
Guide to Modemanagement
V1.0.0.

R4.0 Rev 3

Document Title Guide to Modemanagement
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 440

Document Classification Auxiliary

Document Version 1.0.0.

Document Status Final

Part of Release 4.0

Revision 3

Document Change History
Date Version Changed by Description

27.10.2011 1.0.0 AUTOSAR
Administration Initial release

1 of 54
— AUTOSAR CONFIDENTIAL —

Document ID 440: AUTOSAR_EXP_GuideModemanagement

Guide to Modemanagement
V1.0.0.

R4.0 Rev 3

2 of 54
— AUTOSAR CONFIDENTIAL —

Document ID 440: AUTOSAR_EXP_GuideModemanagement

Guide to Modemanagement
V1.0.0.

R4.0 Rev 3

Disclaimer

This specification and the material contained in it, as released by AUTOSAR, is for the
purpose of information only. AUTOSAR and the companies that have contributed to it
shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types of
Intellectual Property Rights. The commercial exploitation of the material contained in
this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only.
For any other purpose, no part of the specification may be utilized or reproduced, in
any form or by any means, without permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR specifications may contain exemplary items (exemplary reference models,
"use cases", and/or references to exemplary technical solutions, devices, processes or
software).

Any such exemplary items are contained in the specifications for illustration purposes
only, and they themselves are not part of the AUTOSAR Standard. Neither their pres-
ence in such specifications, nor any later documentation of AUTOSAR conformance of
products actually implementing such exemplary items, imply that intellectual property
rights covering such exemplary items are licensed under the same rules as applicable
to the AUTOSAR Standard.

3 of 54
— AUTOSAR CONFIDENTIAL —

Document ID 440: AUTOSAR_EXP_GuideModemanagement

Guide to Modemanagement
V1.0.0.

R4.0 Rev 3

Table of Contents

1 Introduction 7

1.1 Further Work . 7

2 Overall mechanisms and concepts 8

2.1 Declaration of modes . 8
2.2 Mode managers and Mode users . 10
2.3 Modes in the RTE . 10
2.4 Modes in the Basic Software Scheduler 11
2.5 Communication of modes . 11

2.5.1 Mode switch . 12
2.5.2 Mode request . 13
2.5.3 Conformance of mode switches and mode requests 14
2.5.4 Mode proxies . 14
2.5.5 Mode communication on multi core ECUs 15

3 Configuration of the Basic Software Modemanagers 17

3.1 Process how to configure and integrate a BSWM 17
3.2 Semantics of BSWM Configuration: Interfaces and behavioral aspects . 17

3.2.1 Interface of the BSWM . 18
3.2.2 Definitions of ModeDeclarationGroups 20

3.2.2.1 ModeDeclarationGroups defined by the standardized
interface of the BSWM 22

3.2.2.2 Exemplary ModeDeclarationGroups for this document . 25
3.2.3 Definition of the interface in pseude code 25

3.2.3.1 Definition of ModeRequestPorts which are realized by
the standardized interface of the BSWM 25

3.2.3.2 Definition of configurable ModeRequestPorts 30
3.2.4 Configuration of the BSWM behavior 31

3.3 ECU State management . 32
3.3.1 Startup . 32
3.3.2 Run . 34
3.3.3 Shutdown . 34
3.3.4 Sleep . 35
3.3.5 Wakeup . 35

3.4 Communication Management . 36
3.4.1 Startup of ECU . 36
3.4.2 Shutdown of ECU . 36
3.4.3 I-PDU Group Switching . 36

3.5 Diagnostics . 40

4 Backward Compatibility 43

4.1 Startup . 45
4.2 Running . 46
4.3 Shutdown . 48

4 of 54
— AUTOSAR CONFIDENTIAL —

Document ID 440: AUTOSAR_EXP_GuideModemanagement

Guide to Modemanagement
V1.0.0.

R4.0 Rev 3

4.4 Wakeup . 49

5 Acronyms and abbreviations 50

5.1 Technical Terms . 50

5 of 54
— AUTOSAR CONFIDENTIAL —

Document ID 440: AUTOSAR_EXP_GuideModemanagement

Guide to Modemanagement
V1.0.0.

R4.0 Rev 3

References

[1] Specification of ECU State Manager with fixed state machine
AUTOSAR_SWS_ECUStateManagerFixed.pdf

[2] Software Component Template
AUTOSAR_TPS_SoftwareComponentTemplate.pdf

[3] Meta Model
AUTOSAR_MMOD_MetaModel.eap

[4] Basic Software Module Description Template
AUTOSAR_TPS_BSWModuleDescriptionTemplate.pdf

[5] Specification of Basic Software Mode Manager
AUTOSAR_SWS_BSWModeManager.pdf

[6] Glossary
AUTOSAR_TR_Glossary.pdf

6 of 54
— AUTOSAR CONFIDENTIAL —

Document ID 440: AUTOSAR_EXP_GuideModemanagement

Guide to Modemanagement
V1.0.0.

R4.0 Rev 3

1 Introduction

This document is a general introduction to AUTOSAR Mode Management for the Re-
lease 4.0.3 onwards. Its main purpose is to give users as well as developers of
AUTOSAR an detailed overview of the different aspects of AUTOSAR mode manage-
ment.

Chapter 2 explains the basic mode management concepts e.g. modes in general, how
mode switches are implemented, roles of mode managers and mode users etc. It sec-
ondly gives an introduction to Application Mode management and the dependencies to
Basic Software Mode management, which are closely related.

The Basic Software Modemanager is the central mode management module in
AUTOSAR R4.0. It is configurable to a high degree. How this configuration can be
achieved is the topic of chapter 3.

Chapter 4 than deals with migration strategies from fixed ECU Management as it was
used in AUTOSAR R3.1 1 to the new approach of ECU management of AUTOSAR 4.0

1.1 Further Work

Due to complexity and broad scope of this topic there are still some uses cases which
are not yet described here in full detail. These issues will be enhanced in further
releases.

• ECUs as Gateways

• Communication management for Flex Ray

• Communication management for Ethernet

• Communication management for Lin (including schedule table switching)

• DCM Routing path groups

• BSWM configuration for multicore ECUs

• DCM Session Control has to be added

1and in R4.0 with the ECU Statemanager with fixed state machine[1]

7 of 54
— AUTOSAR CONFIDENTIAL —

Document ID 440: AUTOSAR_EXP_GuideModemanagement

Guide to Modemanagement
V1.0.0.

R4.0 Rev 3

2 Overall mechanisms and concepts

This chapter gives an overview of the concept of modes and a short definition of states
in AUTOSAR. Defintions of the terms mode and state can be found in chapter 5.1 A
mode can be seen as the current state of an ECU1 wide, global variable, which is main-
tained by the RTE respectively the Schedule Manager. The possible assignments of a
mode are defined in ModeDeclarationGroups, which are defined in the AUTOSAR
Software Component Template [2]. Modes can be used for different purposes. First
of all modes are used to synchronize Software Components and Basic Software Mod-
ules. Via modes specified triggers can be enabled and disabled, and consequently the
activation of ExecutableEntities can be prevented. Also ExecutableEntities
can be triggered explicitely during a Mode Switch. On the other hand mode switches
can explicitly trigger executable entities during transition from one mode to another.
For example the RTE can activate an OnEntry ExecutableEntity to initialize a
certain resource before entering a specific mode. In this mode the triggers of this
ExecutableEntity are activated. If the mode is left the OnExit ExecutableEn-
tity is called, which could execute some cleanup code and the triggers would be
deactivated.

2.1 Declaration of modes

The Software Component Template defines a generic mechanism for describing modes
in AUTOSAR. Modes are defined via ModeDeclarations. A ModeDeclaration
represents a possible assignment of the current state of a global variable. E.g
in ECU state management there may exist the ModeDeclarations STARTUP, RUN,
POST_RUN, SLEEP.

A ModeDeclarationGroup groups several ModeDeclarations in a similar way as
an enumeration groups literals. In the given example this could be the ModeDeclara-
tionGroup ECUMODE. For each ModeDeclarationGroup an InitialMode has
to be defined, which is assigned to the variable at startup. Figure 2.1 shows an ex-
cerpt of the AUTOSAR Metamodel [3] with the relationships of ModeDeclarations,
ModeDeclarationGroups and Executable Entities.

1In R4.0 this is limited to a single partition

8 of 54
— AUTOSAR CONFIDENTIAL —

Document ID 440: AUTOSAR_EXP_GuideModemanagement

Guide to Modemanagement
V1.0.0.

R4.0 Rev 3

Figure 2.1: Excerpt of Metamodel regarding Modes

9 of 54
— AUTOSAR CONFIDENTIAL —

Document ID 440: AUTOSAR_EXP_GuideModemanagement

Guide to Modemanagement
V1.0.0.

R4.0 Rev 3

2.2 Mode managers and Mode users

In mode management there are two parties involved: Mode managers and mode users.
Responsible for switching modes are Mode managers, which are the only instances
able to change the value of the global variable. A mode manager is either a Software
Component, which provides a ModeREQUESTPort or a Basic Software Module, which
either provides also a ModeREQUESTPort in its Software Component Descrip-
tion or a ModeDeclarationGroup in its Basic Software Module Descrip-
tion. Mode users are informed of Mode switches via well-defined mechanisms
and have the possibility to read the currently active mode at any time. If a Mode user
wants to change into a different mode it can request a Mode switch from the corre-
sponding Mode manager.

2.3 Modes in the RTE

The AUTOSAR Runtime Environment implements the concept of modes. For this
purposes it creates for each ModeDeclarationGroupPrototype of an Atomic
Software Component a so called ModeMachineInstance. A ModeMachineIn-
stance is a state machine whose states are defined by the ModeDeclarations of
the respective ModeDeclarationGroup.

Figure 2.2 depicts the interaction of ModeDeclarationGroupPrototypes Mode
managers and Mode users. Note that the mode switch ports of the mode users are
not directly connected to the corresponding PPorts of the mode managers but in-
stead are connected to the mode machine instances of the RTE. This is important to
understand the mechanism of mode switching inside the RTE.

basic software mode userapplication mode userapplication mode manager

Runtime Environment

System Services

basic software mode manager

basic software mode user

mode machine Instance

mode switch
port

mode request
port

mode request
port

mode switch
port

mode switch
port

mode switch
port

mode request
port

mode switch
port

mode request
port

mode request
port

Figure 2.2: The RTE instantiates for each ModeDeclarationGroupPrototype a Modema-
chineInstance

10 of 54
— AUTOSAR CONFIDENTIAL —

Document ID 440: AUTOSAR_EXP_GuideModemanagement

Guide to Modemanagement
V1.0.0.

R4.0 Rev 3

Previous versions of the Basic Software Modules especially the ECU state manager
module have differentiated between ECU states and ECU modes. ECU modes were
longer lasting operational ECU states that were visible to applications i.e. starting
up, shutting down, going to sleep and waking up. The ECU Manager states were
generally continuous sequences of ECU Manager module operations terminated by
waiting until external conditions were fulfilled. Startup1, for example, contained all BSW
initialization before the OS was started and terminated when the OS returned control to
the ECU Manager module. With flexible ECU management the ECU state machine is
implemented as general modes under the control of the BSW Mode Manager module.
To overcame this terminology problem states are used only internally and are not visible
to the application. For interaction with the application the basic software has to use
modes.

2.4 Modes in the Basic Software Scheduler

The Basic Software Scheduler provides for Basic Software Modules a
similar mechanism for mode communication as the RTE provides it for Software Com-
ponents. If a Basic Software Module provides a ModeDeclarationGroupPro-
totype as providedModeGroup in its Basic Software Module Description the Ba-
sic Software Scheduler instatiates a ModeMachineInstance. Consequently
for this Basic Software Module a SchM_Switch API is provided, which enables
this module to initiate a Mode switch. Mode users have to reference the ModeDec-
larationGroupPrototype as requiredModeGroup and will get a SchM_Mode
API to read the mode, which is currently active. Mode requests between Basic
Software Modules can be comunicated directly via function calls, as Basic Soft-
ware Modules.

Another possibility for a Basic Software Module acting as a Mode user to get
informed about mode switches, is to register a BSW Module Entry, which is triggered
by a Mode Switch Event (see also [4]).

2.5 Communication of modes

The Software Component Template differs the following distinctive types of mode com-
munication between Mode managers and Mode users.

• Mode Switch: A Mode Switch is the communication of a current mode transition
from one mode to another. Mode Switches are always initiated by Mode Man-
agers.

• Mode Request: A Mode Request is the request of a mode user to the Mode
Manager to enter a certain mode. Note that it is not guaranteed that the Mode
Manager will enter this mode. Moreover he has to arbitrate all requests from the
Mode Users and decide which mode he will enter.

11 of 54
— AUTOSAR CONFIDENTIAL —

Document ID 440: AUTOSAR_EXP_GuideModemanagement

Guide to Modemanagement
V1.0.0.

R4.0 Rev 3

Furthermore, the concept of Mode Proxies and information about communication of
modes on multi core ECUs is given.

2.5.1 Mode switch

As every other communication between Software Components or between Software
Components and Basic Software Modules, Modes are communicated via PortPro-
totypes. Each PortPrototype has to be typed by a PortInterface. In case
of mode communication there exist so called ModeSwitchInterfaces, which are
PortInterfaces. These are shown in Figure 2.3. Each ModeSwitchInter-
face has exactly one ModeDeclarationGroupPrototype which consists of multi-
ple ModeDeclarations. Any ModeDeclaration represents one mode of the Mod-
eDeclarationGroup. One of these is defined as the initial mode.

ARElement

ModeDeclarationGroup

Identifiable

ModeDeclaration

PortInterface

PortInterface::

SenderReceiverInterface

Identifiable

PortInterface::

ModeDeclarationGroupPrototype

DataPrototype

PortInterface::

DataElementPrototype

+ isQueued: Boolean

0..*+modeGroup

1+interface

0..*+dataElement

1+interface

1

+initialMode

1..*

+modeDeclaration

«isOfType»
+type

Figure 2.3: ModeSwitchInterface

These Mode switches are necessary because Software Components need to be
capable of reacting to state changes initiated by a ModeManager. Depending on the
configuration there are two mechanisms available how a Software Component can
react on a mode change.

1. A ModeSwitchEvent can trigger a OnExtry, OnTransition or OnEntry-
Runnable.

2. An RTEEvent can be disabled in a certain mode and consequently prevent the
execution of accordant ExecutableEntities.

12 of 54
— AUTOSAR CONFIDENTIAL —

Document ID 440: AUTOSAR_EXP_GuideModemanagement

Guide to Modemanagement
V1.0.0.

R4.0 Rev 3

2.5.2 Mode request

Mode requests are distributed on the way from the Mode Requester (Mode Arbitration
SWC or a generic SWC) to the ModeManager. The mode managers on each ECU
then have to decide and initiate the local mode switch. Thus the arbitration result is
communicated only locally on each ECU using RTE mode switch mechanism.

Figure 2.4: ModeRequestInterface

For Mode requests, the communication of modes works slightly differently as for
Mode switches: Without ModeDeclarationGroups. This is illustrated in Figure
2.4.

The request of modes is done via ModeRequestInterfaces which are stan-
dard Autosar SenderReceiverInterfaces with that special type. Contrarily to
ModeSwitchInterfaces the requested mode is not given by a ModeDeclara-
tionGroup but by a VariableDataPrototype that has to contain an enumeration.
This enumeration consists of a set which contains the modes that can be requested.

Mode requests can be distributed in the whole system. For Application and Vehicle
Modes, the requests of the Mode Requester have to be distributed to all affected ECUs.
This implies a 1:n-connection between the Mode Requester and the Mode Managers.
In AUTOSAR this is only possible with Sender-Receiver Communication. The mode
manager only requires the information about the requested mode and not the mode
switch from the mode requester. The Mode Manager has one Sender-Receiver port
for each mode requester. To actually transmit the signal, COM shall use a periodic
signal with signal timeout notification to RTE. The Mode Manager will use the data
element outdated event to release a Mode Request. An action shall only be carried out

13 of 54
— AUTOSAR CONFIDENTIAL —

Document ID 440: AUTOSAR_EXP_GuideModemanagement

Guide to Modemanagement
V1.0.0.

R4.0 Rev 3

if it brings the effected interface into a different state. E.g. having to ’start’ actions, only
the first one shall be effective. The second one needs to be filtered out.

2.5.3 Conformance of mode switches and mode requests

As stated above, the ModeSwitchInterfaces work with ModeDeclara-
tionGroups whereas ModeRequestInterfaces takes parameter via Variable-
DataPrototypes containing enumerations.

The configuration utility is in duty to ensure with respect to consistency the equivalence
of represented data in both representations. That means that the elements of the
enumeration must precisely match the elements of the ModeDeclarationGroup. Or
formulated another way: All modes available in one of the interfaces must also be
available in the other one.

2.5.4 Mode proxies

Currently AUTOSAR has a constraint that only local SoftwareComponents are allowed
to communicate with ServiceComponents. So it is not possible that a SoftwareCom-
ponent can request modes from a remote e.g Basic Software Mode Manager. To
overcome this limitation so called ServiceProxyComponentType were introduced
in AUTOSAR Release 4.0. Figure 2.5 depicts this concept.

For the application software and the RTE a ServiceProxySoftwareComponentType
behaves like a "normal" AtomicSwComponentType, but it is actually a proxy for an
AUTOSAR Service. This means that on the one side it has to communicate over ser-
vice ports with the ECU-local ServiceSwComponentType it represents. On the other
side it has to offer the corresponding PortPrototypes to the ApplicationSwCom-
ponentTypes. In the meta-model, the ServiceProxySwComponentType does not
differ from an ApplicationSwComponentType except by its class. It is up to the im-
plementer to meet the restrictions imposed by the semantics as a proxy. The main
difference between a ServiceProxySwComponentType and an Application-
SwComponentType is on system level: A prototype of a ServiceProxySwCompo-
nentType can be mapped to several ECUs even if it appears only once in the VFB
system, because such a prototype is required on each ECU, where it has to address
a local ServiceSwComponentType. As a result of this, a ServiceProxySwCompo-
nentType can only receive but not send signals over the network. (see also [2]).

14 of 54
— AUTOSAR CONFIDENTIAL —

Document ID 440: AUTOSAR_EXP_GuideModemanagement

Guide to Modemanagement
V1.0.0.

R4.0 Rev 3

System Services

service proxy software
component

SWC1

Runtime Environment

System Services

basic software mode manager

Runtime Environment

SWC3

mode machine Instance

mode request
port

mode switch
port

basic software mode manager

mode request
port

mode switch
port

ECU1 ECU2

SWC2

Figure 2.5: Communication via ServiceProxySwComponents

2.5.5 Mode communication on multi core ECUs

The RTE does not synchronize ModeMachineInstances over the different partitions of
an ECU. rte_sws_2724 states that the RTE shall reject configurations where one Mod-
eDeclarationGroupPrototype of a provide port is connected to ModeDeclara-
tionGroupPrototypes of require ports from more than one partition. Consequently
all ModeUsers of a ModeDeclarationGroupPrototype have to live inside a single
partition. Note that the ModeManager of the ModeDeclarationGroupPrototype
can of course exist in another partition as shown in Fig. 2.7

System Services

basic software mode user

Runtime Environment

basic software mode manager

basic software mode user

mode switch
port

mode switch
port

mode request
port

mode switch
port

mode request
port

mode request
port

Core1 Core2

Figure 2.6: Invalid configuration

System Services

basic software mode user

Runtime Environment

basic software mode manager

basic software mode user

mode switch
port

mode switch
port

mode request
port

mode switch
port

mode request
port

mode request
port

Core1 Core2

Figure 2.7: Corrected version accord-
ing to [rte_sws_2724]

15 of 54
— AUTOSAR CONFIDENTIAL —

Document ID 440: AUTOSAR_EXP_GuideModemanagement

Guide to Modemanagement
V1.0.0.

R4.0 Rev 3

This limitation has a deep impact on mode managers with mode users on different
cores. The mode manager has to provide a dedicated ModePort for each partition in
which one or more of it’s mode users are located. To trigger a mode change it has to
call Rte_switch for each mode port separately. If configured it will also get an separate
Mode_Switch_Acknowldegement from each ModeMachineInstance. This means
that the possible mapping of mode users and mode managers to different core has to
be taken into account to some extend during design time of the Software Components.

16 of 54
— AUTOSAR CONFIDENTIAL —

Document ID 440: AUTOSAR_EXP_GuideModemanagement

Guide to Modemanagement
V1.0.0.

R4.0 Rev 3

3 Configuration of the Basic Software Modemanagers

The BSW Mode Manager is the module that implements the part of the Vehicle Mode
Management and Application Mode Management concept that resides in the BSW.
Its responsibility is to arbitrate mode requests from application layer Software Compo-
nents or other Basic Software Modules based on rules, and perform actions based on
the arbitration result.

From an functional point view the BSWM is responsible to put the Basic Software in a
state so that the Basic Software can run properly and meet the functional requirements.

The configuration of the BSWM is very project- and ECU specific. Therefore it can
not be standardized by AUTOSAR. Nevertheless it is expected that a BSWM imple-
mentation behaves in specific situations in a certain way . This chapter starts with an
introduction on the general concept of the BSWM, which is more or less a execution en-
vironment for rules described by the user. Afterwards typical scenarios in the lifecycle
of an ECU are described and examples are given how the BSWM could be configured.

3.1 Process how to configure and integrate a BSWM

The configuration and integration of a BSWM into an ECU project consists of the same
steps as for other Basic Software Modules. Nevertheless it is described for a better
understanding of the next steps. In general the following steps have to be taken:

1. Create a ECUC configuration of the module. the configuration contains:

(a) the necessary ModeRequestSources

(b) the provided ModeSwitchPorts

(c) a description of the Rules and ActionLists

2. The configuration is used as input for the module generator, which creates

(a) a SoftwareComponentDescription of the AUTOSAR Interface

(b) the implementation of the module1

3. The last step is to integrate the Module into the ECU by connecting the ports of
the Software Components with the corresponding ports of the BSWM.

3.2 Semantics of BSWM Configuration: Interfaces and behavioral
aspects

In general the BSWM can be seen as a state machine, which is defined by its inter-
face and a behavioral description. The input actions of this state machine are mode

1This documents assumes that the Implementation of the BSWM is generated to a large extend.

17 of 54
— AUTOSAR CONFIDENTIAL —

Document ID 440: AUTOSAR_EXP_GuideModemanagement

Guide to Modemanagement
V1.0.0.

R4.0 Rev 3

requests. In real implementations these mode requests can be of different types (C-
API calls, mode requests via RTE, mode notifications via RTE, etc.) but are treatened
internally in the same way. If a mode is requested the internal mirror of this BswMMod-
eRequestSource is updated and depending on the configuration a rule evalutation is
triggered, which results in the exuction of predefined action lists.

BswMActionListItems can be of similar kinds as mode requests: simple API calls
and mode switches via RTE or the Schedule Manager.

3.2.1 Interface of the BSWM

The interface is defined by the BswMModeRequestSource and the BswMAction-
ListItem containers.

BswMModeRequestSource is a ChoiceContainer, which can be of the following
kinds:

1. C-APIs, which are defined in the specification of the BSWM. BasicSoftware-
Modules can directly call C-APIs from the BSWM, which will translate it internally
into a ModeRequest. For example a call to the API

BswM_CanSM_CurrentState(
NetworkHandleType Network,
CanSM_BswMCurrentStateType CurrentState

)

has to be mapped to different ModeRequestPorts depending on the parameter
Network, which identifies the channel on which the event occurred. The param-
eter CurrentState then contains the mode which is requested. The follwing
mode request types are defined:

(a) BswMCanSMIndication

(b) BswMEcuMWakeupSource

(c) BswMEthSMIndication

(d) BswMFrSMIndication

(e) BswMLinSMIndication

(f) BswMLinScheduleIndication

(g) BswMLinTpModeRequest

(h) BswMNvMRequest

(i) BswMWdgMRequestPartitionReset

(j) BswMComMIndication

(k) BswMGenericRequest

18 of 54
— AUTOSAR CONFIDENTIAL —

Document ID 440: AUTOSAR_EXP_GuideModemanagement

Guide to Modemanagement
V1.0.0.

R4.0 Rev 3

2. RPorts typed by a SenderReceiverInterface.

(a) BswMSwcModeRequest: For each container of this type the BSWM has to
create a corresponding RPort in its Service Component Description.

3. RPorts typed by a ModeSwitchInterface.

(a) BswMSwcModeNotification: For each container of this type the BSWM
has to create a corresponding RPort in its Service Component Description.
As it is typed by a ModeSwitchInterface the BSWM acts as a mode
user of this ModeMachineInstance and is informed if the mode manager
performs an rte_switch.

4. RequiredModeDeclarationGroupPrototypes

(a) BswMBswModeNotification: For each container of this type the BSWM
has to create a corresponding RequiredModeDeclarationGroupPro-
totype in the role RequiredModeDeclarationGroup in its Basic Soft-
ware Module Description. The BSWM also acts as a mode user, but the
ModeMachineInstance is maintained by the Schedule Manager. The
BSWM therefore gets informed if the mode manager e.g. another Basic
Software Module performs a SchM_Switch call.

BswMActionListItems can be of the following kinds:

1. C-APIs from other BSWM Modules, which are called directly during the execution
of an ActionList.

(a) BswMUserCall

(b) BswMComMAllowCom

(c) BswMComMModeSwitch

(d) BswMDeadlineMonitoringControl

(e) BswMLinScheduleSwitch

(f) BswMNMControl

(g) BswMPduGroupSwitch

(h) BswMPduRouterControl

(i) BswMResetSignalInitValues

(j) BswMRteSwitch

(k) BswMSchMSwitch

(l) BswMTriggerIPduSend

(m) BswMTriggerSlaveRTEStop

(n) BswMTriggerStartUpPhase2

19 of 54
— AUTOSAR CONFIDENTIAL —

Document ID 440: AUTOSAR_EXP_GuideModemanagement

Guide to Modemanagement
V1.0.0.

R4.0 Rev 3

2. PPorts typed by a ModeSwitchInterface

(a) BswMRteSwitch : For each container of this type the BSWM has to create a
corresponding PPort in its Service Component Description.

3. ProvidedModeDeclarationGroupPrototypes

(a) BswMSchMSwitch: For each container of this type the BSWM has to cre-
ate a corresponding ProvidedModeDeclarationGroupPrototype in
the role ProvidedModeDeclarationGroup in its Basic Software Module
Description. The BSWM also acts as a mode manager, but the ModeMa-
chineInstance is maintained by the Schedule Manager.

Listing 3.1: Configuration of a ModeRequestSource in pseudo code
request CanSMIndication Can1_indication {

processing IMMEDIATE
initialValue "CANSM_BSWM_NO_COMMUNICATION"
source CanSM.CanStateManagerConfiguration.Can1StateManagerNetwork

}

3.2.2 Definitions of ModeDeclarationGroups

An example of the BswM configuration of ModeSwitchInterfaces is shown in List-
ing 3.2. There is a ModeDeclarationGroup and a ModeSwitchInterface cre-
ated. The ModeSwitchInterface uses the defined ModeDeclarationGroup as
prototype where exampleModes is the short name of the ModeSwitchInterface.

Listing 3.2: Declaration of a ModeSwitchInterface
modeGroup exampleModeDeclarationGroup {

Mode1,
Mode2,
Mode3

}

interface modeSwitch exampleModeSwitchInterface {
mode exampleModeDeclarationGroup exampleModes

}

A configuration of a ModeRequestInterfaces that corresponds to the Mod-
eRequestInterfaces of Listing 3.2 is shown as example in Listing 3.3. Out of this
BswM configuration an Arxml description will be created which includes the mode dec-
larations and interfaces. An excerpt of that arxml is shown in 3.4.

Listing 3.3: Declaration of a ModeRequestInterface
enum exampleModeEnumeration {

Mode1,
Mode2,
Mode3

}

20 of 54
— AUTOSAR CONFIDENTIAL —

Document ID 440: AUTOSAR_EXP_GuideModemanagement

Guide to Modemanagement
V1.0.0.

R4.0 Rev 3

interface senderReceiver exampleModeRequestPort {
data exampleModeEnumeration exampleModeRequest

}

Listing 3.4: Excerpt of the ModeRequestInterface’s Arxml description
<SENDER-RECEIVER-INTERFACE>

<SHORT-NAME>exampleModeRequestPort</SHORT-NAME>
<IS-SERVICE>false</IS-SERVICE>
<DATA-ELEMENTS>
<VARIABLE-DATA-PROTOTYPE>

<SHORT-NAME>exampleModeRequest</SHORT-NAME>
...
<TYPE-TREF DEST="APPLICATION-PRIMITIVE-DATA-TYPE">

exampleModeEnumeration</TYPE-TREF>
</VARIABLE-DATA-PROTOTYPE>
</DATA-ELEMENTS>

</SENDER-RECEIVER-INTERFACE>

...

<APPLICATION-PRIMITIVE-DATA-TYPE>
<SHORT-NAME>exampleModeEnumeration</SHORT-NAME>
<CATEGORY>VALUE</CATEGORY>
<SW-DATA-DEF-PROPS>

<SW-DATA-DEF-PROPS-VARIANTS>
<SW-DATA-DEF-PROPS-CONDITIONAL>

<COMPU-METHOD-REF DEST="COMPU-METHOD">exampleModeEnumeration_def</
COMPU-METHOD-REF>

</SW-DATA-DEF-PROPS-CONDITIONAL>
</SW-DATA-DEF-PROPS-VARIANTS>

</SW-DATA-DEF-PROPS>
</APPLICATION-PRIMITIVE-DATA-TYPE>

...

<COMPU-METHOD>
<SHORT-NAME>exampleModeEnumeration_def</SHORT-NAME>
<CATEGORY>TEXTTABLE</CATEGORY>
<COMPU-INTERNAL-TO-PHYS>
<COMPU-SCALES>

<COMPU-SCALE>
<LOWER-LIMIT INTERVAL-TYPE="CLOSED">0</LOWER-LIMIT>
<UPPER-LIMIT INTERVAL-TYPE="CLOSED">0</UPPER-LIMIT>
<COMPU-CONST>

<VT>Mode1</VT>
</COMPU-CONST>
</COMPU-SCALE>
<COMPU-SCALE>
<LOWER-LIMIT INTERVAL-TYPE="CLOSED">1</LOWER-LIMIT>
<UPPER-LIMIT INTERVAL-TYPE="CLOSED">1</UPPER-LIMIT>
<COMPU-CONST>

<VT>Mode2</VT>
</COMPU-CONST>
</COMPU-SCALE>
<COMPU-SCALE>

21 of 54
— AUTOSAR CONFIDENTIAL —

Document ID 440: AUTOSAR_EXP_GuideModemanagement

Guide to Modemanagement
V1.0.0.

R4.0 Rev 3

<LOWER-LIMIT INTERVAL-TYPE="CLOSED">2</LOWER-LIMIT>
<UPPER-LIMIT INTERVAL-TYPE="CLOSED">2</UPPER-LIMIT>
<COMPU-CONST>

<VT>Mode3</VT>
</COMPU-CONST>
</COMPU-SCALE>

</COMPU-SCALES>
</COMPU-INTERNAL-TO-PHYS>

</COMPU-METHOD>

Every mode request to the BSWM has to be mapped to an restricted set of values,
which allows the integrator the define the arbitration rules.

3.2.2.1 ModeDeclarationGroups defined by the standardized interface of the
BSWM

The following ModeDeclarationGroups are defined in the particular SWS docu-
ments of the Autosar specification as C-Enums. Nevertheless they are shown here
in form of BswM configurations to enable a clear overview of the defined modes and
act as a base for the rest of this document.

From the BswM’s point of view there is no difference whether the modes are specified
by the SWSs as C-Enums or as ModeDeclarationGroups by BswM configuration.

Listing 3.5: Modes reported by the API BswM_ComM_CurrentMode
modeGroup ComM_ModeType{

COMM_NO_COM_NO_PENDING_REQUEST,
COMM_NO_COM_REQUEST_PENDING,
COMM_FULL_COM_NETWORK_REQUESTED,
COMM_FULL_COM_READY_SLEEP

}

Listing 3.6: Modes reported by the API BswM_ComM_CurrentPNCMode
modeGroup ComM_PncModeType{

PNC_REQUESTED,
PNC_READY_SLEEP,
PNC_PREPARE_SLEEP,
PNC_NO_COMMUNICATION,
PNC_FULL_COMMUNICATION

}

Listing 3.7: Modes reported by the API BswM_CanSM_CurrentState
modeGroup CanSM_BswMCurrentStateType{

CANSM_BSWM_NO_COMMUNICATION,
CANSM_BSWM_SILENT_COMMUNICATION,
CANSM_BSWM_FULL_COMMUNICATION,
CANSM_BSWM_BUS_OFF

}

22 of 54
— AUTOSAR CONFIDENTIAL —

Document ID 440: AUTOSAR_EXP_GuideModemanagement

Guide to Modemanagement
V1.0.0.

R4.0 Rev 3

Listing 3.8: Modes reported by the API BswM_EthSM_CurrentState
modeGroup EthSM_NetworkModeStateType{

ETHSM_UNINITED,
ETHSM_NO_COMMUNICATION,
ETHSM_FULL_COMMUNICATION

}

Listing 3.9: Modes reported by the API BswM_FrSM_CurrentState
modeGroup FrSM_BswM_StateType{

FRSM_BSWM_READY,
FRSM_BSWM_READY_ECU_PASSIVE,
FRSM_BSWM_STARTUP,
FRSM_BSWM_STARTUP_ECU_PASSIVE,
FRSM_BSWM_WAKEUP,
FRSM_BSWM_WAKEUP_ECU_PASSIVE,
FRSM_BSWM_HALT_REQ,
FRSM_BSWM_HALT_REQ_ECU_PASSIVE,
FRSM_BSWM_KEYSLOT_ONLY,
FRSM_BSWM_KEYSLOT_ONLY_ECU_PASSIVE,
FRSM_BSWM_ONLINE,
FRSM_BSWM_ONLINE_ECU_PASSIVE,
FRSM_BSWM_ONLINE_PASSIVE,
FRSM_BSWM_ONLINE_PASSIVE_ECU_PASSIVE

}

Listing 3.10: Modes reported by the API BswM_LinSM_CurrentState
modeGroup LinSM_ModeType{

LINSM_FULL_COM,
LINSM_NO_COM

}

Listing 3.11: Modes reported by the API BswM_EcuM_CurrentState
modeGroup EcuM_StateType{

ECUM_SUBSTATE_MASK,
ECUM_STATE_STARTUP,
ECUM_STATE_STARTUP_ONE,
ECUM_STATE_STARTUP_TWO,
ECUM_STATE_WAKEUP,
ECUM_STATE_WAKEUP_ONE,
ECUM_STATE_WAKEUP_VALIDATION,
ECUM_STATE_WAKEUP_REACTION,
ECUM_STATE_WAKEUP_TWO,
ECUM_STATE_WAKEUP_WAKESLEEP,
ECUM_STATE_WAKEUP_TTII,
ECUM_STATE_RUN,
ECUM_STATE_APP_RUN,
ECUM_STATE_APP_POST_RUN,
ECUM_STATE_SHUTDOWN,
ECUM_STATE_PREP_SHUTDOWN,
ECUM_STATE_GO_SLEEP,
ECUM_STATE_GO_OFF_ONE,
ECUM_STATE_GO_OFF_TWO,
ECUM_STATE_SLEEP,

23 of 54
— AUTOSAR CONFIDENTIAL —

Document ID 440: AUTOSAR_EXP_GuideModemanagement

Guide to Modemanagement
V1.0.0.

R4.0 Rev 3

ECUM_STATE_RESET,
ECUM_STATE_OFF

}

Listing 3.12: Modes reported by the API BswM_EcuM_CurrentWakeup
modeGroup EcuM_WakeupStatusType{

ECUM_WKSTATUS_NONE,
ECUM_WKSTATUS_PENDING,
ECUM_WKSTATUS_VALIDATED,
ECUM_WKSTATUS_EXPIRED,
ECUM_WKSTATUS_DISABLED

}

Listing 3.13: Modes reported by the API BswM_NvM_CurrentBlockMode
modeGroup NvM_BlockMode {

NVM_BLK_BLOCK_SKIPPED,
NVM_BLK_INTEGRITY_FAILED,
NVM_BLK_NOT_OK,
NVM_BLK_NV_INVALIDATED,
NVM_BLK_OK,
NVM_BLK_PENDING,
NVM_BLK_REDUNDANCY_FAILED,
NVM_BLK_RESTORED_FROM_ROM

}

Listing 3.14: Modes reported by the API BswM_NvM_CurrentJobMode
modeGroup NvM_JobMode {

NVM_JOB_CANCELED,
NVM_JOB_NOT_OK,
NVM_JOB_OK,
NVM_JOB_PENDING

}

Listing 3.15: Modes reported by the API BswM_LinTp_RequestMode
modeGroup LinTp_Mode {

LINTP_APPLICATIVE_SCHEDULE,
LINTP_DIAG_REQUEST,
LINTP_DIAG_RESPONSE

}

Listing 3.16: Modes reported by the API BswM_WdgM_RequestPartitionReset
modeGroup WdgM_PartitionResetType{

WDGM_PARTITION_RESET_REQUESTED,
WDGM_PARTITION_RESET_NOTREQUESTED

}

For the Diagnostic Communication Manager (DCM) there are two ModeDeclara-
tionGroups declared. Listing 3.17 shows the modes that determine which types
communication are enabled or disabled during diagnostics. When the DCM wants to
reset the ECU it has to indicated to the BswM which kind of reset should be executed.
The various modes of reset can be seen in Listing 3.18.

24 of 54
— AUTOSAR CONFIDENTIAL —

Document ID 440: AUTOSAR_EXP_GuideModemanagement

Guide to Modemanagement
V1.0.0.

R4.0 Rev 3

Listing 3.17: Modes reported by the API BswM_DCM_CommunicationMode_CurrentState
modeGroup Dcm_CommunicationModeType{

DCM_ENABLE_RX_TX_NORM,
DCM_ENABLE_RX_DISABLE_TX_NORM,
DCM_DISABLE_RX_ENABLE_TX_NORM,
DCM_DISABLE_RX_TX_NORMAL,
DCM_ENABLE_RX_TX_NM,
DCM_ENABLE_RX_DISABLE_TX_NM,
DCM_DISABLE_RX_ENABLE_TX_NM,
DCM_DISABLE_RX_TX_NM,
DCM_ENABLE_RX_TX_NORM_NM,
DCM_ENABLE_RX_DISABLE_TX_NORM_NM,
DCM_DISABLE_RX_ENABLE_TX_NORM_NM,
DCM_DISABLE_RX_TX_NORM_NM

}

Listing 3.18: Modes reported by the API BswM_DCM_ResetMode_CurrentState
modeGroup Dcm_ResetModeType{

DCM_NO_RESET,
DCM_HARD_RESET,
DCM_KEY_ON_OFF_RESET,
DCM_SOFT_RESET,
DCM_ENABLE_RAPID_POWER_SHUTDOWN_RESET,
DCM_DISABLE_RAPID_POWER_SHUTDOWN_RESET,
DCM_BOOTLOADER_RESET,
DCM_SS_BOOTLOADER_RESET,
DCM_RESET_EXECUTION

}

3.2.2.2 Exemplary ModeDeclarationGroups for this document

Listing 3.19: Application ModeDeclarationGroup
modeGroup App1Mode {

APP1_ACTIVE,
APP1_INACTIVE
}

3.2.3 Definition of the interface in pseude code

3.2.3.1 Definition of ModeRequestPorts which are realized by the standardized
interface of the BSWM

In the BSWM configuration, the mode request sources have to be defined. The fol-
lowing ModeRequestPorts are implicitly defined by API of the BSWM. This subsection
summarizes the port interface.

3.2.3.1.1 BswMComMIndication

Purpose: Function called by ComM to indicate its current state.

25 of 54
— AUTOSAR CONFIDENTIAL —

Document ID 440: AUTOSAR_EXP_GuideModemanagement

Guide to Modemanagement
V1.0.0.

R4.0 Rev 3

Signature: void BswM_ComM_CurrentMode(
NetworkHandleType Network,
ComM_ModeType RequestedMode

)

Definition: request BswMComMIndication ComM_Mode_Channel1 {
processing IMMEDIATE
initialValue COMM_NO_COMMUNICATION
source {Reference to [ComMChannel]}

}

Note: This ModeRequestSource has to be created once for each ComM-
Channel.

3.2.3.1.2 BswMComMPncRequest

Purpose: Function called by ComM to indicate the current state of a partial
network.

Signature: void BswM_ComM_CurrentPNCMode(
PNCHandleType PNC,
ComM_ModeType RequestedMode

)

Definition: request BswMComMPncRequest Pnc1Request {
processing IMMEDIATE
initialValue COMM_NO_COM_NO_PENDING_REQUEST
source Reference to [ComMPnc]

}

Note: This ModeRequestSource has to be created once for each partial
network.

3.2.3.1.3 BswMDcmComModeRequest

Purpose: Function called by DCM to indicate the current state of Communica-
tionControl.

Signature: void BswM_Dcm_CommunicationMode_CurrentState(
NetworkHandleType Network,
Dcm_CommunicationModeType Mode

)

Definition: request BswMDcmCommunicationMode
BswM_Dcm_CommunicationMode_CurrentState {
processing IMMEDIATE
initialValue DCM_ENABLE_RX_TX_NORM

}

26 of 54
— AUTOSAR CONFIDENTIAL —

Document ID 440: AUTOSAR_EXP_GuideModemanagement

Guide to Modemanagement
V1.0.0.

R4.0 Rev 3

3.2.3.1.4 BswMDcmResetModeRequest

Purpose: Function called by DCM to indicate the current state of ResetMode.

Signature: void BswM_Dcm_ResetMode_CurrentState(
Dcm_ResetCtrlType Mode

)

Definition: request BswMDcmResetMode BswM_Dcm_ResetMode_CurrentState {
processing IMMEDIATE
initialValue DCM_NO_RESET

}

3.2.3.1.5 BswMCanSMIndication

Purpose: Function called by CanSM to indicate its current state.

Signature: void BswM_CanSM_CurrentState(
NetworkHandleType Network,
CanSM_BswMCurrentStateType CurrentState

)

Definition: request BswMCanSMIndication CanSM_Can1 {
processing IMMEDIATE
initialValue CANSM_BSWM_NO_COMMUNICATION
source Reference to [CanSMManagerNetwork]

}

Note: This ModeRequestSource has to be created once for each CAN
channel.

3.2.3.1.6 BswMEthSMIndication

Purpose: Function called by EthSM to indicate its current state.

Signature: void BswM_EthSM_CurrentState(
NetworkHandleType Network,
EthSM_NetworkModeStateType CurrentState

)

Definition: request BswMEthSMIndication EthSM_Network1 {
processing IMMEDIATE
initialValue ETHSM_NO_COMMUNICATION
source {Reference to [EthSmNetwork]}

}

Note: This ModeRequestSource has to be created once for each ethernet
channel.

27 of 54
— AUTOSAR CONFIDENTIAL —

Document ID 440: AUTOSAR_EXP_GuideModemanagement

Guide to Modemanagement
V1.0.0.

R4.0 Rev 3

3.2.3.1.7 BswMFrSMIndication

Purpose: Function called by FrSM to indicate its current state.

Signature: void BswM_FrSM_CurrentState(
NetworkHandleType Network,
FrSM_BswM_StateType CurrentState

)

Definition: request BswMFrSMIndication FrSM_BswM_StateType {
processing IMMEDIATE
initialValue FRSM_BSWM_READY
source {Reference to [FrSMCluster]}

}

Note: This ModeRequestSource has to be created once for each FlexRay
cluster.

3.2.3.1.8 BswMLinSMIndication

Purpose: Function called by LinSM to indicate its current state.

Signature: void BswM_LinSM_CurrentState(
NetworkHandleType Network,
LinSM_ModeType CurrentState

)

Definition: request BswMLinSMIndication LinSM_CurrentState {
processing IMMEDIATE
initialValue LINSM_NO_COM
source {Reference to [LinSMChannel]}

}

Note: This ModeRequestSource has to be created once for each Lin chan-
nel.

3.2.3.1.9 BswMEcuMIndication

Purpose: Function called by the ECUM with fixed state machine to indicate its
current state.

Signature: void BswM_EcuM_CurrentState(
NetworkHandleType Network,
LinSM_ModeType CurrentState

)

Definition: request BswMEcuMIndication EcuM_State {
processing IMMEDIATE
initialValue ECUM_STATE_STARTUP

}

28 of 54
— AUTOSAR CONFIDENTIAL —

Document ID 440: AUTOSAR_EXP_GuideModemanagement

Guide to Modemanagement
V1.0.0.

R4.0 Rev 3

3.2.3.1.10 BswMEcuMWakeupSource

Purpose: Function called by the ECUM to indicate the current state of the
wakeup sources.

Signature: void BswM_EcuM_CurrentWakeup(
EcuM_WakeupSourceType source,
EcuM_WakeupStatusType state

)

Definition: request BswMEcuMWakeupSource EcuM_WakeupSource {
processing IMMEDIATE
initialValue ECUM_WKSTATUS_NONE
source {Reference to [EcuMWakeupSource]}

}

Note: This ModeRequestSource has to be created once for each Wakeup
source.

3.2.3.1.11 BswMLinScheduleIndication

Purpose: Function called by LinSM to indicate the currently active schedule
table for a specific LIN channel.

Signature: void BswM_LinSM_CurrentSchedule(
NetworkHandleType Network,
LinIf_SchHandleType CurrentSchedule

)

Definition: request BswMLinScheduleIndication LinSM1_CurrentSchedule {
processing IMMEDIATE
initialValue TBD
source {Reference to [LinSMSchedule]}

}

3.2.3.1.12 BswMLinTpModeRequest

Purpose: Function called by LinTP to request a mode for the corresponding
LIN channel. The LinTp_Mode mainly correlates to the LIN schedule
table that should be used.

Signature: void BswM_LinTp_RequestMode(
NetworkHandleType Network,
LinTp_Mode LinTpRequestedMode

)

Definition: request BswMLinTpModeRequest LinTp_Mode {
processing IMMEDIATE
initialValue LINTP_APPLICATIVE_SCHEDULE
source {Reference to [LinIfChannel]}

29 of 54
— AUTOSAR CONFIDENTIAL —

Document ID 440: AUTOSAR_EXP_GuideModemanagement

Guide to Modemanagement
V1.0.0.

R4.0 Rev 3

}

3.2.3.1.13 BswMWdgMRequestPartitionReset

Signature: void BswM_WdgM_RequestPartitionReset(
ApplicationType Application

)

Definition: request BswMWdgMRequestPartitionReset WdgM_RequestResetPart1
{
processing IMMEDIATE
initialValue WDGM_PARTITION_RESET_NOTREQUESTED
source {Reference to [EcucPartition]}

}

Note: This ModeRequestSource has to be created once for each partition
for which a reset can be requested by the Watchdog Manager mod-
ule.

3.2.3.2 Definition of configurable ModeRequestPorts

Besides the interface, which is defined by the standardized interface of the BSWM,
additional mode request ports can be defined via the configuration parameters.

E.g it is necessary for the interaction with applications, that an application software
component at least notifies the BSWM about it’s current state. This can be achieved
by definition of a ModeRequestPort as shown in Listing 3.20. The BSWM will than
create a corresponding RPort typed by a SenderReceiverInterface.

Listing 3.20: Application ModeRequestPort

request SwcModeRequest App1ModeRequest {
type App1Mode // Reference to ModeDeclarationGroupPrototype
processing IMMEDIATE
initialValue "APP1_INACTIVE"

}

Note that the reference to a ModeDeclarationGroupPrototype can be misleading.
The meaning is that the BSWM creates a SenderReceiverInterface containing a
VariableDataPrototype. The SwDataDefProps of this VariableDataProto-
type refer to a CompuMethod, which defines an enumeration corresponding die to the
referred ModeDeclarationGroupPrototype.

Listing 3.21: Application ModeNotification

request SwcModeNotification App1ModeNotification {
type ApplMode //Reference to ModeDeclarationGroupPrototype
processing IMMEDIATE
initialValue "APP1_INACTIVE"

}

30 of 54
— AUTOSAR CONFIDENTIAL —

Document ID 440: AUTOSAR_EXP_GuideModemanagement

Guide to Modemanagement
V1.0.0.

R4.0 Rev 3

Listing 3.21 shows the declaration of a mode notification port. Note that in contrast
to 3.20 the BSWM will generate a RPort typed by a ModeSwitchInterface in this
case. The BSWM then gets informed via a ModeSwitchNotification if the mode
manager initiates a mode switch.

Listing 3.22: BasicSoftwareModeNotification
request BswModeNotification BswMode1 {

type BswMode //Reference to ModeDeclarationGroupPrototype
processing IMMEDIATE
initialValue "BSW_INACTIVE"

}

Listing 3.22 shows the declaration of a mode notification port. If such a port is config-
ured, the BSWM configuration tool will create a requiredModeGroup ModeDecla-
rationGroupPrototype, so that the BSWM gets informed of mode switches via the
Schedule Manager, if the corresponding mode manager initiates a mode switch with a
call to SchM_Switch API.

3.2.4 Configuration of the BSWM behavior

The behavior of the BSWM is specified via rules and action lists. A rule is a logical ex-
pression, which combines the current values of ModeRequestPorts. The evaluation
of each rule either results in the execution of its true or false action lists.

The ModeControlContainer contains these ActionLists. An ActionList can
consist of a set of atomic actions, other “nested” ActionLists or it can reference
(nested) rules which are then evaluated in the context of this Actionlist.

The following example shows a simple rule, which activates the IPDU Groups
of a dedicated CAN channel. According to this rule, the BSWM has to pro-
vide a ModeRequestPort of type CanSMIndication named Can1_Indication.
This is a ModeRequest from a basic software module in this case from the
Can State manager. In code this ModeRequestPorts corresponds to the API
BswM_CanSM_CurrentState as described in BSWM0049 in [5]. The source pa-
rameter identifies the network to which this ModeRequestSourcePort belongs to.
It’s up to the configuration tool of the BSWM to allocate the right parameters for the
API corresponding to the referenced ECUC Container.

The value of the ModeRequestSourcePort initially is
CAN_SM_BSWM_NO_COMMUNICATION.

processing immediate means that every evaluation rule, which refers to this Mod-
eRequestSourcePort shall immediately be processed. If this parameter would be
deferred in case of a ModeRequest, the evaluation of rules would be delayed until
the next run of the main function of the BSWM.

The following example shows an arbitration rule called canIPDUActivation. The
overall content is rather self explanatory. The initial parameters specifies that the
initial result of the rule evaluation is false.

31 of 54
— AUTOSAR CONFIDENTIAL —

Document ID 440: AUTOSAR_EXP_GuideModemanagement

Guide to Modemanagement
V1.0.0.

R4.0 Rev 3

Listing 3.23: Example for a rule
canIPDUActivation initial false on TRIGGER {

if (Can1_indication == FULL_COM)
{

activateCANPDUs
} else {

deactivateCANPDUs
}

}

At which point in time a rule is executed, after an event has occurred depends on
the parameter BswMActionListExecution. Either it is executed every time the
rule is evaluated with the corresponding result, or only when the evaluation result has
changed from the previous evaluation. This is called triggered respectively condi-
tional execution.

Table 3.1 gives an overview in which situations an ActionList is executed or not.
Triggered ActionLists are executed (triggered) if the result of the rule evaluation
changes. Conditional ActionLists depend only on the current result (condition) of
the evaluation independent if it has changed or not.

Table 3.1: Execution of Action Lists depending on parameter BswMActionListExecu-
tion

eval. result
(old) -> (new) true -> true true -> false false -> false false -> true

TrueActionList CONDITION - - TRIGGERED/
CONDITION

FalseActionList - TRIGGERED/
CONDITION CONDITION -

3.3 ECU State management

During startup and shutdown the task of the BSWM is to initialize all basic software
modules in a similar way as it is done by the ECUM in older AUTOSAR releases.

3.3.1 Startup

The ECUM starts the operating system and initializes in its post OS sequence the
Schedule manager and the BSWM. The BSWM then has to take care, that all neces-
sary init routines of the basic software modules are called and that the RTE is started.

In this scenario it is expected that the BSWM has the following providedModeDecla-
rationGroup. The purpose of this ModeDeclarationGroup is to track the current state/-
mode of the ECU similar to the states of the ECU State manager in previous AUTOSAR
releases.

Rule InitBlockII specifies the initialization of basic drivers to access the NVRAM and
initiates NvM_ReadAll. As the EcuMode source has the processing attribute set to

32 of 54
— AUTOSAR CONFIDENTIAL —

Document ID 440: AUTOSAR_EXP_GuideModemanagement

Guide to Modemanagement
V1.0.0.

R4.0 Rev 3

DEFERRED this rule will be evaluated every time the main function of the BSWM is
called. After the first run it sets the EcuMode to ECUM_STATE_STARTUP_TWO so
that the action list will never be invoked again.

If the NvMReadAll job is finsihed the NvMReadAllFinished rule is triggered, which
initiates the remaining initialization and switches the EcuMode to ECUM_STATE_RUN.

Listing 3.24: Rules and ActionLists for Startup
rule InitBlockII initial false on CONDITION {

if (EcuMode == ECUM_STATE_STARTUP_ONE)
{

custom "Spi_Init(null)"
custom "Eep_Init(null)"
custom "Fls_Init(null)"
custom "NvM_Init(null)"
SchMSwitch(EcuMode,ECUM_STATE_STARTUP_TWO)
custom "NvM_ReadAll()"

}
}

rule NvMReadAllFinished initial false on TRIGGER {
if (NvMReadAllJobMode == NVM_JOB_FINISHED && EcuMode ==
ECUM_STATE_STARTUP_TWO) {
custom "Can_Init(null)"
custom "CanIf_Init(null)"
custom "CanSM_Init(null)"
custom "CanTp_Init(null)"
custom "Lin_Init(null)"
custom "LinIf_Init(null)"
custom "LinSM_Init(null)"
custom "LinTp_Init(null)"
custom "Fr_Init(null)"
custom "FrIf_Init(null)"
custom "FrSM_Init(null)"
custom "FrTp_Init(null)"
custom "PduR_Init(null)"
custom "CANNM_Init(null)"
custom "FrNM_Init(null)"
custom "NmIf_Init(null)"
custom "IpduM_Init(null)"
custom "COM_Init(null)"
custom "DCM_Init(null)"
custom "ComM_Init(null)"
custom "DEM_Init(null)"
custom "StartRte()"
SchMSwitch(EcuMode,ECUM_STATE_RUN)

}
}

When the RTE is started the runnables will be started. Now it is up to the applica-
tion to keep the ECU running. To achieve this the BSWM can for example provide a
ModeRequestPort as depicted in example 3.20. For the further reading is is expected,
that the application software requests the mode APP1_ACTIVE from the BSWM. If this
mode is requested the BSWM shall not shutdown the ECU.

33 of 54
— AUTOSAR CONFIDENTIAL —

Document ID 440: AUTOSAR_EXP_GuideModemanagement

Guide to Modemanagement
V1.0.0.

R4.0 Rev 3

Listing 3.25: Application runs, enable communication
rule checkApp1Request initial false on TRIGGER {

if (App1Mode == APP1_ACTIVE && EcuMode == ECUM_STATE_RUN) {
CommunicationAllowed CanSM.CanStateManagerConfiguration.
Can1StateManagerNetwork true

SchMSwitch(EcuMode,ECUM_STATE_APP_RUN)

}
}

3.3.2 Run

As the BSWM is a highly flexible module it depends to a high extend to the integrator,
how it is determined if an ECU shall shutdown or not. Many different variants are con-
ceivable. This document proposes an approach, which is quite similar to the concept
of the ECUM in AUTOSAR R3.1. The general concept is, that a ECU keeps running as
long as at least one application software component requests the run state.

The information if an application can be shut down in a certain mode has to be provided
by the software component developer. Example 3.26 shows a simplified rule for an
ECU with one software component. If switches its mode to INACTIVE the BSWM
initiates the shutdown sequence.

Listing 3.26: Initiate shutdown, if no application wants to run any more
rule checkApp1Request initial false on TRIGGER {

if (App1Mode == APP1_INACTIVE && EcuMode == ECUM_STATE_RUN) {
ComMCommunicationAllowed CanSM.CanStateManagerConfiguration.
Can1StateManagerNetwork false

SchMSwitch(EcuMode,ECUM_STATE_APP_POST_RUN)
}

}

3.3.3 Shutdown

In state ECUM_STATE_APP_POST_RUN the BSWM waits until all channels report,
that no requests are pending any more. The rule in listing 3.26 is triggered every time
the mode of a ComM channel changes. If there are more than one ComM channel,
they have to be combined to a single expression.

Listing 3.27: Shutdown sequence
rule InitiateShutdown initial false on TRIGGER {

if (ComM_Mode_Channel1 == COMM_NO_COM_REQUEST_PENDING && EcuMode ==
ECUM_STATE_APP_POST_RUN)

{
custom "Dem_Shutdown(null)"
custom "Rte_Stop()"
custom "ComM_DeInit()"

34 of 54
— AUTOSAR CONFIDENTIAL —

Document ID 440: AUTOSAR_EXP_GuideModemanagement

Guide to Modemanagement
V1.0.0.

R4.0 Rev 3

SchMSwitch(EcuMode,ECUM_STATE_PREP_SHUTDOWN)
custom "NvM_WriteAll()"

}
}

rule NvMWriteAllFinished initial false on TRIGGER
{

if (NvMWriteAllJobMode == NVM_JOB_FINISHED && EcuMode ==
ECUM_STATE_PREP_SHUTDOWN)

{
custom "EcuM_GoDown(MODULE_ID)" // MODULE_ID of BSWM: 42

}
}

Note that the in the Configuration of the ECUM the module id of the BSWM has to be
added as a valid user to EcuMFlexUserConfig.

3.3.4 Sleep

Entering a sleep state is similar to the shutdown sequence 3.26 except that
EcuM_GoHalt() resp. EcuM_GoPoll() is called instead of EcuM_GoDown.

3.3.5 Wakeup

Example 3.28 shows a rule which starts the ECU only, if a certain wakeup event, iden-
tified by EcuM_WakeupSource has occured. Otherwise the ECU will be immediately
shut down.

Listing 3.28: start sequence with wakeup check
rule InitBlockII initial false on CONDITION {

if (EcuMode == ECUM_STATE_STARTUP_ONE && EcuM_WakeupSource ==
ECUM_WKSTATUS_VALIDATED)

{
custom "Spi_Init(null)"
custom "Eep_Init(null)"
custom "Fls_Init(null)"
custom "NvM_Init(null)"
SchMSwitch(EcuMode,ECUM_STATE_STARTUP_TWO)
custom "NvM_ReadAll()"

} else {
custom "EcuM_GoDown()"

}
}

35 of 54
— AUTOSAR CONFIDENTIAL —

Document ID 440: AUTOSAR_EXP_GuideModemanagement

Guide to Modemanagement
V1.0.0.

R4.0 Rev 3

3.4 Communication Management

Besides parts of the ECU state management, a part of the communication manage-
ment is in the responsibility of the BSWM. This section describes the functionality of
the BSWM, which is related to the Communication Stack of AUTOSAR. This covers but
is not restricted to the following uses cases.

• Starting and stopping of IPDU Groups in general

• Partial Networking

• Diagnostic use cases which influence the communication of an ECU. e.g. it
might be necessary to set the FlexRay State manager to passive mode via
FrSm_SetEcuPassive() when requested by an application.

To fulfill the requested functionality the BSWM has ModeRequestSources to

• the Communication Manager

• the bus state managers

• AUTOSAR COM

3.4.1 Startup of ECU

Besides the initialization of the communication stack the BswM can be configured to
initialize further modules or execute customs actions depending on the ECU’s needs.
Due to the flexibility of the BSWM it is also possible, that after a wake up event only a
part of the communication stack is started.

3.4.2 Shutdown of ECU

Analogue to Startup, it is possible to configure additional actions to be executed on
shutdown.

3.4.3 I-PDU Group Switching

For the I-PDU group switching there exists for each channel a dedicated I-PDU group
for outgoing and incoming I-PDUs. AUTOSAR COM takes care that an I-PDU is ac-
tive(started) if at least one I-PDU group containing this I-PDU is active.

To illustrate how the I-PDUs of an ECU can be managed the following scenario is
created. The examplary ECU shall have two CAN channels and three partial networks.
The mode request ports for the channels are named Channel1 and Channel1, the
request sources for the partial networks are named PNC1, PNC2 and PNC3.

36 of 54
— AUTOSAR CONFIDENTIAL —

Document ID 440: AUTOSAR_EXP_GuideModemanagement

Guide to Modemanagement
V1.0.0.

R4.0 Rev 3

I-PDUs of PNC1 shall be communicated only over Channel1. I-PDUs of PNC3 shall be
communicated over Channel1 and Channel2. I-PDUs of PNC3 shall be communicated
only over Channel2.

Listing 3.29: Active wakeup on channel
rule activeWakeupChannel1 initial false on CONDITION {

if (CanSMChanne11 == CANSM_BSWM_FULL_COMMUNICATION &&
PNC1 != PNC_REQUESTED &&
PNC2 != PNC_REQUESTED
)

{
PduGroupSwitch {init = true,

enable CAN1IPDUS
}

}
}

rule activeWakeupChannel2 initial false on CONDITION {
if (CanSMChannel2 == CANSM_BSWM_FULL_COMMUNICATION &&

PNC2 != PNC_REQUESTED &&
PNC3 != PNC_REQUESTED
)

{
PduGroupSwitch {init = true,

enable CAN2IPDUS
}

}
}

Listing 3.30: CanSM reports SILENT_COMMUNICATION or NO_COMMUNICATION
rule stopComChannel1 initial false on CONDITION {

if (CanSMChanne11 == CANSM_BSWM_SILENT_COMMUNICATION ||
CanSMChanne11 == CANSM_BSWM_NO_COMMUNICATION
)

{
PduGroupSwitch {init = true,

disable CAN1IPDUS, PNC1IPDUS, PNC2IPDUS
}

}
}

rule stopChannel2 initial false on CONDITION {
if (CanSMChannel2 == CANSM_BSWM_SILENT_COMMUNICATION ||

CanSMChannel2 == CANSM_BSWM_NO_COMMUNICATION
)

{
PduGroupSwitch {init = true,

disable = CAN2IPDUS, PNC2IPDUS, PNC3IPDUS
}

}
}

Listing 3.31: PNC reports NO_COMMUNICATION
rule pnc1nocom initial false on TRIGGER {

37 of 54
— AUTOSAR CONFIDENTIAL —

Document ID 440: AUTOSAR_EXP_GuideModemanagement

Guide to Modemanagement
V1.0.0.

R4.0 Rev 3

if (PNC1 == PNC_NO_COMMUNICATION)
{

PduGroupSwitch {init = false,
disable PNC1IPDUS
}

DeadlineMonitoringControl {
disable PNC1IPDUS
}

}
}

rule pnc2nocom initial false on TRIGGER {
if (PNC2 == PNC_NO_COMMUNICATION)
{

PduGroupSwitch {init = false,
disable PNC2IPDUS
}

DeadlineMonitoringControl {
disable PNC2IPDUS
}

}
}

rule pnc3nocom initial false on TRIGGER {
if (PNC3 == PNC_NO_COMMUNICATION)
{

PduGroupSwitch {init = false,
disable PNC3IPDUS
}

DeadlineMonitoringControl {
disable PNC3IPDUS
}

}
}

Listing 3.32: PNC reports PNC_REQUESTED or PNC_READY_SLEEP
rule pnc1requested initial false on TRIGGER {
if (PNC1 == PNC_REQUESTED ||

PNC1 == PNC_READY_SLEEP)
{

PduGroupSwitch {init = false,
enable PNC1IPDUS
}

}
}

rule pnc2requested initial false on TRIGGER {
if (PNC2 == PNC_REQUESTED ||

PNC2 == PNC_READY_SLEEP)
{

PduGroupSwitch {init = false,
enable PNC2IPDUS
}

}
}

38 of 54
— AUTOSAR CONFIDENTIAL —

Document ID 440: AUTOSAR_EXP_GuideModemanagement

Guide to Modemanagement
V1.0.0.

R4.0 Rev 3

rule pnc3requested initial false on TRIGGER {
if (PNC3 == PNC_REQUESTED ||

PNC3 == PNC_READY_SLEEP)
{

PduGroupSwitch {init = false,
enable PNC3IPDUS
}

}
}

Listing 3.33: PNC reports PNC_PREPARE_SLEEP
rule pnc1preparesleep initial false on TRIGGER {

if (PNC1 == PNC_PREPARE_SLEEP)
{

PduGroupSwitch {
init = false,
enable PNC1IPDUS
}

DeadlineMonitoringControl {
disable PNC1IPDUS
}

}
}

rule pnc2preparesleep initial false on TRIGGER {
if (PNC2 == PNC_PREPARE_SLEEP)
{

PduGroupSwitch {init = false,
enable PNC2IPDUS
}

DeadlineMonitoringControl {
disable PNC2IPDUS
}

}
}

rule pnc3preparesleep initial false on TRIGGER {
if (PNC3 == PNC_PREPARE_SLEEP)
{

PduGroupSwitch {init = false,
enable PNC3IPDUS
}

DeadlineMonitoringControl {
disable PNC3IPDUS
}

}
}

39 of 54
— AUTOSAR CONFIDENTIAL —

Document ID 440: AUTOSAR_EXP_GuideModemanagement

Guide to Modemanagement
V1.0.0.

R4.0 Rev 3

3.5 Diagnostics

In AUTOSAR release 4.0.3 onwards the DCM is the overall mode manager for all di-
agnostic use cases. The BSWM is responsible to change the state of the other basic
software modules accordingly. The first use case is diagnostic communication con-
trol. If the DCM reports to the BSWM that a specified communication control mode is
entered, the BSWM has to enable resp. disable the corresponding IPDU groups.

Listing 3.34 shows how this can be achievied via configuration of the BSWM.

Listing 3.34: CommunicationControl
rule communicationcontrol1 initial false on CONDITION {
if (Dcm_Communication_Control_CAN1 == DCM_ENABLE_RX_TX_NORM)
{

PduGroupSwitch {init = false,
enable CAN1IPDUS
}

}
}

rule communicationcontrol2 initial false on CONDITION {
if (Dcm_Communication_Control_CAN1 == DCM_ENABLE_RX_DISABLE_TX_NORM)
{

PduGroupSwitch {init = false,
enable CAN1RXIPDUS
disable CAN1TXIPDUS
}

}
}

rule communicationcontrol3 initial false on CONDITION {
if (Dcm_Communication_Control_CAN1 == DCM_DISABLE_RX_ENABLE_TX_NORM)
{

PduGroupSwitch {init = false,
enable CAN1TXIPDUS
disable CAN1RXIPDUS
}

}
}

rule communicationcontrol5 initial false on CONDITION {
if (Dcm_Communication_Control_CAN1 == DCM_DISABLE_RX_TX_NORMAL)
{

PduGroupSwitch {init = false,
disable CAN1IPDUS
}

}
}

rule communicationcontrol6 initial false on CONDITION {
if (Dcm_Communication_Control_CAN1 == DCM_ENABLE_RX_TX_NM)
{

PduGroupSwitch {init = false,
enable CAN1NMIPDUS
}

40 of 54
— AUTOSAR CONFIDENTIAL —

Document ID 440: AUTOSAR_EXP_GuideModemanagement

Guide to Modemanagement
V1.0.0.

R4.0 Rev 3

}
}

rule communicationcontrol7 initial false on CONDITION {
if (Dcm_Communication_Control_CAN1 == DCM_ENABLE_RX_DISABLE_TX_NM)
{

PduGroupSwitch {init = false,
enable CAN1NMRXIPDUS
disable CAN1NMTXIPDUS
}

}
}

rule communicationcontrol8 initial false on CONDITION {
if (Dcm_Communication_Control_CAN1 == DCM_DISABLE_RX_ENABLE_TX_NM)
{

PduGroupSwitch {init = false,
enable CAN1NMTXIPDUS
disable CAN1NMRXIPDUS
}

}
}

rule communicationcontrol9 initial false on CONDITION {
if (Dcm_Communication_Control_CAN1 == DCM_DISABLE_RX_TX_NM)
{

PduGroupSwitch {init = false,
disable CAN1NMRXIPDUS, CAN1NMTXIPDUS
}

}
}

rule communicationcontrol10 initial false on CONDITION {
if (Dcm_Communication_Control_CAN1 == DCM_ENABLE_RX_TX_NORM_NM)
{

PduGroupSwitch {init = false,
enable CAN1NMRXIPDUS, CAN1NMTXIPDUS
}

}
}

rule communicationcontrol11 initial false on CONDITION {
if (Dcm_Communication_Control_CAN1 == DCM_ENABLE_RX_DISABLE_TX_NORM_NM)
{

PduGroupSwitch {init = false,
enable CAN1NMRXIPDUS, CAN1RXIPDUS
disable CAN1NMTXIPDUS, CAN1TXIPDUS
}

}
}

rule communicationcontrol12 initial false on CONDITION {
if (Dcm_Communication_Control_CAN1 == DCM_DISABLE_RX_ENABLE_TX_NORM_NM)
{

PduGroupSwitch {init = false,
enable CAN1NMTXIPDUS, CAN1TXIPDUS

41 of 54
— AUTOSAR CONFIDENTIAL —

Document ID 440: AUTOSAR_EXP_GuideModemanagement

Guide to Modemanagement
V1.0.0.

R4.0 Rev 3

disable CAN1NMRXIPDUS, CAN1RXIPDUS
}

}
}

rule communicationcontrol13 initial false on CONDITION {
if (Dcm_Communication_Control_CAN1 == DCM_DISABLE_RX_TX_NORM_NM)
{

PduGroupSwitch {init = false,
disable CAN1NMTXIPDUS,CAN1TXIPDUS, CAN1NMRXIPDUS,CAN1RXIPDUS
}

}
}

If the DCM has entered the reset mode it is up to the BSWM to execute the reset of the
ECU immediately.

Listing 3.35: ResetMode
rule dcmsessioncontrol initial false on CONDITION {

if (Dcm_ResetMode == DCM_HARD_RESET)
{

custom "Mcu_reset()"
}

}

42 of 54
— AUTOSAR CONFIDENTIAL —

Document ID 440: AUTOSAR_EXP_GuideModemanagement

Guide to Modemanagement
V1.0.0.

R4.0 Rev 3

4 Backward Compatibility

This chapter describes a setup to reuse software components (legacy SWCs), which
are designed to work with the “ECU State Manager (EcuM) with fixed state machine”
[1]. This means that a setup based on EcuM with flexible state machines will be de-
scribed which emulates the behavior of the EcuM with a fixed state machine.

An Overview of the approach is shown in Figure 4.1. A new Software Component
EcuM Fixed Compatibility SWC is added to build a wrapper that presents an interface
of an EcuM with a fixed state machine to the legacy SWCs.

System Services

Runtime Environment

basic software mode manager

ecum user

mode switch
port

mode request
port

mode switch
port

mode request
port

ECU

ecum fixed compatibilty swc

EcuM_State
Request

EcuM_Current
Mode

Figure 4.1: Use of SWCs designed to work with ECU State Manager with fixed state
machine

Figure 4.2 shows the mapping from fixed EcuM to flexible EcuM. The small boxes
represent the states of fixed EcuM and are sometimes included into green boxes which
represent the phases of flexible EcuM. Every state of the fixed EcuM which is inside
a green box of the flexible EcuM does not have to emulated because its execution is
already included in the flexible EcuM. That leads to the necessity to emulate all states
of the fixed EcuM that are not included in green boxes using the BswM during the UP
phase of the flexible EcuM. This mapping of the states of fixed EcuM to the phases of
the flexible EcuM is shown because the lifecycle of an ECU has changed massively
from fixed EcuM to flexible EcuM. The lifecycle of the fixed EcuM corresponds to a
AUTOSAR 3 based ECU.

So the BswM helps to emulate the fixed EcuM. For a backward compatible configura-
tion the BswM must be configured in such a way that it executes these actions.

43 of 54
— AUTOSAR CONFIDENTIAL —

Document ID 440: AUTOSAR_EXP_GuideModemanagement

Guide to Modemanagement
V1.0.0.

R4.0 Rev 3

Figure 4.2: Mapping: Phases of fixed EcuM to flexible EcuM

44 of 54
— AUTOSAR CONFIDENTIAL —

Document ID 440: AUTOSAR_EXP_GuideModemanagement

Guide to Modemanagement
V1.0.0.

R4.0 Rev 3

This chapter describes a compatibility SWC and the modifications of the BswM config-
uration that are necessary. The following hints in this chapter for achieving backward
compatibility are aligned along the phases of execution.

As most parts of the achievement of compatibility is done via BswM rules, this chapter
shows only additional BswM rules and the modifications of the already introduced rules
of chapter 3.

4.1 Startup

During startup phase the same BSW modules shall be initialized as the fixed EcuM
does. This is implemented via BswM rules which are executed after initialization of
EcuM and initialize these modules. The modules which are already initialized by flexible
EcuM are omitted by BswM.

The changed BswM rules can be seen in Listing 4.1.

Listing 4.1: BswM configuration for fixed EcuM compatible startup
rule InitBlockII initial false on CONDITION {

if (EcuMode == ECUM_STATE_STARTUP_ONE)
{

custom "EcuMCompatibility_SetStartup(null)"
custom "Port_Init(null)"
custom "Dio_Init(null)"
custom "Adc_Init(null)"
custom "Spi_Init(null)"
custom "Eep_Init(null)"
custom "Fls_Init(null)"
custom "NvM_Init(null)"
SchMSwitch(EcuMode,ECUM_STATE_STARTUP_TWO)
custom "NvM_ReadAll()"

}
}

rule NvMReadAllFinished initial false on TRIGGER {
if (NvMReadAllJobMode == NVM_JOB_FINISHED && EcuMode ==
ECUM_STATE_STARTUP_TWO) {
custom "CanTrcv_Init(null)"
custom "Can_Init(null)"
custom "CanIf_Init(null)"
custom "CanSM_Init(null)"
custom "CanTp_Init(null)"
custom "Lin_Init(null)"
custom "LinIf_Init(null)"
custom "LinSM_Init(null)"
custom "LinTp_Init(null)"
custom "FrTrcv_Init(null)"
custom "Fr_Init(null)"
custom "FrIf_Init(null)"
custom "FrSM_Init(null)"
custom "FrTp_Init(null)"
custom "PduR_Init(null)"

45 of 54
— AUTOSAR CONFIDENTIAL —

Document ID 440: AUTOSAR_EXP_GuideModemanagement

Guide to Modemanagement
V1.0.0.

R4.0 Rev 3

custom "CANNM_Init(null)"
custom "FrNM_Init(null)"
custom "NmIf_Init(null)"
custom "IpduM_Init(null)"
custom "COM_Init(null)"
custom "DCM_Init(null)"
custom "EcuMCompatibility_OnRteStartup()"
custom "StartRte()"
custom "ComM_Init(null)"
custom "DEM_Init(null)"
custom "FIM_Init(null)"
custom "EcuMCompatibility_SetUp(null)"
SchMSwitch(EcuMode,ECUM_STATE_RUN)

}
}

4.2 Running

If the running phase is active, it is necessary for compatibility to emulate the interfaces
of fixed EcuM as these are used by the legacy SWCs. There are two categories of
interfaces: Those for getting the current mode and those for requesting a mode.

Firstly, in fixed EcuM the SWCs can get the current mode through the method
EcuM_CurrentMode(). In this setup for compatibility, the legacy SWC does not use
the method of EcuM but calls another method with the same name of the newly in-
troduced EcuM Compatibility SWC which represents the wrapper. It gets the current
mode of the flexible EcuM and transforms it into a mode of fixed EcuM which is known
by the legacy components.

The mapping of the flexible ECU modes into fixed modes can be found in Table 4.1.

Table 4.1: Mapping of modes from flexible EcuM to fixed EcuM
Flexible EcuM Fixed EcuM
ECUM_STATE_STARTUP_ONE STARTUP
ECUM_STATE_STARTUP_TWO STARTUP

ECUM_STATE_RUN RUN
ECUM_STATE_APP_RUN RUN

ECUM_STATE_APP_POST_RUN POST_RUN

ECUM_STATE_GoSleep SLEEP
ECUM_STATE_SleepWaitForNvMWriteAll SLEEP

ECUM_STATE_GoOff1 SHUTDOWN
ECUM_STATE_GoOff2 SHUTDOWN

46 of 54
— AUTOSAR CONFIDENTIAL —

Document ID 440: AUTOSAR_EXP_GuideModemanagement

Guide to Modemanagement
V1.0.0.

R4.0 Rev 3

Secondly, legacy SWCs have to be able to request modes. Analogue to
the approach sketched above, the legacy components to not communicate di-
rectly with the EcuM but with the compatibility SWC. The compatibility SWC
offers the same interfaces as fixed EcuM and relays the request to flexible
EcuM. The interface is called EcuM_ModeRequest and its methods to emu-
late are: EcuM_RequestRUN(), EcuM_ReleaseRUN(), EcuM_RequestPOST_RUN(),
EcuM_ReleasePOST_RUN() and EcuM_KillAllRunRequests().

For each fixed EcuM User the compatibility component needs an own
EcuM_ModeRequest-Port as this would also be provided by fixed EcuM. The
legacy SWC then gets connected to exactly that port which belongs to the requested
user.

The needed configuration of BswM is shown in Listing 4.2. This includes the declaration
of a mode group which represents the requested mode. This information is given to
the BswM. The shown rule is responsible for activating the communication if running
mode was requested.

Listing 4.2: BswM configuration for fixed EcuM compatible running mode
modeGroup EcuMCompatibilityMode {

ECUMCOMPATIBILITY_Run,
ECUMCOMPATIBILITY_PostRun
ECUMCOMPATIBILITY_Off,

}

rule checkEcuMCompatibilityModeRequest initial false on TRIGGER {
if (EcuMCompatibilityMode == ECUMCOMPATIBILITY_Run && EcuMode ==
ECUM_STATE_RUN) {
CommunicationAllowed CanSM.CanStateManagerConfiguration.
Can1StateManagerNetwork true

SchMSwitch(EcuMode,ECUM_STATE_APP_RUN)
}

}

The compatibility SWC has to take all requested modes of the legacy components and
transform all requests into one mode which is given to the BswM. This consists of two
steps:

1. Depending on the called wrapping-method choose a mode of the above stated
flexible EcuM modes. The mapping is described in Table 4.2.

2. Determine the “highest” mode of all compatibility users and request that from the
BswM where ECUMCOMPATIBILITY_Run has the highest priority and ECUM-
COMPATIBILITY_Off has the lowest.

Table 4.2: Mapping of modes requests from flexible EcuM to fixed EcuM
Called Method Mode
EcuM_RequestRUN() ECUMCOMPATIBILITY_Run
EcuM_ReleaseRUN() ECUMCOMPATIBILITY_Off

47 of 54
— AUTOSAR CONFIDENTIAL —

Document ID 440: AUTOSAR_EXP_GuideModemanagement

Guide to Modemanagement
V1.0.0.

R4.0 Rev 3

EcuM_RequestPOST_RUN() ECUMCOMPATIBILITY_PostRun
EcuM_ReleasePOST_RUN() ECUMCOMPATIBILITY_Run

EcuM_KillAllRunRequests() ECUMCOMPATIBILITY_Off

If the method EcuM_KillAllRunRequests() is called, the compatibility component re-
quests ECUMCOMPATIBILITY_Off from the BswM independent of other legacy SWC’s
requests.

4.3 Shutdown

If no legacy SWC requested the running mode, the compatibility SWC signals that to
the BswM via the mode ECUMCOMPATIBILITY_Off and BswM can decide whether it
wants to keep the ECU running, shut it down or put it into sleep. If it shall be shut
down or put into sleep, the BswM goes to post-run phase. During post-run phase a
new request can bring the BswM into running mode again.

For that shutdown mechanism the BswM configuration of Listing 4.3 is responsible. The
listed rules coordinate the post-run phase, deinitialize the modules and put the ECU
into shut down or sleep. These rules execute the same callouts EcuM_On<Mode>()
as it would happen with a fixed EcuM. As the callouts during startup and shutdown
cannot be called by the compatibility SWC, they are executed by the BswM via custom
calls.

Listing 4.3: BswM configuration for fixed EcuM compatible shutdown
rule checkEcuMCompatibilityModeRequest initial false on TRIGGER {
if (EcuMCompatibilityMode != ECUMCOMPATIBILITY_Run && EcuMode ==
ECUM_STATE_APP_RUN) {
ComMCommunicationAllowed CanSM.CanStateManagerConfiguration.
Can1StateManagerNetwork false

SchMSwitch(EcuMode,ECUM_STATE_APP_POST_RUN)
}

}

rule GoBackToRun initial false on TRIGGER {
if (EcuMCompatibilityMode == ECUMCOMPATIBILITY_Run && EcuMode ==
ECUM_STATE_APP_POST_RUN) {
SchMSwitch(EcuMode,ECUM_STATE_APP_RUN)

}
}

rule PrepShutdown initial false on TRIGGER {
if (ComM_Mode_Channel1 == COMM_NO_COM_REQUEST_PENDING && EcuMode ==
ECUM_STATE_APP_POST_RUN) {
custom "EcuMCompatibility_OnPrepShutdown()"
custom "Dem_Shutdown(null)"
if (EcuMCompatibilityMode == ECUMCOMPATIBILITY_Sleep) {

SchMSwitch(EcuMode,ECUM_STATE_GoSleep)
}

48 of 54
— AUTOSAR CONFIDENTIAL —

Document ID 440: AUTOSAR_EXP_GuideModemanagement

Guide to Modemanagement
V1.0.0.

R4.0 Rev 3

else {
SchMSwitch(EcuMode,ECUM_STATE_GoOff1)

}
}

}

rule GoSleep initial false on TRIGGER {
if (ComM_Mode_Channel1 == COMM_NO_COM_REQUEST_PENDING && EcuMode ==
ECUM_STATE_GoSleep) {
custom "EcuMCompatibility_OnGoSleep()"
SchMSwitch(EcuMode,ECUM_STATE_SleepWaitForNvMWriteAll)
custom "NvM_WriteAll()"

}
}

rule GoOff initial false on TRIGGER {
if (ComM_Mode_Channel1 == COMM_NO_COM_REQUEST_PENDING && EcuMode ==
ECUM_STATE_GoOff1) {
custom "EcuMCompatibility_OnGoOffOne()"
custom "Rte_stop(null)"
custom "ComM_DeInit(null)"
SchMSwitch(EcuMode,ECUM_STATE_GoOff2)
custom "NvM_WriteAll()"

}
}

rule GoSleepNvMWriteAllFinished initial false on TRIGGER {
if (NvMWriteAllJobMode == NVM_JOB_FINISHED && EcuMode ==
ECUM_STATE_SleepWaitForNvMWriteAll) {
custom "EcuM_GoHalt()"

}
}

rule GoOff2 initial false on TRIGGER {
if (NvMWriteAllJobMode == NVM_JOB_FINISHED && EcuMode ==
ECUM_STATE_GoOff2) {
custom "EcuMCompatibility_OnGoOffTwo()"
custom "EcuM_GoDown()"

}
}

4.4 Wakeup

The functionality for correct wakeup from sleep mode has to be fully configured in the
BswM. But as it does not need any adjustments for backward compatibility, there are
no modifications to be done.

49 of 54
— AUTOSAR CONFIDENTIAL —

Document ID 440: AUTOSAR_EXP_GuideModemanagement

Guide to Modemanagement
V1.0.0.

R4.0 Rev 3

5 Acronyms and abbreviations

5.1 Technical Terms

All technical terms used throughout this document – except the ones listed here – can
be found in the official AUTOSAR glossary [6] or the Software Component Template
Specification [2].

Term Description

mode

A Mode is a certain set of states of the various state ma-
chines (not only of the ECU State Manager) that are run-
ning in the vehicle and are relevant to a particular entity, an
application or the whole vehicle

state

States are internal to their respective BSW component and
thus not visible to the application. So they are only used
by the BSW’s internal state machine. The States inside the
ECU State Manager build the phases and therefore handle
the modes.

phase

A logical or temporal assembly of ECU Manager’s actions
and events, e.g. STARTUP, UP, SHUTDOWN, SLEEP, etc.
Phases can consist of Sub-Phases which are often called
Sequences if they above all exist to group sequences of
executed actions into logical units. Phases in this context
are not the phases of the AUTOSAR Methodology.

mode switch port
The port for receiving (or sending) a mode switch notifica-
tion. For this purpose, a mode switch port is typed by a
ModeSwitchInterface.

mode user

An AUTOSAR SW-C or AUTOSAR Basic Software Mod-
ule that depends on modes by ModeDisablingDependency,
SwcModeSwitchEvent, BswModeSwitchEvent, or simply by
reading the current state of a mode is called a mode user.
A mode user is defined by having a require mode switch
port or a requiredModeGroup ModeDeclarationGroupPro-
totype. See also section 2.

mode manager

Entering and leaving modes is initiated by a mode man-
ager. A mode manager is defined by having a provide
mode switch port or a providedModeGroup ModeDec-
larationGroupPrototype. A mode manager might be either
an application mode manager or a Basic Software
Module that provides a service including mode switches,
like the ECU State Manager. See also section 2.2.

application mode
manager

An application mode manager is an AUTOSAR software-
component that provides the service of switching modes.
The modes of an application mode manager do not
have to be standardized.

50 of 54
— AUTOSAR CONFIDENTIAL —

Document ID 440: AUTOSAR_EXP_GuideModemanagement

Guide to Modemanagement
V1.0.0.

R4.0 Rev 3

mode switch notifica-
tion

The communication of a mode switch from the mode man-
ager to the mode user using either the ModeSwitchIn-
terface or providedModeGroup and requiredModeGroup
ModeDeclarationGroupPrototypes is called mode switch
notification.

mode machine in-
stance

The instances of mode machines or ModeDeclara-
tionGroups are defined by the ModeDeclarationGroupPro-
totypes of the mode managers.
Since a mode switch is not executed instantaneously, The
RTE or Basic Software Scheduler has to maintain it’s own
states. For each mode manager’s ModeDeclarationGroup-
Prototype, RTE or Basic Software Scheduler has one state
machine. This state machine is called mode machine in-
stance. For all mode users of the same mode manager’s
ModeDeclarationGroupPrototype, RTE and Basic Software
Scheduler uses the same mode machine instance. See
also section 2.2.

common mode ma-
chine instance

A ‘common mode machine instance’ is a special ‘mode ma-
chine instance’ shared by BSW Modules and SW-Cs:
The RTE Generator creates only one mode machine in-
stance if a ModeDeclarationGroupPrototype instantiated
in a port of a software-component is synchronized (syn-
chronizedModeGroup of a SwcBswMapping) with a provid-
edModeGroup ModeDeclarationGroupPrototype of a Basic
Software Module instance. The related mode machine
instance is called common mode machine instance.

ModeDisablingDe-
pendency

An RTEEvent and BswEvent that starts a Runnable Entity
respectively a Basic Software Schedulable Entity can con-
tain a disabledInMode association which references a Mod-
eDeclaration. This association is called ModeDisablingDe-
pendency in this document.

mode disabling
dependent Exe-
cutableEntity

A mode disabling dependent Runnable Entity or a Basic
Software Schedulable Entity is triggered by an RTEEvent
respectively a BswEvent with a ModeDisablingDepen-
dency. RTE and Basic Software Scheduler prevent the
start of those Runnable Entity or Basic Software Schedu-
lable Entity by the RTEEvent / BswEvent, when the cor-
responding mode disabling is active. See also section
2.2.

mode disabling

When a ‘mode disabling’ is active, RTE and Basic Soft-
ware Scheduler disables the start of mode disabling
dependent ExecutableEntitys. The ‘mode disabling’
is active during the mode that is referenced in the mode dis-
abling dependency and during the transitions that enter and
leave this mode. See also section 2.2.

51 of 54
— AUTOSAR CONFIDENTIAL —

Document ID 440: AUTOSAR_EXP_GuideModemanagement

Guide to Modemanagement
V1.0.0.

R4.0 Rev 3

OnEntry Exe-
cutableEntity

A Runnable Entity or a Basic Software Schedulable En-
tity that is triggered by a SwcModeSwitchEvent respectively
a BswModeSwitchEvent with ModeActivationKind ‘entry’ is
triggered on entering the mode. It is called OnEntry Exe-
cutableEntity. See also section 2.2.

OnExit Exe-
cutableEntity

A Runnable Entity or a Basic Software Schedulable Entity
that is triggered by a SwcModeSwitchEvent respectively
a BswModeSwitchEvent with ModeActivationKind ‘exit’ is
triggered on exiting the mode. It is called OnExit Exe-
cutableEntity. See also section 2.2.

OnTransition Exe-
cutableEntity

A Runnable Entity or a Basic Software Schedulable Entity
that is triggered by a SwcModeSwitchEvent respectively
a BswModeSwitchEvent with ModeActivationKind ‘transi-
tion’ is triggered on a transition between the two specified
modes. It is called OnTransition ExecutableEntity. See also
section 2.2.

mode switch ac-
knowledge Exe-
cutableEntity

A Runnable Entity or a Basic Software Schedulable Entity
that is triggered by a SwcModeSwitchedAckEvent respec-
tively a BswModeSwitchedAckEvent connected to the mode
manager’s ModeDeclarationGroupPrototype. It is called
mode switch acknowledge ExecutableEntity. See also sec-
tion 2.2.

server runnable

A server that is triggered by an OperationInvokedEvent. It
has a mixed behavior between a runnable and a function
call. In certain situations, RTE can implement the client
server communication as a simple function call.

runnable activation

The activation of a runnable is linked to the RTEEvent that
leads to the execution of the runnable. It is defined as the
incident that is referred to by the RTEEvent.
E.g., for a timing event, the corresponding runnable is acti-
vated, when the timer expires, and for a data received event,
the runnable is activated when the data is received by the
RTE.

Basic Software
Schedulable Entity
activation

The activation of a Basic Software Schedulable Entity is de-
fined as the activation of the task that contains the Basic
Software Schedulable Entity and eventually includes set-
ting a flag that tells the glue code in the task which Basic
Software Schedulable Entity is to be executed.

runnable start A runnable is started by the calling the C-function that im-
plements the runnable from within a started task.

Basic Software
Schedulable Entity
start

A Basic Software Schedulable Entity is started by the
calling the C-function that implements the Basic Software
Schedulable Entity from within a started task.

52 of 54
— AUTOSAR CONFIDENTIAL —

Document ID 440: AUTOSAR_EXP_GuideModemanagement

Guide to Modemanagement
V1.0.0.

R4.0 Rev 3

Trigger Source

A Trigger Source administrate the particular Trigger and in-
forms the RTE or Basic Software Scheduler if the Trigger is
raised. A Trigger Source has dedicated provide trigger
port(s) or / and releasedTrigger Trigger (s) to communicate
to the Trigger Sink(s).

Trigger Sink

A Trigger Sink relies on the activation of Runnable Entities
or Basic Software Schedulable Entities if a particular Trigger
is raised. A Trigger Sink has a dedicated require trigger
port(s) or / and requiredTrigger Trigger (s) to communicate
to the Trigger Source(s).

trigger port A PortPrototype which is typed by an TriggerInter-
face

triggered Exe-
cutableEntity

A Runnable Entity or a Basic Software Schedulable Entity
that is triggered at least by one ExternalTriggerOc-
curredEvent / BswExternalTriggerOccurredEvent
or InternalTriggerOccurredEvent / BswInternal-
TriggerOccurredEvent. In particular cases, the Trigger
Event Communication or the Inter Runnable Triggering is
implemented by RTE or Basic Software Scheduler as a di-
rect function call of the triggered ExecutableEntity by the
triggering ExecutableEntity.

triggered runnable

A Runnable Entity that is triggered at least by one Ex-
ternalTriggerOccurredEvent or InternalTrigge-
rOccurredEvent. In particular cases, the Trigger Event
Communication or the Inter Runnable Triggering is imple-
mented by RTE as a direct function call of the triggered
runnable by the triggering runnable.

triggered Basic Soft-
ware Schedulable
Entity

A Basic Software Schedulable Entity that is triggered
at least by one BswExternalTriggerOccurredEvent
or BswInternalTriggerOccurredEvent. In particular
cases, the Trigger Event Communication or the Inter Basic
Software Schedulable Entity Triggering is implemented by
Basic Software Scheduler as a direct function call of the
triggered ExecutableEntity by the triggering ExecutableEn-
tity.

execution-instance
An execution-instance of a ExecutableEntity is one in-
stance or call context of an ExecutableEntity with re-
spect to concurrent execution.

inter-ECU communi-
cation

The communication between ECUs, typically using COM is
called inter-ECU communication in this document.

53 of 54
— AUTOSAR CONFIDENTIAL —

Document ID 440: AUTOSAR_EXP_GuideModemanagement

Guide to Modemanagement
V1.0.0.

R4.0 Rev 3

inter-partition com-
munication

The communication within one ECU but between differ-
ent partitions, represented by different OS applications,
is called inter-partition communication in this docu-
ment. It typically involves the use of OS mechanisms like
IOC or trusted function calls. The partitions can be located
on different cores or use different memory sections of the
ECU.

intra-partition com-
munication

The communication within one partition of one ECU is
called intra-partition communication. In this case,
RTE can make use of internal buffers and queues for com-
munication.

intra-ECU communi-
cation

The communication within one ECU is called intra-ECU
communication in this document. It is a super set of inter-
partition communication and intra-partition com-
munication.

54 of 54
— AUTOSAR CONFIDENTIAL —

Document ID 440: AUTOSAR_EXP_GuideModemanagement

	1 Introduction
	1.1 Further Work

	2 Overall mechanisms and concepts
	2.1 Declaration of modes
	2.2 Mode managers and Mode users
	2.3 Modes in the RTE
	2.4 Modes in the Basic Software Scheduler
	2.5 Communication of modes
	2.5.1 Mode switch
	2.5.2 Mode request
	2.5.3 Conformance of mode switches and mode requests
	2.5.4 Mode proxies
	2.5.5 Mode communication on multi core ECUs

	3 Configuration of the Basic Software Modemanagers
	3.1 Process how to configure and integrate a BSWM
	3.2 Semantics of BSWM Configuration: Interfaces and behavioral aspects
	3.2.1 Interface of the BSWM
	3.2.2 Definitions of ModeDeclarationGroups
	3.2.2.1 ModeDeclarationGroups defined by the standardized interface of the BSWM
	3.2.2.2 Exemplary ModeDeclarationGroups for this document

	3.2.3 Definition of the interface in pseude code
	3.2.3.1 Definition of ModeRequestPorts which are realized by the standardized interface of the BSWM
	3.2.3.2 Definition of configurable ModeRequestPorts

	3.2.4 Configuration of the BSWM behavior

	3.3 ECU State management
	3.3.1 Startup
	3.3.2 Run
	3.3.3 Shutdown
	3.3.4 Sleep
	3.3.5 Wakeup

	3.4 Communication Management
	3.4.1 Startup of ECU
	3.4.2 Shutdown of ECU
	3.4.3 I-PDU Group Switching

	3.5 Diagnostics

	4 Backward Compatibility
	4.1 Startup
	4.2 Running
	4.3 Shutdown
	4.4 Wakeup

	5 Acronyms and abbreviations
	5.1 Technical Terms

