
 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

1 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

Document Title Specification of ECU State 
Manager 

Document Owner AUTOSAR 

Document Responsibility AUTOSAR 

Document Identification No 078 

Document Classification Standard 

  

Document Version 2.1.0 

Document Status Final 

Part of Release 3.2 

Revision 3 

 
 

Document Change History 
Date Ver. Changed by Change Description 

28.02.2014 2.1.0 AUTOSAR 
Release 
Management 

 CanSM is now involved in 
WakeupValidation and is called by EcuM 
in EcuM_StartWakeupSource and 
EcuM_StopWakeupSource 

 Introduced 
EcuM_KillAllPostRUNRequests to kill 
PostRUN requests 

 Editorial changes 

 Removed chapter(s) on change 
documentation 

26.05.2012 2.0.0 AUTOSAR  
Administration 

 Improved asynchronous transceiver 
handling for CAN Wake up (added 
EcuM_StartCheckWakeup 
EcuM_EndCheckWakeup) 

 Update of Wake-up Sequence II 
(initialization of modules from Init List III 
on wake up by wake up source with 
integrated power control) 

 Post-build parameters for multi purpose 
ECUs: fixed configuration parameter 
tables (EcuMConfiguration) 

 Clarification of shutdown target in case 
wake up validation fails. 

 Clarification about NvM_CancelWriteAll in 
shutdown paths 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

2 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

Document Change History 
Date Ver. Changed by Change Description 

07.04.2011 1.4.0 AUTOSAR  
Administration 

 Fixed possible loss of CAN wake up and 
improved wake up handling. 

 Changed behavor of 
EcuM_KillAllRUNRequests so that this 
API does only influence requests to RUN, 
but not to POST_RUN. 

 A SW-C which needs to be able to keep 
track of the current mode shall use the 
mode switch interface 
EcuM_CurrentMode. 

 Re-assign call of EcuM_SetWakeupEvent 
from integrator code to transceiver driver. 

 Legal disclaimer revised  

16.09.2010 1.3.0 AUTOSAR  
Administration 

 Added EcuM3020  

 Fixed description in EcuM2904  

 Update description ErrorHook  

 Change of AppMode  

 Update ErrorHook with note  

 Added note for exit from GO SLEEP  

 Reformulated EcuM2863 and added 
rationale  

 Added a note to EcuM_AL_SwitchOff  

 Legal disclaimer revised  

23.06.2008 1.2.1 AUTOSAR  
Administration 

Legal disclaimer revised 

11.12.2007 1.2.0 AUTOSAR  
Administration 

 Fixed wake up mechanisms 

 Included optional triggering of Watchdog 
Manager during Startup, Shutdown, and 
Sleep 

 Extended startup sequence to have more 
flexibility and to directly initialize all other 
BSW modules 

 Generated APIs from BSW UML model 

 Generated configuration from Meta Model 

 Document meta information extended  

 Small layout adaptations made 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

3 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

Document Change History 
Date Ver. Changed by Change Description 

31.01.2007 1.1.0 AUTOSAR 
Administration 

 Corrected startup flow and wake up 
concept. 

 Added specification for AUTOSAR ports. 

 Modified configuration for compliance 
with variant management. 

 Added new API services. 
 

 Legal disclaimer revised 

 Release Notes added 

 “Advice for users” revised 

 “Revision Information” added 
 

28.06.2006 1.0.0 AUTOSAR 
Administration 

Initial Release 
 

 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

4 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

Disclaimer 
 
This specification and the material contained in it, as released by AUTOSAR is for 
the purpose of information only. AUTOSAR and the companies that have contributed 
to it shall not be liable for any use of the specification. 
 
The material contained in this specification is protected by copyright and other types 
of Intellectual Property Rights. The commercial exploitation of the material contained 
in this specification requires a license to such Intellectual Property Rights.  
 
This specification may be utilized or reproduced without any modification, in any form 
or by any means, for informational purposes only.  
For any other purpose, no part of the specification may be utilized or reproduced, in 
any form or by any means, without permission in writing from the publisher.  
 
The AUTOSAR specifications have been developed for automotive applications only. 
They have neither been developed, nor tested for non-automotive applications. 
 
The word AUTOSAR and the AUTOSAR logo are registered trademarks. 
 
 
 
Advice for users  
 
AUTOSAR Specification Documents may contain exemplary items (exemplary 
reference models, "use cases", and/or references to exemplary technical solutions, 
devices, processes or software).  
 
Any such exemplary items are contained in the Specification Documents for 
illustration purposes only, and they themselves are not part of the AUTOSAR 
Standard. Neither their presence in such Specification Documents, nor any later 
documentation of AUTOSAR conformance of products actually implementing such 
exemplary items, imply that intellectual property rights covering such exemplary 
items are licensed under the same rules as applicable to the AUTOSAR Standard. 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

5 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

Table of Contents 
 

1 Introduction ........................................................................................................ 11 

1.1 Functional Overview ................................................................................... 11 
1.2 Conventions Used in this Specification ...................................................... 12 

1.2.1 Font Faces .......................................................................................... 12 
1.2.2 Figures ................................................................................................ 12 

2 Definitions and Acronyms .................................................................................. 13 

3 Related documentation...................................................................................... 14 

3.1 Input documents ......................................................................................... 14 
3.2 Related standards and norms .................................................................... 14 
3.3 Related AUTOSAR Software Specifications .............................................. 14 

4 Constraints and Assumptions ............................................................................ 16 

4.1 Limitations .................................................................................................. 16 
4.2 Hardware Requirements ............................................................................ 16 
4.3 Applicability to car domains ........................................................................ 16 

5 Dependencies to other modules ........................................................................ 17 

5.1 Mode Management Modules ...................................................................... 17 
5.1.1 Communication Manager .................................................................... 17 

5.1.2 Watchdog Manager ............................................................................. 17 
5.2 SPAL Modules ........................................................................................... 17 

5.2.1 MCU Driver ......................................................................................... 17 
5.2.2 Driver Dependencies and Initialization Order ...................................... 17 

5.3 Peripherals with Wake up Capability .......................................................... 18 
5.4 Operating System ....................................................................................... 18 
5.5 Runtime Environment (RTE) ...................................................................... 18 

5.6 BSW Scheduler .......................................................................................... 19 
5.7 NVRAM Manager ....................................................................................... 19 

5.8 Diagnostic Event Manager ......................................................................... 19 
5.9 Software Components ................................................................................ 19 

5.10 File Structure .............................................................................................. 20 

6 Requirements traceability .................................................................................. 21 

7 Functional Specification..................................................................................... 26 

7.1 Main States of the ECU State Manager module ......................................... 26 
7.1.1 STARTUP State .................................................................................. 26 
7.1.2 RUN State ........................................................................................... 27 
7.1.3 SHUTDOWN State .............................................................................. 27 

7.1.4 SLEEP State ....................................................................................... 27 
7.1.5 WAKEUP State ................................................................................... 28 
7.1.6 OFF State............................................................................................ 28 

7.2 Structural Description of the ECU State Manager module ......................... 29 

7.2.1 Standardized AUTOSAR Software Modules ....................................... 30 
7.2.2 Software Components ......................................................................... 30 
7.2.3 Resource Managers ............................................................................ 30 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

6 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

7.3 STARTUP State ......................................................................................... 32 

7.3.1 High Level Sequence Diagram............................................................ 32 
7.3.2 Activities before EcuM_Init .................................................................. 33 
7.3.3 STARTUP Activity Overview ............................................................... 33 
7.3.4 Sub-State Descriptions ....................................................................... 35 
7.3.5 Driver Initialization ............................................................................... 41 

7.3.6 DET Initialization ................................................................................. 44 
7.4 RUN State .................................................................................................. 45 

7.4.1 State Breakdown Structure ................................................................. 45 
7.4.2 High Level Sequence Diagram............................................................ 46 
7.4.3 Sub-State Description ......................................................................... 47 

7.5 SHUTDOWN State ..................................................................................... 51 
7.5.1 State Breakdown Structure ................................................................. 51 

7.5.2 High Level Sequence Diagram............................................................ 52 
7.5.3 SHUTDOWN Activity Overview ........................................................... 53 
7.5.4 Sub-State Descriptions ....................................................................... 55 

7.6 SLEEP State .............................................................................................. 61 

7.6.1 High Level Sequence Diagram............................................................ 61 
7.6.2 Sub-State Descriptions ....................................................................... 62 

7.6.3 Leaving SLEEP State .......................................................................... 65 
7.7 WAKEUP State .......................................................................................... 66 

7.7.1 High Level Sequence Diagram............................................................ 66 

7.7.2 State Breakdown Structure ................................................................. 67 

7.7.3 WAKEUP Activity Overview ................................................................ 68 
7.7.4 Sub-State Descriptions ....................................................................... 69 

7.8 Wake up Validation Protocol ...................................................................... 74 
7.8.1 Wake up of Communication Channels ................................................ 74 
7.8.2 Wake up of the Entire ECU ................................................................. 75 
7.8.3 Interaction of Wake up Sources and the ECU State Manager module 76 

7.8.4 Wake up Validation Timeout ............................................................... 76 
7.8.5 Requirements for Drivers with Wake up Sources ................................ 77 

7.8.6 Requirements for Wake up Validation ................................................. 77 
7.8.7 Wake up Sources and Reset Reason ................................................. 77 
7.8.8 Wake up Sources with Integrated Power Control ................................ 77 

7.8.9 Activity Diagram .................................................................................. 79 

7.9 Time Triggered Increased Inoperation ....................................................... 79 
7.10 AUTOSAR Ports......................................................................................... 80 

7.10.1 Scope of this Chapter .......................................................................... 80 

7.10.2 Overview ............................................................................................. 80 
7.10.3 Use Cases........................................................................................... 81 
7.10.4 Specification of the Port Interfaces ...................................................... 82 
7.10.5 Summary of ports ................................................................................ 87 
7.10.6 Runnables and Entry points ................................................................ 90 

7.11 Advanced Topics ........................................................................................ 91 
7.11.1 Application Modes ............................................................................... 91 
7.11.2 Relation to Bootloader ......................................................................... 92 
7.11.3 Relation to Complex Drivers................................................................ 92 

7.11.4 Handling Errors during Startup and Shutdown .................................... 92 
7.11.5 Configuration Alternative for Providing Wake-Sleep Operation ........... 92 

7.11.6 Selecting Scheduling Schemes for Startup and Shutdown ................. 93 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

7 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

7.12 Error Classification ..................................................................................... 94 

8 API specification ................................................................................................ 95 

8.1 Imported Types .......................................................................................... 95 
8.2 Type definitions .......................................................................................... 96 

8.2.1 EcuM_ConfigType ............................................................................... 96 
8.2.2 EcuM_StateType ................................................................................. 96 

8.2.3 EcuM_UserType ................................................................................. 97 
8.2.4 EcuM_WakeupSourceType................................................................. 97 
8.2.5 EcuM_WakeupStatusType .................................................................. 98 
8.2.6 EcuM_WakeupReactionType .............................................................. 98 

8.2.7 EcuM_BootTargetType ....................................................................... 98 
8.2.8 EcuM_AppModeType .......................................................................... 98 

8.3 Function Definitions .................................................................................... 99 

8.3.1 General ............................................................................................... 99 
8.3.2 Initialization and Shutdown.................................................................. 99 
8.3.3 State Management ............................................................................ 101 
8.3.4 Wake up Handling ............................................................................. 109 

8.3.5 Miscellaneous ................................................................................... 112 
8.4 Scheduled Functions ................................................................................ 114 

8.4.1 EcuM_MainFunction ......................................................................... 114 
8.5 Callback Definitions .................................................................................. 115 

8.5.1 Callbacks from NVRAM Manager ..................................................... 115 

8.5.2 Callbacks from Wake up Sources ..................................................... 115 

8.6 Callout Definitions .................................................................................... 119 
8.6.1 Generic Callouts ................................................................................ 119 
8.6.2 Callouts from STARTUP ................................................................... 119 
8.6.3 Callouts from RUN State ................................................................... 122 
8.6.4 Callouts from SHUTDOWN ............................................................... 123 
8.6.5 Callouts from WAKEUP .................................................................... 126 

8.6.6 Callouts from SLEEP State ............................................................... 129 
8.7 Expected Interfaces .................................................................................. 131 

8.7.1 Mandatory Interfaces ........................................................................ 131 
8.7.2 Optional Interfaces ............................................................................ 131 
8.7.3 Configurable interfaces ..................................................................... 133 

8.8 API Parameter Checking .......................................................................... 133 

9 Sequence Charts ............................................................................................. 134 

9.1 State Sequences ...................................................................................... 134 
9.2 Wake up Sequences ................................................................................ 135 

9.2.1 GPT Wake up Sequences ................................................................. 135 
9.2.2 ICU Wake up Sequences .................................................................. 138 
9.2.3 CAN Wake up Sequences ................................................................ 140 
9.2.4 LIN wake up sequences .................................................................... 146 
9.2.5 FlexRay wake up sequences ............................................................ 149 

10 Configuration specification ........................................................................... 151 

10.1 Configuration Variants .............................................................................. 151 
10.2 Configurable Parameters ......................................................................... 151 

10.2.1 EcuM ................................................................................................. 151 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

8 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

10.2.2 EcuMGeneral .................................................................................... 152 

10.2.3 EcuMConfiguration ............................................................................ 156 
10.2.4 EcuMDriverInitListZero ...................................................................... 160 
10.2.5 EcuMDriverInitListOne ...................................................................... 160 
10.2.6 EcuMDriverInitListTwo ...................................................................... 161 
10.2.7 EcuMDriverInitListThree .................................................................... 161 

10.2.8 EcuMDriverRestartList ...................................................................... 161 
10.2.9 EcuMDriverInitItem ............................................................................ 161 
10.2.10 EcuMModuleConfiguration ............................................................ 163 
10.2.11 EcuMDefaultShutdownTarget ........................................................ 167 
10.2.12 EcuMWakeupSource ..................................................................... 169 

10.2.13 EcuMSleepMode ........................................................................... 172 
10.2.14 EcuMTTII ....................................................................................... 175 

10.2.15 EcuMUserConfig ........................................................................... 177 
10.2.16 EcuMWdgM ................................................................................... 178 

10.3 Published Parameters .............................................................................. 181 
10.4 Checking Configuration Consistency ........................................................ 182 

10.4.1 The Necessity for Checking Configuration Consistency in the ECU 
State Manager ................................................................................................. 182 

10.4.2 Example Hash Computation Algorithm ............................................. 184 
 
 
 
 

List of Tables 
 
Table 1 - Initialization Activities ................................................................................. 34 

Table 2 - Driver Initialization Details, Sample Configuration ..................................... 44 

Table 3 - Shutdown Activities ................................................................................... 53 

Table 4 - Wake up Activities ..................................................................................... 68 

Table 5 - Error Classification .................................................................................... 94 

Table 6 - Mandatory interfaces ............................................................................... 131 

Table 7 - Optional Interfaces .................................................................................. 133 

 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

9 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

List of Figures 
 
Figure 1 – ECU Main States (top level diagram) ...................................................... 26 

Figure 2 – Module Relationship (top level diagram) ................................................. 29 

Figure 3 – Startup Sequence (high level diagram) ................................................... 32 

Figure 4 – Init Sequence I (STARTUP I) .................................................................. 37 

Figure 5 – Init Sequence II (STARTUP II)................................................................. 40 

Figure 6 – RUN State Breakdown ............................................................................ 45 

Figure 7 – RUN State Sequence (high level diagram) .............................................. 46 

Figure 8 – RUN II State Sequence ........................................................................... 47 

Figure 9 – RUN III State Sequence .......................................................................... 50 

Figure 10 – Fine Structure of SHUTDOWN .............................................................. 51 

Figure 11 – Shutdown Sequence (high level diagram) ............................................. 52 

Figure 12 – Deinitialization Sequence I (PREP SHUTDOWN) ................................. 55 

Figure 13 – Deinitialization Sequence IIa (GOSLEEP) ............................................. 58 

Figure 14 – Deinitialization Sequence IIb (GO OFF I) .............................................. 58 

Figure 15 – Deinitialization Sequence III (GO OFF II) .............................................. 60 

Figure 16 – Sleep Sequence (high level diagram) .................................................... 61 

Figure 17 – Sleep Sequence I .................................................................................. 63 

Figure 18 – Sleep Sequence II ................................................................................. 64 

Figure 19 – Wake up Sequence (high level diagram) ............................................... 66 

Figure 20 – WAKEUP State Breakdown ................................................................... 67 

Figure 21 – Wake up Sequence I ............................................................................. 69 

Figure 22 – Wake up Validation Sequence .............................................................. 72 

Figure 23 – Activity Diagram of WAKEUP REACTION ............................................. 73 

Figure 24 – Wake up Sequence II ............................................................................ 74 

Figure 25 – Wake up Validation Protocol ................................................................. 79 

Figure 26 – Activity Diagram of TTII ......................................................................... 80 

Figure 27 – ARPackage EcuM ................................................................................. 81 

Figure 28 – Mapping of declared modes to ECU State Manager module states ...... 84 

Figure 29 – Selection of Boot Targets ...................................................................... 92 

Figure 30 – GPT wake up by interrupt .................................................................... 136 

Figure 31 – GPT wake up by polling ....................................................................... 137 

Figure 32 – ICU wake up by interrupt ..................................................................... 139 

Figure 33 – CAN transceiver wake up by interrupt ................................................. 142 

Figure 34 – CAN controller wake up by interrupt .................................................... 142 

Figure 35 – CAN controller or transceiver wake up by polling ................................ 143 

Figure 36 – CAN wake up validation ...................................................................... 145 

Figure 37 – LIN transceiver wake up by interrupt ................................................... 146 

Figure 38 – LIN controller wake up by interrupt ...................................................... 147 

Figure 39 – LIN controller or transceiver wake up by polling .................................. 148 

Figure 40 – FlexRay transceiver wake up by interrupt ............................................ 149 

Figure 41 – FlexRay transceiver wake up by polling .............................................. 150 

Figure 42 – Container EcuM ................................................................................... 151 

Figure 43 – Container EcuMGeneral ...................................................................... 155 

Figure 44 – Container EcuMConfiguration ............................................................. 159 

Figure 45 – Container EcuMConfiguration – Init Lists ............................................ 160 

Figure 48 – Container EcuMDriverInititem .............................................................. 163 

Figure 46 – Container EcuMModuleConfiguration .................................................. 166 

Figure 47 – Container EcuMDefaultShutdownTarget ............................................. 168 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

10 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

Figure 49 – Container EcuMWakeupSource .......................................................... 171 

Figure 50 – Container EcuMSleepMode ................................................................. 174 

Figure 51 – Container EcuMTTII ............................................................................ 176 

Figure 52 – Container EcuMUserConfig ................................................................. 177 

Figure 53 – Container EcuMWdgM ........................................................................ 180 

Figure 54 – BSW Configuration Steps .................................................................... 182 

 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

11 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

1 Introduction 
 

1.1 Functional Overview 
 
The ECU State Manager module is a basic software module (see [1]). It manages all 
aspects of the ECU related to the OFF, RUN, and SLEEP states of that ECU and the 
transitions (transient states) between these states like STARTUP and SHUTDOWN. 
In detail, the ECU State Manager module 

 is responsible for the initialization and de-initialization of all basic software 
modules including OS and RTE, 

 cooperates with the Communication Manager, and hence indirectly with 
network management, to shut down the ECU when needed, 

 manages all wake up events and configures the ECU for SLEEP when 
requested. 

In order to fulfill all these tasks, the ECU State Manager module provides some 
important protocols: 

 the RUN request protocol, which is needed to coordinate whether the ECU 
must be kept alive or is ready to shut down, 

 the wake up validation protocol to distinguish ‘real’ wake up events from 
‘erratic’ ones, 

 the time triggered increased inoperation protocol (TTII), which allows to put 
the ECU into an increasingly energy saving sleep state over time. 

These protocols were specified with the following underlying constraints: 

 standardization at the API side, to allow applicability to all kinds of ECUs and 
portability of AUTOSAR applications 

 high degree of flexibility to the low side interface, mainly reached by a set of 
callouts 

 quick startup times 

 consistent programming paradigm across all mode managing modules (rubber 
band model1) 

Summarizing all this, the ECU State Manager module will be one of the principal 
state machines of an AUTOSAR compliant ECU, namely that one around states with 
the highest priority: RUN, SLEEP, and OFF. However, it does not and shall not in 
future contain functionality which might be related to terms like ‘vehicle modes’, ‘error 
modes’, or any other kind of application related kind of states or modes. These topics 
shall be addressed by other state machines (application mode managers). 
 
 

                                            
1
 As long as some entity requests run, the rubber band is stretched to the RUN state, and it snaps 

back when it is released. Since there is only one state (namely the RUN state) to which the rubber 
band applies, this term is not used any further in this specification. However, it is important to 
understand that, if applied to resource managers, the result is a powerful and consistent concept for 
enhancing state machines. The Communication Manager is a module which picks up the idea of the 
resource manager and of the rubber band model and henceforce fits well into landscape spawn by the 
ECU State Manager. 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

12 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

1.2 Conventions Used in this Specification 
 
1.2.1 Font Faces 
 
EcuM123: Requirements are tagged with an ID in bold font. 
 
References to other documents or to other chapters within this document are printed 
in italic. 
 

Source code is printed in a Courier font. 

 

Configuration Parameters are printed in Courier Italic. 

 
STATE names are written in capital letters. 
 
 
1.2.2 Figures 
 
Figure X - Title (diagram type) 
 

Figures are typically drawn in UML. To capture the hierarchical organization of the 
UML diagrams, some diagrams are classified in the title (diagram type). The following 
types are used: 

 Top level  
An entry diagram to the structural or behavioral domain 

 High level  
First degree of break down below the top level 

 SUB-STATE  
The diagram describes the behavior of the given sub-state, the diagram type 
is the name of the sub-state 

 no class  
All other diagrams, typically detail information 

 
In the present version of this documentation, there is only one top level diagram: The 
main state machine. 
The next level is covered by high level diagrams. There are five high level sequence 
diagrams: 

Figure 3 – Startup Sequence (high level diagram) 
Figure 7 – RUN State Sequence (high level diagram) 
Figure 11 – Shutdown Sequence (high level diagram) 
Figure 16 – Sleep Sequence (high level diagram) 
Figure 19 – Wake up Sequence (high level diagram) 

 
These high level diagrams give an overview of the major activities in the main state 
and explain how the state transitions occur. High level sequence diagrams always 
start with a diagram reference to the preceding sequence and end with a diagram 
reference to the following sequence. 
High level diagrams are typically broken down into SUB-STATE diagrams. They 
show details which are irrelevant at the high level. 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

13 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

2 Definitions and Acronyms 
 

Term Description 

Inoperation An artificial word to describe the ECU when it is not operational, i.e. not 
running. Comprises all meanings of off, sleeping, frozen, etc. Using this 
definition is beneficial since it has no predefined meaning. 

Shutdown Target The shutdown of an ECU may end up in different states, depending on 
what application requires or desires for the next shutdown. By selecting a 
shutdown target, the application can communicate its wishes to the ECU 
State Manager module. SLEEP, OFF, and RESET are shutdown targets. 

Callback Within this document, the term ‘callback’ is used for API services which 
are intended for notifications to other BSW modules. 

Callout Within this document, the term ‘callout’ is used for function stubs which 
can be filled by the system designer, usually at configuration time, with 
the purpose to add functionality to the ECU State Manager module. 
Callouts are separated into two classes, where one class is optional to 
be filled. The other class is mandatory and serves as a hardware 
abstraction layer. 

ECU Firmware In this specification ECU Firmware does not refer to any AUTOSAR 
module. It is a placeholder for pieces of code that have to be added at 
configuration and integration time. The ECU firmware implements all the 
Callouts of the ECU State Manager module. Some of the callouts are 
also used by other BSW modules. 

Passive Wake up A wake up caused from an attached bus rather than an internal event 
like a timer or sensor activity. 

Post run Post run is the period from when the application detects a reason to start 
the shutdown until the shutdown actually occurs. Typically this period 
starts when all network communication is put to sleep and lasts until the 
ECU is put to sleep. 

Vital Data Any kind of data (RAM or NVRAM) that must stay consistent to ensure 
correct operation of the ECU. E.g. stacks, important state variables, etc. 

Wake up Event A physical event which causes a wake up. A CAN message or a toggling 
IO line can be wake up events. 
Similarly, the internal SW representation, e.g. an interrupt, may also be 
called a wake up event. 

Wake up Reason The wake up reason is the wake up event being the actual cause of the 
last wake up. 

Wake up Source The peripheral or ECU component which deals with wake up events is 
called a wake up source. 

 

Acronym Description 

BSW Basic Software 

BSWM Basic Software Module 

ISR Interrupt Service Routine 

RTE Runtime Environment 

SW-C Software Component (above the RTE) 

TTII Time-Triggered Increased Inoperation 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

14 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

3 Related documentation 

3.1 Input documents  
 
[1] List of Basic Software Modules 

AUTOSAR_BasicSoftwareModules.pdf 
 
[2] Layered Software Architecture 

AUTOSAR_LayeredSoftwareArchitecture.pdf 
 
[3] General Requirements on Basic Software Modules 

AUTOSAR_SRS_General.pdf 
 
[4] Requirements on Mode Management 

AUTOSAR_SRS_ModeManagement.pdf 
 
 

3.2 Related standards and norms 
 
None 
 
 

3.3 Related AUTOSAR Software Specifications 
 
[5] Glossary 

AUTOSAR_Glossary.pdf 
 
[6] Specification of Communication Manager 

AUTOSAR_SWS_ComManager.pdf 
 
[7] Specification of Watchdog Manager 

AUTOSAR_SWS_WatchdogManager.pdf 
 
[8] Specification of CAN Interface 

AUTOSAR_SWS_CAN_Interface.pdf 
 
[9] Specification of LIN Interface 

AUTOSAR_SWS_LIN_Interface.pdf 
 
[10] Specification of FlexRay Interface 

AUTOSAR_SWS_FlexRayInterface.pdf 
 
[11] Specification of NVRAM Manager 

AUTOSAR_SWS_NVRAM_Manager.pdf 
 
[12] Specification of MCU Driver 

AUTOSAR_SWS_MCU_Driver.pdf 
 
[13] Specification of SPI Handler/Driver 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

15 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

AUTOSAR_SWS_SPIHandlerDriver.pdf 
 
[14] Specification of EEPROM Interface 

AUTOSAR_SWS_EEPROM_Driver.pdf 
 
[15] Specification of Flash Interface 

AUTOSAR_SWS_Flash_Driver.pdf 
 
[16] Specification of Operating System 

AUTOSAR_SWS_OS.pdf 
 
[17] Specification of RTE 

AUTOSAR_SWS_RTE.pdf 
 
[18] Specification of Diagnostics Event Manager  

AUTOSAR_SWS_DEM.pdf 
 
[19] Specification of Development Error Tracer 

AUTOSAR_SWS_DET.pdf 
 
[20] Specification of CAN Transceiver Driver 

AUTOSAR_SWS_CAN_TransceiverDriver.pdf 
 
[21] Specification of C Implementation Rules 

AUTOSAR_SWS_C_ImplementationRules.pdf 
 

[22] AUTOSAR Basic Software Module Description Template, 
AUTOSAR_BSW_Module_Description.pdf 

 
 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

16 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

4 Constraints and Assumptions 
 

4.1 Limitations 
 
The shutdown target OFF requires special hardware on the ECU so that it can 
actually be reached (e.g. a power hold circuit). If this hardware is not available, this 
specification proposes to issue a reset instead but other default behaviors can be 
defined. 
 
EcuM2522: Applications (SW-C’s) shall not assume that it is actually possible to 
switch off ECUs (i.e. power consumption is zero). 
 
 

4.2 Hardware Requirements 
 
The following requirements are needed to support switching the application mode 
(see 7.11.1 Application Modes). Other basic software modules also need this 
requirement. 
 
EcuM2261: ECU RAM must keep contents of vital data while ECU clock is switched 
off. This requirement is needed to implement sleep states as required in 7.6 SLEEP 
State. 
 
EcuM2262: ECU RAM must provide a no init area which keeps contents over a reset 
cycle. A no init area shall only be initialized on a power on event (clamp 30). The 
system designer is responsible for establishing an initialization strategy. 
 
 

4.3 Applicability to car domains 
 
The ECU State Manager module is applicable to all car domains. 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

17 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

5 Dependencies to other modules 
 
The following sections outline the important relationships to other modules. They also 
contain some requirements that these modules have to fulfill to collaborate correctly 
with the ECU State Manager module. 
 
 

5.1 Mode Management Modules 
 
5.1.1 Communication Manager 
 
The Communication Manager is a so-called ‘Resource Manager’2 and thus requests 
RUN state. Resource Managers are described in chapter 7.2.3 Resource Managers. 
 
The Communication Manager requests RUN state when it is leaving the ‘no 
communication’ state and it releases RUN when it is returning to this state. 
 
 
5.1.2 Watchdog Manager 
 
The Watchdog Manager is initialized by the ECU State Manager module. 
 
The ECU State Manager module also switches Watchdog Manager modes when it 
changes its states. 
 
Furthermore, the ECU State Manager module is one of the Supervised Entities of the 
Watchdog Manager. 
 
 

5.2 SPAL Modules 
 
5.2.1 MCU Driver 
 
The MCU Driver is the first basic software module initialized by the ECU State 

Manager module. However, returning MCU_Init, the MCU and the MCU driver are 

not necessarily fully initialized. Additional, MCU specific steps may be needed. The 
ECU State Manager module provides a callout where this additional code can be 
placed. For details on how this code should look like refer to [12]. 
 
 
5.2.2 Driver Dependencies and Initialization Order 
 
BSW drivers may depend on each other. A typical example is the watchdog driver 
which needs the SPI driver to access an external watchdog. This means on the one 
hand, that drivers may be stacked (not relevant to EcuM) but on the other hand that 
the underlying driver needs to be initialized first. 

                                            
2
 'Resource Manager' is invented in this specification to classify BSW modules which interact with Ecu 

State Manager. 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

18 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

 
EcuM2502: The system designer is responsible for defining the initialization order at 
configuration time. 
 
 

5.3 Peripherals with Wake up Capability 
 
Wake up sources have to be handled and encapsulated by drivers. The 
implementation must follow the protocols and requirements presented in this 
document to ensure a seamless integration into AUTOSAR BSW. 
To support the wake up and validation protocol, the driver has to fulfill the following 
requirements: 
 
The driver has to notify ECU State Manager module by invoking the 
EcuM_SetWakeupEvent service once when a wake up event is detected. The same 
service should also be invoked during initialization of the driver if a pending wake up 
event is detected during the initialization.  
 
The driver shall provide an explicit service to put the wake up source to sleep. This 
service shall put the wake up source into a energy saving and inert operation mode 
and re-arm the wake up notification mechanism. 
 
If the wake up source is capable of generating faulty events3 then the driver or the 
software stack consuming the driver or another appropriate BSW module shall either 
provide a validation callout for the wake up event under validation or directly call the 
wake up validation service of the ECU State Manager module. If validation is not 
necessary, then this requirement is not applicable for the according wake up source. 
 
 

5.4 Operating System 
 
The ECU State Manager module starts and shuts down the AUTOSAR OS. It also 
defines the protocol how control is handed over to the OS after its startup and how it 
is handed back to the ECU State Manager module when it is shut down. 
 
 

5.5 Runtime Environment (RTE) 
 
The initialization and de-initialization functions of RTE are assumed to return. 
 
The ECU State Manager module shall use the mode port feature of RTE to notify 
about state changes. See chapter 7.10 AUTOSAR Ports for more information. 
 
 

                                            
3
 Faulty wakeup events may result from EMV spikes, bouncing effects on wakeup lines etc. 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

19 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

5.6 BSW Scheduler 
 
The ECU State Manager module has a twofold relation with the BSW Scheduler. It 
initializes the BSW Scheduler and it also contains scheduled functions. 
EcuM_MainFunction is scheduled to periodically evaluate run requests. 
 
 

5.7 NVRAM Manager 
 
The following operations of the NVRAM Manager [11] are executed by the ECU State 
Manager module. 

 Initialization of NVRAM Manager after a power up or reset of the ECU 

 Read-back of non-volatile data from NVRAM to ECU RAM during the 
initialization of the ECU 

 In case of SLEEP state, storing of non-volatile data to NVRAM may 
prematurely be terminated upon wakeup events to ensure a quick restart of 
the ECU. 

NVRAM is not read during the wake up sequence since RAM contents is assumed to 
be still valid from the previous cycle. To verify this, RAM integrity is checked4. 
NVRAM is only read during the STARTUP. 
 
The NVRAM Manager shall call the callbacks defined in chapter 8.5.1 Callbacks from 
NVRAM Manager to notify the ECU State Manager module about job status. 
 
 

5.8 Diagnostic Event Manager 
 
The DEM requires NVRAM Manager to be operational. The DEM is aware if NVRAM 
Manager is operational or provides limited functionality. These differences are 
handled within the DEM. 
 
 

5.9 Software Components 
 
The ECU State Manager module handles two ECU-wide settings/variables: 

 Application modes5 

 Setting of shutdown targets 
It is assumed in this specification that these properties are set by the application 
(through AUTOSAR ports), typically by some ECU specific part of the application. 
The ECU State Manager module does not prohibit two application overriding each 
other’s settings. The policy must be defined at a higher level. 
The following two requirements formulate an attempt to resolve this issue. 
 

                                            
4
 See 8.6.4.6 EcuM_GenerateRamHash and 8.6.5.1 EcuM_CheckRamHash for details. 

5
 In this context, ‘application mode’ is a technical term which is defined by the AUTOSAR OS 

specification. 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

20 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

The SW-C Template may specify a field whether the SW-C sets the application mode 
or the shutdown target. 
 
The generation tool may only allow configuration which have only one SW-C 
accessing application mode or shutdown target. 
 
 

5.10 File Structure 
 
EcuM2675: The file structure shall be as follows: 

 One or more C file EcuM_xxx.c containing the entire or parts of ECU State 

Manager code 

 One C file EcuM_PBcfg.c containing post build time configuration. 

 One file EcuM_Callout_Stubs.c containing the stubs of the defined 

callouts. Whether this file shall be modified directly or includes other 
generated files is specific to the implementation. 

 An API interface EcuM.h providing the fix type declarations, forward 

declaration to generated types, and function prototypes 

 A type header EcuM_Generated_Types.h providing generated types and 

fulfills the forward declarations from EcuM.h. 

 A type header EcuM_Cfg.h providing the configuration parameters 

 A callback/callout interface EcuM_Cbk.h providing the callback/callout 

function prototype 
 

EcuM2676: It shall only be necessary to include EcuM.h to use all services of the 

ECU State Manager module. 
 

EcuM2677: It shall only be necessary to include EcuM_Cbk.h to interact with the 

callbacks and callouts of the ECU State Manager module. 
 
EcuM2862: The ECU State Manager module implementation shall include 

SchM_EcuM.h and MemMap.h. 

 
Also refer to chapter 8.7 Expected Interfaces for dependencies to other modules. 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

21 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

6 Requirements traceability 
 
Document: General Requirements on Basic Software Modules [3] 
 
Requirement Satisfied by  
[BSW00344] Reference to link-time configuration EcuM2500 

EcuM does not define configuration sets but 
references the init configuration, e.g. for driver 
initialization 

[BSW00404] Reference to post build time 
configuration 

[BSW00405] Reference to multiple configuration 
sets 

[BSW00345] Pre-compile-time configuration 10.2 Configurable Parameters 

5.10 File Structure 

[BSW159] Tool-based configuration not applicable 
(EcuM does not specify the configuration tool) 

[BSW167] Static configuration checking 10.2 Configurable Parameters 

[BSW171] Configurability of optional 
functionality 

10.2 Configurable Parameters 

[BSW00380] Separate C-files for configuration 
parameters 

5.10 File Structure 

[BSW00419] Separate C-files for pre-compile-
time configuration parameters 

[BSW00381] Separate configuration header files 
for pre-compile-time parameters 

[BSW00412] Separate H-file for configuration 
parameters 

[BSW00383] List dependencies to other 
configuration files 

10.2 Configurable Parameters 

[BSW00384] List dependencies to other modules 5 Dependencies to other modules 

8.7Expected Interfaces 

[BSW00387] Specify the configuration class of a 
callback function 

8.5 Callback Definitions 

[BSW00388] 
- 
[BSW00400] 

 10.2 Configurable Parameters 

[BSW00402] Published information 10.3 Published Parameters 

[BSW00375] Notification of wake up reason 8.3.4 Wake up  
[BSW101] Initialization interface 8.3.2.1 EcuM_Init 
[BSW00416] Sequence of initialization EcuM2559 

[BSW00406] Check module initialization not applicable 
(EcuM initializes the BSW, hence EcuM is 
always initialized from the point of view of any 
other BSW module.) 

[BSW00435] Header File Structure for the Basic 
Software Scheduler 

EcuM2862 

[BSW00436] Module Header File Structure for 
the Basic Software Memory 
Mapping 

EcuM2862 

 

[BSW168] Diagnostic Interface of SW 
components 

not applicable 
(EcuM has no testing requirements) 

[BSW00407] Function to read out published 
parameters 

8.3.1.1 EcuM_GetVersionInfo 

[BSW00423] Usage of SW-C template to 
describe BSW modules with 
AUTOSAR interfaces 

7.10 AUTOSAR Ports 

[BSW00424] BSW main processing function task Implementation of EcuM_MainFunction 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

22 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

allocation according to this specification does not require 
extended task mechanisms. 

[BSW00425] Trigger conditions for schedulable 
objects 

8.4.1 EcuM_MainFunction 

[BSW00426] Exclusive areas in BSW modules not applicable 
(EcuM does not specify directly accessible global 
data.) 

[BSW00427] ISR description for BSW modules not applicable 
(EcuM does not specify ISRs.) 

[BSW00428] Execution order dependencies of 
main processing functions 

There are no requirements of this sort. 

[BSW00429] Restricted BSW OS functionality 
access 

EcuM does not use any other than the allowed 
OS services. 

[BSW00431] The BSW Scheduler module 
implements task bodies 

EcuM does not define any task body. 

[BSW00432] Modules should have separated 
main processing functions for a 
read/receive and write/transmit 
data path 

not applicable 
(EcuM does not specify RxTx functionality.) 

[BSW00433] Calling of main processing 
functions 

EcuM does not call any main processing 
function. 

[BSW00434] The Schedule Module shall provide 
an API for exclusive areas 

not applicable 
(This is not an EcuM requirement) 

[BSW00336] Shutdown interface 8.3.2.3 EcuM_Shutdown 

Fault Operation and Error Detection 

[BSW00337] Classification of errors Table 5 - Error Classification 

[BSW00338] Detection and reporting of 
development errors 

Table 5 - Error Classification 

[BSW00369] Do not return development error 
codes via API 

8 API specification 

[BSW00339] Reporting of production relevant 
error statuses 

EcuM2759 

[BSW00417] Reporting of Error Events by Non-
Basic Software 

not applicable 
 

[BSW00323] API parameter checking 8.8 API Parameter Checking 

[BSW004] Version check 10.3 Published Parameters 

[BSW00409] Header files for production code 
error IDs 

5.10 File Structure 

[BSW00385] List possible error notifications Table 5 - Error Classification 

[BSW00386] Configuration for detecting errors 7.12 Error Classification 

[BSW161] Microcontroller abstraction not applicable 
(Requirements related to layered software 
architecture are reflected by the EcuM SRS) 

[BSW162] ECU layout abstraction 

[BSW005] No hard coded horizontal interfaces 
within MCAL 

[BSW00415] User dependent include files not applicable 
(EcuM does not define user specific functionality) 

[BSW164] Implementation of ISRs not applicable 
(EcuM does not specify ISRs.) [BSW00325] Runtime of ISRs 

[BSW00326] Transition from ISRs to OS task 

[BSW00342] Usage of source code and object 
code. 

5.10 File Structure 

[BSW00343] Specification and configuration of 
time 

10.2 Configurable Parameters 

[BSW160] Human-readable configuration data not applicable 
(This specification does not define the 
configuration file) 

[BSW007] HIS MISRA C The API definition complies with MISRA C. 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

23 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

8 API specification 

[BSW00300] Module naming conventions. 5.10 File Structure 

[BSW00413] Accessing instances of BSW 
modules 

not applicable 
(EcuM defines only one instance.) 

[BSW00347] Naming separation of different 
instances of BSW drivers 

[BSW00305] Self-defined data types naming 
conventions 

8.2 Type definitions 

[BSW00307] Global variables naming 
convention 

not applicable 
(EcuM does not specify global variables.) 

[BSW00310] API naming conventions 8 API specification 

[BSW00373] Main processing function naming 
convention 

8.4.1 EcuM_MainFunction 

[BSW00327] Error values naming convention Table 5 - Error Classification 

[BSW00335] Status values naming convention 8.2 Type definitions 

[BSW00350] Development error detection 
keyword 

10.2 Configurable Parameters 

[BSW00408] Configuration parameter naming 
convention 

10.2 Configurable Parameters 

[BSW00410] Compiler switches shall have 
defined values 

not applicable 
(This specification does not define compiler 
switchers) 

[BSW00411] Get version info keyword 10.3 Published Parameters 

[BSW00346] Basic set of module files 5.10 File Structure 

[BSW158] Separation of configuration from 
implementation 

5.10 File Structure 

[BSW00314] Separation of interrupt frames from 
service routines 

not applicable 
(EcuM does not specify ISRs.) 

[BSW00370] Separation of callback interface 
from API 

8 API specification 

Standard Header Files 

[BSW00348] Standard header type not applicable 
(EcuM does not define standard types) 

[BSW00353] Platform specific type header not applicable 
(EcuM is specified platform independent) 

[BSW00361] Compiler specific language 
extension header 

not applicable 
(EcuM does not define language extensions) 

[BSW00301] Limited import information 8.1 Imported Types 

[BSW00302] Limited export information 8 API specification 

[BSW00328] Avoid duplication of code Not applicable 
(Requirement to implementation) 

[BSW00312] Shared code shall be re-entrant 8 API specification 

[BSW006] Platform independency 8 API specification 

[BSW00357] Standard API return type 8 API specification 

[BSW00377] Module specific API return types 8 API specification 

[BSW00304] AUTOSAR integer data types 8 API specification 

[BSW00355] Do not redefine AUTOSAR integer 
data types 

8 API specification 

[BSW00378] AUTOSAR boolean type 8 API specification 

[BSW00306] Avoid direct use of compiler and 
platform specific keywords 

8 API specification 

[BSW00308] Defintion of global data Not applicable 
(EcuM does not specify global data.) [BSW00309] Global data with read-only 

constraints 

[BSW00371] Do not pass function pointers via 
API 

8 API specification 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

24 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

[BSW00358] Return type of init() functions EcuM2811 

[BSW00414] Parameter of init function 

[BSW00376] Return type and parameters of 
main processing functions 

8.4.1 EcuM_MainFunction 

[BSW00359] Return type of callback functions 8.5 Callback Definitions 

[BSW00360] Parameters of callback functions 8.5 Callback Definitions 

[BSW00329] Avoidance of generic interfaces 8 API specification 

[BSW00330] Usage of macros/inline functions 
instead of functions 

not applicable 
(Requirement to implementation) 

[BSW00331] Separation of error and status 
values 

8.2 Type definitions 

[BSW009] Module user documentation Fulfilled by usage of template/formal review 

[BSW00401] Documentation of multiple 
instances of configuration 
parameters 

10.2 Configurable Parameters 

[BSW172] Compatibility and documentation of 
scheduling strategy 

EcuM2836 

[BSW010] Memory resource documentation not applicable 
(requirement to implementation) 

[BSW00333] Documentation of callback function 
context 

8.5 Callback Definitions 

[BSW00374] Module vendor identification 10.3 Published Parameters 

[BSW00379] Module identification 10.3 Published Parameters 

[BSW003] Version identification 10.3 Published Parameters 

[BSW00318] Format of module version numbers 10.3 Published Parameters 

[BSW00321] Enumeration of module version 
numbers 

10.3 Published Parameters 

[BSW00341] Microcontroller compatibility 
documentation 

not applicable 
(requirement to implementation) 

[BSW00334] Provision of XML file not applicable 
(provided by system team) 

 
 
Document: Requirements on Mode Management [4] 
 
Requirement Satisfied by 
[BSW09120] Configuration of initialization 

process of basic software 
EcuM2559, EcuM2520, EcuM2521, 8.6.2 

Callouts from STARTUP 

[BSW09147] Configuration of de-
initialization process of basic 
software 

 

[BSW09122] Configuration of users of the 
ECU State Manager module 

EcuM487, 10.2 Configurable Parameters 

[BSW09100] Selection of wake up sources 
shall be configurable 

EcuM2389, 10.2 Configurable Parameters 

[BSW09146] Configuration of time triggered 
increased inoperation 

EcuM2654, EcuM2223, 10.2 Configurable 
Parameters 

[BSW09001] Standardization of state 
relations 

EcuM2664 

[BSW09116] Requesting and releasing the 
RUN state 

EcuM2814, EcuM2815 

[BSW09114] Starting/invoking the shutdown 
process 

EcuM2311 

[BSW09104] ECU State Manager module 
shall take over control after 
OS shutdown 

EcuM2328 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

25 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

[BSW09113] Initialization of Basic Software 
modules 

Table 1 - Initialization Activities 

[BSW09127] De-initialization of BSW Table 3 - Shutdown Activities 

[BSW09128] Support of several shutdown 
targets 

7.6.2.1 Shutdown Targets 

[BSW09119] Support of several sleep 
modes 

EcuM2363 

[BSW09102] API for selecting the sleep 
mode 

EcuM2822 

[BSW09072] Force ECU shutdown EcuM2821 

[BSW09009] Activation of software when 
entering/leaving ECU states 

8.6 Callout Definitions 

[BSW09017] Provide ECU state information 8.3.3.1 EcuM_GetState 

[BSW09138] Selection of application modes 
of OS 

EcuM2141, 7.11.1 Application Modes 

[BSW09136] Centralized wake up 
Management 

7.8 Wake up Validation Protocol 

[BSW09098] Registration of wake up 
reasons 

8.3.4 Wake up  

[BSW09097] Validation of physical channel 
wake up 

7.8 Wake up Validation Protocol 

[BSW09118] Time Triggered Increased 
Inoperation 

7.9 Time Triggered Increased Inoperation 

[BSW09145] Support of wake-sleep 
operation 

7.11.5 Configuration Alternative for 
Providing Wake-Sleep Operation 

[BSW09126] Provide an API for querying of 
wake up reason 

8.3.4 Wake up  

[BSW09145] Evaluate condition to stay in 
the RUN state 

EcuM2311 

[BSW09164] Shutdown synchronization 
support for SW-Components 

7.4.3.4 RUN 

[BSW09165] Requesting and releasing the 
POST_RUN state 

EcuM2819, EcuM2820 

[BSW09166] Evaludate condition to stay in 
POST_RUN state 

EcuM2761 

[BSW09170] Triggering Watchdog Manager 
during Startup / Shutdown and 
Sleep 

EcuM2861 

[BSW09173] Minimum duration of Run 
State 

EcuM2310 

 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

26 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

7 Functional Specification 
 

7.1 Main States of the ECU State Manager module 
 

OFF

SLEEP

RUN

OFF

WAKEUP

SHUTDOWN

STARTUP

Wakeup by wakeup source

with integrated power

control
Normal startup

other

SLEEP ==

true ? /TTII

Wakeup

event

Wakeup

event

other

Power off

Reset

All applications

have shut down

Power

on

 

Figure 1 – ECU Main States (top level diagram) 

 
 
Figure 1 shows the main state machine provided by the ECU State Manager module. 
This state machine manages the ‘life cycle’ of an ECU from OFF through STARTUP 
and RUN to SLEEP or OFF. 
 
 
7.1.1 STARTUP State 
 
The purpose of the STARTUP state is to initialize the basic software modules. The 
STARTUP state is divided into two parts, the first being the part before OS startup, 
the second part after OS startup (and therefore with a running OS). More details 
about the initialization are given in chapter 7.3 STARTUP State. 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

27 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

 
7.1.2 RUN State 
 
The RUN State is entered by the ECU State Manager module after all modules of 
basic software including OS and RTE have been initialized by the ECU State 
Manager module. 
The RUN State indicates to the SW-C’s above RTE that BSW has initialized and 
applications start operating. Further, the RUN state provides a mechanism for 
synchronized shutdown of application software. 
RUN state must be requested by the application explicitly or implicitly6 whenever it is 
needed to keep the ECU awake. Otherwise, the ECU State Manager module will 
commence shutdown. In other words: SW-C shall request the RUN state from the 
ECU State Manager module when the ECU needs to stay awake. 
The RUN State falls into two sub-states: The regular RUN state and a POST_RUN 
state. The POST_RUN state can be requested by SW-C’s to indicate that the need to 
execute cleanup or saving activities before the ECU goes to sleep. The POST_RUN 
state can be requested independently from the RUN state with a separate API or 
from AUTOSAR ports accordingly7. 
SW-C’s shall react on state changes by interfaceing with the mode port of the ECU 
State Manager module. 
If the SW-C’s primary intent is to communicate with other SW-C’s, SW-C’s shall 
request a communication state from the Communication State Manager module 
instead. 
 
 
7.1.3 SHUTDOWN State 
 
The shutdown state handles the controlled shutdown of basic software modules and 
finally results in the selected shutdown target for the ECU: SLEEP, OFF, or Reset. 
Important activities in this state are to write non-volatile data back to NVRAM. 
 
 
7.1.4 SLEEP State 
 
The SLEEP state is an energy saving state. Typically, no code is executed but power 
is still supplied, and if configured accordingly, the ECU is wakeable in this state8. The 
SLEEP state provides a configurable set of sleep modes which typically are a trade 
off between power consumption and time to restart the ECU. In terms of the API, the 
sleep modes are referred to as shutdown targets. 
 
 

                                            
6
 RUN state is requested implicitly if a non-idle state is requested from a Resource Manager. E.g. 

requesting any state but ‘no communication’ from the Communication Manager will have the 
Communication Manager requesting RUN state from the ECU State Manager in turn. This is a request 
for communication which implicitly results in a request for RUN state. See also [5]. 
7
 In this specification RUN and POST_RUN sub-states are called RUN II and RUN III. 

8
 Some ECU designs actually do require code execution to implement a SLEEP state (and the wakeup 

capability). For these ECUs, the clock speed is typically dramatically reduced. These could be 
implemented with a small loop inside the SLEEP state. 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

28 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

7.1.5 WAKEUP State 
 
The WAKEUP State is entered when the ECU comes out of the SLEEP state, due to 
intended or unintended wake up. 
The WAKEUP State provides a protocol to support validation of wake up events. This 
is necessary to differentiate between intended und unintended wake-ups. The 
validation itself is a cooperative process between the driver which handles the wake 
up source and the ECU State Manager module (see 7.8 Wake up Validation 
Protocol). 
 
 
7.1.6 OFF State 
 
The OFF state describes the unpowered ECU. Wakeability may be required in this 
state but only for wake up sources with integrated power control. In any case the 
ECU must be startable (e.g. by reset events). 
 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

29 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

7.2 Structural Description of the ECU State Manager module 
 

 

Figure 2 – Module Relationship (top level diagram) 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 
 

 
 

 
 

 
  

 

 
 

 
 

 
 

 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
 

 

 

  

 

 

 

 

 

   

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

30 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

The diagram shows how the ECU State Manager module is related to other modules. 
In most cases, the ECU State Manager module is simply responsible for 
initialization9. There are however some modules which have a functional relationship 
with ECU State Manager module which are explained in the following paragraphs. 
 
 
7.2.1 Standardized AUTOSAR Software Modules 
 
Basic Software modules are initialized and shut down by the ECU State Manager 
module. 
The RTE is initialized and shut down by the ECU State Manager module. 
The OS is initialized and shut down by the ECU State Manager module. After the OS 
initialization, additional initialization steps are undertaken by the ECU State Manager 
module before the RUN state is reached. Execution control is handed over to the 
ECU State Manager module after OS shutdown. Details are provided in the chapters 
7.3 STARTUP State and 7.5 SHUTDOWN State. 
 
 
7.2.2 Software Components 
 
SW Components contain the application code of an AUTOSAR ECU. Software 
components shall request the RUN state from the ECU State Manager module when 
they have the need to keep the ECU alive. 
If the intent of the SW-C is primarily to communicate then it should request a 
communication state from the Communication Manager (see [5]). This will implicitly 
keep the ECU alive. A SW-C should clearly separate between the need to 
communicate and the need to keep an ECU alive. Mixing up these two ideas may 
result in an instable shutdown algorithm. 
A SW-C interacts with the ECU State Manager module using AUTOSAR ports. 
 
 
7.2.3 Resource Managers 
 
The concept of resource managers allows adding new state machines to the BSW 
(as a part of new BSW modules) which behave like sub-state machines of the RUN 
state. 
In order to collaborate correctly with the ECU State Manager module only very few 
requirements must be met: 
 
EcuM2153: A Resource Manager has to define exactly one idle state which signifies 
the state where the Resource Manager isn’t doing anything but waiting. 
 
EcuM2154: A Resource Manager shall transit into its idle state after initialization. It 
shall request the RUN state from the ECU State Manager module whenever it leaves 
its idle state and it shall release the RUN state when it returns back to its idle state. 
 
The Communication Manager is one such resource manager. 
 

                                            
9
 To be precise, “initialization” could also mean de-initialization.  



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

31 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

32 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

7.3 STARTUP State 
 
See 7.1.1 STARTUP State for an overview description. 
 
 
7.3.1 High Level Sequence Diagram 
 

 sd EcuM_Power Up Sequence

Reset

«work unit»

EcuM_Initializer

(from Inner Structure 

of EcuM)

«module»

Os

C Init Code «module»

EcuM

Boot Menu

BSW Task (OS

task or cyclic call)

ref
Init Sequence I

ref
Init Sequence II

Corresponds to STARTUP I

Corresponds to STARTUP II

alt Wakeup reason

[Wakeup by source with integrated voltage control]

[Any other kind of reset]

ref
Run Sequence

ref
Wakeup Sequence

Reset

Vector()

Jump()

Set up

stack()

EcuM_Init()

call()

StartOS()

StartupHook()

ActivateTask()

EcuM_StartupTwo()

call()

continue

with()

continue

with()

 

Figure 3 – Startup Sequence (high level diagram) 

 
 
To see adjacent diagrams refer to 

Figure 7 – RUN State Sequence 
Figure 1 – ECU Main States (top level diagram) 
 

The startup sequence shows the startup behavior of the ECU. With the invocation of 
EcuM_Init the ECU State Manager module takes control of the startup procedure. 
The startup falls into two parts. The first part, init sequence I or STARTUP I is 
finished when the AUTOSAR OS is started. The second part, init sequence II or 
STARTUP II is finished when RTE is started. 
 
To distinguish services which are called before the OS is started from those which 
are called afterwards and to have a cleaner visualization, the ECU State Manager 
module is split into two parts: The initialization of the ECU State Manager module 
(started with a call to EcuM_Init(), which runs without OS, and the EcuM. 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

33 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

 
7.3.2 Activities before EcuM_Init 
 
The ECU State Manager module assumes that before EcuM_Init is called a minimal 
initialization of the MCU has taken place, so that a stack is set up and code can be 
executed. 
 
 
7.3.3 STARTUP Activity Overview 
 
EcuM2411: The following table shows the activities and the order in which they shall 
be executed. 
 
Sub-state 
 Initialization Activity10 Comment Opt.11 
STARTUP I 

 Callout 
EcuM_AL_DriverInitZero 

Init block 0 
This callout may only initialize BSW modules that do 
not use post-build configuration parameters. The 
callout may not only contain driver initialization but 
any kind of pre-OS, low level initialization code. 
See 7.3.5 Driver Initialization 

yes 

 Callout 
EcuM_DeterminePbConfigura
tion 

This callout is expected to return a pointer to a fully 
initialized EcuM_ConfigType structure containing the 
post-build configuration data for EcuM and all other 
BSW modules. 

no 

 Check consistency of 
configuration data 

If check fails the EcuM_ErrorHook is called. See 10.4 
Checking Configuration Consistency for details on the 
consistency check. 

no 

 Callout 
EcuM_AL_DriverInitOne 

Init block I 
The callout may not only contain driver initialization 
but any kind of pre-OS, low level initialization code. 
See 7.3.5 Driver Initialization 

yes 

 Get reset reason The reset reason is derived from a call to 

Mcu_GetResetReason and the mapping defined via 

the EcuMWakeupSource configuration containers. 

 
EcuM2623: The wake up source resulting from the 
reset reason translation shall be remembered by the 
ECU State Manager module. 
 
See 8.5.2.2 EcuM_SetWakeupEvent and 8.3.4.3 
EcuM_GetValidatedWakeupEvents. 

no 

 Select default shutdown 
target 

See EcuM2181 no 

 Select application mode See EcuM2242 no 

 Start OS Start the AUTOSAR OS, see EcuM2603 and 
EcuM2141 

no 

    

STARTUP II 

 Init BSW Scheduler Initialize the semaphores for critical sections used by 
BSW modules 

no 

                                            
10

 Activities marked with × are conditional. 
11

 Optional activities can be switched on or off by configuration. See chapter 10.2 Configurable 
Parameters for details. 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

34 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

Sub-state 
 Initialization Activity10 Comment Opt.11 
 Callout 

EcuM_AL_DriverInitTwo 
Init block II 
The callout may only initialize BSW modules that need 
OS support but don’t need access to private NvRam 
data (other that post-build configuration data in their 
<Module>_ConfigType) or manage that data on their 
own. 
See 7.3.5 Driver Initialization  

yes 

 Callout EcuM_OnRTEStartup  no 

 Start RTE From now on SW-Cs are running. RTE will signal the 
(initial) mode STARTUP during start. 

no 

 Callout 
EcuM_AL_DriverInitThree 

Init block III 
The callout may initialize BSW modules that need OS 
support and rely on their private NvRam data (other 
that post-build configuration data in their 

<Module>_ConfigType) to be restored. 

See 7.3.5 Driver Initialization 

yes 

 Indicate mode change to RTE Indicated mode is SLEEP if next state is WAKEUP 

VALIDATION, indicated mode is RUN if next state is 

RUN. 

no 

Table 1 - Initialization Activities 

 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

35 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

7.3.4 Sub-State Descriptions 
 
7.3.4.1 STARTUP I 
 

The STARTUP I state is entered with a call of the API function EcuM_Init. 

 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

36 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

 sd EcuM_Init Sequence I

«module»

Os

ECU Firmware«module»

EcuM

«module»

Mcu

opt Startup reason was unintended

Init Block I

opt Configuration data inconsistent

Init Block 0

This call never returns!

EcuM_AL_DriverInitZero()

EcuM_DeterminePbConfiguration(EcuM_ConfigType*)

Check consistency of configuration

data()

EcuM_ErrorHook(ECUM_E_INCONSISTENT_CONFIGURATION)

EcuM_AL_DriverInitOne(const

EcuM_ConfigType*)

Mcu_GetResetReason(Mcu_ResetType)

Mcu_GetResetReason()

Map reset reason to wakeup

source()

EcuM_SelectShutdownTarget(Std_ReturnType,

EcuM_StateType, uint8)

WaitEvent(mask)

EcuM_SelectApplicationMode(Std_ReturnType,

EcuM_AppModeType)

StartOS(appMode)

 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

37 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

Figure 4 – Init Sequence I (STARTUP I) 

 
STARTUP I is intended for preparing the ECU to initialize the OS. The phase should 
be kept as short as possible. This also applies to the callouts. Initialization of drivers 
should be done in STARTUP II whenever possible. Interrupts should not be used in 
this phase. If interrupts have to be used, only category I interrupts are allowed in this 
context12. 
Initialization of drivers and hardware abstraction modules is not strictly defined by the 
ECU State Manager module. Two callouts EcuM_AL_DriverInitZero and 
EcuM_AL_DriverInitOne are provided to define the init blocks 0 and I. These blocks 
are initialization activities during STARTUP I, where initialization can take place. 
Modules needing OS support can be placed into init blocks II or III (see 7.3.4.2 
STARTUP II). 
 

EcuM2271: MCU_Init does not provide complete MCU initialization. Additionally, 

hardware dependent steps have to be executed and must be defined at system 
design time. These steps are supposed to be taken within the 
EcuM_AL_DriverInitZero or EcuM_AL_DriverInitOne callouts. Details can be found in 
[12]. 
 
EcuM2181: The ECU State Manager module must call EcuM_SelectShutdownTarget 
with the configured default shutdown target (see 7.6.2.1 Shutdown Targets, 7.9 Time 
Triggered Increased Inoperation and 10.2 Configurable Parameters). 
 
EcuM2242: If the restart was unintended the ECU State Manager module must 
select the default application mode with a call to EcuM_SelectApplicationMode. 
Examples for unintended restarts are power hazards and restarts due to fault 
conditions like watchdog resets. In all other cases, the application mode shall not be 
changed. See 7.11.1 Application Modes for details how to change the application 
mode. 
 
EcuM2603: At the end of the STARTUP I state, it must be possible to start the OS. 
All basic software modules which are needed by the OS must be initialized by this 
time. Modules left out so far may be initialized later in STARTUP II. 
 

EcuM2141: The application mode parameter of the StartOS service shall be 

retrieved with the API call EcuM_GetApplicationMode. For more details about 
application modes see also 7.11.1 Application Modes. 
 
EcuM2861: If a Watchdog Manager is configured and initialized in any of the Init 
Blocks, the ECU State Manager module shall insert calls to 

WdgM_UpdateAliveCounter from that point on after every operation it has 

executed. The configuration parameter EcuMWdgMSupervisedEntityRef defines 

the supervised entity identifier used as a parameter to that call. 
 

                                            
12

 Category II interrupts require a running OS while category I interrupts do not. AUTOSAR OS 
requires each interrupt vector to be exclusively put into one category. 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

38 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

The above requirement will allow supervising the ECU State Manager module and 
triggering watchdogs during STARTUP, RUN, SHUTDOWN and WAKEUP. For the 
handling of the functionalities during SLEEP see [7] Chapter 7.4. 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

39 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

7.3.4.2 STARTUP II 
 
STARTUP II is carried out by the EcuM_StartupTwo API function. 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

40 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

 sd EcuM_Init Sequence II

«module»

SchM

ECU Firmware «module»

RTE

«module»

EcuM

«module»

NvM

«module»

WdgM

alt Next state

[RUN and NvM]

Init Block II

opt Nv M

opt WdgM

This will signal the (initial) mode STARTUP to SW-Cs!

opt Nv M

alt 

Init Block III

SchM_Init()

WdgM_SetMode(Std_ReturnType,

WdgM_ModeType)

EcuM_AL_DriverInitTwo(const

EcuM_ConfigType*)

NvM_Init()

NvM_ReadAll()

Start

timer()

EcuM_OnRTEStartup()

Rte_Start()

Timeout()

EcuM_AL_DriverInitThree(const

EcuM_ConfigType*)

Rte_Switch_currentMode_currentMode(RTE_MODE_EcuM_Mode_RUN)

 

Figure 5 – Init Sequence II (STARTUP II) 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

41 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

The callout EcuM_AL_DriverInitTwo is provided, where initialization of those basic 
software modules should take place, which need OS support and need no access to 
NvRam data or manage the NvRam data on their own. 
 
The callout EcuM_AL_DriverInitThree is provided, where initialization of those basic 
software modules should take place, which need OS support and need NvRam data 
to be completely restored. 
 
EcuM2632: If one of the wake up sources listed in 7.8.7 Wake up Sources and Reset 
Reason is set, then exection shall continue with RUN state. In all other cases, 
execution shall continue with WAKEUP VALIDATION state. 
 
 
7.3.5 Driver Initialization 
 
This chapter applies to drivers of the AUTOSAR Basic Software which are not 
handled directly by the ECU State Manager module. 
A driver’s location in the initialization process depends strongly on its implementation 
and the target hardware design. Drivers can be initialized from the driver init blocks I 
and II during STARTUP I and II respectively. 
 
EcuM2559: The order inside of the blocks shall be generated from configuration 

information (see 10.2 Configurable Parameters EcuMDriverInitListZero, 

EcuMDriverInitListOne, EcuMDriverInitListTwo, 

EcuMDriverInitListThree, and EcuMDriverRestartList). 

 
EcuM2730: For each driver, its init function with the configured init configuration shall 
be called. The init parameter for the init function shall be derived from driver’s 
configuration (see 10.2 Configurable Parameters 

EcuMModuleConfigurationRef). 

 
Some drivers may need re-initialization when the ECU is woken up. This is especially 
true for drivers with wake up sources. For re-initialization, a restart block is defined. 
The restart block is part of the WAKEUP state. 
 
EcuM2561: The restart list will typically only contain a subset of drivers. But drivers 
shall appear in the same order as in the combined list of init block I and init block II 

(see 10.2 Configurable Parameters, EcuMDriverRestartList). 

 
EcuM2562: Drivers which serve as wake up sources may need to be re-initialized in 
the restart block. The driver restart shall re-arm the trigger mechanism of the ‘wake 
up detected’ callback (see 7.7.4.1 WAKEUP I). 
 
EcuM2563: If hardware is put into a sleep mode during SHUTDOWN then this 
hardware must be restarted by its driver. 
The restart list will be invoked in state WAKEUP I (see 7.1.5 WAKEUP State). 
 
The following table shows one possible (and recommended) sequence of activities 
for the Init Blocks 0, I, II, and III. Depending on hardware and software configuration, 
BSW modules may be added or left out and other sequences may also be possible. 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

42 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

43 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

Recommended Init Block 
 Init Activity Comment 

Init Block 0
13

 
 Development Error Tracer This always needs to be the first module to be initialized, so that 

other modules can report development errors. 
 Any drivers needed to 

access post-build 
configuration data 

These drivers may themselves not need post-build configuration or 
OS features. 

 
Init Block I

14
 

 MCU Driver  
 PORT  
 DIO  
 Diagnostic Event Manager Pre-Initialization 
 General Purpose Timer  
 Watchdog Driver Internal watchdogs only, external ones may need SPI 
 Watchdog Manager  
 SchM  
 BswM   
 ADC Driver  
 ICU Driver  
 PWM Driver  
 
Init Block II

15
 

 SPI Driver  
 EEPROM Driver  
 Flash Driver  
 NVRAM Manager Initialization and start NvM_ReadAll job 
 CAN Transceiver  
 CAN Driver  
 CAN Interface  
 CAN State Manager  
 CAN TP  
 LIN Driver  
 LIN Interface  
 LIN State Manager  
 LIN TP  
 FlexRay Transceiver  
 FlexRay Driver  
 FlexRay Interface  
 FlexRay State Manager  
 FlexRay TP  
 PDU Router  
 CAN NM  
 FlexRay NM  
 NM Interface  
 I-PDU Multiplexer  
 COM  
 Diagnostic Communication 

Manager 
 

 
Init Block III

16
 

 Communication Manager  
 Diagnostic Event Manager Full initialization 

                                            
13

 Drivers in Init Block 0 are listed in the EcuMDriverInitListZero configuration container. 
14

 Drivers in Init Block I are listed in the EcuMDriverInitListOne configuration container. 
15

 Drivers in Init Block II are listed in the EcuMDriverInitListTwo configuration container. 
16

 Drivers in Init Block III are listed in the EcuMDriverInitListThree configuration container. 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

44 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

Recommended Init Block 
 Init Activity Comment 

 Function Inhibition Manager  

Table 2 - Driver Initialization Details, Sample Configuration 

 
7.3.6 DET Initialization 
 
The Development Error Tracer is a software module for debugging purposes. 
 
EcuM2783: DET shall be initialized early during STARTUP I by the ECU State 
Manager module. 
 
EcuM2634: DET is not started by default but the system designer has to configure 
the point where DET is started, preferably into one of the callouts 
EcuM_AL_DriverInitOne or EcuM_AL_DriverInitTwo. The best point for starting DET 

depends on its implementation and behavior. DET is started by invoking Det_Start. 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

45 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

7.4 RUN State 
 
See 7.1.2 RUN State for an overview description. 
All activities in the RUN state described in this chapter are carried out in the 
EcuM_MainFunction service. 
 
 
7.4.1 State Breakdown Structure 
 

RUN II

Initial

RUN III

Final
RUN requested

/notify

all POST RUN

requests released

all RUN requests

released /notify

 

Figure 6 – RUN State Breakdown 

 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

46 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

7.4.2 High Level Sequence Diagram 
 

 sd EcuM_Run Sequence

«module»

EcuM

loop While RUN requests pending

alt Entry of RUN

[from STARTUP]

[from WAKEUP]

ref
Wakeup Sequence

ref
Power Up Sequence

ref
Shutdown Sequence

ref
Run Sequence II

ref
Run Sequence III

Corresponds to 

RUN II

Corresponds to 

RUN III

call()

call()

continue

with()

 

Figure 7 – RUN State Sequence (high level diagram) 

 
 
To see adjacent diagrams refer to 

Figure 3 – Startup Sequence (high level diagram) 
Figure 19 – Wake up Sequence (high level diagram) 
Figure 11 – Shutdown Sequence (high level diagram) 
Figure 1 – ECU Main States (top level diagram) 

 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

47 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

7.4.3 Sub-State Description 
 
7.4.3.1 RUN II 
 
RUN II is the state in which applications and SW-C’s should execute their regular 
tasks. 
 

 sd EcuM_Run Sequence II

BSW Task (OS

task or cyclic call)

«module»

WdgM

ECU Firmware «module»

RTE

«module»

ComM

«module»

EcuM

alt No pending RUN requests AND timer expired

loop WHILE in RUN II state

opt WdgM

loop FOR all channels that hav e requested RUN

opt WdgM

EcuM_OnEnterRun()

EcuM_ClearWakeupEvent(sources)

WdgM_SetMode(Std_ReturnType,

WdgM_ModeType)

ComM_EcuM_RunModeIndication(NetworkHandleType)

Schedule timer for minimum

duration to stay in RUN state()

EcuM_MainFunction()

Evaluate RUN requests and

timer()

EcuM_OnExitRun()

WdgM_SetMode(Std_ReturnType,

WdgM_ModeType)

Rte_Switch_currentMode_currentMode(RTE_MODE_EcuM_Mode_POST_RUN)

 

Figure 8 – RUN II State Sequence 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

48 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

49 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

7.4.3.2 Entering RUN II State 
 
On entering RUN II state, the following steps must be done in the presented order: 
 
EcuM2308: When entering RUN II state, the callout EcuM_OnEnterRun shall be 
invoked and RUN mode shall be indicated. 
 
EcuM2384: RUN shall be indicated to the Communication Manager by invoking 

ComM_EcuM_RunModeIndication, see [5]. EcuM shall indicate RUN mode only to 

those channels for which ComM requested a RUN (via 
EcuM_ComM_RequestRUN(channel)). 
 
EcuM2310: The ECU State Manager module shall remain in RUN state for a 
configurable minimum duration (see 10.2 Configurable Parameters parameter 
EcuMRunMinimumDuration). 
 
The minimum duration of RUN state is needed to give the SW-Cs a chance to 
request RUN. Otherwise EcuM will immediately leave RUN again. 
 
 
7.4.3.3 Leaving RUN II State 
 
EcuM2311: When the last RUN request has been released, ECU State Manager 
module shall advance to the RUN III state. The evaluation is done with the next cyclic 
invocation of EcuM_MainFunction. 
 
EcuM2865: When leaving RUN II state, the callout EcuM_OnExitRun shall be 
invoked and POST_RUN mode shall be indicated. 
 
If a SW-C needs post run activity during RUN III (e.g. shutdown preparation), then it 
must request POST_RUN before releasing the RUN request. Otherwise it is not 
guaranteed that this SW-C will get a chance to run its POST_RUN code. 
 
The Communication Manager will not release RUN unless the no communication 
state is reached. 
 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

50 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

7.4.3.4 RUN III 
 
RUN III state provides a post run phase for SW-C’s and allows them to save 
important data or switch off peripherals before the ECU State Manager module 
continues with the shutdown process. 
 

 sd EcuM_Run Sequence III

BSW Task (OS

task or cyclic call)

ECU Firmware«module»

EcuM

loop WHILE in RUN III state

alt No pending POST RUN requests

EcuM_MainFunction()

evaluate POST RUN

requests()

EcuM_OnExitPostRun()

 

Figure 9 – RUN III State Sequence 

 
 
7.4.3.5 Leaving RUN III State 
 
EcuM2761: When the last POST_RUN request has been released and no RUN 
request has been issued, the ECU State Manager module shall advance to the 
SHUTDOWN state and shall invoke the callout EcuM_OnExitPostRun. The 
evaluation is done with the next cyclic invocation of EcuM_MainFunction. 
 
EcuM2866: While in RUN III state, if a RUN request is received, the ECU State 
Manager module shall immediately enter RUN II state again. 
 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

51 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

7.5 SHUTDOWN State 
 
Refer to 7.1.3 SHUTDOWN State for an overview description. 
 
EcuM2188: When SHUTDOWN state is entered and shutdown target is SLEEP, no 
wake up event shall be missed. If a valid wake up event occurs while the ECU is in 
transition to SLEEP the ECU shall as quickly as possible proceed to the WAKEUP 
state and shall not enter the SLEEP state.  
 
EcuM2756: When a wake up event occurs during the shutdown phase and the 
shutdown target is OFF or RESET, then the shutdown shall complete but the ECU 
shall restart immediately thereafter. 
 
 
7.5.1 State Breakdown Structure 
 
When the SHUTDOWN state is entered, applications have de-initialized and the 
communication stack has been put into the no communication state17. Ref. to 7.4.3.3 
Leaving RUN II State for details. 
 

Perform PREP SHUTDOWN

Perform GO SLEEP

Deinit Sequence I

From RUN

From WAKEUP

for wakeup reactions

- TTII

- unvalidated wakeup

- other unknown wakeup reason

Deinit Sequence IIa

Shutdown Target?

To SLEEP

To GO OFF II

Wakeup Event detected?

To WAKEUPThis decision is also shown 

in 'Deinit Sequence IIa'.

Perform GO OFF I

Deinit Sequence IIb

[else]

[Sleep Mode]

 

Figure 10 – Fine Structure of SHUTDOWN 

 
 

                                            
17

 This statement is only true for SW-Cs which are registered users of the ECU State or 
Communication Manager. All other SW-C may be terminated by the system without warning. 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

52 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

7.5.2 High Level Sequence Diagram 
 

 sd EcuM_Shutdown Sequence

«work unit»

EcuM_Initializer

(from Inner 

Structure of EcuM)

«module»

Os

«module»

EcuM

alt Shutdown Target

[Sleep Mode]

[Shutdown]

alt Shutdown Reason

[RUN released]

[No wakeup reason]

ref
Deinit Sequence I

ref
Deinit Sequence IIa

ref
Deinit Sequence IIb

ref
Wakeup Sequence

ref
Run Sequence

ref
Wakeup Sequence

Corresponds to PREP SHUTDOWN

Corresponds to GOSLEEP

Corresponds to GO OFF I

ref
Deinit Sequence III

Corresponds to GO OFF II

During this call, the ECU will be shut 

off or reset, according to the selected 

shutdown target.

ref
Sleep Sequence

alt Pending wakeup ev ents?

[No]

[Yes]

call()

call()

continue

with()

continue

with()

call()

ShutdownOS()

call()

 

Figure 11 – Shutdown Sequence (high level diagram) 

 
 
To see adjacent diagrams refer to 

Figure 7 – RUN State Sequence (high level diagram) 
Figure 19 – Wake up Sequence (high level diagram) 
Figure 16 – Sleep Sequence (high level diagram) 
Figure 1 – ECU Main States (top level diagram) 

 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

53 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

7.5.3 SHUTDOWN Activity Overview 
 
Sub-state18   
 Shutdown Activity Comment Optional

19 

PREP SHUTDOWN 
 Callout EcuM_OnPrepShutdown   

 Shutdown Diagnostic Event Manager  yes 
 Indicate mode change to RTE Indicated mode is SLEEP if next 

state is GO SLEEP, 

indicated mode is SHUTDOWN if next 

state is GO OFF I. 

 

GO SLEEP 
 Callout EcuM_OnGoSleep   
 Enable all interrupts   
 Save persistent data to NVRAM An incoming wake up event will 

cancel an ongoing write job 
yes 

 Check for pending wake up events Purpose is to detect wake up 
events that occurred while 
interrupts were disabled 

 

 Callout EcuM_EnableWakeupSources See 8.6.4.5 
EcuM_EnableWakeupSources 

 

 Set Watchdog Manager mode for sleep  yes 
 Lock Scheduler Prevent other tasks from running in 

SLEEP state. 
 

GO OFF I 
 Callout EcuM_OnGoOffOne   

 Stop RTE   
 Deinit Communication Manager  yes 
 Save persistent data to NVRAM  yes 
 Set Watchdog Manager mode for shutdown  yes 
 Call BswM_DeInit    
 Check for pending wake up events Purpose is to detect wake up 

events that occurred during 
shutdownd 

 

 Set RESET as shutdown target This action shall only be carried out 
when pending wake up events were 
detected 

yes 

 ShutdownOS Last operation in this OS task  
GO OFF II 
 Callout EcuM_OnGoOffTwo   

 Call Mcu_PerformReset or Callout 
EcuM_AL_SwitchOff 

Depends on the selected shutdown 
target (RESET or OFF) 

 

      
The following modules need not to be shut down: 
 NVRAM Manager   
      
All other modules are not shutdown automatically. 
The following basic software modules must not be shut down at all. 
 None   

Table 3 - Shutdown Activities 

 

                                            
18

 Rows marked with × are conditional. 
19

 Optional activities can be switched on or off by configuration. It shall be the system designers choice 
if a module is compiled in or not for an ECU design. See chapter 10.2 Configurable Parameters for 
details. 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

54 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

55 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

7.5.4 Sub-State Descriptions 
 
7.5.4.1 PREP SHUTDOWN 
 
PREP SHUTDOWN is a state common for all shutdown targets, i.e. SLEEP, OFF, 
reset, etc. During this state, handlers and managers of the basic software are shut 
down. 
 
EcuM2288: If the shutdown target is not any of the sleep modes, then control has to 
be handed over to GO OFF I (ref. 7.5.4.3 GO OFF I) after activities of this state have 
finished. 
 

 sd EcuM_Deinit Sequence I

«module»

Dem

«module»

EcuM

«module»

RTE

ECU Firmware

opt Dem

alt Next state

[GO OFF I]

[GO SLEEP]

EcuM_OnPrepShutdown()

Dem_Shutdown()

Dem_Shutdown()

Rte_Switch_currentMode_currentMode(RTE_MODE_EcuM_Mode_SHUTDOWN)

Rte_Switch_currentMode_CurrentMode(RTE_MODE_EcuM_Mode_SLEEP)

 

Figure 12 – Deinitialization Sequence I (PREP SHUTDOWN) 

 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

56 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

7.5.4.2 GO SLEEP 
 
Purpose of GO SLEEP is to configure hardware for the following sleep phase and to 
setup the ECU for the next wake up event. 
 
EcuM2389: To set up the wake up sources for the next sleep mode, the ECU State 
Manager module shall execute the callout EcuM_EnableWakeupSources for each 
wake up source that is configured in the target sleep mode. 
 
In contrast to shutdown, the OS is not shut down when entering the sleep state. The 
sleep mode shall be transparent to the OS. 
 
Note:  
In case of pending wake up events, after calling NvM_CancelWriteAll() the transition 
shall go to WAKEUP VALIDATION as for the "Power On Sequence" (see also Figure 
28). 
 

 
EcuM2863: The ECU Manager module shall invoke the callout 

EcuM_GenerateRamHash (see chapter 8.6.4.6) before halting the microcontroller, 

and the callout EcuM_CheckRamHash (see chapter 8.6.5.1) after the processor 

returns from halt. 
 
Rationale for EcuM2863: RAM memory may become corrupted when an ECU is held 
in SLEEP mode for a long time. The RAM memory’s integrity should therefore be 
checked to prevent unforeseen behavior. The system designer may choose an 
adequate checksum algorithm to perform the check. 
 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

57 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

 sd EcuM_Deinit Sequence IIa

«module»

WdgM

ECU Firmware «module»

Os

«module»

EcuM

«module»

NvM

alt Pending wakeup ev ents?

[Yes]

[No]

opt Nv M

alt Nv M

[Yes]

[No]

par EcuM is asynchronously notified of the end of the Nv m_WriteAll job

loop WHILE no notification from Nv M AND timer has not expired AND no pending wakeup ev ent

loop FOR all wakeup sources enabled in the target sleep mode

opt WdgM

EcuM_OnGoSleep()

NvM_WriteAll()

Start timer for shutdown

timeout()

EcuM_GetPendingWakeupEvents(EcuM_WakeupSourceType)

EcuM_CB_NfyNvMJobEnd(uint8,

NvM_RequestResultType)

EcuM_GetPendingWakeupEvents(EcuM_WakeupSourceType)

NvM_CancelWriteAll()

EcuM_EnableWakeupSources(EcuM_WakeupSourceType)

WdgM_SetMode(Std_ReturnType,

WdgM_ModeType)

GetResource(RES_SCHEDULER)

 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

58 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

Figure 13 – Deinitialization Sequence IIa (GOSLEEP) 

7.5.4.3 GO OFF I 
 
GO OFF I is carried out under OS control and is implemented by the 
EcuM_MainFunction service. 
 

EcuM2328: As its last activity, the ShutdownOS service shall be called. This service 

will end up in the shutdown hook. The shutdown hook in turn shall call 
EcuM_Shutdown to terminate the shutdown process. EcuM_Shutdown will not return 
but switch off the ECU or issue a reset. 
 

 sd EcuM_Deinit Sequence IIb

«module»

RTE

ECU Firmware «module»

NvM

«module»

WdgM

«module»

EcuM

«module»

Os

«module»

ComM

«module»

BswM

opt Nv M

EcuM_MainFunction() may return 

and be re-invoked within this block.

opt Pending wakeup ev ents?

opt ComM

opt WdgM

alt 

EcuM_OnGoOffOne()

Rte_Stop()

ComM_DeInit()

NvM_WriteAll()

Start

timer()

Timeout()

EcuM_CB_NfyNvMJobEnd(uint8,

NvM_RequestResultType)

Stop

timer()

WdgM_SetMode(Std_ReturnType,

WdgM_ModeType)

BswM_Deinit()

EcuM_GetPendingWakeupEvents(EcuM_WakeupSourceType)

EcuM_SelectShutdownTarget(Std_ReturnType,

EcuM_StateType, uint8)

ShutdownOS()

 

Figure 14 – Deinitialization Sequence IIb (GO OFF I) 

 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

59 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

60 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

7.5.4.4 GO OFF II 
 
This state implements the final steps to reach the shutdown target after the OS has 
been shut down. 
 

 sd EcuM_Deinit Sequence III

«work unit»

EcuM_Initializer

(from Inner Structure of 

EcuM)

ECU Firmware «module»

Mcu

«module»

Os

alt Shutdown Target

[Reset]

[Off]

The ECU cycle continues always with the power up sequence when this 

fragment is left (e.g. reset)

Called from 

shutdown hook

EcuM_Shutdown()

EcuM_OnGoOffTwo()

Mcu_PerformReset()

EcuM_AL_SwitchOff()

 

Figure 15 – Deinitialization Sequence III (GO OFF II) 

 

The shutdown target RESET is reached by invoking the Mcu_PerformReset 

service of the MCU driver (see [12]). 
The shutdown target OFF is implemented by the EcuM_AL_SwitchOff callout which 
must be filled at configuration time. See 8.6.4.7 EcuM_AL_SwitchOff for details. 
EcuM_Initializer is only introduced to improve readability of the diagram. See also 
Figure 3 – Startup Sequence (high level diagram) and its comments. 
 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

61 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

7.6 SLEEP State 
 
Refer To chapter 7.1.4 SLEEP State for an overview description. 
 
 
7.6.1 High Level Sequence Diagram 
 

 sd EcuM_Sleep Sequence

«module»

EcuM

ref
Shutdown Sequence

alt MCU suspended in sleep mode?

[Yes]

[No]

ref

Sleep Sequence I

ref

Wakeup Sequence

ref

Sleep Sequence II

call()

call()

continue

with()

 

Figure 16 – Sleep Sequence (high level diagram) 

 
 
To see adjacent diagrams refer to 

Figure 11 – Shutdown Sequence (high level diagram)  
Figure 19 – Wake up Sequence (high level diagram) 
Figure 1 – ECU Main States (top level diagram) 

 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

62 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

7.6.2 Sub-State Descriptions 
 
7.6.2.1 Shutdown Targets 
 
Shutdown Targets is a descriptive term for all states and their modes or sub-states 
where no code is executed. They are called shutdown targets because it is the final 
state where the state machine will drive to when RUN state is left. The following 
states are shutdown targets: 

 OFF20 

 SLEEP 

 Reset 
is only a transient a state, but also can be selected as shutdown target. 

 
EcuM2232: The default shutdown target shall be defined by configuration. This 
shutdown target shall be overridden by calling EcuM_SelectShutdownTarget. 
 
The SLEEP state can define a configurable set of sleep modes, where each mode 
itself is a shutdown target (the bullet list above is a simplification). These sleep 
modes are hardware dependent and differ typically in clock settings or other low 
power features provided by the hardware. These different features are accessible 
through the MCU driver as so called MCU modes (see [12]). The ECU State 
Manager module allows to map these MCU modes to ECU sleep modes and hence 
they are addressable as shutdown targets. Further the configuration allows to define 
aliases for shutdown targets to simplify portability of code across different ECUs. See 
10.2 Configurable Parameters container EcuMSleepMode for details. 
 
 

                                            
20

 The OFF state requires the capability of the ECU to switch off itself. This is not granted for all 
hardware designs. 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

63 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

7.6.2.2 Sleep Sequence I 
 
Sleep Sequence I is executed in sleep modes that halt the microcontroller. In these 
sleep modes no code is executed. 
 

 sd EcuM_Sleep Sequence I

ECU Firmware «module»

Wakeup Source

«module»

EcuM

«module»

Mcu

«Peripheral»

Wakeup Source

HALT

opt RAM check failed

This call never returns!

EcuM_GenerateRamHash()

Mcu_SetMode(Mcu_ModeType)

Interrupt()

EcuM_CheckWakeup(EcuM_WakeupSourceType)

Activate

PLL()

<Module>_CheckWakeup()

EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

Return from

interrupt()

Mcu_SetMode()

EcuM_CheckRamHash(uint8)

EcuM_ErrorHook(Std_ReturnType)

 

Figure 17 – Sleep Sequence I 

 
A callout is invoked where the system designer can place a RAM integrity check. See 

also EcuM_GenerateRamHash and EcuM2863. 

 
Either the module which provides the wakeup source is called directly from 
integration code “ECU Firmware” or via a <Bus> interface module. 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

64 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

7.6.2.3 Sleep Sequence II 
 
Sleep Sequence II is executed in sleep modes that reduce the power consumption of 
the microcontroller but still execute code. 
 
EcuM3020: In the Poll sequence the ECU State Manager module shall call the 

callouts EcuM_SleepActivity()and EcuM_CheckWakeup() in a blocking loop 

until a pending wake up event is reported. 
 
 

 sd EcuM_Sleep Sequence II

«module»

EcuM

«module»

Wakeup Source

«module»

Mcu

ECU Firmware

loop WHILE no pending wakeup ev ents

loop FOR all wakeup sources that need polling

opt Wakeup detected

Mcu_SetMode(Mcu_ModeType)

EcuM_SleepActivity()

EcuM_CheckWakeup(EcuM_WakeupSourceType)

<Module>_CheckWakeup()

EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

EcuM_GetPendingWakeupEvents(EcuM_WakeupSourceType)

 

Figure 18 – Sleep Sequence II 

Either the module which provides the wakeup source is called directly from 
integration code “ECU Firmware” or via a <Bus> interface module. 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

65 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

7.6.3 Leaving SLEEP State 
 
Regular exits of the SLEEP state are a result of a wake up event (toggling a wake up 
line, communication on a CAN bus etc.). An ISR may be invoked to handle the event, 

but this is specific to hardware and driver implementation. Finally, the MCU_SetMode 

service of the MCU driver will return and the ECU State Manager module will regain 
control. Execution then continues with the WAKEUP state. 
 
Irregular events are a hardware reset or a power cycle. In this case, the ECU will 
restart from the STARTUP state. 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

66 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

7.7 WAKEUP State 
 
7.7.1 High Level Sequence Diagram 
 

 sd EcuM_Wakeup Sequence

«module»

EcuM

alt Entry reason

[Wakeup during SHUTDOWN]

[Wakeup during SLEEP]

[Wakeup by wakeup source with integrated power supply]

opt Wakeup Reaction

[NOT Full Startup]

[Full Startup]

ref
Run Sequence

ref
Wakeup Sequence II

ref
Shutdown Sequence

ref
Shutdown Sequence

opt Wakeup Reaction

[Time-Triggered Increased Inoperation]

Corresponds to WAKEUP II

ref
Power Up Sequence This case only occurrs, if a wakeup source (e.g. a CAN transceiver) 

implements the wakeup by controll ing the power supply with a voltage 

regulator. This means that SLEEP is actually implemented by an OFF state 

and STARTUP is needed also in case of a wakeup.

ref
Wakeup Validation

Corresponds to WAKEUP I
ref

Wakeup Sequence I

ref
Sleep Sequence

ref
Wakeup Sequence I

call()

call()

call()

WAKEUP

REACTION()

Invoke

TTII()

continue

with()

call()

continue

with()

 

Figure 19 – Wake up Sequence (high level diagram) 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

67 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

 
 
To see adjacent diagrams, refer to 

Figure 11 – Shutdown Sequence (high level diagram) 
Figure 7 – RUN State Sequence (high level diagram) 

 
 
7.7.2 State Breakdown Structure 
 

 act WAKEUP

Perform WAKEUP I

Perform WAKEUP 

VALIDATION

Perform WAKEUP 

REACTION

Time Triggered Increased 

Inoperation

WKACT == ECUM_WKACT_RUN ?

Validation Successful?

from SLEEP and GOSLEEP

WKACT == ECUM_WKACT_TTII ?

return SleepFlag

Caution:

This activity may issue an ECU reset.

Perform WAKEUP II

SleepFlag := TRUE

SleepFlag := FALSE

[no]

[no]

[yes]

[yes]

[yes]

[no]

 
 

Figure 20 – WAKEUP State Breakdown 

 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

68 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

7.7.3 WAKEUP Activity Overview 
 
Sub-state21   
 Wakeup Activity Comment Opt. 

WAKEUP I 
 Restore MCU normal mode Selected MCU mode is configured in 

parameter EcuMNormalMcuModeRef 
 

 Set Watchdog Manager mode for wake 
up 

 yes 

 Get the pending wake up sources   
 Callout EcuM_DisableWakeupSources Disable currently pending wake up source but 

leave the others armed so that later wake-ups 
are possible. 

 

 Callout EcuM_AL_DriverRestart Initialize drivers that need restarting  
 Unlock Scheduler From this point on, all other tasks may run 

again 
 

      
WAKEUP VALIDATION see chapter 7.7.4.2 WAKEUP VALIDATION  
      
WAKEUP REACTION   
 Compute wake up reaction see chapter 7.7.4.3 unterhalb  
 Callout EcuM_OnWakeupReaction   
× Invoke TTII protocol see chapter 7.9 unterhalb  

    
WAKEUP II   
 Initialize Diagnostic Event Manager Conditional: 

a) If the System comes out of SLEEP, the 
Dem shall be initialized  
b) If this is not the case the EcuM shall wait 
for EcuM_CB_NfyNvMJobEnd() and 

then execute EcuMDriverInitListThree 

yes 

× Indicate mode change to RTE   
    

Table 4 - Wake up Activities 

 
 

                                            
21

 Rows marked with × are conditional. 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

69 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

7.7.4 Sub-State Descriptions 
 
7.7.4.1 WAKEUP I 
 
The EcuM_AL_DriverRestart callout is invoked. This callout is intended for re-
initializing drivers. Re-initialization is typically required for drivers with wake up 
sources, at least. For more details on driver initialization refer to 7.3.5 Driver 
Initialization. 
 
EcuM2539: During re-initialization, a driver must check if one of its assigned wake up 
sources was the reason for the previous wake up. If this test is true, it must invoke its 
‘wake up detected’ callback (see [20] for an example), which in turn has to call the 
EcuM_SetWakeupEvent service. As a result, when WAKEUP I has finished, the ECU 
State Manager module has a list of wake up source candidates. These wake up 
source candidates still may need validation. See also 7.8 Wake up Validation 
Protocol for more information. 
 

 sd EcuM_Wakeup Sequence I

«module»

Mcu

ECU Firmware«module»

EcuM

«module»

WdgM

«module»

Os

opt WdgM

Mcu_SetMode(Mcu_ModeType)

WdgM_SetMode(Std_ReturnType,

WdgM_ModeType)

EcuM_GetPendingWakeupEvents(EcuM_WakeupSourceType)

EcuM_DisableWakeupSources(EcuM_WakeupSourceType)

EcuM_AL_DriverRestart()

ReleaseResource(RES_SCHEDULER)

 

Figure 21 – Wake up Sequence I 

 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

70 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

EcuM2545: The driver should be implemented in a way that it only invokes the wake 
up callback once and then requires a dedicated service call to re-arm this 
mechanism. The driver then needs to be re-armed to fire the callback again. 
 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

71 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

7.7.4.2 WAKEUP VALIDATION 
 
Because wake up events can be generated unintended (e.g. EVM spike on CAN 
line), it is necessary to validate wake.ups before the ECU takes up its full operation. 
The validation mechanism is the same for all wake up sources. When a wake up 
event occurs, the ECU is woken up from its SLEEP state and execution resumes 

within the MCU_SetMode service of the MCU driver22. When WAKEUP I is left, the 

ECU State Manager module will have a list of pending wake up events which need to 
be validated. 
 

                                            
22

 Actually, the first code to be executed may be an ISR, e.g. a wakeup ISR. However, this is specific 
to hardware and/or driver implementation. 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

72 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

 sd EcuM_Wakeup Validation

«module»

EcuM

«module»

Wakeup Source

ECU Firmware

loop WHILE no wakeup ev ent has been v alidated AND timeout not expired

opt Wakeup v alidated

opt No wakeup ev ent was v alidated

EcuM_GetPendingWakeupEvents(EcuM_WakeupSourceType)

EcuM_StartWakeupSources(EcuM_WakeupSourceType)

Start validation

timeout()

EcuM_CheckValidation(EcuM_WakeupSourceType)

<Module>_CheckValidation()

EcuM_ValidateWakeupEvent(EcuM_WakeupSourceType)

EcuM_StopWakeupSources(EcuM_WakeupSourceType)

 

Figure 22 – Wake up Validation Sequence 

 
 
EcuM2566: Wake up validation shall apply only to those wake up sources where it is 
required by configuration. If the validation protocol is not configured, then a call to 
EcuM_SetWakeupEvent shall also imply a call to EcuM_ValidateWakeupEvent. 
 
EcuM2565: For each pending wake up event, for which validation is required, a 
validation timeout shall be started. The timeout is event specific and can be defined 
by configuration. Strictly spoken, it is sufficient for an implementation to provide only 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

73 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

one timer, which is prolonged to the largest timeout when new wake up events are 
reported. 
 
EcuM2567: If the last timeout expires without validation then the wake up validation 
is considered to have failed. 
 
EcuM2568: If at least one of the pending events is validated then the entire validation 
has passed. 
Pending events are validated with a call to EcuM_ValidateWakeupEvent. This call 
must be placed in the driver or the consuming stack on top of the driver (e.g. the 
handler). The best place to put this depends on hardware and software design. See 
also 7.8.5 Requirements for Drivers with Wake up Sources. 
 
 
7.7.4.3 WAKEUP REACTION 
 

ECUM_WKACT_SHUTDOWN

ECU_WKACT_TTII

ECUM_WKACT_RUN

Is ECUM_TTII_TIMER

the only wakeup event?

No EVENT ?

from WAKEUP

EcuM_GetValidatedWakeupEvent

(EcuM::EcuM_GetValidatedWakeupEvents)

event source

EcuM_OnWakeupReaction

(EcuM_Callouts::)

in WKACT out WKACT

[Yes]

[No]

[No]

[Yes]

 

Figure 23 – Activity Diagram of WAKEUP REACTION 

 
The WAKEUP REACTION state determines the appropriate wake up reaction (see 
8.2.6 EcuM_WakeupReactionType) according to the wake up source (see 8.2.4 
EcuM_WakeupSourceType). 
As can be seen from, Figure 23 – Activity Diagram of WAKEUP REACTION there are 
the following wake up reactions: 

 Execution of the TTII protocol (see 7.9 Time Triggered Increased Inoperation) 

 Proceed to RUN state (full startup) 

 Shutdown 
If none of the above cases is chosen, the ECU will be shut down again by 
default. The exact behavior depends on the selected shutdown target. 

The callout of this state may be used to override the wake up reaction and provide an 
ECU specific algorithm. 
In case of an ECU Reset, the ECU State Manager module will perform a full 
initialization. 
 
After a failed wake up validation the EcuM shall put the ECU into the same state as 
before the wake up event which failed, i.e. into "SLEEP" or "OFF". The state before 
the wake up event can be determined by calling 

EcuM_GetLastShutdownTarget(). 

 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

74 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

 
7.7.4.4 WAKEUP II 
 

 sd EcuM_Wakeup Sequence II

«module»

Dem

«module»

EcuM

«module»

RTE

«module»

NvM

Integration Code

opt Dem

alt prev ious state

[SLEEP]

[STARTUP]

opt Nv M

Dem_Init()

EcuM_CB_NfyNvMJobEnd(uint8, NvM_RequestResultType)

stop Timer()

EcuM_AL_DriverInitThree(const

EcuM_ConfigType*)

Rte_Switch_currentMode_currentMode(RTE_MODE_EcuM_Mode_RUN)

 

Figure 24 – Wake up Sequence II 

 
 

7.8 Wake up Validation Protocol 
 
7.8.1 Wake up of Communication Channels 
 
Communication channels have their own state machines including run and also sleep 
states. This is necessary since an ECU may have interfaces to several 
communication busses and busses can go to sleep independently from the ECU. 
Consider the following example: 

 
An ECU may have two bus interfaces A and B. The ECU may be awake, bus A is in full 
communication state, but bus B is sleeping. 
 

The state machines of the communication channels are completely provided by the 
Communication Manager, see [5] for details. 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

75 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

According to the specification, the Communication Manager autonomously can fulfill 
the following tasks: 

 Drive a channel from full communication in no communication mode in 
collaboration with Network Management. 

 Put the bus transceiver into standby mode by using the Bus State Manager 
according to the bus interface type. This will configure the bus transceiver to 
generate wake up events when bus traffic occurs. 

The Communication Manager however will not drive the wake up process since wake 
up events will be directed to the ECU State Manager module which in turn will notify 
the Communication Manager if and only if appropriate. 
 
If a wake up occurs on a communication channel, the according bus transceiver 
driver shall notify the ECU State Manager module by invoking the 
EcuM_SetWakeupEvent service. Requirements for this notification are described in 
5.3 Peripherals with Wake up Capability. 
 
EcuM2479: The ECU State Manager module shall execute the Wake up Validation 
Protocol according to 7.8.3 Interaction of Wake up Sources and the ECU  later in this 
chapter. 
 
EcuM2480: If validation is successful, the ECU State Manager module shall inform 
the Communication Manager about the wake up event by invoking the 

Communication Manager’s ComM_EcuM_WakeUpIndication service with the 

according channel as parameter. 
 
In turn, the Communication Manager will use this event to bring the channel into full 
communication mode. 
 

[EcuM3202] If at least one valid wake up is detected the ECU shall perform a startup 

as fast as possible. 

 
[EcuM3203] If in addition to a validated wake up an "invalid" wake up occurs as well, 
it is tolerable to indicate it too. This does not contradict BSW09097 (Validation of 
physical channel wake-up), since the ECU has to start anyway. 
 
7.8.2 Wake up of the Entire ECU 
 
Before the ECU State Manager module can put the ECU into SLEEP state, the 
Communication Manager must have released all run requests23. This will only 
happen, if all communication state machines are in ‘no communication’ mode. But 
this, taking into account the previous paragraphs, implies that all wake up sources 
(e.g. bus transceivers) must have been put to standby state and the wake up source 
must have been armed. Thus, when a wake up occurs, all communication channels 
are in no communication state and there are no RUN requests. 
The wake up procedure is identical to the previous chapter. 
 

                                            
23

 This statement can be extended to any resource manager which may be added in future versions of 
the AUTOSAR Basic Software. 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

76 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

 
7.8.3 Interaction of Wake up Sources and the ECU State Manager module 
 
All wake up sources must be treated in the same way. The procedure shall be as 
follows: 
 
EcuM2492: The ECU State Manager module has to collect all wake up indications of 
the responsible drivers of the wake up event. 
 
This step can happen in several scenarios. The most likely are: 

 After exiting the SLEEP state. In this scenario, the ECU State Manager 
module would issue a re-initialization of the relevant drivers which in turn get a 
chance to scan their hardware e.g. for pending wake up interrupts. 

 If the wake up source is actually in sleep mode, then the driver shall scan 
autonomously for wake up events. The driver may do this interrupt driven or in 
polling mode, whichever is the preferred way for implementing it. 

 
EcuM2494: If wake up validation is required for this event, then the validation 
protocol applies. Otherwise the event is valid immediately. 
 
EcuM2495: If the valid event is a wake up event from a communication interface then 
it is propagated to the Communication Manager. 
 
EcuM2496: If the wake up event is validated (either immediately or by the wake up 
validation protocol), it is labelled as a wake up source and this information is made 
available to the application by the EcuM_GetValidatedWakeupEvents service. 
 
 
7.8.4 Wake up Validation Timeout 
 
It is the implementer’s choice whether he wants to provide a single wake up 
validation timeout timer or one timer per wake up source. This timer must be 
configurable either per module or per wakeupSource. 
The validation timeout period is defined by configuration (container 
EcuMWakeupSource, EcuMValidationTimeout). 
 
The following requirements apply: 
 
EcuM2709: The timer shall be started when the service EcuM_SetWakeupEvent is 
called. 
 
EcuM2710: The timer shall be stopped and the validation is set to passed when the 
service EcuM_ValidateWakeupEvent is called. 
 
EcuM2711: When the timer expires, validation is set to failed. 
 
EcuM2712: Subsequent calls to EcuM_SetWakeupEvent for the same wake up 
source shall not prolong the timeout. 
If only one timer is used, the following approach is proposed: 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

77 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

EcuM2714: If EcuM_SetWakeupEvent is called for a wake up source which did not 
fire yet during the same wake up cycle then the timeout should be prolonged for the 
validation timeout of that wake up source. 
Wake up timeouts are defined by configuration in chapter 10.2 Configurable 
Parameters. 
 
 
7.8.5 Requirements for Drivers with Wake up Sources 
 
EcuM2571: The driver shall invoke the EcuM_SetWakeupEvent service with a 
configurable parameter identifying the source of the wake up once when the wake up 
event is detected. 
 
EcuM2572: Wake-ups which occurred prior to driver initialization shall be detectable. 
This applies to initialization from SLEEP or from OFF state. 
 
The driver shall provide an API to configure the wake up source for the SLEEP state, 
to enable or disable the wake up source, and to put the related peripherals to sleep. 
This requirement only applies if hardware provides these capabilities. 
 
The callback invocation is enabled by calling the driver initialization service. 
 
 
7.8.6 Requirements for Wake up Validation 
 
EcuM2575: If the wake up source requires validation, this may be done by any but 
only by one appropriate module of the basic software. This may be a driver, an 
interface, a handler, or a manager. 
 
Validation is done by calling the EcuM_ValidateWakeupEvent service. 
 
 
7.8.7 Wake up Sources and Reset Reason 
 
The ECU State Manager module API only provides one type 
(EcuM_WakeupSourceType) which can describe all reasons why the ECU starts or 
wakes up. 
 
EcuM2625: The following wake up sources shall not require validation under no 
circumstances: 

 ECUM_WKSOURCE_POWER 

 ECUM_WKSOURCE_RESET 

 ECUM_WKSOURCE_INTERNAL_RESET 

 ECUM_WKSOURCE_INTERNAL_WDG 

 ECUM_WKSOURCE_EXTERNAL_WDG. 

 
 
7.8.8 Wake up Sources with Integrated Power Control 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

78 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

This section applies if the sleep state is realized by a system chip which controls the 
MCU’s power supply. Typical examples are CAN transceivers with integrated power 
supplies (these transceivers switch off power upon application request and switch on 
power upon CAN activity). 
As a consequence, the sleep state looks like the OFF state for the ECU State 
Manager module. This distinction is rather philosophical and not of practical 
importance. The practical impact is that a passive wake up on a communication bus 
will look like a power on reset to the ECU. Hence, the ECU will continue with the 
STARTUP sequence after a wake up event. Nevertheless, wake up validation is 
required. In order to make this work, the system designer has to consider the 
following topics: 

 The transceiver driver is initialized during one of the driver initialization blocks 
(Init Block II by default). This is configured or generated code, i.e. code which 
is under control of the system designer. 

 The CAN transceiver driver API provides services to find out if it was the CAN 
transceiver, due to a passive wake-up, which started the ECU. It is the system 
designer’s responsibility to check the CAN transceiver for wake-up reasons 
and give this information to the ECU State Manager by using the 
EcuM_SetWakeupEvent and EcuM_ClearWakeupEvent services. 

 Additionally the CanTrcv could be configured to check during intialization if it 
was the transceiver, which started the ECU due to a passive wake-up. The 
transceiver driver gives this information to the ECU State Manager by using 
the EcuM_SetWakeupEvent service. 

 During initialization the transceiver driver finds out if it was the transceiver, due 
to a passive wake up, which started the ECU. The transceiver driver gives this 
information to the ECU State Manager module by using the 
EcuM_SetWakeupEvent service. 

 If the system designer sets a transceiver as a wake up source, then the ECU 
State Manager module will not continue with the RUN state when STARTUP II 
is finished. Instead it will continue with the WAKEUP VALIDATION state. 

This behavior can be applied to all kinds of wake up sources.  
 
Waking up from a sleep state which is implemented by unpowering the MCU is not 
fully transparent to the SW-Cs. First of all the BSW modules are brought back into 
their default states after initialization. Second, when starting RTE the SW-Cs will be 
initialized and STARTUP state is signaled for a very short time. When the MCU is 
unpowered, it is inevitable that the ECU State Manager module carries out the 
STARTUP state. The ECU State Manager module offers support by detecting this 
case and then branching into wake up validation and from there (if validation is 
successful) into RUN state. During wake up validation EcuM will signal SLEEP state 
to the SW-Cs so that afterwards it appears as if they were woken up from a normal 
SLEEP state. 
 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

79 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

7.8.9 Activity Diagram 
 

D
ri
v
e

r 
o

r 
o

th
e

r 
c
o

m
p

o
n

e
n

t
D

ri
v
e

r

E
C

U
 S

ta
te

 M
a

n
a

g
e

r

E
c
u

M
_

V
a

lid
a

te
W

a
k
e

u
p

E
v
e

n
t

E
c
u

M
_

S
e

tW
a

k
e

u
p

E
v
e

n
t

Validating Component

Store 

Wakeup 

Event

State?

Driver Initialization

Test for wakeup event in

the past

Event occurred?
Continue initialization and

re-arm wakeup trigger

Driver Initialization

Is validation required?

Start 

validation 

timeout

Is wakeup source a COM channel?

Store 

Validated 

Wakeup 

Event

Validation 

Timed Out

Clear 

Wakeup 

Event

Stop 

Validation 

Timeout

Invoke 

callback 

'wakeup 

detected'

Validation Timeout 

Timer

Most l ikely, one timer is

needed per wakeup 

source. 

Implementation detail.

Invoke 

ComM_EcuM_WakeUpIndication

Return

Return

Return

Driver ISR

Wakeup event occurred?

Wakeup trigger armed?

Disarm 

wakeup 

trigger

Return from 

ISR

Driver ISR

Validating Component

Timeout

[yes]

[yes]

[no]

[no]

[no]

[yes]

[yes]

[no]

[WAKEUP]

[RUN]

[yes]

 

Figure 25 – Wake up Validation Protocol 

 
 

7.9 Time Triggered Increased Inoperation 
 
EcuM2653: TTII shall manage a list of sleep modes (shutdown targets). These sleep 
modes can be defined at configuration time. Typically the sleep modes are ordered to 
deepen the sleep phase of the ECU (decreased power consumption). 
 
EcuM2654: An entry of the sleep mode list shall contain the following properties: 

 A description of the ECU sleep mode 

 A reference to the successor sleep mode 

 A divisor counter which tells how often the ECU must be woken up before the 
successor sleep mode is selected. 

These properties shall be defined at configuration time (see 10.2 Configurable 
Parameters container EcuMTTII). 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

80 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

The TTII protocol is executed during the WAKEUP REACTION sub-state. Refer to 
chapter 7.7.4.3 WAKEUP REACTION and Figure 23 – Activity Diagram of WAKEUP 
REACTION. 
 
EcuM2223: The entire TTII feature can be completely disabled by setting the 

ECUM_TTII_ENABLED configuration parameter to false. All further described 

activities are only applicable if TTII is enabled. 
 
EcuM2222: A wake up source must be selected by configuration 

(ECUM_TTII_WKSOURCE configurable parameter) for use by the TTII protocol. 

Typically, the wake up source will be a timer, which serves as a timebase for TTII. 
Whenever the ECU is woken up by this configured wake up source, then the TTII 
protocol shall be executed. 
 

«configuration data»

ECUM_TTII_DIVISOR_LIST

«configuration data»

ECUM_TTII_SUCCESSOR_LIST
from WAKEUP

Decrement Divisor 

Counter

Divisor Counter <= 1 ?

ActivityFinal

Get succeeding sleep

mode

Preload divisor counter for

new sleep mode

Divisor Counter

static variable

[no]

[yes]

sleep mode names

 

Figure 26 – Activity Diagram of TTII 

 
 

7.10 AUTOSAR Ports 
 
7.10.1 Scope of this Chapter 
 
This chapter defines the AUTOSAR Interfaces of the ECU State Manager module. 
 
7.10.2 Overview 
 
The overall architecture of the ECU State Manager module service is depicted in the 
following picture. 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

81 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

 

Figure 27 – ARPackage EcuM 

 
 
7.10.3 Use Cases 
 
EcuM2762: The ECU State Manager module shall provide AUTOSAR ports for the 
following functionalities: 

 requesting RUN 

 releasing RUN 

 requesting POST_RUN 

 releasing POST_RUN 
 
EcuM2763: The ECU State Manager module shall provide also AUTOSAR ports for 
the following functionality: 

 selecting and getting shutdown target 

 selecting and getting application modes 

 selecting and getting boot targets 
 
The interfaces used in this chapter will be described in the following. 
 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

82 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

7.10.4 Specification of the Port Interfaces 
 
This chapter specifies the Port Interfaces that are needed in order to operate the 
ECU State Manager module functionality over the VFB. The ports implementing the 
Port Interfaces described in this chapter will be defined in chapter 7.10.5. 
 
 
7.10.4.1 Port Interface for Interface EcuM_StateRequest 
 
7.10.4.1.1 General Approach 

 
A SW-C which needs to keep the ECU alive or needs to execute any operations 
before the ECU is shut down shall require the client-server interface 

EcuM_StateRequest. 

This interface uses port-defined argument values to identify the user that requests 
states. See [rte_sws_1360] in [17] for a description of port-defined argument values. 
 
7.10.4.1.2 Data Types 

 
No data types are need for this interface 
 
 
7.10.4.1.3 Port Interface 

 
ClientServerInterface EcuM_StateRequest 

{ 

PossibleErrors {  

E_NOT_OK = 1 /* The request was not accepted by EcuM, a detailed 

error condition was sent to DET */ 

}; 

 

// The SW-C can request or release an ECU RUN or POST_RUN state when 

// requiring this interface 

RequestRUN(ERR{E_NOT_OK}); 

ReleaseRUN(ERR{E_NOT_OK}); 

RequestPOSTRUN(ERR{E_NOT_OK}); 

ReleasePOSTRUN(ERR{E_NOT_OK}); 

}; 

 

The ECU State Manager module provides additional calls which would typically be 
made by one management instance on the ECU as they have a global impact. The 

function “EcuM_KillAllRUNRequests()” unconditionally undoes all requests to 

RUN. Because of this, calling EcuM_RequestRUN does not necessarily guarantee 

that the ECU will stay awake until calling EcuM_ReleaseRUN (e.g. a 

KillAllRUNRequests-call can override the wish of individual users for the ECU to 

stay awake). The function “EcuM_KillAllRUNRequests()” is not accessible over 

the RTE and thus can not be used by SW-Cs. 
 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

83 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

7.10.4.2 Port Interface for Interface EcuM_CurrentMode 
 
7.10.4.2.1 General Approach 

 
EcuM2749: The mode port of the ECU State Manager module shall declare the 
following modes: 

 STARTUP 

 RUN 

 POST_RUN 

 SLEEP 

 WAKE_SLEEP 

 SHUTDOWN 
 
This definition is a simplified view of ECU States that applications do need to know. It 
does not restrict or limit in any way how application states could be defined. 
Applications states are completely handled by the application itself.  
 
EcuM2750: State changes shall be notified to SW-Cs through the RTE mode ports 
when the state change occurs. The ECU State Manager module shall not wait until 
the RTE has performed the mode switch completely. 
 
This specification assumes that the port name is currentMode and that the direct API 
of RTE will be used. Under these conditions mode changes signaled by invoking 
 

Rte_StatusType Rte_Switch_currentMode_currentMode( 

Rte_ModeType_EcuM_Mode mode) 
 

where mode is the new mode to be notified. The value range is specified by the 

previous requirement. The return value shall be ignored. 
 
A SW-C which wants to be notified of mode changes should require the mode switch 

interface EcuM_CurrentMode. 

 
The following figure shows how the defined modes are mapped to the states of the 
ECU State Manager module and when the notifications shall occur. 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

84 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

Mapping of States to Mode Declarations

Mode Declaration Model

EcuM_Mode :

ModeDeclarationGroup

SHUTDOWN :

ModeDeclaration

RUN :

ModeDeclaration

POST_RUN :

ModeDeclaration

SLEEP :

ModeDeclaration

WAKEUP

(from Main State Machine)

SLEEP

(from Main State Machine)

SHUTDOWN

(from Main State Machine)

Perform GO SLEEP

(from Main State Machine)

Perform PREP

SHUTDOWN

(from Main State Machine)

Perform GO OFF I

(from Main State Machine)

RUN

(from Main State Machine)

RUN II

(from Main State Machine)

RUN III

(from Main State Machine)

Mode Post Run

WAKE_SLEEP :

ModeDeclaration

Mode WakeSleep

Time Triggered

Increased Inoperation

(from Main State Machine)

STARTUP :

ModeDeclaration

STARTUP II

(from Main State Machine)

Mode Startup

Mode Run

Mode Sleep

Mode Shutdown

all RUN requests

released /notify

all applications have shut down

Wakeup

event

+initialMode

+modeDeclarations

trough OFF or RESET

[other] /notify

[Reset or Off requested] /notify

+modeDeclarations+modeDeclarations +modeDeclarations
+modeDeclarations

immediate

normal startup

/notify

No Wakeup

Event

RUN requested

/notify

else

/notify

immediate

/notify

Wakeup

Event

+modeDeclarations

wakeup source with integrated power control

/notify

TTII

/notify

 

Figure 28 – Mapping of declared modes to ECU State Manager module states 

 
 
EcuM2752: The ECU State Manager module shall notify WakeSleep mode and 
Sleep mode when transiting from WAKEUP to SHUTDOWN, but only if the selected 
shutdown target is SLEEP. 
This allows the system designer to trigger runnables for wake-sleep operations or 
TTII. 
 
 
7.10.4.2.2 Data Types 

 

The mode declaration group EcuM_Mode represents the modes of the ECU State 

Manager module that will be notified to the SW-Cs. 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

85 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

ModeDeclarationGroup EcuM_Mode { 

 { STARTUP, 

   RUN, 

   POST_RUN, 

   SLEEP, 

   WAKE_SLEEP, 

   SHUTDOWN 

 } 

 initialMode = STARTUP 

}; 

 
 
7.10.4.2.3 Port Interface 

 
SenderReceiverInterface EcuM_CurrentMode { 

 EcuM_Mode currentMode; 

}; 

 
 
7.10.4.3 Ports and Port Interface for Interface EcuM_ShutdownTarget 
 
7.10.4.3.1 General Approach 

 
A SW-C which wants to select a shutdown target should require the client-server 

interface EcuM_ShutdownTarget. 

 
 
7.10.4.3.2 Data Types 

 
This data type represents the states of the ECU State Manager module and thus 
includes the shutdown targets. 
 

PrimitiveTypeWithSemantics EcuM_StateType { 

IntegerType { 

LOWER-LIMIT=0x10, UPPER-LIMIT=0x90 

}; 

0x10 -> ECUM_STATE_STARTUP 

0x11 -> ECUM_STATE_STARTUP_ONE 

0x12 –> ECUM_STATE_STARTUP_TWO 

0x20 –> ECUM_STATE_WAKEUP 

0x21 –> ECUM_STATE_WAKEUP_ONE 

0x22 –> ECUM_STATE_WAKEUP_VALIDATION 

0x23 –> ECUM_STATE_WAKEUP_REACTION 

0x24 –> ECUM_STATE_WAKEUP_TWO 

0x25 –> ECUM_STATE_WAKEUP_WAKESLEEP 

0x26 –> ECUM_STATE_WAKEUP_TTII 

0x30 –> ECUM_STATE_RUN 

0x32 –> ECUM_STATE_APP_RUN 

0x33 –> ECUM_STATE_APP_POST_RUN 

0x40 –> ECUM_STATE_SHUTDOWN 

0x44 –> ECUM_STATE_PREP_SHUTDOWN 

0x49 –> ECUM_STATE_GO_SLEEP 

0x4d –> ECUM_STATE_GO_OFF_ONE 

0x4e –> ECUM_STATE_GO_OFF_TWO 

0x50 –> ECUM_STATE_SLEEP 

0x80 –> ECUM_STATE_OFF 

0x90 –> ECUM_STATE_RESET 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

86 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

}; 

 
 
7.10.4.3.3 Port Interface 

 
ClientServerInterface EcuM_ShutdownTarget 

{ 

// The SW-C can select a shutdown target when requiring 

// this interface  

PossibleErrors {  

E_NOT_OK = 1 /* The new shutdown target was not set */ 

}; 

 

// The SW-C selects a shutdown target 

SelectShutdownTarget(IN EcuM_StateType target, IN uint8 mode, 

ERR{E_NOT_OK}); 

 

// The SW-C gets the currently selected shutdown target 

GetShutdownTarget(OUT EcuM_StateType target, OUT uint8 mode); 

 

// The SW-C gets the shutdown target of the previous shutdown process 

GetLastShutdownTarget(OUT EcuM_StateType target, OUT uint8 mode); 

}; 

 

The parameter mode determines the concrete sleep mode. This parameter shall only 
be used if the target parameter equals to ECUM_STATE_SLEEP, otherwise it will be 
ignored. 
 
 
7.10.4.4 Port Interface for Interface EcuM_BootTarget 
 
7.10.4.4.1 General Approach 

 
A SW-C which wants to select a boot target shall require the client-server interface 

EcuM_BootTarget. 

 
 
7.10.4.4.2 Data Types 

 
This data type represents the boot targets the ECU State Manager module can be 
configured with. 
 
PrimitiveTypeWithSemantics EcuM_BootTargetType { 

IntegerType {LOWER-LIMIT=0, UPPER-LIMIT=1}; 

0 -> ECUM_BOOT_TARGET_APP 

1 -> ECUM_BOOT_TARGET_BOOTLOADER 

 

// ECUM_BOOT_TARGET_APP: The ECU will boot into the application 

// ECUM_BOOT_TARGET_BOOTLOADER: The ECU will boot into the bootloader 

}; 

 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

87 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

7.10.4.4.3 Port Interface 

 
ClientServerInterface EcuM_BootTarget 

{ 

PossibleErrors {  

E_NOT_OK = 1 /* The new boot target was not accepted by EcuM */ 

}; 

 

// The SW-C selects a boot target 

SelectBootTarget (IN EcuM_BootTargetType target, ERR{E_NOT_OK}); 

 

// The SW-C gets informed of the current boot target 

GetBootTarget(OUT EcuM_BootTargetType target); 

}; 

 
 
7.10.4.5 Port Interface for Interface EcuM_ApplicationMode 
 
7.10.4.5.1 General Approach 

 
 A SW-C which wants to select an application mode shall require the client-server 

interface EcuM_ApplicationMode. 

 
 
7.10.4.5.2 Data Types 

 

The data type EcuM_AppModeType represents the application mode.  
7.10.4.5.3 Port Interface 

 
ClientServerInterface EcuM_ApplicationMode 

{ 

PossibleErrors {  

E_NOT_OK = 1 /* The new application mode was not accepted by EcuM */ 

}; 

 

// The SW-C selects an application mode 

SelectApplicationMode (IN EcuM_AppModeType appMode, ERR{E_NOT_OK}); 

 

// The SW-C gets informed of the current application mode 

GetApplicationMode (OUT EcuM_AppModeType appMode); 

}; 

 
 
7.10.5 Summary of ports 
 
7.10.5.1 Definitions of interfaces 
 
PrimitiveTypeWithSemantics EcuM_StateType { 

IntegerType { 

LOWER-LIMIT=0x10, UPPER-LIMIT=0x90 

}; 

0x10 -> ECUM_STATE_STARTUP 

0x11 -> ECUM_STATE_STARTUP_ONE 

0x12 –> ECUM_STATE_STARTUP_TWO 

0x20 –> ECUM_STATE_WAKEUP 

0x21 –> ECUM_STATE_WAKEUP_ONE 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

88 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

0x22 –> ECUM_STATE_WAKEUP_VALIDATION 

0x23 –> ECUM_STATE_WAKEUP_REACTION 

0x24 –> ECUM_STATE_WAKEUP_TWO 

0x25 –> ECUM_STATE_WAKEUP_WAKESLEEP 

0x26 –> ECUM_STATE_WAKEUP_TTII 

0x30 –> ECUM_STATE_RUN 

0x32 –> ECUM_STATE_APP_RUN 

0x33 –> ECUM_STATE_APP_POST_RUN 

0x40 –> ECUM_STATE_SHUTDOWN 

0x44 –> ECUM_STATE_PREP_SHUTDOWN 

0x49 –> ECUM_STATE_GO_SLEEP 

0x4d –> ECUM_STATE_GO_OFF_ONE 

0x4e –> ECUM_STATE_GO_OFF_TWO 

0x50 –> ECUM_STATE_SLEEP 

0x80 –> ECUM_STATE_OFF 

0x90 –> ECUM_STATE_RESET 

}; 

 

 

ClientServerInterface EcuM_StateRequest 

{ 

PossibleErrors {  

E_NOT_OK = 1 /* The request was not accepted by EcuM, a detailed 

error condition was sent to DET */ 

}; 

 

// The SW-C can request or release an ECU RUN or POST_RUN state when 

// requiring this interface 

RequestRUN(ERR{E_NOT_OK}); 

ReleaseRUN(ERR{E_NOT_OK}); 

RequestPOSTRUN(ERR{E_NOT_OK}); 

ReleasePOSTRUN(ERR{E_NOT_OK}); 

}; 

 

ModeDeclarationGroup EcuM_Mode { 

 { STARTUP, 

 RUN, 

 POST_RUN, 

 SLEEP, 

 WAKE_SLEEP, 

 SHUTDOWN 

 } 

 initialMode = STARTUP 

}; 

SenderReceiverInterface EcuM_CurrentMode { 

 EcuM_Mode currentMode; 

}; 

 

ClientServerInterface EcuM_ShutdownTarget 

{ 

// The SW-C can select a shutdown target when requiring 

// this interface  

PossibleErrors {  

E_NOT_OK = 1 /* The new shutdown target was not set */ 

}; 

 

// The SW-C selects a shutdown target 

SelectShutdownTarget(IN EcuM_StateType target, IN uint8 mode, 

ERR{E_NOT_OK}); 

 

// The SW-C gets the currently selected shutdown target 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

89 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

GetShutdownTarget(OUT EcuM_StateType target, OUT uint8 mode); 

 

// The SW-C gets the shutdown target of the previous shutdown process 

GetLastShutdownTarget(OUT EcuM_StateType target, OUT uint8 mode); 

}; 

 

PrimitiveTypeWithSemantics EcuM_BootTargetType { 

IntegerType {LOWER-LIMIT=0, UPPER-LIMIT=1}; 

0 -> ECUM_BOOT_TARGET_APP 

1 -> ECUM_BOOT_TARGET_BOOTLOADER 

 

// Bootloader and application are two separated programs which in 

// many cases even can be flashed separately. The only way to get 

// from one image to another is through reset. The boot menu will 

// branch into the one or other image depending on the selected boot 

// target 

}; 

 

ClientServerInterface EcuM_BootTarget 

{ 

PossibleErrors {  

E_NOT_OK = 1 /* The new boot target was not accepted by EcuM */ 

}; 

 

// The SW-C selects a boot target 

SelectBootTarget (IN EcuM_BootTargetType target, ERR{E_NOT_OK}); 

 

// The SW-C gets informed of the current boot target 

GetBootTarget(OUT EcuM_BootTargetType target); 

}; 

 

ClientServerInterface EcuM_ApplicationMode 

{ 

PossibleErrors {  

E_NOT_OK = 1 /* The new boot target was not accepted by EcuM */ 

}; 

 

// The SW-C selects an application mode 

SelectApplicationMode (IN EcuM_AppModeType appMode, ERR{E_NOT_OK}); 

 

// The SW-C gets informed of the current application mode 

GetApplicationMode (OUT EcuM_AppModeType appMode); 

}; 

 
 
7.10.5.2 Definition of the Service ECU State Manager module 
 
This section provides guidance on the definition of the ECU State Manager Service.  
Note that these definitions can only be completed during ECU configuration (because 
it depends on certain configuration parameters of the ECU State Manager module 
which determine the number of ports provided by the ECU State Manager service). 
Also note that the implementation of a SW-C does not depend on these definitions. 
There are ports on both sides of the RTE: This description of the ECU State Manager 
service defines the ports below the RTE. Each SW-Component, which uses the 
Service, must contain “service ports” in its own SW-C description which will be 
connected to the ports of the ECU State Manager module, so that the RTE can be 
generated. 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

90 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

/* This is the definition of the ECU State Manager as a service. This is 

the “outside-view” of the ECU State Manager module, which must be visible 

to the SW-C’s / ECU-integrator */ 

Service EcuStateManager {  

// For each user the ECU State Manager module provides a port 

// to request/release RUN and POST_RUN states. 

// there are NU users; 

ProvidePort EcuM_StateRequest SR000; 

 … 

ProvidePort EcuM_StateRequest SR<NU-1>; 

 

ProvidePort EcuM_CurrentMode currentMode; 

 

ProvidePort EcuM_ShutdownTarget shutdownTarget; 

 

ProvidePort EcuM_BootTarget bootTarget; 

 

ProvidePort EcuM_ApplicationMode applicationMode; 

}; 

 
 
7.10.6 Runnables and Entry points 
 
7.10.6.1 Internal behavior 
 
This is the inside description of the ECU State Manager module. This detailed 
description is only needed for the configuration of the local RTE. 
 
InternalBehavior EcuStateManager { 

 

 // Runnable entities of the EcuStateManager 

 RunnableEntity RequestRUN 

  symbol “EcuM_RequestRUN” 

  canbeInvokedConcurrently = TRUE 

RunnableEntity ReleaseRUN 

  symbol “EcuM_ReleaseRUN” 

  canbeInvokedConcurrently = TRUE 

RunnableEntity RequestPOSTRUN 

  symbol “EcuM_RequestPOST_RUN” 

  canbeInvokedConcurrently = TRUE 

RunnableEntity ReleasePOSTRUN 

  symbol “EcuM_ReleasePOST_RUN” 

  canbeInvokedConcurrently = TRUE 

RunnableEntity SelectShutdownTarget 

  symbol “EcuM_SelectShutdownTarget” 

  canbeInvokedConcurrently = TRUE 

RunnableEntity GetShutdownTarget 

  symbol “EcuM_GetShutdownTarget” 

  canbeInvokedConcurrently = TRUE 

RunnableEntity GetLastShutdownTarget 

  symbol “EcuM_GetLastShutdownTarget” 

  canbeInvokedConcurrently = TRUE 

RunnableEntity SelectApplicationMode 

  symbol “EcuM_SelectApplicationMode” 

  canbeInvokedConcurrently = TRUE 

RunnableEntity GetApplicationMode 

  symbol “EcuM_GetApplicationMode” 

  canbeInvokedConcurrently = TRUE 

RunnableEntity SelectBootTarget 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

91 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

  symbol “EcuM_SelectBootTarget” 

  canbeInvokedConcurrently = TRUE 

RunnableEntity GetBootTarget 

  symbol “EcuM_GetBootTarget” 

  canbeInvokedConcurrently = TRUE 

  

// Port present for each user. There are NU users 

SR000.RequestRUN -> RequestRUN 

SR000.ReleaseRUN -> ReleaseRUN 

SR000.RequestPOSTRUN -> RequestPOSTRUN 

SR000.ReleasePOSTRUN -> RequestPOSTRUN 

PortArgument {port=SR000, value.type=EcuM_UserType, 

value.value=EcuM_User[0].User} 

(...) 

SRnnn.RequestRUN -> RequestRUN 

SRnnn.ReleaseRUN -> ReleaseRUN 

SRnnn.RequestPOSTRUN -> RequestPOSTRUN 

SRnnn.ReleasePOSTRUN -> RequestPOSTRUN 

PortArgument {port=SRnnn, value.type=EcuM_UserType, 

value.value=EcuM_User[nnn].User} 

 

shutDownTarget.SelectShutdownTarget -> SelectShutdownTarget 

shutDownTarget.GetShutdownTarget -> GetShutdownTarget 

shutDownTarget.GetLastShutdownTarget -> GetLastShutdownTarget 

bootTarget.SelectBootTarget -> SelectBootTarget 

bootTarget.GetBootTarget -> GetBootTarget 

applicationMode.SelectApplicationMode -> SelectApplicationMode 

applicationMode.GetApplicationMode -> GetApplicationMode 

}; 

 
 

7.11 Advanced Topics 
 
7.11.1 Application Modes 
 
Application Modes is a feature of the OS which allows to define different 
configurations, e.g. sets of tasks which will be started initially. The application mode 

is an in parameter of the StartOS service (ref. [5]). Since the ECU State Manager 

module is responsible for starting the OS, it has also responsibility for managing the 
application mode. 
 
EcuM2700: An application mode change shall be accomplished by selecting the new 
application mode with the EcuM_SelectApplicationMode service (typically from RUN 
state) and a subsequent shutdown to the RESET shutdown target. 
 
EcuM2243: The default application mode is set in the STARTUP I state in case of 
unintended restarts24, see chapter 7.3.4.1 STARTUP I. After this point, the 
application mode can be modified by the application itself. 
 
 

                                            
24

 e.g. like watchdog reset 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

92 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

7.11.2 Relation to Bootloader 
 
The Bootloader is not part of AUTOSAR. Still, the application needs an interface to 
activate the bootloader. For this purpose, two functions are provided: 
EcuM_SelectBootTarget and EcuM_GetBootTarget. 
 

 

Figure 29 – Selection of Boot Targets 

 
 
Bootloader and application are two separated programs which in many cases even 
can be flashed separately. The only way to get from one image to another is through 
reset. The boot menu will branch into the one or other image depending on the 
selected boot target. 
 
 
7.11.3 Relation to Complex Drivers 
 
EcuM2321: If the complex driver handles a wake up source, it must obey all rules of 
this specification which are related to handling wake up events. 
 
EcuM2322: A complex driver may issue RUN requests. 
 
 
7.11.4 Handling Errors during Startup and Shutdown 
 
The ECU State Manager module will ignore all types of errors that occur during 
initialization, e.g. as return values of init functions. Initialization is a configuration 
issue and henceforth cannot be standardized. 
If errors occur during the initialization of a BSW module and this error is worthwhile 
being reported, then it is in the responsibility of that BSW module to report this error 
directly to DEM or DET and not the responsibility of the ECU State Manager module. 
If special error reactions are necessary, then also this is in the responsibility of the 
BSW module. 
 
 
7.11.5 Configuration Alternative for Providing Wake-Sleep Operation 
 
In rare use cases, an ECU has to wake up cyclically (e.g. each second), execute a 
very simple task (like blinking an LED) and go back to sleep. For most operations, 
the normal WAKEUP/SHUTDOWN behavior as defined by the ECU State Manager 
module will be sufficient. Sometimes, however, the software has to be written very 
specific to maximize energy savings. Because the use case is so rare, there is no 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

93 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

built-in feature in the ECU State Manager module. However, the system designer can 
achieve this by using the ECU State Manager module in the following way: 

 Define a wake up source to be used for the wake-sleep-operation (typically a 
timer) 

 Check the wake up source in the EcuM_AL_DriverInitOne callout and, if it was 
the reason, execute the necessary task 

 Finally, put the ECU back to sleep or perform a startup 
The code needed for this behavior is custom code which is located below the RTE. 
 
 
7.11.6 Selecting Scheduling Schemes for Startup and Shutdown 
 
On some ECU designs, it will be necessary to change the scheduling tables for 
startup and shutdown of the ECU, e.g. to improve speed for reading or writing non-
volatile data. Unless other mechanisms are provided by basic software, the 
notification to switch the schedule table shall preferably be done from the 
EcuM_OnEnterRun and EcuM_OnExitRun callouts.  
 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

94 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

7.12 Error Classification 
 
Type or error Relevance Related error code Value 

A service was called prior to 
initialization 

Development ECUM_E_NOT_INITED 0x10 

A service was called which was 
disabled by configuration 

Development ECUM_E_SERVICE_DISABLED 0x11 

A null pointer was passed as an 
argument 

Development ECUM_E_NULL_POINTER 0x12 

A parameter was invalid (unspecific) Development ECUM_E_INVALID_PAR 0x13 

RUN was requested multiple times 
by the same user ID 

Development ECUM_E_MULTIPLE_RUN_REQUESTS 0x14 

RUN was released though it was not 
requested 

Development ECUM_E_MISMATCHED_RUN_RELEASE 0x15 

A state, passed as an argument to a 
service, was out of range (specific 
parameter test) 

Development ECUM_E_STATE_PAR_OUT_OF_RANGE 0x16 

An unknown wake up source was 
passed as a parameter to an API 

Development ECUM_E_UNKNOWN_WAKEUP_SOURCE 0x17 

The RAM check during wake up 
failed 

Production ECUM_E_RAM_CHECK_FAILED  

The service 
EcuM_KillAllRUNRequests was 
issued 

Production ECUM_E_ALL_RUN_REQUESTS_KILLED  

Configuration data is inconsistent Production ECUM_E_CONFIGURATION_DATA_INCONSISTENT  

Table 5 - Error Classification 

 
 
EcuM2759: All errors shall be reported as events. 
 
EcuM2757: All errors shall be treated as errors immediately. 
 
EcuM2758: All errors shall not be healable. 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

95 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

8 API specification 
 

8.1 Imported Types 
 
This chapter lists all data types included from the other modules: 
 
EcuM2810:   
Module Imported Type 

Adc Adc_ConfigType 

BswM BswM_ConfigType 

Can Can_ConfigType 

CanIf CanIf_ConfigType 

CanNm CanNm_ConfigType 

CanSM CanSM_ConfigType 

CanTrcv CanTrcv_ConfigType 

Com Com_ConfigType 

ComM ComM_ConfigType 

ComStack_Types NetworkHandleType 

Dcm Dcm_ConfigType 

Dem Dem_EventIdType 

Fr Fr_ConfigType 

FrIf FrIf_ConfigType 

FrNm FrNm_ConfigType 

FrSm FrSm_ConfigType 

FrTp FrTp_ConfigType 

Gpt Gpt_ConfigType 

Icu Icu_ConfigType 

IpduM IpduM_ConfigType 

Lin Lin_ConfigType 

LinIf LinIf_ConfigType 

LinTp_ConfigType 

Mcu Mcu_ModeType 

Mcu_ResetType 

Mcu_ConfigType 

Nm Nm_ConfigType 

NvM NvM_RequestResultType 

Os AppModeType 

PduR PduR_PBConfigType 

Port Port_ConfigType 

Pwm Pwm_ConfigType 

RTE Rte_ModeType_EcuM_Mode 

Spi Spi_ConfigType 

Std_Types Std_ReturnType 

Std_VersionInfoType 

Wdg Wdg_ConfigType 

WdgM WdgM_ModeType 

WdgM_SupervisedEntityIdType 

WdgM_ConfigType 

 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

96 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

8.2 Type definitions 
 
8.2.1 EcuM_ConfigType 
Name: EcuM_ConfigType 

Type: Structure 

Range: - The content of this structure depends on the post-build 
configuration of EcuM. 

Description: A pointer to such a structure shall be provided to the ECU State Manager 
initialization routine for configuration. 

 
EcuM2801: This structure shall hold the post-build configuration parameters for the 

ECU State Manager module as well as pointers to all ConfigType structures of 

modules that are initialized by the ECU State Manager module. 
 
EcuM2793: The ECU State Manager module Configuration Tool shall specifically 
generate this structure for a given set of basic software modules that comprise the 
ECU configuration. The set of basic software modules is derived from the 
corresponding EcuMModuleConfiguration parameters. 
 
EcuM2794: This structure shall contain an additional post-build configuration variant 
identifier (uint8/uint16/uint32 depending on algorithm to compute the identifier). See 
also chapter 10.4 Checking Configuration Consistency. 
 
EcuM2795: This structure shall contain an additional hash code with is tested 
against the configuration parameter EcuMConfigConsistencyHash for checking 
consistency of the configuration data. See also chapter 10.4 Checking Configuration 

Consistency. 
 
EcuM2800: The ECU State Manager module Configuration Tool shall also generate 
for each given ECU configuration an instance of this structure that is filled with the 
post-build configuration parameters of the ECU State Manager module as well as 
pointers to instances of configuration structures for the modules mentioned in 
EcuM2793. The pointers are derived from the corresponding 
EcuMModuleConfiguration parameters. 
 
 
8.2.2 EcuM_StateType 
Name: EcuM_StateType 

Type: uint8 

Range: ECUM_SUBSTATE_MASK 0x0f -- 

ECUM_STATE_STARTUP 0x10 -- 

ECUM_STATE_STARTUP_ONE 0x11 -- 

ECUM_STATE_STARTUP_TWO 0x12 -- 

ECUM_STATE_WAKEUP 0x20 -- 

ECUM_STATE_WAKEUP_ONE 0x21 -- 

ECUM_STATE_WAKEUP_VALIDATION 0x22 -- 

ECUM_STATE_WAKEUP_REACTION 0x23 -- 

ECUM_STATE_WAKEUP_TWO 0x24 -- 

ECUM_STATE_WAKEUP_WAKESLEEP 0x25 -- 

ECUM_STATE_WAKEUP_TTII 0x26 -- 

ECUM_STATE_RUN 0x30 -- 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

97 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

ECUM_STATE_APP_RUN 0x32 -- 

ECUM_STATE_APP_POST_RUN 0x33 -- 

ECUM_STATE_SHUTDOWN 0x40 -- 

ECUM_STATE_PREP_SHUTDOWN 0x44 -- 

ECUM_STATE_GO_SLEEP 0x49 -- 

ECUM_STATE_GO_OFF_ONE 0x4d -- 

ECUM_STATE_GO_OFF_TWO 0x4e -- 

ECUM_STATE_SLEEP 0x50 -- 

ECUM_STATE_OFF 0x80 -- 

ECUM_STATE_RESET 0x90 -- 

Description: ECU State Manager states. 

 
EcuM507: Encodes states and sub-states of the ECU State Manager module. States 
are encoded in the hi-nibble, sub-state in the lo-nibble. The sub-state can be 

determined by ANDing the state value with ECUM_SUBSTATE_MASK. 

 
EcuM2664: The ECU State Manager module shall define all states as listed in the 

EcuM_StateType. 

 
 
8.2.3 EcuM_UserType 
Name: EcuM_UserType 

Type: uint8 

Description: Unique value for each user. 

EcuM487: For each user, a unique value must be defined at system generation time. 
Ref. to 10.2 Configurable Parameters. 
 
 
8.2.4 EcuM_WakeupSourceType 
Name: EcuM_WakeupSourceType 

Type: uint32 

Range: ECUM_WKSOURCE_INTERNAL_RESET -- Internal reset of µC (bit 2) 
The internal reset typically only resets the 
µC core but not peripherals or memory 
controllers. The exact behavior is 
hardware specific. 
This source may also indicate an 
unhandled exception. 

ECUM_WKSOURCE_EXTERNAL_WDG -- Reset by external watchdog (bit 4), if 
detection supported by hardware 

ECUM_WKSOURCE_INTERNAL_WDG -- Reset by internal watchdog (bit 3) 

ECUM_WKSOURCE_POWER -- Power cycle (bit 0) 

ECUM_WKSOURCE_ALL_SOURCES -- ~0 to the power of 29 

ECUM_WKSOURCE_RESET 

(default) 

-- Hardware reset (bit 1). 
If hardware cannot distinguish between a 
power cycle and a reset reason, then this 
shall be the default wakeup source. 

Description: The bitfield provides one bit for each wakeup source. 
In WAKEUP state, all bits cleared indicates that no wakeup source is known. 
In STARTUP state, all bits cleared indicates that no reason for restart or reset is 
known. In this case, ECUM_WKSOURCE_RESET shall be assumed. 

 
EcuM2165: The list can be extended by configuration 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

98 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

 
EcuM2166: Extension values (see chapter 10.2 Configurable Parameters) must define 
single additional bits. The bit assignment shall be done by the configuration tool. 
 
EcuM2601: If hardware cannot detect a specific wake up source, then the ECU State 

Manager module shall report a ECUM_WKSOURCE_RESET instead. 

 
 
8.2.5 EcuM_WakeupStatusType 
Name: EcuM_WakeupStatusType 

Type: uint8 

Range: ECUM_WKSTATUS_NONE 0 No pending wakeup event was detected 

ECUM_WKSTATUS_PENDING 1 The wakeup event was detected but not yet 
validated 

ECUM_WKSTATUS_VALIDATED 2 The wakeup event is valid 

ECUM_WKSTATUS_EXPIRED 3 The wakeup event has not been validated and has 
expired therefore 

Description: The type describes the possible outcomes of the WAKEUP VALIDATION state. The 
type may be applied to one wakeup source or a collection of wakeup sources. 

 
See also 8.3.4.5 EcuM_GetStatusOfWakeupSource. 

8.2.6 EcuM_WakeupReactionType 
Name: EcuM_WakeupReactionType 

Type: uint8 

Range: ECUM_WKACT_RUN 0 Initialization into RUN state 

ECUM_WKACT_TTII 2 Execute time triggered increased inoperation protocol 
and shutdown 

ECUM_WKACT_SHUTDOWN 3 Immediate shutdown 

Description: The type describes the possible outcomes of the WAKEUP REACTION state. 

 
 
8.2.7 EcuM_BootTargetType 
Name: EcuM_BootTargetType 

Type: uint8 

Range: ECUM_BOOT_TARGET_APP 0 The ECU will boot into the application 

ECUM_BOOT_TARGET_BOOTLOADER 1 The ECU will boot into the bootloader 

Description: -- 

 
 
8.2.8 EcuM_AppModeType 
Name: EcuM_AppModeType 

Type: uint8 

Range: ECUM_OSDEFAULTAPPMODE 0 Default application mode 

Description: This data type represents the application mode, standardized for use by the EcuM 
RTE Services. Since the exact layout of AppModeType is not standardized by 
OSEK, the EcuM needs to ensure a correct mapping between EcuM_AppModeType 
and the OSEK-implementation specific AppModeType. 

 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

99 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

8.3 Function Definitions 
 
8.3.1 General 
 
8.3.1.1 EcuM_GetVersionInfo 
 
EcuM2813:  
Service name: EcuM_GetVersionInfo 

Syntax: void EcuM_GetVersionInfo( 

    Std_VersionInfoType* versioninfo 

) 

Service ID[hex]: 0x00 

Sync/Async: Synchronous 

Reentrancy: Non Reentrant 

Parameters (in): None 

Parameters 
(inout): 

None 

Parameters (out): versioninfo Pointer to where to store the version information of this module. 

Return value: None 

Description: Returns the version information of this module. 

 
EcuM2728: This service returns the version information of this module. The version 
information includes: 

- Module Id 
- Vendor Id 
- Vendor specific version numbers (BSW00407). 

 
EcuM2729: This function shall be pre compile time configurable On/Off by the 
configuration parameter: ECUM_VERSION_INFO_API 
 
Hint: 
If source code for caller and callee of this function is available this function should be 
realized as a macro. The macro should be defined in the modules header file. 
 
 
8.3.2 Initialization and Shutdown 
 
8.3.2.1 EcuM_Init 
 
EcuM2811:  
Service name: EcuM_Init 

Syntax: void EcuM_Init( 

 

) 

Service ID[hex]: 0x01 

Sync/Async: Synchronous 

Reentrancy: Non Reentrant 

Parameters (in): None 

Parameters 
(inout): 

None 

Parameters (out): None 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

100 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

Return value: None 

Description: Initializes the ECU state manager and carries out the startup procedure. The 
function will never return (it calls StartOS) 

 
 
8.3.2.2 EcuM_StartupTwo 
 
EcuM2838:  
Service name: EcuM_StartupTwo 

Syntax: void EcuM_StartupTwo( 

 

) 

Service ID[hex]: 0x1a 

Sync/Async: Synchronous 

Reentrancy: Non Reentrant 

Parameters (in): None 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: This function implements the STARTUP II state. 

 
EcuM2806: This function must be called from a task which is started directly as a 
consequence of StartOS. I.e. either it must be called from an autostart task or it must 
be called from a task which is explicitely started. 
 
 
8.3.2.3 EcuM_Shutdown 
 
EcuM2812:  
Service name: EcuM_Shutdown 

Syntax: void EcuM_Shutdown( 

 

) 

Service ID[hex]: 0x02 

Sync/Async: Synchronous 

Reentrancy: Non Reentrant 

Parameters (in): None 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: Typically called from the shutdown hook, this function takes over execution control 
and will carry out GO OFF II activities. 

 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

101 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

8.3.3 State Management 
 
8.3.3.1 EcuM_GetState 
 
EcuM2823:  
Service name: EcuM_GetState 

Syntax: Std_ReturnType EcuM_GetState( 

    EcuM_StateType* state 

) 

Service ID[hex]: 0x07 

Sync/Async: Synchronous 

Reentrancy: Reentrant 

Parameters (in): None 

Parameters 
(inout): 

None 

Parameters (out): state The value of the internal state variable. 

Return value: 
Std_ReturnType E_OK: The out parameter was set successfully. 

E_NOT_OK: The out parameter was not set. 

Description: Gets a state. 

 
EcuM2423: The service must be accessible from an OS and an OS-free context as 
well as from an interrupt context. 
 
 
8.3.3.2 EcuM_RequestRUN 
 
EcuM2814:  
Service name: EcuM_RequestRUN 

Syntax: Std_ReturnType EcuM_RequestRUN( 

    EcuM_UserType user 

) 

Service ID[hex]: 0x03 

Sync/Async: Synchronous 

Reentrancy: Reentrant 

Parameters (in): user ID of the entity requesting the RUN state. 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: 
Std_ReturnType E_OK: The request was accepted by EcuM. 

E_NOT_OK: The request was not accepted by EcuM, a detailed 
error condition was sent to DET (see Error Codes below). 

Description: Places a request for the RUN state. Requests can be placed by every user made 
known to the state manager at configuration time. 

 
EcuM2143: Requests cannot be nested, i.e. one user can only place one request but 
not more. Additional or duplicate user requests by the same user shall be ignored. 
 
EcuM2144: An implementation must track requests for each user known on the ECU. 
Run requests are specific to the user. 
 
EcuM2668: RUN requests shall be ignored after EcuM_KillAllRUNRequests has been 
executed until the shutdown has completed. 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

102 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

Configuration of EcuM_RequestRUN: Ref. to 8.2.3 EcuM_UserType for more 
information about user IDs and their generation. 
 

Error Codes of EcuM_RequestRUN: ECUM_E_MULTIPLE_RUN_REQUESTS: On 

multiple requests by the same user ID 
 
 
8.3.3.3 EcuM_ReleaseRUN 
 
EcuM2815:  
Service name: EcuM_ReleaseRUN 

Syntax: Std_ReturnType EcuM_ReleaseRUN( 

    EcuM_UserType user 

) 

Service ID[hex]: 0x04 

Sync/Async: Synchronous 

Reentrancy: Reentrant 

Parameters (in): user ID of the entity releasing the RUN state. 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: 

Std_ReturnType E_OK: The release request was accepted by EcuM 
E_NOT_OK: The release request was not accepted by EcuM, a 
detailed error condition was sent to DET (see Error Codes 
below). 

Description: Releases a RUN request previously done with a call to EcuM_RequestRUN. The 
service is intended for implementing AUTOSAR ports. 

 
Configuration of EcuM_ReleaseRUN: Ref. to 8.2.3 EcuM_UserType for more 
information about user IDs and their generation. 
 

Error Codes of EcuM_ReleaseRUN: ECUM_E_MISMATCHED_RUN_RELEASE: On 

releasing without a matching request. 
 
 
8.3.3.4 EcuM_ComM_RequestRUN 
 
EcuM2816:  
Service name: EcuM_ComM_RequestRUN 

Syntax: Std_ReturnType EcuM_ComM_RequestRUN( 

    NetworkHandleType channel 

) 

Service ID[hex]: 0x0e 

Sync/Async: Synchronous 

Reentrancy: Reentrant 

Parameters (in): channel ID of the communication channel requesting the RUN state. 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: 
Std_ReturnType E_OK: The request was accepted by EcuM 

E_NOT_OK: The request was not accepted by EcuM, a detailed 
error condition was sent to DET (see Error Codes below). 

Description: The behavior is identical to EcuM_RequestRUN except that the parameter is not a 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

103 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

user but a communication channel. 

 
EcuM2789: The ECU State Manager module shall track requests by communication 
channels in exactly the same way as it tracks other users. 
 

Error Codes of EcuM_ComM_RequestRUN: ECUM_E_MULTIPLE_RUN_REQUESTS: 

On multiple requests by the same user ID 
 
 
8.3.3.5 EcuM_ComM_ReleaseRUN 
 
EcuM2817:  
Service name: EcuM_ComM_ReleaseRUN 

Syntax: Std_ReturnType EcuM_ComM_ReleaseRUN( 

    NetworkHandleType channel 

) 

Service ID[hex]: 0x10 

Sync/Async: Synchronous 

Reentrancy: Reentrant 

Parameters (in): channel ID of the communication channel releasing the RUN state. 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: 

Std_ReturnType E_OK: The release request was accepted by EcuM 
E_NOT_OK: The release request was not accepted by EcuM, a 
detailed error condition was sent to DET (see Error Codes 
below). 

Description: Releases a RUN request previously done with a call to 
EcuM_ComM_RequestRUN. 

 

EcuM2792: The service EcuM_ComM_ReleaseRUN shall clear all wake up events of 

the wakeup source corresponding to this channel. 
 

Error Codes: ECUM_E_MISMATCHED_RUN_RELEASE: On releasing without a 

matching request. 
 
 
8.3.3.6 EcuM_ComM_HasRequestedRUN 
 
EcuM2818:  
Service name: EcuM_ComM_HasRequestedRUN 

Syntax: boolean EcuM_ComM_HasRequestedRUN( 

    NetworkHandleType channel 

) 

Service ID[hex]: 0x1b 

Sync/Async: Synchronous 

Reentrancy: Reentrant 

Parameters (in): channel ID of the communication channel being tested 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: 
boolean true: The channel has reqeusted RUN state 

false: The channel has not requested RUN state 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

104 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

Description: Returns if a channel has requested RUN state. 

 
 
8.3.3.7 EcuM_RequestPOST_RUN 
 
EcuM2819:  
Service name: EcuM_RequestPOST_RUN 

Syntax: Std_ReturnType EcuM_RequestPOST_RUN( 

    EcuM_UserType user 

) 

Service ID[hex]: 0x0a 

Sync/Async: Synchronous 

Reentrancy: Reentrant 

Parameters (in): user ID of the entity requesting the POST RUN state. 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: 
Std_ReturnType E_OK: The request was accepted by EcuM 

E_NOT_OK: The request was not accepted by EcuM, a detailed 
error condition was sent to DET (see Error Codes below). 

Description: Places a request for the POST RUN state. Requests can be placed by every user 
made known to the state manager at configuration time. 
Requests for RUN and POST RUN must be tracked independently (in other words: 
two independent variables). 
The service is intended for implementing AUTOSAR ports. 

 
All requirements of 8.3.3.2 EcuM_RequestRUN apply accordingly to the function 
EcuM_RequestPOST_RUN. 
 
Configuration of EcuM_RequestPOST_RUN: Ref. to 8.2.3 EcuM_UserType for more 
information about user IDs and their generation. 
 

Error Codes of EcuM_RequestPOST_RUN: ECUM_E_MULTIPLE_RUN_REQUESTS: 

On multiple requests by the same user ID 
 
 
8.3.3.8 EcuM_ReleasePOST_RUN 
 
EcuM2820:  
Service name: EcuM_ReleasePOST_RUN 

Syntax: Std_ReturnType EcuM_ReleasePOST_RUN( 

    EcuM_UserType user 

) 

Service ID[hex]: 0x0b 

Sync/Async: Synchronous 

Reentrancy: Reentrant 

Parameters (in): user ID of the entity releasing the POST RUN state. 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: 
Std_ReturnType E_OK: The release request was accepted by EcuM 

E_NOT_OK: The release request was not accepted by EcuM, a 
detailed error condition was sent to DET (see Error Codes 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

105 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

below). 

Description: Releases a POST RUN request previously done with a call to 
EcuM_RequestPOST_RUN. The service is intended for implementing AUTOSAR 
ports. 

 

Configuration of EcuM_ReleasePOST_RUN: Ref. to 8.2.3 EcuM_UserType for more 

information about user IDs and their generation. 
 

Error Codes of EcuM_ReleasePOST_RUN: ECUM_E_MISMATCHED_RUN_RELEASE: 

On releasing without a matching request. 
 
 
8.3.3.9 EcuM_KillAllRUNRequests 
 
EcuM2821:  
Service name: EcuM_KillAllRUNRequests 

Syntax: void EcuM_KillAllRUNRequests( 

 

) 

Service ID[hex]: 0x05 

Sync/Async: Synchronous 

Reentrancy: Reentrant 

Parameters (in): None 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: The benefit of this function over an ECU reset is that the shutdown sequence is 
executed, which e.g. takes care of writing back NV memory contents. 

 

EcuM1872: The function EcuM_KillAllRUNRequests unconditionally releases all 

requests to RUN. 
Note: As an effect the ECU State Manager module switches to RUN III state (see 
also EcuM2311), which allows for a controlled shutdown. 
 
 
EcuM2600: As a consequence EcuM_RequestRUN must not accept any new requests 
unless the resulting shutdown has been completed. 
 

Caveat of EcuM_KillAllRUNRequests: Use this function with care. Side effects 

may occur in the application. If an implementation contains synchronization for more 
graceful shutdown a timeout must be provided to ensure that the shutdown process 
is initiated. 
 

Error Codes of EcuM_KillAllRUNRequests: 

ECUM_E_ALL_RUN_REQUESTS_KILLED: On each invocation. 

 
8.3.3.10 EcuM_KillAllPostRUNRequests 
 
[EcuM3204] :



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

106 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

Service name: EcuM_KillAllPostRUNRequests 

Syntax: void EcuM_KillAllPostRUNRequests( 

 

) 

Service ID[hex]: 0x2a 

Sync/Async: Synchronous 

Reentrancy: Reentrant 

Parameters (in): None 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: This function unconditionally releases all pending requests to PostRUN. 

 
 

[EcuM3205] The function EcuM_KillAllPostRUNRequests unconditionally 

releases all pending requests to PostRUN. 

[EcuM3206] As a consequence EcuM_RequestPostRUN must not accept any new 

requests unless the resulting shutdown has been completed.⌋() 

 
8.3.3.11 EcuM_SelectShutdownTarget 
 
EcuM2822:  
Service name: EcuM_SelectShutdownTarget 

Syntax: Std_ReturnType EcuM_SelectShutdownTarget( 

    EcuM_StateType target, 

    uint8 mode 

) 

Service ID[hex]: 0x06 

Sync/Async: Synchronous 

Reentrancy: Reentrant 

Parameters (in): 

target The selected shutdown target. 

mode An index like value which can be dereferenced to a sleep mode 
(EcuM_SleepModeConfigType). 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: 
Std_ReturnType E_OK: The new shutdown target was set 

E_NOT_OK: The new shutdown target was not set 

Description: Selects the shutdown target. 

 
EcuM624: Parameter mode of the function EcuM_SelectShutdownTarget:  The 
selected shutdown target. Only the following subset of the EcuM_StateType value 
range is accepted: 

 ECUM_STATE_SLEEP 

 ECUM_STATE_RESET 

 ECUM_STATE_OFF 

All other values will be rejected and result in a development error message 

ECUM_E_STATE_PAR_OUT_OF_RANGE must be thrown. 

 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

107 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

EcuM2185: The parameter mode of the function EcuM_SelectShutdownTarget shall 
be the identifier of a sleep mode. The mode parameter shall only be used if the target 

parameter equals ECUM_STATE_SLEEP. In all other cases, it shall be ignored. Only 

sleep modes that are defined at configuration time and are stored in the 
EcuMSleepMode container are allowed as parameters. 
 
EcuM2585: An implementation of this service should not initiate any setup activities 

but only store the value for later use in the SHUTDOWN state. 

 
EcuM2228: An implementation must preload the TTII divisor counter variable with 

the preload value defined in the ECUM_TTII_DIVISOR_LIST. 

The service is intended for implementing AUTOSAR ports. 
 
Caveat of EcuM_SelectShutdownTarget: The ECU State Manager module does not 
define any mechanism to resolve issues arising from requests from different sources. 
Always the last set values will be used as shutdown target. It is assumed that there 
will be one piece of application which is specific to the ECU and handles these kinds 
of issues. 
 
 
8.3.3.12 EcuM_GetShutdownTarget 
 
EcuM2824:  
Service name: EcuM_GetShutdownTarget 

Syntax: Std_ReturnType EcuM_GetShutdownTarget( 

    EcuM_StateType* shutdownTarget, 

    uint8* sleepMode 

) 

Service ID[hex]: 0x09 

Sync/Async: Synchronous 

Reentrancy: Reentrant 

Parameters (in): None 

Parameters 
(inout): 

None 

Parameters (out): 

shutdownTarget One of these values is returned: 
• ECUM_STATE_SLEEP 
• ECUM_STATE_RESET 
• ECUM_STATE_OFF 

sleepMode If the return parameter is ECUM_STATE_SLEEP, this out 
parameter tells which of the configured sleep modes was actually 
chosen. 

Return value: 
Std_ReturnType E_OK: The service has succeeded 

E_NOT_OK: The service has failed, e.g. due to NULL pointer 
being passed 

Description: This function returns the selected shutdown target as set by 
EcuM_SelectShutdownTarget 

 

EcuM2788: Parameter sleepMode of the function EcuM_GetShutdownTarget: An 

implementation shall cope with NULL pointers by simply ignoring the out parameter 

in all cases. An implementation may assert the ECUM_E_NULL_POINTER 

development error. 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

108 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

 
8.3.3.13 EcuM_GetLastShutdownTarget 
 
EcuM2825:  
Service name: EcuM_GetLastShutdownTarget 

Syntax: Std_ReturnType EcuM_GetLastShutdownTarget( 

    EcuM_StateType* shutdownTarget, 

    uint8* sleepMode 

) 

Service ID[hex]: 0x08 

Sync/Async: Synchronous 

Reentrancy: Reentrant 

Parameters (in): None 

Parameters 
(inout): 

None 

Parameters (out): 

shutdownTarget One of these values is returned: 
• ECUM_STATE_SLEEP 
• ECUM_STATE_RESET 
• ECUM_STATE_OFF 

sleepMode This parameter tells which of the configured sleep modes was 
actually chosen. 

Return value: 
Std_ReturnType E_OK: The service has succeeded 

E_NOT_OK: The service has failed, e.g. due to NULL pointer 
being passed 

Description: This service returns the shutdown target of the previous shutdown process. 

 
EcuM2336: Parameter sleepMode of the function EcuM_GetLastShutdownTarget: If 

the return parameter is ECUM_STATE_SLEEP, this out parameter tells which of the 

configured sleep modes was actually chosen. 
 
EcuM2337: Parameter sleepMode of the function 

EcuM_GetLastShutdownTarget: An implementation shall cope with NULL 

pointers by simply ignoring the out parameter in all cases. An implementation may 

assert the ECUM_E_NULL_POINTER development error. 

 
EcuM2156: The return value describes the ECU state from which the last wake up or 
power up occurred. This function shall return always the same value until the next 
shutdown. 
 
EcuM2157: This function is intended for primary use in STARTUP or RUN state. 
Reasonable use cases exist there. To simplify implementation, it is acceptable if the 
value is set in late shutdown phase for use during the next startup. If so, 
implementation specific limitations must be clearly documented. 
 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

109 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

8.3.4 Wake up Handling 
 
8.3.4.1 EcuM_GetPendingWakeupEvents 
 
EcuM2827:  
Service name: EcuM_GetPendingWakeupEvents 

Syntax: EcuM_WakeupSourceType EcuM_GetPendingWakeupEvents( 

 

) 

Service ID[hex]: 0x0d 

Sync/Async: Synchronous 

Reentrancy: Non-Reentrant, Non-Interruptible 

Parameters (in): None 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: EcuM_WakeupSourceType All wakeup events 

Description: Gets pending wakeup events. 

 

EcuM1156: Return code of the function EcuM_GetPendingWakeupEvents: 

Returns wake up events which have been set but not yet validated. 
 
EcuM2172: The service must be callable from interrupt context, from OS context and 
an OS-free context. 
 

Caveat of EcuM_GetPendingWakeupEvents: The wake up events returned by this 

service are only pending 
 
 
8.3.4.2 EcuM_ClearWakeupEvent 
 
EcuM2828:  
Service name: EcuM_ClearWakeupEvent 

Syntax: void EcuM_ClearWakeupEvent( 

    EcuM_WakeupSourceType sources 

) 

Service ID[hex]: 0x16 

Sync/Async: Synchronous 

Reentrancy: Non-Reentrant, Non-Interruptible 

Parameters (in): sources Events to be cleared 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: Clears wakeup events. 

 
EcuM2683: Clears all pending events passed in the in parameters from the internal 
variable (NAND-operation). 
 
EcuM2807: The function must be callable from interrupt context, from OS context 
and an OS-free context. 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

110 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

 
8.3.4.3 EcuM_GetValidatedWakeupEvents 
 
EcuM2830:  
Service name: EcuM_GetValidatedWakeupEvents 

Syntax: EcuM_WakeupSourceType EcuM_GetValidatedWakeupEvents( 

 

) 

Service ID[hex]: 0x15 

Sync/Async: Synchronous 

Reentrancy: Non-Reentrant, Non-Interruptible 

Parameters (in): None 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: EcuM_WakeupSourceType All wakeup events 

Description: Gets validated wakeup events. 

 

EcuM2533: Return code of EcuM_GetValidatedWakeupEvents: Returns the 

value from the internal variable. 
 
EcuM2532: The service must be callable from interrupt context, from OS context and 
an OS-free context. 
 
 
8.3.4.4 EcuM_GetExpiredWakeupEvents 
 
EcuM2831:  
Service name: EcuM_GetExpiredWakeupEvents 

Syntax: EcuM_WakeupSourceType EcuM_GetExpiredWakeupEvents( 

 

) 

Service ID[hex]: 0x19 

Sync/Async: Synchronous 

Reentrancy: Non-Reentrant, Non-Interruptible 

Parameters (in): None 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: 

EcuM_WakeupSourceType All wakeup events: Returns all events that have been 
set and for which validation has failed. Events which 
do not need validation must never be reported by this 
function. 

Description: Gets expired wakeup events. 

 
EcuM2589: The service must be callable from interrupt context, from OS context and 
an OS-free context. 
 
 
8.3.4.5 EcuM_GetStatusOfWakeupSource 
 
EcuM2832:  



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

111 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

Service name: EcuM_GetStatusOfWakeupSource 

Syntax: EcuM_WakeupStatusType EcuM_GetStatusOfWakeupSource( 

    EcuM_WakeupSourceType sources 

) 

Service ID[hex]: 0x17 

Sync/Async: Synchronous 

Reentrancy: Reentrant 

Parameters (in): sources The sources for which the status is returned 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: 
EcuM_WakeupStatusType Sum status of all wakeup sources passed in the in 

parameter. 

Description: The sum status shall be computed according to the following algorithm: 
• If EcuM_GetValidatedWakeupEvents returns not null then return 
ECUM_WKSTATUS_VALIDATED 
• If EcuM_GetPendingWakeupEvents returns not null then return 
ECUM_WKSTATUS_PENDING 
• If EcuM_GetExpiredWakeupEvents returns not null then return 
ECUM_WKSTATUS_EXPIRED 
Else return ECUM_WKSTATUS_NONE 

 
EcuM2754: When the EcuM_GetStatusOfWakeupSource service is called and 

parameter “sources” equals 0, then this service shall return ECUM_WKSTATUS_NONE. 

If parameter “sources” equals ECUM_WKSOURCE_ALL_SOURCES, then this service 

shall return the sum status of all configured wake up sources. 
 
EcuM2864: If parameter “sources” contains an unknown (unconfigured) wake up 

source and is not ECUM_WKSOURCE_ALL_SOURCES, then the sum status of all known 

sources listed in parameter “sources” shall be returned. If Development Error 
Reporting is turned on, the service shall send the 

ECUM_E_UNKNOWN_WAKEUP_SOURCE error message to DET. 

 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

112 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

8.3.5 Miscellaneous 
 
8.3.5.1 EcuM_SelectApplicationMode 
 
EcuM2833:  
Service name: EcuM_SelectApplicationMode 

Syntax: Std_ReturnType EcuM_SelectApplicationMode( 

    EcuM_AppModeType appMode 

) 

Service ID[hex]: 0x0f 

Sync/Async: Synchronous 

Reentrancy: Reentrant 

Parameters (in): appMode Application mode taken for next OS start 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: 
Std_ReturnType E_OK: The new application mode was accepted by EcuM 

E_NOT_OK: The new application mode was not accepted by 
EcuM 

Description: The implementation should store the application mode preferably in a non-
initialized area of RAM. 
The service is intended for implementing AUTOSAR ports. 

 

EcuM2081: Parameter appMode of the function EcuM_SelectApplicationMode: 

The application mode taken for next OS start. The type is defined by the operating 
system. 
 
 
8.3.5.2 EcuM_GetApplicationMode 
 
EcuM2834:  
Service name: EcuM_GetApplicationMode 

Syntax: Std_ReturnType EcuM_GetApplicationMode( 

    EcuM_AppModeType* appMode 

) 

Service ID[hex]: 0x11 

Sync/Async: Synchronous 

Reentrancy: Reentrant 

Parameters (in): None 

Parameters 
(inout): 

None 

Parameters (out): 
appMode The currently selected application mode, see also 

EcuM_SelectApplicationMode 

Return value: Std_ReturnType E_OK: The service always succeeds 

Description: The service is intended for implementing AUTOSAR ports. 

 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

113 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

8.3.5.3 EcuM_SelectBootTarget 
 
EcuM2835:  
Service name: EcuM_SelectBootTarget 

Syntax: Std_ReturnType EcuM_SelectBootTarget( 

    EcuM_BootTargetType target 

) 

Service ID[hex]: 0x12 

Sync/Async: Synchronous 

Reentrancy: Reentrant 

Parameters (in): target The selected boot target. 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: 
Std_ReturnType E_OK: The new boot target was accepted by EcuM 

E_NOT_OK: The new boot target was not accepted by EcuM 

Description: Selects a boot target 

 
EcuM2247: The service must store the selected target in a way which is compatible 
with the boot loader. This may mean format AND location. The service is intended for 
implementing AUTOSAR ports. 
 
Caveat of the function EcuM_SelectBootTarget: This service may be dependent on 
the boot loader used. This service is only intended for use by SW-C’s related to 
diagnostics (boot management). 
 
 
8.3.5.4 EcuM_GetBootTarget 
 
EcuM2836:  
Service name: EcuM_GetBootTarget 

Syntax: Std_ReturnType EcuM_GetBootTarget( 

    EcuM_BootTargetType * target 

) 

Service ID[hex]: 0x13 

Sync/Async: Synchronous 

Reentrancy: Reentrant 

Parameters (in): None 

Parameters 
(inout): 

None 

Parameters (out): target The currently selected boot target. 

Return value: Std_ReturnType E_OK: The service always succeeds. 

Description: see EcuM_SelectBootTarget.  
The service is intended for implementing AUTOSAR ports. 

 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

114 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

8.4 Scheduled Functions 
 
These functions are directly called by Basic Software Scheduler. The following 
functions shall have no return value and no parameter. All functions shall be non 
reentrant. 
 
 
8.4.1 EcuM_MainFunction 
 
EcuM2837:  
Service name: EcuM_MainFunction 

Syntax: void EcuM_MainFunction( 

 

) 

Service ID[hex]: 0x18 

Timing: FIXED_CYCLIC 

Description: The purpose of this service is to implement all activities of the ECU State Manager 
while the OS is up and running. 

 
EcuM2594: This service must be called on a periodic basis from an adequate BSW 
task (i.e. a task under control of the BSW scheduler).  
To determine the period, the system designer should consider the following timings: 

 The period directly results in a possible latency for testing RUN requests. The 
largest acceptable reaction time will therefore limit the maximum period for 
invocation. 

 The service will also carry out the wake up validation protocol (see 7.8 Wake up 

Validation Protocol). The smallest validation timeout typically should limit the 
period. 

 As a rule of thumb, the period of this service should be in the order of half as 
long as the shortest time constant mentioned in the topics above. 

 
EcuM2656: The service shall not be called from tasks which may invoke runnable 
entities. 
 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

115 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

8.5 Callback Definitions 
 
8.5.1 Callbacks from NVRAM Manager 
 
8.5.1.1 EcuM_CB_NfyNvMJobEnd 
 
EcuM2839:  
Service name: EcuM_CB_NfyNvMJobEnd 

Syntax: void EcuM_CB_NfyNvMJobEnd( 

    uint8 ServiceId, 

    NvM_RequestResultType JobResult 

) 

Service ID[hex]: 0x65 

Sync/Async: Synchronous 

Reentrancy: Reentrant 

Parameters (in): 
ServiceId Unique Service ID of NVRAM manager service. 

JobResult Covers the job result of the previous processed multi block job. 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: Used to notify about the end of NVRAM jobs initiated by EcuM 
The callback must be callable from normal and interrupt execution contexts. 

 

Configuration of EcuM_CB_NfyNvMJobEnd: NVRAM manager must be configured to 

call this callback as a multiple block job end notification. See [11] for details. 
 
 
8.5.2 Callbacks from Wake up Sources 
 
8.5.2.1 EcuM_CheckWakeup 
 
See 8.6.6.2 EcuM_CheckWakeup for a description of the service. 
 
This service is a Callout of the ECU State Manager module as well as a Callback that 
wake up sources invoke when they process wake up interrupts. 
 
 
8.5.2.2 EcuM_SetWakeupEvent 
 
EcuM2826:  
Service name: EcuM_SetWakeupEvent 

Syntax: void EcuM_SetWakeupEvent( 

    EcuM_WakeupSourceType sources 

) 

Service ID[hex]: 0x0c 

Sync/Async: Synchronous 

Reentrancy: Non-Reentrant, Non-Interruptible 

Parameters (in): sources Value to be set 

Parameters 
(inout): 

None 

Parameters (out): None 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

116 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

Return value: None 

Description: Sets the wakeup event. 

 
EcuM1117: Takes the value and stores it in an internal variable (OR-operation). 
 
EcuM2707: The service must start the wake up validation timeout timer according to 
chapter 7.8.4 Wake up Validation Timeout. 
 
EcuM2867: If Development Error Reporting is turned on and parameter “sources” 
contains an unknown (unconfigured) wake up source, the service shall ignore the call 
and send the ECUM_E_UNKNOWN_WAKEUP_SOURCE error message to DET. 

 
EcuM2171: The function must be callable from interrupt context, from OS context 
and an OS-free context. 
 
 
8.5.2.3 EcuM_ValidateWakeupEvent 
 
EcuM2829:  
Service name: EcuM_ValidateWakeupEvent 

Syntax: void EcuM_ValidateWakeupEvent( 

    EcuM_WakeupSourceType sources 

) 

Service ID[hex]: 0x14 

Sync/Async: Synchronous 

Reentrancy: Reentrant 

Parameters (in): sources Events to be validated 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: After wakeup, the ECU State Manager will stop the process during the WAKEUP 
VALIDATION state to wait for validation of the wakeup event. The validation is 
carried out with a call to this API service. 

 
 

EcuM2344: The validation shall be valid when ANDing the parameter events with 

the internal variable of pending wake up events results in a value other than null. 
 

EcuM2645: The service shall invoke ComM_EcuM_WakeUpIndication of the 

Communication Manager for each wake up event if the EcuMComMChannelRef 
parameter in the EcuMWakeupSource configuration container for the corresponding 
wake up source is configured. 
 
EcuM2868: If Development Error Reporting is turned on and parameter “sources” 
contains an unknown (unconfigured) wake up source, the service shall ignore the call 
and send the ECUM_E_UNKNOWN_WAKEUP_SOURCE error message to DET. 
 
EcuM2345: The function must be callable from interrupt context, from OS context, 
and an OS-free context. 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

117 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

EcuM2790: The service shall return without effect for all sources except 
communication channels when called while ECU State Manager module is NOT in 

one of the states: SHUTDOWN, SLEEP, WAKEUP I, WAKEUP VALIDATION, and 

STARTUP. 

 
EcuM2791: The service shall have full effect in any state for those sources which 
correspond to a communication channel (see EcuM2645), if RUN has not yet been 
requested for this channel. 
 
8.5.2.4 EcuM_StartCheckWakeup 
 
EcuM3200: 
Service name: EcuM_StartCheckWakeup 

Syntax: void EcuM_StartCheckWakeup( 

    EcuM_WakeupSourceType WakeupSource 

) 

Service ID[hex]: 0x1c 

Sync/Async: Asynchronous 

Reentrancy: Non Reentrant 

Parameters (in): WakeupSource -- 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: This API is called by the ECU Firmware to start the CheckWakeupTimer for the 
corresponding WakeupSource. 
If EcuMCheckWakeupTimeout &gt; 0 the CheckWakeupTimer is started. 
If EcuMCheckWakeupTimeout &lt;= 0 the API call is ignored by the EcuM. 

 
 
 
8.5.2.5 EcuM_EndCheckWakeup 
 
EcuM3201: 
Service name: EcuM_EndCheckWakeup 

Syntax: void EcuM_EndCheckWakeup( 

    EcuM_WakeupSourceType WakeupSource 

) 

Service ID[hex]: 0x1d 

Sync/Async: Synchronous 

Reentrancy: Non Reentrant 

Parameters (in): WakeupSource -- 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: This API is called by any SW Module whose wakeup source is checked 
asynchronously (e.g. asynchronous Can Trcv Driver) and the check of the Wakeup 
returns a negative result (no wakeup by this source). 
The API cancels the CheckWakeupTimer. 
If CheckWakeupTimer is canceled the check of the this wakeup source is finished. 

 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

118 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

119 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

8.6 Callout Definitions 
 
Callouts are pieces of code that have to be added to the ECU State Manager module 
during ECU integration. The content of most callouts is hand-written code, for some 
callouts the ECU State Manager module configuration tool shall generate a default 
implementation that is manually edited by the integrator. Conceptually, these callouts 
belong to the ECU Firmware. 
 
Since callouts are no services of the ECU State Manager module they do not have 
an assigned Service ID. 
 
 
8.6.1 Generic Callouts 
 
8.6.1.1 EcuM_ErrorHook 
 
EcuM2904 
Service name: EcuM_ErrorHook 

Syntax: void EcuM_ErrorHook( 

    Std_ReturnType reason 

) 

Service ID[hex]: 0x00 

Sync/Async: Synchronous 

Reentrancy: Non Reentrant 

Parameters (in): reason Reason for calling the error hook 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: The ECU State Manager will call the error hook if the error codes 
"ECUM_E_RAM_CHECK_FAILED" or 
"ECUM_E_CONFIGURATION_DATA_INCONSISTENT" occure. In this situation it 
is not possible to continue processing and the ECU must be stopped. The 
integrator may choose the modality how the ECU is stopped, i.e. reset, halt, 
restart, safe state etc. 

 
Invocation of EcuM_ErrorHook: in all states 
 
Class of EcuM_ErrorHook: Mandatory 
 
EcuM_ErrorHook is integration code and the integrator is free to define additional 

individual error codes to be passed as the reason parameter. These error codes 

shall not conflict with the development and production error codes as defined in 
Table 1 and Table 5 nor with the standard error codes used in this chapter, i.e. 
E_OK, E_NOT_OK, etc. 
 
8.6.2 Callouts from STARTUP 
 
8.6.2.1 EcuM_AL_DriverInitZero 
Service name: EcuM_AL_DriverInitZero 

Syntax: void EcuM_AL_DriverInitZero( 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

120 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

 

) 

Service ID[hex]: 0x00 

Sync/Async: Synchronous 

Reentrancy: Non Reentrant 

Parameters (in): None 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: This callout shall provide driver initialization and other hardware-related startup 
activities for loading the post-build configuration data. Beware: Here only pre-
compile and link-time configurable modules may be used. 

 
Invocation of EcuM_AL_DriverInitZero: Early in STARTUP I 
 
The ECU State Manager module configuration tool shall generate a default 
implementation of the EcuM_AL_DriverInitZero callout from the sequence of modules 
defined in the EcuMDriverInitListZero configuration container. See EcuM2559 and 
EcuM2730. 
 
 
8.6.2.2 EcuM_DeterminePbConfiguration 
Service name: EcuM_DeterminePbConfiguration 

Syntax: EcuM_ConfigType* EcuM_DeterminePbConfiguration( 

 

) 

Service ID[hex]: 0x00 

Sync/Async: Synchronous 

Reentrancy: Non Reentrant 

Parameters (in): None 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: 
EcuM_ConfigType* Pointer to the EcuM post-build configuration which 

contains pointers to all other BSW module post-build 
configurations. 

Description: This callout should evaluate some condition, like port pin or NVRAM value, to 
determine which post-build configuration shall be used in the remainder of the 
startup process. It shall load this configuration data into a piece of memory that is 
accessible by all BSW modules and shall return a pointer to the EcuM post-build 
configuration as a base for all BSW module post-build configrations. 

 
Invocation of EcuM_DeterminePbConfiguration: Early in STARTUP I 
 
Content is manually written. 
 
 
8.6.2.3 EcuM_AL_DriverInitOne 
Service name: EcuM_AL_DriverInitOne 

Syntax: void EcuM_AL_DriverInitOne( 

    const EcuM_ConfigType* ConfigPtr 

) 

Service ID[hex]: 0x00 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

121 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

Sync/Async: Synchronous 

Reentrancy: Non Reentrant 

Parameters (in): 
ConfigPtr Pointer to the EcuM post-build configuration which contains pointers to 

all other BSW module post-build configurations. 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: This callout shall provide driver initialization and other hardware-related startup 
activities in case of a power on reset. 

 
Invocation of EcuM_AL_DriverInitOne: In STARTUP I 
 
The ECU State Manager module configuration tool shall generate a default 
implementation of the EcuM_AL_DriverInitOne callout from the sequence of modules 
defined in the EcuMDriverInitListOne configuration container. See EcuM2559 and 
EcuM2730. 
 
Besides driver initialization, the following initialization sequences should be 
considered in this block: MCU initialization according to 
AUTOSAR_SWS_Mcu_Driver chapter 9.1. 
 
 
8.6.2.4 EcuM_AL_DriverInitTwo 
Service name: EcuM_AL_DriverInitTwo 

Syntax: void EcuM_AL_DriverInitTwo( 

    const EcuM_ConfigType* ConfigPtr 

) 

Service ID[hex]: 0x00 

Sync/Async: Synchronous 

Reentrancy: Non Reentrant 

Parameters (in): 
ConfigPtr Pointer to the EcuM post-build configuration which contains pointers to 

all other BSW module post-build configurations. 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: This callout shall provide driver initialization of drivers which need OS and do not 
need to wait for the NvM_ReadAll job to finish. 

 
Invocation of EcuM_AL_DriverInitTwo: In STARTUP II 
 
The ECU State Manager module configuration tool shall generate a default 
implementation of the EcuM_AL_DriverInitTwo callout from the sequence of modules 
defined in the EcuMDriverInitListTwo configuration container. See EcuM2559 and 
EcuM2730. 
 
 
8.6.2.5 EcuM_AL_DriverInitThree 
 
Service name: EcuM_AL_DriverInitThree 

Syntax: void EcuM_AL_DriverInitThree( 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

122 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

    const EcuM_ConfigType* ConfigPtr 

) 

Service ID[hex]: 0x00 

Sync/Async: Synchronous 

Reentrancy: Non Reentrant 

Parameters (in): 
ConfigPtr Pointer to the EcuM post-build configuration which contains pointers to 

all other BSW module post-build configurations. 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: This callout shall provide driver initialization of drivers which need OS and need to 
wait for the NvM_ReadAll job to finish. 

 
Invocation of EcuM_AL_DriverInitThree: In STARTUP II 
 
The ECU State Manager module configuration tool shall generate a default 
implementation of the EcuM_AL_DriverInitThree callout from the sequence of 
modules defined in the EcuMDriverInitListThree configuration container. See 
EcuM2559 and EcuM2730. 
 
 
8.6.2.6 EcuM_OnRTEStartup 
Service name: EcuM_OnRTEStartup 

Syntax: void EcuM_OnRTEStartup( 

 

) 

Service ID[hex]: 0x00 

Sync/Async: Synchronous 

Reentrancy: Non Reentrant 

Parameters (in): None 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: -- 

 
Invocation of EcuM_OnRTEStartup: Just before calling RTE_Start 
 
 
8.6.3 Callouts from RUN State 
 
8.6.3.1 EcuM_OnEnterRun 
Service name: EcuM_OnEnterRun 

Syntax: void EcuM_OnEnterRun( 

 

) 

Service ID[hex]: 0x00 

Sync/Async: Synchronous 

Reentrancy: Non Reentrant 

Parameters (in): None 

Parameters 
(inout): 

None 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

123 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

Parameters (out): None 

Return value: None 

Description: On entry of RUN state is very similar to “just after startup”. This call allows the 
system designer to notify that RUN state has been reached. 

 
Invocation of EcuM_OnEnterRun: On entry of RUN state. 
 
 
8.6.3.2 EcuM_OnExitRun 
Service name: EcuM_OnExitRun 

Syntax: void EcuM_OnExitRun( 

 

) 

Service ID[hex]: 0x00 

Sync/Async: Synchronous 

Reentrancy: Non Reentrant 

Parameters (in): None 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: This call allows the system designer to notify that the APP RUN state is about to 
be left. 

 
Invocation of EcuM_OnExitRun: By ECU State Manager Module upon detection that 
the last run request has been released. 
 
8.6.3.3 EcuM_OnExitPostRun 
Service name: EcuM_OnExitPostRun 

Syntax: void EcuM_OnExitPostRun( 

 

) 

Service ID[hex]: 0x00 

Sync/Async: Synchronous 

Reentrancy: Non Reentrant 

Parameters (in): None 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: This call allows the system designer to notify that the APP POST RUN state is 
about to be left. 

 
Invocation of EcuM_OnExitPostRun: ECU State Manager Module upon detection that 
the last POST_RUN request has been released. 
 
8.6.4 Callouts from SHUTDOWN 
 
8.6.4.1 EcuM_OnPrepShutdown 
Service name: EcuM_OnPrepShutdown 

Syntax: void EcuM_OnPrepShutdown( 

 

) 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

124 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

Service ID[hex]: 0x00 

Sync/Async: Synchronous 

Reentrancy: Non Reentrant 

Parameters (in): None 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: This call allows the system designer to notify that the PREP SHUTDOWN state is 
about to be entered. 

 
Invocation of EcuM_OnPrepShutdown: On entry of PREP SHUTDOWN 
 
 
8.6.4.2 EcuM_OnGoSleep 
Service name: EcuM_OnGoSleep 

Syntax: void EcuM_OnGoSleep( 

 

) 

Service ID[hex]: 0x00 

Sync/Async: Synchronous 

Reentrancy: Non Reentrant 

Parameters (in): None 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: This call allows the system designer to notify that the GO SLEEP state is about to 
be entered. 

 
Invocation of EcuM_OnGoSleep: On entry of GO SLEEP 
 
 
8.6.4.3 EcuM_OnGoOffOne 
Service name: EcuM_OnGoOffOne 

Syntax: void EcuM_OnGoOffOne( 

 

) 

Service ID[hex]: 0x00 

Sync/Async: Synchronous 

Reentrancy: Non Reentrant 

Parameters (in): None 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: This call allows the system designer to notify that the GO OFF I state is about to 
be entered. 

 
Invocation of EcuM_OnGoOffOne: On entry of GO OFF I 
 
 
8.6.4.4 EcuM_OnGoOffTwo 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

125 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

Service name: EcuM_OnGoOffTwo 

Syntax: void EcuM_OnGoOffTwo( 

 

) 

Service ID[hex]: 0x00 

Sync/Async: Synchronous 

Reentrancy: Non Reentrant 

Parameters (in): None 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: This call allows the system designer to notify that the GO OFF II state is about to 
be entered. 

 
Invocation of EcuM_OnGoOffTwo: On entry of GO OFF II 
 
 
8.6.4.5 EcuM_EnableWakeupSources 
Service name: EcuM_EnableWakeupSources 

Syntax: void EcuM_EnableWakeupSources( 

    EcuM_WakeupSourceType wakeupSource 

) 

Service ID[hex]: 0x00 

Sync/Async: Synchronous 

Reentrancy: Non Reentrant 

Parameters (in): wakeupSource -- 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: Created to fix wakeup sequences 

 
EcuM2546: The ECU State Manager module needs to derive the wake up sources to 
be enabled for the from configuration information. 
 
Invocation of EcuM_EnableWakeupSources: From GOSLEEP II 
 
 
8.6.4.6 EcuM_GenerateRamHash 
Service name: EcuM_GenerateRamHash 

Syntax: void EcuM_GenerateRamHash( 

 

) 

Service ID[hex]: 0x00 

Sync/Async: Synchronous 

Reentrancy: Non Reentrant 

Parameters (in): None 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: see EcuM_CheckRamHash 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

126 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

 
Invocation of EcuM_GenerateRamHash: Just before putting the ECU physically to 
sleep 
 
 
8.6.4.7 EcuM_AL_SwitchOff 
Service name: EcuM_AL_SwitchOff 

Syntax: void EcuM_AL_SwitchOff( 

 

) 

Service ID[hex]: 0x00 

Sync/Async: Synchronous 

Reentrancy: Non Reentrant 

Parameters (in): None 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: This callout shall take the code for shutting off the power supply of the ECU. If the 
ECU cannot unpower itself, a reset may be an adequate reaction. 

 
Invocation of EcuM_AL_SwitchOff: Last activity in SHUTDOWN II 
 
Note: In some cases of HW/SW concurrency, it may happen that during the power 

down in EcuM_AL_SwitchOff (endless loop) some hardware (e.g. a CAN 

transceiver) switches on the ECU again. In this case the ECU may be in a deadlock 
until the hardware watchdog resets the ECU. To reduce the time until the hardware 

watchdog fixes this deadlock, the integrator code in EcuM_AL_SwitchOff as last 

action can limit the endless loop and after a sufficient long time reset the ECU using 

Mcu_PerformReset(). 

 
 
8.6.5 Callouts from WAKEUP 
 
8.6.5.1 EcuM_CheckRamHash 
Service name: EcuM_CheckRamHash 

Syntax: uint8 EcuM_CheckRamHash( 

 

) 

Service ID[hex]: 0x00 

Sync/Async: Synchronous 

Reentrancy: Non Reentrant 

Parameters (in): None 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: 
uint8 0: RAM integrity test failed 

else: RAM integrity test passed 

Description: This callout is intended to provide a RAM integrity test. The goal of this test is to 
ensure that after a long SLEEP duration, RAM contents is still consistent. The 
check does not need to be exhaustive since this would consume quite some 
processing time during wakeups. A well designed check will execute quickly and 
detect RAM integrity defects with a sufficient probability. 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

127 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

This specification does not make any assumption about the algorithm chosen for a 
particular ECU. 
The areas of RAM which will be checked have to be chosen carefully. It depends 
on the check algorithm itself and the task structure. Stack contents of the task 
executing the RAM check e.g. very likely cannot be checked. It is good practice to 
have the hash generation and checking in the same task and that this task is not 
preemptible and that there is only little activity between hash generation and hash 
check. 
The RAM check itself is provided by the system designer. 

 
Invocation of EcuM_CheckRamHash: Early in WAKEUP I 
 
 
8.6.5.2 EcuM_DisableWakeupSources 
Service name: EcuM_DisableWakeupSources 

Syntax: void EcuM_DisableWakeupSources( 

    EcuM_WakeupSourceType wakeupSource 

) 

Service ID[hex]: 0x00 

Sync/Async: Synchronous 

Reentrancy: Non Reentrant 

Parameters (in): wakeupSource -- 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: The callout shall set up the given wakeup source(s) so that they are not able to 
wakeup the ECU. 

 
Invocation of EcuM_DisableWakeupSources: In WAKEUP I 
 
 
8.6.5.3 EcuM_AL_DriverRestart 
Service name: EcuM_AL_DriverRestart 

Syntax: void EcuM_AL_DriverRestart( 

 

) 

Service ID[hex]: 0x00 

Sync/Async: Synchronous 

Reentrancy: Non Reentrant 

Parameters (in): None 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: This callout shall provide driver initialization and other hardware-related startup 
activities in the wakeup case. 

 
Invocation of EcuM_EcuM_AL_DriverRestart: In WAKEUP I 
 
The ECU State Manager module configuration tool shall generate a default 
implementation of the EcuM_AL_DriverRestart callout from the sequence of modules 
defined in the EcuMDriverRestartList configuration container. See EcuM2561, 
EcuM2559 and EcuM2730. 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

128 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

 
 
8.6.5.4 EcuM_StartWakeupSources 
Service name: EcuM_StartWakeupSources 

Syntax: void EcuM_StartWakeupSources( 

    EcuM_WakeupSourceType wakeupSource 

) 

Service ID[hex]: 0x00 

Sync/Async: Synchronous 

Reentrancy: Non Reentrant 

Parameters (in): wakeupSource -- 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: The callout shall start the given wakeup source(s) so that they are ready to 
perform wakeup validation. 

 
Invocation of EcuM_StartWakeupSources: In WAKEUP VALIDATION 
 

Hint: In EcuM_StartWakeupSource()the ICU notification can be disabled/enabled 

in oder to reduce redundant wake up interrupts during wake up validation. 
 
8.6.5.5 EcuM_CheckValidation 
Service name: EcuM_CheckValidation 

Syntax: void EcuM_CheckValidation( 

    EcuM_WakeupSourceType wakeupSource 

) 

Service ID[hex]: 0x00 

Sync/Async: Synchronous 

Reentrancy: Non Reentrant 

Parameters (in): wakeupSource -- 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: This callout is called by the EcuM to validate a wakeup source. If a valid wakeup 
has been detected, it shall be reported to EcuM via 
EcuM_ValidateWakeupEvent(). 

 
Invocation of EcuM_CheckValidation: In WAKEUP VALIDATION 
 
 
8.6.5.6 EcuM_StopWakeupSources 
Service name: EcuM_StopWakeupSources 

Syntax: void EcuM_StopWakeupSources( 

    EcuM_WakeupSourceType wakeupSource 

) 

Service ID[hex]: 0x00 

Sync/Async: Synchronous 

Reentrancy: Non Reentrant 

Parameters (in): wakeupSource -- 

Parameters None 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

129 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

(inout): 

Parameters (out): None 

Return value: None 

Description: The callout shall stop the given wakeup source(s) after unsuccessful wakeup 
validation. 

 
Invocation of EcuM_StopWakeupSources: In WAKEUP VALIDATION 
 

Hint: In EcuM_StopWakeupSource() the ICU notification can be disabled/enabled 

in oder to reduce redundant wake up interrupts during wake up validation. 
 
 
8.6.5.7 EcuM_OnWakeupReaction 
Service name: EcuM_OnWakeupReaction 

Syntax: EcuM_WakeupReactionType EcuM_OnWakeupReaction( 

    EcuM_WakeupReactionType wact 

) 

Service ID[hex]: 0x00 

Sync/Async: Synchronous 

Reentrancy: Non Reentrant 

Parameters (in): 
wact The wakeup reaction computed by ECU 

State Manager 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: EcuM_WakeupReactionType All values: The desired wakeup reaction. 

Description: This callout gives the system designer the chance to intercept the automatic boot 
behavior and to override the wakeup reaction computed from wakeup source. 

 
Invocation of EcuM_OnWakeupReaction: In WAKEUP REACTION after default 
computation of wake up reaction. 
 
 
8.6.6 Callouts from SLEEP State 
 
8.6.6.1 EcuM_SleepActivity 
Service name: EcuM_SleepActivity 

Syntax: void EcuM_SleepActivity( 

 

) 

Service ID[hex]: 0x00 

Sync/Async: Synchronous 

Reentrancy: Non Reentrant 

Parameters (in): None 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: This callout is invoked periodically in all reduced clock sleep modes. 
It is explicitely allowed to poll wakeup sources from this callout and to call wakeup 
notification functions to indicate the end of the sleep state to the ECU State 
Manager. 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

130 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

 
Invocation of EcuM_SleepActivity: Periodically in SLEEP state if the MCU is not 
halted (i.e. clock is reduced) 
 
 
8.6.6.2 EcuM_CheckWakeup 
Service name: EcuM_CheckWakeup 

Syntax: void EcuM_CheckWakeup( 

    EcuM_WakeupSourceType wakeupSource 

) 

Service ID[hex]: 0x00 

Sync/Async: Synchronous 

Reentrancy: Non Reentrant 

Parameters (in): wakeupSource -- 

Parameters 
(inout): 

None 

Parameters (out): None 

Return value: None 

Description: This callout is called by the EcuM to poll a wakeup source. It shall also be called 
by the ISR of a wakeup source to set up the PLL and check other wakeup sources 
that may be connected to the same interrupt. 

 
Invocation of EcuM_CheckWakeup: Periodically in SLEEP state if the MCU is not 
halted, or when handling a wake up interrupt 
 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

131 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

8.7 Expected Interfaces 
 
In this chapter all interfaces required from other modules are listed.  
 
 
8.7.1 Mandatory Interfaces 
 
This chapter defines all interfaces which are required to fulfill the core functionality of 
the module. 
 
EcuM2858:   
API function Description 

BswM_Deinit Deinitializes the BSW Mode Manager. 

BswM_Init Initializes the BSW Mode Manager. 

CanSM_StartWakeupSource This function shall be called by EcuM when a wakeup source 
shall be started. 

CanSM_StopWakeupSource This function shall be called by EcuM when a wakeup source 
shall be stopped. 

ComM_DeInit De-initializes (terminates) the AUTOSAR Communication 
Manager. 

ComM_EcuM_RunModeIndication Indication that ECU State Manager has entered “Run Mode” for 
that channel. 

ComM_EcuM_WakeUpIndication Notification of a wake up on the corresponding channel. 

ComM_Init Initializes the AUTOSAR Communication Manager and restarts 
the internal state machines. 

GetResource -- 

Mcu_GetResetReason The service reads the reset type from the hardware, if 
supported. 

Mcu_Init This service initializes the MCU driver. 

Mcu_PerformReset The service performs a microcontroller reset. 

Mcu_SetMode This service activates the MCU power modes. 

ReleaseResource -- 

Rte_Start -- 

Rte_Stop -- 

Rte_Switch_currentMode_currentMode -- 

SchM_Init Function for initialization of the SchM module. 

ShutdownOS -- 

StartOS -- 

 

Table 6 - Mandatory interfaces 

 
 
8.7.2 Optional Interfaces 
 
This chapter defines all interfaces which are required to fulfill an optional functionality 
of the module. 
 
EcuM2859:   
API function Description 

Adc_Init Initializes the ADC hardware units and driver. 

CanIf_Init CANIF001: This service initializes internal and external interfaces of the 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

132 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

CAN Interface for the further processing. All underlying CAN controllers 
and CAN transceivers still remain not operational. 
This service is called only ECU State Manager (EcuM). 
 
If a NULL pointer is passed for *ConfigPtr to this function the default 
configuration shall be used. 
In case only one configuration setup is used, a NULL pointer is sufficient 
to choose the one static existing configuration setup. 
 
Development errors: 
Invalid values of *ConfigPtr will be reported to the development error 
tracer (CANIF_E_PARAM_POINTER) only for post built use cases. 

CanNm_Init Initialize the complete CanNm module, i.e. all channels which are 
activated (see also configuration parameter 
CANNM_CHANNEL_ACTIVE) at configuration time are initialized. 
 
If a NULL pointer is passed as an argument to this function the default 
configuration shall be used. 
 
Caveats: This function has to be called after initialization of the CanIf. 
 
Configuration: Mandatory 

CanSM_Init This service initializes the CanSM module 

CanTp_Init This function initializes the CanTp module. 

CanTrcv_Init Initializes the CanTrcv module. 

Can_Init This function initializes the module. 

Com_Init This service initializes internal and external interfaces and variables of 
the AUTOSAR COM layer for the further processing. 
After calling this function the inter-ECU communication is still disabled. 

Dcm_Init Service for basic initialization of DCM module. 
If a NULL pointer is passed for ConfigPtr to this function the default 
configuration shall be used. 
In case only one configuration setup is used, a NULL pointer is sufficient 
to choose the one static existing configuration setup. 

Dem_Init Initializes this module. 

Dem_PreInit Initializes the internal states necessary to process events reported by 
BSW-modules 

Dem_ReportErrorStatus Reports errors to the DEM. 

Dem_Shutdown Shutdowns this module. 

Det_Init Service to initialize the Development Error Tracer. 

Det_ReportError Service to report development errors. 

Ea_Init Initializes the EEPROM abstraction module. 

Fee_Init Service to initialize the FEE module. 

Fim_Init This service initializes the FIM. 

FrIf_Init Initializes the FlexRay Interface. 

FrNm_Init Initializes the FlexRay NM and its internal state machine. 

FrSm_Init Initializes the FlexRay State Manager. 

FrTp_Init This service initializes all global variables of the FlexRay Transport 
Layer and sets all states to idle. 

Fr_Init Initalizes the Fr. 

Gpt_Init Initializes the hardware timer module. 

Icu_Init This function initializes the driver. 

IoHwAb_Init<Init_Id> Initializes either all the IO Hardware Abstraction software or is a part of 
the IO Hardware Abstraction. 

IpduM_Init Initializes the I-PDU Multiplexer. 

LinIf_Init Initializes the LIN Interface. 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

133 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

LinSM_init This function initializes the LinSM. 
 
Note that in some implementations other values of the pointer than 
NULL may be considered faulty. 
 
Configuration dependent on Variant (see parameter) 

LinTp_Init Initializes the LIN Transport Layer. 

Lin_Init Initializes the LIN module. 

Nm_Init Initializes the NM Interface. 

NvM_CancelWriteAll Service to cancel a running NvM_WriteAll request. 

NvM_Init Service for resetting all internal variables. 

NvM_ReadAll Initiates a multi block read request. 

NvM_WriteAll Initiates a multi block write request. 

PduR_Init Initializes the PDU Router 

Port_Init Initializes the Port Driver module. 

Pwm_Init Service for PWM initialization. 

SchM_Enter_EcuM -- 

SchM_Exit_EcuM -- 

Spi_Init Service for SPI initialization. 

WdgM_Init Initializes the Watchdog Manager. 

WdgM_SetMode Sets the current mode of Watchdog Manager. 

WdgM_UpdateAliveCounter Gives alive indications to the Watchdog Manager. 

Wdg_Init Initializes the module. 

 

Table 7 - Optional Interfaces 

 
 
8.7.3 Configurable interfaces 
 
There are no configurable interfaces. 
 
 

8.8 API Parameter Checking 
 
If development error detection is enabled for this module, then all services shall test 
input parameters and running conditions and use the following error codes in an 
adequate way: 

 ECUM_E_NOT_INITED 

 ECUM_E_SERVICE_DISABLED 

 ECUM_E_NULL_POINTER 

 ECUM_E_INVALID_PAR 

Specific development errors are listed in the functions, where they do apply. 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

134 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

9 Sequence Charts 
 

9.1 State Sequences 
 
Sequence charts showing the behavior of the ECU State Manager module in various 
states are contained in the flow of the specification text. The following list shows all 
sequence charts presented in this specification. 
 

 Figure 3 – Startup Sequence (high level diagram) 

 Figure 4 – Init Sequence I (STARTUP I) 

 Figure 5 – Init Sequence II (STARTUP II) 

 Figure 7 – RUN State Sequence (high level diagram) 

 Figure 8 – RUN II State Sequence 

 Figure 9 – RUN III State Sequence 

 Figure 11 – Shutdown Sequence (high level diagram) 

 Figure 12 – Deinitialization Sequence I (PREP SHUTDOWN) 

 Figure 13 – Deinitialization Sequence IIa (GOSLEEP 

 Figure 14 – Deinitialization Sequence IIb (GO OFF I) 

 Figure 15 – Deinitialization Sequence III (GO OFF II) 

 Figure 16 – Sleep Sequence (high level diagram) 

 Figure 17 – Sleep Sequence I 

 Figure 18 – Sleep Sequence II 

 Figure 19 – Wake up Sequence (high level diagram) 

 Figure 21 – Wake up Sequence I 

 Figure 22 – Wake up Validation Sequence 

 Figure 24 – Wake up Sequence II 
 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

135 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

9.2 Wake up Sequences 
 
The Wake up Sequences show how a number of modules cooperate to put the ECU 
into a wakeable sleep state and startup the ECU when a wake up event has 
occurred. 
 
9.2.1 GPT Wake up Sequences 
 
The General Purpose Timer (GPT) is one of the possible wake up sources. Usually 
the GPT is started before the ECU is put to sleep and the hardware timer causes an 
interrupt when it expires. The interrupt wakes the microcontroller, and executes the 
interrupt handler in the GPT module. It informs the ECU State Manager module that 
a GPT wake up has occurred. In order to distinguish different GPT channels that 
caused the wake up, the integrator can assign a different wake up souce identifier to 
each GPT channel. Figure 30 shows the corresponding sequence of calls. 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

136 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

 sd EcuM_GptWakeupByInterrupt

ECU Firmware «Peripheral»

GPT Hardware

«module»

Mcu

«module»

EcuM

«module»

Os

«module»

Gpt

If the Scheduler will not be acquired as resource it is not assured that the program flow continues 

after HALT instruction because re-scheduling takes place after occurence of an ISR Cat 2.

GOSLEEP

HALT

Execution continues after HALT instruction.

WAKEUP I

SLEEP

Release Scheduler resource to allow other tasks to run.

EcuM_EnableWakeupSources(EcuM_WakeupSourceType)

Gpt_EnableWakeup(Gpt_ChannelType)

Gpt_EnableWakeup()

EcuM_EnableWakeupSources()

GetResource(RES_SCHEDULER)

Mcu_SetMode(Mcu_ModeType)

Wakeup

interrupt()

EcuM_CheckWakeup(EcuM_WakeupSourceType)

Gpt_Cbk_CheckWakeup(wakeupSource)

GetResource()

EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

EcuM_SetWakeupEvent()

Gpt_Cbk_CheckWakeup()

EcuM_CheckWakeup()

Return from

interrupt()

Mcu_SetMode()

Mcu_SetMode(Mcu_ModeType)

Mcu_SetMode()

EcuM_DisableWakeupSources(EcuM_WakeupSourceType)

Gpt_DisableWakeup(Gpt_ChannelType)

Gpt_DisableWakeup()

EcuM_DisableWakeupSources()

ReleaseResource(RES_SCHEDULER)

ReleaseResource()

 

Figure 30 – GPT wake up by interrupt 

If the GPT hardware is capable of latching timer overruns, it is also possible to poll 
the GPT for wake-ups as shown in Figure 31. 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

137 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

 sd EcuM_GptWakeupByPolling

ECU Firmware «module»

Gpt

«module»

Mcu

«module»

EcuM

«module»

Os

loop WHILE no pending wakeup ev ents

opt Wakeup detected

GOSLEEP

Acquire the Scheduler to prevent other tasks from running.

SLEEP

WAKEUP I

Mcu_SetMode() puts the microcontroller 

in some power saving mode. In this 

mode software execution continues, but 

with reduced clock speed.

Release Scheduler resource to allow other tasks to run.

EcuM_EnableWakeupSources(EcuM_WakeupSourceType)

Gpt_EnableWakeup(Gpt_ChannelType)

Gpt_EnableWakeup()

EcuM_EnableWakeupSources()

GetResource(RES_SCHEDULER)

Mcu_SetMode(Mcu_ModeType)

Mcu_SetMode()

EcuM_SleepActivity()

GetResource()

EcuM_SleepActivity()

EcuM_CheckWakeup(EcuM_WakeupSourceType)

Gpt_Cbk_CheckWakeup(wakeupSource)

EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

EcuM_SetWakeupEvent()

Gpt_Cbk_CheckWakeup()

EcuM_CheckWakeup()

Mcu_SetMode(Mcu_ModeType)

Mcu_SetMode()

EcuM_DisableWakeupSources(EcuM_WakeupSourceType)

Gpt_DisableWakeup(Gpt_ChannelType)

Gpt_DisableWakeup()

EcuM_DisableWakeupSources()

ReleaseResource(RES_SCHEDULER)

ReleaseResource()

 

Figure 31 – GPT wake up by polling 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

138 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

9.2.2 ICU Wake up Sequences 
 
The Input Capture Unit (ICU) is another wake up source. In contrast to GPT, the ICU 
driver is not itself the wake up source. It is just the module that processes the wake 
up interrupt. Therefore, only the driver of the wake up source can tell if it was 
responsible for that wake up. This makes it necessary for EcuM_CheckWakeup to 
ask the module that is the actual wake up source. In order to know which module to 
ask, the ICU has to pass the identifier of the wake up source to 
EcuM_CheckWakeup. 
 
For shared interrupts the ECU Firmware may have to check multiple wake up 
sources within EcuM_CheckWakeup. To this end, the ICU has to pass the identifiers 
of all wake up sources that may have caused this interrupt to EcuM_CheckWakeup. 
Note that, EcuM_WakeupSourceType contains one bit for each wake up source, so 
that multiple wake up sources can be passed in one call. 
 
Figure 32 shows the resulting sequence of calls. 
 
Since the ICU is only responsible for processing the wake up interrupt, polling the 
ICU is not sensible. For polling the wake up sources have to be checked directly as 
shown in Figure 18 – Sleep Sequence II. 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

139 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

 sd EcuM_IcuWakeupByInterrupt

ECU Firmware «module»

Wakeup Source

«module»

Os

«module»

EcuM

«module»

Mcu

«module»

Icu

«Peripheral»

ICU Hardware

HALT

GOSLEEP

SLEEP

WAKEUP I

Release Scheduler resource to allow other tasks to run.

Execution continues after HALT instruction.

If the Scheduler will not be acquired as resource it is not assured that the program flow continues 

after HALT instruction because re-scheduling takes place after occurence of an ISR Cat 2.

EcuM_EnableWakeupSources(EcuM_WakeupSourceType)

Icu_EnableWakeup(Icu_ChannelType)

Icu_EnableWakeup()

EcuM_EnableWakeupSources()

GetResource(RES_SCHEDULER)

GetResource()

Mcu_SetMode(Mcu_ModeType)

Wakeup

interrupt()

EcuM_CheckWakeup(EcuM_WakeupSourceType)

activate

PLL()

<Module>_CheckWakeup(wakeupSource)

EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

EcuM_SetWakeupEvent()

<Module>_CheckWakeup()

EcuM_CheckWakeup()

Return from

interrupt()

Mcu_SetMode()

Mcu_SetMode(Mcu_ModeType)

Mcu_SetMode()

EcuM_DisableWakeupSources(EcuM_WakeupSourceType)

Icu_DisableWakeup(Icu_ChannelType)

Icu_DisableWakeup()

EcuM_DisableWakeupSources()

ReleaseResource(RES_SCHEDULER)

ReleaseResource()

 

Figure 32 – ICU wake up by interrupt 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

140 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

9.2.3 CAN Wake up Sequences 
 
On CAN a wake up can be detected by the transceiver or the communication  
controller using either an interrupt or polling. Wake up source identifiers should be 
shared between transceiver and controller as the ECU State Manager module only 
needs to know the network that has woken up and passes that on to the 
Communication Manager. 
 
In interrupt case or in shared interrupt case it is not clear which specific wake up 
source (CAN controller, CAN transceiver, LIN controller etc.) detected the wake up. 
Therefore the integrator has to assign the derived WakeupSource of 
EcuM_CheckWakeup(), which could stand for a shared interrupt or just for a interrupt 
channel, to specific wake up sources which are passed to CanIf_CheckWakeup(). So 
here the parameter WakeupSource from EcuM_CheckWakeup() could be different to 
WakeupSource of CanIf_CheckWakeup or they could equal. It depends on the 
hardware topology and the implementation in the integrator code of 
EcuM_CheckWakeup(). 
 
During CanIf_CheckWakeup(WakeupSource) the CAN Interface module (CanIf) will 
check if any device (CAN communication controller or transceiver) is configured with 
the value of WakeupSource. If this is the case, the device is checked for wake up via 
the corresponding device driver module. If the device detected a wake up, the device 
driver informs EcuM via EcuM_SetWakeupEvent(sources). The parameter “sources” 
is set to the configured value at the device. Thus it is set to the value 
CanIf_CheckWakeup() was called with. 
 
Multiple devices might be configured with the same wake up source value. But if 
devices are connected to different bus medium and they are wake-able, it makes 
sense to configure them with different wake up sources. 
 
The following CAN Wake-up Sequences are partly optional, because there is no 
specification for the “ECU Firmware”. Thus it is implementation specific if e.g. during 
EcuM_CheckWakeup() the CanIf is called to check the wake up source. 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

141 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

 sd EcuM_CanWakeupByTransceiv erInterrupt

«Peripheral»

CAN Transceiver

Hardware

«Peripheral»

CanController

«module»

CanTrcv

«module»

Can

«module»

CanIf

«module»

Icu

«module»

Mcu

ECU Firmware«module»

EcuM

«module»

Os

Release Scheduler resource to allow other tasks to run.

If the Scheduler will not be acquired as resource it is not assured that the program flow continues 

after HALT instruction because re-scheduling takes place after occurence of an ISR Cat 2.

HALT

Execution continues after HALT instruction.

CanSM will have called CanIf_SetControllerMode and CanIf_SetTransceiverMode when going to sleep.

GOSLEEP

SLEEP

WAKEUP I

WAKEUP 

VALIDATION

alt 

[synchron]

[asynchron]

opt (asynchron)

alt Wait for Wakeup Indication

[Wakeup Indication]

[Job End Notification]

[Timeout]

alt JobResult

[Wake Up]

[No Wake Up]

EcuM_EnableWakeupSources(EcuM_WakeupSourceType)

GetResource(uint8)

Mcu_SetMode(Mcu_ModeType)

Wakeup

interrupt()
EcuM_CheckWakeup(EcuM_WakeupSourceType)

activate

PLL()

CanIf_CheckWakeup(EcuM_WakeupSourceType,

Std_ReturnType)
CanTrcv_CB_WakeupByBus(uint8,

Std_ReturnType)

EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

Return from

interrupt()

Wakeup interrupt()

EcuM_CheckWakeup(EcuM_WakeupSourceType)

EcuM_StartCheckWakeup(EcuM_WakeupSourceType)

start

CheckWakeupTimer()

CanIf_CheckWakeup(EcuM_WakeupSourceType, Std_ReturnType)
CanTrcv_CB_WakeupByBus(uint8,

Std_ReturnType)

Mcu_SetMode()

Mcu_SetMode(Mcu_ModeType)

EcuM_DisableWakeupSources(EcuM_WakeupSourceType)

ReleaseResource(uint8)

SPI_AsyncTransmit()

SPI_Job1EndNotification()

EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

EcuM_EndCheckWakeup(EcuM_WakeupSourceType)

CheckWakeupTimer expired()

 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

142 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

Figure 33 – CAN transceiver wake up by interrupt 

Figure 33 shows the CAN transceiver wake up via interrupt. The interrupt is usually 
handled by the ICU Driver as described in Chapter 9.2.2. 
 
Note that, for CAN the CAN Interface instead of the CAN Transceiver Driver or CAN 
Driver is responsible to report the wake up event to the ECU State Manager module 
via EcuM_SetWakeupEvent. 
 
A CAN controller wake up by interrupt works similar to the GPT wake up. Here the 
interrupt handler and the CheckWakeup functionality are both encapsulated in the 
CAN Driver module, as shown in Figure 34. 
 

 sd EcuM_CanWakeupByControllerInterrupt

«Peripheral»

CanController

«module»

CanTrcv

«module»

Icu

ECU Firmware «module»

CanIf

«module»

Can

«module»

Mcu

«module»

EcuM

«module»

Os

«Peripheral»

CAN Transceiver

Hardware

HALT

Execution continues after HALT instruction.

GOSLEEP

CanSM will have called CanIf_SetControllerMode and CanIf_SetTransceiverMode when going to sleep.

SLEEP

If the Scheduler will not be acquired as resource it is not assured that the program flow continues 

after HALT instruction because re-scheduling takes place after occurence of an ISR Cat 2.

WAKEUP I

WAKEUP 

VALIDATION

Release Scheduler resource to allow other tasks to run.

EcuM_EnableWakeupSources(EcuM_WakeupSourceType)

GetResource(uint8)

Mcu_SetMode(Mcu_ModeType)

Wakeup

interrupt()

EcuM_CheckWakeup(EcuM_WakeupSourceType)

Activate

PLL()
CanIf_CheckWakeup(EcuM_WakeupSourceType,

Std_ReturnType)

Can_Cbk_CheckWakeup(Std_ReturnType,

uint8)

EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

Return from

interrupt()

Mcu_SetMode()

Mcu_SetMode(Mcu_ModeType)

EcuM_DisableWakeupSources(EcuM_WakeupSourceType)

ReleaseResource(uint8)

 

Figure 34 – CAN controller wake up by interrupt 

 
Wake up by polling is possible both for CAN transceiver and CAN controller. The 
ECU State Manager module will regularly check the CAN Interface module, which in 
turn asks either the CAN Driver module or the CAN Transceiver Driver module 
depending on the wake up source parameter passed to the CAN Interface module, 
as shown in Figure 35. 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

143 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

 
 sd EcuM_CanWakeupByPolling

«Peripheral»

CAN Transceiver

Hardware

«Peripheral»

CanController

«module»

CanTrcv

«module»

Can

«module»

CanIf

«module»

Icu

«module»

Mcu

ECU Firmware«module»

EcuM

«module»

Os

loop WHILE no pending wakeup ev ents

alt Wakeup Dev ice

[CAN Controller]

[CAN Transceiver]

opt Wakeup Detected

GOSLEEP

CanSM will have called CanIf_SetControllerMode and CanIf_SetTransceiverMode when going to sleep.

Acquire the Scheduler to prevent other tasks from running.

Mcu_SetMode() puts the microcontroller 

in some power saving mode. In this 

mode software execution continues, but 

with reduced clock speed.

SLEEP

Release Scheduler resource to allow other tasks to run.

WAKEUP I

WAKEUP 

VALIDATION

opt Wakeup Detected

EcuM_EnableWakeupSources(EcuM_WakeupSourceType)

GetResource(uint8)

Mcu_SetMode(Mcu_ModeType)

EcuM_SleepActivity()

EcuM_CheckWakeup(EcuM_WakeupSourceType)

CanIf_CheckWakeup(EcuM_WakeupSourceType,

Std_ReturnType)

Can_Cbk_CheckWakeup(uint8)

EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

CanTrcv_CheckWakeFlag(Std_ReturnType,

uint8)

EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

Mcu_SetMode(Mcu_ModeType)

Mcu_SetMode()

EcuM_DisableWakeupSources(EcuM_WakeupSourceType)

ReleaseResource(uint8)

 

Figure 35 – CAN controller or transceiver wake up by polling 

After the detection of a wake up event from the CAN transceiver or controller by 
either interrupt or polling, the wake up event still needs to be validated. This is done 
by switching on the corresponding CAN transceiver and controller in 
EcuM_StartWakeupSources. It depends on the used CAN transceivers and 
controllers, which function calls in Integrator Code EcuM_StartWakeupSource are 
necessary. In Figure 43 e.g. the needed function calls to start and stop the wake up 
sources from CAN state manager module are mentioned. 
Note that, although controller and transceiver are switched on, no CAN message will 
be forwarded by the CAN interface module (CanIf) to any upper layer module. Only 
when the corresponding PDU channel modes of the CAN Interface module are set to 
"Online", the CanIf will forward CAN messages. 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

144 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

The CAN interface module only recognizes the successful reception of at least one 
message and records it as a successful validation. During validation the ECU State 
Manager module regularly checks the CAN Interface in Integrator Code 
EcuM_CheckValidation. 
The ECU State Manager module will, after successful validation, continue the normal 
startup of the CAN network via the Communication Manager module. 
Otherwise, it will shutdown the CAN controller and transceiver in 
EcuM_StopWakeupSources and go back to sleep. 
 
The resulting sequence is shown in Figure 36. 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

145 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

 sd EcuM_CanWakeupValidation

«module»

Os

«module»

EcuM

ECU Firmware «module»

Mcu

«module»

Icu

«module»

CanIf

«module»

CanSM

loop Validate Wakeup Ev ent

alt Check Validation Result

[SUCCESSFUL VALIDATION]

[NO VALIDATION YET]

[VALIDATION TIMEOUT]

On CAN successful 

validation is indicated by a

correctly received 

message.

WAKEUP 

VALIDATION

GOSLEEP

EcuM_StartWakeupSources(wakeupSource)

CanSM_StartWakeupSource(network) :

Std_ReturnType

Start validation

timeout

EcuM_CheckValidation(wakeupSource)

CanIf_CheckValidation(WakeupSource) :Std_ReturnType

EcuM_ValidateWakeupEvent(wakeupSource)

Stop validation

timeout

Detect validation

timeout

EcuM_StopWakeupSources(wakeupSource)

CanSM_StopWakeupSource(network) :

Std_ReturnType

 

Figure 36 – CAN wake up validation 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

146 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

9.2.4 LIN wake up sequences 
 
Figure 37 shows the LIN transceiver wake up via interrupt. The interrupt is usually 
handled by the ICU Driver as described in Chapter 9.2.2. 
 
Note that, for LIN the LIN Driver is always responsible to report the wake up event to 
the ECU State Manager module via EcuM_SetWakeupEvent. 
 

 sd EcuM_LinWakeupByTransceiv erInterrupt

«Peripheral»

Lin Transceiver

Hardware

«module»

LinIf

«Peripheral»

LinController/UART

«module»

Lin

«module»

Icu

«module»

Mcu

ECU Firmware«module»

EcuM

«module»

Os

HALT

Execution continues after HALT instruction.

GOSLEEP

LinSM will already have called LinIf_GotoSleep when changing to NO_COM state.

In Sleep state the LIN Controller is wakeable or not by configuration.

SLEEP

If the Scheduler will not be acquired as resource it is not assured that the program flow continues 

after HALT instruction because re-scheduling takes place after occurence of an ISR Cat 2.

Release Scheduler resource to allow other tasks to run.

WAKEUP I

EcuM_EnableWakeupSources(EcuM_WakeupSourceType)

Icu_EnableWakeup(Icu_ChannelType)

GetResource(uint8)

Mcu_SetMode(Mcu_ModeType)

Wakeup

interrupt()

EcuM_CheckWakeup(EcuM_WakeupSourceType)

Activate

PLL()

LinIf_Cbk_CheckWakeup(NetworkHandleType)

Lin_WakeupValidation()

EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

Return from

interrupt()

Mcu_SetMode()

Mcu_SetMode(Mcu_ModeType)

EcuM_DisableWakeupSources(EcuM_WakeupSourceType)

Icu_DisableWakeup(Icu_ChannelType)

ReleaseResource(uint8)

 

Figure 37 – LIN transceiver wake up by interrupt 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

147 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

As shown in Figure 38, the LIN controller wake up by interrupt works similar to the 
CAN controller wake up by interrupt. In both cases the Driver module encapsulates 
the interrupt handler. 
 

 sd EcuM_LinWakeupByControllerInterrupt

«Peripheral»

Lin Transceiver

Hardware

«module»

LinIf

«Peripheral»

LinController/UART

«module»

Lin

«module»

Icu

«module»

Mcu

ECU Firmware«module»

EcuM

«module»

Os

Release Scheduler resource to allow other tasks to run.

HALT

LinSM will already have called LinIf_GotoSleep when changing to NO_COM state.

In Sleep state the LIN Controller is wakeable or not by configuration.

Nothing to be done in this callout.

EcuM will later inform ComM about the wakeup which in turn will 

inform LinSM, which will then call LinIf_Wakeup.

GOSLEEP

If the Scheduler will not be acquired as resource it is not assured that the program flow continues 

after HALT instruction because re-scheduling takes place after occurence of an ISR Cat 2.

SLEEP

Execution continues after HALT instruction.

WAKEUP I

EcuM_EnableWakeupSources(EcuM_WakeupSourceType)

GetResource(RES_SCHEDULER)

Mcu_SetMode(Mcu_ModeType)

Wakeup

interrupt()

EcuM_CheckWakeup(EcuM_WakeupSourceType)

Activate

PLL()

LinIf_Cbk_CheckWakeup(NetworkHandleType)

Lin_WakeupValidation()

EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

Return from

interrupt()

Mcu_SetMode()

Mcu_SetMode(Mcu_ModeType)

EcuM_DisableWakeupSources(EcuM_WakeupSourceType)

ReleaseResource(RES_SCHEDULER)

 

Figure 38 – LIN controller wake up by interrupt 

 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

148 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

Since there is no specific driver for the LIN transceiver, the LIN Driver is always 
checked for wake up events in the polling case. The sequence is shown in Figure 39. 
 

 sd EcuM_LinWakeupByPolling

«Peripheral»

Lin Transceiver

Hardware

«module»

LinIf

«Peripheral»

LinController/UART

«module»

Lin

«module»

Icu

«module»

Mcu

ECU Firmware«module»

EcuM

«module»

Os

loop WHILE no pendings wakeup ev ents

opt Wakeup detected

LinSM will already have called LinIf_GotoSleep when changing to NO_COM state.

In Sleep state the LIN Controller is wakeable or not by configuration.

Nothing to be done in this callout.

Acquire the Scheduler to prevent other tasks from running.

GOSLEEP

SLEEP

Mcu_SetMode() puts the microcontroller 

in some power saving mode. In this 

mode software execution continues, but 

with reduced clock speed.

WAKEUP I

Release Scheduler resource to allow other tasks to run.

EcuM_EnableWakeupSources(EcuM_WakeupSourceType)

GetResource(uint8)

Mcu_SetMode(Mcu_ModeType)

EcuM_CheckWakeup(EcuM_WakeupSourceType)

LinIf_Cbk_CheckWakeup(NetworkHandleType)

Lin_WakeupValidation()

EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

Mcu_SetMode(Mcu_ModeType)

EcuM_DisableWakeupSources(EcuM_WakeupSourceType)

ReleaseResource(uint8)

 

Figure 39 – LIN controller or transceiver wake up by polling 

 
Note that, LIN does not require wake up validation. 
 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

149 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

9.2.5 FlexRay wake up sequences 
 
For FlexRay a wake up is only possible via the FlexRay transceivers. There are two 
transceivers for the two different channels in a FlexRay cluster. They are treated as 
belonging to one network and thus, there should be only one wake up source 
identifier configured for both channels. 
 
Figure 40 shows the FlexRay transceiver wake up via interrupt. The interrupt is 
usually handled by the ICU Driver as described in Chapter 9.2.2. 
 

 sd EcuM_FrWakeupByTransceiv erInterrupt

«Peripheral»

FlexRay

Transceiver

Hardware

«module»

Os

«module»

EcuM

ECU Firmware «module»

Mcu

«module»

Icu

«module»

FrIf

«module»

Fr

«module»

FrTrcv

«Peripheral»

FlexRay Controller

HALT

GOSLEEP

SLEEP

If the Scheduler will not be acquired as resource it is not assured that the program flow continues 

after HALT instruction because re-scheduling takes place after occurence of an ISR Cat 2.

Execution continues after HALT instruction.

WAKEUP I

Release Scheduler resource to allow other tasks to run.

This call has to be repeated for both FlexRay channels 

on the same network (i.e. FlexRay cluster)!

opt Wakeup detected

EcuM_EnableWakeupSources(EcuM_WakeupSourceType)

EcuM_EnableWakeupSources()

GetResource(RES_SCHEDULER)

GetResource()

Mcu_SetMode(Mcu_ModeType)

Wakeup

interrupt()
EcuM_CheckWakeup(EcuM_WakeupSourceType)

activate

PLL()

FrIf_Cbk_WakeupByTransceiver(uint8, Fr_ChannelType)

FrTrcv_Cbk_WakeupByTransceiver(uint8)

EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

EcuM_SetWakeupEvent()

FrTrcv_Cbk_WakeupByTransceiver()

FrIf_Cbk_WakeupByTransceiver()

EcuM_CheckWakeup()

Return from

interrupt()

Mcu_SetMode()

Mcu_SetMode(Mcu_ModeType)

Mcu_SetMode()

EcuM_DisableWakeupSources(EcuM_WakeupSourceType)

EcuM_DisableWakeupSources()

ReleaseResource(RES_SCHEDULER)

ReleaseResource()

 

Figure 40 – FlexRay transceiver wake up by interrupt 

Note that in EcuM_CheckWakeup there need to be two separate calls to 
FrIf_Cbk_WakeupByTransceiver, one for each FlexRay channel. 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

150 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

 
 sd EcuM_FrWakeupByPolling

«Peripheral»

FlexRay

Transceiver

Hardware

«Peripheral»

FlexRay Controller

«module»

FrTrcv

«module»

Fr

«module»

FrIf

«module»

Icu

«module»

Mcu

ECU Firmware«module»

EcuM

«module»

Os

loop WHILE no pending wakeup ev ents

GOSLEEP

Acquire the Scheduler to prevent other tasks from running.

Mcu_SetMode() puts the microcontroller 

in some power saving mode. In this 

mode software execution continues, but 

with reduced clock speed.

SLEEP

opt Wakeup detected

WAKEUP I

Release Scheduler resource to allow other tasks to run.

This call has to be repeated for both FlexRay channels on 

the same network (i.e. FlexRay cluster)!

EcuM_EnableWakeupSources(EcuM_WakeupSourceType)

GetResource(RES_SCHEDULER)

GetResource()

Mcu_SetMode(Mcu_ModeType)

Mcu

SetMode()

EcuM_SleepActivity()

EcuM_CheckWakeup(EcuM_WakeupSourceType)

FrIf_Cbk_WakeupByTransceiver(uint8, Fr_ChannelType)

FrTrcv_Cbk_WakeupByTransceiver(uint8)

EcuM_SetWakeupEvent(EcuM_WakeupSourceType)

EcuM_SetWakeupEvent()

FrTrcv_Cbk_WakeupByTransceiver()

FrIf_Cbk_WakeupByTransceiver()

EcuM_CheckWakeupEvent()

Mcu_SetMode(Mcu_ModeType)

Mcu_SetMode()

EcuM_DisableWakeupSources(EcuM_WakeupSourceType)

ReleaseResource(RES_SCHEDULER)

ReleaseResource()

 

Figure 41 – FlexRay transceiver wake up by polling 

 
 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

151 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

10 Configuration specification 
 

10.1 Configuration Variants 
 
The ECU State Manager module has only one configuration variant. 
 
 

10.2 Configurable Parameters 
 
EcuM2809: The following containers contain various references to initialization 
structures of BSW modules. NULL shall be a valid reference meaning ‘no 
configuration data available’ but only if the implementation of the initialized BSW 
module supports this. 
 
10.2.1 EcuM 
Module Name EcuM  

Module Description Configuration of the EcuM (ECU State Manager) module. 

   

Included Containers  

Container Name  Multiplicity  Scope / Dependency 

EcuMConfiguration 1 
This container contains the configuration (parameters) of the 
ECU State Manager 

EcuMGeneral 1 
This container holds the general, pre-compile configuration 
parameters 

  

 

EcuM :ModuleDef

upperMultiplicity = 1

lowerMultiplicity = 0

EcuMConfiguration :ParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 1

multipleConfigurationContainer = TRUE

EcuMGeneral :ParamConfContainerDef+container

+container

 

Figure 42 – Container EcuM 

 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

152 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

10.2.2 EcuMGeneral 
SWS Item  :  

Container Name EcuMGeneral 

Description  This container holds the general, pre-compile configuration parameters 

Configuration Parameters 

  

SWS Item :  

Name  
 

EcuMDevErrorDetect {ECUM_DEV_ERROR_DETECT}  

Description If false, no debug artifacts (e.g. calls to DET) shall remain in the executable 
object. Initialization of DET, however is controlled by configuration of optional 
BSW modules. 

Multiplicity  1 

Type  BooleanParamDef 

Default value  --  

ConfigurationClass Pre-compile 
time 

X VARIANT-POST-BUILD 

Link time --    

Post-build 
time 

--    

Scope / Dependency  
  

SWS Item :  

Name  
 

EcuMIncludeDem {ECUM_INCLUDE_DEM}  

Description If enabled and NVRAM manager is disabled, then an error shall be flagged by 
the configuration tool 

Multiplicity  1 

Type  BooleanParamDef 

Default value  --  

ConfigurationClass Pre-compile 
time 

X VARIANT-POST-BUILD 

Link time --    

Post-build 
time 

--    

Scope / Dependency  
  

SWS Item :  

Name  
 

EcuMIncludeDet {ECUM_INCLUDE_DET}  

Description If defined, the according BSW module will be initialized by the ECU State 
Manager 

Multiplicity  1 

Type  BooleanParamDef 

Default value  --  

ConfigurationClass Pre-compile 
time 

X VARIANT-POST-BUILD 

Link time --    

Post-build 
time 

--    

Scope / Dependency  
  

SWS Item :  

Name  
 

EcuMIncludeNvramMgr {ECUM_INCLUDE_NVRAM_MGR}  

Description If NVRAM manager is enabled but both flash and EEPROM driver are missing, 
then an error shall be flagged by the configuration tool 

Multiplicity  1 

Type  BooleanParamDef 

Default value  --  



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

153 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

ConfigurationClass Pre-compile 
time 

X VARIANT-POST-BUILD 

Link time --    

Post-build 
time 

--    

Scope / Dependency  
  

SWS Item :  

Name  
 

EcuMIncludeWdgM {ECUM_INCLUDE_WDGM}  

Description This configuration parameter defines whether the watchdog manager is 
supported by EcuM. This feature is presented for development purpose to 
compile out the watchdog manager in the early debugging phase 

Multiplicity  1 

Type  BooleanParamDef 

Default value  --  

ConfigurationClass Pre-compile 
time 

X VARIANT-POST-BUILD 

Link time --    

Post-build 
time 

--    

Scope / Dependency  
  

SWS Item :  

Name  
 

EcuMMainFunctionPeriod {ECUM_MAIN_FUNCTION_PERIOD}  

Description This parameter defines the schedule period of EcuM_MainFunction. Unit: [s] 

Multiplicity  1 

Type  FloatParamDef 

Range -INF .. INF   

Default value -- 

ConfigurationClass Pre-compile time X VARIANT-POST-BUILD 

Link time --    

Post-build time --    

Scope / Dependency dependency: EcuM2594  

  

SWS Item :  

Name  
 

EcuMTTIIEnabled {ECUM_TTII_ENABLED}  

Description Boolean switch to enable / disable TTII 

Multiplicity  1 

Type  BooleanParamDef 

Default value  --  

ConfigurationClass Pre-compile 
time 

X VARIANT-POST-BUILD 

Link time --    

Post-build 
time 

--    

Scope / Dependency  
  

SWS Item :  

Name  
 

EcuMVersionInfoApi  

Description Switches the version info API on or off 

Multiplicity  1 

Type  BooleanParamDef 

Default value  --  

ConfigurationClass Pre-compile 
time 

X VARIANT-POST-BUILD 

Link time --    



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

154 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

Post-build 
time 

--    

Scope / Dependency  
  

SWS Item :  

Name  
 

EcuMTTIISleepModeRef {ECUM_TTII_WKSOURCE}  

Description This configuration parameter references the initial sleep mode to be used by 
TTII when TTII is activated after a RUN mode. EcuM2785: Whenever RUN 
mode is reached, the TTII protocol shall be reset to use the wakeup source 
referenced by this parameter. This configuration parameter is a human readable 
name for a TTII wakeup source which is only needed by the configuration tool. 
For imlementation on the ECU, this parameter may be dropped and replaced by 
a generated list index of EcuM_TTII. 

Multiplicity  1 

Type  Reference to [ EcuMSleepMode ] 

ConfigurationClass Pre-compile 
time 

X VARIANT-POST-BUILD 

Link time --    

Post-build 
time 

--    

Scope / Dependency  
  

No Included Containers  

  

 

EcuMDevErrorDetect :

BooleanParamDef

EcuMIncludeNvramMgr :

BooleanParamDef

EcuMIncludeDem :

BooleanParamDef

EcuMIncludeDet :

BooleanParamDef

EcuMVersionInfoApi :

BooleanParamDef

EcuMIncludeWdgM :

BooleanParamDef

EcuMGeneral :

ParamConfContainerDef

EcuMTTIISleepModeRef :

SymbolicNameReferenceParamDef

EcuMTTIIEnabled :

BooleanParamDef

EcuMMainFunctionPeriod :

FloatParamDef

EcuMSleepMode :

ParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

+parameter

+parameter

+reference

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+destination

 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

155 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

Figure 43 – Container EcuMGeneral 

 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

156 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

10.2.3 EcuMConfiguration 
SWS Item  :  

Container Name EcuMConfiguration{EcuM_Configuration} [Multi Config Container] 

Description  
This container contains the configuration (parameters) of the ECU State 
Manager 

Configuration Parameters 

  

SWS Item :  

Name  
 

EcuMConfigConsistencyHash {ECUM_CONFIGCONSISTENCY_HASH}  

Description A hash value generated across all pre-compile and link-time parameters of all 
BSW modules. This hash value is compared against a field in the 
EcuM_ConfigType and hence allows checking the consistency of the entire 
configuration. 

Multiplicity  1 

Type  IntegerParamDef 

Range ..    

Default value -- 

ConfigurationClass Pre-compile time --    

Link time X VARIANT-POST-BUILD 

Post-build time --    

Scope / Dependency  
  

SWS Item :  

Name  
 

EcuMNvramReadallTimeout  

Description Period given in seconds for which the ECU State Manager will wait until it 
considers a ReadAll job of the NVRAM Manager as failed. 

Multiplicity  1 

Type  FloatParamDef 

Range -INF .. INF   

Default value -- 

ConfigurationClass Pre-compile time --    

Link time --    

Post-build time X VARIANT-POST-BUILD 

Scope / Dependency  
  

SWS Item :  

Name  
 

EcuMNvramWriteallTimeout {ECUM_NVRAM_WRITEALL_TIMEOUT}  

Description Period given in seconds for which the ECU State Manager will wait until it 
considers a WriteAll job of the NVRAM Manager as failed. 

Multiplicity  1 

Type  FloatParamDef 

Range -INF .. INF   

Default value -- 

ConfigurationClass Pre-compile time --    

Link time --    

Post-build time X VARIANT-POST-BUILD 

Scope / Dependency  
  

SWS Item :  

Name  
 

EcuMRunMinimumDuration {ECUM_RUN_SELF_REQUEST_PERIOD}  

Description Duration given in seconds for which the ECU State Manager will stay in RUN 
state even when no one requests RUN. This duration should be long at least as 
long as a SW-Cs needs to request RUN. 

Multiplicity  1 

Type  FloatParamDef 

Range -INF .. INF   



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

157 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

Default value -- 

ConfigurationClass Pre-compile time --    

Link time --    

Post-build time X VARIANT-POST-BUILD 

Scope / Dependency  
  

SWS Item :  

Name  
 

EcuMSleepActivityPeriod {ECUM_SLEEP_ACTIVITY_PERIOD}  

Description Period of the EcuM_SleepActivity callout. The period is given in seconds. 

Multiplicity  1 

Type  FloatParamDef 

Range -INF .. INF   

Default value -- 

ConfigurationClass Pre-compile time --    

Link time --    

Post-build time X VARIANT-POST-BUILD 

Scope / Dependency  
  

SWS Item :  

Name  
 

EcuMDefaultAppMode {ECUM_DEFAULT_APP_MODE}  

Description The default application mode loaded when the ECU comes out of reset. 

Multiplicity  1 

Type  Reference to [ OsAppMode ] 

ConfigurationClass Pre-compile 
time 

--    

Link time --    

Post-build 
time 

X VARIANT-POST-BUILD 

Scope / Dependency  
  

SWS Item :  

Name  
 

EcuMNormalMcuModeRef  

Description This parameter is a reference to the normal MCU mode to be restored after a 
sleep. 

Multiplicity  1 

Type  Reference to [ McuModeSettingConf ] 

ConfigurationClass Pre-compile 
time 

X VARIANT-POST-BUILD 

Link time --    

Post-build 
time 

--    

Scope / Dependency  
  

Included Containers 

Container Name Multiplicity Scope / Dependency 

EcuMDefaultShutdownTarget 1 
This container describes the default shutdown target to be 
selected by EcuM. The actual shutdown target may be 
overridden by the EcuM_SelectShutdownTarget service. 

EcuMDriverInitListOne 0..1 

Container for Init Block I. This container holds a list of module 
IDs that will be initialised. Each module in the list will be called 
for initialisation in the list order. All modules in this list are 
initilialised before the OS is started and so these modules 
require no OS support. 

EcuMDriverInitListThree 0..1 
Container for Init Block III. This container holds a list of module 
IDs that will be initialised. Each module in the list will be called 
for initialisation in the list order. All modules in this list are 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

158 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

initilialised after the OS is started and so these modules may 
use OS support. These modules may also rely on the Nvram 
ReadAll job to have provided all data. 

EcuMDriverInitListTwo 0..1 

Container for Init Block II. This container holds a list of module 
IDs that will be initialised. Each module in the list will be called 
for initialisation in the list order. All modules in this list are 
initilialised after the OS is started and so these modules may 
use OS support. These modules may not rely on the Nvram 
ReadAll job to have provided all data. 

EcuMDriverInitListZero 0..1 

Container for Init Block 0. This container holds a list of module 
IDs that will be initialised. Each module in the list will be called 
for initialisation in the list order. All modules in this list are 
initilialised before the post-build configuration has been loaded 
and the OS is initialized. Therefore, these modules may not 
use post-build configuration. 

EcuMDriverRestartList 0..1 

List of module IDs. EcuM2719: A configuration tool shall fill the 
callout EcuM_AL_DriverRestart with initialization calls to the 
listed drivers in the order in which they occur in the list. 
EcuM2720: Entries in this list must appear in the same order 
as in the combined list of EcuM_DriverInitListOne and 
EcuM_DriverInitListTwo. This list may be a real subset though. 
In all other cases, the generation tool shall report an error. The 
included container has the same structure as 
EcuM_DriverInitItem 

EcuMModuleConfiguration 0..* 
Collection of references to multiple configuration containers of 
BSW Modules. 

EcuMSleepMode 1..* This container describes one configured sleep mode. 

EcuMTTII 0..* 

This container describes a structure and the following 
configuration items describe its elements. This structures are 
concatenated to build a list as indicated by Figure 27 - 
Configuration Container Diagram. The list must contain at least 
on element when ECUM_TTII_ENABLED is set to true. 

EcuMUserConfig 1..* 

A list of identifiers that are needed to refer to a software 
component or another appropriate entity in the system which is 
designated to request the RUN state. Application requestors 
refer to entities above RTE, system requestors to entities 
below RTE (e.g. Communication Manager). 

EcuMWakeupSource 1..* This container describes one configured wakeup source. 

EcuMWdgM 0..1 

This container holds the configuration parameters for the 
interaction between the Watchdog Manager (WdgM) and 
EcuM. The WdgM mode to be selected in a specific Sleep 
Mode of EcuM is configured in the EcuMSleepMode container. 

  

 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

159 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

EcuMConfiguration :ParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 1

multipleConfigurationContainer = TRUE
OsAppMode :

ParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

(from OS)

EcuMDefaultAppMode :

ReferenceParamDef

EcuMNvramWriteallTimeout :

FloatParamDef

EcuMSleepActivityPeriod :

FloatParamDef

EcuMRunMinimumDuration :

FloatParamDef

EcuMConfigConsistencyHash :

IntegerParamDef

EcuMDriverRestartList :

ParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 0

EcuMTTII :

ParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

EcuMDriverInitListOne :

ParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 0

EcuMUserConfig :

ParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

EcuMSleepMode :

ParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

EcuMDriverInitListTwo :

ParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 0

EcuMWakeupSource :

ParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

EcuMDefaultShutdownTarget :

ParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 1EcuMWdgM :

ParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 0

EcuMDriverInitListZero :

ParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 0

EcuMNvramReadallTimeout :

FloatParamDef

EcuMDriverInitListThree :

ParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 0

EcuMNormalMcuModeRef :

SymbolicNameReferenceParamDef McuModeSettingConf :

ParamConfContainerDef

lowerMultiplicity = 1

upperMultiplicity = *

(from MCU)

EcuMModuleConfiguration :

ParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

+subContainer

+destination

+subContainer

+reference

+subContainer

+parameter

+subContainer

+subContainer

+subContainer

+destination

+subContainer

+subContainer

+subContainer

+subContainer

+subContainer

+parameter

+parameter

+parameter

+parameter

+reference

+subContainer

 

Figure 44 – Container EcuMConfiguration 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

160 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

EcuMDriverInitListOne :

ParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 0

EcuMDriverInitListTwo :

ParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 0

EcuMDriverRestartList :

ParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 0

EcuMDriverInitItem :

ParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

EcuMConfiguration :

ParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 1

multipleConfigurationContainer = TRUE

EcuMDriverInitListZero :

ParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 0

EcuMDriverInitListThree :

ParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 0

+subContainer

+subContainer

+subContainer

+subContainer

+subContainer

+subContainer

+subContainer

+subContainer

+subContainer

+subContainer

 

Figure 45 – Container EcuMConfiguration – Init Lists 

 
10.2.4 EcuMDriverInitListZero 
SWS Item  :  

Container Name EcuMDriverInitListZero 

Description  

Container for Init Block 0.  
This container holds a list of module IDs that will be initialised. Each 
module in the list will be called for initialisation in the list order.  
All modules in this list are initilialised before the post-build configuration 
has been loaded and the OS is initialized. Therefore, these modules may 
not use post-build configuration. 

Configuration Parameters 

  

Included Containers 

Container Name Multiplicity Scope / Dependency 

EcuMDriverInitItem 1..* This container describes one entry in a driver init list. 

  

 
10.2.5 EcuMDriverInitListOne 
SWS Item  :  

Container Name EcuMDriverInitListOne 

Description  

Container for Init Block I.  
This container holds a list of module IDs that will be initialised. Each 
module in the list will be called for initialisation in the list order.  
All modules in this list are initilialised before the OS is started and so these 
modules require no OS support. 

Configuration Parameters 

  

Included Containers 

Container Name Multiplicity Scope / Dependency 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

161 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

EcuMDriverInitItem 1..* This container describes one entry in a driver init list. 

  

 
10.2.6 EcuMDriverInitListTwo 
SWS Item  :  

Container Name EcuMDriverInitListTwo 

Description  

Container for Init Block II.  
This container holds a list of module IDs that will be initialised. Each 
module in the list will be called for initialisation in the list order.  
All modules in this list are initilialised after the OS is started and so these 
modules may use OS support. These modules may not rely on the Nvram 
ReadAll job to have provided all data. 

Configuration Parameters 

  

Included Containers 

Container Name Multiplicity Scope / Dependency 

EcuMDriverInitItem 1..* This container describes one entry in a driver init list. 

  

 
10.2.7 EcuMDriverInitListThree 
SWS Item  :  

Container Name EcuMDriverInitListThree 

Description  

Container for Init Block III.  
This container holds a list of module IDs that will be initialised. Each 
module in the list will be called for initialisation in the list order.  
All modules in this list are initilialised after the OS is started and so these 
modules may use OS support. These modules may also rely on the Nvram 
ReadAll job to have provided all data. 

Configuration Parameters 

  

Included Containers 

Container Name Multiplicity Scope / Dependency 

EcuMDriverInitItem 1..* This container describes one entry in a driver init list. 

  

 
10.2.8 EcuMDriverRestartList 
SWS Item  :  

Container Name EcuMDriverRestartList 

Description  

List of module IDs. EcuM2719: A configuration tool shall fill the callout 
EcuM_AL_DriverRestart with initialization calls to the listed drivers in the 
order in which they occur in the list. EcuM2720: Entries in this list must 
appear in the same order as in the combined list of 
EcuM_DriverInitListOne and EcuM_DriverInitListTwo. This list may be a 
real subset though. In all other cases, the generation tool shall report an 
error. The included container has the same structure as 
EcuM_DriverInitItem 

Configuration Parameters 

  

Included Containers 

Container Name Multiplicity Scope / Dependency 

EcuMDriverInitItem 1..* This container describes one entry in a driver init list. 

  

 
10.2.9 EcuMDriverInitItem 
SWS Item  :  

Container Name EcuMDriverInitItem 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

162 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

Description  This container describes one entry in a driver init list. 

Configuration Parameters 

  

SWS Item :  

Name  
 

EcuMModuleID {ModuleID}  

Description Short name of the module to be initialized, e.g. Mcu, Gpt etc. In case 
EcuMModuleConfigRef is used the EcuMModuleID is optional (in case it is given 
it shall have the same value as the referenced EcuMModuleConfiguration). 

Multiplicity  0..1 

Type  StringParamDef 

Default value  --  

regularExpression  --  

ConfigurationClass Pre-compile 
time 

X VARIANT-POST-BUILD 

Link time --    

Post-build 
time 

--    

Scope / Dependency  
  

SWS Item :  

Name  
 

EcuMModuleService  

Description The service to be called to initialize that module, e.g. Init, PreInit, Start etc. If the 
service is Init and the parameter EcuMModuleConfigurationRef has been set for 
that module, the corresponding pointer to the init structure 
(<Module>_ConfigType) shall be passed as an argument. 

Multiplicity  1 

Type  StringParamDef 

Default value  --  

regularExpression  --  

ConfigurationClass Pre-compile 
time 

X VARIANT-POST-BUILD 

Link time --    

Post-build 
time 

--    

Scope / Dependency  
  

SWS Item :  

Name  
 

EcuMModuleConfigRef  

Description In case a BSW Module is configured with several instances in this ECU 
Configuration there shall be a reference which determines the to be used 
multipleConfigurationContainer for this BSW Module instance. 

Multiplicity  0..1 

Type  Reference to [ EcuMModuleConfiguration ] 

ConfigurationClass Pre-compile 
time 

--    

Link time --    

Post-build time --    

Scope / Dependency  
  

No Included Containers  

  

 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

163 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

EcuMDriverInitItem :

ParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

EcuMModuleID :

StringParamDef

lowerMultiplicity = 0

upperMultiplicity = 1

EcuMModuleService :

StringParamDef

EcuMModuleConfigurationRef :

ChoiceReferenceParamDef

lowerMultiplicity = 1

upperMultiplicity = 1

EcuMModuleConfiguration :

ParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

EcuMModuleConfigRef :

ReferenceParamDef

lowerMultiplicity = 0

upperMultiplicity = 1

+reference

+parameter

+parameter

+destination +reference

 

Figure 46 – Container EcuMDriverInititem 

 
10.2.10 EcuMModuleConfiguration 
SWS Item  :  

Container Name EcuMModuleConfiguration 

Description  
Collection of references to multiple configuration containers of BSW 
Modules. 

Configuration Parameters 

  

SWS Item :  

Name  
 

EcuMModuleConfigurationRef {InitConfiguration}  

Description This parameter contains a reference to the init structure of the corresponding 
BSW module. 

Multiplicity  1 

Type  Choice reference to [ AdcConfigSet , CanConfigSet , CanIfInitConfiguration , 
CanNmGlobalConfig , CanStateManagerConfiguration , CanTrcvConfigSet , 
CddConfigSet , ComConfig , ComMConfigSet , DcmConfigSet , DemConfigSet , 
FlsConfigSet , FrIfConfig , FrIsoTpMultipleConfig , FrMultipleConfiguration , 
FrNmChannelConfig , FrSmCluster , FrTpMultipleConfig , GptChannelConfigSet 
, IcuConfigSet , IpduMConfig , LinGlobalConfig , LinIfGlobalConfig , 
LinSMChannel , LinTpGlobalConfig , McuModuleConfiguration , 
PduRGlobalConfig , PortConfigSet , PwmChannelConfigSet , SpiDriver , 
WdgMConfigSet , WdgModeConfig ] 

ConfigurationClass Pre-compile 
time 

--    

Link time --    

Post-build 
time 

X VARIANT-POST-BUILD 

Scope / Dependency  
  

No Included Containers  

  



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

164 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

165 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

EcuMModuleConfigurationRef :

ChoiceReferenceParamDef

lowerMultiplicity = 1

upperMultiplicity = 1

EcuMConfiguration :ParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 1

multipleConfigurationContainer = TRUE

McuModuleConfiguration :

ParamConfContainerDef

lowerMultiplicity = 1

upperMultiplicity = 1

multipleConfigurationContainer = TRUE

(from MCU)

GptChannelConfigSet :

ParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

multipleConfigurationContainer = TRUE

(from GPT)

WdgMConfigSet :ParamConfContainerDef

multipleConfigurationContainer = true

(from WdgManager)

AdcConfigSet :ParamConfContainerDef

multipleConfigurationContainer = true

(from ADC)

CanConfigSet :ParamConfContainerDef

multipleConfigurationContainer = true

(from CanDrv)

CanIfInitConfiguration :

ParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

multipleConfigurationContainer = true

(from CanIf)

CanNmGlobalConfig :

ParamConfContainerDef

multipleConfigurationContainer = true

(from CanNm)

CanStateManagerConfiguration :

ParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 1

multipleConfigurationContainer = true

(from CanSM)

ComConfig :ParamConfContainerDef

multipleConfigurationContainer = True

(from Com)

DemConfigSet :ParamConfContainerDef

multipleConfigurationContainer = true

(from Dem)

FlsConfigSet :ParamConfContainerDef

multipleConfigurationContainer = true

upperMultiplicity = *

lowerMultiplicity = 1

(from Flash)

FrIfConfig :ParamConfContainerDef

multipleConfigurationContainer = true

(from FrIf)

FrMultipleConfiguration :

ParamConfContainerDef

multipleConfigurationContainer = true

(from Fr)

FrNmChannelConfig :

ParamConfContainerDef

multipleConfigurationContainer = true

(from FrNmChannelConfig)

FrSmCluster :ParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

multipleConfigurationContainer = true

(from FrSm)

IcuConfigSet :ParamConfContainerDef

multipleConfigurationContainer = TRUE

(from ICU)

IpduMConfig :ParamConfContainerDef

multipleConfigurationContainer = true

(from IpduM)

LinGlobalConfig :ParamConfContainerDef

multipleConfigurationContainer = true

(from Lin)

LinIfGlobalConfig :ParamConfContainerDef

multipleConfigurationContainer = True

(from LinIf)

LinSMChannel :ParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

multipleConfigurationContainer = true

(from LinSM)

LinTpGlobalConfig :

ParamConfContainerDef

multipleConfigurationContainer = True

(from LinTp)

PduRGlobalConfig :ParamConfContainerDef

multipleConfigurationContainer = true

(from PduR)

PortConfigSet :ParamConfContainerDef

multipleConfigurationContainer = TRUE

(from PORT)

PwmChannelConfigSet :

ParamConfContainerDef

multipleConfigurationContainer = true

(from PWM)

SpiDriver :ParamConfContainerDef

multipleConfigurationContainer = true

(from SPI)

WdgModeConfig :ParamConfContainerDef

multipleConfigurationContainer = true

(from WdgDriver)

CanTrcvConfigSet :ParamConfContainerDef

multipleConfigurationContainer = true

(from CanTrcv)

ComMConfigSet :ParamConfContainerDef

multipleConfigurationContainer = true

(from ComM)

FrIsoTpMultipleConfig :

ParamConfContainerDef

multipleConfigurationContainer = true

(from FrIsoTp)

FrTpMultipleConfig :

ParamConfContainerDef

multipleConfigurationContainer = true

(from FrTp)

DcmConfigSet :ParamConfContainerDef

multipleConfigurationContainer = true

(from Dcm)

EcuMModuleConfiguration :

ParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

CddConfigSet :ParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = 1

multipleConfigurationContainer = true

(from Cdd)

+destination

+reference

+destination

+destination

+destination

+destination

+destination

+destination

+destination

+destination

+destination

+destination

+destination

+destination

+destination

+destination

+destination

+destination

+destination

+destination

+destination

+destination

+subContainer

+destination

+destination

+destination

+destination

+destination

+destination

+destination

+destination

+destination

+destination

+destination

 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

166 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

Figure 47 – Container EcuMModuleConfiguration 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

167 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

10.2.11 EcuMDefaultShutdownTarget 
SWS Item  :  

Container Name EcuMDefaultShutdownTarget{ECUM_DEFAULT_SHUTDOWN_TARGET} 

Description  
This container describes the default shutdown target to be selected by 
EcuM. The actual shutdown target may be overridden by the 
EcuM_SelectShutdownTarget service. 

Configuration Parameters 

  

SWS Item :  

Name  
 

EcuMDefaultState {ECUM_DEFAULT_SHUTDOWN_TARGET}  

Description This parameter describes the state part of the default shutdown target selected 
when the ECU comes out of reset. If EcuMStateSleep is selected, the parameter 
EcuMDefaultSleepModeRef selects the specific sleep mode. 

Multiplicity  1 

Type  EnumerationParamDef 

Range EcuMStateOff Corresponds to ECUM_STATE_OFF in 
EcuM_StateType. 

EcuMStateReset Corresponds to ECUM_STATE_RESET in 
EcuM_StateType. 

EcuMStateSleep Corresponds to ECUM_STATE_SLEEP in 
EcuM_StateType. 

ConfigurationClass Pre-compile time --    

Link time --    

Post-build time X VARIANT-POST-BUILD 

Scope / Dependency  
  

SWS Item :  

Name  
 

EcuMDefaultSleepModeRef  

Description If EcuMDefaultShutdownTarget is EcuMStateSleep, this parameter selects the 
default sleep mode. Otherwise this parameter may be ignored. 

Multiplicity  1 

Type  Reference to [ EcuMSleepMode ] 

ConfigurationClass Pre-compile 
time 

--    

Link time --    

Post-build 
time 

X VARIANT-POST-BUILD 

Scope / Dependency  
  

No Included Containers  

  

 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

168 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

EcuMDefaultState :

EnumerationParamDef

EcuMDefaultSleepModeRef :

SymbolicNameReferenceParamDef

EcuMSleepMode :

ParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

EcuMDefaultShutdownTarget :

ParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 1

EcuMStateSleep :

EnumerationLiteralDef

EcuMStateOff :

EnumerationLiteralDef

EcuMStateReset :

EnumerationLiteralDef

+literal

+literal

+literal

+destination+reference

+parameter

 

Figure 48 – Container EcuMDefaultShutdownTarget 

 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

169 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

10.2.12 EcuMWakeupSource 
SWS Item  :  

Container Name EcuMWakeupSource{EcuM_WakupSource} 

Description  This container describes one configured wakeup source. 

Configuration Parameters 

  

SWS Item :  

Name  
 

EcuMCheckWakeupTimeout  

Description Add a Timer to the EcuM to delay shut down of the ECU if the check of the 
Wakeup Source is done asynchronously (CheckWakeupTimer). The unit is in 
seconds. 

Multiplicity  0..1 

Type  FloatParamDef 

Range 0 .. 10   

Default value 0 

ConfigurationClass Pre-compile time X All Variants 

Link time --    

Post-build time --    

Scope / Dependency scope: local  

  

SWS Item :  

Name  
 

EcuMResetReason {ResetReason}  

Description This parameter describes the mapping of reset reasons detected by the MCU 
driver into wakeup sources. 

Multiplicity  0..* 

Type  IntegerParamDef 

Range ..    

Default value -- 

ConfigurationClass Pre-compile time X VARIANT-POST-BUILD 

Link time --    

Post-build time --    

Scope / Dependency  
  

SWS Item :  

Name  
 

EcuMValidationTimeout {ValidationTimeout}  

Description The validation timeout (period for which the ECU State Manager will wait for the 
validation of a wakeup event) can be defined for each wakeup source 
independently. The timeout is specified in seconds. 

Multiplicity  1 

Type  FloatParamDef 

Range -INF .. INF   

Default value -- 

ConfigurationClass Pre-compile time X VARIANT-POST-BUILD 

Link time --    

Post-build time --    

Scope / Dependency  
  

SWS Item :  

Name  
 

EcuMWakeupSourceId {WakeupSourceName}  

Description This parameter defines the identifier of this wakeup source. 

Multiplicity  1 

Type  IntegerParamDef (Symbolic Name generated for this parameter) 

Range ..    

Default value -- 

ConfigurationClass Pre-compile time X VARIANT-POST-BUILD 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

170 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

Link time --    

Post-build time --    

Scope / Dependency  
  

SWS Item :  

Name  
 

EcuMWakeupSourcePolling  

Description This parameter describes if the wakeup source needs polling. 

Multiplicity  1 

Type  BooleanParamDef 

Default value  --  

ConfigurationClass Pre-compile 
time 

X VARIANT-POST-BUILD 

Link time --    

Post-build 
time 

--    

Scope / Dependency  
  

SWS Item :  

Name  
 

EcuMComMChannelRef {ComChannel}  

Description This parameter is a reference to a Network (channel) defined in the 
Communication Manager. No reference indicates that the wakeup source is not 
a communication channel. 

Multiplicity  0..1 

Type  Reference to [ ComMChannel ] 

ConfigurationClass Pre-compile 
time 

X VARIANT-POST-BUILD 

Link time --    

Post-build 
time 

--    

Scope / Dependency  
  

No Included Containers  

  

 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

171 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

EcuMWakeupSource :

ParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

EcuMValidationTimeout :

FloatParamDef

EcuMResetReason :IntegerParamDef

lowerMultiplicity = 0

upperMultiplicity = *

EcuMWakeupSourceId :

IntegerParamDef

symbolicNameValue = true

ComMChannel :

ParamConfContainerDef

lowerMultiplicity = 1

upperMultiplicity = *

(from ComM)

EcuMComMChannelRef :

SymbolicNameReferenceParamDef

upperMultiplicity = 1

lowerMultiplicity = 0

EcuMWakeupSourcePolling :

BooleanParamDef

EcuMCheckWakeupTimeout :

FloatParamDef

min = 0.0

max = 10.0

defaultValue = 0.0

lowerMultiplicity = 0

upperMultiplicity = 1

+parameter

+reference

+parameter

+parameter

+parameter

+parameter

+destination

 

Figure 49 – Container EcuMWakeupSource 

 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

172 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

10.2.13 EcuMSleepMode 
SWS Item  :  

Container Name EcuMSleepMode 

Description  This container describes one configured sleep mode. 

Configuration Parameters 

  

SWS Item :  

Name  
 

EcuMSleepModeId  

Description This is the ID to identify this sleep mode in services like 
EcuM_SelectShutdownTarget. 

Multiplicity  1 

Type  IntegerParamDef 

Range 0 .. 255   

Default value -- 

ConfigurationClass Pre-compile time X VARIANT-POST-BUILD 

Link time --    

Post-build time --    

Scope / Dependency  
  

SWS Item :  

Name  
 

EcuMSleepModeName {SleepModeName}  

Description This item allows to give symbolic names to the different sleep modes. 

Multiplicity  1 

Type  StringParamDef (Symbolic Name generated for this parameter) 

Default value  --  

regularExpression  --  

ConfigurationClass Pre-compile 
time 

X VARIANT-POST-BUILD 

Link time --    

Post-build 
time 

--    

Scope / Dependency  
  

SWS Item :  

Name  
 

EcuMSleepModeSuspend  

Description Flag, which is set true, if the CPU is suspended, halted, or powered off in the 
sleep mode. If the CPU keeps running in this sleep mode, then this flag must be 
set to false. 

Multiplicity  1 

Type  BooleanParamDef 

Default value  --  

ConfigurationClass Pre-compile 
time 

X VARIANT-POST-BUILD 

Link time --    

Post-build 
time 

--    

Scope / Dependency  
  

SWS Item :  

Name  
 

EcuMSleepModeMcuModeRef {SleepModeConfiguration}  

Description This parameter is a reference to the corresponding MCU mode for this sleep 
mode. 

Multiplicity  1 

Type  Reference to [ McuModeSettingConf ] 

ConfigurationClass Pre-compile 
time 

X VARIANT-POST-BUILD 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

173 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

Link time --    

Post-build 
time 

--    

Scope / Dependency  
  

SWS Item :  

Name  
 

EcuMSleepModeWdgMModeRef  

Description This parameter defines the Watchdog Manager mode that shall be active in this 
sleep mode. 

Multiplicity  0..1 

Type  Reference to [ WdgMMode ] 

ConfigurationClass Pre-compile 
time 

X VARIANT-POST-BUILD 

Link time --    

Post-build 
time 

--    

Scope / Dependency  
  

SWS Item :  

Name  
 

EcuMWakeupSourceMask  

Description This parameter is a reference to the wakeup source that shall be enabled for this 
sleep mode. 

Multiplicity  1..* 

Type  Reference to [ EcuMWakeupSource ] 

ConfigurationClass Pre-compile 
time 

X VARIANT-POST-BUILD 

Link time --    

Post-build 
time 

--    

Scope / Dependency  
  

No Included Containers  

  

 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

174 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

EcuMSleepMode :

ParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

EcuMSleepModeName :

StringParamDef

symbolicNameValue = true

EcuMSleepModeMcuModeRef :

SymbolicNameReferenceParamDef

EcuMWakeupSourceMask :

SymbolicNameReferenceParamDef

upperMultiplicity = *

lowerMultiplicity = 1

McuModeSettingConf :

ParamConfContainerDef

lowerMultiplicity = 1

upperMultiplicity = *

(from MCU)

EcuMWakeupSource :

ParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

EcuMSleepModeSuspend :

BooleanParamDef

EcuMSleepModeId :

IntegerParamDef

max = 255

min = 0

EcuMSleepModeWdgMModeRef :

SymbolicNameReferenceParamDef

upperMultiplicity = 1

lowerMultiplicity = 0

WdgMMode :

ParamConfContainerDef

upperMultiplicity = 255

lowerMultiplicity = 1

(from WdgManager)

+reference

+parameter

+parameter

+reference

+reference

+parameter

+destination

+destination

+destination

 

Figure 50 – Container EcuMSleepMode 

 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

175 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

10.2.14 EcuMTTII 
SWS Item  :  

Container Name EcuMTTII 

Description  

This container describes a structure and the following configuration items 
describe its elements. This structures are concatenated to build a list as 
indicated by Figure 27 - Configuration Container Diagram. The list must 
contain at least on element when ECUM_TTII_ENABLED is set to true. 

Configuration Parameters 

  

SWS Item :  

Name  
 

EcuMDivisor {Divisor}  

Description This parameter defines the divisor preload value. 

Multiplicity  1 

Type  IntegerParamDef 

Range ..    

Default value -- 

ConfigurationClass Pre-compile time X VARIANT-POST-BUILD 

Link time --    

Post-build time --    

Scope / Dependency  
  

SWS Item :  

Name  
 

EcuMSleepModeRef  

Description This configuration parameter is a reference to a configured sleep mode that is 
used for TTII. 

Multiplicity  1 

Type  Reference to [ EcuMSleepMode ] 

ConfigurationClass Pre-compile 
time 

X VARIANT-POST-BUILD 

Link time --    

Post-build 
time 

--    

Scope / Dependency  
  

SWS Item :  

Name  
 

EcuMSuccessorRef {Successor}  

Description This parameter is a reference to the next sleep mode in the TTII protocol. 

Multiplicity  1 

Type  Reference to [ EcuMSleepMode ] 

ConfigurationClass Pre-compile 
time 

X VARIANT-POST-BUILD 

Link time --    

Post-build 
time 

--    

Scope / Dependency  
  

No Included Containers  

  

 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

176 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

EcuMSuccessorRef :

SymbolicNameReferenceParamDef

EcuMDivisor :

IntegerParamDef

EcuMSleepModeRef :

SymbolicNameReferenceParamDef

EcuMTTII :

ParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

EcuMSleepMode :

ParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

+reference

+parameter

+reference

+destination

+destination

 

Figure 51 – Container EcuMTTII 

 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

177 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

10.2.15 EcuMUserConfig 
SWS Item  :  

Container Name EcuMUserConfig{EcuM_User} 

Description  

A list of identifiers that are needed to refer to a software component or 
another appropriate entity in the system which is designated to request the 
RUN state. Application requestors refer to entities above RTE, system 
requestors to entities below RTE (e.g. Communication Manager). 

Configuration Parameters 

  

SWS Item :  

Name  
 

EcuMUser {User}  

Description -- 

Multiplicity  1 

Type  IntegerParamDef 

Range ..    

Default value -- 

ConfigurationClass Pre-compile time X VARIANT-POST-BUILD 

Link time --    

Post-build time --    

Scope / Dependency  
  

No Included Containers  

  

 

EcuMUserConfig :

ParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

EcuMUser :

IntegerParamDef

+parameter

 

Figure 52 – Container EcuMUserConfig 

 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

178 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

10.2.16 EcuMWdgM 
SWS Item  :  

Container Name EcuMWdgM 

Description  

This container holds the configuration parameters for the interaction 
between the Watchdog Manager (WdgM) and EcuM. The WdgM mode to 
be selected in a specific Sleep Mode of EcuM is configured in the 
EcuMSleepMode container. 

Configuration Parameters 

  

SWS Item :  

Name  
 

EcuMSupervisedEntityRef  

Description This parameter references the Supervised Entity ID that way configured for 
EcuM in the Watchdog Manager. 

Multiplicity  1 

Type  Reference to [ WdgMSupervisedEntity ] 

ConfigurationClass Pre-compile 
time 

--    

Link time --    

Post-build 
time 

X VARIANT-POST-BUILD 

Scope / Dependency  
  

SWS Item :  

Name  
 

EcuMWdgMPostRunModeRef  

Description This parameter references the WdgM mode to be set when entering the POST 
RUN state of EcuM. 

Multiplicity  1 

Type  Reference to [ WdgMMode ] 

ConfigurationClass Pre-compile 
time 

--    

Link time --    

Post-build 
time 

X VARIANT-POST-BUILD 

Scope / Dependency  
  

SWS Item :  

Name  
 

EcuMWdgMRunModeRef  

Description This parameter references the WdgM mode to be set when entering the RUN 
state of EcuM. 

Multiplicity  1 

Type  Reference to [ WdgMMode ] 

ConfigurationClass Pre-compile 
time 

--    

Link time --    

Post-build 
time 

X VARIANT-POST-BUILD 

Scope / Dependency  
  

SWS Item :  

Name  
 

EcuMWdgMShutdownModeRef  

Description This parameter references the WdgM mode to be set when leaving the GO OFF 
I state of EcuM. 

Multiplicity  1 

Type  Reference to [ WdgMMode ] 

ConfigurationClass Pre-compile 
time 

--    



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

179 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

Link time --    

Post-build 
time 

X VARIANT-POST-BUILD 

Scope / Dependency  
  

SWS Item :  

Name  
 

EcuMWdgMStartupModeRef  

Description This parameter references the WdgM mode to be set when entering the 
STARTUP II state of EcuM. 

Multiplicity  1 

Type  Reference to [ WdgMMode ] 

ConfigurationClass Pre-compile 
time 

--    

Link time --    

Post-build 
time 

X VARIANT-POST-BUILD 

Scope / Dependency  
  

SWS Item :  

Name  
 

EcuMWdgMWakeupModeRef  

Description This parameter references the WdgM mode to be set when entering the 
WAKEUP I state of EcuM. 

Multiplicity  1 

Type  Reference to [ WdgMMode ] 

ConfigurationClass Pre-compile 
time 

--    

Link time --    

Post-build 
time 

X VARIANT-POST-BUILD 

Scope / Dependency  
  

No Included Containers  

  

 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

180 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

EcuMWdgM :

ParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 0

EcuMWdgMStartupModeRef :

ReferenceParamDef
WdgMMode :

ParamConfContainerDef

upperMultiplicity = 255

lowerMultiplicity = 1

(from WdgManager)

EcuMWdgMRunModeRef :

ReferenceParamDef

EcuMSupervisedEntityRef :

SymbolicNameReferenceParamDef

WdgMSupervisedEntity :

ParamConfContainerDef

upperMultiplicity = 65535

lowerMultiplicity = 0

(from WdgManager)

EcuMWdgMPostRunModeRef :

ReferenceParamDef

EcuMWdgMShutdownModeRef :

ReferenceParamDef

EcuMWdgMWakeupModeRef :

ReferenceParamDef

+reference

+reference

+reference

+reference

+reference

+reference

+destination

+destination

+destination

+destination

+destination

+destination

 

Figure 53 – Container EcuMWdgM 

 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

181 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

10.3 Published Parameters 
 
The standard common published information like 
 
vendorId (<Module>_VENDOR_ID),  
moduleId (<Module>_MODULE_ID),  
arMajorVersion (<Module>_AR_MAJOR_VERSION),  
arMinorVersion (<Module>_ AR_MINOR_VERSION),  
arPatchVersion (<Module>_ AR_PATCH_VERSION),  
swMajorVersion (<Module>_SW_MAJOR_VERSION),  
swMinorVersion (<Module>_ SW_MINOR_VERSION),  
swPatchVersion (<Module>_ SW_PATCH_VERSION),  
vendorApiInfix (<Module>_VENDOR_API_INFIX)  
 
is provided in the BSW Module Description Template (see [22] Figure 4.1 and Figure 
7.1). 
 
Additional published parameters are listed below if applicable for this module. 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

182 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

10.4 Checking Configuration Consistency 
 
10.4.1 The Necessity for Checking Configuration Consistency in the ECU State 

Manager 
 
In a AUTOSAR ECU several configuration parameters are set and put into the ECU 
at different times. Pre-compile parameters are set, put into the generated source 
code and compiled into object code. When the source code has been compiled, link-
time parameters are set, compiled, and linked with the previously configured object 
code into an image that is put into the ECU. Finally, post-build parameters are set, 
compiled, linked, and put into the ECU at a different time. All these parameters must 
match to obtain a stable ECU. 
 

Per BSW Module

Pre-Compile and Link-Time Part

Post-Build Part

.XML.XML

ECU 

Configuration 

Description

.obj.obj

Compiled 

BSW Code

.c.c

BSW 

Code

.h.h

BSW 

Header

.XML.XML

BSW Pre-

Compile 

Parameters

Generate BSW 

Configuration

.XML.XML

BSW Link-

Time 

Parameters

.XML.XML

BSW Post-

Build 

Parameters

.h.h

BSW 

Configuration 

Header

.h.h

BSW Pre-

Compile 

Parameters

.c.c

BSW Link-

Time 

Parameters

Compile BSW Code

Compile BSW Post-Build 

Configuration

.c.c

BSW Post-

Build 

Parameters

Compile BSW Link-Time 

Configuration

.obj.obj

Compiled 

BSW Link-

Time 

Configuration

.obj.obj

Compiled 

BSW Post-

Build 

Configuration

Link BSW Modules, RTE, 

and SWCs

.exe.exe

ECU Code 

Image

Link Post-Build 

Configuration

.exe.exe

ECU Post-

Build Data 

Image

.obj.obj

Compiled 

RTE Code

.obj.obj

Compiled 

SWC Code

 

Figure 54 – BSW Configuration Steps 

 
 
Example: The number of watchdogs to be triggered by the Watchdog Manager is set 
in the pre-compile parameter WDGM_NUMBER_OF_WATCHDOG_INSTANCES. 
For each of these watchdog instances the container WdgMWatchdogInstance 
contains three post-build parameters: 

 WDGM_WATCHDOG_INSTANCE_ID, 

 WDGM_TRIGGER_SLOW_REFERENCE_CYCLE, and 

 WDGM_TRIGGER_FAST_REFERENCE_CYCLE. 
The number of WdgMWatchdogInstance containers in the post-build data must 
exactly match the value of WDGM_NUMBER_OF_WATCHDOG_INSTANCES. 

Otherwise, wrong data will be read by the WdgM_Init function. 

 
Checking consistency of parameters at configuration time can be done within the 
configuration tool itself. At compilation time, parameter errors may be detected by the 
compiler and at link time, the linker may find additional errors. Unfortunately, finding 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

183 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

configuration errors in post-build parameters is very difficult. This can only be 
achieved at run-time by checking that  

 the pre-compile and link-time parameter settings used when compiling the 
code  

are exactly the same as 

 the pre-compile and link-time parameter settings used when configuring and 
compiling the post-build parameters. 

This can only be done at run-time. 
 
EcuM2796: To avoid multiple checks scattered over the different BSW modules, the 
ECU State Manager module shall check the consistency once before initializing the 
first BSW module. This also implies that the ECU State Manager module must not 
only check the consistency of its own parameters but of all post-build configurable 
BSW modules. 
 
EcuM2797: The ECU configuration tool shall compute a hash value over all pre-
compile and link-time configuration parameters of all BSW modules and put that into 
the link-time configuration parameter ECUM_CONFIGCONSISTENCY_HASH. The 
hash value is necessary for two reasons. First, the pre-compile and link-time 
parameters are not accessible anymore at run-time. Second, the check must be very 
efficient at run-time. Comparing hundreds of parameters would cause an 
unacceptable delay in the ECU startup process. 
 
EcuM2798: The EcuM configuration tool shall put the current value of the 
configuration parameter ECUM_CONFIGCONSISTENCY_HASH into a field in the 
EcuM_ConfigType structure, which contains the root of all post-build configuration 
parameters. EcuM shall check in EcuM_Init that the field in the structure is equal to 
the value of ECUM_CONFIGCONSISTENCY_HASH. 
 
By computing hash values at configuration time and comparing them at run-time the 
EcuM code becomes very efficient and independent of a certain hash computation 
algorithm. This allows for the use of complex hash computation algorithms, e.g. 
cryptographically strong hash functions. 
 
Note that the same hash algorithm can be used to produce the value for the post-
build configuration identifier in the EcuM_ConfigType structure. Then the hash 
algorithm is applied to the post-build parameters instead of the pre-compile and link-
time parameters.  
 
EcuM2799: The used hash computation algorithm shall always produce the same 
hash value for the same set of configuration data, regardless of the order of 
configuration parameters in the XML files. 
 
 



 Specification of ECU State Manager 
 V2.1.0 

R3.2 Rev 3 

184 of 184 Document ID 078:AUTOSAR_SWS_ECU_StateManager 

- AUTOSAR confidential - 

10.4.2 Example Hash Computation Algorithm 
 
Note: This chapter is non-normative. It describes one possible way of computing 
hash values. 
 
A simple CRC over the values of configuration parameters will not serve as a good 
hash algorithm. It only detects global changes, e.g. one parameter has changed from 
1 to 2. But if another parameter changed from 2 to 1, the CRC might stay the same. 
 
Additionally, not only the values of the configuration parameters but also their names 
must be taken into account in the hash algorithm. One possibility is to build a text file 
that contains the names of the configuration parameters and containers, separate 
them from the values using a delimiter, e.g. a colon, and putting each parameter as a 
line into a text file. For the above Watchdog Manager example only one parameter 
will be included because only this one is pre-compile configured. The text file would 
then contain the line: 
 
/WdgMConfiguration/WdgM_Trigger/WDGM_NUMBER_OF_WATCHDOG_INSTANCES:2 

 
If there are multiple containers of the same type, each container name can be 
appended with a number, e.g. “_0”, “_1” and so on. 
 
To make the hash value independent of the order in which the parameters are written 
into the text file, the lines in the file must now be sorted lexicographically. 
 
Finally, a cryptographically strong hash function, e.g. MD5, can be run on the text file 
to produce the hash value. These hash functions produce completely different hash 
values for slightly changed input files. 
 
 


	1 Introduction
	1.1 Functional Overview
	1.2 Conventions Used in this Specification
	1.2.1 Font Faces
	1.2.2 Figures


	2 Definitions and Acronyms
	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms
	3.3 Related AUTOSAR Software Specifications

	4 Constraints and Assumptions
	4.1 Limitations
	4.2 Hardware Requirements
	4.3 Applicability to car domains

	5 Dependencies to other modules
	5.1 Mode Management Modules
	5.1.1 Communication Manager
	5.1.2 Watchdog Manager

	5.2 SPAL Modules
	5.2.1 MCU Driver
	5.2.2 Driver Dependencies and Initialization Order

	5.3 Peripherals with Wake up Capability
	5.4 Operating System
	5.5 Runtime Environment (RTE)
	5.6 BSW Scheduler
	5.7 NVRAM Manager
	5.8 Diagnostic Event Manager
	5.9 Software Components
	5.10 File Structure

	6 Requirements traceability
	7 Functional Specification
	7.1 Main States of the ECU State Manager module
	7.1.1 STARTUP State
	7.1.2 RUN State
	7.1.3 SHUTDOWN State
	7.1.4 SLEEP State
	7.1.5 WAKEUP State
	7.1.6 OFF State

	7.2 Structural Description of the ECU State Manager module
	7.2.1 Standardized AUTOSAR Software Modules
	7.2.2 Software Components
	7.2.3 Resource Managers

	7.3 STARTUP State
	7.3.1 High Level Sequence Diagram
	7.3.2 Activities before EcuM_Init
	7.3.3 STARTUP Activity Overview
	7.3.4 Sub-State Descriptions
	7.3.4.1 STARTUP I
	7.3.4.2 STARTUP II

	7.3.5 Driver Initialization
	7.3.6 DET Initialization

	7.4 RUN State
	7.4.1 State Breakdown Structure
	7.4.2 High Level Sequence Diagram
	7.4.3 Sub-State Description
	7.4.3.1 RUN II
	7.4.3.2 Entering RUN II State
	7.4.3.3 Leaving RUN II State
	7.4.3.4 RUN III
	7.4.3.5 Leaving RUN III State


	7.5 SHUTDOWN State
	7.5.1 State Breakdown Structure
	7.5.2 High Level Sequence Diagram
	7.5.3 SHUTDOWN Activity Overview
	7.5.4 Sub-State Descriptions
	7.5.4.1 PREP SHUTDOWN
	7.5.4.2 GO SLEEP
	7.5.4.3 GO OFF I
	7.5.4.4 GO OFF II


	7.6 SLEEP State
	7.6.1 High Level Sequence Diagram
	7.6.2 Sub-State Descriptions
	7.6.2.1 Shutdown Targets
	7.6.2.2 Sleep Sequence I
	7.6.2.3 Sleep Sequence II

	7.6.3 Leaving SLEEP State

	7.7 WAKEUP State
	7.7.1 High Level Sequence Diagram
	7.7.2 State Breakdown Structure
	7.7.3 WAKEUP Activity Overview
	7.7.4 Sub-State Descriptions
	7.7.4.1 WAKEUP I
	7.7.4.2 WAKEUP VALIDATION
	7.7.4.3 WAKEUP REACTION
	7.7.4.4 WAKEUP II


	7.8 Wake up Validation Protocol
	7.8.1 Wake up of Communication Channels
	7.8.2 Wake up of the Entire ECU
	7.8.3 Interaction of Wake up Sources and the ECU State Manager module
	7.8.4 Wake up Validation Timeout
	7.8.5 Requirements for Drivers with Wake up Sources
	7.8.6 Requirements for Wake up Validation
	7.8.7 Wake up Sources and Reset Reason
	7.8.8 Wake up Sources with Integrated Power Control
	7.8.9 Activity Diagram

	7.9 Time Triggered Increased Inoperation
	7.10 AUTOSAR Ports
	7.10.1 Scope of this Chapter
	7.10.2 Overview
	7.10.3 Use Cases
	7.10.4 Specification of the Port Interfaces
	7.10.4.1 Port Interface for Interface EcuM_StateRequest
	7.10.4.1.1 General Approach
	7.10.4.1.2 Data Types
	7.10.4.1.3 Port Interface

	7.10.4.2 Port Interface for Interface EcuM_CurrentMode
	7.10.4.2.1 General Approach
	7.10.4.2.2 Data Types
	7.10.4.2.3 Port Interface

	7.10.4.3 Ports and Port Interface for Interface EcuM_ShutdownTarget
	7.10.4.3.1 General Approach
	7.10.4.3.2 Data Types
	7.10.4.3.3 Port Interface

	7.10.4.4 Port Interface for Interface EcuM_BootTarget
	7.10.4.4.1 General Approach
	7.10.4.4.2 Data Types
	7.10.4.4.3 Port Interface

	7.10.4.5 Port Interface for Interface EcuM_ApplicationMode
	7.10.4.5.1 General Approach
	7.10.4.5.2 Data Types
	7.10.4.5.3 Port Interface


	7.10.5 Summary of ports
	7.10.5.1 Definitions of interfaces
	7.10.5.2 Definition of the Service ECU State Manager module

	7.10.6 Runnables and Entry points
	7.10.6.1 Internal behavior


	7.11 Advanced Topics
	7.11.1 Application Modes
	7.11.2 Relation to Bootloader
	7.11.3 Relation to Complex Drivers
	7.11.4 Handling Errors during Startup and Shutdown
	7.11.5 Configuration Alternative for Providing Wake-Sleep Operation
	7.11.6 Selecting Scheduling Schemes for Startup and Shutdown

	7.12 Error Classification

	8 API specification
	8.1 Imported Types
	8.2 Type definitions
	8.2.1 EcuM_ConfigType
	8.2.2 EcuM_StateType
	8.2.3 EcuM_UserType
	8.2.4 EcuM_WakeupSourceType
	8.2.5 EcuM_WakeupStatusType
	8.2.6 EcuM_WakeupReactionType
	8.2.7 EcuM_BootTargetType
	8.2.8 EcuM_AppModeType

	8.3 Function Definitions
	8.3.1 General
	8.3.1.1 EcuM_GetVersionInfo

	8.3.2 Initialization and Shutdown
	8.3.2.1 EcuM_Init
	8.3.2.2 EcuM_StartupTwo
	8.3.2.3 EcuM_Shutdown

	8.3.3 State Management
	8.3.3.1 EcuM_GetState
	8.3.3.2 EcuM_RequestRUN
	8.3.3.3 EcuM_ReleaseRUN
	8.3.3.4 EcuM_ComM_RequestRUN
	8.3.3.5 EcuM_ComM_ReleaseRUN
	8.3.3.6 EcuM_ComM_HasRequestedRUN
	8.3.3.7 EcuM_RequestPOST_RUN
	8.3.3.8 EcuM_ReleasePOST_RUN
	8.3.3.9 EcuM_KillAllRUNRequests
	8.3.3.10 EcuM_KillAllPostRUNRequests
	8.3.3.11 EcuM_SelectShutdownTarget
	8.3.3.12 EcuM_GetShutdownTarget
	8.3.3.13 EcuM_GetLastShutdownTarget

	8.3.4 Wake up Handling
	8.3.4.1 EcuM_GetPendingWakeupEvents
	8.3.4.2 EcuM_ClearWakeupEvent
	8.3.4.3 EcuM_GetValidatedWakeupEvents
	8.3.4.4 EcuM_GetExpiredWakeupEvents
	8.3.4.5 EcuM_GetStatusOfWakeupSource

	8.3.5 Miscellaneous
	8.3.5.1 EcuM_SelectApplicationMode
	8.3.5.2 EcuM_GetApplicationMode
	8.3.5.3 EcuM_SelectBootTarget
	8.3.5.4 EcuM_GetBootTarget


	8.4 Scheduled Functions
	8.4.1 EcuM_MainFunction

	8.5 Callback Definitions
	8.5.1 Callbacks from NVRAM Manager
	8.5.1.1 EcuM_CB_NfyNvMJobEnd

	8.5.2 Callbacks from Wake up Sources
	8.5.2.1 EcuM_CheckWakeup
	8.5.2.2 EcuM_SetWakeupEvent
	8.5.2.3 EcuM_ValidateWakeupEvent
	8.5.2.4 EcuM_StartCheckWakeup
	8.5.2.5 EcuM_EndCheckWakeup


	8.6 Callout Definitions
	8.6.1 Generic Callouts
	8.6.1.1 EcuM_ErrorHook

	8.6.2 Callouts from STARTUP
	8.6.2.1 EcuM_AL_DriverInitZero
	8.6.2.2 EcuM_DeterminePbConfiguration
	8.6.2.3 EcuM_AL_DriverInitOne
	8.6.2.4 EcuM_AL_DriverInitTwo
	8.6.2.5 EcuM_AL_DriverInitThree
	8.6.2.6 EcuM_OnRTEStartup

	8.6.3 Callouts from RUN State
	8.6.3.1 EcuM_OnEnterRun
	8.6.3.2 EcuM_OnExitRun
	8.6.3.3 EcuM_OnExitPostRun

	8.6.4 Callouts from SHUTDOWN
	8.6.4.1 EcuM_OnPrepShutdown
	8.6.4.2 EcuM_OnGoSleep
	8.6.4.3 EcuM_OnGoOffOne
	8.6.4.4 EcuM_OnGoOffTwo
	8.6.4.5 EcuM_EnableWakeupSources
	8.6.4.6 EcuM_GenerateRamHash
	8.6.4.7 EcuM_AL_SwitchOff

	8.6.5 Callouts from WAKEUP
	8.6.5.1 EcuM_CheckRamHash
	8.6.5.2 EcuM_DisableWakeupSources
	8.6.5.3 EcuM_AL_DriverRestart
	8.6.5.4 EcuM_StartWakeupSources
	8.6.5.5 EcuM_CheckValidation
	8.6.5.6 EcuM_StopWakeupSources
	8.6.5.7 EcuM_OnWakeupReaction

	8.6.6 Callouts from SLEEP State
	8.6.6.1 EcuM_SleepActivity
	8.6.6.2 EcuM_CheckWakeup


	8.7 Expected Interfaces
	8.7.1 Mandatory Interfaces
	8.7.2 Optional Interfaces
	8.7.3 Configurable interfaces

	8.8 API Parameter Checking

	9 Sequence Charts
	9.1 State Sequences
	9.2 Wake up Sequences
	9.2.1 GPT Wake up Sequences
	9.2.2 ICU Wake up Sequences
	9.2.3 CAN Wake up Sequences
	9.2.4 LIN wake up sequences
	9.2.5 FlexRay wake up sequences


	10 Configuration specification
	10.1 Configuration Variants
	10.2 Configurable Parameters
	10.2.1 EcuM
	10.2.2  EcuMGeneral
	10.2.3  EcuMConfiguration
	10.2.4 EcuMDriverInitListZero
	10.2.5 EcuMDriverInitListOne
	10.2.6 EcuMDriverInitListTwo
	10.2.7 EcuMDriverInitListThree
	10.2.8 EcuMDriverRestartList
	10.2.9 EcuMDriverInitItem
	10.2.10 EcuMModuleConfiguration
	10.2.11  EcuMDefaultShutdownTarget
	10.2.12  EcuMWakeupSource
	10.2.13  EcuMSleepMode
	10.2.14  EcuMTTII
	10.2.15  EcuMUserConfig
	10.2.16  EcuMWdgM

	10.3 Published Parameters
	10.4 Checking Configuration Consistency
	10.4.1 The Necessity for Checking Configuration Consistency in the ECU State Manager
	10.4.2 Example Hash Computation Algorithm



