
 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

1 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

Document Title Specification of CAN State
Manager

Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 253
Document Classification Standard

Document Version 2.2.0
Document Status Final
Part of Release 4.0
Revision 3

Document Change History
Date Version Changed by Change Description
24.11.2011 2.2.0 AUTOSAR

Administration
• Added new handling to support partial

networking
• Changed handling for bus

deinitialisation according to AR3.x
behaviour

• New API and handling to change the
baudrate of a CAN network

• Changed handling for bus-off recovery
and related production error report

• Comprehensive revision of all state
machine diagrams and SWS-ID-items

• Changed classification of production
errors and development errors

• Solve conflicts of SWS-ID items with
the conformance test specification

21.10.2010 2.1.0 AUTOSAR
Administration

• Configurable Bus-Off revovery with
CAN TX confirmation instead of time
based recovery

• Control of PDU channel modes
completely shifted from CanIf to CanSM
module

30.11.2009 2.0.0 AUTOSAR
Administration

• VMM/AMM Concept related changes
(PDU group control shifted to BswM)

• Asynchronous handling of CAN
network mode transitions (consideration
of CAN Transceiver and CAN controller
mode notifications)

• Solution of Document Improvement
issues reported by TO (e. g. split up of
non atomic software requirements,
textual requirements instead of only a
state diagram)

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

2 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

Document Change History
Date Version Changed by Change Description

• Legal disclaimer revised
23.06.2008 1.0.1 AUTOSAR

Administration
Legal disclaimer revised

13.11.2007 1.0.0 AUTOSAR
Administration

Initial Release

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

3 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

Disclaimer

This specification and the material contained in it, as released by AUTOSAR, is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only.
For any other purpose, no part of the specification may be utilized or reproduced, in
any form or by any means, without permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR specifications may contain exemplary items (exemplary reference
models, “use cases”, and/or references to exemplary technical solutions, devices,
processes or software).

Any such exemplary items are contained in the specifications for illustration purposes
only, and they themselves are not part of the AUTOSAR Standard. Neither their
presence in such specifications, nor any later documentation of AUTOSAR
conformance of products actually implementing such exemplary items, imply that
intellectual property rights covering such exemplary items are licensed under the
same rules as applicable to the AUTOSAR Standard.

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

4 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

Table of Contents

1 Introduction and functional overview ... 7

2 Acronyms and abbreviations ... 8

3 Related documentation.. 9

3.1 Input documents ... 9
3.2 Related standards and norms .. 10

4 Constraints and assumptions .. 11

4.1 Limitations .. 11
4.2 Applicability to car domains .. 11

5 Dependencies to other modules .. 12

5.1 ECU State Manager (EcuM) ... 12
5.2 BSW Scheduler (SchM) ... 12
5.3 Communication Manager (ComM) ... 13
5.4 CAN Interface (CanIf) ... 13
5.5 Diagnostic Event Manager (DEM) .. 13
5.6 Basic Software Mode Manager (BswM) ... 13
5.7 CAN Network Management (CanNm) .. 13
5.8 Diagnostic Communication Manager (Dcm) ... 13
5.9 Development Error Tracer (DET) ... 13
5.10 File structure .. 14

5.10.1 Code file structure ... 14
5.10.2 Header file structure .. 14
5.10.3 Version check .. 16

6 Requirements traceability .. 17

7 Functional specification ... 30

7.1 General requirements ... 30
7.2 State machine for each CAN network .. 33

7.2.1 Trigger: PowerOn .. 34
7.2.2 Trigger: CanSM_Init .. 34
7.2.3 Trigger: T_FULL_COM_MODE_REQUEST 34
7.2.4 Trigger: T_NO_COM_MODE_REQUEST ... 34
7.2.5 Guarding condition: G_FULL_COM_MODE_REQUESTED 34
7.2.6 Guarding condition: G_SILENT_COM_MODE_REQUESTED 34
7.2.7 Effect: E_PRE_NOCOM ... 35
7.2.8 Effect: E_NOCOM ... 35
7.2.9 Effect: E_FULL_COM ... 35
7.2.10 Effect: E_FULL_TO_SILENT_COM .. 36
7.2.11 Effect: E_BR_END_FULL_COM ... 36
7.2.12 Effect: E_BR_END_SILENT_COM ... 36
7.2.13 Effect: E_SILENT_TO_FULL_COM .. 36
7.2.14 Sub state machine: CANSM_BSM_S_PRE_NOCOM 37
7.2.15 Sub state machine to prepare full communication 49

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

5 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

7.2.16 Sub state machine for requested full communication mode 52
7.2.17 Sub state machine to operate a requested baud rate change 57

7.3 Error classification .. 60
7.4 Error detection .. 61
7.5 Error notification ... 61
7.6 Interface for AUTOSAR debug and trace ... 62
7.7 Non-functional design rules .. 62

8 API specification .. 63

8.1 Imported types.. 63

1.1.1 [CANSM243] ⌈ ... 63

8.2 Type definitions .. 63
8.2.1 CanSM_StateType .. 63
8.2.2 CanSM_ConfigType .. 63
8.2.3 CanSM_BswMCurrentStateType .. 63

8.3 Function definitions .. 64
8.3.1 CanSM_Init ... 64
8.3.2 CanSM_GetVersionInfo .. 64
8.3.3 CanSM_RequestComMode .. 65
8.3.4 CanSM_GetCurrentComMode .. 67
8.3.5 CanSM_CheckBaudrate ... 68
8.3.6 CanSM_ChangeBaudrate ... 69

8.4 Call-back notifications .. 71
8.4.1 CanSM_ControllerBusOff .. 71
8.4.2 CanSM_ControllerModeIndication .. 72
8.4.3 CanSM_TransceiverModeIndication ... 73
8.4.4 CanSM_TxTimeoutException .. 74
8.4.5 CanSM_ClearTrcvWufFlagIndication .. 74
8.4.6 CanSM_CheckTransceiverWakeFlagIndication 75
8.4.7 CanSM_ConfirmPnAvailability .. 76

8.5 Scheduled functions ... 76
8.5.1 CanSM_MainFunction ... 77

8.6 Expected Interfaces .. 77
8.6.1 Mandatory Interfaces .. 77
8.6.2 Optional Interfaces .. 78
8.6.3 Configurable Interfaces ... 78

9 Sequence diagrams .. 79

9.1 Sequence for baud rate change request from the DCM module 80
9.2 Sequence diagram CanSm_StartCanController ... 81
9.3 Sequence diagram CanSm_StopCanController ... 82

10 Configuration specification ... 83

10.1 How to read this chapter .. 83
10.2 Containers and configuration parameters .. 83

10.2.1 Variants ... 83
10.2.2 CanSM .. 83
10.2.3 CanSMGeneral ... 84
10.2.4 CanSMConfiguration ... 85
10.2.5 CanSMManagerNetwork ... 86

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

6 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

10.2.6 CanSMDemEventParameterRefs ... 88
10.2.7 CanSMController ... 88

10.3 Published Information ... 89

11 Changes between AR3.0 and AR4.0 rev001 ... 90

11.1 Deleted SWS Items .. 90
11.2 Replaced SWS Items ... 91
11.3 Changed SWS Items .. 92
11.4 Added SWS Items .. 95

12 Changes between AUTOSAR R4.0 rev001 and rev002 98

12.1 Deleted SWS Items .. 98
12.2 Replaced SWS Items ... 98
12.3 Changed SWS Items .. 98
12.4 Added SWS Items .. 99

13 Changes between AUTOSAR R4.0 rev002 and rev003 100

13.1 Deleted SWS Items .. 100
13.2 Replaced SWS Items ... 100
13.3 Changed SWS Items .. 101
13.4 Added SWS Items .. 102

14 Not applicable requirements .. 104

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

7 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

1 Introduction and functional overview
This specification describes the functionality, API and the configuration for the
AUTOSAR Basic Software module CAN State Manager.
The AUTOSAR BSW stack specifies for each communication bus a bus specific state
manager. This module shall implement the control flow for the respective bus. Like
shown in the figure below, the CAN State Manager (CanSM) is a member of the
Communication Service Layer. It interacts with the Communication Hardware
Abstraction Layer and the System Service Layer.

Communication Services

CAN Transport
Protocol

PDU Router

DCM
Diagnostic

Com.
Manager

AUTOSAR
COM

CAN NM

IPDU
multi-
plexer

Generic NM
Interface / NM

GW

CAN
State

Manager

Communication Hardware Abstraction

Driver for ext.
CAN ASIC

CAN Interface

CAN Transceiver
Driver

System Services

EcuM Dem ComM

Figure 1-1: Layered Software Architecture from CanSM point of view

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

8 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

2 Acronyms and abbreviations

Abbreviation /
Acronym:

Description:

API Application Program Interface
BSW Basic Software
CAN Controller Area Network
CanIf CAN Interface
CanSM CAN State Manager
ComM Communication Manager
DEM Diagnostic Event Manager
DET Development Error Tracer
EcuM ECU State Manager
PDU Protocol Data Unit
RX Receive
TX Transmit
SchM BSW Scheduler
SWC Software Component
BswM Basic Software Mode Manager
Dcm Diagnostic Communication Manager

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

9 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

3 Related documentation

3.1 Input documents

[1] List of Basic Software Modules
AUTOSAR_TR_BSWModuleList.pdf

[2] Layered Software Architecture
AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf

[3] General Requirements on Basic Software Modules
AUTOSAR_SRS_BSWGeneral.pdf

[4] Specification of ECU Configuration
AUTOSAR_TPS_ECUConfiguration.pdf

[5] Specification of Standard Types
AUTOSAR_SWS_StandardTypes.pdf

[6] Specification of Communication Stack Types
AUTOSAR_SWS_CommunicationStackTypes.pdf

[7] Requirements on CAN
AUTOSAR_SRS_CAN.pdf

[8] Requirements on Mode Management
AUTOSAR_SRS_ModeManagement.pdf

[9] Specification of CAN Transceiver Driver
AUTOSAR_SWS_CANTransceiverDriver.pdf

[10] Specification of Communication Manager
AUTOSAR_SWS_COMManager.pdf

[11] Specification of ECU State Manager

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

10 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

AUTOSAR_SWS_ECUStateManager.pdf

[12] Specification of Diagnostics Event Manager
AUTOSAR_SWS_DiagnosticEventManager.pdf

[13] Specification of CAN Interface
AUTOSAR_SWS_CANInterface.pdf

[14] Specification of BSW Scheduler
AUTOSAR_SWS_BSW_Scheduler.pdf

[15] Specification of Development Error Tracer
AUTOSAR_SWS_DevelopmentErrorTracer.pdf

[18] Specification of Basic Software Mode Manager

AUTOSAR_SWS_BSWModeManager.pdf

[19] Specification of CAN Network Management, AUTOSAR_SWS_CAN_NM.pdf

[20] Specification of Diagnostic Communication Manager,

AUTOSAR_SWS_DiagnosticCommunicationManager.pdf

3.2 Related standards and norms

None

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

11 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

4 Constraints and assumptions

4.1 Limitations

The CanSM module can be used for CAN communication only. Its task is to operate
with the CanIf module to control one ore multiple underlying CAN Controllers and
CAN Transceiver Drivers. Other protocols than CAN (i.e. LIN or FlexRay) are not
supported.

4.2 Applicability to car domains

The CAN State Manager module can be used for all domain applications whenever
the CAN protocol is used.

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

12 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

5 Dependencies to other modules
The next sections give a brief description of configuration information and services
the CanSM module requires from other modules.

CanSM_Cbk

«module»
CanSM

CanSM_Init

ComM_BusSM

«module»
ComM::ComM

«module»
EcuM::EcuM

«module»
SchM::SchM

«module»
Dem::Dem

Dem_ReportErrorStatus

«module»
CanIf::CanIf

CanSM_ComM

«module»
BswM::BswM

CanIf_CanSm

CanSM

BswM_CanSM_CurrentState

CanSM_TxTimeoutException

«module»
Det::Det

Det_ReportError

«module»
CanNm::CanNm

CanNm_ConfirmPnAvailabil ity

CanSM_ChangeBaudrate

«module»
Dcm::Dcm

CanIf_ChangeBaudrate

«realize»

«configurable»«realize»

«realize»

«realize»

«realize»

«use»«optional»«configurable»

«mandatory»

«realize»

«realize» «optional»

«realize»

«realize»

«realize»

«mandatory»

«realize»

«mandatory»

«mandatory» «realize»

«realize»

«mandatory»

«optional»

«optional»

Figure 5-1: Module dependencies of the CanSM module

5.1 ECU State Manager (EcuM)

The EcuM module initializes the CanSM module (refer to [11] for a detailed
specification of this module).

5.2 BSW Scheduler (SchM)

The BSW Scheduler module calls the main function of the CanSM module, which is
necessary for the cyclic processes of the CanSM module (refer to [14] for a detailed
specification of this module).

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

13 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

5.3 Communication Manager (ComM)

The ComM module uses the API of the CanSM module to request communication
modes of CAN networks, which are identified with unique network handles (refer to
[10] for a detailed specification of this module).
The CanSM module notifies the current communication mode of its CAN networks to
the ComM module.

5.4 CAN Interface (CanIf)

The CanSM module uses the API of the CanIf module to control the operating modes
of the CAN controllers and CAN transceivers assigned to the CAN networks (refer to
[13] for a detailed specification of this module).
The CanIf module notifies the CanSM module about peripheral events.

5.5 Diagnostic Event Manager (DEM)

The CanSM module reports bus specific production errors to the DEM module (refer
to [12] for a detailed specification of this module).

5.6 Basic Software Mode Manager (BswM)

The CanSM need to notify bus specific mode changes to the BswM module (refer to
[18] for a detailed specification of this module).

5.7 CAN Network Management (CanNm)

The CanSM module needs to notify the partial network availability to the CanNm
module and shall handle notified CanNm timeout exceptions in case of partial
networking (ref. to [19] for a detailed specification of this module).

5.8 Diagnostic Communication Manager (Dcm)

The CanSM module provides an API, which can be used by the Dcm module to
request a baud rate change of a CAN network (ref. to [20] for a detailed specification
of this module).

5.9 Development Error Tracer (DET)

The CanSM module reports development errors to the DET module, if development
error handling is switched on by configuration (refer to [15] for a detailed specification
of this module).

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

14 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

5.10 File structure

5.10.1 Code file structure

This specification does not define the code file structure completely. Nevertheless,
the code-file structure shall include the following files:

[CANSM361] ⌈The CanSM module shall provide a file CanSM_Lcfg.c that contains

all link time configurable parameters of the module.⌋()

[CANSM362] ⌈The CanSM module shall provide a file CanSM_PBcfg.c that contains

all post build time configurable parameters of the module.⌋()

5.10.2 Header file structure

[CANSM008] ⌈The header file CanSM.h shall export CanSM module specific types

and the API of the CanSM module, which is not dedicated to a certain module.⌋()

[CANSM238] ⌈The header file CanSM.h shall include the header file

ComStack_Types.h.⌋()

Remark: The header file ComStack_Types.h includes the header file Std_Types.h

[CANSM174] ⌈The header file CanSM.h shall include the header file ComM.h.⌋()

Rationale: Some APIs of the CanSM use type definitions of the ComM module.

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

15 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

[CANSM253] ⌈The header file CanSM_EcuM.h shall export the init function of the

CanSM.⌋()

Rationale: The header file CanSM_EcuM.h is used for the integration of the CanSM
module into the EcuM module.

[CANSM009] ⌈The header file CanSM_ComM.h shall export the CanSM module’s

API dedicated to the ComM module.⌋()

[CANSM010] ⌈The header file CanSM_Cfg.h shall contain references to the
parameters of the c-source files CanSM_Lcfg.c and CanSM_PBcfg.c (see section
5.10.1 above) and shall contain pre-compile parameters, which are not declared as
“const” parameter, but as defines.⌋(BSW00344, BSW0404, BSW00345, BSW00381,
BSW00412)

[CANSM011] ⌈The header file CanSM_Cbk.h shall declare the callback notification

functions of the CanSM module.⌋()

[CANSM013] ⌈The CanSM module (CanSM.c) shall reference its header file

CanSM.h.⌋()

Rationale: -to make its type definitions available

[CANSM254] ⌈The CanSM module (CanSM.c) shall reference its header file

CanSM_Cfg.h.⌋()

Rationale: -to make its configuration parameters available

[CANSM014]⌈ The CanSM module (CanSM.c) shall include the header file Dem.h.⌋()

Rationale: The functions declared in Dem.h are used to report production errors.

[CANSM015] ⌈The CanSM module (CanSM.c) shall include the header file

Det.h.⌋(BSW171)

Rationale: The functions declared in Det.h are used to report development errors.

[CANSM016] ⌈The CanSM module (CanSM.c) shall include the header file

MemMap.h.⌋(BSW00436)

Rationale: MemMap.h makes it possible to map the code and the data of the CanSM
module into specific memory sections.

[CANSM017] ⌈The CanSM module (CanSM.c) shall include the header file

CanIf.h.⌋()

Rationale: The API of the CanIf module is needed for peripheral control.

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

16 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

[CANSM191] ⌈The CanSM module (CanSM.c) shall include the header file

ComM_BusSM.h.⌋()

Rationale: The file ComM_BusSM.h provides the API of the ComM module, which is
exclusively intended for the bus state managers.

[CANSM347] ⌈The header file CanSM_BswM.h shall export the interfaces, which

are dedicated to the BswM module.⌋()

[CANSM348] ⌈The CanSM module (CanSM.c) shall include the header file

CanSM_BswM.h.⌋()

[CANSM547] ⌈The header file CanSM_Dcm.h shall export the interfaces, which are

dedicated to the Dcm module.⌋()

[CANSM548] ⌈The CanSM module (CanSM.c) shall include the interface
CanNm_ConfirmPnAvailability (CanNm_ConfirmPnAvailability.h) of the
CanNm module.⌋()

[CANSM549] ⌈The header file CanSM_TxTimeoutException.h shall provide the
callback function CanSM_TxTimeoutException as optional interface to the CanNm
module.⌋()

5.10.3 Version check

[CANSM025] ⌈The CanSM module shall perform Inter Module Checks to avoid
integration of incompatible files. The imported included files shall be checked by
preprocessing directives.⌋(BSW167, BSW004)

The following version numbers shall be verified:
- <MODULENAME>_AR_RELEASE_MAJOR_VERSION
- <MODULENAME>_AR_RELEASE_MINOR_VERSION

Where <MODULENAME> is the module short name of the other (external) modules
which provide header files included by the CanSM module.

If the values are not identical to the expected values, an error shall be
reported.

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

17 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

6 Requirements traceability

Requirement Satisfied by
- CANSM363
- CANSM530
- CANSM511
- CANSM414
- CANSM573
- CANSM441
- CANSM013
- CANSM443
- CANSM532
- CANSM499
- CANSM017
- CANSM453
- CANSM014
- CANSM496
- CANSM533
- CANSM521
- CANSM557
- CANSM372
- CANSM463
- CANSM418
- CANSM347
- CANSM374
- CANSM009
- CANSM513
- CANSM410
- CANSM375
- CANSM483
- CANSM187
- CANSM510
- CANSM431
- CANSM536
- CANSM254
- CANSM266
- CANSM563
- CANSM538
- CANSM365
- CANSM432
- CANSM400

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

18 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

- CANSM566
- CANSM235
- CANSM501
- CANSM461
- CANSM412
- CANSM451
- CANSM468
- CANSM437
- CANSM490
- CANSM189
- CANSM371
- CANSM411
- CANSM072
- CANSM543
- CANSM348
- CANSM436
- CANSM558
- CANSM433
- CANSM561
- CANSM398
- CANSM480
- CANSM401
- CANSM278
- CANSM449
- CANSM447
- CANSM479
- CANSM403
- CANSM419
- CANSM243
- CANSM008
- CANSM535
- CANSM182
- CANSM183
- CANSM450
- CANSM184
- CANSM528
- CANSM011
- CANSM569
- CANSM465
- CANSM284
- CANSM547
- CANSM456

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

19 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

- CANSM460
- CANSM504
- CANSM452
- CANSM523
- CANSM188
- CANSM469
- CANSM471
- CANSM455
- CANSM534
- CANSM470
- CANSM505
- CANSM489
- CANSM442
- CANSM556
- CANSM420
- CANSM462
- CANSM430
- CANSM459
- CANSM562
- CANSM516
- CANSM366
- CANSM574
- CANSM425
- CANSM500
- CANSM548
- CANSM429
- CANSM492
- CANSM555
- CANSM550
- CANSM506
- CANSM477
- CANSM427
- CANSM484
- CANSM428
- CANSM309
- CANSM370
- CANSM417
- CANSM367
- CANSM503
- CANSM560
- CANSM554
- CANSM397

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

20 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

- CANSM572
- CANSM438
- CANSM423
- CANSM475
- CANSM540
- CANSM512
- CANSM487
- CANSM509
- CANSM527
- CANSM508
- CANSM525
- CANSM244
- CANSM517
- CANSM445
- CANSM518
- CANSM413
- CANSM402
- CANSM458
- CANSM444
- CANSM377
- CANSM426
- CANSM539
- CANSM549
- CANSM399
- CANSM473
- CANSM537
- CANSM474
- CANSM415
- CANSM434
- CANSM464
- CANSM435
- CANSM497
- CANSM493
- CANSM488
- CANSM529
- CANSM396
- CANSM238
- CANSM186
- CANSM466
- CANSM502
- CANSM507
- CANSM491

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

21 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

- CANSM364
- CANSM514
- CANSM310
- CANSM167
- CANSM485
- CANSM369
- CANSM174
- CANSM472
- CANSM253
- CANSM571
- CANSM467
- CANSM448
- CANSM069
- CANSM368
- CANSM457
- CANSM362
- CANSM494
- CANSM191
- CANSM360
- CANSM190
- CANSM567
- CANSM282
- CANSM440
- CANSM515
- CANSM421
- CANSM495
- CANSM524
- CANSM526
- CANSM486
- CANSM546
- CANSM476
- CANSM446
- CANSM454
- CANSM478
- CANSM531
- CANSM541
- CANSM439
- CANSM395
- CANSM361
- CANSM416
- CANSM542
- CANSM376

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

22 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

- CANSM568
BSW003 CANSM024
BSW00308 CANSM999
BSW00309 CANSM999
BSW00314 CANSM999
BSW00323 CANSM071
BSW00326 CANSM999
BSW00333 CANSM064
BSW00336 CANSM999
BSW00338 CANSM028
BSW00339 CANSM074
BSW00341 CANSM999
BSW00344 CANSM010
BSW00345 CANSM010
BSW00347 CANSM999
BSW00353 CANSM999
BSW00358 CANSM023
BSW00359 CANSM064
BSW00360 CANSM999
BSW00361 CANSM999
BSW00375 CANSM999
BSW00376 CANSM065
BSW00377 CANSM999
BSW00381 CANSM010
BSW00386 CANSM071, CANSM028
BSW00395 CANSM999
BSW004 CANSM025
BSW00404 CANSM023
BSW00405 CANSM023
BSW00406 CANSM023, CANSM179
BSW00407 CANSM024
BSW00412 CANSM010
BSW00414 CANSM023
BSW00416 CANSM999
BSW00417 CANSM999
BSW00422 CANSM522, CANSM498
BSW00423 CANSM999
BSW00425 CANSM065
BSW00426 CANSM999
BSW00427 CANSM999
BSW00428 CANSM999
BSW00429 CANSM999

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

23 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

BSW00431 CANSM999
BSW00432 CANSM999
BSW00433 CANSM999
BSW00434 CANSM999
BSW00435 CANSM999
BSW00436 CANSM016
BSW00437 CANSM999
BSW00439 CANSM999
BSW00440 CANSM999
BSW005 CANSM999
BSW01142 CANSM062, CANSM063
BSW01144 CANSM424
BSW01146 CANSM064
BSW0404 CANSM010
BSW0405 CANSM023
BSW0424 CANSM065
BSW09080 CANSM062, CANSM063
BSW09081 CANSM062
BSW09083 CANSM062
BSW09084 CANSM063
BSW101 CANSM023
BSW161 CANSM999
BSW162 CANSM999
BSW167 CANSM025
BSW168 CANSM999
BSW170 CANSM999
BSW171 CANSM015
ref.toCANSM419 CANSM385

According to [3] (General BSW Requirements):
Requirement Satisfied by
[BSW00344] Reference to link-time
configuration

Chapter 5.10, CANSM010

[BSW0404] Reference to post build time
configuration

Chapter 5.10, CANSM010

[BSW0405] Reference to multiple
configuration sets

CANSM023,
chapter 8.2.1

[BSW00345] Pre-compile time
configuration

Chapter 5.10, CANSM010,
CANSM123_Conf, CANSM126_Conf,
CANSM127_Conf

[BSW159] Tool based configuration Changed to not applicable during SW
improvement (CANSM155 deleted)

[BSW167] Static configuration checking CANSM025

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

24 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

[BSW171] Configurability of optional
functionality

CANSM015, CANSM133_Conf

[BSW170] Data for reconfiguration of SW-
components

Not applicable (requirement on SWC-
module)

[BSW00380] Separate C-Files for
configuration parameters

Chapter 5.10

[BSW00419] Separate C-Files for pre-
compile time configuration parameters

Chapter 5.10

[BSW00381] Separate configuration
header file for pre-compile time
parameters

CANSM010

[BSW00412] Separate configuration
header file for configuration parameters

CANSM010

[BSW00383] List dependencies of
configuration files

CANSM161_Conf, CANSM137_Conf,
CANSM141_Conf

[BSW00384] List dependencies to other
modules

Chapter 5

[BSW00387] Specify the configuration
class of callback function

Chapter 8.3.6

[BSW00388] Introduce containers CANSM123_Conf, CANSM126_Conf,
CANSM127_Conf

[BSW00389] Containers shall have
names

Chapter 10.2

[BSW00390] Parameter content shall be
unique within the module

Chapter 10.2

[BSW00391] Parameter shall have
unique names

Chapter 10.2

[BSW00392] Parameters shall have a
type

Chapter 10.2

[BSW00393] Parameters shall have a
range

Chapter 10.2

[BSW00394] Specify the scope of the
parameters

Chapter 10.2

[BSW00395] List the required parameters
(per parameter)

Not applicable

[BSW00396] Configuration classes Chapter 10.2
[BSW00397] Pre–compile–time
parameters

Chapter 10.2

[BSW00398] Link–time parameters Chapter 10.2
[BSW00399] Loadable Post–build time
parameters

Chapter 10.2

[BSW00400] Selectable Post–build time
parameters

Chapter 10.2.1

[BSW00438] Post Build Configuration
Data Structure

chapter (TODO)

[BSW00402] Published information Chapter 10.3
[BSW00375] Notification of wake-up
reason

Not applicable (no wake up interrupt)

[BSW101] Initialization interface CANSM023

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

25 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

[BSW00416] Sequence of Initialization Not applicable (CanSM module cannot
influence the sequence for initialization)

[BSW00406] Check module initialization CANSM023
CANSM179

[BSW00437] NoInit–Area in RAM Not applicable
(not in scope of this spec)

[BSW168] Diagnostic interface Not applicable (requirement on SWC-
module)

[BSW00407] Function to read out
published parameters

CANSM024

[BSW00423] Usage of SW–C template to
describe BSW modules with AUTOSAR
Interfaces

Not applicable
(not in scope of this spec)

[BSW00424] BSW main processing
function task allocation

CANSM065

[BSW00425] Trigger conditions for
schedulable objects

CANSM065

[BSW00426] Exclusive areas in BSW
modules

Not applicable
(not in scope of this spec)

[BSW00427] ISR description for BSW
modules

Not applicable
(not in scope of this spec)

[BSW00428] Execution order
dependencies of main processing
functions

Not applicable
(not in scope of this spec)

[BSW00429] Restricted BSW OS
functionality access

Not applicable
(not in scope of this spec)

[BSW00431] The BSW Scheduler module
implements task bodies

Not applicable
(not in scope of this spec)

[BSW00432] Modules should have
separate main processing functions for
read/receive and write/transmit data path

Not applicable
(not in scope of this spec)

[BSW00433] Calling of main processing
functions

Not applicable
(not in scope of this spec)

[BSW00434] The Schedule Module shall
provide an API for exclusive areas

Not applicable
(not in scope of this spec)

[BSW00336] Shutdown interface Not applicable (no deinitialization
function)

[BSW00337] Classification of errors Chapter 7.3
[BSW00338] Detection and Reporting of
development errors

Chapter 7.4, CANSM028

[BSW00369] Do not return development
error codes via API

Chapter 7.7

[BSW00339] Reporting of production
relevant errors and exceptions

CANSM074

[BSW00422] Pre–de–bouncing of
production relevant error status

CANSM498, CANSM520, CANSM522

[BSW00417] Reporting of Error Events by
Non–Basic Software

Not applicable
(not in scope of this spec)

[BSW00323] API parameter checking CANSM071

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

26 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

[BSW004] Version check CANSM025
[BSW00409] Header files for production
code error IDs

Chapter 7.3

[BSW00385] List possible error
notifications

chapter 7.3

[BSW00386] Configuration for detecting
an error

Chapter 7.4, CANSM071, CANSM028

[BSW161] Microcontroller abstraction Not applicable
(not in scope of this spec)

[BSW162] ECU layout abstraction Not applicable
(not in scope of this spec)

[BSW005] No hard coded horizontal
interfaces within MCAL

Not applicable
(not in scope of this spec)

[BSW00415] User dependent include files Chapter 5.10.2
[BSW164] Implementation of interrupt
service routines

Chapter 7.7

[BSW00325] Runtime of interrupt service
routines

Chapter 7.7

[BSW00326] Transition from ISRs to OS
tasks

Not applicable
(not in scope of this spec)

[BSW00342] Usage of source code and
object code

Chapter 10.2

[BSW00343] Specification and
configuration of time

Chapter 10.2

[BSW160] Human–readable configuration
data

Changed to not applicable during SW
improvement (CANSM155 deleted)

[BSW007] HIS MISRA C Chapter 7.7
[BSW00300] Module naming convention Chapter 7.7
[BSW00413] Accessing instances of
BSW modules

Chapter 7.7

[BSW00347] Naming separation of
different instances of BSW drivers

Not applicable
(not in scope of this spec)

[BSW00305] Self–defined data types
naming convention

Chapter 8.2

[BSW00307] Global variables naming
convention

Chapter 7.7

[BSW00310] API naming convention Chapter 8.3
[BSW00373] Main processing function
naming convention

Chapter 8.5.1

[BSW00327] Error values naming
convention

Chapter 7.3

[BSW00335] Status values naming
convention

Chapter 8.2

[BSW00350] Development error detection
keyword

Chapter 7.4

[BSW00408] Configuration parameter
naming convention

Chapter 10.2

[BSW00410] Compiler switches shall
have defined values

Chapter 10.2

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

27 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

[BSW00411] Get version info keyword Chapter 8.3.2
Chapter 10.2

[BSW00346] Basic set of module files Chapter 5.10
[BSW158] Separation of configuration
from implementation

Chapter 5.10

[BSW00314] Separation of interrupt
frames and service routines

Not applicable
(not in scope of this spec)

[BSW00370] Separation of callback
interface from API

Chapter 5.10

[BSW00435] Header File Structure for the
Basic Software Scheduler

Not applicable
(not in scope of this spec)

[BSW00436] Module Header File
Structure for the Basic Software Memory
Mapping

CANSM016

[BSW00348] Standard type header Chapter 5.10
[BSW00353] Platform specific type
header

Not applicable
(not in scope of this spec)

[BSW00361] Compiler specific language
extension header

Not applicable
(not in scope of this spec)

[BSW00301] Limit imported information Chapter 5.10
[BSW00302] Limit exported information Chapter 5.10
[BSW00328] Avoid duplication of code Chapter 7.7
[BSW00312] Shared code shall be
reentrant

Chapter 7.7

[BSW006] Platform independency Chapter 7.7
[BSW00357] Standard API return type [Chapter 8.3
[BSW00377] Module specific API return
types

Not applicable (not used)

[BSW00304] AUTOSAR integer data
types

Chapter 7.7

[BSW00355] Do not redefine AUTOSAR
integer data types

Chapter 7.7

[BSW00378] AUTOSAR boolean type Chapter 7.7
[BSW00306] Avoid direct use of compiler
and platform specific keywords [

Chapter 7.7

[BSW00308] Definition of global data Not applicable (not used)
[BSW00309] Global data with read–only
constraint

Not applicable (not used)

[BSW00371] Do not pass function
pointers via API

Chapter 8.3

[BSW00358] Return type of init()
functions

CANSM023

[BSW00414] Parameter of init function CANSM023
[BSW00376] Return type and parameters
of main processing functions

CANSM065

[BSW00359] Return type of callback
functions

CANSM064

[BSW00360] Parameters of callback
functions

Not applicable (assignment between bus-
off and impacted controller id is

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

28 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

necessary, which is transferred as
parameter)

[BSW00329] Avoidance of generic
interfaces

Chapter 7.7

[BSW00330] Usage of macros / inline
functions instead of functions

Chapter 7.7

[BSW00331] Separation of error and
status values

Chapter 7.3, Chapter 8.2,

[BSW009] Module User Documentation Chapter 7.7
[BSW00401] Documentation of multiple
instances of configuration parameters

Chapter 10.2

[BSW172] Compatibility and
documentation of scheduling strategy

Chapter 7.7

[BSW010] Memory resource
documentation

Chapter 7.7

[BSW00333] Documentation of callback
function context

CANSM064

[BSW00374] Module vendor identification CANSM125
[BSW00379] Module identification CANSM125
[BSW003] Version identification CANSM125, CANSM024
[BSW00318] Format of module version
numbers

CANSM125

[BSW00321] Enumeration of module
version numbers

Chapter 7.7

[BSW00341] Microcontroller compatibility
documentation

Not applicable
(not in scope of this spec)

[BSW00334] Provision of XML file Chapter 7.7
[BSW00439] Declaration of interrupt
handlers and ISRs

Not applicable (CanSM not part of MCAL)

[BSW00405] Reference to multiple
configuration sets

CANSM023

[BSW00440] Function prototype for
callback functions of AUTOSAR Services

Not applicable
(not in scope of this spec)

[BSW00441] Enumeration literals and
#define naming convention

Chapter of CanSM_StateType

[BSW00404] Reference to post build time
configuration

CANSM023

The CAN SRS ([7]) specifies the CAN specific parent requirements for the CanSM,
which are listed in the following table:

Requirement Satisfied by
[BSW01014] Network configuration
abstraction

CANSM126_Conf

BSW01142] Control flow abstraction of
CAN networks

CANSM062, CANSM063,
chapter 7.2

[BSW01143] BusOff recovery time CANSM128_Conf, CANSM129_Conf

[BSW01144] Power-On Initialization CANSM424

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

29 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

[BSW01145] Management of CAN
devices

chapter 7.2

[BSW01146] Bus-off recovery and error
handling

Figure 7-6
CANSM064, CANSM070_Conf,
CANSM343

The CanSM provides services to the ComM. Because of that, the CanSM also has to
consider some requirements of the Mode Management SRS [9], which specifies the
upper level requirements for the ComM. These requirements are listed in following
table:

Requirement Satisfied by
[BSW09080] Physical channel
independency

CANSM062, CANSM063,
CANSM126_Conf

[BSW09081] API for requesting
communication

CANSM062

[BSW09083] Support of different
communication modes

CANSM062

[BSW09084] API for querying the current
communication mode

CANSM063

[BSW09085] Indication of communication
mode changes

chapter 7, chapter 8.6.1

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

30 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

7 Functional specification
This chapter specifies the different functions of the CanSM module in the AUTOSAR
BSW architecture.

An ECU can have different communication networks. Each network has to be
identified with an unique network handle. The ComM module requests
communication modes from the networks. It knows by its configuration, which handle
is assigned to what kind of network. In case of CAN, it uses the CanSM module.

The CanSM module is responsible for the control flow abstraction of CAN networks:

It changes the communication modes of the configured CAN networks depending on
the mode requests from the ComM module.

Therefore the CanSM module uses the API of the CanIf module. The CanIf module is
responsible for the control flow abstraction of the configured CAN Controllers and
CAN Transceivers (the data flow abstraction of the CanIf module is not relevant for
the CanSM module). Any change of the CAN Controller modes and CAN Transceiver
modes will be notified by the CanIf module to the CanSM module. Depending on this
notifications and state of the CAN network state machine, which the CanSM module
shall implement for each configured CAN network, the CanSM module notifies the
ComM and the BswM (ref. to chapter 7.2 for details).

7.1 General requirements

[CANSM266] ⌈The CanSM module shall store the latest notified current network
mode with ComM_BusSM_ModeIndication (chapter 8.6.1) for each configured
CAN network internally (ref. to CANSM126_Conf).⌋()

[CANSM284] ⌈The internally stored network modes of the CanSM module can have
the values COMM_NO_COMMUNICATION, COMM_SILENT_COMMUNICATION,
COMM_FULL_COMMUNICATION.⌋()

[CANSM428] ⌈All effects of the CanSM state machine CANSM_BSM (ref. to Figure
7-1), shall be operated in the context of the CanSM main function (ref. to
CANSM065).⌋()

[CANSM278] ⌈If the CanSM state machine CANSM_BSM (ref. to Figure 7-1) is in the
state CANSM_BSM_S_NOT_INITIALIZED, it shall deny network mode requests from
the ComM module (ref. to CANSM062).⌋()

[CANSM385] ⌈If the CanSM module state machine was triggered with
T_REPEAT_MAX (ref. to CANSM463, CANSM480, CANSM495, CANSM523,

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

31 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

CANSM536), the CanSM module shall call the function Det_ReportError with the
ErrorId parameter CANSM_E_MODE_REQUEST_TIMEOUT (ref. to chapter 7.3).⌋

[CANSM422] ⌈If the CanIf module notifies PN availability for a configured CAN
Transceiver to the CanSM module with the callback function
CanSM_ConfirmPnAvailability (ref. to CANSM419), then the CanSM module
shall call the API CanNm_ConfirmPnAvailability (ref. to chapter 8.6.1) with the
related CAN network as channel to confirm the PN availability to the CanNm
module.⌋()

[CANSM375] ⌈The CanSM module shall deny any network mode request, if the time
since the last detected bus-off is lower than CanSMBorTimeL1 (ref. to
CANSM128_Conf) and the bus-off counter is lower than CanSMBorCounterL1ToL2
(ref. to CANSM131_Conf).⌋()

Rationale: Block communication mode requests during bus-off recovery

[CANSM376] ⌈The CanSM module shall deny any network mode request, if the time
since the last detected bus-off is lower than CanSMBorTimeL2 and the bus-off
counter is greater or equal than CanSMBorCounterL1ToL2 (ref. to
CANSM131_Conf).⌋()

Rationale: Block communication mode requests during bus-off recovery

[CANSM560] ⌈If no CanSMTransceiverId (ref. to CANSM137_Conf) is configured
for a CAN Network, then the CanSM module shall bypass all specified
CanIf_SetTrcvMode (e. g. CANSM446) calls for the CAN Network and proceed in
the different state transitions as if it has got the supposed
CanSM_TransceiverModeIndication already (e. g. CANSM448).⌋()

[CANSM567] ⌈If the CanSM module is requested to provide the information, if a
certain baudrate is supported by a configured CAN network (ref. to
CANSM126_Conf) with CanSM_CheckBaudrate (ref. to CANSM501), then the
CanSM module shall reference the CanIf API function CanIf_CheckBaudrate (ref.
to chapter 8.6.2) for all configured CAN controllers of the CAN network and notify,
that the baud rate is supported by the CAN network, if all CanIf_CheckBaudrate
calls have returned E_OK. ⌋()

[CANSM568] ⌈If the CanSM module is requested to provide the information, if a
certain baud rate is supported by a configured CAN network (ref. to
CANSM126_Conf) with CanSM_CheckBaudrate (ref. to CANSM501), then the
CanSM module shall reference the CanIf API function CanIf_CheckBaudrate (ref.
to chapter 8.6.2) for all configured CAN controllers of the CAN network and notify,

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

32 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

that the baud rate is not supported, if not all CanIf_CheckBaudrate calls have
returned E_OK. ⌋()

[CANSM572] ⌈The CanSM module shall remember for each configured CAN
network the checked baud rate and the notified result of the last
CanSM_CheckBaudrate call (ref. to CANSM567 and CANSM568). ⌋()

Rationale: This is necessary to decide, if the following CanSM_ChangeBaudrate
(ref. to CANSM561) call is valid.

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

33 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

7.2 State machine for each CAN network

The following diagram specifies the behavioral state machine of the CanSM module,
which shall be implemented for each configured CAN network (ref. to
CANSM126_Conf).

PowerOff

CANSM_BSM_S_NOCOM

CANSM_BSM_S_SILENTCOM

A

CANSM_BSM_S_NOT_INITIALIZED

CANSM_BSM_S_FULLCOM

CANSM_BSM_S_PRE_NOCOM

CANSM_BSM_S_PRE_FULLCOM

ExitPoint
To
FULLCOM

ExitPoint
REPEAT_MAX

ExitPoint FULLCOM To
SILENTCOM

ExitPoint FULLCOM To
NOCOM

CANSM_BSM_S_CHANGE_BAUDRATE

ExitPoint
CHANGE_BR

ExitPoint
NO_COM

ExitPoint
FULL_OR_SILENT_COM

PowerOn

T_FULL_COM_MODE_REQUEST

T_FULL_COM_MODE_REQUEST
/E_SILENT_TO_FULL_COM

T_NO_COM_MODE_REQUEST
/E_PRE_NO_COM

CanSM_Init
/E_PRE_NO_COM

/E_NOCOM

/E_FULLCOM

/E_FULL_TO_SILENT_COM

/E_PRE_NOCOM

/E_PRE_NO_COM

[G_SILENT_COM_MODE_REQUESTED]
/E_CHANGE_BR_END_SILENT_COM

/E_CHANGE_BR_END
[G_FULL_COM_MODE_REQUESTED]
/E_CHANGE_BR_END_FULL_COM

Figure 7-1: CANSM_BSM, state machine diagram for one CAN network

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

34 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

7.2.1 Trigger: PowerOn

[CANSM424] ⌈After PowerOn the CanSM state machines (ref. to Figure 7-1) shall be

in the state CANSM_BSM_NOT_INITIALIZED.⌋(BSW01144)

7.2.2 Trigger: CanSM_Init

[CANSM423] ⌈If the CanSM module is requested with the function CanSM_Init (ref.
to chapter 8.3.1), this shall trigger the CanSM state machines (ref. to Figure 7-1) for
all configured CAN Networks (ref. to CANSM126_Conf) with the trigger
CanSM_Init.⌋()

7.2.3 Trigger: T_FULL_COM_MODE_REQUEST

[CANSM425] ⌈The API request CanSM_RequestComMode (ref. to CANSM062) with
the parameter ComM_Mode equal to COMM_FULL_COMMUNICATION shall trigger the
state machine with T_FULL_COM_MODE_REQUEST, if the function parameter
network matches the configuration parameter CANSM_NETWORK_HANDLE (ref. to
CANSM161_Conf).⌋()

7.2.4 Trigger: T_NO_COM_MODE_REQUEST

[CANSM426] ⌈The API request CanSM_RequestComMode (ref. to CANSM062) with
the parameter ComM_Mode equal to COMM_NO_COMMUNICATION shall trigger the
state machine with T_NO_COM_MODE_REQUEST, if the function parameter network
matches the configuration parameter CANSM_NETWORK_HANDLE (ref. to
CANSM161_Conf).⌋()

7.2.5 Guarding condition: G_FULL_COM_MODE_REQUESTED

[CANSM427] ⌈The guarding condition G_FULL_COM_MODE_REQUESTED of the
CanSM_BSM state machine (ref. to Figure 7-1) shall evaluate, if the latest accepted
communication mode request with CanSM_RequestComMode (ref. to CANSM062)
for the respective network handle of the state machine has been with the parameter
ComM_Mode equal to COMM_FULL_COMMUNICATION.⌋()

7.2.6 Guarding condition: G_SILENT_COM_MODE_REQUESTED

[CANSM429] ⌈The guarding condition G_SILENT_COM_MODE_REQUESTED of the
CanSM_BSM state machine (ref. to Figure 7-1) shall evaluate, if the latest accepted
communication mode request with CanSM_RequestComMode (ref. to CANSM062)

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

35 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

for the respective network handle of the state machine has been with the parameter
ComM_Mode equal to COMM_SILENT_COMMUNICATION.⌋()

7.2.7 Effect: E_PRE_NOCOM

[CANSM431] ⌈The effect E_PRE_NOCOM of the CanSM_BSM state machine (ref. to
Figure 7-1) shall call for the corresponding CAN network the API
BswM_CanSM_CurrentState with the parameters Network :=
CanSMComMNetworkHandleRef and CurrentState :=

CANSM_BSWM_NO_COMMUNICATION.⌋()

7.2.8 Effect: E_NOCOM

[CANSM430] ⌈The effect E_NOCOM of the CanSM_BSM state machine (ref. to Figure
7-1) shall change the internally stored network mode (ref. to CANSM266) of the
addressed CAN network to COMM_NO_COMMUNICATION and shall call the API
ComM_BusSM_ModeIndication with the parameters Channel :=
CanSMComMNetworkHandleRef (ref. to CANSM161_Conf) and ComMode :=

COMM_NO_COMMUNICATION.⌋()

7.2.9 Effect: E_FULL_COM

[CANSM435] ⌈The effect E_FULL_COM of the CanSM_BSM state machine (ref. to
Figure 7-1) shall call at 1st place for the corresponding CAN network the API
BswM_CanSM_CurrentState with the parameters Network :=
CanSMComMNetworkHandleRef and CurrentState :=

CANSM_BSWM_FULL_COMMUNICATION.⌋()

[CANSM539] ⌈The effect E_FULL_COM of the CanSM_BSM state machine (ref. to
Figure 7-1) shall call at 2nd place for each configured CAN controller of the CAN
network the API CanIf_SetPduMode with the parameters ControllerId :=
CanSMControllerId (ref. to CANSM141_Conf) and PduModeRequest :=
CANIF_SET_ONLINE.⌋()

[CANSM540] ⌈The effect E_FULL_COM of the CanSM_BSM state machine (ref. to
Figure 7-1) shall call at 3rd place for the corresponding CAN network the API
ComM_BusSM_ModeIndication with the parameters Channel :=
CanSMComMNetworkHandleRef (ref. to CANSM161_Conf) and ComMode :=

COMM_FULL_COMMUNICATION.⌋()

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

36 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

7.2.10 Effect: E_FULL_TO_SILENT_COM

[CANSM434] ⌈The effect E_FULL_TO_SILENT_COM of the CanSM_BSM state
machine (ref. to Figure 7-1) shall call at 1st place for the corresponding CAN network
the API BswM_CanSM_CurrentState with the parameters Network :=
CanSMComMNetworkHandleRef and CurrentState :=

CANSM_BSWM_SILENT_COMMUNICATION.⌋()

[CANSM541] ⌈The effect E_FULL_TO_SILENT_COM of the CanSM_BSM state
machine (ref. to Figure 7-1) shall call at 2nd place for each configured CAN controller
of the CAN network the API CanIf_SetPduMode with the parameters
ControllerId := CanSMControllerId (ref. to CANSM141_Conf) and
PduModeRequest := CANIF_SET_ONLINE⌋()

[CANSM537] ⌈The effect E_FULL_TO_SILENT_COM of the CanSM_BSM state
machine (ref. to Figure 7-1) shall call at 3rd place for each configured CAN controller
of the CAN network the API CanIf_SetPduMode with the parameters
ControllerId := CanSMControllerId (ref. to CANSM141_Conf) and
PduModeRequest := CANIF_SET_TX_OFFLINE.⌋()

[CANSM538] ⌈The effect E_FULL_TO_SILENT_COM of the CanSM_BSM state
machine (ref. to Figure 7-1) shall call at 4th place for the corresponding CAN network
the API ComM_BusSM_ModeIndication with the parameters Channel :=
CanSMComMNetworkHandleRef (ref. to CANSM161_Conf) and ComMode :=

COMM_SILENT_COMMUNICATION.⌋()

7.2.11 Effect: E_BR_END_FULL_COM

[CANSM432] ⌈The effect E_BR_END_FULL_COM of the CanSM_BSM state machine

(ref. to Figure 7-1) shall be the same as E_FULLCOM (ref. to CANSM435).⌋()

7.2.12 Effect: E_BR_END_SILENT_COM

[CANSM433] ⌈The effect E_BR_END_SILENT_COM of the CanSM_BSM state
machine (ref. to Figure 7-1) shall be the same as E_FULL_TO_SILENT_COM (ref. to
CANSM434).⌋()

7.2.13 Effect: E_SILENT_TO_FULL_COM

[CANSM550] ⌈The effect E_SILENT_TO_FULL_COM of the CanSM_BSM state

machine (ref. to Figure 7-1) shall be the same as E_FULLCOM (ref. to CANSM435).⌋()

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

37 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

7.2.14 Sub state machine: CANSM_BSM_S_PRE_NOCOM

CANSM_BSM_S_PRE_NOCOM

EntryPoint

ExitPoint

CANSM_BSM_DeinitPnNotSupported CANSM_BSM_DeinitPnSupported

[CANSM_BSM_G_PN_NOT_SUPPORTED] [CANSM_BSM_G_PN_SUPPORTED]

Figure 7-2: CANSM_BSM_S_PRE_NOCOM, sub state machine of CANSM_BSM

7.2.14.1 Guarding condition: CANSM_BSM_G_PN_NOT_SUPPORTED

[CANSM436] ⌈The guarding condition CANSM_BSM_G_PN_NOT_SUPPORTED of the
sub state machine CANSM_BSM_S_PRE_NO_COM (ref. to Figure 7-2) shall evaluate, if
the configuration parameter CanTrcvHwPnSupport (ref. to [9], CanTrcv160_Conf)
is FALSE, which is available via the reference CanSMTransceiverId (ref. to
CANSM137_Conf) or if no CanSMTransceiverId is configured at all.⌋()

7.2.14.2 Guarding condition: CANSM_BSM_G_PN_SUPPORTED

[CANSM437] ⌈The guarding condition CANSM_BSM_G_PN_SUPPORTED of the sub
state machine CANSM_BSM_S_PRE_NO_COM (ref. to Figure 7-2) shall evaluate, if a
CanSMTransceiverId (ref. to CANSM137_Conf) is configured and if the
configuration parameter CanTrcvHwPnSupport (ref. to [9], CanTrcv160_Conf) is
TRUE, which is available via the reference CanSMTransceiverId (ref. to
CANSM137_Conf).⌋()

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

38 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

7.2.14.3 Sub state machine for deinitialization with partial network support

CANSM_BSM_DeinitPnSupported

CANSM_BSM_DeinitPnSupportedProceed

EntryPoint
ExitPoint

S_PN_CLEAR_WUF

+ do / DO_CLEAR_TRCV_WUF

S_PN_CLEAR_WUF_WAIT

S_PN_CC_STOPPED

+ do / DO_SET_CC_MODE_STOPPED

S_CC_STOPPED_WAIT

S_TRCV_STANDBY

+ do / DO_SET_TRCV_MODE_STANDBY

S_TRCV_STANDBY_WAIT

S_CC_SLEEP

+ do / DO_SET_CC_MODE_SLEEP

S_CC_SLEEP_WAIT

S_CHECK_WFLAG_IN_CC_SLEEP

+ do / DO_CHECK_WFLAG

S_CHECK_WUF_IN_CC_SLEEP_WAIT

S_CHECK_WFLAG_IN_NOT_CC_SLEEP

+ do / DO_CHECK_WFLAG

S_CHECK_WUF_IN_NOT_CC_SLEEP_WAIT

S_TRCV_NORMAL

+ do / DO_SET_TRCV_MODE_NORMAL

S_TRCV_NORMAL_WAIT

Junction

T_CC_SLEEP_INDICATED

T_TRCV_NORMAL_TIMEOUT

T_TRCV_NORMAL_INDICATED

[G_TRCV_NORMAL_E_OK]T_TRCV_NORMAL_INDICATED

T_CHECK_WFLAG_INDICATED

T_CHECK_WFLAG_TIMEOUT

[G_CHECK_WFLAG_E_OK]

T_CHECK_WFLAG_INDICATED

T_CHECK_WFLAG_TIMEOUT

T_CHECK_WFLAG_INDICATED

[G_CHECK_WFLAG_E_OK]

T_CHECK_WFLAG_INDICATED

T_REPEAT_MAX

T_CC_STOPPED_INDICATED

[G_PN_CLEAR_WUF_E_OK]
T_CLEAR_WUF_INDICATED T_CLEAR_WUF_TIMEOUT

T_CLEAR_WUF_INDICATED

[G_CC_STOPPED_E_OK]

CANSM_BSM_T_CC_SLEEP_TIMEOUT

T_CC_STOPPED_TIMEOUT

T_CC_SLEEP_INDICATED

[G_TRCV_STANDBY_E_OK]T_TRCV_STANDBY_INDICATED

T_TRCV_STANDBY_TIMOUT

T_TRCV_STANDBY_INDICATED

[G_CC_SLEEP_E_OK]

T_CC_STOPPED_INDICATED

Figure 7-3: CANSM_BSM_DeinitPnSupported, sub state machine of
CANSM_BSM_S_PRE_NOCOM

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

39 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

7.2.14.3.1 State operation to do in: S_PN_CLEAR_WUF

[CANSM438] ⌈As long the sub state machine CANSM_BSM_DeinitPnSupported
(ref. to Figure 7-3) is in the state S_PN_CLEAR_WUF, the CanSM module operate the
do action DO_CLEAR_TRCV_WUF and therefore repeat the API request
CanIf_ClrTrcvWufFlag (ref. to chapter 8.6.1) and use the configured Transceiver
(ref. to CANSM137_Conf) as API function parameter.⌋()

7.2.14.3.2 Guarding condition: G_PN_CLEAR_WUF_E_OK

[CANSM439] ⌈The guarding condition G_PN_CLEAR_WUF_E_OK of the sub state
machine CANSM_BSM_DeinitPnSupported (ref. to Figure 7-3) shall be passed, if
the API call of CANSM438 has returned E_OK.⌋()

7.2.14.3.3 Trigger: T_CLEAR_WUF_INDICATED

[CANSM440] ⌈The callback function CanSM_ClearTrcvWufFlagIndication (ref.
to CANSM413) shall trigger the sub state machine
CANSM_BSM_DeinitPnSupported (ref. to Figure 7-3) of the CAN network with
T_CLEAR_WUF_INDICATED, if the function parameter Transceiver of
CanSM_ClearTrcvWufFlagIndication matches to the configured CAN
Transceiver (ref. to CANSM137_Conf) of the CAN network.⌋()

7.2.14.3.4 Trigger: T_CLEAR_WUF_TIMEOUT

[CANSM443] ⌈After a timeout of CANSM_MODEREQ_REPEAT_TIME (ref. to
CANSM336_Conf) for the callback function
CanSM_ClearTrcvWufFlagIndication (ref. to CANSM440), this condition shall
trigger the sub state machine CANSM_BSM_DeinitPnSupported (ref. to Figure 7-3)
of the respective network with T_CLEAR_WUF_TIMEOUT.⌋()

7.2.14.3.5 State operation to do in: S_PN_CC_STOPPED

[CANSM441] ⌈As long the sub state machine CANSM_BSM_DeinitPnSupported
(ref. to Figure 7-3) is in the state S_PN_CC_STOPPED, the CanSM module shall
operate the do action DO_SET_CC_MODE_STOPPED and therefore repeat for all
configured CAN controllers of the CAN network (ref. to CANSM141_Conf) the API
request CanIf_SetControllerMode (ref. to chapter 8.6.1) with ControllerMode
equal to CANIF_CS_STOPPED.⌋()

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

40 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

7.2.14.3.6 Guarding condition: G_CC_STOPPED_E_OK

[CANSM442] ⌈The guarding condition G_CC_STOPPED_E_OK of the sub state
machine CANSM_BSM_DeinitPnSupported (ref. to Figure 7-3) shall be passed, if
all API calls of CANSM441 have returned E_OK.⌋()

7.2.14.3.7 Trigger: T_CC_STOPPED_INDICATED

[CANSM444] ⌈If CanSM module has got all mode indications (ref. to CANSM396) for
the configured CAN controllers of the CAN network (ref. to CANSM141_Conf) after
the respective requests to stop the CAN controllers of the CAN network (ref. to
CANSM442), this shall trigger the sub state machine
CANSM_BSM_DeinitPnSupported (ref. to Figure 7-3) of the CAN network with
T_CC_STOPPED_INDICATED.⌋()

7.2.14.3.8 Trigger: T_CC_STOPPED_TIMEOUT

[CANSM445] ⌈After a timeout of CANSM_MODEREQ_REPEAT_TIME (ref. to
CANSM336_Conf) for all supposed controller stopped mode indications (ref. to
CANSM444), this condition shall trigger the sub state machine
CANSM_BSM_DeinitPnSupported (ref. to Figure 7-3) of the respective network
with T_CC_STOPPED_TIMEOUT.⌋()

7.2.14.3.9 State operation to do in: S_TRCV_NORMAL

[CANSM446] ⌈As long the sub state machine CANSM_BSM_DeinitPnSupported
(ref. to Figure 7-3) is in the state S_TRCV_NORMAL, the CanSM module shall operate
the do action DO_SET_TRCV_MODE_NORMAL and therefore repeat for the configured
CAN Transceiver of the CAN network (ref. to CANSM137_Conf) the API request
CanIf_SetTrcvMode (ref. to chapter 8.6.1) with TransceiverMode equal to
CANTRCV_TRCVMODE_NORMAL.⌋()

7.2.14.3.10 Guarding condition: G_TRCV_NORMAL_E_OK

[CANSM447] ⌈The guarding condition G_TRCV_NORMAL_E_OK of the sub state
machine CANSM_BSM_DeinitPnSupported (ref. to Figure 7-3) shall be passed, if
the API call of CANSM446 has returned E_OK.⌋()

7.2.14.3.11 Trigger: T_TRCV_NORMAL_INDICATED

[CANSM448] ⌈If CanSM module has got the CANTRCV_TRCVMODE_NORMAL mode
indication (ref. to CANSM399) for the configured CAN Transceiver of the CAN
network (ref. to CANSM137_Conf) after the respective request (ref. to CANSM446),

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

41 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

this shall trigger the sub state machine CANSM_BSM_DeinitPnSupported (ref. to
Figure 7-3) of the CAN network with T_TRCV_NORMAL_INDICATED.⌋()

7.2.14.3.12 Trigger: T_TRCV_NORMAL_TIMEOUT

[CANSM449] ⌈After a timeout of CANSM_MODEREQ_REPEAT_TIME (ref. to
CANSM336_Conf) for the supposed transceiver normal indication (ref. to
CANSM448), this condition shall trigger the sub state machine
CANSM_BSM_DeinitPnSupported (ref. to Figure 7-3) of the respective network
with T_TRCV_NORMAL_TIMEOUT.⌋()

7.2.14.3.13 State operation to do in: S_TRCV_STANDBY

[CANSM450] ⌈As long the sub state machine CANSM_BSM_DeinitPnSupported
(ref. to Figure 7-3) is in the state S_TRCV_STANDBY, the CanSM module shall
operate the do action DO_SET_TRCV_STANDBY and therefore repeat for the
configured CAN Transceiver of the CAN network (ref. to CANSM137_Conf) the API
request CanIf_SetTrcvMode (ref. to chapter 8.6.1) with TransceiverMode
equal to CANTRCV_TRCVMODE_STANDBY.⌋()

7.2.14.3.14 Guarding condition: G_TRCV_STANDBY_E_OK

[CANSM451] ⌈The guarding condition G_TRCV_STANDBY_E_OK of the sub state
machine CANSM_BSM_DeinitPnSupported (ref. to Figure 7-3) shall be passed, if
the API call of CANSM450 has returned E_OK.⌋()

7.2.14.3.15 Trigger: T_TRCV_STANDBY_INDICATED

[CANSM452] ⌈If the CanSM module has got the CANTRCV_TRCVMODE_STANDBY
mode indication (ref. to CANSM399) for the configured CAN Transceiver of the CAN
network (ref. to CANSM137_Conf) after the respective request (ref. to CANSM450),
this shall trigger the sub state machine CANSM_BSM_DeinitPnSupported (ref. to
Figure 7-3) of the CAN network with T_TRCV_STANDBY_INDICATED.⌋()

7.2.14.3.16 Trigger: T_TRCV_STANDBY_TIMEOUT

[CANSM454] ⌈After a timeout of CANSM_MODEREQ_REPEAT_TIME (ref. to
CANSM336_Conf) for the supposed transceiver standby indication (ref. to
CANSM452), this condition shall trigger the sub state machine
CANSM_BSM_DeinitPnSupported (ref. to Figure 7-3) of the respective network
with T_TRCV_STANDBY_TIMEOUT.⌋()

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

42 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

7.2.14.3.17 State operation to do in: S_CC_SLEEP

[CANSM453] ⌈As long the sub state machine CANSM_BSM_DeinitPnSupported
(ref. to Figure 7-3) is in the state S_CC_SLEEP, the CanSM module shall operate the
do action DO_SET_CC_MODE_SLEEP and therefore repeat for all configured CAN
controllers of the CAN network (ref. to CANSM141_Conf) the API request
CanIf_SetControllerMode (ref. to chapter 8.6.1) with ControllerMode equal
to CANIF_CS_SLEEP.⌋()

7.2.14.3.18 Guarding condition: G_CC_SLEEP_E_OK

[CANSM455] ⌈The guarding condition G_CC_SLEEP_E_OK of the sub state machine
CANSM_BSM_DeinitPnSupported (ref. to Figure 7-3) shall be passed, if all API
calls of CANSM453 have returned E_OK.⌋()

7.2.14.3.19 Trigger: T_CC_SLEEP_INDICATED

[CANSM456] ⌈If CanSM module has got all mode indications (ref. to CANSM396) for
the configured CAN controllers of the CAN network (ref. to CANSM141_Conf) after
the respective requests to set the CAN controllers of the CAN network to sleep mode
(ref. to CANSM453), this shall trigger the sub state machine
CANSM_BSM_DeinitPnSupported (ref. to Figure 7-3) of the CAN network with
T_CC_SLEEP_INDICATED.⌋()

7.2.14.3.20 Trigger: CANSM_BSM_T_CC_SLEEP_TIMEOUT

[CANSM457] ⌈After a timeout of CANSM_MODEREQ_REPEAT_TIME (ref. to
CANSM336_Conf) for all supposed controller sleep mode indications (ref. to
CANSM456), this condition shall trigger the sub state machine
CANSM_BSM_DeinitPnSupported (ref. to Figure 7-3) of the respective network
with CANSM_BSM_T_CC_SLEEP_TIMEOUT.⌋()

7.2.14.3.21 State operation to do in: S_CHECK_WFLAG_IN_CC_SLEEP

[CANSM458] ⌈As long the sub state machine CANSM_BSM_DeinitPnSupported
(ref. to Figure 7-3) is in the state S_CHECK_WFLAG_IN_CC_SLEEP, the CanSM
module operate the do action DO_CHECK_WFLAG and therefore repeat the API
request CanIf_CheckTrcvWakeFlag (ref. to chapter 8.6.1) and use the configured
CAN Transceiver of the related Network (ref. to CANSM137_Conf) as Transceiver
parameter.⌋()

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

43 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

7.2.14.3.22 Guarding condition: G_CHECK_WFLAG_E_OK

[CANSM459] ⌈The guarding condition G_CHECK_WFLAG_E_OK of the sub state
machine CANSM_BSM_DeinitPnSupported (ref. to Figure 7-3) shall be passed, if
the API call of CANSM458 or CANSM462 has returned E_OK.⌋()

7.2.14.3.23 Trigger: T_CHECK_WFLAG_INDICATED

[CANSM460] ⌈The callback function CanSM_CheckTransceiverWakeFlag-

Indication (ref. to CANSM416) shall trigger the sub state machine
CANSM_BSM_DeinitPnSupported (ref. to Figure 7-3) of the CAN network with
T_CHECK_WFLAG_INDICATED, if the function parameter Transceiver of
CanSM_CheckTransceiverWakeFlagIndication matches to the configured
CAN Transceiver (ref. to CANSM137_Conf) of the CAN network.⌋()

7.2.14.3.24 Trigger: T_CHECK_WFLAG_TIMEOUT

[CANSM461] ⌈After a timeout of CANSM_MODEREQ_REPEAT_TIME (ref. to
CANSM336_Conf) for the callback function CanSM_CheckTransceiver-
WakeFlagIndication (ref. to CANSM460), this condition shall trigger the sub
state machine CANSM_BSM_DeinitPnSupported (ref. to Figure 7-3) of the
respective network with T_CHECK_WFLAG_TIMEOUT.⌋()

7.2.14.3.25 State operation to do in: S_CHECK_WFLAG_IN_NOT_CC_SLEEP

[CANSM462] ⌈As long the sub state machine CANSM_BSM_DeinitPnSupported
(ref. to Figure 7-3) is in the state S_CHECK_WFLAG_IN_NOT_CC_SLEEP, the CanSM
module operate the do action DO_CHECK_WFLAG and therefore repeat the API
request CanIf_CheckTrcvWakeFlag (ref. to chapter 8.6.1) and use the configured
CAN Transceiver of the related Network (ref. to CANSM137_Conf) as Transceiver
parameter.⌋()

7.2.14.3.26 Trigger: T_REPEAT_MAX

[CANSM463] ⌈If the sub state machine CANSM_BSM_DeinitPnSupported (ref. to
Figure 7-3) has repeated any of the CanIf API calls (ref. to CANSM438, CANSM441,
CANSM446, CANSM450, CANSM453, CANSM458, CANSM462) more often than
configured (ref. to CANSM335_Conf) without getting the return value E_OK and
without getting the supposed mode indication callbacks (ref. to CANSM444,
CANSM448, CANSM452, CANSM456, CANSM460), this shall trigger the sub state
machine CANSM_BSM_DeinitPnSupported with T_REPEAT_MAX.⌋()

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

44 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

7.2.14.4 Sub state machine for deinitialization without partial network
support

CANSM_BSM_DeinitPnNotSupported

CANSM_BSM_DeinitPnNotSupportedProceed

S_CC_SLEEP

+ do / DO_SET_CC_MODE_SLEEP

S_CC_STOPPED

+ do / DO_SET_CC_MODE_STOPPED

S_TRCV_NORMAL

+ do / DO_SET_TRCV_MODE_NORMAL

S_TRCV_STANDBY

+ do / DO_SET_TRCV_MODE_STANDBY

EntryPoint

ExitPoint

S_CC_STOPPED_WAIT

S_CC_SLEEP_WAIT

S_TRCV_NORMAL_WAIT

S_TRCV_STANDBY_WAIT

[G_TRCV_STANDBY_E_OK]

CANSM_BSM_T_TRCV_STANDBY_TIMOUT

T_TRCV_NORMAL_INDICATED

T_TRCV_NORMAL_TIMEOUT

T_CC_SLEEP_INDICATED

T_CC_SLEEP_TIMEOUT

T_CC_STOPPED_TIMEOUT

T_TRCV_STANDBY_INDICATED

T_REPEAT_MAX

T_TRCV_STANDBY_INDICATED

[G_TRCV_NORMAL_E_OK]

T_TRCV_NORMAL_INDICATED

[CANSM_BSM_G_CC_STOPPED_E_OK]

T_CC_STOPPED_INDICATED

[G_CC_SLEEP_E_OK]
T_CC_SLEEP_INDICATED

T_CC_STOPPED_INDICATED

Figure 7-4: CANSM_BSM_DeinitPnNotSupported, sub state machine of
CANSM_BSM_S_PRE_NOCOM

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

45 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

7.2.14.4.1 State operation to do in: S_CC_STOPPED

[CANSM464] ⌈As long the sub state machine
CANSM_BSM_DeinitPnNotSupported (ref. to Figure 7-4) is in the state
S_CC_STOPPED, the CanSM module shall operate the do action
DO_SET_CC_MODE_STOPPED and therefore repeat for all configured CAN controllers
of the CAN network (ref. to CANSM141_Conf) the API request
CanIf_SetControllerMode (ref. to chapter 8.6.1) with ControllerMode equal
to CANIF_CS_STOPPED.⌋()

7.2.14.4.2 Guarding condition: CANSM_BSM_G_CC_STOPPED_OK

[CANSM465] ⌈The guarding condition CANSM_BSM_G_CC_STOPPED_OK of the sub
state machine CANSM_BSM_DeinitPnNotSupported (ref. to Figure 7-4) shall be
passed, if all API calls of CANSM464 have returned E_OK.⌋()

7.2.14.4.3 Trigger: T_CC_STOPPED_INDICATED

[CANSM466] ⌈If CanSM module has got all mode indications (ref. to CANSM396) for
the configured CAN controllers of the CAN network (ref. to CANSM141_Conf) after
the respective requests to stop the CAN controllers of the CAN network (ref. to
CANSM464), this shall trigger the sub state machine
CANSM_BSM_DeinitPnNotSupported (ref. to Figure 7-4) of the CAN network with
T_CC_STOPPED_INDICATED.⌋()

7.2.14.4.4 Trigger: T_CC_STOPPED_TIMEOUT

[CANSM467] ⌈After a timeout of CANSM_MODEREQ_REPEAT_TIME (ref. to
CANSM336_Conf) for all supposed controller stopped mode indications (ref. to
CANSM466), this condition shall trigger the sub state machine
CANSM_BSM_DeinitPnNotSupported (ref. to Figure 7-4) of the respective network
with T_CC_STOPPED_TIMEOUT.⌋()

7.2.14.4.5 State operation to do in: S_CC_SLEEP

[CANSM468] ⌈As long the sub state machine
CANSM_BSM_DeinitPnNotSupported (ref. to Figure 7-4) is in the state
S_CC_SLEEP, the CanSM module shall operate the do action
DO_SET_CC_MODE_SLEEP and therefore repeat for all configured CAN controllers of
the CAN network (ref. to CANSM141_Conf) the API request
CanIf_SetControllerMode (ref. to chapter 8.6.1) with ControllerMode equal
to CANIF_CS_SLEEP.⌋()

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

46 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

7.2.14.4.6 Guarding condition: G_CC_SLEEP_E_OK

[CANSM469] ⌈The guarding condition G_CC_SLEEP_E_OK of the sub state machine
CANSM_BSM_DeinitPnNotSupported (ref. to Figure 7-4) shall be passed, if all API
calls of CANSM468 have returned E_OK.⌋()

7.2.14.4.7 Trigger: T_CC_SLEEP_INDICATED

[CANSM470] ⌈If CanSM module has got all mode indications (ref. to CANSM396) for
the configured CAN controllers of the CAN network (ref. to CANSM141_Conf) after
the respective requests to set the CAN controllers of the CAN network to sleep mode
(ref. to CANSM468), this shall trigger the sub state machine
CANSM_BSM_DeinitPnNotSupported (ref. to Figure 7-4) of the CAN network with
T_CC_SLEEP_INDICATED.⌋()

7.2.14.4.8 Trigger: T_CC_SLEEP_TIMEOUT

[CANSM471] ⌈After a timeout of CANSM_MODEREQ_REPEAT_TIME (ref. to
CANSM336_Conf) for all supposed controller sleep mode indications (ref. to
CANSM470), this condition shall trigger the sub state machine
CANSM_BSM_DeinitPnNotSupported (ref. to Figure 7-4) of the respective network
with T_CC_SLEEP_TIMEOUT.⌋()

7.2.14.4.9 State operation to do in: S_TRCV_NORMAL

[CANSM472] ⌈If for the CAN network a CAN Transceiver is configured (ref. to
CANSM137_Conf), then as long the sub state machine
CANSM_BSM_DeinitPnNotSupported (ref. to Figure 7-4) is in the state
S_TRCV_NORMAL, the CanSM module shall operate the do action
DO_SET_TRCV_MODE_NORMAL and therefore repeat for the configured CAN
Transceiver of the CAN network (ref. to CANSM137_Conf) the API request
CanIf_SetTrcvMode (ref. to chapter 8.6.1) with TransceiverMode equal to
CANTRCV_TRCVMODE_NORMAL.⌋()

7.2.14.4.10 Guarding condition: G_TRCV_NORMAL_E_OK

[CANSM473] ⌈The guarding condition G_TRCV_NORMAL_E_OK of the sub state
machine CANSM_BSM_DeinitPnNotSupported (ref. to Figure 7-4) shall be
passed, if the API call of CANSM472 has returned E_OK.⌋()

7.2.14.4.11 Trigger: T_TRCV_NORMAL_INDICATED

[CANSM474] ⌈If CanSM module has got the CANTRCV_TRCVMODE_NORMAL mode
indication (ref. to CANSM399) for the configured CAN Transceiver of the CAN

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

47 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

network (ref. to CANSM137_Conf) after the respective request (ref. to CANSM472),
this shall trigger the sub state machine CANSM_BSM_DeinitPnNotSupported (ref.
to Figure 7-4) of the CAN network with T_TRCV_NORMAL_INDICATED.⌋()

[CANSM556] ⌈If no CAN Transceiver is configured for the CAN network, then this
shall trigger the sub state machine CANSM_BSM_DeinitPnNotSupported (ref. to
Figure 7-4) of the CAN network in the state S_TRCV_NORMAL with
T_TRCV_NORMAL_INDICATED.⌋()

7.2.14.4.12 Trigger: T_TRCV_NORMAL_TIMEOUT

[CANSM475] ⌈After a timeout of CANSM_MODEREQ_REPEAT_TIME (ref. to
CANSM336_Conf) for the supposed transceiver normal indication (ref. to
CANSM474), this condition shall trigger the sub state machine
CANSM_BSM_DeinitPnNotSupported (ref. to Figure 7-4) of the respective
network with T_TRCV_NORMAL_TIMEOUT.⌋()

7.2.14.4.13 State operation to do in: S_TRCV_STANDBY

[CANSM476] ⌈If for the CAN network a CAN Transceiver is configured (ref. to
CANSM137_Conf), then as long the sub state machine
CANSM_BSM_DeinitPnNotSupported (ref. to Figure 7-4) is in the state
S_TRCV_STANDBY, the CanSM module shall operate the do action
DO_SET_TRCV_MODE_STANDBY and therefore repeat for the configured CAN
Transceiver of the CAN network (ref. to CANSM137_Conf) the API request
CanIf_SetTrcvMode (ref. to chapter 8.6.1) with TransceiverMode equal to
CANTRCV_TRCVMODE_STANDBY.⌋()

7.2.14.4.14 Guarding condition: G_TRCV_STANDBY_E_OK

[CANSM477] ⌈The guarding condition G_TRCV_STANDBY_E_OK of the sub state
machine CANSM_BSM_DeinitPnNotSupported (ref. to Figure 7-4) shall be
passed, if the API call of CANSM476 has returned E_OK.⌋()

7.2.14.4.15 Trigger: T_TRCV_STANDBY_INDICATED

[CANSM478] ⌈If CanSM module has got the CANTRCV_TRCVMODE_STANDBY mode
indication (ref. to CANSM399) for the configured CAN Transceiver of the CAN
network (ref. to CANSM137_Conf) after the respective request (ref. to CANSM476),
this shall trigger the sub state machine CANSM_BSM_DeinitPnNotSupported (ref.
to Figure 7-4) of the CAN network with T_TRCV_STANDBY_INDICATED.⌋()

[CANSM557] ⌈If no CAN Transceiver is configured for the CAN network (ref. to
CANSM137_Conf), then this shall trigger the sub state machine

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

48 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

CANSM_BSM_DeinitPnNotSupported (ref. to Figure 7-4) of the CAN network in
the state S_TRCV_STANDBY with T_TRCV_STANDBY_INDICATED.⌋()

7.2.14.4.16 Trigger: CANSM_BSM_T_TRCV_STANDBY_TIMEOUT

[CANSM479] ⌈After a timeout of CANSM_MODEREQ_REPEAT_TIME (ref. to
CANSM336_Conf) for the supposed transceiver standby indication (ref. to
CANSM478), this condition shall trigger the sub state machine
CANSM_BSM_DeinitPnNotSupported (ref. to Figure 7-4) of the respective
network with CANSM_BSM_T_TRCV_STANDBY_TIMEOUT.⌋()

7.2.14.4.17 Trigger: T_REPEAT_MAX

[CANSM480] ⌈If the sub state machine CANSM_BSM_DeinitPnNotSupported (ref.
to Figure 7-4) has repeated any of the CanIf API calls (ref. to CANSM464,
CANSM468, CANSM472, CANSM476) more often than configured (ref. to
CANSM335_Conf) without getting the return value E_OK and without getting the
supposed mode indication callbacks (ref. to CANSM466, CANSM470, CANSM474,
CANSM478), this shall trigger the sub state machine
CANSM_BSM_DeinitPnNotSupported with T_REPEAT_MAX.⌋()

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

49 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

7.2.15 Sub state machine to prepare full communication

CANSM_BSM_S_PRE_FULLCOM

S_TRCV_NORMAL

+ do / DO_SET_TRCV_MODE_NORMAL

S_CC_STOPPED

+ do / DO_SET_CC_MODE_STOPPED

S_CC_STARTED

+ do / DO_SET_CC_MODE_STARTED

ExitPoint
To
FULLCOM

EntryPoint

S_TRCV_NORMAL_WAIT

S_CC_STOPPED_WAIT

S_CC_STARTED_WAIT

ExitPoint
REPEAT_MAX

T_CC_STARTED_INDICATED

T_CC_STARTED_INDICATED

T_CC_STOPPED_TIMEOUT

T_CC_STOPPED_INDICATED

T_TRCV_NORMAL_INDICATED

T_TRCV_NORMAL_TIMEOUT

T_CC_STARTED_TIMEOUT

[G_CC_STARTED_E_OK]

T_TRCV_NORMAL_INDICATED

T_REPEAT_MAX

[G_CC_STOPPED_E_OK]T_REPEAT_MAX

T_CC_STOPPED_INDICATED

[G_TRCV_NORMAL_E_OK]

T_REPEAT_MAX

Figure 7-5: CANSM_BSM_S_PRE_FULLCOM, sub state machine of CANSM_BSM

7.2.15.1 State operation to do in: S_TRCV_NORMAL

[CANSM483] ⌈If for the CAN network a CAN Transceiver is configured (ref. to
CANSM137_Conf), then as long the sub state machine
CANSM_BSM_S_PRE_FULLCOM (ref. to Figure 7-5) is in the state S_TRCV_NORMAL,
the CanSM module shall operate the do action DO_SET_TRCV_MODE_NORMAL and
therefore repeat for the configured CAN Transceiver of the CAN network (ref. to
CANSM137_Conf) the API request CanIf_SetTrcvMode (ref. to chapter 8.6.1)
with TransceiverMode equal to CANTRCV_TRCVMODE_NORMAL.⌋()

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

50 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

7.2.15.2 Guarding condition: G_TRCV_NORMAL_E_OK

[CANSM484] ⌈The guarding condition G_TRCV_NORMAL_E_OK of the sub state
machine CANSM_BSM_S_PRE_FULLCOM (ref. to Figure 7-5) shall be passed, if the
API call of CANSM483 has returned E_OK.⌋()

7.2.15.3 Trigger: T_TRCV_NORMAL_INDICATED

[CANSM485] ⌈If CanSM module has got the CANTRCV_TRCVMODE_NORMAL mode
indication (ref. to CANSM399) for the configured CAN Transceiver of the CAN
network (ref. to CANSM137_Conf) after the respective request (ref. to CANSM483),
this shall trigger the sub state machine CANSM_BSM_S_PRE_FULLCOM (ref. to Figure
7-5) of the CAN network with T_TRCV_NORMAL_INDICATED.⌋()

[CANSM558] ⌈If no CAN Transceiver is configured for the CAN network (ref. to
CANSM137_Conf), then this shall trigger the sub state machine
CANSM_BSM_S_PRE_FULLCOM (ref. to Figure 7-5) of the CAN network in the state
S_TRCV_NORMAL with T_TRCV_NORMAL_INDICATED.⌋()

7.2.15.4 Trigger: T_TRCV_NORMAL_TIMEOUT

[CANSM486] ⌈After a timeout of CANSM_MODEREQ_REPEAT_TIME (ref. to
CANSM336_Conf) for the supposed transceiver normal indication (ref. to
CANSM485), this condition shall trigger the sub state machine
CANSM_BSM_S_PRE_FULLCOM (ref. to Figure 7-5) of the respective network with
T_TRCV_NORMAL_TIMEOUT.⌋()

7.2.15.5 State operation to do in: S_CC_STOPPED

[CANSM487] ⌈As long the sub state machine CANSM_BSM_S_PRE_FULLCOM (ref. to
Figure 7-5) is in the state S_CC_STOPPED, the CanSM module shall operate the do
action DO_SET_CC_MODE_STOPPED and therefore repeat for all configured CAN
controllers of the CAN network (ref. to CANSM141_Conf) the API request
CanIf_SetControllerMode (ref. to chapter 8.6.1) with ControllerMode equal
to CANIF_CS_STOPPED.⌋()

7.2.15.6 Guarding condition: G_CC_STOPPED_OK

[CANSM488] ⌈The guarding condition G_CC_STOPPED_OK of the sub state machine
CANSM_BSM_S_PRE_FULLCOM (ref. to Figure 7-5) shall be passed, if all API calls of
CANSM487 have returned E_OK.⌋()

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

51 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

7.2.15.7 Trigger: T_CC_STOPPED_INDICATED

[CANSM489] ⌈If CanSM module has got all mode indications (ref. to CANSM396) for
the configured CAN controllers of the CAN network (ref. to CANSM141_Conf) after
the respective requests to stop the CAN controllers of the CAN network (ref. to
CANSM487), this shall trigger the sub state machine CANSM_BSM_S_PRE_FULLCOM
(ref. to Figure 7-5) of the CAN network with T_CC_STOPPED_INDICATED.⌋()

7.2.15.8 Trigger: T_CC_STOPPED_TIMEOUT

[CANSM490] ⌈After a timeout of CANSM_MODEREQ_REPEAT_TIME (ref. to
CANSM336_Conf) for all supposed controller stopped mode indications (ref. to
CANSM489), this condition shall trigger the sub state machine
CANSM_BSM_S_PRE_FULLCOM (ref. to Figure 7-5) of the respective network with
T_CC_STOPPED_TIMEOUT.⌋()

7.2.15.9 State operation to do in: S_CC_STARTED

[CANSM491] ⌈As long the sub state machine CANSM_BSM_S_PRE_FULLCOM (ref. to
Figure 7-5) is in the state S_CC_STARTED, the CanSM module shall operate the do
action DO_SET_CC_MODE_STARTED and therefore repeat for all configured CAN
controllers of the CAN network (ref. to CANSM141_Conf) the API request
CanIf_SetControllerMode (ref. to chapter 8.6.1) with ControllerMode equal
to CANIF_CS_STARTED.⌋()

7.2.15.10 Guarding condition: G_CC_STARTED_OK

[CANSM492] ⌈The guarding condition G_CC_STARTED_OK of the sub state machine
CANSM_BSM_S_PRE_FULLCOM (ref. to Figure 7-5) shall be passed, if all API calls of
CANSM491 have returned E_OK.⌋()

7.2.15.11 Trigger: T_CC_STARTED_INDICATED

[CANSM493] ⌈If CanSM module has got all mode indications (ref. to CANSM396) for
the configured CAN controllers of the CAN network (ref. to CANSM141_Conf) after
the respective requests to start the CAN controllers of the CAN network (ref. to
CANSM491), this shall trigger the sub state machine CANSM_BSM_S_PRE_FULLCOM
(ref. to Figure 7-5) of the CAN network with T_CC_STARTED_INDICATED.⌋()

7.2.15.12 Trigger: T_CC_STARTED_TIMEOUT

[CANSM494] ⌈After a timeout of CANSM_MODEREQ_REPEAT_TIME (ref. to
CANSM336_Conf) for all supposed controller started mode indications (ref. to
CANSM493), this condition shall trigger the sub state machine

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

52 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

CANSM_BSM_S_PRE_FULLCOM (ref. to Figure 7-5) of the respective network with
T_CC_STARTED_TIMEOUT.⌋()

7.2.15.13 Trigger: T_REPEAT_MAX

[CANSM495] ⌈If the sub state machine CANSM_BSM_S_PRE_FULLCOM (ref. to
Figure 7-5) has repeated any of the CanIf API calls (ref. to CANSM483, CANSM487,
CANSM491) more often than configured (ref. to CANSM335_Conf) without getting
the return value E_OK and without getting the supposed mode indication callbacks
(ref. to CANSM485, CANSM489, CANSM493), this shall trigger the sub state
machine CANSM_BSM_S_PRE_FULLCOM with T_REPEAT_MAX.⌋()

7.2.16 Sub state machine for requested full communication mode

CANSM_BSM_S_FULLCOM

S_RESTART_CC

+ do / DO_SET_CC_MODE_STARTED

S_TX_OFF

S_BUS_OFF_CHECK

S_NO_BUS_OFF

EntryPoint

CANSM_BSM_S_RESTART_CC_WAIT

ExitPoint
FULLCOM To
NOCOM

ExitPoint
FULLCOM To
SILENTCOM

ExitPoint
CHANGE_BR

T_REPEAT_MAX

T_RESTART_CC_INDICATED
/E_TX_OFF

[G_RESTART_CC_E_OK]

[G_TX_ON]
/E_TX_ON

[G_BUS_OFF_PASSIVE]
/E_BUS_OFF_PASSIVE

T_BUS_OFF
/E_BUS_OFF

T_BUS_OFF
/E_BUS_OFF

T_CHANGE_BR_REQUEST
/E_CHANGE_BR_BSWM_MODE

T_SILENT_COM_MODE_REQUEST

T_RESTART_CC_TIMEOUT

T_RESTART_CC_INDICATED
/E_TX_OFF

Figure 7-6: CANSM_BSM_S_FULLCOM, sub state machine of CANSM_BSM

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

53 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

7.2.16.1 Guarding condition: G_BUS_OFF_PASSIVE

[CANSM496] ⌈The guarding condition G_BUS_OFF_PASSIVE of the sub state
machine CANSM_BSM_S_FULLCOM (ref. to Figure 7-6) shall be passed, if
CANSM_BOR_TX_CONFIRMATION_POLLING is disabled (ref. to CANSM339_Conf)
and the time duration since the effect E_TX_ON is greater or equal the configuration
parameter CANSM_BOR_TIME_TX_ENSURED (ref. to CANSM130_Conf).⌋()

[CANSM497] ⌈The guarding condition G_BUS_OFF_PASSIVE of the sub state
machine CANSM_BSM_S_FULLCOM (ref. to Figure 7-6) shall be passed, if
CANSM_BOR_TX_CONFIRMATION_POLLING is enabled (ref. to CANSM339_Conf)
and the API CanIf_GetTxConfirmationState (ref. to chapter 8.6.1) returns
CANIF_TX_RX_NOTIFICATION for all configured CAN controllers of the CAN
network (ref. to CANSM141_Conf).⌋()

7.2.16.2 Effect: E_BUS_OFF_PASSIVE

[CANSM498] ⌈The effect E_BUS_OFF_PASSIVE of the sub state machine
CANSM_BSM_S_FULLCOM (ref. to Figure 7-6) shall invocate
Dem_ReportErrorStatus (ref. to chapter 8.6.1) with the parameters EventId :=
CANSM_E_BUS_OFF (ref. to CANSM070_Conf) and EventStatus :=

DEM_EVENT_STATUS_PASSED.⌋(BSW00422)

7.2.16.3 Trigger: T_SILENT_COM_MODE_REQUEST

[CANSM499] ⌈The API request CanSM_RequestComMode (ref. to CANSM062) with
the parameter ComM_Mode equal to COMM_SILENT_COMMUNICATION shall trigger
the sub state machine CANSM_BSM_S_FULLCOM (ref. to Figure 7-6) with
T_SILENT_COM_MODE_REQUEST, which corresponds to the function parameter
network and the configuration parameter CANSM_NETWORK_HANDLE (ref. to
CANSM161_Conf).⌋()

Rationale: Regular use case for the transition of the CanNm Network mode to the
CanNm Prepare Bus-Sleep mode .

[CANSM554] ⌈The API request CanSM_RequestComMode (ref. to CANSM062) with
the parameter ComM_Mode equal to COMM_NO_COMMUNICATION shall trigger the sub
state machine CANSM_BSM_S_FULLCOM (ref. to Figure 7-6) with
T_SILENT_COM_MODE_REQUEST, which corresponds to the function parameter
network and the configuration parameter CANSM_NETWORK_HANDLE (ref. to
CANSM161_Conf).⌋()

Remark: Depending on the ComM configuration, the ComM module will request
COMM_SILENT_COMMUNICATION first and then COMM_NO_COMMUNICATION or

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

54 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

COMM_NO_COMMUNICATION directly (ComMNmVariant=LIGHT)”.

7.2.16.4 Trigger: T_CHANGE_BR_REQUEST

[CANSM507] ⌈The API function CanSM_ChangeBaudrate (ref. to CANSM501)
shall trigger the sub state machine CANSM_BSM_S_FULLCOM (ref. to Figure 7-6) for
the requested CAN network with T_CHANGE_BR_REQUEST, if the CanSM module
has accepted the CanSM_ChangeBaudrate request with return of E_OK.⌋()

7.2.16.5 Effect: E_CHANGE_BR_BSWM_MODE

[CANSM528] ⌈The effect E_CHANGE_BR_BSWM_MODE of the sub state machine
CANSM_BSM_S_FULLCOM (ref. to Figure 7-6) shall call for the corresponding CAN
network the API BswM_CanSM_CurrentState with the parameters Network :=
CanSMComMNetworkHandleRef and CurrentState :=

CANSM_BSWM_CHANGE_BAUDRATE.⌋()

7.2.16.6 Trigger: T_BUS_OFF

[CANSM500] ⌈The callback function CanSM_ControllerBusOff (ref. to
CANSM064) shall trigger the sub state machine CANSM_BSM_S_FULLCOM (ref. to
Figure 7-6) for the CAN network with T_BUS_OFF, if one of its configured CAN
controllers matches to the function parameter ControllerId of the callback
function CanSM_ControllerBusOff.⌋()

7.2.16.7 Effect: E_BUS_OFF

[CANSM508] ⌈The effect E_BUS_OFF of the sub state machine
CANSM_BSM_S_FULLCOM (ref. to Figure 7-6) shall call at 1st place for the
corresponding CAN network the API BswM_CanSM_CurrentState with the
parameters Network := CanSMComMNetworkHandleRef and CurrentState
:= CANSM_BSWM_BUS_OFF.⌋()

[CANSM521] ⌈The effect E_BUS_OFF of the sub state machine
CANSM_BSM_S_FULLCOM (ref. to Figure 7-6) shall call at 2nd place for the
corresponding CAN network the API ComM_BusSM_ModeIndication with the
parameters Channel := CanSMComMNetworkHandleRef (ref. to
CANSM161_Conf) and ComMode := COMM_SILENT_COMMUNICATION.⌋()

[CANSM522] ⌈The effect E_BUS_OFF of the sub state machine
CANSM_BSM_S_FULLCOM (ref. to Figure 7-6) shall invocate
Dem_ReportErrorStatus (ref. to chapter 8.6.1) with the parameters EventId :=

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

55 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

CANSM_E_BUS_OFF (ref. to CANSM070_Conf) and EventStatus :=

DEM_EVENT_STATUS_PRE_FAILED.⌋(BSW00422)

7.2.16.8 State operation to do in: S_RESTART_CC

[CANSM509] ⌈As long the sub state machine CANSM_BSM_S_FULLCOM (ref. to
Figure 7-6) is in the state S_RESTART_CC, the CanSM module shall operate the do
action DO_SET_CC_MODE_STARTED and therefore repeat for all configured CAN
controllers of the CAN network (ref. to CANSM141_Conf) the API request
CanIf_SetControllerMode (ref. to chapter 8.6.1) with ControllerMode equal
to CANIF_CS_STARTED.⌋()

7.2.16.9 Guarding condition: G_RESTART_CC_OK

[CANSM510] ⌈The guarding condition G_RESTART_CC_OK of the sub state machine
CANSM_BSM_S_FULLCOM (ref. to Figure 7-6) shall be passed, if all API calls of
CANSM509 have returned E_OK.⌋()

7.2.16.10 Trigger: T_RESTART_CC_INDICATED

[CANSM511] ⌈If CanSM module has got all mode indications (ref. to CANSM396) for
the configured CAN controllers of the CAN network (ref. to CANSM141_Conf) after
the respective requests to start the CAN controllers of the CAN network (ref. to
CANSM509), this shall trigger the sub state CANSM_BSM_S_FULLCOM (ref. to Figure
7-6) of the CAN network with T_RESTART_CC_INDICATED.⌋()

7.2.16.11 Trigger: T_RESTART_CC_TIMEOUT

[CANSM512] ⌈After a timeout of CANSM_MODEREQ_REPEAT_TIME (ref. to
CANSM336_Conf) for all supposed controller started mode indications (ref. to
CANSM511), this condition shall trigger the sub state machine
CANSM_BSM_S_FULLCOM (ref. to Figure 7-6) of the respective network with
T_RESTART_CC_TIMEOUT.⌋()

7.2.16.12 Effect: E_TX_OFF

[CANSM513] ⌈The effect E_TX_OFF of the sub state machine
CANSM_BSM_S_FULLCOM (ref. to Figure 7-6) shall call for the configured CAN
controllers of the CAN network (ref. to CANSM141_Conf) the API function
CanIf_SetPduMode (ref. to chapter 8.6.1) with the parameters ControllerId :=
CanSMControllerId (ref. to CANSM141_Conf) and PduModeRequest :=
CANIF_SET_TX_OFFLINE.⌋()

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

56 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

7.2.16.13 Guarding condition: G_TX_ON

[CANSM514] ⌈The guarding condition G_TX_ON of the sub state machine
CANSM_BSM_S_FULLCOM (ref. to Figure 7-6) shall be passed after a time duration of
CanSMBorTimeL1 (ref. to CANSM128_Conf), if the count of bus-off recovery retries
with E_BUS_OFF without passing the guarding condition G_BUS_OFF_PASSIVE is
lower than CanSMBorCounterL1ToL2 (ref. to CANSM131_Conf).⌋()

[CANSM515] ⌈The guarding condition G_TX_ON of the sub state machine
CANSM_BSM_S_FULLCOM (ref. to Figure 7-6) shall be passed after a time duration of
CanSMBorTimeL2 (ref. to CANSM129_Conf), if the count of bus-off recovery retries
with E_BUS_OFF without passing the guarding condition G_BUS_OFF_PASSIVE is
greater than or equal to CanSMBorCounterL1ToL2 (ref. to CANSM131_Conf).⌋()

7.2.16.14 Effect: E_TX_ON

[CANSM516] ⌈The effect E_TX_ON of the sub state machine
CANSM_BSM_S_FULLCOM (ref. to Figure 7-6) shall call at 1st place for the configured
CAN controllers of the CAN network (ref. to CANSM141_Conf) the API function
CanIf_SetPduMode (ref. to chapter 8.6.1) with the parameters ControllerId :=
CanSMControllerId (ref. to CANSM141_Conf) and PduModeRequest :=
CANIF_SET_ONLINE.⌋()

[CANSM517] ⌈The effect E_TX_ON of the sub state machine
CANSM_BSM_S_FULLCOM (ref. to Figure 7-6) shall call at 2nd place for the
corresponding CAN network the API BswM_CanSM_CurrentState with the
parameters Network := CanSMComMNetworkHandleRef and CurrentState
:= CANSM_BSWM_FULL_COMMUNICATION.⌋()

[CANSM518] ⌈The effect E_TX_ON of the sub state machine
CANSM_BSM_S_FULLCOM (ref. to Figure 7-6) shall call at 3rd place the API
ComM_BusSM_ModeIndication with the parameters Channel :=
CanSMComMNetworkHandleRef (ref. to CANSM161_Conf) and ComMode :=

COMM_FULL_COMMUNICATION.⌋()

7.2.16.15 Trigger: T_REPEAT_MAX

[CANSM523] ⌈If the sub state machine CANSM_BSM_S_FULLCOM (ref. to Figure 7-6)
has repeated the CanIf API to restart the CAN controller(s) of the CAN network (ref.
to CANSM509) more often than configured (ref. to CANSM335_Conf) without getting
the return value E_OK and without getting the supposed mode indication (ref. to
CANSM511), this shall trigger the sub state machine CANSM_BSM_S_FULLCOM with
T_REPEAT_MAX.⌋()

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

57 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

7.2.17 Sub state machine to operate a requested baud rate change

CANSM_BSM_S_CHANGE_BAUDRATE

EntryPoint

ExitPoint
NO_COM

ExitPoint
FULL_OR_SILENT_COM

CANSM_BSM_S_CHANGE_BAUDRATE_PROCEED

S_CC_STOPPED

+ do / DO_SET_CC_MODE_STOPPED

S_CC_STOPPED_WAIT

S_CC_STARTED

+ do / DO_SET_CC_MODE_STARTED

S_CC_STARTED_WAIT

T_REPEAT_MAX

[G_CC_STOPPED_E_OK]

T_CC_STOPPED_INDICATED
/E_CHANGE_BAUDRATE

T_CC_STOPPED_INDICATED
/E_CHANGE_BAUDRATE

T_CC_STOPPED_TIMEOUT

[G_CC_STARTED_E_OK]

T_CC_STARTED_INDICATED

T_CC_STARTED_INDICATED
[G_NO_COM_MODE_REQUESTED]

T_CC_STARTED_TIMEOUT

T_CC_STARTED_INDICATED
[G_NO_COM_MODE_NOT_REQUESTED]

Figure 7-7: CANSM_BSM_S_CHANGE_BAUDRATE, sub state machine of CANSM_BSM

7.2.17.1 State operation to do in: S_CC_STOPPED

[CANSM524] ⌈As long the sub state machine CANSM_BSM_S_CHANGE_BAUDRATE
(ref. to Figure 7-7) is in the state S_CC_STOPPED, the CanSM module shall operate
the do action DO_SET_CC_MODE_STOPPED and therefore repeat for all configured
CAN controllers of the CAN network (ref. to CANSM141_Conf) the API request

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

58 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

CanIf_SetControllerMode (ref. to chapter 8.6.1) with ControllerMode equal
to CANIF_CS_STOPPED.⌋()

7.2.17.2 Guarding condition: G_CC_STOPPED_OK

[CANSM525] ⌈The guarding condition G_CC_STOPPED_OK of the sub state machine
CANSM_BSM_S_CHANGE_BAUDRATE (ref. to Figure 7-7) shall be passed, if all API
calls of CANSM524 have returned E_OK.⌋()

7.2.17.3 Trigger: T_CC_STOPPED_INDICATED

[CANSM526] ⌈If CanSM module has got all mode indications (ref. to CANSM396) for
the configured CAN controllers of the CAN network (ref. to CANSM141_Conf) after
the respective requests to stop the CAN controllers of the CAN network (ref. to
CANSM524), this shall trigger the sub state machine
CANSM_BSM_S_CHANGE_BAUDRATE (ref. to Figure 7-7) of the CAN network with
T_CC_STOPPED_INDICATED.⌋()

7.2.17.4 Trigger: T_CC_STOPPED_TIMEOUT

[CANSM527] ⌈After a timeout of CANSM_MODEREQ_REPEAT_TIME (ref. to
CANSM336_Conf) for all supposed controller stopped mode indications (ref. to
CANSM526), this condition shall trigger the sub state machine
CANSM_BSM_S_CHANGE_BAUDRATE (ref. to Figure 7-7) of the respective network
with T_CC_STOPPED_TIMEOUT.⌋()

7.2.17.5 Effect: E_CHANGE_BAUDRATE

[CANSM529] ⌈The effect E_CHANGE_BAUDRATE of the sub state machine
CANSM_BSM_S_CHANGE_BAUDRATE (ref. to Figure 7-7) shall call at 1st place for the
corresponding CAN network the API ComM_BusSM_ModeIndication with the
parameters Channel := CanSMComMNetworkHandleRef (ref. to
CANSM161_Conf) and ComMode := COMM_NO_COMMUNICATION.⌋()

[CANSM531] ⌈The effect E_CHANGE_BAUDRATE of the sub state machine
CANSM_BSM_S_CHANGE_BAUDRATE (ref. to Figure 7-7) shall call at 2nd place for all
configured CAN controllers of the CAN network (ref. to CANSM141_Conf) the API
request CanIf_ChangeBaudrate (ref. to chapter 8.6.2) with the respective
ControllerId parameter and shall use as baudrate parameter the checked and
remembered baud rate (ref. to CANSM572 and CANSM503).⌋()

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

59 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

7.2.17.6 State operation to do in: S_CC_STARTED

[CANSM532] ⌈As long the sub state machine CANSM_BSM_S_CHANGE_BAUDRATE
(ref. to Figure 7-7) is in the state S_CC_STARTED, the CanSM module shall operate
the do action DO_SET_CC_MODE_STARTED and therefore repeat for all configured
CAN controllers of the CAN network (ref. to CANSM141_Conf) the API request
CanIf_SetControllerMode (ref. to chapter 8.6.1) with ControllerMode equal
to CANIF_CS_STARTED.⌋()

7.2.17.7 Guarding condition: G_CC_STARTED_OK

[CANSM533] ⌈The guarding condition G_CC_STARTED_OK of the sub state machine
CANSM_BSM_S_CHANGE_BAUDRATE (ref. to Figure 7-7) shall be passed, if all API
calls of CANSM532 have returned E_OK.⌋()

7.2.17.8 Trigger: T_CC_STARTED_INDICATED

[CANSM534] ⌈If CanSM module has got all mode indications (ref. to CANSM396) for
the configured CAN controllers of the CAN network (ref. to CANSM141_Conf) after
the respective requests to start the CAN controllers of the CAN network (ref. to
CANSM532), this shall trigger the sub state machine
CANSM_BSM_S_CHANGE_BAUDRATE (ref. to Figure 7-7) of the CAN network with
T_CC_STARTED_INDICATED.⌋()

7.2.17.9 Trigger: T_CC_STARTED_TIMEOUT

[CANSM535] ⌈After a timeout of CANSM_MODEREQ_REPEAT_TIME (ref. to
CANSM336_Conf) for all supposed controller started mode indications (ref.
toCANSM534), this condition shall trigger the sub state machine
CANSM_BSM_S_CHANGE_BAUDRATE (ref. to Figure 7-7) of the respective network
with T_CC_STARTED_TIMEOUT.⌋()

7.2.17.10 Trigger: T_REPEAT_MAX

[CANSM536] ⌈If the sub state machine CANSM_BSM_S_CHANGE_BAUDRATE (ref. to
Figure 7-7) has repeated the referenced CanIf APIs (ref. to CANSM524, CANSM532)
for the CAN controllers of the corresponding CAN network more often than
configured (ref. to CANSM335_Conf) without getting the return value E_OK and
without getting the supposed mode indications (ref. to CANSM526, CANSM534), this
shall trigger the sub state machine CANSM_BSM_S_CHANGE_BAUDRATE with
T_REPEAT_MAX.⌋()

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

60 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

7.2.17.11 Guarding condition: G_NO_COM_MODE_REQUESTED

[CANSM542] ⌈The sub state machine CANSM_BSM_S_CHANGE_BAUDRATE (ref. to
Figure 7-7) shall pass the guarding condition G_NO_COM_MODE_REQUESTED, if the
latest accepted communication mode request with CanSM_RequestComMode (ref. to
CANSM062) for the respective network handle of the state machine has been with
the parameter ComM_Mode equal to COMM_NO_COMMUNICATION.⌋()

7.2.17.12 Guarding condition: G_NO_COM_MODE_NOT_REQUESTED

[CANSM543] ⌈The sub state machine CANSM_BSM_S_CHANGE_BAUDRATE (ref. to
Figure 7-7) shall pass the guarding condition G_NO_COM_MODE_NOT_REQUESTED, if
the latest accepted communication mode request with CanSM_RequestComMode
(ref. to CANSM062) for the respective network handle of the state machine has been
with the parameter ComM_Mode equal to COMM_SILENT_COMMUNICATION or
COMM_FULL_COMMUNICATION.⌋()

7.3 Error classification

This chapter lists and classifies all errors that can be detected by this software
module. Each error is classified to relevance (development / production) and the
related error code (unique label for the error). For development errors this table also
specifies the unique values, which correspond to the error codes.
Values for production code Event Ids are assigned externally by the configuration of
the DEM. They are published in the file Dem_IntErrId.h and included via Dem.h.

[CANSM069] ⌈Development error values shall be of type uint8.⌋()

Type or error Relevance Related error code Value
[hex]

API service used without
module initialization

Development CANSM_E_UNINIT 0x01

API service called with
wrong pointer

Development CANSM_E_PARAM_POINTER 0x02

API service called with
wrong parameter

Development CANSM_E_INVALID_NETWORK_HANDLE 0x03

API service called with
wrong parameter

Development CANSM_E_PARAM_CONTROLLER 0x04

API service called with
wrong parameter

Development CANSM_E_PARAM_TRANSCEIVER 0x05

Network mode request
during not finished bus-
off recovery

Development CANSM_E_BUSOFF_RECOVERY_ACTIVE 0x06

Network mode request
during pending indication

Development CANSM_E_WAIT_MODE_INDICATION 0x07

Invalid communication
mode request

Development CANSM_E_INVALID_COMM_REQUEST 0x08

Invalid BaudrateConfig
for at least one of the
CAN Controllers of the

Development CANSM_E_PARAM_INVALID_BAUDRATE 0x09

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

61 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

requested CAN Network
Mode request for a
network failed more often
as allowed by
configuration

Development CANSM_E_MODE_REQUEST_TIMEOUT 0x0A

The bus-off recovery
state machine of a CAN
network has detected a
certain amount of
sequential bus-offs
without successful
recovery

Production CANSM_E_BUS_OFF (ref. to
CANSM070_Conf)

Assigned
by DEM

7.4 Error detection

[CANSM363] ⌈The detection of development errors shall be configurable as ON /

OFF.⌋()

[CANSM364] ⌈The detection of development errors shall be configurable at pre-

compile time.⌋()

[CANSM365] ⌈The switch CanSMDevErrorDetect (ref. to CANSM133_Conf) shall

activate or deactivate the detection of all development errors.⌋()

[CANSM071] ⌈If the CanSMDevErrorDetect switch is enabled, the API parameter
checking shall be enabled. The detailed description of the detected errors can be
found in chapter 7.3 and chapter 8.⌋(BSW00323, BSW00386)

[CANSM072] ⌈The detection of production code errors cannot be switched off.⌋()

Remark: Refer to CANSM498, CANSM522 for the detailed description of the
production errors “bus-off” and “mode request timeout”.

7.5 Error notification

[CANSM028] ⌈Detected development errors shall be reported to the
Det_ReportError service of the Development Error Tracer (DET) if the pre-
processor switch CanSMDevErrorDetect is set “on” (see chapter
10).⌋(BSW00338, BSW00386)

[CANSM074]⌈ Production errors shall be reported to the Diagnostic Event

Manager.⌋(BSW00339)

Remark: For the configuration of the DEM module it has to be considered, that the
bus-off events and CAN-controller-timeout events are already debounced by the
CanSM module itself internally. The detailed description for the event status
determination of those production errors can be found in to CANSM498, CANSM520,
CANSM522.

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

62 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

7.6 Interface for AUTOSAR debug and trace

The following requirements shall be considered to export debug information from the
CanSM module :

[CANSM310] ⌈The CanSM module shall define every variable as global, which is

designated to be accessed by AUTOSAR debugging.⌋()

Rationale: Make debug information visible

[CANSM309] ⌈The type definitions of the debug-able variables of the CanSM module

shall be exported by the standard module header file CanSM.h.⌋()

Rationale: To allow the debugging tool chain to calculate the size of elements by C-
“sizeof” and to (optionally) decode the structure elements.

7.7 Non-functional design rules

The CanSM shall cover the software module design requirements of the SRS
General [3].

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

63 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

8 API specification

8.1 Imported types

In this chapter all types included from the following files are listed:

[CANSM243]
Module Imported Type
CanIf CanIf_ControllerModeType

CanIf_NotifStatusType
CanIf_PduSetModeType

Can_GeneralTypes CanTrcv_TrcvModeType
ComM ComM_ModeType
ComStack_Types NetworkHandleType
Dem Dem_EventIdType

Dem_EventStatusType
Std_Types Std_ReturnType

Std_VersionInfoType

8.2 Type definitions

The following tables contain the type definitions of the CanSM module.

8.2.1 CanSM_StateType

Name: CanSM_StateType
Type: Enumeration
Range: CANSM_INITED -- CANSM_UNINITED -- Description: Defines the values of the internal states of the CanSM module

8.2.2 CanSM_ConfigType

Name: CanSM_ConfigType
Type: Structure
Range: -- --
Element: CanSM -- --
Description: This type defines a data structure for the post build parameters of the CanSM. At

initialization the CanSM gets a pointer to a structure of this type to get access to its
configuration data, which is necessary for initialization.

8.2.3 CanSM_BswMCurrentStateType

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

64 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

Name: CanSM_BswMCurrentStateType
Type: Enumeration
Range: CANSM_BSWM_NO_COMMUNICATION -- CANSM_BSWM_SILENT_COMMUNICATION -- CANSM_BSWM_FULL_COMMUNICATION -- CANSM_BSWM_BUS_OFF -- CANSM_BSWM_CHANGE_BAUDRATE -- Description: Can specific communication modes / states notified to the BswM module

8.3 Function definitions

The following sections specify the provided API functions of the CanSM module.

8.3.1 CanSM_Init

[CANSM023] ⌈
Service name: CanSM_Init
Syntax: void CanSM_Init(

 const CanSM_ConfigType* ConfigPtr
)

Service ID[hex]: 0x00
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Parameters (in): ConfigPtr Pointer to init structure for the post build parameters of the CanSM
Parameters
(inout):

None

Parameters (out): None
Return value: None
Description: This service initializes the CanSM module

⌋(BSW0405, BSW101, BSW00406, BSW00358, BSW00414, BSW00405,
BSW00404)

[CANSM179] ⌈Only for configuration variant 3: The function CanSM_Init shall
report the development error CANSM_E_PARAM_POINTER to the DET, if the user of
this function hands over a NULL-pointer as ConfigPtr.⌋(BSW00406)

8.3.2 CanSM_GetVersionInfo

[CANSM024] ⌈

Service name: CanSM_GetVersionInfo
Syntax: void CanSM_GetVersionInfo(

 Std_VersionInfoType* VersionInfo
)

Service ID[hex]: 0x01
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): None
Parameters None

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

65 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

(inout):
Parameters (out): VersionInfo Pointer to where to store the version information of this module.
Return value: None
Description: This service puts out the version information of this module (module ID, vendor ID,

vendor specific version numbers related to BSW00407)

⌋(BSW00407, BSW003)

[CANSM366] ⌈If the source code for caller and callee of CanSM_GetVersionInfo
is available this function should be realized as a macro. The macro should be defined
in the header file CanSM.h.⌋()

[CANSM244] ⌈The function CanSM_GetVersionInfo shall return the version
information of this module. The version information includes:

• Module Id
• Vendor Id
• Vendor specific version numbers (BSW00407).⌋()

[CANSM367] ⌈The function CanSM_GetVersionInfo shall be configurable On/Off
by the configuration parameter: CANSM_VERSION_INFO_API (ref. to
CANSM311_Conf).⌋()

[CANSM368] ⌈The function CanSM_GetVersionInfo shall be pre compile time
configurable by the configuration parameter: CANSM_VERSION_INFO_API (ref. to
CANSM311_Conf).⌋()

[CANSM374] ⌈The function CanSM_GetVersionInfo shall report the development
error CANSM_E_PARAM_POINTER to the DET, if the user of this function hands over a
NULL-pointer as VersionInfo.⌋()

8.3.3 CanSM_RequestComMode

[CANSM062] ⌈

Service name: CanSM_RequestComMode
Syntax: Std_ReturnType CanSM_RequestComMode(

 NetworkHandleType network,
 ComM_ModeType ComM_Mode
)

Service ID[hex]: 0x02
Sync/Async: Asynchronous
Reentrancy: Reentrant (only for different network handles)

Parameters (in): network Handle of destined communication network for request
ComM_Mode Requested communication mode

Parameters None

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

66 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

(inout):
Parameters (out): None

Return value: Std_ReturnType E_OK: Service accepted
E_NOT_OK: Service denied

Description: This service shall change the communication mode of a CAN network to the
requested one.

⌋(BSW01142, BSW09080, BSW09081, BSW09083)

Remark: Please refer to [10] for a detailed description of the communication modes.

[CANSM369] ⌈The function CanSM_RequestComMode shall accept its request, if the
NetworkHandle parameter of the request is a handle contained in the configuration
of the CanSM module (ref. to CANSM161_Conf).⌋()

[CANSM370] ⌈The function CanSM_RequestComMode shall deny its request, if the
NetworkHandle parameter of the request is not a handle contained in the
configuration of the CanSM module (ref. to CANSM161_Conf).⌋()

[CANSM555] ⌈The CanSM module shall deny the API request
CanSM_RequestComMode, if the initial transition for the requested CAN network is
not finished yet after the CanSM_Init request (ref. to CANSM423, CANSM430).⌋()

[CANSM183] ⌈The function CanSM_RequestComMode shall call the function
Det_ReportError with ErrorId parameter
CANSM_E_INVALID_NETWORK_HANDLE, if it does not accept the network handle of
the request.⌋()

[CANSM402] ⌈The function CanSM_RequestComMode shall deny its request, if the
current network mode is COMM_NO_COMMUNICATION and the user of this function
requests COMM_SILENT_COMMUNICATION.⌋()

Rationale: The only use case for silent communication is to prepare bus sleep on
CAN. Therefore a transition from no communication to silent communication is
invalid.

[CANSM403] ⌈If the function CanSM_RequestComMode denies its request, because
of an invalid requested transistion, it shall invocate the function Det_ReportError
with ErrorId parameter CANSM_E_INVALID_COMM_REQUEST.⌋()

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

67 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

[CANSM182] ⌈If the function CanSM_RequestComMode accepts the request, the
request shall be considered by the CanSM state machine (ref. to CANSM427,
CANSM429, CANSM499, CANSM542 and CANSM543).⌋()

[CANSM184] ⌈If the CanSM module is not initialized, when the function
CanSM_RequestComMode is called, then this function shall call the function
Det_ReportError with ErrorId parameter CANSM_E_UNINIT.⌋()

[CANSM395] ⌈If the CanSM module has to deny the request
CanSM_RequestComMode, because of a pending mode indication (ref. to
CANSM388), then this function shall call the function Det_ReportError with the
ErrorId parameter CANSM_E_WAIT_MODE_INDICATION (ref. to chapter 7.3).⌋()

8.3.4 CanSM_GetCurrentComMode

[CANSM063] ⌈
Service name: CanSM_GetCurrentComMode
Syntax: Std_ReturnType CanSM_GetCurrentComMode(

 NetworkHandleType network,
 ComM_ModeType* ComM_ModePtr
)

Service ID[hex]: 0x03
Sync/Async: Synchronous
Reentrancy: Reentrant

Parameters (in): network Network handle, whose current communication mode shall be put
out

Parameters
(inout):

None

Parameters (out): ComM_ModePtr Pointer, where to put out the current communication mode

Return value: Std_ReturnType E_OK: Service accepted
E_NOT_OK: Service denied

Description: This service shall put out the current communication mode of a CAN network.

⌋(BSW01142, BSW09080, BSW09084)

[CANSM282] ⌈The CanSM module shall return E_NOT_OK for the API request
CanSM_GetCurrentComMode, if the initial transition for the requested CAN network
with E_NOCOM (ref. to CANSM430) is not finished yet.⌋()

[CANSM371] ⌈The function CanSM_GetCurrentComMode shall accept its request,
if the NetworkHandle parameter of the request is a handle contained in the
configuration of the CanSM module (ref. to CANSM161_Conf).⌋()

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

68 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

[CANSM372] ⌈The function CanSM_GetCurrentComMode shall deny its request, if
the NetworkHandle parameter of the request is not a handle contained in the
configuration of the CanSM module (ref. to CANSM161_Conf).⌋()

[CANSM187] ⌈The function CanSM_GetCurrentComMode shall call the function
Det_ReportError with ErrorId parameter
CANSM_E_INVALID_NETWORK_HANDLE, if it does not accept the network handle of
the request.⌋()

[CANSM186] ⌈The function CanSM_GetCurrentComMode shall put out the current
communication mode for the network handle (ref. to CANSM266) to the designated
pointer of type ComM_ModeType, if it accepts the request.⌋()

[CANSM188] ⌈If the CanSM module is not initialized, when the function
CanSM_GetCurrentComMode is called, then this function shall call the function
Det_ReportError with ErrorId parameter CANSM_E_UNINIT.⌋()

[CANSM360] ⌈The function CanSM_GetCurrentComMode shall report the
development error CANSM_E_PARAM_POINTER to the DET, if the user of this function
hands over a NULL-pointer as ComM_ModePtr.⌋()

8.3.5 CanSM_CheckBaudrate

[CANSM501] ⌈

Service name: CanSM_CheckBaudrate
Syntax: Std_ReturnType CanSM_CheckBaudrate(

 NetworkHandleType network,
 const uint16 Baudrate
)

Service ID[hex]: 0x0c
Sync/Async: Synchronous
Reentrancy: Reentrant

Parameters (in):
network Handle of the addressed CAN network to check if a baudrate

is supported
Baudrate Baudrate to check in kbps

Parameters
(inout):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: Baudrate supported by all configured CAN controllers

of the network
E_NOT_OK: Baudrate not supported / invalid network

Description: This service shall check, if a certain baudrate is supported by the configured CAN
controllers of a certain CAN network.

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

69 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

⌋()

CANSM564: ⌈The CanSM module shall provide the API function
CanSM_CheckBaudrate, if the CanSmChangeBaudrateApi parameter (ref. to
CANSM342_Conf) is configured with the value TRUE. ⌋()

CANSM565: ⌈The CanSM module shall not provide the API function
CanSM_CheckBaudrate, if the CanSmChangeBaudrateApi parameter (ref. to
CANSM342_Conf) is configured with the value FALSE. ⌋()

[CANSM562] ⌈The CanSM module shall deny the CanSM_CheckBaudrate API
request, if the NetworkHandle parameter does not match to the configured Network
handles of the CanSM module (ref. to CANSM161_Conf).⌋()

[CANSM571] ⌈The function CanSM_CheckBaudrate shall call the function
Det_ReportError with ErrorId parameter
CANSM_E_INVALID_NETWORK_HANDLE (ref. to chapter 7.3), if it does not accept
the network handle of the request.⌋()

[CANSM563] ⌈If the NetworkHandle parameter in the CanSM_CheckBaudrate

request matches to one of the configured Network handles (ref. to CANSM161_Conf)
and the requested baud rate is supported (ref. to CANSM567), then the function shall
return E_OK. ⌋()

[CANSM566] ⌈If the NetworkHandle parameter in the CanSM_CheckBaudrate

request matches to one of the configured Network handles (ref. to CANSM161_Conf)
and the requested baud rate is not supported (ref. to CANSM568), then the function
shall return E_NOT_OK. ⌋()

8.3.6 CanSM_ChangeBaudrate

[CANSM561] ⌈
Service name: CanSM_ChangeBaudrate
Syntax: Std_ReturnType CanSM_ChangeBaudrate(NetworkHandleType

network, const uint16 Baudrate)

Service ID[hex]: 0x0e
Sync/Async: Asynchronous
Reentrancy: Reentrant
Parameters (in): network Handle of the addressed CAN network for the baudrate change

 Baudrate Requested Baudrate in kbps

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

70 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

Parameters
(inout):

None

Parameters (out): None

Return value: Std_ReturnType E_OK: Service request accepted
E_NOT_OK: Service request not accepted

Description: This service shall start an asynchronous process to change the baudrate for
the configured CAN controllers of a certain CAN network

[CANSM569] ⌈The CanSM module shall provide the API function
CanSM_ChangeBaudrate, if the CanSmChangeBaudrateApi parameter (ref. to
CANSM342_Conf) is configured with the value TRUE. ⌋()

[CANSM570] The CanSM module shall not provide the API function
CanSM_ChangeBaudrate, if the CanSmChangeBaudrateApi parameter (ref. to
CANSM342_Conf) is configured with the value FALSE. ⌋()

[CANSM502] ⌈The CanSM module shall deny the CanSM_ChangeBaudrate API
request, if the NetworkHandle parameter does not match to the configured Network
handles of the CanSM module (ref. to CANSM161_Conf).⌋()

[CANSM504] ⌈The function CanSM_ChangeBaudrate shall call the function
Det_ReportError with ErrorId parameter
CANSM_E_INVALID_NETWORK_HANDLE (ref. to chapter 7.3), if it does not accept
the network handle of the request.⌋()

[CANSM505] ⌈The function CanSM_ChangeBaudrate shall deny its request, if the
requested CAN network is not in the communication mode
COMM_FULL_COMMUNICATION.⌋()

[CANSM530] ⌈The CanSM module shall deny the CanSM_ChangeBaudrate API

request, if the CanSM module is not initialized.⌋()

[CANSM506] ⌈If the function CanSM_ChangeBaudrate is called and the CanSM
module is not initialized, then this function shall call the function Det_ReportError
with ErrorId parameter CANSM_E_UNINIT (ref. to chapter 7.3).⌋()

[CANSM573] ⌈If the requested baud rate is not equal to the remembered baud rate of
the last CanSM_CheckBaudrate call (ref. to CANSM572) for the corresponding
CAN network or if the remembered result of the last CanSM_CheckBaudrate call for

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

71 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

the corresponding CAN network has been E_NOT_OK, then the
CanSM_ChangeBaudrate call shall return E_NOT_OK. ⌋()

[CANSM574] ⌈If the requested baud rate is not equal to the remembered baud rate of
the last CanSM_CheckBaudrate call (ref. to CANSM572) for the corresponding
CAN network or if the remembered result of the last CanSM_CheckBaudrate call for
the corresponding CAN network has been E_NOT_OK, then the
CanSM_ChangeBaudrate call the function Det_ReportError with ErrorId
parameter CANSM_E_PARAM_INVALID_BAUDRATE (ref. to chapter 7.3). ⌋()

[CANSM503] ⌈If no condition is present to deny the CanSM_ChangeBaudrate
request according to CANSM502, CANSM505, CANSM530 and CANSM573, then
the CanSM module shall return E_OK and start the asynchronous process to change
the baud rate of the CAN network’s CAN Controllers to the checked and requested
baud rate (ref. to CANSM507).⌋()

8.4 Call-back notifications

This is a list of functions provided for other modules. The function prototypes of the
callback functions shall be provided in the file CanSM_Cbk.h

8.4.1 CanSM_ControllerBusOff

[CANSM064] ⌈

Service name: CanSM_ControllerBusOff
Syntax: void CanSM_ControllerBusOff(

 uint8 ControllerId
)

Service ID[hex]: 0x04
Sync/Async: Synchronous
Reentrancy: Reentrant (only for different CanControllers)
Parameters (in): ControllerId CAN controller, which detected a bus-off event
Parameters
(inout):

None

Parameters (out): None
Return value: None
Description: This callback function notifies the CanSM about a bus-off event on a certain CAN

controller, which needs to be considered with the specified bus-off recovery
handling for the impacted CAN network.

⌋(BSW00359, BSW00333, BSW01146)

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

72 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

[CANSM189] ⌈If the function CanSM_ControllerBusOff gets a Controller,
which is not configured as CanSMControllerId in the configuration of the CanSM
module, it shall call the function Det_ReportError with ErrorId parameter
CANSM_E_PARAM_CONTROLLER.⌋()

[CANSM190] ⌈If the CanSM module is not initialized, when the function
CanSM_ControllerBusOff is called, then the function
CanSM_ControllerBusOff shall call the function Det_ReportError with
ErrorId parameter CANSM_E_UNINIT.⌋()

[CANSM377] ⌈If the CanSM module has to deny the request
CanSM_RequestComMode, because of a not finished bus-off recovery (ref. to
CANSM375 and CANSM376), then this function shall call the function
Det_ReportError with the ErrorId parameter
CANSM_E_BUSOFF_RECOVERY_ACTIVE (ref. to chapter 7.3).⌋()

[CANSM235] ⌈If the CanSM module is initialized and the input parameter
Controller is one of the CAN controllers configured with the parameter
CanSMControllerId, this bus-off event shall be considered by the CAN Network
state machine (ref. to CANSM500).⌋()

Additional remarks:
1.) The call context is either on interrupt level (interrupt mode) or on task level
(polling mode).
2.) Reentrancy is necessary for multiple CAN controller usage.

8.4.2 CanSM_ControllerModeIndication

[CANSM396] ⌈

Service name: CanSM_ControllerModeIndication
Syntax: void CanSM_ControllerModeIndication(

 uint8 ControllerId,
 CanIf_ControllerModeType ControllerMode
)

Service ID[hex]: 0x07
Sync/Async: Synchronous
Reentrancy: Reentrant (only for different CAN controllers)

Parameters (in): ControllerId CAN controller, whose mode has changed
ControllerMode Notified CAN controller mode

Parameters
(inout):

None

Parameters (out): None
Return value: None
Description: This callback shall notify the CanSM module about a CAN controller mode

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

73 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

change.

⌋()

[CANSM397] ⌈If the function CanSM_ControllerModeIndication gets a
ControllerId, which is not configured as CanSMControllerId in the
configuration of the CanSM module, it shall call the function Det_ReportError with
ErrorId parameter CANSM_E_PARAM_CONTROLLER.⌋()

[CANSM398] ⌈If the CanSM module is not initialized, when the function
CanSM_ControllerModeIndication is called, then the function
CanSM_ControllerModeIndication shall call the function Det_ReportError
with ErrorId parameter CANSM_E_UNINIT.⌋()

8.4.3 CanSM_TransceiverModeIndication

[CANSM399] ⌈

Service name: CanSM_TransceiverModeIndication
Syntax: void CanSM_TransceiverModeIndication(

 uint8 TransceiverId,
 CanTrcv_TrcvModeType TransceiverMode
)

Service ID[hex]: 0x09
Sync/Async: Synchronous
Reentrancy: Reentrant for different CAN Transceivers

Parameters (in): TransceiverId CAN transceiver, whose mode has changed
TransceiverMode Notified CAN transceiver mode

Parameters
(inout):

None

Parameters (out): None
Return value: None
Description: This callback shall notify the CanSM module about a CAN transceiver mode

change.

⌋()

[CANSM400] ⌈If the function CanSM_TransceiverModeIndication gets a
TransceiverId, which is not configured as CanSMTransceiverId in the
configuration of the CanSM module, it shall call the function Det_ReportError with
ErrorId parameter CANSM_E_PARAM_TRANSCEIVER.⌋()

[CANSM401] ⌈If the CanSM module is not initialized, when the function
CanSM_TransceiverModeIndication is called, then the function
CanSM_TransceiverModeIndication shall call the function Det_ReportError
with ErrorId parameter CANSM_E_UNINIT.⌋()

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

74 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

8.4.4 CanSM_TxTimeoutException

[CANSM410] ⌈

Service name: CanSM_TxTimeoutException
Syntax: void CanSM_TxTimeoutException(

 NetworkHandleType Channel
)

Service ID[hex]: 0x0b
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): Channel Affected CAN network
Parameters
(inout):

None

Parameters (out): None
Return value: None
Description: This function shall notify the CanSM module, that the CanNm has detected for the

affected partial CAN network a tx timeout exception, which shall be recovered by
the CanSM module with a transition to no communication and back to the
requested communication mode again.

⌋()

[CANSM411] ⌈The function CanSM_TxTimeoutException shall report

CANSM_E_UNINIT to the DET, if the CanSM is not initialized yet.⌋()

[CANSM412] ⌈If the function CanSM_TxTimeoutException is referenced with a
Channel, which is not configured as CanSMNetworkHandle in the CanSM
configuration, it shall report CANSM_E_INVALID_NETWORK_HANDLE to the DET.⌋()

Remarks: Reentrancy is necessary for different Channels.

8.4.5 CanSM_ClearTrcvWufFlagIndication

[CANSM413] ⌈

Service name: CanSM_ClearTrcvWufFlagIndication
Syntax: void CanSM_ClearTrcvWufFlagIndication(

 uint8 Transceiver
)

Service ID[hex]: 0x08
Sync/Async: Synchronous
Reentrancy: Reentrant for different CAN Transceivers
Parameters (in): Transceiver Requested Transceiver
Parameters
(inout):

None

Parameters (out): None
Return value: None
Description: This callback function shall indicate the CanIf_ClearTrcvWufFlag API process end

for the notified CAN Transceiver.

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

75 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

⌋()

[CANSM414] ⌈The function CanSM_ClearTrcvWufFlagIndication shall report

CANSM_E_UNINIT to the DET, if the CanSM is not initialized yet.⌋()

[CANSM415] ⌈If the function CanSM_ClearTrcvWufFlagIndication gets a
TransceiverId, which is not configured (ref. to CANSM137_Conf) in the
configuration of the CanSM module, it shall call the function Det_ReportError with
ErrorId parameter CANSM_E_PARAM_TRANSCEIVER.⌋()

8.4.6 CanSM_CheckTransceiverWakeFlagIndication

[CANSM416] ⌈

Service name: CanSM_CheckTransceiverWakeFlagIndication
Syntax: void CanSM_CheckTransceiverWakeFlagIndication(

 uint8 Transceiver
)

Service ID[hex]: 0x0a
Sync/Async: Synchronous
Reentrancy: Reentrant for different CAN Transceivers
Parameters (in): Transceiver Requested Transceiver
Parameters
(inout):

None

Parameters (out): None
Return value: None
Description: This callback function indicates the CheckTransceiverWakeFlag API process end

for the notified CAN Transceiver.

⌋()

[CANSM417] ⌈The function CanSM_CheckTransceiverWakeFlagIndication
shall report CANSM_E_UNINIT to the DET, if the CanSM module is not initialized
yet.⌋()

[CANSM418] ⌈If the function CanSM_CheckTransceiverWakeFlagIndication
gets a TransceiverId, which is not configured (ref. to CANSM137_Conf) in the
configuration of the CanSM module, it shall call the function Det_ReportError with
ErrorId parameter CANSM_E_PARAM_TRANSCEIVER.⌋()

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

76 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

8.4.7 CanSM_ConfirmPnAvailability

[CANSM419] ⌈

Service name: CanSM_ConfirmPnAvailability
Syntax: void CanSM_ConfirmPnAvailability(

 uint8 TransceiverId
)

Service ID[hex]: 0x06
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): TransceiverId CAN transceiver, which was checked for PN availability
Parameters
(inout):

None

Parameters (out): None
Return value: None
Description: This callback function indicates that the transceiver is running in PN

communication mode.

⌋()

[CANSM546] ⌈The function CanSM_ConfirmPnAvailability shall notify the
CanNm module (ref. to CANSM422), if it is called with a configured Transceiver as
input parameter (ref. to CANSM137_Conf).⌋()

[CANSM420] ⌈
The function CanSM_ConfirmPnAvailability shall report CANSM_E_UNINIT to
the DET, if the CanSM module is not initialized yet.⌋()

[CANSM421] ⌈
If the function CanSM_ConfirmPnAvailability gets a TransceiverId, which
is not configured (ref. to CANSM137_Conf) in the configuration of the CanSM
module, it shall call the function Det_ReportError with ErrorId parameter
CANSM_E_PARAM_TRANSCEIVER.⌋()

8.5 Scheduled functions

These functions are directly called by Basic Software Scheduler. The following
functions shall have no return value and no parameter. All functions shall be non-
reentrant.

Terms and definitions:
Fixed cyclic: Fixed cyclic means that one cycle time is defined at configuration and
shall not be changed because functionality is requiring that fixed timing (e.g. filters).
Variable cyclic: Variable cyclic means that the cycle times are defined at
configuration, but might be mode dependent and therefore vary during runtime.
On pre condition: On pre condition means that no cycle time can be defined. The
function will be called when conditions are fulfilled. Alternatively, the function may be

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

77 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

called cyclically however the cycle time will be assigned dynamically during runtime
by other modules.

8.5.1 CanSM_MainFunction

[CANSM065] ⌈
Service name: CanSM_MainFunction
Syntax: void CanSM_MainFunction(

 void
)

Service ID[hex]: 0x05
Timing: FIXED_CYCLIC
Description: Scheduled function of the CanSM

⌋(BSW0424, BSW00425, BSW00376)

[CANSM167] ⌈The main function of the CanSM module shall operate the effects of
the CanSM state machine (ref. to chapter 7.2), which the CanSM module shall
implement for each configured CAN Network.⌋()

8.6 Expected Interfaces

In this chapter all interfaces required from other modules are listed.

8.6.1 Mandatory Interfaces

This chapter defines all interfaces, which are required to fulfill the core functionality of
the module.
API function Description
BswM_CanSM_CurrentState Function called by CanSM to indicate its current state.
CanIf_CheckTrcvWakeFlag Requests the CanIf module to check the Wake flag of the designated

CAN transceiver.
CanIf_ClearTrcvWufFlag Requests the CanIf module to clear the WUF flag of the designated

CAN transceiver.
CanIf_GetTxConfirmationState This service reports, if any TX confirmation has been done for the

whole CAN controller since the last CAN controller start.
CanIf_SetControllerMode This service calls the corresponding CAN Driver service for changing

of the CAN controller mode.
CanIf_SetPduMode This service sets the requested mode at the L-PDUs of a predefined

logical PDU channel.
CanIf_SetTrcvMode This service changes the operation mode of the tansceiver

TransceiverId, via calling the corresponding CAN Transceiver Driver
service.

CanNm_ConfirmPnAvailability Enables the PN filter functionality on the indicated NM channel.
Availability: The API is only available if CanNmPnEnabled is TRUE.

ComM_BusSM_ModeIndication Indication of the actual bus mode by the corresponding Bus State
Manager. ComM shall propagate the indicated state to the users with
means of the RTE and BswM.

Dem_ReportErrorStatus Queues the reported events from the BSW modules (API is only used
by BSW modules). The interface has an asynchronous behavior,

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

78 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

because the processing of the event is done within the Dem main
function.

8.6.2 Optional Interfaces

This chapter defines all interfaces, which are required to fulfill an optional
functionality of the module.
API function Description
CanIf_ChangeBaudrate This service shall change the baudrate of the CAN controller.
CanIf_CheckBaudrate This service shall check, if a certain CAN controller supports a

requested baudrate
Det_ReportError Service to report development errors.

8.6.3 Configurable Interfaces

In this chapter all interfaces are listed where the target functions could be configured.
The target function is usually a callback function. The names of these kind of
interfaces is not fixed because they are configurable.

There are no configurable interfaces for the CanSM module.

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

79 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

9 Sequence diagrams
All interactions of the CanSM module with the depending modules CanIf, ComM,
BswM, Dem and CanNm and Dcm are specified in the state machine diagrams (ref.
to Figure 7-1- Figure 7-7). Therefore the CanSM SWS provides only some exemplary
sequences for the use case to operate the DCM request to change the baud rate.
This also includes the sequences to start and to stop the CAN controller(s) of a CAN
network.

Remark: For the special use case of CAN network deinitialization with partial network
support please refer to chapter 9 of [9] (Specification of CAN Transceiver Driver).

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

80 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

9.1 Sequence for baud rate change request from the DCM module

«module»
Dcm::Dcm

«module»
BswM::BswM

«module»
ComM::ComM

«module»
CanSM::CanSM

«module»
CanIf::CanIf

«module»
Can::Can

loop CanSM_CheckBaudratesLoop

alt CanSM_ChangeBaudrateCases

[CanSM_CheckBaudrate returned E_OK for requested network and baudrate]

[Else]

loop CanSM_ChangeBaudrateLoop

[All configured CAN controllers of the CAN network]
ref

CanSm_StopCanController

ref
CanSm_StartCanController

CanSM_CheckBaudrate(Std_ReturnType, NetworkHandleType, const uint16)

CanIf_CheckBaudrate(Std_ReturnType, uint8, const uint16)

Can_CheckBaudrate(Std_ReturnType, uint8, const
uint16)

Can_CheckBaudrate := E_OK

CanIf_CheckBaudrate := E_OK

CanSM_CheckBaudrate := E_OK

CanSM_ChangeBaudrate(Std_ReturnType, NetworkHandleType, const uint16)

BswM_CanSM_CurrentState(NetworkHandleType, CanSM_BswMRequestedModeType)

E_OK

Asynchronous change baudrate process

ComM_BusSM_ModeIndication(NetworkHandleType, ComM_ModeType*)

CanIf_ChangeBaudrate(Std_ReturnType, uint8, const
uint16)

Can_ChangeBaudrate(Std_ReturnType, uint8, const uint16)

ComM_BusSM_ModeIndication(NetworkHandleType, ComM_ModeType*)

BswM_CanSM_CurrentState(NetworkHandleType, CanSM_BswMRequestedModeType)

CanSM_ChangeBaudrate(Std_ReturnType, NetworkHandleType, const uint16)

E_NOT_OK

figure 9-1: Sequence for baud rate change request from the DCM module

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

81 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

9.2 Sequence diagram CanSm_StartCanController

«module»
CanSM

«module»
CanIf

alt CanSm_StartCanControllerVariants

[CAN controller mode change performed synchronously]

[CAN controller mode change performed asynchronously]

loop CanSm_StartCanControllerLoop1

[Do for every configured CAN controller of the CAN network]

loop CanSm_StartCanControllerLoop2

[Do for every configured CAN controller of the CAN network]

loop CanSm_StartCanControllerLoop3

[Wait for CANIF_CS_STARTED indication for all CAN controllers of the CAN network]

Limitations: This sequence diagram
shows the main aspects of the
interaction between the CanSM and
the CanIf to start the CAN controllers
of a CAN Network. The error handling
for the case, that the CanIf API
returns E_NOT_OK or the CanSM
detects a CanIf indication timeout
are not considered here.

CanIf_SetControllerMode(return, ControllerId,
ControllerMode:=CANIF_CS_STARTED)

CanSM_ControllerModeIndication(ControllerId,
ControllerMode:=CANIF_CS_STARTED)

:E_OK

CanIf_SetControllerMode(Std_ReturnType,
uint8, CanIf_ControllerModeType)

:E_OK

CanSM_ControllerModeIndication(ControllerId,
ControllerMode:=CANIF_CS_STARTED)

figure 9-2: Sequence diagram CanSm_StartCanController

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

82 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

9.3 Sequence diagram CanSm_StopCanController

 «module»
CanSM::CanSM

«module»
CanIf::CanIf

alt CanSm_StopCanControllerVariants

[CAN controller mode change performed synchronously]

[CAN controller mode change performed asynchronously]

loop CanSm_StopCanControllerLoop1

[Do for every configured CAN controller of the CAN network]

loop CanSm_StopCanControllerLoop2

[Do for every configured CAN controller of the CAN network]

loop CanSm_StopCanControllerLoop3

[Wait for CANIF_CS_STOPPED indication for all CAN controllers of the CAN network]

Limitations: This sequence diagram
shows the main aspects of the
interaction between the CanSM and
the CanIf to stop the CAN controllers
of a CAN Network. The error handling
for the case, that the CanIf API
returns E_NOT_OK or the CanSM
detects a CanIf indication timeout
are not considered here.

CanIf_SetControllerMode(return, ControllerId, ControllerMode:=CANIF_CS_STOPPED)

CanSM_ControllerModeIndication(ControllerId, ControllerMode:=CANIF_CS_STOPPED)

:E_OK

CanIf_SetControllerMode(Std_ReturnType, uint8, CanIf_ControllerModeType)

:E_OK

CanSM_ControllerModeIndication(ControllerId, ControllerMode:=CANIF_CS_STOPPED)

figure 9-3: Sequence diagram CanSm_StopCanController

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

83 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

10 Configuration specification
In general, this chapter defines configuration parameters and their clustering into
containers. In order to support the specification Chapter 10.1 describes
fundamentals. It also specifies a template (table) you shall use for the parameter
specification. We intend to leave Chapter 10.1 in the specification to guarantee
comprehension.
Chapter 10.2 specifies the structure (containers) and the parameters of the module
CanSM.
Chapter 10.3 specifies published information of the module CanSM.

10.1 How to read this chapter

In addition to this section, it is highly recommended to read the documents:

• AUTOSAR Layered Software Architecture [2]

• AUTOSAR ECU Configuration Specification [4]
This document describes the AUTOSAR configuration methodology and the
AUTOSAR configuration meta model in detail.

The following is only a short survey of the topic and it will not replace the ECU
Configuration Specification document.

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters of the CanSM
module. The detailed meanings of the parameters describe chapter 7 and chapter 8.

10.2.1 Variants

[CANSM250] ⌈VARIANT-PRE-COMPILE: Only pre-compile parameters⌋()

[CANSM251] ⌈VARIANT-LINK-TIME: Mix of pre-compile and link time parameters⌋()

[CANSM252] ⌈VARIANT-POST-BUILD: Mix of pre compile-, link time and post build

time parameters⌋()

10.2.2 CanSM

Module Name CanSM
Module Description Configuration of the CanSM module

Included Containers
Container Name Multiplicity Scope / Dependency

CanSMConfiguration 1
This container contains the global parameters of the CanSM
and sub containers, which are for the CAN network specific
configuration.

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

84 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

CanSMGeneral 1 Container for general pre-compile parameters of the CanSM
module

10.2.3 CanSMGeneral

SWS Item CANSM314_Conf :
Container Name CanSMGeneral
Description Container for general pre-compile parameters of the CanSM module
Configuration Parameters

SWS Item CANSM133_Conf :
Name

CanSMDevErrorDetect {CANSM_DEV_ERROR_DETECT}
Description Enables and disables the development error detection and notification

mechanism.
Multiplicity 1
Type EcucBooleanParamDef
Default value --
ConfigurationClass Pre-compile time X All Variants

Link time --
Post-build time --

Scope / Dependency scope: Local

SWS Item CANSM312_Conf :
Name

CanSMMainFunctionTimePeriod
{CANSM_MAIN_FUNCTION_TIME_PERIOD}

Description This parameter defines the cycle time of the function
CanSM_MainFunction in seconds

Multiplicity 1
Type EcucFloatParamDef
Range 0.001 .. 65.535
Default value --
ConfigurationClass Pre-compile time X All Variants

Link time --
Post-build time --

Scope / Dependency scope: Local

SWS Item CANSM311_Conf :
Name

CanSMVersionInfoApi {CANSM_VERSION_INFO_API}
Description Activate/Deactivate the version information API (CanSM_GetVersionInfo).

true: version information API activated false: version information API
deactivated

Multiplicity 1
Type EcucBooleanParamDef
Default value --
ConfigurationClass Pre-compile time X All Variants

Link time --
Post-build time --

Scope / Dependency scope: Local

SWS Item CANSM342_Conf :
Name

CanSmChangeBaudrateApi {CANSM_CHANGE_BAUDRATE_API}
Description The support of the Can_ChangeBaudrate API is optional. If this parameter

is set to true the Can_ChangeBaudrate API shall be supported. Otherwise
the API is not supported.

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

85 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

Multiplicity 1
Type EcucBooleanParamDef
Default value false
ConfigurationClass Pre-compile time X All Variants

Link time --
Post-build time --

Scope / Dependency scope: ECU

No Included Containers

10.2.4 CanSMConfiguration

SWS Item CANSM123_Conf :
Container Name CanSMConfiguration [Multi Config Container]

Description This container contains the global parameters of the CanSM and sub
containers, which are for the CAN network specific configuration.

Configuration Parameters

SWS Item CANSM335_Conf :
Name

CanSMModeRequestRepetitionMax {CANSM_MODEREQ_MAX}
Description Specifies the maximal amount of mode request repetitions without a

respective mode indication from the CanIf module until the CanSM module
reports a development error to the DET and tries to go back to no
communication.

Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 255
Default value --
ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: Local

SWS Item CANSM336_Conf :
Name

CanSMModeRequestRepetitionTime
{CANSM_MODEREQ_REPEAT_TIME}

Description Specifies in which time duration the CanSM module shall repeat mode
change requests by using the API of the CanIf module.

Multiplicity 1
Type EcucFloatParamDef
Range 0 .. 65.535
Default value --
ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: Local

Included Containers
Container Name Multiplicity Scope / Dependency

CanSMManagerNetwork 1..* This container contains the CAN network specific parameters
of each CAN network

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

86 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

10.2.5 CanSMManagerNetwork

SWS Item CANSM126_Conf :
Container Name CanSMManagerNetwork

Description This container contains the CAN network specific parameters of each CAN
network

Configuration Parameters

SWS Item CANSM131_Conf :
Name

CanSMBorCounterL1ToL2 {CANSM_BOR_COUNTER_L1_TO_L2}
Description This threshold defines the count of bus-offs until the bus-off recovery

switches from level 1 (short recovery time) to level 2 (long recovery time).
Multiplicity 1
Type EcucIntegerParamDef
Range 0 .. 255
Default value --
ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: Local

SWS Item CANSM128_Conf :
Name

CanSMBorTimeL1 {CANSM_BOR_TIME_L1}
Description This time parameter defines in seconds the duration of the bus-off

recovery time in level 1 (short recovery time).
Multiplicity 1
Type EcucFloatParamDef
Range 0 .. 65.535
Default value --
ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: Local

SWS Item CANSM129_Conf :
Name

CanSMBorTimeL2 {CANSM_BOR_TIME_L2}
Description This time parameter defines in seconds the duration of the bus-off

recovery time in level 2 (long recovery time).
Multiplicity 1
Type EcucFloatParamDef
Range 0 .. 65.535
Default value --
ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: Local

SWS Item CANSM130_Conf :
Name

CanSMBorTimeTxEnsured {CANSM_BOR_TIME_TX_ENSURED}
Description This parameter defines in seconds the duration of the bus-off event check.

This check assesses, if the recovery has been successful after the
recovery reenables the transmit path. If a new bus-off occurs during this
time period, the CanSM assesses this bus-off as sequential bus-off without
successful recovery. Because a bus-off only can be detected, when PDUs
are transmitted, the time has to be great enough to ensure that PDUs are
transmitted again (e. g. time period of the fastest cyclic transmitted PDU of

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

87 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

the COM module / ComTxModeTimePeriodFactor).
Multiplicity 1
Type EcucFloatParamDef
Range 0 .. 65.535
Default value --
ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: Local
dependency: CANSM_BOR_TX_CONFIRMATION_POLLING disabled

SWS Item CANSM339_Conf :
Name

CanSMBorTxConfirmationPolling
{CANSM_BOR_TX_CONFIRMATION_POLLING}

Description This parameter shall configure, if the CanSM polls the
CanIf_GetTxConfirmationState API to decide the bus-off state to be
recovered instead of using the CanSMBorTimeTxEnsured parameter for
this decision.

Multiplicity 1
Type EcucBooleanParamDef
Default value --
ConfigurationClass Pre-compile time X All Variants

Link time --
Post-build time --

Scope / Dependency scope: Local

SWS Item CANSM161_Conf :
Name

CanSMComMNetworkHandleRef {CANSM_NETWORK_HANDLE}
Description Unique handle to identify one certain CAN network. Reference to one of

the network handles configured for the ComM.
Multiplicity 1
Type Reference to [ComMChannel]
ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: Local
dependency: ComM

SWS Item CANSM137_Conf :
Name

CanSMTransceiverId {CANSM_TRANSCEIVER_ID}
Description ID of the CAN transceiver assigned to the configured network handle.

Reference to one of the transceivers managed by the CanIf module.
Multiplicity 0..1
Type Reference to [CanIfTrcvCfg]
ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: Local
dependency: CanIf

Included Containers
Container Name Multiplicity Scope / Dependency

CanSMController 1..* This container contains the controller IDs assigned to a
CAN network.

CanSMDemEventParameterRef
s 0..1 Container for the references to DemEventParameter

elements which shall be invoked using the API

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

88 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

Dem_ReportErrorStatus API in case the corresponding
error occurs. The EventId is taken from the referenced
DemEventParameter's DemEventId value. The
standardized errors are provided in the container and can
be extended by vendor specific error references.

10.2.6 CanSMDemEventParameterRefs

SWS Item CANSM127_Conf :
Container Name CanSMDemEventParameterRefs

Description

Container for the references to DemEventParameter elements which shall
be invoked using the API Dem_ReportErrorStatus API in case the
corresponding error occurs. The EventId is taken from the referenced
DemEventParameter's DemEventId value. The standardized errors are
provided in the container and can be extended by vendor specific error
references.

Configuration Parameters

SWS Item CANSM070_Conf :
Name

CANSM_E_BUS_OFF {CANSM_E_BUS_OFF}
Description Reference to configured DEM event to report bus off errors for this CAN

network.
Multiplicity 0..1
Type Reference to [DemEventParameter]
ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: Local
dependency: Dem

No Included Containers

10.2.7 CanSMController

SWS Item CANSM338_Conf :
Container Name CanSMController
Description This container contains the controller IDs assigned to a CAN network.
Configuration Parameters

SWS Item CANSM141_Conf :
Name

CanSMControllerId {CANSM_CONTROLLER_ID}
Description Unique handle to identify one certain CAN controller. Reference to one of

the CAN controllers managed by the CanIf module.
Multiplicity 1
Type Reference to [CanIfCtrlCfg]
ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME
Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: Local
dependency: CanIf

No Included Containers

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

89 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

10.3 Published Information

[CANSM559] ⌈The standardized common published parameters as required by
BSW00402 in the General Requirements on Basic Software Modules [3] shall be
published within the header file of this module and need to be provided in the BSW
Module Description. The according module abbreviation can be found in the List of
Basic Software Modules [1].⌋()

Additional module-specific published parameters are listed below if applicable.

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

90 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

11 Changes between AR3.0 and AR4.0 rev001

11.1 Deleted SWS Items

SWS Item Rationale
CANSM061 Cleared to solve issues of improvement process
CANSM211 Cleared to solve issues of improvement process
CANSM212 Cleared to solve issues of improvement process
CANSM214 Cleared to solve issues of improvement process
CANSM215 Cleared to solve issues of improvement process
CANSM216 Cleared to solve issues of improvement process
CANSM169 Cleared to solve issues of improvement process
CANSM236 Cleared to solve issues of improvement process
CANSM155 Requirement ID from standard text removed
CANSM172
CANSM262
CANSM263
CANSM267
CANSM274
CANSM277
CANSM291
CANSM296
CANSM300
CANSM175
CANSM138
CANSM139
CANSM198
CANSM077
CANSM076
CANSM078
CANSM079
CANSM290 Work on clarification
CANSM293 Avoid mix of use cases for peripheral requests and mode transitions

between communication mode requests from ComM and bus-off handling
CANSM037 Cleared after improvement process
CANSM007 Cleared to consider latest SWS template
CANSM242 Cleared to consider latest SWS template
CANSM249 Deleted to solve
CANSM027 Deleted to solve
CANSM180 Deleted to solve
CANSM181 Deleted to solve
CANSM185 Deleted to solve
CANSM303
CANSM315): Bus-off recovery handling sequence misinterpretation
CANSM316_Conf
CANSM270
CANSM317
CANSM318
CANSM320
CANSM319
CANSM321
CANSM323
CANSM325
CANSM326
CANSM357
CANSM322

Deleted during changes to solve [Can][CanIf][CanSm][CanTrcv] Full COM
Request have to be asynchronous but is specified synchronous

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

91 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

CANSM328
CANSM329
CANSM330
CANSM358
CANSM331
CANSM359
CANSM332
CANSM333
CANSM356
CANSM344
CANSM345
CANSM346
CANSM343

11.2 Replaced SWS Items

SWS Item replaced by
SWS Item

Rationale

CANSM057 CANSM287, CANSM288 Made requirement atomic
CANSM122 CANSM250, CANSM251,

CANSM252
One requirement per variant

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

92 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

11.3 Changed SWS Items

SWS Item Change Rationale

CANSM027 Linefeed removed within standard
requirement

CANSM074 Changed to prescribed standard text

CANSM128
Removed to CanStateManagerNetworks
Container in ECUCParameterDefinitions of
Meta Model and new generation of artifacts

CANSM129
Removed to CanStateManagerNetworks
Container in ECUCParameterDefinitions of
Meta Model and new generation of artifacts

CANSM024 CanSM_GetVersionInfo corrected in BSW
Model and new generation of artifacts

CANSM123 Multiplicity changed in MM and new
generation of artifacts

CANSM397 Refer to new requirements CANSM340-
CANSM342

Avoid mix of use cases for
peripheral requests and mode
transitions between
communication mode requests
from ComM and bus-off
handling

CANSM070
Specified as configuration parameter of the
CanSM, which references as diagnostic
event parameter from the DEM

Optimize configuration

CANSM334
Specified as configuration parameter of the
CanSM, which references as diagnostic
event parameter from the DEM

Optimize configuration

CANSM250 Variant 1 renamed into VARIANT-PRE-
COMPILE

CANSM251 Variant 2 renamed into VARIANT-LINK-TIME

CANSM252 Variant 3 renamed into VARIANT-POST-
BUILD

CANSM161_Conf CanSMNetworkHandle =>
CanSMComMNetworkHandleRef

CANSM174

“The CanSM module (CanSM.c) shall include
the header file ComM.h” changed into “the
header file CanSM.h shall include the header
file ComM.h”

CANSM289 CANSM_CS_STARTED replaced with
CANIF_CS_STARED

Typo

CANSM265 Instruction order changed (first callback, then
internal state change)

CANSM349 Instruction order changed (first callback, then
internal state change)

CANSM256 Instruction order changed (first callback, then
internal state change)

CANSM261 Instruction order changed (first callback, then
internal state change)

CANSM276 Instruction order changed (first callback, then
internal state change)

CANSM281 Instruction order changed (first callback, then
internal state change)

CANSM353 Instruction order changed (first callback, then
internal state change)

CANSM315 Typo: therfore => therefore
CANSM279 Typo (missing <)>)
CANSM235 Formulation (regard => handle)
CANSM346 Formulation (consider => handle)

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

93 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

CAMSM353 Typo: Full replaced with silent; wrong
requirement references corrected

CANSM349
BswM_CanSM_RequestMode
changed into BswM_CanSM_CurrentState

CANSM350
BswM_CanSM_RequestMode
changed into BswM_CanSM_CurrentState

CANSM351
BswM_CanSM_RequestMode
changed into BswM_CanSM_CurrentState

CANSM352
BswM_CanSM_RequestMode
changed into BswM_CanSM_CurrentState

CANSM281
BswM_CanSM_RequestMode
changed into BswM_CanSM_CurrentState

CANSM354
BswM_CanSM_RequestMode
changed into BswM_CanSM_CurrentState

CANSM355
BswM_CanSM_RequestMode
changed into BswM_CanSM_CurrentState

CANSM356
BswM_CanSM_RequestMode
changed into BswM_CanSM_CurrentState

CANSM357
BswM_CanSM_RequestMode
changed into BswM_CanSM_CurrentState

CANSM358
BswM_CanSM_RequestMode
changed into BswM_CanSM_CurrentState

CANSM359
BswM_CanSM_RequestMode
changed into BswM_CanSM_CurrentState

CANSM265
CANSM349
CANSM256
CANSM264
CANSM350
CANSM261
CANSM271
CANSM351
CANSM272
CANSM275
CANSM352
CANSM276
CANSM280
CANSM281
CANSM353

First change internal state, then issue
callbacks

CANSM284 CANSM_UNINITED removed

CANSM255 CANSM268 Removed reference to chapter 7.1 Reference to same chapter
while in same chapter

CANSM025 Version check corrected [Csm] Version Check
requirement needs correction

CANSM125 CANSM_MODULE_ID specified as uint16
CANSM257
CANSM258
CANSM259
CANSM270

CanIf_SetTransceiverMode replaced with
CanIf_SetTrcvMode

[Csm] Mismatch in the API
name of the CanIf module

CANSM257
CANSM258

Typos

CANSM167 Main function shall only implement the parts
of the bus-off recovery state machine, which
depend on time

Changed in scope of the
document improvement process
by TO

CANSM259
CANSM260
CANSM264
CANSM269
CANSM270
CANSM271

CanSMNetworkHandle
replaced with
CanSMComMNetworkHandleRef
where necessary

[Csm] Wrong container name
used to describe the
requirements

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

94 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

CANSM273
CANSM275
CANSM279
CANSM280
CANSM281
CANSM257
CANSM259
CANSM270
CANSM258
CANSM260
CANSM269
CANSM273
CANSM279
CANSM289
CANSM337
CANSM340
CANSM323
CANSM328
CANSM329

Solved inconsistency between API
parameters specified in BSW UML and
referenced parameters in the CANSM
requirements

[CanSm] Mismatch in the API
argument name of the CanIf
module

CANSM062 Synchronous API CANSM:
CanSM_RequestComMode
sync vs. async

CANSM336_Conf

Parameter name changed into:
CanSMModeRequestRepetitionTime
/CANSM_MODEREQ_REPEAT_TIME

Description revised

[Can][CanIf][CanSm][CanTrcv]
Full COM Request have to be
asynchronous but is specified
synchronous

CANSM335_Conf

Parameter name changed into:
CanSMModeRequestRepetitionMax /
CANSM_MODEREQ_MAX

Description revised

CANSM334_Conf

Parameter name changed into:
CANSM_E_MODE_REQUEST_TIMEOUT
Description revised

CANSM257 Relation to requirement CANSM379
CANSM258 Relation to requirement CANSM382
CANSM265 Relation to requirement CANSM383

CANSM349
Formulation changed to consider each
network separately

CANSM256
Formulation changed to consider each
network separately

CANSM260 Relation to requirement CANSM390
CANSM264 Relation to requirement CANSM260
CANSM350 Relation to requirement CANSM264
CANSM261 Relation to requirement CANSM350
CANSM269 Relation to requirement CANSM393
CANSM271 Relation to requirement CANSM269
CANSM351 Relation to requirement CANSM271
CANSM337 Relation to requirement CANSM289
CANSM339 Relation to requirement CANSM337
CANSM338 Relation to requirement CANSM339
CANSM354 Relation to requirement CANSM338

CANSM340

Removed term of network mode request,
because obsolete (requests are blocked
during recovery)

CANSM341 Relation to requirement CANSM342
CANSM342 Relation to requirement CANSM340
CANSM355 Relation to requirement CANSM341

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

95 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

CANSM295 Relation to requirement CANSM294

CANSM297

1.) Removed term of network mode request,
because obsolete (requests are blocked
during recovery)
2.) Added relation to CANSM355

CANSM299 Relation to requirement CANSM298

CANSM288
Bus-off counter to 0 from no to full
communication instead of after PowerOn

CANSM279
Also go to silent, if no communication is
requested

CANSM280 Relation to requirement CANSM279
CANSM281 Relation to requirement CANSM280
CANSM353 Relation to requirement CANSM281
CANSM256
CANSM350
CANSM272
CANSM276
CANSM353
CANSM354
CANSM355

“Channel_Id” changed into “Network”
“CanSM_Requested_Mode” changed into
“CurrentState”

CANSM295
CANSM299 paramters” corrected into “parameters”

CANSM069

New development errors
CANSM_E_WAIT_MODE_INDICATION,
CANSM_E_INVALID_COMM_REQUEST

CANSM069
New development error:
CANSM_E_BUSOFF_RECOVERY_ACTIVE,

[CanSm] V1.1.36; C7.2; State
transition description does not
care about error conditions

11.4 Added SWS Items

SWS Item Rationale
CANSM242 Requirement for file structure
CANSM243 Requirement for imported type
CANSM244 Standard requirement for CanSM_GetVersionInfo
CANSM249 Missing ID for standard requirement
CANSM310
CANSM309
CANSM306
CANSM307
CANSM308
CANSM374

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

96 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

CANSM312
CANSM315
CANSM337 Avoid mix of use cases for peripheral requests and mode transitions

between communication mode requests from ComM and bus-off handling
CANSM338 Avoid mix of use cases for peripheral requests and mode transitions

between communication mode requests from ComM and bus-off handling
CANSM339 Avoid mix of use cases for peripheral requests and mode transitions

between communication mode requests from ComM and bus-off handling
CANSM340 Avoid mix of use cases for peripheral requests and mode transitions

between communication mode requests from ComM and bus-off handling
CANSM341 Avoid mix of use cases for peripheral requests and mode transitions

between communication mode requests from ComM and bus-off handling
CANSM342 Avoid mix of use cases for peripheral requests and mode transitions

between communication mode requests from ComM and bus-off handling
CANSM343 New recovery for can controller timeouts events
CANSM344 New recovery for can controller timeouts events
CANSM345 New recovery for can controller timeouts events
CANSM346 New recovery for can controller timeouts events
CANSM317-CANSM333 New recovery for can controller timeouts events
CANSM347-
CANSM359

CANSM360 NULL pointer exception for the function CanSM_GetCurrentComMode
CANSM361 Added to consider latest SWS template and to solve
CANSM362 Added to consider latest SWS template and to solve

CANSM363
CANSM364
CANSM365
CANSM366
CANSM367
CANSM368
CANSM369
CANSM370
CANSM371
CANSM372
CANSM375
CANSM376
CANSM377

Solution of [CanSm] V1.1.36; C7.2; State transition description does not
care about error conditions

CANSM378
CANSM381
CANSM386
CANSM387
CANSM388
CANSM390
CANSM385
CANSM391
CANSM392
CANSM393
CANSM394
CANSM395
CANSM396
CANSM397
CANSM398
CANSM399
CANSM400
CANSM401
CANSM402
CANSM403

Added during changes to solve [Can][CanIf][CanSm][CanTrcv] Full COM
Request have to be asynchronous but is specified synchronous

CAN001_PI Rework of Published Information

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

97 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

98 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

12 Changes between AUTOSAR R4.0 rev001 and rev002

12.1 Deleted SWS Items

SWS Item Rationale
CANSM285 [CanSm] Internal network mode cannot be initialized to

CANSM_UNINITED
CANSM022 [CanSm] export of main function

12.2 Replaced SWS Items

SWS Item replaced by
SWS Item

Rationale

12.3 Changed SWS Items

SWS Item Change Rationale
CANSM349
CANSM256
CANSM350
CANSM261
CANSM351
CANSM272
CANSM352
CANSM276
CANSM281
CANSM353
CANSM354
CANSM338
CANSM341
CANSM355

CanSMNetworkHandle replaced with
CanSMComMNetworkHandleRef

”Wrong container name used to
describe the requirements”

CANSM070_Conf
CANSM334_Conf Multiplicity changed from 1 to 0…1

[CanSm] Multiplicity of
CanSmDemEventParameterRefs

CANSM314_Conf
CANSM123_Conf
CANSM126_Conf
CANSM127_Conf
CANSM338_Conf

Following parameters and containers renamed:
- CanStateManagerConfiguration to
CanSMConfiguration
- CanStateManagerController to
CanSMController
- CanStateManagerGeneral to CanSMGeneral
- CanStateManagerNetwork to
CanSMManagerNetwork
- CanSmDemEventParameterRefs to
CanSMDemEventParameterRefs

 [CanSm] Ecuc Parameter
naming in CanSm

CANSM025
Requirement changed according to changed
BSW004

 [mult] SRS_General: BSW004

CANSM292
CANSM294
CANSM298

Evaluation of the new configuration parameter
CANSM_BOR_TX_CONFIRMATION_POLLING
(CANSM339_Conf)

[CanSm][CanIf] Bus-Off recovery
optimization

CANSM257
CANSM392

CANTRCV_STANDBY replaced with
CANIF_TRCV_MODE_STANDBY

 [CanSm] Mismatch in the
enumeration values of the CanIf
module: Update of generated

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

99 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

artifacts

CANSM259
CANSM391
CANSM378

CANTRCV_NORMAL replaced with
CANIF_TRCV_MODE_NORMAL

[CanSm] Mismatch in the
enumeration values of the CanIf
module: Update of generated
artifacts

CANSM337_Conf Changed description field
 [diverse] Clarify harmonized
channel ID in COM-Stack

CANSM399
CANSM243

Type of function parameter TransceiverMode
changed to CanTrcv_TrcvModeType

[CanTrcv][LinTrcv][LinIf][LinSM]
APIs to be removed from State
Diagram

12.4 Added SWS Items

SWS Item Rationale
CANSM339_Conf [CanSm][CanIf] Bus-Off recovery optimization
CANSM404 [CanSm][CanIf] Bus-Off recovery optimization
CANSM405 [CanSm][CanIf] Bus-Off recovery optimization
CANSM406 [CanSm][CanIf] Bus-Off recovery optimization
CANSM407 [CanSm] PDU channel modes of CanIf not correctly served
CANSM408 [CanSm] PDU channel modes of CanIf not correctly served
CANSM409 [CanSm] PDU channel modes of CanIf not correctly served

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

100 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

13 Changes between AUTOSAR R4.0 rev002 and rev003

13.1 Deleted SWS Items

SWS Item Rationale
CANSM349 Solution for implementation [CanSm] Contradiction between CanSM and

ComM for call of ComM_BusSM_ModeIndication()”
CANSM337_Conf Implementation Task [CanSm][EthSM][FrSM][LinSM][BswM] Local

network index of Bus SM modules
CANSM334_Conf Completion of Production error concept in Com Stack)
CANSM132_Conf Solution of [CanSm] Bus off recovery time independent of error detection

time)

13.2 Replaced SWS Items

SWS Item replaced by
SWS Item

Rationale

CANSM255
CANSM268
CANSM378
CANSM257
CANSM381
CANSM407
CANSM258
CANSM265
CANSM256
CANSM259
CANSM390
CANSM260
CANSM409
CANSM264
CANSM350
CANSM261
CANSM394
CANSM391
CANSM392
CANSM393
CANSM408
CANSM269
CANSM271
CANSM351
CANSM272
CANSM273
CANSM275
CANSM352
CANSM276
CANSM279
CANSM280
CANSM281
CANSM353
CANSM286
CANSM302
CANSM287
CANSM288
CANSM289

CANSM424 –
CANSM427

CANSM429 –
CANSM480

CANSM483 –
CANSM500

CANSM507 –
CANSM529

CANSM531 –
CANSM543

CANSM550

CANSM554

1.) Implementation [CanSm] Instruction order for
transition to no communication

2.) Implementation
[Dcm][BswM][CanSm][CanIf][Can] change of
baudrate within UDS service linkcontrol

3.) Implementation [CanSm] Instruction order of
Entering NoCom

4.) Implementation
[CanTrcv][CanIf][CanSm][CanNm] Handling if PN
functionality is disabled in the Trcv

5.) Implementation [CanSM][CanNm] Partial
Networking – Error handling for missing ACK
(WUF retransmission)

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

101 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

CANSM337
CANSM339
CANSM354
CANSM338
CANSM292
CANSM404
CANSM340
CANSM342
CANSM341
CANSM355
CANSM294
CANSM405
CANSM295
CANSM297
CANSM298
CANSM406
CANSM299
CANSM301
CANSM386
CANSM387
CANSM388

13.3 Changed SWS Items

SWS Item Change Rationale

CANSM256
Dependency to removed CANSM349 replaced
with dependency to existing CANSM265

Solution for implementation
[CanSm] Contradiction
between CanSM and
ComM for call of
ComM_BusSM_ModeIndic
ation()”

CANSM130_Conf

Dependency to
CANSM_BOR_TX_CONFIRMATION_POLLING
added for CanSMBorTimeTxEnsured

Implementation
[CanSm][CanIf] Bus-Off
recovery optimization)

CANSM266

Clarification: The CanSM module shall store the
latest notified current network mode to the
ComM for each configured CAN network
internally (ref. to CANSM126_Conf).

1.) Implementation [CanSm]
Instruction order for
transition to no
communication

2.) Implementation [CanSm]
Instruction order of Entering
NoCom

CANSM186 Reference to CANSM266 for clarification

1.) Implementation [CanSm]
Instruction order for
transition to no
communication

2.) Implementation [CanSm]
Instruction order of Entering
NoCom

CANSM282 Reference to CANSM430 for clarification

1.) Implementation [CanSm]
Instruction order for
transition to no
communication

2.) Implementation [CanSm]
Instruction order of Entering

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

102 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

NoCom

CANSM182

Reference to CANSM427, CANSM429,
CANSM499, CANSM524 and CANSM543 for
clarification

1.) Implementation [CanSm]
Instruction order for
transition to no
communication

2.) Implementation [CanSm]
Instruction order of Entering
NoCom

CANSM235 Reference to CANSM500 for clarification

1.) Implementation [CanSm]
Instruction order for
transition to no
communication

2.) Implementation [CanSm]
Instruction order of Entering
NoCom

CANSM167
Main function not only for bus-off recovery, but
for all effects of the CanSM state machine

Asynchronous interaction
behavior of the CanIf API
and the CanSM state
machine:
e. g. for Implementation
[CanSm] Instruction order for
transition to no
communication

CANSM385
Part removed with specifies transition to “no
communication”

e. .g: Implementation
[CanSm] Instruction order for
transition to no
communication

CANSM137_Conf

CanSMTransceiverId multiplicity changed to
0…1

CanSMTransceiverId (CANSM137_Conf)
references CanIfTrcvCfg instead of
CanTrcvChannel now

1.) Solution of CanSm:
Controller of CanIf ->
ControllerId)

2.) Solution [CanSM]:
Multiplicity of configuration
parameter
CanSMTransceiverId)

CANSM141_Conf

CanSMControllerId (CANSM141_Conf)
references CanIfCtrlCfg instead of
CanController now

Solution CanSm: Controller
of CanIf -> ControllerId)

CANSM385
CANSM072
CANSM074

CANSM_E_MODE_REQUEST_TIMEOUT
changed into DET error

Solution Completion of
Production error concept in
Com Stack)

CANSM335_Conf
Description of CANSM335_Conf changed:

… „reports a development error to the DET“ …

Solution for reopened
[CanSm] Bus off recovery
time independent of error
detection time

13.4 Added SWS Items

SWS Item Rationale
CANSM501
CANSM502
CANSM503
CANSM504
CANSM505

Implementation [Dcm][BswM][CanSm][CanIf][Can] change of baudrate
within UDS service linkcontrol:

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

103 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

CANSM506
CANSM530
CANSM544
CANSM545
CANSM547
CANSM551
CANSM552
CANSM553

CANSM413
CANSM414
CANSM415
CANSM416
CANSM417 CANSM418

Implementation [CanSm] Instruction order of Entering NoCom

CANSM419
CANSM420
CANSM421
CANSM422
CANSM546
CANSM548

Implementation [CanTrcv][CanIf][CanSm][CanNm] Handling if PN
functionality is disabled in the Trcv

CANSM410
CANSM411
CANSM412
CANSM549

Implementation [CanSM][CanNm] Partial Networking - Error handling for
missing ACK (WUF retransmission)

CANSM555 Solution of [CanSM] Clarification required for CanSM_RequestComMode
CANSM556, CANSM557,
CANSM558

Solution of [CanSM]: Multiplicity of configuration parameter
CanSMTransceiverId)

CANSM560 Solution [CanSm] Modification required on handling CanTrcv)
CANSM561-CANSM574 [Dcm][BswM][CanSm][CanIf][Can] change of baudrate within UDS

service linkcontrol)

 Specification of CAN State Manager
 V2.2.0

R4.0 Rev 3

104 of 104 Document ID 253: AUTOSAR_SWS_CANStateManager
 - AUTOSAR confidential -

14 Not applicable requirements

[CANSM999] ⌈ These requirements are not applicable to this specification. ⌋
(BSW170, BSW00375, BSW00395, BSW00416, BSW00437, BSW168, BSW00423,
BSW00426, BSW00427, BSW00428, BSW00429, BSW00431, BSW00432,
BSW00433, BSW00434, BSW00336, BSW00417, BSW161, BSW162, BSW005,
BSW00326, BSW00347, BSW00314, BSW00435, BSW00353, BSW00361,
BSW00377, BSW00308, BSW00309, BSW00360, BSW00341, BSW00439,
BSW00440)

	1 Introduction and functional overview
	2 Acronyms and abbreviations
	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 ECU State Manager (EcuM)
	5.2 BSW Scheduler (SchM)
	5.3 Communication Manager (ComM)
	5.4 CAN Interface (CanIf)
	5.5 Diagnostic Event Manager (DEM)
	5.6 Basic Software Mode Manager (BswM)
	5.7 CAN Network Management (CanNm)
	5.8 Diagnostic Communication Manager (Dcm)
	5.9 Development Error Tracer (DET)
	5.10 File structure
	5.10.1 Code file structure
	5.10.2 Header file structure
	5.10.3 Version check

	6 Requirements traceability
	7 Functional specification
	7.1 General requirements
	7.2 State machine for each CAN network
	7.2.1 Trigger: PowerOn
	7.2.2 Trigger: CanSM_Init
	7.2.3 Trigger: T_FULL_COM_MODE_REQUEST
	7.2.4 Trigger: T_NO_COM_MODE_REQUEST
	7.2.5 Guarding condition: G_FULL_COM_MODE_REQUESTED
	7.2.6 Guarding condition: G_SILENT_COM_MODE_REQUESTED
	7.2.7 Effect: E_PRE_NOCOM
	7.2.8 Effect: E_NOCOM
	7.2.9 Effect: E_FULL_COM
	7.2.10 Effect: E_FULL_TO_SILENT_COM
	7.2.11 Effect: E_BR_END_FULL_COM
	7.2.12 Effect: E_BR_END_SILENT_COM
	7.2.13 Effect: E_SILENT_TO_FULL_COM
	7.2.14 Sub state machine: CANSM_BSM_S_PRE_NOCOM
	7.2.14.1 Guarding condition: CANSM_BSM_G_PN_NOT_SUPPORTED
	7.2.14.2 Guarding condition: CANSM_BSM_G_PN_SUPPORTED
	7.2.14.3 Sub state machine for deinitialization with partial network support
	7.2.14.3.1 State operation to do in: S_PN_CLEAR_WUF
	7.2.14.3.2 Guarding condition: G_PN_CLEAR_WUF_E_OK
	7.2.14.3.3 Trigger: T_CLEAR_WUF_INDICATED
	7.2.14.3.4 Trigger: T_CLEAR_WUF_TIMEOUT
	7.2.14.3.5 State operation to do in: S_PN_CC_STOPPED
	7.2.14.3.6 Guarding condition: G_CC_STOPPED_E_OK
	7.2.14.3.7 Trigger: T_CC_STOPPED_INDICATED
	7.2.14.3.8 Trigger: T_CC_STOPPED_TIMEOUT
	7.2.14.3.9 State operation to do in: S_TRCV_NORMAL
	7.2.14.3.10 Guarding condition: G_TRCV_NORMAL_E_OK
	7.2.14.3.11 Trigger: T_TRCV_NORMAL_INDICATED
	7.2.14.3.12 Trigger: T_TRCV_NORMAL_TIMEOUT
	7.2.14.3.13 State operation to do in: S_TRCV_STANDBY
	7.2.14.3.14 Guarding condition: G_TRCV_STANDBY_E_OK
	7.2.14.3.15 Trigger: T_TRCV_STANDBY_INDICATED
	7.2.14.3.16 Trigger: T_TRCV_STANDBY_TIMEOUT
	7.2.14.3.17 State operation to do in: S_CC_SLEEP
	7.2.14.3.18 Guarding condition: G_CC_SLEEP_E_OK
	7.2.14.3.19 Trigger: T_CC_SLEEP_INDICATED
	7.2.14.3.20 Trigger: CANSM_BSM_T_CC_SLEEP_TIMEOUT
	7.2.14.3.21 State operation to do in: S_CHECK_WFLAG_IN_CC_SLEEP
	7.2.14.3.22 Guarding condition: G_CHECK_WFLAG_E_OK
	7.2.14.3.23 Trigger: T_CHECK_WFLAG_INDICATED
	7.2.14.3.24 Trigger: T_CHECK_WFLAG_TIMEOUT
	7.2.14.3.25 State operation to do in: S_CHECK_WFLAG_IN_NOT_CC_SLEEP
	7.2.14.3.26 Trigger: T_REPEAT_MAX

	7.2.14.4 Sub state machine for deinitialization without partial network support
	7.2.14.4.1 State operation to do in: S_CC_STOPPED
	7.2.14.4.2 Guarding condition: CANSM_BSM_G_CC_STOPPED_OK
	7.2.14.4.3 Trigger: T_CC_STOPPED_INDICATED
	7.2.14.4.4 Trigger: T_CC_STOPPED_TIMEOUT
	7.2.14.4.5 State operation to do in: S_CC_SLEEP
	7.2.14.4.6 Guarding condition: G_CC_SLEEP_E_OK
	7.2.14.4.7 Trigger: T_CC_SLEEP_INDICATED
	7.2.14.4.8 Trigger: T_CC_SLEEP_TIMEOUT
	7.2.14.4.9 State operation to do in: S_TRCV_NORMAL
	7.2.14.4.10 Guarding condition: G_TRCV_NORMAL_E_OK
	7.2.14.4.11 Trigger: T_TRCV_NORMAL_INDICATED
	7.2.14.4.12 Trigger: T_TRCV_NORMAL_TIMEOUT
	7.2.14.4.13 State operation to do in: S_TRCV_STANDBY
	7.2.14.4.14 Guarding condition: G_TRCV_STANDBY_E_OK
	7.2.14.4.15 Trigger: T_TRCV_STANDBY_INDICATED
	7.2.14.4.16 Trigger: CANSM_BSM_T_TRCV_STANDBY_TIMEOUT
	7.2.14.4.17 Trigger: T_REPEAT_MAX

	7.2.15 Sub state machine to prepare full communication
	7.2.15.1 State operation to do in: S_TRCV_NORMAL
	7.2.15.2 Guarding condition: G_TRCV_NORMAL_E_OK
	7.2.15.3 Trigger: T_TRCV_NORMAL_INDICATED
	7.2.15.4 Trigger: T_TRCV_NORMAL_TIMEOUT
	7.2.15.5 State operation to do in: S_CC_STOPPED
	7.2.15.6 Guarding condition: G_CC_STOPPED_OK
	7.2.15.7 Trigger: T_CC_STOPPED_INDICATED
	7.2.15.8 Trigger: T_CC_STOPPED_TIMEOUT
	7.2.15.9 State operation to do in: S_CC_STARTED
	7.2.15.10 Guarding condition: G_CC_STARTED_OK
	7.2.15.11 Trigger: T_CC_STARTED_INDICATED
	7.2.15.12 Trigger: T_CC_STARTED_TIMEOUT
	7.2.15.13 Trigger: T_REPEAT_MAX

	7.2.16 Sub state machine for requested full communication mode
	7.2.16.1 Guarding condition: G_BUS_OFF_PASSIVE
	7.2.16.2 Effect: E_BUS_OFF_PASSIVE
	7.2.16.3 Trigger: T_SILENT_COM_MODE_REQUEST
	7.2.16.4 Trigger: T_CHANGE_BR_REQUEST
	7.2.16.5 Effect: E_CHANGE_BR_BSWM_MODE
	7.2.16.6 Trigger: T_BUS_OFF
	7.2.16.7 Effect: E_BUS_OFF
	7.2.16.8 State operation to do in: S_RESTART_CC
	7.2.16.9 Guarding condition: G_RESTART_CC_OK
	7.2.16.10 Trigger: T_RESTART_CC_INDICATED
	7.2.16.11 Trigger: T_RESTART_CC_TIMEOUT
	7.2.16.12 Effect: E_TX_OFF
	7.2.16.13 Guarding condition: G_TX_ON
	7.2.16.14 Effect: E_TX_ON
	7.2.16.15 Trigger: T_REPEAT_MAX

	7.2.17 Sub state machine to operate a requested baud rate change
	7.2.17.1 State operation to do in: S_CC_STOPPED
	7.2.17.2 Guarding condition: G_CC_STOPPED_OK
	7.2.17.3 Trigger: T_CC_STOPPED_INDICATED
	7.2.17.4 Trigger: T_CC_STOPPED_TIMEOUT
	7.2.17.5 Effect: E_CHANGE_BAUDRATE
	7.2.17.6 State operation to do in: S_CC_STARTED
	7.2.17.7 Guarding condition: G_CC_STARTED_OK
	7.2.17.8 Trigger: T_CC_STARTED_INDICATED
	7.2.17.9 Trigger: T_CC_STARTED_TIMEOUT
	7.2.17.10 Trigger: T_REPEAT_MAX
	7.2.17.11 Guarding condition: G_NO_COM_MODE_REQUESTED
	7.2.17.12 Guarding condition: G_NO_COM_MODE_NOT_REQUESTED

	7.3 Error classification
	7.4 Error detection
	7.5 Error notification
	7.6 Interface for AUTOSAR debug and trace
	7.7 Non-functional design rules

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 CanSM_StateType
	8.2.2 CanSM_ConfigType
	8.2.3 CanSM_BswMCurrentStateType

	8.3 Function definitions
	8.3.1 CanSM_Init
	8.3.2 CanSM_GetVersionInfo
	8.3.3 CanSM_RequestComMode
	8.3.4 CanSM_GetCurrentComMode
	8.3.5 CanSM_CheckBaudrate
	8.3.6 CanSM_ChangeBaudrate

	8.4 Call-back notifications
	8.4.1 CanSM_ControllerBusOff
	8.4.2 CanSM_ControllerModeIndication
	8.4.3 CanSM_TransceiverModeIndication
	8.4.4 CanSM_TxTimeoutException
	8.4.5 CanSM_ClearTrcvWufFlagIndication
	8.4.6 CanSM_CheckTransceiverWakeFlagIndication
	8.4.7 CanSM_ConfirmPnAvailability

	8.5 Scheduled functions
	8.5.1 CanSM_MainFunction

	8.6 Expected Interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.3 Configurable Interfaces

	9 Sequence diagrams
	9.1 Sequence for baud rate change request from the DCM module
	9.2 Sequence diagram CanSm_StartCanController
	9.3 Sequence diagram CanSm_StopCanController

	10 Configuration specification
	10.1 How to read this chapter
	10.2 Containers and configuration parameters
	10.2.1 Variants
	CanSM
	CanSMGeneral
	CanSMConfiguration
	CanSMManagerNetwork
	CanSMDemEventParameterRefs
	CanSMController

	10.3 Published Information

	11 Changes between AR3.0 and AR4.0 rev001
	11.1 Deleted SWS Items
	11.2 Replaced SWS Items
	11.3 Changed SWS Items
	11.4 Added SWS Items

	12 Changes between AUTOSAR R4.0 rev001 and rev002
	12.1 Deleted SWS Items
	12.2 Replaced SWS Items
	12.3 Changed SWS Items
	12.4 Added SWS Items

	13 Changes between AUTOSAR R4.0 rev002 and rev003
	13.1 Deleted SWS Items
	13.2 Replaced SWS Items
	13.3 Changed SWS Items
	13.4 Added SWS Items

	14 Not applicable requirements

