
Specification of Memory Mapping
V1.2.2

R3.2 Rev 3

1 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping

- AUTOSAR confidential -

Document Title Specification of Memory
Mapping

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 128

Document Classification Standard

Document Version 1.2.2

Document Status Final

Part of Release 3.2

Revision 3

Document Change History
Date Version Changed by Change Description

28.02.2014 1.2.2 AUTOSAR
Release
Management

Editorial changes

07.04.2011 1.2.1 AUTOSAR
Administration

Legal disclaimer revised

10.09.2010 1.2.0 AUTOSAR
Administration

 MEMMAP003 changed: Application hint
added for the handling of INLINE code
implementation.

 Legal disclaimer revised

23.06.2008 1.1.1 AUTOSAR
Administration

Legal disclaimer revised

12.12.2007 1.1.0 AUTOSAR
Administration

 In MEMMAP004,all size postfixes for
memory segment names were listed, the
keyword 'BOOLEAN was added, taking
into account the particular cases where
boolean data need to be mapped in a
particular segment.

 In MEMMAP004 and MEMMAP021,tables
are defining the mapping segments
associated to #pragmas instructions,
adding some new segments to take into
account some implementation cases

 Document meta information extended

 Small layout adaptations made

13.02.2006 1.0.0 AUTOSAR
Administration

Initial release

Specification of Memory Mapping
V1.2.2

R3.2 Rev 3

2 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping

- AUTOSAR confidential -

Disclaimer

This specification and the material contained in it, as released by AUTOSAR is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only.
For any other purpose, no part of the specification may be utilized or reproduced, in
any form or by any means, without permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR Specification Documents may contain exemplary items (exemplary
reference models, "use cases", and/or references to exemplary technical solutions,
devices, processes or software).

Any such exemplary items are contained in the Specification Documents for
illustration purposes only, and they themselves are not part of the AUTOSAR
Standard. Neither their presence in such Specification Documents, nor any later
documentation of AUTOSAR conformance of products actually implementing such
exemplary items, imply that intellectual property rights covering such exemplary
items are licensed under the same rules as applicable to the AUTOSAR Standard.

Specification of Memory Mapping
V1.2.2

R3.2 Rev 3

3 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping

- AUTOSAR confidential -

Table of Contents

1 Introduction and functional overview ... 4

2 Acronyms and abbreviations ... 5

3 Related documentation.. 6

3.1 Input documents ... 6
3.2 Related standards and norms .. 6

4 Constraints and assumptions .. 7

4.1 Limitations .. 7
4.2 Applicability to car domains .. 7
4.3 Applicability to safety related environments ... 7

5 Dependencies to other modules .. 8

5.1 File structure .. 8
5.1.1 Code file structure ... 8
5.1.2 Header file structure .. 8

6 Requirements traceability .. 9

7 Analysis ... 15

7.1 Memory allocation of variables ... 15

7.2 Memory allocation of constant variables .. 16
7.3 Memory allocation of code ... 17

8 Functional specification ... 19

8.1 General issues ... 19
8.2 Mapping of variables and code .. 19

8.2.1 Requirements on implementations using MemMap.h 19

8.2.2 Requirements on MemMap.h .. 22

9 API specification .. 26

10 Sequence diagrams .. 27

11 Configuration specification .. 28

11.1 Published Information ... 28

Specification of Memory Mapping
V1.2.2

R3.2 Rev 3

4 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping

- AUTOSAR confidential -

1 Introduction and functional overview

This document specifies mechanisms for the mapping of code and data to specific
memory sections via memory mapping file. For many ECUs and microcontroller
platforms it is of utmost necessity to be able to map code, variables and constants
module wise to specific memory sections. Selection of important use cases:

Avoidance of waste of RAM
If different variables (8, 16 and 32 bit) are used within different modules on a 32 bit
platform, the linker will leave gaps in RAM when allocating the variables in the RAM.
This is because the microcontroller platform requires a specific alignment of variables
and some linkers do not allow an optimization of variable allocation.

This waste of memory can be circumvented if the variables are mapped to specific
memory sections depending on their size. This minimizes unused space in RAM.

Usage of specific RAM properties
Some variables (e.g. the RAM mirrors of the NVRAM Manager) must not be
initialized after a power-on reset. It shall be possible to map them to a RAM section
that is not initialized after a reset.

For some variables (e.g. variables that are accessed via bit masks) it improves both
performance and code size if they are located within a RAM section that allows for bit
manipulation instructions of the compiler. Those RAM sections are usually known as
‘Near Page’ or ‘Zero Page’.

Usage of specific ROM properties
In large ECUs with external flash memory there is the requirement to map modules
with functions that are called very often to the internal flash memory that allows for
fast access and thus higher performance. Modules with functions that are called
rarely or that have lower performance requirements are mapped to external flash
memory that has slower access.

Usage of the same source code of a module for boot loader and application
If a module shall be used both in boot loader and application, it is necessary to allow
the mapping of code and data to different memory sections.

A mechanism for mapping of code and data to memory sections that is supported by
all compilers listed in chapter 3.1 is the usage of pragmas. As pragmas are very
compiler specific, a mechanism that makes use of those pragmas in a standardized
way has to be specified.

Support of Memory Protection

1. The usage of hardware memory protection requires a separation of the
modules variables into different memory areas. Internal variables are mapped
into protected memory, buffers for data exchange are mapped into
unprotected memory.

Specification of Memory Mapping
V1.2.2

R3.2 Rev 3

5 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping

- AUTOSAR confidential -

2 Acronyms and abbreviations

Abbreviation /
Acronym:

Description:

BSW Basic Software

ISR Interrupt Service Routine

NVRAM Non-Volatile RAM

Specification of Memory Mapping
V1.2.2

R3.2 Rev 3

6 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping

- AUTOSAR confidential -

3 Related documentation

3.1 Input documents

[1] List of Basic Software Modules,
AUTOSAR_BasicSoftwareModules.pdf

[2] General Requirements on Basic Software Modules,

AUTOSAR_SRS_General.pdf

[3] AUTOSAR Basic Software Module Description Template,

AUTOSAR_BSW_Module_Description.pdf

[4] Cosmic C Cross Compiler User’s Guide for Motorola MC68HC12, V4.5

[5] ARM ADS compiler manual

[6] GreenHills MULTI for V850 V4.0.5:

Building Applications for Embedded V800, V4.0, 30.1.2004

[7] TASKING for ST10 V8.5:

C166/ST10 v8.5 C Cross-Compiler User's Manual, V5.16
C166/ST10 v8.5 C Cross-Assembler, Linker/Locator, Utilities User's Manual,
V5.16

[8] Wind River (Diab Data) for PowerPC Version 5.2.1:

Wind River Compiler for Power PC - Getting Started, Edition 2, 8.5.2004
Wind River Compiler for Power PC - User's Guide, Edition 2, 11.5.2004

[9] TASKING for TriCore TC1796 V2.0R1:

TriCore v2.0 C Cross-Compiler, Assembler, Linker User's Guide, V1.2

[10] Metrowerks CodeWarrior 4.0 for Freescale HC9S12X/XGATE (V5.0.25):

Motorola HC12 Assembler, 2.6.2004
Motorola HC12 Compiler, 2.6.2004
Smart Linker, 2.4.2004

3.2 Related standards and norms

Not applicable.

Specification of Memory Mapping
V1.2.2

R3.2 Rev 3

7 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping

- AUTOSAR confidential -

4 Constraints and assumptions

4.1 Limitations

During specification of abstraction and validation of concept the compilers listed in
chapter 3.1 have been considered. If any other compiler requires keywords that
cannot be mapped to the mechanisms described in this specification this compiler
will not be supported by AUTOSAR. In this case, the compiler vendor has to adapt its
compiler.

The concepts described in this document do only apply to C compilers. C++ is not in
scope of this version.

A dedicated pack-control of structures is not supported. Hence global set-up passed
via compiler / linker parameters has to be used.

A dedicated alignment control of code, variables and constants is not supported.
Hence affected objects shall be assigned to different sections or a global setting
passed via compiler / linker parameters has to be used.

4.2 Applicability to car domains

No restrictions.

4.3 Applicability to safety related environments

No restrictions. The memory mapping file does not implement any functionality, only
symbols and macros.

Specification of Memory Mapping
V1.2.2

R3.2 Rev 3

8 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping

- AUTOSAR confidential -

5 Dependencies to other modules

MEMMAP020: The SWS Memory Mapping is applicable for each AUTOSAR
software module. Therefore the implementation of memory mapping file shall fulfil the
implementation and configuration specific needs of each software module in a
specific build scenario. See also MEMMAP004, MEMMAP003, MEMMAP018 and
MEMMAP001MEMMAP008.

5.1 File structure

5.1.1 Code file structure

cd file structure

BSW moduleMemMap.h

«includes»

5.1.2 Header file structure

cd file structure

BSW moduleMemMap.h

«includes»

Specification of Memory Mapping
V1.2.2

R3.2 Rev 3

9 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping

- AUTOSAR confidential -

6 Requirements traceability

Document: AUTOSAR General Requirements on Basic Software Modules

Requirement Satisfied by

[BSW00344] Reference to link-time configuration
Not applicable
(Memory Mapping is specific per build
scenario)

[BSW00404] Reference to post build time configuration
Not applicable
(Memory Mapping is specific per build
scenario)

[BSW00405] Reference to multiple configuration sets
Not applicable
(Memory Mapping is specific per build
scenario)

[BSW00345] Pre-compile-time configuration
Not applicable
(Memory Mapping is specific per build
scenario)

[BSW159] Tool-based configuration
Not applicable
(Memory Mapping is specific per build
scenario)

[BSW167] Static configuration checking
Not applicable
(Memory Mapping is specific per build
scenario)

[BSW171] Configurability of optional functionality
Not applicable
(Memory Mapping is specific per build
scenario)

[BSW170] Data for reconfiguration of AUTOSAR SW-
Components

Not applicable
(Memory Mapping is specific per build
scenario)

[BSW00380] Separate C-Files for configuration
parameters [approved]

Not applicable
(Memory Mapping is specific per build
scenario)

[BSW00419] Separate C-Files for pre-compile time
configuration parameters

Not applicable
(Memory Mapping is specific per build
scenario)

[BSW00381] Separate configuration header file for pre-
compile time parameters

Not applicable
(Memory Mapping is specific per build
scenario)

[BSW00412] Separate H-File for configuration
parameters

Not applicable
(Memory Mapping is specific per build
scenario)

[BSW00383] List dependencies of configuration files
Not applicable
(Memory Mapping is specific per build
scenario)

[BSW00384] List dependencies to other modules MEMMAP020

[BSW00387] Specify the configuration class of callback
function

Not applicable
(Memory Mapping is specific per build
scenario)

[BSW00388] Introduce containers
Not applicable
(Memory Mapping is specific per build
scenario)

[BSW00389] Containers shall have names
Not applicable
(Memory Mapping is specific per build
scenario)

[BSW00390] Parameter content shall be unique within
the module

Not applicable
(Memory Mapping is specific per build

Specification of Memory Mapping
V1.2.2

R3.2 Rev 3

10 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping

- AUTOSAR confidential -

Requirement Satisfied by
scenario)

[BSW00391] Parameter shall have unique names
Not applicable
(Memory Mapping is specific per build
scenario)

[BSW00392] Parameters shall have a type
Not applicable
(Memory Mapping is specific per build
scenario)

[BSW00393] Parameters shall have a range
Not applicable
(Memory Mapping is specific per build
scenario)

[BSW00394] Specify the scope of the parameters
Not applicable
(Memory Mapping is specific per build
scenario)

[BSW00395] List the required parameters (per
parameter)

Not applicable
(Memory Mapping is specific per build
scenario)

[BSW00396] Configuration classes
Not applicable
(Memory Mapping is specific per build
scenario)

[BSW00397] Pre-compile-time parameters
Not applicable
(Memory Mapping is specific per build
scenario)

[BSW00398] Link-time parameters
Not applicable
(Memory Mapping is specific per build
scenario)

[BSW00399] Loadable Post-build time parameters
Not applicable
(Memory Mapping is specific per build
scenario)

[BSW00400] Selectable Post-build time parameters
Not applicable
(Memory Mapping is specific per build
scenario)

[BSW00402] Published information MEMMAP019

[BSW00375] Notification of wake-up reason
Not applicable
(Memory Mapping is not a BSW module)

[BSW101] Initialization interface
Not applicable
(Memory Mapping is not a BSW module)

[BSW00416] Sequence of Initialization
Not applicable
(Memory Mapping is not a BSW module)

[BSW00406] Check module initialization
Not applicable
(Memory Mapping is not a BSW module)

[BSW168] Diagnostic Interface of SW components
Not applicable
(Memory Mapping is not a BSW module)

[BSW00407] Function to read out published parameters
Not applicable
(Memory Mapping is not a BSW module)

[BSW00423] Usage of SW-C template to describe BSW
modules with AUTOSAR Interfaces

Not applicable
(Memory Mapping is not a BSW module)

[BSW00424] BSW main processing function task
allocation

Not applicable
(Memory Mapping is not a BSW module)

[BSW00425] Trigger conditions for schedulable objects
Not applicable
(Memory Mapping is not a BSW module)

[BSW00426] Exclusive areas in BSW modules
Not applicable
(Memory Mapping is not a BSW module)

[BSW00427] ISR description for BSW modules
Not applicable
(Memory Mapping is not a BSW module)

[BSW00428] Execution order dependencies of main
processing functions

Not applicable
(Memory Mapping is not a BSW module)

[BSW00429] Restricted BSW OS functionality access
Not applicable
(Memory Mapping is not a BSW module)

Specification of Memory Mapping
V1.2.2

R3.2 Rev 3

11 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping

- AUTOSAR confidential -

Requirement Satisfied by
[BSW00431] The BSW Scheduler module implements
task bodies

Not applicable
(Memory Mapping is not a BSW module)

[BSW00432] Modules should have separate main
processing functions for read/receive and write/transmit
data path

Not applicable
(Memory Mapping is not a BSW module)

[BSW00433] Calling of main processing functions
Not applicable
(Memory Mapping is not a BSW module)

[BSW00434] The Schedule Module shall provide an API
for exclusive areas

Not applicable
(Memory Mapping is not a BSW module)

[BSW00336] Shutdown interface
Not applicable
(Memory Mapping is not a BSW module)

[BSW00337] Classification of errors
Not applicable
(Memory Mapping is not a BSW module)

[BSW00338] Detection and Reporting of development
errors

Not applicable
(Memory Mapping is not a BSW module)

[BSW00369] Do not return development error codes via
API

Not applicable
(Memory Mapping is not a BSW module)

[BSW00339] Reporting of production relevant error
status

Not applicable
(Memory Mapping is not a BSW module)

[BSW00421] Reporting of production relevant error
events

Not applicable
(Memory Mapping is not a BSW module)

[BSW00422] Debouncing of production relevant error
status

Not applicable
(Memory Mapping is not a BSW module)

[BSW00420] Production relevant error event rate
detection

Not applicable
(Memory Mapping is not a BSW module)

[BSW00417] Reporting of Error Events by Non-Basic
Software

Not applicable,
(Memory Mapping does not report errors)

[BSW00323] API parameter checking
Not applicable
(Memory Mapping is not a BSW module)

[BSW004] Version check
Not applicable
(Memory Mapping is not a BSW module)

[BSW00409] Header files for production code error IDs
Not applicable
(Memory Mapping is not a BSW module)

[BSW00385] List possible error notifications
Not applicable
(Memory Mapping is not a BSW module)

[BSW00386] Configuration for detecting an error
Not applicable
(Memory Mapping is not a BSW module)

[BSW161] Microcontroller abstraction
Not applicable
(non-functional requirement)

[BSW162] ECU layout abstraction
Not applicable
(non-functional requirement)

[BSW00324] Do not use HIS I/O Library
Not applicable
(non-functional requirement)

[BSW005] No hard coded horizontal interfaces within
MCAL

Not applicable
(non-functional requirement)

[BSW00415] User dependent include files
Not applicable
(non-functional requirement)

[BSW164] Implementation of interrupt service routines
Not applicable
(non-functional requirement)

[BSW00325] Runtime of interrupt service routines
Not applicable
(Memory Mapping is not a BSW module)

[BSW00326] Transition from ISRs to OS tasks
Not applicable
(Memory Mapping is not a BSW module)

[BSW00342] Usage of source code and object code
Not applicable
(non-functional requirement)

Specification of Memory Mapping
V1.2.2

R3.2 Rev 3

12 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping

- AUTOSAR confidential -

Requirement Satisfied by

[BSW00343] Specification and configuration of time
Not applicable
(Memory Mapping is not a BSW module)

[BSW160] Human-readable configuration data
Not applicable
(Memory Mapping is not a BSW module)

[BSW007] HIS MISRA C
Not applicable,
(Memory Mapping is the C-language
extension header)

[BSW00300] Module naming convention
Not applicable
(Memory Mapping is not a BSW module)

[BSW00413] Accessing instances of BSW modules
Not applicable
(Memory Mapping is not a BSW module)

[BSW00347] Naming separation of different instances
of BSW drivers

Not applicable
(Memory Mapping is not a BSW module)

[BSW00305] Self-defined data types naming convention
Not applicable
(Memory Mapping is not a BSW module)

[BSW00307] Global variables naming convention
Not applicable
(Memory Mapping is not a BSW module)

[BSW00310] API naming convention
Not applicable
(Memory Mapping is not a BSW module)

[BSW00373] Main processing function naming
convention

Not applicable
(Memory Mapping is not a BSW module)

[BSW00327] Error values naming convention
Not applicable
(Memory Mapping is not a BSW module)

[BSW00335] Status values naming convention
Not applicable
(Memory Mapping is not a BSW module)

[BSW00350] Development error detection keyword
Not applicable
(Memory Mapping is not a BSW module)

[BSW00408] Configuration parameter naming
convention

Not applicable
(Memory Mapping is not a BSW module)

[BSW00410] Compiler switches shall have defined
values

Not applicable
(Memory Mapping is not a BSW module)

[BSW00411] Get version info keyword
Not applicable
(Memory Mapping is not a BSW module)

[BSW00346] Basic set of module files
Not applicable
(Memory Mapping is not a BSW module)

[BSW158] Separation of configuration from
implementation

Not applicable
(Memory Mapping is not a BSW module)

[BSW00314] Separation of interrupt frames and service
routines

Not applicable
(Memory Mapping is not a BSW module)

[BSW00370] Separation of callback interface from API
Not applicable
(Memory Mapping is not a BSW module)

BSW00348] Standard type header
Not applicable
(Memory Mapping is not a BSW module)

[BSW00353] Platform specific type header
Not applicable
(Memory Mapping is a C-language
extension header)

[BSW00361] Compiler specific language extension
header

MEMMAP002

[BSW00301] Limit imported information
Not applicable
(Memory Mapping is not a BSW module)

[BSW00302] Limit exported information
Not applicable
(Memory Mapping is not a BSW module)

[BSW00328] Avoid duplication of code
supported by:
MEMMAP001, MEMMAP005

[BSW00312] Shared code shall be reentrant
Not applicable
(Memory Mapping is not a BSW module)

[BSW006] Platform independency supported by:

Specification of Memory Mapping
V1.2.2

R3.2 Rev 3

13 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping

- AUTOSAR confidential -

Requirement Satisfied by
MEMMAP010, MEMMAP004,
MEMMAP003, MEMMAP005,
MEMMAP006, MEMMAP007,
MEMMAP011, MEMMAP013

[BSW00357] Standard API return type
Not applicable
(Memory Mapping is not a BSW module)

[BSW00377] Module specific API return types
Not applicable
(Memory Mapping is not a BSW module)

[BSW00304] AUTOSAR integer data types
Not applicable
(Memory Mapping is not a BSW module)

[BSW00355] Do not redefine AUTOSAR integer data
types

Not applicable
(Memory Mapping is not a BSW module)

[BSW00378] AUTOSAR boolean type
Not applicable
(Memory Mapping is not a BSW module)

[BSW00306] Avoid direct use of compiler and platform
specific keywords

supported by:
MEMMAP010, MEMMAP004,
MEMMAP003, MEMMAP005,
MEMMAP006, MEMMAP007,
MEMMAP011, MEMMAP013

[BSW00308] Definition of global data
Not applicable
(Memory Mapping is not a BSW module)

[BSW00309] Global data with read-only constraint
Not applicable
(Memory Mapping is not a BSW module)

[BSW00371] Do not pass function pointers via API
Not applicable
(Memory Mapping is not a BSW module)

[BSW00358] Return type of init() functions
Not applicable
(Memory Mapping is not a BSW module)

[BSW00414] Parameter of init function
Not applicable
(Memory Mapping is not a BSW module)

[BSW00414] Parameter of init function
Not applicable
(Memory Mapping is not a BSW module)

[BSW00359] Return type of callback functions
Not applicable
(Memory Mapping is not a BSW module)

[BSW00360] Parameters of callback functions
Not applicable
(Memory Mapping is not a BSW module)

[BSW00329] Avoidance of generic interfaces
Not applicable
(Memory Mapping is not a BSW module)

[BSW00330] Usage of macros / inline functions instead
of functions

Not applicable
(Memory Mapping is not a BSW module)

[BSW00331] Separation of error and status values
Not applicable
(Memory Mapping is not a BSW module)

[BSW009] Module User Documentation
Not applicable
(Memory Mapping is not a BSW module)

[BSW00401] Documentation of multiple instances of
configuration parameters

Not applicable
(Memory Mapping is not a BSW module)

[BSW172] Compatibility and documentation of
scheduling strategy

Not applicable
(Memory Mapping is not a BSW module)

[BSW010] Memory resource documentation
Not applicable
(Memory Mapping is not a BSW module)

[BSW00333] Documentation of callback function
context

Not applicable
(Memory Mapping is not a BSW module)

[BSW00374] Module vendor identification MEMMAP019

[BSW00379] Module identification MEMMAP019

[BSW003] Version identification MEMMAP019

[BSW00318] Format of module version numbers MEMMAP019

Specification of Memory Mapping
V1.2.2

R3.2 Rev 3

14 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping

- AUTOSAR confidential -

Requirement Satisfied by
[BSW00321] Enumeration of module version numbers MEMMAP019

[BSW00341] Microcontroller compatibility
documentation

Not applicable
(Memory Mapping is not a BSW module)

[BSW00334] Provision of XML file Not applicable
(Memory Mapping is not a BSW module)

Specification of Memory Mapping
V1.2.2

R3.2 Rev 3

15 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping

- AUTOSAR confidential -

7 Analysis

This chapter does not contain requirements. It just gives an overview to used
keywords and their syntax within different compilers. This analysis is required for a
correct and complete specification of methods and keywords.

7.1 Memory allocation of variables

Compiler analysis for starting/stopping a memory section for variables:

Compiler Required syntax

Cosmic, S12X Initialized variables:
#pragma section {name}

#pragma section {}

Non Initialized variables:
#pragma section [name]

#pragma section []

Metrowerks, S12X #pragma DATA_SEG” (<Modif> <Name> | “DEFAULT”)

<Modif>: Some of the following strings may be used:
SHORT, __SHORT_SEG,

DIRECT, __DIRECT_SEG,

NEAR, __NEAR_SEG,

FAR, __FAR_SEG,

DPAGE, __DPAGE_SEG,

RPAGE, __RPAGE_SEG

Pragma shall be used in definition and declaration.
Tasking, ST10 #pragma class mem=name

#pragma combine mem=ctype

#pragma align mem=atype

#pragma noclear

#pragma default_attributes

#pragma clear

atype is one of the following align types:
B Byte alignment
W Word alignment
P Page alignment
S Segment alignment
C PEC addressable
I IRAM addressable

ctype is one of the following combine types:
L private ('Local')
P Public
C Common
G Global
S Sysstack
U Usrstack
A address Absolute section AT constant address
(decimal, octal or hexadecimal number)

Tasking, TC1796 #pragma pack 0 / 2

packing of structs. Shall be visible at type declaration

Specification of Memory Mapping
V1.2.2

R3.2 Rev 3

16 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping

- AUTOSAR confidential -

Compiler Required syntax

#pragma section type "string"

#pragma noclear

#pragma clear

#pragma for_extern_data_use_memory

#pragma for_initialized_data_use_memory

#pragma for_uninitialized_data_use_memory

GreenHills, V850 #pragma align (n)

#pragma alignvar (n)

#pragma ghs section sect=”name”

#pragma ghs section sect =default

Section Keyword: data, sdata, tdata, zdata, bss,

sbss, zbss

ADS, ST30 #pragma arm section [sort_type[[=]"name"]]

[,sort_type="name"]*

sort_type="rwdata, zidata

alignment control via key words:

__packed, __align()

DIABDATA, MPC5554 #pragma section class_name [init_name]

[uninit_name] [address_mode] [access]

#pragma section class_name

Pragma shall be used before declaration.

class_name for variables:

BSS, DATA, SDATA

7.2 Memory allocation of constant variables

Compiler analysis for starting/stopping a memory section for constant variables:

Compiler Required syntax

Cosmic, S12X #pragma section const {name}

#pragma section const {}

Metrowerks, S12X #pragma CONST_SEG” (<Modif> <Name> | “DEFAULT”)

<Modif>: Some of the following strings may be used:
PPAGE, __PPAGE_SEG,

GPAGE, __GPAGE_SEG

Pragma shall be used in definition and declaration.

Tasking, ST10 #pragma class mem=name

#pragma align mem=atype

#pragma combine mem=ctype

#pragma default_attributes

atype is one of the following align types:
B Byte alignment
W Word alignment
P Page alignment
S Segment alignment
C PEC addressable
I IRAM addressable

ctype is one of the following combine types:
L private ('Local')
P Public
C Common

Specification of Memory Mapping
V1.2.2

R3.2 Rev 3

17 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping

- AUTOSAR confidential -

Compiler Required syntax

G Global
S Sysstack
U Usrstack
A address Absolute section AT constant address
(decimal, octal or hexadecimal number)

Tasking, TC1796 #pragma pack 0 / 2

Packing of structs. Shall be visible at type declaration

#pragma section type "string"

#pragma for_constant_data_use_memory

GreenHills, V850 #pragma ghs section sect=”name”

#pragma ghs section sect =default

Section Keyword: rodata, rozdata, rosdata

ADS, ST30 #pragma arm section [sort_type[[=]"name"]]

[,sort_type="name"]*

sort_type="rodata

alignment control via key words:
__packed, __align()

DIABDATA, MPC5554 #pragma section class_name [init_name]

[uninit_name] [address_mode] [access]

#pragma section class_name

Pragma shall be used before declaration.

class_name for constant variables:
CONST, SCONST, STRING

7.3 Memory allocation of code

Compiler analysis for starting/stopping a memory section for code::

Compiler Required syntax

Cosmic, S12X #pragma section (name)

#pragma section ()

Metrowerks, S12X #pragma CODE_SEG” (<Modif> <Name> | “DEFAULT”)

 <Modif>: Some of the following strings may be used:
 DIRECT, __DIRECT_SEG,

 NEAR, __NEAR_SEG,

 CODE, __CODE_SEG,

 FAR, __FAR_SEG,

 PPAGE, __PPAGE_SEG,

 PIC, __PIC_SEG

 Pragma shall be used in definition and declaration.

Tasking, ST10 #pragma class mem=name

#pragma combine mem=ctype

#pragma default_attributes

ctype is one of the following combine types:
L private ('Local')
P Public
C Common
G Global
S Sysstack
U Usrstack
A address Absolute section AT constant address

Specification of Memory Mapping
V1.2.2

R3.2 Rev 3

18 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping

- AUTOSAR confidential -

Compiler Required syntax

Tasking, TC1796 #pragma section code "string"

#pragma section code_init

#pragma section const_init

#pragma section vector_init

#pragma section data_overlay

#pragma section type[=]"name"

#pragma section all

GreenHills, V850 #pragma ghs section sect=”name”

#pragma ghs section sect =default

Section Keyword: text

ADS, ST30 #pragma arm section [sort_type[[=]"name"]]

[,sort_type="name"]*

sort_type="code"

DIABDATA, MPC5554 #pragma section class_name [init_name]

[uninit_name] [address_mode] [access]

#pragma section class_name

Pragma shall be used before declaration.

class_name for code:
CODE

Specification of Memory Mapping
V1.2.2

R3.2 Rev 3

19 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping

- AUTOSAR confidential -

8 Functional specification

8.1 General issues

The memory mapping file includes the compiler and linker specific keywords for
memory allocation into header and source files. These keywords control the
assignment of variables and functions to specific sections. Thereby implementations
are independent from compiler and microcontroller specific properties.
The assignment of the sections to dedicated memory areas / address ranges is not
the scope of the memory mapping file and is typically done via linker control files.

MEMMAP001: For each build scenario (e.g. Boot loader, ECU Application) an own
memory mapping file has to be provided.

MEMMAP002: The memory mapping file name shall be ‘MemMap.h’.

MEMMAP010: If a compiler/linker does not require or support requisite functionality
of SWS Memory Mapping, the memory allocation keyword defines shall be undefined
without further effect.

For instance:
#ifdef EEP_START_SEC_VAR_16BIT

 #undef EEP_START_SEC_VAR_16BIT

#endif

8.2 Mapping of variables and code

8.2.1 Requirements on implementations using MemMap.h

MEMMAP004: Each AUTOSAR software module shall support the configuration of at
least the following different memory types. It is allowed to add module specific
sections as they are mapped and thus are configurable within the module’s
configuration file. The shortcut ‘MSN’ means ‘module short name of BSW module
list’, e.g. ‘EEP’ or ‘CAN’.
The shortcut ‘SIZE’ means the variable size. Possible SIZE postfixes are

BOOLEAN, used for variables and constants of size 1 bit
8BIT, used for variables and constants of size 8 bit
16BIT, used for variables and constants of size 16 bit
32BIT, used for variables and constants of size 32 bit
UNSPECIFIED, used for variables and constants of unknown size

START_<SEGMENT>_START
START_<SEGMENT>_STOP

Specification of Memory Mapping
V1.2.2

R3.2 Rev 3

20 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping

- AUTOSAR confidential -

Memory
type

Syntax of memory allocation keyword Comments

Code <MSN>_START_SEC_CODE To be used for mapping code to
application block, boot block,
external flash etc. <MSN>_STOP_SEC_CODE

Variables <MSN>_START_SEC_VAR_NOINIT_<SIZE> To be used for all global or static
variables that are never initialized <MSN>_STOP_SEC_VAR_NOINIT_<SIZE>

Variables <MSN>_START_SEC_VAR_POWER_ON_INIT_<

SIZE>

To be used for all global or static
variables that are initialized only
after power on reset <MSN>_STOP_SEC_VAR_POWER_ON_INIT_<S

IZE>

Variables <MSN>_START_SEC_VAR_FAST_<SIZE> To be used for all global or static
variables that have at least one of
the following properties:

 accessed bitwise

 frequently used

 high number of accesses in
source code

Some platforms allow the use of bit
instructions for variables located in
this specific RAM area as well as
shorter addressing instructions. This
saves code and runtime.

<MSN>_STOP_SEC_VAR_FAST_<SIZE>

Variables <MSN>_START_SEC_INTERNAL_VAR_<SIZE> To be used for global or static
variables accessible from a
calibration tool.

<MSN>_STOP_SEC_INTERNAL_VAR_<SIZE>

Variables <MSN>_START_SEC_VAR_SAVED_ZONE<X>_<

SIZE>

To be used for RAM buffers of
variables saved in non volatile
memory. <MSN>_STOP_SEC_VAR_SAVED_ZONE<X>_<S

IZE>

Variables <MSN>_START_SEC_VAR_SAVED_RECOVERY_

ZONE<X>

To be used for ROM buffers of
variables saved in non volatile
memory. <MSN>_STOP_SEC_VAR_SAVED_RECOVERY_Z

ONE<X>

Variables <MSN>_START_SEC_VAR_<SIZE> To be used for global or static
variables that are initialized after
every reset (the normal case).

<MSN>_STOP_SEC_VAR_<SIZE>

Constants <MSN>_START_SEC_CONST_<SIZE> To be used for global or static
constants. <MSN>_STOP_SEC_CONST_<SIZE>

Constants <MSN>_START_SEC_CALIB_<SIZE> To be used for calibration constants.

<MSN>_STOP_SEC_CALIB_<SIZE>

Constants <MSN>_START_SEC_CARTO_<SIZE> To be used for cartography
constants. <MSN>_STOP_SEC_CARTO_<SIZE>

Configuration
data

<MSN>_START_CONFIG_DATA_<SIZE>

<MSN>_STOP_CONFIG_DATA_<SIZE>

Constants with attributes that show
that they reside in one segment for
module configuration.

MEMMAP021: There are different kinds of execution code sections. This code
sections shall be identified with dedicated keywords. If a section is not supported by
the integrator and micro controller then be aware that the keyword is ignored. The
table below defines the keyword to be used for each code section:

Specification of Memory Mapping
V1.2.2

R3.2 Rev 3

21 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping

- AUTOSAR confidential -

Memory
type

Syntax of memory allocation keyword Comments

Fast code <MSN>_START_SEC_CODE_FAST_<NUM>

<MSN>_STOP_SEC_CODE_FAST_<NUM>

To be used for code that shall go into
fast code memory segments.

Slow code <MSN>_START_SEC_CODE_SLOW

<MSN>_STOP_SEC_CODE_SLOW

To be used for code that shall go into
slow code memory segments.

Library code <MSN>_START_SEC_CODE_LIB

<MSN>_STOP_SEC_CODE_LIB

To be used for code that shall go into
library segments for <MSN> module.

MEMMAP003: Each AUTOSAR software module shall wrap declaration and
definition of code, variables and constants using the following mechanism:

1. Definition of start symbol for module memory section
2. Inclusion of MemMap.h
3. Declaration/definition of code, variables or constants belonging to the

specified section
4. Definition of stop symbol for module memory section
5. Inclusion of MemMap.h

For code which is invariably implemented as inline function the wrapping with
Memory Allocation Keywords is not required.

Application hint:

For code which his implemented with the INLINE macro of the “Compiler.h” the

wrapping with Memory Allocation Keywords is required at least for the code which is

remaining if INLINE is set to empty.

In the case that the INLINE is set to the inline keyword of the compiler the related

Memory Allocation Keywords shall not define any linker section assignments or
change the addressing behavior because this is already set by the environment of

the calling function where the code is inlined. In the case that the INLINE is set to

empty the related Memory Allocation Keywords shall be configured like for regular
code.
Please note as well that in the Basic Software Module Description the

MemorySection related to the used Memory Allocation Keywords has to document

the usage of INLINE in the option attribute. For further information see [3]

The inclusion of MemMap.h within the code is a MISRA violation. As neither
executable code nor symbols are included (only pragmas) this violation is an
approved exception without side effects.

The start and stop symbols for section control are configured with section identifiers
defined in “MemMap.h”. For details on configuring sections see “Configuration
specification”

For instance:
#define EEP_START_SEC_VAR_16BIT

#include “MemMap.h”

static uint16 EepTimer;

static uint16 EepRemainingBytes;

#define EEP_STOP_SEC_VAR_16BIT

#include “MemMap.h”

Specification of Memory Mapping
V1.2.2

R3.2 Rev 3

22 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping

- AUTOSAR confidential -

MEMMAP018: Each AUTOSAR software module shall support the configuration of
all C-objects assignable to one of the memory types code, variables and constants.

Application hint:
An implicit assignment of object to default sections is not allowed because properties
of default sections are platform and tool depended and therefore these
implementations are not platform independed.

8.2.2 Requirements on MemMap.h

MEMMAP005: The file MemMap.h shall provide a mechanism to select different
code, variable or constant sections by checking the definition of the module specific
memory allocation key words for starting a section (see MEMMAP004). Code,
variables or constants declared after this selection shall be mapped to this section.

MEMMAP015: The selected section shall be activated, if the section macro is defined
before include of the file “MemMap.h”.

MEMMAP016: The selection of a section shall only influence the linkers behaviour
for one of the three different object types code, variables or constants concurrently.

Application hint:
On one side the creation of combined sections (for instance code and constants) is
not allowed. For the other side the set-up of the compiler / linker must be done in a
way, that only the settings of the selected section type is changed. For instance the
set-up of the code section shall not influence the configuration of the constant section
and other way around.

For instance:
#ifdef EEP_START_SEC_VAR_16BIT

Specification of Memory Mapping
V1.2.2

R3.2 Rev 3

23 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping

- AUTOSAR confidential -

 #undef EEP_START_SEC_VAR_16BIT

 #define START_SECTION_DATA_16BIT

#elif

/*

 additional mappings of modules sections into project

 sections

*/

...

#endif

#ifdef START_SECTION_DATA_16BIT

 #pragma section data "sect_data16"

 #undef START_SECTION_DATA_16BIT

 #undef MEMMAP_ERROR

#elif

/*

 additional statements for switching the project sections

*/

...

#endif

Application hint:
Those code or variables sections can be used for the allocation of objects from more
than one module.
Those code or variables sections can be used for the allocation of objects from
different module specific code or variable sections of one module.

MEMMAP006: The file MemMap.h shall provide a mechanism to deselect different
code and variable sections by checking the definition of the module specific memory
allocation key words for stopping a section (see MEMMAP004). Code or variables
declared after this selection shall be mapped to default section. The selected section
shall be deactivated, if the section macro is defined before include of the file
“MemMap.h”.

Specification of Memory Mapping
V1.2.2

R3.2 Rev 3

24 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping

- AUTOSAR confidential -

For instance:
#ifdef EEP_STOP_SEC_CODE

 #undef EEP_STOP_SEC_CODE

 #define STOP_SECTION_COMMON_CODE

#elif

/*

 additional mappings of modules sections into project

 sections

*/

...

#endif

/* additional module specific mappings */

...

#ifdef STOP_SECTION_COMMON_CODE

 #pragma section code restore

 #undef STOP_SECTION_COMMON_CODE

 #undef MEMMAP_ERROR

#elif

/*

 additional statements for switching the project sections

*/

#endif

MEMMAP007: The file MemMap.h shall check if it has been included with a valid
memory mapping symbol. This shall be done by a preprocessor check.

For instance:
#define MEMMAP_ERROR

/*

 mappings of modules sections into project sections and

 statements for switching the project sec

*/

...

#elif STOP_SECTION_COMMON_CODE

 #pragma section code restore

 #undef STOP_SECTION_COMMON_CODE

 #undef MEMMAP_ERROR

#endif

#ifdef MEMMAP_ERROR

 #error "MemMap.h, wrong pragma command"

#endif

Specification of Memory Mapping
V1.2.2

R3.2 Rev 3

25 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping

- AUTOSAR confidential -

MEMMAP011: The file MemMap.h shall undefine the module specific memory
allocation key words for starting or stopping a section.

For instance:
#ifdef EEP_STOP_SEC_CODE

 #undef EEP_STOP_SEC_CODE

MEMMAP013: The file MemMap.h shall use if-else structures reducing the
compilation effort.

For instance:
#define MEMMAP_ERROR

...

/* module and ECU specific section mappings */

#if defined START_SECTION_COMMON_CODE

 #pragma section ftext

 #undef START_SECTION_COMMON_CODE

 #undef MEMMAP_ERROR

#elif defined START_SECTION_UNBANKED_CODE

 #pragma section code text

 #undef START_SECTION_UNBANKED_CODE

 #undef MEMMAP_ERROR

#elif defined ...

...

#endif

Specification of Memory Mapping
V1.2.2

R3.2 Rev 3

26 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping

- AUTOSAR confidential -

9 API specification

Not applicable.

Specification of Memory Mapping
V1.2.2

R3.2 Rev 3

27 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping

- AUTOSAR confidential -

10 Sequence diagrams

Not applicable.

Specification of Memory Mapping
V1.2.2

R3.2 Rev 3

28 of 28 Document ID 128: AUTOSAR_SWS_MemoryMapping

- AUTOSAR confidential -

11 Configuration specification

The file MemMap.h is specific for each build scenario. Therefore there is no
standardized configuration interface specified.

11.1 Published Information

Published information contains data defined by the implementer of the SW module
that does not change when the module is adapted (i.e. configured) to the actual
HW/SW environment. It thus contains version and manufacturer information.

The standard common published information like

vendorId (<Module>_VENDOR_ID),
moduleId (<Module>_MODULE_ID),
arMajorVersion (<Module>_AR_MAJOR_VERSION),
arMinorVersion (<Module>_ AR_MINOR_VERSION),
arPatchVersion (<Module>_ AR_PATCH_VERSION),
swMajorVersion (<Module>_SW_MAJOR_VERSION),
swMinorVersion (<Module>_ SW_MINOR_VERSION),
swPatchVersion (<Module>_ SW_PATCH_VERSION),
vendorApiInfix (<Module>_VENDOR_API_INFIX)

is provided in the BSW Module Description Template (see [3] Figure 4.1 and Figure
7.1).

Additional published parameters are listed below if applicable for this module.

	1 Introduction and functional overview
	2 Acronyms and abbreviations
	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains
	4.3 Applicability to safety related environments

	5 Dependencies to other modules
	5.1 File structure
	5.1.1 Code file structure
	5.1.2 Header file structure

	6 Requirements traceability
	7 Analysis
	7.1 Memory allocation of variables
	7.2 Memory allocation of constant variables
	7.3 Memory allocation of code

	8 Functional specification
	8.1 General issues
	8.2 Mapping of variables and code
	8.2.1 Requirements on implementations using MemMap.h
	8.2.2 Requirements on MemMap.h

	9 API specification
	10 Sequence diagrams
	11 Configuration specification
	11.1 Published Information

