

Document Title	Explanation of Application In- terfaces of the Powertrain Do- main
Document Owner	AUTOSAR
Document Responsibility	AUTOSAR
Document Identification No	269
Document Classification	Auxiliary

Document Version	2.2.0
Document Status	Final
Part of Release	4.0
Revision	3

Document Change History				
Date Version Changed by		Changed by	Change Description	
09.12.2011	2.2.0	AUTOSAR Administration	 Splitting of document: Topic of Measurement and Calibration moved to new document TR_AIMeasurementCalibrationDiagn ostics_537 Update w.r.t. to names etc. according to changes in AISpecification 	
22.10.2010	2.1.0	AUTOSAR Administration	 Display names made consistent to AISpecification Rule MCM390 added: Suffix should not exceed 3 char 	
07.12.2009	2.0.0	AUTOSAR Administration	 Added: overview figures of different torque interfaces New: chapter about modeling aspects and automatic generation of display names New: Mapping Ports to Display Names Legal disclaimer revised 	
23.06.2008	1.0.1	AUTOSAR Administration	Legal disclaimer revised	
15.11.2007	1.0.0	AUTOSAR Administration	Initial Release	

Disclaimer

This specification and the material contained in it, as released by AUTOSAR is for the purpose of information only. AUTOSAR and the companies that have contributed to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types of Intellectual Property Rights. The commercial exploitation of the material contained in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form or by any means, for informational purposes only.

For any other purpose, no part of the specification may be utilized or reproduced, in any form or by any means, without permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only. They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR Specification Documents may contain exemplary items (exemplary reference models, "use cases", and/or references to exemplary technical solutions, devices, processes or software).

Any such exemplary items are contained in the Specification Documents for illustration purposes only, and they themselves are not part of the AUTOSAR Standard. Neither their presence in such Specification Documents, nor any later documentation of AUTOSAR conformance of products actually implementing such exemplary items, imply that intellectual property rights covering such exemplary items are licensed under the same rules as applicable to the AUTOSAR Standard.

Contents

1	Purpose of this Document	4
2	References	5
3	Description of Terms and Concepts	6
	 Abbreviations	6 7
4	Architecture Overview	13
5	Description of Exemplary Software Components	15
	 Powertrain Coordinator – PTC (PtCoorr)	15 16 17 17 17 17 17 17 18 18 18
6	Additional Information 0.1 Differences between SW-Cs and ECUs	19
	 Functional safety Powertrain Application Interfaces - Decisions / Assumptions Scope Scope PTC Composition Definition of overboost Definition of overboost Coordination at the vehicle level PTC Arbitration between Driver and Chassis torque requests Assumptions on modeling style and naming aspects specific for powertrain domain 	19 19 19 20 20 20
7	Appendix: Mapping Ports to Display Names - Powertrain Domain	25

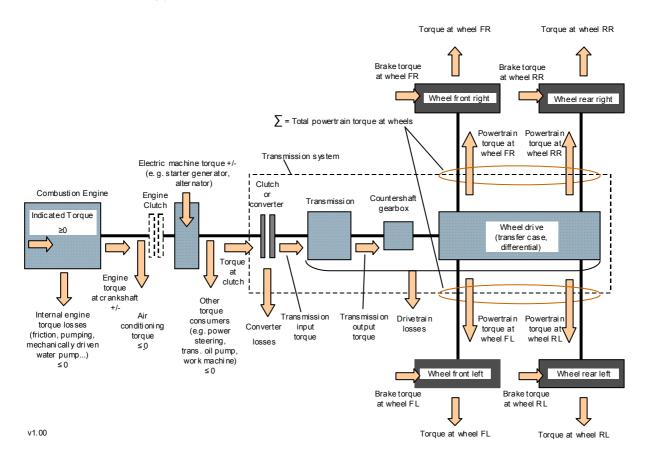
1 Purpose of this Document

This document explains design decisions that lead to the standardized applications interfaces relevant to the Powertrain Domain.

<u>NOTE:</u> If any information in diagrams or text (or conclusions drawn from them) conflict with the information in [2] or [3] the information in [2] or [3], resp., should be regarded as definitive.

2 References

- [1] SW-C and System Modeling Guide AUTOSAR_TR_SWCModelingGuide.pdf
- [2] Table of Application Interfaces AUTOSAR_MOD_AITable.xls
- [3] XML Specification of Application Interfaces AUTOSAR_MOD_AISpecification.arxml
- [4] Explanation of Application Interfaces of the Chassis Domain AUTOSAR_EXP_AIChassisExplanation.pdf
- [5] Unique Names for Documentation, Measurement and Calibration: Modeling and Naming Aspects including Automatic Generation AUTOSAR_TR_AIMeasurementCalibrationDiagnostics.pdf
- [6] Software Component Template AUTOSAR_TPS_SoftwareComponentTemplate.pdf
- [7] Standardization Template AUTOSAR_TPS_StandardizationTemplate.pdf



3 Description of Terms and Concepts

3.1 Abbreviations

For abbreviations used in this document please refer to the keyword list in [2] and (as .armxl) in [3] (as .xls).

3.2 Terminology – Torque within the Powertrain Domain

Figure 1: Powertrain Torque terminology

Sign definition for torque at clutch / torque at wheels:

Positive value means that torque is transmitted from the engine to the drivetrain / from the powertrain to the wheels.

Negative value means that torque is transmitted from the drivetrain to the engine / from the wheels to the powertrain.

Zero means that no torque is transmitted between engine and drivetrain / between wheels and powertrain.

Engine Clutch

R4.0 Rev 3

For Hybrid Systems an additional clutch can be present between combustion engine and electric machine.

3.3 Terminology – Fast and Slow Torque Requests

Many torque request interfaces have the additional descriptors "Fast" or "Slow". These descriptors are relevant to gasoline spark ignition engines, whose torque output can be modified by means of throttle angle (and hence air mass) and ignition timing. In general, the torque output responds slowly to changes in throttle angle due to fluid dynamics in the manifold and cylinder head. The reaction to ignition timing changes is almost instantaneous, especially at higher engine speeds.

"Fast" refers to the "immediate" / "instant" torque request, typically achieved by ignition timing.

"Slow" refers to the longer term or "torque reserve" request, usually the input to throttle control.

Note that a gasoline engine running at optimum ignition timing cannot **increase** torque quickly as the throttle is the only means for the increase. However, preemptively opening the throttle and running with retarded ignition to maintain the the original (lower) torque allows the torque to be increased quickly by ignition a short time in the future. This operation is usually achieved by setting the "Slow" torque request to be greater than the "Fast" torque request to provide this "torque reserve", allowing the torque to be rapidly increased by increasing the "Fast" request.

V2.2.0 R4.0 Rev 3

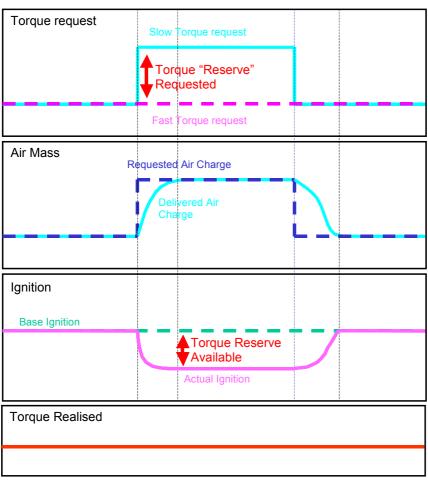


Figure 2: The Torque Reserve concept, with "Fast" and "Slow" torque requests

For conventional diesel engines only the fast torque interfaces are relevant. However, future diesel engines could have the possibility to use both fast and slow torque interfaces.

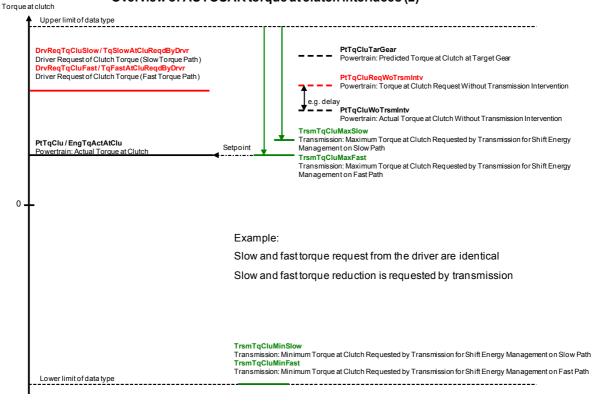
3.4 Overview of AUTOSAR torque application interfaces

Legend within Figure 3:

<ShortName of Powertrain Port>/ <ShortName of Chassis Port>] <LongName of Port>

Crankshat	Overview of AUTOSAF	R crankshaft to	rque interfaces
Cranksha	Upper limit of data type		
	Maximum Engine Torque at Crankshaft at Optimum Conditions EngTqCrksftMax Maximum Engine Torque at Crankshaft	Aaximum air mass at current speed	Torque intervention EngTqCrksftMaxProtn ▼Maximum Allowed Torque at Crankshaft for Engine Protection
	EngTqCrksftMaxFast Maximum Engine Torque at Crankshaft Fast Path	Setpoint	
	EngTqCrksft (spark retard, Actual Engine Torque at Crankshalty lambda etc.) Maximu spark ret		
	EngTqCrksftMinFast Minimum Engine Torque at Crankshaft Fast Path	Setpoint	
0 - Indicated torque	EngTqCrksftMinBasc Minimum Engine Torque at Crankshaft for Powertrain realized by Slow Pa EngTqCrksftMinWoCutOff Minimum Engine Torque at Crankshaft for Powertrain realized by Slow and	Maximum	Minimum air mass at current speed
l	EngTqCrksftMin Minimum Engine Torque at Crankshaft considering all engine losses		
			Additional interfaces:
			PtTqResvEng Torque Reserve Request from Powertrain to Engine
			EngTqResvPt Torque Reserve Request from Engine to Powertrain
	Lower limit of data type		

Figure 3: Overview of AUTOSAR crankshaft torque interfaces



R4.0 Rev 3

e at clutch	rque at clutch interfaces (1)
Upper limit of data type	
PtTqCluMaxDrv Powertrain: Maximum Available Torque at Clutch for Driver	TrsmTqCluMaxProtn Transmission: Maximum Torque at Clutch Requested by Transmission for Gearbox Protection TrsmTqCluMaxSlow
PtTqClu / EngTqActAtClu Driver Request of C Powertrain: Actual Torque at Clutch Setpoint DrvReqTqCluFast Driver Request of C DrvReqTqCluFast Driver Request of C	Transmission: Maximum Torque at Clutch Requested by Transmission for Shift Energy Management on SlowPath Transmission: Maximum Torque at Clutch Requested by Transmission for Shift Energy Management on Fast Path /TqSlowAtCluReqdByDvr utch Torque (SlowTorque Path) TqFastAtCluReqdByDvr Utch Torque (FastTorque Path) Stability Control (ESC) Slow Path (also EscTqWhIPtMaxSlow exists
Powertrain: Dynamic Actual Torque at Clutch EngTqDynJ Engine dynamic moment of inertia	Possible range for driver request EscTqCluPtMaxFast / EngTqDecAtCluReqByEscFast Maximum Powertrain Clutch Torque Requested by Electronic Stability Control (ESC) Fast Path (also EscTqWhIPtMaxFast exists)
PtTqCluMinDrv Powertrain: Minimum Available Torque at Clutch for Driver	EscTqCluPtMin / EngTqIncAtCluReqdByEsc Minimum Powertrain Clutch Torque Requested by Electronic Stability Control (ESC) (also EscTorqueWheelPowertrainMinimumFast/Slow exist)
	Tran TqCluMinSlow Tran smission: Minimum Torque at Clutch Requested by Tran smission for Shift Energy Management on Slow Path Trsm TqCluMinFast Transmission: Minimum Torque at Clutch Requested by Transmission for Shift Energy Management on Fast Path
Lower limit of data type	

Figure 4: Overview of AUTOSAR torque at clutch interfaces (1)

Overview of AUTOSAR torque at clutch interfaces (2)

Figure 5: Overview of AUTOSAR torque at clutch interfaces (2)

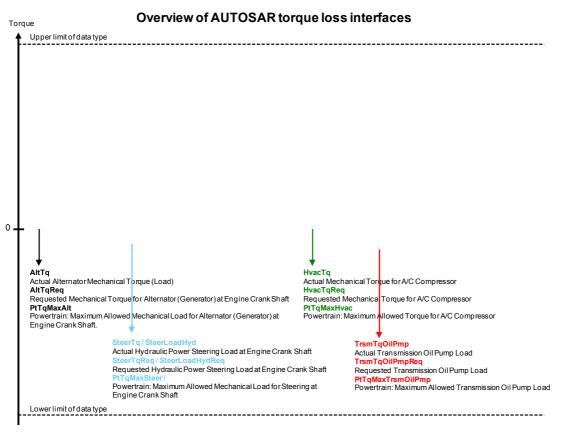


Figure 6: Overview of AUTOSAR torque loss interfaces

R4.0 Rev 3

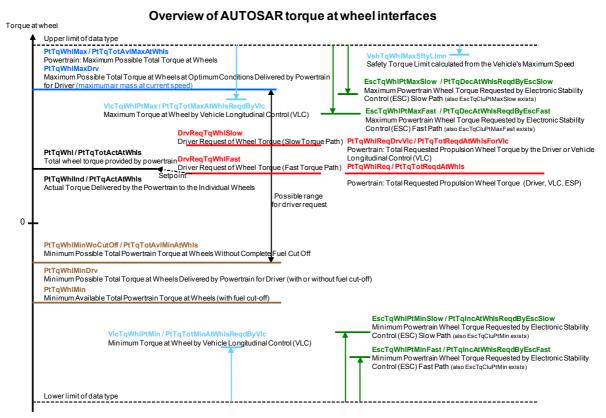


Figure 7: Overview of AUTOSAR torque at wheel interfaces

4 Architecture Overview

The following figures give an overview of the domain or functional architecture. They not necessarily give a complete picture but show the most relevant interconnections and components.

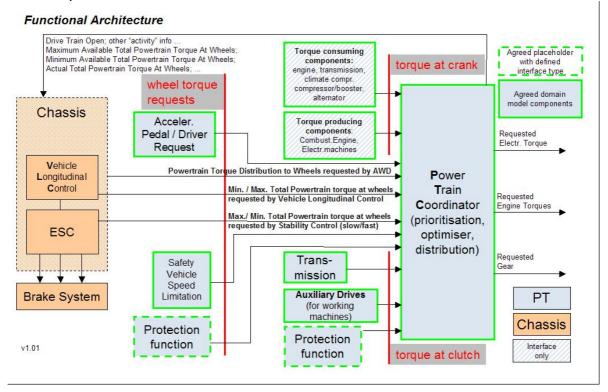


Figure 8: Overview of Functional Architecture

R4.0 Rev 3

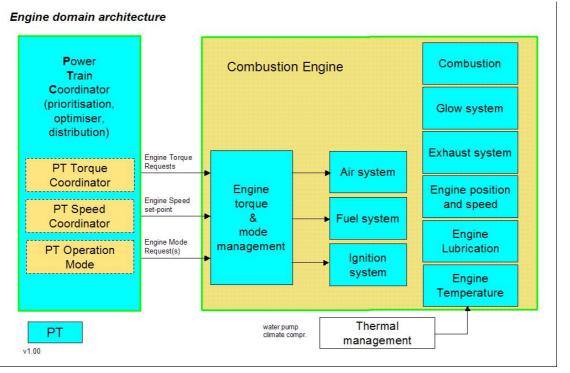
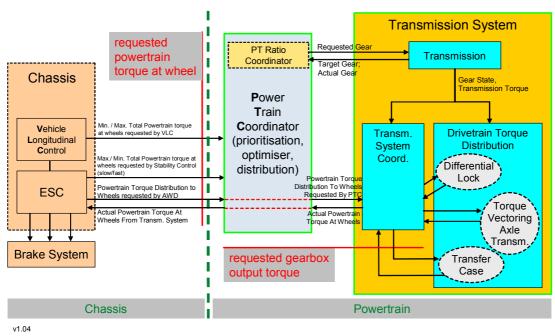



Figure 9: Detail – Combustion Engine Domain Architecture

Transmission System Architecture

Figure 10: Detail – Transmission System Domain Architecture

5 Description of Exemplary Software Components

For being able to use and understand the standardized application interfaces a typical domain architecture was used as basis for demonstrating the signal flow. The components of this example domain architecture are described in the following.

5.1 Powertrain Coordinator – PTC (PtCoorr)

This composition includes all functions that coordinate the operation of the Powertrain, including:

Powertrain operation mode – management of states of all actuators (e.g. combustion engine, clutch(es), transmission, electric motors, etc.), including engine start / stop management (conventional & hybrid Powertrains).

Powertrain torque coordination – Torque coordination at Powertrain (PT) level, torque prioritisation, torque distribution for realisation at at PT level, torque reserve request for the PTC, pre-coordination of driveability functions for hybrids, Powertrain driveability filters, determination of total Powertrain losses for torque calculation, wheel torque calculation (min, max, actual), torque at clutch calculation (min, max, actual), transformation of torque set point from wheel torque to torque at clutch, transformation of torque set point from torque at clutch to torque at crankshaft, control/coordination of auxiliary drivers/actuators.

Powertrain speed coordination – Maximum speed limitation coordination (for protection of all PT components from damage from over speed) and coordination of idle speed / engine speed set point requests from all sources, e.g. transmission.

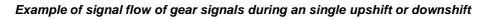
Powertrain ratio coordination – all transmission ratio set point logic. Note that realisation of ratio set point is carried out by transmission system, not PTC.

5.2 Transmission System (Trsm)

This composition includes all functions of the transmission system, including: *Transmission system coordination* – Determines the torque and speed ratio over transmission, converter and differential, including the calculation of torque losses in the transmission system. Coordinates mechanical protection of the Drivetrain (gearbox, driveshafts, etc.), including calculation of torque limitation.

For manual transmission, this function includes the determination of the current gear and clutch status.

Transmission – Management of particular states in the transmission, including shift transition, driving off situation, creeping mode etc.. In case of shift transition, this functionality calculates torque requests to optimise the transition.


Control of transmission actuators to adjust the gear to the target gear (or to adjust the gear ratio to the target gear ratio in case of CVT). Gear ratio means the theoretical / physical ratio belonging to each gear and not any actual measured value. Control of gearbox countershaft (low/higher range) actuators is not included.

Calculates the torque gain of a hydrodynamic converter and the torque required to the converter input side in idle, etc. and controls clutch or converter actuators.

R4.0 Rev 3

All functionality related to the protection of the transmission, including calculation of torque limitation, measurement or calculation of gearbox oil temperature, etc., and calculation of requests to other systems.

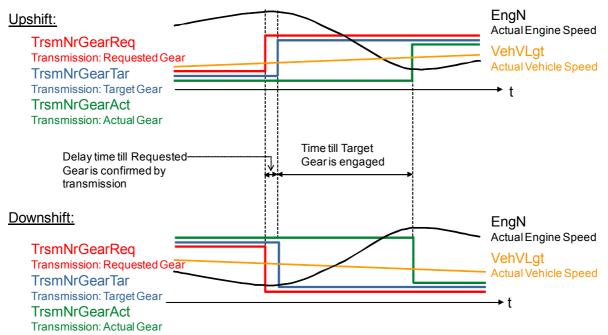


Figure 11: Example of signal flow of gear signals during a single upshift or downshift

Drivetrain Torque Distribution (DtTqDibtn) Differential Lock – All functionality related to the differential(s), which manage the torque distribution between left and right wheels, for example locking of the differential. Does not include the calculation of the distribution set point.

Drivetrain Torque Distribution (DtTqDibtn) Transfer Case – All functionality related to the transfer case, which manages the torque distribution between front and rear wheels. Does not include the calculation of the distribution set point.

Drivetrain Torque Distribution (DtTqDibtn) Torque vectoring axle transmission – All functionality related to active distribution of powertrain torque to all four wheels individually. Does not include the calculation of the distribution set point.

For additional information on Drivetrain Torque Distribution (DtTqDibtn) please also refer to [4].

5.3 Combustion Engine (CmbEng)

This composition includes all functions directly related to the operation and control of the vehicle's combustion engine. The following sections, 5.3.1 to 5.3.3 inclusive, define the components as a result of Combustion Engine functionality decomposition agreed to date.

5.3.1 Engine Speed and Position (EngSpdAndPosn)

Functions that provide all parameters linked to engine shaft position and speed, including the synchronisation on between crankshaft and camshaft.

- Crankshaft and camshaft signal acquisition.
- Calculation of the engine position.
- Calculation of the relative camshaft position for systems with variable valve timing and/or lift.
- Related diagnosis and plausibility checks.

5.3.2 Engine Torque Mode Management (EngTqModMngt)

Includes calculation of engine torque set point, realisation of that set point (coordination of air / fuel / ignition, etc.), determination of actual engine torque, control of engine speed (idle / off-idle / limitation), and management of engine modes (including overall mode, modes for realisation of engine start & stop, and combustion modes).

5.3.3 Combustion Engine: Miscellaneous (CmbEngMisc)

Combustion Engine Misc gathers together miscellaneous engine interfaces. In general these are common data required for correct operation of the engine (engine temperature, ambient air pressure and battery voltage) or required for fail-safe actions (crash status). The way in which these interfaces are used is not standardised In future AUTOSAR releases, it is likely that these interfaces may be moved to different (more appropriate) provider or receiver components / compositions.

5.4 Vehicle Motion relevant for Powertrain (VehMtnForPt)

This composition includes Powertrain functions related to vehicle motion. The following sections, 5.4.1 to 5.4.3 inclusive, define the components that have so far been agreed as part of this composition.

5.4.1 Driver Request (DrvReq)

Driver-specific conversion of accelerator pedal position to requested torque: determines the driver request related to the motion of the vehicle. For longitudinal motion, this functionality interprets the driver request as a torque request.

5.4.2 Accelerator Pedal Position (AccrPedIPosn)

The component calculates a percentage from the acquired position of the sensor, and contains plausibility checks to ensure the information. Kick-down detection is included in this component.

5.4.3 Safety Vehicle Speed Limitation (VehSpdLimnForSfty)

Hard limitation of vehicle speed by engine torque reduction, without any comfort functionality.

5.4.4 Vehicle Motion (Powertrain): Miscellaneous (VehMtnForPtMisc)

VehMtnForPtMisc gathers together miscellaneous interfaces in the context of vehicle motion powertrain. The way in which these interfaces are used is not standardised. In future AUTOSAR releases, it is likely that these interfaces may be moved to different (more appropriate) provider or receiver components / compositions. It is even not excluded that they are moved to components that already exist.

VehMtnForPtMisc e.g. is used to close open interfaces in the case that it is committed that some component within vehicle motion powertrain will request or provide it but it is not yet decided which component or the component is missing.

5.5 Powertrain: Miscellaneous (PtMisc)

PtMisc gathers together miscellaneous powertrain interfaces. The way in which these interfaces are used is not standardised. In future AUTOSAR releases, it is likely that these interfaces may be moved to different (more appropriate) provider or receiver components / compositions. It is even not excluded that they are moved to components that already exist.

PtMisc e.g. is used to close open interfaces in the case that it is committed that some component within powertrain will request or provide it but it is not yet decided which component or the component is missing.

6 Additional Information

6.1 Differences between SW-Cs and ECUs

The SW components defined below are not to be confused with an ECU's functionalities.

For example, a combustion engine control ECU may contain the Combustion Engine SW-C plus other SW-Cs.

6.2 Functional safety

Many Powertrain signals are safety-relevant, therefore

- The AUTOSAR RTE will provide reliable communication for these signals at the low level, and
- Diagnostics and safety concepts for these signals must be applied at the higher, functional level.

A signal qualifier concept is also required for the Powertrain domain. Semantics for Signal qualifiers will be defined and standardized in future release.

AUTOSAR does not provide a Safety Concept for Powertrain systems. This must be done at the project level. This means that the specified interfaces must be checked to fulfill the safety requirements on each specific project.

6.3 Powertrain Application Interfaces - Decisions / Assumptions

6.3.1 Scope

In this first release of Powertrain Application Interfaces, only passenger cars have been considered.

6.3.2 PTC Composition

The PTC is not an atomic AUTOSAR SW-Component. In fact its functionalities should be separated, into several sub-components. These sub-components will communicate with each other and with AUTOSAR SW-Components outside the PTC. The interfaces between the sub-components are not in the current scope, which is restricted to the definition of main interfaces between the non-PTC components and the PTC sub-components. The complete list of external interfaces will not be documented in [2].

6.3.3 Definition of overboost

Overboost is a state in which the maximum torque which the combustion engine can deliver is increased for a limited period of time. Depending on the engine type, this could be realised, for example, as an increase in boost pressure on a turbocharged engine.

6.3.4 Coordination at the vehicle level

Coordination of vehicle energy (mechanical / electrical / thermal), vehicle operation modes, vehicle personalisation, etc., should be done at the vehicle level. This is not in the scope of the Powertrain Application Interfaces.

The composition VehicleMotionPT was added to [2] as an interim solution for some vehicle level issues relevant to the powertrain domain.

6.3.5 PTC Arbitration between Driver and Chassis torque requests

Figure 12 and 13, below, shows how the VLC and Stability Control torques requests could be arbitrated with the Driver Request. This is just an example to illustrate the concept behind the powertrain torque request interfaces defined in [2], it is not intended to standardise the arbitration behavior in the PTC.

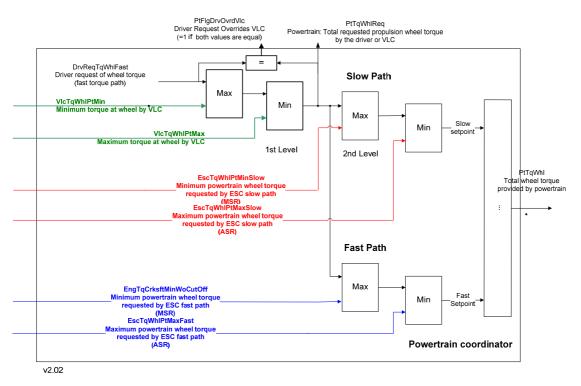
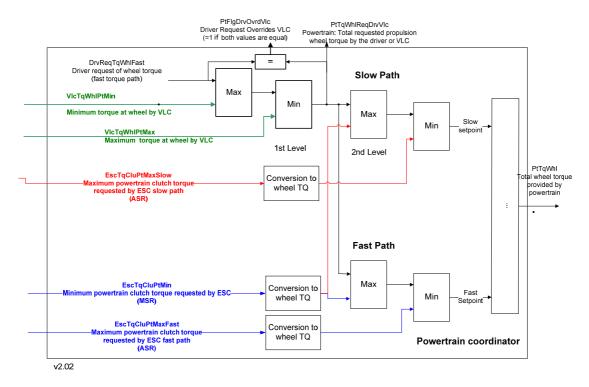



Figure 12: Example of possible PTC arbitration between Driver and Chassis torque requests (request based on wheel torque)

R4.0 Rev 3

Figure 13: Example of possible PTC arbitration between Driver and Chassis torque requests (request based on clutch torque)

6.3.6 Assumptions on modeling style and naming aspects specific for powertrain domain

AUTOSAR provides a guideline for modeling and naming of model elements ([1]). Within the Powertrain domain some additional compatible assumptions were taken that are shortly sketched in the following. The intention is to understand the current modeling of the application interfaces of the powertrain domain.

Please note: Here standardized ports or port interfaces mean standardized port prototype blueprints or port interface blueprints [7].

Kind of Modeling in general applied within powertrain domain, especially if the system modeling guideline [1] gives some freedom.		
Kind of modeling or as- sumptions	Rationale	
All SenderReceiverInterfaces standardized are assumed to be measurable.	In earlier versions of the standard [2] did not contain information about calibration and measurement.	
	Since R4.0.3 all data types allow measurement by default (see generated .arxml [3]). So our implicit assumption that all signals are measurable is ful-filled.	
All ports are assumed to be	Within our example components all ports are as-	

Kind of Modeling in general applied within powertrain domain, especially if the sys-			
tem modeling guideline [1] gives some freedom. Kind of modeling or as- Rationale			
sumptions			
optional.	sumed to be optional. The ports are derived from the port prototype bluerprints with the same name. It is optional per default that port prototype blueprints are allowed to be used but not necessarily used in every project.		
	In previous releases without blueprints this assump- tion was very important because there was no vari- ant handling done in [2]. So within the powertrain domain it was assumed that all ports are optional. Since only ports but no components are standard- ized this was even more important: it means that a supplier or OEM may create a single SW-C (Soft- ware Component) and use only the standardized ports that are relevant for this SW-C in his sw archi- tecture.		
Port interfaces are not de- signed to be reused: there is a 1:1 relationship between port and port interface. The port interface has the same name as the port + an addi- tional index as required by the System Modeling Guideline [1]. Exception: In the case that r- and p-port use different names the r-port uses the port interface of the p-port. However: within the powertrain domain it is not recommended to use these interfaces if it is an interdo- main interface and Powertrain is only receiving it. Instead the rule above (identical name + index '1') should be applied.	Ports are attached to SW-C. Since SW-C are not standardized only port interfaces are really subject of usage in projects up to Release 3.1. With Release 4.0 the standardization of ports is sup- ported by using so-called <i>PortPrototypeBlueprints</i> in the meta model. However, in practice older versions of the AUTOSAR meta model are still in use and the exist- ing tools do not yet fully support <i>PortPrototypeBlue- prints</i> . To be backward compatible and to enable the easy introduction of the standardized application inter- faces within the powertrain domain not all features of the meta model (like e.g. connectiong of compatible interfaces with different port interface short names) therefore were yet fully exploited. A second reason was that [2] does not support con- necting of compatible interfaces with different port interface short names.		
If a port interface contains exactly one data prototype its name is identical to the port interface excluding the trailing index.	There were only two alternatives: • using full name • using name "Val" for Value Disadvantage of solution 2) would have been that many ports would have been assumed to be com- patible by tools because identical data prototype names allow an automatic connection.		

Kind of Modeling in general applied within powertrain domain, especially if the sys-			
tem modeling guideline [1] give Kind of modeling or as-	Rationale		
sumptions			
	Within specification tools like e.g. ASCET-SD or MATLAB/Simulink it might be possible to only show the data prototype name and to not display the port interface or port name.		
The reuse of data types was explicit goal within the power- train domain.	Within the powertrain domain it was an important design goal to use as few data types as possible.		
Computation methods were not subject to reuse yet.	The [2] does not support the reuse of computation methods, only of data types. But reuse of computation methods should be considered for the next release.		
In most cases only one data prototype was defined per port interface.	This kind of modeling allows the biggest flexibility in implementing the standard.		
	On assembly level e.g. it is not allowed that the r- port has more data prototypes than the p-ports ([6], figure 6.3). Therefore in such cases, when several data prototypes are part of one r-port the data proto- types themselves cannot be assumed to be optional, only the complete r-port.		
	In older versions of the AUTOSAR standard is was not allowed that a sub-component provides only part of the port, i.e. if several data prototypes were part of a port interface it was implicitly standardized that there is one SW-C providing it. When splitting the information on several port interfaces each data pro- totype might be provided by a different SW-C.		
In most cases no records were used to define port inter- faces.	The rationale is similar to the one stated for the as- sumption to only define one <i>DataPrototype</i> per <i>PortInterface</i> . Since within the powertrain domain <i>PortInterface</i> s with multiple <i>DataPrototype</i> s are seldomly used, there is no necessity to use records and it is as- sumed that timing related aspects of the data proto-		
	types are to be handled separately, that there are other more flexible possibilities to do so.		

Specific Naming Assumptions for Powertrain Domain		
Assumption	Rationale	
The names were chosen such	In Powertrain ECUs there are thousands of calibra-	
that automatic generation of	tion relevant data. So it is important to apply the	
display names is possible.	System Modeling Guideline [1] in a way that auto-	
	matic generation of display names is possible.	

Specific Naming Assumptions for Powertrain Domain			
Assumption Rationale			
	See [5] for details.		
In general the keyword abbre- viation "Act" for Actual was suppressed.	Reason for doing so is to have short names when- ever possible (see [TR_MCM_0020] in [5]) Example: <i>PtTqClu</i> for Actual Torque at Clutch <i>PtTqCluTarGear</i> for Predicted Torque at Clutch at Target Gear		
In case a port is only for Fast Path or Slow Path "Fast" and "Slow" is added. In the other cases "SlowFast" is suppres- sed.	Reason for doing so is to have short names when- ever possible (see [TR_MCM_0020] in [5])Example:PtTqWhIMinWoCutOff affects Slow and Fast pathEscTqWhIPtMaxSlow or EscTqWhIPtMaxFast is for a specific pathFor more details on fast and slow paths see chap-		
	ter 3.3		
"State" is used as abbreviation "St" for "State" and "Status".	In most cases it is very difficult to explain the differ- ence between State and Status. So for sake of simplicity and consistency within the powertrain domain only "St" is used.		
TqWhI means sum of Torque Wheels whereas TqWhIInd means the torque of an indi- vidual wheel.	Within Powertrain the sum of torque wheels is more often used. So information ("Ind") is added in the case that individual wheel torques are meant. Example: <i>PtTqWhI</i> for Total Wheel Torque Provided by Pow- ertrain <i>PtTqWhIInd</i> for Actual Torque Delivered by the Powertrain to the Individual Wheels		
Prepositions are only used in the short name if it really helps understanding.	In most cases the preposition does not really add information and makes short names unnecessarily long (see [TR_MCM_0020] in [5]). Examples: <i>PtTqWhIMinWoCutOff</i> for Minimum Possible Total Powertrain Torque at Wheels Without Complete Fuel Cut Off using the preposition 'Wo' (without) <i>PtTqWhIReqDrvVlc</i> for Powertrain: Total Re-		
	quested Propulsion Wheel Torque by the Driver or Vehicle Longitudinal Control (VLC) instead of <i>PtTqAtWhIReqByDrvForVlc</i> as recommended by the system modeling guideline [1].		

R4.0 Rev 3

7 Appendix: Mapping Ports to Display Names - Powertrain Domain

In the following display names for the standardized port prototype blueprints are defined. It is recommended to use the display name without name space identifier "AR_" in case no naming conflicts are expected within the system or for the ECU. In all other cases it is recommended to use the display name with name space identifier.

The rules of [5] for generating display names are followed.

There are only the following exceptions in which a name was choosen manually:

- EscVWhIInd: Instead of numbers for the index element a meaningful name part was added.
- EscSts: We always use "st" according to Keywords Phys/Log (P/L-List) for Powertrain Domain.
- DtdRatTqDistbnReq: when generating long names from data element long names then header style was applied for display long name.

The virtual name space for ports is the top-level package AUTOSAR abbreviated with AR_ (see [TR_MCM_0040] in [5]). Virtual name spaces are described in [5]. Within Powertrain compositions do not define an own name space ==> port and port prototype blueprint names are unique within top-level package AUTOSAR (see [TR_MCA_0020] in [5]).

The sub packages of the top-level package AUTOSAR partly define virtual name spaces (e.g. for data types and port interfaces) but none of these name spaces are relevant for the generation of display names.

Basis for the definition of the display names is [2], sheets "0502*" for Powertrain.

DisplayName w/o Name Space. With Name Space add AR_ before name, e.g. AR_Abs_flgActv	Shortname of Port / addi- tional information if needed	Longname of Display- name (= PortPrototype- Blueprint name extended in case of multiple data prototypes or arrays)
Abs_flgActv	AbsFlgActv	Antilock Braking System (ABS) Control Active
AccrPedI_rat	AccrPedIRat	Actual Accelerator Pedal Ratio
AccrPedl_ratFild	AccrPedIRatFild	Filtered Accelerator Pedal Ratio
AccrPedI_ratGrdt	AccrPedIRatGrdt	Accelerator Pedal Ratio Gradient
Alt_tq	AltTq	Actual Alternator Mechani- cal Torque (Load)
Alt_tqReq	AltTqReq	Requested Mechanical Torque for Alternator (Gen- erator) at Engine Crank Shaft

R4.0 Rev 3

AxleFrntCoorr_st	AxleFrntCoorrSt	Status of the Front Axle Co- ordinator
AxleReCoorr_st	AxleReCoorrSt	Status of the Rear Axle Co- ordinator
Batt u	BattU	Battery Voltage
BrkPedl flgPsd	BrkPedIFlgPsd	Brake Pedal Pressed
BrkPedl rat	BrkPedIRat	Actual Brake Pedal Position
CluPedI rat	CluPedIRat	Actual Clutch Pedal Ratio
Drv_flgGearShiftDwnReq	DrvFlgGearShiftDwnReq	Gear Shift Down Request by Driver
Drv_flgGearShiftUpReq	DrvFlgGearShiftUpReq	Gear Shift Up Request by Driver
Drv_flgKdDetd	DrvFlgKdDetd	Driver: Kickdown Detected
DrvReq_ratVirtAccrPedI	DrvReqRatVirtAccrPedI	Driver Request: Virtual Ac- celerator Pedal Ratio
DrvReq_tqCluFast	DrvReqTqCluFast	Driver Request of Clutch Torque (Fast Torque Path)
DrvReq_tqCluSlow	DrvReqTqCluSlow	Driver Request of Clutch Torque (Slow Torque Path)
DrvReq_tqWhIFast	DrvReqTqWhIFast	Driver Request of Wheel Torque (Fast Torque Path)
DrvReq_tqWhISlow	DrvReqTqWhISlow	Driver Request of Wheel Torque (Slow Torque Path)
Dtd_ratTqDistbnReqWhlFrntLe	DtdRatTqDistbnReq / Front Left wheel	Requested Drivetrain Torque Distribution - Front Left Wheel
Dtd_ratTqDistbnReqWhlFrntRi	DtdRatTqDistbnReq / Front Right Wheel	Requested Drivetrain Torque Distribution - Front Right Wheel
Dtd_ratTqDistbnReqWhIReLe	DtdRatTqDistbnReq / Rear Left Wheel	Requested Drivetrain Torque Distribution - Rear Left Wheel
Dtd_ratTqDistbnReqWhIReRi	DtdRatTqDistbnReq / Rear Right wheel	Requested Drivetrain Torque Distribution - Rear Right Wheel
Dtd_tqDftlAxleFrntReq	DtdTqDftlAxleFrntReq	Drivetrain Torque Distribu- tion: Requested Differential Torque at Front Axle Actua- tor
Dtd_tqDftlAxleReReq	DtdTqDftlAxleReReq	Drivetrain Torque Distribu- tion: Requested Differential Torque at Rear Axle Actua- tor
Dtd_tqDftlTrfReq	DtdTqDftlTrfReq	Drivetrain Torque Distribu- tion: Requested Differential Torque at Transfer Case
EgyMngt_st	EgyMngtSt	State of Energy Manage- ment

Eng_n	EngN	Actual Engine Speed
Eng nGearTar	EngNGearTar	Engine Speed at Target
	-	Gear
Eng_nGrdt	EngNGrdt	Engine Speed Gradient
Eng_nMax	EngNMax	Maximum Allowed Engine Speed
Eng_nMin	EngNMin	Minimum Allowed Engine Speed
Eng_pAmbAir	EngPAmbAir	Engine Ambient Air Pressu- re
Eng_t	EngT	Actual Engine Temperature
Eng_tqCrksft	EngTqCrksft	Actual Engine Torque at Crankshaft
Eng_tqCrksftMax	EngTqCrksftMax	Maximum Engine Torque at Crankshaft
Eng_tqCrksftMaxFast	EngTqCrksftMaxFast	Maximum Engine Torque at Crankshaft Fast Path
Eng_tqCrksftMaxOptmCdn	EngTqCrksftMaxOptmCdn	Maximum Engine Torque at Crankshaft at Optimum Conditions
Eng_tqCrksftMaxProtn	EngTqCrksftMaxProtn	Maximum Allowed Torque at Crankshaft for Engine Protection
Eng_tqCrksftMin	EngTqCrksftMin	Minimum Engine Torque at Crankshaft considering all engine losses
Eng_tqCrksftMinBasc	EngTqCrksftMinBasc	Minimum Engine Torque at Crankshaft for Powertrain realized by Slow Path
Eng_tqCrksftMinFast	EngTqCrksftMinFast	Minimum Engine Torque at Crankshaft Fast Path
Eng_tqCrksftMinWoCutOff	EngTqCrksftMinWoCutOff	Minimum Engine Torque at Crankshaft for Powertrain realized by Slow and Fast Path
Eng_tqDynJ	EngTqDynJ	Engine Dynamic Moment of Inertia
Eng_tqResvPt	EngTqResvPt	Torque Reserve Request from Engine to Powertrain
Esc_flgNoFuCutOff	EscFlgNoFuCutOff	Request "No Fuel Cut Off" by Electronic Stability Con- trol (ESC)
Esc_st	EscSts	Electronic Stability Control (ESC) Status
Esc_stShiftPrevnStaby	EscStShiftPrevnStaby	Electronic Stability Control (ESC): State of Shift Pre- vention for Stability Rea- sons

R4.0 Rev 3

Esc_tqCluPtMaxFast	EscTqCluPtMaxFast	Maximum Powertrain Clutch Torque Requested by Elec- tronic Stability Control (ESC) Fast Path
Esc_tqCluPtMaxSlow	EscTqCluPtMaxSlow	Maximum Powertrain Clutch Torque Requested by Elec- tronic Stability Control (ESC) Slow Path
Esc_tqCluPtMin	EscTqCluPtMin	Minimum Powertrain Clutch Torque Requested by Elec- tronic Stability Control (ESC)
Esc_tqWhIPtMaxFast	EscTqWhIPtMaxFast	Maximum Powertrain Wheel Torque Requested by Elec- tronic Stability Control (ESC) Fast Path
Esc_tqWhIPtMaxSlow	EscTqWhIPtMaxSlow	Maximum Powertrain Wheel Torque Requested by Elec- tronic Stability Control (ESC) Slow Path
Esc_tqWhIPtMinFast	EscTqWhIPtMinFast	Minimum Powertrain Wheel Torque Requested by Elec- tronic Stability Control (ESC) Fast Path
Esc_tqWhIPtMinSlow	EscTqWhIPtMinSlow	Minimum Powertrain Wheel Torque Requested by Elec- tronic Stability Control (ESC) Slow Path
Esc_vMax	EscVMax	Maximum Vehicle Speed due to Electronic Stability Control (ESC)
Esc_vVhIIndFrntLe	EscVWhlInd / Index 0	Electronic Stability Control (ESC): Vector of Individual Speed of Wheels - Front Left
Esc_vVhIIndFrntRi	EscVWhlInd / Index 1	Electronic Stability Control (ESC): Vector of Individual Speed of Wheels - Front Right
Esc_vVhIIndReLe	EscVWhlInd / Index 2	Electronic Stability Control (ESC): Vector of Individual Speed of Wheels - Rear Left
Esc_vVhIIndReRi	EscVWhlInd / Index 3	Electronic Stability Control (ESC): Vector of Individual Speed of Wheels - Rear Right
Hvac_tq	HvacTq	Actual Mechanical Torque for A/C Compressor

Hvac_tqReq	HvacTqReq	Requested Mechanical Torque for A/C Compressor
Outd t	OutdT	Outdoor Temperature
Pt_flgAltDeactvt	PtFlgAltDeactvt	Powertrain: Request to De-
FI_IIYAIIDeacivi	FIFIGAILDEactivi	•
		activate Alternator (Genera-
		tor)
Pt_flgDrvOvrdVlc	PtFlgDrvOvrdVlc	Powertrain: Driver Request
_ 0	5	Overrides Vehicle Longitu-
		dinal Control (VLC)
Pt_flgEngRun	PtFlgEngRun	Powertrain: Engine is Run-
		ning
Pt_flgEngStop	PtFlgEngStop	Powertrain: Engine is Stop-
	i i igengotop	ped
Pt_flgEngStopReq	PtFlgEngStopReq	Powertrain: Engine Stop
		Request
Pt_flgEngStopReqAllwd	PtFlgEngStopReqAllwd	Powertrain: Request to Stop
	5 5 5 5 7 7 7	Engine is Allowed
Dt flaEnaStrtDog	DtElaEnaStrtDog	-
Pt_flgEngStrtReq	PtFlgEngStrtReq	Powertrain: Engine Start
		Request
Pt_flgEngStrtReqAllwd	PtFlgEngStrtReqAllwd	Powertrain: Request to Start
		Engine is Allowed
Pt flgHvacDeactvt	PtFlgHvacDeactvt	Powertrain: Request to De-
		activate Air Conditioner
		(A/C)
Pt_flgNoTqWhlReq	PtFlgNoTqWhlReq	Powertrain: No Torque Re-
	.	quest for Wheel Torque
Pt_flgTqDecPsbl	PtFlgTqDecPsbl	Powertrain: Torque Decrea-
		•
		se Possible
Pt_flgTqIncPsbl	PtFlgTqIncPsbl	Powertrain: Torque Increase
		Possible
Pt_nClu	PtNClu	Powertrain: Actual Speed at
		Clutch
	DINERSE	
Pt_nEngSp	PtNEngSp	Powertrain: Engine Speed
		Setpoint
Pt_ratTqDistbnReqFrntLe	PtRatTqDistbnReq	Powertrain: Requested Per-
	· ·	cental Distribution of Torque
		to Wheels - Front Left
		Wheel
Pt_ratTqDistbnReqFrntRi	PtRatTqDistbnReq	Powertrain: Requested Per-
		cental Distribution of Torque
		to Wheels - Front Right
		Wheel
Dt. rotTaDiothaDoarDol.o	DtD atTaDiath = D = =	
Pt_ratTqDistbnReqReLe	PtRatTqDistbnReq	Powertrain: Requested Per-
		cental Distribution of Torque
		to Wheels - Rear Left Wheel
Pt ratTqDistbnReqReRi	PtRatTqDistbnReq	Powertrain: Requested Per-
		cental Distribution of Torque
		•
		to Wheels - Rear Right

	DIT - Oh	Wheel
Pt_tqClu	PtTqClu	Powertrain: Actual Torque
		at Clutch
Pt_tqCluDyn	PtTqCluDyn	Powertrain: Dynamic Actual
		Torque at Clutch
Pt_tqCluMaxDrv	PtTqCluMaxDrv	Powertrain: Maximum
		Available Torque at Clutch
		for Driver
Pt_tqCluMinDrv	PtTqCluMinDrv	Powertrain: Minimum Avail-
		able Torque at Clutch for
		Driver
Pt tgCluRegWoTrsmIntv	PtTqCluReqWoTrsmIntv	Powertrain: Torque at
		Clutch Request Without
		Transmission Intervention
Pt_tqCluTarGear	PtTqCluTarGear	Powertrain: Predicted
		Torque at Clutch at Target
		Gear
Pt_tqCluWoTrsmIntv	PtTqCluWoTrsmIntv	Powertrain: Actual Torque
		at Clutch Without Transmis-
		sion Intervention
Pt tqCrksftReqFast	PtTqCrksftReqFast	Crankshaft Torque Request
		to be realized by the Fast
		Path of Powertrain
Pt tqCrksftReqSlow	PtTqCrksftReqSlow	Crankshaft Torque Request
		to be realized by the Slow Path of Powertrain
Pt_tqMaxAlt	PtTqMaxAlt	Powertrain: Maximum Al-
		lowed Mechanical Load for
		Alternator (Generator) at
		Engine Crank Shaft.
Pt_tqMaxHvac	PtTqMaxHvac	Powertrain: Maximum Al-
		lowed Torque for A/C Com-
		pressor
Pt tqMaxSteer	PtTqMaxSteer	Powertrain: Maximum Al-
		lowed Mechanical Load for
		Steering at Engine Crank
		Shaft
Pt_tqMaxTrsmOilPmp	PtTqMaxTrsmOilPmp	Maximum Allowed Trans-
	ι τι φινιαλ Γι διτιΟιιΡΠΙΡ	
		mission Oil Pump Load
Pt_tqResvEng	PtTqResvEng	Torque Reserve Request
		from Powertrain to Engine
Pt_tqWhI	PtTqWhI	Total Wheel Torque Pro-
		vided by Powertrain
Pt_tqWhIIndFrntLe	PtTqWhlInd	Actual Torque Delivered by
		the Powertrain to the Indi-
		vidual Wheels - Front Left
		Wheel
Pt_tqWhlIndFrntRi	PtTqWhlInd	Actual Torque Delivered by

R4.0 Rev 3

		the Powertrain to the Indi- vidual Wheels - Front Right Wheel
Pt_tqWhIIndReLe	PtTqWhlInd	Actual Torque Delivered by the Powertrain to the Indi- vidual Wheels - Rear Left Wheel
Pt_tqWhIIndReRi	PtTqWhlInd	Actual Torque Delivered by the Powertrain to the Indi- vidual Wheels - Rear Right Wheel
Pt_tqWhIMax	PtTqWhIMax	Powertrain: Maximum Pos- sible Total Torque at Wheels
Pt_tqWhIMaxDrv	PtTqWhlMaxDrv	Maximum Possible Total Torque at Wheels at Opti- mum Conditions Delivered by Powertrain for Driver
Pt_tqWhlMin	PtTqWhlMin	Minimum Available Total Powertrain Torque at Wheels
Pt_tqWhlMinDrv	PtTqWhlMinDrv	Minimum Possible Total Torque at Wheels Delivered by Powertrain for Driver
Pt_tqWhIMinWoCutOff	PtTqWhIMinWoCutOff	Minimum Possible Total Powertrain Torque at Wheels Without Complete Fuel Cut Off
Pt_tqWhIReq	PtTqWhIReq	Powertrain: Total Re- quested Propulsion Wheel Torque
Pt_tqWhIReqDrvVIc	PtTqWhlReqDrvVlc	Powertrain: Total Re- quested Propulsion Wheel Torque by the Driver or Ve- hicle Longitudinal Control (VLC)
Ssm_flgGearParkReq	SsmFlgGearParkReq	Standstill Manager: Request to Engage the Parking Lock
Steer_tq	SteerTq	Actual Hydraulic Power Steering Load at Engine Crank Shaft
Steer_tqReq	SteerTqReq	Requested Hydraulic Power Steering Load at Engine Crank Shaft
TrfCaseCoorr_st	TrfCaseCoorrSt	Status of the Transfer Case Coordinator
TrsmClu_stAct	TrsmCluStAct	Transmission: Actual Clutch State

R4.0 Rev 3

TrsmClu_stTar	TrsmCluStTar	Transmission: Target State of the Clutch
Trsm_flgCtrsftActv	TrsmFlgCtrsftActv	Transmission: Countershaft Active
Trsm_flgDtOpen	TrsmFlgDtOpen	Transmission: Drivetrain Opened
Trsm_flgParkLockEngd	TrsmFlgParkLockEngd	Transmission: Park Lock Engaged
Trsm_flgShiftProgs	TrsmFlgShiftProgs	Transmission: Flag indi- cates that a Gear Shift is In Progress
Trsm_flgSptMod	TrsmFlgSptMod	Transmission: Sport Mode Request by Driver
Trsm_flgWntrMod	TrsmFlgWntrMod	Transmission: Winter Mode Request by Driver
Trsm_nInp	TrsmNInp	Transmission: Speed at In- put
Trsm nrGearAct	TrsmNrGearAct	Transmission: Actual Gear
Trsm_nrGearReq	TrsmNrGearReq	Transmission: Requested Gear
Trsm_nrGearTar Trsm_nrTyp	TrsmNrGearTar TrsmNrTyp	Transmission: Target Gear Transmission Type
Trsm_ratGear	TrsmRatGear	Transmission: Get the Gear Ratio of the Gear of Interest (C/S)
Trsm_ratGearAct	TrsmRatGearAct	Transmission: The Actual Gear Ratio being Currently Engaged in the Gear Box
Trsm_ratGearReq	TrsmRatGearReq	Transmission: Requested Gear Ratio
Trsm_ratGearTar	TrsmRatGearTar	Transmission: The Gear Ratio which will be Engaged in the Gear Box when Tar- get Gear is Reached
Trsm_ratTqPtAct	TrsmRatTqPtAct	Transmission: Actual Pow- ertrain Torque Ratio
Trsm_stAxelFrntActr	TrsmStAxleFrntActr	Transmission: Status of the Front Axle Actuator
Trsm_stAxelReActr	TrsmStAxleReActr	Transmission: Status of the Rear Axle Actuator
Trsm_stGearLvr	TrsmStGearLvr	Transmission: Actual Gear Lever Position
Trms_stTrfCaseDftI	TrsmStTrfCaseDftl	Transmission: Status of the Transfer Case Differential
Trsm_tOil	TrsmTOil	Transmission: Oil Tempera- ture
Trsm_tqCluMaxFast	TrsmTqCluMaxFast	Transmission: Maximum Torque at Clutch Requested

		by Transmission for Shift Energy Management on Fast Path
Trsm_tqCluMaxProtn	TrsmTqCluMaxProtn	Transmission: Maximum Torque at Clutch Requested by Transmission for Gear- box Protection
Trsm_tqCluMaxSlow	TrsmTqCluMaxSlow	Transmission: Maximum Torque at Clutch Requested by Transmission for Shift Energy Management on Slow Path
Trsm_tqCluMinFast	TrsmTqCluMinFast	Transmission: Minimum Torque at Clutch Requested by Transmission for Shift Energy Management on Fast Path
Trsm_tqCluMinSlow	TrsmTqCluMinSlow	Transmission: Minimum Torque at Clutch Requested by Transmission for Shift Energy Management on Slow Path
Trsm_tqDftlAxleFrntAct	TrsmTqDftlAxleFrntAct	Transmission: Actual Differ- ential Torque at Front Axle
Trsm_tqDftlAxleFrntMax	TrsmTqDftlAxleFrntMax	Transmission: Maximum Differential Torque at Front Axle
Trsm_tqDftlAxleReAct	TrsmTqDftlAxleReAct	Transmission: Actual Differ- ential Torque at Rear Axle
Trsm_tqDftlAxleReMax	TrsmTqDftlAxleReMax	Transmission: Maximum Differential Torque at Rear Axle
Trsm_tqDftlTrfAct	TrsmTqDftlTrfAct	Transmission: Actual Differ- ential Transfer Torque
Trsm_tqDftlTrfMax	TrsmTqDftlTrfMax	Transmission: Maximum Differential Transfer Torque
Trsm_tqOilPmp	TrsmTqOilPmp	Actual Transmission Oil Pump Load
Trsm_tqOilPmpReq	TrsmTqOilPmpReq	Requested Transmission Oil Pump Load
Trsm_tqWhlIndDistbnFrntLe	TrsmTqWhlIndDistbn	Individual Torque at Wheel Distribution as realized by Transmission System - Front Left Wheel
Trsm_tqWhlIndDistbnFrntRi	TrsmTqWhlIndDistbn	Individual Torque at Wheel Distribution as realized by Transmission System - Front Right Wheel

Trsm_tqWhIIndDistbnReLe	TrsmTqWhlIndDistbn	Individual Torque at Wheel Distribution as realized by Transmission System - Rear Left Wheel
Trsm_tqWhIIndDistbnReRi	TrsmTqWhlIndDistbn	Individual Torque at Wheel Distribution as realized by Transmission System - Rear Right Wheel
Veh stOper	VehStOper	Vehicle Operating State
Veh_tqWhIMaxSftyLimn	VehTqWhlMaxSftyLimn	Safety Torque Limit calcu- lated from the Vehicle's Maximum Speed
Veh_vLgt	VehVLgt	Actual Vehicle Speed (Lon- gitudinal)
Vlc_stShiftPrevnCmft	VIcStShiftPrevnCmft	Vehicle Longitudinal Control (VLC): State of Shift Pre- vention for Comfort Rea- sons
Vlc_tqWhIPtMax	VIcTqWhIPtMax	Maximum Torque at Wheel by Vehicle Longitudinal Control (VLC)
Vlc_tqWhlPtMin	VlcTqWhlPtMin	Minimum Torque at Wheel by Vehicle Longitudinal Control (VLC)