
Technical Overview
 V2.2.2

R3.2 Rev 1

Document Title Technical Overview
Document Owner AUTOSAR
Document Responsibility AUTOSAR
Document Identification No 067
Document Classification Auxiliary

Document Version 2.2.2
Document Status Final
Part of Release 3.2
Revision 1

Document Change History
Date Version Changed by Change Description
27.04.2011 2.2.2 AUTOSAR

Administration
Legal disclaimer revised

23.06.2008 2.2.1 AUTOSAR
Administration

Legal disclaimer revised

28.11.2007 2.2.0 AUTOSAR
Administration

 Subchapter “limitations of the current
version of this document” added

 Document meta information extended
 Small layout adaptations made

31.01.2007 2.1.0 AUTOSAR
Administration

Removed CCU as self-contained module in
MCAL

 Legal disclaimer revised
 Release Notes added
 “Advice for users” revised
 “Revision Information” added

14.03.2006 2.0.0 AUTOSAR
Administration

Major update of Methodology chapter due to
integration with metamodel.
New RTE section

15.07.2005 1.0.1 AUTOSAR
Administration

References updated.
Minor Typos corrected

08.07.2005 1.0.0 AUTOSAR
Administration

Initial Release

1 of 41 Document ID 067: AUTOSAR_TechnicalOverview

- AUTOSAR Confidential -

Technical Overview
 V2.2.2

R3.2 Rev 1

Disclaimer

This specification and the material contained in it, as released by AUTOSAR is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only.
For any other purpose, no part of the specification may be utilized or reproduced, in
any form or by any means, without permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR Specification Documents may contain exemplary items (exemplary
reference models, "use cases", and/or references to exemplary technical solutions,
devices, processes or software).

Any such exemplary items are contained in the Specification Documents for
illustration purposes only, and they themselves are not part of the AUTOSAR
Standard. Neither their presence in such Specification Documents, nor any later
documentation of AUTOSAR conformance of products actually implementing such
exemplary items, imply that intellectual property rights covering such exemplary items
are licensed under the same rules as applicable to the AUTOSAR Standard.

2 of 41 Document ID 067: AUTOSAR_TechnicalOverview

- AUTOSAR Confidential -

Technical Overview
 V2.2.2

R3.2 Rev 1

Table of Contents

1 Motivation .. 5

1.1 Introduction .. 5
1.2 Limitations to this version of the document .. 5
1.3 Why do we need AUTOSAR? .. 5
1.4 Objectives and Technical Benefits of AUTOSAR ... 5

2 Concept ... 8

2.1 Introduction to the AUTOSAR concept... 8
2.1.1 Basic AUTOSAR approach ... 8

2.2 Components... 9
2.2.1 The AUTOSAR Software Component ... 9
2.2.2 The AUTOSAR Software Component is an "Atomic Software
Component"... 10
2.2.3 Implementing and shipping an AUTOSAR Software Component........ 10
2.2.4 The AUTOSAR Software Component Description 11
2.2.5 The AUTOSAR Software Component implementation is independent
from the infrastructure ... 11
2.2.6 Sensor/Actuator Software Components .. 12
2.2.7 The generic “Component” concept.. 13
2.2.8 Summary... 13

2.3 VFB .. 13
2.3.1 General ... 13
2.3.2 VFB Context.. 13
2.3.3 Communication mechanisms .. 14

2.4 AUTOSAR ECU Software Architecture .. 17
2.4.1 Overview ... 17
2.4.2 AUTOSAR Software.. 17
2.4.3 AUTOSAR Runtime Environment ... 18
2.4.4 AUTOSAR Basic Software.. 18
2.4.5 Classification of interfaces .. 19

3 AUTOSAR Methodology.. 21

3.1 Introduction .. 21
3.1.1 Describing Notation – SPEM... 21

3.2 Methodology Overview... 22
3.3 System Configuration ... 24
3.4 ECU Design and Configuration Methodology... 25

3.4.1 Extract ECU-Specific Information.. 26
3.4.2 Configure ECU.. 26
3.4.3 Generate Executable .. 27

3.5 Component Implementation ... 27

4 Detailed ECU Architecture... 30

4.1 Layered Software Architecture ... 30
4.1.1 The Layered Architecture.. 30
4.1.2 Refinement of the Layered Architecture.. 32
4.1.3 Related Documents... 35

3 of 41 Document ID 067: AUTOSAR_TechnicalOverview

- AUTOSAR Confidential -

Technical Overview
 V2.2.2

R3.2 Rev 1

4 of 41 Document ID 067: AUTOSAR_TechnicalOverview

- AUTOSAR Confidential -

4.2 The Runtime Environment (RTE) ... 35
4.2.1 Overview ... 35
4.2.2 Access to ports from a software component implementation 36
4.2.3 Implementation of connectors ... 36
4.2.4 Lifecycle management .. 37
4.2.5 Access to Basic Software.. 37
4.2.6 Multiple Instantiations of software components................................... 37

4.3 Complex Device Driver... 37
4.3.1 General ... 37
4.3.2 Complex Sensor and Actuator Control.. 38
4.3.3 Non-Standardized Drivers... 38
4.3.4 Migration Mechanism .. 38

5 Functional Interfaces ... 39

5.1 Overview .. 39
5.2 Functional domains .. 40

6 References .. 41

Technical Overview
 V2.2.2

R3.2 Rev 1

1 Motivation

1.1 Introduction

This Technical Overview is a brief description of the basic technical concepts of
AUTOSAR. It assumes no previous knowledge of the project. Starting with the
motivation for AUTOSAR the system architecture and the development methodology
will be presented. This document does not focus on details. For a more
comprehensive introduction to certain topics further AUTOSAR specifications have to
be considered.

With this scope the emphasis is on an introduction for new AUTOSAR stakeholders,
e.g. new work package members. Besides of this, it shall be a compact and efficient
overview of the AUTOSAR technology. Hence it shall also help experienced
AUTOSAR members to keep an overview on the technological context of their
detailed work or it could provide them with technical background for business
decisions.

1.2 Limitations to this version of the document

Over the past releases in AUTOSAR, detailed work on both template and software
specifications has progressed. Hence, one might experience inconsistencies
between this top-level document and detailed specifications as referred to in Chapter
 6 References. In the unlikely case of a conflict between this document and one of the
referenced detailed specifications, the latter shall take precedence.

1.3 Why do we need AUTOSAR?

AUTOSAR (AUTomotive Open System ARchitecture) is a partnership of automotive
manufacturers and suppliers working together to develop and establish a de-facto
open industry standard for automotive E/E architectures.

From a technical point of view, we can summarize the driving forces for the intended
standardization as follows:

 Manage increasing E/E complexity associated with growth in functional scope
 Improve flexibility for product modification, upgrade and update
 Improve scalability of solutions within and across product lines
 Improve quality and reliability of E/E systems
 Enable detection of errors in early design phases.

1.4 Objectives and Technical Benefits of AUTOSAR

The primary project objectives are shown on the left side of
Figure 1. The figure also shows the functional domains which are in focus of
AUTOSAR. From these primary objectives a list of main requirements has been
derived, see [MainReq].
5 of 41 Document ID 067: AUTOSAR_TechnicalOverview

- AUTOSAR Confidential -

Technical Overview
 V2.2.2

R3.2 Rev 1

How are these objectives reached from a technical point of view? To explain the
basic ideas, the following table shows some principal challenges and the solutions
suggested by AUTOSAR together with the benefits achieved by these solutions (from
[Conv2004]). The table does not include process and business aspects.

Functional Domains

Powertrain

Chassis

Multi-
media/

Telematics

AUTOSAR

Safety
(active/
passive)

Man
Machine
Interface

Body/Comfort

Vehicle
‚centric‘

Passenger
‚centric‘

 Consideration of availability and safety requirements
 Redundancy activation
 Scalabilty of different vehicle and platform variants
 Implementation and standardization of basic

functions as an OEM wide „Standard Core“ solution
 Transferability of functions throughout the network
 Integration of functional modules from multiple

suppliers
 Maintainability throughout the whole

„Product Life Cycle“
 Increased use of „Commercial off the shelf

hardware“
 Software updates and upgrades over vehicle lifetime

Project Objectives

Cooperate on standards, compete on implementation

Figure 1: AUTOSAR high-level project objectives

6 of 41 Document ID 067: AUTOSAR_TechnicalOverview

- AUTOSAR Confidential -

Technical Overview
 V2.2.2

R3.2 Rev 1

Challenge Solution Benefit
 Immature processes because of acting

in ad-hoc mode/ missing traceability of
functional requirements.

 Lack of compatible tooling (supplier,
OEM).

Standardization
of specification
exchange
formats

 Improvement in specification
(format and content).

 Opportunity for a seamless tool
chain.

 Effort wasted on implementation and
optimization of components, which add
no value recognized by the customer.

Basic Software
core

 Enhancement of software quality.
 Concentration on functions with

competitive value.
 Stop of availability of microcontroller

models causes huge efforts in adapting
existing software.

 Extended needs for microcontroller
performance (caused by new functions)
cause need for upgrade, i.e. re-design
effort.

Microcontroller
abstraction

 Microcontroller can be exchanged
without need for adaptations of
higher software layers.

 Large effort when relocating functions
between ECUs.

 Large effort when reusing functions.

Runtime
Environment
(RTE)

 Encapsulation of functions creates
independence of communication
technology.

 Communication easier through
standardized mechanisms.

 Partitioning and relocatability of
functions possible.

 Non-competitive functions have to be
adapted to OEM specific environments.

 Tiny little innovations cannot be
implemented at reasonable effort as
provision of interfaces from other
components requires a lot of effort.

 Missing clear interfaces between basic
software and code generated from
models.

Standardization
of interfaces

 Reduction/avoidance of interface
proliferation within and across
OEMs and suppliers.

 Eased implementation of
hardware independent software
functionality by using generic
interface catalogues.

 Simplifies the model-based
development and allows the use
of standardized AUTOSAR code
generation tools.

 Reusability of modules cross-
OEM.

 Exchangeability of components
from different suppliers.

7 of 41 Document ID 067: AUTOSAR_TechnicalOverview

- AUTOSAR Confidential -

Technical Overview
 V2.2.2

R3.2 Rev 1

2 Concept

2.1 Introduction to the AUTOSAR concept

2.1.1 Basic AUTOSAR approach

ECU I

Virtual Functional Bus

A
U

T
O

S
A

R
S

W
-C

1

A
U

T
O

S
A

R
S

W
-C

2

A
U

T
O

S
A

R
S

W
-C

3

A
U

T
O

S
A

R
S

W
-C

n

...

ECU II

A
U

T
O

S
A

R
S

W
-C

1

A
U

T
O

S
A

R
S

W
-C

2

A
U

T
O

S
A

R
S

W
-C

3

ECU m

A
U

T
O

S
A

R
S

W
-C

n

RTE

Basic Software

RTE

Basic Software

RTE

Basic Software

...

VFB view

Mapping

System Contraint
DescriptionECU

Descriptions

Tool supporting deployment
of SW components

Gateway

SW-C
Description

SW-C
Description

SW-C
Description

SW-C
Description

Figure 2: Basic AUTOSAR approach.

Figure 2 shows a very condensed view of the AUTOSAR approach. The basic
concepts, which will be further explained throughout this document, are:

8 of 41 Document ID 067: AUTOSAR_TechnicalOverview

- AUTOSAR Confidential -

Technical Overview
 V2.2.2

R3.2 Rev 1

AUTOSAR SW-C
The AUTOSAR Software Components (AUTOSAR SW-C) encapsulate an
application which runs on the AUTOSAR infrastructure. The AUTOSAR Software
Components have well-defined interfaces, which are described and standardized
within AUTOSAR. Chapter 2.2 defines the component concept in more detail.

SW-C Description
For the interfaces as well as other aspects needed for the integration of the
AUTOSAR Software Components, AUTOSAR provides a standard description
format, i.e. the Software Component Description (SW-C Description).

Virtual Functional Bus (VFB)
The VFB is the sum of all communication mechanisms (plus some interfaces to the
basic software) provided by AUTOSAR on an abstract, i.e. technology independent,
level. When the connections between AUTOSAR Software Components for a
concrete system are defined, the VFB will allow a virtual integration of them in a quite
early development phase.

System Constraint and ECU Descriptions
In order to integrate AUTOSAR Software Components into a network of ECUs,
AUTOSAR provides description formats for the complete system as well as for the
resources and configuration of the single ECUs. These descriptions are kept
independent of the Software Component Descriptions.

Mapping on ECUs
AUTOSAR defines the methodology and tool support needed to bring the information
of the various description elements together in order to build a concrete system of
ECUs. This includes especially the configuration and generation of the Runtime
Environment and the Basic Software on each ECU.

Runtime Environment (RTE)
From the viewpoint of the AUTOSAR Software Component, the RTE implements the
VFB functionality on a specific ECU. The RTE can however delegate this task to the
Basic Software as far as possible.

Basic Software
The Basic Software provides the infrastructural functionality on an ECU.

2.2 Components

2.2.1 The AUTOSAR Software Component

A fundamental design concept of AUTOSAR is the separation between:
 application and
 infrastructure.

An application in AUTOSAR consists of interconnected "AUTOSAR Software
Components".

9 of 41 Document ID 067: AUTOSAR_TechnicalOverview

- AUTOSAR Confidential -

Technical Overview
 V2.2.2

R3.2 Rev 1

10 of 41 Document ID 067: AUTOSAR_TechnicalOverview

- AUTOSAR Confidential -

Figure 3 shows an application consisting of three AUTOSAR Software Components
which are interconnected by several "connectors".

Each AUTOSAR Software Component encapsulates part of the functionality of the
application. AUTOSAR does not prescribe how large the AUTOSAR Software
Components are. Depending on the requirements of the application domain an
AUTOSAR Software Component might be a small, reusable piece of functionality
(such as a filter) or a larger block encapsulating an entire automotive functionality.

ComingHome
LeavingHome

chlh

passenger_door

outside_brightness

driver_door

if_light_request

light_requestAutomaticLight
Control

alc

rain_light_condition

outside_brightness

if_outside_brightness

Light
Master

lm

Figure 3: Example of interconnected AUTOSAR Software Components

2.2.2 The AUTOSAR Software Component is an "Atomic Software
Component"

The AUTOSAR Software Component is a so-called "Atomic Software Component".
Atomic here means that the AUTOSAR Software Component cannot be distributed
over several AUTOSAR ECUs. Each instance of an AUTOSAR Software
Component that should be present in a vehicle is assigned to one ECU.

2.2.3 Implementing and shipping an AUTOSAR Software Component

AUTOSAR does not prescribe HOW an AUTOSAR Software Component should be
implemented (for example, whether the component is generated from a model or
written "by hand"). Rather AUTOSAR prescribes everything that is needed to allow
several AUTOSAR Software Components to be integrated correctly in an
infrastructure consisting of networked ECUs.

A shipment of an AUTOSAR Software Component therefore consists of

 a complete and formal Software Component Description which specifies how
the infrastructure must be configured for the component (see [SWCTempl]),
and

Technical Overview
 V2.2.2

R3.2 Rev 1

11 of 41 Document ID 067: AUTOSAR_TechnicalOverview

- AUTOSAR Confidential -

 an implementation of the component, which could be provided as "object
code" or "source code"1.

2.2.4 The AUTOSAR Software Component Description

The AUTOSAR Software Component Description contains
 the operations and data elements that the software component provides and

requires (this is described using the AUTOSAR PortInterface concept),
 the requirements that software component has on the infrastructure,
 the resources needed by the software component (memory, CPU-time, etc.),

and
 information regarding the specific implementation of the software component.

The structure and format of this AUTOSAR Software Component description is called
the “software component template”.

2.2.5 The AUTOSAR Software Component implementation is independent
from the infrastructure

An implementation of an AUTOSAR Software Component (in source code2)
fundamentally is independent from

 the type of microcontroller of the ECU on which the AUTOSAR Software
Component is mapped3,

 the type of ECU on which the AUTOSAR Software Component is mapped
(The AUTOSAR infrastructure takes care of providing the software component
with a standardized view on the ECU hardware – such as the ECU
input/output periphery.),

 the location of the other AUTOSAR Software Components with which the
software component interacts (The software component description precisely
describes the data or services that the component provides or requires. The
component does not need to know if these services or data elements are
provided from components on the same ECU or are coming from components
that run on a different ECU4. The implementation of the software component
therefore also is network technology independent.), and

 the number of times a software component is instantiated in a system or within
one ECU5.

1 There are important trade-offs to be made in deciding whether an AUTOSAR Software Component is
shipped as object code or source code. AUTOSAR fundamentally allows both integration approaches.
2 When an AUTOSAR Software Component is shipped as object-code, this object-code is of course
highly dependent on the ECU architecture.
3 In exceptional optimization cases, the implementation might contain dependencies on a specific
microcontroller (for example: in-line assembly code); such limitations to the mapping of the software
component are described in the Software Component Description.
4 This flexibility does NOT imply that an arbitrary distribution of software components over ECUs is
possible. The AUTOSAR Software Component Descriptions contain requirements on the performance
of the connectors between the software components which might force closely interacting components
to be mapped on the same ECU. System constraints related to issues of security or safety might also
reduce the freedom in mapping components on ECUs.
5 There might also be exceptions – described in the Software Component Descriptions.

Technical Overview
 V2.2.2

R3.2 Rev 1

2.2.6 Sensor/Actuator Software Components

Sensor/Actuator Software Components are special AUTOSAR Software Components
which encapsulate the dependencies of the application on specific sensors or
actuators.

Figure 4 shows the typical conversion process from physical signals to software
signals (e.g. car velocity) and back (e.g. car light). As described previously, the
AUTOSAR infrastructure takes care of hiding the specifics of the microcontroller (this
is done in the MCAL, the microcontroller abstraction layer, which is part of the
AUTOSAR infrastructure running on the ECU) and the ECU electronics (this is
handled by the ECU-Abstraction which is also part of the AUTOSAR Basic Software).

Sensor
ECU

Electronics
µC

Peripherals

Physical Interface Electrical Interface:

Isensor [0..200mA]

Electrical Interface:

UECU [0..5V]

Sensor
Component

ECU
Abstraction

MCAL
(HAL Driver)

Application
SW-C 1

get_v() get_I_ECU(velocity_sensor)

DIO_get()

e.g.
Car velocity

Actuator
Component

Application
SW-C 2

set_lamp() set_I_ECU(light_actor) DIO_set()

Actuator
ECU

Electronics
µC

Peripherals
e.g.

Car light

IECU [0..2A] UµC [0..5V]

Hardware

Software

Hardware

HW/phys. Signal Require Port1 Provide Port1 API 0

Sensor
ECU

Electronics
µC

Peripherals

Physical Interface Electrical Interface:

Isensor [0..200mA]

Electrical Interface:

UECU [0..5V]

Sensor
Component

ECU
Abstraction

MCAL
(HAL Driver)

Application
SW-C 1

get_v() get_I_ECU(velocity_sensor)

DIO_get()

e.g.
Car velocity

Actuator
Component

Application
SW-C 2

set_lamp() set_I_ECU(light_actor) DIO_set()

Actuator
ECU

Electronics
µC

Peripherals
e.g.

Car light

IECU [0..2A] UµC [0..5V]

Hardware

Software

Hardware

HW/phys. Signal Require Port1 Provide Port1 API 0

Figure 4: Hardware Interaction

The AUTOSAR infrastructure does NOT hide the specifics of sensors and actuators.
The dependencies on a specific sensor and/or actuator are dealt with in
"Sensor/Actuator Software Component", which is a special kind of "AUTOSAR
Software Component". Such a component is independent of the ECU on which it is
mapped but is dependent on a specific sensor and/or actuator for which it is
designed. For example, a "Sensor Component" typically inputs a software
representation of the electrical signal present at an input-pin of the ECU (e.g. a
current produced by the sensor) and outputs the physical quantity measured by the
sensor (e.g. the current car speed). Typically, because of performance issues, such
components will need to run on the ECU to which the sensor/actuator is physically
connected.

12 of 41 Document ID 067: AUTOSAR_TechnicalOverview

- AUTOSAR Confidential -

Technical Overview
 V2.2.2

R3.2 Rev 1

2.2.7 The generic “Component” concept

This section has so far clarified the “AUTOSAR Software Component” concept and
the “Sensor/Actuator Software Component” as a special case of an AUTOSAR
Software Component.

AUTOSAR uses the “component” concept in a more general and powerful way.
When modeling a system with AUTOSAR, a logical interconnection of components
can be packaged as a component. Such a component is called a “composition”. In
contrast to the Atomic Software Components, the components inside a composition
can be distributed over several ECUs.

In addition to the “composition” and the “AUTOSAR Software Component”, the
following entities in an AUTOSAR system are also considered “components”: the
“ECU Abstraction”, the “Complex Device Driver” and the “AUTOSAR Services”.
These concepts will be explained in later sections.

2.2.8 Summary

This section has explained the AUTOSAR “Component” concept. The “AUTOSAR
Software Component” is an atomic piece of software that implements part of an
application, is independent of the infrastructure, and can be mapped on an ECU.
The “Sensor/Actuator Software Component” is a special kind of AUTOSAR Software
Component which encapsulates the dependencies on specific sensors and/or
actuators.

AUTOSAR also allows the usage of the “Component” concept in a more generic way.
A component can also be a logical interconnection of other components (called a
“composition”) which can be distributed over several ECUs.

2.3 VFB

2.3.1 General

In order to fulfill the goal of relocatability, AUTOSAR Software Components are
implemented independently from the underlying hardware. The independence is
achieved by providing the virtual functional bus as a means for a virtual hardware and
mapping independent system integration. This enables a virtual integration of
AUTOSAR Software Components so that parts of the integration process of
automotive software can be done in much earlier design phases compared to today's
development processes.

2.3.2 VFB Context

The virtual functional bus is the abstraction of the AUTOSAR Software Components
interconnections of the entire vehicle. The communication between different software
components and between software components and its environment (e.g. hardware

13 of 41 Document ID 067: AUTOSAR_TechnicalOverview

- AUTOSAR Confidential -

Technical Overview
 V2.2.2

R3.2 Rev 1

14 of 41 Document ID 067: AUTOSAR_TechnicalOverview

- AUTOSAR Confidential -

driver, OS, services, etc.) can be specified independently of any underlying hardware
(e.g. communication system). The functionality of the VFB provided by
communication patterns is defined in section 2.3.3.

From the VFB view ports of AUTOSAR Software Components, Complex Device
Drivers, the ECU Abstraction and AUTOSAR Services can be connected. Complex
Device Drivers, the ECU Abstraction and AUTOSAR Services are part of the Basic
Software (Figure 5). Whereas the AUTOSAR Service Interfaces are standardized,
the Complex Device Drivers and the ECU Abstraction are ECU specific.

VFB

Complex
Device
Drivers

AUTOSAR
Interface

Standardized
AUTOSAR
Interface

ECU
Abstraction

AUTOSAR
Interface

Services

Actuator
Software

Component

AUTOSAR
Interface

Application
Software

Component

Sensor
Software

Component

Application
Software

Component

..............

AUTOSAR
Software

AUTOSAR
Interface

AUTOSAR
Interface

AUTOSAR
Interface

AUTOSAR
Software

Component

Interface

ECU
Firmware

Standard
Software

API 2
VFB & RTE
relevant

Figure 5: Representations of Atomic Software Components and AUTOSAR Services connected
to the Virtual Functional Bus (see definition of Standard Software [Glossary]).

2.3.3 Communication mechanisms

2.3.3.1 Components, Ports and AUTOSAR Interfaces

The central structural element in AUTOSAR is the component, see section 2.2. A
component has well-defined ports, through which the component can interact with
other components. A port always belongs to exactly one component and represents
a point of interaction between a component and other components. There could be
several instances6 of the same component in a car.

To define the services or data that are provided on or required by a port of a
component, the AUTOSAR Interface concept is introduced. The AUTOSAR Interface
can either be a Client-Server Interface (defining a set of operations that can be
invoked) or a Sender-Receiver Interface, which allows the usage of data-oriented
communication mechanisms over the VFB.

A port is either a PPort or an RPort. A PPort provides an AUTOSAR Interface. An
RPort requires such an interface. When a PPort of a component provides an

6 Dynamic instantiation at runtime is not scope of the present release of AUTOSAR.

Technical Overview
 V2.2.2

R3.2 Rev 1

15 of 41 Document ID 067: AUTOSAR_TechnicalOverview

- AUTOSAR Confidential -

interface, the component to which the port belongs provides an implementation of the
operations defined in the Client-Server Interface respectively generates the data
described in a data-oriented Sender-Receiver Interface.

When an RPort of a component requires an AUTOSAR Interface, the component can
either invoke the operations when the interface is a Client-Server Interface or
alternatively read the data elements described in the Sender-Receiver Interface.

2.3.3.2 AUTOSAR Communication Patterns

Both widely used elementary communication patterns Client-Server and Sender-
Receiver7 are supported by AUTOSAR. The specification what information sender-
receiver communication transports and which services with which arguments can be
called by client-server communication is done by interfaces. For a formal description
of interfaces see software component template. There, also data types that can be
used, interface compatibility, etc. are defined.

The detailed behavior of a basic communication pattern is specified by attributes.
With those attributes e.g. the length of data queues and the behavior of receivers
(blocking, non-blocking, etc.) and senders (send cyclic, etc.) can be defined.

2.3.3.2.1 Client-Server Communication

A widely used communication pattern in distributed systems is the client-server
pattern, in which the server is a provider of a service8 and the client is a user of a
service.

The client initiates the communication, requesting that the server performs a service,
transferring a parameter set if necessary. The server waits for incoming
communication requests from a client, performs the requested service and
dispatches a response to the client’s request. So, the direction of initiation is used to
categorize whether an AUTOSAR Software Component is a client or a server. A
single component can be both a client and a server depending on the software
realization.

The client can be blocked (synchronous communication) respectively non-blocked
(asynchronous communication) after the service request is initiated until the response
of the server is received. Figure 6 gives an example how client-server communication
for a composition of three software components and two connections is modeled in
the VFB view.

7 In the context of AUTOSAR, sending, receiving and distributing of events is seen as part of the
sender-receiver communication pattern.
8 Service in this chapter is a functionality which is offered by a certain AUTOSAR Software Component
(the server), and which can be used by other AUTOSAR Software Components (the clients). It is not
to be mixed up with an AUTOSAR Service.

Technical Overview
 V2.2.2

R3.2 Rev 1

AUTOSAR
SW-C
client 1

AUTOSAR
SW-C
client 2

AUTOSAR
SW-C
server

Service_requested

Service_requested

Service_provided

Figure 6: Client-server communication in the VFB view

2.3.3.2.2 Sender-Receiver Communication

The sender-receiver pattern gives solution to the asynchronous distribution of
information where a sender distributes information to one or several receivers.

The sender is not blocked (asynchronous communication) and neither expects nor
gets a response from the receivers (data or control flow), i.e. the sender just provides
the information and the receivers decides autonomously when and how to use this
information. It is the responsibility of the communication infrastructure to distribute the
information.

The sender component does not know the identity or the number of receivers to
support transferability and exchange of AUTOSAR Software Components. Figure 7
gives an example how sender-receiver communication is modeled in the AUTOSAR
VFB view.

AUTOSAR
SW-C

receiver 1

AUTOSAR
SW-C

receiver 2

AUTOSAR
SW-C

sender

send_information

receive_information

receive_information

Figure 7: Data distribution by asynchronous non-blocking communication in the VFB view

16 of 41 Document ID 067: AUTOSAR_TechnicalOverview

- AUTOSAR Confidential -

Technical Overview
 V2.2.2

R3.2 Rev 1

2.4 AUTOSAR ECU Software Architecture

2.4.1 Overview

Figure 8 shows the structure of the software for an ECU. The layers and its main
elements are described below.

ECU-Hardware

AUTOSAR Runtime Environment (RTE)

Actuator
Software

Component

AUTOSAR
Interface

Application
Software

Component

Sensor
Software

Component

Application
Software

Component

..............

AUTOSAR
Software

Basic Software
Standardized

Interface

AUTOSAR
Interface

AUTOSAR
Interface

AUTOSAR
Interface

Microcontroller
Abstraction

AUTOSAR
Software

Component

ECU
Firmware

Standard
Software

Standardized
AUTOSAR
Interface

Services

Standardized
Interface

ECU
Abstraction

AUTOSAR
Interface

Standardized
Interface

Complex
Device
Drivers

AUTOSAR
Interface

API 2
VFB & RTE
relevant

Standardized
Interface

Communication

Standardized
Interface

Standardized
Interface

Operating
System

API 1
RTE relevant

API 0

API 3 Private
Interfaces inside
Basic Software

possible

Different
Kinds of

Interfaces

S
tan

d
ard

ized
In

terface

Figure 8 Schematic view of AUTOSAR ECU software architecture

2.4.2 AUTOSAR Software

The AUTOSAR Software (the layer above AUTOSAR Runtime Environment) consists
of AUTOSAR Software Components that are mapped on the ECU.

All interaction between AUTOSAR Software Components and Atomic Software
Components9 is routed through the AUTOSAR Runtime Environment. The
AUTOSAR Interface assures the connectivity of software elements surrounding the
AUTOSAR Runtime Environment.

17 of 41 Document ID 067: AUTOSAR_TechnicalOverview

- AUTOSAR Confidential -

9 Atomic Software Components can be: other AUTOSAR Software Components, AUTOSAR Services,
the ECU Abstraction, or Complex Device Drivers (see section 2.2.7).

Technical Overview
 V2.2.2

R3.2 Rev 1

2.4.3 AUTOSAR Runtime Environment

At system design level (i.e. then drafting a logical view of the entire system
irrespective of hardware) the AUTOSAR Runtime Environment (RTE) acts as a
communication center for inter- and intra-ECU information exchange. The RTE
provides a communication abstraction to AUTOSAR Software Components attached
to it by providing the same interface and services whether inter-ECU communication
channels are used (such as CAN, LIN, Flexray, MOST, etc.) or communication stays
intra-ECU.

As the communication requirements of the software components running on top of
the RTE are application dependent, the RTE needs to be tailored. It is therefore very
likely, that the main parts of RTE will be generated to provide desired communication
services while still being resource-efficient. In addition some parts of the RTE
software may be tailored via configuration. Thus, the resulting RTE will likely differ
between one ECU and another.

2.4.4 AUTOSAR Basic Software

Basic Software is the standardized software layer, which provides services to the
AUTOSAR Software Components and is necessary to run the functional part of the
software. It does not fulfill any functional job itself and is situated below the
AUTOSAR Runtime Environment. The Basic Software contains standardized and
ECU specific components. The earlier include:

Services
System services cover e.g. diagnostic protocols; NVRAM, flash and memory
management.

Communication
This topic addresses the communication framework (e.g. CAN, LIN,
FlexRay...), the I/O management, and the network management.

Operating System
As AUTOSAR aims at an architecture that is common for all vehicle domains it
will specify the requirements for an AUTOSAR Operating System. The
following requirements shall be seen as examples of such: The OS

 is configured and scaled statically,
 is amenable to reasoning of real-time performance,
 provides a priority-based scheduling,
 provides protective functions at run-time, and
 is hostable on low-end controllers and without external resources.

It is assumed that some domains (e.g. telematic/infotainment) will continue to
use proprietary OSs. In these cases the interfaces to AUTOSAR components
must still be AUTOSAR compliant. I.e. the proprietary OS must be abstracted
to an AUTOSAR OS.
The standard OSEK OS (ISO 17356-3) is used as the basis for the AUTOSAR
OS.

18 of 41 Document ID 067: AUTOSAR_TechnicalOverview

- AUTOSAR Confidential -

Technical Overview
 V2.2.2

R3.2 Rev 1

Microcontroller Abstraction
Access to the hardware is routed through the Microcontroller Abstraction layer
(MCAL) to avoid direct access to microcontroller registers from higher-level
software.
MCAL is a hardware specific layer that ensures a standard interface to the
components of the Basic Software. It manages the microcontroller peripherals
and provides the components of the Basic Software with microcontroller
independent values. MCAL implements notification mechanisms to support the
distribution of commands, responses and information to different processes.
Among others it can include

 Digital I/O (DIO),
 Analog/Digital Converter (ADC),
 Pulse Width (De)Modulator (PWM, PWD),
 EEPROM (EEP),
 Flash (FLS),
 Watchdog Timer (WDT),
 Serial Peripheral Interface (SPI), and
 I2C Bus (IIC).

ECU specific components are:

ECU Abstraction
The ECU Abstraction provides a software interface to the electrical values of
any specific ECU in order to decouple higher-level software from all underlying
hardware dependencies.

Complex Device Driver (CDD)
The CDD allows a direct access to the hardware in particular for resource
critical applications.
For more detailed info see section 4.3

2.4.5 Classification of interfaces

In the Figure 8 above there exist three different types of interfaces, "AUTOSAR
Interface", "Standardized AUTOSAR Interface" and "Standardized Interface". Note
that the boxes define the classification of the interfaces for the different modules, i.e.
the interface boxes in the Figure 8 shall not be regarded as separate modules or
layers. The semantics of these classifications are as follows. For further details see
the [Glossary].

AUTOSAR Interface
An "AUTOSAR Interface" defines the information exchanged between
software components. This description is independent of a specific
programming language, ECU or network technology.
AUTOSAR Interfaces are used in defining the ports of software-components.
Through these ports software-components can communicate with each other
(send or receive information or invoke services). AUTOSAR makes it possible
to implement this communication between software-components either locally
or via a network.

19 of 41 Document ID 067: AUTOSAR_TechnicalOverview

- AUTOSAR Confidential -

Technical Overview
 V2.2.2

R3.2 Rev 1

20 of 41 Document ID 067: AUTOSAR_TechnicalOverview

- AUTOSAR Confidential -

In other words: "AUTOSAR Interfaces" are to be used when it should be
possible to route the information flowing through the interface through a
network.

Standardized AUTOSAR Interface
A "Standardized AUTOSAR Interface" is an "AUTOSAR Interface" whose
syntax and semantics are standardized in AUTOSAR. The "Standardized
AUTOSAR Interfaces" are typically used to define AUTOSAR Services, which
are standardized services provided by the AUTOSAR Basic Software to the
software-components.

Standardized Interface
A "Standardized Interface" is an API which is standardized within AUTOSAR
without using the "AUTOSAR Interface" technique. These "Standardized
Interfaces" are typically defined for a specific programming language (like "C").
Because of this, "standardized interfaces" are typically used between
software-modules which are always on the same ECU. When software
modules communicate through a "standardized interface", it is NOT possible
any more to route the communication between the software-modules through
a network.

Technical Overview
 V2.2.2

R3.2 Rev 1

3 AUTOSAR Methodology

3.1 Introduction

AUTOSAR requires a common technical approach for some steps of system
development. This approach is called the “AUTOSAR Methodology”. This chapter
describes all major steps of the development of a system with AUTOSAR: from the
system-level configuration to the generation of an ECU executable.

The AUTOSAR Methodology is neither a complete process description nor a
business model and “roles” and “responsibilities” are not defined in this methodology.
Furthermore, it does not prescribe a precise order in which activities should be
carried out. The methodology is a mere work-product flow: it defines the
dependencies of activities on work-products.

Basically this chapter is an extract of the detailed AUTOSAR Methodology [Meth].

3.1.1 Describing Notation – SPEM

AUTOSAR describes the methodology using the Software Process Engineering
meta-model, or SPEM for short. SPEM is a standard [SPEM] defined by the Object
Management Group (OMG) and is designed to describe software development
processes.

In the context of the AUTOSAR Methodology only a very small subset of SPEM is
actually used. The following subsections describe the appropriate graphical notation.

Work-Product

A «Work-Product» is a piece of information or physical entity produced by or
used by an activity. For the AUTOSAR Methodology several specific kinds of
«Work-Product» are defined, e.g. XML-Document, c-Document (for files
containing sources in the language C), obj-Document (for object files), or h-
Document (for files containing header files that are included in c-files).

Activity

An «Activity» describes a piece of work performed by one or a group of
persons: the tasks, operations, and actions that are performed by a role or
with which the role may assist10.

Guidance
«Guidance» elements are associated with activities and
represent additional information or tools that are to be
used to perform the activity.
The example on the right shows that the activity

Configure System is associated with the «Guidance» AUTOSAR
System Configuration Generator, which means the tool

10 Note that the AUTOSAR methodology does NOT define roles.
21 of 41 Document ID 067: AUTOSAR_TechnicalOverview

- AUTOSAR Confidential -

Technical Overview
 V2.2.2

R3.2 Rev 1

AUTOSAR System Configuration Generator is used to perform the activity.

Flow of Work-Products

The flow of work-products is
graphically represented by a line
with an arrowhead. It is always
directed from its source to its
destination and is used to identify

the input and output of an activity. In this example the activity System
Configuration uses the work-product System Constraint Description as
input and outputs the System Configuration Description.

Dependency

A «Dependency» is a dotted line with an
arrowhead that indicates that one work-
product depends on another work-
product. It is a unidirectional
«Dependency» and the direction of the
line clarifies who depends on whom.

The example shows that the XML-Document ECU Object Description depends
on the XML-Document Component Implementation Description. In this
context the «Dependency» can also be interpreted as a reference: the XML-
document ECU Object Description contains references to information
contained in the XML-document Component Implementation Description.

3.2 Methodology Overview

Figure 9 shows a rough overview of the AUTOSAR Methodology. It sketches the
design steps from the system-level configuration to the generation of an ECU
executable.

Configure
System

.XML.XML

System
Configuration

Input :
System

.XML.XML

System
Configuration
Description

:System

Extract
ECU-

Specific
Information

.XML.XML

ECU
Extract

of
System

Configuration
:System

Configure
ECU

.XML.XML

ECU
Configuration

Description

Generate
Executable

.exe.exe

ECU
Executable

Figure 9: Overview AUTOSAR Methodology

22 of 41 Document ID 067: AUTOSAR_TechnicalOverview

- AUTOSAR Confidential -

Firstly the System Configuration Input has to be defined. This is a system
design or architecture task. The software components and the hardware have to be
selected, and overall system constraints have to be identified. AUTOSAR intends to

Technical Overview
 V2.2.2

R3.2 Rev 1

23 of 41 Document ID 067: AUTOSAR_TechnicalOverview

- AUTOSAR Confidential -

ease the formal description of these initial system design decisions via the
information exchange format and the use of templates. So defining the System
Configuration Input means filling out or editing the appropriate templates.

This addresses information of the following packages:

 Software Components: each software component requires a description of the
software API e.g. data types, ports, interfaces, etc. [SWCTempl].

 ECU Resources: each ECU requires specifications regarding e.g. the
processor unit, memory, peripherals, sensors and actuators. [ECURes].

 System Constraints: this contains e.g. constraints regarding the bus signals,
topology and mapping of belonging together software components.
[SysTempl].

It depends on the use case whether a template has to be filled out from scratch or
whether a reuse – probably with some editing – is possible. Basically the AUTOSAR
methodology allows for a high degree of reuse in this context. In any case this
editing is assumed to be supported by editing tools.

The activity of the Configure System mainly maps the software components to
the ECUs with regard to resources and timing requirements. The output of this
activity is the System Configuration Description. This description includes
all system information (e.g. bus mapping, topology) and the mapping of which
software component is located on which ECU.

The further steps (as depicted in Figure 9) have to be performed for each ECU in the
system. The step Extract ECU-Specific Information extracts the
information from the System Configuration Description needed for a
specific ECU. This is then placed in the ECU Extract of System
Configuration.

The activity Configure ECU adds all necessary information for implementation like
task scheduling, necessary Basic Software modules, configuration of the Basic
Software, assignment of runnable entities to tasks, etc. The result of the activity
Configure ECU is included in the ECU Configuration Description, which
collects all information that is local to a specific ECU. The runnable software to this
specific ECU can be built from this information.

In the last step Build Executable an executable is generated based on the
configuration of the ECU described in the ECU Configuration Description.
This step typically involves generating code (e.g. for the RTE and the Basic
Software), compiling code (compiling generated code or compiling software-
components available as source-code) and linking everything together into an
executable.

Parallel to these briefly described steps of the methodology there are several steps
required to integrate the software components into the whole system, e.g. generating
the components API, and implementing the components functionality. For clarity they
are not depicted in Figure 9. Nevertheless the implementation of a software

Technical Overview
 V2.2.2

R3.2 Rev 1

24 of 41 Document ID 067: AUTOSAR_TechnicalOverview

- AUTOSAR Confidential -

component is more or less independent from ECU configuration. This is a key
feature of the AUTOSAR methodology.

The following sections describe the various parts of the AUTOSAR methodology in
more detail. To reflect the parallelism of the several activities we don't follow the
simplified sequential structure of Figure 9, but we distinguish parts of the
methodology that are necessary at least once per system, per ECU, and per
component.

3.3 System Configuration

Configure System

AUTOSAR
System

Configuration
Tool

.XML.XML

System
Configuration
Input :System

.XML.XML

System
Configuration
Description :

System

.XML.XML

System
Communication-

Matrix :
CommunicationMatrixType

.XML.XML

Collection of
Av ailable SWC

Implementations

Figure 10: System configuration overview

The activity Configure System takes engineering decisions at system level.
These decisions are based on the System Configuration Input and the
Collection of Available SWC Implementations11, and the AUTOSAR
System Configuration Tool supports the decisions. Output of this activity is a
complete System Configuration Description and an associated System
Communication-Matrix.

One of the most important decisions that are taken during the Configure System
activity is the “mapping”: for each component a decision must be taken on what ECU
in the component runs. As part of the mapping decisions, the Configure System
activity might decide on the use of specific implementations for certain software
components. These implementations are chosen from the Collection of
Available SWC Implementations. Choosing an implementation at system-

11 This collection describes possible implementation variants of the components. Hence it should not
be mixed up with the Software Component Descriptions.

Technical Overview
 V2.2.2

R3.2 Rev 1

25 of 41 Document ID 067: AUTOSAR_TechnicalOverview

- AUTOSAR Confidential -

level might enable a more precise analysis of required and provided resources and
allows the system-designer to influence more precisely what happens inside the
ECU. In many cases however, such choices are not made at system-level, but are
left over to the configuration of the specific ECU.

The System Configuration Input includes or references various constraints
that should be considered during the Configure System activity. These
constraints can force or forbid certain components to be mapped to certain ECUs or
requires certain implementations to be used for components. In addition, these
constraints can contain resource estimations describing the net availability of
resources on ECUs and thereby limiting the possible mappings.

Finally, an important aspect of the activity is the design of the System
Communication-Matrix. This System Communication-Matrix completely
describes the frames running on the networks described in the topology and the
contents and timing of those frames.

The activity Configure System contains complex algorithms and/or engineering
work. There is a strong need for experience in system architecture to map all the
software components to the ECUs. The tool AUTOSAR System Configuration
Tool supports the configuration. It should help to take the aforementioned
engineering decisions (e.g. via clear graphical representation), to store the results,
and to change them later if necessary.

3.4 ECU Design and Configuration Methodology

Figure 11 shows an overview about the design steps to build an ECU with the
AUTOSAR technology. That means these steps have to be performed for each ECU
in the system.

Extract
ECU-

Specific
Information

Configure
ECU

.XML.XML

System
Configuration
Description

:
System

.XML.XML

ECU
Extract

of
System

Configuration
:

System

.XML.XML

ECU
Configuration

Description

.exe.exe

ECU
Executable

Generate
Executable

Figure 11: Overview about ECU part of the AUTOSAR methodology

The input to this phase is the System Configuration Description, which is
created during the system configuration phase. The output of this phase is the
executable ECU software12. The major activities in this phase are the extraction of

12 The ECU Executable described in the methodology is not always the executable which will be
used finally in the production line. In practice the executable likely will change during development,
e.g. due to optimizations or to consider calibration.

Technical Overview
 V2.2.2

R3.2 Rev 1

26 of 41 Document ID 067: AUTOSAR_TechnicalOverview

- AUTOSAR Confidential -

ECU-specific information from the System Configuration Description, the
configuration of the ECU and the generation of the executable ECU software. The
following sections will describe these activities in more detail.

3.4.1 Extract ECU-Specific Information

The tool AUTOSAR ECU Configuration Extractor extracts the information
from the System Configuration Description needed for a specific ECU. This
is a one to one copy of all elements of the System Configuration
Description that are appointed to this specific ECU. The result is the ECU
Extract of System Configuration. Hence Extract ECU-Specific
Information is a step that can be completely automated.

3.4.2 Configure ECU

The ECU configuration mainly deals with the configuration of the RTE and the Basic
Software modules. As depicted in Figure 12, the configuration is based on the
information that is available from the ECU Extract of System Configuration,
Collection of Available SWC Implementations, and BSW Module
Description. The latter contains the Vendor Specific ECU Configuration
Parameter Definition which defines all possible configuration parameters and
their structure. This is necessary because the output ECU Configuration
Description has a flexible structure which does not define a fixed number of
configuration parameters a priori. The BSW Module Description is assumed to
consist of single descriptions delivered together with the appropriate used BSW
module. The ECU Configuration Description needs to reference several
inputs for configuration technicalities.

An important part of the configuration: the detailed scheduling information or the
configuration data for e.g. the communication module, the operating system, or
AUTOSAR services have to be defined in this activity. Moreover at the latest here an
implementation is selected for each Atomic Software Component.

Technical Overview
 V2.2.2

R3.2 Rev 1

.XML.XML

ECU
Configuration

Description

Configure
ECU

.XML.XML

ECU
Extract

of
System

Configuration
:System

.XML.XML

BSW-
Module

Description
:

Bsw ModuleDescription

.XML.XML

Collection
of

Av ailable
SWC

Implementations

.XML.XML

Vendor
Specific

ECU
Configuration

Parameter
Definition

:
ModuleDef

Figure 12: Overview about ECU configuration

In contrast to the extraction of ECU-specific information, the configuration activity is a
non-trivial design step, which requires complex design algorithms and engineering
knowledge.

3.4.3 Generate Executable

After the ECU has been configured, software for several parts of the ECU can be
generated. This refers to the Basic Software (e.g. communication module, operating
system, etc.), and the RTE. All these generation steps are assumed to be tool
supported with a high degree of automation.

The remaining steps to generate the executable ECU code resemble today's
development practice. This is mainly a linking of all components. But it is important
to note that there are additional steps involved. E.g. information from the ECU
Configuration Description might be used to generate specially configured
executable software. Furthermore it has to be synchronized with the component
implementation (as described in section 3.5).

3.5 Component Implementation

This section describes the workflow and the necessary activities in terms of the
AUTOSAR methodology to start the development of an application software
component and to integrate it later into the system. The workflow shall allow a more
or less independent development of the software component’s core functionality.
These activities have to be performed for every application software component.

Figure 13 depicts the per component part of the AUTOSAR methodology. For clarity
and easier understandability, this addresses only a basic workflow without any ECU-

27 of 41 Document ID 067: AUTOSAR_TechnicalOverview

- AUTOSAR Confidential -

Technical Overview
 V2.2.2

R3.2 Rev 1

28 of 41 Document ID 067: AUTOSAR_TechnicalOverview

- AUTOSAR Confidential -

configuration-specific optimizations. However, it is assumed that such optimizations
will be rather the default case in practice.

.h.h

Component
API

Generate
Component

API

.XML.XML

Component
Internal

Behav ior
Description

[API
Generation]

:
InternalBehav ior

Implement
Component

.c.c

Component
Implementation

Compile
Component

.obj.obj

Compiled
Component

.XML.XML

Component
Implementation

Description
[for

Source-
Code] :

Implementation

.XML.XML

Component
Internal

Behav ior
Description

[post
Implementation]

:
InternalBehav ior

.XML.XML

Component
Implementation

Description
[for

Obj ect-
Code] :

Implementation

.h.h

Additional
Headers

AUTOSAR
Component

API
Generator

Figure 13: Component implementation part of the AUTOSAR Methodology

The main workflow in Figure 13 runs from the left to the right. The initial work in this
context starts with providing the necessary parts of the software component
description [SWCTempl]. That means at least the Component Internal
Behavior Description as part of the software component related templates has
to be filled out. The internal behavior describes the scheduling relevant aspects of a
component, i.e. the runnable entities and the events they respond to. Furthermore,
the behavior specifies how a component (or more precisely which runnable)
responds to events like received data elements. However, it does not describe the
detailed functional behavior of the component.

Afterwards Generate Component API has to be performed. This is a tool-based
activity. The AUTOSAR Component API Generator13 reads the Component
Internal Behavior Description of the appropriate software component and
generates the Component API accordingly. The Component API contains all
header declarations for the RTE communication. There isn’t any further engineering
or configuration expected in this activity.

13 The AUTOSAR Component API Generator does not have to be a stand-alone tool. The functionality
propably is included in the AUTOSAR RTE Generator.

Technical Overview
 V2.2.2

R3.2 Rev 1

Next Implement Component means the functional development of the component.
With the Component Internal Behavior Description and the Component
API a software developer can implement (i.e. developing, programming, testing) the
component vastly independent from the other system design. This implementation
basically is outside the scope of AUTOSAR. The results of the implementation will
be the Component Implementation (i.e. typically the C-sources), a refined
Component Internal Behavior Description, which contains now additional
implementation specific information, and a Component Implementation
Description, which contains information about the further build process (e.g.
compiler settings, optimizations, etc.).

The following activities address the integration of the previously provided component.
Compile Component uses the Component Implementation Description for
compiling the Component Implementation together with the Component API
and the Additional Headers. This yields the Compiled Component and again
a refined Component Implementation Description. This contains additional
new build process information (mainly linker settings) and the entry points.

29 of 41 Document ID 067: AUTOSAR_TechnicalOverview

- AUTOSAR Confidential -

Technical Overview
 V2.2.2

R3.2 Rev 1

4 Detailed ECU Architecture

4.1 Layered Software Architecture

4.1.1 The Layered Architecture

In chapter 2.4 the ECU software architecture has been introduced. Based on this
architecture a layered architecture has been developed within AUTOSAR to enable a
clear and structured interface definition and a well defined abstraction of the
hardware. In this chapter the layer concept will be introduced.

The layered software architecture is structured in 5 layers plus the possibility to
implement Complex Device Drivers which cannot be mapped into a single layer (see
Figure 14).

Complex
Drivers

Hardware

Microcontroller Abstraction Layer

Services Layer

Application Layer

AUTOSAR Runtime Environment (RTE)

ECU Abstraction Layer
Complex
Drivers

Hardware

Microcontroller Abstraction Layer

Services Layer

Application Layer

AUTOSAR Runtime Environment (RTE)

ECU Abstraction Layer

Figure 14: Overall layered architecture

30 of 41 Document ID 067: AUTOSAR_TechnicalOverview

- AUTOSAR Confidential -

Technical Overview
 V2.2.2

R3.2 Rev 1

Application Layer:
Mapping from
ECU SW-
Architecture:

The application layer of the ECU software architecture has been left
untouched. A layering within the application layer is not the focus of
AUTOSAR.

Purpose: In the application layer all AUTOSAR Software Components, the Application
Software Components as well as the Sensor/Actuator Software Components,
are located.

Responsibility: The software components of the application layer shall communicate
internally via RTE and access all ECU resources via RTE.

Properties: Implementation: µC independent, ECU independent, HW independent
Interface: standardizable, syntactics pre-defined by AUTOSAR

AUTOSAR Runtime Environment (RTE):
Mapping from
ECU SW-
Architecture:

The RTE has also not been changed compared to the ECU software
architecture.

Purpose: The purpose of the RTE is to enable the implementation of AUTOSAR
Software Components independent from the mapping to a specific
hardware/ECU

Responsibility: The RTE is a hardware independent layer providing communication services
for the application containing Application Software Components and
Sensor/Actuator Software Components. Above the RTE the software
architecture style changes from „layered“ to „component style“. The
AUTOSAR Software Components communicate with other components (inter
and/or intra ECU) via the RTE.

Properties: Implementation: ECU and application specific (generated individually for each
ECU)
Upper Interface: completely ECU independent

Services Layer:
Mapping from
ECU SW-
Architecture:

The service layer is a layer which consists of the communication, services
and operating system blocks shown in the ECU software architecture.

Purpose: It provides basic services for application and Basic Software modules to
abstract the microcontroller as well as the ECU hardware from the layers
above.

Responsibility: It is the highest layer of the Basic Software which also applies for its
relevance for the application software: while access to I/O signals is covered
by the ECU abstraction layer, the services layer offers

• Operating system services
• Vehicle network communication and management services
• Memory services (NVRAM management)
• Diagnosis Services (including diagnosis communication interface and

error memory)
• ECU state management

Properties: Implementation: partly µC, ECU hardware and application specific
Upper Interface: µC and ECU hardware independent

31 of 41 Document ID 067: AUTOSAR_TechnicalOverview

- AUTOSAR Confidential -

Technical Overview
 V2.2.2

R3.2 Rev 1

ECU Abstraction Layer:
Mapping from
ECU SW-
Architecture:

The ECU abstraction layer is the most obvious change of the layered software
architecture compared to the ECU software architecture. Nearly all
standardized interfaces within the Basic Software shown in the ECU software
architecture have been mapped into that layer.

Purpose: To abstract the ECU layout from the above layer.
Responsibility: It contains handlers, which are software modules which abstract how

peripherals are connected to the CPU (e.g. on chip, implemented in ASIC and
connected via SPI, …).

Properties: Implementation: µC independent, ECU hardware dependent
Upper Interface: µC and ECU hardware independent, dependent on signal
type

Complex Drivers:
Mapping from
ECU SW-
Architecture:

The Complex Device Driver could not be mapped to a specific layer and has
therefore been taken over from the ECU software architecture with no
change.

Purpose: The Complex Device Drivers fulfill the special functional and timing
requirements for handling complex sensors and actuators.

Responsibility: A Complex Driver implements complex sensor evaluation and actuator control
with direct access to the µC using specific interrupts and/or complex µC
peripherals (like PCP, TPU), e.g.

• injection control
• electric valve control
• incremental position detection

Properties: Implementation: highly µC, ECU and application dependent
Upper Interface: specified and implemented as AUTOSAR Interfaces.

A more detailed description of the Complex Device Driver can be found in chapter
 4.3.

Microcontroller Abstraction Layer (MCAL):
Mapping from
ECU SW-
Architecture:

According to the ECU software architecture the microcontroller abstraction
layer has been placed between the ECU abstraction and the real hardware.

Purpose: The MCAL abstracts the microcontroller from the above layer to make upper
layers µC independent.

Responsibility: The MCAL layer is the lowest software layer of the Basic Software. It contains
drivers, which are software modules with direct access to the µC internal
peripherals and memory mapped µC external devices.

Properties: Implementation: µC dependent,
Upper Interface: standardizable and µC independent

4.1.2 Refinement of the Layered Architecture

To get a more modularized view of the software architecture the layered architecture
introduced in the chapter above has been further refined in the area of Basic
Software. Around 80 Basic Software modules have been defined. Describing all
these modules would go beyond the scope of this overview. Therefore a more
abstract view will be introduced, see Figure 15.

32 of 41 Document ID 067: AUTOSAR_TechnicalOverview

- AUTOSAR Confidential -

Technical Overview
 V2.2.2

R3.2 Rev 1

Complex
Drivers

Microcontroller

AUTOSAR Runtime Environment (RTE)

Microcontroller Drivers Memory Drivers I/O Drivers

I/O Hardware
Abstraction

Memory Hardware
Abstraction

Memory ServicesSystem Services

Onboard Device
Abstraction

Communication
Drivers

Communication
Hardware Abstraction

Communication
Services

Application Layer

Figure 15: Refined layered software architecture

The Basic Software consists out of 11 blocks (plus Complex Device Drivers) which
will now be explained.

4.1.2.1 Microcontroller Abstraction Layer

The Microcontroller abstraction layer has been subdivided into 4 parts:
1. I/O Drivers

Drivers for analog and digital I/O (e.g. ADC, PWM, DIO).
2. Communication Drivers

Drivers for ECU onboard (e.g. SPI, I2C) and vehicle communication (e.g.
CAN). OSI-Layer: Part of Data Link Layer.

3. Memory Drivers
Drivers for on-chip memory devices (e.g. internal Flash, internal EEPROM)
and memory mapped external memory devices (e.g. external Flash).

4. Microcontroller Drivers
Drivers for internal peripherals (e.g. Watchdog, Clock Unit) and
functions with direct µC access (e.g. RAM test, Core test).

4.1.2.2 ECU Abstraction Layer

Also the ECU abstraction layer has been subdivided into 4 parts:

I/O Hardware Abstraction:
The I/O hardware abstraction is a group of modules which abstracts from the location
of peripheral I/O devices (on-chip or on-board) and the ECU hardware layout (e.g. µC
pin connections and signal level inversions). The I/O hardware abstraction does not
abstract from the sensors/actuators!
The different I/O devices are accessed via an I/O signal interface.

33 of 41 Document ID 067: AUTOSAR_TechnicalOverview

- AUTOSAR Confidential -

Technical Overview
 V2.2.2

R3.2 Rev 1

The task of this group of modules is
 to represent I/O signals as they are connected to the ECU hardware (e.g.

current, voltage, frequency), and
 to hide ECU hardware and layout properties from higher software layers.

Communication Hardware Abstraction
The communication hardware abstraction is a group of modules which abstracts from
the location of communication controllers and the ECU hardware layout. For all
communication systems a specific communication hardware abstraction is required
(e.g. for LIN, CAN, MOST, FlexRay). Example: An ECU has a microcontroller with 2
internal CAN channels and an additional on-board ASIC with 4 CAN controllers. The
CAN-ASIC is connected to the microcontroller via SPI.
The communication drivers are accessed via bus specific interfaces (e.g. CAN
Interface). That means the access to the CAN controller should be regardless of
whether it is located inside the microcontroller, externally to it, or whether it is
connected via SPI.

The task of this group of modules is

 to provide equal mechanisms to access a bus channel regardless of it‘s
location (on-chip / on-board).

Memory Hardware Abstraction
The memory hardware abstraction is a group of modules which abstracts from the
location of peripheral memory devices (on-chip or on-board) and the ECU hardware
layout. Example: on-chip EEPROM and external EEPROM devices should be
accessible via an equal mechanism.
The memory drivers are accessed via memory specific interfaces (e.g. EEPROM
Interface).

The task of this group of modules is

 to provide equal mechanisms to access internal (on-chip) and external (on-
board) memory devices.

Onboard Device Abstraction
The onboard device abstraction contains drivers for ECU onboard devices which
cannot be seen as sensors or actuators like system basic chip, external watchdog
etc. Those drivers access the ECU onboard devices via the µC abstraction layer.

The task of this group of modules is

 to abstract from ECU specific onboard devices.

4.1.2.3 Service Layer

The service layer consists out of 3 different parts:

Communication Services
The communication services are a group of modules for vehicle network
communication (CAN, LIN, FlexRay and MOST). They are interfacing with the
communication drivers via the communication hardware abstraction.

34 of 41 Document ID 067: AUTOSAR_TechnicalOverview

- AUTOSAR Confidential -

Technical Overview
 V2.2.2

R3.2 Rev 1

The task of this group of modules is
 to provide a uniform interface to the vehicle network for communication

between different applications,
 to provide uniform services for network management,
 to provide a uniform interface to the vehicle network for diagnostic

communication, and
 to hide protocol and message properties from the application.

Memory Services
The memory services are a group of modules responsible for the management of non
volatile data (read/write from different memory drivers). The NVRAM manager
provides a RAM mirror as data interface to the application for fast read access.

The task of this group of modules is

 to provide non volatile data to the application in a uniform way,
 to abstract from memory locations and properties, and
 to provide mechanisms for non volatile data management like saving, loading,

checksum protection and verification, reliable storage etc.

System Services
The system services are a group of modules and functions which can be used by
modules of all layers. Examples are real-time operating system, error manager and
library functions (like CRC, interpolation etc.). Some of these services are µC
dependent (like OS), ECU hardware and/or application dependent (like ECU state
manager, DCM) or hardware and µC independent.

The task of this group of modules is

 to provide basic services for application and Basic Software modules.

4.1.3 Related Documents

A detailed definition of the layered architecture can be found in [BSWArch].

4.2 The Runtime Environment (RTE)

4.2.1 Overview

The AUTOSAR Runtime Environment (RTE) is the runtime representation of the
Virtual Function Bus for a specific ECU. It has the responsibility to provide a uniform
environment to AUTOSAR Software Components. The purpose of this uniform
environment is to make the implementation of the software components independent
from the communication mechanisms and channels. The RTE achieves this by
mapping the communication relationships between components, that are specified in
the different templates, to a specific intra-ECU communication mechanism, such as a
function call, or an inter-ECU communication mechanism, such as a COM message
which leads to CAN communication.

35 of 41 Document ID 067: AUTOSAR_TechnicalOverview

- AUTOSAR Confidential -

Technical Overview
 V2.2.2

R3.2 Rev 1

36 of 41 Document ID 067: AUTOSAR_TechnicalOverview

- AUTOSAR Confidential -

To reduce resource requirements of the RTE layer and to improve its performance
some parts of the RTE will be generated. The resulting RTE will likely differ between
one ECU and another.

4.2.2 Access to ports from a software component implementation

The implementation of an AUTOSAR Software Component is not allowed to use the
communication layer, for example OSEK COM, directly. To communicate with other
software components it uses ports and client-server communication or sender-
receiver communication. The RTE generator is responsible for creating the
appropriate language-dependant APIs based on the definition of the interface of the
component in the Software Component Template. The API has to be the same
independent from the mapping of the components, i.e. the component's code must
not be changed when the mapping is changed. The API names are derived from the
XML files and conform to a naming convention.

WiperWasherClient

Implementation of Client Runnable run1:

Rte_Runnable_run1() {
…
Rte_Write_wiperWasher_start(…);
…

}

cmdwiperWasher

Implementation of WiperWasher Runnable run1:

Rte_Runnable_run1() {
…
v = Rte_Read_cmd_start(…);
…

}

SenderReceiverInterface
Contains
DataElement start

Figure 16: Mapping from ports to APIs

4.2.3 Implementation of connectors

The RTE generator is also responsible for generating code, which implements the
connectors between the ports, such as the AssemblyConnector. This generated
code is dependant on the mapping of the software components to ECUs. If the
connector connects two components on the same ECU a local communication stub
can be generated. Otherwise, a stub that uses network communication must be
generated.

Rte_Write_Client_wiperWasher_start(…) {
modify variable

}

Rte_Write_Client_wiperWasher_start(…) {
access COM

}

Intra-ECU connector Inter-ECU connector

Technical Overview
 V2.2.2

R3.2 Rev 1

Figure 17: Mapping from connectors to stubs

The mapping from a connector to a communication stub must conserve the
semantics of this connector independent from the used communication medium.

The communication stub is also responsible for parameter marshalling. This includes
serializing complex data to a byte stream. But endian conversion (if any is
necessary) is delegated to the communication module of the Basic Software.

4.2.4 Lifecycle management

The RTE is responsible for the lifecycle management of AUTOSAR Software
Components. It has to invoke startup and shutdown functions of the software
component.

4.2.5 Access to Basic Software

An AUTOSAR Software Component is not allowed to access Basic Software directly.
Firstly the access to services, to the ECU abstraction, or to Complex Device Drivers
is abstracted via ports and AUTOSAR interfaces. With respect to the component
implementation, the RTE provides appropriately generated APIs for Basic Software
access.

4.2.6 Multiple Instantiations of software components

The RTE shall support multiple instantiations of software components, but in
AUTOSAR R2.0 this feature is cancelled and hence, only the enabling/preparation for
future releases will be fulfilled in R2.0.

The basic intention of multiple instantiation is to avoid code duplication if possible.
Furthermore different private states of multiple instances shall be supported.

4.3 Complex Device Driver

4.3.1 General

The Complex Device Driver is a loosely coupled container, where specific software
implementations can be placed. The only requirement to the software parts is that the
interface to the AUTOSAR world has to be implemented according to the AUTOSAR
port and interface specifications.

The reason to define Complex Device Drivers will be explained in the following
chapters.

37 of 41 Document ID 067: AUTOSAR_TechnicalOverview

- AUTOSAR Confidential -

Technical Overview
 V2.2.2

R3.2 Rev 1

4.3.2 Complex Sensor and Actuator Control

The main task of the complex drivers is to implement complex sensor evaluation and
actuator control with direct access to the µC using specific interrupts and/or complex
µC peripherals (like PCP, TPU), e.g.

• injection control
• electric valve control
• incremental position detection

4.3.3 Non-Standardized Drivers

Further on the Complex Device Drivers will be used to implement drivers for
hardware which is not supported by AUTOSAR.

If for example a new communication system will be introduced in general no
AUTOSAR driver will be available controlling the communication controller. To enable
the communication via this media, the driver will be implemented proprietarily inside
the Complex Device Drivers. In case of a communication request via that media the
communication services will call the Complex Device Driver instead of the
communication hardware abstraction to communicate.

Another example where non-standard drivers are needed is to support ASICs that
implement a non-standardized functionality.

4.3.4 Migration Mechanism

Last but not least the Complex Device Drivers are to some extend intended as a
migration mechanism. Due to the fact that direct hardware access is possible within
the Complex Device Drivers already existing applications can be defined as Complex
Device Drivers. If interfaces for extensions are defined according to the AUTOSAR
standards new extensions can be implemented according to the AUTOSAR
standards, which will not force the OEM nor the supplier to reengineer all existing
applications.

38 of 41 Document ID 067: AUTOSAR_TechnicalOverview

- AUTOSAR Confidential -

Technical Overview
 V2.2.2

R3.2 Rev 1

5 Functional Interfaces

5.1 Overview

The software implementing the automotive functionality is mainly encapsulated in
software components. Standardization of the interfaces for AUTOSAR Software
Components is a central element to support scalability and transferability of functions
across electronic control units of different vehicle platforms.

All specified functions shall satisfy the AUTOSAR Software Component template.
The functional interfaces shall show clear semantics of the interfaces and be
published in function catalogues of the AUTOSAR partnership.

The objective is that any standard-conformant implementation of a software
component can be integrated with substantially reduced effort in a system. Being
conformant to the standard in this sense would entail that the component provides a
specific, precisely defined functionality through completely defined AUTOSAR
Interfaces.

Nevertheless, the standardization could be developed incrementally where possible
entities for standardization could be:

Level of abstraction

 Functional aspects
 Behavior and implementation aspects

Level of decomposition

 Low degree of decomposition of the functional domain
 High degree of decomposition of the functional domain

39 of 41 Document ID 067: AUTOSAR_TechnicalOverview

- AUTOSAR Confidential -

Technical Overview
 V2.2.2

R3.2 Rev 1

Level of architecture definition
 Terminology
 Standardized data-types
 Partial description of interfaces (without semantics)
 Complete description of interfaces (without semantics)
 Complete description of interfaces (with semantics)
 Partial definition of the functional domain
 Complete definition of the functional domain

5.2 Functional domains

The specification of functional interfaces is divided into 6 domains:

 Body/Comfort
 Powertrain
 Chassis
 Safety
 Multimedia/Telematics
 Man-machine-interface

The domains could be differently handled due to intellectual property rights issues
and decomposition levels. In the first phase of AUTOSAR only in the domains
body/comfort, chassis, and powertrain results can be expected. All others have lower
priority in the first phase.

40 of 41 Document ID 067: AUTOSAR_TechnicalOverview

- AUTOSAR Confidential -

Technical Overview
 V2.2.2

R3.2 Rev 1

41 of 41 Document ID 067: AUTOSAR_TechnicalOverview

- AUTOSAR Confidential -

6 References

[BSWArch] Layered Software Architecture
AUTOSAR_LayeredSoftwareArchitecture.pdf

[Conv2004] AUTomotive Open System ARchitecture – An Industry-Wide Initiative to
Manage the Complexity of Emerging Automotive E/E-Architectures,
AUTOSAR_Paper_Convergence_2004.pdf

[ECURes] Specification of ECU Resource Template
AUTOSAR_ECU_ResourceTemplate.pdf

[Glossary] AUTOSAR Glossary
AUTOSAR_Glossary.pdf

[MainReq] Main Requirements
AUTOSAR_MainRequirements.pdf

[Meth] Methodology
AUTOSAR_Methodology.pdf

[SPEM] OMG Object Management Group: Software Process Engineering Metamodel
Specification,
http://www.omg.org/technology/documents/modeling_spec_catalog.htm

[SWCTempl] Specification of Software Component Template,
AUTOSAR_SoftwareComponentTemplate.pdf

[SysTempl] Specification of System Template
AUTOSAR_SystemTemplate.pdf

[VFBSpec] Specification of Virtual Function Bus
AUTOSAR_SWS_VFB.doc.pdf

http://www.omg.org/technology/documents/modeling_spec_catalog.htm

	1 Motivation
	1.1 Introduction
	1.2 Limitations to this version of the document
	1.3 Why do we need AUTOSAR?
	1.4 Objectives and Technical Benefits of AUTOSAR

	2 Concept
	2.1 Introduction to the AUTOSAR concept
	2.1.1 Basic AUTOSAR approach

	2.2 Components
	2.2.1 The AUTOSAR Software Component
	2.2.2 The AUTOSAR Software Component is an "Atomic Software Component"
	2.2.3 Implementing and shipping an AUTOSAR Software Component
	2.2.4 The AUTOSAR Software Component Description
	2.2.5 The AUTOSAR Software Component implementation is independent from the infrastructure
	2.2.6 Sensor/Actuator Software Components
	2.2.7 The generic “Component” concept
	2.2.8 Summary

	2.3 VFB
	2.3.1 General
	2.3.2 VFB Context
	2.3.3 Communication mechanisms
	2.3.3.1 Components, Ports and AUTOSAR Interfaces
	2.3.3.2 AUTOSAR Communication Patterns
	2.3.3.2.1 Client-Server Communication
	2.3.3.2.2 Sender-Receiver Communication

	2.4 AUTOSAR ECU Software Architecture
	2.4.1 Overview
	2.4.2 AUTOSAR Software
	2.4.3 AUTOSAR Runtime Environment
	2.4.4 AUTOSAR Basic Software
	2.4.5 Classification of interfaces

	3 AUTOSAR Methodology
	3.1 Introduction
	3.1.1 Describing Notation – SPEM

	3.2 Methodology Overview
	3.3 System Configuration
	3.4 ECU Design and Configuration Methodology
	3.4.1 Extract ECU-Specific Information
	3.4.2 Configure ECU
	3.4.3 Generate Executable

	3.5 Component Implementation

	4 Detailed ECU Architecture
	4.1 Layered Software Architecture
	4.1.1 The Layered Architecture
	4.1.2 Refinement of the Layered Architecture
	4.1.2.1 Microcontroller Abstraction Layer
	4.1.2.2 ECU Abstraction Layer
	4.1.2.3 Service Layer

	4.1.3 Related Documents

	4.2 The Runtime Environment (RTE)
	4.2.1 Overview
	4.2.2 Access to ports from a software component implementation
	4.2.3 Implementation of connectors
	4.2.4 Lifecycle management
	4.2.5 Access to Basic Software
	4.2.6 Multiple Instantiations of software components

	4.3 Complex Device Driver
	4.3.1 General
	4.3.2 Complex Sensor and Actuator Control
	4.3.3 Non-Standardized Drivers
	4.3.4 Migration Mechanism

	5 Functional Interfaces
	5.1 Overview
	5.2 Functional domains

	6 References

