
Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

1 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

Document Title Specification of SPI Han-
dler/Driver

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 038

Document Classification Standard

Document Version 2.5.0

Document Status Final

Part of Release 3.2

Revision 3

Document Change History
Date Version Changed by Change Description

28.02.2014 2.5.0 AUTOSAR
Release
Management

 Correction of SPI149, SPI289, SPI290
and SPI291

 Editorial changes

 Removed chapter(s) on change docu-
mentation

29.05.2012 2.4.0 AUTOSAR
Administration

 Clarification of SPI129

07.04.2011 2.3.0 AUTOSAR
Administration

 SPI114 and 135 has been modified,
add requirement SPI140

 SPI 149 split up into more requirements
(SPI149, SPI289, SPI290, and
SPI291).

 Reference to MCU in SPI244 and
SPI342 corrected

 Rephrasing of requirements SPI171
and SPI172

 Legal disclaimer revised

23.06.2008 2.2.1 AUTOSAR
Administration

Legal disclaimer revised

12.12.2007 2.2.0 AUTOSAR
Administration

 Updated Chapter 10 with the inclusion
of CS configuration

 Document meta information extended

 Small layout adaptations made

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

2 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

Document Change History
Date Version Changed by Change Description

31.01.2007 2.1.0 AUTOSAR
Administration

 Configuration Specification updating

 General rephrasing for clarification

 Syntax error

 Legal disclaimer revised

 Release Notes added

 “Advice for users” revised

 “Revision Information” added

28.04.2006 2.0.0 AUTOSAR Admi-
nistration

Document structure adapted to common
Release 2.0 SWS Template.

 Major changes in chapter 10

 Structure of document changed partly

 Other changes see chapter 11

09.06.2005 1.0.0 AUTOSAR Ad-
ministration

Initial Release

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

3 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

Disclaimer

This specification and the material contained in it, as released by AUTOSAR is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only.
For any other purpose, no part of the specification may be utilized or reproduced, in
any form or by any means, without permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR Specification Documents may contain exemplary items (exemplary refer-
ence models, "use cases", and/or references to exemplary technical solutions, devic-
es, processes or software).

Any such exemplary items are contained in the Specification Documents for illustra-
tion purposes only, and they themselves are not part of the AUTOSAR Standard.
Neither their presence in such Specification Documents, nor any later documentation
of AUTOSAR conformance of products actually implementing such exemplary items,
imply that intellectual property rights covering such exemplary items are licensed un-
der the same rules as applicable to the AUTOSAR Standard.

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

4 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

Table of Contents

1 Introduction and functional overview ... 7

2 Acronyms and abbreviations ... 8

3 Related documentation.. 9

3.1 Input documents ... 9
3.2 Related standards and norms .. 9

4 Constraints and assumptions .. 9

4.1 Limitations .. 9
4.2 Applicability to car domains .. 10

5 Dependencies to other modules .. 11

5.1 File structure .. 11
5.1.1 Code file structure ... 11

5.1.2 Header file structure .. 12

6 Requirements traceability .. 13

7 Functional specification ... 20

7.1 Overall view of functionalities and features .. 20

7.2 General behaviour .. 21

7.2.1 Common configurable feature: Allowed Channel Buffers 23
7.2.1.1 Behaviour of IB channels ... 23
7.2.1.2 Behaviour of EB channels ... 24

7.2.1.3 Buffering channel usage .. 24
7.2.2 LEVEL 0, Simple Synchronous behaviour .. 24

7.2.3 LEVEL 1, Basic Asynchronous behavior ... 25
7.2.4 Asynchronous configurable feature: Interruptible Sequences 27

7.2.4.1 Behavior of Non-Interruptible Sequences .. 27

7.2.4.2 Behavior of Mixed Sequences ... 28
7.2.5 LEVEL 2, Enhanced behaviour ... 28

7.3 Scheduling Advices .. 29
7.4 Error classification .. 30

7.5 Error detection .. 30
7.5.1 API parameter checking .. 31

7.5.2 SPI state checking .. 31
7.6 Error notification ... 31
7.7 Version check ... 32

8 API specification .. 33

8.1 Imported types.. 33

8.2 Type definitions .. 33
8.2.1 Spi_ConfigType ... 33
8.2.2 Spi_StatusType ... 34
8.2.3 Spi_JobResultType ... 34

8.2.4 Spi_SeqResultType .. 34
8.2.5 Spi_DataType ... 35
8.2.6 Spi_NumberOfDataType ... 35

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

5 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

8.2.7 Spi_ChannelType .. 35

8.2.8 Spi_JobType ... 36
8.2.9 Spi_SequenceType ... 36
8.2.10 Spi_HWUnitType ... 36
8.2.11 Spi_AsyncModeType .. 36

8.3 Function definitions .. 36

8.3.1 Spi_Init .. 37
8.3.2 Spi_DeInit.. 37
8.3.3 Spi_WriteIB ... 38
8.3.4 Spi_AsyncTransmit ... 39
8.3.5 Spi_ReadIB ... 40

8.3.6 Spi_SetupEB ... 41
8.3.7 Spi_GetStatus ... 43

8.3.8 Spi_GetJobResult ... 43
8.3.9 Spi_GetSequenceResult ... 44
8.3.10 Spi_GetVersionInfo ... 44
8.3.11 Spi_SyncTransmit ... 45

8.3.12 Spi_GetHWUnitStatus ... 46
8.3.13 Spi_Cancel .. 46

8.3.14 Spi_SetAsyncMode ... 47
8.4 Callback notifications .. 49
8.5 Scheduled functions ... 49

8.5.1 Spi_MainFunction_Handling ... 49

8.5.2 Spi_MainFunction_Driving .. 49
8.6 Expected Interfaces .. 49

8.6.1 Mandatory Interfaces .. 49
8.6.2 Optional Interfaces .. 50
8.6.3 Configurable interfaces ... 50

8.6.3.1 Spi_JobEndNotification ... 50

8.6.3.2 Spi_SeqEndNotification ... 51

9 Sequence diagrams .. 52

9.1 Initialization .. 52
9.2 Modes transitions ... 52
9.3 Write/AsyncTransmit/Read (IB) .. 52

9.3.1 One Channel, one Job then one Sequence .. 52
9.3.2 Many Channels, one Job then one Sequence 54
9.3.3 Many Channels, many Jobs and one Sequence 55
9.3.4 Many Channels, many Jobs and many Sequences 57

9.4 Setup/AsyncTransmit (EB) ... 59
9.4.1 Variable Number of Data / Constant Number of Data 59
9.4.2 One Channel, one Job then one Sequence .. 59
9.4.3 Many Channels, one Job then one Sequence 61
9.4.4 Many Channels, many Jobs and one Sequence 62

9.4.5 Many Channels, many Jobs and many Sequences 64
9.5 Mixed Jobs Transmission ... 66
9.6 LEVEL 0 SyncTransmit diagrams... 67

9.6.1 Write/SyncTransmit/Read (IB): Many Channels, many Jobs and one
Sequence .. 67

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

6 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

9.6.2 Setup/SyncTransmit (EB): Many Channels, many Jobs and one
Sequence .. 68

10 Configuration specification ... 70

10.1 How to read this chapter .. 70
10.1.1 Configuration and configuration parameters 70
10.1.2 Containers ... 70

10.1.3 Specification template for configuration parameters 70
10.2 Containers and configuration parameters .. 72

10.2.1 Variants ... 72
10.2.2 SpiGeneral .. 72

10.2.3 SpiSequence ... 74
10.2.4 SpiChannel.. 75
10.2.5 SpiJob ... 77

10.2.6 SpiExternalDevice ... 79
10.2.7 SpiDriver ... 81

10.3 Published parameters .. 83
10.4 Configuration concept .. 84

11 Appendix .. 85

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

7 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

1 Introduction and functional overview

The SPI Handler/Driver provides services for reading from and writing to devices
connected via SPI busses. It provides access to SPI communication to several users
(e.g. EEPROM, Watchdog, I/O ASICs). It also provides the required mechanism to
configure the onchip SPI peripheral.

This specification describes the API for a monolithic SPI Handler/Driver. This soft-
ware module includes handling and driving functionalities. Main objectives of this
monolithic SPI Handler/Driver are to take the best of each microcontroller features
and to allow implementation optimization depending on static configuration to fit as
much as possible to ECU needs.

SPI107: Hence, this specification defines selectable levels of functionalities and con-
figurable features to allow the design of a high scalable module that exploits the pe-
culiarities of the microcontroller.

To configure the SPI Handler/Driver these steps shall be followed:

 SPI Handler/Driver Level of Functionality shall be selected and optional fea-
tures configured.

 SPI Channels shall be defined according to data usage, and they could be
buffered inside the SPI Handler/Driver (IB) or provided by the user (EB).

 SPI Jobs shall be defined according to HW properties (CS), and they will con-
tain a list of channels using those properties.

 As a final step, Sequences of Jobs shall be defined, in order to transmit data
in a sorted way (priority sorted).

The general behaviour of the SPI Handler/Driver can be asynchronous or synchro-
nous according to the Level of Functionality selected.

The specification covers the Handler/Driver functionality combined in one single
module. One is the SPI handling part that handles multiple access to busses that
could be located in the ECU Abstraction layer. The other part is the SPI driver that
accesses the microcontroller hardware directly that could be located in the Microcon-
troller Abstraction layer.

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

8 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

2 Acronyms and abbreviations

Acronyms and abbreviations which have a local scope and therefore are not con-
tained in the AUTOSAR glossary must appear in a local glossary.

Acronym: Description:

DET Development Error Tracer – module to which development errors are reported.

DEM Diagnostic Event Manager – module to which production relevant errors are report-
ed.

SPI Serial Peripheral Interface. It is exactly defined hereafter in this document.

CS Chip Select

MISO Master Input Slave Output

MOSI Master Output Slave Input

Abbreviation: Description:

EB Externally buffered channels. Buffers containing data to transfer are outside the SPI
Handler/Driver.

IB Internally buffered channels. Buffers containing data to transfer are inside the SPI
Handler/Driver.

ID Identification Number of an element (Channel, Job, Sequence).

Definition: Description:

Channel A Channel is a software exchange medium for data that are defined with the same
criteria: Config. Parameters, Number of Data elements with same size and data
pointers (Source & Destination) or location.

Job A Job is composed of one or several Channels with the same Chip Select (is not
released during the processing of Job). A Job is considered atomic and therefore
cannot be interrupted by another Job. A Job has an assigned priority.

Sequence A Sequence is a number of consecutive Jobs to transmit but it can be rescheduled
between Jobs using a priority mechanism. A Sequence transmission is interruptible
(by another Sequence transmission) or not depending on a static configuration.

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

9 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

3 Related documentation

3.1 Input documents

[1] Layered Software Architecture

AUTOSAR_LayeredSoftwareArchitecture.pdf

[2] General Requirements on SPAL
AUTOSAR_SRS_SPAL_General.pdf

[3] General Requirements on Basic Software Modules

AUTOSAR_SRS_General.pdf

[4] Specification of Development Error Tracer

AUTOSAR_SWS_DevelopmentErrorTracer.pdf

[5] Specification of ECU Configuration

AUTOSAR_ECU_Configuration.pdf

[6] Requirements on SPI Handler/Driver
AUTOSAR_SRS_SPI_HandlerDriver.pdf

[7] Specification of Diagnostics Event Manager
AUTOSAR_SWS_DEM.pdf

[8] Glossary
AUTOSAR_Glossary.pdf

[9] Specification of MCU Driver

AUTOSAR_SWS_MCU_Driver .pdf

[10] Specification of PORT Driver

AUTOSAR_SWS_PORT_Driver

[11] AUTOSAR Basic Software Module Description Template,
 AUTOSAR_BSW_Module_Description.pdf

3.2 Related standards and norms

Not related.

4 Constraints and assumptions

4.1 Limitations

SPI040: The SPI Handler/Driver handles only the Master mode.

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

10 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

SPI050: The SPI Handler/Driver only supports full-duplex mode.

SPI108: The LEVEL 2 SPI Handler/Driver is specified for microcontrollers that have
to provide, at least, two SPI busses using separated hardware units. Otherwise, us-
ing this level of functionality does not make sense.

4.2 Applicability to car domains

No restrictions.

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

11 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

5 Dependencies to other modules

SPI peripherals may depend on the system clock, prescaler(s) and PLL. Thus,
changes of the system clock (e.g. PLL on  PLL off) may also affect the clock set-
tings of the SPI hardware. The SPI Handler/Driver module does not take care of set-
ting the registers which configure the clock, prescaler(s) and PLL in its init function.
This has to be done by the MCU module [9].

Depending on microcontrollers, the SPI peripheral could share registers with other
peripherals. In this typical case, the SPI Handler/Driver has a relationship with MCU
module [9] for initialising and de-initialising those registers.

If Chip Selects are done using microcontroller pins the SPI Handler/Driver has a rela-
tionship with PORT module [10]. In this case, this specification assumes that these
microcontroller pins are directly accessed by the SPI Handler/Driver module without
using APIs of DIO module. Anyhow, the SPI depends on ECU hardware design and
for that reason it may depend on other modules.

5.1 File structure

5.1.1 Code file structure

SPI095: The code file structure shall not be defined within this specification com-
pletely. At this point it shall be pointed out that the code-file structure shall include the
following file named:

- Spi_Lcfg.c – for link time and for post-build configurable parameters and
- Spi_PBcfg.c – for post build time configurable parameters.

These files shall contain all link time and post-build time configurable parameters.

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

12 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

5.1.2 Header file structure

SPI092: The SPI module shall adhere to the following include file structure:

dd SPI File include structure

«source»

Std_Types.h

«source»

Platform_Types.h

«source»

Spi.h

«source»

Spal_xxx.c

«source»

Spi_Cfg.h

«source»

Spi_Xcfg.c

«source»

Compiler.h

«source»

Spi_Irq.c

«source»

Det.h

«source»

Dem.h

«source»

Spi.c

«source»

SchM_Spi.h

«source»

MemMap.h «include»
«include»

«include»

«include» «include»
optional

«include»

«include»
«include»

«include»

«include»

«include»«include»

«include»

 Spi.c shall include Spi.h

 Spi_Xcfg.c shall include Spi.h

 Spi.h shall include Spi_Cfg.h

 Spi_Irq.c this file could exist depending of implementation and also it could

or not include Spi.h

SPI158: The SPI module shall optionally include the Dem.h file if any production er-

ror will be issued by the implemetation. By this inclusion the APIs to report errors as
well as the required Event Id symbols are included.

SPI159: The DEM configuration tool shall assign ECU dependent values to the Event

Id symbols and publish the symbols in Dem_IntErrId.h.

The names of the Event Id symbols which are provided by XML to the DEM configu-
ration tool are specified in this document.

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

13 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

6 Requirements traceability

Document: AUTOSAR requirements on Basic Software, general

Requirement Satisfied by
[BSW003] Version identification SPI068 SPI089 SPI094

[BSW00300] Module naming convention Chapter 5.1

[BSW00301] Limit imported information Not applicable
(requirement on implementation, not on specifica-
tion)

[BSW00302] Limit exported information Not applicable
(requirement on implementation, not on specifica-
tion)

[BSW00304] AUTOSAR integer data types Chapters 5.1.2, 8.2, 10.2 and 10.3

[BSW00305] Self-defined data types naming con-
vention

Chapter 8.2

[BSW00306] Avoid direct use of compiler and
platform specific keywords

Not applicable
(requirement on implementation, not on specifica-
tion)

[BSW00307] Global variables naming convention Not applicable
(requirement on implementation, not on specifica-
tion)

[BSW00308] Definition of global data Not applicable
(requirement on implementation, not on specifica-
tion)

[BSW00309] Global data with read-only constraint Not applicable
(requirement on implementation, not on specifica-
tion)

[BSW00310] API naming convention Chapter 8.3

[BSW00312] Shared code shall be reentrant Not applicable
(requirement on implementation, not on specifica-
tion)

[BSW00314] Separation of interrupt frames and
service routines

Chapter 5.1

[BSW00318] Format of module version numbers SPI094

[BSW00321] Enumeration of module version
numbers

SPI094

[BSW00323] API parameter checking SPI029 SPI031 SPI032 SPI060

[BSW00324] Do not use HIS I/O Library Not applicable
(requirement on AUTOSAR architecture, not a
single module)

[BSW00325] Runtime of interrupt service routines Not applicable
(Cannot be detailed at this point of time, because
this depends on module implementation.)

[BSW00326] Transition from ISRs to OS tasks Not applicable
(Cannot be detailed at this point of time, because
this depends on module implementation.)

[BSW00327] Error values naming convention SPI004

[BSW00328] Avoid duplication of code Not applicable
(requirement on implementation, not on specifica-
tion)

[BSW00329] Avoidance of generic interfaces Chapter 8

[BSW00330] Usage of macros / inline functions
instead of functions

Not applicable
(requirement on implementation, not on specifica-
tion)

[BSW00331] Separation of error and status values Not applicable
(requirement on implementation, not on specifica-
tion)

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

14 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

[BSW00333] Documentation of callback function
context

Chapters 8.6.3.1 and 8.6.3.2

[BSW00334] Provision of XML file Not applicable
(requirement on implementation, not on specifica-
tion)

[BSW00335] Status values naming convention SPI061 SPI062 SPI019

[BSW00336] Shutdown interface SPI021 SPI022

[BSW00337] Classification of errors SPI004 SPI007 SPI097 SPI098

[BSW00338] Reporting of development errors SPI100

[BSW00339] Reporting of production relevant
error status

SPI006 SPI099 and Chapter 8.6.2

[BSW00341] Microcontroller compatibility docu-
mentation

Not applicable
(requirement on implementation, not on specifica-
tion)

[BSW00342] Usage of source code and object
code

Not applicable
(requirement on implementation, not on specifica-
tion)

[BSW00343] Specification and configuration of
time

Not applicable
(requirement on implementation, not on specifica-
tion)

[BSW00344] Reference to link-time configuration SPI009 SPI091

[BSW00345] Pre-compile-time configuration SPI056

[BSW00347] Naming separation of different in-
stances of BSW drivers

Not applicable
(requirement on implementation, not on specifica-
tion)

[BSW00348] Standard type header Chapter 8.1

[BSW00350] Development error detection
keywords

SPI005 SPI103 SPI056

[BSW00353] Platform specific type header Chapter 8.1

[BSW00355] Do not redefine AUTOSAR integer
data types

Not applicable
(requirement on implementation, not on specifica-
tion)

[BSW00357] Standard API return type SPI174 Chapter 8.3

[BSW00358] Return type of init() functions Chapter 8.3.1

[BSW00359] Return type of callback functions SPI048

[BSW00360] Parameters of callback functions SPI048

[BSW00361] Compiler specific language exten-
sion header

Chapter 5.1.2

[BSW00369] Do not return development error
codes via API

SPI005 SPI029 SPI048 SPI006

[BSW00370] Separation of callback interface from
API

Chapter 8.4

[BSW00371] Do not pass function pointers via API Chapters 8.6.3, 10.2

[BSW00373] Main processing function naming
convention

Chapter 8.5

[BSW00374] Module vendor identification SPI068 SPI089 SPI094

[BSW00375] Notification of wake-up reason Not applicable.
(Only master mode is supported. Master mode
does not provide wake up events.)

[BSW00376] Return type and parameters of main
processing functions

Chapter 8.5

[BSW00377] Module specific API return types Chapters 0, 8.2.3 and 8.2.4

[BSW00378] AUTOSAR boolean type SPI105

[BSW00379] Module identification SPI068 SPI089 SPI094

[BSW00380] Separate C-Files for configuration
parameters

SPI095

[BSW00381] Separate configuration header file
for pre-compile time parameters

SPI103

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

15 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

[BSW00383] List dependencies of configuration
files

Chapter 5

[BSW00384] List dependencies to other modules Chapter 5, SPI158 SPI159

[BSW00385] List possible error notifications SPI004 SPI007

[BSW00386] Configuration for detecting an error SPI005 SPI029

[BSW00387] Specify the configuration class of
callback function

Chapters 8.4 and 8.6.3

[BSW00388] Introduce containers SPI103 SPI091 SPI104 SPI105 SPI106

[BSW00389] Containers shall have names SPI103 SPI091 SPI104 SPI105 SPI106

[BSW00390] Parameter content shall be unique
within the module

SPI103 SPI091 SPI104 SPI105 SPI106 SPI094

[BSW00391] Parameter shall have unique names SPI103 SPI091 SPI104 SPI105 SPI106 SPI094

[BSW00392] Parameters shall have a type SPI103 SPI091 SPI104 SPI105 SPI106

[BSW00393] Parameters shall have a range SPI103 SPI091 SPI104 SPI105 SPI106

[BSW00394] Specify the scope of the parameters SPI103 SPI091 SPI104 SPI105 SPI106

[BSW00395] List the required parameters (per
parameter)

SPI103 SPI091 SPI104 SPI105 SPI106

[BSW00396] Configuration classes SPI056 SPI076 SPI103 SPI091 SPI104 SPI105
SPI106

[BSW00397] Pre-compile-time parameters SPI056 SPI103

[BSW00398] Link-time parameters SPI076 SPI091 SPI104 SPI105 SPI106

[BSW00399] Loadable Post-build time parameters Non applicable
(Cannot be detailed at this point of time, because
this depends on ECU integration.)

[BSW004] Version check SPI069

[BSW00400] Selectable Post-build time parame-
ters

Non applicable
(Cannot be detailed at this point of time, because
this depends on ECU integration.)

[BSW00401] Documentation of multiple instances
of configuration parameters

Not applicable
(requirement on implementation, not on specifica-
tion)

[BSW00402] Published information SPI068 SPI089 SPI094

[BSW00404] Reference to post build time
configuration

SPI148

[BSW00405] Reference to multiple configuration
sets

SPI008 SPI013 SPI076 SPI148

[BSW00406] Check module initialization SPI015 SPI046

[BSW00407] Function to read out published pa-
rameters

SPI101 SPI102

[BSW00408] Configuration parameter naming
convention

Chapter 10.2

[BSW00409] Header files for production code
error IDs

SPI097

[BSW00410] Compiler switches shall have de-
fined values

SPI103

[BSW00411] Get version info keyword SPI102

[BSW00412] Separate H-File for configuration
parameters

SPI092

[BSW00413] Accessing instances of BSW mod-
ules

Not applicable
(requirement on implementation, not on specifica-
tion)

[BSW00414] Parameter of init function Chapter 8.3.1

[BSW00415] User dependent include files SPI092

[BSW00416] Sequence of Initialization Not applicable
(this is a general software integration requirement)

[BSW00417] Reporting of Error Events by Non-
Basic Software

Not applicable
(applies only for non BSW modules)

[BSW00419] Separate C-Files for pre-compile
time configuration parameters

SPI095

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

16 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

[BSW00420] Production relevant error event rate
detection

Not applicable
(applies only for DEM)

[BSW00421] Reporting of production relevant
error events

SPI006 SPI099 and Chapter 8.6.2

[BSW00422] Debouncing of production relevant
error status

Not applicable
(applies only for DEM)

[BSW00423] Usage of SW-C template to describe
BSW modules with AUTOSAR Interfaces

Not applicable
(EEPROM driver has no Autosar Interface)

[BSW00424] BSW main processing function task
allocation

Not applicable
(this is a general software integration requirement)

[BSW00425] Trigger conditions for schedulable
objects

Chapter 8.5

[BSW00426] Exclusive areas in BSW modules Not applicable
(Cannot be detailed at this point of time, because
this depends on module implementation.)

[BSW00427] ISR description for BSW modules Not applicable
(Cannot be detailed at this point of time, because
this depends on module implementation.)

[BSW00428] Execution order dependencies of
main processing functions

Not applicable
(Cannot be detailed at this point of time, because
this depends on module implementation.)

[BSW00429] Restricted BSW OS functionality
access

Not applicable
(requirement on implementation, not on specifica-
tion)

[BSW00431] The BSW Scheduler module imple-
ments task bodies

Not applicable
(SPI Handler/Driver Module is not the BSW
Scheduler)

[BSW00432] Modules should have separate main
processing functions for read/receive and
write/transmit data path

Not applicable
(requirement on implementation, not on specifica-
tion)

[BSW00433] Calling of main processing functions Not applicable
(this is a general software integration requirement)

[BSW00434] The Schedule Module shall provide
an API for exclusive areas

Not applicable
(SPI Handler/Driver Module is not the BSW
Scheduler)

[BSW00435] Module Header File Structure for the
Basic Software Scheduler

SPI092

[BSW00436] Module Header File Structure for the
Memory Mapping

SPI092

[BSW005] No hard coded horizontal interfaces
within MCAL

Not applicable
(requirement on AUTOSAR architecture, not a
single module)

[BSW006] Platform independency Not applicable
(requirement on implementation, not on specifica-
tion)

[BSW007] HIS MISRA C Not applicable
(requirement on implementation, not on specifica-
tion)

[BSW009] Module User Documentation Not applicable
(requirement on implementation, not on specifica-
tion)

[BSW010] Memory resource documentation Not applicable
(requirement on implementation, not on specifica-
tion)

[BSW101] Initialization interface SPI013 SPI015

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

17 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

[BSW158] Separation of configuration from im-
plementation

SPI103 SPI091 SPI089 SPI095

[BSW159] Tool-based configuration Both static and runtime configuration parameters
are located outside the source code of the mod-
ule. This is the prerequisite for automatic configu-
ration.

[BSW160] Human-readable configuration data Requirement on configuration methodology and
tools

[BSW161] Microcontroller abstraction Not applicable
(requirement on AUTOSAR architecture, not a
single module)

[BSW162] ECU layout abstraction Not applicable
(requirement on AUTOSAR architecture, not a
single module)

[BSW164] Implementation of interrupt service
routines

Not applicable
(Cannot be detailed at this point of time, because
this depends on module implementation.)

[BSW167] Static configuration checking Requirement on configuration tool

[BSW168] Diagnostic Interface of SW
components

Not applicable (no use case)

[BSW170] Data for reconfiguration of AUTOSAR
SW-Components

Not applicable
(requirement on SW Component)

[BSW171] Configurability of optional functionality Conflicts partly with SPAL requirement
[BSW12263] Configuration after compile time.

[BSW172] Compatibility and documentation of
scheduling strategy

Not applicable
(requirement on implementation, not on specifica-
tion)

Document: AUTOSAR requirements on Basic Software, cluster SPAL

Requirement Satisfied by
[BSW12263] Object code compatible
configuration concept

SPI076

[BSW12056] Configuration of notification mecha-
nisms

SPI009 SPI064 SPI044 SPI054

[BSW12267] Configuration of wake-up sources Not applicable. (
Only master mode is supported. Master mode
does not provide wake up events.)

[BSW12057] Driver module initialization SPI013 SPI015

[BSW12125] Initialization of hardware resources SPI013 SPI008 SPI009

[BSW12163] Driver module deinitialization SPI021 SPI022

[BSW12461] Responsibility for register
initialization

See chapter 5

[BSW12462] Provide settings for register
initialization

Cannot be detailed at this point of time, because
this depends on SPI hardware and implementa-
tion.

[BSW12463] Combine and forward settings for
register initialization

Cannot be detailed at this point of time (see
above)

[BSW12068] MCAL initialization sequence Not applicable
(this is a general software integration requirement)

[BSW12069] Wake-up notification of ECU State
Manager

Not applicable
(the SPI does not cause any wake-ups)

[BSW157] Notification mechanisms of drivers and
handlers

SPI026 SPI038 SPI039 SPI042 SPI057 SPI071
SPI073 SPI075

[BSW12169] Control of operation mode Chapter 9.2

[BSW12063] Raw value mode Not applicable (no I/O functionality)

[BSW12075] Use of application buffers SPI053

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

18 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

[BSW12129] Resetting of interrupt flags No Applicable to the Handler API but shall be
define for the Driver API.

[BSW12064] Change of operation mode during
running operation

Chapter 9.2, SPI025 SPI021

[BSW12448] Behavior after development error
detection

Chapters 7.5.1 and 7.5.2

[BSW12067] Setting of wake-up conditions Not applicable (the SPI resource does not cause
any wake-ups)

[BSW12077] Non-blocking implementation Not applicable
(requirement on implementation, not on specifica-
tion)

[BSW12078] Runtime and memory efficiency Not applicable
(requirement on implementation, not on specifica-
tion)

[BSW12092] Access to drivers Not applicable
(requirement on implementation, not on specifica-
tion)

[BSW12265] Configuration data shall be kept
constant

Not applicable
(requirement on implementation, not on specifica-
tion)

[BSW12264] Specification of configuration items Chapter 10.2

Document: AUTOSAR requirements on Basic Software, SPI Handler/Driver

Requirement Satisfied by
[BSW12093] SPI Channel support SPI009 SPI010 SPI034 SPI041

[BSW12094] Chip select SPI009 SPI066

[BSW12256] Support of all Controller Peripherals SPI008 SPI009 SPI034

[BSW12257] Support of chained HW devices SPI008 SPI063 SPI009 SPI010 SPI034 SPI065
SPI066

[BSW13400] Scalable functionality SPI107 SPI110 Chapters 7.2.1 and 7.2.4

[BSW12025] Configuration of SPI general SW
and HW properties

SPI008 SPI009 SPI063 SPI052 SPI053

[BSW12179] SPI Channel linkage SPI009 SPI003 SPI064 SPI065

[BSW12026] Assignment of SPI Channel to SPI
HW Unit

SPI009

[BSW12197] Definition of data width SPI063

[BSW13401] Statically configurable functionali-
ties

SPI109 SPI111 SPI121 SPI122 SPI125

[BSW12258] Data shall be accessible device
individually

SPI003 SPI065 SPI009

[BSW12259] Support of different timing and HW
parameters

SPI009

[BSW12260] Support of different priorities of
sequences

SPI009 SPI064 SPI002 SPI014 SPI059 SPI093

[BSW12180] Handling of single SPI channels SPI003 SPI065

[BSW12181] Handling of linked SPI channels SPI065 SPI055

[BSW12032] Chip select mode – normal mode SPI009 SPI066

[BSW12033] Chip select mode – hold mode SPI009 SPI066

[BSW12198] Transfer one short data sequence
with variable data

SPI053 SPI077

[BSW12253] Transfer one short data sequence
with constant data

SPI052 SPI078

[BSW12199] Transfer data to several devices in
one Sequence

SPI065 SPI003 SPI064

[BSW12200] Read large data sequences from
one slave device using dummy send data

SPI053 SPI065 SPI003 SPI035 SPI077

[BSW12261] Read large data sequences from SPI053 SPI065 SPI003

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

19 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

one slave device using variable send data

[BSW12201] Read large data sequences from
several slave devices using dummy send data

SPI065 SPI003 SPI035 SPI077

[BSW12262] Read large data sequences from
several slave devices using variable send data

SPI053 SPI065 SPI003 SPI078

[BSW12202] Support of variable data length SPI053 SPI078

[BSW12024] Configuration of SPI HW Unit SPI008 SPI063

[BSW12150] Configuration of SPI asynchronous
SW and HW properties

SPI009 SPI064 SPI093

[BSW12108] Callback notification Chapter 8.6.3 SPI057 SPI118 SPI119 SPI120

[BSW12099] Asynchronous Read Functionality SPI020 SPI162 SPI163 SPI016 SPI020

[BSW12101] Asynchronous Write Functionality SPI020 SPI162 SPI163 SPI018 SPI020

[BSW12103] Asynchronous Read-Write Func-
tionality

SPI020 SPI053 SPI058 SPI067

[BSW12037] Job Management Strategy – Priority
controlled

Chapter 7.2.3, 7.2.4 and 7.3 SPI014 SPI059
SPI124 SPI127

[BSW12104] SPI status functionality SPI025 SPI026 SPI039

[BSW12170] Concurrent Channel access SPI042 SPI084

[BSW12152] Synchronous Read Function Chapter 7.2.2 SPI134 SPI016

[BSW12153] Synchronous Write Function Chapter 7.2.2 SPI134 SPI018

[BSW12154] Synchronous Write-Read Function Chapter 7.2.2 SPI134

[BSW12151] Job Management Strategy – Order
of requests

Chapter 7.2.2

SPI163
SPI163

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

20 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

7 Functional specification

The SPI (Serial Peripheral Interface) has a 4-wire synchronous serial interface. Data
communication is enabled with a Chip select wire (CS). Data is transmitted with a 3-
wire interface consisting of wires for serial data output (MOSI), serial data input (MI-
SO) and serial clock (CLOCK).

7.1 Overall view of functionalities and features

This specification is based on previous specification experiences and also based on
predominant identified use cases. The intention of this section is to summarize how
the scalability of this monolithic SPI Handler/Driver allows getting a simple software
module that fits simple needs up to a smart software module that fits enhanced
needs.

This document specifies the following 3 Levels of Scalable Functionality for the SPI
Handler/Driver:

 LEVEL 0, Simple Synchronous SPI Handler/Driver: the communication is
based on synchronous handling with a FIFO policy to handle multiple access-
es. Buffer usage is configurable to optimize and/or to take advantage of HW
capabilities.

MCAL

HAL

µC Simple SPI

Queued SPI

DMA SPI

Scalability of functionalities

SPI Handler/Driver

F
e

a
tu

re
 #

1

…

F
e

a
tu

re
 #

n

F
e

a
tu

re
 #

1

…

F
e

a
tu

re
 #

m

F
e

a
tu

re

#
1

…

F
e

a
tu

re

#
k

SPI API standardized

MCAL

HAL

µC Simple SPI

Queued SPI

DMA SPI

Scalability of functionalities

SPI Handler/Driver

F
e

a
tu

re
 #

1

…

F
e

a
tu

re
 #

n

F
e

a
tu

re
 #

1

…

F
e

a
tu

re
 #

m

F
e

a
tu

re

#
1

…

F
e

a
tu

re

#
k

SPI API standardized

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

21 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

 LEVEL 1, Basic Asynchronous SPI Handler/Driver: the communication is
based on asynchronous behavior and with a Priority policy to handle multiple
accesses. Buffer usage is configurable as for “Simple Synchronous” level.

 LEVEL 2, Enhanced (Synchronous/Asynchronous) SPI Handler/Driver:
the communication is based on asynchronous behavior or synchronous han-
dling, using either interrupts or polling mechanism selectable during execution
time and with a Priority policy to handle multiple accesses. Buffer usage is
configurable as for other levels.

SPI109: The SPI Handler/Driver’s level of scalable functionality shall always be stati-
cally configurable, i.e. configured at pre-compile time to allow the best source code
optimisation.

SPI110: The SpiLevelDelivered parameter shall be configured with one of the 3

authorized values according to the described levels (0, 1 or 2) to allow the selection
of the SPI Handler/Driver’s level of scalable functionality.

To improve the scalability, each level has optional features which are configurable

(ON / OFF) or selectable. These are described in detail in the dedicated chapters.

7.2 General behaviour

This chapter, on the one hand, introduces common behavior and configuration for all
levels. On the other, it specifies the behavior of each level and also the allowed op-
tional features.

SPI041: The SPI Handler/Driver interface configuration shall be based on Channels,
Jobs and Sequences as defined in this document (see chapter 2).

SPI034: The SPI Handler/Driver shall support one or more Channels, Jobs and Se-
quences to drive all kind of SPI compatible HW devices. Data transmissions shall be
done according to Channels, Jobs and Sequences configuration parameters.

SPI066: The Chip Select (CS) is attached to the Job definition. Chip Select shall be
handled during Job transmission and shall be released at the end of it1. This Chip
Select handling shall be done according to the Job configuration parameters.

Example of CS handling: Set the CS active at the beginning of Job transmission;
maintain it until the end of transmission of all Channels belonging to this Job after-
wards set the CS inactive.

A Channel is defined one time but it could belong to several Jobs according to the
user needs and this software specification.

1
 The software implementation to handle CS depends on several parameters such as microcontroller

capabilities and/or ECU hardware design. For this reason, the specification does not specify how to do
it but only how to configure a CS reference to a Job.

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

22 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

SPI065: A Job shall contain at least one Channel. If it contains more than one, all
Channels contained have the same Job properties during transmission and shall be
linked together statically.

A Job is defined one time but it could belong to several Sequences according to the
user needs and this software specification.

SPI003: A Sequence shall contain at least one Job. If it contains more than one, all
Jobs contained have the same Sequence properties during transmission and shall be
linked together statically.

A Channel used for a transmission should have its parameters configured but it is
allowed to pass Null pointers as source and destination pointers to generate a dum-
my transmission (See also [SPI028] & [SPI030]).

b
u
s
 i
s
 a

rb
it
ra

te
d
 b

y

jo
b
 n

CLOCK

MOSI

MISO

CSn

CSm

Channel x

D D D D

D DD D

D D D D D D

D D D D D D

Channel y Channel z

Job n Job m

D D D D D D

Sequence a

D D D D D D

CSo

...

linkage

b
u
s
 i
s
 r

e
le

a
s
e
d

s
c
h
e
d
u
lin

g
 a

c
c
o
rd

in
g

to
 j
o
b
 p

ri
o
ri
ty

 i
s
 d

o
n
e

a
ft

e
r
th

e
 tr

a
n
c
e
iv

in
g

d
a
ta

 o
f

C
h
a
n
n
e
l x

 i
s

fi
n
is

h
e
d
,

th
e
 n

e
x
t

C
h
a
n
n
e
l
o
f

jo
b
 n

 i
s

tr
a
n
c
e
iv

e
d
 w

it
h
o
u
t

re
le

a
s
in

g
 t

h
e
 b

u
s

b
u
s
 i
s
 a

rb
it
ra

te
d
 b

y

jo
b
 m

b
u
s
 i
s
 r

e
le

a
s
e
d

tr
a
n
s
m

is
s
io

n
 o

f

S
e
q
u
e
n
c
e
 a

 i
s

in
it
ia

te
d
 v

ia
 A

P
I c

a
ll

Channel data may differ from the hardware handled and user (client application) giv-
en. On the client side the data is handled in 8, 16 or 32bits mode (see chapter 8.2.5).
On the microcontroller side, the hardware may handle between 1 and 32bits or may
handle a fixed value (8 or 16bits) and this width is configurable for each Channel (see

SpiDataWidth).

SPI149: The SPI Handler/Driver shall take care of the differences between the frame
width of channel (SpiDataWidth) and data buffer width (size of Spi_DataType).

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

23 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

SPI289 If data buffer width (size of Spi_DataType) and data width (SpiDataWidth) is
exactly same (8 or 16 or 32 bits), the SPI Handler/Driver can send and receive data
without any bit changes straightforward.

SPI290 If data buffer width (size of Spi_DataType) is superior to data width (SpiDa-
taWidth), the data transmitted through the SPI Handler/Driver shall send the lower
part, ignore the upper part. Receive the lower part, extend with zero.

SPI291 If data buffer width (size of Spi_DataType) is inferior to data width (SpiDa-
taWidth), the data transmitted through the SPI Handler/Driver shall be sent as two
parts according to the memory alignment. The data received one by one shall be
consolidated according to the memory alignment.

This ensures that the user always gets the same interface.

7.2.1 Common configurable feature: Allowed Channel Buffers

In order to allow taking advantages of all microcontroller capabilities but also to allow
sending/receiving of data to/from a dedicated memory location, all levels have an
optional feature with respect to the location of Channel Buffers.

Hence, two main kinds of channel buffering can be used by configuration:

 Internally buffered Channels (IB): The buffer to transmit/receive data is provid-
ed by the Handler/Driver.

 Externally buffered Channels (EB): The buffer to transmit/receive is provided
by the user (statically and/or dynamically).

Both channel buffering methods may be used depending on the 3 use cases de-
scribed below:

 Usage 0: the SPI Handler/Driver manages only Internal Buffers.

 Usage 1: the SPI Handler/Driver manages only External Buffers.

 Usage 2: the SPI Handler/Driver manages both buffers types.

SPI111: The SpiChannelBuffersAllowed parameter shall be configured with

one of the 3 authorized values according to the described usage (0, 1 or 2) to select
which Channel Buffers the SPI Handler/Driver manages.

7.2.1.1 Behaviour of IB channels

The intention of Internal Buffer channels is to take advantage of microcontrollers in-
cluding this feature by hardware. Otherwise, this feature should be simulated by
software.

SPI052: For the IB Channels, the Handler/Driver shall provide the buffering but it is
not able to take care of the consistency of the data in the buffer during transmission.
The size of the Channel buffer is fixed.

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

24 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

SPI049: The channel data received shall be stored in 1 entry deep internal buffers by
channel. The SPI Handler/Driver shall not take care of the overwriting of these “re-
ceive” buffers by another transmission on the same channel.

SPI051: The channel data to be transmitted shall be copied in 1 entry deep internal
buffers by channel. The SPI Handler/Driver is not able to prevent the overwriting of
these “transmit” buffers by users during transmissions, see [SPI084].

7.2.1.2 Behaviour of EB channels

The intention of External Buffer channels is to reuse existing buffers that are located
outside. That means the SPI Handler/Driver does not monitor them.

SPI053: For EB Channels the application shall provide the buffering and shall take
care of the consistency of the data in the buffer during transmission.

SPI112: The size of the Channel buffer is either fixed or variable. A maximum size
for the Channel buffer shall be defined by the configuration but the buffer really pro-
vided by the application may have a different size.

7.2.1.3 Buffering channel usage

The following table provides information about the Channel characteristics:

IB Channels
It provides…  A more abstracted concept (buffering mechanisms are hidden)

 Actual and future optimal implementation taken profit of HW buffer facili-
ties (Given size of 256 bytes covers nowadays requirements).

Suggested
use …

 Daisy-chain implementation.

 Small data transfer devices (up to 10 Bytes).
EB Channels

It provides…  Efficient mechanism to support large stream communication.

 Send constant data out of ROM tables and spare RAM size.

 Send various data tables each for a different device (highly complex
ASICS with several integrated peripheral devices, also mixed signal
types, could exceed IB HW buffer size)

Suggested use
…

 Large streams communication.

 EEPROM communication.

 Control of complex HW Chips .

7.2.2 LEVEL 0, Simple Synchronous behaviour

The intention of this functionality level is to provide a Handler/Driver with a reduced
set of services to handle only simple synchronous transmissions. This is often the
case for ECU including simple SPI networks but also for ECU using high speed ex-
ternal devices.

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

25 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

A simple synchronous transmission means that the user calling the transmission ser-
vice is blocked during the ongoing transmission.

SPI160: The LEVEL 0 SPI Handler/Driver shall offer a synchronous transfer service
for SPI busses.

SPI161: For an SPI Handler/Driver operating in LEVEL 0, when there is no on-going

Sequence transmission, the SPI Handler/Driver shall be in the idle state (SPI_IDLE).

This monolithic SPI Handler/Driver is able to handle one to n SPI busses according
to the microcontroller used. Then SPI buses are assigned to Jobs and not to Se-
quences. Consequently, Jobs, on different SPI buses, could belong to the same Se-
quence. Therefore:

SPI114: The LEVEL 0 SPI Handler/Driver shall accept concurrent
Spi_SyncTransmit(), if the sequences to be transmitted use different bus and param-

eter SPI_SUPPORT_CONCURRENT_SYNC_TRANSMIT is enabled. This feature shall

be disabled per default. That means during a Sequence on-going transmission, all
requests to transmit another Sequence shall be rejected.

SPI115: The LEVEL 0 SPI Handler/Driver behaviour shall include the common fea-
ture: Allowed Channel Buffers, which is selected.

SPI084: If different Jobs (and consequently also Sequences) have common Chan-
nels, the SPI Handler/Driver’ environment shall ensure that read and/or write func-
tions are not called during transmission.

Read and write functions can not guarantee the data integrity while Channel data is
being transmitted.

7.2.3 LEVEL 1, Basic Asynchronous behavior

The intention of this functionality level is to provide a Handler/Driver with a reduced
set of services to handle asynchronous transmissions only. This is often the case for
ECU with functions related to SPI networks having different priorities but also for
ECU using low speed external devices.

An asynchronous transmission means that the user calling the transmission service
is not blocked when the transmission is on-going. Furthermore, the user can be noti-
fied at the end of transmission2.

SPI162: The LEVEL 1 SPI Handler/Driver shall offer an asynchronous transfer ser-
vice for SPI busses.

SPI163: For an SPI Handler/Driver operating in LEVEL 01, when there is no on-going

Sequence transmission, the SPI Handler/Driver shall be in the idle state (SPI_IDLE).

2
 This basic asynchronous behaviour might be implemented either by using interrupt or by polling

mechanism. This software design choice is not in the scope of this document, but only solution is re-
quired for the LEVEL 1.

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

26 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

This Handler/Driver will be used by several software modules which may be inde-
pendent from each other and also may belong to different layers. Therefore, priorities
will be assigned to Jobs in order to figure out specific cases of multiple accesses.
These cases usually occur within real time systems based on asynchronous mecha-
nisms.

SPI002: Jobs have priorities assigned. Jobs linked in a Sequence shall have de-
creasing priorities. That means the first Job shall have the highest priority of all Jobs
within the Sequence.

SPI093: Priority order of jobs shall be from the lower to the higher value defined,
higher value higher priority (from 0, the lower to 3, the higher, limited to 4 priority lev-
els see [SPI009]).

With reference to Jobs priorities, this Handler/Driver needs rules to make a decision
in these specific cases of multiple accesses.

SPI059: The SPI Handler/Driver scheduling method shall schedule Jobs in order to
send the highest priority Job first.

This monolithic SPI Handler/Driver is able to handle one to n SPI busses according
to the microcontroller used. But SPI busses are assigned to Jobs and not to Se-
quences. Consequently, Jobs on different SPI buses could belong to the same Se-
quence. Therefore:

SPI116: The LEVEL 1 SPI Handler/Driver may allow transmitting more than one Se-
quence at the same time. That means during a Sequence transmission, all requests
to transmit another Sequence shall be evaluated in order to accept to start a new
sequence or to reject it accordingly to the lead Job.

SPI117: The LEVEL 1 SPI Handler/Driver behaviour shall include the common fea-
ture: Allowed Channel Buffers, which is selected, and the configured asynchronous
feature: Interruptible Sequence (see next chapter).

SPI083: When a hardware error is detected, the SPI Handler/Driver shall stop the
current Sequence, report an error to the error hook of the DET or to the DEM as con-

figured3 and set the state of the Job to SPI_JOB_FAILED and the state of the Se-

quence to SPI_SEQ_FAILED.

SPI118: If Jobs and Sequences are configured with a specific end notification func-
tion, the SPI Handler/Driver shall call this notification function at the end of the
Job/Sequence transmission (see [SPI071] & [SPI073]).

SPI119: When a valid notification function pointer is configured (see [SPI071]), the
SPI Handler/Driver shall call this notification function at the end of a Job transmission

3
 Implementation and hardware capabilities related errors are specified in this document, Production

errors could be defined later during the software design stage.

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

27 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

regardless of the result of the Job transmission being either SPI_JOB_FAILED or

SPI_JOB_OK (rational: avoid deadlocks or endless loops).

SPI120: When a valid notification function pointer is configured (see [SPI073]), the
SPI Handler/Driver shall call this notification function at the end of a Sequence
transmission regardless of the result of the Sequence transmission being either

SPI_SEQ_FAILED, SPI_SEQ_OK or SPI_SEQ_CANCELLED (rational: avoid dead-

locks or endless loops).

7.2.4 Asynchronous configurable feature: Interruptible Sequences

In order to allow taking advantages of asynchronous transmission mechanism, level
1 and level 2 of this SPI Handler/Driver have an optional feature with respect to sus-
pending the transmission of Sequences.

Hence two main kinds of sequences can be used by configuration:

 Non-Interruptible Sequences, every Sequence transmission started is not
suspended by the Handler/Driver until the end of transmission.

 Mixed Sequences, according to its configuration, a Sequence transmission
started may be suspended by the Handler/Driver between two of their consec-
utives Jobs.

SPI121: The SPI Handler/Driver’s environment shall configure the SpiInter-

ruptibleSeqAllowed parameter (ON / OFF) in order to select which kind of Se-

quences the SPI Handler/Driver manages.

7.2.4.1 Behavior of Non-Interruptible Sequences

The intention of the Non-Interruptible Sequences feature is to provide a simple soft-
ware module based on a basic asynchronous mechanism, if only non blocking
transmissions should be used.

SPI122: Interruptible Sequences are not allowed within levels 1 and 2 of the

SPI/Handler/Driver: the SpiInterruptibleSeqAllowed parameter is switched

off (i.e. configured with value “OFF”).

SPI123: When the SPI Handler/Driver is configured not allowing inyerruptible
Sequences, all Sequences declared are considered as Non-Interruptible Sequences.

That means, their dedicated parameter SpiInterruptibleSequence (see SPI064

& SPI106) can be omitted or the FALSE value should be used as default4.

SPI124: According to [SPI116] and [SPI122] requirements, the SPI Handler/Driver is
not allowed to suspend a Sequence transmission already started in favour of another
Sequence.

4
 The intention of this requirement is not to enforce any implementation solution in comparison with

another one. But, it is only to ensure that anyhow, all Sequences will be considered as Non Interrupti-
ble Sequences.

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

28 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

7.2.4.2 Behavior of Mixed Sequences

The intention of the Mixed Sequences feature is to provide a software module with
specific asynchronous mechanisms, if, for instance, very long Sequences that could
or should be suspended by others with higher priority are used.

SPI125: Interruptible Sequences are allowed within levels 1 and 2 of SPI Han-

dler/Driver: the SpiInterruptibleSeqAllowed parameter is switched on (i.e.

configured with value “ON”).

SPI126: When the SPI Handler/Driver is configured allowing interruptible Se-

quences, all Sequences declared shall have their dedicated parameter SpiInter-

ruptibleSequence (see SPI064 & SPI106) to identify whether the Sequence can

be suspended during transmission.

SPI014: In case of a Sequence configured as Interruptible Sequence and according
to [SPI125] requirement, the SPI Handler/Driver is allowed to suspend an already
started Sequence transmission in favour of another Sequence with a higher priority
Job (see SPI002 & SPI093). That means, at the end of a Job transmission (that be-
longs to the interruptible sequence) with another Sequence transmit request pending,
the SPI Handler/Driver shall perform a rescheduling in order to elect the next Job to
transmit.

SPI127: In case of a Sequence configured as Non-Interruptible Sequence and ac-
cording to requirement [SPI125], the SPI Handler/Driver is not allowed to suspend
this already started Sequence transmission in favour of another Sequence.

SPI080: When using Interruptible Sequences, the caller must be aware that if the
multiple Sequences access the same Channels, the data for these Channels may be
overwritten by the highest priority Job accessing each Channel.

7.2.5 LEVEL 2, Enhanced behaviour

The intention of this functionality level is to provide a Handler/Driver with a complete
set of services to handle synchronous and asynchronous transmissions. This could
be the case for ECU with a lot of functions related to SPI networks having different
priorities but also for ECU using external devices with different speeds.

Handling asynchronous and synchronous transmissions means that the microcontrol-
ler for which this software module is dedicated has to provide more than one SPI bus
(see [SPI108]). In fact, the goal is to support SPI buses using a so-called synchro-
nous driver and to support other SPI buses using a so-called asynchronous driver.

SPI128: The LEVEL 2 SPI Handler/Driver shall offer a synchronous transfer service
for a dedicated SPI bus and it shall also offer an asynchronous transfer service for
other SPI busses. When there is no on-going Sequence transmission, the SPI Han-

dler/Driver shall be in idle state (SPI_IDLE).

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

29 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

SPI129: The SPI bus dedicated for synchronous transfers is prearranged. It means
that the bus is selected for synchronous transfers. The selected bus shall be pub-
lished by supplier of this software module.

This functionality level, based on a mixed usage of synchronous transmission on one
prearranged SPI bus and asynchronous transmission on others, generates re-
strictions on configuration and usage of Sequences and Jobs.

SPI130: The so-called synchronous Sequences shall only be composed of Jobs that
are associated to the prearranged SPI bus (see [SPI094]). These Sequences shall
be used with synchronous services5 only.

SPI131: Jobs associated with the prearranged SPI bus (see [SPI094]) shall not be-
long to Sequences containing Jobs associated with another SPI bus. In other words,
mixed Sequences (synchronous with asynchronous Jobs) shall not be allowed.

Usually, depending on software design, asynchronous end transmission may be de-
tected by polling or interrupt mechanisms. This level of functionality proposes both
mechanisms that are selectable during execution time.

SPI155: The SPI Handler/Driver LEVEL 2 shall implement one polling mechanism
mode and one interrupt mechanism mode for SPI busses handled asynchronously.

SPI156: Both the polling mechanism and interrupt mechanism modes for SPI busses
shall be selectable during execution time (see [SPI188]).

SPI132: The requirements for LEVEL 0 applies to synchronous behaviour and the
requirements for LEVEL 1 applies to asynchronous behaviour.

SPI140:If SpiHwUnitSynchronous is set to "Synchronous" for a job, the associat-

ed bus defined by SpiHwUnit behave same as prearranged bus. It means that all

requirements valid for prearranged bus will be valid also for the bus assigned to this
job.

7.3 Scheduling Advices

For asynchronous levels, LEVEL 1 and LEVEL 2, the SPI Handler/Driver can call end
notification functions at the end of a Job and/or Sequence transmission (see
[SPI118]). In a second time, in case of interruptible Sequences (that could be sus-
pended), if another Sequence transmit request is pending, a rescheduling is also
done by the SPI Handler/Driver in order to elect the next Job to transmit (see
[SPI014]).

SPI088: In case these two actions are fully done by software; the order between
these shall be first scheduling and then the call of end notification function. Other-

5
 The second part of this requirement is aim at SPI Handler/Driver users. But, it is up to the software

module supplier to implement mechanisms in order to prevent potential misuses by users.

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

30 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

wise, if they are done by hardware and the order could not be configured as required,
the order shall be completely documented.

7.4 Error classification

SPI004: Depending on its build version (development/production mode), the SPI
Handler/driver shall be able to detect the errors listed in the table below:

Type or error Relevance Related error code Value(hex)

API service called
with wrong param-
eter

Development SPI_E_PARAM_CHANNEL

SPI_E_PARAM_JOB

SPI_E_PARAM_SEQ

SPI_E_PARAM_LENGTH

SPI_E_PARAM_UNIT

0x0A

0x0B

0x0C

0x0D

0x0E

API service used
without module
initialization

Development SPI_E_UNINIT 0x1A

Services called in
a wrong sequence

Development SPI_E_SEQ_PENDING 0x2A

Synchronous
transmission ser-
vice called at
wrong time

Development SPI_E_SEQ_IN_PROCESS 0x3A

API SPI_Init ser-
vice called while
the SPI driver has
already been ini-
tialized

Development SPI_E_ALREADY_INITIALIZED 0x4A

SPI097: Values for production code Event Ids are assigned externally by the configu-
ration of the Dem. They are published in the file Dem_IntErrId.h and included via
Dem.h.

SPI007: Additional errors that are detected because of specific implementation
and/or specific hardware properties shall be added to the SPI device specific imple-
mentation description. The classification and enumeration shall be compatible to the
errors listed above [SPI004].

SPI098: Development error values are of type uint8.

7.5 Error detection

SPI005: The detection of all development errors is configurable (On / Off) at pre-

compile time. The switch SpiDevErrorDetect (see chapter 10) shall activate

or deactivate the detection of all development errors.

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

31 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

SPI029: If the switch SpiDevErrorDetect is enabled API parameter checking is

also enabled. The detailed description of the detected errors can be found in chapter
7.5.1.

SPI099: The detection of production code errors cannot be switched off.

7.5.1 API parameter checking

SPI031: The API parameter Channel shall have a value within the defined channels

in the initialization data structure, and the correct type of channel (IB or EB) has to be

used with services. Related error value: SPI_E_PARAM_CHANNEL. Otherwise, the

service is not done and the return value shall be E_NOT_OK.

SPI032: The API parameters Sequence and Job shall have values within the

specified range of values. Related errors values: SPI_E_PARAM_SEQ or

SPI_E_PARAM_JOB. Otherwise, the service is not done and, depending on services,

either the return value shall be E_NOT_OK or a failed result (SPI_JOB_FAILED or

SPI_SEQ_FAILED).

SPI060: The API parameter Length of data shall have a value within the specified

buffer maximum values (see SPI063). Related error value: SPI_E_PARAM_LENGTH.

Otherwise, the service is not done and the return value shall be E_NOT_OK.

SPI143: The API parameter HWUnit shall have a value within the specified range of

values. Related error value: SPI_E_PARAM_UNIT. Otherwise, the service is not done

and the return value shall be SPI_UNINIT.

7.5.2 SPI state checking

SPI046: If the SPI Handler/Driver’s environment calls any API function before initiali-

zation, an error should be reported to the DET with the error value SPI_E_UNINIT

according to the configuration (see chapter 7.5). In this case, the SPI Handler/Driver
shall not process the invoked function but, depending on the invoked function, shall

either return the value E_NOT_OK or a failed result (SPI_JOB_FAILED or

SPI_SEQ_FAILED).

SPI233: The calling of the routine SPI_Init() while the SPI driver is already initialized

will cause a development error SPI_E_ALREADY_INITIALIZED and the desired

functionality shall be left without any action.

7.6 Error notification

SPI100: Detected development errors shall be reported to the error hook of the De-

velopment Error Tracer (DET) if the pre-processor switch SpiDevErrorDetect is

set (see chapter 10).

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

32 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

SPI006: Production relevant errors shall be reported to the Diagnostic Event Manag-
er (DEM). They shall not be used as the return value of the called function.

7.7 Version check

SPI069: Spi.c shall check if the correct version of Spi.h is included. This shall be

done by a pre-processor check.

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

33 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

8 API specification

8.1 Imported types

In this chapter all types included from the following files are listed:

SPI174:

Module Imported Type

Dem Dem_EventIdType

Std_Types Std_ReturnType

Std_VersionInfoType

8.2 Type definitions

8.2.1 Spi_ConfigType
Name: Spi_ConfigType

Type: Structure

Range: Implementation

Specific

The contents of the initialization data structure are SPI specif-
ic.

Description: This type of the external data structure shall contain the initialization data for the
SPI Handler/Driver.

SPI008: The type Spi_ConfigType is an external data structure and shall contain

the initialization data for the SPI Handler/Driver. It shall contain:

 MCU dependent properties for SPI HW units

 Definition of Channels

 Definition of Jobs

 Definition of Sequences

SPI063: For the type Spi_ConfigType, the definition for each Channel shall con-

tain:

 Buffer usage with EB/IB Channel

 Transmit data width (1 up to 32 bits)

 Number of data buffers for IB Channels (at least 1) or it is the maximum of da-
ta for EB Channels (a value of 0 makes no sense)

 Transfer start LSB or MSB

 Default transmit value

SPI009: For the type Spi_ConfigType, the definition for each Job shall contain:

 Assigned SPI HW Unit

 Assigned Chip Select pin (it is possible to assign no pin)

 Chip select functionality on/off

 Chip select pin polarity high or low

 Baud rate

 Timing between clock and chip select

 Shift clock idle low or idle high

 Data shift with leading or trailing edge

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

34 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

 Priority (4 levels are available from 0, the lower to 3, the higher)

 Job finish end notification function

 MCU dependent properties for the Job (only if needed)

 Fixed link of Channels (at least one)

SPI064: For the type Spi_ConfigType, the definition for each Sequence shall con-

tain:

 Collection of Jobs (at least one)

 Interruptible or not interruptible after each Job

 Sequence finish end notification function

SPI010: For the type Spi_ConfigType, the configuration will map the Jobs to the

different SPI hardware units and the devices.

8.2.2 Spi_StatusType
Name: Spi_StatusType

Type: Enumeration

Range: SPI_UNINIT The SPI Handler/Driver is not initialized or not usable.

SPI_IDLE The SPI Handler/Driver is not currently transmitting any Job.

SPI_BUSY The SPI Handler/Driver is performing a SPI Job (transmit).

Description: This type defines a range of specific status for SPI Handler/Driver.

SPI061: The type Spi_StatusType defines a range of specific status for SPI Han-

dler/Driver. It informs about the SPI Handler/Driver status and can be obtained calling

the API service Spi_GetStatus or the configurable Spi_GetHWUnitStatus.

SPI011: After reset, the type Spi_StatusType shall have the default value

SPI_UNINIT with the numeric value 0.

8.2.3 Spi_JobResultType
Name: Spi_JobResultType

Type: Enumeration

Range: SPI_JOB_OK The last transmission of the Job has been finished success-
fully.

SPI_JOB_PENDING The SPI Handler/Driver is performing a SPI Job. The mean-
ing of this status is equal to SPI_BUSY.

SPI_JOB_FAILED The last transmission of the Job has failed.

Description: This type defines a range of specific Jobs status for SPI Handler/Driver.

SPI062: The type Spi_JobResultType defines a range of specific Jobs status for SPI
Handler/Driver. It informs about a SPI Handler/Driver Job status and can be obtained

calling the API service Spi_GetJobResult with the Job ID.

SPI012: After reset, the type Spi_JobResultType shall have the default value

SPI_JOB_OK with the numeric value 0.

8.2.4 Spi_SeqResultType

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

35 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

Name: Spi_SeqResultType

Type: Enumeration

Range: SPI_SEQ_OK The last transmission of the Sequence has been finished
successfully.

SPI_SEQ_PENDING The SPI Handler/Driver is performing a SPI Sequence. The
meaning of this status is equal to SPI_BUSY.

SPI_SEQ_FAILED The last transmission of the Sequence has failed.

SPI_SEQ_CANCELLED The last transmission of the Sequence has been cancelled
by user.

Description: This type defines a range of specific Sequences status for SPI Handler/Driver.

SPI019: The type Spi_SeqResultType defines a range of specific Sequences sta-

tus for SPI Handler/Driver. It informs about a SPI Handler/Driver Sequence status

and can be obtained calling the API service Spi_GetSequenceResult with the

Sequence ID.

SPI017: After reset, the type Spi_SeqResultType shall have the default value

SPI_SEQ_OK with the numeric value 0.

8.2.5 Spi_DataType
Name: Spi_DataType

Type: Unsigned Integer

Range: 8..32 bit -- This is implementation specific but not all values may be
valid within the type.This type shall be chosen in order to
have the most efficient implementation on a specific mi-
crocontroller platform.

Description: Type of application data buffer elements.

SPI164: The type Spi_DataType refers to application data buffer elements.

8.2.6 Spi_NumberOfDataType
Name: Spi_NumberOfDataType

Type: uint16

Description: Type for defining the number of data elements of the type Spi_DataType to send
and / or receive by Channel

SPI165: The type Spi_NumberOfDataType is used for defining the number of data

elements of the type Spi_DataType to send and / or receive by Channel.

8.2.7 Spi_ChannelType
Name: Spi_ChannelType

Type: uint8

Description: Specifies the identification (ID) for a Channel.

SPI166: The type Spi_ChannelType is used for specifying the identification (ID) for

a Channel.

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

36 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

8.2.8 Spi_JobType
Name: Spi_JobType

Type: uint16

Description: Specifies the identification (ID) for a Job.

SPI167: The type Spi_JobType is used for specifying the identification (ID) for a

Job.

8.2.9 Spi_SequenceType
Name: Spi_SequenceType

Type: uint8

Description: Specifies the identification (ID) for a sequence of jobs.

SPI168: The type Spi_SequenceType is used for specifying the identification (ID)

for a sequence of jobs.

8.2.10 Spi_HWUnitType
Name: Spi_HWUnitType

Type: uint8

Description: Specifies the identification (ID) for a SPI Hardware microcontroller peripheral
(unit).

SPI169: The type Spi_HWUnitType is used for specifying the identification (ID) for

a SPI Hardware microcontroller peripheral (unit).

8.2.11 Spi_AsyncModeType
Name: Spi_AsyncModeType

Type: Enumeration

Range: SPI_POLLING_MODE The asynchronous mechanism is ensured by polling, so
interrupts related to SPI busses handled asynchronously
are disabled.

SPI_INTERRUPT_MODE The asynchronous mechanism is ensured by interrupt, so
interrupts related to SPI busses handled asynchronously
are enabled.

Description: Specifies the asynchronous mechanism mode for SPI busses handled asynchro-
nously in LEVEL 2.

SPI170: The type Spi_AsyncModeType is used for specifying the asynchronous

mechanism mode for SPI busses handled asynchronously in LEVEL 2.

SPI150: The type Spi_AsyncModeType is made available or not depending on the

pre-compile time parameter: SpiLevelDelivered. This is only relevant for LEVEL

2.

8.3 Function definitions

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

37 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

8.3.1 Spi_Init

SPI175:
Service name: Spi_Init

Syntax: void Spi_Init(

 const Spi_ConfigType* ConfigPtr

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): ConfigPtr Pointer to configuration set

Parameters (in-
out):

None

Parameters (out): None

Return value: None

Description: Service for SPI initialization.

SPI013: The function Spi_Init shall initialize all SPI relevant registers with the

values of the structure referenced by the parameter ConfigPtr.

SPI082: The function Spi_Init shall define default values for required parameters

of the structure referenced by the ConfigPtr. For example: all buffer pointers shall

be initialized as a null value pointer.

SPI015: After the module initialization using the function Spi_Init, the SPI Han-

dler/Driver shall set its state to SPI_IDLE, the Sequences result to SPI_SEQ_OK and

the jobs result to SPI_JOB_OK.

SPI151: For LEVEL 2 (see chapter 7.2.5 and SPI103), the function Spi_Init shall

set the SPI Handler/Driver asynchronous mechanism mode to SPI_POLLING_MODE

by default. Interrupts related to SPI busses shall be disabled.

A re-initialization of a SPI Handler/Driver by executing the Spi_Init() function requires
a de-initialization before by executing a Spi_DeInit().

Parameters of the function Spi_Init shall be checked as it is explained in section

API parameter checking

8.3.2 Spi_DeInit

SPI176:
Service name: Spi_DeInit

Syntax: Std_ReturnType Spi_DeInit(

)

Service ID[hex]: 0x01

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters (in- None

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

38 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

out):

Parameters (out): None

Return value:
Std_ReturnType E_OK: de-initialisation command has been accepted

E_NOT_OK: de-initialisation command has not been accepted

Description: Service for SPI de-initialization.

SPI021: The function Spi_DeInit shall de-initialization SPI Handler/Driver. In case

of a SPI_BUSY state, the SPI Handler/Driver shall reject this command. Otherwise,

the De-Initialization function shall put all already initialized microcontroller SPI pe-
ripherals into the same state such as Power On Reset.

SPI022: After the module de-initialization using the function Spi_DeInit, the SPI

Handler/Driver shall set its state to SPI_UNINIT.

The SPI Handler/Driver shall have been initialized before the function Spi_DeInit

is called, otherwise see [SPI046].

8.3.3 Spi_WriteIB

SPI177:
Service name: Spi_WriteIB

Syntax: Std_ReturnType Spi_WriteIB(

 Spi_ChannelType Channel,

 const Spi_DataType* DataBufferPtr

)

Service ID[hex]: 0x02

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in):

Channel Channel ID.

DataBufferPtr Pointer to source data buffer. If this pointer is null, it is assumed
that the data to be transmitted is not relevant and the default
transmit value of this channel will be used instead.

Parameters (in-
out):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: write command has been accepted

E_NOT_OK: write command has not been accepted

Description: Service for writing one or more data to an IB SPI Handler/Driver Channel specified
by parameter.

SPI018: The function Spi_WriteIB shall write one or more data to an IB SPI

Handler/Driver Channel specified by the respective parameter.

SPI024: The function Spi_WriteIB shall take over the given parameters, and save

the pointed data to the internal buffer defined with the function Spi_Init.

SPI023: If the given parameter “DataBufferPtr” is null, the function Spi_WriteIB

shall assume that the data to be transmitted is not relevant and the default transmit
value of the given channel shall be used instead.

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

39 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

SPI137: The function Spi_WriteIB shall be pre-compile time configurable by the

parameter SpiChannelBuffersAllowed. This function is only relevant for Chan-

nels with IB.

Parameters of the function Spi_WriteIB shall be checked as it is explained in sec-

tion API parameter checking.

The SPI Handler/Driver shall have been initialized before the function Spi_WriteIB

is called, otherwise see [SPI046].

8.3.4 Spi_AsyncTransmit

SPI178:
Service name: Spi_AsyncTransmit

Syntax: Std_ReturnType Spi_AsyncTransmit(

 Spi_SequenceType Sequence

)

Service ID[hex]: 0x03

Sync/Async: Asynchronous

Reentrancy: Reentrant

Parameters (in): Sequence Sequence ID.

Parameters (in-
out):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: Transmission command has been accepted

E_NOT_OK: Transmission command has not been accepted

Description: Service to transmit data on the SPI bus.

SPI020: The function Spi_AsyncTransmit shall take over the given parameter,

initiate a transmission, set the SPI Handler/Driver status to SPI_BUSY, set the se-

quence result to SPI_SEQ_PENDING and return.

SPI157: When the function Spi_AsyncTransmit is called, the SPI Handler/Driver

shall handle the Job results when the transmission of Jobs is started (result set to

SPI_JOB_PENDING) and/or ended (set either to SPI_JOB_OK or

SPI_JOB_FAILED).

SPI081: When the function Spi_AsyncTransmit is called and the requested Se-

quence is already in state SPI_SEQ_PENDING, the SPI Handler/Driver shall not take

in account this new request and this function shall return with value E_NOT_OK. In

this case and according to [SPI100], the SPI Handler/Driver shall report the

SPI_E_SEQ_PENDING error.

SPI086: When the function Spi_AsyncTransmit is called and the requested Se-

quence shares Jobs with another sequence that is in the state SPI_SEQ_PENDING,

the SPI Handler/Driver shall not take into account this new request and this function

shall return the value E_NOT_OK. In this case and according to [SPI100], the SPI

Handler/Driver shall report the SPI_E_SEQ_PENDING error.

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

40 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

SPI035: When the function Spi_AsyncTransmit is used with EB and the source

data pointer has been provided as NULL using the Spi_SetupEB method, the de-

fault transmit data configured for each channel will be transmitted. (See also
[SPI028])

SPI036: When the function Spi_AsyncTransmit is used with EB and the destina-

tion data pointer has been provided as NULL using the Spi_SetupEB method, the

SPI Handler/Driver shall ignore receiving data (See also [SPI030])

SPI055: When the function Spi_AsyncTransmit is used for a Sequence with

linked Jobs, the function shall transmit from the first Job up to the last Job in the se-
quence.

SPI057: At the end of a sequence transmission initiated by the function

Spi_AsyncTransmit and if configured, the SPI Handler/Driver shall invoke the se-

quence notification call-back function after the last Job end notification if this one is
also configured.

SPI133: The function Spi_AsyncTransmit is pre-compile time selectable by the

configuration parameter SpiLevelDelivered. This function is only relevant for

LEVEL 1 and LEVEL 2.

SPI173: The SPI Handler/Driver’s environment shall call the function

Spi_AsyncTransmit after a function call of Spi_SetupEB for EB Channels or a

function call of Spi_WriteIB for IB Channels but before the function call

Spi_ReadIB.

Parameters of the function Spi_AsyncTransmit shall be checked as explained in

section API parameter checking

The SPI Handler/Driver shall have been initialized before the function

Spi_AsyncTransmit is called otherwise see [SPI046].

8.3.5 Spi_ReadIB

SPI179:
Service name: Spi_ReadIB

Syntax: Std_ReturnType Spi_ReadIB(

 Spi_ChannelType Channel,

 Spi_DataType* DataBufferPointer

)

Service ID[hex]: 0x04

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): Channel Channel ID.

Parameters (in-
out):

None

Parameters (out): DataBufferPointer Pointer to destination data buffer in RAM

Return value:
Std_ReturnType E_OK: read command has been accepted

E_NOT_OK: read command has not been accepted

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

41 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

Description: Service for reading synchronously one or more data from an IB SPI Handler/Driver
Channel specified by parameter.

SPI016: The function Spi_ReadIB shall read synchronously one or more data from

an IB SPI Handler/Driver Channel specified by the respective parameter.

SPI027: The SPI Handler/Driver’s environment shall call the function Spi_ReadIB

after a Transmit method call to have relevant data within IB Channel.

SPI138: The function Spi_ReadIB is pre-compile time configurable by the parame-

ter SpiChannelBuffersAllowed. This function is only relevant for Channels with

IB.

Parameters of the function Spi_ReadIB shall be checked as it is explained in sec-

tion API parameter checking.

The SPI Handler/Driver shall have been initialized before the function Spi_ReadIB

is called otherwise see [SPI046].

8.3.6 Spi_SetupEB

SPI180:
Service name: Spi_SetupEB

Syntax: Std_ReturnType Spi_SetupEB(

 Spi_ChannelType Channel,

 const Spi_DataType* SrcDataBufferPtr,

 Spi_DataType* DesDataBufferPtr,

 Spi_NumberOfDataType Length

)

Service ID[hex]: 0x05

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in):

Channel Channel ID.

SrcDataBufferPtr Pointer to source data buffer.

DesDataBufferPtr Pointer to destination data buffer in RAM.

Length Length of the data to be transmitted from SrcdataBufferPtr
and/or received from DesDataBufferPtr
Min.: 1
Max.: Max of data specified at configuration for this channel

Parameters (in-
out):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: Setup command has been accepted

E_NOT_OK: Setup command has not been accepted

Description: Service to setup the buffers and the length of data for the EB SPI Handler/Driver
Channel specified.

SPI058: The function Spi_SetupEB shall set up the buffers and the length of data

for the specific EB SPI Handler/Driver Channel.

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

42 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

SPI067: The function Spi_SetupEB shall update the buffer pointers and length at-

tributes of the specified Channel with the provided values.

As these attributes are persistent, they will be used for all succeeding calls to a
Transmit method (for the specified Channel).

SPI028: When the SPI Handler/Driver’s environment is calling the function

Spi_SetupEB with the parameter SrcDataBufferPtr being a Null pointer, the

function shall transmit the default transmit value configured for the channel after a
Transmit method is requested. (See also [SPI035])

SPI030: When the function Spi_SetupEB is called with the parameter

DesDataBufferPtr being a Null pointer, the SPI Handler/Driver shall ignore the

received data after a Transmit method is requested.(See also [SPI036])

SPI037: The SPI Handler/Driver’s environment shall call the Spi_SetupEB function

once for each Channel with EB declared before the SPI Handler/Driver’s environment
calls a Transmit method on them.

SPI139: The function Spi_SetupEB is pre-compile time configurable by the parame-

ter SpiChannelBuffersAllowed. This function is only relevant for Channels with

EB.

Parameters of the function Spi_SetupEB shall be checked as it is explained in sec-

tion API parameter checking.

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

43 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

The SPI Handler/Driver shall have been initialized before the function Spi_SetupEB

is called otherwise see [SPI046].

8.3.7 Spi_GetStatus

SPI181:
Service name: Spi_GetStatus

Syntax: Spi_StatusType Spi_GetStatus(

)

Service ID[hex]: 0x06

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): None

Parameters (in-
out):

None

Parameters (out): None

Return value: Spi_StatusType Spi_StatusType

Description: Service returns the SPI Handler/Driver software module status.

SPI025: The function Spi_GetStatus shall return the SPI Handler/Driver software

module status.

8.3.8 Spi_GetJobResult

SPI182:
Service name: Spi_GetJobResult

Syntax: Spi_JobResultType Spi_GetJobResult(

 Spi_JobType Job

)

Service ID[hex]: 0x07

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): Job Job ID. An invalid job ID will return an undefined result.

Parameters (in-
out):

None

Parameters (out): None

Return value: Spi_JobResultType Spi_JobResultType

Description: This service returns the last transmission result of the specified Job.

SPI026: The function Spi_GetJobResult shall return the last transmission result of

the specified Job.

SPI038: The SPI Handler/Driver’s environment shall call the function

Spi_GetJobResult to inquire whether the Job transmission has succeeded

(SPI_JOB_OK) or failed (SPI_JOB_FAILED).

NOTE: Every new transmit job that has been accepted by the SPI Handler/Driver

overwrites the previous job result with SPI_JOB_PENDING.

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

44 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

Parameters of the function Spi_GetJobResult shall be checked as it is explained

in section API parameter checking.

If SPI Handler/Driver has not been initialized before the function

Spi_GetJobResult is called, the return value is undefined.

8.3.9 Spi_GetSequenceResult

SPI183:
Service name: Spi_GetSequenceResult

Syntax: Spi_SeqResultType Spi_GetSequenceResult(

 Spi_SequenceType Sequence

)

Service ID[hex]: 0x08

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in):
Sequence Sequence ID. An invalid sequence ID will return an undefined

result.

Parameters (in-
out):

None

Parameters (out): None

Return value: Spi_SeqResultType Spi_SeqResultType

Description: This service returns the last transmission result of the specified Sequence.

SPI039: The function Spi_GetSequenceResult shall return the last transmission

result of the specified Sequence.

SPI042: The SPI Handler/Driver’s environment shall call the function

Spi_GetSequenceResult to inquire whether the full Sequence transmission has

succeeded (SPI_SEQ_OK) or failed (SPI_SEQ_FAILED).

Note:

- Every new transmit sequence that has been accepted by the SPI Han-

dler/Driver overwrites the previous sequence result with SPI_SEQ_PENDING.

- If the SPI Handler/Driver has not been initialized before the function

Spi_GetSequenceResult is called, the return value is undefined.

Parameters of the function Spi_GetSequenceResult shall be checked as it is ex-

plained in section API parameter checking.

8.3.10 Spi_GetVersionInfo

SPI184:
Service name: Spi_GetVersionInfo

Syntax: void Spi_GetVersionInfo(

 Std_VersionInfoType* versioninfo

)

Service ID[hex]: 0x09

Sync/Async: Synchronous

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

45 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

Reentrancy: Non Reentrant

Parameters (in): None

Parameters (in-
out):

None

Parameters (out): versioninfo Pointer to where to store the version information of this module.

Return value: None

Description: This service returns the version information of this module.

SPI101: The function Spi_GetVersionInfo shall return the version information of

the module. The version information includes:
- Module Id
- Vendor Id
- Vendor specific version numbers (BSW00407).

SPI196: If source code for caller and callee of Spi_GetVersionInfo is available,

the SPI Handler/Driver should realize Spi_GetVersionInfo as a macro, defined in

the module’s header file.

SPI102: The function Spi_GetVersionInfo is pre-compile time configurable

On/Off by the configuration parameter SpiVersionInfoApi.

8.3.11 Spi_SyncTransmit

SPI185:
Service name: Spi_SyncTransmit

Syntax: Std_ReturnType Spi_SyncTransmit(

 Spi_SequenceType Sequence

)

Service ID[hex]: 0x0a

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): Sequence Sequence ID.

Parameters (in-
out):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: Transmission command has been accepted

E_NOT_OK: Transmission command has not been accepted

Description: Service to transmit data on the SPI bus

SPI134: The function Spi_SyncTransmit shall take over the given parameter, set

the SPI Handler/Driver status to SPI_BUSY, set the sequence result to

SPI_SEQ_PENDING, set the first job result to SPI_JOB_PENDING and perform the

transmission.

SPI135: When the function Spi_SyncTransmit is called while a sequence is on

transmission and SPI_SUPPORT_CONCURRENT_SYNC_TRANSMIT is disabled or an-

other sequence is on transmition on same bus, the SPI Handler/Driver shall not take
into account this new transmission request and the function shall return the value

E_NOT_OK (see [SPI114]). In this case and according to [SPI100], the SPI Han-

dler/Driver shall report the SPI_E_SEQ_IN_PROCESS error.

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

46 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

SPI136: The function Spi_SyncTransmit is pre-compile time selectable by the

configuration parameter SpiLevelDelivered. This function is only relevant for

LEVEL 0 and LEVEL 2.

Parameters of the function Spi_SyncTransmit shall be checked as it is explained

in section API parameter checking

8.3.12 Spi_GetHWUnitStatus

SPI186:
Service name: Spi_GetHWUnitStatus

Syntax: Spi_StatusType Spi_GetHWUnitStatus(

 Spi_HWUnitType HWUnit

)

Service ID[hex]: 0x0b

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): HWUnit SPI Hardware microcontroller peripheral (unit) ID.

Parameters (in-
out):

None

Parameters (out): None

Return value: Spi_StatusType Spi_StatusType

Description: This service returns the status of the specified SPI Hardware microcontroller pe-
ripheral.

SPI141: The function Spi_GetHWUnitStatus shall return the status of the speci-

fied SPI Hardware microcontroller peripheral. The SPI Handler/Driver’s environment
shall call this function to inquire whether the specified SPI Hardware microcontroller
peripheral is SPI_IDLE or SPI_BUSY.

SPI142: The function Spi_GetHWUnitStatus is pre-compile time configurable On

/ Off by the configuration parameter SpiHwStatusApi.

Parameters of the function Spi_GetHWUnitStatus shall be checked as it is ex-

plained in section API parameter checking.

If SPI Handler/Driver has not been initialized before the function

Spi_GetHWUnitStatus is called, the return value is undefined.

8.3.13 Spi_Cancel

SPI187:
Service name: Spi_Cancel

Syntax: void Spi_Cancel(

 Spi_SequenceType Sequence

)

Service ID[hex]: 0x0c

Sync/Async: Asynchronous

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

47 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

Reentrancy: Reentrant

Parameters (in): Sequence Sequence ID.

Parameters (in-
out):

None

Parameters (out): None

Return value: None

Description: Service cancels the specified on-going sequence transmission.

SPI144: The function Spi_Cancel shall cancel the specified on-going sequence

transmission without cancelling any Job transmission and set the sequence result to

SPI_SEQ_CANCELLED.

With other words, the Spi_Cancel function stops a Sequence transmission after a

(possible) on transmission Job ended and before a (potential) next Job transmission
starts.

SPI145: When the sequence is cancelled by the function Spi_Cancel and if con-

figured, the SPI Handler/Driver shall call the sequence notification call-back function
instead of starting a potential next job belonging to it.

SPI146: The function Spi_Cancel is pre-compile time configurable On / Off by the

configuration parameter SpiCancelApi.

The SPI Handler/Driver is not responsible on external devices damages or undefined
state due to cancelling a sequence transmission. It is up to the SPI Handler/Driver’s
environment to be aware to what it is doing!

8.3.14 Spi_SetAsyncMode

SPI188:
Service name: Spi_SetAsyncMode

Syntax: Std_ReturnType Spi_SetAsyncMode(

 Spi_AsyncModeType Mode

)

Service ID[hex]: 0x0d

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): Mode New mode required.

Parameters (in-
out):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: Setting command has been done

E_NOT_OK: setting command has not been accepted

Description: Service to set the asynchronous mechanism mode for SPI busses handled asyn-
chronously.

SPI152: The function Spi_SetAsyncMode according to the given parameter shall

set the asynchronous mechanism mode for SPI channels configured to behave
asynchronously and the synchronous mechanism mode for the SPI channels config-
ured to behave synchronously.

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

48 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

SPI171: If the function Spi_SetAsyncMode is called while the SPI Handler/Driver

status is SPI_BUSY and an asynchronous transmition is in progress, the SPI Han-

dler/Driver shall not change the AsyncModeType and keep the mode type as it is.

The function shall return the value E_NOT_OK.

SPI172: If Spi_SetAsyncMode is called while a synchronous transmission is in

progress, the SPI Handler/Driver shall set the AsyncModeType according to parame-

ter 'Mode', even if the SPI Handler/Driver status is SPI_BUSY. The function shall re-

turn the value E_OK.

SPI154: The function Spi_SetAsyncMode is pre-compile time selectable by the

configuration parameter SpiLevelDelivered. This function is only relevant for

LEVEL 2.

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

49 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

8.4 Callback notifications

This chapter lists all functions provided by the SPI module to lower layer modules.

The SPI Handler/Driver module belongs to the lowest layer of AUTOSAR Software
Architecture hence this module specification has not identified any callback functions.

8.5 Scheduled functions

This chapter lists all functions provided by the SPI Handler/Driver and called directly
by the Basic Software Module Scheduler.

The SPI Handler/Driver module does not require any scheduled function. The speci-
fied functions below exemplify how to implement them if they are needed.

8.5.1 Spi_MainFunction_Handling

SPI189:
Service name: Spi_MainFunction_Handling

Syntax: void Spi_MainFunction_Handling(

)

Service ID[hex]: 0x10

Timing: FIXED_CYCLIC

Description: --

8.5.2 Spi_MainFunction_Driving

SPI190:
Service name: Spi_MainFunction_Driving

Syntax: void Spi_MainFunction_Driving(

)

Service ID[hex]: 0x11

Timing: FIXED_CYCLIC

Description: --

8.6 Expected Interfaces

This chapter lists all functions that the SPI Handler/Driver requires from other mod-
ules.

8.6.1 Mandatory Interfaces

The SPI Handler/Driver module does not define any interface which is required to
fulfill its core functionality.

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

50 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

8.6.2 Optional Interfaces

This chapter defines all interfaces which are required to fulfill an optional functionality
of SPI Handler/Driver module.

SPI191:
API function Description

Dem_ReportErrorStatus Reports errors to the DEM.

Det_ReportError Service to report development errors.

8.6.3 Configurable interfaces

In this chapter all interfaces are listed where the target function could be configured.
The target function is usually a call-back function. The name of these interfaces is not
fixed because they are configurable.

SPI075: The SPI Handler/Driver shall use the callback routines

Spi_JobEndNotification and Spi_SeqEndNotification to inform other

software modules about certain states or state changes. The other modules are re-
quired to provide the routines in the expected manner.

he callback notifications Spi_JobEndNotification and

Spi_SeqEndNotification as function pointers defined within the initialization da-

ta structure (Spi_ConfigType).

The callback notifications Spi_JobEndNotification and

Spi_SeqEndNotification shall have no parameters and no return value.

SPI054: If a callback notification is configured as null pointer, no callback shall be
executed.

SPI085: It is allowed to use the following API calls within the SPI callback notifica-
tions:

 Spi_ReadIB

 Spi_WriteIB

 Spi_SetupEB

 Spi_GetJobResult

 Spi_GetSequenceResult

 Spi_GetHWUnitStatus

 Spi_Cancel
All other SPI Handler/Driver API calls are not allowed.

8.6.3.1 Spi_JobEndNotification

SPI192:

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

51 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

Service name: (*Spi_JobEndNotification)

Syntax: void (*Spi_JobEndNotification)(

)

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): None

Parameters (in-
out):

None

Parameters (out): None

Return value: None

Description: Callback routine provided by the user for each Job to notify the caller that a job
has been finished.

SPI071: If the SpiJobEndNotification is configured (i.e. not a null pointer), the

SPI Handler/Driver shall call the configured callback notification at the end of a Job
transmission.

Note: This routine might be called on interrupt level, depending on the calling func-
tion.

8.6.3.2 Spi_SeqEndNotification

SPI193:
Service name: (*Spi_SeqEndNotification)

Syntax: void (*Spi_SeqEndNotification)(

)

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): None

Parameters (in-
out):

None

Parameters (out): None

Return value: None

Description: Callback routine provided by the user for each Sequence to notify the caller that a
sequence has been finished.

SPI073: If the SpiSeqEndNotification is configured (i.e. not a null pointer), the

SPI Handler/Driver shall call the configured callback notification at the end of a Se-
quence transmission.

Note: This routine might be called on interrupt level, depending on the calling func-
tion.

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

52 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

9 Sequence diagrams

9.1 Initialization

 sd Spi_Init

«module»

Spi

Spi User

Status: proposed by TO as per SWS SPI 1.1.7

Description:

Comments:

Spi_Init(const

Spi_ConfigType*)

Spi_Init()

9.2 Modes transitions

The following sequence diagram shows an example of an Init / DeInit calls for a run-
ning mode transition.

9.3 Write/AsyncTransmit/Read (IB)

9.3.1 One Channel, one Job then one Sequence

The following sequence diagram shows an example of Spi_WriteIB /
Spi_AsyncTransmit / Spi_ReadIB calls for a Sequence transmission with only one
Job composed of only one Channel. Write or Read step could be skipped when Job
is just reading or writing respectively.

Example: Channel ID 2 belongs to Job ID 1 which belongs to Sequence ID 0

Sequence Job Channel

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

53 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

ID0 ID1 ID2

 sd Spi_Write One Channel, one Job then one Sequence

«module»

Spi

Spi User

Description:

Write to the Channel is done synchronously.

You pass the Channel ID and the buffer.

Description:

Transmission is performing asynchronously. The

SPI Handler/Driver records the sequence and

returns.

Description:

Transmission processing (writing to SPI bus) is

done asynchronously according to the sequence

requested and the prioritization mechanism.

This case is not a Sequence of l inked Jobs so

the SPI Handler/Driver becomes idle at the end

of the Channel transmission.

Description:

When a Job transmission ends, if it is

configured, the “End Job Notification” of the

Job process is called.

Description:

When the Sequence transmission ends, if it is

configured, the “End Seq Notification” of the

Sequence process is called.

Description:

The received data will be allocated in the

configured receive buffers, and can be read

using the read function for IB Channels.

Status: proposed by TO as per SWS SPI 1.1.7

Description:

The sequence diagram shows an example of Spi_WriteIB / Spi_AsyncTransmit / Spi_ReadIB calls for a

Sequence transmission with only one Job composed of only one Channel. Write or Read step could be

skipped when Job is just reading or writing respectively.

Example: Channel ID 2 belongs to Job ID 1 which belongs to Sequence ID 0

Comments:

Spi_WriteIB(Std_ReturnType, Spi_ChannelType, const Spi_DataType*)

Spi_WriteIB()

Spi_AsyncTransmit(Std_ReturnType, Spi_SequenceType)

Spi_AsyncTransmit()

Seq0.Job1()

<Spi_Job1EndNotification>()

<Spi_Job1EndNotification>()

<Spi_Seq0EndNotification>()

<Spi_Seq0EndNotification>()

Spi_ReadIB(Std_ReturnType, Spi_ChannelType, Spi_DataType*)

Spi_ReadIB()

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

54 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

9.3.2 Many Channels, one Job then one Sequence

The following sequence diagram shows an example of Spi_WriteIB /
Spi_AsyncTransmit / Spi_ReadIB calls for a Sequence transmission with only one
Job composed of many Channels. Write or Read steps could be skipped when Job is
just reading or writing respectively.

Example: Channels ID 2 & 3 belong to Job ID 1 which belongs to Sequence ID 0

Sequence Job Channel

ID0 ID1
ID2

ID3

 sd Spi_Write Many Channels, one Job then one Sequence

«module»

Spi

User1 :Spi User User2 :Spi User

Description:

Write to a Channel is done synchronously. You

pass the Channel ID and the buffer.

In this case, Channels are within the same Job.

Description:

Transmission is performing asynchronously. The

SPI Handler/Driver records the sequence and

returns.

Description:

Transmission processing (writing to SPI bus) is

done asynchronously according to the sequence

requested and the prioritization mechanism.

This case is not a sequence of l inked Jobs. At

the end of Channels transmission the SPI

Handler/Driver becomes idle.

Description:

When a Job transmission ends, if it is

configured, the “End Job Notification” of the

Job process is called.

Description:

When the Sequence transmission ends, if it is

configured, the “End Seq Notification” of the

Sequence process is called.

Status: proposed by TO as per SWS SPI 1.1.7

Description:

The sequence diagram shows an example of Spi_WriteIB / Spi_AsyncTransmit / Spi_ReadIB calls for a

Sequence transmission with only one Job composed of many Channels. Write or Read steps could be skipped

when Job is just writing or reading respectively.

Example: Channels ID 2 & 3 belong to Job ID 1 which belongs to Sequence ID 0

Comments:

Description:

The received data, if there are, will be

allocated in the configured receive buffers,

and can be read using the read function for

IB Channels.

Spi_WriteIB(Std_ReturnType, Spi_ChannelType, const Spi_DataType*)

Spi_WriteIB()

Spi_WriteIB(Std_ReturnType, Spi_ChannelType, const Spi_DataType*)

Spi_WriteIB()

Spi_AsyncTransmit(Std_ReturnType, Spi_SequenceType)

Spi_AsyncTransmit()

Seq0.Job1()

<Spi_Job1EndNotification>()

<Spi_Job1EndNotification>()

<Spi_Seq0EndNotification>()

<Spi_Seq0EndNotification>()

Spi_ReadIB(Std_ReturnType, Spi_ChannelType, Spi_DataType*)

Spi_ReadIB()

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

55 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

9.3.3 Many Channels, many Jobs and one Sequence

The following sequence diagram shows an example of Spi_WriteIB /
Spi_AsyncTransmit / Spi_ReadIB calls for a Sequence transmission of linked Jobs.
Write or Read steps could be skipped when Jobs are just reading or writing respec-
tively.

Example: Channels ID 0 to 3 belong to Job ID 1 (higher priority), Channels ID 4 to 10
belong to Job ID 2 (Lower priority) which has not an end notification function. These
Jobs belong to the same Sequence ID 0

Sequence Job Channel

Name Priority

ID0
ID1 High ID0…ID3

ID2 Low ID4…ID10

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

56 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

 sd Spi_Write Many Channels, many Jobs and one Sequence

User2 :Spi UserUser1 :Spi User «module»

Spi

Description:

Write to a Channel is done synchronously. You

pass the Channel ID and the buffer.

In this case, Channels are not within the same

Job.

Description:

Transmission is performing asynchronously. The

SPI Handler/Driver records the sequence and

returns.

Description:

Transmission processing (writing to SPI bus) is

done asynchronously according to the sequence

requested and the prioritization mechanism.

This case is a sequence of l inked Jobs. At the

end of Channels transmission the SPI

Handler/Driver becomes idle.

Description:

When the Sequence transmission ends, if it is

configured, the “End Seq Notification” of the

Sequence process is called.

Status: proposed by TO as per SWS SPI 1.1.7

Description:

The sequence diagram shows an example of Spi_WriteIB / Spi_AsyncTransmit / Spi_ReadIB calls for a

Sequence transmission of l inked Jobs. Write or Read steps could be skipped when Jobs are just writing or

reading respectively.

Example: Channels ID 0 to 3 belong to Job ID 1 (higher priority), Channels ID 4 to 10 belong to Job ID 2

(Lower priority) which has not an end notification function. These Jobs belong to the same Sequence ID 0

Comments:

Description:

The received data, if there are, will be allocated

in the configured receive buffers, and can be

read using the read function for IB Channels.

Description:

When a Job transmission ends, if it is

configured, the “End Job Notification” of the

Job process is called.

loop Channel:=5...10

loop Channel:=1...3

opt If channel needed

opt If channel needed

Spi_WriteIB(Std_ReturnType, Spi_ChannelType, const Spi_DataType*)

Spi_WriteIB()

Spi_WriteIB(Std_ReturnType, Spi_ChannelType, const

Spi_DataType*)

Spi_WriteIB()

Spi_WriteIB(Std_ReturnType, Spi_ChannelType, const Spi_DataType*)

Spi_WriteIB()

Spi_WriteIB(Std_ReturnType, Spi_ChannelType, const

Spi_DataType*)

Spi_WriteIB()

Spi_AsyncTransmit(Std_ReturnType, Spi_SequenceType)

Spi_AsyncTransmit()

Seq0.Job1()

<Spi_Job1EndNotification>()

<Spi_Job1EndNotification>()

Seq0.Job2()

<Spi_Seq0EndNotification>()

<Spi_Seq0EndNotification>()

Spi_ReadIB(Std_ReturnType, Spi_ChannelType, Spi_DataType*)

Spi_ReadIB()

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

57 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

9.3.4 Many Channels, many Jobs and many Sequences

The following sequence diagram shows an example of Spi_WriteIB /
Spi_AsyncTransmit / Spi_ReadIB calls for Sequences transmission. Write or Read
steps could be skipped when Jobs are just reading or writing respectively.

Example: Channels ID 0 to 3 belong to Job ID 1 (high priority 2), Channels ID 4 to 10
belong to Job ID 2 (Low priority 1) which has not an end notification function. These
Jobs belong to the same Sequence ID 0 which is configured as interruptible.
Channels ID 11 to 13 belong to Job ID 0 (higher priority 3) which belongs to Se-
quence ID 1 which is configured as not interruptible.

Sequence Job Channel

Name Interruptible Name Priority

ID0 Yes
ID1 2 ID0…ID3

ID2 1 ID4…ID10

ID1 No ID0 3 ID11…ID13

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

58 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

 sd Spi_Write Many Channels, many Jobs and many Sequences

User1 :Spi User User2 :Spi User «module»

Spi

Description:

Write to a Channel is done

synchronously. You pass the Channel

ID and the buffer.

In this case, Channels are not within

the same Job.

Description:

Transmission processing (writing to SPI

bus) is done asynchronously according to

the job requested and the prioritization

mechanism.

This case concerns many Sequences of

many Jobs so at the end of a Job

transmission SPI Handler/Driver schedule

the next Job to transmit.

The Job selected has the higher priority

and could belong to another Sequence

only if the sequence on going is

configured as interruptible.

At the end of all Sequences transmission

SPI Handler/Driver becomes idle.

Description:

The received data, if there are, will be

allocated in the configured receive

buffers, and can be read using the read

function for IB Channels.

Description:

Transmission is performing

asynchronously. The SPI

Handler/Driver records the

sequence and returns.

Description:

When a Job transmission ends, if it is configured, the “End Job

Notification” of the Job process is called.

Description:

When the Sequence

transmission ends, if it is

configured, the “End

Seq Notification” of the

Sequence process is

called.

Status: proposed by TO as per SWS SPI 1.1.7

Description:

The sequence diagram shows an example of Spi_WriteIB / Spi_AsyncTransmit / Spi_ReadIB calls for Sequences transmission. Write or Read steps could be

skipped when Jobs are just writing or reading respectively.

Example: Channels ID 0 to 3 belong to Job ID 1 (high priority 2), Channels ID 4 to 10 belong to Job ID 2 (Low priority 1) which has not an end notification

function. These Jobs belong to the same Sequence ID 0 which is configured as interruptible.

Channels ID 11 to 13 belong to Job ID 0 (higher priority 3) which belongs to Sequence ID 1 which is configured as not interruptible.

Comments:

loop Channel:=5...10

loop Channel:=12...13

opt If channel needed

opt If channel needed

Spi_WriteIB(Std_ReturnType, Spi_ChannelType, const Spi_DataType*)

Spi_WriteIB()

Spi_WriteIB(Std_ReturnType, Spi_ChannelType, const

Spi_DataType*)

Spi_WriteIB()

Spi_WriteIB(Std_ReturnType, Spi_ChannelType, const Spi_DataType*)

Spi_WriteIB()

Spi_WriteIB(Std_ReturnType, Spi_ChannelType, const

Spi_DataType*)

Spi_WriteIB()

Spi_AsyncTransmit(Std_ReturnType, Spi_SequenceType)

Spi_AsyncTransmit()

Seq0.Job1 (part1)

Spi_AsyncTransmit(Std_ReturnType, Spi_SequenceType)

Spi_AsyncTransmit()

Seq0.Job1 (part2)

<Spi_Job1EndNotification>()

<Spi_Job1EndNotification>()

Seq1.Job0()

<Spi_Seq1EndNotification>()

<Spi_Seq1EndNotification>()

Spi_ReadIB(Std_ReturnType, Spi_ChannelType, Spi_DataType*)

Spi_ReadIB()

Seq0.Job2()

<Spi_Seq0EndNotification>()

<Spi_Seq0EndNotification>()

Spi_ReadIB(Spi_ChannelType, Spi_DataType*) :Std_ReturnType

Spi_ReadIB()

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

59 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

9.4 Setup/AsyncTransmit (EB)

9.4.1 Variable Number of Data / Constant Number of Data

SPI077: To transmit a variable number of data, it is mandatory to call the

Spi_SetupEB function to store new parameters within SPI Handler/Driver before

each Spi_AsyncTransmit function call.

SPI078: To transmit a constant number of data, it is only mandatory to call the

Spi_SetupEB function to store parameters within SPI Handler/Driver before the first

Spi_AsyncTransmit function call.

9.4.2 One Channel, one Job then one Sequence

The following sequence diagram shows an example of Spi_SetupEB /

Spi_AsyncTransmit calls for a Sequence transmission with only one Job com-

posed of only one Channel. Write or Read accesses are “User Dependant” and could
be skipped when Job is just reading or writing respectively.

Example: Channel ID 2 belongs to Job ID 1 which belongs to Sequence ID 0

Sequence Job Channel

ID0 ID1 ID2

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

60 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

 sd Spi_SetupEB One Channel, one Job then one Sequence

«module»

Spi

Spi User

Description:

Setup a Channel; initialize buffer pointers

and length synchronously. Parameters are

saved.

Description:

Transmission is performing asynchronously. The

SPI Handler/Driver records the sequence and

returns.

Description:

Transmission processing (writing to SPI bus) is

done asynchronously according to the sequence

requested and the prioritization mechanism.

This case is not a Sequence of l inked Jobs so

the SPI Handler/Driver becomes idle at the end

of the Channel transmission.

Description:

When a Job transmission ends, if it is

configured, the “End Job Notification” of the

Job process is called.

Description:

When the Sequence transmission ends, if it is

configured, the “End Seq Notification” of the

Sequence process is called.

Status: proposed by TO as per SWS SPI 1.1.7

Description:

The sequence diagram shows an example of Spi_SetupEB / Spi_AsyncTransmit calls for a Sequence

transmission with only one Job composed of only one Channel. Write or Read accesses are “User

Dependant” and could be skipped when Job is just writing or reading respectively.

Example: Channel ID 2 belongs to Job ID 1 which belongs to Sequence ID 0

Comments:

Spi_SetupEB(Std_ReturnType, Spi_ChannelType, const Spi_DataType*, Spi_DataType*,

Spi_NumberOfDataType)

Spi_SetupEB()

Spi_AsyncTransmit(Std_ReturnType, Spi_SequenceType)

Spi_AsyncTransmit()

Seq0.Job1()

<Spi_Job1EndNotification>()

<Spi_Job1EndNotification>()

<Spi_Seq0EndNotification>()

<Spi_Seq0EndNotification>()

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

61 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

9.4.3 Many Channels, one Job then one Sequence

The following sequence diagram shows an example of Spi_SetupEB /

Spi_AsyncTransmit calls for a Sequence transmission with only one Job com-

posed of many Channels. Write or Read accesses are “User Dependant” and could
be skipped when Job is just reading or writing respectively.

Example: Channels ID 2 & 3 belong to Job ID 1 which belongs to Sequence ID 0

Sequence Job Channel

ID0 ID1
ID2

ID3

 sd Spi_SetupEB Many Channels, one Job then one Sequence

«module»

Spi

User1 :Spi User User2 :Spi User

Description:

Setup a Channel; initialize buffer pointers

and length synchronously. Parameters are

saved.

In this case, Channels are within the same

Job.

Description:

Transmission is performing asynchronously.

The SPI Handler/Driver records the sequence

and returns.

Description:

Transmission processing (writing to SPI bus) is

done asynchronously according to the

sequence requested and the prioritization

mechanism.

This case is not a sequence of l inked Jobs. At

the end of Channels transmission the SPI

Handler/Driver becomes idle.

Description:

When a Job transmission ends, if it is

configured, the “End Job Notification” of the

Job process is called.

Description:

When the Sequence transmission ends, if it is

configured, the “End Seq Notification” of the

Sequence process is called.

The received data, if there are, will be

directly stored in EB Channel receive buffer

and can be used such as.

Status: proposed by TO as per SWS SPI 1.1.7

Description:

The sequence diagram shows an example of Spi_SetupEB / Spi_AsyncTransmit calls for a

Sequence transmission with only one Job composed of many Channels. Write or Read accesses are

“User Dependant” and could be skipped when Job is just writing or reading respectively.

Example: Channels ID 2 & 3 belong to Job ID 1 which belongs to Sequence ID 0

Comments:

Spi_SetupEB(Std_ReturnType, Spi_ChannelType, const Spi_DataType*, Spi_DataType*,

Spi_NumberOfDataType)

Spi_SetupEB()

Spi_SetupEB(Std_ReturnType, Spi_ChannelType, const Spi_DataType*, Spi_DataType*,

Spi_NumberOfDataType)

Spi_SetupEB()

Spi_AsyncTransmit(Std_ReturnType, Spi_SequenceType)

Spi_AsyncTransmit()

Seq0.Job1()

<Spi_Job1EndNotification>()

<Spi_Job1EndNotification>()

<Spi_Seq0EndNotification>()

<Spi_Seq0EndNotification>()

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

62 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

9.4.4 Many Channels, many Jobs and one Sequence

The following sequence diagram shows an example of Spi_SetupEB /

Spi_AsyncTransmit calls for a Sequence transmission of linked Jobs. Write or

Read accesses are “User Dependant” and could be skipped when Job is just read-
ing or writing respectively.

Example: Channels ID 0 to 3 belong to Job ID 1 (higher priority), Channels ID 4 to 10
belong to Job ID 2 (Lower priority) which has not an end notification function. These
Jobs belong to the same Sequence ID 0

Sequence Job Channel

ID0
ID1 ID0…ID3

ID2 ID4…ID10

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

63 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

 sd Spi_SetupEB Many Channels, many Jobs and one Sequence

User1 :Spi User User2 :Spi User «module»

Spi

Description:

Setup a Channel; initialize buffer pointers

and length synchronously. Parameters are

saved.

In this case, Channels are not within the same

Job.

Description:

Transmission is performing asynchronously.

The SPI Handler/Driver records the sequence

and returns.

Description:

Transmission processing (writing to SPI bus) is

done asynchronously according to the job

requested and the prioritization mechanism.

This case is a Sequence of l inked Jobs so at

the end of a Job transmission SPI

Handler/Driver schedule the next Job to

transmit.

At the end of Sequence transmission the SPI

Handler/Driver becomes idle.

Description:

The received data will be allocated in the

configured receive buffers, and can be read

using the read function for IB Channels.

Status: proposed by TO as per SWS SPI 1.1.7

Description:

The sequence diagram shows an example of Spi_SetupEB / Spi_AsyncTransmit calls for a Sequence

transmission of l inked Jobs. Write or Read accesses are "User Dependant" and could be skipped when Job is

just writing or reading respectively.

Example: Channels ID 0 to 3 belong to Job ID 1 (higher priority), Channels ID 4 to 10 belong to Job ID 2

(Lower priority) which has not an end notification function. These Jobs belong to the same Sequence ID 0

Comments:

Description:

When the Sequence transmission ends, if it

is configured, the “End Seq Notification” of

the Sequence process is called.

The received data, if there are, will be

directly stored in EB Channel receive buffer

and can be used such as.

Description:

When a Job transmission

ends, if it is configured, the

“End Job Notification” of the

Job process is called.

loop Channel:=5...10

loop Channel:=1...3

opt If channel needed

opt If channel needed

Spi_SetupEB(Std_ReturnType, Spi_ChannelType, const Spi_DataType*, Spi_DataType*,

Spi_NumberOfDataType)

Spi_SetupEB()

Spi_SetupEB(Std_ReturnType, Spi_ChannelType, const Spi_DataType*, Spi_DataType*,

Spi_NumberOfDataType)

Spi_SetupEB()

Spi_SetupEB(Std_ReturnType, Spi_ChannelType, const Spi_DataType*, Spi_DataType*,

Spi_NumberOfDataType)

Spi_SetupEB()

Spi_SetupEB(Std_ReturnType, Spi_ChannelType, const Spi_DataType*, Spi_DataType*,

Spi_NumberOfDataType)

Spi_SetupEB()

Spi_AsyncTransmit(Std_ReturnType, Spi_SequenceType)

Spi_AsyncTransmit()

Seq0.Job1()

<Spi_Job1EndNotification>()

<Spi_Job1EndNotification>()

Seq0.Job2()

<Spi_Seq0EndNotification>()

<Spi_Seq0EndNotification>()

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

64 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

9.4.5 Many Channels, many Jobs and many Sequences

The following sequence diagram shows an example of Spi_SetupEB /

Spi_AsyncTransmit calls for Sequences transmission. Write or Read accesses

are “User Dependant” and could be skipped when Job is just reading or writing re-
spectively.

Example: Channels ID 0 to 3 belong to Job ID 1 (high priority 2), Channels ID 4 to 10
belong to Job ID 2 (Low priority 1) which has not an end notification function. These
Jobs belong to the same Sequence ID 0 which is configured as interruptible.
Channels ID 11 to 13 belong to Job ID 0 (higher priority 3) which belongs to Se-
quence ID 1 which is configured as not interruptible.

Sequence Job Channel

Name Interruptible Name Priority

ID0 Yes
ID1 2 ID0…ID3

ID2 1 ID4…ID10

ID1 No ID0 3 ID11…ID13

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

65 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

 sd Spi_SetupEB Many Channels, many Jobs and many Sequences

User2 :Spi UserUser1 :Spi User «module»

Spi

Description:

Setup a Channel; initialize buffer pointers

and length synchronously. Parameters are

saved.

In this case, Jobs of those Channels are not

within the same Sequence.

Description:

Transmission processing (writing to SPI bus) is

done asynchronously according to the job

requested and the prioritization mechanism.

This case concerns many Sequences of many

Jobs so at the end of a Job transmission SPI

Handler/Driver schedule the next Job to

transmit.

The Job selected has the higher priority and

could belong to another Sequence only if the

sequence on going is configured as

interruptible.

At the end of all Sequences transmission SPI

Handler/Driver becomes idle.

Description:

Transmission is performing asynchronously.

The SPI Handler/Driver records the sequence

and returns.

Description:

When a Job transmission ends, if it is

configured, the “End Job Notification” of the

Job process is called.

Description:

When the Sequence transmission ends, if it is

configured, the “End Seq Notification” of the

Sequence process is called.

The received data, if there are, will be

directly stored in EB Channel receive buffer

and can be used such as.

Status: proposed by TO as per SWS SPI 1.1.7

Description:

The sequence diagram shows an example of Spi_SetupEB / Spi_AsyncTransmit calls for Sequences transmission. Write or Read accesses are "User Dependant"

and could be skipped when Job is just writing or reading respectively.

Example: Channels ID 0 to 3 belong to Job ID 1 (high priority 2), Channels ID 4 to 10 belong to Job ID 2 (Low priority 1) which has not an end notification function.

These Jobs belong to the same Sequence ID 0 which is configured as interruptible.

Channels ID 11 to 13 belong to Job ID 0 (higher priority 3) which belongs to Sequence ID 1 which is configured as not interruptible.

Comments:

loop Channel:=5...10

loop Channel:=12...13

opt If channel needed

opt If channel needed

Spi_SetupEB(Std_ReturnType, Spi_ChannelType, const Spi_DataType*, Spi_DataType*,

Spi_NumberOfDataType)

Spi_SetupEB()

Spi_SetupEB(Std_ReturnType, Spi_ChannelType, const Spi_DataType*, Spi_DataType*,

Spi_NumberOfDataType)

Spi_SetupEB()

Spi_SetupEB(Std_ReturnType, Spi_ChannelType, const Spi_DataType*, Spi_DataType*,

Spi_NumberOfDataType)

Spi_SetupEB()

Spi_SetupEB(Std_ReturnType, Spi_ChannelType, const Spi_DataType*, Spi_DataType*,

Spi_NumberOfDataType)

Spi_SetupEB()

Spi_AsyncTransmit(Std_ReturnType, Spi_SequenceType)

Spi_AsyncTransmit()

Seq0.Job1 (part1)

Spi_AsyncTransmit(Std_ReturnType, Spi_SequenceType)

Spi_AsyncTransmit()

Seq0.Job1 (part2)

<Spi_Job1EndNotification>()

<Spi_Job1EndNotification>()

Seq1.Job0()

<Spi_Seq1EndNotification>()

<Spi_Seq1EndNotification>()

Seq0.Job2()

<Spi_Seq0EndNotification>()

<Spi_Seq0EndNotification>()

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

66 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

9.5 Mixed Jobs Transmission

All kind of mixed Jobs transmission is possible according to the Channels configura-
tion and the priority requirement inside Sequences.

The user knows which Channels are in use. Then, according to the types of these
Channels, the appropriate methods shall be called.

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

67 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

9.6 LEVEL 0 SyncTransmit diagrams

9.6.1 Write/SyncTransmit/Read (IB): Many Channels, many Jobs and one Se-

quence

The following sequence diagram shows an example of Spi_WriteIB /
Spi_SyncTransmit / Spi_ReadIB calls for a Sequence transmission of linked Jobs.
Write or Read steps could be skipped when Jobs are just reading or writing respec-
tively.

Example: Channels ID 0 to 3 belong to Job ID 1 (higher priority), Channels ID 4 to 10
belong to Job ID 2 (Lower priority). These Jobs belong to the same Sequence ID 0

Sequence Job Channel

Name Priority

ID0
ID1 High ID0…ID3

ID2 Low ID4…ID10

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

68 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

 sd Spi_WriteSyncTransmitRead_Many-Many-One

User1 :Spi User User2 :Spi User «module»

Spi

loop Channel:=5...10

loop Channel:=1...3

Proposed by TO as per SPI SWS 1.1.7

Description:

This sequence diagram shows an example of Spi_WriteIB / Spi_SyncTransmit / Spi_ReadIB calls for a Sequence transmission

of l inked Jobs. Write or Read steps could be skipped when Jobs are just writing or reading respectively.

Example:

Channels ID 0 to 3 belong to Job ID 1 (higher priority), Channels ID 4 to 10 belong to Job ID 2 (lower priority). These Jobs

belong to the same Sequence ID 0.

Comments:

Write to a Channel is done

synchronously. You pass the

Channel ID and the buffer.

In this case, Channels are not

within the same Job.

The received data, if there are,

will be allocated in the

configured receive buffers, and

can be read using the read

function for IB Channels.

Transmission is performing

synchronously. The SPI

Handler/Driver transmits the

complete Sequence and it

returns. At the end of Sequence

transmission, the SPI

Handler/Driver becomes idle.

opt If channel needed

opt If channel needed

Spi_WriteIB(Std_ReturnType, Spi_ChannelType, const Spi_DataType*)

Spi_WriteIB()

Spi_WriteIB(Std_ReturnType, Spi_ChannelType, const

Spi_DataType*)

Spi_WriteIB()

Spi_WriteIB(Std_ReturnType, Spi_ChannelType, const Spi_DataType*)

Spi_WriteIB()

Spi_WriteIB(Std_ReturnType, Spi_ChannelType, const

Spi_DataType*)

Spi_WriteIB()

Spi_SyncTransmit(Std_ReturnType, Spi_SequenceType)

Seq0.Job1()

Seq0.Job2()

Spi_SyncTransmit()

Spi_ReadIB(Std_ReturnType, Spi_ChannelType, Spi_DataType*)

Spi_ReadIB()

9.6.2 Setup/SyncTransmit (EB): Many Channels, many Jobs and one Se-

quence

The following sequence diagram shows an example of Spi_SetupEB /

Spi_SyncTransmit calls for a Sequence transmission of linked Jobs. Write or

Read accesses are “User Dependant” and could be skipped when Job is just read-
ing or writing respectively.

Example: Channels ID 0 to 3 belong to Job ID 1 (higher priority), Channels ID 4 to 10
belong to Job ID 2 (Lower priority). These Jobs belong to the same Sequence ID 0

Sequence Job Channel

ID0 ID1 ID0…ID3

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

69 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

ID2 ID4…ID10

 sd Spi_SetupSyncTransmit_Many-Many-One

User2 :Spi UserUser1 :Spi User «module»

Spi

loop Channel:=5...10

loop Channel:=1...3

Proposed by TO as per SPI SWS 1.1.7

Description:

This sequence diagram shows an example of Spi_SetupEB / Spi_SyncTransmit calls for a Sequence transmission of l inked

Jobs. Write or Read accesses are "user Dependant" and could be skipped when Jobs are just writing or reading respectively.

Example:

Channels ID 0 to 3 belong to Job ID 1 (higher priority), Channels ID 4 to 10 belong to Job ID 2 (lower priority). These Jobs

belong to the same Sequence ID 0.

Comments:

Setup a Channel; initialize

buffer pointers and length

synchronously. Parameters are

saved. In this case, Channels are

not within the same Job.

Description:

The received data, if there are,

will be directly stored in EB

Channel receive buffer and can

be used such as.

Transmission is performing

synchronously. The SPI

Handler/Driver transmits the

complete Sequence and it

returns. At the end of Sequence

transmission, the SPI

Handler/Driver becomes idle.

opt If channel needed

opt If channel needed

Spi_SetupEB(Std_ReturnType, Spi_ChannelType, const Spi_DataType*, Spi_DataType*,

Spi_NumberOfDataType)

Spi_SetupEB()

Spi_SetupEB(Std_ReturnType, Spi_ChannelType, const Spi_DataType*, Spi_DataType*,

Spi_NumberOfDataType)

Spi_SetupEB()

Spi_SetupEB(Std_ReturnType, Spi_ChannelType, const Spi_DataType*, Spi_DataType*,

Spi_NumberOfDataType)

Spi_SetupEB()

Spi_SetupEB(Std_ReturnType, Spi_ChannelType, const Spi_DataType*, Spi_DataType*,

Spi_NumberOfDataType)

Spi_SetupEB()

Spi_SyncTransmit(Std_ReturnType, Spi_SequenceType)

Seq0.Job1()

Seq0.Job2()

Spi_SyncTransmit()

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

70 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

10 Configuration specification

10.1 How to read this chapter

In addition to this section, it is highly recommended to read the documents:

- AUTOSAR Layered Software Architecture [1]
- AUTOSAR ECU Configuration Specification [5]

This document describes the AUTOSAR configuration methodology and the
AUTOSAR configuration metamodel in detail.

The following is only a short survey of the topic and it will not replace the ECU Con-
figuration Specification document.

10.1.1 Configuration and configuration parameters

Configuration parameters define the variability of the generic part(s) of an implemen-
tation of a module. This means that only generic or configurable module implementa-
tion can be adapted to the environment (software/hardware) in use during system
and/or ECU configuration.

The configuration of parameters can be achieved at different times during the soft-
ware process: before compile time, before link time or after build time. In the follow-
ing, the term “configuration class” (of a parameter) shall be used in order to refer to a
specific configuration point in time.

10.1.2 Containers

Containers structure the set of configuration parameters. This means:

- all configuration parameters are kept in containers.
- (sub-) containers can reference (sub-) containers. It is possible to assign a

multiplicity to these references. The multiplicity then defines the possible num-
ber of instances of the contained parameters.

10.1.3 Specification template for configuration parameters

The following tables consist of three sections:

- the general section
- the configuration parameter section
- the section of included/referenced containers

Pre-compile time - specifies whether the configuration parameter shall be

of configuration class Pre-compile time or not

Label Description
x The configuration parameter shall be of configuration class Pre-compile time.

-- The configuration parameter shall never be of configuration class Pre-compile time.

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

71 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

Link time - specifies whether the configuration parameter shall be

of configuration class Link time or not

Label Description
x The configuration parameter shall be of configuration class Link time.

-- The configuration parameter shall never be of configuration class Link time.

Post Build - specifies whether the configuration parameter shall be

of configuration class Post Build or not

Label Description

x
The configuration parameter shall be of configuration class Post Build and no specific
implementation is required.

L
Loadable - the configuration parameter shall be of configuration class Post Build and only
one configuration parameter set resides in the ECU.

M
Multiple - the configuration parameter shall be of configuration class Post Build and is
selected out of a set of multiple parameters by passing a dedicated pointer to the init func-
tion of the module.

-- The configuration parameter shall never be of configuration class Post Build.

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

72 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed mean-
ings of the parameters are described in Chapter 7 and Chapter 8. Further hardware /
implementation specific parameters can be added if necessary.

10.2.1 Variants

SPI056: Variant PC: This variant is limited to pre-compile-configuration parameters
only. The intention of this variant is to optimize the parameters configuration for a
source code delivery.

SPI076: Variant LT: This variant allows a mix of pre-compile time-, link time-
configuration parameters. The intention of this variant is to optimize the parameters
configuration for an object code delivery.

SPI148: Variant PB: This variant allows a mix of pre-compile time-, post build-time
configuration parameters. The intention of this variant is to optimize the parameters
configuration for a re-loadable binary.

SPI234: The initialization function of this module shall always have a pointer as a
parameter, even though for Variant PC no configuration set shall be given. Instead a
NULL pointer shall be passed to the initialization function.

SPI235: If not applicable, the SPI Handler/Driver module’s environment shall pass a
NULL pointer to the function Spi_Init.

10.2.2 SpiGeneral
SWS Item SPI225 :

Container Name SpiGeneral

Description General configuration settings for SPI-Handler

Configuration Parameters

SWS Item SPI226 :

Name

SpiCancelApi {SPI_CANCEL_API}

Description Switches the Spi_Cancel function ON or OFF.

Multiplicity 1

Type BooleanParamDef

Default value --

ConfigurationClass Pre-compile
time

X All Variants

Link time --

Post-build
time

--

Scope / Dependency scope: module

SWS Item SPI227 :

Name

SpiChannelBuffersAllowed {SPI_CHANNEL_BUFFERS_ALLOWED}

Description Selects the SPI Handler/Driver Channel Buffers usage allowed and delivered.

Multiplicity 1

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

73 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

Type IntegerParamDef

Range 0 .. 2

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: module

SWS Item SPI228 :

Name

SpiDevErrorDetect {SPI_DEV_ERROR_DETECT}

Description Switches the Development Error Detection and Notification ON or OFF.

Multiplicity 1

Type BooleanParamDef

Default value --

ConfigurationClass Pre-compile
time

X All Variants

Link time --

Post-build
time

--

Scope / Dependency scope: module

SWS Item SPI229 :

Name

SpiHwStatusApi {SPI_HW_STATUS_API}

Description Switches the Spi_GetHWUnitStatus function ON or OFF.

Multiplicity 1

Type BooleanParamDef

Default value --

ConfigurationClass Pre-compile
time

X All Variants

Link time --

Post-build
time

--

Scope / Dependency scope: module

SWS Item SPI230 :

Name

SpiInterruptibleSeqAllowed {SPI_INTERRUPTIBLE_SEQ_ALLOWED}

Description Switches the Interruptible Sequences handling functionality ON or OFF.

Multiplicity 1

Type BooleanParamDef

Default value --

ConfigurationClass Pre-compile
time

X All Variants

Link time --

Post-build
time

--

Scope / Dependency scope: module
dependency: This parameter depends on SPI_LEVEL_DELIVERED value. It is
only
used for SPI_LEVEL_DELIVERED configured to 1 or 2.

SWS Item SPI231 :

Name

SpiLevelDelivered {SPI_LEVEL_DELIVERED}

Description Selects the SPI Handler/Driver level of scalable functionality that is available and
delivered.

Multiplicity 1

Type IntegerParamDef

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

74 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

Range 0 .. 2

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: module

SWS Item SPI237_Conf :

Name

SpiSupportConcurrentSyncTransmit
{SPI_SUPPORT_CONCURRENT_SYNC_TRANSMIT}

Description Specifies whether concurrent Spi_SyncTransmit() calls for different sequences
shall be configurable.

Multiplicity 1

Type BooleanParamDef

Default value --

ConfigurationClass Pre-compile
time

X All Variants

Link time --

Post-build
time

--

Scope / Dependency scope: module

SWS Item SPI232 :

Name

SpiVersionInfoApi {SPI_VERSION_INFO_API}

Description Switches the Spi_GetVersionInfo function ON or OFF.

Multiplicity 1

Type BooleanParamDef

Default value --

ConfigurationClass Pre-compile
time

X All Variants

Link time --

Post-build
time

--

Scope / Dependency scope: module

No Included Containers

10.2.3 SpiSequence
SWS Item SPI106 :

Container Name SpiSequence{SpiSequenceConfiguration}

Description All data needed to configure one SPI-sequence

Configuration Parameters

SWS Item SPI222 :

Name

SpiInterruptibleSequence {SPI_INTERRUPTIBLE_SEQUENCE}

Description This parameter allows or not this Sequence to be suspended by another one.

Multiplicity 1

Type BooleanParamDef

Default value --

ConfigurationClass Pre-compile
time

X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build
time

X VARIANT-POST-BUILD

Scope / Dependency scope: module
dependency: This SPI_INTERRUPTIBLE_SEQ_ALLOWED parameter as to be

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

75 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

configured as ON.

SWS Item SPI223 :

Name

SpiSeqEndNotification {SPI_SEQ_END_NOTIFICATION}

Description This parameter is a reference to a notification function.

Multiplicity 1

Type FunctionNameDef

Default value --

regularExpression --

ConfigurationClass Pre-compile
time

X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build
time

X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

SWS Item SPI224 :

Name

SpiSequenceId {SPI_SEQUENCE_NAME}

Description --

Multiplicity 1

Type IntegerParamDef (Symbolic Name generated for this parameter)

Range ..

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

SWS Item SPI221 :

Name

JobAssignment {SPI_JOB_LINKING}

Description A sequence references several jobs, which are executed during a communica-
tion sequence

Multiplicity 1..*

Type Reference to [SpiJob]

ConfigurationClass Pre-compile
time

X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build
time

X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

No Included Containers

10.2.4 SpiChannel
SWS Item SPI104 :

Container Name SpiChannel{SpiChannelConfiguration}

Description All data needed to configure one SPI-channel

Configuration Parameters

SWS Item SPI200 :

Name

SpiChannelId {SPI_CHANNEL_NAME}

Description --

Multiplicity 1

Type IntegerParamDef (Symbolic Name generated for this parameter)

Range ..

Default value --

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

76 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

SWS Item SPI201 :

Name

SpiChannelType {SPI_CHANNEL_TYPE}

Description Buffer usage with EB/IB channel

Multiplicity 1

Type EnumerationParamDef

Range EB External Buffer

IB SPI Handler/Driver Internal Buffer

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU
dependency: SPI_CHANNEL_BUFFERS_ALLOWED

SWS Item SPI202 :

Name

SpiDataWidth {SPI_DATA_WIDTH}

Description This parameter is the width of a transmitted data unit.

Multiplicity 1

Type IntegerParamDef

Range 1 .. 32

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: module

SWS Item SPI203 :

Name

SpiDefaultData {SPI_DEFAULT_DATA}

Description This parameter is the default value to transmit.

Multiplicity 1

Type IntegerParamDef

Range ..

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: module

SWS Item SPI204 :

Name

SpiEbMaxLength {SPI_EB_MAX_LENGTH}

Description This parameter contains the maximum size of data buffers in case of EB Chan-
nels and only.

Multiplicity 1

Type IntegerParamDef

Range ..

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: module
dependency: The SPI_CHANNEL_TYPE parameter has to be configured
as EB for this Channel.

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

77 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

The SPI_CHANNEL_BUFFERS_ALLOWED parameter has to be
configured as 1 or 2.

SWS Item SPI205 :

Name

SpiIbNBuffers {SPI_IB_N_BUFFERS}

Description This parameter contains the maximum number of data buffers in case of IB
Channels and only.

Multiplicity 1

Type IntegerParamDef

Range ..

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: module
dependency: The SPI_CHANNEL_TYPE parameter has to be configured
as IB for this Channel.
The SPI_CHANNEL_BUFFERS_ALLOWED parameter has to be
configured as 0 or 2.

SWS Item SPI206 :

Name

SpiTransferStart {SPI_TRANSFER_START}

Description This parameter defines the first starting bit for transmission.

Multiplicity 1

Type EnumerationParamDef

Range LSB Transmission starts with the Least Significant Bit first

MSB Transmission starts with the Most Significant Bit first

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: module

No Included Containers

10.2.5 SpiJob
SWS Item SPI105 :

Container Name SpiJob{SpiJobConfiguration}

Description
All data needed to configure one SPI-Job, amongst others the connection
between the internal SPI unit and the special settings for an external de-
vice is done.

Configuration Parameters

SWS Item SPI217 :

Name

SpiHwUnit {SPI_HW_UNIT}

Description This parameter is the symbolic name to identify the HW SPI Hardware microcon-
troller peripheral allocated to this Job.

Multiplicity 1

Type EnumerationParamDef

Range CSIB0

CSIB1

CSIB2

CSIB3

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: module

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

78 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

SWS Item SPI238_Conf :

Name

SpiHwUnitSynchronous {SPI_HW_UNIT_SYNCHRONOUS}

Description If SpiHwUnitSynchronous is set to "SYNCHRONOUS", the SpiJob uses its con-
taining SpiDriver in a synchronous manner. If it is set to "ASYNCHRONOUS", it
uses the driver in an asynchronous way. If the parameter is not set, the SpiChan-
nel uses the driver also in an asynchronous way.

Multiplicity 0..1

Type EnumerationParamDef

Range ASYNCHRONOUS (default)

SYNCHRONOUS

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: module

SWS Item SPI218 :

Name

SpiJobEndNotification {SPI_JOB_END_NOTIFICATION}

Description This parameter is a reference to a notification function.

Multiplicity 1

Type FunctionNameDef

Default value --

regularExpression --

ConfigurationClass Pre-compile
time

X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build
time

X VARIANT-POST-BUILD

Scope / Dependency scope: module

SWS Item SPI219 :

Name

SpiJobId {SPI_JOB_NAME}

Description --

Multiplicity 1

Type IntegerParamDef (Symbolic Name generated for this parameter)

Range ..

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

SWS Item SPI220 :

Name

SpiJobPriority {SPI_JOB_PRIORITY}

Description Priority of the Job

Multiplicity 1

Type IntegerParamDef

Range 0 .. 3

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: module

SWS Item SPI215 :

Name

ChannelAssignment {SPI_CHANNEL_LINKING}

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

79 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

Description A job references several channels.

Multiplicity 1..*

Type Reference to [SpiChannel]

ConfigurationClass Pre-compile
time

X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build
time

X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

SWS Item SPI216 :

Name

DeviceAssignment

Description Reference to the external device used by this job

Multiplicity 1

Type Reference to [SpiExternalDevice]

ConfigurationClass Pre-compile
time

--

Link time --

Post-build time --

Scope / Dependency

No Included Containers

10.2.6 SpiExternalDevice
SWS Item SPI207 :

Container Name SpiExternalDevice

Description
The communication settings of an external device. Closely linked to Spi-
Job.

Configuration Parameters

SWS Item SPI208 :

Name

SpiBaudrate {SPI_BAUDRATE}

Description This parameter is the communication baudrate - This parameter allows using a
range of values, from the point of view of configuration tools, from Hz up to MHz.

Multiplicity 1

Type FloatParamDef

Range -INF .. INF

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: module

SWS Item SPI209 :

Name

SpiCsIdentifier {SPI_CS_IDENTIFIER}

Description This parameter is the symbolic name to identify the Chip Select (CS) allocated
to this Job.

Multiplicity 1

Type StringParamDef (Symbolic Name generated for this parameter)

Default value --

regularExpression --

ConfigurationClass Pre-compile
time

X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build
time

X VARIANT-POST-BUILD

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

80 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

Scope / Dependency scope: module

SWS Item SPI210 :

Name

SpiCsPolarity {SPI_CS_POLARITY}

Description This parameter defines the active polarity of Chip Select.

Multiplicity 1

Type EnumerationParamDef

Range HIGH

LOW

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: module

SWS Item SPI211 :

Name

SpiDataShiftEdge {SPI_DATA_SHIFT_EDGE}

Description This parameter defines the SPI data shift edge.

Multiplicity 1

Type EnumerationParamDef

Range LEADING

TRAILING

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: module

SWS Item SPI212 :

Name

SpiEnableCs {SPI_ENABLE_CS}

Description This parameter enables or not the Chip Select handling functions.

Multiplicity 1

Type BooleanParamDef

Default value --

ConfigurationClass Pre-compile
time

X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build
time

X VARIANT-POST-BUILD

Scope / Dependency scope: module

SWS Item SPI213 :

Name

SpiShiftClockIdleLevel {SPI_SHIFT_CLOCK_IDLE_LEVEL}

Description This parameter defines the SPI shift clock idle level.

Multiplicity 1

Type EnumerationParamDef

Range HIGH

LOW

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: module

SWS Item SPI214 :

Name

SpiTimeClk2Cs {SPI_TIME_CLK2CS}

Description Timing between clock and chip select - This parameter allows to use a range of
values from 0 up to 100 microSec. the real configuration-value used in software
BSW-SPI is calculated out of this by the generator-tools

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

81 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

Multiplicity 1

Type FloatParamDef

Range 0 .. 100

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: module

No Included Containers

10.2.7 SpiDriver
SWS Item SPI091 :

Container Name SpiDriver{SpiDriverConfiguration} [Multi Config Container]

Description --

Configuration Parameters

SWS Item SPI197 :

Name

SpiMaxChannel {SPI_MAX_CHANNEL}

Description This parameter contains the number of Channels configured. It will be gathered
by tools during the configuration stage.

Multiplicity 0..1

Type IntegerParamDef

Range ..

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency

SWS Item SPI198 :

Name

SpiMaxJob {SPI_MAX_JOB}

Description --

Multiplicity 0..1

Type IntegerParamDef

Range ..

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency

SWS Item SPI199 :

Name

SpiMaxSequence {SPI_MAX_SEQUENCE}

Description --

Multiplicity 0..1

Type IntegerParamDef

Range ..

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time X VARIANT-LINK-TIME

Post-build time X VARIANT-POST-BUILD

Scope / Dependency

Included Containers

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

82 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

Container Name Multiplicity Scope / Dependency

SpiChannel 1..* All data needed to configure one SPI-channel

SpiExternalDevice 1..*
The communication settings of an external device. Closely
linked to SpiJob.

SpiJob 1..*
All data needed to configure one SPI-Job, amongst others the
connection between the internal SPI unit and the special set-
tings for an external device is done.

SpiSequence 1..* All data needed to configure one SPI-sequence

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

83 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

10.3 Published parameters

SPI089: The following table specifies information that is published in the module’s

header file Spi.h or in the module’s description file. Published information contains

data defined by the implementer of the SW module that does not change when the
module is adapted (i.e. configured) to the actual HW/SW environment. It thus con-
tains version and manufacturer information.

SPI068: This published information is provided in the module’s description for use by
configuration tools. Further hardware / implementation specific parameters can be
added if necessary.

The standard common published information like

vendorId (<Module>_VENDOR_ID),
moduleId (<Module>_MODULE_ID),
arMajorVersion (<Module>_AR_MAJOR_VERSION),
arMinorVersion (<Module>_ AR_MINOR_VERSION),
arPatchVersion (<Module>_ AR_PATCH_VERSION),
swMajorVersion (<Module>_SW_MAJOR_VERSION),
swMinorVersion (<Module>_ SW_MINOR_VERSION),
swPatchVersion (<Module>_ SW_PATCH_VERSION),
vendorApiInfix (<Module>_VENDOR_API_INFIX)

is provided in the BSW Module Description Template (see [11] Figure 4.1 and Figure
7.1).

Additional published parameters are listed below if applicable for this module.

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

84 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

10.4 Configuration concept

There is a relationship between the SPI Handler/Driver module and the modules that
use it. This relationship is resolved during the configuration stage and the result of it
influences the proper API and behaviour between those modules.

The user needs to provide to the SPI Handler/Driver part of the configuration to adapt
it to its necessities. The SPI Handler/Driver shall take this configuration and provide
the needed tools to the user.

The picture shows the information flow during the configuration of the SPI Han-
dler/Driver. It is shown only for one user, using an External EEPROM Driver as ex-
ample, but this situation is common to all users of the SPI Handler/Driver. To high-
light the situation where more users are affected, several overlapping documents are
drawn.

SPI Handler/Driver full

configuration

User of SPI Handler/Driver (e.g: External EEPROM Driver)

Eep.c Eep.h Eep_Cfg.h

Eep_Cfg.c

Configuration

Tool
Part of SPI configuration

XML
Hardware ECU Resources

containing all hardware

configuration

(e.g: Number of SPI

buses, list of all CS)

XML
User driver XML sheet

(e.g: EEPROM External

Driver)

Configures

Imported

Configures

Imported

Includes Includes

Spi_Cfg.c

Spi_Cfg.h

Publishes

Generates

Includes

Includes

Basic software

responsable

EEPROM External

Driver responsable

Includes

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

85 of 86 Document ID 038: AUTOSAR_SWS_SPI_HandlerDriver

- AUTOSAR confidential -

The steps on the diagrams are:

1. The user (External EEPROM Driver) of SPI Handler/Driver edits a XML con-
figuration file. This XML configuration file is the same used by the user to gen-
erate its own configuration.

2. For each ECU, a XML HW configuration document contains information which
should be used in order to configure some parameters.

3. The “SPI generation tool”. The Generation tool (here is reflected only the part
that generates code to SPI usage) shall generate the handles to export and
the instance of the configuration sets. In this step the software integrator will
provide missing information.

4. SPI instance configuration file. As a result of the generation all the symbolic
handlers needed by the user are included in the configuration header file of
the SPI Handler/Driver.

5. User gets the symbolic name of handlers. User imports the handle generated
to make use of them as requested by its XML configuration file.

11 Appendix

The table shown on the next page is just an example to help future users (and/or de-
velopers) that have to configure software modules to use the SPI Handler/Driver.

This table is independent of the Spi_ConfigType structure but contains all ele-

ments and aggregations like Channels, Jobs and Sequences.

EEP_WRITE_SEQ EEP_READ_SEQ

EEP_CMD_JOB EEP_DATA_JOB

EEP_CMD_CH EEP_ADR_CH EEP_DATA_CH

Specification of SPI Handler/Driver
 V2.5.0

R3.2 Rev 3

86 of 86 AUTOSAR_SWS_SPIHandler_Driver

- AUTOSAR confidential -

External EEPROM Write/Read Configuration for SPI Handler/Driver

Sequences Jobs Channels

Symbolic Name ID Attributes Symbolic Name ID Attributes Symbolic Name ID Attributes

EEP_WRITE_SEQ 0

2 (Number of Jobs),
{EEP_CMD_JOB,
EEP_DATA_JOB} (List of
Jobs),
Not Interruptible,
EEP_vidEndOfWriteSeq

EEP_CMD_JOB 0

SPI_BUS_0,
CS_EEPROM,
CS_ON,
CS_LOW,
CLK_2MHz,
1 (time in µs),
Polarity 180,
Falling Edge,
3,
EEP_vidEndOfStartWrJob,
1 (Number of Channels)
{EEP_CMD_CH} (List of Chan-
nels)

EEP_CMD_CH 0

EB,
8 bits,
1 data to TxD,
MSB First,
Default value is
0x00

EEP_READ_SEQ 1

1 (Number of Jobs),
{EEP_DATA_JOB} (List of
Jobs),
Not Interruptible,
EEP_vidEndOfReadSeq

EEP_DATA_JOB 1

SPI_BUS_0,
CS_EEPROM,
CS_ON,
CS_LOW,
CLK_2MHz,
1 (time in µs),
Polarity 180,
Falling Edge,
2,
NULL,
3 (Number of Channels)
{EEP_CMD_CH, EEP_ADR_CH,
EEP_DATA_CH} (List of Chan-
nels)

EEP_ADR_CH 1

EB,
16 bits,
1 data to TxD,
MSB First,
Default value is
0x0000

EEP_DATA_CH 2

EB,
8 bits,
32 data to TxD,
MSB First,
Default value is
0x00

	1 Introduction and functional overview
	2 Acronyms and abbreviations
	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 File structure
	5.1.1 Code file structure
	5.1.2 Header file structure

	6 Requirements traceability
	7 Functional specification
	7.1 Overall view of functionalities and features
	7.2 General behaviour
	7.2.1 Common configurable feature: Allowed Channel Buffers
	7.2.1.1 Behaviour of IB channels
	7.2.1.2 Behaviour of EB channels
	7.2.1.3 Buffering channel usage

	7.2.2 LEVEL 0, Simple Synchronous behaviour
	7.2.3 LEVEL 1, Basic Asynchronous behavior
	7.2.4 Asynchronous configurable feature: Interruptible Sequences
	7.2.4.1 Behavior of Non-Interruptible Sequences
	7.2.4.2 Behavior of Mixed Sequences

	7.2.5 LEVEL 2, Enhanced behaviour

	7.3 Scheduling Advices
	7.4 Error classification
	7.5 Error detection
	7.5.1 API parameter checking
	7.5.2 SPI state checking

	7.6 Error notification
	7.7 Version check

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 Spi_ConfigType
	8.2.2 Spi_StatusType
	8.2.3 Spi_JobResultType
	8.2.4 Spi_SeqResultType
	8.2.5 Spi_DataType
	8.2.6 Spi_NumberOfDataType
	8.2.7 Spi_ChannelType
	8.2.8 Spi_JobType
	8.2.9 Spi_SequenceType
	8.2.10 Spi_HWUnitType
	8.2.11 Spi_AsyncModeType

	8.3 Function definitions
	8.3.1 Spi_Init
	8.3.2 Spi_DeInit
	8.3.3 Spi_WriteIB
	8.3.4 Spi_AsyncTransmit
	8.3.5 Spi_ReadIB
	8.3.6 Spi_SetupEB
	8.3.7 Spi_GetStatus
	8.3.8 Spi_GetJobResult
	8.3.9 Spi_GetSequenceResult
	8.3.10 Spi_GetVersionInfo
	8.3.11 Spi_SyncTransmit
	8.3.12 Spi_GetHWUnitStatus
	8.3.13 Spi_Cancel
	8.3.14 Spi_SetAsyncMode

	8.4 Callback notifications
	8.5 Scheduled functions
	8.5.1 Spi_MainFunction_Handling
	8.5.2 Spi_MainFunction_Driving

	8.6 Expected Interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.3 Configurable interfaces
	8.6.3.1 Spi_JobEndNotification
	8.6.3.2 Spi_SeqEndNotification

	9 Sequence diagrams
	9.1 Initialization
	9.2 Modes transitions
	9.3 Write/AsyncTransmit/Read (IB)
	9.3.1 One Channel, one Job then one Sequence
	9.3.2 Many Channels, one Job then one Sequence
	9.3.3 Many Channels, many Jobs and one Sequence
	9.3.4 Many Channels, many Jobs and many Sequences

	9.4 Setup/AsyncTransmit (EB)
	9.4.1 Variable Number of Data / Constant Number of Data
	9.4.2 One Channel, one Job then one Sequence
	9.4.3 Many Channels, one Job then one Sequence
	9.4.4 Many Channels, many Jobs and one Sequence
	9.4.5 Many Channels, many Jobs and many Sequences

	9.5 Mixed Jobs Transmission
	9.6 LEVEL 0 SyncTransmit diagrams
	9.6.1 Write/SyncTransmit/Read (IB): Many Channels, many Jobs and one Sequence
	9.6.2 Setup/SyncTransmit (EB): Many Channels, many Jobs and one Sequence

	10 Configuration specification
	10.1 How to read this chapter
	10.1.1 Configuration and configuration parameters
	10.1.2 Containers
	10.1.3 Specification template for configuration parameters

	10.2 Containers and configuration parameters
	10.2.1 Variants
	10.2.2 SpiGeneral
	10.2.3 SpiSequence
	10.2.4 SpiChannel
	10.2.5 SpiJob
	10.2.6 SpiExternalDevice
	10.2.7 SpiDriver

	10.3 Published parameters
	10.4 Configuration concept

	11 Appendix

