
Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

1 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

Document Title Specification of I/O Hardware
Abstraction

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 047

Document Classification Auxiliary

Document Version 2.1.0

Document Status Final

Part of Release 3.2

Revision 3

Document Change History
Date Version Changed by Change Description

28.02.2014 2.1.0 AUTOSAR
Release
Management

 Revised requirement IDs

 Editorial changes

 Removed chapter(s) on change
documentation

23.03.2011 2.0.3 AUTOSAR
Administration

Legal disclaimer revised

23.06.2008 2.0.1 AUTOSAR
Administration

Legal disclaimer revised

13.12.2007 2.0.0 AUTOSAR
Administration

 Auto generation of chapters 8 and 10
with the Metamodel

 Update of tables and some chapters of
the document to stay compliant with
correlated documents

 Document meta information extended

 Small layout adaptations made

14.02.2007 1.1.1 AUTOSAR
Administration

 Various images corrected in
PDFversion (printing problems)

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

2 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

Document Change History
Date Version Changed by Change Description

31.01.2007 1.1.0 AUTOSAR
Administration

 File structure updated

 Traceability matrix corrected

 Restriction for the usage of the SW-C
template

 Chapter about IOHWAB Runnable
concept reworked

 Chapter about IOHWAB description
reworked

 Adjustments in the configuration
chapter

 Legal disclaimer revised

 Release Notes added

 “Advice for users” revised

 “Revision Information” added

27.04.2006 1.0.0 AUTOSAR
Administration

Initial Release

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

3 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

Disclaimer

This specification and the material contained in it, as released by AUTOSAR is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only.
For any other purpose, no part of the specification may be utilized or reproduced, in
any form or by any means, without permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR Specification Documents may contain exemplary items (exemplary
reference models, "use cases", and/or references to exemplary technical solutions,
devices, processes or software).

Any such exemplary items are contained in the Specification Documents for
illustration purposes only, and they themselves are not part of the AUTOSAR
Standard. Neither their presence in such Specification Documents, nor any later
documentation of AUTOSAR conformance of products actually implementing such
exemplary items, imply that intellectual property rights covering such exemplary
items are licensed under the same rules as applicable to the AUTOSAR Standard..

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

4 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

Table of Contents

1 Introduction and functional overview ... 7

2 Acronyms and abbreviations ... 8

3 Related documentation.. 11

3.1 Input documents ... 11
3.2 Related standards and norms .. 12

4 Constraints and assumptions .. 13

4.1 Limitations .. 13
4.2 Applicability to car domains .. 13

5 Dependencies to other modules .. 14

5.1 Interface with MCAL drivers ... 14
5.1.1 Overview ... 14

5.1.2 Summary of interfaces with MCAL drivers .. 15
5.2 Interface with the communication drivers ... 15
5.3 Interface with System Services .. 17
5.4 File structure .. 18

5.4.1 Code file structure ... 18
5.4.2 Header file structure .. 18

6 Requirements traceability .. 20

7 Functional specification ... 27

7.1 ECU firmware software .. 27
7.1.1 Background & Rationale ... 27

7.1.2 Requirements for firmware implementation ... 27
7.2 ECU Signals Concept ... 28

7.2.1 Background & Rationale ... 28

7.2.2 Requirements about ECU signals ... 29
7.3 ECU signal classes .. 30

7.3.1 Background & Rationale ... 30
7.3.2 Requirements about ECU signal classes .. 30

7.3.2.1 Analogue Class ... 30
7.3.2.2 Discrete Class ... 30

7.3.2.3 Diagnosis Class ... 31
7.3.2.4 Pulse Width Modulation Class ... 31

7.4 Attributes .. 32
7.4.1 Background & Rationale ... 32
7.4.2 Requirements about ECU signal attributes ... 32

7.4.2.1 Signal Data Type Attribute ... 32
7.4.2.2 Access Attribute ... 33
7.4.2.3 BSW-Range Attribute .. 34
7.4.2.4 Unit Attribute .. 34

7.4.2.5 BSW-Resolution Attribute .. 35
7.4.2.6 BSW-Accuracy Attribute .. 35
7.4.2.7 Hardware Resolution Attribute ... 35

7.4.2.8 Hardware Accuracy Attribute ... 36

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

5 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

7.4.2.9 Filtering/Debouncing Attribute ... 36

7.4.2.10 Failure Monitoring Attribute .. 36
7.4.2.11 Age Attribute .. 37
7.4.2.12 Reporting Feature Attribute .. 38
7.4.2.13 Pulse Test Attribute .. 39
7.4.2.14 Wakeup Attribute ... 39

7.4.3 Overview of Attributes to qualify Signals ... 40
7.5 IO Hardware Abstraction and Software Component Template 41

7.5.1 Background & Rationale ... 41
7.5.2 Requirements about the usage of Software Component template 41

7.5.2.1 Ports concept and IO Hardware Abstraction.................................... 42

7.5.2.2 Software Component and Runnable concept 42
7.6 Scheduling concept for IO Hardware Abstraction 43

7.6.1 Background & Rationale ... 43
7.6.2 Requirements about IO Hardware Abstraction Scheduling concept 44

7.6.2.1 Operations for interfaces provided by Ports..................................... 44
7.6.2.2 Notification and/or Callback ... 45

7.6.2.3 Main function / job processing function .. 45
7.6.2.4 Initialization, Deinitialization and/or Callout...................................... 46

7.6.2.5 IO Hardware Abstraction scheduling examples 46
7.7 Other requirements .. 49
7.8 Error classification .. 49

7.9 Error detection .. 49

7.10 Error notification ... 49
7.11 IO Hardware Abstraction layer description ... 50

7.11.1 Background & Rationale ... 50
7.11.2 Requirements .. 50

7.11.2.1 IO Hardware Abstraction Ports definition 50
7.12 Examples ... 51

7.12.1 EXAMPLE 1: Use case of on-board hardware 51
7.12.2 EXAMPLE 2: Use case of failure monitoring managed by SPI............ 53

7.12.3 EXAMPLE 5: Output power stage ... 54

8 API specification .. 56

8.1 Imported types.. 56

8.2 Type definitions .. 57
8.2.1 IoHwAb_ConfigType ... 57
8.2.2 IoHwAb_SignalType .. 57
8.2.3 IoHwAb_DiscreteGroupType... 57

8.2.4 IoHwAb_SignalDiagnosisType .. 57
8.2.5 IoHwAb_VoltageType ... 58
8.2.6 IoHwAb_CurrentType .. 58
8.2.7 IoHwAb_ResistanceType .. 58
8.2.8 IoHwAb_PwxPeriodType .. 58

8.2.9 IoHwAb_PwxDutyCycleType... 58
8.3 Function definitions .. 59

8.3.1 IoHwAb_Init<_Init_Id> ... 59

8.3.2 IoHwAb_GetVersionInfo .. 60
8.4 Call-back notifications .. 60

8.4.1 IoHwAb_Adc_Notification .. 60

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

6 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

8.4.2 IoHwAb_Pwm_Notification .. 61

8.4.3 IoHwAb_Icu_Notification ... 61
8.4.4 IoHwAb_Gpt_Notification .. 62

8.5 Scheduled functions ... 62
8.5.1 <Name of scheduled function>.. 62

8.6 Expected Interfaces .. 63

8.6.1 Mandatory Interfaces .. 63
8.6.2 Optional Interfaces .. 65
8.6.3 Configurable interfaces ... 66
8.6.4 Job End Notification .. 66

9 Sequence diagrams .. 67

9.1 ECU-signal provided by the IO Hardware Abstraction (example) 67

10 Configuration specification ... 69

10.1 How to read this chapter .. 69
10.1.1 Configuration and configuration parameters 69
10.1.2 Variants ... 69
10.1.3 Containers ... 69

10.1.4 Specification template for configuration parameters 70
10.2 Containers and configuration parameters .. 70

10.2.1 Variants ... 70
10.2.2 IoHwAbstraction .. 71

10.2.3 IoHwAbGeneral ... 71
10.2.4 IoHwAbEcuSignals .. 72

10.2.5 IoHwAbEcuSignalGroup ... 73
10.2.6 IoHwAbDiscSigGrpInput ... 73
10.2.7 IoHwAbDiscSigGrpOutput ... 73
10.2.8 IoHwAbDiscrete .. 74
10.2.9 IoHwAbDiscreteInput .. 75
10.2.10 IoHwAbDiscreteOutput .. 76

10.2.11 IoHwAbDiscreteDiagnosis ... 77
10.2.12 IoHwAbAnalog ... 77

10.2.13 IoHwAbAnalogInput ... 78
10.2.14 IoHwAbAnalogOutput .. 79

10.2.15 IoHwAbPulseWidth .. 80
10.2.16 IoHwAbPwPeriod ... 81
10.2.17 IoHwAbPwPeriodInput ... 82
10.2.18 IoHwAbPwPeriodOutput .. 82
10.2.19 IoHwAbPwDutyCycle ... 83

10.2.20 IoHwAbPwDutyCycleInput ... 84
10.2.21 IoHwAbPwDutyCycleOutput .. 84

10.3 Published Information ... 85

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

7 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

1 Introduction and functional overview

This specification specifies the functionality and the configuration of the AUTOSAR
Basic Software IO Hardware Abstraction. IO Hardware Abstraction is part of the ECU
Abstraction Layer.

The IO Hardware Abstraction shall not be considered as a single module, as it can
be designed as more than one module.This specification for the IO Hardware
Abstraction is not intended to standardize this module or group of modules, but only
its functional interfaces with other modules. Instead it is intended to be a guideline for
the implementation.

Aim of the IO Hardware Abstraction is to make data transiting through the RTE fully
independent of the ECU hardware. This means that the Software Component
designer doesn’t need anymore to have the know-how how signals are affected on
the physical level. Thus, IO Hardware Abstraction is ECU specific.

This will be mainly realized through the mapping of ECU signals on IO Hardware
Abstraction (considered as a Software Component) ports. This document presents
therefore the best way to map ECU signals to ports.

The IO Hardware Abstraction shall provide the service for initializing the whole IO
Hardware Abstraction.

The intention of this document is:

 to explain which part of the Software Component template shall be used when
defining an IO Hardware Abstraction.

 to give the way to define generic ports, where ECU signals are mapped.

The intention of this document is not:

 to provide C-APIs

 to provide a specific formalization for every ECU signal, like it is done via the
standardization of functional data (body domain, powertrain, chassis domain)

Requirements in the SRS are referenced using [BSWxxx] where <xxx> is the
requirement number. For example [BSW13905].

Requirements in the SWS are marked with [IoHwAb<n>] as first text in a paragraph.
The scope of the requirement is the entire paragraph.

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

8 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

2 Acronyms and abbreviations

Abbreviation /
Acronym:

Description:

AUTOSAR AUTomotive Open System ARchitecture

BSW Basic SoftWare

BSWMDT Basic SoftWare Module DescripTion

DTD Document Type Definition

ECU Electronic Control Unit

HW HardWare

Io Hw Ab Input Output Hardware Abstraction

ISR Interrupt Service Routine

MCAL MicroController Abstraction Layer

OS Operating System

RTE RunTime Environment

SW SoftWare

SWCT SoftWare Component Template

XML eXtensible Markup Language

Expressions used in this document

Expression Description Example

Callback
Within this document, the term ‘callback’ is used for
API services which are intended for notifications to
other BSW modules.

Callout

This definition comes from the ECU state manager
SWS “the term ‘callout’ is used for function stubs which
can be filled by the system designer, usually at
configuration time, with the purpose to add
functionality to the ECU State Manager. Callouts are
separated into two classes, where one class is optional
to be filled. The other class is mandatory and serves
as a Hardware Abstraction“

Class
A class represents a kind of electrical connection to
the ECU. It could be for example an analogue, a
discrete,…

Analogue class,
Discrete class,
…

Client / Server
communication

This definition is an extract from [9]:
Client-server communication involves two entities, the
client which is the
requirer (or user) of a service and the server that
provides the service.
The client initiates the communication, requesting that
the server performs a service, transferring a parameter
set if necessary. The server, in the form of the RTE,
waits for incoming communication requests from a
client, performs the requested service and dispatches
a response to the client's request. So, the direction of
initiation is used to categorize whether an AUTOSAR
Software Component is a client or a server.

Electrical
signal

It is the electrical signal on the pin of the ECU Physical input voltage at
an ECU-Pin

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

9 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

ECU pin

It is an hardware electrical connection of the ECU with
the rest of the electronic system

ECU Signal

It is the software representation of an electrical
signal. An ECU signal has attributes and a symbolic
name

Input voltage ,Discrete
Output, PWM Input

ECU Signal
group

It is the software representation of a group of
electrical signals. A group is included in the class
“discrete”

Only for discrete Inputs
and discrete Outputs

Attributes
Characteristics that can be Software (SW) and
Hardware (HW) for each kind of ECU Signals existing
in a ECU

Range,
Lifetime / delay

Sender-receiver
communication

This definition is an extract from [9]:
Sender-receiver communication involves the
transmission and reception of signals consisting of
atomic data elements that are sent by one component
and received by one or more components. A sender-
receiver interface can contain multiple data elements.
Sender-receiver communication is one-way - any reply
sent by the receiver is sent as a separate sender-
receiver communication. A port of a component that
requires an AUTOSAR sender-receiver interface can
read the data elements described in the interface and
a port that provides the interface can write the data
elements.

Symbolic name
The symbolic name of a ECU signal is used by the IO
Hardware Abstraction to make a link (function, pin)

ECU Signal attributes

Expression Description Example

Range

This is a functional range and not an
electrical range. All the range is used either
for functional needs or for diagnosis
detections
For analogue ECU signals
[lowerLimit...upperLimit] (Voltage, current).
For the particular case of a resistance
signal and a timing signal (period), the
lowerLimit value can not be negative.

[-12Volts...+12Volts] (voltage)
 [0,1]
(discrete signals)

[0…upperLimit]
(period timing signal)
[-100…100%]
(Duty Cycle based timing signal)

Resolution

This attribute is for many Classes dependent
on the range and the Data Type.
Example: (upperLimit - lowerLimit) /
(2

datatypelength
 -1)

For the others classes, it is known and
defined.

 [-12 Volts…+12Volts]
Data Type : 16 bits
Resolution => 24 / 65535

Accuracy
It depends of hardware peripheral used for
acquisition and/or generation.

ADC converter could be a
8/10/12/16 bits converter

Inversion

Inversion between the physical value and the
logical value. This attribute is not visible but
done by IO Hardware Abstraction to deliver
expected values to users.

Physical HighState 
(Signal=False)
Physical LowState 
(Signal=True)

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

10 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

Expression Description Example

Sampling rate Time period required to get a Signal value.
Sampling rate for a sampling
windows (burst)

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

11 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

3 Related documentation

3.1 Input documents

[1] AUTOSAR List of Basic Software Modules
AUTOSAR_BasicSoftwareModules.pdf

[2] Layered Software Architecture
AUTOSAR_LayeredSoftwareArchitecture.pdf

[3] General Requirements on Basic Software Modules
AUTOSAR_SRS_General.pdf

[4] Specification of ECU Configuration
AUTOSAR_ECU_Configuration.pdf

[5] AUTOSAR Glossary
AUTOSAR_Glossary.pdf

[6] Requirements on SPAL
AUTOSAR_SRS_SPAL.pdf

[7] Requirements on I/O Hardware Abstraction
AUTOSAR_SRS_IOHW_Abstraction.pdf

[8] Software Component Template
AUTOSAR_SoftwareComponentTemplate.pdf

[9] Specification of RTE Software
AUTOSAR_SWS_RTE.pdf

[10] Specification of ECU State Manager
AUTOSAR_SWS_ECU_StateManager.pdf

[11] Specification of ECU Resource Template
AUTOSAR_ECU_ResourceTemplate.pdf

[12] Specification of ADC Driver
AUTOSAR_SWS_ADC_Driver.pdf

[13] Specification of DIO Driver
AUTOSAR_SWS_DIO_Driver.pdf

[14] Specification of ICU Driver
AUTOSAR_SWS_ICU_Driver.pdf

[15] Specification of PWM Driver
AUTOSAR_SWS_PWM_Driver.pdf

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

12 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

[16] Specification of PORT Driver
AUTOSAR_SWS_PORT_Driver.pdf

[17] Specification of GPT Driver
AUTOSAR_SWS_GPT_Driver.pdf

[18] Specification of SPI Handler/Driver
AUTOSAR_SWS_SPI_HandlerDriver.pdf

[19] Specification of BSW Scheduler
AUTOSAR_SWS_BSW_Scheduler.pdf

[20] AUTOSAR Basic Software Module Description Template,
AUTOSAR_BSW_Module_Description.pdf

3.2 Related standards and norms

None

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

13 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

4 Constraints and assumptions

4.1 Limitations

No limitations

4.2 Applicability to car domains

No restrictions.

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

14 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

5 Dependencies to other modules

5.1 Interface with MCAL drivers

5.1.1 Overview

The following picture shows the IO Hardware Abstraction. It is located above MCAL
drivers. That means the IO Hardware Abstraction will call the drivers API for
managing on chip devices. The configuration of MCAL drivers depends on the quality
of the ECU signals to be provided by the IO Hardware Abstraction. For instance, it
could be required to have notification when a relevant change occurs on the pin level
(rising edge, falling edge). The system designer has to configure the MCAL driver to
allow notification for a given signal. Notifications come from drivers and are handled
within the IO Hardware Abstraction.
Please notice that IO Hardware Abstraction is not intended to abstract GPT
functionalities, but rather to use them to perform its own functionalities. The
interfacing with GPT driver is shown because it is part of MCAL drivers.

The following picture shows all interfaces with MCAL drivers:

Figure 5.1: Interfaces with MCAL drivers

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

15 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

5.1.2 Summary of interfaces with MCAL drivers

IoHwAb078: IO Hardware Abstraction implementation has interfaces with all IO
MCAL drivers listed below, and with the GPT driver:

 MCAL drivers

IoHwAb ADC driver PWM
driver

ICU driver DIO driver PORT
driver

GPT driver

Calls API of X X X X X X

Receives
notifications
from

X X X - - X

The table above must be red as following:

 The IO Hardware Abstraction calls API of the ADC driver

 The IO Hardware Abstraction receives notifications from the ADC driver.

 The IO Hardware Abstraction does not receive notifications from the DIO
driver.

A complete list of all API is given in chapter 8.6.1

5.2 Interface with the communication drivers

IoHwAb079: IO Hardware Abstraction implementation has interfaces with some
communication drivers, if on-board devices are managed (for instance by SPI).

The following picture shows the IO Hardware Abstraction, where some signals come
from / are set via the SPI handler / driver.
According to the Layered Software Architecture [2] (ID03-16), the IO Hardware
Abstraction contains dedicated drivers to manage external devices for instance:

 A driver for external ADC driver, connected via SPI.

 A driver for external IO realized on an Asic device, connected via SPI.

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

16 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

Figure 5.2: Interfaces with communication drivers

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

17 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

5.3 Interface with System Services

IoHwAb044: The IO Hardware Abstraction implementation has some interfaces with
system services:

 ECU state manager (init function, shutdown function).

 DEM: Diagnostic Event Manager

 DET: Development Error Tracer

 BSW Scheduler (BSW-runnable entities will be members of OS tasks)

Figure 5.3: Interfaces with system services

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

18 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

5.4 File structure

5.4.1 Code file structure

IoHwAb097: The code file structure shall not be defined within this specification.

5.4.2 Header file structure

IoHwAb064: The include file structure shall be as follows:

IO Hardware Abstraction

IoHwAb_Cfg.c

IoHwAb_Cbk.h

Dem.h Det.h

includes

SchM_IoHwAb.h

SchM.c

MemMap.h

Std_Types.h

IoHwAb.h

IoHwAb_Types.h

IoHwAb_Cfg.h

IoHwAb_Lcfg.c

IoHwAb_PBcfg.c

<Drivers>.h

<Drivers>.c

IoHwAb.c

<Rte_IoHwAb>.h

Figure 5.4: File structure

The files “<Drivers>.h” represent the different header files of the driver which will be
actually interfaced to IO Hardware Abstraction. In the same way, the files
“<Drivers>.c” represent the code files of the drivers which will be actually interfaced
and need to call IO Hardware Abstraction callbacks.

The IO Hardware Abstraction C files (represented with name “IoHwAb.c”) shall
optionally include the Dem.h file if any production error will be issued by the
implementation. By this inclusion, the APIs to report errors as well as the required
Event Id symbols are included. This specification defines the name of the Event Id

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

19 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

symbols which are provided by XML to the DEM configuration tool. The DEM
configuration tool assigns ECU dependent values to the Event Id symbols and
publishes the symbols in Dem_IntErrId.h.

IoHwAb095: The pre-compile time parameters shall be placed in IoHwAb_Cfg.h

IoHwAb062: Additional header files can be added to the structure shown in the
picture. This shall be defined in the design document of the IO Hardware Abstraction
document.

IoHwAb112: The IO Hardware Abstraction shall not be considered as a single
module. IO Hardware Abstraction can be designed as more than one module.source
and header file. The name pattern shall not be fully standardized, however file names
shall be prefixed with “IoHwAb_<reference>”, where field <reference> could be the
proprietary reference, in order to avoid name clashes.

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

20 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

6 Requirements traceability

Document: AUTOSAR General requirements on Basic Software Modules, [3]

Requirement Satisfied by

[BSW003] Version identification Requirement to be taken into account during
implementation

[BSW00300] Module naming convention Not applicable

(requirement on implementation, not on
specification)

[BSW00301] Limit imported information Requirement to be taken into account during
implementation

[BSW00302] Limit exported information Requirement to be taken into account during
implementation

[BSW00304] AUTOSAR integer data types Requirement to be taken into account during
implementation

[BSW00305] Self-defined data types naming
convention

[IoHwAb065]

[BSW00306] Avoid direct use of compiler and
platform specific keywords

Requirement to be taken into account during
implementation

[BSW00307] Global variables naming convention Requirement on naming rules to be taken into
account during implementation

[BSW00308] Definition of global data Requirement to be taken into account during
implementation

[BSW00309] Global data with read-only constraint Requirement to be taken into account during
implementation

[BSW00310] API naming convention Requirement on naming rules to be taken into
account during implementation

[BSW00312] Shared code shall be reentrant Requirement to be taken into account during
implementation

[BSW00314] Separation of interrupt frames and
service routines

[IoHwAb097] Requirement to be taken into
account during implementation

[BSW00318] Format of module version numbers [IoHwAb056]

[BSW00321] Enumeration of module version
numbers

Not applicable

(requirement on implementation, not for
specification)

[BSW00323] API parameter checking [IoHwAb067]

[BSW00325] Runtime of interrupt service routines Not applicable

(this module does not implement any interrupt
service routines)

[BSW00326] Transition from ISRs to OS tasks Not applicable

(requirement on implementation, not for
specification)

[BSW00327] Error values naming convention Requirement on naming rules to be taken into
account during implementation

[BSW00328] Avoid duplication of code Requirement to be taken into account during
implementation

[BSW00329] Avoidance of generic interfaces Not Applicable:

(requirement on software architecture, not for a
single module)

[BSW00330] Usage of macros / inline functions
instead of functions

Requirement to be taken into account during
implementation

[BSW00331] Separation of error and status values Requirement to be taken into account during
implementation

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

21 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

[BSW00333] Documentation of callback function
context

[IoHwAb033]

Requirement to be taken into account during
implementation

[BSW00334] Provision of XML file Not applicable

(requirement on documentation, not on
specification)

[BSW00335] Status values naming convention Requirement on naming rules to be taken into
account during implementation

[BSW00336] Shutdown interface [IoHwAb044], [IoHwAb036]

(but no API provided by IO Hardware abstraction
for deinit)

[BSW00337] Classification of errors [IoHwAb067]

[BSW00338] Detection and Reporting of
development errors

[IoHwAb051], [IoHwAb108]

[BSW00339] Reporting of production relevant
error status

[IoHwAb052], [IoHwAb055]

[BSW00341] Microcontroller compatibility
documentation

Not applicable

(requirement on documentation, not on
specification)

[BSW00342] Usage of source code and object
code

Not applicable

(requirement on software architecture, not for a
single module)

[BSW00343] Specification and configuration of
time

Not applicable

(no timings configurable)

[BSW00344] Reference to link time configuration [IoHwAb060]

[BSW00345] Pre-compile-time configuration [IoHwAb096], [IoHwAb064]

[BSW00346] Basic set of module files [IoHwAb064], [IoHwAb097] Requirement to be
taken into account during implementation

[BSW00347] Naming separation of different
instances of BSW drivers

Implementation specific : Requirement to be taken
into account during implementation

[BSW00348] Standard type header [IoHwAb064]

Requirement to be taken into account during
implementation

[BSW00350] Development error detection
keyword

[IoHwAb053], [IoHwAb108]

[BSW00353] Platform specific type header Requirement to be taken into account during
implementation

[BSW00355] Do not redefine AUTOSAR integer
data types

Requirement to be taken into account during
implementation

[BSW00357] Standard API return type Requirement on naming rules to be taken into
account during implementation

[BSW00358] Return type of init() functions Requirement to be taken into account during
implementation

[BSW00359] Return type of callback functions Requirement to be taken into account during
implementation

[BSW00360] Parameters of callback functions Requirement to be taken into account during
implementation

[BSW00361] Compiler specific language
extension header

Requirement to be taken into account during
implementation

[BSW00369] Do not return development error
codes via API

[IoHwAb054]

[BSW00370] Separation of callback interface from
API

[IoHwAb097] Requirement to be taken into
account during implementation

[BSW00371] Do not pass function pointers via API Requirement to be taken into account during
implementation

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

22 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

[BSW00373] Main processing function naming
convention

Requirement on naming rules to be taken into
account during implementation

[BSW00374] Module vendor identification [IoHwAb056] Element IOHWAB_VENDOR_ID

[BSW00375] Notification of wake-up reason [IoHwAb047]

[BSW00376] Return type and parameters of main
processing functions

Not Applicable:

(No Main Function)

[BSW00377] Module specific API return types Requirement on naming rules to be taken into
account during implementation

[BSW00378] AUTOSAR boolean type Requirement to be taken into account during
implementation

[BSW00379] Module identification [IoHwAb056] Element IOHWAB_MODULE_ID

[BSW00380] Separate C-Files for configuration
parameters

[IoHwAb064]

Requirement to be taken into account during
implementation

[BSW00381] Separate configuration header file for
pre-compile time parameters

[IoHwAb064]

Requirement to be taken into account during
implementation

[BSW00383] List dependencies of configuration
files

[IoHwAb064]

[BSW00384] List dependencies to other modules See chapter 5

[IoHwAb078], [IoHwAb079], [IoHwAb044]

[BSW00385] List possible error notifications [IoHwAb051]

[BSW00386] Configuration for detecting an error Requirement to be taken into account during
implementation

[BSW00387] Specify the configuration class of
callback function

Chapter 8.6

[BSW00388] Introduce containers See chapter 10.2

[BSW00389] Containers shall have names See chapter 10.2

[BSW00390] Parameter content shall be unique
within the module

See chapter 10.2

[BSW00391] Parameter shall have unique names See chapter 10.2

[BSW00392] Parameters shall have a type See chapter 10.2

[BSW00393] Parameters shall have a range See chapter 10.2

[BSW00394] Specify the scope of the parameters See chapter 10.2

[BSW00395] List the required parameters (per
parameters)

See chapter 10.2

[BSW00396] Configuration classes See chapter 10.2

[BSW00397] Pre-compile-time parameters See chapter 10.2

[BSW00398] Link-time parameters Not applicable

(no link-time configuration parameters)

[BSW00399] Loadable Post-build time parameters Not applicable

(no post build time configuration parameters)

[BSW004] Version check [IoHwAb066]

[BSW00400] Selectable Post-build time
parameters

Not applicable

(no post build time configuration parameters)

[BSW00401] Documentation of multiple instances
of configuration parameters

Requirement to be taken into account during
implementation

[BSW00402] Published information [IoHwAb056]

[BSW00404] Reference to post build time
configuration

Not applicable

(no post build time configuration for IO Hardware
Abstraction)

[BSW00405] Reference to multiple configuration
sets

Not applicable

(no multiple configuration sets for IO Hardware

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

23 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

Abstraction)

[BSW00406] Check module initialization [IoHwAb102]

[BSW00407] Function to read out published
parameters

[IoHwAb057], [IoHwAb058]

[BSW00408] Configuration parameter naming
convention

See chapter 10.2

[BSW00409] Header files for production code
error IDs

[IoHwAb064]

[BSW00410] Compiler switches shall have defined
values

Requirement to be taken into account during
implementation

[BSW00411] Get version info keyword [IoHwAb110]

[BSW00412] Separate H-File for configuration
parameters

[IoHwAb095]

[BSW00413] Accessing instances of BSW
modules

Implementation specific : Requirement to be taken
into account during implementation

[BSW00414] Parameter of init function Requirement to be taken into account during
implementation

[BSW00415] User dependent include files Implementation specific : Requirement to be taken
into account during implementation

[BSW00416] Sequence of Initialization Not applicable:

(Software integration requirement)

[BSW00417] Reporting of Error Events by Non-
Basic Software

Not Applicable: Module is a BSW

[BSW00419] Separate C-Files for pre-compile
time configuration parameters

The code file structure is not defined within this
specification and is left up to the implementer.
Requirement to be taken into account during
implementation

[BSW00422] Debouncing of production relevant
error status

Implementation specific : Requirement to be taken
into account during implementation

[BSW00423] Usage of SW-C template to describe
BSW modules with AUTOSAR Interfaces

[IoHwAb001]

[BSW00424] BSW main processing function task
allocation

Not applicable

(this is a general integration requirement)

[BSW00425] Trigger conditions for schedulable
objects

Implementation specific : Requirement to be taken
into account during implementation and integration

[BSW00426] Exclusive areas in BSW modules Implementation specific : Requirement to be taken
into account during implementation

[BSW00427] ISR description for BSW modules Implementation specific : Requirement to be taken
into account during implementation

[BSW00428] Execution order dependencies of
main processing functions

Not applicable: No Main function in this module

[BSW00429] Restricted BSW OS functionality
access

Implementation specific : Requirement to be taken
into account during implementation

[BSW00431] The BSW Scheduler module
implements task bodies

Implementation specific : Requirement to be taken
into account during implementation and
Integration

[BSW00432] Modules should have separate main
processing functions for read/receive and
write/transmit data path

Not applicable:

(No Main function in this module)

[BSW00433] Calling of main processing functions Implementation specific : Requirement to be taken
into account during implementation/Integration

[BSW00434] The Schedule Module shall provide
an API for exclusive areas

Implementation specific : Requirement to be taken
into account during implementation/Integration

[BSW00435] Module Header File Structure for the
Basic Software Scheduler

[IoHwAb064]

[BSW00436] Module Header File Structure for the [IoHwAb064]

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

24 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

Memory Mapping

[BSW00437] NoInit--Area in RAM Implementation specific : Requirement to be taken
into account during implementation/Integration

[BSW00438] Post Build Configuration Data
Structure

Implementation specific : Requirement to be taken
into account during implementation/Integration

[BSW005] No hard coded horizontal interfaces
within MCAL

Not applicable:

(requirement on MCAL drivers, IO Hardware
Abstraction belongs to the ECU abstraction)

[BSW006] Platform independency Requirement to be taken into account during
implementation

[BSW007] HIS MISRA C Not applicable

(requirement on implementation, not on
specification)

[BSW009] Module User Documentation Requirement to be taken into account during
implementation

[BSW010] Memory resource documentation Requirement to be taken into account during
implementation

[BSW101] Initialization interface [IoHwAb044], [IoHwAb036], [IoHwAb059]

[IoHwAb060], [IoHwAb061]

[BSW158] Separation of configuration from
implementation

[IoHwAb097] Requirement to be taken into
account during implementation

[BSW159] Tool-based configuration [IoHwAb040], [IoHwAb045]

[BSW160] Human-readable configuration data Not applicable

(requirement on documentation, not on
specification)

[BSW161] Microcontroller abstraction Not applicable

(requirement on software architecture, not for a
single module)

[BSW162] ECU layout abstraction Not applicable

(requirement on software architecture, not for a
single module)

[BSW164] Implementation of interrupt service
routines

Not applicable

(this module does not implement any interrupt
service routines)

[BSW167] Static configuration checking Not applicable

(requirement on configuration tool)

[BSW168] Diagnostic interface of SW components Not applicable

(this module does not provide special diagnostic
features)

[BSW170] Data for reconfiguration of AUTOSAR
SW-components

Not applicable

(no reconfiguration for IO Hardware Abstraction)

[BSW171] Configurability of optional functionality [IoHwAb100]

[BSW172] Compatibility and documentation of
scheduling strategy

Requirement to be taken into account during
implementation

Document: AUTOSAR requirements on Basic Software, cluster SPAL [6]

Requirement Satisfied by

[BSW12056] Configuration of notification
mechanisms

[IoHwAb032], [IoHwAb033], [IoHwAb034]

[BSW12057] Driver module initialisation Not applicable
(IO Hardware Abstraction is not a driver)

[BSW12063] Raw value mode Not applicable

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

25 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

(requirement not explicitly for IO Hardware
Abstraction)

[BSW12064] Change of operation mode during
running operation

Not applicable
(There is no operation mode defined for IO
Hardware Abstraction)

[BSW12067] Setting of wake-up conditions Not applicable
(Requirement only for drivers, and IO Hardware
Abstraction is not in charge of interrupt handling)

[BSW12068] MCAL initialization sequence Not applicable
(IO Hardware Abstraction is not a driver)

[BSW12069] Wake-up notification of ECU State
Manager

Not applicable
(IO Hardware Abstraction is not a driver)

[BSW12075] Use of application buffers Not applicable
(IO Hardware Abstraction is not a driver)

[BSW12077] Non-blocking implementation Not applicable
(requirement for implementation, not for
specification)

[BSW12078] Runtime and memory efficiency Not applicable
(requirement for implementation, not for
specification)

[BSW12092] Access to drivers Not applicable
(requirement for implementation, not for
specification)

[BSW12125] Initialization of hardware resources Not applicable
(IO Hardware Abstraction is not a driver)

[BSW12129] Resetting of interrupt flags Not applicable
(IO Hardware Abstraction is not in charge of
interrupt handling)

[BSW12163] Driver module deinitialization Not applicable
(IO Hardware Abstraction is not a driver)

[BSW12169] Control of operation mode Not applicable
(IO Hardware Abstraction is not a driver)

[BSW12263] Object code compatible
configuration concept

Not applicable

[BSW12264] Specification of configuration items Not applicable

[BSW12265] Configuration data shall be kept
constant

Not applicable
(requirement for implementation, not for
specification)

[BSW12267] Configuration of wakeup sources [IoHwAb047]

[BSW12448] Behavior after development error
detection

[IoHwAb051], [IoHwAb054]

[BSW12461] Responsibility for register
initialization

Not applicable
(IO Hardware Abstraction is not a driver)

[BSW12462] Provide settings for register
initialization

Not applicable
(IO Hardware Abstraction is not a driver)

[BSW12463] Combine and forward settings for
register initialization

Not applicable
(IO Hardware Abstraction is not a driver)

[BSW157] Notification mechanisms of drivers and
handlers

Not applicable
(IO Hardware Abstraction is neither a driver nor an
handler)

Document: AUTOSAR requirements on IO Hardware Abstraction, [7]

Requirement Satisfied by

[BSW12232] Symbolic Name for each Signal [IoHwAb045]

[BSW12242] Onboard peripherals abstraction [IoHwAb030]

[BSW12248] ECU Hardware protection [IoHwAb038]

[BSW12319] Independency between physical and
logical Level

[IoHwAb046]

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

26 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

[BSW12323] Simultaneous update of several
discrete outputs

TO BE DEFINED

[BSW12324] Simultaneous Get / Read of several
discrete Inputs

TO BE DEFINED

[BSW12338] Synchronous interface for signal
access

TO BE DEFINED

[BSW12339] Guarantee worst case delay times
Requirement on implementation, not on
specification

[BSW12409] Values within one static range for
each signal

[IoHwAb014]

[BSW12410] Measurement of input voltage [IoHwAb005]

[BSW12411] Control of output voltage [IoHwAb005]

[BSW12412] Get / Read a discrete input [IoHwAb006]

[BSW12413] Measurement of input current [IoHwAb005]

[BSW12414] Control of Duty Cycle for a periodic
Signal

[IoHwAb009]

[BSW12415] Measurement of connected
resistance

[IoHwAb005]

[BSW12416] Control the period time of a signal [IoHwAb009]

[BSW12417] Measurement of the period time of
signals

[IoHwAb009]

[BSW12418] Control of discrete powered outputs [IoHwAb008]

[BSW12419] Failure Monitoring [IoHwAb008]

[BSW12445] Measurement of Duty Cycle of a
periodic Signal

[IoHwAb009]

[BSW12449] Signal groups [IoHwAb007]

[BSW12450] Report discrete input changes [IoHwAb022]

[BSW12451] No hardware failure recovery [IoHwAb039]

[BSW12452] Failure management: test pulse
[IoHwAb023], [IoHwAb083], [IoHwAb086]
[IoHwAb091], [IoHwAb094], [IoHwAb111]

[BSW13900] Diagnostic of output signal, detection
of short-circuit to the ground

[IoHwAb008]

[BSW13901] Diagnostic of Discrete signal,
detection of short-circuit to +Ubat

[IoHwAb008]

[BSW13902] Diagnostic of Discrete signal,
detection of open circuit

[IoHwAb008]

[BSW13903] Diagnostic of Discrete output signal,
detection of overload

[IoHwAb008]

[BSW13904] Diagnostic of Discrete signal,
detection of over temperature

[IoHwAb008]

[BSW13905] Uniqueness of the IO Hardware
Abstraction

[IoHwAb025]

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

27 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

7 Functional specification

7.1 ECU firmware software

The IO Hardware Abstraction, as a part of the ECU abstraction, has been defined as
ECU firmware.

Figure 7.1: Autosar architecture

7.1.1 Background & Rationale

According to the AUTOSAR glossary [5], ECU firmware is ECU schematic dependent
software located below the AUTOSAR RTE.

7.1.2 Requirements for firmware implementation

General requirements for IO Hardware Abstraction are related to hardware
protection.

IoHwAb038: ECU firmware mainly means that this software is compatible and
adapted to the ECU-Hardware. All strategies to protect the hardware must be
included in this software. This document does not intend to standardize or give a
recommendation for such hardware protection.

IoHwAb039: The IO Hardware Abstraction contains strategies to protect the
hardware, but does not include hardware failure recovery strategies. The IO
Hardware Abstraction shall not decide alone to switch on again an output, that has

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

28 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

been switched off for hardware protection reasons. Such a strategy to recover a
failure shall be defined in a Software Component.

Only the interfaces to the customer (other Software Components) are specified by
the usage of the Software Component template.
That also means that the internal behavior of the IO Hardware Abstraction will never
be standardized. The implementation cannot be specified.

That includes the usage of the lower layer (MCAL).

There is no IO Hardware Abstraction scalability. The customer Software Component
specifies what it is needed (Quality of signal) and the IO Hardware Abstraction has to
realize it.

7.2 ECU Signals Concept

7.2.1 Background & Rationale

One goal of AUTOSAR is to standardize interfaces. This is true only for SW-C
located above the RTE. Below the RTE, services interfaces are standardized, but
interfaces linked to the abstraction inputs/outputs can not be standardized.

Interfaces below the RTE represent an abstraction of electrical signal (The type of
the data is specified at this level):

 either coming from others ECU / addressed to others ECU (e.g. via a CAN
network)

 or coming from the ECU Inputs / addressed to ECU Outputs

Ports are entry points of an AUTOSAR components. They are typed by an
interface. These interfaces correspond to “ECU signals”.

The concept of ECU signal comes from the necessity to guarantee the
interchangeability of the BSW platforms.

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

29 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

Figure 7.2: ECU Signal

7.2.2 Requirements about ECU signals

IoHwAb030: The IO Hardware Abstraction handles all Inputs and Outputs directly
connected to the ECU (except those that have a dedicated driver, like CAN, see
requirement [IoHwAb063]).
It includes all Inputs and Outputs, directly mapped on microcontroller ports, or on an
on-board peripheral. All communications between the microcontroller and peripherals
(excepting sensor and actuators, and peripherals managed by complex drivers) are
hidden by the IO Hardware Abstraction, while considering the provided interfaces.

IoHwAb063: An ECU is connected to the rest of the system through networks and
inputs and outputs pins. Networks are out of scope of this document and each ECU
Signal represents one electrical signal, which means at least one input or output ECU
pin.

The software at this layer shall abstract the ECU pins. Looking from this place (for
example using an oscilloscope), Inputs and Outputs are only Electrical Signals.
Hence, all that is defined in this document is related to this concept of Electrical
Signal. One extension of this concept concerns Diagnosis (electrical failure status).
Diagnosis are not visible from ECU connectors but are provided by the IO Hardware
Abstraction.

Electrical signals with similar behavior shall form a class. Therefore, ECU signals,
which denote the software representation of electrical signals shall have an
association to a class and shall have characteristic attributes.
Possible classes and their attributes are listed below in this Chapter.

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

30 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

7.3 ECU signal classes

7.3.1 Background & Rationale

From the point of view of the ECU, all ECU Signals connected have not the same
electrical behavior. Thus, they cannot be characterized using the same Attributes
listed further in the document. To represent those behaviors in a model based
schematic, the term Class is defined to group together ECU Signals with the same
ECU electrical behavior.

7.3.2 Requirements about ECU signal classes

7.3.2.1 Analogue Class

[IoHwAb005]: The Analogue Class aggregates all ECU Signals, corresponding to
Electrical Signals that are used as an analogue Input or Output Signal by the ECU
Software. ECU Analogue Signals provided by the IO Hardware Abstraction could be
used as three electrical types:

 Voltage Type

 Current Type

 Resistance Type

7.3.2.2 Discrete Class

IoHwAb006: The Discrete Class aggregates all ECU Signals, corresponding to
electrical signal that are used as a discrete Input or Output Signal by the ECU
Software. ECU Discrete Signals provided by IO Hardware Abstraction are booleans.
That means, only the following values are authorized:

 “1” to symbolise an electrical high level on the ECU pin

 “0” to symbolise an electrical low level on the ECU pin

IoHwAb007: An ECU Signals Group is composed by multiple ECU Signals
belonging to this Discrete Class and with the same Direction Attribute. The definition
of a signal group is done during the configuration step.

Note: On the level of MCAL drivers, it is allowed to change the direction of an ECU
pin. The user has to define two different ECU signals with different directions.
Basically, they will be associated to the same pin.
Thus, it is possible to use the whole functionality of PORT driver (especially the API
PortSwitchDirection).

The usage of ECU Discrete Signals needs to use the concept of ECU Signals
Group. That means for instance; Grp_A is composed only by ECU Discrete Input
Signals while Grp_B is composed only by ECU Discrete Output Signals.

The main advantage of this ECU Signals Group concept is that IO Hardware
Abstraction can access all members of a signal group through one service call. The

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

31 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

call shall ensure data consistency across all members. The number of inputs (Input
group) or of outputs (Output group) shall be configurable. All members (inputs or
outputs) have to be located on the same port.

7.3.2.3 Diagnosis Class

IoHwAb008: The Diagnosis Class aggregates all ECU Signals, corresponding to
Electrical Signals that are used as a diagnosis Input Signal by the ECU Software. An
ECU Diagnosis Signal is always coupled to an ECU Output Signal and it indicates
the electrical status of this ECU Output Signal. The different states available to this
kind of ECU Signal are defined as following:

 No Valid Information available

 Short to Power Supply

 Short to Ground

 Open Load

 Over Temperature (see note below)

 Diagnosis OK

Note about over temperature diagnosis:
The over temperature detection can be realized inside a sensor component.
The over temperature detection is done inside the IO Hardware Abstraction if an
external device driver is encapsulated inside the IO Hardware Abstraction.

The state of an ECU Diagnosis Signal is obtained by the electrical failure monitoring
of the coupled ECU Output Signal. This failure monitoring is done in this case by
software. Strategies to obtain the diagnoses as well as rules to validate them are
proposed further in this document.

7.3.2.4 Pulse Width Modulation Class

IoHwAb009: The Pulse Width Modulation Class aggregates all ECU Signals,
corresponding to Electrical Signals that are used as a pulse width demodulated Input
or modulated ECU Output Signal by the ECU software. An ECU Pulse Width Signal,
contrary to the others previously outlined, is mainly characterized by the following two
temporal characteristics:

 The Period; it is the time required to complete a full cycle and begin to repeat
another one.

 The Duty Cycle; it is the time of the cycle during which the signal is considered
as active.

These two characteristics shall be accessible either separately or together
consistently. That is why the IO Hardware Abstraction has different classes for PWM
signals, allowing a specific behaviour for access operations according to the actual
class. These classes and access operations are more detailed further in this
document, however we can distinguish three main subclasses, and the following
main behaviour for the access operations:

 A PWM sub-class mainly characterized by Period, itself derived in input and
output subclasses. The access operations are designed, in this case, to

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

32 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

access the Period (for example, an OP_SET(IN IoHwAb_PwxPeriodType
Period) operation);

 A PWM sub-class mainly characterized by DutyCycle, itself derived in input
and output subclasses. The access operations are designed, in this case, to
access the DutyCycle (for example, an OP_SET(IN
IoHwAb_PwxDutyCycleType DutyCycle) operation);

 A PWM class characterized by both Period and DutyCycle, itself derived in
input and output subclasses. The access operations are designed, in this
case, to access both characteristics simultaneously consistently (for example,
an OP_SET(IN IoHwAb_PwxPeriodType Period, IN
IoHwAb_PwxDutyCycleType DutyCycle) operation).

Remark:
It is up to the implementer of the IO hardware abstraction to configure the ICU
module to trigger a demodulation, with either a falling edge, or a raising edge. This is
done through the configuration parameter "Default Start Edge".

7.4 Attributes

7.4.1 Background & Rationale

Even the concept of Class allows to gather Signals having a similar electrical
behavior, it is not yet sufficient for the users of IO Hardware Abstraction. The chains
of acquisition (hardware and software) of each Signal are different and must be
detailed because it is the heart of the characterization of Signals.

7.4.2 Requirements about ECU signal attributes

To detail these chains of acquisition, a list of Attributes is defined to identify
configurable characteristics of ECU signals.

IoHwAb010: All ECU signals shall have a set of attributes specified and implemented
according to the ECU electrical behavior and the software standardization. Some
attributes are fixed, such as type, which is determined by the hardware. Other
attributes like period and duty cycle, debouncing, may be configurable by the
integrator.

7.4.2.1 Signal Data Type Attribute

IoHwAb011: All ECU Signals provided by the IO Hardware Abstraction shall have a
Data Type attribute assigned. This attribute shall be configured with one of the
available types presented here and defined in chapter 8.2:

Type: VoltageType

Description: This kind of data type shall be used for ECU Signals of the Analogue Class that
depict voltage information to get and / or voltage information to set.

Type: CurrentType

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

33 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

Description: This kind of data type shall be used for ECU Signals of the Analogue Class that
depict current information to get and / or current information to set.

Type: ResistanceType

Description: This kind of data type shall be used for ECU Signals of the Analogue Class that
depict resistance information to get.

Type: DiscreteType

Description: This kind of data type shall be used for ECU Signals of the Discrete Class that
depict logical information to get and / or logical information to set.

Type: DiagnosisType

Description: This kind of data type shall be used for ECU Signals of the Diagnosis Class that
depict the electrical failure state of an Output Signal.

Type: PwxPeriodType

Description: This kind of data type shall be used for ECU Signals of the “Pulse Width
Modulation” Class. That means this type is either used for modulation output or
for demodulation input

Type: PwxDutyCycleType

Description: This kind of data type shall be used for ECU Signals of the “Pulse Width
Modulation” Class. That means this type is either used for modulation output or
for demodulation input

7.4.2.2 Access Attribute

IoHwAb012: All ECU Signals handled by the IO Hardware Abstraction have only one
direction and the two possible directions for it are Input or Output. Therefore a
configurable Access Attribute has been defined for this feature.

This attribute is relevant for configuring the connections between SW-Cs and
IoHwAb, for it indicates to SW-Cs how the signal will behave in terms of direction. An
ECU signal is mapped, like an interface, on IO Hardware Abstraction port. Note that
all descriptions concerning Software Component Ports and interfaces are given later
in this document.

To access the data of each ECU Signal handled, Software Component above RTE
have to use an operation through the port protocol. This access operation is gathered
from this Attribute such as introduces here:

Type: AccessType

Range: Input The ECU Signal is an Input and the operation available
through the RTE is a Get.

Output The ECU Signal is an Output and the operation available
through the RTE is a Set.

Description: This kind of type shall be used for all ECU Signals to define statically the main
port operation authorized according of the direction of ECU Signals.

IoHwAb013: There is only one exception concerning ECU Signals belonging
Diagnosis Class that are linked to an ECU Output Signal Port. These interface have

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

34 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

a specific operation to access these Diagnosis Signals. This particularity is more
detailed further in this document.

IoHwAb080: the access attribute cannot be changed during runtime. It is up to the
implementer to defined two different ECU signals, to get a value from an ECU pin or
to set a value on this same ECU pin.

7.4.2.3 BSW-Range Attribute

IoHwAb014: All ECU Signals provided by the IO Hardware Abstraction have a Data
Type Attribute defined but the scale of values for this type is not known and it is
dependent on each Signal. This is why the BSW-Range attribute is defined and shall
be configured for each Signal of the IO Hardware Abstraction.

This Attribute is composed by two parameters which contain the values of the range
limits. These values are not only electrical values; they are software boundaries
incoming from the Data Type range.

 Min Value : minimum valid value allowed for this Signal

 Max Value : maximum valid value allowed for this Signal

This is the range of the ECU-signal data available just below the RTE. On the
contrary of the electrical range on the level of the hardware, BSW range gives the
usable data range, just below the RTE.

Examples: they are based on Input Signal from Analogue Class with the

VoltageType as Data Type Attribute.

 [Min , Max] => [-24, 24]; [0, 42000]; [0, 65535]…

This Attribute influences directly the value of others attributes (described in further
chapters) which characterize also the Signals. It shall be configured only once for
each Signal.

IoHwAb046: In the case of discrete ECU signals, the BSW-range attribute is defined
with the allowed states (enumeration).
The IO Hardware Abstraction realizes the independency between the interface
values used by users (Software-Components) and the physical level. For instance,
doors could be OPEN/CLOSE and these states are independent of the real hardware
input state (0V, 5V, 12V).
The BSW-range of an ECU Signal will be defined during configuration:

- by the Software Component which used the signal above the RTE.
- by all Software Component which use the signal above the RTE. They

have to agree on the ECU Signal quality (also for a same BSW-range).
The configuration shall fit to this expected quality.

7.4.2.4 Unit Attribute

IoHwAb015: All ECU Signals provided by the IO Hardware Abstraction could take
any value of their BSW-Range Attribute but these values shall have one unit defined

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

35 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

to be used in the right way by their clients. This is why the Unit attribute is defined
and shall be configured for each Signal of the IO Hardware Abstraction.

The values authorized to this Attribute are only electrical units and they shall be
independent of the functional related sensor or/and actuator used. The following lists
of units for each Class are just examples and are not limited.

Examples: they are based on ECU Input Signal from Analogue Class and Pulse
Width Modulation Class with different Data Type Attribute.

 Volts (V), milliVolts (mV), Ampers (A), micro-Ampers (µA), Ohms (Ω), kilo-
Ohms (kΩ)…

 Seconds (s), microseconds (µs), milliseconds (ms)…
This Attribute influences directly the value of others attributes (described in this
document) which characterize also the Signals. It shall be configured only once for
each Signal.
The Unit of an ECU Signal will be defined during configuration:

- by the Software Component which used the signal above the RTE.
- by all Software Component which use the signal above the RTE. They

have to agree on the ECU Signal quality (also for a same Unit). The
configuration shall fit to this expected quality.

7.4.2.5 BSW-Resolution Attribute

IoHwAb016: This Attribute is gathered from the choice of the BSW-Range, the Unit
and the Data Type.

7.4.2.6 BSW-Accuracy Attribute

IoHwAb098: This attribute gathered from the choice of the hardware accuracy
parameter, the BSW range, the datatype. How to use this parameter is out of scope
of this document.

7.4.2.7 Hardware Resolution Attribute

IoHwAb017: All ECU Signals delivered by the IO Hardware Abstraction have a BSW-
Resolution gathered from other configured Attributes. But it will never be better than
the resolution of the ECU acquisition chains so-called Hardware Resolution Attribute.

This Attribute gives the resolution of the complete acquisition chain (including
microcontroller peripherals) for an ECU Signal. It is only available for information but
it is not configurable. It is only applicable to ECU Signals that belong to Analogue
Class and to Pulse Width Modulation Class.

The Attribute value should be extracted from an ECU Resource Template file. How to
use this Attribute is not in the scope of this document.

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

36 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

7.4.2.8 Hardware Accuracy Attribute

IoHwAb018: All values of Analogue Class ECU Signals delivered by the IO
Hardware Abstraction have accuracy depending on software computing but also
depending on accuracy of the ECU acquisition chains so-called Hardware Accuracy
Attribute.

This Attribute gives the accuracy of the complete acquisition chain (including
microcontroller peripherals) for an ECU Signal. It is only available for information but
it is not configurable. It is only applicable to Input ECU Signals that belong to
Analogue Class.

The Attribute value should be extracted from an ECU Resource Template file. How to
use this Attribute is not in the scope of this document.

7.4.2.9 Filtering/Debouncing Attribute

IoHwAb019: All values of ECU Signals delivered by the IO Hardware Abstraction
have a different usage that means they are expected with different levels of
abstraction. Hence the Filtering/Debouncing Attribute is defined and shall be
configured for each Input ECU Signal of the IO Hardware Abstraction. By default,
data are provided as “Raw” values.

This Attribute is only available to Input ECU Signals and it allows choosing the level
of abstraction of each one. It influences the software strategy of those ECU Signals.
This Attribute concerns two kinds of ECU Input Signals therefore it is a combination
of names:

 Filtering concerns only Inputs from Analogue Class,

 Debouncing concerns only Inputs from Discrete Class and Diagnosis Class.

Possible values for this Attribute are proposed below just as examples. They are
more detailed later in this document concerning parameters and strategies.

Type: FilterDebounceType

Range: RAW_DATA Default configuration. This data has no specific method; the
value get is directly delivered.

DEBOUNCE_DATA Available for Discrete and Diagnosis Classes. This data
has a specific method; the value delivered is an average of
X values get.

WAIT_TIME_DATA Available for Analogue, Diagnosis and Discrete Classes.
This data has a specific method; the value delivered is get
after a delay of X µs.

Description: This kind of type shall be used for allowed Input Signals to specify the internal IO
Hardware Abstraction software acquisition method.

7.4.2.10 Failure Monitoring Attribute

IO Hardware Abstraction allows to Software Components above RTE to set ECU
Output Signals through Port concept (See chapter 7.5.2.2). But at present setting
ECU Output Signals is not sufficient. Those Software Components need diagnoses

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

37 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

information to take smart decisions. These diagnoses could directly concern
actuators and/or wires connected to the ECU or they could only concern the
electronic of the ECU.

The monitoring of actuators and wires connected to the ECU is fully out of scope. IO
Hardware Abstraction only takes in account the electronic of the ECU thanks to the
Failure Monitoring Attribute. This Attribute allows by configuration an electrical failure
monitoring to ECU Output Signals.

IoHwAb020: The Failure Monitoring Attribute is only available to ECU Output Signals
and it changes the behavior of Signals so it influences the configuration of
connections between SW-Cs and IoHwAb. The value of this Attribute influences
indeed directly the Port protocol for the Signal interface. Note that all descriptions
concerning Port protocols are given later in this document.

 Failure Monitoring Attribute disabled (0): ECU Output Signal is used as a
classic ECU signal through a Client / Server port protocol by a set operation.

 Failure Monitoring Attribute enabled (1): ECU Output Signal has a specific
strategy to monitor electrical failures. An Electrical Signal from the Diagnosis
Class shall be linked to this ECU Output Signal. This ECU Input Diagnosis
Signal shall contain the result of the failure monitoring. The ECU diagnosis
signal is available through the Client / Server port protocol of the Output Signal
by a diagnosis operation.

Type: FailureMonitoringType

Range: [Disable, Enable]

Description: This kind of type shall be used for ECU Output Signals to specify the behavior
and the Port protocol used.

The Failure Monitoring attribute of an ECU Signal will be set during configuration:

- by the Software Component which used the signal above the RTE.
- by all Software Component which use the signal above the RTE. They

have to agree on the functionality associated to an ECU Signal (also for
the Failure Monitoring attribute). The configuration shall fit to this
expected functionality.

7.4.2.11 Age Attribute

All ECU Signals handled by IO Hardware Abstraction depends on the ECU hardware
design. This means that the time to set ECU Output Signals and the time to get ECU
Input Signals could be different from one to other ECU Signal. So to guarantee a
template behavior for all kind of ECU Signals (Input / Output) a common Age
Attribute is defined and it shall be configured for each ECU Signal.

IoHwAb021: The Age Attribute has two specific names according to the direction of
ECU Signal (Input / Ouput). Anyway, it always contains a maximum time value.
Following descriptions explain the meaning of this Attribute for each kind of ECU
Signals.

 ECU Input Signals: the specific name of this Attribute is Lifetime. The value
defines the maximum allowed age for data of this Signal. If Lifetime is 0, then

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

38 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

the signal is directly get from the physical register.
Example: Lifetime = 1000µs the value read is at maximum 1ms older.

 ECU Output Signals: the specific name of this Attribute is Delay. The value
defines the maximum allowed time until this Signal is actually set. If Delay is 0,
then the signal is immediately set to the physical register.
Example: Delay = 100µs the command is set until 100µs elapse.

Type: AgeType

Range: unsigned integer

of 16 bits

Proposal to be defined with IOHWa Group

Description: This kind of type shall be used to define the Age Attribute either Lifetime or Delay
for ECU Signals. The time value shall be defined in microseconds (µs).

7.4.2.12 Reporting Feature Attribute

Mainly ECU Signals handled by IO Hardware Abstraction are accessed by Software
Components above RTE using the classic Port concept choose (see more
explanations in the further chapters of this document). But some Software
Components using ECU Input Discrete Signals needs to be informed as soon as
possible when the level of these ECU Signals changes. The Reporting Feature
Attribute allows by configuration this capability to ECU Signals. This is also the case
for some Analog Signals, to report the end of an ADC conversion for instance.

IoHwAb022: The Reporting Feature Attribute is only available to ECU Input Discrete
and Analog Signals. This feature changes the behavior of ECU Signals so it
influences the configuration of connections between SW-Cs and IoHwAb. The value
of this Attribute influences indeed directly the Port protocol for the ECU Signal
interface. The RTE is then responsible for transmitting the notification and the signal
value from IO Hardware Abstraction to the consumer runnable entity.

Note that all descriptions concerning Port protocols are given further in this
document.

 Reporting Feature Attribute disabled (0): ECU Input Discrete Signal is used as
a classic signal through a Client / Server port protocol by a get operation.

 Reporting Feature Attribute enabled (1): ECU Input Discrete Signal is used as
an event signal through a Sender / Receiver port protocol. Each ECU Signal
level change is notified to RTE.

Type: ReportingFeatureType

Range: [Disable, Enable] Proposal to be defined with IOHWa Group

Description: This kind of type shall be used for ECU Input Discrete Signals and ECU Input
Analog Signals to specify the behavior and the Port protocol used.

Each ECU Signal of IO Hardware Abstraction must have only one Software
Component user above the RTE with one dedicated Port protocol.

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

39 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

7.4.2.13 Pulse Test Attribute

Thanks to Failure Monitoring Attribute (previously described in this document), IO
Hardware Abstraction allows detecting some electrical defaults but not all. In fact,
there are cases where Software Component above the RTE knows better when to
monitor Signals. This is why Pulse Test Attribute is defined to authorize the
generation of a pulse test command when is required.

IoHwAb023: The Pulse Test Attribute is only available to ECU Output Signals and it
allows by configuration an electrical test pulse command to ECU Signals so it
influences the configuration of connections between SW-Cs and IoHwAb. The value
of this Attribute influences indeed directly the Port protocol for the Signal interface.
Note that all descriptions concerning Port protocols are given further in this
document.

 Pulse Test Attribute disabled (0): For this ECU Output Signal, test pulse
operation is not available through the Client / Server port protocol. In case of
Failure Monitoring available, it is done while using the ECU Output Signal by a
set operation.

 Pulse Test Attribute enabled (1): For this ECU Output Signal, test pulse
operation is available through the Client / Server port protocol. When is
required, IO Hardware Abstraction generates an electrical command and
Failure Monitoring is done during this dedicated pulse. Characteristics of this
pulse (level and duration) are described further in this document.

Type: PulseTestType

Range: [Disable, Enable]

Description: This kind of type shall be used for ECU Output Signals to specify the capability to
generate a test pulse command and the Port protocol used.

The Pulse test attribute of an ECU Signal will be set during configuration:

- by the Software Component which used the signal above the RTE.
- by all Software Component which use the signal above the RTE. They

have to agree on the functionality associated to an ECU Signal (also for
the Pulse Test property). The configuration shall fit to this expected
functionality.

7.4.2.14 Wakeup Attribute

The ECU software architecture has defined the ECU State Manager module as
responsible for managing ECU wakeups.

 IoHwAb047: The Wakeup Attribute is only available to ECU Input Signals and it
allows by configuration a callout function corresponding to this wakeup capability.
The value of this Attribute does not influence directly the Port protocol for the Signal
interface but only the number of runnable entities available in IO Hardware
Abstraction. Note that all descriptions concerning runnable entities are given further
in this document.

 Wakeup Attribute disabled (0): For this ECU Input Signal, there is not Wakeup
capability expected.

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

40 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

 Wakeup Attribute enabled (1): For this ECU Input Signal, a Wakeup capability
is expected that means the IO Hardware Abstraction shall provide a
mechanism to inform the appropriated Software Component. Note that the
reporting of wakeup on this input can be reported to the Software Component
only if the ECU State manager has validated the wakeup reason.

Type: WakeupType

Range: [Disable, Enable]

Description: This kind of type shall be used for ECU Input Signals to specify a triggering
capability.

7.4.3 Overview of Attributes to qualify Signals

IoHwAb024: The following table summarizes the applicability of all previous defined
Attributes to the possible IO Hardware Abstraction Signals (Inputs and Outputs).

 X means the Attribute is applicable to this Class of ECU Signal and shall be
configured.

o Xl means the Age Attribute applicable is the Lifetime.
o Xd means the Age Attribute applicable is the Delay.

 F means the Attribute is applicable to this Class of ECU Signal but it is a fixed
standard value.

 O means the Attribute is optional to this Class of ECU Signal and depends on
a static configuration (disable/enable).

 - means the Attribute is not applicable or has no meaning to this Class of ECU
Signal.

S
ig

n
a
l

A
tt

ri
b

u
te

s

S
ig

n
a
l
D

a
ta

T
y
p

e

A
c
c
e

s
s

B
S

W
-R

a
n

g
e

U
n

it

B
S

W
-R

e
s
o

lu
ti

o
n

F
a
il
u

re

M
o

n
it

o
ri

n
g

A
g

e

(L
if

e
ti

m
e
/D

e
la

y
)

F
il
te

ri
n

g
 /

D
e
b

o
u

n
c
in

g

S
a
m

p
li
n

g
 R

a
te

R
e
p

o
rt

 F
e
a
tu

re

P
u

ls
e

 T
e
s
t

W
a
k

e
u

p

Analoguein X X X X X - Xl X X O - -

Analogueout X X X X X O Xd - - - O -

Discretein X X F - - - Xl X X O - O

DiscreteStatus X - F - - - Xl X - - - O

Discretepow X X F - - O Xd - - - O -

PWx Periodin X X X X X - Xl - - - - O

PWx Periodout X X X X X O Xd - - - O -

PWx Duty Cyclein X X F F X - Xl - - - - O

PWx Duty Cycleout X X F F X O Xd - - - O -

Discrete powered outputs can have diagnosis.

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

41 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

7.5 IO Hardware Abstraction and Software Component Template

Note about this chapter: This chapter refers to document [8].
Changes inside this document may influence the content of this chapter.

7.5.1 Background & Rationale

The following picture is a part of the MetaModel and makes the progress from the
Software Component template to the implementation easier to understand.

Figure 7.3: From the Software Component template to the implementation

This approach allows defining the standardization deepness. As explained
previously, the implementation is ECU-firmware. Therefore, this chapter only
summarizes how to define the IO Hardware Abstraction as a Software Component
(SW-C), and gives a short overview of the internal behavior. The internal behavior
description mainly covers BSW scheduling mechanisms.

7.5.2 Requirements about the usage of Software Component template

IoHwAb001: The IO Hardware Abstraction is based upon the Software Component
Template as specified in document [8].
In the same manner than any other Software Component, the I/O Hardware
Abstraction might by sub structured, depending on the complexity of an ECU.
Indeed, the IO Hardware Abstraction is a classical Component Prototype, that can be
atomic or composed and that provides and requires interfaces. Moreover, I/O
Hardware Abstraction may only interact by means of their PortPrototypes. Hidden
dependencies that are not expressed by means of PortPrototypes are not allowed.

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

42 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

However, the I/O Hardware Abstraction interfaces on one side the MCAL drivers via

Standardized Interfaces and on the other side the RTE. Hence, IO Hardware
Abstraction shall respect the virtual port concepts.

IoHwAb025: An “EcuAbstractionComponentType” is a class that describes the IO
Hardware Abstraction. This class shall be instantiated one or many time for each
ECU. In this case the I/O Hardware Abstraction Layer is described by several
different EcuAbstractionComponentTypes on M1.

An instantiation of “EcuAbstractionComponentType” provides a set of ports (). During
RTE Generation, only those that are connected with Software Components would be
taking into account.

This chapter gives an overview of virtual port concepts and runnable entities applied
to the IO Hardware Abstraction needs. The following chapters of this document
describe more in detail points set out here.

7.5.2.1 Ports concept and IO Hardware Abstraction

This is an overview of recommendations for defining Ports of IO Hardware
Abstraction using Software Component template. Mainly, a port only exists if one
ECU Signal1 (at least) is allocated to it.
IO Hardware Abstraction has almost only provide-ports (P-port).

Almost all Ports of IO Hardware Abstraction have Client/Server interfaces. These
ports have several operation prototypes available, configured on the basis of ECU
Signals Attributes2 configuration. Only ports dedicated to send notifications have
Sender/Receiver interfaces. That means only event semantics is allowed for data
elements of this interface in IO Hardware Abstraction.

 Further chapters in this document go deeper in usage of ports for IO Hardware
Abstraction. But, it is advised to read the Software Component Template
document [8] to be aware of all terms and all concepts used.

7.5.2.2 Software Component and Runnable concept

Software Components have functions to realize their strategies and internal
behaviors. These are partly described using runnable entities. The former is
contained in runnables and the latter depends of runnables design. Runnable entities
are provided by the Atomic Software Component and are (at least indirectly) a
subject for scheduling by the underlying operating system.

An implementation of an atomic Software Component has to provide an entry-point to
code for each Runnable in its "InternalBehavior". For more information, please refer
to the specification [8].

1
 ECU Signal as defined by IO Hardware Abstraction in this document in chapter [7.2]

2
 ECU Signal Attributes as defined by IO Hardware Abstraction in this document in chapter [7.4]

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

43 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

The runnable entities are the smallest code-fragments which can be activated
independently. They are provided by the Atomic Software Component and are
activated by the RTE. Runnables are for instance set up to respond to data exchange
or operation invocation on a server.

The runnable entities have three possible states: Suspended, Enabled and Running.
During run-time, each runnable of an atomic Software Component is (by being a
member of an OS task) in one of these states.

For a sight of available choices and attributes to define each runnables of the Atomic
Software Component, please refer to specification [8].

7.6 Scheduling concept for IO Hardware Abstraction

7.6.1 Background & Rationale

The IO Hardware Abstraction may consist of several BSW modules (e.g. onboard
device driver).

Each of these BSW modules can provide BSW runnable entities (also called
BswModuleEntity in the BSW Scheduler Specification (see [19]).

To make a parallel, a BswModuleEntity is the equivalent of SW-C runnable entities,
for which the AUTOSAR glossary [5] gives the following definition: „”A Runnable
Entity is a part of an Atomic Software-Component ( definition) which can be
executed and scheduled independently from the other Runnable Entities of this
Atomic Software-Component“.

In the case of SW-C runnables entities, these ones are called in AUTOSAR OS
Tasks bodies. Runnables are given in the SW-C description. Activation of SW-C
runnables strongly depends on RTE events.

However, BSW runnables are not activated by the RTE, but by the BSW Scheduler.
To achieve this, IO Hardware Abstraction must be interfaced with BSW Scheduler,
which activates them. In the same way than SW-C are most often activated by
RTEEvents, the schedulables BswModuleEntities can be activated by BswEvent.
There is also a kind of BswModuleEntity which can be activated in interrupt context.
This leads to two sub-classes: BswSchedulableEntity and BswInterruptEntity.

The BSW Scheduler specification (document [19]) covers the requirement of BSW
modules to schedule recurrently or sporadically BSW modules entities.

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

44 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

7.6.2 Requirements about IO Hardware Abstraction Scheduling concept

7.6.2.1 Operations for interfaces provided by Ports

IoHwAb031: The IO Hardware Abstraction, described from the interfaces point of
view, shall define runnable entities to exchange data with Software Components
through the RTE. The number of those runnables that are provided by each Port
depends on ECU Signal attributes values.

The next Operations could exist or not depending on value of the attribute that is
associated to them. Those Operations are part of the “PortInterface” configuration of
either require- or provide-ports.

IoHwAb068: The implementation of the service behind these operations is ECU
specific and the mapping to the corresponding “PortInterface” shall be documented in
the Software Component description.

7.6.2.1.1 Gets operation, OP_GET

IoHwAb069: OP_GET depends on “Access Attribute” (§7.4.2.2). Considering an
ECU Signal associated to a Port. This Port shall provide an OP_GET if this ECU
Signal “Access Attribute” is configured as “Input”.


IoHwAb113: In the case where the ECU Signal associated to this port is a Discrete
Signal, the port shall provide an OP_GET anyway.

Otherwise, if this ECU Signal “Access Attribute” is not configured as “Input”, the
OP_GET is not required.

7.6.2.1.2 Sets operation, OP_SET

IoHwAb070: OP_SET depends on “Access Attribute” (§7.4.2.2). Considering an
ECU Signal associated to a Port. This Port shall provide an OP_SET if this ECU
Signal “Access Attribute” is configured as “Output”.


IoHwAb114: In the case where the ECU Signal associated to this port is a Discrete
Signal, the port shall provide an OP_SET anyway.

Otherwise, if this ECU Signal “Access Attribute” is not configured as “Output”, the
OP_SET is not required.

7.6.2.1.3 Diagnosis operation, OP_DIAG

IoHwAb071: OP_DIAG depends on “Failure Monitoring Attribute” (§7.4.2.10).
Considering an ECU Signal associated to a Port. This Port shall provide an
OP_DIAG if this ECU Signal “Failure Monitoring Attribute” is configured as “Enable”.

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

45 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

Otherwise, if this ECU Signal “Failure Monitoring Attribute” is configured as “Disable”,
the OP_DIAG is not required.

7.6.2.1.4 Test Pulse operation, OP_TEST

IoHwAb072: OP_TEST depends on “Pulse Test Attribute” (§7.4.2.13). Considering
an ECU Signal associated to a Port. This Port shall provide an OP_TEST if this ECU
Signal “Pulse Test Attribute” is configured as “Enable”.

Otherwise, if this ECU Signal “Pulse Test Attribute” is configured as “Disable”, the
OP_TEST is not required.

7.6.2.1.5 Reporting operation, OP_REPORT

IoHwAb073: OP_REPORT depends on “Reporting Feature Attribute” (§7.4.2.12).
Considering an ECU Signal associated to a Port. This Port shall provide an
OP_REPORT if this ECU Signal “Reporting Feature Attribute” is configured as
“Enable”.

Otherwise, if this ECU Signal “Reporting Feature Attribute” is configured as “Disable”,
the OP_REPORT is not required.

7.6.2.2 Notification and/or Callback

IoHwAb032: The IO Hardware Abstraction shall define BswInterruptEntities (a sub-
class class of BswModuleEntity by opposition to BswSchedulableEntity) to fulfill
notification and/or callback mechanisms to exchange data with other modules below
the RTE within an interrupt context.

The IO Hardware Abstraction may contain one or several callback functions. The
available callback functions need to be hooked up to the notification interfaces of the
MCAL drivers. Therefore, they have to respect the prototype definition of the MCAL
drivers (no passing parameter, no return parameter).

IoHwAb033: The implementation has to take into consideration, that the callback
functions will be executed in interrupt context.
Callback function can additionally provide the capability to trigger Software
Components outside of the IO Hardware Abstraction. These notifications need to be
handled through the RTE (sender port).

IoHwAb034: The number of available callback functions and the order of execution
will be implementation dependent and must be documented in the IO Hardware
Abstraction description.

7.6.2.3 Main function / job processing function

IoHwAb035: The IO Hardware Abstraction may contain one or several job
processing functions that are BswSchedulableEntities (a sub-class class of

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

46 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

BswModuleEntity by opposition to BswInterruptEntity, e.g. one for each device
driver). They shall be activated according to their use.
They will be time-triggered by the BSW Scheduler. They could be synchronized to
the execution of the other runnable entities.
The number of BswSchedulableEntities and their order of execution will be
implementation dependent and must be documented in the IO Hardware Abstraction
description.

7.6.2.4 Initialization, Deinitialization and/or Callout

IoHwAb036: The IO Hardware Abstraction shall define BswModuleEntries to
exchange data with other Software Component below the RTE outside an interrupt
context, for example in case of BSW initialization/deinitialization.

These BswModuleEntries are linked to a dedicated BswModuleEntity, which will be
called to perform the service / exchange the data.

The IO Hardware Abstraction may contain one or several initialization and
deinitialization functions (e.g. one for each device driver). Similar to the MCAL drivers
the initialization functions shall contain a parameter to be able to pass different
configurations to the device drivers. This function shall initialize all local and global
variables used by the IO Hardware Abstraction driver to an initial state.

IoHwAb037: The initialization/deinitialization functions shall be exclusively used/
handled by the ECU State Manager. For more information, refer to [10].
The number of available functions and the order of execution will be implementation
dependent and must be documented in the IO Hardware Abstraction description.

7.6.2.4.1 Wakeup specific Callout

IoHwAb074: Wakeup services depend on “Wakeup Attribute” (§7.4.2.14).
Considering an ECU Signal, IO Hardware Abstraction shall provide a specific wakeup
callout service if this ECU Signal “Wakeup Attribute” is configured as “Enable”. These
callouts are called either by EcuM or by driver, depending on the wakeup mode
(interrupt or polling, see chapter 9 sequences), and the EcuM handles after that the
wakeup validation.

Otherwise, if this ECU Signal “Wakeup Attribute” is not configured as “Enable”, this
specific wakeup callout service is not required.

An overview of what is a BswModuleEntity can be found in the document [19].

7.6.2.5 IO Hardware Abstraction scheduling examples

7.6.2.5.1 Interface provided by ADC and IO Hardware Abstraction

The following example shows a scheduling example for an ADC conversion.
The IO Hardware Abstraction shall provide two P-ports.

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

47 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

The Software Component interface in this example is af_pressure.

The ECU state manager is able to trigger a BswModuleEntry for initialization of the
ADC driver (Call of Adc_Init() with the Adc_ConfigType structure).

Use Case: The software component needs the af_pressure value.
1 – RTE triggers the OP_GET operation of the dedicated P-Port.
2 – R1 is a runnable entity and it allows to call the appropriated ADC driver services

ADC_EnableNotification
ADC_StartGroupConversion

3 – At the end of conversion, the ADC triggers the BswModuleEntry R2, within
interrupt context. This is possible since the notification is allowed for this interface.
The ADC_NotificationGroup() function is specified in the ADC driver
4 – The notification is then “sent” to the Software Component via a RTEevent.

Figure 7.4: Example of IoHwAb runnables

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

48 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

The sequence diagram of this example is in chapter 9

7.6.2.5.2 Synchronous scheduling with Runnable Entities and
BswSchedulableEntities

The following example shows a scheduling example for setting a Lamp linked to a
SMART power.
The SMART power is connected to the microcontroller by SPI bus. Hence, the
dedicated piece of code uses the SPI Handler/Driver.

The FrontLeftLamp value to be set by the RTE is in an IO Hardware Abstraction
buffer.
An output line to another SMART power is set synchronously to trigger an ADC
conversion of the same electrical signal by the ADC driver.

At the end of conversion, the converted result is available and the notification is set to
the Analog input manager to store the value inside a buffer, available for diagnosis
purpose.

In this example, the periodical treatment is realized by a BswSchedulableEntity.

Figure 7.5: Example of IoHwAb runnable – cyclic setting of output and diagnosis

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

49 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

7.7 Other requirements

IoHwAb066: The configuration parameters shall be checked statically (at the latest
during compile time) for correctness. The version information in the header and
source files shall be validated and consistent (e.g. by comparing the version
information in the header and source files with a pre-processor macro).

7.8 Error classification

Values for production code Event Ids are assigned externally by the configuration of
the Dem. They are published in the file Dem_IntErrId.h and included via Dem.h.

IoHwAb067: Development error values are of type uint8.

Type or error Relevance Related error code Value [hex]

Up to the implementer to
define error he wants to
report

Development Up to the

implementer

0x01

Up to the implementer to
define error he wants to
report

Production Up to the

implementer

Assigned

by DEM

7.9 Error detection

IoHwAb053: The detection of development errors is configurable (STD_ON /
STD_OFF) at pre-compile time.

The switch IoHwAbDevErrorDetect (see chapter 10) shall activate or deactivate

the detection of all development errors.

IoHwAb054: If the IoHwAbDevErrorDetect switch is enabled API parameter

checking is enabled. The detailed description of the detected errors can be found in
chapter 7.7 and chapter 8.

IoHwAb055: The detection of production code errors cannot be switched off.

7.10 Error notification

IoHwAb051: Detected development errors will be reported to the error hook of the
Development Error Tracer (DET) if the pre-processor switch

IoHwAbDevErrorDetect is set (see chapter 10).

IoHwAb052: Production errors shall be reported to Diagnostic Event Manager.

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

50 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

7.11 IO Hardware Abstraction layer description

7.11.1 Background & Rationale

The IO Hardware Abstraction layer has some analogies with a Software Component,
especially regarding port definition for communication through the RTE.
Main difference is that IO Hardware Abstraction is below the RTE, within the ECU
Abstraction Layer, and is unique within an ECU. IO Hardware Abstraction makes a
kind of interface between Basic Software modules and Application Software.

For the IO Hardware Abstraction, but also for Services, the current methodology
requires to fill out two different templates. For example, in order to integrate an
NVRAM Manager on an AUTOSAR ECU one would use the BSWMDT to document
its needs for the BSW Scheduler, OS Resources and so on. In addition, one would
use the SWCT to describe the ports towards the RTE.

The IO Hardware Abstraction is a part of BSW. It could be considered as a group of
modules. Although IOHWAB is ECU-firmware, each module of IOHWAB could fit to
the BSWDT. Today, it is known that this point is not sufficiently documented in the
current specification.

However, it is agreed that ECU Signal will be mapped to a VFB Port (See chapter 7.2
and chapter 7.5). Moreover, to describe the interfaces between an IO Hardware
Abstraction implementation and applicative Software Components implementations
(above RTE), one shall use the Software Component Template.

The intention of this chapter is to summarize all recommendations to define Ports,
Interfaces and all other Software Component like elements during configuration
process.

7.11.2 Requirements

7.11.2.1 IO Hardware Abstraction Ports definition

IoHwAb075: The IO Hardware Abstraction specification defines only
recommendations for the Port usage. Their instantiation shall be done during the
configuration process and is specific to the ECU electronic design.

The IO Hardware Abstraction proposes to create one Port for each ECU Signal
identified, exception made for ECU Diagnosis Signals that are connected to ECU
Output Signals. A relationship between this ECU Signal and the Port shall be
created.

Example:
The ECU has 10 Analog input pins, 15 PWM output pins, 15 Digital output pins.
The IO Hardware Abstraction defines at least one Port for each ECU Signal. In this
simple example, Ports are instantiated 40 times.

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

51 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

7.12 Examples

7.12.1 EXAMPLE 1: Use case of on-board hardware

This example is derived from a power supplier ECU.

Figure 7.6: Use case of on-board hardware

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

52 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

• The ECU has a high number of Digital Inputs (DI).
• One main group is the “slow DI’s” for mechanical switches
• The second main group is the “fast DI’s” for the diagnosis of the Power IC

(this DI indicates that the output current is to high “over current”, these DI’s are
not led out of the ECU)

• The MCU has not enough PIN’s -> the slow DI’s are connected to 8 bit
multiplexers (3 address lines and 1 data line for each multiplexer)

• the maximum time between the occurrence of an “over current” and the switch
of the Power IC is 1 ms

• One OEM requirement is that the reaction of a switch must be not later than
100 ms

• One other OEM requirement is that each DI must be debounced by 3 of 5
voting. However the practise shows that the kind of debouncing is not really
important because the mechanical switches and the power IC do not generate
disturbing signals

The solution today is that
all DI (slow and fast) are read every 0,8 ms (cyclic task) (The scan rate for the slow
DI could be lower but the overhead for an additional task is higher than the runtime
savings)

• The debouncing for the slow DI’s is 1 time in every loop (so the worst
cast delay to the debounced value is 3,2 ms)

• If an overcurrent is detected the pin will read again several times but in
the same loop and the power IC will switched off immediately

• The application runs every 10 ms and reads the debounced DI for the
switches and the diagnosis information's

Decomposition on the AUTOSAR architecture:

Layer Multiplexed IO Power IC

Application Runnable reads the data every
10 ms

gets a notification if the power
IC detects overcurrent.

RTE Handles runnables

IO Hardware Abstraction 8 signal mapped on ports,
definition of port feature and
Client/Server interface
Signal abstraction gives the
debounce time (better than a
debounce voting rule)

A cyclic task performs a reading
of input via DIO service call

IO Hardware Abstraction
makes decision to switch off the
Power IC if an overcurrent is
detected (in the driver of the
external ASIC)
 a cyclic task performs a
reading of input via DIO service
call.

MCAL driver DIO driver: adress lines, 1 data
line

DIO driver: 1 feedback line from
power IC

PWM driver: 1 line to the power
IC

ECU hardware Multiplexer: Mapping of 8
electrical signal

Power IC: Controls the power
supply of the multiplexer

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

53 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

7.12.2 EXAMPLE 2: Use case of failure monitoring managed by SPI

In this example, an diagnostic output signal shall be defined with the diagnosis
attribute on the level of the IO Hardware Abstraction.
Therefore, an input is used to perform the diagnosis of the output.

Figure 7.7: Use case of failure monitoring managed by SPI

When the IO Hardware Abstraction asks for positioning one output
(Dio_WriteChannel), a readout of the channel is done via a ECU pin configured as
input.

The ICU driver sends a notification to the IO Hardware Abstraction.
The protection strategy is located in the ECU firmware.

Software Component can get the diagnosis value through the port using the
diagnosis operation.

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

54 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

Example: Short-circuit to ground
IO Hardware Abstraction detects 0x00 (short-circuit to ground)
 It is done via a periodically check of outputs, and storing of results
ECU firmware switchs an internal variable to failure status.
ECU firmware makes the decision to protect the output. The IO Hardware Abstraction
provides at the moment the diagnostic information to the Software Component.

7.12.3 EXAMPLE 5: Output power stage

The ECU hardware has a power stage ASIC.
Therefore, all ECU pins shall be available as “signals” at the level on the IO
Hardware Abstraction, just below the RTE.

Figure 7.8: Use case of output power stage

Some outputs are controlled via the SPI driver/handler.

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

55 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

Some inputs are directly controlled via the DIO driver.
Some voltages, frequencies are set via the PWM driver.

A power stage driver provides the view of all outputs. It calls services of PWM, DIO
drivers and SPI handler. The signal abstraction makes all these outputs “visible” from
the point of view of Software Component (signals are mapped on Ports).

• The “Power stage driver” can be configurable.
Diagnosis:

• Every failure can be detected on the level of the power stage. The
diagnosis data flow goes through the SPI communication to the Power
stage driver

• Then, the diagnosis is provided to all Software Component via a S/R
interface.

• The diagnosis information can also be sent to the DEM

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

56 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

8 API specification

8.1 Imported types

In this chapter all types included from the following files are listed:

IoHwAb118:

Module Imported Type

Adc Adc_GroupType

Adc_StatusType

Adc_StreamNumSampleType

Adc_ValueGroupType

Adc_ConfigType

Dem Dem_EventIdType

Dio Dio_ChannelType

Dio_LevelType

Dio_PortLevelType

Dio_PortType

Dio_ChannelGroupType

EcuM EcuM_WakeupSourceType

Gpt Gpt_ChannelType

Gpt_ModeType

Gpt_ValueType

Icu Icu_ActivationType

Icu_ChannelType

Icu_DutyCycleType

Icu_EdgeNumberType

Icu_IndexType

Icu_InputStateType

Icu_ValueType

Icu_ConfigType

Port Port_PinDirectionType

Port_PinModeType

Port_PinType

Port_ConfigType

Pwm Pwm_ChannelType

Pwm_EdgeNotificationType

Pwm_OutputStateType

Pwm_PeriodType

Pwm_ConfigType

Spi Spi_AsyncModeType

Spi_ChannelType

Spi_DataType

Spi_HWUnitType

Spi_JobResultType

Spi_JobType

Spi_NumberOfDataType

Spi_SeqResultType

Spi_SequenceType

Spi_StatusType

Spi_ConfigType

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

57 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

Std_Types Std_ReturnType

Std_VersionInfoType

8.2 Type definitions

IoHwAb065: Following types shall be defined for the IO Hardware Abstraction
implementation.

8.2.1 IoHwAb_ConfigType

Name: IoHwAb_ConfigType

Type: Structure

Range: none The contents of the initialization data structure are specific.

Description: This is the type of the external data structure containing the initialization data for
the IO Hardware Abstraction driver.

8.2.2 IoHwAb_SignalType

Name: IoHwAb_SignalType

Type: uint16, uint32

Range: 16...32 bits -- -

Description: This is the type of the external data structure containing the initialization data for
the signal handled by the IO Hardware Abstraction

8.2.3 IoHwAb_DiscreteGroupType

Name: IoHwAb_DiscreteGroupType

Type: uint8

Range: 0...255 -- This type is used for Read / Write operation on a group of
discrete signals.
This type shall be independent of the target platform.

Description: This is the type used for handling the signal value read on a group of discrete
inputs, and to write the signal value on a group of discrete outputs.

8.2.4 IoHwAb_SignalDiagnosisType

Name: IoHwAb_SignalDiagnosisType

Type: uint8

Range: 0bxx1x xx00 -- Over Temperature

0bxxx1 xx00 -- Open Load

0bxxxx 1x00 -- Short to the ground

0bxxxx x100 -- Short to the Power Supply

0bxxxx xx10 -- No valid information available

0b0000 0001 -- Diagnosis not supported (could be a static check)

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

58 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

0b0000 0000 -- Diagnosis OK

- -- This type is a bit field. Several errors could be present at
the same time.
Following mapping can be used.

Description: This is the type used for handling diagnosis information.

8.2.5 IoHwAb_VoltageType

Name: IoHwAb_VoltageType

Type: uint16, uint32

Range: 16...32 bit -- Shall cover all available voltage range
The best type should be chosen for the specific MCU
platform (best performance).

Description: This is a type of the variable used to store the value of a voltage read on an
analogue input

8.2.6 IoHwAb_CurrentType

Name: IoHwAb_CurrentType

Type: uint16, uint32

Range: 16...32 bit -- Shall cover all available current range
The best type should be chosen for the specific MCU
platform (best performance).

Description: This is a type of the variable used to store the value of a current read on a input

8.2.7 IoHwAb_ResistanceType

Name: IoHwAb_ResistanceType

Type: uint16, uint32

Range: 16...32 bit -- Shall cover all available resistance range
The best type should be chosen for the specific MCU
platform (best performance).

Description: This is a type of the variable used to store the value of a resistance read on a
input

8.2.8 IoHwAb_PwxPeriodType

Name: IoHwAb_PwxPeriodType

Type: uint16, uint32

Range: 16...32 bit -- --

Description: This kind of data type shall be used for ECU Signals of the “Pulse Width
Modulation” Class. That means this type is either used for modulation output or for
demodulation input

8.2.9 IoHwAb_PwxDutyCycleType

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

59 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

Name: IoHwAb_PwxDutyCycleType

Type: uint16, uint32

Range: 16...32 bit -- --

Description: This kind of data type shall be used for ECU Signals of the “Pulse Width
Modulation” Class. That means this type is either used for modulation output or for
demodulation input

8.3 Function definitions

This is a list of functions provided for upper layer modules.

NOTE FOR IO HARDWARE ABSTRACTION:

As explained in the previous chapters, no functional API will be specified for
the IO Hardware Abstraction.

8.3.1 IoHwAb_Init<_Init_Id>

IoHwAb119:
Service name: IoHwAb_Init<Init_Id>

Syntax: void IoHwAb_Init<Init_Id>(

)

Service ID[hex]: 0x01

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: Initializes either all the IO Hardware Abstraction software or is a part of the IO
Hardware Abstraction.

IoHwAb059: This kind of function initializes either all the IO Hardware Abstraction
software, or a part of the IO Hardware Abstraction.

IoHwAb060: The multiplicity of IO devices managed by the IO Hardware Abstraction
software is handled via several init functions. Each init function is tagged with a
<_Init_ID>. Therefore, an external device, having its driver encapsulated inside the
IO Hardware Abstraction, can be separately initialized.

IoHwAb061: This kind of init function is called by the ECU State Manager. The ECU
integrator is able to configure the init sequence order called by the ECU State
manager

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

60 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

IoHwAb102: After having finished the module initialization, the IO Hardware

Abstraction state shall be set to IOHWAB_IDLE, the job result shall be set to

IOHWAB_JOB_OK.

8.3.2 IoHwAb_GetVersionInfo

 IoHwAb120:
Service name: IoHwAb_GetVersionInfo

Syntax: void IoHwAb_GetVersionInfo(

 Std_VersionInfoType* versioninfo

)

Service ID[hex]: 0x10

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out):
versioninfo Pointer to where to store the version information of this implementation

of IO Hardware Abstraction.

Return value: None

Description: Returns the version information of this module.

IoHwAb057: This service returns the version information of this implementation of IO
Hardware Abstraction. The version information includes:

- Module Id
- Vendor Id
- Vendor specific version numbers (BSW00407).

IoHwAb058: This function shall be pre compile time configurable On/Off by the

configuration parameter: IoHwAbVersionInfoApi

Hint: If source code for caller and callee of this function is available this function
should be realized as a macro. The macro should be defined in the header file.

Configuration of IoHwAb_GetVersionInfo: <Description of statically configurable
attributes that affect this API call. Reference to configuration parameters described in
chapter 10>

8.4 Call-back notifications

This is a list of functions provided for lower layer modules. The function prototypes of

the callback functions shall be provided in the file IoHwAb_Cbk.h

8.4.1 IoHwAb_Adc_Notification

IoHwAb121:
Service name: IoHwAb_Adc_Notification_<#group_ID>

Syntax: void IoHwAb_Adc_Notification_<#group_ID>(

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

61 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

)

Service ID[hex]: 0x20

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: Will be called by the ADC Driver when a group conversion is completed for group
<#group_ID>.

IoHwAb104: This function is called by the ADC driver when a group conversion is
completed for group <#group_ID>

8.4.2 IoHwAb_Pwm_Notification

IoHwAb122:
Service name: IoHwAb_Pwm_Notification_<#channel>

Syntax: void IoHwAb_Pwm_Notification_<#channel>(

 Pwm_EdgeNotificationType Notification

)

Service ID[hex]: 0x30

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in):

Notification Type of notification
PWM_RISING_EDGE or
PWM_FALLING_EDGE or
PWM_BOTH_EDGES

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: Will be called by the PWM Driver when a signal edge occurs on channel
<#channel>.

IoHwAb105: This function is called by the PWM driver when a signal edge occurs on

channel <#channel>

8.4.3 IoHwAb_Icu_Notification

IoHwAb123:
Service name: IoHwAb_Icu_Notification_<#channel>

Syntax: void IoHwAb_Icu_Notification_<#channel>(

)

Service ID[hex]: 0x40

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

62 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

Parameters (out): None

Return value: None

Description: Will be called by the ICU driver when a signal edge occurs on channel
<#channel>.

IoHwAb106: This function is called by the ICU driver when a signal edge occurs on
channel <#channel>

8.4.4 IoHwAb_Gpt_Notification

IoHwAb124:
Service name: IoHwAb_Gpt_Notification_<#channel>

Syntax: void IoHwAb_Gpt_Notification_<#channel>(

)

Service ID[hex]: 0x50

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: Will be called by the GPT driver when a timer value expires on channel
<#channel>.

IoHwAb107: This function is called by the GPT driver when a timer value expires on
channel <#channel>

8.5 Scheduled functions

These functions are directly called by Basic Software Scheduler. The following
functions shall have no return value and no parameter. All functions shall be non
reentrant.

8.5.1 <Name of scheduled function>

Service name: <Name of API call>

Service ID [hex]: <Number of service ID. This ID is used as parameter for the error report API of
Development Error Tracer. The ID shall not be equal to an ID within chapter 8.3>

Description: <Set of local software requirements including ID that define the operation of this
API call.>

Timing: <fixed cyclic / variable cyclic / on pre condition>

Pre condition: <List of assumptions about the environment in which the API call must operate.>

Configuration: <Description of statically configurable attributes that affect this API call. For
instance cycle time(s) in case of fixed cyclic timing. Reference to chapter 10.>

Terms and definitions:

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

63 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

Fixed cyclic: Fixed cyclic means that one cycle time is defined at configuration and
shall not be changed because functionality is requiring that fixed timing (e.g. filters).
Variable cyclic: Variable cyclic means that the cycle times are defined at
configuration, but might be mode dependent and therefore vary during runtime.
On pre condition: On pre condition means that no cycle time can be defined. The
function will be called when conditions are fulfilled. Alternatively, the function may be
called cyclically however the cycle time will be assigned dynamically during runtime
by other modules.

8.6 Expected Interfaces

In this chapter, all interfaces required from other modules are listed.

8.6.1 Mandatory Interfaces

There is no mandatory interfaces for IO Hardware Abstraction.
It depends on the implemented ECU signals.

 For an implementation of ECU discrete signals, it is required to have the DIO
driver and the PORT driver.

 For an implementation of ECU analog signals, it is required to have at least the
ADC driver.

 For an implementation of ECU PWx signals, it is required to have at least the
PWM and the ICU driver.

Example of an IO Hardware Abstraction using all MCAL drivers APIs :
Note that <module_name>_Init and <module_name>_DeInit functions are not listed
bellow. The initialization sequence is called by the ECU state manager, and not by
the IO Hardware Abstraction.
< module_name>_GetVersionInfo functions are also not listed here.

This table has been built according to following documents

 Driver ADC document [12]

 Driver DIO document [13]

 Driver ICU document [14]

 Driver PWM document [15]

 Driver PORT document [16]

 Driver GPT document [17]

 Driver SPI document [18]

IoHwAb126:
API function Description

Adc_DeInit Returns all ADC HW Units to a state comparable to their power on reset
state.

Adc_DisableGroupNotification Disables the notification mechanism for the requested ADC Channel
group.

Adc_DisableHardwareTrigger Disables the hardware trigger for the requested ADC Channel group.

Adc_EnableGroupNotification Enables the notification mechanism for the requested ADC Channel

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

64 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

group.

Adc_EnableHardwareTrigger Enables the hardware trigger for the requested ADC Channel group.

Adc_GetGroupStatus Returns the conversion status of the requested ADC Channel group.

Adc_GetStreamLastPointer Returns the number of valid samples per channel, stored in the result
buffer.
Reads a pointer, pointing to a position in the group result buffer. With
the pointer position, the results of all group channels of the last
completed conversion round can be accessed.
With the pointer and the return value, all valid group conversion results
can be accessed (the user has to take the layout of the result buffer into
account).

Adc_GetVersionInfo Returns the version information of this module.

Adc_Init Initializes the ADC hardware units and driver.

Adc_ReadGroup Reads the group conversion result of the last completed conversion
round of the requested group and stores the channel values starting at
the DataBufferPtr address. The group channel values are stored in
ascending channel number order (in contrast to the storage layout of
the result buffer if streaming access is configured).

Adc_SetupResultBuffer Initializes the group specific ADC result buffer pointer as configured
(see ADC291) to point to the DataBufferPtr address which is passed as
parameter. The ADC driver stores all group conversion results to result
buffer addressed with the result buffer pointer. Adc_SetupResultBuffer
determines the address of the result buffer. After reset, before a group
conversion can be started, an initialization of the ADC result buffer
pointer is required.

Adc_StartGroupConversion Starts the conversion of all channels of the requested ADC Channel
group.

Adc_StopGroupConversion Stops the conversion of the requested ADC Channel group.

Dio_GetVersionInfo Service to get the version information of this module.

Dio_ReadChannel Returns the value of the specified DIO channel.

Dio_ReadChannelGroup This Service reads a subset of the adjoining bits of a port.

Dio_ReadPort Returns the level of all channels of that port.

Dio_WriteChannel Service to set a level of a channel.

Dio_WriteChannelGroup Service to set a subset of the adjoining bits of a port to a specified level.

Dio_WritePort Service to set a value of the port.

Gpt_DeInit Deinitializes all hardware timer channels.

Gpt_DisableWakeup Disables the wakeup interrupt invocation of a channel.

Gpt_EnableWakeup Enables the wakeup interrupt invocation of a channel.

Gpt_GetTimeElapsed Gets the time already elapsed.

Gpt_GetTimeRemaining Gets the time remaining until the next timeout period will expire.

Gpt_GetVersionInfo Returns the version information of this module.

Gpt_SetMode Sets the operation mode of the GPT.

Icu_DeInit This function de-initializes the ICU module.

Icu_DisableEdgeCount This function disables the counting of edges of the given channel.

Icu_DisableNotification This function disables the notification of a channel.

Icu_DisableWakeup This function disables the wakeup capability of a single ICU channel.

Icu_EnableEdgeCount This function enables the counting of edges of the given channel.

Icu_EnableNotification This function enables the notification on the given channel.

Icu_EnableWakeup This function (re-)enables the wakeup capability of the given ICU
channel.

Icu_GetDutyCycleValues This function reads the coherent active time and period time for the
given ICU Channel.

Icu_GetEdgeNumbers This function reads the number of counted edges.

Icu_GetInputState This function returns the status of the ICU input.

Icu_GetTimeElapsed This function reads the elapsed Signal Low Time for the given channel.

Icu_GetTimestampIndex This function reads the timestamp index of the given channel.

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

65 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

Icu_GetVersionInfo This function returns the version information of this module.

Icu_Init This function initializes the driver.

Icu_ResetEdgeCount This function resets the value of the counted edges to zero.

Icu_SetActivationCondition This function sets the activation-edge for the given channel.

Icu_StartSignalMeasurement This function starts the measurement of signals.

Icu_StartTimestamp This function starts the capturing of timer values on the edges.

Icu_StopSignalMeasurement This function stops the measurement of signals of the given channel.

Icu_StopTimestamp This function stops the timestamp measurement of the given channel.

Port_GetVersionInfo Returns the version information of this module.

Port_Init Initializes the Port Driver module.

Port_RefreshPortDirection Refreshes port direction.

Port_SetPinDirection Sets the port pin direction

Port_SetPinMode Sets the port pin mode.

Pwm_DeInit Service for PWM De-Initialization.

Pwm_DisableNotification Service to disable the PWM signal edge notification.

Pwm_EnableNotification Service to enable the PWM signal edge notification according to
notification parameter.

Pwm_GetOutputState Service to read the internal state of the PWM output signal.

Pwm_GetVersionInfo Service returns the version information of this module.

Pwm_Init Service for PWM initialization.

Pwm_SetDutyCycle Service sets the duty cycle of the PWM channel.

Pwm_SetOutputToIdle Service sets the PWM output to the configured Idle state.

Pwm_SetPeriodAndDuty Service sets the period and the duty cycle of a PWM channel

Spi_AsyncTransmit Service to transmit data on the SPI bus.

Spi_Cancel Service cancels the specified on-going sequence transmission.

Spi_DeInit Service for SPI de-initialization.

Spi_GetHWUnitStatus This service returns the status of the specified SPI Hardware
microcontroller peripheral.

Spi_GetJobResult This service returns the last transmission result of the specified Job.

Spi_GetSequenceResult This service returns the last transmission result of the specified
Sequence.

Spi_GetStatus Service returns the SPI Handler/Driver software module status.

Spi_GetVersionInfo This service returns the version information of this module.

Spi_Init Service for SPI initialization.

Spi_MainFunction_Driving --

Spi_MainFunction_Handling --

Spi_ReadIB Service for reading synchronously one or more data from an IB SPI
Handler/Driver Channel specified by parameter.

Spi_SetAsyncMode Service to set the asynchronous mechanism mode for SPI busses
handled asynchronously.

Spi_SetupEB Service to setup the buffers and the length of data for the EB SPI
Handler/Driver Channel specified.

Spi_SyncTransmit Service to transmit data on the SPI bus

Spi_WriteIB Service for writing one or more data to an IB SPI Handler/Driver
Channel specified by parameter.

8.6.2 Optional Interfaces

This chapter defines all interfaces which are required to fulfill an optional functionality
of the IO Hardware Abstraction.

IoHwAb125:

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

66 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

API function Description

Dem_ReportErrorStatus Reports errors to the DEM.

Det_ReportError Service to report development errors.

EcuM_SetWakeupEvent Sets the wakeup event.

8.6.3 Configurable interfaces

In this chapter all interfaces are listed where the target function could be configured.
The target function is usually a call-back function. The names of these kind of
interfaces is not fixed because they are configurable.

Name: <Name of interface, no C syntax>

Syntax: <Syntax of call including return type and parameters. Types

must be defined using the type template. The real C name is

not given, because it is configurable>

Reentrancy: <reentrant / don’t care>

Parameters (in): <Parameter 1> <Description of parameter 1>

<Parameter 2> <Description of parameter 2>

Parameters (out): <Parameter 3> <Description of parameter 3>

Return value: <Range of legal
values>

<Description and the circumstances under which that
value is returned, and the values of configuration
attributes in which the value can be returned>

Description: <Set of local software requirements including ID which define the operation of this
API call.>

Caveats: <List of assumptions about the environment in which the API call must operate.>

Configuration: <Description of statically configurable attributes that affect this API call.
Reference to configuration parameters described in chapter 10>

Terms and definitions:
Reentrant: interface is expected to be reentrant
Don’t care: reentrancy of interface not relevant for this module (in general it is in this
case not reentrant).

8.6.4 Job End Notification

none

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

67 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

9 Sequence diagrams

9.1 ECU-signal provided by the IO Hardware Abstraction
(example)

This sequence diagram explains the example of chapter 7.6.2.5.

In this example, the Sensor / Actuator Component is the client, the IO Hardware
Abstraction is the server.

The Sensor/Actuator Component asks for a new value of the af_pressure AUTOSAR
signal, that is an ECU signal on the level of the IO Hardware Abstraction.

After Adc conversion is finished, a notification coming from MCAL driver is converted
into a RTE event for the Sensor / Actuator Component. Then, it can perform a
synchronous read of the value present in the af_pressure signal buffer.

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

68 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

 sd IoHwA - ADC

«module»

Adc

«Peripheral»

ADC Conversion

Unit

«module»

IoHwAb

«module»

EcuM

«SensorActuatorHW»

Sensor / Actuator

Component

Status: proposed by TO as per SWS IoHwA 1.0.0

Description:

Comments:

Group 1:

- Channel 1

- Channel 2

- Notification mechanism is activated

Adc_Init(const

Adc_ConfigType*)

Adc_Init()

IoHwAb_Init<Init_Id>()

IoHwAb_Init<Init_Id>()

Adc_EnableGroupNotification(Adc_GroupType)

Adc_EnableGroupNotification()

IoHwAb_GetVoltage(af_pressure)

Adc_StartGroupConversion(Adc_GroupType)

start conversion()

Adc_StartGroupConversion()
IoHwAb_GetVoltage()

Interrupt()

IoHwAb_Adc_Notification_Group1()

Adc_OnDemandReadChannel(Adc_ChannelType) :

Adc_ValueType

Adc_OnDemandReadChannel()

SetRTEEvent()

IoHwAb_ReadVoltage(af_pressue, &buffer))

IoHwAb_ReadVoltage()

Figure 9.1: Sequence diagram - ADC conversion

Note: APIs IoHwAb_GetVoltage(af_pressure) and

IoHwAbReadVoltage(af_pressure, &buffer) are not specified interfaces, and

are given only for the example.

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

69 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into
containers. In order to support the specification Chapter 10.1 describes
fundamentals. It also specifies a template (table) you shall use for the parameter
specification. We intend to leave Chapter 10.1 in the specification to guarantee
comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the IO
Hardware Abstraction.

Chapter 10.3 specifies published information of the IO Hardware Abstraction.

10.1 How to read this chapter

In addition to this section, it is highly recommended to read the documents:
- AUTOSAR Layered Software Architecture [2]
- AUTOSAR ECU Configuration Specification [4]

This document describes the AUTOSAR configuration methodology and the
AUTOSAR configuration metamodel in detail.

The following is only a short survey of the topic and it will not replace the ECU
Configuration Specification document.

10.1.1 Configuration and configuration parameters

Configuration parameters define the variability of the generic part(s) of an
implementation of a module. This means that only generic or configurable module
implementation can be adapted to the environment (software/hardware) in use during
system and/or ECU configuration.

The configuration of parameters can be achieved at different times during the
software process: before compile time, before link time or after build time. In the
following, the term “configuration class” (of a parameter) shall be used in order to
refer to a specific configuration point in time.

10.1.2 Variants

Not applicable

10.1.3 Containers

Containers structure the set of configuration parameters. This means:
- all configuration parameters are kept in containers.

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

70 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

- (sub-) containers can reference (sub-) containers. It is possible to assign a
multiplicity to these references. The multiplicity then defines the possible
number of instances of the contained parameters.

10.1.4 Specification template for configuration parameters

The following tables consist of three sections:
- the general section
- the configuration parameter section
- the section of included/referenced containers

Pre-compile time - specifies whether the configuration parameter shall be

of configuration class Pre-compile time or not

Label Description

x The configuration parameter shall be of configuration class Pre-compile time.

-- The configuration parameter shall never be of configuration class Pre-compile time.

Link time - specifies whether the configuration parameter shall be

of configuration class Link time or not

Label Description

x The configuration parameter shall be of configuration class Link time.

-- The configuration parameter shall never be of configuration class Link time.

Post Build - specifies whether the configuration parameter shall be

of configuration class Post Build or not

Label Description

x
The configuration parameter shall be of configuration class Post Build and no specific
implementation is required.

L
Loadable - the configuration parameter shall be of configuration class Post Build and only
one configuration parameter set resides in the ECU.

M
Multiple - the configuration parameter shall be of configuration class Post Build and is
selected out of a set of multiple parameters by passing a dedicated pointer to the init
function of the module.

-- The configuration parameter shall never be of configuration class Post Build.

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed
meanings of the parameters describe Chapters 7 and Chapter 8.

10.2.1 Variants

No variants specified

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

71 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

10.2.2 IoHwAbstraction

Module Name IoHwAbstraction

Module Description Configuration of IO HW Abstraction.

Included Containers

Container Name Multiplicity Scope / Dependency

IoHwAbEcuSignalGroup 0..*
This container contains the configuration (parameters) of all
ECU signals groups implemented in the IO Hardware
Abstraction Module

IoHwAbEcuSignals 0..*

This container contains the configuration (parameters) of all
ECU signals implemented in the IO Hardware Abstraction
Module. Remarks: - The IO Hardware Abstraction module is
an ECU firmware module. That means that the implementation
shall fit only to the ECU hardware. The implementer has to
develop only the functionality needed (eg: if there is no pulse
width ECU signal configurated, the pulse width abstraction will
not be available. - At least one ECU signal shall be
configurated to have the module.

IoHwAbGeneral 1
This container contains common description for the IO
Hardware Abstraction module

10.2.3 IoHwAbGeneral

SWS Item IoHwAb096 :

Container Name IoHwAbGeneral{IoHwAb_Configuration}

Description
This container contains common description for the IO Hardware
Abstraction module

Configuration Parameters

SWS Item :

Name

IoHwAbDevErrorDetect

Description Switches the Development Error Detection and Notification ON or OFF

Multiplicity 1

Type BooleanParamDef

Default value --

ConfigurationClass Pre-compile
time

--

Link time --

Post-build time --

Scope / Dependency scope: Module

SWS Item :

Name

IoHwAbVersionInfoApi {IOHWAB_VERSION_INFO_API}

Description Pre-processor switch to enable / disable the API to read out the modules version
information.

Multiplicity 1

Type BooleanParamDef

Default value --

ConfigurationClass Pre-compile
time

--

Link time --

Post-build time --

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

72 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

Scope / Dependency

No Included Containers

10.2.4 IoHwAbEcuSignals

SWS Item IoHwAb087 :

Container Name IoHwAbEcuSignals{IoHwAb_ECUSignals_Configuration}

Description

This container contains the configuration (parameters) of all ECU signals
implemented in the IO Hardware Abstraction Module. Remarks: - The IO
Hardware Abstraction module is an ECU firmware module. That means
that the implementation shall fit only to the ECU hardware. The
implementer has to develop only the functionality needed (eg: if there is no
pulse width ECU signal configurated, the pulse width abstraction will not be
available. - At least one ECU signal shall be configurated to have the
module.

Configuration Parameters

Included Containers

Container Name Multiplicity Scope / Dependency

IoHwAbAnalogInput 0..*
This container contains the description of an analog ECU
signal used as input. The operation available through the Port
is a OP_GET.

IoHwAbAnalogOutput 0..*
This container contains the description of an analog ECU
signal used as output. The operation available through the Port
is a OP_SET.

IoHwAbDiscreteDiagnosis 0..*
This container contains the description of a discrete ECU
signal used as diagnosis.

IoHwAbDiscreteInput 0..*
This container contains the description of a discrete ECU
signal used as input. The operation available through the Port
is an OP_GET.

IoHwAbDiscreteOutput 0..*
This container contains the description of a discrete ECU
signal used as Output. The operation available through the
Port is a OP_SET.

IoHwAbPwDutyCycleInput 0..*

This container contains specific description for an input ECU
signal from class pulse width, handling especially the
characteristic DutyCycle The operation available through the
Port is a OP_GET

IoHwAbPwDutyCycleOutput 0..*

This container contains specific description for an output ECU
signal from class pulse width, handling especially the
characteristic DutyCycle. The operation available through the
Port is a OP_SET.

IoHwAbPwPeriodInput 0..*
This container contains specific description for an input ECU
signal from class pulse width, handling especially the
characteristic period

IoHwAbPwPeriodOutput 0..*

This container contains specific description for an output ECU
signal from class pulse width, handling especially the
characteristic period The operation available through the Port
is a OP_SET.

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

73 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

10.2.5 IoHwAbEcuSignalGroup

SWS Item IoHwAb127 :

Container Name IoHwAbEcuSignalGroup{IoHwAb_ECUSignalGroups_Configuration}

Description
This container contains the configuration (parameters) of all ECU signals
groups implemented in the IO Hardware Abstraction Module

Configuration Parameters

Included Containers

Container Name Multiplicity Scope / Dependency

IoHwAbDiscSigGrpInput 0..*

This container contains the description of a discrete ECU
signal group. The container IoHwAb_Discrete_SignalGroup
contains several IoHwAb_Class_Discrete_Input sub-
containers

IoHwAbDiscSigGrpOutput 0..*

This container contains the description of a discrete ECU
signal group. The container IoHwAb_Discrete_SignalGroup
contains several IoHwAb_Class_Discrete_Output sub-
containers.

10.2.6 IoHwAbDiscSigGrpInput

SWS Item IoHwAb101 :

Container Name IoHwAbDiscSigGrpInput{IoHwAb_Discrete_SignalGroup_Inputs}

Description
This container contains the description of a discrete ECU signal group. The
container IoHwAb_Discrete_SignalGroup contains several
IoHwAb_Class_Discrete_Input sub-containers

Configuration Parameters

SWS Item :

Name

IoHwAbDiscSigGrpInMember

Description Each member of the signal group is referenced by an instance of tthis element.
In the IO HW Abstraction SWS, individual signals are aggregated by the signal
group instead of referenced, but by using references it is still possible to have
the same signal being par of several signal groups, as intended in the SWS.

Multiplicity 1..*

Type Reference to [IoHwAbDiscreteInput]

ConfigurationClass Pre-compile
time

--

Link time --

Post-build time --

Scope / Dependency scope: Module

No Included Containers

10.2.7 IoHwAbDiscSigGrpOutput

SWS Item IoHwAb103 :

Container Name IoHwAbDiscSigGrpOutput{IoHwAb_Discrete_SignalGroup_Outputs}

Description
This container contains the description of a discrete ECU signal group. The
container IoHwAb_Discrete_SignalGroup contains several

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

74 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

IoHwAb_Class_Discrete_Output sub-containers.

Configuration Parameters

SWS Item :

Name

IoHwAbDiscSigGrpOutMember

Description Each member of the signal group is referenced by an instance of tthis element.
In the IO HW Abstraction SWS, individual signals are aggregated by the signal
group instead of referenced, but by using references it is still possible to have
the same signal being par of several signal groups, as intended in the SWS.

Multiplicity 1..*

Type Reference to [IoHwAbDiscreteOutput]

ConfigurationClass Pre-compile
time

--

Link time --

Post-build time --

Scope / Dependency scope: Module

No Included Containers

10.2.8 IoHwAbDiscrete

SWS Item IoHwAb081 :

Container Name IoHwAbDiscrete{IoHwAb_Class_Discrete}

Description
This container contains common description of a all ECU signals from
class discrete

Configuration Parameters

SWS Item :

Name

IoHwAbDiscreteBswRange {IOHWAB_CLASS_DISCRETE_BSW_RANGE}

Description This parameter gives all possible values of an ECU discrete signal

Multiplicity 1

Type BooleanParamDef

Default value --

ConfigurationClass Pre-compile
time

--

Link time --

Post-build time --

Scope / Dependency scope: Module

SWS Item :

Name

IoHwAbDiscreteDatatype {IOHWAB_CLASS_DISCRETE_DATATYPE}

Description This parameter gives the DataType used for a discrete signal

Multiplicity 1

Type BooleanParamDef

Default value --

ConfigurationClass Pre-compile
time

--

Link time --

Post-build time --

Scope / Dependency scope: Module

SWS Item :

Name

IoHwAbDiscreteMaxAge {IOHWAB_CLASS_DISCRETE_MAX_AGE}

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

75 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

Description This parameter gives the maximum age of an ECU discrete signal

Multiplicity 1

Type IntegerParamDef

Range ..

Default value --

ConfigurationClass Pre-compile time --

Link time --

Post-build time --

Scope / Dependency scope: Module

No Included Containers

10.2.9 IoHwAbDiscreteInput

SWS Item IoHwAb082 :

Container Name IoHwAbDiscreteInput{IoHwAb_Discrete_Input}

Description
This container contains the description of a discrete ECU signal used as
input. The operation available through the Port is an OP_GET.

Configuration Parameters

SWS Item :

Name

IoHwAbDiscInputDebounce {IOHWAB_DISCRETE_INPUT_DEBOUNCE}

Description This parameter specifies if the ECU discrete signal is filtered / debounced 0
represents Debouncing deactivated N represents Debouncing activated, N values
sampled before value is available

Multiplicity 1

Type IntegerParamDef

Range ..

Default value --

ConfigurationClass Pre-compile time --

Link time --

Post-build time --

Scope / Dependency scope: Module

SWS Item :

Name

IoHwAbDiscInputReport {IOHWAB_DISCRETE_INPUT_REPORT}

Description This parameter specifies if the report features is activated FALSE represents no
report if a significant change occurs TRUE represents repot if a significant
change occurs

Multiplicity 1

Type BooleanParamDef

Default value --

ConfigurationClass Pre-compile
time

--

Link time --

Post-build time --

Scope / Dependency scope: Module

SWS Item :

Name

IoHwAbDiscInputWakeup {IOHWAB_DISCRETE_INPUT_WAKEUP}

Description This parameter specifies if the ECU pin is a wakeup input TRUE represents a
wakeup Input. During sleep mode, a change is reported to the module. In case of
a valid reason, the ECU state manager will be restarted to validate the wakeup.

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

76 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

FALSE represents a simple discrete Input.

Multiplicity 1

Type BooleanParamDef

Default value --

ConfigurationClass Pre-compile
time

--

Link time --

Post-build time --

Scope / Dependency scope: Module

Included Containers

Container Name Multiplicity Scope / Dependency

IoHwAbDiscrete 1
This container contains common description of a all ECU
signals from class discrete

10.2.10 IoHwAbDiscreteOutput

SWS Item IoHwAb083 :

Container Name IoHwAbDiscreteOutput{IoHwAb_Discrete_Output}

Description
This container contains the description of a discrete ECU signal used as
Output. The operation available through the Port is a OP_SET.

Configuration Parameters

SWS Item :

Name

IoHwAbDiscOutputFailureMoni
{IOHWAB_DISCRETE_OUTPUT_FAILURE_MONITORING}

Description This parameter specifies if the ECU discrete Output is monitored, to detect failure
TRUE represents that the ECU Signal is a monitored Output. Failures on this
Output are detected and managed by the module FALSE represents that the ECU
Signal is a simple discrete Output.

Multiplicity 1

Type BooleanParamDef

Default value --

ConfigurationClass Pre-compile
time

--

Link time --

Post-build time --

Scope / Dependency scope: Module

SWS Item :

Name

IoHwAbDiscOutputPulseTest {IOHWAB_DISCRETE_OUTPUT_PULSE_TEST}

Description This parameter specifies if an test pulse is used to detect failure on the ECU
discrete Output TRUE represents that a Test Pulse is used for failure monitoring
FALSE represents that no Test Pulse is used for failure monitoring

Multiplicity 1

Type BooleanParamDef

Default value --

ConfigurationClass Pre-compile
time

--

Link time --

Post-build time --

Scope / Dependency scope: Module

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

77 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

Included Containers

Container Name Multiplicity Scope / Dependency

IoHwAbDiscrete 1
This container contains common description of a all ECU
signals from class discrete

10.2.11 IoHwAbDiscreteDiagnosis

SWS Item IoHwAb099 :

Container Name IoHwAbDiscreteDiagnosis{IoHwAb_Discrete_Diagnosis}

Description
This container contains the description of a discrete ECU signal used as
diagnosis.

Configuration Parameters

Included Containers

Container Name Multiplicity Scope / Dependency

IoHwAbDiscrete 1
This container contains common description of a all ECU
signals from class discrete

10.2.12 IoHwAbAnalog

SWS Item IoHwAb084 :

Container Name IoHwAbAnalog{IoHwAb_Class_Analog}

Description
This container contains common description of a all ECU signals from
class analog.

Configuration Parameters

SWS Item :

Name

IoHwAbAnalogBswRange {IOHWAB_CLASS_ANALOG_BSW_RANGE}

Description This parameter gives the BSW Range used for an analog signal, according to the
datatype

Multiplicity 1

Type IntegerParamDef

Range 0 ..

Default value --

ConfigurationClass Pre-compile time --

Link time --

Post-build time --

Scope / Dependency scope: Module

SWS Item :

Name

IoHwAbAnalogBswResolution
{IOHWAB_CLASS_ANALOG_BSW_RESOLUTION}

Description This parameter gives the resolution used for an analog signal

Multiplicity 1

Type StringParamDef

Default value --

regularExpression --

ConfigurationClass Pre-compile
time

--

Link time --

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

78 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

Post-build time --

Scope / Dependency scope: Module

SWS Item :

Name

IoHwAbAnalogDataType {IOHWAB_CLASS_ANALOG_DATATYPE}

Description This parameter gives the DataType used for an analog signal

Multiplicity 1

Type StringParamDef

Default value --

regularExpression --

ConfigurationClass Pre-compile
time

--

Link time --

Post-build time --

Scope / Dependency scope: Module

SWS Item :

Name

IoHwAbAnalogMaxAge {IOHWAB_CLASS_ANALOG_MAX_AGE}

Description This parameter gives the maximum age of an ECU analog signal

Multiplicity 1

Type IntegerParamDef

Range ..

Default value --

ConfigurationClass Pre-compile time --

Link time --

Post-build time --

Scope / Dependency scope: Module

SWS Item :

Name

IoHwAbAnalogUnit {IOHWAB_CLASS_ANALOG_UNIT}

Description This parameter gives the unit used for an analog signal

Multiplicity 1

Type StringParamDef

Default value --

regularExpression --

ConfigurationClass Pre-compile
time

--

Link time --

Post-build time --

Scope / Dependency scope: Module

No Included Containers

10.2.13 IoHwAbAnalogInput

SWS Item IoHwAb085 :

Container Name IoHwAbAnalogInput{IoHwAb_Analog_Input}

Description
This container contains the description of an analog ECU signal used as
input. The operation available through the Port is a OP_GET.

Configuration Parameters

SWS Item :

Name

IoHwAbAnaInputFilter {IOHWAB_ANALOG_INPUT_FILTER}

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

79 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

Description This parameter specifies if the ECU analog signal is filtered

Multiplicity 1

Type BooleanParamDef

Default value --

ConfigurationClass Pre-compile
time

--

Link time --

Post-build time --

Scope / Dependency scope: Module

SWS Item :

Name

IoHwAbAnaInputReport {IOHWAB_ANALOG_INPUT_SAMPLING_RATE}

Description This parameter specifies if the report features is activated

Multiplicity 1

Type BooleanParamDef

Default value --

ConfigurationClass Pre-compile
time

--

Link time --

Post-build time --

Scope / Dependency scope: Module

SWS Item :

Name

IoHwAbAnaInputSamplingRate {IOHWAB_ANALOG_INPUT_SAMPLING_RATE}

Description This parameter specifies the sampling rate for an analog input

Multiplicity 1

Type IntegerParamDef

Range ..

Default value --

ConfigurationClass Pre-compile time --

Link time --

Post-build time --

Scope / Dependency scope: Module

Included Containers

Container Name Multiplicity Scope / Dependency

IoHwAbAnalog 1
This container contains common description of a all ECU
signals from class analog.

10.2.14 IoHwAbAnalogOutput

SWS Item IoHwAb086 :

Container Name IoHwAbAnalogOutput{IoHwAb_Analog_Output}

Description
This container contains the description of an analog ECU signal used as
output. The operation available through the Port is a OP_SET.

Configuration Parameters

SWS Item :

Name

IoHwAbAnaOutputFailureMoni
{IOHWAB_ANALOG_OUTPUT_FAILURE_MONITORING}

Description This parameter specifies if the ECU analog Output is monitored, to detect failure

Multiplicity 1

Type BooleanParamDef

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

80 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

Default value --

ConfigurationClass Pre-compile
time

--

Link time --

Post-build time --

Scope / Dependency scope: Module

SWS Item :

Name

IoHwAbAnaOutputPulseTest {IOHWAB_ANALOG_OUTPUT_PULSETEST}

Description This parameter specifies if an test pulse is used to detect failure on the ECU
analog Output

Multiplicity 1

Type BooleanParamDef

Default value --

ConfigurationClass Pre-compile
time

--

Link time --

Post-build time --

Scope / Dependency scope: Module

Included Containers

Container Name Multiplicity Scope / Dependency

IoHwAbAnalog 1
This container contains common description of a all ECU
signals from class analog.

10.2.15 IoHwAbPulseWidth

SWS Item IoHwAb088 :

Container Name IoHwAbPulseWidth{IoHwAb_Class_PulseWidth}

Description
This container contains common description of a all ECU signals from
class pulse width

Configuration Parameters

SWS Item :

Name

IoHwAbPwBswResolution
{IOHWAB_CLASS_PULSEWIDTH_BSW_RESOLUTION}

Description This parameter gives the resolution used for a pulse width ECU signal

Multiplicity 1

Type IntegerParamDef

Range ..

Default value --

ConfigurationClass Pre-compile time --

Link time --

Post-build time --

Scope /
Dependency

scope: Module

SWS Item :

Name

IoHwAbPwDatatype {IOHWAB_CLASS_PULSEWIDTH_BSW_RESOLUTION}

Description This parameter gives the DataType used for a pulse width signal

Multiplicity 1

Type StringParamDef

Default value --

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

81 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

regularExpression --

ConfigurationClass Pre-compile
time

--

Link time --

Post-build time --

Scope / Dependency scope: Module

SWS Item :

Name

IoHwAbPwMaxAge {IOHWAB_CLASS_PULSEWIDTH_MAX_AGE}

Description This parameter gives the maximum age for a pulse width ECU signal

Multiplicity 1

Type IntegerParamDef

Range ..

Default value --

ConfigurationClass Pre-compile time --

Link time --

Post-build time --

Scope / Dependency scope: Module

No Included Containers

10.2.16 IoHwAbPwPeriod

SWS Item IoHwAb089 :

Container Name IoHwAbPwPeriod{IoHwAb_Class_PulseWidthPeriod}

Description
This container contains common description of a all ECU signals from
class pulse width, handling especially the characteristic period

Configuration Parameters

SWS Item :

Name

IoHwAbPwpBswRange
{IOHWAB_CLASS_PULSEWIDTHPERIOD_BSW_RANGE}

Description This parameter gives the BSW Range for a pulse width signal (in percent)

Multiplicity 1

Type IntegerParamDef

Range -100 .. 100

Default value --

ConfigurationClass Pre-compile time --

Link time --

Post-build time --

Scope /
Dependency

scope: Module

SWS Item :

Name

IoHwAbPwpUnit {IOHWAB_CLASS_PULSEWIDTHPERIOD_UNIT}

Description This parameter gives the unit for an ECU signal, handling especially the
characteristic period

Multiplicity 1

Type StringParamDef

Default value --

regularExpression --

ConfigurationClass Pre-compile
time

--

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

82 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

Link time --

Post-build time --

Scope / Dependency scope: Module

Included Containers

Container Name Multiplicity Scope / Dependency

IoHwAbPulseWidth 1
This container contains common description of a all ECU
signals from class pulse width

10.2.17 IoHwAbPwPeriodInput

SWS Item IoHwAb090 :

Container Name IoHwAbPwPeriodInput{IoHwAb_PulseWidthPeriodInput}

Description
This container contains specific description for an input ECU signal from
class pulse width, handling especially the characteristic period

Configuration Parameters

SWS Item :

Name

IoHwAbPwpInputWakeup {IOHWAB_PulseWidthPeriod_Wakeup}

Description This parameter specifies if the ECU pin is a wakeup input

Multiplicity 1

Type BooleanParamDef

Default value --

ConfigurationClass Pre-compile
time

--

Link time --

Post-build time --

Scope / Dependency scope: Module

Included Containers

Container Name Multiplicity Scope / Dependency

IoHwAbPwPeriod 1
This container contains common description of a all ECU
signals from class pulse width, handling especially the
characteristic period

10.2.18 IoHwAbPwPeriodOutput

SWS Item IoHwAb091 :

Container Name IoHwAbPwPeriodOutput{IoHwAb_PulseWidthPeriodOutput}

Description
This container contains specific description for an output ECU signal from
class pulse width, handling especially the characteristic period The
operation available through the Port is a OP_SET.

Configuration Parameters

SWS Item :

Name

IoHwAbPwpOutputFailureMoni
{IOHWAB_PulseWidthPeriod_Output_Failure_Monitoring}

Description This parameter specifies if the ECU Output is monitored, to detect failure

Multiplicity 1

Type BooleanParamDef

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

83 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

Default value --

ConfigurationClass Pre-compile
time

--

Link time --

Post-build time --

Scope / Dependency scope: Module

SWS Item :

Name

IoHwAbPwpOutputPulseTest {IOHWAB_PulseWidthPeriod_Output_PulseTest}

Description This parameter specifies if an test pulse is used to detect failure on the ECU
Output

Multiplicity 1

Type BooleanParamDef

Default value --

ConfigurationClass Pre-compile
time

--

Link time --

Post-build time --

Scope / Dependency scope: Module

Included Containers

Container Name Multiplicity Scope / Dependency

IoHwAbPwPeriod 1
This container contains common description of a all ECU
signals from class pulse width, handling especially the
characteristic period

10.2.19 IoHwAbPwDutyCycle

SWS Item IoHwAb092 :

Container Name IoHwAbPwDutyCycle{IoHwAb_Class_PulseWidthDutyCycle}

Description
This container contains common description of a all ECU signals from
class pulse width, handling especially the characteristic duty cycle

Configuration Parameters

SWS Item :

Name

IoHwAbPwdcBswRange
{IOHWAB_CLASS_PULSEWIDTHDUTYCYCLE_BSW_RANGE}

Description This parameter gives the BSW Range for a pulse width signal

Multiplicity 1

Type IntegerParamDef

Range 0 .. 100

Default value --

ConfigurationClass Pre-compile time --

Link time --

Post-build time --

Scope /
Dependency

scope: Module

SWS Item :

Name

IoHwAbPwdcUnit {IOHWAB_CLASS_PULSEWIDTHDUTYCYCLE_UNIT}

Description This parameter gives the unit for an ECU signal, handling especially the
characteristic period

Multiplicity 1

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

84 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

Type StringParamDef

Default value --

regularExpression --

ConfigurationClass Pre-compile
time

--

Link time --

Post-build time --

Scope / Dependency scope: Module

Included Containers

Container Name Multiplicity Scope / Dependency

IoHwAbPulseWidth 1
This container contains common description of a all ECU
signals from class pulse width

10.2.20 IoHwAbPwDutyCycleInput

SWS Item IoHwAb093 :

Container Name IoHwAbPwDutyCycleInput{IoHwAb_PulseWidthDutyCycleInput}

Description
This container contains specific description for an input ECU signal from
class pulse width, handling especially the characteristic DutyCycle The
operation available through the Port is a OP_GET

Configuration Parameters

SWS Item :

Name

IoHwAbPwdcInputWakeup
{IOHWAB_PULSEWIDTHDUTYCYCLE_INPUT_WAKEUP}

Description This parameter specifies if the ECU pin is a wakeup input

Multiplicity 1

Type BooleanParamDef

Default value --

ConfigurationClass Pre-compile
time

--

Link time --

Post-build time --

Scope / Dependency scope: Module

Included Containers

Container Name Multiplicity Scope / Dependency

IoHwAbPwDutyCycle 1
This container contains common description of a all ECU
signals from class pulse width, handling especially the
characteristic duty cycle

10.2.21 IoHwAbPwDutyCycleOutput

SWS Item IoHwAb094 :

Container Name IoHwAbPwDutyCycleOutput{IoHwAb_PulseWidthDutyCycleOutput}

Description
This container contains specific description for an output ECU signal from
class pulse width, handling especially the characteristic DutyCycle. The
operation available through the Port is a OP_SET.

Configuration Parameters

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

85 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

SWS Item :

Name

IoHwAbPwdcOutputFailureMoni
{IOHWAB_CLASS_PULSEWIDTHDUTYCYCLE_OUTPUT_FAILURE_MONITORING}

Description This parameter specifies if the ECU Output is monitored, to detect failure

Multiplicity 1

Type BooleanParamDef

Default value --

ConfigurationClas
s

Pre-compile
time

--

Link time --

Post-build time --

Scope /
Dependency

scope: Module

SWS Item :

Name

IoHwAbPwdcOutputPulseTest
{IOHWAB_CLASS_PULSEWIDTHDUTYCYCLE_OUTPUT_PULSETEST}

Description This parameter specifies if an test pulse is used to detect failure on the ECU
Output

Multiplicity 1

Type BooleanParamDef

Default value --

ConfigurationClass Pre-compile
time

--

Link time --

Post-build time --

Scope /
Dependency

scope: Module

Included Containers

Container Name Multiplicity Scope / Dependency

IoHwAbPwDutyCycle 1
This container contains common description of a all ECU
signals from class pulse width, handling especially the
characteristic duty cycle

10.3 Published Information

Published information contains data defined by the implementer of the SW that does
not change when the module is adapted (i.e. configured) to the actual HW/SW
environment. It thus contains version and manufacturer information.

The standard common published information like

vendorId (<Module>_VENDOR_ID),
moduleId (<Module>_MODULE_ID),
arMajorVersion (<Module>_AR_MAJOR_VERSION),
arMinorVersion (<Module>_ AR_MINOR_VERSION),
arPatchVersion (<Module>_ AR_PATCH_VERSION),
swMajorVersion (<Module>_SW_MAJOR_VERSION),
swMinorVersion (<Module>_ SW_MINOR_VERSION),
swPatchVersion (<Module>_ SW_PATCH_VERSION),

Specification of I/O Hardware Abstraction
 V2.1.0

R3.2 Rev 3

86 of 86 Document ID 047: AUTOSAR_SWS_IO_HWAbstraction

- AUTOSAR confidential -

vendorApiInfix (<Module>_VENDOR_API_INFIX)

is provided in the BSW Module Description Template (see [20] Figure 4.1 and Figure
7.1).

Additional published parameters are listed below if applicable for this module.

	1 Introduction and functional overview
	2 Acronyms and abbreviations
	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 Interface with MCAL drivers
	5.1.1 Overview
	5.1.2 Summary of interfaces with MCAL drivers

	5.2 Interface with the communication drivers
	5.3 Interface with System Services
	5.4 File structure
	5.4.1 Code file structure
	5.4.2 Header file structure

	6 Requirements traceability
	7 Functional specification
	7.1 ECU firmware software
	7.1.1 Background & Rationale
	7.1.2 Requirements for firmware implementation

	7.2 ECU Signals Concept
	7.2.1 Background & Rationale
	7.2.2 Requirements about ECU signals

	7.3 ECU signal classes
	7.3.1 Background & Rationale
	7.3.2 Requirements about ECU signal classes
	7.3.2.1 Analogue Class
	7.3.2.2 Discrete Class
	7.3.2.3 Diagnosis Class
	7.3.2.4 Pulse Width Modulation Class

	7.4 Attributes
	7.4.1 Background & Rationale
	7.4.2 Requirements about ECU signal attributes
	7.4.2.1 Signal Data Type Attribute
	7.4.2.2 Access Attribute
	7.4.2.3 BSW-Range Attribute
	7.4.2.4 Unit Attribute
	7.4.2.5 BSW-Resolution Attribute
	7.4.2.6 BSW-Accuracy Attribute
	7.4.2.7 Hardware Resolution Attribute
	7.4.2.8 Hardware Accuracy Attribute
	7.4.2.9 Filtering/Debouncing Attribute
	7.4.2.10 Failure Monitoring Attribute
	7.4.2.11 Age Attribute
	7.4.2.12 Reporting Feature Attribute
	7.4.2.13 Pulse Test Attribute
	7.4.2.14 Wakeup Attribute

	7.4.3 Overview of Attributes to qualify Signals

	7.5 IO Hardware Abstraction and Software Component Template
	7.5.1 Background & Rationale
	7.5.2 Requirements about the usage of Software Component template
	7.5.2.1 Ports concept and IO Hardware Abstraction
	7.5.2.2 Software Component and Runnable concept

	7.6 Scheduling concept for IO Hardware Abstraction
	7.6.1 Background & Rationale
	7.6.2 Requirements about IO Hardware Abstraction Scheduling concept
	7.6.2.1 Operations for interfaces provided by Ports
	7.6.2.1.1 Gets operation, OP_GET
	7.6.2.1.2 Sets operation, OP_SET
	7.6.2.1.3 Diagnosis operation, OP_DIAG
	7.6.2.1.4 Test Pulse operation, OP_TEST
	7.6.2.1.5 Reporting operation, OP_REPORT

	7.6.2.2 Notification and/or Callback
	7.6.2.3 Main function / job processing function
	7.6.2.4 Initialization, Deinitialization and/or Callout
	7.6.2.4.1 Wakeup specific Callout

	7.6.2.5 IO Hardware Abstraction scheduling examples
	7.6.2.5.1 Interface provided by ADC and IO Hardware Abstraction
	7.6.2.5.2 Synchronous scheduling with Runnable Entities and BswSchedulableEntities

	7.7 Other requirements
	7.8 Error classification
	7.9 Error detection
	7.10 Error notification
	7.11 IO Hardware Abstraction layer description
	7.11.1 Background & Rationale
	7.11.2 Requirements
	7.11.2.1 IO Hardware Abstraction Ports definition

	7.12 Examples
	7.12.1 EXAMPLE 1: Use case of on-board hardware
	7.12.2 EXAMPLE 2: Use case of failure monitoring managed by SPI
	7.12.3 EXAMPLE 5: Output power stage

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 IoHwAb_ConfigType
	8.2.2 IoHwAb_SignalType
	8.2.3 IoHwAb_DiscreteGroupType
	8.2.4 IoHwAb_SignalDiagnosisType
	8.2.5 IoHwAb_VoltageType
	8.2.6 IoHwAb_CurrentType
	8.2.7 IoHwAb_ResistanceType
	8.2.8 IoHwAb_PwxPeriodType
	8.2.9 IoHwAb_PwxDutyCycleType

	8.3 Function definitions
	8.3.1 IoHwAb_Init<_Init_Id>
	8.3.2 IoHwAb_GetVersionInfo

	8.4 Call-back notifications
	8.4.1 IoHwAb_Adc_Notification
	8.4.2 IoHwAb_Pwm_Notification
	8.4.3 IoHwAb_Icu_Notification
	8.4.4 IoHwAb_Gpt_Notification

	8.5 Scheduled functions
	8.5.1 <Name of scheduled function>

	8.6 Expected Interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.3 Configurable interfaces
	8.6.4 Job End Notification

	9 Sequence diagrams
	9.1 ECU-signal provided by the IO Hardware Abstraction (example)

	10 Configuration specification
	10.1 How to read this chapter
	10.1.1 Configuration and configuration parameters
	10.1.2 Variants
	10.1.3 Containers
	10.1.4 Specification template for configuration parameters

	10.2 Containers and configuration parameters
	10.2.1 Variants
	10.2.2 IoHwAbstraction
	10.2.3 IoHwAbGeneral
	10.2.4 IoHwAbEcuSignals
	10.2.5 IoHwAbEcuSignalGroup
	10.2.6 IoHwAbDiscSigGrpInput
	10.2.7 IoHwAbDiscSigGrpOutput
	10.2.8 IoHwAbDiscrete
	10.2.9 IoHwAbDiscreteInput
	10.2.10 IoHwAbDiscreteOutput
	10.2.11 IoHwAbDiscreteDiagnosis
	10.2.12 IoHwAbAnalog
	10.2.13 IoHwAbAnalogInput
	10.2.14 IoHwAbAnalogOutput
	10.2.15 IoHwAbPulseWidth
	10.2.16 IoHwAbPwPeriod
	10.2.17 IoHwAbPwPeriodInput
	10.2.18 IoHwAbPwPeriodOutput
	10.2.19 IoHwAbPwDutyCycle
	10.2.20 IoHwAbPwDutyCycleInput
	10.2.21 IoHwAbPwDutyCycleOutput

	10.3 Published Information

