
Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

Document Title Specification of CAN Trans-
ceiver Driver

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 071
Document Classification Standard

Document Version 3.0.0
Document Status Final
Part of Release 4.0
Revision 3

Document Change History
Date Version Changed by Change Description
23.11.2011 3.0.0 AUTOSAR

Administration
 Added support for Partial Networking
 Implemented Production error concept
 Updated Baud rate configuration pa-

rameter handling
 Added support to detect that power-on

was caused by CAN communication
 Reentrancy attribute is corrected for

APIs
 Corrections in few requirements
 Optional Interfaces Table is corrected

21.10.2010 2.1.0 AUTOSAR
Administration

 CanTrcv state names changed and
state diagram modified

 Usage of SBCs are no longer restricted
 Mode switch requests to the current

mode are allowed
 CanTrvc driver has to invoke

CanIf_TrcvModeIndication after each
mode switch request, when the re-
quested mode has been reached

1 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

04.12.2009 2.0.0 AUTOSAR
Administration

 Wakeup event reporting: In R4.0,
CanTrcv stores wakeup events. CanIf
invokes function
CanTrcv_CheckWakeup() periodically
to check for wakeup events.

 Wakeup modes: In R4.0, wakeup
through interrupt mechanism is not
supported. Only POLLING and
NOT_SUPPORTED wakeup modes are
available in CanTrcv.

 Sleep Wait Count added: Wait count for
transitioning into sleep mode (Can-
TrcvSleepWaitCount) added.

 Legal disclaimer revised
23.06.2008 1.2.1 AUTOSAR

Administration
 Legal disclaimer revised

05.12.2007 1.2.0 AUTOSAR
Administration

 Changed API name
CanIf_TrcvWakeupByBus to
CanIf_SetWakeupEvent

 New error code
CANTRCV_E_PARAM_TRCV_WAKEU
P_MODE has been added.

 Output parameter in the API’s
CanTrcv_GetOpMode,
CanTrcv_GetBusWuReason and
CanTrcv_GetVersionInfo is changed to
pointer type.

 API CanTrcv_CB_WakeupByBus has
been modified

 Document meta information extended
 Small layout adaptations made

30.01.2007 1.1.0 AUTOSAR
Administration

 CAN transceiver driver is below CAN
interface. All API access from higher
layers are routed through CAN inter-
face.

 One CAN transceiver driver used per
CAN transceiver hardware type. For dif-
ferent CAN transceiver hardware types
different CAN transceiver drivers are
used. One CAN transceiver driver sup-
ports all CAN transceiver hardware of
same type

 Legal disclaimer revised
 Release Notes added
 “Advice for users” revised
 “Revision Information” added

16.05.2006 1.0.0 AUTOSAR Ad-
ministration

Initial release

2 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

3 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

Disclaimer

This specification and the material contained in it, as released by AUTOSAR is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only.
For any other purpose, no part of the specification may be utilized or reproduced, in
any form or by any means, without permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR Specification Documents may contain exemplary items (exemplary refer-
ence models, "use cases", and/or references to exemplary technical solutions, de-
vices, processes or software).

Any such exemplary items are contained in the Specification Documents for illustra-
tion purposes only, and they themselves are not part of the AUTOSAR Standard.
Neither their presence in such Specification Documents, nor any later documentation
of AUTOSAR conformance of products actually implementing such exemplary items,
imply that intellectual property rights covering such exemplary items are licensed un-
der the same rules as applicable to the AUTOSAR Standard.

4 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

Table of Content

1 Introduction.. 7

1.1 Goal of CAN Transceiver Driver ... 9
1.2 Explicitly uncovered CAN transceiver functionality....................................... 9
1.3 Single wire CAN transceivers according SAE J2411.................................... 9

2 Acronyms and abbreviations ... 10

3 Related documentation.. 11

3.1 Input documents... 11
3.2 Related standards and norms .. 11

4 Constraints and assumptions .. 12

4.1 Limitations .. 12
4.2 Applicability to car domains.. 12

5 Dependencies to other modules.. 13

5.1 File structure .. 13
5.1.1 Naming convention for transceiver driver implementation................... 13
5.1.2 Code file structure ... 13
5.1.3 Header file structure.. 15

6 Requirements Traceability... 17

7 Functional specification ... 22

7.1 CAN transceiver driver operation modes.. 22
7.1.1 Operation mode switching... 23

7.2 CAN transceiver hardware operation modes.. 24
7.2.1 Example for temporary “Go-To-Sleep” mode 24
7.2.2 Example for “PowerOn/ListenOnly” mode... 24

7.3 CAN transceiver wake up types ... 24
7.4 Enabling/Disabling wakeup notification .. 25
7.5 CAN transceiver wake up modes ... 25
7.6 Error classification .. 26
7.7 Error detection.. 27
7.8 Preconditions for driver initialization ... 28
7.9 Instance concept .. 28
7.10 Wait states ... 28
7.11 Debugging.. 28
7.12 Version checking .. 29
7.13 Transceivers with selective wakeup functionality 29

8 API specification.. 31

8.1 Imported types.. 31
8.2 Type definitions .. 32
8.3 Function definitions .. 34

8.3.1 CanTrcv_Init.. 34
8.3.2 CanTrcv_SetOpMode ... 35
8.3.3 CanTrcv_GetOpMode ... 38
8.3.4 CanTrcv_GetBusWuReason... 39

5 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

6 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

8.3.5 CanTrcv_GetVersionInfo... 40
8.3.6 CanTrcv_ SetWakeupMode .. 41
8.3.7 CanTrcv_GetTrcvSystemData .. 43
8.3.8 CanTrcv_ClearTrcvWufFlag.. 44
8.3.9 CanTrcv_ReadTrcvTimeoutFlag ... 45
8.3.10 CanTrcv_ClearTrcvTimeoutFlag ... 45
8.3.11 CanTrcv_ReadTrcvSilenceFlag .. 46
8.3.12 CanTrcv_CheckWakeup ... 47
8.3.13 CanTrcv_SetPNActivationState .. 47
8.3.14 CanTrcv_CheckWakeFlag .. 48

8.4 Scheduled functions ... 49
8.4.1 CanTrcv_MainFunction ... 49
8.4.2 CanTrcv_MainFunctionDiagnostics... 50

8.5 Call-back notifications .. 50
8.6 Expected Interfaces.. 50

8.6.1 Mandatory Interfaces .. 50
8.6.2 Optional Interfaces .. 51
8.6.3 Configurable interfaces ... 52

9 Sequence diagram .. 53

9.1 Wake up with valid validation ... 53
9.2 Interaction with DIO module ... 54
9.3 De-Initialization (SPI Synchronous).. 55
9.4 De-Initialization (SPI Asynchronous) .. 56

10 Configuration specification... 57

10.1 How to read this chapter .. 57
10.1.1 Configuration class and configuration parameters 57
10.1.2 Variants... 57
10.1.3 Containers... 58

10.2 Containers and configuration parameters .. 59
10.2.1 Variants... 59
10.2.2 CanTrcv .. 59
10.2.3 CanTrcvGeneral.. 60
10.2.4 CanTrcvChannel ... 62
10.2.5 CanTrcvAccess ... 65
10.2.6 CanTrcvDioAccess.. 66
10.2.7 CanTrcvDioChannelAccess .. 66
10.2.8 CanTrcvSpiSequence ... 67
10.2.9 CanTrcvPartialNetwork ... 68
10.2.10 CanTrcvPnFrameDataMaskSpec .. 71

10.3 Published Information... 72

11 Not applicable requirements .. 73

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

1 Introduction

This specification describes the functionality, APIs and configuration of CAN Trans-
ceiver Driver module. The CAN Transceiver Driver module is responsible for handling
the CAN transceiver hardware chips on an ECU.

The CAN Transceiver is a hardware device, which adapts the signal levels that are
used on the CAN bus to the logical (digital) signal levels recognised by a microcon-
troller.

In addition, the transceivers are able to detect electrical malfunctions like wiring is-
sues, ground offsets or transmission of long dominant signals. Depending on the in-
terfacing with the microcontroller, they flag the detected error summarized by a single
port pin or very detailed by SPI.

Some transceivers support power supply control and wake up via the CAN bus. Dif-
ferent wake up/sleep and power supply concepts are usual on the market.

Within the automotive environment, there are mainly three different CAN bus physics
used. These are ISO11898 for high-speed CAN (up to 1Mbits/s), ISO11519 for low-
speed CAN (up to 125Kbits/s) and SAE J2411 for single-wire CAN.

Latest developments include System Basis Chips (SBCs) where power supply con-
trol and advanced watchdogs are implemented in addition to CAN. These are en-
closed in one housing and controlled through single interface (e.g. via SPI).

7 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

8 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

1.1 Goal of CAN Transceiver Driver

The target of this document is to specify the interfaces and behavior which are appli-
cable to most current and future CAN transceiver devices.

The CAN transceiver driver abstracts the CAN transceiver hardware. It offers a
hardware independent interface to the higher layers. It abstracts from the ECU layout
by using APIs of MCAL layer to access the CAN transceiver hardware.

1.2 Explicitly uncovered CAN transceiver functionality

Some CAN bus transceivers offer additional functionality, for example, ECU self test
or error detection capability for diagnostics.

ECU self test and error detection are not defined within AUTOSAR and requiring
such functionality would lock out most currently used transceiver hardware chips.
Therefore, features like “ground shift detection”, “selective wake up”, “slope control”
are not supported.

1.3 Single wire CAN transceivers according SAE J2411

Single wire CAN according SAE J2411 is not supported by AUTOSAR.

9 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

2 Acronyms and abbreviations

Abbreviation Description
ComM Communication Manager

DEM Diagnostic Event Manager

DET Development Error Tracer

DIO Digital Input Output (SPAL module)

EB Externally Buffered channels. Buffers containing data to transfer are outside the
SPI Handler/Driver.

EcuM ECU State Manager

IB Internally Buffered channels. Buffers containing data to transfer are inside the SPI
Handler/Driver.

ISR Interrupt Service Routine

MCAL Micro Controller Abstraction Layer

Port Port module (SPAL module)

n/a Not Applicable

SBC System Basis Chip; a device, which integrates e.g. CAN and/or LIN transceiver,
watchdog and power control.

SPAL Standard Peripheral Abstraction Layer

SPI

Channel

A channel is a software exchange medium for data that are defined with the same
criteria: configuration parameters, number of data elements with same size and
data pointers (source & destination) or location. See specification of SPI driver for
more details.

SPI

Job

A job is composed of one or several channels with the same chip select. A job is
considered to be atomic and therefore cannot be interrupted. A job has also an
assigned priority. See specification of SPI driver for more details.

SPI

Sequence

A sequence is a number of consecutive jobs to be transmitted. A sequence de-
pends on a static configuration. See specification of SPI driver for more details.

CAN Channel A physical channel which is connected to a CAN network from a CAN controller
through a CAN transceiver.

API Application Programming Interface

10 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

3 Related documentation

3.1 Input documents

[1] List of Basic Software Modules
 AUTOSAR_TR_BSWModuleList.pdf

[2] Layered Software Architecture
 AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf

[3] Specification of ECU Configuration
 AUTOSAR_TPS_ECUConfiguration.pdf

[4] General Requirements on Basic Software
 AUTOSAR_SRS_BSWGeneral.pdf

[5] Specification of Specification of CAN Interface
 AUTOSAR_SWS_CANInterface.pdf

[6] Basic Software Module Description Template,

 AUTOSAR_TPS_BSWModuleDescriptionTemplate.pdf

3.2 Related standards and norms

[7] ISO11898 – Road vehicles - Controller area network (CAN)

11 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

12 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

4 Constraints and assumptions

4.1 Limitations

[CanTrcv098] ⌈ The CAN bus transceiver hardware shall provide the functionality

and an interface which can be mapped to the operation mode model of the AUTO-

SAR CAN transceiver driver. ⌋(BSW172)

See also Chapter 7.1.

The used APIs of underlying drivers (SPI and DIO) shall be synchronous.

Implementations of underlying drivers which does not support synchronous behavior
cannot be used together with CAN transceiver driver.

4.2 Applicability to car domains

This driver might be applicable in all car domains using CAN for communication.

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

5 Dependencies to other modules

Module Dependencies
CanIf All CAN transceiver drivers are arranged below CanIf.

ComM ComM steers CAN transceiver driver communication modes via CanIf. Each CAN trans-
ceiver driver is steered independently.

DET DET gets development error information from CAN transceiver driver.

DIO DIO module is used to access CAN transceiver device connected via ports.

EcuM EcuM gets information about wake up events from CAN transceiver driver via CanIf.

SPI SPI module is used to access CAN transceiver device connected via SPI.

5.1 File structure

5.1.1 Naming convention for transceiver driver implementation

[CanTrcv070] ⌈ In case different CAN transceiver hardware chips are used in one

ECU, the function names of the different CAN transceiver drivers must be modified
such that no two functions with the same names are generated. It is the responsibility
of the user to take care that no two functions with the same names are configured.

The names may be extended with a vendor ID or a type ID. ⌋(BSW00347)

5.1.2 Code file structure

[CanTrcv064] ⌈ The naming convention prescribed by AUTOSAR is applied to all

files of the CanTrcv module. ⌋(BSW00300)

[CanTrcv065] ⌈ The CanTrcv module consists of the following files:

File name Requirements Description
CanTrcv.c CanTrcv069 The implementation general c file. It does not contain in-

terrupt routines.

CanTrcv.h CanTrcv052 It contains only information relevant for other BSW mod-
ules (API). Differences in API depending in configuration
are encapsulated.

CanTrcv_Cfg.h CanTrcv083 Pre-compile time configuration parameter file. It’s gener-
ated by the configuration tool.

CanTrcv_Cfg.c CanTrcv062 Pre-compile time configuration code file. It’s
generated by the configuration tool.

13 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

⌋ሺBSW00346, BSW158ሻ

14 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

5.1.3 Header file structure

[CanTrcv067]

⌈

In case connection via SPI

CanTrcv.c

Det.h

Spi.h

EcuM.h

CanIf.h

CanTrcv.h

Dio.h

In case connection via DIO

⌋(BSW00301, BSW00409)

[CanTrcv147]

⌈

15 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

⌋()

CanTrcv.h

CanTrcv_Cfg.h

ComStack_Types.h

Can_GeneralTypes.h

CanTrcv.c

Std_Types.h

CanTrcv_Cfg.c

[CanTrcv068] ⌈ For AUTOSAR standard data types, header file Std_Types.h is

included. ⌋(BSW00348)

[CanTrcv061] ⌈ The name of the compiler specific header file is Compiler.h. All

mappings of not standardized keywords of compiler specific scope shall be placed

and organized in this compiler specific type and keyword header. ⌋(BSW00361)

[CanTrcv063] ⌈ The name of the platform specific header file is Plat-

form_Types.h. All integer type definitions of target and compiler specific scope

shall be placed and organized in this single type header. ⌋(BSW00353)

[CanTrcv156] ⌈ CanTrcv.h shall include CanTrcv_Cfg.h, for the API pre-compiler

switches ⌋()

[CanTrcv162] ⌈ CanTrcv.h shall include Can_GeneralTypes.h, for the general CAN

type definitions. ⌋()

[CanTrcv166] ⌈ The imported types described in CanTrcv163, CanTrcv164 and

CanTrcv165 shall be defined in Can_GeneralTypes.h. ⌋()

16 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

6 Requirements Traceability

Document: AUTOSAR requirements on Basic Software, general

Requirement Satisfied by
[BSW003] Version identification CanTrcv160
[BSW00300] Module naming convention. CanTrcv064
[BSW00301] Limit imported information CanTrcv067
[BSW00302] Limit exported information. CanTrcv052
[BSW00304] AUTOSAR integer data types not applicable

(general implementation requirement)
[BSW00305] Self-defined data types naming convention not applicable

(no self defined data types)
[BSW00306] Avoid direct use of compiler and platform spe-
cific keyword

not applicable
(general implementation requirement)

[BSW00307] Naming convention for global variables not applicable
(general implementation requirement)

[BSW00308] Definition of global data not applicable
(general implementation requirement)

[BSW00309] Global read only data with read only constraint not applicable
(general implementation requirement)

[BSW00310] API naming convention CanTrcv001, CanTrcv002, CanTrcv005,
CanTrcv007, CanTrcv008, CanTrcv009,
CanTrcv013

[BSW00312] Shared code shall be reentrant not applicable
(general implementation requirement)

[BSW00314] Separation of interrupt frames and services
routines

CanTrcv069

[BSW00318] Format of module version numbers CanTrcv160
[BSW00321] Enumeration of module version numbers

not applicable
(general implementation requirement)

[BSW00323] API parameter checking CanTrcv048
[BSW00325] Runtime of interrupt service routines not applicable

(CAN transceiver driver implements no
ISRs)

[BSW00326] Transition from ISRs to OS tasks not applicable
(no such transitions are performed)

[BSW00327] Error values naming convention CanTrcv050
[BSW00328] Avoid duplication of code not applicable

(general implementation requirement)
 [BSW00329] Avoidance of generic interfaces CanTrcv001, CanTrcv002, CanTrcv005,

CanTrcv007, CanTrcv008, CanTrcv009,
CanTrcv013

[BSW00330] Use of macros and inline functions not applicable
(general implementation requirement)

[BSW00331] Separation of error and status values not applicable
(no such values defined)

[BSW00333] Documentation of callback function context not applicable
(general documentation requirement)

[BSW00334] Provision of XML file not applicable
(general implementation requirement)

[BSW00335] Status values naming convention not applicable
[BSW00336] Shut down interface not applicable

(no need for such interfaces)
[BSW00337] Classification of errors CanTrcv057

17 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

[BSW00338] Detection and reporting of development errors CanTrcv040,CanTrcv050
[BSW00339] Reporting of production relevant error status CanTrcv024,CanTrcv058
[BSW00341] Mircocontroller compatibility documentation not applicable

(general documentation requirement)
[BSW00342] Use of source code and object code not applicable

(general implementation requirement)
[BSW00343] Specification and configuration of time CanTrcv112
[BSW00344] Reference to link time configuration not applicable

(only Pre-compile time configuration
supported)

[BSW00345] Pre-compile time configuration CanTrcv062, CanTrcv083
[BSW00346] Basic set of module files CanTrcv065
[BSW00347] Naming separation of different instances of
BSW drivers

CanTrcv016, CanTrcv070

[BSW00348] Standard type header CanTrcv068
[BSW00350] Development error detection keyword CanTrcv023, CanTrcv050
[BSW00353] Platform specific type header CanTrcv063
[BSW00355] Do not redefine AUTOSAR integer data types not applicable

(general implementation requirement)
 [BSW00357] Standard API return type CanTrcv002
[BSW00358] Return type of init() functions CanTrcv001
[BSW00359] Return type of callback functions not applicable
[BSW00360] Parameters of callback functions not applicable
[BSW00361] Compiler specific language extension header CanTrcv061
[BSW00369] Do not return development error codes via
API

CanTrcv001, CanTrcv002, CanTrcv005,
CanTrcv007, CanTrcv008, CanTrcv009,
CanTrcv013

[BSW00370] Separation of callback interfaces from API CanTrcv085
[BSW00371] Do not pass function pointers via API CanTrcv001, CanTrcv002, CanTrcv005,

CanTrcv007, CanTrcv008, CanTrcv009,
CanTrcv013

[BSW00373] Main processing function naming convention CanTrcv013
[BSW00374] Module vendor identification CanTrcv108
[BSW00375] Notification of wake-up reason CanTrcv007
[BSW00376] Return type and parameters of main functions CanTrcv013
[BSW00377] Module specific API return types CanTrcv005, CanTrcv007
[BSW00378] AUTOSAR boolean type not applicable

(general implementation requirement)
[BSW00379] Module identification CanTrcv108
[BSW00380] Separate C file for configuration parameters CanTrcv062
[BSW00381] Separate configuration H file for Pre-compile
time parameters

CanTrcv083

[BSW00383] List dependencies of configuration elements not applicable
(general documentation requirement)

[BSW00384] List dependencies to other modules not applicable
(general documentation requirement)

[BSW00385] List possible error notifications CanTrcv050
[BSW00386] Configuration for detecting an error CanTrcv050
[BSW00387] Specify the configuration class of callbacks not applicable
[BSW00388] Introduce containers CanTrcv090, CanTrcv091,

CanTrcv092CanTrcv093,
CanTrcv094CanTrcv095

[BSW00389] Container shall have names CanTrcv090, CanTrcv091,
CanTrcv092CanTrcv093,
CanTrcv094 CanTrcv095

[BSW00390] Parameter content unique within the module CanTrcv090, CanTrcv091, CanTrcv093,
CanTrcv095

[BSW00391] Parameters shall have unique names CanTrcv090, CanTrcv091, CanTrcv093,

18 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

CanTrcv095
[BSW00392] Parameters shall have unique types CanTrcv090, CanTrcv091, CanTrcv093,

CanTrcv095
[BSW00393] Parameters shall have a range CanTrcv090, CanTrcv091, CanTrcv093,

CanTrcv095
[BSW00394] Specify the scope of the parameters CanTrcv090, CanTrcv091, CanTrcv093,

CanTrcv095
[BSW00395] List the required parameters (per parameter) CanTrcv091, CanTrcv093,

CanTrcv094CanTrcv095
[BSW00396] Configuration classes CanTrcv017
[BSW00397] Pre-compile time parameters CanTrcv062, CanTrcv083
[BSW00398] Link time parameters not applicable

(only Pre-compile time configuration
supported)

[BSW00399] Loadable post build time parameters not applicable
(only Pre-compile time configuration
supported)

[BSW004] Version check CanTrcv160
[BSW00400] Selectable post build time parameters not applicable

(only Pre-compile time configuration
supported)

[BSW00401] Documentation of multiple instances of con-
figuration parameters

not applicable
(general documentation requirement)

[BSW00402] Published information CanTrcv001_PI
[BSW00404] Reference to post build time configuration not applicable

(only Pre-compile time configuration
supported)

[BSW00405] Reference to multiple configuratin sets not applicable
(only Pre-compile time configuration
supported)

[BSW00406] Check module initialization CanTrcv002, CanTrcv005, CanTrcv007,
CanTrcv008, CanTrcv009, CanTrcv013

[BSW00407] Function to read out published parameters CanTrcv008
[BSW00408] Configuration Parameter naming convention CanTrcv090, CanTrcv091, CanTrcv093,

CanTrcv094CanTrcv095
[BSW00409] Header files for production code error CanTrcv067
[BSW00410] Compiler switches shall have defined values not applicable

(general implementation requirement)
[BSW00411] Get version information keyword CanTrcv008
[BSW00412] Separate H file for configuration parameters CanTrcv083
[BSW00413] Accessing instances of BSW modules CanTrcv016
 [BSW00414] Parameters of init function CanTrcv001
[BSW00415] User dependent include files CanTrcv052
[BSW00416] Sequence of initialization not applicable

(this is out of CAN transceiver driver’s
scope)

[BSW00417] Preporting of error events by non basic soft-
ware

not applicable
(Requirement concerns application
components only)

[BSW00419] Separate C file for Pre-compile time configura-
tion parameters

CanTrcv062

[BSW00420] Production relevant error event rate detection not applicable
(it’s an Dem requirement)

[BSW00421] Reporting of production relevant error events CanTrcv058
[BSW00422] Debouncing of production relevant error status not applicable

(it’s an Dem requirement)
[BSW00423] Usage of SW C template to describe BSW
modules with AUTOSAR interfaces

not applicable
(general implementation requirement)

[BSW00424] BSW main processing function task allocation CanTrcv013

19 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

[BSW00425] Trigger condition for schedulable objects CanTrcv090
[BSW00426] Exclusive areas in BSW modules not applicable

(CAN transceiver driver is part of ECU
abstraction layer)

[BSW00427] ISR description for BSW modules not applicable
(No such areas or function in CAN
transceiver driver)

[BSW00428] Execution order dependencies of main proc-
essing function

CanTrcv013

[BSW00429] Restricted BSW OS functionality access not applicable
(general implementation requirement)

[BSW00431] The BSW scheduler module implements task
bodies

not applicable
(requirement concerns BSW scheduler
module)

[BSW00432] Modules should have separate main process-
ing functions for read/receive and write/transmit data path

not applicable
(CAN transceiver driver does not prop-
agate data)

[BSW00433] Calling of main processing functions

not applicable
(requirement concerns BSW scheduler
module)

[BSW00434] The schedule module shall provide an API for
exclusive areas

not applicable
(requirement concerns BSW scheduler
module)

[BSW005] No hard coded horizontal interfaces within MCAL not applicable
(CAN transceiver driver is part of ECU
abstraction layer)

[BSW006] Platform independency not applicable
(general implementation requirement)

[BSW007] HIS Misra C not applicable
(general implementation requirement)

[BSW009] Module user documentation not applicable
(general documentation requirement)

[BSW010] Memory resource documentation not applicable
(general documentation requirement)

[BSW101] Initialization interface CanTrcv001
[BSW158] Separation of configuration from implementation CanTrcv065
[BSW159] Tool-based configuration
[BSW160] Human readable configuration data CanTrcv090, CanTrcv091, CanTrcv093,

CanTrcv094CanTrcv095
[BSW161] Microcontroller abstraction not applicable

(CAN transceiver driver is part of ECU
abstraction layer)

[BSW162] ECU layout abstraction
[BSW164] Implementation of interrupt service routines not applicable

(CAN transceiver driver implements no
ISRs)

[BSW167] Static configuration checking
[BSW168] Diagnostic Interface of SW components not applicable

(CAN transceiver driver has no such
needs)

[BSW170] Data for reconfiguration of AUTOSAR SW com-
ponents

[BSW171] Configurability of optional functionality CanTrcv013
[BSW172] Compatibility and documentation of scheduling
strategy

CanTrcv001, CanTrcv013, CanTrcv090
CanTrcv091, CanTrcv098, CanTrcv099

Document: AUTOSAR requirements on Basic Software, cluster CAN

Requirement Satisfied by
20 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

[BSW01090] Configuration Data for CAN Bus
Transceiver

CanTrcv090, CanTrcv091, CanTrcv093,
CanTrcv094CanTrcv095

[BSW01091] Support for more than one CAN
transceiver. Only pre-compile time configuration
allowed.

CanTrcv002, CanTrcv005, CanTrcv007,
CanTrcv009, CanTrcv016, CanTrcv017

[BSW01092] Configuration of bus operation
mode after initialization for each CAN bus trans-
ceiver

CanTrcv091

[BSW01095] Configuration “Notification for
Wakeup by bus”

CanTrcv007

[BSW01096] API to initialize the CAN bus trans-
ceiver driver

CanTrcv001

[BSW01097] CAN bus transceiver driver API
shall be synchronous

CanTrcv001, CanTrcv002, CanTrcv005,
CanTrcv007, CanTrcv009, CanTrcv013

[BSW01098] API to request operation mode
Standby

CanTrcv002, CanTrcv055

[BSW01099] API to request operation mode
Sleep

CanTrcv002, CanTrcv055

[BSW01100] API to request operation mode
Normal

CanTrcv002, CanTrcv055

[BSW01101] API to read out current operation
mode

CanTrcv005

[BSW01103] API to read out wake up reason CanTrcv007
[BSW01106] Wake up by bus notification to up-
per layer

CanTrcv007

[BSW01107] Support for wake up during sleep
transition

not applicable

[BSW01109] CAN bus transceiver driver must
check transceiver control

CanTrcv001, CanTrcv002, CanTrcv005,
CanTrcv007, CanTrcv009, CanTrcv013

[BSW01110] Handle timing requirements of
transceiver

CanTrcv001, CanTrcv002, CanTrcv005,
CanTrcv007, CanTrcv009, CanTrcv013

[BSW01115] Support API for enable/disable and
clear wake up event

CanTrcv009

[BSW01138] Wake up by bus callback for lower
layers

not applicable

BSW01108] Safe system start up and shut down
for CAN bus transceiver driver

CanTrcv001, CanTrcv002

21 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

7 Functional specification

7.1 CAN transceiver driver operation modes

[CanTrcv055] ⌈ The CanTrcv module shall implement the state diagram shown be-

low, independently for each configured transceiver. ⌋(BSW01098, BSW01099,
BSW01100)

Power on Power off

POWER_ON

NOT_ACTIVE

ACTIVE

CANTRCV_TRCVMODE_SLEEP CANTRCV_TRCVMODE_NORMAL

CANTRCV_TRCVMODE_STANDBY

Legend:
1 - CanTrcv_SetOpMode(CANTRCV_TRCVMODE_NORMAL)
2 - CanTrcv_SetOpMode(CANTRCV_TRCVMODE_STANDBY)
3 - CanTrcv_SetOpMode(CANTRCV_TRCVMODE_SLEEP)

3(a)

1(c)

CanTrcv_Init() CanTrcv_Init()

2(a)

1(b)

3(b)

1(a)

2(b)

[CFG3][CFG1]

CanTrcv_Init()
[CFG2]

The main idea intended by this diagram, is to support a lot of up to now available
CAN bus transceivers in a generic view. Depending on the CAN transceiver hard-
ware, the model may have one or two states more than necessary for a given CAN

22 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

transceiver hardware but this will clearly decouple the ComM and EcuM from the
used hardware.

[CanTrcv148] ⌈ The function CanTrcv_Init causes a state change to either

CANTRCV_TRCVMODE_SLEEP, CANTRCV_TRCVMODE _NORMAL or
CANTRCV_TRCVMODE _STANDBY. This depends on the configuration and is in-

dependently configurable for each transceiver. ⌋()

State Description

POWER_ON ECU is fully powered.

NOT_ACTIVE
State of CAN transceiver hardware depends on ECU hardware
and on Dio and Port driver configuration. CAN transceiver
driver is not initialized and therefore not active.

ACTIVE

The function CanTrcv_Init has been called. It carries CAN
transceiver driver to active state.

Depending on configuration CAN transceiver driver enters the
state CANTRCV_TRCVMODE_SLEEP,
CANTRCV_TRCVMODE_STANDBY or
CANTRCV_TRCVMODE_NORMAL.

CANTRCV_TRCVMODE_NORMAL
Full bus communication. If CAN transceiver hardware controls
ECU power supply, ECU is fully powered. The CAN trans-
ceiver driver detects no further wake up information.

CANTRCV_TRCVMODE_STANDBY

No communication is possible. ECU is still powered if CAN
transceiver hardware controls ECU power supply. A transition
to CANTRCV_TRCVMODE_SLEEP is only valid from this
mode. A wake up by bus or by a local wake up event is possi-
ble.

CANTRCV_TRCVMODE_SLEEP
No communication is possible. ECU may be unpowered de-
pending on responsibility to handle power supply. A wake up
by bus or by a local wake up event is possible.

If a CAN transceiver driver covers more than one CAN transceiver (configured as
channels), all transceivers (channels) are either in the state NOT_ACTIVE or in the
state ACTIVE.

In state ACTIVE, each transceiver may be in a different sub state.

7.1.1 Operation mode switching

A mode switch is requested with a call to the function CanTrcv_SetOpMode.

[CanTrcv161] ⌈ A mode switch request to the current mode is allowed and shall not

lead to an error, even if DET is enabled. ⌋()
23 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

[CanTrcv158] ⌈ The CanTrcv module shall invoke the callback function

CanIf_TrcvModeIndication, for each mode switch request with call to

CanTrcv_SetOpMode, after the requested mode has been reached. ⌋()

7.2 CAN transceiver hardware operation modes

The CAN transceiver hardware may support more mode transitions than shown in
the state diagram above. The dependencies and the recommended implementations
behaviour are explained in this chapter.

It is implementation specific to decide which CAN transceiver hardware state is cov-
ered by which CAN transceiver driver software state. An implementation has to guar-
antee that the whole functionality of the described CAN transceiver driver software
state is realized by the implementation.

7.2.1 Example for temporary “Go-To-Sleep” mode

The mode often referred to as "Go-to-sleep” is a temporary mode when switching
from Normal to Sleep. The driver encapsulates such a temporary mode within one of
the CAN transceiver driver software states. In addition, the CAN transceiver driver
switches first from Normal to Standby and then with an additional API call from
Standby to Sleep.

7.2.2 Example for “PowerOn/ListenOnly” mode

The mode often referred to as “PowerOn“ or “ListenOnly” is a mode where the CAN
transceiver hardware is only able to receive messages but not able to send mes-
sages. Also, transmission of the acknowledge bit during reception of a message is
suppressed. This mode is not supported because it is outside of the CAN standard
and not supported by all CAN transceiver hardware chips.

7.3 CAN transceiver wake up types

There are three different scenarios which are often called wake up:

Scenario 1:

 MCU is not powered.
 Parts of ECU including CAN transceiver hardware are powered.
 The considered CAN transceiver is in SLEEP mode.
 A wake up event on CAN bus is detected by CAN transceiver hardware.
 The CAN transceiver hardware causes powering of MCU.

In terms of AUTOSAR, this is kept as a cold start and NOT as a wake up.
24 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

Scenario 2:

 MCU is in low power mode.
 Parts of ECU including CAN transceiver hardware are powered.
 The considered CAN transceiver is in STANDBY mode.
 A wake up event on CAN bus is detected by CAN transceiver hardware.
 The CAN transceiver hardware causes a SW interrupt for waking up.

In terms of AUTOSAR, this is kept as a wake up of the CAN channel and of the
MCU.

Scenario 3:

 MCU is in full power mode.
 At least parts of ECU including CAN transceiver hardware are powered.
 The considered CAN transceiver is in STANDBY mode.
 A wake up event on CAN is detected by CAN transceiver hardware.
 The CAN transceiver hardware either causes a SW interrupt for waking up or

is polled cyclically for wake up events.

In terms of AUTOSAR, this is kept as a wake up of the CAN channel.

7.4 Enabling/Disabling wakeup notification

CanTrcv171: CanTrcv driver shall use the following APIs provided by ICU driver, to
enable and disable the wakeup event notification:

- Icu_EnableNotification
- Icu_DisableNotification

CanTrcv driver shall ensure the following to avoid the loss of wakeup events:

CanTrcv172: It shall enable the ICU channels when the transceiver transitions to the
Standby mode (CANTRCV_STANDBY).

CanTrcv173: It shall disable the ICU channels when the transceiver transitions to the
Normal mode (CANTRCV_NORMAL).

7.5 CAN transceiver wake up modes

CAN transceiver driver offers two wake up modes:

[CanTrcv090] ⌈ NOT_SUPPORTED mode ⌋(BSW00388, BSW00389, BSW00390,

BSW00391, BSW00392, BSW00393, BSW00394, BSW00408, BSW00425,
BSW160, BSW172, BSW01090)

25 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

26 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

In mode NOT_SUPPORTED, no wake ups are generated by CAN transceiver
driver. This mode is supported by all CAN transceiver hardware types.

[CanTrcv091] ⌈ POLLING mode ⌋(BSW00388, BSW00389, BSW00390,

BSW00391, BSW00392, BSW00393, BSW00394, BSW00395, BSW00408,
BSW160, BSW172, BSW01090, BSW01092)

In mode POLLING, wake ups generated by CAN transceiver driver may cause
CAN channel wake ups. In this mode, no MCU wake ups are possible. This
mode presumes a support by used CAN transceiver hardware type. Wake up
mode POLLING requires function CanTrcv_CheckWakeup and main function
CanTrcv_MainFunction to be present in source code.
The main function CanTrcv_MainFunction shall be called by BSW
scheduler and CanTrcv_CheckWakeup by CanIf.

The selection of the wake up mode is done by the configuration parameter Can-
TrcvWakeUpSupport. The support of wake ups may be switched on and off for
each CAN transceiver individually by the configuration parameter CanTrcvWakeup-
ByBusUsed.

Note: In both modes the function CanTrcv_CheckWakeup shall be present, but the
functionality shall be based on the configured wakeup mode (NOT_SUPPORTED
OR POLLING).

Implementation Hint:

If a CAN transceiver needs a specific state transition (e.g. Sleep -> Normal) initiated
by the software after detection of a wake-up, this may be accomplished by the
CanTrcv module, during the execution of CanTrcv_CheckWakeup. This behaviour
is implementation specific.

It has to be assured by configuration of modules, which are involved in wake-up
process (EcuM, CanIf, ICU etc…) that CanTrcv_CheckWakeup is called, when a
transceiver needs a specific state transition.

7.6 Error classification

[CanTrcv057] ⌈ Development error values are of type uint8. ⌋(BSW00337)

[CanTrcv050]

⌈
Type or error Relevance Related error code Value

[hex]
API called with wrong
parameter for the
CAN transceiver

Development CANTRCV_E_INVALID_TRANSCEIVER 1

API called with null Development CANTRCV_E_PARAM_POINTER 2

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

pointer parameter
API service used
without initialization

Development CANTRCV_E_UNINIT 11

API service called in
wrong transceiver
operation mode

Development CANTRCV_E_TRCV_NOT_STANDBY

CANTRCV_E_TRCV_NOT_NORMAL

21

22

API service called
with invalid parameter
for TrcvWakeupMode

Development CANTRCV_E_PARAM_TRCV_WAKEUP_MODE

23

API service called
with invalid parameter
for OpMode

Development CANTRCV_E_PARAM_TRCV_OPMODE

24

Configured baud rate
is not supported by
the transceiver

Development CANTRCV_E_BAUDRATE_NOT_SUPPORTED 25

No/incorrect commu-
nication to trans-
ceiver.

Development CANTRCV_E_NO_TRCV_CONTROL 26

 ⌋(BSW00327, BSW00338, BSW00350, BSW00385, BSW00386)

7.7 Error detection

[CanTrcv023] ⌈ The detection of all development errors is configurable (ON/OFF) at

Pre-compile time. The switch CanTrcvDevErrorDetect shall activate or deacti-

vate the detection of all development errors. ⌋(BSW00350)

[CanTrcv048] ⌈ If the CanTrcvDevErrorDetect switch is enabled API parameter
checking is enabled. The detailed description of the detected errors can be found in

chapter 7.6. ⌋(BSW00323)

[CanTrcv058] ⌈ The detection of production code errors cannot be switched off.

⌋(BSW00339, BSW00421)

Note: Currently no production error are specified for the CAN Transceiver Driver.

[CanTrcv040] ⌈ Detected development errors will be reported to the error hook of the

Development Error Tracer (Det) if the pre-processor switch CanTrcvDevErrorDe-

tect is set. ⌋(BSW00338)

[CanTrcv024] ⌈ Production errors shall be reported to Diagnostic Event Manager

(Dem). Only error cases are reported to the Dem. ⌋(BSW00339)

Note: Currently no production error are specified for the CAN Transceiver Driver.

27 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

7.8 Preconditions for driver initialization

[CanTrcv099] ⌈ The environment of the CanTrcv module shall make sure that all
necessary BSW drivers (used by the CanTrcv module) have been initialized and are

usable before CanTrcv_Init is called. ⌋(BSW172)

The CAN bus transceiver driver uses drivers for Spi and Dio to control the CAN bus
transceiver hardware. Thus, these drivers must be available and ready to operate
before the CAN bus transceiver driver is initialized.

The CAN transceiver driver may have timing requirements for the initialization se-
quence and the access to the transceiver device which must be fulfilled by these
used underlying drivers.

The timing requirements might be that
1) The call of the CAN bus transceiver driver initialization has to be performed very

early after power up to be able to read all necessary information out of the trans-
ceiver hardware in time for all other users within the ECU.

2) The runtime of the used underlying services is very short and synchronous to en-
able the driver to keep his own timing requirements limited by the used hardware
device.

3) The runtime of the driver may be enlarged due to some hardware devices config-
uring the port pin level to be valid for e.g. 50µs before changing it again to reach a
specific state (e.g. sleep).

7.9 Instance concept

[CanTrcv016] ⌈ For each different CAN transceiver hardware type, an ECU has one

CAN transceiver driver instance. One instance serves all CAN transceiver hardware

of same type. ⌋(BSW00347, BSW00413, BSW01091)

7.10 Wait states

For changing operation modes, the CAN transceiver hardware may have to perform
wait states.

The wait states can be realized with the configuration parameter: CanTrcvWait-
Count.

7.11 Debugging
[CanTrcv151] ⌈ All type definitions of variables which shall be debugged, shall be

accessible by the header file CanTrcv.h ⌋()

28 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

[CanTrcv152] ⌈ Each variable that shall be accessible by AUTOSAR Debugging,

shall be defined as a global variable. ⌋()

[CanTrcv153] ⌈ The declaration of variables in the header file shall be such, that it is

possible to calculate the size of the variables by C-“sizeof”. ⌋()

[CanTrcv154] ⌈ Variables available for debugging shall be described in the respec-

tive Basic Software Module Description. ⌋()

[CanTrcv155] ⌈ The states of CAN Transceiver Driver state machine shall be avail-

able for debugging. ⌋()

7.12 Version checking

[CanTrcv160] ⌈ The CanTrcv module shall perform Inter-Module checks to avoid

integration of incompatible files. ⌋(BSW003, BSW00318, BSW004)

The imported include files shall be checked by pre-processor directives.

The following version numbers shall be verified:

- <MODULENAME>_AR_RELEASE_MAJOR_VERSION
- <MODULENAME>_AR_RELEASE_MINOR_VERSION

Where <MODULENAME> is the module short name of the other (external) modules
which provide header files, included by the CanTrcv module.

If the values are not identical to the expected values, an error shall be reported.

7.13 Transceivers with selective wakeup functionality

This section describes requirements for CAN transceivers with selective wakeup
functionality.

Partial Networking is a state in a CAN system where some nodes are in low power
mode while other nodes are communicating. This reduces the power consumption by
the entire network. Nodes in the low-power modes are woken up by pre-defined
wakeup frames.

Transceivers which support selective wakeup can be woken up by Wake Up Frame/
Frames (WUF), in addition to the wakeup by Wake Up Pattern (WUP) offered by
normal transceivers.

29 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

CanTrcv174: If selective wakeup is supported by the transceiver hardware, it shall
be indicated with the configuration parameter CanTrcvHwPnSupport.

CanTrcv175: The configuration container for selective wakeup functionality (Can-
TrcvPartialNetwork) and
for the following APIs:

- 8.4.7 CanTrcv_GetTrcvSystemData,
- 8.4.8 CanTrcv_ClearTrcvWufFlag,
- 8.4.9 CanTrcv_ReadTrcvTimeoutFlag,
- 8.4.10 CanTrcv_ClearTrcvTimeoutFlag and
- 8.4.11 CanTrcv_ReadTrcvSilenceFlag

 shall exist only if CanTrcvHwPnSupport = TRUE.

CanTrcv177: If selective wakeup is supported, CAN transceivers shall be configured
to wake up on a particular CAN frame or a group of CAN frames using the parame-
ters CanTrcvPnFrameCanId, CanTrcvPnFrameCanIdMask and
CanTrcvPnFrameDataMask.

CanTrcv178: If the transceiver has the ability to identify bus failures (and distinguish
between bus failures and other hardware failures), it shall be indicated using the con-
figuration parameter CanTrcvBusErrFlag for bus diagnostic purposes.

Note:

For CAN transceivers supporting selective wakeup functionality, detection of wakeup
frames is possible during Normal mode (CANTRCV_TRCVMODE_NORMAL). Detected
wakeup frames are signaled by the transceiver WUF flag. This ensures that no
wakeup frame is lost during a transition to Standby mode
(CANTRCV_TRCVMODE_STANDBY).

30 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

8 API specification

8.1 Imported types

In this chapter all types included from the following files are listed:

[CanTrcv084]

⌈
Module Imported Type

CanTrcv_TrcvModeType
CanTrcv_TrcvWakeupModeType

Can_GeneralTypes

CanTrcv_TrcvWakeupReasonType
Dio_ChannelType
Dio_LevelType
Dio_PortLevelType
Dio_PortType

Dio

Dio_ChannelGroupType
Icu Icu_ChannelType

Spi_ChannelType
Spi_DataType
Spi_NumberOfDataType
Spi_SequenceType

Spi

Spi_StatusType
Std_ReturnType Std_Types
Std_VersionInfoType

 ⌋()

[CanTrcv163]

⌈
Name: CanTrcv_TrcvModeType
Type: Enumeration

CANTRCV_TRCVMODE_NORMAL = 0
Transceiver mode NORMAL

CANTRCV_TRCVMODE_SLEEP Transceiver mode SLEEP

Range:

CANTRCV_TRCVMODE_STANDBYTransceiver mode STANDBY
Description: Operating modes of the CAN Transceiver Driver.

 ⌋()

[CanTrcv164]

⌈
Name: CanTrcv_TrcvWakeupModeType
Type: Enumeration

CANTRCV_WUMODE_CLEAR A stored wakeup event is cleared on the addressed
transceiver.

Range:

CANTRCV_WUMODE_DISABLEThe notification for wakeup events is disabled on the
addressed transceiver.

31 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

CANTRCV_WUMODE_ENABLE = 0
The notification for wakeup events is enabled on the
addressed transceiver.

Description: This type shall be used to control the CAN transceiver concerning wake up events
and wake up notifications.

 ⌋()

[CanTrcv165]

⌈
Name: CanTrcv_TrcvWakeupReasonType
Type: Enumeration

CANTRCV_WU_BY_BUS The transceiver has detected, that the network has
caused the wake up of the ECU.

CANTRCV_WU_BY_PIN The transceiver has detected a wake-up event at
one of the transceiver's pins (not at the CAN bus).

CANTRCV_WU_ERROR = 0
Due to an error wake up reason was not detected.
This value may only be reported when error was
reported to DEM before.

CANTRCV_WU_INTERNALLY The transceiver has detected, that the network has
woken up by the ECU via a request to NORMAL
mode.

CANTRCV_WU_NOT_SUPPORTEDThe transceiver does not support any information
for the wake up reason.

CANTRCV_WU_POWER_ON The transceiver has detected, that the "wake up" is
due to an ECU reset after power on.

CANTRCV_WU_RESET The transceiver has detected, that the "wake up" is
due to an ECU reset.

Range:

CANTRCV_WU_BY_SYSERR The transceiver has detected, that the wake up of
the ECU was caused by a HW related device fail-
ure.

Description: This type denotes the wake up reason detected by the CAN transceiver in detail.

 ⌋()

8.2 Type definitions

[CanTrcv209]

Name: CanTrcv_ConfigType
Type: Structure
Range: Implementation

specific
--

Description: This is the type of the external data structure containing the overall initialization
data for the CAN transceiver driver and settings affecting all transceivers. Fur-
thermore it contains pointers to transceiver configuration structures. The contents
of the initialization data structure are CAN transceiver hardware specific.

[CanTrcv210]

Name: CanTrcv_PNActivationType

32 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

Type: Enumeration
PN_ENABLED PN wakeup functionality in CanTrcv is enabled. Range:
PN_DISABLED PN wakeup functionality in CanTrcv is disabled.

Description: Datatype used for describing whether PN wakeup functionality in CanTrcv is en-
abled or disabled.

[CanTrcv211]

Name: CanTrcv_TrcvFlagStateType
Type: Enumeration

CANTRCV_FLAG_SET The flag is set in the transceiver hardware. Range:
CANTRCV_FLAG_CLEAREDThe flag is cleared in the transceiver hardware.

Description: Provides the state of a flag in the transceiver hardware.

33 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

8.3 Function definitions

8.3.1 CanTrcv_Init

[CanTrcv001]

⌈
Service name: CanTrcv_Init
Syntax: void CanTrcv_Init(

 const CanTrcv_ConfigType* ConfigPtr
)

Service ID[hex]: 0x00
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): ConfigPtr Pointer to driver configuration.
Parameters (in-
out):

None

Parameters (out): None
Return value: None
Description: Initializes the CanTrcv module.

 ⌋(BSW00310, BSW00329, BSW00358, BSW00369, BSW00371, BSW00414,

BSW101, BSW172, BSW01096, BSW01097, BSW01109, BSW01110, BSW01108)

[CanTrcv180]: The function CanTrcv_Init shall initialize all the connected CAN
transceivers based on their initialization sequences and configuration (provided by
parameter ConfigPtr). Meanwhile, it shall support the configuration sequence of
the AUTOSAR stack also.

[CanTrcv100] ⌈ The function CanTrcv_Init shall set the CAN transceiver hard-

ware to the state configured by the configuration parameter CanTrcvInitState. ⌋()

Note that in the time span between power up and the call to CanTrcv_Init, the
CAN transceiver hardware may be in a different state. This depends on hardware
and SPAL driver configuration.

The initialization sequence after reset (e.g. power up) is a critical phase for the CAN
transceiver driver.

This API shall store the wake up event, if any, during initialization time.

See also requirement CanTrcv099.

[CanTrcv167] ⌈ If supported by hardware, CanTrcv_Init shall validate whether

there has been a wake up due to transceiver activity and if TRUE, reporting shall be

done to EcuM via API EcuM_SetWakeupEvent. ⌋()

[CanTrcv181]: If selective wakeup is enabled and supported by hardware: POR and
SYSERR flags of the transceiver status shall be checked by CanTrcv_Init API.

34 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

[CanTrcv182]: If the POR flag or SYSERR flag is set, transceiver shall be re-
configured for selective wakeup functionality by running the configuration sequence.

If the POR flag or SYSERR flag is not set, the configuration stored in the transceiver
memory will be still valid and re-configuration is not necessary.

[CanTrcv183]: If the POR flag is set, wakeup shall be reported to EcuM through API
EcuM_SetWakeupEvent with CANIF_TRCV_WU_POWERON as the wakeup reason.

[CanTrcv184]: If the SYSERR flag is set, wakeup shall be reported to EcuM through
API EcuM_SetWakeupEvent with CANIF_TRCV_WU_BY_SYSERR as the wakeup
reason.

[CanTrcv113] ⌈ If there is no/incorrect communication towards the transceiver, the

function CanTrcv_Init shall report the development error
CANTRCV_E_NO_TRCV_CONTROL.
For Eg., there are different transceiver types and different access ways (port connec-
tion, SPI). This development error should be signaled if you detect any miscommuni-
cation with your hardware. Depending on connection type and depending on your
transceiver hardware you may not run in situations where you have to signal this er-

ror. ⌋()

[CanTrcv168] ⌈ If DET is enabled for CanTrcv module: the function CanTrcv_Init

shall raise the development error CANTRCV_E_BAUDRATE_NOT_SUPPORTED, if the

configured baud rate is not supported by the transceiver. ⌋()

[CanTrcv185]: If DET is enabled for CanTrcv module: the function CanTrcv_Init
shall raise the development error CANTRCV_E_PARAM_POINTER, if NULL pointer is
passed as ConfigPtr parameter.

8.3.2 CanTrcv_SetOpMode

[CanTrcv002]

⌈
Service name: CanTrcv_SetOpMode
Syntax: Std_ReturnType CanTrcv_SetOpMode(

 uint8 Transceiver,
 CanTrcv_TrcvModeType OpMode
)

Service ID[hex]: 0x01
Sync/Async: Asynchronous
Reentrancy: Reentrant for different transceivers

Transceiver CAN transceiver to which API call has to be applied.
Parameters (in):

OpMode This parameter contains the desired operating mode
Parameters (in-
out):

None

Parameters (out): None
35 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

36 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Return value:

Std_ReturnType E_OK: will be returned if the request for transceiver mode change
has been accepted.
E_NOT_OK: will be returned if the request for transceiver mode
change has not been accepted or any parameter is out of the
allowed range.

Description: Sets the mode of the Transceiver to the value OpMode.

 ⌋(BSW00310, BSW00329; BSW00357, BSW00369, BSW00371, BSW00406,

BSW01091, BSW01097, BSW01098, BSW01099, BSW01100, BSW01109,
BSW01110, BSW01108)

[CanTrcv102] ⌈ The function CanTrcv_SetOpMode shall switch the internal state of
Transceiver to the value of the parameter OpMode, which can be
CANTRCV_TRCVMODE_NORMAL, CANTRCV_TRCVMODE_STANDBY or

CANTRCV_TRCVMODE_SLEEP. ⌋()

[CanTrcv103] ⌈ The user of the CanTrcv module shall call the function

CanTrcv_SetOpMode with OpMode = CANTRCV_TRCVMODE_STANDBY or
CANTRCV_TRCVMODE_NORMAL, if the Transceiver is in mode

CANTRCV_TRCVMODE_NORMAL. ⌋()

[CanTrcv104] ⌈ The user of the CanTrcv module shall call the function

CanTrcv_SetOpMode with OpMode = CANTRCV_TRCVMODE_SLEEP or
CANTRCV_TRCVMODE_STANDBY, if the Transceiver is in mode

CANTRCV_TRCVMODE_STANDBY. ⌋()

This API is applicable to each transceiver with each value for parameter
CanTrcv_SetOpMode, regardless of whether the transceiver hardware supports
these modes or not. This is to simplify the view of the CanIf to the assigned bus.

[CanTrcv105] ⌈ If the requested mode is not supported by the underlying transceiver

hardware, the function CanTrcv_SetOpMode shall return E_NOT_OK. ⌋()

The number of supported busses is set up in the configuration phase.

[CanTrcv186]: If selective wakeup is supported by hardware: the flags POR and
SYSERR of the transceiver status shall be checked by CanTrcv_SetOpMode API.

[CanTrcv187]: If the POR flag is set, transceiver shall be re-initialized to run the
transceiver’s configuration sequence.

[CanTrcv188]: If the SYSERR flag is NOT set and the requested mode is
CANTRCV_NORMAL, transceiver shall call the API
CanIf_ConfirmPnAvailability() for the corresponding TransceiverId.

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

CanIf_ConfirmPnAvailability informs CanNm (through CanIf and CanSm)
that selective wakeup is enabled.

[CanTrcv114] ⌈ If there is no/incorrect communication to the transceiver, the function

CanTrcv_SetOpMode shall report development error

CANTRCV_E_NO_TRCV_CONTROL and return E_NOT_OK. ⌋()

[CanTrcv120] ⌈ If development error detection for the module CanTrcv is enabled:

If the function CanTrcv_SetOpMode is called with OpMode =
CANTRCV_TRCVMODE_STANDBY, and the Transceiver is not in mode
CANTRCV_TRCVMODE_NORMAL or CANTRCV_TRCVMODE_STANDBY, the
function CanTrcv_SetOpMode shall raise the development error

CANTRCV_E_TRCV_NOT_NORMAL and return E_NOT_OK. ⌋()

[CanTrcv121] ⌈ If development error detection for the module CanTrcv is enabled:

If the function CanTrcv_SetOpMode is called with OpMode =
CANTRCV_TRCVMODE_SLEEP, and the Transceiver is not in mode
CANTRCV_TRCVMODE_STANDBY or CANTRCV_TRCVMODE_SLEEP, the func-
tion CanTrcv_SetOpMode shall raise the development error

CANTRCV_E_TRCV_NOT_STANDBY and return E_NOT_OK. ⌋()

[CanTrcv122] ⌈ If development error detection for the module CanTrcv is enabled:
If called before the CanTrcv module has been initialized, the function
CanTrcv_SetOpMode shall raise the development error CANTRCV_E_UNINIT and

return E_NOT_OK. ⌋()

[CanTrcv123] ⌈ If development error detection for the module CanTrcv is enabled: If

called with an invalid Transceiver number, the function CanTrcv_SetOpMode shall
raise the development error CANTRCV_E_INVALID_TRANSCEIVER and return

E_NOT_OK. ⌋()

[CanTrcv087] ⌈ If development error detection for the module CanTrcv is enabled: If

called with an invalid OpMode, the function CanTrcv_SetOpMode shall raise the

development error CANTRCV_E_PARAM_TRCV_OPMODE and return E_NOT_OK. ⌋()

37 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

8.3.3 CanTrcv_GetOpMode

[CanTrcv005]

⌈
Service name: CanTrcv_GetOpMode
Syntax: Std_ReturnType CanTrcv_GetOpMode(

 uint8 Transceiver,
 CanTrcv_TrcvModeType* OpMode
)

Service ID[hex]: 0x02
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): Transceiver CAN transceiver to which API call has to be applied.
Parameters (in-
out):

None

Parameters (out): OpMode Pointer to operation mode of the bus the API is applied to.

Return value:
Std_ReturnType E_OK: will be returned if the operation mode was detected.

E_NOT_OK: will be returned if the operation mode was not de-
tected.

Description: Gets the mode of the Transceiver and returns it in OpMode.

 ⌋(BSW00310, BSW00329, BSW00369, BSW00371, BSW00377, BSW00406,
BSW01091, BSW01097, BSW01101, BSW01109, BSW01110)

[CanTrcv106] ⌈ The function CanTrcv_GetOpMode shall collect the actual state of

the CAN transceiver driver in the out parameter OpMode. ⌋()

See function CanTrcv_Init for the provided state after the CAN transceiver driver
initialization till the first operation mode change request.

The number of supported busses is statically set in the configuration phase.

[CanTrcv115] ⌈ If there is no/incorrect communication to the transceiver, the function

CanTrcv_GetOpMode shall report the development error

CANTRCV_E_NO_TRCV_CONTROL and return E_NOT_OK. ⌋()

[CanTrcv124] ⌈ If development error detection for the module CanTrcv is enabled: If

called before the CanTrcv module has been initialized, the function
CanTrcv_GetOpMode shall raise the development error CANTRCV_E_UNINIT and

return E_NOT_OK. ⌋()

[CanTrcv129] ⌈ If development error detection for the module CanTrcv is enabled: If

called with an invalid Transceiver number, the function CanTrcv_GetOpMode shall
raise the development error CANTRCV_E_INVALID_TRANSCEIVER and return

E_NOT_OK. ⌋()

38 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

[CanTrcv132] ⌈ If development error detection for the module CanTrcv is enabled: If

called with OpMode = NULL, the function CanTrcv_GetOpMode shall raise the de-

velopment error CANTRCV_E_PARAM_POINTER and return E_NOT_OK. ⌋()

8.3.4 CanTrcv_GetBusWuReason

[CanTrcv007]

⌈
Service name: CanTrcv_GetBusWuReason
Syntax: Std_ReturnType CanTrcv_GetBusWuReason(

 uint8 Transceiver,
 CanTrcv_TrcvWakeupReasonType* reason
)

Service ID[hex]: 0x03
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): Transceiver CAN transceiver to which API call has to be applied.
Parameters (in-
out):

None

Parameters (out): reason Pointer to wake up reason of the bus the API is applied to.

Return value:

Std_ReturnType E_OK: will be returned if the transceiver wakeup reason was
provided.
E_NOT_OK: will be returned if the service request failed due to
development errors OR the transceiver wakeup reason is not
defined in CanTrcv_TrcvWakeupReasonType.

Description: Gets the wakeup reason for the Transceiver and returns it in parameter Reason.

 ⌋(BSW00310, BSW00329, BSW00369, BSW00371, BSW00375, BSW00377,
BSW00406, BSW01091, BSW01095, BSW01097, BSW01103, BSW01106,
BSW01109, BSW01110)

[CanTrcv107] ⌈ The function CanTrcv_GetBusWuReason shall collect the reason for

the wake up that the CAN transceiver has detected in the parameter Reason. ⌋()

The ability to detect and differentiate the possible wake up reasons depends strongly
on the CAN transceiver hardware.

Be aware if more than one bus is available, each bus may report a different wake up
reason. E.g. if an ECU has CAN, a wake up by CAN may occur and the incoming
data may cause an internal wake up for another CAN bus.
The CAN transceiver driver has a “per bus” view and does not vote the more impor-
tant reason or sequence internally. The same may be true if e.g. one transceiver con-
trols the power supply and the other is just powered or un-powered.

The number of supported busses is statically set in the configuration phase.

39 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

[CanTrcv116] ⌈ If there is no/incorrect communication to the transceiver, the function

CanTrcv_GetBusWuReason shall report the development error

CANTRCV_E_NO_TRCV_CONTROL and return E_OK. ⌋()

[CanTrcv125] ⌈ If development error detection for the module CanTrcv is enabled: If
called before the CanTrcv module has been initialized, the function
CanTrcv_GetBusWuReason shall raise development error CANTRCV_E_UNINIT

and return E_NOT_OK. ⌋()

[CanTrcv130] ⌈ If development error detection for the module CanTrcv is enabled: If

called with an invalid Transceiver number, the function CanTrcv_GetBusWuReason
shall raise development error CANTRCV_E_INVALID_TRANSCEIVER and return

E_NOT_OK. ⌋()

[CanTrcv133] ⌈ If development error detection for the module CanTrcv is enabled: If

called with Reason = NULL, the function CanTrcv_GetBusWuReason shall raise the

development error CANTRCV_E_PARAM_POINTER and return E_NOT_OK. ⌋()

8.3.5 CanTrcv_GetVersionInfo

[CanTrcv008]

⌈
Service name: CanTrcv_GetVersionInfo
Syntax: void CanTrcv_GetVersionInfo(

 Std_VersionInfoType* versioninfo
)

Service ID[hex]: 0x04
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): None
Parameters (in-
out):

None

Parameters (out): versioninfo Pointer to version information of this module.
Return value: None
Description: Gets the version of the module and returns it in VersionInfo.

 ⌋(BSW00310, BSW00329, BSW00369, BSW00371, BSW00406, BSW00407,

BSW00411)

[CanTrcv108] ⌈ The function CanTrcv_GetVersionInfo shall return the version
information of this module. The version information includes:

- Module Id
- Vendor Id

- Vendor specific version numbers ⌋(BSW00374, BSW00379)

40 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

[CanTrcv109] ⌈ The function CanTrcv_GetVersionInfo shall be pre-compile time

configurable On/Off by the configuration parameter CanTrcvGetVersionInfo. ⌋()

[CanTrcv110] ⌈ If source code for caller and callee of this function is available, the

CanTrcv module should realize this function as a macro defined in the module’s

header file. ⌋()

[CanTrcv134] ⌈ If development error detection for the module CanTrcv is enabled: If

called with VersionInfo = NULL, the function CanTrcv_GetVersionInfo shall raise

development error CANTRCV_E_PARAM_POINTER. ⌋()

8.3.6 CanTrcv_ SetWakeupMode

[CanTrcv009]

⌈
Service name: CanTrcv_SetWakeupMode
Syntax: Std_ReturnType CanTrcv_SetWakeupMode(

 uint8 Transceiver,
 CanTrcv_TrcvWakeupModeType TrcvWakeupMode
)

Service ID[hex]: 0x05
Sync/Async: Synchronous
Reentrancy: Reentrant for different transceivers

Transceiver CAN transceiver to which API call has to be applied.
Parameters (in):

TrcvWakeupMode Requested transceiver wakeup reason
Parameters (in-
out):

None

Parameters (out): None

Return value:

Std_ReturnType E_OK: Will be returned, if the wakeup state has been changed
to the requested mode.
E_NOT_OK: Will be returned, if the wakeup state change has
failed or the parameter is out of the allowed range. The previ-
ous state has not been changed.

Description: Enables, disables or clears wake-up events of the Transceiver according to
TrcvWakeupMode.

 ⌋(BSW00310, BSW00329, BSW00369, BSW00371, BSW00406, BSW01091,
BSW01097, BSW01109, BSW01110, BSW01115)

[CanTrcv111] ⌈ Enabled: If the function CanTrcv_SetWakeupMode is called with

TrcvWakupMode = CANTRCV_ WUMODE_ENABLE and if the CanTrcv module has
a stored wakeup event pending for the addressed bus, the CanTrcv module shall
update its wakeup event as ‘present’. ⌋()

[CanTrcv093] ⌈ Disabled: If the function CanTrcv_SetWakeupMode is called with

41 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

TrcvWakeupMode = CANTRCV_ WUMODE_DISABLE, the wakeup events are dis-
abled on the addressed transceiver. It is required by the transceiver device and the
transceiver driver to detect the wakeup events and store it internally, in order to raise

the wakeup events when the wakeup mode is enabled again. ⌋(BSW00388,

BSW00389, BSW00390, BSW00391, BSW00392, BSW00393, BSW00394,
BSW00395, BSW00408, BSW160, BSW01090)

[CanTrcv094] ⌈ Clear: If the function CanTrcv_SetWakeupMode is called with
TrcvWakeupMode = CANTRCV_ WUMODE_CLEAR, then a stored wakeup event is

cleared on the addressed transceiver. ⌋()

[CanTrcv150] ⌈ Clearing of wakeup events have to be used when the wake up notifi-
cation is disabled to clear all stored wake up events under control of the higher layer.

⌋()

[CanTrcv095] ⌈ The implementation can enable, disable or clear wake up events

from the last communication cycle. It is very important not to lose wake up events

during the disabled period. ⌋(BSW00388, BSW00389, BSW00390, BSW00391,
BSW00392, BSW00393, BSW00394, BSW00395, BSW00408, BSW160,
BSW01090)

The number of supported busses is statically set in the configuration phase.

[CanTrcv117] ⌈ If there is no/incorrect communication to the transceiver, the function

CanTrcv_SetWakeupMode shall report the development error

CANTRCV_E_NO_TRCV_CONTROL and return E_NOT_OK. ⌋()

[CanTrcv127] ⌈ If development error detection for the module CanTrcv is enabled: If
called before the CanTrcv has been initialized, the function
CanTrcv_SetWakeupMode shall raise development error CANTRCV_E_UNINIT and

return E_NOT_OK. ⌋()

[CanTrcv131] ⌈ If development error detection for the module CanTrcv is enabled: If

called with an invalid Transceiver number, the function CanTrcv_SetWakeupMode
shall raise development error CANTRCV_E_INVALID_TRANSCEIVER and return

E_NOT_OK. ⌋()

[CanTrcv089] ⌈ If development error detection for the module CanTrcv is enabled: If

called with an invalid TrcvWakeupMode, the function CanTrcv_SetWakeupMode
shall raise the development error CANTRCV_E_PARAM_TRCV_WAKEUP_MODE

and return E_NOT_OK. ⌋()

42 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

8.3.7 CanTrcv_GetTrcvSystemData

[CanTrcv213]

Service name: CanTrcv_GetTrcvSystemData
Syntax: Std_ReturnType CanTrcv_GetTrcvSystemData(

 uint8 Transceiver,
 const uint32* TrcvSysData
)

Service ID[hex]: 0x09
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): Transceiver CAN transceiver ID.
Parameters (in-
out):

None

Parameters (out): TrcvSysData Configuration/Status data of the transceiver.

Return value:

Std_ReturnType E_OK: will be returned if the transceiver status is successfully
read.
E_NOT_OK: will be returned if the transceiver status data is not
available or a development error occurs.

Description: Reads the transceiver configuration/status data and returns it through parameter
TrcvSysData. This API shall exist only if CanTrcvHwPnSupport = TRUE.

[CanTrcv189]: The function CanTrcv_GetTrcvSystemData shall read the con-
figuration/status of the CAN transceiver and store the read data in the out parameter
TrcvSysData. If this is successful, E_OK shall be returned.

Hint: This API can be invoked through diagnostic services or during initialization to
determine the transceiver status and its availability.

Note: Currently an agreement on the parameter set for the transceiver HW specifica-
tion has not been reached. For this reason, the diagnostic data is now returned as a
uint32 (as stored in the transceiver registers). When a definitive and standard pa-
rameter set is defined, a data structure may be defined for abstracting the diagnostic
data.

[CanTrcv190]: If there is no/incorrect communication to the transceiver, the function
CanTrcv_GetTrcvSystemData shall report the development error
CANTRCV_E_NO_TRCV_CONTROL and return E_NOT_OK.

[CanTrcv191]: If DET is enabled for the CanTrcv module: if called before the
CanTrcv has been initialized, the function CanTrcv_GetTrcvSystemData shall
raise development error CANTRCV_E_UNINIT and return E_NOT_OK.

[CanTrcv192]: If DET is enabled for the CanTrcv module: if called with an invalid
transceiver ID for parameter Transceiver, function
CanTrcv_GetTrcvSystemData shall raise the development error
CANTRCV_E_INVALID_TRANSCEIVER and return E_NOT_OK.

43 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

44 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

[CanTrcv193]: If DET is enabled for the CanTrcv module: if called with NULL pointer
for parameter TrcvSysData, function CanTrcv_GetTrcvSystemData shall raise
the development error CANTRCV_E_PARAM_POINTER and return E_NOT_OK.

8.3.8 CanTrcv_ClearTrcvWufFlag

[CanTrcv214]

Service name: CanTrcv_ClearTrcvWufFlag
Syntax: Std_ReturnType CanTrcv_ClearTrcvWufFlag(

 uint8 Transceiver
)

Service ID[hex]: 0x0a
Sync/Async: Synchronous
Reentrancy: Reentrant for different transceivers
Parameters (in): Transceiver CAN Transceiver ID.
Parameters (in-
out):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: will be returned if the WUF flag has been cleared.

E_NOT_OK: will be returned if the WUF flag has not been
cleared or a development error occurs.

Description: Clears the WUF flag in the transceiver hardware. This API shall exist only if
CanTrcvHwPnSupport = TRUE.

[CanTrcv194]: The function CanTrcv_ClearTrcvWufFlag shall clear the wakeup
flag in the CAN transceiver. If successful, E_OK shall be returned.

Implementation Hints:

This API shall be used by the CanSM module for ensuring that no frame wakeup
event is lost, during entering a low-power mode. This API clears the WUF flag.

The CAN transceiver shall be shall be put into Standby mode (CANTRCV_STANDBY)
after clearing of the WUF flag.

If a system error (SYSERR, e.g. configuration error) occurs while selective wakeup
functionality is being enabled, transceiver will disable the functionality. Transceiver
will wake up on the next CAN wake pattern (WUP).
In case of any other hardware error (e.g. frame detection error), transceiver will wake
up if the error counter inside the transceiver overflows.

[CanTrcv195]: CanTrcv shall inform CanIf that the wakeup flag has been cleared for
the requested Transceiver, through the callback notification
CanIf_ClearTrcvWufFlagIndication.

[CanTrcv196]: If there is no/incorrect communication to the transceiver, the function
CanTrcv_ClearTrcvWufFlag shall report the development error
CANTRCV_E_NO_TRCV_CONTROL and return E_NOT_OK.

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

[CanTrcv197]: If DET is enabled for the CanTrcv module: if called before the
CanTrcv has been initialized, the function CanTrcv_ClearTrcvWufFlag shall raise
development error CANTRCV_E_UNINIT and return E_NOT_OK

[CanTrcv198]: If DET is enabled for the CanTrcv module: if called with an invalid
transceiver ID for parameter Transceiver, function
CanTrcv_ClearTrcvWufFlag shall raise the development error
CANTRCV_E_INVALID_TRANSCEIVER and return E_NOT_OK.

8.3.9 CanTrcv_ReadTrcvTimeoutFlag

[CanTrcv215]

Service name: CanTrcv_ReadTrcvTimeoutFlag
Syntax: Std_ReturnType CanTrcv_ReadTrcvTimeoutFlag(

 uint8 Transceiver,
 CanTrcv_TrcvFlagStateType* FlagState
)

Service ID[hex]: 0x0b
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): Transceiver CAN transceiver ID.
Parameters (in-
out):

None

Parameters (out): FlagState State of the timeout flag.

Return value:

Std_ReturnType E_OK: Will be returned, if status of the timeout flag is success-
fully read.
E_NOT_OK: Will be returned, if status of the timeout flag
could not be read.

Description: Reads the status of the timeout flag from the transceiver hardware. This API shall
exist only if CanTrcvHwPnSupport = TRUE.

[CanTrcv199]: If DET for the module CanTrcv is enabled: If called with an invalid
transceiver ID Transceiver, the function CanTrcv_ReadTrcvTimeoutFlag shall
raise the development error CANTRCV_E_INVALID_TRANSCEIVER and return
E_NOT_OK.

[CanTrcv200]: If DET for the module CanTrcv is enabled: If called with FlagState
= NULL, the function CanTrcv_ReadTrcvTimeoutFlag shall raise the develop-
ment error CANTRCV_E_PARAM_POINTER and return E_NOT_OK.

8.3.10 CanTrcv_ClearTrcvTimeoutFlag

[CanTrcv216]

Service name: CanTrcv_ClearTrcvTimeoutFlag
Syntax: Std_ReturnType CanTrcv_ClearTrcvTimeoutFlag(

45 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

 uint8 Transceiver
)

Service ID[hex]: 0x0c
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): Transceiver CAN transceiver ID.
Parameters (in-
out):

None

Parameters (out): None

Return value:

Std_ReturnType E_OK: Will be returned, if the timeout flag is successfully
cleared.
E_NOT_OK: Will be returned, if the timeout flag could not be
cleared.

Description: Clears the status of the timeout flag in the transceiver hardware. This API shall
exist only if CanTrcvHwPnSupport = TRUE.

[CanTrcv201]: If DET for the module CanTrcv is enabled: If called with an invalid
transceiver ID Transceiver, the function CanTrcv_ClearTrcvTimeoutFlag
shall raise the development error CANTRCV_E_INVALID_TRANSCEIVER and return
E_NOT_OK.

8.3.11 CanTrcv_ReadTrcvSilenceFlag

[CanTrcv217]

Service name: CanTrcv_ReadTrcvSilenceFlag
Syntax: Std_ReturnType CanTrcv_ReadTrcvSilenceFlag(

 uint8 Transceiver,
 CanTrcv_TrcvFlagStateType* FlagState
)

Service ID[hex]: 0x0d
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): Transceiver CAN transceiver ID.
Parameters (in-
out):

None

Parameters (out): FlagState State of the silence flag.

Return value:

Std_ReturnType E_OK: Will be returned, if status of the silence flag is success-
fully read.
E_NOT_OK: Will be returned, if status of the silence flag could
not be read.

Description: Reads the status of the silence flag from the transceiver hardware. This API shall
exist only if CanTrcvHwPnSupport = TRUE.

[CanTrcv202]: If DET for the module CanTrcv is enabled: If called with an invalid
transceiver ID Transceiver, the function CanTrcv_ReadTrcvSilenceFlag shall
raise the development error CANTRCV_E_INVALID_TRANSCEIVER and return
E_NOT_OK.

46 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

[CanTrcv203]: If DET for the module CanTrcv is enabled: If called with FlagState
= NULL, the function CanTrcv_ReadTrcvSilenceFlag shall raise the develop-
ment error CANTRCV_E_PARAM_POINTER and return E_NOT_OK.

8.3.12 CanTrcv_CheckWakeup

[CanTrcv143]

⌈
Service name: CanTrcv_CheckWakeup
Syntax: Std_ReturnType CanTrcv_CheckWakeup(

 uint8 Transceiver
)

Service ID[hex]: 0x07
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): Transceiver CAN transceiver to which API call has to be applied.
Parameters (in-
out):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK when a valid interrupt is detected

E_NOT_OK when a no interrupt is detected
Description: Service is called by underlying CANIF in case a wake up interrupt is detected.

 ⌋()

[CanTrcv144] ⌈ If development error detection for the module CanTrcv is enabled: If
called before the CanTrcv module has been initialized, the function
CanTrcv_CheckWakeup shall raise the development error CANTRCV_E_UNINIT

and return E_NOT_OK. ⌋()

[CanTrcv145] ⌈ If development error detection for the module CanTrcv is enabled: If

called with an invalid Transceiver number, the function CanTrcv_CheckWakeup
shall raise the development error CANTRCV_E_INVALID_TRANSCEIVER and return

E_NOT_OK. ⌋()

[CanTrcv146] ⌈ This function notifies the calling function if a wakeup is detected in

the Transceiver by returning E_OK else returns E_NOT_OK. ⌋()

8.3.13 CanTrcv_SetPNActivationState

[CanTrcv219]

Service name: CanTrcv_SetPNActivationState
Syntax: Std_ReturnType CanTrcv_SetPNActivationState(

 CanTrcv_PNActivationType ActivationState
)

47 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

Service ID[hex]: 0x0f
Sync/Async: Synchronous
Reentrancy: Non Reentrant

Parameters (in):

ActivationState PN_ENABLED: PN wakeup functionality in CanTrcv shall be
enabled.
PN_DIABLED: PN wakeup functionality in CanTrcv shall be
disabled.

Parameters (in-
out):

None

Parameters (out): None

Return value:

Std_ReturnType E_OK: Will be returned, if the PN has been changed to the
requested configuration.
E_NOT_OK: Will be returned, if the PN configuration change
has failed. The previous configuration has not been changed.

Description: The API configures the wake-up of the transceiver for Standby and Sleep Mode:
Either the CAN transceiver is woken up by a remote wake-up pattern (standard
CAN wake-up) or by the configured remote wake-up frame.

[CanTrcv220] If development error detection for the module CanTrcv is enabled: If
called before the CanTrcv module has been initialized, the function
CanTrcv_SetPNActivationState shall raise the development error CANTRCV_E_UNINIT
and return E_NOT_OK.

[CanTrcv221] CanTrcv shall enable the PN wakeup functionality when function
CanTrcv_SetPNActivationState is called with ActivationState= PN_ENABLED and return E_OK.

[CanTrcv222] CanTrcv shall disable the PN wakeup functionality when function
CanTrcv_SetPNActivationState is called with ActivationState= PN_DISABLED and return E_OK.

8.3.14 CanTrcv_CheckWakeFlag

[CanTrcv223]⌈⌋()

Service name: CanTrcv_CheckWakeFlag
Syntax: Std_ReturnType CanTrcv_CheckWakeFlag(

 uint8 Transceiver
)

Service ID[hex]: 0x0e
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): Transceiver CAN transceiver ID.
Parameters (in-
out):

None

Parameters (out): None

Return value:

Std_ReturnType E_OK: Will be returned, if the request for checking the wakeup
flag has been accepted.
E_NOT_OK: Will be returned, if the request for checking the
wakeup flag has not been accepted.

Description: Requests to check the status of the wakeup flag from the transceiver hardware.

48 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

[CanTrcv224]⌈⌋() CanTrcv shall inform CanIf that a wakeup has been detected in

the requested Transceiver, through the callback notification
CanIf_CheckTrcvWakeFlagIndication.

[CanTrcv225]⌈⌋() If DET for the module CanTrcv is enabled: If called with an invalid

transceiver ID Transceiver, the function CanTrcv_CheckWakeFlag shall raise the
development error CANTRCV_E_INVALID_TRANSCEIVER and return E_NOT_OK.

8.4 Scheduled functions

This chaper lists all functions provided by the CanTrcv module and called directly by
the Basic Software Module Scheduler.

8.4.1 CanTrcv_MainFunction

[CanTrcv013]

⌈
CanTrcv_MainFunction Service name:
void CanTrcv_MainFunction(
 void
)

Syntax:

0x06 Service ID[hex]:
FIXED_CYCLIC Timing:
Service to scan all busses for wake up events and perform these event. Description:

 ⌋(BSW00310, BSW00329, BSW00369, BSW00371, BSW00373, BSW00376,
BSW00406, BSW00424, BSW00428, BSW171, BSW172, BSW01097, BSW01109,
BSW01110)

The CAN bus transceiver driver may have cyclic jobs like polling for wake up events
(if configured).

[CanTrcv112] ⌈ The CanTrcv_MainFunction shall scan all busses in STANDBY
and SLEEP for wake up events.

This function shall set a wake-up event flag to perform these events. ⌋(BSW00343)

According to [BSW00424], main processing functions shall be allocated by basic
tasks. No special call order to be kept. This function is directly called by Basic Soft-
ware Scheduler.

See configuration parameter CanTrcvWakeUpSupport.

49 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

[CanTrcv128] ⌈ If development error detection for the module CanTrcv is enabled: If

called before the CanTrcv has been initialized, the function

CanTrcv_MainFunction shall raise development error CANTRCV_E_UNINIT. ⌋()

8.4.2 CanTrcv_MainFunctionDiagnostics

[CanTrcv218]

Service name: CanTrcv_MainFunctionDiagnostics
Syntax: void CanTrcv_MainFunctionDiagnostics(

 void
)

Service ID[hex]: 0x08
Timing: FIXED_CYCLIC
Description: Reads the transceiver diagnostic status periodically and sets product/development

accordingly.

[CanTrcv204]: The cyclic function CanTrcv_MainFunctionDiagnostics shall
read the transceiver status periodically and report production/development errors ac-
cordingly.

[CanTrcv205]: The cyclic function CanTrcv_MainFunctionDiagnostics shall
exist only if CanTrcvBusErrFlag = TRUE.

[CanTrcv206]: If configured and supported by hardware: if the BUSERR flag is set,
function CanTrcv_MainFunctionDiagnostics shall set the production error
CANTRCV_E_BUS_ERROR.

[CanTrcv207]: If DET for the module CanTrcv is enabled: If called before the
CanTrcv has been initialized, the function CanTrcv_MainFunctionDiagnostics
shall raise development error CANTRCV_E_UNINIT.

8.5 Call-back notifications

Since the CanTrcv is a driver module, it doesn’t provide any callback functions for
lower layer modules.

8.6 Expected Interfaces

This chapter lists all functions the module CanTrcv requires from other modules.

50 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

8.6.1 Mandatory Interfaces

This chapter defines all interfaces which are required to fulfill the core functionality of
the module.

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

[CanTrcv085]

⌈
API function Description
CanIf_TrcvModeIndication This service indicates a transceiver state transition referring to the cor-

responding CAN transceiver.

 ⌋(BSW00370)

8.6.2 Optional Interfaces

This chapter defines all interfaces which are required to fulfill an optional functionality
of the module.

[CanTrcv086]

⌈
API function Description
CanIf_CheckTrcvWakeFlagIndication This service indicates the reason for the wake up that the CAN

transceiver has detected.
CanIf_ClearTrcvWufFlagIndication This service indicates that the transceiver has cleared the Wuf-

Flag.
CanIf_ConfirmPnAvailability This service indicates that the transceiver is running in PN com-

munication mode.
Det_ReportError Service to report development errors.
Dio_ReadChannel Returns the value of the specified DIO channel.
Dio_ReadChannelGroup This Service reads a subset of the adjoining bits of a port.
Dio_ReadPort Returns the level of all channels of that port.
Dio_WriteChannel Service to set a level of a channel.
Dio_WriteChannelGroup Service to set a subset of the adjoining bits of a port to a speci-

fied level.
Dio_WritePort Service to set a value of the port.
Icu_DisableNotification This function disables the notification of a channel.
Icu_EnableNotification This function enables the notification on the given channel.
Spi_GetStatus Service returns the SPI Handler/Driver software module status.
Spi_ReadIB Service for reading synchronously one or more data from an IB

SPI Handler/Driver Channel specified by parameter.
Spi_SetupEB Service to setup the buffers and the length of data for the EB SPI

Handler/Driver Channel specified.
Spi_SyncTransmit Service to transmit data on the SPI bus
Spi_WriteIB Service for writing one or more data to an IB SPI Handler/Driver

Channel specified by parameter.

 ⌋()

1. The interfaces of the SPI module are used by the CanTrcv module if there are

instances of the container CanTrcvSpiSequence.

2. The interfaces of the DIO module are used by the CanTrcv module if there are
instances of the container CanTransceiverDIOAccess.

51 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

Note: If the Can transceiver is controlled via Dio/Spi, the Dio/Spi interfaces are re-
quired to fulfill the core functionality of the module. Which interfaces are needed ex-
actly shall not be detailed further in this specification

8.6.3 Configurable interfaces

There are no configurable interfaces for CAN transceiver driver.

52 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

9 Sequence diagram

The focus of the following diagrams is on the interaction between the CAN trans-
ceiver driver and the BSW modules CanIf, ComM, EcuM and Dio. Depending on the
CAN transceiver hardware, one or more calls to Dio_WriteChannels may be nec-
essary.

Depending on the transceiver hardware, there may be a need of wait states for some
transitions.

9.1 Wake up with valid validation

For all wakeup related sequence diagrams please refer to chapter 9 of ECU State
Manager.

53 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

9.2 Interaction with DIO module

sd CanTrcv_Dio_Interaction

«module»

EcuM::EcuM

«module»

ComM::ComM

«module»

CanIf::CanIf

«module»

CanTrcv::CanTrcv

«module»

Dio::Dio

«Peripheral»

Hardware::CAN
Transceiver Hardware

ComM_EcuM_WakeUpIndication(NetworkHandleType)

ComM_EcuM_WakeUpIndication()

CanIf_TrcvGotoNormalMode()

CanTrcv_GotoNormalMode(CanTrcv_BusHandleType)
:Std_ReturnType

Dio_WriteChannel(Dio_ChannelType,
Dio_LevelType)

set/reset HW
Dio_WriteChannel()

ports()

Dio_WriteChannel(Dio_ChannelType,
Dio_LevelType) set/reset HW

ports()
Dio_WriteChannel()

CanTrcv_GotoNormalMode()
Comment:

CAN transceiver
hardware is now in
NORMAL mode. It's
ready to operate.

CanIf_TrcvGotoNormalMode()

start CAN
Communication()

stop CAN
Communication() ref

Start CAN Network
CanIf_TrcvGotoStandbyMode()

ref
Stop & Sleep CAN Network

CanTrcv_GotoStandByMode(CanTrcv_BusHandleType)
:Std_ReturnType

Dio_WriteChannel(Dio_ChannelType,

Status: proposed

Comments:

Comment:

CAN transceiver
hardware is now in
STANDBY mode. No
transmitting or receiving
possible. It's ready to
wake up again.

Comment:

CAN transceiver
hardware is now in
SLEEP mode. No
transmitting or receiving
possible. It's ready to
wake up again

Dio_LevelType) set/reset HW
ports()

Dio_WriteChannel()

Dio_WriteChannel(Dio_ChannelType,
Dio_LevelType) set/reset HW

ports()Dio_WriteChannel()

CanTrcv_GotoStandByMode()

CanIf_TrcvGotoStandbyMode()

CanIf_TrcvGotoSleepMode()

CanTrcv_GotoSleepMode(CanTrcv_BusHandleType)
:Std_ReturnType

Dio_WriteChannel(Dio_ChannelType,
Dio_LevelType)

set/reset HW
ports()

Dio_WriteChannel()

Dio_WriteChannel(Dio_ChannelType,
Dio_LevelType) set/reset HW

ports()
Dio_WriteChannel()

CanTrcv_GotoSleepMode()

CanIf_TrcvGotoSleepMode()

54 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

9.3 De-Initialization (SPI Synchronous)

«module»

CanTrcv

«module»

EcuM

«module»

CanIf

«module»

ComM

«module»

CanSM

«module»

Spi

«module»

Can

ComM state ==
NoCom

CanSM mode ==
SilentCom

Trcv == NORMAL Ctrl == STARTED

CanSM_RequestComMode(NetworkA, NoCom) :
Std_ReturnType

CanSM_MainFunction()

CanIf_ClearTrcvWufFlag(TransceiverId)
:Std_ReturnType

CanTrcv_ClearTrcvWufFlag(Transceiver)
:Std_ReturnType

Spi_SyncTransmit(Sequence)
:Std_ReturnType

SPI request is processed synchronously
CanIf_ClearTrcvWufFlagIndication(TransceiverId)

[1] CanSm_MainFunction() shall not return if response indication was
called during request function. The next step in Shutdown sequence
shall directly be performed.
-> Here CanSM_ClearWufFlagIndication was called during
CanSM_ClearTrcvWufFlag
-> next step in sequence (CanIf_SetControl lerMode) shall be
performed

CanSM_ClearTrcvWufFlagIndication(Transceiver)

alt CanSM_ClearTrcvWufFlagIndication() was called

CanIf_SetControl lerMode(ControllerId,
CANIF_CS_STOPPED) :
Std_ReturnType

Can_SetControl lerMode(Controller,
CAN_T_STOP) :Can_ReturnType

In CanSM buffered CtrlMode =
CANIF_CS_STOPPED

CanIf_SetTrcvMode(TransceiverId,
CANIF_TRCV_MODE_STANDBY) :Std_ReturnType

CanTrcv_SetOpMode(Transceiver, CANIF_TRCV_MODE_STANDBY)
:Std_ReturnType

Spi_SyncTransmit(Sequence)
:Std_ReturnType

CanIf_TrcvModeIndication(TransceiverId,
CANIF_TRCV_MODE_STANDBY)

CanSM_TransceiverModeIndication(TransceiverId,
CANIF_TRCV_MODE_STANDBY)

see note [1]

alt CanSM_TransceiverModeIndication was called with TransceiverMode == STANDBY

CanIf_SetControl lerMode(Control lerId,
CANIF_CS_SLEEP) :Std_ReturnType

Can_SetControllerMode(Controller,
CAN_T_SLEEP) :
Can_ReturnType

:CAN_OK / CAN_NOT_OK

:E_OK / E_NOT_OK

If CanIf_SetControl lerMode(ControllerId, CANIF_CS_SLEEP) returns E_NOT_OK, the
buffered CC state in CanSM is not changed to CANIF_CS_SLEEPIn CanSM buffered CtrlMode =

CANIF_CS_SLEEP if E_OK has
been returned

CanIf_CheckTrcvWakeFlag(TransceiverId) :
Std_ReturnType

CanTrcv_CheckWakeFlag(Transceiver) :
Std_ReturnType

Read Wake Flag via
Spi_SyncTransmit()

alt Wakeup Source

[bus (priority_high)]

[pin (prio_medium)]

[no wakeup (prio_low)]

EcuM_SetWakeupEvent(WuSourceBus)

see note [1]

[optional]:
If Wake Flags are cleared, the
dominant level on RxD has to be
cleared. -> OEM HW requirement

see note [1]EcuM_SetWakeupEvent(WuSourcePin)

Clear Wake Flag via
Spi_SyncTransmit()

CanIf_CheckTrcvWakeFlagIndication(TransceiverId)

CanSM_CheckTransceiverWakeFlagIndication(Transceiver)

alt return value of SetCtrlMode (SLEEP)

[E_OK]

[E_NOT_OK]

ComM_CanSM_ModeIndication(NetworkA,
NoCom)

alt return value of SetCtrlMode (SLEEP)

[E_OK]

[E_NOT_OK]

CanIf_CheckTrcvWakeFlagIndication(TransceiverId)

see note [1]
CanSM_CheckTransceiverWakeFlagIndication(Transceiver)

ComM_BusSM_ModeIndication(NetworkA,
NoCom)

55 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

9.4 De-Initialization (SPI Asynchronous)

«module»

CanTrcv

«module»

EcuM

«module»

CanIf

«module»

ComM

«module»

CanSM

«module»

Spi

«module»

Can

ComM state ==
NoCom

CanSM mode ==
SilentCom

Trcv == NORMAL Ctrl == STARTED

[1] It could be checked via
- Spi_JobEndNotification() callback or
- Spi_GetSequenceStatus() or
- Spi_ReadIB()
whether SPI request was successfully transmitted via SPI lines.
This could either be done in interrupt context or in
CanTrcv_MainFunction().

CanSM_RequestComMode(NetworkA, NoCom) :
Std_ReturnType

CanSM_MainFunction()

CanIf_ClearTrcvWufFlag(TransceiverId)
:Std_ReturnType

CanTrcv_ClearTrcvWufFlag(Transceiver)
:Std_ReturnType

Spi_AsyncTransmit(Sequence)
:Std_ReturnType

alt CanSM_ClearTrcvWufFlagIndication() was called

In CanSM buffered CtrlMode =
CANIF_CS_STOPPED

alt CanSM_TransceiverModeIndication was called with TransceiverMode == STANDBY

In CanSM buffered CtrlMode =
CANIF_CS_SLEEP if E_OK has

been returned

If CanIf_SetControl lerMode(ControllerId, CANIF_CS_SLEEP) returns E_NOT_OK, the
buffered CC state in CanSM is not changed to CANIF_CS_SLEEP

alt Wakeup Source

[bus (priority_high)]

[pin (prio_medium)]

[no wakeup (prio_low)]

see note [1] above

see note [1] above
If Wake Flags are cleared, the
dominant level on RxD has to be
cleared. -> OEM HW requirement

alt return value of SetCtrlMode (SLEEP)

[E_OK]

[E_NOT_OK]

alt return value of SetCtrlMode (SLEEP)

[E_OK]

[E_NOT_OK]

see note [1] above

CanIf_ClearTrcvWufFlagIndication(TransceiverId)

CanSM_ClearTrcvWufFlagIndication(Transceiver) see note [1] above

CanSM_MainFunction()

CanIf_SetControl lerMode(Control lerId,
CANIF_CS_STOPPED) :
Std_ReturnType

Can_SetControl lerMode(Control ler,
CAN_T_STOP) :Can_ReturnType

CanIf_SetTrcvMode(TransceiverId,
CANIF_TRCV_MODE_STANDBY) :Std_ReturnType

CanTrcv_SetOpMode(Transceiver, CANIF_TRCV_MODE_STANDBY)
:Std_ReturnType

Spi_AsyncTransmit(Sequence)
:Std_ReturnType

CanIf_TrcvModeIndication(TransceiverId,
CANIF_TRCV_MODE_STANDBY)

CanSM_TransceiverModeIndication(TransceiverId,
CANIF_TRCV_MODE_STANDBY)

see note [1] above

In CanSM buffered Trcv Mode =
CANIF_TRCV_MODE_STANDBY

CanIf_SetControllerMode(Control lerId,
CANIF_CS_SLEEP) :Std_ReturnType

Can_SetControl lerMode(Controller,
CAN_T_SLEEP) :
Can_ReturnType

:CAN_OK / CAN_NOT_OK

:E_OK / E_NOT_OK

CanIf_CheckTrcvWakeFlag(TransceiverId) :
Std_ReturnType

CanTrcv_CheckWakeFlag(Transceiver) :
Std_ReturnType

Read Wake Flag via
Spi_AsyncTransmit()

EcuM_SetWakeupEvent(WuSourceBus)

[optional]:
EcuM_SetWakeupEvent(WuSourcePin)

Clear Wake Flag via
Spi_AsyncTransmit()

CanIf_CheckTrcvWakeFlagIndication(TransceiverId)

CanSM_CheckTransceiverWakeFlagIndication(Transceiver)

ComM_CanSM_ModeIndication(NetworkA,
NoCom)

CanIf_CheckTrcvWakeFlagIndication(TransceiverId)

CanSM_CheckTransceiverWakeFlagIndication(Transceiver)

ComM_BusSM_ModeIndication(NetworkA,
NoCom)

56 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

10 Configuration specification

In general this chapter defines configuration parameters and their clustering into con-
tainers. In order to support the specification Chapter 10.1 describes fundamentals.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
CanTrcv.

Chapter 0 specifies published information of the module CanTrcv.

10.1 How to read this chapter

In addition to this section, it is highly recommended to read the documents:

- AUTOSAR Layered Software Architecture [2]
- AUTOSAR ECU Configuration Specification [3]

This document describes the AUTOSAR configuration methodology and the
AUTOSAR configuration metamodel in detail.

The following is only a short survey of the topic and it will not replace the ECU Con-
figuration Specification document.

10.1.1 Configuration class and configuration parameters

Configuration parameters define the variability of the generic part(s) of an
�onfiguretation of a module. This means that only generic or configurable module
implementation can be adapted to the environment (software/hardware) in use during
system and/or ECU configuration.

The configuration of parameters can be achieved at different times during the soft-
ware process: before compile time, before link time or after build time. In the follow-
ing, the term “configuration class” (of a parameter) shall be used in order to refer to a
specific configuration point in time.

10.1.2 Variants

Variants describe sets of configuration parameters. E.g., variant 1: only pre-compile
time configuration parameters; variant 2: mix of pre-compile- and post build time-
configuration parameters. In one variant a parameter can only be of one
�onfiguretion class.

Each Variant must have a unique name which could be referenced to in later chap-
ters. The maximum number of allowed variants is 3.

57 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

10.1.3 Containers

Containers structure the set of configuration parameters. This means:

 all configuration parameters are kept in containers.
 (sub-) containers can reference (sub-) containers. It is possible to assign a

multiplicity to these references. The multiplicity then defines the possible num-
ber of instances of the contained parameters.

Configuration parameters shall be clustered into a container whenever

 the configuration parameters logically belong together
(e.g. general parameters which are valid for the entire module NVRAM man-
ager)

 the configuration parameters need to be instantiated
(e.g. parameters of the memory block specification of the NVRAM manager –
those parameters must be instantiated for each memory block)

58 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed mean-
ings of the parameters are described in preeding hapters.

10.2.1 Variants

Currently VARIANT-PRE-COMPILE variant is defined for CanTrcv.

VARIANT-PRE-COMPILE:Only parameters with “Pre-compile time" configuration are
allowed in this variant

[CanTrcv017] ⌈ Only Pre-compile time configuration is allowed. Thus only VARIANT-

PRE-COMPILE is allowed. ⌋(BSW00396, BSW01091)

10.2.2 CanTrcv

CanTrcv Module Name
Module Description Configuration of the CanTrcv (CAN Transceiver driver) module.

Included Containers
Container Name Multiplicity Scope / Dependency

CanTrcvConfigSet 1
This is the multiple configuration set container for CAN Trans-
ceiver.

CanTrcvGeneral 1 Container gives CAN transceiver driver basic information.

CanTrcv :EcucModuleDef

CanTrcvGeneral :upperMultiplicity = *
lowerMultiplicity = 0 +container EcucParamConfContainerDef

lowerMultipl icity = 1
upperMultipl icity = 1

CanTrcvChannel :CanTrcvConfigSet :
CanTrcvAccess :EcucParamConfContainerDefEcucParamConfContainerDef

+subContainer EcucChoiceContainerDef
upperMultiplicity = *
lowerMultiplicity = 1

multipleConfigurationContainer = true
upperMultipl icity = 1
lowerMultipl icity = 1

+subContainer

CanTrcvPartialNetwork :
EcucParamConfContainerDef+subContainer

lowerMultipl icity = 0
upperMultipl icity = 1

+container

CanTrcvSPICommTimeout :
EcucIntegerParamDef+parameter

min = 0
max = 100
defaultValue = 0

CanTrcvSPICommRetries :
EcucIntegerParamDef+parameter

min = 0
max = 255
defaultValue = 0

59 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

10.2.3 CanTrcvGeneral
SWS Item CanTrcv090_Conf :
Container Name CanTrcvGeneral
Description Container gives CAN transceiver driver basic information.
Configuration Parameters

SWS Item CanTrcv152_Conf :
N ame CanTrcvDevErrorDetect {CANTRCV_DEV_ERROR_DETECT}
Description Switches development error detection and notification on and off. If

switched on, #define CANTRCV_DEV _ERROR_DETECT ON shall be
generated. If switched off, #define CANTRCV_DEV_ERROR _DETECT
OFF shall be generated. Define shall be part of file CanTrcv_Cfg.h.

Multiplicity 1
Type EcucBooleanParamDef
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: Module

SWS Item CanTrcv153_Conf :
N ame CanTrcvGetVersionInfo {CANTRCV_GET_VERSION_INFO}
Description Switches version information API on and off. If switched off, function need

not be present in compiled code.
Multiplicity 1
Type EcucBooleanParamDef
Default value false

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: Module

SWS Item CanTrcv179_Conf :
N ame CanTrcvSPICommRetries
Description Indicates the maximal number of communication retries in case of failed

SPI communication (applies both to timed out communication and to er-
rors/NACK in the response data). (0 ... 255 times, 0 means no retry al-
lowed, communication must succeed at first try)

Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 255
Default value 0

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: Local

dependency: This parameter exists inly if a SPI Sequence is referenced in
SPIREF.

SWS Item CanTrcv178_Conf :
N ame CanTrcvSPICommTimeout
Description Indicates the maximal time allowed to the Transceiver in order to reply

(either positively or negatively) to a SPI command. (value in ms, 0ms
means no specific timeout is to be used, communication is executed at the
best of the SPI HW capacity)

60 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 100
Default value 0

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: Local

dependency: This parameter exists only if a SPI Sequence is referenced in
CanTrcvSpiSequence.

SWS Item CanTrcv156_Conf :
N ame CanTrcvWaitCount
Description Indicates the number of wait states to change the transceiver operation

mode. Transceiver hardware may need wait states for some transitions.
Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 4294967295
Default value 0

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: Module

SWS Item CanTrcv154_Conf :
N ame CanTrcvWakeUpSupport {CANTRCV_GENERAL_WAKE_UP_SUPPORT}
Description Informs whether wake up is supported by polling or not supported. In case no

wake up is supported by the hardware, setting has to be NOT_SUPPORTED.
Only in the case of wake up supported by polling, function
CanTrcv_MainFunction has to be present and to be invoked by the scheduler.

Multiplicity 1
Type EcucEnumerationParamDef

CANTRCV_WAKEUP_BY_POLLING Wake up by polling Range
CANTRCV_WAKEUP_NOT_SUPPORTED Wake up is not supported
Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: Module

dependency: CanTrcvWakeupByBusUsed

No Included Containers

61 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

CanTrcvGeneral :
EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultipl icity = 1

CanTrcv Dev ErrorDetect :
EcucBooleanParamDef

CanTrcv GetVersionInfo :
EcucBooleanParamDef

defaultValue = false

CanTrcv WakeUpSupport :
EcucEnumerationParamDef

CANTRCV_WAKEUP_BY_POLLING :
EcucEnumerationLiteralDef

CANTRCV_WAKEUP_NOT_SUPPORTED :
EcucEnumerationLiteralDef

CanTrcv Index :EcucIntegerParamDef+parameter

+parameter

+literal

+parameter

+literal

+parameter

CanTrcv SleepWaitCount :
EcucIntegerParamDef

+parameter

min = 0
defaultValue = 0

10.2.4 CanTrcvChannel
SWS Item CanTrcv143_Conf :
Container Name CanTrcvChannel{CanTranceiverChannels}

Description
Container gives CAN transceiver driver information about a single CAN
transceiver (channel).

Configuration Parameters

SWS Item CanTrcv155_Conf :
N ame CanTrcvChannelId {CANTRCV_CHANNEL_ID}
Description Unique identifier of the CAN Transceiver Channel.
Multiplicity 1
Type EcucIntegerParamDef (Symbolic Name generated for this parameter)
Range 0 .. 255
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

SWS Item CanTrcv096_Conf :
N ame CanTrcvChannelUsed {CANTRCV_CHANNEL_USED}
Description Shall the related CAN transceiver channel be used?
Multiplicity 1
Type EcucBooleanParamDef
Default value true

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: Instance

SWS Item CanTrcv097_Conf :
N ame CanTrcvControlsPowerSupply

{CANTRCV_CONTROLS_POWER_SUPPLY}
Description Is ECU power supply controlled by this transceiver? TRUE = Controlled by

transceiver. FALSE = Not controlled by transceiver.
Multiplicity 1
62 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver

- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

Type EcucBooleanParamDef
Default value false

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: Instance

SWS Item CanTrcv160_Conf :
N ame CanTrcvHwPnSupport {CANTRCV_HW_PN_SUPPORT}
Description Indicates whether the HW supports the selective wake-up function TRUE =

Selective wakeup feature is supported by the transceiver FALSE = Selec-
tive wakeup functionality is not available in transceiver

Multiplicity 1
Type EcucBooleanParamDef
Default value false

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: Local

dependency: CanTrcvWakeUpSupport

SWS Item CanTrcv146_Conf :
N ame CanTrcvInitState {CANTRCV_INIT_STATE}
Description State of CAN transceiver after call to CanTrcv_Init.
Multiplicity 1
Type EcucEnumerationParamDef

CANTRCV_OP_MODE_NORMAL Normal operation mode
(default)

CANTRCV_OP_MODE_SLEEP Sleep operation mode

Range

CANTRCV_OP_MODE_STANDBY Standby operation mode
Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: Instance

SWS Item CanTrcv147_Conf :
N ame CanTrcvMaxBaudrate {CANTRCV_MAX_BAUDRATE}
Description Max baudrate for transceiver hardware type. Only used for validation pur-

poses. Value shall be configured by configuration tool based on trans-
ceiver hardware type.

Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 1000
Default value --

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: Instance

SWS Item CanTrcv148_Conf :
N ame CanTrcvWakeupByBusUsed {CANTRCV_WAKEUP_BY_BUS_USED}
Description Is wake up by bus supported? If CAN transceiver hardware does not sup-

port wake up by bus value is always FALSE. If CAN transceiver hardware
supports wake up by bus value is TRUE or FALSE depending whether it is
used or not. TRUE = Is used. FALSE = Is not used.

Multiplicity 0..1

63 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

Type EcucBooleanParamDef
Default value false

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: Instance

dependency: CanTrcvWakeUpSupport

SWS Item CanTrcv177_Conf :
N ame CanTrcvWakeupSourceRef {CANTRCV_WAKEUP_SOURCE_REF}
Description Reference to a wakeup source in the EcuM configuration. This reference is

only needed if CanTrcvWakeupByBusUsed is true.
Multiplicity 0..1
Type Reference to [EcuMWakeupSource]

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: ECU

dependency: CanTrcvWakeupByBusUsed

Included Containers
Container Name Multiplicity Scope / Dependency

CanTrcvAccess 1
Container gives CanTrcv Driver information about access to a
single CAN transceiver.

CanTrcvPartialNetwork 0..1
Container gives CAN transceiver driver information about the
configuration of Partial Networking functionality.

64 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

CANTRCV_OP_MODE_NORMAL :
EcucEnumerationLiteralDef

CANTRCV_OP_MODE_STANDBY :
EcucEnumerationLiteralDef

CANTRCV_OP_MODE_SLEEP :
EcucEnumerationLiteralDef

CanTrcv ChannelId :EcucIntegerParamDef
CanTrcv Channel :

EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 1

CanTrcv WakeupByBusUsed :
EcucBooleanParamDef

defaultValue = false
lowerMultiplicity = 0
upperMultiplicity = 1

CanTrcv InitState :EcucEnumerationParamDef

defaultValue = CANTRCV_OP_MODE_NORMAL

CanTrcv ControlsPowerSupply :
EcucBooleanParamDef

defaultValue = false

CanTrcv ChannelUsed :EcucBooleanParamDef

defaultValue = true

CanTrcv MaxBaudrate :EcucIntegerParamDef

max = 1000
min = 0

CanTrcv Access :EcucChoiceContainerDef

upperMultiplicity = 1
lowerMultiplicity = 1

+parameter
symbolicNameValue = true

+parameter

+literal

EcuMWakeupSource :
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 1

(from EcuM)

EcuMWakeupSourceId :
EcucIntegerParamDef

symbolicNameValue = true

(from EcuM)

CanTrcv WakeupSourceRef :
EcucSymbolicNameReferenceDef

lowerMultiplicity = 0
upperMultiplicity = 1

+parameter

+parameter
+literal

+literal

+parameter

+parameter

+subContainer

+reference

+destination

+parameter

10.2.5 CanTrcvAccess
SWS Item CanTrcv101_Conf :
Choice container Name CanTrcvAccess

Description
Container gives CanTrcv Driver information about access to a single CAN
transceiver.

Container Choices
Container Name Multiplicity Scope / Dependency

CanTrcvDioAccess 0..1

Container gives CAN transceiver driver information about ac-
cessing ports and port pins. In addition relation between CAN
transceiver hardware pin names and Dio port access informa-
tion is given. If a CAN transceiver hardware has no Dio inter-
face, there is no instance of this container.

CanTrcvSpiSequence 0..*

Container gives CAN transceiver driver information about one
SPI sequence. One SPI sequence used by CAN transceiver
driver is in exclusive use for it. No other driver is allowed to
access this sequence. CAN transceiver driver may use one
sequence to access n CAN transceiver hardwares chips of the
same type or n sequences are used to access one single CAN

65 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

66 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

transceiver hardware chip. If a CAN transceiver hardware has
no SPI interface, there is no instance of this container.

CanTrcv SpiSequence :
EcucParamConfContainerDef

upperMultiplicity = 1
lowerMultiplicity = 0

CanTrcv DioAccess :
EcucParamConfContainerDef

upperMultiplicity = 1
lowerMultiplicity = 0

CanTrcv SpiSequenceName :
EcucSymbolicNameReferenceDef

CanTrcv HardwareInterfaceName :
EcucStringParamDef

CanTrcv Access :
EcucChoiceContainerDef

upperMultiplicity = 1
lowerMultiplicity = 1

CanTrcv DioSymNameRef :
EcucChoiceReferenceDef

CanTrcv DioChannelAccess : +parameter

EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = *

+reference

+choice +reference

+choice +subContainer

10.2.6 CanTrcvDioAccess
SWS Item CanTrcv145_Conf :
Container Name CanTrcvDioAccess{CanTransceiverDioAccess}

Description

Container gives CAN transceiver driver information about accessing ports
and port pins. In addition relation between CAN transceiver hardware pin
names and Dio port access information is given. If a CAN transceiver
hardware has no Dio interface, there is no instance of this container.

Configuration Parameters

Included Containers
Container Name Multiplicity Scope / Dependency

CanTrcvDioChannelAccess 1..*
Container gives DIO channel access by single Can transceiver
channel.

10.2.7 CanTrcvDioChannelAccess
SWS Item CanTrcv157_Conf :
Container Name CanTrcvDioChannelAccess{CanTrcvDioChannelAccess}
Description Container gives DIO channel access by single Can transceiver channel.
Configuration Parameters

SWS Item CanTrcv150_Conf :
N ame CanTrcvHardwareInterfaceName

{CANTRCV_HARDWARE_INTERFACE_NAME}
Description CAN transceiver hardware interface name. It is typically the name of a pin.

From a Dio point of view it is either a port, a single channel or a channel
group. Depending on this fact either
CANTRCV_DIO_PORT_SYMBOLIC_NAME or
CANTRCV_DIO_CHANNEL_SYMBOLIC_NAME or
CANTRCV_DIO_CHANNEL_GROUP_SYMBOLIC_NAME shall reference
a Dio configuration. The CAN transceiver driver implementation description
shall list up this name for the appropriate CAN transceiver hardware.

Multiplicity 1
Type EcucStringParamDef
Default value --
maxLength --
minLength --
regularExpression --

Pre-compile time X All Variants ConfigurationClass
Link time --

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

Post-build time --
Scope / Dependency scope: Instance

SWS Item CanTrcv149_Conf :
N ame CanTrcvDioSymNameRef
Description Choice Reference to a DIO Port, DIO Channel or DIO Channel Group. This

reference replaces the CANTRCV_DIO_PORT_SYM_NAME,
CANTRCV_DIO_CHANNEL_SYM_NAME and
CANTRCV_DIO_GROUP_SYM_NAME references in the Can Trcv SWS.

Multiplicity 1
Type Choice reference to [DioChannel , DioChannelGroup , DioPort]

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency

No Included Containers

10.2.8 CanTrcvSpiSequence
SWS Item CanTrcv144_Conf :
Container Name CanTrcvSpiSequence{CanTransceiverSPISequences}

Description

Container gives CAN transceiver driver information about one SPI se-
quence. One SPI sequence used by CAN transceiver driver is in exclusive
use for it. No other driver is allowed to access this sequence. CAN trans-
ceiver driver may use one sequence to access n CAN transceiver hard-
wares chips of the same type or n sequences are used to access one sin-
gle CAN transceiver hardware chip. If a CAN transceiver hardware has no
SPI interface, there is no instance of this container.

Configuration Parameters

SWS Item CanTrcv176_Conf :
N ame CanTrcvSpiAccessSynchronous

{CANTRCV_SPI_ACCESS_SYNCHRONOUS}
Description This parameter is used to define whether the access to the Spi sequence

is synchronous or asynchronous. true: SPI access is synchronous. false:
SPI access is asynchronous.

Multiplicity 0..1
Type EcucBooleanParamDef
Default value false

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: Module

SWS Item CanTrcv151_Conf :
N ame CanTrcvSpiSequenceName {CANTRCV_SPI_SEQUENCE_NAME}
Description Reference to a Spi sequence configuration container.
Multiplicity 0..*
Type Reference to [SpiSequence]

Pre-compile time X All Variants
Link time --

ConfigurationClass

Post-build time --
Scope / Dependency scope: Instance

dependency: SpiSequence

67 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

No Included Containers

CanTrcvSpiSequence : SpiSequence :CanTrcvSpiSequenceName :
EcucSymbolicNameReferenceDef

lowerMultiplicity = 0
upperMultiplicity = *

EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 1

(from SPI)

DioChannelGroup :
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 0

(from DIO)

CanTrcvDioAccess :
EcucParamConfContainerDef

upperMultiplicity = 1
lowerMultiplicity = 0

EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

DioPort :EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 1

(from DIO)

DioChannel :EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 0

(from DIO)

CanTrcvDioSymNameRef :
EcucChoiceReferenceDef

CanTrcvDioChannelAccess :
EcucParamConfContainerDef

lowerMultiplicity = 1
upperMultiplicity = *

+destination

+subContainer

+destination

+subContainer

+destination+reference

+destination

+reference

+subContainer

10.2.9 CanTrcvPartialNetwork
SWS Item CanTrcv161_Conf :
Container Name CanTrcvPartialNetwork

Description
Container gives CAN transceiver driver information about the configuration
of Partial Networking functionality.

Configuration Parameters

SWS Item CanTrcv169_Conf :
N ame CanTrcvBaudRate {CANTRCV_BAUD_RATE}
Description Indicates the CAN Bus communication baud rate in kbps.
Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 1000
Default value --

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: Local

dependency: Although WUF with DLC=0 is technically possible, it is explic-
itly not wanted.

SWS Item CanTrcv171_Conf :
N ame CanTrcvBusErrFlag {CANTRCV_BUS_ERR_FLAG}
Description Indicates if the Bus Error (BUSERR) flag is managed by the BSW. This

flag is set if a bus failure is detected by the transceiver. TRUE = Supported
by transceiver and managed by BSW. FALSE = Not managed by BSW.

Multiplicity 1

68 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

69 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Type EcucBooleanParamDef
Default value false

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: Local

SWS Item CanTrcv164_Conf :
N ame CanTrcvPnCanIdIsExtended {CANTRCV_PN_CAN_ID_IS_EXTENDED}
Description Indicates whether extended or standard ID is used. TRUE = Extended Can

identifier is used. FALSE = Standard Can identifier is used
Multiplicity 1
Type EcucBooleanParamDef
Default value false

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: Local

SWS Item CanTrcv172_Conf :
N ame CanTrcvPnEnabled {CANTRCV_PN_ENABLED}
Description Indicates whether the selective wake-up function is enabled or disabled in

HW. TRUE = Selective wakeup feature is enabled in the transceiver hard-
ware FALSE = Selective wakeup feature is disabled in the transceiver
hardware

Multiplicity 1
Type EcucBooleanParamDef
Default value false

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: Local

SWS Item CanTrcv163_Conf :
N ame CanTrcvPnFrameCanId {CANTRCV_PN_FRAME_CAN_ID}
Description CAN ID of the Wake-up Frame (WUF).
Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 4294967295
Default value --

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: Local

SWS Item CanTrcv162_Conf :
N ame CanTrcvPnFrameCanIdMask {CANTRCV_PN_FRAME_CAN_ID_MASK}
Description ID Mask for the selective activation of the transceiver. It is used to enable-

Frame Wake-up (WUF) on a group of IDs.
Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 4294967295
Default value --

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

Scope / Dependency scope: Local

SWS Item CanTrcv168_Conf :
N ame CanTrcvPnFrameDlc {CANTRCV_PN_FRAME_DLC}
Description Data Length of the Wake-up Frame (WUF).
Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 8
Default value --

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: Local

SWS Item CanTrcv170_Conf :
N ame CanTrcvPowerOnFlag {CANTRCV_POWER_ON_FLAG}
Description Description: Indicates if the Power On Reset (POR) flag is available and is

managed by the transceiver. TRUE = Supported by Hardware. FALSE =
Not supported by Hardware

Multiplicity 1
Type EcucBooleanParamDef
Default value false

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: Local

Included Containers
Container Name Multiplicity Scope / Dependency

CanTrcvPnFrameDataM-
askSpec

0..8
Defines data payload mask to be used on the received
payload in order to determine if the transceiver must be
woken up by the received Wake-up Frame (WUF).

70 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

CanTrcvPartialNetwork : CanTrcvPnFrameCanIdMask :
EcucParamConfContainerDef +parameter EcucIntegerParamDef

lowerMultipl icity = 0
upperMultiplicity = 1

min = 0
max = 4294967295

CanTrcvPnFrameCanId :
+parameter EcucIntegerParamDef

min = 0
max = 4294967295

CanTrcvPnCanIdIsExtended :
+parameter EcucBooleanParamDef

defaultValue = false

+parameter
CanTrcvPnFrameDataMask :CanTrcvPnFrameDataMaskSpec :

EcucIntegerParamDefEcucParamConfContainerDef

min = 0
max = 255

lowerMultiplicity = 0
upperMultiplicity = 8

+subContainer

CanTrcvPnFrameDataMaskIndex :+parameter
EcucIntegerParamDef

min = 0
max = 7

CanTrcvPnFrameDlc :
+parameter EcucIntegerParamDef

min = 0
max = 8

CanTrcvBaudRate :EcucIntegerParamDef
+parameter

min = 0
max = 1000

CanTrcvPowerOnFlag :
+parameter EcucBooleanParamDef

defaultValue = false

CanTrcvBusErrFlag :
+parameter EcucBooleanParamDef

defaultValue = false

CanTrcvPnEnabled :
+parameter EcucBooleanParamDef

defaultValue = false

10.2.10 CanTrcvPnFrameDataMaskSpec
SWS Item CanTrcv165_Conf :
Container Name CanTrcvPnFrameDataMaskSpec{CANTRCV_PN_FRAME_DATA_MASK_SPEC}

Description
Defines data payload mask to be used on the received payload in order to de-
termine if the transceiver must be woken up by the received Wake-up Frame
(WUF).

Configuration Parameters

71 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

SWS Item CanTrcv166_Conf :
N ame CanTrcvPnFrameDataMask {CANTRCV_PN_FRAME_DATA_MASK}
Description Defines the n byte (Byte0 = LSB) of the data payload mask to be used on

the received payload in order to determine if the transceiver must be
woken up by the received Wake-up Frame (WUF).

Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 255
Default value --

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: Local

SWS Item CanTrcv167_Conf :
N ame CanTrcvPnFrameDataMaskIndex

{CANTRCV_PN_FRAME_DATA_MASK_INDEX}
Description holds the position n in frame of the mask-part
Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 7
Default value --

Pre-compile time X VARIANT-PRE-COMPILE
Link time --

ConfigurationClass

Post-build time X VARIANT-POST-BUILD
Scope / Dependency scope: Local

No Included Containers

10.3 Published Information

[CanTrcv169] ⌈ The standardized common published parameters as required by

BSW00402 in the General Requirements on Basic Software Modules (see ch. 3)
shall be published within the header file of this module and need to be provided in the
BSW Module Description. The according module abbreviation can be found in the

List of Basic Software Modules (see ch. 3). ⌋ (BSW00402)

Additional module-specific published parameters are listed below if applicable.

72 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

Specification of CAN Transceiver Driver
 V3.0.0

R4.0 Rev 3

11 Not applicable requirements

[CanTrcv999] ⌈ These requirements are not applicable to this specification. ⌋
(BSW00304, BSW00305, BSW00306, BSW00307, BSW00308, BSW00309,
BSW00312, BSW00321, BSW00325, BSW00326, BSW00328, BSW00330,
BSW00331, BSW00333, BSW00334, BSW00335, BSW00336, BSW00341,
BSW00342, BSW00344, BSW00355, BSW00359, BSW00360, BSW00378,
BSW00383, BSW00384, BSW00387, BSW00398, BSW00399, BSW00400,
BSW00401, BSW00404, BSW00405, BSW00410, BSW00416, BSW00417,
BSW00420, BSW00422, BSW00423, BSW00426, BSW00427, BSW00429,
BSW00431, BSW00432, BSW00433, BSW00434, BSW005, BSW006, BSW007,
BSW009, BSW010, BSW161, BSW164, BSW168, BSW01107, BSW01138)

73 of 73 Document ID 071: AUTOSAR_SWS_CANTransceiverDriver
- AUTOSAR confidential -

	1 Introduction
	2 Acronyms and abbreviations
	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 File structure
	5.1.1 Naming convention for transceiver driver implementation
	5.1.2 Code file structure
	5.1.3 Header file structure

	6 Requirements Traceability
	7 Functional specification
	7.1 CAN transceiver driver operation modes
	7.1.1 Operation mode switching

	7.2 CAN transceiver hardware operation modes
	7.2.1 Example for temporary “Go-To-Sleep” mode
	7.2.2 Example for “PowerOn/ListenOnly” mode

	7.3 CAN transceiver wake up types
	7.4 Enabling/Disabling wakeup notification
	7.5 CAN transceiver wake up modes
	7.6 Error classification
	7.7 Error detection
	7.8 Preconditions for driver initialization
	7.9 Instance concept
	7.10 Wait states
	7.11 Debugging
	7.12 Version checking
	7.13 Transceivers with selective wakeup functionality

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.3 Function definitions
	8.3.1 CanTrcv_Init
	8.3.2 CanTrcv_SetOpMode
	8.3.3 CanTrcv_GetOpMode
	8.3.4 CanTrcv_GetBusWuReason
	8.3.5 CanTrcv_GetVersionInfo
	8.3.6 CanTrcv_ SetWakeupMode
	8.3.7 CanTrcv_GetTrcvSystemData
	8.3.8 CanTrcv_ClearTrcvWufFlag
	8.3.9 CanTrcv_ReadTrcvTimeoutFlag
	8.3.10 CanTrcv_ClearTrcvTimeoutFlag
	8.3.11 CanTrcv_ReadTrcvSilenceFlag
	8.3.12 CanTrcv_CheckWakeup
	8.3.13 CanTrcv_SetPNActivationState
	8.3.14 CanTrcv_CheckWakeFlag

	8.4 Scheduled functions
	8.4.1 CanTrcv_MainFunction
	8.4.2 CanTrcv_MainFunctionDiagnostics

	8.5 Call-back notifications
	8.6 Expected Interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.3 Configurable interfaces

	9 Sequence diagram
	9.1 Wake up with valid validation
	9.2 Interaction with DIO module
	9.3 De-Initialization (SPI Synchronous)
	9.4 De-Initialization (SPI Asynchronous)

	10 Configuration specification
	10.1 How to read this chapter
	10.1.1 Configuration class and configuration parameters
	10.1.2 Variants
	10.1.3 Containers

	10.2 Containers and configuration parameters
	10.2.1 Variants
	10.2.2
CanTrcv
	10.2.3
CanTrcvGeneral
	10.2.4
CanTrcvChannel
	10.2.5
CanTrcvAccess
	10.2.6
CanTrcvDioAccess
	10.2.7 CanTrcvDioChannelAccess
	10.2.8
CanTrcvSpiSequence
	10.2.9
CanTrcvPartialNetwork
	10.2.10
CanTrcvPnFrameDataMaskSpec

	10.3 Published Information

	11 Not applicable requirements

