
Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

1 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

Document Title Specification of Module Flash
Driver

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 025

Document Classification Standard

Document Version 2.4.1

Document Status Final

Part of Release 3.2

Revision 3

Document Change History
Date Version Changed by Change Description

28.02.2014 2.4.1 AUTOSAR Release
Management

 Editorial changes

17.05.2012 2.4.0 AUTOSAR
Administration

 Links to sequence charts updated
to generated artifacts

27.04.2011 2.3.0 AUTOSAR
Administration

 Requirements for timeout supervi-
sion added / extended

 Legal disclaimer revised

23.06.2008 2.2.2 AUTOSAR
Administration

Legal disclaimer revised

23.01.2008 2.2.1 AUTOSAR
Administration

Table formatting corrected

11.12.2007 2.2.0 AUTOSAR
Administration

 NULL pointer check added to
Fls_Compare

 NULL pointer check detailed (in
general)

 Restriction removed to allow re-
initialization of module

 Tables in chapters 8 and 10 gener-
ated from UML model

 Document meta information extend-
ed

 Small layout adaptations made

14.02.2007 2.1.0 AUTOSAR
Administration

 File include structure updated

 Type usage corrected

 Compare Job results adapted

 API towards DEM corrected

 Legal disclaimer revised

 Release Notes added

 “Advice for users” revised

 “Revision Information” added

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

2 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

Document Change History
Date Version Changed by Change Description

10.04.2006 2.0.0 AUTOSAR Admin-
istration

Document structure adapted to com-
mon Release 2.0 SWS Template

 new functionality: Read, Compare
and SetMode functions

 scalability: functionality can be con-
figured (on/off)

 adapted to new MemHwA architec-
ture

10.07.2004 1.0.0 AUTOSAR Admin-
istration

Initial release

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

3 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

Disclaimer

This specification and the material contained in it, as released by AUTOSAR is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only.
For any other purpose, no part of the specification may be utilized or reproduced, in
any form or by any means, without permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR Specification Documents may contain exemplary items (exemplary refer-
ence models, "use cases", and/or references to exemplary technical solutions, devic-
es, processes or software).

Any such exemplary items are contained in the Specification Documents for illustra-
tion purposes only, and they themselves are not part of the AUTOSAR Standard.
Neither their presence in such Specification Documents, nor any later documentation
of AUTOSAR conformance of products actually implementing such exemplary items,
imply that intellectual property rights covering such exemplary items are licensed un-
der the same rules as applicable to the AUTOSAR Standard.

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

4 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

Table of Contents

1 Introduction and functional overview ... 6

2 Acronyms and abbreviations ... 7

3 Related documentation.. 8

3.1 AUTOSAR deliverables ... 8

3.2 Related standards and norms ... 8

4 Constraints and assumptions .. 9

4.1 Limitations ... 9
4.2 Applicability to car domains ... 9

5 Dependencies to other modules .. 10

5.1 File structure .. 10
5.1.1 Code file structure ... 10

5.1.2 Header file structure .. 10
5.2 System clock ... 11

5.3 Communication or I/O drivers .. 11

6 Requirements traceability .. 12

7 Functional specification ... 19

7.1 General design rules ... 19

7.2 Error classification ... 19
7.3 Error detection ... 20

7.4 Error notification .. 20
7.5 External flash driver ... 21
7.6 Loading, executing and removing the flash access code 21

8 API specification .. 23

8.1 Imported types ... 23

8.2 Type definitions ... 23
8.2.1 Fls_ConfigType ... 23
8.2.2 Fls_AddressType .. 23

8.2.3 Fls_LengthType .. 24
8.3 Function definitions.. 24

8.3.1 Fls_Init .. 24
8.3.2 Fls_Erase .. 25

8.3.3 Fls_Write ... 27
8.3.4 Fls_Cancel .. 28
8.3.5 Fls_GetStatus ... 29
8.3.6 Fls_GetJobResult ... 30
8.3.7 Fls_Read .. 31

8.3.8 Fls_Compare .. 32
8.3.9 Fls_SetMode ... 33

8.3.10 Fls_GetVersionInfo .. 34
8.4 Call-back notifications .. 36
8.5 Scheduled functions .. 36

8.5.1 Fls_MainFunction .. 36

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

5 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

8.6 Expected Interfaces ... 39
8.6.1 Mandatory Interfaces .. 39
8.6.2 Optional Interfaces .. 39
8.6.3 Configurable interfaces ... 39

9 Sequence diagrams... 42

9.1 Initialization .. 42
9.2 Synchronous functions .. 43
9.3 Asynchronous functions .. 44
9.4 Canceling a running job ... 45

10 Configuration specification ... 46

10.1 How to read this chapter .. 46
10.1.1 Configuration and configuration parameters 46
10.1.2 Containers ... 46

10.1.3 Specification template for configuration parameters 47
10.2 Containers and configuration parameters .. 48

10.2.1 Variants ... 48

10.2.2 Fls .. 49
10.2.3 FlsGeneral ... 49
10.2.4 FlsConfigSet .. 52

10.2.5 FlsSectorList .. 55
10.2.6 FlsSector ... 55

10.3 Published Information... 56
10.3.1 FlsPublishedInformation .. 57

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

6 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

1 Introduction and functional overview

This document specifies the functionality, API and the configuration of the AUTOSAR
Basic Software module Flash Driver.

This specification is applicable to drivers for both internal and external flash memory.

The flash driver provides services for reading, writing and erasing flash memory and
a configuration interface for setting / resetting the write / erase protection if supported
by the underlying hardware.

In application mode of the ECU, the flash driver is only to be used by the Flash
EEPROM emulation module for writing data. It is not intended to write program code
to flash memory in application mode. This shall be done in boot mode which is out of
scope of AUTOSAR.

A driver for an internal flash memory accesses the microcontroller hardware directly
and is located in the Microcontroller Abstraction Layer. An external flash memory is
usually connected via the microcontroller’s data / address busses (memory mapped
access), the flash driver then uses the handlers / drivers for those busses to access
the external flash memory device. The driver for an external flash memory device is
located in the ECU Abstraction Layer.

FLS088: The functional requirements and the functional scope are the same for both
types of drivers. Hence the API is semantically identical.

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

7 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

2 Acronyms and abbreviations

Abbreviation /
Acronym:

Description:

DET Development Error Tracer – module to which development errors are reported.

DEM Diagnostic Event Manager – module to which production relevant errors are report-
ed.

AC (Flash) access code – abbreviation introduced to keep the names of the configura-
tion parameters reasonably short.

Further definitions of terms used throughout this document

Term: Definition

Flash sector A flash sector is the smallest amount of flash memory that can be erased in one
pass. The size of the flash sector depends upon the flash technology and is there-
fore hardware dependent.

Flash page A flash page is the smallest amount of flash memory that can be programmed in
one pass. The size of the flash page depends upon the flash technology and is
therefore hardware dependent.

Flash access
code

Internal flash driver routines called by the main function (job processing function) to
erase or write the flash hardware.

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

8 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

3 Related documentation

3.1 AUTOSAR deliverables

[1] List of Basic Software Modules,
AUTOSAR_SoftwareModuleList.pdf

[2] Layered Software Architecture,
AUTOSAR_LayeredSoftwareArchitecture.pdf

[3] General Requirements on Basic Software Modules,
AUTOSAR_SRS_General.pdf

[4] General Requirements on SPAL,
AUTOSAR_SRS_SPAL_General.pdf

[5] Requirements on Flash Driver
AUTOSAR_SRS_Flash_Driver.pdf

[6] Requirements on Memory Hardware Abstraction Layer,

AUTOSAR_SRS_MemHW_AbstractionLayer.pdf

[7] Specification of ECU Configuration
AUTOSAR_ECU_Configuration.pdf

[8] AUTOSAR Basic Software Module Description Template,

AUTOSAR_BSW_Module_Description.pdf

3.2 Related standards and norms

[9] HIS Flash Driver Specification
HIS flash driver v130.pdf on
http://www.automotive-his.de/download/

http://www.automotive-his.de/download/

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

9 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

4 Constraints and assumptions

4.1 Limitations

 The flash driver only erases or programs complete flash sectors respectively
flash pages, i.e. it does not offer any kind of re-write strategy since it does not
use any internal buffers.

 The flash driver does not provide mechanisms for providing data integrity (e.g.
checksums, redundant storage, etc.).

4.2 Applicability to car domains

No restrictions.

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

10 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

5 Dependencies to other modules

5.1 File structure

5.1.1 Code file structure

FLS159: The code file structure shall not be defined within this specification com-
pletely. At this point it shall be pointed out that the code-file structure shall include the
following files named:

- Fls_Lcfg.c – for link time configurable parameters and
- Fls_PBcfg.c – for post build time configurable parameters.

These files shall contain all link time and post-build time configurable parameters.

FLS179: Pre- and post-compile configuration parameters shall be located outside the
source code of the module to allow for automatic (tool based) configuration.

5.1.2 Header file structure

FLS107: The Fls module shall comply with the following file structure:

deployment SPAL File include structure

«source»

Std_Types.h

«source»

Platform_Types.h

«source»

Fls.h

«source»

Spal_xxx.c

«source»

Fls_Cfg.h

«source»

Fls_PBcfg.c

«source»

Fls_Lcfg.c

«source»

Compiler.h

«source»

Fls_Irq.c

«source»

Det.h

«source»

Dem.h

«source»

Fls_Cbk.h

«source»

Fls.c

«source»

SchM_Fls.h

«source»

MemMap.h

«source»

MemIf_Types.h

«source»

Spi.h

«source»

Fls_Ac.c

«include»

«include»

«include»

«include»

optional

«include»
optional
«include»

«include»«include»

«include»

«include»

«include»

«include»

«include» «include»

«include»

optional

«include»

optinal

«include»

«include» «include»

«include»

«include»

Figure 1: File include structure

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

11 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

Note: The files shown in grey are optional and might not be present for all implemen-
tations and/or configurations of a specific implementation of the Fls module.

FLS073: Types and definitions common to several flash driver instances shall be

given in the header file MemIf_Types.h. Types and definitions specific for one flash

driver shall be given in the header file Fls.h. This file shall be included in the flash

driver’s implementation module Fls.c.

5.2 System clock

If the hardware of the internal flash memory depends on the system clock, changes
to the system clock (e.g. PLL on  PLL off) may also affect the clock settings of the
flash memory hardware.

5.3 Communication or I/O drivers

If the flash memory is located in an external device, the access to this device shall be
enacted via the corresponding communication respectively I/O driver.

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

12 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

6 Requirements traceability

Document: General Requirements on Basic Software Modules

Requirement Satisfied by
[BSW00344] Reference to link-time configuration Not applicable

(this module does not provide any link-time pa-
rameters)

[BSW00404] Reference to post build time
configuration

FLS014, FLS173, FLS174

[BSW00405] Reference to multiple configuration
sets

FLS014, FLS173, FLS174

[BSW00345] Pre-compile-time configuration FLS171, FLS172

[BSW159] Tool-based configuration FLS179

[BSW167] Static configuration checking FLS205, FLS206

[BSW171] Configurability of optional functionality FLS172, FLS183, FLS184, FLS185, FLS186,
FLS187, FLS188

[BSW170] Data for reconfiguration of AUTOSAR
SW-components

Not applicable
(this module does not depend on faults, signal
qualities, …)

[BSW00380] Separate C-File for configuration
parameters

FLS159, FLS179

[BSW00419] Separate C-Files for pre-compile
time configuration parameters

FLS179

[BSW00381] Separate configuration header file
for pre-compile time parameters

FLS107

[BSW00412] Separate H-File for configuration
parameters

FLS107

BSW00383] List dependencies of configuration
files

External flash driver

[BSW00384] List dependencies to other modules Chapter 5

[BSW00387] Specify the configuration class of
callback function

Not applicable
(this module does not provide any callback rou-
tines)

[BSW00388] Introduce containers Chapter 10.2

[BSW00389] Containers shall have names Chapter 10.2

[BSW00390] Parameter content shall be unique
within the module

Chapter 10.2

[BSW00391] Parameter shall have unique names Chapter 10.2

[BSW00392] Parameters shall have a type Chapter 10.2

[BSW00393] Parameters shall have a range Chapter 10.2

[BSW00394] Specify the scope of the parameters Chapter 10.2

BSW00395] List the required parameters (per
parameter)

Chapter 10.2

[BSW00396] Configuration classes Chapter 0

[BSW00397] Pre-compile-time parameters Chapter 10.2,

[BSW00398] Link-time parameters Not applicable
(this module does not provide any link-time pa-
rameters)

[BSW00399] Loadable Post-build time
parameters

Chapter 10.2

[BSW00400] Selectable Post-build time
parameters

Chapter 10.2

[BSW00402] Published information Chapter 10.3

[BSW00375] Notification of wake-up reason Not applicable
(this module does not wake up the ECU)

[BSW101] Initialization interface FLS014

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

13 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

Requirement Satisfied by
[BSW00416] Sequence of Initialization Not applicable

(requirement on system architecture, not on a
single module)

[BSW00406] Check module initialization FLS268

[BSW168] Diagnostic Interface of SW compo-
nents

Not applicable
(no use case)

[BSW00407] Function to read out published
parameters

Chapter 8.3.10

[BSW00423] Usage of SW-C template to
describe BSW modules with AUTOSAR
Interfaces

Not applicable
(this module does not provide an AUTOSAR
interface)

[BSW00424] BSW main processing function task
allocation

Not applicable
(requirement on system design, not on a single
module)

[BSW00425] Trigger conditions for schedulable
objects

Chapter 8.5

[BSW00426] Exclusive areas in BSW modules Not applicable
(this module does not provide any exclusive are-
as)

[BSW00427] ISR description for BSW modules Not applicable
(no ISR’s defined for this module, usage of inter-
rupts is implementation specific)

[BSW00428] Execution order dependencies of
main processing functions

Not applicable
(this module does provide only one main pro-
cessing function)

[BSW00429] Restricted BSW OS functionality
access

Not applicable
(requirement on the implementation, not for the
specification)

[BSW00431] The BSW Scheduler module
implements task bodies

Not applicable
(requirement on the BSW scheduler module)

[BSW00432] Modules should have separate
main processing functions for read/receive and
write/transmit data path

See Chapter 8.5

[BSW00433] Calling of main processing functions Not applicable
(requirement on system design, not on a single
module)

[BSW00434] The Schedule Module shall provide
an API for exclusive areas

Not applicable
(this module does not provide any exclusive are-
as)

[BSW00336] Shutdown interface Not applicable
(no use case).

[BSW00337] Classification of errors FLS004, FLS007

[BSW00338] Detection and Reporting of
development errors

FLS077

[BSW00369] Do not return development error
codes via API

FLS267

[BSW00339] Reporting of production relevant
error status

Not applicable
(this module only provides production relevant
error events, no error status)

[BSW00421] Reporting of production relevant
error events

FLS006, FLS104 , FLS105 , FLS106, FLS154

[BSW00422] Debouncing of production relevant
error status

Not applicable
(requirement on the DEM)

[BSW00420] Production relevant error event rate
detection

Not applicable
(requirement on the DEM)

[BSW00417] Reporting of Error Events by Non-
Basic Software

Not applicable
(this is a BSW mdoule)

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

14 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

Requirement Satisfied by
[BSW00323] API parameter checking FLS015, FLS020, FLS021, FLS026, FLS027,

FLS097, FLS098

[BSW004] Version check FLS205, FLS206

[BSW00409] Header files for production code
error IDs

FLS160, FLS107

[BSW00385] List possible error notificatons FLS004, FLS007

[BSW00386] Configuration for detecting an error FLS077, FLS162, FLS163, FLS172

[BSW161] Microcontroller abstraction Not applicable
(requirement on AUTOSAR architecture, not a
single module)

[BSW162] ECU layout abstraction Not applicable
(requirement on AUTOSAR architecture, not a
single module)

[BSW00324] Do not use HIS I/O Library Not applicable
(architecture decision)

[BSW005] No hard coded horizontal interfaces
within MCAL

Not applicable
(requirement on AUTOSAR architecture, not a
single module)

[BSW00415] User dependent include files Not applicable
(only one user for this module)

[BSW164] Implementation of interrupt service
routines

FLS193

[BSW00325] Runtime of interrupt service rou-
tines

FLS193

[BSW00326] Transition from ISRs to OS tasks Not applicable
(requirement on implementatio, not on
specification)

[BSW00342] Usage of source code and object
code

Not applicable
(requirement on AUTOSAR architecture, not a
single module)

[BSW00343] Specification and configuration of
time

FLS178

[BSW160] Human-readable configuration data Not applicable
(requirement on documentation, not on
specification)

[BSW007] HIS MISRA C Not applicable
(requirement on implementation, not on
specification)

[BSW00300] Module naming convention Not applicable
(requirement on implementation, not on
specification)

[BSW00413] Accessing instances of BSW
modules

Conflict: This is currently not reflected in the
driver’s specification.
This requirement will have impact on almost all
BSW modules, therefore it can not be
implemented within the Release 2.0 timeframe.

[BSW00347] Naming separation of different
instances of BSW drivers

Not applicable
(requirement on the implementation, not on the
specification)

[BSW00305] Self-defined data types naming
convention

Chapter 8.2

[BSW00307] Global variables naming convention Not applicable
(requirement on the implementation, not on the
specification)

[BSW00310] API naming convention Chapter 8.3

[BSW00373] Main processing function naming
convention

Chapter 8.5.1

[BSW00327] Error values naming convention FLS004, FLS007

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

15 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

Requirement Satisfied by
[BSW00335] Status values naming convention Chapter 8.1

[BSW00350] Development error detection key-
word

FLS077, FLS162, FLS172

[BSW00408] Configuration parameter naming
convention

Chapter 10.2

[BSW00410] Compiler switches shall have
defined values

Chapter 10.2

[BSW00411] Get version info keyword Chapter 10.2

[BSW00346] Basic set of module files FLS107

[BSW158] Separation of configuration from im-
plementation

FLS107

[BSW00314] Separation of interrupt frames and
service routines

Not applicable
(this module does not implement any ISRs)

[BSW00370] Separation of callback interface
from API

Not applicable
(this module does not provide any callback
routines)

[BSW00348] Standard type header Not applicable
(standard header files included via interface
header file)

[BSW00353] Platform specific type header Not applicable
(standard header files included via interface
header file)

[BSW00361] Compiler specific language exten-
sion header

Not applicable
(standard header files included via interface
header file)

[BSW00301] Limit imported information FLS107

[BSW00302] Limit exported information Not applicable
(requirement on the implementation, not on the
specification)

[BSW00328] Avoid duplication of code Not applicable
(requirement on the implementation, not on the
specification)

[BSW00312] Shared code shall be reentrant Not applicable
(requirement on the implementation, not on the
specification)

[BSW006] Platform independency Not applicable
(this is a module of the microcontroller
abstraction layer)

[BSW00357] Standard API return type Chapter 8.3.2, Chapter 8.3.3. Chapter 8.3.7,
Chapter 8.3.8

[BSW00377] Module specific API return types Chapter 8.3.5, Chapter 8.3.6

[BSW00304] AUTOSAR integer data types Not applicable
(requirement on implementation, not for
specification)

[BSW00355] Do not redefine AUTOSAR integer
data types

Not applicable
(requirement on implementation, not for
specification)

[BSW00378] AUTOSAR boolean type Not applicable
(requirement on implementation, not for
specification)

[BSW00306] Avoid direct use of compiler and
platform specific keywords

Not applicable
(requirement on implementation, not for
specification)

[BSW00308] Definition of global data Not applicable
(requirement on implementation, not for
specification)

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

16 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

Requirement Satisfied by
[BSW00309] Global data with read-only con-
straint

Not applicable
(requirement on implementation, not for
specification)

[BSW00371] Do not pass function pointers via
API

Not applicable
(no function pointers in this specification)

[BSW00358] Return type of init() functions Chapter 8.3.1

[BSW00414] Parameter of init function Chapter 8.3.1, FLS194

[BSW00376] Return type and parameters of main
processing functions

Chapter 8.5.1

[BSW00359] Return type of callback functions Not applicable
(this module does not provide any callback
routines)

[BSW00360] Parameters of callback functions Not applicable
(this module does not provide any callback
routines)

[BSW00329] Avoidance of generic interfaces Chapter 8.3
(explicit interfaces defined)

[BSW00330] Usage of macros / inline functions
instead of functions

Not applicable
 (requirement on implementation, not for
specification)

[BSW00331] Separation of error and status val-
ues

FLS004, FLS267

[BSW009] Module User Documentation Not applicable
(requirement on documentation, not on
specification)

[BSW00401] Documentation of multiple
instances of configuration parameters

Not applicable
(all configuration parameters are single instance
only)

[BSW172] Compatibility and documentation of
scheduling strategy

Not applicable
(no internal scheduling policy)

[BSW010] Memory resource documentation Not applicable
(requirement on documentation, not on
specification)

[BSW00333] Documentation of callback function
context

Not applicable
(requirement on documentation, not for
specifciation)

[BSW00374] Module vendor identification FLS178

[BSW00379] Module identification FLS178

[BSW003] Version identification FLS178

[BSW00318] Format of module version numbers FLS178

[BSW00321] Enumeration of module version
numbers

Not applicable
(requirement on implementation, not for
specification)

[BSW00341] Microcontroller compatibility docu-
mentation

Not applicable
(requirement on documentation, not on
specification)

[BSW00334] Provision of XML file Not applicable
(requirement on documentation, not on
specification)

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

17 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

Document: General Requirements on SPAL

Requirement Satisfied by
[BSW12263] Object code compatible configura-
tion concept

FLS173, FLS174

[BSW12056] Configuration of notification mecha-
nisms

FLS173, FLS174

[BSW12267] Configuration of wakeup sources Not applicable
(this module does not wake up the ECU / MCU)

[BSW12057] Driver module initialization FLS014

[BSW12163] Driver module de-initialization Not applicable
(no use case)

[BSW12125] Initialization of hardware resources FLS086

[BSW12461] Responsibility for register
initialization

FLS086

[BSW12462] Provide settings for register
initialization

Not applicable
(requirement on documentation not on specifica-
tion)

BSW12463] Combine and forward settings for
register initialization

Not applicable
(requirement on configuration, not on specifica-
tion)

[BSW12068] MCAL initialization sequence Not applicable
(not a requirement for this driver but for system
integration)

[BSW12069] Wake-up notification of ECU State
Manager

Not applicable
(the flash driver does not wake the ECU / MCU)

[BSW157] Notification mechanisms of drivers and
handlers

Chapter 8.3.5, Chapter 8.6.3, FLS164, FLS006

[BSW12169] Control of operation mode FLS155

[BSW12063] Raw value mode Not applicable
(the flash driver does not interpret the flash data)

[BSW12075] Use of application buffers FLS002, FLS003

[BSW12129] Resetting of interrupt flags FLS232, FLS233, FLS234

[BSW12064] Change of operation mode during
running operation

Not applicable
(the flash driver does not support different modes)

[BSW12448] Behavior after development error
detection

FLS015, FLS020, FLS021, FLS026, FLS027,
FLS097, FLS098

[BSW12067] Setting of wake-up conditions Not applicable
 (the flash driver does not wake the ECU / MCU)

[BSW12077] Non-blocking implementation Chapter 8.5.1

[BSW12078] Runtime and memory efficiency Not applicable
(requirement on implementation, not on specifica-
tion)

[BSW12092] Access to drivers Not applicable
(requirement on system design, not on a single
module)

[BSW12265] Configuration data shall be kept
constant

FLS191

[BSW12264] Specification of configuration items FLS172, FLS174

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

18 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

Document: Requirements on Flash Driver

Requirement Satisfied by
[BSW12132] Flash driver static configuration FLS048, FLS171

[BSW12133] Publication of flash properties FLS177, FLS178

[BSW12134] Flash read function FLS236, FLS237, FLS238, FLS239, FLS097,
FLS098

[BSW12135] Flash write function FLS223, FLS224, FLS225, FLS226, FLS026,
FLS027

[BSW12136] Flash erase function FLS218, FLS219, FLS220, FLS221, FLS020,
FLS021

BSW13301 Flash compare function FLS241, FLS242, FLS243, FLS244, FLS150,
FLS151., FLS152, FLS153, FLS186

[BSW12137] Flash cancel function FLS229, FLS230, FLS183

[BSW12138] Flash driver status function FLS034, FLS184

BSW13302 Flash driver mode selection function FLS155, FLS156, FLS187

[BSW12159] Flash address check FLS020, FLS021, FLS026, FLS027, FLS097,
FLS098

[BSW12158] Flash blank check FLS055

[BSW12141] Flash write verification FLS056

[BSW12160] Flash erase verification FLS022

[BSW12143] Flash driver job management FLS016, FLS268, FLS023, FLS030, FLS032,
FLS100

[BSW12144] Flash driver job processing function FLS037, FLS038, FLS039, See Chapter 8.5

BSW13303Job processing – normal mode FLS040

BSW13304 Job processing – fast mode FLS040

[BSW12193] Load flash access code to RAM on
job start

FLS140, FLS141

[BSW12194] Execute flash access code from
RAM

FLS212, FLS213

BSW13300 Remove flash access code from RAM FLS143

[BSW12147] Functional scope FLS088

[BSW12182] External flash driver static configura-
tion

FLS174

[BSW12107] Check Flash type FLS144

[BSW12145] Flash driver job processing execu-
tion time

FLS040, FLS176, FLS182

[BSW12083] Use HIS specification as basis Not applicable
(the module provides comparable functionality but
different API and different design rules)

[BSW12184] Limit read access blocking times FLS040

[BSW12148] Common Flash API FLS088

[BSW12149] Microcontroller independency Not applicable
(requirement on implementation, not on specifica-
tion)

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

19 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

7 Functional specification

7.1 General design rules

FLS001: The FLS module shall offer asynchronous services for operations on flash
memory (read/erase/write).

FLS002: The FLS module shall not buffer data. The FLS module shall use applica-
tion data buffers that are referenced by a pointer passed via the API.

FLS003: The FLS module shall not ensure data consistency of the given application
buffer.

It is the responsibility of the FLS module’s environment to ensure consistency of flash
data during a flash read or write operation.

FLS205: The FLS module shall check static configuration parameters statically (at
the latest during compile time) for correctness.

FLS206: The FLS module shall validate the version information in the FLS module
header and source files for consistency (e.g. by comparing the version information in
the module header and source files with a pre-processor macro).

FLS208: The FLS module shall combine all available flash memory areas into one

linear address space (denoted by the parameters FlsBaseAddress and

FlsTotalSize).

FLS209: The FLS module shall map the address and length parameters for the read,
write, erase and compare functions as “virtual” addresses to the physical addresses
according to the physical structure of the flash memory areas.

As long as the restrictions regarding the alignment of those addresses are met it is
allowed that a read, write or erase job crosses the boundaries of a physical flash
memory area.

7.2 Error classification

FLS160: Values for production code Event Ids are assigned externally by the config-

uration of the Dem. They are published in the file Dem_IntErrId.h and included via

Dem.h.

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

20 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

FLS161: Development error values are of type uint8.

FLS004: The FLS module shall be able to detect the following errors and exceptions
depending on its configuration (development/production):

Type or error Relevance Related error code Value [hex]
API service called with wrong pa-
rameter

Development FLS_E_PARAM_CONFIG

FLS_E_PARAM_ADDRESS

FLS_E_PARAM_LENGTH

FLS_E_PARAM_DATA

0x01

0x02

0x03

0x04

API service called without module
initialization

Development FLS_E_UNINIT 0x05

API service called while driver still
busy

Development FLS_E_BUSY 0x06

Erase verification (blank check)
failed

Development FLS_E_VERIFY_ERASE_

FAILED

0x07

Write verification (compare) failed Development FLS_E_VERIFY_WRITE_

FAILED

0x08

Timeout exceeded Development FLS_E_TIMEOUT 0x09

Flash erase failed (HW) Production FLS_E_ERASE_FAILED Assigned by

DEM

Flash write failed (HW) Production FLS_E_WRITE_FAILED Assigned by

DEM

Flash read failed (HW) Production FLS_E_READ_FAILED Assigned by

DEM

Flash compare failed (HW) Production FLS_E_COMPARE_FAILE

D

Assigned by

DEM

Expected hardware ID not matched
(see [FLS144])

Production FLS_E_UNEXPECTED_FL

ASH_ID

Assigned by

DEM

7.3 Error detection

FLS077: The detection of development errors shall be configurable (on/off) at pre-

compile time. The switch FlsDevErrorDetect (see chapter 10) shall activate or

deactivate the detection of all development errors.

FLS162: If the FlsDevErrorDetect switch is enabled, API parameter checking is

enabled. The detailed description of the detected errors can be found in chapter 7.2
and chapter 8.3.

FLS163: The detection of production code errors cannot be switched off.

7.4 Error notification

FLS164: Detected development errors shall be reported to Det_ReportError ser-

vice of the Development Error Tracer (DET) if the pre-processor switch FlsDevEr-

rorDetect is set (see chapter 10).

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

21 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

FLS006: Production relevant errors shall be reported to the Diagnostic Event Man-
ager.

FLS267: The error codes shall not be used as return values of the called function.

FLS007: Additional errors that are detected because of specific implementation
and/or specific hardware properties shall be added in the flash driver’s implementa-
tion documentation. The classification and enumeration shall be compatible with the
errors listed above [FLS004].

7.5 External flash driver

FLS144: During the initialization of the external flash driver, the FLS module shall
check the hardware ID of the external flash device against the corresponding pub-
lished parameter. If a hardware ID mismatch occurs, the FLS module shall report the

error code FLS_E_UNEXPECTED_FLASH_ID to the Diagnostic Event Manager (DEM), set

the FLS module status to FLS_E_UNINIT and shall not initialize itself.

A complete list of required parameters is specified in the SPI Handler/Driver Software
Specification (Chapter “Configuration Specification”, marked as “SPI User”).

7.6 Loading, executing and removing the flash access code

Technical background information: Flash technology or flash memory segmentation
may require that the routines that access the flash hardware (internal erase and write
routines) are executed from RAM because reading the flash - for instruction fetch
needed for code execution - is not allowed while programming the flash.

FLS137: The FLS module’s implementer shall place the code of the flash access

routines into a separate C-module Fls_ac.c.

FLS215: The FLS module’s flash access routines shall only disable interrupts and
wait for the completion of the erase / write command if necessary (that is if it has to
be ensured that no other code is executed in the meantime).

FLS211: The FLS module’s implementer shall keep the execution time for the flash
access code as short as possible.

FLS140: The FLS module’s erase routine shall load the flash access code for eras-
ing the flash memory to the location in RAM pointed to by the erase function pointer
contained in the flash drivers configuration set if the FLS module is configured to load
the flash access code to RAM on job start.

FLS141: The FLS module’s write routine shall load the flash access code for writing
the flash memory to the location in RAM pointed to by the write function pointer con-
tained in the flash drivers configuration set if the FLS module is configured to load the
flash access code to RAM on job start.

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

22 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

FLS212: The FLS module’s main processing routine shall execute the flash access
code routines.

FLS213: The FLS module’s main processing routine shall access the flash access
code routines by means of the respective function pointer contained in the FLS mod-
ule’s configuration set (post-compile parameters) regardless whether the flash ac-
cess code routines have been loaded to RAM or whether they can be executed di-
rectly from (flash) ROM.

FLS143: After an erase or write job has been finished or cancelled, the FLS module’s
main processing routine shall unload (i.e. overwrite) the flash access code (internal
erase / write routines) from RAM if they have been loaded to RAM by the flash driver.

FLS214: The FLS module shall only load the access code to the RAM if the access
code cannot be executed out of flash ROM.

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

23 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

8 API specification

8.1 Imported types

FLS248:

Module Imported Type

Dem Dem_EventIdType

MemIf MemIf_JobResultType

MemIf_ModeType

MemIf_StatusType

Std_Types Std_ReturnType

Std_VersionInfoType

8.2 Type definitions

8.2.1 Fls_ConfigType

Name: Fls_ConfigType

Type: Structure

Range: Hardware de-

pendend struc-

ture

Structure to hold the flash driver configuration set. The con-
tents of the initialisation data structure are specific to the flash
memory hardware.

Description: A pointer to such a structure is provided to the flash driver initialization routine for
configuration of the driver and flash memory hardware.

8.2.2 Fls_AddressType
Name: Fls_AddressType

Type: Unsigned Integer

Range: 8 / 16 / 32

bits

-- Size depends on target platform and flash device.

Description: Used as address offset from the configured flash base address to access a certain
flash memory area.

FLS216: The type Fls_AddressType shall have 0 as lower limit for each flash de-
vice.

FLS217: The FLS module shall add a device specific base address to the address
type Fls_AddressType if necessary.

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

24 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

8.2.3 Fls_LengthType
Name: Fls_LengthType

Type: Unsigned Integer

Range: Same as

Fls_AddressType

-- Shall be the same type as Fls_AddressType because of
arithmetic operations. Size depends on target platform and
flash device.

Description: Specifies the number of bytes to read/write/erase/compare.

8.3 Function definitions

8.3.1 Fls_Init

FLS249:
Service name: Fls_Init

Syntax: void Fls_Init(

 const Fls_ConfigType* ConfigPtr

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): ConfigPtr Pointer to flash driver configuration set.

Parameters (in-
out):

None

Parameters (out): None

Return value: None

Description: Initializes the Flash Driver.

FLS014: The function Fls_Init shall initialize the FLS module (software) and all

flash memory relevant registers (hardware) with parameters provided in the given
configuration set.

FLS191: The function Fls_Init shall store the pointer to the given configuration set

in a local variable in order to allow the FLS module access to the configuration set
contents during runtime.

FLS086: The function Fls_Init shall initialize all FLS module global variables and

those controller registers that are needed for controlling the flash device and that do
not influence or depend on other (hardware) modules. Registers that can influence or
depend on other modules shall be initialized by a common system module.

FLS015: If development error detection for the module Fls is enabled: the function

Fls_Init shall check the (hardware specific) contents of the given configuration set

for being within the allowed range. If this is not the case, it shall raise the develop-

ment error FLS_E_PARAM_CONFIG.

FLS016: The function Fls_Init shall set the FLS module state to MEMIF_IDLE

and the flash job result to MEMIF_JOB_OK after having finished the FLS module ini-

tialization.

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

25 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

FLS268: If development error detection for the module Fls is enabled: the function

Fls_Init shall check that the FLS module is currently not busy (FLS module state

is not MEMIF_BUSY). If this check fails, the function Fls_Init shall raise the devel-

opment error FLS_E_BUSY.

FLS048: If supported by hardware, the function Fls_Init shall set the flash

memory erase/write protection as provided in the configuration set.

FLS271: If not applicable (i.e. for configuration variant PC), a NULL pointer shall be
passed to the initialization routine. In this case the check for this NULL pointer shall
be omitted.

8.3.2 Fls_Erase

FLS250:
Service name: Fls_Erase

Syntax: Std_ReturnType Fls_Erase(

 Fls_AddressType TargetAddress,

 Fls_LengthType Length

)

Service ID[hex]: 0x01

Sync/Async: Asynchronous

Reentrancy: Non Reentrant

Parameters (in):

TargetAddress Target address in flash memory. This address offset will be add-
ed to the flash memory base address.
Min.: 0
Max.: FLS_SIZE - 1

Length Number of bytes to erase
Min.: 1
Max.: FLS_SIZE - TargetAddress

Parameters (in-
out):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: erase command has been accepted

E_NOT_OK: erase command has not been accepted

Description: Erases flash sector(s).

FLS218: The job of the function Fls_Erase shall erase one or more complete flash

sectors.

FLS219: The function Fls_Erase shall copy the given parameters to FLS module

internal variables, initiate an erase job, set the FLS module status to MEMIF_BUSY,

set the job result to MEMIF_JOB_PENDING and return with E_OK.

FLS220: The FLS module shall execute the job of the function Fls_Erase asyn-

chronously within the FLS module’s main function.

FLS221: The job of the function Fls_Erase shall erase a flash memory block start-

ing from FlsBaseAddress + TargetAddress of size Length.

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

26 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

Note: Length will be rounded up to the next full sector boundary since only complete

flash sectors can be erased.

FLS020: If development error detection for the module Fls is enabled: the function

Fls_Erase shall check that the erase start address (FlsBaseAddress + Tar-

getAddress) is aligned to a flash sector boundary and that it lies within the speci-

fied lower and upper flash address boundaries. If this check fails, the function

Fls_Erase shall reject the erase request, raise the development error

FLS_E_PARAM_ADDRESS and return with E_NOT_OK.

FLS021: If development error detection for the module Fls is enabled: the function

Fls_Erase shall check that the erase length is greater than 0 and that the erase

end address (erase start address + length) is aligned to a flash sector boundary and
that it lies within the specified upper flash address boundary. If this check fails, the

function Fls_Erase shall reject the erase request, raise the development error

FLS_E_PARAM_LENGTH and return with E_NOT_OK.

FLS065: If development error detection for the module Fls is enabled: the function

Fls_Erase shall check that the FLS module has been initialized. If this check fails,

the function Fls_Erase shall reject the erase request, raise the development error

FLS_E_UNINIT and return with E_NOT_OK.

FLS023: If development error detection for the module Fls is enabled: the function

Fls_Erase shall check that the FLS module is currently not busy. If this check fails,

the function Fls_Erase shall reject the erase request, raise the development error

FLS_E_BUSY and return with E_NOT_OK.

FLS145: If possible, e.g. with interrupt controlled implementations, the FLS module

shall start the first round of the erase job directly within the function Fls_Erase to

reduce overall runtime.

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

27 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

8.3.3 Fls_Write

FLS251:
Service name: Fls_Write

Syntax: Std_ReturnType Fls_Write(

 Fls_AddressType TargetAddress,

 const uint8* SourceAddressPtr,

 Fls_LengthType Length

)

Service ID[hex]: 0x02

Sync/Async: Asynchronous

Reentrancy: Non Reentrant

Parameters (in):

TargetAddress Target address in flash memory. This address offset will be
added to the flash memory base address.
Min.: 0
Max.: FLS_SIZE - 1

SourceAddressPtr Pointer to source data buffer

Length Number of bytes to write
Min.: 1
Max.: FLS_SIZE - TargetAddress

Parameters (in-
out):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: write command has been accepted

E_NOT_OK: write command has not been accepted

Description: Writes one or more complete flash pages.

FLS223: The job of the function Fls_Write shall write one or more complete flash

pages to the flash device.

FLS224: The function Fls_Write shall copy the given parameters to Fls module

internal variables, initiate a write job, set the FLS module status to MEMIF_BUSY, set

the job result to MEMIF_JOB_PENDING and return with E_OK.

FLS225: The FLS module shall execute the write job of the function Fls_Write

asynchronously within the FLS module’s main function.

FLS226: The job of the function Fls_Write shall program a flash memory block

with data provided via SourceAddressPtr starting from FlsBaseAddress +

TargetAddress of size Length.

FLS026: If development error detection for the module Fls is enabled: the function

Fls_Write shall check that the write start address (FlsBaseAddress + Tar-

getAddress) is aligned to a flash page boundary and that it lies within the specified

lower and upper flash address boundaries. If this check fails, the function

Fls_Write shall reject the write request, raise the development error

FLS_E_PARAM_ADDRESS and return with E_NOT_OK.

FLS027: If development error detection for the module Fls is enabled: the function

Fls_Write shall check that the write length is greater than 0, that the write end ad-

dress (write start address + length) is aligned to a flash page boundary and that it lies
within the specified upper flash address boundary. If this check fails, the function

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

28 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

Fls_Write shall reject the write request, raise the development error

FLS_E_PARAM_LENGTH and return with E_NOT_OK.

FLS066: If development error detection for the module Fls is enabled: the function

Fls_Write shall check that the FLS module has been initialized. If this check fails,

the function Fls_Write shall reject the write request, raise the development error

FLS_E_UNINIT and return with E_NOT_OK.

FLS030: If development error detection for the module Fls is enabled: the function

Fls_Write shall check that the FLS module is currently not busy. If this check fails,

the function Fls_Write shall reject the write request, raise the development error

FLS_E_BUSY and return with E_NOT_OK.

FLS157: If development error detection for the module Fls is enabled: the function

Fls_Write shall check the given data buffer pointer for not being a null pointer. If

the data buffer pointer is a null pointer, the function Fls_Write shall reject the write

request, raise the development error FLS_E_PARAM_DATA and return with
E_NOT_OK.

FLS146: If possible, e.g. with interrupt controlled implementations, the FLS module

shall start the first round of the write job directly within the function Fls_Write to

reduce overall runtime.

8.3.4 Fls_Cancel

FLS252:
Service name: Fls_Cancel

Syntax: void Fls_Cancel(

)

Service ID[hex]: 0x03

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters (in-
out):

None

Parameters (out): None

Return value: None

Description: Cancels an ongoing job.

FLS229: The function Fls_Cancel shall cancel an ongoing flash read, write, erase

or compare job.

FLS230: The function Fls_Cancel shall abort a running job synchronously so that

directly after returning from this function a new job can be started.

FLS032: The function Fls_Cancel shall reset the FLS module’s internal job pro-

cessing variables (like address, length and data pointer) and set the FLS module

state to FLS_IDLE.

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

29 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

FLS033: The function Fls_Cancel shall set the job result to MEM-

IF_JOB_CANCELED if the job result currently has the value MEMIF_JOB_PENDING.

Otherwise the function Fls_Cancel shall leave the job result unchanged.

FLS147: If configured, the function Fls_Cancel shall call the error notification func-

tion to inform the caller about the cancellation of a job.

The FLS module’s states and data of the affected flash memory cells are undefined

when canceling an ongoing job with the function Fls_Cancel.

FLS183: The function Fls_Cancel shall be pre-compile time configurable On/Off

by the configuration parameter FlsCancelApi.

8.3.5 Fls_GetStatus

FLS253:
Service name: Fls_GetStatus

Syntax: MemIf_StatusType Fls_GetStatus(

)

Service ID[hex]: 0x04

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): None

Parameters (in-
out):

None

Parameters (out): None

Return value: MemIf_StatusType --

Description: Returns the driver state.

FLS034: The function Fls_GetStatus shall return the FLS module state synchro-

nously.

FLS184: The function Fls_GetStatus shall be pre-compile time configurable

On/Off by the configuration parameter FlsGetStatusApi.

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

30 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

8.3.6 Fls_GetJobResult

FLS254:
Service name: Fls_GetJobResult

Syntax: MemIf_JobResultType Fls_GetJobResult(

)

Service ID[hex]: 0x05

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): None

Parameters (in-
out):

None

Parameters (out): None

Return value: MemIf_JobResultType --

Description: Returns the result of the last job.

FLS035: The function Fls_GetJobResult shall return the result of the last job syn-

chronously.

FLS036: The erase, write, read and compare functions shall share the same job re-
sult, i.e. only the result of the last job can be queried. The FLS module shall overwrite

the job result with MEMIF_JOB_PENDING if the FLS module has accepted a new

job.

FLS185: The function Fls_GetJobResult shall be pre-compile time configurable

On/Off by the configuration parameter FlsGetJobResultApi.

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

31 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

8.3.7 Fls_Read

FLS256:
Service name: Fls_Read

Syntax: Std_ReturnType Fls_Read(

 Fls_AddressType SourceAddress,

 uint8* TargetAddressPtr,

 Fls_LengthType Length

)

Service ID[hex]: 0x07

Sync/Async: Asynchronous

Reentrancy: Non Reentrant

Parameters (in):

SourceAddress Source address in flash memory. This address offset will be
added to the flash memory base address.
Min.: 0
Max.: FLS_SIZE - 1

Length Number of bytes to read
Min.: 1
Max.: FLS_SIZE - SourceAddress

Parameters (in-
out):

None

Parameters (out): TargetAddressPtr Pointer to target data buffer

Return value:
Std_ReturnType E_OK: read command has been accepted

E_NOT_OK: read command has not been accepted

Description: Reads from flash memory.

FLS236: The function Fls_Read shall read from flash memory.

FLS237: The function Fls_Read shall copy the given parameters to FLS module

internal variables, initiate a read job, set the FLS module status to MEMIF_BUSY, set

the FLS module job result to MEMIF_JOB_PENDING and return with E_OK.

FLS238: The FLS module shall execute the read job of the function Fls_Read asyn-

chronously within the FLS module’s main function.

FLS239: The read job of the function Fls_Read shall copy a continuous flash

memory block starting from FlsBaseAddress + SourceAddress of size Length

to the buffer pointed to by TargetAddressPtr.

FLS097: If development error detection for the module Fls is enabled: the function

Fls_Read shall check that the read start address (FlsBaseAddress + SourceAd-

dress) lies within the specified lower and upper flash address boundaries. If this

check fails, the function Fls_Read shall reject the read job, raise development error

FLS_E_PARAM_ADDRESS and return with E_NOT_OK.

FLS098: If development error detection for the module Fls is enabled: the function

Fls_Read shall check that the read length is greater than 0 and that the read end

address (read start address + length) lies within the specified upper flash address

boundary. If this check fails, the function Fls_Read shall reject the read job, raise

the development error FLS_E_PARAM_LENGTH and return with E_NOT_OK.

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

32 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

FLS099: If development error detection for the module Fls is enabled: the function

Fls_Read shall check that the driver has been initialized. If this check fails, the func-

tion Fls_Read shall reject the read request, raise the development error

FLS_E_UNINIT and return with E_NOT_OK.

FLS100: If development error detection for the module Fls is enabled: the function

Fls_Read shall check that the driver is currently not busy. If this check fails, the

function Fls_Read shall reject the read request, raise the development error

FLS_E_BUSY and return with E_NOT_OK.

FLS158: If development error detection for the module Fls is enabled: the function

Fls_Read shall check the given data buffer pointer for not being a null pointer. If the

data buffer pointer is a null pointer, the function Fls_Read shall reject the read re-

quest, raise the development error FLS_E_PARAM_DATA and return with E_NOT_OK.

FLS240: The FLS module’s environment shall only call the function Fls_Read after

the FLS module has been initialized.

8.3.8 Fls_Compare

FLS257:
Service name: Fls_Compare

Syntax: Std_ReturnType Fls_Compare(

 Fls_AddressType SourceAddress,

 const uint8* TargetAddressPtr,

 Fls_LengthType Length

)

Service ID[hex]: 0x08

Sync/Async: Asynchronous

Reentrancy: Non Reentrant

Parameters (in):

SourceAddress Source address in flash memory. This address offset will be
added to the flash memory base address.
Min.: 0
Max.: FLS_SIZE - 1

TargetAddressPtr Pointer to target data buffer

Length Number of bytes to compare
Min.: 1
Max.: FLS_SIZE - SourceAddress

Parameters (in-
out):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: compare command has been accepted

E_NOT_OK: compare command has not been accepted

Description: Compares the contents of an area of flash memory with that of an application data
buffer.

FLS241: The function Fls_Compare shall compare the contents of an area of flash

memory with that of an application data buffer.

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

33 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

FLS242: The function Fls_Compare shall copy the given parameters to Fls module

internal variables, initiate a compare job, set the status to MEMIF_BUSY, set the job

result to MEMIF_JOB_PENDING and return with E_OK.

FLS243: The FLS module shall execute the job of the function Fls_Compare asyn-

chronously within the FLS module’s main function.

FLS244: The job of the function Fls_Compare shall compare a continuous flash

memory block starting from FlsBaseAddress + SourceAddress of size Length

with the buffer pointed to by TargetAddressPtr.

FLS150: If development error detection for the module Fls is enabled: the function

Fls_Compare shall check that the compare start address (FlsBaseAddress +

SourceAddress) lies within the specified lower and upper flash address bounda-

ries. If this check fails, the function Fls_Compare shall reject the compare job, raise

the development error FLS_E_PARAM_ADDRESS and return with E_NOT_OK.

FLS151: If If development error detection for the module Fls is enabled: the function

Fls_Compare shall check that the given length is greater than 0 and that the com-

pare end address (compare start address + length) lies within the specified upper

flash address boundary. If this check fails, the function Fls_Compare shall reject the

compare job, raise the development error FLS_E_PARAM_LENGTH and return with
E_NOT_OK.

FLS152: If development error detection for the module Fls is enabled: the function

Fls_Compare shall check that the driver has been initialized. If this check fails, the

function Fls_Compare shall reject the compare job, raise the development error

FLS_E_UNINIT and return with E_NOT_OK.

FLS153: If development error detection for the module Fls is enabled: the function

Fls_Compare shall check that the driver is currently not busy. If this check fails, the

function Fls_Compare shall reject the compare job, raise the development error

FLS_E_BUSY and return with E_NOT_OK.

FLS273: If development error detection for the module Fls is enabled: the function

Fls_Compare shall check the given data buffer pointer for not being a null pointer.

If the data buffer pointer is a null pointer, the function Fls_Compare shall reject the

request, raise the development error FLS_E_PARAM_DATA and return with
E_NOT_OK.

FLS186: The function Fls_Compare shall be pre-compile time configurable On/Off

by the configuration parameter FlsCompareApi.

8.3.9 Fls_SetMode

FLS258:
Service name: Fls_SetMode

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

34 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

Syntax: void Fls_SetMode(

 MemIf_ModeType Mode

)

Service ID[hex]: 0x09

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in):
Mode MEMIF_MODE_SLOW: Slow read access / normal SPI access.

MEMIF_MODE_FAST: Fast read access / SPI burst access.

Parameters (in-
out):

None

Parameters (out): None

Return value: None

Description: Sets the flash driver’s operation mode.

FLS155: The function Fls_SetMode shall set the FLS module’s operation mode to

the given “Mode” parameter.

FLS156: If development error detection for the module Fls is enabled: the function

Fls_SetMode shall check that the FLS module is currently not busy. If this check

fails, the function Fls_SetMode shall reject the set mode request and raise the de-

velopment error code FLS_E_BUSY.

FLS187: The function Fls_SetMode shall be pre-compile time configurable

On/Off by the configuration parameter FlsSetModeApi.

8.3.10 Fls_GetVersionInfo

FLS259:
Service name: Fls_GetVersionInfo

Syntax: void Fls_GetVersionInfo(

 Std_VersionInfoType* VersioninfoPtr

)

Service ID[hex]: 0x10

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters (in-
out):

None

Parameters (out): VersioninfoPtr Pointer to where to store the version information of this module.

Return value: None

Description: Returns the version information of this module.

FLS165: The function Fls_GetVersionInfo shall return the version information

of the FLS module. The version information includes:
- Module Id
- Vendor Id
- Vendor specific version numbers (BSW00407).

FLS166: The function Fls_GetVersionInfo shall be pre-compile time configura-

ble On/Off by the configuration parameter FlsVersionInfoApi.

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

35 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

FLS247: If source code for caller and callee of the function Fls_GetVersionInfo

is available, the FLS module should realize this function as a macro. The FLS mod-
ule should define this macro in the module’s header file.

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

36 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

8.4 Call-back notifications

This chaper lists all functions provided by the Fls module to lower layer modules.

FLS193: Depending on implementation, callback routines provided and/or invoked by
the FLS module may be called on interrupt level. The module providing those rou-
tines has therefore to make sure that their runtime is reasonably short, i.e. since
callbacks may be propagated upward through several software layers.

8.5 Scheduled functions

This chapter lists all functions provided by the Fls module and called directly by the
Basic Software Module Scheduler.

FLS269: The Fls module shall provide only one scheduled function. Reading from /
writing to flash memory cannot usually be done simultaneously and the overhead for
synchronizing two scheduled functions would outweigh the benefits.

8.5.1 Fls_MainFunction

FLS255:
Service name: Fls_MainFunction

Syntax: void Fls_MainFunction(

)

Service ID[hex]: 0x06

Timing: FIXED_CYCLIC

Description: Performs the processing of jobs.

FLS037: The function Fls_MainFunction shall perform the processing of the flash

read, write, erase and compare jobs.

FLS266: The function Fls_MainFunction shall accept only one read, write, erase or
compare job at a time.

FLS038: When a job has been initiated, the FLS module’s environment shall call the

function Fls_MainFunction cyclically until the job is finished.

Note: The function Fls_MainFunction may also be called cyclically if no job is current-
ly pending.

FLS039: The function Fls_MainFunction shall return without any action if no job

is pending.

FLS040: The function Fls_MainFunction shall only process as much data in one

call cycle as statically configured for the current job type (read, write, erase or com-
pare) and the current FLS module’s operating mode (normal, fast).

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

37 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

FLS104: The function Fls_MainFunction shall set the job result to MEM-

IF_JOB_FAILED and report the error code FLS_E_ERASE_FAILED to the DEM if a

flash erase job fails due to a hardware error.

FLS105: The function Fls_MainFunction shall set the job result to MEM-

IF_JOB_FAILED and report the error code FLS_E_WRITE_FAILED to the DEM if a

flash write job fails due to a hardware error.

FLS106: The function Fls_MainFunction shall set the job result to MEM-

IF_JOB_FAILED and report the error code FLS_E_READ_FAILED to the DEM if a

flash read job fails due to a hardware error.

FLS154: The function Fls_MainFunction shall set the job result to MEM-

IF_JOB_FAILED and report the error code FLS_E_COMPARE_FAILED to the DEM if

a flash compare job fails due to a hardware error.

FLS200: The function Fls_MainFunction shall set the job result to MEM-

IF_BLOCK_INCONSISTENT if the compared data from a flash compare job are not

equal.

FLS022: If development error detection for the module Fls is enabled:: After a flash

block has been erased, the function Fls_MainFunction shall compare the con-

tents of the addressed memory area against the value of an erased flash cell to
check that the block has been completely erased. If this check fails, the function

Fls_MainFunction shall set the FLS module’s job result to MEMIF_JOB_FAILED

and raise development error FLS_E_VERIFY_ERASE_FAILED.

FLS055: If development error detection for the module Fls is enabled:: Before writing

a flash block, the function Fls_MainFunction shall compare the contents of the

addressed memory area against the value of an erased flash cell to check that the
block has been completely erased. If this check fails, the function

Fls_MainFunction shall set the FLS module’s job result to MEMIF_JOB_FAILED

and raise development error FLS_E_VERIFY_ERASE_FAILED.

FLS056: If development error detection for the module Fls is enabled:: After writing a

flash block, the function Fls_MainFunction shall compare the contents of the re-

programmed memory area against the contents of the provided application buffer to
check that the block has been completely reprogrammed. If this check fails, the func-

tion Fls_MainFunction shall set the FLS module’s job result to MEM-

IF_JOB_FAILED and raise the development error

FLS_E_VERIFY_WRITE_FAILED.

FLS052: After a read, erase, write or compare job has been finished, the function

Fls_MainFunction shall set the FLS module’s job result to MEMIF_JOB_OK if it is

currently in state MEMIF_JOB_PENDING. Otherwise, it shall leave the result un-

changed. Furthermore, the function Fls_MainFunction shall set the FLS module’s

state to MEMIF_IDLE and call the job end notification function if configured [FLS173].

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

38 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

FLS232: The configuration parameter FlsUseInterrupts shall switch between

interrupt and polling controlled job processing if this is supported by the flash memory
hardware.

FLS233: The FLS module’s implementer shall locate the interrupt service routine in

Fls_Irq.c.

FLS234: If interrupt controlled job processing is supported and enabled with the con-

figuration parameter FlsUseInterrupts, the interrupt service routine shall reset

the interrupt flag, check for errors reported by the underlying hardware, reload the
hardware finite state machine for the next round of the pending job or call the appro-
priate notification routine if the job is finished or aborted.

FLS235: The function Fls_MainFunction shall process jobs without hardware in-

terrupt support (e.g. read jobs).

FLS272: If development error detection for the module Fls is enabled: the function

Fls_MainFunction shall provide a timeout monitoring for the currently running job,

that is it shall supervise the deadline of the read / compare / erase or write job.

FLS359: If development error detection for the module Fls is enabled: the function

Fls_MainFunction shall check, whether the configured maximum erase time (see

FLS298_Conf FlsEraseTime) has been exceeded. If this is the case, the function

Fls_MainFunction shall raise the development error FLS_E_TIMEOUT.

FLS360: If development error detection for the module Fls is enabled: the function

Fls_MainFunction shall check, whether the expected maximum write time (see

note below) has been exceeded. If this is the case, the function Fls_MainFunction

shall raise the development error FLS_E_TIMEOUT.

Note: The expected maximum write time depends on the current mode of the Fls
module (see FLS258), the configured number of bytes to write in this mode (see
FLS278_Conf and FLS277_Conf respectively), the size of a single flash page (see
FLS281_Conf) and last the maximum time to write one flash page (see
FLS301_Conf). The number of bytes to write divided by the size of one flash page
yields the number of pages to write in one cycle. This multiplied with the maximum
write time for one flash page gives you the expected maximum write time.

FLS361: If development error detection for the module Fls is enabled: the function

Fls_MainFunction shall check, whether the expected maximum read / compare

time (see note below) has been exceeded. If this is the case, the function

Fls_MainFunction shall raise the development error FLS_E_TIMEOUT.

Note: There are no published timings for read / compare (as these would mostly de-
pend on whether the flash device is internal or external e.g. connected via SPI). The
solution should be similar as for write jobs above: the configured number of bytes to
read (and to compare) per cycle is matched to the expected read / compare times
which should be supervised by the Fls_MainFunction. If this is not detailed enough
there are two possibilities:

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

39 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

- specify expected read / compare times (difficult because of the dependency
mentioned above)

- leave read / compare jobs out of the timeout supervision (change FLS272).

FLS117: If development error detection for the module Fls is enabled: the function

Fls_MainFunction shall check that the FLS module has been initialized. If this

check fails, the function Fls_MainFunction shall raise the development error

FLS_E_UNINIT.

FLS196: The function Fls_MainFunction shall at the most issue one sector erase

command (to the hardware) in each cycle.

Note: The requirement above shall ensure that maximum one sector is erased se-
quentially within one cycle of the driver’s main function. If the hardware is capable of
erasing more than one sector in parallel, this shall not be restricted by this specifica-
tion.

8.6 Expected Interfaces

This chapter lists all functions the Fls module requires from other modules.

8.6.1 Mandatory Interfaces

This chapter defines all interfaces which are required to fulfill the core functionality of
the module.

FLS260:
API function Description

Dem_ReportErrorStatus Reports errors to the DEM.

Note: If the flash device is connected via SPI, also the SPI interfaces are required to
fulfill the modules core functionality. Which interfaces are needed exactly shall not be
detailed further in this specification.

8.6.2 Optional Interfaces

This chapter defines all interfaces which are required to fulfill an optional functionality
of the module.

FLS261:
API function Description

Det_ReportError Service to report development errors.

8.6.3 Configurable interfaces

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

40 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

In this chapter, all interfaces are listed for which the target function can be config-
ured. The target function is usually a call-back function. The names of these kind of
interfaces is not fixed because they are configurable.

FLS109: The job processing callback notifications shall be configurable as function

pointers within the initialization data structure (Fls_ConfigType).

FLS110: The callback notifications shall have no parameters and no return value.

FLS111: If a job processing callback notification is configured as null pointer, the cor-
responding callback routine shall not be executed.

FLS262:
Service name: Fee_JobEndNotification

Syntax: void Fee_JobEndNotification(

)

Sync/Async: Synchronous

Reentrancy: Don't care

Parameters (in): None

Parameters (in-
out):

None

Parameters (out): None

Return value: None

Description: This callback function is called when a job has been completed with a positive
result.

FLS167: The FLS module shall call the callback function

Fee_JobEndNotification when the module has completed a job with a positive

result:

 Read job finished & OK

 Write job finished & OK

 Erase job finished & OK

 Compare job finished & memory blocks are the same

FLS263:
Service name: Fee_JobErrorNotification

Syntax: void Fee_JobErrorNotification(

)

Sync/Async: Synchronous

Reentrancy: Don't care

Parameters (in): None

Parameters (in-
out):

None

Parameters (out): None

Return value: None

Description: This callback function is called when a job has been cancelled or finished with
negative result.

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

41 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

FLS168: The FLS module shall call the callback function

Fee_JobErrorNotification when the module has cancelled or finished a job

with a negative result:

 Read job aborted or failed

 Write job aborted or failed

 Erase job aborted or failed

 Compare job aborted or failed

 Compare job finished and memory blocks differ

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

42 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

9 Sequence diagrams

9.1 Initialization

 sd Fls_Flash Driv er Initialization

«module»

EcuM

«module»

Fls

Status: Proposed (by TO as per SWS Fls Driver 2.0.3)

Description:

Comments:

Fls_Init(Fls_ConfigType*)

Fls_Init()

Figure 2: Flash driver initialization sequence

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

43 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

9.2 Synchronous functions

The following sequence diagram shows the function Fls_GetJobResult as an ex-

ample for the synchronous functions of this module. The same sequence applies also

to the functions Fls_GetStatus and Fls_SetMode.

 sd Fls_Flash GetJobResult

«module»

NvM

«module»

Fls

«module»

Fee

«module»

MemIf

Status: Proposed (by TO as per SWS Fls Driver 2.0.3)

Description:

Comments:

MemIf_GetJobResult(MemIf_JobResultType, uint8) :

MemIf_JobResultType
Fee_GetJobResult(MemIf_JobResultType) :

MemIf_JobResultType

Fls_GetJobResult(MemIf_JobResultType) :

MemIf_JobResultType

Fls_GetJobResult()

Fee_GetJobResult()

MemIf_GetJobResult()

Figure 3: Fls_GetJobResult

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

44 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

9.3 Asynchronous functions

The following sequence diagram shows the flash write function (with the configura-

tion option FlsAcLoadOnJobStart set) as an example for the asynchronous func-

tions of this module. The same sequence applies to the erase, read and compare
jobs, with the only difference that for the read and compare jobs no flash access
code needs to be loaded to / unloaded from RAM.

 sd Fls_Write Sequence

BSW Task (OS

task or cyclic call)

«module»

NvM

«module»

Fls

«module»

Fee

«module»

MemIf

loop Fls_MainFunction

Status: Proposed (by TO as per SWS Fls Driver 2.0.3)

Description:

Comments:

MemIf_Write(Std_ReturnType, uint8, uint16, const uint8*)

Fee_Write(Std_ReturnType, uint16, const uint8*)

Fls_Write(Std_ReturnType, Fls_AddressType, const

uint8*, Fls_LengthType)
Load flash access

code to RAM()

Fls_Write()

Fee_Write()

MemIf_Write()

Fls_MainFunction()

Fls_MainFunction()

Fls_MainFunction()

Unload flash

access code from

RAM()

Fee_JobEndNotification()

NvM_JobEndNotification()

NvM_JobEndNotification()

Fee_JobEndNotification()

Fls_MainFunction()

Figure 4: Flash write sequence, flash access code loaded on job start

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

45 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

9.4 Canceling a running job

 sd Fls_Cancelling a running flash job

«module»

NvM

«module»

Fls

«module»

Fee

«module»

MemIf

Status: Proposed (by TO as per SWS Fls Driver 2.0.3)

Description:

Comments:

MemIf_Cancel(uint8)

Fee_Cancel()

Fls_Cancel()

Fee_JobErrorNotification()

NvM_JobErrorNotification()

NvM_JobErrorNotification()

Fee_JobErrorNotification()

Fls_Cancel()

Fee_Cancel()

MemIf_Cancel()

Figure 5: Canceling a running flash job

FLS049: The FLS module’s environment shall not call the function Fls_Cancel dur-

ing a running Fls_MainFunction invocation.

This can be achieved by one of the following scheduling configurations:

 Possibility 1: The job functions of the NVRAM manager and the flash driver
are synchronized (e.g. called sequentially within one task)

 Possibility 2: The task that calls the Fls_MainFunction function can not be

preempted by another task.

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

46 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

10 Configuration specification

In general, this chapter defines configuration parameters and their clustering into
containers. In order to support the specification Chapter 10.1 describes fundamen-
tals. It also specifies a template (table) you shall use for the parameter specification.
We intend to leave Chapter 10.1 in the specification to guarantee comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the module
Flash Driver.

Chapter 10.3 specifies published information of the module <Module Name>.

10.1 How to read this chapter

In addition to this section, it is highly recommended to read the documents:

- AUTOSAR Layered Software Architecture [2]
- AUTOSAR ECU Configuration Specification [7]

This document describes the AUTOSAR configuration methodology and the
AUTOSAR configuration metamodel in detail.

The following is only a short survey of the topic and it will not replace the ECU Con-
figuration Specification document.

10.1.1 Configuration and configuration parameters

Configuration parameters define the variability of the generic part(s) of an implemen-
tation of a module. This means that only generic or configurable module implementa-
tion can be adapted to the environment (software/hardware) in use during system
and/or ECU configuration.

The configuration of parameters can be achieved at different times during the soft-
ware process: before compile time, before link time or after build time. In the follow-
ing, the term “configuration class” (of a parameter) shall be used in order to refer to a
specific configuration point in time.

10.1.2 Containers

Containers structure the set of configuration parameters. This means:

- all configuration parameters are kept in containers.
- (sub-) containers can reference (sub-) containers. It is possible to assign a

multiplicity to these references. The multiplicity then defines the possible num-
ber of instances of the contained parameters.

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

47 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

10.1.3 Specification template for configuration parameters

The following tables consist of three sections:

- the general section
- the configuration parameter section
- the section of included/referenced containers

Pre-compile time - specifies whether the configuration parameter shall be

of configuration class Pre-compile time or not

Label Description

x The configuration parameter shall be of configuration class Pre-compile time.

-- The configuration parameter shall never be of configuration class Pre-compile time.

Link time - specifies whether the configuration parameter shall be

of configuration class Link time or not

Label Description

x The configuration parameter shall be of configuration class Link time.

-- The configuration parameter shall never be of configuration class Link time.

Post Build - specifies whether the configuration parameter shall be

of configuration class Post Build or not

Label Description

x
The configuration parameter shall be of configuration class Post Build and no specific
implementation is required.

L
Loadable – the configuration parameter shall be of configuration class Post Build and only
one configuration parameter set resides in the ECU.

M
Multiple – the configuration parameter shall be of configuration class Post Build and is
selected out of a set of multiple parameters by passing a dedicated pointer to the init func-
tion of the module.

-- The configuration parameter shall never be of configuration class Post Build.

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

48 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed mean-
ings of the parameters describe Chapters 10.2 and Chapter 10.3.

10.2.1 Variants

FLS203: Variant PC: Only pre-compile time parameters

FLS204: Variant PB: FlsConfigSet (see FLS174) as post build time configurable

FLS194: The initialization function of the FLS module shall always have a pointer as
a parameter, even though for Variant PC no configuration set shall be given. Instead
a null pointer shall be passed to the initialization function. This means that in contra-
diction to BSW00414, only one interface for initialization shall be implemented and it
shall not depend on the modules configuration which interface the calling software
module shall use.

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

49 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

10.2.2 Fls
Module Name Fls

Module Description

Configuration of the Fls (internal or external flash driver) module.
Its multiplicity describes the number of flash drivers present, so there will
be one container for each flash driver in the ECUC template. When no
flash driver is present then the multiplicity is 0.

Included Containers

Container Name Multiplicity Scope / Dependency

FlsConfigSet 1..*
Container for runtime configuration parameters of the flash
driver. Implementation Type: Fls_ConfigType.

FlsGeneral 1
Container for general parameters of the flash driver. These
parameters are always pre-compile.

FlsPublishedInformation 1

Additional published parameters not covered by Common-
PublishedInformation container. Note that these parameters do
not have any configuration class setting, since they are pub-
lished information.

The table above specifies parameters that shall be configured during system genera-

tion. These parameters shall be located in the file Fls_Cfg.h. Further hardware or

implementation specific parameters can be added if necessary.

10.2.3 FlsGeneral
SWS Item FLS172 :

Container Name FlsGeneral{Fls_ModuleConfiguration}

Description
Container for general parameters of the flash driver. These parameters are
always pre-compile.

Configuration Parameters

SWS Item FLS284 :

Name

FlsAcLoadOnJobStart {FLS_AC_LOAD_ON_JOB_START}

Description The flash driver shall load the flash access code to RAM whenever an erase or
write job is started and unload (overwrite) it after that job has been finished or
canceled. true: Flash access code loaded on job start / unloaded on job end or
error. false: Flash access code not loaded to / unloaded from RAM at all.

Multiplicity 1

Type BooleanParamDef

Default value false

ConfigurationClass Pre-compile
time

X All Variants

Link time --

Post-build
time

--

Scope / Dependency scope: module

SWS Item FLS169 :

Name

FlsBaseAddress {FLS_BASE_ADDRESS}

Description The flash memory start address (see also FLS118). FLS169: This parameter
defines the lower boundary for read / write / erase and compare jobs.

Multiplicity 1

Type IntegerParamDef

Range ..

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

50 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

Post-build time --

Scope / Dependency scope: module

SWS Item FLS285 :

Name

FlsCancelApi {FLS_CANCEL_API}

Description Compile switch to enable and disable the Fls_Cancel function. true: API sup-
ported / function provided. false: API not supported / function not provided

Multiplicity 1

Type BooleanParamDef

Default value --

ConfigurationClass Pre-compile
time

X All Variants

Link time --

Post-build
time

--

Scope / Dependency scope: module

SWS Item FLS286 :

Name

FlsCompareApi {FLS_COMPARE_API}

Description Compile switch to enable and disable the Fls_Compare function. true: API sup-
ported / function provided. false: API not supported / function not provided

Multiplicity 1

Type BooleanParamDef

Default value --

ConfigurationClass Pre-compile
time

X All Variants

Link time --

Post-build
time

--

Scope / Dependency scope: module

SWS Item FLS287 :

Name

FlsDevErrorDetect {FLS_DEV_ERROR_DETECT}

Description Pre-processor switch to enable and disable development error detection (see
FLS077). true: Development error detection enabled. false: Development error
detection disabled.

Multiplicity 1

Type BooleanParamDef

Default value true

ConfigurationClass Pre-compile
time

X All Variants

Link time --

Post-build
time

--

Scope / Dependency scope: module

SWS Item FLS288 :

Name

FlsDriverIndex

Description Index of the driver, used by FEE.

Multiplicity 1

Type IntegerParamDef (Symbolic Name generated for this parameter)

Range 0 .. 254

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

51 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

Scope / Dependency scope: module

SWS Item FLS289 :

Name

FlsGetJobResultApi {FLS_GET_JOB_RESULT_API}

Description Compile switch to enable and disable the Fls_GetJobResult function. true: API
supported / function provided. false: API not supported / function not provided

Multiplicity 1

Type BooleanParamDef

Default value --

ConfigurationClass Pre-compile
time

X All Variants

Link time --

Post-build
time

--

Scope / Dependency scope: module

SWS Item FLS290 :

Name

FlsGetStatusApi {FLS_GET_STATUS_API}

Description Compile switch to enable and disable the Fls_GetStatus function. true: API sup-
ported / function provided. false: API not supported / function not provided

Multiplicity 1

Type BooleanParamDef

Default value --

ConfigurationClass Pre-compile
time

X All Variants

Link time --

Post-build
time

--

Scope / Dependency scope: module

SWS Item FLS291 :

Name

FlsSetModeApi {FLS_SET_MODE_API}

Description Compile switch to enable and disable the Fls_SetMode function. true: API sup-
ported / function provided. false: API not supported / function not provided

Multiplicity 1

Type BooleanParamDef

Default value --

ConfigurationClass Pre-compile
time

X All Variants

Link time --

Post-build
time

--

Scope / Dependency scope: module

SWS Item FLS170 :

Name

FlsTotalSize {FLS_TOTAL_SIZE}

Description The total amount of flash memory in bytes (see also FLS118). FLS170: This pa-
rameter in conjunction with FLS_BASE_ADDRESS defines the upper boundary
for read / write / erase and compare jobs.

Multiplicity 1

Type IntegerParamDef

Range ..

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

52 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

Scope / Dependency scope: module

SWS Item FLS292 :

Name

FlsUseInterrupts {FLS_USE_INTERRUPTS}

Description Job processing triggered by hardware interrupt. true: Job processing triggered
by interrupt (hardware controlled). false: Job processing not triggered by inter-
rupt (software controlled)

Multiplicity 1

Type BooleanParamDef

Default value false

ConfigurationClass Pre-compile
time

X All Variants

Link time --

Post-build
time

--

Scope / Dependency scope: module
dependency: Only available if supported by underlying flash hardware

SWS Item FLS293 :

Name

FlsVersionInfoApi {FLS_VERSION_INFO_API}

Description Pre-processor switch to enable / disable the API to read out the modules version
information. true: Version info API enabled. false: Version info API disabled.

Multiplicity 1

Type BooleanParamDef

Default value --

ConfigurationClass Pre-compile
time

X All Variants

Link time --

Post-build
time

--

Scope / Dependency scope: module

No Included Containers

10.2.4 FlsConfigSet
SWS Item FLS174 :

Container Name FlsConfigSet{Fls_ConfigSet} [Multi Config Container]

Description
Container for runtime configuration parameters of the flash driver.
Implementation Type: Fls_ConfigType.

Configuration Parameters

SWS Item FLS270 :

Name

FlsAcErase {FLS_AC_ERASE}

Description Address offset in RAM to which the erase flash access code shall be loaded.
Used as function pointer to access the erase flash access code.

Multiplicity 1

Type FunctionNameDef

Default value --

regularExpression --

ConfigurationClass Pre-compile
time

X VARIANT-PRE-COMPILE

Link time --

Post-build
time

X VARIANT-POST-BUILD

Scope / Dependency scope: module

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

53 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

SWS Item FLS271 :

Name

FlsAcWrite {FLS_AC_WRITE}

Description Address offset in RAM to which the write flash access code shall be loaded.
Used as function pointer to access the write flash access code.

Multiplicity 1

Type FunctionNameDef

Default value --

regularExpression --

ConfigurationClass Pre-compile
time

X VARIANT-PRE-COMPILE

Link time --

Post-build
time

X VARIANT-POST-BUILD

Scope / Dependency

SWS Item FLS272 :

Name

FlsCallCycle {FLS_CALL_CYCLE}

Description Cycle time of calls of the flash driver's main function.

Multiplicity 1

Type FloatParamDef

Range 0 .. INF

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: module
dependency: Only relevant if deadline monitoring for internal functionality has to
be done in software (e.g. erase / write timings)

SWS Item FLS273 :

Name

FlsJobEndNotification {FLS_JOB_END_NOTIFICATION}

Description Mapped to the job end notification routine provided by some upper layer module,
typically the Fee module.

Multiplicity 1

Type FunctionNameDef

Default value --

regularExpression --

ConfigurationClass Pre-compile
time

X VARIANT-PRE-COMPILE

Link time --

Post-build
time

X VARIANT-POST-BUILD

Scope / Dependency scope: module

SWS Item FLS274 :

Name

FlsJobErrorNotification {FLS_JOB_ERROR_NOTIFICATION}

Description Mapped to the job error notification routine provided by some upper layer mod-
ule, typically the Fee module.

Multiplicity 1

Type FunctionNameDef

Default value --

regularExpression --

ConfigurationClass Pre-compile
time

X VARIANT-PRE-COMPILE

Link time --

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

54 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

Post-build
time

X VARIANT-POST-BUILD

Scope / Dependency scope: module

SWS Item FLS275 :

Name

FlsMaxReadFastMode {FLS_MAX_READ_FAST_MODE}

Description The maximum number of bytes to read or compare in one cycle of the flash driv-
er's job processing function in fast mode.

Multiplicity 1

Type IntegerParamDef

Range ..

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: module
dependency: The minimum number might depend on the underlying flash device
or communication driver, e.g. if the access to an external flash device is done via
SPI and the minimum transfer size on SPI is four bytes.

SWS Item FLS276 :

Name

FlsMaxReadNormalMode {FLS_MAX_READ_NORMAL_MODE}

Description The maximum number of bytes to read or compare in one cycle of the flash driv-
er's job processing function in normal mode.

Multiplicity 1

Type IntegerParamDef

Range ..

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: module
dependency: The minimum number might depend on the underlying flash device
or communication driver, e.g. if the access to an external flash device is done via
SPI and the minimum transfer size on SPI is four bytes.

SWS Item FLS277 :

Name

FlsMaxWriteFastMode {FLS_MAX_WRITE_FAST_MODE}

Description The maximum number of bytes to write in one cycle of the flash driver's job pro-
cessing function in fast mode.

Multiplicity 1

Type IntegerParamDef

Range ..

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: module
dependency: FLS182: This value has to correspond to the settings in
FLS_PAGE_LIST. The minimum number is defined by the size of one flash page
and therefore depends on the underlying flash device.

SWS Item FLS278 :

Name

FlsMaxWriteNormalMode {FLS_MAX_WRITE_NORMAL_MODE}

Description The maximum number of bytes to write in one cycle of the flash driver's job pro-
cessing function in normal mode.

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

55 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

Multiplicity 1

Type IntegerParamDef

Range ..

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: module
dependency: FLS176: This value has to correspond to the settings in
FLS_PAGE_LIST. The minimum number is defined by the size of one flash page
and therefore depends on the underlying flash device.

SWS Item FLS279 :

Name

FlsProtection {FLS_PROTECTION}

Description Erase/write protection settings. Only relevant if supported by hardware.

Multiplicity 1

Type IntegerParamDef

Range ..

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: module
dependency: Only relevant if supported by hardware.

Included Containers

Container Name Multiplicity Scope / Dependency

FlsSectorList 1 List of flashable sectors and pages.

FLS173: The table above specifies the parameters that shall be located in an exter-

nal data structure of type Fls_ConfigType. The organization and location of this

data structure shall be up to the implementer. The type declaration shall be located in

the file Fls.h. Further hardware or implementation specific parameters can be add-

ed if necessary.

10.2.5 FlsSectorList
SWS Item FLS201 :

Container Name FlsSectorList{Fls_SectorList}

Description List of flashable sectors and pages.

Configuration Parameters

Included Containers

Container Name Multiplicity Scope / Dependency

FlsSector 1..* Configuration description of a flashable sector

10.2.6 FlsSector
SWS Item FLS202 :

Container Name FlsSector{Fls_Sector}

Description Configuration description of a flashable sector

Configuration Parameters

SWS Item FLS280 :

Name

FlsNumberOfSectors {FLS_NUMBER_OF_SECTORS}

Description Number of continuous sectors with the above characteristics.

Multiplicity 1

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

56 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

Type IntegerParamDef

Range ..

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: module

SWS Item FLS281 :

Name

FlsPageSize {FLS_PAGE_SIZE}

Description Size of one page of this sector. Implementation Type: Fls_LengthType.

Multiplicity 1

Type IntegerParamDef

Range ..

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: module
dependency: The sector size has to be an integer multiple of the page size.

SWS Item FLS282 :

Name

FlsSectorSize {FLS_SECTOR_SIZE}

Description Size of this sector. Implementation Type: Fls_LengthType.

Multiplicity 1

Type IntegerParamDef

Range ..

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: module
dependency: The sector size has to be an integer multiple of the page size.

SWS Item FLS283 :

Name

FlsSectorStartaddress {FLS_SECTOR_STARTADDRESS}

Description Start address of this sector. Implementation Type: Fls_AddressType.

Multiplicity 1

Type IntegerParamDef

Range ..

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: module

No Included Containers

10.3 Published Information

Published information contains data defined by the implementer of the SW module
that does not change when the module is adapted (i.e. configured) to the actual
HW/SW environment. It thus contains version and manufacturer information.

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

57 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

FLS177: The following table specifies the information that shall be published in the
module’s description file. Further hardware or implementation specific information
can be added if necessary.

The standard common published information like

 vendorId FLS_VENDOR_ID),

 moduleId (FLS_MODULE_ID),

 arMajorVersion FLS_AR_MAJOR_VERSION),

 arMinorVersion (FLS_ AR_MINOR_VERSION),

 arPatchVersion (FLS_ AR_PATCH_VERSION),

 swMajorVersion (FLS_SW_MAJOR_VERSION),

 swMinorVersion (FLS_ SW_MINOR_VERSION),

 swPatchVersion (FLS_ SW_PATCH_VERSION),

 vendorApiInfix (FLS_VENDOR_API_INFIX)

is provided in the BSW Module Description Template (see [8], Figure 4.1 and Figure
7.1). Additional published parameters are listed below if applicable for this module.

10.3.1 FlsPublishedInformation
SWS Item FLS178 :

Container Name FlsPublishedInformation

Description

Additional published parameters not covered by CommonPublishedInfor-
mation container.
Note that these parameters do not have any configuration class setting,
since they are published information.

Configuration Parameters

SWS Item FLS294 :

Name

FlsAcLocationErase {FLS_AC_LOCATION_ERASE}

Description Position in RAM, to which the erase flash access code has to be loaded. Only
relevant if the erase flash access code is not position independent. If this infor-
mation is not provided it is assumed that the erase flash access code is position
independent and that therefore the RAM position can be freely configured.

Multiplicity 1

Type IntegerParamDef

Range ..

Default value --

ConfigurationClass Published Information X All Variants

Scope / Dependency scope: module

SWS Item FLS295 :

Name

FlsAcLocationWrite {FLS_AC_LOCATION_WRITE}

Description Position in RAM, to which the write flash access code has to be loaded. Only
relevant if the write flash access code is not position independent. If this infor-
mation is not provided it is assumed that the write flash access code is position
independent and that therefore the RAM position can be freely configured.

Multiplicity 1

Type IntegerParamDef

Range ..

Default value --

ConfigurationClass Published Information X All Variants

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

58 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

Scope / Dependency scope: module

SWS Item FLS296 :

Name

FlsAcSizeErase {FLS_AC_SIZE_ERASE}

Description Number of bytes in RAM needed for the erase flash access code.

Multiplicity 1

Type IntegerParamDef

Range ..

Default value --

ConfigurationClass Published Information X All Variants

Scope / Dependency scope: module

SWS Item FLS297 :

Name

FlsAcSizeWrite {FLS_AC_SIZE_WRITE}

Description Number of bytes in RAM needed for the write flash access code.

Multiplicity 1

Type IntegerParamDef

Range ..

Default value --

ConfigurationClass Published Information X All Variants

Scope / Dependency scope: module

SWS Item FLS298 :

Name

FlsEraseTime {FLS_ERASE_TIME}

Description Maximum time to erase one complete flash sector.

Multiplicity 1

Type FloatParamDef

Range -INF .. INF

Default value --

ConfigurationClass Published Information X All Variants

Scope / Dependency scope: module

SWS Item FLS299 :

Name

FlsErasedValue {FLS_ERASED_VALUE}

Description The contents of an erased flash memory cell.

Multiplicity 1

Type IntegerParamDef

Range ..

Default value --

ConfigurationClass Published Information X All Variants

Scope / Dependency scope: module

SWS Item FLS300 :

Name

FlsExpectedHwId {FLS_EXPECTED_HW_ID}

Description Unique identifier of the hardware device that is expected by this driver (the de-
vice for which this driver has been implemented). Only relevant for external flash
drivers.

Multiplicity 1

Type StringParamDef

Default value --

regularExpression --

ConfigurationClass Published In-
formation

X All Variants

Scope / Dependency scope: module

SWS Item FLS198 :

Specification of Module Flash Driver
 V2.4.1

R3.2 Rev 3

59 of 59 Document ID 025: AUTOSAR_SWS_FlashDriver

- AUTOSAR confidential -

Name

FlsSpecifiedEraseCycles {FLS_SPECIFIED_ERASE_CYCLES}

Description Number of erase cycles specified for the flash device (usually given in the device
data sheet). FLS198: If the number of specified erase cycles depends on the
operating environment (temperature, voltage, ...) during reprogramming of the
flash device, the minimum number for which a data retention of at least 15 years
over the temperature range from -40°C .. +125°C can be guaranteed shall be
given. Note: If there are different numbers of specified erase cycles for different
flash sectors of the device this parameter has to be extended to a parameter list
(similar to the sector list above).

Multiplicity 1

Type IntegerParamDef

Range ..

Default value --

ConfigurationClass Published Information X All Variants

Scope / Dependency scope: module

SWS Item FLS301 :

Name

FlsWriteTime {FLS_WRITE_TIME}

Description Maximum time to program one complete flash page.

Multiplicity 1

Type FloatParamDef

Range -INF .. INF

Default value --

ConfigurationClass Published Information X All Variants

Scope / Dependency scope: module

No Included Containers

FLS177: The following table specifies the information that shall be published in the
module’s description file. Further hardware or implementation specific information
can be added if necessary.

	1 Introduction and functional overview
	2 Acronyms and abbreviations
	3 Related documentation
	3.1 AUTOSAR deliverables
	3.2 Related standards and norms

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1 File structure
	5.1.1 Code file structure
	5.1.2 Header file structure

	5.2 System clock
	5.3 Communication or I/O drivers

	6 Requirements traceability
	7 Functional specification
	7.1 General design rules
	7.2 Error classification
	7.3 Error detection
	7.4 Error notification
	7.5 External flash driver
	7.6 Loading, executing and removing the flash access code

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 Fls_ConfigType
	8.2.2 Fls_AddressType
	8.2.3 Fls_LengthType

	8.3 Function definitions
	8.3.1 Fls_Init
	8.3.2 Fls_Erase
	8.3.3 Fls_Write
	8.3.4 Fls_Cancel
	8.3.5 Fls_GetStatus
	8.3.6 Fls_GetJobResult
	8.3.7 Fls_Read
	8.3.8 Fls_Compare
	8.3.9 Fls_SetMode
	8.3.10 Fls_GetVersionInfo

	8.4 Call-back notifications
	8.5 Scheduled functions
	8.5.1 Fls_MainFunction

	8.6 Expected Interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.3 Configurable interfaces

	9 Sequence diagrams
	9.1 Initialization
	9.2 Synchronous functions
	9.3 Asynchronous functions
	9.4 Canceling a running job

	10 Configuration specification
	10.1 How to read this chapter
	10.1.1 Configuration and configuration parameters
	10.1.2 Containers
	10.1.3 Specification template for configuration parameters

	10.2 Containers and configuration parameters
	10.2.1 Variants
	10.2.2 Fls
	10.2.3 FlsGeneral
	10.2.4 FlsConfigSet
	10.2.5 FlsSectorList
	10.2.6 FlsSector

	10.3 Published Information
	10.3.1 FlsPublishedInformation

