
 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

Document Title Virtual Functional Bus
Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 056
Document Classification Auxiliary

Document Version 2.2.0
Document Status Final
Part of Release 4.0
Revision 3

Document Change History
Date Version Changed by Change Description
13.10.2011 2.2.0 AUTOSAR

Administration
 Enhanced graphical notation (NV

data interface support)
 Introduction of a mixed conversion

block
 Clarification of the use of AUTOSAR

services within compositions

11.10.2010 2.1.0
AUTOSAR
Administration

 Improved description of port
compatibility and data conversion
scaling

 Improved consistency to other
AUTOSAR specifications

 Fixed outdated graphical notation in
images

 Reformulated description of timing
extension

30.11.2009 2.0.0
AUTOSAR
Administration

 Introduction of new concepts (Variant
Handling, Integrity and scaling at port,
Mode Management, Triggers, Access
to NVM, access to parameters and
calibrations)

 Synchronization with the current
AUTOSAR Meta-Model (new
interfaces and SwComponentTypes)

 Timing extension moved to the
AUTOSAR_TPS_TimingExtensions
document

 Legal disclaimer revised

23.06.2008 1.0.1
AUTOSAR
Administration

Legal disclaimer revised

14.11.2007 1.0.0
AUTOSAR
Administration

Initial Release

1 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

Disclaimer

This specification and the material contained in it, as released by AUTOSAR, is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only.
For any other purpose, no part of the specification may be utilized or reproduced, in
any form or by any means, without permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR specifications may contain exemplary items (exemplary reference
models, "use cases", and/or references to exemplary technical solutions, devices,
processes or software).

Any such exemplary items are contained in the specifications for illustration purposes
only, and they themselves are not part of the AUTOSAR Standard. Neither their
presence in such specifications, nor any later documentation of AUTOSAR
conformance of products actually implementing such exemplary items, imply that
intellectual property rights covering such exemplary items are licensed under the
same rules as applicable to the AUTOSAR Standard.

2 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

Table of Content

1 Introduction to this document .. 5

1.1 Contents... 5
1.2 Prereads... 5
1.3 Relationship to other AUTOSAR specifications.. 6
1.4 Structure and conventions of this document .. 7

1.4.1 Structure of this document .. 7
1.4.2 Specification Items .. 7

2 The Virtual Functional Bus .. 8
3 Overall mechanisms and concepts.. 11

3.1 Components... 11
3.2 Port-Interfaces.. 13
3.3 Ports... 16

3.3.1 Port Types... 16
3.3.2 Port Compatibility .. 21
3.3.3 Data Type Policies .. 22

3.4 Connectors... 22
3.4.1 Unconnected Ports.. 24

3.4.1.1 Unconnected Sender/Receiver Ports .. 24
3.4.1.2 Unconnected Client/Server Ports .. 24

3.5 Compositions versus atomic components .. 25
3.6 Relationship between the VFB and the ECU Software Architecture........... 26
3.7 Kinds of software components ... 29
3.8 Resources for components and “runnables” .. 32

3.8.1 Background... 32
3.8.2 The “runnable” concept ... 33
3.8.3 The implementation of a component and the role of the RTE 35

3.9 Interface Conversion Blocks... 35
3.9.1 Supported Conversions and Mappings ... 36

3.9.1.1 Interface Element Mapping.. 36
3.9.1.2 Linear Data Conversion... 36
3.9.1.3 Data Mapping .. 37
3.9.1.4 Mixed Conversion.. 37

3.10 Variant Handling... 37
3.10.1 Binding Times ... 38
3.10.2 Choosing a Variant.. 38
3.10.3 Variability .. 38

3.10.3.1 Software Component Variability .. 39
3.10.3.2 Port Variability ... 39
3.10.3.3 Connector Variability ... 39

4 Communication on the VFB... 40
4.1 Introduction .. 40
4.2 Error types.. 40
4.3 Sender-Receiver communication ... 40

4.3.1 From the point of view of the sender ... 42
4.3.2 From the point of view of the receiver ... 44
4.3.3 Multiplicity of sender-receiver.. 47
4.3.4 Filtering between the sender and the receiver 49
4.3.5 Concurrency and ordering within a sender-receiver connector 49

3 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

4.4 Client-Server communication ... 50
4.4.1 From the point of view of the client.. 53
4.4.2 From the point of view of the server .. 54
4.4.3 Multiplicity of client-server ... 55
4.4.4 Ordering and concurrency within a client-server connector 55

4.5 Remarks regarding the identification of communication partners............... 57
5 Timing Extensions ... 58

5.1 Main Purpose of Timing Extensions for AUTOSAR.................................... 58
5.2 Timing in different phases of the AUTOSAR methodology......................... 59

6 Interaction with hardware .. 60
6.1 Introduction .. 60
6.2 Microcontroller Abstraction Layer (MCAL).. 61
6.3 ECU Abstraction... 62
6.4 Sensor-Actuator Software Component... 62
6.5 Complex Device Driver Component ... 62

7 AUTOSAR Services .. 64
7.1 Introduction .. 64
7.2 VFB Representation ... 64

7.2.1 Selection of a communication mechanism .. 65
7.2.2 Location of a Service... 65
7.2.3 Distribution of Requests to Remote Services...................................... 65
7.2.4 Platform dependent types ... 66
7.2.5 Configuration... 67

7.3 List of Services... 67
8 Mode Management ... 68

8.1 Introduction .. 68
8.2 Defining modes .. 68
8.3 Communicating modes... 69
8.4 Mode-managers: components that control modes 70
8.5 Components that depend on modes .. 71

9 Port Groups ... 73
10 Measurement and Calibration.. 74

10.1 Calibration .. 74
10.1.1 Port-based calibration ... 74

10.1.1.1 Pure single instantiation .. 75
10.1.1.2 Multiple instantiation of the involved software components........... 75
10.1.1.3 Multiple instantiation of the involved calibration components 76

10.1.2 Private calibration.. 77
10.2 Measurement ... 77

11 Interaction with Non-AUTOSAR-ECUs .. 79
11.1 Introduction .. 79
11.2 Problems of interaction... 79
11.3 Description of interaction.. 80

12 References .. 82

4 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

1 Introduction to this document

1.1 Contents

This specification describes the AUTOSAR Virtual Functional Bus (VFB).

1.2 Prereads

This document is one of the high-level conceptual documents of AUTOSAR.
Useful pre-reads are the “Main Requirements” [3]. Documents that can be consulted
in parallel to this document include the “Methodology” [1] and the “Glossary” [2].

5 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

1.3 Relationship to other AUTOSAR specifications

Main Requirements (054)

RTE and BSW SpecificationsMetamodel and Template
Specifications

Conceptual specifications

Methodology
(068)

Layered Software
Architecture (053) Glossary

(055)
Virtual Functional Bus

(056)

List of Basic Software
Modules (150)

Specification of
RTE (084)Software Component

Template (062)

BSW SWSBSW SWSBSW SWS

Figure 1.1: Relationship of the Specification of the “Virtual Functional Bus” to
other AUTOSAR specifications1

Figure 1.1 illustrates the relationship between the specification of the “Virtual
Functional Bus” and other major AUTOSAR specifications. The specification of the
“Virtual Functional Bus” is part of a set of specifications describing the overall
concepts of AUTOSAR. These documents give a conceptual overview of AUTOSAR
and serve as requirements to the more detailed specifications. The conceptual
specifications include:

 the “Methodology” [1] describes the method that is used when building
systems with AUTOSAR

 the specification of the “Virtual Functional Bus”
 the “Layered Software Architecture” [5]
 and the “List of Basic Software Modules” [4]

These conceptual documents are refined and made concrete into a large set of
AUTOSAR specifications, which can be grouped into:

6 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

1 The numbers in brackets refer to the Document Identification Number of the specification.

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

 The specifications defining the AUTOSAR meta-model and templates: In this
group the “Software Component Template” [6] is directly influenced by the
VFB concepts.

 The specifications defining the AUTOSAR basic-software modules and the
RTE: In this group the “Specification of RTE” [7] is directly influenced by the
VFB concepts.

1.4 Structure and conventions of this document

1.4.1 Structure of this document

Figure 1.2 shows the structure of this document. The first chapters define the VFB
concepts generically and should be read in order. The last chapters define and
clarify specific issues, such as the interaction with hardware, mode-management,
AUTOSAR-Services or Measurement and Calibration. The chapter about the timing
model is for information purposes only and is not part of the standard. It is made
available to show the early conceptual work to model time aspects in the VFB.

The Virtual Functional Bus

Overall mechanisms and concepts

Communication on the VFB

Generic Chapters
Interaction with Hardware

Mode Management

AUTOSAR Services

Measurement and Calibration

Interaction with non‐AUTOSAR ECU‘s

Timing Model for the VFB

Figure 1.2: Structure of the document

1.4.2 Specification Items

The requirements on the “Virtual Functional Bus” resulting from this document are
listed explicitly as numbered “specification items”. Each specification item has a
unique ID of the form “VFB-XXX” and has the following format:

VBF-XXX : Example of a specification Item

7 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

2 The Virtual Functional Bus

Figure 2.1 shows an overview out of the “Methodology” specification [1]. Figure 2.2
illustrates the “Configure System” activity out of the methodology (top-left), which
focuses on the VFB.

System

ECU

Component

Configure
System

.XML.XML

System
Configuration

Input :
System

.XML.XML

System
Configuration
Description

:System

Extract
ECU-Specific

Information

.XML.XML

ECU
Extract of
System

Configuration
:System

Configure
ECU

.XML.XML

ECU
Configuration

Description

Generate
Executable

.exe.XML.XML

ECU
related

templates

.exe

ECU
Executable

Component
related

templates

Implement
Component

Implemented
Component

Figure 2.1: Overview of the AUTOSAR Methodology [1]

8 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

ECU I

Virtual Functional Bus

AUTOSAR
SW-C 1

AUTOSAR
SW-C 2

AUTOSAR
SW-C 3

AUTOSAR
SW-C n...

ECU II

AUTOSAR
SW-C 1

AUTOSAR
SW-C3

AUTOSAR
SW-C 2

ECU n

AUTOSAR
SW-C n

RTE

Basic
Software

RTE

Basic
Software

RTE

Basic
Software

...

Tool Supporting development
of SW components

System Constraint
DescriptionECU

Descriptions

Gateway

SW-C
Description

SW-C
Description

SW-C
Description

SW-C
Description

ECU
Description

ECU
Description

Flex Ray CAN

Figure 2.2: Detailed view on the activity “Configure System”

In AUTOSAR, an application is modeled as a composition of interconnected
components. This is illustrated in the top half of Figure 2.2 (labeled “VFB view”). The
“virtual functional bus” is the communication mechanism that allows these
components to interact. In a design step called “Configure System”, the components
are mapped on specific system resources (ECUs). Thereby, the virtual connections
between the components are mapped onto local connections (within a single ECU) or
on network-technology specific communication mechanisms (such as CAN or
FlexRay frames). Finally, the individual ECUs in such a system can be configured.
The concrete interface between the individual components and between the
components and the Basic Software (BSW) [5][4] is called the Run-Time
Environment (RTE) [7]
A component encapsulates complete or partial automotive functionality. Components
consist of an implementation and of an associated formal software-component
description (defined in the “Software Component Template” specification [6]). The
9 of 82 Document ID 056: AUTOSAR_EXP_VFB

- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

concept of the virtual functional bus allows for a strict separation between
applications and infrastructure. The software components implementing the
application are largely independent of the communication mechanisms through which
the component interacts with other components or with hardware (such as sensor or
actuators). This fulfills AUTOSAR’s goal of relocatability (see also AUROSAR “Main
Requirements” [3]).
With this the complete communication of a system can be specified including all
communication sources and sinks. The VFB can therefore be used for plausibility
checks concerning the communication of software components. The communication
connections and the connected software components are saved in one description,
which will be used for the next process steps (mapping, software configuration, etc.).
The VFB specification needs to provide concepts for all infrastructure-services that
are needed by a component implementing an automotive application. These include:

 Communication to other components in the system
 Communication to sensors and actuators in the system (see Chapter 6,

Interaction with hardware)
 Access to standardized services, such as reading to or writing from non-

volatile ram (see Chapter 7, AUTOSAR Services)
 Responding to mode-changes, such as changes in the power-status of the

local ECU (see Chapter 8, Mode Management)
 Interacting with calibration and measurement systems (see Chapter 10)

10 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

3 Overall mechanisms and concepts

3.1 Components

The central structural element used when building a system at the VFB-level is the
“component”. A component has well-defined “ports”, through which the component
can interact with other components. A port always belongs to exactly one component
and represents a point of interaction between a component and other components.

Figure 3.1 shows an example of the definition of a component-type called
“SeatHeatingControl”, which controls the heating element in a seat based on several
information sources.
In this example, the component-type requires the following information as input:

 whether a passenger is sitting on the seat (through the port “SeatSwitch”)
 the setting of the seat temperature dial (through the port “Setting”)
 and some information from a central power management system (through the

port “PowerManagement”), which could decide to disable seat heating in
certain conditions.

It controls
 the DialLED that is associated with the seat temperature dial (port “DialLED”)
 and the heating element (through the port “HeatingElement”).

Finally, the component can be calibrated (port “Calibration”), needs the status of the
ECU on which the component runs (port “ecuMode”) and requires access to local
non-volatile memory (port “nv”).

SeatHeatingControl

SeatSwitch

PowerManagement

HeatingElement

DialLED

Setting

nv

Calibration

ecuMode

Figure 3.1: Example of the definition of the component-type
“SeatHeatingControl” with eight ports

11 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

Figure 3.2 shows an example of the definition of a sensor-actuator component2
called “SeatHeating”. This component inputs the desired setting of the heating
element (through the port “Setting”) and directly controls the seat heating hardware
(through the port “IO”).

SeatHeating

Setting
IO

Figure 3.2: Example of the definition of a component-type “SeatHeating” with
two ports

A single component can implement both very simple but also very complex
functionality. A component may have a small number of ports providing or requiring
simple pieces of information, but can also have a large number of ports providing or
requiring complex combinations of data and operations.
AUTOSAR supports multiple instantiation of components. This means that there can
be several instances3 of the same component in a vehicle system. Figure 3.3 shows
how two instances of the “SeatHeatingControl” component-type are used to control
the left front seat, respectively the right front seat. These components will typically
have their own separate internal state (stored in separate memory locations) but
might for example share the same code (in as far as the code is appropriately written
to support this).

SHCFrontLeft:
SeatHeatingControl

SeatSwitch

PowerManagement

HeatingElement

DialLED

Setting

nv

Calibration

ecuMode

SHCFrontRight:
SeatHeatingControl

SeatSwitch

PowerManagement

HeatingElement

DialLED

Setting

nv

Calibration

ecuMode

Figure 3.3: Example showing the multiple instantiation of the component
“SeatHeatingControl” as “SHCFrontLeft” and “SHCFrontRight”

2 Chapter 6, Interaction with hardware, defines the exact purpose of the “sensor-actuator” components

12 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

3 Dynamic instantiation at runtime is not in scope of the present release of AUTOSAR.

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

[VFB001] ⌈ At configuration time, the component’s ports are known⌋ ()

[VFB002] ⌈ Components interact with each other through their ports only⌋ ()

[VFB084] ⌈ A component-type can be instantiated multiple times on the VFB⌋ ()

3.2 Port-Interfaces

A port of a component is associated with a “port-interface”. The port-interface
defines the contract that must be fulfilled by the port providing or requiring that
interface.

[VFB003] ⌈ At configuration time, each port is typed by exactly one port-interface⌋ ()

Table 3.1 lists the port-interfaces supported by AUTOSAR.

13 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

Kind of port-
interface

Comment Further reading

Client-server The server is provider of operations and
several clients can invoke those
operations.

this section and
Section 4.4

Sender-receiver A sender distributes information to one or
several receivers, or one receiver gets
information (events) from several
senders4. A mode manager can notify
mode switches to one or several
receivers

this section and
Section 4.3

Parameter Interface A parameter interface allows software
components access to either constant
data, fixed data or calibration data. It
should be noted that depending on the
type of access (i.e. fixed, const or
standard respectively) that compatibility
rules apply. For example a parameter
interface which uses a fixed
implementation policy will not be allowed
to connect to a port of a Parameter SW
Component if the provider uses a
variable data implementation (i.e.
standard). The reason is plain and
simple; The application will use a #define
(pre-compile value optimization) and so
will not take actual values from the
Parameter SW component at runtime.

Chapter 10

Non volatile Provide element level access (read only
or read/write) to non volatile data as
opposed to NV block access.

Section 4.3
Data Interface

Trigger Interface The trigger interface allows software
components to trigger the execution of
other software components. The purpose
of the trigger interface is to allow for fast
response times with regards to the
occurrence of a trigger which might occur
sporadic or at a variable cycle time.

Section 3.8

Example: triggering based on the crank
shaft and cam shaft position.

14 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

4 In the context of AUTOSAR, sending, receiving and distributing of events is seen as part of the
sender-receiver communication pattern.

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

Mode Switch
Interface

The mode switch interface is used to
notify a software component of a mode.
The mode manager provides modes that
can be used by mode users to adjust the
behavior according to modes or
synchronize activities to mode switches.

Section 8

Table 3.1: The kinds of port-interfaces provided by AUTOSAR.

A client-server interface defines a set of operations that can be invoked by a client
and implemented by a server. Figure 3.4 shows an example of the definition of a
simple client-server interface. The interface “HeatingElementControl” defines a
single operation called “SetPower” with a single ingoing argument called “Power”.
The operation can return an application error called “HardwareProblem”.

<<ClientServerInterface>>
HeatingElementControl

ApplicationErrors:
HardwareProblem

Operations:
SetPower(
IN ARGUMENTint32 Power,
POSSIBLEERROR=HardwareProblem)

Figure 3.4: Example of a client-server interface “HeatingElementControl” with
a single operation

A sender-receiver interface defines a set of data-elements that are sent and received
over the VFB. Figure 3.5 shows the definition of a simple sender-receiver interface
called “SeatSwitch” containing a single data-element called “PassengerDetected”.

<<SenderReceiverInterface>>
SeatSwitch

DataElements:
boolean PassengerDetected

Figure 3.5: Example of a Sender-Receiver Interface “SeatSwitch” with a single
data-element

[VFB004] ⌈ At configuration time it is known whether the port-interface is a client-

server interface or a sender-receiver interface⌋ ()

[VFB005] ⌈ At configuration time, it is known which operations a client-server

interface contains⌋ ()

15 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

[VFB006] ⌈ At configuration time, it is known which data-elements a sender-receiver

interface contains⌋ ()

3.3 Ports

As defined before, the ports of a component are the interaction points between
components.
A port of a component is either a “PPort” or an “RPort”. A “PPort” provides the
elements defined in a port-interface. An “RPort” requires the elements defined in a
port-interface. A port is thus typed by exactly one port-interface5.

3.3.1 Port Types

A single port-interface can type several different ports.

[VFB007] ⌈ At configuration time, it is known whether a component’s port is a PPort

or an RPort⌋ ()

Table 3.2 shows the port-icons for the various combinations and summarizes the
semantics of those ports.

Kind of Port Kind of Interface Service

Port
Port-Icon and description

RPort sender-receiver No

The component reads/consumes
values of data-elements

PPort sender-receiver No

The component provides values of
data-elements

RPort sender-receiver Yes

The component reads/consumes
values of data-elements from an

16 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

5 This implies that a port only provides one elementary communication pattern (either sender-receiver
or client-server). This is necessary because otherwise a reasonable connection of ports is not
possible. Additionally only in this way a reasonable modeling e.g. of data flow is possible.

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

AUTOSAR service
PPort sender-receiver Yes

The component provides values of
data-elements to an AUTOSAR

service
RPort client-server No

The component requires (=uses or
invokes) the operations defined in

the interface
PPort client-server No

The component provides
(=implements) the operations

defined in the interface
RPort client-server Yes

The component requires (=uses or
invokes) the operations defined in
the interface from an AUTOSAR

service
PPort client-server Yes

The component provides
(=implements) the operations
defined in the interface to an

AUTOSAR service
RPort parameter (this

includes requiring
calibration data)

No

The component requires parameter
data (either fixed, const or variable)

PPort parameter (this
includes
providing
calibration data)

No

17 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

The component provides parameter
data (either fixed, const or variable)

RPort parameter (this
includes requiring
calibration data)

Yes

The component requires parameter
data (either fixed, const or variable)

from an AUTOSAR service
PPort parameter (this

includes
providing
calibration data)

Yes

The component provides parameter
data (either fixed, const or variable)

to an AUTOSAR service
RPort Trigger No

Component with a trigger sink
PPort Trigger No

Component with a trigger source
RPort Trigger Yes

Component with a trigger sink from
an AUTOSAR service

PPort Trigger Yes

Component with a trigger source to
an AUTOSAR service

RPort mode switch No

Component with a mode switch user
PPort mode switch No

18 of 82 Document ID 056: AUTOSAR_EXP_VFB

- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

Component with a mode switch
manager

RPort mode switch Yes

Component with a mode switch user
with an AUTOSAR service

PPort mode switch Yes

Component with a mode switch
manager with an AUTOSAR service

RPort NV data No

The component requires access to
non volatile data provided by an NV

Block Component
PPort NV data No

The NV Block Component provides
access to non volatile data

RPort NV data Yes

The component requires access to
non volatile data provided by an

AUTOSAR service
PPort NV data Yes

The component provides access to
non volatile data to an AUTOSAR

service

Table 3.2: Semantics of the port-icons

19 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

When a PPort of a component provides a client-server interface, the component to
which the port belongs provides an implementation of the operations defined in the
interface.
In the example of Figure 3.6, the component “SeatHeating” implements the operation
“SetPower” and makes it available to other components through the port “Setting”.
The component “SeatHeatingControl” uses the operation “SetPower” and expects
such an operation to be available through the port “HeatingElement”.

SeatHeatingControl

SeatSwitch

PowerManagement

HeatingElement

DialLED

Setting

SeatHeating

Setting
IO

<<Interface>>
HeatingElementControl

ApplicationErrors:
HardwareProblem

Operations:
SetPower(
IN ARGUMENTint32 Power,
POSSIBLEERROR=HardwareProblem)

Calibration

ecuModenv

Figure 3.6: Example showing the use of the Client-Server Interface
“HeatingElementControl” to type the Port ”HeatingElement” of the component
“SeatHeatingControl” and the port “Setting” of the component “SeatHeating”

A component providing a sender-receiver interface generates values for the data-
elements defined in the interface.
In the example of Figure 3.7, the component “SeatSwitch” generates values for the
Boolean value “PassengerDetected” through its port “Switch”. Similarly, the
component “SeatHeatingControl” can read the data-element “PassengerDetected”
through its port “SeatSwitch”.

20 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

SeatHeatingControl

SeatSwitch

PowerManagement

HeatingElement

DialLED

Setting

SeatSwitch

nv

IO

Calibration

<<Interface>>
SeatSwitch

DataElements:
boolean PassengerDetected

ecuMode

Switch

Figure 3.7: Example showing the use of the Sender-Receiver Interface
“SeatSwitch” to type the Port “SeatSwitch” of the components

“SeatHeatingControl” and the port “Switch” of the component “SeatSwitch”

3.3.2 Port Compatibility

A receiver port can only be connected to a compatible provider port. Table 3.3 gives
an overview over the compatibility of ports. The following comments describe some
basic compatibility rules. Please note that this overview only contains some basic
rules. A more comprehensive and detailed description is given in the “Software
Component Template” [6].

(1) For each element in the interface of the require port there must be a
compatible element in the interface of the provide port. The mapping is
realized implicitly via the shortname of the element or explicitly via explicit
mappings (see section 3.9.1).

(2) For mode switch ports all elements of the interface of the provide port must
have a corresponding element in the interface of the require port.

(3) Require and provide port are both service ports or are both not service ports.
(4) For connecting ports with Sender Receiver Interface, Parameter Interface or

Non Volatile Data Interface, corresponding elements must have compatible
implementation policies (see “Software Component Template” [6]).

For example, a Require Port that expects a fixed parameter can only be
connected to a Port that provides a fixed Parameter. This is because this fixed
data may be used in a compilation directive like #if and only macro #define (fixed
data) can be compiled in this case.

21 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

Kind of
port

 Require Port

 Kind of
interface

Sender
Receiver

Parameter Non
Volatile
Data

Client
Server

Trigger Mode
Switch

Sender
Receiver

yes
(1,3,4)

no yes
(1,3,4)

no no no

Parameter yes
(1,3,4)

yes
(1,3,4)

yes
(1,3,4)

no no no

Non
Volatile
Data

yes
(1,3,4)

no yes
(1,3,4)

no no no

Client
Server

no no no yes
(1,3)

no no

Trigger no no no no yes
(1,3)

no

Provide
Port

Mode
Switch

no no no no No yes
(1,2,3)

Table 3.3: Compatibility of kinds of ports
(numbers in this table correspond to the compatibility rules described before)

3.3.3 Data Type Policies

Data elements on a port are typed properly as part of the port interface description of
a SWC. However it should be noted though that the data type of elements to be
communicated between two ports can be overridden by the integrator by overriding
the data type using a data type policy which allows for reducing the number of bits to
be transmitted over a physical network. The data type has to be compatible and
usually result in loss of precision and introduce quantization artifacts.

3.4 Connectors

During the design of an AUTOSAR system, ports between components that need to
communicate with each other are hooked up using assembly-connectors. Such an
assembly-connector connects one RPort with one PPort.

22 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

SHCFrontLeft:
SeatHeatingControl

SeatSwitch

PowerManagement

HeatingElement

DialLED

Setting

SHDialFrontLeft:
HeatingDial

Position

LED

SHCFrontRight:
SeatHeatingControl

SeatSwitch

PowerManagement

HeatingElementDialLED

Setting

SHDialFrontRight:
HeatingDial

Position

LED

PM:
anagementPowerM

SHFrontLeft:
SeatHeating

SeatHeating

WindowDefrost

SHFrontRight:
SeatHeating

PowerStatus

nv

IO

IOIO

IO

Calibration

Calibration

nv

ecuMode

ecuMode

23 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

Figure 3.8: Example of the use of eight assembly-connectors to connect the
ports of seven components

For the case of sender-receiver communication, the presence of an assembly-
connector represents the fact that the data generated by the PPort on the connector
is transmitted to the RPort. In the example of Figure 3.8 the data generated on the
PPort “DialLED” of the component “SHCFrontRight” (of component-type
“SeatHeatingControl”) is transmitted to the RPort “LED” of the component
“SHDialFrontRight” (of component-type “HeatingDial”).
For the case of client-server communication, an invocation of the operations provided
on a PPort is possible from the components that have an RPort connected to this
PPort. In the example of Figure 3.8: when the component “SHDialFrontLeft” invokes
an operation through the port “Position”, this operation will be invoked on the port
“Setting” of the component “SHCFrontLeft”.
Both for sender-receiver communication and for client-server communication, one
PPort can be connected to one or more RPorts (for multicast sending and multiple
clients connected to a server, respectively). In the example of Figure 3.8, the data
coming out of the port “SeatHeating” of the component “PM” is sent to both
components “SHCFrontLeft” and “SHCFrontRight”.
Furthermore, in sender-receiver communication one or more PPorts can be
connected to one RPort (e.g. for information collected from different senders in a
single receiver).
The exact communication behavior that such a connector represents depends on the
kind of operations or data that is provided and/or required on the ports that the
connector connects.

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

[VFB008] ⌈ At configuration time, all components instantiated on the VFB are known

⌋ ()

[VFB009] ⌈ At configuration time, all communication possibilities between

components on the VFB are modeled through the presence of connectors.
Communication between ports not connected through such a connector is not

possible.6⌋ ()

[VFB010] ⌈ An assembly-connector connects exactly one PPort with exactly one

RPort⌋ ()

[VFB113] ⌈ An assembly-connector can connect one PPort with one RPort only if

their port types, interfaces and attributes, characterizing their communication abilities,

are compatible with each other7.⌋ ()

3.4.1 Unconnected Ports

The occurrence of an unconnected port is not per se a design mistake. It can be valid
when an application provider for the data element is absent and the default init value
is good enough to operate with or it could be that an end point was removed from the
system because it is subjected to variability (See section Variant Handling).

3.4.1.1 Unconnected Sender/Receiver Ports

If a PPort of a sender receiver communication is unconnected then the data being
published by the provider will not appear on the VFB and as such will not be
accessible by any other software component.
If an RPort of a synchronous sender receiver communication is unconnected then the
RPort shall provide the initial value for the data that is being accessed. For
asynchronous communication the client must behave as if the provider times out.

3.4.1.2 Unconnected Client/Server Ports

If a PPort of a client server communication is not connected the server will not
receive any requests.

6 The AUTOSAR-Services are an exception to this rule. The connections related to AUTOSAR-
Services are made later in the AUTOSAR-method, namely during ECU-configuration. See AUTOSAR
Services, for a deeper explanation.

24 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

7 The exact meaning of “compatibility” is defined in the Software Component Template [6].

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

If an RPort of a client server communication is unconnected then the VFB behavior
shall be as if the server did not respond in time and the client experiences a
TIME_OUT.

3.5 Compositions versus atomic components

A sub-system consisting of usages of components and connectors is packaged into a
“composition”. In AUTOSAR, the usage of a component-type within a composition is
called a “prototype”. A composition is itself a component-type and can have its own
ports. Compositions can be used as structuring elements to build up hierarchical
systems with an arbitrary number of hierarchies.
Figure 3.9 shows the definition of the composition “SeatHeatingControlAndDrivers”.
This composition contains three prototypes: the prototype “SHDial” (of component-
type “HeatingDial”), the prototype “SHC” (of component-type “SeatHeatingControl”)
and the prototype “SH” (of component-type “SeatHeating”). The composition itself is
a component-type and has seven ports.

SHC:
SeatHeatingControl

SeatSwitch

PowerManagement

HeatingElement

DialLED

Setting

SHDial:
HeatingDial

Position

LED

SH:
SeatHeating

SeatHeatingControlAndDrivers

SeatSwitch

PowerManagement

IO

IO

nvIODial IOHeatingCalibration

ecuMode

Figure 3.9: Example of the definition of the Composition
“SeatHeatingControlAndDrivers”

Figure 3.10 shows the use of a composition as a component-type. Figure 3.10
essentially shows another composition containing three prototypes: the prototypes
“SHFrontLeft” and “SHFrontRight” (both of type “SeatHeatingControlAndDrivers”) and
the prototype “PM” of type “PowerManagement”.
A component-type in AUTOSAR is either a “composition” or “atomic”. A composition
is defined through interconnected prototypes (as in Figure 3.9). An atomic
component cannot be further decomposed into smaller components.

When designing a composition, service ports have to be specially handled. The
configuration of AUTOSAR services takes place in the ECU configuration phase by
adding the necessary service components and connecting them to the flattened set

25 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

of atomic software components which require access to the services. As a
consequence, compositions are not allowed to have ports for use with services. For
more details about services, see AUTOSAR Services.

SHFrontLeft:
SeatHeatingControlAndDrivers

SeatSwitch PowerManagement

PM:
PowerManagement

SeatHeating

WindowDefrost

PowerStatus

SHFrontRight:
SeatHeatingControlAndDrivers

SeatSwitch PowerManagement

IODial

IODial

nv

nv

IOHeating

IOHeating

Calibration

Calibration

Figure 3.10: Example of the use of the Composition
“SeatHeatingControlAndDrivers”

3.6 Relationship between the VFB and the ECU Software
Architecture

When a sub-system consisting of atomic components and assembly-connectors is
deployed on a network of ECUs, all atomic components are mapped on an ECU.
The corresponding connectors between the components are implemented by intra- or
inter-ECU communication mechanisms.
In the example of Figure 3.11, atomic components “SHDialFrontLeft” and
“SHCFrontLeft” are mapped onto “ECU1”, whereas the atomic component “PM” is
mapped onto “ECU3”. This implies that the connectors between the first two
components are handled within ECU1, whereas the connection between the
component “SHCFrontLeft” and the component “PM” will run through a network
connection between ECU1 and ECU3.

26 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

VFB

PM:
PowerManag

ement

RTE1

BSW1

RTE3

BSW3

ECU1 ECU3

SHDialFrontL
eft:

HeatingDial

SHCFrontLeft:
SeatHeatingControl

SHDialFront
Right:

HeatingDial

SHCFrontRight:
SeatHeatingControl

HFront
Left:

SeatHe
ating

HFront
Right:
SeatHe
ating

PM:
PowerManag

ement

SHDialFrontL
eft:

HeatingDial

ECU2

…
…

…
IO IO IOIO

IO

…

…

SHCFrontLeft: SeatHeatingControl

nv ec
uM

o
d

e

C
al

ib
ra

tio
n

…

P
o

w
e

r
M

an
ag

e
m

e
n

t

…

Figure 3.11: Example illustrating the mapping of a composition of components on
three ECUs.

Figure 3.12 shows the standard component-view on the AUTOSAR layered software
architecture, which is the architecture of a single AUTOSAR ECU. The “AUTOSAR
Interface” of a component refers to the full set of ports of a component (as defined
before, a port-interface characterizes a single port of a component). A “Standardized
AUTOSAR Interface” is an AUTOSAR Interface which is standardized by AUTOSAR.
Typically, an AUTOSAR service will have such a “Standardized AUTOSAR
Interface”. For a formal definition of the term AUTOSAR Interface and Standardized
AUTOSAR Interface see specification “Layered Software Architecture” [5].

27 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

ECU-Hardware

AUTOSAR Runtime Environment (RTE)

Actuator
Software

Component

Application
Software

Component

Sensor
Software

Component

Application
Software

Component

..............

AUTOSAR
Software

Basic Software

AUTOSAR
Software

Component
AUTOSAR
Interface

AUTOSAR
Interface

AUTOSAR
Interface

AUTOSAR
Interface

Standardized
Interface

Microcontroller
Abstraction

Standard
Software

Standardized
AUTOSAR
Interface

Services

Standardized
Interface

ECU
Abstraction

AUTOSAR
Interface

Standardized
Interface

Complex
Drivers

AUTOSAR
Interface

Interface

VFB & RTE
relevant

Standardized
Interface

Standardized
Interface

Communication

Standardized
Interface

Operating
System

RTE
relevant

S
ta
n
d
a
rd
ize
d

In
te
rfa
c
eBSW

relevant

Possible interfaces
inside

Basic Software
(which are

not specified
within AUTOSAR)

Note: This figure is incomplete with respect to the possible interactions between the layers.

Figure 3.12: Component-View on the AUTOSAR layered software architecture

Figure 3.13 shows what a possible concrete architecture of ECU1 out of the example
of Figure 3.11 might look like. The atomic software components that are mapped on
ECU1 are hooked into the Run-Time Environment that is generated for ECU1. This
Run-Time Environment will typically implement the local connections between the
local components “SHCFrontLeft” and “SHDialFrontLeft”.
In addition, the Run-Time Environment has the responsibility to route information that
is coming from or going to remote components. In the example, the port “Power
Management” is routed to the communication stack in the underlying basic software.
The RTE also hooks up the component “SHCFrontLeft” to local standardized
AUTOSAR services, such as the local non-volatile memory (through the port “nv”)
and information on the local state of the ECU (“through the port “ecuMode”).

28 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

RTE

AUTOSAR
Software

Basic Software

Standardized
Interface

Microcontroller
Abstraction

Standardized
Interface

Communication

Standardized
Interface

Standardized
Interface

Operating
System

S
ta

n
d

ard
ized

In
te

rfa
c

e

SHDialFrontLeft:
HeatingDial

SHCFrontLeft: SeatHeatingControl

nvec
uM

o
d

e

C
al

ib
ra

tio
n

IOP
o

w
e

r
M

an
ag

e
m

e
n

t

N
vR

am
M

an
ag

er

E
C

U
 S

ta
te

M
an

ag
er

ECU Abstraction
Component

IO

NvBlockSw
Component

ECU-Hardware

Figure 3.13: Example showing the relationship between the components mapped
on an ECU and the ECU Software Architecture

3.7 Kinds of software components

This section gives a final overview of the various kinds of components that are
relevant to AUTOSAR.

Kind Description Illustration

29 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

Application
software
component

The Application Software
Component is an Atomic Software
Component that implements (part
of) an application. It can use all
AUTOSAR communication
mechanisms and services. The
Application Software Component
interacts with sensors or actuators
through a Sensor-Actuator Software
Component.

<<ApplicationSw
ComponentType>>

Sensor-
actuator
software
component

The Sensor-Actuator Software
Component is an Atomic Software
Component that handles the
specifics of a sensor and/or
actuator. It directly interacts with
the ECU-Abstraction (this is
illustrated by a port called “IO”). See
Chapter 6, Interaction with
hardware.

<<SensorActuatorSw
ComponentType>>

IO

Parameter
software
component

A Parameter Software Component
provides parameter values. These
can be fixed data, const or variable.
This Software Component allows for
data access to either fixed data or
calibration data. See chapter 10.

<<ParameterSw
ComponentType>>

.
Composition A Composition Software Component

encapsulates a collaboration of
Software Components, thereby
hiding detail and allowing the
creation of higher abstraction levels.

software
component

<<CompositionSw
ComponentType>>

Through delegation connectors a
composition software component
explicitly specifies, which ports of
the internal components are visible
from the outside.
Composition Software Components
are a specialized type of Software
Components, e.g. they can be part
of further Composition Software
Components.

30 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

Service
Proxy

The Service Proxy SW Component
is responsible for distribution of
modes throughout the system. Once
deployed each ECU should have a
copy of every instance of this
software component type. However
at the VFB level only one is
necessary.

software
component <<ServiceProxySw

ComponentType>>

Service
software
component

A Service Software Component
provides standardized services
through standardized interfaces. To
provide these services, this
component may interact directly with
certain other basic-software
modules (this is represented by the
double arrow). See Chapter 7.

<<ServiceSw
ComponentType>>

ECU-
abstraction
software
component

The ECU-Abstraction Software
Component provides access to the
ECU’s specific IO capabilities.
These services are typically
provided through client-server
PPorts and are used by the sensor-
actuator software components. The
ECU-abstraction may directly
interact with certain other basic-
software modules (this is
represented by the double arrow).
See Chapter 6, Interaction with
hardware.

<<EcuAbstractionSw
ComponentType>>

IO

Complex
device driver
software
component

The Complex Device Driver
Software Component generalizes
the “ECU-abstraction component”.
It can define ports to interact with
other components in specific ways
and can also interact directly with
other basic-software modules. The
purpose of the Complex Device-
Driver Software Component is
described further in Section 6.5
Complex Device Driver.

<<ComplexDeviceDriverSw
ComponentType>>

31 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

NVBlock
software
component

The NV Block Software Component
allows SWC-S access to non
volatile data. Specifically this block
allows for the modeling of the NV
data at the VFB level. It is the
responsibility of the NV Block to
map individual NV data elements to
NV Blocks and to interact with the
NV Manager in the BSW. The
behavior of this component is to be
generated based on the port
services in the RTE.

<<NvBlockSw
ComponentType>>

Table 3.4: Kinds of software components

3.8 Resources for components and “runnables”

3.8.1 Background

The VFB is a system modeling and communication concept, which allows
components to be distributed in a network of ECUs. The interaction possibilities
between a component and other components are described through the component's
ports and their associated interfaces, which define the operations, data-elements,
mode-groups or calibration parameters that are provided or required by the
component. Through the same communication mechanisms, the component can
interact with standardized AUTOSAR services (available on each properly configured
AUTOSAR ECU) or the ECU-specific IO capabilities (available on the specific ECU
on which the appropriate hardware is present and to which the correct devices are
connected).
However, implementations of components need access to additional resources,
mainly memory (the component’s implementation typically needs memory to maintain
its internal state) and CPU-power (the component’s implementation contains code
that must be executed according to a certain timing schedule or in response to
certain events).
As these scheduling issues are closely linked to the communication needs of the
component, the RTE must provide both aspects. Therefore, the RTE must provide a
complete environment for the component, including:

 Appropriate mechanisms through which the component’s implementation (for
example in a programming language like “C”) can:

o Provide values for data-elements in the component’s PPorts
o Read/Consume values for data-elements in the component’s RPorts
o Access the component’s calibration parameters
o Provide implementations for the operations in the component’s PPorts
o Invoke operations provided by other components through the

component’s RPorts
o Etc.

32 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

 Appropriate mechanisms through which the component’s implementation (for
example “C” functions) is invoked in response to:

o Fixed-time schedules (for example: many components need to run
“cyclically”)

o Events related to the communication mechanisms (for example some
components might want to be notified upon the reception of data from
other components)

o Events related to physical occurrences (i.e. a triggered event).
 Appropriate mechanisms through which the component’s implementation can

access other common resources, such as instance-specific memory
 As an AUTOSAR ECU typically is a multi-threaded environment, the RTE

must also provide all common synchronization mechanisms
This section introduces the AUTOSAR construct that addresses these various needs:
the “runnable”.

3.8.2 The “runnable” concept

The “atomicity” of an atomic software-component refers to the fact that the
component cannot be divided in smaller components and must therefore be mapped
onto a single ECU.
For example, Figure 3.14 shows a logical component view of the mapped
application-software component “SHCFrontLeft” on a specific ECU. Through its ports,
the component expresses which information it requires from and provides to other
components.

SHCFrontLeft: SeatHeatingControl

RTE

nvec
uM

o
d

e

C
a l

ib
ra

tio
n

P
o

w
e

r
M

an
ag

e
m

e
n

t

S
ea

tS
w

itc
h

S
et

tin
g

Figure 3.14: Component-view on the interaction between an atomic software
component and the RTE on an ECU

However, the actual implementation of a component consists of a set of “runnable
entities”8 (also more simply called “runnables”). A “runnable entity” is a sequence of
instructions (provided by the component) that can be started by the Run-Time
Environment9.

8 The usage of the word “runnable” is for example consistent with the “Runnable” Interface in Java:
“the Runnable Interface should be implemented by any class whose instances are intended to be
executed by a thread”.

33 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

9 In certain cases, optimization of the RTE could cause a runnable entity to be started directly from
another software-component without real intervention of the RTE. For example a synchronous call to

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

SHCFrontLeft: SeatHeatingControl

Implementation

M
ai

nC
yc

lic

S
et

tin
g

nvecC
a

P
o

M
auM

o
d

e

lib
ra

tio
n

w
er

na
g

em
en

t

S
e

RTE

at
S

w
itc

h

S
et

tin
g

Rte_Read_SeatSwitch_PassengerDetected()

Figure 3.15: Implementation-view on the interaction between an atomic software
component and the RTE on an ECU

Figure 3.15 shows an example of this. Logically, the component-type
“SeatHeatingControl” has defined six ports, through which it wants to interact with
other components or services. The implementation of the component on the other
hand contains two runnables: “MainCyclic” and “Setting”. The component requires
the runnable “MainCyclic” to be invoked cyclically (at a specific rate) by the RTE.
The component requires that the second runnable “Setting” is invoked whenever
another component invokes an operation on the PPort “Setting”. The implementation
of the runnables will use the operations provided by the RTE to actually for
communication via the ports of the component. E.g. to access the information
“PassengerDetected” provided to the component through the RPort “SeatSwitch” the
runnable “Setting” will invoke the operation
“Rte_Read_SeatSwitch_PassengerDetected()”.
In general, an atomic software-component can provide just one runnable or it can
contain a large number of runnables. A runnable can be a very simple piece of code
that executes a simple algorithm or a complex program.

[VFB043] ⌈ At configuration time, the runnables of a component must be known⌋ ()

34 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

a component that runs on the same ECU and can execute within the context (task) of the caller could
be implemented as a direct function-call into the calling component.

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

A “runnable entity” runs in the context of a "task"10. The task provides the common
resources to the “runnable entities” such as a context and stack-space. Typically the
operating-system scheduler has the responsibility to decide during run-time when
which “task” can run on the CPU (or multiple CPUs) of the ECU. There are many
standard strategies that schedulers can use (e.g. priority-based preemptive, round-
robin, time-triggered…).

3.8.3 The implementation of a component and the role of the RTE

In conclusion, the implementation of an atomic software-component essentially
consists of three aspects:
A model of the component (using the concept of ports and port-interfaces) that is
used to hook up the component with other components at the VFB-level
An implementation (“code”). The implementation of the component is structured in
“runnables” which are pieces of code that can be executed by the RTE
A software-component description [6] in which the component describes
requirements on the RTE. These include:

 Which runnables need to be called cyclically
 Which runnables need to be called in response to events related to

communication or other sources
 How the component would like to access the information in its ports or invoke

the operations that it requires from other components
 Any other resources the component requires, such as AUTOSAR services or

local memory
In a properly configured AUTOSAR ECU, the RTE (in cooperation with a properly
configured basic software), will satisfy the component’s requirements. The RTE will
for example:

 Ensure that the runnables are invoked at the correct times
 Provide the functions that the component needs to access data or invoke

operations
 Provide all other resources the component needs

3.9 Interface Conversion Blocks

When software components are developed by different organizations (e.g. two
distinct suppliers delivering code to an OEM who integrates the SWCs) it may
happen that two or more SWCs have the same engineering semantics but are
represented with different data types. Instead of requiring the integrator to develop
specific SWC conversion software the VFB will add a conversion block to a connector
connecting Sender Receiver ports with mismatched interface definitions at the VFB
level. The addition of this conversion block allows the designer to add which
elements of the provided port map to the elements of the required port as well as
provide the conversion semantics. In the RTE these mappings will be described with
the PortInterfaceMappings. This construct maps an interface pair to the connection.

35 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

10 Within this discussion, it is not necessary to make a distinction between “processes” (heavy-weight
tasks which are often protected from other processes through memory-management) and “threads”
(light-weight tasks running inside a process). The “task” refers to both.

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

[VFB140] ⌈ If a P-port specified by a Sender Receiver Interface is connected to an

R-port with an incompatible interface then a conversion block must be added for the
connector to allow the designer to describe the conversion. Incomplete conversion

will not be allowed⌋ ()

3.9.1 Supported Conversions and Mappings

3.9.1.1 Interface Element Mapping

In case two interfaces only differentiate in the shortnames of their elements, then a
mapping can be provided which maps the elements of the one interface to the
elements of the other interface.

3.9.1.2 Linear Data Conversion

If the elements of two interfaces are logically equivalent but the range and resolution
are different, then the linear conversion factor can be calculated out of the semantical
information of the elements. In this case the data semantics is described using a
CompuMethod with category IDENTICAL, LINEAR, SCALE_LINEAR or
SCALE_LINEAR_AND_TEXTTABLE, where the

 IDENTICAL category means that the value of the physical representation is
equal to the internal representation and the

 LINEAR, SCALE_LINEAR or SCALE_LINEAR_AND_TEXTTABLE categories
mean that the internal representation is calculated out of the physical
representation by means of a linear formula (factor * external value + offset)
per range in one or more ranges (SCALE_LINEAR only).

[VFB141] ⌈ A conversion block involving either IDENTICAL, LINEAR,

SCALE_LINEAR or SCALE_LINEAR_AND_TEXTTABLE data types shall use the
COMPU-METHODS for the respective data types to determine the conversion

function.⌋ ()

The following examples show the conversion of data that is described using
CompuMethods with category LINEAR and IDENTICAL:

1) A software component (A) that provides the vehicle speed in m/s with
resolution 0,1 m/s can be connected with a component (B) that requires the
vehicle speed in m/s with a resolution of 0,01 m/s if both components assume
a linear relation between physical representation and internal representation.
The foll
internal (A) = 10 * physical as m/s
internal (B) = 100 * physical as m/s

36 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

internal (B) = 100 * physical as m/s
 = 100 * (internal (A) / 10)
 = 10 * internal (A)
Example: Component A provides the value 100 (internal representation for 10
m/s). Multiplying the value with 10 we get the value 1000 as input for
component B (internal representation of 1000 in component B corresponds to
10 m/s)

2) A special case of data scaling is the conversion of units: Software component
(A) that provides the vehicle speed in m/s can be connected with a component
(B) that requires the vehicle speed in km/h if both components assume a
linear or identical relation between physical representation and internal
representation.
internal (A) = physical as m/s
internal (B) = physical as km/h

internal (B) = physical as km/h
 = 3,6 * physical as m/s
 = 3,6 * internal (A)
Example: Component A provides the value 10 (internal representation for 10
m/s). Multiplying the value with 3,6 we get the value 36 as input for component
B (internal representation of 36 corresponds to 36 km/h which is equivalent to
10 m/s)

3.9.1.3 Data Mapping

In case the data semantics is described using a list of values (CompuMethod with
category TEXTTABLE) or partially described using a list of values (CompuMethod
with category SCALE_LINEAR_AND_TEXTTABLE), then an explicit mapping needs
to be given for each individual value.

[VFB142] ⌈ A conversion block involving TEXTTABLE or

SCALE_LINEAR_AND_TEXTTABLE data types shall use explicit mapping of each

RPort table element to a PPort table element.⌋ ()

3.9.1.4 Mixed Conversion

It is possible in a conversion block to mix both linear conversion and texttable
mappings (SCALE_LINEAR_AND_TEXTTABLE).
An example would be a conversion block consisting of an input value of type uint8
which is linearly converted in the range 0..200 and has 2 texttable mappings for the
values 254 “SensorNotAvailable” and 255 “SensorFault”.

3.10 Variant Handling

To support variation in automotive applications AUTOSAR has a mechanism referred
to as variant handling. This allows designers at many levels to put together a super

37 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

set of functionality and choose which actual pieces of this functionality will be
enabled in a specific variant. The place in the design where a choice is given
between 2 or more variants is called a variation point. The time at which a choice
must be made is called the latest binding time. Binding earlier is always allowed.

3.10.1 Binding Times

AUTOSAR supports several discreet binding times:
 System Design
 Code Generation
 Pre Compile
 Link Time
 Post Build

Although variability could exist at function design time and run-time AUTOSAR
explicitly prohibits the later and does not provide support for the function design time.

3.10.2 Choosing a Variant

To choose a variant the AUTOSAR designer must assign no later than the required
binding time one of a predefined set of values to a Software System Constant or to a
Post Build Variant Criterion. The Post Build Variant Criterion is used for enabling
Post Build binding times while the Software System Constant can be used for
everything that has a latest binding time of Link Time.

By assigning a value to either a Software System Constant or Post Build Variant
Criterion the AUTOSAR system can determine which variant is enabled for each
Variation Point in the design by evaluating either a Software System Dependant
Formula (uses System Constants to determine if a Variation Point is enabled or
disabled) or by evaluating one or more a Post Build Variant Conditions (uses Post
Build Variant Criterions to determine if a Variation Point is enabled or disabled). If the
Variation Points Formula or Condition evaluates to true then the element in the
design which was conditional upon the Variation Point will exist in the design.

Typically designers will define collections of validated assignments for Software
System Constants and Post Build Variant Criterions. These collections of value
assignments are also known as Predefined Variants. Predefined Variant Sets are
typically defined at a composition level like a subsystem or system design. A
complete variant for a system therefore typically exists of a collection of Predefined
Variants binding every Variation Point in the system.

3.10.3 Variability

Although variability exists within the internal behavior of Software Components from
a VFB perspective only three elements of variability are of interest:

 Software Component Variability
 Port Variability

38 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

 Connector Variability.

3.10.3.1 Software Component Variability

The existence of a Software Component either Atomic or Composition can be
subjected to the existence of a Variation Point. If a Variation Point exists and its
conditions (see section choosing a Variant) evaluate to true then the Software
Component exists and its behavior will be scheduled and its ports produce output. If
the Component however is removed from a composition (I.e. application or system
design) then all Software components which are connected to the removed Software
Component will have ports which will be considered unconnected and will behave as
unconnected ports (see section Unconnected Ports for more details) and non of the
behavior of the removed component will execute. Software Components variability in
a Composition can be bound as late as Post Build.

3.10.3.2 Port Variability

Ports on a Software Component can also be subjected to variability. However their
latest binding time is Pre Compile time and as such their variability can only be
constrained using Software System Constants. If a Port is removed from the design
then any connecting port must behave as an unconnected port. In a properly
configured system if a Port is “disabled” the connector connecting to this port should
also be subjected to the same variability conditions.

3.10.3.3 Connector Variability

A connection between two ports can be subjected to variability with a binding time of
Post Build. If a connector is “disabled” then the two ports at either end of the
connector must behave as unconnected ports.

39 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

4 Communication on the VFB

4.1 Introduction

This section specifies the communication mechanisms of the VFB, which atomic
software components can use to communicate with each other.
Section 4.2, Error types, defines the types of errors that can appear in both Sender-
Receiver and Client-Server communication models.
Section 4.3, Sender-Receiver communication, defines the functional semantics of
sender-receiver communication in more detail. This section also defines the
communication attributes that define the exact characteristics of the communication
patterns provided by AUTOSAR. Some details related to mode-switches are covered
in Chapter 8, Mode Management.
Section 4.4, Client-Server communication, does the same for client-server.

4.2 Error types

Errors are divided into two simple classes: infrastructure errors and application
errors.
Infrastructure errors are returned when the infrastructure between the sender and the
receiver, for sender-receiver communication, or between the client and the server, for
client-server communication, failed. A typical example of an infrastructure error is a
timeout. In case the client does not receive a response from the server within a
certain amount of time (because the communication channel between client and
server is not available or a message was lost) a “time-out” infrastructure error is
returned to the client. The possible infrastructure errors are standardized by
AUTOSAR.
Application errors are application-specific and must be defined as part of the sender-
receiver interface, for sender-receiver communication, or client-server interface, for
client-server communication.

4.3 Sender-Receiver communication

The sender-receiver pattern enables the distribution of information where a sender
distributes information to one or several receivers or a receiver receives information
from several senders. Figure 4.1 gives an example how sender-receiver
communication is modeled in the AUTOSAR VFB View.

40 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

Receiver 1

Sender

Receiver 2

Figure 4.1: Example of sender-receiver communication at VFB level

In this example there are two assembly-connectors connecting the PPort of the
component “Sender” with the RPort of “Receiver 1” (respectively “Receiver 2”).
The sender-receiver interface associated with those ports consists of data-elements
that define the data that is sent by the sender and received by the receivers.
The type of a data-element can be something very simple (like an "integer") or can be
a complex (potentially large) data type (e.g. an array or a string). The transfer of a
value, even of a complex data type, is always logically atomic.

[VFB011] ⌈ At configuration time, the data-type of each data-element in a sender-

receiver interface is known⌋ ()

A sender can provide a new value for each data-element defined in the Sender-
Receiver Interface. The precise semantics depend on whether the data-element is
defined to be of type “last-is-best” or whether the data-element is “queued”.

[VFB012] ⌈ At configuration time, each data-element in a sender-receiver interface

must be defined to have either “queued” or “last-is-best” semantics⌋ ()

Each data-element with “last-is-best” semantics can be configured to support
invalidation. If the “last-is-best” data-element supports invalidation, the sending
component can indicate the receivers that the data-element is “invalid” (see attributes
RECEIVE_INVALID and CAN_INVALIDATE in Table 4.1 and Table 4.2).

[VFB101] ⌈ At configuration time, it must be known for each “last-is-best” data-

element in a sender-receiver interface, whether the data-element supports the ability

to be “invalid” or not⌋ ()

41 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

4.3.1 From the point of view of the sender

Each data-element with “last-is-best”-semantics in a PPort of a sender-component
always has a current value. The initial current value of such a data-element can be
defined through configuration of the VFB (see attribute “INIT_VALUE” in Table 4.1
and in Table 4.2). The sending component can change the current value of the data-
element, thereby overwriting the previous value of the data-element.
When a data-element has “queued” semantics, the consecutive values produced by
the sender are stored in a queue. The initial queue has length zero (no values are
available). Each time the sender produces a new value, this value is added to the
queue, until an arbitrary and configurable number of entries has been reached.
A sending component does not know the identity and the number of receivers. Its
behavior is independent of the presence or absence of receivers. Sender-receiver
communication allows for a strong decoupling between sender and receiver. The
sender just provides the information and the receivers decide autonomously when
and how to use this information. It is the responsibility of the communication
infrastructure to distribute the information. In certain cases, however, the sending
application wants to be notified when the expected quality-of-service of the
communication system between the sender and its receivers is known to be violated
(see attribute “TRANSMISSION_ACKNOWLEDGEMENT” in Table 4.1).

[VFB103] ⌈ At configuration time, it must be known for each data-element in a PPort

of a component, whether the component wants to be informed on successful

transmission or timed-out transmission⌋ ()

Table 4.1 gives an overview of the communication attributes that a sender can use to
control the behavior of the sender-receiver communication pattern. These attributes
are defined at the level of a single data-element or mode-group.

Kind of data-
element or
modeGroup Realization in

software component
template [6]

Attribute/Feature
Name

 Description
m

od
e

ev
en

t

da
ta

This attribute defines the
initial value of the data-
element, seen by all
receivers of this data-
element. This initial value
can be overwritten by the
attribute INIT_VALUE on
the receiver side.

attribute “initValue”
of
“UnqueuedSenderCo
mpSpec”

no
t

av
ai

la
bl

e
12

INIT_VALUE

re
qu

ire
d

no
t

av

ai
la

bl
e

11

42 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

11 The initial condition of a queued data-element is the empty queue

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

attribute
“canInvalidate” of
“NonqueuedSenderC
omSpec” no

t
av

ai
la

bl
e

no
t

av
ai

la
bl

e In case this feature is
used, the sender can
invalidate a data-element.

op
tio

na
l

CAN_INVALIDAT
E

MODE_QUEUE_L
ENGTH

“queueLength” of
ModeSwitchSenderC
omSpec

This attribute defines the
size of the input queue of
the of mode switch
notifications to a mode
machine. no

t
av

ai
la

bl
e

no
t

av
ai

la
bl

e

re
qu

ire
d

Normally, a sender must
make an explicit function-
call to send a data-
element or change the
current mode. “Implicit
sending” means that a
runnable can modify a
data-element while it is
running. After the
runnable

IMPLICIT_SEND “DataWriteAccess”

no
t

av
ai

la
bl

e

no
t

av
ai

la
bl

e terminates, the RTE will
make the latest value
available to receivers of
the

op
tio

na
l

data-element.

TRANSMISSION_
ACKNOWLEDGE
MENT

 “TransmissionAckno
wledgementRequest”
with attribute
“timeout” or
“ModeSwitchedAckR
equest” with attribute
“timeout”

The sending component is
informed when the data
has been sent correctly
OR when the mode switch
has been executed by the
RTE. If the timeout
occurs before this
acknowledgement, the
sender is informed of an
infrastructure error. op

tio
na

l

op
tio

na
l

op
tio

na
l

“isQueued” in
“VariableDataPrototy
pe”

When this parameter is
TRUE, the data-element is
queued (=used for
“events”). When this
parameter is false, the
data-element has “last-is-
best” semantics. F

A
LS

E
 IS_QUEUED

T
R

U
E

no
t

av
ai

la
bl

e

Table 4.1: Communication Attributes for a Sender

Details can be found in the “Software Component Template” [6] and the “SWS RTE”
[7].

43 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

12 The initial mode is defined as part of the ModeDeclarationGroup

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

4.3.2 From the point of view of the receiver

A receiver can access the value of each data-element defined in the Sender-
Receiver Interface associated with the RPort of the receiving component.
For a data-element that has “last-is-best” semantics, the receiver has access to the
latest value of that data-element. Alternatively, the receiver is informed that the data-
element is “invalid” (in case the data-element supports this feature). The receiver
may have access to the livelihood of the data-element, whether its value is valid or
outdated. The livelihood is defined by configuring the VFB (see attributes
“TIME_FOR_RESYNC” and “ALIVE_TIMEOUT” in Table 4.2).

[VFB014] ⌈ At configuration time, the initial value of each last-is-best data-element in

an RPort of a component must be defined⌋ ()

[VFB015] ⌈ The current value of a data-element seen by a receiving component,

when a sending-component has not provided a value, is the configured initial value of

the RPort⌋ ()

[VFB017] ⌈ The initial value of the receiving component can be “invalid” if the data-

element supports this⌋ ()

[VFB094] ⌈ At configuration time, it must be known for each last-is-best data-element

in a RPort of a component whether the component wants to get informed of the

livelihood of the data-element⌋ ()

[VFB095] ⌈ A receiver that gets informed of the livelihood of a data-element must

configure the period of time between receptions. This threshold determines the

livelihood of the data-element: actual or outdated⌋ ()

For a data-element that has “queued” semantics, the receiver has essentially one
operation: to obtain the next data-element from the queue. In case the queue is
empty, this fact is returned to the receiver. Otherwise, the next data-element value is
read and taken from the queue (in other words, this is a “consuming read”). The
capacity of the queue is defined by configuring the VFB (see attribute
“RECEIVER_QUEUE_LENGTH” in Table 4.2).

[VFB019] ⌈ The queue associated with a data-element with “queued” semantics is

initially (before a sender has added values to the queue) empty⌋ ()

[VFB020] ⌈ Logically, the queue is located on the receiver’s side⌋ ()

[VFB021] ⌈ At configuration time, the size of the receiver’s queue must be known⌋ ()

[VFB022] ⌈ The receiver’s queue has first-in first-out semantics⌋ ()

44 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

[VFB023] ⌈ When the receiver’s queue is full and a new value arrives, this value is

dropped (“queue overflow”)⌋ ()

[VFB024] ⌈ The receiver can be notified of “queue overflow” if it indicates that it

desires this notification at configuration time⌋ ()

Table 4.2 gives an overview of the communication attributes that a receiver can use
to control the behavior of the sender-receiver communication pattern. These
attributes are defined at the level of a single data-element or mode-group.

Kind of data-
element or
modeGroup Attribute Name

Attribute
Value

 Description

da
ta

ev
en

t

m
od

e

INIT_VALUE

“ initValue” of
“NonqueuedR
eceiverComS
pec”

A receiver can optionally
specify its own initial value,
which overrides the initial
value of the sender. op

tio
na

l

no
t

av

ai
la

bl
e

13

no
t

av
ai

la
bl

e
14

RECEIVE_INVALID

“handleInvalid
” in
“NonqueuedR
eceiverComS
pec”

The receiver can specify how
it wants to respond when an
invalid value for a data-
element is received.

op
tio

na
l

no
t

av
ai

la
bl

e

no
t

av
ai

la
bl

e

TIME_FOR_RESYN
C

“ resyncTime”
of
“NonqueuedR
eceiverComS
pec”

Time allowed for
resynchronization of data
values after current data is
lost, e.g. after an ECU reset.

no
t

av
ai

la
bl

e

no
t

av
ai

la
bl

e

op
tio

na
l

The receiver specifies the
maximum period of time it
may take to receive a data-
element If the data-element is
not received within the defined
period, the data-element is
"outdated"

“aliveTimeout”
of
“UnqueudRec
eiverComSpe
c”

no
t

av
ai

la
bl

e

no
t

av
ai

la
bl

e

ALIVE_TIMEOUT

op
tio

na
l

13 The initial condition of a queued data-element is the empty queue

45 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

14 The initial mode is defined as part of the ModeDeclarationGroup

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

Normally, a runnable wishing
to read a data-element needs
to do this through an explicit
call to the RTE. The
“IMPLICIT_RECEIVE” means
that the runnable has access
to the value of the data-
element that was available at
the time of the start of the
runnable. It does not need to
invoke an explicit API to fetch
the latest data. op

tio
na

l

no
t

av
ai

la
bl

e

no
t

av
ai

la
bl

e

“dataReadAcc
ess”

IMPLICIT_RECEIVE

“DataReceive
dEvent” and
“SwcModeSwi
tchEvent”

This implies that the receiving
applications is notified by the
RTE when a new value of a
data-element or a mode-
switch is received. This
implies that the receiving
component does not need to
poll but can wait for new data-
elements or mode-changes.

RECEIVE_EVENT

op
tio

na
l

op
tio

na
l

op
tio

na
l

IS_QUEUED
“isQueued” in
“VariableData
Prototype”

When this parameter is TRUE,
the data-element is queued
(=used for “events”). When
this parameter is false, the
data-element has “last-is-best”
semantics. F

A
LS

E

T
R

U
E

no
t

av
ai

la
bl

e
RECEIVER_QUEUE
_LENGTH

 queueLength
of
QueuedRecei
verComSpec

Received values are added to
the end of the queue and
values are read (consuming)
from the front of the queue
(i.e. the queue is first-in-first-
out). If the queue is full and
another data-item arrives this
data item is discarded and the
receiver is informed by error-
handling mechanisms. no

t
av

ai
la

bl
e

re
qu

ire
d

no
t

av
ai

la
bl

e

46 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

Attribute
“ DataFilter”
of
“ReceiverCom
Spec”

A data-element is only passed
to the application if the value
of the data-element passes
the conditions of the filter. If a
newly received value for a
data-element does not pass
the conditions of the filter, the
value is
discarded (not added to queue
for a queued receiver OR the
current value of the data-
element is not updated for a
last-is-best receiver). The VFB
provides the same filters as
defined in OSEK-COM V3.0.3,
P.12. These filters can only be
applied to data-elements that
are of a primitive type. op

tio
na

l

op
tio

na
l

no
t

av
ai

la
bl

e

FILTER

“swImplPolicy
”

When using a parameter
interface one can type the
mechanism for access of the
parameters. This will allow for
precompile time and compile
time optimization when
dealing with fixed data
exchange op

tio
na

l

no
t

av
ai

la
bl

e

no
t

av
ai

la
bl

e SW_IMPLEMENTATI
ON_POLICY

Table 4.2: Communication Attributes for a Receiver

Details can be found in the “Software Component Template” [6] and the “SWS RTE”
[7].

4.3.3 Multiplicity of sender-receiver

The term multiplicity discussed in the following two sections applies to the connection
multiplicity of a specific port to one or more other ports; it does not concern two
distinct ports of a software component that are connected separately to two distinct
ports of another software component.
Both types of sender receiver semantics (i.e. an interface with data-elements of “last-
is-best” semantics or queued semantics), support either 1:n communication (1 sender
and n receivers, with n  0) or n:1 communication (n senders and 1 receiver). The
sender(s) own(s) the current value of the data-element. With last-is-best semantics
the receiver(s) of the data always want(s) to have only the most recent value of the
data. It is the responsibility of the communication system to ensure the availability of
the correct value of the data-element on the receiver side. This is illustrated in Figure
4.2.

47 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

use A

SW Component 2

publish A

SW Component 1

A

SW Component 1

AA AA

AA

SW Component 1

AA

Model View

Implementation View

publish A

SW Component 2
Communication System

...

use A

AA
AA

transport A

SW Component n

AA

read value
of A from

communication
system

SW Component n

...

Figure 4.2: ”last-is-best” semantics. The upper part of this figure shows the
model view of ”last-is-best” semantics. The lower part shows the implementation

view of this pattern.

From an implementation point of view, this could for example be realized by having
the sender periodically broadcast the latest value of the data-element to its receivers.
A second implementation could only communicate actual changes to the receivers.
With “queued” semantics and n:1 communication the queue is on the receiving side
and several senders can add values for the data-element to the single receiver’s
queue. To avoid a further increase of the complexity of the VFB mechanisms all other
communication scenarios like n:m (n, m > 1) are not possible.

[VFB025] ⌈ For sender-receiver with data-elements with “last-is-best” semantics,

both 1:n as well as n:1 communication (1 sender to multiple receivers) is possible⌋ ()

[VFB026] ⌈ For sender-receiver with data-elements with “queued” semantics, both

1:n (1 sender to multiple receivers) and n:1 communication (multiple senders to 1

receiver) is possible⌋ ()

[VFB120] ⌈ For sender-receiver with ModeDeclarationGroups, only 1:n (1 sender to

multiple receivers) is possible⌋ ()

As a component can have an arbitrary number of ports, a single component can
assume the role of sender and/or receiver.

48 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

4.3.4 Filtering between the sender and the receiver

The VFB supports the definition of an additional filter that sits between the sender
and the receiver.
A new value for a data-element is only passed to the application if the value passes
the conditions of the filter. If a newly received value for a data-element does not
pass the conditions of the filter, the value is rejected (not added to queue for a
queued data-element) or the current value of the data-element is not updated (for a
last-is-best data-element).
The filters supported by AUTOSAR are the same as the filters, defined in OSEK-
COM V3.0.3. These filters can only be applied to data-elements that are of a primitive
type.

[VFB027] ⌈ At configuration time, the optional filter on the receiver’s side must be

defined⌋ ()

[VFB028] ⌈ The filter has the capabilities of the OSEK-COM V3.0.3 filter⌋ ()

In the VFB-model, such a filter can only be specified on the receiving side. This
however, does not imply that the filtering should be implemented in the RTE on the
receiving side. For example, consider the case that a receiving filter indicates that
the receiver only wants to receive data-elements above a certain value, and that this
is the only receiver hooked up to the sender over a network-connection. In that case
a good implementation might decide to filter out the unnecessary values before they
are sent onto the network (on the sending side).

4.3.5 Concurrency and ordering within a sender-receiver connector

Within the scope of a single connector between a sender’s PPort and a receiver’s
RPort, the VFB preserves the order of the consecutive changes to the value of a
specific data-element.

49 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

sender VFB receiv er

data-element d1 changed

data-element d1 changed 2nd time

data-element d2 changed

data-element d1 changed

data-element d2 changed

data-element d1 changed 2nd time

Figure 4. 3: concurrency and ordering within a sender-receiver connector

In the case of a queued data-element, the receiver must see the consecutive queued
values of the data-element in the same order as the order in which they were
produced by one specific sender.
In the case of “last-is-best” semantics, the semantics directly imply that “older” values
should never overwrite “newer” values.
However, the VFB does not guarantee any ordering between changes to different
data-elements (even not within the same interface) or between different connectors.
The VFB does not guarantee any ordering between mode switches of different
ModeDeclarationGroups (even not within the same interface) or between different
connectors.

[VFB029] ⌈ Within an individual sender-receiver connector, the VFB guarantees

ordering in the changes made to an individual data-element⌋ ()

4.4 Client-Server communication

A widely used communication pattern in distributed systems is the client-server
pattern, in which the server is a provider of a service15 and the client is a user of a
service. One simple example is the decoding of encrypted wireless key data
(immobilizer, see Figure 4.4).

50 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

15 Service in this chapter is a functionality which is offered by a certain AUTOSAR SW-component, the
server, and which can be used by other AUTOSAR SW-component, the clients. It is not to be mixed
up with an AUTOSAR service, defined more precisely in section 7, AUTOSAR Services.

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

«cl ient»

w irelessKeyHandling

«server»

cryptology

Communication
System

uint16:= decodeCryptedSignal(uint16 encryptedSignal)

decodeCryptedSignal

decryptedSignal

decryptedSignal

Figure 4.4: Example of a synchronous client-server communication: decoding of
encrypted wireless-key data (immobilizer).

AUTOSAR defines a very simple, static n:1 client-server mechanism (n clients and 1
server, with n  0)16. Figure 4.5 gives an example how client-server communication
for a composition of three components and two connections is visualized in the VFB
View.

Client 1

Server

Client 2

Figure 4.5: Client-server communication in the VFB View

In this example, there are 2 assembly-connectors. They hook up the RPort of “Client
1” (respectively “Client 2”) with the PPort of the server. Each port is associated with
a client-server interface, which defines the operations that are made available by the
server and used by the client.
Each operation in such a client-server interface is associated with arguments, which
are transported between the client and the server. These arguments are typed. The

51 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

16 More complex client-server architectures might involve brokers that register services provided by
servers and clients subscribing dynamically to certain services. To support the realization of such
mechanisms, AUTOSAR could be extended by defining additional AUTOSAR Services (see section 7,
AUTOSAR Services).

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

type of an argument in an operation could be a simple elementary data-type (like an
integer in a certain range or a boolean) or complex structures or arrays.17

[VFB031] ⌈ At configuration time, for each operation in a client-server interface, the

ingoing arguments, the returning arguments and their data-types must be known⌋ ()

Figure 4.6 illustrates the client-server mechanism through the VFB.

client :RPort VFB serv er :PPort

invoke operation with outgoing arguments

alt operation reaches serv er
return operation with infrastructure error

[no]

[yes]

invoke operation with outgoing arguments

alt serv er returns error
return operation with return-arguments

[no]

[yes]

alt transmission of response to client

[error]

[successful]

return operation with infrastructure-error

return operation with return-arguments

return operation with application-error

alt transmission of response to client

[error]

[successful]

return operation with infrastructure-error

return operation with application-error

Figure 4.6: Client-server on the VFB (synchronous and asynchronous)

52 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

17 Details about the data-types supported by AUTOSAR in arguments can be found in [SW-C
Template] .

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

4.4.1 From the point of view of the client

The client initiates the client-server mechanism by requesting that the server
performs a specific operation defined in the interface. The client thereby provides a
value for each of the outgoing arguments defined for that operation in the Client-
Server Interface.
Eventually, the client will either receive a valid response for the invocation or it will
receive an error in response to the invocation of the operation. A valid response
means that the server has executed the operation. In this case, the client receives a
value for each return argument defined for the operation in the interface.
In case the operations change the state of the server, they should be designed
carefully, so that the client can put the server easily in a known state or can simply
repeat the operation in case of an infrastructure error. A good rule is to make the
operation "idempotent", which means that an operation (with specific arguments) can
be repeated an arbitrary number of times.

[VFB032] ⌈ A client can invoke an operation defined in a client-server interface of

one of its RPorts⌋ ()

[VFB033] ⌈ When invoking an operation, the client must provide a value for each

outgoing argument defined for that operation⌋ ()

[VFB034] ⌈ A client will receive exactly one response for each operation invocation⌋
()

[VFB035] ⌈ The response which the client receives can be an infrastructure-error, an

application-error or a valid server-response⌋ ()

[VFB036] ⌈ When the client receives a valid server-response, it obtains a value for

each return-argument of the operation⌋ ()

[VFB037] ⌈ At configuration time, the possible application-errors that can be returned

by the server to the client for the operation must be known⌋ ()

[VFB038] ⌈ The possible infrastructure-errors provided to the client as a possible

response to a client invocation are standardized by AUTOSAR⌋ ()

Table 4.3 shows the communication attributes of a client.

Realization in
software component
template [6]

Attribute
Name

 Description

53 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

The developer of a client can choose how to
interact with the server.

CLIENT_MO
DE

 Covered indirectly by
the
“SynchronousServerC
allpoint”, the
“AsynchronousServer
Callpoint” and the
“AsynchronousServer
CallReturnsEvent”

In case the CLIENT_MODE is
“synchronous”, the runnable invoking the
operation is blocked until either a response
has been received from the server, an
infrastructure error is returned or the
configured maximal blocking time expires.
In case the CLIENT_MODE is
“asynchronous - wakeup_of_wait_point” the
runnable invoking the operation is not
blocked. A runnable can wait for the
response (from the server or because of an
infrastructure error) in a wait-point.
In case the CLIENT-MODE is “asynchronous
- activation_of_runnable entity”, the runnable
invoking the operation is not blocked. When
the response (from the server or an
infrastructure error) is available, a runnable is
started which can process the response of
the server

Attribute “timeout” of
ServerCallPoint

Time in seconds before the server call times
out and returns with an error message. How
this infrastructure-error is reported depends
on the call type (synchronous or
asynchronous).

TIMEOUT

Table 4.3: Communication Attributes for a Client

4.4.2 From the point of view of the server

A server waits for incoming invocations of operations from its clients. It performs the
requested operation using the argument-values provided by the client. On finishing
the execution of the requested operation, the server provides a value for each of the
return-arguments to the client. In case the server encountered an error, it can
alternatively return an application-error to the client instead of a set of values for the
return-arguments.
Table 4.4 shows the communication attributes of a server.

Attribute
Name

Realization in
software component
template [6]

 Description

 Attribute
“queuelength” of
ServerCompSpec

QUEUELEN
GTH

On server side, there is a queue with length
n, consuming reading and first-in-first-out
strategy. If the queue is full, and another
request arrives, the new request is discarded
and the client will receive a “time-out”
infrastructure error.

54 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

Table 4.4: Communication Attributes for Server

4.4.3 Multiplicity of client-server

For client-server communication only “n:1”-communication (n clients, n>=0, 1 server)
is supported.

[VFB039] ⌈ For client-server communication, only n:1-communication (n clients, 1

server) is supported⌋ ()

Each client RPort must be hooked up to exactly one connector, which links that
RPort to exactly one PPort of a server. A PPort of a server on the other hand can be
hooked up to an arbitrary number of client RPorts, i.e. none or more clients can
invoke operations from the same server. The implementation of the client-server
communication has to ensure, that the result of the invocation of an operation is
dispatched to the correct client.
As a component can have an arbitrary number of ports, a single component can
assume the role of both client and server.

4.4.4 Ordering and concurrency within a client-server connector

A client is not allowed to invoke a specific operation on an RPort before the previous
invocation of the same operation in the same RPort has returned (with either a valid
response from the server or with an error). This is illustrated in Figure 4.7.

client :RPort VFB

invoke operation o1

neg
invoke operation o1

operation o1 returns

Figure 4.7: Concurrent invocation of the same operation is not allowed

55 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

The client is however allowed to make an invocation of a different operation on the
same RPort before the invocation of a first operation has returned. However, in this
case, the VFB does not make any guarantees on the ordering of those invocations.
More specifically, it does not guarantee that the server sees the invocation of
operations in the same order, as the order in which the client made those
invocations. Similarly, there is no guarantee that the responses are made available
to the client in any specific order (for example, in the order in which the client invoked
those operations).
Although ordering is not guaranteed, the implementation of the VFB must make it
possible for a client to associate a response from a server (or from the infrastructure
in case an infrastructure-error is returned) with the correct corresponding invocation
made by the client.

[VFB040] ⌈ A client is not allowed to invoke a specific operation on an RPort before

the previous invocation of the same operation has returned⌋ ()

[VFB042] ⌈ It must be possible for a client to associate a response with the correct

corresponding invocation made by the client⌋ ()

Client VFB Serv er

invoke operation o1

invoke operation o2

invoke operation o2

operation o2 returns

operation o2 returns

invoke operation o1

operation o1 returns

operation o1 returns

Figure 4.8: The VFB does not support ordering between different operations

56 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

4.5 Remarks regarding the identification of communication
partners

One of the main goals of AUTOSAR is the transferability of AUTOSAR software-
components and the possibility to integrate the same component in different systems.
Therefore, the basic communication mechanisms must not depend on the identity of
the communication partners. Which component communicates by which port to which
other port of another component is specified by connectors in the VFB View and is
not visible to a software-component. If a software-component does need to know the
identity of a communication partner for specific communication scenarios the
identification has to be done by the components itself on application level by using
the general AUTOSAR communication patterns18.
By contrast, the unambiguous identification of communication partners, i.e. instances
of components and their ports/interface elements, is necessary for the
implementation of the RTE and maybe for the basic software19.

18 For future extensions like “dynamic components” and “dynamic communication” communication
partners have to provide means to be identified on application level.

57 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

19 For example, in client-server communication the result of the invocation of an operation has to be
dispatched to the correct client, i.e. the client that invoked the service. Therefore, the identity of the
client, i.e. AUTOSAR SW-component and the port, has to be known - at least at runtime - to the RTE
and the basic software.

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

5 Timing Extensions

The research field of real time systems offers a variety of timing models and
specification techniques. This section just serves as a high level introduction to the
“AUTOSAR Specification of Timing Extensions” [8] and only has the intent to make
the reader aware of a different and more detailed document which addresses the
concerns of modeling time.

5.1 Main Purpose of Timing Extensions for AUTOSAR

Compared to the specification of a system's functional behavior, the specification of
its timing behavior requires additional information to be captured. Not only the
eventual occurrence of events but also their exact timing or the concurrency of
various events become important. Therefore, in the specification of timing extensions
for AUTOSAR, the event is the basic entity. It is used to refer to an observable
behavior within a system (e.g. the activation of a RunnableEntity, the transmission of
a frame etc.) at a certain point in time.

Having to deal with different abstraction levels and views, and in order to avoid
semantic confusion with existing concepts, a new abstract type
TimingDescriptionEvent is introduced as a formal basis for the timing extensions.
Depending on the concrete model entity and the associated observable behavior,
specific timing events are defined and linked to the different views.

For the analysis of a system's timing behavior usually not only single events but also
the correlation of different events is of interest. To relate timing events to each other,
a further concept called TimingDescriptionEventChain is introduced. Hereby, it is
important to note that for the events referred to within an event chain a functional
dependency is implicitly assumed. This means that an event of a chain somehow
causes subsequent chain events.

Based on events and event chains, it is possible to express various specific timing
constraints derived from the abstract type TimingConstraint. These timing constraints
specify the expected timing behavior. As timing constraints shall be valid
independently from implementation details, they are also expressed on a abstract
level by referencing the above introduced formal basis of TimingDescriptionEvents
and TimingDescriptionEventChains.

Thus, by means of events, event chains and timing constraints defined on top of
these, a separate central timing specification can be provided, decoupling the
expected timing behavior from the actually implemented behavior. This approach
supports timing contracts for AUTOSAR systems in a top-down as well as bottom-up
approach.

58 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

5.2 Timing in different phases of the AUTOSAR methodology

Several timing views can be applied in the different phases of the AUTOSAR
methodology which provides several well defined process steps, and furthermore
artifacts that are provided or needed by these steps. Five different timing views can
be identified:

 VfbTiming – this view deals with timing information related to the interaction
of SwComponentTypes at VFB level.

 SwcTiming – this view deals with timing information related to the
SwcInternalBehavior of AtomicSwComponentTypes.

 SystemTiming – this view deals with timing information related to a System,
utilizing information about topology, software deployment, and signal mapping.

 BswModuleTiming – this view deals with timing information related to the
BswInternalBehavior of a single BswModuleDescription.

 EcuTiming - this view deals with timing information related to the
EcucValueCollection, particularly with the EcucModuleConfigurationValues.

For each of these views a special focus of timing specification can be applied,
depending on the availability of necessary information, the role a certain artifact is
playing and the development phase, which is associated with the view.

The “AUTOSAR Specification of Timing Extensions” [8] provides a concept for the
description of timing relevant information in AUTOSAR.

59 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

6 Interaction with hardware

6.1 Introduction

The goal of this section is to focus on standardized interaction between application
software-components and hardware via the Virtual Functional Bus. Hardware
interaction means access to the following three kinds of hardware (see also Figure
6.1):

 Microcontroller peripherals
 ECU electronics
 Sensors and Actuators

Actuator and sensor hardware typically needs specialized software to provide an
interface towards application software. This interface typically includes a software
interface to read sensor values, functions to set an actuator, diagnostic interfaces
etc. The integrator needs the flexibility to connect the sensors and actuators of his
system to a suitable ECU of his choice.
In some cases, even specialized hardware on the ECU is needed, and an interaction
with that hardware is not possible over the standardized basic software. In those
cases, complex device drivers may be used to interact with this specific hardware.
Complex device drivers are supplier specific.
Figure 6.1 shows the typical conversion process from physical signals to software
signals (e.g. car velocity) and back (e.g. car light). This interface architecture is taken
because of 2 reasons:

The best reuse potential (when all other integration requirements like performance
requirements are fulfilled):
o if the µC changes, it is possible to reuse the ECU Abstraction, the sensor-

actuator software-component and the application software-component
o if the ECU changes, it is possible to reuse the sensor-actuator software-

component and the application software-component
o if the sensor or actuator changes, it is still possible to reuse the application

software-component
The various modules can be developed by different experts and/or companies (µC, ECU,

Sensor/Actuator, Application)

60 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

Sensor

IO

Application 1

Application 2 Actuator

IO

ECU
Abstraction

Sensor ECU
Electronics

mC
Peripherals

MCAL

Actuator ECU
Electronics

mC
Peripherals

Electrical/Physical signal

e.g.
Car Velocity

e.g.
Car light

hardware

API 0 (standardized interface)

software

hardware

HW/SW Transition

Figure 6.1: Signal conversions between physical signals and software signals

6.2 Microcontroller Abstraction Layer (MCAL)

Access to the hardware is routed through the Microcontroller Abstraction Layer
(MCAL) to avoid direct access to microcontroller registers from higher-level software.
MCAL is a hardware specific layer that ensures a standard interface to the
components of the basic software. It manages the microcontroller peripherals and
provides the components of the basic software with microcontroller independent
values. MCAL implements notification mechanisms to support the distribution of
commands, responses and information to different processes.
Among others it can include20:

 Digital Input/Output
 Analog/Digital Converter
 Pulse Width (De)Modulator
 EEPROM
 FLASH
 Capture Compare Unit
 Watchdog Timer
 Serial Peripheral Interface
 I²C Bus

The MCAL is available on each standard microcontroller.

61 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

20 Please consult [List of BSW Modules] for the actual hardware supported by AUTOSAR.

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

6.3 ECU Abstraction

The ECU Abstraction provides a software interface to the electrical values of any
specific ECU in order to decouple higher-level software from all underlying hardware
dependencies.
Figure 6.2 shows a typical example for the ECU abstraction. In this case the service
“ECU_Set_I” is provided in 3 different ways on the ECU, but the SW-Interface is
always the same.

ECU
Abstraction

mC
Peripherals

PWM

MCAL
POWER

IC
X

software hardware

DIO

ECU
Abstraction

mC
Peripherals

POWER
IC
Y

MCAL

ADC

ECU
Abstraction

mC
Peripherals

ASIC
MCAL

current

current

current

DIO_Set()

DIO_Get()

SPI_Write()

SPI_Read()

PWM_Set()

ADC_Get()

ECU_Set_I()

ECU_Set_I()

ECU_Set_I()

Electrical/Physical signal

API 0 (standardized interface) HW/SW Transition

Figure 6.2: example “ECU_Set_I” for the ECU abstraction

6.4 Sensor-Actuator Software Component

A sensor-actuator software-component is an atomic software-component that makes
the functionality of a sensor or actuator usable for other SW-components. That
means that the sensor-actuator software-component provides the application
software-components an interface for the physical values of the sensors and
actuators. A sensor-actuator software-component is written for a concrete sensor or
actuator and uses the ECU abstraction interface.

6.5 Complex Device Driver Component

The Complex Device Driver (CDD) allows direct access to the hardware in particular
for resource critical applications.
The Complex Device Driver is a loosely coupled container, where specific software
implementations can be placed. The only requirement to the software parts is that the
interface to the AUTOSAR world has to be implemented according to the AUTOSAR
port and interface specifications.

62 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

The main task of the complex drivers is to implement complex sensor evaluation and
actuator control with direct access to the μC using specific interrupts and/or complex
μC peripherals (like PCP, TPU), e.g.

 injection control
 electric valve control
 incremental position detection

Further on the Complex Device Drivers will be used to implement drivers for
hardware which is not supported by AUTOSAR.
If for example a new communication system will be introduced in general no
AUTOSAR driver will be available controlling the communication controller. To enable
the communication via this medium, the driver will be implemented proprietarily inside
the Complex Device Drivers. In case of a communication request via that medium the
communication services will call the Complex Device Driver instead of the
communication hardware abstraction to communicate.
Another example where non-standard drivers are needed is to support ASICs that
implement a non-standardized functionality.
Last but not least the Complex Device Drivers are to some extend intended as a
migration mechanism. Due to the fact that direct hardware access is possible within
the Complex Device Drivers already existing applications can be defined as Complex
Device Drivers. If interfaces for extensions are defined according to the AUTOSAR
standards new extensions can be implemented according to the AUTOSAR
standards, which will not force the OEM or the supplier to reengineer all existing
applications.

63 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

7 AUTOSAR Services

7.1 Introduction

This section describes the handling of AUTOSAR services in the VFB view and
defines how they can be represented graphically.
AUTOSAR services depict a hybrid concept composed of Basic Software Modules as
well as of AUTOSAR Software Components. They provide standardized functionality
of the particular ECU infrastructure (AUTOSAR BSW) for Application Software
Components mapped onto it.
For the sake of simplicity sometimes the term “service” is used instead of the full term
“AUTOSAR service”. However, it has nothing to do with the service part of a client-
server interface.

ApplicationMonitor

os

<<Interface>>
OsService

…
GetActiveApplicationMode(OUT AppModeType CurrentMode)
GetApplicationState(IN ApplicationType Application, OUT
ApplicationStateType Value, ERR{E_OS_ID})
…

Figure 7.1 A software component accesses services of the Os

Figure 7.1 shows an example for requiring a service: the software component type
ApplicationMonitor has a port typed with the interface OsService. Since this client-
server interface contains operations like GetActiveApplicationMode or
GetApplicationState, the software component ApplicationMonitor is able to query the
Os about the OsApplication states or the Os start mode.
Figure 8.4 shows another example: here, the software component has access to the
ECU state manager of the ECU Basic Software and its capabilities.

7.2 VFB Representation

When it comes to model and configure AUTOSAR services main challenges are:
 the selection of appropriate communication paradigm,
 the fulfillment of prerequisites defined by RTE (see [7])
 the platform dependent types
 the configuration

64 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

7.2.1 Selection of a communication mechanism

In general AUTOSAR services communicate via Standardized AUTOSAR Interfaces.
On the VFB they are only visible at the software components requesting the services.
The corresponding counterparts in the Basic Software are not visible on the VFB, but
inherently present.
Depending on the nature of the service, all kinds of ports are possible:
The most natural way is a service offered to an AUTOSAR component via a provide
port typed by a client-server interface: This acts just like a library call returning some
data. The corresponding software component would then have a require port like in
the example shown in Figure 7.1.
A require port typed by a sender-receiver interface may be used instead, if a service
has to be activated but no immediate answer is needed.
A service may also use a require port typed by a client-server interface in order to
communicate with an AUTOSAR component. An example is a state manager, which
may need an acknowledgement of an AUTOSAR component before it can change a
state.
Instead of the previous case, a service may use the provide port typed by a sender-
receiver interface to inform AUTOSAR components about e.g. state changes, if no
immediate answer is needed.
In general, the selection of the appropriate communication paradigm is use-case
dependent. No general concept except the already defined rules is required.
However, note that many services are already predefined by the module
specifications of the AUTOSAR Basic Software service layer.
In the VFB view the usage of services by AUTOSAR components is modeled by
using a specific graphical notation (see Table 3.2) for ports.
The SWC-Template provides means to attribute the associated interfaces as well as
the software components: interfaces mark the attribute isService as true, software
components set the attribute ServiceNeeds to an appropriate value.

7.2.2 Location of a Service

The examples shown in Figure 7.1 and Figure 8.4 point to a characteristic property of
software components accessing specific AUTOSAR services. They can only be
integrated onto those ECUs which provide the binding counterparts within the
AUTOSAR Basic Software.
This means that the implementation of a service must be located on the same ECU
as the AUTOSAR component instance, which is using the service. This is required for
good performance and reliability as well as for technical reasons. For example, a
timer service is much easier to use locally on the same CPU. For that kind of services
we will have instances on different ECUs.

7.2.3 Distribution of Requests to Remote Services

A direct communication from an application software component to a remote ECU’s
AUTOSAR service is not possible. On the other hand, the concept of application and
vehicle mode management requires the distribution of mode requests from one mode

65 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

requestor to the service of a Basic Software Mode Manager (BswM) on every ECU.
To distribute the requests, service proxy SW components are used.

The service proxy SW component is similar to an application SW component. But,
the same service proxy SW component instance is copied during the system design
to several ECUs while an application SW component instance is mapped to exactly
one ECU in the system.

As a consequence, a connection between an application software component and a
service proxy SW component that is shown as 1:1 connection in the VFB will be a 1:n
connection in the system. This allows the distribution of a request to several ECUs.

VFB

RTE1

BSW1

ECU1

VCC:
VehicleClampControl

VCP:
VehicleClampProxy

VCC:
VehicleClampControl

VCP:
VehicleClampProxy

BswM Service

RTE2

BSW2

ECU2

VCP:
VehicleClampProxy

App1:
Application1

App2:
Application2

App1:
Application1

App2:
Application2

BswM Service

Figure 7.2: Example for distributing a mode request from a
VehicleClampControl to the BswM of several ECUs

7.2.4 Platform dependent types

Many data types within the Basic software are platform dependent to gain efficiency.
For example: the type of IDs can depend on the entities to be handled within a
specific ECU, which would restrict the reusability of application software components.

66 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

For source code integrated SW-C no problem occurs, because the type will be
known at compile time. For SW-C integrated as object code a problem might occur,
because the assumed type during compilation of the SW-C might differ from the type
assumed by the basic software modules during their compilation.
The solution to this problem is currently that at least parts of SW-C’s have to be
recompiled after the contract phase although they should be integrated as object
code. The integrator in this case has to define the appropriate types and provide the
appropriate header file to the suppliers of basic software and application software
components.
This results in the restriction that code optimizations within the SW-C and the basic
software shall not rely on specific platform dependent types, e.g., the size of data
types may vary between different platforms.

7.2.5 Configuration

As most parts of the Basic Software, a service may offer static configuration
parameters (i.e. configuration parameters to be defined prior to compile time) in order
to be implemented efficiently, e.g. by keeping memory usage low. In many cases
these configuration parameters will depend on the number and type of AUTOSAR
components by which the service will be used. In these cases at least parts of the
software for AUTOSAR services on a specific ECU have to be recompiled at system
integration time. Appropriate processes and tools for this have to be specified.
However, this configuration is not part of the VFB view. A good overview of the
necessary configuration process needed for AUTOSAR services is given in the
“Software Component Template” specification [6].

7.3 List of Services

As of AUTOSAR Release 4.0 services of the following BSW modules are available:
1. NVRAM Manager – NvM
2. Communication Manager – ComM
3. Diagnostic Communication Manager – Dcm
4. Diagnostic Event Manager – Dem
5. Function Inhibition Manager – Fim
6. ECU State Manager – EcuM
7. Watchdog Manager – WdgM
8. Development Error Tracer – DET
9. Crypto Service Manager – Csm

67 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

8 Mode Management

8.1 Introduction

Most software components possess specific runnables for initialization, for finalization
and for an operational or run mode. The behavior of certain software components
might depend in even more complex ways on some system modes. As these
components typically do not change their modes themselves, they need to react to
mode changes triggered by other components.
Ergo, AUTOSAR needs to support

 The definition of modes
 Communication mechanisms that allow components (including AUTOSAR

services) to exchange information about modes and mode-changes
 Scheduling mechanisms that allow components to specify how they behave in

different modes
This section briefly describes the generic mechanisms provided by AUTOSAR to
support this. These generic mechanisms can then be applied to typical automotive
use-cases, such as changes in the ECU’s power-state or in the mode of the
communication bus.

8.2 Defining modes

In AUTOSAR the mode switch notification mechanism is used to exchange modes
between components. A mode switch interface includes a so called
“ModeDeclarationGroup”.
Figure 8.1 shows an example of the definition of the mode switch interface
“ECUMCurrentMode” containing a single reference to the ModeDeclarationGroup
“ECUMMode”.

ModeDeclarationGroup
ECUMMode

s:
currentMode

>>ModeSwitchInterface
EcuMCurrentMode

<<

Figure 8.1: Example of a Sender-Receiver Interface “ECUMCurrentMode” with
a single ModeDeclarationGroup

The ModeDeclarationGroup is a set of ModeDeclarations. Within the definition of the
group, one ModeDeclaration describes the initial mode that is assumed at startup.
For example, for the case of the ECU power state, the ModeDeclarationGroup
“ECUMMode” could define the group of modes named { STARTUP_SHUTDOWN,
RUN, POST_RUN, SLEEP, WAKE_SLEEP }, with STARTUP_SHUTDOWN as the
initial mode.
The modes are mutually exclusive: at run-time, there is always one active mode in a
ModeDeclarationGroup. The initial mode of a ModeDeclarationGroup is active before
any mode switches occurred.

68 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

[VFB115] ⌈ There shall be exactly one active mode for each ModeDeclarationGroup

in a mode PPort of a component⌋ ()

[VFB116] ⌈ At configuration time, the initial mode of each ModeDeclarationGroup in

a mode switch interface is known⌋ ()

[VFB112] ⌈ At configuration time, it is known which ModeDeclarationGroup a mode

switch interface contains⌋ ()

[VFB114] ⌈ At configuration time, the modes of each ModeDeclarationGroup in a

mode switch interface are known⌋ ()

8.3 Communicating modes

Modes are transmitted via the mode switch notification mechanism.
There will be software-components that have PPorts typed by mode switch
interfaces. The components that provide these interfaces set the current mode within
the group and are therefore called “mode-managers”.
The counterparts of the “mode-managers” are components whose behavior depends
on the current mode. These modules have RPorts typed by the same interface. If
the corresponding PPorts and RPorts are connected via a connector, these
components are informed about mode-switches and the current mode set by the
mode-manager. Figure 8.2 shows an example of this for the case that the mode-
manager is an AUTOSAR Service. This figure is an extract out of the example of
Figure 3.13.

BSW

SHCFrontLeft: SeatHeatingControl

nvec
uM

o
d

e

C
al

ib
ra

tio
n

P
o

w
e

r
M

an
ag

e
m

e
n

t

RTE

E
C

U
 S

ta
te

M
an

ag
er

Figure 8.2: Example of a the communication of a mode from the “ECU State
Manager” Service-component to an application software-component

69 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

For mode switch interfaces, only 1:n communication (1 mode manager and n mode
users, with n  0) is possible. The single mode manager owns the current mode of
the ModeDeclarationGroup. The users are informed of any mode switch of the
manager.
For the mode managers of the AUTOSAR basic software, there is typically for each
mode switch based service also a sender receiver based service to request a mode.
E.g., for each ComM user one mode switch interface indicates the currently available
communication mode and a sender receiver interface is used to request the desired
communication mode. In this pattern there is usually one mode requestor that is at
the same time a mode user. Figure 8.3 shows this pattern for the ComM.

MR:ModeRequestor

RTE

BSW

ComM Service

re
q

ue
st

co
m

m
un

ic

co
m

m
un

ic
m

o
d

e

at
io

n

at
io

n

MU:ModeUser

co
m

m
un

ic
m

o
d

e
at

io
n

Figure 8.3: Example of a the communication of a mode from the “ECU State
Manager” Service-component to an application software-component

Due to the strong synchronization between a mode manager and the mode users,
mode switch communication is only supported in ECU local communication. For a
mode management that spans several ECUs, a communication pattern including
service software proxy components for the distribution of mode requests and the
BswM for the switching of modes on each ECU is recommended (see section 7.2.3).

8.4 Mode-managers: components that control modes

Entering and leaving modes is initiated by a mode manager. A mode manager might
for example be the Communication Manager, the ECU State Manager, or an
application mode manager. An application mode manager is a software-component
that provides the service of switching modes.

70 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

Such a mode manager contains a PPort typed by a mode switch interface which
references the appropriate ModeDeclarationGroup. The state of the mode managers
will be sent to other component using sender-receiver communication.
Optionally, a mode manager can have an RPort typed by a sender receiver interface
with a data element that is mapped to the same ModeDeclarationGroup to receive
mode requests from a mode requestor.

8.5 Components that depend on modes

Some software components need to be capable of reacting to state changes issued
by mode managers and adapt their behavior to the new situation. Such software-
components include an RPort typed by a mode switch interface which references the
appropriate ModeDeclarationGroup.
Figure 8.4 shows an example whereby the mode switch interface
“EcuMCurrentMode” is used to type the RPort “ecuMode” of the component
“SeatHeatingControl”. As the interface contains the ModeDeclarationGroup
“ECUMMode”, this indicates that the component “SeatHeatingControl” wants to be
notified through its port “ecuMode” whenever there is a change in the “ECUMMode”
(this could for example be the current mode of the ECU on which the component
runs). The component could disable the execution of certain runnables during the
mode STARTUP_SHUTDOWN and start initialization runnables on the transition to
the mode RUN.

71 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

SeatHeatingControl

SeatSwitch

PowerManagement

HeatingElement

DialLED

Setting

nv ecuMode

Calibration

<<ModeSwitchInterface>>
EcuMCurrentMode

ModeDeclarationGroup:
ECUMMode currentMode

Figure 8.4: Example showing the use of the mode switch Interface
“ECUMCurrentMode” to type the Port “ecuMode” of the component

“SeatHeatingControl”

[VFB117] ⌈ At configuration time, it must be known which mode switches, the

receiver of a ModeDeclarationGroup in a mode switch interface wants to be informed

of⌋ ()

[VFB119] ⌈ The transition of modes received from the same ModeDeclarationGroup

instance of a mode manager shall be perceived synchronously by all mode users⌋ ()

Since the behavior of an atomic software component is mainly determined by its set
of runnables, the component can specify its reaction to mode changes at the level of
runnables: the component can specify that certain runnables are called when mode-
switches occur or that certain runnables only run in specific modes.

72 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

9 Port Groups

There is a natural hierarchical grouping of ports given by the aggregation of port
prototypes in software components. In addition, AUTOSAR supports alternative
grouping of ports according to other aspects of the vehicle system software. This is
expressed by port groups. The main use case for port groups is to express the
required communication resources during a certain mode of operation like a limp
home mode or a diagnostic mode. These modes are usually orthogonal to the
decomposition in components and sub-components.

A port group has the following features:

 aggregated to a software component type
 list of require and provide port prototypes of the software component
 reference to the sub component port groups that are merged into the port group.

As a practical use case, a port group can reflect a ComM user in the VFB. The
configuration of communication channels associated with a ComM user can be
extracted from the VFB model automatically.

There can be independent mode managers for terminal clamp control, for power
saving, for diagnostic mode, etc. Each of these mode mangers can also have
independent partially overlapping port groups.

PowerSave

PowerSave

PowerSave

Figure 9.1: Example of the use of port groups ‘PowerSave’ that denote ports
that are required during a PowerSave mode. Not required communication

resources could be deactivated during PowerSave mode.

73 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

10 Measurement and Calibration

In embedded automotive software design, measurement means "monitoring" of ECU
internal signals, state variables and intermediate data. It's realized by reading content
of memory cells of a running ECU. In AUTOSAR such data is referred to as
measurable.
“Calibration” means the manipulation of particular calibration parameters. In general,
a calibration parameter characterizes the dynamics of a control algorithm. From a
software implementation point of view it is a variable with read-only access during the
normal operation of an ECU. Since the calibration parameter can be set by the
calibration system, it is possible to manipulate and readjust the determining factors of
closed or open control loop algorithms. Thus, calibration plays an important role
during the development process until near completion.

10.1 Calibration

AUTOSAR provides two mechanisms for calibration:
 Port-based calibration (based on the Parameter Software Components): this

mechanism is explicitly visible on the VFB and reuses the already described
port- and connector-mechanisms

 Private calibration parameters: these reside within an atomic software-
component.

10.1.1 Port-based calibration

This mechanism builds upon the common VFB patterns in the following way:
A component requiring calibration parameters defines an RPort typed by a parameter
interface.
The components that contain the actual values of the calibration parameters are
called “parameter software components”. In contrast to normal software-components,
parameter software components do not possess an internal behavior but are simple
containers that provide (calibration) parameters. They do this through a PPort typed
by a compatible parameter interface. Note that the parameter interface as well as the
parameter software components are also used for fixed data exchange and not just
used for calibration. The “implementation policy” of the elements on the port interface
determines if it is fixed, const or variable data that is being accessed from the
parameter software component.
The fact that a component is calibrated by a specific parameter software component
is expressed through a connector between the corresponding ports. The calibration
data is made available via the provide port of the parameter software component to a
corresponding require port of any software component (compatibility rules do apply).
Since in this model the parameters are visible on the virtual bus, parameter software
components are the way to express public calibration parameters.
Depending on whether the corresponding components are instantiated or not,
several different cases can be distinguished, described in the following sections.

74 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

10.1.1.1 Pure single instantiation

Figure 10.1 shows the simplest case, where a software component has access to a
particular set of calibration parameters by ‘receiving’ them via a connection from a
providing parameter software component.

Context of a ECU

<<ParameterSw
ComponentType>>

: Prm

<<SoftwareComponentType>>

: SWC

Figure 10.1 A software component has access to a calibration parameter
encapsulated in a parameter software component

It should be noted here that the parameter software components and software
components connected are residing per se on the same ECU. Actually, the
parameter software components are only representing memory containing the
encapsulated (calibration) parameter.

10.1.1.2 Multiple instantiation of the involved software components

Figure 10.2 and Figure 10.3 depict the case, where several software components
(instances) of the same or of different component-type have access to the same set
of (calibration) parameters.

Context of a particular ECU

<<ParameterS
ComponentTyp

: Prm

w
e>>

<<SoftwareComponentType>>

A : SWC 1

<<SoftwareComponentType>>

B : SWC 1

<<SoftwareComponentType>>

: SWC 2

75 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

Figure 10.2 Two software components of the same type access the same
calibration parameter encapsulated in a parameter software component

Since the (calibration) parameters need to reside on the same ECU as the software
component accessing them, the parameter software component needs to be
duplicated if the different software component instances are mapped onto different
ECUs (see Figure 10.3).

Context of ECU A

Context of ECU B

<<Paramet
Component

: Prm

erSw
Type>>

<<SoftwareC

B :

omponentType>>

 SWC

<<ParameterSw
ComponentType>>

: Prm

<<SoftwareComponentType>>

 SWCA :

Figure 10.3 Like in Figure 10.1, but the software components are mapped onto different ECUs

10.1.1.3 Multiple instantiation of the involved calibration components

Figure 10.4 shows a configuration, where different software component instances
need to access different sets of the same type of calibration parameter.
Here, it is only required – as explained above – that connected instances of
calibration and software components are integrated on the same ECU. Beyond it, the
different instances can reside on a single or different ECUs.

76 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

Context of ECU A

Context of ECU B

<<ParameterSw
ComponentType>>

B: Prm

<<ParameterSw
ComponentType>>

A: Prm

<<SoftwareComponentType>>

A : SWC

<<SoftwareComponentType>>

B : SWC

Figure 10.4 Two software components of the same type have been assigned different instances
of the same Parameter Software Component Type.

10.1.2 Private calibration

The private calibration mechanism is based on parameters that are private and
internal to a software component. From the software component implementation
point of view a calibration parameter is a variable with only read-access during the
normal operation of the ECU. A calibration parameter can be defined per instance of
a software component (perInstanceParameter) or can be shared between all
instances of a software component (sharedParameter).

Calibration parameters are not visible per se on the virtual functional bus, since it is
considered an element associated to an internal behaviour of a software component.

Unlike the structure of software components and compositions which is considered to
be specified during system design, the internal behaviour can be defined later in time
when particular software components are supplied. With this respect the visibility of
the private calibration parameters is rather a function of time, depending on who
assigns them when.

10.2 Measurement

In AUTOSAR systems, only actual instances of the following prototypes if marked as
measurable can be monitored:

Communication between AUTOSAR SW-Components:

 VariableDataPrototypes enclosed in a sender-receiver interface
 Arguments of ClientServerOperations enclosed in a client-server interface

77 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

AUTOSAR SW-Component internal:
 Content of InterrunnableVariables which are used for communication

between Runnables of one AUTOSAR SW-Component.

78 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

11 Interaction with Non-AUTOSAR-ECUs

11.1 Introduction

This section describes the interaction with Non-AUTOSAR-ECUs on VFB level. This
kind of interaction is e.g. necessary to provide a migration path.
Non-AUTOSAR-ECUs are:

ECUs that have not been developed according to AUTOSAR mechanisms. This is useful
for e.g.:
o Integration of an AUTOSAR ECU into an already existing system of ECUs
o Connect system of AUTOSAR ECUs to already existing system of ECUs
o Re-use already existing ECU in system of AUTOSAR ECUs

ECUs that have been developed according to AUTOSAR mechanisms once, but stay
unchanged now. This is useful for e.g.:
o Reuse strategies (taking over of complete unchangeable AUTOSAR (!!!)

ECUs)
Intelligent ('Smart') Sensors/Actuators with an ECU which do not implement the

AUTOSAR VFB / AUTOSAR RTE. This is useful for e.g.:
o Using Commercial of the shelf LIN nodes.

Interaction of AUTOSAR SW-C with non AUTOSAR software within one ECU is not
analyzed in this document.

11.2 Problems of interaction

The following problems will arise from the interaction with Non-AUTOSAR-ECUs:

Interaction with interfaces of applications on Non-AUTOSAR-ECUs:

 Ports/Interfaces have to be mapped to pre-defined communication messages
(possible to be routed through gateway)

 Non-AUTOSAR-SW-Components are currently not modeled at VFB level
o Unconnected ports of AUTOSAR-SW-Components
o Hidden communication load

 Client-Server not supported in old systems.

Interaction/support of services implemented on Non-AUTOSAR ECUs

 Old services/protocols have to be supported in parallel, to enable interoperability, e.g.
Network Management.

 Additional services supported by communication system (e.g. bus sleep/bus
wake-up).

 LIN nodes inherently are not affected because it is using the master slave paradigm
o services/protocols have to be managed and implemented in any case

by master node (in this case AUTOSAR ECU)
o Required configuration data available in node capability file (NCF)

Problem of support of enhanced services/protocols (e.g. Network Management,
Diagnosis (connection to AUTOSAR SW-C), Transport Protocol Layer, ...)

79 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

Whether the non-AUTOSAR ECUs are connected to the same or a different
communication system is not relevant for VFB, because no hardware is considered
on VFB level. For the same reason gateway configuration is not relevant for the VFB.

11.3 Description of interaction

The modeling of the interaction with non-AUTOSAR-ECUs is done the same for all
kinds of non-AUTOSAR-ECUs.

 Non-AUTOSAR ECUs are modeled as separate ECUs with separate AUTOSAR
SW-C (with AUTOSAR SW-C Description), which will not be implemented. To
enable communication with the non-AUTOSAR ECU the RTE on the AUTOSAR
ECU must implement wrapper code for the non-AUTOSAR communication

 Communication messages, configuration and load is defined by System
Constraint Template (for LIN Nodes the information contained within the node
capability files (NCF) has to be integrated into the System Constraint Template)

The following figure (Figure 11.1: Interaction with non-AUTOSAR ECUs) shall clarify
the interaction by giving an example of non-AUTOSAR-ECU(s) interacting with an
AUTOSAR ECU. A Port type converter (adapting client server/sender receiver
communication) is shown in the example. The port type converter has to be situated
on an AUTOSAR-ECU; it doesn’t necessarily need to be on the same ECU the final
communication partner is on. Since the converter is here from the class 'AUTOSAR
SW-C' it has to be implemented as a separate component. In later solutions it might
be part of an automatically generated RTE.

For the sender-receiver communication no adaption is shown. But even when using
the same communication paradigm an adaption might be required due to different
communication attributes. This would be done the same way like the port type
conversion. The adaption has to be implemented as a separate AUTOSAR SW-C; in
later solutions it might be done within an automatically generated RTE.
The way between the communication system signals (e.g. signals on CAN) and the
RTE layer is the same for AUTOSAR and non-AUTOSAR signals.

80 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

Non-AUTOSAR ECU

A
U

T
O

S
A

R

S
W

-C

AUTOSAR
SW-C

Description

Non-AUTOSAR ECU

A
U

T
O

S
A

R

S
W

-C

AUTOSAR
SW-C

Description

AUTOSAR ECU Non-AUTOSAR ECU

A
U

T
O

S
A

R

S
W

-C

System
Constraint
Description

AUTOSAR
SW-C

Description

n
o

n
A

U
T

O
S

A
R

C

o
m

p
o

n
en

t

AUTOSAR
SW-C

Description

Figure 11.1: Interaction with non-AUTOSAR ECUs

The support of enhanced services/protocols (e.g. Network Management, Diagnosis
(connection to AUTOSAR SW-C), Transport Protocol Layer ...) may be handled by
Complex Device Drivers or 'special' implementations of the corresponding basic-
software module(s).

81 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

 Virtual Functional Bus
 V2.2.0

R4.0 Rev 3

82 of 82 Document ID 056: AUTOSAR_EXP_VFB
- AUTOSAR Confidential -

12 References

[1] Methodology
AUTOSAR_MOD_Methodology.pdf

[2] Glossary
AUTOSAR_TR_Glossary.pdf

[3] Main Requirements
AUTOSAR_RS_Main.pdf

[4] List of Basic Software Modules
AUTOSAR_TR_BSWModuleList.pdf

[5] Layered Software Architecture
AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf

[6] Software Component Template
AUTOSAR_TPS_SoftwareComponentTemplate.pdf

[7] Specification of RTE
AUTOSAR_SWS_RTE.pdf

[8] Specification of Timing Extensions
AUTOSAR_TPS_TimingExtensions.pdf

	1
Introduction to this document
	1.1 Contents
	1.2 Prereads
	1.3 Relationship to other AUTOSAR specifications
	1.4 Structure and conventions of this document
	1.4.1 Structure of this document
	1.4.2 Specification Items

	2 The Virtual Functional Bus
	Overall mechanisms and concepts
	3.1 Components
	3.2 Port-Interfaces
	3.3 Ports
	3.3.1 Port Types
	3.3.2 Port Compatibility
	3.3.3 Data Type Policies

	3.4 Connectors
	3.4.1 Unconnected Ports
	3.4.1.1 Unconnected Sender/Receiver Ports
	3.4.1.2 Unconnected Client/Server Ports

	3.5 Compositions versus atomic components
	3.6 Relationship between the VFB and the ECU Software Architecture
	3.7 Kinds of software components
	3.8 Resources for components and “runnables”
	3.8.1 Background
	3.8.2 The “runnable” concept
	3.8.3 The implementation of a component and the role of the RTE

	3.9 Interface Conversion Blocks
	3.9.1 Supported Conversions and Mappings
	3.9.1.1 Interface Element Mapping
	3.9.1.2 Linear Data Conversion
	3.9.1.3 Data Mapping
	3.9.1.4 Mixed Conversion

	3.10 Variant Handling
	3.10.1 Binding Times
	3.10.2 Choosing a Variant
	3.10.3 Variability
	3.10.3.1 Software Component Variability
	3.10.3.2 Port Variability
	3.10.3.3 Connector Variability

	4 Communication on the VFB
	4.1 Introduction
	4.2 Error types
	4.3 Sender-Receiver communication
	4.3.1 From the point of view of the sender
	4.3.2 From the point of view of the receiver
	4.3.3 Multiplicity of sender-receiver
	4.3.4 Filtering between the sender and the receiver
	4.3.5 Concurrency and ordering within a sender-receiver connector

	4.4 Client-Server communication
	4.4.1 From the point of view of the client
	4.4.2 From the point of view of the server
	4.4.3 Multiplicity of client-server
	4.4.4 Ordering and concurrency within a client-server connector

	4.5 Remarks regarding the identification of communication partners

	5 Timing Extensions
	5.1 Main Purpose of Timing Extensions for AUTOSAR
	5.2 Timing in different phases of the AUTOSAR methodology

	6 Interaction with hardware
	6.1 Introduction
	6.2 Microcontroller Abstraction Layer (MCAL)
	6.3 ECU Abstraction
	6.4 Sensor-Actuator Software Component
	6.5 Complex Device Driver Component

	7 AUTOSAR Services
	7.1 Introduction
	7.2 VFB Representation
	7.2.1 Selection of a communication mechanism
	7.2.2 Location of a Service
	7.2.3 Distribution of Requests to Remote Services
	7.2.4 Platform dependent types
	7.2.5 Configuration

	7.3 List of Services

	8 Mode Management
	8.1 Introduction
	8.2 Defining modes
	8.3 Communicating modes
	8.4 Mode-managers: components that control modes
	8.5 Components that depend on modes

	9 Port Groups
	10 Measurement and Calibration
	10.1 Calibration
	10.1.1 Port-based calibration
	10.1.1.1 Pure single instantiation
	10.1.1.2 Multiple instantiation of the involved software components
	10.1.1.3 Multiple instantiation of the involved calibration components

	10.1.2 Private calibration

	10.2 Measurement

	11 Interaction with Non-AUTOSAR-ECUs
	11.1 Introduction
	11.2 Problems of interaction
	11.3 Description of interaction

	12 References

