
Requirements on Operating System
 V2.0.6

R3.2 Rev 3

1 of 23 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

Document Title Requirements on Operating
System

Document Owner AUTOSAR

Document Responsibility AUTOSAR

Document Identification No 008

Document Classification Auxiliary

Document Version 2.0.6

Document Status Final

Part of Release 3.2

Revision 3

Document Change History
Date Version Changed by Change Description

28.02.2014 2.0.6 AUTOSAR
Release
Management

Editorial changes

23.03.2011 2.0.5 AUTOSAR
Administration

Legal disclaimer revised

23.06.2008 2.0.4 AUTOSAR
Administration

Legal disclaimer revised

31.10.2007 2.0.3 AUTOSAR
Administration

 Document meta information extended

 Small layout adaptations made

24.01.2007 2.0.2 AUTOSAR
Administration

 “Advice for users” revised

 “Revision Information” added

28.11.2006 2.0.1 AUTOSAR
Administration

Legal disclaimer revised

29.03.2006 2.0.0 AUTOSAR
Administration

Minor formal changes

30.06.2005 1.0.0 AUTOSAR
Administration

Initial Release

Requirements on Operating System
 V2.0.6

R3.2 Rev 3

2 of 23 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

Disclaimer

This specification and the material contained in it, as released by AUTOSAR is for
the purpose of information only. AUTOSAR and the companies that have contributed
to it shall not be liable for any use of the specification.

The material contained in this specification is protected by copyright and other types
of Intellectual Property Rights. The commercial exploitation of the material contained
in this specification requires a license to such Intellectual Property Rights.

This specification may be utilized or reproduced without any modification, in any form
or by any means, for informational purposes only.
For any other purpose, no part of the specification may be utilized or reproduced, in
any form or by any means, without permission in writing from the publisher.

The AUTOSAR specifications have been developed for automotive applications only.
They have neither been developed, nor tested for non-automotive applications.

The word AUTOSAR and the AUTOSAR logo are registered trademarks.

Advice for users

AUTOSAR Specification Documents may contain exemplary items (exemplary
reference models, "use cases", and/or references to exemplary technical solutions,
devices, processes or software).

Any such exemplary items are contained in the Specification Documents for
illustration purposes only, and they themselves are not part of the AUTOSAR
Standard. Neither their presence in such Specification Documents, nor any later
documentation of AUTOSAR conformance of products actually implementing such
exemplary items, imply that intellectual property rights covering such exemplary
items are licensed under the same rules as applicable to the AUTOSAR Standard.

Requirements on Operating System
 V2.0.6

R3.2 Rev 3

3 of 23 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

Table of Contents

1 Scope of this document ... 5

2 How to read this document .. 6

2.1 Conventions used... 6

2.2 Requirement structure .. 7

3 Acronyms and abbreviations ... 8

4 Requirement Specification ... 9

4.1 Real-Time Operating System ... 9
4.1.1 Functional description .. 9

4.2 Core Operating System .. 9
4.2.1 [BSW097] Existing OSEK OS .. 9
4.2.2 [BSW11001] Object Grouping ... 10

4.2.3 [BSW11018] Interrupt masking services .. 10
4.2.4 [BSW11019] Creation of Interrupt Vector Table 11

4.3 Statically Defined Scheduling ... 11
4.3.1 [BSW098] Table based schedules .. 12

4.3.2 [BSW099] Switchable schedules ... 12
4.3.3 [BSW11002] Synchronisation with global time 12

4.4 Monitoring Facilities .. 13
4.4.1 [BSW11003] Stack Monitoring ... 13

4.5 Protection Facilities .. 13
4.5.1 Memory Protection .. 14

4.5.1.1 [BSW11005] Memory Write Access .. 14
4.5.1.2 [BSW11006] Allow data exchange .. 14
4.5.1.3 [BSW11007] Code Sharing ... 15

4.5.1.4 [BSW11000] Memory read access .. 15
4.5.2 Timing Protection... 15

4.5.2.1 [BSW11008] Timing Protection ... 15
4.5.3 Service Protection ... 16

4.5.3.1 [BSW11009] Protection of the OS ... 16

4.5.3.2 [BSW11010] Protection of OS-Applications 17

4.5.4 [BSW11011] Protecting the OS managed hardware 17
4.5.5 [BSW11012] Scalable Protection .. 18
4.5.6 Protection Errors.. 18

4.5.6.1 [BSW11013] Error Notification ... 18
4.5.6.2 [BSW11014] Protection Error Handling ... 19

4.6 Timer Services ... 19
4.6.1 Functional Requirements ... 19

4.6.1.1 [BSW11020] Standard interface for ticking counters 19
4.6.1.2 [BSW11021] Support for cascading counters 20

4.7 Time Triggered Operating System ... 21

4.7.1 Functional Overview .. 21

4.7.2 Functional Requirements ... 21

4.7.2.1 [BSW11016] Scalability of the OS ... 21

5 References .. 22

Requirements on Operating System
 V2.0.6

R3.2 Rev 3

4 of 23 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

5.1 Deliverables of AUTOSAR ... 22

5.2 Related standards and norms .. 22
5.2.1 OSEK .. 22
5.2.2 HIS .. 22
5.2.3 Company Reports, Academic Work, etc .. 23

Requirements on Operating System
 V2.0.6

R3.2 Rev 3

5 of 23 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

1 Scope of this document

The goal of this document is to define the high-level requirements for the AUTOSAR
operating system.

Constraints

None

Requirements on Operating System
 V2.0.6

R3.2 Rev 3

6 of 23 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

2 How to read this document

Each requirement has its unique identifier starting with the prefix “BSW” (for “Basic
Software”). For any review annotations, remarks or questions, please refer to this
unique ID rather than chapter or page numbers!

2.1 Conventions used

In requirements, the following specific semantics are used (taken from Request for
Comment RFC 2119 from the Internet Engineering Task Force IETF)

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119. Note that the requirement
level of the document in which they are used modifies the force of these words.

 MUST: This word, or the terms "REQUIRED" or "SHALL", mean that the
definition is an absolute requirement of the specification.

 MUST NOT: This phrase, or the phrase „SHALL NOT“, means that the
definition is an absolute prohibition of the specification.

 SHOULD: This word, or the adjective "RECOMMENDED", mean that there
may exist valid reasons in particular circumstances to ignore a particular item,
but the full implications must be understood and carefully weighed before
choosing a different course.

 SHOULD NOT: This phrase, or the phrase "NOT RECOMMENDED" mean
that there may exist valid reasons in particular circumstances when the
particular behavior is acceptable or even useful, but the full implications
should be understood and the case carefully weighed before implementing
any behavior described with this label.

 MAY: This word, or the adjective „OPTIONAL“, means that an item is truly
optional. One vendor may choose to include the item because a particular
marketplace requires it or because the vendor feels that it enhances the
product while another vendor may omit the same item. An implementation,
which does not include a particular option, MUST be prepared to interoperate
with another implementation, which does include the option, though perhaps
with reduced functionality. In the same vein an implementation, which does
include a particular option, MUST be prepared to interoperate with another
implementation, which does not include the option (except, of course, for the
feature the option provides.)

Requirements on Operating System
 V2.0.6

R3.2 Rev 3

7 of 23 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

2.2 Requirement structure

Each module specific chapter contains a short functional description of the Basic
Software Module. Requirements of the same kind within each chapter are grouped
under the following headlines (where applicable):

Functional Requirements:
- Configuration (which elements of the module need to be configurable)
- Initialisation
- Normal Operation
- Shutdown Operation
- Fault Operation
- ...

Non-Functional Requirements:
- Timing Requirements
- Resource Usage
- Usability
- Output for other WPs (e.g. Description Templates, Tooling,...)

Requirements on Operating System
 V2.0.6

R3.2 Rev 3

8 of 23 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

3 Acronyms and abbreviations

Abbreviation Description

API Application Programming Interface

BSW Basic Software Requirement

COM Communications

ECU Electronic Control Unit

HIS Hersteller Initative Software

MCU Microcontroller Unit

MPU Memory Protection Unit

NM Network Management

OIL OSEK Implementation Language

OS Operating System

OSEK/VDX Offene Systeme und deren Schnittstellen für die Elektonik im Kraftfahrzeug

SWC Software Component

Requirements on Operating System
 V2.0.6

R3.2 Rev 3

9 of 23 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

4 Requirement Specification

4.1 Real-Time Operating System

4.1.1 Functional description

The real-time operating system in an embedded automotive ECU builds the basis for
the dynamic behaviour of the software. It manages the scheduling of tasks and
events, the data flow between different tasks and provides features for monitoring
and error handling.

However, in automotive systems the requirements on an operating system are highly
domain specific. For instance, in the body, powertrain and chassis domains, the
focus is on efficient scheduling of tasks and alarms, handling of shared resources
and deadline monitoring. The used operating system has to be very efficient in
runtime and small in memory footprint.

In multimedia and telematics applications, the feature set provided by the operating
system and also the available computing resources are significantly different. Here,
on top of pure task management, also complex data handling (e.g. streams, flash file
systems, etc.), memory management and often even a graphical user interface are
contained in the OS.

The classic domain of an automotive OS covers the core features of scheduling and
synchronisation. In AUTOSAR, the additional features discussed above are outside
the scope of the OS, such features are covered by the other WP4.2.2.1 work
packages (e.g. SPAL). Integrating the feature sets of other OSs (e.g. QNX, VxWorks
and Windows CE etc.) into a monolithic OS/communication/drivers structure is not
possible under architectural constraints of AUTOSAR. Therefore, the AUTOSAR OS
shall consider only the core features.

4.2 Core Operating System

4.2.1 [BSW097] Existing OSEK OS

Initiator: BMW

Date: 22.01.2004

Short Description: Use OSEK OS

Type: New

Importance: High

Description: The OS shall provide an API that is backward compatible to the API of
OSEK OS. New requirements shall be integrated as an extension of
functionality.

Rationale: Guarantee migration progress

Use Case: Existing driver software can be reused as its interface to the OS is not
changed.

Dependencies: --

Conflicts: --

Requirements on Operating System
 V2.0.6

R3.2 Rev 3

10 of 23 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

Supporting Material: [DOC_WP113_SAFETY] [STD_OSEK_OS]

4.2.2 [BSW11001] Object Grouping

Initiator: WP4.2.2.1.11

Date: 07.07.2004

Short Description: OS object grouping

Type: New

Importance: High

Description: The OS shall provide software decomposition (Fault Containment Regions)
which allows for fault isolation and fault recovery capabilities.

Rationale: The existing specification of OSEK OS is not aware of multiple OS-
applications residing on a single processor, there is therefore no facility for
the containment of faults in one software component or basic software
module from propagating to other software components and/or basic
software modules resident on the same processor. OSEK OS has the
following rules OS object manipulation:

Tasks and ISRs are the executable objects managed by the OS.

Standard resources can be manipulated by only those task/ISRs that declare
this at configuration time.

Events can be set by any task or ISR. Events can only be waited on or
cleared by those tasks that declare this at configuration time.

Alarms can be manipulated by any task or ISR.

Extending this general scheme to Planned Schedules (BSW098) means that
Planned Schedules can be manipulated by any task or ISR.

This loose ownership of OS objects (task, ISR, alarm, event, planned
schedule, resources) makes it difficult to contain certain classes of faults at
runtime, for example one software component incorrectly cancelling an
alarm belonging to another software component. It is therefore necessary to
define the relationship between OS objects and the software components or
basic software module to which they belong so that fault containment can be
achieved at runtime.

The OS shall provide a higher-level abstraction to allow the user to group
existing OSEK OS objects (tasks, ISRs etc.) so that objects in the group can
be manipulated only by objects in the same group. Such a group is called an
OS-Application.

Furthermore, defining an OS-Application allows a memory protection domain
to be provided (see [BSW11005] Memory Write Access).

Use Case: Under a failure condition the fault handling mechanism needs to stop all
objects associated with a software component from executing.

Dependencies: --

Conflicts: --

Supporting Material: --

4.2.3 [BSW11018] Interrupt masking services

Initiator: SPAL

Requirements on Operating System
 V2.0.6

R3.2 Rev 3

11 of 23 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

Date: 08.12.2004

Short Description: Access to interrupt masking services before StartOS() and after
ShutdownOS().

Type: New

Importance: High

Description: The OS shall provide interrupt mask functions before calling StartOS() and
after a ShutdownOS() call. These functions are already defined in OSEK OS
and the usage is now extended.

Rationale: Needed by SPAL.

Use Case: The SPAL drivers are required to manipulate the interrupt mask before,
during and after normal OS operation.

Dependencies: C initialization has to be performed before these functions can be used.

Conflicts: --

Supporting Material: See meeting minutes of the joined SPAL and OS meeting December
8

th
2004.

4.2.4 [BSW11019] Creation of Interrupt Vector Table

Initiator: WP4.2.2.1.11

Date: 10.03.2005

Short Description: Creation of Interrupt Vector Table.

Type: New

Importance: High

Description: The AUTOSAR OS generation tool shall create the vector table for interrupts
AND shall ensure that the hardware interrupt priorities are consistent with
the OS configuration.

Rationale: Each ECU will need to have an interrupt vector table. The operating system
configuration already contains details about all interrupts used by the
system. The AUTOSAR OS generation tool shall be the final tool in the
development process that generates the interrupt vector table.

Use Case: Integration of other modules.

Dependencies: --

Conflicts: --

Supporting Material: --

4.3 Statically Defined Scheduling

In many applications it is necessary to statically define the activation of a set of tasks
related to each other. This can be for guaranteeing data consistency in data-flow
based designs, synchronising with a time-triggered network, guaranteeing correct
run-time phasing, etc.

A time-triggered operating system is often proposed as a solution to this problem.
However, time is simply an event so any event triggered OS, including OSEK OS,
can implement a scheduler for statically scheduled real-time software in automotive
electronic control units.

The requirements for schedules tables provide an OSEK OS object that can be
manipulated in the same way as an OSEKtime dispatcher table.

Requirements on Operating System
 V2.0.6

R3.2 Rev 3

12 of 23 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

4.3.1 [BSW098] Table based schedules

Initiator: BMW

Date: 20.01.2004

Short Description: Table based schedules

Type: New

Importance: High

Description: The Operating System shall provide statically configurable schedule tables
based on time tables as an optional service.

Rationale: Requirement of Standard Core users. Table based schedules are more
efficient and easier to understand than tasks activated by OSEK alarm
services.
Adding a table-based scheduling mechanism approach as an extension to
OSEK OS provides users with the ability to construct an OSEKtime-like
dispatcher table without needing to introduce the unnecessary restrictions of
the stack-based scheduling policy or an additional OS specification.

Use Case: Release a number of tasks synchronously with a statically defined inter-
arrival time.

Dependencies: --

Conflicts: --

Supporting Material: --

4.3.2 [BSW099] Switchable schedules

Initiator: BMW

Date: 20.01.2004

Short Description: Switchable schedules.

Type: New

Importance: High

Description: The Operating System shall provide a mechanism which allows switching
between different schedule tables.

Rationale: For different application states (e.g. init, start-up, pre-start, normal operation,
diagnosis, pre-sleep, shut down) different schedules are necessary.

Use Case: ECU modes controlled by ECU State Manager

Dependencies: BSW098

Conflicts: --

Supporting Material: --

4.3.3 [BSW11002] Synchronisation with global time

Initiator: WP4.2.2.1.11

Date: 07.07.2004

Short Description: Synchronisation with global time.

Type: New

Importance: High

Description: The operating system shall provide the ability to synchronise the processing
of schedule tables with a global system time base. It shall support immediate
(hard) synchronization and gradually adapting (smooth) synchronization.

Rationale: It is necessary for some distributed applications to be synchronised to a
global (to the relevant applications) timebase. This type of feature is needed
for users coming to the AUTOSAR OS from OSEKtime.

Use Case: Users migrating from OSEKtime dispatcher tables can replicate the same
functionality with schedule tables without needing to introduce an additional

Requirements on Operating System
 V2.0.6

R3.2 Rev 3

13 of 23 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

OS specification.

Dependencies: --

Conflicts: --

Supporting Material: [STD_OSEK_TTOS]

4.4 Monitoring Facilities

A monitoring function detects an error at an appropriate stage in execution and not
the instant that the error occurs. Consequently, any monitoring function is the trap of
a failure at runtime rather than the prevention of a fault.

4.4.1 [BSW11003] Stack Monitoring

Initiator: WP4.2.2.1.11

Date: 07.07.2004

Short Description: Stack Monitoring

Type: New

Importance: High

Description: The operating system shall be able to monitor stack usage and check for a
stack overflow on a per executable object basis (task/ISR).

Rationale: On some hardware it will not be possible to implement any sophisticated
memory protection. Stack monitoring provides an alternative (but less
secure) solution where some protection is deemed better then none.

Use Case: If a system where an application could overflow its stack is implemented on
hardware that cannot support true memory protection, stack monitoring is a
useful alternative.

Dependencies: --

Conflicts: --

Supporting Material: --

4.5 Protection Facilities

The AUTOSAR concept requires multiply-sourced OS-Applications to co-exist on the
same processor. To prevent unexpected interaction between these OS-Applications
it is necessary to provide mechanisms that protect them from one another. There are
two major use-cases:

1. For a safety-critical system, the development of a safety-case is made much

easier if individual OS-Application safety cases can be integrated into an overall
safety case. This is only feasible if it can be demonstrated that at least a fault in
one OS-Application cannot propagate beyond its own boundary and cause a fault
in another, unrelated, OS-Application.

2. Suppliers can only be expected to take responsibility (and some liability) for their

software components and/or basic software modules if they can be assured that
their software cannot be incorrectly blamed for a processor-wide failure.

Both of these use-cases can be satisfied by the addition of protection mechanisms to
OSEK OS. The following sections outline the areas of protection:

Requirements on Operating System
 V2.0.6

R3.2 Rev 3

14 of 23 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

4.5.1 Memory Protection

4.5.1.1 [BSW11005] Memory Write Access

Initiator: WP4.2.2.1.11

Date: 07.07.2004

Short Description: Memory write protection

Type: New

Importance: High

Description: The operating system shall provide the ability of partitioning OS-Applications
with respect to memory and prevent an OS-application from modifying the
memory of other OS-Applications.

Rationale: Where multiple OS-Applications (of different software integrity) are resident
on the same processor, their memory will be globally writable by any code.
This means that the data of one OS–Application could be corrupted by
another unrelated OS-Application (i.e. there is fault propagation between
OS-Applications). For example a task of an OS-Application may overflow its
stack, causing static data of an unrelated OS-Application to be corrupted,
causing it to fail.
To permit reasoning about adequate independence between the functions of
different integrity levels, it is essential that this is prevented at runtime.
Note that BSW11003 is different: It only detects fault rather than preventing
a memory access error from generating a fault.

Use Case: --

Dependencies: Note that satisfying this requirement implies the satisfaction of the stack
monitoring requirement as a stack overflow cannot occur if the stack is
bounded by memory write access control.
The write access protection needs appropriate hardware support.

Conflicts: --

Supporting Material: --

4.5.1.2 [BSW11006] Allow data exchange

Initiator: WP4.2.2.1.11

Date: 07.07.2004

Short Description: Allow data exchange within an OS-Application

Type: New

Importance: High

Description: The operating system shall allow tasks and ISRs within an OS-Application to
exchange data using direct access to shared memory.

Rationale: It is common to exchange data using shared memory for performance
reasons at runtime (e.g. using global variables). However, in AUTOSAR
multiple OS-Applications will share a processor and therefore any data
communication that happens through shared memory breaks the memory
protection scheme.
Therefore, it is necessary to provide OS-Applications with the ability to share
data using memory which is globally accessible to tasks and ISRs within the
application but which is not accessible to other OS-Applications i.e. shared
memory local to scope of an OS-Application.

Use Case: An OS-Application implements communication and uses an ISR to handle
the reception of CAN frames from the vehicle network but uses a task to
process the contents of the CAN frame to reduce ISR level blocking.

Dependencies: --

Conflicts: --

Supporting Material: [DOC_WP112_REQ]

Requirements on Operating System
 V2.0.6

R3.2 Rev 3

15 of 23 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

4.5.1.3 [BSW11007] Code Sharing

Initiator: WP4.2.2.1.11

Date: 07.07.2004

Short Description: Code sharing

Type: New

Importance: High

Description: The operating system shall allow OS-Applications to execute shared code.

Rationale: If code cannot be shared then any piece of software that is common to a
number of software components/basic software modules will have to be
included multiple times in a software build. This has two implications:
a large increase in code space
a problem is introduced for software maintenance as a modification to
logically shared code will have to be made to every instance of the code in a
build of an ECU (a single change has become multiple changes)

Use Case: Using shared libraries.

Dependencies: --

Conflicts: --

Supporting Material: --

4.5.1.4 [BSW11000] Memory read access

Initiator: WP4.2.2.1.11

Date: 21.07.2004

Short Description: Memory read access

Type: New

Importance: High

Description: The OS may offer support to protect the memory sections of an OS-
Application against read accesses by all other OS-Applications.

Rationale: If a task/ISR can read from any memory then it may operate on incorrect
data. This could result in failures at runtime. Preventing read accesses
provides a way of trapping such faults as soon as they occur.
A secondary issue is security. While it is not anticipated that there are any
security implications between OS-Applications on the same processor, read
accesses does provide protection if required

Use Case: Security: protect secret keys; Debugging support

Dependencies: --

Conflicts: --

Supporting Material: --

4.5.2 Timing Protection

4.5.2.1 [BSW11008] Timing Protection

Initiator: WP4.2.2.1.11

Date: 07.07.2004

Short Description: Timing Protection

Type: New

Importance: High

Description: The OS shall not allow a timing fault in any OS-Application to propagate to a
different application resident on the same processor. A timing fault is defined
as:
exceeding a specified execution time

Requirements on Operating System
 V2.0.6

R3.2 Rev 3

16 of 23 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

exceeding a specified arrival rate

Rationale: When these parameters are specified for every task/ISR in the system it is
possible to determine whether or not each task/ISR always meets its
deadline.

Timing correctness on an ECU running any fixed-priority pre-emptive OS,
including OSEK OS, can only be guaranteed using schedulability analysis.
This uses information about the tasks and interrupts (how often they run,
how long they run for, which resources they access, how long they hold
them for) and then calculates that the system will meet its real-time
performance deadlines.

The scope of timing protection is to ensure that an AUTOSAR system that
has been shown to meet its deadlines does not violate the model used for
analysis at runtime due to failures in the functional behaviour of applications
(or their constituent parts).

Strict enforcement of the assumptions of the real-time performance analysis
means two important things:

A timing fault is detected early, and hence can be picked up earlier in the
software life cycle. For example, a faulty software component from a supplier
can be rejected prior to full integration test. The costs of remedying a fault
are therefore reduced.
A timing fault is not propagated. By detecting the fault as it occurs the effects
of the fault are confined to the OS-Application where the fault occurred. Thus
the problems of real-time failures induced in the wrong sub-system (or even
the wrong ECU in a network) are eliminated.

Use Case: An object in one OS-Application executing for too long, causes an object in
another OS-Application to miss its deadline as a result.

Dependencies: --

Conflicts: --

Supporting Material: --

4.5.3 Service Protection

The OS must preserve both its own integrity and the integrity of the OS-Applications
that it schedules at runtime.

4.5.3.1 [BSW11009] Protection of the OS

Initiator: WP4.2.2.1.11

Date: 07.07.2004

Short Description: Protection of the OS

Type: New

Importance: High

Description: The operating system shall prevent the corruption of the OS by any call of a
system service.

Rationale: If it was possible to place the OS into an unknown state, or corrupt OS data
structures at runtime then this would damage every OS-Application resident
on the same processor. This means that either:
every OS service call must have defined behaviour in all cases; or
the OS must not allow service calls to be made from contexts would
potentially result in the OS being placed into an undefined state.
This increases the integrity of the OS itself.

Requirements on Operating System
 V2.0.6

R3.2 Rev 3

17 of 23 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

Use Case: Avoid undefined behaviour from e.g. calling services from wrong context.

Dependencies: In case the current specification of OSEK OS allows configurations which do
not protect the OS the AUTOSAR configuration has to make sure that these
configurations can not be selected.

Conflicts: --

Supporting Material: --

4.5.3.2 [BSW11010] Protection of OS-Applications

Initiator: WP4.2.2.1.11

Date: 07.07.2004

Short Description: Protection of OS-Applications

Type: New

Importance: High

Description: The operating system shall prevent an OS-Application modifying OS objects
that are not owned by that OS-Application.

Rationale: An OS-Application could manipulate objects in another OS-Application that
cause it to behave outside the scope of its design at runtime. Protecting the
integrity of OS-Applications means that one application cannot manipulate
the objects owned by another OS-Application, causing potential failure in
another OS-Application through OS service calls, unless expressly
permitted. This increases the ability to trace faults arising from OS-
Application coupling by restricting the possible sources of the fault.

Use Case: Cancelling an alarm that activates a task in another OS-Application

Dependencies: In the case where the current specification of OSEK OS allows
configurations which do not protect OS-Applications, the AUTOSAR
configuration has to make sure that these configurations can not be
selected.

Conflicts: --

Supporting Material: --

4.5.4 [BSW11011] Protecting the OS managed hardware

Initiator: WP4.2.2.1.11

Date: 07.07.2004

Short Description: Protecting the OS managed hardware

Type: New

Importance: High

Description: The OS shall protect itself against OS-Applications attempting to modify
control registers directly which are managed by the OS.

Rationale: The OS must be protected against OS-Applications attempting (directly or
indirectly) to circumvent the protection mechanisms. Typically this means
that OS-Applications should be prevented from accessing the MCU status
registers and memory protection registers that might be in use.

Use Case: OS uses the processor status word for managing interrupts and the register
is written by a rogue OS-Application at runtime, corrupting the internal data
structures of the OS.

Dependencies: The target hardware must support privileged/non-privileged modes and a
MPU for this protection to be possible. This feature will therefore not be
available on those targets that do not provide sufficient hardware support.

Conflicts: --

Supporting Material: --

Requirements on Operating System
 V2.0.6

R3.2 Rev 3

18 of 23 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

4.5.5 [BSW11012] Scalable Protection

Initiator: WP4.2.2.1.11

Date: 07.07.2004

Short Description: Scalable Protection

Type: New

Importance: High

Description: The OS shall provide scalability for its protection features.

Rationale: Take full advantage of the processor's hardware features: The key protection
features may not be available on all hardware (e.g. some types of memory
protection are not possible when the processor has no MPU), but this should
not prevent users for using the other protection features that can be
supported.
Customize to specific user's needs: Protection may only be necessary
around some applications (ones where we cannot be sure of their run-time
behaviour) and protection can be applied selectively based on assessment
of the risk of failure.

Use Case: Implementing an AUTOSAR compliant OS on a microcontroller without
hardware memory protection.
Where an ECU is engineered using a process that can statically guarantee
that no protection violations will occur at runtime it does not need to dedicate
resources to check for violations. For example, if worst-case execution times
are statically analysed then timing protection is not needed at runtime.
Furthermore, because the analysis shows that the conditions that trigger
execution of the code will never occur, the code is “dead code” and should
be removed because of the potential safety risk it brings.

Dependencies: --

Conflicts: --

Supporting Material: --

4.5.6 Protection Errors

The OS must be able to identify when an error that violates the protection schemes
has occurred and must also provide facilities through which action can be taken to
correct the fault. However, it is not the task of the OS to define the error handling
scheme.

4.5.6.1 [BSW11013] Error Notification

Initiator: WP4.2.2.1.11

Date: 07.07.2004

Short Description: Protection Error Notification

Type: New

Importance: High

Description: The OS shall be capable of notifying the occurrence of a protection error at
runtime.
A protection error is any memory access violation, timing fault, unauthorised
call to OS service or software trap (for example division by zero, illegal
instruction).

Rationale: If protection errors are notified at runtime this provides scope to potentially
correct or handle the error according to a predefined fault handling strategy.

Use Case: The application needs to provide some kind of runtime fault tolerance that
needs to take action on the type and/or number of errors that occur to

Requirements on Operating System
 V2.0.6

R3.2 Rev 3

19 of 23 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

improve availability at runtime.

Dependencies: --

Conflicts: --

Supporting Material: --

4.5.6.2 [BSW11014] Protection Error Handling

Initiator: WP4.2.2.1.11

Date: 07.07.2004

Short Description: Protection Error Handling (fault recovery)

Type: New

Importance: High

Description: In case of a protection error, the OS shall provide an action for recovery on
OS-, OS-Application and task/ISR-level. The user shall be able to select the
action.

Rationale: The action taken on the occurrence of an error is a function of the failure
modes of the system as a whole. For example, in some cases it will be
appropriate to simply terminate the faulty task, in others this may pose more
of a risk to safety than allowing it to continue to execute.
Therefore, the decision which action is appropriate is up to the application.

Use Case: --

Dependencies: --

Conflicts: --

Supporting Material: --

4.6 Timer Services

Timer Services provide software timers for use in application and basic software.

The core of a timing mechanism is already provided by the counters and alarms in
OSEK OS. Introducing an almost identical mechanism, in the form of Timer Services,
is therefore unnecessary.

However, to provide general purpose software timing a few supplementary features
need to be added to AUTOSAR OS. These are described in BSW11020 and
BSW11021.

4.6.1 Functional Requirements

4.6.1.1 [BSW11020] Standard interface for ticking counters

Initiator: WP4.2.2.1.11

Date: 25.04.2005

Short Description: Standard interface for ticking counters

Type: New. Added after discussion with WP1.1.2 about timer services.

Importance: High

Description: The OS shall provide a standard interface to tick a software counter.

Rationale: OSEK OS does not define the interface between counters and alarms. This
creates a problem when porting applications between different vendors’
implementations. Defining this interface in AUTOSAR OS removes this

Requirements on Operating System
 V2.0.6

R3.2 Rev 3

20 of 23 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

portability problem.

Use Case: --

Dependencies: --

Conflicts: --

Supporting Material: --

4.6.1.2 [BSW11021] Support for cascading counters

Initiator: WP4.2.2.1.11

Date: 25.04.2005

Short Description: Support for cascading counters

Type: New. Added after discussion with WP1.1.2 about timer services.

Importance: High

Description: The OS shall provide a mechanism to cascade multiple software counters
from a single hardware counter.

Rationale: If counters with different resolutions are required it may not be possible (e.g.
because of limited hardware timers) or desirable (e.g. because of interrupt
interference) to use multiple hardware timer sources. In many cases a lower
resolution software counter can be driven from a higher resolution counter by
ticking the lower resolution counter from the higher resolution counter.

Use Case: Drive a 1ms software counter by a 1ms timer interrupt and a 100ms counter
from the 1ms counter.

Dependencies: This requirement implies that an implementation must support more than
one counter (otherwise cascading would not be possible). Specification of
the lower limit on the number of counters that must be supported by an
implementation is provided in the AUTOSAR OS SWS.

Conflicts: --

Supporting Material: --

Requirements on Operating System
 V2.0.6

R3.2 Rev 3

21 of 23 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

4.7 Time Triggered Operating System

4.7.1 Functional Overview

A time-triggered operating system implements a scheduler for statically scheduled
real-time software in automotive electronic control units.
Further on the operating system offers all basic services for real-time applications i.e.
interrupt handling, dispatching, system time and clock synchronisation, local
message handling, and error detection mechanisms.
All services are hidden behind a well-defined API. The application interfaces to the
OS and the communication layer only via this API.
For a particular application the operating system can be configured such that it only
comprises the services required for this application. Thus the resource requirements
of the operating system are as small as possible.

4.7.2 Functional Requirements

4.7.2.1 [BSW11016] Scalability of the OS

Initiator: WP4.2.2.1.11

Date: 06.09.2004

Short Description: The OS implementation shall offer scalability configurable by a generation
tool

Type: New

Importance: High

Description: The OS implementation shall provide the following configurations :
Class1 : OSEK OS + Planned Schedules
Class2 : Class1 + Timing Protection
Class3 : Class1 + Memory Protection
Class4 : Class1+ Class2 + Class3

Rationale: Hardware support is required for Classes 3 and 4. Mandating this
functionality would prevent AUTOSAR OS from being implemented on many
commonly used microcontrollers.
Implementations may choose different strategies for implementation, with a
corresponding increase in performance, if some features are not required.

Use Case: --

Dependencies: BSW11012

Conflicts: --

Supporting Material: --

Requirements on Operating System
 V2.0.6

R3.2 Rev 3

22 of 23 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

5 References

5.1 Deliverables of AUTOSAR

[AUTOSAR_GLOSSARY] Glossary,
AUTOSAR_Glossary.pdf

[DOC_LAYERED_ARCH] Layered Software Architecture,
AUTOSAR_LayeredSoftwareArchitecture.pdf

[DOC_VFB] Specification of the Virtual Function Bus,
AUTOSAR_VirtualFunctionBus.pdf

[DOC_WP112_REQ] General Requirements on Basic Software Modules,
AUTOSAR_SWS_General.pdf

5.2 Related standards and norms

5.2.1 OSEK

[STD_OSEK_OS] OSEK/VDX Operating System, Version 2.2.2,
http://www.osek-vdx.org/mirror/
os223.pdf

[STD_OSEK_OIL] OSEK / VDX Implementation Language (OIL) V2.5,
OSEK Implementation Language,
http://www.osek-vdx.org/mirror/
oil25.pdf

[STD_OSEK_TTOS] OSEK/VDX Time-Triggered Operating System, Version 1.0,
July 24, 2001
http://www.osek-vdx.org/mirror/
ttos10.pdf

[STD_OSEK_ORTI] OSEK/VDX ORTI (OSEK RunTime Interface) Part A Version
2.1.1, Part B Version 2.1
http://www.osek-vdx.org/mirror/
ORTI-A-211.pdf

5.2.2 HIS

[STD_HIS_PROTECTED_OS_REQ] Requirements for Protected Applications under
OSEK, Version 1, 25.09.2002
http://www.automotive-his.de/download/
HIS Protected OS.pdf

Requirements on Operating System
 V2.0.6

R3.2 Rev 3

23 of 23 Document ID 008: AUTOSAR_SRS_OS

- AUTOSAR confidential -

[STD_HIS_PROTECTED_OS] Requirements for Protected Applications under
OSEK, Version 1.0, July 27, 2003.
http://www.automotive-his.de/download/
HIS_ProtectedOSEK10.pdf

5.2.3 Company Reports, Academic Work, etc

[REP_DC_PROTECTED_OS] Extensions of OSEK OS for Protected Applications,
OSEK Support Project, DC058_02, Daimler-Chrysler AG

	1 Scope of this document
	2 How to read this document
	2.1 Conventions used
	2.2 Requirement structure

	3 Acronyms and abbreviations
	4 Requirement Specification
	4.1 Real-Time Operating System
	4.1.1 Functional description

	4.2 Core Operating System
	4.2.1 [BSW097] Existing OSEK OS
	4.2.2 [BSW11001] Object Grouping
	4.2.3 [BSW11018] Interrupt masking services
	4.2.4 [BSW11019] Creation of Interrupt Vector Table

	4.3 Statically Defined Scheduling
	4.3.1 [BSW098] Table based schedules
	4.3.2 [BSW099] Switchable schedules
	4.3.3 [BSW11002] Synchronisation with global time

	4.4 Monitoring Facilities
	4.4.1 [BSW11003] Stack Monitoring

	4.5 Protection Facilities
	4.5.1 Memory Protection
	4.5.1.1 [BSW11005] Memory Write Access
	4.5.1.2 [BSW11006] Allow data exchange
	4.5.1.3 [BSW11007] Code Sharing
	4.5.1.4 [BSW11000] Memory read access

	4.5.2 Timing Protection
	4.5.2.1 [BSW11008] Timing Protection

	4.5.3 Service Protection
	4.5.3.1 [BSW11009] Protection of the OS
	4.5.3.2 [BSW11010] Protection of OS-Applications

	4.5.4 [BSW11011] Protecting the OS managed hardware
	4.5.5 [BSW11012] Scalable Protection
	4.5.6 Protection Errors
	4.5.6.1 [BSW11013] Error Notification
	4.5.6.2 [BSW11014] Protection Error Handling

	4.6 Timer Services
	4.6.1 Functional Requirements
	4.6.1.1 [BSW11020] Standard interface for ticking counters
	4.6.1.2 [BSW11021] Support for cascading counters

	4.7 Time Triggered Operating System
	4.7.1 Functional Overview
	4.7.2 Functional Requirements
	4.7.2.1 [BSW11016] Scalability of the OS

	5 References
	5.1 Deliverables of AUTOSAR
	5.2 Related standards and norms
	5.2.1 OSEK
	5.2.2 HIS
	5.2.3 Company Reports, Academic Work, etc

