
Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

Document Title Specification of EEPROM
Abstraction

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 287
Document Classification Standard

Document Version 2.0.0
Document Status Final
Part of Release 4.0
Revision 3

Document Change History
Date Version Changed by Change Description
03.11.2011 2.0.0 AUTOSAR

Administration
 Introduced parameter checks and

corresponding DET errors
 Handling of internal management

operations detailed
 Module short name changed

13.10.2010 1.4.0 AUTOSAR
Administration

 Check fpr NULL pointer added
 Inter module checks detailed
 Description of return values clarified

03.12.2009 1.3.0 AUTOSAR
Administration

 Configuration variants clarified
 Multiplicity of notification routines

corected
 Job result handling re-formulated
 File include structure changed
 Legal disclaimer revised

23.06.2008 1.2.1 AUTOSAR
Administration

 Legal disclaimer revised

10.12.2007 1.2.0 AUTOSAR
Administration

 EA_MAXIMUM_BLOCKING_TIME as
published parameter

 Small reformulations resulting from table
generation

 Tables in chapters 8 and 10 generated
from UML model

 Document meta information extended
 Small layout adaptations made

14.02.2007 1.1.0 AUTOSAR
Administration

 File include structure updated
 API of initialization function adapted
 Range of EA block numbers adapted
 Legal disclaimer revised
 Release Notes added
 “Advice for users” revised
 “Revision Information” added

1 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

Document Change History
Date Version Changed by Change Description
23.03.2006 1.0.0 AUTOSAR

Administration
Initial release

2 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

Disclaimer

This specification and the material contained in it, as released by AUTOSAR is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only.
For any other purpose, no part of the specification may be utilized or reproduced, in
any form or by any means, without permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR Specification Documents may contain exemplary items (exemplary
reference models, “use cases”, and/or references to exemplary technical solutions,
devices, processes or software).

Any such exemplary items are contained in the Specification Documents for
illustration purposes only, and they themselves are not part of the AUTOSAR
Standard. Neither their presence in such Specification Documents, nor any later
documentation of AUTOSAR conformance of products actually implementing such
exemplary items, imply that intellectual property rights covering such exemplary
items are licensed under the same rules as applicable to the AUTOSAR Standard.

3 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

Table of Content

1 Introduction and functional overview ... 6

2 Acronyms and abbreviations ... 7

3 Related documentation.. 8

3.1 Input documents... 8
3.2 Related standards and norms .. 8

4 Constraints and assumptions .. 9

4.1 Limitations .. 9
4.2 Applicability to car domains.. 9

5 Dependencies to other modules.. 10

5.1 File structure .. 10
5.1.1 Code file structure ... 10
5.1.2 Header file structure.. 11

6 Requirements traceability .. 12

7 Functional specification ... 23

7.1 General behavior.. 23
7.1.1 Addressing scheme and segmentation ... 23
7.1.2 Address calculation ... 25
7.1.3 Limitation of erase / write cycles ... 26
7.1.4 Handling of “immediate” data .. 27
7.1.5 Managing block consistency information... 27

7.2 Error classification .. 28
7.3 Error detection.. 29
7.4 Error notification ... 29
7.5 Consistency checks.. 29
7.6 Debugging support ... 29

8 API specification.. 31

8.1 Imported Types .. 31
8.2 Type definitions .. 31
8.3 Function definitions .. 31

8.3.1 Ea_Init ... 31
8.3.2 Ea_SetMode ... 32
8.3.3 Ea_Read ... 33
8.3.4 Ea_Write ... 35
8.3.5 Ea_Cancel... 37
8.3.6 Ea_GetStatus.. 38
8.3.7 Ea_GetJobResult .. 39
8.3.8 Ea_InvalidateBlock.. 40
8.3.9 Ea_GetVersionInfo.. 42
8.3.10 Ea_EraseImmediateBlock... 43

8.4 Call-back notifications .. 44
8.4.1 Ea_JobEndNotification.. 45
8.4.2 Ea_JobErrorNotification .. 45

4 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

8.5 Scheduled functions ... 46
8.5.1 Ea_MainFunction .. 46

8.6 Expected Interfaces.. 48
8.6.1 Mandatory Interfaces .. 48
8.6.2 Optional Interfaces .. 48
8.6.3 Configurable interfaces ... 48

9 Sequence diagrams .. 51

9.1 Ea_Init .. 51
9.2 Ea_SetMode .. 52
9.3 Ea_Write .. 53
9.4 Ea_Cancel.. 54

10 Configuration specification .. 57

10.1 How to read this chapter .. 57
10.1.1 Configuration and configuration parameters 57
10.1.2 Containers... 57
10.1.3 Specification template for configuration parameters 57

10.2 Containers and configuration parameters .. 58
10.2.1 Variants... 58
10.2.2 Ea.. 58
10.2.3 EaGeneral ... 60
10.2.4 EaBlockConfiguration.. 62

10.3 Published Information... 63
10.3.1 EaPublishedInformation .. 63

11 Changes to R3.x.. 65

11.1 Deleted SWS Items.. 65
11.2 Replaced SWS Items ... 65
11.3 Changed SWS Items.. 65
11.4 Added SWS Items.. 66

12 Changes to R4.x.. 67

12.1 Deleted SWS Items.. 67
12.2 Replaced SWS Items ... 67
12.3 Changed SWS Items.. 67
12.4 Added SWS Items.. 67

13 Not applicable requirements.. 69

5 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

1 Introduction and functional overview

This specification describes the functionality, API and configuration of the EEPROM
Abstraction Layer (see Figure 1).

id Component Model

NVRAM Manager

Memory Hardware Abstraction

Memory Hardware Abstraction::Memory Abstraction Interface

Memory
Hardware

Abstraction::
EEPROM

Abstraction

Memory
Hardware

Abstraction::
Flash EEPROM

Emulation

Memory Driv ers

Memory Driv ers::
Vendor Specific

Library

Memory Driv ers::
EEPROM Driver

Memory Drivers::
Flash Driver

Figure 1: Module overview of memory hardware abstraction layer

The EEPROM Abstraction (EA) abstracts from the device specific addressing
scheme and segmentation and provides the upper layers with a virtual addressing
scheme and segmentation as well as a “virtually” unlimited number of erase cycles.

6 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

2 Acronyms and abbreviations

Acronyms and abbreviations which have a local scope and therefore are not
contained in the AUTOSAR glossary must appear in a local glossary.

Abbreviation /
Acronym:

Description:

EA EEPROM Abstraction
EEPROM Electrically Erasable and Programmable ROM (Read Only Memory)
FEE Flash EEPROM Emulation
LSB Least significant bit / byte (depending on context). Here it’s bit.
MemIf Memory Abstraction Interface
MSB Most significant bit / byte (depending on context). Here it’s bit.
NvM NVRAM Manager
NVRAM Non-volatile RAM (Random Access Memory)
NVRAM block Management unit as seen by the NVRAM Manager
(Logical) block Smallest writable / erasable unit as seen by the modules user. Consists of one or

more virtual pages.
Virtual page May consist of one or several physical pages to ease handling of logical blocks and

address calculation.
Internal residue Unused space at the end of the last virtual page if the configured block size isn’t an

integer multiple of the virtual page size (see Figure 3).
Virtual address Consisting of 16 bit block number and 16 bit offset inside the logical block.
Physical
address

Address information in device specific format (depending on the underlying
EEPROM driver and device) that is used to access a logical block.

Dataset Concept of the NVRAM manager: A user addressable array of blocks of the same
size.
E.g. could be used to provide different configuration settings for the CAN driver
(CAN IDs, filter settings, …) to an ECU which has otherwise identical application
software (e.g. door module).

Redundant copy Concept of the NVRAM manager: Storing the same information twice to enhance
reliability of data storage.

7 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

3 Related documentation

3.1 Input documents

[1] List of Basic Software Modules
AUTOSAR_TR_BSWModuleList.pdf

[2] Layered Software Architecture
AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf

[3] General Requirements on Basic Software Modules
AUTOSAR_SRS_BSWGeneral.pdf

[4] General Requirements on SPAL
AUTOSAR_SRS_SPALGeneral.pdf

[5] Requirements on Memory Hardware Abstraction Layer
AUTOSAR_SRS_MemoryHWAbstractionLayer.doc

[6] Specification of Development Error Tracer
AUTOSAR_SWS_DevelopmentErrorTracer.pdf

[7] Specification of ECU Configuration,
AUTOSAR_TPS_ECUConfiguration.pdf

[8] Basic Software Module Description Template,
AUTOSAR_TPS_BSWModuleDescriptionTemplate.pd

3.2 Related standards and norms

[7] Specification of NVRAM Manager
AUTOSAR_SWS_NVRAMManager.doc

[8] Specification of Memory Abstraction Interface
AUTOSAR_SWS_MemoryAbstractionInterface.pdf

[9] Specification of Flash EEPROM Emulation
AUTOSAR_SWS_FlashEEPROMEmulation.pdf

8 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

4 Constraints and assumptions

4.1 Limitations

No limitations.

4.2 Applicability to car domains

No restrictions.

9 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

5 Dependencies to other modules

This module depends on the capabilities of the underlying EEPROM driver as well as
the configuration of the NVRAM manager.

5.1 File structure

5.1.1 Code file structure

[EA057] ⌈ The code file structure shall not be defined within this specification. ⌋()

10 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

5.1.2 Header file structure

[EA113] ⌈ The Ea module shall comply with the following file include structure:

deployment EA File Include Structure

source::
Platform_Types.h

source::
Compiler.h

source::
NvM_Cbk.h

source::Eep.hsource::
MemIf_Types.h

 ⌋(BSW00346, BSW158, BSW00370, BSW00301)

Figure 2: EEPROM Abstraction Layer File Include Structure

Note: Files which are optional (depending on implementation / configuration) are
shown in grey.

Note: Upper layer modules shall only include Ea.h

[EA058] ⌈ The EA module shall include the Dem.h file. By this inclusion the APIs to
report errors as well as the required Event Id symbols are included. This specification
defines the name of the Event Id symbols which are provided by XML to the DEM
configuration tool. The DEM configuration tool assigns ECU dependent values to the

Event Id symbols and publishes the symbols in Dem_IntErrId.h. ⌋()

source::Ea1.c

source::
Ea_Cfg.h

source::Ea.h

source::Ea.c source::Ea_Irq.csource::
Ea_Lcfg.c

source::
Ea_PBcfg.c

«optional
«include» «include»

source::
Std_Types.h

source::
MemMap.h

source::Dem.h source::Det.hsource::
Ea_Cbk.h

source::
SchM_Ea.h

«include»

«include»include» «include»

«include»«include»

«include»

«include»

«include» «include»

«include» «include»«include»

«include»
«optional
include» «include»

«optional«optional
include» include»

«optional
include»

11 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

6 Requirements traceability

Requirement Satisfied by

- EA068

- EA095

- EA167

- EA150

- EA037

- EA161

- EA025

- EA074

- EA078

- EA174

- EA137

- EA162

- EA061

- EA094

- EA086

- EA158

- EA066

- EA056

- EA082

- EA091

- EA075

- EA173

- EA157

- EA049

- EA135

- EA090

- EA088

- EA171

- EA034

- EA154

- EA020

- EA054

- EA160

- EA077

- EA178

- EA156

- EA092

- EA168

12 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

- EA172

- EA175

- EA022

- EA073

- EA141

- EA051

- EA072

- EA097

- EA159

- EA151

- EA146

- EA079

- EA081

- EA058

- EA144

- EA053

- EA164

- EA153

- EA169

- EA155

- EA166

- EA062

- EA089

- EA057

- EA083

- EA084

- EA055

- EA098

- EA087

- EA145

- EA114

- EA060

- EA005

- EA165

- EA026

- EA117

- EA142

- EA143

- EA176

- EA170

BSW00300 EA999

BSW00301 EA113

13 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

BSW00302 EA999

BSW00304 EA999

BSW00305 EA999

BSW00306 EA999

BSW00307 EA999

BSW00308 EA999

BSW00309 EA999

BSW00312 EA999

BSW00314 EA999

BSW00321 EA999

BSW00323 EA148, EA147, EA149, EA065, EA152

BSW00324 EA999

BSW00326 EA999

BSW00328 EA999

BSW00330 EA999

BSW00331 EA045

BSW00333 EA999

BSW00334 EA999

BSW00336 EA999

BSW00338 EA045, EA011

BSW00339 EA999

BSW00341 EA999

BSW00342 EA999

BSW00346 EA113

BSW00347 EA999

BSW00348 EA999

BSW00350 EA059, EA011

BSW00353 EA999

BSW00355 EA999

BSW00361 EA999

BSW00369 EA045

BSW00370 EA113

BSW00371 EA999

BSW00373 EA096

BSW00378 EA999

BSW00385 EA100, EA099

BSW00386 EA059, EA045, EA011

BSW004 EA013

BSW00401 EA999

BSW00406 EA128, EA129, EA131, EA130, EA134, EA132, EA136, EA035

BSW00409 EA048

BSW00415 EA999

14 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

BSW00416 EA999

BSW00417 EA999

BSW00420 EA999

BSW00421 EA999

BSW00422 EA999

BSW00423 EA999

BSW00424 EA999

BSW00425 EA999

BSW00426 EA999

BSW00427 EA999

BSW00428 EA999

BSW00429 EA999

BSW00431 EA999

BSW00432 EA999

BSW00433 EA999

BSW00434 EA999

BSW005 EA999

BSW006 EA999

BSW007 EA999

BSW009 EA999

BSW010 EA999

BSW12057 EA017

BSW12058 EA999

BSW12059 EA999

BSW12060 EA999

BSW12062 EA999

BSW12063 EA999

BSW12064 EA999

BSW12067 EA999

BSW12068 EA999

BSW12069 EA999

BSW12077 EA999

BSW12078 EA999

BSW12081 EA999

BSW12092 EA999

BSW12125 EA999

BSW12129 EA999

BSW12155 EA999

BSW12163 EA999

BSW12169 EA085

BSW12263 EA999

BSW12265 EA999

15 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

BSW12267 EA999

BSW12461 EA999

BSW12462 EA999

BSW12463 EA999

BSW14002 EA080

BSW14006 EA024

BSW14007 EA021

BSW14009 EA063, EA036, EA024, EA021, EA007

BSW14014 EA047, EA046

BSW14015 EA104

BSW14016 EA104

BSW14018 EA999

BSW14026 EA006

BSW14032 EA104, EA065, EA064, EA063, EA093

BSW157 EA999

BSW158 EA113

BSW160 EA999

BSW161 EA999

BSW162 EA999

BSW164 EA999

BSW168 EA999

BSW172 EA999

Document: General Requirements on Basic Software Modules

Requirement Satisfied by
[BSW00344] Reference to link-time configuration Not applicable

(this module does not provide any link-time
parameters)

[BSW00404] Reference to post build time
configuration

Not applicable
(this module does not provide post build time
configuration)

[BSW00405] Reference to multiple configuration
sets

Not applicable
(this module does not support multiple
configuration sets)

[BSW00345] Pre-compile-time configuration EA039, EA040_Conf
[BSW159] Tool-based configuration EA039, EA040_Conf
[BSW167] Static configuration checking EA013, EA038
[BSW171] Configurability of optional functionality EA150
[BSW170] Data for reconfiguration of AUTOSAR
SW-Components

Not applicable
(no reconfiguration supported)

[BSW00380] Separate C-File for configuration
parameters

Not applicable
(no link-time or post build time configuration
parameters)

[BSW00381] Separate configuration header file
for pre-compile time parameters

EA113

[BSW00412] Separate H-File for configuration Not applicable

16 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

parameters (no link-time or post build time configuration
parameters)

[BSW00383] List dependencies of configuration
files

EA113

[BSW00384] List dependencies to other modules Chapter 5
[BSW00387] Specify the configuration class of
callback function

Chapter 8.6

[BSW00388] Introduce containers Chapter 10.2
[BSW00389] Containers shall have names Chapter 10.2
[BSW00390] Parameter content shall be unique
within the module

Chapter 8, Chapter 10.2.3, Chapter 10.2.4

[BSW00391] Parameter shall have unique names Chapter 8, Chapter 10.2.3, Chapter 10.2.4
[BSW00392] Parameters shall have a type Chapter 8, Chapter 10.2.3, Chapter 10.2.4
[BSW00393] Parameters shall have a range Chapter 8, Chapter 10.2.3, Chapter 10.2.4
[BSW00394] Specify the scope of the parameters Chapter 8, Chapter 10.2.3, Chapter 10.2.4
[BSW00395] List the required parameters (per
parameter)

Chapter 8, Chapter 10.2.3, Chapter 10.2.4

[BSW00396] Configuration classes Chapter 8, Chapter 10.2.3, Chapter 10.2.4
[BSW00397] Pre-compile-time parameters Chapter 8, Chapter 10.2.3, Chapter 10.2.4
[BSW00398] Link-time parameters Not applicable

(no link-time configuration parameters)
[BSW00399] Loadable Post-build time parameters Not applicable

(no post build time configuration parameters)
[BSW00400] Selectable Post-build time
parameters

Not applicable
(no post build time configuration parameters)

[BSW00402] Published information Chapter 10.3
[BSW00375] Notification of wake-up reason Not applicable

(this module does not provide wakeup
capabilities)

[BSW101] Initialization interface EA017
[BSW00416] Sequence of Initialization Not applicable

(requirement on system design, not a single
module)

[BSW00406] Check module initialization EA139, EA128, EA129, EA130, EA131, EA132,
EA133, EA134, EA135, EA136

[BSW168] Diagnostic Interface of SW
components

Not applicable
(this module does not provide special diagnostics
support)

[BSW00407] Function to read out published
parameters

Chapter 8.3.9, EA043_Conf

[BSW00423] Usage of SW-C template to describe
BSW modules with AUTOSAR Interfaces

Not applicable
(this module does not provide an AUTOSAR
interface)

[BSW00424] BSW main processing function task
allocation

Not applicable
(requirement on system design, not on a single
module)

[BSW00425] Trigger conditions for schedulable
objects

Not applicable
(requirement on the BSW module description
template)

[BSW00426] Exclusive areas in BSW modules Not applicable
(no exclusive areas defined in this module)

[BSW00427] ISR description for BSW modules Not applicable
(this module does not directly implement any
ISRs)

[BSW00428] Execution order dependencies of
main processing functions

Not applicable
(only one main processing function in this module)

[BSW00429] Restricted BSW OS functionality
access

Not applicable
(this module does not use any OS functionality)

[BSW00431] The BSW Scheduler module Not applicable
17 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction

- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

implements task bodies (requirement on the BSW scheduler)
[BSW00432] Modules should have separate main
processing functions for read/receive and
write/transmit data path

Not applicable
(only one main processing function in this module)

[BSW00433] Calling of main processing functions Not applicable
(requirement on system design, not on a single
module)

[BSW00434] The Schedule Module shall provide
an API for exclusive areas

Not applicable
(requirement on the –BSW scheduler, not this
module)

[BSW00336] Shutdown interface Not applicable
(this module does not provide shutdown
capabilities)

[BSW00337] Classification of errors EA139, EA140
[BSW00338] Detection and Reporting of
development errors

EA011, EA045

[BSW00369] Do not return development error
codes via API

EA045

[BSW00339] Reporting of production relevant
error status

Not applicable
(no production relevant errors)

[BSW00421] Reporting of production relevant
error events

Not applicable
(no production relevant errors)

[BSW00422] Debouncing of production relevant
error status

Not applicable
(requirement on the DEM, not this module)

[BSW00420] Production relevant error event rate
detection

Not applicable
(requirement on the DEM, not this module)

[BSW00417] Reporting of Error Events by Non-
Basic Software

Not applicable
(requirement on non BSW modules)

[BSW00323] API parameter checking EA038, EA065, EA147, EA148, EA149, EA152
[BSW004] Version check EA013
[BSW00409] Header files for production code
error IDs

EA048

[BSW00385] List possible error notifications EA099, EA100
[BSW00386] Configuration for detecting an error EA011, EA045, EA059
[BSW161] Microcontroller abstraction Not applicable

(requirement on AUTOSAR architecture, not a
single module)

[BSW162] ECU layout abstraction Not applicable
(requirement on AUTOSAR architecture, not a
single module)

[BSW00324] Do not use HIS I/O Library Not applicable
(requirement on AUTOSAR architecture, not a
single module)

[BSW005] No hard coded horizontal interfaces
within MCAL

Not applicable
(requirement on AUTOSAR architecture, not a
single module)

[BSW00415] User dependent include files Not applicable
(only one user for this module)

[BSW164] Implementation of interrupt service
routines

Not applicable
(this module does not directly implement any
ISRs)

[BSW00325] Runtime of interrupt service routines See note in chapter 8.4 and chapter 8.6.3
[BSW00326] Transition from ISRs to OS tasks Not applicable

(requirement on implementation, not on
specification)

[BSW00342] Usage of source code and object
code

Not applicable
(requirement on AUTOSAR architecture, not a
single module)

[BSW00343] Specification and configuration of EA070_Conf

18 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

time
[BSW160] Human-readable configuration data Not applicable

(requirement on documentation, not on
specification)

[BSW007] HIS MISRA C Not applicable
(requirement on implementation, not on
specification)

[BSW00300] Module naming convention Not applicable
(requirement on implementation, not on
specification)

[BSW00413] Accessing instances of BSW
modules

Requirement can not be implemented in R2.0
timeframe.

[BSW00347] Naming separation of different
instances of BSW drivers

Not applicable
(requirement on the implementation, not on the
specification)

[BSW00305] Self-defined data types naming
convention

Not applicable
(this module does not define any data types)

[BSW00307] Global variables naming convention Not applicable
(requirement on the implementation, not on the
specification)

[BSW00310] API naming convention Chapter 8.3
[BSW00373] Main processing function naming
convention

Chapter 8.5.1 (EA096)

[BSW00327] Error values naming convention EA139, EA140
[BSW00335] Status values naming convention Chapter 8.1
[BSW00350] Development error detection
keyword

EA011, EA059, EA039

[BSW00408] Configuration parameter naming
convention

Chapter 10.2

[BSW00410] Compiler switches shall have
defined values

Chapter 10.2

[BSW00411] Get version info keyword Chapter 10.2.3
[BSW00346] Basic set of module files EA113
[BSW158] Separation of configuration from
implementation

EA113

[BSW00314] Separation of interrupt frames and
service routines

Not applicable
(this module does not directly implement any
ISRs)

[BSW00370] Separation of callback interface from
API

EA113, Chapter 8.4

[BSW00348] Standard type header Not applicable
(requirement on the standard header file)

[BSW00353] Platform specific type header Not applicable
(requirement on the platform specific header file)

[BSW00361] Compiler specific language
extension header

Not applicable
(requirement on the compiler specific header file)

[BSW00301] Limit imported information EA113
[BSW00302] Limit exported information Not applicable

(requirement on the implementation, not on the
specification)

[BSW00328] Avoid duplication of code Not applicable
(requirement on the implementation, not on the
specification)

[BSW00312] Shared code shall be reentrant Not applicable
(requirement on the implementation, not on the
specification)

[BSW006] Platform independency Not applicable
(this is a module of the microcontroller abstraction
layer)

19 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

[BSW00357] Standard API return type Chapter 8.3.3, Chapter 8.3.4. Chapter 8.3.8,
Chapter 8.3.10

[BSW00377] Module specific API return types Chapter 8.3.6, Chapter 8.3.7
[BSW00304] AUTOSAR integer data types Not applicable

(requirement on implementation, not for
specification)

[BSW00355] Do not redefine AUTOSAR integer
data types

Not applicable
(requirement on implementation, not for
specification)

[BSW00378] AUTOSAR boolean type Not applicable
(requirement on implementation, not for
specification)

[BSW00306] Avoid direct use of compiler and
platform specific keywords

Not applicable
(requirement on implementation, not for
specification)

[BSW00308] Definition of global data Not applicable
(requirement on implementation, not for
specification)

[BSW00309] Global data with read-only constraint Not applicable
(requirement on implementation, not for
specification)

[BSW00371] Do not pass function pointers via API Not applicable
(no function pointers in this specification)

[BSW00358] Return type of init() functions Chapter 8.3.1
[BSW00414] Parameter of init function Chapter 8.3.1
[BSW00376] Return type and parameters of main
processing functions

Chapter 8.5.1

[BSW00359] Return type of callback functions Chapter 8.4
[BSW00360] Parameters of callback functions Chapter 8.4
[BSW00329] Avoidance of generic interfaces Chapter 8.3

(explicit interfaces defined)
[BSW00330] Usage of macros / inline functions
instead of functions

Not applicable
(requirement on implementation, not for
specification)

[BSW00331] Separation of error and status values EA045, EA139, EA140
[BSW009] Module User Documentation Not applicable

(requirement on documentation, not on
specification)

[BSW00401] Documentation of multiple instances
of configuration parameters

Not applicable
(all configuration parameters are single instance
only)

[BSW172] Compatibility and documentation of
scheduling strategy

Not applicable
(no internal scheduling policy)

[BSW010] Memory resource documentation Not applicable
(requirement on documentation, not on
specification)

[BSW00333] Documentation of callback function
context

Not applicable
(requirement on documentation, not for
specifciation)

[BSW00374] Module vendor identification EA043_Conf
[BSW00379] Module identification EA043_Conf
[BSW003] Version identification EA043_Conf
[BSW00318] Format of module version numbers EA043_Conf
[BSW00321] Enumeration of module version
numbers

Not applicable
(requirement on implementation, not for
specification)

[BSW00341] Microcontroller compatibility
documentation

Not applicable
(requirement on documentation, not on
specification)

20 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

[BSW00334] Provision of XML file Not applicable
(requirement on documentation, not on
specification)

Document: General Requirements on SPAL

Requirement Satisfied by
[BSW12263] Object code compatible
configuration concept

Not applicable
(this module does not provide any post-build
parameters)

[BSW12056] Configuration of notification
mechanisms

Chapter 8.6.3

[BSW12267] Configuration of wake-up sources Not applicable
(this module does not provide any wakeup
capabilities)

[BSW12057] Driver module initialization EA017
[BSW12125] Initialization of hardware resources Not applicable

(this module has no direct hardware access)
[BSW12163] Driver module de-initialization Not applicable

(this module does not provide any shutdown
capabilities)

[BSW12058] Individual initialization of overall
registers

Not applicable
(this module has no direct hardware access)

[BSW12059] General initialization of overall
registers

Not applicable
(this module has no direct hardware access)

[BSW12060] Responsibility for initialization of
one-time writable registers

Not applicable
(this module has no direct hardware access)

[BSW12461] Responsibility for register
initialization

Not applicable
(this module has no direct hardware access)

[BSW12462] Provide settings for register
initialization

Not applicable
(this module has no direct hardware access)

[BSW12463] Combine and forward settings for
register initialization

Not applicable
(this module has no direct hardware access)

[BSW12062] Selection of static configuration sets Not applicable
(this module does not have configuration data)

[BSW12068] MCAL initialization sequence Not applicable
(this module belongs to the ECU abstraction
layer)

[BSW12069] Wake-up notification of ECU State
Manager

Not applicable
(this module does not provide any wakeup
capabilities)

[BSW157] Notification mechanisms of drivers and
handlers

Not applicable
(this module does not provide any notification
mechanisms)

[BSW12155] Prototypes of callback functions Not applicable
(this module does not implement any callback
routines)

[BSW12169] Control of operation mode EA085
[BSW12063] Raw value mode Not applicable

(this module does not handle or mishandle any
data)

[BSW12075] Use of application buffers Chapters 8.3.3, and 8.3.4
[BSW12129] Resetting of interrupt flags Not applicable

(this module does not directly implement any
ISRs)

[BSW12064] Change of operation mode during
running operation

Not applicable
(this module has no internal operation mode)

[BSW12448] Behavior after development error
detection

Chapter 7.4

21 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

[BSW12067] Setting of wake-up conditions Not applicable
(this module does not provide any wakeup
capabilities)

[BSW12077] Non-blocking implementation Not applicable
(this module does not implement any schedulable
services)

[BSW12078] Runtime and memory efficiency Not applicable
(requirement on implementation, not on
specification)

[BSW12092] Access to drivers Not applicable
(this module is the EEPROM driver’s “manager”)

[BSW12265] Configuration data shall be kept
constant

Not applicable
(this module does not have configuration data)

[BSW12264] Specification of configuration items EA039, EA040_Conf, EA043_Conf
[BSW12081] Use HIS requirements as input Not applicable

(no corresponding HIS requirements available)

Document: Requirements on Memory Hardware Abstraction Layer

Requirement Satisfied by
BSW14001 Configuration of address alignment EA004, EA039
BSW14002 Configuration of number of required
write cycles

EA079_Conf, EA080, EA040_Conf

BSW14003 Configuration of maximum blocking
time

 EA070_Conf

BSW14004 Configuration of “immediate” data
blocks

EA040_Conf, EA131_Conf

BSW14026 Don’t use certain block numbers EA006
BSW14027 Publish overhead for internal
management data per block

EA043_Conf, EA126_Conf

BSW14005 Virtual linear address space and
segmentation

EA003

BSW14006 Alignment of block erase / write
addresses

EA004, EA024

BSW14007 Alignment of block read addresses Note below EA021
BSW14008 Checking block read addresses EA038
BSW14009 Conversion of logical to physical
addresses

EA007, EA021, EA024, EA036, EA063

BSW14010 Block-wise write service Chapter 8.3.4
BSW14029 Block-wise read service Chapter 8.3.3
BSW14031 Service to cancel an ongoing
asynchronous operation

Chapter 8.3.5

BSW14028 Service to invalidate a memory block Chapter 8.3.8
BSW14012 Spreading of write access EA079, EA080
BSW14013 Writing of “immediate” data must not
be delayed

7.1.4

BSW14032 Block-wise erase service for
immediate data

EA093, EA063, EA064, EA065

BSW14014 Detection of data inconsistencies EA104, EA046, EA047
BSW14015 Reporting of data inconsistencies EA104
BSW14016 Don’t return inconsistent data to the
caller

EA104

BSW14017 Scope of EEPROM Abstraction Layer Chapter 1
BSW14018 Scope of Flash EEPROM Emulation Not applicable

(this is the EA modules specification)

22 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

7 Functional specification

7.1 General behavior

[EA137] ⌈ The EEPROM Abstraction (EA) shall only accept one job at a time, i.e. the

module shall not provide a queue for pending jobs (that’s the job of the NVRAM

Manager). ⌋()

Note: Since the NvM is the only caller for this module and in order to keep this
module reasonably small, the modules functions shall not check, whether the module
is currently busy or not. It is the responsibility of the NvM to serialize the pending jobs
and only start a new job after the previous one has been finished or canceled.

7.1.1 Addressing scheme and segmentation

The EEPROM Abstraction (EA) provides upper layers with a 32bit virtual linear
address space and uniform segmentation scheme. This virtual 32bit addresses
consists of

 a 16bit block number – allowing a (theoretical) number of 65536 logical blocks
 a 16bit block offset – allowing a (theoretical) block size of 64Kbyte per block

The 16bit block number represents a configurable (virtual) paging mechanism. The
values for this address alignment can be derived from that of the underlying
EEPROM driver and device. This virtual paging is configurable via the parameter
EA_VIRTUAL_PAGE_SIZE.

[EA075] ⌈ The configuration of the Ea module shall be such that the virtual page size

(defined in EA_VIRTUAL_PAGE_SIZE) is an integer multiple of the physical page
size, i.e. it is not allowed to configure a smaller virtual page than the actual physical

page size. ⌋()

Example:
The size of a virtual page is configured to be eight bytes, thus the address alignment
is eight bytes. The logical block with block number 1 is placed at physical address x.
The logical block with the block number 2 then would be placed at x+8, block number
3 would be placed at x+16.

Note: This specification requirement allows the physical start address of a logical
block to be calculated rather than making a lookup table necessary for the address
mapping.

[EA005] ⌈ Each configured logical block shall take up an integer multiple of the
configured virtual page size (see also Chapter 10.2.3, configuration parameter

EA_VIRTUAL_PAGE_SIZE). ⌋()

23 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction

- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

Example: If the virtual page size is configured to be eight bytes, logical blocks can be
of size 8, 16, 24, 32, … bytes but not e.g. 10, 20, 50, … bytes.

[EA068] ⌈ Logical blocks must not overlap each other and must not be contained

within one another. ⌋()

Example: The address alignment / virtual paging is configured to be eight bytes by
setting the parameter EA_VIRTUAL_PAGE_SIZE accordingly. The logical block
number 1 is configured to have a size of 32 bytes (see Figure 3). This logical block
would use exactly 4 virtual pages. The next logical block thus would get the block
number 5, since block numbers 2, 3 and 4 are “blocked” by the first logical block.
This second block is configured to have a size of 100 bytes, taking up 13 virtual
pages and leaving 4 bytes of the last page unused. The next available logical block
number thus would be 17.

Block 1

Block 2

Block 3

32 Bytes

100 Bytes

38 Bytes

Note: Sizes not shown to scale

Virtual address space
Page size: 64 KBytes

Physical address space
Page size: 8 Bytes

100 Bytes

32 Bytes16 Bit Block Number

38 Bytes16 Bit Block Offset

Block #1 with 32 byte
uses 4 pages, no
internal residue

Block #5 with 100 byte
uses 13 pages, 4 byte
internal residue

Block #17 with 38 byte
uses 5 pages, 2 byte
internal residue

Figure 3: Virtual vs. physical memory layout

[EA006] ⌈ The block numbers 0x0000 and 0xFFFF shall not be configurable for a

logical block (see chapter 10.2.3, EaBlockNumber for details). ⌋(BSW14026)

24 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

7.1.2 Address calculation

[EA007] ⌈ Depending on the implementation of the EA module and the exact address

format used, the functions of the EA module shall combine the 16bit block number
and 16bit block offset to derive the physical EEPROM address needed for the

underlying EEPROM driver. ⌋(BSW14009)

Note: The exact address format needed by the underlying EEPROM driver and
therefore the mechanism how to derive the physical EEPROM address from the
given 16bit block number and 16bit block offset depends on the EEPROM device and
the implementation of the EEPROM device driver and can therefore not be specified
in this document.

[EA066] ⌈ Only those bits of the 16bit block number, that do not denote a specific

dataset or redundant copy shall be used for address calculation. ⌋()

Note: Since this information is needed by the NVRAM manager, the number of bits to
encode this can be configured for the NVRAM manager with the parameter
NVM_DATASET_SELECTION_BITS.

Example: Dataset information is configured to be encoded in the four LSB’s of the
16bit block number (allowing for a maximum of 16 datasets per NVRAM block and a
total of 4094 NVRAM blocks). An implementer decides to store all datasets of a
logical block directly adjacent and using the length of the block and a pointer to
access each dataset. To calculate the start address of the block (the address of the
first dataset) she/he uses only the 12 MSB’s, to access a specific dataset she/he
adds the size of the block multiplied by the dataset index (the four MSB’s) to this start
address (Figure 4).

25 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

100 Bytes

Data set 0

Data set 1

NVM_DATASET_SELECTION_BITS configured
to be four (bits), leaving twelve bit for the block
number. Each logical block thus can be subdivided
in up to 16 datasets.

Block
number

Dataset
index

Data set 2
„indexed“
addressing

Data set 3
Address conversion

Figure 4: Block number and dataset index

7.1.3 Limitation of erase / write cycles

[EA079] ⌈ The configuration of the Ea module shall define the expected number of
erase/write cycles for each logical block in the configuration parameter

EaNumberOfWriteCycles. ⌋()

[EA080] ⌈ If the underlying EEPROM device or device driver does not provide at

least the configured number of erase/write cycles per physical memory cell (given in
the parameter EepAllowedWriteCycles), the EA module shall provide
mechanisms to spread the erase/ write access such that the physical device is not
overstressed. This shall also apply to all management data used internally by the EA

module. ⌋(BSW14002)

26 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

Example: The logical block number 1 is configured for an expected 500.000 write
cycles, the underlying EEPROM device and device driver are only specified for
100.000 erase cycles. In this case the EA module has to provide (at least) five
separate memory areas and alternate the access between those areas internally, so
that each physical memory location is only erased for a maximum of the specified
100.000 cycles.

7.1.4 Handling of “immediate” data

Blocks, containing immediate data, have to be written instantaneously, i.e. such
blocks shall be writable without the need, to first erase the corresponding memory
area (e.g. by using pre-erased memory). An ongoing lower priority read / erase / write
or compare job shall be canceled by the NVRAM manager before immediate data is
written.

Note: A running operation on the hardware (e.g. writing one page or erasing one
sector) can usually not be aborted once it has been started. The maximum time of
the longest hardware operation thus has to be accepted as delay even for immediate
data.

Example: Three blocks with 10 bytes each have been configured for immediate data.
The EA module / configuration tool reserves these 30 bytes (plus the implementation
specific overhead per block / page if needed) for use by this immediate data only.
That is this memory area shall not be used for storage of other data blocks.
Now, the NVRAM manager has requested the EA module to write a data block of 100
bytes. While this block is being written a situation occurs that one (or several) of the
immediate data blocks need to be written. Therefore the NVRAM manager cancels
the ongoing write request and subsequently issues the write request for the (first)
block containing immediate data. The cancelation of the ongoing write request is
performed synchronously by the EA module and the underlying EEPROM driver that
is the write request for the immediate data can be started without any further delay.
However, before the first bytes of immediate data can be written, the EA module
respectively the underlying EEPROM driver have to wait for the end of an ongoing
hardware access from the previous write request (e.g. writing of a page, erasing of a
sector, transfer via SPI, …).

7.1.5 Managing block consistency information

[EA046] ⌈ The Ea module shall manage for each block the information, whether this
block is “correct” from the point of view of the EA module or not. This consistency
information shall only concern the internal handling of the block, not the block’s

contents. ⌋(BSW14014)

27 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

[EA047] ⌈ When a block write operation is started the EA module shall mark the
corresponding block as inconsistent1. Upon the successful end of the block write

operation, the EA module shall mark the block as consistent (again). ⌋(BSW14014)

Note: This internal management information should not be mixed up with the validity
information of a block which can be manipulated by using the Ea_InvalidateBlock
service, i.e. the EA module shall be able to distinguish between an inconsistent block
and a block that has been deliberately invalidated by the upper layer.

7.2 Error classification

[EA048] ⌈ Values for production code Event Ids are assigned externally by the
configuration of the Dem. They are published in the file Dem_IntErrId.h and included

via Dem.h. ⌋(BSW00409)

[EA049] ⌈ Development error values are of type uint8. ⌋()

The Ea module shall detect the following errors and exceptions depending on its
configuration (development/production):

Type or error Relevance Related error code Value [hex]

EA_E_UNINIT 0x01 API service called while
module is not (yet) initialized

Development

EA_E_INVALID_BLOCK_NO 0x02 API service called with invalid
block number

Development

EA_E_INVALID_BLOCK_OFS 0x03 API service called with invalid
block offset

Development

EA_E_INVALID_DATA_POINTER 0x04 API service called with invalid
pointer argument

Development

EA_E_INVALID_BLOCK_LEN 0x05 API service called with invalid
block length information

Development

EA_E_BUSY 0x06 API service called while
module is busy

Development

EA_E_BUSY_INTERNAL 0x07 API service called while
module is busy doing internal
management operations

Development

Ea_Cancel called while no job
was pending

Development EA_E_INVALID_CANCEL 0x08

28 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

1 This does not necessarily mean a write operation on the physical device. If there are other means to
detect the consistency of a logical block, changing the management information stored with the block
shall be avoided.

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

7.3 Error detection

[EA011] ⌈ The detection of development errors shall be configurable (on/off) at pre-

compile time. The switch EA_DEV_ERROR_DETECT shall activate or deactivate the

detection of all development errors. ⌋(BSW00338, BSW00386, BSW00350)

[EA059] ⌈ If the EA_DEV_ERROR_DETECT switch is enabled, API parameter

checking is enabled. The detailed description of the detected errors can be found in

chapter 7.2 and chapter 8. ⌋(BSW00386, BSW00350)

[EA060] ⌈ The detection of production code errors cannot be switched off. ⌋()

7.4 Error notification

[EA045] ⌈ Detected development errors shall be reported to the Det_ReportError
service of the Development Error Tracer (DET) if the pre-processor switch

EA_DEV_ERROR_DETECT is set (see chapter 10.2). ⌋(BSW00338, BSW00369,

BSW00386, BSW00331)

[EA081] ⌈ Production errors shall be reported to Diagnostic Event Manager. ⌋()

7.5 Consistency checks

[EA013] ⌈ The EA module shall perform inter module checks to avoid integration of

incompatible files: all included header files shall be checked by pre-processing
directives. The EA module shall thereby verify that
<MODULENAME>_AR_RELEASE_MAJOR_VERSION and
<MODULENAME>_AR_RELEASE_MINOR_VERSION are identical to the expected
values, where <MODULENAME> is the module abbreviation of the external module,
which provides the included header file. If the values are not identical, an error shall

be raised at compile time. ⌋(BSW004)

Note: The configuration tool shall check all configuration parameters for being within
the expected bounds. Also the dependencies between configuration parameters shall
be checked by the configuration tool during system generation or during the build
process (for details see chapter 10).

7.6 Debugging support

29 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

[EA155] ⌈ The module’s job result, the status and the variables used for job control
(for externally requested jobs as well as for internal management operations) shall be

made globally accessible. ⌋()

30 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

8 API specification

8.1 Imported Types

[EA083]
⌈

Module Imported Type
Eep_AddressType Eep
Eep_LengthType
MemIf_JobResultType
MemIf_ModeType

MemIf

MemIf_StatusType
Std_ReturnType Std_Types
Std_VersionInfoType

 ⌋()

[EA117] ⌈ The types mentioned in EA083 shall not be changed or extended for a

specific EA module or hardware platform. ⌋()

8.2 Type definitions

This module does not define any module specific types.

8.3 Function definitions

8.3.1 Ea_Init

[EA084]

⌈
Service name: Ea_Init
Syntax: void Ea_Init(

 void
)

Service ID[hex]: 0x00
Sync/Async: Synchronous

Non Reentrant Reentrancy:
Parameters (in): None
Parameters
(inout):

None

None Parameters (out):
None Return value:
Initializes the EEPROM abstraction module. Description:

 ⌋()

31 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

[EA017] ⌈ The function Ea_Init shall shall set the module state from MEMIF_UNINIT

to MEMIF_BUSY_INTERNAL once it starts the module’s initialization. ⌋(BSW12057)

[EA128] ⌈ If initialization is finished within Ea_Init, the function Ea_Init shall set the

module state from MEMIF_BUSY_INTERNAL to MEMIF_IDLE once initialization has

been successfully finished. ⌋(BSW00406)

Note: The Ea module’s environment shall not call the function Ea_Init during a
running operation of the EA module.

8.3.2 Ea_SetMode

[EA085]

⌈
Service name: Ea_SetMode
Syntax: void Ea_SetMode(

 MemIf_ModeType Mode
)

Service ID[hex]: 0x01
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): Mode Desired mode for the underlying EEPROM driver

None Parameters
(inout):

None Parameters (out):
None Return value:
Sets the mode. Description:

 ⌋(BSW12169)

Example: During normal operation of an ECU the EA module and underlying device
driver shall use as few (runtime) resources as possible, therefore the EEPROM driver
is switched to “slow” mode. During startup and especially during shutdown it might be
desirable to read / write the NV memory blocks as fast as possible, therefore the EA
module and the underlying device driver could be switched into “fast” mode.

[EA020] ⌈ If the current module state is MEMIF_IDLE and if supported by the

underlying hardware and device driver, the function Ea_SetMode shall call the
function “Eep_SetMode” of the underlying EEPROM driver with the given “Mode”

parameter. ⌋()

[EA150] ⌈ The function Ea_SetMode shall be enabled / disabled via the pre-compile

time parameter EaSetModeSupported such that the function is completely

removed from the code if it is disabled. ⌋()

32 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

[EA129] ⌈ If development error detection is enabled for the module: the function

Ea_SetMode shall check if the module state is MEMIF_UNINIT. If this is the case,
the function Ea_SetMode shall raise the development error EA_E_UNINIT and

return to the caller without executing the mode switch. ⌋(BSW00406)

[EA165] ⌈ If development error detection is enabled for the module: the function

Ea_SetMode shall check if the module state is MEMIF_BUSY. If this is the case, the
function Ea_SetMode shall raise the development error EA_E_BUSY and return to

the caller without executing the mode switch. ⌋()

[EA166] ⌈ If development error detection is enabled for the module: the function

Ea_SetMode shall check if the module state is MEMIF_BUSY_INTERNAL. If this is
the case, the function Ea_SetMode shall raise the development error
EA_E_BUSY_INTERNAL and return to the caller without executing the mode switch.

⌋()

8.3.3 Ea_Read

[EA086]

⌈
Service name: Ea_Read
Syntax: Std_ReturnType Ea_Read(

 uint16 BlockNumber,
 uint16 BlockOffset,
 uint8* DataBufferPtr,
 uint16 Length
)

Service ID[hex]: 0x02
Asynchronous Sync/Async:

Reentrancy: Non Reentrant
BlockNumber Number of logical block, also denoting start address of that block

in EEPROM.
BlockOffset Read address offset inside the block

Parameters (in):

Length Number of bytes to read
None Parameters

(inout):
DataBufferPtr Pointer to data buffer Parameters (out):
Std_ReturnType E_OK: The requested job has been accepted by the module.

E_NOT_OK: The requested job has not been accepted by the EA
module.

Return value:

Reads Length bytes of block Blocknumber at offset BlockOffset into the buffer
DataBufferPtr.

Description:

 ⌋()

[EA021] ⌈ The function Ea_Read shall take the block number and offset and

calculate the corresponding memory read address. ⌋(BSW14007, BSW14009)

33 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

Note: The address offset and length parameter can take any value within the given
types range, this allows reading of an arbitrary number of bytes from an arbitrary
address inside a logical block.

[EA072] ⌈ The EA module shall execute the read operation asynchronously within

the EA module’s main function. ⌋()

[EA022] ⌈ If the current module status is MEMIF_IDLE or if the current module

status is MEMIF_BUSY INTERNAL and the internal management operation can be
suspended or aborted, the function Ea_Read shall accept the read request, copy the
given / computed parameters to module internal variables, initiate a read job, set the
EA module status to MEMIF_BUSY, set the job result to MEMIF_JOB_PENDING and

return with E_OK. ⌋()

EA179: ⌈ If the current module status is MEMIF_UNINIT or MEMIF_BUSY or

MEMIF_BUSY_INTERNAL and the internal management operation can’t be
suspended or aborted, the function Ea_Read shall reject the job request and return

with E_NOT_OK. ⌋()

[EA130] ⌈ If development error detection for the module EA is enabled: the function

Ea_Read shall check if the module state is MEMIF_UNINIT. If this is the case, the
function Ea_Read shall reject the read request, raise the development error

EA_E_UNINIT and return with E_NOT_OK. ⌋(BSW00406)

[EA167] ⌈ If development error detection is enabled for the module: the function

Ea_Read shall check if the module state is MEMIF_BUSY. If this is the case, the
function Ea_Read shall reject the read request, raise the development error

EA_E_BUSY and return with E_NOT_OK. ⌋()

EA180: If development error detection is enabled for the module: if the current
module status is MEMIF_BUSY_INTERNAL and if it is not possible to suspend or
abort the internal management operation (because of data consistency / module
implementation / hardware restrictions), the function Ea_Read shall reject the read
request, raise the development error EA_E_BUSY_INTERNAL and return with
E_NOT_OK. �()

[EA147] ⌈ If development error detection is enabled for the module: the function

Ea_Read shall check whether the given block number is valid (i.e. inside the
configured range). If this is not the case, the function Ea_Read shall reject the read
request, raise the development error EA_E_INVALID_BLOCK_NO and return

E_NOT_OK. ⌋(BSW00323)

34 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

[EA168] ⌈ If development error detection is enabled for the module: the function

Ea_Read shall check that the given block offset is valid (i.e. that it is less than the
block length configured for this block). If this is not the case, the function Ea_Read
shall reject the read request, raise the development error

EA_E_INVALID_BLOCK_OFS and return with E_NOT_OK. ⌋()

[EA169] ⌈ If development error detection is enabled for the module: the function

Ea_Read shall check that the given length information is valid, i.e. that the requested
length information plus the block offset do not exceed the block end address (block
start address plus configured block length). If this is not the case, the function
Ea_Read shall reject the read request, raise the development error

EA_E_INVALID_BLOCK_LEN and return with E_NOT_OK. ⌋()

[EA170] ⌈ If development error detection is enabled for the module: the function

Ea_Read shall check that the given data pointer is valid (i.e. that it is not NULL). If
this is not the case, the function Ea_Read shall reject the read request, raise the

development error EA_E_INVALID_DATA_PTR and return with E_NOT_OK. ⌋()

[EA158] ⌈ If a read request is rejected by the function Ea_Read, i.e. requirements

EA130, EA147, EA167, EA168, EA169, EA170, EA179 or EA180 apply, the function

Ea_Read shall not change the current module status or job result. ⌋()

8.3.4 Ea_Write

[EA087]

 ⌈
Service name: Ea_Write

Std_ReturnType Ea_Write(
 uint16 BlockNumber,
 uint8* DataBufferPtr
)

Syntax:

0x03 Service ID[hex]:
Asynchronous Sync/Async:
Non Reentrant Reentrancy:
BlockNumber Number of logical block, also denoting start address of that block

in EEPROM. Parameters (in):
DataBufferPtr Pointer to data buffer
None Parameters

(inout):
None Parameters (out):
Std_ReturnType E_OK: The requested job has been accepted by the module.

E_NOT_OK: The requested job has not been accepted by the EA
module.

Return value:

Writes the contents of the DataBufferPtr to the block BlockNumber. Description:

 ⌋()

35 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

[EA024] ⌈ The function Ea_Write shall take the block number and calculate the
corresponding memory write address. The block offset shall be fixed to zero for this

address calculation. ⌋(BSW14006, BSW14009)

[EA151] ⌈ The function Ea_Write shall set the length parameter for the write job to

the length configured for this logical block. ⌋()

[EA025] ⌈ If the current module status is MEMIF_IDLE or if the current module

status is MEMIF_BUSY INTERNAL and the internal management operation can be
suspended or aborted, the function Ea_Write shall accept the write request, copy
the given / computed parameters to module internal variables, initiate a write job, set
the EA module status to MEMIF_BUSY, set the job result to MEMIF_JOB_PENDING

and return with E_OK. ⌋()

EA181: If the current module status is MEMIF_UNINIT or MEMIF_BUSY or
MEMIF_BUSY_INTERNAL and the internal management operation can’t be
suspended or aborted, the function Ea_Write shall reject the job request and return

with E_NOT_OK. ⌋()

EA182: If the write request addresses a block containing immediate data, the
function Ea_Write shall accept the write request, even if the current module status
is MEMIF_BUSY_INTERNAL and the internal management operation can’t be

suspended or aborted. ⌋()

Note: In this case the internal management operation shall be aborted without the
chance to restart it and with the risk of unrecoverable errors for the “normal” data.

[EA026] ⌈ The EA module shall execute the write job of the function Ea_Write

asynchronously within the EA module’s main function. ⌋()

[EA131] ⌈ If development error detection for the module EA is enabled: the function

Ea_Write shall check if the module state is MEMIF_UNINIT. If this is the case, the
function Ea_Write shall reject the write request, raise the development error

EA_E_UNINIT and return with E_NOT_OK. ⌋(BSW00406)

[EA171] ⌈ If development error detection is enabled for the module: the function

Ea_Write shall check if the module state is MEMIF_BUSY. If this is the case, the
function Ea_Write shall reject the write request, raise the development error

EA_E_BUSY and return with E_NOT_OK. ⌋()

EA183: If development error detection is enabled for the module: if the current
module status is MEMIF_BUSY_INTERNAL and if it is not possible to suspend or

36 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

abort the internal management operation (because of data consistency / module
implementation / hardware restrictions), the function Ea_Write shall reject the write
request, raise the development error FEE_E_BUSY_INTERNAL and return with

E_NOT_OK. ⌋()

[EA148] ⌈ If development error detection for the module EA is enabled: the function

Ea_Write shall check whether the given block number is valid (i.e. inside the
configured range). If this is not the case, the function Ea_Write shall reject the write
request, raise the development error EA_E_INVALID_BLOCK_NO and return with

E_NOT_OK. ⌋(BSW00323)

[EA172] ⌈ If development error detection is enabled for the module: the function

Ea_Write shall check that the given data pointer is valid (i.e. that it is not NULL). If
this is not the case, the function Ea_Write shall reject the write request, raise the

development error EA_E_INVALID_DATA_PTR and return with E_NOT_OK. ⌋()

[EA159] ⌈ If a write request is rejected by the function Ea_Write, i.e. requirements

EA131, EA171, EA148, EA172, EA181 or EA183 apply, the function Ea_Write shall

not change the current module status or job result. ⌋()

8.3.5 Ea_Cancel

[EA088]

⌈
Service name: Ea_Cancel
Syntax: void Ea_Cancel(

 void
)
0x04 Service ID[hex]:
Synchronous Sync/Async:
Non Reentrant Reentrancy:
None Parameters (in):
None Parameters

(inout):
None Parameters (out):
None Return value:
Cancels the ongoing asynchronous operation. Description:

 ⌋()

Note: The function Ea_Cancel and the cancel function of the underlying EEPROM
driver are synchronous in their behaviour, i.e. their job is done once they return to the
caller. On the other hand, they are asynchronous w.r.t. an ongoing read, erase or
write job in the EEPROM memory. The cancel functions shall only reset their
modules internal variables so that a new job can be accepted by the modules. They
do not cancel an ongoing job in the hardware and they do not wait for an ongoing job
37 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction

- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

to be finished by the hardware. This might lead to the situation in which the module’s
state is reported as IDLE while there is still an ongoing job being executed by the
hardware. Therefore, the EEPROM driver’s main function shall check that the
hardware is indeed free before starting a new job (see chapter 9.4 for a detailed
sequence diagram).

Note: The function Ea_Cancel should only be used by the NvM to abort a read or
write request for an NV block if higher priority data (i.e. immediate data) has to be
written.

[EA132] ⌈ If development error detection for the module EA is enabled: the function

Ea_Cancel shall check if the module state is MEMIF_UNINIT. If this is the case, the
function Ea_Cancel shall raise the development error EA_E_UNINIT and return to

the caller without changing any internal variables. ⌋(BSW00406)

[EA077] ⌈ If the current module status is MEMIF_BUSY (i.e. the request to cancel a

pending job is accepted by the function Ea_Cancel), the function Ea_Cancel shall

call the cancel function of the underlying EEPROM driver. ⌋()

[EA078] ⌈ If the current module status is MEMIF_BUSY (i.e. the request to cancel a

pending job is accepted by the function Ea_Cancel), the function Ea_Cancel shall
reset the EA module’s internal variables to make the module ready for a new job
request. I.e. the function Ea_Cancel shall set the job result to

MEMIF_JOB_CANCELED and the module status to MEMIF_IDLE. ⌋()

[EA160] ⌈ If the current module status is not MEMIF_BUSY (i.e. the request to cancel

a pending job is rejected by the function Ea_Cancel), the function Ea_Cancel shall

not change the current module status or job result. ⌋()

[EA173] ⌈ If development error detection is enabled for the module: If the current

module status is not MEMIF_BUSY (i.e. there is no job to cancel and therefore the
request to cancel a pending job is rejected by the function Ea_Cancel), the function

Ea_Cancel shall raise the development error EA_E_INVALID_CANCEL. ⌋()

8.3.6 Ea_GetStatus

[EA089]

⌈
Service name: Ea_GetStatus
Syntax: MemIf_StatusType Ea_GetStatus(

 void
)

Service ID[hex]: 0x05
38 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction

- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): None

None Parameters
(inout):

None Parameters (out):
MemIf_StatusTypeMEMIF_UNINIT: The EA module has not been initialized (yet).

MEMIF_IDLE: The EA module is currently idle.
MEMIF_BUSY: The EA module is currently busy.
MEMIF_BUSY_INTERNAL: The EA module is currently busy
with internal management operations.

Return value:

Service to return the Status. Description:

 ⌋()

 [EA034] ⌈ The function Ea_GetStatus shall return MEMIF_UNINIT if the module

has not (yet) been initialized. ⌋()

[EA156] ⌈ The function Ea_GetStatus shall return MEMIF_IDLE if the module is

neither processing a request from the upper layer nor is it doing an internal

management operation. ⌋()

[EA157] ⌈ The function Ea_GetStatus shall return MEMIF_BUSY if it is currently

processing a request from the upper layer. ⌋()

[EA073] ⌈ The function Ea_GetStatus shall return MEMIF_BUSY_INTERNAL, if an

internal management operation is currently ongoing. ⌋()

Note: Internal management operation may e.g. be a re-organization of the used
EEPROM memory (garbage collection). This may imply that the underlying device
driver is – at least temporarily – busy.

8.3.7 Ea_GetJobResult

[EA090]

⌈
Ea_GetJobResult Service name:
MemIf_JobResultType Ea_GetJobResult(
 void
)

Syntax:

0x06 Service ID[hex]:
Synchronous Sync/Async:
Non Reentrant Reentrancy:

Parameters (in): None
Parameters
(inout):

None

None Parameters (out):
MemIf_JobResultType

Return value:
MEMIF_JOB_OK: The last job has been finished
successfully.

39 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

MEMIF_JOB_PENDING: The last job is waiting for
execution or currently being executed.
MEMIF_JOB_CANCELED: The last job has been canceled
(which means it failed).
MEMIF_JOB_FAILED: The last job was not finished
successfully (it failed).
MEMIF_BLOCK_INCONSISTENT: The requested block is
inconsistent, it may contain corrupted data.
MEMIF_BLOCK_INVALID: The requested block has been
invalidated, the requested operation can not be performed.

Service to return the JobResult. Description:

 ⌋()

[EA134] ⌈ If development error detection for the module EA is enabled: the function

Ea_GetJobResult shall check if the module state is MEMIF_UNINIT. If this is the
case, the function Ea_GetJobResult shall raise the development error

EA_E_UNINIT and return with MEMIF_JOB_FAILED. ⌋(BSW00406)

[EA035] ⌈ The function Ea_GetJobResult shall return the status of the last job

requested by the NVRAM manager. ⌋(BSW00406)

[EA174] ⌈ Only those jobs which have been requested directly by the upper layer

shall have influence on the job result returned by the function Ea_GetJobResult.
I.e. jobs which are issued by the EA module itself in the course of internal

management operations shall not alter the job result. ⌋()

Note: To facilitate this, the EA module may have to implement a second set of local
variables to store the data for internal jobs.

Note: Internal management operations (e.g. “garbage collection”) will only be invoked
in the context of jobs requested from the NvM. Whether they have to be done before
or after the requested job is the decision of the modules implementor and shall not be
detailed in this specification.

8.3.8 Ea_InvalidateBlock

[EA091]

⌈
Ea_InvalidateBlock Service name:
Std_ReturnType Ea_InvalidateBlock(
 uint16 BlockNumber
)

Syntax:

0x07 Service ID[hex]:
Asynchronous Sync/Async:
Non Reentrant Reentrancy:
BlockNumber Number of logical block, also denoting start address of that block

in EEPROM.
Parameters (in):

Parameters None

40 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

(inout):
None Parameters (out):
Std_ReturnType E_OK: The requested job has been accepted by the module.

E_NOT_OK - only if DET is enabled: The requested job has not
been accepted by the EA module.

Return value:

Invalidates the block BlockNumber. Description:

 ⌋()

[EA036] ⌈ The function Ea_InvalidateBlock shall take the block number and

calculate the corresponding memory block address. ⌋(BSW14009)

[EA037] ⌈ Depending on implementation, the function Ea_InvalidateBlock shall

invalidate the block <BlockNumber> by either calling the erase function of the
underlying device driver or changing some module internal management information

accordingly. ⌋()

Note: How exactly the requested block is invalidated depends on the module’s
implementation and will not be further detailed in this specification. The internal
management information has to be stored in NV memory since it has to be resistant
against resets. What this information is and how it is stored is not further detailed by
this specification.

[EA135] ⌈ If development error detection for the module Ea is enabled: the function

Ea_InvalidateBlock shall check if the module state is MEMIF_UNINIT. If this is
the case, the function Ea_InvalidateBlock shall reject the invalidation request,

raise the development error EA_E_UNINIT and return with E_NOT_OK. ⌋()

[EA175] ⌈ If development error detection is enabled for the module: the function

Ea_InvalidateBlock shall check if the module state is MEMIF_BUSY. If this is the
case, the function Ea_InvalidateBlock shall reject the invalidation request, raise

the development error EA_E_BUSY and return with E_NOT_OK. ⌋()

EA184: If development error detection is enabled for the module: if the current
module status is MEMIF_BUSY_INTERNAL and if it is not possible to suspend or
abort the internal management operation (because of data consistency / module
implementation / hardware restrictions), the function Ea_InvalidateBlock shall
reject the invalidation request, raise the development error EA_E_BUSY_INTERNAL

and return with E_NOT_OK. ⌋()

[EA149] ⌈ If development error detection for the module EA is enabled: the function

Ea_InvalidateBlock shall check whether the given block number is valid (i.e. it
has been configured). If this is not the case, the function Ea_InvalidateBlock
shall reject the request, raise the development error EA_E_INVALID_BLOCK_NO and

return with E_NOT_OK. ⌋(BSW00323)

41 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

[EA161] ⌈ If an invalidation request is rejected by the function

Ea_InvalidateBlock, i.e. requirements EA135, EA149, EA175 or EA184 apply,
the function Ea_InvalidateBlock shall not change the current module status or

job result. ⌋()

8.3.9 Ea_GetVersionInfo

[EA092]

⌈
Service name: Ea_GetVersionInfo

void Ea_GetVersionInfo(
 Std_VersionInfoType* VersionInfoPtr
)

Syntax:

0x08 Service ID[hex]:
Sync/Async: Synchronous
Reentrancy: Reentrant

None Parameters (in):
None Parameters

(inout):
VersionInfoPtr Pointer to standard version information structure. Parameters (out):
None Return value:
Service to get the version information of this module. Description:

 ⌋()

[EA061] ⌈ The function Ea_GetVersionInfo shall return the version information of this

module. The version information includes:
- Module Id
- Vendor Id

- Vendor specific version numbers (BSW00407). ⌋()

[EA062] ⌈ The function Ea_GetVersionInfo shall be pre compile time configurable

On/Off by the configuration parameter EaVersionInfoApi. ⌋()

[EA082] ⌈ If source code for caller and callee of the function Ea_GetVersionInfo
is available, the Ea module should realize this function as a macro, defined in the

modules header file. ⌋()

[EA164] ⌈ If development error detection for the module EA is enabled: the function

EA_GetVersionInfo shall check that the given data pointer is valid (i.e. that it is
not NULL). If this is not the case, the function Ea_GetVersionInfo shall raise the

development error EA_E_INVALID_DATA_PTR. ⌋()

42 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction

- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

8.3.10 Ea_EraseImmediateBlock

[EA093]

⌈
Service name: Ea_EraseImmediateBlock

Std_ReturnType Ea_EraseImmediateBlock(
 uint16 BlockNumber
)

Syntax:

0x09 Service ID[hex]:
Asynchronous Sync/Async:

Reentrancy: Non Reentrant

Parameters (in):
BlockNumber Number of logical block, also denoting start address of that block

in EEPROM.
None Parameters

(inout):
None Parameters (out):
Std_ReturnType E_OK: The requested job has been accepted by the module.

E_NOT_OK - only if DET is enabled: The requested job has not
been accepted by the EA module.

Return value:

Erases the block BlockNumber. Description:

 ⌋(BSW14032)

Note: The function Ea_EraseImmediateBlock shall only be called by e.g.
diagnostic or similar system services to pre-erase the area for immediate data if
necessary.

[EA063] ⌈ The function Ea_EraseImmediateBlock shall take the block number
and calculate the corresponding memory block address. The block offset shall be

fixed to zero for this address calculation. ⌋(BSW14009, BSW14032)

[EA064] ⌈ The function Ea_EraseImmediateBlock shall ensure that the EA

module can write immediate data. Whether this involves physically erasing a memory
area and therefore calling the erase function of the underlying driver depends on the

implementation. ⌋(BSW14032)

[EA136] ⌈ If development error detection for the module EA is enabled: the function

Ea_EraseImmediateBlock shall check if the module state is MEMIF_UNINIT. If
this is the case, the function Ea_EraseImmediateBlock shall reject the erase
request, raise the development error EA_E_UNINIT and return with E_NOT_OK.

⌋(BSW00406)

[EA176] ⌈ If development error detection is enabled for the module: the function

Ea_EraseImmediateBlock shall check if the module state is MEMIF_BUSY. If this
is the case, the function Ea_EraseImmediateBlock shall reject the erase request,

raise the development error EA_E_BUSY and return with E_NOT_OK. ⌋()

43 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

EA185:⌈ If development error detection is enabled for the module: if the current

module status is MEMIF_BUSY_INTERNAL and if it is not possible to suspend or
abort the internal management operation (because of data consistency / module
implementation / hardware restrictions), the function Ea_EraseImmediateBlock
shall reject the request, raise the development error EA_E_BUSY_INTERNAL and

return with E_NOT_OK. ⌋()

[EA152] ⌈ If development error detection for the module EA is enabled: the function

Ea_EraseImmediateBlock shall check whether the given block number is valid
(i.e. it has been configured). If this is not the case, the function
Ea_EraseImmediateBlock shall reject the erase request, raise the development

error EA_E_INVALID_BLOCK_NO and return with E_NOT_OK. ⌋(BSW00323)

[EA065] ⌈ If development error detection for the EA module is enabled, the function

Ea_EraseImmediateBlock shall check whether the addressed logical block is
configured as containing immediate data (configuration parameter
EaImmediateData == TRUE). If not, the function Ea_EraseImmediateBlock
shall reject the erase request, raise the deleopment error

EA_E_INVALID_BLOCK_NO and return with E_NOT_OK. ⌋(BSW00323, BSW14032)

[EA162] ⌈ If an erase request for an immediate block is rejected by the function

Ea_EraseImmediateBlock, i.e. requirements EA136, EA176, EA152, EA065 or
EA185 apply, the function Ea_EraseImmediateBlock shall not change the current

module status or job result. ⌋()

8.4 Call-back notifications

This chaper lists all functions provided by the Ea module to lower layer modules.

[EA114] ⌈ The Ea module shall provide function prototypes of the callback functions

in the file Ea_Cbk.h ⌋()

Note: Depending on the implementation of the modules making up the NV memory
stack, callback routines provided by the EA module may be called on interrupt level.
The implementation of the EA module therefore has to make sure that the runtime of
those routines is reasonably short, i.e. since callbacks may be propagated upward
through several software layers. Whether callback routines are allowable / feasible
on interrupt level depends on the project specific needs (reaction time) and
limitations (runtime in interrupt context). Therefore system design has to make sure
that the configuration of the involved modules meets those requirements.

44 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction

- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

8.4.1 Ea_JobEndNotification

[EA094]

⌈
Service name: Ea_JobEndNotification

void Ea_JobEndNotification(
 void
)

Syntax:

0x10 Service ID[hex]:
Synchronous Sync/Async:
Non Reentrant Reentrancy:
None Parameters (in):
None Parameters

(inout):
None Parameters (out):
None Return value:
Service to report to this module the successful end of an asynchronous operation. Description:

 ⌋()

The underlying EEPROM driver shall call the function Ea_JobEndNotification to
report the successful end of an asynchronous operation.

[EA153] ⌈ If the job result is currently MEMIF_JOB_PENDING, the function

Ea_JobEndNotification shall set the job result to MEMIF_JOB_OK, else it shall leave

the job result untouched. ⌋()

[EA051] ⌈ The function Ea_JobEndNotification shall perform any necessary
block management operations and shall call the corresponding callback routine of the

upper layer module (Ea_NvMJobEndNotification). ⌋()

Note: The function Ea_JobEndNotification shall be callable on interrupt level.

8.4.2 Ea_JobErrorNotification

[EA095]

⌈
Ea_JobErrorNotification Service name:
void Ea_JobErrorNotification(
 void
)

Syntax:

0x11 Service ID[hex]:
Synchronous Sync/Async:
Non Reentrant Reentrancy:
None Parameters (in):
None Parameters

(inout):
None Parameters (out):
None Return value:

Description: Service to report to this module the failure of an asynchronous operation.

45 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

 ⌋()

The underlying EEPROM driver shall call the function Ea_JobErrorNotification
to report the failure of an asynchronous operation.

[EA154] ⌈ If the job result is currently MEMIF_JOB_PENDING, the function

Ea_JobErrorNotification shall set the job result to MEMIF_JOB_FAILED, else it shall

leave the job result untouched. ⌋()

[EA053] ⌈ The function Ea_JobErrorNotification shall perform any necessary
block management and error handling operations and shall call the corresponding

callback routine of the upper layer module (Ea_NvMJobErrorNotification). ⌋()

Note: The function Ea_JobErrorNotification shall be callable on interrupt level.

8.5 Scheduled functions

8.5.1 Ea_MainFunction

These functions are directly called by the Basic Software Scheduler. The following
functions shall have no return value and no parameter. All functions shall be non re-
entrant.

[EA096]

 ⌈
Service name: Ea_MainFunction
Syntax: void Ea_MainFunction(

 void
)

Service ID[hex]: 0x12
Timing: VARIABLE_CYCLIC
Description: Service to handle the requested jobs and the internal management operations.

 ⌋(BSW00373)

Note: The cycle time for the function Ea_MainFunction should be the same as that
configured for the underlying EEPROM driver.

[EA178] ⌈ If the module initialization (started in the function Ea_Init) is completed

in the module’s main function, the function Ea_MainFunction shall set the module
status from MEMIF_BUSY_INTERNAL to MEMIF_IDLE once initialization of the

module has been successfully finished. ⌋()

46 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

[EA056] ⌈ The function Ea_MainFunction shall asynchronously handle the read /

write / erase / invalidate jobs requested by the upper layer and internal management

operations. ⌋()

[EA074] ⌈ The function Ea_MainFunction shall check, whether the block

requested for reading has been invalidated by the upper layer module. If so, the
function Ea_MainFunction shall set the job result to MEMIF_BLOCK_INVALID and

call the job error notification function if configured. ⌋()

[EA104] ⌈ The function Ea_MainFunction shall check the consistency of the
logical block being read before notifying the caller. If an inconsistency of the block is
detected (see EA046 and EA047), the function Ea_MainFunction shall set the job
result to MEMIF_BLOCK_INCONSISTENT and call the error notification routine of the

upper layer if configured. ⌋(BSW14032, BSW14015, BSW14016)

Note: In this case the upper layer shall not use the contents of the data buffer.

EA186: ⌈ If the current module status is MEMIF_BUSY_INTERNAL and if the internal
management operation can be suspended without jeopardizing the data consistency:
the function Ea_MainFunction shall save all information which is necessary to
resume the internal management operation, suspend the internal management

operation and start processing the job requested by the upper layer. ⌋()

EA187: ⌈ If the current module status is MEMIF_BUSY_INTERNAL and if the internal

management operation can be aborted without jeopardizing the data consistency: the
function Ea_MainFunction shall save all information which is necessary to restart
the internal management operation, abort the internal management operation and

start processing the job requested by the upper layer. ⌋()

Note: Whether an internal management operation can be suspended or aborted
depends on the type of management operation, the implementation of the EA module
and the capabilities of the underlying hardware and thus cannot be determined in this
document.

EA188: ⌈ If an internal management operation has been suspended because of a job

request from the upper layer, the function Ea_MainFunction shall resume this
internal management operation once the job requested by the upper layer has been

finished. ⌋()

EA189: ⌈ If an internal management operation has been aborted because of a job

request from the upper layer, the function Ea_MainFunction shall restart this

47 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

internal management operation once the job requested by the upper layer has been

finished. ⌋()

8.6 Expected Interfaces

In this chapter all interfaces required from other modules are listed.

8.6.1 Mandatory Interfaces

This chapter defines all interfaces which are required to fulfill the core functionality of
the module.

[EA097]

⌈
API function Description
Eep_Cancel Cancels a running job.
Eep_Erase Service for erasing EEPROM sections.
Eep_GetJobResult This service returns the result of the last job.
Eep_GetStatus Returns the EEPROM status.
Eep_Read Reads from EEPROM.
Eep_SetMode Sets the mode.
Eep_Write Writes to EEPROM.

 ⌋()

8.6.2 Optional Interfaces

This chapter defines all interfaces which are required to fulfill an optional functionality
of the module.

[EA098]

⌈
API function Description
Det_ReportError Service to report development errors.

 ⌋()

8.6.3 Configurable interfaces

In this chapter all interfaces are listed where the target function could be configured.
The target function is usually a callback function. The names of this kind of interfaces
are not fixed because they are configurable.

Note: Depending on the implementation of the modules making up the NV memory
stack, callback routines invoked by the EA module may be called on interrupt level.
The implementor of the module providing these routines therefore has to make sure
that their runtime is reasonably short, i.e. since callbacks may be propagated upward
through several software layers. Whether callback routines are allowable / feasible

48 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

on interrupt level depends on the project specific needs (reaction time) and
limitations (runtime in interrupt context). Therefore system design has to make sure
that the configuration of the involved modules meets those requirements.

[EA099]

⌈
Service name: NvM_JobEndNotification
Syntax: void NvM_JobEndNotification(

 void
)

Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): None
Parameters
(inout):

None

Parameters (out): None
Return value: None
Description: Function to be used by the underlying memory abstraction to signal end of job

without error.

 ⌋(BSW00385)

[EA054] ⌈ The Ea module shall call the function defined in the configuration

parameter EaNvMJobEndNotification upon successful end of an asynchronous
read operation after performing all necessary internal management operations.
Successful end of an asynchronous read operation implies the read job is finished

and the result is OK. ⌋()

[EA141] ⌈ The Ea module shall call the function defined in the configuration

parameter EaNvMJobEndNotification upon successful end of an asynchronous
write operation after performing all necessary internal management operations.
Successful end of an asynchronous write operation implies the write job is finished,

the result is OK and the block has been marked as valid. ⌋()

[EA142] ⌈ The Ea module shall call the function defined in the configuration

parameter EaNvMJobEndNotification upon successful end of an asynchronous
erase operation after performing all necessary internal management operations.
Successful end of an asynchronous erase operation implies the erase job for

immediate data is finished and the result is OK (see EA064). ⌋()

[EA143] ⌈ The Ea module shall call the function defined in the configuration

parameter EaNvMJobEndNotification upon successful end of an asynchronous
block invalidation operation after performing all necessary internal management
operations. Successful end of an asynchronous block invalidation operation implies
the block invalidation job is finished and the result is OK (i.e. the block has been

marked as invalid). ⌋()

49 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

[EA100]

 ⌈
Service name: NvM_JobErrorNotification
Syntax: void NvM_JobErrorNotification(

 void
)

Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): None
Parameters
(inout):

None

Parameters (out): None
Return value: None
Description: Function to be used by the underlying memory abstraction to signal end of job with

error.

 ⌋(BSW00385)

[EA055] ⌈ The Ea module shall call the function defined in the configuration

parameter EaNvMJobErrorNotification upon failure of an asynchronous read
operation after performing all necessary internal management and error handling
operations. Failure of an asynchronous read operation implies the read job is finished

and has failed (i.e. block invalid or inconsistent). ⌋()

[EA144] ⌈ The Ea module shall call the function defined in the configuration

parameter EaNvMJobErrorNotification upon failure of an asynchronous write
operation after performing all necessary internal management and error handling
operations. Failure of an asynchronous write operation implies the write job is

finished and has failed and block has been marked as inconsistent. ⌋()

[EA145] ⌈ The Ea module shall call the function defined in the configuration

parameter EaNvMJobErrorNotification upon failure of an asynchronous erase
operation after performing all necessary internal management and error handling
operations. Failure of an asynchronous erase operation implies the erase job for

immediate data is finished and has failed (see EA064). ⌋()

[EA146] ⌈ The Ea module shall call the function defined in the configuration

parameter EaNvMJobErrorNotification upon failure of an asynchronous block
invalidation operation after performing all necessary internal management and error
handling operations. Failure of an asynchronous block invalidation operation implies

the block invalidation job is finished and has failed. ⌋()

50 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

9 Sequence diagrams

Note: For a vendor specific library the following sequence diagrams are valid only
insofar as they show the relation to the calling modules (Ecu_StateManager resp.
memory abstraction interface). The calling relations from a memory abstraction
module to an underlying driver are not relevant / binding for a vendor specific library.

9.1 Ea_Init

The following figure shows the call sequence for the Ea_Init routine. It is different
from that of all other services of this module as it is not called by the NVRAM
manager and not called via the memory abstraction interface.

«module»

EcuM

«module»

Ea

Ea_Init()

Ea_Init()

Figure 5: Sequence diagram of “Ea_Init” service

51 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

9.2 Ea_SetMode

The following figure shows as an example the call sequence for the Ea_SetMode
service. This sequence diagram also applies to the other synchronous services of
this module with exception of the Ea_Init routine (see above).

«module»

NvM

«module»

Ea

«module»

Eep

«module»

MemIf

MemIf_SetMode(MemIf_ModeType) :
Std_ReturnType

Ea_SetMode(MemIf_ModeType)

Eep_SetMode(MemIf_ModeType)

Eep_SetMode()

Ea_SetMode()

MemIf_SetMode()

Figure 6: Sequence diagram of the “Ea_SetMode” service

52 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

9.3 Ea_Write

The following figure shows as an example the call sequence for the Ea_Write
service. This sequence diagram also applies to the other asynchronous services of
this module.

«module»

NvM

«module»

MemIf

«module»

Eep

BSW Task (OS task
or cyclic call)

«module»

Ea

MemIf_Write(Std_ReturnType, uint8, uint16, uint8*)

Ea_Write(Std_ReturnType, uint16, uint8*)

Ea_Write()

MemIf_Write()

Ea_MainFunction()

Eep_Write(Std_ReturnType, Eep_AddressType, const
uint8*, Eep_LengthType)

Eep_Write()

Ea_MainFunction()

Eep_MainFunction()

Ea_JobEndNotification()

NvM_JobEndNotification()

NvM_JobEndNotification()

Ea_JobEndNotification()

Eep_MainFunction()

Figure 7: Sequence diagram “Ea_Write”

53 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

9.4 Ea_Cancel

The following figure shows as an example the call sequence for a canceled
Ea_Write service. This sequence diagram shows that Ea_Cancel is asynchronous
w.r.t. the underlying hardware while itself being synchronous.

54 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

«module»

NvM

EEPROM HW«module»

MemIf

«module»

Eep

BSW Task (OS task
or cyclic call)

«module»

Ea

MemIf_Write(return, DeviceIndex, BlockNumber, DataBufferPtr)

Now the EEPROM
hardware is performing
the requested write
operation.

Check HW status. Check
job status. If HW is
finished and job is not
finished, issue next
write command.

Ea_Write(retrun,BlockNumber,DataBufferPtr)

Check if hardware is
free (idle). If so, issue
first write command.

[a_Write]:Ea_Write()

MemIf_Write()

Ea_MainFunction()

Eep_Write(return, EepromAddress, DataBufferPtr, Length)

Eep_Write()

Ea_MainFunction()

Eep_MainFunction()

Eep_MainFunction()

MemIf_Cancel(DeviceIndex)
Ea_Cancel()

Eep_Cancel()

Eep_Cancel resets
module internal job
variables.

The requested write
operation might sti l l be
running in the
hardware

Ea_JobErrorNotification()

NvM_JobErrorNotification()

NvM_JobErrorNotification()

Ea_JobErrorNotification()

Eep_Cancel()

Ea_Cancel()

MemIf_Cancel()

alt request pending

The last requested
write operation might
sti l l be running in the
hardware.

[no further request until next main function cycle]

[request issued before next main function cycle is due]

Eep_MainFunction()

No job pending.
Eep_MainFunction()
does nothing.Eep_MainFunction()

MemIf_Write(return, DeviceIndex, BlockNumber,
DataBufferPtr)

Check if hardware is
free (idle). If so,
issue first write
command.

Ea_Write(retrun,BlockNumber,DataBufferPtr)

Ea_Write()

MemIf_Write()

Ea_MainFunction()

Eep_Write(return, EepromAddress, DataBufferPtr, Length)

The last requested
write operation might
sti l l be running in the
hardware.

Eep_Write()

Ea_MainFunction()

Check HW status. Check
job status. If HW is
finished and job is not
finished, issue next
write command.

Eep_MainFunction() The last requested
write operation might
sti l l be running in the
hardware.

Eep_MainFunction()

55 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction

- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

Figure 8: Sequence diagram „Ea_Cancel“

56 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

10 Configuration specification

10.1 How to read this chapter

In addition to this section, it is highly recommended to read the documents:

- AUTOSAR Layered Software Architecture [2]
- AUTOSAR ECU Configuration Specification [7]

This document describes the AUTOSAR configuration methodology and the
AUTOSAR configuration metamodel in detail.

The following is only a short survey of the topic and it will not replace the ECU
Configuration Specification document.

10.1.1 Configuration and configuration parameters

Configuration parameters define the variability of the generic part(s) of an
implementation of a module. This means that only generic or configurable module
implementation can be adapted to the environment (software/hardware) in use during
system and/or ECU configuration.

The configuration of parameters can be achieved at different times during the
software process: before compile time, before link time or after build time. In the
following, the term “configuration class” (of a parameter) shall be used in order to
refer to a specific configuration point in time.

10.1.2 Containers

Containers structure the set of configuration parameters. This means:

- all configuration parameters are kept in containers.
- (sub-) containers can reference (sub-) containers. It is possible to assign a

multiplicity to these references. The multiplicity then defines the possible
number of instances of the contained parameters.

10.1.3 Specification template for configuration parameters

The following tables consist of three sections:

- the general section
- the configuration parameter section
- the section of included/referenced containers

Pre-compile time - specifies whether the configuration parameter shall be

of configuration class Pre-compile time or not

Label Description
x The configuration parameter shall be of configuration class Pre-compile time.
-- The configuration parameter shall never be of configuration class Pre-compile time.

57 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

Link time - specifies whether the configuration parameter shall be
of configuration class Link time or not

Label Description
x The configuration parameter shall be of configuration class Link time.
-- The configuration parameter shall never be of configuration class Link time.

Post Build - specifies whether the configuration parameter shall be

of configuration class Post Build or not

Label Description
The configuration parameter shall be of configuration class Post Build and no specific
implementation is required.

x

Loadable – the configuration parameter shall be of configuration class Post Build and only
one configuration parameter set resides in the ECU.

L

Multiple – the configuration parameter shall be of configuration class Post Build and is
selected out of a set of multiple parameters by passing a dedicated pointer to the init
function of the module.

M

-- The configuration parameter shall never be of configuration class Post Build.

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed
meanings of the parameters describe Chapters 7 and Chapter 8.

10.2.1 Variants

[EA163] ⌈ The EA module shall support (only) the following configuration variants:

 VARIANT-PRE-COMPILE
Only parameters with “Pre-compile time” configuration are allowed in this

variant. ⌋()

10.2.2 Ea
Ea Module Name
Configuration of the Ea (EEPROM Abstraction)
module.
The module shall abstract from the device specific
addressing scheme and segmentation and provide the
upper layers with a virtual addressing scheme and
segmentation as well as a 'virtually' unlimited number
of erase cycles.

Module Description

Included Containers
Container Name Multiplicity Scope / Dependency

Configuration of block specific parameters for the EEPROM
abstraction module.

EaBlockConfiguration 1..*

General configuration of the EEPROM abstraction module. This
container lists block independent configuration parameters.

EaGeneral 1

EaPublishedInformatio 1 Additional published parameters not covered by

58 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

n CommonPublishedInformation container. Note that these
parameters do not have any configuration class setting, since they
are published information.

59 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

10.2.3 EaGeneral
EA039_Conf : SWS Item
EaGeneral{EA_ModuleConfiguration} Container Name
General configuration of the EEPROM abstraction module. This container lists
block independent configuration parameters.

Description

Configuration Parameters

SWS Item EA120_Conf :

EaDevErrorDetect {EA_DEV_ERROR_DETECT} N ame
Description Pre-processor switch to enable and disable development

error detection. true: Development error detection enabled.
false: Development error detection disabled.

Multiplicity 1
Type EcucBooleanParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
scope: module Scope / Dependency

SWS Item EA118_Conf :
N EaIndex ame

Specifies the InstanceId of this module instance. If
only one instance is present it shall have the Id 0.

Description

1 Multiplicity
EcucIntegerParamDef Type

Range 0 .. 254
Default value --

X All Variants Pre-compile time
-- Link time

ConfigurationClass

-- Post-build time

 Scope / Dependency

SWS Item EA121_Conf :
N ame EaNvmJobEndNotification {EA_NVM_JOB_END_NOTIFICATION}
Description Mapped to the job end notification routine provided by the upper

layer module (NvM_JobEndNotification).
Multiplicity 0..1
Type EcucFunctionNameDef

-- Default value
maxLength --
minLength --

-- regularExpression
X All Variants Pre-compile time

Link time --
ConfigurationClass

Post-build time --
Scope / Dependency scope: module

SWS Item EA122_Conf :
N ame EaNvmJobErrorNotification

{EA_NVM_JOB_ERROR_NOTIFICATION}
Mapped to the job error notification routine provided by the upper layer
module (NvM_JobErrorNotification).

Description

0..1 Multiplicity
EcucFunctionNameDef Type

Default value --
60 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction

- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

maxLength --
minLength --

-- regularExpression
X All Variants Pre-compile time

Link time --
ConfigurationClass

Post-build time --
Scope / Dependency scope: module

SWS Item EA123_Conf :
N ame EaPollingMode {EA_POLLING_MODE}

Pre-processor switch to enable and disable the polling
mode for this module. true: Polling mode enabled,
callback functions (provided to EEP module) disabled.
false: Polling mode disabled, callback functions
(provided to EEP module) enabled.

Description

1 Multiplicity
EcucBooleanParamDef Type

Default value --
Pre-compile time X All Variants
Link time --

ConfigurationClass

-- Post-build time
scope: module Scope / Dependency

SWS Item EA001_Conf :
N EaSetModeSupported {EA_SET_MODE_SUPPORTED} ame

Compile switch to enable / disable the function Ea_SetMode. Description
1 Multiplicity
EcucBooleanParamDef Type

Default value true
Pre-compile time X All Variants
Link time --

ConfigurationClass

-- Post-build time
scope: module Scope / Dependency

SWS Item EA124_Conf :
N EaVersionInfoApi {EA_VERSION_INFO_API} ame

Pre-processor switch to enable / disable the API to read out
the modules version information. true: Version info API
enabled. false: Version info API disabled.

Description

1 Multiplicity
EcucBooleanParamDef Type

Default value --
Pre-compile time X All Variants
Link time --

ConfigurationClass

-- Post-build time
scope: module Scope / Dependency

SWS Item EA125_Conf :
N EaVirtualPageSize {EA_VIRTUAL_PAGE_SIZE} ame

The size in bytes to which logical blocks shall be aligned. Description
1 Multiplicity
EcucIntegerParamDef Type

Range 0 .. 65535
Default value --

X Pre-compile time All Variants ConfigurationClass
-- Link time

61 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

-- Post-build time
scope: module Scope / Dependency

No Included Containers

10.2.4 EaBlockConfiguration

EA040_Conf : SWS Item
EaBlockConfiguration{EA_BlockConfiguration} Container Name
Configuration of block specific parameters for the EEPROM abstraction module. Description

Configuration Parameters

SWS Item EA130_Conf :
N ame EaBlockNumber {EA_BLOCK_NUMBER}
Description Block identifier (handle). 0x0000 and 0xFFFF shall not be used for

block numbers (see EA006). Range: min =
2^NVM_DATASET_SELECTION_BITS max = 0xFFFF -
2^NVM_DATASET_SELECTION_BITS Note: Depending on the
number of bits set aside for dataset selection several other block
numbers shall also be left out to ease implementation.

Multiplicity 1
Type EcucIntegerParamDef (Symbolic Name generated for this

parameter)
Range 1 .. 65534

-- Default value
X All Variants Pre-compile time

Link time --
ConfigurationClass

-- Post-build time
scope: module Scope / Dependency

SWS Item EA128_Conf :
N ame EaBlockSize {EA_BLOCK_SIZE}
Description Size of a logical block in bytes.
Multiplicity 1
Type EcucIntegerParamDef
Range 1 .. 65535
Default value --

X All Variants Pre-compile time
-- Link time

ConfigurationClass

-- Post-build time
scope: module Scope / Dependency

SWS Item EA131_Conf :
N ame EaImmediateData {EA_IMMEDIATE_DATA}
Description Marker for high priority data. true: Block contains

immediate data. false: Block does not contain immediate
data.

Multiplicity 1
Type EcucBooleanParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

-- Post-build time
scope: module Scope / Dependency

SWS Item EA119_Conf :
N ame EaNumberOfWriteCycles {EA_NUMBER_OF_WRITE_CYCLES}

62 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

Number of write cycles required for this block. Description
1 Multiplicity
EcucIntegerParamDef Type

Range 0 .. 4294967295
Default value --

X All Variants Pre-compile time
-- Link time

ConfigurationClass

-- Post-build time
scope: module Scope / Dependency

SWS Item EA129_Conf :
N ame EaDeviceIndex {EA_DEVICE_INDEX}
Description Device index (handle). Range: 0 .. 254 (0xFF

reserved for broadcast call to GetStatus function).
Multiplicity 1
Type Reference to [EepGeneral]

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: module

dependency: This information is needed by the
NVRAM manager respectively the Memory
Abstraction Interface to address a certain logical
block. It is listed in this specification to give a
complete overview over all block related configuration
parameters.

No Included Containers

10.3 Published Information

[[EA177]] ⌈ The standardized common published parameters as required by
BSW00402 in the General Requirements on Basic Software Modules [3] shall be
published within the header file of this module and need to be provided in the BSW
Module Description. The according module abbreviation can be found in the List of

Basic Software Modules [1]. ⌋()

Additional module-specific published parameters are listed below if applicable.

10.3.1 EaPublishedInformation
SWS Item EA043_Conf :

EaPublishedInformation Container Name
Additional published parameters not covered by
CommonPublishedInformation container.

Description
Note that these parameters do not have any configuration class setting,
since they are published information.

Configuration Parameters

EA126_Conf : SWS Item
N ame EaBlockOverhead {EA_BLOCK_OVERHEAD}

63 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

Management overhead per logical block in bytes. Note: If
the management overhead depends on the block size or
block location a formula has to be provided that allows the
configurator to calculate the management overhead
correctly.

Description

1 Multiplicity
EcucIntegerParamDef Type
0 .. 65535 Range
-- Default value

X All Variants ConfigurationClass Published Information
scope: module Scope / Dependency

SWS Item EA070_Conf :

EaMaximumBlockingTime {EA_MAXIMUM_BLOCKING_TIME} N ame
The maximum time the EA module's API routines shall be blocked
(delayed) by internal operations. (EA070) Note: Internal
operations in that case means operations that are not explicitly
invoked from the upper layer module but need to be handled for
proper operation of this module or the underlying memory driver.

Description

Multiplicity 1
EcucFloatParamDef Type

Range 0 .. INF
Default value --
ConfigurationClass Published Information X All Variants

scope: module Scope / Dependency

SWS Item EA127_Conf :

EaPageOverhead {EA_PAGE_OVERHEAD} N ame
Management overhead per page in bytes. Note: If the
management overhead depends on the block size or
block location a formula has to be provided that allows the
configurator to calculate the management overhead
correctly.

Description

Multiplicity 1
EcucIntegerParamDef Type

Range 0 .. 65535
Default value --
ConfigurationClass Published Information X All Variants

scope: module Scope / Dependency

No Included Containers

64 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

11 Changes to R3.x

11.1 Deleted SWS Items

SWS Item Rationale
EA106 No requirement, statement left in
EA107 No requirement, statement left in
EA112 No requirement, statement left in
EA076 No requirement, statement left in
EA010 Requirement split into EA139 and EA140
EA050 No requirement, statement left in
EA052 No requirement, statement left in
EA012 Requirement deleted (confusing)
EA110 Requirement deleted (confusing)
EA116 Requirement deleted (redundant)
EA009 No requirement, statement left in (re-formulated)
EA115 Requirement deleted (redundant with EA074)

11.2 Replaced SWS Items

SWS Item of Release replaced by

SWS Item
Rationale

11.3 Changed SWS Items

SWS Item Rationale
EA113 Picture extended and replaced
EA051 EA callback routine renamed to avoid naming conflicts
EA101 EA callback routine renamed to avoid naming conflicts
EA053 EA callback routine renamed to avoid naming conflicts
EA102 EA callback routine renamed to avoid naming conflicts

Configuruation parameter for NvM callback routine renamed to avoid
naming conflicts

EA054

Configuruation parameter for NvM callback routine renamed to avoid
naming conflicts

EA055

EA025 Copy-paste-error with FEE / EA module status fixed.
EA045 Copy-paste-error with development error switch fixed.
EA010 Development error EA_E_NOT_INITIALIZED added.
EA054 Callback notification for block invalidation (now EA143)
EA055 Callback notification for block invalidation (now EA146)
EA054 Req. split up to make it atomic: EA141, EA142, EA143
EA055 Req. split up to make it atomic: EA144, EA145, EA146
EA038 Check for invalid block number excluded from requirement
EA024 Setting for block offset restricted to address calculation.
EA063 Setting for block offset added to req. on address calculation.
EA037 Requirement refined (dependency added)
EA078 Requirement detailed (job result, module status)
EA118_Conf Range restricted to meaningful min. & max. values.
EA054, EA141, EA142,
EA143, EA055, EA144,
EA145, EA146

Wrong naming convention for configuration parameters
EaNvMJobEndNotification and EaNvmJobErrorNotification corrected.

EA034, EA073 Description of Ea_GetStatus behaviour corrected.
EA121_Conf, Multiplicity of configuration parameters EaNvmJobEndNotification and

65 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

EA122_Conf EaNvmJobErrorNotification adapted.

11.4 Added SWS Items

SWS Item Rationale
EA128 Check for initialization status
EA129 Check for initialization status
EA130 Check for initialization status
EA131 Check for initialization status
EA132 Check for initialization status
EA133 Check for initialization status
EA134 Check for initialization status
EA135 Check for initialization status
EA136 Check for initialization status
EA137 Module shall not provide a job queue (explcit statement)
EA139 Req. EA010 split up to make it atomic.
EA140 Req. EA010 split up to make it atomic.
EA141 Req. EA054 split up to make it atomic (this is EA054b)
EA142 Req. EA054 split up to make it atomic (this is EA054c)
EA143 Req. EA054 split up to make it atomic (this is EA054d)
EA144 Req. EA055 split up to make it atomic (this is EA055b)
EA145 Req. EA055 split up to make it atomic (this is EA055c)
EA146 Req. EA055 split up to make it atomic (this is EA055d)
EA147 Reformulation of Ea_Read description & functionality.
EA148 Clarification for Ea_Write, analogue to Ea_Read
EA149 Check for valid block no. added (was missing)
EA150 Compile switch to enable / disable Ea_SetMode added.
EA151 Setting of length parameter for write job added (was missing)
EA152 Check for valid block no. added (was missing)
EA153 Changing job result from job end notification routine.
EA154 Changing job result from job error notification routine.
EA155 Support of debugging concept added
EA156, EA157 Description of Ea_GetStatus behaviour corrected.
EA158, EA159,
EA160, EA161,
EA162

Job result (and module status) shall not be affected by rejected job requests.

EA163 Clarification of configuration variant description
EA001_PI Rework of Published Information

66 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

12 Changes to R4.x

12.1 Deleted SWS Items

SWS Item Rationale
EA038, EA139, EA140
EA133
EA101, EA102

12.2 Replaced SWS Items

SWS Item of Release replaced by

SWS Item
Rationale

12.3 Changed SWS Items

SWS Item Rationale
EA113 NvM_Cbk.h included optionally
EA013 Inter module checks detailed
EA086, EA087, EA089,
EA091, EA093

Job result descriptions updated

EA013 Inter module checks clarified
EA013
EA156, EA157
EA037, EA158, EA159,
EA160, EA161, EA162

EA013
EA_E_PARAM_POINTER EA049

EA017, EA020, EA021,
EA022, EA056, EA065,
EA072, EA077, EA078,
EA128, EA129, EA130,
EA131, EA132, EA133,
EA134, EA135, EA136,
EA147, EA148, EA149,
EA152, EA156, EA157,
EA158, EA159, EA160,
EA161, EA162, EA164

EA022, EA025,
EA149, EA158,
EA159, EA161,
EA162

12.4 Added SWS Items

SWS Item Rationale
EA164 DET error if NULL pointer is passed as an argument
EA165, EA166, EA167,
EA168, EA169, EA170;
EA171, EA172, EA173,
EA174, EA175, EA176,
EA178

67 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

EA179, EA180, EA181,
EA182, EA183, EA184,
EA185, EA186, EA187,
EA188, EA189

68 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

Specification of EEPROM Abstraction
 V2.0.0

R4.0 Rev 3

13 Not applicable requirements

[EA999] ⌈ These requirements are not applicable to this specification. ⌋ (BSW00416,

BSW168, BSW00423, BSW00424, BSW00425, BSW00426, BSW00427,
BSW00428, BSW00429, BSW00431, BSW00432, BSW00433, BSW00434,
BSW00336, BSW00339, BSW00421, BSW00422, BSW00420, BSW00417,
BSW161, BSW162, BSW00324, BSW005, BSW00415, BSW164, BSW00326,
BSW00342, BSW160, BSW007, BSW00300, BSW00347, BSW00305, BSW00307,
BSW00314, BSW00348, BSW00353, BSW00361, BSW00302, BSW00328,
BSW00312, BSW006, BSW00304, BSW00355, BSW00378, BSW00306,
BSW00308, BSW00309, BSW00371, BSW00330, BSW009, BSW00401, BSW172,
BSW010, BSW00333, BSW00321, BSW00341, BSW00334, BSW12263,
BSW12267, BSW12125, BSW12163, BSW12058, BSW12059, BSW12060,
BSW12461, BSW12462, BSW12463, BSW12062, BSW12068, BSW12069,
BSW157, BSW12155, BSW12063, BSW12129, BSW12064, BSW12067,
BSW12077, BSW12078, BSW12092, BSW12265, BSW12081, BSW14018)

69 of 69 Document ID 287: AUTOSAR_SWS_EEPROMAbstraction
- AUTOSAR confidential -

	1 Introduction and functional overview
	2 Acronyms and abbreviations
	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1File structure
	5.1.1 Code file structure
	5.1.2 Header file structure

	6 Requirements traceability
	7 Functional specification
	7.1 General behavior
	7.1.1 Addressing scheme and segmentation
	7.1.2 Address calculation
	7.1.3 Limitation of erase / write cycles
	7.1.4 Handling of “immediate” data
	7.1.5 Managing block consistency information

	7.2 Error classification
	7.3 Error detection
	7.4 Error notification
	7.5 Consistency checks
	7.6 Debugging support

	8 API specification
	8.1 Imported Types
	8.2 Type definitions
	8.3 Function definitions
	8.3.1 Ea_Init
	8.3.2 Ea_SetMode
	8.3.3 Ea_Read
	8.3.4 Ea_Write
	8.3.5 Ea_Cancel
	8.3.6 Ea_GetStatus
	8.3.7 Ea_GetJobResult
	8.3.8 Ea_InvalidateBlock
	8.3.9 Ea_GetVersionInfo
	8.3.10 Ea_EraseImmediateBlock

	8.4 Call-back notifications
	8.4.1 Ea_JobEndNotification
	8.4.2 Ea_JobErrorNotification

	8.5 Scheduled functions
	8.5.1 Ea_MainFunction

	8.6 Expected Interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.3 Configurable interfaces

	9 Sequence diagrams
	9.1 Ea_Init
	9.2 Ea_SetMode
	9.3 Ea_Write
	9.4 Ea_Cancel

	10 Configuration specification
	10.1 How to read this chapter
	10.1.1 Configuration and configuration parameters
	10.1.2 Containers
	10.1.3 Specification template for configuration parameters

	10.2 Containers and configuration parameters
	10.2.1 Variants
	10.2.2
Ea
	10.2.3 EaGeneral
	10.2.4 EaBlockConfiguration

	10.3 Published Information
	10.3.1
EaPublishedInformation

	11 Changes to R3.x
	11.1 Deleted SWS Items
	11.2 Replaced SWS Items
	11.3 Changed SWS Items
	11.4 Added SWS Items

	12 Changes to R4.x
	12.1 Deleted SWS Items
	12.2 Replaced SWS Items
	12.3 Changed SWS Items
	12.4 Added SWS Items

	13 Not applicable requirements

