
Specification of FLASH EEPROM Emulation
 V1.5.0

R3.2 Rev 3

1 of 49 Document ID 286: AUTOSAR_SWS_Flash_EEPROM_Emulation

- AUTOSAR confidential -

Document Title Specification of FLASH
EEPROM Emulation

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 286

Document Classification Standard

Document Version 1.5.0

Document Status Final

Part of Release 3.2

Revision 3

Document Change History
Date Version Changed by Change Description

28.02.2014 1.5.0 AUTOSAR
Release
Management

 Const qualifier added to Fee_Write proto-
type (FEE088)

 New configuration parameter FeeMain-
FunctionPeriod (FEE119)

 Configuration parameter FeeIndex depre-
cated (ECUC_Fee_00152)

 Editorial changes

17.05.2012 1.4.0 AUTOSAR
Administration

 Published parameter FeeMaximumBlock-
ingTime deprecated

07.04.2011 1.3.0 AUTOSAR
Administration

 Requirement for consistency checks re-
formulated

 Legal disclaimer revised

23.06.2008 1.2.1 AUTOSAR
Administration

 Legal disclaimer revised

19.11.2007 1.2.0 AUTOSAR
Administration

 Small reformulations resulting from table
generation

 Tables in chapters 8 and 10 generated
from UML model

 Document meta information extended

 Small layout adaptations made

14.02.2007 1.1.0 AUTOSAR
Administration

 File include structure updated

 API of initialization function adapted

 Range of FEE block numbers adapted

 Various API descriptions enhanced

 Legal disclaimer revised

 Release Notes added

 “Advice for users” revised
“Revision Information” added

23.03.2006 1.0.0 AUTOSAR
Administration

Initial release

Specification of FLASH EEPROM Emulation
 V1.5.0

R3.2 Rev 3

2 of 49 Document ID 286: AUTOSAR_SWS_Flash_EEPROM_Emulation

- AUTOSAR confidential -

Specification of FLASH EEPROM Emulation
 V1.5.0

R3.2 Rev 3

3 of 49 Document ID 286: AUTOSAR_SWS_Flash_EEPROM_Emulation

- AUTOSAR confidential -

Disclaimer

This specification and the material contained in it, as released by AUTOSAR is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only.
For any other purpose, no part of the specification may be utilized or reproduced, in
any form or by any means, without permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR Specification Documents may contain exemplary items (exemplary refer-
ence models, "use cases", and/or references to exemplary technical solutions, devic-
es, processes or software).

Any such exemplary items are contained in the Specification Documents for illustra-
tion purposes only, and they themselves are not part of the AUTOSAR Standard.
Neither their presence in such Specification Documents, nor any later documentation
of AUTOSAR conformance of products actually implementing such exemplary items,
imply that intellectual property rights covering such exemplary items are licensed un-
der the same rules as applicable to the AUTOSAR Standard.

Specification of FLASH EEPROM Emulation
 V1.5.0

R3.2 Rev 3

4 of 49 Document ID 286: AUTOSAR_SWS_Flash_EEPROM_Emulation

- AUTOSAR confidential -

Table of Contents

Inhalt

1 Introduction and functional overview ... 6

2 Acronyms and abbreviations ... 7

3 Related documentation.. 8

3.1 Input documents ... 8
3.2 Related standards and norms .. 8

4 Constraints and assumptions .. 9

4.1 Limitations .. 9
4.2 Applicability to car domains .. 9

5 Dependencies to other modules .. 10

5.1 File structure .. 10
5.1.1 Code file structure ... 10
5.1.2 Header file structure .. 10

6 Requirements traceability .. 12

7 Functional specification ... 19

7.1 General behavior .. 19
7.1.1 Addressing scheme and segmentation ... 19
7.1.2 Address calculation ... 20

7.1.3 Limitation of erase cycles .. 21
7.1.4 Handling of “immediate” data .. 22

7.1.5 Managing block consistency information ... 22
7.2 Error classification .. 23
7.3 Error detection .. 23

7.4 Error notification ... 24
7.5 Consistency checks .. 24

8 API specification .. 25

8.1 Imported Types .. 25
8.2 Type definitions .. 25

8.3 Function definitions .. 25
8.3.1 Fee_Init ... 25

8.3.2 Fee_SetMode .. 26
8.3.3 Fee_Read ... 26
8.3.4 Fee_Write.. 27

8.3.5 Fee_Cancel ... 28
8.3.6 Fee_GetStatus .. 29

8.3.7 Fee_GetJobResult .. 30
8.3.8 Fee_InvalidateBlock .. 31
8.3.9 Fee_GetVersionInfo .. 31

8.3.10 Fee_EraseImmediateBlock ... 32
8.4 Call-back notifications .. 33

8.4.1 Fee_JobEndNotification .. 33

Specification of FLASH EEPROM Emulation
 V1.5.0

R3.2 Rev 3

5 of 49 Document ID 286: AUTOSAR_SWS_Flash_EEPROM_Emulation

- AUTOSAR confidential -

8.4.2 Fee_JobErrorNotification .. 34

8.5 Scheduled functions ... 34
8.5.1 Fee_MainFunction .. 34

8.6 Expected Interfaces .. 35
8.6.1 Mandatory Interfaces .. 35
8.6.2 Optional Interfaces .. 35

8.6.3 Configurable interfaces ... 36

9 Sequence diagrams .. 38

9.1 Fee_Init .. 38
9.2 Fee_SetMode ... 39

9.3 Fee_Write ... 40
9.4 Fee_Cancel .. 41

10 Configuration specification .. 42

10.1 How to read this chapter .. 42
10.1.1 Configuration and configuration parameters 42
10.1.2 Containers ... 42
10.1.3 Specification template for configuration parameters 42

10.2 Containers and configuration parameters .. 43
10.2.1 Variants ... 43

10.2.2 Fee .. 43
10.2.3 FeeGeneral ... 43

10.2.4 FeeBlockConfiguration .. 46
10.3 Published Information ... 48

10.3.1 FeePublishedInformation .. 48

Specification of FLASH EEPROM Emulation
 V1.5.0

R3.2 Rev 3

6 of 49 Document ID 286: AUTOSAR_SWS_Flash_EEPROM_Emulation

- AUTOSAR confidential -

1 Introduction and functional overview

This specification describes the functionality, API and configuration of the Flash
EEPROM Emulation Module (see

Figure 1).

id Component Model

Memory Driv ers

Memory Hardware Abstraction

Memory Hardware Abstraction::Memory Abstraction Interface

Memory

Hardware

Abstraction::

Flash EEPROM

Emulation

Memory Driv ers::

Vendor Specific

Library

Memory

Hardware

Abstraction::

EEPROM

Abstraction

NVRAM Manager

Memory Driv ers::

Flash Driv er

Memory Driv ers::

EEPROM Driv er

Figure 1: Module overview of memory hardware abstraction layer

FEE001: The Flash EEPROM Emulation (FEE) shall abstract from the device specific
addressing scheme and segmentation and provide the upper layers with a virtual ad-
dressing scheme and segmentation as well as a “virtually” unlimited number of erase
cycles.

Specification of FLASH EEPROM Emulation
 V1.5.0

R3.2 Rev 3

7 of 49 Document ID 286: AUTOSAR_SWS_Flash_EEPROM_Emulation

- AUTOSAR confidential -

2 Acronyms and abbreviations

Acronyms and abbreviations which have a local scope and therefore are not con-
tained in the AUTOSAR glossary must appear in a local glossary.

Abbreviation /
Acronym:

Description:

EA EEPROM Abstraction

EEPROM Electrically Erasable and Programmable ROM (Read Only Memory)

FEE Flash EEPROM Emulation

LSB Least significant bit / byte (depending on context). Here, “bit” is meant.

MemIf Memory Abstraction Interface

MSB Most significant bit / byte (depending on context). Here, “bit” is meant.

NvM NVRAM Manager

NVRAM Non-volatile RAM (Random Access Memory)

NVRAM block Management unit as seen by the NVRAM Manager

(Logical) block Smallest writable / erasable unit as seen by the modules user. Consists of one or
more virtual pages.

Virtual page May consist of one or several physical pages to ease handling of logical blocks and
address calculation.

Internal residue Unused space at the end of the last virtual page if the configured block size isn’t an
integer multiple of the virtual page size (see Figure 3)).

Virtual address Consisting of 16 bit block number and 16 bit offset inside the logical block.

Physical ad-
dress

Address information in device specific format (depending on the underlying
EEPROM driver and device) that is used to access a logical block.

Dataset Concept of the NVRAM manager: A user addressable array of blocks of the same
size.
E.g. could be used to provide different configuration settings for the CAN driver
(CAN IDs, filter settings, …) to an ECU which has otherwise identical application
software (e.g. door module).

Redundant copy Concept of the NVRAM manager: Storing the same information twice to enhance
reliability of data storage.

Specification of FLASH EEPROM Emulation
 V1.5.0

R3.2 Rev 3

8 of 49 Document ID 286: AUTOSAR_SWS_Flash_EEPROM_Emulation

- AUTOSAR confidential -

3 Related documentation

3.1 Input documents

[1] List of Basic Software Modules
AUTOSAR_BasicSoftwareModules.pdf

[2] Layered Software Architecture
AUTOSAR_LayeredSoftwareArchitecture.pdf

[3] General Requirements on Basic Software Modules
AUTOSAR_SRS_General.pdf

[4] General Requirements on SPAL
AUTOSAR_SRS_SPAL_General.pdf

[5] Requirements on Memory Hardware Abstraction Layer
AUTOSAR_SRS_MemHw_AbstractionLayer.doc

[6] Specification of Development Error Tracer
AUTOSAR_SWS_DET.pdf

[7] Specification of ECU Configuration
AUTOSAR_ECU_Configuration.pdf

[8] AUTOSAR Basic Software Module Description Template
AUTOSAR_BSW_Module_Description.pdf

3.2 Related standards and norms

[8] AUTOSAR Specification of NVRAM Manager
AUTOSAR_SWS_NVRAM_Manager.doc

[9] Specification of Memory Abstraction Interface
AUTOSAR_SWS_Mem_AbstractionInterface.pdf

[10] Specification of EEPROM Abstraction
AUTOSAR_SWS_EEPROM_Abstraction.pdf

Specification of FLASH EEPROM Emulation
 V1.5.0

R3.2 Rev 3

9 of 49 Document ID 286: AUTOSAR_SWS_Flash_EEPROM_Emulation

- AUTOSAR confidential -

4 Constraints and assumptions

4.1 Limitations

No limitations.

4.2 Applicability to car domains

No restrictions.

Specification of FLASH EEPROM Emulation
 V1.5.0

R3.2 Rev 3

10 of 49 Document ID 286: AUTOSAR_SWS_Flash_EEPROM_Emulation

- AUTOSAR confidential -

5 Dependencies to other modules

This module depends on the capabilities of the underlying flash driver as well as the
configuration of the NVRAM manager.

5.1 File structure

5.1.1 Code file structure

FEE059: The code file structure shall not be defined within this specification.

5.1.2 Header file structure

FEE002: The file include structure shall be as follows1:

dd SPAL File include structure

«source»

Std_Types.h

«source»

Platform_Types.h

«source»

Fee.h

«source»

Spal_xxx.c

«source»

Fee_Cfg.h

«source»

Fee_PBcfg.c

«source»

Fee_Lcfg.c

«source»

Compiler.h

«source»

Fee_Irq.c

«source»

Det.h

«source»

Dem.h

«source»

Fee_Cbk.h

«source»

Fee.c

«source»

SchM_Fee.h

«source»

MemMap.h

«source»

MemIf_Types.h

«source»

Fls.h

«include»

«include»

«include»

«include»
«include»

optional

«include»
optional

«include»

«include»

«include»

«include»

«include»

«include»

«include» «include»

«include»

optional

«include»

optinal

«include»

«include»

«include» «include»

Figure 2: Flash EEPROM Emulation File Include Structure

 Fee.h shall include Fls.h

 Fee.h shall include Std_Types.h and Fee_Cfg.h

 Fee_Cfg.h shall include MemIf_Types.h

1
 Files shown in grey are optional and might not be needed for certain implementations and/or configu-

rations.

Specification of FLASH EEPROM Emulation
 V1.5.0

R3.2 Rev 3

11 of 49 Document ID 286: AUTOSAR_SWS_Flash_EEPROM_Emulation

- AUTOSAR confidential -

 Fee_Lcfg.c shall include Fee_Cfg.h

 Fee.c shall include Fee.h, MemMap.h and other standard header files (if

needed by the implementation).

 Fee.c shall include Fee_Cbk.h

 Only Fee.h shall be included by upper layer modules (Memory Abstraction In-

terface)

FEE060: The module shall include the Dem.h file. By this inclusion, the APIs to re-

port errors as well as the required Event Id symbols are included. This specification
defines the name of the Event Id symbols which are provided by XML to the DEM
configuration tool. The DEM configuration tool assigns ECU dependent values to the

Event Id symbols and publishes the symbols in Dem_IntErrId.h.

Specification of FLASH EEPROM Emulation
 V1.5.0

R3.2 Rev 3

12 of 49 Document ID 286: AUTOSAR_SWS_Flash_EEPROM_Emulation

- AUTOSAR confidential -

6 Requirements traceability

Document: General Requirements on Basic Software Modules

Requirement Satisfied by
[BSW00344] Reference to link-time configuration Not applicable

(this module does not provide any post-build pa-
rameters)

[BSW00404] Reference to post build time
configuration

Not applicable
(this module does not provide post build time con-
figuration)

[BSW00405] Reference to multiple configuration
sets

Not applicable
(this module does not support multiple configura-
tion sets)

[BSW00345] Pre-compile-time configuration FEE039, FEE040

[BSW159] Tool-based configuration FEE039, FEE040

[BSW167] Static configuration checking FEE041

[BSW171] Configurability of optional functionality Not applicable
(no optional functionality)

[BSW170] Data for reconfiguration of AUTOSAR
SW-Components

Not applicable
(no reconfiguration supported)

[BSW00380] Separate C-File for configuration
parameters

Not applicable
(no link-time or post build time configuration pa-
rameters)

[BSW00381] Separate configuration header file
for pre-compile time parameters

FEE002

[BSW00412] Separate H-File for configuration
parameters [approved]

Not applicable
(no link-time or post build time configuration pa-
rameters)

[BSW00383] List dependencies of configuration
files

FEE002

[BSW00384] List dependencies to other modules Chapter 5

[BSW00387] Specify the configuration class of
callback function

Chapter 0

[BSW00388] Introduce containers Chapter 10.1

[BSW00389] Containers shall have names Chapter 10.1

[BSW00390] Parameter content shall be unique
within the module

Chapter 8, Chapter10.2.2, Chapter 10.2.3,

[BSW00391] Parameter shall have unique names Chapter 8, Chapter10.2.2, Chapter 10.2.3,

[BSW00392] Parameters shall have a type Chapter 8, Chapter10.2.2, Chapter 10.2.3,

[BSW00393] Parameters shall have a range Chapter 8, Chapter10.2.2, Chapter 10.2.3,

[BSW00394] Specify the scope of the parameters Chapter10.2.2
[BSW00395] List the required parameters (per
parameter)

Chapter10.2.2

[BSW00396] Configuration classes Chapter10.2.2
[BSW00397] Pre-compile-time parameters Chapter10.2.2
[BSW00398] Link-time parameters Not applicable

(no link-time configuration parameters)

[BSW00399] Loadable Post-build time parameters Not applicable
(no post build time configuration parameters)

[BSW00400] Selectable Post-build time
parameters

Not applicable
(no post build time configuration parameters)

[BSW00402] Published information Chapter 10.3

[BSW00375] Notification of wake-up reason Not applicable
(this module does not provide wakeup capabili-
ties)

[BSW101] Initialization interface FEE017

Specification of FLASH EEPROM Emulation
 V1.5.0

R3.2 Rev 3

13 of 49 Document ID 286: AUTOSAR_SWS_Flash_EEPROM_Emulation

- AUTOSAR confidential -

[BSW00416] Sequence of Initialization Not applicable
(requirement on system design, not a single mod-
ule)

[BSW00406] Check module initialization Not applicable
(no parameters to check during initialization)

[BSW168] Diagnostic Interface of SW compo-
nents

Not applicable
(this module does not provide special diagnostics
support)

[BSW00407] Function to read out published
parameters

Chapter8.3.9, FEE043

[BSW00423] Usage of SW-C template to describe
BSW modules with AUTOSAR Interfaces

Not applicable
(this module does not provide an AUTOSAR inter-
face)

[BSW00424] BSW main processing function task
allocation

Not applicable
(requirement on system design, not on a single
module)

[BSW00425] Trigger conditions for schedulable
objects

Not applicable
(requirement on the BSW module description
template)

[BSW00426] Exclusive areas in BSW modules Not applicable
(no exclusive areas defined in this module)

[BSW00427] ISR description for BSW modules Not applicable
(this module does not implement any ISRs)

[BSW00428] Execution order dependencies of
main processing functions

Not applicable
(only one main processing function in this module)

[BSW00429] Restricted BSW OS functionality
access

Not applicable
(this module does not use any OS functionality)

[BSW00431] The BSW Scheduler module
implements task bodies

Not applicable
(requirement on the BSW scheduler)

[BSW00432] Modules should have separate main
processing functions for read/receive and
write/transmit data path

Not applicable
(only one main processing function in this module)

[BSW00433] Calling of main processing functions Not applicable
(requirement on system design, not on a single
module)

[BSW00434] The Schedule Module shall provide
an API for exclusive areas

Not applicable
(requirement on the schedule module - this is not
it)

[BSW00336] Shutdown interface Not applicable
(this module does not provide shutdown capabili-
ties)

[BSW00337] Classification of errors FEE010

[BSW00338] Detection and Reporting of devel-
opment errors

FEE011, FEE012

[BSW00369] Do not return development error
codes via API

FEE045

[BSW00339] Reporting of production relevant
error status

Not applicable
(no production relevant errors defined for this
module)

[BSW00421] Reporting of production relevant
error events

Not applicable
(no production relevant errors defined for this
module)

[BSW00422] Debouncing of production relevant
error status

Not applicable
(requirement on the DEM, not this module)

[BSW00420] Production relevant error event rate
detection

Not applicable
(requirement on the DEM, not this module)

[BSW00417] Reporting of Error Events by Non-
Basic Software

Not applicable
(requirement on non BSW modules)

[BSW00323] API parameter checking Not applicable

Specification of FLASH EEPROM Emulation
 V1.5.0

R3.2 Rev 3

14 of 49 Document ID 286: AUTOSAR_SWS_Flash_EEPROM_Emulation

- AUTOSAR confidential -

(no parameter check specified for this module)

[BSW004] Version check FEE013, FEE043

[BSW00409] Header files for production code
error IDs

FEE047

[BSW00385] List possible error notifications Chapter 8.6

[BSW00386] Configuration for detecting an error FEE010, FEE011, FEE045

[BSW161] Microcontroller abstraction Not applicable
(requirement on AUTOSAR architecture, not a
single module)

[BSW162] ECU layout abstraction Not applicable
(requirement on AUTOSAR architecture, not a
single module)

[BSW00324] Do not use HIS I/O Library Not applicable
(architecture decision)

[BSW005] No hard coded horizontal interfaces
within MCAL

Not applicable
(requirement on AUTOSAR architecture, not a
single module)

[BSW00415] User dependent include files Not applicable
(only one user for this module)

[BSW164] Implementation of interrupt service
routines

Not applicable
(this module does not implement any ISRs)

[BSW00325] Runtime of interrupt service routines FEE069

[BSW00326] Transition from ISRs to OS tasks Not applicable
(requirement on implementation, not on specifica-
tion)

[BSW00342] Usage of source code and object
code

Not applicable
(requirement on AUTOSAR architecture, not a
single module)

[BSW00343] Specification and configuration of
time

FEE070

[BSW160] Human-readable configuration data Not applicable
(requirement on documentation, not on specifica-
tion)

[BSW007] HIS MISRA C Not applicable
(requirement on implementation, not on specifica-
tion)

[BSW00300] Module naming convention Not applicable
(requirement on implementation, not on specifica-
tion)

[BSW00413] Accessing instances of BSW mod-
ules

Requirement can not be implemented in R2.0
timeframe.

[BSW00347] Naming separation of different in-
stances of BSW drivers

Not applicable
(requirement on the implementation, not on the
specification)

[BSW00305] Self-defined data types naming con-
vention

Chapter 8.2

[BSW00307] Global variables naming convention Not applicable
(requirement on the implementation, not on the
specification)

[BSW00310] API naming convention Chapter 8.3

[BSW00373] Main processing function naming
convention

Chapter 8.5.1

[BSW00327] Error values naming convention FEE010, FEE012

[BSW00335] Status values naming convention Chapter 8.1

[BSW00350] Development error detection key-
word

FEE011, FEE062, FEE039

[BSW00408] Configuration parameter naming
convention

Chapter 10.1

[BSW00410] Compiler switches shall have de- Chapter 10.1

Specification of FLASH EEPROM Emulation
 V1.5.0

R3.2 Rev 3

15 of 49 Document ID 286: AUTOSAR_SWS_Flash_EEPROM_Emulation

- AUTOSAR confidential -

fined values

[BSW00411] Get version info keyword Chapter 10.2.3

[BSW00346] Basic set of module files FEE002

[BSW158] Separation of configuration from im-
plementation

FEE002

[BSW00314] Separation of interrupt frames and
service routines

Not applicable
(this module does not implement any ISRs)

[BSW00370] Separation of callback interface from
API

Chapter 8.4

[BSW00348] Standard type header Not applicable
(requirement on the standard header file)

[BSW00353] Platform specific type header Not applicable
(requirement on the platform specific header file)

[BSW00361] Compiler specific language exten-
sion header

Not applicable
(requirement on the compiler specific header file)

[BSW00301] Limit imported information FEE002

[BSW00302] Limit exported information Not applicable
(requirement on the implementation, not on the
specification)

[BSW00328] Avoid duplication of code Not applicable
(requirement on the implementation, not on the
specification)

[BSW00312] Shared code shall be reentrant Not applicable
(requirement on the implementation, not on the
specification)

[BSW006] Platform independency Not applicable (this is a module of the microcon-
troller abstraction layer)

[BSW00357] Standard API return type Chapter 8.3.3, Chapter 8.3.4. Chapter 8.3.8,
Chapter 8.3.10

[BSW00377] Module specific API return types Chapter8.3.6, Chapter 8.3.7

[BSW00304] AUTOSAR integer data types Not applicable
(requirement on implementation, not for specifica-
tion)

[BSW00355] Do not redefine AUTOSAR integer
data types

Not applicable
(requirement on implementation, not for specifica-
tion)

[BSW00378] AUTOSAR boolean type Not applicable
(requirement on implementation, not for specifica-
tion)

[BSW00306] Avoid direct use of compiler and
platform specific keywords

Not applicable
(requirement on implementation, not for specifica-
tion)

[BSW00308] Definition of global data Not applicable
(requirement on implementation, not for specifica-
tion)

[BSW00309] Global data with read-only constraint Not applicable
(requirement on implementation, not for specifica-
tion)

[BSW00371] Do not pass function pointers via API Not applicable
(no function pointers in this specification)

[BSW00358] Return type of init() functions Chapter 8.3.1

[BSW00414] Parameter of init function Chapter 8.3.1, FEE072

[BSW00376] Return type and parameters of main
processing functions

Chapter 8.5.1

[BSW00359] Return type of callback functions Not applicable
(this module does not provide any callback rou-
tines)

[BSW00360] Parameters of callback functions Not applicable
(this module does not provide any callback rou-

Specification of FLASH EEPROM Emulation
 V1.5.0

R3.2 Rev 3

16 of 49 Document ID 286: AUTOSAR_SWS_Flash_EEPROM_Emulation

- AUTOSAR confidential -

tines)

[BSW00329] Avoidance of generic interfaces Chapter 8.3
(explicit interfaces defined)

[BSW00330] Usage of macros / inline functions
instead of functions

Not applicable
(requirement on implementation, not for specifica-
tion)

[BSW00331] Separation of error and status values FEE010, FEE045

[BSW009] Module User Documentation Not applicable
(requirement on documentation, not on specifica-
tion)

[BSW00401] Documentation of multiple instances
of configuration parameters

Not applicable
(all configuration parameters are single instance
only)

[BSW172] Compatibility and documentation of
scheduling strategy

Not applicable
(no internal scheduling policy)

[BSW010] Memory resource documentation Not applicable
(requirement on documentation, not on specifica-
tion)

[BSW00333] Documentation of callback function
context

Not applicable
(requirement on documentation, not for specifcia-
tion)

[BSW00374] Module vendor identification FEE043

[BSW00379] Module identification FEE043

[BSW003] Version identification FEE043

[BSW00318] Format of module version numbers FEE043

[BSW00321] Enumeration of module version
numbers

Not applicable
(requirement on implementation, not for specifica-
tion)

[BSW00341] Microcontroller compatibility docu-
mentation

Not applicable
(requirement on documentation, not on specifica-
tion)

[BSW00334] Provision of XML file Not applicable
(requirement on documentation, not on specifica-
tion)

Document: General Requirements on SPAL

Requirement Satisfied by
[BSW12263] Object code compatible configura-
tion concept

Not applicable
(this module does not provide any post-build pa-
rameters)

[BSW12056] Configuration of notification mecha-
nisms

Not applicable
(this module does not provide any notification
mechanisms)

[BSW12267] Configuration of wake-up sources Not applicable
(this module does not provide any wakeup capa-
bilities)

[BSW12057] Driver module initialization FEE017

[BSW12125] Initialization of hardware resources Not applicable
(this module has no direct hardware access)

[BSW12163] Driver module de-initialization Not applicable
(this module does not provide any shutdown ca-
pabilities)

[BSW12058] Individual initialization of overall reg-
isters

Not applicable
(this module has no direct hardware access)

[BSW12059] General initialization of overall regis-
ters

Not applicable
(this module has no direct hardware access)

Specification of FLASH EEPROM Emulation
 V1.5.0

R3.2 Rev 3

17 of 49 Document ID 286: AUTOSAR_SWS_Flash_EEPROM_Emulation

- AUTOSAR confidential -

[BSW12060] Responsibility for initialization of
one-time writable registers

Not applicable
(this module has no direct hardware access)

[BSW12461] Responsibility for register
initialization [approved]

Not applicable
(this module has no direct hardware access)

[BSW12462] Provide settings for register
initialization [approved]

Not applicable
(this module has no direct hardware access)

[BSW12463] Combine and forward settings for
register initialization

Not applicable
(this module has no direct hardware access)

[BSW12062] Selection of static configuration sets Not applicable

(no selectable of configuration sets)FEE019

[BSW12068] MCAL initialization sequence Not applicable
(this module belongs to the ECU abstraction lay-
er)

[BSW12069] Wake-up notification of ECU State
Manager

Not applicable
(this module does not provide any wakeup capa-
bilities)

[BSW157] Notification mechanisms of drivers and
handlers

Not applicable
(this module does not provide any notification
mechanisms)

[BSW12155] Prototypes of callback functions Not applicable
(this module does not implement any callback
routines)

[BSW12169] Control of operation mode FEE020

[BSW12063] Raw value mode Not applicable
(this module does not handle or mishandle any
data)

[BSW12075] Use of application buffers Chapter 8.3.3, Chapter 8.3.4

[BSW12129] Resetting of interrupt flags Not applicable
(this module does not implement any ISRs)

[BSW12064] Change of operation mode during
running operation

Not applicable
(this module has no internal operation mode)

[BSW12448] Behavior after development error
detection

FEE068

[BSW12067] Setting of wake-up conditions Not applicable
(this module does not provide any wakeup capa-
bilities)

[BSW12077] Non-blocking implementation Not applicable
(this module does not implement any schedulable
services)

[BSW12078] Runtime and memory efficiency Not applicable
(requirement on implementation, not on
specification)

[BSW12092] Access to drivers Not applicable
(this module is the flash driver’s “manager”)

[BSW12265] Configuration data shall be kept
constant

Not applicable
(no configuration data passed for initialization)

[BSW12264] Specification of configuration items FEE039, FEE040, FEE043

[BSW12081] Use HIS requirements as input Not applicable (no corresponding HIS
requirements available)

Document: Requirements on Memory Hardware Abstraction Layer

Requirement Satisfied by
BSW14001 Configuration of address alignment FEE077, FEE078, FEE039

BSW14002 Configuration of number of required
write cycles

FEE008, FEE040

BSW14003 Configuration of maximum blocking
time

FEE039

Specification of FLASH EEPROM Emulation
 V1.5.0

R3.2 Rev 3

18 of 49 Document ID 286: AUTOSAR_SWS_Flash_EEPROM_Emulation

- AUTOSAR confidential -

BSW14004 Configuration of “immediate” data
blocks

FEE040

BSW14026 Don’t use certain block numbers FEE006

BSW14027 Publish overhead for internal man-
agement data per block

FEE043

BSW14005 Virtual linear address space and
segmentation

FEE003

BSW14006 Alignment of block erase / write ad-
dresses

FEE077, FEE078, FEE024

BSW14007 Alignment of block read addresses FEE021

BSW14008 Checking block read addresses FEE038

BSW14009 Conversion of logical to physical ad-
dresses

FEE007

BSW14010 Block-wise write service Chapter 8.3.4

BSW14029 Block-wise read service Chapter 8.3.3,

BSW14031 Service to cancel an ongoing asyn-
chronous operation

Chapter 8.3.5

BSW14028 Service to invalidate a memory block Chapter 8.3.8

BSW14012 Spreading of write access FEE008

BSW14013 Writing of “immediate” data must not
be delayed

FEE009

BSW14032 Block-wise erase service for immedi-
ate data

FEE066, FEE067, FEE068

BSW14014 Detection of data inconsistencies FEE023, FEE049, FEE050

BSW14015 Reporting of data inconsistencies FEE023

BSW14016 Don’t return inconsistent data to the
caller

FEE023

BSW14017 Scope of EEPROM Abstraction Layer Not applicable
(this is the FEE modules specification)

BSW14018 Scope of Flash EEPROM Emulation FEE001

Specification of FLASH EEPROM Emulation
 V1.5.0

R3.2 Rev 3

19 of 49 Document ID 286: AUTOSAR_SWS_Flash_EEPROM_Emulation

- AUTOSAR confidential -

7 Functional specification

7.1 General behavior

7.1.1 Addressing scheme and segmentation

The Flash EEPROM Emulation (FEE) module provides upper layers with a 32bit vir-
tual linear address space and uniform segmentation scheme. This virtual 32bit ad-
dresses shall consist of

 a 16bit block number – allowing a (theoretical) number of 65536 logical blocks

 a 16bit block offset – allowing a (theoretical) block size of 64KByte per block

The 16bit block number represents a configurable (virtual) paging mechanism. The
values for this address alignment can be derived from that of the underlying flash
driver and device. This virtual paging shall be configurable via the parameter

FeeVirtualPageSize.

FEE076: The configuration of the Fee module shall be such that the virtual page

size (defined in FeeVirtualPageSize) is an integer multiple of the physical page

size, i.e. it is not allowed to configure a smaller virtual page than the actual physical
page size.

Example:
The size of a virtual page is configured to be eight bytes, thus the address alignment
is eight bytes.. The logical block with block number 1 is placed at physical address x.
The logical block with the block number 2 then would be placed at x+8, block number
3 would be placed at x+16.

Note: This specification requirement allows the physical start address of a logical
block to be calculated rather than making a lookup table necessary for the address
mapping.

FEE005: Each configured logical block shall take up an integer multiple of the con-
figured virtual page size (see also chapter 10.2.3, configuration parameter

FeeVirtualPageSize)..

FEE071: Logical blocks must not overlap each other and must not be contained with-
in one another.

Example:
The address alignment / virtual paging is configured to be eight bytes by setting the

parameter FeeVirtualPageSize accordingly. The logical block number 1 is con-

figured to have a size of 32 bytes (seeFigure 3). This logical block would use exactly
4 virtual pages. The next logical block thus would get the block number 5, since block
numbers 2, 3 and 4 are “blocked” by the first logical block. This second block is con-
figured to have a size of 100 bytes, taking up 13 virtual pages and leaving 4 bytes of
the last page unused. The next available logical block number thus would be 17.

Specification of FLASH EEPROM Emulation
 V1.5.0

R3.2 Rev 3

20 of 49 Document ID 286: AUTOSAR_SWS_Flash_EEPROM_Emulation

- AUTOSAR confidential -

Block 1

Block 2

Block 3

32 Bytes

100 Bytes

38 Bytes

Note: Sizes not shown to scale

Virtual address space

Page size: 64 KBytes

Physical address space

Page size: 8 Bytes

100 Bytes

32 Bytes

38 Bytes

16 Bit Block Number

16 Bit Block Offset

Block #1 with 32 byte

uses 4 pages, no

internal residue

Block #5 with 100 byte

uses 13 pages, 4 byte

internal residue

Block #17 with 38 byte

uses 5 pages, 2 byte

internal residue

Figure 3: Virtual vs. physical memory layout

FEE006: The block numbers 0x0000 and 0xFFFF shall not be configurable for a logi-
cal block.

7.1.2 Address calculation

FEE007: Depending on the implementation of the FEE module and the exact ad-
dress format used, the functions of the FEE module shall combine the 16bit block
number and 16bit address offset to derive the physical flash address needed for the
underlying flash driver.

Note: The exact address format needed by the underlying flash driver and therefore
the mechanism how to derive the physical flash address from the given 16bit block
number and 16bit address offset depends on the flash device and the implementation
of this module and shall therefore not be standardized.

FEE100: Only those bits of the 16bit block number, that do not denote a specific da-
taset or redundant copy shall be used for address calculation.

Note: Since this information is needed by the NVRAM manager, the number of bits to
encode this can be configured for the NVRAM manager with the parameter

NVM_DATASET_SELECTION_BITS.

Specification of FLASH EEPROM Emulation
 V1.5.0

R3.2 Rev 3

21 of 49 Document ID 286: AUTOSAR_SWS_Flash_EEPROM_Emulation

- AUTOSAR confidential -

Example:
Dataset information is configured to be encoded in the four LSB’s of the 16bit block
number (allowing for a maximum of 16 datasets per NVRAM block and a total of
4094 NVRAM blocks). An implementer decides to store all datasets of a NVRAM
block directly adjacent and using the length of the block and a pointer to access each
dataset. To calculate the start address of the block (the address of the first dataset)
she/he uses only the 12 MSB’s, to access a specific dataset she/he adds the size of
the block multiplied by the dataset index (the four MSB’s) to this start address (Figure

4).

100 Bytes

Data set 0

Data set 1

Data set 2

Data set 3

NVM_DATASET_SELECTION_BITS configured

to be four (bits), leaving twelve bit for the block

number. Each NVRAM block thus can be

subdivided in up to 16 datasets.

Block

number

Dataset

index

Address conversion

„indexed“

addressing

Figure 4: Block number and dataset index

7.1.3 Limitation of erase cycles

FEE102: The configuration of the Fee module shall define the expected number of

erase/write cycles for each logical block in the configuration parameter FeeNumber-

OfWriteCycles.

FEE103: If the underlying flash device or device driver does not provide at least the
configured number of erase/write cycles per physical memory cell, the FEE module
shall provide mechanisms to spread the write access such that the physical device is

Specification of FLASH EEPROM Emulation
 V1.5.0

R3.2 Rev 3

22 of 49 Document ID 286: AUTOSAR_SWS_Flash_EEPROM_Emulation

- AUTOSAR confidential -

not overstressed. This shall also apply to all management data used internally by the
FEE module.

Example:
The logical block number 1 is configured for an expected 500.000 write cycles, the
underlying flash device and device driver are only specified for 100.000 erase cycles.
In this case, the FEE module has to provide (at least) five separate memory areas
and alternate the access between those areas internally so that each physical
memory location is only erased for a maximum of the specified 100.000 cycles.

7.1.4 Handling of “immediate” data

FEE009: Blocks containing immediate data have to be written instantaneously, i.e.
the FEE module has to ensure that it can write such blocks without the need to erase
the corresponding memory area (e.g. by using pre-erased memory) and that the write
request is not delayed by currently running module internal management operations.

Note: An ongoing lower priority read / erase / write or compare job shall be cancelled
by the NVRAM manager before immediate data is written. The FEE module has only
to ensure that this write can be performed immediately.

Note: A running operation on the hardware (e.g. writing one page or erasing one sec-
tor) can usually not be aborted once it has been started. The maximum time of the
longest hardware operation thus has to be accepted as delay even for immediate
data.

Example:
Three blocks with 10 bytes each have been configured for immediate data. The FEE
module / configuration tool reserves these 30 bytes (plus the implementation specific
overhead per block / page if needed) for use by this immediate data only. That is, this
memory area shall not be used for storage of other data blocks.
Now, the NVRAM manager has requested the FEE module to write a data block of
100 bytes. While this block is being written, a situation occurs that one (or several) of
the immediate data blocks need to be written. Therefore the NVRAM manager can-
cels the ongoing write request and subsequently issues the write request for the
(first) block containing immediate data. The cancellation of the ongoing write request
is performed synchronously by the FEE module and the underlying flash driver (i.e.
the write request for the immediate data) can be started without any further delay.
However, before the first bytes of immediate data can be written, the FEE module
respectively the underlying driver have to wait for the end of an ongoing hardware
access from the previous write request (e.g. writing of a page, erasing of a sector,
transfer via SPI, …).

7.1.5 Managing block consistency information

FEE049: The FEE module shall manage for each block the information, whether this
block is “correct” from the point of view of the FEE module or not. This consistency
information shall only concern the internal handling of the block, not the block’s con-
tents.

Specification of FLASH EEPROM Emulation
 V1.5.0

R3.2 Rev 3

23 of 49 Document ID 286: AUTOSAR_SWS_Flash_EEPROM_Emulation

- AUTOSAR confidential -

FEE050: When a block write operation is started, the FEE module shall mark the cor-
responding block as inconsistent2. Upon the successful end of the block write opera-
tion, the block shall be marked as consistent (again).

Note: This internal management information should not be mixed up with the validity
information of a block which can be manipulated by using the Fee_InvalidateBlock
service, i.e. the FEE shall be able to distinguish between an inconsistent block and a
block that has been deliberately invalidated by the upper layer.

7.2 Error classification

FEE047: Values for production code Event Ids are assigned externally by the config-

uration of the Dem. They are published in the file Dem_IntErrId.h and included via

Dem.h.

FEE048: Development error values are of type uint8.

FEE010: The FEE module shall detect the following errors and exceptions depending
on its configuration (development/production):

Type or error Relevance Related error code Value [hex]

API service called with invalid
block number

Development FEE_E_INVALID_BLOCK_NO 0x02

7.3 Error detection

FEE011: The detection of development errors is configurable (ON / OFF) at pre-

compile time. The switch FeeDevErrorDetect (see Chapter 10) shall activate or

deactivate the detection of all development errors.

FEE062: If the FeeDevErrorDetect switch is enabled, API parameter checking is

enabled. The detailed description of the detected errors can be found in chapter 7.2
and chapter 0.

FEE063: The detection of production code errors cannot be switched off.

FEE012: Additional errors that are detected because of specific implementation
and/or specific hardware properties shall be added in the FEE module’s implementa-
tion documentation. The classification and enumeration shall be compatible with the
errors listed above.

2
 This does not necessarily mean a write operation on the physical device, if there are other means to

detect the consistency of a logical block.

Specification of FLASH EEPROM Emulation
 V1.5.0

R3.2 Rev 3

24 of 49 Document ID 286: AUTOSAR_SWS_Flash_EEPROM_Emulation

- AUTOSAR confidential -

7.4 Error notification

FEE045: Detected development errors shall be reported to the Det_ReportError

service of the Development Error Tracer (DET) if the pre-processor switch

FeeDevErrorDetect is set (see Chapter 10).

FEE106: Production errors shall be reported to Diagnostic Event Manager.

7.5 Consistency checks

FEE013: The FEE module shall perform inter module checks to avoid integration of
incompatible files. All included header files shall be checked by pre-processing direc-
tives.

The FEE module shall verify that <MODULNAME>_AR_MAJOR_VERSION and <MOD-

ULNAME>_AR_MINOR_VERSION are identical to the expected values, where <MOD-

ULNAME> is the module short name of the external module which provides the in-

cluded header file. If the values are not identical to the expected values, an error
shall be reported.

FEE038: The FEE module shall not implement any kind of parameter checks during
runtime. Instead the parameter check of the underlying driver shall be enabled if
needed.

Note: The configuration tool shall check all configuration parameters for being within
the expected bounds. Also the dependencies between configuration parameters shall
be checked by the configuration tool during system generation or during the build
process (for details see chapter 10).

Specification of FLASH EEPROM Emulation
 V1.5.0

R3.2 Rev 3

25 of 49 Document ID 286: AUTOSAR_SWS_Flash_EEPROM_Emulation

- AUTOSAR confidential -

8 API specification

8.1 Imported Types

FEE015: The FEE module shall import the types mentioned in FEE084 from the

header files Fls.h, Std_Types.h respectively MemIf_Types.h.

FEE016: The types mentioned in FEE084 shall not be changed or extended for a
specific FEE module or hardware platform.

FEE084:

Module Imported Type

Fls Fls_AddressType

Fls_LengthType

MemIf MemIf_JobResultType

MemIf_ModeType

MemIf_StatusType

Std_Types Std_ReturnType

Std_VersionInfoType

8.2 Type definitions

No local type definitions needed for this module.

8.3 Function definitions

8.3.1 Fee_Init

FEE085:
Service name: Fee_Init

Syntax: void Fee_Init(

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters (in-
out):

None

Parameters (out): None

Return value: None

Description: Service to initialize the FEE module.

FEE017: The function Fee_Init shall initialize the Flash EEPROM Emulation mod-

ule.

Specification of FLASH EEPROM Emulation
 V1.5.0

R3.2 Rev 3

26 of 49 Document ID 286: AUTOSAR_SWS_Flash_EEPROM_Emulation

- AUTOSAR confidential -

FEE079: The FEE module’s environment shall not call the function Fee_Init shall

during a running operation of the FEE module.

8.3.2 Fee_SetMode

FEE086:
Service name: Fee_SetMode

Syntax: void Fee_SetMode(

 MemIf_ModeType Mode

)

Service ID[hex]: 0x01

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): Mode Desired mode for the underlying flash driver

Parameters (in-
out):

None

Parameters (out): None

Return value: None

Description: Service to call the Fls_SetMode function of the underlying flash driver.

FEE020: If supported by the underlying hardware and device driver, the function

Fee_SetMode shall call the function Fls_SetMode of the underlying flash driver

with the given “Mode” parameter.

8.3.3 Fee_Read

FEE087:
Service name: Fee_Read

Syntax: Std_ReturnType Fee_Read(

 uint16 BlockNumber,

 uint16 BlockOffset,

 uint8* DataBufferPtr,

 uint16 Length

)

Service ID[hex]: 0x02

Sync/Async: Asynchronous

Reentrancy: Non Reentrant

Parameters (in):

BlockNumber Number of logical block, also denoting start address of that block
in flash memory.

BlockOffset Read address offset inside the block

Length Number of bytes to read

Parameters (in-
out):

None

Parameters (out): DataBufferPtr Pointer to data buffer

Return value:

Std_ReturnType E_OK: The read job was accepted by the underlying memory
driver.
E_NOT_OK: The read job has not been accepted by the underly-
ing memory driver.

Description: Service to initiate a read job.

FEE021: The function Fee_Read shall take the block start address and offset and

calculate the corresponding memory read address.

Specification of FLASH EEPROM Emulation
 V1.5.0

R3.2 Rev 3

27 of 49 Document ID 286: AUTOSAR_SWS_Flash_EEPROM_Emulation

- AUTOSAR confidential -

Note: The address offset and length parameter can take any value within the given
types range. This allows reading of an arbitrary number of bytes from an arbitrary
start address inside a logical block.

FEE022: The function Fee_Read shall copy the given / computed parameters to

module internal variables, initiate a read job, set the FEE module status to MEM-

IF_BUSY, set the job result to MEMIF_JOB_PENDING and return with E_OK.

FEE073: The FEE module shall execute the job of the function Fee_Read asynchro-

nously within the FEE module’s main function.

8.3.4 Fee_Write

FEE088:
Service name: Fee_Write

Syntax: Std_ReturnType Fee_Write(

 uint16 BlockNumber,

 const uint8* DataBufferPtr

)

Service ID[hex]: 0x03

Sync/Async: Asynchronous

Reentrancy: Non Reentrant

Parameters (in):

BlockNumber Number of logical block, also denoting start address of that block
in EEPROM.

DataBufferPtr Pointer to data buffer

Parameters (in-
out):

None

Parameters (out): None

Return value:

Std_ReturnType E_OK: The write job was accepted by the underlying memory
driver.
E_NOT_OK: The write job has not been accepted by the underly-
ing memory driver.

Description: Service to initiate a write job.

FEE024: The function Fee_Write shall take the block start address and calculate

the corresponding memory write address. The block address offset shall be fixed to
zero.

FEE025: The function Fee_Write shall copy the given / computed parameters to

module internal variables, initiate a write job, set the FEE module status to MEM-

IF_BUSY, set the job result to MEMIF_JOB_PENDING and return with E_OK.

FEE026: The FEE module shall execute the write job of the function Fee_Write

asynchronously within the FEE module’s main function.

Specification of FLASH EEPROM Emulation
 V1.5.0

R3.2 Rev 3

28 of 49 Document ID 286: AUTOSAR_SWS_Flash_EEPROM_Emulation

- AUTOSAR confidential -

8.3.5 Fee_Cancel

FEE089:

Service name: Fee_Cancel

Syntax: void Fee_Cancel(

)

Service ID[hex]: 0x04

Sync/Async: Asynchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters (in-
out):

None

Parameters (out): None

Return value: None

Description: Service to call the cancel function of the underlying flash driver.

FEE080: The function Fee_Cancel shall call the cancel function of the underlying

flash driver.

FEE081: The function Fee_Cancel shall reset the FEE module’s internal variables

to make the module ready for a new job request.

Note: The function Fee_Cancel and the cancel function of the underlying flash driv-

er are asynchronous w.r.t. an ongoing read, erase or write job in the flash memory.
The cancel functions shall only reset their modules internal variables so that a new
job can be accepted by the modules. They do not cancel an ongoing job in the hard-
ware and they do not wait for an ongoing job to be finished by the hardware. This
might lead to the situation in which the module’s state is reported as IDLE while there
is still an ongoing job being executed by the hardware. Therefore, the flash driver’s
main function shall check that the hardware is indeed free before starting a new job
(see chapter 9.4 for a detailed sequence diagram).

Specification of FLASH EEPROM Emulation
 V1.5.0

R3.2 Rev 3

29 of 49 Document ID 286: AUTOSAR_SWS_Flash_EEPROM_Emulation

- AUTOSAR confidential -

8.3.6 Fee_GetStatus

FEE090:
Service name: Fee_GetStatus

Syntax: MemIf_StatusType Fee_GetStatus(

)

Service ID[hex]: 0x05

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters (in-
out):

None

Parameters (out): None

Return value:

MemIf_StatusType MEMIF_UNINIT: The underlying flash driver has not been ini-
tialized.
MEMIF_IDLE: The underlying flash driver is currently idle.
MEMIF_BUSY: The underlying flash driver is currently busy.
MEMIF_BUSY_INTERNAL: The FEE module is busy with in-
ternal management operations.

Description: Service to call the GetStatus function of the underlying flash driver.

FEE034: : If no internal operation is currently ongoing, the function Fee_GetStatus
shall call the “GetStatus” function of the underlying flash driver and pass its return
value back to the caller

FEE074: The function Fee_GetStatus shall return MEMIF_BUSY_INTERNAL, if an
internal operation is currently ongoing. In this case the “GetStatus” function of the
underlying driver shall not be called

Specification of FLASH EEPROM Emulation
 V1.5.0

R3.2 Rev 3

30 of 49 Document ID 286: AUTOSAR_SWS_Flash_EEPROM_Emulation

- AUTOSAR confidential -

8.3.7 Fee_GetJobResult

FEE091:
Service name: Fee_GetJobResult

Syntax: MemIf_JobResultType Fee_GetJobResult(

)

Service ID[hex]: 0x06

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters (in-
out):

None

Parameters (out): None

Return value:

MemIf_JobResultType MEMIF_JOB_OK: The last job has been finished success-
fully.
MEMIF_JOB_PENDING: The last job is waiting for execu-
tion or currently being executed.
MEMIF_JOB_CANCELLED: The last job has been can-
celled (which means it failed).
MEMIF_JOB_FAILED: The last read/erase/write/compare
job failed.
MEMIF_BLOCK_INCONSISTENT: The requested block is
inconsistent, it may contain corrupted data.
MEMIF_BLOCK_INVALID: The requested block has been
invalidated, the requested read operation can not be per-
formed.

Description: Service to call the GetJobResult function of the underlying flash driver.

FEE035: The function Fee_GetJobResult shall call the “GetJobResult” function of

the underlying flash driver and pass the return value back to the caller.

Specification of FLASH EEPROM Emulation
 V1.5.0

R3.2 Rev 3

31 of 49 Document ID 286: AUTOSAR_SWS_Flash_EEPROM_Emulation

- AUTOSAR confidential -

8.3.8 Fee_InvalidateBlock

FEE092:
Service name: Fee_InvalidateBlock

Syntax: Std_ReturnType Fee_InvalidateBlock(

 uint16 BlockNumber

)

Service ID[hex]: 0x07

Sync/Async: Asynchronous

Reentrancy: Non Reentrant

Parameters (in):
BlockNumber Number of logical block, also denoting start address of that block

in flash memory.

Parameters (in-
out):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: The job was accepted by the underlying memory driver

E_NOT_OK: The job has not been accepted by the underlying
memory driver

Description: Service to invalidate a logical block.

FEE036: The function Fee_InvalidateBlock shall take the block number and

calculate the corresponding memory block address.

FEE037: The function Fee_InvalidateBlock shall invalidate block <Block-

Number> by either calling the erase function of the underlying device driver or chang-
ing some module internal management information accordingly.

Note: This internal management information has to be stored in NV memory since it
has to be resistant against resets. What this information is and how it is stored is not
be further detailed by this specification.

8.3.9 Fee_GetVersionInfo

FEE093:
Service name: Fee_GetVersionInfo

Syntax: void Fee_GetVersionInfo(

 Std_VersionInfoType* VersionInfoPtr

)

Service ID[hex]: 0x08

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters (in-
out):

None

Parameters (out): VersionInfoPtr Pointer to standard version information structure.

Return value: None

Description: Service to return the version information of the FEE module.

Specification of FLASH EEPROM Emulation
 V1.5.0

R3.2 Rev 3

32 of 49 Document ID 286: AUTOSAR_SWS_Flash_EEPROM_Emulation

- AUTOSAR confidential -

FEE064: The function Fee_GetVersionInfo shall return the version information of

the FEE module. The version information includes:
- Module Id
- Vendor Id
- Vendor specific version numbers (BSW00407).

FEE065: The function Fee_GetVersionInfo shall be pre-compile time configura-

ble On/Off by the configuration parameter FeeVersionInfoApi.

FEE082: If source code for caller and callee of the function Fee_GetVersionInfo

is available, the FEE module should realize this function as a macro. The FEE mod-
ule should define this macro in the module’s header file.

8.3.10 Fee_EraseImmediateBlock

FEE094:
Service name: Fee_EraseImmediateBlock

Syntax: Std_ReturnType Fee_EraseImmediateBlock(

 uint16 BlockNumber

)

Service ID[hex]: 0x09

Sync/Async: Asynchronous

Reentrancy: Non Reentrant

Parameters (in):
BlockNumber Number of logical block, also denoting start address of that block

in EEPROM.

Parameters (in-
out):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: The job was accepted by the underlying memory driver

E_NOT_OK: The job has not been accepted by the underlying
memory driver.

Description: Service to erase a logical block.

FEE066: The function Fee_EraseImmediateBlock shall take the block number

and calculate the corresponding memory block address.

FEE067: The function Fee_EraseImmediateBlock shall ensure that the FEE

module can write immediate data. Whether this involves physically erasing a memory
area and therefore calling the erase function of the underlying driver depends on the
implementation.

FEE068: If development error detection for the FEE module is enabled, the function

Fee_EraseImmediateBlock shall check whether the addressed logical block is

configured as containing immediate data (configuration parameter FeeImmedi-

ateData == TRUE). If not, the function Fee_EraseImmediateBlock shall report

the error code FEE_E_INVALID_BLOCK_NO to the DET, shall not erase the ad-

dressed logical block and shall return E_NOT_OK.

Specification of FLASH EEPROM Emulation
 V1.5.0

R3.2 Rev 3

33 of 49 Document ID 286: AUTOSAR_SWS_Flash_EEPROM_Emulation

- AUTOSAR confidential -

Note: The function Fee_EraseImmediateBlock shall only be called by e.g. diagnostic
or similar system service to pre-erase the area for immediate data if necessary.

8.4 Call-back notifications

This is a list of functions provided for lower layer modules.

FEE069: The FEE module shall provide function prototypes of the callback functions

in the file Fee_Cbk.h

Note: Depending on the implementation of the modules making up the NV memory
stack, callback routines provided and/or invoked by the FEE module may be called
on interrupt level. The FEE module providing those routines therefore has to make
sure that their runtime is reasonably short, i.e. since callbacks may be propagated
upward through several software layers.

Note: Whether callback routines are allowable / feasible on interrupt level depends
on the project specific needs (reaction time) and limitations (runtime in interrupt con-
text). Therefore system design has to make sure that the configuration of the in-
volved modules meets those requirements.

8.4.1 Fee_JobEndNotification

FEE095:
Service name: Fee_JobEndNotification

Syntax: void Fee_JobEndNotification(

)

Service ID[hex]: 0x10

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters (in-
out):

None

Parameters (out): None

Return value: None

Description: Service to report the FEE module the successful end of an asynchronous opera-
tion.

FEE051: The underlying flash driver shall call the function

Fee_JobEndNotification to report the successful end of an asynchronous oper-

ation.

FEE052: The function Fee_JobEndNotification shall perform any necessary

block management operations and shall call the corresponding callback routine of the
upper layer module.

Specification of FLASH EEPROM Emulation
 V1.5.0

R3.2 Rev 3

34 of 49 Document ID 286: AUTOSAR_SWS_Flash_EEPROM_Emulation

- AUTOSAR confidential -

Note: The function Fee_JobEndNotification shall be callable on interrupt level.

8.4.2 Fee_JobErrorNotification

FEE096:
Service name: Fee_JobErrorNotification

Syntax: void Fee_JobErrorNotification(

)

Service ID[hex]: 0x11

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters (in-
out):

None

Parameters (out): None

Return value: None

Description: Service to report the FEE module the failure of an asynchronous operation.

FEE053: The underlying flash driver shall call the function

Fee_JobErrorNotification to report the failure of an asynchronous operation.

FEE054: The function Fee_JobErrorNotification shall perform any necessary

block management and error handling operations and shall call the corresponding
callback routine of the upper layer module.

Note: The function Fee_JobErrorNotification shall be callable on interrupt lev-

el.

8.5 Scheduled functions

These functions are directly called by the Basic Software Scheduler. The following
functions shall have no return value and no parameter. All functions shall be non re-
entrant.

8.5.1 Fee_MainFunction

FEE097:
Service name: Fee_MainFunction

Syntax: void Fee_MainFunction(

)

Service ID[hex]: 0x12

Timing: ON_PRE_CONDITION

Description: Service to handle the requested read / write / erase jobs respectively the internal
management operations.

Specification of FLASH EEPROM Emulation
 V1.5.0

R3.2 Rev 3

35 of 49 Document ID 286: AUTOSAR_SWS_Flash_EEPROM_Emulation

- AUTOSAR confidential -

FEE057: The function Fee_MainFunction shall asynchronously handle the re-

quested read / write / erase jobs respectively the internal management operations.

FEE075: The function Fee_MainFunction shall check, whether the block request-

ed for reading has been invalidated by the upper layer module. If so, the function

Fee_MainFunction shall set the job result to MEMIF_BLOCK_INVALID, call the job

error notification function if configured.

FEE023: The function Fee_MainFunction shall check the consistency of the logi-

cal block being read before notifying the caller. If an inconsistency of the read data is

detected, the function Fee_MainFunction shall set the job result to MEM-

IF_BLOCK_INCONSISTENT and call the error notification routine of the upper layer.

Note: In this case, the upper layer must not use the contents of the data buffer.

8.6 Expected Interfaces

In this chapter all interfaces required from other modules are listed.

8.6.1 Mandatory Interfaces

This chapter defines all interfaces which are required to fulfill the core functionality of
the module.

FEE105:
API function Description

Fls_Cancel Cancels an ongoing job.

Fls_Compare Compares the contents of an area of flash memory with that of an appli-
cation data buffer.

Fls_Erase Erases flash sector(s).

Fls_GetJobResult Returns the result of the last job.

Fls_GetStatus Returns the driver state.

Fls_Read Reads from flash memory.

Fls_SetMode Sets the flash driver’s operation mode.

Fls_Write Writes one or more complete flash pages.

8.6.2 Optional Interfaces

This chapter defines all interfaces which are required to fulfill an optional functionality
of the module.

FEE104:
API function Description

Det_ReportError Service to report development errors.

Specification of FLASH EEPROM Emulation
 V1.5.0

R3.2 Rev 3

36 of 49 Document ID 286: AUTOSAR_SWS_Flash_EEPROM_Emulation

- AUTOSAR confidential -

8.6.3 Configurable interfaces

In this chapter all interfaces are listed where the target function could be configured.
The target function is usually a callback function. The names of these kind of inter-
faces is not fixed because they are configurable.

FEE098:
Service name: NvM_JobEndNotification

Syntax: void NvM_JobEndNotification(

)

Sync/Async: true

Reentrancy: Don't care

Parameters (in): None

Parameters (in-
out):

None

Parameters (out): None

Return value: None

Description: --

FEE055: The FEE module shall call the function defined in the configuration parame-

ter FeeNvmJobEndNotification upon successful end of an asynchronous opera-

tion and after performing all necessary internal management operations:
- Read job finished & OK
- Write job finished & OK & block marked as valid
- Erase job for immediate data finished & OK (see FEE067)

FEE107: The function defined in the configuration parameter FeeNvmJobEndNoti-

fication shall be callable on interrupt level.

FEE099:
Service name: NvM_JobErrorNotification

Syntax: void NvM_JobErrorNotification(

)

Sync/Async: true

Reentrancy: Don't care

Parameters (in): None

Parameters (in-
out):

None

Parameters (out): None

Return value: None

Description: --

FEE056: The FEE module shall call the function defined in the configuration parame-

ter FeeNvmJobErrorNotification upon failure of an asynchronous operation

and after performing all necessary internal management and error handling opera-
tions:

- Read job finished & failed (e.g. block invalid or inconsistent)

Specification of FLASH EEPROM Emulation
 V1.5.0

R3.2 Rev 3

37 of 49 Document ID 286: AUTOSAR_SWS_Flash_EEPROM_Emulation

- AUTOSAR confidential -

- Write job finished & failed & block marked as invalid
- Erase job for immediate data finished & failed (see FEE067)

FEE108: The function defined in the configuration parameter FeeNvmJobErrorNo-

tification shall be callable on interrupt level.

Specification of FLASH EEPROM Emulation
 V1.5.0

R3.2 Rev 3

38 of 49 Document ID 286: AUTOSAR_SWS_Flash_EEPROM_Emulation

- AUTOSAR confidential -

9 Sequence diagrams

Note: For a vendor specific library, the following sequence diagrams are valid only
insofar as they show the relation to the calling modules (Ecu_StateManager resp.
memory abstraction interface). The calling relations from a memory abstraction mod-
ule to an underlying driver are not relevant / binding for a vendor specific library.

9.1 Fee_Init

The following figure shows the call sequence for the Fee_Init routine. It is different

from that of all other services of this module as it is not called by the NVRAM man-
ager and not called via the memory abstraction interface.

 sd Fee_Init

«module»

Fee

«module»

EcuM

Status: Proposed by TO as per SWS Fee 2.0.6

Description:

Comments:

Fee_Init()

Fee_Init()

Figure 5: Sequence diagram of "Fee_Init" service

Specification of FLASH EEPROM Emulation
 V1.5.0

R3.2 Rev 3

39 of 49 Document ID 286: AUTOSAR_SWS_Flash_EEPROM_Emulation

- AUTOSAR confidential -

9.2 Fee_SetMode

The following figure shows exemplarily the call sequence for the Fee_SetMode ser-

vice. This sequence diagram also applies to the other synchronous services of this

module with exception of the Fee_Init routine (see above).

 sd Fee_SetMode

«module»

Fee

«module»

Fls

«module»

NvM

«module»

MemIf

Status: Proposed by TO as per SWS Fee 1.0.0

Description:

Comments:

MemIf_SetMode(MemIf_ModeType)

:Std_ReturnType

Fee_SetMode(MemIf_ModeType)

Fls_SetMode(MemIf_ModeType)

Fls_SetMode()

Fee_SetMode()

MemIf_SetMode()

Figure 6: Sequence diagram of the "Fee_SetMode" service

Specification of FLASH EEPROM Emulation
 V1.5.0

R3.2 Rev 3

40 of 49 Document ID 286: AUTOSAR_SWS_Flash_EEPROM_Emulation

- AUTOSAR confidential -

9.3 Fee_Write

The following figure shows exemplarily the call sequence for the Fee_Write service.

This sequence diagram also applies to the other asynchronous services of this mod-
ule.

 sd Fee_Write

«module»

Fee

«module»

Fls

«module»

NvM

«module»

MemIf

BSW Task (OS

task or cyclic call)

loop Fls_MainFunction

Status: Proposed by TO as per SWS Fee 1.0.0

Description:

Comments:

MemIf_Write(Std_ReturnType, uint8, uint16, const uint8*)

Fee_Write(Std_ReturnType, uint16, const uint8*)
Fls_Write(Std_ReturnType,

Fls_AddressType, const uint8*,

Fls_LengthType)

Fls_Write()
Fee_Write()

MemIf_Write()

Fls_MainFunction()

Fls_MainFunction()

Fls_MainFunction()

Fee_JobEndNotification()

NvM_JobEndNotification()

NvM_JobEndNotification()

Fee_JobEndNotification()

Fls_MainFunction()

Figure 7: Sequence diagram "Fee_Write"

Specification of FLASH EEPROM Emulation
 V1.5.0

R3.2 Rev 3

41 of 49 Document ID 286: AUTOSAR_SWS_Flash_EEPROM_Emulation

- AUTOSAR confidential -

9.4 Fee_Cancel

The following figure shows as an example the call sequence for a cancelled

Fee_Write service and a subsequent new Fee_Write request. This sequence dia-

gram shows that Fee_Cancel is asynchronous w.r.t. the underlying hardware while

itself being synchronous.

Specification of FLASH EEPROM Emulation
 V1.5.0

R3.2 Rev 3

42 of 49 Document ID 286: AUTOSAR_SWS_Flash_EEPROM_Emulation

- AUTOSAR confidential -

10 Configuration specification

10.1 How to read this chapter

In addition to this section, it is highly recommended to read the documents:

- AUTOSAR Layered Software Architecture [2]
- AUTOSAR ECU Configuration Specification [7]

This document describes the AUTOSAR configuration methodology and the
AUTOSAR configuration metamodel in detail.

The following is only a short survey of the topic and it will not replace the ECU Con-
figuration Specification document.

10.1.1 Configuration and configuration parameters

Configuration parameters define the variability of the generic part(s) of an implemen-
tation of a module. This means that only generic or configurable module implementa-
tion can be adapted to the environment (software/hardware) in use during system
and/or ECU configuration.

The configuration of parameters can be achieved at different times during the soft-
ware process: before compile time, before link time or after build time. In the follow-
ing, the term “configuration class” (of a parameter) shall be used in order to refer to a
specific configuration point in time.

10.1.2 Containers

Containers structure the set of configuration parameters. This means:
- all configuration parameters are kept in containers.
- (sub-) containers can reference (sub-) containers. It is possible to assign a

multiplicity to these references. The multiplicity then defines the possible num-
ber of instances of the contained parameters.

10.1.3 Specification template for configuration parameters

The following tables consist of three sections:
- the general section
- the configuration parameter section
- the section of included/referenced containers

Pre-compile time - specifies whether the configuration parameter shall be

of configuration class Pre-compile time or not

Label Description
x The configuration parameter shall be of configuration class Pre-compile time.

-- The configuration parameter shall never be of configuration class Pre-compile time.

Specification of FLASH EEPROM Emulation
 V1.5.0

R3.2 Rev 3

43 of 49 Document ID 286: AUTOSAR_SWS_Flash_EEPROM_Emulation

- AUTOSAR confidential -

Link time - specifies whether the configuration parameter shall be

of configuration class Link time or not

Label Description
x The configuration parameter shall be of configuration class Link time.

-- The configuration parameter shall never be of configuration class Link time.

Post Build - specifies whether the configuration parameter shall be

of configuration class Post Build or not

Label Description

x
The configuration parameter shall be of configuration class Post Build and no specific
implementation is required.

L
Loadable - the configuration parameter shall be of configuration class Post Build and only
one configuration parameter set resides in the ECU.

M
Multiple - the configuration parameter shall be of configuration class Post Build and is
selected out of a set of multiple parameters by passing a dedicated pointer to the init func-
tion of the module.

-- The configuration parameter shall never be of configuration class Post Build.

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed mean-
ings of the parameters describe Chapters 7 and Chapter 8.

10.2.1 Variants

No variants specified.

10.2.2 Fee

Module Name Fee

Module Description Configuration of the Fee (Flash EEPROM Emulation) module.

Included Containers

Container Name Multiplicity Scope / Dependency

FeeBlockConfiguration 1..*
Configuration of block specific parameters for the Flash
EEPROM Emulation module.

FeeGeneral 1
Container for general parameters. These parameters are not
specific to a block.

FeePublishedInformation 1

Additional published parameters not covered by Common-
PublishedInformation container. Note that these parameters do
not have any configuration class setting, since they are pub-
lished information.

10.2.3 FeeGeneral

SWS Item FEE039 :

Specification of FLASH EEPROM Emulation
 V1.5.0

R3.2 Rev 3

44 of 49 Document ID 286: AUTOSAR_SWS_Flash_EEPROM_Emulation

- AUTOSAR confidential -

Container Name FeeGeneral{FEE_ModuleConfiguration}

Description
Container for general parameters. These parameters are not specific to a
block.

Configuration Parameters

SWS Item FEE111 :

Name

FeeDevErrorDetect {FEE_DEV_ERROR_DETECT}

Description Pre-processor switch to enable and disable development error detection. true:
Development error detection enabled. false: Development error detection disa-
bled.

Multiplicity 1

Type BooleanParamDef

Default value --

ConfigurationClass Pre-compile
time

X All Variants

Link time --

Post-build
time

--

Scope / Dependency scope: module

SWS Item ECUC_Fee_00152 :

Name

FeeIndex

Description This element is deprecated and will be removed in future. Specifies the In-
stanceId of this module instance. If only one instance is present it shall have the
Id 0.

Multiplicity 1

Type IntegerParamDef

Range ..

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency

SWS Item FEE119 :

Name

FeeMainFunctionPeriod {FEE_MAIN_FUNCTION_PERION}

Description The period between successive calls to the main function in seconds.

Multiplicity 1

Type FloatParamDef

Range 1E-7 .. INF

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: ECU

SWS Item FEE112 :

Name

FeeNvmJobEndNotification {FEE_NVM_JOB_END_NOTIFICATION}

Description Mapped to the job end notification routine provided by the upper layer module
(NvM_JobEndNotification).

Multiplicity 1

Type FunctionNameDef

Default value --

regularExpression --

ConfigurationClass Pre-compile
time

X All Variants

Specification of FLASH EEPROM Emulation
 V1.5.0

R3.2 Rev 3

45 of 49 Document ID 286: AUTOSAR_SWS_Flash_EEPROM_Emulation

- AUTOSAR confidential -

Link time --

Post-build
time

--

Scope / Dependency scope: module

SWS Item FEE113 :

Name

FeeNvmJobErrorNotification {FEE_NVM_JOB_ERROR_NOTIFICATION}

Description Mapped to the job error notification routine provided by the upper layer module
(NvM_JobErrorNotification).

Multiplicity 1

Type FunctionNameDef

Default value --

regularExpression --

ConfigurationClass Pre-compile
time

X All Variants

Link time --

Post-build
time

--

Scope / Dependency scope: module

SWS Item FEE114 :

Name

FeePollingMode {FEE_POLLING_MODE}

Description Pre-processor switch to enable and disable the polling mode for this module.
true: Polling mode enabled. false: Polling mode disabled.

Multiplicity 1

Type BooleanParamDef

Default value --

ConfigurationClass Pre-compile
time

X All Variants

Link time --

Post-build
time

--

Scope / Dependency scope: module

SWS Item FEE115 :

Name

FeeVersionInfoApi {FEE_VERSION_INFO_API}

Description Pre-processor switch to enable / disable the API to read out the modules version
information. true: Version info API enabled. false: Version info API disabled.

Multiplicity 1

Type BooleanParamDef

Default value --

ConfigurationClass Pre-compile
time

X All Variants

Link time --

Post-build
time

--

Scope / Dependency scope: module

SWS Item FEE116 :

Name

FeeVirtualPageSize {FEE_VIRTUAL_PAGE_SIZE}

Description The size in bytes to which logical blocks shall be aligned.

Multiplicity 1

Type IntegerParamDef

Range 0 .. 65535

Default value --

ConfigurationClass Pre-compile time X All Variants

Specification of FLASH EEPROM Emulation
 V1.5.0

R3.2 Rev 3

46 of 49 Document ID 286: AUTOSAR_SWS_Flash_EEPROM_Emulation

- AUTOSAR confidential -

Link time --

Post-build time --

Scope / Dependency scope: module

No Included Containers

10.2.4 FeeBlockConfiguration

SWS Item FEE040 :

Container Name FeeBlockConfiguration{FEE_BlockConfiguration}

Description
Configuration of block specific parameters for the Flash EEPROM Emula-
tion module.

Configuration Parameters

SWS Item FEE107 :

Name

FeeBlockNumber {FEE_BLOCK_NUMBER}

Description Block identifier (handle). 0x0000 and 0xFFFF shall not be used for block numbers
(see FEE006). Range: min = 2^NVM_DATA_SELECTION_BITS max = 0xFFFF -
2^NVM_DATA_SELECTION_BITS Note: Depending on the number of bits set
aside for dataset selection several other block numbers shall also be left out to
ease implementation.

Multiplicity 1

Type IntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 65535

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: module

SWS Item FEE108 :

Name

FeeBlockSize {FEE_BLOCK_SIZE}

Description Size of a logical block in bytes.

Multiplicity 1

Type IntegerParamDef

Range 0 .. 65535

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: module

SWS Item ECUC_Fee_00151 :

Name

FeeImmediateData {FEE_IMMEDIATE_DATA}

Description Marker for high priority data. true: Block contains immediate data. false: Block
does not contain immediate data.

Multiplicity 1

Type BooleanParamDef

Default value --

ConfigurationClass Pre-compile
time

X All Variants

Link time --

Post-build
time

--

Specification of FLASH EEPROM Emulation
 V1.5.0

R3.2 Rev 3

47 of 49 Document ID 286: AUTOSAR_SWS_Flash_EEPROM_Emulation

- AUTOSAR confidential -

Scope / Dependency scope: module

SWS Item FEE110 :

Name

FeeNumberOfWriteCycles {FEE_NUMBER_OF_WRITE_CYCLES}

Description Number of write cycles required for this block.

Multiplicity 1

Type IntegerParamDef

Range ..

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: module

SWS Item FEE106 :

Name

FeeDeviceIndex {FEE_DEVICE_INDEX}

Description Device index (handle). Range: 0 .. 254 (0xFF reserved for broadcast call to
GetStatus function).

Multiplicity 1

Type Reference to [FlsGeneral]

ConfigurationClass Pre-compile
time

X All Variants

Link time --

Post-build
time

--

Scope / Dependency scope: module
dependency: This information is needed by the NVRAM manager respectively
the Memory Abstraction Interface to address a certain logical block. It is listed in
this specification to give a complete overview over all block related configuration
parameters.

No Included Containers

Specification of FLASH EEPROM Emulation
 V1.5.0

R3.2 Rev 3

48 of 49 Document ID 286: AUTOSAR_SWS_Flash_EEPROM_Emulation

- AUTOSAR confidential -

10.3 Published Information

Published information contains data defined by the implementer of the SW module
that does not change when the module is adapted (i.e. configured) to the actual
HW/SW environment. It thus contains version and manufacturer information.

The standard common published information like

 vendorId (FEE_VENDOR_ID),

 moduleId (FEE_MODULE_ID),

 arMajorVersion (FEE_AR_MAJOR_VERSION),

 arMinorVersion (FEE_ AR_MINOR_VERSION),

 arPatchVersion (FEE_ AR_PATCH_VERSION),

 swMajorVersion (FEE_SW_MAJOR_VERSION),

 swMinorVersion (FEE_ SW_MINOR_VERSION),

 swPatchVersion (FEE_ SW_PATCH_VERSION),

 vendorApiInfix (FEE_VENDOR_API_INFIX)
is provided in the BSW Module Description Template (see [8], Figure 4.1 and Figure
7.1). Additional published parameters are listed below if applicable for this module.

10.3.1 FeePublishedInformation

SWS Item FEE043 :

Container Name FeePublishedInformation

Description

Additional published parameters not covered by CommonPublishedInfor-
mation container.
Note that these parameters do not have any configuration class setting,
since they are published information.

Configuration Parameters

SWS Item FEE117 :

Name

FeeBlockOverhead {FEE_BLOCK_OVERHEAD}

Description Management overhead per logical block in bytes. Note: If the management over-
head depends on the block size or block location a formula has to be provided
that allows the configurator to calculate the management overhead correctly.

Multiplicity 1

Type IntegerParamDef

Range ..

Default value --

ConfigurationClass Pre-compile time --

Link time --

Post-build time --

Scope / Dependency scope: module

SWS Item FEE070 :

Name

FeeMaximumBlockingTime {FEE_MAXIMUM_BLOCKING_TIME}

Description The maximum time the FEE module's API routines shall be blocked (delayed) by
internal operations. Please note that this parameter is deprecated and will be
removed in future.

Multiplicity 0..1

Type FloatParamDef

Specification of FLASH EEPROM Emulation
 V1.5.0

R3.2 Rev 3

49 of 49 Document ID 286: AUTOSAR_SWS_Flash_EEPROM_Emulation

- AUTOSAR confidential -

Range 0 .. INF

Default value --

ConfigurationClass Pre-compile time --

Link time --

Post-build time --

Scope / Dependency scope: module

SWS Item FEE118 :

Name

FeePageOverhead {FEE_PAGE_OVERHEAD}

Description Management overhead per page in bytes. Note: If the management overhead
depends on the block size or block location a formula has to be provided that
allows the configurator to calculate the management overhead correctly.

Multiplicity 1

Type IntegerParamDef

Range ..

Default value --

ConfigurationClass Pre-compile time --

Link time --

Post-build time --

Scope / Dependency scope: module

No Included Containers

	1 Introduction and functional overview
	2 Acronyms and abbreviations
	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 File structure
	5.1.1 Code file structure
	5.1.2 Header file structure

	6 Requirements traceability
	7 Functional specification
	7.1 General behavior
	7.1.1 Addressing scheme and segmentation
	7.1.2 Address calculation
	7.1.3 Limitation of erase cycles
	7.1.4 Handling of “immediate” data
	7.1.5 Managing block consistency information

	7.2 Error classification
	7.3 Error detection
	7.4 Error notification
	7.5 Consistency checks

	8 API specification
	8.1 Imported Types
	8.2 Type definitions
	8.3 Function definitions
	8.3.1 Fee_Init
	8.3.2 Fee_SetMode
	8.3.3 Fee_Read
	8.3.4 Fee_Write
	8.3.5 Fee_Cancel
	8.3.6 Fee_GetStatus
	8.3.7 Fee_GetJobResult
	8.3.8 Fee_InvalidateBlock
	8.3.9 Fee_GetVersionInfo
	8.3.10 Fee_EraseImmediateBlock

	8.4 Call-back notifications
	8.4.1 Fee_JobEndNotification
	8.4.2 Fee_JobErrorNotification

	8.5 Scheduled functions
	8.5.1 Fee_MainFunction

	8.6 Expected Interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.3 Configurable interfaces

	9 Sequence diagrams
	9.1 Fee_Init
	9.2 Fee_SetMode
	9.3 Fee_Write
	9.4 Fee_Cancel

	10 Configuration specification
	10.1 How to read this chapter
	10.1.1 Configuration and configuration parameters
	10.1.2 Containers
	10.1.3 Specification template for configuration parameters

	10.2 Containers and configuration parameters
	10.2.1 Variants
	10.2.2 Fee
	10.2.3 FeeGeneral
	10.2.4 FeeBlockConfiguration

	10.3 Published Information
	10.3.1 FeePublishedInformation

