AUTO SAR

Layered Software Architecture

- AUTOSAR Confidential -

BMWGroup (g =@ () BOSCH DAIMLER
& m PSA PEUGEOT cnreoié?l TOYOTA VO LKSWAGEN

Document Title Layered Software Architecture
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 053

Document Classification Auxiliary

Document Version 3.2.0

Document Status Final

Part of Release 4.0

Revision 3

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

Document Change History

Date

Version

Changed by

Change Description

06.10.2011

3.2.0

AUTOSAR
Administration

added a note for the R3-compatibility FlexRay Transport Layer FrArTp on slide "ki890".
added an overview chapter for energy management and partial networking

corrected examples regarding DEM symbol generation

fixed minor typography issues

clarification of term AUTOSAR-ECU on slide "94jt1"

corrected CDD access description for EcuM on slide "11123*

24.11.2010

3.1.0

AUTOSAR
Administration

added a note regarding support for System Basis Chips on slide "94juq”
clarification of DBG and DLT text on slide "3edfg"
corrected DBG description on slide "11231"

30.11.2009

3.0.0

AUTOSAR
Administration

VIVVV|VVYVYVVY

The document has been newly structured. There are now 3 main parts:
m Architecture
m Configuration
m Integration and Runtime aspects
» The whole content has been updated to reflect the content of the R 4.0 specifications.

> Topics which have bee newly introduced or heavily extended in release 4.0 have been
added. E.g.,. Multi Core systems, Partitioning, Mode Management, Error Handling,
Reporting and Diagnostic, Debugging, Measurement and Calibration, Functional Safety etc

» Legal disclaimer revised

23.06.2008

221

AUTOSAR
Administration

» Legal disclaimer revised

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

Document Change History

Date Version |Changed by Change Description
15.11.2007 (2.2.0 AUTOSAR » Updates based on new wakeup/startup concepts
Administration » Detailed explanation for post-build time configuration
» "Slimming" of LIN stack description
» ICC2 figure
» Document meta information extended
» Small layout adaptations made
06.02.2007 (2.1.0 AUTOSAR » ICC clustering added.
Administration » Document contents harmonized
» Legal disclaimer revised
> Release Notes added
> “Advice for users” revised
> “Revision Information” added
21.03.2006 |2.0.0 AUTOSAR Rework Of:
Administration » Error Handling
» Scheduling Mechanisms
» More updates according to architectural decisions in R2.0
31.05.2005 (1.0.1 AUTOSAR » Correct version released
Administration
09.05.2005 (1.0.0 AUTOSAR > Initial release

Administration

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

Disclaimer

Disclaimer

This specification and the material contained in it, as released by AUTOSAR, is for the purpose of information only. AUTOSAR and the
companies that have contributed to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types of Intellectual Property Rights. The commercial
exploitation of the material contained in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form or by any means, for informational purposes only.
For any other purpose, no part of the specification may be utilized or reproduced, in any form or by any means, without permission in
writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only. They have neither been developed, nor tested for
non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR specifications may contain exemplary items (exemplary reference models, "use cases", and/or references to exemplary
technical solutions, devices, processes or software).

Any such exemplary items are contained in the specifications for illustration purposes only, and they themselves are not part of the
AUTOSAR Standard. Neither their presence in such specifications, nor any later documentation of AUTOSAR conformance of products
actually implementing such exemplary items, imply that intellectual property rights covering such exemplary items are licensed under
the same rules as applicable to the AUTOSAR Standard.

5 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I S A R

<
I
>
=]
o
(o)
&
o

Table of contents

1. Architecture

1. Overview of Software Layers

Content of Software Layers

Content of Software Layers in Multi Core systems
Overview of Modules

Interfaces

1. General

2. Interaction of Layers (Examples)
2. Configuration

3. Integration and Runtime aspects

a ~ w0 N

- AUTOSAR Confidential -

15

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au l SA R

Introduction
Purpose and Inputs

N
I
>
B
o
o)
&
o

Purpose of this document
The Layered Software Architecture describes the software architecture of AUTOSAR:

» it describes in an top-down approach the hierarchical structure of AUTOSAR software and
» maps the Basic Software Modules to software layers and
» shows their relationship.

This document does not contain requirements and is informative only. The examples given are
not meant to be complete in all respects.

This document focuses on static views of a conceptual layered software architecture:

» it does not specify a structural software architecture (design) with detailed static and dynamic
interface descriptions,

m these information are included in the specifications of the basic software modules
themselves.

Inputs
This document is based on specification and requirement documents of AUTOSAR.

- AUTOSAR Confidential -

16 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

Introduction
Scope and Extensibility

—
=
<
(o))
5
(4]
(=]
[
o

Application scope of AUTOSAR

AUTOSAR is dedicated for Automotive ECUs. Such ECUs have the following properties:
» strong interaction with hardware (sensors and actuators),

» connection to vehicle networks like CAN, LIN, FlexRay or Ethernet,

> microcontrollers (typically 16 or 32 bit) with limited resources of computing power and memory (compared
with enterprise solutions),

» Real Time System and
» program execution from internal or external flash memory.

NOTE: In the AUTOSAR sense an ECU means one microcontroller plus peripherals and the according
software/configuration. The mechanical design is not in the scope of AUTOSAR. This means that if more

than one microcontroller in arranged in a housing, then each microcontroller requires its own description of
an AUTOSAR-ECU instance.

AUTOSAR extensibility
The AUTOSAR Software Architecture is a generic approach:
» standard modules can be extended in functionality, while still being compliant,
m still, their configuration has to be considered in the automatic Basic SW configuration process!
» non-standard modules can be integrated into AUTOSAR-based systems as Complex Drivers and

» further layers cannot be added.

- AUTOSAR Confidential -

17 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

Architecture — Overview of Software Layers
Top view

page id: 94qu9

The AUTOSAR Architecture distinguishes on the highest abstraction level between three

software layers: Application, Runtime Environment and Basic Software which run on a
Microcontroller.

Application Layer

Runtime Environment (RTE)

Microcontroller

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture

Architecture — Overview of Software Layers
Coarse view

The AUTOSAR Basic Software is further divided in the layers: Services, ECU Abstraction,
Microcontroller Abstraction and Complex Drivers.

Application Layer

Runtime Environment

A
B

Microcontroller

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture

Architecture — Overview of Software Layers
Detailed view

The Basic Software Layers are further divided into functional groups. Examples of Services
are System, Memory and Communication Services.

Application Layer

Runtime Environment

Microcontroller

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture

Architecture — Overview of Software Layers
Microcontroller Abstraction Layer

©
2
I
(o]
B
o
o)
&
o

The Microcontroller Abstraction Layer is the
lowest software layer of the Basic Software.

It contains internal drivers, which are software

modules with direct access to the uC and
internal peripherals.

Task
Make higher software layers independent of uC

Microcontroller Abstraction Layer

Microcontroller

Properties
Implementation: uC dependent

Upper Interface: standardized and puC
independent

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au l SA R

21

Architecture — Overview of Software Layers
ECU Abstraction Layer

~
=
<
(o]
=)
(]
o)
@
o

The ECU Abstraction Layer interfaces the
drivers of the Microcontroller Abstraction

Layer. It also contains drivers for external
devices.

It offers an API for access to peripherals and
devices regardless of their location (uC
internal/external) and their connection to the
HUC (port pins, type of interface)

Microcontroller Abstraction Layer

Task

Make higher software layers independent of
ECU hardware layout

Properties

Implementation: puC independent, ECU hardware
dependent

Upper Interface: uC and ECU hardware
independent

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

22

Architecture — Overview of Software Layers
Complex Drivers

2]
2
<
(2]
b=}

3]

D

©

o

The Complex Drivers Layer spans from the
hardware to the RTE.

Task

Provide the possibility to integrate special purpose
functionality, e.qg. drivers for devices:

» which are not specified within AUTOSAR,
» with very high timing constrains or

> for migration purposes etc.

SIaAlIQ
xa|dwo)

ECU Abstraction Layer

Microcontroller Abstraction Layer

Properties

Implementation: might be application, uC and ECU
hardware dependent

Upper Interface: might be application, uC and ECU
hardware dependent

- AUTOSAR Confidential -

23 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

Architecture — Overview of Software Layers
Services Layer

©
2
I
(o]
B
o
o)
&
o

The Services Layer is the highest layer of the Basic
Software which also applies for its relevance for
the application software: while access to I/O
signals is covered by the ECU Abstraction Layer, |
the Services Layer offers:

» Operating system functionality

» Vehicle network communication and management
services

» Memory services (NVRAM management)
» Diagnostic Services (including UDS communication, error

memory and fait reatmen

» ECU state management, mode management

> Logical and temporal program flow monitoring (Wdg
manager)

Task

Provide basic services for applications and basic
software modules.

Properties

Implementation: mostly uC and ECU hardware
independent

Upper Interface: uC and ECU hardware independent

Services Layer

ECU Abstraction Layer

slanlg
xa|dwod

Microcontroller Abstraction Layer

- AUTOSAR Confidential -

24 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

o
2
<
)
B
[
=)
]
o

Architecture — Overview of Software Layers
AUTOSAR Runtime Environment (RTE)

The RTE is a layer providing communication services
to the application software (AUTOSAR Software
Components and/or AUTOSAR Sensor/Actuator
components).

Above the RTE the software architecture style
changes from “layered” to “component style“.

The AUTOSAR Software Components communicate
with other components (inter and/or intra ECU)
and/or services via the RTE.

Task

Make AUTOSAR Software Components independent
from the mapping to a specific ECU.

Properties

Implementation: ECU and application specific
(generated individually for each ECU)

Upper Interface: completely ECU independent

AUTOSAR Runtime Environment (RTE)

Services Layer

ECU Abstraction Layer

sJanld
xa|dwo)

Microcontroller Abstraction Layer

Microcontroller

- AUTOSAR Confidential -

25 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture

AUTOSAR

Architecture — Overview of Software Layers
Introduction to types of services

)
el
I
(o]
B
o
o)
&
o

The Basic Software can be subdivided into the following types of services:

» Input/Output (1/0O)
Standardized access to sensors, actuators and ECU onboard peripherals

» Memory
Standardized access to internal/external memory (non volatile memory)

> Communication

Standardized access to: vehicle network systems, ECU onboard communication systems and
ECU internal SW

» System

Provision of standardizeable (operating system, timers, error memory) and ECU specific
(ECU state management, watchdog manager) services and library functions

- AUTOSAR Confidential -

26

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

Architecture — Introduction to Basic Software Module Types
Driver (internal)

3
I
>
B
o
o)
&
o

A driver contains the functionality to control and access an internal or an external device.

Internal devices are located inside the microcontroller. Examples for internal devices are:
» Internal EEPROM

» Internal CAN controller

» Internal ADC

A driver for an internal device is called internal driver and is located in the Microcontroller
Abstraction Layer.

- AUTOSAR Confidential -

27 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

o
2
<
)
B
[
=)
]
o

Architecture — Introduction to Basic Software Module Types
Driver (external)

External devices are located on the ECU hardware outside the microcontroller. Examples for
external devices are:

» External EEPROM

» External watchdog

» External flash

A driver for an external device is called external driver and is located in the ECU Abstraction
Layer. It accesses the external device via drivers of the Microcontroller Abstraction Layer.

This way also components integrated in System Basis Chips (SBCs) like transceivers and
watchdogs are supported by AUTOSAR.

» Example: a driver for an external EEPROM with SPI interface accesses the external
EEPROM via the handler/driver for the SPI bus.

Exception:

The drivers for memory mapped external devices (e.g. external flash memory) may access the
microcontroller directly. Those external drivers are located in the Microcontroller Abstraction
Layer because they are microcontroller dependent.

- AUTOSAR Confidential -

28 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

Architecture — Introduction to Basic Software Module Types
Interface

X
=
<
o
k=l
[N
o
©
o

An Interface (interface module) contains the functionality to abstract from modules which are
architecturally placed below them. E.g., an interface module which abstracts from the
hardware realization of a specific device. It provides a generic API to access a specific type of
device independent on the number of existing devices of that type and independent on the
hardware realization of the different devices.

The interface does not change the content of the data.
In general, interfaces are located in the ECU Abstraction Layer.

Example: an interface for a CAN communication system provides a generic API to access CAN
communication networks independent on the number of CAN Controllers within an ECU and
independent of the hardware realization (on chip, off chip).

- AUTOSAR Confidential -

29 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

Architecture — Introduction to Basic Software Module Types
Handler

A handler is a specific interface which controls the concurrent, multiple and asynchronous
access of one or multiple clients to one or more drivers. l.e. it performs buffering, queuing,
arbitration, multiplexing.

The handler does not change the content of the data.

Handler functionality is often incorporated in the driver or interface (e.g. SPIHandlerDriver, ADC
Driver).

- AUTOSAR Confidential -

30 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

Architecture — Introduction to Basic Software Module Types
Manager

N
o
<
o
=)
[N
o
]
o

A manager offers specific services for multiple clients. It is needed in all cases where pure
handler functionality is not enough to abstract from multiple clients.

Besides handler functionality, a manager can evaluate and change or adapt the content of the
data.

In general, managers are located in the Services Layer

Example: The NVRAM manager manages the concurrent access to internal and/or external
memory devices like flash and EEPROM memory. It also performs distributed and reliable
data storage, data checking, provision of default values etc.

- AUTOSAR Confidential -

31

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

Architecture — Overview of Software Layers
Introduction to Libraries

o
o
[
o
=)
o
=)
IS
=1

Libraries are a collection of functions for
related purposes

Libraries:

» can be called by BSW modules (that
including the RTE), SW-Cs, libraries
or integration code

run in the context of the caller in the
same protection environment

can only call libraries

are re-entrant

do not have internal states

do not require any initialization

are synchronous, i.e. they do not have
wait points

Y
AUTOSAR Libraries

YV V.V V V

The following libraries are
specified within AUTOSAR:
Fixed point mathematical, > Interpolation for floating point data, > CRC calculation,

Floating point mathematical, > Bit handling, > Extended functions (e.g. 64bits
Interpolation for fixed point data, » EZ2E communication, calculation, filtering, etc.) and
» Crypto

YV V VY

32 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

<
h—
[Te)
(o]
8
]
D
©
o

Table of contents

1. Architecture
1. Overview of Software Layers
Content of Software Layers
Content of Software Layers in Multi Core systems
Overview of Modules

Interfaces

1. General

2. Interaction of Layers (Examples)
2. Configuration

3. Integration and Runtime aspects

a ~ w0 N

- AUTOSAR Confidential -

33

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

3| Architecture — Content of Software Layers Application Layer
¢ Microcontroller Abstraction Layer RTE
= Communi-
System Services Memory cation 4
The uC Abstraction Layer consists of the following module groups: Services Services Al')/s?r:c\ﬁlon 2
Onboard Memory COM HW 2
. . . Dev. Abstr. HW Abstr. Abstr. ke
» Communication Drivers Mico- Commune £
Drivers for ECU onboard (e.g. SPI) and vehicle communication (e.g. CAN). controller Memory cation /0 8
OSl-Layer: Part of Data Link Layer Drivers Drivers Drivers Drivers

» 1/O Drivers Microcontroller (UC)

Drivers for analog and digital 1/0 (e.g. ADC, PWM, DIO)

» Memory Drivers _
Drivers for on-chip memory devices (e.g. internal Flash, internal EEPROM) and memory mapped external memory devices

(e.g. external Flash)
» Microcontroller Drivers

Drivers for internal peripherals (e.g. Watchdog, General Purpose Timer)
Functions with direct uC access (e.g. Core test) Group of
Software
Microcontroller Drivers Memory Drivers Communication Drivers 1/O Drivers / ;?r(:]ﬂglre;;;
_ 5
= o (@)
5 z S| B = g | 2 | > 3
© | 5 o) ol o 2 - o C Q 2 3 o) 9| o
3 g e S 2| Z| = E 5 = 2| 2 % 2| 2| 8| o Z Software
9| & = o S F| B8] 2 | 2| £ of g = | S SIS Ig | module
8| 2 3 2 21 &g = o| 2 &| 2| 2 &l 5| &| 8|3
s = o < e © =)
= = [0}
w = =
@
internal
peripheral
. wn O o] B .
Microcontroller l device

- AUTOSAR Confidential -

-
34 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au (\ SAR
. FrT—— | TS

z| Architecture — Content of Software Layers Application Layer
s/ Microcontroller Abstraction Layer: SPIHandlerDriver RTE
= Communi-
System Services Memory cation @
Services Services /o HW g
The SPIHandlerDriver allows concurrent --- postrecton | 2
access of several clients to one or more SPI Micro- p— — g
b usses. cgr:it\:ce)lrlser Drivers - Drivers ©

Microcontroller (uC)

To abstract all features of a SPI microcontroller
pins dedicated to Chip Select, those shall
directly be handled by the SPIHandlerDriver.
That means those pins shall not be available
in DIO Driver.

Example:

- AUTOSAR Confidential -

35 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I r\ s AR

[
—
—
—
N
h=]
)
D
©
Q

Architecture — Content of Software Layers
Complex Drivers

A Complex Driver is a module which implements non-
standardized functionality within the basic software
stack.

An example is to implement complex sensor
evaluation and actuator control with direct access
to the uC using specific interrupts and/or complex
UC peripherals (like PCP, TPU), e.g.

> Injection control
» Electric valve control
» Incremental position detection

Task:

Fulfill the special functional and timing requirements
for handling complex sensors and actuators

Properties:

Implementation: highly uC, ECU and application
dependent

Upper Interface to SW-Cs: specified and implemented
according to AUTOSAR (AUTOSAR interface)

Lower interface: restricted access to Standardized
Interfaces

- AUTOSAR Confidential -

36 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture

Application Layer
RTE
Communi-
System Services Memory cation
Services Services /0 HW
Abstraction
Onboard Memory COM HW
Dev. Abstr. HW Abstr. Abstr.
Micro- Memory Communl-)
controller . cation .
- Drivers . Drivers
Drivers Drivers
Microcontroller (uC)
Example:

gl Architecture — Content of Software Layers Application Layer
s| ECU Abstraction: 1/0 Hardware Abstraction RTE
. Memory Communi-
System Services Services SZ?\I/Iicc);Zs g
The 1/0 Hardware Abstraction is a group of modules Onboard Momory || Com fiw 5
which abstracts from the location of peripheral /0 Dev. Abstr. || HW Absir. Abstr. 2
devices (on-chip or on-board) and the ECU oo |1 memory || COMMmUAE Vo 5
hardware layout (e.g. uC pin connections and Drivers Drivers Drivers Drivers
signal level inversions). The 1/O Hardware Microcontroller (uC)
Abstraction does not abstract from the

sensors/actuators!

The different I/O devices might be accessed via an 1/0
signal interface. Example:

TaSk: 1/0O Signal Interface
Represent I/O signals as they are connected to the
ECU hardware (e.g. current, voltage, frequency).

Hide ECU hardware and layout properties from higher
software layers.

COM Drivers I/O Drivers
Properties: o2 =
Implementation: pC independent, ECU hardware &3 3| ¥
dependent 5) §

Upper Interface: uC and ECU hardware independent,
dependent on signal type specified and
implemented according to AUTOSAR (AUTOSAR

interface)

- AUTOSAR Confidential -

37 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

N
=
N
N

h=]
)
=2
©
=1

Architecture — Content of Software Layers

Application Layer

ECU Abstraction: Communication Hardware Abstraction

The Communication Hardware Abstraction is a

group of modules which abstracts from the

location of communication controllers and the ECU

RTE
Communi-
System Services Memory cation 0
Services Services /O HW g
Abstraction a
Onboard Memory COM HW <
Dev. Abstr. HW Abstr. Abstr. %_
" i 1S
Micro Memory Comrpunl /0 5
controller . cation . O
. Drivers) Drivers
Drivers Drivers

hardware layout. For all communication systems a
specific Communication Hardware Abstraction is
required (e.g. for LIN, CAN, FlexRay).

Example: An ECU has a microcontroller with 2 internal
CAN channels and an additional on-board ASIC
with 4 CAN controllers. The CAN-ASIC is
connected to the microcontroller via SPI.

The communication drivers are accessed via bus
specific interfaces (e.g. CAN Interface).

Task:

Provide equal mechanisms to access a bus channel
regardless of it's location (on-chip / on-board)

Properties:

Implementation: uC independent, ECU hardware
dependent and external device dependent

Upper Interface: bus dependent, uC and ECU
hardware independent

- AUTOSAR Confidential -

38 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture

Example:

Communication Hardware Abstraction

CAN Interface

CAN

Trans- Driver for ext.

ceiver CAN ASIC

Driver

1/O Drivers Communication Drivers
(%)

o 3 0
© 9 Z
o e o
= D > S
< ol =
3 g 3

Microcontroller (uC)

Architecture — Content of Software Layers Application Layer
Scope: Memory Hardware Abstraction RTE
Communi-
. Memory .
System Services Services SZ?\t/Iicc):Zs /O HW g
The Memory Hardware Abstraction is a group of oY o w || Abstraction || 5
modules which abstracts from the location of Dev. Abstr. - AbSr. b}
peripheral memory devices (on-chip or on-board) Micro- Memory || COmmunt o £
and the ECU hardware layout. controler Drivers Sation. Drivers ©
Example: on-chip EEPROM and external EEPROM Microcontroller (1C)
devices are accessible via the same
mechanism.

Example:

The memory drivers are accessed via memory specific
abstraction/emulation modules (e.g. EEPROM

Abstraction). emor Abstraction Intet
. . emory straction Interrace
By emulating an EEPROM abstraction on top of Flash
hardware units a common access via Memory Flash EEPROM

EEPROM Abstraction

Emulation

Abstraction Interface to both types of hardware is

enabled.
External External
. EEPROM Driver Flash Driver
Task:

Provide equal mechanisms to access internal (on-chip)
and external_(on'board) COM Drivers Memory Drivers
memory devices and type of memory hardware

(EEPROM, Flash). o3 o 23
i 5 2| 57
Properties: & g
Implementation: uC independent, external device
dependent

Upper Interface: uC, ECU hardware and memory
device independent

- AUTOSAR Confidential -

39 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

" Architecture — Content of Software Layers Application Layer
?é, Onboard Device Abstraction RTE
System Services g/leerm‘c:);)é C:Z?\%E:- 1O HW g
The Onboard Device Abstraction contains - Vemary [COM HW Abstraction 2
drivers for ECU onboard devices which i Memory' o = 3
cannot be seen as sensors or actuators like Do’ || orivers s Drivers || ©
internal or external watchdogs. Those

drivers access the ECU onboard devices via
the uC Abstraction Layer.

Example:

Task:
Abstract from ECU specific onboard devices. _
Watchdog Interface
Watchdog Driver

PropertleS: COM Drivers Microgontroller
Implementation: uC independent, external . DIvers
device dependent - TE
S8 2238

Upper Interface: uC independent, partly ECU
hardware dependent

- AUTOSAR Confidential -

40 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

2
X
S
k=)
()
o)
&
o

Architecture — Content of Software Layers
Communication Services — General

Application Layer

The Communication Services are a group of
modules for vehicle network communication (CAN,
LIN and FlexRay). They interface with the
communication drivers via the communication
hardware abstraction.

Task:

Provide a uniform interface to the vehicle network for
communication.

Provide uniform services for network management

Provide uniform interface to the vehicle network for
diagnostic communication

Hide protocol and message properties from the
application.

Properties:
Implementation: unC and ECU HW independent, partly
dependent on bus type

Upper Interface: uC, ECU hardware and bus type
independent

The communication services will be detailed for each
relevant vehicle network system on the following
pages.

Example:

- AUTOSAR Confidential -

RTE
. Memory *
System Services Services /0 HW §
Abstraction 5
Onboard Memory COM HW <
Dev. Abstr. HW Abstr. Abstr. g_
. i IS
Micro Memory Communi) 5
controller . cation . O
- Drivers . Drivers
Drivers Drivers

41 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture

Microcontroller (uC)

Architecture — Content of Software Layers

Application Layer

Communication Stack — CAN

RTE

Example:

controller
Drivers

. Memory
System Services Services
Onboard Memory

Dev. Abstr. HW Abstr.
Micro- Memory

Drivers

system CAN.
Task:

Please Note:

==

:

External

CAN Controller

- AUTOSAR Confidential -

42 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture

Microcontroller (uC)

1/10 HW
Abstraction

Complex Drivers

The CAN Communication Services are a group of modules
for vehicle network communication with the communication

» Provide a uniform interface to the CAN network. Hide
protocol and message properties from the application.

» There are two transport protocol modules in the CAN stack
which can be used alternatively or in parallel: CanTp and
J1939Tp. They are used as follows:

m CanTp: ISO Diagnostics (DCM), large PDU transport
on standard CAN bus

m - J1939Tp: J1939 Diagnostics, large PDU transport on
J1939 driven CAN bus

AUTOSAR

<
c
c
o
o
h=]
)
D
©
Q

Architecture — Content of Software Layers
Communication Stack — CAN

Application

Layer

RTE

Properties:
» Implementation: uC and ECU HW independent, partly

43

dependent on CAN.

AUTOSAR COM, Generic NM (Network Management)
Interface and Diagnostic Communication Manager are the
same for all vehicle network systems and exist as one
instance per ECU.

Generic NM Interface contains only a dispatcher. No
further functionality is included. In case of gateway ECUs it
can also include the NM coordinator functionality which
allows to synchronize multiple different networks (of the
same or different types) to synchronously wake them up or
shut them down.

CAN Generic NM is specific for CAN networks and will be
instantiated per CAN vehicle network system. CAN
Generic NM interfaces with CAN via underlying network
adapter (CAN NM).

The communication system specific Can State Manager
handles the communication system dependent Start-up
and Shutdown features. Furthermore it controls the
different options of COM to send PDUs and to monitor
signal timeouts.

- AUTOSAR Confidential -

System Services

Memory
Services

Communi-

cation
Services

Onboard
Dev. Abstr.

Memory
HW Abstr.

COM HW
Abstr.

1/10 HW
Abstraction

Micro-
controller
Drivers

Memory
Drivers

Communi-

cation
Drivers

110
Drivers

Complex Drivers

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture

Microcontroller (uC)

AUTOSAR

Architecture — Content of Software Layers
Communication Stack Extension — TTCAN

Application Layer

RTE

44

External
TTCAN Controller

System Services

Memory
Services

Onboard
Dev. Abstr.

Memory

HW Abstr.

Micro-
controller
Drivers

Memory
Drivers

—

for vehicle

TTCAN.
Task:

Please Note:

TTCAN

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture

Microcontroller (uC)

1/10 HW
Abstraction

The TTCAN Communication Services are the optional
extensions of the plain CAN Interface and CAN Driver module

network communication with the communication system

» Provide a uniform interface to the TTCAN network. Hide
protocol and message properties from the application.

» The CAN Interface with TTCAN can serve both a
plain CAN Driver and a CAN Driver TTCAN.

Complex Drivers

AUTOSAR

g Architecture — Content of Software Layers Application Layer
3| Communication Stack Extension — TTCAN RTE
2 Memory Communi-
System Services Services Szalf\t/lic():gs Al')/ct) H\?l §
. . Straction ‘D‘
Properties: v | e, |]
» TTCAN is an absolute superset to CAN, i.e. a CAN stack o 1 Memory || COmmnE o 8
. . Driver . Dri
which supports TTCAN can serve both a CAN and a Diivers e L Diivers S0
TTCAN bus

» Canlf and CanDrv are the only modules which need
extensions to serve TTCAN communication.

» The properties of the communication stack CAN are also
true for CAN with TTCAN functionality.

- AUTOSAR Confidential -

45 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

5| Architecture — Content of Software Layers Application Layer
3] Communication Stack — LIN (LIN Master) RTE
Q . Memory
System Services Services /G HW s
Abstraction 'g
Example: Dev. Abatr. || HW Abar 8
convoter | e omers || S
rivers

The LIN Communication Services are a group of modules for vehicle
network communication with the communication system LIN.

Task:

Provide a uniform interface to the LIN network. Hide protocol and
message properties from the application.

Properties:

The LIN Communication Services contain:
» A LIN 2.1 compliant communication stack with

m Schedule table manager for transmitting LIN frames and to
handle requests to switch to other schedule tables.

m Transport protocol, used for diagnostics
m A WakeUp and Sleep Interface
» An underlying LIN Driver:

m implementing the LIN protocol and adaptation the specific
hardware

m Supporting both simple UART and complex frame based LIN
hardware

- AUTOSAR Confidential -

46 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I r\ s AR

Architecture — Content of Software Layers Application Layer

(]
©O
~
(o]
©
h=]
(0]
o)
©
Q|

Communication Stack — LIN RTE
Memory Sl =
System Services Services Szarl\tllic():gs) ll) /ct) H\?l _§
. H H . straction 8
Note: Integration of LIN into AUTOSAR: Oboard][~ Memory - 5
> Lin Interface controls the WakeUp/Sleep API o 1 Memory || COmmnE /o 8
: Drivers . Drivers
and allows the slaves to keep the bus awake Drivers : —
(decentralized approach).

» The communication system specific LIN State
Manager handles the communication
dependent Start-up and Shutdown features.
Furthermore it controls the communication
mode requests from the Communication
Manager. The LIN state manager also
controls the I-PDU groups by interfacing
COM.

» When sending a LIN frame, the LIN Interface
requests the data for the frame (I-PDU) from
the PDU Router at the point in time when it
requires the data (i.e. right before sending
the LIN frame).

- AUTOSAR Confidential -

47 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

o
N
N
—
—
h=]
)
D
©
Q

Architecture — Content of Software Layers
Communication Services — LIN Slave

LIN Slaves usually are ,intelligent* actuators and
slaves that are seen as black boxes. As they
provide very little hardware capabilities and
resources, it is not intended to shift AUTOSAR SW-
Components onto such systems. Therefore it is not
necessary to have an AUTOSAR system on LIN
Slaves.

LIN Slave ECUs can be integrated into the AUTOSAR
VFB using their Node Capability Descriptions. They
are seen as non-AUTOSAR ECUs. Please refer to
the VFB specification.

That means: LIN Slaves can be connected as
complete ECUs. But they are not forced to use the
AUTOSAR SW Architecture. Perhaps they can use
some standard AUTOSAR modules (like EEPROM,
DIO).

Reason: LIN slaves usually have very limited memory
resources or are ASICs with ,hard-coded” logic.

Note: LIN slaves cannot fulfill the requirements to a
Debugging Host, since LIN is not a multi-master
bus.

- AUTOSAR Confidential -

LIN Slave Application

48 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture

Communication Drivers

LIN Communication
Stack

Application Layer
RTE
Communi-
System Servi Memory cation »
ystem Services i 4
Services Services /0 HW g
Abstraction 8
Onboard Memory COM HW <
Dev. Abstr. HW Abstr. Abstr. %_
. i £
Micro Memory Comr_nunl o) 5
controller . cation - o
. Drivers . Drivers
Drivers Drivers
Microcontroller (uC)
Example:

AUTOSAR

2| Architecture — Content of Software Layers Application Layer
gl Communication Stack — FlexRay —

Memory

Example: System Services Services /O HW

Abstraction

Onboard Memory

Dev. Abstr. HW Abstr.
Micro- Memory
controller ;
. Drivers
Drivers
Microcontroller (uC)

The FlexRay Communication Services are a group
of modules for vehicle network communication with
the communication system FlexRay.

110
Drivers

Complex Drivers

Task:

» Provide a uniform interface to the FlexRay network.
Hide protocol and message properties from the
application.

Please Note:
- - » There are two transport protocol modules in the
‘ ‘ FlexRay stack which can be used alternatively
m FrTp: FlexRay ISO Transport Layer

m FrArTp: FlexRay AUTOSAR Transport Layer,
provides bus compatibility to AUTOSAR R3.x

Host puC Internal FlexRay Controller

Data lines
External External

FlexRay Controller FlexRay Transceiver Control/status lines
(e.g. MFR 4200) (e.g. TIA 1080)

- AUTOSAR Confidential -

49 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I r\ s AR

| Architecture — Content of Software Layers Application Layer
s Communication Stack — FlexRay STE
g Communi-
i Merr_lory cation 142]
System Services Services el /O HW §
: . Abstraction 5
Pro P erties: Onboard Memory - >
. . Dev. Abstr. HW Abstr. L
> Implementation: pC and ECU HW independent, Micro- Memory || COMMmun- o £
partly dependent on FlexRay. conroer || rivers sation. Drivers || ©

» AUTOSAR COM, Generic NM Inerface and

Diagnostic Communication Manager are the same
for all vehicle network systems and exist as one
instance per ECU.

» Generic NM Interface contains only a dispatcher.
No further functionality is included. In case of
gateway ECUSs, it is replaced by the NM
Coordinator which in addition provides the
functionality to synchronize multiple different
networks (of the same or different types) to
synchronously wake them up or shut them down.

» FlexRay NM is specific for FlexRay networks and is
instantiated per FlexRay vehicle network system.

» The communication system specific FlexRay State
Manager handles the communication system
dependent Start-up and Shutdown features.
Furthermore it controls the different options of COM
to send PDUs and to monitor signal timeouts.

- AUTOSAR Confidential -

50 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

Architecture — Content of Software Layers Application Layer
Communication Stack — TCP/IP RTE

©
©
Iry)
<
<
k=]
[
o)
IS4
o

Memory

Example: System Services Services /O HW

Abstraction

Onboard Memory
Dev. Abstr. HW Abstr.
Micro-
/
‘ conoller | 52T orivers
The TCP/IP Communication Services are a
group of modules for vehicle network
communication with the communication
system TCP/IP.

Task:
» Provide a uniform interface to the TCP/IP
network. Hide protocol and message

properties from the application.

Ethernet

Complex Drivers

External
Ethernet Controller

- AUTOSAR Confidential -

51 10 November 2011 LayeDet Sutinale BBchitAtiTieS AR CEXIRNL HYydB8 S aftdidreARChiCBieved001 ‘ Au I (\ SAR

Architecture — Content of Software Layers Application Layer

=
©
o
o
S

o
[
o)
I
o

Communication Stack — TCP/IP — Socket Adaptor RTE

M Communi-
System Services emory cation @
ervees Sefvices Al;/?r:c\:yon £
. stractl 5
Properties: oovmee | e, |]
. icro- i- 5
» The SoAd Module fully contains the DolP comporer | Memory SRR wo §

protocol handler. Drivers e L Diivers e

» The SoAd provides two APIs towards the
TCP/IP stack.

» The TCP/IP Stack may contain a multitude
of protocol handlers including, but not limited
to UDP, TCP, DHCP, ARP, ICMP, and
others.

» The TCP/IP stack is not intended as an
AUTOSAR Module, but is defined by the
interfaces only.

- AUTOSAR Confidential -

52 10 November 2011 LayeDent Goénalie ABchitatilieSAR cEXRNL Hy 188 S Mfti8reARchiCeBieveD001 ‘ Au I SA R

Architecture — Content of Software Layers Application Layer

=1
c
c
o
o
h=]
)
D
©
Q

Communication Stack — General RTE
M Communi-
System Services emory cation o
Services Services Ag/ct) H\'/:y .02)
. . . . straction 8
General communication stack properties: Oboard][~ Memory - 5
Micro- Memor Communi- /o E
cgn_troller Driverg ;"?“0" Drivers ©
> A signal gateway is part of AUTOSAR COM to route . ——
.
signals.
» PDU based Gateway is part of PDU router.
» IPDU multiplexing provides the possibility to add

information to enable the multiplexing of I-PDUs (different
contents but same IDs on the bus).

» Upper Interface: uC, ECU hardware and network type
independent.

» For refinement of GW architecture please refer to
“Example Communication”

- AUTOSAR Confidential -

53 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

Architecture — Content of Software Layers
Services: Memory Services

=
ie)
je)
o
s
(]
(@]
©
o

Application Layer

The Memory Services consist of one module,
the NVRAM Manager. It is responsible for
the management of non volatile data
(read/write from different memory drivers).

Task: Provide non volatile data to the
application in a uniform way. Abstract from
memory locations and properties. Provide
mechanisms for non volatile data
management like saving, loading, checksum
protection and verification, reliable storage
etc.

Properties:

Implementation: uC and ECU hardware
independent, highly configurable

Upper Interface: uC and ECU hardware
independent specified and implemented
according to AUTOSAR
(AUTOSAR interface)

- AUTOSAR Confidential -

Memory Services

NVRAM Manager

54 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture

RTE
Communi-
System Servi Memory cation n
ystem Services i o
Services Services /0 HW g
Abstraction 8
Onboard Memory COM HW <
Dev. Abstr. HW Abstr. Abstr. %_
" i 1S
Micro Memory Communl o) 5
controller . cation X O
. Drivers . Drivers
Drivers Drivers
Microcontroller (uC)
Example:

AUTOSAR

Architecture — Content of Software Layers
Services: System Services

The System Services are a group of modules
and functions which can be used by modules
of all layers. Examples are Real Time
Operating System (which includes timer
services) and Error Manager.

Some of these services are uC dependent (like
0OS), partly ECU hardware and application
dependent (like ECU State Manager) or
hardware and uC independent.

Task:

Provide basic services for application and
basic software modules.

Properties:
Implementation: partly uC, ECU hardware and
application specific

Upper Interface: uC and ECU hardware
independent

Example:

- AUTOSAR Confidential -

SO dvsoLnv

Application Layer

RTE

Communi-
System Servi Memory cation n
ystem Services ; \ 2
Services Services /0 HW g
Abstraction 8
Onboard Memory COM HW <
Dev. Abstr. HW Abstr. Abstr. %_
. i IS
Micro Memory Communl o) 5
controller . cation X O

. Drivers . Drivers
Drivers Drivers

Microcontroller (uC)

System Services

(nno3)
Jabeuep a1€1S ND3

(IWwo)) Jabeuep
uonedIuNWWo)

=

9 c
58|53
5 Q@ 29
5 > S o
Q@ O Q O
o2 | §°3
o 4 -
25|23
g2 | I
3 @ <=
S5 | =0

= =

((Ele)PERIEINN

o o
@D
< &
5| 33
|
T 82| W
1BHE:
AEHE
m Q
= o
>
g a

Jabeuey aseq
-aWI| PaZIUOIYOUAS
(WBpm)
J1abeuepy Bopyorep

(nmsg) 1abeuey
SPOIN 8Jemjos aiseg

55 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture

AUTOSAR

& Architecture — Content of Software Layers Application Layer
¢ Error Handling, Reporting and Diagnostic RTE
= Memory CELAT-
System Services Services SZ?vtli?:r;s /O HW g
Application Layer - Memory || comnaw | “Psrecten |5
HW Abstr. Abstr. %_
. . Micro- Memory Communi- /o g
AUTOSAR Runtime Environment (RTE) controller Drivers cation Drivers ©
Services
é” Function Inhibition |
% Manager Diagnostic Communi-
° e e | SR There are dedicated modules for different aspects
3 Diagnostic Log Deauoeng of error handling in AUTOSAR. E.g.;
= and Trace) .
% Diagnosic Event | XCP » The Debugging module supports debugging of
anager

the AUTOSAR BSW. ltinterfaces to ECU
internal modules and to an external host system
via communication .
» The Diagnostic Event Manager is responsible
Microcontroller Drivers Communication for processmg and_ StOI’Iﬂg dlagnostlc events
Drivers (errors) and associated FreezeFrame data.
. | > The module Diagnostic Log and Trace
supports logging and tracing of applications. It
collects user defined log messages and converts
them into a standardized format.
» All detected development errors in the Basic Software are reported to Development Error Tracer.

» The Diagnostic Communication Manager provides a common API for diagnostic services
» etc.

Watchdog Interface

- AUTOSAR Confidential -

56 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

Architecture — Content of Software Layers

Application Layer: Sensor/Actuator Software Components EREN

=2}
‘7
X
B
[
=)
©
o

Memory Communi-
System Services Services Scat|.on /O HW 2
ervices . é
The Sensor/Actuator AUTOSAR Software Onboard || Memory || commw || “PSreeton |8
Component is a specific type of AUTOSAR O z
Software Component for sensor evaluation comler || IS eaton | 0 || S
and actuator control. Though not belonging

to the AUTOSAR Basic Software, it is
described here due to its strong relationship
to local signals. It has been decided to locate
the Sensor/Actuator SW Components above
the RTE for integration reasons
(standardized interface implementation and
interface description). Because of their
strong interaction with raw local signals,

Example:

Application Layer

vye . . Actuat S
relocatability is restricted. Ea— Software
Component Component
Task:
Provide an abstraction from the specific alls

physical properties of hardware sensors and

actuators, which are connected to an ECU. Basic Software

Interfaces to (e.g.)

« 1/0 HW Abstraction (access to 1/O signals)

* Memory Services (access to calibration data)
« System Services (access to Error Manager)

Properties:

Implementation: uC and ECU HW independent,
sensor and actuator dependent

- AUTOSAR Confidential -

57 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture

AUTOSAR

<
h—4
©O
(o]
8
]
D
©
o

Table of contents

1. Architecture
1. Overview of Software Layers
Content of Software Layers
Content of Software Layers in Multi Core systems
Overview of Modules

Interfaces

1. General

2. Interaction of Layers (Examples)
2. Configuration

3. Integration and Runtime aspects

a ~ w0 N

- AUTOSAR Confidential -

58

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au l SA R

m
X
Q
3

=
@
QD
=]
m
O
c
=3
—
=5
o))
—
=

(@)
o
=)
¢
3,
o
=
(@)
(@)
(@)
>
=
=3
@
=

Architecture — Content of Software Layers
Example of a Layered Software Architecture for Multi-Core Microcontroller

ECU

core 0O:

System Services

Memory
Services

Communi-
cation
Services

core 1:

Application Layer

Operating
System

ECU State
Manager

Micro-
controller
Drivers

Memory
Drivers

Communi-
cation Drivers

1/0
Drivers

Core Test

Microcontroller (uC)

59

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture

- AUTOSAR Confidential -

AUTOSAR

Architecture — Content of Software Layers
Scope: Multi-Core System Services

» The I0OC, as shown in the figure, provides communication
services which can be accessed by clients which need
to communicate across OS-Application boundaries on

the same ECU. The I0OC is part of the OS

» Every Core runs a kind of ECU state management

60

19]|0J1U0D012IW 8402 OM] B YlIM NDT ue :ajdwex3

Application Layer
RTE
Communi-

System Services Memory cation 24
Services Services /O HW <
Abstraction 5
Onboard Memory COM HW <
Dev. Abstr. HW Abstr. Abstr. %_
— = g
Micro Memory Communl /o 5
controller . cation X O

. Drivers . Drivers

Drivers Drivers

core O:

Microcontroller

core 1:

[

uoneIuUNWWOod
uoneolddyso Ja1u|
20!

SO dvsoLnv

0 aloD
Jabeue arels ND3

Jabeuepy
uonesIuNWWo)

System Services

Jabeuey
uomqiyuj uondun4

Jabeue
1uang ansoubeliq

19901
Jou3 uswdojanaq
labeue
apOo\ a1emyos aiseq

uonedIUNWWOod
uoneolddysQ Ja1u|
20!

SO "vsoLnvy

System Services

T 910D Juswabeuew
9lels N3

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture

Microcontroller (uC)

AUTOSAR

<
=4
~
(o]
8
]
(o)
@
o

Table of contents

1. Architecture
1. Overview of Software Layers
Content of Software Layers
Content of Software Layers in Multi Core systems
Overview of Modules
Interfaces
1. General
2. Interaction of Layers (Examples)
2. Configuration

3. Integration and Runtime aspects

a ~ w0 N

- AUTOSAR Confidential -

61

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

Architecture
Overview of Modules — Implementation Conformance Class 3 - ICC3

This figure shows the mapping of basic software modules to AUTOSAR layers

Application Layer

AUTOSAR Runtime Environment (RTE)

Microcontroller

Not all modules are shown here

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture

[e)]

L2

g /\ a a

=}

o Qve C 0 o]0 C DI1E C all(U 0 S > o C

®©

o
s s 0 0 Ao S 0 ge ea o e pro 0 A OSAR
0 e 0 ded O differe 0 d op 0 e

0 e 0 pe d e A OSAR e 0 ga omp

defined appro 0 omp e

Application Layer

AUTOSAR Runtime Environment

]

0 I I
R ==

ECU Hardware

- ICC3 module

AANNRNNRRNAn

AUT O SAR

ICC2 clusters

Architecture
Overview of Modules — Implementation Conformance Classes — ICC1

In a basic software which is compliant to ICC1 no modules or clusters are required.
The inner structure of this proprietary basic software is not specified.

Application Layer

AUTOSAR Runtime Environment

ECU Hardware

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au I s AR

Architecture

—
o
(=X
<
[«
k=l
)
D
<
Q.

Overview of Modules — Implementation Conformance Classes — behavior to the outside

Basic software (including the RTE) which is AUTOSAR compliant (ICC1-3) has to behave to the outside as specified by ICC3.
For example the behavior towards:

> buses,
> boot loaders and
» applications.

Application Layer

AUTOSAR Runtime Environment

ECU Hardware

|

ICC 3 compliant
behavior

- AUTOSAR Confidential -
Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au T(a q)s A R

65

<
b=
[e4)
[e]
8
]
D
©
o

Table of contents

1. Architecture
1. Overview of Software Layers
Content of Software Layers
Content of Software Layers in Multi Core systems
Overview of Modules

Interfaces

1. General

2. Interaction of Layers (Examples)
2. Configuration

3. Integration and Runtime aspects

a ~ w0 N

- AUTOSAR Confidential -

66

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

Interfaces
Type of Interfaces in AUTOSAR

©
<]
~
N
Ia)
h=]
(]
o)
@
o

An "AUTOSAR Interface" defines the information exchanged between
software components and/or BSW modules. This description is
independent of a specific programming language, ECU or network
technology. AUTOSAR Interfaces are used in defining the ports of
AUTOSAR Interface software-components and/or BSW modules. Through these ports
software-components and/or BSW modules can communicate with each
other (send or receive information or invoke services). AUTOSAR makes
it possible to implement this communication between Software-
Components and/or BSW modules either locally or via a network.

A "Standardized AUTOSAR Interface" is an "AUTOSAR Interface" whose

- syntax and semantics are standardized in AUTOSAR. The "Standardized
Standardized AUTOSAR AUTOSAR Interfaces" are typically used to define AUTOSAR Services,
which are standardized services provided by the AUTOSAR Basic
Software to the application Software-Components.

Interface

A "Standardized Interface" is an APl which is standardized within
AUTOSAR without using the "AUTOSAR Interface" technique. These
"Standardized Interfaces" are typically defined for a specific programming
language (like "C"). Because of this, "standardized interfaces" are
typically used between software-modules which are always on the same
ECU. When software modules communicate through a "standardized
interface”, it is NOT possible any more to route the communication
between the software-modules through a network.

Standardized Interface

- AUTOSAR Confidential -

67 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

Interfaces

0
2
I
(o]
B
o
o)
&
o

Components and interfaces view (simplified)

AUTOSAR
Software
Component

Interface

Standard
Software

Application
Software
Component

Actuator
Software
Component

Sensor
Software
Component

AUTOSAR
Interface

A

Interfaces:

& VvFB & RTE
relevant

<:> RTE

relevant

™ Bsw

relevant

Possible interfaces
inside
Basic Software
(which are
not specified
within AUTOSAR)

Standardized

AUTOSAR
Interface

AUTOSAR
Interface

AUTOSAR
Software

AUTOSAR Runtime Environment (RTE)

T

A

T

Application
Software
Component

AUTOSAR
Interface

T

Standardized

Standardized

AUTOSAR

AUTOSAR

Interface
o
55
- o <
Operating g
System |2 o
i
o

ECU-Hardware

Note: This figure is incomplete with respect to the possible interactions between the layers.
- AUTOSAR Confidential -

68

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture

Standardized
Interface

Microcontroller
Abstraction

AUTOSAR
- Interface Interface Interface
: .. ECU
Services Communication Abstraction
Standardized Standardized Standardized
Interface Interface Interface
Q Complex
Drivers

AUTOSAR

Interfaces: General Rules
General Interfacing Rules

=
=]
N
©
©
k=l
[
[
©
o

Horizontal Interfaces Vertical Interfaces

Services Layer: horizontal interfaces are allowed
Example: Error Manager saves fault data using the
NVRAM manager

One Layer may access all interfaces of the SW layer
below

ECU Abstraction Layer: horizontal interfaces are Bypassing of one software layer should be avoided
allowed
A complex driver may use selected other BSW

Bypassing of two or more software layers is not
modules

allowed

1111

HC Abstraction Layer: horizontal interfaces are not
allowed. Exception: configurable notifications are

Bypassing of the uC Abstraction Layer is not allowed
allowed due to performance reasons.

A module may access a lower layer module of
another layer group (e.g. SPI for external hardware)

o N\ o @& © =

All layers may interact with system services.

o
1y

~

-

Microcontroller (UC)

- AUTOSAR Confidential -

69 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

Interfaces: General Rules
Layer Interaction Matrix

=
&
o
X
—
h=]
)
=)
©
=1

This matrix shows the possible interactions between
AUTOSAR Basic Software layers

v “is allowed to use”

x "is not allowed to use”

A “restricted use
(callback only)”

Communication Services

System Services
Memory Services

The matrix is read row-

wise: AUTOSAR SW Components / RTE
Example: “I/O Drivers System Senices M G M G
are allowed Memory Senvices Vvl < <] x| s | x| x
to use System Services Communication Senices Vv v <] <] x| % s | x| %
and restricted access -> see the following two slides
Hardware, but no other V<l <] <1<l v =|]
Iayers”. vl x x x sl v]x]vV]vVv]Ix]| V]V
(gray background indicates “non- VIVl)17 =
Basic Software” layers) v % v % % v % v % % v v
Vx| x]v] v <] x]A] x] «<| A
v] x x x x x v] x x x x x
vl x x x x|l v] x]1 v % x x| v
V] x] x| x]v]v]x]x]A] x] x]A

- AUTOSAR Confidential -

70 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I s AR

N
N
—
—
—
h=]
)
D
©
Q

Interfaces Application Layer
Interfacing with Complex Drivers (1) RTE
Communi-
s Servi Memory cation
. . ystem Services Services Senvives 1O HW
Complex Drivers may need to interface to other modules Onboard || Memory || commw | APSracton
in the layered software architecture, or modules in B R T
: : - Memory N 110
the layered software architecture may need to interface conwoler || [cation o

to a Complex Driver. If this is the case,

Microcontroller (uC)

the following rules apply:
1. Interfacing from modules of the layered software architecture to Complex Drivers

This is only allowed if the Complex Driver offers an interface which can be generically configured by the accessing
AUTOSAR module.

A typical example is the PDU Router: a Complex Driver may implement the interface module of a new bus system.
This is already taken care of within the configuration of the PDU Router.

2. Interfacing from a Complex Driver to modules of the layered software architecture

Again, this is only allowed if the respective modules of the layered software architecture offer the interfaces, and are
prepared to be accessed by a Complex Driver. Usually this means that

» The respective interfaces are defined to be re-entrant.
> If call back routines are used, the names are configurable
» No upper module exists which does a management of states of the module (parallel access would change states
without being noticed by the upper module)
- AUTOSAR Confidential -
71 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ AUT SA R

™
N
—
—
—
h=]
)
D
]
Q

Interfaces
Interfacing with Complex Drivers (2)

Application Layer

In general, it is possible to access the following modules:
» The SPI driver
» The GPT driver

System Services

Memory
Services

Communi-

cation
Services

Onboard
Dev. Abstr.

Memory

HW Abstr.

COM HW
Abstr.

1/10 HW
Abstraction

Micro-
controller
Drivers

Memory
Drivers

Communi-

cation
Drivers

I/0
Drivers

»> The I/O drivers with the restriction that re-entrancy often only exists

Microcontroller (uC)
separate groups/channels/etc. Parallel access to the same

group/channel/etc. is mostly not allowed. This has to be taken care of during configuration.
» The NVRAM Manager as exclusive access point to the memory stack
» The Watchdog Manager as exclusive access point to the watchdog stack
» The PDU Router as exclusive bus and protocol independent access point to the communication stack
» The bus specific interface modules as exclusive bus specific access point to the communication stack
» The NM Interface Module as exclusive access point to the network management stack
>

The Communication Manager (only from upper layer) and the Basic Software Mode Manager
as exclusive access points to state management

» Det, Dem and DIt
» The OS as long as the used OS objects are not used by a module of the layered software architecture

Still, for each module it is necessary to check if the respective function is marked as being re-entrant. For example,
‘init’ functions are usually not re-entrant and should only be called by the ECU State Manager.

- AUTOSAR Confidential -

72 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture

AUTOSAR

3| Interfaces Application Layer
g Interfacing with Complex Drivers (3) RTE
= Memory Communi-
. . N System Services Services SZ?\I/Iicc):Zs O HW
In case of multi core architectures, there are additional rules: onboard Memory || commw | APstaction
> In AUTOSAR release 4.0, the BSW resides on the master core. O
. . . M . 110
» Consequently, if the CDD needs to access standardized interfaces controller Drivers cation Drivers
. i Drivers Drivers
of the BSW, it needs to reside on the same core. Microcontroller (uC)

> In case a CDD resides on a different core, it can use the normal

port mechanism to access AUTOSAR interfaces and standardized AUTOSAR interfaces. This invokes the RTE,
which uses the IOC mechanism of the operating system to transfer requests to the master core.

» However, if the CDD needs to access standardized interfaces of the BSW and does not reside on the master
core, a stub part of the CDD needs to be implemented on the master core, and communication needs to be
organized CDD-local using the IOC mechanism of the operating system similar to what the RTE does.

» Additionally, in this case the initialization part of the CDD also needs to reside in the stub part on the master core.

- AUTOSAR Confidential -

73 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture

AUTOSAR

<
=
o))
(o]
8
]
D
©
o

Table of contents

1. Architecture
1. Overview of Software Layers
Content of Software Layers
Content of Software Layers in Multi Core systems
Overview of Modules

Interfaces

1. General

2. Interaction of Layers (Examples)
2. Configuration

3. Integration and Runtime aspects

a ~ w0 N

- AUTOSAR Confidential -

74

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au l SA R

Interfaces: Interaction of Layers — Example “Memory”
Introduction

Yol
=
=
N
B
]
D
@
[=X

The following pages explain using the example , memory*“:
» How do the software layers interact?

» How do the software interfaces look like?

» What is inside the ECU Abstraction Layer?

» How can abstraction layers be implemented efficiently?

- AUTOSAR Confidential -

75 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

©
~
[c0)
(2]
(o]
R=]
()
o)
]
Q|

76

Interfaces: Interaction of Layers — Example “Memory”

Example and First Look

This example shows how the NVRAM Manager and the
Watchdog Manager interact with drivers on an assumed
hardware configuration:

The ECU hardware includes an external EEPROM and an
external watchdog connected to the microcontroller via the
same SPI.

The SPIHandlerDriver controls the concurrent access to the
SPI hardware and has to give the watchdog access a
higher priority than the EEPROM access.

The microcontroller includes also an internal flash which is
used in parallel to the external EEPROM. The EEPROM
Abstraction and the Flash EEPROM Emulation have an
API that is semantically identical.

The Memory Abstraction Interface can be realized in the
following ways:

» routing during runtime based on device index (int/ext)

» routing during runtime based on the block index (e.g. >
0x01FF = external EEPROM)

» routing during configuration time via ROM tables with
function pointers inside the NVRAM Manager (in this case
the Memory Abstraction Interface only exists ,virtually*)

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture

Memlf_Read()
MemIf Write(Q)

Wwdglf_Trigger(Q)

Spi_ReadIB()
Spi_WritelB()

FIs_Read()
Fls_Write()

External External
Watchdog EEPROM

Interfaces: Interaction of Layers — Example “Memory”
Closer Look at Memory Hardware Abstraction

<
@
©
—
5
(0]
D
(]
o

Architecture Description

The NVRAM Manager accesses drivers via the
Memory Abstraction Interface. It addresses Nvm_Write(BlockIndex)
different memory devices using a device index.

Interface Description

The Memory Abstraction Interface could have the
following interface (e.g. for the write function):

MemIf_Write(

Std_ReturnType Memlf Write Devicelndex,
(BlockNumber,
uints Devicelndex, DataBufferpPtr)
uintl6 BlockNumber,
uints *DataBufferPtr

)

The EEPROM Abstraction as well as the Flash
EEPROM Emulation could have the following
interface (e.g. for the write function):

Std_ReturnType Ea Write
(

uintle6 BlockNumber,
uint8 *DataBufferPtr

- AUTOSAR Confidential -

77 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I (s AR

~
N
O
E
b=l
(0]
o)
©
o

Interfaces: Interaction of Layers — Example “Memory”
Implementation of Memory Abstraction Interface

Situation 1: only one NV device type used

This is the usual use case. In this situation, the Memory Abstraction can, in case of source code availability, be

implemented as a simple macro which neglects the Devicelndex parameter. The following example shows
the write function only:

File Memlf.h:
#include “Ea.h* /* fTor providing access to the EEPROM Abstraction */

#define Memlf Write(Devicelndex, BlockNumber, DataBufferPtr) \
Ea Write(BlockNumber, DataBufferPtr)

File Memlf.c:
Does not exist

Result:

No additional code at runtime, the NVRAM Manager virtually accesses the EEPROM Abstraction or the Flash
Emulation directly.

- AUTOSAR Confidential -

78

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

Interfaces: Interaction of Layers — Example “Memory”
Implementation of Memory Abstraction Interface

1)
<
%)
I
—
h=]
)
D
]
Q

Situation 2: two or more different types of NV devices used

In this case the Devicelndex has to be used for selecting the correct NV device. The implementation can also
be very efficient by using an array of pointers to function. The following example shows the write function
only:

File Memlf.h:

extern const WriteFctPtrType WriteFctPtr[2];

#define Memlf Write(Devicelndex, BlockNumber, DataBufferPtr) \
WriteFctPtr[Devicelndex](BlockNumber, DataBufferPtr)

File Memlf.c:

#include “Ea.h* /* for getting the APl function addresses */
#include “Fee.h* /* for getting the APl function addresses */
#include “Memlf_h* /* Tor getting the WriteFctPtrType */

const WriteFctPtrType WriteFctPtr[2] = {Ea Write, Fee Write};

Result:
The same code and runtime is needed as if the function pointer tables would be inside the NVRAM Manager.
The Memory Abstraction Interface causes no overhead.

- AUTOSAR Confidential -

79 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SAR

Interfaces: Interaction of Layers — Example “Memory”
Conclusion

Conclusions:
» Abstraction Layers can be implemented very efficiently
» Abstraction Layers can be scaled

» The Memory Abstraction Interface eases the access of the NVRAM Manager to one or more
EEPROM and Flash devices

- AUTOSAR Confidential -

80 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

Interfaces: Interaction of Layers — Example “Communication”
PDU Flow through the Layered Architecture

Layer N+1

> Explanation of terms: | data structure m ‘
> SDU LayerN_Tx(*PDU);

SDU is the abbreviation of “Service Data Unit”. It

is the data passed by an upper layer, with the

request to transmit the data. It is as well the data Layer N
which is extracted after reception by the lower

layer and passed to the upper layer.

A SDU is part of a PDU.

void LayerN_Tx(*SDU);

I data structure E:I!I
data structure PDU

LayerN+1_Tx(*PDU);

> PCI

PCI is the abbreviation of “Protocol Control
Information”. This Information is needed to pass a
SDU from one instance of a specific protocol layer PCI SDU
to another instance. E.g. it contains source and
target information.

The PCl is added by a protocol layer on the
transmission side and is removed again on the
receiving side.

void LayerN+1_Tx(*SDU);
Layer N-1

TP

data structure

> PDU
PDU is the abbreviation of “Protocol Data Unit”. data structure
The PDU contains SDU and PCI.
On the transmission side the PDU is passed from
the upper layer to the lower layer, which interprets CAN IF

this PDU as its SDU.

| PCI data structure

- AUTOSAR Confidential -

81 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

Interfaces: Interaction of Layers Application Layer

[
X
Sy
()}
e}
)
=
]
=1

Example “Communication” (1) RTE
Memory Communi-
System Services Services cation 1O HW 2
- . Services h =
SDU and PDU Naming Conventions Onboard || Memory |[GOMEM| 7S || S
. . . Abstr. bstr. bstr. ke
The naming of PDUs and SDUs respects the following rules: De;ijj” L C:m:Lni_ £
. . I\/Ielmory cation I./O 8
For PDU: <bus prefix> <layer prefix> - PDU conwoller Drivers Drivers Drivers
For SDU: <bus prefix> <layer prefix> - SDU
The bus prefix and layer prefix are described in the following table:
ISO Layer Layer AUTOSAR PDU Name | CAN/ LIN prefix | FlexRay
Prefix Modules TTCAN prefix
prefix
Layer 6: | COM, DCM I-PDU N/A
Presentation | PDU router, PDU I-PDU N/A
(Interaction) :
multiplexer SF:
Single Frame
Layer 3: N TP Layer N-PDU CAN SF LIN SF FR SF FF:
Network Layer CAN FF LIN FF FR FF First Frame
CAN CF LIN CF FR CF CF: .
CAN FC LIN FC FR FC Consecutive
Frame
Layer 2: L Driver, Interface L-PDU CAN LIN FR FC:
Data Link Layer Flow Control
Examples:
>1-PDU or 1-SDU For details on the frame types, please refer to the
5CAN EF N-PDU or ER CE N-SDU AUTOSAR Transport Protocol specifications for CAN,TTCAN, LIN and FlexRay.
PEN EFPDY e AR sl - AUTOSAR Confidential -

82 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

Interfaces: Interaction of Layers
Example “Communication” (2)

Components
» PDU Router:
m Provides routing of PDUs between different abstract communication controllers and upper layers
m Scale of the Router is ECU specific (down to no size if e.g. only one communication controller exists)
m Provides TP routing on-the-fly. Transfer of TP data is started before full TP data is buffered
» COM:
m Provides routing of individual signals or groups of signals between different I-PDUs
> NM Coordinator:

m Synchronization of Network States of different communication channels connected to an ECU via the
network managements handled by the NM Coordinator

» Communication State Managers:

m Start and Shutdown the hardware units of the communication systems via the interfaces
m Control PDU groups

- AUTOSAR Confidential -

83 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

Interfaces: Interaction of Layers
Example “Communication” (3)

2
3]
°
e
™
S

©

o)
@

=1

Communication
Manager

Srearasie Eth State POy TIoAN CAN State LIN State Generic
AUTOSAR communi- Manager

_ Manager Manager NM interface
Manager Manager
ol . Debugging g g
Manager NM
Coordinator

PDU Router
Internet Protocol

will be described on

NM
! CAN Tp
the next slide FlexRay Tp -M Module

LIN Interface
Eth Interface FlexRay Interface 2 -
CAN Interface (incl. LIN TP)

Eth Driver FlexRay Driver CAN Driver2 LIN Low Level Driver

1 The Interface between PduR and Tp differs significantly compared to the interface between PduR and the Ifs.
In case of TP involvement a handshake mechanism is implemented allowing the transmission of I-Pdus > Frame size.
2 Canlf with TTCAN serves both CanDrv with or without TTCAN. Canlf without TTCAN cannot serve CanDrv with TTCAN.

- AUTOSAR Confidential -

84

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au (\4 s AR
P Lay | T(©)

Interfaces: Interaction of Layers
Example “Communication” (4) - Internet Protocol

> This figure shows the interaction of and
inside the internet protocol stack.

Socket Adaptor

Messages

| TCP

IPacket ISegment

Internet
Protocol Stack

Eth Interface
Eth Driver

- AUTOSAR Confidential -

85 10 November 2011 LayeDet Sotinalie BBchitatiTieS AR cEXIRNL HYyds8 S aftdidreARChiCeBieved001 ‘ Au I (\ s AR

Table of contents

<
N
<
<
[«
k=l
[
[
©
o

1. Architecture
1. Overview of Software Layers
Content of Software Layers
Content of Software Layers in Multi Core systems
Overview of Modules

Interfaces
1. General
2. Interaction of Layers (Examples)

2. Configuration
3. Integration and Runtime aspects

a ~ w0 N

- AUTOSAR Confidential -

86 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

Configuration
Overview

The AUTOSAR Basic Software supports the following configuration classes:

1. Pre-compile time
m Preprocessor instructions
m Code generation (selection or synthetization)

2. Link time

m Constant data outside the module; the data can be configured after the module has been
compiled

3. Post-build time

m Loadable constant data outside the module. Very similar to [2], but the data is located in
a specific memory segment that allows reloading (e.g. reflashing in ECU production line)

m Single or multiple configuration sets can be provided. In case that multiple configuration
sets are provided, the actually used configuration set is to be specified at runtime.

In many cases, the configuration parameters of one module will be of different configuration
classes.

Example: a module providing Post-build time configuration parameters will still have some
parameters that are Pre-compile time configurable.

- AUTOSAR Confidential -

87 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

Configuration
Pre-compile time (1)

=)
[}
=}
=}
s}
h=]
)
D
]
Q

Use cases
Pre-compile time configuration would be chosen for

» Enabling/disabling optional functionality
This allows to exclude parts of the source code that are not needed

» Optimization of performance and code size
Using #defines results in most cases in more efficient code than
access to constants or even access to constants via pointers.
Generated code avoids code and runtime overhead.

Restrictions
» The module must be available as source code

» The configuration is static. To change the configuration, the module
has to be recompiled

i i - .+ Nm_Cfg.c i
Required implementation R Nm_Cfg.h

Pre-compile time configuration shall be done via the module’s two T 'R\ 3
configuration files (*_Cfg.h, * Cfg.c) and/or by code generation:

m * Cfg.h stores e.g. macros and/or #defines
m *_ Cfg.c stores e.g. constants

includes

(opﬂonaD\

Nm.c

- AUTOSAR Confidential -

88 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

Configuration
Pre-compile time (2)

[3)
[}
=}
=}
2}
h=]
)
o
]
Q

Example 1: Enabling/disabling functionality
File Spi_Cfg.h:
#define SPI_DEV_ERROR_DETECT ON

File Spi_Cfg.c:

const uint8 myconstant = 1U;

File Spi.c (available as source code):

#include "'Spi_Cfg.h" /* for importing the configuration parameters */
extern const uint8 myconstant;

#if (SP1_DEV_ERROR_DETECT == ON)

Det_ReportError(Spi_Moduleld, 0OU, 3U, SPI_E PARAM LENGTH); /* only one instance available */
#endif

Note: The Compiler Abstraction and Memory Abstraction (as specified by AUTOSAR) are not used to keep the example simple.

- AUTOSAR Confidential -

89 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

Configuration
Pre-compile time (3)

°
[}
=}
=}
s}
h=]
)
D
]
Q

Example 2: Event IDs reported to the Dem
XML configuration file of the NVRAM Manager:
Specifies that it needs the event symbol NVM_E_REQ FAILED for production error reporting.

File Dem_Cfg.h (generated by Dem configuration tool):
typedef uint8 Dem_EventldType; /* total number of events = 46 => uint8 sufficient */

#define DemConf_DemEventParameter FLS E ERASE FAILED O 1U

#define DemConf DemEventParameter FLS_E_ERASE FAILED 1 2U Example for a multiple
#define DemConf DemEventParameter FLS_E _WRITE_FAILED O 3U instance driver (€.9. internal
#define DemConf DemEventParameter FLS_E WRITE FAILED 1 4U and external flash module)
#define DemConf_DemEventParameter_ NVM_E REQ FAILED 5U

#define DemConf _DemEventParameter CANSM_E BUS OFF 6U

File Dem.h:

#include ""Dem_Cfg.h"™ /* for providing access to event symbols */

File NvM.c (available as source code):
#include ""Dem.h" /* for reporting production errors */

Dem_ReportErrorStatus(DemConf_DemEventParameter NVM_E REQ FAILED, DEM_EVENT_STATUS PASSED);

- AUTOSAR Confidential -

90 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SAR

Configuration
Link time (1)

o)
=}
=}
=}
s}
h=]
)
D
]
Q

Use cases
Link time configuration would be chosen for

» Configuration of modules that are only available as object code
(e.g. IP protection or warranty reasons)

» Selection of configuration set after compilation but before linking.

Required implementation

1. One configuration set, no runtime selection

Configuration data shall be captured in external constants. These external constants are
located in a separate file. The module has direct access to these external constants.

- AUTOSAR Confidential -

91 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

—
o
=}
=}
>
h=]
)
o
]
=1

Configuration
Link time (2)

Example 1: Event IDs reported to the Dem by a multiple instantiated module (Flash Driver) only available as object code

XML configuration file of the Flash Driver:
Specifies that it needs the event symbol FLS E_WRITE_FAILED for production error reporting.

File Dem_Cfg.h (generated by Dem configuration tool):
typedef uintl6 Dem_EventldType; /* total number of events = 380 => uintl6 required */

#define DemConf_DemEventParameter FLS E ERASE FAILED O 1U
#define DemConf _DemEventParameter_ FLS E ERASE_FAILED 1 2U
#define DemConf _DemEventParameter_ FLS E WRITE_FAILED O 3U
#define DemConf _DemEventParameter_ FLS E WRITE_FAILED 1 4U

#define DemConf_DemEventParameter_ NVM_E REQ FAILED 5U
#define DemConf _DemEventParameter CANSM_E BUS OFF 6uU

File Fls_Lcfg.c:

#include ""Dem Cfg.h" /* for providing access to event symbols */

const Dem_EventldType Fls WriteFailed[2] = {DemConf _DemEventParameter_ FLS E WRITE_FAILED 1,
DemConf_DemEventParameter_ FLS E WRITE_FAILED 2}%};

File Fls.c (available as object code):

#include ""Dem.h" /* for reporting production errors */

extern const Dem_EventldType Fls_WriteFailed[];

Dem_ReportErrorStatus(Fls WriteFailed[instance], DEM_EVENT_ STATUS_ FAILED);

Note: the complete include file structure with all forward declarations is not shown here to keep the example simple.

- AUTOSAR Confidential -

92 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SAR

Configuration
Link time (3)

o
o
=}
o
>
h=]
)
o
]
Q

Example 2: Event IDs reported to the Dem by a module (Flash Driver) that is available as object code only

Problem
Dem_EventldType is also generated depending of the total number of event IDs on this ECU. In this example it is represented
as uintl6. The Flash Driver uses this type, but is only available as object code.

Solution

In the contract phase of the ECU development, a bunch of variable types (including Dem_EventldType) have to be fixed and
distributed for each ECU. The object code suppliers have to use those types for their compilation and deliver the object code
using the correct types.

- AUTOSAR Confidential -

93 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

Configuration
Post-build time (1)

e
[}
=}
o
>
h=]
)
o
]
Q

Use cases
Post-build time configuration would be chosen for

» Configuration of data where only the structure is defined but the contents not known during ECU-build time

» Configuration of data that is likely to change or has to be adapted after ECU-build time
(e.g. end of line, during test & calibration)

» Reusability of ECUs across different product lines (same code, different configuration data)

Restrictions
> Implementation requires dereferencing which has impact on performance, code and data size

Required implementation

1. One configuration set, no runtime selection (loadable)

Configuration data shall be captured in external constant structs. These external structs are located in a separate memory
segment that can be individually reloaded.

2. 1..n configuration sets, runtime selection possible (selectable)
Configuration data shall be captured within external constant structs. These configuration structures are located in one

separate file. The module gets a pointer to one of those structs at initialization time. The struct can be selected at each
initialization.

- AUTOSAR Confidential -

94 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

Configuration
Post-build time (2)

p
o
o
>
s
(4]
(o]
[
o

Example 1 (Post-build time loadable)
If the configuration data is fix in memory size and position, the module has direct access to these external structs.

PduR.c — Compiler — Linker — PduR.o

4 Direct access

(via reference as given by
the pointer parameter of

I PduR’s initialization function)

Linker control file

PduR_PBcfg.c|—>| Compiler |—>

Linker ——|PduR_PBcfg.o

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

95

Configuration
Post-build time (3)

X
[}
=}
o
>
h=]
)
D
]
Q

Required implementation 2: Configuration of CAN Driver that is available as object code only; multiple configuration
sets can be selected during initialization time.

File Can_PBcfg.c:

#include “Can.h” /* for getting Can_ConfigType */

const Can_ConfigType MySimpleCanConfig [2] =

{

{
Can_BitTiming
Can_AcceptanceMaskl
Can_AcceptanceMask?2
Can_AcceptanceMask3
Can_AcceptanceMask4

OXDF,
OXFFFFFFFF,
OXFFFFFFFF,
0x00034DFF,
0x00FF0000

/

Compiler

{ o}

File EcuM.c:
#include “Can.h* /* for initializing the CAN Driver */ Lil%
Can_Init(&MySimpleCanConfig[0]); LAl

File Can.c (available as object code):
#include “Can.h* /* for getting Can_ConfigType */

void Can_Init(Can_ConfigType* Config)
{

¥

/* write the iInit data to the CAN HW */ Bu1aryfne

- AUTOSAR Confidential -

96 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

Configuration
Variants

Different use cases require different kinds of configurability. Therefore the following configuration variants are
provided:

» VARIANT-PRE-COMPILE
Only parameters with "Pre-compile time" configuration are allowed in this variant.
» VARIANT-LINK-TIME
Only parameters with "Pre-compile time" and "Link time" are allowed in this variant.
» VARIANT-POST-BUILD
Parameters with "Pre-compile time", "Link time" and "Post-build time" are allowed in this variant.

Example use cases:
> Reprogrammable PDU routing tables in gateway (Post-build time configurable PDU Router required)

» Statically configured PDU routing with no overhead (Pre-compile time configuration of PDU Router
required)

To allow the implementation of such different use cases in each BSW module, up to 3 variants can be
specified:
> A variant is a dedicated assignment of the configuration parameters of a module to configuration
classes
> Within a variant a configuration parameter can be assigned to only ONE configuration class

> Within a variant a configuration class for different configuration parameters can be different (e.g. Pre-
Compile for development error detection and post-build for reprogrammable PDU routing tables

> Itis possible and intended that specific configuration parameters are assigned to the same
configuration class for all variants (e.g. development error detection is in general Pre-compile time

conflgurable). - AUTOSAR Confidential -

97 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

Configuration

jo
[}
=}
o
>
h=]
)
o
]
Q

Memory Layout Example: Postbuild Loadable (PBL)

EcuM defines the index:

Xx defines the modules configuration data:

Yy defines the modules configuration data:

Description where to find what is an overall agreement:
1. EcuM needs to know all addresses including index

0x8000 &index (=0x8000 :

X e (_ X _) - 2. The modules (xx, yy, zz) need to know their own
0x8000 Sxx_configuration = 0x4710 start address: in this case: 0x4710, 0x4720 ...
0x8002 & figuration = 0x4720 : .

X sl fgura fon - X 3. The start addresses might be dynamic i.e. changes
0x8004 &zz_configuration = 0x4730 with new configuration

4. When initializing a module (e.g. Xxx, yy, zz), EcuM

passes the base address of the configuration data (e.g.
0x4710, 0x4720, 0x4730) to the module to allow for

0x4710 &the_real xx_configuration variable sizes of the configuration data.

0x4710 lower = 2

0X4712 upper =7 The module data is agreed locally (in the module) only

0x4714 more_data 1. The module (xx, yy) knows its own start address
(to enable the implementer to allocate data section)

2. Only the module (xx, yy) knows the internals of
its own configuration

0x4720 &the_real_yy configuration
0x4720 Xx_datal=0815 lem entat\Oﬂ n
0x4722 Yy_data2=4711 rer P ost puild | o RuIeSP £
0x4724 more_data i\s see Chap \e entat\on
por detal> AR TR_CIMP
uAUTOS —_
'
- AUTOSAR Confidential -
98 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘Au I SAR

Configuration
Memory Layout Example: Postbuild Multiple Selectable (PBM)

Qo
>
3]
X
©

h=]
)
o
©
=1

0x8000 &index[] (=0x8000) As before, the description where to find what is an
FL | 0x8000 &xx_configuration = 0x4710 overall agreement
0x8002 &yy configuration = 0x4720 1. The index contains more than one description (FL,
0x8004 &zz_configuration = 0x4730 FR,.)In an array .
(here the size of an array element is agreed to be
8)
R 0x8008 &xx_configuration = 0x5000 2. There is an agreed variable containing the position
0x800a &yy configuration = 0x5400 of one description_ o
0x800c &zz_configuration = 0x5200 selector = Chec.kPlnComt.)lnaUO_n() _
3. Instead of passing the pointer directly there is one
indirection:
0x8010 &xx_configuration = .. (struct EcuM_ConfigType *) &index[selector];
RL 0x8012 &yy configuration = .. 4. Everything else works as in PBL
0x8014 &zz_configuration = ..
.Onﬂ n
1 implementa’t
«post bUe - u\eS-pdf
Jetails, S€°€ Chaptec \mp\eme“t fionR
r ae ‘
Fo “AUTOSAR’TR’

- AUTOSAR Confidential -

99 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au (\‘ SAR
. EXP_LayeredSofwareAvchiecty | T(©O)

Table of contents

1. Architecture

2. Configuration

3. Integration and Runtime aspects
1. Mapping of Runnables

Partitioning

Scheduling

Mode Management

Error Handling, Reporting and Diagnostic

Debugging

Measurement and Calibration

Functional Safety

Energy Management

© ©® N o O k& WD

- AUTOSAR Confidential -

100 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

page id: 11eer

Integration and Runtime aspects

Mapping of Runnables

» Runnables are the
active parts of
Software Components

» They can be executed
concurrently, by
mapping them to
different Tasks.

» The figure shows
further entities like OS-

applications, Partitions,

nC-Cores and BSW-
Resources which have
to be considered for
this mapping.

101

M3IA

1 O..*
[SW-C } { Runnable J

0.7

1

v

|
0..*

BSW-Ressource
(E.g., NV-block)

1
>[OS-Application }

14

e
P

M3IA-NDJ/uoneluswa|dw|

0.*
!

[nC-Core }

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture

AUTOSAR

Table of contents

<
=
I
>
B
o
(o)
&
o

1. Architecture

2. Configuration

3. Integration and Runtime aspects
1. Mapping of Runnables

Partitioning

Scheduling

Mode Management

Error Handling, Reporting and Diagnostic

Debugging

Measurement and Calibration

Functional Safety

Energy Management

© ©® N o O k& WD

- AUTOSAR Confidential -

102 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

Integration and Runtime aspects - Partitioning
Introduction

» Partitions are used as error containment regions:
m Permit logical grouping of SW-Cs and resources
m Recovery policies defined individually for each partition

» Partition consistency is ensured by the system/platform, for instance for:
m Memory access violation
m Time budget violation

» Partitions can be terminated or restarted during run-time as a result of a detected error:
m Further actions required: see example on following slides
m The BSW is placed in a privileged partition
m This partition should not be restarted or terminated

» Partitions are configured in the ECU-C:
m A partition is implemented by an OS-Application within the OS
m SW-Cs are mapped to partitions (Consequence: restricts runnable to task mapping)
m A partition can be configured as restartable or not

» Communication across partitions is realized by the 10C

- AUTOSAR Confidential -

103 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

Integration and Runtime aspects - Partitioning
Example of restarting partition

\ A violation (error) has occurred in the system (e.g., memory or
timing violation)

Decision (by integrator code) to restart the partition

0

< Other partitions remain unaffected

% L Sty ~ % The partition is terminated by the OS, cleanup possible
E o B e .
Il Communication to the partition is stopped

=
[] Communication from the partition is stopped (e.qg., default values
for ports used)

The partition is restarting (integrator code), initial environment for
partition setup (init runnables, port values etc)

Communication to the patrtition is stopped

0EF &

Communication from the partition is stopped

©)

0

~— The partition is restarted and up and running
Communication is restored

Partition internally handles state consistency

104 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ m
-

Integration and Runtime aspects - Partitioning
Involved components

» Protection Hook
m Executed on protection violation (memory or timing)
Decides what the action is (Terminate, Restart, Shutdown, Nothing)
Provided by integrator
OS acts on decision by inspecting return value
» OsRestartTask
m Started by OS in case Protection Hook returns Restart
m Provided by integrator

m Runs in the partition’s context and initiates necessary cleanup and restart activities, such as:
= Stopping communication (ComM)
= Updating NvM
* Informing Watchdog, CDDs etc.

> RTE

m Functions for performing cleanup and restart of RTE in partition

m Triggers init runnables for restarted partition

m Handles communication consistency for restarting/terminated partitions
» Operating System

m OS acts on OS-Applications, which are containers for partitions

m OS-Applications have states (APPLICATION_ACCESSIBLE, APPLICATION_RESTART,
APPLICATION_TERMINATED)

m OS provides API to terminate other OS-Applications (for other errors than memory/timing)

- AUTOSAR Confidential -

105 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I S A R

Integration and Runtime aspects - Partitioning
restart example

sd TerminateRestartPartition/

Os-Application
state for the
considered
Partition.
T
1
1
1
1

T T

1 1

(APPLICATION_ACTIVE) ! !

1 1

: inforrln the RTE i
______________________________ .

S — !

1

1

1

1

]
]
GPPLICAWON_RESTARTI N5 ActivateTask |

os ProtectionHook OSRestartTask RTE BSW modules

Trigger cleanup in the BSW patrtition
S IS Frrm s
1
1

Polling end of asynchronous cleanups

T
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
. 1
1
i
:
l<-- - - f-————mm——— - -’—5?

request a restart of the partition to the RTE 1
i
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

e —————— >

AllowAccess

(APPLICATION_ACTIVE)

TerminateTask

- AUTOSAR Confidential -

106 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I S A R

Integration and Runtime aspects - Partitioning
Other examples

» Termination
m A partition can be terminated directly
m Also for termination, some cleanup may be needed, and this shall be performed in the
same way as when restarting a partition
m No restart is possible without a complete ECU restart

» Error detection in applications
m Application-level SW-Cs may detect errors (i.e., not memory/timing)

m A termination/restart can be triggered from a SW-C using the OS service

TerminateApplication()
m Example: a distributed application requires restart on multiple ECUs

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

107

Table of contents

<
A
e
<
[«
k=l
[
[
©
o

1. Architecture

2. Configuration

3. Integration and Runtime aspects
1. Mapping of Runnables

Partitioning

Scheduling

Mode Management

Error Handling, Reporting and Diagnostic

Debugging

Measurement and Calibration

Functional Safety

Energy Management

© ©® N o O k& WD

- AUTOSAR Confidential -

108 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

Integration and Runtime aspects - Scheduling
General Architectural Aspects

» Basic Software Scheduler and the RTE are generated together.

> This enables
m that the same OS Task schedules BSW Main Functions and Runnable Entities of

Software Components

= to optimize the resource consumption
= to configure interlaced execution sequences of Runnable Entities and BSW Main functions.

m a coordinated switching of a Mode affecting BSW Modules and Application Software
Components

m the synchronized triggering of both, Runnable Entities and BSW Main Functions by the
same External Trigger Occurred Event.

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

109

Q
—
™
»
>
h=]
)
o
]
Q

Integration and Runtime aspects - Scheduling
Basic Scheduling Concepts of the BSW

BSW Scheduling shall
» Assure correct timing behavior of the BSW, i.e., correct interaction of all BSW modules with respect to time

Data consistency mechanisms
» Applied data consistency mechanisms shall be configured by the ECU/BSW integrator dependent from the configured

scheduling.

Single BSW modules do not know about

>
>
>

ECU wide timing dependencies
Scheduling implications
Most efficient way to implement data consistency

Centralize the BSW schedule in the BSW Scheduler configured by the ECU/BSW integrator and generated by the RTE

>
>

>
>
>

generator together with the RTE
Eases the integration task
Enables applying different scheduling strategies to schedulable objects
m Preemptive, non-preemptive, ...
Enables applying different data consistency mechanisms
Enables reducing resources (e.g., minimize the number of tasks)
Enables interlaced execution sequences of Runnable Entities and BSW Main functions

Restrict the usage of OS functionality
» Only the BSW Scheduler and the RTE shall use OS objects or OS services

>

110

(exceptions: EcuM, Complex Drivers and services: GetCounterValue and GetElapsedCounterValue of OS; MCAL
modules may enable/disable interrupts)
Rationale:

m Scheduling of the BSW shall be transparent to the system (integrator)

m Enables reducing the usage of OS resources (Tasks, Resources,...)

m Enables re-using modules in different environments

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au (\‘ SA R
b Lay | T(©)

Integration and Runtime aspects - Scheduling
Scheduling Objects, Triggers and Mode Disabling Dependencies

(8]
—
™
)

>
k=]

[
o)
IS4
o

BSW Scheduling objects

» Main functions
m n per module

m located in all layers

: > zz MainFunction Aaa
O/ — —

BSW Events

BswTimingEvent
BswBackgroundEvent
BswModeSwitchEvent
BswModeSwitchedAckEvent
Bswinternal TriggerOccuredEvent
BswExternal TriggerOccuredEvent

()

YV V V VYV V

’ Yyy MainFunction_Aaa

Triggers

» Main functions can be triggered in all layers by
the listed BSW Events

XXxX_Isr_Yyy

Mode Disabling Dependencies

» The scheduling of Main functions can be
disabled in particular modes. Microcontroller

- AUTOSAR Confidential -

111 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I s AR

o
—
™
%]
>
h=]
)
=
©
Q

Integration and Runtime aspects - Scheduling
Transformation Process

112

Y V V

YV V

YV V V

Ideal concurrency
Unrestricted resources
Only real data dependencies

Scheduling objects
Trigger
m BSW Events
Sequences of scheduling objects
Scheduling Conditions

Restricted concurrency

Restricted resources

Real data dependencies
Dependencies given by restrictions

: 1

YV V V V

» OS objects
m Tasks
m |ISRs
m Alarms
m Resources
m OS services
» Sequences of scheduling objects within tasks
» Sequences of tasks

>

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

Integration and Runtime aspects - Scheduling
Transformation Process — Example 1

Logical Architecture (Model) Technical Architecture (Schedule Module)

Taskl {
Zzz_MainFunction_Bbb();
Zzz_MainFunction_Bbb(); Yyy MainFunction_AaaQ);
@ Yyy MainFunction_Aaa(); _
Xxx_MainFunction_Aaa(); Xxx_MainFunction_Aaa();
[olecode |
+

TranStormaio n

Mapping of scheduling objects to OS Tasks

Specification of sequences of scheduling objects within tasks

- AUTOSAR Confidential -

113 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I (\ s AR

Integration and Runtime aspects - Scheduling
Transformation Process — Example 2

Logical Architecture (Model) Technical Architecture (Schedule Module)

Task2 {

Xxx_MainFunction_Bbb();

Xxx_MainFunction Bbb(Q); L
Yyy_MainFunction_Bbb(); Task3 {
Yyy_MainFunction_Bbb();
I

TranStormaio n

Mapping of scheduling objects to OS Tasks

- AUTOSAR Confidential -

114 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I (\ s AR

Integration and Runtime aspects - Scheduling
Data Consistency — Motivation

» Access to resources by different and concurrent entities of the implemented technical architecture
(e.g., main functions and/or other functions of the same module out of different task contexts)

Xxx_Module

Xxx_MainFunction();

Yyy_ AccessResource();
[

T e

Yyy_ MainFunction();

2

Yyy Module

W

- AUTOSAR Confidential -

115 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

Integration and Runtime aspects - Scheduling
Data Consistency — Example 1 — “Critical Sections” Approach

#define SchM_Enter_<mod> <name> \
DisableAlllnterrupts
#define SchM_Exit_<mod> <name> \

Taskl XXX Module EnableAllInterrupts
— Yyy_AccessResource() {
<access_to_shared_resource>
SchM_Exit Xxx XYZ(Q);
Yyy AccessResource(); .-

ki

Yyy MainFunction() {

SchM_Enter_Yyy XYZ();

= = a <access_to _shared resource>
Yyy_MainFunction(); SchM_Exit_Yyy XYZQ);

Task?2

@

3

W

- AUTOSAR Confidential -

116 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au l SA R

Integration and Runtime aspects - Scheduling
Data Consistency — Example 1 — “Critical Sections” Approach

#define SchM_Enter_<mod>_ <name> \
/* nothing required */
#define SchM_Exit_<mod> <name> \

Taskl XxxX Module /* nothing required */
— Yyy_AccessResource() {
<access_to_shared_resource>
SchM_Exit Xxx XYZ(Q);
Yyy AccessResource(); .-

ki

Yyy MainFunction() {

SchM_Enter_Yyy XYZ();

= = a <access_to _shared resource>
Yyy_MainFunction(); SchM_Exit_Yyy XYZQ);

Task?2

@

3

W

- AUTOSAR Confidential -

117 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au l SA R

Integration and Runtime aspects
Mode Communication / Mode Dependent Scheduling

)
—
™
»
>
h=]
)
o
]
Q

» The mode dependent scheduling of BSW Modules is identical to the mode dependent
scheduling of runnables of software components.

» A mode manager defines a Provide ModeDeclarationGroupPrototype in its Basic
Software Module Description, and the BSW Scheduler provides an APl to communicate mode
switch requests to the BSW Scheduler

» A mode user defines a Required ModeDeclarationGroupPrototype in its Basic Software

Module Description. On demand the BSW Scheduler provides an API to read the current
active mode

» If the Basic Software Module Description defines Mode Disabling Dependencies, the BSW
Scheduler suppresses the scheduling of BSW Main functions in particular modes.

- AUTOSAR Confidential -

118

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

Table of contents

<
A
]
<
[«
k=l
[
[
©
o

1. Architecture

2. Configuration

3. Integration and Runtime aspects
1. Mapping of Runnables

Partitioning

Scheduling

Mode Management

Error Handling, Reporting and Diagnostic

Debugging

Measurement and Calibration

Functional Safety

Energy Management

© ©® N o O k& WD

- AUTOSAR Confidential -

119 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

Integration and Runtime aspects
Vehicle and application mode management (1)

o
N
N
N
o
h=]
)
D
]
Q

Relation of Modes: Vehicle
: Modes A A
» Every system contains Modes at
. . fl h oth
different levels of granularity. As shown ence each oer
in the figure, there are vehicle modes Aoolicati
. .) pplication

and several applications with modes and Modes | A

ECUs with local BSW modes. Influence each other Influence each other
» Modes at all this levels influence each

BSW
other. Modes
v v

Therefore:

» Depending on vehicle modes, applications may be active or inactive and thus be in different
application modes.

» Vice versa, the operational state of certain applications may cause vehicle mode changes.

» Depending on vehicle and application modes, the BSW modes may change, e.g. the
communication needs of an application may cause a change in the BSW mode of a
communication network.

» Vice versa, BSW modes may influence the modes of applications and even the whole
vehicle, e.g. when a communication network is unavailable, applications that depend on it
may change into a limp-home mode.

- AUTOSAR Confidential -

120 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au l SA R

Integration and Runtime aspects
Vehicle and application mode management (2)

o)
N
N
N
o
h=]
)
D
]
Q

Processing of Mode Requests

The basic idea of vehicle mode management is to distribute and arbitrate mode requests and to
control the BSW locally based on the results.

This implies that on each ECU, there has to be a mode manager that switches the modes for its local

mode users and controls the BSW. Of course there can also be multiple mode managers that
switch different Modes.

The mode request is a “normal” sender/receiver communication (system wide) while the mode
switch always a local service.

Mode Mode
Mode [Request Mode [Switch Mode [
Requester Manager D I] User
Mode [] SMV\(/)i?ceh Mode [
Manager |] |] User

- AUTOSAR Confidential -

121

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

[3)
N
N
N
o
h=]
)
o
]
Q

Integration and Runtime aspects
Vehicle and application mode management (3)

Application Layer

Memor Communi-

ory cation 14

Services Servi /O HW o

Layer Functionality per module SYE2__| Abstraction || £

y y p Onboard Memory COM HW 2

Dev. Abstr. HW Abstr. Abstr. %_

. i IS

Micro Memory Communl) 8

A . . controller Drivers cation Drivers
pp Mode Arbitration SW-C Drivers Drivers

Microcontroller (uC)

RTE
_ » The major part of the needed functionality is

placed in a new BSW module which we call
the Basic Software Mode Manager (BswM for
short). Since the BswM is located in the BSW,
it is present on every ECU and local to the
mode users as well as the controlled BSW
modules.

BSW

» The distribution of mode requests is performed by the RTE and the RTE also implements
the handling of mode switches.

» E.g. for vehicle modes, a mode request originates from one central mode requestor SW-C
and has to be received by the BswMs in many ECUs. This is an exception of the rule that
SW-Cs may only communicate to local BSW.

- AUTOSAR Confidential -

122 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I r\ s AR

Integration and Runtime aspects
Vehicle and application mode management (4)

<]
N
N
N
o
h=]
)
D
]
Q

_ Applications
Mode Processing Cycle) PP)
» The mode requester SW-C requests MOdeSr\?\?_léeStmg Mogsvlf:mg
mode A through its sender port. The RTE
distributes the request and the BswM 3: switch
receives it through its receiver port. 1: request mode A’

mode A

» The BswM evaluates its rules and if a
rule triggers, it executes the
corresponding action list.

» When executing the action list, the BswM
may issue a (configurable optional) RTE
call to the mode switch API as a last
action to inform the mode users about the
arbitration result, e.g. the resulting mode

A
» Any SW-C, especially the mode
requester can register to receive the > Action list
mode switch indication. 2 EE -
. associated Action 1
» The mode requests can originate from | j.tion list Action 2
local and remote ECUs.

> Note that the mode requestor can only S —
receive the mode switch indications from RteSwitch(mode A”)
the local BswM, even if the requests are

sent out to multiple ECUs.
- AUTOSAR Confidential -

123 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I r\ s AR

Table of contents

<
A
[=1
<
[«
k=l
[
[
©
o

1. Architecture

2. Configuration

3. Inteqgration and Runtime aspects
1. Mapping of Runnables

Partitioning

Scheduling

Mode Management

Error Handling, Reporting and Diagnostic

Debugging

Measurement and Calibration

Functional Safety

Energy Management

© ©® N o O k& WD

- AUTOSAR Confidential -

124 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

Integration and Runtime aspects - Error Handling, Reporting and Diagnostic
Error Classification (1)

[=)
=1
o
[}
=}
h=]
)
D
]
Q

Types of errors

Hardware errors / failures

m Root cause: Damage, failure or ,value out of range‘, detected by software
m Example 1: EEPROM cell is not writable any more

m Example 2: Output voltage of sensor out of specified range

Software errors

m Root cause: Wrong software or system design, because software itself can never fail.

m Example 1: wrong API parameter (EEPROM target address out of range)
m Example 2: Using not initialized data

System errors

m Example 1: CAN receive buffer overflow
m Example 2: time-out for receive messages

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

125

©
2]
S
B
)
o
]
=1

Integration and Runtime aspects - Error Handling, Reporting and Diagnostic
Error Classification (2)

Time of error occurrence according to product life cycle

Development

Those errors shall be detected and fixed during development phase. In most cases, those errors are
software errors. The detection of errors that shall only occur during development can be switched off
for production code (by static configuration namely preprocessor switches).

Production / series

Those errors are hardware errors and software exceptions that cannot be avoided and are also expected
to occur in production code.

Influence of error on system

Severity of error (impact on the system)
» No influence

» Functional degradation

» Loss of functionality

Failure mode in terms of time

» Permanent errors
» Transient / sporadic errors

- AUTOSAR Confidential -

126 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

[]
=
N
~
O
h=d
3]
o)
@
o

Integration and Runtime aspects - Error Handling, Reporting and Diagnostic
Error Reporting — Alternatives

Each basic software module distinguishes between two types of errors:

1. Development Errors

The detection and reporting can be statically switched on/off
2. Production relevant errors and exceptions

This detection is ,hard coded' and always active.

There are several alternatives to report an error (detailed on the following slides):

Via API

Inform the caller about success/failure of an operation.

Via statically definable callback function (notification)

Inform the caller about failure of an operation

Via central Error Hook (Development Error Tracer)

For logging and tracing errors during product development. Can be switched off for production code.
Via central Error Function (AUTOSAR Diagnostic Event Manager)

For error reaction and logging in series (production code)

Each application software component (SW-C) can report errors to the DIt.

- AUTOSAR Confidential -

127 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I S A R

Integration and Runtime aspects - Error Handling, Reporting and Diagnostic
Mechanism in relation to AUTOSAR layers and system life time

~
N
o)
[0
)
h=]
(]
o)
@
o

Develop-
ment Error
Tracer
(Det)
Diagnostic
Log End to End
and Trace Communication
(DIt) (E2E)
Basic Software
Diagnostic Event
Debug- Manger (De_m)
ging and Function
(Dbg) Inhibition
9 Manager (Fim)
Watchdog ECU Hardware
(Wdog)
Life cycle: development production After production

- AUTOSAR Confidential -

128 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

Integration and Runtime aspects - Error Handling, Reporting and Diagnostic
Error Reporting via API

[
b
o
©
>

h=]
)
o
©
Q

Error reporting via API
Informs the caller about failure of an operation by returning an error status.

Basic return type
Success: E_OK (value: 0)

Failure: E_NOT_OK (value: 1)

Specific return type

If different errors have to be distinguished for production code, own return types have to be
defined. Different errors shall only be used if the caller can really handle these. Specific
development errors shall not be returned via the API. They can be reported to the
Development Error Tracer (see 04-014).

Example: services of EEPROM driver

Success: EEP_E _OK

General failure (service not accepted): EEP_E NOT_OK

Write Operation to EEPROM was not successful: EEP_E WRITE_FAILED

- AUTOSAR Confidential -

129 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

=
N

=2
5

=]
o
o)
&
o

Integration and Runtime aspects - Error Handling, Reporting and Diagnostic
Error Reporting — Introduction

Error reporting via Diagnostic Event Manager (Dem)

For reporting production / series errors.

Those errors have a defined reaction depending on the configuration of this ECU, e.g.:
» Writing to error memory

» Disabling of ECU functions (e.g. via Function Inhibition Manager)

> Notification of SW-Cs

The Diagnostic Event Manager is a standard AUTOSAR module which is always available in production code
and whose functionality is specified within AUTOSAR.

Error reporting via Development Error Tracer (Det)
For reporting development errors.

The Development Error Tracer is mainly intended for tracing and logging errors during development. Within the
Development Error Tracer many mechanisms are possible, e.g.:

» Count errors

» Write error information to ring buffer in RAM

» Send error information via serial interface to external logger
> Infinite Loop, Breakpoint

The Development Error Tracer is just a help for SW development and integration and is not necessarily
contained in the production code. The API is specified within AUTOSAR, but the functionality can be
chosen/implemented by the developer according to his specific needs.

The detection and reporting of development errors to the Development Error Tracer can be statically switched
on/off per module (preprocessor switch or two different object code builds of the module).

- AUTOSAR Confidential -

130 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I S A R

=
=
=2
2
he}
)
=2
©
=1

Integration and Runtime aspects - Error Handling, Reporting and Diagnostic
Error Reporting — Diagnostic Event Manager

API

The Diagnostic Event Manager has semantically the following API:
Dem_ReportErrorStatus(Eventld, EventStatus)

Problem: the error IDs passed with this APl have to be ECU wide defined, have to be statically defined and have to occupy a

compact range of values for efficiency reasons. Reason: The Diagnostic Event Manager uses this ID as index for accessing
ROM arrays.

Error numbering concept: XML based error number generation
Properties:

Process:

131

Source and object code compatible
Single name space for all production relevant errors
Tool support required

Consecutive error numbers - Error manager can easily access ROM arrays where handling and reaction of errors is
defined

Each BSW Module declares all production code relevant error variables it needs as “extern”
Each BSW Module stores all error variables that it needs in the ECU configuration description (e.g. CANSM_E_BUS OFF)

The configuration tool of the Diagnostic Event Manager parses the ECU configuration description and generates a single
file with global constant variables that are expected by the SW modules (e.g.

const Dem_EventldType DemConf_DemEventParameter CANSM_E BUS OFF=7U; or

#define DemConf_DemEventParameter CANSM_E BUS OFF ((Dem_EventldType)7))

The reaction to the errors is also defined in the Error Manager configuration tool. This configuration is project specific.

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

Integration and Runtime aspects - Error Handling, Reporting and Diagnostic
Error Reporting — Development Error Tracer

N
~
X
X
o
o
D
©
o

API

The Development Error Tracer has syntactically the following API:

Det_ReportError(uintl6é Moduleld, uint8 Instanceld, uint8 Apild, uint8 Errorld)

Error numbering concept
Moduleld (uintl6)

The Module ID contains the AUTOSAR module ID from the Basic Software Module List.

As the range is 16 Bit, future extensions for development error reporting of application SW-C are possible. The Basic SW
uses only the range from 0..255.

Instanceld (uint8)

The Instance ID represents the identifier of an indexed based module starting from 0. If the module is a single instance
module it shall pass 0 as an instance ID.

Apild (uint8)

The API-IDs are specified within the software specifications of the BSW modules. They can be #defines or constants
defined in the module starting with O.

Errorld (uint8)

The Error IDs are specified within the software specifications of the BSW modules. They can be #defines defined in the
module's header file.

If there are more errors detected by a particular software module which are not specified within the AUTOSAR module
software specification, they have to be documented in the module documentation.

All Error-IDs have to be specified in the BSW description.

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

132

Qo
>
(8]
)
>
h=]
)
o
]
=1

Integration and Runtime aspects - Error Handling, Reporting and Diagnostic
Error Reporting — Diagnostic Log and Trace (1)

The module Diagnostic Log and Trace (DIt) collects log messages and converts them into a

standardized format. The DIt forwards the data to the Dcm or a CDD which uses a serial
interface for example.

Therefore the DIt provides the following functionalities:
» Logging

m logging of errors, warnings and info messages from AUTOSAR SW-Cs, providing a
standardized AUTOSAR interface,

m gathering all log and trace messages from all AUTOSAR SW-Cs in a centralized
AUTOSAR service component (DIt) in the BSW,
m logging of messages from Det and

m logging of messages from Dem.
» Tracing

m of RTE activities
> Control

m individual log and trace messages can be enabled/disabled and

m Log levels can be controlled individually by back channel.
» Generic

m DIt is available during development and production phase,
m access over standard diagnosis or platform specific test interface is possible and
m Security mechanisms to prevent misuse in production phase are provided

- AUTOSAR Confidential -
133

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture

AUTOSAR

Integration and Runtime aspects - Error Handling, Reporting and Diagnostic
Error Reporting — Diagnostic Log and Trace (2)

Q
>
o
X

°

=
)
o
]
=1

The DIt communication module is SW-C sends a log message via
enabled by an external client. SW-C Pit_SendLogMessage()
The external client has to set up a (1{
diagnostic session in a defined L e
security level and sendln.g control Denm Call
message to DIt for enabling the DIt DIt_WriteData() i DIt collects
communication module. messages
A SW-C is generating a log message. — @/
The log message is sent to DIt by DI Dt
calling the API provided by DiIt. DIt comunication
DIt sends the log message Over UDS an External Client module
to the implemented DIt enables the DIt Log message is
! . communication module send over network
communication module (WriteDataByldendifer) (3
interface. CAN / Flexray /
1 Ethernt / Serial
At the end, the log message

IS stored on an external
client and can be
analyzed later on.

external client
collects stores log
messages

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

134

Integration and Runtime aspects - Error Handling, Reporting and Diagnostic
Error Reporting — Diagnostic Log and Trace (3)

N
~
[e)
[\
X
he]
(0]
o)
]
o

API

The Diagnhostic Log and Trace has syntactically the following API:

DI::_SegdLogMessage(DIt_SessionIDType session_id, DIt MessagelLoglnfoType log _info, uint8
*log_data,
uintl6é log_data_length)

Log message identification :
session_id
Session ID is the identification number of a log or trace session. A session is the logical entity of the source of log or

trace messages. If a SW-C is instantiated several times or opens several ports to DIt, a new session with a new Session

ID for every instance is used. A SW-C additionally can have several log or trace sessions if it has several ports opened
to Dlt.

log info contains:
Application ID / Context ID

Application ID is a short name of the SW-C. It identifies the SW-C in the log and trace message. Context ID is a user
defined ID to group log and trace messages produced by a SW-C to distinguish functionality. Each Application ID can

own several Context IDs. Context ID’s are grouped by Application ID’s. Both are composed by four 8 bit ASCII
characters.

Message ID

Messaged ID is the ID to characterize the information, which is transported by the message itself. It can be used for

identifying the source (in source code) of a message and shall be used for characterizing the payload of a message. A
message ID is statically fixed at development or configuration time.

log_data

Contain the log or trace data it self. The content and the structure of this provided buffer is specified by the DIt
transmission protocol.

Description File

Normally the log_data contains only contents of not fixed variables or information (e.g. no static strings are transmitted).
Additionallga description file shall be provided. Within this file the same information for a log messages associated with the

Message ID are posted. These are information how to interpret the log_data buffer and what fixed entries belonging to a log
message.

- AUTOSAR Confidential -

135 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au (\‘ SA R
P Lay | T(©)

Table of contents

<
A
(=2
<
[«
k=l
[
[
©
o

1. Architecture

2. Configuration

3. Integration and Runtime aspects
1. Mapping of Runnables

Partitioning

Scheduling

Mode Management

Error Handling, Reporting and Diagnostic

Debugging

Measurement and Calibration

Functional Safety

Energy Management

© ©® N o O k& WD

- AUTOSAR Confidential -

136 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

Integration and Runtime aspects - Debugging
Debugging Module - functional overview

—
™
N
—
—
h=]
)
D
]
Q

The goal of the Debugging Module is to support a user (system integrator or BSW developer)
during development, in case the basic software does not behave as expected. To do so, it
collects as much information as possible about the runtime behavior of the systems without
halting the processor. This data is transmitted to an external host system via communication,
to enable the user to identify the source of a problem. An internal buffer is provided to
decouple data collection from data transmission.

Main tasks of the Debugging Module are to

» Collect and store data for tracing purposes

» Collect and immediately transmit data to host

» Modify data in target memory on host request

» Transmit stored data to host

» Accept commands to change the behavior of the Debugging Module

- AUTOSAR Confidential -

137 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

Integration and Runtime aspects - Debugging
Debugging Module - architectural overview

The Debugging Module can:
» interface to ECU internal modules and to an external host system via communication.

With respect to the host system:
» the Debugging Module is also described as being ‘target’.

Internally, the Debugging Module consists of:
» a core part, which handles data sampling, and
» a communication part, which is responsible for transmission and reception of data.

The Debugging Module is designed to be:
» hardware independent and
> interfaces to the PDU router.

It can be used by:
» the BSW and
> RTE.

There is no interface to software components.

- AUTOSAR Confidential -

138 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I S A R

Integration and Runtime aspects - Debugging
External architectural view - Data flow host = target

a
™
N
—
—
h=]
)
D
]
Q

Example:

m Host Debugging Com Module Debugqging Core Module BSW

host command

-y

call debug core command

U A —

A

confirmation

A

\ 4

collection of data

processing of host
commands

N

- AUTOSAR Confidential -

139 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I s A R

Integration and Runtime aspects - Debugging
External architectural view - Data flow target = host

[3)
™
N
-
—
h=]
)
o
]
Q

Example:

‘

(@]
wn
—~+

Debugging Com Module Debugging Core Module BSW

TX request

- -

message fragment 1

message fragment 2

collection of data

message fragment n

debugging communication
module contains
implementation of simplified
TP

N W S W

e ey T R P
NN DI A

- AUTOSAR Confidential -

140 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

Table of contents

<
s
£
<
[}
h=]
)
=
]
=1

1. Architecture

2. Configuration

3. Integration and Runtime aspects
1. Mapping of Runnables

Partitioning

Scheduling

Mode Management

Error Handling, Reporting and Diagnostic

Debugging

Measurement and Calibration

Functional Safety

Energy Management

© ©® N o O k& WD

- AUTOSAR Confidential -

141 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

Integration and Runtime aspects - Measurement and Calibration
XCP

=
o2}
=3
=}
>
k=l
)
D
©
Qo

XCP is an ASAM standard for calibration purpose of an ECU.

XCP within AUTOSAR provides
the following basic features:

» Synchronous data acquisition
» Synchronous data stimulation U B rosar [2gnostc e
. . . . COM i
> Online memory calibration (read / write Manager
acceSS) XCP Protocol
> Calibration data page initialization and XCPonFr / _
. . XCPonCAN / PDU Router
switchi ng XCPonTCP/IP /
. Interfaces Module
» Flash Programming for ECU

development purposes

Bus Interface(s)
(or Socket Adaptor on ethernet)

Bus Driver(s)

- AUTOSAR Confidential -

142

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I (\ s AR

Table of contents

<
A
(2]
<
[«
k=l
[
[
©
o

1. Architecture

2. Configuration

3. Integration and Runtime aspects
1. Mapping of Runnables

Partitioning

Scheduling

Mode Management

Error Handling, Reporting and Diagnostic

Debugging

Measurement and Calibration

Functional Safety

Energy Management

© ©® N o O k& WD

- AUTOSAR Confidential -

143 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

Integration and Runtime aspects — Safety End to End (E2E) Communication Protection
Overview

Qo
>
o
X
N

h=]
)
=
]
Q

Typical sources of interferences,

- - — — causing errors detected by E2E
Libraries OS-Application 2 OS-Application 1 protection:
Receiver 1 Sender
SWe-related sources:
S1. Error in mostly generated RTE,
S2. Error in partially generated and
partially hand-coded COM
S3. Error in network stack
S4. Error in generated 10C or OS

Direct function call Direct function call Il

HW-related sources:
RTE

H1. Microcontroller error during
core/partition switch

H2. Failure of HW network
H2. Network EMI
H3. Microcontroller failure during
context switch (partition) or on the
communication between cores
Receiver
2

-- H4

Microcontroller 1/ ECU 1

; Microcontroller 2
/| ECU 2

- AUTOSAR Confidential -

144 10 November 2011 LayeDet Suinaie AShitAtiT@S AR CEXRNL {58 SMtareARChiCEReved 001 ‘ Au I r\ s AR

Integration and Runtime aspects — Safety End to End (E2E) Communication Protection
Logic

o
>
&
X
=
o
[
o)
I3
=1

Libraries OS-Application 2

OS-Application 1
Receiver 1

8. Call E2E check on array
- E2E_POxCheck()

\L\l/ 3. Call E2E protect on array — E2E_POx_Protect() |

7. Invoke RTE read RTE_Read_<p>_<0>() to get 4. Invoke RTE - RTE_Write_<p>_<o>() to

ata e transmit the data element
g E AUTOSAR Runtime Environment (RTE)
m

5. RTE communication (intra or inter ECU), either through COM, I0C,
or local in RTE

Notes:

» For each RTE Write or Read function that transmits safety-related data (like Rte_Write_<p>_<o0>()), there is the
corresponding E2E protection wrapper function.

The wrapper function invokes AUTOSAR EZ2E Library.

The wrapper function is a part of Software Component and is preferably generated.

The wrapper function has the same signature as the corresponding RTE function, just instead of Rte__ there is E2EPW_.

The E2EPW__ function is called by Application logic of SW-Cs, and the wrapper does the protection/checks and calls
internally the RTE function.

For inter-ECU communication, the data elements sent through E2E Protection wrapper are be byte arrays. The byte
arrays are put without any alterations in COM I-PDUs.

- AUTOSAR Confidential -

YV V.V V

Y

145 10 November 2011 LayeDent Goénalie ABchitattlieSAR cEXRNL Hy Y88 S ofti8reARchiCeBieveD001 ‘ Au I s A R

Table of contents

<
=
£
<
o
R
)
=
]
o

1. Architecture

2. Configuration

3. Integration and Runtime aspects
1. Mapping of Runnables

Partitioning

Scheduling

Mode Management

Error Handling, Reporting and Diagnostic

Debugging

Measurement and Calibration

Functional Safety

Energy Management

© ©® N o O k& WD

- AUTOSAR Confidential -

146 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

Energy Management
Introduction

o
[
[=1
[
)
h=]
)
D
©
Q

The goal of efficient energy management in AUTOSAR is to provide mechanisms for power
saving, especially while bus communication is active (e.g. charging or clamp 15 active).

AUTOSAR R3.2 and R4.0.3 support only Partial Networking.

Partial Networking

» Allows for turning off network communication across multiple ECUs in case their provided
functions are not required under certain conditions. Other ECUs can continue to
communicate on the same bus channel.

» Uses NM messages to communicate the request/release information of a partial network
cluster between the participating ECUs.

- AUTOSAR Confidential -

147 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I S A R

Energy Management — Partial Networking
Example scenario of a partial network going to sleep

o)
™
[=1
[
)

h=]
)
D
©
Q

Initial situation
A »ECUs “A” and “B” are members of Partial Network Cluster (PNC) 1.
ECU A —] ECUs “B”, “C” and “D” are members of PNC 2.
> All functions of the ECUs are organized either in PNC 1 or PNC 2.
A »Both PNCs are active.
ECUB —_— »PNC 2 is only requested by ECU “C".
’ y » The function requiring PNC 2 on ECU “C” is terminated, therefore
ECU “C” can release PNC 2.
This is what happens:

ECUC
2 | »ECU “C” stops requesting PNC 2 to be active.

»ECUs “C” and “D” are no longer participating in any PNC and can be
shutdown.

»ECU “B” ceases transmission and reception of all signals associated
with PNC 2.

»ECU “B” still participates in PNC 1. That means it remains awake
and continues to transmit and receive all signals associated with PNC

Partial Network Cluster 1 —— 1.

Partial Network Cluster 2 >ECU “A” Is not affected at all.

ECUD

Physical CAN Bus —

- AUTOSAR Confidential -

148 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

Energy Management — Partial Networking
Conceptual terms

[3)
[}
[=1
[
)

h=]
)
o
©
Q

» A significant part of energy management is about mode handling. For the terms
m Vehicle Mode,

m Application Mode and
m Basic Software Mode
see chapter 3.4 of this document.

» Virtual Function Cluster (VFC): groups the communication on port level between SW-
components that are required to realize one or more vehicle functions.

This is the logical view and allows for a reusable bus/ECU independent design.

» VFC-Controller: Special SW-component that decides if the functions of a VFC are required at
a given time and requests or releases communication accordingly.

» Partial Network Cluster (PNC): is a group of system signals necessary to support one or
more vehicle functions that are distributed across multiple ECUs in the vehicle network.

This represents the system view of mapping a group of buses to one ore more VFCs.

- AUTOSAR Confidential -

149 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture ‘ Au I SA R

Energy Management — Partial Networking
Restrictions

o

[%7]
Q
Q
)

R
)
=)
]
=3

» Partial Networking is currently supported on CAN and FlexRay buses.

» In order to wake-up a Partial Networking ECU a special transceiver hardware is required as
specified in ISO 11898-5.

» The concept of Partial Networking does not consider a VFC located on only one ECU because
there is no bus communication and no physical PNC.

> Restrictions for CAN

m J1939 and Partial Networking exclude each other, due to the address claiming and start-
up behaviour of J1939.

m J1939 need to register first their address in the network before they are allowed to start
communication after a wake-up.

» Restrictions on FlexRay
m FlexRay is only supported for requesting and releasing PNCs.

m FlexRay nodes cannot be shut down since there is no hardware available which supports
partial networking.

- AUTOSAR Confidential -

150 Document ID 053 : AUTOSAR

Energy Management — Partial Networking
Mapping of Virtual Function Cluster to Partial Network Cluster

SW-C
1

SW-C SW-Component of VFC1

SW-Component of VFC2

SW-C SW-Component of VFC3

CompositionType

O Communication Port

|vrc1] (vrcz2] [vrcs |
Mapping of
VFC on PNC Eﬁsﬁﬁa (——Aﬁi
pnct | [PNC2

+ Here both Partial Networks
map to one CAN bus.

* One Partial Network can also
span more than one bus.

|Pnc] (P2 |

ECU Hardware ECU Hardware ECU Hardware
PNC1 CAN Bus PNC2

- AUTOSAR Confidential -

151 Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture Au (\ SAR
5 _EXP_Lay ‘ [€=D)

Energy Management — Partial Networking
Involved modules — Solution for CAN

Application Layer

* VFC to PNC to channel
o translation
+ Coordination of I-PDU « PNC management (request /
group switching Mode ComM_User release of PNCs)
- Start / stop I-PDU- request Request « Indication of PN states
groups ~

« Exchange PNC request / release
information between NM and
ComM via NM user data

« Enable / disable I-PDU-groups

« Filter incoming NM messages

« Collect internal and external PNC requests

» Send out PNC request infocmation in NM user
data

« Spontaneous sending of NM messages on PNC
startup

- AUTOSAR Confidential -

Document ID 053 : AUTOSAR_EXP_LayeredSoftwareArchitecture

	Layered Software Architecture
	Foliennummer 2
	Document Change History
	Document Change History
	Disclaimer
	Table of contents
	Introduction�Purpose and Inputs
	Introduction �Scope and Extensibility
	Architecture – Overview of Software Layers�Top view
	Architecture – Overview of Software Layers�Coarse view
	Architecture – Overview of Software Layers�Detailed view
	Architecture – Overview of Software Layers�Microcontroller Abstraction Layer
	Architecture – Overview of Software Layers�ECU Abstraction Layer
	Architecture – Overview of Software Layers�Complex Drivers
	Architecture – Overview of Software Layers�Services Layer
	Architecture – Overview of Software Layers�AUTOSAR Runtime Environment (RTE)
	Architecture – Overview of Software Layers�Introduction to types of services
	Architecture – Introduction to Basic Software Module Types�Driver (internal)
	Architecture – Introduction to Basic Software Module Types�Driver (external)
	Architecture – Introduction to Basic Software Module Types�Interface
	Architecture – Introduction to Basic Software Module Types�Handler
	Architecture – Introduction to Basic Software Module Types�Manager
	Architecture – Overview of Software Layers�Introduction to Libraries
	Table of contents
	Architecture – Content of Software Layers�Microcontroller Abstraction Layer
	Architecture – Content of Software Layers� Microcontroller Abstraction Layer: SPIHandlerDriver
	Architecture – Content of Software Layers�Complex Drivers
	Architecture – Content of Software Layers�ECU Abstraction: I/O Hardware Abstraction
	Architecture – Content of Software Layers�ECU Abstraction: Communication Hardware Abstraction
	Architecture – Content of Software Layers�Scope: Memory Hardware Abstraction
	Architecture – Content of Software Layers�Onboard Device Abstraction
	Architecture – Content of Software Layers�Communication Services – General
	Architecture – Content of Software Layers�Communication Stack – CAN
	Architecture – Content of Software Layers�Communication Stack – CAN
	Architecture – Content of Software Layers�Communication Stack Extension – TTCAN
	Architecture – Content of Software Layers�Communication Stack Extension – TTCAN
	Architecture – Content of Software Layers�Communication Stack – LIN (LIN Master)
	Architecture – Content of Software Layers�Communication Stack – LIN
	Architecture – Content of Software Layers�Communication Services – LIN Slave
	Architecture – Content of Software Layers�Communication Stack – FlexRay
	Architecture – Content of Software Layers�Communication Stack – FlexRay
	Architecture – Content of Software Layers�Communication Stack – TCP/IP
	Architecture – Content of Software Layers�Communication Stack – TCP/IP – Socket Adaptor
	Architecture – Content of Software Layers�Communication Stack – General
	Architecture – Content of Software Layers�Services: Memory Services
	Architecture – Content of Software Layers�Services: System Services
	Architecture – Content of Software Layers�Error Handling, Reporting and Diagnostic
	Architecture – Content of Software Layers�Application Layer: Sensor/Actuator Software Components
	Table of contents
	Architecture – Content of Software Layers�Example of a Layered Software Architecture for Multi-Core Microcontroller
	Architecture – Content of Software Layers�Scope: Multi-Core System Services
	Table of contents
	Architecture�Overview of Modules – Implementation Conformance Class 3 - ICC3
	Architecture�Overview of Modules – Implementation Conformance Classes – ICC2
	Architecture�Overview of Modules – Implementation Conformance Classes – ICC1
	Architecture�Overview of Modules – Implementation Conformance Classes – behavior to the outside
	Table of contents
	Interfaces�Type of Interfaces in AUTOSAR
	Interfaces�Components and interfaces view (simplified)
	Interfaces: General Rules�General Interfacing Rules
	Interfaces: General Rules�Layer Interaction Matrix
	Interfaces�Interfacing with Complex Drivers (1)
	Interfaces�Interfacing with Complex Drivers (2)
	Interfaces�Interfacing with Complex Drivers (3)
	Table of contents
	Interfaces: Interaction of Layers – Example “Memory”�Introduction
	Interfaces: Interaction of Layers – Example “Memory”�Example and First Look
	Interfaces: Interaction of Layers – Example “Memory”�Closer Look at Memory Hardware Abstraction
	Interfaces: Interaction of Layers – Example “Memory”�Implementation of Memory Abstraction Interface
	Interfaces: Interaction of Layers – Example “Memory”�Implementation of Memory Abstraction Interface
	Interfaces: Interaction of Layers – Example “Memory”�Conclusion
	Interfaces: Interaction of Layers – Example “Communication”�PDU Flow through the Layered Architecture
	Interfaces: Interaction of Layers�Example “Communication” (1)
	Interfaces: Interaction of Layers�Example “Communication” (2)
	Interfaces: Interaction of Layers�Example “Communication” (3)
	Interfaces: Interaction of Layers�Example “Communication” (4) - Internet Protocol
	Table of contents
	Configuration�Overview
	Configuration�Pre-compile time (1)
	Configuration�Pre-compile time (2)
	Configuration�Pre-compile time (3)
	Configuration�Link time (1)
	Configuration�Link time (2)
	Configuration�Link time (3)
	Configuration�Post-build time (1)
	Configuration�Post-build time (2)
	Configuration�Post-build time (3)
	Configuration�Variants
	Configuration�Memory Layout Example: Postbuild Loadable (PBL)
	Configuration�Memory Layout Example: Postbuild Multiple Selectable (PBM)
	Table of contents
	Integration and Runtime aspects �Mapping of Runnables
	Table of contents
	Integration and Runtime aspects - Partitioning �Introduction
	Integration and Runtime aspects - Partitioning �Example of restarting partition
	Integration and Runtime aspects - Partitioning �Involved components
	Integration and Runtime aspects - Partitioning �restart example
	Integration and Runtime aspects - Partitioning �Other examples
	Table of contents
	Integration and Runtime aspects - Scheduling �General Architectural Aspects
	Integration and Runtime aspects - Scheduling�Basic Scheduling Concepts of the BSW
	Integration and Runtime aspects - Scheduling�Scheduling Objects, Triggers and Mode Disabling Dependencies
	Integration and Runtime aspects - Scheduling�Transformation Process
	Integration and Runtime aspects - Scheduling�Transformation Process – Example 1
	Integration and Runtime aspects - Scheduling�Transformation Process – Example 2
	Integration and Runtime aspects - Scheduling�Data Consistency – Motivation
	Integration and Runtime aspects - Scheduling�Data Consistency – Example 1 – “Critical Sections” Approach
	Integration and Runtime aspects - Scheduling�Data Consistency – Example 1 – “Critical Sections” Approach
	Integration and Runtime aspects�Mode Communication / Mode Dependent Scheduling
	Table of contents
	Integration and Runtime aspects �Vehicle and application mode management (1)
	Integration and Runtime aspects �Vehicle and application mode management (2)
	Integration and Runtime aspects �Vehicle and application mode management (3)
	Integration and Runtime aspects �Vehicle and application mode management (4)
	Table of contents
	Integration and Runtime aspects - Error Handling, Reporting and Diagnostic �Error Classification (1)
	Integration and Runtime aspects - Error Handling, Reporting and Diagnostic�Error Classification (2)
	Integration and Runtime aspects - Error Handling, Reporting and Diagnostic �Error Reporting – Alternatives
	Integration and Runtime aspects - Error Handling, Reporting and Diagnostic �Mechanism in relation to AUTOSAR layers and system life time
	Integration and Runtime aspects - Error Handling, Reporting and Diagnostic �Error Reporting via API
	Integration and Runtime aspects - Error Handling, Reporting and Diagnostic �Error Reporting – Introduction
	Integration and Runtime aspects - Error Handling, Reporting and Diagnostic �Error Reporting – Diagnostic Event Manager
	Integration and Runtime aspects - Error Handling, Reporting and Diagnostic �Error Reporting – Development Error Tracer
	Integration and Runtime aspects - Error Handling, Reporting and Diagnostic �Error Reporting – Diagnostic Log and Trace (1)
	Integration and Runtime aspects - Error Handling, Reporting and Diagnostic �Error Reporting – Diagnostic Log and Trace (2)
	Integration and Runtime aspects - Error Handling, Reporting and Diagnostic �Error Reporting – Diagnostic Log and Trace (3)
	Table of contents
	Integration and Runtime aspects - Debugging�Debugging Module - functional overview
	Integration and Runtime aspects - Debugging�Debugging Module - architectural overview
	Integration and Runtime aspects - Debugging�External architectural view - Data flow host  target
	Integration and Runtime aspects - Debugging�External architectural view - Data flow target  host
	Table of contents
	Integration and Runtime aspects - Measurement and Calibration�XCP
	Table of contents
	Integration and Runtime aspects – Safety End to End (E2E) Communication Protection�Overview
	Integration and Runtime aspects – Safety End to End (E2E) Communication Protection�Logic
	Table of contents
	Energy Management�Introduction
	Energy Management – Partial Networking�Example scenario of a partial network going to sleep
	Energy Management – Partial Networking�Conceptual terms
	Energy Management – Partial Networking�Restrictions
	Energy Management – Partial Networking�Mapping of Virtual Function Cluster to Partial Network Cluster
	Energy Management – Partial Networking�Involved modules – Solution for CAN

