
Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

1 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

Document Title Specification of CAN Driver
Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 011

Document Classification Standard

Document Version 2.6.0

Document Status Final

Part of Release 3.2

Revision 3

Document Change History
Date Version Changed by Change Description

28.02.2014 2.6.0 AUTOSAR
Release
Management

 Updated section 7.6.1, added new
requirements CAN447, CAN448 and
figure 7-4

 Replaced requirement CAN076 by a
note

 Removed requirement CAN270

 Added requirement CAN449 and
modified requirement CAN266

 Editorial changes

 Removed chapter(s) on change
documentation

15.04.2011 2.5.0 AUTOSAR
Administration

 Added new requirements CAN435,
CAN436, CAN437, CAN438, CAN439,
CAN440, CAN441, CAN442 and
CAN443

 Added CAN321 in Config Spec (Chap
10)

 Updated specification of CAN279 in
detail

 Replaced "CanIf_SetWakeupEvent"
with “EcuM_CheckWakeup” in CAN271

 Legal disclaimer revised

20.09.2010 2.4.0 AUTOSAR
Administration

 Updated CAN271 and CAN234

 Legal disclaimer revised

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

2 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

28.01.2010 2.3.0 AUTOSAR
Administration

 Description of Multiplexed Transmit
Functionality improved.

 Reference to CanIf_SetWakeupEvent
replaced by EcuM_CheckWakeup.

 Added missing literal specification for
CanBusoffProcessing,
CanRxProcessing, CanTxProcessing,
CanWakeupProcessing

 SchM_Can.h included in File Structure

 Create new CAN artefacts with updated
BSW UML Model

 Legal disclaimer revised

23.06.2008 2.2.2 AUTOSAR
Administration

Legal disclaimer revised

24.01.2008 2.2.1 AUTOSAR
Administration

Table formatting corrected

30.11.2007 2.2.0 AUTOSAR
Administration

 Tables generated from UML-models,

 General improvements of requirements
in preparation of CT-development.

 Functions Can_MainFunction_Write,
Can_MainFunction_Read,
Can_MainFunction_BusOff and
Can_MainFunction_WakeUp changed
to scheduled functions

 Cycle Parameters added for new
scheduled functions

 Wakeup concept added (Chapter 7.7)
and addition of function
Can_Cbk_CheckWakeup

 Document meta information extended

 Small layout adaptations made

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

3 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

31.01.2007 2.1.0 AUTOSAR
Administration

 File structure reworked (chapter 5.2)

 Removed return value CAN_WAKEUP
in function Can_SetControllerMode

 Replaced by CAN_NOT_OK

 Renamed CanIf_ControllerWakeup to
CanIf_SetWakeupEvent

 Reworked development errors (chapter
7.10)

 Removed implementation specific
description in Can_Write

 Changed timing of cyclic functions to
"fixed cyclic"

 Reworked "Scope" for all configuration
variables (chapter 10.2)

 Legal disclaimer revised

 Release notes added

 “Advice for users” revised

 “Revision Information” added

21.04.2006 2.0.0 AUTOSAR
Administration

Document structure adapted to common
Release 2.0 SWS Template

 clarified development and production
error handling and function abortion

 multiplexed transmission and TX
cancellation

 version check

 configuration description according
template

 individual main functions for RX TX
and status

31.05.2005 1.0.0 AUTOSAR
Administration

Initial release

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

4 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

Disclaimer

This specification and the material contained in it, as released by AUTOSAR is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only.
For any other purpose, no part of the specification may be utilized or reproduced, in
any form or by any means, without permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR Specification Documents may contain exemplary items (exemplary
reference models, "use cases", and/or references to exemplary technical solutions,
devices, processes or software).

Any such exemplary items are contained in the Specification Documents for
illustration purposes only, and they themselves are not part of the AUTOSAR
Standard. Neither their presence in such Specification Documents, nor any later
documentation of AUTOSAR conformance of products actually implementing such
exemplary items, imply that intellectual property rights covering such exemplary
items are licensed under the same rules as applicable to the AUTOSAR Standard.

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

5 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

Table of Content

1 Introduction and functional overview ... 8

2 Acronyms and abbreviations ... 9

2.1 Priority Inversion... 10

2.2 CAN Hardware Unit .. 11

3 Related documentation ... 13

3.1 Input documents ... 13

3.2 Related standards and norms .. 14

4 Constraints and assumptions .. 15

4.1 Limitations .. 15
4.2 Applicability to car domains .. 15

5 Dependencies to other modules .. 16

5.1.1 Static Configuration ... 16

5.1.2 Driver Services .. 16
5.1.3 System Services ... 16

5.1.4 Can module Users .. 17
5.2 File structure .. 17

5.2.1 Code file structure ... 17
5.2.2 Header file structure .. 17

6 Requirements traceability .. 19

7 Functional specification ... 25

7.1 Driver scope ... 25

7.2 Driver State Machine .. 26

7.3 CAN Controller State Machine ... 27
7.3.1 State Description ... 27
7.3.2 State Transitions ... 28

7.4 Can module/Controller Initialization .. 31

7.5 L-PDU transmission ... 32
7.5.1 Priority Inversion ... 33

7.5.1.1 Multiplexed Transmission .. 33

7.5.1.2 Transmit Cancellation .. 34
7.5.2 Transmit Data Consistency ... 35

7.6 L-PDU reception ... 35
7.6.1 Receive Data Consistency .. 35

7.7 Wakeup concept... 37

7.8 Notification concept .. 37
7.9 Reentrancy issues .. 38
7.10 Error classification .. 38

7.10.1 Development Errors .. 39

7.10.2 Production Errors .. 39
7.10.3 Return Values ... 40

7.11 Error detection .. 40

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

6 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

7.12 Error notification ... 40

7.13 Version Check .. 40

8 API specification .. 41

8.1 Imported types.. 41
8.2 Type definitions .. 41

8.2.1 Can_ConfigType ... 41

8.2.2 Can_ControllerConfigType .. 41
8.2.3 Can_PduType ... 41
8.2.4 Can_IdType... 42
8.2.5 Can_StateTransitionType ... 42

8.2.6 Can_ReturnType ... 42
8.2.7 Can_HwHandleType ... 42

8.3 Function definitions .. 43

8.3.1 Services affecting the complete hardware unit 43
8.3.1.1 Can_Init ... 43
8.3.1.2 Can_GetVersionInfo .. 43

8.3.2 Services affecting one single CAN Controller 44

8.3.2.1 Can_InitController .. 44
8.3.2.2 Can_SetControllerMode .. 45

8.3.2.3 Can_DisableControllerInterrupts ... 47
8.3.2.4 Can_EnableControllerInterrupts .. 48
8.3.2.5 Can_Cbk_CheckWakeup .. 49

8.3.3 Services affecting a Hardware Handle .. 49

8.3.3.1 Can_Write .. 49
8.4 Call-back notifications .. 51

8.4.1 Call-out function .. 51
8.4.2 Enabling/Disabling wakeup notification ... 51

8.5 Scheduled functions ... 52
8.5.1.1 Can_MainFunction_Write .. 52

8.5.1.2 Can_MainFunction_Read .. 53
8.5.1.3 Can_MainFunction_BusOff .. 53

8.5.1.4 Can_MainFunction_Wakeup ... 54
8.6 Expected Interfaces .. 54

8.6.1 Mandatory Interfaces .. 54

8.6.2 Optional Interfaces .. 57
8.6.3 Configurable interfaces ... 57

9 Sequence diagrams .. 58

9.1 Interaction between Can and CanIf module ... 58

9.2 Wakeup sequence .. 58

10 Configuration specification ... 59

10.1 How to read this chapter .. 59
10.1.1 Configuration and configuration parameters 59
10.1.2 Variants ... 60

10.1.3 Containers ... 60

10.2 Containers and configuration parameters .. 61
10.2.1 Variants ... 61
10.2.2 Can ... 64
10.2.3 CanGeneral ... 65

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

7 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

10.2.4 CanController .. 68

10.2.5 CanHardwareObject .. 72
10.2.6 CanFilterMask ... 74
10.2.7 CanConfigSet .. 75

10.3 Published Information ... 75

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

8 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

1 Introduction and functional overview

This specification specifies the functionality, API and the configuration of the
AUTOSAR Basic Software module CAN Driver (called “Can module” in this
document).

The Can module is part of the lowest layer, performs the hardware access and offers
a hardware independent API to the upper layer.
The only upper layer that has access to the Can module is the CanIf module (see
also BSW12092).

The Can module provides services for initiating transmissions and calls the callback
functions of the CanIf module for notifying events, independently from the hardware.

Furthermore, it provides services to control the behavior and state of the CAN
controllers that are belonging to the same CAN Hardware Unit.

Several CAN controllers can be controlled by a single Can module as long as they
belong to the same CAN Hardware Unit.

For a closer description of CAN controller and CAN Hardware Unit see chapter
Acronyms and abbreviations and a diagram in [5].

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

9 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

2 Acronyms and abbreviations

Abbreviation /
Acronym:

Description:

CAN controller A CAN controller serves exactly one physical channel.

CAN Hardware
Unit

A CAN Hardware unit may consist of one or multiple CAN controllers of
the same type and one, two or multiple CAN RAM areas. The CAN
hardware unit is located on-chip or as external device. The CAN
hardware unit is represented by one CAN driver. A CAN Hardware Unit
may consists of one or multiple CAN controllers of the same type and one
or multiple CAN RAM areas. The CAN Hardware Unit is either on-chip, or
an external device. The CAN Hardware Unit is represented by one CAN
driver.

CAN L-PDU Data Link Layer Protocol Data Unit. Consists of Identifier, DLC and Data
(SDU). (see [15])

CAN L-SDU Data Link Layer Service Data Unit. Data that is transported inside the L-
PDU. (see [15])

DLC Data Length Code (part of L-PDU that describes the SDU length)

Hardware Object A CAN hardware object is defined as a PDU buffer inside the CAN RAM
of the CAN hardware unit / CAN controller.A Hardware Object is defined
as L-PDU buffer inside the CAN RAM of the CAN Hardware Unit.

Hardware
Receive Handle
(HRH)

The Hardware Receive Handle (HRH) is defined and provided by the
CAN driver. Typically each HRH represents exactly one hardware object.
The HRH can be used to optimize software filtering.

Hardware
Transmit Handle
(HTH)

The Hardware Transmit Handle (HTH) is defined and provided by the
CAN driver. Typically each HTH represents one or several (only Release
2) hardware objects, that are configured as hardware transmit pool.

Inner Priority
Inversion

Transmission of a high-priority L-PDU is prevented by the presence of a
pending low-priority L-PDU in the same transmit hardware object.

ISR Interrupt Service Routine

L-PDU Handle

The L-PDU handle is defined and placed inside the CanIf module layer.
Typically each handle represents an L-PDU, which is a constant structure
with information for Tx/Rx processing.

MCAL Microcontroller Abstraction Layer

Outer Priority
Inversion

A time gap occurs between two consecutive transmit L-PDUs.
In this case a lower priority L-PDU from another node can prevent
sending the own higher priority L-PDU. Here the higher priority L-PDU
cannot participate in arbitration during network access because the lower
priority L-PDU already won the arbitration.

Physical Channel

A physical channel represents an interface from a CAN controller to the
CAN Network. Different physical channels of the CAN hardware unit may
access different networks.

Priority The Priority of a CAN L-PDU is represented by the CAN Identifier. The
lower the numerical value of the identifier, the higher the priority.

SFR Special Function Register. Hardware register that controls the controller
behavior.

SPAL Standard Peripheral Abstraction Layer

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

10 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

2.1 Priority Inversion

"If only a single transmit buffer is used inner priority inversion may occur. Because of
low priority a message stored in the buffer waits until the ”traffic on the bus calms
down”. During the waiting time this message could prevent a message of higher
priority generated by the same microcontroller from being transmitted over the bus."1

1
 Picture and text by CiA (CAN in Automation)

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

11 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

"The problem of outer priority inversion may occur in some CAN implementations. Let
us assume that a CAN node wishes to transmit a package of consecutive messages
with high priority, which are stored in different message buffers. If the interframe
space between these messages on the CAN network is longer than the minimum
space defined by the CAN standard, a second node is able to start the transmission
of a lower priority message. The minimum interframe space is determined by the
Intermission field, which consists of 3 recessive bits. A message, pending during the
transmission of another message, is started during the Bus Idle period, at the earliest
in the bit following the Intermission field. The exception is that a node with a waiting
transmission message will interpret a dominant bit at the third bit of Intermission as
Start-of-Frame bit and starts transmission with the first identifier bit without first
transmitting an SOF bit. The internal processing time of a CAN module has to be
short enough to send out consecutive messages with the minimum interframe space
to avoid the outer priority inversion under all the scenarios mentioned."2

2.2 CAN Hardware Unit

The CAN Hardware Unit combines one or several CAN controllers, which may be
located on-chip or as external standalone devices of the same type, with common or
separate Hardware Objects.

Following figure shows a CAN Hardware Unit consisting of two CAN controllers
connected to two Physical Channels:

2
 Text and image by CiA (CAN in Automation)

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

12 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

Message Object
Mailbox A

CAN
Transceiver

A

Tx A

Rx A

CAN Controller B

Tx B

Rx B

CAN Controllers with Mailboxes CAN Hardware Unit

CAN
Transceiver

B
Message Object

Mailbox B

CAN
Bus A

CAN
Bus B

CAN Controller A

Physical Channel A

Physical Channel B

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

13 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

3 Related documentation

3.1 Input documents

[1] Layered Software Architecture
AUTOSAR_LayeredSoftwareArchitecture.pdf

[2] General Requirements on Basic Software Modules
 AUTOSAR_SRS_General.pdf

[3] General Requirements on SPAL
AUTOSAR_SRS_SPAL_General.pdf

[4] Requirements on CAN
 AUTOSAR_SRS_CAN.pdf

[5] Specification of CAN Interface
AUTOSAR_SWS_CANInterface.pdf]

[6] Specification of Development Error Tracer
AUTOSAR_SWS_DET.pdf

[7] Specification of ECU State Manager
AUTOSAR_SWS_ECU_StateManager.pdf

[8] Specification of MCU Driver
AUTOSAR_SWS_MCU_Driver.pdf

[9] Specification of Operating System
AUTOSAR_SWS_OS.pdf

[10] Specification of ECU Configuration
AUTOSAR_ECU_Configuration.pdf

[11] Specification of C Implementation Rules
AUTOSAR_SWS_C_ImplementationRules.pdf

[12] Specification of ECU State Manager
AUTOSAR_SWS_ECU_StateManager.pdf

[13] AUTOSAR Basic Software Module Description Template,
 AUTOSAR_BSW_Module_Description.pdf

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

14 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

3.2 Related standards and norms

[14] ISO11898 – Road vehicles - Controller area network (CAN)

[15] ISO-IEC 7498-1 – OSI Basic Reference Model

[16] HIS – Joint Subset of the MISRA C Guidelines

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

15 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

4 Constraints and assumptions

4.1 Limitations

A CAN controller always corresponds to one physical channel. It is allowed to
connect physical channels on bus side. Regardless the CanIf module will treat the
concerned CAN controllers separately.
The only exception is when the hardware supports the 'merging' of several controllers
to one. Then these 'merged' controllers are represented as one controller by the Can
module.

CAN237: The Can module does not support CAN Remote Frames. The Can module
shall not process received remote frames.

4.2 Applicability to car domains

The Can module can be used for any application, where the CAN protocol is used.

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

16 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

5 Dependencies to other modules

5.1.1 Static Configuration

The configuration elements described in chapter 10 can be referenced by other BSW
modules for their configuration.

5.1.2 Driver Services

CAN238: f the CAN controller is on-chip, the Can module shall not use any service of
other drivers.

CAN239: The function Can_Init shall initialize all on-chip hardware resources that are
used by the CAN controller. The only exception to this is the digital I/O pin
configuration (of pins used by CAN), which is done by the port driver.

CAN240: The Mcu module (SPAL see [8]) shall configure register settings that are
'shared' with other modules

CAN241: The Can module’s environment shall make sure that the Mcu module is
inititalized before initializing the Can module.

CAN242: If an off-chip CAN controller is used3, the Can module shall use services of
other MCAL drivers (i.e. SPI).

CAN243: If the Can module uses services of other MCAL drivers (e.g. SPI), the Can
module’s environment shall make sure that these drivers are up and running before
initializing the Can module.

The sequence of initialization of different drivers is partly specified in [7].

CAN244: The Can module shall use the synchronous APIs of the underlying MCAL
drivers and shall not provide callback functions that can be called by the MCAL
drivers.

Thus the type of connection between µC and CAN Hardware Unit has only impact on
implementation and not on the API.

5.1.3 System Services

CAN280: In special hardware cases, the Can module shall poll for events of the
hardware.

CAN281: The Can module shall contain a timeout detection in case the hardware
doesn't react in the expected time (hardware error) to prevent endless loops. As long

3
 In this case the CAN driver is not any more part of the µC abstraction layer but put part of the ECU

abstraction layer. Therefore it is (theoretically) allowed to use any µC abstraction layer driver it needs.

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

17 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

as the system service does not provide a free running timer this timeout shall be
realized with a fixed number of loops.4

Reason: The blocking time of the Can module function that is waiting for hardware
reaction shall be shorter than the CAN main function (i.e. Can_MainFunction_Read)
trigger period, so the CAN main functions can't be used for that purpose.

In case consistency concepts (resources/critical sections) are offered by the BSW
Module Scheduler, the according services will be used by the Can module.

5.1.4 Can module Users

CAN058: The Can module interacts among other modules (eg. Diagnostic Event
Manager (DEM), Development Error Tracer (DET)) with the CanIf module in a direct
way. This document never specifies the actual origin of a request or the actual
destination of a notification. The driver only sees the CanIf module as origin and
destination.

5.2 File structure

5.2.1 Code file structure

CAN078: The code file structure shall not be defined within this specification
completely. At this point it shall be pointed out that the code-file structure shall
include the following file named: Can_PBcfg.c. This file shall contain all post-build
time configurable parameters.
Can_Lcfg.c is not required because the Can module does not support link-time
configuration.

5.2.2 Header file structure

CAN034:

4
In future specifications the System Services will provide two services with ticks of different

resolutions. These ticks will be used to prevent endless loops due to hardware malfunction.

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

18 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

Figure 5-1: File structure for the Can module

CAN035: The module Can_Irq.c contains the implementation of interrupt frames
[BSW00314]. The implementation of the interrupt service routine shall be in Can.c

CAN036: The header file CanIf_Cbk.h contains the declarations of the callback
functions imported by the modules calling the callbacks.
The Can module does not provide callback functions (no Can_Cbk.h, see also
CAN244)

CAN043: The file Can.h contains the declaration of the Can module API

CAN037: The file Can.h only contains 'extern' declarations of constants, global data,
type definitions and services that are specified in the Can module SWS.
Constants, global data types and functions that are only used by the Can module
internally, are declared in Can.c

CAN404: The Can module shall include the header file SchM_Can.h in order to
access the module specific functionality provided by the BSW Scheduler.

ComStack_Types.h

CanIf_Cbk.h

Can.h

Can_Cfg.h

includes

Std_Types.h

Dem.h

Can.c Det.h

Spi.h

Dem_IntErrId.h
(Event Id Symbols)

includes includes

includes

includes

includes

includes

(if development
 error detection
is turned on)

Includes

includes

MemMap.h

includes

Can_Irq.c Os.h includes SchM_Can.h

includes

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

19 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

6 Requirements traceability

Document: General requirements on Basic Software [2]

Requirement Satisfied by

[BSW00344] Reference to link-time configuration CAN021

[BSW00404] Reference to post build time
configuration

CAN021

[BSW00405] Reference to multiple configuration
sets

CAN021

[BSW00345] Pre-Build Configuration chapter 10
The configuration parameters are described in a
general way. they can be simply transformed into
#defines. Generated code will not contain those
defines. The code generator will process e.g. a
XML file“

[BSW159] Tool-based configuration CAN022

[BSW167] Static configuration checking CAN023, CAN024

[BSW171] Configurability of optional functionality CAN064, CAN095, CAN069

[BSW170] Data for reconfiguration of SW-
components

not applicable
(doesn't concern this document)

[BSW00380] C-Files for configuration parameters CAN078

[BSW00419] Separate C-Files for pre-compile
time configuration

CAN078

[BSW00381] Separate configuration header file
for pre-compile time parameters

CAN034

[BSW00412] Separate H-File for configuration
parameters

CAN034

[BSW00383] List dependencies of configuration
files

not applicable
(implementation specific documentation)

[BSW00384] List dependencies to other modules Chapter 5

[BSW00387] Specify the configuration class of
callback function

CAN234

[BSW00388] Introduce containers Chapter 10.2

[BSW00389] Containers shall have names Chapter 10.2

[BSW00390] Parameter content shall be unique
within the module

fulfilled by parameter definitions in Chapter 10.2

[BSW00391] Parameter shall have unique names fulfilled by parameter definitions in Chapter 10.2

[BSW00392] Parameters shall have a type fulfilled by parameter definitions in Chapter 10.2

[BSW00393] Parameters shall have a range fulfilled by parameter definitions in Chapter 10.2

[BSW00394] Specify the scope of the parameters fulfilled by parameter definitions in Chapter 10.2

[BSW00395] List the required parameters not applicable
(the parameters are defined in a way that their
values are independent from other settings. The
dependency is in the code generation
(implementation) not in the configuration
description -> hardware abstraction)

[BSW00396] Configuration classes fulfilled by parameter definitions in Chapter 10.2

[BSW00397] Pre-compile-time parameters Not applicable: this is not a requirement but a
definition of term.

[BSW00398] Link-time parameters Not applicable: this is not a requirement but a
definition of term.

[BSW00399] Loadable Post-build time parameters Not applicable: this is not a requirement but a
definition of term.

[BSW00400] Selectable Post-build time
parameters

Not applicable: this is not a requirement but a
definition of term.

[BSW00402] Published information CAN085

[BSW00375] Notification of wake-up reason CAN018

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

20 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

[BSW101] Initialization interface CAN250

[BSW168] Diagnostic Interface of SW
components

not applicable
(requirement for the diagnostic services, not for
the BSW module)

[BSW00416] Sequence of Initialization not applicable
(this is a general software integration requirement)

[BSW00406] Check module initialization CAN103, defined development error
CAN_E_UNINIT

[BSW00407] Function to read out published
parameters

CAN105, CAN106

[BSW00423] Usage of SW-C template to describe
BSW modules with AUTOSAR Interfaces

not applicable
(this module does not provide an AUTOSAR
interface)

[BSW00424] BSW main processing function task
allocation

not applicable
(requirement on system design, not on a single
module)

[BSW00425] Trigger conditions for schedulable
objects

not applicable
(trigger conditions are system configuration
specific.)

[BSW00426] Exclusive areas in BSW modules not applicable
(no exclusive areas defined)

[BSW00427] ISR description for BSW modules not applicable
(no ISR’s defined for this module, usage of
interrupts is implementation specific)

[BSW00428] Execution order dependencies of
main processing functions

CAN110

[BSW00429] Restricted BSW OS functionality
access

not applicable
(requirement on the implementation, not for the
specification)

[BSW00431] The BSW Scheduler module
implements task bodies

not applicable
(requirement on the BSW scheduler module)

[BSW00432] Modules should have separate main
processing functions for read/receive and
write/transmit data path

CAN031, CAN108, CAN109, CAN112

[BSW00433] Calling of main processing functions not applicable
(requirement on system design, not on a single
module)

[BSW00434] The Schedule Module shall provide
an API for exclusive areas

not applicable
(requirement on schedule module)

[BSW00336] Shutdown interface not applicable

[BSW00337] Classification of errors CAN026, CAN027, CAN028, CAN029

[BSW00338] Detection and Reporting of
development errors

CAN028, CAN027

[BSW00369] Do not return development error
codes via API

CAN089

[BSW00339] Reporting of production relevant
errors and exceptions

CAN029, CAN113

[BSW00421] Reporting of production relevant
error events

CAN029

[BSW00422] Debouncing of production relevant
error status

not applicable
(requirement on the DEM)

[BSW00420] Production relevant error event rate
detection

not applicable
(requirement on the DEM)

[BSW00417] Reporting of Error Events by Non-
Basic Software

not applicable
(this is a BSW mdoule)

[BSW00323] API parameter checking CAN026

[BSW004] Version check CAN111

[BSW00409] Header files for production code
error IDs

CAN081

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

21 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

[BSW00385] List possible error notifications CAN104

[BSW00386] Configuration for detecting an error CAN089

[BSW161] Microcontroller abstraction see Chapter 1

[BSW162] ECU layout abstraction not applicable
(done in CanIf module)

[BSW00324] Do not use HIS Library Fulfilled by the concept of Can module and CanIf
module

[BSW005] No hard coded horizontal interfaces
within MCAL

CAN238, CAN242

[BSW00415] User dependent include files not applicable
(only one user for this module)

[BSW166] BSW Module interfaces CAN043

[BSW164] Implementation of interrupt service
routines

CAN033

[BSW00325] Runtime of interrupt service routines not applicable
(The runtime is not under control of the Can
module, because callback functions are called.)

[BSW00326] Transition from ISRs to OS tasks not applicable.
When the transition from ISR to OS task is done
will be defined in COM Stack SWS

[BSW00342] Usage of source code and object
code

not applicable
(Only source code delivery is supported)

[BSW00343] Specification and configuration of
time

CAN063

[BSW160] Human-readable configuration data CAN047

[BSW007] HIS MISRA C CAN079

[BSW00300] Module naming convention is fulfilled, see function definitions in 8.3

[BSW00413] Accessing instances of BSW
modules

not applicable
(his requirement is fulfilled by the CanIf module
specification)

[BSW00347] Naming separation of drivers CAN077

[BSW00305] Self-defined data types naming
convention

is fulfilled, see type definitions in 8.2

[BSW00307] Global variables naming convention not applicable
(because no global variables are specified for Can
module)

[BSW00310] API naming convention is fulfilled, see function definitions in 8.3

[BSW00373] Main processing function naming
convention

CAN031

[BSW00327] Error values naming convention chapter 7.8
error names have been selected accordingly

[BSW00335] Status values naming convention chapter 7.1
is fulfilled by state description

[BSW00350] Development error detection
keyword

CAN064

[BSW00408] Configuration parameter naming
convention

fulfilled by parameter definitions in Chapter 10.2

[BSW00410] Compiler switches shall have
defined values

fulfilled by parameter definitions in Chapter 10.2

[BSW00411] Get version info keyword CAN106

[BSW00346] Basic set of module files CAN034

[BSW158] Separation of configuration from
implementation

CAN034

[BSW00314] Separation of interrupt frames and
service routines

CAN035

[BSW00370] Separation of callback interface from
API

CAN036

[BSW00435] Module Header File Structure for the
Basic Software Scheduler

CAN034, CAN404

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

22 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

[BSW00348] Standard type header CAN034

[BSW00353] Platform specific type header not applicable
(automatically included with Standard types)

[BSW00361] Compiler specific language
extension header

not applicable

[BSW00301] Limit imported information CAN034

[BSW00302] Limit exported information CAN037

[BSW00328] Avoid duplication of code Implementation requirement
Fulfilled e.g. by defining one Can module that
controls multiple channels

[BSW00312] Shared code shall be reentrant CAN214, CAN231, CAN232, CAN233

[BSW006] Platform independency see Chapter 1

[BSW00357] Standard API return type not used

[BSW00377] Module Specific API return type CAN039

[BSW00304] AUTOSAR integer data types standard integer data types are used

[BSW00355] Do not redefine AUTOSAR integer
data types

no redefined integer types in 8.2

[BSW00378] AUTOSAR boolean type not applicable
(not used)

[BSW00306] Avoid direct use of compiler and
platform specific keywords

CAN079

[BSW00308] Definition of global data CAN079

[BSW00309] Global data with read-only constraint CAN079

[BSW00371] Do not pass function pointers via API chapter 8.3
(function definitions)

[BSW00358] Return type of init() functions CAN223

[BSW00414] Parameter of init function CAN223

[BSW00376] Return type and parameters of main
processing functions

CAN031

[BSW00359] Return type of callback functions not applicable
(no callback functions implemented in Can
module)

[BSW00360] Parameters of callback functions no callbacks implemented in Can module

[BSW00329] Avoidance of generic interfaces No generic interface used.
Still content of functions might be configuration
dependent. Scope of function is always defined

[BSW00330] Usage of macros instead of
functions

CAN079

[BSW00331] Separation of error and status values CAN104, CAN039

[BSW00436] Module Header File Structure for the
Basic Software Memory Mapping

CAN034

[BSW009], [BSW00401], [BSW172], [BSW010],
[BSW00333], [BSW00374], [BSW00379],
[BSW003], [BSW00318], [BSW00321],
[BSW00341], [BSW00334]

Software Documentation Requirements are not
covered in the CAN driver SWS

Document: AUTOSAR requirements on Basic Software, cluster SPAL (general SPAL
requirements) [3]

Requirement Satisfied by

[BSW12263] Object code compatible
configuration concept

CAN021

[BSW12056] Configuration of notification
mechanisms

CAN234

[BSW12267] Configuration of wake-up sources CAN257, CAN258, CAN018

[BSW12057] Driver module initialization CAN154

[BSW12125] Initialization of hardware resources CAN053

[BSW12163] Driver module de-initialization not applicable

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

23 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

(decision in JointMM Meeting: no de-initialization
for drivers that don't need to store non volatile
information)

[BSW12058]] Individual initialization of overall
registers

CAN054

[BSW12059] General initialization of overall
registers

CAN055

[BSW12060] Responsibility for initialization of
one-time writable registers

CAN055

[BSW12062] Selection of static configuration sets CAN056

[BSW12068] MCAL initialization sequence not applicable
(requirement on station manager)

[BSW12069] Wake-up notification of ECU State
Manager

CAN018

[BSW157] Notification mechanisms of drivers and
handlers

CAN026, CAN028, CAN029, CAN031, CAN108,
CAN109, CAN112

[BSW12155] Prototypes of callback functions not applicable
(information has to be exchanged (see
[BSW00359], [BSW00360]))

[BSW12169] Control of operation mode CAN017

[BSW12063] Raw value mode CAN059, CAN060

[BSW12075] Use of application buffers CAN011

[BSW12129] Resetting of interrupt flags CAN033

[BSW12064] Change of operation mode during
running operation

not applicable

[BSW12448] Behavior after development error
detection

CAN091, CAN089

[BSW12067] Setting of wake-up conditions CAN257, CAN258, CAN018

[BSW12077] Non-blocking implementation CAN029

[BSW12078] Runtime and memory efficiency no effect on API definition
implementation requirement

[BSW12092] Access to drivers CAN058

[BSW12265] Configuration data shall be kept
constant

CAN021 (stored in ROM -> implicitly constant)

[BSW12264] Specification of configuration items done in chapter 10

[BSW12081] Use HIS requirements as input No requirement
This req. does not affect the HIS Can module

Document: AUTOSAR requirements on Basic Software, cluster CAN Driver [4]

Requirement Satisfied by

[BSW01125] Data throughput read direction not applicable
(requirement affects complete COM stack and will
not be broken down for the individual layers)

[BSW01126] Data throughput write direction not applicable
(requirement affects complete COM stack and will
not be broken down for the individual layers)

[BSW01139] CAN controller specific initialization CAN062

[BSW01033] Basic Software Modules
Requirements

see table above

[BSW01034] Hardware independent
implementation

see Chapter 1

[BSW01035] Multiple CAN controller support see Chapter 1

[BSW01036] CAN Identifier Length Configuration CAN065

[BSW01037] Hardware Filter Configuration CAN066, CAN325

[BSW01038] Bit Timing Configuration CAN005, CAN063, CAN073, CAN074, CAN075

[BSW01039] CAN Hardware Object Handle
definitions

CAN324

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

24 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

[BSW01040] HW Transmit Cancellation
configuration

CAN069

[BSW01058] Configuration of multiplexed
transmission

CAN095

[BSW01062] Configuration of polling mode CAN007

[BSW01135] Configuration of multiple TX
Hardware Objects

CAN100

[BSW01041] Can module Module Initialization CAN154

[BSW01042] Selection of static configuration sets CAN062

[BSW01043] Enable/disable Interrupts CAN049, CAN050

[BSW01059] Data Consistency CAN011, CAN012

[BSW01045] Reception Indication Service CAN013

[BSW01049] Dynamic transmission request
service

CAN212, CAN213, CAN214

[BSW01051] Transmit Confirmation CAN016

[BSW01053] CAN controller mode select CAN017

[BSW01054] Wake-up Notification CAN018

[BSW01132] Mixed mode for notification detection
on CAN HW

CAN099

[BSW01133] HW Transmit Cancellation Support CAN285, CAN286, CAN287, CAN288, CAN399,
CAN400

[BSW01134] Multiplexed Transmission CAN277, CAN401, CAN402, CAN403, CAN076

[BSW01055] Bus-off Notification CAN019

[BSW01060] no automatic bus-off recovery CAN020

[BSW01122] Support for wakeup during sleep
transition

CAN048

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

25 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

7 Functional specification

On L-PDU transmission, the Can module writes the L-PDU in an appropriate buffer
inside the CAN controller hardware.
See chapter 7.5 for closer description of L-PDU transmission.

On L-PDU reception, the Can module calls the RX indication callback function with
ID, DLC and pointer to L-SDU as parameter.
See chapter 7.6 for closer description of L-PDU reception.

The Can module provides an interface that serves as periodical processing function,
and which must be called by the CanIf module interface periodically.

Furthermore, the Can module provides services to control the state of the CAN
controllers. Bus-off and Wake-up events are notified by means of callback functions.

The Can module is a Basic Software Module that accesses hardware resources.
Therefore, it is designed to fulfill the requirements for Basic Software Modules
specified in AUTOSAR_SRS_SPAL (see [3]).

CAN033: The Can module shall implement the interrupt service routines for all CAN
Hardware Unit interrupts that are needed. The Can module shall disable all unused
interrupts in the CAN controller. The Can module shall reset the interrupt flag at the
end of the ISR (if not done automatically by hardware). The Can module shall not set
the configuration (i.e. priority) of the vector table entry.

CAN079: The Can module shall fulfill all design and implementation guidelines
described in [11].

7.1 Driver scope

One Can module provides access to one CAN Hardware Unit that may consist of
several CAN controllers.

CAN077: For CAN Hardware Units of different type, different Can modules shall be
implemented.

CAN284: In case several CAN Hardware Units (of same or different vendor) are
implemented in one ECU the function names, and global variables of the Can
modules shall be implemented such that no two functions with the same name are
generated.

The naming convention is as follows:

<Can module API name>_<vendorID>_<driver abbreviation>()

BSW00347 specifies the naming convention.
See [5] for description how several Can modules are handled by the CanIf module.

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

26 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

7.2 Driver State Machine

The Can module has a very simple state machine, which is shown in Figure 7.1.

CAN103: After power-up/reset, the Can module shall be in the state CAN_UNINIT.

Figure 7-1

CAN245: The function Can_Init shall initialize all CAN controllers according to their
configuration.

Each CAN controller must then be started separately by calling the function
Can_SetControllerMode(CAN_T_START).

CAN246: After initializing all controllers inside the HW Unit, the function Can_Init
shall change the module state to CAN_READY.

Implementation hint:
Hardware register settings that have impact on all CAN controllers inside the HW
Unit can only be set in the function Can_Init.

CAN247: The Can module’s environment shall call Can_Init at most once during
runtime.

CAN248: The function Can_Init shall report the error CAN_E_UNINIT, if Can_Init
was called prior to any Can module function.

Implementation hint:
The Can module must only implement a variable for the module state, when the
development error tracing is switched on. When the development error tracing is
switched off, the Can module does not need to implement this 'state machine',
because the state information is only needed to check if Can_Init was called prior to
any Can module function.

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

27 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

7.3 CAN Controller State Machine

Each CAN controller has a state machine implemented in hardware.
For each CAN controller a 'software' state machine is implemented in the CanIf
module. [5] shows the implemented software state machine. Any CAN hardware
access is encapsulated by functions of the Can module, but the Can module does
not memorize the state changes.

 During a transition phase the software controller state inside the CanIf module
may differ from the hardware state of the CAN controller.

The Can module offers the services Can_Init, Can_InitController and
Can_SetControllerMode.

These services perform the necessary register settings that cause the required
change of the hardware CAN controller state.

There are two possibilities for triggering these state changes by external events:

 Bus-off
 HW wakeup

These are indicated either by an interrupt or by a status bit that is polled in the
Can_MainFunction_BusOff or Can_MainFunction_Wakeup.

The Can module does the register settings that are necessary to fulfill the required
behavior (i.e. no hardware recovery in case of bus off).
Then it notifies the CanIf module with the corresponding callback function. The
software state is then changed inside this callback function.

 The Can module does not check for validity of state changes.
It is the task of the CanIf module to trigger only transitions that are allowed in the
current state. Only when development errors are enabled, does the Can module
check the transition and, in case of wrong implementation of the CanIf module, raise
the development error CAN_E_TRANSITION.

 The Can module does not check the actual state before it performs Can_Write or
raises callbacks.

 During a transition phase - where the software controller state inside the CanIf
module differs from the hardware state of the CAN controller – transmit might fail or
be delayed because the hardware CAN controller is not yet participating on the bus.
The Can module does not provide a notification for this case.

7.3.1 State Description

This chapter describes the required hardware behavior for the different SW states.
The software state machine itself is implemented and described in the CanIf module.
Please refer to [5] for the state diagram.

CANIF_CS_UNINIT

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

28 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

The CAN controller is not initialized. All registers belonging to the CAN module are in
reset state, CAN interrupts are disabled. The CAN Controller is not participating on
the CAN bus.

CANIF_CS_STOPPED

In this state the CAN Controller is initialized but does not participate on the bus. Also
error frames and acknowledges must not be sent.
(Example: For many controllers entering an 'initialization'-mode causes the controller
to be stopped.)

CANIF_CS_STARTED

The controller is in a normal operation mode with complete functionality, which
means it participates in the network. For many controllers leaving the 'initialization'-
mode causes the controller to be started.

CANIF_CS_SLEEP

The hardware settings only differ from CANIF_CS_STOPPED for CAN hardware that
support a sleep mode (wake-up over CAN bus directly supported by CAN hardware).

CAN257: When the CAN hardware supports sleep mode, when transitioning into
mode “CANIF_CS_SLEEP”, the Can module shall set the controller to a state from
which the hardware can be woken over CAN Bus.

CAN258: When the CAN hardware does not support sleep mode, the Can module
shall use the same hardware state for CANIF_CS_SLEEP as for
CANIF_CS_STOPPED.

7.3.2 State Transitions

A state transition is triggered by software with the function Can_SetControllerMode,
with the required transition as parameter. Except for CAN_T_SLEEP, this function is
non-blocking.
Some transitions are triggered by events on the bus (hardware). These transitions
cause a notification by means of a callback function.
Typically, for state transitions the CAN controller configuration is changed.
Plausibility checks for state transitions are only performed with development error
detection switched on. The behavior for invalid5 transitions in production code is
undefined.

Can_Init

 CANIF_CS_UNINIT -> CANIF_CS_STOPPED (for all controllers in HW unit)

5
 Example for invalid transition: CAN_T_SLEEP when controller state is CAN_CS_STARTED

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

29 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

 software triggered by the function call Can_Init
 does configuration for all CAN controllers inside HW Unit

All control registers are set according to the static configuration.

CAN259: The function Can_Init shall set all CAN controllers in the state
CANIF_CS_STOPPED.

Can_InitController

 CANIF_CS_STOPPED -> CANIF_CS_STOPPED
 software triggered by the function call Can_InitController
 changes the CAN controller configuration

All control registers are set according to the static configurations that are not global
CAN HW Unit settings (See also Can_Init).

CAN256: The Can module’s environment shall only call Can_InitController when the
CAN controller is in state CANIF_CS_STOPPED.

CAN260: The function Can_InitController shall maintain the CAN controller in the
state CANIF_CS_STOPPED. The function Can_InitController shall ensure that any
settings that will cause the CAN controller to participate in the network are not set.

Can_SetControllerMode(CAN_T_START)

 CANIF_CS_STOPPED -> CANIF_CS_STARTED
 software triggered

CAN261: The function Can_SetControllerMode(CAN_T_START) shall set the
hardware registers in a way that makes the CAN controller participating on the
network.

CAN262: The function Can_SetControllerMode(CAN_T_START) shall be non-
blocking and shall not wait until the CAN controller is fully operational.

Transmit requests that are initiated before the CAN controller is operational may
either be delayed or get lost. The only indicator for operability is the reception of TX
confirmations or RX indications.
 The sending entities might get a confirmation timeout and need to be able to cope
with that.

Can_SetControllerMode(CAN_T_STOP)

 CANIF_CS_STARTED -> CANIF_CS_STOPPED
 software triggered

CAN263: The function Can_SetControllerMode(CAN_T_STOP) shall set the bits
inside the CAN hardware such that the CAN controller stops participating on the
network.

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

30 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

CAN264: The function Can_SetControllerMode(CAN_T_STOP) shall be non-
blocking and shall not wait until the CAN controller is really switched off.

CAN282: The function Can_SetControllerMode(CAN_T_STOP) shall cancel pending
messages.

CAN283: The function Can_SetControllerMode(CAN_T_STOP) shall not call a
cancellation notification.

Hint: Even if pending messages are cancelled by the function
Can_SetControllerMode(CAN_T_STOP), there are hardware restrictions and racing
problems. So it cannot be guaranteed if the cancelled messages are still processed
by the hardware or not.

Can_SetControllerMode(CAN_T_SLEEP)

 CANIF_CS_STOPPED -> CANIF_CS_SLEEP
 software triggered

CAN265: The function Can_SetControllerMode(CAN_T_SLEEP) shall put the
controller into sleep mode.

CAN266: If the CAN HW does support a sleep mode, the function
Can_SetControllerMode(CAN_T_SLEEP) shall wait for a limited time until the CAN
controller is in SLEEP state and it is assured that the CAN hardware is wake able.
Compare to CAN449.

CAN449: This polling shall take the maximum time determined by
CanTimeoutDurationFactor (see CAN113) for blocking function and thus the polling
time is limited.

CAN290: If the CAN HW does not support a sleep mode, the function
Can_SetControllerMode(CAN_T_SLEEP) shall have no effect (as the controller is
already in stopped state).

Can_SetControllerMode(CAN_T_WAKEUP)

 CANIF_CS_SLEEP -> CANIF_CS_STOPPED
 software triggered

CAN267: If the CAN HW does not support a sleep mode, the function
Can_SetControllerMode(CAN_T_WAKEUP) shall have no effect (as the controller is
already in stopped state).

CAN268: The function Can_SetControllerMode(CAN_T_WAKEUP) shall be non-
blocking.

Hardware Wakeup (triggered by wake-up event from CAN bus)

 CANIF_CS_SLEEP -> CANIF_CS_STOPPED
 triggered by incoming L-PDUs

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

31 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

This state transition will only occur when sleep mode is supported by hardware.

CAN271: On hardware wakeup (triggered by a wake-up event from CAN bus), the
Can module shall call the function EcuM_CheckWakeup either in interrupt context or
in the context of Can_MainFunction_Wakeup.

CAN269: The Can module shall not further process the L-PDU that caused a wake-
up.

CAN048: In case of a CAN bus wake-up during sleep transition, the function
Can_SetControllerMode(CAN_T_WAKEUP) shall return CAN_NOT_OK.

Bus-Off (triggered by state change of CAN controller)

CAN020:

 CANIF_CS_STARTED -> CANIF_CS_STOPPED
 triggered by hardware if the CAN controller reaches bus-off state
 The CanIf module is notified with the callback function CanIf_ControllerBusOff

after stopped state is reached.

CAN272: After bus-off detection, the Can module shall transition to the state
CANIF_CS_STOPPED and shall ensure that the CAN controller doesn't participate
on the network anymore.

CAN273: After bus-off detection, the Can module shall cancel still pending messages
without raising a cancellation notification.

CAN274: The Can module shall disable or suppress automatic bus-off recovery

7.4 Can module/Controller Initialization

CAN249: The CanIf module shall initialize the Can module during startup phase by
calling the function Can_Init before using any other functions of the Can module.

CAN250: The function Can_Init shall initialize:

 static variables, including flags,
 Common setting for the complete CAN HW unit
 CAN controller specific settings for each CAN controller

CAN053: registers of CAN controller Hardware resources that are not used.

CAN054: registers that contain ‘overall’ settings also relevant for other driver
modules (i.e. SPAL) in a way that other modules are not affected (BSW12058).
Can_Init shall perform write access to these registers in an atomic manner.

CAN055: registers that contain ‘overall’ settings also relevant for other driver
modules that cannot be separated from each other (these are initialized by a system
module of the microcontroller abstraction layer) (BSW12059).

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

32 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

CAN056: Post-Build configuration elements that are marked as 'multiple' ('M' or 'x')
in chapter 10 can be selected by passing the pointer 'Config' to the init function of the
module.

CAN023: The consistency of the configuration must be checked by the configuration
tool(s).

CAN062: The function Can_InitController shall re-initialize the CAN controller and the
controller specific settings.

The CanIf module must first set the CAN controller in CANIF_CS_STOPPED state.
Then it may call Can_InitController.

CAN255: The function Can_InitController shall only affect register areas that contain
specific configuration for a single CAN controller.

CAN021: The desired CAN controller configuration can be selected with the
parameter Config.

CAN291: Config is a pointer into an array of hardware specific data structure stored
in ROM.The different controller configuration sets are located as data structures in
ROM.

The possible values for Config are provided by the configuration description (see
chapter 10).
The Can module configuration defines the global CAN HW Unit settings and
references to the default CAN controller configuration sets.

7.5 L-PDU transmission

On L-PDU transmission, the Can module converts the L-PDU contents ID and DLC
to a hardware specific format (if necessary) and triggers the transmission.

CAN059: Data mapping by CAN to memory is defined in a way that the CAN data
byte which is sent out first is array element 0, the CAN data byte which is sent out
last is array element 7.

If the presentation inside the CAN Hardware buffer differs from AUTOSAR definition,
the Can module must provide an adapted SDU-Buffer for the upper layers.

CAN100: Several TX hardware objects with unique HTHs may be configured. The
CanIf module provides the HTH as parameter of the TX request. See Figure 7-2 for a
possible configuration.

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

33 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

Figure 7-2: Example of assignment of HTHs and HRHs to the Hardware Objects. The numbering
of HTHs and HRHs are implementation specific. The chosen numbering is only an example.

CAN276: The function Can_Write shall store the swPduHandle that is given inside
the parameter PduInfo until the Can module calls the CanIf_TXConfirmation for this
request where the swPduHandle is given as parameter.

The feature of CAN276 is used to reduce time for searching in the CanIf module
implementation.

7.5.1 Priority Inversion

To prevent priority inversion two mechanisms are necessary: multiplexed transmit
and hardware cancellation (see chapter 2.1).

7.5.1.1 Multiplexed Transmission

CAN277: The Can module shall allow that the functionality “Multiplexed
Transmission” is statically configurable (ON | OFF) at pre-compile time.

CAN401: Several transmit hardware objects (defined by "CanHwObjectCount")
shall be assigned by one HTH to represent one transmit entity to the upper layer.

CAN402: The Can module shall support multiplexed transmission mechanisms for
devices where either
- Multiple transmit hardware objects, which are grouped to a transmit entity can be

filled over the same register set, and the microcontroller stores the L-PDU into a
free buffer autonomously,

or
- The Hardware provides registers or functions to identify a free transmit hardware

object within a transmit entity.

HRH = 0

HRH = 1

unused

HRH = 2

HRH = 3

unused

HTH = 4

HTH = 5

SDU DLC ID

SDU DLC ID

SDU DLC ID

SDU DLC ID

SDU DLC ID

SDU DLC ID

SDU DLC ID

SDU DLC ID

Message Objects of CAN Hardware

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

34 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

CAN403: The Can module shall support multiplexed transmission for devices, which
send L-PDUs in order of L-PDU priority.

Note: Software emulation of priority handling should be avoided, because the
overhead would void the advantage of the multiplexed transmission.

Figure 7-3: Example of assignment of HTHs and HRHs to the Hardware Objects with
multiplexed transmission. The numbering of HTHs and HRHs are implementation specific. The

chosen numbering is only an example.

7.5.1.2 Transmit Cancellation

CAN278: The Can module shall allow that the functionality “Transmit Cancellation” is
statically configurable (ON | OFF) at pre-compile time.

The complete cancellation sequence is described in the CanIf module [5].

CAN285: Transmit cancellation may only be used when transmit buffers are enabled
inside the CanIf module.

CAN286: The Can module shall initiate a cancellation, when the hardware transmit
object assigned by a HTH is busy and an L-PDU with the identical or higher priority is
requested to be transmitted.

The following two items are valid, in case multiplexed transmission functionality is
enabled and several hardware transmit objects are assigned by one HTH:

CAN399: The Can module shall initiate a cancellation of the L-PDU with the lowest
priority, when all hardware transmit objects assigned by the HTH are busy and an L-
PDU with a higher priority is requested to be transmitted.

HRH = 0

HRH = 1

unused

HRH = 2

HRH = 3

SDU DLC ID

SDU DLC ID

SDU DLC ID

SDU DLC ID

SDU DLC ID

SDU DLC ID

SDU DLC ID

SDU DLC ID

Message Objects of CAN Hardware

HTH = 4

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

35 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

CAN400: The Can module shall initiate a cancellation, when one of the hardware
transmit objects assigned by the HTH is busy and an L-PDU with identical priority is
requested to be transmitted.

The incoming request is also rejected because the cancellation is asynchronous.

CAN287: The Can module shall raise a notification when the cancellation was
successful by calling the function CanIf_CancelTxConfirmation.

CAN288: The TX request for the new L-PDU shall be repeated by the CanIf module,
inside the notification function CanIf_CancelTxConfirmation.

Implementation note:
For sequence relevant streams the sender must assure that the next transmit request
for the same CAN ID is only initiated after the last request was confirmed.

7.5.2 Transmit Data Consistency

CAN011: The Can module shall directly copy the data from the upper layer buffers. It
is the responsibility of the upper layer to keep the buffer consistent until return of
function call (Can_Write).

7.6 L-PDU reception

CAN279: On L-PDU reception, the Can module shall call the RX indication
callback function with ID, DLC and pointer to the L-SDU buffer as parameter.
In case of an Extended CAN frame, the Can module shall convert the ID
to a standardized format since the Upper layer (CANIF) does not know whether
the received CAN frame is a Standard CAN frame or Extended CAN frame. In case
of an Extended CAN frame, MSB of a received CAN frame ID needs to be made
as '1' to mark the received CAN frame as Extended.

CAN060: Data mapping by CAN to memory is defined in a way that the CAN data
byte which is sent out first is array element 0, the CAN data byte which is sent out
last is array element 7.
If the presentation inside the CAN Hardware buffer differs from AUTOSAR definition,
the Can module must provide an adapted SDU-Buffer for the upper layers.

7.6.1 Receive Data Consistency

To prevent loss of received messages, some controllers support a FIFO built
from a set of hardware objects, while on other controllers it is possible to
configure another hardware object with the same properties that works as a
shadow buffer and steps in when the main object is busy.

[CAN447:]The CAN driver shall support controllers which implement a
hardware FIFO. The size of the FIFO is configured via "CanHwObjectCount".

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

36 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

[CAN448:]Controllers that do not support a hardware FIFO often provide
the capabilities to implement a shadow buffer mechanism, where additional
hardware objects take over when the primary hardware object is busy. The number
of hardware objects is configured via "CanHwObjectCount".

Figure 7-4: Example of assignment of same HRHs to multiple Hardware Objects The chosen
numbering is only an example.

CAN299: The Can module shall copy the L-SDU in a shadow buffer after reception, if
the RX buffer cannot be protected (locked) by CAN Hardware against overwriting by
a newly received message.

CAN300: The Can module shall copy the L-SDU in a shadow buffer, if the CAN
Hardware is not globally accessible.

The complete RX processing (including copying to destination layer, e.g. COM) is
done in the context of the RX interrupt or in the context of the
Can_MainFunction_Read.

CAN012: heguarantee that neither the ISRs nor the function
Can_MainFunction_Read can be interrupted by itself. The CAN hardware (or
shadow) buffer is always consistent, because it is written and read in sequence in
exactly one function that is never interrupted by itself.

If the hardware can't be configured to lock the RX hardware object after reception
(hardware feature) it could happen that the Hardware buffer is overwritten by a newly
arrived message.

CAN301: The configuration check shall assure that the interrupt latency or
Can_MainFunction_Read call period can't exceed the time for the reception of one L-
PDU.

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

37 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

7.7 Wakeup concept

The Can module handles wakeups that can be detected by the Can controller itself
and not via the Can transceiver. There are two possible scenarios: wakeup by
interrupt and wakeup by polling.

For wakeup by interrupt, an ISR of the Can module is called when the hardware
detects the wakeup.
CAN364: If the ISR for wakeup events is called, it shall call EcuM_CheckWakeup in
turn. The parameter passed to EcuM_CheckWakeup shall be the ID of the wakeup
source referenced by the CanWakeupSourceRef configuration parameter.

The ECU State Manager will then set up the MCU and call the Can module back via
the Can Interface, resulting in a call to Can_Cbk_CheckWakeup.

When wakeup events are detected by polling, the ECU State Manager will cyclically
call Can_Cbk_CheckWakeup via the Can Interface as before. In both cases,
Can_Cbk_CheckWakeup will check if there was a wakeup detected by a Can
controller and return the result. The Can Interface will then inform the ECU State
Manager of the wakeup event.

The wakeup validation to prevent false wakeup events, will be done by the ECU
State Manager and the Can Interface afterwards and without any help from the Can
module.

For a general description of the wakeup mechanisms and wakeup sequence
diagrams refer to Specification of ECU State Manager [12].

7.8 Notification concept

The Can module offers only an event triggered notification interface to the CanIf
module. Each notification is represented by a callback function.

CAN099: The hardware events may be detected by an interrupt or by polling status
flags of the hardware objects. The configuration possibilities regarding polling is
hardware dependent (i.e. which events can be polled, which events need to be
polled), and not restricted by this standard.

CAN007: It shall be possible to configure the driver such that no interrupts at all are
used (complete polling).

The configuration of what is and is not polled by the Can module is internal to the
driver, and not visible outside the module. The polling is done inside the CAN main
functions (Can_MainFunction_xxx). Also the polled events are notified by the
appropriate callback function. Then the call context is not the ISR but the CAN main
function. The implementation of all callback functions shall be done as if the call
context was the ISR.

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

38 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

For further details see also description of the CAN main functions
Can_MainFunction_Read, Can_MainFunction_Write, Can_MainFunction_BusOff and
Can_MainFunction_Wakeup.

7.9 Reentrancy issues

A routine must satisfy the following conditions to be reentrant:
1. It uses all shared variables in an atomic way, unless each is allocated to a

specific instance of the function.
2. It does not call non-reentrant functions.
3. It does not use the hardware in a non-atomic way.

Transmit requests are simply forwarded by the CanIf module inside the function
CanIf_Transmit.
The function CanIf_Transmit is re-entrant. Therefore the function Can_Write needs to
be implemented thread-safe (for example by using mutexes):
Further (preemptive) calls will return with CAN_BUSY when the write can't be
performed re-entrant. (example: write to different hardware TX Handles allowed,
write to same TX Handles not allowed)
In case of CAN_BUSY the CanIf module queues that request. (same behavior as if
all hardware objects are busy).

Can_EnableCanInterrupts and Can_DisableCanInterrupts may be called inside re-
entrant functions. Therefore these functions also need to be reentrant.

All other services don't need to be implemented as reentrant functions.

The CAN main functions (i.e. Can_MainFunction Read) shall not be interrupted by
themselves. This must be ensured by the calling CanIf module. Therefore these CAN
main functions are not reentrant.

7.10 Error classification

CAN104: The Can module shall be able to detect the following errors and exceptions
depending on its configuration (development/production)

Type or error Relevance Related error code Value

[hex]
API Service called with
wrong parameter

Development CAN_E_PARAM_POINTER
CAN_E_PARAM_HANDLE
CAN_E_PARAM_DLC
CAN_E_PARAM_CONTROLLER

0x01
0x02
0x03
0x04

API Service used
without initialization

Development CAN_E_UNINIT 0x05

Invalid transition for the
current mode

Development CAN_E_TRANSITION 0x06

Timeout caused by
hardware error

Production CAN_E_TIMEOUT Assigned by
DEM

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

39 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

7.10.1 Development Errors

CAN026: shall indicate errors that are caused by erroneous usage of the Can
module API. This covers API parameter checks and call sequence errors.

CAN028: call the Development Error Tracer when DET is switched on and the Can
module detects an error.

CAN091: After return of the DET the Can module’s function that raised the
development error shall return immediately.

CAN089: The Can module’s environment shall indicate development errors only in
the return values of a function of the Can module when DET is switched on and the
function provides a return value. The returned value is CAN_NOT_OK.

CAN080: Development error values are of type uint8.

7.10.2 Production Errors

CAN029: call the central error function of the Diagnostic Event Manager if the Can
module detects hardware errors or failures.
The Syntax for the function call is Dem_ReportErrorStatus(EventId, EventStatus).
The only error that is reported to DEM by the Can module is CAN_E_TIMEOUT.

Depending on the CAN hardware, a change of setting may take over only after a
delay.

CAN295: In that case, the Can module shall poll a flag of the CAN status register
until the flag signals that the change takes affect and then return.

CAN296: This polling shall take only a (configurable) limited time and thus number of
poll cycles is limited.

CAN297: When this time is elapsed the Can module shall raise the error code
CAN_E_TIMOUT.

CAN298: In case of a CAN_E_TIMEOUT error the COM Stack must be re-initialized
or the COM functionality must be switched off.

CAN081: Values for production code Event Ids are assigned externally by the
configuration of the Dem. They are published in the file Dem_IntErrId.h and included
via Dem.h.

CAN092: After return of DEM the function of the Can module that raised the
production error shall return immediately.

CAN093: The function of the Can module which provides a return value and which
raised a production error shall return with CAN_NOT_OK.

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

40 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

7.10.3 Return Values

CAN_BUSY is reported via return value of the function Can_Write. The CanIf module
reacts according the sequence diagrams specified for the CanIf module.

CAN_NOT_OK is reported via return value in case of a wakeup during transition to
sleep mode

Bus-off and Wake-up events are forwarded via notification callback functions.

7.11 Error detection

CAN082: The detection of development errors is configurable (ON / OFF) at pre-
compile time. The switch CanDevErrorDetection (see chapter 10) shall activate or
deactivate the detection of all development errors.

CAN083: If the CanDevErrorDetection switch is enabled API parameter checking is
enabled. The detailed description of the detected errors can be found in chapter 7.10.

CAN084: The detection of production code errors cannot be switched off.

7.12 Error notification

CAN027: Detected development errors shall be reported to the Det_ReportError

service of the Development Error Tracer (DET) if the pre-processor switch

CanDevErrorDetection is set (see chapter 10). No code for catching

development errors shall be generated, when development errors are switched off.

7.13 Version Check

CAN111: Can.c shall check if the correct version of Can.h is included. This shall be
done by a preprocessor check of the version numbers
CAN_SW_MAJOR_VERSION, CAN_SW_MINOR_VERSION and
CAN_SW_PATCH_VERSION.

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

41 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

8 API specification

The prefix of the function names may be changed in an implementation with several
Can modules as described in CANIF124 in [5].

8.1 Imported types

In this chapter all types included from the following files are listed:

CAN222:

Module Imported Type

ComStack_Types PduIdType

Dem Dem_EventIdType

EcuM EcuM_WakeupSourceType

Icu Icu_ChannelType

Os CounterType

StatusType

TickRefType

Std_Types Std_ReturnType

Std_VersionInfoType

8.2 Type definitions

8.2.1 Can_ConfigType

Name: Can_ConfigType

Type: Structure

Range: Implementation specific.

Description: This is the type of the external data structure containing the overall initialization
data for the CAN driver and SFR settings affecting all controllers. Furthermore it
contains pointers to controller configuration structures. The contents of the
initialization data structure are CAN hardware specific.

8.2.2 Can_ControllerConfigType

Name: Can_ControllerConfigType

Type: Structure

Range: Implementation specific.

Description: This is the type of the external data structure containing the overall initialization
data for one CAN controller. The contents of the initialization data structure are
CAN hardware specific.

8.2.3 Can_PduType

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

42 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

Name: Can_PduType

Type: Structure

Element: PduIdType swPduHandle --

uint8 length --

Can_IdType id --

uint8* sdu --

Description: This type is used to provide ID, DLC and SDU from CAN interface to CAN driver.

8.2.4 Can_IdType

Name: Can_IdType

Type: uint16, uint32

Range: 0...0x7FF -- for Standard IDs

0...0xFFFFFFFF -- for Extended IDs

Description: Represents the Identifier of an L-PDU. For extended IDs the most significant bit is
set.

8.2.5 Can_StateTransitionType

Name: Can_StateTransitionType

Type: Enumeration

Range: CAN_T_START --

CAN_T_STOP --

CAN_T_SLEEP --

CAN_T_WAKEUP --

Description: State transitions that are used by the function CAN_SetControllerMode

8.2.6 Can_ReturnType

CAN039:
Name: Can_ReturnType

Type: Enumeration

Range: CAN_OK success

CAN_NOT_OK error occured or wakeup event occurred during sleep
transition

CAN_BUSY transmit request could not be processed because no transmit
object was available

Description: Return values of CAN driver API .

8.2.7 Can_HwHandleType

CAN439:
Name: Can_HwHandleType

Type: uint8, uint16

Range: Standard -- 0..0xFF

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

43 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

Extended -- 0..0xFFFF

Description: Represents the hardware object handles of a CAN hardware unit. For CAN
hardware units with more than 255 HW objects use extended range.

8.3 Function definitions

This is a list of functions provided for upper layer modules.

8.3.1 Services affecting the complete hardware unit

8.3.1.1 Can_Init

CAN223:
Service name: Can_Init

Syntax: void Can_Init(

 const Can_ConfigType* Config

)

Service ID[hex]: 0x00

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): Config Pointer to driver configuration.

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: This function initializes the module.

Symbolic names of the available configuration sets are provided by the configuration
description of the Can module. See chapter 10 about configuration description.

CAN176: The function Can_Init shall raise the error CAN_E_TIMEOUT if the
initialization could not be performed (indicates defective hardware).

CAN174: If development error detection for the Can module is enabled: The function
Can_Init shall raise the error CAN_E_TRANSITION if the driver is not in 'uninitialized'
state.

CAN175: If development error detection for the Can module is enabled: The function
Can_Init shall raise the error CAN_E_PARAM_POINTER if a NULL pointer was
given as config parameter.

8.3.1.2 Can_GetVersionInfo

CAN224:
Service name: Can_GetVersionInfo

Syntax: void Can_GetVersionInfo(

 Std_VersionInfoType* versioninfo

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

44 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

)

Service ID[hex]: 0x07

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): None

Parameters
(inout):

None

Parameters (out): versioninfo Pointer to where to store the version information of this module.

Return value: None

Description: This function returns the version information of this module.

CAN105: The function Can_GetVersionInfo shall return the version information of
this module. The version information includes:

- Module Id
- Vendor Id
- Vendor specific version numbers (BSW00407).

CAN251: If source code for caller and callee is available, the function
Can_GetVersionInfo should be realized as a macro, defined in the Can module’s
header file.

CAN177: If development error detection for the Can module is enabled: The function
Can_GetVersionInfo shall raise the error CAN_E_PARAM_POINTER if the
parameter versionInfo is a null pointer.

CAN252: The function Can_GetGetVersionInfo shall be pre compile time

configurable On/Off by the configuration parameter: CanVersionInfoApi.

8.3.2 Services affecting one single CAN Controller

8.3.2.1 Can_InitController

CAN229:
Service name: Can_InitController

Syntax: void Can_InitController(

 uint8 Controller,

 const Can_ControllerConfigType* Config

)

Service ID[hex]: 0x02

Sync/Async: Asynchronous

Reentrancy: Non Reentrant

Parameters (in):
Controller CAN controller to be initialized

Config Pointer to controller configuration.

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: This function initializes only CAN controller specific settings.

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

45 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

The function Can_InitController re-initializes the CAN controller and the controller
specific settings (see CAN062).

Different sets of static configuration may have been configured. The parameter
*Config points to the hardware specific structure that describes the configuration (see
CAN291).

Global CAN Hardware Unit settings must not be changed. Only a subset of
parameters may be changed during runtime (see chapter 10). For further
explanation, see also chapter 7.3

The CAN controller must be in state CANIF_CS_STOPPED when this function is
called (see CAN256 and CAN260).

The CAN controller is in state CANIF_CS_STOPPED after (re-)initialization (see
CAN259).

Symbolic names of the available configuration sets are provided by the configuration
description of the Can module. See chapter 10 about configuration description.

CAN192: The function Can_InitController shall raise the error CAN_E_TIMEOUT if
the initialization could not be performed (indicates defective hardware).

CAN187: If development error detection for the Can module is enabled: The function
Can_InitController shall raise the error CAN_E_UNINIT if the driver is not yet
initialized.

CAN188: If development error detection for the Can module is enabled: The function
Can_InitController shall raise the error CAN_E_PARAM_POINTER if the parameter
Config is an null pointer.

CAN189: If development error detection for the Can module is enabled: The function
Can_InitController shall raise the error CAN_E_PARAM_CONTROLLER if the

parameter Controller is out of range.

CAN190: If development error detection for the Can module is enabled: if the
controller is not in state CANIF_CS_STOPPED , the function Can_InitController shall
raise the error CAN_E_TRANSITION.

CAN443: If wake-up is supported by hardware (i.e. CanWakeupSupport == true),
during CAN controller initialization it shall be checked if there was a
wake-up event on the specific CAN controller. If a wake-up event has been detected,
the wake-up shall directly be reported to the EcuM via EcuM_SetWakeupEvent call-
back function.

8.3.2.2 Can_SetControllerMode

CAN230:
Service name: Can_SetControllerMode

Syntax: Can_ReturnType Can_SetControllerMode(

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

46 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

 uint8 Controller,

 Can_StateTransitionType Transition

)

Service ID[hex]: 0x03

Sync/Async: Asynchronous

Reentrancy: Non Reentrant

Parameters (in):
Controller CAN controller for which the status shall be changed

Transition --

Parameters
(inout):

None

Parameters (out): None

Return value:
Can_ReturnType CAN_OK: transition initiated

CAN_NOT_OK: development or production or a wakeup during
transition to 'sleep' occured

Description: This function performs software triggered state transitions of the CAN controller
State machine.

CAN017: The function Can_SetControllerMode shall perform software triggered state
transitions of the CAN controller State machine. See also [BSW12169]

Refer to CAN048 for the case of a wakeup event from CAN bus occurred during
sleep transition.

CAN294: The function Can_SetControllerMode shall disable the wake-up interrupt,
while checking the wake-up status.

For all state changes except the change to state CANIF_CS_SLEEP, the function
does not wait until the state change has really performed. Anyway, this function is
asynchronous because the actual result may occur later. However, neither callback
nor notification will report the actual state change afterwards.

CAN196: The function Can_SetControllerMode shall enable interrupts that are
needed in the new state. Enabling of CAN interrupts shall not be executed, when
CAN interrupts have been disabled by function CAN_DisableControllerInterrupts.

CAN197: The function Can_SetControllerMode shall disable interrupts that are not
allowed in the new state. Disabling of CAN interrupts shall not be executed, when
CAN interrupts have been disabled by function CAN_DisableControllerInterrupts.

CAN201: The function Can_SetControllerMode shall raise the error
CAN_E_TIMEOUT if the initialization could not be performed (indicates defective
hardware, not for sleep transition).

Caveat:
The behavior of the transmit operation is undefined when the 'software' state in the
CanIf module is already CANIF_CS_STARTED, but the CAN controller is not yet in
operational mode.

The CanIf module must ensure that the function is not called before the previous call
of Can_SetControllerMode returned.

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

47 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

The CanIf module is responsible not to initiate invalid transitions.

CAN198: If development error detection for the Can module is enabled: if the module
is not yet initialized, the function Can_SetControllerMode shall raise development
error CAN_E_UNINIT and return CAN_NOT_OK.

CAN199: If development error detection for the Can module is enabled: if the

parameter Controller is out of range, the function Can_SetControllerMode shall

raise development error CAN_E_PARAM_CONTROLLER and return
CAN_NOT_OK.

CAN200: If development error detection for the Can module is enabled: if an invalid
transition has been requested, the function Can_SetControllerMode shall raise the
error CAN_E_TRANSITION and return CAN_NOT_OK.

8.3.2.3 Can_DisableControllerInterrupts

CAN231:
Service name: Can_DisableControllerInterrupts

Syntax: void Can_DisableControllerInterrupts(

 uint8 Controller

)

Service ID[hex]: 0x04

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): Controller CAN controller for which interrupts shall be disabled.

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: This function disables all interrupts for this CAN controller.

CAN049: The function Can_DisableControllerInterrupts shall disable all interrupts for
this CAN controller only at the first call of this function.

CAN202: When Can_DisableControllerInterrupts has been called several times,
Can_EnableControllerInterrupts must be called as many times before the interrupts
are re-enabled.

Implementation note:
The function Can_DisableControllerInterrupts can increase a counter on every
execution that indicates how many Can_EnableControllerInterrupts need to be called
before the interrupts will be enabled (incremental disable).

CAN204: The Can module shall track all individual enabling and disabling of
interrupts in other functions (i.e. Can_SetControllerMode) , so that the correct
interrupt enable state can be restored.

Implementation example:

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

48 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

- in 'interrupts enabled mode': For each interrupt state change does not only modify
the interrupt enable bit, but also a software flag.
- in 'interrupts disabled mode': only the software flag is modified.
- Can_DisableControllerInterrupts and Can_EnableControllerInterrupts do not modify
the software flags.
- Can_EnableControllerInterrupts reads the software flags to re-enable the correct
interrupts.

CAN292: The function Can_DisableControllerInterrupts shall raise the production
error CAN_E_TIMEOUT if the disabling of the interrupts could not be performed
(indicates defective hardware).

CAN205: If development error detection for the Can module is enabled: The function
Can_DisableControllerInterrupts shall raise the error CAN_E_UNINIT if the driver not
yet initialized.

CAN206: If development error detection for the Can module is enabled: The function
Can_DisableControllerInterrupts shall raise the error

CAN_E_PARAM_CONTROLLER if the parameter Controller is out of range.

8.3.2.4 Can_EnableControllerInterrupts

CAN232:
Service name: Can_EnableControllerInterrupts

Syntax: void Can_EnableControllerInterrupts(

 uint8 Controller

)

Service ID[hex]: 0x05

Sync/Async: Synchronous

Reentrancy: Reentrant

Parameters (in): Controller CAN controller for which interrupts shall be re-enabled

Parameters
(inout):

None

Parameters (out): None

Return value: None

Description: This function enables all allowed interrupts.

CAN050: The function Can_EnableControllerInterrupts shall enable all interrupts that
must be enabled according the current software status.

CAN202 applies to this function.

CAN208: The function Can_EnableControllerInterrupts shall perform no action when
Can_DisableControllerInterrupts has not been called before.

See also implementation example for Can_DisableControllerInterrupts.

CAN293: The function Can_EnableControllerInterrupts shall raise the production
error CAN_E_TIMEOUT if the enabling of the interrupts could not be performed
(indicates defective hardware).

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

49 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

CAN209: If development error detection for the Can module is enabled: The function
Can_EnableControllerInterrupts shall raise the error CAN_E_UNINIT if the driver not
yet initialized.

CAN210: If development error detection for the Can module is enabled: The function
Can_EnableControllerInterrupts shall raise the error

CAN_E_PARAM_CONTROLLER if the parameter Controller is out of range.

8.3.2.5 Can_Cbk_CheckWakeup

CAN360:
Service name: Can_Cbk_CheckWakeup

Syntax: Std_ReturnType Can_Cbk_CheckWakeup(

 uint8 Controller

)

Service ID[hex]: 0x0b

Sync/Async: Synchronous

Reentrancy: Non Reentrant

Parameters (in): Controller Controller to be checked for a wakeup.

Parameters
(inout):

None

Parameters (out): None

Return value:
Std_ReturnType E_OK: A wakeup was detected for the given controller.

E_NOT_OK: No wakeup was detected for the given controller.

Description: This function checks if a wakeup has occurred for the given controller.

CAN361: The function Can_Cbk_CheckWakeup shall check if the requested CAN
controller has detected a wakeup. If a wakeup event was successfully detected, the
function shall return E_OK, otherwise E_NOT_OK.

CAN362: If development error detection for the Can module is enabled: The function
Can_Cbk_CheckWakeup shall raise the error CAN_E_UNINIT if the driver is not yet
initialized.

CAN363: If development error detection for the Can module is enabled: The function
Can_Cbk_CheckWakeup shall raise the error CAN_E_PARAM_CONTROLLER if the

parameter Controller is out of range.

8.3.3 Services affecting a Hardware Handle

8.3.3.1 Can_Write

CAN233:
Service name: Can_Write

Syntax: Can_ReturnType Can_Write(

 Can_HwHandleType Hth,

 const Can_PduType* PduInfo

)

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

50 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

Service ID[hex]: 0x06

Sync/Async: Synchronous

Reentrancy: Reentrant (thread-safe)

Parameters (in):

Hth information which HW-transmit handle shall be used for transmit.
Implicitly this is also the information about the controller to use
because the Hth numbers are unique inside one hardware unit.

PduInfo Pointer to SDU user memory, DLC and Identifier.

Parameters
(inout):

None

Parameters (out): None

Return value:

Can_ReturnType CAN_OK: Write command has been accepted
CAN_NOT_OK: development error occured
CAN_BUSY: No TX hardware buffer available or preemptive call
of Can_Write that can't be implemented re-entrant

Description: --

The function Can_Write first checks if the hardware transmit object that is identified
by the HTH is free and if another Can_Write is ongoing for the same HTH.

CAN212: The function Can_Write shall perform following actions if the hardware
transmit object is free:

 The mutex for that HTH is set to 'signaled'
 the ID, DLC and SDU are put in a format appropriate for the hardware (if

necessary) and copied in the appropriate hardware registers/buffers.
 All necessary control operations to initiate the transmit are done
 The mutex for that HTH is released
 The function returns with CAN_OK

CAN213: The function Can_Write shall perform no actions if the hardware transmit
object is busy with another transmit request for an L-PDU that has higher priority than
that for the current request:
 The transmission of the L-PDU with higher priority shall not be cancelled and the

function Can_Write is left without any actions.
 The function Can_Write shall return CAN_BUSY

CAN215: The function Can_Write shall perform following actions if the hardware
transmit object is busy with another transmit request for an L-PDU that has lower or
identical priority than that for the current request:
 The transmission of the L-PDU with lower or identical priority shall be cancelled

(asynchronously) in case transmit cancellation functionality is enabled. Compare
to chapter 7.5.1.2.

 The function CAN_Write shall return CAN_BUSY

CAN214: The function Can_Write shall return CAN_BUSY if a preemptive call of
Can_Write has been issued, that could not be handled reentrant (i.e. a call with the
same HTH).

CAN275: The function Can_Write shall be non-blocking.

CAN216: If development error detection for the Can module is enabled: The function
Can_Write shall raise the error CAN_E_UNINIT if the driver not yet initialized.

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

51 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

CAN217: If development error detection for the Can module is enabled: The function

Can_Write shall raise the error CAN_E_PARAM_HANDLE if the parameter Hth is

not a configured Hardware Transmit Handle.

CAN218: If development error detection for the Can module is enabled: The function
Can_Write shall raise the error CAN_E_PARAM_DLC if the length is more than 8
byte.

CAN219: If development error detection for the Can module is enabled: The function
Can_Write shall raise the error CAN_E_PARAM_POINTER if the parameter

PduInfo or the SDU pointer inside PduInfo is a null-pointer.

8.4 Call-back notifications

The Can module does not provide callback functions.
Only synchronous MCAL API may be used for external CAN controllers.

8.4.1 Call-out function

The AUTOSAR CAN module supports optional L-PDU callouts on every reception of a
L-PDU.

CAN437: The L-PDU-Callout API shall be defined as:
FUNC(boolean, COM_APPL_CODE) <LPDU_CalloutName>

(

 uint8 Hrh,

 Can_IdType CanId,

 uint8 CanDlc,

 const uint8 *CanSduPtr

)

where <LPDU_CalloutName> has to be substituted with the concrete L-PDU callout
name which is configurable, see CAN434.

CAN438: If the L-PDU callout returns false, the L-PDU shall not be processed any
further.

8.4.2 Enabling/Disabling wakeup notification

CAN440: Can driver shall use the following APIs provided by Icu driver, to enable
and disable the wakeup event notification:

- Icu_EnableNotification

- Icu_DisableNotification

CAN441: Icu_EnableNotification shall be called when "external" Can controllers have
been transitioned to SLEEP state (CANIF_CS_SLEEP).

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

52 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

CAN442: Icu_DisableNotification "external" Can controllers have been transitioned to
STOPPED state (CANIF_CS_STOPPED).

8.5 Scheduled functions

These functions are directly called by Basic Software Scheduler. The following
functions shall have no return value and no parameter. All functions shall be non-
reentrant.

CAN110: There is no requirement regarding the execution order of the CAN main
processing functions.

8.5.1.1 Can_MainFunction_Write

CAN225:
Service name: Can_MainFunction_Write

Syntax: void Can_MainFunction_Write(

)

Service ID[hex]: 0x01

Timing: FIXED_CYCLIC

Description: This function performs the polling of TX confirmation and TX cancellation
confirmation when CAN_TX_PROCESSING is set to POLLING.

CAN031: The function Can_MainFunction_Write shall perform the polling of TX
confirmation and TX cancellation confirmation when CanTxProcessing is set to
POLLING.

CAN178: The Can module may implement the function Can_MainFunction_Write as
empty define in case no polling at all is used.

CAN179: If development error detection for the module Can is enabled: The function
Can_MainFunction_Write shall raise the error CAN_E_UNINIT if the driver is not yet
initialized.

CAN435: The API name of Can_MainFunction_Write() shall obey the following
pattern:
- Can_MainFunction_Wrtte_0()
- Can_MainFunction_Write_1()
- Can_MainFunction_Write_2()
- Can_MainFunction_Write_3()
- ... and so on, if more than one period (see CAN358) is supported.

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

53 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

8.5.1.2 Can_MainFunction_Read

CAN226:
Service name: Can_MainFunction_Read

Syntax: void Can_MainFunction_Read(

)

Service ID[hex]: 0x08

Timing: FIXED_CYCLIC

Description: This function performs the polling of RX indications when
CAN_RX_PROCESSING is set to POLLING.

CAN108: The function Can_MainFunction_Read shall perform the polling of RX
indications when CanRxProcessing is set to POLLING.

CAN180: The Can module may implement the function Can_MainFunction_Read as
empty define in case no polling at all is used.

CAN181: If development error detection for the Can module is enabled: The function
Can_MainFunction_Read shall raise the error CAN_E_UNINIT if the driver not yet
initialized.

CAN436: The API name of Can_MainFunction_Read() shall obey the following
pattern:
- Can_MainFunction_Read_0()
- Can_MainFunction_Read_1()
- Can_MainFunction_Read_2()
- Can_MainFunction_Read_3()
- ... and so on, if more than one period (see CAN356) is supported.

8.5.1.3 Can_MainFunction_BusOff

CAN227:
Service name: Can_MainFunction_BusOff

Syntax: void Can_MainFunction_BusOff(

)

Service ID[hex]: 0x09

Timing: FIXED_CYCLIC

Description: This function performs the polling of bus-off events that are configured statically as
'to be polled'.

CAN109: The function Can_MainFunction_BusOff shall perform the polling of bus-off
events that are configured statically as 'to be polled'.

CAN183: The Can module may implement the function Can_MainFunction_BusOff
as empty define in case no polling at all is used.

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

54 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

CAN184: If development error detection for the Can module is enabled: The function
Can_MainFunction_BusOff shall raise the error CAN_E_UNINIT if the driver not yet
initialized.

8.5.1.4 Can_MainFunction_Wakeup

CAN228:
Service name: Can_MainFunction_Wakeup

Syntax: void Can_MainFunction_Wakeup(

)

Service ID[hex]: 0x0a

Timing: FIXED_CYCLIC

Description: This function performs the polling of wake-up events that are configured statically
as 'to be polled'.

CAN112: The function Can_MainFunction_Wakeup shall perform the polling of
wake-up events that are configured statically as 'to be polled'.

CAN185: The Can module may implement the function Can_MainFunction_Wakeup
as empty define in case no polling at all is used.

CAN186: If development error detection for the Can module is enabled: The function
Can_MainFunction_Wakeup shall raise the error CAN_E_UNINIT if the driver not yet
initialized.

8.6 Expected Interfaces

In this chapter all interfaces required from other modules are listed.

8.6.1 Mandatory Interfaces

This chapter defines all interfaces which are required to fulfill the core functionality of
the module. All callback functions that are called by the Can module are implemented
in the CanIf module. These callback functions are not configurable.

CAN234:
API function Description

CanIf_CancelTxConfirmation CANIF101: This service is implemented in the CAN Interface
and called by the CAN Driver after a previous request for
cancellation of a pending L-PDU transmit request was
successfully performed.

This callback service is implemented as many times as
underlying CAN Drivers are used. In that case one cancel
transmit confirmation callback is assigned to one underlying
CAN Driver.
Then following naming convention has to be considered:
CanIf_CancelTxConfirmation_<CAN_Driver>.
For further details please refer to chapter [7.25 Multiple CAN

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

55 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

Driver support].

Development errors:
Invalid values of CanPduPtr or CanPduPtr->id will be reported to
the development error tracer (CANIF_E_PARAM_POINTER or
CANIF_E_PARAM_LPDU).
If the CAN Interface was not initialized before, the call of this
function will be reported to the development error tracer
(CANIF_E_UNINIT). No Tx cancellation handling will be
executed.

Caveats:
The call context is either on interrupt level (interrupt mode) or on
task level (polling mode).
The CAN Interface must be initialized after Power ON.

Configuration:
This function shall be pre compile time configurable On/Off by
the configuration parameter
CANIF_TRANSMIT_CANCELLATION.

CanIf_Cbk_CheckControllerWakeup --

CanIf_Cbk_CheckTransceiverWakeup --

CanIf_ControllerBusOff CANIF218: This service indicates a CAN controller BusOff event
referring to the corresponding CAN controller. (HCANIF014H)
This call-out service is called by the CAN Driver and
implemented in the CAN Interface. It is called in case of a mode
change notification of the CAN Driver.

This call-out service is implemented as many times as
underlying CAN Drivers are used. In that case one BusOff
notification is assigned to one underlying CAN Driver.
Then following naming convention has to be considered:
CanIf_ControllerBusOff_<CAN_Driver>.
For further details please refer to chapter [X7.25X XMultiple
CAN Driver supportX].

Development errors:
Invalid values of controller will be reported to the development
error tracer (CANIF_E_PARAM_CONTROLLER).
If the CAN Interface was not initialized before, the call of this
function will be reported to the development error tracer
(CANIF_E_UNINIT). No BusOff notification will be executed.

Caveats: The call context is either on interrupt level (interrupt
mode) or on task level (polling mode).
The CAN Interface must be initialized after Power ON.
This call-out service is re-entrant for multiple CAN controller
usage.

Configuration: ID of the CAN controller is published inside the
configuration description of the CAN Interface.

CanIf_RxIndication CANIF006: This service is implemented in the CAN Interface
and called by the CAN Driver after a CAN L-PDU has been
received. Within this service, the CAN Interface translates the
CanId into the configured target PDU ID and routes this
indication to the configured upper layer target service(s).

This call-out service is implemented as many times as
underlying CAN Drivers are used. In that case one receive
indication call-out is assigned to one underlying CAN Driver.

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

56 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

Then following naming convention has to be considered:
CanIf_RxIndication_<CAN_Driver>.
For further details please refer to chapter [X7.25X XMultiple
CAN Driver supportX].

Development errors:
Invalid values of Hrh, CanId, CanDlc or *CanSduPtr will be
reported to the development error tracer
(CANIF_E_PARAM_HRH, CANIF_E_ PARAM_CANID,
CANIF_E_PARAM_DLC or CANIF_E_PARAM_POINTER).
If the CAN Interface was not initialized before, the call of this
function will be reported to the development error tracer
(CANIF_E_UNINIT). No Rx indication handling will be executed.

Caveats: The call context is either on interrupt level (interrupt
mode) or on task level (polling mode).
This call-out service is re-entrant for multiple CAN controller
usage.
The CAN Interface must be initialized after Power ON.

Configuration: CAN L-PDUs have to be assigned to the
corresponding receive indication service.

CanIf_TxConfirmation CANIF007: This service is implemented in the CAN Interface
and called by the CAN Driver after the CAN L-PDU has been
transmitted on the CAN network.
Within this service, the CAN Driver passes back the
CanTxPduId to the CAN Interface, which it got from
Can_Write(Hth, *PduInfo).

This call-out service is implemented as many times as
underlying CAN Drivers are used. In that case one transmit
confirmation call-out is assigned to one underlying CAN Driver.
Then following naming convention has to be considered:
CanIf_TxConfirmation_<CAN_Driver>.
For further details please refer to chapter [X7.25X XMultiple
CAN Driver supportX].

Development errors:
Invalid values of CanTxPduId will be reported to the
development error tracer (CANIF_E_PARAM_LPDU).
If the CAN Interface was not initialized before, the call of this
function will be reported to the development error tracer
(CANIF_E_UNINIT). No Tx confirmation handling will be
executed.

Caveats:
The call context is either on interrupt level (interrupt mode) or on
task level (polling mode).
This call-out service is re-entrant for multiple CAN controller
usage.
The CAN Interface must be initialized after Power ON.
Configuration:
Transmit confirmation can be enabled or disabled by
configuration. It is always enabled, if transmit buffers are used.

Dem_ReportErrorStatus Reports errors to the DEM.

GetCounterValue OS376: If the input parameter <CounterID> is not valid, the
service should return E_OS_ID.

OS377: If its input parameter is valid, GetCounterValue() shall
return the current tick value of the counter via <Value> and

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

57 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

return E_OK.

Caveats:
Note that for counters of OsCounterType = HARDWARE the
real timer value (the - possibly adjusted - hardware value, see
OS384) is returned, whereas for counters of OsCounterType =
SOFTWARE the current "software" tick value is returned.

Configuration:
Available in all Scalability Classes.

8.6.2 Optional Interfaces

This chapter defines all interfaces that are required to fulfill an optional functionality of
the module.

CAN235:
API function Description

Det_ReportError Service to report development errors.

EcuM_CheckWakeup This callout is called by the EcuM to poll a wakeup source. It shall also
be called by the ISR of a wakeup source to set up the PLL and check
other wakeup sources that may be connected to the same interrupt.

Icu_DisableNotification This function disables the notification of a channel.

Icu_EnableNotification This function enables the notification on the given channel.

8.6.3 Configurable interfaces

There is no configurable target for the Can module. The Can module always reports
to CanIf module.

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

58 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

9 Sequence diagrams

9.1 Interaction between Can and CanIf module

For sequence diagrams see the CanIf module Specification [5].
There are described the complete sequences for Transmission, Reception and Error
Handling.

9.2 Wakeup sequence

For Wakeup sequence diagrams refer to Specification of ECU State Manager [12].

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

59 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

10 Configuration specification

This chapter defines configuration parameters and their clustering into containers. In
order to support the specification Chapter 10.1 describes fundamentals. It also
specifies a template (table) you shall use for the parameter specification. We intend
to leave Chapter 10.1 in the specification to guarantee comprehension.

Chapter 10.2 specifies the structure (containers) and the parameters of the Can
module.

Chapter 10.3 specifies published information of the Can module.

10.1 How to read this chapter

In addition to this section, it is highly recommended to read the documents:
- AUTOSAR Layered Software Architecture [1]
- AUTOSAR ECU Configuration Specification [10]

This document describes the AUTOSAR configuration methodology and the
AUTOSAR configuration metamodel in detail.

The following is only a short survey of the topic and it will not replace the ECU
Configuration Specification document.

10.1.1 Configuration and configuration parameters

Configuration parameters define the variability of the generic part(s) of an
implementation of a module. This means that only generic or configurable module
implementation can be adapted to the environment (software/hardware) in use during
system and/or ECU configuration.

The configuration of parameters can be achieved at different times during the
software process: before compile time, before link time or after build time. In the
following, the term “configuration class” (of a parameter) shall be used in order to
refer to a specific configuration point in time.

In the below given tables the configuration class per configuration parameter is
specified. In fact, it is important to distinguish between the configuration-classes,
because they will result in different implementations and design processes.

Label Description

x The configuration parameter shall be of configuration class Pre-compile time.

-- The configuration parameter shall never be of configuration class Pre-compile time.

Link time - specifies whether the configuration parameter shall be

of configuration class Link time or not

Label Description

x The configuration parameter shall be of configuration class Link time.

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

60 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

-- The configuration parameter shall never be of configuration class Link time.

Post Build - specifies whether the configuration parameter shall be

of configuration class Post Build or not

Label Description

x
The configuration parameter shall be of configuration class Post Build and no specific
implementation is required.

L
Loadable - the configuration parameter shall be of configuration class Post Build and
only one configuration parameter set resides in the ECU.

M
Multiple - the configuration parameter shall be of configuration class Post Build and is
selected out of a set of multiple parameters by passing a dedicated pointer to the init
function of the module.

-- The configuration parameter shall never be of configuration class Post Build.

10.1.2 Variants

Variants describe sets of configuration parameters. E.g., VariantPC: only pre-compile
time configuration parameters; VariantPB: mix of pre-compile- and post build time-
configuration parameters. In one variant a parameter can only be of one
configuration class.

10.1.3 Containers

Containers structure the set of configuration parameters. This means:

- all configuration parameters are kept in containers.
- (sub-) containers can reference (sub-) containers. It is possible to assign a

multiplicity to these references. The multiplicity then defines the possible
number of instances of the contained parameters.

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

61 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

10.2 Containers and configuration parameters

The following chapters summarize all configuration parameters. The detailed
meanings of the parameters describe Chapters 7 and Chapter 8.

The described parameters are input for the Can module configurator.

CAN022: The code configurator of the Can module is CAN controller specific. If the
CAN controller is sited on-chip, the code generation tool for the Can module is
µController specific.
If the CAN controller is an external device the generation tool must not be µController
specific.

CAN047: The configuration data shall be human readable.

CAN024: The valid values that can be configured are hardware dependent.
Therefore the rules and constraints can't be given in the standard. The configuration
tool is responsible to do a static configuration checking, also regarding dependencies
between modules (i.e. Port driver, MCU driver etc.)

10.2.1 Variants

The Can module provides two variants of configuration sets:
CAN220:VariantPC: all variables are pre-compile time configurable
CAN221:VariantPB: (Mix of precompile and Post Build multiple selectable
configurable configurations

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

62 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

Can :ModuleDef

upperMultiplicity = *

lowerMultiplicity = 0

CanFilterMask :

ParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

CanHardwareObject :

ParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

CanController :

ParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

CanGeneral :

ParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 1

CanFilterMaskRef :

ReferenceParamDef

lowerMultiplicity = 0

upperMultiplicity = 1

CanControllerRef :

ReferenceParamDef

CanConfigSet :ParamConfContainerDef

multipleConfigurationContainer = true

+subContainer
+subContainer+container

+container

+destination

+reference

+reference+destination

+subContainer

Figure 10-1: Can Module Configuration Layout

CanController :ParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

CanControllerActivation :

BooleanParamDef

CanControllerTimeQuanta :

FloatParamDef

CanControllerBaudRate :

IntegerParamDef

CanControllerSeg1 :

IntegerParamDef

CanControllerSeg2 :

IntegerParamDef

CanControllerId :IntegerParamDef

upperMultiplicity = 1

lowerMultiplicity = 1

symbolicNameValue = true

CanFilterMask :ParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

Can :ModuleDef

upperMultiplicity = *

lowerMultiplicity = 0

CanRxProcessing :

EnumerationParamDef

INTERRUPT :

EnumerationLiteralDef

POLLING :EnumerationLiteralDef

CanTxProcessing :

EnumerationParamDef

CanWakeupProcessing :

EnumerationParamDef

CanBusoffProcessing :

EnumerationParamDef

CanControllerPropSeg :

IntegerParamDef

CanConfigSet :ParamConfContainerDef

multipleConfigurationContainer = true

CanCpuClockRef :

ReferenceParamDef

McuClockReferencePoint :

ParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

(from MCU)

CanWakeupSourceRef :

SymbolicNameReferenceParamDef

upperMultiplicity = 1

lowerMultiplicity = 0

EcuMWakeupSource :

ParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

(from EcuM)

+parameter

+literal

+container

+literal

+literal
+literal

+literal

+destination

+parameter

+parameter+parameter

+literal

+parameter

+destination

+parameter

+reference

+parameter

+parameter +parameter

+parameter

+reference

+subContainer

+literal
+literal

+subContainer

+parameter

Figure 10-2: Can Controller Configuration Layout

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

63 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

CanGeneral :

ParamConfContainerDef

upperMultiplicity = 1

lowerMultiplicity = 1

Can :ModuleDef

upperMultiplicity = *

lowerMultiplicity = 0

CanHardwareCancellation :

BooleanParamDef

CanTimeoutDurationFactor :

IntegerParamDef

CanMultiplexedTransmission :

BooleanParamDef

CanDevErrorDetection :

BooleanParamDef

CanVersionInfoApi :BooleanParamDef

CanWakeupSupport :

BooleanParamDef

CanIndex :IntegerParamDef

CanMainFunctionReadPeriod :

FloatParamDef

lowerMultiplicity = 0

upperMultiplicity = *

CanMainFunctionWritePeriod :

FloatParamDef

lowerMultiplicity = 0

upperMultiplicity = *

CanMainFunctionBusoffPeriod :

FloatParamDef

CanMainFunctionWakeupPeriod :

FloatParamDef

CanMainFunctionReadPeriodRef

:ReferenceParamDef

lowerMultiplicity = 0

upperMultiplicity = 1

CanMainFunctionWritePeriodRef

:ReferenceParamDef

lowerMultiplicity = 0

upperMultiplicity = 1

CanHardwareObject :

ParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

CanLPduReceiveCalloutFunction

:FunctionNameDef

upperMultiplicity = 1

lowerMultiplicity = 0

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+parameter

+container

+parameter

+destination

+parameter

+parameter

+reference

+reference

+parameter

+destination

+parameter

Figure 10-3: Can General Configuration Layout

CanFilterMask :ParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

CanFilterMaskValue :

IntegerParamDef

CanController :

ParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

+parameter

+subContainer

Figure 10-4: Can Filter Mask Configuration Layout

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

64 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

CanHardwareObject :ParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

CanObjectType :EnumerationParamDef

CanIdValue :

IntegerParamDef

lowerMultiplicity = 0

upperMultiplicity = 1

CanIdType :EnumerationParamDef

TRANSMIT :

EnumerationLiteralDef

RECEIVE :

EnumerationLiteralDef

CanObjectId :IntegerParamDef

upperMultiplicity = 1

lowerMultiplicity = 1

symbolicNameValue = true

STANDARD :

EnumerationLiteralDef

EXTENDED :

EnumerationLiteralDef

MIXED :

EnumerationLiteralDef

CanFilterMaskRef :

ReferenceParamDef

lowerMultiplicity = 0

upperMultiplicity = 1

CanFilterMask :

ParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 0

Can :ModuleDef

upperMultiplicity = *

lowerMultiplicity = 0

CanControllerRef :

ReferenceParamDef

CanController :

ParamConfContainerDef

upperMultiplicity = *

lowerMultiplicity = 1

CanConfigSet :ParamConfContainerDef

multipleConfigurationContainer = true

CanHandleType :

EnumerationParamDef

BASIC :

EnumerationLiteralDef

FULL :

EnumerationLiteralDef

CanHwObjectCount :

IntegerParamDef

defaultValue = 1

lowerMultiplicity = 0

upperMultiplicity = 1

CanHwFilter :

ParamConfContainerDef

lowerMultiplicity = 0

upperMultiplicity = *

CanHwFilterMask :

IntegerParamDef

min = 0

max = 4294967295

CanHwFilterCode :

IntegerParamDef

min = 0

max = 4294967295

+literal

+reference +parameter

+parameter

+reference

+parameter +parameter

+subContainer

+parameter

+literal

+parameter

+literal

+parameter

+literal

+container

+subContainer

+destination

+literal+literal

+subContainer

+destination

+parameter

+literal

Figure 10-5: Can Hardware Object Configuration Layout

10.2.2 Can

Module Name Can

Module Description This container holds the configuration of a single CAN Driver.

Included Containers

Container Name Multiplicity Scope / Dependency

CanConfigSet 1 This is the multiple configuration set container for CAN Driver

CanGeneral 1 This container contains the parameters related each CAN

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

65 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

Driver Unit.

10.2.3 CanGeneral

SWS Item CAN328 :

Container Name CanGeneral{CanDriverGeneralConfiguration}

Description This container contains the parameters related each CAN Driver Unit.

Configuration Parameters

SWS Item CAN064 :

Name

CanDevErrorDetection {CAN_DEV_ERROR_DETECT}

Description Switches the Development Error Detection and Notification ON or OFF.

Multiplicity 1

Type BooleanParamDef

Default value --

ConfigurationClass Pre-compile
time

X All Variants

Link time --

Post-build
time

--

Scope / Dependency scope: Can module

SWS Item CAN069 :

Name

CanHardwareCancellation {CAN_HW_TRANSMIT_CANCELLATION}

Description Specifies if hardware cancellation shall be supported.ON or OFF

Multiplicity 1

Type BooleanParamDef

Default value --

ConfigurationClass Pre-compile
time

X All Variants

Link time --

Post-build
time

--

Scope / Dependency scope: Can module, CanIf module
dependency: CanIf module is configured to support hardware cancellation

SWS Item CAN320 :

Name

CanIndex

Description Specifies the InstanceId of this module instance. If only one instance is present it
shall have the Id 0.

Multiplicity 1

Type IntegerParamDef

Range ..

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency

SWS Item CAN434 :

Name

CanLPduReceiveCalloutFunction

Description This parameter defines the existence and the name of a callout function that is
called after a successful reception of a received CAN Rx L-PDU. If this
parameter is omitted no callout shall take place.

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

66 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

Multiplicity 0..1

Type FunctionNameDef

Default value --

regularExpression --

ConfigurationClass Pre-compile
time

X All Variants

Link time --

Post-build
time

--

Scope / Dependency scope: module

SWS Item CAN355 :

Name

CanMainFunctionBusoffPeriod

Description This parameter describes the period for cyclic call to Can_MainFunction_Busoff.
Unit is seconds.

Multiplicity 1

Type FloatParamDef

Range -INF .. INF

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency

SWS Item CAN356 :

Name

CanMainFunctionReadPeriod

Description This parameter describes the period for cyclic call to Can_MainFunction_Read.
Unit is seconds. Different poll-cycles will be configurable if more than one
CanMainFunctionReadPeriod is configured. In this case multiple
Can_MainFunction_Read() will be provided by the CAN Driver module.

Multiplicity 0..*

Type FloatParamDef

Range -INF .. INF

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency

SWS Item CAN357 :

Name

CanMainFunctionWakeupPeriod

Description This parameter describes the period for cyclic call to
Can_MainFunction_Wakeup. Unit is seconds.

Multiplicity 1

Type FloatParamDef

Range -INF .. INF

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency

SWS Item CAN358 :

Name

CanMainFunctionWritePeriod

Description This parameter describes the period for cyclic call to Can_MainFunction_Write.
Unit is seconds. Different poll-cycles will be configurable if more than one

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

67 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

CanMainFunctionWritePeriod is configured. In this case multiple
Can_MainFunction_Write() will be provided by the CAN Driver module.

Multiplicity 0..*

Type FloatParamDef

Range -INF .. INF

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency

SWS Item CAN095 :

Name

CanMultiplexedTransmission {CAN_MULTIPLEXED_TRANSMISSION}

Description Specifies if multiplexed transmission shall be supported.ON or OFF

Multiplicity 1

Type BooleanParamDef

Default value --

ConfigurationClass Pre-compile
time

X All Variants

Link time --

Post-build
time

--

Scope / Dependency scope: Can module, CanIf module
dependency: CAN Hardware Unit supports multiplexed transmission

SWS Item CAN113 :

Name

CanTimeoutDurationFactor {CAN_TIMEOUT_DURATION}

Description Specifies the maximum number of loops for blocking function until a timeout is
raised in short term wait loops.

Multiplicity 1

Type IntegerParamDef

Range ..

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: Can module

SWS Item CAN106 :

Name

CanVersionInfoApi {CAN_VERSION_INFO_API}

Description Switches the Can_GetVersionInfo() API ON or OFF.

Multiplicity 1

Type BooleanParamDef

Default value --

ConfigurationClass Pre-compile
time

X All Variants

Link time --

Post-build
time

--

Scope / Dependency scope: Can module

SWS Item CAN330 :

Name

CanWakeupSupport {CAN_WAKEUP_SUPPORT}

Description CAN driver support for wakeup over CAN Bus.

Multiplicity 1

Type BooleanParamDef

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

68 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

Default value --

ConfigurationClass Pre-compile
time

X All Variants

Link time --

Post-build
time

--

Scope / Dependency scope: Can module
dependency: CAN Hardware Unit supports wakeup over CAN

SWS Item CAN432 :

Name

CanMainFunctionReadPeriodRef

Description Reference to CAN Hardware Object which shall be polled with the configured
CanMainFunctionReadPeriod. This reference shall only be configurable if more
than one period is configured via CanMainFunctionReadPeriod.

Multiplicity 0..1

Type Reference to [CanHardwareObject]

ConfigurationClass Pre-compile
time

X All Variants

Link time --

Post-build
time

--

Scope / Dependency dependency: CanMainFunctionReadPeriod (This reference is optional and is
only available if more than one period is conifgured per CanMainFunctionRead).

SWS Item CAN433 :

Name

CanMainFunctionWritePeriodRef

Description Reference to CAN Hardware Object which shall be polled with the configured
CanMainFunctionWritePeriod. This reference shall only be configurable if more
than one period is configured via CanMainFunctionWritePeriod.

Multiplicity 0..1

Type Reference to [CanHardwareObject]

ConfigurationClass Pre-compile
time

X All Variants

Link time --

Post-build
time

--

Scope / Dependency dependency: CanMainFunctionWritePeriod (This reference is optional and is
only available if more than one period is conifgured per CanMainFunctionWrite.

No Included Containers

10.2.4 CanController

SWS Item CAN354 :

Container Name CanController{CanController}

Description
This container contains the configuration parameters of the CAN
controller(s).

Configuration Parameters

SWS Item CAN314 :

Name

CanBusoffProcessing {CAN_BUSOFF_PROCESSING}

Description Enables / disables API Can_MainFunction_BusOff() for handling busoff events in
polling mode.

Multiplicity 1

Type EnumerationParamDef

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

69 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

Range INTERRUPT Interrupt Mode of operation.

POLLING Polling Mode of operation.

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: Can module, CanIf module
dependency: CANIF_POLLING_BUSOFF

SWS Item CAN315 :

Name

CanControllerActivation {CAN_CONTROLLER_ACTIVATION}

Description Defines if a CAN controller is used in the configuration.

Multiplicity 1

Type BooleanParamDef

Default value --

ConfigurationClass Pre-compile
time

X All Variants

Link time --

Post-build
time

--

Scope / Dependency scope: Can module

SWS Item CAN005 :

Name

CanControllerBaudRate {CAN_CONTROLLER_BAUD_RATE}

Description Specifies the buadrate of the controller in kbps.

Multiplicity 1

Type IntegerParamDef

Range ..

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: Can module

SWS Item CAN316 :

Name

CanControllerId {CAN_DRIVER_CONTROLLER_ID}

Description This parameter provides the controller ID which is unique in a given CAN Driver.
The value for this parameter starts with 0 and continue without any gaps.

Multiplicity 1

Type IntegerParamDef (Symbolic Name generated for this parameter)

Range ..

Default value --

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency

SWS Item CAN073 :

Name

CanControllerPropSeg {CAN_CONTROLLER_PROP_SEG}

Description Specifies propagation delay in time quantas.

Multiplicity 1

Type IntegerParamDef

Range ..

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

70 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

Scope / Dependency scope: Can module

SWS Item CAN074 :

Name

CanControllerSeg1 {CAN_CONTROLLER_PHASE_SEG1}

Description Specifies phase segment 1 in time quantas.

Multiplicity 1

Type IntegerParamDef

Range ..

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: Can module

SWS Item CAN075 :

Name

CanControllerSeg2 {CAN_CONTROLLER_PHASE_SEG2}

Description Specifies phase segment 2 in time quantas.

Multiplicity 1

Type IntegerParamDef

Range ..

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: Can module

SWS Item CAN063 :

Name

CanControllerTimeQuanta {CAN_CONTROLLER_TIME_QUANTA}

Description Specifies the time quanta for the controller. The calculation of the resulting
prescaler value depending on module clocking and time quanta shall be done
offline Hardware specific.

Multiplicity 1

Type FloatParamDef

Range -INF .. INF

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency

SWS Item CAN317 :

Name

CanRxProcessing {CAN_RX_PROCESSING}

Description Enables / disables API Can_MainFunction_Read() for handling PDU reception
events in polling mode.

Multiplicity 1

Type EnumerationParamDef

Range INTERRUPT Interrupt Mode of operation.

POLLING Polling Mode of operation.

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: Can module, CanIf module
dependency: CANIF_POLLING_RECEIVE

SWS Item CAN318 :

Name

CanTxProcessing {CAN_TX_PROCESSING}

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

71 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

Description Enables / disables API Can_MainFunction_Write() for handling PDU transmission
events in polling mode.

Multiplicity 1

Type EnumerationParamDef

Range INTERRUPT Interrupt Mode of operation.

POLLING Polling Mode of operation.

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: Can module, CanIf module
dependency: CANIF_POLLING_TRANSMIT

SWS Item CAN319 :

Name

CanWakeupProcessing {CAN_WAKEUP_PROCESSING}

Description Enables / disables API Can_MainFunction_Wakeup() for handling wakeup events
in polling mode.

Multiplicity 1

Type EnumerationParamDef

Range INTERRUPT Interrupt Mode of operation.

POLLING Polling Mode of operation.

ConfigurationClass Pre-compile time X All Variants

Link time --

Post-build time --

Scope / Dependency scope: Can module, CanIf module
dependency: CANIF_POLLING_WAKEUP

SWS Item CAN313 :

Name

CanCpuClockRef {CAN_CPU_CLOCK_REFERENCE}

Description Reference to the CPU clock configuration, which is set in the MCU driver
configuration

Multiplicity 1

Type Reference to [McuClockReferencePoint]

ConfigurationClass Pre-compile
time

X All Variants

Link time --

Post-build
time

--

Scope / Dependency

SWS Item CAN359 :

Name

CanWakeupSourceRef

Description This parameter contains a reference to the Wakeup Source for this controller as
defined in the ECU State Manager. Implementation Type: reference to
EcuM_WakeupSourceType

Multiplicity 0..1

Type Reference to [EcuMWakeupSource]

ConfigurationClass Pre-compile
time

X All Variants

Link time --

Post-build
time

--

Scope / Dependency scope: Can module

Included Containers

Container Name Multiplicity Scope / Dependency

CanFilterMask 0..* This container contains the configuration (parameters) of the

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

72 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

CAN Filter Mask(s). This container is set to obsolete and will
be removed in future. Use CanHwFilterMask instead.

10.2.5 CanHardwareObject

SWS Item CAN324 :

Container Name CanHardwareObject{CanHardwareObject}

Description
This container contains the configuration (parameters) of CAN Hardware
Objects.

Configuration Parameters

SWS Item CAN323 :

Name

CanHandleType {CAN_HANDLE_TYPE}

Description Specifies the type (Full-CAN or Basic-CAN) of a hardware object.

Multiplicity 1

Type EnumerationParamDef

Range BASIC For several L-PDUs are hadled by the hardware
object

FULL For only one L-PDU (identifier) is handled by the
hardware object

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: CanIf module
dependency: This configuration element is used as information for the CAN
Interface only. The relevant CAN driver configuration is done with the filter mask
and identifier.

SWS Item CAN331 :

Name

CanHwObjectCount

Description Number of hardware objects used to implement one HOH. In case of a HRH this
parameter defines the number of elements in the hardware FIFO or the number
of shadow buffers, in case of a HTH it defines the number of hardware objects
used for multiplexed transmission or for a hardware FIFO used by a FullCAN
HTH.

Multiplicity 0..1

Type IntegerParamDef

Range ..

Default value 1

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: ECU

SWS Item CAN065 :

Name

CanIdType {CAN_ID_TYPE}

Description Specifies whether the IdValue is of type - standard identifier - extended identifier
- mixed mode ImplementationType: Can_IdType

Multiplicity 1

Type EnumerationParamDef

Range EXTENDED All the CANIDs are of type extended only (29 bit).

MIXED The type of CANIDs can be both Standard or
Extended.

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

73 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

STANDARD All the CANIDs are of type standard only (11bit).

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: Can module, CanIf module

SWS Item CAN325 :

Name

CanIdValue {CAN_ID_VALUE}

Description This parameter is deprecated and will be removed in the future. Old description:
Specifies (together with the filter mask) the identifiers range that passes the
hardware filter.

Multiplicity 0..1

Type IntegerParamDef

Range ..

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: Can module, CanIf module

SWS Item CAN326 :

Name

CanObjectId {CAN_OBJECT_HANDLE_ID}

Description Holds the handle ID of HRH or HTH. The value of this parameter is unique in a
given CAN Driver, and it should start with 0 and continue without any gaps. The
HRH and HTH Ids share a common ID range. Example: HRH0-0, HRH1-1,
HTH0-2, HTH1-3

Multiplicity 1

Type IntegerParamDef (Symbolic Name generated for this parameter)

Range ..

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: Can module, CanIf module

SWS Item CAN327 :

Name

CanObjectType {CAN_OBJECT_TYPE}

Description Specifies if the HardwareObject is used as Transmit or as Receive object

Multiplicity 1

Type EnumerationParamDef

Range RECEIVE Receive HOH

TRANSMIT Transmit HOH

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: Can module, CanIf module

SWS Item CAN322 :

Name

CanControllerRef {CAN_CONTROLLER_REFERENCE}

Description Reference to CAN Controller to which the HOH is associated to.

Multiplicity 1

Type Reference to [CanController]

ConfigurationClass Pre-compile
time

X VARIANT-PRE-COMPILE

Link time --

Post-build X VARIANT-POST-BUILD

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

74 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

time

Scope / Dependency

SWS Item CAN321 :

Name

CanFilterMaskRef {CAN_MASK_REFERENCE}

Description Reference to the filter mask that is used for hardware filtering togerther with the
CAN_ID_VALUE Different CanHardwareObjects with different CanIdTypes
(STANDARD, MIXED, EXTENDED) can share the same CanFilterMask (i.e., the
CanFilterMaskRef parameters of these CanHardwareObjects reference the very
same CanFilterMask container). This shall be allowed and must be supported by
the configuration generators. This container is set to obsolete and will be
removed in future. Use CanHwFilterMask instead.

Multiplicity 0..1

Type Reference to [CanFilterMask]

ConfigurationClass Pre-compile
time

X VARIANT-PRE-COMPILE

Link time --

Post-build
time

X VARIANT-POST-BUILD

Scope / Dependency

Included Containers

Container Name Multiplicity Scope / Dependency

CanHwFilter 0..*
This container is only valid for HRHs and contains the
configuration (parameters) of one hardware filter.

10.2.6 CanFilterMask

SWS Item CAN351 :

Container Name CanFilterMask{CanFilterMask}

Description

This container contains the configuration (parameters) of the CAN Filter
Mask(s).
This container is set to obsolete and will be removed in future. Use
CanHwFilterMask instead.

Configuration Parameters

SWS Item CAN066 :

Name

CanFilterMaskValue {CAN_FILTER_MASK_VALUE}

Description Describes a mask for hardware-based filtering of CAN identifiers It shall be
distinguished between - Standard identifier mask - Extended identifier mask.

Multiplicity 1

Type IntegerParamDef

Range ..

Default value --

ConfigurationClass Pre-compile time X VARIANT-PRE-COMPILE

Link time --

Post-build time X VARIANT-POST-BUILD

Scope / Dependency scope: Can module, CanIf module
dependency: The filter mask settings must be known by the CanIf configuraton
for optimization of the SW filters.

No Included Containers

Specification of CAN Driver
 V2.6.0

R3.2 Rev 3

75 of 75 Document ID 011: AUTOSAR_SWS_CAN_Driver

 - AUTOSAR confidential -

10.2.7 CanConfigSet

SWS Item CAN343 :

Container Name CanConfigSet [Multi Config Container]

Description This is the multiple configuration set container for CAN Driver

Configuration Parameters

Included Containers

Container Name Multiplicity Scope / Dependency

CanController 1..*
This container contains the configuration parameters of the
CAN controller(s).

CanHardwareObject 1..*
This container contains the configuration (parameters) of CAN
Hardware Objects.

10.3 Published Information

The following published information contains data defined by the implementer of the
SW module that does not change when the module is adapted (i.e. configured) to the
actual HW/SW environment. It thus contains version and manufacturer information.

The standard common published information like

vendorId (<Module>_VENDOR_ID),
moduleId (<Module>_MODULE_ID),
arMajorVersion (<Module>_AR_MAJOR_VERSION),
arMinorVersion (<Module>_ AR_MINOR_VERSION),
arPatchVersion (<Module>_ AR_PATCH_VERSION),
swMajorVersion (<Module>_SW_MAJOR_VERSION),
swMinorVersion (<Module>_ SW_MINOR_VERSION),
swPatchVersion (<Module>_ SW_PATCH_VERSION),
vendorApiInfix (<Module>_VENDOR_API_INFIX)

is provided in the BSW Module Description Template (see [13] Figure 4.1 and Figure
7.1).

Additional published parameters are listed below if applicable for this module.

	1 Introduction and functional overview
	2 Acronyms and abbreviations
	2.1 Priority Inversion
	2.2 CAN Hardware Unit

	3 Related documentation
	3.1 Input documents
	3.2 Related standards and norms

	4 Constraints and assumptions
	4.1 Limitations
	4.2 Applicability to car domains

	5 Dependencies to other modules
	5.1.1 Static Configuration
	5.1.2 Driver Services
	5.1.3 System Services
	5.1.4 Can module Users
	5.2 File structure
	5.2.1 Code file structure
	5.2.2 Header file structure

	6 Requirements traceability
	7 Functional specification
	7.1 Driver scope
	7.2 Driver State Machine
	7.3 CAN Controller State Machine
	7.3.1 State Description
	7.3.2 State Transitions

	7.4 Can module/Controller Initialization
	7.5 L-PDU transmission
	7.5.1 Priority Inversion
	7.5.1.1 Multiplexed Transmission
	7.5.1.2 Transmit Cancellation

	7.5.2 Transmit Data Consistency

	7.6 L-PDU reception
	7.6.1 Receive Data Consistency

	7.7 Wakeup concept
	7.8 Notification concept
	7.9 Reentrancy issues
	7.10 Error classification
	7.10.1 Development Errors
	7.10.2 Production Errors
	7.10.3 Return Values

	7.11 Error detection
	7.12 Error notification
	7.13 Version Check

	8 API specification
	8.1 Imported types
	8.2 Type definitions
	8.2.1 Can_ConfigType
	8.2.2 Can_ControllerConfigType
	8.2.3 Can_PduType
	8.2.4 Can_IdType
	8.2.5 Can_StateTransitionType
	8.2.6 Can_ReturnType
	8.2.7 Can_HwHandleType

	8.3 Function definitions
	8.3.1 Services affecting the complete hardware unit
	8.3.1.1 Can_Init
	8.3.1.2 Can_GetVersionInfo

	8.3.2 Services affecting one single CAN Controller
	8.3.2.1 Can_InitController
	8.3.2.2 Can_SetControllerMode
	8.3.2.3 Can_DisableControllerInterrupts
	8.3.2.4 Can_EnableControllerInterrupts
	8.3.2.5 Can_Cbk_CheckWakeup

	8.3.3 Services affecting a Hardware Handle
	8.3.3.1 Can_Write

	8.4 Call-back notifications
	8.4.1 Call-out function
	8.4.2 Enabling/Disabling wakeup notification

	8.5 Scheduled functions
	8.5.1.1 Can_MainFunction_Write
	8.5.1.2 Can_MainFunction_Read
	8.5.1.3 Can_MainFunction_BusOff
	8.5.1.4 Can_MainFunction_Wakeup

	8.6 Expected Interfaces
	8.6.1 Mandatory Interfaces
	8.6.2 Optional Interfaces
	8.6.3 Configurable interfaces

	9 Sequence diagrams
	9.1 Interaction between Can and CanIf module
	9.2 Wakeup sequence

	10 Configuration specification
	10.1 How to read this chapter
	10.1.1 Configuration and configuration parameters
	10.1.2 Variants
	10.1.3 Containers

	10.2 Containers and configuration parameters
	10.2.1 Variants
	10.2.2 Can
	10.2.3 CanGeneral
	10.2.4 CanController
	10.2.5 CanHardwareObject
	10.2.6 CanFilterMask
	10.2.7 CanConfigSet

	10.3 Published Information

