
Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

1 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

Document Title Requirements on RTE
Software

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 083

Document Classification Auxiliary

Document Version 1.5.0

Document Status Final

Part of Release 3.2

Revision 3

Document Change History
Date Version Changed by Change Description

28.02.2014 1.5.0 AUTOSAR
Release
Management

 Removed RTE00125

 Changed RTE00084

 Editorial changes

22.02.2012 1.4.0 AUTOSAR
Administration

 Added RTE00176, RTE00177,
RTE00178, RTE00228

 Added RTE00179

30.03.2011 1.3.0 AUTOSAR
Administration

 Added RTE00234

 Added RTE00184

15.01.2009 1.2.0 AUTOSAR
Administration

 Changed RTE00005

 Removed RTE00044

23.06.2008 1.1.3 AUTOSAR
Administration

 Legal disclaimer revised

31.10.2007 1.1.2 AUTOSAR
Administration

 Document meta information extended

 Small layout adaptations made

24.01.2007 1.1.1 AUTOSAR
Administration

 “Advice for users” revised

 “Revision Information” added

05.12.2006 1.1.0 AUTOSAR
Administration

 Added RTE00153, RTE00154,
RTE00155, RTE00156, RTE00157,
RTE00158, RTE00159
Changed RTE00151

 Added RTE00160

 Added RTE00161

 Legal disclaimer revised

12.07.2006 1.0.1 AUTOSAR
Administration

 Changed RTE00133, RTE00013,
RTE00077, RTE00075, date format
changed to dd-mm-yyyy.

 Added RTE00152, [14]

 Removed RTE00136 because it
contradicts with RTE00152

25.04.2006 1.0.0 AUTOSAR
Administration

 Initial release

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

2 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

3 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

Disclaimer

This specification and the material contained in it, as released by AUTOSAR is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only.
For any other purpose, no part of the specification may be utilized or reproduced, in
any form or by any means, without permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR Specification Documents may contain exemplary items (exemplary
reference models, "use cases", and/or references to exemplary technical solutions,
devices, processes or software).

Any such exemplary items are contained in the Specification Documents for
illustration purposes only, and they themselves are not part of the AUTOSAR
Standard. Neither their presence in such Specification Documents, nor any later
documentation of AUTOSAR conformance of products actually implementing such
exemplary items, imply that intellectual property rights covering such exemplary items
are licensed under the same rules as applicable to the AUTOSAR Standard.

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

4 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

Table of Contents

1 Scope of this document ... 7

2 How to read this document .. 8

2.1 Conventions used .. 8
2.2 Requirements structure ... 9

3 Requirements Specification ... 10

3.1 Functional Overview .. 10
3.2 Functional Requirements ... 10

3.2.1 Interaction with AUTOSAR OS ... 10
3.2.1.1 [RTE00020] Access to OS .. 10
3.2.1.2 [RTE00099] Decoupling of interrupts.. 11
3.2.1.3 [RTE00037] The RTE shall be able to invoke functions across
protection boundaries .. 11

3.2.1.4 [RTE00036] Assignment to OS Applications 12
3.2.1.5 [RTE00049] Construction of task bodies .. 12

3.2.2 Interaction with AUTOSAR COM .. 13
3.2.2.1 [RTE00068] Signal initial values ... 13

3.2.2.2 [RTE00069] Communication timeouts .. 13
3.2.2.3 [RTE00073] Data items are atomic .. 14

3.2.2.4 [RTE00082] Standardized communication protocol 14
3.2.2.5 [RTE00091] Inter-ECU Marshalling .. 14

3.2.3 Interaction with Application Components .. 15
3.2.3.1 [RTE00011] Support for multiple application software component
instances 15
3.2.3.2 [RTE00012] Multiply instantiated AUTOSAR software components
delivered as binary code shall share code ... 16

3.2.3.3 [RTE00013] Per-instance memory ... 16
3.2.3.4 [RTE00077] Instantiation of per-instance memory 17

3.2.3.5 [RTE00017] Rejection of inconsistent component implementations 17
3.2.3.6 [RTE00134] Runnable entity categories supported by the RTE 17

3.2.3.7 [RTE00072] Activation of runnable entities 20

3.2.3.8 [RTE00160] Debounced start of runnable entities 20

3.2.3.9 [RTE00161] Activation offset of runnable entities 21
3.2.3.10 [RTE00031] Multiple runnable entities ... 21
3.2.3.11 [RTE00032] Data consistency mechanisms 21
3.2.3.12 [RTE00046] Support for “runnable runs inside” Exclusive areas ... 22
3.2.3.13 [RTE00142] InterRunnableVariables ... 23

3.2.3.14 [RTE00033] Serialization of server runnables 23
3.2.3.15 [RTE00133] Concurrent invocation of runnable entities 24
3.2.3.16 [RTE00143] Mode Switches .. 24
3.2.3.17 [RTE00176] Sharing of NVRAM data .. 25

3.2.4 Interaction with Basic Software Components .. 25

3.2.4.1 [RTE00152] Support for port-defined argument values 25

3.2.4.2 [RTE00022] Interaction with call-backs .. 25

3.2.4.3 [RTE00062] Local access to basic software components 27
3.2.4.4 [RTE00177] Support of NvBlockComponentType 27
3.2.4.5 [RTE00228] Fan-out NvBlock callback function 27

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

5 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

3.2.5 Support for Measurement and Calibration .. 28
3.2.5.1 [RTE00153] Support of Measurement .. 28

3.2.5.2 [RTE00154] Support of Calibration ... 28
3.2.5.3 [RTE00156] Support different calibration data emulation methods 29
3.2.5.4 [RTE00157] Support calibration parameters in NVRAM 29
3.2.5.5 [RTE00158] Support separation of calibration parameters 30
3.2.5.6 [RTE00159] Sharing of calibration parameters 30

3.2.6 General Requirements .. 30
3.2.6.1 [RTE00021] Per-ECU RTE customization 30
3.2.6.2 [RTE00065] Deterministic generation ... 31
3.2.6.3 [RTE00028] “1:n” Sender-receiver communication 31
3.2.6.4 [RTE00131] “n:1” Sender-receiver communication 32

3.2.6.5 [RTE00029] “n:1” Client-server communication 32
3.2.6.6 [RTE00079] Single asynchronous client-server interaction 32

3.2.6.7 [RTE00080] Multiple requests of servers .. 33
3.2.6.8 [RTE00025] Static communication ... 33
3.2.6.9 [RTE00144] Mode switch notification via AUTOSAR interfaces 34
3.2.6.10 [RTE00018] Rejection of invalid configurations 34

3.2.6.11 [RTE00055] Use of global namespace .. 35
3.2.6.12 [RTE00126] C support ... 35

3.2.6.13 [RTE00138] C++ support ... 35
3.2.6.14 [RTE00051] RTE API mapping .. 36
3.2.6.15 [RTE00048] RTE Generator input .. 36
3.2.6.16 [RTE00023] RTE Overheads ... 37
3.2.6.17 [RTE00024] Source-code AUTOSAR software components 37

3.2.6.18 [RTE00140] Binary-code AUTOSAR software components 37
3.2.6.19 [RTE00083] Optimization for source-code components 38

3.2.6.20 [RTE00027] VFB to RTE mapping shall be semantic preserving... 38
3.2.6.21 [RTE00053] AUTOSAR data types .. 39
3.2.6.22 [RTE00234] Support for Record Type sub-setting 39

3.2.6.23 [RTE00056] Pre-defined primitive data types cannot be redefined 40
3.2.6.24 [RTE00098] Explicit Transmission ... 40

3.2.6.25 [RTE00129] Implicit Transmission ... 41
3.2.6.26 [RTE00128] Implicit Reception .. 41
3.2.6.27 [RTE00141] Explicit Reception .. 42

3.2.6.28 [RTE00092] Implementation of VFB model “waitpoints” 42
3.2.6.29 [RTE00145] Compatibility mode .. 42
3.2.6.30 [RTE00146] Vendor mode ... 43
3.2.6.31 [RTE00148] Support “Specification of Memory Mapping” 43

3.2.6.32 [RTE00149] Support “Specification of Compiler Abstraction” 43
3.2.6.33 [RTE00150] Support “Specification of Platform Types” 44
3.2.6.34 [RTE00151] Support RTE relevant requirements of the “General
Requirements on Basic Software Modules” ... 44
3.2.6.35 [RTE00178] Data consistency of NvBlockComponentType 44

3.2.6.36 [RTE00179] Support of Update Flag for Data Reception 45
3.2.6.37 [RTE00184] RTE Status “Never Received” 45

3.2.7 VFB Tracing .. 45

3.2.7.1 [RTE00005] Support for ‘trace’ build .. 46
3.2.7.2 [RTE00045] Standardized VFB tracing interface 46
3.2.7.3 [RTE00008] VFB tracing configuration ... 46

3.2.7.4 [RTE00003] Tracing of sender-receiver communication................. 47

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

6 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

3.2.7.5 [RTE00004] Tracing of client-server communication 47
3.2.8 Application Component Initialization and Finalization 47

3.2.8.1 [RTE00052] Initialization and finalization of components 47
3.2.8.2 [RTE00070] Invocation order of runnables 48

3.2.9 API .. 49
3.2.9.1 [RTE00100] Compiler independent API.. 49
3.2.9.2 [RTE00059] RTE API passes ‘in’ primitive data types by value 49

3.2.9.3 [RTE00060] RTE API shall pass ‘in’ complex data types by reference
 49
3.2.9.4 [RTE00061] ‘in/out’ and ‘out’ parameters 50
3.2.9.5 [RTE00115] API for data consistency mechanism 50
3.2.9.6 [RTE00075] API for accessing per-instance memory 50

3.2.9.7 [RTE00107] Support for INFORMATION_TYPE attribute 51
3.2.9.8 [RTE00108] Support for INIT_VALUE attribute 51

3.2.9.9 [RTE00109] Support for RECEIVE_MODE attribute 52
3.2.9.10 [RTE00110] Support for BUFFERING attribute 52
3.2.9.11 [RTE00111] Support for CLIENT_MODE attribute 53
3.2.9.12 [RTE00121] Support for FILTER attribute 54

3.2.9.13 [RTE00122] Support for SUCCESS attribute 54
3.2.9.14 [RTE00147] Support for communication infrastructure time-out
notification .. 54
3.2.9.15 [RTE00078] Support for INVALIDATE attribute 55
3.2.9.16 [RTE00094] Communication and Resource Errors 55
3.2.9.17 [RTE00084] Support infrastructural errors 56
3.2.9.18 [RTE00123] Forwarding of application level server errors 56

3.2.9.19 [RTE00124] API for application level server errors 57
3.2.9.20 [RTE00089] Independent access to interface elements 57

3.2.9.21 [RTE00130] API to determine executing runnable entity 58
3.2.9.22 [RTE00137] API for mismatched ports .. 58
3.2.9.23 [RTE00139] API for unconnected ports ... 58

3.2.9.24 [RTE00155] API to access calibration parameters 59
3.2.10 C/C++ API ... 59

3.2.10.1 [RTE00087] Application Header File .. 59
3.2.11 Initialization and Finalization Operation ... 60

3.2.11.1 [RTE00116] RTE Initialization and finalization 60

3.2.12 Fault Operation .. 60
3.3 Non-Functional Requirements (Qualities) .. 61

3.3.1 General Requirements .. 61
3.3.1.1 [RTE00064] AUTOSAR Methodology .. 61

3.3.1.2 [RTE00019] RTE is the communication infrastructure 61

4 References .. 62

4.1 Deliverables of AUTOSAR .. 62

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

7 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

1 Scope of this document

The goal of AUTOSAR and of this document, is to define the requirements and
behavior of the AUTOSAR Run-time environment.

It is not within the remit of AUTOSAR to consider how the RTE is implemented but
however all requirements and behavioral specifications are reviewed internally to
ensure that at least one feasible implementations is possible.

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

8 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

2 How to read this document

Each requirement has its unique identifier starting with the prefix “BSW” (for “Basic
Software”). For any review annotations, remarks or questions please refer to this
unique ID rather than chapter or page numbers!

2.1 Conventions used

In requirements, the following specific semantics shall be used (based on the Internet
Engineering Task Force IETF).

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as:

 SHALL: This word means that the definition is an absolute requirement of the
specification.

 SHALL NOT: This phrase means that the definition is an absolute prohibition
of the specification.

 MUST: This word means that the definition is an absolute requirement of the
specification due to legal issues.

 MUST NOT: This phrase means that the definition is an absolute prohibition of
the specification due to legal constraints.

 SHOULD: This word, or the adjective "RECOMMENDED", mean that there
may exist valid reasons in particular circumstances to ignore a particular item,
but the full implications must be understood and carefully weighed before
choosing a different course.

 SHOULD NOT: This phrase, or the phrase "NOT RECOMMENDED" mean
that there may exist valid reasons in particular circumstances when the
particular behavior is acceptable or even useful, but the full implications should
be understood and the case carefully weighed before implementing any
behavior described with this label.

 MAY: This word, or the adjective „OPTIONAL“, means that an item is truly
optional. One vendor may choose to include the item because a particular
marketplace requires it or because the vendor feels that it enhances the
product while another vendor may omit the same item. An implementation,
which does not include a particular option, MUST be prepared to interoperate
with another implementation, which does include the option, though perhaps
with reduced functionality. In the same vein an implementation, which does
include a particular option, MUST be prepared to interoperate with another
implementation, which does not include the option (except, of course, for the
feature the option provides.)

The priority “Low” indicates that this requirement may not be implemented in version
1.0.

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

9 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

2.2 Requirements structure

Each module specific chapter contains a short functional description of the Basic
Software Module. Requirements of the same kind within each chapter are grouped
under the following headlines (where applicable):

Functional Requirements:
- Configuration (which elements of the module need to be configurable)
- Initialisation
- Normal Operation
- Shutdown Operation
- Fault Operation
- ...

Non-Functional Requirements:
- Timing Requirements
- Resource Usage
- Usability
- Output for other WPs (e.g. Description Templates, Tooling,...)
- ...

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

10 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

3 Requirements Specification

3.1 Functional Overview

The Run-Time Environment (RTE) is at the heart of the AUTOSAR ECU architecture.
The RTE is the realization (for a particular ECU) of the interfaces of the AUTOSAR
Virtual Function Bus (VFB) and thus provides the infrastructure services for
communication between application software components as well as facilitating
access to basic software components including the OS.

Application software components contain system software that is CPU and location
independent. This means that, subject to constraints imposed by the system
designer, an application component can be mapped to any available ECU during
system configuration. The RTE is responsible for ensuring that components can
communicate and that the system continues to function as expected wherever the
components are mapped.

The RTE encompasses both the variable elements of the system infrastructure that
arise from the different mappings of components to ECUs as well as standardized
RTE services. The RTE is generated and/or configured for each ECU to ensure that
the RTE is optimal for the ECU.

The AUTOSAR VFB Specification defines two communication models within the RTE
core services; sender-receiver (signal passing) and client-server (function
invocation). Each communication model can be applied to one of three distribution
patterns; intra-task, inter-task and inter-ECU. Intra-task communication occurs
between runnable entities that are mapped to the same OS task whereas inter-task
communication occurs between runnable entities mapped to different tasks and can
therefore involve a context switch. In contrast, inter-ECU communication occurs
between runnable entities in components mapped to different ECUs and so is
inherently concurrent and potentially unreliable.

3.2 Functional Requirements

3.2.1 Interaction with AUTOSAR OS

The requirements in this section all concern how the RTE interacts with the
AUTOSAR OS. The AUTOSAR ECU architecture defines all interactions to occur
over a standardized interface.

3.2.1.1 [RTE00020] Access to OS

Initiator: WP4.2.1.1

Date: 01.10.2004

Short Description: Access to OS

Type: new

Importance: high

Description: The RTE shall only use the OS in order to provide its own functionality to the
AUTOSAR application components.

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

11 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

For example, the RTE uses task-based functionality (tasks, resources,
events, …) to provide runnable entity functionality to the application. The
existence of OS tasks is not made visible to the application.

Rationale: The application software components are intended to be OS independent
and therefore should not access any particular OS directly.

Use Case: The OS offers a standardized interface. This interface is accessed by
application software components only via the RTE API and hence access is
controlled by the RTE.

Dependencies: RTE00025

Conflicts: --

Supporting Material: See VFB Specification chapter 4.2.5.2.2

The AUTOSAR ECU architecture defines a standardised interface for the OS
and an AUTOSAR interface for application software components and
therefore there can be no direct interaction.

3.2.1.2 [RTE00099] Decoupling of interrupts

Initiator: WP4.2.1.1

Date: 03.11.2004

Short Description: Decoupling of interrupts

Type: new

Importance: high

Description: The RTE shall not permit interrupt context to be propagated to application
software components.

To ensure low latency times and determinism, the interrupt context may
have to be propagated to the RTE.

Rationale: If application software components were able to execute within an interrupt
context they would be able to block the system schedule for unacceptably
long periods of time.

Use Case: The RTE ‘intercepts’ interrupts and enables a runnable entity to handle the
notification. The runnable entity executes in the context of a task.

Dependencies: --

Conflicts: --

Supporting Material: VFB Specification, Section 4.2.5.2.2

In this requirement, blocking meant to indicate that the RTE shall not
suspend (Running-->Waiting) the thread of control executing the callback. It
is not meant to indicate that the thread cannot be pre-empted.
i.e. blocking is "suspended" but not "pre-empted"

3.2.1.3 [RTE00037] The RTE shall be able to invoke functions across protection

boundaries

Initiator: WP4.2.1.1

Date: 04.10.2004

Short Description: The RTE shall be able to invoke functions across protection boundaries

Type: new

Importance: high

Description: The RTE shall be able to invoke functions across protection boundaries – for
example, a function in a different OS application – and therefore shall be a
trusted OS application.

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

12 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

Rationale: Only trusted OS applications will be able to call the OS API – the
components are not trusted and therefore the RTE shall ‘switch’ protection
boundaries before invoking the function.

The RTE is the only element in the system that can make the switch for
application software components.

Use Case: When operating in the context of a component the RTE shall switch
“protection mode” before invoking functions outside of the current protection
boundary.

Dependencies: --

Conflicts: --

Supporting Material: AUTOSAR OS Specification v1.2, Sections 7.7.1 (Protection errors) and
10.5.1 (Protection hook).

3.2.1.4 [RTE00036] Assignment to OS Applications

Initiator: WP4.2.1.1

Date: 04.10.2004

Short Description: Assignment to OS Applications

Type: new

Importance: high

Description: When memory protection is in use, the RTE generator shall reject
configurations where the runnables of an instance of an AUTOSAR
software-component are not assigned to tasks within the same OS-
application.

Rationale: All objects (e.g. resources, alarms) which belong to one OS-Application have
access to each other – the OS will kill tasks that attempt direct access
without being mapped to the same OS application.

Use Case: Efficient access is required – if mapped to different OS applications then the
RTE would be required to implement the protection mode switches which
would have a significant impact on efficiency.

Dependencies: RTE00018 – rejection invalid configurations

Conflicts: --

Supporting Material: Where memory protection is used the tasks mapped for a component
instance form a single OS Application – this permits intra-component
interactions to occur with minimum overhead.

3.2.1.5 [RTE00049] Construction of task bodies

Initiator: WP4.2.1.1

Date: 01.10.2004

Short Description: Construction of task bodies

Type: new

Importance: high

Description: The RTE generator shall construct task bodies to execute runnable entities
in a form suitable for the AUTOSAR OS – this will typically be as a function
exported with C linkage.

The component description declares the runnable entities present in a
component.

Rationale: The mapping of runnable entities to tasks forms part of the input to the
generator. Automatic mapping is too complex a task (and insufficient data is
present in the input) to be considered as part of AUTOSAR at this stage.

Use Case: Runnable entities in a sequence mapped to the same task.

Dependencies: --

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

13 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

Conflicts: --

Supporting Material: --

3.2.2 Interaction with AUTOSAR COM

The requirements in this section all concern how the RTE interacts with the
AUTOSAR COM. The AUTOSAR ECU architecture defines all interaction to occur
over a standardized interface.

3.2.2.1 [RTE00068] Signal initial values

Initiator: WP4.2.1.1

Date: 04.10.2004

Short Description: Signal initial values

Type: new

Importance: high

Description: The RTE generator shall ensure that signals for which an INIT_VALUE is
specified are initialized regardless of whether they are transported by COM
or by the RTE.

Rationale: Data can be read before COM has provided a first value and applications
should be prevented from reading un-initialized data.

Use Case: --

Dependencies: RTE00108

The INVALIDATE attribute can be used in conjunction with an INIT_VALUE
to indicate to an application component that no data has been received since
COM or the RTE started.
The INVALIDATE attribute shall be initialized too.

Conflicts: --

Supporting Material: VFB Specification

3.2.2.2 [RTE00069] Communication timeouts

Initiator: WP4.2.1.1

Date: 04.10.2004

Short Description: Communication timeouts

Type: new

Importance: high

Description: The RTE generator shall include run-time checks for monitoring timeouts
specified in the ECU Configuration for blocking communication.

When synchronous intra-task client server communication is optimized to a
direct function call, no timeout can occur though clients can still be written to
expect a timeout were the configuration to change. Therefore this
requirement does not apply when the synchronous client server call is
optimized to a direct function call.

Rationale: Prevent infinite blocking of receivers.

Use Case: A runnable entity performs a blocking “read” of a data item. A blocking read
will wait forever if no data arrives unless a timeout is applied.

Dependencies: RTE00147

Conflicts: --

Supporting Material: VFB Specification - timeouts are required within components to prevent

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

14 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

infinite blocking and thus apply both to inter-ECU communication (that uses
COM) and intra-ECU communication (that may or may not use COM).

3.2.2.3 [RTE00073] Data items are atomic

Initiator: WP4.2.1.1

Date: 01.10.2004

Short Description: Data items are atomic

Type: new

Importance: high

Description: The RTE API shall assure that the transmission and reception of single data
elements (and ALL arguments of a single operation) are treated as atomic
units.

Where a parameter is passed by reference rather than by value the RTE is
forced to rely on the component not modifying the target of the reference
while the parameter is in use by the RTE.

Rationale: --

Use Case: Elements of a record cannot be handled separately by the application
software component but, instead, the whole record should be treated as a
single atomic unit.

Dependencies: RTE00032 (data consistency)

This should not be read as requiring COM to treat the transmission as
atomic – it (or a lower layer in the COM stack) shall remain free to split
across multiple (network) frames as long as the split is not visible to the
RTE.

Conflicts: --

Supporting Material: VFB_C60
SwCT 1.0.0.15 ch-6.1.1 p-66

3.2.2.4 [RTE00082] Standardized communication protocol

Initiator: WP4.2.1.1

Date: 05.10.2004

Short Description: Standardized communication protocol

Type: new

Importance: high

Description: The RTE shall implement the defined protocol (e.g. message sequences) for
inter-ECU client-server communication.

For communication mechanisms that are not directly provided by the
AUTOSAR COM layer (e.g. client-server communication) a standardized
protocol that is implemented by every AUTOSAR RTE has to be defined.

Rationale: This ensures that RTEs of different vendors are interoperable.

Use Case: If C/S is mapped to paired COM message channels then both RTEs shall
implement the same mapping to be compatible.

Dependencies: --

Conflicts: --

Supporting Material: RTE00091 – common protocol for COM transmissions.

3.2.2.5 [RTE00091] Inter-ECU Marshalling

Initiator: WP4.2.1.1

Date: 20.10.2004

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

15 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

Short Description: Inter-ECU Marshalling

Type: new

Importance: high

Description: The RTE shall use a common format for transmitting/receiving data elements
or parameters of operations between ECUs. On transmission the (target
specific) signal data shall be converted to the common format and the
reverse operation performed on reception.

It shall be possible to exchange record types between components written in
different programming languages.

Rationale: The RTE is responsible for ensuring that data elements or parameters of
operations (e.g. records, parameter lists, …) can be sent between ECUs.
Since each ECU may define signals differently in memory a straight
transmission cannot be performed and, instead, the sender shall convert the
data elements or parameters to a common format before transmission and
the reverse transformation shall be performed by the receiving RTE.

A common communication protocol enables RTEs from different vendors to
interoperate.

Use Case: --

Dependencies: RTE00082 – defines common message sequence for client-server.

Conflicts: --

Supporting Material: SwCT 1.0.0.15 ch-6.3.1.1 p-70
Titus XDR – external Data Representation.

“Marshalling” is defined as the conversion of a record to transportable
representation (e.g. splitting a complex data item into primitive data types)
suitable for passing to COM for transmission.

The conversion process will be defined in the SWS.

3.2.3 Interaction with Application Components

Includes application software components, sensor components and actuator
components.

3.2.3.1 [RTE00011] Support for multiple application software component

instances

Initiator: WP4.2.1.1

Date: 01.10.2004

Short Description: Support for multiple application software component instances.

Type: new

Importance: high

Description: The RTE shall support multiple instances of the same
application/sensor/actuator software component type mapped to the same
ECU.

Rationale: Repetition of the same application software component type on an ECU to
promote component reuse.

Use Case: --

Dependencies: Name space – rules for “instantiating” an application / sensor / actuator have
to be defined.

Conflicts: --

Supporting Material: SwCT defines the “supportsMultipleInstantiation” attribute for a component –
this requires that all runnable entities in the component are re-entrant.

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

16 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

SwCT 1.0.0.18 ch-8.2 p-149

3.2.3.2 [RTE00012] Multiply instantiated AUTOSAR software components

delivered as binary code shall share code

Initiator: WP4.2.1.1

Date: 01.10.2004

Short Description: Multiply instantiated AUTOSAR software components delivered as binary
code shall share code.

Type: new

Importance: high

Description: The RTE generator shall implement multiple instantiations (delivered as
binary code) of the AUTOSAR software component type (on the same ECU)
through sharing the same application software component code for all
instances.

Source code deliverables can be instantiated either by code sharing or code
duplication. This depends on the implementation of the RTE.

Rationale: 1) VFB metamodel.
2) Requirement to minimise code space.
3) Cannot modify binary-code software components and therefore all
instances must use the same object-code.

Use Case: --

Dependencies: --

Conflicts: --

Supporting Material: SwCT, Section 8.8.2

Code that is to be shared between instances should be re-entrant because
of the pre-emptive environment it which it will run. Re-entrant code is

indicated by the “supportsMultipleInstantiation” flag in the software

component description.

3.2.3.3 [RTE00013] Per-instance memory

Initiator: WP4.2.1.1

Date: 01.10.2004

Short Description: The RTE shall support per-instance memory

Type: new

Importance: high

Description: “per-instance memory” is accessible by all runnable entities of an application
software component instance but is not shared by all instances of the
component.

Rationale: Require variables with lifetime greater than that of a runnable entity but
remain protected from different instances of the same component.

Also required for multiple instance support.

Use Case: --

Dependencies: RTE00075 – API for accessing per-instance memory

Conflicts: --

Supporting Material: SwCT v2.0.0-RC4 Section 5.9

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

17 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

3.2.3.4 [RTE00077] Instantiation of per-instance memory

Initiator: WP4.2.1.1

Date: 05.10.2004

Short Description: Instantiation of per-instance memory

Type: new

Importance: high

Description: The RTE generator shall instantiate each per-instance memory section of a
software component according to the attributes given in its software
component description.

The instantiation of per-instance memory shall be either derived from input
information or instantiated automatically by the RTE generator (where such
information is not available). In the latter case the address of the per-
instance memory is assigned by the RTE generator and therefore is not
subject to control by the system integrator.

Rationale: SwCT 5.9
Required by the software component template

Use Case: RAM mirror from NVRAMManager.

Dependencies: --

Conflicts: --

Supporting Material: The per-instance memory presented as input to the RTE generator shall be
uniquely identifiable.

3.2.3.5 [RTE00017] Rejection of inconsistent component implementations

Initiator: WP4.2.1.1

Date: 01.10.2004

Short Description: Rejection of inconsistent component implementations

Type: new

Importance: high

Description: The RTE generator shall ensure that the compiler can detect (and reject)
access to undefined RTE API calls.

The RTE generator is required to reject “invalid“ configurations, part of this is
rejecting invalid APIs (i.e. calls to an unknown port at compile time).

Rationale: --

Use Case: The component description defines the names of the ports that a component
“requires” and “provides” and the associated interfaces. The RTE generator
can then define only the valid API calls.

For example, consider a component that has a Port ‘p1’ with a data items ‘a’
and ‘b’. In this case, the RTE generator will only create an API for the send
of data items ‘a’ and ‘b’. Thus an attempt by the component to send any
invalid data item, e.g. ‘c’ on the interface shall be detected by the compiler
and a warning issued.

Dependencies: --

Conflicts: --

Supporting Material: SwCT v1.0.0.15 Section 4.2

3.2.3.6 [RTE00134] Runnable entity categories supported by the RTE

Initiator: WP4.2.1.1

Date: 15.12.2004

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

18 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

Short Description: Runnable entity categories supported by the RTE

Type: new

Importance: high

Description: The RTE shall support the runnable entity categories 1a, 1b and 2.

Runnable category:
1a) The runnable entity is only allowed to use implicit reading
(DataReadAccess) and writing (DataWriteAcess). A category 1a runnable
entity cannot block and cannot use explicit read/write.
1b) The runnable entity can use explicit reading and writing
(data_read_access). A category 1b runnable entity cannot block. Implicit
read/write is also allowed.
2) The runnable entity may use explicit reading/writing including blocking
behaviour.

It shall be possible to map category 1a and 1b runnable entities to either
AUTOSAR OS Basic or Extended tasks.

Category 2 runnable entities shall be mapped to AUTOSAR OS Extended
tasks.

Rationale: Support VFB and SWCT specified concepts.

Use Case: It is easier to reason about time behaviour for category 1a runnable entities
that do not invoke RTE API calls that (may) not execute in constant time.

Dependencies: RTE00128, RTE00129 – Implicit reception and transmission.
RTE00098 – Explicit transmission.

Conflicts: --

Supporting Material: The material in this section will be expanded in the SWS. The following
tables are a brief summary of the planned SWS contents.

The different category of runnable entities support the following receive
modes from the VFB Specification (v1.04, p. 43):

Receive Mode 1a 1b 2
DataReadAccess – implicit read. Y Y N
data_read_access - explicit read (non-blocking) using the RTE API. N
 Y Y
wake_up_of_wait_point – explicit read (blocking) using the RTE API. N
 N Y

The VFB Specification defines a third “receive mode”;
activation_of_runnable_entity, that is useable by all categories of runnable
entity. This mode is handled similarly to DataReadAccess (i.e. implicit read)
with the addition that a specified runnable is activated when the data is
received.

The different category of runnable entities support the following write
mechanisms:

Write Mode 1a 1b 2
Implicit (DataWriteAccess) Y Y N
Explicit (never blocking) N Y Y

The SUCCESS feedback methods specified in the VFB Specification (v1.04,
p. 42) are supported as follows:

Feedback method 1a 1b 2
data_read_access N Y Y
wake_up_of_wait_point N N Y
activation_of_runnable_entity Y Y Y

For category 1a and 1b runnable entities, data could be passed to/from
runnable entities via the parameters of the runnable. For category 2 data is
only passed via the RTE API parameters.

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

19 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

SwCT and VFB. This requirement is anticipating feedback done to the
relevant WPs that should be discussed in the future – in particular the
enumeration of runnable entity types is subject to change.

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

20 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

3.2.3.7 [RTE00072] Activation of runnable entities

Initiator: WP4.2.1.1

Date: 01.10.2004

Short Description: Activation of runnable entities

Type: new

Importance: high

Description: The RTE shall start/resume a runnable according to the RTEEvents to which
it is linked.

Rationale: Activations of runnable entities due to arrival of data from other components,
invocation of operations of one port or time based execution of runnable
entities is based on the RTEEvent model (s. VFB-Spec, 1.03, ch-4.5.4.3 p-
108, Figure 28)

Use Case: Cyclic, time based activation of runnable entities; activation of a runnable
due to the arrival of data using the sender-receiver communication pattern.

Dependencies: [RTE00160] [RTE00161]

Conflicts: --

Supporting Material: SwCT 1.0.0.15 ch-7.3.2 p-102, ch-7.8 p-117
VFB-Spec, 1.03, ch-4.5.4.3 p-110, p. 112
SwCT Requirement CONTENT080 – defines period for time-triggered
runnable entities.
SwCT Requirement CONTENT085
VFB requirement Sched35 and Sched37

3.2.3.8 [RTE00160] Debounced start of runnable entities

Initiator: WP4.2.1.1

Date: 02.11.2006

Short Description: Debounced start of runnable entities

Type: new

Importance: high

Description: The RTE shall allow the configuration of a debounce start time of runnable
entities to avoid the same runnable entity being executed shortly after each
other.

Rationale: In case several RTE Events occur within a short time interval there shall only
be a limited amount of executions of the runnable entity. It shall be possible
to define a minimum time which in which all activations are noticed, but the
runnable will start only after that period has passed.

Use Case: Runnable entities being activated with along timing period and additionally
activated on several DataReceivedEvents. If the runnable entity has just
been executed the RTE shall wait for the defined period until the runnable
entity is executed again.

Dependencies: [RTE00072]

Conflicts: --

Supporting Material: --

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

21 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

3.2.3.9 [RTE00161] Activation offset of runnable entities

Initiator: WP4.2.1.1

Date: 03.11.2006

Short Description: Activation offset of runnable entities

Type: new

Importance: high

Description: The RTE shall allow the definition of an activation offset of runnable entites.

Rationale: In order to allows optimizations in the scheduling (smooth cpu load, mapping
of runnables with different periods in the same task to avoid data sharing,
etc.), the RTE has to handle the activation offset information from a task
shared reference point for time trigger runnables.

Use Case: --

Dependencies: [RTE00072]

Conflicts: --

Supporting Material: --

3.2.3.10 [RTE00031] Multiple runnable entities

Initiator: WP4.2.1.1

Date: 01.10.2004

Short Description: Multiple runnable entities

Type: new

Importance: high

Description: The RTE shall support multiple runnable entities in AUTOSAR software
components.

Rationale: Runnable entities are used for servers, receivers, feedback, … etc and
therefore each component can have many runnable entities.

Use Case: --

Dependencies: --

Conflicts: --

Supporting Material: VFB Metamodel

3.2.3.11 [RTE00032] Data consistency mechanisms

Initiator: WP4.2.1.1

Date: 01.10.2004

Short Description: Data consistency mechanisms

Type: new

Importance: high

Description: The RTE shall support one or more mechanism for ensuring data
consistency within an application software component instance.

No direct access to data ‘outside’ the component instance is possible within
AUTOSAR.

The scope of the mechanism (e.g. exclusive area) shall be all runnable
entities (that statically specify the same exclusive area – RTE_IN004) in the
software component instance. If consistency between component instances
is required then an additional software component can be created to provide
appropriate access semantics to the encapsulated data.

A side effect of a data consistency mechanism may be to prevent other

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

22 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

runnables in different component instances from executing, for example, the
RTE may lock out all interrupts for a short period of time. However this is not
deemed to be an illegal (non-AUTOSAR) communication channel since the
set of affected runnables is not defined and therefore cannot be relied upon
by a component author.

Rationale: Multiple runnable entities can be active within an application software
component and therefore a mechanism shall exist to prevent concurrency
conflicts. An application software component cannot access the OS directly
and therefore the RTE shall provide the mechanism.

Use Case: Exclusive areas are an example of a mechanism suitable, e.g.:

void RTERunnable_a(RTEInstance
 self)
{
 ...
 RTEEnter_<region>(self);
 /* read-modify-write data */
 RTEExit_<region>(self);
 ...
}

Dependencies: --

Conflicts: --

Supporting Material: VFB Requirements (VFB_C60, Sched70)

To permit an exclusive area to affect all instances of a software component
type would be incorrect since component instances are independent and
would also open a non-AUTOSAR communication channel between the
components.

Note: The APIs using in this requirement that are mentioned are only
examples of how the APIs may look like – the API presented in the SWS is
subject to change.

3.2.3.12 [RTE00046] Support for “runnable runs inside” Exclusive areas

Initiator: WP4.2.1.1

Date: 01.10.2004

Short Description: Support for “runnable runs inside” Exclusive areas

Type: new

Importance: high

Description: The RTE shall support exclusive areas where a runnable is declared as
“running inside” the exclusive area.

All runnable entities in a component that specify the same “runs inside”
exclusive area shall be scheduled non pre-emptively with respect to other
runnable entities in the set.

Rationale: “Runs inside” exclusive areas satisfy the requirement from the software
component template that certain exclusive areas can be defined that are
automatically entered whenever a runnable entity is invoked by the RTE.

Use Case: --

Dependencies: RTE00032 – scope of a exclusive area is the component instance.

Conflicts: --

Supporting Material: SwCT v1.0.1.18, Section 7.9.2

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

23 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

3.2.3.13 [RTE00142] InterRunnableVariables

Initiator: WP4.2.1.1

Date: 13.06.2005

Short Description: Support for InterRunnableVariables

Type: new

Importance: high

Description: The RTE shall support InterRunnableVariables.

A software component shall be able to declare one or more
InterRunnableVariables used for data consistency purposes. An
InterRunnableVariable is useful when several runnable entities of the
component access same data item.

InterRunnableVariables are used to store data item copies to avoid
concurrent runnable accesses to the one original data item.

Rationale: InterRunnableVariables satisfy the requirement from the software
component template that certain InterRunnableVariables can be defined that
can be accessed by runnable entities of same software component instance
to implement the "variable copies" strategy.

Use Case: Data item write access by runnable in 10ms task. Several data item read
accesses by runnable in 50ms task. 50ms task can be preempted by 10ms
task. Data inconsistency can be prevented if runnable in 50ms task gets a
copy of the original data in an InterRunnableVariable to work on during
activation.

Dependencies: RTE00032

Conflicts: --

Supporting Material: SwCT v1.02 Section 7.9.3

3.2.3.14 [RTE00033] Serialization of server runnables

Initiator: WP4.2.1.1

Date: 01.10.2004

Short Description: Serialization of server runnables

Type: new

Importance: high

Description: The RTE shall support serialized and non-serialized server runnables.

The RTE shall complete the processing of one serialized service request
before it accepts and dispatches the next request for that server.

The serialisation is applied on the service level, so one server can handle
multiple service calls concurrently (this implies that the service's runnables
are mapped to different tasks and there is no shared data between them).

A serialized server only accepts and processes requests atomically and thus
avoids potential conflicting concurrent access. Invocation of the server’s
runnable entity shall be encapsulated within a exclusive area when
simultaneous intra-ECU and inter-ECU execution is possible.

If serialization is supported by a server and how big the actual queue is shall
be configurable.

Rationale: Requirement from VFB spec (4.1.4.2 Client-Server Communication)

Use Case: The NVRAM Manager is capable of handling multiple requests. If for each
stored data item there is a separate port generated during configuration the
generic serialisation mechanism works fine.

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

24 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

Dependencies: RTE00032 (Per-instance scope of exclusive areas).
RTE00110 (Support for buffering).

Conflicts: At the moment there is no support in SWCT for concurrent multiple service
execution. But in VFB it is specified through the buffering attribute.

Supporting Material: The execution of a server is independent of how it is invoked, in particular,
whether the call is synchronous or asynchronous is a property of the client
and not the server.

This requirement explicitly enforces strict serialization of server runnables.
An RTE generator can optimize a client/server call to a direct function call
only if serialization is maintained. This can be done through the insertion of
resource locks or other mechanisms.

SwCT Version 1.02 chapter 7.2.2.2.

3.2.3.15 [RTE00133] Concurrent invocation of runnable entities

Initiator: WP4.2.1.1

Date: 10.12.2004

Short Description: Support of runnable entity attribute “canBeInvokedConcurrently”

Type: new

Importance: high

Description: RTE has to allow and support the concurrent invocation of a runnable entity
(means several activations of same runnable entity at same time) for those
runnable entities whose attribute “canBeInvokedConcurrently” is set to
TRUE.

The RTE generator shall reject input configurations requiring several
concurrent activations of a runnable entity when the attribute
“canBeInvokedConcurrently” of the runnable entity is set to FALSE.

Note that this is independent of the runnable entities ability to be multiple
instantiated or not.

Rationale: Requirement from SwCT Runnable Entities description (SwCT 2.0.0-RC4
ch-5.2.2)

Use Case: Direct client-server calls implementation with runnable entity implemented as
a server. E.g. needed for Basic-SW services.

Dependencies: --

Conflicts: --

Supporting Material: --

3.2.3.16 [RTE00143] Mode Switches

Initiator: WP4.2.1.1

Date: 28.09.2005

Short Description: Mode Switches shall be supported

Type: new

Importance: high

Description: The RTE shall implement the functionality of ModeSwitchEvents and
ModeDisabelingDependencies.

Rationale: ModeDisabelingDependencies are the only means by which AUTOSAR
allows to define sets of runnables that run only in certain modes.
ModeSwitchEvents allow to trigger runnables on the transitions between
modes.

Use Case: Use cases are, e.g.:

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

25 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

Initialization and finalization phases,
different communication modes (telling, whether the SW-C can expect the
communication partners of the ports to be available)
Modes could be used as abstraction of schedule tables

Dependencies: RTE00144

Conflicts: --

Supporting Material: AUTOSAR. Software Component Template. Version 1.04 – Final, 04 2005
(C 4.8; pp. 61ff)

3.2.3.17 [RTE00176] Sharing of NVRAM data

Initiator: WP RTE

Date: 22.05.2008

Short Description: Sharing of NVRAM data

Type: New

Importance: Medium

Description: Several Application Software Components shall be able to access the same
data – through ports – defined in NvBlockComponentType.

Rationale: This permits to lower the amount of NVRAM needed on an ECU and to avoid
duplication of data and the maintenance of this duplicated data in the
engineering processes.

Use Case: Reuse of common parameters.
Reduce NVRAM usage.

Dependencies: --

Conflicts: --

Supporting Material: [RS_BRF_00022] - Modification of NVRAM Memory Access Concept [15]

3.2.4 Interaction with Basic Software Components

3.2.4.1 [RTE00152] Support for port-defined argument values

Initiator: WP4.2.1.1

Date: 2006-04-27

Short Description: Support for port-defined argument values

Type: new

Importance: high

Description: The mechanism of “port-defined argument values”, as defined in the
AUTOSAR Services document [14], has to be supported.

Rationale: To allow the interaction of application software components with the
infrastructural basic software.

Use Case: Access of a SW-C to the NVRAM Manager.

Dependencies: --

Conflicts: --

Supporting Material: AUTOSAR Services [14]

3.2.4.2 [RTE00022] Interaction with call-backs

Initiator: WP4.2.1.1

Date: 01.10.2004

Short Description: Interaction with call-backs

Type: new

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

26 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

Importance: high

Description: The RTE shall not suspend execution while executing a call-back.

Rationale: Blocking COM (e.g. in a call-back) could prevent reception of data and
therefore lead to data loss.

Use Case: --

Dependencies: RTE00099 – decoupling of interrupts

Conflicts: --

Supporting Material: If the RTE cannot process (e.g. pass the information to a runnable entity) the
call-back immediately then the information must be queued and processed
at a later point.

A call-back is not the same as activation of a runnable entity.

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

27 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

3.2.4.3 [RTE00062] Local access to basic software components

Initiator: WP4.2.1.1

Date: 01.10.2004

Short Description: Local access to basic software components

Type: new

Importance: high

Description: The RTE shall permit application and basic software components to directly
(via RTE) access the AUTOSAR interfaces of basic software components
located on the same ECU.

The RTE generator shall prevent direct access to the AUTOSAR interfaces
of remote basic software components.

Indirect access to the AUTOSAR interfaces of basic software components
located on a remote ECU shall be possible via the inclusion of an application
component on the remote ECU to ‘export’ an appropriate AUTOSAR
interface to the basic software component.

Rationale: This requirement is imposed for two reasons:
Efficiency – remote access to a basic software component permits only the
lowest level of optimization. For example, the RTE generated would be
unable to take advantage of intra-task access to optimize communication to
either a direct function call (client-server) or queue write (sender-receiver).
Control – an ECU integrator can know, a priori, that scheduling will not be
affected by components on remote ECUs accessing the basic software and
blocking access by local components.

Use Case: On a given ECU, sensor/actuators components are not allowed to
communicate with remote ECU abstraction. This means that sensor/actuator
SWCs SHALL be mapped to the same ECU to which the sensor/actuator
devices are mapped.

Dependencies: RTE00018 – rejection invalid configurations

Conflicts: --

Supporting Material: See VFB chapter 4.4.2.2. The location of a service can be implemented by a
proxy implemented as an AUTOSAR software component.

3.2.4.4 [RTE00177] Support of NvBlockComponentType

Initiator: WP RTE

Date: 22.05.2008

Short Description: Support of NvBlockComponentType

Type: new

Importance: medium

Description: The RTE shall support NvBlockComponentType by providing a NvRAM and
NvROM block to the NVRAM Manager and access to the data stored in the
block.

Rationale: Allow data to be grouped together in the same NVRAM block to lower the
amount of needed NVRAM blocks.

Use Case: Storage of several small flags in a large NvRAM block.

Dependencies: --

Conflicts: --

Supporting Material: [RS_BRF_00022] - Modification of NVRAM Memory Access Concept [15]

3.2.4.5 [RTE00228] Fan-out NvBlock callback function

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

28 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

Initiator: WP RTE

Date: 20.10.2008

Short Description: Fan-out NvBlock callback function

Type: new

Importance: high

Description: The RTE shall support the fan-out (take one incoming callback function and
distribute it into several callback function calls) of the NvBlock callback
function from the NVRAM Manager to multiple Software Component
instances which use the corresponding NvBlock.

Rationale: It is possible to define several users for one NvBlock,but the NVRAM
Manager is not able to handle several callback functions. Therefore the
callback function has to be fan-out by the RTE.

Use Case: Two Software Component Instances accessing the same NvBlock.

Dependencies: RTE00177

Conflicts: --

Supporting Material: [RS_BRF_00022] - Modification of NVRAM Memory Access Concept [15]

3.2.5 Support for Measurement and Calibration

3.2.5.1 [RTE00153] Support of Measurement

Initiator: WP4.2.1.1

Date: 26.07.2006

Short Description: Support of Measurement

Type: new

Importance: high

Description: The RTE generator shall create code allowing read out of ECU internal
communication data and variable contents. Responsibility of RTE is to
supply RAM locations where the measurement data can be read by other
SW (e.g. Basic SW, external measurement tools). This read out might me
asynchronously to all RTE actions.
The RTE is not responsible to deliver the measurement values to ECU
external instances.

Rationale: Measurement is needed to get knowledge about ECU internal behavior
when ECU is running.

Use Case: Monitor SWC internal signals (e.g.InterRunnableVariables), VFB
communication or mode states.

Dependencies: --

Conflicts: --

Supporting Material: SWC-T [7] chapter “Measurement & Calibration”

3.2.5.2 [RTE00154] Support of Calibration

Initiator: WP4.2.1.1

Date: 26.07.2006

Short Description: Support of Calibration

Type: new

Importance: high

Description: RTE shall support calibration process of ECUs.

The RTE is not responsible to make parameter or interpolation curve/map
modifications by itself but must support calibration data emulation.
The RTE is neither responsible to handle exchange of calibration parameter

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

29 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

values nor for communication with ECU external instances.

Rationale: Calibration is the process of adjusting an ECU SW to fulfill its tasks to control
physical processes resp. to fit to special project needs or environments.

Use Case: Adapt ECU SW to motor specific properties.
Environment specific adaptation of ECU SW.

Dependencies: RTE00153 – Support of Measurement: calibration needs means of
measurement to work properly.

Conflicts: --

Supporting Material: SWC-T [7] chapter “Measurement & Calibration”
ASAP Standard (www.asam.net)

3.2.5.3 [RTE00156] Support different calibration data emulation methods

Initiator: WP4.2.1.1

Date: 07.08.2006

Short Description: Support different calibration data emulation methods

Type: new

Importance: high

Description: The RTE generator shall support these data emulation methods for
calibration purposes:
1. directAccess

Calibration data is stored in ROM and accessed directly. This method
can be used with appropriate calibration hardware.

2. Single pointered method
Calibration data accesses are done via one indirection over a pointer
table in RAM

3. Double pointered method
Calibration data accesses are done via a base pointer in RAM and over
a pointer table in ROM/FLASH

4. InitRAM parameter method
RTE accesses calibration parameters located in RAM directly (without
any indirection) and copies the values from ROM/FLASH during startup

Methods 2-4 need SW support from RTE.

Rationale: Projects in different domains have different requirements and different RAM
availabilities.

Use Case: DirectAccess method:
No overhead. Appropriate HW support present or after rebuild for
production

 Single pointered method:
more available RAM present than with InitRAM method, only 1
indirection, no time for initial copy

 Double pointered method:
less RAM needs than single pointered method when calibration is off,
activate several modified parameters simultaneously

InitRAM parameter method:
Only few parameters to calibrate

Dependencies: RTE00154 – Support of Calibration

Conflicts: --

Supporting Material: SWC-T [7] chapter “Measurement & Calibration”

3.2.5.4 [RTE00157] Support calibration parameters in NVRAM

Initiator: WP4.2.1.1

Date: 26.07.2006

Short Description: Support calibration parameters in NVRAM

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

30 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

Type: new

Importance: high

Description: RTE shall support allocation of calibration parameters in NVRAM

Rationale: Allocation in NVRAM allows independent parameter manipulation by other
instances without re-flashing the ECU

Use Case: Modify a NVRAM calibration parameter via a diagnostic service, e.g. modify
window lifter speed or enable a SW option

Dependencies: RTE00154 – Support of Calibration

Conflicts: --

Supporting Material: SWC-T [7] chapter “Measurement & Calibration”

3.2.5.5 [RTE00158] Support separation of calibration parameters

Initiator: WP4.2.1.1

Date: 26.07.2006

Short Description: Support separation of calibration parameters

Type: new

Importance: high

Description: RTE shall support separation of calibration parameters

Rationale: Separation required e.g. due to security reasons

Use Case: Separate calibration parameters for monitoring purposes from the other
calibration parameters to get independency from parameters for normal
functional operation in case of partly corrupted memory.

Dependencies: RTE00154 – Support of Calibration

Conflicts: --

Supporting Material: SWC-T [7] chapter “Measurement & Calibration”

3.2.5.6 [RTE00159] Sharing of calibration parameters

Initiator: WP4.2.1.1

Date: 09.08.2006

Short Description: Sharing of calibration parameters

Type: new

Importance: high

Description: Several software components (and also several instances of software
components) shall be able to share same calibration parameters defined in
CalprmComponentTypes.

Rationale: Avoids potential inconsistencies between several calibration parameters for
same item on 1 ECU, reduces ECU resource consumption

Use Case: Common use of calibration parameters like maximum vehicle speed,
left/right steering wheel, temperature sensor interpolation curve, ..

Dependencies: RTE00154 – Support of Calibration

Conflicts: --

Supporting Material: SWC-T [7] chapter “Measurement & Calibration”

3.2.6 General Requirements

3.2.6.1 [RTE00021] Per-ECU RTE customization

Initiator: WP4.2.1.1

Date: 01.10.2004

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

31 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

Short Description: Per-ECU RTE customization

Type: new

Importance: high

Description: The RTE shall be customizable (generated and/or configured) for each ECU.

The RTE generator should avoid, where possible, the use of generic
functions and should, instead, favor functions that are configured/generated
to specifically implement the required communication patterns.

Rationale: Generic functions are considered to be too computationally expensive since
the function needs to dynamically determine what actions to perform (e.g.
switch on parameters).

In contrast, statically configured/generated functions know implicitly what
needs to be done and therefore avoid these costs and are therefore
considered necessary for the production of optimal systems.

Use Case: --

Dependencies: --

Conflicts: --

Supporting Material: An ECU with two or more micro-controllers can be configured using either
shared memory (and hence a single OS, single basic software set, etc) or
with separate memory (multiple OSs, multiple basic software sets, etc.). In
the first case there is only a single ECU according to the AUTOSAR ECU
architecture and therefore only one RTE. In the second case there are
multiple, independent, ECUs and therefore multiple RTEs.

3.2.6.2 [RTE00065] Deterministic generation

Initiator: WP4.2.1.1

Date: 04.10.2004

Short Description: The RTE generator shall be deterministic

Type: new

Importance: high

Description: The RTE generator shall be able to reproduce an RTE with identical
behavior from the same input files.

Rationale: --

Use Case: There shall be no difference (other than information in comments) between
RTEs generated by the same generator for the same input files – if this were
not true then working with the RTE becomes difficult!

Dependencies: --

Conflicts: --

Supporting Material: --

3.2.6.3 [RTE00028] “1:n” Sender-receiver communication

Initiator: WP4.2.1.1

Date: 01.10.2004

Short Description: “1:n” Sender-receiver communication

Type: new

Importance: high

Description: The RTE shall support “1:n” sender-receiver communication.

Sender-receiver communication is message passing and the RTE shall
support scenarios with a single-sender-multiple-receivers (“1:n”).

Rationale: VFB Specification requires support for single-sender-multiple-receiver (“1:n”)

Use Case: --

Dependencies: RTE00131 – “n:1: communication

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

32 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

Conflicts: --

Supporting Material: VFB Specification

3.2.6.4 [RTE00131] “n:1” Sender-receiver communication

Initiator: WP4.2.1.1

Date: 01.10.2004

Short Description: “n:1” Sender-receiver communication

Type: New

Importance: High

Description: The RTE shall support “n:1” sender-receiver communication.

Sender-receiver communication is message passing and the RTE shall
support scenarios with multiple-senders-single-receiver (“n:1”).

Rationale: VFB Specification requires support for multiple-senders-one-receiver (“n:1”)

Use Case: --

Dependencies: RTE00028 – “1:n” communication

Conflicts: --

Supporting Material: VFB Specification

3.2.6.5 [RTE00029] “n:1” Client-server communication

Initiator: WP4.2.1.1

Date: 01.10.2004

Short Description: “n:1” Client-server communication

Type: new

Importance: medium

Description: The RTE shall support multiple-client-single-server (“n:1”) client-server
(function invocation) communication. Individual clients are independent –
there is no coordination of requests between clients.

Single-client-multiple-server (“1:n”) communication is not required. Such
communication raises issues about buffering and selection of results that are
application dependent and therefore not considered to be the domain of the
RTE.

Rationale: <why is this necessary>

Use Case: The fog light shall serve as backup for the brake light this can be
implemented by one “fog light” - server switching fog light on/off and two
clients, the “fog light”-client and the “brake light”-client both switching fog
lights on and off for different purposes.

Dependencies: VFB requires support multiple-clients-one-server (“n:1”) but explicitly does
not require to support single-client-multiple-server (“1:n”) communication

Conflicts: --

Supporting Material: VFB Specification

3.2.6.6 [RTE00079] Single asynchronous client-server interaction

Initiator: WP4.2.1.1

Date: 05.10.2004

Short Description: Single asynchronous client-server interaction

Type: new

Importance: high

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

33 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

Description: The RTE shall support at most one asynchronous call at a time from a single
operation in a required port categorized by a client-server interface (i.e. there
can only be one outstanding request per "AsynchronousServerCallPoint").

Note that a single client can simultaneously have multiple outstanding
requests provided each is to different server operations.

When a SW-component instance restarts it may receive a stale reply –
replies to a request made before the component was restarted. The RTE
shall forward stale replies and it is the job of the SW-component instance to
detect and reject the reply, for example, through sequence numbers.

Rationale: Requirement from VFB spec (4.1.4.2 Client-Server Communication). There
is no queuing (of parameters and return locations) on the client-side and
therefore only a single outstanding request can be supported.

Use Case: --

Dependencies: --

Conflicts: --

Supporting Material: SWC meta-model
VFB Specification v1.03, Section 4.1.4.2

3.2.6.7 [RTE00080] Multiple requests of servers

Initiator: WP4.2.1.1

Date: 05.10.2004

Short Description: Multiple requests of servers

Type: new

Importance: high

Description: The RTE shall support the queuing of concurrent calls to a server (by
different clients). A server specified using the “BUFFERING queue(n)”
attribute may have queued requests from multiple clients. Requests shall be
read from the server’s queue using first-in-first-out semantics.

Depending on the RTE implementation the queue may be present in the
either in the RTE or in COM.

Rationale: Requirement from VFB spec (4.1.4.2 Client-Server Communication)

Use Case: --

Dependencies: RTE00033

Conflicts: --

Supporting Material: Queues are applied at the operation level, i.e. each operation in a client-
server interface has a dedicated queue.

3.2.6.8 [RTE00025] Static communication

Initiator: WP4.2.1.1

Date: 01.10.2004

Short Description: Static communication

Type: new

Importance: high

Description: The RTE shall support only those communication connections known when
the RTE is generated – the source(s) and destination(s) of all communication
shall be known statically.

Static communication is considered to include application component access
to the publisher-subscriber service – components are statistically configured
to access the service and then subscribers are dynamically chosen from a

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

34 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

statically configured set.

Rationale: Dynamic communication is deemed too expensive (both at run-time and in
code overhead) and would therefore limit the range of devices for which the
RTE is suitable.

Use Case: --

Dependencies: --

Conflicts: --

Supporting Material: VFB Specification

In AUTOSAR (and in COM) only static communication connections are
permitted. If dynamic communication will be allowed in future, all
specifications have to be reworked.

3.2.6.9 [RTE00144] Mode switch notification via AUTOSAR interfaces

Initiator: WP4.2.1.1

Date: 28.09.2005

Short Description: RTE shall support the notification of mode switches via AUTOSAR interfaces

Type: New

Importance: High

Description: RTE shall use the well defined mechanisms of AUTOSAR interfaces for the
communication of active modes from the mode manager to the mode
dependent software component.

Rationale: Use the flexibility and configuration mechanisms defined for AUTOSAR
interfaces.

Use Case: See RTE00143

Dependencies: RTE00143

Conflicts: --

Supporting Material: AUTOSAR. Software Component Template. Version 1.04 – Final, 04 2005
(p. 61, L 7-8)

3.2.6.10 [RTE00018] Rejection of invalid configurations

Initiator: WP4.2.1.1

Date: 01.10.2004

Short Description: Rejection of invalid configurations

Type: new

Importance: high

Description: The RTE generator shall detect, and reject where appropriate, the invalid
deployment and communication configuration of application and basic
software components.

Rationale: The RTE is required to reject “invalid“ configurations, e.g. wait point in
category 1a or 1b runnable, interface incompatibility, …

Use Case: Multiple instantiation of a component where the

“supportsMultipleInstantiation” flag is not set.

The RTE generator shall reject the mapping of event-triggered and
“communication triggered” runnable entities to the same basic task. (An
implementation is possible, if inefficient, for extended tasks).

Dependencies: RTE00062 – local access to basic software

Conflicts: --

Supporting Material: A valid RTE cannot be generated for an invalid configuration.

For example, AUTOSAR is required to be interoperable with “legacy ECUs”

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

35 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

(Requirement MAIN190, AUTOSAR_MainRequirements_v2.2_r.doc, p. 32).
The capabilities of such ECUs may not be precisely compatible with
AUTOSAR and therefore some configurations, e.g. client-server
communication with the legacy ECU, should be rejected – that’s an invalid
configuration.

3.2.6.11 [RTE00055] Use of global namespace

Initiator: WP4.2.1.1

Date: 01.10.2004

Short Description: RTE’s use of global namespace

Type: New

Importance: High

Description: The RTE specification shall define standard naming conventions for all the
symbols created by the RTE generator that are visible within the global
namespace.

Creating symbol definitions within the global namespace using this naming
convention is the exclusive right of the RTE generator. Application and/or
basic software components shall not create symbols defined by this naming
convention within the global namespace.

Rationale: Prevents conflicts with symbols created by application and/or basic software
components.

Use Case: --

Dependencies: --

Conflicts: --

Supporting Material: All symbols use the prefix “RTE”.

3.2.6.12 [RTE00126] C support

Initiator: WP4.2.1.1

Date: 18.11.2004

Short Description: C language support

Type: new

Importance: high

Description: The RTE generator shall support SW-components created using ‘ANSI C’.

Rationale: --

Use Case: --

Dependencies: --

Conflicts: --

Supporting Material: VFB Specification v1.03, p. 36
Glossary Section 3.13 (API)
ANSI/ISO 9899-1989, “Programming Languages – C”

3.2.6.13 [RTE00138] C++ support

Initiator: WP4.2.1.1

Date: 01.02.2005

Short Description: C++ language support

Type: new

Importance: high

Description: The RTE generator shall support SW-components created ISO C++.

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

36 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

Rationale: --

Use Case: --

Dependencies: --

Conflicts: --

Supporting Material: VFB Specification v1.03, p. 36
Glossary Section 3.13 (API)
ISO/IEC 14882-1998, “Programming Languages - C++”

3.2.6.14 [RTE00051] RTE API mapping

Initiator: WP4.2.1.1

Date: 01.10.2004

Short Description: RTE API mapping

Type: new

Importance: high

Description: The RTE specification shall define a standard naming convention for all RTE
API artifacts visible by a component author that are created by the RTE
generator.

The names of RTE API artifacts shall not include the component instance
names.

Rationale: The requirement for an API mapping enables the signature of generated
RTE functions to be hidden from users and permits targeted optimization
depending on configuration.

The hiding of signatures is desirable for two reasons:
The names of generated RTE functions may be long (to ensure name
uniqueness) and therefore unwieldy for users to reference directly.
The generated function name may include information not known when the
component is compiled, such as the instance name.

Use Case: --

Dependencies: --

Conflicts: --

Supporting Material: At the point the component is written the component instance name is not
defined (deployment has not be performed) and therefore the component
instance name cannot be included in the API. However, the instance name is
required by the RTE generator when actually generating the RTE to ensure
name uniqueness and therefore the RTE generator shall implement a well-
defined API mapping from the RTE API to the generated RTE API functions.

3.2.6.15 [RTE00048] RTE Generator input

Initiator: WP4.2.1.1

Date: 01.10.2004

Short Description: RTE Generator input

Type: new

Importance: high

Description: The RTE generator shall accept input consisting of zero or more
databases/files.

Rationale: It is not reasonable to expect input as a single file… therefore the RTE
generator shall collect information from multiple input files and check their
consistency.

Use Case: --

Dependencies: --

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

37 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

Conflicts: --

Supporting Material: AUTOSAR design flow does not restrict input to one source and therefore
RTE generator must be flexible.

3.2.6.16 [RTE00023] RTE Overheads

Initiator: WP4.2.1.1

Date: 01.10.2004

Short Description: RTE Overheads

Type: new

Importance: high

Description: The RTE generator shall provide a configuration option specifying the overall
design goal of the generated RTE - minimizing memory and/or run-time
overhead.

Rationale: Unfortunately, the different feasible directions of optimizations can contradict
each other and only a trade-off close to the overall design goal can be found.
But this may sufficient in order to meet the constraints of the ECU or the
mapping of that special functionality to the ECU is not possible, anyway.
Thus, this requirement requests that the RTE generator should be able to
generate RTEs that fit on a wide a range of devices as possible (obviously
depending on configuration and component deployment).

Use Case: The RTE generator shall generate RTEs for the ECUs needs with respect to
the given resources (processor speed, memory, etc.).

Dependencies: --

Conflicts: --

Supporting Material: VFB_C20 – Rephrased since requirement is inherently untestable – one can
never know when requirements have been minimized (e.g. local minima).
However, rejection does not absolve an implementation from a general
requirement to be “efficient” with ECU resources…

The test is – does the generated RTE fit for the ECUs resources, but not
more!

3.2.6.17 [RTE00024] Source-code AUTOSAR software components

Initiator: WP4.2.1.1

Date: 01.10.2004

Short Description: Source-code AUTOSAR software components

Type: New

Importance: High

Description: The RTE shall support AUTOSAR software components where the source is
available (“source-code software components”).

Rationale: AUTOSAR software components as source-code increase the optimization
potential for the generated RTE.

Use Case: --

Dependencies: --

Conflicts: --

Supporting Material: SwCT v1.0.1.18, Section 2.1.4

3.2.6.18 [RTE00140] Binary-code AUTOSAR software components

Initiator: WP4.2.1.1

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

38 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

Date: 08.02.2005

Short Description: Binary-code AUTOSAR software components

Type: new

Importance: high

Description: The RTE shall support AUTOSAR software components where only the
object code (“binary-code software components”) is available.

Rationale: Binary-code AUTOSAR software components are required for IP hiding.

Use Case: --

Dependencies: --

Conflicts: --

Supporting Material: SwCT v1.0.1.18, Section 2.1.4

Support for binary-code AUTOSAR software components requires the same
compiler type and compiler version.

3.2.6.19 [RTE00083] Optimization for source-code components

Initiator: WP4.2.1.1

Date: 08.10.2004

Short Description: Optimization for source-code components

Type: new

Importance: high

Description: The RTE generator should provide optimized communication when the
source-code of an application software component is available.

Optimizations envisaged include elimination of the RTE for that
communication channel.

Rationale: VFB_C20

Use Case: Conversion of intra-task S-R communication to direct variable write. This can
only be performed for source-code components since the deployment is not
known when a binary-code component is compiled.

Dependencies: RTE00023 (minimize overheads) has been rephrased from the specification
of VFB_C20 to be testable. This requirement is considered testable provided
the “contemporary” solution is suitable for comparison.

Conflicts: --

Supporting Material: VFB_C20 requires that optimizations should enable the RTE to impose zero
overhead when compared with “contemporary” implementations.

When comparing solutions, one should make sure that the AUTOSAR
system has the same features as the "contemporary solution", for

example, by using the “SupportsMultipleInstantiation"

attribute of the
"Implementation" class.

3.2.6.20 [RTE00027] VFB to RTE mapping shall be semantic preserving

Initiator: WP4.2.1.1

Date: 01.10.2004

Short Description: VFB to RTE mapping shall be semantic preserving

Type: new

Importance: high

Description: The RTE generator shall configure the RTE to implement the specified
communication paths while retaining their semantics.

Rationale: The mapping from VFB model expressed in the XML input to generated RTE

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

39 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

is required to be semantic preserving.

This requirement applies regardless of whether communication is done by
COM, by the RTE directly or if the RTE generator optimizes the generated
RTE to bypasses the RTE completely for certain communication paths.

Use Case: The RTE generator is not permitted to modify the semantics of
communication, for example, converting synchronous to asynchronous.

Dependencies: --

Conflicts: --

Supporting Material: VFB_C10

3.2.6.21 [RTE00053] AUTOSAR data types

Initiator: WP4.2.1.1

Date: 01.10.2004

Short Description: AUTOSAR data types

Type: new

Importance: high

Description: The RTE API shall support AUTOSAR data types defined in the component
description.

AUTOSAR data types (both pre-defined and user-defined) are defined in the
software component template using a notation that includes the data type’s
name and the permitted value range.

The RTE API shall support the following pre-defined AUTOSAR primitive
data types: Boolean, Float, Float_with_NaN, Double, Double_with_NaN,
UInt4, UInt8, UInt16, UInt32, SInt4, SInt8, SInt16, SInt32, Char8, Char16.

The RTE API shall also support complex data types including records and
arrays. Note that a record can contain other records and an array can
consist of an array of records.

Rationale: SwCT v1.0.0.15 Section 6.3.2

Use Case: A component that needs to transfer data through an AUTOSAR interface can
call a RTE API function provided by the RTE passing this data as a
parameter.

Dependencies: --

Conflicts: --

Supporting Material: SwCT v1.0.0.15 Section 6.3.3
Units and DataTypes proposal, InterWP, WP 10.x

3.2.6.22 [RTE00234] Support for Record Type sub-setting

Initiator: WP-1.2

Date: 22.09.2010

Short Description: Support for Record Type sub-setting

Type: new

Importance: high

Description: It shall be possible to connect a port which is typed by an interface
containing a record data element with a port where the record data element
has a type which is a sub-set of the provided record type.

Rationale: Since the handling of data in a consistent manner requires to use a record
type, it shall be allowed at the receiver of a RecordType to only receive a
sub-set of the sent record data elements. Since different receivers do require

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

40 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

a different sub-set of the provided data.

Use Case: 4 wheel speed signals and the movement direction signal are provided in
one record. If a receiver is only interested in the movement direction
information all of the other information from this record do not have to be
considered at this specific receiver.

Dependencies: RTE00053

Conflicts: --

Supporting Material: --

3.2.6.23 [RTE00056] Pre-defined primitive data types cannot be redefined

Initiator: WP4.2.1.1

Date: 01.10.2004

Short Description: Pre-defined primitive data types cannot be redefined

Type: new

Importance: high

Description: The RTE generator shall prevent the redefinition within a component
description of the supported pre-defined primitive data types.

Rationale: Prevents a component having its own view as to what a “Uint8” (etc) should
be.

Use Case: --

Dependencies: RTE00053

Conflicts: --

Supporting Material: --

3.2.6.24 [RTE00098] Explicit Transmission

Initiator: WP4.2.1.1

Date: 01.10.2004

Short Description: Explicit Transmission

Type: new

Importance: high

Description: The RTE shall provide a mechanism for making requests for explicit
transmission of AUTOSAR signals (i.e. an implementation of
DataSendPoint).

The DataSendPoint of a runnable entity references an instance of a data-
element in a provided port. Using the DataSendPoint, a runnable can use an
explicit RTE API call to write new values of the specified data-element
(which may cause an immediate transmission depending on component and
communication configuration).

Rationale: Implementation of internal component model from VFB Specification.

Use Case: --

Dependencies: RTE00134, RTE00128 and RTE00129 – The current SwCT and VFB
specifications require that the runnable is of cat 2 for explicit transmission.
This situation is being revised so that cat 1b and 2 will be able to access
DataSendPoints (e.g. extended to cat 1b).

Conflicts: --

Supporting Material: VFB Specification v1.04, Section 4.5.4
SwCT 1.0.0.15 ch-7.5.2 p-112

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

41 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

3.2.6.25 [RTE00129] Implicit Transmission

Initiator: WP4.2.1.1

Date: 01.10.2004

Short Description: Implicit Transmission

Type: New

Importance: High

Description: The RTE shall provide a mechanism for the implicit transmission of data
elements. The mechanism shall grant write-access to a data element of a
provided port that may be freely changed until the runnable entity returns.

The presence of DataWriteAccess means that the runnable will potentially
modify the DataElement in the pPort. The runnable has free access to the
data-element while it is running but the runnable should ensure that the data-
element is in a consistent state when it returns.

When using DataWriteAccess the new values of the data-element are made
available, by the RTE, when the runnable returns. Depending on the
configuration the RTE may either have nothing to do or it may need to
actually initiate transmission of the data element.

Rationale: Implementation of internal component model from VFB Specification.

Use Case: --

Dependencies: RTE00134, RTE00128 and RTE00129 – Previous SwCT and VFB
specifications required that the runnable is (at most?) of cat 1b. This
situation is being revised so that cat 1a are allowed to access
DataReadAccess and DataWriteAccess.

Conflicts: --

Supporting Material: VFB Specification v1.04, Section 4.5.4.1
SwCT 1.0.0.15 ch-7.5.1 p-111

3.2.6.26 [RTE00128] Implicit Reception

Initiator: WP4.2.1.1

Date: 01.10.2004

Short Description: Implicit Reception

Type: new

Importance: high

Description: The RTE shall provide a mechanism for the implicit reception of data
elements. The mechanism shall grant read-access to a data element of a
required port that will not be modified by the RTE and may be freely read
until the runnable entity returns.

The presence of DataReadAccess means that the runnable will require
access to the DataElement in the rPort. The runnable expects that the
contents of this data does not change during execution of the runnable
entity.

Rationale: --

Use Case: --

Dependencies: RTE00134, RTE00128 and RTE00129 – Previous SwCT and VFB
specifications required that the runnable is (at most?) of cat 1b. This
situation is being revised so that cat 1a are allowed to access
DataReadAccess and DataWriteAccess.

Conflicts: --

Supporting Material: VFB Specification v1.04, Section 4.5.4.1
SwCT 1.0.0.15 ch-7.5.1 p-111

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

42 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

3.2.6.27 [RTE00141] Explicit Reception

Initiator: WP4.2.1.1

Date: 04.03.2005

Short Description: Explicit Reception

Type: new

Importance: high

Description: The RTE shall provide a mechanism for making requests for explicit
reception of AUTOSAR signals (i.e. an implementation of
DataReceivePoint).

The DataReceivePoint of a runnable entity references an instance of a data-
element in a required port. Using the DataReceivePoint, a runnable can use
an explicit RTE API call to receive new values of the specified data-element
(e.g. the 'next' value is read out of the local queue).

Rationale: Implementation of internal component model from VFB Specification.

Use Case: --

Dependencies: RTE00134, RTE00128, RTE00098, and RTE00129

Conflicts: --

Supporting Material: VFB Specification v1.04, Section 4.5.4

3.2.6.28 [RTE00092] Implementation of VFB model “waitpoints”

Initiator: WP4.2.1.1

Date: 01.10.2004

Short Description: Implementation of VFB model “waitpoints”

Type: New

Importance: High

Description: The RTE API shall support wait points at which runnable entities will block
until an “RTEEvent” occurs.

A category 2 runnable entity should, through the RTE API, be able to
suspend its execution (i.e. block) until a well-defined event occurs.

This requirement does not mean that “wait points” shall be explicitly
specified in the API and could be satisfied by blocking calls that suspend the
caller until an event (defined in the VFB meta-model) occurs.

Rationale: Runnable entities need to be able to suspend execution (block) until a
defined event occurs.

Use Case: --

Dependencies: RTE00027

Conflicts: --

Supporting Material: This requirement is a special case of RTE00027.

SwCT 1.0.0.15 ch-7.3.2 p-102

3.2.6.29 [RTE00145] Compatibility mode

Initiator: WP4.2.1.1

Date: 16.11.2005

Short Description: Compatibility mode

Type: New

Importance: High

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

43 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

Description: The RTE Generator shall provide a compatibility operating mode that
guarantees compatibility between different RTE implementations both for
source code and object code components.

Rationale: For IP hiding purposes a component may be delivered as object code only.
Then it has to be precompiled against a header file created by an RTE
implementation that may not be the RTE implementation that is used in the
integration environment.

Use Case: --

Dependencies: RTE00146

Conflicts: --

Supporting Material: --

3.2.6.30 [RTE00146] Vendor mode

Initiator: WP4.2.1.1

Date: 16.11.2005

Short Description: Vendor mode

Type: New

Importance: High

Description: The RTE Generator may provide a vendor operating mode allowing vendor-
specific optimizations.

Rationale: The vendor mode does not need to rely on predefined data structures and
gives the individual RTE implementations the freedom for further
optimizations for an additional reduction of the RTE overhead.

Use Case: --

Dependencies: RTE00145

Conflicts: --

Supporting Material: --

3.2.6.31 [RTE00148] Support “Specification of Memory Mapping”

Initiator: WP4.2.1.1

Date: 30.01.2006

Short Description: Support “Specification of Memory Mapping”

Type: New

Importance: High

Description: The document “Specification of Memory Mapping” shall be supported by
RTE implementations.

Rationale: To allow the integration of several software modules in one ECU.

Use Case: --

Dependencies: --

Conflicts: --

Supporting Material: Specification of Memory Mapping [11]

3.2.6.32 [RTE00149] Support “Specification of Compiler Abstraction”

Initiator: WP4.2.1.1

Date: 30.01.2006

Short Description: Support “Specification of Compiler Abstraction”

Type: New

Importance: High

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

44 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

Description: The document “Specification of Compiler Abstraction” shall be supported by
RTE implementations.

Rationale: --

Use Case: --

Dependencies: --

Conflicts: --

Supporting Material: Specification of Compiler Abstraction [13]

3.2.6.33 [RTE00150] Support “Specification of Platform Types”

Initiator: WP4.2.1.1

Date: 30.01.2006

Short Description: Support “Specification of Platform Types”

Type: New

Importance: High

Description: The document “Specification of Platform Types” shall be supported by RTE
implementations.

Rationale: --

Use Case: --

Dependencies: --

Conflicts: --

Supporting Material: Specification of Platform Types [12]

3.2.6.34 [RTE00151] Support RTE relevant requirements of the “General

Requirements on Basic Software Modules”

Initiator: WP4.2.1.1

Date: 30.01.2006

Short Description: Support RTE relevant requirements of the “General Requirements on Basic
Software Modules”

Type: New

Importance: High

Description: The following requirements of the “General Requirements on Basic Software
Modules” shall be supported by RTE implementations:
[BSW00300] [BSW00304] [BSW00305] [BSW00307] [BSW00308]
[BSW00310] [BSW00312] [BSW00326] [BSW00327] [BSW00330] [BSW007]

Rationale: --

Use Case: --

Dependencies: --

Conflicts: --

Supporting Material: General Requirements on Basic Software Modules [2], only a subset of the
requirements needs to be taken into account for the RTE.

3.2.6.35 [RTE00178] Data consistency of NvBlockComponentType

Initiator: WP RTE

Date: 22.05.2008

Short Description: Data consistency of NvBlockComponentType

Type: new

Importance: medium

Description: The RTE shall protect the data defined in NvBlockComponentType against

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

45 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

concurrent write and read access (by SWCs or NVRAM Manager).

Rationale: The data of a NvBlockComponentType is shared amongst SWCs (and also
with the NVM). The data needs to be protected against concurrent write and
read access.

Use Case: --

Dependencies: RTE00176

Conflicts: --

Supporting Material: [RS_BRF_00022] - Modification of NVRAM Memory Access Concept [15]
Software Component Template [7]

3.2.6.36 [RTE00179] Support of Update Flag for Data Reception

Initiator: WP RTE

Date: 09.06.2008

Short Description: Support of Update Flag for Data Reception

Type: new

Importance: low

Description: In case of Sender Receiver communication with last is best semantics, if the
configuration requires, RTE shall support an update flag that indicates
whether there has been an update of the data since the last read operation
from the Software Component to the data element. The update flag shall be
set during reception of the data by the RTE and reset during the read
operation from the software component.

Rationale: Allows polling for updates.

Use Case: This allows a Runnable Entity - that is, e.g., triggered by the FlexRay cycle -
to take action depending on the availability of new data.
It shall be possible to refrain from re-reading the data element, if the data is
not updated.

Dependencies: RTE00110

Conflicts: --

Supporting Material: [RS_BRF_00092] Extension of the Receive Queue Behavior [15]

3.2.6.37 [RTE00184] RTE Status “Never Received”

Initiator: WP RTE

Date: 27.01.2011

Short Description: RTE Status “Never Received”

Type: new

Importance: medium

Description: The RTE shall support the RTE-Status “never received”. This is the new
initial status of each data element for which it is configured. This initial status
will be cleared when the first reception occurs.

Rationale: This additional status establishes the possibility to check, whether a data
element has been changed since system start or partition restart.

Use Case: Get the information whether involved data have been received at any time
since system start or partition restart.

Dependencies: --

Conflicts: --

Supporting Material: --

3.2.7 VFB Tracing

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

46 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

3.2.7.1 [RTE00005] Support for ‘trace’ build

Initiator: WP4.2.1.1

Date: 04.10.2004

Short Description: The RTE generator shall support ‘trace’ builds

Type: Changed 29.08.2008

Importance: high

Description: If the RTE provides means for tracing which cost additional RAM and/or
ROM and/or RUNTIME in the ECU. It shall be possible to switch these
features off statically during RTE generation.

Rationale: Allow monitoring of VFB communication and runtime behavior.

Use Case: --

Dependencies: RTE00045, RTE00008

Conflicts: --

Supporting Material: VFB90, VFB_C10

3.2.7.2 [RTE00045] Standardized VFB tracing interface

Initiator: WP4.2.1.1

Date: 04.10.2004

Short Description: Standardized VFB tracing interface

Type: new

Importance: medium

Description: In ‘trace’ build the RTE implementation shall provide a standardized interface
to make data values and events available to VFB tracing tools.

When in ‘trace’ build the RTE generator inserts hook calls at interesting
points (e.g. API invocation, interactions with COM, task start, runnable start,
etc).

Rationale: By defining a standardized VFB tracing interface tool vendors can adapt
existing trace tools quickly – this will promote the adoption of AUTOSAR
ECUs.

Use Case: --

Dependencies: RTE00005

Conflicts: --

Supporting Material: VFB Specification (VFB90); VFB Specification V1.03, Sect. 4.4.3, p. 94

An RTE implementation can define ‘null’ implementations of the hooks – to
enable an RTE to build – but then permit them to be re-implemented by tool
vendors to target vendor specific interfaces to standard tracing tools.

The hook functions and their semantics are defined in the RTE specification.

3.2.7.3 [RTE00008] VFB tracing configuration

Initiator: WP4.2.1.1

Date: 04.10.2004

Short Description: VFB tracing configuration

Type: new

Importance: medium

Description: If the RTE provides means for tracing communication across the VFB, it
shall be possible to configure the RTE for what has to be logged and traced.

Rationale: Tracing only of interesting signals/activations/system states, to reduce
overhead in RAM+RUNTIME.

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

47 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

Use Case: --

Dependencies: RTE00005

Conflicts: --

Supporting Material: VFB Specification (VFB90); VFB Specification V1.03, Sect. 4.4.3, p. 94

3.2.7.4 [RTE00003] Tracing of sender-receiver communication

Initiator: WP4.2.1.1

Date: 04.10.2004

Short Description: Tracing of sender-receiver communication

Type: new

Importance: medium

Description: The ‘trace’ builds of the RTE generator shall support tracing of sender-
receiver signals on the VFB.

The RTE should provide means for the tracing of transported signals of
sender-receiver communication. It should be possible to trace both intra-
ECU and inter-ECU communication.

Rationale: Log data and supply it for debugging purposes.

Use Case: --

Dependencies: RTE00005

Conflicts: --

Supporting Material: VFB Specification (VFB90)

3.2.7.5 [RTE00004] Tracing of client-server communication

Initiator: WP4.2.1.1

Date: 04.10.2004

Short Description: Tracing of client-server communication

Type: new

Importance: medium

Description: The ‘trace’ builds of the RTE generator shall support the tracing of client-
server communication.

The RTE should provide means for the tracing of transported signals of
client-server communication. It should be possible to trace both intra-ECU
and inter-ECU communication.

Rationale: Log data and supply it for debugging purposes.

Use Case: --

Dependencies: RTE00005

Conflicts: --

Supporting Material: VFB Specification (VFB90)

3.2.8 Application Component Initialization and Finalization

3.2.8.1 [RTE00052] Initialization and finalization of components

Initiator: WP4.2.1.1

Date: 01.10.2004

Short Description: Initialization and finalization of components

Type: new

Importance: high

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

48 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

Description: The RTE shall support initialization and finalization of application software
components.

The term “initialization of a component” refers to the phase of a software
components life cycle which will be executed before entering the normal
operational mode, normally in order to set up an appropriate environment for
executing the application.

The term “finalization of a component” refers to the phase of a software
components life cycle which will be executed after the normal operational
mode, normally in order to reset the operational environment to a determined
state.

Rationale: The general ECU life-cycle is characterized by transitions from inoperational
states to run states and back to the inoperational states of the
ECUStateManager. When in run states the OS scheduler is responsible for
the ECUs schedule and runnables will be executed with respect to the OS
scheduler. In all other states the ECUStateManager is responsible for
schedule of the ECU, but runnables can only be executed in synchronous
and sequential way. Since the initialization and finalization phase of
components refer to the transition from inoperational state to run states or
vice versa, the runnables given for initialization and finalization can be
executed synchronously as well as asynchronously depending on the
intention of the system designer. That means the RTE shall provide means
to invoke those runnables in the one or the other way and shall ensure that
runnables of application software components always communicate at least
conceptually with modules of the basic software via the RTE.

Use Case: Reading application specific parameters from non-volatile RAM while
initialization application specific software component, writing application
specific parameters to the non-volatile RAM while finalization of the
application software component.

Dependencies: SWS ECUStateManager

Conflicts: --

Supporting Material: VFB Specification (Sched42)

3.2.8.2 [RTE00070] Invocation order of runnables

Initiator: WP4.2.1.1

Date: 01.10.2004

Short Description: Invocation order of runnable entities

Type: new

Importance: high

Description: The RTE generator shall respect the invocation order of runnable entities as
described through a behavior description.

Rationale: The invocation order of runnable entities (seen as pieces of code) may be of
importance, e.g., while the initialization and finalization phase. This
requirement shall be applicable for runnable entities that are mapped to
tasks.

The invocation order of different application software components may be
expressed by the invocation order of their runnables, when these runnable
entities can be mapped to the same tasks.

Use Case: Let a runnable for initialization finish before an other runnable is allowed to
start.

Dependencies: --

Conflicts: --

Supporting Material: SwCT 1.0.0.15 ch. 4.8.6 p. 59 and ch-7.9 p-117

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

49 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

3.2.9 API

3.2.9.1 [RTE00100] Compiler independent API

Initiator: WP4.2.1.1

Date: 04.11.2004

Short Description: Compiler independent API

Type: new

Importance: high

Description: The RTE API (for a particular programming language) shall be compiler and
platform independent.

Rationale: There shall be no need to change an application software component
source-code when the component is moved between ECUs and/or the
compiler is changed.

Use Case: --

Dependencies: --

Conflicts: --

Supporting Material: In addition the RTE should, ideally, also be retargetable (i.e. portable) with
minimum effort. This is explicitly not stated as an RTE requirement since it is
a statement about RTE implementation and not RTE behavior.

3.2.9.2 [RTE00059] RTE API passes ‘in’ primitive data types by value

Initiator: WP4.2.1.1

Date: 01.10.2004

Short Description: RTE API shall pass ‘in’ primitive data types by value

Type: new

Importance: high

Description: An API input parameter that is a primitive data type (with the exception of a
string) shall be passed by value.

Rationale: Pass by value is efficient for small data types.

Use Case: --

Dependencies: --

Conflicts: --

Supporting Material: In the context of this requirement, primitive data types include integers (both
signed and unsigned), floating point and opaque types.

3.2.9.3 [RTE00060] RTE API shall pass ‘in’ complex data types by reference

Initiator: WP4.2.1.1

Date: 01.10.2004

Short Description: RTE API shall pass ‘in’ complex data types by reference.

Type: new

Importance: high

Description: The RTE API shall pass all input parameters that are complex data types
(i.e. a record or an array) or strings by reference.

Rationale: Pass by reference is efficient for large data types.

Use Case: --

Dependencies: --

Conflicts: This requirement may be in conflict in systems using memory protection
mechanism. If the sender of the complex data and the receiver of the
complex data are belonging to different memory domains RTE must copy the

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

50 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

complex data to a memory area accessible by the receiver in order to avoid
memory violation faults caused by the receiver.

Supporting Material: RTE00001 [rejected] Implementation of the OS Protection Hook
RTE00036 Assignment to OS Applications
RTE00037 The RTE shall be able to invoke functions across protection
boundaries

3.2.9.4 [RTE00061] ‘in/out’ and ‘out’ parameters

Initiator: WP4.2.1.1

Date: 01.10.2004

Short Description: ‘in/out’ and ‘out’ parameters

Type: new

Importance: high

Description: The RTE API shall pass ‘in/out’ and “out” formal parameters by reference.

Rationale: Required so that modifications to the actual parameters made by the called
function are visible to the caller.

Use Case: --

Dependencies: --

Conflicts: --

Supporting Material: --

3.2.9.5 [RTE00115] API for data consistency mechanism

Initiator: WP4.2.1.1

Date: 17.11.2004

Short Description: API for data consistency mechanism

Type: new

Importance: high

Description: The RTE shall provide an API to access the data consistency mechanism(s).

Rationale: The data mechanism may rely on AUTOSAR OS mechanisms (e.g.
resources) which cannot be accessed directly by application software
components.

Use Case: --

Dependencies: RTE00032 – data consistency mechanism

Conflicts: --

Supporting Material: VFB Requirements (VFB_C60, Sched70)

3.2.9.6 [RTE00075] API for accessing per-instance memory

Initiator: WP4.2.1.1

Date: 05.10.2004

Short Description: API for accessing per-instance memory

Type: new

Importance: high

Description: The RTE generator shall generate an API in the application header file
through which the runnable entities of a component instance can access
their per-instance memory for reading and writing.

Rationale: Required by the software component template

Use Case: --

Dependencies: RTE00013 – per-instance memory

Conflicts: --

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

51 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

Supporting Material: “per-instance memory” is synonymous to “Individual data of a component
instance” described in SwCT (v2.0.0-RC4) section 5.9.

The RTE does not impose a data consistency mechanism on access to per-

instance memory. If a component requires consistency then the RTEEnter

and RTEExit API calls should be used.

3.2.9.7 [RTE00107] Support for INFORMATION_TYPE attribute

Initiator: WP4.2.1.1

Date: 17.11.2004

Short Description: Support for INFORMATION_TYPE attribute

Type: new

Importance: high

Description: The RTE generator shall support the INFORMATION_TYPE attribute with
values “data” and “event”.

The RTE generator shall support different information types for each data
item in an AUTOSAR interface.

The RTE generator shall raise a configuration-time error if the specification
of INFORMATION_TYPE is inconsistent for sender and receiver.

Rationale: Required by VFB Specification.

Use Case: --

Dependencies: RTE00112 [rejected] – TIME_FOR_RESYNC

Conflicts: --

Supporting Material: VFB Specification v1.03, p. 40
VFB Specification v1.03, Section 4.1.7.4
VFB Specification v1.03, Table 4-15
VFB Specification v1.04, p. 61 line 14

When “data” is specified, the RTE shall presume the following;
Receive mode shall be (explicit read) “data_read_access”.
Buffering shall be “last_is_best”.
Specification of an initial value is required.
Specification of “TIME_FOR_RESYNC” is required.
Specification of “LIVELIHOOD” is required.

When “event” is specified, the RTE shall presume the following:
The “TIME_FOR_RESYNC” is not specified.
The “LIVELIHOOD” is not specified.

An attempt to redefine the presumptions shall cause a configuration time
error.

Failure to fulfill the presumptions shall cause a configuration time error.

3.2.9.8 [RTE00108] Support for INIT_VALUE attribute

Initiator: WP4.2.1.1

Date: 17.11.2004

Short Description: Support for INIT_VALUE attribute

Type: new

Importance: high

Description: The RTE generator shall support the INIT_VALUE attribute for both intra-

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

52 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

ECU and inter-ECU communication (though the latter is expected to requires
no direct support if AUTOSAR COM is used).

If an initial value is specified for a receiver and not a sender (or vice versa)
the RTE generator shall apply the same initial value to both sender and
receiver.

If an initial value is specified for both sender and receiver the RTE generator
shall use the specifications for the receiver.

Rationale: --

Use Case: --

Dependencies: RTE00068 – Signal initial values

Conflicts: --

Supporting Material: VFB Specification v1.03, p. 42

3.2.9.9 [RTE00109] Support for RECEIVE_MODE attribute

Initiator: WP4.2.1.1

Date: 17.11.2004

Short Description: Support for RECEIVE_MODE attribute

Type: new

Importance: high

Description: The RTE generator shall support the RECEIVE_MODE attribute with the
values “data_read_access”, “wake_up_of_wait_point” and
“activation_of_runnable_entity”.

The RTE generator shall support different receive modes for each data item
in an AUTOSAR interface.

Rationale: Derived from the VFB Specification.

Use Case: --

Dependencies: --

Conflicts: --

Supporting Material: VFB Specification v1.03, p. 43

When “data_read_access” is specified the RTE generator shall create a non-
blocking read API for the data item. The name of the API could include the
port name and data item name.

When “wake_up_of_wait_point” is specified the RTE generator shall create a
blocking read API for the data item. The name of the API shall include the
port name and data item name. The API could support a timeout specified at
configuration time.

When “activation_of_runnable_entity” is specified the RTE generator shall
invoke a runnable entity when data is received passing the received data as
parameters to the runnable entity. The name of the runnable entity could
include the port name and data item name.

3.2.9.10 [RTE00110] Support for BUFFERING attribute

Initiator: WP4.2.1.1

Date: 17.11.2004

Short Description: Support for BUFFERING attribute

Type: new

Importance: high

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

53 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

Description: The RTE generator shall support the BUFFERING attribute with the values
“last_is_best” (sender/receiver only), “queue” and “no” (client/server only).

The RTE generator shall support different buffering specifications for each
data item in an AUTOSAR interface.

Note the queues may be implemented by either the RTE or by COM.

Rationale: --

Use Case: --

Dependencies: RTE00033 – Serialization of server runnables

Conflicts: --

Supporting Material: VFB Specification v1.03, p. 43

When “last_is_best” is specified the RTE generator

1. Shall create a non-consuming read API for the data item. The name
of the API shall include the port name and data item name.

2. Shall store received data shall be stored in a single-element queue
and new data shall overwrite existing data.

When “queue” is specified for sender/receiver the RTE generator

1. Shall create a consuming read API for the data item. The name of
the API shall include the port name and data item name.

2. Shall store received data in a queue (the length of which is specified
by the “queue” attribute value) accessed on a first-in-first-out basis.

3. Shall discard new data if the queue is full.

When “no” or “queue” is specified for client/server see RTE00033.

3.2.9.11 [RTE00111] Support for CLIENT_MODE attribute

Initiator: WP4.2.1.1

Date: 17.11.2004

Short Description: Support for CLIENT_MODE attribute

Type: new

Importance: high

Description: The RTE generator shall support the CLIENT_MODE attribute with the
values “synchronous” and “asynchronous”.

The RTE generator shall support different client mode specifications for each
operation in an AUTOSAR interface.

Rationale: --

Use Case: --

Dependencies: RTE00049 – construction of task bodies

Conflicts: --

Supporting Material: VFB Specification v1.03, p. 51

When “synchronous” is specified the RTE generator

1. Shall create an API that invokes the operation synchronously. The
name of the API could include the port name and operation name.

2. Shall support a timeout specified at the configuration time. The RTE
generator should ignore any timeout specified for intra-task
communication.

When “asynchronous” is specified the RTE generator

1. Shall create an API that invokes the operation asynchronously. The
name of the API could include the port name and operation name.

2. Reject configurations that specify asynchronous invocation of server

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

54 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

where both runnable entities are mapped to the same task.

3.2.9.12 [RTE00121] Support for FILTER attribute

Initiator: WP4.2.1.1

Date: 17.11.2004

Short Description: Support for FILTER attribute

Type: new

Importance: high

Description: The RTE generator shall support the FILTER attribute. If specified, the
attribute value shall specify the filter type used.

The RTE generator shall support different filter specifications for each data
item in an AUTOSAR interface.

The RTE generator shall ensure that value-based filtering is available for all
receivers whether communication occurs via COM or is handled by the RTE.

Rationale: Same behavior independent of RTE implementation and component
deployment.

Use Case: --

Dependencies: --

Conflicts: --

Supporting Material: VFB Specification v1.03, p. 44

3.2.9.13 [RTE00122] Support for SUCCESS attribute

Initiator: WP4.2.1.1

Date: 17.11.2004

Short Description: Support for SUCCESS attribute

Type: New

Importance: Low

Description: The RTE generator shall support the SUCCESS attribute. If specified, the
attribute values shall indicate whether an acknowledgement of reception or
transmission is required.

The RTE generator shall support different SUCCESS specifications for each
data item in an AUTOSAR interface.

The RTE generator shall reject attempts to configure both a transmission
and reception acknowledgement for the same data item.

Rationale: --

Use Case: --

Dependencies: --

Conflicts: --

Supporting Material: VFB Specification v1.04, p. 45
This requirement has a low priority because the whole reliability concept is
not well defined up to now. Therefore this requirement for the success
attribute may change.

3.2.9.14 [RTE00147] Support for communication infrastructure time-out

notification

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

55 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

Initiator: WP4.2.1.1

Date: 27.01.2006

Short Description: Support for communication infrastructure time-out notification

Type: New

Importance: High

Description: The RTE shall support the notification of time-outs on cyclically received
signals/signal-groups via COM.
The deadline monitoring has to be enabled for these signals and the callback
has to be configured in COM.
This is only applicable for sender-receiver communication with info-type
“data”.

Rationale: Indicate the missing update of signals received via COM.

Use Case: When the “vehicle speed” signals is not updated because of communication
infrastructure errors it needs to be indicated to the SW-Components
interested.

Dependencies: RTE00069

Conflicts: --

Supporting Material: nonBSW Feature list (v0.40) F049

The value is specified as “aliveTimeout” in the SWCT (Required ComSpec).
The value is specified as “timeout” in combination with
“needsOutdatedIndication” in the System Template (SystemSignal).
COM already performs the “deadline monitoring” and notifies the RTE.

3.2.9.15 [RTE00078] Support for INVALIDATE attribute

Initiator: WP4.2.1.1

Date: 02.02.2006

Short Description: Support for INVALIDATE attribute

Type: New

Importance: High

Description: The RTE shall support the INVALIDATE communication attribute for signals.
The RTE shall provide an API to invalidate a signal and to query if a signal
has been invalidated. Also a notification on the reception of an invalid signal
shall be supported.

Rationale: The INVALIDATE communication attribute shall be visible to the software
components.

Use Case: Data invalid

Dependencies: RTE00107 – INFORMATION_TYPE attribute

Conflicts: --

Supporting Material: nonBSW Feature list (v0.40) F048
Table 4.5 of the VFB specification V1.03

3.2.9.16 [RTE00094] Communication and Resource Errors

Initiator: WP4.2.1.1

Date: 09.10.2004

Short Description: Communication and Resource Errors

Type: new

Importance: high

Description: The RTE shall handle errors related to communication or resources.

The RTE is required to handle communication errors (e.g. message
transmission failed) and resource errors (e.g. network not available) and to

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

56 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

notify the relevant software component through the RTE API.

Rationale: --

Use Case: --

Dependencies: RTE00084 – Support infrastructural errors

Conflicts: --

Supporting Material: SwCT 1.0.0.15 p.90 lines 5-12
VFB v1.03 explicitly delegates the definition of the error handling mechanism
to be defined by WP4.2.1.1.

3.2.9.17 [RTE00084] Support infrastructural errors

Initiator: WP4.2.1.1

Date: 08.10.2004

Short Description: Support infrastructural errors

Type: new

Importance: high

Description: The RTE API shall support the forwarding of infrastructural errors to
components. This can occur synchronously with API calls (e.g. read, send)
or asynchronously (i.e. activation of runnable entity). Infrastructural errors
include communication and resource errors and are split into two groups:
Immediate Infrastructure Error:
If the RTE detects an error which is specific to the current processed data.
The remaining bit0..bit5 may describe the specific error.
Overlayed Error:
If the RTE detects an error which is not specific to the current processed
data. Overlayed Errors are set using bit6.

Rationale: VFB v1.03, Section 4.6 (esp. figure 4-31)
SwCT 1.0.0.15 p.90 lines 5-12

Use Case: --

Dependencies: RTE00094 – Communication and Resource Errors

Conflicts: --

Supporting Material: Error events are returned using the RTE API return code.

3.2.9.18 [RTE00123] Forwarding of application level server errors

Initiator: WP4.2.1.1

Date: 17.11.2004

Short Description: The RTE shall forward application level errors from server to client

Type: new

Importance: high

Description: The RTE shall pass the application error ID together with the communication
reply from the server to the client. The RTE shall only pass the application
error, if no structural error is present.

Rationale: For client-server communication, the application SW components require a
method to transfer application specific errors under the condition that there
are no structural errors on the communication path.

Use Case: A math library provides a server that determines the square root of an
argument. An application error should be returned if the argument is
negative.

Dependencies: RTE00124 – API for application level server errors

Conflicts: --

Supporting Material: See presentation from error handling team

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

57 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

3.2.9.19 [RTE00124] API for application level server errors

Initiator: WP4.2.1.1

Date: 17.11.2004

Short Description: API for application level errors during Client Server communication

Type: new

Importance: high

Description: The RTE shall communicate application level errors on the same path as
structural errors of the communication stack.
The RTE shall receive error information from the server operation’s return
value.

Rationale: This requirement enables the efficient use of return values to pass error IDs.
By a common use of the return value for structural and application errors, the
application only has to check once for “OK”.

Use Case: Rte_StatusType

sqrt(Rte_Instance self,

 Double p, Double *result)

{

 if (p < (Double)0.0) {

 /* Set application error

 * (API to be defined) */

 return ERROR_IMAGINARY_NUMBER;

 }

 *result = (Double)sqrt(p);

 return RTE_E_OK;

}

Dependencies: RTE00123 – Forwarding of application level server errors

Conflicts: --

Supporting Material: See presentation from error handling team

3.2.9.20 [RTE00089] Independent access to interface elements

Initiator: WP4.2.1.1

Date: 08.10.2004

Short Description: Independent access to interface elements

Type: new

Importance: high

Description: The RTE API shall support independent access to data items (sender-
receiver interface) or operations (client-server interface).

Rationale: Required by the VFB Specification

Use Case: --

Dependencies: --

Conflicts: --

Supporting Material: VFB Specification

Data items (or operations) in an interface form multiple logical channels
between the same end-points (ports).

Each logical channel is handled independently – data can be sent and
received or operations invoked without reference to other logical channels.
Since logical channels are independent there is not guarantee of consistency
between sends over different channels.

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

58 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

3.2.9.21 [RTE00130] API to determine executing runnable entity

Initiator: WP4.2.1.1

Date: 01.12.2004

Short Description: API to determine executing runnable entity

Type: new

Importance: high

Description: The RTE shall provide an API to determine the currently executing runnable
entity.

Rationale: --

Use Case: The OS protection hook, created by the system integrator, invokes the API to
determine what action to take.

Dependencies: --

Conflicts: --

Supporting Material: The RTE provided API, when given an OS application ID, returns the
runnable entity currently executing in that application. The function would
then be used (by the system integrator?) to create a custom protection hook
that determines the action to take after invoking the RTE supplied function.

3.2.9.22 [RTE00137] API for mismatched ports

Initiator: WP4.2.1.1

Date: 01.02.2004

Short Description: API for mismatched ports

Type: new

Importance: high

Description: The RTE generator shall provide null API calls for data elements or
operations for ports where more elements/operations are provided than
required.

The API for an unconnected provided data element or operation shall
discard the input parameters and return “no error”.

Rationale: --

Use Case: A provided sender-receiver port defines two data elements ‘a’ and ‘b’ yet is
required by a port with only element ‘a’. The API call for ‘b’ shall be
generated but shall have no effect.

Dependencies: --

Conflicts: --

Supporting Material: SWcT-C V1.0.1.18, p.106

3.2.9.23 [RTE00139] API for unconnected ports

Initiator: WP4.2.1.1

Date: 01.02.2004

Short Description: API for unconnected ports

Type: new

Importance: high

Description: The RTE shall handle ports, whether required or provided, that are not
connected.

The APIs for an unconnected required sender/receiver port shall return a
status code as if a sender was connected, but did not transmit anything
within the timeout period.

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

59 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

The API to collect the result from an asynchronous client-server port for an
unconnected required port shall return the status code as if a server was
connected but did not transmit a reply within the timeout period.

The API for an unconnected provided sender/receiver port shall discard the
input parameters and return “no error”.

Rationale: --

Use Case: A not connected port of a software component.

Dependencies: --

Conflicts: --

Supporting Material: SWcT-C V1.0.1.18, p.106

3.2.9.24 [RTE00155] API to access calibration parameters

Initiator: WP4.2.1.1

Date: 03.08.2006

Short Description: API to access calibration parameters

Type: new

Importance: high

Description: The SW-C source code shall be independent from the actual calibration
method (data emulation with SW or HW support) chosen for the needed
calibration parameters. To abstract from the different access methods to
calibration parameters the RTE shall provide an API.

Rationale: The SW-C source code shall use a dedicated API to access the calibration
parameters.

Use Case: The SW-C code uses the same API call regardless whether the calibration
parameter is stored directly in ROM or is stored in a structure to support data
emulation with SW support.

Dependencies: RTE00154 – Support of Calibration

Conflicts: --

Supporting Material: SWC-T [7] chapter “Measurement & Calibration”

3.2.10 C/C++ API

3.2.10.1 [RTE00087] Application Header File

Initiator: WP4.2.1.1

Date: 08.10.2004

Short Description: Application Header File

Type: new

Importance: high

Description: The RTE Generator shall create exactly one application header file to be
explicitly included in each C/C++ application or basic software component
type that defines that component’s RTE API. There may be a hierarchy of
include files implicitly included.

Rationale: Required to define API mapping and to perform optimizations and monitoring
targeted for specific components.

The application header file is generated and can therefore include
component specific information, including task header files for zero-overhead
access to OS facilities.

Use Case: --

Dependencies: --

Conflicts: --

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

60 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

Supporting Material: AUTOSAR design flow.

The name of the header file shall be RTE_<component>.h where

<component> is the software component type name.

This requirement does not preclude a component including its own header
files.

3.2.11 Initialization and Finalization Operation

Requirements for component finalization are considered above (RTE00052).

3.2.11.1 [RTE00116] RTE Initialization and finalization

Initiator: WP4.2.1.1

Date: 01.10.2004

Short Description: RTE Initialization and finalization

Type: new

Importance: high

Description: The RTE generator shall provide mechanisms to initialize and finalize the
RTE.

The initialization “function” is used to initialize the RTE and would typically be
called once by an ECU soon after coming out of reset.

The finalization “function” is used to shutdown the RTE.

The mechanism details (e.g. function contents) are highly dependent on the
RTE implementation. In particular, an RTE which consisted of macros and
libraries may need no function at all in which case the requirement is
satisfied by a null macro.

Rationale: The RTE shall be properly setup before the application components.

Use Case: --

Dependencies: ModeManager

Conflicts: At which time is this function called? If it is called during the Startup-hook, no
AUTOSAR OS system calls are allowed. It should be stated, which calls are
allowed in RTE Start.

Supporting Material: --

3.2.12 Fault Operation

Errors are directly reported to invoking Software Component (see RTE00094).

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

61 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

3.3 Non-Functional Requirements (Qualities)

3.3.1 General Requirements

3.3.1.1 [RTE00064] AUTOSAR Methodology

Initiator: WP4.2.1.1

Date: 04.10.2004

Short Description: AUTOSAR methodology

Type: new

Importance: high

Description: The RTE generator shall operate according to the AUTOSAR methodology.

Rationale: --

Use Case: --

Dependencies: --

Conflicts: --

Supporting Material: AUTOSAR Methodology

3.3.1.2 [RTE00019] RTE is the communication infrastructure

Initiator: WP4.2.1.1

Date: 01.10.2004

Short Description: RTE is the communication infrastructure

Type: new

Importance: high

Description: All communication between application software components and between
application software components and basic software components shall
occur, at least conceptually, via the RTE. Note that communication between
modules within the basic software does NOT occur through the RTE.

This is a basic requirement and ensures that the RTE controls all
communication involving application software components. This requirement
is not intended to prevent the RTE generator providing optimizations that
bypass the RTE such as optimizing client-server to direct function call.

Rationale: AUTOSAR ECU architecture

Use Case: --

Dependencies: --

Conflicts: --

Supporting Material: VFB Specification

This requirement applies regardless of whether communication is done
by COM, by the RTE directly or if the RTE generator optimizes the
generated RTE to bypasses the RTE completely for certain communication
paths.

The phrase “at least conceptually” is used to indicate that on the conceptual
(model M2/M1 levels) all communication occurs via the virtual function bus
and, since the RTE is the realization of the VFB for an ECU, via the RTE.
However this is only conceptual since the actual implementation (model M0
level) may not use the RTE for communication. For example, client-server
communication conceptually occurs via the RTE but may be implemented as
a direct function call (and hence bypass the RTE).

Requirements on RTE Software
 V1.5.0

R3.2 Rev 3

62 of 62 Document ID 083: AUTOSAR_SRS_RTE

- AUTOSAR confidential -

4 References

4.1 Deliverables of AUTOSAR

[1] Glossary,
AUTOSAR_Glossary.pdf

[2] General Requirements on Basic Software Modules,
AUTOSAR_SRS_General.pdf

[3] Requirements on RTE,
AUTOSAR_SRS_RTE.pdf

[4] Specification of RTE Software,
AUTOSAR_SWS_RTE.pdf

[5] Specification of Basic Software Module Description,
AUTOSAR_BSW_ModuleDescription.pdf

[6] Specification of the Virtual Functional Bus,
AUTOSAR_VirtualFunctionBus.pdf

[7] Software Component Template,
AUTOSAR_SoftwareComponentTemplate.pdf

[8] Methodology,
AUTOSAR_Methodology.pdf

[9] Specification of ECU Configuration,
AUTOSAR_ECU_Configuration.pdf

[10] Specification of ECU Configuration Parameters,
AUTOSAR_SWS_ECU_ConfigationParameters.pdf

[11] Specification of Memory Mapping,
AUTOSAR_SWS_MemoryMapping.pdf

[12] Specification of Platform Types,
AUTOSAR_SWS_PlatformTypes.pdf

[13] Specification of Compiler Abstraction
AUTOSAR_SWS_CompilerAbstraction.pdf1

[14] AUTOSAR Services
AUTOSAR_Services.pdf

[15] Feature Specification of the BSW Architecture and the RTE,
AUTOSAR_TR_BSWAndRTEFeatures.pdf

1

	1 Scope of this document
	2 How to read this document
	2.1 Conventions used
	2.2 Requirements structure

	3 Requirements Specification
	3.1 Functional Overview
	3.2 Functional Requirements
	3.2.1 Interaction with AUTOSAR OS
	3.2.1.1 [RTE00020] Access to OS
	3.2.1.2 [RTE00099] Decoupling of interrupts
	3.2.1.3 [RTE00037] The RTE shall be able to invoke functions across protection boundaries
	3.2.1.4 [RTE00036] Assignment to OS Applications
	3.2.1.5 [RTE00049] Construction of task bodies

	3.2.2 Interaction with AUTOSAR COM
	3.2.2.1 [RTE00068] Signal initial values
	3.2.2.2 [RTE00069] Communication timeouts
	3.2.2.3 [RTE00073] Data items are atomic
	3.2.2.4 [RTE00082] Standardized communication protocol
	3.2.2.5 [RTE00091] Inter-ECU Marshalling

	3.2.3 Interaction with Application Components
	3.2.3.1 [RTE00011] Support for multiple application software component instances
	3.2.3.2 [RTE00012] Multiply instantiated AUTOSAR software components delivered as binary code shall share code
	3.2.3.3 [RTE00013] Per-instance memory
	3.2.3.4 [RTE00077] Instantiation of per-instance memory
	3.2.3.5 [RTE00017] Rejection of inconsistent component implementations
	3.2.3.6 [RTE00134] Runnable entity categories supported by the RTE
	3.2.3.7 [RTE00072] Activation of runnable entities
	3.2.3.8 [RTE00160] Debounced start of runnable entities
	3.2.3.9 [RTE00161] Activation offset of runnable entities
	3.2.3.10 [RTE00031] Multiple runnable entities
	3.2.3.11 [RTE00032] Data consistency mechanisms
	3.2.3.12 [RTE00046] Support for “runnable runs inside” Exclusive areas
	3.2.3.13 [RTE00142] InterRunnableVariables
	3.2.3.14 [RTE00033] Serialization of server runnables
	3.2.3.15 [RTE00133] Concurrent invocation of runnable entities
	3.2.3.16 [RTE00143] Mode Switches
	3.2.3.17 [RTE00176] Sharing of NVRAM data

	3.2.4 Interaction with Basic Software Components
	3.2.4.1 [RTE00152] Support for port-defined argument values
	3.2.4.2 [RTE00022] Interaction with call-backs
	3.2.4.3 [RTE00062] Local access to basic software components
	3.2.4.4 [RTE00177] Support of NvBlockComponentType
	3.2.4.5 [RTE00228] Fan-out NvBlock callback function

	3.2.5 Support for Measurement and Calibration
	3.2.5.1 [RTE00153] Support of Measurement
	3.2.5.2 [RTE00154] Support of Calibration
	3.2.5.3 [RTE00156] Support different calibration data emulation methods
	3.2.5.4 [RTE00157] Support calibration parameters in NVRAM
	3.2.5.5 [RTE00158] Support separation of calibration parameters
	3.2.5.6 [RTE00159] Sharing of calibration parameters

	3.2.6 General Requirements
	3.2.6.1 [RTE00021] Per-ECU RTE customization
	3.2.6.2 [RTE00065] Deterministic generation
	3.2.6.3 [RTE00028] “1:n” Sender-receiver communication
	3.2.6.4 [RTE00131] “n:1” Sender-receiver communication
	3.2.6.5 [RTE00029] “n:1” Client-server communication
	3.2.6.6 [RTE00079] Single asynchronous client-server interaction
	3.2.6.7 [RTE00080] Multiple requests of servers
	3.2.6.8 [RTE00025] Static communication
	3.2.6.9 [RTE00144] Mode switch notification via AUTOSAR interfaces
	3.2.6.10 [RTE00018] Rejection of invalid configurations
	3.2.6.11 [RTE00055] Use of global namespace
	3.2.6.12 [RTE00126] C support
	3.2.6.13 [RTE00138] C++ support
	3.2.6.14 [RTE00051] RTE API mapping
	3.2.6.15 [RTE00048] RTE Generator input
	3.2.6.16 [RTE00023] RTE Overheads
	3.2.6.17 [RTE00024] Source-code AUTOSAR software components
	3.2.6.18 [RTE00140] Binary-code AUTOSAR software components
	3.2.6.19 [RTE00083] Optimization for source-code components
	3.2.6.20 [RTE00027] VFB to RTE mapping shall be semantic preserving
	3.2.6.21 [RTE00053] AUTOSAR data types
	3.2.6.22 [RTE00234] Support for Record Type sub-setting
	3.2.6.23 [RTE00056] Pre-defined primitive data types cannot be redefined
	3.2.6.24 [RTE00098] Explicit Transmission
	3.2.6.25 [RTE00129] Implicit Transmission
	3.2.6.26 [RTE00128] Implicit Reception
	3.2.6.27 [RTE00141] Explicit Reception
	3.2.6.28 [RTE00092] Implementation of VFB model “waitpoints”
	3.2.6.29 [RTE00145] Compatibility mode
	3.2.6.30 [RTE00146] Vendor mode
	3.2.6.31 [RTE00148] Support “Specification of Memory Mapping”
	3.2.6.32 [RTE00149] Support “Specification of Compiler Abstraction”
	3.2.6.33 [RTE00150] Support “Specification of Platform Types”
	3.2.6.34 [RTE00151] Support RTE relevant requirements of the “General Requirements on Basic Software Modules”
	3.2.6.35 [RTE00178] Data consistency of NvBlockComponentType
	3.2.6.36 [RTE00179] Support of Update Flag for Data Reception
	3.2.6.37 [RTE00184] RTE Status “Never Received”

	3.2.7 VFB Tracing
	3.2.7.1 [RTE00005] Support for ‘trace’ build
	3.2.7.2 [RTE00045] Standardized VFB tracing interface
	3.2.7.3 [RTE00008] VFB tracing configuration
	3.2.7.4 [RTE00003] Tracing of sender-receiver communication
	3.2.7.5 [RTE00004] Tracing of client-server communication

	3.2.8 Application Component Initialization and Finalization
	3.2.8.1 [RTE00052] Initialization and finalization of components
	3.2.8.2 [RTE00070] Invocation order of runnables

	3.2.9 API
	3.2.9.1 [RTE00100] Compiler independent API
	3.2.9.2 [RTE00059] RTE API passes ‘in’ primitive data types by value
	3.2.9.3 [RTE00060] RTE API shall pass ‘in’ complex data types by reference
	3.2.9.4 [RTE00061] ‘in/out’ and ‘out’ parameters
	3.2.9.5 [RTE00115] API for data consistency mechanism
	3.2.9.6 [RTE00075] API for accessing per-instance memory
	3.2.9.7 [RTE00107] Support for INFORMATION_TYPE attribute
	3.2.9.8 [RTE00108] Support for INIT_VALUE attribute
	3.2.9.9 [RTE00109] Support for RECEIVE_MODE attribute
	3.2.9.10 [RTE00110] Support for BUFFERING attribute
	3.2.9.11 [RTE00111] Support for CLIENT_MODE attribute
	3.2.9.12 [RTE00121] Support for FILTER attribute
	3.2.9.13 [RTE00122] Support for SUCCESS attribute
	3.2.9.14 [RTE00147] Support for communication infrastructure time-out notification
	3.2.9.15 [RTE00078] Support for INVALIDATE attribute
	3.2.9.16 [RTE00094] Communication and Resource Errors
	3.2.9.17 [RTE00084] Support infrastructural errors
	3.2.9.18 [RTE00123] Forwarding of application level server errors
	3.2.9.19 [RTE00124] API for application level server errors
	3.2.9.20 [RTE00089] Independent access to interface elements
	3.2.9.21 [RTE00130] API to determine executing runnable entity
	3.2.9.22 [RTE00137] API for mismatched ports
	3.2.9.23 [RTE00139] API for unconnected ports
	3.2.9.24 [RTE00155] API to access calibration parameters

	3.2.10 C/C++ API
	3.2.10.1 [RTE00087] Application Header File

	3.2.11 Initialization and Finalization Operation
	3.2.11.1 [RTE00116] RTE Initialization and finalization

	3.2.12 Fault Operation

	3.3 Non-Functional Requirements (Qualities)
	3.3.1 General Requirements
	3.3.1.1 [RTE00064] AUTOSAR Methodology
	3.3.1.2 [RTE00019] RTE is the communication infrastructure

	4 References
	4.1 Deliverables of AUTOSAR

