Spi_Cfg.h; it should rather include
Spi.h, which in turn includes Spi_Cfg.

10.4.4 SPI API usage

Upon receiving an Eep_Read() request, the EEPROM driver first needs to transfer
the necessary information for executing the read command to the SPI handler/driver.
It uses the Spi_WriteIB() function to set the device read address in the internal buffer
allocated to the EepChAddress channel:

Spi_WriteIB(Spi_EepChAddress, &EepromAddress);

Next, the external buffer is set up for reading the EEPROM device data to:

Spi_SetupEB(Spi_EepChReadData, NULL, buf_data, length);

Finally, the Read sequence is initiated by calling Spi_AsyncTransmit:

Spi_AsyncTransmit(Spi_EepReadSequence);

After initiating the transfer, Eep_Read() returns.

The rest of the transfer is autonomously handled by the SPI handler/driver. Once the
SPI sequence has finished, the SPI handler will notify the EEPROM driver using the
callback Spi_SeqEndNotification. The EEPROM driver main function should ensure
that either the sequence has finished successfully and in turn finish up the
Eep_Read() request accordingly by signaling EepJobEndNotification; or upon
reception of an error it should trigger an EepJobErrorNotification and report
an EEP_E_READ_FAILED production error to the DEM.

61 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

11 Changes in Release 4.0

11.1 Deleted SWS Items

SWS Item Rationale

EEP035
Changed into note as it was a requirement on the specification instead of
the implementation

EEP099 Redundant to EEP038

11.2 Replaced SWS Items

11.3 Changed SWS Items

SWS Item Rationale
EEP001 Rephrased requirement according to current version of SWS template
EEP003 Made hidden text visible
EEP027 Split second part of requirement into EEP216 to make them atomic

EEP028
Changed MEMIF_JOB_CANCELLED to MEMIF_JOB_CANCELED (use
American English spelling)

EEP030
Removed dependency of operation on “hardware ready” requirement.
Made hidden text visible

EEP036 Added note clarifying error handling
EEP047 Clarified optional callback notifications
EEP049 Clarified optional callback notifications
EEP053 Clarified the term “normal mode” by changing it to “normal SPI mode”
EEP056 Error handling consistency with Flash driver
EEP058 Split requirement into EEP058, EEP219, EEP220, EEP221
EEP068 Split requirement into EEP068, EEP222, EEP223, EEP224
EEP073 Clarified the term “burst mode” by changing it to “burst SPI mode”
EEP102 Added additional include requirements to EEP implementation
EEP106 Rephrased requirement according to current version of SWS template
EEP110 VARIANT-LINK-TIME changed to VARIANT-POST-BUILD
EEP113 For clarification of EepAddressType usage, split into EEP113 and EEP217

EEP128
Added a reference to configuration parameter definition EEP163_Conf.
Made hidden text visible

EEP144 Replaced MEMIF_MODE_NORMAL by MEMIF_MODE_SLOW
EEP157 Updated signature of Eep_JobEndNotification
EEP158 Updated signature of Eep_JobErrorNotification
EEP226 Clarified range of Eep_AddresType

11.4 Added SWS Items

SWS Item Rationale
EEP200 Error handling consistency with Flash driver
EEP201 Error handling consistency with Flash driver
EEP202 Error handling consistency with Flash driver
EEP203 Error handling consistency with Flash driver
EEP204 Error handling consistency with Flash driver
EEP205 Error handling consistency with Flash driver
EEP206 Error handling consistency with Flash driver
EEP207 Error handling consistency with Flash driver
EEP208 Support for Debugging

62 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

EEP209 Support for Debugging
EEP210 Support for Debugging
EEP211 Support for Debugging
EEP212 Support for Debugging
EEP213 Support for Debugging
EEP214 Support for Debugging
EEP215 Improved description of Eep_Cancel behavior
EEP216 Make SWS items atomic
EEP217 Clarify usage of Eep_AddressType
EEP218 Make SWS items atomic
EEP219 Make SWS item EEP058 atomic (write job)
EEP220 Make SWS item EEP058 atomic (erase job)
EEP221 Make SWS item EEP058 atomic (compare job)
EEP222 Make SWS item EEP068 atomic (write job)
EEP223 Make SWS item EEP068 atomic (erase job)
EEP224 Make SWS item EEP068 atomic (compare job)
EEP225 Added SWS item for Eep_ConfigType
EEP226 Added SWS item for Eep_AddressType
EEP227 Added SWS item for Eep_LengthType
EEP228 Added file structure existence requirement for Eep_Irq.c
EEP229 Added file structure include requirements for Eep.h
EEP230 Added file structure include requirements regarding Spi.h
EEP231 Added file structure include requirements for Eep_Irq.c
EEP232 Added file structure include requirements for Eep_Lcfg.c
EEP233 Added file structure include requirements for Eep_PBcfg.c
EEP200_Conf EepDemEventParameterRefs
EEP201_Conf EEP_E_ERASE_FAILED
EEP202_Conf EEP_E_WRITE_FAILED
EEP203_Conf EEP_E_READ_FAILED
EEP204_Conf EEP_E_COMPARE_FAILED
EEP240 Rework of Published Information

63 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

Specification of EEPROM Driver
V3.2.0

R4.0 Rev 3

12 Not applicable requirements
[EEP241] ⌈ These requirements are not applicable to this specification.⌋ (BSW170,
BSW00399, BSW00400, BSW00375, BSW00416, BSW168, BSW00423, BSW00424, BSW00426,
BSW00427, BSW00428, BSW00429, BSW00431, BSW00432, BSW00433, BSW00434, BSW00336,
BSW00422, BSW00420, BSW00417, BSW161, BSW162, BSW00324, BSW005, BSW164,
BSW00325, BSW00326, BSW00342, BSW00343, BSW007, BSW00413, BSW00347, BSW00307,
BSW00301, BSW00302, BSW00328, BSW00312, BSW006, BSW00355, BSW00378, BSW00306,
BSW00308, BSW00309, BSW00330, BSW00331, BSW009, BSW00401, BSW172, BSW010,
BSW00341, BSW00334, BSW12267, BSW12163, BSW12068, BSW12069, BSW12063, BSW12129,

BSW12067, BSW12077, BSW12078, BSW12092, BSW12265)

64 of 64 Document ID 021: AUTOSAR_SWS_EEPROMDriver
- AUTOSAR confidential -

	1 Introduction and functional overview
	2 Acronyms and abbreviations
	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains
	4.3 Applicability to safety related environments

	5 Dependencies to other modules
	5.1 File structure

	6 Requirements traceability
	7 Functional specification
	7.1 General behavior
	7.2 Error classification
	7.3 Error detection
	7.3.1 API parameter checking
	7.3.2 EEPROM state checking
	7.3.3 EEPROM job encounters Hardware Failure
	7.3.4 Timeout Supervision

	7.4 Error notification
	7.5 Processing of jobs – general requirements
	7.6 Processing of read jobs
	7.7 Processing of write jobs
	7.8 Processing of erase jobs
	7.9 Processing of compare jobs
	7.10 Version check
	7.11 Support for Debugging

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 Eep_ConfigType
	8.2.2 Eep_AddressType
	8.2.3 Eep_LengthType

	8.3 Function definitions
	8.3.1 Eep_Init
	8.3.2 Eep_SetMode
	8.3.3 Eep_Read
	8.3.4 Eep_Write
	8.3.5 Eep_Erase
	8.3.6 Eep_Compare
	8.3.7 Eep_Cancel
	8.3.8 Eep_GetStatus
	8.3.9 Eep_GetJobResult
	8.3.10 Eep_GetVersionInfo

	8.4 Callback notifications
	8.5 Scheduled functions
	8.5.1 Eep_MainFunction

	8.6 Expected Interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.3 Configurable interfaces

	9 Sequence diagrams
	9.1 Initialization
	9.2 Read/write/erase/compare
	9.3 Cancelation of a running job

	10 Configuration specification
	10.1 How to read this chapter
	10.1.1 Configuration and configuration parameters
	10.1.2 Containers
	10.1.3 Specification template for configuration parameters

	10.2 Containers and configuration parameters
	10.2.1 Variants
	10.2.2
Eep
	10.2.3
EepGeneral
	10.2.4
EepInitConfiguration
	10.2.5
EepDemEventParameterRefs
	10.2.6
EepExternalDriver
	10.2.7
SPI specific extension

	10.3 Published parameters
	10.3.1 Basic subset
	10.3.2 SPI specific extension
	10.3.3
EepPublishedInformation

	10.4 Configuration example—external SPI EEPROM device
	10.4.1 External SPI EEPROM device usage scenario
	10.4.2 Configuration of SPI parameters
	10.4.3 Generation of SPI configuration data
	10.4.4 SPI API usage

	11 Changes in Release 4.0
	11.1 Deleted SWS Items
	11.2 Replaced SWS Items
	11.3 Changed SWS Items
	11.4 Added SWS Items

	12 Not applicable requirements

