AUTO SAR

Specification of CAN Interface

V5.0.0

R4.0 Rev 3
Document Title Specification of CAN Interface
Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document ldentification No 012
Document Classification Standard
Document Version 5.0.0
Document Status Final
Part of Release 4.0
Revision 3

Document Change History
Date Version |Changed by Change Description
01.12.2011 5.0.0 |AUTOSAR e Partial Networking Support
Administration |e Improved Transmit Buffering
e Improved Error Detection

22.10.2010 | 4.1.0 |AUTOSAR e Updated chapters "Version Checking"

1 of 213

Administration and "Published Information"

e Multiple CAN IDs could optionally be
assigned to one I-PDU

e \Wake-up validation optionally only via
NM PDUs

e Asynch. mode indication call-backs
instead of synch. mode changes

e No automatic PDU channel mode change
when CC mode changes

e TxConfirmation state entered for BusOff
Recovery

e WakeupSourceRefln and
WakeupSourceRefOut

e PdulnfoPtr instead of SduDataPtr

e Introduction of Can_GeneralTypes.h and
Can_HwHandleType

e Transceiver types of chapter 8. shifted to
transceiver SWS

Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv5.0.0
R4.0 Rev 3

Document Change History

Date

Version

Changed by

Change Description

02.12.2009

4.0.0

AUTOSAR
Administration

HOH definition

abstracted Controllerld and Transceiverld
No changing of baudrate via Canlf and
Canlf_Controllerlnit

Dispatcher adapted because of CDD
TxBuffering: only one buffer per L-PDU
Wake up mechanism adapted to
environment behavior (network ->
controller/transceiver; wakeupSource)
Mode changes made asynchronous

no complete state machine in Canlf, just
buffered states per controller

Legal disclaimer revised

23.06.2008

3.0.2

AUTOSAR
Administration

Legal disclaimer revised

29.01.2008

3.0.1

AUTOSAR
Administration

Replaced chapter 10 content with
generated tables from AUTOSAR
MetaModel.

12.12.2007

2 0of 213

3.0.0

AUTOSAR
Administration

Interface abstraction: network related
interface changed into a controller related
one

Wakeup mechanism completely
reworked, APIs added & changed for
Wakeup

Initialization changed (flat initialization)
Scheduled main functions skipped due to
changed BSW Scheduler responsibility
Document meta information extended
Small layout adaptations made

Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv5.0.0
R4.0 Rev 3

Document Change History

Date

Version

Changed by

Change Description

31.10.2007

2.1.0

AUTOSAR
Administration

Header file structure changed
Support of mixed mode operation
(Standard CAN & Extended CAN in
parallel on one network) added
Support of CAN Transceiver API
<User>_DIcErrorNotification deleted
Pre-compile/Link-Time/Post-Built
definition for configuration parameters
partly changed

Re-entrant interface call allowed for
certain APIs

Support of AUTOSAR BSW Scheduler
added

Support of memory mapping added
Configuration container structure
reworked

Various of clarification extensions and
corrections

26.06.2006

2.0.0

AUTOSAR
Administration

Second Release

31.06.2005

1.0.0

AUTOSAR
Administration

Initial Release

30f 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

Disclaimer

This specification and the material contained in it, as released by AUTOSAR is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only.

For any other purpose, no part of the specification may be utilized or reproduced, in
any form or by any means, without permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR Specification Documents may contain exemplary items (exemplary
reference models, "use cases", and/or references to exemplary technical solutions,
devices, processes or software).

Any such exemplary items are contained in the Specification Documents for
illustration purposes only, and they themselves are not part of the AUTOSAR
Standard. Neither their presence in such Specification Documents, nor any later
documentation of AUTOSAR conformance of products actually implementing such
exemplary items, imply that intellectual property rights covering such exemplary
items are licensed under the same rules as applicable to the AUTOSAR Standard.

4 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

Vv5.0.0
R4.0 Rev 3

Table of Contents
KNOWN LIMITALIONS ...t e e et e e e e e e e e e e e e e eeaes 10
1 Introduction and fuNCtional OVEIVIEWcoiiiieiiiiiiiiiiie e e e e 11
2 Acronyms and AbDBreviationsS...........coooivuiiiiiii e 13
3 Related dOCUMENTALION...........uuuiiiiee e e e e e e e e e e e eeeennes 15
700 R [o o 10) e [0 o 01 4 =T o) PRSP 15
3.2 Related standards and NOIMScoiiiiiiiiiiiiiiii e 16
4 Constraints and asSUMPLIONScooovuiiiiiiii e 17
o R 11 011 =1 0] 17
4.2 Applicability to car dOmMainS...........coiieiieiiiiiice e 17
5 Dependencies to other modules...............uveiiiiiiiiiiiii e 18
5.1 Upper ProtOCOl LAYEIS.......cccooiiieiiiiie ettt 19
5.2 Initialization: ECu State Manager........coooeeeeeiieieeeeeeeeeeeeeeee e 19
5.3 Mode Control: CAN State Manager.........ccoovvvuuuiiiieeeeeeeeeecee e 19
5.4 Lower layers: CAN DIIVEIccooooee e 19
5.5 Lower layers: CAN Transceiver DIVErviiieieeiiieieciee e, 20
5.6 CONIQUIATION ... 20
5.7 FIl@ SITUCIUIE ...t e e e e s 22
5.7.1 Code file SITUCTUIEcoeeeiieie e e 22
5.7.2 Header file StrUCLUIe.........oooviiiii e 22
5.8 VersioN CRECK ..o e 25
6 Requirements traceabilityccccoeiiiiiiiiiii e 27
7 Functional SPECIfICALIONuuuiiiiiie e e e e e e eeanes 37
7.1 General funCtioNality.........ccccooiiiiiiiiiii e 37
7.2 Hardware object handles............ooooooiiiiii i 37
7.3 Static CAN L-PDU handlesuciiiiiiiiiicieee e 40
7.4 Dynamic CAN transmit L-PDU handles...........cooooooiiiiie, 41
7.5 Physical cChannel VIEWccooiiiiiiiiiii e 42
7.6 CAN hardware UNit..........ccooiieiiiiiiiiiie e e 44
7.7 BasicCAN and FUIICAN receplionccouviiiiiiiiiiee e 45
A T 1 011 F= 172 11 o o 1 PP 46
7.9 TranSMIt FEOUEST ...coeviiiiii e e e e e e e e e r s a7
7.10 Transmit data flOWuiiii e 48
7.11 Transmit DUFFEIING «oovvveeeii e e 49
7.11.1 General DENAVION......coii i 49
7.11.2 Buffer CharaCteristiCS..........uuuuiiiii e 50
7.11.2.1 Storage of L-PDUs in the transmit L-PDU buffer.......................... 50
7.11.2.2 Clearance of transmit L-PDU bufferscccccciiiiiniiiiiiiiiiinn, 52
7.11.2.3 Initialization of transmit L-PDU buffers.........ccccccceciiiiiiiiiiiiiiiiinnnnn. 52
7.11.3 Data integrity of transmit L-PDU buffers...........cccccouviiiiniiiiiinieiinn, 53
7.12 Transmit CONfIrMAatioNccoouiiiiiiiiiiii e 53
7.12.1 Confirmation after transmission completionccccccceeeeviiieeeeeeeeninnnns 53
5 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

Vv5.0.0

R4.0 Rev 3

7.12.2 Confirmation of transmit cancellationccccccvviiiiiiiie e, 54
7.13 Transmit CaNCEIlAtIONccooiiiiiiiiiiii e 54
7.13.1 Transmit cancellation not supported or not used.............c.ceeeeeevvvernnnnns 54
7.13.2 Transmit cancellation supported and used............ccoevvvviiiiinneeeieeecennnnns 55
7.14 ReceiVe data flOWuuuiiiii e 57
7.14.1 Location of PDU data buffers ..., 57
7.14.2 Receive data floOW.........ccoeiiiiiiiiii e 57
7.15 ReCeIVe INAICALION ...ceeviiiiiie e 59
7.16 Read reCeiVed dataccoeeeeeeeiieiiiiiiie e 61
7.17 Read TX/RX NOtification STAtUS..........coviiiiiiiiiiiiiiii e 61
A T B - = W] (=T | PP 62
7.19 CAN CONtroller MOUE ... 63
7.19.1 General funCtioNalityooevueiiiiiee e 63
7.19.2 CAN Controller operation MOdESuuuiiiiiiiiiiiiiiiiiiine e eeeeeiiiiiann 66
7.19.2.1 CANIF_CS_UNINIT ..ottiiiiiiiiiiiiiiiiiiiiiiiniiiiieeineeeseneieeeeeeneneeeneeen. 66
7.19.2.2 CANIF_CS _INIT Loiiiiitiiiiiiiiiiiiiiniiiineeeeerrneeeeeenrnrene————- 66
7.19.2.2.1 CANIF_CS _STOPPED........uuttiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieininees 67
7.19.2.2.2 CANIF_CS _STARTEDuuuiiiiiiiiiiiiiiiiinneennnnees 68
7.19.2.2.3 CANIF_CS SLEEP ... 69

A T T = 1 U O L e 69
7.19.2.4 Mode INAICAtION.......ccceuiiiiii e 70
7.19.3 Controller mode tranSItioNScooeiieiiiiiiiiirie et 70
A S B A 1V 1= T | 71
7.19.4.1 Wake-Up deteCliONccevvueiiiee e 71
7.19.4.2 Wake-up validationcccooeieiiiiiiiiiiiie e 72
7.20 PDU channel mode CONtroluuuuiiiiiiiiiiii e 73
7.20.1 PDU Channel groUPScccvvvuiiiiiiiie e eeeeeeiiiie e e e e e e e e e e e e e eeanannns 73
7.20.2 PDU channel MOUEScooouiiiiiiiiieeeeeeeeii e 74
7.20.2.1 CANIF_OFFLINEottttiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiie e 75
7.20.2.2 CANIF_ONLINEcuttttttiiiiiiiiiiiiiiiieeiiieeneeeneeeeeeeeereseeeeeeeeeeeenn.s 76
7.20.2.3 CANIF_OFFLINE_ACTIVEttttiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiieinennnnneens 77
7.21 Software reCeIVe filter..... .o 78
7.21.1 Software filtering CONCEPL........uciiiii e 78
7.21.2 Software filter algorithms...........ccoooo i 79
7.22 DLC ChECK ..o 79
7.23 L-PDU dispatcher to Upper [ayers ... 80
A2 S o | 11 o /4T Yo [P 80
7.25 Multiple CAN DIIVEr SUPPOIT....ccieiiiiiiiee et e e 81
7.25.1 Transmit requests by using multiple CAN Drivers........ccccccceeeevvvevvnnnnns 81
7.25.2 Notification mechanism by using multiple CAN Drivers............cccc....... 83
7.25.3 Mapping table for multiple CAN Driver handling...................cceevvvvnnnnnnn 85
7.26 Partial NetWOIKINGccvuuriiiie e 86
7.27 Error ClasSifiCatiONiii e e et e e e e 87
A I = ¢ (o] g0 1= (=Tox 1 o o [P PPTR 88
A4S I = ¢ (o gl o) 1 To%= U1 o o [88
4RO R B 1T o 10 o [|1 o [P PP 89
7.31 Published iNnfOrmMation...........ccooeiiiiiiiii e 89
8 API SPECIICALIONttt aaeaaaeae 91
S 00 R 1401 oTo] £ (=T I 1Y/ 1= 1S P 91
6 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

Vv5.0.0

R4.0 Rev 3

8.2 Type defiNitiONScooviiiiiii i e 91
8.2.1 Canlf_ConfIgTYPEcoeeeeieiiiee e 91
8.2.2 Canlf_ControllerMOUdETYPE ..uuuuiiieeeeieeeeiieie e et e e e 92
8.2.3 Canlf_PAUSEIMOOETYPEuuieii i 92
8.2.4 Canlf_PAUuGEIMOAETYPE ..coovvieiiiie et e e e 93
8.2.5 Canlf_NOUTSIAtUSTYPE ..ouveiieee e 93
8.3 FUNCHON defiNItiONScooeeeeeeeeeee e 93
8.3.1 CaNIf NI e 93
8.3.2 Canlf_SetControllerMOode...........cooevviiieiiiiiieeeec e 94
8.3.3 Canlf_GetControllerMOdecoovviiiiiiiiee e 95
8.3.4 Canlf _TranSMIL.........cooviii e 96
8.3.5 Canlf_CancelTranSmitcoooe i 98
8.3.6 Canlf _ReadRXPAUDALA...........ccecevvviiiieiiiiie e 99
8.3.7 Canlf_ReadTXNOtfSIAtUSccevriiiiiieie e 100
8.3.8 Canlf ReadRXNOtIfStatUSccoevviiiiiiiiie e 101
8.3.9 Canlf_SetPAUMOUE..........coiiiiiiiieei e 102
8.3.10 Canlf GetPAUMOUEcoviiiiiiiiie e 103
8.3.11 Canlf_GetVersionInfo.........couuuuiiiiiiiiieeie e 103
8.3.12 Canlf_SetDynamiCTXIdcuuuiiiiiiiiiiiiiicie e e 104
8.3.13 Canlf_SetTreVMOAEcooviiiiiiiii e 105
8.3.14 Canlf GetTreVMOUE.......ccvviiiiiiiiii e 106
8.3.15 Canlf_GetTrcvWakeUpREASONccooviiiiiiiiiiieeeee et 108
8.3.16 Canlf_SetTrcvWakeUpMOUEcoeeieeiiiiieiiiiiee e e eeeeeeaans 109
8.3.17 Canlf_CheCkWakKeupcouuuuuiiiiiiiiiiiii e 111
8.3.18 Canlf _CheckValidation.............ccoiiiiiiiiiiieeeie e 111
8.3.19 Canlf_GetTxConfirmationStateccovvviiiiiiiiiieeiiieeeii e 112
8.3.20 Canlf_ClearTreVWUIFIAQ.......ccuvveiiiiiieeeeeeeecie e e e e eeeaens 113
8.3.21 Canlf_CheckTrcvWakeFlagcccooeeiiiiiiiiiiiiiiiieieeeei e 114
8.3.22 Canlf _CheckBaudrate............ccouuiiiiiiiiiiie e 114
8.3.23 Canlf_ChangeBaudratecccooeeiiiiiiiiiiiiiii e 115
8.4 Callback NOtIfICAIONS.......ccooe e 116
8.4.1 Canlf_TXCoNfIrMatioNcooeiiiiiiiiii e 117
8.4.2 Canlf RXINAICALION......ccceiiiiiiiiiiiieeeeeeeeeeeeeeeeeeee e 118
8.4.3 Canlf_CancelTXConfirmationccoovieiiiiiiiiiiiii e 119
8.4.4 Canlf_ControllerBUuSOff.........oiiiiiiii e 121
8.4.5 Canlf_ConfirmPnAvailability.............ccooiiiiiiiie 121
8.4.6 Canlf_ClearTrcvWufFlagindicationccceeeiiieiiiiiiiiiiiiiiee e, 122
8.4.7 Canlf_CheckTrcvWakeFlagIndicationcoeuuviiiieniiiiiiiiiiiien. 123
8.4.8 Canlf_ControllerModelndication..............ccooeeevviiiiiiiiiiiie e, 124
8.4.9 Canlf_TrcvModelndiCationcoouuuieiiiiinie e 125
8.5 Scheduled fUNCLIONSccoooeiiie e 126
8.6 EXpeCted INTEITACESuuueii i 126
8.6.1 Mandatory INTEIfACES..........ceuuuiiiii e e 127
8.6.2 Optional INEITACEScevveiiiii e 127
8.6.3 Configurable interfacesccoiiiiieiiiiiicce e 127
8.6.3.1 <User_TXConfirmation>uuiiiiiiiiiieiiiii e 128
8.6.3.2 <User RXINAICAtION>ccoooiiiiiiiiiiie e 130
8.6.3.3 <User_ValidateWakeupEvent>...........cccccccceeeiiiiiiiiiiiiiiiiie e, 132
8.6.3.4 <User_ControllerBusOff>........ccccoeiiiiiiiiiiiii e, 134
8.6.3.5 <User_ConfirmPnAvailability>iiiiiiiiii e, 135

7 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

Vv5.0.0

R4.0 Rev 3

8.6.3.6 <User_ClearTrcvWufFlagindication>.............ccoooeiiiiiiiiiiiiiiiinns 136
8.6.3.7 <User_CheckTrcvWakeFlagindication>..............ccccoevvviiiiinnnnnnn. 138
8.6.3.8 <User_ControllerModelndication>ccooeveiiiiiiiieiiiiieiens 139
8.6.3.9 <User_TrcvModelndication>...........ccccceeiiiiieeee, 140

9 SeqUENCE TIAQIAIMSccceeiiiiiiiee et e e e e e e e e e e et s e e e e e e e eeeaaraanseaeeeeeeennnes 143
9.1 Transmit request (SiNgle CAN DIVEI)....ccccoiiiiiiiiiiiiiee e 143
9.2 Transmit request (multiple CAN DIIVEIS)........uuuiiiiiiieeiiiiieiiiiie e e e 144
9.3 Transmit confirmation (interrupt MOde)oouuuviiiiiiiiiiiiie e 146
9.4 Transmit confirmation (polling MOde)cooevvviiiiiiiiiiiiieeee e, 147
9.5 Transmit confirmation (with buffering)eeeiii 148
9.6 Transmit cancellation (with buffering)...........ooeeiiiiiii 150
9.7 Transmit CaNCEIlAtIONcooiiiiiiiiiiii e 152
9.8 Receive indication (interrupt MOAE).........ccovvvrrriiiiiiiie e e e, 154
9.9 Receive indication (Polling MOdE)cooviiiiiiiiiiiii e 156
9.10 Read received dataoooeeeeeiiiiii e 158
9.11 Start CAN NEIWOIK.......uuueiiiee ettt e e e e e eeeeees 160
9.12 BUSOff NOLIfICALION ...ccoeeeeeeeeeeeee e 162
9.13 BUSOMf FTECOVEIY ... it e e e e eeeeees 163
10 Configuration SPECIfICAION.............uuuriiiiiiiiiiiiiiiiie i 165
10.1 How to read thisS ChapLerccooiiiiiiii e 165
10.1.1 Configuration and configuration parametersccccccccceeeeeeeeeeeennnns 165
L10.1.2 VAlTANTS .oeeiiiie ettt e e e e et e e e e e e e e eeabbb s e e e e e e eeeeene 165
10.1.3 CONTAINEIS ..o 165
10.1.4 Specification template for configuration parameters 165
10.2 Containers and configuration parameterscccceeveeeereeeeiiiiiiiieeeeeeennnnns 166
L10.2. 1 VANTANTS .oueiiiie ettt e e e e et s e e e e e e e e e abbb e e e e e e eeeeene 167
10.2.2 CanIf oo 167
10.2.3 CanIfPriVAtECTQ...ccuuuuuie i 169
O OF - o | | {01 o] ol @ o PSR 170
10.2.5 CanlfINItCfg ..coeeeeeeeee e 176
O T OF= o | | T o [VT4 o PSR 177
10.2.7 CanlifRXPAUCTY coeeeeiiiiiieie et e e eeeeees 183
10.2.8 CanlfRXPAUuCanIdRaNGE..........uuuuiiiiieeiiiieeeiiiei e e e e e e e eeeanns 188
10.2.9 CanlfDISPatCNCTQuuiiii e 188
10.2.20 CanfCtrICIg . .ccoe oo 195
10.2.11 CanIfCtrIDIVCIQ cuuueueee et eeeeees 196
O A OF- 1o | I (1Y] Y4 o ST 198
10.2.13 CaAnIfTICVCIQ oeeeiiiiiiiee et e e e e eeeees 199
10.2.14 CanlfinitHONCIGcoooeiiieeeee 200
10.2.15 CanIfHINCIQ ...coieiiiiieeee e 202
10.2.16 CanIfHINCTG...ccoo oo 203
10.2.17 CanlfHrhRANQECTG .. .coeiiieeiiiicie e 205
10.2.18 CanlfBUufferCig... ..o e e e 207
11 Changes to release 4.0.3... ... 209
11.1 Deleted SWS ITEIMSuuuiiiiiiiiiiiiiiiiiiiiiiiii bbb ebaaaneaannnne 209
11.2 Replaced SWS ITEIMSuuuuuiiii it e e e e eeenes 210
11.3 Changed SWS itEIMScuuuiiiii e eeeeeeeei e e e e e e e e e e e e e e e eeeenens 210
11.4 Added SWS IEIMS ...ttt et e e e e eeeeeees 210
8 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

Vv5.0.0

R4.0 Rev 3

12 Not applicable reqUIrEMENLESccccooiiiiiiii e 213
9 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

Vv5.0.0
R4.0 Rev 3

Known Limitations

10 of 213

The parameter wakeupSource used in the wake up mechanism
(Canlf_CheckWakeup, <User_ValidateWakeupEvent>,

<User_SetWakeupEvent>, Can_CheckWakeup, CanTrcv_CheckWakeup) is
not fully specified.

Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTO SAR Specification of CAN Interface
o V5.0.0

R4.0 Rev 3

1 Introduction and functional overview

This specification describes the functionality, APl and the configuration for the
AUTOSAR Basic Software module CAN Interface.

The CAN Interface module is located between the low level CAN device drivers (CAN
Driver and Transceiver Driver) and the upper communication service layers (i.e. CAN
State Manager, CAN Network Management, CAN Transport Protocol, PDU Router).
It represents the interface to the services of the CAN Driver for the upper
communication layers.

The CAN Interface module provides a unique interface to manage different CAN
hardware device types like CAN controllers and CAN transceivers used by the
defined ECU hardware layout. Thus multiple underlying internal and external CAN
controllers/CAN transceivers can be controlled by the CAN State Manager module
based on a physical CAN channel related view.

System Communication Services
Services
CAN Generic NM
. DIC . State Interface / NM
AUTOSAR Diagnostic Manager GW
= COM Com.
9 Manager
g CANNM
©
=
=
S PDU Router
8
S PDU
€ Multi-
5 plexer CAN Transport
(@} Protocol

CAN Interface

CAN Transceiver Driver for ext.
Driver CAN ASIC

Communication drivers

DIO driver | SPI driver | CAN driver |

External
CAN controller

Figure 1 AUTOSAR CAN Layer Model (see [2])

11 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

The CAN Interface module consists of all CAN hardware independent tasks, which
belongs to the CAN communication device drivers of the corresponding ECU. Those
functionality is implemented once in the CAN Interface module, so that underlying
CAN device drivers only focus on access and control of the corresponding specific
CAN hardware device.

The CAN Interface module fulfils main control flow and data flow requirements of the
PDU Router and upper layer communication modules of the AUTOSAR COM stack:
transmit request processing, transmit confirmation / receive indication / error
notification and start / stop of a CAN controller and thus waking up / participating on a
network. Its data processing and notification API to is based on CAN L-PDUs,
whereas APIs for control and mode handling provides a CAN controller related view.

In case of transmit requests the CAN Interface module completes the L-PDU
transmission with corresponding parameters and relays the CAN L-PDU via the
appropriate CAN Driver to the CAN controller. At reception the CAN Interface module
distributes the received L-PDUs to the upper layer. The assignment between receive
L-PDU and upper layer is statically configured. At transmit confirmation the CAN
Interface is responsible for the notification of upper layers about successful
transmission.

The CAN Interface module provides CAN communication abstracted access to the
CAN Driver and CAN Transceiver Driver services for control and supervision of the
CAN network. The CAN Interface forwards downwards the status change requests
from the CAN State Manager to the lower layer CAN device drivers, and upwards the
CAN Driver / CAN Transceiver Driver events are forwarded by the CAN Interface
module to e.g. the corresponding NM module.

12 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv5.0.0
R4.0 Rev 3

2 Acronyms and Abbreviations

The glossary below includes acronyms and abbreviations relevant to the CAN

Interface module that are not included in the AUTOSAR glossary.

Abbreviation / Acronym: | Description:

CAN L-PDU CAN Protocol Data Unit. Consists of an identifier, DLC and data
(SDU).

CAN L-SDU CAN Service Data Unit. Data that are transported inside the CAN L-
PDU.

CanDrv CAN Driver module

Canlf CAN Interface module

CanNm CAN Network Management module

CanSm CAN State Manager module

CanTp CAN Transport Layer module

CanTrcv CAN Transceiver Driver module

CCMSM CAN Interface Controller Mode State Machine (for one controller)

CDD Complex Device Driver

ComM Communication Manager module

DCM Diagnostic Communication Manager module

Dem Diagnostic Event Manager module

DET Development Error Tracer module

DLC Data Length

DLL Data Link Layer

EcuM ECU State Manager module

FIFO First-In-First-Out

HOH CAN hardware object handle

HRH CAN hardware receive handle

HTH CAN hardware transmit handle

ISR Interrupt service routine

L-PDU Protocol Data Unit for the data link layer (DLL)

L-SDU Service Data Unit for the data link layer (DLL)

PDU Protocol Data Unit

PduR PDU Router module

PN Partial Networking

SDU Service Data Unit

Terms: Description:

Buffer Fixed sized memory area for a single data unit (e.g. CAN ID, DLC,
SDU, etc.) is stored at a dedicated memory address in RAM.

CAN communication matrix | Describes the complete CAN network:

= Participating nodes
= Definition of all CAN PDUs (identifier, DLC)
= Source and Sinks for PDUs

CAN controller A CAN controller is a CPU on-chip or external standalone hardware
device. One CAN controller is connected to one physical channel.

CAN device driver Generic term of CAN Driver and CAN Transceiver Driver.

CAN hardware unit A CAN Hardware unit may consist of one or multiple CAN controllers
of the same type and one, two or multiple CAN RAM areas. The CAN
hardware unit is located on-chip or as external device. The CAN
hardware unit is represented by one CAN Driver.

Canlf Controller mode state | This is not really a state machine, which may be influenced by

machine transmission requests. This is an image of the current abstracted state
of an appropriate CAN controller. The state transitions can only be
realized by UL modules like the CanSm or by external events like e.g.
if a BusOff occurred.

13 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv5.0.0
R4.0 Rev 3

Canlf Receive L-PDU / Canlf
Rx L-PDU

L-PDU handle of which the direction is set to “lower to upper layer”.

Canlf Receive L-PDU buffer /
CanlfRxBuffer

Single element RAM buffer located in the CAN Interface module to
store whole receive L-PDUs.

Canlf Transmit L-PDU / Canlf
Tx L-PDU

L-PDU handle of which the direction is set to “upper to lower layer”.

Canlf Transmit L-PDU buffer
| CanlfTxBuffer

Single CanlIfTxBuffer element located in the Canlf to store one or
multiple Canlf Tx L-PDUSs. If the buffersize of a single CanlfTxBuffer
element is set to 0, a CanlfTxBuffer element is only used to refer a
HTH.

Hardware object/ HW object

A CAN hardware object is defined as a PDU buffer inside the CAN
RAM of the CAN hardware unit / CAN controller.

Hardware receive handle
(HRH)

The Hardware Receive Handle (HRH) is defined and provided by the
CAN Driver. Each HRH typically represents just one hardware object.
The HRH is used as a parameter by the CAN Interface Layer for i.e.
software filtering.

Hardware transmit handle
(HTH)

The Hardware Transmit Handle (HTH) is defined and provided by the
CAN Driver. Each HTH typically represents just one or multiple CAN
hardware objects that are configured as CAN hardware transmit buffer
pool.

Inner priority inversion

Transmission of a high-priority L-PDU is prevented by the presence of
a pending low-priority L-PDU in the same transmit hardware object.

Integration Code

Code that the Integrator needs to add to an AUTOSAR System, to
adapt non-standardized functionalities. Examples are Callouts of the
ECU State Manager and Callbacks of various other BSW modules.
The 1/0 Hardware Abstraction is called Integration Code, too.

Lowest In — First Out / LOFO

This is a data storage procedure, whereas always the elements with
the lowest values will be extracted.

L-PDU handle

The L-PDU handle is defined as integer type and placed inside the
CAN Interface layer. Typically, each handle represents an L-PDU,
which is a constant structure with information for Tx/Rx processing.

L-PDU channel group

Group of CAN L-PDUs, which belong to just one underlying network.
Usually they are handled by one upper layer module.

Outer priority inversion

A time gap occurs between two consecutive transmit L-PDUs.

In this case a lower priority L-PDU from another node can prevent
sending the own higher priority L-PDU. Here the higher priority L-PDU
cannot participate in arbitration during network access because the
lower priority L-PDU already won the arbitration.

Physical channel

A physical channel represents an interface from a CAN controller to
the CAN Network. Different physical channels of the CAN hardware
unit may access different networks.

Tx request

Transmit request to the CAN Interface module from a upper layer
module of the Canlf

14 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

Vv5.0.0
R4.0 Rev 3

3 Related documentation

3.1
[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

15 of 213

Input documents

List of Basic Software Modules
AUTOSAR_TR_BSWModuleList.pdf

Layered Software Architecture
AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf

General Requirements on Basic Software Modules
AUTOSAR_SRS_BSWGeneral.pdf

Specification of Standard Types
AUTOSAR_SWS_StandardTypes.pdf

Specification of Communication Stack Types
AUTOSAR_SWS_CommunicationStackTypes.pdf

Specification of ECU Configuration
AUTOSAR_TPS_ECUConfiguration.pdf

Requirements on CAN
AUTOSAR_SRS_CAN.pdf

Specification of CAN Driver
AUTOSAR_SWS_CANDriver.pdf

Specification of CAN Transceiver Driver
AUTOSAR_SWS_CANTransceiverDriver.pdf

Specification of CAN Transport Layer
AUTOSAR_SWS_ CANTransportLayer.pdf

Specification of CAN State Manager
AUTOSAR_SWS_CAN_StateManager.pdf

Specification of CAN Network Management
AUTOSAR_SWS_CAN_NM.pdf

Specification of Generic Specification of Generic Network Management
Interface
AUTOSAR_SWS_NetworkManagementinterface.pdf

Specification of Communication
AUTOSAR_SWS_COM.pdf

Specification of ECU State Manager
AUTOSAR_SWS_ ECUStateManager.pdf

Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

[16]

[17]

3.2
[18]

[19]

[20]

[21]

16 of 213

Vv5.0.0
R4.0 Rev 3

Specification of BSW Scheduler
AUTOSAR_SWS_BSW_Scheduler.pdf

Basic Software Module Description Template
AUTOSAR_TPS_BSWModuleDescriptionTemplate.pdf

Related standards and norms
ISO11898 — Road vehicles - controller area network (CAN)

ISO14229-1 Unified diagnostic services (UDS) - Part 1: Specification and
Requirements (ISO DIS 26.05.2004)

ISO15765-2 Diagnostics on controller area network (CAN) - Part 2: Network
layer services

ISO15765-3 Diagnostics on controller area network (CAN) - Part 3:
Implementation of unified diagnostic services (UDS on CAN)

Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3
4 Constraints and assumptions

4.1 Limitations

The CAN Interface can be used for CAN communication only and is specifically
designed to operate with one or multiple underlying CAN Drivers and CAN
Transceiver Drivers. Several CAN Driver modules covering different CAN hardware
units are represented by just one generic interface as specified in the CAN Driver
specification. As well in the same manner several CAN Transceiver Driver modules
covering different CAN transceiver devices are represented by just one generic
interface as specified in the CAN Transceiver Driver specification. Other protocols
than CAN (i.e. LIN or FlexRay) are not supported.

4.2 Applicability to car domains

The CAN Interface can be used for all domain applications when the CAN protocol is
used.

17 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv5.0.0
R4.0 Rev 3

5 Dependencies to other modules

This section describes the relations to other modules within the AUTOSAR basic
software architecture. It contains brief descriptions of configuration information and
services, which are required by the CAN Interface Layer from other modules.

cmp Can Stack
ComServices
Com «mandatory» | «module»
«realize» CansSM
II
. ’
«realize» a F «realize»
Com Cok —_ «module» y /
A «mandalory»I Com oo /
I /
" /
«optional> CanSM_Cbk
fm PduR_Com / -
1 i / G
| «realize» / ’
1 7 ’
H .
/ A
gl EPTU TS i «re/allze» gl
ionall ’ g
«module» opt y» o/ / <«module>»
PduR oo | «ealize» «mandatory» , ol oo
g /
T N / / |
«realize» N PduR_CanTp // / «realize»
N / /
N / /
Y 7/
N / ’
v «use N / g =7
" «use» -
PAuR_Canif “~. eiEEll / 5 -7 canTp ook
AN AN ¥4 I' -7
< ~ 7 7 -
N N ’ -
ComHwWA RS N . / ad
N 7, 7
~ N <
) \\) II 3 Q
~ 4 _
~ 4 «use»
«use» / -7
N ’ e
S Cain If / e Can;l’rcv
AN < «realize» ,l s -7 «realize»
S ~ ’I -7
Canlf «module»
oo CanTrcv oo
T
| L
| «realize» «realize»
1
1
1
1
«use»
|
i Canlf_Cbk CanTrcv_Cbk
i A
T AN
1
CombDrivers : , |
T t
1
1
1
«manqatory»
1
|
1
«realize» :
1
«module»
«Peripheral»
CanController

Figure 2 CANIF dependencies in AUTOSAR BSW

18 of 213
- AUTOSAR confidential -

Document ID 012: AUTOSAR_SWS_CANInterface.doc

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3
5.1 Upper Protocol Layers

Inside the AUTOSAR BSW architecture the upper layers of the CAN Interface
module (Abbr.: Canlf) are represented by the PDU Router module (Abbr.: PduR),
CAN Network Management module (Abbr.: CanNm), CAN Transport Layer module
(Abbr.: CanTp), CAN State Manager module (Abbr.: CanSm), ECU State Manager
module (abbr.: EcuM) and Complex Device Driver modules (Abbr.: CDD).

The AUTOSAR BSW architecture indicates that the application data buffers are
located in the upper layer, to which they belong. Direct access to these buffers is
prohibited. The buffer location is passed by the Canlf from or to the CAN Driver
module (Abbr.: CanDrv) during transmission and reception. During execution of these
transmission/reception indication services buffer location is passed. Data integrity is
guaranteed by use of lock mechanisms each time the buffer has been accessed. See
[7.18 Data integrity].

The API used by the Canlf consists of notification services as basic agents for the
transfer of CAN related data (i.e. CAN DLC) to the target upper layer. The call

parameters of these services points to the information buffered in the CanDrv or they
refer directly to the CAN hardware.

5.2 Initialization: Ecu State Manager

The EcuM initializes the Canlf (refer to [15] Specification of ECU State Manager).

5.3 Mode Control: CAN State Manager

The CanSM module is responsible for mode control management of all supported
CAN controllers and CAN transceivers.

5.4 Lower layers: CAN Driver

The main lower layer CAN device driver is represented by the CanDrv (see [8]
Specification of CAN Driver). The Canlf has a close relation to the CanDrv as a result
of its position in the AUTOSAR Basic Software Architecture.

The CanDrv provides a hardware abstracted access to the CAN controller only, but
control of operation modes is done in CanSm only.

The CanDrv detects and processes events of the CAN controllers and notifies those
to the Canlif.

The Canlf passes operation mode requests of the CanSm to the corresponding
underlying CAN controllers.

The CanDrv provides a normalized L-SDU to ensure hardware independence of the
Canlf. The pointer to this normalized L-SDU points either to a temporary buffer (for

19 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

e.g. data normalizing) or to the CAN hardware dependent to the CanDrv. For the
Canlf the kind of L-SDU buffer is invisible.

The Canlf provides notification services used by the CanDrv in all notifications
scenarios, for example: transmit confirmation (8.4.1 Canlf_TxConfirmation, see
[CANIFO0Q07), receive indication (8.4.2 Canlf_RxIndication, see [CANIF006), transmit
cancellation notification (8.4.3 Canlf_CancelTxConfirmation, see [CANIF101), BusOff
notification (8.4.4 Canlf_ControllerBusOff, see [CANIF218) and notification of a
controller mode change (8.4.8, see CANIF669).

In case of using multiple CanDrv serving different interrupt vectors these callback
services mentioned above must be re-entrant, refer to [7.25 Multiple CAN Driver
support]. Reentrancy of callback functions is specified in chapter 8.4.

The callback services called by the CanDrv are declared and implemented inside the
Canlf. The callback services called by the Canlf are declared and placed inside the
appropriate upper communication service layer, for example PduR, CanNm, CanTp.
The Canlf structure is specified in chapter 5.7 File structure.

The number of configured CAN controllers does not necessarily belong to the
number of used CAN transceivers. In case multiple CAN controllers of a different
types operate on the same CAN network, one CAN transceiver and CanTrcv is
sufficient, whereas dependent to the type of the CAN controller devices one or two
different CanDrv are needed (see 7.5 Physical channel view).

5.5 Lower layers: CAN Transceiver Driver

The second available lower layer CAN device driver is represented by the CanTrcv
(see [9] Specification of CAN Transceiver Driver) (Abbr.: CanTrcv).

Each CanTrcv itself does operation mode control of the CAN transceiver device. The
Canlf just maps all APIs of several underlying Cantrcv to a unique one, thus CanSm
is able to trigger a transition of the corresponding CAN transceiver modes. No control
or handling functionality belonging to CanTrcv is done inside the Canlf.

The Canlf maps the following services of all underlying CanTrcvs to one unique
interface. These are further described in the CAN Transceiver Driver SWS (see
[9]Specification of CAN Transceiver Driver):

= Unique CanTrcv mode request and read services to manage the operation
modes of each underlying CAN transceiver device.

» Read service for CAN transceiver wake up reason support.

= Mode request service to enable/disable/clear wake up event state of each
used CAN transceiver (Canlf_SetTrcvMode(), see CANIF287).

5.6 Configuration

The Canlf design is optimized to manage CAN protocol specific capabilities and
handling of the used underlying CAN controller.

20 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

The Canlf is capable to change the CAN configuration without a re-build. Therefore
the function Canlf_Init (see [CANIFO001) retrieves the required CAN configuration
information from configuration containers and parameters, which are specified (linked
as references, or additional parameters) in chapter 10, see Figure 32 Overview about
CAN Interface configuration containers
. This section gives a summary of the retrieved information, e.qg.:
= Number of CAN controllers. The number of CAN controllers is necessary for
dispatching of transmit and receive L-PDUs and for the control of the status of
the available CAN Drivers (see CanlfCanControllerldRef).
= Number of hardware object handles. To supervise transmit requests the CAN
Interface needs to know the number of HTHs and the assignments between
each HTH and the corresponding CAN controller (see
CANIF_HTH_CAN_CONTROLLER_ID_REF, CANIF625 Conf;
CANIF_HTH_ID_SYMREF, CANIF627_Conf).
= Range of received CAN IDs passing hardware acceptance filter for each
hardware object. The CAN Interface uses fixed assignments between HRHs
and L-PDUs to be received in the corresponding hardware object to conduct a
search algorithm (see 7.21 Software receive filter, see
CANIF_SOFTWARE_FILTER_HRH,
CANIF_HRH_CAN_CONTROLLER_ID_REF, CANIF_HRH_ID_SYMREF,
CANIF634_Conf)

The Canlf needs information about all used upper communication service layers and
L-PDUs to be dispatched. The following information has to be set up at configuration
time for integration of the Canlf inside the AUTOSAR COM stack:

» Transmitting upper layer module and transmit I-PDU for each transmit L-PDU.
=> Used for dispatching of transmit confirmation services (see
CANIF_CANTXPDUID, CANIF247_ Conf).

= Receiving upper layer module and receive I-PDU for each receive L-PDU.
=> Used for L-PDU dispatching during receive indication (see
CANIF_CANRXPDUID, CANIF249 Conf).

The Canlf needs the description of the controller and the own ECU, which is
connected to one or multiple CAN networks. The following information is therefore
retrieved from the CAN communication matrix, part of the AUTOSAR system
configuration (see containers: CanlfTxPduConfig, CANIF248 Conf;
CanlfRxPduConfig, CANIF249 Conf):

= All L-PDUs received on each physical channel of this ECU.
=> Used for software filtering and receive L-PDU dispatch
= All L-PDUs that shall be transmitted by each physical channel on this ECU.
=> Used for the transmit request and transmit L-PDU dispatch
= Properties of these L-PDUs (ID, DLC).
=> Used for software filtering, receive indication services, DLC check
= Transmitter for each transmitted L-PDU (i.e. PduR, CanNm, CanTp).
=> Used for the transmit confirmation services
= Receiver for each receive L-PDU (i.e. PduR, CanNm, CanTp)
=> Used for the L-PDU dispatch

21 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

= Symbolic L-PDU name.
=> Used for the representation of Rx/Tx data buffer addresses

5.7 File structure

5.7.1 Code file structure

[CANIF374] TThe code file structure shall not be defined within this specification

completely. Here it shall be pointed out that the code-file structure shall include the
following files named:

= Canlf_Lcfg.c - forlink time configurable parameters.

= Canlf_PBcfg.c - for post build time configurable parameters.

These files shall contain all link time and post-build time configurable parameters. |
(BSWO00380)

[CANIF375] I'The code-file structure shall include Canlf_<X>.c - for
implementation of the provided functionality. The extension <X> is optional for usage
of multiple C-files. ()

[CANIF376] I'The code-file structure shall include Canl¥_Cfg.c - for pre-compile
time configurable parameters. (BSW00380, BSW00419)

[CANIF377] T'The Canlf shall access the location of the API of all used underlying

CanDrvs for pre-compile time configuration either by using of external declaration in
includes of all CanDrvs public header files can_<x>.h or by the code file

Canlf_Cfg.c. ()

[CANIF378] I'The Canlf shall access the location of the API of all used underlying

CanbDrvs for link time configuration by a set of function pointers for each CanDrv. |()

The values for the function pointers for each CanDrv are given at link time.

Rationale for CANIF377 and CANIF378: The API of all used underlying CanDrv must
be known at the latest at link-time.

The include file structure can be constructed as shown in figure 3.

5.7.2 Header file structure

[CANIF116] I The Canlf shall offer a header file Canlf_h, which contains the
declaration of the Canlif API.. ()

22 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

[CANIF672] T The header file Canlf.h only contains extern declarations of

constants, global data and services that are specified in the Canlf SWS. |()

Constants, global data types and functions that are only used by the Canlf internally,
are declared within Canlf.c.

[CANIF643] TThe generic type definitions of the Canlf which are described in chapter
8.2 shall be performed in the header file Canlf_Types.h. This file has to be

included in the header file Canlf._h. ()

Dem_IntErrld.h Std _Types.h
(Event Id Symbols)
'I\ Can_GeneralTypes.h A
ComStack Types.h
Dem.h
CAN Interface 7‘
Det.h Canlf_Cfg.h Canlf_Types.h
(included if development error

detection is turned on) |\ N f

optional
MemMap.h \ Canlf.h
<Module>_Canlf.h < Canif.c
v
<Module>_Cbk.h Canlf Cbk.h Canlf Cfg.c
/ opticé
Can_<vID>_<V specific name>.c v
| PduR_Cfg.h
) | CanNm_Cfg.h
optional

Can_<vID>_<V specific name>.h CanTp_Cfg.h
| Can_<vID>_<V specific name>_Cfg.h J

CanTrev_s<viD>_<V specific name>.h CanTrcv_<vID>_<V specific name>_Cfg.h

Description:
> This means that file X includes file Y.

» 'V stands for Vendor: <vID> == <vendorID>; <V specific name> == <Vendor specific name>

Figure 3 Code and include file structure

[CANIF121] I'The Canlf shall provide a header file Canl1T_Cbk. h, which declares

the callback functions called by the CanDrv. |()

23 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

[CANIF122] I'The Canlf shall include necessary configuration data by the header
files:

= Canlf.h — for declaration of the provided interface functions
= Canlf_Cfg.h — for pre-compile time configurable parameters and
= Canlf_Lcfg.h — for link build time configurable parameters

= Canlf_PBcfg.h — for post build time configurable parameters |

(BSW00381, BSW00412)

[CANIF463] I'The Canlf include the following header files <Module>_h:
» Can_<vendorID>_<Vendor specific name><driver
abbreviation>_h
— for services and type definitions of the CanDrv
(e.g.:Can_99 Extl.h, Can_99 Ext2.h)
= CanTrcv_<vendorlID>_<Vendor specific name><driver
abbreviation>_h
— for services and type definitions of the CanTrcv
(e.g.: CanTrcv_99 Extl.h)

= Dem.h — for services of the DEM

» Can_GeneralTypes.h —for CanDrv generic definitions used by the Canlf

= ComStack Types.h - for COM related type definitions

= MemMap.h — for accessing the module specific functionality

provided by the BSW Memory Mapping |

(BSWO00436)
Note: The following header files are indirectly included by ComStack_Types.h:

= Std _Types.h — for AUTOSAR standard types

= Platform_Types.h — for platform specific types

= Compiler.h — for compiler specific language extensions

[CANIF464] I'The Canlf may include following optional header file
= Det.h — for services of the DET ()

[CANIF208] I'The Canlf shall include the following header files <Modulle>_Canlf_h

of those upper layer modules, from which declarations of only Canlf specific API
services or type definitions are needed:

* PduR_Canlf.h — for services and callback declarations of the PduR
= SchM_Canlf.h —for services and callback declarations of the Schivi
1(BSW00415)

[CANIF233] I'The Canlf shall include the following header files <Modulle>_Cbk.h, in
which the callback functions called by the Canlf at the upper layers are declared:

= CanSM_Cbk.h — for callback declarations of the CanSm
= CanNm_Cbk.h — for callback declarations of the CanNm
= CanTp_Cbk.h — for callback declarations of the CanTp
24 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

= EcuM_Cbk.h — for callback declarations of the EcuM

= <CDD> Cbk.h — for callback declarations of CDD; <CDD> is
configurable via parameter
CANIF_CDD_HEADERFILE (see CANIF671 Conf)

10

[CANIF280] I'The Canlf shall include the following header files <Modulle>_Cfg.h,

which contain the configuration data used by the Canlf:
» Can_<vendorlID>_<Vendor specific name><driver
abbreviation>_Cfg.h
— for configuration data of the CanDrv
(e.g.: Can_99 Extl Cfg.h)
» CanTrcv_<Vendor 1d> <Vendor specific name><driver
abbreviation>_Cfg.h
— for configuration data of the CanTrcv
(e.g.: CanTrcv_99 Extl Cfg.h)

= PduR_Cfg.h — for PduR configuration data (e.g. PduR target
PDU Ids)

= CanNm_Cfg.h — for CanNm configuration data (e.g. CanNm target
PDU Ids)

= CanTp_Cfg-h — for CanTp configuration data (e.g. CanTp target
PDU Ids)

= Xcp_Cfg.h - for XCP configuration data (e.g. XCP target PDU

lds) ()

[CANIF150] I'The Canlf shall include the file Dem.h. ()

By this way, reporting production errors as well as the required Event Id symbols are
included. This specification defines the name of the Event Id symbols (see error table
in chapter 7.27 Error classification), which are provided by XML to the DEM
configuration tool. The DEM configuration tool assigns ECU dependent values to the
Event Id symbols and publishes the symbols in Dem_IntErrid.h.

[CANIF278] I'The Canlf shall include the file MemMap . h in case the mapping of code
and data to specific memory sections via memory mapping file is needed for Canlf
implementation. |()

5.8 Version check

[CANIF021] I'The Canlf shall perform Inter Module Checks to avoid integration of
incompatible files.
The imported included files shall be checked by preprocessing directives. j(BSWO004)

The following version numbers shall be verified (see CANIF728) :
- <MODULENAME> AR_RELEASE_MAJOR_VERSION

25 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

- <MODULENAME>_AR_RELEASE_MINOR_VERSION
Where <MODULENAME> is the module abbreviation of the other (external) modules
which provide header files included by the Canlf.

If the values are not identical to the expected values, an error shall be reported.

Hint: The Canlf files check the consistency between the header, C and configuration
files during compilation according to BSW004 General Requirements on Basic
Software Modules [3]. The Canlf's implementer shall avoid the integration of
incompatible files. Minimum implementation is the version check of the header file.

26 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTO SAR

6 Requirements traceability

Specification of CAN Interface
Vv5.0.0
R4.0 Rev 3

Requirement Description Satisfied by
BSWO00306 |These requirements are not applicable to this CANIF999
specification.
BSWO00307 |These requirements are not applicable to this CANIF999
specification.
BSWO00308 |These requirements are not applicable to this CANIF999
specification.
BSWO00309 |These requirements are not applicable to this CANIF999
specification.
BSWO00312 |The Canlf shall protect preemptive events, which | CANIF064
access shared resources, that could be changed
d...
BSWO00318 |The Canlf shall provide the following version CANIF728
numbers with the following naming convention
(see C...
BSWO00321 |The numbering of CANIF729
CANIF_SW_MAJOR_VERSION,
CANIF_SW_NINOR_VERSION and
CANIF_SW_PATCH_VERSION from ...
BSWO00323 |If parameter ConfigPtr of Canlf_Init() has an CANIF302, CANIF311, CANIF774,
invalid value, the Canlf shall report development | CANIF313, CANIF656, CANIF319,
e... CANIF320, CANIF652, CANIF325,
CANIF326, CANIF331, CANIF336,
CANIF341, CANIF346, CANIF657,
CANIF658, CANIF352, CANIF353,
CANIF538, CANIF648, CANIF364,
CANIF650, CANIF537, CANIF649,
CANIF535, CANIF536, CANIF398,
CANIF404, CANIF410, CANIF416,
CANIF417, CANIF418, CANIF419,
CANIF424, CANIF828, CANIF429
BSWO00325 |If a target upper layer module was configured to |CANIF135
be called with its providing receive indication ...
BSWO00326 |These requirements are not applicable to this CANIF999
specification.
BSWO00328 |These requirements are not applicable to this CANIF999
specification.
BSWO00330 |These requirements are not applicable to this CANIF999
specification.
BSWO00334 |These requirements are not applicable to this CANIF999
specification.
BSWO00336 |These requirements are not applicable to this CANIF999
specification.
BSWO00338 |If the CANIF_PUBLIC_DEV_ERROR_DETECT |CANIF019
switch is enabled, API checking is enabled.
BSWO00339 |Production errors shall be reported to the Dem. |CANIF020
BSWO00341 |These requirements are not applicable to this CANIF999
specification.

27 of 213

- AUTOSAR confidential -

Document ID 012: AUTOSAR_SWS_CANInterface.doc

AUTO SAR

Specification of CAN Interface

V5.0.0
R4.0 Rev 3

BSWO00342 |Variant 3: Mix of pre compile-, link time and post | CANIF462
build time parameters.

BSWO00344 |Variant 2: Mix of pre compile- and link time CANIF461, CANIF462
parameters.

BSWO00347 |If multiple CanDrvs are assigned to a Canlf, then | CANIF124
that Canlf shall provide a separate set of call...

BSW00348 CANIF142

BSWO00350 |If the CANIF_PUBLIC_DEV_ERROR_DETECT |CANIF019
switch is enabled, API checking is enabled.

BSWO00353 CANIF142

BSWO00358 CANIF001

BSW00361 CANIF142

BSWO00369 |The detection of development errors is CANIF018
configurable (ON / OFF) at pre-compile time.

BSWO00373 |These requirements are not applicable to this CANIF999
specification.

BSWO00374 |The Canlf shall provide a readable module CANIF726
vendor identification in its published parameters
(see ...

BSWO00376 |These requirements are not applicable to this CANIF999
specification.

BSWO00378 |These requirements are not applicable to this CANIF999
specification.

BSWO00379 |The Canlf shall provide a module identifier in its | CANIF727
published parameters (see CANIF725).

BSWO00380 |The code file structure shall not be defined within | CANIF374, CANIF376
this specification completely.

BSWO00381 |The Canlf shall include necessary configuration |CANIF122
data by the header files:

BSWO00386 |The detection of development errors is CANIF018, CANIF019, CANIF156
configurable (ON / OFF) at pre-compile time.

BSWO004 The Canlf shall perform Inter Module Checks to |CANIF021
avoid integration of incompatible files.

BSWO00402 |The standardized common published CANIF725
parameters as required by BSW00402 in the
General Requirements ...

BSWO00404 |Variant 3: Mix of pre compile-, link time and post | CANIF462
build time parameters.

BSW00405 CANIF001

BSW00407 CANIF158

BSWO00409 |Values for production code Event Ids are CANIF153
assigned externally by the configuration of the
Dem.

BSW00411 CANIF158

BSWO00412 |The Canlf shall include necessary configuration |CANIF122
data by the header files:

BSW00414 CANIF001

BSWO00415 |The Canlf shall include the following header files | CANIF208
_Canlf.

28 of 213

- AUTOSAR confidential -

Document ID 012: AUTOSAR_SWS_CANInterface.doc

AUTO SAR

Specification of CAN Interface

V5.0.0
R4.0 Rev 3

BSWO00416 |These requirements are not applicable to this CANIF999
specification.

BSWO00417 |These requirements are not applicable to this CANIF999
specification.

BSWO00419 |The code-file structure shall include Canlf_Cfg. |CANIF376

BSWO00423 |These requirements are not applicable to this CANIF999
specification.

BSWO00424 |These requirements are not applicable to this CANIF999
specification.

BSWO00425 |These requirements are not applicable to this CANIF999
specification.

BSWO00426 |These requirements are not applicable to this CANIF999
specification.

BSWO00427 |These requirements are not applicable to this CANIF999
specification.

BSWO00428 |These requirements are not applicable to this CANIF999
specification.

BSWO00429 |These requirements are not applicable to this CANIF999
specification.

BSWO00431 |These requirements are not applicable to this CANIF999
specification.

BSWO00432 |These requirements are not applicable to this CANIF999
specification.

BSWO00433 |These requirements are not applicable to this CANIF999
specification.

BSWO00434 |These requirements are not applicable to this CANIF999
specification.

BSWO00435 |These requirements are not applicable to this CANIF999
specification.

BSWO00436 |The Canlf include the following header files . CANIF463

BSWO007 These requirements are not applicable to this CANIF999
specification.

BSWO010 These requirements are not applicable to this CANIF999
specification.

BSWO01001 |The Canlf shall avoid direct access to hardware |CANIF023
specific communication buffers and shall access
i..

BSW01003 CANIF012
BSWO01005 |The Canlf shall accept all received L-PDUs (see |CANIF026
CANIF390) with a DLC value equal or greater

then ...
BSwW01008 CANIF005
BSW01009 CANIF007
BSWO01014 |These requirements are not applicable to this CANIF999
specification.
BSWO01015 |The listed configuration items can be derived CANIF104
from a network description database, which is
based...
BSW01018 |If the Canlf has found the Canld of the received |CANIF030

29 of 213

- AUTOSAR confidential -

Document ID 012: AUTOSAR_SWS_CANInterface.doc

AUTO SAR

Specification of CAN Interface

V5.0.0
R4.0 Rev 3

L-PDU in the list of receive Canlds for the HRH

BSWO01020 |The Canlf shall support buffering of a CAN L- CANIF063
PDU handle for BasicCAN transmission in the
Canlf, i...

BSW01021 CANIF001

BSW01022 CANIF001

BSWO01024 |These requirements are not applicable to this CANIF999
specification.

BSW01027 CANIF003

BSW01028 CANIF229

BSW01029 CANIF014

BSWO01114 |The Canlf shall protect access to transmit L-PDU | CANIF033
buffers for all transmit L-PDUs by usage of crit...

BSW01125 CANIF194

BSWO01126 |If an L-PDU is requested to be transmitted via a |CANIF382, CANIF381
PDU channel mode (refer to chapter 7.

BSW01129 CANIF194

BSW01130 CANIF202, CANIF230

BSW01131 CANIF230

BSWO01136 |(sources) shall be called during CANIF179
Canlf_CheckValidation(WakeupSource),...

BSWO01139 |These requirements are not applicable to this CANIF999
specification.

BSWO01140 |The Canlf shall accept and handle StandardCAN | CANIF281
IDs and ExtendedCAN IDs on the same physical
channe...

BSWO01141 |The Canlf shall set the 'identifier extension flag' |CANIF243
(see [18]ISO11898 - Road vehicles - controlle...

BSW101 CANIF001

BSW159 These requirements are not applicable to this CANIF999
specification.

BSW164 These requirements are not applicable to this CANIF999
specification.

BSW167 These requirements are not applicable to this CANIF999
specification.

BSW168 These requirements are not applicable to this CANIF999
specification.

BSW170 These requirements are not applicable to this CANIF999
specification.

BSW172 These requirements are not applicable to this CANIF999
specification.

Document: General Requirements on Basic Software Modules [3]

[[BSW00344] Reference to link-time configuration | CANIF461, CANIF462

30 of 213

- AUTOSAR confidential -

Document ID 012: AUTOSAR_SWS_CANInterface.doc

AUTO SAR

Specification of CAN Interface
Vv5.0.0
R4.0 Rev 3

[BSWO00404] Reference to post build time
configuration

CANIF462

[BSWO00405] Reference to multiple configuration
sets

CANIF001, chapter 8.2.1 Canlf_ConfigType

[BSWO00345] Pre-Build Configuration

Fulfilled by configuration parameter definitions in
chapter 10.

The configuration parameters are described in a
general way.

[BSW159] Tool-based configuration

Not applicable
(assigned to configuration tool)

[BSW167] Static configuration checking

Not applicable
(assigned to configuration tool)

[BSW171] Configurability of optional functionality

Fulfilled by configuration parameter definitions in
chapter 10.

The configuration parameters are described in a
general way.

[BSW170] Data for reconfiguration of SW-
components

Not applicable
(no interface to AUTOSAR SW Components)

[BSWO00380] Separate C-Files for configuration
parameters

CANIF374, CANIF376

[BSWO00419] Separate C-Files for pre-compile CANIF376
time configuration parameters

[BSWO00381] Separate configuration header file CANIF122
for pre-compile time parameters

[BSWO00412] Separate H-File for configuration CANIF122

parameters

[BSWO00383] List dependencies of configuration
files

Subchapter 5.7.2 Header file structure

[BSWO00384] List dependencies to other modules

Chapter 5 Dependencies to other modules,
subchapter 5.4 Lower layers: CAN Driver

[BSWO00387] Specify the configuration class of
call-out function

Fulfilled by API definitions in chapter 8.

[BSW00388] Introduce containers

Fulfilled by configuration parameter definitions in
chapter 10.

[BSW00389] Containers shall have names

Fulfilled by configuration parameter definitions in
chapter 10.

[BSWO00390] Parameter content shall be unique
within the module

Fulfilled by configuration parameter definitions in
chapter 10.

[BSWO00391] Parameter shall have unique names

Fulfilled by configuration parameter definitions in
chapter 10.

[BSWO00392] Parameters shall have a type

Fulfilled by configuration parameter definitions in
chapter 10.

[BSWO00393] Parameters shall have a range

Fulfilled by configuration parameter definitions in
chapter 10.

[BSWO00394] Specify the scope of the parameters

Fulfilled by configuration parameter definitions in
chapter 10.

[BSWO00395] List the required parameters (per
parameter)

Fulfilled by configuration parameter definitions in
chapter 10.

[BSWO00396] Configuration classes

Fulfilled by configuration parameter definitions in
chapter 10.

[BSWO00397] Pre-compile-time parameters

Fulfilled by configuration parameter definitions in
chapter 10.

[BSW00398] Link-time parameters

Fulfilled by configuration parameter definitions in
chapter 10.

[BSWO00399] Loadable Post-build time parameters

Fulfilled by configuration parameter definitions in
chapter 10.

[BSW00400] Selectable Post-build time
parameters

Fulfilled by configuration parameter definitions in
chapter 10.

[BSWO00402] Published information

CANIF725

31 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv5.0.0
R4.0 Rev 3

[BSWO00375] Notification of wake-up reason

CANIF013

[BSW101] Initialization interface

CANIF001

[BSWO00416] Sequence of Initialization

Not applicable
(no initialization dependencies for this module)

[BSWO00406] Check module initialization

Fulfilled by API definitions in chapter 8.

[BSW168] Diagnostic Interface of SW
components

Not applicable
(this module does not support a special diagnostic
interface)

[BSWO00407] Function to read out published
parameters

CANIF158

[BSWO00423] Usage of SW-C template to describe
BSW modules with AUTOSAR Interfaces

Not applicable
(this module does not provide an AUTOSAR
interface)

[BSW00424] BSW main processing function task
allocation

Not applicable
(requirement on system design, not on a single
module)

[BSW00425] Trigger conditions for schedulable
objects

Not applicable
(requirement on system configuration, not on a
single module)

[BSWO00426] Exclusive areas in BSW modules

Not applicable
(no exclusive areas specified for this module)

[BSWO00427] ISR description for BSW modules

Not applicable
(this module does not provide any ISRS)

[BSWO00428] Execution order dependencies of
main processing functions

Not applicable (No scheduled API)

[BSWO00429] Restricted BSW OS functionality
access

Not applicable
(this module doesn’t use any OS objects or
services)

[BSWO00431] The BSW Scheduler module
implements task bodies

Not applicable (No scheduled API)

[BSWO00432] Modules should have separate main
processing functions for read/receive and
write/transmit data path

Not applicable
(requirement on the CAN Driver module)

[BSW00433] Calling of main processing functions

Not applicable
(requirement on the BSW scheduler module)

[BSW00434] The Schedule Module shall provide
an API for exclusive areas

Not applicable
(requirement on the BSW scheduler module)

[BSWO00336] Shutdown interface

Not applicable
(architecture decision)

[BSWO00337] Classification of errors

Table in section 7.27 Error classification

[BSWO00338] Detection and Reporting of
development errors

CANIF019

[BSWO00369] Do not return development error CANIF018
codes via API
[BSWO00339] Reporting of production relevant CANIF020

error status

[BSWO00417] Reporting of Error Events by Non-
Basic Software

Not applicable
(this is a basic software module)

[BSWO00323] API parameter checking

CANIF302, CANIF311, CANIF313, CANIF319,
CANIF320, CANIF325, CANIF326, CANIF331,
CANIF336, CANIF341, CANIF346, CANIF352,
CANIF353, CANIF364, CANIF398, CANIF404,
CANIF410, CANIF416, CANIF417, CANIF418,
CANIF419, CANIF424, CANIF429, CANIFS535,
CANIF536, CANIF537, CANIF538, CANIF648,
CANIF649, CANIF650, CANIF652, CANIF656,
CANIF657, CANIF658

[BSWO004] Version check

CANIF021

[BSWO00409] Header files for production code

CANIF153

32 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv5.0.0
R4.0 Rev 3

error IDs

[BSWO00385] List possible error naotifications

Table in section 7.27 Error classification

[BSWO00386] Configuration for detecting an error

CANIF018, CANIFO019, CANIF156

[BSW161] Microcontroller abstraction

chapter 5.6 Configuration

[BSW162] ECU layout abstraction

chapter 5.6 Configuration

[BSWO005] No hard coded horizontal interfaces
within MCAL

Subchapter 5.7.2Header file structure

[BSWO00415] User dependent include files

CANIF208

[BSW164] Implementation of interrupt service
routines

Not applicable

[BSWO00325] Runtime of interrupt service routines

CANIF135

The runtime is not totally under control of the CAN
Interface, because they are called to the upper
layers.

[BSW00326] Transition from ISRs to OS tasks

Not applicable
(When a transition from ISR to OS task is done, it
will be defined in COM Stack SWS)

[BSWO00342] Usage of source code and object
code

CANIF462CANIF228 (post build configuration)

[BSWO00343] Specification and configuration of
time

Not applicable
(no internal scheduling policy)

[BSW160] Human-readable configuration data

Fulfilled by configuration parameter definitions in
chapter 10.

The configuration parameters are described in a
general way.

[BSWO007] HIS MISRA C

Not applicable
(requirement on implementation, not on
specification)

[BSWO00300] Module nhaming convention

Fulfilled by API definitions in chapter 8.

[BSWO00413] Accessing instances of BSW
modules

Fulfilled by API definitions in chapter 8.

[BSWO00347] Naming separation of different
instances of BSW drivers

CANIF124

[BSWO00305] Self-defined data types naming
convention

Fulfilled by type definitions in chapter 8.2.

[BSWO00307] Global variables naming convention

Not applicable
(requirement on implementation, not on
specification)

[BSWO00310] APl naming convention

Fulfilled by API definitions in chapter 8.

[BSWO00373] Main processing function naming
convention

Not applicable (No scheduled API)

[BSWO00327] Error values naming convention

Table in section 7.27 Error classification

[BSWO00335] Status values naming convention

Subchapter 8.2.3 Canlf_PduGetModeType,
subchapter 8.2.4 Canlf_PduSetModeType,
subchapter 8.2.5 Canlf NotifStatusType

[BSWO00350] Development error detection
keyword

CANIF019

[BSWO00408] Configuration parameter naming
convention

Fulfilled by configuration parameter definitions in
chapter 10.

[BSWO00410] Compiler switches shall have
defined values

Fulfilled by configuration parameter definitions in
chapter 10.

[BSWO00411] Get version info keyword

CANIF158

[BSWO00346] Basic set of module files

Subchapter 5.7.2 Header file structure

[BSW158] Separation of configuration from
implementation

Subchapter 5.7.2 Header file structure

[BSWO00314] Separation of interrupt frames and
service routines

Not applicable
(this module does not provide any ISRS)

[BSWO00370] Separation of call-out interface from

Subchapter 5.7.2 Header file structure

33 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv5.0.0
R4.0 Rev 3

API

[BSWO00435] Module Header File Structure for the
Basic Software Scheduler

Not applicable

[BSWO00436] Module Header File Structure for the | CANIF463
Basic Software Memory Mapping

[BSWO00348] Standard type header CANIF142
[BSWO00353] Platform specific type header CANIF142

(automatically included with Standard types)

[BSWO00361] Compiler specific language
extension header

CANIF142
(automatically included with Standard types)

[BSWO00301] Limit imported information

Subchapter 5.7.2 Header file structure

[BSWO00302] Limit exported information

[BSWO00328] Avoid duplication of code

Not applicable
(requirement on implementation, not on
specification)

[BSW00312] Shared code shall be reentrant

CANIF064

[BSWO006] Platform independency

Fulfilled by API definitions in chapter 8.3

[BSWO00357] Standard API return type

Fulfilled by API definitions in chapter
8.3.

[BSWO00377] Module Specific API return type

Subchapter 8.2.3 Canlf_PduGetModeType,
subchapter 8.2.4 Canlf_PduSetModeType,
subchapter 8.2.5 Canlf NotifStatusType

[BSWO00304] AUTOSAR integer data types

Fulfilled by type and API definitions in chapter 8.1
and 8.2

[BSWO00355] Do not redefine AUTOSAR integer
data types

Fulfilled by type and API definitions in chapter 8.1
and 8.2

[BSWO00378] AUTOSAR Boolean type

Not applicable
(no Boolean types used)

[BSWO00306] Avoid direct use of compiler and
platform specific keywords

Not applicable
(requirement on implementation, not on
specification)

[BSWO00308] Definition of global data

Not applicable
(requirement on implementation, not on
specification)

[BSWO00309] Global data with read-only constraint

Not applicable
(requirement on implementation, not on
specification)

[BSWO00371] Do not pass function pointers via API

Fulfilled by API definitions in chapter 8.3

[BSWO00358] Return type of init() functions

CANIF001

[BSWO00414] Parameter of init function

CANIF001

[BSWO00376] Return type and parameters of main
processing functions

Not applicable

[BSWO00359] Return type of call-out functions

Fulfilled by call-out APIs in chapter 8.4.

[BSWO00360] Parameters of call-out functions

Fulfilled by call-out APIs in chapter 8.4.

[BSWO00329] Avoidance of generic interfaces

No generic interface used

The content of functions might be configuration
dependent. The scope of function is always
defined

[BSWO00330] Usage of macros instead of
functions

Not applicable
(requirement on implementation, not on
specification)

[BSWO00331] Separation of error and status values

section 7.27 Error classification,
section 8.2.2 Canlf_ControllerModeType,
section 8.2.5 Canlf NotifStatusType

[BSWO009] Module User Documentation

Fulfilled by the complete documentation.

[BSWO00401] Documentation of multiple instances
of configuration parameters

Fulfilled by configuration parameter definitions in
chapter 10.

[BSW172] Compatibility and documentation of
scheduling strategy

Not applicable
(no internal scheduling policy)

34 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv5.0.0
R4.0 Rev 3

BSWO010] Memory resource documentation

Not applicable
(requirement on implementation, not on
specification)

[BSWO00333] Documentation of callback function
context

Fulfilled by callback functions in chapter 8.4.

[BSWO00374] Module vendor identification CANIF726
[BSWO00379] Module identification CANIF727
[BSWO003] Version identification CANIF021
[BSWO00318] Format of module version CANIF728
[BSWO00321] Enumeration of module version CANIF729

numbers

[BSWO00341] Microcontroller compatibility
documentation

Not applicable
(no microcontroller dependent module)

[BSWO00334] Provision of XML file

Not applicable
(requirement on implementation, not on
specification)

Document: Requirements on CAN [4]

Requirement

Satisfied by

[BSWO01033] Basic Software General
Requirements

Fulfilled by this chapter.

[BSWO01125] Data throughput read direction

CANIF194

[BSW01126] Data throughput write direction

CANIF381, CANIF382

[BSW01139] CAN Controller specific Initialization

Not applicable

[BSWO01129] Receive Data Interface for CAN
Interface and CAN Driver Module

Subchapter 7.16 Read received data, subchapter
8.3.6 Canlf ReadRxPduData, CANIF194

[BSWO01121] Interfaces of the CAN Interface
module

Subchapter 5.4 Lower layers: CAN Driver,
subchapter 5.5 Lower layers: CAN Transceiver
Driver

[BSW01014] Network configuration abstraction

Not applicable

[BSW01001] HW independence

CANIF023

[BSWO01015] Network Database Information
Import

CANIF104

[BSWO01016] Interface to CAN Driver configuration

Chapter 10.2

[BSW01018] Software Filter CANIF030
[BSW01019] DLC Check configuration chapter 10.2
[BSW01020] Tx Buffer configuration CANIF063
[BSWO01021] CAN Interface Module Power-On CANIF001
Initialization

[BSWO01022] Dynamic selection of static CANIF001
configuration sets

[BSW01023] Power-On Initialization Sequence Chapter 7.8
[BSW01002] Rx PDU dispatching CANIF024
[BSWO01003] Reception indication dispatcher CANIF012
[BSWO01114] Data Consistency of transmit L- CANIF033

PDUs

[BSW01004] Software Filtering for L-PDU
reception

Subchapter 7.21

[BSW01005] DLC check for L-PDU reception CANIF026
[BSW01006] Rx L-PDU enable/disable CANIF096
[BSW01007] Tx L-PDU dispatching CANIF024
[BSWO01008] Transmission request service CANIF005
[BSWO01009] Transmission confirmation service CANIF007
[BSW01011] Tx buffering CANIF068
[BSWO01013] Tx L-PDU enable/disable service CANIF096

35 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface

V5.0.0
R4.0 Rev 3
[BSW01027] CAN controller Mode Select service | CANIF003
[BSW01028] CAN controller State Service CANIF229
[BSW01032] Wake-up Notification CANIF013
[BSW01061] Dynamic Tx Handles Chapter 7.4
[BSW01024] DLC Error Notification Not applicable
[BSW01029] Bus-off natification CANIF014

[BSWO01130] Read Status Interface of CAN
Interface

CANIF202, CANIF230

[BSWO01131] Mixed mode of natification and CANIF230
polling mechanism

[BSWO01136] Natification of first received CAN CANIF179
message

[BSWO01129] Receive Data Interface for CAN CANIF194
Interface

[BSWO01140] Support of Standard and Extended | CANIF281

Identifiers

[BSWO01141] Support of both Standard and
Extended Identifiers on one network (optional
feature)

CANIF243, CANIF261

36 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3
7 Functional specification

7.1 General functionality
The services of the Canlf can be divided into the following main groups:

Initialization

Transmit request services
Transmit confirmation services
Reception indication services
Controller mode control services
PDU mode control services

Possible applications of the Canlf:

Interrupt mode

The CanDrv processes interrupts triggered by the CAN controller. The Canlf,
which is event based, is notified when the event occurs. In this case the relevant
Canlf services is called within the corresponding ISRs in the CanDrv.

Polling mode
The CanDrv is triggered by the SchM and performs subsequent processes
(polling mode). In this case Can_MainFunction_<Write/

Read/BusOff/Wakeup/Transceiver>() must be called periodically within a
defined time interval. The Canlf is notified by the CanDrv about events (reception,
transmission, BusOff, TxCancellation, Timeout), that occurred in one of the CAN
controllers, equally to the interrupt driven operation. The CanDrv is responsible
for the update of the corresponding information which belongs to the occurred
event in the CAN controller, for example reception of an L-PDU.

Mixed mode: interrupt and polling driven CanDrv

The functionality can be divided between interrupt driven and polling driven
operation mode depending on the used CAN controllers.

Examples: Polling driven FullCAN reception and interrupt driven BasicCAN
reception, polling driven transmit and interrupt driven reception, etc.

This specification describes a unique interface, which is valid for all three types of
operation modes. Summarized the Canlf works in the same way, either if any events
are processed on interrupt, task level or mixed. The only difference is the call context
and probably the way of interruption of the notifications: pre-emptive or co-operative.
All services are performed in accordance with the configuration.

The following paragraphs describe the functionality of the Canlf.

7.2 Hardware object handles

Hardware object handles (HOH) for transmission (HTH) as well as for reception
(HRH) represent an abstract reference to a CAN mailbox structure, that contains

CAN related parameters such as Canld, DLC and data. Based on the CAN hardware
37 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

buffer abstraction each hardware object is referenced in the Canlf independent of the
CAN hardware buffer layout. The HOH is used as a parameter in the calls of the
CanDrv's interface services and is provided by the CanDrv's configuration and used
by the CanDrv as identifier for communication buffers of the CAN mailbox.

The Canlf acts only as user of the Hardware object handle, but does not interpret it
on the basis of hardware specific information. The Canlf therefore remains
independent of hardware.

[CANIFO23] T The Canlf shall avoid direct access to hardware specific
communication buffers and shall access it exclusively via the CanDrv interface

services. |(BSW01001)

Rationale for CANIF023: The Canlf remains independent of hardware, because the
CanbDrv interfaces are called with HOH parameters, which abstract from the concrete
CAN hardware buffer properties.

Each CAN controller can provide multiple CAN transmit hardware objects in the CAN
mailbox. These can be logically linked to one entire pool of hardware objects
(multiplexed hardware objects) and thus addressed by one HTH.

CANIF662: The Canlf shall use two types of HOHSs to enable access to the CanDrv:
e Hardware Transmit Handle (HTH) and
e Hardware Receive Handle (HRH).

[CANIF291] TDefinition of HRH: The HRH shall be a handle referencing a logical

hardware receive object of the CAN controller mailbox. ()

[CANIF665] T The HRH shall enable the Canlf to use BasicCAN or a FullCAN
reception method of the referenced reception unit and to indicate a received L-PDU

to a target upper layer module. |()

[CANIF663] TIf the HRH references a reception unit configured for BasicCAN

transmission, software filtering shall be enabled in the Canlf. ()

[CANIF465] TEach CanRxPduld shall be assigned to one or multiple HRHs. Thus the

assignment of single Canlds to multiple HRHs is possible. |()

[CANIF664] Tlf multiple HRHs are used, each HRH shall belong at least to a single
or fixed group of Rx L-PDU handles (CanRxPdulds). |()

The HRH can be configured to receive
e one single Canld (FullCAN)
e a group of single Canlds (BasicCAN)
e arange/area of Canlds (BasicCAN) or

38 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

R4.0 Rev 3
e all Canlds.
CAN Interface
PDU channel group A
outlet range
RxPduld #0000
(CANID, DLC,
HRH #000, etc)
PDU channel group B
CAN Driver
outlet ran
<Canlf_User> ®
RxPduld #0010
(CANID,DLC, (|| | o ____. I HRH #000
HRH #001, etc) d (address to HW Object)
RxPduld #0000 HRH #000 i
RxPduld #0010 RxPduld #0011 HRH 1 1 HRH #001
(CAN ID, DLC, #00 i (address to HW Object)
RxPduld #0011 HRH #001, etc)) HTH #000 | L —
TxPduld #0000 ! > N e
HTH#001 [} (address to HW Object)
1
TPduk #0001 -{éi?\lu:g#gggo provided by : > HTH #001
HTH #000, elc’) CAN Driver (address to HW Object)
S module’s 0
configuration !
'
PDU channelgroupC | | ~TTTTTTTTTTTT
TxPduld #0001
(CANID,DLC,
HTH #001, etc.)
CAN controller 0 CAN controller 1 CAN controller 2
by EEEE T I s LET TR T FEEPE 1 ey T
I Mailbox ' ! Mailbox / / : | Mailbox 4 :
i HW Object |! H HW Obiject HW Object | ! i HW Object | !
1 1
1 U 1 0 ' 1
1 1 1 1

CAN transceiver 0 CAN transceiver 1

CAN transceiver 2

CAN Network A CAN Network B CAN Network C

Descriptions:

Outlet range= Range of Rx L-PDUs which will be passed

Mailbox = CAN RAM structure

HW Object = CAN RAM structure that contains (Canld, DLC, data)
HRH = abstract reference to the CAN RAM structure

Transmit path is coloured red

Receiwe path is coloured green.

Al arrows within this picture are references
and no communication directions ot sth. else.

Figure 4: Mapping between PDU Ids and HW object handles

[CANIF292] I'Definition of HTH: The HTH shall be a handle referencing a logical

hardware transmit object of the CAN controller mailbox. |()

[CANIF666] 'The HTH shall enable the Canlf to use BasicCAN or a FullCAN
transmission method of the referenced transmission unit and to confirm a transmitted

L-PDU to a target upper layer module. |()

39 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

[CANIF466] I'Each Canlf Tx L-PDU shall statically be assigned to one CanlfTxbuffer
(see CANIF832 Conf) configuration container at configuration time (see
CANIF831 Conf). ()

Rationale for CANIF466: Canlf Tx L-PDUs do not refer HTHs, but CanlfTxBuffer,
which in turn do refer HTHs.

[CANIF667] T'lf multiple HTHs are used, each HTH shall belong to a single or fixed
group of Tx L-PDU handles (CanTxPdulds). ()

[CANIF115] I'The Canlf shall be able to use all HRHs and HTHs of one CanDrv as

common, single numbering area starting with zero. ()

The dedicated HRH and HTHSs are derived from the configuration set of the CanDrv.
The definition of HTH/HRH inside the numbering area and hardware objects is up to
the CanDrv. It has to be ensured by configuration, that no overlapping of several
numbering areas of multiple CanDrvs is allowed.

7.3 Static CAN L-PDU handles

The Canlf offers general access to the CAN L-PDU related data for upper layers. The
L-PDU handle facilitates this access. The L-PDU handle refers to data structures,
which consists of Canlf specific and CAN PCI specific attributes describing the L-
PDU. Attributes of the following table are represented as configuration parameters
and are specified in chapter 10:

CAN Interface specific attributes CAN Protocol Control Information (PCI)
Method of SW filtering CAN Identifier (ID)
CANIF_PRIVATE_SOFTWARE_FILTER_TYPE CANIF_TXPDU_CANID (see CANIF592 Conf),
(see CANIF619 Conf) range of Canlds per PDU (see

CANIF743 Conf)
Direction of L-PDU (Tx, Rx) Type of CAN Identifier (StandardCAN,
CANIF_TXPDU_ID (seeCANIF591 Conf), ExtendedCAN) referenced from CanDrv via
CANIF_RXPDU_ID (seeCANIF597 Conf) CANIF_HTH_ID_SYMREF (see

CANIF627 Conf), CANIF_HRH_ID_SYMREF
(see CANIF634 Conf)

CAN Hardware Unit Data Length Code (DLC)
(CANIF_PUBLIC_NUMBER_OF_CAN_HW_UNITS | CANIF_TXPDU_DLC (see CANIF594 Conf),
(see CANIF615 Conf) CANIF_RXPDU_DLC (seeCANIF599 Conf)
HTH/HRH of the CAN controller Reference to the data (SDU) (see

[8]Specification of CAN Driver)

Target ID for the corresponding upper layer
CANIF_TXPDU_USERTXCONFIRMATION (see
CANIF527_Conf),
CANIF_RXPDU_USERRXINDICATION_UL
(seeCANIF529 Conf)

Type of transmit L-PDU handle (static, dynamic)
CANIF_TXPDU _TYPE (see CANIF593 Conf)

Type of Tx/Rx L-PDU (FullCAN, BasicCAN)
CANIF_HTH_ID_SYMREF (see CANIF627 Conf),

40 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

| CANIF_ HRH_ID_SYMREF (see CANIF634 Conf) |

Table 1 Attributes used in CAN Interface

[CANIF046] I'The Canlf shall assign each L-PDU handle to one CAN controller only.
Thus, the assignment of single L-PDU handles to more than one CAN controller is

prohibited. ()

Rationale for CANIF046: This relation is used in order to ensure correct L-PDU

dispatching at transmission confirmation and reception indication events. In this
manner the Canlf is able to identify the CAN controller module from the L-PDU

handle.

The Canlf supports activation and deactivation of all L-PDUs belonging to one CAN
controller for transmission as well as for reception (see chapter 7.20.2 PDU channel
modes ,see Canlf_SetPduMode(), CANIF008). For L-PDU mode control refer to
section [7.20 PDU channel mode control].

Each L-PDU handle is associated with an upper layer module in order to ensure
correct dispatching during reception, transmission confirmation and data access.
Each upper layer module can use the L-PDU handles to serve different CAN
controllers simultaneously.

According to the PDU architecture defined for the entire AUTOSAR communication
stack (see [2] Layered Software Architecture), the usage of L-PDUs is split in two
different ways:

For transmission request and transmission/reception polling API the upper layer
module uses the CAN L-PDU Id defined by the Canlf as parameter.

For all callback APIs, which are invoked by the Canlf at upper layer modules, the
Canlf passes the target Pduld defined by each upper layer module as parameter.

The principle is that the caller must use the defined target PDU Id of the callee.

If power on initialization is not performed and upper layer performs transmit requests
to Canlf, no L-PDUs are transmitted to lower layer and DET shall be invoked. Thus,
no un-initialized data can be transmitted on the network. Behavior of PDU
transmitting function is specified in detail in chapter [8.3.4 Canlf_Transmit].

7.4 Dynamic CAN transmit L-PDU handles

Definition of dynamic transmit L-PDUs: L-PDUs handle which allows reconfiguration
of the Canld of the corresponding used L-PDU handle during runtime.

The usage of all other L-PDU elements are equal to normal static transmit L-PDUSs:

e The transmit confirmation notification
CANIF_TXPDU_USERTXCONFIRMATION_UL (see CANIF527 Conf) cannot be
reconfigured as it belongs to the L-PDU handle.

e The data length code (DLC) and the pointer to the data buffer are both
determined by the upper layer module at call of Canlf_Transmit().

41 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

The function Canlf_SetDynamicTxld() reconfigures the Canld of a L-PDU (see
CANIF189).

[CANIF188] T The Canlf shall process the ‘identifier extension flag® (see
[18]1SO11898 — Road vehicles - controller area network (CAN)) to determine the kind
of Canld and thus how the dynamic transmit L-PDU shall be transmitted. ()

[CANIF673] I'The Canlf shall guarantee data consistency of the Canld in case of

running function Canlf_SetDynamicTxId(). This service may be interrupted by a
pre-emptive call of Canlf_Transmit() affecting the same L-PDU handle, see

CANIF064. |()

Note: Canlf_Init() initializes the Canlds of the dynamic transmit L-PDUs (see
CANIFQ085).

7.5 Physical channel view

A physical channel is linked with one CAN controller and one CAN transceiver,
whereas one or multiple physical channels may be connected to a single network.

The Canlf provides services to control all CAN devices like CAN Controllers and CAN
Transceivers of all supported ECU's CAN channels. Those APIs are used by the
CanSm to provide a network view to the ComM (see [11]Specification of CAN State
Manager) used to perform wake up and sleep request for all physical channels
connected to a single network.

The Canlf passes status information provided by the CanDrv and CanTrcv separately
for each physical channel as status information for the CanSm
(<User_Control lerBusOfft>(), refer to CANIF014).

[CANIF653] I'The Canlf shall provide a Controllerld, which abstracts from the

different Controllers of the different CanDrv instances. The range of the
Controllerlds within the Canlf shall start with ‘0’. It shall be configurable via

CANIF_CTRL_ID (see CANIF647_Conf). ()

Example:
CanDrv B
______________[iController 0

[CANIF655] The Canlf shall provide a Transceiverld, which abstracts from the

different Transceivers of the different CanTrcv instances. The range of the
Transceiverlds within the Canlf shall start with ‘0. It shall be configurable via

CANIF_TRCV_ID (see CANIF654 Conf). |()

42 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
o V5.0.0

R4.0 Rev 3

Example:
Canlf CanTrcv B
Transceiverld 0

Transceiverld 1 Transceiver 1
Transceiverid2 l = M Transceiver 0

During the notification process the Canlf maps the original CAN controller or CAN
transceiver parameter from the Driver module to the CanSm. This mapping is done
as the referenced CAN controller or CAN transceiver parameters are configured with
the abstracted Canlf parameters Controllerld or Transceiverld.

CAN NM A COM Manager CAN NM B

CAN State Manager

CAN Interface

A A A

A y A 4

CAN transceiver H CAN Transceiver
driver 0 CAN drlver Driver 1

CAN controller 0 CAN controller 1
® Dol

Same types of
CAN controllers

CAN transceiver 0 CAN transceiver 1

CAN network A

CAN network B
Only one CAN transceiver \ Different types of /
driver is needed, of the CAN transceivers Use Case: 1:1 relation between CAN
transceiver type is same. network and physical channel

Figure 5: Physical channel view definition example A

The Canlf supports multiple physical CAN channels. These have to be distinguished
by the CanSm for network control. The Canlf API provides request and read control
for multiple underlying physical CAN channels.

Moreover the Canlf does not distinguish between dedicated types of CAN physical
layers (i.e. Low-Speed CAN or High-Speed CAN), to which one or multiple CAN
controllers are connected.

43 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

V5.0.0
R4.0 Rev 3
CAN NM A COM Manager CAN NM B
Network view
CAN State Manager
Physical channel view
CAN Interface
A A A y y
A 4 y y y y
CAN : g i : CAN transc.
Phblaia CAN driver 0 CAN driver 1 || CAN driver 2 river
CAN controller O CAN controller 1 CAN controller 2 CAN controller 3
| . | a1
Rx| [Tx ™~ rRe| [Tx
CAN transceiver 0 Same types of CAN transceiver 1

CAN controllers

CAN network A CAN network B
e.g CANclass C e.g. CAN class B
Use Case: 1:n relation between CAN

network and physical channel

Figure 6: Physical channel view definition example B

7.6 CAN hardware unit

The CAN hardware unit combines one or multiple CAN controller modules of the
same type, which may be located on-chip or as external standalone devices. Each
CAN hardware unit is served by the corresponding CAN Driver module.

If different types of CAN controllers are used, also different types of CAN Driver
modules have to be applied with a unified API to the CAN Interface module. The
CAN Interface module collects information about number and types of CAN controller
modules and their hardware objects in its mapping tables at configuration time. This
allows transparent and hardware independent access to the CAN controllers from
upper layer modules using HOHs (refer to [7.2 Hardware object handles] and [7.25
Multiple CAN Driver support]).

The following figure shows a CAN hardware unit consisting of two CAN controllers of
the same type connected to two physical channels:

44 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

R4.0 Rev 3
CAN controller
device A
—TxA —» CAN » CAN
transceiver network Physical channel A
< RxA — A A
Hardware objects
of mailbox A
\
CAN controller
device B
CAN
—TxB —» . ——®| CAN
transgelver network Physical channel B
<4fRxB — I — B
Hardware objects
of mailbox B
CAN hardware unit CAN controllers

Figure 7 Typical CAN hardware unit

7.7 BasicCAN and FullCAN reception

The Canlf distinguishes between BasicCAN and FullCAN handling for activation of
software acceptance filtering.

A CAN mailbox (hardware object) for FUllCAN operation only enables transmission or
reception of single Canlds. Accordingly, BasicCAN operation of one hardware object
enables to transmit or receive a range of Canlds.

A hardware receive object for configured BasicCAN reception is able to receive a
range of Canlds, which pass its hardware acceptance filter.

This range may exceed the list of predefined Rx L-PDUs to be received by this HRH.
Therefore the Canlf subsequently shall execute software filtering to pass only the
predefined list of Rx L-PDUs to the corresponding upper layer modules. For more
details please refer to [7.21Software receive filter].

[CANIF467] I'The Canlf shall configure and store an order on HTHs and HRHSs for all
HOHSs derived from the configuration containers CanlfHthCfg (see CANIF258 Conf)

and CanlfHrhCfg (see CANIF259 Conf). ()

45 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

[CANIF468] I'The Canlf shall reference a hardware acceptance filter for each HOH
derived from the configuration parameters CANIF_HTH_1d_SYMREF (see
CANIF627 Conf) and CANIF_HRH_ID_SYMREF (see CANIF634 Conf). |()

The main difference between BasicCAN and FullCAN operation is in the need of a
software acceptance filtering mechanism (see chapter 7.21 Software receive filter).

[CANIF469] I'The Canlf shall give the possibility to configure and store a software
acceptance filter for each HRH of type BasicCAN configured by parameter
CANIF_HRH_SOFTWARE_FILTER (see CANIF632 Conf). ()

[CANIF211] I'The Canlf shall execute the software acceptance filter from CANIF469
for the HRH passed by callback function Canlf_RxIndication(). ()

BasicCAN and FullCAN objects may coexist in a single configuration setup. Multiple
BasicCAN and FullCAN receive objects can be used, if provided by the underlying
CAN controllers.

Basically the Canlf supports reception either of StandardCAN IDs or ExtendedCAN
IDs on one physical CAN channel by the parameters
CANIF_CANTXPDUID_CANIDTYPE (see CANIF590 Conf) and
CANIF_CANRXPDUID_CANIDTYPE (see CANIF596_ Conf).

[CANIF281] I'The Canlf shall accept and handle StandardCAN IDs and

ExtendedCAN IDs on the same physical channel (=mixed mode operation). |
(BSW01140)

In a mixed mode operation StandardCAN IDs and ExtendedCAN IDs can be used
mixed at the same time on the same CAN network. Mixed mode operation can be
accomplished, if the BasicCAN/FullCAN hardware objects have been configured
separately for either StandardCAN or ExtendedCAN operation using configuration
parameters CANIF_CANTXPDUID_CANIDTYPE (see CANIF590_ Conf) and
CANIF_CANRXPDUID_CANIDTYPE (see CANIF596 Conf). In case of mixed mode
operation the software acceptance filter algorithm (see 7.21 Software receive filter)
must be able to deal with both type of Canlds.

CANIF281 is an optional feature. This feature can be realized by different variants of
implementations, no configuration options are available.

7.8 Initialization

The EcuM calls the Canlf's function Canl¥_Init() for initialization of the entire
Canlf (see CANIF001). All global variables and data structures are initialized
including flags and buffers during the initialization process. The EcuM executes
initialization of CanDrvs and CanTrcvs separately by call of their corresponding

46 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

initialization services (refer to [8] Specification of CAN Driver and [9]Specification of
CAN Transceiver Driver).

The EcuM is responsible to ensure, that Initialization processes shall only take place,
if all CCMSMs (see chapter 7.19.2 CAN Controller operation modes) for the
corresponding CAN controllers equal CANIF_CS_UNINIT or CANIF_CS_STOPPED.
CANIF_CS _UNINIT mode is left only, if once global initialization after power-on reset
has been requested (see [15]Specification of ECU State Manager).

The Canlf expects that the CAN controller remains in STOPPED mode like after
power-on reset after the initialization process has been completed. In this mode the
Canlf and CanDrv are neither able to transmit nor receive CAN L-PDUs (see
CANIFQ001).

If re-initialization of the entire CAN modules during runtime is required, the EcuM
shall invoke the CanSm (see [11]Specification of CAN State Manager) to initiate the
required state transitions of the CAN controller by call of CAN Interface module's API
service Canlf_SetControl lerMode(). The Canlf maps the calls from CanSm to
calls of the respective CanDrvs (see chapter 8.3).

7.9 Transmit request

The Canlf’'s transmit request function Canlf_Transmit() (CANIFO05) is a common
interface for upper layers to transmit PDUs on the CAN network. The upper
communication layer modules initiate the transmission only via the CAN Interface
module's services without direct access to the CanDrv. The initiated transmit request
is successfully completed, if the CanDrv could write the L-PDU data into the CAN
hardware transmit object.

Upper layer modules use the API service Canlf_Transmit() to initiate a transmit
request (refer to chapter [8.3.4 Canlf_Transmit].

The Canlf performs following actions for L-PDU transmission at call of the service
Canlf_Transmit():

Check, initialization status of the Canlf

Identify CanDrv (only if multiple CanDrvs are used)

Determine HTH for access to the CAN hardware transmit object

Call Can_Write() of the CanDrv

The transmission is successfully completed, if the transmit request service
Canlf_Transmit() returns E_OK.

[CANIF382] TIf an L-PDU is requested to be transmitted via a PDU channel mode

(refer to chapter 7.20.2 PDU channel modes), which equals CANIF_OFFLINE, the
Canlf shall report the development error code CANIF_E_STOPPED to the
Det_ReportError service of the DET and Canlf_Tranmsit() shall return

E_NOT_OK.(BSWO01126)

47 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

[CANIF723] T'lf an L-PDU is requested to be transmitted via a CAN controller, whose

CCMSM (see chapter 7.19) equals CANIF_CS_STOPPED, the Canlf shall report the
development error code CANIF_E_STOPPED to the Det_ReportError service of

the DET and Canlf_Transmit() shall return E_NOT_OK. ()

If the call of Can_Write(returns with CAN_BUSY, please refer to [7.12 Transmit
buffering] for further details.

7.10 Transmit data flow

The transmit request service Canlf_Transmit() is based on L-PDU handles . The

access to the L-PDU specific data is organized by the following parameters:

= Transmit L-PDU Handle

» Reference to a data structure, which contains L-PDU related data: L-SDU length
(1) and pointer to the L-SDU (2)

The reference to the L-PDU data structure is used as a parameter in several Canlf's

API services, e.g. Canlf_Transmit() or the callback service

<User_RxIndication>().

48 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

ad Transmit data flow

CAN Interface Upper layers call Canlf_Transmit()

Call of Can_Write()

CAN Hardware is free?

CAN Driver

LAl

[Yes]

CAN Controller «datastore» «datastore»
Copy data into Copy data into Can Interface

CAN hardware transmit buffer

Bufferis free
Set transmit request in
CAN controller

Can_Write() and Canlf_Transmit() return

Figure 8 Transmit data flow

The Canlf stores information about the available hardware objects configured for
transmission purposes. The function Canlf_Transmit() maps the CanTxPduld to
the corresponding HTH and calls the function Can_Write() (see CANIF318).

7.11 Transmit buffering
7.11.1 General behavior

At the scope of the Canlf the transmit process starts with the call of
Canlf_Transmit() and it ends with invocation of upper layer module's callback
service <User_TxConfirmation>(). During the transmit process the Canlf, the
CanDrv and the CAN Mailbox altogether shall store the L-PDU to be transmitted only
once at a single location. Either in the CAN hardware transmit object or the transmit
L-PDU buffer inside the Canlf, if transmit buffering is enabled. A single Canlf Tx L-
PDU, requested for transmission, shall never be stored twice. This behavior
corresponds to the usual way of periodic communication on the CAN network.

49 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

If transmit buffering is enabled, the Canlf will store a Canlf Tx L-PDU in a Canlf
transmit L-PDU buffer (CanlfTxBuffer), if it is rejected by the CanDrv at transmission
request.

Basically, the overall buffer in Canlf for buffering Canlf Tx L-PDUs consits of one or
multiple CanlfTxBuffers (see CANIF832 Conf)). Whereas each CanlfTxBuffer is
assigned to one or multiple dedicated HTH’'s (see CANIF833 Conf) and can be
configured to buffer one or multiple Canlf Tx L-PDUs. But as already mentioned
above only one instance per Canlf Tx L-PDU can be buffered in the overall amount of
CanlfTxBuffers.

The behavior of the Canlf during L-PDU transmission differs whether transmit
buffering is enabled in the configuration setup for the corresponding Canlf Tx L-
PDU, or not. If transmit buffering is disabled and a transmit request to the CAN Driver
module fails (CAN controller mailbox is in use, BasicCAN), the L-PDU is not copied
to the CAN controller's mailbox and Canlf_Transmit() returns the value
E_NOT_OK. If transmit buffering is enabled and a transmit request to the CAN Driver
module fails, depending on the CanlfTxBuffer configuration the L-PDU can be stored
in a CanlfTxBuffer. In this case the API Canlf_Transmit() returns the value E_OK
although the transmission could not be performed. In this case the Canlf takes care
of the outstanding transmission of the L-PDU via Canlf_TxConfirmation()
callback and the upper layer doesn’t have to retry the transmit request.

The number of available transmit Canlf Tx L-PDU buffers can be configured
completely independent from the number of used transmit L-PDUs defined in the
CAN network description file for this ECU.

As per CANIF835 a Canlf Tx L-PDU refers HTHs via the CanlfTxBuffer configuration
container (see CANIF832 Conf). This is valid if transmit buffering is not needed as
well. In this case, the buffer size (see CANIE834 Conf) of the CanlfTxBuffer has to
be set to 0. Then CanlfTxBuffer configuration container is only used to refer a HTH.

7.11.2 Buffer characteristics

CANIF831 Conf, CANIF832 Conf, CANIF833 Conf and CANIF834 Conf describe
the possible CanlfTxBuffer configurations.

7.11.2.1 Storage of L-PDUs in the transmit L-PDU buffer

The Canlf tries to store a new transmit L-PDU in the transmit L-PDU buffer only, if
= the CanDrv return CAN_BUSY during a call of Can_Write() (see CANIF381) or
a pending transmit request was successfully aborted (see CANIF054).

[CANIF063] I'The Canlf shall support buffering of a CAN L-PDU handle for
BasicCAN transmission in the Canlf, if parameter CANIF_PUBLIC_TX_ BUFFERING
(see CANIF618 Conf) is enabled. (BSW01020)

50 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

[CANIF381] TIf transmit buffering is enabled (see CANIF063) and if the call of

Can_Write(returns with CAN_BUSY, the Canlf shall check if it is possible to buffer
the complete Canlf Tx L-PDU,which was requested to be transmitted via

Can_Write() in a CanlfTxBuffer. (BSW01126)

When the call of Can_Write()returns with CAN_BUSY, the CanDrv has rejected the
requested transmission of the L-PDU (see [8]Specification of CAN Driver) because
there is no free HW object available at time of the transmit request (Tx request).

[CANIF835] 'When the Canlf checks whether it is possible to buffer a Canlf Tx L-

PDU (see CANIF381, CANIF054), this shall only be possible, if the CanlIf Tx L-PDU
is assigned (see CANIF831 Conf) to a CanlfTxBuffer (see CANIF832 Conf), which

is configured with a buffer size (see CANIF834 Conf) bigger than zero. |()

The buffer size of any CanlfTxBuffer is only configurable bigger than zero, if transmit
buffering is enabled. Additionally the buffer size of a single CanlfTxBuffer is only
configurable bigger than zero if the CanlfTxBuffer is not assigned to a FullCAN HTH
(see CANIF834 Conf).

[CANIF836] Tlf it is possible to buffer a Canlf Tx L-PDU, because the buffer size of

the assigned CanlfTxBuffer is bigger than zero (see CANIF836), the Canlf shall
buffer a Canlf Tx L-PDU in a free buffer element of the assigned CanlfTxBuffer, if the

Canlf Tx L-PDU is not already buffered in the CanlfTxBuffer. ()

[CANIFO68] Tlf it is possible to buffer a Canlf Tx L-PDU, because the buffer size of

the assigned CanlfTxBuffer is bigger than zero (see CANIF836), the Canlf shall
overwrite a Canlf Tx L-PDU in the assigned CanlfTxBuffer, if the Canlf Tx L-PDU is

already buffered in the CanlfTxBuffer when Can_Write() returns CAN_BUSY. ()
CANIFO068 implies that a CanlIf Tx L-PDU shall not be overwritten in a CanlfTxBuffer
in the context of Canlf_CancelTxConfirmation().;(BSW01011)

If the order of various transmit requests of different L-PDUs shall be kept, transmit
requests of upper layer modules must be connected to previous transmit confirmation
notifications. This means that a subsequent L-PDU is requested for transmission by
the upper layer modules only, if the transmit confirmation of the previous one was
notified by the Canlf.

Note: Additionally the order of transmit requests can differ depending on

» the number of configured hardware transmit objects and

= whether transmit cancellation is supported by the CAN controller or not to avoid
inner priority inversion. See [[8] Specification of CAN Driver] for further details.

51 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

[CANIF837] [If the buffer size is greater zero, all buffer elements are busy and

Canlf_Transmit()is called with a new Pdu (no other instance of the same Pdu is
already stored in the buffer), then the new Pdu shall not be stored and

Canlf_Transmit()shall return E_NOT_OK. |()

7.11.2.2 Clearance of transmit L-PDU buffers

[CANIF386] 'The Canlf shall evaluate during transmit confirmation (see (CANIF007),
whether pending Canlf Tx L-PDUs are stored within the CanlfTxBuffers, which are
assigned to the new free Hardware Transmit Object (see CANIF466). |()

[CANIF668] TIf pending Canlf Tx L-PDUs are available in the CanlfTxBuffers as per

CANIF386, then the Canlf shall initiate a new transmit request of that pending Canlf
Tx L-PDU (of the ones assigned to the new HW Transmit Object) with the highest

priority (see CANIFQ70) by call of Can_Write(). ()

[CANIFO70] 'The CAN Interface module shall transmit L-PDUs stored in the transmit
L-PDU buffers in priority order (see[18]) per each HTH. ()

[CANIF183] T'When the Canlf calls the function Can_Write() for prioritized L-PDU

stored in CanlfTxBuffer and the return value of Can_Write() is E_OK, then the
Canlf shall remove this L-PDU from the transmit L-PDU buffer immediately, before

the transmit confirmation returns. ()

The behavior specified in CANIF183 simplifies the choice of the new transmit L-PDU
stored in the transmit L-PDU buffer.

7.11.2.3 Initialization of transmit L-PDU buffers

[CANIF387] T'When function Canlf_Init()is called, Canlf shall initialize every
transmit L-PDU buffer assigned to the Canlf. ()

The requirement CANIF387 is necessary to prevent transmission of old data after

restart of the CAN controller.

52 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3
7.11.3 Data integrity of transmit L-PDU buffers

[CANIF033] I'The Canlf shall protect access to transmit L-PDU buffers for all transmit
L-PDUs by usage of critical sections. |(BSW01114)

In the sequence diagrams in chapter [9 Sequence diagrams], the transmit L-PDU
buffer operations, which could be preempted by further transmit L-PDU buffer access
operations, are emphasized by messages “ENTER CRITICAL SECTION” and
“LEAVE CRITICAL SECTION". This will be realized by entering exclusive areas
defined within the BSW Scheduler. These exclusive areas can e.g. configured, that
all interrupts will be disabled while the exclusive area is entered. The corresponding
services from the BSW Scheduler module are SchM_Enter_Canlf() and
SchM_Exit_Canlf(). The exclusive area, which will be defined within the BSW
Scheduler module, will be derived via referencing parameter
CANIF_RXPDU_BSWSCH_EXCLAREAID_REF (see CANIF669 Conf) and
CANIF_TXPDU_BSWSCH_EXCLAREAID _REF (see CANIF670 Conf).

Rationale: for CANIF033: pre-emptive accesses to the transmit L-PDU buffer cannot
always be avoided. Such transmit L-PDU buffer access like storing a new L-PDU or
removing transmitted L-PDU may occur preemptively.

7.12 Transmit confirmation

7.12.1 Confirmation after transmission completion

If a previous transmit request is completed successfully, the CanDrv notifies it to the
Canlf by the call of Canl¥_TxConfirmation()(CANIF0Q7).

[CANIF383] 'When callback notification Canlf_TxConfirmation() is called, the

Canlf shall identify the upper layer communication layer (see CANIF414), which is
linked to the successfully transmitted L-PDU, and shall notify it about the performed
transmission by call of Canlf's transmit confirmation service

<User_TxConfirmation>() (refer to [7.12Transmit confirmation]). j()

The callback service <User_TxConfirmation>() is implemented by the notified
upper layer module.

An upper communication layer module can be designed or configured in a way, that
transmit confirmations can be processed with single or multiple callback services for
different L-PDUs or groups of L-PDUs. All that services are called by the Canlf at
transmit confirmation of the corresponding L-PDU transmission request. The transmit
L-PDU handle enables to dispatch different confirmation services associated to the
target upper layer module. This assignment is made statically during configuration.

One transmit L-PDU can only be assigned to one single transmit confirmation
callback service. Please refer to chapter [8.6.3.1 <User_TxConfirmation>].

53 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

[CANIF740] T If CANIF_PUBLIC_TXCONFIRM_POLLING_SUPPORT (see

CANIF733_Conf) is enabled, the Canlf shall buffer the information about a received
TxConfirmation per CAN controller, if the CCMSM of that controller is in state

CANIF_CS_STARTED. |()

7.12.2 Confirmation of transmit cancellation

Some CAN controllers provide cancellation of the pending transmit requests of L-
PDUs inside their hardware transmit objects of the CAN controller. This feature is
used to prevent inner priority inversion, which may for example occur if the priority of
an L-PDU requested for transmission is higher than the priority of the L-PDU waiting
for transmission in the CAN hardware transmit object.

In that case the pending transmit request within a CAN hardware transmit object is
cancelled and replaced by the newly requested L-PDU with higher priority. The
CanDrv informs the Canlf about a successful transmit cancellation via
Canlf_CancelTxConfirmation() (see 8.4.3 Canlf_CancelTxConfirmation).

[CANIF054] TWhen Canlf_CancelTxConfirmation() is called, the Canlf shall

check if it is possible to buffer the canceled Canlf Tx L-PDU, which is referenced in
parameter PdulnfoPtr of Canlf_CancelTxConfirmation(), inside a

CanlfTxBuffer . |()

For further information about the CanlfTxBuffer see chapter 7.11 “Transmit
buffering”.

7.13 Transmit cancellation

The Canlf shall execute transmissions of all pending transmit requests in the transmit
L-PDU buffers in priority order (see CANIF070).

The feature to abort pending transmit L-PDUs within the transmit hardware objects is
necessary to avoid inner priority inversion of L-PDU transmitted on the CAN network
(for more details refer to [8]Specification of CAN Driver). The mechanism of the
transmit process differs, whether hardware cancellation is supported by the CAN
controller or not.

7.13.1 Transmit cancellation not supported or not used

The Canlf handles pending transmit L-PDUs as described in chapter [7.11Transmit
buffering], if transmit cancellation is disabled by configuration.
There might be following consequences:
e Priority Inversion of the PDUs stored in Canlf and the ones within the
hardware objects might occur.
e Due to this delays latencies of L-PDUs can not be guaranteed on the CAN
network

54 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

7.13.2 Transmit cancellation supported and used

The Canlf handles pending transmit L-PDUs as described in chapter [7.11Transmit
buffering], if transmit cancellation is enabled by configuration.

After Canlf called Can_Write() the CanDrv might confirm successful transmit
cancellation to the Canlf via Canlf_CancelTxConfirmation() and passes the L-
PDU requested for transmission back to the Canlf's transmit L-PDU buffer. See UML
diagram in chapter [9.6].

Dependent on the used CAN controller and the traffic on the network the cancellation
of a pending transmit L-PDU inside a CAN hardware object can be delayed and thus
it may occur asynchronously.

[CANIF176] T The Canlf shall only store an aborted transmit L-PDU in a
CanlfTxBuffer, if it does not contain a newer pending transmit L-PDUs with the same
L-PDU handle (refer to 7.11.2.1Storage of L-PDUs in the transmit L-PDU buffer). ()

Rationale: This way of L-PDU storage ensures to keep the latest data of several
pending transmit L-PDUs with the same L-PDU handle inside the Canlf's transmit L-
PDU buffers.

Hint: The Canlf needs to protect all critical accesses out of pre-emptive call contexts
like processing of pending transmit requests in the transmit confirmation context the
transmit request service is called re-entrant.

55 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

Upper layers call
CAN Interface Canlf_Transmit()
Call of Can_Write()
CAN Driver

CAN Hardware is
free?

[No]

[Yes Compare priority of new L-PDU and the
pending onesin CAN Hardware

«datastore»
K [New Tx L-PDU has higher priority than at
L-PDU into CAN
CAN Controller Sy hardL\i/;reo @ least one of the pending onesin the CAN
hardware]
Can Driver

L Request cancellation of
[New Tx L-PDU has lower priority pending L-PDU with lowest

than all of the pending onesin the
CAN hardware]

priority

[Set transmit request in CAN

controller

[Can_Write() returns with E_BUSY]

«datastore»
ICopy L-PDU into transmit CAN Interface
buffer

Canlf_Transmit() returns with E_OK

Figure 9 Transmit cancellation request

In case hardware cancellation is supported and BasicCAN transmission is used inner
priority inversion can be avoided and response time predictability can be increased.
At FullCAN transmission hardware cancellation is not necessary to avoid inner
priority inversion. Please refer to [8]Specification of CAN Driver for more details.

Transmit cancellation can be enabled and disabled by configuration (configuration
parameter CANIF_TX_ CANCELLATION, see CANIF640_Conf). This feature can be
activated only, as far as transmit L-PDU buffers have been enabled (configuration
parameter CANIF_PUBLIC_TX_ BUFFERING, see CANIF618 Conf). At configuration
time it must be prevented, that transmit cancellation can be enabled, whenever
transmit L-PDU buffer configuration is disabled, as specified in field “Dependency” of
configuration parameter CANIF_TX_ CANCELLATION (see CANIF640_Conf).

56 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

R4.0 Rev 3
ad Canlf Transmit cancellation confirmation/
. Call Canlf_CancelTxConfirmation()
CAN Driver module

e Since for each L-PDU and Canld a separate TxBuffer will

«_ atastore») be provided in the Canlf (TxBuffering is enabled) and

CAN Interface module Copy data into transmit buffer [F======~ the old data within a TxBuffer shall be overwritten, in
case of a Transmit cancellation confirmation the data is

always copied into the corresponding TxBuffer.

AN

Call Can_Write() New Tx L-PDU with a higher priority than the one stored
- JTTTTTTTTTTT formerly into a TxBuffer shall be set into the HW Buffer
Copy new Tx L-PDU data into
CAN Driver module free CAN HW object

Can_Write() and
Canlf_CancelTxConfirmation()
returns

Figure 11 Transmit cancellation confirmation

7.14 Receive data flow
7.14.1 Location of PDU data buffers

According to the AUTOSAR Basic Software Architecture the PDU data buffers are
placed in the upper layer communication stacks, i.e. AUTOSAR COM, CanNm,
CanTp, DCM), where the corresponding data will be evaluated and processed. This
means, all transmit as well as all receive PDU buffers are located in these upper
layers.

[CANIF057] TThe Canlf shall not provide buffers to store SDUs but it shall use the
SDU buffers provided by upper layer modules. ()

7.14.2 Receive data flow

In case of a new reception of an L-PDU the CanDrv calls Canlf_RxIndication()
(refer to CANIF006) of the Canlf. The access to the L-PDU specific data is organized
by these parameters:

» Hardware Receive Handle (HRH)

= Received CAN Identifier (Canid)

» Received Data Length Code (DLC)

» Reference to the received L-SDU

57 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

The received L-SDU is hardware dependent (nibble and byte ordering, access type)
and allocated to the lowest layer in the communication system — to the CanDrv.

The HRH serves as a link between the CanDrv and the upper layer module using the
L-SDU. The HRH identifies one CAN hardware receive object, where a new CAN L-
PDU was received.

After the received L-PDU passed the software filtering (refer to 7.21Software receive
filter), identification of the L-PDU handle and passing the DLC Check, the Canlf
derives the target upper layer memory buffer location from the L-PDU Handle.
Hereby the hardware receive handle and the L-PDU Handle represents the source
and destination information for the copying session of the L-PDU out of the CAN
hardware receive object to the L-PDU buffer relocated in the upper layer module.

Initially after detection of a new reception of an L-PDU the CanDrv stores the L-PDU
data in an own temporary buffer. If a separate L-SDU normalization is not necessary
according to the data structures of the used CAN controller, temporary buffering can
be omitted. Thus this feature is up to the CanDrv. The Canlf is not able to recognize,
whether the CanDrv uses temporary buffering or a direct hardware access. The Canlf
expects normalized L-PDU data in calls of the Canlf_RxIndication().

The CAN hardware receive object is locked until the end of the copy process to the
temporary or upper layer module buffer. The hardware object will be immediately
released after Canlt_RxIndication() of the Canlf returns to avoid loss of data.

In case temporary buffering is used, the hardware object remains locked until the
data is read out and copied to the temporary buffer. Then the CAN controller is able
to perform the next occurred receive event.

In case no temporary buffer is used, the hardware object remains locked until the
data is read out and the indication service returns. In this case the parameter of the
receive indication callback Canlf_RxIndication() refers to the locked CAN RAM
with received data.

When Canlf_RxIndication() is called, the Canlf identifies the corresponding
upper layer module and calls <User_RxIndication>() (refer to 8.6.3.2
<User_RxIndication>) of it (see CANIF135).

The temporary buffer or the CAN hardware receive object within the currently
received L-PDU remains locked until the end of the copy process. The CanDrv is
responsible to unlock them, after Canlf's indication services has returned.

The CanDrv, the Canlf and the upper layer module , which belongs to the received L-
PDU, access the same temporary intermediate buffer, which can be located either in
the CAN hardware receive object of the CAN controller or as temporary buffer in the
CanDrv.

58 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTO SAR

CAN Controller
CAN Driver

CAN Interface

Data
normalization
necessary?

[Yes]

[No]

Specific

Receive Interrupt

ation of CAN Interface
V5.0.0
R4.0 Rev 3

Te

«datastore»
mporary bufferin CAN
Driver

' Call Canlf_RxIndication() '

Rx L-PDU
received in
BasicCAN ?

[Noj

[Yes
CANIF_DLC_CHEC

DLC Check
failed ?

[Yes

[No]

nabled?

[Noj

Call Dem_ReportErrorStatus() with
Eventld == CANIF_E_INVALID_DLC

Upper Layer

7.15 Receive indication

[Yes]
Software filtering

[L-PDU passed]

upper layers

[Call <User_RxIndication>() to

)

«datastore»
Copy data to L-PDU
buffer

—

Figure 11 Receive data flow

[L-PDU not
passed]

<User_RxIndication>() returns
Canlf_RxIndication() returns

A call of Canlf_RxIndication() (see CANIF006) references in its parameters a
newly received CAN L-PDU. If the function Canlf_RxIndication() is called, the

Document ID 012: AUTOSAR_SWS_CANInterface.doc

59 of 213

- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

Canlf evaluates the CAN L-PDU for acceptance and prepares the CAN L-PDU for
later access by the upper communication layers. The Canlf notifies upper layer
modules about this asynchronous event using <User_RxIndication>() (see
8.6.3.2 <User_RxIndication>, CANIF012), if configured and if this CAN L-PDU is
successfully detected and accepted for further processing. The detailed requirements
for this behavior follow here.

[CANIF389] TIf the function Canlf _RxIndication() is called, the Canlf shall

process the Software Filtering on the received L-PDU as specified in 7.21, if
configured (see multiplicity of CANIF628 Conf equals 0..*) If Software Filtering
rejects the received L-PDU, the Canlf shall end the receive indication for that call of

Canlf_RxIndication(). ()

[CANIF390] l'lf the Canlf accepts an L-PDU received via Canlf_RxIndication()
during Software Filtering (see CANIF389), the Canlf shall process the DLC check

afterwards, if configured (see CANIF617 Conf) . ()
For further details, please refer to chapter [7.22 DLC check].

[CANIF297] T If the Canlf has accepted a L-PDU received Vvia

Canlf_RxIndication() during DLC check (see CANIF390), the Canlf shall copy
the number of bytes according to the configured DLC value (see CANIF594 Conf,
CANIF599 Conf) to the static receive buffer, if configured for that L-PDU (see

CANIF198, CANIF600 Conf). |()

[CANIF056] TIf the Canlf accepts an L-PDU received via Canlf_RxIndication()

during DLC check (see CANIF390, CANIF026), the Canlf shall identify if a target
upper layer module was configured (see configuration descrption of CANIF012 and
CANIE529 Conf, CANIF530 Conf) to be called with its providing receive indication

service for the received L-PDU. ()

[CANIF135] TIf a target upper layer module was configured to be called with its

providing receive indication service (see CANIF056), the Canlf shall call this
configured receive indication callback service (see CANIF530 Conf) and shall
provide the parameters required for upper layer notification callback functions (see

CANIF012) based on the parameters of Canlf_RxIndication().;(BSW00325)

Note: A single receive L-PDU can only be assigned to a single receive indication
callback service (refer to multiplicity of CANIF_USERRXINDICATION_NAME,
CANIF530_Conf).

Overview: Canlf performs the following steps at a call of Canlf_RxIndication():
= Software Filtering (only BasicCAN), if configured

= DLC check, if configured

= buffer received L-PDU if configured

= call upper layer receive indication callback service, if configured.

60 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

7.16 Read received data

The read received data APl Canlf_ReadRxPduData() (see CANIF194) is a
common interface for upper layer modules to read CAN L-PDUs recently received
from the CAN network. The upper layer modules initiate the receive request only via
the Canlf services without direct access to the CanDrv. The initiated receive request
is successfully completed, if the Canlf wrote the received CAN L-PDU into the upper
layer module L-PDU buffer.

The function Canlf_ReadRxPduData() makes reading out data without
dependence of reception event (RxIndication) possible. When it is enabled at
configuration time (see CANIF_PUBLIC_READRXPDU_DATA_API,CANIF607 Conf),
not necessarily a receive indication service for the same L-PDU has to be configured
(see CANIF529 Conf). If needed, the receive indication can be enabled, too.

By this way the type of mechanism to receive CAN L-PDUs (in the upper layer
modules of the Canlf) can be chosen at configuration time by the parameter
CANIF_RXPDU_USERRXINDICATION_UL (see CANIF529 Conf) and parameter
CANIF_RXPDU_READ_DATA (see CANIF600 Conf) according to the needs of the
upper layer module, to which the corresponding receive CAN L-PDU belongs to. For
details please refer to [9.9 Read received datal].

[CANIF198] r If the configuration parameter

CANIF_PUBLIC_READRXPDU_DATA_API (CANIF607 Conf) is set to TRUE, the
Canlf shall store each received L-PDU, at which CANIF_RXPDU_ READDATA
(CANIF600_Conf) is enabled, into a receive L-PDU buffer. This means that if the
configuration parameter CANIF_RXPDU_ READDATA (CANIF600 Conf) is set to

TRUE, the Canlf has to allocate a receive L-PDU buffer for this receive L-PDU. ()

[CANIF199] TlAfter call of Canlf_RxIndication() and passing of software filtering
and DLC check, the Canlf shall store the received L-PDU in this receive L-PDU
buffer. During the call of Canlf_ReadRxPduData() the assigned receive L-PDU
buffer containing a recently received L-PDU, the Canlf shall avoid preemptive receive
L-PDU buffer access events (refer to CANIF064) to that receive L-PDU buffer. In the
sequence diagrams in chapter 9, the receive L-PDU buffer operations, which could
be preempted by further receive buffer access operations, are emphasized by

messages “ENTER CRITICAL SECTION” and “LEAVE CRITICAL SECTION". ()

7.17 Read Tx/Rx notification status

In addition to the notification callback functions the Canlf provides the API service
Canlf_ReadTxNotifStatus()(see CANIF202) to read the transmit confirmation
status of any transmit CAN L-PDU and the API service

61 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

Canlf_ReadRxNotifStatus() is provided to read the receive indication status of
any receive CAN L-PDU.

The Canlf's API services Canlft_ReadTxNotifStatus() (see CANIF202) and
Canlf_ReadRxNotifStatus() (see CANIF230) can be enabled/disabled globally
or per L-PDU at pre-compile time configuration using the configuration parameters
CANIF_PUBLIC_READTXPDU_NOTIFY_STATUS_API (CANIF609 Conf),
CANIF_PUBLIC_READRXPDU_NOTIFY_STATUS_API (CANIF608 Conf),
CANIF_TXPDU_READ_NOTIFYSTATUS (CANIE589 Conf), and
CANIF_RXPDU_READ_NOTIFYSTATUS (CANIF595 Conf).

[CANIF472] r If configuration parameter
CANIF_PUBLIC_READTXPDU_NOTIFY_STATUS_AP1 (CANIF609 Conf) is set to
TRUE, the Canlf shall store the current notification status for each transmit L-PDU. ()

[CANIF473] r If configuration parameter
CANIF_PUBLIC_READRXPDU_NOTIFY_STATUS_API (CANIF608 Conf) is set to

TRUE, the Canlf shall store the current notification status for each receive L-PDU. ()

Rationale for CANIF391 and CANIF393 respectively CANIF392 and CANIF394: This
'read-and-consume' behavior ensures, that at least one successful transmit or
receive event occurred after last call of this service.

7.18 Data integrity

[CANIFO64] T The Canlf shall protect preemptive events, which access shared
resources, that could be changed during the Canlif's event handling, against each
other. |(BSW00312)

Rationale: An attempt to update the data in the upper layer module buffers as well as
in the internal Canlf's buffers has to be done with respect to possible changes done
in the context of an interrupt service routine or other preemptive events. Preemptive
events probably occur either from preemptive tasks, multiple CAN interrupts, if
multiple physical channels i.e. for gateways are used, or in case of other peripherals
or network systems interrupts, which have the needs to transmit and receive CAN L-
PDUs on the network.

[CANIFO058] T'f the Canlf's environment reads data from the Canlf controlled memory

areas initiated by calling one of the functions Canlf _Transmit(),
Canlf_TxConfirmation(), Canlf_CancelTxConfirmation(), and
Canlf_ReadRxPduData(), the Canlf shall guarantee that the provided values are

the most recently acquired values. |()

62 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

Hint: The functions Canlf_Transmit(), Canlf_TxConfirmation(), Canlf_ -
CancelTxConfirmation(), and Canlf_ReadRxPduData() access data from
the Canlf controlled memory areas only, if the Canlf is configured to use transmit
buffers or receive buffers.

Handling of shared transmit and receive L-PDU buffers are critical issues for the
implementation of the Canlf. Therefore the Canlf shall ensure data integrity and thus
use appropriate mechanisms for access to shared resources like
transmission/reception L-PDU buffers. Preemptive events, i.e. transmission and
reception event from other CAN controllers could compromise data integrity by
writing into the same L-PDU buffer.

The Canlf can e.g. use the CanDrv services to enable
(Can_EnableControllerinterrupts())and disable (Can_Disable-
Controllerinterrupts()) CAN interrupts and its notifications at entry and exit
of the critical sections separately for each CAN controller. If there are common
resources for multiple CAN controllers, the entire CAN Interrupts must be locked.
These sections must not take a long time in order to prevent serious performance
degradation. Thus copying of data, change of static variables, counters and
semaphores should be carried out inside these critical sections. It is up to the
implementation to use appropriate mechanisms to guarantee data integrity, interrupt
ability and reentrancy.

The transmit request APl Canlf_Transmit() must be able to operate re-entrant to
allow multiple transmit request calls caused by different preemptive events of
different L-PDU Handles. The CanDrv's transmit request APl Can _Write()
operates re-entrant as well.

7.19 CAN Controller mode
7.19.1 General functionality

The Canlf provides services for controlling the communication mode of all supported
CAN controllers represented by the underlying CanDrv. This means that all CAN
controllers are controlled by the corresponding provided API services to request and
read the current controller mode.

The CAN controller status information which is stored within the Canlf are accessible
via Canlf_GetControllerMode().

The CAN controller status may be changed at request of the upper layer by the
calling of Canlf_SetControllerMode() service. The request is validated and
passed by the Canlf via the CanDrv API to the addressed CAN controller.

The consistent management of all CAN controllers connected at one CAN network is
the task of the CanSm. By this way the CanSm is responsible to set all CAN
controllers of one CAN network sequentially to sleep mode or to wake them up.

63 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

Hint: Because of CDD, the names of the callback services of the Communication
Services are configurable (see chapter 8.6.3). In the following paragraph the usual
services of CanSm and EcuM are mentioned.

When a CAN controller signals the network event “BusOff”, the Canlf service
Canlf_ControllerBusOff() is called which transitions the buffered CAN
controller mode (see below CCMSM) in the Canlf to CANIF_CS_STOPPED and
which in turn notifies the CanSm by the callback service
CanSm_ControllerBusOff(Controllerld).

In case of a CAN bus “wake-up” event the function
Canlf_CheckWakeup(WakeupSource) may be called during execution of
EcuM_CheckWakeup(WakeupSource) (see wake-up sequence diagrams of
EcuM). The Canlf in turn checks by configured input reference to
EcuMWakeupSource in the Driver modules, which Driver modules have to be
checked. The Canlf gets this information via reference CanlfCtriICanCtriIRef
(see CANIF636_Conf).

The Communication Service, which is called, belongs to the service defined during
configuration (see CANIF250_Conf). In this way the EcuM as well as the CanSm are
able to change CAN controller states and to control the system behavior concerning
the BusOff recovery or wakeup procedure.

The state machine in Figure 12 Canlf Controller mode state machine for one CAN
controller = CCMSM) gives an overview about the possible CAN controller state
transitions, which may be requested by surrounding modules of the Canlf (CanDrv,
CanSm, EcuM, CDD etc.). The Canlf does not check these requests for correctness.

The Canlf analyses the function calls Canlf_ControllerBusOff() and
Canlf_ControllerModelndication() and determines the current mode of the
assigned CAN controller, which are represented in the Canlf as states:

= CANIF_CS _UNINIT

= CANIF_CS_STOPPED

= CANIF_CS_STARTED

= CANIF_CS_SLEEP

Requirements describing transitions to one of these CAN Controller mode
representing states in detail are structured according to the source state. State
CANIF_CS_INIT and sub states of CANIF_CS_STOPPED are introduced to clarify
the different and the common behavior when CAN controller mode changes to
CANIF_CS_STOPPED, from CANIF_CS_START to CANIF_CS_SLEEP, or from
CANIF_CS SLEEP to CANIF_CS _START are requested. Changes of the PDU
channel mode are not represented in Figure 12 Canlf Controller mode state machine
for one CAN controller).

Figure 13 shows only one sub-state-machine representing the required behavior of
one CAN Controller module for sake of lucidity, but there should be a separate sub-
state-machine for each assigned CAN Controller module.

The calling modules requesting state transitions of the CCMSM can do this
independently of the current state of the CCMSM, i.e. the Canlf accepts every state

64 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

transition request by calling the function Canlf_SetControllerMode()or
Canlf_ControllerBusOff(). The Canlf does not decide if a requested mode
transition of the CAN controller is valid or not. The Canlf only includes the execution
of requested mode transitions (see CANIF474).

This network related state machine is implemented in the CanSm. Refer to [11]
Specification of CAN State Manager. The Canlf only stores the requested mode and
executes the requested transition.

Hint: It has to be regarded that not only the CanSm is able to request CAN controller
mode changes.

CANIF_CS_UNINIT

PowerOn Reset

Canlf_ControllerBusOff(Controller)
Canlf_InitController() /<User_ControllerBusOff>(CanNetwork)

PowerOff

Canlf_Init()

CANIF_CS_INIT

+ entry / clear temporarily stored wakeup events / CANIF_CS_STARTED

Canlf_SetControllerMode(
Controller, CAN_CS_STARTED)
/Can_SetControllerMode(

Controller, CAN_T_START) \

Canlf_SetControllerMode(
Controller, CANIF_CS_STOPPED)
/Can_SetControllerMode(
Controller, CAN_T_STOP)

Canlf_SetControllerMode(
Controller, CAN_CS_STARTED)
/Can_SetControllerMode(

Controller, CAN_T_START)

Canlf_SetControllerMode(
Controller, CANIF_CS_SLEEP)
/Can_SetControllerMode(
Controller, CAN_T_STOP)

CANIF_CS_STQPPED

Canlf_Init()
+ entry / cancel pending transmit requests CANIE CS_START TO SLEEP
+ entry / clear Canlf transmit buffers - -
CANIF_CS_STOP /Can_SetControllerMode(

Controller, CAN_T_SLEEP)

/Can_SetControllerMode(
Comrolller, CAN_T_START)

C)ANI F CS_SLEEP T o_START>

Canlf_SetControllerMode(Canlf_SetControllerMode(
— N — Y Canlf_SetControllerMode(
Canlf_SetControllerMode(Controller, CANIF_CS_SLEEP) Controller, CANIF_CS_STARTED) Controller, CANIF_CS_STOPPED)
Controller, CANIF_CS_STOPPED) /Can_SetControllerMode(/Can_SetControllerMode(I/Can Setééntrollngc;cie(
/Can_SetControllerMode(Controller, CAN_T_SLEEP) Controller, 'CAN_T_STOP) - C

Controller, CAN_T_STOP) Controller, CAN_T_STOP)

e CANIF_CS_SLEEP
Canlf_SetControllerMode(

Controller, CANIF_CS_SLEEP)
/Can_SetControllerMode(

Controller, CAN_T_SLEEP) \

Figure 12 Canlf Controller mode state machine for one CAN controller

General remarks to be considered during implementation:

[CANIF474] T'The CAN Interface module shall not contain any complete CAN

controller state machine. |()

65 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUT(\ SAR Specification of CAN Interface
V5.0.0

R4.0 Rev 3

Hint for CANIF474: The Canlf only buffers the modes of the CAN controllers, but it
contains no state machine, which checks the transitions.

Because only the CCMSM modes CANIF_CS_UNINIT, CANIF_CS_STOPPED,
CANIF_CS _STARTED, and CANIF_CS_SLEEP are visible at the CAN Interface
module's interfaces, the additional states of the CCMSM are not mandatory for the
implementation of the Canlf.

7.19.2 CAN Controller operation modes

According to the requested operation mode by the CanSm the Canlf translates it into
the right order of mode transitions for the CAN controller.

The Canlf changes or stores the new operation mode of the CAN controller after a
indication of a successful mode transition via
Canlf_ControllerModelndication(Controller, ControllerMode).

[CANIF475] T If during function Canlf_SetControllerMode() the call of
Can_SetControl lerMode()returns with CAN_NOT_OK,

Canlf_SetControllerMode() returns E_NOT_OK. |()

7.19.2.1 CANIF_CS_UNINIT

The Canlf is not initialized. The EcuM has to consider, that also the CAN driver
module(s) and CAN controller(s) are not initialized.

[CANIF476] TIf a CCMSM is in state CANIF_CS_UNINIT when the function
Canlf_Init() is called, then the Canlf shall take the CCMSM for every assigned
CAN controller to state CANIF_CS_INIT. ()

7.19.2.2 CANIF_CS_INIT

[CANIF477] Tlf the CCMSM is in state CANIF_CS_INIT for every assigned CAN

controller when the function Canlf_Init() is called, then the CAN Interface
module shall take the CCMSM for every assigned CAN controller to state

CANIF_CS_INIT. ()

The explicit transition from CANIF_CS_INIT to CANIF_CS_INIT described in
requirement CANIF477 models the reinitialization of the state machine contained
within CANIF_CS_INIT.

[CANIF478] TIf the state CANIF_CS_INIT of a CCMSM is entered, then the Canlf
shall take that CCMSM to sub state CANIF_CS STOPPED of state CANIF_CS_INIT.
10

66 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

[CANIF479] I'lf a CCMSM enters state CANIF_CS_INIT, then the Canlf shall clear all

temporarily stored wakeup events corresponding to that state machine. |()

[CANIF298] I If a CCMSM equals CANIF_CS INIT when function

Canlf_ControllerBusOff(Controllerld) is called with parameter
Controllerld referencing that CCMSM, then the CCMSM shall be changed to

CANIF_CS_STOPPED. |()

7.19.2.2.1CANIF_CS_STOPPED

The CAN controller cannot receive or transmit CAN L-PDUs on the network in the
corresponding mode CAN_T_STOP.

[CANIF480] I'lf a CCMSM is in state CANIF_CS_STOPPED, when the function

Canlf_SetControllerMode(Controllerld, CANIF_CS_STOPPED) is called
with parameter Control lerld referencing that CCMSM, then the Canlf shall call

Can_SetControllerMode(Controller, CAN_T_STOP). ()

[CANIF713] T'lf a CCMSM is in state CANIF_CS_STOPPED , when function

Canlf_ControllerModelndication(Controller, ControllerMode) is
called with parameter Control ler referencing that CCMSM and Control lerMode
equals CANIF_CS_STOPPED, then the Canlf shall take the CCMSM to sub state

CANIF_CS_STOPPED of state CANIF_CS_INIT. ()

[CANIF677] Tlf a CCMSM is in state CANIF_CS_STOPPED and if the PduldType

parameter in a call of Canlf_Transmit() is assigned to that CAN controller, then
the call of Canlf_Transmit()does not result in a call of Can_Write() (see

CANIF317) and returns E_NOT_OK (see CANIF005). ()

[CANIF481] TIf a CCMSM is in state CANIF_CS_STOPPED when the function

Canlf_SetControllerMode(Controllerld, CANIF_CS STARTED) is called
with parameter Controllerld referencing that CCMSM, then the Canlf shall call

Can_SetControllerMode(Controller, CAN_T_START).|()

[CANIF714] Tlf a CCMSM is in state CANIF_CS_STOPPED , when function

Canlf_ControllerModelndication(Controller, ControllerMode) is
called with parameter Control ler referencing that CCMSM and Control lerMode
equals CANIF_CS_STARTED, then the Canlf shall take the CCMSM to sub state

CANIF_CS_STARTED of state CANIF_CS_INIT. ()

67 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

[CANIF482] TIf a CCMSM is in state CANIF_CS_STOPPED when the function

Canlf_SetControllerMode(Controllerld, CANIF_CS_SLEEP) is called with
parameter Control lerld referencing that CCMSM, then the CAN Interface module

shall call Can_SetControllerMode(Controller, CAN_T SLEEP). ()

[CANIF715] T'if a CCMSM is in state CANIF_CS_STOPPED , when function

Canlf_ControllerModelndication(Controller, ControllerMode) is
called with parameter Control ler referencing that CCMSM and Control lerMode
equals CANIF_CS_SLEEP, then the Canlf shall take the CCMSM to sub state

CANIF_CS_SLEEP of state CANIF_CS_INIT. ()

[CANIF485] Tlf a CCMSM enters state CANIF_CS_STOPPED, then the Canlf shall
clear the Canlf transmit buffers assigned to the CAN controller corresponding to that
state machine. |()

7.19.2.2.2CANIF_CS_STARTED

In the mode CANIF_CS_STARTED the Canlf passes all transmit requests to the
CanDrv and the Canlf can receive CAN L-PDUs and notify upper layers about
received L-PDUs.

[CANIF584] TIf a CCMSM is in state CANIF_CS _STARTED when the function

Canlf_SetControllerMode(Controllerld, CANIF_CS STARTED) is called
with parameter Controllerld referencing that CCMSM, then the Canlf shall call

Can_SetControllerMode(Controller, CAN_T START).|()

[CANIF716] I'lf a CCMSM is in state CANIF_CS_STARTED , when function

Canlf_ControllerModelndication(Controller, ControllerMode) is
called with parameter Control ler referencing that CCMSM and Control lerMode
equals CANIF_CS_STARTED, then the Canlf shall leave the CCMSM in sub state

CANIF_CS_STARTED of state CANIF_CS_INIT. ()

[CANIF585] TlIf a CCMSM is in state CANIF_CS _STARTED when the function

Canlf_SetControllerMode(Controllerld, CANIF_CS STOPPED) is called
with parameter Controllerld referencing that CCMSM, then the Canlf shall call

Can_SetControllerMode(Controller, CAN_T _STOP). ()

[CANIF717] Tlf a CCMSM is in state CANIF_CS_STARTED , when function

Canlf_ControllerModelndication(Controller, ControllerMode) is
called with parameter Control ler referencing that CCMSM and Control lerMode
equals CANIF_CS_STOPPED, then the Canlf shall take the CCMSM to sub state

CANIF_CS_STOPPED of state CANIF_CS_INIT. |()

68 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

[CANIF488] I If a CCMSM equals CANIF_CS STARTED when function

Canlf_ControllerBusOff (Controllerld) is called with parameter
Controllerld referencing that CCMSM, then the CCMSM shall be changed to

CANIF_CS_STOPPED ()

7.19.2.2.3CANIF_CS_SLEEP

If a CAN controller is set to CAN_T_SLEEP mode, then the controller are enabled, if
supported. As long as wake up functionality is not provided by the CAN controller, the
CanDrv encapsulates it.

[CANIF486] TIf a CCMSM is in state CANIF_CS _SLEEP when the function
Canlf_SetControllerMode(Controllerld, CANIF_CS_SLEEP) is called with
parameter Controllerld referencing that CCMSM, then the Canlf shall call

Can_SetControllerMode(Controller, CAN_T_ SLEEP).|()

[CANIF718] T'lf a CCMSM is in state CANIF_CS_SLEEP , when function

Canlf_ControllerModelndication(Controller, ControllerMode) is
called with parameter Control ler referencing that CCMSM and Control lerMode
equals CANIF_CS_SLEEP, then the Canlf shall leave the CCMSM in sub state

CANIF_CS_SLEEP of state CANIF_CS_INIT. ()

[CANIF487] TIf a CCMSM is in state CANIF_CS_SLEEP when the function
Canlf_SetControllerMode(Controllerld, CANIF_CS STOPPED) is called
with parameter Controllerld referencing that CCMSM, then the Canlf shall call

Can_SetControllerMode(Controller, CAN_T_WAKEUP). ()

[CANIF719] T'lf a CCMSM is in state CANIF_CS_SLEEP , when function

Canlf_ControllerModelndication(Controller, ControllerMode) is
called with parameter Control ler referencing that CCMSM and Control lerMode
equals CANIF_CS_STOPPED, then the Canlf shall take the CCMSM to sub state

CANIF_CS_STOPPED of state CANIF_CS_INIT. ()

When the function Canlf_SetControl lerMode(Controllerld,
CANIF_CS_STARTED) is entered and the CCMSM is in state CANIF_CS_SLEEP, it
shall detect an invalid state transition. -> This evaluation has to be made in the
CanDrv.

7.19.2.3 BUSOFF

69 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

[CANIF739] [If CANIF_PUBLIC_TXCONFIRM_POLLING_SUPPORT (see

CANIF733 Conf) is enabled, the Canlf shall clear the information about a
TxConfirmation (see CANIF740), when callback

Canlf_ControllerBusOff(Controllerld) is called. ()

[CANIF724] T When callback Canlf _ControllerBusOff (Controllerld) is
called, the Canlf shall call CanSM_Control lerBusOff(Controllerld) of the

CanSm (see chapter 8.6.3.8 or a CDD (see CANIF559, CANIF560). ()

Influence on CCMSM of Canlf_ControllerBusOfT is described in CANIF298
and CANIF488.

7.19.2.4 Mode Indication

Note: When the callback Canlf_ControllerModelndication(Controller,
ControllerMode) is called, the Canlf sets the CCMSM of the corresponding
Controller to the delivered Controll lerMode without checking correctness of
CCMSM transition.

[CANIF711] r When callback
Canlf_ControllerModelndication(Controller, ControllerMode) is
called, the Canlf shall call

CanSm_ControllerModelndication>(Controllerld, ControllerMode) of
the CanSm (see chapter 8.6.3.8 <User_ControllerModelndication>) or a CDD (see

CANIF691, CANIF692). |()

[CANIF712] T When callback Canlf_TrcvModelndication(Transceiver,

TransceiverMode) IS called, the Canlf shall call
CanSM_TransceiverModelndication(Transceiverlid,
TransceiverMode) of the CanSm (see chapter 8.6.3.87

<User_ControllerModelndication>) or a CDD (see CANIF697, CANIF698). |()

7.19.3 Controller mode transitions

The API for state change requests to the CAN controller behaves in an asynchronous
manner with asynchronous notification via callback services.

The real transition to the requested mode occurs asynchronously based on setting of
transition requests in the CAN controller hardware, e.g. request for sleep transition
CANIF_CS_SLEEP. After successful change to e.g. CAN_T_SLEEP mode the
CanDrv calls function Canlf_ControllerModelndication()and the Canlf in
turn calls function <User_ControllerModelndication>() besides changing
the CCMSM to CANIF_CS _SLEEP. If CAN controller transitions very fast,

70 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

Canlf_ControllerModelndication() can be called during
Canlf_SetControllerMode(). This is implementation specific.

Unsuccessful or no mode transitions of the CAN controllers have to be tracked by
upper layer modules. Mode transitions CANIF_CS _STARTED and
CANIF_CS STOPPED are treated similar.

Upper layer modules of Canlf can poll the current within the Canlf buffered operation
mode (CCMSM) by Canlf_GetControllerMode() (see CANIF229).

Not all types of CAN controllers support Sleep and Wake up mode. These modes are
then encapsulated by the CanDrv by providing hardware independent operation
modes via its interface, which has to be managed by the Canlf.

The CanDrv can release directly a wake up interrupt (to the ECU Integration Code)
during the outstanding request Can_SetControllerMode(Controller,
CAN_T_SLEEP) and the answer
Canlf_ControllerModelndication(Controller, CANIF_CS_SLEEP), when
CAN L-PDUs are transmitted or received at the same time.

This treatment guarantees, that the CanSm is informed immediately about the
transition to CANIF_CS_SLEEP mode for handling the CanTrcv and enabling the
wake up interrupt.

The Canlf distinguishes between internal initiated CAN controller wake up request
(internal request) and network wake up request (external request). The internal
request is initiated by call of the CAN Interface module's function
Canlf_SetControllerMode(Controllerld, CANIF_CS STARTED) and it is
an internal asynchronous request.

The external request is a CAN controller event, which is notified by the CanDrv or the
CanTrcv to the ECU Integration Code. For details see respective UML diagram in the
chapter “CAN Wakeup Sequences” of document [15] Specification of ECU State
Manager module.

7.19.4 Wake-up

The ECU supports wake-up over CAN network, regardless of the used wake-up
method (directly about CAN controller or CAN transceiver), only if the CAN controller
and CAN transceiver are set to some kind of “listen for wake-up” mode. This is
usually a SLEEP mode, where the usual communication is disabled. Only this mode
ensures that the CAN controller is stopped. Thus, the wake-up interrupt can be
enabled.

7.19.4.1 Wake-up detection

If wake-up support is enabled (see CANIF180) the Canlf is notified by the Integration
Code about a detected CAN wake-up by the service Canlf_CheckWakeup()(see
CAN Wakeup Sequences of [15] Specification of ECU State Manager).

71 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

[CANIF180] I'The Canlf shall provide wake-up service Canlf_CheckWakeup()only,

if

= underlying CAN controller provides wake-up support and wake-up is enabled by
the parameter CANIF_CONTROLLER_WAKEUP_SUPPORT (see CANIF637_Conf)
and by CanDrv configuration.

= underlying CAN transceiver provides wake-up support and wake-up is enabled by
the parameter CANIF_TRANSCEIVER_WAKEUP_SUPPORT (see CANIF606_Conf)

and CanTrcv configuration. |()

[CANIF395] 'When Canlf_CheckWakeup(EcuM_WakeupSourceType
WakeupSource) is invoked, the Canlf shall querie the CAN controller/transceiver
drivers via CanTrcv_CheckWakeup() or Can_CheckWakeup(), which exact CAN

hardware device caused the bus wake-up. |()

Note: It is implementation specific, which controllers and transceivers are queried.
The Canlf just has to find out the exact CAN hardware device.

[CANIF720] TIf at least one function call of Can_CheckWakeup() or
CanTrcv_CheckWakeup() returns (CAN_OK / E_OK) to the Canlf, then

Canlf_CheckWakeup() shall return E_OK. j()

[CANIF678] TIf all calls of Can_CheckWakeup() or CanTrcv_CheckWakeup()
return (CAN_NOT_OK / E_NOT_OK) to the Canlf, then Canlf_CheckWakeup() shall

return E_NOT_OK. j()

[CANIF679] T'lf the CCMSM (see chapter 7.19) of the CAN controller, which shall be

checked for a wake-up event via Canlf_CheckWakeup(), is not in mode
CANIF_CS_SLEEP, the Canlf shall report the development error code
CANIF_E_NOT_SLEEP to the Det_ReportError service of the DET module and

Canlf_CheckWakeup() shall return E_NOT_OK. j()

7.19.4.2 Wake-up validation

Note: When a CAN controller / transceiver detects a bus wake-up event, then this will
be notified to the ECU State Manager indirectly. If such a wake-up event needs to be
validated, the EcuM (or a CDD) switches on the corresponding CAN controller
(Canlf_SetControllerMode()) and transceiver (Canlf_SetTrcvMode()) (For
more details see chapter 9 of [15] Specification of ECU State Manager).

Attention: The Canlf notifies the upper layer modules about received messages after
the corresponding CCMSM has been transitioned to CANIF_CS _STARTED and the
PDU channel mode has been set to CANIF_SET_TX ONLINE. Thus, it is necessary
that the PDU channel mode is not set to CANIF_SET_TX ONLINE if wake-up
validation is required.

72 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

Note: As per CAN411 and CAN Controller State Diagram (see [8] Specification of
CAN Diriver) a direct transition from mode CAN_T_SLEEP to CAN_T_START is not
allowed.

[CANIF226] r The Canlf shall provide wake-up service

Canlf_Checkvalidation()only, if

e underlying CAN controller provides wake-up support and wake-up is enabled by
the parameter CANIF_CTRL_WAKEUP_SUPPORT (see CANIF637 Conf) and by
CanDrv configuration.

e and/orunderlying CAN transceiver provides wake-up support and wake-up is
enabled by the parameter CANIF_TRCV_WAKEUP_SUPPORT (see
CANIF606_Conf) and CanTrcv configuration.

e and configuration parameter
CANIF_PUBLIC_WAKEUP_CHECK_VALIDATION_SUPPORT (see

CANIF611 Conf) is enabled. |()

CANIF286: If CANIF_PUBLIC_WAKEUP_CHECK_VALIDATION_SUPPORT equals
True the Canlf enables the detection for CAN wake-up validation. Therefore the
Canlf stores the event of the first called Canlf _RxIndication() of a CAN
controller which has been setto CANIF_CS_STARTED.

[CANIF179] I<User__ Val idateWakeupEvent>(sources) shall be called during

Canlf_CheckValidation(WakeupSource), whereas sources is set to
WakeupSource, if the event of the first called Canlf_RxIndication() is stored

in the CAN Interface module at the corresponding CAN controller. (BSW01136)

Note: The parameter of the function <User_Val idateWakeupEvent>() is of type:
e sources: EcuM_WakeupSourceType (see [15] Specification of ECU State
Manager)

[CANIF681] T If a wake-up event is not validated for the corresponding

WakeupSource (see CANIF179), then a function call of
Canlf_CheckValidation(WakeupSource) shall call the function
<User__ ValidateWakeupEvent>(sources), whereas all bits of sources shall

be cleared. |()

CANIF756: When CC is set to CS_SLEEP the stored event (call of the first
Canlf_RxIndication) shall be cleared.

7.20 PDU channel mode control

7.20.1 PDU channel groups

73 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

Vv5.0.0
R4.0 Rev 3

Each L-PDU is assigned to one dedicated physical CAN channel connected to one
CAN controller and one CAN network. By this way all L-PDUs belonging to one
physical channel can be controlled on the view of handling logically single L-PDU
channel groups. Those logical groups represent all L-PDUs of one ECU connected to
one underlying CAN network.

The figure below shows one possible usage of L-PDU channel group and its relation
to the upper layers and/or networks:

An L-PDU can only be assigned to one channel group.

Typical users like PDU Router or the network management are responsible for
controlling the PDU operation modes.

CAN NM A CAN NM B
Channel Channel Channel Channel
Network 0 Network 0 Network 1 Network 1
TxPath RxPath TxPath RxPath

CAN Interface

y
CAN device drivers

[[
CAN controller/ CAN controller/
transceiver O transceiver 1

Network A
Network B
Figure 17 Channel L-PDU groups
7.20.2 PDU channel modes
The Canlf provides the services Canlf_SetPduMode() and

CanlfT_GetPduMode() to prevent the processing of

74 of 213

all transmit L-PDUs of the own ECU belonging to one logical channel,

all receive L-PDUs of the own ECU belonging to one logical channel,

all transmit and receive L-PDUs of the own ECU belonging to one logical
channel

all L-PDUs.

Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

Every PDU mode change can be requested for transmission and reception path
separately or commonly. A change of the channel mode has only an effect during the
network mode CANIF_CS_STARTED (refer to chapter 7.19.2.2.2
CANIF_CS_STARTED]).

The Canlf accepts always requests to change the PDU channel mode independent of
its current state. Although this is not necessarily sufficient to e.g. enable transmission
of L-PDUs, because the CAN Interface module does not transmit or receive L-PDUs
in CANIF_CS_STOPPED, CANIF_CS_SLEEP or CANIF_CS_UNINIT state.

The CANIF_TX ONLINE/ CANIF_RX ONLINE PDU channel mode and the
CANIF_TX_ OFFLINE/ CANIF_RX OFFLINE PDU channel mode offers the
possibility to change the PDU channel mode on the separately for the transmission
and reception paths. This modes behave the same like CANIF_SET_ONLINE /
CANIF_SET_OFFINE, but only for the transmit L-PDUs or the receive L-PDUs of the
corresponding channel.

The Canlf provides information about the status of 'ONLINE'/'OFFLINE' service when
required via the service Canlf_GetPduMode().

OFFLINE

@\® S

Figure 18 PDU channel mode control

The figure above shows a diagram with possible L-PDU channel modes. Each L-
PDU channel can be OFFLINE (no transmission) or ONLINE (activated
transmission). A simulation of the successful transmission (transmit confirmation) is
supported in the OFFLINE mode and called CANIF_OFFLINE_ACTIVE mode (see
CANIFQ72). The default state of L-PDU channel in OFFLINE mode thus is 'Passive'.
No simulation of the successful transmission takes place.

7.20.2.1 CANIF_OFFLINE

[CANIFO73] I After function Canlf_SetPduMode(Controllerlid,
CANIF_SET_OFFLINE) has been called, the Canlf shall deal with all L-PDUSSs,
which are assigned to the physical channel (defined by Controllerld ,refer to
CANIF382) as follows:

75 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

= prevent forwarding of the transmit request calls Canlf_Transmit()to the
CanbDryv (returning E_NOT_OK to the calling upper layer modules),

» clear the corresponding Canlf transmit buffers,

= prevent invocation of receive indication callback services of the upper layer
modules,

= prevent invocation of transmit confirmation callback services of the upper layer

modules. ()

[CANIF489] [After function Canlf_SetPduMode(Controllerlid,

CANIF_SET_TX_ OFFLINE) has been called, the Canlf shall deal with the transmit L-
PDUSs, which are assigned to the physical channel (defined by Controllerld
,refer to CANIF382) as follows:
= prevent forwarding of the transmit request calls Canlf_Transmit()to the
CanbDrv (returning E_NOT_OK to the calling upper layer modules),
= clear the corresponding Canlf transmit buffers,
= prevent invocation of transmit confirmation callback services of the upper layer

modules. |()

[CANIF490] [After function Canlf_SetPduMode(Controllerlid,

CANIF_SET_RX OFFLINE) has been called, the Canlf shall deal with the receive L-
PDUSs, which are assigned to the physical channel (defined by Controllerld
,refer to CANIF382) as follows:

= prevent invocation of receive indication callback services of the upper layer

modules. |()

The BusOff notification is implicitly suppressed in case of CANIF_SET_TX_ OFFLINE
and CANIF_SET_OFFLINE due to the fact, that in CANIF_SET_TX_OFFLINE and
CANIF_SET_OFFLINE mode no L-PDUs can be transmitted and thus the CAN
controller is not able to go in BusOff mode by newly requested L-PDUs for
transmission.

[CANIF118] TIf those transmit L-PDUs, which are already waiting for transmission in

the CAN hardware transmit object, will be transmitted immediately after change to
CANIF_SET _TX OFFLINE or CANIF_SET OFFLINE mode and a subsequent
BusOff event occurs, the Canlf does not prohibit execution of the BusOff notification

<User_ControllerBusOff>(Controllerlid). |()

The wake-up notification is not affected concerning mode PDU channel changes.

7.20.2.2 CANIF_ONLINE

[CANIFO75] [When function Canlf_SetPduMode(Controllerlid,

CANIF_SET_ONLINE) has been called, the Canlf shall deal with all L-PDUSs, which
are assigned to the physical channel (defined by Controllerld , refer to
CANIF382) as follows:

76 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

Vv5.0.0

R4.0 Rev 3

= enable forwarding of the transmit request calls Canlf_Transmit()to the
CanDryv,

= enable invocation of receive indication callback services of the upper layer
modules,

» enable invocation of transmit confirmation callback services of the upper layer

modules. ()

[CANIF491] [When function Canlf_SetPduMode(Controllerlid,

CANIF_SET_TX_ ONLINE) has been called, the Canlf shall deal with the transmit L-
PDUSs, which are assigned to the physical channel (defined by Controllerlid
,refer to CANIF382) as follows:
= enable forwarding of the transmit request calls Canlf_Transmit()to the
CanDryv,
= enable invocation of transmit confirmation callback services of the upper layer

modules. ()

[CANIF492] [When function Canlf_SetPduMode(Controllerlid,

CANIF_SET_RX_ONLINE) has been called, the Canlf shall deal with the receive L-
PDUSs, which are assigned to the physical channel (defined by Controllerld
,refer to CANIF382) as follows:

»= enable invocation of receive indication callback services of the upper layer

modules. ()

7.20.2.3 CANIF_OFFLINE_ACTIVE

The Canlf provides simulation of successful transmission by
CANIF_GET_OFFLINE_ACTIVE mode. This mode only affects the transmission path
of the Canlf.

The OFFLINE ‘Active’ mode is enabled by call of Canlf_SetPduMode
(Controllerld, CANIF_SET _TX_ OFFLINE_ACTIVE). This mode can be left by
cal of Canlf_SetPduMode(Controllerld, CANIF_SET_ONLINE) or
Canlf_SetPduMode(Controlleld, CANIF_SET_TX_ OFFLINE).

[CANIF072] I When function Canlf_SetPduMode(Controllerlid,

CANIF_SET_TX OFFLINE_ACTIVE) has been called, the Canlf shall deal with all
L-PDUSs, which are assigned to the physical channel (defined by Controllerild
,refer to CANIF382) as follows:
= prevent forwarding of the transmit request calls Canlf_Transmit()to the
CanDrv (but not returning E_NOT_OK to the calling upper layer modules),
= enable invocation of transmit confirmation callback services of the upper layer
modules synchronously at the end of the transmit request

Canlf_Transmit(). ()

77 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

On logical view the CANIF_GET_OFFLINE_ACTIVE mode is a sub-mode of the
CANIF_OFFLINE mode, whereas it can be enabled in CANIF_ONLINE as well as in
CANIF_OFFLINE mode.

Note: During CANIF_GET_OFFLINE_ACTIVE mode the upper layer has to handle
the execution of the transmit confirmations. The transmit confirmation handling is
executed immediately at the end of the transmit request (see CANIFQ72).

Rational: This functionality is useful to realize special operating modes (i.e. diagnosis
passive mode) to avoid bus traffic without impact to the notification mechanism. This
mode is typically used for diagnostic usage.

7.21 Software receive filter

Not all L-PDUs, which may pass the hardware acceptance filter and therefore are
successful received in BasicCAN hardware objects, are defined as receive L-PDUs
and thus needed from the corresponding ECU. The Canlf optionally filters out these
L-PDUs and prohibits further software processing.

Certain software filter algorithms are provided to optimize software filter runtime. The
approach of software filter mechanisms is to find out the corresponding L-PDU
handle from the HRH and CAN ID currently being processed. After the L-PDU handle
is found, the Canlf accepts the L-PDU and enables upper layers to access L-PDU
information directly.

7.21.1 Software filtering concept

The configuration tool handles the information about hardware acceptance filter
settings. The most important settings are the number of the L-PDU hardware objects
and their range. The outlet range defines, which receive L-PDUs belongs to each
hardware receive object. The following definitions are possible:

= asingle receive L-PDU (FullCAN reception),
= alist of receive L-PDUs or

= one or multiple ranges of receive L-PDUs can be linked to a hardware receive
object (BasicCAN reception).

For definition of range reception it is necessary to define at least one Rx L-PDU with
the Canld inside the defined range.

[CANIF645] TA range of Canlds which shall pass the software receive filter shall be

defined by its upper limit (see CANIF_HRHRANGE_UPPER_CANID
CANIF630 Conf) and lower limit (see CANIF_HRHRANGE_LOWER_CANID

CANIF629 Conf) Canld. ()

Note: Software receive filtering is optional (see multiplicity of 0..* in CANIF628 Conf).

78 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0
R4.0 Rev 3

[CANIF646] lEach configurable range of CAN Ids (see CANIF645), which shall pass
the software receive filter, shall be configurable either for StandardCAN IDs or

ExtendedCAN IDs via CANIF_HRHRANGE_CANIDTYPE (see CANIF644 Conf). ()

Receive L-PDUs are provided as constant structures statically generated from the
communication matrix. They are arranged according to the corresponding hardware
acceptance filter, so that there is one single list of receive Canlds for every hardware
receive object (HRH). The corresponding list can be derived by the HRH, if multiple
BasicCAN objects are used. The subsequent filtering is the search through one list of
multiple Canlds by comparing them with the new received Canld. In case of a hit the
receive L-PDU handle is derived from the found Canid.

[CANIFO030] TIf the Canlf has found the Canld of the received L-PDU in the list of

receive Canlds for the HRH of the received L-PDU, then the Canlf shall accept this L-
PDU and the software filtering algorithm shall derive the receive L-PDU handle from

the found Canld. ;(BSW01018)

Hardware e

Receive Handle

4 4 4

Rcv Handle Nr. | | Rev Handle Nr. | | Rev Handle Nr. Rcv Handle Nr. Rcv Handle Nr. | | Rev Handle Nr. | | Rev Handle Nr. | | Rev Handle Nr.
CAN Id CAN Id CAN Id CAN Id CAN Id CAN Id CAN Id CAN Id
DLC DLC DLC DLC DLC DLC DLC DLC
Upper Layer ID | | Upper Layer ID | | Upper Layer ID Upper Layer ID Upper Layer ID | | Upper Layer ID | | Upper Layer ID | | Upper Layer ID
*destination *destination *destination *destination *destination *destination *destination *destination
list end flag=0 list end flag=C list end flag=1 list end flag=1 list end flag=0 list end flag=C list end flag=0 list end flag=1

Figure 19 Software filtering example

7.21.2 Software filter algorithms

The choice of suitable software search algorithms it is up to the implementation of the
CAN Interface module. According to the wide range of possible receive BasicCAN
operations provided by the CAN controller it is recommended to offer several search
algorithms like linear search, table search and/or hash search variants to provide the
most optimal solution for most use cases.

7.22 DLC check

The received DLC value is compared with the configured DLC value of the received
L-PDU. The configured DLC value shall be derived from the size of used bytes inside
this L-PDU. The configured DLC value may not be necessarily that DLC value

defined in the CAN communication matrix and used by the sender of this CAN L-
PDU.

[CANIF026] TThe Canlf shall accept all received L-PDUs (see CANIF390) with a

DLC value equal or greater then the configured DLC value (see CANIF599 Conf).
(BSWO01005)

79 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

Hint: The DLC Check can be enabled or disabled globally by Canlf configuration (see
parameter CANIF_PRIVATE_DLC_CHECK, CANIF617 Conf) for all used CanDrvs.

[CANIF168] TIf the DLC check rejects a received L-PDU (see CANIF026), the Canlf
shall report development error code CANIF_E INVALID DLC to the
Det_ReportError() service of the DET module. j()

[CANIF829] I'The Canlf shall pass the received (see CANIF006) length value (DLC)
to the target upper layer module (see CANIF135), if the DLC check is passed. |()

[CANIF830] I'The Canlf shall pass the received (see CANIF006) length value (DLC)
to the target upper layer module (see CANIF135), if the DLC check is not configured
(see CANIF617 Conf), j()

7.23 L-PDU dispatcher to upper layers

Rationale: At transmission side the L-PDU dispatcher has to find out the
corresponding Tx confirmation callback service of the target upper layer module.

At reception side each L-PDU handle belongs to one single upper layer module as
destination for the corresponding receive L-PDU or group of such L-PDUs. This
relation is assigned statically at configuration time. The task of the L-PDU dispatcher
inside of the Canlf is to find out the customer for a received L-PDU and to dispatch
the indications towards the found upper layer.

These transmit confirmation as well as receive Indication notification services may
exist several times with different names defined in the notified upper layer modules.
Those notification services are statically configured, depending on the layers that
have to be served.

7.24 Polling mode

The polling mode provides handling of transmit, receive and error events occurred in
the CAN hardware without the usage of hardware interrupts. Thus the Canlf and the
CanDrv provides notification services for detection and execution corresponding
hardware events.

In polling mode the behavior of these Canlf notification services does not change. By
this way upper layer modules are abstracted from the strategy to detect hardware
events. If different CanDrvs are in use, the calling frequency has to be harmonized
during configuration setup and system integration.

These notification services are able to detect new events that occurred in the CAN
hardware objects since its last execution. The Canlf's notification services for
forwarding of detected events by the CanDrv are the same like for interrupt operation
(see chapter 8.4 “Callback notifications”).

80 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

The user has to consider, that the Canlf has to be able to perform notification
services triggered by interrupt on interrupt level as well as to perform invoked
notification services on task level.

If any access to the CAN controller's mailbox is blocked, subsequent transmit
buffering takes place (refer [7.12 Transmit buffering]).

The Polling and Interrupt mode can be configured for each underlying CAN
controller.

7.25 Multiple CAN Driver support

The Canlf needs a specific mapping to cover multiple CanDrv to provide a common
interface to upper layers. Thus, the Canlf must dispatch all actions up-down to the
APIs of the corresponding target CanDrv and underlying CAN controller(s) and as
well the way down-up by providing multiple callback notifications on the Canlf for
multiple CanDrvs.

[CANIF124] TIf multiple CanDrvs are assigned to a Canlf, then that Canlf shall
provide a separate set of callback function for each CanDrv, in which the callback

function names has to follow the naming convention specified in BSW00347. |
(BSWO00347)

The naming convention is as follows:

<CAN Driver module name>_ <vendorID>_ <Vendor specific APl name><driver
abbreviation>()

E.g.:
Can_99 Extl
Can_99_Ext2

The additional affixes within the function names shall be derived from configuration
reference CANIF_DRIVER_NAME_REF (see CANIF638_Conf).

[CANIF224] TIf only one CanDrv is assigned to a Canlf, then that Canlf shall provide

the set of callback functions for that CanDrv as defined in chapter 8.4. |()

The support for multiple CanDrvs can be enabled and disabled by the configuration
parameter CANIF_MULTIPLE_DRIVER_SUPPORT (see CANIF612 Conf).

7.25.1 Transmit requests by using multiple CAN Drivers

Each transmit L-PDU enables the Canlf to derive the corresponding CAN controller
and implicitly the CanDrv serving the affected hardware unit. Resolving of these
dependencies is possible because of the construction of the CAN controller handle: it
combines CanDrv handle and the corresponding CAN controller in the hardware unit.

81 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTO SAR

At configuration time a mapping table per used CanDrv with references (function
pointers) on its API services for the Canlf should be provided. The Canlf needs only
to select the corresponding CanDrv in order to call the correct API service. The
sequence diagram below demonstrates two transmit requests directed to the different
CanDrvs. For an example refer to [7.25.3 Mapping table for multiple CAN Driver

handling] below.

A CAN controller handle will be mapped to the CAN controller local logical name
(index) and then to the CAN controller handle dedicated to each CAN controller. This

Specification of CAN Interface
Vv5.0.0
R4.0 Rev 3

mapping is done during configuration phase.

Note: This is only an example. Finally, it is up to the implementation to access the

correct APIs of the underlying CanDrvs.

Generic
Elements::Canlf User

Canlf::Canlf :Can

«module» Can_99_Extl «Peripheral»

CanController A
:CanController

Can_99_Ext2 «Peripheral»

:Can

CanController B
:CanController

alt CAN Controller A/B
[CAN Contrgller A used]

1
Canlf_Transmit(Std_RetumType, Pduldyple, const PdulnfoType*) :

Std_ReturnType

Canlf_Transmit()

[CAN Contto|ler B used]

Std_RetunType

1
Canlf_Transmit(Std_ReturnType, PduIdTyPe, const PdulnfoType*) :

P

Can_Write(Can_ReturnType, Can_HwI:iz:deeType,

const Can_PduType*)

Can_Write()

Can_Write(Can_ReturnType, Can_HwHandleType, . - - o

Here the name of the called function hasto be extended to
distinguish the different CAN drivers. l.e.: Can_Write_99_Ext1.

Copy L-PDU in CAN
Hardware A()

Copy L-PDU in CAN
Hardware A()

Here the name of the called function hasto be extended to
distinguish the different CAN drivers. I.e.: Can_Write_99_Ext2

const Can_PduType*) T

Copy L-PDU in CAN

|
|
|
|
|
Hardware B() :

Copy L-PDU in CAN
Hardware B()

Figure 16 Transmission request with multiple CAN Drivers - simplified

Operations called

Description

82 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

V5.0.0
R4.0 Rev 3
Operations called Description
Canlf Transmit Upper layer initiates a transmit request. The Pduld is used for tracing the
(- requested CAN controller and then to serving the hardware unit.
Pduld 1 The number of the hardware unit is relevant for the dispatch as it is used as
. - index for the array with pointer to functions. At first the number of the PDU
PdulnfoPtr_1 channel group will be extracted from the Pduld_1. Each PDU channel group
) refers to a CAN channel and thus as well the hardware unit number and the

CAN controller number.

The hardware unit number points on an instance of the CanDrv in the table.
This table, created at configuration time, contains all API services configured
for the used hardware unit(s). One of these services is the requested
transmit service.

Can Write 99 Ext1 |Request for transmission to the CAN_Driver_99 Extl serving i.e. CAN
- - controller #1 within the "A" hardware unit.

Hth,
*PdulnfoPtr_1
)
Hardware request All L-PDU data will be set in Hardware of i.e. CAN controller #0 within
hardware unit "A" and the transmit request enabled.
Canlf Transmit Upper layer initiates transmit request. The parameter transmit handle leads
(- to another CAN controller and then to another hardware unit.
Pduld 2 The number of the hardware unit is relevant for the dispatch as it is used as
n -1 index for the array with pointer to functions. At first the number of the PDU
PdulnfoPtr_2 channel group will be extracted from the Pduld_2. Each PDU channel group
) refers to a CAN channel and thus as well to the hardware unit number and

to the CAN controller number.

The hardware unit number points on an instance of the CanDrv in the table.
This table, created at configuration time, contains all API services configured
for the used hardware unit(s). One of these services is the requested
transmit service.

Can Write 99 Ext2 |Request for transmission to the CAN_Driver_99 Ext2 serving i.e. CAN
- - controller #1 within the "B" hardware unit.

Hth,
*PdulnfoPtr_2
)

Hardware request All L-PDU data will be set in the Hardware of i.e. the CAN controller #1
within hardware unit "B" and the transmit request enabled.

7.25.2 Notification mechanism by using multiple CAN Drivers

Every notification callback service invoked by the CanDrvs at the Canlf exists
multiple times, if multiple CanDrvs are used in a single ECU. This means, that each
used CanDryv calls 'it's own' callback service at the Canlf. The Canlf must provide all
callback services unique for each underlying CanDrv. Thus, the HRH parameter is
unique at the scope of each CanDrv. Following callback services are affected:

= Canlf_TxConfirmation

= Canlf_RxIndication

= Canlf_CancelTxConfirmation

= Canlf _ControllerBusOff

= Canlf _ControllerModelndication

Example: On reception side the corresponding callback routine of the CanDrv are
being triggered by the reception events is called at the Canlf. If the Canlf underlies
two CanDrvs, the Canlf has to provide two Canlf_RxIndication() routines. At

83 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

R4.0 Rev 3
configuration time the relation between callback service and used CanDrv has to be
set up.

Canlf User «module» Can_99_Ext1 Can_99_Ext2 «Peripheral»
Canlf ‘Can ‘Can CanController
]]]]]
| | | | |
I Iﬁ I l I
| Naming Convention: Canlf_RxIndication_99_Ext1 | Receive |
: I - < InterrLIth()
| | CanIfilixlnd‘ication(CaninHan.dleType. |
1 r<@-Can_|dType, uint8, const uint8* 1
| |
L |
Received L-PDU |
Exemplary call: parameters differ for User=CanTp validation check (SW |
- L Filtering, DLC |
: . ChecK) :
| <User_RxIndication>(PduldType, const |
—ints*) |
|
|
Copy |
Data() | -'[]
1 Copy |
1ty T=—"" Data(” =~~~ T T T 7] i i T-—TTTTTT
|
<User_RxIndication>() |
——————————————————— > |
Canlf_RxIndication() |
I T T T T I
| T |
| | Receive
| | T T T T intemupt) T T T T
| L - |
| | |
| Naming Convention: CanIf_RxIndication_QQ_EthIﬁ | | Receive
: : Sl : rTinterrupt()
| | Canlf_RxIndicaﬁon(an_HwHandIeType,
: r<@Can_ldType, uint8, const uint8*y |
1
: Received L-PDU validation check(SyV Filtering, DLC
| Check) |
I L I
: <User_RxIndication>(PduldType, const :
<_uin18*\ |
|
Copy !
data() | L]
| |
Copy
1ty I Rl data)” ~ ~ ~ ~ "~ 7 :_ _______ - T T T T T T
<User_RxIndication>() :
——————————————————— > |
|
| Canlf_RxIndication()
T N oottty |—— === =
| T |
| | | Receive
[[[I ‘Interupt()” ~ ->
| | | L L
| | |

Figure 21 Receive interrupt with multiple CAN Drivers — simplified

Operations called

Description

Receive Interrupt

The CAN controller 1 signals a successful reception and triggers a
receive interrupt. The ISR of CanDrv A is invoked.

Canlf_RxIndication 99
Extl

(Hrh_3, Canld_1,
CanDlc_8,
*CanSduPtr_1)

The reception is indicated to the Canlf by calling of
Canlf_RxIndication_99 Extl() . The HRH specifies the CAN
RAM hardware object and the corresponding CAN controller (Hrh_3),
which contains the received L-PDU. The temporary buffer is
referenced to the Canlf by *CanSduPtr 1.

84 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv5.0.0
R4.0 Rev 3

Operations called

Description

Validation check
(SW Filtering, DLC Check)

The Software Filtering checks, whether the received L-PDU will be
processed on a local ECU. If not, the received L-PDU is not indicated
to upper layers. Further processing is suppressed.

If the L-PDU is found, the DLC of the received L-PDU is compared
with the expected, statically configured one for the received L-PDU.

<User_RxIndication>
(CanRxPduld_4,
*CanSduPtr_1)

The corresponding receive indication service of the upper layer is
called. This signals a successful reception to the target upper layer.
The parameter CanRxPduld_4 specifies the L-PDU, the second
parameter is the reference on PdulnfoType which has the reference
on the temporary buffer within the L-SDU.

Receive Interrupt

The CAN controller 2 signals a successful reception and triggers a
receive interrupt. The ISR of CanDrv B is invoked.

Canlf _RxIndication_99
Ext2

(Hrh_3, Canld_5,
CanDIc_8,
*CanSduPtr_2)

The reception is indicated to the Canlf by calling of
Canlf_RxIndication_99 Ext2(). The HRH specifies the CAN
RAM hardware object and the corresponding CAN controller (Hrh_3),
which contains the received L-PDU. The temporary buffer is
referenced to the Canlf by *CanSduPtr_2.

Validation check
(SW Filtering, DLC Check)

The Software Filtering checks, whether the received L-PDU will be
processed on a local ECU. If not, the received L-PDU is not indicated
to upper layers. Further processing is suppressed.

If the L-PDU is found, the DLC of the received L-PDU is compared
with the expected, statically configured one for the received L-PDU.

<User_RxIndication>
(CanRxPduld_2,
*CanSduPtr_2)

The corresponding receive indication service of the upper layer is
called. This signals a successful reception to the target upper layer.
The parameter CanRxPduld_2 specifies the L-PDU, the second
parameter is the reference on PdulnfoType which has the reference
on the temporary buffer within the L-SDU.

7.25.3 Mapping table for multiple CAN Driver handling

A table with addresses to all CanDrv API services is the basis to provide a unique
driver interface to the Canlf. This table makes the assignment from two different
driver interfaces to one single driver interface (with prefix (Can_).

In case of L-PDU handle based APIs, the Canlf has to derive the corresponding
CanDrv from the L-PDU handle. Afterwards the Canlf can use the CanDrv number
as an index for the table with function pointers. The parameters have correspondingly
to be translated: i.e. L-PDU handle => HTH/HRH, Canld, Dlc.

85 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

/ \ \ \

| \ CAN Interface | \

Canlf_SetConirollerMode(Controller=0, ..) Canlf_SetControllefMode(Controller=1, ..)

Canlf_Transmit{CanTxPduld=7, ..) Canlf_Transmit(CanfxPduld=22, ..)

/ Mapping Table with é:AN Driver(s) AI%I References

Can_SetControllerMode_99_Ext1(Controller=0, ..) / Can_SetControllerMdde_99_ Ext2(Controller=0, ..)

Can_Write_99/ Ext1(HTH=0, ..) Can_Write_99 Ext2(HTH=3, .))
y

CanDrv: Can_99 Extl Controller:0 CanDrv: Can_99 Ext2 Controller:0.1
HTH:0..1 HTH: 0.3

Figure 18 HTH Assignment with multiple CAN Drivers

Each CanDrv supports a certain number of underlying CAN controllers and a fixed
number of HTHs. Each CanDrv has an own numbering area, which starts always at
zero for controller and HTH.

7.26 Partial Networking

CANIF747: TIf Partial Networking (PN) is enabled (see
CANIF_PUBLIC_PN_SUPPORT, CANIF772_Conf), the Canlf shall support a

PnTxFilter per CAN controller which overlays the PDU channel modes. ()

CANIF748: TThe PnTxFilter of CANIF747 shall only have an effect and transition its
modes (enabled/disabled) if more than zero TxPDUs per CAN controller are
configured as PnFilterPdu (see CANIF_TXPDU_PNFILTERPDU, CANIE773 Conf). |()

CANIF749: Tlf Canlf_SetPduMode(Controllerld, PduModeRequest) is

called whereas PduModeRequest equals CANIF_SET_ONLINE or
CANIF_SET_TX_ ONLINE the PnTxFilter of that controller shall be enabled (ref. to

CANIF748 and CANIF747). ()

CANIF750: TIf the PnTxFilter (ref. to CANIF749) of a CAN controller is enabled, the

Canlf shall block all Tx requests (return E_NOT_OK when Canlf_Transmit() is
called) to that CAN controller, except if the requested TxPdu is one of the configured
PnFilterPdus of that CAN controller. These PnFilterPdus shall always be passed to

the corresponding CAN driver module. |()

86 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

CANIF751: TIf Canlf_TxConfirmation() is called, the corresponding PnTxFilter
shall be disabled (ref. to CANIF748 and CANIF747). ()

CANIF752: TIf the PnTxFilter of a CAN controller is disabled, the Canlf shall behave
as requested via Canlf_SetPduMode (see CANIF749). ()

Hint (ref. to CANIF752): If e.g. the requested PDU channel mode (see CANIF749)
changes in the meantime when PnTxFilter was enabled from CANIF_SET_ONLINE
to e.g. CANIF_SET_TX_ONLINE, the Canlf shall behave correspondingly.

7.27 Error classification

This chapter lists and classifies all errors that can be detected within this software
module. Each error is classified according to relevance (development / production)
and related error code. For development errors, a value is defined.

[CANIF153] 'Values for production code Event Ids are assigned externally by the
configuration of the Dem. They are published in the file Dem_IntErrid.h and
included via Dem_h. ;(BSW00409)

[CANIF154] I'Development error values are of type uint8. j()

The following table shows the available error codes. The Canlf shall detect them to
the DET, if configured.

Type of error Relevance Related error code Value

API service called with Development | CANIF_E_PARAM_CANID 10

invalid parameter CANIF_E_PARAM DLC 11
CANIF_E_PARAM_HRH 12
CANIF_E_PARAM_LPDU 13
CANIF_E_PARAM_CONTROLLER 14
CANIF_E_PARAM_CONTROLLERID 15
CANIF_E_PARAM_WAKEUPSOURCE 16
CANIF_E_PARAM_TRCV 17
CANIF_E_PARAM_TRCVMODE 18
CANIF_E_PARAM_TRCVWAKEUPMODE |19
CANIF_E_PARAM CTRLMODE 21

API service called with Development | CANIF_E_PARAM_POINTER 20

invalid pointer

API service used without Development | CANIF_E_UNINIT 30

module initialization

Transmit PDU ID invalid Development | CANIF_E INVALID TXPDUID 50

Receive PDU ID invalid Development | CANIF_E INVALID RXPDUID 60

Failed DLC Check Development | CANIF_E INVALID DLC 61

CAN Interface controller Development | CANIF_E_STOPPED 70

mode state machine is in

mode

CANIF_CS STOPPED

CAN Interface controller Development | CANIF_E_NOT_SLEEP 71

87 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

mode state machine is not
in mode
CANIF_CS SLEEP

7.28 Error detection

[CANIF018] I'The detection of development errors is configurable (ON / OFF) at pre-
compile time. The switch CANIF_PUBLIC _DEV_ERROR_DETECT (see

CANIF614 Conf) shall activate or deactivate the detection of all development errors. |
(BSWO00369, BSW00386)

[CANIF019] TIf the CANIF_PUBLIC DEV_ERROR_DETECT switch is enabled, API
checking is enabled. The detailed description of the detected errors can be found in
chapter [7.26 Error classification] and chapter [8 API specification]. ;(BSW00338,
BSW00386, BSW00350)

[CANIF155] I'The detection of production code errors cannot be switched off. |()

[CANIF661] TIf the switch CANIF_PUBLIC_DEV_ERROR_DETECT is enabled, all

Canlf API services other than Canlf_Init() and Canlf_GetVersion() shall:
» not execute their normal operation

= report to the DET (using CANIF_E_UNINIT)

= and return E_NOT_OK

unless the Canlf has been initialized with a preceding call of Canlf_Init().()

7.29 Error notification

[CANIF156] T Detected development errors shall only be reported to
Det_ReportError service of the DET, if the pre-processor switch
CANIF_PUBLIC_DEV_ERROR_DETECT is set to True (see CANIF614 Conf). |
(BSWO00386)

Note: If it is mentioned in this document, that Det_ReportError service shall be
called, this shall only be done if CANIF_PUBLIC_DEV_ERROR_DETECT is set to
True.

[CANIF020] I'Production errors shall be reported to the Dem. |(BSW00339)
They shall not be used as the return value of the called function.

[CANIF223] l'For all defined production errors it is only required to report the event,
when an error or diagnostic relevant event (e.g. state changes, no L-PDU events)
occurs. Any status has not to be reported. |()

88 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

[CANIF119] rAdditional errors that are detected because of specific implementation

and/or specific hardware properties shall be added in the Canlf specific
implementation specification. For doing that, the classification and enumeration listed

above can be extended with incremented enumerations. |()

7.30 Debugging

[CANIF565] 'Each variable that shall be accessible by AUTOSAR Debugging, shall

be defined as global variable. |()

[CANIF566] T'All type definitions of variables which shall be debugged, shall be
accessible by the header file Canlf.h. ()

[CANIF567] I'The declaration of variables in the header file shall be such that it is

possible to calculate the size of the variables by C-"sizeof" operation. ()

[CANIF568] 'Variables available for debugging shall be described in the respective

Basic Software Module Description. ()

7.31 Published information

[CANIF725] T The standardized common published parameters as required by

BSW00402 in the General Requirements on Basic Software Modules [3] shall be
published within the header file of this module and need to be provided in the BSW
Module Description. The according module abbreviation can be found in the List of

Basic Software Modules [1]. (BSW00402)

[CANIF726] I'The Canlf shall provide a readable module vendor identification in its
published parameters (see CANIF725). The naming convention of this module
vendor identification for Canlf is CANIF_VENDOR__ID. This parameter shall be

represented in uintl16 (16 bit). (BSW00374)

[CANIF727] I'The Canlf shall provide a module identifier in its published parameters
(see CANIF725). The naming convention of this module identifier for Canlf is
CANIF_MODULE_ID. This parameter shall be represented in uint16 (16 bit) and it
shall be set to the value of Canlf from Basic Software Module list (see [1]). |
(BSW00379)

89 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

[CANIF728] T'The Canlf shall provide the following version numbers with the

following naming convention (see CANIF021) in its published parameters (see
CANIF725):

= CANIF_SW_MAJOR_VERSION

= CANIF_SW_MINOR_VERSION

= CANIF_SW_PATCH_VERSION

= CANIF_AR_RELEASE_MAJOR_VERSION

= CANIF_AR_RELEASE_MINOR_VERSION

= CANIF_AR_RELEASE_REVISION_VERSION (BSW00318)

[CANIF729] I'The numbering of CANIF_SW_MAJOR_VERSION,

CANIF_SW_NINOR_VERSION and CANIF_SW_PATCH_VERSION from CANIF728
shall be vendor specific, but it shall follow requirement BSW00321 from General

Requirements on Basic Software Modules [3]. (BSW00321)

Additional module-specific published parameters are listed below if applicable.

90 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

V5.0.0
R4.0 Rev 3
8 API specification
8.1 Imported types
In this chapter all types included from the following files are listed.
[CANIF142] 1
Module Imported Type
Can Can_HwHandleType
Can_IdType
Can_ReturnType
Can_StateTransitionType
Can_PduType
Can_GeneralTypes |CanTrcv_TrcvModeType
CanTrcv_TrcvWakeupModeType
CanTrcv_TrcvWakeupReasonType
ComsStack _Types |PduldType
PdulnfoType
EcuM EcuM_ WakeupSourceType
Std_Types Std ReturnType
Std_VersionInfoType
1(BSW00348, BSW00353, BSW00361)
8.2 Type definitions
8.2.1 Canlf_ConfigType
Name: Canlf_ConfigType
Type: Structure
Element: void implementation [The contents of the initialization data
specific structure are CAN interface specific
Description: This type defines a data structure for the post build parameters of the CAN
interface for all underlying CAN drivers. At initialization the Canlf gets a pointer to
a structure of this type to get access to its configuration data, which is necessary
for initialization.

[CANIF523] I'The initialization data structure for a specific Canlf
Canlf_ConfigType shall include the definition of canlf public parameters and the
definition for each L-PDU handle. ()

Note: The definition of Canlf public parameters and the definition for each L-PDU
handle are specified in chapter 10.

Note: The definition of CAN Interface public parameters contains:

° Number of transmit L-PDUs
. Number of receive L-PDUs
o Number of dynamic transmit L-PDU handles

Note: The definition for each L-PDU handle contains:
. Handle for transmit L-PDUs

91 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

Handle for receive L-PDUs

Name of transmit L-PDUs

Name for receive L-PDUs

CAN Identifier for static and dynamic transmit L-PDUs
CAN ldentifier for receive L-PDUs

DLC for transmit L-PDUs

DLC for receive L-PDUs

Data buffer for receive L-PDUs in case of polling mode
Transmit L-PDU handle type

8.2.2 Canlf_ControllerModeType

Name: Canlft_ControllerModeType
Type: Enumeration
Range: CANIF_CS_UNINIT =0

UNINIT mode. Default mode of the CAN Driver and all CAN
controllers connected to one CAN network after power on.
CANIF_CS_SLEEP |SLEEP mode. At least one of all CAN controllers connected
to one CAN network are set into the SLEEP mode and can
be woken up by request of the CAN Driver or by a network
event (must be supported by CAN hardware)
CANIF_CS_STARTEDSTARTED mode. All CAN controllers connected to one CAN
network are started by the CAN Driver and in full-operational
mode.

CANIF_CS_STOPPEDISTOPPED mode. At least one of all CAN controllers
connected to one CAN network is halted and does not
operate on the network.

Description: Operating modes of the CAN Controller and CAN Driver

8.2.3 Canlf_PduSetModeType

Name: Canlf_PduSetModeType
Type: Enumeration
Range: CANIF_SET_OFFLINE =0
Channel shall be set to the offline mode
=> no transmission and reception
CANIF_SET ONLINE Channel shall be set to online mode
=> full operation mode
CANIF_SET_RX_OFFLINE Receive path of the corresponding channel
shall be disabled
CANIF_SET_RX_ONLINE Receive path of the corresponding channel
shall be enabled
CANIF_SET_TX_OFFLINE Transmit path of the corresponding channel

shall be disabled
CANIF_SET_TX_OFFLINE_ACTIVETransmit path of the corresponding channel
shall be set to the offline active mode

=> notifications are processed but transmit
requests are blocked.

CANIF_SET_TX_ONLINE Transmit path of the corresponding channel
shall be enabled
Description: Request for PDU channel group. The request type of the channel defines it's

transmit or receive activity. Communication direction (transmission and/or reception)
of the channel can be controlled separately or together by upper layers.

92 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTO SAR

8.2.4 Canlf_PduGetModeType

Specification of CAN Interface

Vv5.0.0
R4.0 Rev 3

Name:

Canlf_PduGetModeType

Type:

Enumeration

Range:

CANIF_GET_OFFLINE

=0
Channel is in the offline mode
=> no transmission and reception

CANIF_GET_OFFLINE_ACTIVE

Transmit path of the corresponding
channel is in the offline active
mode

=> transmit notifications are
processed but transmit requests
are blocked.

The receive path is disabled.

CANIF_GET_OFFLINE_ACTIVE_RX_ONLINE

Transmit path of the corresponding
channel is in the offline active
mode

=> transmit notifications are
processed but transmit requests
are blocked.

The receive path is enabled.

CANIF_GET_ONLINE

Channel is in the online mode
=> full operation mode

CANIF_GET_RX_ONLINE

Receive path of the corresponding
channel is enabled and transmit
path is disabled.

CANIF_GET_TX_ONLINE

Transmit path of the corresponding
channel is enabled and receive
path is disabled.

Description:

Status of the PDU channel group. Current mode of the channel defines its
transmit or receive activity. Communication direction (transmission and/or
reception) of the channel can be controlled separately or together by upper layers.

8.2.5 Canlf_NotifStatusType

Name: CanlT_NotifStatusType

Type: Enumeration

Range: CANIF_NO_NOTIFICATION =0
No transmit or receive event occurred for the
requested L-PDU.

CANIF_TX_RX_NOTIFICATIONThe requested Rx/Tx CAN L-PDU was successfully

transmitted or received.

Description: Return value of CAN L-PDU notification status.

8.3 Function definitions

8.3.1 Canlf_Init

[CANIFOO1] T

Service name:

Canlf_Init

Syntax:

void Canlf_Init(

D

const Canlf _ConfigType* ConfigPtr

93 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

V5.0.0
R4.0 Rev 3
Service ID[hex]: |0x01
Sync/Async: Synchronous
Reentrancy: Non Reentrant
. . [ConfigPtr [Pointer to configuration parameter set, used e.g. for post build
Parameters (in): parameters
Parameters None
(inout):
Parameters (out): |[None
Return value: None
Description: This service Initializes internal and external interfaces of the CAN Interface for the
further processing.

1(BSW00405, BSW101, BSW00358, BSW00414, BSW01021, BSW01022)
Note: All underlying CAN controllers and transceivers still remain not operational.

Note: The service Canlf_Init() is called only by the EcuM.

[CANIF085] I'The service Canlf_Init() shall initialize the global variables and

data structures of the Canlf including flags and buffers. ()

Note: If default values of the Canlf_ConfigType parameters
(8.2.1Canlf_ConfigType) of chapter [10 Configuration specification] are specified,
they shall be used for initialization.

[CANIF301] T'lf a NULL pointer is passed in ConfigPtr to the service
Canlf_Init(), the Canlf shall use the default configuration for the function
Canlf_Init(Q).)(

Note: In case only one configuration setup is used, a NULL pointer is sufficient to
choose the one static existing configuration setup.

[CANIF302] T'lf parameter ConTigPtr of Canlf_Init() has an invalid value, the

Canlf shall report development error code CANIF_E_PARAM_POINTER to the
Det_ReportError service of the DET module only for post build use cases, when

Canlf_Ini1t() is called. |(BSW00323)

8.3.2 Canlf_SetControllerMode
[CANIFO03] T

Service name: Canlf_SetControllerMode

Syntax: Std_ReturnType Canlf_SetControllerMode(
uint8 Controllerlid,
Canlf_ControllerModeType ControllerMode

D
Service ID[hex]: |0x03
Sync/Async: Asynchronous
Reentrancy: Reentrant (Not for the same controller)

Controllerld IAbstracted Canlf Controllerld which is assigned to a CAN

PEUEIIERENS (1) controller, which is requested for mode transition.

94 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

ControllerMode |Requested mode transition

Parameters None
(inout):

Parameters (out): |[None

Std_ReturnTypelE_OK: Controller mode request has been accepted

REIIT VEllE: E_NOT_ OK: Controller mode request has not been accepted

Description: This service calls the corresponding CAN Driver service for changing of the CAN
controller mode.

1(BSW01027)

Note: The service Canlf_SetControllerMode() initiates a transition to the
requested CAN controller mode Control lerMode of the CAN controller which is
assigned by parameter Controllerld.

[CANIF308] I The service Canlf_SetControllerMode() shall call
Can_SetControllerMode(Controller, Transition) for the requested CAN

controller. ()

[CANIF311] TIf parameter Controllerld of Canlt_SetControllerMode() has

an invalid value, the Canlf shall report development error code
CANIF_E_PARAM_CONTROLLERID to the Det_ReportError service of the DET

module, when Canlf_SetControl lerMode() is called. (BSW00323)

[CANIF774] TIf parameter ControllerMode of Canlf_SetControllerMode()

has an invalid value (not CANIF_CS STARTED, CANIF_CS SLEEP or
CANIF_CS STOPPED), the Canlfshall report development error code
CANIF_E_PARAM_CTRLMODE to the Det ReportError service of the DET

module, when Canlf_SetControl lerMode() is called. (BSW00323)

[CANIF312] I'Caveats of CanlT_SetControllerMode():
e The CAN Driver module must be initialized after Power ON.
e The CAN Interface module must be initialized after Power ON. ()

Note: The ID of the CAN controller is published inside the configuration description of
the Canlf.

8.3.3 Canlf_GetControllerMode
[CANIF229] T

Service name: Canlf_GetControllerMode

Syntax: Std_ReturnType Canlf_GetControllerMode(
uint8 Controllerlid,
Canlf_ControllerModeType* ControllerModePtr

D
Service ID[hex]: |0x04
Sync/Async: Synchronous
Reentrancy: Non Reentrant
95 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

Controllerld IAbstracted Canlf Controllerld which is assigned to a CAN
controller, which is requested for current operation mode.

Parameters (in): - e
() ControllerModePtrPointer to a memory location, where the current mode of the

CAN controller will be stored.

Parameters None
(inout):

Parameters (out): |[None

Std_ReturnType [E_OK: Controller mode request has been accepted.

REIIT vElle: E_NOT_OK: Controller mode request has not been accepted.

Description; This service reports about the current status of the requested CAN controller.

1(BSW01028)

[CANIF541] I'The service Canlf_GetControl lerMode shall return the mode of
the requested CAN controller. This mode is the mode which is buffered within the
CAN Interface module (see chapter 7.19.2). ()

[CANIF313] l'f parameter Controllerld of Canlf_GetControllerMode() has

an invalid, the Canlf shall report development error code
CANIF_E_PARAM_CONTROLLERID to the Det_ReportError service of the DET,

when Canlf_GetControllerMode() is called. (BSW00323)

[CANIF656] r If parameter ControllerModePtr of

Canlf_GetControllerMode() has an invalid value, the Canlf shall report
development error code CANIF_E PARAM_POINTER to the Det_ReportError

service of the DET, when Canlf_GetControl lerMode() is called. |(BSW00323)

[CANIF316] ICaveats of CanlT_GetControl lerMode:
e The CanDrv must be initialized after Power ON.
e The Canlf must be initialized after Power ON. |()

Note: The ID of the CAN controller module is published inside the configuration
description of the Canlf.

8.3.4 Canlf_Transmit
[CANIFOO5] T

Service name;: Canlf_Transmit

Syntax: Std_ReturnType Canlf_Transmit(
PduldType CanTxPduld,
const PdulnfoType* PdulnfoPtr

))
Service ID[hex]: |0x05
Sync/Async: Synchronous
Reentrancy: Reentrant

CanTxPduld |L-PDU handle of CAN L-PDU to be transmitted.

This handle specifies the corresponding CAN L-PDU ID and
implicitly the CAN Driver instance as well as the corresponding
CAN controller device.

Parameters (in):

96 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

V5.0.0
R4.0 Rev 3
PdulnfoPtr Pointer to a structure with CAN L-PDU related data: DLC and
pointer to CAN L-SDU buffer
Parameters None
(inout):

Parameters (out): |[None

Std_ReturnTypelE_OK: Transmit request has been accepted

REIIT VEllE: E_NOT _ OK: Transmit request has not been accepted

Description: This service initiates a request for transmission of the CAN L-PDU specified by the
CanTxPduld and CAN related data in the L-PDU structure.

1(BSW01008)

Note: The corresponding CAN controller and HTH have to be resolved by the
CanTxPduld.

[CANIF317] I'The service Canlf_Transmit() shall not accept a transmit request, if
the controller mode is not CANIF_CS_STARTED and the channel mode at least for

the transmit path is not online or offline active. |()

[CANIF318] I'The service Canlf_Transmit() shall map

» the parameters of the data structure, the L-PDU handle with the identifier
CanTxPduld refers to (CanID, HTH/HRH of the CAN controller)
= and the pointer PdulnfoPtr points to (DLC, pointer to CAN L-SDU buffer),

to the corresponding CanDrv and call the function Can_Write(Hth, *Pdulnfo). |

0

Note: PdulnfoPtr is a pointer to a SDU user memory, CAN Identifier, PDU handle and
DLC (see [8] Specification of CAN Driver).

[CANIF243] I'The Canlf shall set the ‘identifier extension flag’ (see [18]IS011898 —

Road vehicles - controller area network (CAN)) of the Canld before the Canlf passes
the static predefined Canld to the CanDrv at call of Can_Write(). The Canld format
type of each CAN L-PDU can be configured by

CANIF_CANIFTXPDUID_CANIDTYPE, refer to CANIF590 Conf.;(BSW01141)

JCANIF162] TIf the call of Can_Write() returns E_OK the transmit request service
Canlf_Transmit() shall return E_OK. ()

Note: If the call of Can_Write()returns CAN_NOT_OK, then the transmit request
service Canlf_Transmit() shall return E_NOT_OK. If the transmit request service
Canlf_Transmit() returns E_NOT_OK, then the upper layer module is responsible
to repeat the transmit request.

[CANIF319] T'lf parameter CanTxPduld of Canlf_Transmit() has an invalid
value,,, the Canlf shall report development error code

97 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3
CANIF_E_INVALID_TXPDUID to the Det_ReportError service of the DET, when
Canlf_Transmit() is called. (BSW00323)

[CANIF320] T'lf parameter PdulnfoPtr of Canlf_Transmit() has an invalid

value, the Canlf shall report development error code CANIF_E_PARAM_POINTER to
the Det_ReportError service of the DET module, when Canlf_Transmit() is

called. ;(BSW00323)

[CANIF323] I'Caveats of CanlTt_Transmit():

= During the call of this API the buffer of PdulnfoPtr is controlled by the Canlf
and this buffer should not be accessed for read/write from another call context.
After return of this call the ownership changes to the upper layer.

» The Canlf must be initialized after Power ON. ()

8.3.5 Canlf_CancelTransmit
[CANIF520] T

Service name: Canlf_CancelTransmit
Syntax: Std_ReturnType Canlf_CancelTransmit(
PduldType CanTxPduld
D
Service ID[hex]: |0x18
Sync/Async: Synchronous
Reentrancy: Non Reentrant

CanTxPduld L-PDU handle of CAN L-PDU to be transmitted.

This handle specifies the corresponding CAN L-PDU ID and
implicitly the CAN Driver instance as well as the corresponding
CAN controller device.

Parameters (in):

Parameters None

(inout):

Parameters (out): |[None

Return value: Std_ReturnTypelAlways return E_OK

Description: This is a dummy method introduced for interface compatibility.

10

Note: The service Canlf_CancelTransmit() has no functionality and is called by
the AUTOSAR PduR to achieve bus agnostic behavior.

[CANIF521] T'The service Canlf_CancelTransmit() shall be pre-compile time

configurable On/0ff by the configuration parameter
CANIF_PUBLIC_CANCEL_TRANSMIT_SUPPORT.(see CANIF614 Conf) It shall be

configured ON if PduRComCancel TransmitSupport is configured as ON. j()

[CANIF652] TIf parameter CanTxPduld of Canlf_CancelTransmit() has an
invalid value, the Canlf shall report development error code

98 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

CANIF_E_INVALID_TXPDUID to the Det_ReportError service of the DET, when
Canlf_CancelTransmit() is called. (BSW00323)

8.3.6 Canlf _ReadRxPduData
[CANIF194] T

Service name: Canlf ReadRxPduData

Syntax: Std_ReturnType Canlf_ReadRxPduData(
PduldType CanRxPduld,
PdulnfoType* PdulnfoPtr

))
Service ID[hex]: |0x06
Sync/Async: Synchronous
Reentrancy: Non Reentrant

CanRxPduld |Receive L-PDU handle of CAN L-PDU.

This handle specifies the corresponding CAN L-PDU ID and
implicitly the CAN Driver instance as well as the corresponding
CAN controller device.

Parameters (in):

Parameters None
(inout):

PdulnfoPtr Pointer to a structure with CAN L-PDU related data: DLC and

e pointer to CAN L-SDU buffer

Std_ReturnTypelE_OK: Request for L-PDU data has been accepted

BT velle: E_NOT_ OK: No valid data has been received

Description: This service provides the CAN DLC and the received data of the requested
CanRxPduld to the calling upper layer.

1(BSW01125, BSW01129, BSW01129)

[CANIF324] TThe function Canlf_ReadRxPduData() shall not accept a request
and return E _NOT_OK, if the corresponding CCMSM does not equal

CANIF_CS_STARTED and the channel mode is in the receive path online. |()

[CANIF325] T'If parameter CanRxPduld of Canlf_ReadRxPduData() has an

invalid value, e.g. not configured to be stored within Canlf via
CANIF_READRXPDU_DATA (CANIF600_Conf), the Canlf shall report development
error code CANIF_E_INVALID_RXPDUID to the Det_ReportError service of the

DET, when Canlf_ReadRxPduData() is called. (BSW00323)

[CANIF326] T'If parameter PdulnfoPtr of Canlf_ReadRxPduData() has an

invalid value, the Canlf shall report development error code
CANIF_E_PARAM_POINTER to the Det_ReportError service of the DET module,

when Canlf_ReadRxPduData() is called. (BSW00323)

[CANIF329] 'Caveats of Canlf_ReadRxPduData():

e During the call of this API the buffer of PdulnfoPtr is controlled by the Canlf
and this buffer should not be accessed for read/write from another call context.
After return of this call the ownership changes to the upper layer.

99 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3
e This API must not be used for CanRxPdulds, which are defined to receive
multiple CAN-Ids (range reception).
e The Canlf must be initialized after Power ON. |()

[CANIF330] Configuration of CanlT_ReadRxPduData(): This API can be enabled
or disabled at pre-compile time configuration by the configuration parameter
CANIF_PUBLIC_READRXPDU_DATA_ API (CANIF607_Conf). |()

8.3.7 Canlf_ReadTxNotifStatus
[CANIF202] T

Service name; Canlf_ReadTxNotifStatus
Syntax: Canlf_NotifStatusType Canlf_ReadTxNotifStatus(
PduldType CanTxPduld
D
Service ID[hex]: |0x07
Sync/Async: Synchronous
Reentrancy: Non Reentrant
CanTxPduld L-PDU handle of CAN L-PDU to be transmitted.
Parameters (in): .This' handle specifies_ the_corresponding CAN L-PDU ID and
’ implicitly the CAN Driver instance as well as the
corresponding CAN controller device.
Parameters None

(inout):
Parameters (out): |[None

Canlf_NotifStatusType|Current confirmation status of the corresponding CAN Tx L-
PDU.

Description: This service returns the confirmation status (confirmation occured of not) of a
specific static or dynamic CAN Tx L-PDU, requested by the CanTxPduld.

Return value:

1(BSW01130)

Note: This function notifies the upper layer about any transmit confirmation event to
the corresponding requested CAN L-PDU.

[CANIF393] r If configuration parameters

CANIF_PUBLIC_READTXPDU_NOTIFY_STATUS_API (CANIF609_Conf) and
CANIF_TXPDU_READ_NOTIFYSTATUS (CANIE589 Conf) for the transmitted L-PDU
are set to TRUE, and if CanlT_ReadTxNotifStatus() is called, the Canlf shall

reset the notification status for the transmitted L-PDU. |()

[CANIF331] TIf parameter CanTxPduld of Canlf_ReadTxNotifStatus() is out

of range or if no status information was configured for this CAN Tx L-PDU, the Canlf
shall report development error code CANIF_E INVALID TXPDUID to the
Det_ReportError service of the DET when Canlf_ReadTxNotifStatus() is

called. (BSW00323)

100 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

[CANIF334] lCaveats of Canlf_ReadTxNotifyStatus(): The Canlf must be

initialized after Power ON. |()

[CANIF335] l'Configuration of Canlf_ReadTxNotifyStatus(): This API can be
enabled or disabled at pre-compile time configuration globally by the parameter
CANIF_PUBLIC_READTXPDU_NOTIFY_STATUS_API (see CANIF609 Conf). ()

8.3.8 Canlf_ReadRxNotifStatus
[CANIF230] T

Service name: Canlf _ReadRxNotifStatus
Syntax: Canlf_NotifStatusType Canlf_ReadRxNotifStatus(
PduldType CanRxPduld
D
Service ID[hex]: |0x08
Sync/Async: Synchronous
Reentrancy: Non Reentrant
CanRxPduld L-PDU handle of CAN L-PDU to be received.
Parameters (in): This_ h_andle specifieg the_corresponding CAN L-PDU ID and
’ implicitly the CAN Driver instance as well as the
corresponding CAN controller device.
Parameters None

(inout):

Parameters (out): |None

Canlf_NotifStatusType/Current indication status of the corresponding CAN Rx L-

Return value: PDU.

Description: This service returns the indication status (indication occurred or not) of a specific
CAN Rx L-PDU, requested by the CanRxPduld.

J(BSW01130, BSW01131)

Note: This function notifies the upper layer about any receive indication event to the
corresponding requested CAN L-PDU.

[CANIF394] r If configuration parameters

CANIF_PUBLIC_READRXPDU_NOTIFY_STATUS_API (CANIF608 Conf) and
CANIF_RXPDU_READ_NOTIFYSTATUS (CANIF595 Conf) are set to TRUE, and if
Canlf_ReadRxNotifStatus() is called, then the CAN Interface module shall

reset the notification status for the received L-PDU. ()

[CANIF336] TIf parameter CanRxPduld of Canlf_ReadRxNotifStatus() is out

of range or if Status for CanRxPduld was requested whereas
CANIF_READRXPDU DATA_API is disabled or if no status information was
configured for this CAN Rx L-PDU, the Canlf shall report development error code
CANIF_E_INVALID RXPDUID to the Det_ReportError service of the DET, when

CanlT_ReadRxNotifStatus() is called. (BSW00323)

101 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

Note: The function Canlf_ReadRxNotifStatus() must not be used for
CanRxPdulds, which are defined to receive multiple CAN-Ids (range reception).

[CANIF339] I'Caveats of Canlf_ReadRxNotifStatus():

e The Canlf must be initialized after Power ON. ()

[CANIF340] lConfiguration of Canlf_ReadRxNotifStatus(): This API can be
enabled or disabled at pre-compile time configuration globally by the parameter

CANIF_PUBLIC_READRXPDU_NOTIFY_STATUS_API (see CANIF608 Conf). |()

8.3.9 Canlf_SetPduMode
[CANIFO08] T

Service name: Canlf _SetPduMode

Syntax: Std_ReturnType Canlf_SetPduMode(
uint8 Controllerld,
Canlf_PduSetModeType PduModeRequest

))
Service ID[hex]: |0x09
Sync/Async: Synchronous
Reentrancy: Non Reentrant

Controllerld IAll PDUs of the own ECU connected to the corresponding Canlf

. Controllerld, which is assigned to a physical CAN controller are
Parameters (in):
addressed.

PduModeRequestRequested PDU mode change (see Canlf PduSetModeType)

Parameters None
(inout):

Parameters (out): |[None

Std_ReturnType [E_OK: Request for mode transition has been accepted.
Return value: E_NOT_OK: Request for mode transition has not been
accepted.
Description: This service sets the requested mode at the L-PDUs of a predefined logical PDU
channel.
10

Note: The channel parameter denoting the predefined logical PDU channel can be
derived from parameter Control lerld of function Canlf_SetPduMode().

[CANIF341] TIf parameter Controllerld of CanlT_SetPduMode() has an invalid

value, the Canlf shall report development error code
CANIF_E_PARAM_CONTROLLLERID to the Det_ReportError service of the DET

module, when Canlf_SetPduMode() is called. (BSW00323)

[CANIF344] I'Caveats of Canlf_SetPduMode():

e The Canlf must be initialized after Power ON. |()

102 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

V5.0.0
R4.0 Rev 3
8.3.10 Canlf_GetPduMode
[CANIF009] T
Service name: Canlf _GetPduMode
Syntax: Std_ReturnType Canlf_GetPduMode(
uint8 Controllerld,
Canlf_PduGetModeType* PduModePtr
))
Service ID[hex]: |0x0a
Sync/Async: Synchronous
Reentrancy: Reentrant (Not for the same channel)
Controllerld All PDUs of the own ECU connected to the corresponding Canlf
Parameters (in): Controllerld, which is assigned to a physical CAN controller are
addressed.
Parameters None
(inout):
Parameters (out): PduModePtr Poi_nter to a memory Io_cation, where the current mode of the
' logical PDU channel will be stored.
Return value: Std_ReturnTypelE_OK: PDU mode request has been accepted
' E_NOT_OK: PDU mode request has not been accepted
Description: This service reports the current mode of a requested PDU channel.
10

[CANIF346] T If parameter Controllerld of Canlf_GetPduMode() has an

invalid value, the Canlf shall report development error code
CANIF_E_PARAM_CONTROLLERID to the Det_ReportError service of the DET

module, when Canlf_GetPduMode() is called. (BSW00323)

[CANIF657] TIf parameter PduModePtr of Canlf_GetPduMode() has an invalid

value, the Canlfshall report development error code CANIF_E_PARAM_POINTER to
the Det_ReportError service of the DET module, when Canlf_GetPduMode() is

called. (BSW00323)

[CANIF349] ICaveats of CanlT_SetPduMode():

e The Canlf must be initialized after Power ON. |()

8.3.11 Canlf_GetVersioninfo
[CANIF158] T

Service name: Canlf_GetVersioninfo
Syntax: void Canlf_GetVersionInfo(
Std_VersionInfoType* Versionlnfo

D

Service ID[hex]: [0x0b

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): |[None

Parameters None

(inout):

Parameters (out): |Versioninfo |Pointer to where to store the version information of this module.

Return value: None

103 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

Description: [This service returns the version information of the called CAN Interface module. |
1(BSWO00407, BSW00411)

[CANIF350] I'The function Canlf_GetVersionInfo() shall return the version

information of the called Canlf module. The version information includes:
- Module Id
- Vendor Id

- Vendor specific version numbers (BSW00407). ()

Implementation hint: If source code for caller and callee of this function is available
this function should be realized as a macro. The macro should be defined in the
modules header file.

[CANIF658] T'lf parameter Versionlnfo of Canlf_GetVersionInfo() has an

invalid value, the Canlf shall report development error code
CANIF_E_PARAM_POINTER to the Det_ReportError service of the DET module,

when Canlf_GetVersionInfo() is called. |(BSW00323)

[CANIF351] I'Configuration of Canlf_GetVersionlInfo(): This function shall be
pre compile time configurable On/OFT by the configuration parameter
CANIF_PUBLIC_VERSION_INFO_API (see CANIF613 Conf). ()

8.3.12 Canlf_SetDynamicTxId

[CANIF189] T

Service name: Canlf _SetDynamicTxId

Syntax: void Canlf_SetDynamicTxld(
PduldType CanTxPduld,
Can_I1dType Canld

))
Service ID[hex]: |0x0c
Sync/Async: Synchronous
Reentrancy: Non Reentrant

CanTxPduldL-PDU handle of CAN L-PDU for transmission.

This ID specifies the corresponding CAN L-PDU ID and implicitly the
Parameters (in): CAN Driver instance as well as the corresponding CAN controller
device.
Canld Standard/Extended CAN ID of CAN L-PDU that shall be transmitted.
Parameters None
(inout):
Parameters (out): |None
Return value: None
Description: This service reconfigures the corresponding CAN identifier of the requested CAN
L-PDU.
10

[CANIF352] TIf parameter CanTxPduld of Canlf_SetDynamicTxld() has an

invalid value, the Canlf shall report development error code

104 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3
CANIF_E_INVALID TXPDUID to the Det_ReportError service of the DET
module, when Canlf_SetDynamicTx1d() is called. |(BSW00323)

[CANIF353] TIf parameter Canld of Canlf_SetDynamicTxld() has an invalid

value, the Canlf shall report development error code CANIF_E_PARAM_CANID to the
Det_ReportError service of the DET module, when Canlf_SetDynamicTx1d()

is called. (BSW00323)

[CANIF355] I If the Canlf was not initialized before calling
Canlf_SetDynamicTxld(), then the function Canlf_SetDynamicTxld() shall

not execute a reconfiguration of Tx Canld. |()

[CANIF356] Caveats of Canlf_SetDynamicTx1d():

e The Canlf must be initialized after Power ON.
e This function may not be interrupted by Canlf_Transmit(), if the same L-

PDU ID is handled. |()

[CANIF357] Configuration of Canlf_SetDynamicTx1d(): This function shall be
pre compile time configurable On/0ff by the configuration parameter
CANIF_PUBLIC_SETDYNAMICTXID_API (see CANIF610_Conf). |()

8.3.13 Canlf_SetTrcvMode
[CANIF287] T

Service name: Canlf _SetTrcvMode

Syntax: Std_ReturnType Canlf_SetTrcvMode(
uint8 Transceiverld,
CanTrcv_TrcvModeType TransceiverMode

D
Service ID[hex]: |0x0d
Sync/Async: Asynchronous
Reentrancy: Non Reentrant
Transceiverld Abstracted Canlf Transceiverld, which is assigned to a CAN
Parameters (in): transceiver, which is requested for mode transition
TransceiverMode [Requested mode transition
Parameters None

(inout):

Parameters (out): |None

Std_ReturnType |[E_OK: Transceiver mode request has been accepted.

R vl e E_NOT_OK: Transceiver mode request has not been accepted.

Description: This service changes the operation mode of the tansceiver Transceiverld, via
calling the corresponding CAN Transceiver Driver service.

10

Note: For more details, please refer to the [9] Specification of CAN Transceiver
Driver.

105 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

[CANIF358] I The function Canlf_SetTrcvMode() shall call the function
CanTrcv_SetOpMode(Transceiver, OpMode) on the corresponding requested
CAN Transceiver Driver module. |()

Note: The parameters of the service CanTrcv_SetOpMode () are of type:

e OpMode: CanTrcv_TrcvModeType (desired operation mode)

e Transceiver : uint8 (Transceiver to which function call has to be applied)
(see [9] Specification of CAN Transceiver Driver)

[CANIF538] l'If parameter Transceiverld of Canlf_SetTrcvMode() has an
invalid value, the Canlf shall report development error code CANIF_E PARAM_TRCV
to the Det_ReportError service of the DET, when Canlf_SetTrcvMode() is

called. (BSW00323)

Note: The mode of a transceiver <can only be changed to
CANTRCV_TRCVMODE_STANDBY, when the former mode of the transceiver has
been CANTRCV_TRCVMODE_NORMAL (see [9]). But this is not checked by the Canlf.

Note: The mode of a transceiver can only be changed to
CANTRCV_TRCVMODE_SLEEP, when the former mode of the transceiver has been
CANTRCV_TRCVMODE_STANDBY (see [9]). But this is not checked by the Canlf.

[CANIF648] TIf parameter TransceiverMode of Canlf_SetTrcvMode() has an

invalid value (not CANTRCV_TRCVMODE_STANDBY, CANTRCV_TRCVMODE_SLEEP or
CANTRCV_TRCVMODE_NORMAL), the Canlf shall report development error code
CANIF_E_PARAM_TRCVMODE to the Det_ReportError service of the DET module,

, when Canlf_SetTrcvMode() is called ;(BSW00323)

Note: The function Canlf_SetTrcvMode() should be applicable to all CAN
transceivers with all values of TransceiverMode independent, if the transceiver
hardware supports these modes or not. This is to ease up the view of the Canlf to the
assigned physical CAN channel.

[CANIF362] 'Configuration of Canlf_SetTrcvMode(): The number of supported

transceiver types for each network is set up in the configuration phase (see
CanlnterfaceTransceiverConfiguration CANIF587 Conf and
CanlnterfaceTransceiverDriverConfiguration CANIF273 Conf). If no transceiver is

used, this function shall not be provided. ()

8.3.14 Canlf_GetTrcvMode
[CANIF288] T

Service name: Canlf_GetTrcvMode
Syntax: Std_ReturnType Canlf_GetTrcvMode(
106 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

V5.0.0
R4.0 Rev 3
CanTrcv_TrcvModeType* TransceiverModePtr,
uint8 Transceiverld
D
Service ID[hex]: |0x0e
Sync/Async: Synchronous
Reentrancy: Non Reentrant
. .. [Transceiverld IAbstracted Canlf Transceiverld, which is assigned to a CAN
Parameters (in): . C X
transceiver, which is requested for current operation mode.
Parameters None

(inout):

TransceiverModePtriRequested mode of requested network the Transceiver is

Parameters (out): connected to

Std_ReturnType E_OK: Transceiver mode request has been accepted.

Return value: E_NOT_OK: Transceiver mode request has not been
accepted.
Description: This function invokes CanTrcv_GetOpMode and updates the parameter

TransceiverModePtr with the value OpMode provided by CanTrcv.

10

Note: For more details, please refer to the [9] Specification of CAN Transceiver
Driver

[CANIF363] I'The function CanlT_GetTrcvMode() shall call the function
CanTrcv_GetOpMode(Transceiver, OpMode) on the corresponding requested
CAN Transceiver Driver module. |()

Note: The parameters of the function CanTrcv_GetOpMode are of type:

e OpMode: CanTrcv_TrcvModeType (desired operation mode)

e Transceiver : uint8 (Transceiver to which API call has to be applied)
(see [9] Specification of CAN Transceiver Driver)

[CANIF364] T'lf parameter Transceiverld of Canlf_GetTrcvMode() has an

invalid value, the Canlf shall report development error code CANIF_E_PARAM_TRCV
to the Det_ReportError service of the DET module, when

Canlf_GetTrcvMode() is called. |(BSW00323)

[CANIF650] T'lf parameter TransceiverModePtr of Canlf_GetTrcvMode() has

an invalid value, the Canlf shall report development error code
CANIF_E_PARAM_POINTER to the Det_ReportError service of the DET module,

when Canlf_GetTrcvMode() was called. (BSW00323)

[CANIF367] IConfiguration of Canlf_GetTrcvMode(): The number of supported

transceiver types for each network is set up in the configuration phase (see
CanlnterfaceTransceiverConfiguration CANIF587_ Conf and
CanlnterfaceTransceiverDriverConfiguration CANIF273 Conf). If no transceiver is

used, this function shall not be provided. ()

107 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

V5.0.0
R4.0 Rev 3
8.3.15 Canlf_GetTrcvWakeupReason
[CANIF289] T
Service name: Canlf _GetTrcvWakeupReason
Syntax: Std_ReturnType Canlf_GetTrcvWakeupReason(
uint8 Transceiverld,
CanTrcv_TrcvWakeupReasonType* TrcvWuReasonPtr
))
Service ID[hex]: |OxOf
Sync/Async: Synchronous
Reentrancy: Non Reentrant
. .. [Transceiverld IAbstracted Canlf Transceiverld, which is assigned to a CAN
Parameters (in): . o
transceiver, which is requested for wake up reason.
Parameters None

(inout):

TrcvWuReasonPtr provided pointer to where the requested transceiver wake up

Parameters (out): reason shall be returned

Std_ReturnType |E_OK: Transceiver wake up reason request has been

Return value: accepted. .
' E_NOT_OK: Transceiver wake up reason request has not been
accepted.
Description: This service returns the reason for the wake up of the transceiver Transceiverld,

via calling the corresponding CAN Transceiver Driver service.

10

Note: The ability to detect and differentiate the possible wake up reasons depends
strongly on the CAN transceiver hardware. For more details, please refer to the [9]
Specification of CAN Transceiver Driver.

[CANIF368] 'The function Canlf_GetTrcvWakeupReason() shall call
CanTrcv_GetBusWuReason(Transceiver, Reason) on the corresponding

requested CanTrcv. |()

Note: The parameters of the function CanTrcv_GetBusWuReason() are of type:
e Reason: CanTrcv_TrcvWakeupReasonType
e Transceiver : uint8 (Transceiver to which API call has to be applied)
(see [9] Specification of CAN Transceiver Driver)

[CANIF537] Tlf parameter Transceiverld of Canlf_GetTrcvWakeupReason()

has an invalid value, the Canlf shall report development error code
CANIF_E_PARAM_TRCV to the Det_ReportError service of the DET module,

when Canlf_GetTrcvWakeupReason() is called. (BSW00323)

[CANIF649] T'lf parameter TrcvWuReasonPtr of

Canlf_GetTrcvWakeupReason() has an invalid value, the Canlf shall report
development error code CANIF_E_PARAM_POINTER to the Det_ReportError

service of the DET module, when Canlf_GetTrcvWakeupReason() is called.
(BSW00323)

108 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv5.0.0
R4.0 Rev 3

Note: Please be aware, that if more than one network is available, each network may
report a different wake-up reason. E.g. if an ECU uses CAN, a wake-up by CAN may
occur and the incoming data may cause an internal wake-up for another CAN
network.

The service CanlTt_GetTrcvWakeupReason() has a “per network” view and does
not vote the more important reason or sequence internally. The same may be true if
e.g. one transceiver controls the power supply and the other is just powered or un-
powered. Then one may be able to return CANIF_TRCV_WU_POWER_ON, whereas
the other may state e.g. CANIF_TRCV_WU_RESET.It is up to the calling module to
decide, how to handle the wake-up information.

[CANIF371] I'Configuration of Canlf_GetTrcvWakeupReason(): The number of

supported transceiver types for each network is set up in the configuration phase
(see CanlnterfaceTransceiverConfiguration CANIF587_ Conf and
CanlnterfaceTransceiverDriverConfiguration CANIF273 Conf). If no transceiver is

used, this function shall not be provided. ()

8.3.16 Canlf_SetTrcvWakeupMode

[CANIF290] T

Service name:

Canlf_SetTrcvWakeupMode

Syntax:

Std_ReturnType Canlf_SetTrcvWakeupMode(
uint8 Transceiverld,
CanTrcv_TrcvWakeupModeType TrcvWakeupMode

D
Service ID[hex]: |0x10
Sync/Async: Synchronous
Reentrancy: Non Reentrant

Parameters (in):

Transceiverld

IAbstracted Canlf Transceiverld, which is assigned to a CAN
transceiver, which is requested for wake up notification mode
transition.

TrcvWakeupMode

Requested transceiver wake up naotification mode

Parameters
(inout):

None

Parameters (out):

None

Return value:

Std_ReturnType

E_OK: Will be returned, if the wake up notifications state has
been changed to the requested mode.

E_NOT_OK: Will be returned, if the wake up natifications state
change has failed or the parameter is out of the allowed range.
The previous state has not been changed.

Description:

This function shall

call CanTrcv_SetTrcvWakeupMode.

10

Note: For more details, please refer to [9] Specification of CAN Transceiver Driver.

[CANIF372] I'The function Canlf_SetTrcvWakeupMode () shall call
CanTrcv_SetWakeupMode (Transceiver, TrcvWakeupMode) on the
corresponding requested CanTrcv. |()

Info: The parameters of the function CanTrcv_SetWakeupMode () are of type:

109 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

= TrcvWakeupMode: CanTrcv_TrcvWakeupModeType (see [9]Specification of
CAN Transceiver Driver)

» Transceiver : uint8 (Transceiver to which API call has to be applied)

(see [9] Specification of CAN Transceiver Driver)

Note: The following three paragraphs are already described in the Specification of
CanTrcv (see [9]). They describe the behavior of a CanTrcv in the respective
transceiver wake-up mode, which is requested in parameter TrcvWakeupMode.

CANIF_TRCV_WU_ENABLE:

If the CanTrcv has a stored wake-up event pending for the addressed CanNetwork,
the notification is executed within or immediately after the function
CanTrcv_SetTrcvWakeupMode() (depending on the implementation).

CANIF_TRCV_WU_DISABLE:

No notifications for wake-up events for the addressed CanNetwork are passed
through the CanTrcv. The transceiver device and the underlying communication
driver has to buffer detected wake-up events and raise the event(s), when the wake-
up notification is enabled again.

CANIF_TRCV_WU_CLEAR:

If notification of wake-up events is disabled (see description of mode
CANIF_TRCV_WU_DISABLE), detected wake-up events are buffered. Calling
Canlf_SetTrcvWakeupMode() with parameter CANIF_TRCV_WU_CLEAR clears
these bufferd events. Clearing of wake-up events has to be used, when the wake-up
notification is disabled to clear all stored wake-up events under control of the higher
layers of the CanTrcv.

[CANIF535] l'f parameter Transceiverld of Canlf_SetTrcvWakeupMode()

has an invalid value, the Canlf shall report development error code
CANIF_E_PARAM_TRCV to the Det_ReportError service of the DET module,

when Canlf_SetTrcvWakeupMode() is called. (BSW00323)

[CANIF536] T'lf parameter TrcvWakeupMode of Canlf_SetTrcvWakeupMode ()

has an invalid value, the Canlf shall report development error code
CANIF_E_PARAM_TRCVWAKEUPMODE to the Det_ReportError service of the DET

module, when Canlf_SetTrcvWakeupMode() is called. (BSW00323)

[CANIF373] I'Configuration of Canlf_SetTrcvWakeupMode(): The number of

supported transceiver types for each network is set up in the configuration phase
(see CanlnterfaceTransceiverConfiguration CANIF587 Conf and
CanlnterfaceTransceiverDriverConfiguration CANIF273 Conf). If no transceiver is

used, this function shall not be provided. ()

110 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

Vv5.0.0
R4.0 Rev 3

8.3.17 Canlf_CheckWakeup

[CANIF219] T

Service name:

Canlf _CheckWakeup

Syntax:

Std_ReturnType Canlf_CheckWakeup(
EcuM_WakeupSourceType WakeupSource

))
Service ID[hex]: |0x11
Sync/Async: Synchronous
Reentrancy: Reentrant

Parameters (in):

WakeupSource |Source device, which initiated the wake up event: CAN controller
or CAN transceiver

Return value:

Parameters None
(inout):
Parameters (out): |None
Std_ReturnType [E_OK: Will be returned, if the check wake up request has been

accepted
E_NOT_OK: Will be returned, if the check wake up request has
not been accepted

Description:

This service checks, whether an underlying CAN driver or a CAN transceiver driver

already signals a wakeup event.

10

Note: Integration Code calls this function

[CANIF398] T'lf parameter WakeupSource of Canlt_CheckWakeup() has an

invalid value, the Canlf shall report development error code
CANIF_E_PARAM_WAKEUPSOURCE to the Det_ReportError service of the DET,

when Canlf_CheckWakeup() is called. (BSW00323)

[CANIF401] I'Caveats of Canlf_CheckWakeup():

= The call context is either on interrupt level (interrupt mode) or on task level
(polling mode).

» The Canlf must be initialized after Power ON. ()

[CANIF402] IConfiguration of CanlTt_CheckWakeup(): This wake-up service is

configurable by CANIF_CTRL_WAKEUP_SUPPORT (see CANIF637 Conf) and/or
CANIF_TRCV_WAKEUP_SUPPORT (see CANIF606 Conf), which depends on the
used CAN controller / transceiver type and the used wake-up strategy. This function

may not be supported, if no wake-up shall be used. |()

8.3.18 Canlf_CheckValidation

[CANIF178]r

Service name:

Canlf_CheckValidation

Syntax:

Std_ReturnType Canlf_Checkvalidation(
EcuM_WakeupSourceType WakeupSource

D
Service ID[hex]: [0x12
Sync/Async: Synchronous

111 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

Reentrancy: Reentrant

WakeupSource [Source device which initiated the wake-up event and which has to

Parameters (in): be validated: CAN controller or CAN transceiver

Parameters None
(inout):

Parameters (out): |[None

Std_ReturnTypelE_OK: Will be returned, if the check validation request has been
accepted.
E_NOT_OK: Will be returned, if the check validation request has
not been accepted.

Return value:

Description; This service is performed to validate a previous wakeup event.

10

Note: Integration Code calls this function

[CANIF404] TIf parameter WakeupSource of Canlf_CheckValidation() has

an invalid value, the Canlf shall report development error code
CANIF_E_PARAM_WAKEUPSOURCE to the Det_ReportError service of the DET

module, when Canlf_CheckValidation() is called. (BSW00323)

[CANIF407] I'Caveats of CanlTt_CheckValidation():

= The CAN Interface module must be initialized after Power ON.

= The call context is either on interrupt level (interrupt mode) or on task level
(polling mode).

= The corresponding CAN controller and transceiver must be switched on via
CanTrcv_SetOpMode(Transceiver, CANTRCV_TRCVMODE_NORMAL) and
Can_SetControllerMode(Controller, CAN_T_START)and the

corresponding mode indications must have been called. |()

[CANIF408] I'Configuration of Canlf_CheckVal idation(): If no validation is

needed, this API can be omitted by disabling of
CANIF_PUBLIC_WAKEUP_CHECK_VALIDATION_SUPPORT (see CANIF611 Conf).

10

8.3.19 Canlf_GetTxConfirmationState
[CANIF734] T

Service name: Canlf _GetTxConfirmationState
Syntax: Canlf_NotifStatusType Canlf_GetTxConfirmationState(
uint8 Controllerld
D
Service ID[hex]: |0x19
Sync/Async: Synchronous
Reentrancy: Reentrant (Not for the same controller)
Parameters (in): Controllerld IAbstracted Canlf Controllerld which is assigned to a
) CAN controller
Parameters None

(inout):

Parameters (out): [None

112 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

Canlf_NotifStatusType |Combined TX confirmation status for all TX PDUs of the

Return value: CAN controller

Description: This service reports, if any TX confirmation has been done for the whole CAN
controller since the last CAN controller start.

10

[CANIF736] r If parameter Controllerlid of

Canlf_GetTxConfirmationState() has an invalid value, the Canlf shall report
development error code CANIF_E_PARAM_CONTROLLERID to the
Det_ReportError service of the DET module, when

Canlf_GetTxConfirmationState() is called. ()

[CANIF737] I'Caveats of Canlf_GetTxConfirmationState():
e The call context is on task level (polling mode).
e The Canlf must be initialized after Power ON. |()

[CANIF738] T Configuration of Canlf_GetTxConfirmationState(): If BusOff

Recovery of CanSm doesn’t need the status of the Tx confirmations (see CANIF740),
this API can be omitted by disabling of

CANIF_PUBLIC_TXCONFIRM_POLLING_SUPPORT (see CANIF733 Conf). ()

8.3.20 Canlf_ClearTrcvWufFlag
[CANIF760] T

Service name;: Canlf_ClearTrcvWufFlag
Syntax: Std_ReturnType Canlf_ClearTrcvWufFlag(
uint8 Transceiverld

D
Service ID[hex]: [Oxle
Sync/Async: Asynchronous
Reentrancy: Reentrant for different CAN transceivers
Parameters (in): [Transceiverld designated CAN transceiver
Parameters None
(inout):
Parameters (out): |None
Return value: Std_ReturnType E_OK: Request has been accepted

' E_NOT_ OK: Request has not been accepted

Description: Requests the Canlf module to clear the WUF flag of the designated CAN

transceiver.

10

[CANIF766] [Within Canlf_ClearTrcvWufFlag(Q) the function
CanTrcv_ClearTrcvWufFlag() shall be called. |()

[CANIF769] Tlf parameter Transceiverld of Canlft_ClearTrcvWufFlag() has
an invalid value, the Canlf shall report development error code

113 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

CANIF_E_PARAM_TRCV to the Det_ReportError service of the DET module,
when Canlf_ClearTrcvWufFlag() is caled. j()

[CANIF771] TConfiguration of Canlf_ClearTrcvWufFlag(): Whether the Canlf
supports this function shall be pre compile time configurable On/O0ff by the

configuration parameter CANIF_PUBLIC_PN_SUPPORT (see CANIF772 Conf). ()

8.3.21 Canlf_CheckTrcvWakeFlag
[CANIF761] T

Service name: [Canlf CheckTrcvWakeFlag
Syntax: Std_ReturnType Canlf_CheckTrcvWakeFlag(
uint8 Transceiverld
D
Service ID[hex]: [Ox1f
Sync/Async: IAsynchronous
Reentrancy: [Reentrant for different CAN transceivers
Parameters (in): |Transceiverld ldesignated CAN transceiver
Parameters [None
(inout):
Parameters (out): [None
Return value: Std_ReturnType E_OK: Request has been accepted
E NOT OK: Request has not been accepted
Description: |tRequests the Canlf module to check the Wake flag of the designated CAN
ransceiver.
10

[CANIF765] I Within Canlf_CheckTrcvWakeFlag() the function
CanTrcv_CheckTrcvWakeFlag() shall be called. |()

[CANIF770] TIf parameter Transceiverld of Canlf_CheckTrcvWakeFlag()

has an invalid value, the Canlf shall report development error code
CANIF_E_PARAM_TRCV to the Det ReportError service of the DET module,

when Canlf_CheckTrcvWakeFlag() is caled. ()

[CANIF813] lConfiguration of Canlf_CheckTrcvWakeFlag(): Whether the Canlf
supports this function shall be pre compile time configurable On/O0ff by the
configuration parameter CANIF_PUBLIC_PN_SUPPORT (see CANIF772 Conf). ()

8.3.22 Canlf_CheckBaudrate
[CANIF775] T

Service name: [Canif CheckBaudrate
Syntax: Std_ReturnType Canlf_CheckBaudrate(
uint8 Controllerld,

114 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

V5.0.0
R4.0 Rev 3
const uintl6 Baudrate
D
Service ID[hex]: Oxla
Sync/Async: Synchronous
Reentrancy: [Reentrant
. [Controllerid ICAN Controller to check for the support of a certain baudrate
Parameters (in): =
[Baudrate |Baudrate to check in kbps

Parameters (inout): [None

Parameters (out): [None

Std_ReturnType]E_OK: Baudrate supported by the CAN Controller

R Vel E NOT OK: Baudrate not supported / invalid CAN controller

Description: This service shall check, if a certain CAN controller supports a requested
baudrate

10

[CANIF786] [The service Canlft_CheckBaudrate() shall call
Can_CheckBaudrate(Controller, Baudrate) for the requested CAN

controller. ()

[CANIF778] TIf parameter Controllerld of Canlf_CheckBaudrate() has an

invalid value, the Canlf shall report development error code
CANIF_E_PARAM_CONTROLLERID to the Det_ReportError service of the DET

module, when Canlf_CheckBaudrate() is called. j()

Note: The parameter Baudrate of Canlf_CheckBaudrate() is not checked in
Canlf. This has to be done by CAN Driver module.

[CANIF779] ICaveats of Canlf_CheckBaudrate():
e The call context is on task level (polling mode).
e The Canlf must be initialized after Power ON. |()

[CANIF780] T Configuration of Canlf_CheckBaudrate(): If Canlf supports
changing of the baudrate and thus this service, shall be configurable via
CANIF_PUBLIC_CHANGE BAUDRATE_SUPPORT (see CANIF785 Conf). j()

8.3.23 Canlf_ChangeBaudrate

CANIF776]

Service name: [Canif ChangeBaudrate

Syntax: Std_ReturnType Canlf_ChangeBaudrate(
uint8 Controllerlid,
const uintl6 Baudrate

D

Service ID[hex]: 0x1b

Sync/Async: IAsynchronous

Reentrancy: [Reentrant

Parameters (in): [Controllerld ICAN Controller, whose baudrate shall be changed

115 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

[Baudrate |IRequested baudrate in kbps

Parameters (inout): [None

Parameters (out): [None

Std_ReturnType|E_OK: Service request accepted, baudrate change started

REIIT vElle: E_NOT OK: Service request not accepted

Description: This service shall change the baudrate of the CAN controller.

10

[CANIF787] [The service Canlf_ChangeBaudrate() shall call
Can_ChangeBaudrate(Controller, Baudrate) for the requested CAN

controller. ()

[CANIF782] TIf parameter Controllerld of Canlf_ChangeBaudrate() has an

invalid value, the Canlf shall report development error code
CANIF_E_PARAM_CONTROLLERID to the Det_ReportError service of the DET

module, when Canlf_ChangeBaudrate() is called. ()

Note: The parameter Baudrate of Canlf_ChangeBaudrate() is not checked in
Canlf. This has to be done by CAN Driver module.

[CANIF783] I'Caveats of CanlT_ChangeBaudrate():
e The call context is on task level (polling mode).
e The Canlf must be initialized after Power ON. ()

[CANIF784] T Configuration of Canlf_ChangeBaudrate():If Canlf supports
changing of the baudrate and thus this service, shall be configurable via

CANIF_PUBLIC_CHANGE_BAUDRATE_SUPPORT (see CANIF785 Conf). ()

8.4 Callback notifications

This is a list of functions provided for other modules.

[CANIF409] 'The function prototypes of the CAN Interface module’s callback
functions shall be provided in the file Canl1¥_Cbk.h. ()

Note: This callback service in this chapter are implemented as many times as
underlying CAN Driver modules are used. In that case one callback is assigned to
one underlying CAN Driver module. The following naming convention has to be
considered: Canlf_<Callback function> <CAN _Driver> (See [CANIF124in
subchapter 7.25.)

116 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTO SAR

8.4.1
[CANIFOO7] T

Specification of CAN Interface
Vv5.0.0
R4.0 Rev 3

Canlf_TxConfirmation

Service name:

Canlf _TxConfirmation

Syntax:

void Canlf_TxConfirmation(
PduldType CanTxPduld

))
Service ID[hex]: |0x13
Sync/Async: Synchronous
Reentrancy: Reentrant

Parameters (in):

CanTxPduldL-PDU handle of CAN L-PDU successfully transmitted.
This ID specifies the corresponding CAN L-PDU ID and implicitly the
CAN Driver instance as well as the corresponding CAN controller

device.
Parameters None
(inout):
Parameters (out): |None
Return value: None

Description:

This service confirms a previously successfully processed transmission of a CAN

TXPDU.

1(BSW01009)

Note: The service Canlf_TxConfirmation() is implemented in the CAN
Interface module and called by the CAN Driver module after the CAN L-PDU has
been transmitted on the CAN network.

Note: Within the service Canlf_TxConfirmation(), the CAN Driver module

passes back the CanTxPduld to the CAN Interface module, which it got from
Can_Write(Hth, *Pdulnfo).

[CANIF391]

CANIF_PUBLIC_READTXPDU_NOTIFY_STATUS_API

r If configuration parameters

(CANIF609 Conf) and

CANIF_TXPDU_READ_NOTIFYSTATUS (CANIF589 Conf for the transmitted L-PDU
are set to TRUE, and if Canlt_TxConfirmation() is called, the Canlf shall set the

notification status for the transmitted L-PDU. |()

[CANIF410] T'lf parameter CanTxPduld of Canlf_TxConfirmation() has an

invalid value, the Canlf shall report development error code CANIF_E_PARAM_LPDU
to the Det_ReportError service of the DET module, when

Canlf_TxConfirmation() is called. ;(BSW00323)

[CANIF412] TIf the Canlf was not initialized before calling

Canlf_TxConfirmation(), the Canlf shall not call the service
<User_TxConfirmation>() and shall not set the Tx confirmation status, when

Canlf_TxConfirmation() is called. j()

[CANIF413] I'Caveats of CanlT_TxConfirmation():

117 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv5.0.0
R4.0 Rev 3

e The call context is either on interrupt level (interrupt mode) or on task level
(polling mode).

e The Canlf must be initialized after Power ON. ()

[CANIF414] I Configuration of Canlf_TxConfirmation(): Each CAN Tx L-PDU
(see CANIF248 Conf) has to be configured with a corresponding transmit

confirmation service of an upper layer module (see CANIF011) which is called in
Canlf_TxConfirmation().()

8.4.2

Canlf RxIndication

[CANIFO06] T

Service name:

Canlf _RxIndication

Syntax:

void Canlf _RxIndication(
Can_HwHandleType Hrh,
Can_I1dType Canld,
uint8 CanDlc,
const uint8* CanSduPtr

))
Service ID[hex]: |0x14
Sync/Async: Synchronous
Reentrancy: Reentrant
Hrh ID of the corresponding Hardware Object
Range: 0..(total number of HRH -1)
Parameters (in): Canld Standard/Extende CAN ID of CAN L-PDU that has been
’ successfully received
CanDlc Data Length Code (length of CAN L-PDU payload)
CanSduPtr [Pointer to received L-SDU (payload)
Parameters None
(inout):
Parameters (out): |[None
Return value: None

Description:

This service indicates a successful reception of a received CAN Rx L-PDU to the

Canlf after passing all filters and validation checks.

10

Note: The service Canlf_RxIndication() is implemented in the CAN Interface module
and called by the CAN Driver module after a CAN L-PDU has been received.

[CANIF415] T Within the service Canlf _RxIndication() the CAN Interface
module translates the Canld into the configured target PDU ID and routes this
indication to the configured upper layer target service(s). |()

[CANIF392] r If configuration parameters

CANIF_PUBLIC_READRXPDU_NOTIFY_STATUS_API (CANIF608 Conf) and
CANIF_RXPDU_READ_NOTIFYSTATUS (CANIF595 Conf) for the received L-PDU
are set to TRUE, and if Canlf_RxIndication() is called, the Canlf shall set the

notification status for the received L-PDU. |()

118 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

[CANIF416] Tlf parameter Hrh of Canlf_RxIndication() has an invalid value,

the Canlf shall report development error code CANIF_E_PARAM_HRH to the
Det_ReportError service of the DET module, when Canlf_RxIndication() is

called. (BSW00323)

[CANIF417] TIf parameter Canld of Canlf _RxIndication() has an invalid

value, the Canlf shall report development error code CANIF_E_PARAM_CANID to the
Det_ReportError service of the DET module, when Canlf_RxIndication() is

called. (BSW00323)

[CANIF418] TIf parameter CanDlc of Canlf_RxIndication() has an invalid

value, the Canlf shall report development error code CANIF_E_PARAM_DLC to the
Det_ReportError service of the DET module, when Canlf_RxIndication() is

called. (BSW00323)

[CANIF419] TIf parameter CanSduPtr of Canlf_RxIndication() has an invalid

value, the Canlf shall report development error code CANIF_E_PARAM_POINTER to
the Det_ReportError service of the DET module, when

Canlf_RxIndication() is called. (BSW00323)

[CANIF421] T If the Canlf was not initialized before calling
Canlf_RxIndication(), the Canlf shall not execute Rx indication handling, when

Canlf_RxIndication(), is called. |()

[CANIF422] ICaveats of Canlf_RxIndication():

e The call context is either on interrupt level (interrupt mode) or on task level
(polling mode).

e The Canlf must be initialized after Power ON. |()

[CANIF423] IConfiguration of Canlf_RxIndication(): Each CAN Rx L-PDU (see

CANIF249 Conf) has to be configured with a corresponding receive indication
service of an upper layer module (see CANIF012) which is called in

Canlf_RxIndication(). ()

8.4.3 Canlf_CancelTxConfirmation
[CANIF101] T

Service name: Canlf_CancelTxConfirmation

Syntax: void Canlf_CancelTxConfirmation(
PduldType CanTxPduld,
const PdulnfoType* PdulnfoPtr

119 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

V5.0.0
R4.0 Rev 3
Service ID[hex]: |0x15
Sync/Async: Synchronous
Reentrancy: Non Reentrant

CanTxPduld|ID of the L-PDU which shall be buffered in Canlif and replaced by a
new pending L-PDU with a higher priority.

PEIEIEIES () PdulnfoPtr [Pointer to struct which contains the address of the HTH in which the

L-PDU is located and the length of the L-PDU.

Parameters None

(inout):

Parameters (out): |[None

Return value: None

Description: This service informs Canlf that a L-PDU shall be buffered in Canlf Tx buffer from

CAN hardware object to avoid priority inversion.

10

Note: The service Canlf_CancelTxConfirmation() is implemented in the Canlf
and called by the CanDrv after a previous request for cancellation of a pending L-
PDU transmit request was successfully performed.

[CANIF424] TIf parameter CanTxPduld of Canlf_CancelTxConfirmation()

has an invalid value, the Canlf shall report development error code
CANIF_E_PARAM_LPDU to the Det ReportError service of the DET module,

when Canlf_CancelTxConfirmation() is called. (BSW00323)

[CANIF828] TIf parameter PdulnfoPtr of Canlf_CancelTxConfirmation()

has an invalid value, the Canlf shall report development error code
CANIF_E_PARAM_POINTER to the Det_ReportError service of the DET module,

when Canlf_CancelTxConfirmation() is called. (BSW00323)

[CANIF426] r If the Canlf was not initialized before calling
Canlf_CancelTxConfirmation(),the Canlf shall not execute Tx cancellation

handling, when Canl¥_CancelTxConfirmation() is called. ()

[CANIF427] I'Caveats of CanlT_CancelTxConfirmation():

e The call context is either on interrupt level (interrupt mode) or on task level
(polling mode).

e The Canlf must be initialized after Power ON. |()

[CANIF428] T Configuration of Canlf_CancelTxConfirmation(): This function
shall be pre compile time configurable On/OfF by the configuration parameter

CANIF_CTRLDRV_TX_CANCELLATION (see CANIF640 Conf). ()

120 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

V5.0.0
R4.0 Rev 3
8.4.4 Canlf_ControllerBusOff
[CANIF218] T
Service name: Canlf_ControllerBusOff
Syntax: void Canlf_ControllerBusOff(
uint8 Controllerld
))
Service ID[hex]: |0x16
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): |Controllerld ICAN controller, where a BusOff occured
Parameters None
(inout):
Parameters (out): |None
Return value: None
Description: This service indicates a Controller BusOff event referring to the corresponding
CAN Controller.

10

Note: The callback service Canlf_Control lerBusOff() is called by the CanDrv
and implemented in the Canlf. It is called in case of a mode change notification of the
CanDrv.

[CANIF429] TIf parameter Controllerld of Canlf_ControllerBusOff() has

an invalid value, the Canlf shall report development error code
CANIF_E_PARAM_CONTROLLER to the Det_ ReportError service of the DET

module, when Canlf_Control lerBusOff() is called. (BSW00323)

[CANIF431] I If the Canlf was not initialized before calling
Canlf_ControllerBusOff(), the Canlf shall not execute BusOff notification,

when Canlf_ControllerBusOff(), is called. |()

[CANIF432] I'Caveats of Canlf_ControllerBusOff():

e The call context is either on interrupt level (interrupt mode) or on task level
(polling mode).

e The Canlf must be initialized after Power ON. ()

[CANIF433] I Configuration of Canlf_ControllerBusOff(): ID of the CAN
controller is published inside the configuration description of the Canlf (see

CANIF546_Conf). |()

Note: This service always has to be available, so there does not exist an appropriate
configuration parameter.

8.4.5 Canlf_ConfirmPnAvailability
[CANIF815] T

121 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

V5.0.0
R4.0 Rev 3
Service name: Canlf_ConfirmPnAvailability
Syntax: void Canlf_ConfirmPnAvailability(
uint8 Transceiverld
))
Service ID[hex]: |0xla
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): _ [Transceiverld [CAN transceiver, which was checked for PN availability
Parameters None
(inout):
Parameters (out): [None
Return value: None
Description; This service indicates that the transceiver is running in PN communication mode.
10

[CANIF753] TlIf Canlf_ConfirmPnAvailability() is called, the Canlf calls
<User_ConfirmPnAvailability>().|()

Note: The Canlf passes the delivered parameter Transceiver ld to the upper layer
module.

[CANIF816] r If parameter Transceiverld of

Canlf_ConfirmPnAvailability() has an invalid value, the Canlf shall report
development error code CANIF_E_PARAM_TRANSCEIVER to the
Det_ReportError service of the DET module, when

Canlf_ConfirmPnAvailability() is called. ()

[CANIF817] I If the Canlf was not initialized before calling
Canlf_ConfirmPnAvailability(), the Canlf shall not execute notification,
when Canlft_ConfirmPnAvailability() is called. ()

[CANIF818] I'Caveats of Canlf_ConfirmPnAvailability():

e The call context is either on interrupt level (interrupt mode) or on task level
(polling mode).

e The Canlf must be initialized after Power ON. ()

[CANIF754] TConfiguration of Canlf_ConfirmPnAvailability():This function
shall be pre compile time configurable On/OfF by the configuration parameter
CANIF_PUBLIC_PN_SUPPORT (see CANIF772_Conf). |()

8.4.6 Canlf_ClearTrcvWufFlagindication
[CANIF762] T

Service name: Canlf_ClearTrcvWufFlagindication
Syntax: void Canlf_ClearTrcvWufFlaglndication(
uint8 Transceiverld

122 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface

V5.0.0
R4.0 Rev 3
))
Service ID[hex]: |0x20
Sync/Async: Synchronous
Reentrancy: Reentrant
Parameters (in): [Transceiverld [CAN transceiver, for which this function was called.
Parameters None
(inout):
Parameters (out): |None
Return value: None

Description:

This service indicates that the transceiver has cleared the WufFlag.

10

[CANIF757] TIf Canlf_ClearTrcvWufFlagIndication() is called, the Canlf

calls <User_ClearTrcvWufFlagIndication>().|()

Note: The Canlf passes the delivered parameter Transceiverld to the upper layer
module.

[CANIF805] r If parameter Transceiverld of
Canlf_ClearTrcvWufFlaglndication() has an invalid value, the Canlf shall

report development error code CANIF_E_PARAM_TRANSCEIVER to the
Det_ReportError service of the DET module, when
Canlf_ClearTrcvWufFlaglndication() is called. ()

[CANIF806] r If the Canlf was not initialized before calling
Canlf_ClearTrcvWufFlagIndication(), the Canlf shall not execute

notification, when Canlf_ClearTrcvWufFlagIndication() is called. |()

[CANIF807] I'Caveats of Canlf_ClearTrcvWufFlagindication():

e The call context is either on interrupt level (interrupt mode) or on task level
(polling mode).

e The Canlf must be initialized after Power ON. |()

[CANIF808] T Configuration of Canlf_ClearTrcvWufFlaglndication():This
function shall be pre compile time configurable On/Off by the configuration
parameter CANIF_PUBLIC_PN_SUPPORT (see CANIF772_Conf). ()

8.4.7 Canlf_CheckTrcvWakeFlagindication
[CANIF763] T

Service name:

Canlf_CheckTrcvWakeFlaglindication

Syntax:

void Canlf_CheckTrcvWakeFlaglndication(
uint8 Transceiverld

D
Service ID[hex]: [0x21
Sync/Async: Synchronous

123 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface

V5.0.0
R4.0 Rev 3
Reentrancy: Reentrant
Parameters (in): [Transceiverld ICAN transceiver, for which this function was called.
Parameters None
(inout):
Parameters (out): |None
Return value: None
Description: This service indicates the reason for the wake up that the CAN transceiver has
detected.
10

[CANIF759] Tlf Canlf_CheckTrcvWakeFlagIndication() is called, the Canlf
calls <User_CheckTrcvWakeFlagIndication>(). ()

Note: The Canlf passes the delivered parameter Transceiver ld to the upper layer

module.

[CANIF809]

r If parameter Transceiverld of

Canlf_CheckTrcvWakeFlagindication() has an invalid value, the Canlf shall

report development error code CANIF_E_PARAM_TRANSCEIVER to the
Det_ReportError service of the DET module, when
Canlf_CheckTrcvWakeFlagindication() is called. j()

[CANIF810] If the Canlf was not initialized before calling
Canlf_CheckTrcvWakeFlagindication(), the Canlf shall not execute

notification, when Canl¥_CheckTrcvWakeFlagIndication() is called. ()

[CANIF811] I'Caveats of CanlTt_CheckTrcvWakeFlagIndication():
e The call context is either on interrupt level (interrupt mode) or on task level

(polling mode).
e The Canlf must be initialized after Power ON. |()

[CANIF812] T Configuration of Canlf_CheckTrcvWakeFlagindication():This
function shall be pre compile time configurable On/Off by the configuration
parameter CANIF_PUBLIC_PN_SUPPORT (see CANIF772_Conf). ()

8.4.8 Canlf_ControllerModelndication
[CANIF699] T

Service name: Canlf_ControllerModelndication

void Canlf_ControllerModelndication(
uint8 Controllerld,
Canlf_ControllerModeType ControllerMode

Syntax:

D
Service ID[hex]: |0x17
Sync/Async: Synchronous
Reentrancy: Reentrant

124 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

Specification of CAN Interface

AUTO SAR

V5.0.0
R4.0 Rev 3
Parameters (in): Controllerld CAN contro!ler, which state has been trg_nsitioned.
ControllerMode Mode to which the CAN controller transitioned
Parameters None
(inout):
Parameters (out): |[None
Return value: None
Description: This service indicates a controller state transition referring to the corresponding
CAN controller.
10

Note: The callback service Canlf_ControllerModelndication() is called by
the CanDrv and implemented in the Canlf. It is called in case of a state transition
notification of the CanDrv.

[CANIF700] r If parameter Controllerlid of
Canlf_ControllerModelndication() has an invalid value, the Canlf shall

report development error code CANIF_E PARAM _CONTROLLER to the
Det_ReportError service of the DET module, when
Canlf_ControllerModelndication() is called. ()

[CANIF702] I If the Canlf was not initialized before calling

Canlt_ControllerModelndication(), the Canlf shall not execute state

transition notification, when Canlf_ControllerModelndication() is called. ()

[CANIF703] ICaveats of Canlf_ControllerModelndication():

e The call context is either on interrupt level (interrupt mode) or on task level
(polling mode).

e The Canlf must be initialized after Power ON. ()

[CANIF704] lConfiguration of Canlf_ControllerModelndication(): ID of the
CAN controller is published inside the configuration description of the Canlf (see

CANIF647_Conf). j()

8.4.9 Canlf_TrcvModelndication
[CANIF764] T

Service name: Canlf _TrcvModelndication

void Canlf_TrcvModelndication(
uint8 Transceiverld,
CanTrcv_TrcvModeType TransceiverMode

Syntax:

))
Service ID[hex]: |0x18
Sync/Async: Synchronous
Reentrancy: Reentrant

Parameters (in):

Transceiverld

CAN transceiver, which state has been transitioned.

TransceiverMode

Mode to which the CAN transceiver transitioned

Parameters

None

125 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

V5.0.0
R4.0 Rev 3
(inout):
Parameters (out): |None
Return value: None
Description: This service indicates a transceiver state transition referring to the corresponding
CAN transceiver.

10

Note: The callback service Canlf_TrcvModelndication() is called by the
CanDrv and implemented in the Canlf. It is called in case of a state transition
notification of the CanDrv.

[CANIF706] TIf parameter Transceiverld of Canlf_TrcvModelndication()

has an invalid value, the Canlf shall report development error code
CANIF_E_PARAM_TRCV to the Det_ReportError service of the DET module,

when Canlf_TrcvModelndication() is called. |()

[CANIF708] I If the Canlf was not initialized before calling
Canlf_TrcvModelndication(), the Canlf shall not execute state transition

notification, when Canlf_TrcvModelndication() is called. |()

[CANIF709] I'Caveats of Canlf_TrcvModelndication():

e The call context is either on interrupt level (interrupt mode) or on task level
(polling mode).

e The Canlf must be initialized after Power ON. |()

[CANIF710] T Configuration of Canlf_TrcvModelndication(): ID of the CAN
transceiver is published inside the configuration description of the Canlf via
parameter CANIF_TRCV_ID (see CANIE654 Conf). |()

[CANIF730] lConfiguration of Canlf_TrcvModelndication (): If transceivers
are not supported (CanlfTrcvDrvCfg is not configured, see CANIF273 Conf),

CanlfT_TrcvModelndication() shall not be provided by Canilf. |()

8.5 Scheduled functions

Note: The CAN Interface module does not have scheduled functions or needs some.

8.6 Expected interfaces

In this chapter all interfaces required from other modules are listed.

126 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

V5.0.0

R4.0 Rev 3
8.6.1 Mandatory interfaces
Note: This chapter defines all interfaces, which are required to fulfill the core
functionality of the module.
[CANIFO040] T
API function Description
Can_SetControllerMode This function performs software triggered state transitions of the

CAN controller State machine.

Can_Write -~

SchM_Enter_Canlf_<ExclusiveArea>lnvokes the SchM_Enter function to enter a module local
exclusive area.

SchM_Exit_Canlf <ExclusiveArea> |Invokes the SchM_Exit function to exit an exclusive area.

10

8.6.2 Optional interfaces
This chapter defines all interfaces, which are required to fulfill an optional
functionality of the module.

[CANIF294] T

API function Description

CanTrcv_CheckWakeup Service is called by underlying CANIF in case a wake up interrupt is
detected.

CanTrcv_GetBusWuReason |Gets the wakeup reason for the Transceiver and returns it in parameter
Reason.

CanTrcv_GetOpMode Gets the mode of the Transceiver and returns it in OpMode.

CanTrcv_SetOpMode Sets the mode of the Transceiver to the value OpMode.

CanTrcv_SetWakeupMode Enables, disables or clears wake-up events of the Transceiver
according to TrcvWakeupMode.

Can_ChangeBaudrate This service shall change the baudrate of the CAN controller.

Can_CheckBaudrate This service shall check, if a certain CAN controller supports a
requested baudrate

Can_CheckWakeup This function checks if a wakeup has occurred for the given controller.

Det ReportError Service to report development errors.

10

8.6.3 Configurable interfaces

In this chapter all interfaces are listed, where the target function of any upper layer to
be called has to be set up by configuration. These callback services are specified
and implemented in the upper communication modules, which use the CAN Interface
according to the AUTOSAR BSW architecture. The specific callback notification is
specified in the corresponding SWS document (see chapter [3 Related
documentation]).

As far the interface name is not specified to be mandatory, no callback is performed,
if no API name is configured. This chapter describes only the content of notification of
the callback, the call context inside the Canlf and exact time by the call event.

<User_NotificationName> - This condition is applied for such interface services
which will be implemented in the upper layer and called by the CAN Interface
module. This condition displays the symbolic name of the functional group in a
callback service in the corresponding upper layer module. Each upper layer module

127 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

V5.0.0
R4.0 Rev 3
can define no, one or several callback services for the same functionality (i.e.
transmit confirmation). The dispatch is ensured by the L-PDU ID.
The upper layer module provides the Service ID of the following functions.
8.6.3.1 <User_TxConfirmation>
[CANIFO11] T
Service name: <User_TxConfirmation>
Syntax: void <User_TxConfirmation>(
PduldType TxPduld
D
Sync/Async: Synchronous
Reentrancy: Reentrant for different Pdulds. Non reentrant for the same Pduld.
Parameters (in): [TxPduld ID of the I-PDU that has been transmitted.
Parameters None
(inout):
Parameters (out): |None
Return value: None
Description: The lower layer communication module confirms the transmission of an I-PDU.
10

Note: This callback service is called by the Canlf and implemented in the
corresponding upper layer module. It is called in case of a transmit confirmation of
the CanDrv.

Note: This type of confirmation callback service is mainly designed for the PduR,
CanNm and CanTp, but not exclusive.

Note: Parameter TxPduld specifies the corresponding CAN L-PDU ID and implicitly
the CanDrv instance as well as the corresponding CAN controller device. The range
is between 0 and ((maximum number of L-PDU IDs which may be transmitted by the
Canlf) -1).

[CANIF437] I'Caveats of <User_TxConfirmation>(): The call context is either on

interrupt level (interrupt mode) or on task level (polling mode). j()

Note: This kind of callback function is in general re-entrant for multiple CAN controller
or multiple CAN network usage (for different L-PDU IDs), but not for the same CAN
controller or CAN network (the same L-PDU ID).

[CANIF438] lConfiguration of <User_TxConfirmation>(): The upper layer

module, which provides this callback service, has to be configured by
CANIF_TXPDU_USERTXCONFIRMATION_UL (see CANIF527 Conf). If no upper
layer modules are configured for transmit confirmation using

<User_TxConfirmation>(), no transmit confirmation is executed. ()

128 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

[CANIF542] I'Configuration of <User_TxConfirmation>(): The name of the API

<User_TxConfirmation>() which is called by Canlf shall be configured for the
Canlf by parameter CANIF_TXPDU_USERTXCONFIRMAT ION_NAME (see

CANIF528 Conf). j()

Note: If transmit confirmations are not necessary or no upper layer modules are
configured for transmit confirmations and thus <User_TxConfirmation>() shall
not be called, CANIF_TXPDU_USERTXCONFIRMATION_ UL and
CANIF_TXPDU_USERTXCONFIRMATION_NAME need not to be configured.

[CANIF439] Configuration of <User_TxConfirmation>(): If

CANIF_TXPDU_USERTXCONFIRMATION_UL is set to PDUR, the following is

prescribed:

= CANIF_TXPDU_USERTXCONFIRMATION_ NAME must be
PduR_CanlfTxConfirmation

= function parameter of type PduldType has to be named as CanTxPduld ()

[CANIF543] I'Configuration of <User_TxConfirmation>(): If

CANIF_TXPDU_USERTXCONFIRMATION_UL is set to CAN_NM, the following is

prescribed:

= CANIF_TXPDU_USERTXCONFIRMATION_NAME must be
CanNm_TxConfirmation

= function parameter of type PduldType has to be named as canNmTxPduld ()

Hint (Dependency to another module):

If at least one Canlf Tx L-PDU is configured with CanNm_TxConfirmation(),
which means CANIF_TXPDU_USERTXCONFIRMATION_UL equals CAN_NM, the
CanNm configuration parameter CANNM__IMMEDIATE_TXCONF_ENABLED must be
set to FALSE (see [12] Specification of CAN Network Management, CANNM284).

[CANIF544] ' Configuration of <User_TxConfirmation>(): If

CANIF_TXPDU_USERTXCONFIRMATION_UL is set to J1939TP, the following is

prescribed:

= CANIF_TXPDU_USERTXCONFIRMATION_ NAME must be
J1939Tp_TxConfirmation

= function parameter of type PduldType has to be named as J1939TpTxPduld ()

[CANIF550] I'Configuration of <User_TxConfirmation>(): If

CANIF_TXPDU_USERTXCONFIRMATION_UL is set to CAN_TP, the following is

prescribed:

= CANIF_TXPDU_USERTXCONFIRMATION_NAME must be
CanTp_TxConfirmation

= function parameter of type PduldType has to be named as CanTpTxPduld ()

129 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

[CANIF556] I'Configuration of <User_TxConfirmation>(): If

CANIF_TXPDU_USERTXCONFIRMATION_UL is set to XCP, the following is

prescribed:

= CANIF_TXPDU_USERTXCONFIRMATION_NAME must be
Xcp_CanlfTxConfirmation

= function parameter of type PduldType has to be named as XcpTxPduld ()

[CANIF551] IConfiguration of <User_TxConfirmation>(): If

CANIF_TXPDU_USERTXCONFIRMATION_UL is set to CDD, the name of the API
<User_TxConfirmation>()has to be configured via parameter
CANIF_TXPDU_USERTXCONFIRMATION_NAME. The function parameter has to be of

type PduldType. ()

8.6.3.2 <User_RxIndication>
[CANIFO12] T

Service name: <User_RxIndication>

Syntax: void <User_RxIndication>(
PduldType RxPduld,
PdulnfoType* PdulnfoPtr

D
Sync/Async: Synchronous
Reentrancy: Reentrant for different Pdulds. Non reentrant for the same Pduld.

RxPduld |ID of the received |I-PDU.

Parameters (in): |PdulnfoPtriContains the length (SduLength) of the received I-PDU and a pointer to
a buffer (SduDataPtr) containing the I-PDU.

Parameters None

(inout):

Parameters (out): |None

Return value: None

Description: Indication of a received I-PDU from a lower layer communication module.
1(BSW01003)

Note: This service indicates a successful reception of an L-PDU to the upper layer
module after passing all filters and validation checks.

Note: This callback service is called by the Canlf and implemented in the configured
upper layer module (e.g. PduR, CanNm, CanTp, etc.) if configured accordingly (see
CANIF529 Conf).

Note: Parameter / handle RxPduld identifies the received data. The range is between
0 and ((maximum number of L-PDU IDs which may be received by the Canlf) -1).

[CANIF440] ICaveats of <User_RxIndication>:

= Until this service returns, the Canlf will not access <PdulnfoPtr>. The
<PdulnfoPtr> is only valid and can be used by upper layers, until the
indication returns. The Canlf guarantees that the number of configured bytes for
this <PdulnfoPtr> is valid.

130 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3
= The CAN Driver module must be initialized after Power ON.
= The call context is either on interrupt level (interrupt mode) or on task level
(polling mode). |()

Note: This kind of callback function is in general reentrant for multiple CAN controller
or multiple CAN network usage (for different L-PDU IDs), but not for the same CAN
controller or CAN network (the same L-PDU ID).

[CANIF441] IConfiguration of <User_RxIndication>(): The upper layer module,
which provides this callback service, has to be configured by

CANIF_RXPDU_USERRXINDICATION_UL (see CANIF529 Conf). ()

[CANIF552] I'Configuration of <User_RxIndication>(): The name of the API

<User_RxIndication>() which will be called by the Canlf shall be configured for
the Canlf by parameter CANIF_RXPDU_USERRXINDICATION_NAME (see

CANIF530_Conf). ()

Note: If receive indications are not necessary or no upper layer modules are
configured for receive indications and thus <User_RxIndication>() shall not be
called, CANIF_RXPDU_USERRXINDICATION_UL and
CANIF_RXPDU_USERRXINDICATION_NAME need not to be configured.

[CANIF442] I Configuration of <User_RxIndication>(): If

CANIF_RXPDU_USERRXINDICATION_UL is set to PDUR, the following is prescribed:

= CANIF_RXPDU_USERRXINDICATION_NAME must be
PduR_CanlfRxIndication

= function parameter of type PduldType has to be named as i1d
= function parameter of type const PdulnfoType has to be named as buffer

0

[CANIF445] ' Configuration of <User_RxIndication>(): If
CANIF_RXPDU_USERRXINDICATION_UL is set to CAN_NM, the following is
prescribed:

= CANIF_RXPDU_USERRXINDICATION_NAME must be CanNm_RxIndication
= function parameter of type PduldType has to be named as CanNmRxPduld

= function parameter of type const PdulnfoType has to be named as

CanNmRxPduPtr ()

The value passed to CanNm via the API parameter CanNmRxPdu I d refers to the
CanNm channel handle within the CanNm module (see [12] Specification of CAN
Network Management).

131 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

[CANIF448] I Configuration of <User_RxIndication>(): If

CANIF_RXPDU_USERRXINDICATION_UL is set to CAN_TP, the following is
prescribed:

= CANIF_RXPDU_USERRXINDICATION_NAME must be CanTp_RxIndication
= function parameter of type PduldType has to be named as CanTpRxPduld

= function parameter of type const PdulnfoType has to be named as

CanTpRxPduPtr ()

[CANIF554] 'Configuration of <User_RxIndication>(): If

CANIF_RXPDU_USERRXINDICATION_UL is set to J1939TP, the following is
prescribed:

= CANIF_RXPDU_USERRXINDICATION_NAME must be J1939Tp_RxIndication
= function parameter of type PduldType has to be named as J1939TpRxPduld

= function parameter of type const PdulnfoType has to be named as

J1939TpRxPduPtr ()

[CANIF555] I'Configuration of <User_RxIndication>(): If

CANIF_RXPDU_USERRXINDICATION_UL is set to XCP, the following is prescribed:

= CANIF_RXPDU_USERRXINDICATION_NAME must be
Xcp_CanlfRxIndication

= function parameter of type PduldType has to be named as XcpRxPduld

= function parameter of type const PdulnfoType has to be named as

XcpRxPduPtr ()

[CANIF557] IConfiguration of <User_RxIndication>(): If
CANIF_RXPDU_USERRXINDICATION_UL is set to CDD the name of the API has to

be configured via parameter CANIF_RXPDU_USERRXINDICATION_NAME. |()

8.6.3.3 <User_ValidateWakeupEvent>
[CANIF532] T

Service name; <User_ValidateWakeupEvent>
Syntax: void <User_ValidateWakeupEvent>(
EcuM_WakeupSourceType sources
D
Sync/Async: (defined within providing upper layer module)
Reentrancy: (defined within providing upper layer module)

sources |Validated CAN wakeup events. Every CAN controller or CAN transceiver
can be a separate wakeup source.

Parameters (in):

Parameters None

(inout):

Parameters (out): |[None

Return value: None

Description: This service indicates if a wake up event initiated from the wake up source (CAN

controller or transceiver) after a former request to the CAN Driver or CAN
Transceiver Driver module is valid.

132 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

10

Note: This callback service is mainly implemented in and used by the ECU State
Manager module (see Specification of ECU State Manager [15]).

Note: The Canlf calls this callback service. It is implemented by the configured upper
layer module. It is called only during the call of Canl¥_CheckVal idation()if a first
CAN L_PDU reception event after a wake up event has been occurred at the
corresponding CAN controller.

[CANIF455] I'Caveats of <User_Val idateWakeupEvent>:

= The CanDrv must be initialized after Power ON.

= The call context is either on interrupt level (interrupt mode) or on task level
(polling mode).

» This callback service is in general re-entrant for multiple CAN controller usage,

but not for the same CAN controller. |()

[CANIF659] 'Configuration of <User_Val idateWakeupEvent>: If no validation is

needed, this API can be omitted by disabling
CANIF_PUBLIC_WAKEUP_CHECK_VALIDATION_SUPPORT (see CANIF611 Conf).

10

[CANIF456] 'Configuration of <User_Val idateWakeupEvent>: The upper layer

module which provides this callback service has to be configured by

CANIF_DISPATCH_USERVAL IDATEWAKEUPEVENT_UL (see CANIF549 Conf), but:

= |If no upper layer modules are configured for wake up notification using
<User_Val idateWakeupEvent>(), no wake up notification needs to be
configured. CANIF_DISPATCH_USERVAL IDATEWAKEUPEVENT UL needs not to
be configured.

= |f wake up is not supported (CANIF_CTRL_WAKEUP_SUPPORT and
CANIF_TRCV_WAKEUP_SUPPORT equal FALSE, see CANIF637_Conf,
CANIF606_Conf), CANIF_DISPATCH_USERVAL IDATEWAKEUPEVENT_UL is not

configurable. |()

[CANIF563] 'Configuration of <User_ValidateWakeupEvent>(): If

CANIF_DISPATCH_USERVALIDATEWAKEUPEVENT UL is set to ECUM, the following

IS prescribed:

= CANIF_DISPATCH_USERVALIDATEWAKEUPEVENT NAME must be
EcuM_ValidateWakeupEvent

= function parameter of type EcuM_WakeupSourceType has to be named as

sources |()

[CANIF564] I'Configuration of <User_Val idateWakeupEvent>(): If
CANIF_DISPATCH_USERVAL IDATEWAKEUPEVENT_UL is set to CDD the name of

133 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

the API has to be configured via parameter
CANIF_DISPATCH_USERVAL IDATEWAKEUPEVENT_NAME. The function parameter

has to be of type EcuM_WakeupSourceType. ()

8.6.3.4 <User_ControllerBusOff>
[CANIFO14] T

Service name: <User_ControllerBusOff>
Syntax: void <User_ControllerBusOff>(
uint8 Controllerld
D
Sync/Async: (defined within providing upper layer module)
Reentrancy: (defined within providing upper layer module)

Controllerld |Abstracted Canlf Controllerld which is assigned to a CAN controller,

Parameters (in): at which a BusOff occurred.

Parameters None

(inout):

Parameters (out): [None

Return value: None

Description: This service indicates a bus-off event to the corresponding upper layer module

(mainly the CAN State Manager module).

1(BSW01029)

Note: This callback service is mainly implemented in and used by the CanSm (see
Specification of CAN State Manager [11]).

Note: This callback service is called by the Canlf and implemented by the configured
upper layer module. It is called in case of a BusOff notification via
Canlf_ControllerBusOff() of the CanDrv. The delivered parameter
Controllerld of the service Canlft_Control lerBusOff() is passed to the
upper layer module.

[CANIF449] lCaveats of <User_ControllerBusOff>():

= The CanDrv must be initialized after Power ON.

» The call context is either on interrupt level (interrupt mode) or on task level
(polling mode).

» This callback service is in general re-entrant for multiple CAN controller usage,
but not for the same CAN controller.

= Before re-initialization/restart during BusOff recovery is executed this callback
service is performed only once in case of multiple BusOff events at CAN

controller. |()

[CANIF450] I'Configuration of <User_Control lerBusOff>():
The upper layer module which provides this callback service has to be configured by
CANIF_DISPATCH_USERCTRLBUSOFF_UL (see CANIF547 Conf). |()

[CANIF558] 'Configuration of <User_Control lerBusOff>(): The name of the
API <User_Control lerBusOff>() which will be called by the Canlf shall be

134 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

configured for the Canlf by parameter CANIF_DISPATCH_USERCTRLBUSOFF_NAME
(see CANIF525 Conf). j()

[CANIF524] I'Configuration of <User_Control lerBusOff>(): At least one upper

layer module and hence an API of <User_Control lerBusOff>() has mandatorily
to be configured, which the Canlf can call in case of an occurred call of

Canlf_ControllerBusOff(). ()

[CANIF559] I'Configuration of <User_Control lerBusOff>(): If

CANIF_DISPATCH_USERCTRLBUSOFF_UL is set to CAN_SM, the following is

prescribed:

= CANIF_DISPATCH_USERCTRLBUSOFF_NAME must be
CanSM_Control lerBusOff

= function parameter of type uint8 has to be named as Controller ()

[CANIF560] 'Configuration of <User_Control lerBusOff>(): If

CANIF_DISPATCH_USERCTRLBUSOFF_UL is set to CDD the name of the API has to
be configured via parameter CANIF_DISPATCH_USERCTRLBUSOFF_NAME. The

function parameter has to be of type uint8. ()

8.6.3.5 <User_ConfirmPnAvailability>
[CANIF821] T

Service name: <User_ConfirmPnAvailability>
Syntax: void <User_ConfirmPnAvailability>(
uint8 Transceiverld
D
Sync/Async: (defined within providing upper layer module)
Reentrancy: (defined within providing upper layer module)

Parameters (in): [Transceiverld |[CAN transceiver, which was checked for PN availability

Parameters None

(inout):

Parameters (out): [None

Return value: None

Description: This service indicates that the CAN transceiver is running in PN communication

mode.

10

Note: This callback service is mainly implemented in and used by the CanSm (see
Specification of CAN State Manager [11]).

[CANIF822] ICaveats of <User_ConfirmPnAvailability>():

= The CanTrcvDrv must be initialized after Power ON.
= The call context is either on interrupt level (interrupt mode) or on task level
(polling mode).

135 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3
» This callback service is in general re-entrant for multiple CAN transceiver usage,
but not for the same CAN transceiver. ()

[CANIF823] IConfiguration of <User_ConfirmPnAvailability>(): The upper

layer module, which is called (see CANIF753), has to be configurable by
CANIF_DISPATCH_USERCONFIRMPNAVAILABILITY_UL (see CANIF820 Conf) if

CANIF_PUBLIC_PN_SUPPORT (see CANIF772 Conf) equals True. j()

[CANIF824] ' Configuration of <User_ConfirmPnAvailability>(): The name of

<User_ConfirmPnAvailability>() shall be configurable by
CANIF_DISPATCH_USERCONFIRMPNAVAILABILITY_NAME (see CANIF819 Conf)

if CANIF_PUBLIC_PN_SUPPORT (see CANIE772 Conf) equals True. ()

[CANIF825] I'Configuration of <User_ConfirmPnAvailability>(): It shall be

configurable by CANIF_PUBLIC_PN_SUPPORT (see CANIF772_Conf), if Canlf
supports this service (False: not supported, True: supported),

[CANIF826] I'Configuration of <User_ConfirmPnAvailability>(): If

CANIF_DISPATCH_USERCONFIRMPNAVAILABILITY_ UL is setto CAN_SM, the

following is prescribed:

= CANIF_DISPATCH_USERCONFIRMPNAVAILABILITY_NAME must be
CanSM_ConfirmPnAvailability

= function parameter of type uint8 has to be named as Transceiverld ()

[CANIF827] I'Configuration of <User_ConfirmPnAvailability>(): If

CANIF_DISPATCH_USERCONFIRMPNAVAILABILITY_UL is set to CDD, the following
Is prescribed:

= name of the service has to be configurable via parameter
CANIF_DISPATCH_USERCONFIRMPNAVAILABILITY_NAME

= function parameter has to be of type uint8;()

8.6.3.6 <User_ClearTrcvWufFlaglndication>
[CANIF788] T

Service name: <User_ClearTrcvWufFlaglndication>
Syntax: void <User_ClearTrcvWufFlaglndication>(
uint8 Transceiverld
D
Sync/Async: Synchronous
Reentrancy: Non Reentrant
. .. [Transceiverld Abstracted Canlf Transceiverld, for which this function was
Parameters (in):
called.
Parameters None
(inout):
Parameters (out): |[None
Return value: None
136 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

Description: This service indicates that the CAN transceiver has cleared the WufFlag. This
function is called in Canlf ClearTrcvWufFlaglindication.

10

Note: This callback service is mainly implemented in and used by the CanSm (see
Specification of CAN State Manager [11]).

[CANIF793] I'Caveats of <User_ClearTrcvWufFlagIndication>():

» The CanTrcvDrv must be initialized after Power ON.

»= The call context is either on interrupt level (interrupt mode) or on task level
(polling mode).

» This callback service is in general re-entrant for multiple CAN transceiver usage,

but not for the same CAN transceiver. |()

[CANIF794] T Configuration of <User_ClearTrcvWufFlaglndication>(): The

upper layer module, which is called (see CANIF757), has to be configurable by
CANIF_DISPATCH_USERCLEARTRCVWUFFLAGINDICATION_UL (see
CANIF790 Conf) if CANIF_PUBLIC_PN_SUPPORT (see CANIF772 Conf) equals

True. ()

[CANIF795] I'Configuration of <User_ClearTrcvWufFlaglndication>(): The

name of <User_ClearTrcvWufFlagIndication>() shall be configurable by
CANIF_DISPATCH_USERCLEARTRCVWUFFLAGINDICATION_NAME (see
CANIF789 Conf) if CANIF_PUBLIC_PN_SUPPORT (see CANIF772 Conf) equals

True. j()

[CANIF796] I'Configuration of <User_ClearTrcvWufFlagindication>(): It

shall be configurable by CANIF_PUBLIC_PN_SUPPORT (see CANIF772_Conf), if
Canlf supports this service (False: not supported, True: supported),

[CANIF797] I Configuration of <User_ClearTrcvWufFlagIndication>(): If

CANIF_DISPATCH_USERCLEARTRCVWUFFLAGINDICATION_UL is set to CAN_SM,

the following is prescribed:

= CANIF_DISPATCH USERCLEARTRCVWUFFLAGINDICATION_NAME must be
CanSM_ClearTrcvWufFlagIndication

= function parameter of type uint8 has to be named as Transceiverld ()

[CANIF798] I'Configuration of <User_ClearTrcvWufFlagindication>(): If

CANIF_DISPATCH_USERCLEARTRCVWUFFLAGINDICATION_UL is set to CDD, the
following is prescribed:

= npame of the service has to be configurable via parameter
CANIF_DISPATCH_USERCLEARTRCVWUFFLAGINDICATION_NAME

» function parameter has to be of type uint8,;()

137 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

V5.0.0
R4.0 Rev 3
8.6.3.7 <User_CheckTrcvWakeFlagindication>
[CANIF814] T
Service name: <User_CheckTrcvWakeFlagindication>
Syntax: void <User_CheckTrcvWakeFlaglndication>(
uint8 Transceiverld
D
Sync/Async: Synchronous
Reentrancy: Non Reentrant
... [Transceiverld |Abstracted Canlf Transceiverld, for which this function was
Parameters (in):
called.
Parameters None
(inout):
Parameters (out): [None
Return value: None
Description: This service indicates that the wake up flag in the CAN transceiver is set. This
function is called in Canlf CheckTrcvWakeFlaglndication.

10

Note: This callback service is mainly implemented in and used by the CanSm (see
Specification of CAN State Manager [11]).

[CANIF799] lCaveats of <User_CheckTrcvWakeFlagIndication>():

» The CanTrcvDrv must be initialized after Power ON.

= The call context is either on interrupt level (interrupt mode) or on task level
(polling mode).

= This callback service is in general re-entrant for multiple CAN transceiver usage,

but not for the same CAN transceiver. |()

[CANIF800] Configuration of <User_CheckTrcvWakeFlaglndication>(): The

upper layer module, which is called (see CANIF759), has to be configurable by
CANIF_DISPATCH_USERCHECKRCVWAKEFLAGINDICATION_UL (see
CANIF792 Conf) if CANIF_PUBLIC_PN_SUPPORT (see CANIF772 Conf) equals

True. j()

[CANIF801] I'Configuration of <User_CheckTrcvWakeFlaglndication>(): The

name of <User_CheckTrcvWakeFlagIndication>() shall be configurable by
CANIF_DISPATCH_USERCHECKRCVWAKEFLAGINDICATION_NAME (see
CANIF791 Conf) if CANIF_PUBLIC_PN_SUPPORT (see CANIF772 Conf) equals

True. j()

[CANIF802] I'Configuration of <User_CheckTrcvWakeFlagIndication>(): It

shall be configurable by CANIF_PUBLIC_PN_SUPPORT (see CANIF772_Conf), if
Canlf supports this service (False: not supported, True: supported),

138 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

Vv5.0.0
R4.0 Rev 3

[CANIF803] I'Configuration of <User_CheckTrcvWakeFlagIndication>(): If

CANIF_DISPATCH_USERCHECKRCVWAKEFLAGINDICATION_UL is set to CAN_SM,

the following is prescribed:

= CANIF_DISPATCH_USERCHECKRCVWAKEFLAGINDICATION_NAME must be
CanSM_CheckTrcvWakeFlaglindication

= function parameter of type uint8 has to be named as Transceiverld ()

[CANIF804] I'Configuration of <User_CheckTrcvWakeFlagIndication>(): If

CANIF_DISPATCH_USERCHECKRCVWAKEFLAGINDICATION_UL is set to CDD, the
following is prescribed:

= npame of the service has to be configurable via parameter
CANIF_DISPATCH_USERCHECKRCVWAKEFLAGINDICATION_NAME

= function parameter has to be of type uint8;()

8.6.3.8 <User_ControllerModelndication>

[CANIF687] T

Service name:

<User_ControllerModelndication>

Syntax:

void <User_ControllerModelndication>(
uint8 Controllerld,
Canlf_ControllerModeType ControllerMode

D
Sync/Async: Synchronous
Reentrancy: Non Reentrant

Parameters (in):

Controllerld IAbstracted Canlf Controllerld which is assigned to a CAN
controller, at which a controller state transition occurred.

ControllerMode |[Notified CAN controller mode

Parameters None
(inout):

Parameters (out): |[None
Return value: None

Description:

This service indicates a CAN controller state transition to the corresponding upper

layer module (mainly the CAN State Manager module).

10

Note: The upper layer module provides the Service ID.

Note: This callback service is mainly implemented in and used by the CAN State
Manager module (see Specification of CAN State Manager [11]).

Note: The Canlf calls this callback service. It is implemented by the configured upper
layer module. It is called in case of a state transition notification via
Canlf_ControllerModelndication() of the CanDrv. The delivered parameter
Controllerld of the service Canlt_ControllerModelndication() is passed
to the upper layer module. The delivered parameter Control lerMode of the service
Canlf_ControllerModelndication() is mapped to the appropriate parameter
Control lerMode of <User_ControllerModelndication>().

Note: For different upper layer users different service names shall be used.

139 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

[CANIF688] Caveats of <User_ControllerModelndication>():

= The CanDrv must be initialized after Power ON.
» The call context is either on task level (polling mode).
» This callback service is in general re-entrant for multiple CAN controller usage,

but not for the same CAN controller. |()

[CANIF689] Configuration of <User_ControllerModelndication>(): The
upper layer module which provides this callback service has to be configured by
CANIF_USERCONTROLLERMODEINDICATION_UL (see CANIF684 Conf). j()

[CANIF690] 'Configuration of <User_ControllerModelndication>(): The

name of <User_Control lerModelndication>() which is called by the Canlf
shall be configured for the Canlf by parameter
CANIF_DISPATCH_USERCTRLMODE INDICATION_NAME (see CANIF683_Conf).
This is only necessary if state transition notifications are configured via

CANIF_DISPATCH_USERCTRLMODEINDICATION_UL. ()

[CANIF691] IConfiguration of <User_ControllerModelndication>(): If

CANIF_DISPATCH_USERCTRLMODEINDICATION_UL is set to CAN_SM, the following

IS prescribed:

= CANIF_DISPATCH_USERCTRLMODEINDICATION_NAME must be
CanSM_ControllerModelndication

= function parameter of type uint8 has to be named as Controllerld()

[CANIF692] IConfiguration of <User_ControllerModelndication>():

If CANIF_DISPATCH_USERCTRLMODEINDICATION_UL is set to CDD the name of
the function has to be configured via parameter
CANIF_DISPATCH_USERCTRLMODEINDICATION_NAME. The function parameter

has to be of type uint8. ()

8.6.3.9 <User_TrcvModelndication>
[CANIF693] T

Service name: <User_TrcvModelndication>
Syntax: void <User_TrcvModelndication>(
uint8 Transceiverld,
CanTrcv_TrcvModeType TransceiverMode
D
Sync/Async: Synchronous
Reentrancy: Non Reentrant
Transceiverld |Abstracted Canlf Transceiverld which is assigned to a CAN
Parameters (in): transceiver, at which a transceiver state transition occurred.
TransceiverMode|Notified CAN transceiver mode
Parameters None
(inout):
140 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

V5.0.0
R4.0 Rev 3
Parameters (out): |[None
Return value: None
Description: This service indicates a CAN transceiver state transition to the corresponding
upper layer module (mainly the CAN State Manager module).

10

Note: The upper layer module provides the Service ID.

Note: This callback service is mainly implemented in and used by the CAN State
Manager module (see Specification of CAN State Manager [11]).

Note: The Canlf calls this callback service. It is implemented by the configured upper
layer module. It is called in case of a state transition notification via
Canlf_TrcvModelndication() of the CanTrcv. The delivered parameter
Transceiver of the service Canlf_TrcvModelndication() is mapped (as
configured) to the appropriate parameter Transceiver ld which will be passed to
the upper layer module. The delivered parameter TransceiverMode of the service
Canlf_TrcvModelndication() is mapped to the appropriate parameter
TransceiverMode of <User_TrcvModelndication>().

Note: For different upper layer users different service names shall be used.

[CANIF694] ICaveats of <User_TrcvModelndication>():
= The CanTrcv must be initialized after Power ON.

= The call context is either on task level (polling mode).
» This callback service is in general re-entrant for multiple CAN transceiver usage,

but not for the same CAN transceiver. |()

[CANIF695] I'Configuration of <User_TrcvModelndication>():

The upper layer module which provides this callback service has to be configured by

CANIF_DISPATCH_USERTRCVMODEINDICATION_UL (see CANIF686_ Conf), but:

= If no upper layer modules are configured for transceiver mode indications using
<User_TrcvModelndication>(), no transceiver mode indication needs to be
configured. CANIF_DISPATCH_USERTRCVMODEINDICATION_UL needs not to
be configured.

= |If transceivers are not supported (
CanlnterfaceTransceiverDriverConfiguration ais not configured, see
CANIF273_Conf), CANIF_DISPATCH_USERTRCVMODEINDICATION_UL is not

configurable. |()

If no upper layer modules are configured for state transition notifications using
<User_TrcvModelndication>(), no state transition notification needs to be
configured.

[CANIF696] I Configuration of <User_TrcvModelndication>(): The name of

<User_TrcvModelIndication>() which will be called by the CAN Interface

module shall be configured for the CAN Interface module by parameter

141 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

CANIF_DISPATCH_USERTRCVMODEINDICATION_NAME (see CANIF685_Conf).
This is only necessary if state transition notifications are configured via

CANIF_DISPATCH_USERTRCVMODEINDICATION_UL. ()

[CANIF697] IConfiguration of <User_TrcvModelndication>(): If

CANIF_DISPATCH_USERTRCVMODEINDICATION_UL is set to CAN_SM, the following

is prescribed:

= CANIF_DISPATCH_USERTRCVMODEINDICATION_NAME must be
CanSM_TransceiverModelndication

= function parameter of type uint8 has to be named as Transceiverld ()

[CANIF698] 'Configuration of <User_TrcvModelndication>(): If

CANIF_DISPATCH_USERTRCVMODEINDICATION_UL is set to CDD the name of the
API has to be configured via parameter
CANIF_DISPATCH_USERTRCVMODEINDICATION_NAME. The function parameter

has to be of type uint8. ()

142 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTO SAR

9 Sequence diagrams

Specification of CAN Interface
Vv5.0.0
R4.0 Rev 3

The following sequence diagrams show the interactions between Canlf and CanDrv.

9.1 Transmit request (single CAN Driver)

Canlf User «module»
SchMm

| |
Canlf_Transmit(Std_ReturnType, PduldType, const PdulnfoType*) : |
»

«module» «module»
Canlf Can

«Peripheral»
CanController

Std_ReturnType

Can_Write(Can_RetumType, Can_HwHandleType,
const Can_PduType*) L

P>

alt CAN Controller/

T
|
|
|
|
[l
|
[CAN gntroller hardware object ils free]
|
|
|
|
|

[CAN [cqntroller hardware object ijs busy]
|

ENTER

|

SchM_Enter_Canlf_<ExclusiveArea>

Copy L-PDU into CAN Hardware()

Copy L-PDU into CAN Hardware()

Can_Write()

Can_Write()

CRITICAL
SECTION

LEAVE

T
SchM_Enter_Canlf_<ExclusiveArea>

:SchMfExitﬁCanIf7<EchusiveArea>() [
<

Insert L-PDU in transmit buffer()

¢

CIRICAL SchM_Exit_Canlf_<ExclusiveArea>
SECTION || b= ———

Can If_Trénsmito

O et B EE PP PP e
T | T
| | |
Figure 19 Transmission request with a single CAN Driver
Activity Description

Transmission request

The upper layer initiates a transmit request via the
service Canlf_Transmit(). The parameter
CanTxPduld identifies the requested L-PDU. The service
performs following steps:

- validation of the input parameter

- definition of the CAN controller to be used

The second parameter *PdulnfoPtr is a pointer on the
structure with transmit L-PDU related data such as
CanSduLength and *CanSduPtr.

Start transmission

Canlf_Transmit() requests a transmission and calls
the CanDrv service Can_Write() with corresponding
processing of the HTH.

Hardware request

Can_Write(Qwrites all L-PDU data in the CAN
Hardware (if it is free) and sets the hardware request for
transmission.

E_OK from Can_Write service

Can_Write() returns E_OK to Canlft_Transmit().

E_BUSY from Can_Write service

If the CanDrv detects, there are no free hardware objects
available, it returns CAN_E_BUSY to the Canlf.

Copying into the buffer

The L-PDU of the rejected transmit request will be
inserted in the transmit buffer of the Canlf until the next
transmit confirmation.

143 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTO SAR Specification of CAN Interface
o V5.0.0

R4.0 Rev 3
| E_OK from CAN Interface | Canlf_Transmit() returns E_OK to the upper layer. |

9.2 Transmit request (multiple CAN Drivers)

Canlf User «module» «module» Can_99_Extl «Peripheral» Can_99_Ext2 «Peripheral»
SchM Canlf ‘Can CanController A :Can CanController B
:CanController :CanController

]
|
alt CAN Controller A/B / :
|
|

[CAN C«?ntroller A used] Here the name of the called function hasto be extended to
| Canlf_Transmit(Std_ReturnType, PduldType, const PdulnfoType*) distinguish the different CAN drivers. l.e.: Can_Write_99_Ext1
[]:Std_ReturnType

L

I T .-
| L---

| Can_Write(Can_ReturnType, Can_HwHandleType,

| - N

const Can_PduType*y

1
alt CAN Controller A hardware aatus/

T Copy L-PDU in CAN
[CAN ¢ontroller hardware objecf is free] Hardware A() |

Copy L-PDU in CAN
Hardware A()

I
I

I

! Can_Write()
! <

I

I

[CAN ¢ontroller hardware object in busy]

ENTER
CRITICAL
SECTION

| Insert L-PDU in transmit buffer()

|
LEAVE SchM_Exit_Canlf_<ExclusiveArea>()
CRITICAL L |
SECTION SchM_Exit_canlf_<E>gus’veArea>()

|

'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
r
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
L
v
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
—

[CAN Gontroller B used] | ! Here the name of the called function hasto be extended to

distinguish the different CAN drivers. l.e.: Can_Write_99_Ext2

CanlfﬁTransmit(StdeetymType, PduldType, colst.PdulnfoType*)
:Std_RetunType I Lat ' -
1 Can_Write(Can_ReturnType, Can_HwHarJdIeTypg,_ e

| const Can_PduType*y
1

alt CAN Controller B hardware status/

Copy L-PDU in CAN

[CAN Conroller hardware oqu'ct isfree] Hardware B()

Copy L-PDU in CAN

|
1
|
|
|
|
|
|
| Hardware B()
|

|

|

|

|

| Can_Write()
1 <

|

|

__________ R
| |
R s Sttt F1=--mmmmmmmmme - pommmmm e LR R P | R b---

[CAN controller hardware objdct is busy] |
Can_Write() |

| e i
|
NSchM_Enter_Canlf_<ExclusiveArea>() |
ENTER |
CRITICAL SchM_Enter_Canlf_<ExclusiveArea>() |
SECTION [| [========= > :
|

| Insert L-PDUin |
| transmit buffer() |

LEAVE SchM_Exit_Canlf_<ExclusiveArea>()
CRITICAL | | |
SECTION ScthExitﬁCanIfﬁ<Ex§lusiveArea>()

T
Canlf_Transmit()
-

Figure 20 Transmission request with multiple CAN Drivers

144 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface

V5.0.0
R4.0 Rev 3
First transmit request:
Activity Description
Transmission The upper layer initiates a transmit request via the
request A service Canlf_Transmit(). The parameter

CanTxPduld identifies the requested L-PDU. The service
performs following steps:

- validation of the input parameter

- definition of the CAN controller to be used (here:
Can_99 Extl)

The second parameter *PdulnfoPtr is a pointer on the
structure with transmit L-PDU related data such as
CanSdulLength and *CanSduPtr.

Start transmission

Canlf_Transmit() requests a transmission and calls
the CanDrv Can_99 Extl service

Can_Write_99 Ext1() with corresponding processing
of the HTH.

Hardware request

Can_Write 99 Extl(writes all L-PDU data in the
CAN Hardware of Controller A (if it is free) and sets the
hardware request for transmission.

E_OK from Can_Write service

Can_Write 99 Extl1() returns E_OKto
Canlt _Transmit().

E_BUSY from Can_Write service

If the CanDrv Can_99 Extl detects, there are no free
hardware objects available, it returns CAN_E_BUSY to the
Canlf.

Copying into the buffer

The L-PDU of the rejected transmit request will be
inserted in the transmit buffers of the CAN Interface until
the next transmit confirmation.

E_OK from CAN Interface

Canlf_Transmit() returns E_OK to the upper layer.

Second transmit request:

Activity Description
Transmission The upper layer initiates a transmit request via the
request B service Canlf_Transmit(). The parameter

CanTxPduld identifies the requested L-PDU. The service
performs following steps:

- validation of the input parameter

- definition of the CAN controller to be used (here:
Can_99 Ext2)

The second parameter *PdulnfoPtr is a pointer on the
structure with receive L-PDU related data such as
CanSduLength and *CanSduPtr.

Start transmission

Canlf_Transmit() starts a transmission and calls the
CanDrv Can_99 Ext2 service Can_Write_99 Ext2()
with corresponding processing of the HTH.

Hardware request

Can_Write_ 99 Ext2 (Qwrites all L-PDU data in the
CAN Hardware of Controller B (if it is free) and sets the
hardware request for transmission.

E_OK from Can_Write service

Can_Write 99 Ext2 () returns E_OKto
Canlf _Transmit().

E_BUSY from Can_Write service

If the CAN Driver module Can_99 Ext2 detects, there
are no free hardware objects available, it returns
CAN_E_BUSY to the CAN Interface.

Copying into the buffer

The L-PDU of the rejected transmit request will be
inserted in the transmit buffers of the CAN Interface until
the next transmit confirmation.

E_OK from CAN Interface

Canlf_Transmit() returns E_OK to the upper layer.

145 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface

9.3 Transmit confirmation (interrupt mode)

Canlf User

«module»
Canlf

<User_TxConfirmation>(PduldType)

<
<%

Canlf_TxConfirmation(PduldType)

<
u <User_TxConfirmation>()

=

Canlf_TxConfirmation()

R4.0 Rev 3
«module» «Peripheral»
Can CanController
oo
I I
| |
| Transmit |
[Interrupt()
Transmit
I~ Tinterrupt) — ~ T T T >

Figure 21 Transmit confirmation interrupt driven

Activity

Description

Transmit interrupt

The acknowledged CAN frame signals a successful
transmission to the receiving CAN controller and triggers

the transmit interrupt.

Confirmation to the CAN Interface

CAN Diriver calls the service

Canlf_TxConfirmation(). The parameter
CanTxPduld specifies the CAN L-PDU previously sent

by Can_Write().

The CAN diver must store the all in HTHs pending L-
PDU Ids in an array organized per HTH to avoid new

search of the L-PDU ID for call of

Canlf_TxConfirmation().

Confirmation to upper layer

Calling of the corresponding upper layer confirmation
service <User_TxConfirmation>(). It signals a
successful L-PDU transmission to the upper layer.

146 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface

9.4 Transmit confirmation (polling mode)

Q Canlf User

BSW Scheduler I
| |

V5.0.0

R4.0 Rev 3
«module» «module» «Peripheral»
Canlf Can CanController

1
loop Cyclic Task of Interface /

Can_MainFunction_Write()

T
|
1
|
|
|
Checkfor pending TX |

confirmations() |
-l

< ___________

alt Pending Tx confirmation /

[Tx confirmation is pending]
|

<

<User_TxConfirmation>(PduldType)

T

|

1

|

|

'

|

|

|

>

: Checkfor pending TX
| confirmations()

|

|

|

|

|

|

Canlf_TxConfirmation(PduldType)|

i
%

[No Tx cohfirmation ispending]

<User_TxConfirmation>()

Canlf_TxConfirmation()

< ____________________
T 1
Figure 22 Transmit confirmation polling driven
Activity Description
Cyclic Task The service Can_MainFunction_Write()is called
CAN Driver by the BSW Scheduler.

Check for pending transmit
confirmations

Can_MainFunction_Write()checks the underlying
CAN controller(s) about pending transmit confirmations of
previously succeeded transmit events.

Transmit Confirmation

The acknowledged CAN frame signals a successful
transmission to the sending CAN controller.

Confirmation to CAN Interface

CAN Diriver calls the service
Canlf_TxConfirmation() The parameter
CanTxPduld specifies the CAN L-PDU previously sent by
Can_Write().

The CAN diver must store the all in HTHs pending L-PDU
Ids in an array organized per HTH to avoid new search of
the L-PDU ID for call of Canlf_TxConfirmation().

Confirmation to upper layer

Calling of the corresponding upper layer confirmation
service <User_TxConfirmation>(). It signals a
successful L-PDU transmission to the upper layer.

147 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv5.0.0
R4.0 Rev 3

9.5 Transmit confirmation (with buffering)

Canlf User «module» «module» «module» «Peripheral»
SchMm Canlf Can CanController
oo
I I I I I
| | | | |
| | | I _Transmit Confirmation |
| | | r
| | | Canlf_TxConfirmation(PduldType) Interrupto
| | <<
| ﬁ 1
| ENTER SchM_Enter_Canlf_<ExclusiveArea>()
| CRITICAL rh
| SECTION SchM_Enter_Canlf_<ExclusiveArea>()
—, ___________ .
: check transmit
| | buffers for other
| | [pending
: : L-PDU()
| .
| alt Transmit Buffering
| [Buffer is filled] Can_Write(Can_ReturnType,
ufferisfille *
: : Can_HwHandleType, const Can_PduType*y Write L-PDU into CAN
| | Hardwareo—-'[]
| | Write L-PDU into CAN
| | Can_wiite() rT<<Hardware()m — —— —— — — — —
| | PSR, ol gt —
| |
: : Remove L-PDU successfully
| | requested for transmission
| | [from transmit buffer()
| |
[ety IR o e R e R R R EEEEE] & EEEEEEE
| [Buffer isempty]
| +
: échM_Exit_Canlf_<EchusiveArea>()
| LEAVE | @ | |
| CRITICAL SchM_Exit_Canlf_<ExclusiveArea>()
| SECTION| | [T -~~~ ~-~-7-77==
N bl g
| |
| <User_TxConfirmation>(PduldType)
) +
- <User7TxC6nfirmation>() |
: Canlf_TxConfirmation()
| | | _.Transmn 9<£1flrm_aﬂoil_____>
| | | Interrupt()
| | | | |
| | | | |
Figure 23 Transmit confirmation with buffering
Activity Description

Transmit interrupt

Acknowledged CAN frame signals successful
transmission to receiving CAN controller and triggers
transmit interrupt.

Confirmation to CAN Interface

CanDrv calls service Canlf_TxConfirmation().
Parameter CanTxPduld specifies the CAN L-PDU
previously transmitted by Can_Write(). CanDrv must
store the L-PDU IDs of all in HTHs pending L-PDUs in an
array organized per HTH to avoid new search of the L-
PDU ID for call of Canlf_TxConfirmation().

ENTER CRITICAL SECTION

Protect transmit buffers from being corrupted. This is
done by entering an exclusive area defined in the SchM.

Check of transmit buffers

The transmit buffers of the Canlf checked, whether a
pending L-PDU is stored or not.

Transmit request passed to the CAN
Driver

In case of pending L-PDUs in the transmit buffers the
highest priority order the latest L-PDU is requested for
transmission by Can_Write(). It signals a successful L-
PDU transmission to the upper layer. Thus
Can_Write() can be called re-entrant.

Remove transmitted L-PDU from
transmit buffers

The L-PDU pending for transmission is removed from the
transmission buffers by the Canlf.

LEAVE CRITICAL SECTION

End of protection segment.

Confirmation to the upper layer

Calling of the corresponding upper layer confirmation
service <User_TxConfirmation>(). It signals a

148 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTO SAR Specification of CAN Interface
o V5.0.0

R4.0 Rev 3

successful L-PDU transmission to the upper layer. |

149 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTO SAR

Specification of CAN

Interface
V5.0.0

R4.0 Rev 3

9.6 Transmit cancellation (with buffering)

Canlf User

«module» «module» «module» «Peripheral»
SchM Canlf Can CanController
oo
]]]]
| . ! | |
| Canlf_Transmit(Std_RetumType, PduldType, | | .
rconst PdulnfoType*) :Std_ReturnType - | The CAN Driver stores the L-PDU ID
Can_Write(Can_ReturnType, | in a corresponding array
»

150 of 213

<__

Can_HwHandleType, const
Can_PduType*)

7
Search free harqwére

»

|~ object()
Search free hardware

object()

alt CAN Controller mailbox /

[CAN hardware tiansmit object is free]

............ P

[CAN hardware trr'insmit object is not free]

Can_Write()

Copy L-PDU into CAN

Hardware()
Copy L-PDU into CAN

SHardware()~ — ~ ~ ~ T T T 7]

Compare Priority of new
L-PDU and pending ones
in CAN Hardware()

=

alt Check priority of pending Tx L-PDUs

[New Tx L-PDU has lower priority than 4
|

[New Tx ‘.-PDU has same or higher prio
|

Nothing to do

Il [of the pending onesin the CAN hardwate

ity than one of the pending onesin the CA

hardware]

Request Cancellation of pending L-PDU with |
»

ower
1

priorit.yQ

>
Request Cancellation of pending L-PDU with |

Insert Tx L-PDU in
transmit buffer()

LEAVE

|
SchM_Exit_Canlf_<Excl usiveAreia>()

)

CRITICAL | ['T®
SECTION SchM_Exit_Canlf_<Exclusive

|
Area>()

|
|
| ower
| priority(< - ——————-—-——————
1
| Can_Write()
I - ——— TS - —
ENTER SchM_Enter_Canlf_<ExclusiveArea |
CRITICAL
SECTION ATTENTION:

Tx L-PDU iswritten in the Tx L-PDU
bufferindependent, if the L-PDU buffer
isfree or not.

If the L-PDU buffer is not free, old data
is overwritten by fresh one.

|
Canlf_Transmit()

! i i I =
CanIfﬁCanceITxConflrmatlon(PduIdType,_.L_pDUU

Iconsl PdulnfoType*)
<

! Confirmation of cancelled transmit

R

ENTER |SchM_Enter_Canlf_<ExclusiveArea>()
CRITICAL | g |
SECTION SchM_Enter_Canlf_<ExclusiveArea>()

alt State of Tx L-PDU /

[Tx L-PDU is already buffered]

Tx L-PDU from the CanDrv shall be discarded.

ATTENTION:

[Tx L-PDU is not

uffered]

Insert Tx L-PDU in
transmit buffer()

by old data from the HW object.

If the Tx L-PDU is already buffered in the

_| Canlf, the cancelled one from the CanDrv
must be discarded. Thisis because otherwise|
newer data (in the Canlf) can be overwritten

AN

sch M_Exil_CanIf_<EchusiveAre|a>()

LEAVE - - -
CRITICAL | | SM_Exit_Canif_<Exclusye
SECTION

Tx L-PDU of highest
priority (lowest CAN ID)
is transmitted out of the
Tx L-PDU buffer

Area>()

Can_Write(Can_RetumnType,
Can_HwHandleType, const

Can_PduType*)

Can_Write()

object()
Copy L-PDU into free CAN hardware
Fobject)” ~ ~ ~ ~ ~ " T T T T 7]

T(I:.opy L-PDU into free CAN hardware

Confirmation of cancelled transmit

Figure 24 Transmit cancellation (with buffering)

Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv5.0.0
R4.0 Rev 3

Activity

Description

Transmission request

The upper layer initiates a transmit request via the service
Canlf_Transmit(). The parameter CanTxPduld identifies the
requested L-PDU. The service performs following steps:

- validation of the input parameter

- definition of the CAN controller to be used

The second parameter *PdulnfoPtr is a pointer on the structure
with transmit L-PDU related data such as CanSdulLength and
*CanSduPtr.

Start transmission

Canlf_Transmit() requests a transmission and calls the
CanDrv service Can_Write() with corresponding processing
of the HTH.

Hardware request

Can_Write(Qwrites all L-PDU data in the CAN Hardware (if it is
free) and sets the hardware request for transmission.

E_OK from Can_Write service

Can_Write() returns E_OK to Canlf_Transmit().

E_BUSY from Can_Write
service without transmit
abort

If the CanDrv detects, there are no free hardware objects
available and the new transmit L-PDU has lower priority than all
of the pending ones in the CAN hardware have, it returns
CAN_E BUSY to the Canlf.

E_BUSY from Can_Write
service with transmit abort

If the CanDrv detects, there are no free hardware objects
available and the new transmit L-PDU has higher priority than all
of the pending ones in the CAN hardware, it requested transmit
abort of the pending L-PDU in the CAN hardware with the lowest
priority and returns CAN_E_BUSY to the Canlf.

Transmit buffer

The Canlf stores the rejected L-PDU in the transmit buffers.

E_OK from CAN Interface

Canlf_Transmit() returns E_OK to the upper layer.

Cancellation confirmation naotification:

Activity

Description

Transmit cancellation
confirmation interrupt

CAN controller signals a successful aborted CAN L-PDU.
CanDrv detects the abort confirmation event either by interrupt
or polling.

Confirmation to CAN
Interface

CanDrv calls service Canlf_CancelTxConfirmation(). The
parameter CanTxPduld specifies the CAN L-PDU successfully
aborted by the CanDrv. The CanDrv must store the all in HTHs
pending L-PDU Ids in an array organized per HTH to avoid new
search of the L-PDU ID for call of
Canlf_CancelTxConfirmation().

ENTER CRITICAL SECTION

Protect transmit buffers from being corrupted. This is done by
entering an exclusive area defined in the SchM.

Check of transmit buffers

The transmit buffer of the Canlf checked, whether the L-PDU
with the same CanTxPduld is already stored or not. If yes, the
cancelled L-PDU is lost. If not, the cancelled L-PDU is stored in
the transmit buffer.

Transmit request passed to
the CAN Driver

Pending L-PDUs in the transmit buffers with the highest priority
order is requested for transmission by Can_Write(). It signals
a successful L-PDU transmission to the upper layer. Thus
Can_Write() calls can occur re-entrant.

Remove transmited L-PDU
from transmit buffers

The L-PDU pending for transmission is removed from the
transmission buffers by the Canlf.

LEAVE CRITICAL SECTION

End of protection segment.

Cancellation confirmation
finished

The cancellation confirmation callback returns.

151 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTO SAR

9.7 Transmit cancellation

Specification of CAN Interface

Vv5.0.0

R4.0 Rev 3

«module»
SchMm

«module»
Com

«module»
PduR

«module»
Canlf

«module»
Can

«Peripheral»
CanController

Com_MainFunctionTx() - I

PduR_ComTransmit(Std_RetumType,

Pduld

b/

pe, const PdulnfoType*)

const

ulnfoType*)

Canlf_Transmit(Std_ReturnType, PduldType,
P

Can_Write(Can_RetunType,

T
|
|
|
|
i
[
.LI
I
C

Can_HwHandleType, const
altCan_PduType*
_—yp) opy L-PDU into CAN Hardware().
[CAN controller t object isfree] hagl
Copy L-PDU into CAN Hardware
< Can_Write()
[D 1]
[CAN controller t object isbusy] |
- Can_Write() :
|
< S S?h 7Enter70anIf7<EchusiveArea:>I0 : :
CRITICAL SchM_Enter_Canlf_<ExclusiveArea> | I
_____ BECTON [~ ~ff~~~—~~"~~~=~"~Fff~—~———————3> : :
| |
Insert L-PDU in | |
L transmit buffer() ! !
L LEAVE SchM_Exit_Canlf <Exc|us|veArea>Q : :
- CRITICAL Sch M_Exit_Canlf_: <ExclusiveArea> | |
_____ SECTON [~ —tf~ -~~~ =~—~~~~~Ffr- > | |
| |
| |
Canlf_Transmit() I I
PduR_ComTransmit) | [~ ~~~~~ "~ """ 77 : :
| | |
Tcom: Activate T | 1 |
. . timeout ! ! ! !
| Com_MainFuncionTx(_| apenison) | | : i
L | | | |
| ! ! ! ! !
I alt Transmission /1]] | Transmit]
| l 1 1 - 1l 1
I [Successful] | | Canlf_TxConfirmation(PduldType) Interrupt()
| 1 | <
| | PduR_CanlfTxConfirmation(PduldType)
| | <
| Com_TxConfirmation(PduldType) -
| <
|
I Tcom: Stop timeout
I supervision()
|
I Com_TxConfirmation()
: IPduR_CanlIfTxConfirmation()
| 1 I Canlf_TxConfirmation()
| L I > Transmit
| | | e Interrupt) ~ " T T T T T T = =
| I | | L P L
L el oo | B B 1771
| [Pending - Timeout Oqcured] | | | |
i opt Pre-Compile Switch [Com_CancelTransmitsupporl] /) T T i
l TRUE T T l l l
| [TRUE] | | | | |
: opt Pre-Compile Switch [PduRﬁCanceITransmitSuppon]/ : : :
| [TRUE] T T | | |
| | | | | |
: opt Pre-Compile Switch [CanIfﬁCanceITransmitSuppon]/ : : :
| [TRUE] | [1 | | |
| | | | |
| Tcom: Timer | | | |
| expired() ! | | |
| | | |
| PduR ComCanceITranmut(PduldType | | |
| std ReturnType! | | |
| Canlf_CancelTransmit(PduldType, | |
| std ReturnType) | |
: Dummy API: : :
I Canlf_CancelTransmit() Can_Cancel Transmit(I |
: PduR_ComCancelTransmit() : :
| | | |
L O E { ______________________ _: ________ |
| | I |
| [FALSE] | | | |
[N T] L B |
| FALSE] | | | |
[[[[[|
| I L 1 | |
| [FALSE] | | |
I I | If TURNED OFF, no code is complied. Sametimeout handling asin OSEK COM I I
| | | |
| T T T T |
| g g g g g
Figure 25 Transmit cancellation
Activity Description

Call of scheduled Function

Com_MainFunctionTx() will be called cyclic by the SchM.

Transmission request to the

PDU Rou

ter

Within cyclic called Com_MainFunctionTx() a transmission
request through the PduR arises: PAduR_ComTransmit()

152 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv5.0.0
R4.0 Rev 3

Transmission request to the
CAN Interface

PduR passes the transmit request via Canlf_Transmit() to
the Canlf. The parameter CanTxPduld identifies the requested
L-PDU. The service performs following steps:

- validation of the input parameter

- definition of the CAN controller to be used

The second parameter *Pdu lnfoPtr is a pointer on the
structure with transmit L-PDU related data such as
CanSdulLength and *CanSduPtr.

Transmission request to the
CAN Driver

CanlfT_Transmit() requests a transmission and calls the
CanDrv service Can_Write() with corresponding processing
of the HTH.

Transmission request to the
hardware

Can_Write(Qwrites all L-PDU data in the CAN Hardware (if it is
free) and sets the hardware request for transmission.

E_OK from Can_Write service

Can_Write() returns E_OK to Canlf_Transmit().

E_BUSY from Can_Write
service

If the CanDrv detects, there are no free hardware objects
available, it returns CAN_E_BUSY to the Canlf.

Copying into the buffer

The L-PDU of the rejected transmit request will be inserted in
the transmit buffer of Canlf until the next transmit confirmation.

E_OK from CAN Interface

Canlf_Transmit() returns E_OK to the PduR.

E_OK from PDU Router

PduR_ComTransmit() returns E_OK to the COM.

Starting Timeout supervision

The PduR starts a timeout supervision which checks if a
confirmation for the successful transmission will arrive.

E_OK from COM

The Com_MainFunctionTx() returns E_OK to the SchM.

Transmit confirmation interru

t driven:

Activity

Description

Transmit interrupt

If it appears, the acknowledged CAN frame signals a successful
transmission to the receiving CAN controller and triggers the
transmit interrupt.

Confirmation to the CAN
Interface

CanDrv calls service Canlf_TxConfirmation(). Parameter
CanTxPduld specifies the CAN L-PDU previously sent by
Can_Write(). The CanDrv must store the all in HTHs pending
L-PDU Ids in an array organized per HTH to avoid new search
of the L-PDU ID for call of Canlt_TxConfirmation().

Confirmation to the PDU
Router

Canlf calls the service PduR_Canl fTxConfirmation() with
the corresponding CanTxPduld.

Confirmation to the COM

The PDU Router informs the COM module about the successful
L-PDU transmission via the APl Com_TxConfirmation() with
the corresponding ComTxPduld.

If this happened, the timeout supervision, which has been
started after the successful request for transmission has been
signaled to the COM, is stopped.

Cancellation confirmation notification:

Activity

Description

Transmit cancellation to the
PDU Router

If Com_CancelTransmitSupport,
PduR_CancelTransmitSupport and
Canlf_CancelTransmitSupport are activated, the API
PduR_ComCancelTransmit () is called by the COM module
with the corresponding parameter ComTxPduld e.g. after a
timer has been expired.

Transmit cancellation to the
CAN Interface

If the PduR passes the transmit cancellation via the service
Canlf_CancelTransmit() to the Canlf. The parameter
CanTxPduld identifies the requested L-PDU.

E_NOT_OK from
Canlf_CancelTransmit

The dummy function Canlf_CancelTransmit() returns
E_NOT_OK to the PduR.

153 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

V5.0.0
R4.0 Rev 3
E_NOT_OK from The PduR returns E_NOT_OK to the COM module.
PduR_ComCancelTransmit
9.8 Receive indication (interrupt mode)
Canlf User «module» «module» «Peripheral»
Canlf Can CanController
oo
T T T T
| | | |
[| [Receive [
! ! Interrupt()
: : Invalidation of
| | |~ hardware object()
! ! T Jnvalidation of
: : J'<hardware object)” —— —~ ~ —
| |
: : alt Temporary bufferusage/
! ! [Temp. buffer used = Data normalizafign necessary]
: : Copy received L-PDU into
| | ——temporary bufferO‘.’[]
: : T Copy received L-PDU into
| | _<temporary buffer)’ — ~ T~ T T T 7]
| | R T T YTy
: : [Temp. buffer not used = Data normajization not necessary]
| |
| |
| |
: : Canlf_RxIndication(Can_HwHandleType,
| | ACaandType, uint8, const uint8*)
| -
: DLC checkand software Soft filteri i |
| filtering are only performed, if oftware 1l e".ng (optional)
s . and L-PDU assignment
| enabled (configuration)
|
! [CAN L-PDU ID was found]:DLC
: Check (optional)
|
| .
<User_RxIndication>(PduldType, const o E;feen:fp(l?zsz?_ll(.:s:;ameters
uintg®) | - -7 i - P
alt Temporary buffer usage /
[Temp. buffefused = Data normalization necessary]
Copy
Data() -'[]
Copy
<———— = ———— = T~ Data) -~ T T T T T T T T T T T
[(Temp. buffe{not used = Data nomalization not necesshy] cooy I 1
Data() >
T Copy
< ———————=———————— -7 Data)~ ~— ~ T T T T T T -t T T T T T T T T T T T
<User_RxIndication>()
_________________ >
L Canlf_RxIndication()
T I bt =
| L Validation of
| | I~ _hardware object() >]
| | -
! ! ! Validation of
: : hardware object)” — — — T T T 7]
[[Receive
! ! I T >
! | | |
Figure 26 Receive indication interrupt driven
Activity Description
Receive Interrupt The CAN controller signals a successful reception and

triggers a receive interrupt.
Invalidation of CAN hardware object, | The CPU (CAN Driver) get exclusive access rights to the

154 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv5.0.0
R4.0 Rev 3

provide CPU access to CAN mailbox

CAN mailbox or at least to the corresponding hardware
object, where new data were received.

Buffering, normalizing

The L-SDU is normalized and is buffered in the
temporary buffer located in the CAN Driver. Each CAN
Driver owns a temporary buffer for every physical
channel only if normalizing of the data is necessary.

Indication to
CAN Interface

The reception is indicated to the CAN Interface by calling
of Canlf_RxIndication(). The HRH specifies the
CAN RAM hardware object and the corresponding CAN
controller, which contains the received L-PDU. The
temporary buffer is referenced to the CAN Interface by
*CanSduPtr.

Software Filtering

The Software Filtering checks, whether the received L-
PDU will be processed on a local ECU. If not, the
received L-PDU is not indicated to upper layers. Further
processing is suppressed.

DLC check

If the L-PDU is found, the DLC of the received L-PDU is
compared with the expected, statically configured one for
the received L-PDU.

Receive Indication to the upper layer

The corresponding receive indication service of the
upper layer is called. This signals a successful reception
to the target upper layer. The parameter CanPduld
specifies the

L-PDU, the second parameter is the reference on the
temporary buffer within the L-SDU.

During is execution of this service the CAN hardware
buffers must be unlocked for CPU access/locked for
CAN controller access.

Validation of CAN hardware object,
allow access of CAN controller to
CAN mailbox

The CAN controller get back exclusive access rights to
the CAN mailbox or at least to the corresponding
hardware object, where new data were already being
copied into the upper layer buffer.

155 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTO SAR

9.9 Receive indication (polling mode)

Specification of CAN Interface
Vv5.0.0
R4.0 Rev 3

Canlf User «module» «module» «Peripheral»
Canlf Can CanController
oo
BSW Scheduler T T T T
| | | | |
loop Cyclic Task of Interface) [[[[
7 | | | Checkfor pending Rx :
| : : J'—indicaliunu
| | | Check for pending Rx
| | | < ~indicationg) = =~ ~" T~~~ =~
I | | -
: alt Pending Rx indication) : :
| [Rx indication pending] | Invalidation of |
I I I hardware object()
I I I [
| | | _ Invalidationof |
I I 1 hardware object()
| | | 8
I I L L
I I alt Temporary buffer usage |
| | |
I I [Temp. buffer used = Datp normalization necessary] . . 1
I | | Copy received L-PDU into |
I I 1 [—temporary buffer()
I I I Copy received L-PDU into
: : : [<temporary bufferp~ "~~~ "~~~
| | | |
| L [S 177
| | [Temp. buffer not used =|Data normalization not necessary] |
| | | |
: | | Canlf_RxIndication(Can_HwHandleType, |
! ! Can_IdType, uint8, const uimB*? !
| | | @ |
! 1 [!
| I I
: ! Software filtering (optional) and !
| : DLC check and software | L-PDU assignment :
| H filtering are only performed, if [|
| | enbaled (configuration) |
I I [CAN L-PDU ID was found]: I
I I]<_, DLC Check (optional) I
I I C |
| | |
: : <User_RxIndication>(PduldType, const :
< N
| Uity s e] -L | Exemplary call: |
| parameters differ for |
: User=CanTp |
|
| !
| alt Temporary buffer usage |
I / I
I [Temp. buffer used = Data normalization necessary] I
: Copy :
I cliata() 1 |
| T Cof |
Py
! Mms-———""~""~"~"~""~"="—"=7=—- datag” T T T T T T T T T T !
| 0 o ot [17"
| [Temp. buffer not used = Data normalization not vl |
| |
| Copy >l
| data() L
! Co
Py
: <~ TTTooTTTTo o =" Lo T R N
| !
| |
I <User_RxIndication>() I
| it . |
I L Canlf_RxIndication() |
| e I
| | T - |
| | | Validation of
I I I hardware object()
: : : Validation of
| | | <~ “hardware object)” ~ T T T T T~
L e e e e em e ecceeee s B N L e | E——
: [No Rx !ndlcalion pending] : :
| | | |
I I Can_MainFunction_Read() | |
_____________ L |
| | = |
| Can_MainFunction_Read() | o ! |
t t L |
	I'I'I		
I I I I I

Figure 27 Receive indication polling driven

Activity Description
Cyclic Task The service Can_MainFunction_Read()is called by
CAN Driver the BSW Scheduler.

Check for new received L-PDU

Can_MainFunction_Read()checks the underlying
CAN controller(s) about new received L-PDUs.

Invalidation of CAN hardware object,
provide CPU access to CAN mailbox

In case of a new receive event the CPU (CAN Driver) get
exclusive access rights to the CAN mailbox or at least to
the corresponding hardware object, where new data
were received.

156 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv5.0.0
R4.0 Rev 3

Buffering, normalizing

In case of a new receive event the L-SDU is normalized
and is buffered in the temporary buffer located in the
CAN Driver. Each CAN Driver owns such a temporary
buffer for every physical channel only if normalizing of
the data is necessary.

Indication to
CAN Interface

The reception is indicated to the CAN Interface by calling
of Canlf_RxIndication(). The HRH specifies the
CAN RAM hardware object and the corresponding CAN
controller, which contains the received L-PDU. The
temporary buffer is referenced to the CAN Interface by
*CanSduPtr.

Software Filtering

The Software Filtering checks, whether the received L-
PDU will be processed on a local ECU. If not, the
received L-PDU is not indicated to upper layers. Further
processing is suppressed.

DLC check

If the L-PDU is found, the DLC of the received L-PDU is
compared with the expected, statically configured one for
the received L-PDU.

Receive Indication to the upper layer

If configured, the corresponding receive indication
service of the upper layer is called. This signals a
successful reception to the target upper layer. The
parameter CanPduld specifies the L-PDU, the second
parameter is the reference on the temporary buffer within
the L-SDU.

During is execution of this service the CAN hardware
buffers must be unlocked for CPU access/locked for
CAN controller access.

Validation of CAN hardware object,
allow access of CAN controller to
CAN mailbox

The CAN controller get back exclusive access rights to
the CAN mailbox or at least to the corresponding
hardware object, where new data were already being
copied into the upper layer buffer.

157 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTO SAR

9.10 Read received data

«module»
SchM

Canlf User

Specification of CAN Interface

Vv5.0.0
R4.0 Rev 3

Here no

used.

Exemplary call:
parameters differ for
User=CanTp

Notification isonly

(configured)

L
<User7RxIndication>(Pd'uIdType, const

q—Vints®).)

temporary buffer
in CAN driver is

performed, if enabled

<User_RxIndication>()
-

| CanIf_ReadeNotifSlalusi(Canlf_NotifSlalusType, PduldType)

«module» «module» «Peripheral»
Canlf Can CanController
oo
I I I
| | |
1 | Receive |
: i Interrupt()
! Invalidation of
: |"hardware object()]
! ! Invalidation of
: |‘L<hardware object)™ ~ "~~~]
: Canlf_RxIndication(Can_HwHandleType,
| Can_IdType, uint8, const uint8*)
<€
[L-PDU reception in
BasicCAN]:Software filtering
[and L-PDU assignment()
[CAN L-PDU ID was found]:DLC
Check()
[; ;
Copy data to CANIF receive L-PDU
buffer() L]
L
! Copy data to CANIF receive L-PDU
<" T bufferg) ~ ~ " " "7 ===~~~ "7~~~
Set
[; Indication
Flag()
iy Canlf_RxIndication()
e L LT o
L Validation of
: | hardware object()]
! J'_ Validation of
: <hardware object)” T T T T T 7
| Receive
: I” T Tintermupt() T T T T T - >
j

:Canlf_NotifStatusType |

For transmit CAN L-PDUs, the service
Canlf_ReadNotifStatus returns the
Confirmation flag status

Canlf_ReadNotifStatus()
<----—----= =
|
|

Canlf_Read RdeuData(:StdeetumType, P

Read
Indication flag()

L]

Reset Indication
flag()

|
duldType, Pdl'JInfoType**)
-

~:Std_ReturnType |

SéhMfEnterfCanIf7<EchusiveArea>()
ENTER S |
CRITICAL | schm_Enter_Canlf_<ExclusiveArea>()
SECTION el
Read data from
! CANIF Rx
| r
LEAVE S(I:hﬂfExiLCanIf7<EchusiveAreal>? buffer()
| el 1
SRl SchM_EXxit_Canlf_<ExclusiveArea>
SECTION| [|m=—m——m === = =
Canlf_ReadRxPduData()
<<—-————————- F——————————— =
L | L
| | |
Figure 28 Read received data
Activity Description

Receive Interrupt

triggers a receive interrupt.

The CAN controller signals a successful reception and

Invalidation of CAN hardware object,

The CPU (CAN Driver) get exclusive access rights to the

158 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

provide CPU access to CAN mailbox | CAN mailbox or at least to the corresponding hardware
object, where new data were received.

Buffering, normalizing The L-SDU is normalized and is buffered in the
temporary buffer located in the CAN Driver. Each CAN
Driver owns a temporary buffer for every physical
channel only if normalizing of the data is necessary.
Indication to The reception is indicated to the CAN Interface by calling
CAN Interface of Canlf_RxIndication(). The HRH specifies the
CAN RAM hardware object and the corresponding CAN
controller, which contains the received L-PDU. The
temporary buffer is referenced to the CAN Interface by
*CanSduPtr.

Software Filtering The Software Filtering checks, whether the received L-
PDU will be processed on a local ECU. If not, the
received L-PDU is not indicated to upper layers. Further
processing is suppressed.

DLC check If the L-PDU is found, the DLC of the received L-PDU is
compared with the expected, statically configured one for
the received L-PDU.

Copy data The data is copied out of the CAN hardware into the
receive CAN L-PDU buffers in the CAN Interface. During
access the CAN hardware buffers must be unlocked for
CPU access/locked fro CAN controller access.
Indication Flag Set indication status flag for the received L-PDU in the
CAN Interface.

Receive Indication to the upper layer | The corresponding receive indication service of the
upper layer is called. This signals a successful reception
to the target upper layer. The parameter CanPduld
specifies the

L-PDU, the second parameter is the reference on the
temporary buffer within the L-SDU.

Validation of CAN hardware object, The CAN controller get back exclusive access rights to

allow access of CAN controller to the CAN mailbox or at least to the corresponding

CAN mailbox hardware object, where new data were already being
copied into the upper layer buffer.

Read indication status Times later the upper layer can read the indication status

by call of Canl1¥_ReadRxNotifStatus(). This service
can also be used for transmit L-PDUs. Then it return the
confirmation status.

Reset indication status Before Canlf_ReadRxNotifStatus() returns, the
indication status is reset.
Read received data Times later the upper layer can read the received data

by call of Canlf_ReadRxNotifStatus().

159 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTO SAR

9.11 Start CAN network

Specification of CAN Interface
Vv5.0.0
R4.0 Rev 3

Canlf User «module»

Canlf

«module» «Peripheral»

Can CanController

loop Requesting CAN controller mode consecutively. If mode changed > Canlf_ControIIerModeIndication()/

! Can_MainFunction_Mode()

Canlf_SetControllerMode(Std_ReturnType, uint8, Canlf_ControllerModeType)
»

o1l
Can_SetControllerMode(Can_RetumnType, uint8,

Can_StateTransitionType)

Disable Wakeup

]
T
!
|
|
!
|
!
i
|
|
|
|
|
|
|
!
interrupt, if supported() :
'

)

request CAN controller mode transitilon to START()
»

- mmmmm - i|_|

alt CAN Controller Mode /
[STOPPED]

T
Canlf_SetControllerMode returns with E_OK()

I
Canlf_ControllerModelndication(uint8,

Can_SetControllerMode returns with CAN_OK() |
< ________________

START

C:AN controller mode changesto

|
|
| Canlf_ControllerModeType)
! Change to

|
<User_ControllerModelndication>(uint8, CANIF_CS_STARTED(

Canlf_ControllerModeType)
<User_ControllerModelndication>()

__________________>

Canlf_ControllerModelndication()

[STOPPED w‘th direct indication]

| o

1 | |
Canlf_ControllerModelndication(Controller, ControllerMode) | |
|

Can_MainFunction_Mode() detects the
successful mode transition to STARTED
which resultsin a call of
Canlf_ControllerModelndication()

! Change to
<User_ControllerModelndication>(uint8, CANIF_CS_STARTED()
Canlf_ControllerModeType)

<User_ControllerModelndication>()

Canlf_ControllerModelndication()

|
Canlf_ControllerModelndication(uint8,

Canlf_ControllerModelndication is called
during Can_SetControllerMode(). This
happensif CAN controller transitions fast
enough.

|

|

| Canlf_ControllerModeType)

! Change to
CANIF_CS_STARTED()

<User_ControllerModelndication>(uint8,

Canlf_ControllerModaTunay -
- <User_ControllerModelndication>()

CAN Driver module not even requests CAN
controller to transition to START mode

Figure 29 Start CAN network

This sequence diagram

resembles “Stop CAN network” or “Sleep CAN network”.

| Activity | Description

160 of 213
- AUTOSAR confidential -

Document ID 012: AUTOSAR_SWS_CANInterface.doc

AUTOSAR Specification of CAN Interface

V5.0.0
R4.0 Rev 3
Loop requesting CAN controller The Can_MainFunction_Mode() is triggered
mode consecutively. consecutively. It checks the HW if a controller mode has

changed. If so, it is notified via a function call of
Canlf_ControllerModelndication(Controller,

ControllerMode).

The upper layer requests The upper layer calls CanlT_SetControllerMode
“STARTED” mode of the desired (Controllerld, CANIF_CS_STARTED) to request
CAN controller STARTED mode for the requested CAN controller.
CanDrv disables wake up interrupts, | This is only done in case of requesting “STARTED”

if supported mode. If “SLEEP” mode of CAN controller is requested,

here the wake up interrupts are enabled. In case of
“STOPPED”, nothing happens.

CanDrv requests the CAN controller | During function call

to transition into the requested Can_SetControllerMode(Controller,

mode (CAN_T_START). Can_StateTransitionType), the CanDrv enters the
request into the hardware of the CAN controller. This
may mean that the controller mode transitions directly,
but it could mean that it takes a few milliseconds until the
controller changes its state. It depends on the

controllers.
The following reaction depends on the controller and its current operation mode
CAN controller was in STOPPED The former request Can_SetControl lerMode()
mode returns and informs Canlf about a successful request

which in turn returns the upper layer request
Canlf_SetControllerMode(). The
Can_MainFunction_Mode() detects the successful
mode transition of the CAN controller and inform the
Canlf asynchronously via
Canlf_ControllerModelndication(Controller,
CANIF_CS_STARTED) . Then the Canlf updates its

CCMSM mode.
CAN controller was in STOPPED During the former request
mode and the CAN controller Can_SetControllerMode() the function
transitions very fast so that mode Canlf_ControllerModelndication(Controller,
indication is called during transition | CANIF_CS_STARTED) is called to inform the Canlf
request directly about the successful mode transition. Then the

Canlf updates its CCMSM mode. When
Canlf_ControllerModelndication(Controller,
CANIF_CS_STARTED) returned, the request
Can_SetControl lerMode() returns and informs
Canlf about a successful request which in turn returns
the upper layer request
Canlf_SetControllerMode().

CAN controller was in STARTED During the former request

mode Can_SetControllerMode() the function
Canlf_ControllerModelndication(Controller,
CANIF_CS_STARTED) is called to inform the Canlf
directly about the successful mode transition (because
the mode was already started). Then the Canlf updates
its CCMSM mode (not really necessary). When
Canlf_ControllerModelndication(Controller,
CANIF_CS_STARTED) returned, the request
Can_SetControl lerMode() returns and informs
Canlf about a successful request which in turn returns
the upper layer request
Canlf_SetControllerMode().

CAN controller was in SLEEP mode | This transition is not allowed -> CAN_NOT_OK and
E_NOT_OK.

161 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTO SAR

9.12 BusOff notificati

on

Specification of CAN Interface

«interface»
Canlf_User_Cbk

«module»
Canlf

V5.0.0

R4.0 Rev 3
«module» «Peripheral»
Can CanController

<User_ControllerBusOff>(uint8)

]
|
|
BusOff Detection() :

]
|
|
|
! <
|
|
[Set CAN Controller to STOPPED mode, if
: necessary()
I]
: T Set CAN Controller to STOPPED mode, if
| | necessary()
| P e]
: Canlf_ControllerBusOff(uint8)
<
<
Change to
; CANIF_CS_STOPPED()
L Transmit queues being
reset to avoid
Reset . __| N . transmission of old L-
[: transmit PDUs after CAN
queue() controller restart
Canlf_ControllerBusOff()
- BusOff Detection()
[Mg i =
|
|
'

Figure 30 BusOff notification

Activity

Description

BusOff detection interrupt

The CAN controller signals a BusOff event.

Stop CAN controller

CAN controller is set to STOPPED mode by the CAN
Driver, if necessary.

BusOff indication to CAN Interface

BusOff is notified to the Canlf by calling of
Canlf_ControllerBusOff()

BusOff indication to upper layer

(CanSM)

BusOff is notified to the upper layer by calling of
<User_Control lerBusOff>()

162 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTO SAR

9.13 BusOff recovery

Specification of CAN Interface
Vv5.0.0
R4.0 Rev 3

«interface»
Canlf_User_Cbk

«module»
Canlf

«module» «Peripheral»

Can CanController

oo

loop Requesting CAN controller mode consecutively. If mode changed -> Canlf_ControllerModelndication(). /

T Can_MainFunction_Mode()

opt CAN controller/
[BUSSOFF]

i S

Canlf_ControllerBusOff(uint8)
<

BusOff Detection()

-
l

Set CAN controller to STOPPED mode, if necessary

jgin
Set CAN controller to STOPPED mode, if necessary|

¢

.y
|
|

|
CanlfﬁSetControIIerMode(StdeeturEype, uint8, Canlf_ControllerModeType) |

Canlf_SetControllerMode()

P

Can_SetControllerMode(Can_ReturnType, uint8,
Can_StateTransitionType) !

Cnange to
:l CANIF_CS_STOPPED()

Reset transmit =™~
queue()

Canlf_ControllerBusOff()

Can_SetContollerMode()

Transmit geues being reset to avoid
transmission of old L-PDUs after CAN
| controller restart

BusOff Detection() |

.

-

Processing of CAN controller reset
| depends on the used CAN controller
device.

Reset CAN controller, if necessary() '
< ______________________

request CAN controller mode transition to START()

< ______________________

<User_ControllerModelndication>(uint8,

Canlf_ControllerModeTvpeY

<User_ControllerModelndication>(),

Ca.nlf_ControlIerModeIndication(uimS,
Canlf_ControllerModeType

Canlf_ControllerModelndication

Change to
CANIF_CS_STARTED()

Figure 31 BusOff recovery

Activity

Description

BusOff detection interrupt

The CAN controller signals a BusOff event.

Stop CAN controller

CAN controller is set to STOPPED mode by the CanDrv,
if necessary

BusOff indication to CAN Interface

BusOff is notified to the Canlf by calling of
Canlf_ControllerBusOff().The transmit buffers
inside the Canlf will be reset.

BusOff indication to upper layer

BusOff is notified to the upper layer by calling of
<User_ControllerBusOff>()

Upper Layer (CanSM) initiates
BusOff Recovery

After a time specified by the BusOff Recovery algorithm
the Recovery process itself in initiated by

163 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

V5.0.0
R4.0 Rev 3
Canlf_SetControllerMode
(Controllerild, CANIF_CS STARTED).
Restart of CAN controller The driver restarts the CAN controller by call of
Can_SetControllerMode (Controller,
CAN_T_STARTED).
164 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into
containers. In order to support the specification chapter 10.1 describes fundamentals.
It also specifies a template (table) you shall use for the parameter specification. We
intend to leave chapter 10.1 in the specification to guarantee comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the Canlf.

10.1 How to read this chapter

In addition to this section, it is highly recommended to read the documents:
- [2] Layered Software Architecture
- [6] Specification of ECU Configuration
This document describes the AUTOSAR configuration methodology and the
AUTOSAR configuration meta model in detail.

The following is only a short survey of the topic and it will not replace the ECU
Configuration Specification document.

10.1.1 Configuration and configuration parameters

Configuration parameters define the variability of the generic part(s) of an
implementation of a module. This means that only generic or configurable module
implementation can be adapted to the environment (software/hardware) in use during
system and/or ECU configuration.

The configuration of parameters can be achieved at different times during the
software process: before compile time, before link time or after build time. In the
following, the term “configuration class” (of a parameter) shall be used in order to
refer to a specific configuration point in time.

10.1.2 Variants

Variants describe sets of configuration parameters. E.g., variant 1: only pre-compile
time configuration parameters; variant 2. mix of pre-compile- and post build time-
configuration parameters. In one variant a parameter can only be of one
configuration class.

10.1.3 Containers
Containers structure the set of configuration parameters. This means:
- all configuration parameters are kept in containers.
- (sub-) containers can reference (sub-) containers. It is possible to assign a
multiplicity to these references. The multiplicity then defines the possible
number of instances of the contained parameters.

10.1.4 Specification template for configuration parameters
The following tables consist of three sections:
- the general section

165 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

Vv5.0.0
R4.0 Rev 3
- the configuration parameter section
- the section of included/referenced containers
Pre-compile time - specifies whether the configuration parameter shall be

of configuration class Pre-compile time or not

Label Description

X The configuration parameter shall be of configuration class Pre-compile time.

-- The configuration parameter shall never be of configuration class Pre-compile time.

Link time - specifies whether the configuration parameter shall be
of configuration class Link time or not

Label Description

X The configuration parameter shall be of configuration class Link time.

-- The configuration parameter shall never be of configuration class Link time.

Post Build - specifies whether the configuration parameter shall be
of configuration class Post Build or not

Label Description

The configuration parameter shall be of configuration class Post Build and no specific
implementation is required.

Loadable - the configuration parameter shall be of configuration class Post Build and only
one configuration parameter set resides in the ECU.

Multiple - the configuration parameter shall be of configuration class Post Build and is
M selected out of a set of multiple parameters by passing a dedicated pointer to the init
function of the module.

- The configuration parameter shall never be of configuration class Post Build.

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed
meanings of the parameters describe chapter [7 Functional specification] and chapter
[8 API specification].

[CANIF104] T The listed configuration items can be derived from a network
description database, which is based on the EcuConfigurationTemplate. The
configuration tool shall extract all information to configure the Canlf. (BSW01015)

[CANIF131] T The consistency of the configuration must be checked by the
configuration tool at configuration time. Configuration rules and constraints for
plausibility checks shall be performed during configuration time, where possible. |()

[CANIF066] T'The Canlf has access to the CanDrv configuration data. All public

CanDrv configuration data are described in [8] Specification of CAN Driver. |()

166 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface

Vv5.0.0
R4.0 Rev 3

[CANIF132] TThese dependencies between CanDrv and Canlf configuration must be

provided at configuration time by the configuration tools. ()

Canlf :EcucModuleDef
upperMultiplicity = 1

+container|

lowerMultiplicity = 0 [

CanlfPrivateCfg :
EcucParamConfContainerDef

+container|

e

CanlfPublicCfg :
EcucParamConfContainerDef

upperMultiplicity = 1
lowerMultiplicity = 1

CanlfinitCfg :EcucParamConfContainerDef]

+subContainer

upperMultiplicity = 1
lowerMultiplicity = 1
i onfi 1Container = true

+

¢

+subContainer

CanlfinitHohCfg :

EcucParam ConfContainerDef

upperMultiplicity = *

CanlfHthCfg :

EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 0

+subContainer

CanlfHrhCfg :

lowerMultiplicity = 0

+subContainer

CanlfRxPducfg :

EcucParam ConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 0

+subContainer

+container|

CanlfDispatchCfg :
EcucParamConfContainerDef

P
@

+container|

gl

CanlfCtriDrvCfg :

EcucParamConfContainerDef

CanlfTxPducfg :

EcucParam ConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 0

EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 0

[}

+subContainer

CanlfHrhRangeCfg :
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 0

+subContainer

¢

upperMultiplicity = *
lowerMultiplicity = 1

CanlfTrcvDrvCfg :

+

EcucParamConfContainerDef

CanlfCtriCfg :EcucParamConfContainerDef|

upperMultiplicity = *
lowerMultiplicity = 1

+subContainer

CanlfTrevCig :
EcucParamConfContainerDef

¢

lowerMultiplicity = 0
upperMultiplicity = *

lowerMultiplicity = 1
upperMultiplicity = *

Figure 32 Overview about CAN Interface configuration containers

10.2.1 Variants

[CANIF460] 'Variant 1:

[CANIF461] I'Variant 2:

(BSW00344)

[CANIF462] I'Variant 3:

Only pre compile time parameters. |()

parameters. (BSW00344, BSW00404, BSW00342)

10.2.2 Canlf

Mix of pre compile- and link time parameters. |

Mix of pre compile-, link time and post build time

[SWS Item

CANIF244 Conf:

Module Name

Canlf

Module Description

This container includes all necessary configuration sub-
containers according the CAN Interface configuration
structure.

[Included Containers

167 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv5.0.0
R4.0 Rev 3

Container Name

Multiplicity

Scope / Dependency

Configuration parameters for all the underlying CAN Driver modules are

CanlfCtrIDrvCfg 1.* aggregated under this container. For each CAN Driver module a seperate
instance of this container has to be provided.

. Callback functions provided by upper layer modules of the Canlf. The
CanlfDispatchCf 1 callback functions defined in this container are common to all configured
d CAN Driver / CAN Transceiver Driver modules.

This container contains the init parameters of the CAN Interface. At least
CanlfinitCfg 1 one (if only on Canlf with one possible Configuration), but multiple (Canlf
with different Configurations) instances of this container are possible.
CanlfPrivateCfg 1 This container contains the private configuration (parameters) of the CAN
Interface.
CanlfPublicCfg 1 This container contains the public configuration (parameters) of the CAN
Interface.
This container contains the configuration (parameters) of all addressed
CanlfTrevDrvCig 0.* CAN transceivers by each underlying CAN Transceiver Driver module. For

each CAN transceiver Driver a seperate instance of this container shall be
provided.

CANIF244 Conf (This SWS Item ID belongs to the table above. The generated
Artifact is faulty.)

Canlf :EcucModuleDef

CanlfPublicCfg :
+container EcucParamConfContainerDef
upperMultiplicity = 1
lowerMultiplicity = 0 upperMultiplicity = 1
lowerMultiplicity = 1
*eontainer Ecuchraanrllﬁfzg\r:?(t:i?lai:nerDef
et
. CanlfDispatchCfg :
+container EcucParamConfContainerDef
CanlfTrcvDrvCfg :
+container EcucParamConfContainerDef
gt
lowerMultiplicity = 0
upperMultiplicity = *
CanlfCtriDrvCfg : CanlfCtriCfg :
+container| ~ EcucParamConfContainerDef +subContainer| EcucParamConfContainerDef
upperMultiplicity = * upperMultiplicity = *
lowerMultiplicity = 1 lowerMultiplicity = 1
CanlfinitCfg :EcucParamConfContainerDef|
CanlfinitHohCfg :
upperMultiplicity = 1 +subContainer [EcucParamConfContainerDef|
lowerMultiplicity = 1
multipleConfigurationContainer = true upperMultiplicity = *
lowerMultiplicity = 0

168 of 213

CanlfTxPduCfg :

+subContainer|EcucParamConfContainerDef|

upperMultiplicity = *
lowerMultiplicity = 0

+container

CanlfRxPduCfg :

+subContainer [EcucParamConfContainerDef]

upperMultiplicity = *
lowerMultiplicity = 0

CanlfBufferCfg :

+subContainer|gcycparamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 0

Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

10.2.3 CanlfPrivateCfg

Vv5.0.0
R4.0 Rev 3

SWS Item CANIF245 Conf:

Container Name |CanlfPrivateCfg{CanlInterfacePrivateConfiguration}

Description This co

ntainer contains the private configuration (parameters) of the CAN Interface.

Configuration Parameters

SWS ltem CANIF617 Conf:

Name CanlfPrivateDlcCheck {CANIF_PRIVATE_DLC_CHECK}

Description Selects whether the DLC check is supported. True: Enabled
False: Disabled

Multiplicity 1

Type EcucBooleanParamDef

Default value true

ConfigurationClass Pre-compile time X Al Variants
Link time --

Post-build time --

Scope / Dependency

scope: Module

SWS ltem CANIF619 Conf :

Name CanlfPrivateSoftwareFilterType
{CANIF PRIVATE SOFTWARE FILTER TYPE}

Description Selects the desired software filter mechanism for reception only. Each
implemented software filtering method is identified by this enumeration
number. Range: Types implemented software filtering methods

Multiplicity 1

Type EcucEnumerationParamDef

Range BINARY Selects Binary Filter method.
INDEX Selects Index Filter method.
LINEAR Selects Linear Filter method.
TABLE Selects Table Filter method.

ConfigurationClass Pre-compile time X |All Variants
Link time --

Post-build time --

Scope / Dependency

scope: Module

dependency: BasicCAN reception must be enabled by referenced
parameter CAN_HANDLE_TYPE of the CAN Driver module via
CANIF HRH HANDLETYPE REF for at least one HRH.

SWS ltem CANIF675 Conf:

Name CanlfSupportTTCAN

Description Defines whether TTCAN is supported. TRUE: TTCAN
is supported. FALSE: TTCAN is not supported, only
normal CAN communication is possible.

Multiplicity 1

Type EcucBooleanParamDef

Default value false

ConfigurationClass Pre-compile time X JAll Variants
Link time --

Post-build time --

Scope / Dependency

Included Containers

Container

Name Multiplicity,

Scope / Dependency

CanlfTTGenera 0.1

This container is only included and valid if TTCAN Interface SWS is used

169 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface

Vv5.0.0

R4.0 Rev 3

and TTCAN is enabled. This container contains the parameters, which
define if and in which way TTCAN is supported. CanlfTTGeneral is only
included, if the controller supports TTCAN.

Canlf :EcucModuleDef

upperMultiplicity = 1
lowerMultiplicity = 0

+container

CanlfPrivateCfg :
EcucParamConfContainerDef]

CanlfPrivateDlcCheck :

+parameter,
EcucBooleanParamDef

defaultvValue = True

+parameter CanlfPrivateSoftwareFilterType :

EcucEnumerationParamDef

+literal +literal
LINEAR : BINARY :
EcucEnumerationLiteral Def| EcucEnumerationLiteral Def
+literal +literal
TABLE : INDEX :

EcucEnumerationLiteralDefl |EcucEnumerationLiteral Def}

10.2.4 CanlfPublicCfg

SWS ltem CANIF246 Conf :
Container Name |CanlfPublicCfg{CanlinterfacePublicConfiguration}
Description This container contains the public configuration (parameters) of the CAN Interface.

Configuration Parameters

SWS Item CANIF522 Conf :

Name CanlfPublicCancelTransmitSupport
{CANIF_PUBLIC_CANCEL_TRANSMIT_SUPPORT}

Description Configuration parameter to enable/disable dummy API for upper layer
modules which allows to request the cancellation of an I-PDU.

Multiplicity 1

Type EcucBooleanParamDef

Default value

ConfigurationClass Pre-compile time X |All Variants
Link time --
Post-build time --

Scope / Dependency scope: ECU

SWS ltem CANIF671 Conf :

Name CanlfPublicCddHeaderFile {CANIF_PUBLIC_CDD_HEADERFILE}
Description Defines header files for callback functions which shall be included in
170 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface

V5.0.0
R4.0 Rev 3
case of CDDs. Range of characters is 1.. 32.
Multiplicity 0..*
Type EcucStringParamDef
Default value --
maxLength 32
minLength 1

regularExpression

ConfigurationClass Pre-compile time X |All Variants
Link time --
Post-build time --
Scope / Dependency scope: ECU
SWS ltem CANIF785 Conf :
Name CanlfPublicChangeBaudrateSupport
{CANIF PUBLIC CHANGE BAUDRATE SUPPORT}
Description Configuration parameter to enable/disable the API to change the baudrate
of a CAN controller. True: Enabled False: Disabled
Multiplicity 1
Type EcucBooleanParamDef
Default value false
ConfigurationClass Pre-compile time X Al Variants
Link time --
Post-build time --
Scope / Dependency scope: ECU

SWS Item CANIF614 Conf:

Name CanlfPublicDevErrorDetect
{CANIF PUBLIC DEV ERROR DETECT}

Description Enables and disables the development error detection and notification
mechanism. True: Enabled False: Disabled

Multiplicity 1

Type EcucBooleanParamDef

Default value true

ConfigurationClass Pre-compile time X |All Variants
Link time --

Post-build time

Scope / Dependency

scope: Module

SWS ltem CANIF742 Conf :

Name CanlfPublicHandleTypeEnum
{CANIF PUBLIC HANDLE TYPE_ENUM}

Description This parameter is used to configure the Can_HwHandleType. The
Can_HwHandleType represents the hardware object handles of a
CAN hardware unit. For CAN hardware units with more than 255 HW
objects the extended range shall be used (UINT16).

Multiplicity 1

Type EcucEnumerationParamDef

Range UINT16 --
UINT8 --

ConfigurationClass Pre-compile time X JAll Variants
Link time --

Post-build time

Scope / Dependency

scope: CAN stack

dependency: Can_HwHandleType

[SWS Item

[CANIF612 Conf :

171 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

V5.0.0
R4.0 Rev 3
Name CanlfPublicMultipleDrvSupport
{CANIF PUBLIC MULTIPLE DRV SUPPORT}
Description Selects support for multiple CAN Drivers. True: Enabled False: Disabled
Multiplicity 1
Type EcucBooleanParamDef
Default value true
ConfigurationClass Pre-compile time X |All Variants
Link time --
Post-build time --
Scope / Dependency scope: ECU
SWS Item CANIF615 Conf:
Name CanlfPublicNumberOfCanHwUnits
{CANIF PUBLIC_NUMBER OF CAN HW UNITS}
Description Number of served CAN hardware units.
Multiplicity 1
Type EcuclntegerParamDef
Range 1..255 |
Default value 1
ConfigurationClass Pre-compile time X |VARIANT-PRE-COMPILE
Link time X |VARIANT-LINK-TIME, VARIANT-
POST-BUILD
Post-build time --
Scope / Dependency scope: ECU
SWS ltem CANIF772 Conf :
Name CanlfPublicPnSupport {CANIF PUBLIC PN SUPPORT}
Description Selects support of Partial Network features in Canlf. True:
Enabled False: Disabled
Multiplicity 1
Type EcucBooleanParamDef
Default value false
ConfigurationClass Pre-compile time X |All Variants
Link time --
Post-build time --
Scope / Dependency scope: COM Stack
SWS ltem CANIF607 Conf :
Name CanlfPublicReadRxPduDataApi
{CANIF_PUBLIC_READRXPDU DATA API}
Description Enables / Disables the API Canlf _ReadRxPduData() for reading
received L-PDU data. True: Enabled False: Disabled
Multiplicity 1
Type EcucBooleanParamDef
Default value false
ConfigurationClass Pre-compile time X Al Variants
Link time --
Post-build time --
Scope / Dependency scope: ECU
SWS ltem CANIF608 Conf :
Name CanlfPublicReadRxPduNotifyStatusApi
{CANIF PUBLIC READRXPDU NOTIFY STATUS API}
Description Enables and disables the API for reading the received L-PDU data. True:
Enabled False: Disabled
Multiplicity 1
172 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface

V5.0.0
R4.0 Rev 3
Type EcucBooleanParamDef
Default value false
ConfigurationClass Pre-compile time X JAll Variants
Link time --
Post-build time --
Scope / Dependency scope: ECU

SWS ltem CANIF609 Conf:

Name CanlfPublicRead TxPduNotifyStatusApi
{CANIF_PUBLIC_READTXPDU_NOTIFY_STATUS_API}

Description Enables and disables the API for reading the notification status of transmit
and receive L-PDUs. True: Enabled False: Disabled

Multiplicity 1

Type EcucBooleanParamDef

Default value false

ConfigurationClass Pre-compile time X JAll Variants
Link time --
Post-build time --

Scope / Dependency scope: ECU

SWS Item CANIF610_Conf:
Name CanlfPublicSetDynamicTxIdApi
{CANIF_PUBLIC_SETDYNAMICTXID_API}
Description Enables and disables the API for reconfiguration of the CAN Identifier
for each Transmit L-PDU. True: Enabled False: Disabled
Multiplicity 1
Type EcucBooleanParamDef
Default value false
ConfigurationClass Pre-compile time X JAll Variants
Link time --
Post-build time --
Scope / Dependency scope: ECU

SWS Item CANIF618 Conf:

Name CanlfPublicTxBuffering {CANIF PUBLIC TX BUFFERING}

Description Enables and disables the buffering of transmit L-PDUs (rejected
by the CanDrv) within the CAN Interface module. True: Enabled
False: Disabled

Multiplicity 1

Type EcucBooleanParamDef

Default value false

ConfigurationClass Pre-compile time X |All Variants
Link time --

Post-build time --

Scope / Dependency

scope: CAN stack

SWS ltem CANIF733 Conf :

Name CanlfPublicTxConfirmPollingSupport
{CANIF_PUBLIC_TXCONFIRM_POLLING_SUPPORT}

Description Configuration parameter to enable/disable the API to poll for Tx
Confirmation state.

Multiplicity 1

Type EcucBooleanParamDef

Default value

ConfigurationClass

Pre-compile time X JAll Variants

Link time --

173 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv5.0.0
R4.0 Rev 3

Post-build time

Scope / Dependency

scope: Canlf module
dependency: CAN State Manager module

SWS Item CANIF613 Conf :

Name CanlfPublicVersioninfoApi {CANIF_PUBLIC_VERSION_INFO_API}

Description Enables and disables the API for reading the version information
about the CAN Interface. True: Enabled False: Disabled

Multiplicity 1

Type EcucBooleanParamDef

Default value

true

ConfigurationClass

Pre-compile time

X |All Variants

Link time

Post-build time

Scope / Dependency

SWS ltem CANIF741 Conf :

Name CanlfPublicwakeupCheckValidByNM
{CANIF PUBLIC WAKEUP CHECK_VALID BY NM}

Description If enabled, only NM messages shall validate a detected wake-up event (see
CANIF722) at the corresponding wake-up source in the Canlf. If disabled,
all messages shall validate such a wake-up event. This parameter depends
on CANIF_PUBLIC_WAKEUP_CHECK_VALID_API and shall only be
configurable, if it is enabled. True: Enabled False: Disabled

Multiplicity 0..1

Type EcucBooleanParamDef

Default value false

ConfigurationClass Pre-compile time X JAll Variants
Link time --

Post-build time --

Scope / Dependency scope: ECU

dependency: CANIF_PUBLIC_ WAKEUP CHECK_VALID API

SWS ltem CANIF611 Conf:

Name CanlfPublicwakeupCheckValidSupport
{CANIF_PUBLIC_WAKEUP_CHECK_VALIDATION_SUPPORT}

Description Selects support for wake up validation True: Enabled False: Disabled

Multiplicity 1

Type EcucBooleanParamDef

Default value

false

ConfigurationClass

Pre-compile time

X |All Variants

Link time

Post-build time

Scope / Dependency

scope: ECU

[No Included Containers

174 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTO SAR

175 of 213

Canlf :EcucModuleDef

upperMultiplicity = 1
lowerMultiplicity = 0

+container

CanlfPublicCfg :
EcucParamConfContainerDef

upperMultiplicity = 1
lowerMultiplicity = 1

Specification of CAN Interface

Vv5.0.0

R4.0 Rev 3

+parameter [CanlfPublicTxConfirmPollingSupport :

‘+parameter CanlfPublicReadRxPduDataApi :
P EcucBooleanParamDef
defaultValue = False
parameter CanlfPublicReadRxPduNotifyStatusApi :
P EcucBooleanParamDef
o
. | X defaultValue = False
+parameter CanlfPublicReadTxPduNotifyStatusApi :
paramete EcucBooleanParamDef
defaultValue = False
" " CanlfPublicSetDynamicTxIdApi :
parameter EcucBooleanParamDef
o
. defaultValue = False
‘+parameter CanlfPublicWakeupCheckValidSupport :
P EcucBooleanParamDef
defaultValue = False
+parameter CanIIfEPubchlultip’IDeDrvS;pfort:
P cucBooleanParamDe
defaultValue = True
+parameter CanlfPublicVersioninfoApi :
P EcucBooleanParamDef
defaultValue = True
Tparameter CanlfPublicDevErrorDetect :
EcucBooleanParamDef
o
CanlfPublicNumberOfCanHwuUnits : defaultValue = True
EcucintegerParamDef
+parameter
defaultvalue = 1
min =1
max = 255
+parameter | CanlfPublicCancelTransmitSupport :
* EcucBooleanParamDef
+parameter CanlfPublicTxBuffering :
EcucBooleanParamDef
>
defaultValue = False .)
CanlfPublicCddHeaderFile :
EcucStringParamDef
+parameter
o

lowerMultiplicity = 0
upperMultiplicity = *
minLength =1
maxLength = 32

EcucBooleanParamDef

+parameter

CanlfPublicwakeupCheckvalidByNM :

EcucBooleanParamDef

o

CanlfPublicHandleTypeEnum :
EcucEnumerationParamDef

+parameter

CanlfPublicPnSupport :

+parameter
P EcucBooleanParamDef

defaultValue = false

CanlfPublicChangeBaudrateSupport :
EcucBooleanParamDef

+parameter

defaultValue = False

+literal

+literal

lowerMultiplicity = 0
upperMultiplicity = 1
defaultValue = False

UINTS :
[EcucEnumerationLiteralDe

UINT16 :
EcucEnumerationLiteralDe

Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTO SAR

10.2.5 CanlfInitCfg

Specification of CAN Interface
Vv5.0.0
R4.0 Rev 3

SWS ltem

CANIF247 Conf:

Container Name

CanlfInitCfg{CanlinterfacelnitConfiguration} [Multi Config Container]

Description

This container contains the init parameters of the CAN Interface.
At least one (if only on Canlf with one possible Configuration), but multiple (Canlf
with different Configurations) instances of this container are possible.

Configuration Parameters

SWS ltem CANIF623 Conf:

Name CanlflnitCfgSet {CANIF_INIT CONFIGSET}

Description Selects the CAN Interface specific configuration setup. This
type of the external data structure shall contain the post
build initialization data for the CAN Interface for all
underlying CAN Dirvers. constant to Canlf ConfigType

Multiplicity 1

Type EcucStringParamDef

Default value --

maxLength 32

minLength 1

regularExpression

ConfigurationClass

Pre-compile time VARIANT-PRE-COMPILE

Link time VARIANT-LINK-TIME

XXX

Post-build time VARIANT-POST-BUILD

Scope / Dependency

scope: Module

Included Containers

Container
Name

Multiplicity,

Scope / Dependency

CanlfBufferCfg 0.*

This container contains the Txbuffer configuration. Multiple buffers with
different sizes could be configured. If CanlfBufferSize (CANIF834_Conf)
equals 0, the Canlf Tx L-PDU only refers via this CanlfBufferCfg the
corresponding CanlfHthCfg.

CanlflnitHohCf
]

This container contains the references to the configuration setup of each
underlying CAN Driver.

CanlfRxPduCfg 0.*

This container contains the configuration (parameters) of each receive CAN
L-PDU. The SHORT-NAME of "CanlfRxPduConfig" container itself
represents the symolic name of Receive L-PDU.

CanlfTxPduCfg 0.*

This container contains the configuration (parameters) of a transmit CAN L-
PDU. It has to be configured as often as a transmit CAN L-PDU is needed.
The SHORT-NAME of "CanlfTxPduConfig" container represents the symolic
name of Transmit L-PDU.

176 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTO SAR

Canlf :EcucModuleDef

upperMultiplicity = 1
lowerMultiplicity = 0

+container

Specification of CAN Interface
Vv5.0.0
R4.0 Rev 3

CanlfInitCfg :EcucParamConfContainerDef

upperMultiplicity = 1
lowerMultiplicity = 1
multipleConfigurationContainer = true

CanlfInitCfgSet :EcucStringParamDef
+parameter
o— .
minLength =1
maxLength = 32
CanlfRxPduCfg :
+subContainer EcucParamConfContainerDef
>
upperMultiplicity = *
lowerMultiplicity = 0
CanlfinitHohCfg :
+subContainer EcucParamConfContainerDef
>
upperMultiplicity = *
lowerMultiplicity = 0
CanlfTxPduCfg :
+subContainer EcucParamConfContainerDef
>
upperMultiplicity = *
lowerMultiplicity = 0

10.2.6 CanlfTxPduCfg

SWS Item CANIF248 Conf:

Container Name CanlfTxPduCfg{CANIF INIT TX PDU CFG}

Description

This container contains the configuration (parameters) of a transmit CAN L-PDU.
It has to be configured as often as a transmit CAN L-PDU is needed.

The SHORT-NAME of "CanlfTxPduConfig" container represents the symolic
name of Transmit L-PDU.

Configuration Parameters

SWS ltem CANIF592 Conf:

Name CanlfTxPduCanld {CANIF_TXPDU_CANID}

Description CAN ldentifier of transmit CAN L-PDUs used by the CAN
Driver for CAN L-PDU transmission. Range: 11 Bit For
Standard CAN Identifier ... 29 Bit For Extended CAN
identifier

Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 536870911 |

Default value

ConfigurationClass

Pre-compile time X [VARIANT-PRE-
COMPILE
Link time X VARIANT-LINK-TIME

177 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface

Vv5.0.0
R4.0 Rev 3

Post-build time

| X VARIANT-POST-BUILD

Scope / Dependency

scope: Network

SWS ltem CANIF590 Conf :

Name CanlfTxPduCanldType {CANIF TXPDU CANIDTYPE}

Description Type of CAN ldentifier of the transmit CAN L-PDU used by the
CAN Driver module for CAN L-PDU transmission.

Multiplicity 1

Type EcucEnumerationParamDef

Range EXTENDED_CAN The CANID is of type

Extended (29 bits)

STANDARD_CAN

[The CANID is of type
Standard (11 bits)

ConfigurationClass

Pre-compile time X VARIANT-PRE-
COMPILE

Link time X [VARIANT-LINK-
TIME

Post-build time X [VARIANT-POST-
BUILD

Scope / Dependency

scope: Network

SWS ltem CANIF594 Conf:

Name CanlfTxPduDlc {CANIF_TXPDU DLC}

Description Data length code (in bytes) of transmit CAN L-PDUs
used by the CAN Driver for CAN L-PDU transmission.
The data area size of a CAN L-Pdu can have a range
from O to 8 hytes.

Multiplicity 1

Type EcuclntegerParamDef

Range 0.8 |

Default value

ConfigurationClass

Pre-compile time

VARIANT-PRE-COMPILE

Link time

VARIANT-LINK-TIME

Post-build time

XXX

VARIANT-POST-BUILD

Scope / Dependency

scope: Network

SWS ltem CANIF591 Conf :

Name CanlfTxPduld {CANIF TXPDU ID}

Description ECU wide unique, symbolic handle for transmit CAN L-
PDU. The CanlfTxPduld is configurable at pre-compile
and post-built time. Range: 0..max. number of
CantTxPdulds

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for
this parameter)

Range 0 .. 4294967295 |

Default value

ConfigurationClass Pre-compile time X [VARIANT-PRE-
COMPILE
Link time X [VARIANT-LINK-TIME
Post-build time X [VARIANT-POST-BUILD
Scope / Dependency scope: ECU

SWS Item CANIF773 Conf:
Name CanlfTxPduPnFilterPdu {CANIF_TXPDU PNFILTERPDU}
Description If CanlfPublicPnFilterSupport is enabled, by this parameter

PDUs could be configured which will pass the CanlfPnFilter. If

178 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv5.0.0
R4.0 Rev 3

there is no CanlfTxPduPnFilterPdu configured per controller, the
corresponding controller applies no CanlfPnFilter.

Multiplicity 0..1

Type EcucBooleanParamDef

Default value false

ConfigurationClass Pre-compile time X [VARIANT-PRE-COMPILE
Link time X [VARIANT-LINK-TIME
Post-build time X [VARIANT-POST-BUILD

Scope / Dependency

dependency: This parameter shall only be configurable if
CanlfPublicPnSupport equals True.

SWS ltem CANIF589 Conf :

Name CanlfTxPduReadNotifyStatus
{CANIF_TXPDU_READ_NOTIFYSTATUS}

Description Enables and disables transmit confirmation for each transmit CAN L-
PDU for reading its notification status. True: Enabled False: Disabled

Multiplicity 1

Type EcucBooleanParamDef

Default value

false

ConfigurationClass

Pre-compile time VARIANT-PRE-COMPILE

X
Link time X |VARIANT-LINK-TIME
Post-build time X |VARIANT-POST-BUILD

Scope / Dependency

scope: Module
dependency: CANIF_READTXPDU_NOTIFY_STATUS_API must be
enabled.

SWS Item CANIF593 Conf :

Name CanlfTxPduType {CANIF_TXPDU_TYPE}

Description Defines the type of each transmit CAN L-PDU.

Multiplicity 1

Type EcucEnumerationParamDef

Range DYNAMIC CAN ID is defined at runtime.
STATIC CAN ID is defined at compile-

time.

ConfigurationClass Pre-compile time X [VARIANT-PRE-COMPILE
Link time X [VARIANT-LINK-TIME
Post-build time X [VARIANT-POST-BUILD

Scope / Dependency scope: ECU

SWS Item CANIF528 Conf :

Name CanlfTxPduUserTxConfirmationName
{CANIF TXPDU USERTXCONFIRMATION NAME}

Description This parameter defines the name of the <User_TxConfirmation>. This
parameter depends on the parameter
CANIF_TXPDU_USERTXCONFIRMATION_UL. If
CANIF_TXPDU_USERTXCONFIRMATION_UL equals CAN_TP,
CAN_NM, PDUR, XCP or J1939TP, the name of the
<User_TxConfirmation> is fixed. If
CANIF_TXPDU_USERTXCONFIRMATION_UL equals CDD, the name of
the <User_ TxConfirmation> is selectable.

Multiplicity 0..1

Type EcucFunctionNameDef

Default value --

maxLength 32

minLength 1

regularExpression

ConfigurationClass

Pre-compile time [X |[VARIANT-PRE-COMPILE

179 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv5.0.0
R4.0 Rev 3

Link time X |VARIANT-LINK-TIME, VARIANT-
POST-BUILD

Post-build time --

Scope / Dependency

scope: ECU

SWS Item CANIF527 Conf:

Name CanlfTxPduUserTxConfirmationUL
{CANIF_TXPDU_ USERTXCONFIRMATION UL}

Description This parameter defines the upper layer (UL) module to which the
confirmation of the successfully transmitted CANTXPDUID has to be
routed via the <User_TxConfirmation>. This <User_TxConfirmation> has
to be invoked when the confirmation of the configured CANTXPDUID will
be received by a Tx confirmation event from the CAN Driver module. If no
upper layer (UL) module is configured, no <User_TxConfirmation> has to
be called in case of a Tx confirmation event of the CANTXPDUID from
the CAN Driver module.

Multiplicity 0..1

Type EcucEnumerationParamDef

Range CAN_NM CAN NM
CAN_TP CAN TP
CDD Complex Device Driver
J1939TP J1939Tp
PDUR PDU Router
XCP Extended Calibration Protocol

ConfigurationClass Pre-compile time X |[VARIANT-PRE-COMPILE
Link time X |VARIANT-LINK-TIME
Post-build time X |VARIANT-POST-BUILD

Scope / Dependency scope: ECU

SWS Item CANIF670 Conf:
Name CanlfTxPduBswSchExclArealdRef
{CANIF RXPDU BSWSCH EXCLAREAID REF}
Description Reference to an exclusive area Id defined within the BSW Scheduler.
Multiplicity 1
Type Reference to [RteBswExclusiveArealmpl]

ConfigurationClass

Pre-compile time X JAll Variants

Link time --

Post-build time --

Scope / Dependency

SWS Item CANIF831 Conf :

Name CanlfTxPduBufferRef {CANIF TX PDU BUFFER REF}

Description Configurable reference to a Canlf buffer configuration.

Multiplicity 1

Type Reference to [CanlfBufferCfg]

ConfigurationClass Pre-compile time X [VARIANT-PRE-COMPILE
Link time X [VARIANT-LINK-TIME
Post-build time X [VARIANT-POST-BUILD

Scope / Dependency

SWS Item CANIF603 Conf :

Name CanlfTxPduRef {CANIF TXPDU REF}

Description Reference to the "global" Pdu structure to allow
harmonization of handle IDs in the COM-Stack.

Multiplicity 1

Type Reference to [Pdu]

180 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTO SAR

ConfigurationClass

Specification of CAN Interface
Vv5.0.0
R4.0 Rev 3

Pre-compile time X IVARIANT-PRE-COMPILE

Link time --

Post-build time --

Scope / Dependency

Included Containers

Container Name

Multiplicity|Scope / Dependency

CanlfTTTxFrameTriggerin
9

0.1

This container is only included and valid if TTCAN Interface SWS
is used and TTCAN is enabled. Frame trigger for TTCAN
transmission. CanlfTTTxFrameTriggering is only included, if the
controller supports TTCAN and a joblist is used.

181 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTO SAR

CanlflnitCfg :EcucParamConfContainerDef

upperMultiplicity = 1
lowerMultiplicity = 1

multipleConfigurationContainer = true

+subContainer

CanlfTxPduCfg :
EcucParamConfContainerDef]

Specification of CAN Interface
Vv5.0.0
R4.0 Rev 3

Transmit L-PDU.

The SHORT-NAME of "CanlfTxPduConfig"
container itself represents the symolic name o

upperMultiplicity = * " g dNofifyS i
lowerMultiplicity = 0 +parameter CanlfTxPduReadNotifyStatus :
EcucBooleanRarambe} Pdu
EcucParamConfContainerDef]
defaultvalue = False
ref +destination R R
reterence CanlfTxPduRef : l“ppe'h';m‘llll.'ﬁ'.'c.':yjo
EcucReferenceDef owem U CanlfTxPduUserT xConfirmationName :
(from EcucPdu) EcucFunctionNameDef
+parameter
> lowerMultiplicity = 0
) upperMultiplicity = 1
+iteral e minLength = 1
CanlfTxPduUserTxConfirmationUL : CAN_TP :EcucEnumerationLiteralDef maxLength = 32
EcucEnumerationParamDef Hiteral

lowerMultiplicity = 0
upperMultiplicity = 1

PDUR :EcucEnumerationLiteral Def |

+literal
‘—'CAN NM :EcucEnumerationLiteraIDef|
1

+literal

J1939TP :EcucEnumerationLiteraIDef|
L l

+literal
+literal

XCP :EcucEnumerationLiteral Def |

CDD :EcucEnumerationLiteralDef |

+literal
+literal

STANDARD_CAN :EcucEnumerationLiteralDef |

EXTENDED_CAN :EcucEnumerationLiteralDef |

+parameter
+parameter CanlfTxPduCanldType :
EcucEnumerationParamDef
CanlfTxPduld :
EcucintegerParamDef
+parameter —
symbolicNameValue = true
min =0
max = 4294967295
CanlfTxPduCanid :
+parameter EcuclntegerParamDef
min =0
max = 536870911
CanlfTxPduType :
+parameter(EcucEnumerationParamDef
+parameter
min=0
max =8
+reference | CanlfTxPduBswSchExclArealdRef :

+literal
‘—' DYNAMIC :EcucEnumerationLiteralDef |
+literal
STATIC :EcucEnumerationLiteral Def

RteBswExclusiveArealmpl :

+destination| EcucParamConfContainerDef

EcucReferenceDef

lowerMultiplicity = 0

+reference

upperMultiplicity = *

CanlfTxPduBufferRef :
EcucReferenceDef

from RteBswExclusiveArealmpl)

CanlfBufferCfg :

+destination [EcucParamConfContainerDef]

lowerMultiplicity = 1
upperMultiplicity = 1

upperMultiplicity = *
lowerMultiplicity = 0

+parameter

CanlfTxPduPnFilterPdu :
EcucBooleanParamDef

182 of 213

defaultvalue = false
lowerMultiplicity = 0
upperMultiplicity = 1

Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTO SAR

10.2.7 CanlfRxPduCfg

Specification of CAN Interface

Vv5.0.0
R4.0 Rev 3

SWS ltem

CANIF249 Conf:

Container Name

CanlfRxPduCfg{CANIF_INIT RX_PDU CFG}

Description

This container contains the configuration (parameters) of each receive CAN L-

PDU.

The SHORT-NAME of "CanlfRxPduConfig" container itself represents the symolic

name of Receive L-PDU.

Configuration Parameters

SWS ltem CANIF598 Conf :

Name CanlfRxPduCanld {CANIF_ RXPDU CANID}

Description CAN ldentifier of Receive CAN L-PDUs used by the CAN
Interface. Exa: Software Filtering. This parameter is used
if exactly one Can Identifier is assigned to the Pdu. If a
range is assigned then the CanlfRxPduCanldRange
parameter shall be used. Range: 11 Bit For Standard
CAN Identifier ... 29 Bit For Extended CAN identifier

Multiplicity 0..1

Type EcuclntegerParamDef

Range 0 .. 536870911 |

Default value

ConfigurationClass

Pre-compile time

VARIANT-PRE-
COMPILE

Link time

VARIANT-LINK-TIME

Post-build time

VARIANT-POST-BUILD

Scope / Dependency

scope: Network

SWS Item CANIF596_Conf :

Name CanlfRxPduCanldType {CANIF_RXPDUID CANIDTYPE}

Description CAN Identifier of receive CAN L-PDUs used by the CAN Driver
for CAN L-PDU reception.

Multiplicity 1

Type EcucEnumerationParamDef

Range EXTENDED_CAN The CANID is of type

Extended (29 bits)

STANDARD_CAN

The CANID is of type
Standard (11 bits)

ConfigurationClass

Pre-compile time X VARIANT-PRE-
COMPILE

Link time X [VARIANT-LINK-TIME

Post-build time X [VARIANT-POST-

BUILD

Scope / Dependency

scope: Network

SWS ltem CANIF599 Conf :

Name CanlfRxPduDIc {CANIF RXPDU DLC}

Description Data Length code of received CAN L-PDUs used by
the CAN Interface. Exa: DLC check. The data area
size of a CAN L-PDU can have a range from 0 to 8
bytes.

Multiplicity 1

Type EcuclntegerParambDef

Range 0.8 |

Default value --

ConfigurationClass Pre-compile time X [VARIANT-PRE-COMPILE
Link time X [VARIANT-LINK-TIME

183 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv5.0.0
R4.0 Rev 3

Post-build time [X VARIANT-POST-BUILD

Scope / Dependency

scope: Network

SWS ltem CANIF597 Conf :

Name CanlfRxPduld {CANIF RXPDUID}

Description ECU wide unique, symbolic handle for receive CAN L-
PDU. The CanlfRxPduld is configurable at pre-compile
and post-built time. It shall fulfill ANSI/AUTOSAR
definitions for constant defines. Range: 0..max. number
of defined CanRxPdulds

Multiplicity 1

Type EcuclintegerParamDef (Symbolic Name generated for
this parameter)

Range 0 .. 4294967295 |

Default value

ConfigurationClass Pre-compile time X [VARIANT-PRE-
COMPILE
Link time X [VARIANT-LINK-TIME
Post-build time X [VARIANT-POST-BUILD
Scope / Dependency scope: ECU

SWS ltem CANIF600 Conf :

Name CanlfRxPduReadData {CANIF_RXPDU READDATA}

Description Enables and disables the Rx buffering for reading of received L-
PDU data. True: Enabled False: Disabled

Multiplicity 1

Type EcucBooleanParamDef

Default value false

ConfigurationClass

Pre-compile time X [VARIANT-PRE-COMPILE
Link time X |VARIANT-LINK-TIME
Post-build time X [VARIANT-POST-BUILD

Scope / Dependency scope: ECU
dependency: CANIF_CANPDUID_READDATA_API must be
enabled.
SWS Item CANIF595 Conf:
Name CanlfRxPduReadNotifyStatus
{CANIF_RXPDU_READ_NOTIFYSTATUS}
Description Enables and disables receive indication for each receive CAN L-PDU for
reading its notification status. True: Enabled False: Disabled
Multiplicity 1
Type EcucBooleanParamDef

Default value

false

ConfigurationClass

Pre-compile time X |VARIANT-PRE-COMPILE
Link time X |VARIANT-LINK-TIME
Post-build time X |VARIANT-POST-BUILD

Scope / Dependency

scope: Module
dependency: CANIF_READRXPDU_NOTIFY_STATUS_API must be
enabled.

SWS Item CANIF530 Conf :
Name CanlfRxPduUserRxIndicationName
{CANIF RXPDU USERRXINDICATION NAME}
Description This parameter defines the name of the <User_RxIndication>. This

parameter depends on the parameter
CANIF_RXPDU_USERRXINDICATION_UL. If

CANIF_RXPDU_USERRXINDICATION_UL equals CAN_TP, CAN_NM,

184 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv5.0.0
R4.0 Rev 3

PDUR, XCP or J1939TP, the name of the <User_RxIndication> is fixed.
If CANIF_RXPDU_USERRXINDICATION_UL equals CDD, the name of
the <User RxIndication> is selectable.

Multiplicity 0..1
Type EcucFunctionNameDef
Default value --
maxLength 32
minLength 1
regularExpression --
ConfigurationClass Pre-compile time X [VARIANT-PRE-COMPILE
Link time X [VARIANT-LINK-TIME, VARIANT-

POST-BUILD

Post-build time --

Scope / Dependency

scope: ECU

SWS Item CANIF529 Conf :

Name CanlfRxPduUserRxIndicationUL
{CANIF RXPDU USERRXINDICATION UL}

Description This parameter defines the upper layer (UL) module to which the
indication of the successfully received CANRXPDUID has to be routed
via <User_RxIndication>. This <User_RxIndication> has to be invoked
when the indication of the configured CANRXPDUID will be received by
an Rx indication event from the CAN Driver module. If no upper layer
(UL) module is configured, no <User_RxIndication> has to be called in
case of an Rx indication event of the CANRXPDUID from the CAN
Driver module.

Multiplicity 0..1

Type EcucEnumerationParamDef

Range CAN_NM CAN NM
CAN TP CAN TP
CDD Complex Device Driver
J1939TP J1939Tp
PDUR PDU Router
XCP Extended Calibration Protocol

ConfigurationClass Pre-compile time X [VARIANT-PRE-COMPILE
Link time X [VARIANT-LINK-TIME
Post-build time X |VARIANT-POST-BUILD

Scope / Dependency scope: ECU

SWS Item CANIF669 Conf:

Name CanlfRxPduBswSchExclArealdRef
{CANIF_RXPDU_BSWSCH_EXCLAREAID_REF}

Description Reference to an exclusive area Id defined within the BSW Scheduler.

Multiplicity 1

Type Reference to [RteBswExclusiveArealmpl |

ConfigurationClass

Pre-compile time X JAll Variants

Link time --

Post-build time --

Scope / Dependency

SWS ltem CANIF602_Conf :

Name CanlfRxPduHrhldRef {CANIF_RXPDU_HRH_ID_REF}

Description The HRH to which Rx L-PDU belongs to, is referred through this
parameter.

Multiplicity 1..*

Type Reference to [CanlfHrhCfg]

185 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTO SAR

ConfigurationClass

Specification of CAN Interface
Vv5.0.0
R4.0 Rev 3

Pre-compile time VARIANT-PRE-COMPILE

X
Link time X [VARIANT-LINK-TIME
Post-build time X |VARIANT-POST-BUILD

Scope / Dependency

scope: Module
dependency: This information has to be derived from the CAN
Driver configuration.

SWS Item CANIF601_Conf :

Name CanlfRxPduRef {CANIF RXPDU REF}

Description Reference to the "global" Pdu structure to allow
harmonization of handle IDs in the COM-Stack.

Multiplicity 1

Type Reference to [Pdu]

ConfigurationClass Pre-compile time X |All Variants
Link time --

Post-build time --

Scope / Dependency

Included Containers

Container Name

Multiplicity|[Scope / Dependency

Optional container that allows to map a range of CAN Ids to one

CanlfRxPduCanldRange 0.1 Pduld

This container is only included and valid if TTCAN Interface
CanlfTTRxFrameTriggerin 0.1 SWS is used and TTCAN is enabled. Frame trigger for TTCAN
(o] " reception. CanlfTTRxFrameTriggering is only included, if the

controller supports TTCAN and a joblist is used for reception.

186 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTO SAR Specification of CAN Interface
o V5.0.0

R4.0 Rev 3

CanlfInitCfg :EcucParamConfContainerDef

The SHORT-NAME of "CanlfRxPduConfig"

upperMuII.ipl.ic.in =1 container itself represents the symolic name
lowerMultiplicity = 1 of Receive L-PDU
multipleConfigurationContainer = true .
*S"bc°”‘a'”e$ CanlfRxPduHrhidRet : —
TEeucReferenceDef Saniomteige
CanlfRxPducfg : +reference EclicReferenceRs] +destination | EcucParamConfContainerDef
EcucParamConfContainerDef‘— | Multinlicit a
owerv U plCILyRS upperMultiplicity = *
. upperMultiplicity = * i e y_ +reference
upperMultiplicity = * lowerMultiplicity = 0
lowerMultiplicity = 0 : A
+parameter CanéfoPBdullRead;\lsgf%S[;:ftus - CanlfHrhldSymRef :
clchooledniaak Pdu : EcucSymbolicNameReferenceDef
EcucParamConfContainerDef

defaultvalue = False

+reference inati S e =
CanlfRxPduReit: +destination ro%’/]:rmjl:l?;l;;?y: 0 ICanlfRxPduUserRxIndicationName
[EclicReferenGabog i EcucFunctionNameDef
(from EcucPdu) +parameter
g lowerMultiplicity = 0
+literal]] upperMultiplicity = 1
(CanlfRxPduUserRxindicationUL ;0—' CANRIER EericEntimeralinh QIS | minLength = 1
EcucEnumerationParamDef +literal maxLength = 32
’—' CDD :EcucEnumerationLiteralDef |
upperMultiplicity = 1 .
lowerMultiplicity = 0 +literal
+parameter ‘—' CAN_NM :EcucEnumerationLiteralDef
+literal
‘—' J1939TP :EcucEnumerationLiteralDef
+literal
‘—' PDUR :EcucEnumerationLiteral Def |
+literal

. XCP :EcucEnumerationLiteral Def |

+literal
+parameter| _ CanlfRxPduCanldType : ‘—' EXTENDED_CAN :EcucEnumerationLiteral Def

EcucEnumerationParamDef
e +literal
‘_| STANDARD_CAN :EcucEnumerationLiteralDef

CanlfRxPduld :
EcuclIntegerParamDef
+parameter -
symbolicNameValue = true
upperMultiplicity = 1
lowerMultiplicity = 1
min =0
max = 4294967295 CanlfRxPduDlc :
parameter EcucintegerParamDef
>
min =0
CanlfRxPduReadData : max =8
“parameter EcucBooleanParamDef
defaultvalue = False CanlfRxPduCanid :
EcuclntegerParamDef
+parameter
[min =0
max = 536870911
lowerMultiplicity = 0
upperMultiplicity = 1
CanlfRxPduCanidRange : CanIfRxPduCanldRangeUpperCanld :
EcucParamConfContainerDef +parameter EcucIntegerParamDef
lowerMultiplicity = 0 mini=lo
+subContainer upperMultiplicity = 1 max = 536870911
ICanlfRxPduCanldRangelLowerCanld :
*parameter EcuclntegerParamDef
g
min =0
max = 536870911
. o RteBswExclusiveArealmpl :
+reference| CanlfRxPduBswSchExclArealdRef : +destination| EcucParamConfContainerDef
EcucReferenceDef
lowerMultiplicity = 0
upperMultiplicity = *

(from RteBswExclusiveArealmpl)

187 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv5.0.0
R4.0 Rev 3

10.2.8 CanlfRxPduCanldRange

SWS ltem

CANIF743 Conf:

Container Name

CanlfRxPduCanldRange

Description

Optional container that allows to map a range of CAN Ids to one
Pduld.

Configuration Parameters

SWS ltem CANIF745 Conf:

Name CanlfRxPduCanldRangeLowerCanld
{CANIF_RX_ PDU_CANID_RANGE_LOWER_CANID}

Description Lower CAN Identifier of a receive CAN L-PDU for identifier range definition,
in which all CAN Ids are mapped to one Pduld.

Multiplicity 1

Type EcuclntegerParambDef

Range 0 .. 536870911 |

Default value

ConfigurationClass

Pre-compile time VARIANT-PRE-COMPILE

Link time VARIANT-LINK-TIME

XXX

Post-build time VARIANT-POST-BUILD

Scope / Dependency

scope: Module

SWS ltem CANIF744 Conf :

Name CanlfRxPduCanldRangeUpperCanld
{CANIF RX PDU CANID RANGE UPPER CANID}

Description Upper CAN Identifier of a receive CAN L-PDU for identifier range definition,
in which all CAN Ids are mapped to one Pduld.

Multiplicity 1

Type EcucintegerParamDef

Range 0 .. 536870911 |

Default value

ConfigurationClass

Pre-compile time VARIANT-PRE-COMPILE

Link time VARIANT-LINK-TIME

XXX

Post-build time VARIANT-POST-BUILD

Scope / Dependency

scope: Module

[No Included Containers

10.2.9 CanlfDispatchCfg

SWS Item

CANIF250 Conf :

Container Name [CanlfDispatchCfg{CanlinterfaceDispatcherConfiguration}

Description

Callback functions provided by upper layer modules of the Canlf. The callback
functions defined in this container are common to all configured CAN Driver / CAN
[Transceiver Driver modules.

Configuration Parameters

SWS ltem CANIF791 Conf:
Name CanlfDispatchUserCheckTrcvWakeFlagindicationName

{CANIF DISPATCH USERCHECKTRCVWAKEFLAGINDICATION NAME}
Description This parameter defines the name of <User_ClearTrcvWufFlagindication>. If

CANIF_DISPATCH USERCHECKTRCVWAKEFLAGINDICATION_UL equals

188 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv5.0.0
R4.0 Rev 3

CAN_SM the name of <User_CheckTrcvWakeFlaglndication> is fixed. If it equals
CDD, the name is selectable. If CANIF_PUBLIC_PN_SUPPORT equals False,
this parameter shall not be configurable.

Multiplicity 0..1

Type EcucFunctionNameDef
Default value --

maxLength --

minLength --

regularExpression

ConfigurationClass

Pre-compile time VARIANT-PRE-COMPILE

VARIANT-LINK-TIME, VARIANT-POST-
BUILD

Link time

Post-build time

Scope / Dependency

dependency:
CANIF_DISPATCH_USERCHECKTRCVWAKEFLAGINDICATION_UL,

CANIF_PUBLIC_ PN _SUPPORT

SWS ltem CANIF792 Conf :
Name CanlfDispatchUserCheckTrcvWakeFlagindicationUL
{CANIF DISPATCH USERCHECKTRCVWAKEFLAGINDICATION UL}
Description This parameter defines the upper layer module to which the
CheckTrcvWakeFlaglndication from the Driver modules have to be routed. If
CANIF_PUBLIC_PN_SUPPORT equals False, this parameter shall not be
configurable.
Multiplicity 0..1
Type EcucEnumerationParamDef
Range CAN_SM CAN State Manager
CDD Complex Device Driver
ConfigurationClass [Pre-compile time X |VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME, VARIANT-
POST-BUILD
Post-build time --

Scope / Dependency

dependency: CANIF_PUBLIC_PN_SUPPORT

SWS Item CANIF789 Conf :

Name CanlfDispatchUserClearTrcvWufFlagindicationName
{CANIF_DISPATCH USERCLEARTRCVWUFFLAGINDICATION_NAME}

Description This parameter defines the name of <User_ClearTrcvWufFlagIndication>. If
CANIF_DISPATCH_USERCLEARTRCVWUFFLAGINDICATION_UL equals
CAN_SM the name of <User_ClearTrcvWufFlagindication> is fixed. If it equals
CDD, the name is selectable. If CANIF_PUBLIC_PN_SUPPORT equals False,
this parameter shall not be configurable.

Multiplicity 0..1

Type EcucFunctionNameDef

Default value --

maxLength --

minLength --

regularExpression

ConfigurationClass

Pre-compile time VARIANT-PRE-COMPILE

VARIANT-LINK-TIME, VARIANT-POST-
BUILD

Link time

Post-build time

Scope / Dependency

dependency:
CANIF_DISPATCH_USERCLEARTRCVWUFFLAGINDICATION_UL,
CANIF_PUBLIC PN SUPPORT

[SWS Item

[CANIF790 Conf :

189 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface

V5.0.0
R4.0 Rev 3
Name CanlfDispatchUserClearTrcvWufFlagindicationUL
{CANIF_DISPATCH USERCLEARTRCVWUFFLAGINDICATION_UL}
Description This parameter defines the upper layer module to which the
ClearTrcvWufFlagindication from the Driver modules have to be routed. If
CANIF_PUBLIC_PN_SUPPORT equals False, this parameter shall not be
configurable.
Multiplicity 0..1
Type EcucEnumerationParamDef
Range CAN_SM CAN State Manager
CDD Complex Device Driver
ConfigurationClass |Pre-compile time X [VARIANT-PRE-COMPILE
Link time X [VARIANT-LINK-TIME, VARIANT-
POST-BUILD
Post-build time --

Scope / Dependency

dependency: CANIF PUBLIC PN SUPPORT

SWS ltem CANIF819 Conf:

Name CanlfDispatchUserConfirmPnAvailabilityName
{CANIF DISPATCH USERCONFIRMPNAVAILABILITY NAME}

Description This parameter defines the name of <User_ConfirmPnAuvailability>. If
CANIF_DISPATCH_USERCONFIRMPNAVAILABILITY_UL equals CAN_SM
the name of <User_ConfirmPnAvailability> is fixed. If it equals CDD, the name
is selectable. If CANIF_PUBLIC_PN_SUPPORT equals False, this parameter
shall not be configurable.

Multiplicity 1

Type EcucFunctionNameDef

Default value --

maxLength -

minLength --

regularExpression -

ConfigurationClass Pre-compile time X [VARIANT-PRE-COMPILE
Link time X |VARIANT-LINK-TIME, VARIANT-

POST-BUILD

Post-build time --

Scope / Dependency

dependency: CANIF_DISPATCH_USERCONFIRMPNAVAILABILITY_UL,
CANIF_PUBLIC_PN_SUPPORT

SWS Item CANIF820_Conf:
Name CanlfDispatchUserConfirmPnAvailabilityUL
{CANIF_DISPATCH USERCONFIRMPNAVAILABILITY UL}
Description This parameter defines the upper layer module to which the
ConfirmPnAvailability notification from the Driver modules have to be routed.
If CANIF_PUBLIC_PN_SUPPORT equals False, this parameter shall not be
configurable.
Multiplicity 1
Type EcucEnumerationParamDef
Range CAN_ SM CAN State Manager
CDD Complex Device Driver
ConfigurationClass Pre-compile time X [VARIANT-PRE-COMPILE
Link time X |VARIANT-LINK-TIME, VARIANT-
POST-BUILD
Post-build time

Scope / Dependency

dependency: CANIF PUBLIC PN SUPPORT

SWS ltem

CANIF525 Conf:

Name

CanlfDispatchUserCtrIBusOffName
{CANIF _DISPATCH USERCTRLBUSOFF NAME}

190 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface

V5.0.0
R4.0 Rev 3
Description This parameter defines the name of <User_ControllerBusOff>. This
parameter depends on the parameter CANIF_USERCTRLBUSOFF_UL. If
CANIF_USERCTRLBUSOFF_UL equals CAN_SM the name of
<User_ControllerBusOff> is fixed. If CANIF_USERCTRLBUSOFF_UL
equals CDD, the name of <User ControllerBusOff> is selectable.
Multiplicity 0..1
Type EcucFunctionNameDef
Default value --
maxLength 32
minLength 1
regularExpression --
ConfigurationClass Pre-compile time X |VARIANT-PRE-COMPILE
Link time X |VARIANT-LINK-TIME, VARIANT-

POST-BUILD

Post-build time --

Scope / Dependency

scope: ECU
dependency: CANIF DISPATCH USERCTRLBUSOFF UL

SWS ltem CANIF547 Conf :

Name CanlfDispatchUserCtrIBusOffUL
{CANIF DISPATCH USERCTRLBUSOFF UL}

Description This parameter defines the upper layer (UL) module to which the
notifications of all ControllerBusOff events from the CAN Driver modules
have to be routed via <User_ControllerBusOff>. There is no possibility to
configure no upper layer (UL) module as the provider of
<User ControllerBusOff>.

Multiplicity 1

Type EcucEnumerationParamDef

Range CAN_SM CAN State Manager
CDD Complex Device Driver

ConfigurationClass Pre-compile time X [VARIANT-PRE-COMPILE
Link time X [VARIANT-LINK-TIME, VARIANT-

POST-BUILD
Post-build time --

Scope / Dependency

scope: ECU

SWS Item CANIF683 Conf :

Name CanlfDispatchUserCtrIModelndicationName
{CANIF DISPATCH USERCTRLMODEINDICATION NAME}

Description This parameter defines the name of <User_ControllerModelndication>. This
parameter depends on the parameter
CANIF_USERCTRLMODEINDICATION_UL. If
CANIF_USERCTRLMODEINDICATION_UL equals CAN_SM the name of
<User_ControllerModelndication> is fixed. If
CANIF_USERCTRLMODEINDICATION_UL equals CDD, the name of
<User_ ControllerModelndication> is selectable.

Multiplicity 0..1

Type EcucFunctionNameDef

Default value --

maxLength 32

minLength 1

regularExpression --

ConfigurationClass Pre-compile time X |VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME, VARIANT-

POST-BUILD

Post-build time --

Scope / Dependency

scope: ECU

191 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv5.0.0
R4.0 Rev 3

ldependency: CANIF_DISPATCH USERCTRLMODEINDICATION UL

SWS Item CANIF684 Conf :

Name CanlfDispatchUserCtrIModelndicationUL
{CANIF DISPATCH USERCTRLMODEINDICATION UL}

Description This parameter defines the upper layer (UL) module to which the notifications
of all ControllerTransition events from the CAN Driver modules have to be
routed via <User ControllerModelndication>.

Multiplicity 1

Type EcucEnumerationParamDef

Range CAN_SM CAN State Manager
CDD Complex Device Driver

ConfigurationClass Pre-compile time X [VARIANT-PRE-COMPILE
Link time X |VARIANT-LINK-TIME, VARIANT-

POST-BUILD
Post-build time --

Scope / Dependency

scope: ECU

SWS Item CANIF685 Conf :

Name CanlfDispatchUserTrcvModelndicationName
{CANIF DISPATCH USERTRCVMODEINDICATION NAME}

Description This parameter defines the name of <User_TrcvModelndication>. This
parameter depends on the parameter
CANIF_USERTRCVMODEINDICATION_UL. If
CANIF_USERTRCVMODEINDICATION_UL equals CAN_SM the name of
<User_TrcvModelndication> is fixed. If
CANIF_USERTRCVMODEINDICATION_UL equals CDD, the name of
<User TrcvModelndication> is selectable.

Multiplicity 0..1

Type EcucFunctionNameDef

Default value --

maxLength 32

minLength 1

regularExpression --

ConfigurationClass Pre-compile time X |[VARIANT-PRE-COMPILE
Link time X |[VARIANT-LINK-TIME, VARIANT-

POST-BUILD

Post-build time --

Scope / Dependency

scope: ECU

dependency: CANIF_DISPATCH_USERTRCVMODEINDICATION_UL

SWS ltem CANIF686 Conf :

Name CanlfDispatchUserTrcvModelndicationUL
{CANIF DISPATCH USERTRCVMODEINDICATION UL}

Description This parameter defines the upper layer (UL) module to which the notifications
of all TransceiverTransition events from the CAN Transceiver Driver modules
have to be routed via <User_TrcvModelndication>. If no UL module is
configured, no upper layer callback function will be called.

Multiplicity 0..1

Type EcucEnumerationParamDef

Range CAN_SM CAN State Manager
CDD Complex Device Driver

ConfigurationClass Pre-compile time X [VARIANT-PRE-COMPILE
Link time X |VARIANT-LINK-TIME, VARIANT-

POST-BUILD
Post-build time --

Scope / Dependency

scope: ECU

192 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface

V5.0.0
R4.0 Rev 3

SWS ltem CANIF531 Conf :

Name CanlfDispatchUserValidateWakeupEventName
{CANIF_DISPATCH_USERVALIDATEWAKEUPEVENT NAME}

Description This parameter defines the name of <User_ValidateWakeupEvent>. This
parameter depends on the parameter
CANIF_USERVALIDATEWAKEUPEVENT_UL.
CANIF_USERVALIDATEWAKEUPEVENT_UL equals ECUM the name of
<User_ValidateWakeupEvent> is fixed.
CANIF_USERVALIDATEWAKEUPEVENT_UL equals CDD, the name of
<User_ValidateWakeupEvent> is selectable. If parameter
CANIF_WAKEUP_CHECK_VALIDATION_API is disabled, no
<User ValidateWakeupEvent> API can be configured.

Multiplicity 0..1

Type EcucFunctionNameDef

Default value --

maxLength 32

minLength 1

regularExpression --

ConfigurationClass Pre-compile time X [VARIANT-PRE-COMPILE
Link time X [VARIANT-LINK-TIME, VARIANT-

POST-BUILD

Post-build time --

Scope / Dependency

scope: ECU
dependency: CANIF_WAKEUP_CHECK_VALIDATION_API,

CANIF_DISPATCH_USERVALIDATEWAKEUPEVENT UL

SWS Item CANIF549 Conf:

Name CanlfDispatchUserValidateWakeupEventUL
{CANIF_DISPATCH_USERVALIDATEWAKEUPEVENT UL}

Description This parameter defines the upper layer (UL) module to which the notifications
about positive former requested wake up sources have to be routed via
<User_ValidateWakeupEvent>. If parameter
CANIF_WAKEUP_CHECK_VALIDATION_API is disabled, this parameter
cannot be configured.

Multiplicity 0..1

Type EcucEnumerationParamDef

Range CDD Complex Device Driver
ECUM ECU State Manager

ConfigurationClass Pre-compile time X |VARIANT-PRE-COMPILE
Link time X |VARIANT-LINK-TIME, VARIANT-

POST-BUILD

Post-build time --

Scope / Dependency

scope: ECU
dependency: CANIF WAKEUP CHECK_VALIDATION_API

[No Included Containers

193 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTO SAR

Canlf :EcucModuleDef

upperMultiplicity = 1
lowerMultiplicity = 0

+containe$

CanlfDispatchCfg :
EcucParamConfContainerDef|

194 of 213

Specification of CAN Interface
Vv5.0.0
R4.0 Rev 3

CanlfDispatchUserCtriBusOffName :
EcucFunctionNameDef

+parameter

lowerMultiplicity = 0
upperMultiplicity = 1
minLength = 1
maxLength = 32

+parameter

+literal
CAN_SM :EcucEnumerationLiteralDef

|

CanlfDispatchUserCtrlBusOffUL :
EcucEnumerationParamDef

+literal
CDD :EcucEnumerationLiteralDef

|

Canl|fDispatchUserValidateWakeupEventName :

+parameter

EcucFunctionNameDef

lowerMultiplicity = 0
upperMultiplicity = 1
minLength =1
maxLength = 32

+literal
ECUM :EcucEnumerationLiteral Def

|

CanlfDispatchUserValidateWakeupEventUL :|

+parameter

EcucEnumerationParamDef

+literal

CDD :EcucEnumerationLiteralDef

|

lowerMultiplicity = 0
upperMultiplicity = 1

+parameter

CanlfDispatchUserCtriModelndicationName :
EcucFunctionNameDef

lowerMultiplicity = 0
upperMultiplicity = 1
minLength =1
maxLength = 32

+parameter

+literal
CanlfDispatchUserCtriModelndicationUL :
EcucEnumerationParamDef

CAN_SM :EcucEnumerationLiteralDef

|

+literal
lowerMultiplicity = 1 ‘—' CDD :EcucEnumerationLiteralDef

upperMultiplicity = 1

CanlfDispatchUserTrcvModelndicationName :

EcucFunctionNameDef

+parameter

lowerMultiplicity = 0
upperMultiplicity = 1
minLength =1
maxLength = 32

+parameter

+literal
ICanlfDispatchUserT rcvModelndicationUL @ CAN SM :EcucEnumerationLiteralDef
EcucEnumerationParamDef —

+literal
lowerMultiplicity = 0 ‘—' CDD :EcucEnumerationLiteral Def

upperMultiplicity = 1

Canl|fDispatchUserClearTrcvWufFlagindicationName :

+parameter

EcucFunctionNameDef

lowerMultiplicity = 0
upperMultiplicity = 1

+literal
CanlfDispatchUserClearT recvWufFlagindicationUL :

+parameter

I

CAN_SM :EcucEnumerationLiteralDef |
EcucEnumerationParamDef

+literal
lowerMultiplicity = 0 ‘—' CDD :EcucEnumerationLiteralDef |

upperMultiplicity = 1

+parameter

CanlfDispatchUserCheckT rcvWakeFlaglndicationName :
EcucFunctionNameDef

lowerMultiplicity = 0
upperMultiplicity = 1

+parameter

+parameter

+parameter

+literal
CanlfDispatchUserCheckT rcvWakeFlagindicationUL : ‘—| CAN_SM :EcucEnumerationLiteralDef

EcucEnumerationParamDef

+literal
lowerMultiplicity = 0 CDD :EcucEnumerationLiteral Def
upperMultiplicity = 1

CanlfDispatchUserConfirmPnAvailabilityName :
EcucFunctionNameDef

+literal
CanlfDispatchUserConfirmPnAvailabilityUL : ‘—| CANESMEEcUcEnumerationSIGIER]

EcucEnumerationParamDef
+literal
CDD :EcucEnumerationLiteralDef

Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTO SAR

10.2.10 CanlfCtrICfg

Specification of CAN Interface
Vv5.0.0
R4.0 Rev 3

SWS Item CANIF546_Conf:

Container Name [CanlfCtrICfg{CanlInterfaceControllerConfiguration}

Description

This container contains the configuration (parameters) of an adressed CAN
controller by an underlying CAN Driver module. This container is configurable per
CAN controller.

Configuration Parameters

SWS ltem CANIF647 Conf :

Name CanlfCtrlld {CANIF_CTRL _ID}

Description This parameter abstracts from the CAN Driver specific|
parameter Controller. Each controller of all connected
CAN Driver modules shall be assigned to one specific
Controllerld of the Canlf. Range: 0..number of
configured controllers of all CAN Driver modules

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for
this parameter)

Range 0 .. 65535 |

Default value

ConfigurationClass

Pre-compile time X VARIANT-PRE-COMPILE
Link time X [VARIANT-LINK-TIME,
VARIANT-POST-BUILD

Post-build time --

Scope / Dependency

scope: CAN Stack

SWS Item CANIF637 Conf :

Name CanlfCtrlwakeupSupport {CANIF CTRL WAKEUP_ SUPPORT}

Description This parameter defines if a respective controller of the referenced
CAN Driver modules is queriable for wake up events. True: Enabled
False: Disabled

Multiplicity 1

Type EcucBooleanParamDef

Default value false

ConfigurationClass Pre-compile time X [VARIANT-PRE-COMPILE
Link time X |[VARIANT-LINK-TIME, VARIANT-

POST-BUILD

Post-build time --

Scope / Dependency

scope: ECU

SWS ltem CANIF636_Conf:

Name CanlfCtrICanCtrIRef {CANIF_CTRL_CAN_CONTROLLER_ REF}

Description This parameter references to the logical handle of the underlying CAN
controller from the CAN Driver module to be served by the CAN
Interface module. The following parameters of CanController config
container shall be referenced by this link: CanControllerld,
CanWakeupSourceRef Range: 0..max. number of underlying
supported CAN controllers

Multiplicity 1

Type Reference to [CanController]

ConfigurationClass

Pre-compile time [X |VARIANT-PRE-COMPILE

195 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv5.0.0
R4.0 Rev 3

Link time X |VARIANT-LINK-TIME, VARIANT-

POST-BUILD

Post-build time --

Scope / Dependency

scope: ECU

dependency: amount of CAN controllers

[No Included Contain

ers

Canlf :EcucModuleDef

upperMultiplicity = 1
lowerMultiplicity = 0

+comaine$

CanlfCtrIDrvCig :

EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 1

+subC0ntaineI

CanlfCtrICfg :
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 1

10.2.11

CanlfCtrIDrvCig

defaultValue = False

o +reference CanlfCtriCanCtriRef : +destination canconuolicig
EcucSymbolicNameReferenceDef EclicRaramcontCantalitigy
upperMultiplicity = *
lowerMultiplicity = 1
CanlfCtrlld :EcuclntegerParamDef (from @@nDrv)
+parameter +parameter
‘ min =0
max = 65535 CanControllerld :
symbolicNameValue = true EcucIntegerParambDef
upperMultiplicity = 1
lowerMultiplicity = 1
symbolicNameValue = true
min =0
+parameter CanlfCtrlWakeupSupport : max = 255
S EcucBooleanParamDef (from CanDv)

SWS Item

CANIF253 Conf :

Container Name |CanlfCtrIDrvCfg{CanlinterfaceControllerDriverConfiguration}

Description

Configuration parameters for all the underlying CAN Driver modules are aggregated
under this container. For each CAN Driver module a seperate instance of this
container has to be provided.

Configuration Parameters

SWS Item CANIF640 Conf:

Name CanlfCtrIDrvTxCancellation
{CANIF CTRLDRV TX CANCELLATION}

Description Selects whether transmit cancellation is supported and if the
appropriate callback will be provided to the CAN Driver module. True:
Enabled False: Disabled

Multiplicity 1

Type EcucBooleanParamDef

Default value

ConfigurationClass

Pre-compile time X Al Variants

Link time --

196 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

Vv5.0.0
R4.0 Rev 3

Post-build time [- |

Scope / Dependency

scope: Module
dependency: CANIF_ PUBLIC TX BUFFERING has to be enabled

SWS Item CANIF642_Conf :
Name CanlfCtrIDrvinitHohConfigRef
{CANIF_CTRLDRV_INIT HOH CONFIG_REF}
Description Reference to the Init Hoh Configuration
Multiplicity 1
Type Reference to [CanlflnitHohCfg]
ConfigurationClass Pre-compile time X [VARIANT-PRE-COMPILE
Link time X [VARIANT-LINK-TIME, VARIANT-

POST-BUILD

Post-build time --

Scope / Dependency

SWS Item CANIF638 Conf :

Name CanlfCtrIDrvNameRef {CANIF CTRLDRV NAME REF}

Description CAN Interface Driver Reference. This reference can be used to
get any information (Ex. Driver Name, Vendor ID) from the CAN
driver. The CAN Driver name can be derived from the
ShortName of the CAN driver module.

Multiplicity 1

Type Reference to [CanGeneral]

ConfigurationClass Pre-compile time X JAll Variants
Link time --

Post-build time --

Scope / Dependency

Included Containers

(I\Zlgr?]t:mer Multiplicity|[Scope / Dependency

CanlfctrC This container contains the configuration (parameters) of an adressed CAN
1.* controller by an underlying CAN Driver module. This container is configurable

J per CAN controller.

197 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

Canlf :EcucModuleDef

upperMultiplicity = 1
lowerMultiplicity = 0

+containe$

CanlfCtrlDrvCfg :
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 1

R4.0 Rev 3
CanGeneral :
+reference CanlfCtriDrvNameRef : +destination| EcucParamConiContainerDef
EcucReferenceDef
upperMultiplicity = 1
lowerMultiplicity = 1
+parameter| canifCtriDvT xCancellation : (from Canbrv)

EcucBooleanParamDef

The values for "CanlfDriverName" and "CanlfDriverVendorld" can be found in the
"CommonPublishedInformation”

. ! CanlflnitHohCfg :
+reference| CanlfCtriDrvinitHohConfigRef : +destination | EcucParamConfContainerDef
EcucReferenceDef
upperMultiplicity = *
lowerMultiplicity = 0

of the corresponding CAN driver's configuration description.

10.2.12 CanlfTrcvDrvCfg

SWS Item CANIF273 Conf:
CN:grr]\qt:mer CanlfTrcvDrvCfg{CanlinterfaceTransceiverDriverConfiguration}

This container contains the configuration (parameters) of all addressed CAN
Description transceivers by each underlying CAN Transceiver Driver module. For each CAN

transceiver Driver a seperate instance of this container shall be provided.

Configuration Parameters

Included Containers

Container ENTIY

Name Multiplicity|[Scope / Dependency

CanlfTrevCt This container contains the configuration (parameters) of one addressed CAN
1.* transceiver by the underlying CAN Transceiver Driver module. For each CAN

d transceiver a seperate instance of this container has to be provided.

198 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv5.0.0
R4.0 Rev 3

Canlf :EcucModuleDef

upperMultiplicity = 1
lowerMultiplicity = 0

+container

CanlfTrcvDrvCig :

EcucParamConfContainerDef m'
EcucParamConfContainerDef

+subContainer

lowerMultiplicity = 0 o

upperMultiplicity = *

lowerMultiplicity = 1
upperMultiplicity = *

10.2.13 CanlfTrcvCfg

SWS Item CANIF587 Conf :

Container Name |CanlfTrcvCfg{CanlInterfaceTransceiverConfiguration}

This container contains the configuration (parameters) of one addressed CAN
Description transceiver by the underlying CAN Transceiver Driver module. For each CAN
transceiver a seperate instance of this container has to be provided.

Configuration Parameters

SWS Item CANIF654 Conf :

Name CanlfTrcvld {CANIF_TRCV ID}

Description This parameter abstracts from the CAN Transceiver
Driver specific parameter Transceiver. Each
transceiver of all connected CAN Transceiver Driver
modules shall be assigned to one specific
Transceiverld of the Canlf. Range: 0..number of
configured transceivers of all CAN Transceiver Driver
modules

Multiplicity 1

Type EcuclntegerParamDef (Symbolic Name generated for
this parameter)

Range 0 .. 65535 |

Default value --

ConfigurationClass Pre-compile time X [VARIANT-PRE-COMPILE
Link time X [VARIANT-LINK-TIME,

VARIANT-POST-BUILD
Post-build time --

Scope / Dependency scope: CAN Stack

SWS ltem CANIF606 Conf :

Name CanlfTrcvWakeupSupport {CANIF TRCV WAKEUP SUPPORT}

Description This parameter defines if a respective transceiver of the referenced

CAN Transceiver Driver modules is queriable for wake up events.
[True: Enabled False: Disabled

Multiplicity 1

Type EcucBooleanParamDef

199 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

V5.0.0
R4.0 Rev 3
Default value false
ConfigurationClass Pre-compile time X [VARIANT-PRE-COMPILE
Link time X |[VARIANT-LINK-TIME, VARIANT-
POST-BUILD
Post-build time --
Scope / Dependency scope: ECU
SWS ltem CANIF605 Conf :
Name CanlfTrcvCanTrcvRef {CANIF TRCV_CAN_ TRANSCEIVER REF}
Description This parameter references to the logical handle of the underlying CAN

transceiver from the CAN transceiver driver module to be served by the
CAN Interface module. Range: 0..max. number of underlying supported
CAN transceivers

Multiplicity 1
Type Reference to [CanTrcvChannel |
ConfigurationClass Pre-compile time X [VARIANT-PRE-COMPILE
Link time X |VARIANT-LINK-TIME, VARIANT-

POST-BUILD

Post-build time --
Scope / Dependency scope: ECU
dependency: amount of CAN transceivers

[No Included Containers

Canlf :EcucModuleDef

upperMultiplicity = 1
lowerMultiplicity = 0

+conlaneI

CanlfTrevDrvCfg :

EcucParamConfContainerDef

lowerMultiplicity = 0
upperMultiplicity = *

+subComame$
CanTrcvChannelld :
CanlfTrevCeq : EcucintegerParamDef
LeaIIICV ST = e
EcucParamConfContainerDef CanlfTrevCanT revRef : CanTrevChannel : P bolicNamay
+reference | EcucSymbolicNameReferenceDef +destination | EcucParamConfContainerDef| > ?20553 T
lowerMultiplicity = 1 o max=
upperMultiplicity = * lowerMultiplicity = 1 upperMultiplicity = * (from CanTrev)
upperMultiplicity = 1 lowerMultiplicity = & CanTrcvWakeupSourceRef :
+reference EcucReferenceDef
. CanlfTrcvWakeupSupport :
P | EcucBooleanParamDef lowerMultiplicity = 0
(from CanTrcv) upperMultiplicity = 1
defaultvalue = False (from CanTrov)
+ CanlfTrevld :EcuclntegerParamDef
>
min =0
max = 65535
symbolicNameValue = true
SWS Item CANIF257 Conf :
Container Name CanlflnitHohCfg{CANIF INIT HOH CFG}

This container contains the references to the configuration setup of each
underlying CAN Driver.

Configuration Parameters

Description

200 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface

o V5.0.0
R4.0 Rev 3
SWS Item CANIF620 Conf :
Name CanlflnitRefCfgSet {CANIF_INIT_REF CFGSET}
Description Selects the CAN Interface specific configuration setup. This
type of external data structure shall contain the post build
initialization data for the CAN Interface for all underlying CAN
Drivers.
Multiplicity 1
Type Reference to [CanConfigSet]
ConfigurationClass Pre-compile time X [VARIANT-PRE-COMPILE
Link time X |VARIANT-LINK-TIME
Post-build time X IVARIANT-POST-BUILD

Scope / Dependency

scope: Module

Included Containers

([\Zlgrl:]tsmer Multiplicity|[Scope / Dependency

CanlfHrhCf 0.* This container contains configuration parameters for each hardware receive
g " object (HRH).

CanlfHthCfg 0.* This container contains parameters related to each HTH.

CanlfInitCfg :EcucParamConfContainerDef

upperMultiplicity = 1
lowerMultiplicity = 1

multipleConfigurationContainer = true

+subContainer

CanlfHinCfg :
EcucParamConfContainerDef

CanlflnitHohCfg :
EcucParamConfContainerDef

+subContainer

upperMultiplicity = *
lowerMultiplicity = 0

upperMultiplicity = *
lowerMultiplicity = 0

CanlfHthCfg :
+subContainer |EcucParamConfContainerDef

gt

upperMultiplicity = *
lowerMultiplicity = 0

+reference CanlfinitRefCfgSet :
EcucReferenceDef

201 of 213

+destination

CanConfigSet :EcucParamConfContainerDef

multipleConfigurationContainer = true

(from CanDrv)

Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTO SAR

10.2.15 CanlfHthCfg

Specification of CAN Interface
Vv5.0.0
R4.0 Rev 3

SWS Item CANIF258 Conf:
Container Name CanlfHthCfg{CanInterfaceHthConfiguration}
Description This container contains parameters related to each HTH.

Configuration Parameters

SWS Item CANIF625 Conf :
Name CanlfHthCanCtrlldRef {CANIF HTH CAN CONTROLLER ID REF}
Description Reference to controller Id to which the HTH belongs to. A controller can
contain one or more HTHSs.
Multiplicity
Type Reference to [CanlfCtrICfg]
ConfigurationClass Pre-compile time X |VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME, VARIANT-
POST-BUILD
Post-build time --

Scope / Dependency

SWS Item

CANIF626 Conf :

Name

CanlfHthCanHandleTypeRef {CANIF._ HTH HANDLETYPE_REF}

Description

The parameter refers to a particular HTH object in the CAN Driver
Module configuration. The type of the HTH can either be Full-CAN
or Basic-CAN. The type of HTHSs is defined in the CAN Driver
Module and hence it is derived from CAN Driver Configuration of a
Hardware Object. Please note that this reference is deprecated
and is kept only for backward compatibility reasons.
CanlfHthldSymRef shall be used instead to get the
CanHandleType and CanObijectld of CAN Driver. In the next
major release this reference will be deleted.

Multiplicity

0..1

Type

Reference to [CanHardwareObiject]

ConfigurationClass

Pre-compile time X |VARIANT-PRE-COMPILE

Link time X |VARIANT-LINK-TIME, VARIANT-
POST-BUILD

Post-build time --

Scope / Dependency

SWS Item CANIF627 Conf:

Name CanlfHthldSymRef {CANIF HTH ID SYMREF}

Description The parameter refers to a particular HTH object in the
CanDrv configuration (see CanHardwareObject
CAN324_Conf). The Canlf receives the following
information of the CanDrv module by this reference: -
CanHandleType (see CAN323_Conf) - CanObjectld (see
CAN326 Conf)

Multiplicity 1

Type Reference to [CanHardwareObiject]

ConfigurationClass Pre-compile time X [VARIANT-PRE-COMPILE
Link time X [VARIANT-LINK-TIME,

VARIANT-POST-BUILD

Post-build time --

Scope / Dependency

[No Included Containers

202 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTO SAR

CanlfinitHohCfg :
EcucParamConfContainerDef|

upperMultiplicity = *
lowerMultiplicity = 0

+subComameI

CanlfHthCfg :
EcucParamConfContainerDef

Specification of CAN Interface
Vv5.0.0
R4.0 Rev 3

+reference

upperMultiplicity = *
lowerMultiplicity = 0

CanlfHthCanCtrlldRef :
EcucReferenceDef

CanlfCtrCfg :
EcucParamConfContainerDef

+destination

upperMultiplicity = *

lowerMultiplicity = 1

CanlfHthCanHandleTypeRef :
+reference [EcucSymbolicNameReferenceDe

CanHandleType :

+parameter -
P EcucEnumerationParamDef

CanHardwareObject :
EcucParamConfContainerDef

+destination

lowerMultiplicity = 0
upperMultiplicity = 1

upperMultiplicity = * (from CanDrv)

lowerMultiplicity = 1

+reference

10.2.16

CanlfHthldSymRef :
EcucSymbolicNameReferenceDef

CanObjectld :EcucintegerParamDef

+destination

+parameter
upperMultiplicity = 1

[}

lowerMultiplicity = 1

CanlfHrhCfg

symbolicNameValue = true
min =0
max = 65535

(from CanDrv)

(from CanDrv)

SWS ltem

CANIF259 Conf:

Container Name

CanlfHrhCfg{CanlInterfaceHrhConfiguration}

Description

object (HRH).

This container contains configuration parameters for each hardware receive

Configuration Parameters

SWS ltem CANIF632 Conf :

Name CanlfHrhSoftwareFilter {CANIF HRH SOFTWARE FILTER}

Description Selects the hardware receive objects by using the HRH range/list
from CAN Driver configuration to define, for which HRH a software
filtering has to be performed at during receive processing. True:
Software filtering is enabled False: Software filtering is enabled

Multiplicity 1

Type EcucBooleanParamDef

Default value true

ConfigurationClass Pre-compile time X |VARIANT-PRE-COMPILE
Link time X |[VARIANT-LINK-TIME, VARIANT-

POST-BUILD

Post-build time --

Scope / Dependency

scope: Module

SWS Item CANIF631 Conf :

Name CanlfHrhCanCtrlldRef {CANIF_ HRH_CAN_CTRL ID REF}

Description Reference to controller Id to which the HRH belongs to. A
controller can contain one or more HRHs.

Multiplicity 1

Type Reference to [CanlfCtrICfg]

ConfigurationClass Pre-compile time X |VARIANT-PRE-COMPILE
Link time X [VARIANT-LINK-TIME, VARIANT-

POST-BUILD

Post-build time --

Scope / Dependency

203 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv5.0.0
R4.0 Rev 3

SWS Item

CANIF633 Conf:

Name

CanlfHrhCanHandleTypeRef {CANIF_HRH_HANDLETYPE_REF}

Description

The parameter refers to a particular HRH object in the CAN Driver
Module configuration. The type of the HRH can either be Full-CAN
or Basic-CAN. The type of HRHSs is defined in the CAN Driver
Module and hence it is derived from CAN Driver Configuration of a
Hardware Object. If BasicCAN is configured, software filtering is
enabled. Please note that this reference is deprecated and is kept
only for backward compatibility reasons. CanlfHthldSymRef shall
be used instead to get the CanHandleType and CanObijectld of
CAN Driver. In the next major release this reference will be
deleted.

Multiplicity

0..1

Type

Reference to [CanHardwareObiject |

ConfigurationClass

Pre-compile time X |VARIANT-PRE-COMPILE

Link time X |[VARIANT-LINK-TIME, VARIANT-
POST-BUILD

Post-build time --

Scope / Dependency

SWS ltem CANIF634 Conf :

Name CanlfHrhldSymRef {CANIF HRH ID SYMREF}

Description The parameter refers to a particular HRH object in the
CanDrv configuration (see CanHardwareObject
CAN324 Conf). The Canlf receives the following information
of the CanDrv module by this reference: - CanHandleType
(see CAN323 Conf) - CanObjectld (see CAN326 Conf)

Multiplicity 1

Type Reference to [CanHardwareObiject]

ConfigurationClass Pre-compile time X |VARIANT-PRE-COMPILE
Link time X [VARIANT-LINK-TIME
Post-build time X [VARIANT-POST-BUILD

Scope / Dependency

Included Containers

Container Name |Multiplicity

Scope / Dependency

CanlfHrhRangeCf
g

0.*

Defines the parameters required for configurating multiple CANID ranges
for a given same HRH.

204 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTO SAR

CanlfinitHohCfg :
EcucParamConfContainerDef

upperMultiplicity = *
lowerMultiplicity = 0

+subContainer

Specification of CAN Interface

Vv5.0.0
R4.0 Rev 3

CanlfCtriCfg :
+reference CanlfHrhCanCtrildRef : +destination | EcucParamConfContainerDef
CanlfHrhCfg : o " EcucReferenceDef
i @
EcucParamConfContainerDef upperMultiplicity = *
lowerMultiplicity = 1
upperMultiplicity = *
lowerMultiplicity = 0
CanHardwareObiject : +parameter CanHandleType :
CanlfHrhCanHandleTypeRef : EcucParamConfContainerDef (@ EcucEnumerationParambef
+reference [EcucSymbolicNameR: Def +
P i *
upperMultiplicity = (from CanDrv)
lowerMultiplicity = 0 lowerMultiplicity = 1
upperMultiplicity = 1
CanObjectld :EcucintegerParamDef
+ E + +parameter
il Ganlfii 5y desinaney P upperMultiplicity = 1
- EcucSymbolicNameReferenceDef lowerMultiplicity = 1
symbolicNameValue = true
min =0
max =
(from CanDrv) RS
(from CanDrv)
CanlfHrhSoftwareFilter :
+parameter| EcucBooleanParamDef
P
@
defaultvalue = True
CanlfHrhRangeCfg :
- *subContainer | o iparam ConfContainerDef
@
upperMultiplicity = *
lowerMultiplicity = 0
SWS Item CANIF628 Conf :

Container Name

CanlfHrhRangeCfg{CanlInterfaceHrhRangeConfiguration}

Description

Defines the parameters required for configurating multiple CANID ranges for a given
same HRH.

Configuration Parameters

SWS ltem CANIF629 Conf :

Name CanlfHrhRangeRxPduLowerCanld
{CANIF_ HRHRANGE_LOWER_CANID}

Description Lower CAN Identifier of a receive CAN L-PDU for identifier range
definition, in which all CAN Ids shall pass the software filtering.

Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 536870911 |

Default value

ConfigurationClass

Pre-compile time

VARIANT-PRE-COMPILE

Link time

VARIANT-LINK-TIME

Post-build time

XXX

VARIANT-POST-BUILD

Scope / Dependency

scope: Module

SWS Item CANIF644 Conf:

Name CanlfHrhRangeRxPduRangeCanldType
{CANIF_HRHRANGE_CANIDTYPE}

Description Specifies whether a configured Range of CAN Ids shall only consider
standard CAN Ids or extended CAN Ids.

205 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface

V5.0.0
R4.0 Rev 3
Multiplicity 1
Type EcucEnumerationParamDef
Range EXTENDED All the CANIDs are of type

extended only (29 bit).

STANDARD

All the CANIDs are of type
standard only (11bit).

ConfigurationClass

Pre-compile time X [VARIANT-PRE-COMPILE
Link time X [VARIANT-LINK-TIME
Post-build time X IVARIANT-POST-BUILD

Scope / Dependency

scope: Module

SWS ltem CANIF630 Conf:

Name CanlfHrhRangeRxPduUpperCanld
{CANIF HRHRANGE UPPER CANID}

Description Upper CAN Identifier of a receive CAN L-PDU for identifier range
definition, in which all CAN Ids shall pass the software filtering.

Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 536870911 |

Default value

ConfigurationClass

Pre-compile time

VARIANT-PRE-COMPILE

Link time

VARIANT-LINK-TIME

Post-build time

XXX

VARIANT-POST-BUILD

Scope / Dependency

scope: Module

[No Included Containers

CanlfHrhCfg :
EcucParamConfContainerDef]

upperMultiplicity = *
lowerMultiplicity = 0

+subContaine$

CanlfHrhRangeCfg :
EcucParamConfContainerDef (<@

CanlfHrhRangeRxPduUpperCanld :

EcuclntegerParamDef
+parameter T

upperMultiplicity = *
lowerMultiplicity = 0

min =0
max = 536870911

CanlfHrhRangeRxPdulLowerCanld :

EcuclIntegerParamDef

+parameter

upperMultiplicity = 1
lowerMultiplicity = 1
min =0

max = 536870911

CanlfHrhRangeRxPduRangeCanldType }

+parameter

EcucEnumerationParamDef

206 of 213

- AUTOSAR confidential -

) STANDARD :
+literal [EcucEnumerationLiteral Def

+iteral EXTENDED :

EcucEnumerationLiteral Def

Document ID 012: AUTOSAR_SWS_CANInterface.doc

AUTOSAR Specification of CAN Interface

Vv5.0.0
R4.0 Rev 3

10.2.18 CanlfBufferCfg

SWS ltem

CANIF832_Conf :

Container Name

CanlfBufferCfg{ CANIF BUFFER CFG}

Description

This container contains the Txbuffer configuration. Multiple buffers with different|
sizes could be configured. If CanlfBufferSize (CANIF834_Conf) equals 0, the
Canlf Tx L-PDU only refers via this CanlfBufferCfg the corresponding

CanlfHthCfg.

Configuration Parameters

SWS Item CANIF834 Conf:

Name CanlfBufferSize {CANIF BUFFER SIZE}

Description This parameter defines the number of Canlf Tx L-PDUs
which can be buffered in one Txbuffer. If this value
equals 0, the Canlf does not perform Txbuffering for the
Canlf Tx L-PDUs which are assigned to this Txbuffer. If
CanlfPublicTxBuffering equals False, this parameter
equals 0 for all TxBuffer. If the CanHandleType of the
referred HTH equals FULL, this parameter equals 0 for
this TxBuffer.

Multiplicity 1

Type EcuclntegerParamDef

Range 0 .. 255 |

Default value 0

ConfigurationClass

Pre-compile time X [VARIANT-PRE-COMPILE
Link time X [VARIANT-LINK-TIME
Post-build time X [VARIANT-POST-BUILD

Scope / Dependency

scope: local
dependency: CanlfPublicTxBuffering, CanHandleType

SWS Item CANIF833 Conf:

Name CanlfBufferHthRef {CANIF BUFFER HTH REF}

Description Reference to HTH, that defines the hardware object or the
pool of hardware objects configured for transmission. All the
Canlf Tx L-PDUs refer via the CanlfBufferCfg and this
parameter to the HTHSs if TxBuffering is enabled, or not. Each
HTH shall not be assigned to more than one buffer.

Multiplicity 1..*

Type Reference to [CanlfHthCig]

ConfigurationClass Pre-compile time X |VARIANT-PRE-COMPILE
Link time X VARIANT-LINK-TIME
Post-build time X IVARIANT-POST-BUILD
Scope / Dependency scope: local

[No Included Containers

207 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

CanlfHthCfg :

CanlfBufferHthRER +destination | EcucParamConfContainerDef

CanlfBufferCfg :
4 EcucReferenceDef

EcucParamConfContainerDef +reference

upperMultiplicity = *

lowerMultiplicity = 1 lowerMultiplicity = 0

upperMultiplicity = *
" o upperMultiplicity = *

lowerMultiplicity = 0

CanlfBufferSize :
+parameter EcuclntegerParamDef

>
min =0

max = 255
defaultValue = 0

208 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

Vv5.0.0
R4.0 Rev 3

11 Changes to release 4.0.3

11.1 Deleted SWS items

SWS Item Rationale

CANIF013

CANIF024 Removal of CanlfCtrIDrvRxIndication and CanlfCtrIDrvTxConfirmation
configuraion parameters

CANIF114 Improvement of transmit buffer handling

CANIF295

CANIF309 Centralized Unlinit specification item (CANIF156)

CANIF314 Centralized Unlinit specification item (CANIF156)

CANIF327 Centralized Unlinit specification item (CANIF156)

CANIF332 Centralized Unlinit specification item (CANIF156)

CANIF337 Centralized Unlinit specification item (CANIF156)

CANIF342 Centralized Unlinit specification item (CANIF156)

CANIF347 Centralized Unlinit specification item (CANIF156)

CANIF354 Centralized Unlinit specification item (CANIF156)

CANIF359 Centralized Unlinit specification item (CANIF156)

CANIF365 Centralized Unlinit specification item (CANIF156)

CANIF369 Centralized Unlinit specification item (CANIF156)

CANIF396

CANIF399 Centralized Unlinit specification item (CANIF156)

CANIF403

CANIF405 Centralized Unlinit specification item (CANIF156)

CANIF420 Centralized Unlinit specification item (CANIF156)

CANIF425 Centralized Unlinit specification item (CANIF156)

CANIF430 Centralized Unlinit specification item (CANIF156)

CANIF441 Centralized Unlinit specification item (CANIF156)

CANIF452

CANIF453

CANIF458

CANIF459

CANIF484 CANIF484: pending transmit requests ?

CANIF534 Centralized Unlinit specification item (CANIF156)

CANIF561

CANIF562

CANIF639_Conf

Removal of CanlfCtrIDrvRxIndication and CanlfCtrIDrvTxConfirmation
configuraion parameters

CANIF641_Conf

Removal of CanlfCtrIDrvRxIndication and CanlfCtrIDrvTxConfirmation
configuraion parameters

CANIF676

CANIF680

CANIF721

CANIF722

CANIF701

Centralized Unlinit specification item (CANIF156)

CANIF707

Centralized Unlinit specification item (CANIF156)

CANIF735

Centralized Unlinit specification item (CANIF156)

209 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface
Vv5.0.0
R4.0 Rev 3

11.2 Replaced SWS items

SWS Item of Release 2 | replaced by SWS Item Rationale

11.3 Changed SWS items

SWS Item Rationale

CANIF003 Changed service to asynchronous

CANIF054 Improvement of transmit buffer handling

CANIF063 Improvement of transmit buffer handling

CANIF068 Improvement of transmit buffer handling

CANIF118 CANIF page 66-67:contradiction between CANIF073, CANIF489 and
CANIF118

CANIF168 Changed CANIF_E_INVALID DLC from production to development error

CANIF154 Changed CANIF_E_STOPPED from production to development error;
changed CANIF_E_SLEEP and CANIF_INVALID_DLC from production to
development error

CANIF179

CANIF226

CANIF286

CANIF287 Changed service to asynchronous

CANIF297 Clarification/Improvment on DLC Check description

CANIF381 Improvement of transmit buffer handling

CANIF382

CANIF414 Removal of CanlfCtrIDrvRxIndication and CanlfCtrIDrvTxConfirmation
configuraion parameters

CANIF423 Removal of CanlfCtrIDrvRxIndication and CanlfCtrIDrvTxConfirmation
configuraion parameters

CANIF466 Improvement of transmit buffer handling

CANIF468 Redundant information in CanlfHthCfg container

CANIF520 Changed service to Synchronous

CANIF626 Conf Redundant information in CanlfHthCfg container

CANIF627 Conf Redundant information in CanlfHthCfg container

CANIF633 Conf Redundant information in CanlfHthCfg container

CANIF634 Conf Redundant information in CanlfHthCfg container

CANIF679 Changed CANIF_E_SLEEP from production to development error

CANIF723

11.4 Added SWS items

SWS Item Rationale

CANIF747 Network Management Extensions for Partial Networking
CANIF748 Network Management Extensions for Partial Networking
CANIF749 Network Management Extensions for Partial Networking
CANIF750 Network Management Extensions for Partial Networking

210 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTO SAR

Specification of CAN Interface

V5.0.0

R4.0 Rev 3
CANIF751 Network Management Extensions for Partial Networking
CANIF752 Network Management Extensions for Partial Networking
CANIF757 [CanSm] Instruction order of Entering NoCom
CANIF758 CDD support of Canlf TrcvModelndication
CANIF759 [CanSm] Instruction order of Entering NoCom
CANIF760 [CanSm] Instruction order of Entering NoCom
CANIF761 [CanSm] Instruction order of Entering NoCom
CANIF762 [CanSm] Instruction order of Entering NoCom
CANIF763 [CanSm] Instruction order of Entering NoCom
CANIF764 Changed from CANIF705 to this item, to be consistent to release 3.2
CANIF765 [CanSm] Instruction order of Entering NoCom
CANIF766 [CanSm] Instruction order of Entering NoCom
CANIF770 [CanSm] Instruction order of Entering NoCom
CANIF771 [CanSm] Instruction order of Entering NoCom
CANIF772 Conf Network Management Extensions for Partial Networking
CANIF773 Conf Network Management Extensions for Partial Networking
CANIF774
CANIF775 Change of baudrate within UDS service linkcontrol
CANIF776 Change of baudrate within UDS service linkcontrol
CANIF778 Change of baudrate within UDS service linkcontrol
CANIF779 Change of baudrate within UDS service linkcontrol
CANIF780 Change of baudrate within UDS service linkcontrol
CANIF782 Change of baudrate within UDS service linkcontrol
CANIF783 Change of baudrate within UDS service linkcontrol
CANIF784 Change of baudrate within UDS service linkcontrol
CANIF785 Change of baudrate within UDS service linkcontrol
CANIF786 Change of baudrate within UDS service linkcontrol
CANIF787 Change of baudrate within UDS service linkcontrol
CANIF788 [CanSm] Instruction order of Entering NoCom
CANIF789 Conf [CanSm] Instruction order of Entering NoCom
CANIF790 Conf [CanSm] Instruction order of Entering NoCom
CANIF791 Conf [CanSm] Instruction order of Entering NoCom
CANIF792 Conf [CanSm] Instruction order of Entering NoCom
CANIF793 [CanSm] Instruction order of Entering NoCom
CANIF794 [CanSm] Instruction order of Entering NoCom
CANIF795 [CanSm] Instruction order of Entering NoCom
CANIF796 [CanSm] Instruction order of Entering NoCom
CANIF797 [CanSm] Instruction order of Entering NoCom
CANIF798 [CanSm] Instruction order of Entering NoCom
CANIF799 [CanSm] Instruction order of Entering NoCom
CANIF800 [CanSm] Instruction order of Entering NoCom
CANIF801 [CanSm] Instruction order of Entering NoCom
CANIF802 [CanSm] Instruction order of Entering NoCom
CANIF803 [CanSm] Instruction order of Entering NoCom
CANIF804 [CanSm] Instruction order of Entering NoCom
CANIF805 [CanSm] Instruction order of Entering NoCom
CANIF806 [CanSm] Instruction order of Entering NoCom
CANIF807 [CanSm] Instruction order of Entering NoCom
CANIF808 [CanSm] Instruction order of Entering NoCom
CANIF809 [CanSm] Instruction order of Entering NoCom
CANIF810 [CanSm] Instruction order of Entering NoCom
CANIF811 [CanSm] Instruction order of Entering NoCom
CANIF812 [CanSm] Instruction order of Entering NoCom
CANIF813 [CanSm] Instruction order of Entering NoCom
CANIF814 [CanSm] Instruction order of Entering NoCom
CANIF815 Handling if PN functionality is disabled in the Trcv
CANIF816 Handling if PN functionality is disabled in the Trcv
CANIF817 Handling if PN functionality is disabled in the Trcv

211 of 213

Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface

V5.0.0
R4.0 Rev 3
CANIF818 Handling if PN functionality is disabled in the Trcv
CANIF819 Conf Handling if PN functionality is disabled in the Trcv
CANIF820 Conf Handling if PN functionality is disabled in the Trcv
CANIF821 Handling if PN functionality is disabled in the Trcv
CANIF822 Handling if PN functionality is disabled in the Trcv
CANIF823 Handling if PN functionality is disabled in the Trcv
CANIF824 Handling if PN functionality is disabled in the Trcv
CANIF825 Handling if PN functionality is disabled in the Trcv
CANIF826 Handling if PN functionality is disabled in the Trcv
CANIF827 Handling if PN functionality is disabled in the Trcv
CANIF828 Incoherence for the returned error in the service
Canlf_CancelTxConfirmation()
CANIF829 Clarification/Improvment on DLC Check description
CANIF830 Clarification/Improvment on DLC Check description
CANIF831 Conf Improvement of transmit buffer handling
CANIF832 Conf Improvement of transmit buffer handling
CANIF833 Conf Improvement of transmit buffer handling
CANIF834 Conf Improvement of transmit buffer handling
CANIF835 Improvement of transmit buffer handling
CANIF836 Improvement of transmit buffer handling
CANIF837 Improvement of transmit buffer handling
212 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc

- AUTOSAR confidential -

AUTOSAR Specification of CAN Interface
- V5.0.0

R4.0 Rev 3

12 Not applicable requirements

[CANIF999] I These requirements are not applicable to this specification. |

(BSW159, BSW167, BSW170, BSW00416, BSW168, BSW00423, BSW00424,
BSWO00425, BSW00426, BSW00427, BSW00428, BSW00429, BSW00431,
BSW00432, BSW00433, BSW00434, BSW00336, BSW00417, BSW164,
BSWO00326, BSW007, BSW00307, BSW00373, BSW00435, BSW00328,
BSWO00378, BSW00306, BSW00308, BSW00309, BSW00376, BSW00330,
BSW172, BSW010, BSW00341, BSW00334, BSW01139, BSW01014, BSW01024)

213 of 213 Document ID 012: AUTOSAR_SWS_CANInterface.doc
- AUTOSAR confidential -

	Known Limitations
	1 Introduction and functional overview
	2 Acronyms and Abbreviations
	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 Upper Protocol Layers
	5.2 Initialization: Ecu State Manager
	5.3 Mode Control: CAN State Manager
	5.4 Lower layers: CAN Driver
	5.5 Lower layers: CAN Transceiver Driver
	5.6 Configuration
	5.7 File structure
	5.7.1 Code file structure
	5.7.2 Header file structure

	5.8 Version check

	6 Requirements traceability
	7 Functional specification
	7.1 General functionality
	7.2 Hardware object handles
	7.3 Static CAN L-PDU handles
	7.4 Dynamic CAN transmit L-PDU handles
	7.5 Physical channel view
	7.6 CAN hardware unit
	7.7 BasicCAN and FullCAN reception
	7.8 Initialization
	7.9 Transmit request
	7.10 Transmit data flow
	7.11 Transmit buffering
	7.11.1 General behavior
	7.11.2 Buffer characteristics
	7.11.2.1 Storage of L-PDUs in the transmit L-PDU buffer
	7.11.2.2 Clearance of transmit L-PDU buffers
	7.11.2.3 Initialization of transmit L-PDU buffers

	7.11.3 Data integrity of transmit L-PDU buffers

	7.12 Transmit confirmation
	7.12.1 Confirmation after transmission completion
	7.12.2 Confirmation of transmit cancellation

	7.13 Transmit cancellation
	7.13.1 Transmit cancellation not supported or not used
	7.13.2 Transmit cancellation supported and used

	7.14 Receive data flow
	7.14.1 Location of PDU data buffers
	7.14.2 Receive data flow

	7.15 Receive indication
	7.16 Read received data
	7.17 Read Tx/Rx notification status
	7.18 Data integrity
	7.19 CAN Controller mode
	7.19.1 General functionality
	7.19.2 CAN Controller operation modes
	7.19.2.1 CANIF_CS_UNINIT
	7.19.2.2 CANIF_CS_INIT
	7.19.2.2.1 CANIF_CS_STOPPED
	7.19.2.2.2 CANIF_CS_STARTED
	7.19.2.2.3 CANIF_CS_SLEEP

	7.19.2.3 BUSOFF
	7.19.2.4 Mode Indication

	7.19.3 Controller mode transitions
	7.19.4 Wake-up
	7.19.4.1 Wake-up detection
	7.19.4.2 Wake-up validation

	7.20 PDU channel mode control
	7.20.1 PDU channel groups
	7.20.2 PDU channel modes
	7.20.2.1 CANIF_OFFLINE
	7.20.2.2 CANIF_ONLINE
	7.20.2.3 CANIF_OFFLINE_ACTIVE

	7.21 Software receive filter
	7.21.1 Software filtering concept
	7.21.2 Software filter algorithms

	7.22 DLC check
	7.23 L-PDU dispatcher to upper layers
	7.24 Polling mode
	7.25 Multiple CAN Driver support
	7.25.1 Transmit requests by using multiple CAN Drivers
	7.25.2 Notification mechanism by using multiple CAN Drivers
	7.25.3 Mapping table for multiple CAN Driver handling

	7.26 Partial Networking
	7.27 Error classification
	7.28 Error detection
	7.29 Error notification
	7.30 Debugging
	7.31 Published information

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 CanIf_ConfigType
	8.2.2 CanIf_ControllerModeType
	8.2.3 CanIf_PduSetModeType
	8.2.4 CanIf_PduGetModeType
	8.2.5 CanIf_NotifStatusType

	8.3 Function definitions
	8.3.1 CanIf_Init
	8.3.2 CanIf_SetControllerMode
	8.3.3 CanIf_GetControllerMode
	8.3.4 CanIf_Transmit
	8.3.5 CanIf_CancelTransmit
	8.3.6 CanIf_ReadRxPduData
	8.3.7 CanIf_ReadTxNotifStatus
	8.3.8 CanIf_ReadRxNotifStatus
	8.3.9 CanIf_SetPduMode
	8.3.10 CanIf_GetPduMode
	8.3.11 CanIf_GetVersionInfo
	8.3.12 CanIf_SetDynamicTxId
	8.3.13 CanIf_SetTrcvMode
	8.3.14 CanIf_GetTrcvMode
	8.3.15 CanIf_GetTrcvWakeupReason
	8.3.16 CanIf_SetTrcvWakeupMode
	8.3.17 CanIf_CheckWakeup
	8.3.18 CanIf_CheckValidation
	8.3.19 CanIf_GetTxConfirmationState
	8.3.20 CanIf_ClearTrcvWufFlag
	8.3.21 CanIf_CheckTrcvWakeFlag
	8.3.22 CanIf_CheckBaudrate
	8.3.23 CanIf_ChangeBaudrate

	8.4 Callback notifications
	8.4.1 CanIf_TxConfirmation
	8.4.3 CanIf_CancelTxConfirmation
	8.4.4 CanIf_ControllerBusOff
	8.4.5 CanIf_ConfirmPnAvailability
	8.4.6 CanIf_ClearTrcvWufFlagIndication
	8.4.7 CanIf_CheckTrcvWakeFlagIndication
	8.4.8 CanIf_ControllerModeIndication
	8.4.9 CanIf_TrcvModeIndication

	8.5 Scheduled functions
	8.6 Expected interfaces
	8.6.1 Mandatory interfaces
	8.6.2 Optional interfaces
	8.6.3 Configurable interfaces
	8.6.3.1 <User_TxConfirmation>
	8.6.3.2 <User_RxIndication>
	8.6.3.3 <User_ValidateWakeupEvent>
	8.6.3.4 <User_ControllerBusOff>
	8.6.3.5 <User_ConfirmPnAvailability>
	8.6.3.6 <User_ClearTrcvWufFlagIndication>
	8.6.3.7 <User_CheckTrcvWakeFlagIndication>
	8.6.3.8 <User_ControllerModeIndication>
	8.6.3.9 <User_TrcvModeIndication>

	9 Sequence diagrams
	9.1 Transmit request (single CAN Driver)
	9.2 Transmit request (multiple CAN Drivers)
	9.3 Transmit confirmation (interrupt mode)
	9.4 Transmit confirmation (polling mode)
	9.5 Transmit confirmation (with buffering)
	9.6 Transmit cancellation (with buffering)
	9.7 Transmit cancellation
	9.8 Receive indication (interrupt mode)
	9.9 Receive indication (polling mode)
	9.10 Read received data
	9.11 Start CAN network
	9.12 BusOff notification
	9.13 BusOff recovery

	10 Configuration specification
	10.1 How to read this chapter
	10.1.1 Configuration and configuration parameters
	10.1.2 Variants
	10.1.3 Containers
	10.1.4 Specification template for configuration parameters

	10.2 Containers and configuration parameters
	10.2.1 Variants
	10.2.2
CanIf
	10.2.3
CanIfPrivateCfg
	10.2.4
CanIfPublicCfg
	10.2.5
CanIfInitCfg
	10.2.6
CanIfTxPduCfg
	10.2.7
CanIfRxPduCfg
	10.2.8
CanIfRxPduCanIdRange
	10.2.9
CanIfDispatchCfg
	10.2.10
CanIfCtrlCfg
	10.2.11
CanIfCtrlDrvCfg
	10.2.12
CanIfTrcvDrvCfg
	10.2.13
CanIfTrcvCfg
	10.2.14
CanIfInitHohCfg
	10.2.15
CanIfHthCfg
	10.2.16
CanIfHrhCfg
	10.2.17
CanIfHrhRangeCfg
	10.2.18
CanIfBufferCfg

	11
Changes to release 4.0.3
	11.1
Deleted SWS items
	11.2
Replaced SWS items
	11.3
Changed SWS items
	11.4
Added SWS items

	12
Not applicable requirements

